
ASG-DataManager�

IMS (DL/I) Interface
Version 2.5

Publication Number: DMR0200-25-IMS
Publication Date: December 2000

The information contained herein is the confidential and proprietary information of Allen Systems Group, Inc. Unauthorized use of this information and disclosure to
third parties is expressly prohibited. This technical publication may not be reproduced in whole or in part, by any means, without the express written consent of Allen
Systems Group, Inc.

© 1998-2002 Allen Systems Group, Inc. All rights reserved.
All names and products contained herein are the trademarks or registered trademarks of their respective holders.

ASG Worldwide Headquarters Naples Florida USA | asg.com | info@asg.com
1333 Third Avenue South, Naples, Florida 34102 USA Tel: 239.435.2200 Fax: 239.263.3692 Toll Free: 800.932.5536 (USA only)

i

Contents

Preface . v
About this Publication . vi

Publication Conventions .vi

ASG Customer Support . ix
Intelligent Support Portal (ISP). ix
Telephone Support . ix

ASG Documentation/Product Enhancement Fax Form . xi

1 DataManager IMS (DL/I) Interface Facilities . 1

2 The IMS (DL/I) Environment and DataManager . 5
Introduction . 5
Segments . 5
Databases. 12
Application View . 13

Further Information . 15
Segments . 15
IMS (DL/I) Data Fields . 16
IMS (DL/I) Databases . 16
Special DataManager Member Types . 17
Application View . 19

3 Member Types . 21
Member-type Syntax for IMS (DL/I) Segments . 22
Physical Segments. 24
Logical Segments . 51
Segments that Reside in a Secondary Index Database . 55

Member-type Syntax For IMS (DL/I) Databases. 69
Outline of the IMS-DATABASE Member Type . 69
Member Type of a GSAM Type IMS (DL/I) Database Syntax 70
The Member Type for a HSAM Type IMS (DL/I) Database . 75

ASG-DataManager IMS (DL/I) Interface

ii

The Member Type for a HISAM Type IMS (DL/I) Database . 79
The Member Type for a HDAM Type IMS (DL/I) Database. 86
The Member Type for a HIDAM Type IMS (DL/I) Database . 94
The Member Type for a LOGICAL Type IMS (DL/I) Database 106
The Member Type for a SECONDARY-INDEX Type IMS (DL/I) Database. 111

Member-type Descriptions for IMS (DL/I) Program Communication Blocks . . . 117
PROGRAM-COMMUNICATION-BLOCK . 117
Example of a GSAM type PCB . 129
Examples of OUTPUT-MESSAGE Type PCBs. 129
Examples of STRUCTURE Type PCBs . 130

The PROCESSES Clause . 132
Syntax of the PROCESSES Clause. 132

4 Extensions to DataManager Commands for IMS (DL/I) Databases 139
Introduction . 139

IMS (DL/I) Member-type Keywords. 139

Condition Keywords for WHICH and WHAT Commands 141
Examples . 142
Member Type Interrogations. 146
Interrogation Syntax . 154
Alternative Verb Keywords . 174

5 IMS (DL/I) Source Language Generation. 175
Introduction . 176

Generating IMS (DL/I) DBD Control Statements . 176

Generating IMS (DL/I) PSB Control Statements . 183

Generation of COBOL, PL/I, or Assembler Data Description Statements for Segment
Input/Output Areas. 189
The PRODUCE Command . 189
Installation Macros . 189
Segment Input/Output Areas: Items Defined as BINARY or BITS 190
Simple Physical Segments . 190
Logical Child Segments . 190
Destination Parent Segments. 191
Index Target and Index Source Segments. 191
Logical Segments and Logical Concatenated Segments. 192
Variable Length Segments . 192
Path Calls . 194
Index Pointer Segments. 194
Miscellaneous IMS (DL/I) Fields . 198

Contents

iii

Generation of COBOL, PL/I, or Assembler Data Description Statements for Segment
Sensitive Fields Input/Output Areas . 198

Generation of COBOL, PL/I, or Assembler Data Description Statements for PCB
Masks . 200

Generation of COBOL, PL/I, or Assembler Data Description Statements for Segment
Search Arguments. 203

Appendix A
Macros for Tailoring the IMS Interface. 209

Implementation of the IMS (DL/I) Interface Macros . 209

The Macros DGDBD And DGPSB . 210

The Macros DGSCOB, DGSPLI, DGSBAL, and DGSREC. 213

Appendix B
Manager Products and IMS Keywords . 215

Introduction . 215

IMS Databases . 215

Index. 217

ASG-DataManager IMS (DL/I) Interface

iv

v

Preface

This ASG-DataManager IMS (DL/I) Interface describes the OS version of the IMS
(DL/I) Interface facility. This facility (additional to the basic set-up, maintenance, and
interrogation features) enables the user to fully define IMS (DL/I) databases in the
dictionary and to produce IMS (DL/I) DBD and PSB control statements, PCB masks,
segment search arguments, and segment input/output area data description directly from
ASG-DataManager (herein called DataManager) data definitions.

The scope of the OS version of this interface encompasses the Data Language/I (DL/I)
facility of the IMS/VS subsystem available under VS (excluding DOS/VS).

The DOS version of the interface is described in a separate manual.

This interface does not include the Data Communications (DC) facility of IMS/VS, for
which a separate interface is available.

Allen Systems Group, Inc. (ASG) provides professional support to resolve any questions
or concerns regarding the installation or use of any ASG product. Telephone technical
support is available around the world, 24 hours a day, 7 days a week.

ASG welcomes your comments, as a preferred or prospective customer, on this
publication or on any ASG product.

ASG-DataManager IMS (DL/I) Interface

vi

About this Publication
This publication consists of these chapters:

� Chapter 1, "DataManager IMS (DL/I) Interface Facilities," on page 1 summarizes
the interfaces between DataManager and IMS (DL/I).

� Chapter 2, "The IMS (DL/I) Environment and DataManager," discusses very
briefly the concept of IMS (DL/I) databases and illustrates how an IMS (DL/I)
database can be defined to DataManager.

� Chapter 3, "Member Types," gives the specifications of the DataManager data
definition statements for IMS (DL/I) databases and their constituents.

� Chapter 4, "Extensions to DataManager Commands for IMS (DL/I) Databases,"
describes the interrogation and documentation facilities for reporting on IMS (DL/I)
databases.

� Chapter 5, "IMS (DL/I) Source Language Generation," describes the interface
between IMS (DL/I) and the DataManager Source Language Generation facility.

Publication Conventions
These conventions apply to syntax diagrams that appear in this publication.

Diagrams are read from left to right along a continuous line (the "main path"). Keywords
and variables appear on, above, or below the main path.

Convention Represents

�� At the beginning of a line indicates the start of a statement.

At the end of a line indicates the end of a statement.

At the end of a line indicates that the statement continues on the line
below.

At the beginning of a line indicates that the statement continues from the
line above.

Keywords are in upper-case characters. Keywords and any required punctuation
characters or symbols are highlighted. Permitted truncations are not indicated.

Variables are in lower-case characters.

Statement identifiers appear on the main path of the diagram:

A required keyword appears on the main path:

�

�

�

�

� �COMMAND

Preface

vii

An optional keyword appears below the main path:

Where there is a choice of required keywords, the keywords appear in a vertical list; one
of them is on the main path:

or

Where there is a choice of optional keywords, the keywords appear in a vertical list,
below the main path:

The repeat symbol, <<<<<<, above a keyword or variable, or above a whole clause,
indicates that the keyword, variable, or clause may be specified more than once:

A repeat symbol broken by a comma indicates that if the keyword, variable, or clause is
specified more than once, a comma must separate each instance of the keyword, variable,
or clause:

The repeat symbol above a list of keywords (one of which appears on the main path)
indicates that any one or more of the keywords may be specified; at least one must be
specified:

Convention Represents

� �COMMAND KEYWORD

� �� COMMAND
KEYWORD

� �COMMAND
KEYWORD1
KEYWORD2
KEYWORD3
KEYWORD2

� �COMMAND KEYWORD1

KEYWORD3
KEYWORD2

� �COMMAND
KEYWORD1
KEYWORD2

� �
<<<<<<<<

COMMAND variable

� �
<<< , <<
variableCOMMAND

ASG-DataManager IMS (DL/I) Interface

viii

Allen Systems Group, Inc. uses these conventions in publications:

The repeat symbol above a list of keywords (all of which are below the main path)
indicates that any one or more of the keywords maybe specified, but they are all optional:

Convention Represents

ALL CAPITALS Directory, path, file, dataset, member, database,
program, command, and parameter names.

Initial Capitals on Each Word Window, field, field group, check box, button, panel (or
screen), option names, and names of keys. A plus sign
(+) is inserted for key combinations (e.g., Alt+Tab).

lowercase italic
monospace

Information that you provide according to your
particular situation. For example, you would replace
filename with the actual name of the file.

Monospace Characters you must type exactly as they are shown.
Code, JCL, file listings, or command/statement syntax.

Also used for denoting brief examples in a paragraph.

Vertical Separator Bar (|)
with underline

Options available with the default value underlined (e.g.,
Y|N).

Convention Represents

� �

<<<<<<<<<<<<<<<<
COMMAND KEYWORD1

KEYWORD2

� �
����������������

COMMAND
KEYWORD1
KEYWORD2

ix

ASG Customer Support
ASG provides support throughout the world to resolve questions or problems regarding
installation, operation, or use of our products. We provide all levels of support during normal
business hours and emergency support during non-business hours.

ASG Third-party Support. ASG provides software products that run in a number of third-party
vendor environments. Support for all non-ASG products is the responsibility of the respective
vendor. In the event a vendor discontinues support for a hardware and/or software product, ASG
cannot be held responsible for problems arising from the use of that unsupported version.

Intelligent Support Portal (ISP)

Online product support is available at: http://www.asg.com/support/support.asp via the ASG
Intelligent Support Portal (ISP). Your logon information for ISP online support is:

Customer ID = NNNNNNNNN
Password = XXXXXXXXXX

where:

NNNNNNNNNN is your customer ID supplied by ASG Product Distribution.
XXXXXXXXXX is your unique password supplied by ASG Product Distribution.

The ASG-Intelligent Support Portal User's Guide provides instructions on how to use the ISP and
is located on the ASG Support web page.

Telephone Support

 To expedite response time, please have this information ready:
� Product name, version number, and release number
� List of any fixes currently applied
� Any alphanumeric error codes or messages written precisely as displayed
� A description of the specific steps that immediately preceded the problem
� Verify whether you received an ASG Service Pack or cumulative service tape for this

product. It may include information to help you resolve questions regarding installation of
this ASG product. The Service Pack instructions are in a text file on the distribution media
included with the Service Pack. You can access the latest software corrections and Service
Packs via the ISP.

� The severity code (ASG Support uses an escalated severity system to prioritize service to
our clients. The severity codes and their meanings are listed below.)

Severity Codes and Expected Support Response Times

Severity Meaning Expected Support Response Time

1 Production down, critical situation Within 30 minutes

2 Major component of product disabled Within 2 hours

3 Problem with the product, but customer has
work-around solution

Within 4 hours

4 "How-to" questions and enhancement
requests

Within 4 hours

http://www.asg.com/support/support.asp

ASG Customer Support

x

Business Hours Support

Non-Business Hours - Emergency Support

If you receive a voice mail message, follow the instructions to report a production-down or critical problem. Leave a
detailed message including your name and phone number. A Support representative will be paged and will return
your call as soon as possible. Please have available the information described previously when the ASG Support
representative contacts you.

Your Location Phone Fax E-mail

United States and
Canada

800.354.3578 or
800.775.5675

703.464.4901 support@asg.com

Australia 00.800 3544 3578 or
61.3.9645.8500

61.2.9460.0280 support.au@asg.com

England 00.800 3544 3578 or
44.1727.736305

44.1727.812018 support.uk@asg.com

France 00.800 3544 3578 or
33.141.028590

33.141.028589 support.fr@asg.com

Germany 00.800 3544 3578 or
49.89.45716.200

49.89.45716.400 support.de@asg.com

Italy 00.800 3544 3578 or
39.0290.4500.25

support.it@asg.com

Singapore 00.800 3544 3578 or
65.332.2922

65.337.7228 support.sg@asg.com

South Africa 00.800 3544 3578 or
00.800.201.423

support.sa@asg.com

All other countries: 1.239.435.2201 support@asg.com

Your Location Phone Your Location Phone

United States and
Canada

800.354.3578 Netherlands 00.800 3354 3578

Asia 00.800 3544 3578 New Zealand 00.800 3354 3578

Australia 00.800.3354 3578 Singapore 00.800 3354 3578

Denmark 00.800 3544 3578 South Korea 00.800 3354 3578

France 00.800.3354 3578 Sweden 00.800 3354 3578

Germany 00.800.3354 3578 Switzerland 00.800 3354 3578

Hong Kong 00.800 3544 3578 Thailand 00.800 3354 3578

Ireland 00.800 3544 3578 United Kingdom 00.800 3354 3578

Israel 00.800 3544 3578 All other countries 1.239.435.2201 or
1.602.667.2800

Japan 00.800 3544 3578

ASG Customer Support

xi

ASG Documentation/Product Enhancement Fax Form
Submit all product and documentation suggestions to ASG�s product management team at
http://www.asg.com/asp/emailproductsuggestions.asp.

If you do not have access to the web, FAX your suggestions to product management at (239) 263-3692. Please
include your name, company, work phone, e-mail ID, and the name of the ASG product you are using. For
documentation suggestions include the publication number located on the publication�s front cover.

Company Name Telephone Number Site ID Contact name

Product Name/Publication Product Version # (required) Publication Date

Product:

Publication # (required):

Tape VOLSER:

Enhancement Request:

http://www.asg.com/asp/emailproductsuggestions.asp

ASG Customer Support

xii

1

1 1DataManager IMS (DL/I) Interface
Facilities

DataManager's IMS (DL/I) Interface provides facilities for all users in an IMS (DL/I)
environment. It enables users:

� To define IMS (DL/I) databases and segments to DataManager [in a simpler
manner than that available from the use of IMS (DL/I) Database Description
Control Statements]; to hold the definitions in the data dictionary; and to document
them, to interrogate them, and to process them by the standard DataManager
commands

� To generate from the data dictionary and to insert into the required source library
complete sets of Database Description (DBD) Control Statements to allow a DBD
generation process

� To define at SYSTEM/PROGRAM/MODULE data definition level and Program
Communication Block (PCB) data definition level the application view of the
databases used by programs

� To generate from the data dictionary and to insert into the appropriate source library
complete sets of PSB Control Statements to allow a PSB generation process

� To generate record layouts and/or COBOL, PL/I, or Assembler data descriptions for
segment input/output areas

� To generate record layouts and/or COBOL, PL/I, or Assembler data descriptions for
segment input/output areas for sensitive fields

� To generate record layouts and/or COBOL, PL/I, or Assembler data descriptions for
Program Communication Block (PCB) masks

� To generate record layouts and/or COBOL, PL/I, or Assembler data descriptions for
segment search arguments (SSAs)

 ASG-DataManager IMS (DL/I) Interface

2

The ability to define IMS (DL/I) databases, segments, and PCBs demands three
additional member types in DataManager:

� To define a database, the member type is IMS-DATABASE or DL/I-DATABASE.
The member type identifier IMS-DATABASE is synonymous with
DL/I-DATABASE. In the DataManager member type hierarchy, this database
member type is at the same level as the FILE member type.

� To define a PCB, the member type is PROGRAM-COMMUNICATION-BLOCK
or PCB, which comes between the MODULE member type and the
IMS-DATABASE/DL/I-DATABASE member type in the DataManager member
type hierarchy. The two member type identifiers
PROGRAM-COMMUNICATION-BLOCK and PCB are synonymous.

� To define a segment, the member type is SEGMENT, which comes between the
IMS-DATABASE/DL/I-DATABASE member type and the GROUP member type
in the DataManager member type hierarchy.

The IMS-DATABASE/DL/I-DATABASE data definition statement, the
PROGRAM-COMMUNICATION-BLOCK/PCB data definition statement, and the
SEGMENT data definition statement are discussed further in Chapter 2, "The IMS (DL/I)
Environment and DataManager," on page 5 and are specified in Chapter 3, "Member
Types," on page 21.

Also required are facilities at the SYSTEM, PROGRAM, and MODULE data definition
levels to allow the application view of databases to be specified. The relevant formats of
the SYSTEM, PROGRAM, and MODULE data definition statements are discussed in
Chapter 2, "The IMS (DL/I) Environment and DataManager," on page 5 and are specified
in Chapter 3, "Member Types," on page 21.

To enable the definitions of IMS (DL/I) databases, PCBs, and segments to be processed
by DataManager in the same way as other members of the data dictionary, the keywords
IMS-DATABASES, DL/I-DATABASES, PROGRAM-COMMUNICATION-
BLOCKS, PCBS, and SEGMENTS are added to the member-type keywords available for
use in these basic DataManager commands:

� BULK

� GLOSSARY

� LIST

� PERFORM

� WHICH

Any of the alternative forms DL/1-DATABASES, DL1-DATABASES, and
DLI-DATABASES are accepted for the keyword DL/I-DATABASES.

1 DataManager IMS (DL/I) Interface Facilities

3

Also added to these commands are the keywords:

� SEQUENCE-KEYS

� IMS-DATASETS

� DL/I-DATASETS (with the alternative forms DL/l-DATASETS, DLI-DATASETS
or DL1-DATASETS)

� INDEX-SEARCH-FIELDS

� SYSTEM-RELATED-FIELDS

� CONCATENATED-KEY-NAMES

to enable interrogation and documentation in respect of members of internal member
types. These members are generated by DataManager (see "Special DataManager
Member Types" on page 17). Since members of internal types have no source records, a
BULK ENCODE or BULK PRINT command selecting members of these types is
meaningless.

Other extensions to the syntax of basic DataManager interrogation and documentation
commands provide powerful facilities for reporting on the structure of IMS (DL/I)
database systems. These facilities are specified in Chapter 4, "Extensions to DataManager
Commands for IMS (DL/I) Databases," on page 139.

The ability to generate IMS (DL/I) control statements, data descriptions for segment
input/output areas, PCB masks, and segment search arguments require the use of the
Source Language Generation facility (selectable unit DMR-SL5). The fundamentals of
the Source Language Generation facility, including the output of data descriptions in
COBOL, PL/I, and Assembler, are described in the publication ASG-Manager Products
Source Language Generation.

Enhancements to the Source Language Generation facility that enable it to output IMS
(DL/I) control statements and COBOL, PL/I, and Assembler data descriptions for
segment input/output areas, PCB masks, and segment search arguments are specified in
Chapter 5, "IMS (DL/I) Source Language Generation," on page 175.

 ASG-DataManager IMS (DL/I) Interface

4

For an installation that is implementing an IMS (DL/I) database management system for
the first time, ASG strongly recommends the following approach:

� Study, in depth, the concepts and facilities both of IMS and of DataManager.

� Design the IMS database structures required for the initial implementation.

� Set up a DataManager data dictionary in which the definitions of the data structures
and the application views can be developed.

� Write DataManager data definitions of the databases, the segments, and the
constituent groups and items, and ADD them to the data dictionary.

� Similarly ADD program and module data definitions and PCB members for the
application views.

� Using the ASG-Manager Products Source Language Generation facility, generate
the IMS (DL/I) control statements and the data descriptions for segment
input/output areas, PCB masks, and segment search arguments.

Users should find that this approach is easier and offers more in-built automatic checks
on accuracy than implementation using IMS (DL/I) facilities alone.

5

2 2The IMS (DL/I) Environment and
DataManager

This chapter includes these sections:

Introduction . 5
Segments . 5
Databases. 12
Application View . 13

Further Information . 15
Segments . 15
IMS (DL/I) Data Fields . 16
IMS (DL/I) Databases . 16
Special DataManager Member Types .17
Application View . 19

Introduction

Segments
One of the fundamental concepts of IMS is that it is not the physical organization of the
data that is significant, but rather the logical structures of the data as viewed by specific
applications.

The basic element of data in an IMS (DL/I) environment is the segment. Regardless of
where or how segments are physically stored, an IMS (DL/I) database system is
effectively a logical collection of segments, which happen to occur in one or more
physical databases, some or all of which are required for specific applications.

 ASG-DataManager IMS (DL/I) Interface

6

Figure 1 illustrates this concept of a logical data structure for an employee database
named SKILLEMP.

Figure 1 � Logical Structure of an Employee Database, SKILLEMP

SKILL
segment

NAME
segment

ADDR
segment

PAYROLL
segment

EXPR
segment

EDUC
segment

2 The IMS (DL/I) Environment and DataManager

7

However, the six segments in Figure 1 on page 6 may actually represent segments stored
in one or more physical databases. If, for example, the six segments were stored in two
physical databases, one a payroll database and the other a skills inventory database, then
Figure 2 indicates a possible hierarchical structure of the segments within their physical
databases, linked by the segment SKILLNAM.

Figure 2 � Physical Storage of the Employee Database, SKILLEMP

Using the DataManager IMS (DL/I) Interface, each of the segments shown in Figure 1 on
page 6 and Figure 2 can be defined as a data dictionary member of a member type called
SEGMENT.

If certain assumptions are made regarding the specific attributes of the segments, then the
following would be the method of using DataManager data definition statements to
define these segments:

� For the segments in Figure 1 on page 6:

ADD SKILL;
SEGMENT LOGICAL
CONTAINS SKLLMAST
;
ADD NAME;
SEGMENT LOGICAL
CONTAINS SKILLNAM,NAMEMAST
;
ADD ADDR;
SEGMENT LOGICAL
CONTAINS ADDRMAST
;

SKLLMAST
segment

ADDRMAST
segment

PAYRMAST
segment

NAMEMAST
segment

SKILLNAM
segment

EXPRMAST
segment

EDUCMAST
segment

PAYRLLDB Database SKILLINV Database

 ASG-DataManager IMS (DL/I) Interface

8

ADD PAYROLL;
SEGMENT LOGICAL
CONTAINS PAYRMAST
;
ADD EXPR;
SEGMENT LOGICAL
CONTAINS EXPRMAST
;
ADD EDUC;
SEGMENT LOGICAL
CONTAINS EDUCMAST
;

� For the segments in Figure 2 on page 7:

ADD NAMEMAST;
SEGMENT PHYSICAL
RELATED-AS DESTINATION-PARENT
ATTRIBUTES
 CONTAINS INITIAL, SURNAME, SEX
 FREQUENCY 100
 SEQUENCE-KEY SURNAME DUPLICATED
 INSERT-POSITION LAST
;
ADD ADDRMAST;
SEGMENT PHYSICAL
ATTRIBUTES
 CONTAINS HOUSE,STREET,TOWN,COUNTY
 INSERT-POSITION LAST
;
ADD PAYRMAST;
SEGMENT PHYSICAL
ATTRIBUTES
 CONTAINS PAYRNUMB,STATUS,RATE
 SEQUENCE-KEY PAYRNUMB UNIQUELY
;
ADD SKLLMAST;
SEGMENT PHYSICAL
ATTRIBUTES
 CONTAINS SKLLCODE,SKLLTYPE
 FREQUENCY 10
 SEQUENCE-KEY SKLLCODE UNIQUELY
;
ADD SKILLNAM;
SEGMENT PHYSICAL
RELATED-AS UNIDIRECTIONAL-CHILD TO NAMEMAST
 POINTERS SYMBOLIC
ATTRIBUTES
 SEQUENCE-KEY EMPLOYEE-NO UNIQUELY
 CONTAINS EMPLOYEE-NO
;
ADD EXPRMAST;

2 The IMS (DL/I) Environment and DataManager

9

SEGMENT PHYSICAL
ATTRIBUTES
 CONTAINS EXPRCODE,EXPRTIME
 INSERT-POSITION FIRST
;
ADD EDUCMAST;
SEGMENT PHYSICAL
ATTRIBUTES
 CONTAINS QUALCODE
SEQUENCE-KEY QUALCODE UNIQUELY
;

The secondary indexing facility of IMS(DL/I) enables users to access a segment in a
physical or logical database based on data located in one of its dependent segments; and,
also, optionally to process the database as if its structure has been inverted with the
segment being accessed as the root of the structure. In a secondary index database, an
occurrence of an index pointer segment is generated for each occurrence of the index
source segment containing the search-field data, on which accessing the index target
segment is to be based.

Figure 3 on page 10 illustrates the concept of secondary indexing for an automobile
register database.

Using the DataManager IMS (DL/I) Interface, each of the segments shown in Figure 3 on
page 10 can be defined as a data dictionary SEGMENT type member.

A
SG

-D
ataM

anager IM
S (D

L/I) Interface

10 Figure 3 � An Example of Secondary Indexing

CITY

NAMEID
 ADAMS

NAMEID
 JONES

NAMEID
 SMITH

AUTOMBLE
 YELLOW

AUTOMBLE
 RED

AUTOMBLE
 BLACK

AUTOMBLE
 BLUE

AUTOMBLE
 RED

COLORSEG
 BLUE

COLORSEG
 BLACK

COLORSEG
 RED

COLORSEG
 RED

COLORSEG
 YELLOW

COLORSEG is the index pointer segment.
One of these segments is generated for each
occurrence of an AUTOMBLE index source
segment.

AUTOREG Indexed Database AUTOCOL Secondary Index Database

NAMEID is
index target
segment

AUTOMBLE is the index source segment,
in which COLOR is used for the search field
for the secondary index.

2 The IMS (DL/I) Environment and DataManager

11

If certain assumptions are made regarding the specific attributes of the segments, then the
following would be the method of using DataManager data definition statements to
define these segments:

ADD CITY;
SEGMENT PHYSICAL
ATTRIBUTES
 CONTAINS CITYNAME,STATE,CITYCODE
 SEQUENCE-KEY CITYCODE UNIQUELY
 POINTERS FORWARD-HIERARCHICAL
;
ADD NAMEID;
SEGMENT PHYSICAL
RELATED-AS TARGET-SEGMENT
ATTRIBUTES
 CONTAINS INITIAL, SURNAME, IDENTCDE
 SEQUENCE-KEY IDENTCDE UNIQUELY
 POINTERS FORWARD-HIERARCHICAL
;
ADD AUTOMBLE;
SEGMENT PHYSICAL
RELATED-AS SOURCE-SEGMENT
ATTRIBUTES
 CONTAINS MODEL,COLOR,WEIGHT
 INSERT-POSITION LAST
 POINTERS FORWARD-HIERARCHICAL
;
ADD COLORSEG;
SEGMENT INDEX-POINTER
RELATED-TO NAMEID ON COLCODE
 POINTERS SYMBOLIC
 SOURCE AUTOMBLE
 SEARCH-KEY-FIELD COLOR
ATTRIBUTES
 SEQUENCE-KEY COLORTYP
;

In this example, COLCODE is the name of the search-field (XDFLD) that can be used in
the segment search argument for the calls issued to DL/I to access the index target
segment.

 ASG-DataManager IMS (DL/I) Interface

12

Databases
As indicated in "Segments" on page 5, an essential feature of an IMS (DL/I) database
system is the ability to overlay multiple logical data structures on non repetitive physical
data structures, where the logical data structures are designed in a manner that satisfies
the functional requirements of specific applications. Logical databases (using logical
relationships specified for segments of physical databases) define structural relationships
among actual segments of one or more physical databases, which can differ from the
structural relationships in the physical database(s). Segments from any given physical
database can belong to many logical databases.

IMS (DL/I) also offers the facility to access segments in physical or logical databases in a
sequence specified by a secondary index database.

In "Segments" on page 5, it was shown how DataManager SEGMENT data definition
statements are used to define the characteristics and the logical or secondary indexing
relationships of segments.

Data definition statements for a data dictionary member type called IMS-DATABASE
(or DL/I-DATABASE) are used to define the access and organization methods of the
databases to DataManager, and to specify the hierarchy of the segments that they contain.

If certain assumptions are made regarding the specific attributes of the databases shown
in Figure 1 on page 6, Figure 2 on page 7, and Figure 3 on page 10, respectively, then the
following would be the method of using DataManager data definition statements to
define those databases:

� For the database in Figure 1 on page 6:

ADD SKILLEMP;
INS-DATABASE LOGICAL
 CONTAINS SKILL,
 NAME PARENT SKILL,
 ADDR PARENT NAME,
 PAYROLL PARENT NAME,
 EXPR PARENT NAME,
 EDUC PARENT NAME
;

� For the databases in Figure 2 on page 7:

ADD PAYRLLDB;
IMS-DATABASE HISAM
ACCESS ISAM
DATASETS PRIME PAYRF BLOCK 4 RECORD 256
 OVERFLOW PAYRFO BLOCK 4 RECORD 256
 DEVICE 3340
 CONTAINS NAMEMAST,
 ADDRMAST PARENT NAMEMAST,
 PAYRMAST PARENT NAMEMAST

2 The IMS (DL/I) Environment and DataManager

13

;
ADD SKILLINV;
IMS-DATABASE HISAM
ACCESS ISAM
DATASETS PRIME SKLLF BLOCK 8 RECORD 512
 OVERFLOW SKLLFO BLOCK 8 RECORD 512
 DEVICE 3340
 CONTAINS SKLLMAST,
 SKILLNAM PARENT SKLLMAST,
 EXPRMAST PARENT SKILLNAM,
 EDUCMAST PARENT SKILLNAM
;

� For the databases in Figure 3 on page 10:

ADD AUTOREG;
IMS-DATABASE HDAM
ACCESS VSAM RANDOMIZING-MODULE AUTRTNE
 ANCHOR-POINTS 1
 RELATIVE-BLOCK-MAXIMUM 500
 INSERTION-BYTES-MAXIMUM 824
DATASETS PRIME AUTOF BUFFER 1648
 DEVICE 2314
 SCAN 5
 CONTAINS CITY,
 NAMEID PARENT CITY,
 AUTOMBLE PARENT NAMEID
;
ADD AUTOCOL;
IMS-DATABASE SECONDARY-INDEX
ACCESS VSAM
DATASETS PRIME COLORF BUFFER 1024
 OVERFLOW COLORFO BUFFER 1024
 DEVICE 2314
 CONTAINS COLORSEG
;

Application View
Finally, when specifying an IMS (DL/I) database system, the applications view of the
databases and segments that they access must be defined. This must be done before an
IMS (DL/I) application program can issue calls to DL/I to access the databases.

Views are defined in the data dictionary by using these DataManager IMS (DL/I)
Interface language facilities:

PROGRAM-COMMUNICATION-BLOCK or PCB member type. A member of this
type defines a PCB accessed by an application program.

 ASG-DataManager IMS (DL/I) Interface

14

PROCESSES clause that lists the PCB members relevant to the application.
This is inserted in the data definition statements for SYSTEM, PROGRAM, and
MODULE members, and it enables:

� PSB control statements for an application to be produced from the listed PCB
members.

� SEGMENT-SEARCH-ARGUMENT (SSA) statements to be defined to the data
dictionary. These can be used by the Source Language Generation Facility when
generating DBD control statements [see "Application View" on page 19 and
"Generating IMS (DL/I) DBD Control Statements" on page 176].

Generating SSAs and PCB masks is described in "Generation of COBOL, PL/I, or
Assembler Data Description Statements for PCB Masks" on page 200 and "Generation of
COBOL, PL/I, or Assembler Data Description Statements for Segment Search
Arguments" on page 203, respectively.

If certain assumptions are made, then the following would be the method of using the
PROCESSES clause to describe an application's processing of the databases SKILLEMP
and AUTOREG illustrated in Figure 1 on page 6 and Figure 2 on page 7, respectively:

PROCESSES IMS
 CONTAINS SKILLEMP-PCB, AUTOREG-PCB
 SEGMENT-SEARCH-ARGUMENTS
 SEGMENT SKILL USED-IN SKILL-SSA
 COMMAND-CODE FIRST-OCCURRENCE
 QUALIFIED-ON SKLLTYPE EQ
 SEGMENT EXPR USED-IN EXPR-SSA
 QUALIFIED-ON EXPRCODE EQ
 AND EXPRTIME GT
 SEGMENT NAMEID USED-IN NAMEID-SSA
 COMMAND-CODE LAST-OCCURRENCE
 QUALIFIED-ON COLCODE EQ
 SEGMENT CITY USED-IN CITY-SSA

ADD SKILLEMP-PCB;
PCB STRUCTURE
 BY GET ONLY
 SEGMENT SKILL
 SEGMENT NAME
 SEGMENT EXPR
;
ADD AUTOREG-PCB;
PCB STRUCTURE
 BY GET
 SEGMENT NAMEID SECONDARY-SEQUENCE
 SEGMENT CITY
;

2 The IMS (DL/I) Environment and DataManager

15

Further Information

Segments
The least that can be recorded by DataManager in the data definition for a segment is the
keyword SEGMENT followed by one of the keywords PHYSICAL, LOGICAL, or
INDEX-POINTER. This specifies that the segment resides in a physical database, a
logical database, or a secondary index database, respectively.

When a SEGMENT member is being encoded, DataManager checks that it is not
contained by the wrong type of database; for example, a logical segment cannot be
contained by an HDAM database.

However, a SEGMENT data definition may be used for Source Language Generation; for
example, to produce DBD control statements, or COBOL, PL/I, or Assembler data
descriptions for segment input/output areas. For these purposes, the data definition must
be complete; that is, it must define the physical characteristics and attributes of the
segment (for example, what fields it contains, and/or its sequence key field) and any
logical or secondary indexing relationships in which it participates.

When a segment specified as participating in a logical or secondary indexing relationship
is encoded, DataManager checks:

� That it is not related to the wrong type of segment; for example, a logical child
segment must not refer to another logical child segment as its destination parent.

� That segments referring to the segment being encoded will not be made invalid
because they are related to it in a manner that is invalid in the context of the
relationship being specified.

� That the database that contains the segment being encoded is the type of database
that permits a segment participating in the specified logical or secondary index
relationship; for example, an HSAM database cannot contain segments that
participate in such relationships.

All complete SEGMENT data definition statements, excepting those for logical child
segments and index pointer segments, must include a CONTAINS list naming the fields
that constitute the segment.

A logical child segment requires a CONTAINS list only if it has intersection data;
DataManager automatically handles the concatenated key of its destination parent. A pair
of logical child segments participating in a physically paired logical relationship must, if
there is any intersection data, have CONTAINS lists where the respective constituent
fields reflect the same total length for the intersection data, because when IMS (DL/I)
updates the intersection data for one of the logical child segments, it also automatically
updates the intersection data for its physically paired logical child segment. The
respective constituent fields may, however, specify different data dictionary members.

 ASG-DataManager IMS (DL/I) Interface

16

A virtual logical child segment does not physically exist in storage, but represents the real
logical child segment with which it is paired as viewed from the logical parent segment,
thus it never has a CONTAINS list specified for it; DataManager automatically obtains
any intersection data from the real logical child segment.

An index pointer segment for a secondary index database requires a CONTAINS list only
to specify any user data. Index pointer segments for the primary indexes of HIDAM
databases are not held on the dictionary as members, but are generated automatically by
the Source Language Generation Facility when producing DBD control statements for the
primary index database. If the name for the primary index pointer segment and the name
for its sequence key field have not been specified in the data definition of the HIDAM
database nor in the Source Language Generation Facility's PRODUCE command [see
"The Member Type for a HIDAM Type IMS (DL/I) Database" on page 94 and
"Generating IMS (DL/I) DBD Control Statements" on page 176], then they are created by
suffixing I to the respective names of the HIDAM root segment and the HIDAM root
segment's sequence key field.

IMS (DL/I) Data Fields
As stated in "Segments" on page 5, the CONTAINS lists in the dictionary SEGMENT
data definitions specify the data fields that constitute the segments.

The CONTAINS list names ordinary data dictionary GROUP members and/or ITEM
members, optionally with a version specified for ITEM members. The form of the
GROUP and ITEM members is not specified, as the form is assumed in this priority:

HELD-AS
DEFAULTED-AS
ENTERED-AS
REPORTED-AS

The CONTAINS list may specify any number of variable length ITEM members, either
directly or indirectly. When required, DataManager will calculate the minimum and
maximum lengths for the segment; and when generating COBOL, PL/I or Assembler data
description statements for segment input/output areas, will generate size fields.

IMS (DL/I) Databases
The least that can be recorded by DataManager in the data definition for a database is the
keyword IMS-DATABASE or DL/I-DATABASE, followed by a keyword specifying the
type of database; for example LOGICAL, SECONDARY-INDEX, HSAM, or HDAM.

However, an IMS-DATABASE or DL/I-DATABASE data definition may be used for
Source Language Generation to produce, for example, DBD or PSB control statements.
For these purposes the data definition must be complete; that is, it must define the access
method and storage organization of the database, and the hierarchical structure of the
segments that constitute the database.

2 The IMS (DL/I) Environment and DataManager

17

When an IMS (DL/I) database is encoded, DataManager checks that the segments it
contains are of a type that is valid for the type of database, and that the relationships in
which its segments participate are valid for the type of database.

A primary index database for a HIDAM database is not held in the dictionary as a
separate member; its access method and storage organization are specified as part of the
data definition for the HIDAM database. When the Source Language Generation Facility
produces DBD control statements for an HIDAM database, it immediately follows them
with DBD control statements for its primary index database. If the library member name
for the DBD control statements and the database name for the primary index database
have not been specified in the data definition of the HIDAM database nor in the
PRODUCE command [see "The Member Type for a HIDAM Type IMS (DL/I)
Database" on page 94 and "Generating IMS (DL/I) DBD Control Statements" on
page 176], then they are created by suffixing I to the respective names for the HIDAM
database.

Special DataManager Member Types
For the IMS (DL/I) Interface, DataManager automatically and maintains members of
special internal types. These internal member types are for:

� Sequence key fields

� Datasets

� Index search fields

� System related fields

� Concatenated key names

Members of these types cannot be inserted into the data dictionary by users.

In normal circumstances, a segment's sequence key field is one of the dictionary GROUP
or ITEM members that directly or indirectly constitute the segment. However, for a
logical child segment, it may sometimes be required that the sequence key field consist
of:

� More than one (or part of more than one) of the key fields constituting the
destination parent's concatenated key

� Any part of the destination parent's concatenated key plus part of the intersection
data

In these circumstances, the SEGMENT data definition statement permits the specification
of:

� Each of the contiguous fields that are to constitute the sequence key field

� An IMS (DL/I) name that is to be applied to the sequence key field

 ASG-DataManager IMS (DL/I) Interface

18

When the segment is encoded, DataManager then generates a member of a special
internal type, giving it the specified sequence key name. If the segment specifying the
sequence key is deleted, the special internal member for the sequence key field is also
deleted, unless this internal member is referred to by other members, in which case it is
made into a dummy member.

An internal member is always generated for the sequence key field specified in the data
definition for an index pointer segment.

The IMS-DATABASE (DL/I-DATABASE) data definition statements can include the
names and definitions of the databases� constituent datasets. When a database is encoded,
DataManager creates a member of a special internal type for each of the ddnames
specified. When a database member is deleted, then so are any of the internal members
that were created for its constituent datasets, except that if any of these internal members
are referred to by other members they are made into dummy members.

The data definition for an index pointer segment specifies the name to be applied to the
index search field (XDFLD). When such a member is encoded, DataManager creates a
member of a special internal type, giving it the name specified for the index search field.
If the index pointer segment is deleted, the special internal member created for the index
search field is also deleted, unless this internal member is referred to by other members,
in which case it is made into a dummy member.

The SEGMENT PHYSICAL data definition statement for an index source segment
allows system related fields to be defined. These can be:

� Any part of the source segment's concatenated key

� Fields from which IMS (DL/I) generates four byte unique values in the
corresponding index pointer segment

System related fields of the former type are handled by DataManager in the same way as
sequence key fields; that is, each of those fields of the index source segment's
concatenated key that are to form the system related field can be specified.

A name can be specified for each system related field of either type. The slash (/) that
must be the first character of the name is added by DataManager when the Source
Language Generation Facility is used to produce DBD control statements for the database
that contains the index source segment. DataManager creates an internal data dictionary
member having the name specified for the system related field (that is, without the /). If
the index source segment is deleted, then so are any special internal members that were
created for system related fields specified by the segment; except, if any of these internal
members are referred to by other members, they are made into dummy members.

2 The IMS (DL/I) Environment and DataManager

19

A logical child segment always includes the concatenated key of its destination parent
segment. Index pointer segments sometimes include the concatenated key of the index
target segment [see "The Member Type for a HISAM Type IMS (DL/I) Database" on
page 79]. The concatenated key is constructed automatically by DataManager when
generating COBOL, PL/I, or Assembler data descriptions for segment input/output areas.
The SEGMENT data definition statement allows a name to be specified for the
concatenated key. When the segment is encoded, DataManager creates a member of a
special internal type, giving it the name specified for the concatenated key. If the segment
is deleted, the special internal member created for the concatenated key is also deleted,
unless the member is referred to by other members, in which case it is made into a
dummy member.

Normally, members of special internal types are transparent to the user. However, the
IMS (DL/I) Interface allows the member types described above to be made available to
the user for accessing in certain interrogation commands. For further details, including
other documentation commands that can handle them [see Chapter 4, "Extensions to
DataManager Commands for IMS (DL/I) Databases," on page 139]. Also, the user is able
to produce COBOL, PL/I and Assembler data description statements from the internal
DataManager members created for the sequence key fields, index search fields
(XDFLDs), system related fields and concatenated key fields. For further information,
see Chapter 5, "IMS (DL/I) Source Language Generation," on page 175.

Application View
As stated in "Application View" on page 13, an application's view of the segments that it
accesses is defined to DataManager by PCB members and the PROCESSES clause,
which can be specified in the data definition statements for data dictionary SYSTEM,
PROGRAM, and MODULE members.

The PROCESSES clause specifies a CONTAINS clause listing each logical data
structure, GSAM database, and output message destination (alternate) PCB that the
application is to access.

When producing PSB control statements for an application, the Source Language
Generation Facility produces a PCB from each PCB member listed in the CONTAINS
clause.

A PROCESSES clause can be defined for a data dictionary SYSTEM member. Usually,
in an IMS (DL/I) database system, the PROCESSES clause would be applicable to the
data definition for a data dictionary PROGRAM member. However, to permit the
definition of a modularized application, the DataManager IMS (DL/I) Interface also
allows the PROCESSES clause to be specified in the data definition for data dictionary
MODULE members.

 ASG-DataManager IMS (DL/I) Interface

20

Whichever member relates to the control module in the application (and this may be of
either SYSTEM, PROGRAM, or MODULE member type) will require a CONTAINS
clause within its PROCESSES clause. This CONTAINS clause must list each PCB that
the IMS (DL/I) Interface will be passing to the control module when invoked. The
CONTAINS clause is used by the Source Language Generation Facility in producing its
PSB control statements.

A PCB member defines a logical data structure, GSAM database or output message
destination that is to be accessed by the application. A logical data structure PCB also
specifies all the segments to which any application SYSTEM/PROGRAM/MODULE
containing the PCB is sensitive. In turn, each appropriate SEGMENT clause in a logical
data structure PCB can define, through a SENSITIVE-FIELDS subordinate clause, the
individual fields to which the application is sensitive. It is these definitions that the
DataManager Source Language Generation Facility uses to generate COBOL, PL/I, or
Assembler data descriptions of the segment input/output areas for the sensitive fields.

The data dictionary SYSTEM, PROGRAM, or MODULE member may also include a
PROCESSES clause containing a SEGMENT-SEARCH-ARGUMENTS subordinate
clause. This clause defines the SEGMENT-SEARCH-ARGUMENTS specifying the
segments (with their respective USED-IN clauses), which can then be used by the Source
Language Generation Facility in generating DBD control statements.

When generating the DBD control statements for a database, the user can specify in the
PRODUCE command whether DataManager is to generate IMS (DL/I) FIELD control
statements for all the fields constituting each segment in the database, or only for each
segment's search fields, sensitive fields, and fields required for secondary indexing.
(XDFLDs, system related fields, sequence key fields, and fields specified in the
GENERATES clause of the segment data definition statement are always generated.) If
FIELD statements for a database are to be generated only for search fields, sensitive
fields, and fields required for secondary indexing, then the following actions must be
taken to ensure that DataManager will recognize these fields:

� Each SYSTEM, PROGRAM, and MODULE member for each application that
accesses segments in the database by means of qualified segment search arguments
must name the search fields in a USED-IN subordinate clause within a
PROCESSES clause of the SYSTEM, PROGRAM, or MODULE member data
definition.

� Each structure type PCB member must name, using a SENSITIVE-FIELDS
subordinate clause within each SEGMENT clause of the PCB definition, the fields
to which it is sensitive in each segment contained in the database.

� Each index pointer segment that uses an index source segment contained by the
database must specify, in its SEARCH, SUBSEQUENCE, and
DUPLICATE-DATA lists, the GROUP and ITEM members contained by the index
source segment that are required for secondary indexing.

21

3 3Member Types

This chapter includes these sections:

Introduction . 22

Member-type Syntax for IMS (DL/I) Segments . 22
Physical Segments. 24
Logical Segments . 51
Segments that Reside in a Secondary Index Database . 55

Member-type Syntax For IMS (DL/I) Databases. 69
Outline of the IMS-DATABASE Member Type . 69
Member Type of a GSAM Type IMS (DL/I) Database Syntax 70
The Member Type for a HSAM Type IMS (DL/I) Database 75
The Member Type for a HISAM Type IMS (DL/I) Database 79
The Member Type for a HDAM Type IMS (DL/I) Database. 86
The Member Type for a HIDAM Type IMS (DL/I) Database 94
The Member Type for a LOGICAL Type IMS (DL/I) Database 106
The Member Type for a SECONDARY-INDEX Type IMS (DL/I) Database. . . . 111

Member-type Descriptions for IMS (DL/I) Program Communication Blocks 117
PROGRAM-COMMUNICATION-BLOCK . 117
Example of a GSAM type PCB . 129
Examples of OUTPUT-MESSAGE Type PCBs. 129
Examples of STRUCTURE Type PCBs . 130

The PROCESSES Clause . 132
Syntax of the PROCESSES Clause. 132

 ASG-DataManager IMS (DL/I) Interface

22

Introduction
Users can define these three member types in an IMS (DL/I) environment:

Segment. See "Member-type Syntax for IMS (DL/I) Segments" on page 22 for more
information on the SEGMENT member type.

Database. See "Member-type Syntax For IMS (DL/I) Databases" on page 69 for more
information on the member types IMS-DATABASE and DL/l-DATABASE. (Any of the
alternative forms DL/1-DATABASE, DLI-DATABASE, or DL1-DATABASE are
accepted for the member type identifier DL/I-DATABASE.)

Program Communication Block. See "Member-type Descriptions for IMS (DL/I)
Program Communication Blocks" on page 117 for more information on the member type
PROGRAM-COMMUNICATION-BLOCK (or PCB), which is used to specify the
application view of a database and the segments that the application uses.

You can fully define the application view of the segments and databases that they use,
using the PROCESSES clause in the SYSTEM, PROGRAM, and MODULE member
types (see "The PROCESSES Clause" on page 132).

Member-type Syntax for IMS (DL/I) Segments
IMS (DL/I) provides a comprehensive selection of keywords and operands in its
SEGMENT member type in order to define all possible attributes and relationships of
segments that can reside in several fundamentally different types of database.

This is the overall outline format of the SEGMENT member type:

where:

physical-database-segment is the definition for the type of segment that resides
in a physical database (see "Physical Segments" on page 24).

logical-database-segment is a logical view of physical segments or of
concatenated physical segments (see "Logical Segments" on page 51).

� �� SEGMENT physical-database-segment
logical-database-segment
secondary-index-database-segment

� �

common clauses

�

 .
; �

�

3 Member Types

23

secondary-index-database-segment is the definition for the type of segment
that resides in a secondary index database; that is, an index pointer segment (see
"Segments that Reside in a Secondary Index Database" on page 55).

common clauses are as defined in the ASG-Manager Products Dictionary/Repository
User's Guide.

It should be noted that there is no definition for the index pointer segment that resides in a
primary index database. This type of segment definition is entirely handled by Manager
Products when required. It is required only by the Source Language Generation Facility
to be used for the DBD control statements for the primary index database that will be
generated automatically following the DBD control statements for a HIDAM database.
This is one instance of an internal member type.

The names to be applied to the primary index pointer segment and to its sequence key
field can be specified in the data definition of the HIDAM database [see "The Member
Type for a HIDAM Type IMS (DL/I) Database" on page 94] or in the Source Language
Generation Facility's PRODUCE command [see "Generating IMS (DL/I) DBD Control
Statements" on page 176]. If they are omitted from both of these, then the name applied
to the primary index pointer segment is the name of the HIDAM root segment suffixed
with I, and the name of the sequence key field for the index pointer segment is the name
of the sequence key field of the HIDAM root segment suffixed with I.

For each type of SEGMENT, the definition comprises:

� A segment type keyword.

� A RELATED-AS clause (for a physical-database-segment) or a RELATED-TO
clause (for a secondary-index-database-segment), to define the logical and
secondary indexing relationships in which the segment participates. There is no
RELATED clause for a logical-database-segment definition.

� An ATTRIBUTES clause, to define the physical characteristics of the segment in
relation to the database in which it resides.

For a segment that resides in a physical database, the RELATED-AS clause must precede
the ATTRIBUTES clause, if both are present. For a segment that resides in a secondary
index database, the ATTRIBUTES clause and the RELATED-TO clause can be in either
order.

Both the RELATED-AS or RELATED-TO clause and the ATTRIBUTES clause must, if
present, precede any common clauses that may be present.

 ASG-DataManager IMS (DL/I) Interface

24

Physical Segments

Syntax

where:

segment-options are:

where:

rules are:

� �� SEGMENT PHYSICAL
RELATED-AS segment-options

� �

ATTRIBUTES attribute-options

�

 .
; �

�

� DESTINATION-PARENT-SEGMENT �

UNIDIRECTIONAL-CHILD-SEGMENT

PHYSICALLY-PAIRED-CHILD-SEGMENT

VIRTUAL-PAIRED-CHILD-SEGMENT

REAL-PAIRED-CHILD-SEGMENT

RULES rules

clause-1

clause-2

clause-3

clause-4

� �

TARGET-SEGMENT SOURCE-SEGMENT
clause-5

� �

INSERT PHYSICAL

LOGICAL

VIRTUAL

DELETE PHYSICAL

LOGICAL

VIRTUAL

BIDIRECTIONAL

� �

REPLACE PHYSICAL

LOGICAL

VIRTUAL

3 Member Types

25

clause-1 is:

where:

dest-parent is the name of a PHYSICAL DESTINATION-PARENT-SEGMENT
member.

concat-rename is:

where:

name is the name of a CONCATENATED-KEY member.

group is the name of a GROUP member.

item is the name of an ITEM member.

key is a 1- to 8-character unique alphanumeric name.

local-name is a name, conforming to the rules for member names as stated in the
ASG-ControlManager User's Guide.

rules are as defined above.

� �

TO dest-parent

� �

POINTERS SYMBOLIC
DIRECT-ADDRESS

DIRECT-ADDRESS
SYMBOLIC

� �

RULES rules concat-rename

� �

CONCATENATED-KAY-NAME name

�
���

�

RENAMES group
item

key

AS
KNOWN-AS

local-name

 ASG-DataManager IMS (DL/I) Interface

26

clause-2 is:

where:

phys-paired-child is the name of a PHYSICALLY-PAIRED-CHILD-SEGMENT
member.

dest-parent, rules, concat-rename are as defined above.

clause-3 is:

where:

dest-parent, concat-rename, phys-paired-child, and rules are as
defined above.

options are:

clause-4 is:

� �

WITH phys-paired-child TO dest-parent

� �

POINTERS SYMBOLIC
DIRECT-ADDRESS

DIRECT-ADDRESS
SYMBOLIC

� �

RULES rules concat-rename

� �

TO dest-parent

� �

POINTERS SYMBOLIC
DIRECT-ADDRESS

DIRECT-ADDRESS
SYMBOLIC

options

� �

RULES rules concat-rename

� �

FORWARD-LOGICAL-TWIN
BACKWARD-LOGICAL-TWIN

SINGLE-LOGICAL-CHILD
DOUBLE-LOGICAL-CHILD

� �

WITH real-paired-child TO dest-parent

� �

concat-rename

3 Member Types

27

where:

real-paired-child is the name of a PHYSICAL
REAL-PAIRED-CHILD-SEGMENT member.

dest-parent and concat-rename are as defined above.

clause-5 is:

where:

group, item, and key are as defined above.

CKxxxxx is a 3- to 7-character name to be applied to a system related field within a
GENERATES, SUBSEQUENCE-FIELDS, or DUPLICATE-DATA-FIELDS clause.
The name must be unique and start with CK.

SXxxxxx is a 3- to 7-character name to be applied to a system related field within a
GENERATES or SUBSEQUENCE-FIELDS clause. The name must be unique and start
with SX.

key is a 1- to 8-character unique alphanumeric name.

attribute-options are:

� �

CONCATENATED-KEY-FIELDS group
item

key

AS CKxxxxx
<<<<<<<<<<<< , <<<<<<<<

� �

UNIQUE-KEY-FIELDS SXxxxxx
<< , <<

� �

ALIGNED

UNALIGNED

NOT-ALIGNED

CONTAINS content
conditions

���������������������������

� �

FREQUENCY freq

� �

SEQUENCE-KEY group
item

WITH group
item

AS key

AS key

����������������������

 ASG-DataManager IMS (DL/I) Interface

28

where:

content is:

where ident is:

where:

item, group are as defined above.

version is an unsigned integer in the range 1 to 15.

local-name is as defined above.

nn is an unsigned integer of from 1 to 18 digits, being the number of times the item or
group occurs in the array.

item-a is the name of an ITEM member.

index is a name, conforming to the rules for member names.

� �

UNIQUELY

DUPLICATED
INSERT-POSITION FIRST

LAST
HERE

� �

POINTERS pointers-options

� �

EDIT-COMPRESSION-EXIT module
ALL OPEN-CLOSE

� �EXIT-LIST mod-list
LOG-ONLY
NO-EXITS

NOT-USED

UNUSED

log-options

<< , <<

� �

GENERATES generates-clause
�����������������

� �ident
(nn)
(item-a)

ident

INDEXED-BY index

� �item
group version ALIGNED

UNALIGNED

NOT-ALIGNED

� �

KNOWN-AS local-name

3 Member Types

29

conditions are:

where:

cond is:

where:

literal is a literal comparand.

item-b is the name of the ITEM where the contents are to be compared with the
comparand.

version-b is an unsigned integer in the range 1 to 15.

item-c is the name of the ITEM where the contents are the comparand.

version-c is an unsigned integer in the range 1 to 15.

freq is an unsigned number in the range 0.01 to 16777215.00, or (for root segments) an
integer in the range 1 to 16777215.

content is as defined above.

� �IF cond

AND
OR

cond
��������������

AND
OR

cond
��������������

� �
���

ELSE content
IF cond

AND
OR

cond
��������������

� �item-b
version-b =

NE

GT

>

LE

<

LT

EQ

� �item-c
version-c

literal

 ASG-DataManager IMS (DL/I) Interface

30

name is the name of a CONCATENATED-KEY member.

module is the name of a MODULE member.

freq, group, item, key, and module are as defined above.

pointers-options are:

mod-list is:

where:

module-name is the name of a MODULE or PROGRAM member.

kpd-options are:

log-options are:

where:

kpd-options are:

� �

FORWARD-HIERARCHICAL
BACKWARD-HIERARCHICAL

DOUBLE-TWIN

SINGLE-TWIN

NOTWIN

FIRST-CHILD
LAST-CHILD

� �

COUNTER

�� module-name
kpd-options CASCADE kpd-options

NO-CASCADE

� �

KEY
NO-KEY

PATH
NO-PATH

DATA
NO-DATA

� �

kpd-options CASCADE kpd-options
NO-CASCADE

� �

KEY
NO-KEY

PATH
NO-PATH

DATA
NO-DATA

3 Member Types

31

generates-clause is:

where:

concatenated-key specifies the name to be given to the destination parent's
concatenated key.

group, item are as defined above.

sequence-key is a 1- to 8-character unique alphanumeric name.

common clauses are as defined in the ASG-Manager Products Dictionary/Repository
User's Guide.

Remarks

1 The keyword PHYSICAL must always appear as the first keyword after the member
type identifier, to indicate that a segment residing in a physical database is being
defined. (See remark 95 on page 46.)

2 The RELATED-AS clause must be present if the segment participates in a logical
relationship or a secondary indexing relationship. If present, the RELATED-AS
clause must immediately follow the PHYSICAL keyword. The RELATED-AS
clause is not valid for a segment that resides in a HSAM, SIMPLE HSAM, or
SIMPLE HISAM database. If a segment that participates in a logical relationship
(other than as a DESTINATION-PARENT-SEGMENT) is to be completely
defined, the TO clause and, if appropriate, the WITH clause must be present in the
RELATED-AS clause.

�� sequence-key
concatenated-key
group
item

IN
OF

group
concatenated-key

����������������������������������

 ASG-DataManager IMS (DL/I) Interface

32

3 If the segment participates in a logical relationship, then one of the following clauses
must be specified in the RELATED-AS clause:

� DESTINATION-PARENT-SEGMENT, which specifies that the segment
being defined is either a logical parent segment or the physical parent segment
of a real logical child segment in a virtually paired logical relationship.

� UNDIRECTIONAL-CHILD-SEGMENT, which specifies that the segment
being defined is a logical child segment in a unidirectional logical
relationship.

� PHYSICALLY-PAIRED-CHILD-SEGMENT, which specifies that the
segment being defined is a logical child segment in a physically paired logical
relationship.

� REAL-PAIRED-CHILD-SEGMENT, which specifies that the segment being
defined is a real logical child segment in a virtually paired logical
relationship. This type of segment must reside in a HDAM or HIDAM
database.

� VIRTUAL-PAIRED-CHILD-SEGMENT, which specifies that the segment
being defined is a virtual logical child segment in a virtually paired logical
relationship.

4 TO destination-parent-name states the destination parent segment to which
the logical child segment being defined is related. If the segment being defined is a
virtual logical child segment, the destination parent segment is the physical parent of
the real logical child segment with which it is paired; otherwise, the destination
parent segment is the logical parent segment.

5 For a PHYSICALLY-PAIRED-CHILD-SEGMENT or a
VIRTUAL-PAIRED-CHILD- SEGMENT, the WITH clause specifies the logical
child segment with which the segment is physically or virtually paired respectively.
In either case, the paired segment must be a physical child of
destination-parent-name. A WITH clause is not specified for a
REAL-PAIRED-CHILD- SEGMENT.

� The POINTERS clause specifies the type of pointer that connects a logical
child segment and its logical parent segment. It is invalid for a virtual logical
child segment. The clause can contain the keyword SYMBOLIC and/or the
keyword DIRECT-ADDRESS.

6 The POINTERS clause specifies the type of pointer that connects a logical child
segment and its logical parent segment. It is invalid for a virtual logical child
segment. The clause can contain the keyword SYMBOLIC and/or the keyword
DIRECT-ADDRESS.

3 Member Types

33

7 SYMBOLIC specifies that the symbolic pointer to the logical parent segment (the
logical parent's concatenated key) is stored as part of the logical child segment on the
storage device. It must be specified if:

� The logical child segment being defined is sequenced on its physical twin
chain through the use of any part of the logical parent's concatenated key.

� Or the sequence key field of the logical child being defined consists of any
part of the logical parent's concatenated key.

If SYMBOLIC is not specified and the logical parent resides in a HISAM database,
SYMBOLIC is assumed.

8 DIRECT-ADDRESS specifies that a 4-byte logical parent pointer field is reserved
in the prefix of the logical child segment being defined. This keyword can be
specified if the logical parent segment resides in a HDAM or HIDAM database. If it
is not specified and the logical parent resides in a HDAM or HIDAM database,
DIRECT-ADDRESS is assumed. DIRECT-ADDRESS is invalid if the logical
parent segment resides in a HISAM database.

9 For a REAL-PAIRED-CHILD-SEGMENT, either FORWARD-LOGICAL-TWIN
or BACKWARD-LOGICAL-TWIN can be stated. If neither is stated,
FORWARD-LOGICAL-TWIN is assumed. FORWARD-LOGICAL-TWIN
specifies that a 4-byte logical twin forward pointer field is reserved in the prefix of
the segment being defined. BACKWARD-LOGICAL-TWIN specifies that both a
4-byte logical twin forward pointer field and a 4-byte logical twin backward pointer
field are reserved in the prefix of the segment being defined.

10 For a REAL-PAIRED-CHILD-SEGMENT, either SINGLE-LOGICAL-CHILD or
DOUBLE-LOGICAL-CHILD can be stated. If neither is stated,
SINGLE-LOGICAL-CHILD is assumed. SINGLE-LOGICAL-CHILD specifies
that a 4-byte logical child first pointer field is reserved in the prefix of the logical
parent segment of the segment being defined. DOUBLE-LOGICAL-CHILD
specifies that both a 4-byte logical child first pointer field and a 4-byte logical child
last pointer field are reserved in the prefix of the logical parent segment of the
segment being defined.

11 The RULES clause specifies the rules for inserting, deleting, and replacing a
segment.

12 The rules DELETE BIDIRECTIONAL are valid only for a segment that is the
physical parent segment of a real logical child segment in a virtually paired logical
relationship.

13 The default of LOGICAL is assumed for any rule that is omitted or invalidly
specified.

 ASG-DataManager IMS (DL/I) Interface

34

14 The CONCATENATED-KEY-NAME clause can be used when a logical child
segment is defined, to specify the name that is to be given to the concatenated key of
the destination parent segment. When the logical child segment definition is
encoded, a member of a special internal type is created for the concatenated key, and
gives it the name specified in the CONCATENATED-KEY-NAME clause. This
internal member has no entries in the uses table, as the elements that constitute the
concatenated key are not obtained until the Source Language Generation Facility is
used (see remark 16 on page 34). However, the internal member can still be referred
to by other members; for example, it may be used as a segment search field or as a
sensitive field.

15 Interrogations can be performed on the concatenated key internal member type (see
"Condition Keywords for WHICH and WHAT Commands" on page 141). However,
meaningful results will only be obtained in response to interrogations concerning
members that use the internal member type, as the member type has no entries in the
uses table.

16 The destination parent's concatenated key is constructed automatically when the
Source Language Generation Facility is being used to generate DBD control
statements, record layouts, or COBOL, PL/I, or Assembler data descriptions. When
the Source Language Generation Facility encounters a member of the concat-name
type, the concatenated key is constructed, and it is output in a form appropriate to the
language or record layouts being generated.

17 The RENAMES clause can be used to specify a local name for any field that directly
constitutes the destination parent's concatenated key; that is, any field that has been
directly specified as a sequence key in any of the segments along the hierarchical
path to the destination parent segment, and including the destination parent segment.
The rules governing a local name are as defined in the syntax section above.

18 A segment cannot be a logical child segment and a destination parent segment.

19 A segment cannot be a logical child segment if it is the root segment of a database.

20 A segment and its physical child segment cannot both be logical child segments.

21 Only one logical child segment in a physically paired logical relationship can have
physical child segments.

22 A virtual logical child segment cannot have physical child segments.

23 IMS (DL/I) automatically reserves a 4-byte counter field in the prefix of logical
parent segments if they are not connected to any of their logical child segments by
logical child pointers. This is generated regardless of whether or not COUNTER is
specified.

3 Member Types

35

24 The keyword TARGET-SEGMENT specifies that the segment being defined is an
index target segment. A segment cannot be an index target segment and also a logical
child segment or a dependent segment of a logical child segment at any lower level.

25 The keyword SOURCE-SEGMENT specifies that the segment being defined is an
index source segment.

26 The CONCATENATED-KEY-FIELDS clause defines any number of system
related fields of the type that enables any part of the concatenated key of the index
source segment to be used in the subsequence or duplicate data fields of the
corresponding index pointer segment. The definition of each such system related
field comprises:

� The names of any number of groups, items, and/or sequence keys that are to
comprise the system related field. The members named must be contiguous
within the index source segment's concatenated key. They can be:

� Members contained, directly or indirectly, in the segment's sequence key;
and/or

� Members contained, directly or indirectly, in the sequence key of any segment
along the hierarchical path to and including the index source segment

� A clause AS CKxxxxx, which specifies the name to be applied to the system
related field. The name must be unique, must be 3 to 7 characters in length,
and must commence with CK.

27 When a source segment definition that contains a
CONCATENATED-KEY-FIELDS clause is encoded, a member of a special
internal type for each system related field defined by the clause is created. The
member given uses table entry for each item, group and sequence key member
specified in the CONCATENATED-KEY-FIELDS clause. Members of this special
internal type can be referred to by other members; for example, by an index pointer
segment, and they can also be interrogated (see "Interrogation Syntax" on page 154).
The Source Language Generation Facility can operate on members of this type.

28 The UNIQUE-KEY-FIELDS clause defines any number of system related fields of
the type that prompts IMS (DL/I) to generate a unique 4-byte value of the source
segment's VSAM relative block address and to place it in the subsequence field of
the corresponding index pointer segment. SXxxxxx specifies the name to be applied
to a system related field of this type. The name must be unique, must be 3 to 7
characters in length, and must commence with SX.

 ASG-DataManager IMS (DL/I) Interface

36

29 When a source segment definition that contains a UNIQUE-KEY-FIEDS clause is
encoded, a member of a special internal type for the system related field defined by
the clause is created. This member does not refer to any other members and therefore
has no entries in the uses table. However, members of this special internal type can
be referred to by other members, for example, by an index pointer segment, and they
can also be interrogated (although meaningful results will only be obtained in
response to interrogations about members that use the internal member, as it has no
constituent members). The Source Language Generation Facility can operate on
members of this type.

30 The UNIQUE-KEY-FIELDS clause is valid only if the segment being defined
resides in a HDAM or HIDAM database.

31 A segment cannot be an index source segment and a logical child segment.

32 The ATTRIBUTES clause must be present if the segment is to be completely
defined.

33 The first element within the ATTRIBUTES clause can be one of the keywords
ALIGNED, UNALIGNED, or NOT-ALIGNED. If none is declared in the data
definition statement, a default of UNALIGNED is taken.

34 ALIGNED is the equivalent of COBOL SYNCHRONIZED or PL/I ALIGNED. It
means that (subject to remark 38 on page 37) all binary items and all floating point
items declared as being contained in the segment are aligned to half word, full word
or double word boundaries, thus:

� Binary items having a length of 4 decimal digits or less occupy a complete
half word

� Binary items having a length of from 5- to 9-decimal digits occupy a full word

� Binary items having a length of from 10- to 18-decimal digits occupy two full
words, but are not necessarily aligned to a double word boundary

� Floating-point items having 6 digits or less in the mantissa occupy a full word

� Floating-point items having from 7 to 16 digits in the mantissa occupy a
double word

ALIGNED also causes any bit string items to be output with alignment to byte
boundaries when the Source Language Generation Facility is used (see "Segment
Input/Output Areas: Items Defined as BINARY or BITS" on page 190). The way in
which this is achieved is dependent upon the language being generated, and this is
described for COBOL, PL/I, and Assembler in the publication ASG-Manager
Products Source Language Generation.

3 Member Types

37

35 UNALIGNED means that (subject to remark 38 on page 37) binary items and
floating point items declared as being contained in the segment are not necessarily
aligned to word or half-word boundaries, and that bit string items are not aligned to
byte boundaries. (The amount of space occupied is the same as for ALIGNED items,
but the positioning relative to boundaries can differ.)

36 NOT-ALIGNED means the same as UNALIGNED. For the sake of simplicity, they
are regarded in the following remarks as being the same keyword; so that any
reference to the UNALIGNED keyword should be interpreted as applying equally to
the NOT-ALIGNED keyword.

37 The ALIGNED or UNALIGNED keyword does not apply to items contained within
groups declared as being contained in the segment. The data definitions of the groups
determine the alignment or nonalignment of such indirectly referenced items.

38 The ALIGNED or UNALIGNED keyword can be overridden for individual content
declarations (that is, for particular items or groups declared as being contained in the
segment) by including the keyword UNALIGNED or ALIGNED respectively in the
particular content declaration, preceding any associated ELSE and/or IF clauses (see
remark 42 on page 38 to remark 46 on page 39). It is not meaningful to include either
of these keywords in a content declaration that declares a group or an array of groups
(see remark 37 on page 37).

39 The CONTAINS clause specifies the GROUP and/or ITEM members and/or arrays
that constitute the successive parts of the segment being defined. It must be present
unless the segment being defined is a logical child segment.

If the segment being defined is a virtual logical child segment then the CONTAINS
clause must not be present, as the segment's constituent members are obtained from
the real logical child segment with which it is paired.

For a logical child segment that is not a virtual logical child, the CONTAINS clause
is required only to define the intersection data. If there is no intersection data then
the CONTAINS clause must be omitted.

The destination parent's concatenated key is automatically constructed when it is
required for the Source Language Generation Facility.

 ASG-DataManager IMS (DL/I) Interface

38

40 The entries in the CONTAINS clause must include, directly or indirectly, references
to the following fields, if they are applicable to the segment being defined:

� The sequence key fields (for a logical child segment, this applies only if
contained in the intersection data)

� The segment search fields

� The fields that are to be included in the index search field, subsequence fields
and duplicate data fields of the corresponding index pointer segment, if the
segment being defined is an index source segment

� Sensitive fields

41 Any direct or indirect reference from the CONTAINS clause to an item is assumed
to be the HELD-AS form of that item. If the item has no HELD-AS form, default
assumptions are made as to the relevant form of the item, in the order
DEFAULTED-AS, ENTERED-AS, and REPORTED-AS. The form first
encountered in this order is taken as the defaulted form, and version is applied within
that form as stated in the syntax.

42 Entries in the CONTAINS clause may be conditional (IF clauses, see remark 44 on
page 38) and/or may have alternative content declarations (ELSE clauses, see
remark 43 on page 38), which also may be conditional: so that the definition of each
part of the segment comprises a content declaration and any associated ELSE clauses
and/or IF clauses. If the segment comprises two or more parts, the definition of each
part except the last must be followed by a comma, which can optionally be followed
by spaces.

43 Any part of the segment can be specified as having any number of alternative
contents. The alternative content declarations are separated by the keyword ELSE.
The alternative contents need not occupy the same amount of physical storage.

The expression ELSE clause thus refers to:

ELSE content

where content is as defined above.

44 Any content declaration can be specified as conditional; that is, as applying only if a
stated condition or combination of conditions is satisfied. For a content declaration
to be conditional, content must be immediately followed by an IF clause.

45 It follows that any part of the segment can have alternative conditional contents,
declared in the form:

content IF clause ELSE content IF clause ELSE content IF clause

and that any combination of conditional and non-conditional alternative contents
can be declared for any part of the segment.

3 Member Types

39

46 In a content declaration, the ALIGNED, UNALIGNED, or NOT-ALIGNED
element, the KNOWN-AS clause and the INDEXED-BY clause can, if applicable,
be declared in any order; but they must not precede any of the other elements of the
content declaration (though they must precede any associated ELSE clauses and/or
IF clauses).

47 The FREQUENCY clause states the expected frequency of the segment being
defined. If the segment is the root segment in a HIDAM database, the frequency
entered will be applied to its corresponding pr: mary index pointer segment when
generated. For root segments, the frequency entered must be an integer. The
FREQUENCY clause is invalid for a virtual logical child segment.

48 The SEQUENCE-KEY clause specifies the field that is the sequence key of the
segment being defined; or for a virtual logical child segment, it specifies the field
that is the sequence key of the paired real logical child segment when accessed from
its logical parent segment.

49 Only one entry may be specified in the SEQUENCE-KEY clause, unless the
segment being defined is a virtual logical child segment, in which case any number
of entries can be specified. The term entry in this context means group/item name,
optionally followed by a WITH and/or an AS clause and optionally followed by one
of the keywords UNIQUELY or DUPLICATED.

50 For a segment that is not a logical child segment, the field named in the
SEQUENCE-KEY clause must be directly or indirectly contained in the segment. If
the reference to the field from the CONTAINS clause is indirect, the field must not
appear as an array in the data definition of its containing group.

51 For a logical child segment, the field named in the SEQUENCE-KEY clause must
be:

� Directly or indirectly contained in the segment being defined, or, if the
segment is a virtual logical child segment, directly or indirectly contained in
its paired real child segment

� Directly/indirectly contained in the destination parent's concatenated key; that
is, directly/indirectly contained in the sequence key field of any segment
along the hierarchical path to and including the destination parent segment

If the reference to the field is indirect, the field must not appear as an array in the
data definition of its containing group.

52 Use the WITH clause if a logical child segment is being defined, to enable
contiguous parts of the destination parent's concatenated key and/or contiguous parts
of the segment's intersection data to be included as part of the segment's sequence
key field.

 ASG-DataManager IMS (DL/I) Interface

40

53 Each GROUP/ITEM listed in the WITH clause, must be the name of:

� A sequence key field or a member contained directly or indirectly in a
sequence key field of any segment along the hierarchical path to and
including the destination parent segment

� A field contained directly or indirectly in the intersection data of the logical
child segment, or if a virtual logical child segment is being defined then in the
intersection data of its paired real logical child segment.

The fields named in the list must be contiguous.

54 The relevant version of any item to which reference is made directly or indirectly
from the SEQUENCE-KEY clause is assumed to be the same as the version of that
item that is relevant to the CONTAINS clause of the segment in which it is
contained.

55 The AS clause specifies the name that is to be applied to the sequence key field
constituted by the members named in the associated WITH clause and the GROUP
or ITEM name immediately preceding that WITH clause.

56 If no WITH clause is specified, the AS clause specifies an alternative name for the
GROUP or ITEM name that immediately precedes it. This allows an alternative
name to be given to one of the fields in the destination parent's concatenated key, if
that field is the sequence key of the logical child segment.

57 When a logical child segment definition containing an AS clause (with or without
any WITH clause) is encoded, a member of a special internal type is created for the
sequence key. This member is given an entry in the uses table for each member that
is named between the SEQUENCE-KEY and As keywords. Sequence key internal
members can be referred to by other members; for example, as segment search
arguments (SSAs) or sensitive fields, and they can also be interrogated (see
"Interrogation Syntax" on page 154). The Source Language Generation Facility can
operate on members of this type.

58 UNIQUELY (the default) indicates that only unique values are allowed in the
sequence key field being defined. DUPLICATED indicates that duplicate values are
allowed. All of the sequence keys for a virtual logical child segment must be
uniformly defined as either UNIQUELY or DUPLICATED.

59 You must specify a sequence key field for the root segment of a HDAM database. A
unique sequence key field must be specified for the root segment of a HISAM,
SIMPLE HISAM, or HIDAM database.

60 If the segment is a destination parent segment, then a sequence key field should be
specified for it and for each of the segments on which it depends. It is strongly
recommended that each of the sequence key fields be unique.

3 Member Types

41

61 If the segment is an index target segment and symbolic pointing is used to point to
the index target segment from the index pointer segment, then a unique sequence key
field must be specified for the segment and for each of the segments on which it
depends.

62 If a SEQUENCE-KEY clause is specified for a segment that resides in an HDAM or
HIDAM database, then hierarchical or twin pointers must be specified (see
remark 66 on page 41 to remark 70 on page 42).

63 You must not specify a SEQUENCE-KEY clause and a NOTWIN pointer.

64 The INSERT-POSITION clause is omitted if the segment resides in a HSAM or
SIMPLE HSAM database. Otherwise, it must be present if a unique sequence key
field has not been specified.

65 The INSERT-POSITION clause specifies where an occurrence of the segment is
inserted. Thus, FIRST states that:

� If SEQUENCE-KEY is not specified, a new occurrence of the segment is
inserted in front of all existing occurrences.

� If SEQUENCE-KEY is DUPLICATED, a new occurrence of the segment is
inserted in front of all existing occurrences that contain the same sequence
key.

LAST (the default) states that:

� If SEQUENCE-KEY is not specified, a new occurrence of the segment is
inserted behind all existing occurrences.

� If SEQUENCE-KEY is DUPLICATED, a new occurrence of the segment is
inserted behind all existing occurrences that contain the same sequence key.

HERE states that:

� If position has been established on an occurrence of the segment by a previous
DL/I call, a new occurrence of the segment is inserted in front of the
occurrence that satisfied that call.

� If the current position is not within occurrences of the segment, a new
occurrence of the segment is inserted as for FIRST.

66 The POINTERS clause in the ATTRIBUTES clause is applicable only to segments
that reside in a HDAM or HIDAM database and are not virtual logical child
segments except for the COUNTER keyword, which is also valid for segments
residing in a HISAM database.

67 FORWARD-HIERARCHICAL specifies that a 4-byte hierarchical forward pointer
field is reserved in the prefix of the segment.

 ASG-DataManager IMS (DL/I) Interface

42

68 BACKWARD-HIERARCHICAL specifies that a 4-byte hierarchical forward
pointer field and a 4-byte hierarchical backward pointer field are reserved in the
prefix of the segment.

69 SINGLE-TWIN specifies that a 4-byte physical twin forward pointer field is
reserved in the prefix of the segment.

70 DOUBLE-TWIN specifies that a 4-byte physical twin forward pointer field and a
4-byte physical twin backward pointer field are reserved in the prefix of the segment.

71 NOTWIN specifies that no space is to be reserved in the prefix of the segment for a
physical twin forward pointer field. NOTWIN can be specified:

� For the root segment of a HIDAM database

� For a dependent segment of a HIDAM or HDAM database if:

� Its physical parent segment does not have hierarchical pointers specified

� No more than one occurrence of the dependent segment will be stored as
a physical child of any occurrence of its physical parent segment

72 NOTWIN is invalid if:

� A SEQUENCE-KEY clause has been specified for this segment and the
segment is a dependent segment, or if hierarchical pointers have been
specified for the segment's physical parent.

� The segment is a real paired logical child segment and a SEQUENCE-KEY
clause has been specified for its virtually paired logical child segment.

73 FIRST-CHILD specifies that a 4-byte physical child first pointer field is to be placed
in the prefix of the segment's physical parent segment.

74 LAST-CHILD specifies that a 4-byte physical child first pointer field and a 4-byte
physical child last pointer field are to be placed in the prefix of the segment's
physical parent segment.

It should be noted that if a physical parent segment and its physical child segment
appear in different dataset groups, then they must be connected by physical child
and physical twin pointers.

3 Member Types

43

75 COUNTER specifies that a 4-byte counter field is to be reserved in the segment
prefix. This is in anticipation of establishing this segment as a logical parent without
logical child pointers, when IMS maintains an internal count of logical children
pointing to this logical parent to manage delete operations. Where this segment is
already established as a logical parent, IMS will determine the need for a counter
internally and it need not be specified explicitly. COUNTER should be used where
the need for a logical parent can be anticipated before the segment actually becomes
a logical parent in order that the requirement for database reorganization may be
avoided.

76 The EDIT-COMPRESSION-EXIT clause specifies the selection of an edit and/or
compression user exit option. The clause is invalid if the segment resides in a
HSAM, SIMPLE HSAM, or SIMPLE HISAM database or a database that does not
use the VSAM operating system access method, or is a virtual logical child segment.

77 ALL specifies that the user exit routine can condense or modify any of the fields in
the segment. If ALL is omitted, then only the data fields that do not change the
position of the sequence key field relative to the start of the segment can be
condensed or modified.

78 The ALL keyword is invalid if the segment is the root segment of a HISAM
database.

79 OPEN-CLOSE specifies that initialization and termination processing control is
required by the segment edit routine; that is, the edit/compression routine will gain
control after database open and after database close.

80 The GENERATES clause enables the user to specify the fields for which DBD
FIELD control statements are always to be generated when DBD control statements
are produced, additional to those fields required by IMS (DL/I) for which the Source
Language Generation Facility always provides DBD FIELD control statements (see
"Generating IMS (DL/I) DBD Control Statements" on page 176). It is not necessary
to include sequence key field names in the GENERATES clause. This is because
DBD FIELD control statements are always generated for these fields; however,
sequence key names, as well as group names and/or item names, are accepted in the
GENERATES clause in case the user wishes to include them in the list of specified
fields.

81 The OF/IN subordinate clause of the GENERATES clause can be used when the
segment contains multiple occurrences of a field, to allow the user to specify which
occurrence of the field is to have a DBD FIELD control statement generated for it.
If the OF/IN clause is used, all occurrences of the field other than the one specified
in the clause are ignored.

 ASG-DataManager IMS (DL/I) Interface

44

82 The facility [described in "Generating IMS (DL/I) DBD Control Statements" on
page 176], which automatically generates DBD FIELD control statements for the
fields described below, cannot be used when fields are duplicated across segments,
as it is assumed that there is no such duplication. Instead, the GENERATES clause
must be used if it is required to generate DBD FIELD control statements for the
following fields:

� Fields that are used as segment search fields via the PROCESSES clause of
SYSTEM, PROGRAM, or MODULE members

� Fields that are used as sensitive fields in PCB members

� Fields that are used for secondary indexing via the SEARCH,
SUBSEQUENCE, or DUPLICATE-DATA lists of the appropriate index
pointer segments, when an index source segment is being processed

Therefore, if data has been duplicated across segments and you wish to generate
DBD FIELD control statements for the types of fields listed above, then:

� The GENERATES clause must be specified in the definition of each segment
of the database to be processed to specify the fields for which DBD FIELD
control statements are to be generated.

� The GENERATES-FIELDS keyword must be used in the PRODUCE DL/I
DBDGEN command to indicate that DBD FIELD control statements are to be
generated only for the fields specified in the GENERATES clause.

83 The length of the segment is not specified in the segment definition, as it is
automatically calculated when required.

84 If the segment resides in a HSAM, SIMPLE HSAM, or SIMPLE HISAM database
or a database that does not use the VSAM operating system access method, it must
not be variable length.

3 Member Types

45

85 If the segment does not reside in a HSAM, SIMPLE HSAM, or SIMPLE HISAM
database or a database that does not use the VSAM operating system access method,
any field contained in the segment may be variable length except the following:

� A sequence key field or any of its constituent members

� Any fields preceding the sequence key field

� For a virtual logical child segment, any fields preceding its sequence key
fields in the real logical child segment with which it is paired

� For a source segment, any fields constituting the search field, subsequence
fields or duplicate data fields of its corresponding index pointer segment; and
any fields preceding those fields

86 For a variable length segment, the minimum length must include the length of the
sequence key field and must not change the offset of the sequence key. When the
EDIT-COMPRESSION-EXIT clause is specified, the minimum length cannot be
less than four.

87 If a variable length segment is encountered when the Source Language Generation
Facility is being used to generate DBD control statements, record layouts or
COBOL, PL/I, or Assembler data description statements, the 2-byte size field
required by IMS(DL/I) for the segment is generated automatically (see "Variable
Length Segments" on page 192).

88 A variable length segment is defined by specifying that the segment contains,
directly or indirectly, a variable length ITEM member.

89 It should be noted that a variable length segment must be defined to the VS COBOL
compiler by specifying a variable length array.

A segment that directly or indirectly contains a variable length array is not
recognized as a variable length segment.

If COBOL data description statements are to be generated for a variable length
segment, the segment must contain, directly or indirectly, a variable length ITEM
member, and this member must be redefined by a variable length array. For
example, if COBOL data descriptions are generated from the following data
definition:

CONTAINS
ITEMA ELSE (ITEMB) ITEMC
;

 ASG-DataManager IMS (DL/I) Interface

46

The VS COBOL compiler will output a warning message, but the compilation will
continue. However, it should be noted that the following definition:

CONTAINS
(ITEMB) ITEMC ELSE ITEMA
;

Will cause the VS COBOL compiler to output an error message and compilation
will fail.

90 Common clauses can be present in any type of data definition statement; therefore,
they are documented separately in the ASG-Manager Products
Dictionary/Repository User's Guide. Not more than one of each of these clauses can
be declared. If a common clause has a subordinate clause or keyword, the
subordinate clause identifier or subordinate keyword must not be truncated to an
extent where it becomes ambiguous with any other clause identifier or other keyword
available in the data definition syntax for this member type.

91 The common clauses can be declared in any order. If present, they must follow the
RELATED-AS and ATTRIBUTES clauses, if these are present. If the latter clauses
are both present, the RELATED-AS clause must precede the ATTRIBUTES clause.

92 When an ATTRIBUTES clause followed by a FREQUENCY clause is encoded, for
a segment that is not a virtual logical child segment, it assumes that the
FREQUENCY clause is subordinate to the ATTRIBUTES clause, specifying the
expected frequency of the segment being defined.

If you need to specify the FREQUENCY common clause following an
ATTRIBUTES clause, you should thus specify another common clause before the
FREQUENCY common clause. This allows Manager Products to recognize that the
clauses that follow are all common clauses.

93 Within the RELATED-AS clause, the subordinate clauses can be in any order; and
if a subordinate clause has subordinate clauses and optional keywords, such clauses
and keywords can be in any order within the subordinate clause.

94 Within the ATTRIBUTES clause, the subordinate clauses can be in any order (see
remark 33 on page 36). The optional keywords in the POINTERS clause can be in
either order.

95 A SEGMENT PHYSICAL can be contained by any number of physical databases
provided that it does not participate in a logical or a secondary indexing relationship;
that is, it does not have a RELATED-AS clause in its definition.

3 Member Types

47

96 A record containing the segment's data definition statement can be inserted into the
repository's source dataset by a suitable command (see the ASG-Manager Products
Dictionary/Repository User's Guide) and an encoded record can subsequently be
generated and inserted into the data entries dataset. If, when the encoded record is
generated, any item, group, module, or segment where the name appears in the
segment's data definition statement has no data entries record, Manager Products
creates a dummy data entries record for that member. The dummy record is created
as:

� A dummy module if the name appears in an EDIT-COMPRESSION-EXIT or
EXIT-LIST clause

� A dummy segment if the name is a destination-parent-name, a
physically-paired-child-name, or a real-paired-child-name

� A dummy group if the name appears in the OF/IN subordinate clause of the
GENERATES clause

� A dummy item in all the other cases

97 If an encoded segment record is deleted, any internal repository member that it
created, which is not referred to by other members is deleted, together with any
references that the internal member made to other members. Any internal member
that is referred to by other members is made into a dummy internal member rather
than being deleted altogether.

98 The local-name specified in the RENAMES clause must conform to the rules for
member names stated in the ASG-ControlManager User's Guide. This can be used
instead of the name or alias of the member named immediately prior to
local-name, when DBD control statements, record layouts, or source language
data descriptions are generated from this data definition by the Source Language
Generation Facility. The local-name is not separately recorded in the repository
(that is, no dummy data entries record and no index record is created for
local-name when the data definition in which it appears is encoded), so
local-name cannot be interrogated and can be the same as another name, an alias
or a catalog classification in the repository. The local-name is the name by which the
member is known only within the segment defined by this data definition.

 ASG-DataManager IMS (DL/I) Interface

48

99 In the CONTAINS clause:

� Version specifies which version of the relevant item is relevant to this
segment. The version is within the HELD-AS form or within a defaulted
form, as stated in remark 41 on page 38. The default assumed (or if the stated
version does not exist) is the lowest numbered existing version.

� Item-a is an array declaration that declares that when the segment here
defined is processed by an application program or module, item-a contains
the number of times item or group occurs in the array.

100 The index specified in the INDEXED-BY clause is to be used as the index name
when COBOL data descriptions are generated. The index name is not separately
recorded in the repository (that is, no dummy data entries record and no index record
is created for index-name when the data definition in which it appears is encoded),
so index-name cannot be interrogated and can be the same as another name, an
alias, or a catalog classification in the repository.

101 Up to 15 conditional terms can be specified in the IF clause. A conditional term
compares the contents of an item with a comparand; it has three elements: item
name, operator, and comparand. If there are two or more conditional terms, they
must be separated by an AND or OR keyword; they are evaluated from left to right
in a Boolean logical manner.

� version-b specifies the version (within the HELD-AS form or within a
defaulted form as stated in remark 41 on page 38) of item-b that is relevant
to the comparison. If version-b is omitted, a default value of 1 is assumed.

� version-c specifies the version (within the HELD-AS form or within a
defaulted form as stated in remark 41 on page 38) of item-c whose
contents are the comparand. If version-c is omitted, a default value of 1 is
assumed.

� literal is a literal comparand, and must be compatible with item-b's
form-description (and contents-description, if item-b contains a
CONTENTS clause). literal can be either a character string of up to 256
printable and/or non printable characters, enclosed in quotes, or a numeric
literal; that is:

� A signed or unsigned decimal number of not more than 18 digits,
optionally with a decimal point, and not enclosed in quotes

� A signed or unsigned floating point number (as defined in the ITEM
member-type documentation in the ASG-Manager Products
Dictionary/Repository User's Guide) not enclosed in quotes

3 Member Types

49

102 The CHANGED-DATA-CAPTURE-FACILITY clause is only valid for segments
contained within HDAM, HIDAM, HISAM, or SHISAM databases. If a MODULE
or PROGRAM is specified alone in the list (i.e. without any keywords before the
next entry or end of list), then during PRODUCE IMS for the database default values
of KEY, NOPATH, DATA, and CASCADE will be generated and a warning
message issued. Up to 16 entries can be specified in the EXIT-LIST clause.

103 LOG-ONLY or NO-EXITS may be specified to enable generation of the DBDGEN
DBD or SEGM specification of

EXIT-((* ,LOG)),

This may be required if data changes are to be written only to the IMS log without
any exit processing. Where exits are specified, the default specification of NOLOG
will be generated.

Examples

For a comprehensive cross section of examples showing the ATTRIBUTES clause in the
data definition statement for a SEGMENT PHYSICAL, see the examples illustrated by
Figure 2 on page 7 and Figure 3 on page 10. Also in those examples are segments
participating in a unidirectional logical relationship and an index target segment.

Figure 4 on page 51 illustrates two physical data structures that contain segments
participating in a virtually paired logical relationship.

In Figure 4 on page 51:

� ASY-LINE is the physical segment for an assembly line that assembles packs of
assembly parts to make a product.

� ASY-PACK is the physical segment for a pack of assembly parts being assembled
on that assembly line.

� QTY-ASY is the physical segment for the number of those packs of assembly parts
assembled on that assembly line.

� PROD-SEG is the physical segment for a product.

� PROD-PART is the physical segment for the parts that are used to make that
product.

 ASG-DataManager IMS (DL/I) Interface

50

Below are examples of the data definition statements that could be used to define the
segments illustrated in Figure 4 on page 51. The examples also show the use of complex
SEQUENCE-KEY clauses.

ADD ASY-LINE;
SEGMENT PHYSICAL
RELATED-AS DESTINATION-PARENT-SEGMENT
ATTRIBUTES
 CONTAINS ASY-CODE
SEQUENCE-KEY ASY-CODE UNIQUELY
;
ADD ASY-PACK;
SEGMENT PHYSICAL
RELATED-AS REAL-PAIRED-CHILD-SEGMENT TO PROD-SEG
 POINTERS SYMBOLIC DIRECT-ADDRESS
ATTRIBUTES
 CONTAINS PACK.NO, PART. COLOUR, QTY-REQD
 SEQUENCE-KEY PROD-NO WITH PACK-NO AS PACKKEY
INSERT-POSITION LAST
;
ADD QTY-ASY;
SEGMENT PHYSICAL
ATTRIBUTES
CONTAINS QTY
INSERT-POSITION LAST
;
ADD PROD-SEG;
SEGMENT PHYSICAL
RELATED-AS DESTINATION-PARENT-SEGMENT
ATTRIBUTES
CONTAINS PROD-NO, DESCRIPT
SEQUENCE-KEY PROD-NO UNIQUELY
;
ADD PRODPART;
SEGMENT PHYSICAL
RELATED-AS VIRTUAL-PAIRED-CHILD-SEGMENT WITH ASY-PACK
 TO ASY-LINE
ATTRIBUTES
SEQUENCE-KEY PART WITH COLOUR, QTY-REQD AS PART-KEY,
 ASY-CODE
INSERT-POSITION LAST
;

3 Member Types

51

For examples of logical data structures that can be defined from the virtually paired
logical relationship illustrated above, see Figure 5 on page 55 and the accompanying
narrative.

Figure 4 � Example of Physical Data Structures With Segments Participating in a Virtually Paired
Logical Relationship

Logical Segments

Syntax

where:

contents are:

ASY-LINE

ASY-PACK

QTY-ASY

PROD-SEG

PRODPART

Physical destination
parent segment

Logical destination
parent segment

Virtual logical
child segment

Real logical
child segment

� �� SEGMENT LOGICAL

ATTRIBUTES
CONTAINS contents

� �

common clauses

�

 .
; ��

�� segment
IN database KEY-ONLY

� �

, destination-parent
KEY-ONLY

 ASG-DataManager IMS (DL/I) Interface

52

segment is the name of a PHYSICAL SEGMENT.

database is the name of a HISAM, HDAM, or HIDAM database.

destination-parent is a PHYSICAL-DESTINATION-PARENT-SEGMENT.

common-clauses are as defined in the ASG-Manager Products Dictionary/Repository
User�s Guide.

Remarks

1 The keyword LOGICAL must immediately follow the SEGMENT member type
identifier to indicate that a segment residing in a logical database is being defined.

2 The keyword ATTRIBUTES can be omitted for a logical segment; it is included in
the statement specification in order to maintain the general format of the segment
data definition statements.

3 The CONTAINS clause specifies the physical segments that the logical segment
represents. The clause must be present if the segment is to be completely defined.

4 The physical-segment-name specified can be the name of a segment of any type
that resides in a HISAM, HDAM, or HIDAM database, unless a logical concatenated
segment is being defined, in which case it must be the name of a logical child
segment.

5 If the physical segment resides in more than one physical database, the IN
subordinate clause can be used to specify the name of the physical database relevant
to this logical segment. The name of the physical database is required when IMS
(DL/I) DBD control statements are being produced for any logical database that
contains this logical segment. If the IN clause is not specified, then when IMS (DL/I)
DBD control statements are produced, Manager Products finds an appropriate
physical database in one of the ways described in "The Member Type for a
LOGICAL Type IMS (DL/I) Database" on page 106.

6 The destination-parent-name is specified only if a logical concatenated
segment is defined; in which case, it must be the name of the destination parent
segment to which the logical child segment specified by
physical-segment-name relates.

If the physical-segment-name specifies a logical child segment, but the
destination-parent-name is omitted, then the Source Language Generation
Facility assumes that a logical concatenated segment is being defined. The
destination parent to which it is related and the KEY-ONLY keyword are also
assumed. If RXLOG01 is specified as YES by the macro DGDBD, then this
processing is not undertaken, so that a SEGM statement is generated with a
SOURCE operand for the logical child alone.

3 Member Types

53

7 The KEY-ONLY keyword specifies that the concatenated key (if any) of the
physical segment is to be placed in the key feedback area of the logical segment's
PCB; and, that the physical segment is not to be placed in the user input/output area
when a call is issued to retrieve the logical segment. If KEY-ONLY is omitted, the
concatenated key of the physical segment is placed in the key feedback area, and the
physical segment is placed in the user input/output area.

8 The sequence key for a concatenated segment is the sequence key of the logical child
segment.

9 Common clauses can be present in any type of data definition statement; therefore,
they are defined separately in the ASG-Manager Products Dictionary/Repository
User's Guide. Not more than one of each of these clauses can be declared. If a
common clause has a subordinate clause or keyword, the subordinate clause
identifier or subordinate keyword must not be truncated to an extent where it
becomes ambiguous with any other clause identifier or other keyword available in
the data definition syntax for this member type.

10 The common clauses can be in any order. If common clauses are present, they must
follow the ATTRIBUTES clause, if it is present.

11 A record containing the segment's data definition statement can be inserted into the
data dictionary's source dataset by a suitable command (see ASG-Manager Products
Dictionary/Repository User's Guide), and an encoded record can subsequently be
generated and inserted into the data entries dataset. If, when the encoded record is
generated, any segment or database where the name appears in this segment's data
definition statement has no data entries record, a dummy segment or database data
entries record is created for that member.

Examples

Figure 5 on page 55 illustrates logical data structures that can be defined from the
physical data structures illustrated by Figure 4 on page 51.

In Figure 5 on page 55, example A:

� ASSBLINE is a logical segment representing an assembly line.

� PARTPROD is a logical concatenated segment representing assembly parts
assembled on that assembly line and the product that they make.

� PROD-QTY is a logical segment representing the number of those products being
assembled on that assembly line.

 ASG-DataManager IMS (DL/I) Interface

54

These are examples of the data definition statements that could define the segments
illustrated in Figure 5 on page 55, example A:

ADD ASSBLINE;
SEGMENT LOGICAL
CONTAINS ASY-LINE
;
ADD PARTPROD;
SEGMENT LOGICAL
CONTAINS ASY~PACKf PROD-SEG
;
ADD PROD-QTY;
SEGMENT LOGICAL
CONTAINS QTY-ASY
;

In Figure 5 on page 55, example B:

PRODUCT is a logical segment representing a product.

PART-ASY is a logical concatenated segment representing the parts that are used to
make this product and the assembly line where they are assembled.

These are examples of the data definition statements that could define the segments
illustrated in Figure 5 on page 55, example B:

ADO PRODUCT;
SEGMENT LOGICAL
CONTAINS PROD-SEG
;
ADD PART-ASY;
SEGMENT LOGICAL
CONTAINS PRODPART, ASY-LINE
;
ADD ASY-QTY
SEGMENT LOGICAL
CONTAINS QTY-ASY
;

3 Member Types

55

Figure 5 � Examples of Logical Data Structures

Segments that Reside in a Secondary Index Database

Syntax

where:

attribute-details are:

ASSBLINE

PARTPROD

PROD-QTY

PRODUCT

PART-ASY

ASY-QTY

Example A Example B

� �� SEGMENT INDEX-POINTER
ATTRIBUTES attribute-details

� �

RELATED-TO related-details common clauses

�

 .
; ��

� �

ALIGNED
UNALIGNED

NOT-ALIGNED

CONTAINS content
conditions

������������������������

� �

FREQUENCY freq

��

UNIQUELY
SEQUENCE-KEY sequence-key

DUPLICATED

� �

GENERATES generates-clause
���������������

 ASG-DataManager IMS (DL/I) Interface

56

where:

content is:

where ident is:

where:

item is the name of an ITEM repository member.

group is the name of a GROUP repository.

version is an unsigned integer in the range 1 to 15.

local-name is a name, conforming to the rules for member names stated in the
ASG-ControlManager User's Guide.

nn is an unsigned integer from 1 to 18 digits, being the number of times item or group
occurs in the array.

index is a name, conforming to the rules for member names, that is to be used as the
index name when COBOL data descriptions are generated by the Source Language
Generation Facility.

conditions are:

� �ident
(nn) ident

INDEXED-BY index

� �item
group

version

ALIGNED
UNALIGNED

NOT-ALIGNED

� �

KNOWN-AS local-name

3 Member Types

57

where:

literal is a literal comparand.

item-b is the name of the ITEM where the contents are to be compared with the
comparand.

version-b is an unsigned integer in the range 1 to 15.

item-c is the name of the ITEM where the contents are the comparand.

version-c is an unsigned integer in the range 1 to 15.

content is as defined above.

freq is an unsigned integer in the range 1 to 16777215.

sequence-key is a 1 to 8 character unique alphanumeric name.

� �item-b
version-b =

NE

GT

>

LE

<

LT

EQ

� �item-c
version-c

literal

 ASG-DataManager IMS (DL/I) Interface

58

related-details are:

where:

target-seg is the name of a SEGMENT that is a PHYSICAL TARGET-SEGMENT
member.

index-search-field is a 1 to 8 character unique alphanumeric name.

source-segment is the name of a SEGMENT that is a PHYSICAL
SOURCE-SEGMENT member.

module is the name of a MODULE member.

group and item are as defined above.

� �target-seg ON index-search
SOURCE source-segment

� �

CONSTANT CHARACTER 'c'
HEXADECIMAL 'hh'
BITS 'bbbbbbbb'

� �SEARCH KEY FIELDS group
item

<< , <<

�
�

SUBSEQUENCE-FIELDS group
item
CKxxxxx
SXxxxxx

<<< , <<<<

� �

DUPLICATE-DATA-FIELDS group
item
CKxxxxx

<<<< , <<<

� �

SUPRESSING-ON CHARACTER 'c'
HEXADECIMAL 'hh'
BITS 'bbbbbbbb'
BLANKS

ZEROES

ZEROS

� �

MAINTENANCE-EXIT module

� �

POINTERS DIRECT-ADDRESS
SYMBOLIC

� �

CONCATENATED-KEY-NAME concatenated-key
e

3 Member Types

59

generates-clause is:

where:

CKxxxxx is a 3- to 7-character name to be applied to a system related field within a
GENERATES, SUBSEQUENCE-FIELDS, or DUPLICATE-DATA-FIELDS clause.
The name must be unique and start with CK.

SXxxxxx is a 3- to 7-character name to be applied to a system related field within a
GENERATES or SUBSEQUENCE-FIELDS clause. The name must be unique and start
with SX.

concatenated-key is used when a logical child segment is being defined, to specify
the name to be given to the destination parent's concatenated key.

c is any printable character.

hh is a hexadecimal representation of any printable or non printable character.

bbbbbbbb is a one byte bit string representation of any printable or non printable
character.

common-clauses are as defined in the ASG-Manager Products Dictionary/Repository
User's Guide.

Remarks

1 The keyword INDEX-POINTER must immediately follow the SEGMENT member
type identifier to indicate that an index pointer segment residing in a secondary index
database is being defined.

2 The ATTRIBUTES clause must be present if the segment is to be completely
defined.

3 The first element within the ATTRIBUTES clause can be one of the keywords
ALIGNED, UNALIGNED, or NOT-ALIGNED. If none is declared in the data
definition statement, a default of UNALIGNED is taken.

� �sequence-key
 concatenated-key
group
item
SXxxxxx
CKxxxxx
index-search

IN
OF

group
CKxxxxx
index-search

sequence-key
concatenated-key

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

 ASG-DataManager IMS (DL/I) Interface

60

4 ALIGNED is the equivalent of COBOL SYNCHRONIZED, or PL/I ALIGNED. It
means that (subject to remark 8 on page 60) all binary items and all floating point
items declared as being contained in the segment are aligned to half-word, full-word,
or double-word boundaries, thus:

� Binary items having a length of 4-decimal digits or less occupy a complete
half word

� Binary items having a length of from 5- to 9-decimal digits occupy a full word

� Binary items having a length of from 10- to 18-decimal digits occupy two full
words, but are not necessarily aligned to a double word boundary

� Floating-point items having 6 digits or less in the mantissa occupy a full word

� Floating-point items having from 7- to 16-digits in the mantissa occupy a
double word

ALIGNED also causes any bit string items to be output with alignment to byte
boundaries when the Source Language Generation Facility is used (see "Segment
Input/Output Areas: Items Defined as BINARY or BITS" on page 190). The way in
which this is achieved depends on the language being generated and is described for
COBOL, PL/I, and Assembler in the publication ASG-Manager Products Source
Language Generation.

5 UNALIGNED means that (subject to remark 8 on page 60) binary items and floating
point items declared as being contained in the segment are not necessarily aligned to
word or half-word boundaries and that bit string items are not aligned to byte
boundaries. (The amount of space occupied is the same as for ALIGNED items, but
the positioning relative to boundaries can differ.)

6 NOT-ALIGNED means the same as UNALIGNED. For the sake of simplicity, they
are regarded in the following remarks as being the same keyword; so that any
reference to the UNALIGNED keyword should be interpreted as applying equally to
the NOT-ALIGNED keyword.

7 The ALIGNED or UNALIGNED keyword does not apply to items contained within
groups declared as being contained in the segment. The data definitions of the groups
determine the alignment or nonalignment of such indirectly-referenced item.

8 The ALIGNED or UNALIGNED keyword can be overridden for individual content
declarations (that is, for particular items or groups declared as being contained in the
segment) by including the keyword UNALIGNED or ALIGNED, respectively, as
the last element in the particular content declaration, preceding any associated ELSE
and/or IF clauses (see remark 11 on page 61 to remark 15 on page 62). It is not
meaningful to include either of these keywords in a content declaration that declares
a group (see remark 7 on page 60).

3 Member Types

61

9 The CONTAINS clause specifies the GROUP and/or ITEM members that constitute
the successive parts of the index pointer segment's user data. If there is no user data,
the CONTAINS clause must be omitted. The main part of the index pointer segment
from the SEARCH-KEY-FIELDS, SUBSEQUENCE-FIELDS, and
DUPLICATE-DATA-FIELDS subordinate clauses specified in the RELATED-TO
clause is automatically constructed.

10 Any direct or indirect reference from the CONTAINS clause to an item is assumed
to be the HELD-AS form of that item. If the item has no HELD-AS form, default
assumptions are made as to the relevant form of the item, in the order
DEFAULTED-AS, ENTERED-AS, REPORTED-AS. The form first encountered in
this order is taken as the defaulted form, and version is applied within that form as
stated in the syntax.

11 Entries in the CONTAINS clause may be conditional (IF clauses, see remark 13 on
page 61) and/or may have alternative content declarations (ELSE clauses, see
remark 12 on page 61), which also may be conditional, so that the definition of each
part of the segment comprises a content declaration and any associated ELSE clause
and/or IF clauses. If the segment comprises of two or more parts, the definition of
each part, except the last, must be followed by a comma, which can optionally be
followed by spaces.

12 Any part of the segment can be specified as having any number of alternative
contents. The alternative content declarations are separated by the keyword ELSE.
The alternative contents need not occupy the same amount of physical storage.

The expression ELSE clause thus refers to:

ELSE content

where content is as defined above.

13 Any content declaration can be specified as conditional; that is, as applying only if a
stated condition or combination of conditions is satisfied. For a content declaration
to be conditional, content must immediately be followed by an IF clause.

14 It follows that any part of the segment can have alternative conditional contents
declared in the form:

content IF clause ELSE content IF clause ELSE content IF clause

and that any combination of conditional and non conditional alternative contents
can be declared for any part of the segment.

 ASG-DataManager IMS (DL/I) Interface

62

15 In a content declaration, the ALIGNED, UNALIGNED, or NOT-ALIGNED
element, the KNOWN-AS clause and the INDEXED-BY clause can, if applicable,
be declared in any order. However, they must not precede any of the other elements
of the content declaration (though they must precede any associated ELSE clauses
and/or IF clauses).

16 The FREQUENCY clause specifies the expected frequency of the segment.

17 The SEQUENCE-KEY clause specifies the name that is to be applied to the
sequence key of the index pointer segment. Manager Products constructs the
sequence-key, for which a member of a special internal type is generated. A member
of this type is given the following user table entries:

� An entry for the index-search-field-name (XDFLD) when specified for
the segment (see remark 25 on page 64)

� An entry for each entry specified in the SUBSEQUENCE-FIELDS clause in
the segment definition

The sequence key internal member type can be referred to by other members; for
example, as a segment search argument or as a sensitive field. Sequence key
internal members can be interrogated, and the Source Language Generation Facility
can operate on such members. When the Source Language Generation process is
performed on such members, the CONSTANT field will also be generated if it has
been specified.

18 UNIQUELY specifies that the sequence key of the index pointer segment is to
contain unique values only. DUPLICATED specifies that duplicate values are
allowed in the sequence key. If neither of these keywords is specified, then
UNIQUELY is assumed.

19 The GENERATES clause enables the user to specify fields for which DBD FIELD
control statements are always to be generated when DBD control statements are
produced, in addition to those fields required by IMS (DL/I) for which the Source
Language Generation Facility always provides DBD FIELD control statements. (See
further in "Generating IMS (DL/I) DBD Control Statements" on page 176.) It is not
necessary to include the sequence key field name in the GENERATES clause,
because a DBD FIELD Control Statement is always generated for this field; but the
sequence key is accepted in the GENERATES clause in case the user wishes to
include it in the list of specified fields.

20 The OF/IN subordinate clause of the GENERATES clause can be used when the
segment contains multiple occurrences of a field, to allow the user to specify which
occurrence of the field is to have a DBD FIELD control statement generated for it.
If the OF/IN clause is used, all occurrences of the field other than the one specified
in the clause are ignored.

3 Member Types

63

21 When specified for an index pointer segment, the GENERATES clause has the
additional function of forcing DBD FIELD control statements to be generated for
fields that are in the main part of the index pointer segment; that is, the search,
subsequence and duplicate-data fields, and fields constituting the concatenated key
of the index target segment, if present (see remark 35 on page 65 and remark 36 on
page 65). Normally, DBD FIELD control statements are only generated for the
sequence key field and for fields in the user data (see "Generating IMS (DL/I) DBD
Control Statements" on page 176).

If it is required to generate DBD FIELD control statements for the fields that
constitute the search, subsequence or duplicate-data fields then each field must be
specified in the GENERATES clause of the index pointer segment definition.

22 When there is duplication of fields across segments, the GENERATES clause must
be used if DBD FIELD control statements are to be generated for these fields:

� Fields that are used as segment search fields through the PROCESSES clause
of SYSTEM, PROGRAM, or MODULE members

� Fields that are used as sensitive fields in PCB members

These fields must be part of the user-data.

The facility (described in "Generating IMS (DL/I) DBD Control Statements" on
page 176), which automatically generates the DBD FIELD control statements for
the fields described above, cannot be used when fields are duplicated across
segments, as Manager Products assumes that there is no such duplication.

If data has been duplicated across segments, and you wish to generate DBD FIELD
control statements for the types of fields listed above, then:

� The GENERATES clause must be specified in the definition of the segment
to specify the fields for which DBD FIELD control statements are to be
generated.

� The GENERATES-FIELDS keyword must be used in the PRODUCE DLI
DBDGEN command to indicate that DBD FIELD control statements are to be
generated only for the fields specified in the GENERATES clause.

23 The RELATED-TO clause must be present if the segment is to be completely
defined. It specifies:

� The index target segment to which the segment is related

� The index source segment to which the segment is related

� The fields that are used to construct the CONSTANT, search, subsequence,
and duplicate-data portion of the segment

 ASG-DataManager IMS (DL/I) Interface

64

24 The RELATED-TO keyword must be immediately followed by the
target-segment-name, which identifies the PHYSICAL-TARGET-SEGMENT to
which the index pointer segment points.

25 ON index-search-field-name specifies the name to be applied to the search
field (XDFLD) of the index pointer segment that can be used as a segment search
field for the index target segment. Manager Products constructs the index search
field, for which a member of a special internal type is generated. This member is
given a uses table entry for each member specified in the SEARCH-KEY-FIELDS
clause.

Index search field (XDFLD) internal members can be referred to by other members;
for example, as a segment search argument. Members of this type can also be
interrogated and the Source Language Generation Facility can operate on them.

26 The SOURCE clause identifies the index source segment from which the index
pointer segment is generated. The clause can be omitted if the index target segment
is also the index source segment; otherwise the index source segment must be a
dependent segment of the index target segment, at any lower level.

27 The CONSTANT clause specifies a character identifies every index pointer segment
created for this secondary index. It is required if this secondary index resides in an
index database shared by other secondary indexes.

28 The SEARCH-KEY-FIELDS clause lists the names of one to five GROUP or ITEM
members that are contained directly or indirectly by the corresponding index source
segment, and that constitute the index search field (XDFLD) in the index pointer
segment. The sequence of the entries in the list is the sequence in which the field
values are concatenated in the index pointer segment's search field. None of these
fields or their constituent members may be variable length.

29 The SUBSEQUENCE-FIELDS clause lists the names of one to five groups, items,
and/or system related fields that are defined in the corresponding index source
segment, and that constitute the subsequence field in the index pointer segment. The
sequence of the entries in the list is the sequence in which the field values are
concatenated in the index pointer segment's subsequence field.

30 The combined length of the fields declared by CONSTANT,
SEARCH-KEY-FIELDS, and SUBSEQUENCE-FIELDS must not exceed 240
bytes.

31 The DUPLICATE-DATA-FIELDS clause lists the names of one to five groups,
items and/or system related fields (of the type whose names begin with CK) that are
defined in the corresponding index source segment, and that constitute the duplicate
data field in the index pointer segment. The sequence of the entries in the list is the
sequence in which the field values are concatenated in the index pointer segment's
duplicate data field.

3 Member Types

65

32 The SUPPRESSING-ON clause specifies that the creation of the index pointer
segment is suppressed if each of the fields of the index source segment that are used
to construct the search field of the index pointer segment contains the specified value
in every byte.

33 The MAINTENANCE-EXIT clause specifies that a user-supplied index
maintenance exit routine is used to suppress the creation of selected index pointer
segments.

34 The POINTERS clause specifies how the index pointer segment is to point to the
index target segment.

� DIRECT-ADDRESS clause specifies that a 4-byte direct address pointer to
the index target segment is to be placed in the prefix of the index pointer
segment.

� SYMBOLIC specifies that symbolic pointing from the index pointer segment
to the index target segment is to be used, and that no space is to be reserved in
the prefix of the index pointer segment for a 4-byte direct address pointer.
SYMBOLIC must be specified if the index target segment resides in a
HISAM database.

If the POINTERS clause is omitted, then SYMBOLIC is assumed if the index target
segment resides in a HISAM database; otherwise DIRECTADDRESS is assumed.

35 If symbolic pointing is used to point to the index pointer segment, the concatenated
key of the index target segment must form part of the index pointer segment. If it
does not, then when the Source Language Generation Facility is used to generate
DBD control statements, record layouts, or COBOL, PL/I, or Assembler data
descriptions, the concatenated key is constructed automatically and inserted into the
index pointer segment after any sequence key and duplicate-data fields that have
been specified.

36 The CONCATENATED-KEY-NAME clause can be used to specify a name to be
given to the concatenated key of the index target segment that will be constructed. If
the CONCATENATED-KEY-NAME clause is used, a member of a special internal
type is created for the concatenated key and given the name specified in the clause.
This internal member has no entries in the uses table, as the members that constitute
it are not calculated until the Source Language Generation Facility is used. However,
the internal member can still be referred to by other members; for example, it may
be used as a segment search field or as a sensitive field. Interrogations can be
performed on internal members of this type (see "Interrogation Syntax" on
page 154). However, meaningful results will only be obtained in response to
interrogations about members that refer to the internal member type.

 ASG-DataManager IMS (DL/I) Interface

66

37 The length of the index pointer segment is not included as part of the segment
definition as the Source Language Generation Facility calculates it when required,
allowing for:

� The length of the key

� Any duplicate data fields

� The concatenated key of the index target segment if constructed by Manager
Products

� Any user data

38 Common clauses can be present in any type of data definition statement; they are
therefore defined separately in the ASG-Manager Products Dictionary/Repository
User's Guide. Not more than one of each of these clauses can be declared. If a
common clause has a subordinate clause or keyword, the subordinate clause
identifier or subordinate keyword must not be truncated to an extent where it
becomes ambiguous with any other clause identifier or other keyword available in
the data definition syntax for this member type.

39 The common clauses can be declared in any order. If present, they must follow the
ATTRIBUTES and RELATED-TO clauses if they are present. The latter clauses can
be in either order. Within the ATTRIBUTES clause the subordinate clauses can be
in any order. Within the RELATED-TO clause the subordinate clauses can follow
index-search-field-name in any order.

40 When an ATTRIBUTES clause followed by a FREQUENCY clause is encoded, it
is assumed that the FREQUENCY clause is subordinate to the ATTRIBUTES
clause, specifying the expected frequency of the segment being defined.

If it is required to specify the FREQUENCY common clause following an
ATTRIBUTES clause, it is also necessary to specify another common clause before
the FREQUENCY common clause. This causes Manager Products to recognize that
the clauses that follow are all common clauses.

3 Member Types

67

41 A record containing the segment's data definition statement can be inserted into the
repository's source dataset by a suitable command (see the ASG-Manager Products
Dictionary/Repository User's Guide), and an encoded record can subsequently be
generated and inserted into the data entries dataset. If, when the encoded record is
generated, any item, group, module, or segment where the name appears in the
segment's data definition statement has no data entries record, a dummy data entries
record is created for that member. The dummy record is created as:

� A dummy module, if the name appears in a MAINTENANCE-EXIT clause

� A dummy segment, if the name is a target-segment-name or a
source-segment-name

� A dummy group, if the name appears in the OF/IN subordinate clause of the
GENERATES clause

� A dummy item in all other cases

Similarly, when the encoded record is generated, if a member of an internal member
type has not already been generated for any name appearing in a
SUBSEQUENCE-FIELDS clause or a DUPLICATEDATA-FIELDS clause, then a
dummy data entries record is created for that member. (The record is a dummy item
because the internal member type will be defined in the physical source segment's
definition.)

42 If an encoded segment record is deleted, any internal member that it created which
is not referred to by other members is deleted, together with any references that the
internal member made to other members. Any internal member that is referred to by
other members is made into a dummy internal member rather than being deleted
altogether.

43 In the KNOWN-AS clause, local-name can be used instead of the name or alias of
the contained member, when DBD control statements, record layouts, or source
language data descriptions are generated from this member. local-name is not
separately recorded in the repository (that is, no dummy data entries record and no
index record is created for local-name when the member in which it appears is
encoded), so local-name cannot be interrogated and can be the same as another
name, an alias, or a catalogue classification in the repository. local-name is the
name by which the contained member is known only within the segment defined by
this member.

 ASG-DataManager IMS (DL/I) Interface

68

44 In the CONTAINS clause:

� Version specifies which version of the relevant item is relevant to this
segment. The version is within the HELD-AS form, or within a defaulted
form as stated in remark 10 on page 61. If version is omitted or if the stated
version does not exist, the lowest numbered existing version is assumed to be
relevant.

� Literal must be compatible with item-b's form-description (and
contents-description, if item-b contains a CONTENTS clause) The
literal can be either a character string of not more than 256 printable and/or
non printable characters, enclosed in quotes, or a numerical literal, that is:

� A signed or unsigned decimal number of not more than 18 digits,
optionally with a decimal point, and not enclosed in quotes

� A signed or unsigned floating point number (as defined in the
ASG-Manager Products Dictionary/Repository User's Guide) not
enclosed in quotes

� Version-c specifies the version (within the HELD-AS form, or within a
defaulted form as stated in remark 10 on page 61) of item-c whose contents
are the comparand. If version-c is omitted, a default value of 1 is assumed.

� The conditional operators have these meanings:

Example

For an example of a SEGMENT INDEX-POINTER, see the example illustrated by
Figure 3 on page 10.

Operator Meaning

EQ or = equal to

NE not equal to

GT or > greater than

GE greater than or equal to

LT or < less than

LE less than or equal to

3 Member Types

69

Member-type Syntax For IMS (DL/I) Databases

Outline of the IMS-DATABASE Member Type
IMS (DL/I) provides a number of different database access methods. To simplify the
description of the IMS-DATABASE member type, a separate description is given for
each type of IMS (DL/I) database organization/access method.

This is the overall syntax of the IMS-DATABASE member type:

where:

gsam-access, hsam-access, hisam-access, hdam-access, hidam-access,
logical-accesses, and secondary-index-access are the definitions for
particular types of database organization/access method, as specified in "Member Type of
a GSAM Type IMS (DL/I) Database Syntax" on page 70 to "The Member Type for a
SECONDARY-INDEX Type IMS (DL/I) Database" on page 111, respectively.

common-clauses are as documented in the ASG-Manager Products
Dictionary/Repository User's Guide.

For each type of database organisation/ access method, the definition comprises:

� An organization type/access method keyword or keywords.

� An ACCESS clause, to specify the access method of the database. There is no
ACCESS clause for a logical-access definition.

� A DATASETS clause, to specify the attributes of the dataset groups into which the
database is divided. There is no DATASETS clause for a logical-access definition.

� A CONTAINS clause, to list the segments that reside in the database. In a
gsam-access definition, the CONTAINS clause is not relevant to IMS (DL/I), but it
is provided to enable the user to define the records of the dataset accessed.

The ACCESS, DATASETS and CONTAINS clauses must, if present, be in that order
and must precede any common clause that may be present.

� �IMS-DATABASE
DL/I-DATABASE

DL/I-DATABASE

DL/I-DATABASE

DL/I-DATABASE

gsam-access

hsam-access

hisam-access

hdam-access
hidam-access

logical-access

secondary-index-access

�

� �

common-clauses

�

 .
; ��

 ASG-DataManager IMS (DL/I) Interface

70

Member Type of a GSAM Type IMS (DL/I) Database Syntax

where:

ddname is 1 to 8 alphanumeric characters, being the logical name used in the job control
to identify the database dataset.

dsets-details are:

where:

count is an unsigned, nonzero integer, being the number of logical records per physical
block.

size is an unsigned, nonzero integer, being the number of bytes per physical block or
control interval.

� �IMS-DATABASE
DL/I-DATABASE

DL/I-DATABASE

DL/I-DATABASE

DL/I-DATABASE

GSAM�

� �

ACCESS VSAM

BSAM
PASSWORD

PASSWORD

� �

DATASETS INPUT ddname dsets-details ENTERED-AS
HELD-AS
REPORTED-AS
DEFAULTED-AS

� �

ALIGNED
UNALIGNED
NOT-ALIGNED

CONTAINS content
conditions

<<<<<<<<<<<< , <<<<<<<<<<<<

� �

common-clauses

�

 .
; ��

� �FIXED
VARIABLE
UNDEFINED

BLOCKED

� �

BLOCK count
BUFFER size

RECORD length-1
TO length-2

� �

OUTPUT ddname

3 Member Types

71

length-1, length-2 are nonzero integers.

content is:

where ident is:

where:

item is the name of an ITEM member.

group is the name of a GROUP member.

file is the name of a FILE member.

version is an unsigned integer in the range 1 to 15.

local-name is a name, conforming to the rules for member names.

nn is an unsigned integer of from 1 to 18 digits, being the number of times item or group
occurs in the array.

item-a is the name of an ITEM.

index is a name, conforming to the rules for member names, that is to be used as the
index name when COBOL data descriptions are generated by the Source Language
Generation Facility.

conditions are:

� �ident
(nn)
(item-a)

ident
INDEXED-BY index

� �item
group
file

version
ALIGNED
UNALIGNED
NOT-ALIGNED

� �

cond
IF expr

AND
OR

<<<<<<,<<<<<<

� �

cond
IF cond

AND
OR

<<<<<<,<<<<<<

ELSE content
<<<<<<<<<<<<<<<,<<<<<<<<<<<<<<<<<<<<<<<<

 ASG-DataManager IMS (DL/I) Interface

72

where:

cond is:

where:

literal is a literal comparand.

item-b is the name of the ITEM whose contents are to be compared with the comparand.

version-b is an unsigned integer in the range 1 to 15.

item-c is the name of the ITEM whose contents are the comparand.

version-c is an unsigned integer in the range 1 to 15.

common-clauses are as defined in the ASG-Manager Products Dictionary/Repository
User�s Guide.

Remarks

1 The keyword GSAM must immediately follow the member type identifier to indicate
that a OSAM database is being defined.

2 The ACCESS clause can be omitted; but, if it is present, it must immediately follow
the GSAM keyword.

3 If the ACCESS clause is omitted, or if neither of the operating system access method
keywords VSAM or BSAM is present in the ACCESS clause, then VSAM is
assumed.

4 PASSWORD specifies that the database name is to be used when opening any
dataset in this database. It is not accepted if the BSAM access method is specified.

�

��item-b
version-b =

NE

GT

>

LE

<

LT

EQ

� �item-c
version-c

literal

3 Member Types

73

5 The DATASETS clause defines a dataset group within this database. It must be
present if the definition of the database is to be complete. Only one DATASETS
clause is permitted.

6 INPUT ddname specifies the logical file name of the input dataset. It must be unique
within the data dictionary.

7 The format of the records in the dataset is specified by one of these keywords:
FIXED, VARIABLE, or UNDEFINED.

8 If the database uses the VSAM access method, the control interval size, specified
either by BUFFER size or by the product of the BLOCK count and length-1 (if
records are fixed length) or length-2 (if records are variable length), must not
exceed 30720.

If the control interval size is specified by BUFFER size, then:

� If size is less than 8192 and is not a multiple of 512, on encoding it is rounded
up to the next multiple of 512.

� If size is greater than 8192 and is not a multiple of 2048, on encoding it is
rounded up to the next multiple of 2048.

If the control interval size is specified by the product of the BLOCK count and the
RECORD length, no rounding is performed by DataManager, but on encoding,
warning messages are output if:

� The product is less than 8192 and is not a multiple of 512

� The product is greater than 8192 and is not a multiple of 2048

9 The element length-1 specifies the record size for a fixed length logical record or
the minimum record size for a variable length logical record.

10 If records are variable length, TO length-2 must be declared, where length-2
specifies the maximum size for a record.

11 OUTPUT ddname specifies the logical file name of the output dataset.

Note:
If this is the same as the INPUT ddname described in remark 6 on page 73, a
Warning message is issued and a common DL/l-DATASET internal member is
referred to.

 ASG-DataManager IMS (DL/I) Interface

74

12 The optional CONTAINS clause and its optional preceding form and alignment
keywords are not relevant to IMS (DL/I) for the definition of the GSAM database.
They are provided to enable the user to define the records of the dataset group
accessed, for documentation or other purposes. As the CONTAINS clause and its
optional preceding keywords are based on the corresponding elements of the FILE
data definition statement, defined in the ASG-Manager Products
Dictionary/Repository User's Guide, they are not defined again here.

13 Common clauses can be present in any type of data definition statement; therefore,
they are defined separately in the ASG-Manager Products Dictionary/Repository
User's Guide. Not more than one of each of these clauses can be declared. If a
common clause has a subordinate clause or keyword, the subordinate clause
identifier or subordinate keyword must not be truncated to an extent where it
becomes an ambiguous with any other clause identifier or other keyword available
in the data definition syntax for this member type.

14 The common clauses can be declared in any order. If present, they must follow the
ACCESS, DATASETS, and record-definition clauses, if these are present.

15 A record containing the database's data definition statement can be inserted into the
data dictionary's source dataset by a suitable command (see the ASG-Manager
Products Dictionary/Repository User's Guide), and an encoded record can
subsequently be generated and inserted into the data entries dataset.

When the encoded record is generated, a data entries record of a special internal
type, the DL/I-DATASET internal member type, is created for each ddname that
appears in the database's data definition. When a GSAM database is encoded, the
DL/I-DATASET internal member type has no references to other members.
However, DL/I-DATASET members may be referred to by other members; for
example, they might appear in the INPUTS clause of a PROGRAM definition.
DL/l-DATASET members can be interrogated (see "Examples" on page 142),
although meaningful results will be obtained only in response to interrogations
concerning the members that refer to DL/I-dataset members.

16 When an encoded database member is deleted, any DL/I-DATASET member
created for it, which is not referred to by other members, is also deleted. Any
DL/I-DATASET member, which is referred to by other members, is made into a
dummy member rather than being deleted.

17 In the KNOWN-AS clause, the local-name variable can be used instead of the
name or alias of the contained member, when DBD control statements, record
layouts, or source language data descriptions are generated from this member by the
Source Language Generation Facility.

3 Member Types

75

Example

ADD SALESTAT;
IMS - DATABASE GSAM
ACCESS BSAM
DATASETS INPUT SALESIN
FIXED BLOCKED
BLOCK 4 RECORD 256
CUTPUT SALESO

The Member Type for a HSAM Type IMS (DL/I) Database
Syntax

where:

datasets-details is:

where:

ddname is 1 to 8 alphanumeric characters, being the logical name used in the job control
to identify the physical file.

length is the maximum length (in bytes) of a logical record. If VSAM is the operating
system access method, length must be an even value.

� �IMS-DATABASE
DL/I-DATABASE

DL/1-DATABASE

DL1-DATABASE

DLI-DATABASE

HSAM�

SIMPLE

� �

ACCESS
PASSWORD

DATASETS datasets-details

� �

CONTAINS segment

segment PARENT segment
<<<<<<<<<<,<<<<<<<<<<

� �

common-clauses

�

 .
; ��

� INPUT ddname
RECORD length

OUTPUT ddname �

� �
RECORD length

DEVICE device
MODEL model

 ASG-DataManager IMS (DL/I) Interface

76

device is one of these keywords or numbers:

From IMS version 4 onwards, this clause is purely documentational.

model is an integer, 1 or 2 if device is 2305, or 1 or 11 if device is 3330. From IMS
version 4 onwards, this clause is purely documentational.

segment is the name of any physical segment.

common-clauses are as defined in the ASG-Manager Products Dictionary/Repository
User's Guide.

Remarks

1 The HSAM keyword must immediately follow the member type identifier to indicate
that a HSAM database is being defined.

2 The keyword SIMPLE specifies that the database being defined is a SIMPLE HSAM
database. If present, it must immediately follow the keyword HSAM.

3 The ACCESS clause can be omitted; but, if it is present, it must immediately follow
the HSAM 2 SIMPLE 2 keyword(s).

4 The keyword PASSWORD specifies that the database name must be used when
opening any dataset in this database.

5 The DATASETS clause defines a dataset group within this database. It must be
present if the definition of the database is to be complete. Only one DATASETS
clause is permitted.

6 INPUT ddname specifies the logical file name of the input dataset. It must be unique
within the data dictionary.

7 OUTPUT ddname specifies the logical file name of the output dataset. It must be
unique within the data dictionary.

DRUM 2311 3310 3370 3420

CELL 2314 3330 3375

TAPE 2319 3340 3380

3390 2301 2321 3344

3400 2305 2400 3350

3 Member Types

77

8 If a RECORD subordinate clause is present in either of the INPUT or OUTPUT
clauses, a RECORD subordinate clause must be present in both. The length specified
in the RECORD clause for the output dataset must be equal to or greater than the
length specified in the RECORD clause for the input dataset.

9 The DEVICE clause specifies the physical storage device for these datasets. The
MODEL clause is subordinate to the DEVICE clause and must not be present unless
device is 2305 or 3330, in which case, the MODEL clause is optional.

10 The CONTAINS clause must be present if the definition of the database is to be
complete. It must follow the DATASETS clause if both clauses are present.

11 The CONTAINS clause for a SIMPLE RSAM database states the name of the one
segment that resides in the database.

12 The CONTAINS clause for a HSAM database lists the names of from 1 to 255
segments that reside in the database. The segments must be listed in hierarchical
sequence, that is from top to bottom and left to right.

13 The PARENT clauses identify the physical parents of the segment where the names
are listed in the CONTAINS clause. A PARENT clause must not be present for the
first name listed (that of the root segment) but must follow each of the other names
listed in the CONTAINS clause.

14 Common clauses can be present in any type of data definition statement; therefore,
they are defined separately in the ASG-Manager Products Dictionary/Repository
User's Guide. Not more than one of each of these clauses can be declared. If a
common clause has a subordinate clause or keyword, the subordinate clause
identifier or subordinate keyword must not be truncated to an extent where it
becomes ambiguous with any other clause identifier or other keyword available in
the data definition syntax for this member type.

15 The common clauses can be declared in any order. If present, they must follow the
ACCESS, DATASETS, and CONTAINS clauses, if these are present.

16 A record containing the database's data definition statement can be inserted into the
data dictionary's source dataset by a suitable command (see the ASG-Manager
Products Dictionary/Repository User's Guide), and an encoded record can
subsequently be generated and inserted into the data entries dataset.

 ASG-DataManager IMS (DL/I) Interface

78

When the encoded record is generated, a data entries record of a special internal
type, a DL/I-DATASET member, is created for each ddname that appears in the
database's data definition. The DL/I-DATASET internal member is given a user
table entry for each segment that constitutes the dataset defined by the member. The
DL/I-DATASET internal member can be referred to by other members; for
example, it could be used in the INPUTS clause of a PROGRAM data definition.
DL/I-DATASET members can also be interrogated (see "Interrogation Syntax" on
page 154).

If, when the encoded record is generated, any segment where the name appears in
the database's data definition statement has no data entries record, a dummy data
entries record is created for that member as a dummy segment record.

17 When an encoded database member is deleted, any DL/I-DATASET member
created for it, which is not referred to by other members, is also deleted, together
with any references that the DL/l-DATASET member made to segments. Any
DL/I-DATASET member that is referred to by other members is a dummy member
rather than being deleted.

18 From IMS version 4 onwards, the DEVICE and MODEL clauses are purely
documentational. This means that DEVICE and MODEL clauses are not generated
by PRODUCE IMS VERSION 4/4.1 DBDGEN. For further information on
PRODUCE IMS, see Chapter 5, "IMS (DL/I) Source Language Generation," on
page 175.

Example

A possible hierarchical structure of segments constituting a personnel database called
EMPLOYEE-DETAILS. A definition of a HSAM database implementing a structure
could be as follows. In this example, meaningful segment names have been retained. The
abbreviated 8-character names required by IMS (DL/I) can be defined as IMS aliases in
the ALIAS clauses of the members that constitute the database.

ADD EMPLOYEE-DETAILS
IMS-DATABASE HSAM
ACCESS PASSWORD
DATASETS INPUT EMPLIN RECORD 1024
 OUTPUT EMPLOUT RECORD 1024
 DEVICE 3330 MODEL 1
CONTAINS DEPARTMENT.
 EMPLOYEE-NUMBER PARENT DEPARTMENT,
 NAME PARENT EMPLOYEE-NUMBER.
 ADDRESS PARENT EMPLOYEE-NUMBER,
 JOB-STATUS PARENT EMPLOYEE-NUMBER.
 SALARY PARENT JOB-STATUS.
 TAXCODE PARENT SALARY.
 DEDUCTION-TABLE-REF PARENT SALARY.
 SOCIAL-SECURITY-NUMBER PARENT SALARY.
 JOB-TITLE PARENT JOB-STAThS

3 Member Types

79

The Member Type for a HISAM Type IMS (DL/I) Database
Syntax

where:

cdcf-options are:

where:

module-list is:

where:

module-name is the name of a MODULE or PROGRAM member.

kpd-options are:

� �IMS-DATABASE
DL/I-DATABASE

DL/1-DATABASE

DL1-DATABASE

DLI-DATABASE

HSAM�

SIMPLE

� �

ACCESS
VSAM
ISAM

PASSWORD
PASSWORD

� �

CHANGED-DATA-CAPTURE-FACILITY cdcf-options

� �

contains-options
<<<<<<,<<<<<<

DATASETS datasets-details

� �

common-clauses

�

 .
; ��

� �EXIT-LIST module-list
LOG-ONLY
NO-EXITS

log-options

�����������

DATABASE-VERSION db-version

� �� module-name

�

kpd-options CASCADE kdp-options
NO CASCADE

 ASG-DataManager IMS (DL/I) Interface

80

db-version is a delimited string of up to 255 characters.

log-options are:

where:

kpd-options are:

datasets-details are:

where:

ddname is 1 to 8 alphanumeric characters, being the logical name used in the job control
to identify the database dataset.

count is an unsigned, nonzero integer, being the number of logical records per physical
block.

size is an unsigned, nonzero integer, being the number of bytes required per physical
block or control interval.

length is an unsigned nonzero integer, being the maximum length (in bytes) of a logical
record. If VSAM is the operating system access method, length must be an even value.

� �

KEY
NO-KEY

PATH
NO-PATH

DATA
NO-DATA

� �

kpd-options CASCADE kdp-options
NO CASCADE

� �

KEY
NO-KEY

PATH
NO-PATH

DATA
NO-DATA

� PRIME ddname
BLOCK count

RECORD length

�

BUFFER size

� OVERFLOW ddname
BLOCK count

RECORD length

�

BUFFER size

� DEVICE device
MODEL model

�

3 Member Types

81

device is one of the keywords or numbers from the list:

From IMS version 4 onwards, this clause is purely documentational.

model is an integer, 1 or 2 if device is 2305, or 1 or 11 if device is 3330. From IMS
version 4 onwards, this clause is purely documentational.

contains-details are:

where:

segment is the name of a physical segment.

common-clauses are as defined in the ASG-Manager Products Dictionary/Repository
User's Guide.

Remarks

1 The HISAM keyword must immediately follow the member type identifier to
indicate that a HISAM database is being defined.

2 The keyword SIMPLE specifies that the database being defined is a SIMPLE
HISAM database. If present, it must immediately follow the keyword HISAM.

3 The ACCESS clause can be omitted, but, if it is present, it must immediately follow
the HISAM SIMPLE keyword(s).

4 If the ACCESS clause is omitted, or if neither of the operating system access method
keywords ISAM or VSAM is present in the ACCESS clause, then VSAM is
assumed.

DRUM 2311 3310 3350 3390

CELL 2314 3330 3370

2301 2319 3340 3375

2305 2321 3344 3380

� �

CONTAINS segment

segment PARENT segment
<<<<<<<<<<,<<<<<<<<<<

 ASG-DataManager IMS (DL/I) Interface

82

5 The operating system access method must be VSAM if any of the following
conditions apply:

� The database is a SIMPLE HISAM database.

� Any segment residing in this database participates in a secondary index
relationship; that is, the database being defined is to be indexed by a
secondary index.

� Any segment residing in this database has EDIT-COMPRESSION-EXIT
specified in its data definition.

� Any segment residing in this database is a variable length segment.

� The target environment is IMS/ESA Version 3 onwards.

If none of these conditions apply, then either VSAM or ISAM can be specified.

6 The keyword PASSWORD specifies that the database name is to be used when
opening any dataset in this database. It is not accepted if the ISAM access method is
specified.

7 The DATASETS clause defines a dataset group within this database. It must be
present if the definition of the database is to be complete. If VSAM is the operating
system access method, only one dataset group can be specified. If ISAM is the
operating system access method, the database can be divided into up to 10 dataset
groups, provided that it is not indexed by a secondary index.

8 Each DATASETS clause is followed by a CONTAINS clause listing the segments
that constitute the dataset group. The DATASETS clauses must be entered in the
correct sequence to enable the segments residing in the database to be specified in
hierarchical sequence generated and inserted into the data entries dataset.

9 The first DATASETS clause defines the primary dataset group; subsequent
DATASETS clauses define the secondary dataset groups.

10 Within the DATASETS clause, the PRIME clause must always be specified. It
defines the prime dataset of the dataset group.

11 The OVERFLOW clause defines the overflow dataset of the dataset group. It must
not be entered for a SIMPLE HISAM database. For a HISAM database, it must be
entered unless the database contains only one segment type and the access method is
VSAM, in which case it is optional.

12 The ddname in the PRIME clause and the ddname in the OVERFLOW clause, which
specify the logical file names of the respective datasets, must each be unique in the
data dictionary.

3 Member Types

83

13 If an OVERFLOW clause and a PRIME clause are both present:

� If a BLOCK subordinate clause is present in either, a BLOCK subordinate
clause must be present in both; in which case, if an associated RECORD
subordinate clause is present in either, a RECORD clause must be present in
both.

� If a BUFFER subordinate clause is present in either, a BUFFER subordinate
clause must be present in both.

14 The RECORD length specified for the OVERFLOW clause must be equal to or
greater than the RECORD length specified for the PRIME clause, if both are
specified.

15 The RECORD length specified for a SIMPLE HISAM database must be equal to the
length of the contained segment.

16 If the database uses the VSAM access method:

� The control interval size, specified either by the BUFFER size or by the
product of the BLOCK count and the RECORD length, must not exceed
30720 if the control interval size is specified by BUFFER size.

� If size is less than 8192 and is not a multiple of 512, on encoding it is rounded
up to the next multiple of 512.

� If size is greater than 8192 and is not a multiple of 2048, on encoding it is
rounded up to the next multiple of 2048.

� If the control interval size is specified by the product of the BLOCK count
and the RECORD length, no rounding is performed, but on encoding warning
messages are output if:

� The product is less than 8192 and is not a multiple of 512

� The product is greater than 8192 and is not a multiple of 2048

17 The DEVICE clause specifies the physical storage device for the dataset group. The
MODEL clause is subordinate to the DEVICE clause and must not be present unless
device is 2305 or 3330, in which case the MODEL clause is optional.

18 The CONTAINS clauses list the segments that reside in the database. For the
definition of the database to be complete, the CONTAINS clauses must be present,
and each CONTAINS clause must immediately follow a DATASETS clause that
defines the dataset group in which the segments listed in that CONTAINS clause
reside.

19 A SIMPLE HISAM database can only contain one segment. For a HISAM database,
1 to 255 different segments can be specified in total.

 ASG-DataManager IMS (DL/I) Interface

84

20 A HISAM ISAM database can be divided into multiple dataset groups only at the
second level of the hierarchy. Therefore:

� In the CONTAINS clause associated with the first dataset group, the name of
the root segment must be the first physical-segment-name listed.

� In any CONTAINS clause relating to a secondary dataset group (that is, a
CONTAINS clause associated with any DATASETS clause except the first)
the first physical-segment-name listed must be the name of a segment that is a
second level dependent of the root segment.

21 Regardless of how many CONTAINS clauses are present, the segments must be
specified throughout the database definition in hierarchical sequence, that is from top
to bottom and left to right.

22 The PARENT clauses identify the physical parents of the segments where the names
are listed in the CONTAINS clauses. A PARENT clause must not be present for the
root segment (the first physical-segment-name of the first dataset group) but must
follow each of the other names listed in the CONTAINS clauses.

23 Common clauses can be present in any type of data definition statement; therefore,
they are defined separately in the ASG-Manager Products Dictionary/Repository
User's Guide. Not more than one of each of these clauses can be declared. If a
common clause has a subordinate clause or keyword, the subordinate clause
identifier or subordinate keyword must not be truncated to an extent where it
becomes ambiguous with any other clause identifier or other keyword available in
the data definition syntax for this member type.

24 The common clauses can be declared in any order. If present, they must follow the
ACCESS, DATASETS, and CONTAINS clauses, if these are present.

25 A record containing the database's data definition statement can be inserted into the
data dictionary's source dataset by a suitable command (see the ASG-Manager
Products Dictionary/Repository User's Guide) and an encoded record can
subsequently be generated and inserted into the data entries dataset.

When the encoded record is generated, a data entries record of a special internal
type, a DL/I-DATASET member, is created for each ddname that appears in the
database's data definition. The DL/I-DATASET internal member is given a uses
table entry for each segment that constitutes the dataset defined by the member. The
DL/I-DATASET internal member can be referred to by other members; for
example, it could be used in the INPUTS clause of a PROGRAM data definition.
DL/I-DATASET members can also be interrogated (see "Interrogation Syntax" on
page 154).

If, when the encoded record is generated, any segment where the name appears in
the database's data definition statement has no data entries record, a dummy data
entries record is created for that member as a dummy segment record.

3 Member Types

85

26 When an encoded database member is deleted, any DL/I-DATASET member
created for it, which is not referred to by other members, is also deleted, together
with any references that the DL/I-DATASET member made to segments. Any
DL/I-DATASET member that is referred to by other members is made into a dummy
member rather than being deleted.

27 From IMS version 4 onwards, the DEVICE and MODEL clauses are purely
documentational. This means that DEVICE and MODEL clauses are not generated
by PRODUCE IMS VERSION 4/4.1 DBDGEN. For further information on
PRODUCE IMS, see Chapter 5, "IMS (DL/I) Source Language Generation," on
page 175.

Examples

These examples of data definition statements for HISAM databases relate to the
hierarchical structure of segments listed in "The Member Type for a HSAM Type IMS
(DL/I) Database" on page 75. In these examples, meaningful segment names have been
retained. The abbreviated 8-character names required by IMS (DL/I) can be defined as
IMS aliases in the ALIAS clauses of the members that constitute the database.

The first example illustrates the specification of the database with the VSAM access
method, and with all of the segments contained in one dataset group. The database could
be defined thus:

ADD EMPLOYEE-DETAILS:
IMS-DATABASE HISAM
ACCESS VSAM PASSWORD
DATASETS PRIME EMPLP BUFFER 2048
 OVERFLOW EMPLO BUFFER 4096
 DEVICE 3330 MODEL 1
CONTAINS DEPARTMENT.
 EMPLOYEE-NUMBER PARENT DEPARTMENT,
 NAME PARENT EMPLOYEE-NUMBER.
 ADDRESS PARENT EMPLOYEE-NUMBER.
 JOB-STATUS PARENT EMPLOYEE-NUMBER,
 SALARY PARENT JOB-STATUS.
 TAXCODE PARENT SALARY.
 DEDUCTION-TABLE-REF PARENT SALARY.
 SOCIAL-SECURITY-NUMBER PARENT SALARY.
 JOB-TITLE PARENT JOB-STATUS
;

 ASG-DataManager IMS (DL/I) Interface

86

The second example illustrates the specification of the database with the ISAM access
method, the root segment contained in the primary dataset group, and the remaining
segments contained in a secondary dataset group. The database could be defined thus:

ADD EMPLOYEE-DETAILS;
IMS-DATABASE HISAM
ACCESS VSAM
DATASETS PRIME EMPLP1 BLOCK 1 RECORD 1024
 OVERFLOW EMPLOl BLOCK 1 RECORD 1024
 DEVICE DEPARTMENT
 CONTAINS DEPARTMENT
DATASETS PRIME EMPLP2 BLOCK 4 RECORD 256
 OVERFLOW EMPLO2 BLOCK 8 RECORD 512
 DEVICE 3330 MODEL 11
 CONTAINS EMPLOYEE-NUMBER PARENT DEPARTMENT,
 NAME PARENT EMPLOYEE-NUMBER,
 ADDRESS PARENT EMPLOYEE-NUMBER,
 JOB-STATUS PARENT EMPLOYEE-NUMBER,
 SALARY PARENT JOB-STATUS,
 DEDUCTION-TABLE-REF PARENT SALARY,
 SOCIAL-SECURITY-NUMBER PARENT SALARY,
 JOB-TITLE PARENT JOB-STATUS
;

The Member Type for a HDAM Type IMS (DL/I) Database

Syntax

� �IMS-DATABASE
DL/I-DATABASE

DL/1-DATABASE

DL1-DATABASE

DLI-DATABASE

HDAM�

ACCESS access-details

� �

CHANGED-DATA-CAPTURE-FACILITY cdcf-options

� �
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
DATASETS dset-details

ADD-TO-ddname
contains-options

� �

common-clauses

�

 .
; ��

3 Member Types

87

where:

access-details are:

module is the name of a MODULE member.

n is an unsigned integer in the range 1 to 255, being the number of root anchor points
required in each control interval or block.

maximum is an unsigned integer in the range 1 to 16777215, being the maximum block
number to be produced by the randomizing module.

bytes is an unsigned integer in the range 1 to 16777215, being the maximum number of
bytes to be inserted into the root addressable area.

cdcf-options are:

module-list is:

module-name is the name of a MODULE or PROGRAM member.

kps-options are:

� �OSAM

VSAM

PASSWORD

PASSWORD

� �RANDOMISING-MODULE module
RANDOMISING-MODULE

� �

ANCHOR-POINTS n RELATIVE-BLOCK-MAXIMUM maximum

� �

INSERTION-BYTES-MAXIMUM bytes

� �EXIT-LIST

LOG-ONLY

NO-EXITS

module-list
<<<<,<<<<

log-options DATABASE-VERSION db-version

� �module-name
kpd-options CASCADE kdp-options

NO-CASCADE

� �

KEY
NO-KEY

PATH
NO-PATH

DATA
NO-DATA

 ASG-DataManager IMS (DL/I) Interface

88

dsets-detail are:

ddname is 1 to 8 alphanumeric characters, being the logical name used in the job control
to identify the physical file.

size is the number of bytes required per physical block or control interval.

device is one of the keywords or numbers from the list:

DRUM2311331033503390
CELL231433303370
2301 231933403375
2305 232133443380

From IMS version 4 onwards, this clause is purely documentational.

model is an integer, 1 or 2 if device is 2305, or 1 or 11 if device is 3330. From IMS
version 4 onwards, this clause is purely documentational.

cylinders is an unsigned integer in the range 0 to 255.

frequency is an unsigned integer in the range 2 to 100, or is 0.

percent is an unsigned integer in the range 0 to 99.

algorithm is an unsigned integer in the range 0 to 2.

contains-options are:

segment is the name of a physical segment.

� �PRIME ddname
BLOCK size
BUFFER size

DEVICE device

� �

MODEL model SCAN cylinders

� �

FREQUENCY-FREE-BLOCKS frequency

� �

PERCENTAGE-FREE-SPACE percent

� �

SPACE-SEARCH-ALGORITHM algorithm

� �

CONTAINS segment

segment PARENT segment
<<<<<<<<<<,<<<<<<<<<<

3 Member Types

89

common-clauses are as defined in the ASG-Manager Products Dictionary/Repository
User's Guide.

Remarks

1 The HDAM keyword must immediately follow the member type identifier to
indicate that a HDAM database is being defined.

2 The ACCESS clause must be specified if the definition of the database is to be
complete. If present, it must immediately follow the HDAM keyword.

3 If neither of the operating system access method keywords OSAM or VSAM is
present in the ACCESS clause, VSAM is assumed.

4 The operating system access method must be VSAM if any of the following
conditions apply:

� Any segment residing in the database participates in a secondary index
relationship; that is, the database being defined is indexed by a secondary
index.

� Any segment residing in this database has EDIT-COMPRESSION-EXIT
specified in its data definition.

� Any segment residing in this database is a variable length segment.

5 The keyword PASSWORD specifies that the database name is to be used when
opening any dataset in this database. It is not accepted if the OSAM access method
is specified.

6 The RANDOMIZING-MODULE (or RANDOMISING-MODULE) clause
specifies the user-supplied randomizing module that is used to store and access the
segments in this database.

7 The optional clauses ANCHOR-POINTS, RELATIVE-BLOCK-MAXIMUM, and
INSERTION-BYTES-MAXIMUM specify the maximum values for the operands
that are required when accessing the root addressable area of the HDAM database.

8 The DATASETS clause defines a dataset group within this database. It must be
present if the definition of the database is to be complete. The database can be
divided into up to 10 dataset groups.

9 Each DATASETS clause is followed by a CONTAINS clause listing the segments
that constitute the dataset group. The DATASETS clauses must be entered in the
correct sequence to enable the segments residing in the database to be specified in
hierarchical sequence.

 ASG-DataManager IMS (DL/I) Interface

90

10 The first DATASETS clause defines the primary dataset group�those subsequent
DATASETS clauses that contain PRIME clauses define the secondary dataset
groups.

11 A HDAM database can be divided into multiple dataset groups at any level of the
hierarchy; however, a physical parent segment and its physical child segments must
be connected by physical child/physical twin pointers when they are placed in
different dataset groups.

12 The purpose of the DATASETS clauses containing ADD-TO clauses is to enable
segments to be placed in dataset groups according to their size or frequency of access
rather than according to their hierarchical position in the data structure, while still
maintaining the hierarchical sequence of specification of the segments (see
remark 24 on page 91).

13 A DATASETS clause containing a PRIME clause must be present for each dataset
group specified. It defines the prime dataset of the dataset group.

14 The ddname in each PRIME clause must be unique in the data dictionary.

15 If the database uses the VSAM access method:

� The control interval size, specified either by the BUFFER size or by the
BLOCK size, should not exceed 30720.

� If the control interval size is specified by BUFFER size, then:

� If size is less than 8192 and is not a multiple of 512, on encoding it is
rounded up to the next multiple of 512.

� If size is greater than 8192 and is not a multiple of 2048, on encoding it
is rounded up to the next multiple of 2048.

� If the control interval size is specified by the BLOCK size, no rounding is
performed and no messages are output. This is because the IMS BLOCK
operand in this context specifies the control interval size without overheads;
therefore, the total control interval size cannot be validated.

16 The DEVICE clause specifies the physical storage device for the dataset group. The
MODEL clause is subordinate to the DEVICE clause and must not be present unless
device is 2305 or 3330, in which case the MODEL clause is optional.

17 The SCAN clause specifies the number of cylinders to be scanned when searching
for available storage space. If the SCAN clause is omitted, a default of three
cylinders is assumed.

18 The FREQUENCY-FREE-BLOCKS clause specifies that, where frequency = every
nth control interval or block in this dataset group is to be left as free space during
database load or reorganization.

3 Member Types

91

19 The PERCENTAGE-FREE-SPACE clause specifies the minimum percentage of
each control interval or block that is to be left as free space in this dataset group
during database load or reorganization.

20 The ADD-TO clause indicates that the segments specified in the following
CONTAINS clause are to be placed in a dataset group that has been defined in a
previous DATASETS clause containing a PRIME clause with the same ddname as
is specified in the ADD-TO clause.

21 When the Source Language Generation Facility produces DBD control statements
for the HDAM database, labels are created to connect the DATASET statements by
using the ddname.

22 The CONTAINS clauses list the segments that reside in the database. For the
definition of the database to be complete, the CONTAINS clauses must be present,
and each CONTAINS clause must immediately follow a DATASETS clause
(containing either a PRIME clause or an ADD-TO clause) that defines the dataset
group in which the segments listed in that CONTAINS clause reside.

23 One to 255 different segments can be specified in total for the database.

24 Regardless of how many CONTAINS clauses are entered, the segments must be
specified throughout the database definition in hierarchical sequence; that is, from
top to bottom and left to right.

25 The first physical-segment-name listed in the first CONTAINS clause must be the
name of the root segment. Each of the subsequent CONTAINS clauses can have the
name of a segment at any level of the hierarchy as its first physical-segment-name.

26 The PARENT clauses identify the physical parents of the segments whose names are
listed in the CONTAINS clauses. A PARENT clause must not be present for the root
segment (the first physical-segment-name of the first dataset group) but must follow
each of the other names listed in the CONTAINS clauses.

27 Common clauses can be present in any type of data definition statement; therefore,
they are defined separately, in the ASG-Manager Products Dictionary/Repository
User's Guide. Not more than one of each of these clauses can be declared. If a
common clause has a subordinate clause or keyword, the subordinate clause
identifier or subordinate keyword must not be truncated to an extent where it
becomes ambiguous with any other clause identifier or other keyword available in
the data definition syntax for this member type.

28 The common clauses can be declared in any order. If present, they must follow any
ACCESS, DATASETS, and CONTAINS clauses.

 ASG-DataManager IMS (DL/I) Interface

92

29 A record containing the database's data definition statement can be inserted into the
data dictionary's source dataset by a suitable command (see the ASG-Manager
Products Dictionary/Repository User's Guide), and an encoded record can
subsequently be generated and inserted into the data entries dataset. When the
encoded record is generated, a data entries record of a special internal type, a
DL/I-DATASET member, is created for each ddname that appears in the database's
data definition. The DL/I-DATASET internal member is given a user table entry for
each segment that constitutes the dataset defined by the member. The
DL/I-DATASET internal member can be referred to by other members; for example,
it could be used in the INPUTS clause of a PROGRAM data definition.
DL/I-DATASET members can also be interrogated (see "Interrogation Syntax" on
page 154). If, when the encoded record is generated, any segment or module where
the name appears in the database's data definition statement has no data entries
record, a dummy data entries record for that member is created, as a dummy segment
record or a dummy module record respectively.

30 When an encoded database member is deleted, any DL/I-DATASET member
created for it that is not referred to by other members is also deleted, together with
any references that the DL/I-DATASET member made to segments. Any
DL/I-DATASET member that is referred to by other members is made into a dummy
member rather than being deleted.

31 The SPACE-SEARCH-ALGORITHM clause specifies the selection of a HD free
space search algorithm. This does not apply to IMS/VS releases prior to IMS/VS 2.2
and should only be specified when IMS/VS 2.2 or subsequent releases are installed.
Values may be set to 1 or 2:

� If 1, IMS should not look for the second most desirable block. This is as per
the processing prior to IMS/VS 2.2.

� If 2, the second most desirable block should be searched for free space. This
option is new to IMSIVS 2.2.

The IMS default value if SEARCHA is omitted is specified at IMS SYSGEN time.

32 From IMS version 4 onwards, the DEVICE and MODEL clauses are purely
documentational. This means that DEVICE and MODEL clauses are not generated
by PRODUCE IMS VERSION 4/4.1 DBDGEN. For further information on
PRODUCE IMS, see Chapter 5, "IMS (DL/I) Source Language Generation," on
page 175.

Examples

The two following examples of data definition statements for HDAM databases relate to
the hierarchical structure of segments illustrated in "The Member Type for a HSAM Type
IMS (DL/I) Database" on page 75. In these examples, meaningful segment names have
been retained. The abbreviated 8-character names required by IMS (DL/I) can be defined
as IMS aliases in the ALIAS clauses of the members that constitute the database.

3 Member Types

93

The first example illustrates the specification of the database with the VSAM access
method, and with all of the segments contained in one dataset group. The example
includes a number of the optional keywords. The database could be defined thus:

ADD EMPLOYEE-DETAILS;
IMS-DATABASE HDAM
ACCESS VSAM PASSWORD RANDOMISING-MODULE RANDMOD
 ANCHOR-POINTS 10
 RELATIVE-BLOCK-MAXIMUM 25600
 INSERTION-BYTES-MAXIMUM 512
DATASET PRIME EMPL BUFFER 2048
 DEVICE 3330 MODEL 11
 SCAN 5
 FREQUENCY-FREE-BLOCKS 10
 PERCENTAGE-FREE-SPACE 10
CONTAINS DEPARTMENT,
 EMPLOYEE-NUMBER PARENT DEPARTMENT,
 NAME PARENT EMPLOYEE-NUMBER,
 ADDRESS PARENT EMPLOYEE-NUMBER,
 JOB-STATUS PARENT EMPLOYEE-NUMBER,
 SALARY PARENT JOB-STATUS,
 TAXCODE PARENT SALARY,
 DEDUCTION-TABLE-REF PARENT SALARY,
 SOCIAL-SECURITY-NUMBER PARENT SALARY,
 JOB-TITLE PARENT JOB-STATUS
;

The second example illustrates the specification of the database with the OSAM access
method, and with:

� The segments DEPARTMENT, EMPLOYEE-NUMBER, TAXCODE,
DEDUCTION-TABLE-REF, and SOCIAL-SECURITY-NUMBER in the primary
dataset group

� The segments NAME and ADDRESS in a secondary dataset group

� The segments JOB-STATUS, SALARY, and JOB-TITLE in another secondary
dataset group.

 ASG-DataManager IMS (DL/I) Interface

94

The database could be defined thus:

ADD EMPLOYEE-DETAILS;
IMS-DATABASE HDAM
ACCESS OSAM RANDOMISING-MODULE RANDMOD
DATASET PRIME EMPL1 BLOCK 2048
 DEVICE 3340
 CONTAINS DEPARTMENT,
 EMPLOYEE-NUMBER PARENT DEPARTMENT
DATASET PRIME EMPL2 BLOCK 1024
 DEVICE 3340
 CONTAINS NAME PARENT EMPLOYEE-NUMBER,
 ADDRESS PARENT EMPLOYEE-NUMBER
DATASET PRIME EMPL3 BLOCK 1024
 DEVICE 3340
 CONTAINS JOB-STATUS PARENT EMPLOYEE-NUMBER,
 SALARY PARENT JOB-STATUS
DATASET ADD-TO EMPL1
 CONTAINS TAXCODE PARENT SALARY,
 DEDUCTION-TABLE-REF PARENT SALARY,
 SOCIAL-SECURITY-NUMBER PARENT SALARY
DATASET ADD-TO EMPL3
 CONTAINS JOB-TITLE PARENT JOB-STATUS
;

The Member Type for a HIDAM Type IMS (DL/I) Database

Syntax

� �IMS-DATABASE
DL/I-DATABASE

DL/1-DATABASE

DL1-DATABASE

DLI-DATABASE

HSAM�

� �

ACCESS
OSAM INDEX index-details
VSAM

� �

CHANGED-DATA-CAPTURE-FACILITY cdcf-options

� �

DATASETS INDEX i-options

� �

DATASETS
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

dset-details
ADD-TO ddname

contains-options

� �

common-clauses

3 Member Types

95

where index-details are:

where:

database is 1 to 8 alphanumeric characters, being the IMS name of the primary index
database associated with this HIDAM database.

segment is 1 to 8 alphanumeric characters, being the IMS name of the primary index
segment associated with this HIDAM database.

sequence-key is 1 to 8 alphanumeric characters, being the IMS sequence key name of
the primary index database associated with this HIDAM database.

cdcf-options are:

where:

module-list is:

where:

module-name is the name of a MODULE or PROGRAM member.

�

 .
; �

�

� �ISAM

VSAM
DOS-COMPATIBLE

DOS-COMPATIBLE

PASSWORD

PASSWORD

PASSWORD

DOS-COMPATIBLE

� �

DATABASE database SEGMENT segment

� �

SEQUENCE-KEY sequence-key

� �EXIT-LIST

LOG-ONLY

NO-EXITS

module-list
<<<<,<<<<

log-options DATABASE-VERSION db-version

� �module-name
kpd-options CASCADE kdp-options

NO-CASCADE

 ASG-DataManager IMS (DL/I) Interface

96

kpd-options are:

db-version is a delimited string of up to 255 characters.

log-options are:

where:

kpd-options are:

i-options are:

where:

ddname is 1 to 8 alphanumeric characters, being the logical name used in the job control
to identify the physical file.

count, size, and length are all unsigned nonzero integers.

size is an unsigned nonzero integer.

length is an unsigned nonzero integer.

� �

KEY
NO-KEY

PATH
NO-PATH

DATA
NO-DATA

� �

kpd-options CASCADE kdp-options

NO-CASCADE

� �

KEY
NO-KEY

PATH
NO-PATH

DATA
NO-DATA

� �ddname
BLOCK size
BUFFER size

� �

OVERFLOW ddname BLOCK count
BUFFER size

RECORD length

� �DEVICE device
MODEL model

3 Member Types

97

device is one of the keywords or numbers from the list:

From IMS version 4 onwards, this clause is purely documentational.

model is an integer, 1 or 2 if device is 2305, or 1 or 11 if device is 3330. From IMS
version 4 onwards, this clause is purely documentational.

dset-details are:

where:

ddname, size, device, and model are as defined above.

cylinders is an unsigned integer in the range 0 to 255.

frequency is an unsigned integer in the range 2 to 100, or is 0.

percent is an unsigned integer in the range 0 to 99.

algorithm is an unsigned integer in the range 0 to 2.

contains-options are:

DRUM 2311 3310 3350 3390

CELL 2314 3330 3370

2301 2319 3340 3375

2305 2321 3344 3380

� �PRIME ddname
BLOCK size
BUFFER size

DEVICE device

� �

MODEL model SCAN cylinders

� �

FREQUENCY-FREE-BLOCKS frequency

� �

PERCENTAGE-FREE-SPACE percent

� �

SPACE-SEARCH-ALGORITHM algorithm

� �

CONTAINS segment

segment PARENT segment
<<<<<<<<<<,<<<<<<<<<<

 ASG-DataManager IMS (DL/I) Interface

98

where:

segment is the name of a physical segment.

common-clauses are as defined in the ASG-Manager Products Dictionary/Repository
User's Guide.

Remarks

1 In Manager Products, a primary index database is not handled as a separate data
dictionary member, but is considered to be part of its corresponding HIDAM
database. Consequently the definition of the primary index database is included in
the definition of the HIDAM database.

2 The name of the primary index database and the names of its segment and sequence
key can be specified:

� In the PRODUCE command, when DBD control statements for the primary
index database are generated by the Source Language Generation Facility.
These are generated automatically after DBD control statements for the
HIDAM database are generated. (See "Generating IMS (DL/I) DBD Control
Statements" on page 176.)

� In the ACCESS clause of the HIDAM database definition.

If different names are specified for the same entity in the PRODUCE command and
the ACCESS clause, the name in the PRODUCE command is applied.

3 Names specified in the ACCESS clause do not result in the generation of dummy
members.

4 If neither the PRODUCE command nor the ACCESS clause contains a name for the
primary index database, the name of the HIDAM database with a suffix I is used as
the primary index database name when DBD control statements are generated by the
Source Language Generation Facility.

5 If neither the PRODUCE command nor the ACCESS clause contains a name for the
segment of the primary index database, the name of the root segment of the HIDAM
database with a suffix I is used as the name of the segment of the primary index
database when DBD control statements are generated by the Source Language
Generation Facility.

6 If neither the PRODUCE command nor the ACCESS clause contains a name for the
sequence key of the primary index database, the name of the sequence key of the
HIDAM root segment with a suffix I is used as the name of the sequence key of the
primary index database when DBD control statements are generated by the Source
Language Generation Facility.

3 Member Types

99

7 The HIDAM keyword must immediately follow the member type identifier to
indicate that a HIDAM database is being defined.

8 The ACCESS clause can be omitted; but, if it is present, it must immediately follow
the HIDAM keyword.

9 If the ACCESS clause is omitted, or if neither of the operating system access method
keywords OSAM or VSAM is present in the ACCESS clause, the VSAM operating
system access method is assumed for the HIDAM database.

10 The operating system access method for the HIDAM database must be VSAM if:

� Any segment residing in this database has EDIT-COMPRESSION-EXIT
specified in its data definition.

� Any segment residing in this database is a variable length segment.

11 The INDEX subclause in the ACCESS clause specifies the operating system access
method for, and/or the names to be applied to, the primary index database (see
remark 1 on page 98 through remark 6 on page 98). If the clause is not present, or if
neither of the operating system access method keywords ISAM or VSAM is present
in the clause, VSAM is assumed for the primary index database. If both the keywords
DOS-COMPATIBLE and PASSWORD are present, they can be in either order; but,
neither of these keywords must precede the VSAM keyword, if that keyword is also
present. The DATABASE, SEGMENT, and SEQUENCE-KEY clauses may, if
present, be in any order within the INDEX clause, but must not precede the VSAM
keyword, if that is present.

12 The DOS-COMPATIBLE keyword specifies that the INDEX database was created
using DL/1 -DOS. It is applicable only if VSAM is the operating system access
method for the INDEX database.

13 The PASSWORD keyword may apply to the HIDAM database or to the primary
index database, or to both, and is applicable only if VSAM is the operating system
access method specified for the database. PASSWORD indicates that the database's
name is to be used when opening any dataset in the database.

14 Each DATASETS clause defines a dataset group within the primary index database
or within the HIDAM database. These clauses must be present if the definition of the
databases is to be complete.

15 For the primary index database, only one dataset group can be defined.

16 The HIDAM database can be divided into one to 10 dataset groups.

17 The DATASETS clause that defines the dataset group for the primary index database
has no associated CONTAINS clause.

 ASG-DataManager IMS (DL/I) Interface

100

18 Each DATASETS clause for the HIDAM database is immediately followed by a
CONTAINS clause listing the segments that constitute the dataset group. The
DATASETS clauses must be entered in the correct sequence to enable the segments
residing in the database to be specified in hierarchical sequence.

19 The first DATASETS clause for the HIDAM database (that is, the first clause
containing the PRIME keyword) defines the primary dataset group for that database;
those subsequent DATASETS clauses that contain PRIME clauses define the
secondary dataset groups.

20 A HIDAM database can be divided into multiple dataset groups at any level of the
hierarchy; however a physical parent segment and its physical child segments must
be connected by physical child/physical twin pointers when they are placed in
different dataset groups.

21 The purpose of the DATASETS clauses containing ADD-TO clauses is to enable
segments to be placed in dataset groups according to their size or frequency of access
rather than according to their hierarchical position in the data structure, while still
maintaining the hierarchical sequence of specification of the segments (see
remark 38 on page 102).

22 The INDEX ddname clause defines the prime dataset in the dataset group for the
primary index database. The ddname must be unique in the data dictionary.

23 The OVERFLOW ddname clause defines the overflow dataset in the dataset group
for the primary index database. The ddname must be unique in the data dictionary.
The OVERFLOW clause is specified only if ISAM is the operating system access
method for the primary index database.

24 If an OVERFLOW clause and a PRIME clause are both present then:

� If a BLOCK subordinate clause is present in either, a BLOCK subordinate
clause must be present in both; in which case, if an associated RECORD
subordinate clause is present in either, a RECORD clause must be present in
both.

� If a BUFFER subordinate clause is present in either, a BUFFER subordinate
clause must be present in both.

25 The RECORD length specified for the OVERFLOW clause must be equal to or
greater than the RECORD length specified for the INDEX clause, if both are
specified.

3 Member Types

101

26 If the database uses the VSAM access method:

� The control interval size, specified either by the BUFFER size or by the
product of the BLOCK count and the RECORD length, must not exceed
30720.

� If the control interval size is specified by BUFFER size, then:

� If size is less than 8192 and is not a multiple of 512, on encoding it is
rounded up to the next multiple of 512.

� If size is greater than 8192 and is not a multiple of 2048, on encoding it
is rounded up to the next multiple of 2048.

� If the control interval size is specified by the product of the BLOCK count
and the RECORD length, no rounding is performed; but on encoding,
warning messages are output if:

� The product is less than 8192 and is not a multiple of 512.

� The product is greater than 8192 and is not a multiple of 2048.

27 Each DEVICE clause specifies the physical storage device for the dataset group
defined by its containing DATASETS clause. The MODEL clause is subordinate to
the DEVICE clause and must not be present unless device is 2305 or 3330, in which
case the MODEL clause is optional.

28 A DATASETS clause containing a PRIME clause must be present for each dataset
group specified for the HIDAM database. It defines the prime dataset in the dataset
group.

29 The ddname in each PRIME clause must be unique in the data dictionary.

30 If the database uses the VSAM access method:

� The control interval size, specified either by the BUFFER size or by the
BLOCK size, should not exceed 30720.

� If the control interval size is specified by BUFFER size, then:

� If size is less than 8192 and is not a multiple of 512, on encoding it is
rounded up to the next multiple of 512.

� If size is greater than 8192 and is not a multiple of 2048, on encoding it
is rounded up to the next multiple of 2048.

� If the control interval size is specified by the BLOCK size, no rounding is
performed and no messages are output. This is because the IMS BLOCK
operand in this context specifies the control interval size without overheads;
therefore, the total control interval size cannot be validated.

 ASG-DataManager IMS (DL/I) Interface

102

31 The SCAN clause specifies the number of cylinders to be scanned when searching
for available storage space. If the SCAN clause is omitted, a default of three
cylinders is assumed.

32 FREQUENCY-FREE-BLOCKS specifies that, where frequency n, every nth control
interval or block in this dataset group is to be left as free space during database load
or reorganization.

33 PERCENTAGE-FREE-SPACE specifies the minimum percentage of each control
interval or block that is to be left as free space in this dataset group during database
load or reorganization.

34 The ADD-TO clause in the DATASETS clause for the HIDAM database indicates
that the segments specified in the following CONTAINS clause are to be placed in
a dataset group that has been defined in a previous DATASETS clause containing a
PRIME clause with the same ddname as is specified in the ADD-TO clause.

35 When the Source Language Generation Facility produces DBD control statements
for the HIDAM database, labels are created to connect the DATASET statements by
using the ddname.

36 The CONTAINS clauses list the segments that reside in the HIDAM database. For
the definition of the database to be complete, the CONTAINS clauses must be
present, and each CONTAINS clause must immediately follow the DATASETS
clause (containing either a PRIME clause or an ADD-TO clause) that specifies the
dataset group in which the segments listed in that CONTAINS clause reside.

37 One to 255 different segments can be specified in total for the HIDAM database.

38 Regardless of how many CONTAINS clauses are entered, the segments must be
specified throughout the database definition in hierarchical sequence; that is, from
top to bottom and left to right.

39 The first physical-segment-name listed in the first CONTAINS clause must be the
name of the root segment. Each of the subsequent CONTAINS clauses can have the
name of a segment at any level of the hierarchy as its first physical-segment-name.

40 The PARENT clauses identify the physical parents of the segments where the names
are listed in the CONTAINS clauses. A PARENT clause must not be present for the
root segment, but must follow each of the other names listed in the CONTAINS
clauses.

3 Member Types

103

41 Common clauses can be present in any type of data definition statement; therefore,
they are defined separately, in the ASG-Manager Products Dictionary/Repository
User�s Guide. Not more than one of each of these clauses can be declared. If a
common clause has a subordinate clause or keyword, the subordinate clause
identifier or subordinate keyword must not be truncated to an extent where it
becomes ambiguous with any other clause identifier or other keyword available in
the data definition syntax for this member type.

42 The common clauses can be declared in any order. If present, they must follow the
ACCESS, DATASETS, and CONTAINS clauses, if these are present.

43 A record containing the database's data definition statement can be inserted into the
data dictionary's source dataset by a suitable command (see the ASG-Manager
Products Dictionary/Repository User�s Guide) and an encoded record can
subsequently be generated and inserted into the data entries dataset.

If, when the encoded record is generated, a data entries record of a special internal
type, a DL/I-DATASET member, is created for each ddname that appears in the
database's data definition. The DL/I-DATASET internal member is given a user
table entry for each segment that constitutes the dataset defined by the member. The
DL/I-DATASET internal member can be referred to by other members; for
example, it could be used in the INPUTS clause of a PROGRAM data definition.
DL/I-DATASET members can also be interrogated (see "Interrogation Syntax" on
page 154).

If, when the encoded record is generated, any segment whose name appears in the
database's data definition statement has no data entries record, a dummy data entries
record is created as a dummy segment record for that member.

44 When an encoded database member is deleted, any DL/I-DATASET member
created for it that is not referred to by other members is also deleted, together with
any references that the DL/I-DATASET member made to segments. Any
DL/I-DATASET member that is referred to by other members is made into a dummy
member rather than being deleted.

 ASG-DataManager IMS (DL/I) Interface

104

45 The SPACE- SEARCH-ALGORITHM clause specifies the selection of a HD free
space search algorithm. This does not apply to IMS/VS releases prior to MS/VS 2.2
and should only be specified when IMS/VS 2.2 or later releases are installed. Values
may be set to 1 or 2:

� If 1, IMS should not look for the second most desirable block. This is as per
the processing prior to IMS/VS 2.2.

� If 2, the second most desirable block should be searched for free space. This
option is new to IMS/VS 2.2.

46 The IMS default value, if SEARCHA is omitted, is specified at IMS SYSGEN time.
In the INDEX clause:

� Count is the number of logical records per physical block.

� Size is the number of bytes required per physical block or control interval.

� Length is the maximum length (in bytes) of a logical record. If VSAM is the
operating system access method, length must be an even value.

47 From IMS version 4 onwards, the DEVICE and MODEL clauses are purely
documentational. This means that DEVICE and MODEL clauses are not generated
by PRODUCE IMS VERSION 4/4.1 DBDGEN. For further information on
PRODUCE IMS, see Chapter 5, "IMS (DL/I) Source Language Generation," on
page 175.

Examples

These two examples of data definition statements for HIDAM database relate to the
hierarchical structure of segments illustrated in "The Member Type for a HSAM Type
IMS (DL/I) Database" on page 75. In these examples, meaningful segment names have
been retained. The abbreviated 8-character names required by IMS (DL/I) can be defined
as IMS aliases in the ALIAS clauses of the members that constitute the database.

3 Member Types

105

The first example illustrates the specification of the VSAM access method for both the
HIDAM database and its primary index database. The keywords DOS-COMPATIBLE
and PASSWORD, which are included, are applicable to the primary index database. The
first DATASETS clause defines the dataset group for the primary index database. The
segments constituting the HIDAM database are all contained in one primary dataset
group (defined by the second DATASETS clause with its associated CONTAINS
clause).

ADD EMPLOYEE-DETAILS;
IMS-DATABASE HIDAM
ACCESS VSAM INDEX VSAM DOS-COMPATIBLE PASSWORD
DATASETS INDEX EMPLI BUFFER 1024
 DEVICE 3330 MODEL 1
DATASETS PRIME EMPL BUFFER 2048
 DEVICE 3330 MODEL 1
 SCAN 5
 FREQUENCY-FREE-BLOCKS 10
 PERCENTAGE-FREE-SPACE 10
CONTAINS DEPARTMENT,
 EMPLOYEE-NUMBER PARENT DEPARTMENT,
 NAME PARENT EMPLOYEE-NUMBER,
 ADDRESS PARENT EMPLOYEE-NUMBER,
 JOB-STATUS PARENT EMPLOYEE-NUMBER,
 SALARY PARENT JOB-STATUS,
 TAXCODE PARENT SALARY,
 DEDUCTION-TABLE-REF PARENT SALARY,
 SOCIAL-SECURITY-NUMBER PARENT SALARY,
 JOB-TITLE PARENT JOB-STATUS
;

The second example shows the specification of the OSAM access method for the
HIDAM database and the ISAM access method for its primary index database.

Again, the first DATASETS clause defines the dataset group for the primary index
database. The segments constituting the HIDAM database are divided into three dataset
groups. Thus:

� The segments DEPARTMENT, EMPLOYEE-NUMBER, TAXCODE,
DEDUCTION-TABLE-REF, and SOCIAL-SECURITY-NUMBER are contained
in the primary dataset group.

� The segments NAME and ADDRESS are contained in a secondary dataset group.

� The segments JOB-STATUS, SALARY, and JOB-TITLE are contained in another
secondary dataset group.

 ASG-DataManager IMS (DL/I) Interface

106

The member could be specified as in this example:

ADD EMPLOYEE-DETAILS;
IMS-DATABASE HIDAM
ACCESS OSAM INDEX ISAM
DATASET INDEX EMPLII BLOCK 2 RECORD 512
 OVERFLOW EMPLID BLOCK 4 RECORD 512
 DEVICE 3340
DATASET PRIME EMPL1 BLOCK 2048
 DEVICE 3340
 CONTAINS DEPARTMENT,
 EMPLOYEE-NUMBER PARENT DEPARTMENT
DATASET PRIME EMPL2 BLOCK 1024
 DEVICE 3340
 CONTAINS NAME PARENT EMPLOYEE-NUMBER,
 ADDRESS PARENT EMPLOYEE-NUMBER
DATASET PRIME EMPL3 BLOCK 1024
 DEVICE 3340
 CONTAINS JOB-STATUS PARENT EMPLOYEE-NUMBER,
 SALARY PARENT JOB-STATUS
DATASET ADD-TO EMPL1
 CONTAINS TAX-CODE PARENT SALARY,
 DEDUCTION-TABLE-REF PARENT SALARY,
 SOCIAL-SECURITY-NUMBER PARENT SALARY
DATASET ADD-TO EMPL3
 CONTAINS JOB-TITLE PARENT JOB-STATUS
;

The Member Type for a LOGICAL Type IMS (DL/I) Database

Syntax

� �IMS-DATABASE
DL/I-DATABASE

DL/1-DATABASE

DL1-DATABASE

DLI-DATABASE

LOGICAL�

� �

CONTAINS segment

, segment PARENT segment
<<<<<<<<<,<<<<<<<<<<<

� �

common-clauses

�

 .
; ��

3 Member Types

107

where:

segment is the name of a logical or physical segment.

common-clauses are as defined in the ASG-Manager Products Dictionary/Repository
User's Guide.

Remarks

1 The keyword LOGICAL must immediately follow the member type identifier to
indicate that a LOGICAL database is being defined.

2 The CONTAINS clause must be present if the definition of the database is to be
complete. It lists the segments that reside in the LOGICAL database.

3 One to 255 different segments can be specified in total for the LOGICAL database.
They may be either logical segments and/or physical segments.

4 If a logical segment is specified in the CONTAINS clause of the LOGICAL
database, then when DBD control statements are generated, SEGM is a generated
statement with the NAME operand equal to the name of the logical segment, and the
SOURCE operand(s) equal to the name(s) of the physical segment(s) specified in the
logical segment definition.

5 If a physical segment is specified in the CONTAINS clause of the LOGICAL
database, then when DBD control statements are generated, a SEGM statement is
generated with both the NAME operand and the SOURCE operand equal to the
name of the physical segment.

6 The segments must be specified in hierarchical sequence; that is, from top to bottom
and left to right.

7 The first segment-name listed in the CONTAINS clause must be the name of the root
segment.

8 The PARENT clauses identify the segments that represent the physical parents of the
segments whose names are listed in the CONTAINS clause. A PARENT clause must
not be present for the root segment, but must follow each of the other names listed
in the CONTAINS clause.

9 The root segment specified must represent a segment that is the root segment in the
physical database in which it resides.

10 The hierarchy of dependent segments must be the same as the hierarchy of segments
that they represent, as defined for the physical database in which the segments reside.

 ASG-DataManager IMS (DL/I) Interface

108

11 Logical segments that depend on the same parent segment may not represent the
same physical segment.

12 Logical concatenated segments can be specified to obtain access to destination
parents in logical relationships.

13 If either of the following is specified:

� A physical segment that is a logical child segment

� A logical segment that contains in its data definition only one physical
segment, which is a logical child segment

then such segments, for the purpose of validation checks, are treated as if they were
logical concatenated segments. When DBD control statements are being generated
for such segments, Manager Products obtains the destination parent segment to
which the logical child segment is related, and a SEGM statement for a logical
concatenated segment is generated, with the KEY operand specified as the
SOURCE operand for the destination parent. If RXLOG01 is specified as YES by
the DGDBD macro, then this processing is not undertaken, so that a SEGM
statement is generated with a SOURCE operand for the logical child alone.

14 Specifying a logical concatenated segment also enables logical relationships to be
crossed; that is, access to the segments in the physical hierarchical path of the
destination parent (as specified in the definition of the physical database in which
that destination parent resides) can be obtained either in the downward or upward
direction. This is enabled by specifying the segments, which may be either the
physical segments themselves or the logical segments representing the physical
segments as dependents of the logical concatenated segment in the logical database.
That is, the physical or logical segments representing the physical child and the
physical parent, as specified in its physical database, can be specified as physical
dependents of the logical concatenated segment. (This does not apply if the physical
child segment is paired with the logical child in the concatenated segment.)

The hierarchy of the segments in the logical database must still be the same as the
hierarchy of the segments that they represent in the physical database, except that if
the hierarchical path in the upward direction is specified, the relative order of the
segments is reversed. If only one logical relationship has been crossed, dependent
segments of any of the inverted order segments can be included, but with their order
unchanged.

15 Although the dependent segments of a concatenated segment may be intermixed,
their left to right order, as defined in their respective physical databases, must be
maintained. This applies also to the dependents of nonconcatenated segments.

3 Member Types

109

16 Different logical concatenated segments can be specified as dependents of the same
logical segment. These concatenated segments can represent different variations of
the same physical segments. These variations are specified in the SEGMENT data
definitions of the logical concatenated segments by the presence or absence of the
KEY-ONLY clause for either of the physical segments represented. In such a
situation, only one of the concatenated segments can have dependent logical
segments, and this concatenated segment must be specified as the leftmost segment,
unless RXLOG02 is specified as YES through the DGDBD macro, in which case the
rule that this must be the leftmost is relaxed.

17 An application program can be sensitive to one only of the concatenated segments
that represent different variations of the same physical segments.

18 A physical target segment or a logical segment representing a target segment cannot
be accessed through a secondary index if it is a dependent of a concatenated segment.

19 If the logical database contains either of these types of segment:

� A directly contained physical segment

� A logical segment that specifies a physical segment, but does not also specify
a physical database in its data definition

then when the Source Language Generation Facility is used to produce DBD
control statements, the corresponding physical database is found in one of these
ways and its name is output in the SEGM statement:

� If the physical segment resides in only one physical database, then the name
of that physical database is output in the SEGM statement.

� If the physical segment resides in more than one physical database and also
represents the root segment of the logical of the logical database, then the
name of the first physical database that DataManager encounters in the
physical segment's "used-by" table is output in the SEGM statement.

 ASG-DataManager IMS (DL/I) Interface

110

� If the physical segment resides in more than one physical database and does
not represent the root segment in the logical database, then a physical
database is selected in one of these ways:

� If the physical database named in the preceding SEGM statement appears
anywhere in the used-by table of the physical segment currently being
processed, then the name of this physical database is output in the SEGM
statement for the current segment also.

� If the previous SEGM statement was for a concatenated segment,
Manager Products first searches for the logical child's physical database
in the used-by table of the segment currently being processed, and if
found, the name of this physical database is output in the SEGM
statement.

� If the logical child's physical database cannot be found in the used-by
table, Manager Products searches for the destination parent's physical
database and, if found, outputs its name in the SEGM statement.

� If the physical database(s) where the name(s) were output in the previous
SEGM statement cannot be found in the used-by table of the physical
segment currently being processed, then the name of the first physical
database encountered in the used-by table is output in the SEGM
statement.

20 Common clauses are defined in the ASG-Manager Products Dictionary/Repository
User�s Guide. Not more than one of each of these clauses can be declared. If a
common clause has a subordinate clause or keyword, the subordinate clause
identifier or subordinate keyword must not be truncated to an extent where it
becomes ambiguous with any other clause identifier or other keyword available in
the data definition syntax for this member type.

21 The common clauses can be declared in any order. If present, they must follow the
CONTAINS clause, if that clause is present.

22 A record containing the database's data definition statement can be inserted into the
data dictionary's source dataset by a suitable command (see the ASG-Manager
Products Dictionary/Repository User�s Guide), and an encoded record can
subsequently be generated and inserted into the data entries dataset. If, when the
encoded record is generated, any segment where the name appears in the database's
data definition has no data entries record, a dummy data entries record is created for
that member, as a dummy segment record.

3 Member Types

111

Example

The following example of a LOGICAL database member definition relates to the
hierarchical structure of segments illustrated in "The Member Type for a HSAM Type
IMS (DL/I) Database" on page 75. In these examples meaningful segment names have
been retained. The abbreviated 8-character names required by IMS (DL/I) can be defined
as IMS aliases in the ALIAS clauses of the members that constitute the database.

ADD EMPLOYEE-DETAILS;
IMS-DATABASE LOGICAL
CONTAINS DEPARTMENT,
 EMPLOYEE-NUMBER PARENT DEPARTMENT,
 NAME PARENT EMPLOYEE-NUMBER,
 ADDRESS PARENT EMPLOYEE-NUMBER,
 JOB-STATUS PARENT EMPLOYEE-NUMBER,
 SALARY PARENT JOB-STATUS,
 TAXCODE PARENT SALARY,
 DEDUCTION-TABLE-REF PARENT SALARY,
 SOCIAL-SECURITY-NUMBER PARENT SALARY,
 JOB-TITLE PARENT JOB-STATUS
;

The Member Type for a SECONDARY-INDEX Type IMS (DL/I) Database

Syntax

� �IMS-DATABASE
DL/I-DATABASE

DL/1-DATABASE

DL1-DATABASE

DLI-DATABASE

INDEX�

SECONDARY-INDEX

� �

ACCESS acc-details DATASETS dsets-details
SHARES-WITH
SHARING-WITH

index-database-name
cont

� �

common-clauses

�

 .
; �

�

 ASG-DataManager IMS (DL/I) Interface

112

where:

acc-details are:

index-database-name is the name of another IMS(DL/I) SECONDARY-INDEX
database.

dsets-details are:

where:

ddname is 1 to 8 alphanumeric characters, being the logical name used in the job control
to identify the physical file.

count, size, and length are all unsigned non-zero integers.

device is one of the keywords or numbers from the list:

From IMS version 4 onwards, this clause is purely documentational.

model is an integer, 1 or 2 if device is 2305, or 1 or 11 if device is 3330. From IMS
version 4 onwards, this clause is purely documentational.

DRUM 2311 3310 3350 3390

CELL 2314 3330 3370

2301 2319 3340 3375

2305 2321 3344 3380

� �

VSAM DOS-COMPATIBLE PASSWORD

� �

PROTECTED
NOPROTECTION
NOT-PROTECTED

� PRIME ddname
BLOCK size

�

BUFFER size

� OVERFLOW ddname
BLOCK count

RECORD length

�

BUFFER size

� DEVICE device
MODEL model

�

3 Member Types

113

cont is:

where index-pointer-segment is an INDEX-POINTER-SEGMENT member.

common-clauses are as defined in the ASG-Manager Products Dictionary/Repository
User's Guide.

Remarks

1 One of the keywords INDEX or SECONDARY-INDEX must immediately follow
the member type identifier to indicate that a secondary index type database is being
defined.

2 If the definition of the database is to be complete, one of the following must be
specified:

� A DATASETS clause, optionally preceded by an ACCESS clause

� A SHARES-WITH (or SHARING-WITH) clause

� A DATASETS clause and a SHARES-WITH (or SHARING-WITH) clause
must not both be present

3 If the ACCESS clause is present, it must immediately follow the INDEX or
SECONDARY-INDEX keyword.

4 The operating system access method is VSAM. This can be explicitly stated by a
VSAM keyword in the ACCESS clause, or, if the keyword is not present, is assumed.

5 The keyword DOS-COMPATIBLE specifies that the database was created using
DL/I-DOS.

6 The keyword PASSWORD specifies that the database name is to be used when
opening any dataset in this database.

7 The keyword PROTECTED means that an application program is prevented from
replacing any of the fields in the index pointer segment, although delete operations
are still enabled. The keyword NOPROTECTION or NOT-PROTECTED means
that an application program can replace or delete all of the fields in the index pointer
segment except the constant, search, and subsequent fields. If none of these
keywords are preset, PROTECTED is assumed.

8 The DATASETS clause defines a dataset group within the secondary index database.
Only one dataset group can be defined. The DATASETS clause must precede the
CONTAINS clause, if both these clauses are present.

� �

CONTAINS index-pointer-segment

 ASG-DataManager IMS (DL/I) Interface

114

9 The PRIME clause specifies the prime dataset of the dataset group.

10 The OVERFLOW clause specifies the overflow dataset 0 the dataset group. This
clause must be specified if the index pointer segments contain nonunique keys.

11 The ddname in the PRIME clause and the ddname in the OVERFLOW clause, which
specify the logical file names of the respective datasets, must each be unique in the
data dictionary.

12 If an OVERFLOW clause and a PRIME clause are both present:

� If a BLOCK subordinate clause is present in either a BLOCK subordinate
clause must be present in both; in which case, if an associated RECORD
subordinate clause is present in either, a RECORD clause must be present in
both.

� If a BUFFER subordinate clause is present in either, a BUFFER subordinate
clause must be present in both.

13 The RECORD length specified for the OVERFLOW clause must be equal to or
greater than the RECORD length specified for the PRIME clause, if both are
specified.

14 The control interval size, specified either by the BUFFER size or by the product of
the BLOCK count and the RECORD length, must not exceed 30720.

If the control interval size is specified by BUFFER size, then:

� If size is less than 8192 and is not a multiple of 512, on encoding it is rounded
up to the next multiple of 512.

� If size is greater than 8192 and is not a multiple of 2048, on encoding it is
rounded up to the next multiple of 2048.

If the control interval size is specified by the product of the BLOCK count and the
RECORD length, no rounding is performed, but on encoding, warning messages
are output if:

� The product is less than 8192 and is not a multiple of 512.

� The product is greater than 8192 and is not a multiple of 2048.

15 The DEVICE clause specifies the physical storage device for the dataset group. The
MODEL clause is subordinate to the DEVICE clause and must not be present unless
device is 2305 or 3330, in which case the MODEL clause is optional.

16 The SHARES-WITH or SHARING-WITH clause, specified instead of the ACCESS
and DATASETS clauses, indicates that the secondary index resides in a shared
INDEX database.

3 Member Types

115

17 The index-database-name must be the same of a secondary index database that has
been defined using the DATASETS clause.

18 For secondary indexes to be combined into a shared INDEX database, the following
conditions must all be true:

� All of the contained index pointer segments must be of equal length.

� The key fields of each of the index pointer segments must be equal in length
with equal key offset positions.

� Each of the key fields must include a constant that uniquely identifies its
index pointer segment.

19 A maximum of 16 secondary indexes can share the same secondary index database.
That is, a maximum of 15 INDEX database definitions may have the same
index-database-name in a SHARES-WITH or SHARING-WITH clause in their data
definitions.

20 The CONTAINS clause must be present if the definition of the database is to be
complete. If present, it must follow the DATASETS clause, the SHARES-WITH, or
SHARING-WITH clause if either of those clauses are present. It specifies the index
pointer segment that is contained in the secondary index database.

21 Not more than one of each of the common clauses can be declared. If a common
clause has a subordinate clause or keyword, the subordinate clause identifier or
subordinate keyword must not be truncated to an extent where it becomes ambiguous
with any other clause identifier or other keyword available in the data definition
syntax for this member type.

22 The common clauses can be declared in any order. If present, they must follow the
ACCESS, DATASETS (or SHARES-WITH or SHARING-WITH), and
CONTAINS clauses, if these are present.

23 A record containing the database's data definition statement can be inserted into the
data dictionary's source dataset by a suitable command (see the ASG-Manager
Products Dictionary/Repository User's Guide), and an encoded record can
subsequently be generated and inserted into the data entries dataset.

When the encoded record is generated, a data entries record of a special internal
type, a DL/I-DATASET member, is created for each ddname that appears in the
database's data definition. The DL/I-DATASET internal member is given a uses
table entry for each segment that constitutes the dataset defined by the member. The
DL/I-DATASET internal member can be referred to by other members; for
example, it could be used in the INPUTS clause of PROGRAM data definition.
DL/I-DATASET members can also be interrogated (see "Interrogation Syntax" on
page 154).

 ASG-DataManager IMS (DL/I) Interface

116

If, when the encoded record is generated, any database or segment or module where
the name appears in the database's data definition statement has no data entries
record, a dummy data entries record is created for that member as a dummy
database record, a dummy segment record, or a dummy module record,
respectively.

24 When an encoded database member is deleted, any DL/I-DATASET member
created for it, which is not referred to by other members, is also deleted, together
with any references that the DL/I-DATASET member made to segments. Any
DL/I-DATASET member that is referred to by other members is made into a dummy
member rather than being deleted.

25 In the DATASETS clause:

� Count specifies the number of logical records per physical block.

� Size specifies the number of bytes required per physical block or control
interval.

� Length specifies the maximum length (in bytes) of a logical record. If VSAM
is the operating system access method, length must be an even value.

26 From IMS version 4 onwards, the DEVICE and MODEL clauses are purely
documentational. This means that DEVICE and MODEL clauses are not generated
by PRODUCE IMS VERSION 4/4.1 DBDGEN. For further information on
PRODUCE IMS, see Chapter 5, "IMS (DL/I) Source Language Generation," on
page 175.

Examples

ADD EMPIND:
IMS-DATABASE SECONDARY- INDEX
ACCESS VSAM DOS-COMPATIBLE PASSWORD PROTECTED
DATASETS PRIME EMPIP BUFFER 1024
OVERFLOW EMPIO BUFFER 2046
DEVICE 3340
CONTAINS EMPIND-SEG
;

Below is an example of a data definition statement for a secondary index database, using
the SHARES-WITH clause:

ADD EMPIND2:
IMS-DATABASE INDEX
SHARES-WITh EMPIND
CONTAINS EMPIND2 - SEG
;

3 Member Types

117

Member-type Descriptions for IMS (DL/I) Program
Communication Blocks

The data definition statements for PCB members are used to define these PCB types:

� GSAM database

� Output message destination (that is, IMS Alternate PCBs)

� Logical data structure

PCB members must be defined for any application for which PSB control statements are
to be generated.

If specified, IMS will automatically add an I/O PCB for the input message source to the
PSBGEN when the program is run in the Batch DL/I region; therefore, a PCB must not be
defined for any I/O PCB. The user can specify, on the PRODUCE IMSPSBGEN
command, that IMS (DL/I) is to add such a PCB automatically to the PSBGEN.

PROGRAM-COMMUNICATION-BLOCK

Syntax

pcb-name is the name of another PROGRAM-COMMUNICATION-BLOCK member.

� �PROGRAM-COMMUNICATION-BLOCK�

PCB

� �GSAM� NAME pcb-name
DATABASE db-options

aib-options

OUTPUT-MESSAGE NAME pcb-name
DATABASE db-options

aib-options
STRUCTURE NAME pcb-name

aib-options
structure-options

WITH
BY

� �

common-clauses

�

 .
; �

�

 ASG-DataManager IMS (DL/I) Interface

118

db-options are:

gsam-database-name is the name of a database member of the GSAM type.

aib-options are:

out-options are:

name is an alphanumeric name 1 to 8 characters in length.

structure-options are:

� �gsam-database-name

BY

WITH

LOAD

GET

� �

SEQUENTIALLY

� �AIB-LIST-ADDRESS

APPLICATION-INTERFACE-LIST-ADDRESS

YES

NO

� �LOGICAL-TERMINAL name

MODIFIABLE

ALTERNATE-IO-RESPONSE
ALTERNATIVE-IO-RESPONSE

TRANSACTION-CODE name

� �

SAME-TERMINAL EXPRESS

� �UPDATE

INSERT

GET get-options EXCLUSIVE PATH

GET ONLY
NOABEND

NO-ABEND
TRY-AGAIN

LOAD
GET

INSERT

ASCENDING

� �

SINGLE-POSITIONING DATABASE database
MULTI-POSITIONING

� �

SEQUENTIAL-BUFFERING CONDITIONAL
NO

3 Member Types

119

get-options are:

Note:
The UPDATE, GET, INSERT, LOAD, EXCLUSIVE, ASCENDING, PATH, GET
ONLY, NOABEND, TRY-AGAIN, REPLACE, and DELETE keywords can all be
optionally separated by commas.

database is the name of a DATABASE member.

keylength is an integer in the range 0 to 32767.

segment-options are:

segment is the name of a SEGMENT member.

struct-options-2 are:

� �

KEYLENGTH keylength KEEP-HIERARCHY

� �

segment-options
<<<<<<<<<<<<<<<<<<<,<<<<<<<<<<<<<<<<<<

sec-seq-options

� �

SENSITIVE-FIELDS
<<<<<,<<<<<

filler-bytes
sensitive-field

� �

REPLACE DELETE INSERT

� �SEGMENT segment
BY
WITH

struct-options-2

� �UPDATE
grdi-options
KEY-SENSITIVE

 ASG-DataManager IMS (DL/I) Interface

120

grdi-options are:

Note:
The UPDATE, KEY-SENSITIVE, GET, REPLACE, DELETE, INSERT, EXCLUSIVE,
and PATH keywords can all be optionally separated by commas.

You must specify at least one keyword in grdi-options.

sec-seq-options are:

index-pointer-segment is the name of an INDEX-POINTER SEGMENT member.

sensitive-field is:

local-name is a name conforming to the rules for member names stated in the
ASG-ControlManager User's Guide.

sensitive-field-name is the name of a GROUP, ITEM, sequence key member, or
concatenated key member.

filler-bytes is an unsigned integer in the range 1 to 32767.

common-clauses are as defined in the ASG-Manager Products Dictionary/Repository
User's Guide.

� �

INSERTGET
REPLACE
DELETE

� �SECONDARY-SEQUENCE
ON index-pointer-segment

� �sensitive-field-name
SUBFIELDS

� �

REPLACE
NOREPLACE
NO-REPLACE

KNOWN-AS local-name

3 Member Types

121

Remarks

1 The member type identifiers PROGRAM-COMMUNICATION-BLOCK and PCB
are synonymous.

2 The first element following the member type identifier must be a keyword that
indicates which type of PCB member is being defined; thus:

� GSAM: the application view of a GSAM database is being defined.

� OUTPUT-MESSAGE: the application view of an output message destination
is being defined.

� STRUCTURE: the application view of a logical data structure is being
defined.

3 More than one PCB member specifying the same logical data structure can be
defined, provided that each has a unique member name. This enables parallel
processing of dependent segment types to be defined without using the
multipositioning feature.

4 For any type of PCB member, the NAME clause specifies that the data definition of
the reference PCB, pcb-name, is to be regarded as being also a data definition of this
member; with the exception that pcb-name's common clauses are not applied to this
member. The reference PCB must be of the same type as the PCB being defined.

5 For a GSAM type PCB member, unless the NAME clause is specified, the
DATABASE clause identifies the GSAM database that is relevant to this application
view and defines the processing options that the application uses to access that
database.

6 The BY or WITH keyword can be omitted, but is included in the specification to
maintain consistency of format of the processing options clause with the processing
options clauses available in the STRUCTURE type PCB member syntax.

7 The LOAD keyword specifies that the application loads the database.

8 The GET keyword specifies that the application retrieves the database.

9 The SEQUENTIALLY keyword indicates large scale sequential activity and that the
GSAM multibuffering option is to be utilized.

10 For an OUTPUT-MESSAGE type PCB member, unless the NAME clause is
specified, either LOGICAL-TERMINAL name or TRANSACTION-CODE name
or the keyword MODIFIABLE must immediately follow the OUTPUT-MESSAGE
keyword.

 ASG-DataManager IMS (DL/I) Interface

122

11 The name is the identifier of the actual destination of the message, and is either a
logical terminal name or a transaction code name defined during IMS/VS system
definition. When it is a transaction code, IMS/VS routes the message to the
application program that processes the specified transaction code.

12 The MODIFIABLE keyword indicates that the destination of the message is
dynamically specified during program execution.

13 ALTERNATE-IO-RESPONSE or ALTERNATIVE-IO-RESPONSE means that a
response in response mode, conversational mode, or exclusive mode can be directed
to a different logical terminal from the one on which the input message originated.

14 SAME-TERMINAL specifies that IMS/VS is to check that the logical terminal name
is assigned to the physical terminal from which the input message originated.

15 The EXPRESS keyword specifies that the output messages are to be sent even if the
program ends abnormally.

16 If specified, IMS will automatically add an I/O PCB for the input message source to
the PSBGEN when the program is run in the Batch DL/I region; therefore, a PCB
must not be defined for any I/O PCB. The user can specify, on the PRODUCE IMS
PSBGEN command, that IMS (DL/I) is to add such a PCB automatically to the
PSBGEN.

17 For a STRUCTURE type PCB member, unless the NAME clause is specified, the
first subordinate clause within the STRUCTURE clause must be the
structure-options clause. This clause specifies processing options for the segments
that constitute the logical data structure. Those segments are specified by the
SEGMENT subordinate clauses within each of which overriding processing options
applicable to the particular segment can be specified in struc-options-2. For
each segment for which this is not specified, structure-options applies.

18 The structure-options clause defines the functions that can be performed on the
logical data structure from the application view (except where overridden for
individual segments in segment-options). These can be:

� Database loading

� Database reading only

� Database reading and limited updating

� Adding information to an existing database

� Database reading and all updating functions

3 Member Types

123

19 For database loading, the LOAD keyword is specified. The LOAD function is not
valid for a logical data structure that belongs either to a SECONDARY-INDEX
database or to a LOGICAL database. LOAD is also invalid if the secondary
processing sequence is to be used to access the logical data structure. If
structure-options specifies LOAD for a logical data structure belonging to a HISAM
or HIDAM database, then all other PCB members affecting the same database within
an application view must also specify LOAD.

20 For database reading with enqueueing to check the availability of segments, GET is
specified. A program which specifies GET is protected from accessing segments that
have invalid pointers, as IMS prevents the program from retrieving updated
segments until the updating program reaches a synchronization point.

21 For database reading only, without enqueueing to check the availability of segments,
GET ONLY is specified.

22 If only GET ONLY is specified, it should be noted that a program may be able to
retrieve a segment that has invalid pointers, and this program may then be terminated
abnormally by IMS. This situation can be avoided by specifying NOABEND,
NO-ABEND, or TRY-AGAIN in conjunction with GET ONLY. (This will prevent
the program from being terminated abnormally if it retrieves a segment that contains
invalid pointers.)

23 If GET ONLY, NOABEND, or NO-ABEND is specified, a program which retrieves
a segment that contains invalid pointers will not be terminated abnormally by IMS.
Instead, IMS returns a status code to the program.

24 If GET ONLY TRY-AGAIN is specified, then if a program retrieves a segment with
an invalid pointer, IMS will attempt another call to the database. If, by the time IMS
tries the call again, the program that was updating the requested segment has reached
a synchronization point, the pointer in the segment will be valid again and the
segment can be retrieved. If the pointer is still found to be invalid when the call is
repeated, IMS returns a status code to the program.

 ASG-DataManager IMS (DL/I) Interface

124

25 For database reading (with enqueueing) and limited updating, GET is specified
followed by whichever one of the keywords REPLACE, DELETE, and/or INSERT
are relevant, in any order; but not more than three of the keywords REPLACE,
DELETE, INSERT, ASCENDING, EXCLUSIVE, and PATH can follow GET.
These rules apply:

� INSERT is invalid if the logical data structure belongs to a HSAM database or
a SECONDARY-INDEX database.

� DELETE and REPLACE are invalid if the logical data structure belongs to a
HSAM database.

26 For adding new occurrences of a segment to a database, INSERT is specified.
INSERT is invalid if the logical data structure belongs to a HSAM database or a
SECONDARY-INDEX database.

27 For database reading and all updating functions, UPDATE is specified. (UPDATE
is thus the equivalent of GET, REPLACE, DELETE, INSERT.)

28 The ASCENDING keyword, if present, specifies that the segments are processed in
ascending sequence only. These rules apply:

� ASCENDING is not valid with GET ONLY or UPDATE.

� If LOAD is specified, ASCENDING is valid for a logical data structure that
belongs to a HIDAM database or to a HDAM database, but is invalid for all
other logical data structures.

� If the logical data structure belongs to a HIDAM database, and LOAD is
specified, ASCENDING is assumed whether the keyword is present or not.

� GET can only be specified with ASCENDING if the segment is contained
within a HSAM database.

29 The EXCLUSIVE keyword, if present, specifies that online programs can have
exclusive use of the logical data structure. EXCLUSIVE is not valid with GET
ONLY.

30 The PATH keyword, if present, specifies that the command mode for path calls is
used to process the logical data structure. It can be used by IMS (DL/I) to determine
the maximum length of the input/output area.

31 The keywords ASCENDING, EXCLUSIVE, and PATH can, if present, be in any
order.

32 If either of the keywords SINGLE-POSITIONING or MULTIPOSITIONING is
present, it must immediately follow the structure-options clause. It specifies the type
of positioning required for the logical data structure. If neither of these keywords is
present, SINGLEPOSITIONING is assumed. MULTI-POSITIONING is invalid if
the logical data structure belongs to a HSAM database.

3 Member Types

125

33 For a STRUCTURE type PCB member (unless the NAME clause is specified), the
DATABASE subordinate clause must be specified if the logical data structure
resides in a database, where the segments are also contained by other databases.
Otherwise, the DATABASE clause is optional.

34 The KEYLENGTH clause specifies the maximum concatenated key length for any
path of sensitive segments that is used by the application that uses the PCB.

Note:
If KEYLENGTH is not specified, the maximum concatenated key length will be
calculated when the PSB is generated. This calculation may cause significant
input/output activity. To avoid this, ASG recommends that you specify
KEYLENGTH.

35 All segments in the logical data structure must belong to the same database.

36 The KEEP-HIERARCHY keyword allows a left to right order of sibling segments
under a parent, which is different from the order specified in the database definition,
to be defined and maintained in a PCB.

37 If the KEEP-HIERARCHY keyword is present, then when the Source Language
Generation Facility is used to produce PSB control statements, the order of segments
specified for the PCB, as defined by the subordinate SEGMENT clauses in the PCB
definition will be maintained.

38 Only the left to right order of sibling segments under each parent segment may be
altered in the PCB definition. The top to bottom order of segments must be
maintained as it appears in the database definition.

39 The user must ensure that the reordering of segments within a PCB is permissible
within the IMS environment being used.

40 If KEEP-HIERARCHY is specified, every segment along the hierarchical path to the
data sensitive segments must be specified in a SEGMENT clause, and the clauses
must be specified in the order required by IMS (DL/I). When PSB control statements
are generated, Manager Products checks that the specification of segment order from
top to bottom and the specification of sibling segments from left to right under their
parent segments is valid. If any segments are missing or are specified in an invalid
order, Manager Products issues an error message and will not attempt to reorganize
the order of segments or to insert missing ones.

41 If KEEP-HIERARCHY is not specified, then when PSB control statements are
generated, the segments are organized into the order specified in the database
definition, regardless of the order in which they occur in the PCB definition. Any
segment along the hierarchical path to the data sensitive segments that has no
SEGMENT clause is assumed to be key sensitive.

 ASG-DataManager IMS (DL/I) Interface

126

42 If the logical data structure belongs to a LOGICAL database for which different
logical concatenated segments are specified as representing different variations of
the same physical segment, then the PCB member can be sensitive to only one of the
logical concatenated segments. (See remark 16 on page 109.)

43 If the LOAD processing option is specified for the logical data structure, and the
database to which the logical data structure belongs contains multiple dataset groups,
then at least one SEGMENT clause should be specified for each dataset group. For
any dataset group in respect of which no SEGMENT clause is specified,
key-sensitivity is assumed for the first segment in the dataset group.

44 If the LOAD processing option is specified for the logical data structure, then
SEGMENT clauses must not be entered for virtual logical child segments.

45 From 1 to 255 SEGMENT clauses can be defined for a logical data structure. Only
one segment clause may be specified for each segment.

46 In each SEGMENT clause, segment-name must immediately follow the SEGMENT
keyword to identify the sensitive segment to be processed.

47 Struct-options-2, if present, must immediately follow the segment name. It
specifies the functions that can be performed on the segment from the application
view. If the processing options specified by structure-options can apply to the
segment, this can be omitted. If structure-options specified LOAD, this must be
omitted.

48 KEY-SENSITIVE specifies that the application is only key-sensitive to the segment;
that is, the segment is not moved to the program's input/output area, but that the key
only is placed in the concatenated key feedback area of the logical data structure's
PCB.

49 GET, INSERT, and UPDATE, and the optional keywords that can be associated with
them, have the same meanings and restrictions as are specified for
structure-options in remark 21 on page 123 through remark 28 on page 124,
but applying to the one segment only. GET ONLY and ASCENDING cannot be
specified in struct-options-2.

50 The keyword SECONDARY-SEQUENCE specifies that the logical data structure is
processed through a secondary processing sequence, of which this segment is the
root segment. The keyword, if present, must immediately follow
struct-options-2, if specified; otherwise, it must, if present, immediately follow
segment.

51 If SECONDARY-SEQUENCE is specified, segment must identify an index target
segment, or a logical segment representing an index target segment. In a logical
database, the segment must not be a dependent of a concatenated segment.

3 Member Types

127

52 The SECONDARY-SEQUENCE keyword may only be entered once for any one
logical data structure.

53 The ON index-pointer-segment clause specifies the index pointer segment that
indexes the index target segment. If it is omitted, the name of the relevant index
pointer segment is obtained from the used-by table of the index target segment when
required for generation of DBDGEN control statements.

54 The SENSITIVE-FIELDS clause is subordinate to the SEGMENT clause. It is used
by the Source Language Generation Facility:

� During the generation of PSB control statements, to generate SENFLD
statements that specify the fields to which the application is sensitive

� To generate record layouts or COBOL, PL/I, or Assembler data description
statements for segment input/output areas when sensitive fields are to be
processed

� During the generation of DBD control statements, to indicate that DBD
HELD control statements are to be generated for the segment's sensitive fields
only (rather than for all of the fields contained by the segment)

55 Up to a maximum of 255 sensitive fields can be declared for each segment within a
maximum of 10,000 for the PCB member.

56 The declaration of a sensitive field includes any associated SUBHELDS,
REPLACE, NOREPLACE, or NO-REPLACE keyword and/or KNOWN-AS
clause; as well as the sensitive field name. These declarations are listed in the
SENSITIVE-HELDS clause, each sensitive-field name except the first in the list
being preceded by a comma and, in addition, optionally by spaces.

57 SUBHELDS specifies that when the Source Language Generation Facility is used to
generate PSB control statements, SENFLD statements are to be generated for each
of the constituent fields of the sensitive field, as well as for the sensitive field itself.

If the sensitive field is a sequence key member or a concatenated key member and:

� Is defined by segment-name, the SENFLD statements are generated for each
of its directly or indirectly contained group or item members

� Is not defined by segment-name, then the SUBFIELDS keyword is ignored

58 Sensitive fields can be repeated provided a KNOWN-AS clause is specified for each
repetition, so that unique names can be generated when COBOL, PL/I, or Assembler
data description statements are generated.

59 The sensitive field keyword REPLACE specifies that this field can be altered on a
replace call. NOREPLACE or NO-REPLACE specifies that this field cannot be
altered on a replace call.

 ASG-DataManager IMS (DL/I) Interface

128

60 If none of the sensitive field keywords REPLACE, NOREPLACE, and
NO-REPLACE is specified, then, if either of the processing options UPDATE or
REPLACE has been specified, the keyword REPLACE is assumed for the sensitive
field.

61 The keywords REPLACE, NOREPLACE, and NO-REPLACE are ignored if neither
of the processing options UPDATE or REPLACE are specified.

62 If the first sensitive field in a segment input/output area is not to start in the first byte
position and/or if sensitive fields are not to be contiguous within the segment
input/output area, filler-byte declarations must be included wherever appropriate in
the list of sensitive field declarations to enable the Source Language Generation
Facility to calculate the start position of each field in the segment input/output area.

63 The SENSITIVE-FIELD clause is invalid if:

� Segment-options is KEY-SENSITIVE.

� The segment is a logical child segment or a logical concatenated segment, and
the processing option applicable is INSERT, LOAD, or UPDATE.

64 It is the user's responsibility to declare all the sensitive fields required by IMS (DL/I);
for example, sequence key fields and segment search fields, because their start
positions cannot be anticipated.

65 Common clauses can be present in any type of data definition statement; therefore,
they are defined separately in the ASG-Manager Products Dictionary/Repository
User's Guide. Not more than one of each of these clauses can be declared. If a
common clause has a subordinate clause or keyword, the subordinate clause
identifier or subordinate keyword must not be truncated to an extent where it
becomes ambiguous with any other clause identifier or other keyword available in
the data definition syntax for this member type.

66 The common clauses can be in any order. If present, they must follow the GSAM,
OUTPUT-MESSAGE, or STRUCTURE clause.

67 A record containing the PCB's data definition statement can be inserted into the data
dictionary's source dataset by a suitable command (see the ASG-Manager Products
Dictionary/Repository User's Guide); and an encoded record can subsequently be
generated and inserted into the data entries dataset. If, when the encoded record is
generated, any PCB, database, segment, or sensitive field, where the name appears
in the PCB's data definition statement, has no data entries record, a dummy data
entries record is created for that member as a dummy PCB record, a dummy database
record, a dummy segment, or dummy item record, respectively.

3 Member Types

129

68 The SEQUENTIAL-BUFFERING clause allows the specification of OSAM
Sequential Buffering for any database PCB requiring this facility to improve
performance with sequential access. This does not apply to IMS/VS releases prior to
IMS/VS 2.2 and should only be specified when IMS/VS 2.2 or subsequent releases
are installed. Values may be specified as follows:

� NO: sequential buffering should not be used for this PCB. This is the default
assumed if SEQUENTIAL-BUFFERING is not specified by other means
(i.e., control statements or user exits).

� CONDITIONAL: requests the conditional activation of sequential buffering
for this PCB.

69 The local-name variable is to be used instead of the name or alias of the sensitive
field when PSB control statements, record layouts, or source language data
descriptions are generated from this member. local-name is not separately
recorded in the repository (no dummy data entries record and no index record is
created for it when the member in which it appears is encoded), so local-name cannot
be interrogated and can be the same as another name, an alias, or a catalog
classification in the repository. local-name is the name by which the member
forming the sensitive field is known only within the PCB defined by this member.

Example of a GSAM type PCB
This example shows a PCB member specifying the loading of a GSAM database,
involving large scale sequential activity, where the GSAM multibuffering option is to be
utilized:

ADD GSAM-PCB;
PCS GSAM
DATABASE GSAM-OB BY LOAD SEQUENTIALLY
;

Examples of OUTPUT-MESSAGE Type PCBs
The first example below shows a PCB member defining an output message destination
that is to be dynamically specified during program execution:

ADD MOD-PCB;
PCS OUTPUT-MESSAGE
MODIFIABLE
;

 ASG-DataManager IMS (DL/I) Interface

130

The next example shows a PCB member specifying an alternative logical terminal to
which an application can direct its response (rather than to the source from which the
input message originated):

ADO LOG-TERM-PCB;
PCB OUTPUT-MESSAGE LOGICAL-TERMINAL TERM3
ALTERNATE- 10-RESPONSE
SAME-TERMINAL EXPRESS
;

Examples of STRUCTURE Type PCBs
The member SKILLEMP-PCB is for a logical data structure that resides in a LOGICAL
database. The application to which this PCB member relates is sensitive to the three
segments SKILL, NAME, and EXPR, and processes them all by the GET ONLY option.

The member AUTOREG-PCB in "Application View" on page 13 is for a logical data
structure of two segments, NAMEID and CITY, that reside in a RDAM database indexed
by a secondary index. The segments are processed by the GET option.
SECONDARY-SEQUENCE is specified to indicate that this logical data structure is
processed using a secondary sequence with the index target segment NAMEID as the root
segment.

This example shows a PCB member for a logical data structure residing in the HISAM
database SKILLINV that is illustrated in Figure 2 on page 7:

ADD SKILLINV-PCB;
PCB STRUCTURE
BY GET, INSERT
SEGMENT SKILLMAST
SEGMENT SKILLNAM
SEGMENT EXPRMAST BY INSERT PATH
SEGMENT EDUCMAST BY INSERT
;

This logical data structure, as a whole, has processing options of GET and INSERT
specified. The segment EXPRMAST has overriding options of INSERT PATH specified.
For the segment EDUCMAST, the overriding option INSERT allows this segment to be
in the path of segments to be inserted.

3 Member Types

131

For a SENSITIVE-FIELDS example, using the segment ASY-PACK, a PCB member
could be defined thus:

ADD ASY-PACK-PCB;
PCB STRUCTURE
BY GET ONLY
SEGMENT ASY-LINE
SEGMENT ASY-PACK
SENSITIVE-FIELDS PACK-NO, PROD-NO, QTY-REOD
;

This example shows a PCB member for a logical data structure residing in the database
EMPLOYEE-DETAILS.

The application is to be data sensitive only to the segments EMPLOYEE-NUMBER,
SOCIAL-SECURITY-NUMBER, and TAX-CODE. KEEP-HIERARCHY has been
specified in the PCB definition as the order of the segments
SOCIAL-SECURITY-NUMBER and TAX-CODE is to be altered. As a result (see
remark 38 on page 125), SEGMENT clauses have had to be specified for each of the
key-sensitive segments.

ADD EMPL-PCB;
PCB STRUCTURE
BY GET ONLY
DATABASE EMPLOYEE-DETAILS
KEEP-HIERARCHY
SEGMENT DEPARTMENT WITH KEY-SENSITIVE
SEGMENT EMPLOYEE-NUMBER
SEGMENT JOB-STATUS WITH KEY-SENSITIVE
SEGMENT SALARY WITH KEY-SENSITIVE
SEGMENT SOCIAL-SECURITY-NUMBER
SEGMENT TAX-CODE
;

 ASG-DataManager IMS (DL/I) Interface

132

The PROCESSES Clause
The SYSTEM, PROGRAM, and MODULE member types are documented in the
ASG-Manager Products Dictionary/Repository User's Guide. For the IMS (DL/I)
interface, you can also use the PROCESSES clause with these member types. This clause
is described below.

The PROCESSES clause is available also in some other Manager Products interface
facilities. Its purpose is to specify an application's processing of its data within a specific
environment. The clause therefore has a number of alternative environment-dependent
formats. In an IMS (DL/I) environment, the PROCESSES clause defines an application's
view of the IMS databases and/or logical terminals accessed by the application.

� The PROCESSES clause specifies the details of the following IMS (DL/I) features
that an application SYSTEM, PROGRAM, or MODULE may utilize.

� The PROGRAM-COMMUNICATION-BLOCK or PCB members accessed by the
application segment-search-arguments.

The PCB members named in the PROCESSES clause are used by the Source Language
Generation Facility when producing PSB control statements (see "Application View" on
page 19, "Member-type Descriptions for IMS (DL/I) Program Communication Blocks"
on page 117 and "Generating IMS (DL/I) PSB Control Statements" on page 183).

If specified, IMS will automatically add an I/O PCB for the input message source to the
PSBGEN when the program is run in the Batch DL/I region; therefore, a PCB must not be
defined for any I/O PCB. The user can specify, on the PRODUCE IMS PSBGEN
command, that IMS (DL/I) is to add such a PCB to the PSBGEN, automatically.

The segment search argument details may be used when producing DBD control
statements [see "Application View" on page 19 and "Generating IMS (DL/I) DBD
Control Statements" on page 176].

Syntax of the PROCESSES Clause

� �SYSTEM
PROGRAM
MODULE

PROCESSES IMS
DL/I
DL/1
DLI
DL1

�

� �CONTAINS pcb

SSAS
SEGMENT-SEARCH-ARGUMENTS
SSAS
SEGMENT-SEARCH-ARGUMENTS

ssas-clause
<<<<,<<<<

3 Member Types

133

where:

pcb is the name of a PCB member.

ssas-clause is:

seg-name is the name of a SEGMENT member.

ssa-name is the segment-search-argument name for the language (PL/I, COBOL, or
Assembler) relevant to the appropriate member.

cc-clause is:

class is an alphabetic character in the range A to J.

positions is an unsigned integer.

qual-clause is:

search-field is a sequence key field in a definition of virtual logical child segment
(including all sequence key fields following it).

� �SEGMENT seg-name

� �USED-IN ssa-name
cc-clause

qual-cause
<<<<,<<<<

<<<<<<<<<<<<<<<<<<<<<<<<<,<<<<<<<<<<<<<<<<<<<<<<<<<

� �COMMAND-CODES
FIRST-OCCURRENCE
LAST-OCCURRENCE
HOLD-POSITION
RETAIN-POSITION
KEY
CONCATENATED-KEY

� �

IO-MOVE
, NOREPLACE

NO-REPLACE
,

PARENTAGE

� �

ENQUEUE class
, ,

NULL 'positions'

� �QUALIFIED-ON search-field-operator

� �

AND
INDEPENDENT-AND
OR

search-field-operator

 ASG-DataManager IMS (DL/I) Interface

134

operator is one of these: EQ or =
NE
GT or >
GE
LT or <
LE

Remarks

1 The keyword IMS or DL/I (or one of its permitted variants) must immediately follow
the PROCESSES keyword to indicate that an IMS (DL/I) application view is being
defined. The keyword IMS is synonymous with DL/I and its variants.

2 If the CONTAINS subordinate clause is present, it must immediately follow the IMS
or DL/I keyword.

3 If the Source Language Generation Facility is to be used to produce DBD control
statements for the database to which the segment belongs, at which time it is to
generate the segment's search fields only (as opposed to generating all of the fields
contained by the segment), a USED-IN clause must be specified to indicate which of
the segment five fields are its search fields. [See "Application View" on page 19 and
"Generating IMS (DL/I) DBD Control Statements" on page 176.]

4 If the condition stated in remark 3 on page 134 does not apply, the USED-IN clause
is omitted.

5 The USED-IN keyword must be followed immediately by ssa-name, which must
be unique in the PROCESSES clause.

6 The COMMAND-CODES clause is declared if the segment search argument is to
contain one or more command codes to provide functional variations applicable to
either the call function or the segment qualification.

7 For retrieval calls, the command code FIRST-OCCURRENCE allows backing up
within a database record (starting with the first occurrence of this segment type under
its parent, or with the first occurrence of this segment type after a position
established earlier in the hierarchy) in order to satisfy the call.

8 For insert calls, the command code FIRST-OCCURRENCE is used for segments
having a nonunique sequence field, or no sequence field, and an insert rule of HERE,
to specify that occurrences of this segment are to be inserted as the first segment on
the twin chain.

9 For retrieval calls, the command code LAST-OCCURRENCE specifies that the last
occurrence of this segment, under its parent that satisfies the qualification statement,
is to be retrieved; or, if there is no qualification statement, then the last occurrence
of this segment, under its parent, is to be retrieved.

3 Member Types

135

10 For insert calls, the command code LAST-OCCURRENCE is used for segments
having a nonunique sequence field, or no sequence field and an insert rule of HERE,
to specify that occurrences of this segment are to be inserted as the last segment on
the twin chain.

11 The command code HOLD-POSITION prevents position being moved from an
occurrence of this segment under its parent (if position has previously been
established on the parent) during a search of its hierarchical dependents. When a call
is being satisfied, if position is moved to a level above that at which the command
was issued, the code has no effect for occurrences to the segment where the parent
changed.

12 The command code RETAIN-POSITION has the same meaning as the command
HOLD-POSITION except that the command code is automatically set at all higher
levels in the call. This means that position cannot be moved at all from the existing
position at the level at which this command code is issued.

13 The command code KEY or CONCATENATED-KEY can be used when the
concatenated key of the segment is available. When the Source Language Generation
Facility produces the COBOL, PL/I, or Assembler data description for a
segment-search-argument with this command code, it generates a parenthesized
field containing the appropriate number of hexadecimal zeros, into which the
application program can insert the segment's concatenated key. Only one segment
search argument with this command code is allowed per call, and it must be the first
in the call.

14 The 10-MOVE command code is valid only for path calls in the relevant PCB
member. PATH must be included in the segment's processing-options-2, or, if these
are omitted, in the STRUCTURE clause's processing-options-1. For retrieval calls,
the command code specifies that this segment is to be moved to the application
program's input/output area. For insert calls, it designates the first segment that is to
be inserted from the input/output area.

15 The NOREPLACE or NO-REPLACE command code specifies that for a replace call
following a path retrieval call, this segment will not have been changed, and is
therefore not to be replaced.

16 The command code PARENTAGE specifies that parentage is to be set at this level;
therefore, succeeding GET NEXT WITHIN PARENT calls will treat this level as the
parent level rather than the lowest level segment returned on this call. The parentage
will remain in effect until a GET UNIQUE or GET NEXT call is issued.

17 The command code ENQUEUE class specifies that this segment is to be enqueued
for a single update, where class is the class identifier used on the dequeue call to
dequeue all resources enqueued by the user with that class.

 ASG-DataManager IMS (DL/I) Interface

136

18 The command code NULL positions enables a fixed number of bytes to be set
aside for command codes, which may be set on or off by the application. The number
of null bytes to be generated is specified by positions. If positions is omitted,
one byte is assumed.

19 The QUALIFIED-ON clause defines information that IMS (DL/I) uses to test the
value of this segment's key or data fields within the database to determine whether
the segment meets the user's specifications. This clause is not valid if a command
code of KEY or CONCATENATED-KEY is present in the USED-IN clause, as the
concatenated-key of this segment then replaces the qualification statement in the
segment-search-argument.

20 The QUALIFIED-ON keyword, if present, must be followed immediately by
search-field, which can identify a field of any of the following types:

� A GROUP or ITEM member that is contained directly or indirectly by this
segment; including:

� For a logical child segment, the destination parent's concatenated key

� For a logical segment OF a logical concatenated segment, the physical
segment(s) represented by this segment

If a member is indirectly contained by the segment, and is defined as an array in the
data definition of its containing group, it must not be specified as search-field.

� A field specified as sequence-key-name or concatenated-key-name in
the data definition of:

� This segment

� The physical segment(s) represented by this segment, if this segment is a
logical segment or a logical concatenated segment (see remark 22 on
page 137)

� If this segment is an index target segment or a logical segment representing an
index target segment, and is not a logical concatenated segment or a
dependent of a logical concatenated segment, then the field is defined as an
index-search-field-name in the data definition of a related index
pointer segment.

� If this segment is an index pointer segment, the field is defined as
sequence-key-name in this segment's data definition. In this case, the field
specified by search-field includes any constant and subsequence fields
specified in the segment's data definition.

21 If search-field is a sequence key field in the data definition of a virtual logical
child segment, then the field includes all sequence key fields that follow it in that
data definition.

3 Member Types

137

22 If search-field is an index-search-field-name, then when the Source Language
Generation Facility produces PSB control statements for this application, it
automatically generates an INDICES = index-database-name entry on the
SENSEG statement for this index target segment, where index-database-name
is the name of the secondary index database that contains the index pointer segment,
which defines the index search field name.

23 The operator specifies the manner in which the contents of the search-field are to be
tested against the comparative value.

24 Any number of search-field names can be specified in a QUALIFIED-ON clause,
connected by the Boolean operators AND, OR, or INDEPENDENT-AND.

25 INDEPENDENT-AND is applicable only where the previous search field is the
index-search-field-name and the following search field is the same
index-search-field-name. It specifies that the call can be satisfied by two different
index pointer segments (in the same secondary index) that both point to this index
target segment, each satisfying one of the conditions; rather than requiring one index
pointer segment that satisfies both of the conditions.

26 When the member containing the PROCESSES clause is encoded, if any member
where the name appears in that member's data definition has no data entries record,
a dummy data entries record is created for the latter member in accordance with the
following rules:

� If the name appears in a CONTAINS clause that immediately follows
PROCESSES IMS or PROCESSES DL/I (or a variant), a dummy PCB
member is created.

� If the name appears in a CONTAINS clause that does not immediately follow
PROCESSES IMS or PROCESSES DL/I (or a variant), a dummy module
member is created.

� If the name immediately follows a SEGMENT keyword, a dummy segment
member is created.

� If the name appears anywhere in the QUALIFIED-ON clause, a dummy item
member is created.

� If the name appears in any other clause, the dummy is created as defined in
the specification of the SYSTEM, PROGRAM, or MODULE member in the
ASG-Manager Products Dictionary/Repository User's Guide.

 ASG-DataManager IMS (DL/I) Interface

138

Examples

The example in "Application View" on page 13 shows a PROCESSES clause declaring
two PCB members (each for a different database) and the segment search arguments
required for that application.

For the first segment, SKILL, there is a USED-IN clause that defines a
COMMAND-CODE and a QUALIFIED-ON clause for a search field. For the segment
EXPR, there is a USED-IN clause that defines no COMMAND-CODE, but does have a
QUALIFIED-ON clause for two search fields.

For the third segment, NAMEID, there is again a USED-IN clause that defines a
COMMAND-CODE and a QUALIFIED-ON clause for a search field. The segment
CITY has a USED-IN clause specified, but has no COMMAND-CODE nor
QUALIFIED-ON clause.

This example shows a PROCESSES clause for an application requiring one PCB
member, SKILLINV-PCB:

PROCESSES IMS
CONTAINS SKILLINV-PCS
SEGMENT-SEARCM-ARGUMENTS
 SEGMENT SKILMAST USED-IN SKILNAST-SSA
 QUALIFIED-ON SKLLCODE EQ
 SEGMENT SKILLNAM USED-IN SKILLNAM-SSA
 QUALIFIED-ON SURNAME EQ
 AND INITIAL EQ
 SEGMENT EXPRMAST USED-IN EXPRMAST-SSA
 COMMAND-CODE 10-MOVE SEGMENT EDUCMAST USED-IN EDUCMAST-SSA

Segment-search-arguments are specified for four segments. The segment SKILMAST
has a USED-IN clause defining a QUALIFIED-ON clause for a search field. The
segment SKILLNAM has a USED-IN clause defining a QUALIFIED-ON clause for two
search fields. For the segment EXPRMAST, the USED-IN clause defines the
COMMAND-CODE 10-MOVE to indicate that this segment is the first in a path of
segments to be inserted. No COMMAND-CODE or QUALIFIED-ON clauses are
specified for the segment EDUCMAST.

139

4 4Extensions to DataManager Commands
for IMS (DL/I) Databases

This chapter includes these sections:

Introduction . 139

IMS (DL/I) Member-type Keywords. .139

Condition Keywords for WHICH and WHAT Commands 141
Examples . 142
Member Type Interrogations. 146
Interrogation Syntax .154
Alternative Verb Keywords . 173

Introduction
DataManager provides powerful facilities for documenting, interrogating, and processing
the data definitions of the various types of IMS (DL/I) databases and their components.
These facilities are provided by means of:

� Additional member-type keywords in those commands that permit member-type
selection [see "IMS (DL/I) Member-type Keywords" on page 139].

� Additional condition keywords in the WHICH and WHAT commands (see
"Condition Keywords for WHICH and WHAT Commands" on page 141).

IMS (DL/I) Member-type Keywords
The syntax of these DataManager commands:

BULK ENCODE
BULK PRINT
BULK REPORT
GLOSSARY
LIST
PERFORM
WHICH

 ASG-DataManager IMS (DL/I) Interface

140

They are defined in the ASG-Manager Products Dictionary/Repository User�s Guide,
includes a number of member-type selection keywords that enable the processing to be
confined to members of the selected type or types.

The member-type selection keywords include the keyword DATABASES. This keyword
selects all members at the database level of the member-type hierarchy. If more than one
DBMS interface is included in the implementation of DataManager, then database
members defined under any of the implemented interfaces are selected.

If the IMS (DL/I) Interface is included in the implementation, additional keywords are
made available to permit the selection to be confined to:

� All IMS (DL/I) databases

� A specific category or specific categories of IMS (DL/I) databases

� All IMS (DL/I) segments

� A specific category or specific categories of segments

� (Except for BULK ENCODE and BULK PRINT) any of the internal member types
described in "Special DataManager Member Types" on page 17

These are the additional member-type selection keywords:

IMS-DATABASES
DL/I-DATABASES
DL/1-DATABASES
DLI-DATABASES
DL1-DATABASES
GSAM-DATABASES
HSAM-DATABASES
SHSAM-DATABASES
HISAM-DATABASES
SHISAM-DATABASES
HDAM-DATABASES
HIDAM-DATABASES
PHYSICAL-DATABASES
LOGICAL-DATABASES
SECONDARY-INDEX-DATABASES
SEGMENTS
PHYSICAL-SEGMENTS
LOGICAL-SEGMENTS
INDEX-POINTER-SEGMENTS
PROGRAM-COMMUMICATION-BLOCKS
PCBS

These are not relevant for BULK ENCODE or BULK PRINT because members of these
types have no source records:

4 Extensions to DataManager Commands for IMS (DL/I) Databases

141

SEQUENCE-KEYS
IMS-DATASETS
DL/I-DATASETS
DL/1-DATASETS
DLI-DATASETS
DL1-DATASETS
INDEX-SEARCH-FIELDS
SYSTEM-RELATED-FIELDS
CONCATENATED-KEYS
CONCATENATED-KEY-NAMES

All of these keywords are also available in the Controller's commands to save the
contents of a data dictionary and to analyze a data dictionary's disk space usage. (These
are documented in the ASG-Manager Products Controller's Manual.)

It is thus possible to obtain complete documentation of IMS (DL/I) databases, at the
database or at any component level, to interrogate on database type and on any
component type, and to select by database type or component type for manipulation by
BULK ENCODE or by PERFORM commands.

Condition Keywords for WHICH and WHAT Commands
The WHICH command enables the user to interrogate the data dictionary as to which
members of selected types [see "IMS (DL/I) Member-type Keywords" on page 139],
satisfy selected conditions. Among the conditions that can be stated are that the members
named in the response should USE a member named in the command, or that they should
CONSTITUTE the member named in the command. These conditions can be restricted
by a VIA clause, or by alternative verb keywords, to references to or from other members
through a particular clause of a data definition. Similar conditions can be stated in the
WHAT command, but without the restriction of the interrogation to selected categories of
members.

The IMS (DL/I) Interface provides further keywords for the condition clause.

The tables in this section give the following information on these keywords:

� The Member Type Interrogation table on page 146 explains which VIA keywords
are appropriate for use with a particular IMS (DL/I) member type to interrogate
various aspects of its definition.

� The Interrogation Syntax table on page 155 lists, in alphabetical order, the
keywords that can be used in a VIA clause, together with the member types with
which they can be used and the responses that will be obtained.

� The Alternative Verb Keyword table on page 174 offers alternative verb keywords
that can be used instead of some USES and CONSTITUTES constructions.

 ASG-DataManager IMS (DL/I) Interface

142

The Interrogation Syntax and Alternative Verb Keyword tables give the possible values
for the selection, member-type, alternative-verb-keyword, and via-keyword variables in a
WHICH command of this form:

For example, to find out which process members use a particular segment in the segment
search argument, the VIA keyword SSAS is used. The entry for SSAS in the
Interrogation Syntax table shows that the format of the required command would be in
this form:

There is no alternative verb keyword available for this interrogation.

The member types listed for selection and member-name, the alternative verb keywords,
and the keywords for use in the VIA clause are additional to those available for the
generalized version of the WHICH command. The exceptions to this are the BOUND,
CONTAINS, IF, and NAME keywords, and the alternative verb keyword CONTAINS.
These are included in the tables to demonstrate their use with IMS-specific member
types.

If any of the keywords are also available for interrogating a DataManager definition of
another DBMS and the user's implementation of DataManager includes an interface to
that system, responses to interrogations can also include members that are defined for
other DBMS.

Throughout the following sections, any of the alternative forms DL/1-DATABASES,
DLI-DATABASES, DL1-DATABASES, and IMS-DATABASES are accepted for the
keyword DL/I-DATABASES.

Similarly, the alternative forms DL/1-DATASETS, DLI-DATASETS,
DL1-DATASETS, and IMS-DATASETS are accepted for the keyword
DL/I-DATASETS.

Examples
The keywords for use in the VIA clause allow every clause of a member definition to be
interrogated. The examples that follow show how the keywords can be used to interrogate
the DataManager definitions of some important IMS concepts.

WHICH selection USES
CONSTITUTES

alternative-verb-keyword member-name

member-name VIA via-keyword ;

WHICH MODULES
PROGRAMS
SYSTEMS

USE index-pointer-segment-name
logical-segment-name
physical-segment-name

VIA SSAS;

4 Extensions to DataManager Commands for IMS (DL/I) Databases

143

Generated Fields Interrogation
The GENERATES clause of physical segment or index pointer segment data definitions
can be interrogated using the keyword GENERATES in the VIA clause, or by using the
alternative verb keywords GENERATES or GENERATED-BY. For example, the
following commands could be used to obtain a list of all the fields that are directly
specified in the GENERATES clause of the segments residing in a particular database:

KEEP WHICH PHYSICAL-SEGMENTS DIRECTLY CONSTITUTE
 physical-database-name;
PERFORM "ALSO KEEP WHICH ITEMS, GROUPS, SEQUENCE-KEYS"
 "DIRECTLY CONSTITUTE * VIA GENERATES;"
 KEPT-DATA CLEAR-KEPT-DATA;
LIST KEPT-DATA ALPHABETICALLY;

If an alternative verb keyword was used, the PERFORM command might read:

PERFORM "ALSO KEEP WHICH ITEMS, GROUPS, SEQUENCE-KEYS"
 "DIRECTLY GENERATED-BY *;"
 KEPT-DATA CLEAR-KEPT-DATA;

Hierarchical Path Interrogation
Hierarchical path interrogation is performed by using the keywords PARENT or
FATHER in the VIA clause, or by using the alternative verb keywords FATHERS or
FATHERED-BY. For example, using the example illustrated in "The Member Type for a
HSAM Type IMS (DL/I) Database" on page 75, the response to this command:

WHICH SEGMENTS USE JOB-TITLE VIA PARENT;

would consist of the segments DEPARTMENT, EMPLOYEE-NUMBER, and
JOB-STATUS, which are direct or indirect parents of segment JOB-TITLE.

This command:

WHICH SEGMENTS DIRECTLY CONSTITUTE JOB-STATUS VIA FATHER;

would cause the segments SALARY and JOB-TITLE, which are direct dependents of
segment JOB-STATUS, to be output.

Using the alternative verb keywords, the first interrogation could be this:

WHICH SEGMENTS FATHER JOB-TITLE;

and the second this:

WHICH SEGMENTS DIRECTLY FATHERED-BY JOB-STATUS.

 ASG-DataManager IMS (DL/I) Interface

144

Logical Relationship Interrogation
The TO keyword interrogates the relationship between logical child segments and their
destination parent segments, as specified in the RELATED-AS clause of the logical child
segment definition.

For example, this command:

WHICH PHYSICAL-SEGMENTS CONSTITUTE ASY-LINE VIA TO;

when used with the example in "Physical Segments" on page 24 would respond with the
segment PRODPART.

Secondary Index Relationship Interrogation
The relationships between index pointer segments and index target segments can be
ascertained by using the TARGET keyword.

Using the example illustrated in Figure 3 on page 10, this command:

WHICH INDEX-POINTER-SEGMENTS DIRECTLY USE NAMEID VIA TARGET;

would respond with the segment COLORSEG.

The relationship between index pointer segments and source segments can be
interrogated using the SOURCE keyword. This interrogation:

WHICH INDEX-POINTER-SEGMENTS DIRECTLY USE AUTOMBLE VIA SOURCE;

would respond with the segment COLORSEG.

Segment Search Argument Interrogation
The SSAS keyword can be used to find out which segments are used by a particular
process member through its SEGMENT-SEARCH-ARGUMENTS clause. This could be
achieved by this command:

WHICH SEGMENTS DIRECTLY CONSTITUTE process-member-name VIA SSAS;

Using the PROCESSES clause example in "Syntax of the PROCESSES Clause" on
page 132, the response would consist of the segments SKILMAST, SKILLNAM,
EXPEMAST, and EDUGMAST.

The QUALIFIED-ON keyword is used to find out the relationships between process
member types and the fields specified in the QUALIFIED-ON subordinate clause of the
SEGMENT-SEARCH-ARGUMENTS clause. Again, using the example in "Syntax of
the PROCESSES Clause" on page 132, the response to the command: WHICH MEMBERS
DIRECTLY CONSTITUTE process-member-name VIA QUALIFIED-ON;

would include the members SKLLCODE, SURNAME, and INITIAL.

4 Extensions to DataManager Commands for IMS (DL/I) Databases

145

Sensitive Segment and Sensitive Field Interrogation
The relationships between structure type PCBs and the sensitive segments and sensitive
fields specified in them can be interrogated using the SEGMENT or
SENSITIVE-FIELDS keywords respectively. For example, using the second example of
a structure type PCB in "Member-type Descriptions for IMS (DL/I) Program
Communication Blocks" on page 117, this command:

WHICH SEGMENTS DIRECTLY CONSTITUTE ASY-PACK-PCB VIA SEGMENT;

would respond with the segments ASY-LINE and ASY-PACK.

This command:

WHICH MEMBERS DIRECTLY CONSTITUTE ASY-PACK-PCB VIA
SENSITIVE-FIELDS;

using the same example, would respond with the members PACK-NO, PROD-NO, and
QTY-REQD.

Sequence Key Interrogation
The SEQUENCE-KEY clause can be used to interrogate the relationships between
sequence key fields and segments in which they are specified.

These commands could be used to ascertain the sequence key fields of the logical
database SKILLEMP illustrated in Figure 1 on page 6:

KEEP WHICH PHYSICAL-SEGMENTS CONTAINED-BY SKILLEMP;
PERFORM 'WHICH ITEMS, GROUPS, SEQUENCE-KEYS DIRECTLY'
 'CONSTITUTE * VIA SEQUENCE-KEY;'
 KEPT-DATA CLEAR-KEPT-DATA;

This pair of commands would respond with the members SURNAME, PAYRNUMB,
SKLLCODE, QUALCODE, and EMPLOYEE-NO.

Variable Length Array Interrogation
The BOUND keyword can be used to interrogate the relationship between variable length
arrays and physical segments. For example, this command:

WHICH PHYSICAL-SEGMENTS USE NUMBER-OF-LINES VIA BOUND;

would respond with the names of the physical segments with CONTAINS clauses that
refer directly or indirectly to a variable length array the number of occurrences of which
is based on the value of the item NUMBER-OF-LINES.

 ASG-DataManager IMS (DL/I) Interface

146

Member Type Interrogations
The purpose of this table is to summarize, for each IMS-specific member type, the VIA
keywords that may be used to interrogate various clauses of the member definition.

In the first column of the table, the member types are listed in the order of databases,
segments, Program Communication Blocks (PCBs), and process members. The second
column lists the keywords that are available for interrogating clauses in members of a
particular type. The third column explains, for each keyword, the relationship between
the member type and the clause, or subordinate clause, of the member type data definition
that the keyword interrogates.

Member Type Interrogation

Member Type Keyword for Use in
VIA Clause

Relationship Interrogated by Keyword

GSAM-DATABASES BOUND Relationship between GSAM databases
and variable length arrays specified,
directly or indirectly, as groups or items
in the CONTAINS clause of the database
data definition statement.

CONTAINS Relationship between GSAM databases
and group and item members contained
directly or indirectly in the database.

DL/I- DATASETS Relationship between GSAM databases
and the datasets that constitute the
database (that is, the datasets specified in
the DATASETS clause of the database
data definition statement).

IF Relationship between GSAM databases
and group and item members specified, in
IF subordinate clauses, in the
CONTAINS clause of the database data
definition statement.

HDAM-DATABASES ADD-TO Relationship between HDAM or HIDAM
HI DAM-DATABASES databases and
dataset members specified in the
ADD-TO subordinate clause of the
database data definition statement.

CONTAINS Relationship between HDAM or HIDAM
databases and segment members that are
contained in the database.

DL/I- DATASETS Relationship between HDAM or HIDAM
databases and the dataset members
specified in the DATASETS clause of the
database data definition statement.

FATHERS
PARENTS

4 Extensions to DataManager Commands for IMS (DL/I) Databases

147

Hierarchical parent and child relationship
between segments where the names are
listed in the CONTAINS clause of the
database data definition statement.

Relationship between HDAM or HIDAM
databases and module members.
specified in the
RANDOMISING-MODULES clause of
the database data definition statement.

HISAM-DATABASES
HSAM-DATABASES

CONTAINS Relationship between HSAM or HISAM
databases and segment members that are
contained in the database.

DL/I-DATASETS Relationship between HSAM or HISAM
databases and the dataset members that
constitute the database (that is, the
datasets specified in the DATASETS
clause of the database data definition
statement).

Hierarchical parent and child relationship
between segments where the names are
listed in the CONTAINS clause of the
database data definition statement.

LOGICAL-
DATABASES

CONTAINS Relationship between LOGICAL
databases and segment members
contained directly or indirectly in the
database.

Hierarchical parent and child relationship
between segments whose names are listed
in the CONTAINS clause of the database
data definition statement.

SECONDARY-INDE
X-DATABASES

CONTAINS Relationship between secondary index
databases and the index pointer segment
contained in the database.

DL/I-DATASETS Relationship between secondary index
databases and the dataset members that
constitute the database (that is, the
datasets specified in the DATASETS
clause of the database data definition
statement).

Member Type Interrogation

Member Type Keyword for Use in
VIA Clause

Relationship Interrogated by Keyword

RANDOMISING-
MODULES

RANDOMIZING-
MODULES

FATHERS
PARENTS

FATHERS
PARENTS

 ASG-DataManager IMS (DL/I) Interface

148

Relationship between secondary index
databases and other secondary indexes
sharing the same secondary index
database (that is, secondary indexes with
names that are specified in the
SHARES-WITH or SHARING-WITH
clause of the database data definition
statement).

INDEX-POINTER-
SEGMENT

BOUND Relationship between index pointer
segments and variable length arrays
specified directly or indirectly as groups
or items in the CONTAINS clause of the
segment data definition statement.

CONCATENATED
-KEY-NAMES

Relationship between index pointer
NAMES segment and the name to be
used for the concatenated key of its index
target segment (that is, the name specified
in the CONCATENATED-KEY-NAME
clause of the segment data definition
statement).

CONTAINS Relationship between index pointer
segments and group and/or item members
specified in the CONTAINS clause of the
segment data definition statement.

DUPLICATE-
DATA-FIELDS

Relationship between index pointer
segments and items, groups and/or
system related fields specified in the
DUPLICATE-DATA-FIELDS clause of
the index pointer segment data definition
statement.

GENERATES Relationship between index pointer
segments and members of any of the
types that may be specified in the
GENERATES clause of the index pointer
segment data definition statement.

IF Relationship between index pointer
segments and item and/or group members
specified in IF subordinate clauses in the
CONTAINS clause of the index pointer
segment data definition statement.

Member Type Interrogation

Member Type Keyword for Use in
VIA Clause

Relationship Interrogated by Keyword

SHARES-WITH
SHARING-
WITH

4 Extensions to DataManager Commands for IMS (DL/I) Databases

149

Relationship between index pointer
segments and members that may be
specified in the IN/OF subordinate clause
of the GENERATES clause of the index
pointer segment data definition
statement.

MAINTENANCE-
EXITS

Relationship between index pointer
segments and module members specified
in the MAINTENANCE-EXITS clause
of the index pointer segment data
definition statement.

ON Relationship between index pointer
segments and the member specified in the
ON subordinate clause of the
RELATED-TO clause of the index
pointer segment data definition statement
[that is, the index search field (XDFLD)].

SEARCH-KEY-
FIELDS

Relationship between index pointer
SEGMENT segments and group and/or
item members specified as search key
fields in the SEARCH-KEY-FIELDS
clause of the segment data definition
statement.

SEQUENCE-KEYS Relationship between index pointer
segments and the member specified as the
sequence key in the SEQUENCE-KEY
clause of the segment data definition
statement.

SOURCE Relationship between index pointer
segments and the index source segment
specified in the SOURCE clause of the
segment data definition statement.

SUBSEQUENCE-
FIELDS

Relationship between index pointer
segments and items, groups, and/or
system related fields specified in the
SUBSEQUENCE-FIELDS clause of the
segment data definition statement.

TARGET Relationship between index pointer
segments and the index target segment
specified in the RELATED-TO clause of
the index pointer segment data definition
statement.

Member Type Interrogation

Member Type Keyword for Use in
VIA Clause

Relationship Interrogated by Keyword

IN
OF

 ASG-DataManager IMS (DL/I) Interface

150

LOGICAL-SEGMENT CONTAINS Relationship between logical segments
and physical segments contained by the
segment.

Relationship between logical segments
and the physical database in which the
physical segment contained by the logical
segment resides (specified by the IN
subordinate clause of the logical segment
data definition statement).

PHYSICAL-
SEGMENT

BOUND Relationship between physical segments
and variable length arrays specified
directly or indirectly as groups or items in
the CONTAINS clause of the segment
data definition statement.

CONCATENATED
-KEY-
CONSTITUENTS
(source segments
only)

Relationship between physical segments
and fields specified in the
CONCATENATED- KEY-FIELDS
clause of the physical segment data
definition statement. Only those fields
specified before the AS CKxxxxx
subordinate clause are included.

CONCATENATED
-KEY-FIELDS
(source segments
only)

Relationship between physical segments
and system related fields specified in the
AS CXxxxxx subordinate clause of the
CONCATENATED-KEY-FIELDS
clause in the segment data definition
statement.

CONCATENATED
-KEY-NAMES
(logical child
segments only)

Relationship between physical segments
and the member specified as a
concatenated key name in the
CONCATENATED-KEY-NAME clause
of the segment data definition statement.

CONTAINS Relationship between physical segments
and group and/or item members
contained directly or indirectly in the
segment.

EDIT-
COMPRESSION-
EXITS

Relationship between physical segments
and module members specified in the
EDIT-COMPRESSION-EXITS clause of
the segment data definition statement.

Member Type Interrogation

Member Type Keyword for Use in
VIA Clause

Relationship Interrogated by Keyword

DATABASES
IN-
DATABASES

4 Extensions to DataManager Commands for IMS (DL/I) Databases

151

GENERATES Relationship between physical segments
and fields that can be specified in the
GENERATES clause of the segment data
definition.

IF Relationship between physical segments
and item and/or group members specified
in IF subordinate clauses of the
CONTAINS clause of the segment data
definition statement.

Relationship between physical segment
and members of any of the types that are
specified in the IN/OF subordinate clause
of the GENERATES clause of the
segment data definition statement.

RENAMES (logical
child segments
only)

Relationship between logical child
segments and items, groups and sequence
key members specified in the RENAMES
clause of the logical child segment data
definition statement.

SEQUENCE-KEY-
CONSTITUENTS
(logical child
segments only)

Relationship between logical child
segments and fields specified in the
SEQUENCE-KEY clause of the segment
data definition statement, when the AS
subordinate clause of the
SEQUENCE-KEY clause has also been
specified. Only the entries preceding the
AS subordinate clause are included in the
response.

SEQUENCE-KEY Relationship between physical segments
and the item or group member specified
in the SEQUENCE-KEY clause of the
segment data definition statement, when
the AS subordinate clause has not been
specified. Also, when the AS clause has
been specified, the relationship between
the physical segment and the sequence
key name specified in the AS clause.

Member Type Interrogation

Member Type Keyword for Use in
VIA Clause

Relationship Interrogated by Keyword

IN
OF

 ASG-DataManager IMS (DL/I) Interface

152

TO (logical child
segments only)

Relationship between logical child
segments and the destination parent
segment specified in the TO subordinate
clause of the RELATED-AS clause of the
physical segment data definition
statement.

WITH (paired
logical child
segments only)

Relationship between the logical child
segment and the segment with which it is
paired, as specified in the WITH
subordinate clause of the segment data
definition statement.

PCB (GSAM type) Relationship between PCBs and the
GSAM database named in the PCB data
definition statement.

NAME Relationship between PCBs and the PCB
specified in the NAME clause of the PCB
data definition statement.

PCB
(OUTPUT-MESSAGE
type)

NAME Relationship between PCBs and the PCB
specified in the NAME clause of the PCB
data definition statement.

PCB (STRUCTURE
type)

Relationship between PCBs and the
database named in the DATABASE
clause of the PCB data definition
statement.

NAME Relationship between PCBs and the PCB
specified in the NAME clause of the PCB
data definition statement.

SECONDARY-
SEQUENCE-ON

Relationship between PCBs and the index
pointer segment specified in the ON
subordinate clause of the
SECONDARY-SEQUENCE clause of
the PCB data definition statement.

SEGMENT Relationship between PCBs and sensitive
segments specified in the SEGMENT
clause of the PCB data definition
statement.

Member Type Interrogation

Member Type Keyword for Use in
VIA Clause

Relationship Interrogated by Keyword

DATABASES
IN-
DATABASES

DATABASES
IN-
DATABASES

4 Extensions to D
ataM

anager C
om

m
ands for IM

S (D
L/I) D

atabases

153

SENSITIVE-
FIELDS

Relationship between PCB and fields
specified as sensitive by means of the
SENSITIVE-FIELDS clause of the PCB
data definition statement.

MODULE PROGRAM
SYSTEM

CONTAINS Relationship between module, program
or system members and the PCB
members which they use; that is, the PCB
members specified in the CONTAINS
subordinate clause of the
PROCESSES-clause of the module,
program or system data definition
statement.

QUALIFIED-ON Relationship between module, program
or system members and the segment
search fields specified in the
QUALIFIED-ON subordinate clause of
the PROCESSES clause of the module,
program or system data definition
statement.

SSAS Relationship between module, program
or system members and the segment
members specified in the SSAS
subordinate clause of the PROCESSES
clause of the module, program or system
data definition statement.

Member Type Interrogation

Member Type Keyword for Use in
VIA Clause

Relationship Interrogated by Keyword

A
SG

-D
ataM

anager IM
S (D

L/I) Interface

154 Interrogation Syntax
This table provides the user with the information required to construct an interrogation of the form:

The first column lists, in alphabetical order, the keywords that can be used in a VIA clause. The second column lists all the
meaningful member types that can be specified for the selection variable in a USES interrogation. The third column lists the
member types from which the member named in the member-name variable should be selected if a meaningful response is to
be obtained. The fourth and fifth columns give, respectively, information similar to that in the second and third columns,
except that the member types given are those that are meaningful in a CONSTITUTES interrogation.

The final column explains the response that will be obtained from either a USES or CONSTITUTES interrogation, and
includes any notes concerning the use of the keyword. Note that the responses detailed here are those that appear when the
interrogation has been qualified by the keyword DIRECTLY. If DIRECTLY is not specified, both direct relationships and
indirect relationships established by CONTAINS clauses are reported on.

In addition to the member types listed in the second and fourth columns, the general selection keywords MEMBERS,
KEPT-DATA, and INDEX-NAMES may be used, although meaningful responses will be obtained only when these
categories include members of the types listed in the second and fourth columns.

The values that may be supplied for the alternative-verb-keyword variable are described in "Alternative Verb Keywords" on
page 174.

WHICH selection USES
CONSTITUTES

alternative-verb-keyword member-name

member-name VIA via-keyword ;

4 Extensions to D
ataM

anager C
om

m
ands for IM

S (D
L/I) D

atabases

155

Interrogation
Syntax

USES interrogations CONSTITUTES interrogations

Keyword for use in
the VIA clause

Meaningful
member-type
selection keywords

Meaningful
member types for
member-name

Meaningful
member-type
selection
keywords

Meaningful
member types for
member-name

Explanation/Notes

ADD-TO HDAM-DATABASES

HIDAM-DATABASES

PHYSICAL-
DATABASES

DL/I-DATABASES

DATABASES

DL/I-DATASET DL/I-DATASETS HDAM-DATABASE

HIDAM-DATABASE

USES: Obtains the name of the HDAM or
HIDAM database that specifies, in the ADD-TO
clause of its data definition, the DL/I-
DATASET member specified in the
member-name part of the interrogation.
CONSTITUTES: Obtains the name of the
DL/I-DATASET member that is specified in the
ADD-TO clause of the data definition of the
HDAM or HIDAM database named in the
member-name part of the interrogation.

BOUND GSAM-DATABASES

DL/I-DATABASES

DATABASES

INDEX-POINTER-
SEGMENTS

PHYSICAL-
SEGMENTS

SEGMENTS

ITEM ITEMS GSAME DATABASE

INDEX-POINTER-
SEGMENT

PHYSICAL-
SEGMENT

USES: Obtains the name of each GSAM
database and/or index pointer segment and/or
physical segment that contains a variable length
array where the number of occurrences are
specified by the value of the item named in the
member-name part of the interrogation.
CONSTITUTES: Obtains the name of each item
that is used as an array bound for a variable
length array contained in the GSAM database,
index pointer segment, or physical segment
named in the member-name part of the
interrogation.

A
SG

-D
ataM

anager IM
S (D

L/I) Interface

156

CONCATENATED-
KEY-
CONSTITUENTS

PHYSICAL-
SEGMENTS

SEGMENTS

ITEM

GROUP

SEQUENCE-KEY

ITEMS

GROUPS

SEQUENCE-KEYS

PHYSICAL-
SEGMENT

(source segments
only)

This keyword applies only to physical segments
that are defined as index source segments.
USES: Obtains the name of each physical
segment that specifies, in the
CONCATENATED-KEY-FIELDS clause of its
data definition, the group or item or sequence
key named in the member-name part of the
interrogation. The member named by
member-name must appear in the part of the
clause preceding the AS CKxxxxx subordinate
clause.
CONSTITUTES: Obtains the name of each item
and/or group and/or sequence key that is
specified in the CONCATENATED-KEY-
FIELDS clause of the physical segment named in
the member-name part of the interrogation. Only
items, groups, and sequence keys specified prior
to each AS CKxxxxx subordinate clause are
included in the response.

CONCATENATED-
KEY- FIELDS

PHYSICAL-
SEGMENTS

SEGMENTS

SYSTEM-RELATED-
FIELD

SYSTEM-RELATED
- FIELDS

PHYSICAL-
SEGMENT (source
segments only)

This keyword only applies to physical segments
that are defined as index source segments.
USES: Obtains the name of the physical segment
that specifies, in the AS CKxxxxx subordinate
clause of its data definition, the system related
field named in the member-name part of the
interrogation. This field must be of the form
CKxxxxx (see "Physical Segments" on
page 24).

CONSTITUTES: Obtains the name of each
system related field that is specified in the AS
CKxxxxx subordinate clause of the data
definition of the physical segment named in the
member-name part of the interrogation.

Interrogation
Syntax

USES interrogations CONSTITUTES interrogations

Keyword for use in
the VIA clause

Meaningful
member-type
selection keywords

Meaningful
member types for
member-name

Meaningful
member-type
selection
keywords

Meaningful
member types for
member-name

Explanation/Notes

4 Extensions to D
ataM

anager C
om

m
ands for IM

S (D
L/I) D

atabases

157

CONCATENATED-
KEY- NAMES

PHYSICAL-
SEGMENTS

INDEX-POINTER-
SEGMENTS

SEGMENTS

CONCATENATED-
KEY-NAME

CONCATENATED-
KEY-NAME

PHYSICAL-
SEGMENT

INDEX-POINTER-
SEGMENT

USES: Obtains the name of the physical segment
or index-pointer-segment that specifies in the
CONCATENATED- KEY- NAME clause of its
data definition, the concatenated key name
named in the member-name part of the
interrogation.
CONSTITUTES: Obtains the name of the
concatenated key that is specified in the
CONCATENATED- KEY-name clause of the
data definition of the physical segment, or index
pointer segment named in the member-name part
of the interrogation.

CONTAINS GSAM-DATABASES

DL/I-DATABASES

DATABASES

ITEM

GROUP

ITEMS

GROUPS

GSAM-DATABASE USES: Obtains the name of each GSAM
database that specifies, in the CONTAINS clause
of its data definition, the item or group named in
the member-name part of the interrogation.
CONSTITUTES: Obtains the name of each item
and/or group specified in the CONTAINS clause
of the data definition of the GSAM database
named in the member-name part of the
interrogation.
Instead of using the CONTAINS keyword in the
VIA clause, the verb keywords CONTAINS and
CONTAINED-BY could be used (see
"Interrogation Syntax" on page 154).

Interrogation
Syntax

USES interrogations CONSTITUTES interrogations

Keyword for use in
the VIA clause

Meaningful
member-type
selection keywords

Meaningful
member types for
member-name

Meaningful
member-type
selection
keywords

Meaningful
member types for
member-name

Explanation/Notes

A
SG

-D
ataM

anager IM
S (D

L/I) Interface

158

CONTAINS HDAM-DATABASE

HIDAM-DATABASES

HISAM-DATABASES

HSAM-DATABASES

PHYSICAL-
DATABASES

SHISAM-DATABASES

SHSAM-DATABASES

DL/I-DATABASES

DATABASES

PHYSICAL-
SEGMENTS

PHYSICAL-
SEGMENTS

HDAM-DATABASE

HIDAM-DATABASE

HISAM-DATABASE

HSAM-DATABASE

SHISAM-DATABAS
E

SHSAM-DATABASE

USES: Obtains the name of each database that
specifies, in the CONTAINS clause of its data
definition, the physical segment named in the
member-name part of the interrogation.
CONSTITUTES: Obtains the name of each
physical segment, specified in the CONTAINS
clause of the data definition of the database
named in the member-name part of the
interrogation.
Instead of using the CONTAINS keyword in the
VIA clause, the verb keywords CONTAINS and
CONTAINED-BY could be used (see
"Interrogation Syntax" on page 154).

CONTAINS LOGICAL-
DATABASES

DL/I-DATABASES

DATABASES

LOGICAL-SEGMENT

PHYSICAL-
SEGMENT

LOGICAL-SEGMEN
T

PHYSICAL-
SEGMENTS

SEGMENTS

LOGICAL-
DATABASE

USES: Obtains the name of each logical database
that specifies, in the CONTAINS clause of its
data definition, the logical or physical segment
named in the member-name part of the
interrogation.
CONSTITUTES: Obtains the name of each
logical and/or physical segment, that is specified
in the CONTAINS clause of the data definition
of the database named in the member-name part
of the interrogation.
Instead of using the CONTAINS keyword in the
VIA clause, the verb keywords CONTAINS and
CONTAINED-BY could be used (see
"Interrogation Syntax" on page 154).

Interrogation
Syntax

USES interrogations CONSTITUTES interrogations

Keyword for use in
the VIA clause

Meaningful
member-type
selection keywords

Meaningful
member types for
member-name

Meaningful
member-type
selection
keywords

Meaningful
member types for
member-name

Explanation/Notes

4 Extensions to D
ataM

anager C
om

m
ands for IM

S (D
L/I) D

atabases

159

CONTAINS SECONDARY-
INDEX-DATABASES

DL/I-DATABASES

DATABASES

INDEX-POINTER-
SEGMENT

INDEX-POINTER-
SEGMENTS

SEGMENTS

SECONDARY-
INDEX-DATABASE

DATABASE

USES: Obtains the name of the secondary index
database that specifies, in the CONTAINS clause
of its data definition, the index pointer segment
named in the member-name part of the
interrogation.
CONSTITUTES: Obtains the name of each
index pointer segment, that is specified in the
CONTAINS clause of the data definition of the
secondary index database named in the
member-name part of the interrogation.
Instead of using the CONTAINS keyword in the
VIA clause, the verb keywords CONTAINS and
CONTAINED-BY could be used (see
"Interrogation Syntax" on page 154).

CONTAINS INDEX-POINTER-
SEGMENTS

PHYSICAL-
SEGMENTS

SEGMENTS

ITEM

GROUP

ITEMS

GROUP

INDEX-POINTER-
SEGMENT

PHYSICAL-
SEGMENT

USES: Obtains the name of each physical
segment and/or index pointer segment that
specifies, in the CONTAINS clause of its data
definition, the group or item named in the
member-name part of the interrogation.
CONSTITUTES: Obtains the name of each
group and/or item, that is specified in the
CONTAINS clause of the data definition of the
index pointer segment, named in the
member-name part of the interrogation.
Instead of using the CONTAINS keyword in the
VIA clause, the verb keywords CONTAINS and
CONTAINED-BY could be used (see
"Interrogation Syntax" on page 154).

Interrogation
Syntax

USES interrogations CONSTITUTES interrogations

Keyword for use in
the VIA clause

Meaningful
member-type
selection keywords

Meaningful
member types for
member-name

Meaningful
member-type
selection
keywords

Meaningful
member types for
member-name

Explanation/Notes

A
SG

-D
ataM

anager IM
S (D

L/I) Interface

160

CONTAINS LOGICAL-
SEGMENTS

SEGMENTS

PHYSICAL-
SEGMENTS

PHYSICAL-
SEGMENTS

SEGMENTS

LOGICAL-
SEGMENT

USES: Obtains the name of each logical segment
that specifies, in the CONTAINS clause of its
data definition, the physical segment named in
the member-name part of the interrogation.
CONSTITUTES: Obtains the name of each
physical segment, that is specified in the
CONTAINS clause of the data definition of the
logical segment named in the member-name part
of the interrogation.
Instead of using the CONTAINS keyword in the
VIA clause, the verb keywords CONTAINS and
CONTAINED-BY could be used (see
"Interrogation Syntax" on page 154).

CONTAINS MODULES

PROGRAMS

SYSTEMS

PCB

PROGRAM-
COMMUNICATION-
BLOCKS

PCBS

PROGRAM-
COMMUNICATION-
BLOCKS

MODULE

PROGRAM

SYSTEM

USES: Obtains the name of each module and/or
program and/or system that specifies, in the
CONTAINS subordinate clause of the
PROCESSES clause of its data definition, the
Program Communication Block (PCB) named in
the member-name part of the interrogation.
CONSTITUTES: Obtains the name of each
Program Communication Block (PCB), that is
specified in the CONTAINS subordinate clause
of the PROCESSES clause of the data definition
of the module, program or system named in the
member-name part of the interrogation.
Instead of using the CONTAINS keyword in the
VIA clause, the verb keywords CONTAINS and
CONTAINED-BY could be used (see
"Interrogation Syntax" on page 154).

Interrogation
Syntax

USES interrogations CONSTITUTES interrogations

Keyword for use in
the VIA clause

Meaningful
member-type
selection keywords

Meaningful
member types for
member-name

Meaningful
member-type
selection
keywords

Meaningful
member types for
member-name

Explanation/Notes

4 Extensions to D
ataM

anager C
om

m
ands for IM

S (D
L/I) D

atabases

161

DATABASES LOGICAL-
SEGMENTS

SEGMENTS

HDAM-DATABASE

HIDAM-DATABASE

HISAM-DATABASE

HDAM-DATABASES

HIDAM-DATABASE
S

HISAM-DATABASE
S

PHYSICAL-
DATABASES

DL/I-DATABASES

DATABASES

LOGICAL-
SEGMENT

USES: Obtains the name of each logical segment
that specifies, in the IN clause of its data
definition, the HDAM or HIDAM or HISAM
database named in the member-name part of the
interrogation.
CONSTITUTES: Obtains the name of the
database, that is specified in the IN clause of the
data definition of the logical segment named in
the member-name part of the interrogation.

DL/I-DATASETS GSAM-DATABASES

HDAM-DATABASE

HIDAM-DATABASES

HSAM-DATABASES

HISAM-DATABASES

SHSAM-DATABASES

SHISAM-DATABASES

PHYSICAL-
DATABASES

SECONDARY-
INDEX- DATABASES

DL/I-DATABASES

DATABASES

DL/I-DATASET DL/I-DATASETS GSAM-DATABASE

HDAM-DATABASE

HIDAM-DATABASE

HISAM-DATABASE

SHSAM-DATABASE

SHISAM-DATABAS
E

SECONDARY-
INDEX-DATABASE

USER: Obtains the name of the database that
specifies, in the DATASETS clause of its data
definition, the DL/I-DATASET member named
in the member-name part of the interrogation.
CONSTITUTES: Obtains the name of each
DL/I-DATASET, that is specified in the
DATASETS clause of the data definition
statement of the database named in the
member-name part of the interrogation.

Interrogation
Syntax

USES interrogations CONSTITUTES interrogations

Keyword for use in
the VIA clause

Meaningful
member-type
selection keywords

Meaningful
member types for
member-name

Meaningful
member-type
selection
keywords

Meaningful
member types for
member-name

Explanation/Notes

A
SG

-D
ataM

anager IM
S (D

L/I) Interface

162

DUPLICATE-
DATA-FIELDS

INDEX-POINTER-
SEGMENTS

SEGMENTS

ITEM

GROUP

SYSTEM-RELATED-
FIELD

ITEMS

GROUPS

SYSTEM-RELATED
FIELDS

INDEX-POINTER-
SEGMENT

USES: Obtains the name of each index pointer
segment that specifies, in the
DUPLICATE-DATA-FIELDS clause of its data
definition, the item, group, or system related
field named in the member-name part of the
interrogation.
In a USES interrogation, any system-related field
specified for member-name must be of the form
CKxxxxx (see "Segments that Reside in
a Secondary Index Database" on
page 55).

CONSTITUTES: Obtains the name of each item
and/or group and/or system related field, that is
specified in the DUPLICATE-DATA-FIELDS
clause of the data definition of the index pointer
segment named in the member-name part of the
interrogation.

EDIT-
COMPRESSION-
EXITS

PHYSICAL-
SEGMENTS

SEGMENTS

MODULE MODULES PHYSICAL-
SEGMENT

USES: Obtains the name of each physical
segment that specifies, in the
EDIT-COMPRESSION-EXIT clause of its data
definition, the module named in the
member-name part of the interrogation.
CONSTITUTES: Obtains the name of the
module, that is specified in the
EDIT-COMPRESSION-EXIT clause of the data
definition of the physical segment named in the
member-name part of the interrogation.

Interrogation
Syntax

USES interrogations CONSTITUTES interrogations

Keyword for use in
the VIA clause

Meaningful
member-type
selection keywords

Meaningful
member types for
member-name

Meaningful
member-type
selection
keywords

Meaningful
member types for
member-name

Explanation/Notes

4 Extensions to D
ataM

anager C
om

m
ands for IM

S (D
L/I) D

atabases

163

FATHERS LOGICAL-
SEGMENTS

PHYSICAL-
SEGMENTS

SEGMENTS

LOGICAL-SEGMENT

PHYSICAL-
SEGMENT

LOGICAL-
SEGMENTS

PHYSICAL-
SEGMENTS

SEGMENTS

LOGICAL-
SEGMENT

PHYSICAL-
SEGMENT

USES: Obtains the name of each segment that is
a parent of the segment specified in the
member-name part of the interrogation.
CONSTITUTES: Obtain the name of each
segment that is a dependent of the segment
specified in the member-name part of the
interrogation.
If a segment that resides in more than one
database is interrogated using this keyword,
DataManager processes only the first database
that it obtains from the segment�s used-by table.
The keyword FATHERS is synonymous with the
keyword PARENTS. Instead of using the
keyword FATHERS (or PARENTS) in the VIA
clause, the verb keywords FATHERS and
FATHERED-BY can be used.

GENERATES INDEX-POINTER-
SEGMENTS

SEGMENTS

ITEM

GROUP

INDEX-SEARCH-
FIELD

SYSTEM-RELATED-
FIELD

SEQUENCE-KEY

CONCATENATED-
KEY

ITEMS

GROUPS

INDEX-SEARCH-
FIELDS

SYSTEM-
RELATED-FIELDS

SEQUENCE-KEYS

CONCATENATED-
KEYS

CONCATENATED-
KEY-NAMES

INDEX-POINTER-
SEGMENT

USES: Obtains the name of each index pointer
segment that specifies, in the GENERATES
clause of its data definition, the member named
in the member-name part of the interrogation.
CONSTITUTES: Obtains the names of any of
the members, that are specified in the
GENERATES clause of the data definition
named in the member-name part of the
interrogation.
Instead of using the keyword GENERATES in
the VIA clause, the verb keywords
GENERATES and GENERATED-BY can be
used (see "Interrogation Syntax" on
page 154).

Interrogation
Syntax

USES interrogations CONSTITUTES interrogations

Keyword for use in
the VIA clause

Meaningful
member-type
selection keywords

Meaningful
member types for
member-name

Meaningful
member-type
selection
keywords

Meaningful
member types for
member-name

Explanation/Notes

A
SG

-D
ataM

anager IM
S (D

L/I) Interface

164

GENERATES PHYSICAL-
SEGMENTS

SEGMENTS

ITEM

GROUP

SEQUENCE-KEY

CONCATENATED-
KEY

ITEMS

GROUPS

SEQUENCE-KEYS

CONCATENATED-
KEYS

CONCATENATED-
KEY-NAMES

PHYSICAL-
SEGMENT

USES: Obtains the name of each index physical
segment that specifies, in the GENERATES
clause of its data definition, the item, group,
sequence key or concatenated key named in the
member-name part of the interrogation.
CONSTITUTES: Obtains the names of any of
the members, that are specified in the
GENERATES clause of the data definition of the
physical segment named in the member-name
part of the interrogation.
Instead of using the keyword GENERATES in
the VIA clause, the verb keywords
GENERATES and GENERATED-BY can be
used (see "Interrogation Syntax" on
page 154).

IF GSAM-DATABASES

DL/I-DATABASES

DATABASES

INDEX-POINTER-
SEGMENTS

PHYSICAL-
SEGMENTS

SEGMENTS

ITEM

GROUP

ITEMS

GROUPS

GSAM-DATABASE

INDEX-POINTER-
SEGMENT

PHYSICAL-
SEGMENT

USES: Obtains the name of each GSAM
database and/or index pointer and/or physical
segment that specifies, in the IF subordinate
clause of the CONTAINS clause of its data
definition, the item or group named in the
member-name part of the interrogation.
CONSTITUTES: Obtains the name of each item
and/or group, that is specified in the IF
subordinate clause of the CONTAINS clause of
the data definition of the GSAM database, index
pointer segment or physical segment named in
the member-name part of the interrogation.

Interrogation
Syntax

USES interrogations CONSTITUTES interrogations

Keyword for use in
the VIA clause

Meaningful
member-type
selection keywords

Meaningful
member types for
member-name

Meaningful
member-type
selection
keywords

Meaningful
member types for
member-name

Explanation/Notes

4 Extensions to D
ataM

anager C
om

m
ands for IM

S (D
L/I) D

atabases

165

IN INDEX-POINTER-
SEGMENTS

SEGMENTS

GROUP

SYSTEM-RELATED-
FIELD

INDEX-SEARCH-
FIELD

SEQUENCE-KEY

CONCATENATED-
KEY

GROUPS

SYSTEM-RELATED
- FIELDS

INDEX-SEARCH-
FIELDS

SEQUENCE-KEYS

CONCATENATED-
KEYS

CONCATENATED-
KEY-NAMES

INDEX-POINTER-
SEGMENT

USES: Obtains the name of each index pointer
segment that specifies, in the IN/OF subordinate
clause of the GENERATES clause of its data
definition, the member named in the
member-name part of the interrogation.
CONSTITUTES: Obtains the name of any of the
members, that is specified in the IN/OF
subordinate clause of the data definition of the
index pointer segment named in the
member-name part of the interrogation.

IN-DATABASES See "DATABASES" on page 161.

MAINTENANCE-
EXITS

INDEX-POINTER-
SEGMENTS

SEGMENTS

MODULE MODULES INDEX-POINTER-
SEGMENT

USES: Obtains the name of each index pointer
segment that specifies, in the
MAINTENANCE-EXIT clause of its data
definition, the module named in the
member-name part of the interrogation.
CONSTITUTES: OBtains the name of the
module, that is specified in the
MAINTENANCE-EXIT clause of the data
definition of the index pointer segment named in
the member-name part of the interrogation.

NAME PCBS

PROGRAM-
COMMUNICATION-
BLOCKS

PCB

PROGRAM-
COMMUNICATION-
BLOCK

PCBS

PROGRAM-
COMMUNICATION-
BLOCKS

PCB

PROGRAM-
COMMUNICATION-
BLOCK

USES: Obtains the name of each Program
Communication Block (PCB) that specifies, in
the NAME clause of its data definition, the PCB
named in the member-name part of the
interrogation.
CONSTITUTES: Obtains the name of the PCB,
that is specified in the NAME clause of the data
definition of the PCB named in the
member-name part of the interrogation.

OF See "IN" on page 165.

Interrogation
Syntax

USES interrogations CONSTITUTES interrogations

Keyword for use in
the VIA clause

Meaningful
member-type
selection keywords

Meaningful
member types for
member-name

Meaningful
member-type
selection
keywords

Meaningful
member types for
member-name

Explanation/Notes

A
SG

-D
ataM

anager IM
S (D

L/I) Interface

166

ON INDEX-POINTER-
SEGMENTS

SEGMENTS

INDEX-SEARCH-
FIELD

INDEX-SEARCH-
FIELDS

INDEX-POINTER-
SEGMENTS

USES: Obtains the name of the index pointer
segment that specifies, in the ON clause of its
data definition, the index search field named in
the member-name part of the interrogation.
CONSTITUTES: Obtains the name of the index
search field, that is specified in the ON clause of
the data definition of the index pointer segment
named in the member- name part of the
interrogation.

PARENTS See "FATHERS" on page 163.

QUALIFIED-ON MODULES

PROGRAMS

SYSTEMS

ITEM

GROUP

INDEX-SEARCH-
FIELD

SEQUENCE-KEY

CONCATENATED-
KEY

ITEMS

GROUPS

INDEX-SEARCH-
FIELDS

SEQUENCE-KEYS

CONCATENATED-
KEYS

CONCATENATED-
KEY- NAMES

MODULE

PROGRAM

SYSTEM

USES: Obtains the name of each module and/or
program and/or system that specifies, in the
QUALIFIED-ON subordinate clause of the
PROCESSES clause of its data definition, the
field named in the member-name part of the
interrogation.
CONSTITUTES: Obtains the names of
members, that are specified in the
QUALIFIED-ON subordinate clause of the
PROCESSES clause of the data definition of the
module, program, or system named in the
member-name part of the interrogation.

HDAM-DATABASES

PHYSICAL-
DATABASES

DL/I-DATABASES

DATABASES

MODULE MODULES HDAM-DATABASES USES: Obtains the name of each HDAM
database that specifies, in the
RANDOMISING-MODULES clause of its data
definition, the module named in the
member-name part of the interrogation.
CONSTITUTES: Obtains the name of the
module that is specified in the
RANDOMISING-MODULES clause of its data
definition of the HDAM database named in the
member-name part of the interrogation.

Interrogation
Syntax

USES interrogations CONSTITUTES interrogations

Keyword for use in
the VIA clause

Meaningful
member-type
selection keywords

Meaningful
member types for
member-name

Meaningful
member-type
selection
keywords

Meaningful
member types for
member-name

Explanation/Notes

4 Extensions to D
ataM

anager C
om

m
ands for IM

S (D
L/I) D

atabases

167

RENAMES PHYSICAL-
SEGMENTS

SEGMENTS

ITEM

GROUP

SEQUENCE-KEY

ITEMS

GROUPS

SEQUENCE-KEYS

PHYSICAL-
SEGMENT (logical
child segments only)

This keyword is only applicable to logical child
segments.
USES: Obtains the name of each logical child
segment that specifies, in the RENAMES clause
of its data definition, the item, group, or
sequence key named in the member-name part of
the interrogation.
CONSTITUTES: Obtains the names of items
and/or groups and/or sequence keys, that are
specified in the RENAMES clause of the data
definition of the logical child segment named in
the member-name part of the interrogation.

SEARCH-KEY-
FIELDS

INDEX-POINTER-
SEGMENTS

SEGMENTS

ITEM

GROUP

ITEMS

GROUPS

INDEX-POINTER-
SEGMENT

USES: Obtains the name of each index pointer
segment that specifies, in the
SEARCH-KEY-FIELDS clause of its data
definition, the item or group named in the
member-name part of the interrogation.
CONSTITUTES: Obtains the names of items
and/or groups, that are specified in the
SEARCH-KEY-FIELDS clause of the data
definition of the index pointer segment named in
the member-name part of the interrogation.

SECONDARY-
SEQUENCE-ON

PROGRAM-
COMMUNICATION-
BLOCKS

PCBS

INDEX-POINTER-
SEGMENT

INDEX-POINTER-
SEGMENTS

SEGMENTS

PCB

(structure type)
This keyword is only applicable to structure type
PCBs.
USES: Obtains the name of each structure type
PCB that specifies, in the ON subordinate clause
of the SECONDARY- SEQUENCE clause of its
data definition, the index pointer segment named
in the member-name part of the interrogation.
CONSTITUTES: Obtains the name of the index
pointer segment that is specified in the ON
subordinate clause of the
SECONDARY-SEQUENCE clause of the data
definition of the structure type PCB named in the
member-name part of the interrogation.

Interrogation
Syntax

USES interrogations CONSTITUTES interrogations

Keyword for use in
the VIA clause

Meaningful
member-type
selection keywords

Meaningful
member types for
member-name

Meaningful
member-type
selection
keywords

Meaningful
member types for
member-name

Explanation/Notes

RANDOMISING-
MODULES

RANDOMIZING
MODULES

A
SG

-D
ataM

anager IM
S (D

L/I) Interface

168

SEGMENT PROGRAM-
COMMUNICATION-
BLOCKS

PCBS

INDEX-POINTER-
SEGMENT

LOGICAL-SEGMENT

PHYSICAL-
SEGMENT

INDEX-POINTER-
SEGMENTS

LOGICAL-
SEGMENTS

PHYSICAL-
SEGMENTS

SEGMENTS

PCB

(structure type)
This keyword is only applicable to structure type
PCBs.
USES: Obtains the name of each structure type
PCB that specifies, in the SEGMENT clause of
its data definition, the segment named in the
member-name part of the interrogation.
CONSTITUTES: Obtains the name of each
segment that is specified in the SEGMENT
clause of the data definition of the structure type
PCB named in the member-name part of the
interrogation.

SENSITIVE-
FIELDS

PROGRAM-
COMMUNICATION-
BLOCKS

PCBS

ITEM

GROUP

SEQUENCE-KEY

CONCATENATED-
KEY

ITEMS

GROUPS

SEQUENCE-KEYS

CONCATENATED-
KEYS

CONCATENATED-
KEY-NAMES

PCB

(structure type)
This keyword is only applicable to structure type
PCBs.
USES: Obtains the name of each structure type
PCB that specifies, in the SENSITIVE- FIELDS
clause of its data definition, the member named
in the member-name part of the interrogation.
CONSTITUTES: Obtains the name of members
that are specified in the SENSITIVE-FIELDS
clause of the structure type PCB named in the
member-name part of the interrogation.

Interrogation
Syntax

USES interrogations CONSTITUTES interrogations

Keyword for use in
the VIA clause

Meaningful
member-type
selection keywords

Meaningful
member types for
member-name

Meaningful
member-type
selection
keywords

Meaningful
member types for
member-name

Explanation/Notes

4 Extensions to D
ataM

anager C
om

m
ands for IM

S (D
L/I) D

atabases

169

SEQUENCE-KEY-
CONSTITUENTS

PHYSICAL-
SEGMENTS

SEGMENTS

ITEM

GROUP

ITEMS

GROUPS

PHYSICAL-
SEGMENT

(logical child
segments only)

This keyword is only applicable to logical child
segments, and only when an AS subordinate
clause has been specified in the
SEQUENCE-KEYS clause. The response
includes only those members that precede the AS
clause, not those specified in it.
USES: Obtains the name of each logical child
segment that specifies, in the SEQUENCE-KEY
clause of its data definition, the item or group
named in the member-name part of the
interrogation.
CONSTITUTES: Obtains the name of each item
and/or group that is specified in the
SEQUENCE-KEY clause of the data definition
of the logical child segment specified in the
member-name part of the interrogation.

Interrogation
Syntax

USES interrogations CONSTITUTES interrogations

Keyword for use in
the VIA clause

Meaningful
member-type
selection keywords

Meaningful
member types for
member-name

Meaningful
member-type
selection
keywords

Meaningful
member types for
member-name

Explanation/Notes

A
SG

-D
ataM

anager IM
S (D

L/I) Interface

170

SEQUENCE-KEYS LOGICAL-
SEGMENTS

PHYSICAL-
SEGMENTS

SEGMENTS

ITEM

GROUP

SEQUENCE-KEY

ITEMS

GROUPS

SEQUENCE-KEYS

LOGICAL-
SEGMENT

PHYSICAL-
SEGMENTS

USES: Obtains the name of each physical
segment that specifies, in the SEQUENCE- KEY
clause of its data definition:

� The item or group named in the member-name
part of the interrogation, if an AS subordinate
clause is not present, or

� The sequence key internal member named in
the member-name part of the interrogation, if
an AS subordinate clause is present.

CONSTITUTES: Obtains the name of one of
these:

� Each item or group specified, where no AS
subordinate clause is present, or

� Each sequence key internal member specified,
when an AS subordinate clause is present

where these have been specified in the
SEQUENCE-KEY clause of the data definition
of the physical segment named in the
member-name part of the interrogation.

SEQUENCE-KEYS INDEX-POINTER-
SEGMENTS

SEGMENTS

SEQUENCE-KEYS SEQUENCE-KEYS INDEX-POINTER-
SEGMENTS

USES: Obtains the name of the index pointer
segment that specifies, in the SEQUENCE-KEY
clause of its data definition, the sequence-key
named in the member-name part of the
interrogation.
CONSTITUTES: Obtains the name of the
sequence key that is specified in the
SEQUENCE-KEY clause of the data definition
of the index pointer segment named in the
member-name part of the interrogation.

Interrogation
Syntax

USES interrogations CONSTITUTES interrogations

Keyword for use in
the VIA clause

Meaningful
member-type
selection keywords

Meaningful
member types for
member-name

Meaningful
member-type
selection
keywords

Meaningful
member types for
member-name

Explanation/Notes

4 Extensions to D
ataM

anager C
om

m
ands for IM

S (D
L/I) D

atabases

171

SECONDARY-INDEX-
DATABASES

DL/I-DATABASES

DATABASES

SECONDARY-INDEX
-DATABASE

SECONDARY-INDE
X-DATABASES

DL/I-DATABASES

DATABASES

SECONDARY-
INDEX-DATABASE

USES: Obtains the name of each secondary
index database that specifies, in the
SHARES-WITH or SHARING-WITH clause of
its data definition, the secondary index database
named in the member-name part of the
interrogation.
CONSTITUTES: Obtains the name of the
secondary index database, that is specified in the
SHARES-WITH or SHARING-WITH clause of
the data definition of the secondary index
database named in the member-name part of the
interrogation.

SOURCE INDEX-POINTER-
SEGMENTS

SEGMENTS

PHYSICAL-
SEGMENT

(source segment
only)

PHYSICAL-
SEGMENTS

SEGMENTS

INDEX-POINTER-
SEGMENT

USES: Obtains the name of each index pointer
segment that specifies, in the SOURCE clause of
its data definition, the index source segment
named in the member-name part of the
interrogation.
CONSTITUTES: Obtains the name of the index
source segment, that is specified in the SOURCE
clause of the data definition of the index pointer
segment named in the member-name part of the
interrogation

SSAS MODULES

PROGRAMS

SYSTEMS

INDEX-POINTER-
SEGMENT

LOGICAL-SEGMENT

PHYSICAL-
SEGMENT

INDEX-POINTER-
SEGMENT

LOGICAL-
SEGMENTS

PHYSICAL-
SEGMENTS

SEGMENTS

MODULE

PROGRAM

SYSTEM

USES: Obtains the name of each module and/or
program and/or system that specifies, in the
SEGMENT-SEARCH- ARGUMENTS clause
of the PROCESSES clause of its data definition,
the segment named in the member-name part of
the interrogation.
CONSTITUTES: Obtains the name of each
logical and/or physical and/or index pointer
segment, that is specified in the
SEGMENT-SEARCH-ARGUMENTS
subordinate clause of the PROCESSES clause of
the data definition of the module, system, or
program named in the member-name part of the
interrogation.

Interrogation
Syntax

USES interrogations CONSTITUTES interrogations

Keyword for use in
the VIA clause

Meaningful
member-type
selection keywords

Meaningful
member types for
member-name

Meaningful
member-type
selection
keywords

Meaningful
member types for
member-name

Explanation/Notes

A
SG

-D
ataM

anager IM
S (D

L/I) Interface

172

SUBSEQUENCE-
FIELDS

INDEX-POINTER-
SEGMENTS

ITEM

GROUP

SYSTEM-RELATED-
FIELD

ITEMS

GROUPS

SYSTEM-RELATED
- FIELDS

INDEX-POINTER-
SEGMENT

USES: Obtains the name of each index pointer
segment that specifies, in the
SUBSEQUENCE-FIELDS clause of its data
definition, the item, group, or system related
field named in the member-name part of the
interrogation.
CONSTITUTES: Obtains the name of each item
and/or group and/or system related field, that is
specified in the SUBSEQUENCE-FIELDS
clause of the data definition of the index pointer
segment named in the member-name part of the
interrogation.

TARGET INDEX-POINTER-
SEGMENTS

SEGMENTS

PHYSICAL-
SEGMENTS

(target segments
only)

PHYSICAL-
SEGMENTS

SEGMENTS

INDEX-POINTER-
SEGMENT

USES: Obtains the name of each index pointer
segment that specifies, in the RELATED-TO
clause of its data definition, the index target
segment named in the member-name part of the
interrogation.
CONSTITUTES: Obtains the name of the index
target segment, that is specified in the
RELATED-TO clause of the data definition of
the index pointer segment named in the
member-name part of the interrogation.

TO PHYSICAL-
SEGMENTS

SEGMENTS

PHYSICAL-
SEGMENT

(destination parent
segments only)

PHYSICAL-
SEGMENTS

SEGMENTS

PHYSICAL-
SEGMENT

(logical child
segments only)

USES: Obtains the name of each logical child
segment that specifies, in the TO subordinate
clause of its data definition, the destination
parent segment named in the member-name part
of the interrogation.
CONSTITUTES: Obtains the name of the
destination parent segment, that is specified in
the TO subordinate clause of the data definition
of the logical child segment named in the
member-name part of the interrogation.

Interrogation
Syntax

USES interrogations CONSTITUTES interrogations

Keyword for use in
the VIA clause

Meaningful
member-type
selection keywords

Meaningful
member types for
member-name

Meaningful
member-type
selection
keywords

Meaningful
member types for
member-name

Explanation/Notes

SHARES-WITH
SHARING-
WITH

4 Extensions to D
ataM

anager C
om

m
ands for IM

S (D
L/I) D

atabases

173

WITH PHYSICAL-
SEGMENTS

SEGMENTS

PHYSICAL-
SEGMENT

(logical child
segments only)

PHYSICAL-
SEGMENTS

SEGMENTS

PHYSICAL-
SEGMENT

(logical child
segments only)

USES: Obtains the name of the logical child
segment that specifies, in the WITH subordinate
clause of the RELATED-AS clause of its data
definition, the logical child segment named in the
member-name part of the interrogation (that is,
the logical child segment with which it is paired).
CONSTITUTES: Obtains the name of the
logical child segment, that is specified in the
WITH subordinate clause of the RELATED-AS
clause, in the data definition of the logical child
segment named in the member-name part of the
interrogation.

Interrogation
Syntax

USES interrogations CONSTITUTES interrogations

Keyword for use in
the VIA clause

Meaningful
member-type
selection keywords

Meaningful
member types for
member-name

Meaningful
member-type
selection
keywords

Meaningful
member types for
member-name

Explanation/Notes

 ASG-DataManager IMS (DL/I) Interface

174

Alternative Verb Keywords
A number of verb keywords are available for use as alternatives to certain USES and
CONSTITUTES interrogations. When these keywords are used, there is no need for a
VIA clause to be supplied.

For example, this interrogation:

WHICH selection FATHERS member-name

is equivalent to this interrogation:

WHICH selection USES member-name VIA

The equivalences are shown in this table:

Alternative Verb
Keyword

Equivalent USES/CONSTITUTES Interrogation

CONTAINS
member-name

USES member-name VIA CONTAINS

CONTAINED-BY
member-name

CONSTITUTES member-name VIA CONTAINS

FATHERS
member-name USES member-name VIA

FATHERED-BY
member-name CONSTITUTES member-name VIA

GENERATES
member-name

USES member-name VIA GENERATES

GENERATED-BY
member-name

CONSTITUTES member-name VIA GENERATES

FATHERS
PARENTS

FATHERS
PARENTS

FATHERS
PARENTS

175

5 5IMS (DL/I) Source Language Generation

This chapter includes these sections:

Introduction . 176

Generating IMS (DL/I) DBD Control Statements . 176

Generating IMS (DL/I) PSB Control Statements . 183

Generation of COBOL, PL/I, or Assembler Data Description Statements for Segment
Input/Output Areas. 189
The PRODUCE Command . 189
Installation Macros . 189
Segment Input/Output Areas: Items Defined as BINARY or BITS 190
Simple Physical Segments . 190
Logical Child Segments . 190
Destination Parent Segments. 191
Index Target and Index Source Segments. 191
Logical Segments and Logical Concatenated Segments. 192
Variable Length Segments . 192
Path Calls . 194
Index Pointer Segments. 194
Miscellaneous IMS (DL/I) Fields . 198

Generation of COBOL, PL/I, or Assembler Data Description Statements for Segment
Sensitive Fields Input/Output Areas . 198

Generation of COBOL, PL/I, or Assembler Data Description Statements for PCB
Masks . 200

Generation of COBOL, PL/I, or Assembler Data Description Statements for Segment
Search Arguments. 203

 ASG-DataManager IMS (DL/I) Interface

176

Introduction
The Source Language Generation Facility can produce IMS (DL/I) statements of these
types:

� IMS (DL/I) DBD control statements, which can subsequently be used as input for
an IMS (DL/I) DBD generation

� IMS (DL/I) PSB control statements, which can subsequently be used as input for a
(DL/I) PSB generation

� Record layouts and or COBOL, PL/I, or Assembler data description statements for
users� segment input/output areas

� Record layouts and or COBOL, PL/I, or Assembler data description statements for
users� segment sensitive fields input/output areas (defined through PCB members)

� Record layouts and or COBOL, PL/I, or Assembler data description statements for
Program Communication Block (PCB) masks

� Record layouts and or COBOL, PL/I, or Assembler data description statements for
segment search arguments

Generation of these statements is achieved by use of the PRODUCE command, described
in the publication ASG-Manager Products Source Language Generation. The variations
of the PRODUCE command required for the generations listed above are described in
this chapter.

The PRODUCE command can also be used to generate MARK IV File Definition forms
from encoded IMS-DATABASE (DL/I-DATABASE) and SEGMENT members. The
use of the PRODUCE command for this purpose is documented in the
ASG-DataManager MARK IV Interface publication.

Generating IMS (DL/I) DBD Control Statements
The installation macro DGDBD allows you to tailor generated IMS (DL/I) DBD control
statements to your own requirements. This macro is described in "The Macros DGDBD
And DGPSB" on page 210.

Syntax

� �IMS-DATABASE
DL/I-DATABASE

DL/I-DATABASE

DL/I-DATABASE

DL/I-DATABASE

RELEASE
VERSION

release-number
PRODUCE

�

DBDGEN
DATABASE-DESCRIPTIONS �

FOR language

5 IMS (DL/I) Source Language Generation

177

where:

rel-number is 1.2, 1.3, 2, 2.0, 2.1, 2.2, 3, 3.0, 3.1, 4, 4.1, 5, or 5.0.

language is COBOL, COBOL2, COBOL-2, COBOLII, COBOL-II, PL/I, PL/1, PLI,
PL1, PL/IF, PL/1F, PLIF, or PL1F.

pi-spec is:

database-name, segment-name, and sequence-key-name are valid IMS (DL/I)
names.

library is a string of up to 16 characters. The first character must be: #, alphabetic,
local currency symbol (internal code hexadecimal 5B), %, or @.

member is an IMS-DATABASE or DL/I-DATABASE member.

control-options is a series of optional clauses that are defined in the ASG-Manager
Products Source Language Generation publication, except that:

� The USE or USING clause defined there is excluded

� Only the KNOWN-AS option is valid in the GIVING clause

� Only the KNOWN-AS/ALIAS options are valid in the OMITTING clause

� If you specify NO-GENERATION and NO-PRINT, no processing occurs

� �

SEARCH-FIELDS
DIRECT-FIELDS
GENERATES-FIELDS
ALL-FIELDS

NO-ASSEMBLY-PRINT

� �

PRIMARY-INDEX pi-spec
FROM member

AS library

<<<<<<<<,<<<<<<<<<

� �

control-options
;
.

� �

DATABASE database-name SEGMENT segment-name

� �

SEQUENCE-KEY sequence-key-name AS library

 ASG-DataManager IMS (DL/I) Interface

178

Remarks

1 The first three elements of the command must be the first three shown in the format.
They must be in the order shown.

RELEASE/VERSION: By default, IMS Version 2 is assumed, unless the supplied
macro DGDBD has been tailored. Any value specified with this keyword overrides
the default specified in DGDBD.

2 Specify a FOR clause when you want DBD FIELD control statements to include the
two additional bytes required by PL/I for variable length fields.

3 None of the keywords SEARCH-FIELDS, DIRECT-FIELDS, GENERATES
FIELDS, or ALL-FIELDS, or the PRIMARY-INDEX clause (and hence, remark 4
on page 178 through remark 12 on page 180, and remark 20 on page 181 through
remark 22 on page 182 describing these keywords) are relevant when processing a
LOGICAL database.

4 If any of the keywords SEARCH-FIELDS, DIRECT-FIELDS,
GENERATES-FIELDS, ALL-FIELDS, or NO-ASSEMBLY-PRINT, or the
PRIMARY-INDEX clause are present in the command, they must precede the
FROM clause.

5 If none of the keywords SEARCH-FIELDS, DIRECT-FIELDS, GENERATES-
FIELDS, or ALL-FIELDS is specified in the command, SEARCH-FIELDS is
assumed.

6 If any of the keywords SEARCH-FIELDS, DIRECT-FIELDS,
GENERATES-FIELDS, or ALL-FIELDS is specified, DBD FIELD control
statements are automatically generated for these types of field:

� Sequence key fields

� Index-search-fields (XDFLDS), if index target segments are being processed

� System-related fields where the names are prefixed by a slash (/), if index
source segments are being processed

� Any field that is directly specified in the GENERATES clause of the segment
being processed

7 If one of the keywords SEARCH-FIELDS, DIRECT-FIELDS, or ALL-FIELDS is
specified, that is if GENERATES-FIELDS is not specified, DBD FIELD control
statements are automatically generated for the following types of fields also:

5 IMS (DL/I) Source Language Generation

179

When processing a physical segment:

� Segment search fields that are directly or indirectly contained by the segment.
These fields are specified in the QUALIFIED-ON clause of the PROCESSES
clause of SYSTEM, PROGRAM, or MODULE members that refer to the
segment.

� Sensitive fields that are directly or indirectly contained by the segment. These
fields are specified in the SENSITIVE-FIELDS clause of PCB members.

When processing an index pointer segment:

� Any field that is used as a segment search field, or a sensitive field, or which
is directly specified in the GENERATES clause of the segment being
processed, but only if these fields constitute the user data part of the index
pointer segment.

When processing an index source segment:

� Any field that is required for secondary indexing, that is, any field that
directly occurs in the SEARCH, SUBSEQUENCE, or DUPLICATE-DATA
lists of any index pointer segment that uses the index source segment being
processed.

8 SEARCH-FIELDS specifies that DBD FIELD control statements are to be generated
only for the fields described in remark 5 on page 178 and remark 6 on page 178.

9 DIRECT-FIELDS specifies that DBD FIELD control statements are to be generated
for the fields described in remark 5 on page 178 and remark 6 on page 178, and for
fields that are directly specified in the CONTAINS clause of the segment being
processed.

10 GENERATES-FIELDS specifies that DBD FIELD control statements are only to be
generated for the fields described in remark 5 on page 178 and for the fields that are
directly specified in the GENERATES clause of the segment being processed.

Thus, the GENERATES-FIELDS keyword suppresses the automatic generation by
DataManager of fields that are specified as segment search fields, sensitive fields or
fields used for secondary indexing, as described in remark 6 on page 178.

11 If GENERATES-FIELDS is specified, then when an index pointer segment is
processed, DBD FIELD control statements are generated for all fields specified in
the GENERATES clause regardless of whether they are part of the user data, or the
SEARCH, SUBSEQUENCE, or DUPLICATE-DATA parts of the index pointer
segment, or part of the target segment�s concatenated key (if this is included in the
index pointer segment).

 ASG-DataManager IMS (DL/I) Interface

180

12 ALL-FIELDS specifies that DBD FIELD control statements are to be generated for:

� All the fields that constitute the segment when a physical segment is being
processed

� The sequence key field and all of the fields that constitute the user data part of
the segment when an index pointer segment is being processed

13 When processing arrays, DataManager generates a DBD FIELD control statement
for the first occurrence of the array.

14 SEGM control statements are generated in the correct hierarchical sequence for each
segment where the name is listed in the CONTAINS clause of the database�s data
definition.

15 For segments that participate in any logical or secondary indexing relationship, the
operands for the SEGM control statements and their respective LCHILD control
statements are obtained from the data definitions, both of the segments being
processed and of the segments to which these are related.

16 The operands for the DBD and DATASET control statements are obtained from the
database�s data definition. The DBDNAME applied to the generated DBD control
statements is the database name.

17 For a HDAM or HIDAM database, if a DATASETS clause in the member�s data
definition contains an ADD-TO clause, the DATASET control statement generated
from it has no operands, but is labelled with the ddname stated in the clause. The
same label is also generated for the DATASET control statement that contains the
operands defining the dataset group.

18 For a HIDAM database:

� The DBD control statements generated, if valid when complete, are
immediately followed by the DBD control statements for its primary index
database, which are generated automatically.

� The names to be applied to the primary index database, its index pointer
segment and the segment�s sequence key field, can be specified in the
PRIMARY-INDEX clause of the PRODUCE command.

� If any of these names are not specified in the command, but are specified in
the ACCESS clause of the HIDAM database definition, then the name
specified in the latter clause is applied.

� If different names are specified for the same entity in the PRODUCE
command and the ACCESS clause, the name specified in the PRODUCE
command is applied.

5 IMS (DL/I) Source Language Generation

181

� Where neither the PRODUCE command nor the ACCESS clause specifies the
relevant name:

� The name applied to the primary index database is the name of the
HIDAM database suffixed with I.

� The name of the index pointer segment is the name of the HIDAM root
segment suffixed with I.

� The name applied to the sequence key field of the index pointer segment
is the name of the sequence key field for the HIDAM root segment
suffixed with I.

If any of these names becomes too long when suffixed with I, it is shortened by
dropping the middle character.

� The DBD control statements for the primary index database are written to the
output file as a separate member. The library name of this member can be
specified by the AS library-name subordinate clause of the
PRIMARY-INDEX clause. If this clause is omitted, the library name applied
is the library name of the HIDAM DBD control statements suffixed with I. If
this name becomes too long when suffixed with I, it is not truncated, (see
remark 24 on page 182), and generation of the member containing the control
statements does not take place.

In order to avoid this situation, a valid library name can be specified in the AS
library-name subordinate clause of the PRIMARY-INDEX clause, or the
MEMLEN parameter of the DGDBD tailoring macro can be used to extend
the permissible length of library names (see "The Macros DGDBD And
DGPSB" on page 210).

19 For a shared SECONDARY-INDEX database, the member-name in the FROM
clause must be that of the index database that is being shared; that is, its definition
must contain a DATASETS clause, not a SHARES-WITH clause.

20 If NO-ASSEMBLY-PRINT is stated in the command, an Assembler PRINT
NOGEN statement is generated to eliminate listing of the DBD control statements
when they are assembled.

21 The PRIMARY-INDEX clause can be present in the command only if one (and only
one) of the member-names in the FROM clause is the name of a HIDAM database.
If more than one of the member-names in the FROM clause are the names of
HIDAM databases, and a PRIMARY-INDEX clause is present in the command, no
generation is performed in respect of any HIDAM database name other than the first.

 ASG-DataManager IMS (DL/I) Interface

182

22 The PRIMARY-INDEX clause specifies, in respect of a HIDAM database named in
the FROM clause, user names that are to be applied (instead of the
DataManager-generated names defined in remark 18 on page 180) to:

� The corresponding primary index database�the index pointer segment of the
primary index database

� The sequence key field of the index pointer segment

� The generated library member

23 AS clauses are relevant only if DBD control statements are being written to an output
dataset.

24 Each AS clause present in the command relates only to the member name that
immediately precedes it. It declares a name under which the generated DBD control
statements are to be catalogued in the output source library dataset.

25 For each member-name for which no AS clause is specified, library-name is
defaulted to member-name if member-name conforms to the length restriction on
library-name. The length restriction on library-name is a maximum of 8 characters
(unless tailored, see MEMLEN). If member-name is longer than the permitted
maximum length for library-name, no generation takes place in respect of that
member-name, a message is output, and processing continues with the next
member-name or command.

26 Library-names, whether declared or defaulted, are not subjected to any name editing,
nor to any ALIAS or WITH-ALIAS clauses (see the ASG-Manager Products Source
Language Generation publication) that may be present in the command.

27 If ONTO filename is not specified in the PRODUCE command, a default file name
of GENLIB is used (unless another name is specified by the DDNAME parameter
of the macro DGDBD; see "The Macros DGDBD And DGPSB" on page 210).

28 The USE or USING clause is not applicable in the PRODUCE command for
generation of DBD control statements, as the form and version of GROUP and ITEM
members are obtained from the containing SEGMENT data definitions.

29 Other control-options clauses are as specified in the ASG-Manager Products Source
Language Generation publication, except that the GIVING clause may only specify
KNOWN-AS, and file OMITTING clause may only specify OMITTING
KNOWN-AS and/or ALIAS.

5 IMS (DL/I) Source Language Generation

183

30 If GIVING KNOWN-AS is specified, generated data names are based wherever
possible on local-names from:

� Containing members� KNOWN-AS clauses

� Logical child segments� RENAMES clauses

instead of on the members� names or aliases. (The equivalent DGDBD macro
keyword usage is KNOWNAS=YES.)

31 If you specify PRODUCE IMS VERSION n or n.n (where n is a version number
from 4 onwards) DBDGEN, the DEVICE= and MODEL= clauses are not generated.
For further information, refer to the IMS member type definitions in Chapter 3,
"Member Types," on page 21.

Generating IMS (DL/I) PSB Control Statements
The installation macro DGPSB allows generated DL/I PSB control statements to be
tailored to the installation�s own requirements. This macro is described in "The Macros
DGDBD And DGPSB" on page 210.

Syntax

where:

rel-number is 1.2, 1.3, 2, 2.0, 2.1, 2.2, 3, 3.0, 3.1, 4, 4.1, 5, or 5.0.

language is COBOL, COBOL2, COBOL-2, COBOLII, COBOL-II, PL/I, PL/l, PLI,
PL1, PL/IF, PU1F, PLIF, or PL1F.

� �IMS-DATABASE
DL/I-DATABASE

DL/I-DATABASE

DL/I-DATABASE

DL/I-DATABASE

RELEASE
VERSION

release-number
PRODUCE

�

PSBGEN
PROGRAM-SPECIFICATIONS �

FOR language

� �

OPTIONS optionsNO-ASSEMBLY-PRINT

� �FROM member

AS library

<<<<<<<<,<<<<<<<<<
;
.control-options

 ASG-DataManager IMS (DL/I) Interface

184

options are:

where:

num is an unsigned integer.

value is an unsigned integer not greater than 256000.

nnnn is an unsigned integer in the range 0 to 4095.

mem is the name of a SYSTEM, PROGRAM MODULE, or MMR-SYSTEM member.

library is a string of up to 16 characters. The first character must be: #, alphabetic,
local currency symbol (internal code hexadecimal 5B), %, or @.

control-options is as defined in "Generating IMS (DL/I) DBD Control Statements"
on page 176.

Remarks

1 The first elements in the command must be the command identifier, PRODUCE,
followed by the context keyword IMS. Next is optionally the RELEASE clause, then
one of the context qualifier keywords, PROGRAM-SPECIFICATION or PSBGEN.
These must be in the order shown; control-options can be in any order.

2 Specify a FOR clause when you want DBD FIELD control statements to include the
two additional bytes required by PL/I for variable length fields.

3 The RELEASE/VERSION clause specifies a version of IMS to produce statements
in accordance with the stated version. By default, IMS Version 2 is assumed. Use of
this keyword overrides the default specified by IMSLVL in macro DGPSB.

4 The optional keyword NO-ASSEMBLY-PRINT and the optional OPTIONS clause
must, if present, precede the FROM clause.

5 If NO-ASSEMBLY-PRINT is specified in the command, an Assembler PRINT
NOGEN statement is generated, to eliminate listing of the PSB control statements
when they are assembled.

� �

IO-PCBENQUEUS num IO-SIZE value

� �

SSA-SIZE value CONDITION-CODE nnnn
WTOR

�

OLIC
ONLINE-IMAGE-COPY �

PCB-LABELS
PCB-NAMES

5 IMS (DL/I) Source Language Generation

185

6 The ENQUEUES clause specifies the maximum number of database calls with the
IMS (DL/I) command code Q (corresponding to the DataManager command code
ENQUEUE), which may be issued between synchronization points. If this number
is exceeded, the application program will ABEND.

7 IO-PCB specifies that IMS (DL/I) is to add an I/O PCB for the input message to the
PSB, even if the program is to run in the Batch-DL/I region. (An I/O PCB is always
added for the input message if the program runs in the BMP or MSG region.)

8 The IO-SIZE clause enables the user to specify the largest size of input/output area
that can be used by the application program. If the clause is omitted, the IMS (DL/I)
ACB utility program calculates a maximum size to be used as default.

9 The SSA-SIZE clause enables the user to specify the maximum total length of all
SSAs to be used by the application program. If the clause is omitted, the IMS (DL/l)
ACB utility program calculates a maximum size to be used as default.

10 The CONDITION-CODE clause is applicable only in batch type regions. It specifies
the condition code that is to be returned to the operating system when IMS (DL/I)
terminates normally, and one or more input/output errors have occurred on any
database during the application program execution. This enables the user to set a
unique operating system condition code when an input/output error occurs and to test
the condition code in subsequent job steps. If the clause is not specified, the return
code passed from the application program is passed to the operating system and
status codes, and console messages are the only indicators of database input/output
errors.

11 If WTOR is specified, a WTOR for the DFSnnnnA input/output error message is
issued, and IMS (DL/I) waits for the operator to respond before continuing. A
response of ABEND causes IMS (DL/I) to terminate; a response of CONT causes
IMS (DL/I) to continue.

12 The ONLINE-IMAGE-COPY and OLIC keywords are synonymous. Either
specifies that the user of this PSB is authorized to execute the Online Database Image
Copy utility or the Surveyor utility feature.

13 The PSBNAME applied to the generated PSB control statements is the SYSTEM,
PROGRAM, or MODULE member name.

14 The operands for the PSBGEN control statement are obtained from the OPTIONS
clause specified in the PRODUCE command, as described in the remarks above. The
language operand is obtained from the LANGUAGE clause of the SYSTEM,
PROGRAM, or MODULE member being processed, provided that the character
string in that clause is any of these:

ALC ASSEMBLER ASSEMBLY BAL COBOL

 ASG-DataManager IMS (DL/I) Interface

186

PLI PL1 PL/I PL/1

If the character string is not one of these, or if the LANGUAGE clause is not
present, then COBOL is assumed. The remaining types of control statements are
generated from the PCB members listed in the CONTAINS subordinate clause of
the PROCESSES clause in the data definition of the SYSTEM, PROGRAM, or
MODULE member.

15 If generation is for IMS versions prior to 4, up to 255 occurrences of PCB control
statements will be generated. Otherwise, up to 500 occurrences of PCB control
statements will be generated.

16 PCB control statements are generated in the correct sequence for each PCB member
that has been specified in the PROCESSES clause. That is, first alternate PCBs for
each of the output-message-destination PCB members, then database PCBs for each
of the logical-data-structure PCB members and finally database PCBs for each of the
GSAM-database PCB members. Within each type of PCB, statements are generated
in the order in which the PCB members are specified.

17 For the PCB for a logical-data-structure, if KEYLENGTH has not been specified in
the PCB definition, then the value of the KEY LENGTH operand is calculated by
DataManager as the length of the largest concatenated key for all data-sensitive
segments specified in the relevant member.

18 The PROCSEQ operand is generated by DataManager if one of the SEGMENT
clauses specified for the PCB member contains the keyword
SECONDARY-SEQUENCE.

19 SENSEG control statements are generated in the correct hierarchical sequence for:

� Each SEGMENT clause specified in a logical-data-structure PCB member

� Each segment along the hierarchical paths to those segments

If generation is for IMS versions prior to 4, up to 1000 occurrences of SENSEG
control statements will be generated. Otherwise, up to 3000 occurrences of
SENSEG control statements will be generated.

5 IMS (DL/I) Source Language Generation

187

20 Under the following circumstances, DataManager produces SENSEG statements for
dependent segments of a target segment�s parent segments:

� One of the SEGMENT clauses specified for the PCB member contains the
keyword SECONDARY-SEQUENCE.

� The target segment is not the root segment of the relevant database.

� The dependent segments of the target segment�s parent segments are within
the scope of the segments specified in the PCB structure definitions.

21 Sibling segments may be rearranged to maintain the PCB segment order by
specifying the KEEP-HIERARCHY keyword.

22 The INDICES operand is generated by DataManager if the SEGMENT clause is for
an index target segment or a logical segment representing an index target segment,
and contains any USED-IN clauses which name index-field-name fields (XDFLDs)
for search fields.

23 Following each SENSEG statement generated, if sensitive fields are defined for that
segment in the PCB data definition, DataManager generates:

� A SENFLD statement for each sensitive field specified that is directly or
indirectly contained by the segment

� A SENFLD statement for each constituent member of a sensitive field that is
indirectly contained by the segment, if SUBFIELDS has been specified for
the sensitive field in the PCB member definition

The statements are generated in the order in which the sensitive fields are specified,
and the start position for each sensitive field is calculated from the lengths of any
preceding sensitive fields together with any preceding filler-bytes specified.

24 All names generated are subject to any editing specified in the command.

25 AS clauses are relevant only if DBD control statements are being written to an output
dataset.

26 Each AS clause present in the command relates only to the member-name that
immediately precedes it. It declares a name under which the generated DBD control
statements are to be catalogued in the output source library dataset.

27 For each member-name for which no AS clause is specified, library-name is
defaulted to member-name if member-name conforms to the length restriction on
library-name. The length restriction on library-name is a maximum of 8
characters (unless tailored, see MEMLEN). If member-name is longer than the
permitted maximum length for library-name, no generation takes place in respect
of that member-name, a message is output, and processing continues with the next
member-name or command.

 ASG-DataManager IMS (DL/I) Interface

188

28 Library-names, whether declared or defaulted, are not subjected to any name editing,
nor to any ALIAS or WITH-ALIAS clauses (see the ASG-Manager Products Source
Language Generation publication) that may be present in the command.

29 If ONTO file-name is not specified in the PRODUCE command, DataManager
uses a default file name of GENLIB (unless another name is specified by the
DDNAME parameter of the macro DGPSB; see "The Macros DGDBD And
DGPSB" on page 210).

30 The USE or USING clause is not applicable in the PRODUCE command for
generation of PSB control statements, as the form and version of any group or item
sensitive field is obtained from the containing SEGMENT data definition.

31 Other control-options clauses are as specified in the ASG-Manager Products Source
Language Generation manual, except that the GIVING clause may only specify
KNOWN-AS and the OMITTING clause may only specify OMITTING
KNOWN-AS and/or ALIAS.

32 If GIVING KNOWN-AS is specified, generated data names are based on the
KNOWN-AS clauses specified for sensitive fields in the PCB member definition,
instead of on the members� names or aliases. (The equivalent DGPSB macro
keyword usage is KNOWNAS=YES.)

It should be noted that the generated data names are not based on the KNOWN-AS
clauses that are directly specified in the SEGMENT definition�s CONTAINS
clause.

33 PCB-LABELS specifies that for each PCB statement generated, there should be a
label in columns 1 to 8. This label is generated from the PCB member name or its
alias, if one is specified on the PRODUCE command.

34 PCB-NAME specifies that for each PCB statement generated, there should be a
PCBNAME= clause. This clause is generated from the PCB member name or its
alias, if one is specified on the PRODUCE command.

35 These two apply to all PCB member types (DATABASE, OUTPUT-MESSAGE,
and GSAM).

36 If a PCB contains a AIB-LIST-ADDRESS specified as NO, and neither of these
keywords is specified then the PCB-NAMES option is assumed and a warning
message is issued.

5 IMS (DL/I) Source Language Generation

189

Generation of COBOL, PL/I, or Assembler Data Description
Statements for Segment Input/Output Areas

The PRODUCE Command
The format of the PRODUCE command to generate COBOL, PL/I, or Assembler data
description statements (and/or record layouts) for segment input/output areas is as
described in the ASG-Manager Products Source Language Generation publication.

The member-name in the FROM clause must be the name of an encoded SEGMENT
member, and the USE or USING clause is not applicable (because the form and version
of contained GROUP and ITEM members are determined from the segment data
definition). If the USE or USING clause is present in the command because it is required
for members of other types also named in the FROM clause, it is ignored when
SEGMENT members are processed.

The PRODUCE command can also generate COBOL, PL/I, or Assembler data
description statements for certain types of IMS (DL/I) fields for which data dictionary
members of special internal types exist. See "Miscellaneous IMS (DL/I) Fields" on
page 198. In these cases, the member-name in the FROM clause is the name of the field
for which the internal member was created.

Installation Macros
Three installation macros are provided, which allow the names that are to be applied to
certain lines of the generated data descriptions to be specified. These are the macros:

� DOSCOB, which is relevant to COBOL language generation

� DGSPLI, which is relevant to PL/I language generation

� DGSBAL, which is relevant to Assembler language generation

These macros are described in "The Macros DGSCOB, DGSPLI, DGSBAL, and
DGSREC" on page 213.

The data description statements that are generated for the various types of segments are
described in "Simple Physical Segments" on page 190 through "Miscellaneous IMS
(DL/I) Fields" on page 198.

A fourth installation macro, DGSREC, applies if record layouts are produced without
associated source language data description generation. This macro is also described in
"The Macros DGSCOB, DGSPLI, DGSBAL, and DGSREC" on page 213.

The installation macros DGCOB, DOPLI, DGBAL, and DGREC, described in the
ASG-Manager Products Source Language Generation manual, also apply, respectively,
when segment input/output area data descriptions are generated in COBOL, PL/I,
Assembler, or in record layout form without associated source language.

 ASG-DataManager IMS (DL/I) Interface

190

Segment Input/Output Areas: Items Defined as BINARY or BITS
Except as stated below, if a binary item or a bit string item is ALIGNED by virtue of the
definition of the containing GROUP or SEGMENT, then:

� A 1-byte binary item is rounded up to 2 bytes in length

� A 3-byte binary item is rounded up to 4 bytes in length

� A 5-, 6-, or 7-byte binary item is rounded up to 8 bytes in length

� Each bit string item begins on the next available byte boundary

If a binary or bit string item is a sequence key field, or a part of a sequence key field, of:

� A destination parent segment

� An index pointer segment

� An index source segment

� A segment in the hierarchical path of a destination parent segment, an index pointer
segment or an index source segment

Then when it forms part of:

� A logical child segment, by virtue of the destination parent�s concatenated key

� An index pointer segment, by virtue of the index target segment�s concatenated key

� A system related field, by virtue of the index source segment�s concatenated key

the binary or bit string item is not aligned. The length of unaligned binary items is not
rounded up unless the value of RNDBIN in the relevant macro DGCOB, DGPLI,
DGBAL, or DGREC is YES. Bit string items, if not aligned, do not begin at the next byte
boundary unless the RNDBIT parameter in the tailoring macros is set to YES. If the
lengths of binary or bit string items are to be consistent in different contexts (e.g., in
CONTAINS clauses and in concatenated keys) or in different languages (e.g., COBOL
and BAL), the value of RNDBIN and RNDBIT in these macros must be set to YES.

Simple Physical Segments
For a simple physical segment that participates in no logical or secondary indexing
relationships, data description statements are generated in the same manner as for a
GROUP member.

Logical Child Segments
The COBOL, PL/I, or Assembler data description statements generated for a logical child
segment include the concatenated key of the destination parent.

5 IMS (DL/I) Source Language Generation

191

A line is generated containing the name to be applied to the concatenated key. The name
output is the name specified in the CONCATENATED-KEY-NAME clause of the
segment definition, if specified; otherwise the name is obtained from the macro
DGSCOB, DOSPLI, DGSBAL, or DGSREC, as appropriate. This line is followed by the
description of the constituent concatenated keys, each one generated separately down to
ITEM level. If there is any intersection data, it is preceded by a line containing the name
to be applied to the user data, which is also obtained from the appropriate macro. The two
names obtained, whether from the segment definition or from the appropriate macro, are
subjected to any editing that is specified in the command.

The following illustrates the structure of COBOL or PL/I data description statements
generated for a logical child segment:

0l LOGICAL-CHILD-SEGMENT-NAME
 03 CONCATENATED-KEY-NAME
 05 KEYA
 05 KEYB
 05 KEYC
 03 USER-DATA-NAME
 05 FIELDA
 05 FIELDB
 05 FIELDC

If the data definition for a logical child segment includes AS sequence-key-name, the
generated data description statements do not include sequence-key-name. If required,
COBOL, PL/I, or Assembler data description statements for this type of field can be
generated separately in their own right, as described in "Miscellaneous IMS (DL/I)
Fields" on page 198.

The application program could include a COPY or %INCLUDE statement for the
segment, followed by a COPY or %INCLUDE statement for the sequence-key-name
field. Then, if the program is written in Assembler, the sequence-key-name field can be
ORGed back to the starting position of the sequence key field; or, if the program is
written in PL/I, the sequence-key-name field can be generated as a based structure whose
pointer is set to the starting position of the sequence key field.

Destination Parent Segments
Destination parent segments are treated as ordinary physical segments; that is, data
description statements are generated in the same manner as for a GROUP member.

Index Target and Index Source Segments
Index target and index source segments are treated as ordinary physical segments; that is,
data description statements are generated in the same manner as for a GROUP member.

 ASG-DataManager IMS (DL/I) Interface

192

If COBOL, PL/I, or Assembler data description statements are required for XDFLD
fields (that is, index-search-field-name fields which are defined in SEGMENT
INDEX-POINTER members) or for system related fields, they can be generated
separately in their own right, as described in "Miscellaneous IMS (DL/I) Fields" on
page 198.

Logical Segments and Logical Concatenated Segments
The COBOL, PL/I, or Assembler data description statements for a logical segment are
generated from the physical segment represented by the logical segment; except that the
name in the first statement is that of the logical segment.

The data description statements generated for a logical concatenated segment are
generated from the two physical segments represented by the logical concatenated
segment (except that the name in the first statement is that of the logical concatenated
segment). The following illustrates the structure of COBOL or PL/I data description
statements generated for a logical concatenated segment:

0l CONCATENATED-SEGMENT-NAME
 03 LOGICAL-CHILD-SEGMENT-NAME
 05 CONCATENATED-KEY-NAME
 07 KEYA
 07 KEYB
 07 KEYC
 05 USER-DATA-NAME
 07 FIELDA
 07 FIELDB
 07 FIELOC
 03 DESTINATION-PARENT-SEGMENT-NAME
 05 FIELDD
 05 KEYC
 05 FIELDE

In this illustration two different lines are generated for KEYC, the key field of the
destination parent; however, the fields can be distinguished from one another in the
application program by qualifying the appropriate field with either the logical child
segment name or the destination parent segment name. In Assembler data description
statements, the second and subsequent occurrences of duplicated names are blanked out.

Variable Length Segments
A variable length segment is defined to DataManager by specifying that the segment
contains, directly or indirectly, a variable length item member. A segment that directly or
indirectly contains a variable length array is not recognized as a variable length segment
by DataManager.

5 IMS (DL/I) Source Language Generation

193

If COBOL data description statements are to be generated for a variable length segment,
the segment must contain a variable length ITEM member, and this member must be
redefined by a variable length array. This is to satisfy the requirements of the VS COBOL
compiler, which only recognizes a segment as being of variable length if a variable length
array is contained in the segment.

For example, if a COBOL data description were generated from this data definition:

CONTAINS
ITEMA ELSE (ITEMS)ITEMC
;

the VS COBOL compiler would output a warning message and compilation would
continue. However, this definition:

CONTAINS
(ITEMB)ITEMC ELSE ITEMA
;

 would cause the VS COBOL compiler to output an error message and compilation would
fail.

The COBOL, PL/I, or Assembler data description statements generated for a variable
length segment include a line for the 2-byte sized field. The name to be applied to this
line is taken from the macro DGSCOB, DOSPLI, DGSBAL, or DGSREC, as appropriate.
The name is subjected to any editing specified in the command.

This illustrates the structure of COBOL or PL/I data description statements generated for
a variable length physical segment:

01 SEGMENT-NAME
 03 SIZE-FIELD-NAME
 03 FIELDA
 03 FIELDB

 ASG-DataManager IMS (DL/I) Interface

194

This illustrates the structure of COBOL or PL/I data description statements generated for
a variable length logical concatenated segment:

0l CONCATENATED-SEGMENT-NAME
 03 LDGICAL-CHILD-SEGMENT-NAME
 05 SIZE-FIELD-NAME
 05 CONCATENATED-KEY-NAME
 07 KEYA
 07 KEYB
 07 KEYC
 05 USER-DATA-NAME
 07 FIELDA
 07 FIELDB
 07 FIELDC
 03 DESTINATION-PARENT-SEGMENT-NAME
 05 SIZE-FIELD-NAME
 05 FIELDD
 05 KEYC
 05 FIELDE

If both parts of a logical concatenated segment are variable length, then the 2-byte sized
fields can be distinguished from one another in the application program by qualifying the
required size field with either the logical child segment name or the destination parent
segment name, as appropriate. In Assembler data description statements, the second and
subsequent occurrences of duplicated names are blanked out.

Path Calls
Data description statements for a user�s input/output area that is to handle segments
accessed in a path call can be obtained in this way:

� A separate COBOL, PL/I, or Assembler data description must be generated for each
of the data sensitive segments to be processed in the path call. (The starting level
number can be specified in the command.)

� The application program must then issue for its input/output area contiguous COPY
or %INCLUDE statements for each of the data sensitive segments to be
concatenated.

Index Pointer Segments
The Source Language Generation Facility produces a complete and comprehensive set of
COBOL, PL/I, or Assembler data description statements for index pointer segments.

5 IMS (DL/I) Source Language Generation

195

The macros DGSCOB, DGSPLI, DGSBAL, and DGSREC are used widely in the
generation of these data description statements. The statements generated include
statements containing names, obtained from the appropriate macro, that identify and
separate parts of the index pointer segment. These are parts of the segment to which there
is no particular requirement to apply a name in the data dictionary data definition, but
which the user might possibly wish to process as entities. The approach is adopted to
make it easier for the user to process any constituent parts of the index pointer segments.

This example illustrates the structure of COBOL or PL/I data description statements
generated for a complex index pointer segment. All constituent members are generated
down to ITEM level. All names are subject to any editing specified in the PRODUCE
command.

Data Description Statements See Remark Number:

01 INDEX-POINTER-SEGMENT-NAME 1

 03 KEY-NAME 2

 05 CONSTANT-NAME 3

 05 INDEX-FIELD-NAME 2, 4

 07 FIELD-A

 07 FIELD-B

 07 FIELD-C

 05 SUBSEQUENCE-NAME 5

 07 CKA 6

 09 KEYA

 09 FIELD-D

 05 SXA 7

 07 CKB 8

 09 KEYB

 03 DUPLICATE-DATA-NAME 9

 05 CKA

 07 KEYA

 07 FIELD-D

 05 CKB

 07 KEYB

 05 CKC

 ASG-DataManager IMS (DL/I) Interface

196

Remarks

1 The first line contains the member-name of the index pointer segment for which data
description statements are being generated, and is always generated (except, for
COBOL generation, when the value of the GEN keyword of the DOCOB macro is
FD).

2 This name is obtained from the member�s data definition, and is always generated.

3 CONSTANT-NAME is obtained from the macro DOSCOB, DGSPLI, or DGSBAL,
as appropriate. It is generated only if a CONSTANT field is defined for the index
pointer segment.

4 This field includes the members defined in the related index source segment�s
definition to constitute the search field. It represents the search field that can be used
in segment-search-arguments when accessing the related index target segment.

5 SUBSEQUENCE-NAME is obtained from the macro DGSCOB, DOSPLI, or
DGSBAL, as appropriate. It is generated only if subsequence fields are specified for
the index pointer segment. The field includes the system related fields defined in the
related index source segment�s definition, which are specified in the index pointer
segment�s definition to constitute the subsequence fields.

6 This is a system related field of the type that is constituted by any part of the source
segment�s concatenated key. In this illustration its constituent members are a
sequence key field followed by a constituent member of the next contiguous
sequence key field in the source segment�s concatenated key.

7 This is a system related field of the type that prompts IMS (DL/I) to generate a
unique 4-byte value.

 07 FIELD-E

 03 CONCATENATED-KEY-NAME 10

 05 KEYA

 05 KEYB

 05 KEYC

 05 KEYD

 03 USER-DATA-NAME 11

 05 FIELD-F

 05 FIELD-G

 05 FIELD-H

Data Description Statements See Remark Number:

5 IMS (DL/I) Source Language Generation

197

8 This is another system related field of the type that is constituted by any part of the
source segment�s concatenated key; but this field has only one constituent, a
sequence key field.

9 DUPLICATE-DATA-NAME is obtained from the macro DOSCOB, DGSPLI, or
DGSBAL as appropriate. It is generated only if duplicate-data fields are specified in
the index pointer segment. The field includes the system related fields defined in the
related index source segment�s definition, which are specified in the index pointer
segment�s definition to constitute the duplicate-data fields.

10 CONCATENATED-KEY-NAME is obtained either from the name specified in the
CONCATENATED-KEY-NAME clause of the segment, if specified, or from the
macro DGSCOB, DGSPLI, or DGSBAL, as appropriate. The field contains the
concatenated key fields of the related index target segment. The concatenated key is
automatically constructed by DataManager if it is not contained in the subsequence
or duplicate-data fields, and symbolic pointing is specified for the index pointer
segment.

11 USER-DATA-NAME is obtained from the macro DGSCOB, DGSPLI, or
DGSBAL, as appropriate. It is generated only if the index pointer segment contains
user data.

With COBOL and PL/I data description statements, any duplicate names that are
generated can be distinguished from one another by qualifying them with higher level
fields with names that are unique.

When Assembler data description statements are generated, each of the fields constituting
the index-field-data, subsequence-data, duplicate-data and the IMS (DL/I) generated
concatenated-key-data are given unique names by DataManager, to allow for the same
field appearing more than once in the segment. This is achieved by concatenating each
constituent field name to either the INDEX-FIELD-NAME, SUBSEQUENCE-NAME,
DUPLICATE-DATA-NAME, or CONCATENATED-KEY-NAME, depending on
where it appears. If a name becomes too long it is shortened by dropping characters from
the middle.

To ensure uniqueness of field names where more than one segment is involved, the user
must, if necessary, include editing clauses in the PRODUCE commands.

 ASG-DataManager IMS (DL/I) Interface

198

Miscellaneous IMS (DL/I) Fields
The DataManager Source Language Generation Facility can be used to generate record
layouts or COBOL, PL/I, or Assembler data description statements for these types of IMS
(DL/I) fields:

� Sequence-key-name fields, with a line generated for each constituent member down
to ITEM level. If a sequence-key-name field has been defined for a virtual logical
child segment, only the sequence-key-name field named in the PRODUCE
command is generated. If more than one sequence-key-name field is defined for the
segment, then each one required must be generated separately (contiguous COPY
or %INCLUDE statements can subsequently be issued in the application program to
include them concatenated together).

� Index-search-field-name fields (XDFLDs), with a line generated for each
constituent member down to ITEM level.

� System-related fields, with a line generated for each constituent member down to
ITEM level.

� Concatenated-key-name fields, with a line generated for each constituent member
down to ITEM level.

Generation of COBOL, PL/I, or Assembler Data Description
Statements for Segment Sensitive Fields Input/Output Areas

The format of the PRODUCE command to generate COBOL, PL/I, or Assembler data
description statements (and/or record layouts) for segment sensitive fields input/output
areas is as specified in the ASG-Manager Products Source Language Generation
publication, with the addition of a qualifier clause. This is the format of the qualifier
clause, which immediately precedes the command�s FROM clause:

USED-IN pcb-name

where pcb-name is the name of a STRUCTURE type
PROGRAM-COMMUNICATION- BLOCK or PCB member.

The member-name in the FROM clause must be the name of a SEGMENT member.

This form of the PRODUCE command first generates a source language (or record
layout) data description line for the segment being processed. A line is then generated for
each sensitive field specified for that segment in the PCB member named in the
USED-IN clause. These lines are generated for the fields in the order in which the fields
are specified, with fillers generated wherever filler-bytes are specified in the PCB
member.

5 IMS (DL/I) Source Language Generation

199

If no sensitive fields have been specified for the segment in the PCB member definition,
then statements or record layouts are generated as they would be normally, as if the
USED-IN clause had not been specified.

If GIVING KNOWN-AS is specified, the generated data names are based on local-names
from:

� KNOWN-AS clauses specified for the sensitive fields in the PCB member
definition

� Containing members� KNOWN-AS clauses, when processing the members that
constitute a sensitive field

instead of on the members� names or aliases. (The equivalent DGCOB, DGPLI, DGBAL,
or DGREC macro keyword usage is KNOWNAS=YES.)

It should be noted that the generated data names are not based on the KNOWN-AS
clauses that are directly specified in the SEGMENT definition�s CONTAINS clause.

Example

Using the example segment ASY-PACK and the related example PCB member
ASY-PACK-PCB shown in "Member-type Descriptions for IMS (DL/I) Program
Communication Blocks" on page 117 (example of STRUCTURE type PCB), this
command could be issued to generate COBOL data description statements for the
segment sensitive fields input/output area:

PRODUCE COBOL USED-IN ASY-PACK-PCB FROM ASY-PACK;

These would be the generated source language statements:

01 ASY-PACK,
 03 PACK-NO ---,
 03 FILLER PIC XX,
 03 PROD-NO ---,
 03 QTY-REQD.

 ASG-DataManager IMS (DL/I) Interface

200

Generation of COBOL, PL/I, or Assembler Data Description
Statements for PCB Masks

The PRODUCE command can be used to generate COBOL, PL/I or Assembler data
description statements and/or record layouts for PCB masks. In order to do this, each
PCB mask must be defined to DataManager as a GROUP containing these members:

� An ITEM member with a length of 8 bytes and a CHARACTER form-description,
to receive the database name returned by IMS (DL/I).

� An ITEM member with a length of 2 bytes and a CHARACTER form-description,
to receive the segment level number returned by IMS (DL/I).

� An ITEM member with a length of 2 bytes and a CHARACTER form-description,
to receive the status code returned by IMS (DL/I).

� An ITEM member with a length of 4 bytes and a CHARACTER form-description,
to contain the list of processing options required by IMS (DL/I).

� An ITEM member with a length of 4 bytes and a BINARY form-description, to be
used by IMS (DL/I) for internal linkage.

� An ITEM member with a length of 8 bytes and a CHARACTER form-description,
to contain the segment name returned by IMS (DL/I).

� An ITEM member with a length of 4 bytes and a BINARY form-description, to
contain the length of the key feedback area.

� An ITEM member with a length of 4 bytes and a BINARY form-description, to
receive the figure returned by IMS (DL/I) for the number of sensitive segment types
to which the application program is sensitive.

� An ITEM member with a CHARACTER form-description and of sufficient length
to receive the concatenated key of the segment returned by IMS (DL/I). The length
of this item is defined by the value of the length of key feedback field.

5 IMS (DL/I) Source Language Generation

201

Example

This example shows how a PCB mask, named DB-PCB, might be defined to
DataManager.

ADD DB-PCB;
GROUP
CONTAINS DB-NAME,SEG-LEVEL,STAT-CODE,PROC-OPT,FILLER,
 SEG-NAME,LN-KFB,NU-SENSEG,KEY-FB
;
ADD DB-NAME;
ITEM
HELD-AS CHAR 8
;
ADD SEG-LEVEL;
ITEM
HELD-AS CHAR 2
;
ADD STAT-CODE;
ITEM
HELD-AS CHAR 2
;
ADD PROC-OPT;
ITEM
HELD-AS CHAR 4
;
ADD FILLER;
ITEM
HELD-AS BINARY 9;
ADD SEG-NAME;
ITEM
HELD-AS CHAR 8
;
ADD LENG-KFB;
ITEM
HELD-AS BINARY 9
;
ADD NU-SENSEG
ITEM
HELD-AS BINARY 9
;
ADD KEY-FB;
ITEM
HELD-AS CHAR 100
;

COBOL data description statements could be generated from this definition by this
command:

PRODUCE COBOL FROM DB-PCB NOGEN PRINT USING HELD-AS;

 ASG-DataManager IMS (DL/I) Interface

202

These statements would be produced:

01 DB-PCB
02 DB-NAMEPIC X(8).
02 SEG-LEVELPIC XX.
02 STAT-CODEPIC XX.
02 PROC-OPTPIC X(4).
02 FILLERPIC S9(9)COMP.
02 LEN-KFBPIC S9(9)COMP.
02 NU-SENSEGPIC S9(9)COMP
02 KEY-FBPIC X(100).

PL/I data description statements could be generated by this command:

PRODUCE PL/I FROM DB-PCB NOGEN PRINT USING HELD-AS;

and these statements would be produced:

DCL
01 DB-PCB,

3 DB-NAME CHAR (8),
3 SEG-LEVEL CHAR (2),
3 STAT-CODE CHAR (2),
3 PROC-OPT CHAR (4),
3 FILLER FIXED BIN (31),

 3 SEG-NAME CHAR (8),
3 LEN-KFB FIXED BIN (31),
3 NU-SENSEG FIXED BIN (31),
3 KEY-FB CHAR (100)

Assembler data description statements could be generated by this command:

PRODUCE BAL FROM DB-PCB NOGEN PRINT USING
HELD-AS DROPPING "-";

and these statements would be produced:

DBPCB DS0CL136
DBNAME DSCL8
SEGLEVEL DSCL2
STATCODE DSCL2
PROCOPT DSCL4
FILLER DSFL4
SEGNAME DSCL8
LENKFB DSFL4
NUSENSEG DSFL4
KEYFB DSCL100
* END OF GROUP DBPCB
;

5 IMS (DL/I) Source Language Generation

203

Generation of COBOL, PL/I, or Assembler Data Description
Statements for Segment Search Arguments

The definition of segment search arguments used during the generation of DBD control
statements is described in "Syntax of the PROCESSES Clause" on page 132. The section
below describes how to define segment search arguments for the generation of COBOL,
PL/I, or Assembler, or record layouts.

The PRODUCE command can be used to generate COBOL, PL/I, or Assembler data
description statements and/or record layouts for segment search arguments. In order to do
this, each segment search argument for which data description statements are to be
generated must be defined to DataManager as a GROUP member, and its component
parts must be defined as ITEM members contained by that GROUP.

An unqualified segment search argument should be defined as a GROUP containing:

� An ITEM member with a length of 8 bytes, a CHARACTER form-description, and
a CONTENTS clause that specifies the name of the segment to be searched.

� An ITEM member with a length of 1 byte, a CHARACTER form-description, and a
CONTENTS clause that specifies the asterisk character (*). This field is necessary
only if a command code is included in the segment search argument.

� An ITEM member with a length of 1 to 4 bytes and a CHARACTER form
description. This field will receive command codes from the application program.
Alternatively, the member could have a CONTENTS clause specifying up to four
command codes for the segment search argument. This field is not required if no
command codes are to be included in the segment search argument.

� An ITEM member with a length of 1 byte, a CHARACTER form description, and a
CONTENTS clause that specifies a space character.

A qualified segment search argument should be defined as a GROUP containing the first
three items listed above, plus:

� An ITEM member with a length of 1 byte, a CHARACTER form description, and a
CONTENTS clause that specifies the left parenthesis character to indicate the start
of the qualification statement.

� An ITEM member with a length of 8 bytes, a CHARACTER form-description, and
a CONTENTS clause that specifies the name of the search field.

� An ITEM member with a length of 2 bytes, a CHARACTER form-description, and
a CONTENTS clause that specifies the relational operator.

� An ITEM member with a CHARACTER form-description, and a CONTENTS
clause that specifies the value that is to be compared with the values of the fields
being searched. The length of this field must be the same as that specified in the
DataManager data definition of the segment search field.

 ASG-DataManager IMS (DL/I) Interface

204

� An ITEM member with a length of 1 byte, and a CHARACTER form-description,
with a CONTENTS clause that specifies the right parenthesis character to indicate
the end of the qualification statement.

The standard segment search argument format described above and illustrated below may
be varied in two ways:

� If the C command code is used to retrieve a segment by its concatenated key, the
qualification statement must be replaced by an ITEM member with a
CHARACTER form-description and of the appropriate length to receive the
concatenated key of the required segment.

� Fields can be included to allow multiple qualification statements to be specified.
The fields required would be, for each additional qualification statement:

� An ITEM member with a length of 1 byte, a CHARACTER form-description,
and a CONTENTS clause that specifies the logical operator

� An ITEM member with a CONTENTS clause that specifies the name of the
search field, as described above

� An ITEM member with a CONTENTS clause that specifies the relational
operator, as described above

� An ITEM member with a CONTENTS clause that specifies the value to be
compared with the values of fields being searched, as described above

Example

This segment search argument:

Segment Name * Command
Code

Begin
QS

Field Name R.O. Value End
QS

TEST-SEG * --- (TESTFLD EQ AA)

5 IMS (DL/I) Source Language Generation

205

could be defined as a GROUP named TEST-SSA containing the ITEMs SSEGNAME,
SCCSEP, SCOMCODE, SLPAREN, SFLDNAME, SCOMPOP, SFLDVAL, and
SRPAREN, as shown:

ADD TEST-SSA;
GROUP
CONTAINS SSEGNAME, SCCSEP, SCOMCODE, SLPAREN, SFLDNAME,
 SCOMPOP1, SFLDVAL, SRPAREN
;
ADD SSEGNAME;
ITEM
HELD-AS CHAR 8
CONTENTS IS "TEST-SEG"
;
ADD SCCSEP;
ITEM
HELD-AS CHAR 1
CONTENTS IS "*"
;
ADD SCONCODE;
ITEM
HELD-AS CHAR 4
CONTENTS IS "---"
;
ADD SLPAREN;
ITEM
HELD-AS CHAR 1
CONTENTS IS "("
;
ADD SFLDNAME;
ITEM
HELD-AS CHAR 8
CONTENTS IS "TESTFLD"
;
ADD SCOMPOP;
ITEM
HELD-AS CHAR 2
CONTENTS IS "EQ"
;
ADD SFLDVAL;
ITEM
HELD-AS CHAR 2
CONTENTS IS "AA"
;
ADD SRPAREN;
ITEM
HELD-AS CHAR 1
CONTENTS IS ")"
;

 ASG-DataManager IMS (DL/I) Interface

206

COBOL data description statements could then be generated from this definition by this
command:

PRODUCE COBOL FROM TEST-SSA NOGEN PRINT USING HELD-AS
GIVING INITIAL VALUES;

These data description statements would be generated:

01 TEST-SSA.
 02 SSEGNAME PIC X(8)
 VALUE "TEST-SEG".
 02 SCCSEP PIC X
 VALUE "*".
 02 SCOMCODE PIC X(4)
 VALUE "---".
 02 SLPAREN PIC X
 VALUE "(".
 02 SFLDNAME PIC X(8)
 VALUE "TESTFLD".
 02 SCOMPOP PIC XX
 VALUE "EQ".
 02 SFLDVAL PIC XX
 VALUE "AA".
 02 SRPAREN PIC X
 VALUE ")".

PL/I data description statements could be generated by this command:

PRODUCE PL/I FROM TEST-SSA NOGEN PRENT USING HELD-AS GIVING
INITIAL-VALUES;

and these statements would be produced:

DCL
1 TEST-SSA,
 3 SSEGNAME CHAR(8)
 INIT ('TEST-SEG'),
 3 SCCSEP CHAR(1)
 INIT ('*'),
 3 SCOMCODE CHAR(4)
 INIT ('----'),
 3 SLPAREN CHAR(1)
 INIT ('('),
 3 SFLDNAME CHAR(8)
 INIT ('TESTFLD'),
 3 SCOMPOP CHAR(2)
 INIT ('EQ'),
 3 SFLDVAL CHAR(2)
 INIT ('AA'),
 3 SRPAREN CHAR(1)
 INIT (')');

5 IMS (DL/I) Source Language Generation

207

Assembler data description statements could be generated by this command:

PRODUCE BAL FROM TEST-SSA NOGEN PRINT USING HELD-AS
DROPPING "-" GIVING INITIAL-VALUES;

and these statements would be produced:

TESTSSA DSDCL27
SSEGNAME DCCL8'TEST-SEG'
SCCSEP DCCL1'*'
SCOMCODE DCCL4'----'
SLPAREN DCCL14'('
SFLDNAME DCCL8'TESTFLD'
SCOMPOP DCCL2'EQ'
SFLDVAL DCCL2'AA'
SRPAREN DCCL1')'
* END OF GROUP TESTSSA

 ASG-DataManager IMS (DL/I) Interface

208

209

Appendix A
Macros for Tailoring the IMS Interface

Implementation of the IMS (DL/I) Interface Macros
Several macros (in addition to those described in the ASG-Manager Products Source
Language Generation publication) are available to enable IMS (DL/I) Interface output
generated by the PRODUCE command to be tailored to conform to a particular
installation�s standards. These macros are:

� DGDBD, to enable the output of DBD control statements to be tailored

� DGPSB, to enable the output of PSB control statements to be tailored

� DGSCOB, to enable COBOL source language output to be tailored

� DGSPLI, to enable PL/I source language output to be tailored

� DGSBAL, to enable Assembler source language output to be tailored

� DGSREC, to enable the output of record layouts to be tailored

These macros are supplied as source modules on the installation magnetic tape. The
tables in "The Macros DGDBD And DGPSB" on page 210 and "The Macros DGSCOB,
DGSPLI, DGSBAL, and DGSREC" on page 213 list the keywords of the macros, for
which values can be specified when Manager Products are installed. For any macro, if the
supplied default values of all these keywords are acceptable, no further action need be
taken in respect of the macro. If any values are to be changed, the procedure described in
the ASG-Manager Products Installation in OS Environments publication must be carried
out.

These are the names of the resulting assembled modules:

Macro Module

DGDBD DIL88

DGPSB DIL89

DGSBAL DIL97

ASG-DataManager IMS (DL/I) Interface

210

The Macros DGDBD And DGPSB
The macros DGDBD and DGPSB, respectively, enable the generation of DBD control
statements and PSB control statements to be tailored. This table lists the keywords of
these macros for which values can be specified when Manager Products is installed.

DGSCOB DIL99

DGSPLI DIL98

DGSREC DIL96

Keyword Specifies

ACHAR The hex values of any extra characters that are to be accepted for output
in names produced by the Source Language Generation Facility, to
enable characters not in the standard source language character set to
be output (see remark 1 on page 212).

Default value: None.

Alternative value: Any valid hexadecimal value, or a sublist of such
values.

ACSMETH Type of file to be generated.

Default Value: BPAM.

Alternative Value: QSAM.

ALIAS Whether IMS specific aliases are to be generated instead of member
names.

Default Value: No.

Alternative Value: Yes (see remark 2 on page 212).

COLMAIN Starting character position for statement type.

COLMENT
(DGDBD only)

Starting character position for label generated from ADD-TO clause.

Default Value: I.

Alternative Value: Up to 99.

COLSUBS Starting character position for keyword or operand.

Default Value: 16.

Alternative Value: Up to 99.

Macro Module

Appendix A - Macros for Tailoring the IMS Interface

211

CONCARD Whether a control card is to be produced.

Default Value: Yes.

Alternative Value: No (see remark 3 on page 212).

DDNAME Default library name.

Default Value: 'GENLIB'.

Alternative Value: 'name' (see remark 4 on page 212).

IMSLVL The level of IMS for which you require Manager Products to provide
support (see remark 6 on page 213).

Default value: V3.

Alternative value: 1.2, 1.3, V3, V4, VS.

KNOWNAS Whether local-names from KNOWN-AS clauses are to be generated
instead of member names.

Default Value: No.

Alternative Value: Yes (see remark 2 on page 212).

LIBCC The format of the control card output as the first record of a QSAM
FILE (unless overridden by an ONTO clause).

Default Value: see ASG-Manager Products Source Language
Generation.

Alternative Value: Delimited character string of 1 to 72 characters
including a question mark (?).

MEMLEN Maximum length of library-name.

Default Value: 8.

Alternative Value: Up to 16.

RXLOG01

(DGDBD only)

Whether to relax the Manager Products integrity rule which forces a
reference to destination parent segments (see remark 7 on page 213).

Default Value: No.

Alternative Value: Yes.

RXLOG02

(DGDBD only)

Whether to relax the Manager Products integrity rule that the
concatenated segment variation with dependents must be the left-most
(see remark 8 on page 213).

Default Value: No.

Alternative Value: Yes.

Keyword Specifies

ASG-DataManager IMS (DL/I) Interface

212

Remarks

1 The standard Source Language Generation Facility output character set for DBD and
PSB control statements conforms to that defined for COBOL for the data division.
This character set can be extended to allow nonstandard characters to be output in
names by entering the hexadecimal value of each required character as a value to
ACHAR. The user should ensure that any extra characters that are added to the
output character set in this way are used only in ways that are permitted by the
software with which Manager Products is used.

2 If both ALIAS=YES and KNOWNAS=YES apply, then when a data name is
generated for a member that has an ALIAS clause and is subject to a containing
member�s KNOWN-AS clause, the KNOWN-AS local-name takes precedence.

3 When the value CONCARD=NO is used to suppress the generation of a control card,
the production of BKEND cards is also suppressed.

4 The variable name is a valid name, delimited, and up to 32 characters long. It must
be different from all other values named or used by default for the same macro.

5 The effect of the RNDBIT parameter is overridden by any alignment specification
stated in the data definition of any group or segment that contains the bit string item.

RXLOG01

(DGPSB only)

Whether to relax the Manager Products integrity rules for indirectly
contained segments within logical segments (see remark 9 on
page 213).

Default Value: No.

Alternative Value: Yes.

RXLOG02

(DGPSB only)

Whether to relax the Manager Products integrity rules so that a PCB
may refer to multiple variations of a concatenated segment (see
remark 10 on page 213).

Default Value: No.

Alternative Value: Yes.

RNDBIN Rounding of binary items.

Default Value: Yes.

Alternative Value: No.

RNDBIT Whether bit string fields are to be generated with byte alignment (see
remark 5 on page 212).

Default Value: No.

Alternative Value: Yes.

Keyword Specifies

Appendix A - Macros for Tailoring the IMS Interface

213

6 You can use the IMSLVL parameter to decide when to take advantage of the
additional features available in later IMS releases. The value of IMSLVL is the
default for all PRODUCE IMS commands. You can override this value using the
RELEASE/VERSION keywords in a PRODUCE IMS command.

7 You may want to suppress even key-sensitivity to a destination parent, to reduce I/O
overhead. When RXLOGO is specified as YES for DGDBD, the first source
segment may now be specified as the only segment contained within the logical
segment. As a result, warning message DM02517 with severity level W is never
issued when producing the source for an IMS database definition.

8 If there are multiple variations of a concatenated segment specified within a logical
database, it is possible to allow only one of these variations to have dependents.
Normally, this is only allowed to be the left-most, or first, variation in the hierarchy.
If RXLOGO2 is specified as YES for DGDBD, this rule is changed so that the
variation with dependents need not be the left-most, although there may still only be
one of the variations that has dependents.

9 If RXLOG01 is specified for DGPSB, it is accepted as valid to generate a PSB
containing a PCB that makes reference to segments indirectly contained within a
logical database. By indirectly, we mean that either of the sources of a concatenated
segment contained by a logical database may be referenced in place of the
concatenated segment as the parent of any dependent segments.

10 If RXLOG02 is specified for DGPSB, a PSB may be generated containing a PSB that
refers to more than one variation of a logically concatenated segment. Note that this
is only valid in the context of a HD database where the segments in question are
utilizing direct-address pointers and twin pointers are specified.

The Macros DGSCOB, DGSPLI, DGSBAL, and DGSREC
The purpose and applicability of these macros are defined in "Generation of COBOL,
PL/I, or Assembler Data Description Statements for Segment Sensitive Fields
Input/Output Areas" on page 198. This table lists the keywords of these macros for which
values can be specified when Manager Products is installed.

ASG-DataManager IMS (DL/I) Interface

214

Note:
The variable name is a valid name, delimited, and up to 32 characters long. It must be
different from all other values named or used by default for the same macro.

Keyword Specifies

CONKEY In a logical child segment: the name to be applied to the destination
parent�s concatenated key. In an index pointer segment that is pointed to
by symbolic pointers: the name to be applied to the concatenated key of
the corresponding index target segment. This concatenated key is
included in the data portion of the index pointer segment if the
concatenated key does not appear in the subsequence or duplicate-data
fields. The value specified by CON KEY is only used when no
CONCATENATED-KEY-NAME clause has been specified in the
SEGMENT member.

Default Value: CONCAT-KEY.

Alternative Value: name.

CONSTNT The name to be applied to the CONSTANT field of an index pointer
segment.

Default Value: CONSTANT.

Alternative Value: name.

DUPDATA The name to be applied to the duplicate data fields of an index pointer
segment.

Default Value: DUP-DATA-FLD.

Alternative Value: name.

SIZE The name to be applied to the SIZE field of a variable length segment.

Default Value: SIZE-FIELD.

Alternative Value: name.

SUBSEQ The name to be applied to the subsequence fields of an index pointer
segment.

Default Value: SUBSEQUENCE-FLD.

Alternative Value: name.

USERDAT The name to be applied to the user-data field of logical child and index
pointer segments.

Default Value: USER-DATA.

Alternative Value: name.

215

Appendix B
Manager Products and IMS Keywords

Introduction
Most keywords used in Manager Products IMS member types are similar to the
equivalent IMS usage. Some meanings may not be so clear, and so are explained further
in this appendix. Manager Products keywords are given in CAPITALS, and IMS terms
are given in italics.

IMS Databases
CONTAINS: This clause represents the segment hierarchy for any database.

HDAM/HIDAM databases

The ADD-TO and PRIME clauses indicate one or more PHYSICAL SEGMENTS
that must be added to the database within a secondary set group.

LOGICAL databases

The CONTAINS clause indicates that either a logical segment or a physical
segment may be included in the logical database.

SECONDARY-INDEX databases

The SHARES-WITH clause gives the capability of representing a shared secondary
index database that may contain several indices.

ASG-DataManager IMS (DL/I) Interface

216

Physical Segments
RELATED-AS (logical relationships)

UNIDIRECTIONAL-CHILD-SEGMENT is the logical child in a unidirectional
relationship and represents a pointer segment.

The CONTAINS CLAUSE for a UNIDIRECTIONAL-CHILD-SEGMENT
represents the intersection data in the logical relationship.

REAL-PAIRED-CHILD-SEGMENTs represent the real (as opposed to virtual) half
of a bidirectional-virtual paired relationship, also known as the RLC (Real Logical
Child).

The POINTERS clause for a REAL-PAIRED-CHILD-SEGMENT allows you to
specify these types of pointers:

� FORWARD-LOGICAL-TWIN = LTF (logical twin forward)

� BACKWARD-LOGICAL-TWIN = LTB (logical twin backward)

� SINGLE-LOGICAL-CHILD = LCF (logical child first)

� DOUBLE-LOGICAL-CHIILD = LCL (logical child last)

ATTRIBUTES clause (physical characteristics):

The POINTERS clause for PHYSICAL SEGMENT allows you to specify the
following clauses (representing IMS pointer types):

� FORWARD-HIERARCHICAL = HF (hierarchical-forward)

� BACKWARD-HIERARCHICAL = HB (hierarchical-backward)

� FIRST-CHILD = PCF (physical child first)

� LAST-CHILD = PCL (physical child last)

� SINGLE-TWIN = PTF (physical twin forward)

� DOUBLE-TWIN = PTB (physical twin backward + physical twin forward)

� NOTWIN = no twin pointers

� COUNTER = CTR (counter only)

� unspecified = NONE (unidirectional and real-paired children only).

217

Index

A
ADD-TO interrogation keyword 146
alignment 37
application view 13
arrays

FIELD control statements for 180

B
BACKWARD-LOGICAL-TWIN pointer 33
BOUND interrogation keyword 146, 150
BSAM access method 72
BULK command 2, 139

C
calls, command code 134
COBOL SYNCHRONIZED keyword 36
command codes 134
common clauses 23
CONCATENATED 34
concatenated 34, 136
concatenated key 34

as sensitive field in PCB 128
construction of 34
destination parent 15
index source segment 35
index target segment 35
internal member type 34
name 34
segment search arguments 136
sensitive segments in PCB 186

concatenated segment 136
logical 108

CONCATENATED-KEY-
CONSTITUENTS interrogation
keyword 150

CONCATENATED-KEY-FIELDS
clause 35

CONCATENATED-KEY-NAME 3, 34
CONCATENATED-KEY-NAME clause 34

index pointer segment 65
concatenated-key-name fields 136

CONCATENATED-KEY-NAME
interrogation keyword 148

CONCATENATED-KEY-NAMES
interrogation keyword 150

CONTAINED-BY interrogation
keyword 174

CONTAINS interrogation keyword 146
CONTAINS list 15
CONTENT declaration 28
control interval size 73
control module in application 20
controller�s commands 141
conventions page vi
counter field in logical parent segment 34
crossing logical relationships 108

D
data

intersection 15
data description statement generation

for PCB masks 14
for segment I/O areas 127
segment search arguments (SSA) 132

data fields 16
data set

groups 73
data set overflow 82
database

loading (processing option) 122
primary index 23
reading processing option 122
updating processing option 122

database definition 16
BLOCK subordinate clause 83
BUFFER clause 83
INPUTS clause 74
MODEL clause 83
OUTPUT clause 77

Database Description (DBD) Control
Statements 23
for HIDAM database 102
for LOGICAL database 107

ASG-DataManager IMS (DL/I) Interface

218

for primary index database 98
DATABASES interrogation keyword 150
DATASET control statements 180
DATASETS clause 76
DBD control statements

for shared SECONDARY-INDEX
database 181

KEY operand 108
DBD FIELD Control Statements 62
ddname 18
DEFAULTED-AS form of ITEM 16
destination parent segment 32
destination parent's concatenated key 31
DEVICE clause 77
DGDBD macro 209
DGPSB macro 209
DGSBAL macro 209
DGSCOB macro 209
DGSPLI macro 209
DGSREC macro 209
DIRECT-ADDRESS pointer 32
DL/I- DATASETS

interrogation keyword 146
DL/I-DATABASE member type 2
DL/I-DATASET internal member type 74
DL/I-DATASETS 3
dummy members 18
duplicate data fields across segments 38
DUPLICATE-DATA list 20
DUPLICATE-DATA-FIELDS

interrogation keyword 148
DUPLICATE-DATA-FIELDS clause 61

E
edit/compression routine for segment 43
EDIT-COMPRESSION-EXITS

interrogation keyword 150
encoding 15
ENTERED-AS form of ITEM 16
exit, user 43

F
FATHERED-BY interrogation keyword 174
FATHERS interrogation keyword 147
FIELD statements 20
fixed length logical record 73
FIXED record format 73
floating point items 60
form description of ITEM members 16
FORWARD-HIERARCHICAL keyword 41
FORWARD-LOGICAL-TWIN pointer 33
FREQUENCY clause 39
FREQUENCY-FREE-BLOCKS clause 90

G
GENERATED-BY interrogation

keyword 174
GENERATES

interrogation keyword 148, 151
GENERATES clause 20
GENERATES-FIELDS keyword in

PRODUCE command 178
GENLIB output file 182
GLOSSARY command 2, 139
GROUP member type 16
GSAM database 121

ACCESS clause 72
arrays in 146
CONTAINS clause 74
input data set 76
interrogation of 164
multibuffering option 121
PCB for 121

H
HDAM database 89

ACCESS clause 89
ADD-TO clause 90
ANCHOR-POINTS clause 89
CONTAINS clause 89
DATASET control statement 91
definition 89
dependent segment 42
INSERTION-BYTES-MAXIMUM

clause 89
interrogation of 146
pointers 34
RANDOMIZING-MODULE

clause 89
RELATIVE-BLOCK-MAXIMUM

clause 89
root segment of 40

HELD-AS form of ITEM 16, 61
HIDAM database

DATASET control statements 180
interrogation of 146
primary index database 17

hierarchical
relationship interrogation 143

HISAM database
interrogation of 147

HSAM database
interrogation of 147

I
IF

interrogation keyword 146

Index

219

IMS (DL/I) Control Statements 3
IMS member type keywords 139
IMS-DATABASE member type 2
IMS-DATASETS keyword 3
IN-DATABASES interrogation

keyword 165
index

search fields 17
source segment 18
target segment 19

index pointer 20
indexing

secondary 12
INDEX-SEARCH-FIELDS 3
installation macros 189
internal DataManager member types 17
interrogations 146
intersection data 15
ITEM members 16

L
LCHILD control statements 180
LIST command 2, 139
logical database 9

interrogation of 145

M
MAINTENANCE-EXITS interrogation

keyword 149
MARK IV file definition forms 176
member types

internal 17
selection keywords 140

MODEL clause 77
module

control 20
MODULE member type 20

N
NAME interrogation keyword 152
NO-ASSEMBLY-PRINT keyword 184

O
OF interrogation keyword 151
ON interrogation keyword 149
output source library data set 182

P
PARENTS interrogation keyword 147
path calls 194
PCB 14
PERFORM command 2, 139
physical database 5

interrogation of 150
physical segment 5
primary index database 180
PROCESSES clause

CONTAINS clause 19
SEGMENT-SEARCH-ARGUMENT

S clause 20
PRODUCE command

ALL-FIELDS keyword 178
AS clause 181
CONDITION-CODE clause 185
control options 176
DIRECT-FIELDS keyword 178
ENQUEUES clause 185
FROM clause 178, 181
IO-PCB keyword 185
IO-SIZE clause 185
OPTIONS clause 184
PRIMARY-INDEX clause 180
SEARCH-FIELDS keyword 178
SSA-SIZE clause 185
USE clause 182
USED-IN clause 187
USING clause 182

Program Communication 14
Program Communication Block

GSAM database 19
interrogation of 160
SEGMENT clause 186
WTOR keyword 185

Program Communication Blocks 13
PROGRAM member type 20
Program Specification Block (PSB) Control

Statements 14
PSB control statements

generation 183
language operand 185
library-names 182
PROCSEQ operand 186

PSBGEN control statement operands 185

Q
qualified segment search arguments 20
QUALIFIED-ON interrogation

keyword 153

R
RANDOMIZING MODULES interrogation

keyword 147
REAL-PAIRED-CHILD-SEGMENT 33
RENAMES interrogation keyword 151
REPORTED-AS form of ITEM 16

ASG-DataManager IMS (DL/I) Interface

220

S
search fields

in segment search arguments 20
SEARCH list 20
SEARCH-KEY-FIELDS interrogation

keyword 149
secondary index relationship 10
secondary indexing, fields for 179
SECONDARY- SEQUENCE-ON

interrogation keyword 152
SEGM control statements 180
SEGMENT

interrogation keyword 152
SEGMENT member type 7
segment search argument 11
segment search field 20
SEGMENT-SEARCH-ARGUMENTS

clause 20
SENSEG control statements 186
SENSITIVE-FIELDS interrogation

keyword 153
sequence key fields 17
SEQUENCE-KEY interrogation

keyword 149
SEQUENCE-KEY-CONSTITUENTS

interrogation keyword 151
SEQUENCE-KEYS interrogation

keyword 3
shared SECONDARY-INDEX database 181
SHARES-WITH interrogation keyword 148
SOURCE

interrogation keyword 149
Source Language Generation facility 3
SSAS

interrogation keyword 153
SUBSEQUENCE list 20
SUBSEQUENCE-FIELDS interrogation

keyword 149
SYSTEM member type 20
system related fields 17
SYSTEM-RELATED-FIELDS internal

member type 3

T
TARGET interrogation keyword 149
TO interrogation keyword 152

U
UNDEFINED record format 73
user data 179

V
validation performed by DataManager 17

VARIABLE record format 73
VIA clause

interrogation 143
VSAM access method 72

W
WHAT command 141
WHICH command 2, 139, 141

ASG Worldwide Headquarters Naples Florida USA I asg.com

	CD Contents
	Contents
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Publication Conventions
	ASG Customer Support
	Intelligent Support Portal (ISP)
	Telephone Support

	ASG Documentation/Product Enhancement Fax Form
	Preface
	About this Publication

	DataManager IMS (DL/I) Interface Facilities
	The IMS (DL/I) Environment and DataManager
	Introduction
	Segments
	Databases
	Application View

	Further Information
	Segments
	IMS (DL/I) Data Fields
	IMS (DL/I) Databases
	Special DataManager Member Types
	Application View

	Member Types
	Introduction
	Member-type Syntax for IMS (DL/I) Segments
	Physical Segments
	Logical Segments
	Segments that Reside in a Secondary Index Database

	Member-type Syntax For IMS (DL/I) Databases
	Outline of the IMS-DATABASE Member Type
	Member Type of a GSAM Type IMS (DL/I) Database Syntax
	The Member Type for a HSAM Type IMS (DL/I) Database
	The Member Type for a HISAM Type IMS (DL/I) Database
	The Member Type for a HDAM Type IMS (DL/I) Database
	The Member Type for a HIDAM Type IMS (DL/I) Database
	The Member Type for a LOGICAL Type IMS (DL/I) Database
	The Member Type for a SECONDARY-INDEX Type IMS (DL/I) Database

	Member-type Descriptions for IMS (DL/I) Program Communication Blocks
	PROGRAM-COMMUNICATION-BLOCK
	Example of a GSAM type PCB
	Examples of OUTPUT-MESSAGE Type PCBs
	Examples of STRUCTURE Type PCBs

	The PROCESSES Clause
	Syntax of the PROCESSES Clause

	Extensions to DataManager Commands for IMS (DL/I) Databases
	Introduction
	IMS (DL/I) Member-type Keywords
	Condition Keywords for WHICH and WHAT Commands
	Examples
	Member Type Interrogations
	Interrogation Syntax
	Alternative Verb Keywords

	IMS (DL/I) Source Language Generation
	Introduction
	Generating IMS (DL/I) DBD Control Statements
	Generating IMS (DL/I) PSB Control Statements
	Generation of COBOL, PL/I, or Assembler Data Description Statements for Segment Input/Output Areas
	The PRODUCE Command
	Installation Macros
	Segment Input/Output Areas: Items Defined as BINARY or BITS
	Simple Physical Segments
	Logical Child Segments
	Destination Parent Segments
	Index Target and Index Source Segments
	Logical Segments and Logical Concatenated Segments
	Variable Length Segments
	Path Calls
	Index Pointer Segments
	Miscellaneous IMS (DL/I) Fields

	Generation of COBOL, PL/I, or Assembler Data Description Statements for Segment Sensitive Fields ...
	Generation of COBOL, PL/I, or Assembler Data Description Statements for PCB Masks
	Generation of COBOL, PL/I, or Assembler Data Description Statements for Segment Search Arguments

	Appendix A
	Implementation of the IMS (DL/I) Interface Macros
	The Macros DGDBD And DGPSB
	The Macros DGSCOB, DGSPLI, DGSBAL, and DGSREC

	Appendix B
	Introduction
	IMS Databases
	Physical Segments

