ASG-DataManager™
IMS (DL/1) Interface

Version: 2.5
Publication Number: DMR0200-25-IMS
Publication Date: December 2000

The information contained herein is the confidential and proprietary information of Allen Systems Group, Inc. Unauthorized use of this
information and disclosure to third parties is expressly prohibited. This technical publication may not be reproduced in whole or in part, by
any means, without the express written consent of Allen Systems Group, Inc.

©1998-2001 Allen Systems Group, Inc. All rights reserved.
All names and products contained herein are the trademarks or registered trademarks of their respective holders.

ASG Worldwide Headquarters Naples, Florida USA | asg.com
1333 Third Avenue South, Naples, Florida 34102 USA Tel: 941.435.2200 Fax: 941.263.3692 Toll Free: 1.800.932.5536

ASG Documentation/Product Enhancement Fax Form

Please FAX comments regarding ASG products and/or documentation to (941) 263-3692.

Company Name Telephone Number Site ID Contact name
Product Name/Publication Version # Publication Date
Product:

Publication:

Tape VOLSER:

Enhancement Request:

©2001 Allen Systems Group, Inc.

All names and products are trademarks or registered trademarks of their respective holders.

ASG Support Numbers

ASG provides support throughout the world to resolve questions or problems regarding
installation, operation, or use of our products. We provide all levels of support during normal
business hours and emergency support during non-business hours. To expedite response time,
please follow these procedures.

Please have this information ready:

° Product name, version number, and release number

. List of any fixes currently applied

. Any alphanumeric error codes or messages written precisely or displayed
. A description of the specific steps that immediately preceded the problem

. The severity code (ASG Support uses an escalated severity system to prioritize service to
our clients. The severity codes and their meanings are listed below.)

If You Receive a Voice Mail Message:
1 Follow the instructions to report a production-down or critical problem.

2 Leave a detailed message including your name and phone number. A Support representative
will be paged and will return your call as soon as possible.

3 Please have the information described above ready for when you are contacted by the Support
representative.

Severity Codes and Expected Support Response Times

Severity Meaning Expected Support Response
Time
1 Production down, Within 30 minutes

critical situation

2 Major component of product disabled Within 2 hours

3 Problem with the product, but customer has ~ Within 4 hours
work-around solution

4 "How-to" questions and enhancement Within 4 hours
requests

ASG provides software products that run in a number of third-party vendor environments. Support
for all non-ASG products is the responsibility of the respective vendor. In the event a vendor
discontinues support for a hardware and/or software product, ASG cannot be held responsible for
problems arising from the use of that unsupported version.

Business Hours Support

Your Location

Phone

Fax

E-mail

United States and
Canada

Australia
England
France
Germany

Singapore

All other countries:

800.354.3578
1.941.435.2201

Secondary Numbers:

800.227.7774
800.525.7775

61.2.9460.0411
44.1727.736305
33.141.028590
49.89.45716.300
65.224.3080

1.941.435.2201

941.263.2883

61.2.9460.0280
44.1727.812018
33.141.028589
49.89.45716.400
65.224.8516

Non-Business Hours - Emergency Support

Your Location

Phone

Your Location

support@asg.com

support.au@asg.com
support.uk@asg.com
support.fr@asg.com

support.de@asg.com

support.sg@asg.com

support@asg.com

Phone

United States and
Canada

Asia
Australia
Denmark
France
Germany
Hong Kong
Ireland
Israel/Bezeq
Japan/IDC

800.354.3578
1.941.435.2201

Secondary Numbers:

800.227.7774
800.525.7775

Fax:
941.263.2883

011.65.224.3080
0011.800.9932.5536
00.800.9932.5536
00.800.9932.5536
00.800.9932.5536
001.800.9932.5536
00.800.9932.5536
014.800.9932.5536
0061.800.9932.5536

Japan/Telecom
New Zealand
South Korea
Sweden/Telia
Switzerland
Thailand

United Kingdom

All other countries

0041.800.9932.5536
00.800.9932.5536
001.800.9932.5536
009.800.9932.5536
00.800.9932.5536
001.800.9932.5536
00.800.9932.5536

1.941.435.2201

ASG Web Site

Visit http://www.asg.com, ASG’s World Wide Web site.

Submit all product and documentation suggestions to ASG’s product management team at
http://www.asg.com/products/suggestions.asp

If you do not have access to the web, FAX your suggestions to product management at (941)
263-3692. Please include your name, company, work phone, e-mail ID, and the name of the ASG
product you are using. For documentation suggestions include the publication number located on
the publication’s front cover.

http://www.asg.com/products/suggestions.asp
http://www.asg.com

Contents

P aCE e e v
About thisPublication Vi
Publication Conventions.ttt Vi
1 DataManager IMS (DL/I) InterfaceFacilities i... 1
2 ThelIMS(DL/l) Environment and DataManagercovuvivnen.n.. 5
INtrodUCHIONo e 5
0T 0 1101 5
DAlAASES. . . o . 12
APPHCAION VIBW . oo e e e 13
Further Information. e 15
SIS . . . ottt e 15
IMS (DL/) DataFields.ooe ettt ettt e 16
IMS (DL/I) Datahases.o et e 16
Special DataManager Member TYPES. . ..ot ittt et 17
AppPliCaiON VieW .. e e 19
S MeEmbEr TYPES. .ottt e e e 21
Member-type Syntax for IMS(DL/I) Segments. ..., 22
PhysiCal SEgMENtS.o e 24
Logical SEgMENtSttt 51
Segmentsthat Residein a Secondary Index Databaset 55
Member-type Syntax For IMS (DL/I) Databases. 69
Outline of the IMS-DATABASE Member Type oo 69
Member Type of a GSAM Type IMS (DL/l) DatabaseSyntax 70
The Member Typefor aHSAM Type IMS(DL/I) Database. 75
The Member Type for aHISAM TypeIMS(DL/I) Database 79
The Member Typefor aHDAM Type IMS (DL/I) Database. 86
The Member Typefor aHIDAM TypeIMS (DL/l) Database. 94
The Member Typefor aLOGICAL TypeIMS (DL/l) Database. 106

ASG-DataManager IMS (DL/I) Interface

The Member Type for a SECONDARY -INDEX Type IMS (DL/I) Database. 111
Member-type Descriptionsfor IMS (DL/I) Program Communication Blocks. .. 117
PROGRAM-COMMUNICATION-BLOCKo 117
Exampleof aGSAM typePCB 129
Examples of OUTPUT-MESSAGE TypePCBS.ot i i 129
Examplesof STRUCTURE TypePCBS. 130
ThePROCESSES Clause. e 132
Syntax of the PROCESSES Clalise.ttt e e 132
4 Extensionsto DataManager Commandsfor IMS(DL/I) Databases 139
INErOdUCTION . . . o e 139
IMS (DL/1) Member-type Keywords. 139
Condition Keywordsfor WHICH and WHAT Commands 141
EXampIEs. . .. 142
Member Type INnterrogations.ot e e 146
INtETOgation SYNEaXo e it e e e e e 154
Alternative Verb Keywordso i 174
5 IMS(DL/l) SourceLanguage Generation.ovvii e, 175
INErodUCHION e 176
Generating IMS (DL/I) DBD Control Statements. 176
GeneratingIMS (DL/I) PSB Control Statements 183
Generation of COBOL, PL/I, or Assembler Data Description Statementsfor Segment
INPUL/OULPUL AT EES. . . . oot ettt e e e e 189
The PRODUCE Command.ottt e i 189
INStallatioNn MaCrOSo 189
Segment Input/Output Areas. Items Defined asBINARY or BITS. 190
Simple Physical SEgmeNtSt e 190
Logical Child Segmentst e e 190
Destination Parent Segments.ot 191
Index Target and Index Source Segments.t 191
Logical Segments and Logical Concatenated Segments. 192
VariableLength Segments i e e 192
Path Calls 194
Index PoINter SEOMENTS.ot e e e 194
Miscellaneous IMS (DL/I) Felds. . ..o oo e e 198
Generation of COBOL, PL/I, or Assembler Data Description Statementsfor Segment
Sensitive Fields INput/Output Areas.t e 198
Generation of COBOL, PL/I, or Assembler Data Description Statements for PCB
MK S . o 200

Contents

Generation of COBOL, PL/I, or Assembler Data Description Statementsfor Segment

SearCh ArgUMENES. . . .o 203

Appendix A

Macrosfor TailoringtheIMSIinterface........... 209
Implementation of theIMS (DL/1) InterfaceMacros 209
TheMacrosDGDBD ANdDGPSB ... 210
TheMacrosDGSCOB, DGSPLI, DGSBAL,and DGSREC.................. 213

Appendix B

Manager Productsand IMSKeywords ... 215
INtrOdUCHION e e 215
IMS Databases. . .. oo e 215

T 217

ASG-DataManager IMS (DL/I) Interface

Preface

This ASG-DataManager IMS (DL/I) Interface describes the OS version of the IMS
(DL/) Interface facility. This facility (additional to the basic set-up, maintenance, and
interrogation features) enables the user to fully define IMS (DL/I) databasesin the
dictionary and to produce IMS (DL/1) DBD and PSB control statements, PCB masks,
segment search arguments, and segment input/output area data description directly from
ASG-DataManager (herein called DataManager) data definitions.

The scope of the OS version of this interface encompasses the Data Language/l (DL/I)
facility of the IMS/V S subsystem available under VS (excluding DOS/V'S).

The DOS version of the interface is described in a separate manual.

This interface does not include the Data Communications (DC) facility of IMS/VS, for
which a separate interface is available.

Allen Systems Group, Inc. (ASG) provides professional support to resolve any questions
or concerns regarding the installation or use of any ASG product. Telephone technical
support is available around the world, 24 hours aday, 7 days aweek.

ASG welcomes your comments, as a preferred or prospective customer, on this
publication or on any ASG product.

ASG-DataManager IMS (DL/I) Interface

About this Publication

This publication consists of these chapters:

Chapter 1, "DataManager IMS (DL/I) Interface Facilities," on page 1 summarizes
the interfaces between DataM anager and IMS (DL/I).

Chapter 2, "The IMS (DL/I) Environment and DataM anager,” discusses very
briefly the concept of IMS (DL/1) databases and illustrates how an IMS (DL/I)
database can be defined to DataM anager.

Chapter 3, "Member Types," gives the specifications of the DataManager data
definition statements for IMS (DL/1) databases and their constituents.

Chapter 4, "Extensions to DataM anager Commands for IMS (DL/I) Databases,"
describesthe interrogation and documentation facilitiesfor reporting on IMS (DL/1)
databases.

Chapter 5, "IMS (DL/I) Source L anguage Generation," describes the interface
between IMS (DL/I1) and the DataM anager Source Language Generation facility.

Publication Conventions

Vi

These conventions apply to syntax diagrams that appear in this publication.

Diagrams are read from left to right along a continuous line (the "main path"). Keywords
and variables appear on, above, or below the main path.

Convention Represents

>>

> <

At the beginning of alineindicates the start of a statement.

At the end of alineindicates the end of a statement.

At the end of alineindicates that the statement continues on the line

—

) —

below.

At the beginning of aline indicates that the statement continues from the
line above.

Keywords are in upper-case characters. Keywords and any required punctuation
characters or symbols are highlighted. Permitted truncations are not indicated.

Variables are in lower-case characters.

Statement identifiers appear on the main path of the diagram:

\/

»———COMVAND

A required keyword appears on the main path:

Preface

Convention Represents

» ——————— COWAND —— KEYWORD

\/

An optional keyword appears below the main path:

>» — COMVAND

»
r

L kevworo |

Wherethereis a choice of required keywords, the keywords appear in avertical list; one
of them is on the main path:

KEYVI}{MT—T
)~————————CI}WWAND—————————EEEKEYV[IEE
KEY\/\CRD3———|

or

> COWAN KEYWORD1
KEYWORD2__|
KEYWORD3__|
Where there is a choice of optional keywords, the keywords appear in avertical list,
below the main path:

\

\

> COWAND >
i:KEYWJ?Dl:‘
KEYWORD2

The repeat symbol, <<<<<<, above akeyword or variable, or above awhole clause,
indicates that the keyword, variable, or clause may be specified more than once:

<L L L L L
vari abl e

\

»——— COMVAND

A repeat symbol broken by acommaindicatesthat if the keyword, variable, or clauseis
specified morethan once, acommamust separate each instance of the keyword, variable,
or clause:

<<< , <<
vari abl e

\

> COMAND

The repeat symbol above alist of keywords (one of which appears on the main path)
indicates that any one or more of the keywords may be specified; at |east one must be
specified:

vii

ASG-DataManager IMS (DL/I) Interface

viii

Convention Represents

<LLLL L L L L L L LKL LK

)—CO\/'\/AND—EKEYWRDl_]
KEYWORD2

\

The repeat symbol above alist of keywords (all of which are below the main path)
indicatesthat any one or more of the keywords maybe specified, but they are all optional:

<L L L L L L L L L LK

> — COWAND >
iziEYWRDl :‘
EYWORD?

Allen Systems Group, Inc. uses these conventions in publications:

Convention Represents

ALL CAPITALS Directory, path, file, dataset, member, database,
program, command, and parameter names.

Initial Capitals on Each Word Window, field, field group, check box, button, panel (or
screen), option names, and names of keys. A plussign
(+) isinserted for key combinations (e.g., Alt+Tab).

| owercase italic Information that you provide according to your
nmonospace particular situation. For example, you would replace
fi | ename with the actual name of thefile.

Monospace Characters you must type exactly asthey are shown.
Code, JCL, filelistings, or command/statement syntax.

Also used for denoting brief examplesin a paragraph.

Vertical Separator Bar (|) Optionsavailablewiththe default value underlined (e.g.,
with underline Y|N).

DataManager IMS (DL/l) Interface
Facilities

DataManager's IMS (DL/1) Interface provides facilities for al usersinan IMS (DL/I)
environment. It enables users:

To define IMS (DL/I) databases and segments to DataM anager [in asimpler
manner than that available from the use of IMS (DL/I) Database Description
Control Statements]; to hold the definitions in the data dictionary; and to document
them, to interrogate them, and to process them by the standard DataM anager
commands

To generate from the data dictionary and to insert into the required source library
complete sets of Database Description (DBD) Control Statements to allow a DBD
generation process

To define at SY STEM/PROGRAM/MODULE data definition level and Program
Communication Block (PCB) data definition level the application view of the
databases used by programs

To generate from the data dictionary and to insert into the appropriate source library
complete sets of PSB Control Statements to allow a PSB generation process

To generate record layouts and/or COBOL, PL/I, or Assembler data descriptionsfor
segment input/output areas

To generate record layouts and/or COBOL, PL/I, or Assembler data descriptionsfor
segment input/output areas for sensitive fields

To generate record layouts and/or COBOL, PL/I, or Assembler data descriptionsfor
Program Communication Block (PCB) masks

To generate record layouts and/or COBOL, PL/I, or Assembler data descriptionsfor
segment search arguments (SSAS)

ASG-DataManager IMS (DL/l) Interface

The ability to define IMS (DL/I) databases, segments, and PCBs demands three
additional member types in DataManager:

. To define a database, the member typeisIMS-DATABASE or DL/I-DATABASE.
The member type identifier IMS-DATABASE is synonymous with
DL/I-DATABASE. In the DataM anager member type hierarchy, this database
member typeis at the same level asthe FILE member type.

. To define a PCB, the member type is PROGRAM-COMMUNICATION-BLOCK
or PCB, which comes between the MODUL E member type and the
IMS-DATABASE/DL/I-DATABASE member type in the DataM anager member
type hierarchy. The two member type identifiers
PROGRAM-COMMUNICATION-BLOCK and PCB are synonymous.

. To define a segment, the member typeis SEGMENT, which comes between the
IMS-DATABASE/DL/I-DATABASE member type and the GROUP member type
in the DataM anager member type hierarchy.

The IMS-DATABASE/DL/I-DATABASE data definition statement, the
PROGRAM-COMMUNICATION-BLOCK/PCB data definition statement, and the
SEGMENT data definition statement are discussed further in Chapter 2, "The IMS (DL/1)

Environment and DataM anager," on page 5 and are specified in Chapter 3, "Member
Types," on page 21.

Also required are facilities at the SY STEM, PROGRAM, and MODULE data definition
levelsto alow the application view of databases to be specified. The relevant formats of
the SY STEM, PROGRAM, and MODULE data definition statements are discussed in
Chapter 2, "The IMS (DL/I) Environment and DataM anager," on page 5 and are specified
in Chapter 3, "Member Types," on page 21.

To enable the definitions of IMS (DL/1) databases, PCBs, and segments to be processed
by DataManager in the same way as other members of the data dictionary, the keywords
IMS-DATABASES, DL/I-DATABASES, PROGRAM-COMMUNICATION-
BLOCKS, PCBS, and SEGMENTS are added to the member-type keywords available for
use in these basic DataM anager commands:

. BULK

. GLOSSARY
. LIST

. PERFORM
. WHICH

Any of the alternative forms DL/1-DATABASES, DL1-DATABASES, and
DLI-DATABASES are accepted for the keyword DL/I-DATABASES.

1 DataManager IMS (DL/I) Interface Facilities

Also added to these commands are the keywords:
. SEQUENCE-KEY S
. IMS-DATASETS

. DL/I-DATASETS (with thealternativeforms DL/I-DATASETS, DLI-DATASETS
or DL1-DATASETYS)

. INDEX-SEARCH-FIELDS

. SYSTEM-RELATED-FIELDS

. CONCATENATED-KEY-NAMES

to enable interrogation and documentation in respect of members of internal member
types. These members are generated by DataManager (see " Special DataManager
Member Types' on page 17). Since members of internal types have no source records, a

BULK ENCODE or BULK PRINT command selecting members of these typesis
meaningless.

Other extensions to the syntax of basic DataM anager interrogation and documentation
commands provide powerful facilities for reporting on the structure of IMS (DL/1)
database systems. Thesefacilities are specified in Chapter 4, "Extensionsto DataM anager
Commands for IMS (DL/1) Databases," on page 139.

The ability to generate IMS (DL/1) control statements, data descriptions for segment
input/output areas, PCB masks, and segment search arguments require the use of the
Source Language Generation facility (selectable unit DMR-SL5). The fundamentals of
the Source Language Generation facility, including the output of data descriptionsin
COBOL, PL/I, and Assembler, are described in the publication ASG-Manager Products
Source Language Generation.

Enhancements to the Source L anguage Generation facility that enable it to output IMS
(DL/) control statements and COBOL, PL/I, and Assembler data descriptions for
segment input/output areas, PCB masks, and segment search arguments are specified in
Chapter 5, "IMS (DL/I) Source L anguage Generation," on page 175.

ASG-DataManager IMS (DL/l) Interface

For an installation that isimplementing an IMS (DL/I) database management system for
thefirst time, ASG strongly recommends the following approach:

Study, in depth, the concepts and facilities both of IMS and of DataM anager.
Design the IM S database structures required for theinitial implementation.

Set up a DataM anager data dictionary in which the definitions of the data structures
and the application views can be devel oped.

Write DataM anager data definitions of the databases, the segments, and the
constituent groups and items, and ADD them to the data dictionary.

Similarly ADD program and module data definitions and PCB members for the
application views.

Using the ASG-Manager Products Source Language Generation facility, generate
the IMS (DL/1) control statements and the data descriptions for segment
input/output areas, PCB masks, and segment search arguments.

Users should find that this approach is easier and offers more in-built automatic checks
on accuracy than implementation using IMS (DL/1) facilities alone.

The IMS (DL/l) Environment and

DataManager

This chapter includes these sections:

INtrOdUCKION . . . oo e 5
SIS . . . ot 5
Datahases. . . . o 12
Application View 13
Further Information. i i 15
SO S . . ottt e 15
IMS(DL/I) DataFields.ooo e 16
IMS (DL/I) D@tabases.ottt e et 16
Special DataManager Member TYPeS.o oot 17
Application View o 19

Introduction

Segments

One of the fundamental concepts of IMSisthat it is not the physical organization of the
datathat is significant, but rather the logical structures of the data as viewed by specific

applications.

The basic element of datain an IMS (DL/I) environment is the segment. Regardless of

where or how segments are physically stored, an IMS (DL/I) database system is
effectively alogical collection of segments, which happen to occur in one or more
physical databases, some or al of which are required for specific applications.

ASG-DataManager IMS (DL/I) Interface

Figure 1 illustrates this concept of alogical data structure for an employee database
named SKILLEMP.

Figurele Logical Structure of an Employee Database, SKILLEMP

SKILL
segment

NAME
segment

ADDR PAYROLL EXPR EDUC
segment segment segment segment

2 The IMS (DL/l) Environment and DataManager

However, the six segmentsin Figure 1 on page 6 may actually represent segments stored
in one or more physical databases. If, for example, the six segments were stored in two
physical databases, one apayroll database and the other a skillsinventory database, then
Figure 2 indicates a possible hierarchical structure of the segments within their physical
databases, linked by the segment SKILLNAM.

Figure2e« Physical Storage of the Employee Database, SKILLEMP

PAYRLLDB Database SKILLINV Database

NAMEMAST SKLLMAST
segment segment
ADDRMAST PAYRMAST SKILLNAM
segment segment segment
EXPRMAST EDUCMAST
segment segment

Using the DataManager IMS (DL/1) Interface, each of the segments shown in Figure 1 on
page 6 and Figure 2 can be defined as a data dictionary member of a member type called
SEGMENT.

If certain assumptions are made regarding the specific attributes of the segments, then the
following would be the method of using DataM anager data definition statements to
define these segments:

. For the segmentsin Figure 1 on page 6:

ADD SKI LL;
SEGVENT LOG CAL
CONTAI NS SKLLMAST

ADD NAME;
SEGVENT LOG CAL
CONTAI NS SKI LLNAM NAMVEMAST

ADD ADDR;
SEGVENT LOG CAL
CONTAI NS ADDRMAST

ASG-DataManager IMS (DL/l) Interface

ADD PAYROLL,;
SEGVENT LOG CAL
CONTAI NS PAYRMAST

ADD EXPR;
SEGVENT LOG CAL
CONTAI NS EXPRVAST

ADD EDUGC;
SEGVENT LOG CAL
CONTAI NS EDUCNMAST

. For the segmentsin Figure 2 on page 7:

ADD NANMEMAST;
SEGVENT PHYSI CAL
RELATED- AS DESTI NATI ON- PARENT
ATTRI BUTES
CONTAI'NS | NI TI AL, SURNAME ;SEX
FREQUENCY 100
SEQUENCE- KEY SURNAME DUPLI CATED
| NSERT- POSI TI ON LAST

ADD ADDRNAST,;

SEGVENT PHYSI CAL

ATTRI BUTES
CONTAI NS HOUSE, STREET, TOAN, COUNTY
| NSERT- POSI TI ON LAST

ADD PAYRMAST,

SEGVENT PHYSI CAL

ATTRI BUTES
CONTAI NS PAYRNUMB, STATUS, RATE
SEQUENCE- KEY PAYRNUMB UNI QUELY

ADD SKLLMNAST;

SEGVENT PHYSI CAL

ATTRI BUTES
CONTAI NS SKLLCCDE, SKLLTYPE
FREQUENCY 10
SEQUENCE- KEY SKLLCODE UNI QUELY

ADD SKI LLNAM
SEGVENT PHYSI CAL
RELATED- AS UNDI RECTI ONAL- CHI LD TO NAMEMAST
PO NTERS SYMBOLI C
ATTRI BUTES
SEQUENCE- KEY EMPLOYEE- NO UNI QUELY
CONTAI NS EMPLOYEE- NO

ADD EXPRNVAST,;

2 The IMS (DL/l) Environment and DataManager

SEGVENT PHYSI CAL

ATTRI BUTES
CONTAI NS EXPRCODE;EXPRTI ME
| NSERT- PCSI TI ON FI RST

ADD EDUCMAST:
SEGVENT PHYSI CAL
ATTRI BUTES
CONTAI NS QUAL CODE
SEQUENCE- KEY QUALCODE UNI QUELY

The secondary indexing facility of IMS(DL/I) enables usersto access asegment in a
physical or logical database based on data located in one of its dependent segments; and,
also, optionally to process the database as if its structure has been inverted with the
segment being accessed as the root of the structure. In a secondary index database, an
occurrence of an index pointer segment is generated for each occurrence of the index
source segment containing the search-field data, on which accessing the index target
segment is to be based.

Figure 3 on page 10 illustrates the concept of secondary indexing for an automobile
register database.

Using the DataManager IMS (DL/1) Interface, each of the segments shown in Figure 3 on
page 10 can be defined as a data dictionary SEGMENT type member.

"“Xapul Arepuodss ayy o}
PP} Yyoless 8y} 10} pasn s1 YO 10D YoIYM Ul
‘JBWIas 82.n0s Xepulayis 319NOLNY

ASG-DataManager IMS (DL/I) Interface

N4
sovlg JF19NOLNY
. a3y
Wwewbas
82JN0S Xapu! 319INOLNY Ue JO 80US1INJ20 Fnalolny J1gNOLNY
MOTTIA yJea 1o} parseuab si syuswibas asay) Jo auD
53S™0T0D uewiBes Jejuiod xapul L} s OISHOT0D a3y
_ F19NOLNY
a3ad
O3S0 100
MOTIIA
a3y JF19NOLNY
O3S0 100
and
93S40 100
HLIINS
MOovd dI3NVN

93SYO 100 WBwibes

100121 Xopul

SANOC SIQINYN

N W AFWVYN
SAVav
dIFINVN
ALID
S5eqereq Xepu[Apuodes T0001NY eqERd PoXepU] OIIOLNY

Buixepu| Afepuodss Joajdwex3 uy «gainbi4

10

2 The IMS (DL/l) Environment and DataManager

If certain assumptions are made regarding the specific attributes of the segments, then the
following would be the method of using DataM anager data definition statementsto
define these segments:

ADD CITY,;

SEGVENT PHYSI CAL

ATTRI BUTES
CONTAI NS CI TYNAME, STATE, Cl TYCODE
SEQUENCE- KEY CI TYCODE UNI QUELY
PO NTERS FORWARD- HI ERARCHI CAL

ADD NANMEI D

SEGVENT PHYSI CAL

RELATED- AS TARGET- SEGVENT

ATTRI BUTES
CONTAI'NS I NI TI AL, SURNAME, | DENTCDE
SEQUENCE- KEY | DENTCDE UNI QUELY
PO NTERS FORWARD- HI ERARCHI CAL

ADD AUTQOVBLE;
SEGVENT PHYSI CAL
RELATED- AS SOURCE- SEGVENT
ATTRI BUTES
CONTAI NS MODEL, COLOR, VEEI GHT
| NSERT- POSI TI ON LAST
PO NTERS FORWARD- HI ERARCHI CAL

ADD COLORSEG
SEGVENT | NDEX- PO NTER
RELATED- TO NAMEI D ON COLCCDE
PO NTERS SYMBOLI C
SOURCE AUTOVBLE
SEARCH- KEY- FI ELD COLOR
ATTRI BUTES
SEQUENCE- KEY COLORTYP

In this example, COLCODE is the name of the search-field (XDFLD) that can be used in
the segment search argument for the callsissued to DL/I to access the index target
segment.

11

ASG-DataManager IMS (DL/l) Interface

Databases

12

Asindicated in "Segments' on page 5, an essential feature of an IMS (DL/I) database
system is the ability to overlay multiple logical data structures on non repetitive physical
data structures, where the logical data structures are designed in a manner that satisfies
the functional requirements of specific applications. Logical databases (using logical
relationships specified for segments of physical databases) define structural relationships
among actual segments of one or more physical databases, which can differ from the
structural relationships in the physical database(s). Segments from any given physical
database can belong to many logical databases.

IMS (DL/1) aso offersthe facility to access segmentsin physical or logical databasesin a
sequence specified by a secondary index database.

In "Segments' on page 5, it was shown how DataManager SEGMENT data definition
statements are used to define the characteristics and the logical or secondary indexing
relationships of segments.

Data definition statements for a data dictionary member type called IMS-DATABASE
(or DL/I-DATABASE) are used to define the access and organi zation methods of the
databases to DataM anager, and to specify the hierarchy of the segmentsthat they contain.

If certain assumptions are made regarding the specific attributes of the databases shown
in Figure 1 on page 6, Figure 2 on page 7, and Figure 3 on page 10, respectively, then the
following would be the method of using DataManager data definition statements to
define those databases:

. For the database in Figure 1 on page 6:

ADD SKI LLEMNP;
I NS- DATABASE LOG CAL
CONTAI NS SKI LL,

NAVE PARENT SKI LL,
ADDR PARENT NAME,
PAYROLL PARENT NANME,
EXPR PARENT NAME,
EDUC PARENT NAME

. For the databases in Figure 2 on page 7:

ADD PAYRLLDB;
| M5- DATABASE HI SAM
ACCESS | SAM
DATASETS PRI ME PAYRF BLOCK 4 RECORD 256
OVERFLOW PAYRFO BLOCK 4 RECORD 256
DEVI CE 3340
CONTAI NS NAMEMAST,
ADDRMAST PARENT NAMEMAST,
PAYRMAST PARENT NAMEMAST

2 The IMS (DL/l) Environment and DataManager

ADD SKI LLI NV,
| M5- DATABASE HI SAM
ACCESS | SAM
DATASETS PRI ME SKLLF BLOCK 8 RECORD 512
OVERFLOW SKLLFO BLOCK 8 RECORD 512
DEVI CE 3340
CONTAI NS SKLLMAST,
SKI LLNAM PARENT SKLLMAST
EXPRVMAST PARENT SKI LLNAM
EDUCMAST PARENT SKI LLNAM

. For the databases in Figure 3 on page 10:

ADD AUTOREG
| V5- DATABASE HDAM
ACCESS VSAM RANDOM ZI NG- MODULE AUTRTNE
ANCHOR- PO NTS 1
RELATI VE- BLOCK- MAXI MUM 500
I NSERTI ON- BYTES- MAXI MUM 824
DATASETS PRI ME AUTOF BUFFER 1648
DEVI CE 2314
SCAM 5
CONTAI NS CITY,
NAMVEI D PARENT CI TY,
AUTOVBLE PARENT NAMEI D

ADD AUTOCOL;
| V5- DATABASE SECONDARY- | NDEX
ACCESS VSAM
DATASETS PRI ME COLORF BUFFER 1024
OVERFLOW COLORFO BUFFER 1024
DEVI CE 2314
CONTAI NS COLORSEG

Application View

Finally, when specifying an IMS (DL/I) database system, the applications view of the
databases and segments that they access must be defined. This must be done before an
IMS (DL/I) application program can issue calls to DL/I to access the databases.

Views are defined in the data dictionary by using these DataManager IMS (DL/1)
Interface language facilities:

PROGRAM-COMMUNICATION-BLOCK or PCB member type. A member of this
type defines a PCB accessed by an application program.

13

ASG-DataManager IMS (DL/I) Interface

14

PROCESSES clause that lists the PCB members relevant to the application.
Thisisinserted in the data definition statements for SY STEM, PROGRAM, and
MODULE members, and it enables:

. PSB control statements for an application to be produced from the listed PCB
members.

. SEGMENT-SEARCH-ARGUMENT (SSA) statements to be defined to the data
dictionary. These can be used by the Source Language Generation Facility when
generating DBD control statements [see "Application View" on page 19 and
"Generating IMS (DL/1) DBD Control Statements' on page 176].

Generating SSAs and PCB masks is described in "Generation of COBOL, PL/I, or
Assembler Data Description Statements for PCB Masks' on page 200 and " Generation of

COBOL, PL/I, or Assembler Data Description Statements for Segment Search
Arguments"' on page 203, respectively.

If certain assumptions are made, then the following would be the method of using the
PROCESSES clause to describe an application's processing of the databases SKILLEMP
and AUTOREG illustrated in Figure 1 on page 6 and Figure 2 on page 7, respectively:

PROCESSES | M5
CONTAI NS SKI LLEMP- PCB, AUTOREG- PCB
SEGVENT- SEARCH ARGUMENTS
SEGVENT SKI LL USED- I N SKI LL- SSA
COMMAND- CODE FI RST- OCCURRENCE
QUALI FI ED- ON SKLLTYPE EQ
SEGVENT EXPR USED- | N EXPR- SSA
QUALI FI ED- ON EXPRCODE EQ
AND EXPRTI ME GT
SEGVENT NAMEI D USED- | N NAMEI D- SSA
COMMAND- CODE LAST- OCCURRENCE
QUALI FI ED- ON COLCODE EQ
SEGVENT CI TY USED-I N Cl TY- SSA

ADD SKI LLEMP- PCB;
PCB STRUCTURE
BY CGET ONLY
SEGVENT SKI LL
SEGVENT NAME
SEGVENT EXPR

ADD AUTOREG PCB;

PCB STRUCTURE
BY CET
SEGVENT NAMEI D SECONDARY- SEQUENCE
SEGVENT CI TY

2 The IMS (DL/l) Environment and DataManager

Further Information

Segments

The least that can be recorded by DataManager in the data definition for a segment isthe
keyword SEGMENT followed by one of the keywords PHY SICAL, LOGICAL, or
INDEX-POINTER. This specifies that the segment residesin a physical database, a
logical database, or a secondary index database, respectively.

When a SEGMENT member is being encoded, DataM anager checksthat it is not
contained by the wrong type of database; for example, alogical segment cannot be
contained by an HDAM database.

However, aSEGMENT data definition may be used for Source Language Generation; for
example, to produce DBD control statements, or COBOL, PL/I, or Assembler data
descriptions for segment input/output areas. For these purposes, the data definition must
be complete; that is, it must define the physical characteristics and attributes of the
segment (for example, what fieldsit contains, and/or its sequence key field) and any
logical or secondary indexing relationships in which it participates.

When a segment specified as participating in alogical or secondary indexing relationship
is encoded, DataM anager checks:

. That it is not related to the wrong type of segment; for example, alogical child
segment must not refer to another logical child segment as its destination parent.

. That segments referring to the segment being encoded will not be madeinvalid
because they are related to it in amanner that isinvalid in the context of the
relationship being specified.

. That the database that contains the segment being encoded is the type of database
that permits a segment participating in the specified logical or secondary index
relationship; for example, an HSAM database cannot contain segments that
participate in such relationships.

All complete SEGMENT data definition statements, excepting those for logical child
segments and index pointer segments, must include a CONTAINS list naming the fields
that constitute the segment.

A logical child segment requiresa CONTAINS list only if it hasintersection data;
DataM anager automatically handles the concatenated key of its destination parent. A pair
of logical child segments participating in a physically paired logical relationship must, if
there is any intersection data, have CONTAINS lists where the respective constituent
fields reflect the same total length for the intersection data, because when IMS (DL/I)
updates the intersection data for one of the logical child segments, it also automatically
updates the intersection data for its physically paired logical child segment. The
respective constituent fields may, however, specify different data dictionary members.

15

ASG-DataManager IMS (DL/l) Interface

A virtual logical child segment does not physically exist in storage, but representsthe real
logical child segment with whichiit is paired as viewed from the logical parent segment,
thusit never hasa CONTAINS list specified for it; DataManager automatically obtains

any intersection datafrom the real logical child segment.

Anindex pointer segment for a secondary index database requiresa CONTAINS ist only
to specify any user data. Index pointer segments for the primary indexes of HIDAM
databases are not held on the dictionary as members, but are generated automatically by
the Source L anguage Generation Facility when producing DBD control statementsfor the
primary index database. If the name for the primary index pointer segment and the name
for its sequence key field have not been specified in the data definition of the HIDAM
database nor in the Source Language Generation Facility's PRODUCE command [see
"The Member Type for aHIDAM Type IMS (DL/1) Database" on page 94 and
"Generating IMS (DL/1) DBD Control Statements' on page 176], then they are created by
suffixing | to the respective names of the HIDAM root segment and the HIDAM root
segment's sequence key field.

IMS (DL/I) Data Fields

As stated in "Segments' on page 5, the CONTAINS listsin the dictionary SEGMENT
data definitions specify the data fields that constitute the segments.

The CONTAINS list names ordinary data dictionary GROUP members and/or ITEM
members, optionally with a version specified for ITEM members. The form of the
GROUP and ITEM membersis not specified, as the form is assumed in this priority:

HELD-AS
DEFAULTED-AS
ENTERED-AS
REPORTED-AS

The CONTAINS list may specify any number of variable length ITEM members, either
directly or indirectly. When required, DataM anager will cal culate the minimum and
maximum lengths for the segment; and when generating COBOL, PL/I or Assembler data
description statements for segment input/output areas, will generate size fields.

IMS (DL/I) Databases

16

The least that can be recorded by DataM anager in the data definition for adatabase isthe
keyword IMS-DATABASE or DL/I-DATABASE, followed by akeyword specifying the
type of database; for example LOGICAL, SECONDARY -INDEX, HSAM, or HDAM.

However, an IMS-DATABASE or DL/I-DATABASE data definition may be used for
Source Language Generation to produce, for example, DBD or PSB control statements.
For these purposes the data definition must be complete; that is, it must define the access
method and storage organi zation of the database, and the hierarchical structure of the
segments that constitute the database.

2 The IMS (DL/l) Environment and DataManager

When an IMS (DL/I) database is encoded, DataManager checks that the segments it
contains are of atypethat isvalid for the type of database, and that the relationshipsin
which its segments participate are valid for the type of database.

A primary index database for aHIDAM database is not held in the dictionary as a
separate member; its access method and storage organization are specified as part of the
datadefinition for the HIDAM database. When the Source Language Generation Facility
produces DBD control statements for an HIDAM database, it immediately follows them
with DBD control statements for its primary index database. If the library member name
for the DBD control statements and the database name for the primary index database
have not been specified in the data definition of the HIDAM database nor in the
PRODUCE command [see"The Member Type for aHIDAM Type IMS (DL/I)
Database" on page 94 and "Generating IMS (DL/I) DBD Control Statements" on

page 176], then they are created by suffixing | to the respective names for the HIDAM
database.

Special DataManager Member Types

For the IMS (DL/1) Interface, DataManager automatically and maintains members of
special internal types. These internal member types are for:

. Sequence key fields

. Datasets

. Index search fields

. System related fields

. Concatenated key names

Members of these types cannot be inserted into the data dictionary by users.

In normal circumstances, a segment's sequence key field is one of the dictionary GROUP
or ITEM membersthat directly or indirectly constitute the segment. However, for a
logical child segment, it may sometimes be required that the sequence key field consist
of:

. More than one (or part of more than one) of the key fields constituting the
destination parent's concatenated key

. Any part of the destination parent's concatenated key plus part of the intersection
data

In these circumstances, the SEGMENT data definition statement permits the specification

of:

. Each of the contiguous fields that are to constitute the sequence key field

. AnIMS (DL/1) namethat isto be applied to the sequence key field

17

ASG-DataManager IMS (DL/l) Interface

18

When the segment is encoded, DataM anager then generates a member of a special
internal type, giving it the specified sequence key name. If the segment specifying the
sequence key is deleted, the special internal member for the sequence key field isalso
deleted, unless thisinternal member is referred to by other members, in which caseitis
made into a dummy member.

Aninternal member is always generated for the sequence key field specified in the data
definition for an index pointer segment.

The IMS-DATABASE (DL/I-DATABASE) data definition statements can include the
names and definitions of the databases constituent datasets. When a database is encoded,
DataManager creates a member of a special internal type for each of the ddnames
specified. When a database member is deleted, then so are any of the internal members
that were created for its constituent datasets, except that if any of these internal members
arereferred to by other members they are made into dummy members.

The data definition for an index pointer segment specifies the name to be applied to the
index search field (XDFLD). When such a member is encoded, DataManager creates a
member of aspecial internal type, giving it the name specified for the index search field.
If the index pointer segment is deleted, the special internal member created for the index
search field is also deleted, unless this internal member is referred to by other members,
in which case it is made into a dummy member.

The SEGMENT PHY SICAL data definition statement for an index source segment
alows system related fields to be defined. These can be:

. Any part of the source segment's concatenated key

. Fields from which IMS (DL/I) generates four byte unique valuesin the
corresponding index pointer segment

System related fields of the former type are handled by DataM anager in the same way as
sequence key fields; that is, each of those fields of the index source segment's
concatenated key that are to form the system related field can be specified.

A name can be specified for each system related field of either type. The slash (/) that
must be the first character of the name is added by DataM anager when the Source
Language Generation Facility isused to produce DBD control statements for the database
that contains the index source segment. DataManager creates an internal data dictionary
member having the name specified for the system related field (that is, without the /). If
the index source segment is deleted, then so are any special internal members that were
created for system related fields specified by the segment; except, if any of these internal
members are referred to by other members, they are made into dummy members.

2 The IMS (DL/l) Environment and DataManager

A logical child segment always includes the concatenated key of its destination parent
segment. Index pointer segments sometimes include the concatenated key of the index
target segment [see "The Member Typefor aHISAM Type IMS (DL/I) Database" on
page 79]. The concatenated key is constructed automatically by DataM anager when
generating COBOL, PL/I, or Assembler data descriptions for segment input/output areas.
The SEGMENT data definition statement allows a name to be specified for the
concatenated key. When the segment is encoded, DataM anager creates a member of a
special internal type, giving it the name specified for the concatenated key. If the segment
is deleted, the specia internal member created for the concatenated key is also deleted,
unless the member is referred to by other members, in which caseit is madeinto a
dummy member.

Normally, members of special internal types are transparent to the user. However, the
IMS (DL/I) Interface allows the member types described above to be made available to
the user for accessing in certain interrogation commands. For further details, including
other documentation commands that can handle them [see Chapter 4, "Extensions to
DataManager Commandsfor IMS (DL/I) Databases," on page 139]. Also, the user isable
to produce COBOL, PL/I and Assembler data description statements from the internal
DataM anager members created for the sequence key fields, index search fields
(XDFLDs), system related fields and concatenated key fields. For further information,
see Chapter 5, "IMS (DL/I) Source L anguage Generation," on page 175.

Application View

Asstated in "Application View" on page 13, an application’'s view of the segmentsthat it
accesses is defined to DataM anager by PCB members and the PROCESSES clause,
which can be specified in the data definition statements for data dictionary SYSTEM,
PROGRAM, and MODUL E members.

The PROCESSES clause specifiesa CONTAINS clause listing each logical data
structure, GSAM database, and output message destination (alternate) PCB that the
application is to access.

When producing PSB control statements for an application, the Source Language
Generation Facility produces a PCB from each PCB member listed in the CONTAINS
clause.

A PROCESSES clause can be defined for a data dictionary SY STEM member. Usually,
inan IMS (DL/I) database system, the PROCESSES clause would be applicable to the
data definition for a data dictionary PROGRAM member. However, to permit the
definition of amodularized application, the DataManager IMS (DL/I) Interface also
alows the PROCESSES clause to be specified in the data definition for data dictionary
MODULE members.

19

ASG-DataManager IMS (DL/l) Interface

20

Whichever member relates to the control module in the application (and this may be of
either SYSTEM, PROGRAM, or MODULE member type) will require a CONTAINS
clause within its PROCESSES clause. This CONTAINS clause must list each PCB that
the IMS (DL/1) Interface will be passing to the control module when invoked. The
CONTAINS clause is used by the Source Language Generation Facility in producing its
PSB control statements.

A PCB member defines alogical data structure, GSAM database or output message
destination that isto be accessed by the application. A logical data structure PCB also
specifies all the segments to which any application SY STEM/PROGRAM/MODULE
containing the PCB is sensitive. In turn, each appropriate SEGMENT clause in alogical
data structure PCB can define, through a SENSITIVE-FIELDS subordinate clause, the
individual fields to which the application is sensitive. It is these definitions that the
DataManager Source Language Generation Facility uses to generate COBOL, PL/I, or
Assembler data descriptions of the segment input/output areas for the sensitive fields.

The datadictionary SY STEM, PROGRAM, or MODULE member may also include a
PROCESSES clause containing a SEGMENT-SEARCH-ARGUMENTS subordinate
clause. This clause defines the SEGMENT-SEARCH-ARGUMENTS specifying the
segments (with their respective USED-IN clauses), which can then be used by the Source
Language Generation Facility in generating DBD control statements.

When generating the DBD control statements for a database, the user can specify in the
PRODUCE command whether DataM anager is to generate IMS (DL/I) FIELD control
statements for all the fields constituting each segment in the database, or only for each
segment's search fields, sensitive fields, and fields required for secondary indexing.
(XDFLDs, system related fields, sequence key fields, and fields specified in the
GENERATES clause of the segment data definition statement are always generated.) If
FIELD statements for a database are to be generated only for search fields, sensitive
fidds, and fields required for secondary indexing, then the following actions must be
taken to ensure that DataM anager will recognize these fields:

. Each SYSTEM, PROGRAM, and MODULE member for each application that
accesses segments in the database by means of qualified segment search arguments
must name the search fields in a USED-IN subordinate clause within a
PROCESSES clause of the SYSTEM, PROGRAM, or MODULE member data
definition.

. Each structure type PCB member must name, using a SENSITIVE-FIELDS
subordinate clause within each SEGMENT clause of the PCB definition, the fields
to which it is sensitive in each segment contained in the database.

. Each index pointer segment that uses an index source segment contained by the
database must specify, in its SEARCH, SUBSEQUENCE, and
DUPLICATE-DATA lists, the GROUP and ITEM members contained by the index
source segment that are required for secondary indexing.

Member Types

This chapter includes these sections:

INErOdUCTION . . . oo e 22
Member-type Syntax for IMS(DL/I) Segments. 22
Physical SegmEnts. 24
Logical SEgMENtS e e 51
Segments that Residein a Secondary Index Database 55
Member-type Syntax For IMS(DL/I) Databases. 69
Outline of the IMS-DATABASE Member Typeo 69
Member Type of a GSAM Type IMS (DL/1) Database Syntax 70
The Member Typefor aHSAM Type IMS(DL/I) Database. 75
The Member Typefor aHISAM TypeIMS(DL/l) Database 79
The Member Type for aHDAM Type IMS (DL/I) Database. 86
The Member Type for aHIDAM Type IMS (DL/l) Database. 94
The Member Typefor aLOGICAL TypeIMS (DL/l) Database.............. 106

The Member Type for a SECONDARY-INDEX Type IMS (DL/I) Database. . . . 111
Member-type Descriptionsfor IMS (DL/I) Program Communication Blocks 117

PROGRAM-COMMUNICATION-BLOCK 117
Exampleof aGSAM typePCB 129
Examples of OUTPUT-MESSAGE TypePCBS.ciiii i 129
Examplesof STRUCTURE TYypePCBS. 130
ThePROCESSES Clause.o e 132
Syntax of the PROCESSES Clalse.o e e e e 132

21

ASG-DataManager IMS (DL/I) Interface

Introduction

Users can define these three member typesin an IMS (DL/I) environment:

Segment. See "Member-type Syntax for IMS (DL/I) Segments" on page 22 for more
information on the SEGMENT member type.

Database. See "Member-type Syntax For IMS (DL/I) Databases" on page 69 for more
information on the member types IMS-DATABASE and DL/I-DATABASE. (Any of the
aternative forms DL/1-DATABASE, DLI-DATABASE, or DL1-DATABASE are
accepted for the member type identifier DL/I-DATABASE.)

Program Communication Block. See"Member-type Descriptionsfor IMS (DL/I)
Program Communication Blocks' on page 117 for more information on the member type
PROGRAM-COMMUNICATION-BLOCK (or PCB), which is used to specify the
application view of a database and the segments that the application uses.

Y ou can fully define the application view of the segments and databases that they use,
using the PROCESSES clause in the SY STEM, PROGRAM, and MODULE member
types (see "The PROCESSES Clause" on page 132).

Member-type Syntax for IMS (DL/I) Segments

22

IMS (DL/I) provides a comprehensive selection of keywords and operandsin its
SEGMENT member typein order to define all possible attributes and relationships of
segments that can reside in several fundamentally different types of database.

Thisisthe overall outline format of the SEGMENT member type:

\

»» — SEGVMENT——— physi cal - dat abase- segnent

| ogi cal - dat abase- segnment
secondar y- i ndex- dat abase- segnment

I—corrrron cl ausesJ
> ;
]

Y
4

where:

physi cal - dat abase- segnent isthedefinition for the type of segment that resides
in aphysical database (see "Physical Segments’ on page 24).

| ogi cal - dat abase- segnent isalogica view of physical segments or of
concatenated physical segments (see "Logical Segments’ on page 51).

3 Member Types

secondar y-i ndex- dat abase- segment isthe definition for the type of segment
that residesin a secondary index database; that is, an index pointer segment (see
"Segments that Reside in a Secondary Index Database" on page 55).

common cl auses areasdefined in the ASG-Manager Products Dictionary/Repository
User's Guide.

It should be noted that there is no definition for the index pointer segment that residesin a
primary index database. This type of segment definition is entirely handled by Manager
Products when required. It is required only by the Source Language Generation Facility
to be used for the DBD control statements for the primary index database that will be
generated automatically following the DBD control statements for aHIDAM database.
Thisisone instance of an internal member type.

The names to be applied to the primary index pointer segment and to its sequence key
field can be specified in the data definition of the HIDAM database [see "The Member
Typefor aHIDAM TypeIMS (DL/I) Database" on page 94] or in the Source Language
Generation Facility's PRODUCE command [see "Generating IMS (DL/l) DBD Control
Statements" on page 176]. If they are omitted from both of these, then the name applied
to the primary index pointer segment is the name of the HIDAM root segment suffixed
with [, and the name of the sequence key field for the index pointer segment is the name
of the sequence key field of the HIDAM root segment suffixed with I.

For each type of SEGMENT, the definition comprises:
. A segment type keyword.

. A RELATED-AS clause (for a physical-database-segment) or aRELATED-TO
clause (for a secondary-index-database-segment), to define the logical and
secondary indexing relationshipsin which the segment participates. Thereisno
RELATED clause for alogical-database-segment definition.

. An ATTRIBUTES clause, to define the physical characteristics of the segment in
relation to the database in which it resides.

For asegment that residesin aphysical database, the RELATED-AS clause must precede
the ATTRIBUTES clause, if both are present. For a segment that resides in a secondary
index database, the ATTRIBUTES clause and the RELATED-TO clause can bein either
order.

Both the RELATED-ASor RELATED-TO clause and the ATTRIBUTES clause must, if
present, precede any common clauses that may be present.

23

ASG-DataManager IMS (DL/I) Interface

Physical Segments

Syntax
»>» — SEGVENT PHYSI CAL >
I_RELATED AS segnent - opti ons J
> >
I—ATTRI BUTES attri bute-opti onS—l
> ; > <«
L
where;
segnent - opti ons are
»———————DESTI NATI ON- PARENT- SEGVENT ——mr=c—r >
— UNI DI RECTI ONAL- CHI LD- SEGVENT———————
— PHYSI CALLY- PAI RED- CHI LD- SEGVENT——————
—REAL- PAl RED- CHI LD- SEQVENF—T T ats6-3]
VI RTUAL- PAI RED- CHI LD- SEGVENT———————
> >
TARGET- SEQVENT [_saurce- seavent———
where:
rul es are
> >
L NsERT PHYS| CAL— L _oreTE PHYSI CAL ——
—ELOG CAL—— LOG CAL
VI RTUAL —— VI RTUAL
Bl DI RECTI ONAL—
> >
L_RePLACE

PHYSI CAL——
—EL%I CAL———
VI RTUAL——

24

3 Member Types

cl ause-1is

> >
I—TO dest - par ent J
p
> >
I—PO| NTERS SYMBOLI C
|—DI RECT- ADDRESS—I
DI RECT- ADDRESS
|—SYI\/BO_I CJ
> >
I—RULES rul es4 I—concat -r enarre—|
where:

dest - par ent isthe name of aPHY SICAL DESTINATION-PARENT-SEGMENT
member.

concat - renane is

- »

I—CO\ICATENATED- KAY- NAME nanme——
> >

L <LLLLLLLLLL L L L L L L LKL <<<<<<<<<<<<<<<<<<<j<<

RENAMES group AS | ocal - nane
i:i tem—— L KNOWN- ASJ
key

where:

nane isthe name of aCONCATENATED-KEY member group isthe name of aGROUP
member.

i t emisthe name of an ITEM member.
key isal- to 8-character unique alphanumeric name.

| ocal - nane isaname, conforming to the rules for member names as stated in the
ASG-ControlManager User's Guide.

r ul es are asdefined above.

25

ASG-DataManager IMS (DL/I) Interface

cl ause-2is

) - »
I—W TH phys- pai r ed- chi | d4 I—TO dest - parentg
> >
|—POl NTERS SYMBOLI C
|—DI RECT- ADDRESS—I
DI RECT- ADDRESS
|—SYI\/BO_I CJ
> >
I—RULES rul es4 I—concat -r enams—l
where:

phys- pai r ed- chi | disthenameof aPHY SICALLY-PAIRED-CHILD-SEGMENT
member.

dest-parent, rules, concat-renane areasdefined above.

cl ause-3is

> >
I—TO dest - parent —
I—P(] NTERS SYMBQOLI C options
|__bi RECT- ADDRESS__|
DI RECT- ADDRESS
I—SYNB(J_I CJ
> >
I—RULES rul es—I |—concat -r enama—l
where:

dest - parent, concat - r enane, phys-pai red-chil d,andrul es areas
defined above.

opti ons are

P »
\:FO?V\ARD LOG CAL- TW N—| \:SI NGLE- LOG CAL- CHI LD——
BACKWARD- LOG CAL- TW N— DOUBLE- LOG CAL- CHI LD——!
cl ause-4is
> >
I—WTH real - pai red-chil dJ I—TO dest-parentJ
> >

I_concat -r enan‘eJ

26

3 Member Types

where:

real - pai red- chi | disthenameof aPHYSICAL
REAL-PAIRED-CHILD-SEGMENT member.

dest - par ent and concat - r enane are as defined above.

cl ause-5is

™
»

\/

L <LLLLLLLLL LKL | <L L J
CONCATENATED- KEY- FI ELDS group AS CKXXXXX
i:i t em———|
key

\
\

L <<, << J
UNI QUE- KEY- FI ELDS SXXXXXX

where:

group,itemandkey are as defined above.

CKxxxxx isa3- to 7-character name to be applied to asystem related field within a
GENERATES, SUBSEQUENCE-FIELDS, or DUPLICATE-DATA-FIELDS clause.
The name must be unique and start with CK.

SXxxXxX isa3- to 7-character name to be applied to asystem related field within a
GENERATES or SUBSEQUENCE-FIELDS clause. The name must be unique and start
with SX.

key isal- to 8-character unique alphanumeric name.

attribute-options ae

> >
ALl GNED <LLLLLLLLLLLLL | LLLL L
CONTAI NS cont ent T —
UNALI GNED —— conditi onsJ
——NOT- ALI GNED —
> »
I_FREQJENCY freq J
SEQUENCE- KEY rou
QJ I_|gt empJ W TH <LLLLLLL LKL LKL <<<<;S<<k<<<
-T— group :I_ ey |
item
—AS key

27

ASG-DataManager IMS (DL/I) Interface

28

P »
\:UNI QJELY—" I—| NSERT- POSI Tl m—l FI RST —
DUPLI CATED LAST —
HERE——
> >
I_ PO NTERS poi nters-opti onsJ
> [>
EDI T- COMPRESSI ON- EXI T nodul e
A~ & oren- cLose!
<KL, LKL
EXI T- LI ST——nodul e- i st >
LOG ONLY | 0og-opti onsJ
NO- EXI T
NOT- USE
UNUSED
P »
- L <<<<<<<< | <<<<<< J g
GENERATES gener at es- cl ause
where:
cont ent is
> i dent >
i:((nn) i dent
item a)—l \—I NDEXED- BY i ndex—
wherei dent is
> item >
I—groupJ _versi onJ I_AL| GNED—|
\—UNALI GNED
|—NOT- ALI GNED —
> >

L kNowk AS 1 ocal - name —

where:

item group areasdefined above.

ver si on isan unsigned integer in the range 1 to 15.

| ocal - name is as defined above.

nn isan unsigned integer of from 1 to 18 digits, being the number of times the item or

group occursin the array.
i t em a isthe name of an ITEM member.

i ndex isaname, conforming to the rules for member names.

condi ti ons are:

3 Member Types

» | F cond >
<<<<L< , << <L
AND cond
orl
) - A -
<LLLLLLLLLLLLLLLL) Ll -
ELSE cont ent
L—-IF cond
<<<<<L< | <<<<
AND cond
 r]
where:
cond is:
» ———itemb EQ >
Lversion-bJ = |
— NE ——]
— GT ——
— >
I
<
L LE— |

itemc
|—version-c_
literal

where:

literal isalitera comparand.

v

i t em b isthe name of the ITEM where the contents are to be compared with the

comparand.

ver si on- b isan unsigned integer in the range 1 to 15.

i t em c isthe name of the ITEM where the contents are the comparand.

ver si on- ¢ isan unsigned integer in therange 1 to 15.

f r eq isan unsigned number in the range 0.01 to 16777215.00, or (for root segments) an

integer in the range 1 to 16777215.

cont ent is asdefined above.

29

ASG-DataManager IMS (DL/I) Interface

30

name isthe name of a CONCATENATED-KEY member.

nodul e isthe name of aMODULE member.

freq, group, item key, and nodul e are as defined above.

poi nt er s-opti ons are:

P
»~

\

| FORWARD- HI ERARCHI CAL — ‘:FI RST- CHI LD —]
| BACKWARD- Hl ERARCHI CAL | LAST- CHI LD — |
L SINGLE- TW N
| —DOUBLE- TW N
L NOTW N
> >
L counter—!
nmod- | i st is:
»» — nodul e- nane >
I— kpd- opti ons J |: CASCADE kdp-options —]
NO CASCADE
where:
nmodul e- nane isthe name of aMODULE or PROGRAM member.
kpd- opti ons are:
> >
\: KEY — \: PATH—— I: DATA—
NO- KEY— NO- PATH - NO- DATA -
db- ver si on isadelimited string of up to 255 characters.
| og- opti ons are:
> >
I— kpd- opti ons J CASCADE kdp-options —]
NO CASCADE
where:
kpd- opti ons are:
> >
\: KEY — \: PATH—— i: DATA——
NO- KEY— NO- PATH NO- DATA

3 Member Types

gener at es- cl ause is:

> sequence- key
concat enat ed- key
group
item <LLLLLLLL L L L L L L L L L L L L L L LK

I'N group
OF—— concat enat ed- key

\

where:

concat enat ed- key specifies the name to be given to the destination parent's
concatenated key.

group, itemareasdefined above.
sequence- key isal- to 8-character unique alphanumeric name.

conmmon cl auses are as defined in the ASG-Manager Products Dictionary/Repository
User's Guide.

Remarks
1 Thekeyword PHY SICAL must always appear asthefirst keyword after the member

typeidentifier, to indicate that a segment residing in a physical database is being
defined. (See remark 95 on page 46.)

2 TheRELATED-AS clause must be present if the segment participatesin alogical
relationship or a secondary indexing relationship. If present, the RELATED-AS
clause must immediately follow the PHY SICAL keyword. The RELATED-AS
clauseisnot valid for a segment that residesin aHSAM, SIMPLE HSAM, or
SIMPLE HISAM database. If a segment that participatesin alogical relationship
(other than as a DESTINATION-PARENT-SEGMENT) isto be completely
defined, the TO clause and, if appropriate, the WITH clause must be present in the
RELATED-AS clause.

31

ASG-DataManager IMS (DL/l) Interface

32

If the segment participatesin alogical relationship, then one of thefollowing clauses
must be specified in the RELATED-AS clause:

. DESTINATION-PARENT-SEGMENT, which specifies that the segment
being defined is either alogical parent segment or the physical parent segment
of area logica child segment in avirtually paired logical relationship.

. UNDIRECTIONAL-CHILD-SEGMENT, which specifies that the segment
being defined isalogical child segment in a unidirectional logical
relationship.

. PHYSICALLY-PAIRED-CHILD-SEGMENT, which specifies that the
segment being defined isalogical child segment in aphysically paired logical
relationship.

. REAL-PAIRED-CHILD-SEGMENT, which specifies that the segment being
defined isareal logical child segment in avirtually paired logical
relationship. This type of segment must residein aHDAM or HIDAM
database.

. VIRTUAL-PAIRED-CHILD-SEGMENT, which specifies that the segment
being defined isavirtual logical child segment in avirtually paired logical
relationship.

TO desti nati on-parent - nane statesthe destination parent segment to which
thelogical child segment being defined is related. If the segment being defined isa
virtual logical child segment, the destination parent segment isthe physical parent of
the real logical child segment with which it is paired; otherwise, the destination
parent segment is the logical parent segment.

For aPHY SICALLY-PAIRED-CHILD-SEGMENT or a
VIRTUAL-PAIRED-CHILD- SEGMENT, the WITH clause specifies the logical
child segment with which the segment is physically or virtually paired respectively.
In either case, the paired segment must be a physical child of

desti nati on- par ent - name. A WITH clause is not specified for a
REAL-PAIRED-CHILD- SEGMENT.

. The POINTERS clause specifies the type of pointer that connects alogical
child segment and itslogical parent segment. It isinvalid for avirtual logical
child segment. The clause can contain the keyword SYMBOLIC and/or the
keyword DIRECT-ADDRESS.

The POINTERS clause specifies the type of pointer that connects alogical child
segment and itslogical parent segment. Itisinvalid for avirtual logical child
segment. The clause can contain the keyword SY MBOLIC and/or the keyword
DIRECT-ADDRESS.

10

11

12

13

3 Member Types

SYMBOLIC specifies that the symbolic pointer to the logical parent segment (the
logical parent's concatenated key) is stored as part of thelogical child segment on the
storage device. It must be specified if:

. Thelogical child segment being defined is sequenced on its physical twin
chain through the use of any part of the logical parent's concatenated key.

. Or the sequence key field of thelogical child being defined consists of any
part of the logical parent's concatenated key.

If SYMBOLIC isnot specified and the logical parent residesin aHISAM database,
SYMBOLIC is assumed.

DIRECT-ADDRESS specifies that a 4-byte logical parent pointer field isreserved
in the prefix of the logical child segment being defined. This keyword can be
specified if thelogical parent segment residesinaHDAM or HIDAM database. If it
is not specified and the logical parent residesin aHDAM or HIDAM database,
DIRECT-ADDRESS is assumed. DIRECT-ADDRESS isinvalid if the logical
parent segment residesin aHISAM database.

For aREAL-PAIRED-CHILD-SEGMENT, either FORWARD-LOGICAL-TWIN
or BACKWARD-LOGICAL-TWIN can be stated. If neither is stated,
FORWARD-LOGICAL-TWIN isassumed. FORWARD-LOGICAL-TWIN
specifies that a 4-byte logical twin forward pointer field is reserved in the prefix of
the segment being defined. BACKWARD-LOGICAL-TWIN specifies that both a
4-bytelogical twin forward pointer field and a4-byte logical twin backward pointer
field are reserved in the prefix of the segment being defined.

For aREAL-PAIRED-CHILD-SEGMENT, either SINGLE-LOGICAL-CHILD or
DOUBLE-LOGICAL-CHILD can be stated. If neither is stated,
SINGLE-LOGICAL-CHILD isassumed. SINGLE-LOGICAL-CHILD specifies
that a4-bytelogical child first pointer field is reserved in the prefix of the logical
parent segment of the segment being defined. DOUBLE-LOGICAL-CHILD
specifiesthat both a4-bytelogical child first pointer field and a 4-byte logical child
last pointer field are reserved in the prefix of the logical parent segment of the
segment being defined.

The RULES clause specifies the rules for inserting, deleting, and replacing a
segment.

Therules DELETE BIDIRECTIONAL arevalid only for a segment that isthe
physical parent segment of areal logica child segment in avirtually paired logical
relationship.

The default of LOGICAL is assumed for any rule that is omitted or invalidly
specified.

33

ASG-DataManager IMS (DL/l) Interface

14

15

16

17

18

19

20

21

22

23

The CONCATENATED-KEY-NAME clause can be used when alogical child
segment is defined, to specify the namethat isto be given to the concatenated key of
the destination parent segment. When the logical child segment definitionis
encoded, amember of aspecial internal typeis created for the concatenated key, and
givesit the name specified in the CONCATENATED-KEY -NAME clause. This
internal member has no entries in the uses table, as the elements that constitute the
concatenated key are not obtained until the Source Language Generation Facility is
used (seeremark 16 on page 34). However, the internal member can still be referred
to by other members; for example, it may be used as a segment search field or asa
sensitive field.

Interrogations can be performed on the concatenated key internal member type (see
"Condition Keywordsfor WHICH and WHAT Commands' on page 141). However,
meaningful results will only be obtained in response to interrogations concerning
membersthat use the internal member type, asthe member type has no entriesin the
uses table.

The destination parent's concatenated key is constructed automatically when the
Source Language Generation Facility is being used to generate DBD control
statements, record layouts, or COBOL, PL/I, or Assembler data descriptions. When
the Source Language Generation Facility encounters a member of the concat-name
type, the concatenated key is constructed, and it is output in aform appropriate to the
language or record layouts being generated.

The RENAMES clause can be used to specify alocal namefor any field that directly
constitutes the destination parent's concatenated key; that is, any field that has been
directly specified as a sequence key in any of the segments along the hierarchical
path to the destination parent segment, and including the destination parent segment.
Therules governing alocal name are as defined in the syntax section above.

A segment cannot be alogical child segment and a destination parent segment.
A segment cannot be alogical child segment if it isthe root segment of a database.
A segment and its physical child segment cannot both be logical child segments.

Only onelogical child segment in a physically paired logical relationship can have
physical child segments.

A virtua logical child segment cannot have physical child segments.

IMS (DL/1) automatically reserves a 4-byte counter field in the prefix of logical
parent segments if they are not connected to any of their logical child segments by
logical child pointers. Thisis generated regardless of whether or not COUNTER is
specified.

24

25

26

27

28

3 Member Types

The keyword TARGET-SEGMENT specifies that the segment being defined isan
index target segment. A segment cannot be an index target segment and also alogical
child segment or a dependent segment of alogical child segment at any lower level.

The keyword SOURCE-SEGMENT specifies that the segment being defined isan
index source segment.

The CONCATENATED-KEY -FIELDS clause defines any number of system
related fields of the type that enables any part of the concatenated key of the index
source segment to be used in the subsequence or duplicate datafields of the
corresponding index pointer segment. The definition of each such system related
field comprises.

. The names of any number of groups, items, and/or sequence keysthat are to
comprise the system related field. The members named must be contiguous
within the index source segment's concatenated key. They can be;

. Members contained, directly or indirectly, in the segment's sequence key;
and/or

. Members contained, directly or indirectly, in the sequence key of any segment
along the hierarchical path to and including the index source segment

. A clause AS CKxxxxx, which specifies the name to be applied to the system
related field. The name must be unique, must be 3 to 7 charactersin length,
and must commence with CK.

When a source segment definition that contains a
CONCATENATED-KEY-FIELDS clause is encoded, a member of a special
internal type for each system related field defined by the clause is created. The
member given usestable entry for each item, group and sequence key member
specified in the CONCATENATED-KEY -FIELDS clause. Members of this special
internal type can be referred to by other members; for example, by an index pointer
segment, and they can also beinterrogated (see "I nterrogation Syntax" on page 154).
The Source Language Generation Facility can operate on members of this type.

The UNIQUE-KEY -FIELDS clause defines any number of system related fields of
the type that prompts IMS (DL/1) to generate a unique 4-byte value of the source
segment's VSAM relative block address and to place it in the subsequence field of
the corresponding index pointer segment. SXxxxxx specifiesthe nameto be applied
to asystem related field of this type. The name must be unique, must be 3to 7
characters in length, and must commence with SX.

35

ASG-DataManager IMS (DL/l) Interface

36

29

30

31

32

33

34

When a source segment definition that contains a UNIQUE-KEY -FIEDS clauseis
encoded, amember of a special internal type for the system related field defined by
the clauseiscreated. Thismember does not refer to any other membersand therefore
has no entriesin the uses table. However, members of this special internal type can
be referred to by other members, for example, by an index pointer segment, and they
can aso beinterrogated (although meaningful results will only be obtained in
response to interrogations about members that use the internal member, asit has no
constituent members). The Source Language Generation Facility can operate on
members of thistype.

The UNIQUE-KEY-FIELDS clause is valid only if the segment being defined
residesin aHDAM or HIDAM database.

A segment cannot be an index source segment and alogical child segment.

The ATTRIBUTES clause must be present if the segment is to be completely
defined.

Thefirst element within the ATTRIBUTES clause can be one of the keywords
ALIGNED, UNALIGNED, or NOT-ALIGNED. If noneisdeclared in the data
definition statement, a default of UNALIGNED is taken.

ALIGNED isthe equivaent of COBOL SYNCHRONIZED or PL/I ALIGNED. It

means that (subject to remark 38 on page 37) all binary items and all floating point
items declared as being contained in the segment are aligned to half word, full word
or double word boundaries, thus;

. Binary items having alength of 4 decimal digits or less occupy a complete
half word

. Binary items having alength of from 5- to 9-decimal digits occupy afull word

. Binary items having alength of from 10- to 18-decimal digits occupy two full
words, but are not necessarily aligned to a double word boundary

. Floating-point items having 6 digits or less in the mantissa occupy afull word

. Floating-point items having from 7 to 16 digits in the mantissa occupy a
double word

ALIGNED also causes any hit string items to be output with alignment to byte
boundaries when the Source Language Generation Facility is used (see "Segment
Input/Output Areas: Items Defined as BINARY or BITS' on page 190). Theway in
which thisis achieved is dependent upon the language being generated, and thisis
described for COBOL, PL/I, and Assembler in the publication ASG-Manager
Products Source Language Generation.

35

36

37

38

39

3 Member Types

UNALIGNED means that (subject to remark 38 on page 37) binary items and
floating point items declared as being contained in the segment are not necessarily
aligned to word or half-word boundaries, and that bit string items are not aligned to
byte boundaries. (The amount of space occupied isthe sameasfor ALIGNED items,
but the positioning relative to boundaries can differ.)

NOT-ALIGNED meansthe same as UNALIGNED. For the sake of simplicity, they
are regarded in the following remarks as being the same keyword; so that any
referenceto the UNALIGNED keyword should beinterpreted as applying equally to
the NOT-ALIGNED keyword.

The ALIGNED or UNALIGNED keyword does not apply to items contained within
groupsdeclared as being contained in the segment. The data definitions of the groups
determine the alignment or nonalignment of such indirectly referenced items.

The ALIGNED or UNALIGNED keyword can be overridden for individua content
declarations (that is, for particular items or groups declared as being contained in the
segment) by including the keyword UNALIGNED or ALIGNED respectively inthe
particular content declaration, preceding any associated EL SE and/or IF clauses (see
remark 42 on page 38 to remark 46 on page 39). It isnot meaningful toinclude either
of these keywordsin acontent declaration that declaresagroup or an array of groups
(see remark 37 on page 37).

The CONTAINS clause specifies the GROUP and/or ITEM members and/or arrays
that constitute the successive parts of the segment being defined. It must be present
unless the segment being defined isalogical child segment.

If the segment being defined isavirtual logical child segment then the CONTAINS
clause must not be present, as the segment's constituent members are obtained from
the real logical child segment with which it is paired.

For alogical child segment that isnot avirtual logical child, the CONTAINS clause
is required only to define the intersection data. If there is no intersection data then
the CONTAINS clause must be omitted.

The destination parent's concatenated key is automatically constructed when it is
required for the Source Language Generation Facility.

37

ASG-DataManager IMS (DL/l) Interface

38

40

41

42

43

44

45

Theentriesinthe CONTAINS clause must include, directly or indirectly, references
to the following fields, if they are applicable to the segment being defined:

. The sequence key fields (for alogical child segment, this applies only if
contained in the intersection data)

. The segment search fields

. Thefieldsthat are to be included in the index search field, subsequence fields
and duplicate data fields of the corresponding index pointer segment, if the
segment being defined is an index source segment

. Sensitivefields

Any direct or indirect reference from the CONTAINS clauseto an item is assumed
to be the HELD-AS form of that item. If the item has no HELD-AS form, default
assumptions are made as to the relevant form of the item, in the order
DEFAULTED-AS, ENTERED-AS, and REPORTED-AS. The form first
encountered in thisorder istaken asthe defaulted form, and versionis applied within
that form as stated in the syntax.

Entriesin the CONTAINS clause may be conditional (IF clauses, see remark 44 on
page 38) and/or may have alternative content declarations (EL SE clauses, see
remark 43 on page 38), which also may be conditional: so that the definition of each
part of the segment comprisesacontent declaration and any associated EL SE clauses
and/or |F clauses. If the segment comprises two or more parts, the definition of each
part except the last must be followed by a comma, which can optionally be followed
by spaces.

Any part of the segment can be specified as having any number of alternative
contents. The alternative content declarations are separated by the keyword EL SE.
The alternative contents need not occupy the same amount of physical storage.

The expression ELSE clause thus refers to:

ELSE cont ent

where cont ent is as defined above.

Any content declaration can be specified as conditional; that is, as applying only if a
stated condition or combination of conditionsis satisfied. For a content declaration

to be conditional, content must be immediately followed by an IF clause.

It follows that any part of the segment can have alternative conditional contents,
declared in the form:

content | F clause ELSE content |F cl ause ELSE content |F cl ause

and that any combination of conditional and non-conditional alternative contents
can be declared for any part of the segment.

46

47

48

49

50

51

52

3 Member Types

In a content declaration, the ALIGNED, UNALIGNED, or NOT-ALIGNED
element, the KNOWN-AS clause and the INDEXED-BY clause can, if applicable,
be declared in any order; but they must not precede any of the other elements of the
content declaration (though they must precede any associated EL SE clauses and/or
IF clauses).

The FREQUENCY clause states the expected frequency of the segment being
defined. If the segment is the root segment in a HIDAM database, the frequency
entered will be applied to its corresponding pr: mary index pointer segment when
generated. For root segments, the frequency entered must be an integer. The
FREQUENCY clauseisinvalid for avirtual logical child segment.

The SEQUENCE-KEY clause specifies the field that is the sequence key of the
segment being defined; or for avirtual logical child segment, it specifiesthe field
that isthe sequence key of the paired real logical child segment when accessed from
itslogical parent segment.

Only one entry may be specified in the SEQUENCE-KEY clause, unless the
segment being defined is a virtual logical child segment, in which case any number
of entries can be specified. The term entry in this context means group/item name,
optionally followed by aWITH and/or an AS clause and optionally followed by one
of the keywords UNIQUELY or DUPLICATED.

For a segment that isnot alogical child segment, the field named in the
SEQUENCE-KEY clause must be directly or indirectly contained in the segment. If
thereference to the field from the CONTAINS clause isindirect, the field must not
appear as an array in the data definition of its containing group.

For alogica child segment, the field named in the SEQUENCE-KEY clause must
be:

. Directly or indirectly contained in the segment being defined, or, if the
segment is avirtual logical child segment, directly or indirectly contained in
its paired real child segment

. Directly/indirectly contained in the destination parent's concatenated key; that
is, directly/indirectly contained in the sequence key field of any segment
along the hierarchical path to and including the destination parent segment

If the reference to the field is indirect, the field must not appear as an array in the
data definition of its containing group.

Usethe WITH clause if alogical child segment is being defined, to enable
contiguous parts of the destination parent's concatenated key and/or contiguous parts
of the segment's intersection datato be included as part of the segment's sequence
key field.

39

ASG-DataManager IMS (DL/l) Interface

40

53

54

55

56

57

58

59

60

Each GROUP/ITEM listed in the WITH clause, must be the name of:

. A sequence key field or amember contained directly or indirectly ina
sequence key field of any segment along the hierarchical path to and
including the destination parent segment

. A field contained directly or indirectly in the intersection data of the logical
child segment, or if avirtual logical child segment isbeing defined then in the
intersection data of its paired real logical child segment.

The fields named in the list must be contiguous.

The relevant version of any item to which reference is made directly or indirectly
from the SEQUENCE-KEY clause is assumed to be the same as the version of that
item that is relevant to the CONTAINS clause of the segment in whichiit is
contained.

The AS clause specifies the name that is to be applied to the sequence key field
constituted by the members named in the associated WITH clause and the GROUP
or ITEM name immediately preceding that WITH clause.

If no WITH clause is specified, the AS clause specifies an aternative name for the
GROUP or ITEM name that immediately precedesit. This allows an aternative
name to be given to one of the fields in the destination parent's concatenated key, if
that field is the sequence key of the logical child segment.

When alogical child segment definition containing an AS clause (with or without
any WITH clause) is encoded, amember of aspecial internal typeis created for the
sequence key. Thismember is given an entry in the uses table for each member that
is named between the SEQUENCE-KEY and As keywords. Sequence key internal
members can be referred to by other members; for example, as segment search
arguments (SSAS) or sensitive fields, and they can also be interrogated (see
"Interrogation Syntax" on page 154). The Source Language Generation Facility can
operate on members of thistype.

UNIQUELY (the default) indicates that only unigue values are allowed in the
sequence key field being defined. DUPLICATED indicatesthat duplicate values are
allowed. All of the sequence keysfor avirtual logical child segment must be
uniformly defined as either UNIQUELY or DUPLICATED.

Y ou must specify a sequence key field for the root segment of aHDAM database. A
unique sequence key field must be specified for the root segment of aHISAM,
SIMPLE HISAM, or HIDAM database.

If the segment is a destination parent segment, then a sequence key field should be
specified for it and for each of the segments on which it depends. It is strongly
recommended that each of the sequence key fields be unique.

61

62

63

64

65

66

67

3 Member Types

If the segment is an index target segment and symbolic pointing is used to point to
theindex target segment from theindex pointer segment, then a unique sequence key
field must be specified for the segment and for each of the segments on which it
depends.

If aSEQUENCE-KEY clauseis specified for asegment that residesinan HDAM or
HIDAM database, then hierarchical or twin pointers must be specified (see
remark 66 on page 41 to remark 70 on page 42).

Y ou must not specify a SEQUENCE-KEY clause and aNOTWIN pointer.

The INSERT-POSITION clause is omitted if the segment residesin aHSAM or
SIMPLE HSAM database. Otherwise, it must be present if a unique sequence key
field has not been specified.

The INSERT-POSITION clause specifies where an occurrence of the segment is
inserted. Thus, FIRST states that:

. If SEQUENCE-KEY isnot specified, a new occurrence of the segment is
inserted in front of all existing occurrences.

. If SEQUENCE-KEY is DUPLICATED, anew occurrence of the segment is
inserted in front of all existing occurrences that contain the same sequence

key.

LAST (the default) states that:

. If SEQUENCE-KEY isnot specified, a new occurrence of the segment is
inserted behind all existing occurrences.

. If SEQUENCE-KEY isDUPLICATED, anew occurrence of the segment is
inserted behind al existing occurrences that contain the same sequence key.

HERE states that:

. If position has been established on an occurrence of the segment by a previous
DL/I call, anew occurrence of the segment is inserted in front of the
occurrence that satisfied that call.

. If the current position is not within occurrences of the segment, a new
occurrence of the segment isinserted asfor FIRST.

The POINTERS clausein the ATTRIBUTES clause is applicable only to segments
that residein aHDAM or HIDAM database and are not virtua logical child
segments except for the COUNTER keyword, which is aso valid for segments
residing in aHISAM database.

FORWARD-HIERARCHICAL specifiesthat a4-byte hierarchical forward pointer
field isreserved in the prefix of the segment.

41

ASG-DataManager IMS (DL/l) Interface

42

68

69

70

71

72

73

74

BACKWARD-HIERARCHICAL specifiesthat a 4-byte hierarchical forward
pointer field and a 4-byte hierarchical backward pointer field are reserved in the
prefix of the segment.

SINGLE-TWIN specifies that a 4-byte physical twin forward pointer field is
reserved in the prefix of the segment.

DOUBLE-TWIN specifies that a 4-byte physical twin forward pointer field and a
4-byte physical twin backward pointer field arereserved in the prefix of the segment.

NOTWIN specifies that no spaceisto bereserved in the prefix of the segment for a
physical twin forward pointer field. NOTWIN can be specified:
. For the root segment of aHIDAM database
. For a dependent segment of aHIDAM or HDAM database if:
— Itsphysical parent segment does not have hierarchical pointers specified
— No morethan one occurrence of the dependent segment will be stored as
aphysical child of any occurrence of its physical parent segment
NOTWIN isinvalid if:

. A SEQUENCE-KEY clause has been specified for this segment and the
segment is a dependent segment, or if hierarchical pointers have been
specified for the segment's physical parent.

. The segment isareal paired logical child segment and a SEQUENCE-KEY
clause has been specified for its virtually paired logical child segment.

FIRST-CHILD specifiesthat a4-byte physical child first pointer field isto be placed
in the prefix of the segment's physical parent segment.

LAST-CHILD specifies that a 4-byte physical child first pointer field and a 4-byte
physical child last pointer field are to be placed in the prefix of the segment's
physical parent segment.

It should be noted that if a physical parent segment and its physical child segment
appear in different dataset groups, then they must be connected by physical child
and physical twin pointers.

75

76

77

78

79

80

81

3 Member Types

COUNTER specifies that a 4-byte counter field isto be reserved in the segment
prefix. Thisisin anticipation of establishing this segment asalogical parent without
logical child pointers, when IMS maintains an internal count of logical children
pointing to thislogical parent to manage delete operations. Where this segment is
already established as alogica parent, IMS will determine the need for a counter
internally and it need not be specified explicitly. COUNTER should be used where
the need for alogical parent can be anticipated before the segment actually becomes
alogical parent in order that the requirement for database reorganization may be
avoided.

The EDIT-COMPRESSION-EXIT clause specifies the selection of an edit and/or
compression user exit option. The clause isinvalid if the segment residesin a
HSAM, SIMPLE HSAM, or SIMPLE HISAM database or a database that does not
usethe VSAM operating system access method, or isavirtual logical child segment.

ALL specifiesthat the user exit routine can condense or modify any of the fieldsin
the segment. If ALL isomitted, then only the data fields that do not change the
position of the sequence key field relative to the start of the segment can be
condensed or modified.

The ALL keyword isinvalid if the segment is the root segment of a HISAM
database.

OPEN-CL OSE specifies that initialization and termination processing control is
required by the segment edit routine; that is, the edit/compression routine will gain
control after database open and after database close.

The GENERATES clause enabl es the user to specify the fields for which DBD
FIELD control statements are alwaysto be generated when DBD control statements
are produced, additional to those fieldsrequired by IMS (DL/I) for which the Source
Language Generation Facility always provides DBD FIELD control statements (see
"Generating IMS (DL/1) DBD Control Statements' on page 176). It isnot necessary
to include sequence key field namesin the GENERATES clause. Thisis because
DBD FIELD control statements are always generated for these fields; however,
sequence key names, aswell as group names and/or item names, are accepted in the
GENERATES clause in case the user wishes to include them in the list of specified
fields.

The OF/IN subordinate clause of the GENERATES clause can be used when the
segment contains multiple occurrences of afield, to allow the user to specify which
occurrence of thefield isto have aDBD FIELD control statement generated for it.
If the OF/IN clauseis used, all occurrences of the field other than the one specified
in the clause are ignored.

ASG-DataManager IMS (DL/l) Interface

82 Thefacility [described in "Generating IMS (DL/I) DBD Control Statements" on
page 176], which automatically generates DBD FIELD control statements for the
fields described below, cannot be used when fields are duplicated across segments,
asit is assumed that there is no such duplication. Instead, the GENERATES clause
must be used if it isrequired to generate DBD FIELD control statements for the
following fields:

83

84

Fields that are used as segment search fields viathe PROCESSES clause of
SYSTEM, PROGRAM, or MODULE members

Fields that are used as sensitive fields in PCB members

Fields that are used for secondary indexing viathe SEARCH,
SUBSEQUENCE, or DUPLICATE-DATA lists of the appropriate index
pointer segments, when an index source segment is being processed

Therefore, if data has been duplicated across segments and you wish to generate
DBD FIELD control statements for the types of fields listed above, then:

The GENERATES clause must be specified in the definition of each segment
of the database to be processed to specify the fields for which DBD FIELD
control statements are to be generated.

The GENERATES-FIEL DS keyword must be used in the PRODUCE DL/I
DBDGEN command to indicate that DBD FIELD control statements are to be
generated only for the fields specified in the GENERATES clause.

The length of the segment is not specified in the segment definition, asitis
automatically calculated when required.

If the segment residesin aHSAM, SIMPLE HSAM, or SIMPLE HISAM database
or a database that does not use the VSAM operating system access method, it must
not be variable length.

85

86

87

88

89

3 Member Types

If the segment does not residein aHSAM, SIMPLE HSAM, or SIMPLE HISAM
database or a database that does not use the V SAM operating system access method,
any field contained in the segment may be variable length except the following:

. A sequence key field or any of its constituent members
. Any fields preceding the sequence key field

. For avirtual logical child segment, any fields preceding its sequence key
fieldsin thereal logical child segment with whichiit is paired

. For a source segment, any fields constituting the search field, subsequence
fields or duplicate datafields of its corresponding index pointer segment; and
any fields preceding those fields

For avariable length segment, the minimum length must include the length of the
sequence key field and must not change the offset of the sequence key. When the
EDIT-COMPRESSION-EXIT clauseis specified, the minimum length cannot be
less than four.

If avariable length segment is encountered when the Source Language Generation
Facility is being used to generate DBD control statements, record |ayouts or
COBOL, PL/I, or Assembler data description statements, the 2-byte size field
required by IMS(DL/1) for the segment is generated automatically (see"Variable
L ength Segments"' on page 192).

A variable length segment is defined by specifying that the segment contains,
directly or indirectly, avariable length ITEM member.

It should be noted that a variabl e length segment must be defined to the VS COBOL
compiler by specifying avariable length array.

A segment that directly or indirectly contains a variable length array is not
recognized as a variable length segment.

If COBOL data description statements are to be generated for a variable length
segment, the segment must contain, directly or indirectly, avariable length ITEM
member, and this member must be redefined by avariable length array. For
example, if COBOL data descriptions are generated from the following data
definition:

CONTAI NS
| TEMA ELSE (I TEMB) | TEMC

ASG-DataManager IMS (DL/l) Interface

46

90

91

92

93

94

95

The VS COBOL compiler will output a warning message, but the compilation will
continue. However, it should be noted that the following definition:

CONTAI NS
(1 TEMB) | TEMC ELSE | TEMA

Will cause the VS COBOL compiler to output an error message and compilation
will fail.

Common clauses can be present in any type of data definition statement; therefore,
they are documented separately in the ASG-Manager Products
Dictionary/Repository User's Guide. Not more than one of each of these clauses can
be declared. If acommon clause has a subordinate clause or keyword, the
subordinate clause identifier or subordinate keyword must not be truncated to an
extent whereit becomes ambiguouswith any other clauseidentifier or other keyword
available in the data definition syntax for this member type.

The common clauses can be declared in any order. If present, they must follow the
RELATED-AS and ATTRIBUTES clauses, if these are present. If the latter clauses
are both present, the RELATED-AS clause must precedethe ATTRIBUTES clause.

When an ATTRIBUTES clause followed by aFREQUENCY clause is encoded, for
asegment that is not avirtual logical child segment, it assumes that the
FREQUENCY clause is subordinate to the ATTRIBUTES clause, specifying the
expected frequency of the segment being defined.

If you need to specify the FREQUENCY common clause following an
ATTRIBUTES clause, you should thus specify another common clause before the
FREQUENCY common clause. Thisallows Manager Products to recognize that the
clauses that follow are all common clauses.

Within the RELATED-AS clause, the subordinate clauses can bein any order; and
if asubordinate clause has subordinate clauses and optional keywords, such clauses
and keywords can be in any order within the subordinate clause.

Within the ATTRIBUTES clause, the subordinate clauses can be in any order (see
remark 33 on page 36). The optiona keywords in the POINTERS clause can bein
either order.

A SEGMENT PHY SICAL can be contained by any number of physical databases
provided that it does not participatein alogical or asecondary indexing relationship;
that is, it does not have a RELATED-AS clause in its definition.

96

97

98

3 Member Types

A record containing the segment's data definition statement can be inserted into the
repository's source dataset by a suitable command (see the ASG-Manager Products
Dictionary/Repository User's Guide) and an encoded record can subsequently be
generated and inserted into the data entries dataset. |f, when the encoded record is
generated, any item, group, module, or segment where the name appearsin the
segment's data definition statement has no data entries record, Manager Products
creates adummy data entries record for that member. The dummy record is created
as.

. A dummy module if the name appearsin an EDIT-COMPRESSION-EXIT or
EXIT-LIST clause

. A dummy segment if the name is a destination-parent-name, a
physically-paired-child-name, or areal -paired-child-name

. A dummy group if the name appears in the OF/IN subordinate clause of the
GENERATES clause

. A dummy itemin all the other cases

If an encoded segment record is deleted, any internal repository member that it
created, which is not referred to by other members is deleted, together with any
references that the internal member made to other members. Any internal member
that is referred to by other members is made into a dummy internal member rather
than being deleted altogether.

Thel ocal - name specifiedin the RENAMES clause must conform to therulesfor
member names stated in the ASG-ControlManager User's Guide. This can be used
instead of the name or alias of the member named immediately prior to

| ocal - nane, when DBD control statements, record layouts, or source language
data descriptions are generated from this data definition by the Source Language
Generation Facility. Thel ocal - nane is not separately recorded in the repository
(that is, no dummy data entries record and no index record is created for

| ocal - name when the data definition in which it appears is encoded), so

| ocal - name cannot be interrogated and can be the same as another name, an alias
or acatalog classification in the repository. Thelocal-nameisthe name by which the
member is known only within the segment defined by this data definition.

47

ASG-DataManager IMS (DL/l) Interface

99

100

101

Inthe CONTAINS clause:

. Ver si on specifies which version of the relevant item isrelevant to this
segment. The version iswithin the HELD-AS form or within a defaulted
form, as stated in remark 41 on page 38. The default assumed (or if the stated
version does not exist) isthe lowest numbered existing version.

. I tem a isanarray declaration that declares that when the segment here
defined is processed by an application program or module, i t em a contains
the number of timesitem or group occursin the array.

The index specified in the INDEXED-BY clauseisto be used as the index name
when COBOL data descriptions are generated. The index name is not separately
recorded in therepository (that is, no dummy data entries record and no index record
iscreated for i ndex- name when the data definition inwhich it appearsis encoded),
so0i ndex- name cannot be interrogated and can be the same as another name, an
alias, or acatalog classification in the repository.

Up to 15 conditional terms can be specified in the IF clause. A conditional term
compares the contents of an item with a comparand; it has three elements: item
name, operator, and comparand. If there are two or more conditional terms, they
must be separated by an AND or OR keyword; they are evaluated from left to right
in aBoolean logical manner.

. ver si on- b specifies the version (within the HELD-AS form or within a
defaulted form as stated in remark 41 on page 38) of it em b that isrelevant
to the comparison. If ver si on-b isomitted, adefault value of 1 isassumed.

. ver si on- ¢ specifiesthe version (within the HELD-AS form or within a
defaulted form as stated in remark 41 on page 38) of it em ¢ whose
contents are the comparand. If ver si on- ¢ isomitted, adefault valueof 1is
assumed.

. literal isalitera comparand, and must be compatible withit em b's
form description (andcont ent s-descri ption,ifitem b containsa
CONTENTS clause). | i t er al can be either a character string of up to 256
printable and/or non printable characters, enclosed in quotes, or a numeric
literal; that is:

— A signed or unsigned decimal number of not more than 18 digits,
optionally with adecimal point, and not enclosed in quotes

— A signed or unsigned floating point number (as defined in the ITEM
member-type documentation in the ASG-Manager Products
Dictionary/Repository User's Guide) not enclosed in quotes

102

103

3 Member Types

The CHANGED-DATA-CAPTURE-FACILITY clauseisonly valid for segments
contained within HDAM, HIDAM, HISAM, or SHISAM databases. If aMODULE
or PROGRAM is specified alone in the list (i.e. without any keywords before the
next entry or end of list), then during PRODUCE IM Sfor the database default values
of KEY, NOPATH, DATA, and CASCADE will be generated and awarning
message issued. Up to 16 entries can be specified in the EXIT-LIST clause.

LOG-ONLY or NO-EXITS may be specified to enable generation of the DBDGEN
DBD or SEGM specification of

EXIT-((* ,LOQ),

This may be required if data changes are to be written only to the IMS log without
any exit processing. Where exits are specified, the default specification of NOLOG
will be generated.

Examples

For a comprehensive cross section of examples showing the ATTRIBUTES clausein the
data definition statement for a SEGMENT PHY SICAL, see the examplesillustrated by
Figure 2 on page 7 and Figure 3 on page 10. Also in those examples are segments

participating in a unidirectional logical relationship and an index target segment.

Figure 4 on page 51 illustrates two physical data structures that contain segments

participating in avirtually paired logical relationship.

In Figure 4 on page 51;

ASY-LINE isthe physical segment for an assembly line that assembles packs of
assembly parts to make a product.

ASY-PACK isthe physical segment for a pack of assembly parts being assembled
on that assembly line.

QTY-ASY isthe physical segment for the number of those packs of assembly parts
assembled on that assembly line.

PROD-SEG isthe physical segment for a product.

PROD-PART isthe physical segment for the partsthat are used to make that
product.

49

ASG-DataManager IMS (DL/l) Interface

Below are examples of the data definition statements that could be used to define the
segmentsillustrated in Figure 4 on page 51. The examples also show the use of complex
SEQUENCE-KEY clauses.

ADD ASY- LI NE;
SEGVENT PHYSI CAL
RELATED- AS DESTI NATI ON- PARENT- SEGVENT
ATTRI BUTES

CONTAI NS ASY- CODE
SEQUENCE- KEY ASY- CODE UNI QUELY

ADD ASY- PACK;

SEGVENT PHYSI CAL

RELATED- AS REAL- PAI RED- CHI LD- SEGVENT TO PROD- SEG

PO NTERS SYMBOLI C DI RECT- ADDRESS

ATTRI BUTES
CONTAI NS PACK. NO, PART. COLOUR, QTY-REQD
SEQUENCE- KEY PROD- NO W TH PACK- NO AS PACKKEY

| NSERT- POSI TI ON LAST

ADD QTY- ASY;

SEGVENT PHYSI CAL
ATTRI BUTES

CONTAI NS QTY

| NSERT- POSI TI ON LAST

ADD PROD- SEG

SEGVENT PHYSI CAL

RELATED- AS DESTI NATI ON- PARENT- SEGVENT
ATTRI BUTES

CONTAI NS PRCD- NO, DESCRI PT

SEQUENCE- KEY PROD- NO UNI QUELY

ADD PRODPART;

SEGVENT PHYSI CAL

RELATED- AS VI RTUAL- PAI RED- CHI LD- SEGVENT W TH ASY- PACK
TO ASY- LI NE

ATTRI BUTES

SEQUENCE- KEY PART W TH COLOUR, QTIY- REQD AS PART- KEY,
ASY- CODE

I NSERT- POSI TI ON LAST

3 Member Types

For examples of logical data structures that can be defined from the virtualy paired

logical relationship illustrated above, see Figure 5 on page 55 and the accompanying

narrative.

Figure4+ Exampleof Physical Data StructuresWith SegmentsParticipatingin aVirtually Paired

Logical Relationship

Physical destination Logical destination
parent segment parent segment
ASY-LINE PROD-SEG
Real logical Virtual logical
child segment child segment
r - - — — ml
ASY-PACK : PRODPART
L - — — J
QTY-ASY
Logical Segments
Syntax
»» —— SEGMVENT LOG CAL >
CONTAI NS contents 4
| ATTRIBUTES__|
> >
I—corrrron cl ausesJ
- ; }
>] <
where:
cont ent s are
[E— t >
> e T N database | [_kev. oy
> >

I—, desti nati on- par ent

[kev-onLY__ |

51

ASG-DataManager IMS (DL/l) Interface

segnent isthe name of aPHY SICAL SEGMENT.
dat abase isthe name of aHISAM, HDAM, or HIDAM database.
desti nati on-parent isaPHYSICAL-DESTINATION-PARENT-SEGMENT.

common- ¢l auses are as defined in the ASG-Manager Products Dictionary/Repository
User’s Guide.

Remarks

1 Thekeyword LOGICAL must immediately follow the SEGMENT member type
identifier to indicate that a segment residing in alogical database is being defined.

2 Thekeyword ATTRIBUTES can be omitted for alogical segment; it isincluded in
the statement specification in order to maintain the general format of the segment
data definition statements.

3 The CONTAINS clause specifies the physical segments that the logical segment
represents. The clause must be present if the segment is to be completely defined.

4 Thephysi cal - segnent - name specified can be the name of asegment of any type
that residesinaHISAM, HDAM, or HIDAM database, unlessalogical concatenated
segment is being defined, in which case it must be the name of alogical child
segment.

5 If the physical segment resides in more than one physical database, the IN
subordinate clause can be used to specify the name of the physical database relevant
to thislogical segment. The name of the physical database is required when IMS
(DL/1) DBD control statements are being produced for any logical database that
containsthislogical segment. If theIN clauseisnot specified, thenwhen IMS (DL/1)
DBD control statements are produced, Manager Products finds an appropriate
physical database in one of the ways described in "The Member Type for a
LOGICAL TypelMS (DL/I) Database" on page 106.

6 Thedesti nati on- parent - name is specified only if alogical concatenated
segment is defined; in which case, it must be the name of the destination parent
segment to which the logical child segment specified by
physi cal - segnent - nane relates.

If the physi cal - segnent - nane specifiesalogical child segment, but the
desti nati on- par ent - nane isomitted, then the Source Language Generation
Facility assumes that alogical concatenated segment is being defined. The
destination parent to which it is related and the KEY-ONLY keyword are also
assumed. If RXLOGOL1 is specified as Y ES by the macro DGDBD, then this
processing is not undertaken, so that a SEGM statement is generated with a
SOURCE operand for the logical child alone.

52

10

11

3 Member Types

TheKEY-ONLY keyword specifies that the concatenated key (if any) of the
physical segment isto be placed in the key feedback area of the logical segment's
PCB; and, that the physical segment is not to be placed in the user input/output area
when acall isissued to retrieve the logical segment. If KEY-ONLY isomitted, the
concatenated key of the physical segment is placed in the key feedback area, and the
physical segment is placed in the user input/output area.

The sequence key for aconcatenated segment isthe sequence key of thelogical child
segment.

Common clauses can be present in any type of data definition statement; therefore,
they are defined separately in the ASG-Manager Products Dictionary/Repository
User's Guide. Not more than one of each of these clauses can be declared. If a
common clause has a subordinate clause or keyword, the subordinate clause
identifier or subordinate keyword must not be truncated to an extent where it
becomes ambiguous with any other clause identifier or other keyword available in
the data definition syntax for this member type.

The common clauses can bein any order. If common clauses are present, they must
follow the ATTRIBUTES clausg, if it is present.

A record containing the segment's data definition statement can be inserted into the
datadictionary's source dataset by a suitable command (see ASG-Manager Products
Dictionary/Repository User's Guide), and an encoded record can subsequently be
generated and inserted into the data entries dataset. If, when the encoded record is
generated, any segment or database where the name appears in this segment's data
definition statement has no data entries record, a dummy segment or database data
entries record is created for that member.

Examples

Figure 5 on page 55 illustrates logical data structures that can be defined from the

physical data structuresillustrated by Figure 4 on page 51.

In Figure 5 on page 55, example A:

ASSBLINE isalogica segment representing an assembly line.

PARTPROD isalogica concatenated segment representing assembly parts
assembled on that assembly line and the product that they make.

PROD-QTY isalogical segment representing the number of those products being
assembled on that assembly line.

53

ASG-DataManager IMS (DL/l) Interface

These are examples of the data definition statements that could define the segments
illustrated in Figure 5 on page 55, example A:

ADD ASSBLI NE;
SEGVENT LOd CAL
CONTAI NS ASY- LI NE

ADD PARTPROD,
SEGVENT LOd CAL
CONTAI NS ASY~PACKf PROD- SEG

ADD PROD- QTY:
SEGVENT LOG CAL
CONTAI NS QTY- ASY

In Figure 5 on page 55, example B:

PRODUCT isalogica segment representing a product.

PART-ASY isalogical concatenated segment representing the parts that are used to
make this product and the assembly line where they are assembled.

These are examples of the data definition statements that could define the segments
illustrated in Figure 5 on page 55, example B:

ADO PRODUCT;
SEGVENT LOd CAL
CONTAI NS PROD- SEG

ADD PART- ASY,
SEGVENT LOd CAL
CONTAI NS PRODPART, ASY-LI NE

ADD ASY- QTY
SEGVENT LOG CAL
CONTAI NS QTY- ASY

Figure5e+ Examplesof Logical Data Structures

3 Member Types

Example A Example B
ASSBLINE PRODUCT
PARTPROD PART-ASY
PROD-QTY ASY-QTY

Segments that Reside in a Secondary Index Database

Syntax
» » —— SEGVENT | NDEX- POl NTER >
I—ATTRI BUTES attribute-details J
) o >
I—RELATED TO rel ated-details J |_commn cl auses J

> - > <
where:
attribute-detail s are
- >

ALl GNED L <LLLLLLLLL LKL | <L L

UNAL I GNED CONTAI NS cont ent I_ —

condi ti ons—

NOT- ALI GNED —

> >
I—FREQJENCY fr qu
» ——— SEQUENCE- KEY sequence- key >
~:UNI QUELY ——
DUPLI CATED —
> >
L <<<<<<< | <<<<< J
GENERATES gener at es-cl ause

55

ASG-DataManager IMS (DL/l) Interface

56

where:
cont ent is:
> i dent >
|—(nn) i dent
\—I NDEXED- BY i ndex—

wherei dent is:

> item version
I—QI'OUPJ |—ALI GNED

\—UNALI GNED
|—NOT- ALl GNED —

A\

\
\

[_kNOW AS 1 ocal - namre —

where:

i t emisthe name of an ITEM repository member.
gr oup isthe name of a GROUP repository.

ver si on isan unsigned integer in the range 1 to 15.

| ocal - nanme isaname, conforming to the rules for member names stated in the
ASG-ControlManager User's Guide.

nn isan unsigned integer from 1 to 18 digits, being the number of timesitem or group
occursin the array.

i ndex isaname, conforming to the rules for member names, that is to be used as the
index name when COBOL data descriptions are generated by the Source Language
Generation Facility.

condi ti ons are:

3 Member Types

Y

» ——itemb EQ
|_ver sion-b J

— NE—|
GT
— >
N

L 1 e |

\

itemc
Lversion-c_
literal

where:

literal isalitera comparand.

i t em b isthe name of the ITEM where the contents are to be compared with the
comparand.

ver si on- b isan unsigned integer in therange 1 to 15.

i t em c isthe name of the ITEM where the contents are the comparand.
ver si on- ¢ isan unsigned integer in therange 1 to 15.

cont ent isasdefined above.

f r eq isan unsigned integer in the range 1 to 16777215.

sequence- key isal to 8 character unique a phanumeric name.

57

ASG-DataManager IMS (DL/I) Interface

rel at ed-detail s are:

» — target-seg ON index-search

LSCXJRCE sour ce- segment J

> >
I— CONSTANT CHARACTER ' ¢’
EHEXADECI MAL ' hh'|
BI TS ' bbbbbbbb'__|
<<, <<
» —— SEARCH KEY FI ELDS group >
_i tem
>
> _ <<< | <<<<
SUBSEQUENCE- FI EL gr oup
item
CKX XXX X
SXXXXXX
> »
I_ <K<, <<<
DUPLI| CATE- DATA- FI ELDS group___ |
Ei tem
CKXXXXX
) o >
I— SUPRESSI NG CHARACTER ' ¢’
HEXADECI VAL ' hh'__|
BI TS ' bbbbbbbb' |
BLANKS
ZEROS
ZERCES
> >
LAl NTENANCE- EXI T rodul e
> >
I—PO NTERS DI RECT- ADDRESS ——
—_SymMBOLIC_________|
> >
I—CG\ICATENATED KEY- NAME concat enat ed- keyJ
where:

t ar get - seg isthe name of a SEGMENT that isaPHY SICAL TARGET-SEGMENT

member.

i ndex-search-fi el disalto 8 character unique alphanumeric name.

sour ce- segnent isthe name of aSEGMENT that isa PHY SICAL

SOURCE-SEGMENT member.
nodul e isthe name of aMODULE member.

group andi t emare as defined above.

3 Member Types

gener at es- cl ause is:

sequence- key >
concat enat ed- key

item
SXXXXXX

IN group
i: CKXXXXX o] i:CKXXXXY
i ndex-search— i ndex-search

|: sequence- key
concat enat ed- key-

group
<L<LLLLLLLLLLLLLLLLLLLLLLLLL LK

where:

CKxxxxx isa 3- to 7-character name to be applied to a system related field within a
GENERATES, SUBSEQUENCE-FIELDS, or DUPLICATE-DATA-FIELDS clause.
The name must be unique and start with CK.

SXxxxxx isa3- to 7-character name to be applied to a system related field within a
GENERATES or SUBSEQUENCE-FIELDS clause. The name must be unique and start
with SX.

concat enat ed- key isused when alogical child segment is being defined, to specify
the name to be given to the destination parent's concatenated key.

c isany printable character.
hh is ahexadecimal representation of any printable or non printable character.

bbbbbbbb is aone byte hit string representation of any printable or non printable
character.

conmon- ¢l auses are as defined in the ASG-Manager Products Dictionary/Repository
User's Guide.

Remarks
1 Thekeyword INDEX-POINTER mustimmediately follow the SEGMENT member
typeidentifier toindicate that an index pointer segment residing in asecondary index

database is being defined.

2 The ATTRIBUTES clause must be present if the segment is to be completely
defined.

3 Thefirst element within the ATTRIBUTES clause can be one of the keywords

ALIGNED, UNALIGNED, or NOT-ALIGNED. If noneisdeclared in the data
definition statement, a default of UNALIGNED istaken.

59

ASG-DataManager IMS (DL/l) Interface

60

ALIGNED isthe equivalent of COBOL SYNCHRONIZED, or PL/I ALIGNED. It
means that (subject to remark 8 on page 60) al binary items and all floating point
itemsdeclared as being contained in the segment are aligned to half-word, full-word,
or double-word boundaries, thus:

. Binary items having a length of 4-decimal digits or less occupy a complete
half word

. Binary items having a length of from 5- to 9-decimal digits occupy a full word

. Binary items having alength of from 10- to 18-decimal digits occupy two full
words, but are not necessarily aligned to a double word boundary

. Floating-point items having 6 digits or less in the mantissa occupy afull word

. Floating-point items having from 7- to 16-digits in the mantissa occupy a
double word

ALIGNED also causes any bit string items to be output with alignment to byte
boundaries when the Source Language Generation Facility is used (see "Segment
Input/Output Areas:. Items Defined as BINARY or BITS' on page 190). Theway in
which thisis achieved depends on the language being generated and is described for
COBOL, PL/I, and Assembler in the publication ASG-Manager Products Source
Language Generation.

UNALIGNED meansthat (subject to remark 8 on page 60) binary itemsand floating
point items declared as being contained in the segment are not necessarily aigned to
word or half-word boundaries and that bit string items are not aligned to byte
boundaries. (The amount of space occupied isthe same asfor ALIGNED items, but
the positioning relative to boundaries can differ.)

NOT-ALIGNED meansthe same as UNALIGNED. For the sake of simplicity, they
areregarded in the following remarks as being the same keyword; so that any
referenceto the UNALIGNED keyword should beinterpreted as applying equally to
the NOT-ALIGNED keyword.

The ALIGNED or UNALIGNED keyword does not apply to items contained within
groupsdeclared as being contained in the segment. The data definitions of the groups
determine the alignment or nonalignment of such indirectly-referenced item.

The ALIGNED or UNALIGNED keyword can be overridden for individua content
declarations (that is, for particular items or groups declared as being contained in the
segment) by including the keyword UNALIGNED or ALIGNED, respectively, as
thelast element inthe particular content declaration, preceding any associated EL SE
and/or |F clauses (see remark 11 on page 61 to remark 15 on page 62). It is not
meaningful to include either of these keywordsin a content declaration that declares
agroup (seeremark 7 on page 60).

10

11

12

13

14

3 Member Types

The CONTAINS clause specifiesthe GROUP and/or ITEM membersthat constitute
the successive parts of the index pointer segment's user data. If thereisno user data,
the CONTAINS clause must be omitted. The main part of theindex pointer segment
from the SEARCH-KEY -FIELDS, SUBSEQUENCE-FIELDS, and
DUPLICATE-DATA-FIELDS subordinate clauses specified inthe RELATED-TO
clause is automatically constructed.

Any direct or indirect reference from the CONTAINS clause to an item is assumed
to be the HELD-AS form of that item. If the item has no HELD-AS form, default
assumptions are made as to the relevant form of the item, in the order
DEFAULTED-AS, ENTERED-AS, REPORTED-AS. Theformfirst encounteredin
this order istaken as the defaulted form, and version is applied within that form as
stated in the syntax.

Entriesin the CONTAINS clause may be conditional (IF clauses, seeremark 13 on
page 61) and/or may have alternative content declarations (EL SE clauses, see
remark 12 on page 61), which also may be conditional, so that the definition of each
part of the segment comprises a content declaration and any associated EL SE clause
and/or IF clauses. If the segment comprises of two or more parts, the definition of
each part, except the last, must be followed by a comma, which can optionally be
followed by spaces.

Any part of the segment can be specified as having any number of alternative
contents. The alternative content declarations are separated by the keyword EL SE.
The alternative contents need not occupy the same amount of physical storage.
The expression ELSE clause thus refers to:

ELSE cont ent

where cont ent isas defined above.

Any content declaration can be specified as conditional; that is, as applying only if a
stated condition or combination of conditionsis satisfied. For a content declaration
to be conditional, content must immediately be followed by an IF clause.

It follows that any part of the segment can have alternative conditional contents
declared in the form:

content | F cl ause ELSE content |F cl ause ELSE content |F cl ause

and that any combination of conditional and non conditional alternative contents
can be declared for any part of the segment.

61

ASG-DataManager IMS (DL/l) Interface

62

15

16

17

18

19

20

In a content declaration, the ALIGNED, UNALIGNED, or NOT-ALIGNED
element, the KNOWN-AS clause and the INDEXED-BY clause can, if applicable,
be declared in any order. However, they must not precede any of the other elements
of the content declaration (though they must precede any associated EL SE clauses
and/or |F clauses).

The FREQUENCY clause specifies the expected frequency of the segment.

The SEQUENCE-KEY clause specifies the name that is to be applied to the
sequence key of the index pointer segment. Manager Products constructs the
sequence-key, for which amember of aspecial internal typeisgenerated. A member
of thistypeis given the following user table entries:

. Anentry for thei ndex- sear ch-fi el d- nanme (XDFLD) when specified for
the segment (see remark 25 on page 64)

. An entry for each entry specified in the SUBSEQUENCE-FIELDS clausein
the segment definition

The sequence key internal member type can be referred to by other members; for
example, as a segment search argument or as a sensitive field. Sequence key
internal members can be interrogated, and the Source L anguage Generation Facility
can operate on such members. When the Source Language Generation processis
performed on such members, the CONSTANT field will aso be generated if it has
been specified.

UNIQUELY specifies that the sequence key of the index pointer segment is to
contain unique values only. DUPLICATED specifies that duplicate values are
allowed in the sequence key. If neither of these keywords is specified, then
UNIQUELY is assumed.

The GENERATES clause enables the user to specify fields for which DBD FIELD
control statements are always to be generated when DBD control statements are
produced, in addition to those fields required by IMS (DL/I) for which the Source
Language Generation Facility always providesDBD FIEL D control statements. (See
further in "Generating IMS (DL/1) DBD Control Statements' on page 176.) It isnot
necessary to include the sequence key field namein the GENERATES clause,
because aDBD FIELD Control Statement is always generated for this field; but the
sequence key is accepted in the GENERATES clause in case the user wishes to
includeit in thelist of specified fields.

The OF/IN subordinate clause of the GENERATES clause can be used when the
segment contains multiple occurrences of afield, to allow the user to specify which
occurrence of thefield isto have aDBD FIELD control statement generated for it.
If the OF/IN clauseis used, all occurrences of the field other than the one specified
in the clause are ignored.

21

22

23

3 Member Types

When specified for an index pointer segment, the GENERATES clause has the
additional function of forcing DBD FIELD control statements to be generated for
fields that are in the main part of the index pointer segment; that is, the search,
subsequence and duplicate-data fields, and fields constituting the concatenated key
of theindex target segment, if present (see remark 35 on page 65 and remark 36 on
page 65). Normally, DBD FIELD control statements are only generated for the
sequence key field and for fieldsin the user data (see"Generating IMS (DL/I) DBD
Control Statements' on page 176).

If itisrequired to generate DBD FIELD control statements for the fields that
constitute the search, subsequence or duplicate-data fields then each field must be
specified in the GENERATES clause of the index pointer segment definition.

When thereis duplication of fields across segments, the GENERATES clause must
be used if DBD FIELD control statements are to be generated for these fields:

. Fieldsthat are used as segment search fields through the PROCESSES clause
of SYSTEM, PROGRAM, or MODULE members

. Fields that are used as sensitive fieldsin PCB members
These fields must be part of the user-data.

Thefacility (described in "Generating IMS (DL/I) DBD Control Statements"' on
page 176), which automatically generates the DBD FIELD control statements for
the fields described above, cannot be used when fields are duplicated across
segments, as Manager Products assumes that there is no such duplication.

If data has been duplicated across segments, and you wish to generate DBD FIELD
control statements for the types of fields listed above, then:

. The GENERATES clause must be specified in the definition of the segment
to specify the fields for which DBD FIELD control statements are to be
generated.

. The GENERATES-FIELDS keyword must be used in the PRODUCE DL
DBDGEN command to indicate that DBD FIELD control statements are to be
generated only for the fields specified in the GENERATES clause.

The RELATED-TO clause must be present if the segment is to be completely
defined. It specifies:

. The index target segment to which the segment is related

. The index source segment to which the segment is related

. Thefieldsthat are used to construct the CONSTANT, search, subsequence,
and duplicate-data portion of the segment

63

ASG-DataManager IMS (DL/l) Interface

24

25

26

27

28

29

30

31

The RELATED-TO keyword must be immediately followed by the
target-segment-name, which identifies the PHY SICAL-TARGET-SEGMENT to
which the index pointer segment points.

ON i ndex- sear ch- fi el d- nane specifiesthe nameto be applied to the search
field (XDFLD) of the index pointer segment that can be used as a segment search
fidd for the index target segment. Manager Products constructs the index search
field, for which amember of a special internal type is generated. This member is
given a uses table entry for each member specified in the SEARCH-KEY-FIELDS
clause.

Index search field (XDFLD) internal members can be referred to by other members;
for example, as a segment search argument. Members of this type can also be
interrogated and the Source Language Generation Facility can operate on them.

The SOURCE clause identifies the index source segment from which the index
pointer segment is generated. The clause can be omitted if the index target segment
is also the index source segment; otherwise the index source segment must be a
dependent segment of the index target segment, at any lower level.

The CONSTANT clause specifiesacharacter identifies every index pointer ssgment
created for this secondary index. It isrequired if this secondary index residesin an
index database shared by other secondary indexes.

The SEARCH-KEY -FIELDS clause liststhe names of oneto five GROUP or ITEM
membersthat are contained directly or indirectly by the corresponding index source
segment, and that constitute the index search field (XDFLD) in the index pointer
segment. The sequence of the entriesin thelist is the sequence in which the field
values are concatenated in the index pointer segment's search field. None of these
fields or their constituent members may be variable length.

The SUBSEQUENCE-FIELDS clause lists the names of one to five groups, items,
and/or system related fields that are defined in the corresponding index source
segment, and that constitute the subsequencefield in theindex pointer segment. The
sequence of the entriesin the list is the sequence in which the field values are
concatenated in the index pointer segment's subsequence field.

The combined length of the fields declared by CONSTANT,
SEARCH-KEY-FIELDS, and SUBSEQUENCE-FIELDS must not exceed 240
bytes.

The DUPLICATE-DATA-FIELDS clause lists the names of one to five groups,
items and/or system related fields (of the type whose names begin with CK) that are
defined in the corresponding index source segment, and that constitute the duplicate
datafield in the index pointer segment. The sequence of the entriesin thelist isthe
sequence in which the field values are concatenated in the index pointer segment's
duplicate datafield.

32

33

34

35

36

3 Member Types

The SUPPRESSING-ON clause specifies that the creation of the index pointer
segment is suppressed if each of the fields of the index source segment that are used
to construct the search field of theindex pointer segment contai nsthe specified value
in every byte.

The MAINTENANCE-EXIT clause specifies that a user-supplied index
maintenance exit routine is used to suppress the creation of selected index pointer
segments.

The POINTERS clause specifies how the index pointer segment isto point to the
index target segment.

. DIRECT-ADDRESS clause specifies that a 4-byte direct address pointer to
the index target segment isto be placed in the prefix of the index pointer
segment.

. SYMBOLIC specifies that symbolic pointing from the index pointer segment
to the index target segment isto be used, and that no spaceisto bereserved in
the prefix of the index pointer segment for a 4-byte direct address pointer.
SYMBOLIC must be specified if the index target segment residesin a
HISAM database.

If the POINTERS clauseis omitted, then SYMBOLIC isassumed if the index target
segment resides in a HISAM database; otherwise DIRECTADDRESS is assumed.

If symbolic pointing is used to point to the index pointer segment, the concatenated
key of the index target segment must form part of the index pointer segment. If it
does not, then when the Source Language Generation Facility is used to generate
DBD control statements, record layouts, or COBOL, PL/I, or Assembler data
descriptions, the concatenated key is constructed automatically and inserted into the
index pointer segment after any sequence key and duplicate-data fields that have
been specified.

The CONCATENATED-KEY-NAME clause can be used to specify a name to be
given to the concatenated key of the index target segment that will be constructed. If
the CONCATENATED-KEY-NAME clause is used, amember of aspecia internal
typeis created for the concatenated key and given the name specified in the clause.
Thisinternal member has no entriesin the uses tabl e, as the members that constitute
it arenot calculated until the Source L anguage Generation Facility isused. However,
the internal member can still be referred to by other members; for example, it may
be used as a segment search field or as a sensitive field. Interrogations can be
performed on internal members of this type (see "Interrogation Syntax" on

page 154). However, meaningful results will only be obtained in responseto
interrogations about members that refer to the internal member type.

65

ASG-DataManager IMS (DL/l) Interface

66

37

38

39

40

The length of the index pointer segment is not included as part of the segment
definition as the Source Language Generation Facility calculates it when required,
allowing for:

. The length of the key
. Any duplicate datafields

. The concatenated key of the index target segment if constructed by Manager
Products

. Any user data

Common clauses can be present in any type of data definition statement; they are
therefore defined separately in the ASG-Manager Products Dictionary/Repository
User's Guide. Not more than one of each of these clauses can be declared. If a
common clause has a subordinate clause or keyword, the subordinate clause
identifier or subordinate keyword must not be truncated to an extent where it
becomes ambiguous with any other clause identifier or other keyword available in
the data definition syntax for this member type.

The common clauses can be declared in any order. If present, they must follow the
ATTRIBUTESand RELATED-TO clausesif they are present. Thelatter clauses can
bein either order. Within the ATTRIBUTES clause the subordinate clauses can be
in any order. Within the RELATED-TO clause the subordinate clauses can follow
index-search-field-name in any order.

When an ATTRIBUTES clause followed by a FREQUENCY clause is encoded, it
is assumed that the FREQUENCY clause is subordinate to the ATTRIBUTES
clause, specifying the expected frequency of the segment being defined.

If itisrequired to specify the FREQUENCY common clause following an
ATTRIBUTES clause, it isalso necessary to specify another common clause before
the FREQUENCY common clause. This causes Manager Products to recognize that
the clauses that follow are all common clauses.

41

42

43

3 Member Types

A record containing the segment's data definition statement can be inserted into the
repository's source dataset by a suitable command (see the ASG-Manager Products
Dictionary/Repository User's Guide), and an encoded record can subsequently be
generated and inserted into the data entries dataset. |f, when the encoded record is
generated, any item, group, module, or segment where the name appearsin the
segment's data definition statement has no dataentriesrecord, adummy data entries
record is created for that member. The dummy record is created as.

. A dummy module, if the name appearsin aMAINTENANCE-EXIT clause

. A dummy segment, if the name is a target-segment-name or a
source-segment-name

. A dummy group, if the name appearsin the OF/IN subordinate clause of the
GENERATES clause

. A dummy item in all other cases

Similarly, when the encoded record is generated, if amember of an internal member
type has not already been generated for any name appearing in a
SUBSEQUENCE-FIELDS clause or aDUPLICATEDATA-FIELDS clause, then a
dummy dataentriesrecord is created for that member. (Therecord isadummy item
because the internal member type will be defined in the physical source segment's
definition.)

If an encoded segment record is deleted, any internal member that it created which
is not referred to by other members is deleted, together with any references that the
internal member made to other members. Any internal member that isreferred to by
other members is made into adummy internal member rather than being del eted
atogether.

Inthe KNOWN-ASclause, | ocal - nanme can be used instead of the name or alias of
the contained member, when DBD control statements, record layouts, or source
language data descriptions are generated from this member. | ocal - name isnot
separately recorded in the repository (that is, no dummy data entries record and no
index record is created for | ocal - name when the member in which it appearsis
encoded), so | ocal - nane cannot be interrogated and can be the same as another
name, an alias, or a catalogue classification in the repository. | ocal - nane isthe
name by which the contained member is known only within the segment defined by
this member.

67

ASG-DataManager IMS (DL/l) Interface

68

44 Inthe CONTAINS clause:

Example

Ver si on specifies which version of the relevant item isrelevant to this
segment. The version iswithin the HELD-AS form, or within a defaulted
form as stated in remark 10 on page 61. If ver si on isomitted or if the stated
version does not exist, the lowest numbered existing version is assumed to be
relevant.

Li t er al must be compatiblewithitem b'sf or m descri pti on (and
cont ent s-description,ifitem b containsa CONTENTS clause) The
literal can be either a character string of not more than 256 printable and/or
non printable characters, enclosed in quotes, or a numerical litera, that is:

— A signed or unsigned decimal number of not more than 18 digits,
optionally with adecimal point, and not enclosed in quotes

— A signed or unsigned floating point number (as defined in the
ASG-Manager Products Dictionary/Repository User's Guide) not
enclosed in quotes

Ver si on- ¢ specifies the version (within the HELD-AS form, or within a
defaulted form as stated in remark 10 on page 61) of i t em ¢ whose contents
are the comparand. If ver si on- c isomitted, adefault value of 1 is assumed.

The conditional operators have these meanings:

Operator Meaning

EQor= equal to

NE not equal to

GTor> greater than

GE greater than or equal to
LTor< less than

LE less than or equal to

For an example of a SEGMENT INDEX-POINTER, see the exampleillustrated by
Figure 3 on page 10.

3 Member Types

Member-type Syntax For IMS (DL/I) Databases

Outline of the IMS-DATABASE Member Type

IMS (DL/I) provides a number of different database access methods. To simplify the
description of the IMS-DATABASE member type, a separate description is given for
each type of IMS (DL/I) database organi zation/access method.

Thisisthe overall syntax of the IMS-DATABASE member type:

> | M5- DATABASE——————(gsant access >
E DL/ | - DATABASE :l I— hsamaccess —M ——
DL/ | - DATABASE l — hisamaccess——M —
DL/ | - DATABASE :‘ | hdam access
DL/ | - DATABASE | hi dam access

— 1 ogi cal - access

—secondar y-i ndex- access —

Y
\/

I—com'rnn- cl auses J

> I > <

where:

gsam access, hsam access, hi sant access, hdant access, hi dam access,

| ogi cal - accesses, and secondar y-i ndex- access arethe definitions for
particular types of database organization/access method, as specified in "Member Type of
aGSAM Type IMS (DL/1) Database Syntax" on page 70 to "The Member Type for a
SECONDARY-INDEX TypeIMS (DL/1) Database" on page 111, respectively.

conmon- ¢l auses are as documented in the ASG-Manager Products
Dictionary/Repository User's Guide.

For each type of database organisation/ access method, the definition comprises:
. An organization type/access method keyword or keywords.

. An ACCESS clause, to specify the access method of the database. Thereisno
ACCESS clause for alogical-access definition.

. A DATASETS clause, to specify the attributes of the dataset groups into which the
database is divided. Thereisno DATASETS clause for alogical-access definition.

. A CONTAINS clause, to list the segments that reside in the database. In a
gsam-access definition, the CONTAINS clause is not relevant to IMS (DL/1), but it
is provided to enable the user to define the records of the dataset accessed.

The ACCESS, DATASETS and CONTAINS clauses must, if present, be in that order
and must precede any common clause that may be present.

69

ASG-DataManager IMS (DL/I) Interface

Member Type of a GSAM Type IMS (DL/I) Database Syntax

70

> | M5- DATABASE————————————— GSAM >
DL/ | - DATABASE :l
DL/ | - DATABASE

DL/ | - DATABASE
DL/ | - DATABASE

> >
I—AOCESS VSAM
L PASSWORD___|
BSAM
PASSWORD——————————
> >
|—DATASE]’S I NPUT ddnane dsets-detail SJ ENTERED- AS——|
HELD- AS
REPORTED- AS ——
DEFAULTED- AS —
> >
AL| GNED L << | <<LLLLLLLL LKL
UNALI GNED CONTAI NS cont ent
NOT- ALl GNED — I_condi tions
) o >
I—commn- cl auses J
> I > <
where:

ddnarre is 1 to 8 alphanumeric characters, being the logical name used in the job control
to identify the database dataset.

dsets-detail s are:

> FI XED >
E VARI ABLEJ \—BLCXZKED
UNDEFI NED
> >
I:BLCCK count :I I_RECIRD I ength-1
BUFFER si ze |—TO | ength-2 —
> >

L_aurpur ddname_|

where:

count isan unsigned, nonzero integer, being the number of logical records per physical
block.

si ze isan unsigned, nonzero integer, being the number of bytes per physical block or
control interval.

| engt h- 1, 1 engt h- 2 are nonzero integers.

cont ent is:

3 Member Types

)—E i dent
(nn) i dent
(itema)J I— | NDEXED- BY i ndex —

wherei dent is:

> item versi on
gr oup ALI GNED
file UNALI GNED

NOT- ALI GNED —

where:

i t emisthe name of an ITEM member.
gr oup isthe name of a GROUP member.
fil e isthe name of a FILE member.

ver si on isan unsigned integer in the range 1 to 15.

| ocal - nane isaname, conforming to the rules for member names.

nn isan unsigned integer of from 1 to 18 digits, being the number of timesitem or group

occursin the array.

i tem aisthenameof an ITEM.

i ndex isaname, conforming to the rules for member names, that is to be used as the
index name when COBOL data descriptions are generated by the Source Language

Generation Facility.

condi ti ons are:

»——————— | F expr
j§i§<<‘i;;§f<
r—]

>
<LLLLLLLLLLLLLL L) KL

ELSE cont ent
<<<<<<,<<<<§<
AND con
R

[_IF cond

71

ASG-DataManager IMS (DL/l) Interface

72

where:
cond is:
» itemb EQ > <
Lversion-bJ —= — |
- GT ——
>
LT |
<
L e |

itemc
Lversion-c_
literal

Y

where:

literal isaliteral comparand.

i t em b isthe name of the ITEM whose contents are to be compared with the comparand.

ver si on- b isan unsigned integer in the range 1 to 15.

i t em c isthe name of the ITEM whose contents are the comparand.

ver si on- ¢ isan unsigned integer in the range 1 to 15.

conmon- ¢l auses are as defined in the ASG-Manager Products Dictionary/Repository

User’s Guide.

Remarks

1 Thekeyword GSAM mustimmediately follow the member typeidentifier toindicate
that a OSAM database is being defined.

2 The ACCESS clause can be omitted; but, if it is present, it must immediately follow
the GSAM keyword.

3 Ifthe ACCESS clauseisomitted, or if neither of the operating system access method
keywords VSAM or BSAM is present in the ACCESS clause, then VSAM is
assumed.

4 PASSWORD specifies that the database name is to be used when opening any

dataset in this database. It is not accepted if the BSAM access method is specified.

10

11

3 Member Types

The DATASETS clause defines a dataset group within this database. It must be
present if the definition of the database is to be complete. Only one DATASETS
clause is permitted.

INPUT ddname specifiesthelogical file name of the input dataset. It must be unique
within the data dictionary.

The format of the recordsin the dataset is specified by one of these keywords:
FIXED, VARIABLE, or UNDEFINED.

If the database uses the VSAM access method, the control interval size, specified
either by BUFFER size or by the product of the BLOCK count and | engt h- 1 (if
records are fixed length) or | engt h- 2 (if records are variable length), must not
exceed 30720.

If the control interval sizeis specified by BUFFER size, then:

. If sizeislessthan 8192 and is not amultiple of 512, on encoding it is rounded
up to the next multiple of 512.

. If sizeisgreater than 8192 and is not amultiple of 2048, on encoding it is
rounded up to the next multiple of 2048.

If the control interval sizeis specified by the product of the BLOCK count and the
RECORD length, no rounding is performed by DataM anager, but on encoding,
warning messages are output if:

. The product is less than 8192 and is not a multiple of 512
. The product is greater than 8192 and is not a multiple of 2048

Theelement | engt h- 1 specifiesthe record size for afixed length logical record or
the minimum record size for avariable length logical record.

If records are variable length, TO | engt h- 2 must be declared, wherel engt h- 2
specifies the maximum size for arecord.

OUTPUT ddname specifies the logical file name of the output dataset.

Note:

If thisis the same as the INPUT ddname described in remark 6 on page 73, a
Warning message is issued and a common DL/I-DATASET internal member is
referred to.

73

ASG-DataManager IMS (DL/l) Interface

74

12

13

14

15

16

17

The optional CONTAINS clause and its optional preceding form and alignment
keywords are not relevant to IMS (DL/1) for the definition of the GSAM database.
They are provided to enable the user to define the records of the dataset group
accessed, for documentation or other purposes. Asthe CONTAINS clause and its
optional preceding keywords are based on the corresponding el ements of the FILE
data definition statement, defined in the ASG-Manager Products
Dictionary/Repository User's Guide, they are not defined again here.

Common clauses can be present in any type of data definition statement; therefore,
they are defined separately in the ASG-Manager Products Dictionary/Repository
User's Guide. Not more than one of each of these clauses can be declared. If a
common clause has a subordinate clause or keyword, the subordinate clause
identifier or subordinate keyword must not be truncated to an extent where it
becomes an ambiguous with any other clause identifier or other keyword available
in the data definition syntax for this member type.

The common clauses can be declared in any order. If present, they must follow the
ACCESS, DATASETS, and record-definition clauses, if these are present.

A record containing the database's data definition statement can be inserted into the
data dictionary's source dataset by a suitable command (see the ASG-Manager
Products Dictionary/Repository User's Guide), and an encoded record can
subsequently be generated and inserted into the data entries dataset.

When the encoded record is generated, a data entries record of a special internal
type, the DL/I-DATASET internal member type, is created for each ddname that
appearsin the database's data definition. When a GSAM database is encoded, the
DL/I-DATASET internal member type has no references to other members.
However, DL/I-DATASET members may be referred to by other members; for
example, they might appear in the INPUTS clause of aPROGRAM definition.
DL/I-DATASET members can be interrogated (see "Examples’ on page 142),
although meaningful results will be obtained only in response to interrogations
concerning the members that refer to DL/I-dataset members.

When an encoded database member is deleted, any DL/I-DATASET member
created for it, which is not referred to by other members, is also deleted. Any
DL/I-DATASET member, which isreferred to by other members, is made into a
dummy member rather than being deleted.

In the KNOWN-AS clause, the |l ocal - nane variable can be used instead of the
name or alias of the contained member, when DBD control statements, record
layouts, or source language data descriptions are generated from this member by the
Source Language Generation Facility.

3 Member Types

Example

ADD SALESTAT,

| M5 - DATABASE GSAM
ACCESS BSAM

DATASETS | NPUT SALESI N
FI XED BLOCKED

BLOCK 4 RECORD 256
CUTPUT SALESO

The Member Type for a HSAM Type IMS (DL/I) Database

Syntax
> | VB- DATABASE ———————HSAM >
DL/ | - DATABASE L SI MPLE _
DL/ 1- DATABASE
DLI - DATABASE
DL1- DATABASE
) o >
I—ACCESS |_ DATASETS dat aset s-det ai | SJ
|— PASSWORD—
) o >
I—CO\ITAI NS segment
<LLLLLLLLKLL, <LLLLLL
Lsegnent PARENT segment — |
) o >
I—commn- cl auses J
> - > <
where:
dat aset s-detai |l s is:
» | NPUT ddnane QUTPUT ddnane >
RECORD | ength —1
> DEVI CE devi ce >
~ L RecorD I ength — L vMooEL nodel —!
where:

ddnarre is 1 to 8 alphanumeric characters, being the logical name used in the job control

to identify the physical file.

I engt h isthe maximum length (in bytes) of alogical record. If VSAM isthe operating

system access method, length must be an even value.

75

ASG-DataManager IMS (DL/l) Interface

76

devi ce isone of these keywords or numbers:

DRUM 2311 3310 3370 3420
CELL 2314 3330 3375
TAPE 2319 3340 3380
3390 2301 2321 3344
3400 2305 2400 3350

From IMS version 4 onwards, this clause is purely documentational .

nodel isaninteger, 1 or 2 if deviceis 2305, or 1 or 11 if deviceis 3330. From IMS
version 4 onwards, this clause is purely documentational.

segnent isthe name of any physical segment.

comon- ¢l auses areasdefined in the ASG-Manager Products Dictionary/Repository
User's Guide.

Remarks

1

The HSAM keyword mustimmediately follow the member typeidentifier toindicate
that aHSAM database is being defined.

Thekeyword SIM PL E specifiesthat the database being definedisaSIMPLE HSAM
database. If present, it must immediately follow the keyword HSAM.

The ACCESS clause can be omitted; but, if it is present, it must immediately follow
the HSAM 2 SIMPLE 2 keyword(s).

The keyword PASSWORD specifies that the database name must be used when
opening any dataset in this database.

The DATASETS clause defines a dataset group within this database. It must be
present if the definition of the database is to be complete. Only one DATASETS
clause is permitted.

INPUT ddnane specifiesthelogical file name of theinput dataset. It must be unique
within the data dictionary.

OUTPUT ddnane specifies the logical file name of the output dataset. It must be
unique within the data dictionary.

10

11

12

13

14

15

16

3 Member Types

If aRECORD subordinate clause is present in either of the INPUT or OUTPUT
clauses, aRECORD subordinate clause must be present in both. Thelength specified
in the RECORD clause for the output dataset must be equal to or greater than the
length specified in the RECORD clause for the input dataset.

The DEVICE clause specifies the physical storage device for these datasets. The
MODEL clauseis subordinate to the DEVICE clause and must not be present unless
deviceis 2305 or 3330, in which case, the MODEL clause is optional.

The CONTAINS clause must be present if the definition of the database isto be
complete. It must follow the DATASETS clause if both clauses are present.

The CONTAINS clause for aSIMPLE RSAM database states the name of the one
segment that resides in the database.

The CONTAINS clause for aHSAM database lists the names of from 1 to 255
segments that reside in the database. The segments must be listed in hierarchical
sequence, that is from top to bottom and left to right.

The PARENT clausesidentify the physical parents of the segment where the names
arelisted in the CONTAINS clause. A PARENT clause must not be present for the
first name listed (that of the root segment) but must follow each of the other names
listed in the CONTAINS clause.

Common clauses can be present in any type of data definition statement; therefore,
they are defined separately in the ASG-Manager Products Dictionary/Repository
User's Guide. Not more than one of each of these clauses can be declared. If a
common clause has a subordinate clause or keyword, the subordinate clause
identifier or subordinate keyword must not be truncated to an extent where it
becomes ambiguous with any other clause identifier or other keyword available in
the data definition syntax for this member type.

The common clauses can be declared in any order. If present, they must follow the
ACCESS, DATASETS, and CONTAINS clauses, if these are present.

A record containing the database's data definition statement can be inserted into the
datadictionary's source dataset by a suitable command (see the ASG-Manager
Products Dictionary/Repository User's Guide), and an encoded record can
subsequently be generated and inserted into the data entries dataset.

77

ASG-DataManager IMS (DL/l) Interface

78

When the encoded record is generated, a data entries record of a special internal
type, aDL/I-DATASET member, is created for each ddname that appears in the
database's data definition. The DL/I-DATASET internal member is given a user
table entry for each segment that constitutes the dataset defined by the member. The
DL/I-DATASET internal member can be referred to by other members; for
example, it could be used in the INPUTS clause of a PROGRAM data definition.
DL/I-DATASET members can aso be interrogated (see "Interrogation Syntax" on

page 154).

If, when the encoded record is generated, any segment where the name appearsin
the database's data definition statement has no data entries record, a dummy data
entries record is created for that member as a dummy segment record.

17 When an encoded database member is deleted, any DL/I-DATASET member
created for it, which is not referred to by other members, is also deleted, together
with any references that the DL/I-DATASET member made to segments. Any
DL/I-DATASET member that isreferred to by other membersis a dummy member
rather than being deleted.

18 From IMSversion 4 onwards, the DEVICE and MODEL clauses are purely
documentational. This means that DEVICE and MODEL clauses are not generated
by PRODUCE IMS VERSION 4/4.1 DBDGEN. For further information on
PRODUCE IMS, see Chapter 5, "IMS (DL/I) Source L anguage Generation," on

page 175.

Example

A possible hierarchical structure of segments constituting a personne database called
EMPLOY EE-DETAILS. A definition of aHSAM database implementing a structure
could be asfollows. In this example, meaningful segment names have been retained. The
abbreviated 8-character names required by IMS (DL/I) can be defined asIMS aliasesin
the ALIAS clauses of the members that constitute the database.

ADD EMPLOYEE- DETAI LS

| V5- DATABASE HSAM

ACCESS PASSWORD

DATASETS | NPUT EMPLI N RECORD 1024
OQUTPUT EMPLOUT RECCORD 1024
DEVI CE 3330 MODEL 1

CONTAI NS DEPARTMENT.
EVPLOYEE- NUMBER PARENT DEPARTMENT,
NAME PARENT EMPLOYEE- NUMBER.
ADDRESS PARENT EMPLOYEE- NUMBER,
JOB- STATUS PARENT EMPLOYEE- NUMBER.
SALARY PARENT JOB- STATUS.
TAXCODE PARENT SALARY.
DEDUCTI ON- TABLE- REF PARENT SALARY.
SCCI AL- SECURI TY- NUMBER PARENT SALARY.
JOB- TI TLE PARENT JOB- STAThS

3 Member Types

The Member Type for a HISAM Type IMS (DL/I) Database

Syntax
> | M5- DATABASE——— HSAM >
DL/ | - DATABASE L sivpe !
DL/ 1- DATABASE
DLI - DATABASE
DL1- DATABASE
> >

I—ACCESS | SAM
E | E—

PASSWORD

> >

I—Cl-lAN(ID DATA- CAPTURE- FACI LI TY cdcf-options J
) o >

l— DATASETS dat aset s-detail s

<LK, <<LLLL
contai ns-options |

> >

I—com'rnn- cl auses J
) o ; > <

]
where:
cdcf-options are

<KL, LKL
EXI T- LI ST——nodul e-1i st >
E LOG ONL;:,—' 0g-opti ons] \—DATABASE- VERSI ON db- ver si on J
NO EXI T
where:
nmodul e-li st is
» »—nodul e- nanme >
I— kpd- opti ons J ‘: CASCADE kdp-options —]
NO CASCADE

where:

nodul e- nane isthe name of aMODULE or PROGRAM member.

kpd- opti ons are:

79

ASG-DataManager IMS (DL/I) Interface

80

\

" |: KEY —— |: PATH—— t DATA——
NO- KEY—] NO- PATH — NO- DATA
db- ver si on isadelimited string of up to 255 characters.

| og- opti ons are:

\

P
I— kpd- opti ons J |: CASCADE kdp-options —]
NO CASCADE

where:

kpd- opti ons are:

\

>
|: KEY ——— |: PATH——— |: DATA ——|
NO- KEY— NO- PATH - NO- DATA -

dat aset s-detai |l s are:

»— PRI ME ddnane >
i: EIL_JSIEERC(S)iUQL J I_RECCRD | ength
»— OVERFLOW ddnane >
i: SbSISERCSiurz”e J _RECO?D I ength
»—DEVI CE device >
\— MODEL nodel J
where:

ddnarre is 1 to 8 alphanumeric characters, being the logical name used in the job control
to identify the database dataset.

count isan unsigned, nonzero integer, being the number of logical records per physical
block.

si ze isan unsigned, nonzero integer, being the number of bytes required per physical
block or control interval.

| engt h isan unsigned nonzero integer, being the maximum length (in bytes) of alogical
record. If VSAM isthe operating system access method, length must be an even value.

3 Member Types

devi ce isone of the keywords or numbers from the list:

DRUM 2311 3310 3350 3390
CELL 2314 3330 3370
2301 2319 3340 3375
2305 2321 3344 3380

From IMS version 4 onwards, this clause is purely documentational .

nodel isaninteger, 1 or 2if deviceis 2305, or 1 or 11 if deviceis 3330. From IMS
version 4 onwards, this clause is purely documentational .

cont ai ns-detai |l s are:

\

I—CCNTAI NS segment

<LLLLLLLLKLL, LLLL L
segment PARENT segnment — |

where:
segment isthe name of aphysical segment.

conmmon- ¢l auses are as defined in the ASG-Manager Products Dictionary/Repository
User's Guide.

Remarks

1 TheHISAM keyword must immediately follow the member type identifier to
indicate that aHISAM database is being defined.

2 Thekeyword SIMPLE specifies that the database being defined isa SIMPLE
HISAM database. If present, it must immediately follow the keyword HISAM.

3 The ACCESS clause can be omitted, but, if it ispresent, it must immediately follow
the HISAM SIMPLE keyword(s).

4 If the ACCESS clauseisomitted, or if neither of the operating system access method

keywords ISAM or VSAM is present in the ACCESS clause, then VSAM is
assumed.

81

ASG-DataManager IMS (DL/l) Interface

82

10

11

12

The operating system access method must be VSAM if any of the following
conditions apply:

. The database isa SIMPLE HISAM database.

. Any segment residing in this database participates in a secondary index
relationship; that is, the database being defined isto be indexed by a
secondary index.

. Any segment residing in this database has EDIT-COMPRESSION-EXIT
specified in its data definition.

. Any segment residing in this database is a variable length segment.

. Thetarget environment is IMS/ESA Version 3 onwards.
If none of these conditions apply, then either VSAM or ISAM can be specified.

The keyword PASSWORD specifies that the database name is to be used when
opening any dataset in this database. It is not accepted if the ISAM access method is
specified.

The DATASETS clause defines a dataset group within this database. It must be
present if the definition of the database isto be complete. If VSAM isthe operating
system access method, only one dataset group can be specified. If ISAM isthe
operating system access method, the database can be divided into up to 10 dataset
groups, provided that it is not indexed by a secondary index.

Each DATASETS clause isfollowed by a CONTAINS clause listing the segments
that constitute the dataset group. The DATASETS clauses must be entered in the
correct sequence to enabl e the segments residing in the database to be specified in
hierarchical sequence generated and inserted into the data entries dataset.

Thefirst DATASETS clause defines the primary dataset group; subsequent
DATASETS clauses define the secondary dataset groups.

Within the DATASETS clause, the PRIME clause must always be specified. It
defines the prime dataset of the dataset group.

The OVERFLOW clause defines the overflow dataset of the dataset group. It must

not be entered for aSIMPLE HISAM database. For a HISAM database, it must be

entered unless the database contains only one segment type and the access method is
VSAM, inwhich caseit is optional.

Theddnamein the PRIME clause and the ddnamein the OVERFL OW clause, which
specify the logical file names of the respective datasets, must each be unique in the
datadictionary.

13

14

15

16

17

18

19

3 Member Types

If an OVERFLOW clause and a PRIME clause are both present:

. If aBLOCK subordinate clauseis present in either, aBLOCK subordinate
clause must be present in both; in which case, if an associated RECORD
subordinate clause is present in either, a RECORD clause must be present in
both.

. If aBUFFER subordinate clause is present in either, a BUFFER subordinate
clause must be present in both.

The RECORD length specified for the OVERFLOW clause must be equal to or
greater than the RECORD length specified for the PRIME clause, if both are
specified.

The RECORD length specified for aSIMPLE HISAM database must be equal to the
length of the contained segment.

If the database uses the VSAM access method:

. The control interval size, specified either by the BUFFER size or by the
product of the BLOCK count and the RECORD length, must not exceed
30720 if the control interval sizeis specified by BUFFER size.

. If sizeislessthan 8192 and is not amultiple of 512, on encoding it is rounded
up to the next multiple of 512.

. If sizeisgreater than 8192 and is not amultiple of 2048, on encoding it is
rounded up to the next multiple of 2048.

. If the control interval sizeis specified by the product of the BLOCK count
and the RECORD length, no rounding is performed, but on encoding warning
messages are output if:

— Theproduct isless than 8192 and is not a multiple of 512
— Theproduct is greater than 8192 and is not a multiple of 2048

The DEVICE clause specifiesthe physical storage device for the dataset group. The
MODEL clauseis subordinate to the DEVICE clause and must not be present unless
deviceis 2305 or 3330, in which case the MODEL clauseis optional.

The CONTAINS clauses list the segments that reside in the database. For the
definition of the database to be complete, the CONTAINS clauses must be present,
and each CONTAINS clause must immediately follow a DATASETS clause that
defines the dataset group in which the segments listed in that CONTAINS clause
reside.

A SIMPLE HISAM database can only contain one segment. For aHISAM database,
1 to 255 different segments can be specified in total.

83

ASG-DataManager IMS (DL/l) Interface

20

21

22

23

24

25

A HISAM ISAM database can be divided into multiple dataset groups only at the
second level of the hierarchy. Therefore:

. In the CONTAINS clause associated with the first dataset group, the name of
the root segment must be the first physical-segment-name listed.

. In any CONTAINS clause relating to a secondary dataset group (that is, a
CONTAINS clause associated with any DATASETS clause except the first)
the first physical-segment-name listed must be the name of asegment that isa
second level dependent of the root segment.

Regardless of how many CONTAINS clauses are present, the segments must be
specified throughout the database definition in hierarchical sequence, that isfromtop
to bottom and left to right.

The PARENT clausesidentify the physical parents of the segments where the names
arelisted inthe CONTAINS clauses. A PARENT clause must not be present for the
root segment (the first physical-segment-name of the first dataset group) but must
follow each of the other names listed in the CONTAINS clauses.

Common clauses can be present in any type of data definition statement; therefore,
they are defined separately in the ASG-Manager Products Dictionary/Repository
User's Guide. Not more than one of each of these clauses can be declared. If a
common clause has a subordinate clause or keyword, the subordinate clause
identifier or subordinate keyword must not be truncated to an extent where it
becomes ambiguous with any other clause identifier or other keyword available in
the data definition syntax for this member type.

The common clauses can be declared in any order. If present, they must follow the
ACCESS, DATASETS, and CONTAINS clauses, if these are present.

A record containing the database's data definition statement can be inserted into the
data dictionary's source dataset by a suitable command (see the ASG-Manager
Products Dictionary/Repository User's Guide) and an encoded record can
subsequently be generated and inserted into the data entries dataset.

When the encoded record is generated, a data entries record of a specia internal
type, aDL/I-DATASET member, is created for each ddname that appearsin the
database's data definition. The DL/I-DATASET internal member is given a uses
table entry for each segment that constitutes the dataset defined by the member. The
DL/I-DATASET internal member can be referred to by other members; for
example, it could be used in the INPUTS clause of a PROGRAM data definition.
DL/I-DATASET members can aso be interrogated (see "Interrogation Syntax" on

page 154).

If, when the encoded record is generated, any segment where the name appearsin
the database's data definition statement has no data entries record, a dummy data
entries record is created for that member as a dummy segment record.

3 Member Types

26 When an encoded database member is deleted, any DL/I-DATASET member
created for it, which is not referred to by other members, is also deleted, together
with any references that the DL/I-DATASET member made to segments. Any
DL/I-DATASET member that isreferred to by other membersis madeinto adummy
member rather than being deleted.

27 From IMSversion 4 onwards, the DEVICE and MODEL clauses are purely
documentational. This means that DEVICE and MODEL clauses are not generated
by PRODUCE IMS VERSION 4/4.1 DBDGEN. For further information on
PRODUCE IMS, see Chapter 5, "IMS (DL/I) Source L anguage Generation," on

page 175.

Examples

These exampl es of data definition statements for HISAM databases rel ate to the
hierarchical structure of segments listed in"The Member Type for aHSAM Type IMS
(DL/1) Database" on page 75. In these examples, meaningful segment names have been
retained. The abbreviated 8-character names required by IMS (DL/I) can be defined as
IMS aliasesin the ALIAS clauses of the members that constitute the database.

The first example illustrates the specification of the database with the VSAM access
method, and with all of the segments contained in one dataset group. The database could
be defined thus:

ADD EMPLOYEE- DETAI LS:

| M5- DATABASE HI SAM

ACCESS VSAM PASSWORD

DATASETS PRI ME EMPLP BUFFER 2048
OVERFLOW EMPLO BUFFER 4096
DEVI CE 3330 MODEL 1

CONTAI NS DEPARTMENT.
EMPLOYEE- NUMBER PARENT DEPARTMENT,
NAME PARENT EMPLOYEE- NUMBER.
ADDRESS PARENT EMPLOYEE- NUMBER.
JOB- STATUS PARENT EMPLOYEE- NUMBER,
SALARY PARENT JOB- STATUS.
TAXCODE PARENT SALARY.
DEDUCTI ON- TABLE- REF PARENT SALARY.
SOCI AL- SECURI TY- NUMBER PARENT SALARY.
JOB- TI TLE PARENT JOB- STATUS

85

ASG-DataManager IMS (DL/I) Interface

The second exampleillustrates the specification of the database with the ISAM access
method, the root segment contained in the primary dataset group, and the remaining
segments contained in a secondary dataset group. The database could be defined thus:

ADD EMPLOYEE- DETAI LS;
| V5- DATABASE HI SAM
ACCESS VSAM
DATASETS PRI ME EMPLP1 BLOCK 1 RECORD 1024
OVERFLOW EMPLA BLOCK 1 RECORD 1024
DEVI CE DEPARTMENT
CONTAI NS DEPARTMENT
DATASETS PRI ME EMPLP2 BLOCK 4 RECORD 256
OVERFLOW EMPLG2 BLOCK 8 RECORD 512
DEVI CE 3330 MODEL 11
CONTAI NS EMPLOYEE- NUMBER PARENT DEPARTMENT,
NAME PARENT EMPLOYEE- NUMBER,
ADDRESS PARENT EMPLOYEE- NUMBER,
JOB- STATUS PARENT EMPLOYEE- NUMBER,
SALARY PARENT JOB- STATUS,
DEDUCTI ON- TABLE- REF PARENT SALARY,
SOCI AL- SECURI TY- NUMBER PARENT SALARY,
JOB- TI TLE PARENT JOB- STATUS

The Member Type for a HDAM Type IMS (DL/I) Database

86

Syntax

> | M5- DATABASE ———————————HDAM >
DL/ | - DATABASE I— ACCESS access-details —I

DL/ 1- DATABASE
DLI - DATABASE
DL1- DATABASE

Y
\

I—CHAI\KED- DATA- CAPTURE- FACI LI TY cdcf-options _|

Y
\7

<LL L

DATASETS dset-details cont ai ns-opti ons
L ADD> 70 ddname —1

\

Y

I—com'rnn- cl auses J

> ']

3 Member Types

where:

access-detail s are:

OSAM >

>
E VSAM
[PASSWORD |
PASSWORD
RANDOM S| NG MODULE nodul e >
[RANDOM SI NG MODULE —

[ancrer Pai TS 0 I—RELATI VE- BLOCK- MAXI MUM naxi numJ

\

\

I—I NSERTI ON- BYTES- MAXI MUM byt es |

nodul e isthe name of aMODULE member.

n is an unsigned integer in the range 1 to 255, being the number of root anchor points
required in each control interval or block.

maxi mumis an unsigned integer in the range 1 to 16777215, being the maximum block
number to be produced by the randomizing module.

byt es isan unsigned integer in the range 1 to 16777215, being the maximum number of
bytes to be inserted into the root addressable area.

cdcf-options are

<<<LL K<<
EXI T- LI ST—— nodul e- | i st >

>
E LOG ONLY | og- opti ons J I—DATABASE- VERSI ON db- versi on —,
NO- EXI Tsj

nodul e-1i st is;

»—— nodul e- nane >
L «pd-options CASCADE kdp-opt i ons__|
NO- CASCADE
nodul e- nane isthe name of aMODULE or PROGRAM member.
kps- opti ons are:

>
\: KEY —— \: PATH—— |: DATA———
NO- KEY— NO- PATH - NO- DATA -

87

ASG-DataManager IMS (DL/I) Interface

88

dset s-detai |l are

»—— PRI ME ddnane DEVI CE devi ce >
i: BLOCK si zei'
BUFFER si ze

> >
I_MJDEL nodel —I I_SCAN cyl i nders —|

> >
I— FREQUENCY- FREE- BLOCKS f requency_|

> >
I_ PERCENTACE- FREE- SPACE per cent J

> >

I— SPACE- SEARCH- ALGORI THM al gori t hm_|

ddnarre is 1 to 8 alphanumeric characters, being the logical name used in the job control

to identify the physical file.

si ze isthe number of bytes required per physical block or control interval.
devi ce isone of the keywords or numbers from the list:
DRUM2311331033503390

CEL L 231433303370

2301 231933403375

2305 232133443380

From IMS version 4 onwards, this clause is purely documentational .

nodel isaninteger, 1 or 2if deviceis 2305, or 1 or 11 if deviceis 3330. From IMS
version 4 onwards, this clause is purely documentational .

cyl i nder s isan unsigned integer in the range 0 to 255.

f requency isan unsigned integer in the range 2 to 100, or is 0.
per cent isan unsigned integer in the range 0 to 99.

al gori t hmisan unsigned integer in therange 0 to 2.

cont ai ns- opti ons are:

\/

I—CO\ITAI NS segment

<LLLLLLLLKLL, LLLL L
segment PARENT segment — |

segment isthe name of aphysical segment.

3 Member Types

conmmon- ¢l auses are as defined in the ASG-Manager Products Dictionary/Repository
User's Guide.

Remarks

1

The HDAM keyword must immediately follow the member type identifier to
indicate that aHDAM database is being defined.

The ACCESS clause must be specified if the definition of the database isto be
complete. If present, it must immediately follow the HDAM keyword.

If neither of the operating system access method keywords OSAM or VSAM is
present in the ACCESS clause, VSAM is assumed.

The operating system access method must be VSAM if any of the following
conditions apply:

. Any segment residing in the database participates in a secondary index
relationship; that is, the database being defined isindexed by a secondary
index.

. Any segment residing in this database has EDIT-COMPRESSION-EXIT
specified in its data definition.

. Any segment residing in this database is a variable length segment.

The keyword PASSWORD specifies that the database name is to be used when
opening any dataset in this database. It is not accepted if the OSAM access method
is specified.

The RANDOMIZING-MODULE (or RANDOMISING-MODULE) clause
specifies the user-supplied randomizing module that is used to store and access the
segmentsin this database.

The optional clauses ANCHOR-POINTS, RELATIVE-BLOCK-MAXIMUM, and
INSERTION-BY TES-MAXIMUM specify the maximum values for the operands
that are required when accessing the root addressable area of the HDAM database.

The DATASETS clause defines a dataset group within this database. It must be
present if the definition of the database is to be complete. The database can be
divided into up to 10 dataset groups.

Each DATASETS clauseisfollowed by a CONTAINS clause listing the segments
that constitute the dataset group. The DATASETS clauses must be entered in the
correct sequence to enable the segments residing in the database to be specified in
hierarchical sequence.

89

ASG-DataManager IMS (DL/l) Interface

90

10

11

12

13

14

15

16

17

18

Thefirst DATASETS clause defines the primary dataset group—those subsequent
DATASETS clauses that contain PRIME clauses define the secondary dataset
groups.

A HDAM database can be divided into multiple dataset groups at any level of the
hierarchy; however, aphysical parent segment and its physical child segments must
be connected by physical child/physical twin pointers when they are placed in
different dataset groups.

The purpose of the DATASETS clauses containing ADD-TO clausesisto enable
segmentsto be placed in dataset groups according to their size or frequency of access
rather than according to their hierarchical position in the data structure, while still
maintaining the hierarchical sequence of specification of the segments (see

remark 24 on page 91).

A DATASETS clause containing a PRIME clause must be present for each dataset
group specified. It defines the prime dataset of the dataset group.

The ddname in each PRIME clause must be unique in the data dictionary.

If the database uses the VSAM access method:

. The control interval size, specified either by the BUFFER size or by the
BLOCK size, should not exceed 30720.

. If the control interval sizeis specified by BUFFER size, then:

— If sizeislessthan 8192 and is not amultiple of 512, on encoding itis
rounded up to the next multiple of 512.

— If sizeisgreater than 8192 and is not a multiple of 2048, on encoding it
is rounded up to the next multiple of 2048.

. If the control interval sizeis specified by the BLOCK size, ho rounding is
performed and no messages are output. Thisis because the IMS BLOCK
operand in this context specifies the control interval size without overheads;
therefore, the total control interval size cannot be validated.

The DEVICE clause specifiesthe physical storage device for the dataset group. The
MODEL clauseis subordinate to the DEVICE clause and must not be present unless
deviceis 2305 or 3330, in which case the MODEL clauseis optional.

The SCAN clause specifies the number of cylinders to be scanned when searching
for available storage space. If the SCAN clause is omitted, a default of three
cylindersis assumed.

The FREQUENCY -FREE-BLOCKS clause specifies that, where frequency = every
nth control interval or block in this dataset group is to be left as free space during
database load or reorganization.

19

20

21

22

23

24

25

26

27

28

3 Member Types

The PERCENTAGE-FREE-SPA CE clause specifies the minimum percentage of
each control interval or block that is to be left as free space in this dataset group
during database load or reorganization.

The ADD-TO clause indicates that the segments specified in the following
CONTAINS clause are to be placed in a dataset group that has been defined in a
previous DATASETS clause containing a PRIME clause with the same ddname as
is specified in the ADD-TO clause.

When the Source Language Generation Facility produces DBD control statements
for the HDAM database, labels are created to connect the DATASET statements by
using the ddname.

The CONTAINS clauses list the segments that reside in the database. For the
definition of the database to be complete, the CONTAINS clauses must be present,
and each CONTAINS clause must immediately follow aDATASETS clause
(containing either a PRIME clause or an ADD-TO clause) that defines the dataset
group in which the segments listed in that CONTAINS clause reside.

Oneto 255 different segments can be specified in total for the database.

Regardless of how many CONTAINS clauses are entered, the segments must be
specified throughout the database definition in hierarchical sequence; that is, from
top to bottom and | eft to right.

Thefirst physical-segment-name listed in the first CONTAINS clause must be the
name of theroot segment. Each of the subsequent CONTAINS clauses can have the
name of asegment at any level of the hierarchy asits first physical-segment-name.

The PARENT clausesidentify the physical parents of the segmentswhose namesare
listedinthe CONTAINS clauses. A PARENT clause must not be present for the root
segment (thefirst physical-segment-name of thefirst dataset group) but must follow
each of the other names listed in the CONTAINS clauses.

Common clauses can be present in any type of data definition statement; therefore,
they are defined separately, in the ASG-Manager Products Dictionary/Repository
User's Guide. Not more than one of each of these clauses can be declared. If a
common clause has a subordinate clause or keyword, the subordinate clause
identifier or subordinate keyword must not be truncated to an extent where it
becomes ambiguous with any other clause identifier or other keyword available in
the data definition syntax for this member type.

The common clauses can be declared in any order. If present, they must follow any
ACCESS, DATASETS, and CONTAINS clauses.

91

ASG-DataManager IMS (DL/l) Interface

92

29

30

31

32

A record containing the database's data definition statement can be inserted into the
datadictionary's source dataset by a suitable command (see the ASG-Manager
Products Dictionary/Repository User's Guide), and an encoded record can
subsequently be generated and inserted into the data entries dataset. When the
encoded record is generated, a data entries record of aspecial internal type, a
DL/I-DATASET member, is created for each ddname that appears in the database's
datadefinition. The DL/I-DATASET internal member is given auser table entry for
each segment that constitutes the dataset defined by the member. The
DL/I-DATASET internal member can bereferred to by other members; for example,
it could be used in the INPUTS clause of a PROGRAM data definition.
DL/I-DATASET members can also be interrogated (see "Interrogation Syntax" on
page 154). If, when the encoded record is generated, any segment or module where
the name appears in the database's data definition statement has no data entries
record, adummy dataentriesrecord for that member is created, asadummy segment
record or adummy module record respectively.

When an encoded database member is deleted, any DL/I-DATASET member
created for it that is not referred to by other membersis also deleted, together with
any references that the DL/I-DATASET member made to segments. Any
DL/I-DATASET member that isreferred to by other membersismadeinto adummy
member rather than being deleted.

The SPACE-SEARCH-ALGORITHM clause specifies the selection of aHD free
gpace search agorithm. Thisdoesnot apply to IMS/V Sreleasesprior to IMS/VS 2.2
and should only be specified when IMS/VS 2.2 or subsequent releases areinstalled.
Values may be setto 1l or 2:

. If 1, IMS should not look for the second most desirable block. Thisis as per
the processing prior to IMS/VS 2.2.

. If 2, the second most desirable block should be searched for free space. This
optionisnew to IMSIVS 2.2.

The IMS default value if SEARCHA is omitted is specified at IMS SY SGEN time.

From IMS version 4 onwards, the DEVICE and MODEL clauses are purely
documentational. This means that DEVICE and MODEL clauses are not generated
by PRODUCE IMS VERSION 4/4.1 DBDGEN. For further information on
PRODUCE IMS, see Chapter 5, "IMS (DL/I) Source L anguage Generation," on

page 175.

Examples

The two following examples of data definition statements for HDAM databases relate to
the hierarchical structure of segmentsillustrated in"The Member Typefor aHSAM Type
IMS (DL/I) Database" on page 75. In these examples, meaningful segment names have

been retained. The abbreviated 8-character names required by IMS (DL/1) can be defined
asIMSaliasesin the ALIAS clauses of the members that constitute the database.

3 Member Types

The first example illustrates the specification of the database with the VSAM access
method, and with all of the segments contained in one dataset group. The example
includes a number of the optional keywords. The database could be defined thus:

ADD EMPLOYEE- DETAI LS;
| V5- DATABASE HDAM
ACCESS VSAM PASSWORD RANDOM SI NG- MODULE RANDMOD
ANCHCOR- PO NTS 10
RELATI VE- BLOCK- MAXI MUM 25600
I NSERTI ON- BYTES- MAXI MUM 512
DATASET PRI ME EMPL BUFFER 2048
DEVI CE 3330 MODEL 11
SCAN 5
FREQUENCY- FREE- BLOCKS 10
PERCENTAGE- FREE- SPACE 10
CONTAI NS DEPARTMENT,
EMPLOYEE- NUVMBER PARENT DEPARTMENT,
NAME PARENT EMPLOYEE- NUMBER,
ADDRESS PARENT EMPLOYEE- NUMBER,
JOB- STATUS PARENT EMPLOYEE- NUMBER,
SALARY PARENT JOB- STATUS,
TAXCODE PARENT SALARY,
DEDUCTI ON- TABLE- REF PARENT SALARY,
SOCI AL- SECURI TY- NUMBER PARENT SALARY,
JOB- TI TLE PARENT JOB- STATUS

The second exampleillustrates the specification of the database with the OSAM access
method, and with:

. The segments DEPARTMENT, EMPLOY EE-NUMBER, TAXCODE,
DEDUCTION-TABLE-REF, and SOCIAL-SECURITY-NUMBER in the primary
dataset group

. The segments NAME and ADDRESS in a secondary dataset group

. The segments JOB-STATUS, SALARY, and JOB-TITLE in another secondary
dataset group.

93

ASG-DataManager IMS (DL/I) Interface

The database could be defined thus:

ADD EMPLOYEE- DETAI LS;
| V5- DATABASE HDAM
ACCESS OSAM RANDOM S| NG- MODULE RANDMOD
DATASET PRI ME EMPL1 BLOCK 2048
DEVI CE 3340
CONTAI NS DEPARTIMENT,
EVPLOYEE- NUMBER PARENT DEPARTMENT
DATASET PRI ME EMPL2 BLOCK 1024
DEVI CE 3340
CONTAI' NS NAMVE PARENT EMPLOYEE- NUMBER,
ADDRESS PARENT EMPLOYEE- NUMBER
DATASET PRI ME EMPL3 BLOCK 1024
DEVI CE 3340
CONTAI NS JOB- STATUS PARENT EMPLOYEE- NUMBER,
SALARY PARENT JOB- STATUS
DATASET ADD- TO EMPL1
CONTAI NS TAXCCDE PARENT SALARY,
DEDUCT! ON- TABLE- REF PARENT SALARY,
SCCI AL- SECURI TY- NUMBER PARENT SALARY
DATASET ADD- TO EMPL3
CONTAI NS JOB- TI TLE PARENT JOB- STATUS

The Member Type for a HIDAM Type IMS (DL/I) Database
Syntax

> | M5- DATABASE——————————HSAM

DL/ | - DATABASE
DL/ 1- DATABASE
DLI - DATABASE
DL1- DATABASE

\

\

[Access , |
I—CBAMj |_INDEXindex-detailsJ

L vsam

\

\

I—CHAI\KED- DATA- CAPTURE- FACI LI TY cdcf-options J

Y

\

I—DATASEFS I NDEX i - options J

>
<LLLLLLLLL L L L L L L L L L L L L

DATASETS dsel_detar| Tai T
set-details contai ns-opti ons—!
ADD- TO ddname —

\

\

I—commn- cl auses J

94

3 Member Types

> — > <

wherei ndex-det ai | s are;

> | SAM >

VSAM
| bos cowatiele—l | passvero|

DOS- COVPATI BLE

_ PASSWORD—

PASSWORD
I— DOS- COVPATI BLE—
> >
I—DATABASE dat abase_l I—SEGIVENT segmantJ
> >
I—SEQJENCE— KEY sequence- key J
where:

dat abase is 1 to 8 alphanumeric characters, being the IMS name of the primary index
database associated with this HIDAM database.

segment is1to 8 alphanumeric characters, being the IMS name of the primary index
segment associated with thisHIDAM database.

sequence- key is 1 to 8 aphanumeric characters, being the IMS sequence key name of
the primary index database associated with this HIDAM database.

cdcf-options are

<<<L <<<<

> EXI T- LI ST—— nodul e- | i st >

E LOG ONLY | og- opti ons J I—DATABASE- VERSI ON db- versi on —,

NO- EXI Tsj
where:
nodul e-1i st is;
»— nodul e- nane >
kpd. opt i ons J CASCADE kdp- Opt i OnSJ

NO- CASCADE

where:

nodul e- namne isthe name of aMODULE or PROGRAM member.

95

ASG-DataManager IMS (DL/I) Interface

96

kpd- opti ons are:

> >

\: KEY ——| \: PATH—— i: DATA——

NO- KEY—! NO- PATH NO- DATA
db- ver si on isadelimited string of up to 255 characters.
| og- opti ons are:
> >
_ kpd. opt i ons _I CASCADE kdp- opt i OnSJ
NO- CASCADE

where:
kpd- opti ons are:
> >

\: KEY ——| \: PATH—— i: DATA——

NO- KEY—! NO- PATH NO- DATA
i -options are
»——— ddnane >
i: BLOCK si ze j
BUFFER si ze

> >

_ OVERFLOW ddnane _I i: BLOCK countj _ RECORD | engt h_‘

BUFFER si ze
»——— DEVI CE device >
I_ MODEL nodel J

where:

ddnarre is 1 to 8 alphanumeric characters, being the logical name used in the job control
to identify the physical file.

count, si ze, and | engt h are al unsigned nonzero integers.
si ze isan unsigned nonzero integer.

| engt h isan unsigned nonzero integer.

3 Member Types

devi ce isone of the keywords or numbers from the list:

DRUM 2311 3310
CELL 2314 3330
2301 2319 3340
2305 2321 3344

3350
3370
3375
3380

3390

From IMS version 4 onwards, this clause is purely documentational .

nodel isaninteger, 1 or 2if deviceis 2305, or 1 or 11 if deviceis 3330. From IMS
version 4 onwards, this clause is purely documentational .

dset-detail s are

»—— PRI ME ddname DEVI CE devi ce >
i: BLOCK si zei'
BUFFER si ze

> >
I_ MODEL nodel J I_SCAN cyl i nders —|

> >
I_ FREQUENCY- FREE- BLOCKS f requency_|

> >
I— PERCENTAGE- FREE- SPACE per cent _‘

> >
L SPACE- SEARCH- ALGORI THM al gori t hm_’

where:

ddnane, si ze, devi ce, and nodel are as defined above.

cyl i nder s isan unsigned integer in the range 0 to 255.

f requency isan unsigned integer in the range 2 to 100, or is 0.

per cent isan unsigned integer in the range 0 to 99.

al gori t hmisan unsigned integer in the range 0 to 2.

cont ai ns- opti ons are:

P
»~

\/

I—CO\ITAI NS segment

L

<LLLLLLLLKLL, <LLLLLL
segment PARENT segment |

97

ASG-DataManager IMS (DL/l) Interface

98

where:

segment isthe name of aphysical segment.

conmon- ¢l auses are as defined in the ASG-Manager Products Dictionary/Repository
User's Guide.

Remarks

1

In Manager Products, a primary index database is not handled as a separate data
dictionary member, but is considered to be part of its corresponding HIDAM
database. Consequently the definition of the primary index databaseisincluded in
the definition of the HIDAM database.

The name of the primary index database and the names of its segment and sequence
key can be specified:

. In the PRODUCE command, when DBD control statements for the primary
index database are generated by the Source Language Generation Facility.
These are generated automatically after DBD control statements for the
HIDAM database are generated. (See "Generating IMS (DL/I) DBD Control
Statements"' on page 176.)

. In the ACCESS clause of the HIDAM database definition.

If different names are specified for the same entity in the PRODUCE command and
the ACCESS clause, the name in the PRODUCE command is applied.

Names specified in the ACCESS clause do not result in the generation of dummy
members.

If neither the PRODUCE command nor the ACCESS clause contains aname for the
primary index database, the name of the HIDAM database with a suffix | isused as
the primary index database namewhen DBD control statementsare generated by the
Source Language Generation Facility.

If neither the PRODUCE command nor the ACCESS clause contains aname for the
segment of the primary index database, the name of the root segment of the HIDAM
database with a suffix | is used as the name of the segment of the primary index
database when DBD control statements are generated by the Source Language
Generation Facility.

If neither the PRODUCE command nor the ACCESS clause contains aname for the
sequence key of the primary index database, the name of the sequence key of the
HIDAM root segment with a suffix | is used as the name of the sequence key of the
primary index database when DBD control statements are generated by the Source
Language Generation Facility.

10

11

12

13

14

15

16

17

3 Member Types

The HIDAM keyword must immediately follow the member type identifier to
indicate that aHIDAM database is being defined.

The ACCESS clause can be omitted; but, if it is present, it must immediately follow
the HIDAM keyword.

If the ACCESS clauseisomitted, or if neither of the operating system access method
keywords OSAM or VSAM is present in the ACCESS clause, the VSAM operating
system access method is assumed for the HIDAM database.

The operating system access method for the HIDAM database must be VSAM if:

. Any segment residing in this database has EDIT-COMPRESSION-EXIT
specified in its data definition.

. Any segment residing in this database is a variable length segment.

The INDEX subclause in the ACCESS clause specifies the operating system access
method for, and/or the names to be applied to, the primary index database (see
remark 1 on page 98 through remark 6 on page 98). If the clauseis not present, or if
neither of the operating system access method keywords ISAM or VSAM is present
intheclause, VSAM isassumed for the primary index database. If both the keywords
DOS-COMPATIBLE and PASSWORD are present, they can bein either order; but,
neither of these keywords must precede the VSAM keyword, if that keyword isalso
present. The DATABASE, SEGMENT, and SEQUENCE-KEY clauses may, if
present, be in any order within the INDEX clause, but must not precede the VSAM
keyword, if that is present.

The DOS-COMPATIBLE keyword specifiesthat the INDEX database was created
using DL/1 -DOS. It is applicable only if VSAM isthe operating system access
method for the INDEX database.

The PASSWORD keyword may apply to the HIDAM database or to the primary
index database, or to both, and is applicable only if VSAM isthe operating system
access method specified for the database. PASSWORD indicates that the database's
name is to be used when opening any dataset in the database.

Each DATASETS clause defines a dataset group within the primary index database
or withinthe HIDAM database. These clauses must be present if the definition of the
databases isto be complete.

For the primary index database, only one dataset group can be defined.

The HIDAM database can be divided into one to 10 dataset groups.

The DATASETSclausethat definesthe dataset group for the primary index database
has no associated CONTAINS clause.

99

ASG-DataManager IMS (DL/l) Interface

100

18

19

20

21

22

23

24

25

Each DATASETS clause for the HIDAM database is immediately followed by a
CONTAINS clause listing the segments that constitute the dataset group. The
DATASETS clauses must be entered in the correct sequence to enable the segments
residing in the database to be specified in hierarchical sequence.

Thefirst DATASETS clause for the HIDAM database (that is, the first clause
containing the PRIME keyword) definesthe primary dataset group for that database;
those subsequent DATASETS clauses that contain PRIME clauses define the
secondary dataset groups.

A HIDAM database can be divided into multiple dataset groups at any level of the
hierarchy; however a physical parent segment and its physical child segments must
be connected by physical child/physical twin pointers when they are placed in
different dataset groups.

The purpose of the DATASETS clauses containing ADD-TO clausesisto enable
segmentsto be placed in dataset groups according to their size or frequency of access
rather than according to their hierarchical position in the data structure, while still
maintaining the hierarchical sequence of specification of the segments (see

remark 38 on page 102).

The INDEX ddname clause defines the prime dataset in the dataset group for the
primary index database. The ddname must be unique in the data dictionary.

The OVERFLOW ddname clause defines the overflow dataset in the dataset group
for the primary index database. The ddname must be unique in the data dictionary.

The OVERFLOW clauseis specified only if ISAM isthe operating system access

method for the primary index database.

If an OVERFLOW clause and a PRIME clause are both present then:

. If aBLOCK subordinate clauseis present in either, aBLOCK subordinate
clause must be present in both; in which case, if an associated RECORD
subordinate clause is present in either, a RECORD clause must be present in
both.

. If aBUFFER subordinate clause is present in either, a BUFFER subordinate
clause must be present in both.

The RECORD length specified for the OVERFLOW clause must be equal to or
greater than the RECORD length specified for the INDEX clause, if both are
specified.

26

27

28

29

30

3 Member Types

If the database uses the VSAM access method:

. The control interval size, specified either by the BUFFER size or by the
product of the BLOCK count and the RECORD length, must not exceed
30720.

. If the control interval sizeis specified by BUFFER size, then:

— If sizeislessthan 8192 and is not amultiple of 512, on encoding itis
rounded up to the next multiple of 512.

— If sizeisgreater than 8192 and is not a multiple of 2048, on encoding it
is rounded up to the next multiple of 2048.

. If the control interval sizeis specified by the product of the BLOCK count
and the RECORD length, no rounding is performed; but on encoding,
warning messages are output if:

— Theproduct is less than 8192 and is not a multiple of 512.

— Theproduct is greater than 8192 and is not a multiple of 2048.
Each DEVICE clause specifies the physical storage device for the dataset group
defined by its containing DATASETS clause. The MODEL clause is subordinate to

the DEVICE clause and must not be present unless device is 2305 or 3330, in which
case the MODEL clauseis optional.

A DATASETS clause containing a PRIME clause must be present for each dataset
group specified for the HIDAM database. It defines the prime dataset in the dataset

group.
The ddname in each PRIME clause must be unique in the data dictionary.

If the database uses the VSAM access method:

. The control interval size, specified either by the BUFFER size or by the
BLOCK size, should not exceed 30720.

. If the control interval sizeis specified by BUFFER size, then:

— If sizeislessthan 8192 and is not amultiple of 512, on encoding itis
rounded up to the next multiple of 512.

— If sizeisgreater than 8192 and is not a multiple of 2048, on encoding it
is rounded up to the next multiple of 2048.

. If the control interval sizeis specified by the BLOCK size, ho rounding is
performed and no messages are output. Thisis because the IMS BLOCK
operand in this context specifies the control interval size without overheads;
therefore, the total control interval size cannot be validated.

101

ASG-DataManager IMS (DL/l) Interface

102

31

32

33

34

35

36

37

38

39

40

The SCAN clause specifies the number of cylinders to be scanned when searching
for available storage space. If the SCAN clause is omitted, a default of three
cylindersis assumed.

FREQUENCY -FREE-BL OCK S specifiesthat, wherefrequency n, every nth control
interval or block in this dataset group isto be | eft as free space during database |oad
or reorganization.

PERCENTAGE-FREE-SPA CE specifies the minimum percentage of each control
interval or block that isto be left as free space in this dataset group during database
load or reorganization.

The ADD-TO clausein the DATASETS clause for the HIDAM database indicates
that the segments specified in the following CONTAINS clause are to be placed in
adataset group that has been defined in a previous DATASETS clause containing a
PRIME clause with the same ddname as is specified in the ADD-TO clause.

When the Source Language Generation Facility produces DBD control statements
for the HIDAM database, |abel s are created to connect the DATASET statements by
using the ddname.

The CONTAINS clauses list the segments that reside in the HIDAM database. For
the definition of the database to be complete, the CONTAINS clauses must be
present, and each CONTAINS clause must immediately follow the DATASETS
clause (containing either a PRIME clause or an ADD-TO clause) that specifies the
dataset group in which the segments listed in that CONTAINS clause reside.

Oneto 255 different segments can be specified in total for the HIDAM database.

Regardless of how many CONTAINS clauses are entered, the segments must be
specified throughout the database definition in hierarchical sequence; that is, from
top to bottom and | eft to right.

The first physical-segment-name listed in the first CONTAINS clause must be the
name of theroot segment. Each of the subsequent CONTAINS clauses can have the
name of asegment at any level of the hierarchy asitsfirst physical-segment-name.

The PARENT clausesidentify the physical parents of the segments where the names
arelisted inthe CONTAINS clauses. A PARENT clause must not be present for the
root segment, but must follow each of the other names listed in the CONTAINS
clauses.

41

42

43

44

3 Member Types

Common clauses can be present in any type of data definition statement; therefore,
they are defined separately, in the ASG-Manager Products Dictionary/Repository
User’s Guide. Not more than one of each of these clauses can be declared. If a
common clause has a subordinate clause or keyword, the subordinate clause
identifier or subordinate keyword must not be truncated to an extent where it
becomes ambiguous with any other clause identifier or other keyword available in
the data definition syntax for this member type.

The common clauses can be declared in any order. If present, they must follow the
ACCESS, DATASETS, and CONTAINS clauses, if these are present.

A record containing the database's data definition statement can be inserted into the
datadictionary's source dataset by a suitable command (see the ASG-Manager
Products Dictionary/Repository User’s Guide) and an encoded record can
subsequently be generated and inserted into the data entries dataset.

If, when the encoded record is generated, a data entries record of a special internal
type, aDL/I-DATASET member, is created for each ddname that appearsin the
database's data definition. The DL/I-DATASET internal member is given auser
table entry for each segment that constitutes the dataset defined by the member. The
DL/I-DATASET internal member can be referred to by other members; for
example, it could be used in the INPUTS clause of a PROGRAM data definition.
DL/I-DATASET members can also be interrogated (see "Interrogation Syntax" on

page 154).

If, when the encoded record is generated, any segment whose name appearsin the
database's data definition statement has no data entries record, adummy data entries
record is created as a dummy segment record for that member.

When an encoded database member is deleted, any DL/I-DATASET member
created for it that is not referred to by other membersis also deleted, together with
any references that the DL/I-DATASET member made to segments. Any
DL/I-DATASET member that isreferred to by other membersis madeinto adummy
member rather than being deleted.

103

ASG-DataManager IMS (DL/l) Interface

104

45

46

47

The SPACE- SEARCH-ALGORITHM clause specifies the selection of a HD free
space search algorithm. This does not apply to IMS/V S releases prior to MS/VS 2.2
and should only be specified when IMS/VS 2.2 or | ater releases areinstalled. Values
may besetto 1 or 2

. If 1, IMS should not look for the second most desirable block. Thisis as per
the processing prior to IMS/VS 2.2.

. If 2, the second most desirable block should be searched for free space. This
optionisnew to IMS/VS 2.2.

ThelMS default value, if SEARCHA isomitted, is specified at IMS SY SGEN time.
Inthe INDEX clause:

. Count is the number of logical records per physical block.
. Size isthe number of bytes required per physical block or control interval.

. Length is the maximum length (in bytes) of alogical record. If VSAM isthe
operating system access method, length must be an even value.

From IMS version 4 onwards, the DEVICE and MODEL clauses are purely
documentational. This means that DEVICE and MODEL clauses are not generated
by PRODUCE IMS VERSION 4/4.1 DBDGEN. For further information on
PRODUCE IMS, see Chapter 5, "IMS (DL/I) Source L anguage Generation," on

page 175.

Examples

These two examples of data definition statements for HIDAM database relate to the
hierarchical structure of segmentsillustrated in "The Member Type for aHSAM Type
IMS (DL/I) Database" on page 75. In these examples, meaningful segment names have

been retained. The abbreviated 8-character names required by IMS (DL/1) can be defined
as|IMSadiasesin the ALIAS clauses of the members that constitute the database.

3 Member Types

The first example illustrates the specification of the VSAM access method for both the
HIDAM database and its primary index database. The keywords DOS-COMPATIBLE
and PASSWORD, which are included, are applicable to the primary index database. The
first DATASETS clause defines the dataset group for the primary index database. The
segments congtituting the HIDAM database are all contained in one primary dataset
group (defined by the second DATASETS clause with its associated CONTAINS
clause).

ADD EMPLOYEE- DETAI LS;
| V5- DATABASE HI DAM
ACCESS VSAM | NDEX VSAM DOS- COVPATI BLE PASSWORD
DATASETS | NDEX EMPLI BUFFER 1024
DEVI CE 3330 MODEL 1
DATASETS PRI ME EMPL BUFFER 2048
DEVI CE 3330 MODEL 1
SCAN 5
FREQUENCY- FREE- BLOCKS 10
PERCENTAGE- FREE- SPACE 10
CONTAI NS DEPARTMENT,
EVPLOYEE- NUMBER PARENT DEPARTMENT,
NAME PARENT EMPLOYEE- NUMBER,
ADDRESS PARENT EMPLOYEE- NUMBER,
JOB- STATUS PARENT EMPLOYEE- NUMBER,
SALARY PARENT JOB- STATUS,
TAXCODE PARENT SALARY,
DEDUCTI ON- TABLE- REF PARENT SALARY,
SCCI AL- SECURI TY- NUMBER PARENT SALARY,
JOB- TI TLE PARENT JOB- STATUS

The second exampl e shows the specification of the OSAM access method for the
HIDAM database and the ISAM access method for its primary index database.

Again, thefirst DATASETS clause defines the dataset group for the primary index
database. The segments constituting the HIDAM database are divided into three dataset
groups. Thus:

. The segments DEPARTMENT, EMPLOY EE-NUMBER, TAXCODE,
DEDUCTION-TABLE-REF, and SOCIAL-SECURITY-NUMBER are contained
in the primary dataset group.

. The segments NAME and ADDRESS are contained in a secondary dataset group.

. The segments JOB-STATUS, SALARY, and JOB-TITLE are contained in another
secondary dataset group.

105

ASG-DataManager IMS (DL/I) Interface

The member could be specified asin this example:

ADD EMPLOYEE- DETAI LS;
| V5- DATABASE HI DAM
ACCESS OSAM | NDEX | SAM
DATASET | NDEX EMPLI1T BLOCK 2 RECORD 512
OVERFLOW EMPLI D BLOCK 4 RECORD 512
DEVI CE 3340
DATASET PRI ME EMPL1 BLOCK 2048
DEVI CE 3340
CONTAI NS DEPARTMENT,
EMPLOYEE- NUMBER PARENT DEPARTMENT
DATASET PRI ME EMPL2 BLOCK 1024
DEVI CE 3340
CONTAI NS NAMVE PARENT EMPLOYEE- NUMBER,
ADDRESS PARENT EMPLOYEE- NUMBER
DATASET PRI ME EMPL3 BLOCK 1024
DEVI CE 3340
CONTAI NS JOB- STATUS PARENT EMPLOYEE- NUMBER,
SALARY PARENT JOB- STATUS
DATASET ADD- TO EMPL1
CONTAI NS TAX- CODE PARENT SALARY,
DEDUCTI ON- TABLE- REF PARENT SALARY,
SCCI AL- SECURI TY- NUMBER PARENT SALARY
DATASET ADD- TO EMPL3
CONTAI NS JOB- TI TLE PARENT JOB- STATUS

The Member Type for a LOGICAL Type IMS (DL/l) Database

Syntax

> | M5- DATABASE LOG CAL >
DL/ | - DATABASE __|

DL/ 1- DATABASE —

DLI - DATABASE
DL1- DATABASE —
> >
I—CO\ITAI NS segment
<K<K, <KLKLKLKLKLKLLLL
s segnment PARENT segnent
> >
I—commn- cl auses J
> I > <

106

3 Member Types

where:

segment isthe name of alogical or physical segment.

conmon- ¢l auses are as defined in the ASG-Manager Products Dictionary/Repository
User's Guide.

Remarks

1

10

The keyword LOGICAL must immediately follow the member type identifier to
indicate that a LOGICAL database is being defined.

The CONTAINS clause must be present if the definition of the database isto be
complete. It lists the segments that reside in the LOGICAL database.

Oneto 255 different segments can be specified in total for the LOGICAL database.
They may be either logical segments and/or physical segments.

If alogical segment is specified in the CONTAINS clause of the LOGICAL
database, then when DBD control statements are generated, SEGM is a generated
statement with the NAME operand equal to the name of the logical segment, and the
SOURCE operand(s) equal to the name(s) of the physical segment(s) specified inthe
logical segment definition.

If aphysical segment is specified in the CONTAINS clause of the LOGICAL
database, then when DBD control statements are generated, a SEGM statement is
generated with both the NAME operand and the SOURCE operand equal to the
name of the physical segment.

The segments must be specified in hierarchical sequence; that is, from top to bottom
and left to right.

Thefirst segment-namelisted in the CONTAINS clause must be the name of the root
segment.

The PARENT clausesidentify the segmentsthat represent the physical parentsof the
segmentswhose namesarelisted inthe CONTAINS clause. A PARENT clause must
not be present for the root segment, but must follow each of the other names listed
in the CONTAINS clause.

The root segment specified must represent a segment that is the root segment in the
physical database in which it resides.

The hierarchy of dependent segments must be the same as the hierarchy of segments
that they represent, as defined for the physical database in which the segmentsreside.

107

ASG-DataManager IMS (DL/l) Interface

108

11

12

13

14

15

Logical segments that depend on the same parent segment may not represent the
same physical segment.

Logical concatenated segments can be specified to obtain access to destination
parentsin logical relationships.

If either of the following is specified:
. A physical segment that isalogical child segment

. A logical segment that containsin its data definition only one physical
segment, which isalogical child segment

then such segments, for the purpose of validation checks, are treated asif they were
logical concatenated segments. When DBD control statements are being generated
for such segments, Manager Products obtains the destination parent segment to
which the logical child segment is related, and a SEGM statement for alogical
concatenated segment is generated, with the KEY operand specified asthe
SOURCE operand for the destination parent. If RXLOGO1 is specified as YES by
the DGDBD macro, then this processing is not undertaken, so that a SEGM
statement is generated with a SOURCE operand for the logical child alone.

Specifying alogical concatenated segment also enables logical relationships to be
crossed; that is, access to the segments in the physical hierarchical path of the
destination parent (as specified in the definition of the physical database in which
that destination parent resides) can be obtained either in the downward or upward
direction. Thisis enabled by specifying the segments, which may be either the
physical segments themselves or the logical segments representing the physical
segments as dependents of the logical concatenated segment in the logical database.
That is, the physical or logical segments representing the physical child and the
physical parent, as specified in its physical database, can be specified as physical
dependents of the logical concatenated segment. (This does not apply if the physical
child segment is paired with the logical child in the concatenated segment.)

The hierarchy of the segmentsin the logical database must still be the same as the
hierarchy of the segments that they represent in the physical database, except that if
the hierarchical path in the upward direction is specified, the relative order of the
segmentsis reversed. If only one logical relationship has been crossed, dependent
segments of any of theinverted order segments can be included, but with their order
unchanged.

Although the dependent segments of a concatenated segment may be intermixed,
their left to right order, as defined in their respective physical databases, must be
maintained. This applies also to the dependents of nonconcatenated segments.

16

17

18

19

3 Member Types

Different logical concatenated segments can be specified as dependents of the same
logical segment. These concatenated segments can represent different variations of
the same physical segments. These variations are specified in the SEGMENT data
definitions of the logical concatenated segments by the presence or absence of the
KEY-ONLY clause for either of the physical segments represented. In such a
situation, only one of the concatenated segments can have dependent logical
segments, and this concatenated segment must be specified as the leftmost segment,
unlessRXLOGO02 isspecified as Y ES through the DGDBD macro, in which casethe
rule that this must be the leftmost is relaxed.

An application program can be sensitive to one only of the concatenated segments
that represent different variations of the same physical segments.

A physical target segment or alogical segment representing atarget segment cannot
be accessed through asecondary index if it isadependent of aconcatenated segment.

If the logical database contains either of these types of segment:

. A directly contained physical segment

. A logical segment that specifies a physical segment, but does not also specify
aphysical database in its data definition

then when the Source Language Generation Facility is used to produce DBD
control statements, the corresponding physical database is found in one of these
ways and its name is output in the SEGM statement:

. If the physical segment resides in only one physical database, then the name
of that physical database is output in the SEGM statement.

. If the physical segment resides in more than one physical database and also
represents the root segment of the logical of the logical database, then the
name of the first physical database that DataM anager encountersin the
physical segment's "used-by" table is output in the SEGM statement.

109

ASG-DataManager IMS (DL/l) Interface

110

20

21

22

. If the physical segment resides in more than one physical database and does
not represent the root segment in the logical database, then a physical
database is selected in one of these ways:

— If thephysical database named inthe preceding SEGM statement appears
anywhere in the used-by table of the physical segment currently being
processed, then the name of this physical databaseisoutput inthe SEGM
statement for the current segment also.

— If the previous SEGM statement was for a concatenated segment,
Manager Products first searches for the logical child's physical database
in the used-by table of the segment currently being processed, and if
found, the name of this physical database is output in the SEGM
Statement.

— If thelogical child's physical database cannot be found in the used-by
table, Manager Products searches for the destination parent's physical
database and, if found, outputs its name in the SEGM statement.

— If thephysical database(s) where the name(s) were output in the previous
SEGM statement cannot be found in the used-by table of the physical
segment currently being processed, then the name of the first physical
database encountered in the used-by tableis output in the SEGM
statement.

Common clauses are defined in the ASG-Manager Products Dictionary/Repository
User’s Guide. Not more than one of each of these clauses can be declared. If a
common clause has a subordinate clause or keyword, the subordinate clause
identifier or subordinate keyword must not be truncated to an extent where it
becomes ambiguous with any other clause identifier or other keyword available in
the data definition syntax for this member type.

The common clauses can be declared in any order. If present, they must follow the
CONTAINS clausg, if that clause is present.

A record containing the database's data definition statement can be inserted into the
datadictionary's source dataset by a suitable command (see the ASG-Manager
Products Dictionary/Repository User’s Guide), and an encoded record can
subsequently be generated and inserted into the data entries dataset. If, when the
encoded record is generated, any segment where the name appears in the database's
datadefinition has no data entries record, adummy data entriesrecord is created for
that member, as a dummy segment record.

3 Member Types

Example

The following example of a LOGICAL database member definition relatesto the
hierarchical structure of segmentsillustrated in "The Member Type for aHSAM Type
IMS (DL/I) Database" on page 75. In these examples meaningful segment names have
been retained. The abbreviated 8-character names required by IMS (DL/1) can be defined
asIMSaliasesin the ALIAS clauses of the members that constitute the database.

ADD EMPLOYEE- DETAI LS;

| V5- DATABASE LOG CAL

CONTAI NS DEPARTMENT,
EVPLOYEE- NUMBER PARENT DEPARTMENT,
NAME PARENT EMPLOYEE- NUMBER,
ADDRESS PARENT EMPLOYEE- NUMBER,
JOB- STATUS PARENT EMPLOYEE- NUMBER,
SALARY PARENT JOB- STATUS,
TAXCODE PARENT SALARY,
DEDUCTI ON- TABLE- REF PARENT SALARY,
SCCI AL- SECURI TY- NUMBER PARENT SALARY,
JOB- TI TLE PARENT JOB- STATUS

The Member Type for a SECONDARY-INDEX Type IMS (DL/l) Database
Syntax

> | MB- DATABASE——— | NDEX >
DL/ | - DATABASE L SECONDARY- | NDEX _|
DL/ 1- DATABASE
DLI - DATABASE
DL1- DATABASE

Y
\7

I—ACCESS acc-detai |l s DATASETS dsets-details I_cont |
SHARES- W TH i ndex- dat abase- nanme

HARI NG W TH :|

\

\

I—commn- cl auses J
> ;
]

m

ASG-DataManager IMS (DL/I) Interface

112

where:

acc-detail s are

Y
\/

L vsam_] |_pos cowatiBLE | passworo_l
> >
PROTECTED
NCPROTECTI ON ——
NOT- PROTECTED——

i ndex- dat abase- nane isthe name of another IMS(DL/1) SECONDARY -INDEX
database.

dsets-detail s are:

>» —PRI ME ddnane >
|: BLOCK si ze j‘
BUFFER si ze
»— OVERFLOW ddnane >
BLOCK count
i: BUFFER si ze J I_RECO?D I ength
»—DEVI CE devi ce >
I— MODEL nodel J
where:

ddnarre is 1 to 8 alphanumeric characters, being the logical name used in the job control
to identify the physical file.

count, si ze, and | engt h are al unsigned non-zero integers.

devi ce isone of the keywords or numbers from the list:

DRUM 2311 3310 3350 3390
CELL 2314 3330 3370
2301 2319 3340 3375
2305 2321 3344 3380

From IMS version 4 onwards, this clause is purely documentational .

nodel isaninteger, 1 or 2if deviceis 2305, or 1 or 11 if deviceis 3330. From IMS
version 4 onwards, this clause is purely documentational .

3 Member Types

cont is

\

I—CO\ITAI NS i ndex- poi nt er - segnent J

wherei ndex- poi nt er - segnent isan INDEX-POINTER-SEGMENT member.

conmon- ¢l auses are as defined in the ASG-Manager Products Dictionary/Repository
User's Guide.

Remarks

1 Oneof the keywords INDEX or SECONDARY -INDEX must immediately follow
the member type identifier to indicate that a secondary index type database is being
defined.

2 If the definition of the database is to be complete, one of the following must be
specified:

. A DATASETS clause, optionally preceded by an ACCESS clause
. A SHARES-WITH (or SHARING-WITH) clause

. A DATASETS clause and a SHARES-WITH (or SHARING-WITH) clause
must not both be present

3 If the ACCESS clause is present, it must immediately follow the INDEX or
SECONDARY-INDEX keyword.

4 The operating system access method isVSAM. This can be explicitly stated by a
VSAM keyword inthe ACCESS clausg, or, if the keyword isnot present, isassumed.

5 Thekeyword DOS-COMPATIBLE specifies that the database was created using
DL/I-DOS.

6 Thekeyword PASSWORD specifies that the database name isto be used when
opening any dataset in this database.

7 Thekeyword PROTECTED means that an application program is prevented from
replacing any of the fields in the index pointer segment, although delete operations
are till enabled. The keyword NOPROTECTION or NOT-PROTECTED means
that an application program can replace or delete all of thefieldsin theindex pointer
segment except the constant, search, and subsequent fields. If none of these
keywords are preset, PROTECTED is assumed.

8 TheDATASETS clausedefinesadataset group within the secondary index database.

Only one dataset group can be defined. The DATASETS clause must precede the
CONTAINS clause, if both these clauses are present.

113

ASG-DataManager IMS (DL/l) Interface

114

10

11

12

13

14

15

16

The PRIME clause specifies the prime dataset of the dataset group.

The OVERFLOW clause specifies the overflow dataset 0 the dataset group. This
clause must be specified if the index pointer segments contain nonunique keys.

Theddnameinthe PRIME clause and the ddnamein the OV ERFL OW clause, which
specify the logical file names of the respective datasets, must each be unique in the
datadictionary.

If an OVERFLOW clause and a PRIME clause are both present:

. If aBLOCK subordinate clauseis present in either aBLOCK subordinate
clause must be present in both; in which case, if an associated RECORD
subordinate clauseis present in either, a RECORD clause must be present in
both.

. If aBUFFER subordinate clause is present in either, a BUFFER subordinate
clause must be present in both.

The RECORD length specified for the OVERFLOW clause must be equal to or
greater than the RECORD length specified for the PRIME clause, if both are
specified.

The control interval size, specified either by the BUFFER size or by the product of
the BLOCK count and the RECORD length, must not exceed 30720.

If the control interval sizeis specified by BUFFER size, then:

. If sizeislessthan 8192 and is not amultiple of 512, on encoding it is rounded
up to the next multiple of 512.

. If sizeisgreater than 8192 and is not a multiple of 2048, on encoding it is
rounded up to the next multiple of 2048.

If the control interval sizeis specified by the product of the BLOCK count and the
RECORD length, no rounding is performed, but on encoding, warning messages
are output if:

. The product is less than 8192 and is not a multiple of 512.
. The product is greater than 8192 and is not a multiple of 2048.
The DEVICE clause specifiesthe physical storage device for the dataset group. The

MODEL clauseis subordinate to the DEVICE clause and must not be present unless
deviceis 2305 or 3330, in which case the MODEL clauseis optional.

The SHARES-WITH or SHARING-WITH clause, specified instead of the ACCESS
and DATASETS clauses, indicates that the secondary index resides in a shared
INDEX database.

17

18

19

20

21

22

23

3 Member Types

The index-database-name must be the same of a secondary index database that has
been defined using the DATASETS clause.

For secondary indexesto be combined into ashared INDEX database, the following
conditions must al be true:

. All of the contained index pointer segments must be of equal length.

. The key fields of each of the index pointer segments must be equal in length
with equal key offset positions.

. Each of the key fields must include a constant that uniquely identifiesits
index pointer segment.

A maximum of 16 secondary indexes can share the same secondary index database.
That is, amaximum of 15 INDEX database definitions may have the same
index-database-namein aSHARES-WITH or SHARING-WITH clauseintheir data
definitions.

The CONTAINS clause must be present if the definition of the database isto be
complete. If present, it must follow the DATASETS clause, the SHARES-WITH, or
SHARING-WITH clauseif either of those clauses are present. It specifiesthe index
pointer segment that is contained in the secondary index database.

Not more than one of each of the common clauses can be declared. If acommon
clause has a subordinate clause or keyword, the subordinate clause identifier or
subordinate keyword must not betruncated to an extent where it becomes ambiguous
with any other clause identifier or other keyword available in the data definition
syntax for this member type.

The common clauses can be declared in any order. If present, they must follow the
ACCESS, DATASETS (or SHARES-WITH or SHARING-WITH), and
CONTAINS clauses, if these are present.

A record containing the database's data definition statement can be inserted into the
datadictionary's source dataset by a suitable command (see the ASG-Manager
Products Dictionary/Repository User's Guide), and an encoded record can
subsequently be generated and inserted into the data entries dataset.

When the encoded record is generated, a data entries record of a special internal
type, aDL/I-DATASET member, is created for each ddname that appearsin the
database's data definition. The DL/I-DATASET internal member is given auses
table entry for each segment that constitutes the dataset defined by the member. The
DL/I-DATASET internal member can be referred to by other members; for
example, it could be used in the INPUTS clause of PROGRAM data definition.
DL/I-DATASET members can aso be interrogated (see "Interrogation Syntax" on

page 154).

115

ASG-DataManager IMS (DL/l) Interface

116

If, when the encoded record is generated, any database or segment or module where
the name appears in the database's data definition statement has no data entries
record, a dummy data entries record is created for that member as a dummy
database record, a dummy segment record, or adummy modul e record,
respectively.

24 When an encoded database member is deleted, any DL/I-DATASET member
created for it, which is not referred to by other members, is also deleted, together
with any references that the DL/I-DATASET member made to segments. Any
DL/I-DATASET member that isreferred to by other membersis made into a dummy
member rather than being deleted.

25 Inthe DATASETS clause:
. Count specifies the number of logical records per physical block.

. Size specifies the number of bytes required per physical block or control
interval.

. L ength specifies the maximum length (in bytes) of alogical record. If VSAM
is the operating system access method, length must be an even value.

26 From IMSversion 4 onwards, the DEVICE and MODEL clauses are purely
documentational. This means that DEVICE and MODEL clauses are not generated
by PRODUCE IMS VERSION 4/4.1 DBDGEN. For further information on
PRODUCE IMS, see Chapter 5, "IMS (DL/I) Source L anguage Generation," on

page 175.

Examples

ADD EMPI ND:

| M5- DATABASE SECONDARY- | NDEX

ACCESS VSAM DOS- COVPATI BLE PASSWORD PROTECTED
DATASETS PRI ME EMPI P BUFFER 1024

OVERFLOW EMPI O BUFFER 2046

DEVI CE 3340

CONTAI NS EMPI ND- SEG

Below is an example of a data definition statement for a secondary index database, using
the SHARES-WITH clause:

ADD EMPI ND2:

| M5- DATABASE | NDEX
SHARES- W Th EMPI ND
CONTAI NS EMPI ND2 - SEG

3 Member Types

Member-type Descriptions for IMS (DL/l) Program
Communication Blocks

The data definition statements for PCB members are used to define these PCB types:
. GSAM database

. Output message destination (that is, IMS Alternate PCBS)

. Logical data structure

PCB members must be defined for any application for which PSB control statements are
to be generated.

If specified, IMS will automatically add an I/0O PCB for the input message source to the
PSBGEN when the program isrun in the Batch DL/I region; therefore, a PCB must not be
defined for any I/O PCB. The user can specify, on the PRODUCE IM SPSBGEN
command, that IMS (DL/I) isto add such a PCB automatically to the PSBGEN.

PROGRAM-COMMUNICATION-BLOCK

Syntax

» » —————— PROGRAM COMMUNI CATI ON- BLOCK >

> > GSAM [NAMVE pcb- nanme >
DATABASE db- opti ons

|—ai b- opti ons —

OUTPUT- I\/ESSAGE—ENAI\/E pcb- nane
DATABASE db- opti ons

|—ai b- opti ons —
STRUCTURE ——— NAME pcb- name

‘:BY structure-options
WTHtl L i b- options |

\

»
>

I—commn- cl ausesJ
> ; > <
.]

pcb- nane isthe name of another PROGRAM-COMMUNICATION-BLOCK member.

117

ASG-DataManager IMS (DL/I) Interface

db- opti ons are:

»_—— gsam dat abase- nane LOAD >

|:BY GET —
WTH —

> >
[sequenti ALLy—
gsam dat abase- nane isthe name of a database member of the GSAM type.
ai b- opti ons are:
> AlB-LI ST- ADDRESS >
L APPLI CATI ON- | NTERFACE- LI ST- ADDRESSJ L No_|
out - opti ons are:
» 1 OG CAL- TERM NAL nare >
\: TRANSACTI ON- CODE name —| \:ALTERNATE- 1O RESPO\ISEi‘
VoD Fl ABLE—————— | ALTERNATI VE- | O- RESPONSE
> >
L saveteru Nl — | | express. |
namre is an alphanumeric name 1 to 8 charactersin length.
structure-options are
» — — UPDATE >
| GET get-options__| | ExcLusi VE—| [PATH—]
| NSERT
— GET ONLY
NOABEND
NO- ABEND ——
TRY- AGAI N —
LOAD
GET L Ascenpi NG |
| NSERT
> >
|:SI NGLE- PCSI TI ONI NG:‘ L DATABASE dat abase J
MULTI - POSI TI ONI NG
> >

I—SE(:UENTI AL- BUFFERI NG —|: CONDI TI ONAL

118

3 Member Types

- L_KEYLENGTH keyl ength— | keep- H ERARCHY_ g
~ <LLLLLLLLLLLLLLLLKL L, <L ”
L—segnent - opti ons
I—sec- seq-options —
> <LK, <KL >
L SENSI TI VE- FI ELDS sensitive-field —
filler-bytes
get - opti ons are:
- L repace | Lomere_ | Linserr_| g
Note:
The UPDATE, GET, INSERT, LOAD, EXCLUSIVE, ASCENDING, PATH, GET
ONLY, NOABEND, TRY-AGAIN, REPLACE, and DELETE keywords can al be
optionally separated by commas.
dat abase isthe name of aDATABASE member.
keyl engt h isan integer in the range 0 to 32767.
segnent - opti ons are:
» — SEGMVENT segnent >»
i: BY——— struct-options- ZJ
WTH |

segnent isthe name of a SEGMENT member.
struct-options-2 are:

UPDATE >

>
Egrdi -opti onsji
KEY- SENSI TI VE

119

ASG-DataManager IMS (DL/I) Interface

120

grdi -options are

P
»~

\

[cer

EREPLACE—
DELETE —

L nserT__|

Note:

The UPDATE, KEY-SENSITIVE, GET, REPLACE, DELETE, INSERT, EXCLUSIVE,
and PATH keywords can all be optionally separated by commas.

Y ou must specify at least one keyword in gr di - opti ons.

sec- seq- opti ons are:

» — SECONDARY- SEQUENCE

>
I— ON i ndex- poi nt er - segnent —l

i ndex- poi nt er - segnment isthe name of an INDEX-POINTER SEGMENT member.

sensitive-fieldis

»— sensitive-field-nanme >
I_ SUBFI ELDS_I
> >
REPLACE —— I_KNCW\I- AS | ocal - naneJ
NOREPLACE —|
NO- REPLACE—

| ocal - name is aname conforming to the rules for member names stated in the
ASG-ControlManager User's Guide.

sensi tive-fi el d- nane isthe name of a GROUP, ITEM, sequence key member, or
concatenated key member.

filler-bytes isanunsigned integerintherange 1to 32767.

common- ¢l auses are as defined in the ASG-Manager Products Dictionary/Repository
User's Guide.

3 Member Types

Remarks

1

10

The member type identifiers PROGRAM-COMMUNICATION-BLOCK and PCB
are synonymous.

The first element following the member type identifier must be a keyword that
indicates which type of PCB member is being defined; thus:

. GSAM: the application view of a GSAM database is being defined.

. OUTPUT-MESSAGE: the application view of an output message destination
is being defined.

. STRUCTURE: the application view of alogical data structureis being
defined.

More than one PCB member specifying the same logical data structure can be
defined, provided that each has a unigue member name. This enables parallel
processing of dependent segment types to be defined without using the
multipositioning feature.

For any type of PCB member, the NAME clause specifies that the data definition of
the reference PCB, pcb-name, isto be regarded as being a so adata definition of this
member; with the exception that pch-name's common clauses are not applied to this
member. The reference PCB must be of the same type as the PCB being defined.

For a GSAM type PCB member, unless the NAME clause is specified, the
DATABASE clauseidentifiesthe GSAM databasethat isrelevant to thisapplication
view and defines the processing options that the application uses to access that
database.

The BY or WITH keyword can be omitted, but isincluded in the specification to
maintain consistency of format of the processing options clause with the processing
options clauses available in the STRUCTURE type PCB member syntax.

The LOAD keyword specifies that the application |oads the database.

The GET keyword specifies that the application retrieves the database.

TheSEQUENTIALLY keyword indicateslarge scale sequential activity and that the
GSAM multibuffering option isto be utilized.

For an OUTPUT-MESSAGE type PCB member, unlessthe NAME clause is
specified, either LOGICAL-TERMINAL name or TRANSACTION-CODE name
or the keyword MODIFIABLE must immediately follow the OUTPUT-MESSAGE
keyword.

121

ASG-DataManager IMS (DL/l) Interface

122

11

12

13

14

15

16

17

18

The nameisthe identifier of the actual destination of the message, and is either a
logical terminal name or a transaction code name defined during IMS/V S system
definition. When it is atransaction code, IMS/V S routes the message to the
application program that processes the specified transaction code.

The MODIFIABLE keyword indicates that the destination of the messageis
dynamically specified during program execution.

ALTERNATE-IO-RESPONSE or ALTERNATIVE-IO-RESPONSE means that a
response in response mode, conversational mode, or exclusive mode can be directed
to adifferent logical terminal from the one on which the input message originated.

SAME-TERMINAL specifiesthat IMS/V Sisto check that thelogical terminal name
is assigned to the physical terminal from which the input message originated.

The EXPRESS keyword specifiesthat the output messages are to be sent even if the
program ends abnormally.

If specified, IMS will automatically add an 1/0 PCB for the input message source to
the PSBGEN when the program is run in the Batch DL/I region; therefore, a PCB
must not be defined for any 1/0 PCB. The user can specify, on the PRODUCE IMS
PSBGEN command, that IMS (DL/I) isto add such a PCB automatically to the
PSBGEN.

For a STRUCTURE type PCB member, unless the NAME clause is specified, the
first subordinate clause within the STRUCTURE clause must be the
structure-options clause. This clause specifies processing options for the segments
that constitute the logical data structure. Those segments are specified by the
SEGMENT subordinate clauses within each of which overriding processing options
applicable to the particular segment can be specified in st ruc- opt i ons- 2. For
each segment for which thisis not specified, structure-options applies.

The structure-options clause defines the functions that can be performed on the
logical data structure from the application view (except where overridden for
individual segments in segment-options). These can be:

. Database loading

. Database reading only

. Database reading and limited updating

. Adding information to an existing database
. Database reading and all updating functions

19

20

21

22

23

24

3 Member Types

For database loading, the LOAD keyword is specified. The LOAD function is not
valid for alogical data structure that belongs either to a SECONDARY -INDEX
database or to a LOGICAL database. LOAD isalso invalid if the secondary
processing sequence is to be used to access the logical data structure. If
structure-options specifies LOAD for alogical datastructure belongingto aHISAM
or HIDAM database, then all other PCB members affecting the same database within
an application view must also specify LOAD.

For database reading with enqueueing to check the availability of segments, GET is
specified. A program which specifiesGET isprotected from accessing segmentsthat
have invalid pointers, as IM S prevents the program from retrieving updated
segments until the updating program reaches a synchronization point.

For database reading only, without enqueueing to check the availability of segments,
GET ONLY is specified.

If only GET ONLY is specified, it should be noted that a program may be able to
retrieve asegment that hasinvalid pointers, and this program may then be terminated
abnormally by IMS. This situation can be avoided by specifying NOABEND,
NO-ABEND, or TRY-AGAIN in conjunction with GET ONLY . (Thiswill prevent
the program from being terminated abnormally if it retrieves asegment that contains
invalid pointers.)

If GET ONLY, NOABEND, or NO-ABEND isspecified, aprogram which retrieves
asegment that contains invalid pointers will not be terminated abnormally by IMS.
Instead, IM S returns a status code to the program.

If GET ONLY TRY-AGAIN isspecified, thenif aprogram retrieves asegment with
aninvalid pointer, IMSwill attempt another call to the database. If, by thetimeIMS
triesthe call again, the program that was updating the requested segment has reached
a synchronization point, the pointer in the segment will be valid again and the
segment can beretrieved. If the pointer is till found to be invalid when the call is
repeated, IM S returns a status code to the program.

123

ASG-DataManager IMS (DL/l) Interface

124

25

26

27

28

29

30

31

32

For database reading (with enqueueing) and limited updating, GET is specified
followed by whichever one of the keywords REPLACE, DELETE, and/or INSERT
arerelevant, in any order; but not more than three of the keywords REPLACE,
DELETE, INSERT, ASCENDING, EXCLUSIVE, and PATH can follow GET.
These rules apply:

. INSERT isinvalidif thelogical datastructure belongsto aHSAM database or
aSECONDARY -INDEX database.

. DELETE and REPLACE areinvalid if the logical data structure belongsto a
HSAM database.

For adding new occurrences of a segment to a database, INSERT is specified.
INSERT isinvalid if the logical data structure belongsto aHSAM database or a
SECONDARY -INDEX database.

For database reading and all updating functions, UPDATE is specified. (UPDATE
isthusthe equivalent of GET, REPLACE, DELETE, INSERT.)

The ASCENDING keyword, if present, specifiesthat the segments are processed in
ascending sequence only. These rules apply:

. ASCENDING is not valid with GET ONLY or UPDATE.

. If LOAD is specified, ASCENDING isvalid for alogical data structure that
belongsto aHIDAM database or to aHDAM database, but isinvalid for all
other logical data structures.

. If the logical data structure belongsto a HIDAM database, and LOAD is
specified, ASCENDING is assumed whether the keyword is present or not.

. GET can only be specified with ASCENDING if the segment is contained
within aHSAM database.

The EXCLUSIVE keyword, if present, specifies that online programs can have
exclusive use of the logical data structure. EXCLUSIVE is not valid with GET
ONLY.

The PATH keyword, if present, specifies that the command mode for path calsis
used to processthelogical datastructure. It can be used by IMS (DL/I) to determine
the maximum length of the input/output area.

The keywords ASCENDING, EXCLUSIVE, and PATH can, if present, bein any
order.

If either of the keywords SINGLE-POSITIONING or MULTIPOSITIONING is
present, it must immediately follow the structure-options clause. It specifiesthetype
of positioning required for the logical data structure. If neither of these keywordsis
present, SINGLEPOSITIONING is assumed. MULTI-POSITIONING isinvalid if
the logical data structure belongsto aHSAM database.

33

34

35

36

37

38

39

40

41

3 Member Types

For a STRUCTURE type PCB member (unlessthe NAME clause is specified), the
DATABASE subordinate clause must be specified if the logical data structure
resides in a database, where the segments are also contained by other databases.
Otherwise, the DATABASE clauseis optional.

The KEYLENGTH clause specifies the maximum concatenated key length for any
path of sensitive segments that is used by the application that uses the PCB.

Note:

If KEYLENGTH is not specified, the maximum concatenated key length will be
calculated when the PSB is generated. This calculation may cause significant
input/output activity. To avoid this, ASG recommends that you specify
KEYLENGTH.

All segmentsin thelogical data structure must belong to the same database.

The KEEP-HIERARCHY keyword allows a l€eft to right order of sibling segments
under aparent, which is different from the order specified in the database definition,
to be defined and maintained in a PCB.

If the KEEP-HIERARCHY keyword is present, then when the Source Language
Generation Facility isused to produce PSB control statements, the order of segments
specified for the PCB, as defined by the subordinate SEGMENT clausesin the PCB
definition will be maintained.

Only the left to right order of sibling segments under each parent segment may be
atered in the PCB definition. The top to bottom order of segments must be
maintained as it appears in the database definition.

The user must ensure that the reordering of segmentswithin aPCB is permissible
within the IMS environment being used.

If KEEP-HIERARCHY isspecified, every segment along the hierarchical pathtothe
data sensitive segments must be specified in a SEGMENT clause, and the clauses
must be specified inthe order required by IMS (DL/1). When PSB control statements
are generated, Manager Products checksthat the specification of segment order from
top to bottom and the specification of sibling segments from left to right under their
parent segmentsisvalid. If any segments are missing or are specified in an invalid
order, Manager Products issues an error message and will not attempt to reorganize
the order of segments or to insert missing ones.

If KEEP-HIERARCHY is not specified, then when PSB control statements are
generated, the segments are organized into the order specified in the database
definition, regardless of the order in which they occur in the PCB definition. Any
segment along the hierarchical path to the data sensitive segments that has no
SEGMENT clause is assumed to be key sensitive.

125

ASG-DataManager IMS (DL/l) Interface

126

42

43

44

45

46

47

48

49

50

51

If the logical data structure belongs to a LOGICAL database for which different
logical concatenated segments are specified as representing different variations of
the same physical segment, then the PCB member can be sensitive to only one of the
logical concatenated segments. (See remark 16 on page 109.)

If the LOAD processing option is specified for the logical data structure, and the
database to which thelogical datastructure bel ongs contains multiple dataset groups,
then at least one SEGMENT clause should be specified for each dataset group. For
any dataset group in respect of which no SEGMENT clause is specified,
key-sensitivity is assumed for the first segment in the dataset group.

If the LOAD processing option is specified for the logical data structure, then
SEGMENT clauses must not be entered for virtual logical child segments.

From 1 to 255 SEGMENT clauses can be defined for alogical data structure. Only
one segment clause may be specified for each segment.

Ineach SEGMENT clause, segment-name must immediately follow the SEGMENT
keyword to identify the sensitive segment to be processed.

St ruct - opti ons- 2, if present, must immediately follow the segment name. It
specifies the functions that can be performed on the segment from the application
view. If the processing options specified by structure-options can apply to the
segment, this can be omitted. If structure-options specified LOAD, this must be
omitted.

KEY-SENSITIVE specifiesthat the applicationisonly key-sensitive to the segment;
that is, the segment is not moved to the program'’s input/output area, but that the key
only is placed in the concatenated key feedback area of the logical data structure's
PCB.

GET, INSERT, and UPDATE, and the optional keywordsthat can be associated with
them, have the same meanings and restrictions as are specified for

st ruct ure-opti ons inremark 21 on page 123 through remark 28 on page 124,
but applying to the one segment only. GET ONLY and ASCENDING cannot be
specifiedinst ruct - opti ons- 2.

Thekeyword SECONDARY -SEQUENCE specifiesthat thelogical datastructureis
processed through a secondary processing sequence, of which this segment is the
root segment. The keyword, if present, must immediately follow

struct - opti ons- 2, if specified; otherwise, it must, if present, immediately follow
segment.

If SECONDARY -SEQUENCE is specified, segment must identify an index target
segment, or alogical segment representing an index target segment. In alogica
database, the segment must not be a dependent of a concatenated segment.

52

53

54

55

56

57

58

59

3 Member Types

The SECONDARY -SEQUENCE keyword may only be entered once for any one
logical data structure.

The ON index-pointer-segment clause specifies the index pointer segment that
indexes the index target segment. If it is omitted, the name of the relevant index
pointer segment is obtai ned from the used-by table of theindex target segment when
required for generation of DBDGEN control statements.

The SENSITIVE-FIELDS clause is subordinate to the SEGMENT clause. Itisused
by the Source Language Generation Facility:

. During the generation of PSB control statements, to generate SENFLD
statements that specify the fields to which the application is sensitive

. To generate record layouts or COBOL, PL/I, or Assembler data description
statements for segment input/output areas when sensitive fields are to be
processed

. During the generation of DBD control statements, to indicate that DBD
HELD control statements are to be generated for the segment's sensitivefields
only (rather than for all of the fields contained by the segment)

Up to amaximum of 255 sensitive fields can be declared for each segment within a
maximum of 10,000 for the PCB member.

The declaration of asensitive field includes any associated SUBHELDS,
REPLACE, NOREPLACE, or NO-REPLACE keyword and/or KNOWN-AS
clause; aswell as the sensitive field name. These declarations are listed in the
SENSITIVE-HELDS clause, each sensitive-field name except the first in the list
being preceded by acomma and, in addition, optionally by spaces.

SUBHEL DS specifiesthat when the Source Language Generation Facility isused to
generate PSB control statements, SENFLD statements are to be generated for each
of the constituent fields of the sensitive field, as well as for the sensitive field itself.

If the sensitive field is a sequence key member or a concatenated key member and:

. Is defined by segment-name, the SENFLD statements are generated for each
of itsdirectly or indirectly contained group or item members

. Is not defined by segment-name, then the SUBFIELDS keyword isignored
Sensitive fields can be repeated provided aKNOWN-AS clauseis specified for each

repetition, so that unique names can be generated when COBOL, PL/I, or Assembler
data description statements are generated.

The sensitive field keyword REPL ACE specifies that thisfield can be altered on a

replace call. NOREPLACE or NO-REPLACE specifiesthat thisfield cannot be
altered on areplace cal.

127

ASG-DataManager IMS (DL/l) Interface

128

60

61

62

63

64

65

66

67

If none of the sensitive field keywords REPLACE, NOREPLACE, and
NO-REPLACE is specified, then, if either of the processing options UPDATE or
REPL ACE has been specified, the keyword REPLACE is assumed for the sensitive
field.

Thekeywords REPLACE, NOREPLACE, and NO-REPLACE areignoredif neither
of the processing options UPDATE or REPLACE are specified.

If thefirst sensitive field in asegment input/output areais not to start inthe first byte
position and/or if sensitive fields are not to be contiguous within the segment
input/output area, filler-byte declarations must be included wherever appropriate in
the list of sensitive field declarations to enable the Source Language Generation
Facility to calculate the start position of each field in the segment input/output area.

The SENSITIVE-FIELD clauseisinvalid if:
. Segment-optionsis KEY-SENSITIVE.

. The segment isalogical child segment or alogical concatenated segment, and
the processing option applicableis INSERT, LOAD, or UPDATE.

Itisthe user'sresponsibility to declareall the sensitivefieldsrequired by IMS(DL/I);
for example, sequence key fields and segment search fields, because their start
positions cannot be anticipated.

Common clauses can be present in any type of data definition statement; therefore,
they are defined separately in the ASG-Manager Products Dictionary/Repository
User's Guide. Not more than one of each of these clauses can be declared. If a
common clause has a subordinate clause or keyword, the subordinate clause
identifier or subordinate keyword must not be truncated to an extent where it
becomes ambiguous with any other clause identifier or other keyword available in
the data definition syntax for this member type.

The common clauses can be in any order. If present, they must follow the GSAM,
OUTPUT-MESSAGE, or STRUCTURE clause.

A record containing the PCB's data definition statement can be inserted into the data
dictionary's source dataset by a suitable command (see the ASG-Manager Products
Dictionary/Repository User's Guide); and an encoded record can subsequently be
generated and inserted into the data entries dataset. |f, when the encoded record is
generated, any PCB, database, segment, or sensitive field, where the name appears
in the PCB's data definition statement, has no data entries record, a dummy data
entriesrecord iscreated for that member asadummy PCB record, adummy database
record, a dummy segment, or dummy item record, respectively.

3 Member Types

68 The SEQUENTIAL-BUFFERING clause allows the specification of OSAM
Sequential Buffering for any database PCB requiring this facility to improve
performance with sequential access. Thisdoesnot apply to IMS/V S releases prior to
IMS/VS 2.2 and should only be specified when IMS/V S 2.2 or subsequent releases
areinstalled. Vaues may be specified as follows:

. NO: sequentia buffering should not be used for this PCB. Thisisthe default
assumed if SEQUENTIAL-BUFFERING is not specified by other means
(i.e., control statements or user exits).

. CONDITIONAL: requests the conditional activation of sequential buffering
for this PCB.

69 Thel ocal - nane variableisto be used instead of the name or alias of the sensitive
field when PSB control statements, record layouts, or source language data
descriptions are generated from this member. | ocal - nane is not separately
recorded in the repository (no dummy data entries record and no index record is
created for it when the member inwhich it appearsisencoded), so local-name cannot
be interrogated and can be the same as another name, an alias, or a catalog
classification in the repository. | ocal - nare isthe name by which the member
forming the sensitive field is known only within the PCB defined by this member.

Example of a GSAM type PCB

This example shows a PCB member specifying the loading of a GSAM database,
involving large scale sequential activity, where the GSAM multibuffering option isto be
utilized:

ADD GSAM PCB;
PCS GSAM
DATABASE GSAM OB BY LOAD SEQUENTI ALLY

Examples of OUTPUT-MESSAGE Type PCBs

The first example below shows a PCB member defining an output message destination
that is to be dynamically specified during program execution:

ADD MOD- PCB;
PCS QUTPUT- MESSACE
MODI FI ABLE

129

ASG-DataManager IMS (DL/l) Interface

The next example shows a PCB member specifying an alternative logical terminal to
which an application can direct its response (rather than to the source from which the
input message originated):

ADO LOG- TERM PCB;

PCB QUTPUT- MESSACE LOG CAL- TERM NAL TERMB
ALTERNATE- 10- RESPONSE

SAME- TERM NAL EXPRESS

Examples of STRUCTURE Type PCBs

130

The member SKILLEMP-PCB isfor alogical data structure that residesin aLOGICAL
database. The application to which this PCB member relatesis sensitive to the three
segments SKILL, NAME, and EXPR, and processes them all by the GET ONLY option.

The member AUTOREG-PCB in "Application View" on page 13 isfor alogical data
structure of two segments, NAMEID and CITY, that residein aRDAM database indexed
by a secondary index. The segments are processed by the GET option.

SECONDARY -SEQUENCE is specified to indicate that thislogical data structureis
processed using a secondary sequence with the index target segment NAMEID asthe root
segment.

This example shows a PCB member for alogical data structure residing in the HISAM
database SKILLINV that isillustrated in Figure 2 on page 7:

ADD SKI LLI NV- PCB;

PCB STRUCTURE

BY CET, | NSERT

SEGVENT SKI LLMAST

SEGVENT SKI LLNAM

SEGVENT EXPRMAST BY | NSERT PATH
SEGVENT EDUCNMAST BY | NSERT

Thislogical data structure, as awhole, has processing options of GET and INSERT
specified. The segment EXPRMAST has overriding options of INSERT PATH specified.
For the segment EDUCMAST, the overriding option INSERT allows this segment to be
in the path of segmentsto be inserted.

3 Member Types

For a SENSITIVE-FIELDS example, using the segment ASY -PACK, a PCB member
could be defined thus:

ADD ASY- PACK- PCB;

PCB STRUCTURE

BY CET ONLY

SEGVENT ASY- LI NE

SEGVENT ASY- PACK

SENSI TI VE- FI ELDS PACK- NG, PROD- NG, Qry- RECD

This example shows a PCB member for alogical data structure residing in the database

EMPLOY EE-DETAILS.

The application is to be data sensitive only to the segments EMPLOY EE-NUMBER,
SOCIAL-SECURITY-NUMBER, and TAX-CODE. KEEP-HIERARCHY has been
specified in the PCB definition as the order of the segments
SOCIAL-SECURITY-NUMBER and TAX-CODE isto be altered. Asaresult (see
remark 38 on page 125), SEGMENT clauses have had to be specified for each of the
key-sensitive segments.

ADD EMPL- PCB;

PCB STRUCTURE

BY CET ONLY

DATABASE EMPLOYEE- DETAI LS

KEEP- H ERARCHY

SEGVENT DEPARTMENT W TH KEY- SENSI Tl VE
SEGVENT EMPLOYEE- NUMBER

SEGVENT JOB- STATUS W TH KEY- SENSI Tl VE
SEGVENT SALARY W TH KEY- SENSI Tl VE
SEGVENT SCCI AL- SECURI TY- NUMBER
SEGVENT TAX- CODE

131

ASG-DataManager IMS (DL/I) Interface

The PROCESSES Clause

The SYSTEM, PROGRAM, and MODULE member types are documented in the
ASG-Manager Products Dictionary/Repository User's Guide. For the IMS (DL/I)
interface, you can also use the PROCESSES clause with these member types. This clause
is described below.

The PROCESSES clause is available also in some other Manager Products interface
facilities. Its purpose is to specify an application's processing of its data within a specific
environment. The clause therefore has a number of alternative environment-dependent
formats. In an IMS (DL/I) environment, the PROCESSES clause defines an application's
view of the IMS databases and/or logical terminals accessed by the application.

. The PROCESSES clause specifies the details of the following IMS (DL/I) features
that an application SY STEM, PROGRAM, or MODULE may utilize.

. The PROGRAM-COMMUNICATION-BLOCK or PCB members accessed by the
application segment-search-arguments.

The PCB members named in the PROCESSES clause are used by the Source Language
Generation Facility when producing PSB control statements (see "Application View" on
page 19, "Member-type Descriptions for IMS (DL/I) Program Communication Blocks"
on page 117 and "Generating IMS (DL/I) PSB Control Statements' on page 183).

If specified, IMS will automatically add an I/0 PCB for the input message source to the
PSBGEN when the program isrun in the Batch DL/I region; therefore, a PCB must not be
defined for any I/O PCB. The user can specify, on the PRODUCE IMS PSBGEN
command, that IMS (DL/I) isto add such a PCB to the PSBGEN, automatically.

The segment search argument details may be used when producing DBD control
statements [see "Application View" on page 19 and "Generating IMS (DL/I) DBD
Control Statements' on page 176].

Syntax of the PROCESSES Clause

132

»»——— — SYSTEM—_ PROCESSES I MB >
PROGRAM—| DL/
MODULE— DL/ 1
DL
DL1
»——— CONTAINS pcb >»
<L <<LLL
i:SSAS ssas- ¢l ause
SEGMVENT- SEARCH ARGUVENTS—

SSAS
SEGVENT- SEARCH- ARGUVENTS—

where:
pcb isthe name of a PCB member.

ssas-cl ause s

3 Member Types

» —— SEGMVENT seg-nane >
<LLLLLLLLLLLLLLLLLLLLLLLL L €Ll
» —— USED-IN ssa-nane >
I_ N J <<<<, <<<<
cc-cl ause Lqual X causeJ
seg- nare isthe name of a SEGMENT member.
ssa- nane isthe segment-search-argument name for the language (PL/I, COBOL, or
Assembler) relevant to the appropriate member.
cc-cl ause s
»_ COMVAND CODES >
—— FI RST- OCCURRENCE —
— LAST- OCCURRENCE ——
HOLD- POSI TI ON———
— RETAI N- POSI TI ON ——
KEY
CONCATENATED- KEY —
> >
| O MOVE PARENTAGE |
- NCREPLACE—| L, _|
NO- REPLACE—
> >
—_I—I:ENQJEUE cl ass J ——l—NULL ' positions' J
cl ass isan alphabetic character in the range A to J.
posi ti ons isan unsigned integer.
gual - cl ause is
» — QUALI FI ED-ON search-fiel d-operator >
> >
AND search-fieId-operator-——I
| NDEPENDENT- AND—
R
search-fi el d isasequence key field in a definition of virtual logical child segment

(including all sequence key fields following it).

133

ASG-DataManager IMS (DL/l) Interface

134

oper at or isone of these: EQ or =

NE
GT or >
GE
LTor<
LE

Remarks

1

Thekeyword IMSor DL/I (or one of its permitted variants) must immediately follow
the PROCESSES keyword to indicate that an IMS (DL/I) application view is being
defined. The keyword IMS is synonymous with DL/I and its variants.

If the CONTAINS subordinate clauseis present, it must immediately follow the IMS
or DL/l keyword.

If the Source Language Generation Facility is to be used to produce DBD control
statements for the database to which the segment belongs, at which timeitisto
generate the segment's search fields only (as opposed to generating all of the fields
contained by the segment), aUSED-IN clause must be specified to indicate which of
the segment fivefieldsareits search fields. [See"Application View" on page 19 and
"Generating IMS (DL/I) DBD Control Statements" on page 176.]

If the condition stated in remark 3 on page 134 does not apply, the USED-IN clause
is omitted.

The USED-IN keyword must be followed immediately by ssa- name, which must
be unique in the PROCESSES clause.

The COMMAND-CODES clause is declared if the segment search argument isto
contain one or more command codes to provide functional variations applicable to
either the call function or the segment qualification.

For retrieval calls, the command code FIRST-OCCURRENCE allows backing up
within adatabaserecord (starting with thefirst occurrence of this segment type under
its parent, or with the first occurrence of this segment type after a position
established earlier in the hierarchy) in order to satisfy the call.

For insert cals, the command code FIRST-OCCURRENCE is used for segments
having anonunique sequencefield, or no sequencefield, and aninsert rule of HERE,
to specify that occurrences of this segment are to be inserted asthe first segment on
the twin chain.

For retrieval calls, the command code LAST-OCCURRENCE specifiesthat the last
occurrence of thissegment, under its parent that satisfiesthe qualification statement,
isto beretrieved; or, if thereis no qualification statement, then the last occurrence
of this segment, under its parent, isto be retrieved.

10

11

12

13

14

15

16

17

3 Member Types

For insert cals, the command code LAST-OCCURRENCE is used for segments
having anonunique sequence field, or no sequencefield and aninsert rule of HERE,
to specify that occurrences of this segment are to be inserted as the last segment on
the twin chain.

The command code HOLD-POSITION prevents position being moved from an
occurrence of this segment under its parent (if position has previously been
established on the parent) during a search of its hierarchical dependents. When acall
is being satisfied, if position is moved to alevel above that at which the command
was issued, the code has no effect for occurrences to the segment where the parent
changed.

The command code RETAIN-POSITION has the same meaning as the command
HOLD-POSITION except that the command code is automatically set at all higher
levelsin the call. This meansthat position cannot be moved at all from the existing
position at the level at which this command code is issued.

The command code KEY or CONCATENATED-KEY can be used when the
concatenated key of the segment isavailable. When the Source Language Generation
Facility produces the COBOL, PL/I, or Assembler data description for a
segment-search-argument with this command code, it generates a parenthesized
field containing the appropriate number of hexadecimal zeros, into which the
application program can insert the segment's concatenated key. Only one segment
search argument with this command code is allowed per call, and it must be thefirst
in the call.

The 10-MOVE command code isvalid only for path callsin the relevant PCB
member. PATH must be included in the segment's processing-options-2, or, if these
are omitted, in the STRUCTURE clause's processing-options-1. For retrieval calls,
the command code specifies that this segment is to be moved to the application
program's input/output area. For insert calls, it designatesthe first segment that isto
be inserted from the input/output area.

The NOREPL A CE or NO-REPL ACE command code specifiesthat for areplacecall
following a path retrieval call, this segment will not have been changed, and is
therefore not to be replaced.

The command code PARENTAGE specifies that parentage isto be set at this levd;
therefore, succeeding GET NEXT WITHIN PARENT callswill treat thislevel asthe
parent level rather than the lowest level segment returned on this call. The parentage
will remainin effect until a GET UNIQUE or GET NEXT call isissued.

The command code ENQUEUE class specifies that this segment isto be enqueued

for asingle update, where class is the class identifier used on the dequeue call to
dequeue al resources enqueued by the user with that class.

135

ASG-DataManager IMS (DL/l) Interface

136

18

19

20

21

The command code NULL posi ti ons enables afixed number of bytes to be set
asidefor command codes, which may be set on or off by the application. The number
of null bytesto be generated is specified by posi ti ons. If posi ti ons isomitted,
one byteis assumed.

The QUALIFIED-ON clause defines information that IMS (DL/I) usesto test the
value of this segment's key or data fields within the database to determine whether
the segment meets the user's specifications. This clause is not valid if acommand
code of KEY or CONCATENATED-KEY ispresent in the USED-IN clause, asthe
concatenated-key of this segment then replaces the qualification statement in the
segment-search-argument.

The QUALIFIED-ON keyword, if present, must be followed immediately by
sear ch-fi el d, which can identify afield of any of the following types:

. A GROUP or ITEM member that is contained directly or indirectly by this
segment; including:

— For alogical child segment, the destination parent's concatenated key

— For alogical segment OF alogical concatenated segment, the physical
segment(s) represented by this segment

If amember isindirectly contained by the segment, and is defined as an array in the
data definition of its containing group, it must not be specified assear ch-fi el d.

. A field specified assequence- key- name or concat enat ed- key- nane in
the data definition of:

— Thissegment

— Thephysical segment(s) represented by this segment, if thissegmentisa
logical segment or alogical concatenated segment (see remark 22 on
page 137)

. If this segment isan index target segment or alogical segment representing an
index target segment, and is not alogical concatenated segment or a
dependent of alogical concatenated segment, then the field is defined as an
i ndex- sear ch-fi el d- nane in the data definition of arelated index
pointer segment.

. If this segment is an index pointer segment, the field is defined as
sequence- key- nane in this segment's data definition. In this case, the field
specified by sear ch-fi el d includes any constant and subsequence fields
specified in the segment's data definition.

If search-fi el d isasequence key field in the data definition of avirtual logical
child segment, then the field includes all sequence key fields that follow it in that
data definition.

22

23

24

25

26

3 Member Types

If sear ch-fi el d isan index-search-field-name, then when the Source Language
Generation Facility produces PSB control statements for this application, it
automatically generates an INDICES =i ndex- dat abase- name entry on the
SENSEG statement for thisindex target segment, wherei ndex- dat abase- nane
isthe name of the secondary index database that contains the index pointer segment,
which defines the index search field name.

The operator specifiesthe manner in which the contents of the search-field areto be
tested against the comparative value.

Any number of search-field names can be specified in aQUALIFIED-ON clause,
connected by the Boolean operators AND, OR, or INDEPENDENT-AND.

INDEPENDENT-AND is applicable only where the previous search field is the
index-search-field-name and the following search field is the same
index-search-field-name. It specifies that the call can be satisfied by two different
index pointer segments (in the same secondary index) that both point to this index
target segment, each satisfying one of the conditions; rather than requiring one index
pointer segment that satisfies both of the conditions.

When the member containing the PROCESSES clause is encoded, if any member
where the name appears in that member's data definition has no data entries record,
adummy data entriesrecord is created for the latter member in accordance with the
following rules:

. If the name appearsin a CONTAINS clause that immediately follows
PROCESSES IMS or PROCESSES DL/I (or avariant), adummy PCB
member is created.

. If the name appearsin a CONTAINS clause that does not immediately follow
PROCESSES IMS or PROCESSES DL/I (or avariant), adummy module
member is created.

. If the name immediately followsa SEGMENT keyword, a dummy segment
member is created.

. If the name appears anywhere in the QUALIFIED-ON clause, a dummy item
member is created.

. If the name appears in any other clause, the dummy is created as defined in
the specification of the SY STEM, PROGRAM, or MODULE member in the
ASG-Manager Products Dictionary/Repository User's Guide.

137

ASG-DataManager IMS (DL/l) Interface

138

Examples

The examplein "Application View" on page 13 shows a PROCESSES clause declaring
two PCB members (each for a different database) and the segment search arguments
required for that application.

For the first segment, SKILL, thereisaUSED-IN clause that definesa
COMMAND-CODE and a QUALIFIED-ON clause for a search field. For the segment
EXPR, thereisa USED-IN clause that defines no COMMAND-CODE, but does have a
QUALIFIED-ON clause for two search fields.

For the third segment, NAMEID, thereisagain a USED-IN clause that definesa
COMMAND-CODE and a QUALIFIED-ON clause for a search field. The segment
CITY hasa USED-IN clause specified, but has no COMMAND-CODE nor
QUALIFIED-ON clause.

This example shows a PROCESSES clause for an application requiring one PCB
member, SKILLINV-PCB:

PROCESSES | M5
CONTAI' NS SKI LLI NV- PCS
SEGVENT- SEARCM ARGUMVENTS
SEGVENT SKI LMAST USED- | N SKI LNAST- SSA
QUALI FI ED- ON SKLLCODE EQ
SEGVENT SKI LLNAM USED- | N SKI LLNAM SSA
QUALI FI ED- ON SURNAME EQ
AND | NI TI AL EQ
SEGVENT EXPRMAST USED- | N EXPRMVAST- SSA
COMMAND- CODE 10- MOVE SEGVENT EDUCMAST USED- | N EDUCMAST- SSA

Segment-search-arguments are specified for four segments. The segment SKILMAST
has a USED-IN clause defining a QUALIFIED-ON clause for asearch field. The
segment SKILLNAM has a USED-IN clause defining a QUALIFIED-ON clause for two
search fields. For the segment EXPRMAST, the USED-IN clause defines the
COMMAND-CODE 10-MOVE to indicate that this segment is thefirst in a path of
segments to be inserted. No COMMAND-CODE or QUALIFIED-ON clauses are
specified for the segment EDUCMAST.

4 Extensions to DataManager Commands
for IMS (DL/I) Databases

This chapter includes these sections:

INtrOdUCKIONo 139
IMS (DL/l1) Member-typeKeywords. 139
Condition Keywordsfor WHICH and WHAT Commands............. 141
EXamples. . ..o 142
Member Type Interrogations.o oo 146
INtErrogation SYNtaXo vt e 154
Alternative Verb Keywords i 173

Introduction

DataM anager provides powerful facilities for documenting, interrogating, and processing
the data definitions of the various types of IMS (DL/I) databases and their components.
These facilities are provided by means of:

. Additional member-type keywords in those commands that permit member-type
selection [see "IMS (DL/1) Member-type Keywords' on page 139].

. Additional condition keywords in the WHICH and WHAT commands (see
"Condition Keywords for WHICH and WHAT Commands" on page 141).

IMS (DL/l) Member-type Keywords

The syntax of these DataManager commands:

BULK ENCODE
BULK PRINT
BULK REPORT
GLOSSARY
LIST

PERFORM
WHICH

139

ASG-DataManager IMS (DL/l) Interface

140

They are defined in the ASG-Manager Products Dictionary/Repository User’s Guide,
includes a number of member-type selection keywords that enable the processing to be
confined to members of the selected type or types.

The member-type selection keywordsinclude the keyword DATABASES. Thiskeyword
selects all members at the database level of the member-type hierarchy. If more than one
DBMS interface isincluded in the implementation of DataManager, then database
members defined under any of the implemented interfaces are sel ected.

If the IMS (DL/1) Interface isincluded in the implementation, additional keywords are
made available to permit the selection to be confined to:

. All IMS (DL/I) databases

. A specific category or specific categories of IMS (DL/I) databases

. All IMS (DL/I) segments

. A specific category or specific categories of segments

. (Except for BULK ENCODE and BULK PRINT) any of theinternal member types
described in "Special DataManager Member Types' on page 17

These are the additional member-type sel ection keywords:

IMSDATABASES
DL/I-DATABASES
DL/1-DATABASES
DLI-DATABASES
DL1-DATABASES
GSAM-DATABASES
HSAM-DATABASES
SHSAM-DATABASES
HISAM-DATABASES
SHISAM-DATABASES
HDAM-DATABASES
HIDAM-DATABASES
PHYSICAL-DATABASES
LOGICAL-DATABASES
SECONDARY -INDEX-DATABASES
SEGMENTS
PHYSICAL-SEGMENTS
LOGICAL-SEGMENTS
INDEX-POINTER-SEGMENTS
PROGRAM-COMMUMICATION-BLOCKS
PCBS

These are not relevant for BULK ENCODE or BULK PRINT because members of these
types have no source records:

4 Extensions to DataManager Commands for IMS (DL/I) Databases

SEQUENCE-KEY S
IMSDATASETS
DL/I-DATASETS
DL/1-DATASETS
DLI-DATASETS
DL1-DATASETS
INDEX-SEARCH-FIELDS
SYSTEM-RELATED-FIELDS
CONCATENATED-KEYS
CONCATENATED-KEY-NAMES

All of these keywords are also available in the Controller's commands to save the
contents of a data dictionary and to analyze adata dictionary's disk space usage. (These
are documented in the ASG-Manager Products Controller's Manual.)

It is thus possible to obtain complete documentation of IMS (DL/I) databases, at the
database or at any component level, to interrogate on database type and on any
component type, and to select by database type or component type for manipulation by
BULK ENCODE or by PERFORM commands.

Condition Keywords for WHICH and WHAT Commands

The WHICH command enables the user to interrogate the data dictionary asto which
members of selected types[see"IMS (DL/I) Member-type Keywords' on page 139],
satisfy selected conditions. Among the conditions that can be stated are that the members
named in the response should USE a member named in the command, or that they should
CONSTITUTE the member named in the command. These conditions can be restricted
by aVIA clause, or by alternative verb keywords, to referencesto or from other members
through a particular clause of a data definition. Similar conditions can be stated in the
WHAT command, but without the restriction of the interrogation to selected categories of
members.

The IMS (DL/I) Interface provides further keywords for the condition clause.

Thetablesin this section give the following information on these keywords:

. The Member Type Interrogation table on page 146 explains which VIA keywords
are appropriate for use with a particular IMS (DL/l) member type to interrogate
various aspects of its definition.

. The Interrogation Syntax table on page 155 lists, in alphabetical order, the
keywords that can be used in a VIA clause, together with the member types with
which they can be used and the responses that will be obtained.

. The Alternative Verb Keyword table on page 174 offers alternative verb keywords
that can be used instead of some USES and CONSTITUTES constructions.

141

ASG-DataManager IMS (DL/l) Interface

Examples

142

The Interrogation Syntax and Alternative Verb Keyword tables give the possible values
for the selection, member-type, aternative-verb-keyword, and via-keyword variablesin a
WHICH command of thisform:

VWHI CH sel ection USES menber - name VI A vi a- keywor d
CONSTI TUTES

al ternative-verb-keyword nenber - nane

For example, to find out which process members use a particular segment in the segment
search argument, the VIA keyword SSASisused. The entry for SSASin the
Interrogation Syntax table shows that the format of the required command would be in
this form:

PROGRAMS | ogi cal - segnent - nane

VWHI CH MODULES USE i ndex- poi nt er - segnent - nane VI A SSAS;
SYSTEMS physi cal - segnent - nane

Thereis no aternative verb keyword available for this interrogation.

The member types listed for selection and member-name, the alternative verb keywords,
and the keywords for use in the VIA clause are additional to those available for the
generalized version of the WHICH command. The exceptions to this are the BOUND,
CONTAINS, IF, and NAME keywords, and the alternative verb keyword CONTAINS.
These are included in the tables to demonstrate their use with |M S-specific member

types.

If any of the keywords are also available for interrogating a DataM anager definition of
another DBM S and the user's implementation of DataManager includes an interface to
that system, responses to interrogations can a so include members that are defined for
other DBMS.

Throughout the following sections, any of the aternative forms DL/1-DATABASES,
DLI-DATABASES, DL1-DATABASES, and IMS-DATABASES are accepted for the
keyword DL/I-DATABASES.

Similarly, the alternative forms DL/1-DATASETS, DLI-DATASETS,
DL1-DATASETS, and IMS-DATASETS are accepted for the keyword
DL/I-DATASETS.

The keywords for usein the VIA clause allow every clause of amember definition to be
interrogated. The examples that follow show how the keywords can be used to interrogate
the DataM anager definitions of some important IMS concepts.

4 Extensions to DataManager Commands for IMS (DL/I) Databases

Generated Fields Interrogation

The GENERATES clause of physical segment or index pointer segment data definitions
can beinterrogated using the keyword GENERATES in the VIA clause, or by using the
alternative verb keywords GENERATES or GENERATED-BY . For example, the
following commands could be used to obtain alist of all thefieldsthat are directly
specified in the GENERATES clause of the segments residing in a particular database:

KEEP WHI CH PHYSI CAL- SEGVENTS DI RECTLY CONSTI TUTE
physi cal - dat abase- nane;
PERFORM " ALSO KEEP WHI CH | TEMS, GROUPS, SEQUENCE- KEYS"
"Dl RECTLY CONSTI TUTE * VI A GENERATES; "
KEPT- DATA CLEAR- KEPT- DATA;
LI ST KEPT- DATA ALPHABETI CALLY;

If an alternative verb keyword was used, the PERFORM command might read:

PERFORM " ALSO KEEP WHI CH | TEMS, CROUPS, SEQUENCE- KEYS"
"DI RECTLY CENERATED- BY *;"
KEPT- DATA CLEAR- KEPT- DATA;

Hierarchical Path Interrogation

Hierarchical path interrogation is performed by using the keywords PARENT or
FATHER in the VIA clause, or by using the alternative verb keywords FATHERS or
FATHERED-BY . For example, using the exampleillustrated in "The Member Typefor a
HSAM Type IMS (DL/I) Database" on page 75, the response to this command:

VWHI CH SEGVENTS USE JOB-TI TLE VI A PARENT;

would consist of the segments DEPARTMENT, EMPLOY EE-NUMBER, and
JOB-STATUS, which are direct or indirect parents of segment JOB-TITLE.

This command:

VWHI CH SEGVENTS DI RECTLY CONSTI TUTE JOB- STATUS VI A FATHER,

would cause the segments SALARY and JOB-TITLE, which are direct dependents of
segment JOB-STATUS, to be output.

Using the alternative verb keywords, the first interrogation could be this;
VWH CH SEGVENTS FATHER JOB- Tl TLE;

and the second this:

VWH CH SEGVENTS DI RECTLY FATHERED- BY JOB- STATUS.

143

ASG-DataManager IMS (DL/I) Interface

Logical Relationship Interrogation

The TO keyword interrogates the relationship between logical child segments and their
destination parent segments, as specified in the RELATED-AS clause of the logical child
segment definition.

For example, this command:

VHI CH PHYSI CAL- SEGVENTS CONSTI TUTE ASY-LINE VIA TO

when used with the example in "Physical Segments’ on page 24 would respond with the
segment PRODPART.

Secondary Index Relationship Interrogation

The relationships between index pointer segments and index target segments can be
ascertained by using the TARGET keyword.

Using the exampleillustrated in Figure 3 on page 10, this command:

VWHI CH | NDEX- PO NTER- SEGVENTS DI RECTLY USE NAMEI D VI A TARCET;
would respond with the segment COLORSEG.

The relationship between index pointer segments and source segments can be
interrogated using the SOURCE keyword. This interrogation:

VHI CH | NDEX- PO NTER- SEGVENTS DI RECTLY USE AUTOMBLE VI A SOURCE;

would respond with the segment COLORSEG.

Segment Search Argument Interrogation

144

The SSAS keyword can be used to find out which segments are used by a particular
process member through its SEGMENT-SEARCH-ARGUMENTS clause. This could be
achieved by this command:

VWHI CH SEGVENTS DI RECTLY CONSTI TUTE pr ocess- nenber - name VI A SSAS;

Using the PROCESSES clause examplein "Syntax of the PROCESSES Clause" on
page 132, the response would consist of the segments SKILMAST, SKILLNAM,
EXPEMAST, and EDUGMAST.

The QUALIFIED-ON keyword is used to find out the relationships between process
member types and the fields specified in the QUALIFIED-ON subordinate clause of the
SEGMENT-SEARCH-ARGUMENTS clause. Again, using the examplein " Syntax of
the PROCESSES Clause" on page 132, the response to the command: WHI CH MEMBERS
DI RECTLY CONSTI TUTE process- nenber-nanme VI A QUALI FI ED- ON;

would include the members SKLLCODE, SURNAME, and INITIAL.

4 Extensions to DataManager Commands for IMS (DL/I) Databases

Sensitive Segment and Sensitive Field Interrogation

The relationships between structure type PCBs and the sensitive segments and sensitive
fields specified in them can be interrogated using the SEGMENT or
SENSITIVE-FIELDS keywords respectively. For example, using the second example of
astructure type PCB in "Member-type Descriptionsfor IMS (DL/I) Program
Communication Blocks" on page 117, this command:

WHI CH SEGVENTS DI RECTLY CONSTI TUTE ASY- PACK- PCB VI A SEGVENT;
would respond with the segments ASY -LINE and ASY-PACK.

This command:

VH CH MEMBERS DI RECTLY CONSTI TUTE ASY- PACK- PCB VI A
SENSI TI VE- FI ELDS;

using the same example, would respond with the members PACK-NO, PROD-NO, and
QTY-REQD.

Sequence Key Interrogation

The SEQUENCE-KEY clause can be used to interrogate the relationships between
sequence key fields and segments in which they are specified.

These commands could be used to ascertain the sequence key fields of thelogical
database SKILLEMP illustrated in Figure 1 on page 6:

KEEP WHI CH PHYSI CAL- SEGVENTS CONTAI NED- BY SKI LLEMP;
PERFORM ' VHI CH | TEMS, GROUPS, SEQUENCE- KEYS DI RECTLY
" CONSTI TUTE * VI A SEQUENCE- KEY; '
KEPT- DATA CLEAR- KEPT- DATA,

This pair of commands would respond with the members SURNAME, PAYRNUMB,
SKLLCODE, QUALCODE, and EMPLOY EE-NO.

Variable Length Array Interrogation

The BOUND keyword can be used to interrogate the relationship between variable length
arrays and physical segments. For example, this command:

VWHI CH PHYSI CAL- SEGVENTS USE NUMBER- OF- LI NES VI A BOUND;
would respond with the names of the physical segmentswith CONTAINS clauses that

refer directly or indirectly to a variable length array the number of occurrences of which
is based on the value of the item NUMBER-OF-LINES.

145

ASG-DataManager IMS (DL/l) Interface

Member Type Interrogations

146

The purpose of thistable isto summarize, for each IM S-specific member type, the VIA
keywords that may be used to interrogate various clauses of the member definition.

In the first column of the table, the member types are listed in the order of databases,
segments, Program Communication Blocks (PCBs), and process members. The second
column lists the keywords that are available for interrogating clauses in members of a
particular type. The third column explains, for each keyword, the relationship between
the member type and the clause, or subordinate clause, of the member type data definition
that the keyword interrogates.

Member Type Interrogation

Member Type Keyword for Usein Relationship Interrogated by Keyword
VIA Clause
GSAM-DATABASES BOUND Relationship between GSAM databases

and variable length arrays specified,
directly or indirectly, as groups or items
inthe CONTAINS clause of the database
data definition statement.

CONTAINS Relationship between GSAM databases
and group and item members contained
directly or indirectly in the database.

DL/I- DATASETS Relationship between GSAM databases
and the datasets that constitute the
database (that is, the datasets specified in
the DATASETS clause of the database
data definition statement).

IF Relationship between GSAM databases
and group and item members specified, in
| F subordinate clauses, in the
CONTAINS clause of the database data
definition statement.

HDAM-DATABASES ADD-TO Relationship between HDAM or HIDAM
HI DAM-DATABASES databases and
dataset members specified in the
ADD-TO subordinate clause of the
database data definition statement.

CONTAINS Relationship between HDAM or HIDAM
databases and segment membersthat are
contained in the database.

DL/I- DATASETS Relationship between HDAM or HIDAM

databases and the dataset members
% Eﬁ;‘;ﬁ?g } specifiedinthe DATASETSclauseof the
database data definition statement.

4 Extensions to DataManager Commands for IMS (DL/I) Databases

Member Type I nterrogation

Member Type Keyword for Usein
VIA Clause

Relationship Interrogated by Keyword

RANDOMISING-
MODULES

RANDOMIZING-
MODULES

HISAM-DATABASES CONTAINS
HSAM-DATABASES

DL/I-DATASETS

FATHERS
PARENTS
LOGICAL- CONTAINS
DATABASES
FATHERS
PARENTS

SECONDARY-INDE CONTAINS
X-DATABASES

DL/I-DATASETS

Hierarchical parent and child relationship
between segments where the names are
listed in the CONTAINS clause of the
database data definition statement.

Relationship between HDAM or HIDAM
databases and module members.
specified in the
RANDOMISING-MODULES clause of
the database data definition statement.

Relationship between HSAM or HISAM
databases and segment members that are
contained in the database.

Relationship between HSAM or HISAM
databases and the dataset members that
constitute the database (that is, the
datasets specified in the DATASETS
clause of the database data definition
statement).

Hierarchical parent and child relationship
between segments where the names are
listed in the CONTAINS clause of the
database data definition statement.

Relationship between LOGICAL
databases and segment members
contained directly or indirectly in the
database.

Hierarchical parent and child relationship
between segmentswhose namesarelisted
inthe CONTAINS clause of the database
data definition statement.

Relationship between secondary index
databases and the index pointer segment
contained in the database.

Relationship between secondary index
databases and the dataset members that
constitute the database (that is, the
datasets specified in the DATASETS
clause of the database data definition
statement).

147

ASG-DataManager IMS (DL/l) Interface

148

Member Type I nterrogation

Member Type

Keyword for Usein
VIA Clause

Relationship Interrogated by Keyword

INDEX-POINTER-
SEGMENT

SHARES-WITH
SHARING-
WITH

BOUND

CONCATENATED
-KEY-NAMES

CONTAINS

DUPLICATE-
DATA-FIELDS

GENERATES

Relationship between secondary index
databases and other secondary indexes
sharing the same secondary index
database (that is, secondary indexes with
names that are specified in the
SHARES-WITH or SHARING-WITH
clause of the database data definition
statement).

Relationship between index pointer
segments and variable length arrays
specified directly or indirectly as groups
or itemsin the CONTAINS clause of the
segment data definition statement.

Relationship between index pointer
NAMES segment and the name to be
used for the concatenated key of itsindex
target segment (that i s, the name specified
inthe CONCATENATED-KEY-NAME
clause of the segment data definition
statement).

Relationship between index pointer
segmentsand group and/or item members
specifiedinthe CONTAINS clause of the
segment data definition statement.

Relationship between index pointer
segments and items, groups and/or
system related fields specified in the
DUPLICATE-DATA-FIELDS clause of
the index pointer segment data definition
Statement.

Relationship between index pointer
segments and members of any of the
types that may be specified in the
GENERATES clause of theindex pointer
segment data definition statement.

Relationship between index pointer
segmentsand item and/or group members
specified in IF subordinate clauses in the
CONTAINS clause of the index pointer
segment data definition statement.

4 Extensions to DataManager Commands for IMS (DL/I) Databases

Member Type I nterrogation

Member Type

Keyword for Usein
VIA Clause

Relationship Interrogated by Keyword

—A
Q2
=

MAINTENANCE-
EXITS

ON

SEARCH-KEY -
FIELDS

SEQUENCE-KEY S

SOURCE

SUBSEQUENCE-
FIELDS

TARGET

Relationship between index pointer
segments and members that may be
specified in theN/OF subordinate clause
of the GENERATES clause of the index
pointer segment data definition
statement.

Relationship between index pointer
segments and modul e members specified
inthe MAINTENANCE-EXITS clause
of the index pointer segment data
definition statement.

Relationship between index pointer
segments and the member specifiedinthe
ON subordinate clause of the
RELATED-TO clause of the index
pointer segment data definition statement
[that is, theindex search field (XDFLD)].

Relationship between index pointer
SEGMENT segments and group and/or
item members specified as search key
fieldsin the SEARCH-KEY-FIELDS
clause of the segment data definition
statement.

Relationship between index pointer
segments and the member specified asthe
sequence key in the SEQUENCE-KEY
clause of the segment data definition
Statement.

Relationship between index pointer
segments and the index source segment
specified in the SOURCE clause of the
segment data definition statement.

Relationship between index pointer
segments and items, groups, and/or
system related fields specified in the
SUBSEQUENCE-FIELDS clause of the
segment data definition statement.

Relationship between index pointer
segments and the index target segment
specified inthe RELATED-TO clause of
the index pointer segment data definition
Statement.

149

ASG-DataManager IMS (DL/l) Interface

Member Type I nterrogation

Member Type

Keyword for Usein
VIA Clause

Relationship Interrogated by Keyword

LOGICAL-SEGMENT

PHYSICAL-
SEGMENT

150

CONTAINS

IN-

DATABASES
DATABASES

BOUND

CONCATENATED
-KEY -
CONSTITUENTS
(source segments

only)

CONCATENATED
-KEY-FIELDS
(source segments

only)

CONCATENATED
-KEY-NAMES
(logical child
segments only)

CONTAINS

EDIT-
COMPRESSION-
EXITS

Relationship between logical segments
and physical segments contained by the
segment.

Relationship between logical segments
and the physical database in which the
physical segment contained by thelogical
segment resides (specified by the IN
subordinate clause of thelogical segment
data definition statement).

Relationship between physical segments
and variable length arrays specified
directly or indirectly asgroupsor itemsin
the CONTAINS clause of the segment
data definition statement.

Relationship between physical segments
and fields specified in the
CONCATENATED- KEY-FIELDS
clause of the physical segment data
definition statement. Only those fields
specified before the AS CKxxxxx
subordinate clause are included.

Relationship between physical segments
and system related fields specified in the
AS CXxxxxx subordinate clause of the
CONCATENATED-KEY-FIELDS
clause in the segment data definition
Statement.

Relationship between physical segments
and the member specified asa
concatenated key namein the
CONCATENATED-KEY-NAMEclause
of the segment data definition statement.

Relationship between physical segments
and group and/or item members
contained directly or indirectly in the
segment.

Relationship between physical segments
and module members specified in the
EDIT-COMPRESSION-EXITSclauseof
the segment data definition statement.

4 Extensions to DataManager Commands for IMS (DL/I) Databases

Member Type I nterrogation

Member Type

Keyword for Usein
VIA Clause

Relationship Interrogated by Keyword

GENERATES

—A
QI
R=

RENAMES (logical
child segments

only)

SEQUENCE-KEY -
CONSTITUENTS
(logical child
segments only)

SEQUENCE-KEY

Relationship between physical segments
and fields that can be specified in the
GENERATES clause of the segment data
definition.

Relationship between physical segments
and item and/or group members specified
in IF subordinate clauses of the
CONTAINS clause of the segment data
definition statement.

Relationship between physical segment
and members of any of the typesthat are
specified in the IN/OF subordinate clause
of the GENERATES clause of the
segment data definition statement.

Relationship between logical child
segmentsand items, groups and sequence
key membersspecifiedintheRENAMES
clause of the logical child segment data
definition statement.

Relationship between logical child
segments and fields specified in the
SEQUENCE-KEY clause of the segment
data definition statement, when the AS
subordinate clause of the
SEQUENCE-KEY clause has also been
specified. Only the entries preceding the
AS subordinate clause areincluded in the
response.

Relationship between physical segments
and the item or group member specified
in the SEQUENCE-KEY clause of the
segment data definition statement, when
the AS subordinate clause has not been
specified. Also, when the AS clause has
been specified, the relationship between
the physical segment and the sequence
key name specified in the AS clause.

151

ASG-DataManager IMS (DL/l) Interface

152

Member Type I nterrogation

Member Type

Keyword for Usein
VIA Clause

Relationship Interrogated by Keyword

PCB (GSAM type)

PCB

(OUTPUT-MESSAGE

type)

PCB (STRUCTURE
type)

TO (logical child
segments only)

WITH (paired
logical child
segments only)

IN-

DATABASES
DATABASES

NAME

NAME

IN-

DATABASES
DATABASES

NAME

SECONDARY -
SEQUENCE-ON

SEGMENT

Relationship between logical child
segments and the destination parent
segment specified in the TO subordinate
clause of the RELATED-ASclauseof the
physical segment data definition
statement.

Relationship between the logical child
segment and the segment withwhichitis
paired, as specified inthe WITH
subordinate clause of the segment data
definition statement.

Relationship between PCBs and the
GSAM database named in the PCB data
definition statement.

Relationship between PCBs and the PCB
specifiedinthe NAME clause of the PCB
data definition statement.

Relationship between PCBs and the PCB
specified inthe NAME clause of the PCB
data definition statement.

Relationship between PCBs and the
database named in the DATABASE
clause of the PCB data definition
statement.

Relationship between PCBs and the PCB
specifiedinthe NAME clause of the PCB
data definition statement.

Relationship between PCBsand theindex
pointer segment specified in the ON
subordinate clause of the

SECONDARY -SEQUENCE clause of
the PCB data definition statement.

Relationship between PCBsand sensitive
segments specified in the SEGMENT
clause of the PCB data definition
statement.

4 Extensions to DataManager Commands for IMS (DL/I) Databases

‘Juswelels uoniuljep erep

we1s/s 1o weiboud ‘a|npow ayy Jo asrme|d
S3SSTO0Hd 8yl Jo ssrejo areulpiogns
SVSS 8y} Ul pe1410ads slequia
JUBWIBaS 31 pue sJeguisll WRSAS 1o
weJlboud ‘sinpow usamiaq diysuoirpy

Jusuwelels

uoniuiep eep wosfs Jo weibo.ud
‘8[Npow 8y} Jo 8sre |0 SISSID0Hd 8L}
joasreo areulpiogns NO-d3IH1TvNO
a3 Ul pa1410ads spp 1y Yyoless

BWIBas aY) pue siequisll WIS/S Jo
weJiboid ‘s npow usamiag diysuoirpy

Jusuwelels

uoniuiep eep wesfs Jo weibo.id
‘3|Npow 8y} Jo 8sMe-53SS3O0Hd

3y} Jo asne o areuIpiogns

SNIV.LNOD 8y} Ul pa1310ads siequisw
g0d 9yl ‘s1 eyl ‘asn fayl yoiymsequisw
92d 3yl puUe Seguisl WasAs 1o
weJiboud ‘snpow usamiag diysuoirpy

‘Juswelels uoniuljep erep

g0d 8y Jossrep saT13aI4d-IAILISNIS
aU1 Jo sueaw Ag aAnsuss Se pal)ioads
Sppl pue g0d usamig diysuoirpy

SVSS

NO-a3i14171vNnO

W31ISAS
SNIVLNOD NWVH90dd3ITNAON

Sat3ai4
-AAILISN3S

pJomAay Ag pareboieiu| diysuoirepy

asne|D vYIA
ulasn 10) plomAa adAl eque

uoirefo Jeiu|adA] Jeque N

153

ASG-DataManager IMS (DL/I) Interface

VT dbed

U0 ,SPIOMAS] (I8 A\ SAITRURT| Y, Ul 30 110S9p 812 3 [LIeA PIoM/ASY-geA-BAITeUIR) 2 8U) Jo) paiiddns aq Aew reyi seneaay L

'SUWIN |02 Y1IN0J puUe puodss ay) ul paisi| SadA) sy Jo slequisl apnjoul saliofored
3591 UByM AJuo paurelqo ag ||IM sasuodsal njbuiueaw ybnoylfe ‘pasn ag Aew STINVYN-XIAN| pUe ‘V1vd-1d3aM
‘SHIGINTIN SPIomASy UoNIB s [eJeuab ay) ‘suwN o2 Y1noj pue puodss ay) ul pasi| sadAl sequuiswi ayl 01 uonippe u|

U0 paliodal a.le sasne o SNV LNOD Aq paustidese sdiysuoie e 10a.1pul
pue sdiysuoie . 19911p Yiog ‘pa14109ds 10U st ATLOTHIA 3 " ATLOFH A piomAisy ayy Aq paiyifenb usaqg sey uoirefolsiul
ay) uaym Jeadde Teyr asoyl ale aey pa|riep sesuodsal ayl eyl 910N “piomAay ayi Jo asn syl Buluieouod seou Aue sapnjoul

pue ‘uoirefoleiul ST LN LILSNOD 10 SISN e Byl Wol) paueiqo g [|Im Jeyl 3sUodsal sy sute(dxe UWN|od feulyay L

‘uonebolRIUIST L NLILISNOD® Ul)nibuiuesw a.e Tey) asoy a.e UaAIB sadA1 Jeguwial ay) Teyl 1d00xe

‘SULLIN|02 PJ1Y] pUe puodss ayl Ul Teyl 01 Je|illis UoIfewlIoul ‘ApARdadsal ‘BAIB SuwWN|od Yl pue yunoay] "paueiqo aq
01S1asuodsal [njbuiueaw e J1 pa1dses aq P NOUS 3 (e LIeA SWeU-JBquisu 84} U1 pauleu sBguisl 3y Yo Iym wodj sadAl sequisw
9U1SISI| UWN oo pJiyl1ay L "uoirbolpuI STSN . Ul d|geLeA UONIS BS aY) J0] paljioads ag ued eyl sadAl sequisw njbuiuesw
3y} |[e SISI| UWN |02 puodss 8y ‘asned | e Ul pasn aq ued eyl spJomAsy ay ‘jeplo [eanedeyde Ul ‘Sisi| uwinjod sy ay L

aueu - Jaquau p JowAaX -q IaA-8A 11eU IS] |

S31NL I1SNOD
_o_Qs>mv_-m_><_>mtmc-Eo,cmt mm_mD co:om_mm_._o__.._s

‘W0 J 3y} Jo uoireB0o.eIUl Ue 10NJISU0d 01 Paiinbal UoITewIo Ul 8yl YlIMm Jasn syl sspinoid a|gqel siyL

xejuAs uonebouialul

B

—l

4 Extensions to DataManager Commands for IMS (DL/I) Databases

‘uoirefoleiul

a1 JO 1red auleu-laquisw 8y} Ul paweu
Wwewbss easAyd Jo ‘uswbss eiulod xepul
‘sseqeIep INVSD 8y} Ul paueiuod Aele yibue|
a|gellene J0j punoq Aelle Ue se pasn si eyl
W1l ydes Joauweuayisulelgo 'SILNLILSNOD

‘uorefo.eiul 8yl Jo Led awreu-equisw

3y} Ul pauleu W)l 8y} Jo anfeA ayl Aq paijioads
9.Je S90UB.INJJ0 JO Jaquuinu ay} aeym Aelre
yibus| a|ge e e sueod eyl Juswbss easAyd
Jo/pue uewbas Jeuiod xapul Jo/pue aseceep
INVSO YJes Joaweu syl surelqo S3snN

‘uoireBo.ieiul 8yl Jo Led aueu-equsw

|yl ul pawreu sseqerep ANVAIH 10 NVYAH

8y} jo uoiiulipperepay) jossrep O1-adyv
auy Ul paiyosds si ey Jequiswl 135SV 1 vd-1/1d
8y} Josweu sy sueiqo S31LNLIISNOD

‘uorefo.eiul 8yl Jo Led awreu-equisw

Y} U1 pa14109ds Jequisw 13SV.1va

-1/7@ 3y} ‘voljuljBp eRp S} JO asre|o
O.1-aavay} ul 'sa14109ds eyrasederep NvAIH
10 NVQH 8y} jo suwreu ayisueiqo S3sn

ANIANOFS
-WO ISAHd

ANINOFS
-431N IOd -X30N |

3Svdv1ivad IANVSO

3ISvav.iva Ava H
3Svav.1lva WvaH

S13sviva-1/1d

WAL |

13sviva-1/1d

SINTINO3S

SININOIS
-¥D ISAHd

SININDIS
431N 10d -X30N |

S3svav.iva
sasvaviva- [/1d
SaASvav.iva WSO

S3Svaviva
S3svavliva- |1 /1d

S3svav.iva
-V ISAHd

S3asvav.lva wva H
S3svav.1va WvaH

annog

ol -aav

Saj0N/uoITeue|dxg

aleu-Bquwew
1o} sadA1 Jequisw
IniBuiues N

Sp Jomfay
uolReps
adA1-Jequiswi
|nibuiues |\

suolrefoleIUIST LN LIISNOD

alreuU- BguiBW
10} s2dA1 Jequiswi
|nibuiues |\

SpJomAay U011 jes
adA1-Jequiswi
[njbuiues |\

suolefoleluIsS3IsN

asnep vIAsyl
ulasn JoJ pJomAa |

Xejufs
uolrefo 1 eu|

155

ASG-DataManager IMS (DL/I) Interface

‘uoireBouieiul syl Jo 1ed aueu-equsw

8y} u1 paueu Jewbss easAyd sy Jo uonuLep
Bep a3y} Jo asneparuIpiogns XXX XXM

SV 8y} ul pa1y1oads si ey} ppl perepI weshs
yJes jo aweu ayisuego ‘S3LNLIISNOD

‘7z abed

U0 ,SIUBWINSS [BOSAUd ,, 835) XXXXXMO
0§ 8Y} JO 3 SNW P14 SIy L “uoirebosiul

3y} Jo 1ied alleu-eguUBLU B} Ul paWeu pp1y
pale eI WesAs ay) ‘uoniulsp erep Sl JO asrejo
dleUIPIOgNS XXX XXM SV Yl Ul 'sa13109ds Jeu
wewies easAydayl josweu aysurgO 'SASN

'Sjuawifas 821N0S Xapul Se pauljep afe eyl
siuewbss orsAyd 01 seijdde Ajuo piomAsy siyL

"asuodsal ayj Ul papnoul

9J1e asre |0 9leuIpIogNS X XXX XMD SV ydes 0}
Joud pa14199ds sAay aouenbss pue ‘sdnoJb ‘swiall
AuQ "uoireholsiuiay] Jo 1ed suwreu-equisLl sy}
Ul paLeu Juswiss feasAyday) jossrepsaiaid
-ATM-A31LVYNILYONOD 3y Ul po14109ds

SI Tey: A8» aouenbas Jo/pue dnoib Jojpue

WLl Yydes Josureusiisueigo S3LNLILSNOD
‘asneo

aleuIpIogns XX XX XMD SV ayibuipadaidasne|d
a1 Jo 1Lred ay ul Jeadde 1snw aweu-egquew

Aq pawreu Jequiawl ay | ‘uoieboleiul

3y} Jo 1Lied sweu-equisu 3yl Ul paweu Aoy
aouenbas 1o wall Jo dnoib syl ‘uoniuiep eRp
S1jossrep sa1aid-AIN-Ada LYNILVYONQOD
8y} Ul ‘sa1j10ads ey Juswibes

feasAyd yoes Jo swreu syl surIgO SISN

'Sjuawfas 821N0S Xapul Se pauljep afe eyl
sewbss rorsAyd 01 Ajuo soidde piomAsy siyL

(A Juo siuaubss
89 In0s) INIFAOIS saldli4 -

a4

SO ISAHd A3LVT3d INILSAS -d31V13d WILSAS

(Ao i} —
swewbss soinos) SAA -FONINO3S

INIADIS SO
VD ISAHd SAIL

AT -FONTINO3S
dnowo
NTL |

SINTINO3S
SININOIS

Sa13a 14 -A3aM

- VO ISAHd

SINTINO3S
SININOIS

-03.1VN31VONOO

SINTNL 1LSNOD
A

- VO ISAHd

-03.1VN31VONOO

S9loN/uolreue|dx3

Sp Jom/fay

aleu-JBguwew uo19ejes
Jo)sadA1 Jequisw adA1-equiswi
|niBuiues N |nibuiues |\

suoirefoleUIST LN LIISNOD

alreuU- oguiW
1o} s2dA1 Jequisw
|nibuiues |\

SpJomAay U011 jes
adA1-Jequiswi
[njBulues |\

suolefoleluisS3IsN

asnep vIAsyl
ulasn Joj pJomAa |

xeluss
uolrefo 1 eu|

[{o]
Lo

1

4 Extensions to DataManager Commands for IMS (DL/I) Databases

"(GT obed U0 ,XeluAS uoneboleu],
895) pesn aq P|nod A9-AINIVLNOD

pue SN|V.LNOD SPIoMASY qUeA 8 ‘ssrefd VIA
ay1ul pJomASY SN 1V.LNOD ay1 Busn jo pesisu|

‘uoirefouseiul

a1 JO 1red auleu-JaquiBW 3y} Ul paweu
aseqerep NSO 8yl Jo uohiuljsperep syl Jo
8SMeP SN |V.LNOD 8y Ul pa1108ds dnoJb Jojpue
WisH Ydes Josweuayisuelqo 'S3LNLILISNOD

‘uoirefo.eiul 8yl Jo 1ed awreu-laquisw sy S3svav.iva
Ul pawreu dnouB Jo wieliay} ‘UoniulsperRpsl Jo oY aTTa S0
8SMe[OSN|V.LNOD8Yl Ul '$9141090S Jeylaseqerep mn_awm OO S3Svav.Lvd - | \M
NVSO yJes Jo sureu syl surelqo 'Ss3sn 3Svav.ivd WO SAEIN 3L | SASvav.1lva NvSD SN IVINOO
‘uoireboleiul 8yl Jo
1ed awreu-equswiay) ul pawreu Juswiss Jejuiod
xapul Jo ‘Juswibes feasAyday) jo uoniuleperp
|41 Jo ssrejo sweu- A3 -3 VNI LVYONOD
8y} Ul pa1}10ads S1 ey} AoX pateuereou0d
aU) Jo aUe 8Ly sUEIGO 'SILNLILSNOD
‘uoieBolieul SINTNO3S
a1 Jo 1red auwleu-JaquiBW By} Ul paweu
s pommpia i aingoen oo VIS s SIS
SHjossrePp JINVN -A3N -d31LVNILVYONOD _
3] U1'S3141090s Tey) Juswibes-euiod-xspul Jo ANIND3S IAWN -AIA IAWN -AIA SINIADIS SIAVN _-A3A
swibes [easAyday) josweusyisurigo S3ISN -VO ISAHd d31VN31VYONOO 031YNILVYONOO -VO ISAHd 03 1LVYNILVYONOO
Sp Jom/fay
awreu-egquew uon®ps suwrReU-RBgquBW SPIoMAS) UOIBRS
Jo)sadA1 Jequisw adA1-Jequew JoJSadAl Jequiew adA1-Jequiswi asnep vIA3Y1
S9JON/uUoITeuR|dx3 |niBuiues N |nibuiues |\ |nibuiues |\ [njbuitea |\ uiasn o) pIom/a

suoirefoleUIST LN LIISNOD

suolefoleluisS3IsN

xeluss
uolrefo 1 eu|

157

ASG-DataManager IMS (DL/I) Interface

"(#/GT °@0bed uo , XejuAsS uoiebolRiul,,
885) pasnag pnod A9-A3NIV.LNOD

pue SN1V.LNOD SpiomAsy qenau) ‘ssnefd vIA
Ay ul pJomAex SN 1V.LNOD 8y} Bussn jo pesisu|

‘uoireboleiul By} Jo

1ed sweu-equisll 3yl Ul paweu aseqelep ay) Jo
uo U IBp BEP 8Y1 JO 8SMe o SNIV.LNOD 8y Ul
pa1j0eds S| ley) ‘Wwelwbss jeosAyd Jojpue eaifo|
Uoes JO aleu 8yl sueIgo ‘SALNLILSNOD

‘uoirefouseiul

a1 JO 1red auleu-JaquiBW 8y} Ul paweu

swibes [easAyd 1o ealbo]ay) ‘uoniulep elep
S11 JO 8SMe [0 SN IV.LNOD 83 Ul 's3131080s ey
aseqelep [eolbo| yaes Josweuayisurigo S3sN

(ST obed U0 ,XeluAS uoneboleu],
895) pesn aq pInod A9-AINIVLNOD

pue SN|V.LNOD SPIoMASY QoAU ‘ssrefd VIA
ay1ul pJomASY SN 1V.LNOD ay3 Busn jo pesisu|

‘uo ol

a1 Jo Lred alLieu-lBgUIBW 8y} Ul paweu
asecelep U JO UOHIULRPP BIRp 8U) JO 3sNejo
SNIVLNOD 3y} Ul pa1410ads ‘Juawifies easAyd
UJes Jo aueu 8yl sueIgo ‘SILNLIISNOD

‘uoireBouieiul syl Jo Led aueu-equsw
U} u1 pawreu wewbss easAyd sy ‘voniuep
©lep s} Jo 3se|d SNV LNOD 3yl Ul ‘'Ss914109ds
ey sseqerep Yyaes Jo swreu aylsueiqo S3sn

3Svaviva
-WO O

3Svdv1va NVSHS

E|
Svaviva Avs HS

3Svav.1lva NvsH
3Svaviva vS H
3ISvav.iva Ava H
3Svav.1lva WvaH

SINTAD3S

SINIAD3S
-V ISAHd

1
NINO3S -TvO 10071

SINIAD3IS
-V ISAHd

ANINOFS
-WO ISAHd

INIAO3S -TvO O

SININO3IS
-VO ISAHd

S3svav.ivd
S3svavliva- | /1d

S3svav.iva
-TvD B0

S3svav.ivd
S3svavliva- | /1d
S3ASVAV1vVa AVSHS

S3ASVAV1LVA NVS HS

S3svav.iva
-V ISAHd

S3svav.va NvSH
S3svaviva WS H
S3svav.iva Wvd H

3Svav.iva WvaH

SN IWINOO

SN IVINOO

S9loN/uolreue|dx3

aleu-JBguwew
Jo)sadA1 Jequisw
|niBuiues N

Sp Jom/fay
uolReps
adA1-equiswi
|nibuiues |\

suoirefoleUIST LN LIISNOD

alreuU- oguiW
1o} s2dA1 Jequisw
|nibuiues |\

SpJomAay U011 jes
adA1-Jequiswi
[njBulues |\

suolefoleluisS3IsN

asnep vIAsyl
ulasn Joj pJomAa |

xeluss
uolrefo 1 eu|

B

—l

4 Extensions to DataManager Commands for IMS (DL/I) Databases

"(GT obed U0 ,XeluAS uoneboleu],
895) pesn aq pInod A9-AINIVLNOD

pue SN|V.LNOD SPIoMASY qieA U ‘ssrefd VIA
ay1ul pJomASY SN 1V.LNOD ay1 Busn jo pesisu|

‘uorefo.eiul 8yl Jo Led awreu-equisw

a1 ul pawreu ‘wawbss Jejuiod xapul

8y} Jo uoniuiBsperep sy} Joasred SNIV.LNOD
3y} ul pa13109ds S| eyl ‘well Jojpue dnolB

4Jes Jo sweu syl sueqo 'S31LNLILSNOD

‘uoireBouieiul syl Jo 1ed aueu-equsw

AU} Ul paweu w1l Jo dnolb ay) ‘uoniulep
©lep SH JO 80 SN IV LNOD 3yp Ul ‘'sa14109ds
eyl Juswibss Jeiod xapul Jojpue Juswbas
leasAyd yoes Jo swreu syisurIgO SISN

"(/GT °bed uo , XejuAs uoiebolRiul,,
885) pasn 8q p|nod A9-AINIVLNOD

pue SNIV.LNOD SpIomAsy geAdU) ‘ssnefo VA
ayul pIomAex SN1VLNOD 8yl Buisn jo peassu|

‘uoireBouieiul syl Jo Led aueu-equsw

BU] Ul palieu aseqeep Xapul Arepuodss

8y} Jo uoniuipperrep ay) Joasred SNIV.LNOD
a3 ul pa1yIoads s1 ey ‘Juswibes Jeulod xepul
ydes Jo aeu syl sueygo 'S31NLILSNOD

‘uo ol

a1 Jo Lred alLleu-lBguIBWI 8Y) Ul paweu

wswbes Jewiod Xapulay) ‘uoniulep eRP S JO
3SMePSN1V.LNOD3UI U 'S3141090S Teyasedelep
Xopul1 Arepuodas ay) Jo aweu ayl suelgo S3sn

INIANOFS
-VO ISAHd

ANINOFS
-431N IOd -X3ON |

3Svaviva

3Svav.1lva -X3AN |
-AIVANOO3S

dnow
SNETH

SINTAD3S

SINIADIS
“-431IN Od -X3AN |

dNOEO
WAL |

ININOFS
-d431IN Od -X3AN |

SININO3S

SINTINO3IS
-V ISAHd

SININDIS
431N 10d -X3QN |

S3svav.ivd
S3svavliva- | /1d
S3SVAv.1va -X3AN |

-AdVANOO3S

SN WINOO

SN IVINOO

S9loN/uolreue|dx3

aleu-JBguwew
Jo)sadA1 Jequisw
|niBuiues N

Sp Jom/fay
uolReps
adA1-equiswi
|nibuiues |\

suoirefoleUIST LN LIISNOD

alreuU- oguiW
1o} s2dA1 Jequisw
|nibuiues |\

SpJomAay U011 jes
adA1-Jequiswi
[njBulues |\

suolefoleluisS3IsN

asnep vIAsyl
ulasn Joj pJomAa |

xeluss
uolrefo 1 eu|

159

ASG-DataManager IMS (DL/I) Interface

"(/GT °bed uo , XejuAs uoiebolRiul,,
885) pasn 8q p|Nod Ag9-AINIVLNOD

pue SNIV.LNOD SpIomAay goAdU) ‘ssnefo VA
ayul pIomAex SN1VLNOD 8yl Buisn jo peassu|

‘uoireBouieiul syl Jo 1ed aweu-equwsw
a1 Ul pawreu wesAs Jo weiboud ‘anpow ayl Jo
uonulsperpay) Jossne|d S3SS300dd 8yl Jo
asne o a%euIpJogns SNIV.LNOD 8y} Ul paiyioeds

S| ey} ‘(g0d) >00|g uo(eounwiwiod welibold
yJes jo aweu ayisuego 'S3LNLIISNOD

‘uoreboleIuI By} Jo Med sweu-lagquaw syl
ul paweu (g0d) X009 uoiea unwiwo) welbold

aU} ‘UonIU1EP eIep S} JO 8SMe P SISSTI0U NBISAS 15 11vo VoS D LIVD NS SNILSAS
|} jJo ssrejo areuipiogns SN IV .LNOD ANyt SN
oU1 Ul 'Sa11000S L) LBISAS Jo/pLe WeIBoxd N0 WY0Hd NVHD0Hd SN0
J0/pue 8 [npow YyJes Jo sweu syl sureiqo s3Isn JINACON Sg0d g40d S3T1NAON SN IVINOO
"(#GT 9bed uo , XejuAs uoiebo.rur,
885) pasnaqg pInod A9-A3INIV.LNOD
pue SNIVLNOD SpiomAay giensyl ‘ssnejp v|A
ay1ul piomAex SNIV.LNOD a8yl Bussn Jo pesisu|
‘uoireboleiul Byl Jo
1ed aweu-Jaguisw 8yl Ul paweu Juswibes eolbo|
3y} Jo uonuijeperep syl Jossrep SNIV.LNOD
ay) ul pal1oads si Tey uswibes rosAyd
Y3es Jo sureu syl sueiqo S31NLIISNOD
‘uoieBo.eiul 8yl Jo Led aweu-squisw ayl —c oo
u1 paweu wewbss easAyd sy ‘uoniuep elep SINFNOIS SINFOIS
S11 Joasre|d SN|V.LNOD 8yl Ul 'sa1}10ads e ANIADIS SININDIS SININDIS SINIADIS
JuswWibes [eo1bo| ydes Josuleuayisuegqo ‘SISN WO O - WO ISAHd - VO ISAHd -VO PO SN IVINOO
Sp Jom/fay
awreu-egquew uon®ps suwrReU-RBgquBW SPIoMAS) UOIBRS
Jo)sadA1 Jequisw adA1-Jequew JoJSadAl Jequiew adA1-Jequiswi asnep vIA3Y1
S9JON/uUoITeuR|dx3 |niBuiues N |nibuiues |\ |nibuiues |\ [njbuitea |\ uiasn o) pIom/a

suoirefoleUIST LN LIISNOD

suolefoleluisS3IsN

xeluss
uolrefo 1 eu|

Q
[te]

1

4 Extensions to DataManager Commands for IMS (DL/I) Databases

‘uorefio.eiul 8yl Jo Led awreu-equisw

8y} Ul peuteu ssedelep sy} JO Juewees
uonuepeRP Y} JOSSMeP SIISYLVA
Byl Ul palyIoads SI eyl 13SV1va-1/1a
yJes Jo sueu syl suelgo S3LNLILSNOD

‘uoieBoueIul By] Jo 1ed awreu-equsw ay) Ul
paweu Jequew 13SV1VaA-I/1dayl ‘uoniulep
eRp Sl Jo8srep SISV 1VA eyl ul 'salyoeds
Tey) sseqerep 8y} Jo sueu syl surelqo H43sn

‘uoireBo.eiul 8yl Jo 1ed awreu-laquisw sy

Ul paweu Juswibes feaifo| ay) jo uonuLep eRp
U} Joasne|o Ny} Ul pa1410ads S| fey) ‘ssegeiep
8y} Josweu sy sueiqo S31LNLIISNOD

‘uo ol

83U} JO 1red alLeU-IBgWBW BY) Ul paweu aseqerep
INVSIH 10 WVAIH 1o INVYAH 8ys ‘uonuisp
elep SH Jossre N |8yl ul ‘sa1jioeds ey}
Jawibss 2160 yaes Joauweuayisueiqo 'S3sN

3Svav.ivda -X3aN |
-AIVANOO3S

3
Svaviva Vs HS

3Svdv1va NVSHS
3ISvav.iva Avs H
3Svaviva Wwvd H
3Svav.1iva NvaH
3Svav1va AvSO

INIANOFS
WO KO

S13sviva -1 /1d

S3SvAv1vd
S3svaviva - | /1d

s3asvaviva
-V ISAHd

_S
3Svaviva S H

_S
3Svaviva Wva H

S3Svav.1va AvaH

13sviva-1/1d

3Svav.iva Avs H
3Svaviva Wva H
3Svav.iva WvaH

S3svav.ivd
S3svavliva- |1 /1d

S3ASvaviva -X3AN |

-AdVANOO3S

S3svav.iva
-V ISAHd

S3ASVAV1LVA NVS HS

S3SVavLva WVSHS
S3ISVav.Iva WS H
S3ISVAV.LVA AVSH
S3svaviva Wva H
ISVav.Lva WvaH
S3ISVAV.LVA VSO

SINTINO3S

SININOIS
-TvD B0

S13sviva- | /1da

S3Svaviva

S9loN/uolreue|dx3

aleu-JBguwew
Jo)sadA1 Jequisw
|niBuiues N

Sp Jom/fay
uolReps
adA1-equiswi
|nibuiues |\

suoirefoleUIST LN LIISNOD

alreuU- oguiW
1o} s2dA1 Jequisw
|nibuiues |\

SpJomAay U011 jes
adA1-Jequiswi

SSNeP vVIAsYl

[njbuluea |\ ulasn Joj plomiay)

suolefoleluisS3IsN

xeluss
uolrefo 1 eu|

161

ASG-DataManager IMS (DL/I) Interface

‘uoirefo.eiul 8yl Jo Led awreu-equisw

AU} Ul pawreu Juswbes feaisAyd ayy Jo uoniulep
eepayl Jossre | | X3-NOISSTFIdINOD-L1d3
3} Ul po1}109ds S| Tey} ‘9|npow

8y} Josweu syl sueiqo S31LNLIISNOD

‘uorefo.eiul 8yl Jo Led awreu-equisw

U} Ul palLieu 3NpoLL 8y} ‘Uo iU 1P

eRpsl JoasreP 1 |X3-NOISSTHdNOD- LI
3l Ul 'sa1}109ds ey Juswias

leasAyd yoes Jo swreu syl surIgo S3ISN

‘uo ol
a1 Jo Lied sweu-lequisu 8yl Ul pawreu Juswbes
Jsjuiod xspuiay) Jo uoniu1ep eRp 8y} JO 8sred

SATAH-VLVA-ILVOIldNd syl ul paijioeds
S1 eyl ‘pply perpl Was/s Jopue dnoib Jopue
WL}l ydes Josureusyisueigo S3LNLILSNOD

(GG abed
U0 ,3Seqee(xopu| Alepuodas e

U1opsay 1Byl SIUBWNaS,, 885) XXXXXMD
w0} 8y} JO aq 1SnNw sweu-Bquiswl Joj palyioads
pRl pakpI-Wals/s Aue ‘uoirboleuISISNR U|

‘uoirefoueiul
3y} Jo 1ied aleu-BquIBLU B} U1 paWeU ppR1j
poe Pl WwalsAs Jo ‘dnolb ‘wellay) ‘uoniuiep

eRps) JossrePSATI4-vY1Iva-31vDI1dNda
3l Ul 'sa1}109ds ey Juawibas
Buiod Xapul yJes Jo awreu syl surIgo S3ISN

INIANOIS
-VO ISAHd

ININOFS
“-431IN Od -X3AN |

S3TINAN

SaTd 14
d31v13d WILSAS

Sdnow
SATL |

ERgeo]

a4
Q31LVT3d NILSAS

[</§ 0= 9]
N3L |

SININD3S

SININOIS
-¥D ISAHd

S1 13
NO ISSZFHINOO
-11d3

SINTINO3S

SININDIS
“*J31IN I0d -X30N |

Sdn3 4 -vivd
-31VO 1'1dNd

S9loN/uolreue|dx3

aleu-JBguwew
Jo)sadA1 Jequisw
|niBuiues N

Sp Jom/fay
uolReps
adA1-equiswi
|nibuiues |\

suoirefoleUIST LN LIISNOD

alreuU- oguiW
1o} s2dA1 Jequisw
|nibuiues |\

SpJomAay U011 jes
adA1-Jequiswi
[njBulues |\

asnep vIAsyl
ulasn Joj pJomAa |

suolefoleluisS3IsN

xeluss
uolrefo 1 eu|

o
(s}

1

4 Extensions to DataManager Commands for IMS (DL/I) Databases

(ST obed

163

U0 , XelUAS uo11eboJBIu],, 9ss) pasn SINWN -ATN
aq Ued A9-a3LVHINIO pue S31VHINTD 031WN3LVYONOO
SpIoMASY qBA 3Y] ‘s WA dUl SAT A
UI ST LVHENID piomAsy aus Busn jo peassul CALVNALYONOD -GFLYNILVONOO
‘uo ol - ~ac R
o 10 11ed SWEU-BUBLW 3L} Ul pLLEU SAIN uozm:omm AT -FONINO3S
uonuisperep syl Jo ssred S31 VHINIO SORERERCEINVAE S| anaiid
Y1 Ul pa1y10ads afe eyl ‘slequiaLu syl WNILSAS AILVTIH WILSAS
Jo Aue jo sawreu ayisuelgo ‘SFLNLIISNOD SeRERE| anzid
‘uoieBoueiul ayl Jo 1ed awreu-Bguwsw 8y} Ul HOHVAS -X3AN | HOHVAS -X3AN | SINIANDIS
POWRU JSgUSLU SU) ‘UOTHIUIEP BIEP S)1 JO SSMed e Y5) 4O
S31LVHINID 8y} Ul 'sa1}108ds ey Juewibes INTIND3S - SINTINOIS _
;Buiod xepui yJes Jo sweu sYIsuRIJO SISN -HFIN I0d “XIQN | GAN3L | W3L | -d431N 10d -X3AN | SALVHIANDO
‘Pesnaq ued Ag-d3d3aHLv4
pue SYIH1Vv4 wU‘_O>>>mv_ gmeAayl ‘asne 19
VIA3YI Ul (SINTHV 40) SHIH 1 vH plomAsy
ays Busn Jo pesisu| 'S1INIHVd plom/ey
Ay yHmsnoWAUOUASSISHIH 1 4 plomAsyay L
'9[ge1 Ag-pesn's JuswiBes auj) WioJy sueIgo 3 Yy
aseqerep 1s414 8y Ajuo sasseoo.d sefeue nereq
‘plomAx s1y) Busn parebolseiul S esederep
BUO Uey] alow Ul sapsal eyl uswibas e |
‘uo ol
3y} Jo Lied awreu-lequiau 8yl Ul paij10ads —= —=
wawibes 8L Jo uepusdep eS| ey} ewbes SINFNO3S SININDIS
ydes Jo swreu syl uelqo Ss31NLILSNOD ANIND3S SINIANDOIS SINIADIS
‘uoreboLeIul ay) JO 1ed aweu-egusL “VO ISAHd MO _m>_._m ._GZOm"\Wm\Nw__M "V _w>_._w_
8y Ul pa110ads Juswiles ay Jo uskede NINERSE S _SININO3S _SINIADIS _
S1Teyl JuewBes YJes Jo aueu ayisueIgO S3ISN -VO PO -IVO PO INIADIS -WO O -VO DO SYIH1v4
Sp Jom/fay
awreu-egquew uon®ps suwrReU-RBgquBW SPIoMAS) UOIBRS
Jo)sadA1 Jequisw adA1-Jequew JoJSadAl Jequiew adA1-Jequiswi asnep vIA3Y1
S9JON/uUoITeuR|dx3 |niBuiues N |nibuiues |\ |nibuiues |\ [njbuitea |\ uiasn o) pIom/a

suoirefoleUIST LN LIISNOD

suolefoleluisS3IsN

xeluss
uolrefo 1 eu|

ASG-DataManager IMS (DL/I) Interface

‘uoirefBo.eiul 8yl Jo 1ed awreu-laquisw sy

Ul paweu Juawbss [easAyd Jo Juswibss Jeuiod
Xapul ‘ssecerep NSO 8y} Jo uoniuleperpaly)
J03srejo SNIV.LNOD 8yl Jo ssre|o areulpiogns
418y} ul paiyioads s fey) ‘dnolb Jojpue

WLl ydes Josuwreusyisueigo S3LNLILSNOD

‘uorefo.ieiul 8yl Jo Led awreu-equisw

8y} ul paureu dnoJb Jo wellay) ‘uoniulep
eep sl Jossrep SNIV.LINOD aul Jossneo
dleulpiogns - | 8y Ul ‘sal10ads ey Juswiies
[eaisAyd Jo/pue euiod xapul Jo/pue asecerep
INVSO YJes Joaweu syl surelqo S3snN

'(GT obed

U0 , XeluAS uo1ebolioU|,, ses) pesn

aq Ued A9-A3 1L VHINIO pue S31VHINIO
SpJomAay gAYl ‘asned WA 3yl

U1S31 YHINTD plomAe ays Buisn Jo pesisu|

‘uoireBoieiul ayl Jo 1ed

aWeU-JaquusLu 3y} Ul pawreu Juswbss [easAyd
8y} Jouonuljpperpay) JossnepS3 1 vVYINIO
8U)) Ul pa1}1090s e TRyl ‘seqUBW 8y}

jo Aue jo saweu ayisurIqo ‘SILNLIISNOD

‘uoirefo.eiul 8yl Jo Led awreu-equisw

BY1 Ul pauieu Aoy paeusIeound Jo Ay aousnbes
‘dnoJb ‘w1l 8yl ‘uoniulepP BIep S1I JOo asNe [0
S31VYHINTD 8y} Ul ‘'s914109ds ey Juswibes
leasAyd xepui ydes Jo awreu syl surIgo S3ISN

ANIANOFS
-WO ISAHd

ININOFS
“-431IN Od -X3AN |

3Svav1va VSO

INIANOIS
-VO ISAHd

Sdno®
NaL |

SIAWN -ATIA
03 1LVYN3ILVYONOO

SAIA
03 LVN3ILVYONOO

SA -IONTNO3S
Sdnow
SATL |

dNOEO
WAL |

A
03.1vN31vONOO

AT -FONTINO3S
dnowo
NTL |

SINTINO3S

SINTINO3IS
-V ISAHd

SININDIS
431N 10d -X3QN |

S3svav.iva
sasvaviva - | /1d
SaASvav.iva WO

SINTINO3S

SININOIS
-¥D ISAHd

SILVIIND

S9loN/uolreue|dx3

aleu-JBguwew
Jo)sadA1 Jequisw
|niBuiues N

Sp Jom/fay
uolReps
adA1-equiswi
|nibuiues |\

suoirefoleUIST LN LIISNOD

alreuU- oguiW
1o} s2dA1 Jequisw
|nibuiues |\

SpJomAay U011 jes
adA1-Jequiswi
[njBulues |\

suolefoleluisS3IsN

asnep vIAsyl
ulasn Joj pJomAa |

xeluss
uolrefo 1 eu|

3

-«

4 Extensions to DataManager Commands for IMS (DL/I) Databases

'GOT 9ed UO ,N|,, S Ee)
‘uoireBouieiul syl Jo Led aueu-equsw
U} Ul paweu gd 8y} Jo uoniuep
eEpayl Joasre JNVN 8y} ul paijioeds si ey
‘d0d 8y} Jo aweu syrsueIqo 'S31NLIISNOD
‘uoirefoueiul
_ s : Yo01d SHY001d Yo01d SM00T1d
oo m:;ﬁw_%_%mmm_mmﬁw%xmmﬁx%ﬁﬂ O YO N0 O IO NGO O 1LY NWACO N 110 WO
U1 ‘sa141980s ey (90d) 30019 LoD IUNWILIOD V0Hd V0 VRO ve0td _
weibo.d ydes Jo awkeu sy surgo 'S3SN g0d S80d d0d Sa0d IAWN
‘uoieBo.eiul 8y} Jo Led aweu-squisw ayl
Ul paweu Juswibas sejuiod xapulay) Jo uoniulep
eepayl jossrep 1 IX3-3ONVNILNIVIA
U3 u1 pa1y109ds S1 ey} ‘B npow
3yl Joawreuayisurlgo S3LNLILSNOD
‘uorefo.eiul 8yl Jo Led awreu-equisw
U} U1 paLLeU B |NPOW 8U} ‘Uo iU 1EP ==
eERpSI JoasTep 1IX3-TONVNILNIVIN SININOIS
AU} Ul ‘'sal410ads Tey) Juawlas INTND3S _ SININOIS Sl X3
;Buiod xepui yJes Jo sweu 8YIsuRIJO SISN -HFIN I0d “XIQN | S3ATNACN JINACN -d431N 10d -X3AN | -SONVNIIN WA
‘ToT90ed UO ,SISVEV1LVA. S S3asvav.ivad N |
SIAWN -AIA
-J31VYN3LVYONOO
‘uoireBouieiul syl Jo Led aueu-equsw SAD A
3yl Ul pawreu Juswibas Jeiod xapul =S
a1 JO UONIULBP BIEP SU} JO 8SMe 0 31U IPIONS ‘03 1VN3LYONOO -0 LYN3 LVYONOO
HO/NI 8y} ul pa1}19ads S1 Jey) ‘siequisLu SATY -3ONINO3S ATM -FONIND3S
a1 Jo Aue JjoswreuayisurIgO 'S3LNLILSNOD sa13 14 a3 A
‘uorefo.eiul 8yl Jo Led aureu-equisw HOYVS -X3AN | HOHVIS -X3AN |
U} Ul pauLeU Jequisw 8y} ‘Uuoiiu1ep . ==
BIED S JOBSME D SILYHIANI) O 0 SSHR D v FOLoE -3lvE W3ISAS SINNO3S
aleuIpJoans 4O/N | 8Y1 ul ‘sa1}10ads feu) Juswbaes ANIND3S - SINIADIS .
;uiod xepui yJes Jo sweu syIsurIJO SISN -HFIN I0d “XIQN | SdNOEO dnowPO -d431N 10d -X3AN | N |
Sp Jom/fay
awreu-egquew uon®ps suwrReU-RBgquBW SPIoMAS) UOIBRS
Jo)sadA1 Jequisw adA1-Jequew JoJSadAl Jequiew adA1-Jequiswi asnep vIA3Y1
S9JON/uUoITeuR|dx3 |niBuiues N |nibuiues |\ |nibuiues |\ [njbuitea |\ uiasn o) pIom/a

suoirefoleUIST LN LIISNOD

suolefoleluisS3IsN

xeluss
uolrefo 1 eu|

165

ASG-DataManager IMS (DL/I) Interface

‘uorefo.eiul 8yl Jo Led aureu-equisw

8y1 Ul paweu sseqerep INVYAH 8y} Jo uoniulsp
eep sl Jossmep S3TNAON-ONISIWOAN VY
U Ul pa13109ds S| Ty 8 Npow

8y} Josweu ayisueiqo S31LNLILISNOD

‘uoireBouieiul syl Jo Led aueu-equwsw

U] Ul paWeU 8Npow 8yl ‘UoNIUIEP

eErp sl Joasrme|d S3TNAON-ONISIWOANYY
AU} Ul 's3141080s ey} aseqerep

S3svaviva
S3svavliva- | /1d

s3asvavivd
-V ISAHd

NVQAH ydes joauruayisurlqo 'S3SN S3ASvav.ivad vaH S3TINAAN JINACN S3ASVavVLva WvaH
‘uoireBo.ieiul syl Jo Led aweu-Bquwsw
8yl ul pewreu weis/s Jo ‘weiboid ‘sjnpow SIAYN -AIM
3y} Jo uonu PP eRP Y} JO 8sMe 0 SISSTD0Hd 03.LVN3LVONOO
U} Jossreo areu __QSH NO-a31417vNO SAD AT
aup ul paljioads ae Tey) ‘SequBL VONOO VONOO
jossureuaylsurlqo 'S3LNLILISNOD AILNSL O3S G3LvNAL D
‘uoeBoLeul SAIN -3ONINO3AS AT -FONINOAS
a1 Jo Lred alLieu-lBgUIBW 8Y) U1 paweu ppi) sai3 id (GRERE
3y} ‘uoniulep erp sil Joasre mmmwm_OOw_m WILSAS HOHVAS -X3AN | HOUVAS -X3AN | NI LSAS
9} jossrejo areuiplogns NO-d31d11vN =Y TN =]
aU1 Ul 'S91110905 U eSS 10;pUe Welboid INVEO0Hd Sdnowo dnowo SAWVE0Ud -
J10/pue a|npow yJes Jo sweu syl suelqo 'S3sn JINACN SAEIN 3L | S3TNACN NO a3 14 ITvnO
‘€T 9ed uo ,SHIHLVH. S SINTRIVd
‘uo ol
3} Jo Lied aweu -Bguwswl 8yl Ul paueu
JusWIBes Blulod Xepul 8y} Jo uonuLBp eRp 8y}
Joasne (o NO @y} ul pa13109ds s1 Jeus ‘pply Yyosess
x3pulay) josweusyisuryqo s3.1LNLIISNOD
‘uoieBo.eiul 8y} Jo Led aweu-squisw ayl oo
Ul PeULIRU PRI} UD.1ESS Xepul| B U0 NIU1PP TP SINIOIS
SH Joasne(o NO au Ul ‘sal10ads Jey) Juswiies SININDTS saig id ai3id SINIADIS __
Joiod xepui syl Josweuaylsurigo SISN HALIN 10d -X3AN | HOHVAS -X3IAN | HOUVIS -X3AN | -d431N 10d -X3AN | NO
Sp Jom/fay
awreu-egquew uon®ps suwrReU-RBgquBW SPIoMAS) UOIBRS
Jo)sadA1 Jequisw adA1-Jequew JoJSadAl Jequiew adA1-Jequiswi asnep vIA3Y1
S9JON/uUoITeuR|dx3 |niBuiues N |nibuiues |\ |nibuiues |\ [njbuitea |\ uiasn o) pIom/a

suoirefoleUIST LN LIISNOD

suolefoleluisS3IsN

xeluss
uolrefo 1 eu|

(o}
(e}

1

4 Extensions to DataManager Commands for IMS (DL/I) Databases

‘uorefo.eiul 8yl Jo Led awreu-equisw

3y} ul paweu godadA1ainionnisayl jo uoniuiep
elep ay Jo asmep 3ONINOIS- AdYANODIS
3y} Jo asnejo arkulplogns

NO a1 ul pa1}10eds s Tey) Juswibes Jejuiod
Xopulay} jo sweu syisureqo 'S31LNLILISNOD
‘uolreBoueIul Y] Jo 1eed awreu-equsw ay) Ul
paleu Juawies Jejulod xepulay} ‘uoniulpperp
S} Joasne P 3ONINOIS - A VYANODIS aul Jo

mwum 10 8eUIPIOgNS NO 8U3 U1 'S9131080S 1Y} 90d . s80d
21njonJ JE9 JO aWwreU syl sule K
1 3INJoNJIS Yydeo J L1 sureiqo .wm_wD @Q\Q w._sub:.:mv SININDIS S07d
Sd0d SINIANDOIS ANIND3S NO [L¥O INOANOD NO -3ON3INO3S
adAaunionuis 0)a|cealjdde Ajuosi plomAeysiy L g0d HIAINIOd-XIAN | -Y3IN 0d -XIAN | NVHD0d -AAVANOO3S
‘uoireBo.eIul By Jo Med aweu-squisw ayl
Ul paweu Juswibas ejuiod xapulay) Jo uoniulep
erpayl Jossrep SA13Id-AIN-HOH VIS S3TNAON
a1 ul paly1oads ae ey ‘sdnoub Jo/pue ON 1Z INOANVY ;
Swiall Jo ssweu syl suelqo S31NLILISNOD
‘uoireBouieiul syl Jo Led aueu-equwsw S3TNACN
8y Ul peweu dnolb Jo we1l 8y} ‘uoniulep SINIANDIS ON IS INOANVA %
aU) Ul ‘'sa1y108ds ey Juswibes INTIAD3S -~ SINIAD3S sa13 id
Buiod xepul yJes Jo seu syl sULIJO SISN -HFIN I0d -XIAN | SAEIN 3L | -431N 10d -X3AN | -AIX HOUVAS
‘uoieBo.eiul 8y Jo Led aweu-squisw ayl
Ul paweu JuswiBss pliyo .a1Bo| aus Jo uoniulep
elep ay} JO asMe (0 SN VNI dY3 Ul pa141oads
ale eyl ‘sAox aouanbiss Jo/pue sdnolb Jo/pue
Swiall Jo ssweu syl suelqo S31NLILISNOD
‘uoirefo.eul ayl
10 1eed BuWeU- BB BY] Ul paweu AaX aousnbas
Jo ‘dnouB ‘weyl syl .co_:_m‘_w_mu epp ﬂw%
asne(o SN VNZY 8u} Ul 'sa14198ds ey} Jusw § Soc - __
DI EOIB0| Loeo 10 BlLeU 31 SUEIGO SIS (Ao S1LLBRS Pl SATI uuzmzom_\m AT -FONTNDO3S SINIOTS
; : SdNOP dnoEO =
Sjuswbes ealbo]) ININOIS - __SININO3S _
Py jeo1bo| 0y a|qedidde Ajuo si piomAsy siyL - VD ISAHd GAEL | WAL | -TvD ISAHd SINYNTS
Sp Jom/fay
awreu-egquew uon®ps suwrReU-RBgquBW SPIoMAS) UOIBRS
Jo)sadA1 Jequisw adA1-Jequew JoJSadAl Jequiew adA1-Jequiswi asnep vIA3Y1
S9JON/uUoITeuR|dx3 |niBuiues N |nibuiues |\ |nibuiues |\ [njbuitea |\ uiasn o) pIom/a

suoirefoleUIST LN LIISNOD

suolefoleluisS3IsN

XeuAs
uolrefo 1 eu|

167

ASG-DataManager IMS (DL/I) Interface

‘uorefo.eiul 8yl Jo Led awreu-equisw
8y} U1 pawreu g0d adAl aunionais ayy Jo asnejo
SATIH-IAILISNIS 8y} Ul po14109ds a.e ey

siequsw jo sureusiisuelqo ‘S31NLILSNOD

‘uoireBoueIul By] Jo 1ed awreu-equsw ay) Ul
paweu Jequisw 8y} ‘uohiuljep erep sl Jo asrefd
SA T34 -FAILISNIS 8Y1 Ul ‘sa141980s 12yl 90d
adAya1nionuis yaes Jo aweu ayisurlgo 'S3sN

'$80d
ad/A1a1nionuis o1a|gedidde Ajuosi piomAay siyL

‘uo ol

8y} Jo Med aweu-ssguisl 8y} Ul paureu g0d
adA1ain1onuis ay) Jo uonIuIjep BIRP 8Y) JO 3sNe o
LNIWDIS 8y} ul pa1jioeds si Jey) uswbes
yJes jo aweu ayisuego 'S3LNLIISNOD

‘uoireBouieiul syl Jo 1ed aueu-equsw

U} Ul peueu Juswifes ay) ‘UoiIuLBp BIep S
jossrejp INJINDIS ayp ul ‘sa}10ads eyl 90d
adA1ainjonus yJes Jo swreu ayl suelgo S3sN

'$80d
adA1a1nionuis o1a|gedidde Ajuosi piomAay siyL

(edAraunonuis)
€0d

(edA1a1monus)
€0d

SIAWN AT
03 LYN3ILVYONOO

SAIA
03 1LVN3ILVYONOO

SAT -FONINO3AS
Sdno®
SATL |

SINFAD3S

SINIAD3S
-TvD ISAHd

SINIAD3S
-TvD B0

SINIADIS
“-431IN Od -X3AN |

A
031N 1vONOO

AT -IONINO3S
dnowm
WAL |

ININOFS
-VO ISAHd

ANIAOIS -TVO KO

ININOFS
-d431IN Od -X3AN |

sg0d
SH01g

NO 11¥O INOAANOGO
NVHO0Hd

Sg0d
SHHo01g

NO 11¥O INOAANOGO
NVHO0Hd

SaTaid
-3A IL ISN3S

INFNO3S

S9loN/uolreue|dx3

aleu-JBguwew
Jo)sadA1 Jequisw
|niBuiues N

Sp Jom/fay
uolReps
adA1-equiswi
|nibuiues |\

suoirefoleUIST LN LIISNOD

alreuU- oguiW
1o} s2dA1 Jequisw
|nibuiues |\

SpJomAay U011 jes
adA1-Jequiswi
[njBulues |\

suolefoleluisS3IsN

asnep vIAsyl
ulasn Joj pJomAa |

xeluss
uolrefo 1 eu|

Q
[{e]

1

4 Extensions to DataManager Commands for IMS (DL/I) Databases

‘uoireBo.leiul syl Jo Led aueu-equwsw

U3 Ul pa1y109ds Juswibes pliyd [eaiBolay) Jo
uonuiBpeRpayl Joasre A3M-30NINO3S
3yl ul palj10ads s1 eyl dnoub Jojpue

WL}l ydes Josureusyisueigo S3LNLILSNOD

‘uo ol

8y} Jo 1ed aweu-equisw 3y} Ui paweu

dnoJb 1o w1l ay) ‘uoniulep BIep S1I JOo asNe o
AN-FONINOIS B} U| 'Sa141090s Tey) Juawiles
P11y [2160] yIes JO Blreu 8yl sURIJO S3ISN

"} Ul po14199ds 850U} JoU ‘ashne|d

w<m£m8wwwg ﬁEmbnchmmoc;_co&c@oc_ (Ajuo suewbes
asuodsal 8y L 9sMeo S AIN-IONINOIS | | e
ol Ul oy oods Lead] 521 s5ne PIYo ealbo)) I 4 SININOIS
aleulpiogns S Ue uaym Ajuo pue ‘sjuswbas INIAD3S _om|® oD SINIADIS SIN3INL I1SNOO
PIIyo fe1fo] 0} 8|ceal|dde Ajuo st piomiey siyL - VO ISAHd =T WAL | - VO ISAHd A -3ONINO3S
Sp Jom/fay
awreu-egquew uon®ps suwrReU-RBgquBW SPIoMAS) UOIBRS
Jo)sadA1 Jequisw adA1-Jequew JoJSadAl Jequiew adA1-Jequiswi asnep vIA3Y1
S9JON/uUoITeuR|dx3 |niBuiues N |nibuiues |\ |nibuiues |\ [njbuitea |\ uiasn o) pIom/a

suoirefoleUIST LN LIISNOD

suolefoleluisS3IsN

xeluss
uolrefo 1 eu|

169

ASG-DataManager IMS (DL/I) Interface

‘uoireBo.ieil syl Jo 1ed aueu-Bquwsw

3} Ul pawreu Juswibas Jewiod xapulayl Jo
uonuiBpeRpayl joasre A3M-30NINO3S
3y u1 pa1y10ads 1 eyl Aoy souenbes

8y} Josweu sy sueiqo S3LNLIISNOD

‘uoirefouseiul
a1 JO 1red auleu-JaquiBW By} Ul paweu

£ox-90uBnbas ay) ‘uoniulep ewep S Jo asrejo SININO3S
ATN-IONIANOIS U3 U} ‘S9141030s ey Juswibes SININD3S . SININDIS
Jeluiod xepulay) Josweu ayIsURIO SISN -HIIN I0d -XIAN | SAIN -FONINOIS ~ SAIM -FONTINOIS YIIN 0D X3AN | SAIM -3ON3NO3S
‘uoireBo.ieiul 8yl Jo Led aueu-equsw
8y} u1 pawreu Juewbes [easAyd ays Jo
uoniuijsperpay} Jossnep A3N-30N3INO3S
3} U} po}109ds Usa] /ey 383U} 8UM
Jssaid S1asne o aleuIpJogns S Ue Uaym
‘pa1}108ds Jequuisw eusRIUl A8 8aueNnbas yoeg .
1o ‘Jussa.d s1asne o areulplogns
SV ouaeym ‘paiyioads dnolb Jo weyl yoeg .
2Byl
Josuo Josweusyisurlqo [S31LNLILISNOD
.Ewww‘_a Slasne|dakulpiogns SY ue
11 ‘uoireBo.seiul ay] Jo Led awreu-Jequiau 8y}
Ul paweu Jaguwisl feuseiul Aoy aouenbas ay .
1o “Juesaud Jou s1asnejo -
aTeuIpIogns S Ue JI ‘UoleBouselul ay) Jo 1ed SININO3S
SUEL-RGUBW AR UIPOUEUANOID JOUBHAL -« SINFOIS i3y -30NI0IS AT 30NENDIS —sharoas
:uonu1BP BIRP S)I JO SMeD oY
. SdNOP dNOO =
AT -FONINOIS Y} Ul 'S314198ds ey} Juawilas INTIND3S - SINIAD3S
[ea1sAyd yoes Jo aweu ayisueIgo 'S3sN -v0 B0 =T 3L | VO 0T SATM -IONINO3S
Sp Jom/fay
awreu-egquew uon®ps suwrReU-RBgquBW SPIoMAS) UOIBRS
Jo)sadA1 Jequisw adA1-Jequew JoJSadAl Jequiew adA1-Jequiswi asnep vIA3Y1
S9JON/uUoITeuR|dx3 |niBuiues N |nibuiues |\ |nibuiues |\ [njbuitea |\ uiasn o) pIom/a

suoirefoleUIST LN LIISNOD

suolefoleluisS3IsN

xeluss
uolrefo 1 eu|

o
N

1

4 Extensions to DataManager Commands for IMS (DL/I) Databases

‘uo ol

3y Jo 1ed awreu-Bgwsw ay) ul pauweu weiboid
Jo ‘weis/s ‘8|Npow sy} Jo uonuIEP BIep 8Y)
J08sIe 0 S3SSFD0U 8ul Jo 8sre o 8reulpiogns
SININNDHV-HOHVIS-LNINDIS

3y} Ul pa1}109ds S| Jey ‘Juewibes

JBiod xepul Jojpue easAyd Jo/pue eolbo|
ydes Jo aeu syl sueyqo 'S31LNLILSNOD

‘uoreboleiul 8yl

10 Lied swreu-Jequuislu 8Y} U1 paweu Juswibas ayl
‘uonulEPERP SH JOBSIe|d SISSID0U 3Yl Jo
8sMep SINFNNDYY -HOHVIS-LNIWDIS
a1 Ul ‘sa1y10ads eyl wels/As Jo/pue welboud
Jo/puUe a|npowl YJes Jo awkeu syl suklgo 'S3sn

uorebolpul
a1 Jo Lied sweu-lequisu 8yl Ul pawreu Juswbes
Jsjuiod xspuiay) Jo uoniulep eRp 8y} Jo 8sre|d
J0HNOS 3Y} U1 pa110ads S| ey} ‘Wewibes 82nos
Xspulay] Joaweuayisureiqo ‘S3LNLILSNOD

‘uoirefoueiul

a1 JO 1red auleu-laquisw 8y} Ul paweu
JUBWIBES 821N0S Xapu | By} ‘UoRIULBP Bep S
Jo8sre o 30 NOS 8y Ul 'sa131080s eyl Juswibes
Bujod Xepul yJes Jo sweu ayy suelqo S3IsN

‘uoirefouseiul

3y J0 1ed aweu-equuiBLWL BU} Ul pawleu aseqeep
X9pu1 A:epuodss au Jo uohulep erep sy}
Jossre|d HLIM-ONIJdVHS 10 HLIM-S3HVHS
8l ul pa1yioads s1 ey} ‘sseqerep xepul Arepucdss
8y} Josweu syl sueiqo S31LNLIISNOD

‘uoirefoueiul

a1 Jo 1red auleu-laquisw 8y} Ul paweu
aseqerep Xopu| Arepuodss au) ‘uoulpperp sH
joasne HLIM-ONIFdVHS 10 HLIMSIHVHS
aUp Ul 'sa1y109ds ey aseqerep xepul

AJepuodss yoes Jo aweu ayisurlgo 'S3sn

INTLSAS
NVHO0dd
ERgeo]

ANIANOFS
-431N IOd -X3ON |

3Svav.iva -X3AN |
-AdVANOO3S

SINFAD3S

SINTAD3S
-V ISAHd

SINTAD3S
-0 BOT

ANINDIS
“-431IN Od -X3AN |

SINFAD3S

SINTAD3S
-V ISAHd

S3SvAv1vd
S3svaviva - | /1d

S3Svav.1lvd -X
3AN | -AHVANOO3S

INIANOFS
-VO ISAHd

INIAO3S -TvO O

ININOFS
-d431IN Od -X3AN |

(Auo
1wewWhas 324N0s)

INIANOFS
-VO ISAHd

3Svav.iva -
X3AN | -AGVANOO3S

SATLSAS
SAVEOONd
S3INAON

SININD3S

SININDIS
431N 10d -X3QN |

S3svav.ivd
S3svavliva- | /1d

S3Svav.ivd
“X3AN | -AHVANOO3S

SVSS

I04N0S

S9loN/uolreue|dx3

aleu-JBguwew
Jo)sadA1 Jequisw
|niBuiues N

Sp Jom/fay
uolReps
adA1-equiswi
|nibuiues |\

suoirefoleUIST LN LIISNOD

alreuU- oguiW
1o} s2dA1 Jequisw
|nibuiues |\

SpJomAay U011 jes
adA1-Jequiswi
[njBulues |\

suolefoleluisS3IsN

asnep vIAsyl
ulasn Joj pJomAa |

xeluss
uolrefo 1 eu|

171

ASG-DataManager IMS (DL/I) Interface

‘uoirefo.eiul 8yl Jo Led awreu-equisw

U} Ul paueu Juswbes p|iyo ealfo]ays jo
uo U 1ap BIRP 3Y) JO 8sMejo S1eulpiodns O L ay}
U1 pa1}108ds S1 ey} ‘Juswibes juafed uoteuisep
8y} JO sleu 8L SURINO STLNLILSNOD

’ uomboiBIan 0 (Ajuo siuewibes (Auo syuewibes
1led aleU-BUIBL B U paLLieu JUsWIBas 1us ke — —
L0 EISD BL ‘LON T D S)1 10 88T pIIyo [eolboy) SINTOTS 1usfed UoieUNSap) SINTO3IS
aeuiplogns O 1 8y} ul ‘saljioeds ey} uawbes INTNO3S SINIFAOIS INTNO3S SINTNO3S _
P10 2160 yJes o swreu syl surIgO SISN -TvD ISAHd -TvD ISAHd -¥O ISAHd -V ISAHd ol
‘uorefo.eiul 8yl Jo Led awreu-equisw
83U} ul pawreu Juswbss Jewiod xepul ayl
Jo uoniuBpERPBY} JOBSEP O L-A3 1V 13
B3 Ul paI1I0ads S| Teu ‘ewbes pb.e)
Xepulay] Joalweu syl surIgo SILNLILSNOD
HL M
‘uoreBoLIUI (Auo 5T
a1 Jo Lled aweu-JoguusLu 3yl Ul paweu Juswbas — sjuewbas 1bIey) — ON RIVHS
106121 Xapu1 8y} ‘UONIUIBP EIEP S} JO SN SINWD3S S A SINFOIS | HL M -S3VHS
OL1-a3 LV 134 8y} Ul ‘'sa141080s ey Juewibes INFNO3S SINTINO3S SININD3S SINTINDIS _
Bujod Xepul yJes jo sweu aysueldo S3ISN {3IN 10d -X3AN | - VD ISAHd - VD ISAHd 431N 10d -X3QN | 198V L
‘uoirefoueul
a1 Jo 1Lled aweu-JoguusLul 3yl Ul paweu Juswbes
Blulod Xspulay) Jo uoniulep BIEP Y JO 3sne[o
SATAI4-IONINOISINS By} Ul PI13199ds
S1Teyl ‘ppls perpl was/s Jojpue dnolb Jopue
W1l ydes Joauweu ayisuelgo 'SILNLILSNOD
‘uoirefoueiul
a1 JO 1red auleu-JaquIBW 3Y) Ul paweu ppl) sai3id - aizid
paepJ WwalsAs Jo ‘dnoib ‘welayl _F%_::_Eu A3LVI3d NILSAS -d3LV13d NILSAS
eRpSH Jo8snep SAT314-30NINOISINS o)
ay} U1 ‘sai0ads ey Juswibes ININDOAS SO dnoO SINTINOIS sa1d 14
Blujod xepul yoes Jo sukeu ayisurdO S3ISN HIIN Od -XIAN | SETN WAL | 431N 10d -X3QN | -3ON3NO3SANS
Sp Jom/fay
awreu-egquew uon®ps suwrReU-RBgquBW SPIoMAS) UOIBRS
Jo)sadA1 Jequisw adA1-Jequew JoJSadAl Jequiew adA1-Jequiswi asnep vIA3Y1
S9JON/uUoITeuR|dx3 |niBuiues N |nibuiues |\ |nibuiues |\ [njbuitea |\ uiasn o) pIom/a

suoirefoleUIST LN LIISNOD

suolefoleluisS3IsN

xeluss
uolrefo 1 eu|

N
~

1

4 Extensions to DataManager Commands for IMS (DL/I) Databases

‘uoirefoueul
a1 Jo Lled aweu-JoguusLu 3yl Ul paweu Juswbas
P1IUd [eo1Bo| 8y} Jo uonulPP BRP BY) UI ‘Ssnefd
SVY-Q31V 134 8y Jo 8sre areuipiogns HLIM

a1 Ul pa14109ds s1 Teyy ‘wuewibes p|iyo 2160
8y} Josweu syl sueiqo S31LNLIISNOD

"(peared 1110 IYM Y1IMm JuBWIBSS PIYD [Ro1Bo By

‘S| Jey1) uo _Hmmotm%_ au Jo Hﬁa aleu-BoweLw (Ajuo suewbes (Ajuo siuewibas

U ul paLLeu JuBWIBES p| 1Yo [ea1B0 U ‘Uo iU | | _ _ _ o

DD S11 10 551 Syl v T34 SUp 10 SSTB PIYo ealbo)) SININOIS pIYyo ealbo) SININOIS
aeulpiogns HL I8} Ul ‘sa13109ds ey Juawibes INTIND3S SINIAD3IS INTIND3S SINTINOIS _
PIIYo 2160 8U} JO SWeu aYlsurIgo 'S3SN -V ISAHd -VO ISAHd -V ISAHd -VO ISAHd HL M

Sp Jom/fay

aleu-JBguwew uo19ejes alreuU-JjBgueW SpJoMAsY LoD RS
Jo)sadA1 Jequisw adA1-Jequew JoJSadAl Jequiew adA1-Jequiswi asnep vIA3Y1
S9JON/uUoITeuR|dx3 |niBuiues N |nibuiues |\ |nibuiues |\ [njbuitea |\ uiasn o) pIom/a

suoirefoleUIST LN LIISNOD

suolefoleluisS3IsN

xeluss
uolrefo 1 eu|

173

ASG-DataManager IMS (DL/l) Interface

Alternative Verb Keywords

A number of verb keywords are available for use as aternatives to certain USES and
CONSTITUTES interrogations. When these keywords are used, thereis no need for a

VIA clauseto be supplied.

For example, thisinterrogation:

VWH CH sel ecti on FATHERS nenber - nane

is equivalent to thisinterrogation:

FATHERS

VWH CHsel ecti on USES nenber - nane VI A{PARENTS }

The equivalences are shown in this table:

Alternative Verb
Keyword

Equivalent USES/CONSTITUTES Interrogation

CONTAI NS
nmenber - nane

CONTAI NED- BY
menber - nane

FATHERS
menber - nane

FATHERED- BY
nmenber - nane

GENERATES
nmenber - nane

GENERATED- BY
menber - nane

USES nenber - name VI A CONTAI NS

CONSTI TUTES nenber - name VI A CONTAI NS

USES nenber - name VI A |JPARENTS
FATHERS

CONSTI TUTES nenber - nane VI A JPARENTS
FATHERS

USES nenber - nane VI A GENERATES

CONSTI TUTES nenber - name VI A GENERATES

IMS (DL/l) Source Language Generation

This chapter includes these sections:

INErOdUCKION . . . o e 176
GeneratingIMS (DL/I) DBD Control Statements. 176
GeneratingIMS (DL/I) PSB Control Statements 183
Generation of COBOL, PL/I, or Assembler Data Description Statementsfor Segment
INPUL/OULPUL AT EaS. . .ottt e et e e e et e 189
The PRODUCE COommand.ottt ettt 189
INStAlatioN MACIOSot e 189
Segment Input/Output Areas: Items Defined asBINARY or BITS. 190
Simple Physical Segments 190
Logical Child Segmentst e e e e e e e 190
Destination Parent Segments.ot e 191
Index Target and Index Source Segments.t it 191
Logical Segments and Logical Concatenated Segments. 192
VariableLength Segments i e e e 192
Path Calls 194
Index PoiNter SEOMENTS.ottt e e e 194
Miscellaneous IMS (DL/D) Fields. e 198
Generation of COBOL, PL/I, or Assembler Data Description Statementsfor Segment
Sensitive Fields INput/Output Areas.t e 198
Generation of COBOL, PL/I, or Assembler Data Description Statements for PCB

M aSKS . oot 200
Generation of COBOL, PL/I, or Assembler Data Description Statementsfor Segment
SEarCh ArgQUMENES. . . oo e e 203

175

ASG-DataManager IMS (DL/I) Interface

Introduction

The Source Language Generation Facility can produce IMS (DL/I) statements of these
types:

. IMS (DL/I) DBD contral statements, which can subsequently be used as input for
an IMS (DL/1) DBD generation

. IMS (DL/I) PSB control statements, which can subsequently be used asinput for a
(DL/1) PSB generation

. Record layouts and or COBOL, PL/I, or Assembler data description statements for
users’ segment input/output areas

. Record layouts and or COBOL, PL/I, or Assembler data description statements for
users segment sensitive fields input/output areas (defined through PCB members)

. Record layouts and or COBOL, PL/I, or Assembler data description statements for
Program Communication Block (PCB) masks

. Record layouts and or COBOL, PL/I, or Assembler data description statements for
segment search arguments

Generation of these statementsis achieved by use of the PRODUCE command, described
in the publication ASG-Manager Products Source Language Generation. The variations
of the PRODUCE command required for the generations listed above are described in
this chapter.

The PRODUCE command can also be used to generate MARK 1V File Definition forms
from encoded IMS-DATABASE (DL/I-DATABASE) and SEGMENT members. The
use of the PRODUCE command for this purpose is documented in the
ASG-DataManager MARK 1V Interface publication.

Generating IMS (DL/I) DBD Control Statements

176

Theinstallation macro DGDBD allows you to tailor generated IMS (DL/I) DBD control
statements to your own requirements. This macro is described in "The Macros DGDBD
And DGPSB" on page 210.

Syntax

> PRODUCE | VB- DATABASE >

DL/ | - DATABASE |:RELEASE r el ease- nunber J
DL/ | - DATABASE VERSI ON:|_

DL/ | - DATABASE
DL/ | - DATABASE

)—‘: DATABASE- DESCRI PTI ONS
DBDGEN | I—FO? | anguage _

\

5 IMS (DL/I) Source Language Generation

Y
\/

SEARCH FI ELDS ———| I—NO ASSEMBLY- PRI N'I'J
DI RECT- FI ELDS
GENERATES- FI ELDS____|
ALL- FI ELDS
<<LLLLLLL, <KLLLLLLL
> FROM nenber 3
I—PRI MARY- | NDEX pi-specJ I—ASIibraryJ
> ; 3
I—cont rol -options J I_ . _|
where:

rel -number is1.2,13,2,20,21,22, 3,3.0,31,4,4.1,5, or 50.

| anguage isCOBOL, COBOL2, COBOL-2, COBOLII, COBOL-II, PL/I, PL/1, PLI,
PL1, PL/IF, PL/1F, PLIF, or PL1F.

pi - spec is:

P o
»

\

I—DATABASE dat abase- nane _I |_ SEGVENT segnent - nanme J

-
»

\

I—SEQJENCE— KEY sequence- key- nane _] I_ AS library —I

dat abase- nane, segnent - nane, and sequence- key- nane arevalid IMS (DL/I)
names.

l'i brary isastring of up to 16 characters. The first character must be: #, a phabetic,
local currency symbol (internal code hexadecimal 5B), %, or @.

menber isan IMS-DATABASE or DL/I-DATABASE member.

control - options isaseriesof optional clauses that are defined in the ASG-Manager
Products Source Language Generation publication, except that:

. The USE or USING clause defined there is excluded

. Only the KNOWN-AS option isvalid in the GIVING clause

. Only the KNOWN-AS/ALIAS options are valid in the OMITTING clause

. If you specify NO-GENERATION and NO-PRINT, no processing occurs

177

ASG-DataManager IMS (DL/l) Interface

178

Remarks

1

Thefirst three elements of the command must be the first three shown in the format.
They must be in the order shown.

RELEASE/VERSION: By default, IMS Version 2 is assumed, unless the supplied
macro DGDBD has been tailored. Any value specified with this keyword overrides
the default specified in DGDBD.

Specify aFOR clause when you want DBD FIEL D control statementsto include the
two additional bytes required by PL/I for variable length fields.

None of the keywords SEARCH-FIELDS, DIRECT-FIELDS, GENERATES
FIELDS, or ALL-FIELDS, or the PRIMARY -INDEX clause (and hence, remark 4
on page 178 through remark 12 on page 180, and remark 20 on page 181 through
remark 22 on page 182 describing these keywords) are relevant when processing a
LOGICAL database.

If any of the keywords SEARCH-FIELDS, DIRECT-FIELDS,
GENERATES-FIELDS, ALL-FIELDS, or NO-ASSEMBLY -PRINT, or the
PRIMARY-INDEX clause are present in the command, they must precede the
FROM clause.

If none of the keywords SEARCH-FIELDS, DIRECT-FIELDS, GENERATES-
FIELDS, or ALL-FIELDS is specified in the command, SEARCH-FIELDS is
assumed.

If any of the keywords SEARCH-FIELDS, DIRECT-FIELDS,
GENERATES-FIELDS, or ALL-FIELDS is specified, DBD FIELD control
statements are automatically generated for these types of field:

. Sequence key fields
. Index-search-fields (XDFLDS), if index target segments are being processed

. System-related fields where the names are prefixed by a slash (/), if index
source segments are being processed

. Any field that is directly specified in the GENERATES clause of the segment
being processed

If one of the keywords SEARCH-FIELDS, DIRECT-FIELDS, or ALL-FIELDSis
specified, that isif GENERATES-FIELDS is not specified, DBD FIELD control
statements are automatically generated for the following types of fields also:

10

11

5 IMS (DL/I) Source Language Generation

When processing a physical segment:

. Segment search fields that are directly or indirectly contained by the segment.
Thesefields are specified in the QUALIFIED-ON clause of the PROCESSES
clause of SY STEM, PROGRAM, or MODULE members that refer to the
segment.

. Sensitive fieldsthat are directly or indirectly contained by the segment. These
fields are specified in the SENSITIVE-FIELDS clause of PCB members.

When processing an index pointer segment:

. Any field that is used as a segment search field, or a sensitive field, or which
isdirectly specified in the GENERATES clause of the segment being
processed, but only if these fields congtitute the user data part of the index
pointer segment.

When processing an index source segment:

. Any field that is required for secondary indexing, that is, any field that
directly occursin the SEARCH, SUBSEQUENCE, or DUPLICATE-DATA
lists of any index pointer segment that uses the index source segment being
processed.

SEARCH-FIELDS specifiesthat DBD FIELD control statementsareto be generated
only for the fields described in remark 5 on page 178 and remark 6 on page 178.

DIRECT-FIELDS specifiesthat DBD FIELD control statements are to be generated
for the fields described in remark 5 on page 178 and remark 6 on page 178, and for
fields that are directly specified in the CONTAINS clause of the segment being
processed.

GENERATES-FIELDS specifiesthat DBD FIELD control statementsare only to be
generated for the fields described in remark 5 on page 178 and for the fields that are
directly specified in the GENERATES clause of the segment being processed.

Thus, the GENERATES-FIELDS keyword suppresses the automatic generation by
DataM anager of fieldsthat are specified as segment search fields, sensitivefields or
fields used for secondary indexing, as described in remark 6 on page 178.

If GENERATES-FIELDS is specified, then when an index pointer segment is
processed, DBD FIELD control statements are generated for all fields specified in
the GENERATES clause regardless of whether they are part of the user data, or the
SEARCH, SUBSEQUENCE, or DUPLICATE-DATA parts of the index pointer
segment, or part of the target segment’ s concatenated key (if thisisincluded in the
index pointer segment).

179

ASG-DataManager IMS (DL/l) Interface

180

12

13

14

15

16

17

18

ALL-FIELDS specifiesthat DBD FIELD control statements are to be generated for:

. All the fields that constitute the segment when a physical segment is being
processed

. The sequence key field and all of the fields that constitute the user data part of
the segment when an index pointer segment is being processed

When processing arrays, DataM anager generatesa DBD FIELD control statement
for the first occurrence of the array.

SEGM control statements are generated in the correct hierarchical sequencefor each
segment where the nameislisted in the CONTAINS clause of the database' s data
definition.

For segments that participate in any logical or secondary indexing relationship, the
operands for the SEGM control statements and their respective LCHILD control
statements are obtained from the data definitions, both of the segments being
processed and of the segments to which these are related.

The operands for the DBD and DATASET control statements are obtained from the
database' s data definition. The DBDNAME applied to the generated DBD control
statements is the database name.

For aHDAM or HIDAM database, if aDATASETS clause in the member’ s data
definition contains an ADD-TO clause, the DATASET control statement generated
from it has no operands, but is labelled with the ddname stated in the clause. The
same label is also generated for the DATASET control statement that contains the
operands defining the dataset group.

For aHIDAM database:

. The DBD control statements generated, if valid when complete, are
immediately followed by the DBD control statements for its primary index
database, which are generated automatically.

. The names to be applied to the primary index database, itsindex pointer
segment and the segment’ s sequence key field, can be specified in the
PRIMARY -INDEX clause of the PRODUCE command.

. If any of these names are not specified in the command, but are specified in
the ACCESS clause of the HIDAM database definition, then the name
specified in the latter clause is applied.

. If different names are specified for the same entity in the PRODUCE
command and the ACCESS clause, the name specified in the PRODUCE
command is applied.

5 IMS (DL/I) Source Language Generation

Where neither the PRODUCE command nor the ACCESS clause specifiesthe
relevant name:

— Thename applied to the primary index database is the name of the
HIDAM database suffixed with I.

— Thename of the index pointer segment is the name of the HIDAM root
segment suffixed with I.

— Thename applied to the sequence key field of theindex pointer segment
is the name of the sequence key field for the HIDAM root segment
suffixed with 1.

If any of these names becomes too long when suffixed with I, it is shortened by
dropping the middle character.

The DBD control statements for the primary index database are written to the
output file as a separate member. The library name of this member can be
specified by the AS library-name subordinate clause of the
PRIMARY-INDEX clause. If this clauseis omitted, the library name applied
isthe library name of the HIDAM DBD control statements suffixed with I. If
this name becomes too long when suffixed with 1, it is not truncated, (see
remark 24 on page 182), and generation of the member containing the control
statements does not take place.

In order to avoid this situation, avalid library name can be specifiedinthe AS
library-name subordinate clause of the PRIMARY -INDEX clause, or the
MEMLEN parameter of the DGDBD tailoring macro can be used to extend
the permissible length of library names (see "The Macros DGDBD And
DGPSB" on page 210).

19 For ashared SECONDARY -INDEX database, the member-name in the FROM
clause must be that of the index database that is being shared; that is, its definition
must contain aDATASETS clause, not a SHARES-WITH clause.

20

21

If NO-ASSEMBLY -PRINT is stated in the command, an Assembler PRINT
NOGEN statement is generated to eliminate listing of the DBD control statements
when they are assembled.

The PRIMARY -INDEX clause can be present in the command only if one (and only
one) of the member-namesin the FROM clause is the name of aHIDAM database.
If more than one of the member-namesin the FROM clause are the names of

HIDAM databases, and a PRIMARY -INDEX clause is present in the command, no
generation is performed in respect of any HIDAM database name other than thefirst.

181

ASG-DataManager IMS (DL/l) Interface

182

22

23

24

25

26

27

28

29

The PRIMARY -INDEX clause specifies, in respect of aHIDAM database named in
the FROM clause, user names that are to be applied (instead of the
DataM anager-generated names defined in remark 18 on page 180) to:

. The corresponding primary index database—the index pointer segment of the
primary index database

. The sequence key field of the index pointer segment
. The generated library member

ASclausesarerelevant only if DBD control statements are being written to an output
dataset.

Each AS clause present in the command relates only to the member name that
immediately precedesit. It declares aname under which the generated DBD control
statements are to be catalogued in the output source library dataset.

For each member-name for which no AS clause is specified, library-nameis
defaulted to member-name if member-name conforms to the length restriction on
library-name. The length restriction on library-name is a maximum of 8 characters
(unlesstailored, see MEMLEN). If member-name is longer than the permitted
maximum length for library-name, no generation takes place in respect of that
member-name, a message is output, and processing continues with the next
member-name or command.

Library-names, whether declared or defaulted, are not subjected to any name editing,
nor toany ALIASor WITH-ALIAS clauses (seethe ASG-Manager Products Source
Language Generation publication) that may be present in the command.

If ONTO filename s not specified in the PRODUCE command, a default file name
of GENLIB is used (unless another name is specified by the DDNAME parameter
of the macro DGDBD; see "The Macros DGDBD And DGPSB" on page 210).

The USE or USING clauseis not applicable in the PRODUCE command for
generation of DBD control statements, astheform and version of GROUPand ITEM
members are obtained from the containing SEGMENT data definitions.

Other control-options clauses are as specified in the ASG-Manager Products Source
Language Generation publication, except that the GIVING clause may only specify
KNOWN-AS, and file OMITTING clause may only specify OMITTING
KNOWN-AS and/or ALIAS.

5 IMS (DL/I) Source Language Generation

30 If GIVING KNOWN-AS s specified, generated data names are based wherever
possible on local-names from:

. Containing members KNOWN-AS clauses
. Logical child segments RENAMES clauses

instead of on the members’ names or aliases. (The equivalent DGDBD macro
keyword usageis KNOWNAS=YES.)

31 If you specify PRODUCE IMS VERSION n or n.n (where n isaversion number
from 4 onwards) DBDGEN, the DEVICE=and MODEL = clauses are not generated.
For further information, refer to the IMS member type definitionsin Chapter 3,
"Member Types," on page 21.

Generating IMS (DL/I) PSB Control Statements

Theinstallation macro DGPSB allows generated DL/l PSB control statements to be
tailored to the installation’ s own requirements. This macro is described in "The Macros
DGDBD And DGPSB" on page 210.

Syntax
»——— PRODUCE | MB- DATABASE >
DL/ | - DATABASE |:RELEASE rel ease- nunber J
DL/ | - DATABASE VERSI ON—
DL/ | - DATABASE i
DL/ | - DATABASE

\J

)—‘: PROGRAM SPECI FI CATI ONS
PSBGEN | I—FO? | anguage —I

P
»~

\/

I—NO ASSEMBLY- PRI NTJ I—ODTI ONS options _I

<LLLLLLLL, <LLLLLLLL

»——— FROM nenber _—

I—ASIibraryJ _control-optionsJ _ ’ —

where:
rel - number is1.2, 1.3,2,2.0,2.1,2.2,3,3.0,3.1,4,4.1, 5, or 5.0.

| anguage isCOBOL, COBOL2, COBOL-2, COBOLII, COBOL-II, PL/I, PL/I, PLI,
PL1, PL/IF, PU1F, PLIF, or PL1F.

183

ASG-DataManager IMS (DL/l) Interface

184

options are:

P
»~

\/

P
»~

L _enoeus num—l Loiopss | 1o szE value]

\/

> ONLI NE- | WAGE- COPY
alc | |: PCB- LABELSj

I—SSA— SI ZE val ue J I—CG\JDI TI ON- CODE nnnn

|:V\TO?—

\

PCB- NAMES

where:

numis an unsigned integer.

val ue isan unsigned integer not greater than 256000.

nnnn is an unsigned integer in the range 0 to 4095.

nmemis the name of aSY STEM, PROGRAM MODULE, or MMR-SY STEM member.

l'i brary isastring of up to 16 characters. The first character must be: #, a phabetic,
local currency symbol (internal code hexadecimal 5B), %, or @.

cont rol - opti ons isasdefined in "Generating IMS (DL/I) DBD Control Statements”
on page 176.

Remarks

1

The first e ements in the command must be the command identifier, PRODUCE,
followed by the context keyword IMS. Next isoptionally the REL EASE clause, then
one of the context qualifier keywords, PROGRAM-SPECIFICATION or PSBGEN.
These must be in the order shown; control-options can be in any order.

Specify aFOR clause when you want DBD FIEL D control statementsto include the
two additional bytes required by PL/I for variable length fields.

The RELEASE/VERSION clause specifies aversion of IMS to produce statements
in accordance with the stated version. By default, IMS Version 2 isassumed. Use of
this keyword overrides the default specified by IMSLVL in macro DGPSB.

The optional keyword NO-ASSEMBLY -PRINT and the optional OPTIONS clause
must, if present, precede the FROM clause.

If NO-ASSEMBLY-PRINT is specified in the command, an Assembler PRINT
NOGEN statement is generated, to eliminate listing of the PSB control statements
when they are assembled.

10

11

12

13

14

5 IMS (DL/I) Source Language Generation

The ENQUEUES clause specifies the maximum number of database calls with the
IMS (DL/I) command code Q (corresponding to the DataM anager command code

ENQUEUE), which may be issued between synchronization points. If this number
is exceeded, the application program will ABEND.

|0-PCB specifiesthat IMS (DL/1) isto add an I/O PCB for the input message to the
PSB, even if the program isto runin the Batch-DL/I region. (An 1/O PCB is aways
added for the input message if the program runsin the BMP or MSG region.)

The 10-SIZE clause enables the user to specify the largest size of input/output area
that can be used by the application program. If the clause is omitted, the IMS (DL/I1)
ACB utility program calculates a maximum size to be used as defaullt.

The SSA-SIZE clause enables the user to specify the maximum total length of all
SSAsto be used by the application program. If the clause is omitted, the IMS (DL/I)
ACB utility program calculates a maximum size to be used as default.

The CONDITION-CODE clauseisapplicable only in batch typeregions. It specifies
the condition code that is to be returned to the operating system when IMS (DL/I)
terminates normally, and one or more input/output errors have occurred on any
database during the application program execution. This enables the user to set a
unique operating system condition code when an input/output error occurs and to test
the condition code in subsequent job steps. If the clause is not specified, the return
code passed from the application program is passed to the operating system and
status codes, and console messages are the only indicators of database input/output
errors.

If WTOR is specified, aWTOR for the DFSnnnnA input/output error message is
issued, and IMS (DL/I) waits for the operator to respond before continuing. A
response of ABEND causes IMS (DL/1) to terminate; a response of CONT causes
IMS (DL/I) to continue.

The ONLINE-IMAGE-COPY and OLIC keywords are synonymous. Either
specifiesthat the user of this PSB isauthorized to execute the Online Database Image
Copy utility or the Surveyor utility feature.

The PSBNAME applied to the generated PSB control statementsisthe SYSTEM,
PROGRAM, or MODULE member name.

The operands for the PSBGEN control statement are obtained from the OPTIONS
clause specified in the PRODUCE command, asdescribed in theremarksabove. The
language operand is obtained from the LANGUAGE clause of the SYSTEM,
PROGRAM, or MODULE member being processed, provided that the character
string in that clause is any of these:

ALC ASSEMBLER ASSEMBLY BAL COBOL

185

ASG-DataManager IMS (DL/l) Interface

186

15

16

17

18

19

PLI PL1 PL/I PL/1

If the character string is not one of these, or if the LANGUAGE clauseis not
present, then COBOL is assumed. The remaining types of control statements are
generated from the PCB members listed in the CONTAINS subordinate clause of
the PROCESSES clause in the data definition of the SYSTEM, PROGRAM, or
MODULE member.

If generation isfor IMS versions prior to 4, up to 255 occurrences of PCB control
statements will be generated. Otherwise, up to 500 occurrences of PCB control
statements will be generated.

PCB control statements are generated in the correct sequence for each PCB member
that has been specified in the PROCESSES clause. That is, first alternate PCBs for
each of the output-message-destination PCB members, then database PCBsfor each
of thelogical-data-structure PCB members and finally database PCBsfor each of the
GSAM-database PCB members. Within each type of PCB, statements are generated
in the order in which the PCB members are specified.

For the PCB for alogical-data-structure, if KEY LENGTH has not been specified in
the PCB definition, then the value of the KEY LENGTH operand is calculated by
DataManager as the length of the largest concatenated key for all data-sensitive
segments specified in the relevant member.

The PROCSEQ operand is generated by DataM anager if one of the SEGMENT
clauses specified for the PCB member contains the keyword

SECONDARY -SEQUENCE.

SENSEG control statements are generated in the correct hierarchical sequence for:
. Each SEGMENT clause specified in alogical-data-structure PCB member

. Each segment along the hierarchical paths to those segments

If generation isfor IMS versions prior to 4, up to 1000 occurrences of SENSEG

control statements will be generated. Otherwise, up to 3000 occurrences of
SENSEG control statements will be generated.

20

21

22

23

24

25

26

27

5 IMS (DL/I) Source Language Generation

Under the following circumstances, DataM anager produces SENSEG statementsfor
dependent segments of atarget segment’s parent segments:

. One of the SEGMENT clauses specified for the PCB member contains the
keyword SECONDARY -SEQUENCE.

. The target segment is not the root segment of the relevant database.

. The dependent segments of the target segment’ s parent segments are within
the scope of the segments specified in the PCB structure definitions.

Sibling segments may be rearranged to maintain the PCB segment order by
specifying the KEEP-HIERARCHY keyword.

The INDICES operand is generated by DataM anager if the SEGMENT clauseisfor
an index target segment or alogical segment representing an index target segment,
and contains any USED-IN clauses which name index-field-namefields (XDFLDs)
for search fields.

Following each SENSEG statement generated, if sensitivefields are defined for that
segment in the PCB data definition, DataM anager generates:

. A SENFLD statement for each sensitive field specified that is directly or
indirectly contained by the segment

. A SENFLD statement for each constituent member of a sensitive field that is
indirectly contained by the segment, if SUBFIELDS has been specified for
the sensitive field in the PCB member definition

The statements are generated in the order in which the sensitive fields are specified,
and the start position for each sensitive field is calculated from the lengths of any
preceding sensitive fields together with any preceding filler-bytes specified.

All names generated are subject to any editing specified in the command.

ASclausesarerelevant only if DBD control statements are being written to an output
dataset.

Each AS clause present in the command relates only to the member-name that
immediately precedesit. It declares aname under which the generated DBD control
statements are to be catalogued in the output source library dataset.

For each member-name for which no AS clause is specified, | i br ar y- nane is
defaulted to menber - nane if menber - name conforms to the length restriction on
l'i brary-name. Thelengthrestrictionon| i br ar y- name isamaximum of 8
characters (unless tailored, see MEMLEN). If menber - name islonger than the
permitted maximum lengthfor | i br ar y- nane, no generation takes placein respect
of that menber - nanme, amessage is output, and processing continues with the next
menber - name or command.

187

ASG-DataManager IMS (DL/l) Interface

188

28

29

30

31

32

33

34

35

36

Library-names, whether declared or defaulted, are not subjected to any name editing,
nor toany ALIASor WITH-ALIAS clauses (seethe ASG-Manager Products Source
Language Generation publication) that may be present in the command.

If ONTOTi | e- name isnot specified in the PRODUCE command, DataM anager
uses a default file name of GENLIB (unless another name is specified by the
DDNAME parameter of the macro DGPSB; see"The Macros DGDBD And
DGPSB" on page 210).

The USE or USING clauseis not applicable in the PRODUCE command for
generation of PSB contral statements, as the form and version of any group or item
sensitive field is obtained from the containing SEGMENT data definition.

Other control-options clauses are as specified in the ASG-Manager Products Source
Language Generation manual, except that the GIVING clause may only specify
KNOWN-AS and the OMITTING clause may only specify OMITTING
KNOWN-AS and/or ALIAS.

If GIVING KNOWN-AS is specified, generated data names are based on the
KNOWN-AS clauses specified for sensitive fields in the PCB member definition,
instead of on the members’ names or aliases. (The equivalent DGPSB macro
keyword usageis KNOWNAS=YES.)

It should be noted that the generated data names are not based on the KNOWN-AS
clausesthat are directly specified in the SEGMENT definition's CONTAINS
clause.

PCB-LABELS specifies that for each PCB statement generated, there should be a
label in columns 1 to 8. This label is generated from the PCB member name or its
dias, if oneis specified on the PRODUCE command.

PCB-NAME specifies that for each PCB statement generated, there should be a
PCBNAME= clause. This clause is generated from the PCB member name or its
dias, if oneis specified on the PRODUCE command.

These two apply to all PCB member types (DATABASE, OUTPUT-MESSAGE,
and GSAM).

If aPCB containsa AIB-LIST-ADDRESS specified as NO, and neither of these
keywords is specified then the PCB-NAMES option is assumed and awarning
message is issued.

5 IMS (DL/I) Source Language Generation

Generation of COBOL, PL/I, or Assembler Data Description
Statements for Segment Input/Output Areas

The PRODUCE Command

The format of the PRODUCE command to generate COBOL, PL/I, or Assembler data
description statements (and/or record layouts) for segment input/output areasis as
described in the ASG-Manager Products Source Language Generation publication.

The member-name in the FROM clause must be the name of an encoded SEGMENT
member, and the USE or USING clause is not applicable (because the form and version
of contained GROUP and ITEM members are determined from the segment data
definition). If the USE or USING clause is present in the command because it is required
for members of other types also named in the FROM clause, it isignored when
SEGMENT members are processed.

The PRODUCE command can also generate COBOL, PL/I, or Assembler data
description statements for certain types of IMS (DL/1) fields for which data dictionary
members of special internal types exist. See "Miscellaneous IMS (DL/I) Fields' on
page 198. In these cases, the member-name in the FROM clause is the name of the field
for which the internal member was created.

Installation Macros

Three installation macros are provided, which allow the names that are to be applied to
certain lines of the generated data descriptions to be specified. These are the macros:

. DOSCOB, which is relevant to COBOL language generation
. DGSPLI, which isrelevant to PL/I language generation
. DGSBAL, which isrelevant to Assembler language generation

These macros are described in "The Macros DGSCOB, DGSPLI, DGSBAL, and
DGSREC" on page 213.

The data description statements that are generated for the various types of segments are
described in "Simple Physical Segments' on page 190 through "Miscellaneous IMS
(DL/1) Fields" on page 198.

A fourth installation macro, DGSREC, appliesif record layouts are produced without
associated source language data description generation. This macro is also described in
"The Macros DGSCOB, DGSPL|, DGSBAL, and DGSREC" on page 213.

The installation macros DGCOB, DOPLI, DGBAL, and DGREC, described in the
ASG-Manager Products Source Language Generation manual, also apply, respectively,
when segment input/output area data descriptions are generated in COBOL, PL/I,
Assembler, or in record layout form without associated source language.

189

ASG-DataManager IMS (DL/I) Interface

Segment Input/Output Areas: Items Defined as BINARY or BITS

Except as stated below, if abinary item or a bit string item is ALIGNED by virtue of the
definition of the containing GROUP or SEGMENT, then:

. A 1-byte binary item isrounded up to 2 bytesin length

. A 3-byte binary item isrounded up to 4 bytesin length

. A 5-, 6-, or 7-byte binary item is rounded up to 8 bytesin length
. Each hit string item begins on the next available byte boundary

If abinary or bit string item is a sequence key field, or a part of a sequence key field, of:

. A destination parent segment

. An index pointer segment

. An index source segment

. A segment in the hierarchical path of adestination parent segment, an index pointer
segment or an index source segment

Then when it forms part of:

. A logical child segment, by virtue of the destination parent’s concatenated key

. Anindex pointer segment, by virtue of theindex target segment’ s concatenated key

. A system related field, by virtue of the index source segment’ s concatenated key

the binary or bit string item is not aligned. The length of unaligned binary itemsis not

rounded up unless the value of RNDBIN in the relevant macro DGCOB, DGPLI,

DGBAL, or DGREC is YES. Bit string items, if not aligned, do not begin at the next byte

boundary unlessthe RNDBIT parameter in the tailoring macrosis set to YES. If the

lengths of binary or bit string items are to be consistent in different contexts (e.g., in

CONTAINS clauses and in concatenated keys) or in different languages (e.g., COBOL
and BAL), the value of RNDBIN and RNDBIT in these macros must be set to Y ES.

Simple Physical Segments
For asimple physical segment that participatesin no logical or secondary indexing
relationships, data description statements are generated in the same manner asfor a
GROUP member.

Logical Child Segments

The COBOL, PL/I, or Assembler data description statements generated for alogical child
segment include the concatenated key of the destination parent.

190

5 IMS (DL/I) Source Language Generation

A lineis generated containing the name to be applied to the concatenated key. The name
output is the name specified in the CONCATENATED-KEY -NAME clause of the
segment definition, if specified; otherwise the name is obtained from the macro
DGSCOB, DOSPLI, DGSBAL, or DGSREC, as appropriate. Thislineisfollowed by the
description of the constituent concatenated keys, each one generated separately down to
ITEM level. If thereisany intersection data, it is preceded by aline containing the name
to be applied to the user data, which is also obtained from the appropriate macro. The two
names obtai ned, whether from the segment definition or from the appropriate macro, are
subjected to any editing that is specified in the command.

The following illustrates the structure of COBOL or PL/I data description statements
generated for alogical child segment:

0l LOQd CAL- CHI LD- SEGVENT- NAVE
03 CONCATENATED- KEY- NAME
05 KEYA
05 KEYB
05 KEYC
03 USER- DATA- NAMVE
05 FI ELDA
05 FIELDB
05 FI ELDC

If the data definition for alogical child segment includes AS sequence-key-name, the
generated data description statements do not include sequence-key-name. If required,
COBOL, PL/I, or Assembler data description statements for this type of field can be
generated separately in their own right, as described in "Miscellaneous IMS (DL/I)
Fields" on page 198.

The application program could include a COPY or %INCLUDE statement for the
segment, followed by a COPY or %INCLUDE statement for the sequence-key-name
field. Then, if the program is written in Assembler, the sequence-key-name field can be
ORGed back to the starting position of the sequence key field; or, if the program is
written in PL/1, the sequence-key-name field can be generated as a based structure whose
pointer is set to the starting position of the sequence key field.

Destination Parent Segments

Destination parent segments are treated as ordinary physical segments; that is, data
description statements are generated in the same manner as for a GROUP member.

Index Target and Index Source Segments

Index target and index source segments are treated as ordinary physical segments; that is,
data description statements are generated in the same manner as for a GROUP member.

191

ASG-DataManager IMS (DL/I) Interface

If COBOL, PL/I, or Assembler data description statements are required for XDFLD
fidds (that is, index-search-field-name fields which are defined in SEGMENT
INDEX-POINTER members) or for system related fields, they can be generated
separately in their own right, as described in "Miscellaneous IMS (DL/I) Fields" on

page 198.

Logical Segments and Logical Concatenated Segments

The COBOL, PL/I, or Assembler data description statements for alogical segment are
generated from the physical segment represented by the logical segment; except that the
name in the first statement isthat of the logical segment.

The data description statements generated for alogical concatenated segment are
generated from the two physical segments represented by the logical concatenated
segment (except that the name in the first statement is that of the logical concatenated
segment). The following illustrates the structure of COBOL or PL/I data description
statements generated for alogical concatenated segment:

0l CONCATENATED- SEGVENT- NAMVE
03 LOG CAL- CHI LD- SEGVENT- NAMVE
05 CONCATENATED- KEY- NAMVE
07 KEYA
07 KEYB
07 KEYC
05 USER- DATA- NAVE
07 FI ELDA
07 FI ELDB
07 FI ELOC
03 DESTI NATI ON- PARENT- SEGVENT- NAME
05 FI ELDD
05 KEYC
05 FI ELDE

In thisillustration two different lines are generated for KEY C, the key field of the
destination parent; however, the fields can be distinguished from one another in the
application program by qualifying the appropriate field with either the logical child
segment name or the destination parent segment name. In Assembler data description
statements, the second and subsequent occurrences of duplicated names are blanked out.

Variable Length Segments

192

A variable length segment is defined to DataM anager by specifying that the segment
contains, directly or indirectly, avariable length item member. A segment that directly or
indirectly contains a variable length array is not recognized as a variable length segment
by DataManager.

5 IMS (DL/I) Source Language Generation

If COBOL data description statements are to be generated for a variable length segment,
the segment must contain a variable length ITEM member, and this member must be
redefined by avariablelength array. Thisisto satisfy the requirements of the VS COBOL
compiler, which only recognizes a segment as being of variable length if avariablelength
array is contained in the segment.

For example, if a COBOL data description were generated from this data definition:

CONTAI NS
| TEVMA ELSE (I TEMS) | TEMC

the VS COBOL compiler would output a warning message and compilation would
continue. However, this definition:

CONTAI NS
(1 TEMB) | TEMC ELSE | TEMA

would cause the VS COBOL compiler to output an error message and compilation would
fail.

The COBOL, PL/I, or Assembler data description statements generated for avariable
length segment include aline for the 2-byte sized field. The name to be applied to this
lineistaken from the macro DGSCOB, DOSPLI, DGSBAL, or DGSREC, as appropriate.
The name is subjected to any editing specified in the command.

Thisillustrates the structure of COBOL or PL/I data description statements generated for
avariable length physical segment:

01 SEGVENT- NAME
03 SI ZE- FI ELD- NAME
03 FI ELDA
03 FI ELDB

193

ASG-DataManager IMS (DL/l) Interface

Thisillustrates the structure of COBOL or PL/I data description statements generated for
avariable length logical concatenated segment:

0l CONCATENATED- SEGVENT- NAMVE
03 LDG CAL- CHI LD- SEGVENT- NAMVE
05 Sl ZE- FI ELD- NAME
05 CONCATENATED- KEY- NAME
07 KEYA
07 KEYB
07 KEYC
05 USER- DATA- NAMVE
07 FI ELDA
07 FIELDB
07 FI ELDC
03 DESTI NATI ON- PARENT- SEGVENT- NAME
05 Sl ZE- FI ELD- NAME
05 FI ELDD
05 KEYC
05 FI ELDE

If both parts of alogical concatenated segment are variable length, then the 2-byte sized
fields can be distinguished from one another in the application program by qualifying the
required size field with either the logical child segment name or the destination parent
segment name, as appropriate. In Assembler data description statements, the second and
subsequent occurrences of duplicated names are blanked out.

Path Calls

Data description statements for a user’ s input/output area that is to handle segments
accessed in a path call can be obtained in this way:

. A separate COBOL, PL/I, or Assembler data description must be generated for each
of the data sensitive segments to be processed in the path call. (The starting level
number can be specified in the command.)

. The application program must then issue for its input/output area contiguous COPY
or %INCLUDE statements for each of the data sensitive segments to be
concatenated.

Index Pointer Segments

The Source Language Generation Facility produces a complete and comprehensive set of
COBOL, PL/I, or Assembler data description statements for index pointer segments.

194

5 IMS (DL/I) Source Language Generation

The macros DGSCOB, DGSPLI, DGSBAL, and DGSREC are used widely in the
generation of these data description statements. The statements generated include
statements containing names, obtained from the appropriate macro, that identify and
separate parts of the index pointer segment. These are parts of the segment to which there
is no particular requirement to apply aname in the data dictionary data definition, but
which the user might possibly wish to process as entities. The approach is adopted to
make it easier for the user to process any constituent parts of the index pointer segments.

This example illustrates the structure of COBOL or PL/I data description statements
generated for a complex index pointer segment. All constituent members are generated
downto ITEM level. All names are subject to any editing specified in the PRODUCE
command.

Data Description Statements See Remark Number:
01 | NDEX- PO NTER- SEGVENT- NAME 1
03 KEY- NAME 2
05 CONSTANT- NAVE 3
05 | NDEX- FI ELD- NAVE 2,4
07 FIELD-A
07 FIELD-B
07 FIELD-C
05 SUBSEQUENCE- NAVE 5
07 CKA 6
09 KEYA
09 FIELD-D
05 SXA 7
07 CKB 8
09 KEYB
03 DUPLI CATE- DATA- NAME 9
05 CKA
07 KEYA
07 FIELD-D
05 CKB
07 KEYB
05 CKC

195

ASG-DataManager IMS (DL/l) Interface

196

Data Description Statements See Remark Number:

07 FIELD-E

03 CONCATENATED- KEY- NAMVE 10

05 KEYA
05 KEYB
05 KEYC
05 KEYD

03 USER- DATA- NAME 11

05 FIELD-F
05 FIELD-G
05 FIELD-H

Remarks

1

Thefirst line contai nsthe member-name of the index pointer ssgment for which data
description statements are being generated, and is aways generated (except, for
COBOL generation, when the value of the GEN keyword of the DOCOB macro is
FD).

This name is obtained from the member’ s data definition, and is always generated.

CONSTANT-NAME isobtained from the macro DOSCOB, DGSPLI, or DGSBAL,
as appropriate. It is generated only if a CONSTANT field is defined for the index
pointer segment.

Thisfield includes the members defined in the related index source segment’s
definition to constitute the search field. It represents the search field that can be used
in segment-search-arguments when accessing the related index target segment.

SUBSEQUENCE-NAME is obtained from the macro DGSCOB, DOSPLI, or
DGSBAL, asappropriate. It isgenerated only if subsequencefields are specified for
theindex pointer segment. Thefield includesthe system related fields defined in the
related index source segment’ s definition, which are specified in the index pointer
segment’ s definition to constitute the subsequence fields.

Thisisasystem related field of the type that is constituted by any part of the source
segment’ s concatenated key. In thisillustration its constituent members are a
sequence key field followed by a constituent member of the next contiguous
sequence key field in the source segment’ s concatenated key.

Thisisasystem related field of the type that prompts IMS (DL/I) to generate a
unique 4-byte value.

5 IMS (DL/I) Source Language Generation

8 Thisisanother system related field of the type that is constituted by any part of the
source segment’ s concatenated key; but thisfield has only one constituent, a
seguence key field.

9 DUPLICATE-DATA-NAME isobtained from the macro DOSCOB, DGSPLI, or
DGSBAL asappropriate. It isgenerated only if duplicate-datafields are specified in
the index pointer segment. Thefield includesthe system related fieldsdefined in the
related index source segment’ s definition, which are specified in the index pointer
segment’ s definition to constitute the duplicate-data fields.

10 CONCATENATED-KEY-NAME isobtained either from the name specified in the
CONCATENATED-KEY-NAME clause of the segment, if specified, or from the
macro DGSCOB, DGSPLI, or DGSBAL, as appropriate. The field contains the
concatenated key fields of the related index target segment. The concatenated key is
automatically constructed by DataManager if it is not contained in the subsequence
or duplicate-data fields, and symbolic pointing is specified for the index pointer
segment.

11 USER-DATA-NAME is obtained from the macro DGSCOB, DGSPLI, or
DGSBAL, as appropriate. It is generated only if the index pointer segment contains
user data.

With COBOL and PL/I data description statements, any duplicate names that are
generated can be distinguished from one another by qualifying them with higher level
fields with names that are unique.

When Assembler data description statements are generated, each of the fields constituting
the index-field-data, subsequence-data, duplicate-data and the IMS (DL/I) generated
concatenated-key-data are given unique names by DataM anager, to allow for the same
field appearing more than once in the segment. Thisis achieved by concatenating each
constituent field name to either the INDEX-FIELD-NAME, SUBSEQUENCE-NAME,
DUPLICATE-DATA-NAME, or CONCATENATED-KEY-NAME, depending on
where it appears. If a name becomes too long it is shortened by dropping characters from
the middle.

To ensure uniqueness of field names where more than one segment isinvolved, the user
must, if necessary, include editing clauses in the PRODUCE commands.

197

ASG-DataManager IMS (DL/I) Interface

Miscellaneous IMS (DL/1) Fields

The DataM anager Source Language Generation Facility can be used to generate record
layoutsor COBOL, PL/I, or Assembler data description statementsfor thesetypesof IMS
(DLN) fields:

. Sequence-key-name fields, with aline generated for each constituent member down
to ITEM level. If asequence-key-name field has been defined for a virtual logical
child segment, only the sequence-key-name field named in the PRODUCE
command is generated. If more than one sequence-key-name field is defined for the
segment, then each one required must be generated separately (contiguous COPY
or %I NCLUDE statements can subsequently be issued in the application program to
include them concatenated together).

. Index-search-field-name fidlds (XDFLDs), with aline generated for each
constituent member down to ITEM level.

. System-related fields, with aline generated for each congtituent member down to
ITEM level.

. Concatenated-key-name fields, with aline generated for each constituent member
downto ITEM level.

Generation of COBOL, PL/I, or Assembler Data Description
Statements for Segment Sensitive Fields Input/Output Areas

198

The format of the PRODUCE command to generate COBOL, PL/I, or Assembler data
description statements (and/or record layouts) for segment sensitive fields input/output
areasis as specified in the ASG-Manager Products Source Language Generation
publication, with the addition of a qualifier clause. Thisisthe format of the qualifier
clause, which immediately precedes the command’s FROM clause:

USED- I N pcb- name

where pcb- nane isthe name of a STRUCTURE type
PROGRAM-COMMUNICATION- BLOCK or PCB member.

The member-name in the FROM clause must be the name of a SEGMENT member.

Thisform of the PRODUCE command first generates a source language (or record
layout) data description line for the segment being processed. A lineisthen generated for
each sensitive field specified for that segment in the PCB member named in the
USED-IN clause. These lines are generated for the fields in the order in which the fields
are specified, with fillers generated wherever filler-bytes are specified in the PCB
member.

5 IMS (DL/I) Source Language Generation

If no sensitive fields have been specified for the segment in the PCB member definition,
then statements or record layouts are generated as they would be normally, asif the
USED-IN clause had not been specified.

If GIVING KNOWN-AS s specified, the generated data names are based on local-names
from:

. KNOWN-AS clauses specified for the sensitive fields in the PCB member
definition

. Containing members KNOWN-AS clauses, when processing the members that
constitute a sensitive field

instead of on the members' names or aliases. (The equivalent DGCOB, DGPLI, DGBAL,
or DGREC macro keyword usage is KNOWNAS=YES.)

It should be noted that the generated data names are not based on the KNOWN-AS
clausesthat are directly specified in the SEGMENT definition’s CONTAINS clause.

Example

Using the example segment ASY -PACK and the related example PCB member
ASY -PACK-PCB shown in "Member-type Descriptions for IMS (DL/I) Program
Communication Blocks" on page 117 (example of STRUCTURE type PCB), this
command could be issued to generate COBOL data description statements for the
segment sensitive fields input/output area:

PRODUCE COBCL USED-1 N ASY- PACK- PCB FROM ASY- PACK;

These would be the generated source language statements:

01 ASY- PACK,
03 PACK-NO ---,
03 FILLER PI C XX,
03 PROD-NO ---,

03 QTY- REQD.

199

ASG-DataManager IMS (DL/I) Interface

Generation of COBOL, PL/I, or Assembler Data Description
Statements for PCB Masks

200

The PRODUCE command can be used to generate COBOL, PL/I or Assembler data
description statements and/or record layouts for PCB masks. In order to do this, each
PCB mask must be defined to DataM anager as a GROUP containing these members:

. An ITEM member with alength of 8 bytes and a CHARACTER form-description,
to receive the database name returned by IMS (DL/I).

. An ITEM member with alength of 2 bytes and a CHARACTER form-description,
to receive the segment level number returned by IMS (DL/I).

. An ITEM member with alength of 2 bytes and a CHARACTER form-description,
to receive the status code returned by IMS (DL/1).

. An ITEM member with alength of 4 bytes and a CHARACTER form-description,
to contain the list of processing options required by IMS (DL/1).

. An ITEM member with alength of 4 bytes and aBINARY form-description, to be
used by IMS (DL/I) for internal linkage.

. An ITEM member with alength of 8 bytes and a CHARACTER form-description,
to contain the segment name returned by IMS (DL/1).

. An ITEM member with alength of 4 bytesand a BINARY form-description, to
contain the length of the key feedback area.

. An ITEM member with alength of 4 bytesand a BINARY form-description, to
receive the figure returned by IMS (DL/I) for the number of sensitive segment types
to which the application program is sensitive.

. An ITEM member with a CHARACTER form-description and of sufficient length
to receive the concatenated key of the segment returned by IMS (DL/1). The length
of thisitem is defined by the value of the length of key feedback field.

5 IMS (DL/I) Source Language Generation

Example

This example shows how a PCB mask, named DB-PCB, might be defined to
DataManager.

ADD DB- PCB;

GROUP

CONTAI NS DB- NAME, SEG- LEVEL, STAT- CODE, PROC- OPT, FI LLER,
SEG NAME, LN- KFB, NU- SENSEG, KEY- FB

ADD DB- NAME;
| TEM
HELD- AS CHAR 8

ADD SEG LEVEL;
| TEM
HELD- AS CHAR 2

ADD STAT- CODE;
| TEM
HELD- AS CHAR 2

ADD PROC- OFT,;
| TEM
HELD- AS CHAR 4

ADD FI LLER;

| TEM

HELD- AS Bl NARY 9;
ADD SEG NAME;

| TEM

HELD- AS CHAR 8

ADD LENG KFB;
| TEM
HELD- AS Bl NARY 9

ADD NU- SENSEG
| TEM
HELD- AS Bl NARY 9

ADD KEY- FB;
| TEM
HELD- AS CHAR 100

COBOL data description statements could be generated from this definition by this
command:

PRODUCE COBCL FROM DB- PCB NOGEN PRI NT USI NG HELD- AS;

201

ASG-DataManager IMS (DL/l) Interface

These statements would be produced:

01 DB- PCB
02 DB-NAVEPI C X(8).
02 SEG LEVELPI C XX.
02 STAT- CODEPI C XX.
02 PROC-OPTPIC X(4).
02 FILLERPI C S9(9) COVP.
02 LEN-KFBPI C S9(9) COVP.
02 NU SENSEGPI C S9(9) COMP
02 KEY-FBPI C X(100).

PL/I data description statements could be generated by this command:
PRODUCE PL/| FROM DB- PCB NOGEN PRI NT USI NG HELD- AS;

and these statements would be produced:

DCL

01 DB- PCB,
3 DB-NAVME CHAR (8),
3 SEG LEVEL CHAR (2),
3 STAT- CODE CHAR (2),
3 PROC- OPT CHAR (4),
3 FI LLER FI XED BI N (31),
3 SEG NAME CHAR (8),
3 LEN-KFB FI XED BI N (31),
3 NU- SENSEG FI XED BI N (31),
3 KEY- FB CHAR (100)

Assembler data description statements could be generated by this command:

PRODUCE BAL FROM DB- PCB NOGEN PRI NT USI NG
HELD- AS DROPPI NG "-";

and these statements would be produced:

DBPCB DSOCL136
DBNAME DSCL8
SEGLEVEL DSCL2
STATCODE DSCL2
PROCOPT DSCL4
FILLER DSFL4
SEGNAME DSCL8
LENKFB DSFL4

NUSENSEG DSFL 4
KEYFB DSCL100
* END OF GROUP DBPCB

202

5 IMS (DL/I) Source Language Generation

Generation of COBOL, PL/I, or Assembler Data Description
Statements for Segment Search Arguments

The definition of segment search arguments used during the generation of DBD control
statements is described in " Syntax of the PROCESSES Clause" on page 132. The section
below describes how to define segment search arguments for the generation of COBOL,
PL/I, or Assembler, or record layouts.

The PRODUCE command can be used to generate COBOL, PL/I, or Assembler data
description statements and/or record layouts for segment search arguments. In order to do
this, each segment search argument for which data description statements are to be
generated must be defined to DataM anager as a GROUP member, and its component
parts must be defined as ITEM members contained by that GROUP.

An unqualified segment search argument should be defined as a GROUP containing:

. AnITEM member with alength of 8 bytes, a CHARACTER form-description, and
a CONTENTS clause that specifies the name of the segment to be searched.

. AnITEM member with alength of 1 byte, a CHARACTER form-description, and a
CONTENTS clause that specifies the asterisk character (*). Thisfield is necessary
only if acommand code is included in the segment search argument.

. An ITEM member with alength of 1 to 4 bytesand a CHARACTER form
description. Thisfield will receive command codes from the application program.
Alternatively, the member could have a CONTENTS clause specifying up to four
command codes for the segment search argument. Thisfield is not required if no
command codes are to be included in the segment search argument.

. An ITEM member with alength of 1 byte, aCHARACTER form description, and a
CONTENTS clause that specifies a space character.

A qualified segment search argument should be defined as a GROUP containing the first
threeitems listed above, plus:

. An ITEM member with alength of 1 byte, aCHARACTER form description, and a
CONTENTS clause that specifies the left parenthesis character to indicate the start
of the qualification statement.

. AnITEM member with alength of 8 bytes, a CHARACTER form-description, and
aCONTENTS clause that specifies the name of the search field.

. An ITEM member with alength of 2 bytes, a CHARACTER form-description, and
aCONTENTS clause that specifies the relational operator.

. AnITEM member with a CHARACTER form-description, and aCONTENTS
clause that specifies the value that isto be compared with the values of the fields
being searched. The length of this field must be the same as that specified in the
DataManager data definition of the segment search field.

203

ASG-DataManager IMS (DL/l) Interface

204

. An ITEM member with alength of 1 byte, and a CHARACTER form-description,
with a CONTENTS clause that specifies the right parenthesis character to indicate
the end of the qualification statement.

The standard segment search argument format described above and illustrated below may
be varied in two ways:

. If the C command code is used to retrieve a segment by its concatenated key, the
gualification statement must be replaced by an ITEM member with a
CHARACTER form-description and of the appropriate length to receive the
concatenated key of the required segment.

. Fields can be included to allow multiple qualification statements to be specified.
The fields required would be, for each additional qualification statement:

Example

An ITEM member with alength of 1 byte, a CHARACTER form-description,
and a CONTENTS clause that specifies the logical operator

An ITEM member with a CONTENTS clause that specifies the name of the
search field, as described above

An ITEM member with a CONTENTS clause that specifies the relational
operator, as described above

An ITEM member with a CONTENTS clause that specifies the value to be
compared with the values of fields being searched, as described above

This segment search argument:

Segment Name * Command Begin Field Name R.O. Value End

Code QS QS

TEST- SEG *oe-- (TESTFLD EQ AA)

5 IMS (DL/I) Source Language Generation

could be defined asa GROUP named TEST-SSA containing the ITEMs SSEGNAME,
SCCSEP, SCOMCODE, SLPAREN, SFLDNAME, SCOMPOP, SFLDVAL, and
SRPAREN, as shown:

ADD TEST- SSA,

GROUP

CONTAI NS SSEGNAME, SCCSEP, SCOMCODE, SLPAREN, SFLDNANME,
SCOVPOPL1, SFLDVAL, SRPAREN

ADD SSEGNANME;

| TEM

HELD- AS CHAR 8
CONTENTS | S " TEST- SEG'

ADD SCCSEP;

| TEM

HELD- AS CHAR 1
CONTENTS | S "*"

ADD SCONCODE;

| TEM

HELD- AS CHAR 4
CONTENTS IS "---"

ADD SLPAREN,

| TEM

HELD- AS CHAR 1
CONTENTS IS " ("

ADD SFLDNAME;

| TEM

HELD- AS CHAR 8
CONTENTS | S " TESTFLD"

ADD SCOVPOP;

| TEM

HELD- AS CHAR 2
CONTENTS I S "EQ'

ADD SFLDVAL,;

| TEM

HELD- AS CHAR 2
CONTENTS | S " AA"

ADD SRPAREN,

| TEM

HELD- AS CHAR 1
CONTENTS IS ") "

205

ASG-DataManager IMS (DL/l) Interface

COBOL data description statements could then be generated from this definition by this
command:

PRODUCE COBCOL FROM TEST- SSA NOGEN PRI NT USI NG HELD- AS
G VING I NI TI AL VALUES;

These data description statements would be generated:

01 TEST- SSA
02 SSEGNAME Pl C X(8)
VALUE " TEST- SEG'.

02 SCCSEP Pl C X
VALUE "*" .
02 SCOMCOCDE PI C X(4)
VALUE "---".
02 SLPAREN Pl C X
VALUE " (".

02 SFLDNAME Pl C X(8)
VALUE " TESTFLD".

02 SCOwPCP PI C XX
VALUE "EQ'.

02 SFLDVAL PI C XX
VALUE " AA".

02 SRPAREN PIC X
VALUE ")".

PL/I data description statements could be generated by this command:

PRODUCE PL/1 FROM TEST- SSA NOGEN PRENT USI NG HELD- AS G VI NG
I NI TI AL- VALUES;

and these statements would be produced:

DCL
1 TEST- SSA,
3 SSEGNAMVE CHAR(8)
INIT (' TEST-SEG),
3 SCCSEP CHAR(1)
INIT ("*'),
3 SCOMCODE CHAR(4)
INNT ("----"),
3 SLPAREN CHAR(1)
INNT (' ("),
3 SFLDNAMVE CHAR(8)
INIT (' TESTFLD),
3 SCOVPOP CHAR(2)
INT ('EQ),
3 SFLDVAL CHAR(2)
INT (' AA),
3 SRPAREN CHAR(1)
INNT (")');

206

5 IMS (DL/I) Source Language Generation

Assembler data description statements could be generated by this command:

PRODUCE BAL FROM TEST- SSA NOGEN PRI NT USI NG HELD- AS
DROPPI NG "-" G VING I NI TI AL- VALUES;

and these statements would be produced:

TESTSSA DSDCL27

SSEGNAME DCCL8' TEST- SEG

SCCSEP DCCL1' *'

SCOMCCDE DCCL4" - - --'

SLPAREN DCCL14' ('

SFLDNAME DCCL8' TESTFLD

SCOVPOP DCCL2' EQ

SFLDVAL DCCL2' AA

SRPAREN DCCL1')'

* END OF CGROUP TESTSSA

207

ASG-DataManager IMS (DL/l) Interface

208

Appendix A
Macros for Tailoring the IMS Interface

Implementation of the IMS (DL/I) Interface Macros

Several macros (in addition to those described in the ASG-Manager Products Source
Language Generation publication) are available to enable IMS (DL/1) Interface output
generated by the PRODUCE command to be tailored to conform to a particular
installation’ s standards. These macros are:

. DGDBD, to enable the output of DBD control statements to be tailored

. DGPSB, to enable the output of PSB control statements to be tailored

. DGSCOB, to enable COBOL source language output to be tailored

. DGSPLI, to enable PL/I source language output to be tailored

. DGSBAL, to enable Assembler source language output to be tailored

. DGSREC, to enable the output of record layouts to be tailored

These macros are supplied as source modules on the installation magnetic tape. The
tablesin "The Macros DGDBD And DGPSB" on page 210 and "The Macros DGSCOB,
DGSPLI, DGSBAL, and DGSREC" on page 213 list the keywords of the macros, for
which values can be specified when Manager Products are installed. For any macro, if the
supplied default values of all these keywords are acceptable, no further action need be
taken in respect of the macro. If any values are to be changed, the procedure described in

the ASG-Manager Products Installation in OS Environments publication must be carried
out.

These are the names of the resulting assembled modules:

Macro Module
DGDBD DIL88
DGPSB DIL89
DGSBAL DIL97

209

ASG-DataManager IMS (DL/I) Interface

Macro Module

DGSCOB DIL99
DGSPLI DIL98
DGSREC DIL96

The Macros DGDBD And DGPSB

210

The macros DGDBD and DGPSB, respectively, enable the generation of DBD control
statements and PSB control statements to be tailored. Thistable lists the keywords of
these macros for which values can be specified when Manager Productsisinstalled.

Keyword

Specifies

ACHAR

ACSMETH

ALIAS

COLMAIN

COLMENT
(DGDBD only)

COLSUBS

Thehex values of any extracharactersthat areto be accepted for output
in names produced by the Source Language Generation Facility, to
enable characters not in the standard source language character set to
be output (seeremark 1 on page 212).

Default value: None.

Alternative value: Any valid hexadecimal value, or asublist of such
values.

Type of file to be generated.
Default Value: BPAM.
Alternative Value: QSAM.

Whether IM S specific aliases are to be generated instead of member
names.

Default Value: No.
Alternative Vaue: Yes (seeremark 2 on page 212).

Starting character position for statement type.

Starting character position for label generated from ADD-TO clause.
Default Value: 1.

Alternative Value: Up to 99.

Starting character position for keyword or operand.

Default Value: 16.

Alternative Value: Up to 99.

Keyword

Appendix A - Macros for Tailoring the IMS Interface

Specifies

CONCARD

DDNAME

IMSLVL

KNOWNAS

LIBCC

MEMLEN

RXLOGO01
(DGDBD only)

RXLOG02
(DGDBD only)

Whether a control card isto be produced.
Default Value: Yes.
Alternative Value: No (see remark 3 on page 212).

Default library name.
Default Value: 'GENLIB'.
Alternative Vaue: 'name’ (seeremark 4 on page 212).

Thelevel of IMS for which you require Manager Products to provide
support (see remark 6 on page 213).

Default value: V3.
Alternative value: 1.2, 1.3, V3, V4, VS.

Whether local-names from KNOWN-AS clauses are to be generated
instead of member names.

Default Value: No.
Alternative Value: Y es (see remark 2 on page 212).

The format of the control card output as the first record of a QSAM
FILE (unless overridden by an ONTO clause).

Default Value: see ASG-Manager Products Source Language
Generation.

Alternative Vaue: Delimited character string of 1to 72 characters
including a question mark (?).

Maximum length of library-name.
Default Value: 8.
Alternative Value: Up to 16.

Whether to relax the Manager Products integrity rule which forces a
reference to destination parent segments (see remark 7 on page 213).

Default Value: No.
Alternative Value: Yes.

Whether to relax the Manager Products integrity rule that the
concatenated segment variation with dependents must be the left-most
(seeremark 8 on page 213).

Default Value: No.
Alternative Value: Yes.

211

ASG-DataManager IMS (DL/I) Interface

212

Keyword Specifies

RXLOG01 Whether to relax the Manager Products integrity rules for indirectly

(DGPSB only)

contained segments within logical segments (see remark 9 on
page 213).
Default Value: No.

Alternative Value: Yes.

RXLOG02 Whether to relax the Manager Products integrity rules so that a PCB

may refer to multiple variations of a concatenated segment (see

(DGPSB only) /emark 10 on page 213).
Default Value: No.
Alternative Value: Yes.
RNDBIN Rounding of binary items.
Default Value: Yes.
Alternative Value: No.
RNDBIT Whether bit string fields are to be generated with byte alignment (see
remark 5 on page 212).
Default Value: No.
Alternative Value: Yes.
Remarks
1 The standard Source L anguage Generation Facility output character set for DBD and

PSB control statements conforms to that defined for COBOL for the data division.
This character set can be extended to allow nonstandard characters to be output in
names by entering the hexadecimal value of each required character as avalue to
ACHAR. The user should ensure that any extra characters that are added to the
output character set in thisway are used only in ways that are permitted by the
software with which Manager Products is used.

If both ALIAS=YES and KNOWNAS=YES apply, then when a data name is
generated for amember that has an ALIAS clause and is subject to a containing
member’'s KNOWN-AS clause, the KNOWN-AS local-name takes precedence.

When thevalue CONCARD=NO isused to suppressthe generation of acontrol card,
the production of BKEND cards is al so suppressed.

The variable nane isavalid name, delimited, and up to 32 characters long. It must
be different from all other values named or used by default for the same macro.

The effect of the RNDBIT parameter is overridden by any alignment specification
stated in the data definition of any group or segment that contains the bit string item.

Appendix A - Macros for Tailoring the IMS Interface

6 Youcanusethe IMSLVL parameter to decide when to take advantage of the
additional features available in later IMSreleases. The value of IMSLVL isthe
default for all PRODUCE IMS commands. Y ou can override this value using the
RELEASE/VERSION keywords in aPRODUCE IM S command.

7 Youmay want to suppress even key-sensitivity to adestination parent, to reduce /O
overhead. When RXLOGO is specified as YES for DGDBD, the first source
segment may now be specified as the only segment contained within the logical
segment. As aresult, warning message DM 02517 with severity level W is never
issued when producing the source for an IMS database definition.

8 If there are multiple variations of a concatenated segment specified within alogical
database, it is possible to allow only one of these variations to have dependents.
Normally, thisisonly alowed to be the left-most, or first, variation in the hierarchy.
If RXLOGO?2 is specified as YES for DGDBD, thisrule is changed so that the
variation with dependents need not be the | eft-most, although there may still only be
one of the variations that has dependents.

9 If RXLOGO1 is specified for DGPSB, it is accepted as valid to generate a PSB
containing a PCB that makes reference to segments indirectly contained within a
logical database. By indirectly, we mean that either of the sources of a concatenated
segment contained by alogical database may be referenced in place of the
concatenated segment as the parent of any dependent segments.

10 If RXLOGO2isspecified for DGPSB, aPSB may be generated containing aPSB that
refersto more than one variation of alogically concatenated segment. Note that this
isonly valid in the context of aHD database where the segments in question are
utilizing direct-address pointers and twin pointers are specified.

The Macros DGSCOB, DGSPLI, DGSBAL, and DGSREC

The purpose and applicability of these macros are defined in "Generation of COBOL,
PL/I, or Assembler Data Description Statements for Segment Sensitive Fields
Input/Output Areas" on page 198. Thistable lists the keywords of these macros for which
values can be specified when Manager Productsisinstalled.

213

ASG-DataManager IMS (DL/I) Interface

214

Keyword

Specifies

CONKEY

CONSTNT

DUPDATA

SIZE

SUBSEQ

USERDAT

Note:

Inalogical child segment: the name to be applied to the destination
parent’ s concatenated key. In an index pointer segment that is pointed to
by symbolic pointers: the name to be applied to the concatenated key of
the corresponding index target segment. This concatenated key is
included in the data portion of the index pointer segment if the
concatenated key does not appear in the subsequence or duplicate-data
fields. The value specified by CON KEY is only used when no
CONCATENATED-KEY-NAME clause has been specified in the
SEGMENT member.

Default Value: CONCAT-KEY .
Alternative Value: name.

The name to be applied to the CONSTANT field of an index pointer
segment.

Default Value: CONSTANT.
Alternative Value: name.

The name to be applied to the duplicate data fields of an index pointer
segment.

Default Value: DUP-DATA-FLD.
Alternative Value: name.

The name to be applied to the SIZE field of avariable length segment.
Default Vaue: SIZE-FIELD.
Alternative Value: name.

The name to be applied to the subsequence fields of an index pointer
segment.

Default Valuee SUBSEQUENCE-FLD.
Alternative Value: name.

The name to be applied to the user-datafield of logical child and index
pointer segments.

Default Value: USER-DATA.
Alternative Value: name.

The variable nane isavalid name, delimited, and up to 32 characters long. It must be
different from all other values named or used by default for the same macro.

Appendix B
Manager Products and IMS Keywords

Introduction

Most keywords used in Manager Products IMS member types are similar to the
equivalent IMS usage. Some meanings may not be so clear, and so are explained further
in this appendix. Manager Products keywords are given in CAPITALS, and IMS terms
aregiveninitalics.

IMS Databases

CONTAINS: This clause represents the segment hierarchy for any database.
HDAM/HIDAM databases

The ADD-TO and PRIME clauses indicate one or more PHY SICAL SEGMENTS
that must be added to the database within a secondary set group.

LOGICAL databases

The CONTAINS clause indicates that either alogical segment or a physical
segment may be included in the logical database.

SECONDARY -INDEX databases

The SHARES-WITH clause givesthe capability of representing a shared secondary
index database that may contain several indices.

215

ASG-DataManager IMS (DL/I) Interface

Physical Segments

216

RELATED-AS (logical relationships)

UNIDIRECTIONAL-CHILD-SEGMENT isthelogical child in aunidirectional
relationship and represents a pointer segment.

The CONTAINS CLAUSE for aUNIDIRECTIONAL-CHILD-SEGMENT
represents the intersection data in the logical relationship.

REAL-PAIRED-CHILD-SEGMENTSsrepresent the real (as opposed to virtual) half
of abidirectional-virtual paired relationship, also known asthe RLC (Real Logical
Child).

The POINTERS clause for a REAL-PAIRED-CHILD-SEGMENT allows you to
specify these types of pointers:

FORWARD-LOGICAL-TWIN = LTF (logical twin forward)
BACKWARD-LOGICAL-TWIN = LTB (logical twin backward)
SINGLE-LOGICAL-CHILD = LCF (logical child first)
DOUBLE-LOGICAL-CHIILD =LCL (logical child last)

ATTRIBUTES clause (physical characteristics):

The POINTERS clause for PHY SICAL SEGMENT allows you to specify the
following clauses (representing IM S pointer types):

FORWARD-HIERARCHICAL = HF (hierarchical-forward)
BACKWARD-HIERARCHICAL = HB (hierarchical-backward)
FIRST-CHILD = PCF (physical child first)

LAST-CHILD = PCL (physical child last)

SINGLE-TWIN = PTF (physical twin forward)

DOUBLE-TWIN = PTB (physical twin backward + physical twin forward)
NOTWIN = no twin pointers

COUNTER = CTR (counter only)

unspecified = NONE (unidirectional and real-paired children only).

Index

A
ADD-TO interrogation keyword 146
alignment 37
application view 13
arrays
FIELD control statementsfor 180

B

BACKWARD-LOGICAL-TWIN pointer 33
BOUND interrogation keyword 146, 150
BSAM access method 72

BULK command 2, 139

C
calls, command code 134
COBOL SYNCHRONIZED keyword 36
command codes 134
common clauses 23
CONCATENATED 34
concatenated 34, 136
concatenated key 34
as sensitivefield in PCB 128
construction of 34
destination parent 15
index source segment 35
index target segment 35
internal member type 34
name 34
segment search arguments 136
sensitive segmentsin PCB 186
concatenated segment 136
logical 108
CONCATENATED-KEY -
CONSTITUENTS interrogation
keyword 150
CONCATENATED-KEY-FIELDS
clause 35
CONCATENATED-KEY-NAME 3, 34
CONCATENATED-KEY-NAME clause 34
index pointer segment 65
concatenated-key-name fields 136

CONCATENATED-KEY-NAME
interrogation keyword 148

CONCATENATED-KEY-NAMES
interrogation keyword 150

CONTAINED-BY interrogation
keyword 174

CONTAINS interrogation keyword 146

CONTAINSlist 15

CONTENT declaration 28

control interval size 73

control module in application 20

controller's commands 141

conventions page Vi

counter field in logical parent segment 34

crossing logical relationships 108

D
data
intersection 15
data description statement generation
for PCB masks 14
for segment I/O areas 127
segment search arguments (SSA) 132
datafields 16
data set
groups 73
data set overflow 82
database
loading (processing option) 122
primary index 23
reading processing option 122
updating processing option 122
database definition 16
BLOCK subordinate clause 83
BUFFER clause 83
INPUTS clause 74
MODEL clause 83
OUTPUT clause 77
Database Description (DBD) Control
Statements 23
for HIDAM database 102
for LOGICAL database 107

217

ASG-DataManager IMS (DL/I) Interface

218

for primary index database 98
DATABASES interrogation keyword 150
DATASET control statements 180
DATASETS clause 76
DBD control statements

for shared SECONDARY -INDEX

database 181

KEY operand 108
DBD FIELD Control Statements 62
ddname 18
DEFAULTED-ASform of ITEM 16
destination parent segment 32
destination parent's concatenated key 31
DEVICE clause 77
DGDBD macro 209
DGPSB macro 209
DGSBAL macro 209
DGSCOB macro 209
DGSPLI macro 209
DGSREC macro 209
DIRECT-ADDRESS pointer 32
DL/I- DATASETS

interrogation keyword 146
DL/I-DATABASE member type 2
DL/I-DATASET interna member type 74
DL/I-DATASETS 3
dummy members 18
duplicate data fields across segments 38
DUPLICATE-DATA list 20
DUPLICATE-DATA-FIELDS

interrogation keyword 148
DUPLICATE-DATA-FIELDS clause 61

E

edit/compression routine for segment 43

EDIT-COMPRESSION-EXITS
interrogation keyword 150

encoding 15

ENTERED-ASform of ITEM 16

exit, user 43

F

FATHERED-BY interrogation keyword 174
FATHERS interrogation keyword 147
FIELD statements 20

fixed length logical record 73

FIXED record format 73

floating point items 60

form description of ITEM members 16
FORWARD-HIERARCHICAL keyword 41
FORWARD-LOGICAL-TWIN pointer 33
FREQUENCY clause 39

FREQUENCY -FREE-BLOCKS clause 90

G
GENERATED-BY interrogation
keyword 174
GENERATES
interrogation keyword 148, 151
GENERATES clause 20
GENERATES-FIELDS keyword in
PRODUCE command 178
GENLIB output file 182
GLOSSARY command 2,139
GROUP member type 16
GSAM database 121
ACCESS clause 72
arraysin 146
CONTAINS clause 74
input data set 76
interrogation of 164
multibuffering option 121
PCB for 121

H
HDAM database 89
ACCESS clause 89
ADD-TO clause 90
ANCHOR-POINTS clause 89
CONTAINS clause 89
DATASET control statement 91
definition 89
dependent segment 42
INSERTION-BYTES-MAXIMUM
clause 89
interrogation of 146
pointers 34
RANDOMIZING-MODULE
clause 89
RELATIVE-BLOCK-MAXIMUM
clause 89
root segment of 40
HELD-ASform of ITEM 16, 61
HIDAM database
DATASET control statements 180
interrogation of 146
primary index database 17
hierarchical
relationship interrogation 143
HISAM database
interrogation of 147
HSAM database
interrogation of 147

|
IF
interrogation keyword 146

IMS (DL/1) Control Statements 3
IMS member type keywords 139
IMS-DATABASE member type 2
IMS-DATASETS keyword 3
IN-DATABASES interrogation
keyword 165
index
search fields 17
source segment 18
target segment 19
index pointer 20
indexing
secondary 12
INDEX-SEARCH-FIELDS 3
installation macros 189
internal DataM anager member types 17
interrogations 146
intersection data 15
ITEM members 16

L
LCHILD control statements 180
LIST command 2, 139
logical database 9
interrogation of 145

M
MAINTENANCE-EXITS interrogation
keyword 149
MARK |V file definition forms 176
member types
internal 17
selection keywords 140
MODEL clause 77
module
control 20
MODULE member type 20

N

NAME interrogation keyword 152
NO-ASSEMBLY-PRINT keyword 184

@)

OF interrogation keyword 151
ON interrogation keyword 149
output source library data set 182

P

PARENTS interrogation keyword 147
path calls 194

PCB 14

PERFORM command 2, 139

physical database 5

Index

interrogation of 150
physical segment 5
primary index database 180
PROCESSES clause
CONTAINS clause 19
SEGMENT-SEARCH-ARGUMENT
Sclause 20
PRODUCE command
ALL-FIELDS keyword 178
ASclause 181
CONDITION-CODE clause 185
control options 176
DIRECT-FIELDS keyword 178
ENQUEUES clause 185
FROM clause 178, 181
|O-PCB keyword 185
|O-SIZE clause 185
OPTIONS clause 184
PRIMARY-INDEX clause 180
SEARCH-FIELDS keyword 178
SSA-SIZE clause 185
USE clause 182
USED-IN clause 187
USING clause 182
Program Communication 14
Program Communication Block
GSAM database 19
interrogation of 160
SEGMENT clause 186
WTOR keyword 185
Program Communication Blocks 13
PROGRAM member type 20
Program Specification Block (PSB) Control
Statements 14
PSB control statements
generation 183
language operand 185
library-names 182
PROCSEQ operand 186
PSBGEN control statement operands 185

Q
qualified segment search arguments 20

QUALIFIED-ON interrogation

keyword 153

R

RANDOMIZING MODULES interrogation
keyword 147

REAL-PAIRED-CHILD-SEGMENT 33
RENAMES interrogation keyword 151
REPORTED-ASform of ITEM 16

219

ASG-DataManager IMS (DL/I) Interface

S
search fields
in segment search arguments 20
SEARCH list 20
SEARCH-KEY -FIELDS interrogation
keyword 149
secondary index relationship 10
secondary indexing, fieldsfor 179
SECONDARY - SEQUENCE-ON
interrogation keyword 152
SEGM control statements 180
SEGMENT
interrogation keyword 152
SEGMENT member type 7
segment search argument 11
segment search field 20
SEGMENT-SEARCH-ARGUMENTS
clause 20
SENSEG control statements 186
SENSITIVE-FIELDS interrogation
keyword 153
sequence key fields 17
SEQUENCE-KEY interrogation
keyword 149
SEQUENCE-KEY-CONSTITUENTS
interrogation keyword 151
SEQUENCE-KEY Sinterrogation
keyword 3
shared SECONDARY-INDEX database 181
SHARES-WITH interrogation keyword 148
SOURCE
interrogation keyword 149
Source Language Generation facility 3
SSAS
interrogation keyword 153
SUBSEQUENCE list 20
SUBSEQUENCE-FIELDS interrogation
keyword 149
SYSTEM member type 20
system related fields 17
SYSTEM-RELATED-FIELDS interna
member type 3

T
TARGET interrogation keyword 149
TO interrogation keyword 152

U
UNDEFINED record format 73
user data 179

\Y
validation performed by DataManager 17

220

VARIABLE record format 73
VIA clause

interrogation 143
VSAM access method 72

W
WHAT command 141
WHICH command 2, 139, 141

ASG Worldwide Headquarters Naples Florida USA | asg.com

	CD Contents
	Contents
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Publication Conventions
	ASG Support Numbers
	Business Hours Support
	Non-Business Hours - Emergency Support

	ASG Web Site
	Enhancement Fax Form
	Preface
	About this Publication

	DataManager IMS (DL/I) Interface Facilities
	The IMS (DL/I) Environment and DataManager
	Introduction
	Segments
	Databases
	Application View

	Further Information
	Segments
	IMS (DL/I) Data Fields
	IMS (DL/I) Databases
	Special DataManager Member Types
	Application View

	Member Types
	Introduction
	Member-type Syntax for IMS (DL/I) Segments
	Physical Segments
	Logical Segments
	Segments that Reside in a Secondary Index Database

	Member-type Syntax For IMS (DL/I) Databases
	Outline of the IMS-DATABASE Member Type
	Member Type of a GSAM Type IMS (DL/I) Database Syntax
	The Member Type for a HSAM Type IMS (DL/I) Database
	The Member Type for a HISAM Type IMS (DL/I) Database
	The Member Type for a HDAM Type IMS (DL/I) Database
	The Member Type for a HIDAM Type IMS (DL/I) Database
	The Member Type for a LOGICAL Type IMS (DL/I) Database
	The Member Type for a SECONDARY-INDEX Type IMS (DL/I) Database

	Member-type Descriptions for IMS (DL/I) Program Communication Blocks
	PROGRAM-COMMUNICATION-BLOCK
	Example of a GSAM type PCB
	Examples of OUTPUT-MESSAGE Type PCBs
	Examples of STRUCTURE Type PCBs

	The PROCESSES Clause
	Syntax of the PROCESSES Clause

	Extensions to DataManager Commands for IMS (DL/I) Databases
	Introduction
	IMS (DL/I) Member-type Keywords
	Condition Keywords for WHICH and WHAT Commands
	Examples
	Member Type Interrogations
	Interrogation Syntax
	Alternative Verb Keywords

	IMS (DL/I) Source Language Generation
	Introduction
	Generating IMS (DL/I) DBD Control Statements
	Generating IMS (DL/I) PSB Control Statements
	Generation of COBOL, PL/I, or Assembler Data Description Statements for Segment Input/Output Areas
	The PRODUCE Command
	Installation Macros
	Segment Input/Output Areas: Items Defined as BINARY or BITS
	Simple Physical Segments
	Logical Child Segments
	Destination Parent Segments
	Index Target and Index Source Segments
	Logical Segments and Logical Concatenated Segments
	Variable Length Segments
	Path Calls
	Index Pointer Segments
	Miscellaneous IMS (DL/I) Fields

	Generation of COBOL, PL/I, or Assembler Data Description Statements for Segment Sensitive Fields ...
	Generation of COBOL, PL/I, or Assembler Data Description Statements for PCB Masks
	Generation of COBOL, PL/I, or Assembler Data Description Statements for Segment Search Arguments

	Appendix A
	Implementation of the IMS (DL/I) Interface Macros
	The Macros DGDBD And DGPSB
	The Macros DGSCOB, DGSPLI, DGSBAL, and DGSREC

	Appendix B
	Introduction
	IMS Databases
	Physical Segments

	name:
	number:
	contact name:
	publication:
	product:
	version number:
	pub date:
	comments:

