Software Solutions

ASG-DataManager™
DL/l Interface: DOS

Version 2.5
Publication Number: DMR0200-25-DLI
Publication Date: June 1982

The information contained herein is the confidential and proprietary information of Allen Systems Group, Inc. Unauthorized use of this information and disclosure to
third parties is expressly prohibited. This technical publication may not be reproduced in whole or in part, by any means, without the express written consent of Allen
Systems Group, Inc.

© 1998-2002 Allen Systems Group, Inc. All rights reserved.
All names and products contained herein are the trademarks or registered trademarks of their respective holders.

ASG Worldwide Headquarters Naples Florida USA | asg.com | info@asg.com
1333 Third Avenue South, Naples, Florida 34102 USA Tel: 239.435.2200 Fax: 239.263.3692 Toll Free: 800.932.5536 (USA only)

ASG Documentation/Product Enhancement Fax Form

Please FAX comments regarding ASG products and/or documentation to (239) 263-3692.

Company Name Telephone Number Site ID Contact name
Product Name/Publication Version # Publication Date
Product:

Publication:

Tape VOLSER:

Enhancement Request:

© 2002 Allen Systems Group, Inc.

All names and products are trademarks or registered trademarks of their respective holders.

ASG Support Numbers

ASG provides support throughout the world to resolve questions or problems regarding
installation, operation, or use of our products. We provide all levels of support during normal
business hours and emergency support during non-business hours. To expedite response time,
please follow these procedures.

Please have this information ready:

. Product name, version number, and release number

J List of any fixes currently applied

. Any alphanumeric error codes or messages written precisely or displayed
. A description of the specific steps that immediately preceded the problem

o The severity code (ASG Support uses an escalated severity system to prioritize service to
our clients. The severity codes and their meanings are listed below.)

U Verify whether you received an ASG Service Pack for this product. It may include
information to help you resolve questions regarding installation of this ASG product. The
Service Pack instructions are in a text file on the distribution media included with the
Service Pack.

If You Receive a Voice Mail Message:

1 Follow the instructions to report a production-down or critical problem.

2 Leave a detailed message including your name and phone number. A Support representative
will be paged and will return your call as soon as possible.

3 Please have the information described above ready for when you are contacted by the Support
representative.

Severity Codes and Expected Support Response Times

Severity Meaning Expected Support Response
Time
1 Production down, Within 30 minutes

critical situation
2 Major component of product disabled Within 2 hours

3 Problem with the product, but customer has ~ Within 4 hours
work-around solution

4 "How-to" questions and enhancement Within 4 hours
requests

ASG provides software products that run in a number of third-party vendor environments. Support
for all non-ASG products is the responsibility of the respective vendor. In the event a vendor
discontinues support for a hardware and/or software product, ASG cannot be held responsible for
problems arising from the use of that unsupported version.

Business Hours Support

Your Location

Phone

Fax

E-mail

United States and
Canada

Australia
England
France
Germany

Singapore

All other countries:

800.354.3578

61.2.9460.0411
44.1727.736305
33.141.028590
49.89.45716.222
65.6332.2922

1.239.435.2200

239.263.2883

61.2.9460.0280
44.1727.812018
33.141.028589
49.89.45716.400
65.6337.7228

Non-Business Hours - Emergency Support

Your Location

Phone

Your Location

support@asg.com

support.au@asg.com
support.uk@asg.com
support.fr@asg.com

support.de@asg.com

support.sg@asg.com

support@asg.com

Phone

United States and
Canada

Asia
Australia
Denmark
France
Germany
Hong Kong
Ireland
Israel/Bezeq
Japan/IDC

800.354.3578

65.6332.2922
0011.800.9932.5536
00.800.9932.5536
00.800.3354.3578
00.800.3354.3578
001.800.9932.5536
00.800.9932.5536
014.800.9932.5536
0061.800.9932.5536

Japan/Telecom
Netherlands
New Zealand
Singapore
South Korea
Sweden/Telia
Switzerland
Thailand

United Kingdom

All other countries

0041.800.9932.5536
00.800.3354.3578
00.800.9932.5536
001.800.3354.3578
001.800.9932.5536
009.800.9932.5536
00.800.9932.5536
001.800.9932.5536
00.800.9932.5536

1.239.435.2200

ASG Web Site

Visit http://www.asg.com, ASG’s World Wide Web site.

Submit all product and documentation suggestions to ASG’s product management team at
http://www.asg.com/asp/emailproductsuggestions.asp.

If you do not have access to the web, FAX your suggestions to product management at (239)
263-3692. Please include your name, company, work phone, e-mail ID, and the name of the ASG
product you are using. For documentation suggestions include the publication number located on
the publication’s front cover.

http://www.asg.com/asp/emailproductsuggestions.asp
http://www.asg.com

Contents

Preface v
About this Publication v
Publication Conventions vi

1 DataManager DL/I Interface Facilities 1

2 The DL/I Environment and DataManager 5

Introduction 5

Segments 5

Databases 10

Application View 13
Further Information 14

Segments 14

DL/I Data Fields 15

DL/I Databases 16

Special DataManager Member Types 17

Application View 18

3 DataManager Data Definition Statements for a DL/l Environment 21

Introduction 21

DataManager Data Definition Statements for DL/I Segments 21
Outline of the SEGMENT Data Definition Statement 21
Specification of the Data Definition Statement for a Segment that
Resides in a Physical Database 24
Specification of the Data Definition Statement fora SEGMENT that
Resides in a Logical Database 42
Specification of the Data Definition Statement fora SEGMENT that
Resides in a Secondary Index Database 46

DataManager Data Definition Statements for DL/I Databases 56
Outline of the DL/I-DATABASE Data Definition Statement 56
Specification of the Data Definition Statement for a HSAM Type
DL/I Database 57
Specification of the Data Definition Statement for a HISAM Type
DL/I Database 62
Specification of the Data Definition Statement for a HDAM Type
DL/I Database 65
Specification of the Data Definition Statement for a HIDAM Type
DL/I Database 69

ASG-DataManager DL/I Interface: DOS

Specification of the Data Definition Statement for a LOGICAL
Type DL/I Database 74
Specification of the Data Definition Statement for a
SECONDARY-INDEX Type DL/I Database 78
DataManager Data Definition Statements for DL/I Program Communication
Blocks 82
DataManager System, Program, and Module Data Definition Statements for
a DL/I Environment 91
Outline of the SYSTEM, PROGRAM, and MODULE Data
Definition Statements for a DL/I Environment 91
Specification of the PROCESSES Clause 92

4 Extensions to DataManager Commands for DL/I Databases 99
Introduction 99
DL/l Member-type Keywords 99
Condition Keywords for Which and What Commands 102
Introduction 102
Examples 103
Member Type Interrogations 106
Interrogation Syntax 112
Alternative Verb Keywords 130

5 DL/ Source Language Generation from DataManager 131
Introduction 131
Generating DL/I DBD Control Statements 131
Generating DL/I PSB Control Statements 137
Generation of COBOL, PL/I, or Assembler Data Description Statements for
Segment Input/Output Areas 140
The PRODUCE Command 140
Installation Macros 141
Segment Input/Output Areas: Items Defined as BINARY or
BITS 141
Simple Physical Segments 142
Logical Child Segments 142
Destination Parent Segments 143
Index Target and Index Source Segments 143
Logical Segments and Logical Concatenated Segments 143
Variable Length Segments 144
Path Calls 145
Index Pointer Segments 145
Miscellaneous DL/I Fields 148
Generation of COBOL, PL/I, or Assembler Data Description Statements for
Segment Sensitive Fields Input/Output Areas 148
Generation of COBOL, PL/I, or Assembler Data Description Statements for
PCB Masks 150
Generation of COBOL, PL/I, or Assembler Data Description Statements for
Segment Search Arguments 153

Appendix
Macros for Tailoring the DataManager DL/I Interface 159

il

Contents

Implementation of the DL/I Interface Macros 159
The Macros DGDBD and DGPSB 160
The Macros DGSCOB, DGSPLI, DGSBAL, and DGSREC 161

Index 163

iii

ASG-DataManager DL/I Interface: DOS

v

Preface

This ASG-DataManager DL/I Interface: DOS describes the the DOS version of the DL/I Interface
facility. This facility (additional to the basic set-up, maintenance, and interrogation features)
enables the user fully to define DL/I databases in the dictionary and to produce DL/I DBD and
PSB control statements, PCB masks, segment search arguments, and segment input/output area
data description directly from ASG-DataManager (herein called DataManager) data definitions.

The scope of the DOS version of this interface encompasses the Data Language/I (DL/]) facility of
the IMS/VS subsystem available under VS (excluding OS/VS).

The OS version of the interface is described in ASG-DataManager DL/I Interface: OS.

This interface does not include the Data Communications (DC) facility of IMS/VS, for which a
separate interface is available.

Allen Systems Group, Inc. (ASG) provides professional support to resolve any questions or
concerns regarding the installation or use of any ASG product. Telephone technical support is
available around the world, 24 hours a day, 7 days a week.

ASG welcomes your comments, as a preferred or prospective customer, on this publication or on
any ASG product.

About this Publication

This publication consists of these chapters:

. Chapter 1, "DataManager DL/I Interface Facilities," summarizes the interfaces between
DataManager and DL/I.

. Chapter 2, "The DL/I Environment and DataManager," discusses very briefly the concept of
DL/I databases and illustrates how a DL/I database can be defined to DataManager.

. Chapter 3, "DataManager Data Definition Statements for a DL/I Environment," gives the
specifications of the DataManager data definition statements for DL/I databases and their
constituents.

° Chapter 4, "Extensions to DataManager Commands for DL/I Databases," describes

DataManager’s interrogation and documentation facilities for reporting on DL/I databases.

. Chapter 5, "DL/I Source Language Generation from DataManager," describes the interface
between DL/I and the DataManager source language generation facility.

ASG-DataManager DL/I Interface: DOS

Publication Conventions

These conventions apply to syntax diagrams that appear in this publication.

Diagrams are read from left to right along a continuous line (the "main path"). Keywords and
variables appear on, above, or below the main path.

Convention

Represents

>>

> <

e

»

At the beginning of a line indicates the start of a statement.

At the end of a line indicates the end of a statement.

At the end of a line indicates that the statement continues on the line below.

At the beginning of a line indicates that the statement continues from the line
above.

Keywords are in upper-case characters. Keywords and any required punctuation characters or
symbols are highlighted. Permitted truncations are not indicated.

Variables are in lower-case characters.

Statement identifiers appear on the main path of the diagram:

»—————— COMMAND >
A required keyword appears on the main path:

» —— COMMAND —— KEYWORD >
An optional keyword appears below the main path:

I [xevworp | g

Where there is a choice of required keywords, the keywords appear in a vertical list; one of them
is on the main path:

KEYWORD 1—|
» —— COMMAN KEYWORD2 >
KEYWORD3
>

or
» ———— COMMAND KEYWORD1
EKEYWORDt‘
KEYWORD

Where there is a choice of optional keywords, the keywords appear in a vertical list, below the

main path:

vi

Preface

Convention Represents

\

» —— COMMAND
i:KEYWORD 1:‘
KEYWORD2

The repeat symbol, <<<<<<, above a keyword or variable, or above a whole clause, indicates that
the keyword, variable, or clause may be specified more than once:

<<
variable

\/

»——— COMMAND

A repeat symbol broken by a comma indicates that if the keyword, variable, or clause is specified
more than once, a comma must separate each instance of the keyword, variable, or clause:

<<< , <<
variable

\

» — COMMAND

The repeat symbol above a list of keywords (one of which appears on the main path) indicates that
any one or more of the keywords may be specified; at least one must be specified:

<LK

»— COMMAND—EKEYWORD 1
KEYWORD2

\

The repeat symbol above a list of keywords (all of which are below the main path) indicates that
any one or more of the keywords maybe specified, but they are all optional:

<LLLLLLLLLLLLLLL -
» ——————— COMMAND »

EYWORDl
EYWORD2

vii

ASG-DataManager DL/I Interface: DOS

viii

Allen Systems Group, Inc. uses these conventions in publications:

Convention

Represents

ALL CAPITALS

Initial Capitals on Each Word

lowercase italic
monospace

Monospace

Directory, path, file, dataset, member, database, program,
command, and parameter names.

Window, field, field group, check box, button, panel (or
screen), option names, and names of keys. A plus sign (+) is
inserted for key combinations (e.g., Alt+Tab).

Information that you provide according to your particular
situation. For example, you would replace £1i1lename with
the actual name of the file.

Characters you must type exactly as they are shown. Code,
JCL, file listings, or command/statement syntax.

Also used for denoting brief examples in a paragraph.

DataManager DL/l Interface Facilities

The DL/I Interface in DataManager provides facilities for all users in an DL/I environment. It
enables users to perform these tasks:

. Define DL/I databases and segments to DataManager (in a simpler manner than that
available from the use of DL/I Database Description Control Statements); to hold the
definitions in the data dictionary; and to document them, to interrogate them and to process
them by the standard DataManager commands

. Generate from the data dictionary and to insert into the required source library complete sets
of Database Description (DBD) Control Statements to allow a DBD generation process

. Define at SYSTEM/PROGRAM/MODULE data definition level and Program
Communication Block (PCB) data definition level the application view of the databases
used by programs

. Generate from the data dictionary and to insert into the appropriate source library complete
sets of Program Specification Block (PSB) Control Statements to allow a PSB generation
process

. Generate record layouts and/or COBOL, PL/I, or Assembler data descriptions for segment

input/output areas

. Generate record layouts and/or COBOL, PL/I, or Assembler data descriptions for segment
input/output areas for sensitive fields

. Generate record layouts and/or COBOL, PL/I, or Assembler data descriptions for Program
Communication Block (PCB) masks

. Generate record layouts and/or COBOL, PL/I, or Assembler data descriptions for segment
search arguments (SSAs)

ASG-DataManager DL/I Interface: DOS

The ability to define DL/I databases, segments, and Program Communication Blocks demands
three additional member types in DataManager:

. To define a database, the member type is DL/I-DATABASE. In the DataManager member
type hierarchy, this database member type is at the same level as the FILE member type.

. To define a Program Communication Block, the member type is
PROGRAM-COMMUNICATION-BLOCK or PCB, which comes between the MODULE
member type and the DL/I-DATABASE member type in the DataManager member type
hierarchy. The two member type identifiers PROGRAM-COMMUNICATION-BLOCK
and PCB are synonymous.

. To define a segment, the member type is SEGMENT, which comes between the
DL/I-DATABASE member type and the GROUP member type in the DataManager
member type hierarchy.

The DL/I-DATABASE data definition statement, the
PROGRAM-COMMUNICATION-BLOCK/PCB data definition statement and the SEGMENT
data definition statement are discussed further in Chapter 2, "The DL/I Environment and

DataManager," on page 5 and are specified in Chapter 3, "DataManager Data Definition
Statements for a DL/I Environment," on page 21.

Also required are facilities at the SYSTEM, PROGRAM, and MODULE data definition levels to
allow the application view of databases to be specified. The relevant formats of the SYSTEM,
PROGRAM, and MODULE data definition statements are discussed in Chapter 2, "The DI/I

Environment and DataManager." on page 5 and are specified in Chapter 3, "DataManager Data
Definition Statements for a DL/I Environment," on page 21.

To enable the definitions of DL/I databases, Program Communication Blocks and segments to be
processed by DataManager in the same way as other members of the data dictionary, the keywords
DL/I-DATABASES, PROGRAM-COMMUNICATION-BLOCKS, PCBS, and SEGMENTS are
added to the member-type keywords available for use in these basic DataManager commands:

. BULK

. GLOSSARY
. LIST

. PERFORM
. WHICH

Any of the alternative forms DL/I-DATABASES, DLI-DATABASES, and DLI-DATABASES
are accepted for the keyword DL/I-DATABASES.

1 DataManager DL/l Interface Facilities

These keywords are also added to the commands to enable interrogation and documentation in
respect of members of internal member types:

° SEQUENCE-KEYS

. DL/I-DATASETS (with the alternative forms DL/1-DATASETS, DLI-DATASETS, or
DL1-DATASETS)

o INDEX-SEARCH-FIELDS
. SYSTEM-RELATED-FIELDS
. CONCATENATED-KEY-NAMES

These members are generated by DataManager (see "Special DataManager Member Types" on
page 17). As members of internal types have no source records, a BULK ENCODE or BULK
PRINT command selecting members of these types is meaningless.

Other extensions to the syntax of basic DataManager interrogation and documentation commands
provide powerful facilities for reporting on the structure of DL/I database systems. These facilities

are specified in Chapter 4, "Extensions to DataManager Commands for DL/I Databases," on
page 99.

The ability to generate DL/I Control Statements, data descriptions for segment input/output areas,
PCB masks, and segment search arguments requires the use of the Source Language Generation
facility (selectable unit DMR-SL5). The fundamentals of the Source Language Generation facility,
including the output of data descriptions in COBOL, PL/I, and Assembler, are described in the
ASG-Manager Products Source Language Generation publication.

Enhancements to the Source Language Generation facility which enable it to output DL/I Control
Statements and COBOL, PL/I, and Assembler data descriptions for segment input/output areas,
PCB masks, and segment search arguments are specified in Chapter 5, "DL/I Source Language

Generation from DataManager," on page 131.

For an installation that is implementing an DL/I database management system for the first time,
ASG recommends this approach:

. Study in depth the concepts and facilities both of DL/I and of DataManager.
. Design the DL/I database structures required for the initial implementation.

. Set up a DataManager data dictionary in which the definitions of the data structures and the
application views can be developed.

. Write DataManager data definitions of the databases, the segments, and the constituent
groups and items, and add them to the data dictionary.

. Add program and module data definitions and PCB members for the application views.

. Using DataManager's Source Language Generation facility, generate the DL/I Control
Statements and the data descriptions for segment input/output areas, PCB masks, and
segment search arguments.

You will find that this approach is simple and offers additional checks on accuracy over
implementation using DL/I facilities alone.

ASG-DataManager DL/I Interface: DOS

The DL/l Environment and DataManager

Introduction

Segments

One of the fundamental concepts of DL/I is that it is not the physical organization of the data that
is significant, but rather the logical structures of the data as viewed by specific applications.

The basic element of data in a DL/I environment is the segment. Regardless of where or how
segments are physically stored, a DL/I database system is effectively a logical collection of
segments, which happen to occur in one or more physical databases, some or all of which are
required for specific applications.

Figure 1 illustrates the concept of a logical data structure for an Employee database, named
SKILLEMP.

Figure 1. Logical Structure of an Employee Database, SKILLEMP

SKILL

segment

NAME

segment

|
| | | |

ADDR PAYROLL EXPR EDUC
segment segment segment segment

ASG-DataManager DL/I Interface: DOS

However, the six segments in Figure 1 on page 5 may actually represent segments stored in one or
more physical databases. If, for example, the six segments were stored in two physical databases,
one a Payroll database and the other a Skills Inventory database, then Figure 2 indicates a possible
hierarchical structure of the segments within their physical databases, linked by the segment
SKILLNAM.

Figure 2. Physical Storage of the Employee Database, SKILLEMP

PAYRLLDB SKILLINV

Database Database

NAMEMAST SKLLMAST
segment segment

| | |

ADDRMAST PAYRMAST SKILLNAM

segment segment segment
| | |
EXPRMAST EDUCMAST
segment segment

Using the DataManager DL/I Interface, each of the segments shown in Figure 1 on page 5 and

Figure 2 can be defined as a data dictionary member of a member type called SEGMENT.

2 The DL/I Environment and DataManager

If certain assumptions are made regarding the specific attributes of the segments, then this would
be the method of using DataManager data definition statements to define these segments:

. For the segments in Figure | on page 5:

ADD SKILL;
SEGMENT LOGICAL
CONTAINS SKLLMAST
ADD NAME;

SEGMENT LOGICAL
CONTAINS SKILLNAM, NAMEMAST
ADD ADDR;

SEGMENT LOGICAL
CONTAINS ADDRMAST
ADD PAYROLL;
SEGMENT LOGICAL
CONTAINS PAYRMAST
ADD EXPR;

SEGMENT LOGICAL
CONTAINS EXPRMAST
ADD EDUC;

SEGHENT LOGICAL
CONTAINS EDUCMAST

1

. For the segments in Figure 2 on page 6:

ADD NAMEMAST;

SEGMENT PHYSICAL

RELATED-AS DESTINATION-PARENT

ATTRIBUTES
CONTAINS INITIAL, SURNAME, SEX
FREQUENCY 100
SEQUENCE-KEY SURNAME DUPLICATED
INSERT-POSITION LAST

ADD ADDRMAST;

SEGHENT PHYSICAL

ATTRIBUTES
CONTAINS HOUSE, STREET, TOWN, COUNTY
INSERT-POSITION LAST

ADD PAYRMAST;

SEGMENT PHYSICAL

ATTRIBUTES
CONTAINS PAYRNUMB, STATUS, RATE
SEQUENCE-KEY PAYRNUMB UNIQUELY

ASG-DataManager DL/I Interface: DOS

ADD SKLLMAST;
SEGMENT PHYSICAL
ATTRIBUTES
CONTAINS SKLLCODE, SKLLTYPE
SEQUENCE-KEY SKLLCODE UNIQUELY
ADD SKILLNAM;
SEGMENT PHYSICAL
RELATED-AS UNDIRECTIONAL-CHILD TO NAMEMAST
ATTRIBUTES
SEQUENCE-KEY EMPLOYEE-NO UNIQUELY
CONTAINS EMPLOYEE-NO
ADD EXPRMAST;
SEGMENT PHYSICAL
ATTRIBUTES
CONTAINS EXPRCDDE, EXPRTIME
INSERT-POSITION FIRST
ADD EDUCMAST;
SEGMENT PHYSICAL
ATTRIBUTES
CONTAINS QUALCODE
SEQUENCE-KEY QUALCODE UNIQUELY

Another feature of DL/I is the secondary indexing facility. Briefly, this enables the user to access a
segment in a physical or logical database, based on data located in one of its dependent segments;
and also optionally to process the database as if its structure has been inverted, with the segment
being accessed as the root of the structure. In a secondary index database, an occurrence of an
index pointer, segment is generated for each occurrence of the index source segment containing
the search-field data, on which accessing the index target segment is to be based.

Figure 3 on page 9 illustrates the concept of secondary indexing for an Automobile Register
database.

"Xopur AIepuooas ot} 10j

PO o1B3s Y} 10§ PAsn ST YOTOD YOIy ur
“uowas 901n0s xapur 3y St FTFINOLNY

2 The DL/I Environment and DataManager

40714
OV JTdINOLNY
: adyd
JuUowWI3as
901n0S xapul FTGNOLNY UB JO 90USLINI0 d1dnoLnY JTdNOLNYV
MOTTIA 0B 10J PAIRIAUAF SI SIUSWFAS 383y} JO JUQ
OISYOTOD quowidas 1aurod xapur o St HASYOTOD amd
_ HTdINOLNYV
adyd
DHSIOTOO
MOTTIA
agd 21ENOLNY
DISYOTOOD
an714d
DASIOTOOD
HLINS
AOVId ATANVN

DASIOTOD Juowizas

19818} XOpUI

SANOI ST ATANVN

N | ATANVN
SINVAav
ATHNVN
ALID
oseqeje(J XopuJ ArepuoddS TOD0LNV 3SeqeIR(] POXopUl DAJOLNY

Buixapu|] Aiepuodsag jo ajdwex3 uy "¢ ainbi4

ASG-DataManager DL/I Interface: DOS

Databases

10

Using the DataManager DL/I Interface, each of the segments shown in Figure 3 on page 9 can be
defined as a data dictionary SEGMENT type member.

If certain assumptions are made regarding the specific attributes of the segments, then this would
be the method of using DataManager data definition statements to define these segments:

ADD CITY;
SEGMENT PHYSICAL
ATTRIBUTES
CONTAINS CITYNAME, STATE, CITYCODE
SEQUENCE-KEY CITYCODE UNIQUELY
ADD NAMEID;
SEGMENT PHYSICAL
RELATED-AS TARGET-SEGMENT
ATTRIBUTES
CONTAINS INITIAL, SURNAME, IDENTCDE
SEQUENCE-KEY IDENTCDE UNIQUELY
ADD AUTOMBLE;
SEGMENT PHYSICAL
RELATED-AS SOURCE-SEGMENT
ATTRIBUTES
CONTAINS MODEL, COLOR,WEIGHT
INSERT-POSITION LAST
ADD COLORSEG;
SEGMENT INDEX-POINTER
RELATED-TO NAMEID ON COLCODE
SOURCE AUTOMBLE
SEARCH-KEY-FIELD COLOR
ATTRIBUTES
SEQUENCE-KEY COLORTYP

In this example, COLCODE is the name of the search-field (XDFLD) that can be used in the
segment search argument for the calls issued to DL/I to access the index target segment.

As indicated in "Segments" on page 5, an essential feature of an DL/I database system is the
ability to overlay multiple logical data structures on non-repetitive physical data structures, where
the logical data structures are designed in a manner that satisfies the functional requirements of
specific applications. Logical databases (using logical relationships specified for segments of
physical databases) define structural relationships among actual segments of one or more physical
databases, which can differ from the structural relationships in the physical database(s). Segments
from any given physical database can belong to many logical databases.

DL/T also offers the facility to access segments in physical or logical databases, in a sequence
specified by a secondary index database.

2 The DL/I Environment and DataManager

In "Segments" on page 5 it was shown how DataManager SEGMENT data definition statements
are used to define the characteristics and the logical or secondary indexing relationships of
segments.

Data definition statements for a data dictionary member type called DL/I-DATABASE are used to
define the access and organization methods of the databases to DataManager, and to specify the
hierarchy of the segments that they contain.

11

ASG-DataManager DL/I Interface: DOS

If certain assumptions are made regarding the specific attributes of the databases shown in
Figure 1 on page 5, Figure 2 on page 6, and Figure 3 on page 9, respectively, then this would be
the method of using DataManager data definition statements to define those databases:

. For the database in Figure 1 on page 5:

ADD SKILLEMP;
DL/I-DATABASE LOGICAL
CONTAINS SKILL,

NAME PARENT SKILL,
ADDR PARENT NAME,
PAYROLL PARENT NAME,
EXPR PARENT NAME,
EDUC PARENT NAME

1

. For the databases in Figure 2 on page 6:

ADD PAYRLLDB;
DL/I-DATABASE HDAM
DATASETS PRIME PAYRF BLOCK 1024
DEVICE 3340
CONTAINS NAMEMAST,
ADDRMAST PARENT NAMEMAST,
PAYRMAST PARENT NAMEMAST
ADD SKILLINV;
DL/I-DATABASE HISAM
DATASETS PRIME SKLLF BLOCK 2048
DEVICE 3340
CONTAINS SKLLMAST,
SKILLNAM PARENT SKLLMAST,
EXPRMAST PARENT SKILLNAM,
EDUCMAST PARENT SKILLNAM

I

° For the databases in Figure 3 on page 9:

ADD AUTOREG;
DL/I-DATABASE HDAM
RANDOMIZING-MODULE AUTRTNE
ANCHOR-POINTS 1
RELATIVE-BLOCK-MAXIMUM 500
INSERTION-BYTES-MAXIMUM 824
DATASETS PRIME AUTOF BUFFER 1648
DEVICE 2314
SCAN 5
CDNTAINS CITY,
NAMEID PARENT CITY,
AUTOMBLE PARENT NAMEID

12

2 The DL/l Environment and DataManager

ADD AUTOCOL;
DL/I-DATABASE SECONDARY-INDEX
DATASETS PRIME COLORF BUFFER 4
OVERFLOW COLORFO BUFFER 4
DEVICE 2314
CONTAINS COLORSEG

Application View

Finally, when specifying an DL/I database system, the different applications view the databases
and segments where access must be defined. This must be done before a DL/I application program
can issue calls to DL/I to access the databases.

Views are defined in the data dictionary by using these DataManager DL/I Interface language
facilities:

. PROGRAM-COMMUNICATION-BLOCK or PCB member type; a member of this type
defines a Program Communication Block accessed by an application program.

. PROCESSES clause which lists the PCB members relevant to the application; this is
inserted in the data definition statements for SYSTEM, PROGRAM, and MODULE

members and it enables these statements:

— Program Specification Block (PSB) control statements for an application to be
produced from the listed PCB members.

— SEGMENT-SEARCH-ARGUMENT (SSA) statements to be defined to the data
dictionary. These statements can be used by the Source Language Generation facility
when generating DBD Control Statements (see "Application View" on page 18 and
"Generating DL/I DBD Control Statements" on page 131).

Generating Segment Search Arguments (SSAs) and Program Communication Block (PCB) masks
are described in "Generation of COBOL, PL/I, or Assembler Data Description Statements for PCB
Masks" on page 150 and "Generation of COBOL, PL/I, or Assembler Data Description Statements
for Segment Search Arguments" on page 153 respectively.

13

ASG-DataManager DL/I Interface: DOS

If certain assumptions are made, then this would be the method of using the PROCESSES clause
to describe an application's processing of the databases SKILLEMP and AUTOREG illustrated in
Figure 1 on page 5 and Figure 3 on page 9, respectively:

PROCESSES DL/I
CONTAINS SKILLEMP-PCB, AUTOREG-PCB
SEGMENT - SEARCH-ARGUMENTS
SEGMENT SKILL USED-IN SKILL-SSA
COMMAND-CODE FIRST-OCCURRENCE
QUALIFIED-ON SKLLTYPE EG
SEGMENT EXPR USED-IN EXPR-SSA
QUALIFIED-ON EXPRCODE EG
AND EXPRTIME GT
SEGMENT NAMEID USED-IN NAMEID-SSA
COMMAND-CODE LAST-OCCURRENCE
QUALIFIED-ON COLCODE EQ
SEGMENT CITY USED-IN CITY-SSA

ADD SKILLEMP-PCB;
PCB STRUCTURE
BY GET ONLY
SEGMENT SKILL
SEGMENT NAME
SEGMENT EXPR

ADD AUTOREG-PCB;

PCB STRUCTURE
BY GET
SEGMENT NAMEID SECONDARY-SEQUENCE
SEGMENT CITY

Further Information

Segments

14

The least that can be recorded by DataManager, in the data definition for a segment, is the
keyword SEGMENT followed by one of the keywords PHYSICAL, LOGICAL, or
INDEX-POINTER. This specifies that the segment resides in a physical database, a logical
database, or a secondary index database respectively.

When a SEGMENT member is being encoded, DataManager checks that it is not contained by the
wrong type of database; for example, a logical segment cannot be contained by an HDAM
database.

2 The DL/I Environment and DataManager

However, a SEGMENT data definition may be used for Source Language Generation; for
example, to produce Database Description (DBD) control statements or COBOL, PL/I, or
Assembler data descriptions for segment input/output areas. For these purposes, the data definition
must be complete; that is, it must define the physical characteristics and attributes of the segment
(for example, what fields it contains, and/or its sequence key field) and any logical or secondary
indexing relationships in which it participates.

When a segment specified as participating in a logical or secondary indexing relationship is
encoded, DataManager checks these items:

. That it is not related to the wrong type of segment; for example, a logical child segment
must not refer to another logical child segment as its destination parent.

. That segments referring to the segment being encoded will not be made invalid because they
are related to it in a manner that is invalid in the context of the relationship being specified.

. That the database that contains the segment being encoded is the type of database that
permits a segment participating in the specified logical or secondary index relationship; for
example, an HSAM database cannot contain segments that participate in such relationships.

All complete SEGMENT data definition statements, excepting those for logical child segments
and index pointer segments, must include a CONTAINS list naming the fields that constitute the
segment.

A logical child segment requires a CONTAINS list only if it has intersection data; DataManager
automatically handles the concatenated key of its destination parent. A pair of logical child
segments participating in a physically paired logical relationship must, if there is any intersection
data, have CONTAINS lists whose respective constituent fields reflect the same total length for
the intersection data (because when DL/I updates the intersection data for one of the logical child
segments, it also automatically updates the intersection data for its physically paired logical child
segment). The respective constituent fields may, however, specify different data dictionary
members.

A virtual logical child segment does not physically exist in storage, but represents the real logical
child segment with which it is paired as viewed from the logical parent segment, thus it never has
a CONTAINS list specified for it; DataManager automatically obtains any intersection data from
the real logical child segment.

An index pointer segment for a secondary index database requires a CONTAINS list only to
specify any user data. Index pointer segments for the primary indexes of HIDAM databases are
not held on the dictionary as members, but are generated automatically by the Source Language
Generation Facility when producing Database Description (DBD) Control Statements for the
primary index database. If the name for the primary index pointer segment and the name for its
sequence key field have not been specified in the data definition of the HIDAM database nor in the
Source Language Generation facility's PRODUCE command (see "Specification of the Data
Definition Statement for a LOGICAL Type DL/I Database" on page 74 and "Generating DL/I
DBD Control Statements" on page 131), then they are created by suffixing I to the respective
names of the HIDAM root segment and the HIDAM root segment's sequence key field.

DL/l Data Fields

As stated in "Segments" on page 14, the CONTAINS lists in the dictionary SEGMENT data
definitions specify the data fields that constitute the segments.

15

ASG-DataManager DL/I Interface: DOS

The CONTAINS list names ordinary data dictionary GROUP members and/or ITEM members,
optionally with a version specified for ITEM members. The form of the GROUP and ITEM
members is not specified, as the form is assumed in this priority:

o HELD-AS

o DEFAULTED-AS
o ENTERED-AS

. REPORTED-AS

The CONTAINS list may specify any number of variable length ITEM members, either directly or
indirectly. When required, DataManager will calculate the minimum and maximum lengths for the
segment; and when generating COBOL, PL/I, or Assembler data description statements for
segment input/output areas, will generate size fields.

DL/I Databases

16

The least that can be recorded by DataManager in the data definition for a database is the keyword
DL/I-DATABASE, followed by a keyword specifying the type of database; for example,
LOGICAL, SECONDARY-INDEX, HSAM, or HDAM.

However, a DL/I-DATABASE data definition may be used for Source Language Generation to
produce; for example, Database Description (DBD) or Program Specification Block (PSB) control
statements. For these purposes, the data definition must be complete; that is, it must define the
access method and storage organization of the database, and the hierarchical structure of the
segments that constitute the database.

When an DL/I database is encoded, DataManager checks that the segments it contains are of a
type that is valid for the type of database, and that the relationships in which its segments
participate are valid for the type of database.

A primary index database for a HIDAM database is not held in the dictionary as a separate
member; its access method and storage organization are specified as part of the data definition for
the HIDAM database. When the Source Language Generation facility produces DBD control
statements for an HIDAM database, it immediately follows them with DBD control statements for
its primary index database. If the library member name for the DBD control statements and the
database name for the primary index database have not been specified in the data definition of the
HIDAM database nor in the PRODUCE command (see "Specification of the Data Definition
Statement for a LOGICAL Type DL/I Database" on page 74 and "Generating DL/I DBD Control
Statements" on page 131), then they are created by suffixing I to the respective names for the
HIDAM database.

2 The DL/I Environment and DataManager

Special DataManager Member Types

For the DL/I Interface, DataManager automatically generates and maintains members of special
internal types. The internal member types are for these items:

. Sequence key fields

. Data sets

. Index search fields (XDFLDs)
. System related fields

. Concatenated key names
Members of these types cannot be inserted into the data dictionary by users.

In normal circumstances, a segment's sequence key field is one of the dictionary GROUP or ITEM
members that directly or indirectly constitute the segment. However, for a logical child segment, it
may sometimes be required that the sequence key field consist of more than one (or part of more
than one) of the key fields constituting the destination parent's concatenated key or any part of the
destination parent's concatenated key plus part of the intersection data

In these circumstances, the SEGMENT data definition statement permits the specification of each
of the contiguous fields that are to constitute the sequence key field, and a DL/I name that is to be
applied to the sequence key field.

When the segment is encoded, DataManager then generates a member of a special internal type,
giving it the specified sequence key name. If the segment specifying the sequence key is deleted,
the special internal member for the sequence key field is also deleted, unless this internal member
is referred to by other members, in which case it is made into a dummy member.

An internal member is always generated for the sequence key field specified in the data definition
for an index pointer segment.

The DL/I-DATABASE data definition statements can include the names and definitions of the
databases' constituent data sets. When a database is encoded, DataManager creates a member of a
special internal type for each of the ddnames specified. When a database member is deleted so are
any of the internal members that were created for its constituent data sets, except that if any of
these internal members are referred to by other members they are made into dummy members.

The data definition for an index pointer segment specifies the name to be applied to the index
search field (XDFLD). When such a member is encoded, DataManager creates a member of a
special internal type, giving it the name specified for the index search field. If the index pointer
segment is deleted, the special internal member created for the index search field is also deleted,
unless this internal member is referred to by other members, in which case it is made into a
dummy member.

The SEGMENT PHYSICAL data definition statement for an index source segment allows system
related fields to be defined. These can be any part of the source segment's concatenated key or
fields from which DL/I generates four byte unique values in the corresponding index pointer
segment.

17

ASG-DataManager DL/I Interface: DOS

System related fields of the former type are handled by DataManager in the same way as sequence
key fields; that is, each of those fields of the index source segment's concatenated key that are to
form the system related field can be specified.

A name can be specified for each system related field of either type. The oblique stroke (/) that
must be the first character of the name is added by DataManager when the Source Language
Generation facility is used to produce Database Description (DBD) control statements for the
database that contains the index source segment. DataManager creates an internal data dictionary
member having the name specified for the system related field (that is, without the /). If the index
source segment is deleted, then so are any special internal members that were created for system
related fields specified by the segment, except that if any of these internal members are referred to
by other members, they are made into dummy members.

A logical child segment always includes the concatenated key of its destination parent segment.
Index pointer segments sometimes include the concatenated key of the index target segment (see
"Specification of the Data Definition Statement for a SEGMENT that Resides in a Secondary
Index Database" on page 46). The concatenated key is constructed automatically by DataManager
when generating COBOL, PL/I, or Assembler data descriptions for segment input/output areas.
The SEGMENT data definition statement allows a name to be specified for the concatenated key.
When the segment is encoded, DataManager creates a member of a special internal type, giving it
the name specified for the concatenated key. If the segment is deleted, the special internal member
created for the concatenated key is also deleted, unless the member is referred to by other
members, in which case it is made into a dummy member.

Normally, members of special internal types are transparent to the user. However, the DL/I
Interface allows the member types to be made available to the user, for accessing in certain
interrogation commands (for further details, including other documentation commands that can
handle them, see Chapter 4. "Extensions to DataManager Commands for DL/I Databases," on
page 99). Also, the user is able to produce COBOL, PL/I, and Assembler data description
statements from the internal DataManager members created for the sequence key fields, index
search fields (XDFLDs), system related fields, and concatenated key fields (see Chapter 5, "DL/I

Source Language Generation from DataManager," on page 131 for further information).

Application View

18

As stated in "Application View" on page 13, an application's view of the segments that it accesses
is defined to DataManager by PCB members and the PROCESSES clause, which can be specified
in the data definition statements for data dictionary SYSTEM, PROGRAM, and MODULE
members.

The PROCESSES clause specifies a CONTAINS clause listing each logical data structure, GSAM
database, and output message destination (alternate) PCB that the application is to access.

When producing Program Specification Block (PSB) control statements for an application, the
Source Language Generation facility produces a Program Communication Block (PCB) from each
PCB member listed in the CONTAINS clause.

A PROCESSES clause can be defined for a data dictionary SYSTEM member. Usually, in an DL/I
database system, the PROCESSES clause would be applicable to the data definition for a data
dictionary PROGRAM member. However, to permit the definition of a modularized application,
the DataManager DL/I Interface also allows the PROCESSES clause to be specified in the data
definition for data dictionary MODULE members.

2 The DL/I Environment and DataManager

Whichever member relates to the control module in the application (and this may be of either
SYSTEM, PROGRAM, or MODULE member type) will require a CONTAINS clause within its
PROCESSES clause. This CONTAINS clause must list each PCB that the DL/I Interface will be
passing to the control module when invoked. The CONTAINS clause is used by the Source
Language Generation facility in producing its PSB Control Statements.

A PCB member defines a logical data structure, GSAM database, or output message destination
which is to be accessed by the application. A logical data structure PCB also specifies all the
segments to which any application SYSTEM/PROGRAM/MODULE containing the PCB is
sensitive. In turn, each appropriate SEGMENT clause in a logical data structure PCB can define,
via a SENSITIVE-FIELDS subordinate clause, the individual fields to which the application is
sensitive. It is these definitions that the DataManager Source Language Generation facility uses to
generate COBOL, PL/I, or Assembler data descriptions of the segment input/output areas for the
sensitive fields.

The data dictionary SYSTEM, PROGRAM, or MODULE member may also include a
PROCESSES clause containing a SEGMENT-SEARCH-ARGUMENTS subordinate clause. This
clause defines the SEGMENT-SEARCH-ARGUMENTS specifying the segments (with their
respective USED-IN clauses) which can then be used by the Source Language Generation facility
in generating DBD Control Statements.

When generating the Database Description (DBD) control statements for a database, the user can
specify in the PRODUCE command whether DataManager is to generate DL/I FIELD Control
Statements for all the fields constituting each segment in the database, or only for each segment's
search fields, sensitive fields, and fields required for secondary indexing. (XDFLDs, system
related fields, sequence key fields, and fields specified in the GENERATES clause of the segment
data definition statement are always generated.) If FIELD statements for a database are to be
generated only for search fields, sensitive fields, and fields required for secondary indexing, then
these actions must be taken to ensure that DataManager will recognize the fields:

. Each SYSTEM, PROGRAM, and MODULE member for each application that accesses
segments in the database by means of qualified segment search arguments must name the
search fields in a USED-IN subordinate clause within a PROCESSES clause of the
SYSTEM, PROGRAM, or MODULE member data definition.

. Each structure type PCB member must name, using a SENSITIVE-FIELDS subordinate
clause within each SEGMENT clause of the PCB definition, the fields to which it is
sensitive in each segment contained in the database.

. Each index pointer segment that uses an index source segment contained by the database
must specify, in its SEARCH, SUBSEQUENCE, and DUPLICATE-DATA lists, the
GROUP and ITEM members contained by the index source segment that are required for
secondary indexing.

19

ASG-DataManager DL/I Interface: DOS

20

DataManager Data Definition Statements
for a DL/l Environment

Introduction

DataManager offers users in a DL/I environment 3 member types for defining segments,
databases, and Program Communication Blocks, and an extra facility in the data definition
statements for SYSTEM, PROGRAM, and MODULE members to enable the application view of
the segments and databases that they use to be fully defined.

Users can define these 3 member types in an IMS (DL/I) environment:

Segment. See "DataManager Data Definition Statements for DL/I Segments" on page 21 for
more information on the SEGMENT member type.

Database. See "DataManager Data Definition Statements for DL/I Databases" on page 56 for
more information on the member types IMS-DATABASE and DL/I-DATABASE. (Any of the

alternative forms DL/1-DATABASE, DLI-DATABASE, or DL1-DATABASE are accepted for
the member type identifier DL/I-DATABASE.)

Program Communication Block. See "DataManager Data Definition Statements for DL/I
Program Communication Blocks" on page 82 for more information on the member type
PROGRAM-COMMUNICATION-BLOCK (or PCB), which is used to specify the application
view of a database and the segments that the application uses.

You can fully define the application view of the segments and databases that they use, using the
PROCESSES clause in the SYSTEM, PROGRAM, and MODULE member types (see
"Specification of the PROCESSES Clause" on page 92).

DataManager Data Definition Statements for DL/l Segments

Outline of the SEGMENT Data Definition Statement

DL/I provides a comprehensive selection of keywords and operands in its SEGMENT statement in
order to define all possible attributes and relationships of segments, which can reside in several
fundamentally different types of database.

21

ASG-DataManager DL/I Interface: DOS

22

To simplify the description of DataManager’s SEGMENT data definition statement, the format of
the statement is specified separately for each different type if DL.I database. This is the overall
outline format of the SEGMENT member type:

logical-database-segment

SEGMENT physical-database-segment
secondary-index-database-segment

[common clauses]
where:

physical-database-segment is the definition for the type of segment that resides in a
physical database (see "Specification of the Data Definition Statement for a Segment that Resides

in a Physical Database" on page 24).

logical-database-segment is the definition for the type of segment that resides in a
logical database; that is, a logical segment or logical concatenated segment (see "Specification of
the Data Definition Statement for a SEGMENT that Resides in a Logical Database" on page 42).

secondary-index-database-segment is the definition for the type of segment that
resides in a secondary index database; that is, an index pointer segment (see "Specification of the
Data Definition Statement for a SEGMENT that Resides in a Secondary Index Database" on

page 46).

common clauses are any of these clauses (as defined in the ASG-Manager Products
Dictionary/Repository User's Guide):

ACCESS-AUTHORITY FREQUENCY

ADMINISTRATIVE-DATA NOTE

ALIAS OBSOLETE-DATE

CATALOG QUERY

COMMENT SECURITY-CLASSIFICATION
DESCRIPTION SEE

EFFECTIVE-DATE

It should be noted that there is no definition for the index pointer segment that resides in a primary
index database. This type of segment definition is entirely handled by DataManager when
required. It is required only by the Source Language Generation facility, to be used for the DBD
control statements for the primary index database that will be generated automatically following
the DBD control statements for a HIDAM database. This is one instance of an internal member

type.

3 DataManager Data Definition Statements for a DL/| Environment

The names to be applied to the primary index pointer segment and to its sequence key field can be
specified in the data definition of the HIDAM database (see "Specification of the Data Definition
Statement for a HIDAM Type DL/I Database" on page 69) or in the Source Language Generation
facility's PRODUCE command (see "Generating DL/I DBD Control Statements" on page 131). If
they are omitted from both of these, then the name applied to the primary index pointer segment is
the name of the HIDAM root segment suffixed with I, and the name of the sequence key field for
the index pointer segment is the name of the sequence key field of the HIDAM root segment
suffixed with I.

For each type of SEGMENT, the definition comprises:
. A segment type keyword.

. A RELATED-AS clause (for a physical-database-segment) or a RELATED-TO clause (for
a secondary-index-database-segment), to define the logical and secondary indexing
relationships in which the segment participates. There is no RELATED clause for a
logical-database-segment definition.

. An ATTRIBUTES clause, to define the physical characteristics of the segment in relation to
the database in which it resides.

For a segment that resides in a physical database, the RELATED-AS clause must precede the
ATTRIBUTES clause, if both are present. For a segment that resides in a secondary index
database, the ATTRIBUTES clause and the RELATED-TO clause can be in either order.

Both the RELATED-AS or RELATED-TO clause and the ATTRIBUTES clause must, if present,
precede any common clauses that may be present.

23

DOS

ASG-DataManager DL/l Interface

sweu-Aa3x-pajeus3eouod af
s Aﬁ sweu-dnozb a0 sweu-wa3r-dnoib

[oweu-Ao3-pa3eus3eoucd HWYN-AEY -AHIYNAIVONOD] [sweu-3jusied-uoT3eur3ssp OL] [sweu-plryo-paired-[es1 HLIIM] INEWOES-ATIHD-AHNIVA-TYNINIA

[sern1] :Aﬂ QTIHD-TYOIDOT-HTONIS op
[osne[o-soweuss SHWYNHYN] [oweu-Aoy-pojeusleoucd HWYN-AEM-TILYNELVONOD] [sorni] [sweu-jusied-uoT3eurissp OL] LINAWDHES-ATIHD-TYNOILOHMIAINA

[sesneTo uowwoo]

sweu-Ao3x-pajeus3eouod sweu-A£ox-po3eusleouod
sweu-Aox-sousnbss | sweu-Aa3-sousnbas
msmﬂ-\mmu\-ﬁmumﬂmumowﬂon@v NI
sweu-dnoxb mam sweu-wa3r-dnoib SHLYIANTD

[[ESOTO-NHJO] sweu-aTnpow IIXH-NOISSHEdWOD-IIAT

NIMION
m qumo.Hmﬁm_ ﬁzHE-mqng
QIIHD-IS¥TIA NIMI-ZTONIS SYAINIOL
HYEH
ISVT
[lIs¥I1d) NOILISOd-IJASNT

aaIvDITANd suweu-Ao3x-sousnbas mwv
:Jﬁ ATANOINA J] ﬁAﬂmEmﬁl\mmxlmOEm:@mm Sy - [eweu-we3T-dnoib’'] sweu-we3lr-dnoxb HIIM | | sweu-we3r-dnoib’]
QIIVOITdNd sweu-Asx-sousnbss Sy
ﬁAﬁ NﬁmSO%“vu _JﬁmEmﬁl\mmuTmnEmz@mm SY - [eueu-welr-dnoib’'] sweu-walr-dnoxb HIIM |] sweu-wa3r-dnoib XEM-HDNANDIS]
_H Aﬁ osnero AT
[[Lo [[esnero AI] 3Jus3uod HSTH] [ssneTo 41] Jusjuoo msTd L | qusjuoo]
JINDITY-LON
ﬁu % esmero 41 QENDITYNA
‘*[[esnero JI] juejuod FSTH] [esnero 4I] 3juejuod FSTH[| 3U93U0D SNIVINOD] QENDITY.

SHILNII¥LLY

[[¥xxXXXS SQTATA-AEM-ANOINN]
sweu-Aa3x-sousnbas sweu-Aax-sousnbas
[[XxXXX)D SY " ° ﬁAﬁ sweu-wa3T-dnoibl ‘] sweu-we3T-dnorb) ']
Jﬁmsmﬁlﬁmxlmowﬂm:@mmw Aﬂmsmﬂlhmu\-moﬂm:@mmwv
[l oeweu-ws3zr-dnozb| ‘] sweu-wo37T-dnorb ’ SQTHIL-AEN-AELYNZLYONOD] INIWDES-HD¥N0S
[INFWOES - LADYYL]

XXXXXND SY

[esneTo-soweuasr SHWNYNHN]

o [esneo-soweusr SHWYNAY] [sweu-As3-peleusieouco EWYN-A®N-(ELYNALYONOD]
qumo.qmonoq.mquooHT %sza-qmoHooq.ommzxommw. - -
] [l NIMIL-TYDIDOT-qdvM¥0d]] S¥HINIOA] [sweu-3jusied-uor3eur3isep OL] INIWDIS-ATIHD-QHAIVA-TVHEN

[sernI] INIWDES-INIIVA-NOILVNILSEA

SY-QALYTaY]

TYDISAHA INAWOES

Jewuo4 Jusawajels uoniuyaq ejed TVOISAHd LNIWDIS ¥ 2inbiy

xejulhg

aseqejeq [eaIsAyd e ul sapisay ey} Juswbag e 10j Jusawale}s uoniuyaq ejeq ayj} Jo uonesnydads

<
N

3 DataManager Data Definition Statements for a DL/| Environment

where:

rules is a clause in this format:

LOGICAL LOGICAL

RULES [INSERT [PHYSICAL]] [DELETE ﬂYSICAL}]
VIRTUAL VIRTUAL

LOGICAL

[REPLACE [PHYSICAL)]
VIRTUAL

destination-parent-name is the name of a segment that is a PHYSICAL
DESTINATION-PARENT-SEGMENT.

concatenated-key-name is used when a logical child segment is being defined to specify
the name to be given to the destination parent’s concatenated key.

renames-clause is a clause in this format:

group-item-name AS local-name
sequence-key-nam KNOWN-AS
, | group-item-name AS local-name c.
sequence-key-nam KNOWN-A
where:

group-item-name is the name of a group or the name of an item.
sequence-key-name is a 1- to 8-character unique alphanumeric name.

local-name is a name, conforming to the rules for member names stated in the ASG-Manager
Products Dictionary/Repository User’s Guide, that can be used instead of the name or alias of the
member named immediately prior to 1ocal -name, when DBD control statements, record
layouts, or source language data descriptions are generated from this data definition by the
DataManager Source Language Generation facility. The 1ocal -name is not separately recorded
in the data dictionary (i.e., no dummy data entries record and no index record is created for
local-name when the data definition in which it appears is encoded) so local-name cannot be
interrogated and can be the same as another name, an alias, or a catalog classification in the data
dictionary. The Iocal-name is the name by which the member is known only within the
segment defined by this data definition.

25

ASG-DataManager DL/I Interface: DOS

26

content declares an item, a group or an array, in this format:

Figure 5. Format of a Content Declaration in a SEGMENT PHYSICAL or SEGMENT
INDEX-POINTER Data Definition

UNALIGNED
NOT ALIGNED

item-name [version] ALIGNED [KNOWN-AS local-name]
group-name

(integer) item-name [version] ALIGNED [KNOWN-AS local-name] [INDEXED-BY index-name]
(item-name-a [version] group-name } UNALIGNED

NOT-ALIGNED

where:
1tem-name is the name of an item.

version is an unsigned integer in the range 1 to 15, being a number specifying which version of
the relevant item is relevant to this segment. The version is within the HELD-AS form, or within a
defaulted form as stated in remark 31 on page 32. If version is omitted or if the stated version does
not exist, the lowest numbered existing version is assumed to be relevant.

group-name is the name of a group.

local-name is a name that can be used instead of the name or alias of the contained member, as
described above.

integer is an unsigned integer of from 1 to 18 digits, being the number of times i tem-name
or group-name occurs in the array.

item-name-a is the name of an item. This form of array declaration declares that when the
segment where defined is processed by an application program or module, the number of times
item-name or group-name occurs in the array is contained in the item i tem-name-a.

index-name is a name, conforming to the rules for member names stated in the ASG-Manager
Products Dictionary/Repository User’s Guide, that is to be used as the index name when COBOL
data descriptions are generated by the DataManager Source Language Generation facility. The
index-name is not separately recorded in the data dictionary (that is, no dummy data entries record
and no index record is created for index-name when the data definition in which it appears is
encoded) so index-name cannot be interrogated and can be the same as another name, an alias,
or a catalog classification in the data dictionary.

3 DataManager Data Definition Statements for a DL/| Environment

IF clause is a clause containing from 1 to 15 conditional terms. A conditional term compares the
contents of an item with a comparand; it has the 3 elements item-name, operator, and comparand.
If there are two or more conditional terms in the IF clause, they must be separated by an AND or
OR keyword; they will be evaluated from left to right in a Boolean logical manner. The IF clause
is declared in this format:

IF item-name-b [version-b] EQ item-name-c [version-c]
= literal

AND| item-name-b [version-b] EQ item-name-c [version-c] ..
OR literal }

where:

item-name-b is the name of the item, the contents of which are to be compared with the
comparand.

version-b is an unsigned integer in the range 1 to 15, being a number specifying the version
(within the HELD-AS form, or within a defaulted form as stated in remark 34 on page 33) of
item-name-b that is relevant to the comparison. If version-b is omitted, a default value of
lis assumed. The operators have these meanings:

EQ or = means equal to.

NE means not equal to.

ET or > means greater than.

GE means greater than or equal to.
E or < means less than.

LE means less than or equal to.

item-name-c is the name of the item, the contents of which are the comparand.
version-cis an unsigned integer in the range 1 to 15 being a number specifying the version

(within the same type of form as that here being defined) of i t em-name - ¢ the contents of which
are the comparand. If version-c is omitted, a default value of 1 is assumed.

27

ASG-DataManager DL/I Interface: DOS

28

literal is aliteral comparand, and must be compatible with the form-description in
item-name-b’s data definition. (If 1 tem-name-b’s data definition contains a CONTENTS
clause, literal should also be compatible with i tem-name-b’s contents-description.) The literal
can be one of these:

A character string of not more than 256 printable and/or non-printable characters, enclosed
in quotes

A numeric literal, that is:

— Asigned or unsigned decimal number of not more than 18 digits, optionally with a
decimal point, and not enclosed in quotes

— Assigned or unsigned floating point number (as defined in the ASG-Manager Products
Dictionary/Repository User’s Guide) not enclosed in quotes

module-name is the name of a module.

common clauses are any of these clauses (as defined in the ASG-Manager Products
Dictionary/Repository User's Guide):

ACCESS-AUTHORITY FREQUENCY

ADMINISTRATIVE-DATA NOTE

ALIAS OBSOLETE-DATE

CATALOG QUERY

COMMENT SECURITY-CLASSIFICATION
DESCRIPTION SEE

EFFECTIVE-DATE

Remarks

The keyword PHYSICAL must always appear as the first keyword after the member type
identifier, to indicate that a segment residing in a physical database is being defined. A
SEGMENT PHYSICAL can be contained by any number of physical databases provided
that it does not participate in a logical or secondary indexing relationship (that is, that it does
not have a RELATED-AS clause in its definition).

The RELATED-AS clause must be present if the segment participates in a logical
relationship or a secondary indexing relationship. If present, the RELATED-AS clause must
immediately follow the PHYSICAL keyword. The RELATED-AS clause is not valid for a
segment that resides in a HSAM, SIMPLE HSAM, or SIMPLE HISAM database. If a
segment that participates in a logical relationship (other than as a
DESTINATION-PARENT-SEGMENT) is to be completely defined, the TO clause and, if
appropriate, the WITH clause must be present in the RELATED-AS clause.

3 DataManager Data Definition Statements for a DL/| Environment

If the segment participates in a logical relationship then one of these clauses must be
specified in the RELATED-AS clause:

. DESTINATION-PARENT-SEGMENT, which specifies that the segment being
defined is either a logical parent segment or the physical parent segment of a real
logical child segment in a virtually paired logical relationship.

. UNDIRECTIONAL-CHILD-SEGMENT, which specifies that the segment being
defined is a logical child segment in a unidirectional logical relationship.

. REAL-PAIRED-CHILD-SEGMENT, which specifies that the segment being defined
is a real logical child segment in a virtually paired logical relationship. This type of
segment must reside in a HDAM or HIDAM database.

. VIRTUAL-PAIRED-CHILD-SEGMENT, which specifies that the segment being
defined is a virtual logical child segment in a virtually paired logical relationship.

TO destination-parent-name states the destination parent segment to which the
logical child segment being defined is related. If the segment being defined is a virtual
logical child segment, the destination parent segment is the physical parent of the real
logical child segment with which it is paired; otherwise, the destination parent segment is
the logical parent segment.

The POINTERS clause specifies the type of pointer that connects a real logical child
segment and its logical parent segment.

In the POINTERS clause, either FORWARD-LOGICAL-TWIN or
BACKWARD-LOGICAL-TWIN can be stated. If neither is stated,
FORWARD-LOGICAL-TWIN is assumed. FORWARD-LOGICAL-TWIN specifies that a
4-byte logical twin forward pointer field is reserved in the prefix of the segment being
defined. BACKWARD-LOGICAL-TWIN specifies that both a 4-byte logical twin forward
pointer field and a 4-byte logical twin backward pointer field are reserved in the prefix of
the segment being defined.

In the POINTERS clause, either SINGLE-LOGICAL-CHILD or
DOUBLE-LOGICAL-CHILD can be stated. If neither is stated,
SINGLE-LOGICAL-CHILD is assumed. SINGLE-LOGICAL-CHILD specifies that a
4-byte logical child first pointer field is reserved in the prefix of the logical parent segment
of the segment being defined. DOUBLE-LOGICAL-CHILD specifies that both a 4-byte
logical child first pointer field and a 4-byte logical child last pointer field are reserved in the
prefix of the logical parent segment of the segment being defined.

The RULES clause specifies the rules for inserting, deleting and replacing a segment.

The CONCATENATED-KEY-NAME clause can be used when a logical child segment is
defined, to specify the name that is to be given to the concatenated key of the destination
parent segment. When the logical child segment definition is encoded, a member of a
special internal type is created for the concatenated key, and gives it the name specified in
the CONCATENATED-KEY-NAME clause. This internal member has no entries in the
uses table, as the elements that constitute the concatenated key are not obtained until the
Source Language Generation facility is used (see remark 11 on page 30). However, the
internal member can still be referred to by other members; for example, it may be used as a
segment search field or as a sensitive field.

29

ASG-DataManager DL/I Interface: DOS

30

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Interrogations can be performed on the concatenated key internal member type (see

'Condition Keywords for Which and What Commands" on page 102). However,
meaningful results will only be obtained in response to interrogations concerning members

which use the internal member type, as the member type has no entries in the uses table.

The destination parent's concatenated key is constructed automatically when the Source
Language Generation facility is being used to generate DBD control statements, record
layouts, or COBOL, PL/I, or Assembler data descriptions. If a
CONCATENATED-KEY-NAME clause is present in the segment’s data definition, the
concatenated key is given the name specified in the clause.

The RENAMES clause can be used to specify a local name for any field that directly
constitutes the destination parent's concatenated key, that is, any field that has been directly
specified as a sequence key in any of the segments along the hierarchical path to the
destination parent segment, and including destination parent segment. The rules governing a
local name are as defined in the syntax.

A segment cannot be a logical child segment and a destination parent segment.
A segment cannot be a logical child segment if it is the root segment of a database.

A logical child segment cannot have a logical child, destination parent, or target segment as
a dependant at any lower level of the hierarchy.

A destination parent segment cannot have another destination parent segment as a
dependant at any lower level of the hierarchy.

A virtual logical child segment cannot have physical child segment.

The keyword TARGET-SEGMENT specifies that the segment being defined is an index
target segment. A segment cannot be an index target segment and also a logical child
segment or a dependent segment of a logical child segment at any lower level.

The keyword SOURCE-SEGMENT specifies that the segment being defined is an index
source segment.

20.

21.

22.

23.

24.

25.

26.

3 DataManager Data Definition Statements for a DL/| Environment

The CONCATENATED-KEY-FIELDS clause defines any number of system related fields
of the type that enables any part of the concatenated key of the index source segment to be
used in the subsequence or duplicate data fields of the corresponding index pointer segment.
The definition of each such system related field comprises:

. The names of any number of groups, items, and/or sequence keys that are to comprise
the system related field. The members named must be contiguous within the index
source segment's concatenated key. They can be:

— Members contained directly or indirectly in the segment's sequence key; and/or

— Members contained directly or indirectly in the sequence key of any segment
along the hierarchical path to and including the index source segment

. A clause AS CKxxxxx, which specifies the name to be applied to the system related
field. The name must be unique, must be 3 to 7 characters in length, and must
commence with CK.

When a source segment definition that contains a CONCATENATED-KEY-FIELDS clause
is encoded, a member of a special internal type for each system related field defined by the
clause is created. This member is given uses table entry for each item, group and sequence
key member specified in the CONCATENATED-KEY-FIELDS clause. Members of this
special internal type can be referred to by other members, for example, by an index pointer
segment, and they can also be interrogated (see ""Condition Keywords for Which and What
Commands" on page 102). The Source Language Generation facility can operate on
members of this type.

The UNIQUE-KEY-FIELDS clause defines any number of system related fields of the type
that prompts DL/I to generate a unique 4-byte value of the source segment's VSAM relative
block address and to place it in the subsequence field of the corresponding index pointer
segment. SXxxxxx specifies the name to be applied to a system related field of this type.
The name must be unique, must be 3 to 7 characters in length, and must commence with SX.

When a source segment definition that contains a UNIQUE-KEY-FIEDS clause is encoded,
a member of a special internal type for the system related field defined by the clause is
created. This member does not refer to any other members and therefore has no entries in
the uses table. However, members of this special internal type can be referred to by other
members, for example, by an index pointer segment, and they can also be interrogated
(although meaningful results will only be obtained in response to interrogations about
members that use the internal member, as it has no constituent members). The Source
Language Generation facility can operate on members of this type.

A segment cannot be an index source segment and a logical child segment.
The ATTRIBUTES clause must be present if the segment is to be completely defined.
The first element within the ATTRIBUTES clause can be one of the keywords ALIGNED,

UNALIGNED, or NOT-ALIGNED. If none is declared in the data definition statement, a
default of UNALIGNED is taken.

31

ASG-DataManager DL/I Interface: DOS

32

27.

28.

29.

30.

31.

ALIGNED is the equivalent of COBOL SYNCHRONIZED or PL/I ALIGNED. It means
that (subject to remark 31 on page 32) all binary items and all floating point items declared
as being contained in the segment are aligned to half word, full word or double word
boundaries, thus:

. Binary items having a length of 4 decimal digits or less occupy a complete half word
. Binary items having a length of from 5 to 9 decimal digits occupy a full word

. Binary items having a length of from 10 to 18 decimal digits occupy two full words,
but are not necessarily aligned to a double word boundary

. Floating-point items having 6 digits or less in the mantissa occupy a full word
. Floating-point items having from 7 to 16 digits in the mantissa occupy a double word

ALIGNED also causes any bit string items to be output with alignment to byte boundaries
when the Source Language Generation facility is used. The way in which this is achieved is
dependent upon the language being generated, and is described further in the ASG-Manager
Products Source Language Generation publication.

UNALIGNED means that (subject to remark 31 on page 32) binary items and floating point
items declared (as individual items or as elements of an array) as being contained in the
segment are not necessarily aligned to word or half word boundaries, and that bit string
items are not aligned to byte boundaries. (The amount of space occupied is the same as for
ALIGNED items, but the positioning relative to boundaries can differ.)

NOT-ALIGNED means the same as UNALIGNED. For the sake of simplicity, they are
regarded in the following remarks as being the same keyword; so that any reference to the
UNALIGNED keyword should be interpreted as applying equally to the NOT-ALIGNED
keyword.

The ALIGNED or UNALIGNED keyword does not apply to items contained within groups
declared as being contained in the segment. The data definitions of the groups determine the
alignment or non-alignment of such indirectly referenced items.

The ALIGNED or UNALIGNED keyword can be overridden for individual content
declarations (that is, for particular items or groups declared as being contained in the
segment) by including the keyword UNALIGNED or ALIGNED respectively in the
particular content declaration, preceding any associated ELSE and/or IF clauses (see
remark 35 on page 33 through remark 39 on page 34). It is not meaningful to include either
of these keywords in a content declaration that declares a group or an array of groups (see
remark 30 on page 32).

32.

33.

34.

35.

36.

37.

3 DataManager Data Definition Statements for a DL/| Environment

The CONTAINS clause specifies the GROUP and/or ITEM members and/or arrays that
constitute the successive parts of the segment being defined. It must be present unless the
segment being defined is a logical child segment.

If the segment being defined is a virtual logical child segment then the CONTAINS clause
must not be present, as the segment's constituent members are obtained from the real logical
child segment with which it is paired.

For a logical child segment that is not a virtual logical child, the CONTAINS clause is
required only to define the intersection data. If there is no intersection data then the
CONTAINS clause must be omitted.

The destination parent's concatenated key is automatically constructed when it is required
for the Source Language Generation facility.

The entries in the CONTAINS clause must include, directly or indirectly, references to
these fields, if they are applicable to the segment being defined:

. The sequence key fields
. The segment search fields

. The fields that are to be included in the index search field, subsequence fields, and
duplicate data fields of the corresponding index pointer segment, if the segment being
defined is an index source segment

° Sensitive fields

Any direct or indirect reference from the CONTAINS clause to an item is assumed to be the
HELD-AS form of that item. If the item has no HELD-AS form, default assumptions are
made as to the relevant form of the item, in the order DEFAULTED-AS, ENTERED-AS,
and REPORTED-AS. The form first encountered in this order is taken as the defaulted
form, and version is applied within that form as stated in the syntax.

Entries in the CONTAINS clause may be conditional (IF clauses, see remark 37 on page 33)
and/or may have alternative content declarations (ELSE clauses, see remark 36 on page 33),
which also may be conditional: so that the definition of each part of the segment comprises
a content declaration and any associated ELSE clauses and/or IF clauses. If the segment
comprises two or more parts, the definition of each part except the last must be followed by
a comma, which can optionally be followed by spaces.

Any part of the segment can be specified as having any number of alternative contents. The
alternative content declarations are separated by the keyword ELSE. The alternative
contents need not occupy the same amount of physical storage.

The expression ELSE clause thus refers to:

ELSE content
where content is as defined above.
Any content declaration can be specified as conditional (i.c., applied only if a stated

condition or combination of conditions is satisfied). For a content declaration to be
conditional, content must be immediately followed by an IF clause.

33

ASG-DataManager DL/I Interface: DOS

34

38.

39.

40.

41.

42.

43.

44,

It follows that any part of the segment can have alternative conditional contents, declared in
this form:

content IF clause ELSE content IF clause
[ELSE content IF clause]...

and that any combination of conditional and non-conditional alternative contents can be
declared for any part of the segment.

In a content declaration, the ALIGNED, UNALIGNED, or NOT-ALIGNED element, the
KNOWN-AS clause and the INDEXED-BY clause can, if applicable, be declared in any
order; but they must not precede any of the other elements of the content declaration
(though they must precede any associated ELSE clauses and/or IF clauses).

The SEQUENCE-KEY clause specifies the field that is the sequence key of the segment
being defined. For a virtual logical child segment, it specifies the field that is the sequence
key of the paired real logical child segment when accessed from its logical parent segment.

Only one entry may be specified in the SEQUENCE-KEY clause, unless the segment being
defined is a virtual logical child segment, in which case any number of entries can be
specified. The term entry in this context means group/item name, optionally followed by a
WITH and/or an AS clause and optionally followed by one of the keywords UNIQUELY or
DUPLICATED. WITH and AS clauses are only valid for a virtual logical child schedule.

For a segment that is not a logical child segment, the field named in the SEQUENCE-KEY
clause must be directly or indirectly contained in the segment. If the reference to the field
from the CONTAINS clause is indirect, the field must not appear as an array in the data
definition of its containing group.

For a logical child segment, the field named in the SEQUENCE-KEY clause must be:

. Directly or indirectly contained in the segment being defined, or, if the segment is a
virtual logical child segment, directly or indirectly contained in its paired real child
segment.

. Directly/indirectly contained in the destination parent's concatenated key; that is,

directly/indirectly contained in the sequence key field of any segment along the
hierarchical path to and including the destination parent segment.

If the reference to the field is indirect, the field must not appear as an array in the data
definition of its containing group.

The WITH clause can be used only if a virtual logical child segment is being defined. It
enables contiguous parts of the destination parent's concatenated key and/or contiguous
parts of the segment's intersection data to be included as part of the segment's sequence key
field.

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

3 DataManager Data Definition Statements for a DL/| Environment

Each GROUP/ITEM listed in the WITH clause, must be the name of one of these:

. A sequence key field or a member contained directly or indirectly in a sequence key
field of any segment along the hierarchical path to and including the destination
parent segment.

. A field contained directly or indirectly in the intersection data of the logical child
segment, or if a virtual logical child segment is being defined then in the intersection
data of its paired real logical child segment.

The fields named in the list must be contiguous.

The AS clause specifies the name that is to be applied to the sequence key field constituted
by the members named in the associated WITH clause and the GROUP or ITEM name
immediately preceding that WITH clause.

When no WITH clause is specified, the AS clause specifies an alternative name for the
GROUP or ITEM name that immediately precedes it. This allows an alternative name to be
given to one of the fields in the destination parent's concatenated key, if that field is the
sequence key of the logical child segment.

When a logical child segment definition containing an AS clause (with or without any
WITH clause) is encoded, a member of a special internal type is created for the sequence
key. This member is given an entry in the uses table for each member that is named between
the SEQUENCE-KEY and As keywords. Sequence key internal members can be referred to
by other members, for example, as segment search arguments (SSAs) or sensitive fields, and

they can also be interrogated (see "Condition Keywords for Which and What Commands"
on page 102). The Source Language Generation facility can operate on members of this

type.

The relevant version of any item, to which reference is made directly or indirectly from the
SEQUENCE-KEY clause, is assumed to be the same as the version of that item that is
relevant to the CONTAINS clause of the segment in which it is contained.

UNIQUELY indicates that only unique values are allowed in the sequence key field being
defined. DUPLICATED indicates that duplicate values are allowed. If neither are specified,
UNIQUELY is assumed. All of the sequence keys for a virtual logical child segment must
be uniformly defined as either UNIQUELY or DUPLICATED.

You must specify a sequence key field for the root segment of a HDAM database. A unique
sequence key field must be specified for the root segment of a HISAM, SIMPLE HISAM,
or HIDAM database.

If the segment is a destination parent segment, then a sequence key field should be specified
for it and for each of the segments on which it depends. It is strongly recommended that
each of the sequence key fields be unique.

A sequence key field must be specified for an index target segment.

The INSERT-POSITION clause is omitted if the segment resides in a HSAM or SIMPLE

HSAM database. Otherwise, it must be present if a unique sequence key field has not been
specified.

35

ASG-DataManager DL/I Interface: DOS

36

55.

56.

57.

58.

59.

60.

61.

62.

63.

The INSERT-POSITION clause specifies where an occurrence of the segment is inserted.
Thus, FIRST states that:

. If SEQUENCE-KEY is not specified, a new occurrence of the segment is inserted in
front of all existing occurrences.

. If SEQUENCE-KEY is DUPLICATED, a new occurrence of the segment is inserted
in front of all existing occurrences that contain the same sequence key.

LAST (the default) states that:

. If SEQUENCE-KEY is not specified, a new occurrence of the segment is inserted
behind all existing occurrences.

. If SEQUENCE-KEY is DUPLICATED, a new occurrence of the segment is inserted
behind all existing occurrences that contain the same sequence key.

HERE states that:

. If position has been established on an occurrence of the segment by a previous DL/I
call, a new occurrence of the segment is inserted in front of the occurrence that
satisfied that call.

. If the current position is not within occurrences of the segment, a new occurrence of

the segment is inserted as for FIRST.

The POINTERS clause in the ATTRIBUTES clause is applicable only to segments that
reside in a HDAM or HIDAM database and are not virtual logical child segments except for
the COUNTER keyword, which is also valid for segments residing in a HISAM database.

SINGLE-TWIN specifies that a 4-byte physical twin forward pointer field is reserved in the
prefix of the segment.

DOUBLE-TWIN specifies that a 4-byte physical twin forward pointer field and a 4-byte
physical twin backward pointer field are reserved in the prefix of the segment.

NOTWIN specifies that the segment may occur only once per physical parent.

FIRST-CHILD specifies that a 4-byte physical child first pointer field is to be placed in the
prefix of the segment's physical parent segment.

LAST-CHILD specifies that a 4-byte physical child first pointer field and a 4-byte physical
child last pointer field are to be placed in the prefix of the segment's physical parent
segment.

The EDIT-COMPRESSION-EXIT clause specifies the selection of an edit and/or
compression user exit option. The clause is invalid if the segment resides in a HSAM,
SIMPLE HSAM, or SIMPLE HISAM database or is a virtual logical child segment or is a
source segment.

OPEN-CLOSE specifies that initialization and termination processing control is required by
the segment edit routine; that is, that the edit/compression routine will gain control after
database open and after database close.

64.

65.

66.

67.

68.

3 DataManager Data Definition Statements for a DL/| Environment

The GENERATES clause enables the user to specify the fields for which DBD FIELD
control statements are always to be generated when DBD control statements are produced. It
is in addition to those fields required by IMS (DL/I) for which the Source Language
Generation facility always provides DBD FIELD control statements (see "Generating DL/I
DBD Control Statements" on page 131). It is not necessary to include sequence key field
names in the GENERATES clause. This is because DBD FIELD control statements are
always generated for these fields; however, sequence key names, as well as group names
and/or item names, are accepted in the GENERATES clause in case the user wishes to
include them in the list of specified fields.

The OF/IN subordinate clause of the GENERATES clause can be used when the segment
contains multiple occurrences of a field, to allow the user to specify which occurrence of the
field is to have a DBD FIELD control statement generated for it. If the OF/IN clause is used,
all occurrences of the field other than the one specified in the clause are ignored.

The facility (described in "Generating DL/I DBD Control Statements" on page 131), which
automatically generates DBD FIELD control statements for the fields described below,
cannot be used when fields are duplicated across segments, because it is assumed there is no
such duplication. Instead, the GENERATES clause must be used if it is required to generate
DBD FIELD control statements for these fields:

. Fields that are used as segment search fields via the PROCESSES clause of
SYSTEM, PROGRAM, or MODULE members

. Fields that are used as sensitive fields in PCB members

. Fields that are used for secondary indexing via the SEARCH, SUBSEQUENCE, or
DUPLICATE-DATA lists of the appropriate index pointer segments, when an index
source segment is being processed

Therefore if data has been duplicated across segments and you wish to generate DBD
FIELD control statements for the types of fields listed above, then:

. The GENERATES clause must be specified in the definition of each segment of the
database to be processed to specify the fields for which DBD FIELD control
statements are to be generated.

. The GENERATES-FIELDS keyword must be used in the PRODUCE DL/I
DBDGEN command to indicate that DBD FIELD control statements are to be
generated only for the fields specified in the GENERATES clause.

The length of the segment is not specified in the segment definition, because it is
automatically calculated when required.

If the segment resides in a HSAM, SIMPLE HSAM, or SIMPLE HISAM database or a

database that does not use the VSAM operating system access method, it must not be
variable length.

37

ASG-DataManager DL/I Interface: DOS

38

69.

70.

71.

72.

73.

74.

If the segment does not reside in a HSAM, SIMPLE HSAM, or SIMPLE HISAM database,
or a database that does not use the VSAM operating system access method, any field
contained in the segment may be variable length except the following:

. A sequence key field or any of its constituent members

. Any fields preceding the sequence key field

For a variable length segment, the minimum length must include the length of the sequence
key field and must not change the offset of the sequence key. When the
EDIT-COMPRESSION-EXIT clause is specified, the minimum length cannot be less than 4
bytes.

If a variable length segment is encountered when the Source Language Generation facility is
being used to generate DBD control statements, record layouts, or COBOL, PL/I, or
Assembler data description statements, the 2-byte-size field required by IMS(DL/I) for the
segment is generated automatically (see "Variable Length Segments" on page 144).

A variable length segment is defined by specifying that the segment contains, directly or
indirectly, a variable length ITEM member.

It should be noted that a variable length segment must be defined to the VS COBOL
compiler by specifying a variable length array.

A segment that directly or indirectly contains a variable length array is not recognized as a
variable length segment.

If COBOL data description statements are to be generated for a variable length segment, the
segment must contain, directly or indirectly, a variable length ITEM member, and this
member must be redefined by a variable length array. For example, if COBOL data
descriptions are generated from the following data definition:

CONTAINS
ITEMA ELSE (ITEMB) ITEMC

I

The VS COBOL compiler will output a warning message, but the compilation will continue.
However, it should be noted that the following definition:

CONTAINS
(ITEMB) ITEMC ELSE ITEMA

I

will cause the VS COBOL compiler to output an error message and compilation will fail.

Common clauses can be present in any type of data definition statement; they are therefore
documented separately, in the ASG-Manager Products Dictionary/Repository User's Guide.
Not more than one of each of these clauses can be declared. If a common clause has a
subordinate clause or keyword, the subordinate clause identifier or subordinate keyword
must not be truncated to an extent where it becomes ambiguous with any other clause
identifier or other keyword available in the data definition syntax for this member type.

75.

76.

77.

78.

79.

3 DataManager Data Definition Statements for a DL/| Environment

The common clauses can be declared in any order. If present, they must follow the
RELATED-AS and ATTRIBUTES clauses, if these are present. If the latter clauses are both
present, the RELATED-AS clause must precede the ATTRIBUTES clause.

Within the RELATED-AS clause, the subordinate clauses can be in any order; and, if a
subordinate clause has subordinate clauses and optional keywords, such clauses and
keywords can be in any order within the subordinate clause.

Within the ATTRIBUTES clause, the subordinate clauses can be in any order (but see
remark 26 on page 31). The optional keywords in the POINTERS clause can be in either
order.

A record containing the segment's data definition statement can be inserted into the
repository's source dataset by a suitable command (see the 4ASG-Manager Products
Dictionary/Repository User's Guide), and an encoded record can subsequently be generated
and inserted into the data entries dataset. If, when the encoded record is generated, any item,
group, module, or segment which name appears in the segment's data definition statement
has no data entries record, Manager Products creates a dummy data entries record for that
member. The dummy record is created as:

. A dummy module if the name appears in an EDIT-COMPRESSION-EXIT or
EXIT-LIST clause

. A dummy segment if the name is a destination-parent-name, a
physically-paired-child-name or a real-paired-child-name

. A dummy group if the name appears in the OF/IN subordinate clause of the
GENERATES clause

. A dummy item in all the other cases

If an encoded segment record is deleted, any internal repository member that it created
which is not referred to by other members is deleted, together with any references that the
internal member made to other members. Any internal member that is referred to by other
members is made into a dummy internal member rather than being deleted altogether.

Examples

For a comprehensive cross section of examples showing the ATTRIBUTES clause in the data
definition statement for a SEGMENT PHYSICAL, see the examples illustrated by Figure 2 on
page 6 and Figure 3 on page 9. Also in those examples are segments participating in a

unidirectional logical relationship, and an index target segment.

39

ASG-DataManager DL/I Interface: DOS

Figure 6 illustrates two physical data structures that contain segments participating in a virtually
paired logical relationship.

Figure 6. Example of Physical Data Structures With Segments Participating in a
Virtually Paired Logical Relationship

Physical destination Logical destination
parent segment parent segment
ASY-LINE PROD-SEG
Re.al logical Virtual logical
child segment child segment
e A
|
ASY-PACK | PRODPART
L - 4
QTY-ASY

In Figure 6:

. ASY-LINE is the physical segment for an assembly line which assembles packs of
assembly parts to make a product.

. ASY-PACK is the physical segment for a pack of assembly parts being assembled on that
assembly line.

. QTY-ASY is the physical segment for the number of those packs of assembly parts
assembled on that assembly line.

. PROD-SEG is the physical segment for a product.

. PROD-PART is the physical segment for the parts that are used to make that product.

40

3 DataManager Data Definition Statements for a DL/| Environment

Below are examples of the data definition statements that could be used to define the segments
illustrated in Figure 6 on page 40. The examples also show the use of complex SEQUENCE-KEY
clauses.

ADD ASY-LINE;

SEGMENT PHYSICAL

RELATED-AS DESTINATION-PARENT-SEGMENT

ATTRIBUTES

CONTAINS ASY-CODE

SEQUENCE-KEY ASY-CODE UNIQUELY

ADD ASY-PACK;

SEGMENT PHYSICAL

RELATED-AS REAL-PAIRED-CHILD-SEGMENT TO PROD-SEG
POINTERS SYMBOLIC DIRECT-ADDRESS

ATTRIBUTES

CONTAINS PACK.NO, PART. COLOUR, QTY-REQD

SEQUENCE-KEY PROD-NO WITH PACK-NO AS PACKKEY

INSERT-POSITION LAST

ADD QTY-ASY;

SEGMENT PHYSICAL

ATTRIBUTES

CONTAINS QTY

INSERT-POSITION LAST

ADD PROD-SEG;

SEGMENT PHYSICAL

RELATED-AS DESTINATION-PARENT-SEGMENT

ATTRIBUTES

CONTAINS PROD-NO, DESCRIPT

SEQUENCE-KEY PROD-NO UNIQUELY

ADD PRODPART;

SEGMENT PHYSICAL

RELATED-AS VIRTUAL-PAIRED-CHILD-SEGMENT WITH ASY-PACK
TO ASY-LINE

ATTRIBUTES

SEQUENCE-KEY PART WITH COLOUR, QTY-REQD AS PART-KEY,
ASY-CODE

INSERT-POSITION LAST

’

For examples of logical data structures that can be defined from the virtually paired logical
relationship illustrated above, see Figure 7 on page 44 and the accompanying narrative.

41

ASG-DataManager DL/I Interface: DOS

Specification of the Data Definition Statement for a SEGMENT that Resides in a
Logical Database

42

Syntax

SEGMENT LOGICAL

[ATTRIBUTES]
CONTAINS physical-segment-name [IN physical-database-name
[,destination-parent-name

[common clauses]

where:

physical-segment -name is the name of a PHYSICAL SEGMENT.
destination-parent-name is a PHYSICAL DESTINATION-PARENT-SEGMENT.

physical-database-name is the name of a HDAM or HIDAM database.

common-clauses are any of these clauses (as defined in the ASG-Manager Products
Dictionary/Repository User’s Guide):

ACCESS-AUTHORITY FREQUENCY

ADMINISTRATIVE-DATA NOTE

ALIAS OBSOLETE-DATE
CATALOG QUERY
COMMENT SECURITY-CLASSIFICATION
DESCRIPTION SEE
EFFECTIVE
Remarks

1. The keyword LOGICAL must immediately follow the SEGMENT member type identifier,
to indicate that a segment residing in a logical database is being defined.

2. The keyword ATTRIBUTES can be omitted for a logical segment; it is included in the
statement specification in order to maintain the general format of the segment data
definition statements.

3. The CONTAINS clause specifies the physical segments that the logical segment represents.
The clause must be present if the segment is to be completely defined.

10.

3 DataManager Data Definition Statements for a DL/| Environment

The physical-segment -name specified can be the name of a segment of any type that
resides in a HDAM or HIDAM database, unless a logical concatenated segment is being
defined, in which case it must be the name of a logical child segment.

If the physical segment resides in more than one physical database, the IN subordinate
clause can be used to specify the name of the physical database relevant to this logical
segment. The name of the physical database is required when DL/I DBD control statements
are being produced for any logical database that contains this logical segment. If the IN
clause is not specified, then when DL/I DBD control statements are produced, Manager
Products finds an appropriate physical database in one of the ways described in
"Specification of the Data Definition Statement for a LOGICAL Type DL/I Database" on

page 74.

The destination-parent-name is specified only if a logical concatenated segment is
defined, in which case it must be the name of the destination parent segment to which the
logical child segment specified by physical -segment -name relates.

If the physical -segment -name specifies a logical child segment but the
destination-parent-name is omitted, then the Source Language Generation facility
assumes that a logical concatenated segment is being defined. The destination parent to
which it is related is also assumed.

The sequence key for a concatenated segment is the sequence key of the logical child
segment.

Common clauses can be present in any type of data definition statement; they are therefore
defined separately, in the ASG-Manager Products Dictionary/Repository User's Guide. Not
more than one of each of these clauses can be declared. If a common clause has a
subordinate clause or keyword, the subordinate clause identifier or subordinate keyword
must not be truncated to an extent where it becomes ambiguous with any other clause
identifier or other keyword available in the data definition syntax for this member type.

The common clauses can be in any order. If present, they must follow the ATTRIBUTES
clause, if that clause is present.

A record containing the segment's data definition statement can be inserted into the data
dictionary's source dataset by a suitable command (see ASG-Manager Products
Dictionary/Repository User's Guide), and an encoded record can subsequently be generated
and inserted into the data entries dataset. If, when the encoded record is generated, any
segment or database whose name appears in this segment's data definition statement has no
data entries record, a dummy segment or database data entries record is created for that
member.

43

ASG-DataManager DL/I Interface: DOS

44

Examples

Figure 7 illustrates logical data structures that can be defined from the physical data structures
illustrated by Figure 6 on page 40.

Figure 7. Examples of Logical Data Structures

Example A Example B
ASSBLINE PRODUCT
PARTPROD PART-ASY
PROD-QTY ASY-QTY

In Figure 7, example A:
. ASSBLINE is a logical segment representing an assembly line

. PARTPROD is a logical concatenated segment representing assembly parts assembled on
that assembly line and the product that they make

. PROD-QTY is a logical segment representing the number of those products being
assembled on that assembly line

These are examples of the data definition statements that could define the segments illustrated in
Figure 7, example A:

ADD ASSBLINE;

SEGMENT LOGICAL

CONTAINS ASY-LINE

ADD PARTPROD;

SEGMENT LOGICAL

CONTAINS ASY~PACKEf PROD-SEG
ADD PROD-QTY;

SEGMENT LOGICAL

CONTAINS QTY-ASY

’

3 DataManager Data Definition Statements for a DL/| Environment

In Figure 7 on page 44, example B:

PRODUCT is a logical segment representing a product.

PART-ASY is a logical concatenated segment representing the parts that are used to make this
product and the assembly line where they are assembled.

ASY-QTY is alogical segment representing the number of those assembly parts assembled on that
assembly line.

These are examples of the data definition statements that could define the segments illustrated in
Figure 7 on page 44, example B:

ADO PRODUCT;

SEGMENT LOGICAL

CONTAINS PROD-SEG

ADD PART-ASY;

SEGMENT LOGICAL

CONTAINS PRODPART, ASY-LINE
ADD ASY-QTY

SEGMENT LOGICAL

CONTAINS QTY-ASY

I

45

DOS

ASG-DataManager DL/l Interface

I

[sesneTo uowwoo]

[oweu-aTnpow ILIXE-HONYNILNIVA]
SHOVAZ
SONAZ
SANVTE
qqqqqqqq siIg
Uy TYWIDAAVXAH
[o YALOVEVHD) NO-DNISSHAIINS

sweu-wa3T sweu-wa3T
AﬁmEmHTQSONm W AmEmﬁlmszNm %
[} XxXxXXD J '] XXXXXD SATATA-YIVA-ALYD ITANA
sweu-wa3T sweu-wa3T
sweu-dnozb sweu-dnozb
XXXXXXS XXXXXXS
[XxXXXXMD) '] XXXX00D) SATATA -HONANOASHNS

AM sweu-we3T sweu-we3 T

sweu-dnoib wv 1 ATEm,Elnw:OMm SATATA- AT -HOUVAS
[oweu- juswbas -90IN0S HIUNOS]

QWPU-pPTaTI-YoILasS-XapUT NO Sweu-juswbas-39b6ie]

ol
ol

OL-qaIVIEY
sweu-Aa3x-sousnbas sweu-Aa3x-sousnbas
SWeU-pTaTI-YoIess-XopuT SWeU-pTaTI-YoIess-XopuT
sweu-As3-sousnbas XXXXXD sweu-Aa3x-sousnbss XXXXXID
QWeU-pTaTF-YoIrPas-XopuT XXXXXKS SWPU-PTOTF-YOILOS-XopUT XXXXXKS
XXXXXOID J@ H_ sweu-dnozb XXXXXD LC@VH_ sweu-dnozb
sweu-dnoib va sweu-wa3T) | _H sweu-dnozb oweu-we3T J JSHIVIANID]
qaI¥OITANd
o ATENOINA sweu-As3 AEN-FONANOHES
o2snero A1
[ﬁ..‘ﬁﬁmm:mﬂo AI] 3Ju93uod HESTH] Aﬂﬁmm:mﬁo AI] ju@3uod mmmw%mgu:muqoo‘
JINDITY-LON
asneto Mm% omszqamm%
ﬁ...ﬁﬁmmzmﬁu dI] 3jus3uod FSTH] % [esnero 4I] 3ue3juod ISTE H@uumuuou SNIVINOD] QENDITY

Aﬁ “v SHINETHLLY]

HINIOJ-XHAANI INIWOHES

Jew.o4 Juswaje)s uonluyaq ejed ¥ILNIOd-XIANI LNINDIS "8 a.nbi4

xejulhg

aseqejeq xopuj| A1epuodas e ul SapIsay Jey} INJIWOIS & 104 Juswaje}s uoniuyad ejed a8y} Jo uoneslyrads

Nel
<

3 DataManager Data Definition Statements for a DL/| Environment

where:

content declares an item, a group or an array, in the format shown in Figure 5 on page 26.

item-name is the name of an item.

version is an unsigned integer in the range 1 to 15, being a number specifying which version of
the relevant item is relevant to this segment. The version is within the HELD-AS form, or within a
defaulted form as stated in remark 31 on page 54. If version is omitted or if the stated version does
not exist, the lowest numbered existing version is assumed to be relevant.

group-name is the name of a group.

local-name is a name that can be used instead of the name or alias of the contained member, as
described above.

integer is an unsigned integer of from 1 to 18 digits, being the number of times i tem-name
or group -name occurs in the array.

item-name-a is the name of an item. This form of array declaration declares that when the
segment where defined is processed by an application program or module, the number of times
item-name or group-name occurs in the array is contained in the item i tem-name-a.

index-name is a name, conforming to the rules for member names stated in the ASG-Manager
Products Dictionary/Repository User’s Guide, that is to be used as the index name when COBOL
data descriptions are generated by the DataManager Source Language Generation facility. The
index-name is not separately recorded in the data dictionary (that is, no dummy data entries record
and no index record is created for index-name when the data definition in which it appears is
encoded) so index-name cannot be interrogated and can be the same as another name, an alias,
or a catalog classification in the data dictionary.

IF clause is a clause containing from 1 to 15 conditional terms. A conditional term compares the
contents of an item with a comparand; it has the 3 elements item-name, operator, and comparand.
If there are two or more conditional terms in the IF clause, they must be separated by an AND or
OR keyword; they will be evaluated from left to right in a Boolean logical manner. The IF clause
is declared in this format:

47

ASG-DataManager DL/I Interface: DOS

48

IF item-name-b [version-b] EQ item-name-c [version-c]
= literal

AND| item-name-b [version-b] EQ item-name-c [version-c] ..
OR literal }

where:

item-name-b is the name of the item, the contents of which are to be compared with the
comparand.

version-b is an unsigned integer in the range 1 to 15, being a number specifying the version
(within the HELD-AS form, or within a defaulted form as stated in remark 34 on page 33) of
item-name-b that is relevant to the comparison. If version-b is omitted, a default value of
lis assumed. The operators have these meanings:

EQ or = means equal to.

NE means not equal to.

ET or > means greater than.

GE means greater than or equal to.
E or < means less than.

LE means less than or equal to.

item-name-c is the name of the item, the contents of which are the comparand.
version-cis an unsigned integer in the range 1 to 15 being a number specifying the version

(within the same type of form as that here being defined) of i tem-name - c, the contents of
which are the comparand. If version-c is omitted, a default value of 1 is assumed.

3 DataManager Data Definition Statements for a DL/| Environment

Iliteral is a literal comparand, and must be compatible with the form-descriptionin
item-name-b’s data definition. (If 1 tem-name-b’s data definition contains a CONTENTS
clause, literal should also be compatible with i tem-name-b’s contents-description.) The literal
can be:

. A character string of not more than 256 printable and/or non-printable characters, enclosed
in quotes
. A numeric literal, that is:

— Asigned or unsigned decimal number of not more than 18 digits, optionally with a
decimal point, and not enclosed in quotes

— Assigned or unsigned floating point number (as defined in the ASG-Manager Products
Dictionary/Repository User’s Guide) not enclosed in quotes

group-name is the name of a group.

item-name is the name of an item.

version is an unsigned integer in the range 1 to 15, being a number specifying which version of
the relevant item is relevant to this segment. The version is within the HELD-AS form, or within a
defaulted form as stated in remark 10. If version is omitted or if the stated version does not exist,
the lowest numbered existing version is assumed to be relevant.

key-name is a 1- to 8-character unique alphanumeric name.

sequence-key-name is a 1- to 8-character unique alphanumeric name.

target-segment -name is the name of a segment that is a PHYSICAL
TARGET-SEGMENT.

index-search-field-name is a l- to 8-character unique alphanumeric name.

source-segment -name is the name of a segment that is a PHYSICAL
SOURCE-SEGMENT.

c is any printable character.
hh is a hexadecimal representation of any printable or non-printable character.
bbbbbbbb is a 1-byte bit string representation of any printable or non-printable character.

module-name is the name of a module.

49

ASG-DataManager DL/I Interface: DOS

50

common clauses are any of these clauses (as defined in the ASG-Manager Products
Dictionary/Repository User's Guide):

ACCESS-AUTHORITY FREQUENCY

ADMINISTRATIVE-DATA NOTE

ALIAS OBSOLETE-DATE

CATALOG QUERY

COMMENT SECURITY-CLASSIFICATION
DESCRIPTION SEE

EFFECTIVE-DATE

Remarks

The keyword INDEX-POINTER must immediately follow the SEGMENT member type
identifier, to indicate that an index pointer segment residing in a secondary index database is
being defined.

The ATTRIBUTES clause must be present if the segment is to be completely defined.

The first element within the ATTRIBUTES clause can be one of the keywords ALIGNED,
UNALIGNED, or NOT-ALIGNED. If none is declared in the data definition statement, a
default of UNALIGNED is taken.

ALIGNED is the equivalent of COBOL SYNCHRONIZED, or PL/I ALIGNED. It means
that (subject to remark 8 on page 51) all binary items and all floating point items declared as
being contained in the segment are aligned to half word, full word or double word
boundaries, thus:

. Binary items having a length of 4 decimal digits or less occupy a complete half word
. Binary items having a length of from 5 to 9 decimal digits occupy a full word

. Binary items having a length of from 10 to 18 decimal digits occupy 2 full words, but
are not necessarily aligned to a double word boundary

. Floating-point items having 6 digits or less in the mantissa occupy a full word
. Floating-point items having from 7 to 16 digits in the mantissa occupy a double word

ALIGNED also causes any bit string items to be output with alignment to byte boundaries
when the Source Language Generation facility is used. The way in which this is achieved
depends on the language being generated, and is described for COBOL, PL/I, and
Assembler in the publication ASG-Manager Products Source Language Generation.

10.

11.

12.

3 DataManager Data Definition Statements for a DL/| Environment

UNALIGNED means that (subject to remark 8 on page 51) binary items and floating point
items declared as being contained in the segment are not necessarily aligned to word or half
word boundaries and that bit string items are not aligned to byte boundaries. (The amount of
space occupied is the same as for ALIGNED items, but the positioning relative to
boundaries can differ.)

NOT-ALIGNED means the same as UNALIGNED. For the sake of simplicity, they are
regarded in the following remarks as being the same keyword; so that any reference to the
UNALIGNED keyword should be interpreted as applying equally to the NOT-ALIGNED
keyword.

The ALIGNED or UNALIGNED keyword does not apply to items contained within groups
declared as being contained in the segment. The data definitions of the groups determine the
alignment or non-alignment of such indirectly-referenced items.

The ALIGNED or UNALIGNED keyword can be overridden for individual content
declarations (that is, for particular items or groups declared as being contained in the
segment) by including the keyword UNALIGNED or ALIGNED, respectively, as the last
element in the particular content declaration, preceding any associated ELSE and/or IF
clauses (see remark 11 on page 51 through remark 15 on page 52). It is not meaningful to
include either of these keywords in a content declaration that declares a group (see remark 7

on page 51).

The CONTAINS clause specifies the GROUP and/or ITEM members that constitute the
successive parts of the index pointer segment's user data. If there is no user data, the
CONTAINS clause must be omitted. The main part of the index pointer segment from the
SEARCH-KEY-FIELDS, SUBSEQUENCE-FIELDS, and DUPLICATE-DATA-FIELDS
subordinate clauses specified in the RELATED-TO clause is automatically constructed.

Any direct or indirect reference from the CONTAINS clause to an item is assumed to be to
the HELD-AS form of that item. If the item has no HELD-AS form, default assumptions are
made as to the relevant form of the item, in the order DEFAULTED-AS, ENTERED-AS,
REPORTED-AS. The form first encountered in this order is taken as the defaulted form,
and version is applied within that form as stated in the syntax.

Entries in the CONTAINS clause may be conditional (IF clauses, see remark 13 on page 52)
and/or may have alternative content declarations (ELSE clauses, see remark 12 on page 51),
which also may be conditional, so that the definition of each part of the segment comprises a
content declaration and any associated ELSE clause and/or IF clauses. If the segment
comprises two or more parts, the definition of each part except the last must be followed by
a comma which can optionally be followed by spaces.

Any part of the segment can be specified as having any number of alternative contents. The
alternative content declarations are separated by the keyword ELSE. The alternative
contents need not occupy the same amount of physical storage.

The expression ELSE clause thus refers to:

ELSE content

where content is as defined above.

51

ASG-DataManager DL/I Interface: DOS

52

13.

14.

15.

16.

17.

18.

19.

Any content declaration can be specified as conditional (i.c., applied only if a stated
condition or combination of conditions is satisfied). For a content declaration to be
conditional, content must immediately be followed by an IF clause.

It follows that any part of the segment can have alternative conditional contents, declared in
the form:

content IF clause ELSE content IF clause
[ELSE content IF clause]...

and that any combination of conditional and non-conditional alternative contents can be
declared for any part of the segment.

In a content declaration, the ALIGNED, UNALIGNED, or NOT-ALIGNED element, the
KNOWN-AS clause and the INDEXED-BY clause can, if applicable, be declared in any
order; however, they must not precede any of the other elements of the content declaration
(though they must precede any associated ELSE clauses and/or IF clauses).

The SEQUENCE-KEY clause specifies the name that is to be applied to the sequence key of
the index pointer segment. Manager Products constructs the sequence-key, for which a
member of a special internal type is generated. A member of this type is given the following
uses table entries:

. An entry for the index-search-field-name (XDFLD) when specified for the
segment (see remark 24 on page 54)

. An entry for each entry specified in the SUBSEQUENCE-FIELDS clause in the
segment definition

The sequence key internal member type can be referred to by other members, for example,
as a segment search argument, or as a sensitive field. Sequence key internal members can be
interrogated, and the Source Language Generation facility can operate on such members.

UNIQUELY specifies that the sequence key of the index pointer segment is to contain
unique values only. DUPLICATED specifies that duplicate values are allowed in the
sequence key. If neither of these keywords is specified, then UNIQUELY is assumed.

The GENERATES clause enables the user to specify fields for which DBD FIELD control
statements are always to be generated when DBD control statements are produced, in
addition to those fields required by IMS (DL/I) for which the Source Language Generation
facility always provides DBD FIELD control statements. (See "Generating DL/I DBD
Control Statements" on page 131) It is not necessary to include the sequence key field name
in the GENERATES clause, because a DBD FIELD Control Statement is always generated
for this field; but the sequence key is accepted in the GENERATES clause in case the user
wishes to include it in the list of specified fields.

The OF/IN subordinate clause of the GENERATES clause can be used when the segment
contains multiple occurrences of a field, to allow the user to specify which occurrence of the
field is to have a DBD FIELD control statement generated for it. If the OF/IN clause is used,
all occurrences of the field other than the one specified in the clause are ignored.

20.

21.

22.

23.

3 DataManager Data Definition Statements for a DL/| Environment

When specified for an index pointer segment, the GENERATES clause has the additional
function of forcing DBD FIELD control statements to be generated for fields that are in the
main part of the index pointer segment [i.¢., if the search, subsequence and duplicate-data
fields, and fields constituting the concatenated key of the index target segment are present
(see remark 35 on page 55 and remark 36 on page 55)]. Normally, DBD FIELD control
statements are only generated for the sequence key field and for fields in the user data (see
"Generating DL/I DBD Control Statements" on page 131).

If it is required to generate DBD FIELD control statements for the fields that constitute the
search, subsequence or duplicate-data fields then each field must be specified in the
GENERATES clause of the index pointer segment definition.

When there is duplication of fields across segments, the GENERATES clause must be used
if DBD FIELD control statements are to be generated for these fields:

. Fields that are used as segment search fields via the PROCESSES clause of
SYSTEM, PROGRAM, or MODULE members

° Fields that are used as sensitive fields in PCB members

These fields must be part of the user-data.

The facility (described in "Generating DL/I DBD Control Statements" on page 131) which
automatically generates the DBD FIELD control statements for the fields described above
cannot be used when fields are duplicated across segments, as Manager Products assumes

that there is no such duplication.

If data has been duplicated across segments and you want to generate DBD FIELD control
statements for the types of fields listed above, then:

. The GENERATES clause must be specified in the definition of the segment to
specify the fields for which DBD FIELD control statements are to be generated.

. The GENERATES-FIELDS keyword must be used in the PRODUCE DLI DBDGEN
command to indicate that DBD FIELD control statements are to be generated only for
the fields specified in the GENERATES clause.

The RELATED-TO clause must be present if the segment is to be completely defined. It
specifies:

. The index target segment to which the segment is related
. The index source segment to which the segment is related

. The fields that are used to construct the CONSTANT, search, subsequence, and
duplicate-data portion of the segment

The RELATED-TO keyword must be immediately followed by the
target - segment -name, which identifies the PHYSICAL-TARGET-SEGMENT to
which the index pointer segment points.

53

ASG-DataManager DL/I Interface: DOS

54

24.

25.

26.

27.

28.

29.

30.

31.

ON index-search-field-name specifies the name to be applied to the search field
(XDFLD) of the index pointer segment that can be used as a segment search field for the
index target segment. Manager Products constructs the index search field, for which a
member of a special internal type is generated. This member is given a uses table entry for
each member specified in the SEARCH-KEY-FIELDS clause.

Index search field (XDFLD) internal members can be referred to by other members, for
example, as a segment search argument. Members of this type can also be interrogated and
the Source Language Generation facility can operate on them.

The SOURCE clause identifies the index source segment from which the index pointer
segment is generated. The clause can be omitted if the index target segment is also the index
source segment; otherwise the index source segment must be a dependent segment of the
index target segment, at any lower level.

The SEARCH-KEY-FIELDS clause lists the names of one to 5 GROUP or ITEM members
that are contained directly or indirectly by the corresponding index source segment, and that
constitute the index search field (XDFLD) in the index pointer segment. The sequence of
the entries in the list is the sequence in which the field values are concatenated in the index
pointer segment's search field. None of these fields or their constituent members may be
variable length.

The SUBSEQUENCE-FIELDS clause lists the names of one to 5 groups, items, and/or
system related fields that are defined in the corresponding index source segment, and that
constitute the subsequence field in the index pointer segment. The sequence of the entries in
the list is the sequence in which the field values are concatenated in the index pointer
segment's subsequence field.

The combined length of the fields declared by CONSTANT, SEARCH-KEY-FIELDS, and
SUBSEQUENCE-FIELDS must not exceed 236 bytes.

The DUPLICATE-DATA-FIELDS clause lists the names of one to 5 groups, items and/or
system related fields (of the type whose names begin with CK) that are defined in the
corresponding index source segment, and that constitute the duplicate data field in the index
pointer segment. The sequence of the entries in the list is the sequence in which the field
values are concatenated in the index pointer segment's duplicate data field.

The SUPPRESSING-ON clause specifies that the creation of the index pointer segment is
suppressed if each of the fields of the index source segment that are used to construct the
search field of the index pointer segment contains the specified value in every byte.

The MAINTENANCE-EXIT clause specifies that a user-supplied index maintenance exit
routine is used to suppress the creation of selected index pointer segments.

32.

33.

34.

35.

36.

3 DataManager Data Definition Statements for a DL/| Environment

The length of the index pointer segment is not included as part of the segment definition as
the Source Language Generation facility calculates it when required, allowing for:

. The length of the key
. Any duplicate data fields

. Any user data

Common clauses can be present in any type of data definition statement; they are therefore
defined separately in the ASG-Manager Products Dictionary/Repository User's Guide. Not
more than one of each of these clauses can be declared. If a common clause has a
subordinate clause or keyword, the subordinate clause identifier or subordinate keyword
must not be truncated to an extent where it becomes ambiguous with any other clause
identifier or other keyword available in the data definition syntax for this member type.

The common clauses can be declared in any order. If present, they must follow the
ATTRIBUTES and RELATED-TO clauses, if they are present. The latter clauses can be in
either order. Within the ATTRIBUTES clause the subordinate clauses can be in any order.
Within the RELATED-TO clause the subordinate clauses can follow
index-search-field-name in any order.

A record containing the segment's data definition statement can be inserted into the
repository's source dataset by a suitable command (see the ASG-Manager Products
Dictionary/Repository User's Guide), and an encoded record can subsequently be generated
and inserted into the data entries dataset. If, when the encoded record is generated, any item,
group, module, or segment whose name appears in the segment's data definition statement
has no data entries record, a dummy data entries record is created for that member. The
dummy record is created as:

. A dummy module if the name appears in a MAINTENANCE-EXIT clause

. A dummy segment if the name is a target - segment -name or a
source-segment -name

. A dummy group if the name appears in the OF/IN subordinate clause of the
GENERATES clause

. A dummy item in all other cases

Similarly, when the encoded record is generated, if a member of an internal member type
has not already been generated for any name appearing in a SUBSEQUENCE-FIELDS
clause or a DUPLICATEDATA-FIELDS clause, then a dummy data entries record is
created for that member. (The record is a dummy item because the internal member type
will be defined in the physical source segment's definition.)

If an encoded segment record is deleted, any internal member that it created that is not
referred to by other members is deleted, together with any references that the internal
member made to other members. Any internal member that is referred to by other members
is made into a dummy internal member rather than being deleted altogether.

Example

For an example of a SEGMENT INDEX-POINTER see the example illustrated by Figure 3 on
page 9.

55

ASG-DataManager DL/I Interface: DOS

DataManager Data Definition Statements for DL/l Databases

Outline of the DL/I-DATABASE Data Definition Statement

56

DL/I provides a number of different organizations and access methods. To simplify the description
of DataManager’s DL/I-DATABASE data definition statement, the format of the statement is
specified separately for each different type of DL/I database organization/access method. The
member type identifier IMS-DATABASE, which is synonymous with DL/I-DATABASE, as
included in the syntax for compatibility with the OS version of the interface.

This is the overall syntax of the IMS-DATABASE member type:

IMS-DATABASE hsam-access
DL/I-DATABASE hisam-access
DL/1-DATABASE hdam-access
DLI-DATABASE hidam-access
BLl—DATABASE logical-access

secondary-index-access

[common clauses]
where:

hsam-access, hisam-access, hdam-access, hidam-access, logical-access,
and secondary-index-access are the definitions for particular types of database
organization/access method, as specified in "Specification of the Data Definition Statement for a
SECONDARY-INDEX Type DL/I Database" on page 78.

common clauses are any of these clauses (as defined in the ASG-Manager Products
Dictionary/Repository User's Guide):

ACCESS-AUTHORITY FREQUENCY

ADMINISTRATIVE-DATA NOTE

ALIAS OBSOLETE-DATE

CATALOG QUERY

COMMENT SECURITY-CLASSIFICATION
DESCRIPTION SEE

EFFECTIVE-DATE

3 DataManager Data Definition Statements for a DL/I Environment

For each type of database organization/ access method, the definition comprises:
. An organization type/access method keyword or keywords.

. An ACCESS clause, to specify the access method of the database. There is no ACCESS
clause for a logical-access definition.

. A DATASETS clause, to specify the attributes of the dataset groups into which the database
is divided. There is no DATASETS clause for a logical-access definition.

. A CONTAINS clause, to list the segments that reside in the database.

The ACCESS, DATASETS, and CONTAINS clauses must, if present, be in that order and must
precede any common clause that may be present.

Specification of the Data Definition Statement for a HSAM Type DL/I Database
Syntax

IMS-DATABASE HISAM [SIMPLE]
DL/I-DATABASE

DL/1-DATABASE

DLI-DATABASE

DL1-DATABASE

[ACCESS]
DATASETS INPUT ddname [RECORD Iengthl]
OUTPUT ddname [RECORD length]
DEVICE device [ASSIGN SYSmmm SYSnnn]

CONTAINS physical-segment-name
[, physical-segment-name PARENT physical-segment-name

[common clauses]
where:

ddname is 1 to 7 alphanumeric characters, being the logical name used in the job control to
identify the physical file.

Ilength is an unsigned integer other than 0, being the maximum length (in bytes) of a logical
record.

57

ASG-DataManager DL/I Interface: DOS

58

device is one of these keywords or numbers:
DRUM 2311 3310 3370 3420
CELL 2314 3330 3375
TAPE 2319 3340 3380
2301 2321 3344 3400
2305 2400 3350 3420
FBA
mmm, nnn are the 3 digit integers in the range 001 to 240.
physical-segment-name is the name of any PHYSICAL segment.

common clauses are any of these clauses (as defined in the ASG-Manager Products
Dictionary/Repository User's Guide):

ACCESS-AUTHORITY FREQUENCY

ADMINISTRATIVE-DATA NOTE

ALIAS OBSOLETE-DATE

CATALOG QUERY

COMMENT SECURITY-CLASSIFICATION
DESCRIPTION SEE

EFFECTIVE-DATE
Remarks

1. The HSAM keyword must immediately follow the member type identifier to indicate that a
HSAM database is being defined.

2. The keyword SIMPLE specifies that the database being defined is a SIMPLE HSAM
database. If present, it must immediately follow the keyword HSAM.

3. The ACCESS clause can be omitted, but if it is present it must immediately follow the
HSAM [SIMPLE] keyword(s).

4. The DATASETS clause defines a dataset group within this database. It must be present if
the definition of the database is to be complete. Only one DATASETS clause is permitted.

5. INPUT ddname specifies the logical file name of the input dataset. It must be unique
within the data dictionary.

10.

11.

12.

13.

14.

3 DataManager Data Definition Statements for a DL/| Environment

OUTPUT ddname specifies the logical file name of the output dataset. It must be unique
within the data dictionary.

If a RECORD subordinate clause is present in either of the INPUT or OUTPUT clauses, a
RECORD subordinate clause must be present in both. The length specified in the RECORD
clause for the output file must be equal to or greater than the length specified in the
RECORD clause for the input file.

The DEVICE clause specifies the physical storage device for these files. If the physical
storage device is a magnetic tape unit, the ASSIGN clause is mandatory. SYSnnn
represents the symbolic tape unit to be associated with the INPUT ddname. SY Smmm
represents the symbolic tape unit to be associates with the OUTPUT ddname.

The CONTAINS clause must be present if the definition of the database is to be complete. It
must follow the DATASETS clause if both clauses are present.

The CONTAINS clause for a SIMPLE HSAM database states the name of the one segment
that resides in the database.

The CONTAINS clause for a HSAM database lists the names of from 1 to 255 segments
that reside in the database. The segments must be listed in hierarchical sequence, that is
from top to bottom and left to right.

The PARENT clauses identify the physical parents of the segment whose names are listed in
the CONTAINS clause. A PARENT clause must not be present for the first name listed (that
of the root segment) but must follow each of the other names listed in the CONTAINS
clause.

Common clauses can be present in any type of data definition statement; they are therefore
defined separately, in the ASG-Manager Products Dictionary/Repository User's Guide. Not
more than one of each of these clauses can be declared. If a common clause has a
subordinate clause or keyword, the subordinate clause identifier or subordinate keyword
must not be truncated to an extent where it becomes ambiguous with any other clause
identifier or other keyword available in the data definition syntax for this member type.

The common clauses can be declared in any order. If present, they must follow the
ACCESS, DATASETS, and CONTAINS clauses, if these are present.

59

ASG-DataManager DL/I Interface: DOS

60

15.

16.

A record containing the database's data definition statement can be inserted into the data
dictionary's source dataset by a suitable command (see the ASG-Manager Products
Dictionary/Repository User's Guide), and an encoded record can subsequently be generated
and inserted into the data entries dataset.

When the encoded record is generated, a data entries record of a special internal type, a
DL/I-DATASET member, is created for each ddname that appears in the database's data
definition. The DL/I-DATASET internal member is given a uses table entry for each
segment that constitutes the dataset defined by the member. The DL/I-DATASET internal
member can be referred to by other members; for example, it could be used in the INPUTS
clause of a PROGRAM data definition. DL/I-DATASET members can also be interrogated

(see "Condition Keywords for Which and What Commands" on page 102).

If' when the encoded record is generated, any segment whose name appears in the database's
data definition statement has no data entries record, a dummy data entries record is created
for that member as a dummy segment record.

When an encoded database member is deleted, any DL/I-DATASET member created for it
which is not referred to by other members is also deleted, together with any references that
the DL/I-DATASET member made to segments. Any DL/I-DATASET member that is
referred to by other members is a dummy member rather than being deleted.

Example

3 DataManager Data Definition Statements for a DL/| Environment

Figure 9 represents a possible hierarchical structure of segments constituting a personnel database
called EMPLOYEE-DETAILS. A definition of a HSAM database implementing a structure could

be as follows. In this example, meaningful segment names have been retained. The abbreviated
8-character names required by DL/I can be defined as DL/I aliases in the ALIAS clauses of the

members that constitute the database.

Figure 9. Segments Constituting a Personnel Database, EMPLOYEE-DETAILS

JOB-TITLE

DEPARTMENT
EMPLOYEE-
NUMBER
| |
NAME ADDRESS JOB-STATUS
|
| |
SALARY
| |
SOCIAL-
TAXCODE DEDUCTION- SECURITY-
TABLE-REF NUMBER

ADD EMPLOYEE-DETAILS
IMS-DATABASE HSAM
ACCESS PASSWORD

DATASETS

CONTAINS

INPUT EMPLIN RECORD 1024

OUTPUT EMPLOUT RECORD 1024

DEVICE 3330 MODEL 1

DEPARTMENT.

EMPLOYEE-NUMBER PARENT DEPARTMENT,
NAME PARENT EMPLOYEE-NUMBER.
ADDRESS PARENT EMPLOYEE-NUMBER,
JOB-STATUS PARENT EMPLOYEE-NUMBER.
SALARY PARENT JOB-STATUS.

TAXCODE PARENT SALARY.
DEDUCTION-TABLE-REF PARENT SALARY.
SOCIAL-SECURITY-NUMBER PARENT SALARY.
JOB-TITLE PARENT JOB-STATUS

61

ASG-DataManager DL/I Interface: DOS

Specification of the Data Definition Statement for a HISAM Type DL/I Database

62

Syntax

IMS-DATABASE HISAM [SIMPLE]
DL/I-DATABASE

DL/1-DATABASE

DLI-DATABASE

DL1-DATABASE

[ACCESS [VSAM]]

[OVERFLOW ddname [BLOCK count [RECORD length]]]

DATASETS PRIME ddname [BLOCK count [RECORD length]]
DEVICE device

CONTAINS physical-segment-name
[,physical-segment-name PARENT physical-segment-name] ...

[common clauses]
where:

ddname is 1 to 7 alphanumeric characters, being the logical name used in the job control to
identify the physical file.

count is an unsigned, non-zero integer, being the number of logical records per physical block.

Ilengthis anunsigned non-zero integer, being the maximum length (in bytes) of a logical record.
If VSAM is the operating system access method, length must be an even value.

device is one of the keywords or numbers from the list:
DRUM 2311 3310 3350
CELL 2314 3330 3375
2301 2319 3340 3380
2305 2321 3344 FBA

physical-segment-name is the name of a PHYSICAL segment.

common clauses are any of these clauses (as defined in the ASG-Manager Products
Dictionary/Repository User's Guide):

ACCESS-AUTHORITY FREQUENCY

ADMINISTRATIVE-DATA NOTE

ALIAS OBSOLETE-DATE
CATALOG QUERY
COMMENT SECURITY-CLASSIFICATION

3 DataManager Data Definition Statements for a DL/| Environment

DESCRIPTION SEE

EFFECTIVE-DATE

Remarks

10.

11.

12.

13.

The HISAM keyword must immediately follow the member type identifier to indicate that a
HISAM database is being defined.

The keyword SIMPLE specifies that the database being defined is a SIMPLE HISAM
database. If present, it must immediately follow the keyword HISAM.

The ACCESS clause can be omitted, but if it is present it must immediately follow the
HISAM SIMPLE keyword(s).

The DATASETS clause defines a dataset group within this database. It must be present if
the definition of the database is to be complete.

Within the DATASETS clause, the PRIME clause must always be specified. It defines the
prime dataset of the dataset group.

Within the DATASETS clause, the OVERFLOWS clause must always be specified for a
HISAM database, but is invalid for a SIMPLE HISAM database. It defines the overflow file
of the database.

The ddname in the PRIME clause and the ddname in the OVERFLOW clause, which
specify the logical file names of the respective datasets, must each be unique in the data
dictionary.

If a BLOCK subordinate clause is present in either the OVERFLOW clause or the PRIME
clause, a BLOCK subordinate clause must be present in both; in which case, if an associated
RECORD subordinate clause is present in either, a RECORD clause must be present in
both.

The RECORD length specified for the OVERFLOW clause must be equal to or greater than
the RECORD length specified for the PRIME clause, if both are specified.

The RECORD length specified for a SIMPLE HISAM database must be equal to the length
of the contained segment.

The control interval size is specified by the product of the BLOCK count and the RECORD
length, must not exceed 4096. On encoding, a warning message is output if the product is
not a multiple of 512.

The DEVICE clause specifies the physical storage device for the dataset files.

The CONTAINS clauses list the segments that reside in the database. For the definition of

the database to be complete, the CONTAINS clauses must be present and must immediately
follow a DATASETS clause.

63

ASG-DataManager DL/I Interface: DOS

64

14.

15.

16.

17.

18.

A SIMPLE HISAM database can only contain one segment. For a HISAM database, 1 to
255 different segments can be specified. The segments must be specified in hierarchal
sequence; that is, from top to bottom and left to right.

The PARENT clauses identify the physical parents of the segments whose names are listed
in the CONTAINS clauses. A PARENT clause must not be present for the root segment (the
first physical - segment -name) but must follow each of the other names listed in the
CONTAINS clause.

Common clauses can be present in any type of data definition statement; they are therefore
defined separately in the ASG-Manager Products Dictionary/Repository User's Guide. Not
more than one of each of these clauses can be declared. If a common clause has a
subordinate clause or keyword, the subordinate clause identifier or subordinate keyword
must not be truncated to an extent where it becomes ambiguous with any other clause
identifier or other keyword available in the data definition syntax for this member type.

The common clauses can be declared in any order. If present, they must follow the
ACCESS, DATASETS, and CONTAINS clauses, if these are present.

A record containing the database's data definition statement can be inserted into the data
dictionary's source dataset by a suitable command (see the ASG-Manager Products
Dictionary/Repository User's Guide), and an encoded record can subsequently be generated
and inserted into the data entries dataset.

When the encoded record is generated, a data entries record of a special internal type, a
DL/I-DATASET member, is created for each ddname that appears in the database's data
definition. The DL/I-DATASET internal member is given a uses table entry for each
segment that constitutes the dataset defined by the member. The DL/I-DATASET internal
member can be referred to by other members, for example, it could be used in the INPUTS
clause of a PROGRAM data definition. DL/I-DATASET members can also be interrogated
(see "DL/I Member-type Keywords" on page 99).

If, when the encoded record is generated, any segment whose name appears in the database's
data definition statement has no data entries record, a dummy data entries record is created
for that member as a dummy segment record.

When an encoded database member is deleted, any DL/I-DATASET member created for it
which is not referred to by other members is also deleted, together with any references that
the DL/I-DATASET member made to segments. Any DL/I-DATASET member that is
referred to by other members is made into a dummy member rather than being deleted.

3 DataManager Data Definition Statements for a DL/I Environment

Examples

These examples of data definition statements for HISAM databases relate to the hierarchical
structure of segments listed in "Specification of the Data Definition Statement for a HSAM Type
DL/I Database" on page 57. In these examples meaningful segment names have been retained. The
abbreviated 8-character names required by DL/I can be defined as DL/I aliases in the ALIAS
clauses of the members that constitute the database. The database could be defined thus:

ADD EMPLOYEE-DETAILS:

IMS-DATABASE HISAM

ACCESS VSAM PASSWORD

DATASETS PRIME EMPLP BLOCK 8 RECORD 256
DEVICE 3330

CONTAINS DEPARTMENT.
EMPLOYEE-NUMBER PARENT DEPARTMENT,
NAME PARENT EMPLOYEE-NUMBER.
ADDRESS PARENT EMPLOYEE-NUMBER.
JOB-STATUS PARENT EMPLOYEE-NUMBER,
SALARY PARENT JOB-STATUS.
TAXCODE PARENT SALARY.
DEDUCTION-TABLE-REF PARENT SALARY.
SOCIAL-SECURITY-NUMBER PARENT SALARY.
JOB-TITLE PARENT JOB-STATUS

Specification of the Data Definition Statement for a HDAM Type DL/l Database

Syntax

IMS-DATABASE HDAM
DL/I-DATABASE
DL/1-DATABASE
DLI-DATABASE
DL1-DATABASE

[ACCESS [VSAM]

%ﬁRANDOMISING—MODU E module-name [ANCHOR-POINTS number]
RANDOMIZING-MODULE [RELATIVE-BLOCK-MAXIMUM relative-block]
[INSERTION-BYTES-MAXIMUM bytes]

[DATASETS PRIME ddname [BLOCK size DEVICE device [SCAN cylinders]
[FREQUENCY-FREE-BLOCKS frequency] [PERCENTAGE-FREE-SPACE percent]

[, physical-segment-name PARENT physical-segment-name] ...

[CONTAINS physical-segment-name]
]

[common clauses]

{1

65

ASG-DataManager DL/I Interface: DOS

66

where:
module-name is the name of a MODULE.

number is an unsigned integer in the range 1 to 255, being the number of root anchor points
required in each control interval or block.

relative-block is an unsigned integer in the range 1 to 16777215, being the maximum block
number to be produced by the randomizing module.

bytes is an unsigned integer in the range 1 to 16777215, being the maximum number of bytes to
be inserted into the root addressable area.

ddname is 1- to 8-alphanumeric characters, being the logical name used in the job control to
identify the physical file.

s1izeis an unsigned integer other than 0, being the number of bytes required per physical block or
control interval.

device is one of the keywords or numbers from the list:
DRUM 2311 3310 3350 3390

CELL 2314 3330 3370

2301 2319 3340 3375

2305 2321 3344 3380

cylinders is an unsigned integer in the range 0 to 32767.
frequency is an unsigned integer in the range 2 to 100, or is 0.
percent is an unsigned integer in the range 0 to 99.

physical-segment-name is the name of a PHYSICAL segment.

common clauses are any of these clauses (as defined in the ASG-Manager Products
Dictionary/Repository User's Guide):

ACCESS-AUTHORITY FREQUENCY

ADMINISTRATIVE-DATA NOTE

ALIAS OBSOLETE-DATE

CATALOG QUERY

COMMENT SECURITY-CLASSIFICATION
DESCRIPTION SEE

EFFECTIVE-DATE

3 DataManager Data Definition Statements for a DL/| Environment

Remarks

1. The HDAM keyword must immediately follow the member type identifier to indicate that a
HDAM database is being defined.

2. The ACCESS clause can be omitted, but if it is present, it must immediately follow the
HDAM keyword.

3. The RANDOMIZING-MODULE (or RANDOMISING-MODULE) clause specifies the
user-supplied randomizing module that is used to store and access the segments in this
database.

4, The optional clauses ANCHOR-POINTS, RELATIVE-BLOCK-MAXIMUM, and
INSERTION-BYTES-MAXIMUM specify the maximum values for the operands that are
required when accessing the root addressable area of the HDAM database.

5. The DATASETS clause defines a dataset group within this database. It must be present if
the definition of the database is to be complete. The database can be divided into up to 10
dataset groups.

6. Within the DATASETS clause, the PRIME clause must always be specified. It defines the
prime file of the dataset.

7. The ddname in each PRIME clause must be unique in the data dictionary.

8. BLOCK size must not be greater than 4096. If the size is not a multiple of 512, on encoding
it is rounded up to the next multiple of 512.

9. The DEVICE clause specifies the physical storage device for the dataset file.

10. The SCAN clause specifies the number of cylinders to be scanned when searching for
available storage space. If the SCAN clause is omitted, a default of 3 cylinders is assumed.

11. The FREQUENCY-FREE-BLOCKS clause specifies that, where frequency = n, every nth
control interval or block in this dataset group is to be left as free space during database load
or reorganization.

12. The PERCENTAGE-FREE-SPACE clause specifies the minimum percentage of each
control interval or block that is to be left as free space in this data file during database load
or reorganization.

13. The CONTAINS clauses list the segments that reside in the database. For the definition of
the database to be complete, the CONTAINS clauses must be present, and each
CONTAINS clause must immediately follow a DATASETS clause.

14. You can specify 1 to 255 different segments in total for the database. The segments must be
specified in hierarchal sequence; that is, from top to bottom and left to right.

15. The first physical-segment -name listed in the first CONTAINS clause must be the
name of the root segment.

67

ASG-DataManager DL/I Interface: DOS

68

16.

17.

18.

19.

20.

The PARENT clauses identify the physical parents of the segments whose names are listed
in the CONTAINS clauses. A PARENT clause must not be present for the root segment (the
first physical-segment -name of the first dataset group) but must follow each of the
other names listed in the CONTAINS clauses.

Common clauses can be present in any type of data definition statement; they are therefore
defined separately, in the ASG-Manager Products Dictionary/Repository User's Guide. Not
more than one of each of these clauses can be declared. If a common clause has a
subordinate clause or keyword, the subordinate clause identifier or subordinate keyword
must not be truncated to an extent where it becomes ambiguous with any other clause
identifier or other keyword available in the data definition syntax for this member type.

The common clauses can be declared in any order. If present, they must follow any
ACCESS, DATASETS, and CONTAINS clauses.

A record containing the database's data definition statement can be inserted into the data
dictionary's source dataset by a suitable command (see the ASG-Manager Products
Dictionary/Repository User's Guide), and an encoded record can subsequently be generated
and inserted into the data entries dataset. When the encoded record is generated, a data
entries record of a special internal type, a DL/I-DATASET member, is created for each
ddname that appears in the database's data definition. The DL/I-DATASET internal member
is given a uses table entry for each segment that constitutes the dataset defined by the
member. The DL/I-DATASET internal member can be referred to by other members, for
example, it could be used in the INPUTS clause of a PROGRAM data definition.
DL/I-DATASET members can also be interrogated (see "DL/I Member-type Keywords" on

page 99). If, when the encoded record is generated, any segment or module whose name
appears in the database's data definition statement has no data entries record, a dummy data
entries record for that member is created as a dummy segment record or a dummy module
record respectively.

When an encoded database member is deleted, any DL/I-DATASET member created for it
that is not referred to by other members is also deleted, together with any references that the
DL/I-DATASET member made to segments. Any DL/I-DATASET member that is referred
to by other members is made into a dummy member rather than being deleted.

Examples

The following example of data definition statements for HDAM databases relate to the
hierarchical structure of segments illustrated in "Specification of the Data Definition Statement for
a HSAM Type DL/I Database" on page 57. In this example, meaningful segment names have been

retained. The abbreviated 8-character names required by DL/I can be defined as DL/I aliases in the
ALIAS clauses of the members that constitute the database.

3 DataManager Data Definition Statements for a DL/I Environment

The database could be defined thus:

ADD EMPLOYEE-DETAILS;
IMS-DATABASE HDAM
ACCESS VSAM PASSWORD RANDOMISING-MODULE RANDMOD
ANCHOR-POINTS 10
RELATIVE-BLOCK-MAXIMUM 25600
INSERTION-BYTES-MAXIMUM 512
DATASET PRIME EMPL BUFFER 2048
DEVICE 3330 MODEL 11
SCAN 5
FREQUENCY-FREE-BLOCKS 10
PERCENTAGE-FREE-SPACE 10
CONTAINS DEPARTMENT,
EMPLOYEE-NUMBER PARENT DEPARTMENT,
NAME PARENT EMPLOYEE-NUMBER,
ADDRESS PARENT EMPLOYEE-NUMBER,
JOB-STATUS PARENT EMPLOYEE-NUMBER,
SALARY PARENT JOB-STATUS,
TAXCODE PARENT SALARY,
DEDUCTION-TABLE-REF PARENT SALARY,
SOCIAL-SECURITY-NUMBER PARENT SALARY,
JOB-TITLE PARENT JOB-STATUS

Specification of the Data Definition Statement for a HIDAM Type DL/l Database

Syntax

IMS-DATABASE HIDAM
DL/I-DATABASE
DL/1-DATABASE
DLI-DATABASE
DL1-DATABASE

[accEss [VSAM] INDEX [VSAM] [DATABASE database-name] [SEGMENT segment-name]
SEQUENCE-KEY sequence-key-name]

[DATASETS INDEX ddname [BLOCK count [RECORD length]] DEVICE devicel

[DATASETS PRIME ddname [BLOCK size] DEVICE device [SCAN cylinders]
[FREQUENCY-FREE-BLOCKS frequency] [PERCENTAGE-FREE-SPACE percent]

[, physical-segment-name PARENT physical-segment-name] . .

[CONTAINS physical-segment-name]
-]

[common clauses]

{1

69

ASG-DataManager DL/I Interface: DOS

70

where:

database-name is | to 7 alphanumeric characters, being the IMS name of the primary index
database associated with this HIDAM database.

segment -name is 1 to 8 alphanumeric characters, being the name of a segment of the primary
index that is associated with this HIDAM database.

sequence-key-name is 1 to 8 alphanumeric characters, being the sequence key name of the
primary index database associated with this HIDAM database.

ddname is 1 to 7 alphanumeric characters, being the logical name used in the job control to
identify the physical file.

count is an unsigned non-zero integer, being the number of logical records per physical block.

Iengthis an unsigned non-zero integer, being the maximum length (in bytes) of a logical record.
If VSAM is the operating system access method, length must be an even value.

s1ize is an unsigned non-zero integer, being the number of bytes required per physical block or
control interval.

device is one of the keywords or numbers from the list:
DRUM 2311 3310 3350 3390

CELL 2314 3330 3370

2301 2319 3340 3375

2305 2321 3344 3380

cylinders is an unsigned integer in the range 0 to 32767.
frequency is an unsigned integer in the range 2 to 99, or is 0.

percent is an unsigned integer in the range 0 to 99.

physical-segment-name is the name of a PHYSICAL segment.

3 DataManager Data Definition Statements for a DL/| Environment

common clauses are any of these clauses (as defined in the ASG-Manager Products
Dictionary/Repository User's Guide):

ACCESS-AUTHORITY FREQUENCY

ADMINISTRATIVE-DATA NOTE

ALIAS OBSOLETE-DATE

CATALOG QUERY

COMMENT SECURITY-CLASSIFICATION
DESCRIPTION SEE

EFFECTIVE-DATE
Remarks

1. In Manager Products, a primary index database is not handled as a separate data dictionary
member, but is considered to be part of its corresponding HIDAM database. Consequently,
the definition of the primary index database is included in the definition of the HIDAM
database.

2. The name of the primary index database and the names of its segment and sequence key can
be specified:

. In the PRODUCE command, when DBD control statements for the primary index
database are generated by the Source Language Generation facility. These are
generated automatically after DBD control statements for the HIDAM database are
generated. (See "Generating DL/I DBD Control Statements" on page 131.)

. In the ACCESS clause of the HIDAM database definition. If different names are
specified for the same entity in the PRODUCE command and the ACCESS clause,
the name in the PRODUCE command is applied.

3. Names specified in the ACCESS clause do not result in the generation of dummy members.

4. If neither the PRODUCE command nor the ACCESS clause contains a name for the
primary index database, the name of the HIDAM database with a suffix I is used as the
primary index database name when DBD control statements are generated by the Source
Language Generation facility.

5. If neither the PRODUCE command nor the ACCESS clause contains a name for the
segment of the primary index database, the name of the root segment of the HIDAM
database with a suffix I is used as the name of the segment of the primary index database
when DBD control statements are generated by the Source Language Generation facility.

71

ASG-DataManager DL/I Interface: DOS

72

10.

11.

12.

13.

14.

15.

16.

17.

18.

If neither the PRODUCE command nor the ACCESS clause contains a name for the
sequence key of the primary index database, the name of the sequence key of the HIDAM
root segment with a suffix I is used as the name of the sequence key of the primary index
database when Database Description (DBD) control statements are generated by the Source
Language Generation facility.

The HIDAM keyword must immediately follow the member type identifier to indicate that a
HIDAM database is being defined.

The ACCESS clause can be omitted; but, if it is present, it must immediately follow the
HIDAM keyword.

The INDEX subordinate clause in the ACCESS clause specifies the operating system access
method for, and/or the names to be applied to, the primary index database (see remark 1 on
page 71 through remark 6 on page 72). The DATABASE, SEGMENT, and
SEQUENCE-KEY clauses may, if present, be in any order within the INDEX clause, but
must not precede the VSAM keyword, if that is present.

Each DATASETS clause defines the data files within the primary index database and within
the HIDAM database. These clauses must be present if the definition of the databases is to
be complete. For each of these databases only one data file can be defined.

The DATASETS clause that defines the data file for the primary index database has no
associated CONTAINS clause. The subordinate INDEX ddname clause defines the prime
data file for the primary index database. The ddname must be unique in the data dictionary.

For the primary index database, the control interval size specified by the product of the
BLOCK count and RECORD length must not exceed 4096.

Each DEVICE clause specifies the physical storage device for the data file defined by its
containing DATASETS clause.

The DATASETS clause for the HIDAM database must include a PRIMARY ddname
clause. It defines the prime data file for the HIDAM database. The ddname must be unique
in the data dictionary.

If a BLOCK is specified in the PRIME clause, s1ize must not be greater than 4096. If
size is not a multiple of 512, on encoding it is rounded up to the next multiple of 512.

The SCAN clause specifies the number of cylinders to be scanned when searching for
available storage space. If the SCAN clause is omitted, a default of 3 cylinders is assumed.

FREQUENCY-FREE-BLOCKS specifies that, where frequency =n, every nth control
interval or block in this dataset group is to be left as free space during database load or
reorganization.

PERCENTAGE-FREE-SPACE specifies the minimum percentage of each control interval
or block that is to be left as free space in this dataset group during database load or
reorganization.

19.

20.

21.

22.

23.

24.

25.

26.

3 DataManager Data Definition Statements for a DL/| Environment

The DATASETS clause for the HIDAM database is immediately followed by a
CONTAINS clause listing the segments that constitute the data file. For the definition of the
database to be complete, the CONTAINS clause must be present, and must immediately
follow the DATASETS clause.

You can specify 1 to 255 different segments for the HIDAM database. The segments must
be specified in hierarchal sequence; that is, from the top to the bottom and left to right.

The first physical-segment -name listed in the first CONTAINS clause must be the
name of the root segment.

The PARENT clauses identify the physical parents of the segments whose names are listed
in the CONTAINS clauses. A PARENT clause must not be present for the root segment, but
must follow each of the other names listed in the CONTAINS clauses.

Common clauses can be present in any type of data definition statement; they are therefore
defined separately in the ASG-Manager Products Dictionary/Repository User’s Guide. Not
more than one of each of these clauses can be declared. If a common clause has a
subordinate clause or keyword, the subordinate clause identifier or subordinate keyword
must not be truncated to an extent where it becomes ambiguous with any other clause
identifier or other keyword available in the data definition syntax for this member type.

The common clauses can be declared in any order. If present, they must follow the
ACCESS, DATASETS, and CONTAINS clauses, if these are present.

A record containing the database's data definition statement can be inserted into the data
dictionary's source dataset by a suitable command (see the ASG-Manager Products
Dictionary/Repository User’s Guide), and an encoded record can subsequently be generated
and inserted into the data entries dataset.

If, when the encoded record is generated, a data entries record of a special internal type, a
DL/I-DATASET member, is created for each ddname that appears in the database's data
definition. The DL/I-DATASET internal member is given a uses table entry for each
segment that constitutes the dataset defined by the member. The DL/I-DATASET internal
member can be referred to by other members, for example, it could be used in the INPUTS
clause of a PROGRAM data definition. DL/I-DATASET members can also be interrogated
(see "DL/I Member-type Keywords" on page 99).

If, when the encoded record is generated, any segment whose name appears in the database's
data definition statement has no data entries record, a dummy data entries record is created
for that member as a dummy segment record.

When an encoded database member is deleted, any DL/I-DATASET member created for it
that is not referred to by other members is also deleted, together with any references that the
DL/I-DATASET member made to segments. Any DL/I-DATASET member that is referred
to by other members is made into a dummy member rather than being deleted.

73

ASG-DataManager DL/I Interface: DOS

Example

This example of data definition statements for HIDAM database relate to the hierarchical structure
of segments illustrated in "Specification of the Data Definition Statement for a HSAM Type DL/I

Database" on page 57. In this example, meaningful segment names have been retained. The
abbreviated 8-character names required by IMS (DL/I) can be defined as IMS aliases in the
ALIAS clauses of the members that constitute the database.

This example illustrates the specification of the VSAM access method for both the HIDAM
database and its primary index database. The keywords DOS-COMPATIBLE and PASSWORD
that are included are applicable to the primary index database. The first DATASETS clause
defines the dataset group for the primary index database. The segments constituting the HIDAM
database are all contained in one primary dataset group (defined by the second DATASETS clause
with its associated CONTAINS clause).

ADD EMPLOYEE-DETAILS;
DL/I-DATABASE HIDAM
DATASETS INDEX EMPLI BLOCK 4
DEVICE 3330
DATASETS PRIME EMPL BLOCK 2048
DEVICE 3330
SCAN 5
FREQUENCY-FREE-BLOCKS 10
PERCENTAGE-FREE-SPACE 10
CONTAINS DEPARTMENT,
EMPLOYEE-NUMBER PARENT DEPARTMENT,
NAME PARENT EMPLOYEE-NUMBER,
ADDRESS PARENT EMPLOYEE-NUMBER,
JOB-STATUS PARENT EMPLOYEE-NUMBER,
SALARY PARENT JOB-STATUS,
TAXCODE PARENT SALARY,
DEDUCTION-TABLE-REF PARENT SALARY,
SOCIAL-SECURITY-NUMBER PARENT SALARY,
JOB-TITLE PARENT JOB-STATUS

Specification of the Data Definition Statement for a LOGICAL Type DL/I Database

74

Syntax

IMS-DATABASE LOGICAL
DL/I-DATABASE
DL/1-DATABASE
DLI-DATABASE
DL1-DATABASE

CONTAINS segment-name
[, segment -name PARENT segment-name]

[common clauses]

i

3 DataManager Data Definition Statements for a DL/| Environment

where:
segment -name is the name of a logical or physical segment.

common clauses are any of these clauses (as defined in the ASG-Manager Products
Dictionary/Repository User's Guide):

ACCESS-AUTHORITY FREQUENCY

ADMINISTRATIVE-DATA NOTE

ALIAS OBSOLETE-DATE
CATALOG QUERY

COMMENT SECURITY-CLASSIFICATION
DESCRIPTION SEE

EFFECTIVE-DATE
Remarks

1. The keyword LOGICAL must immediately follow the member type identifier to indicate
that a LOGICAL database is being defined.

2. The CONTAINS clause must be present if the definition of the database is to be complete. It
lists the segments that reside in the LOGICAL database.

3. One to 255 different segments can be specified in total for the LOGICAL database. They
may be either logical segments and/or physical segments.

4. If a logical segment is specified in the CONTAINS clause of the LOGICAL database, then
when DBD control statements are generated, a SEGM is generated statement with the
NAME operand equal to the name of the logical segment, and the SOURCE operand(s)
equal to the name(s) of the physical segment(s) specified in the logical segment definition.

5. If a physical segment is specified in the CONTAINS clause of the LOGICAL database, then
when DBD control statements are generated, a SEGM statement is generated with both the
NAME operand and the SOURCE operand equal to the name of the physical segment.

6. The segments must be specified in hierarchical sequence; that is, from top to bottom and left
to right.

7. The first segment -name listed in the CONTAINS clause must be the name of the root
segment.

8. The PARENT clauses identify the segments that represent the physical parents of the
segments whose names are listed in the CONTAINS clause. A PARENT clause must not be
present for the root segment, but must follow each of the other names listed in the
CONTAINS clause.

75

ASG-DataManager DL/I Interface: DOS

76

10.

11.

12.

13.

14.

15.

The root segment specified must represent a segment that is the root segment in the physical
database in which it resides.

The hierarchy of dependent segments must be the same as the hierarchy of segments that
they represent, as defined for the physical database in which the segments reside.

Logical segments that depend on the same parent segment may not represent the same
physical segment.

Logical concatenated segments can be specified, to obtain access to destination parents in
logical relationships.

Specifying a logical concatenated segment also enables logical relationships to be crossed;
that is, access to the segments in the physical hierarchical path of the destination parent (as
specified in the definition of the physical database in which that destination parent resides)
can be obtained either in the downward or upward direction. This is enabled by specifying
the segments, which may be either the physical segments themselves or the logical segments
representing the physical segments, as dependents of the logical concatenated segment in
the logical database. That is, the physical or logical segments representing the physical child
and the physical parent as specified in its physical database, can be specified as physical
dependents of the logical concatenated segment. (This does not apply if the physical child
segment is paired with the logical child in the concatenated segment.) The hierarchy of the
segments in the logical database must still be the same as the hierarchy of the segments that
they represent in the physical database, except that if the hierarchical path in the upward
direction is specified, the relative order of the segments is reversed.

Although the dependent segments of a concatenated segment may be intermixed, their left
to right order, as defined in their respective physical databases, must be maintained. This
applies also to the dependents of non-concatenated segments.

A physical target segment or a logical segment representing a target segment must be the
root segment of the logical database if the target segment is to be accessed through a
secondary index.

16.

17.

18.

3 DataManager Data Definition Statements for a DL/| Environment

If the logical database contains either of these types of segment:
. A directly contained physical segment

. A logical segment that specifies a physical segment, but does not also specify a
physical database in its data definition

then when the Source Language Generation facility is used to produce DBD control
statements, the corresponding physical database is found in one of these ways, and its name
is output in the SEGM statement:

. If the physical segment resides in only one physical database, then the name of that
physical database is output in the SEGM statement.

. If the physical segment resides in more than one physical database and also represents
the root segment of the logical of the logical database, then the name of the first
physical database that DataManager encounters in the physical segment's used-by
table is output in the SEGM statement.

. If the physical segment resides in more than one physical database and does not
represent the root segment in the logical database then a physical database is selected
in one of these ways:

— Ifthe physical database named in the preceding SEGM statement appears
anywhere in the used-by table of the physical segment currently being processed,
then the name of this physical database is output in the SEGM statement for the
current segment.

— Ifthe previous SEGM statement was for a concatenated segment, Manager
Products first searches for the logical child's physical database in the used-by
table of the segment currently being processed, and if found, the name of this
physical database is output in the SEGM statement.

— If'the logical child's physical database cannot be found in the used-by table,
Manager Products searches for the destination parent's physical database, and, if
found, outputs its name in the SEGM statement.

— Ifthe physical database(s) name(s) were output in the previous SEGM statement
cannot be found in the used-by table of the physical segment currently being
processed, then the name of the first physical database encountered in the used-by
table is output in the SEGM statement.

Common clauses are defined in the ASG-Manager Products Dictionary/Repository User’s
Guide. Not more than one of each of these clauses can be declared. If a common clause has
a subordinate clause or keyword, the subordinate clause identifier or subordinate keyword
must not be truncated to an extent where it becomes ambiguous with any other clause
identifier or other keyword available in the data definition syntax for this member type.

The common clauses can be declared in any order. If present, they must follow the
CONTAINS clause, if that clause is present.

77

ASG-DataManager DL/I Interface: DOS

Specification of the Data Definition Statement for a SECONDARY-INDEX Type DL/I
Database

78

19. A record containing the database's data definition statement can be inserted into the data
dictionary's source dataset by a suitable command (see the ASG-Manager Products
Dictionary/Repository User’s Guide), and an encoded record can subsequently be generated
and inserted into the data entries dataset. If, when the encoded record is generated, any
segment whose name appears in the database's data definition has no data entries record, a
dummy data entries record is created for that member, as a dummy segment record.

Example

The following example of a LOGICAL database member definition relates to the hierarchical

structure of segments illustrated in "Specification of the Data Definition Statement for a HSAM
Type DL/I Database" on page 57. In these examples meaningful segment names have been
retained. The abbreviated 8-character names required by IMS (DL/I) can be defined as IMS aliases

in the ALIAS clauses of the members that constitute the database.

ADD EMPLOYEE-DETAILS;

IMS-DATABASE LOGICAL

CONTAINS DEPARTMENT,
EMPLOYEE-NUMBER PARENT DEPARTMENT,
NAME PARENT EMPLOYEE-NUMBER,
ADDRESS PARENT EMPLOYEE-NUMBER,
JOB-STATUS PARENT EMPLOYEE-NUMBER,
SALARY PARENT JOB-STATUS,
TAXCODE PARENT SALARY,
DEDUCTION-TABLE-REF PARENT SALARY,
SOCIAL-SECURITY-NUMBER PARENT SALARY,
JOB-TITLE PARENT JOB-STATUS

Syntax
IMS-DATABASE INDEX
QL/I—DATABASE SECONDARY - INDEX

DL/1-DATABASE
DLI-DATABASE
DL1-DATABASE

[ACCESS [VSAM]]

DATASETS PRIME ddname [BLOCK count [RECORD lengthl]]
[OVERFLOW ddname [BLOCK count [RECORD length]]]
DEVICE device

[CONTAINS index-pointer-segment-name]

[common clauses]

{1

3 DataManager Data Definition Statements for a DL/| Environment

where:

ddname is 1- to 7-alphanumeric characters, being the logical name used in the job control to
identify the physical file.

count is an unsigned non-zero integer, being the number of logical records per physical block.
Iengthis an unsigned non-zero integer, being the maximum length (in bytes) of a logical record.

device is one of the keywords or numbers from the list:

DRUM 2314 3330 3370
CELL 2319 3340 3375
2301 2321 3344 3380
2305 3310 3350 FBA
2311

index-pointer-segment is an INDEX-POINTER-SEGMENT member.

common clauses are any of these clauses (as defined in the ASG-Manager Products
Dictionary/Repository User's Guide):

ACCESS-AUTHORITY FREQUENCY

ADMINISTRATIVE-DATA NOTE

ALIAS OBSOLETE-DATE

CATALOG QUERY

COMMENT SECURITY-CLASSIFICATION
DESCRIPTION SEE

EFFECTIVE-DATE
Remarks

1. One of the keywords INDEX or SECONDARY-INDEX must immediately follow the
member type identifier to indicate that a secondary index type database is being defined.

2. If the ACCESS clause is present, it must immediately follow the INDEX or
SECONDARY-INDEX keyword.

3. The operating system access method is VSAM. This can be explicitly stated by a VSAM
keyword in the ACCESS clause, or, if the keyword is not present, is assumed.

4. The DATASETS clause defines data files that constitute the secondary index database. It
must be present if the definition of the database is to be complete.

5. The PRIME clause specifies the prime data file of the database.

79

ASG-DataManager DL/I Interface: DOS

80

10.

11.

12.

13.

14.

The OVERFLOW clause specifies the overflow data file of the database. This clause must
be specified if the index pointer segments contain non-unique keys.

The ddname in the PRIME clause and the ddname in the OVERFLOW clause, which
specify the logical file names of the respective data files, must each be unique in the data
dictionary.

If an OVERFLOW clause and a PRIME clause are both present, then if a BLOCK
subordinate clause is present in either, a BLOCK subordinate clause must be present in
both; in which case, if an associated RECORD subordinate clause is present in either, a
RECORD clause must be present in both.

The RECORD length specified for the OVERFLOW clause must be equal to or greater than
the RECORD length specified for the PRIME clause, if both are specified.

The control interval size, specified either by the BUFFER size or by the product of the
BLOCK count and the RECORD length, must not exceed 4096.

If the control interval size is specified, then on encoding, a warning message is output if the
product is not a multiple of 512.

The DEVICE clause specifies the physical storage device for the data files.

The contains clause specifies the index pointer segment that is contained in the secondary
index database. For the definition of the database to be complete, the CONTAINS clause
must be present, and must immediately follow the DATASETS clause.

Common clauses, listed under Syntax above, can be present in any type of data definition
statement; they are therefore defined separately, in the ASG-Manager Products
Dictionary/Repository User’s Guide. Not more than one of each of these clauses can be
declared. If a common clause has a subordinate clause identifier or a subordinate keyword,
the subordinate clause or keyword must not be truncated to an extent where it becomes
ambiguous with any other clause identifier or other keyword available in the data definition
syntax for this member type.

The common clauses can be declared in any order. If present, they must follow the
ACCESS, DATASETS, and CONTAINS clauses, if these are present.

15.

16.

3 DataManager Data Definition Statements for a DL/| Environment

A record containing the database's data definition statement can be inserted into the data
dictionary's source dataset by a suitable command (see the ASG-Manager Products
Dictionary/Repository User's Guide), and an encoded record can subsequently be generated
and inserted into the data entries dataset.

When the encoded record is generated, a data entries record of a special internal type, a
DL/I-DATASET member, is created for each ddname that appears in the database's data
definition. The DL/I-DATASET internal member is given a uses table entry for each
segment that constitutes the dataset defined by the member. The DL/I-DATASET internal
member can be referred to by other members, for example, it could be used in the INPUTS
clause of PROGRAM data definition. DL/I-DATASET members can also be interrogated

(see "Condition Keywords for Which and What Commands" on page 102).

If, when the encoded record is generated, any database or segment or module whose name
appears in the database's data definition statement has no data entries record, a dummy data
entries record is created for that member, as a dummy database record or a dummy segment
record or a dummy module record respectively.

When an encoded database member is deleted, any DL/I-DATASET member created for it
that is not referred to by other members is also deleted, together with any references that the
DL/I-DATASET member made to segments. Any DL/I-DATASET member that is referred
to by other members is made into a dummy member rather than being deleted.

Example

This is an example of a DataManager data definition statement for a secondary index database:

ADD EMPIND;
DL/I-DATABASE SECONDARY-INDEX
DATASETS PRIME EMPIP BLOCK 4 RECORD 256

OVERFLOW EMPIO BLOCK 8 RECORD 256
DEVICE 3340

81

ASG-DataManager DL/I Interface: DOS

DataManager Data Definition Statements for DL/I Program
Communication Blocks

82

Syntax

{ PROGRAM-COMMUNICATION-BLOCK } STRUCTURE
PCB o

NAME pcb-name
processing-options-1

SINGLE-POSITIONING [DATABASE database-name] [KEYLENGTH keylength]
MULTI-POSITIONING

SEGMENT segment-name [processing-options-2]
[SECONDARY-SEQUENCE [ON index-pointer-segment]]

SENSITIVE-FIELDS | sensitive-field , [sensitive-field| |..
filler-bytes filler-bytes ...
[common clauses]

{1

where:

pcb-name is the name of another PROGRAM-COMMUNICATION-BLOCK member (the
reference PCB) of which the data definition (excluding any common clauses) is to be regarded as
being also a data definition of this member.

processing-options-1 is:

BY LOAD [[,] ASCENDING] [[,] EXCLUSIVE] [[,]1 PATH]
{ETH } GET ([[,] ONLY]
{ [[,] REPLACE] [[,] DELETE] [[,] INSERT]
[[,] ASCENDING] [[,] EXCLUSIVE]
INSERT [[,] ASCENDING] [[,] EXCLUSIVE]
UPDATE [[,] EXCLUSIVE]

database-name is the name of a DATABASE member.
keylengthis an integer in the range 0 to 32767.

segment -name is the name of a SEGMENT member.

3 DataManager Data Definition Statements for a DL/| Environment

processing-options-2 is:

BY GET [[,]1 REPLACE] [[,] DELETE] [[,] INSERT]
{ETH } INSERT
UPDATE
[[,] EXCLUSIVE [[,] PATH]

index-pointer-segment is the name of an INDEX-POINTER SEGMENT member.

sensitive-fieldis:

group-name ENTERED-AS [version]
item-name HELD-AS

sequence-key-name REPORTED-AS
concatenated-key-nam DEFAULTED-AS

program-name

[SUBFIELDS] [EXIT-ROUTINE {module—name
system-name

NOREPLACE

{ REPLACE [KNOWN-AS logical-name]
NO-REPLACE

where:

group-name is the name of a GROUP member.

item-name is the name of an ITEM member.

sequence-key-name is the name of a SEQUENCE KEY member.
concatenated-key-name is the name of a CONCATENATED KEY member.

version is an unsigned integer in the range of 1 to 15, being a number specifying which version
of the relevant item is relevant to this sensitive field. The version is within the stated form
(ENTERED-AS, HELD-AS, or REPORTED-AS). If version is omitted or if the stated version
does not exist in the stated form, the lowest numbered existing version in that form is assumed to
be relevant.

module-name is the name of a MODULE member.

program-name is the name of a PROGRAM member.

system-name is the name of a system member.

83

ASG-DataManager DL/I Interface: DOS

local-name is a name, conforming to the rules for member names stated in the ASG-Manager
Products Dictionary/Repository User's Guide, that can be used instead of the name or alias of the
sensitive field, when PSB control statements or record layouts or source language data
descriptions are generated from this data definition by the DataManager Source Language
Generation facility. The Iocal-name is not separately recorded in the data dictionary (i.e., no
dummy data entries record and no index record is created for 1ocal-name when the data
definition in which it appears is encoded) so 1ocal -name cannot be interrogated and can be the
same as another name, an alias, or a catalog classification in the data dictionary. The
local-name is the name by which the member forming the sensitive field is known only within
the PCB defined by this data definition.

filler-bytes is an unsigned integer.

common clauses are any of these clauses (as defined in the ASG-Manager Products
Dictionary/Repository User's Guide):

ACCESS-AUTHORITY FREQUENCY

ADMINISTRATIVE-DATA NOTE

ALIAS OBSOLETE-DATE

CATALOG QUERY

COMMENT SECURITY-CLASSIFICATION
DESCRIPTION SEE

EFFECTIVE-DATE
Remarks

1. The member type identifiers PROGRAM-COMMUNICATION-BLOCK and PCB are
synonymous.

2. A PCB member must be defined for each logical data structure used by any application for
which PCB control statements or PCB masks are to be generated.

3. The STRUCTURE keyword must immediately follow the member type identifier to
indicate that the application view of a logical data structure is being defined. All segments in
the logical data structure must belong to the same database.

4. The NAME clause specifies that the data definition of the reference PCB, pcbname, is to

be regarded as being also a data definition of this member; with the exception that the
pcb-name’s common clauses are not applied to this member.

84

10.

11.

12.

3 DataManager Data Definition Statements for a DL/| Environment

Unless the NAME clause is specified, the first subordinate clause within the STRUCTURE
clause must be the processing-options-1 clause. This clause specifies processing
options for the segments that constitute the logical data structure. Those segments are
specified by the SEGMENT subordinate clauses, within each of which overriding
processing options applicable to the particular segment can be specified by
processing-options-2. For each segment for which this is not specified,
processing-options-1 applies.

The processing-options-1 clause defines the functions that can be performed on the
logical data structure from the application view (except where overridden for individual
segments by processing-options-2). These can be:

. Database loading

. Database reading only

. Database reading and limited updating

. Adding information to an existing database
. Database reading and all updating functions

For database loading, the LOAD keyword is specified. The LOAD function is not valid for a
logical data structure that belongs either to a SECONDARY-INDEX database or to a
LOGICAL database. LOAD is also invalid if the secondary processing sequence is to be
used to access the logical data structure. If processing-options-1 specifies LOAD
for a logical data structure belonging to a HISAM or HIDAM database, then all other PCB
members affecting the same database within an application view must also specify LOAD.

For database reading only, without enqueueing to check the availability of segments, GET is
specified.

For database reading only, with enqueueing to check the availability of segments, GET is
specified.

For database reading (with enqueueing) and limited updating, GET is specified followed by
whichever of the keywords REPLACE, DELETE, and/or INSERT are relevant, in any
order; but not more than 3 of the keywords REPLACE, DELETE, INSERT, ASCENDING,
EXCLUSIVE, and PATH can follow GET. These rules apply:

. INSERT is invalid if the logical data structure belongs to a HSAM database or a
SECONDARY-INDEX database.

. DELETE and REPLACE are invalid if the logical data structure belongs to a HSAM
database.

For adding new occurrences of a segment to a database, INSERT is specified. INSERT is
invalid if the logical data structure belongs to a HSAM database or a
SECONDARY-INDEX database.

For database reading and all updating functions, UPDATE is specified. (UPDATE is thus
the equivalent of GET, REPLACE, DELETE, and INSERT.)

85

ASG-DataManager DL/I Interface: DOS

86

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

The ASCENDING keyword, if present, specifies that the segments are processed in
ascending sequence only. These rules apply:

o ASCENDING is not valid with GET ONLY or UPDATE.

. If LOAD is specified, ASCENDING is valid for a logical data structure that belongs
to a HIDAM database or to a HDAM database, but is invalid for all other logical data
structures.

. If the logical data structure belongs to a HIDAM database, and LOAD is specified,
ASCENDING is assumed whether the keyword is present or not.

The EXCLUSIVE keyword, if present, specifies that online programs can have exclusive
use of the logical data structure. EXCLUSIVE is not valid with GET ONLY.

The PATH keyword, if present, specifies that the command mode for path calls is used to
process the logical data structure. It can be used by DL/I to determine the maximum length
of the input/output area.

The keywords ASCENDING, EXCLUSIVE, and PATH can, if present, be in any order.

If either of the keywords SINGLE-POSITIONING or MULTI-POSITIONING is present, it
must immediately follow the processing-options-1 clause. It specifies the type of
positioning required for the logical data structure. If neither of these keywords is present,
SINGLE-POSITIONING is assumed. MULTI-POSITIONING is invalid if the logical data
structure belongs to a HSAM database.

If the STRUCTURE clause is specified, the DATABASE subordinate clause must be
specified if the logical data structure resides in a database, whose segments are contained by
more than one database. Otherwise, the DATABASE clause is optional.

The KEYLENGTH clause specifies the maximum concatenated key length for any path of
sensitive segments that is used by the application which uses the PCB.

Note:

If KEYLENGTH is not specified, the maximum concatenated key length will be calculated
when the PSB is generated. This calculation may cause significant input/output activity; to
avoid this, ASG recommends that you specify KEYLENGTH.

All segments in the logical data structure must belong to the same database.

A SEGMENT clause must be specified for each segment in the logical data structure to
which the application is sensitive.

The segment clauses for a logical data structure can be in any order. When PCB control
statements are produced by the Source Language Generation facility, the segments specified
are organized into the order specified in the database data definition statement. When this
reorganization takes place, DataManager includes in the new order any segments that are in
the hierarchal path to the sensitive statements, but for which no SEGMENT clauses have
been specified.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

3 DataManager Data Definition Statements for a DL/| Environment

In each SEGMENT clause, segment -name must immediately follow the SEGMENT
keyword, to identify the sensitive segment to be processed.

If the LOAD processing option is specified for the logical data structure, then SEGMENT
clause must not be entered for virtual logical child segments.

From 1 to 255 SEGMENT clauses can be defined for a logical data structure. Only one
SEGMENT clause may be specified for each segment.

processing-options-2, if present, must immediately follow the segment name. It
specifies the functions that can be performed on the segment from the application view. If
the processing options specified by processing-options-1 can apply to the segment,
this can be omitted. If processing-options-1 specified LOAD,
processing-options-2 must be omitted.

GET, INSERT, and UPDATE, and the optional keywords that can be associated with them,
have the same meanings and restrictions as are specified for processing-options-1
in remark 9 on page 85 through remark 16 on page 86, but applying to the one segment
only. GET ONLY and ASCENDING cannot be specified in processing-options-2.

The keyword SECONDARY-SEQUENCE specifies that the logical data structure is
processed through a secondary processing sequence, of which this segment is the root
segment. The keyword, if present, must immediately follow processing-options-2,
if specified; otherwise, it must, if present, immediately follow segment -name.

If SECONDARY-SEQUENCE is specified, segment -name must identify an index target
segment, or a logical segment representing an index target segment. In a physical database,
the segment must be the root segment. When processing a secondary sequence for a
physical database, no logical child segments may be included.

The SECONDARY-SEQUENCE keyword may only be entered once for any one logical
data structure.

The ON index-pointer-segment clause specifies the index pointer segment that indexes the
index target segment. If it is omitted, the name of the relevant index pointer segment is
obtained from the used-by table of the index target segment, when required for generation of
DBDGEN control statements.

The SENSITIVE-FIELDS clause is subordinate to the SEGMENT clause. It is used by the
Source Language Generation facility:

. During the generation of PSB control statements, to generate SENFLD and VIRFLD
statements that specify the fields to which the application is sensitive.

. To generate record layouts or COBOL, PL/I, or Assembler data description
statements for segment input/output areas when sensitive fields are to be processed.

. During the generation of DBD control statements, to indicate that DBD HELD
control statements are to be generated for the segment's sensitive fields only (rather
than for all of the fields contained by the segment).

Up to a maximum of 255 sensitive fields can be declared for each segment, within a
maximum of 10,000 for the PCB member.

87

ASG-DataManager DL/I Interface: DOS

88

34.

35.

36.

37.

The declaration of a sensitive field includes any associated keywords and clauses shown, as
well as the sensitive field name. These declarations are listed in the SENSITIVE-FIELDS
clause, each sensitive-field name except the first in the list being preceded by a comma and
optionally additionally by spaces.

When the Source Language Generation facility is used to generate PSB control statements,
then:

. If the sensitive field is contained directly or indirectly by segment -name, it is
regarded as a true sensitive field, and a SENFLD statement is generated.

. If the sensitive field is not contained directly or indirectly by segment -name, it is
regarded as a virtual field, and a VIRFLD statement is generated.

SUBFIELDS specifies that when the Source Language Generation facility is used to
generate PSB control statements, SENFLD/VIRFLD statements are to be generated for each
of the constituent fields of the sensitive field, as well as for the sensitive field itself. If the
sensitive field is a group member and:

. Is contained directly or indirectly by segment -name, then SENFLD statements are
generated for each of its directly or indirectly contained group or item members

. Is not contained directly or indirectly by segment -name, then:

— VIRFLD statements are generated for each of its directly or indirectly contained
group or item members that are not directly or indirectly contained by
segment -name.

— SENFLD statements are generated for each of its directly or indirectly contained
group or item members that are directly or indirectly contained by
segment -name.

If the sensitive field is a sequence key member or a concatenated key member and:

. Is defined by segment -name, then SENFLD statements are generated for each of
its directly or indirectly contained group or item members

. Is not defined by segment -name, then the SUBFIELDS keyword is ignored

If a VALUE operand is required on any generated VIRFLD statement (for a sensitive field
or a constituent field of a sensitive field) when the Source Language Generation facility is
used to generate Program Specification Block (PSB) Control Statements, then the relevant
ITEM’s definition should include a CONTENTS IS clause.

38.

39.

40.

41.

42.

43.

44.

45.

46.

3 DataManager Data Definition Statements for a DL/| Environment

The form (ENTERED-AS, HELD-AS, REPORTED-AS, or DEFAULTED-AS) and version
are relevant only when the member named in a sensitive field declaration is an ITEM. They
can be included in a sensitive field declaration if:

. The DL/I TYPE conversion facility is to be used. In this case, the new form and
version to which the sensitive field is to be converted can be specified. If none is
specified, the form and version of the sensitive field as it is defined in
segment -name are assumed.

. The field is a virtual field. In this case, the required form and version of the relevant
member can be specified. If no form is specified, default assumptions are made as to
the relevant form, in the order NELD-AS, DEFAULTED-AS, ENTERED-AS, and
REPORTED-AS. The form first encountered in this order is taken as the defaulted
form, and version is applied within this form as stated under syntax.

The specified or defaulted form and version can be overruled by a USE or USING clause in
the PRODUCE command; see "Generating DL/I PSB Control Statements" on page 137.

The EXIT-ROUTINE clause states the name of the member that defines a user-written field
exit routine that is to be given control whenever the sensitive field is accessed.

Sensitive fields can be repeated provided that a KNOWN-M clause is specified for each
repetition, so that unique names can be generated when COBOL, PL/I, or Assembler data
description statements are generated.

REPLACE specifies that this field can be altered on a replace call. NOREPLACE or
NO-REPLACE specifies that this field cannot be altered on a replace call.

If none of the keywords REPLACE, NOREPLACE or NO-REPLACE is specified, then if
either of the processing options UPDATE or REPLACE has been specified, the keyword
REPLACE is assumed for the sensitive field.

The sensitive field keywords REPLACE, NOREPLACE, and NO-REPLACE are ignored if
neither of the processing options UPDATE or REPLACE is specified.

If the first sensitive field in a segment input/output area is not to start in the first byte
position and/or if sensitive fields are not to be contiguous within the segment input/output
area, filler-byte declarations must be included wherever appropriate in the list of sensitive
field declarations to enable the Source Language Generation facility to calculate the start
position of each field in the segment input/output area.

The SENSITIVE-FIELD clause is invalid if the segment is a logical child segment or a
logical concatenated segment, and the processing option applicable is INSERT, LOAD, or
UPDATE.

It is the user’s responsibility to declare all the sensitive fields required by DL/I; for example,
sequence key fields and segment search fields, as their start positions cannot be anticipated
by DataManager.

&9

ASG-DataManager DL/I Interface: DOS

90

47. Common clauses, listed under Syntax above, can be present in any type of data definition
statement; they are therefore defined separately in the ASG-Manager Products
Dictionary/Repository User's Guide. Not more than one of each of these clauses can be
declared. If a common clause has a subordinate clause or keyword, the subordinate clause
identifier or subordinate keyword must not be truncated to an extent where it becomes
ambiguous with any other clause identifier or other keyword available in the data definition
syntax for this member type.

48. The common clauses can be in any order. If present, they must follow the STRUCTURE
clause.

49. A record containing the PCB’s data definition statement can be inserted into the data
dictionary’s source data set by a suitable command (see the ASG-Manager Products
Dictionary/Repository User's Guide), and an encoded record can subsequently be generated
and inserted into the data entries data set. If, when the encoded record is generated, any PCB
or database or segment or sensitive field whose name appears in the PCB’s data definition
statement has no data entries record, DataManager creates a dummy data entries record for
that member, as a dummy PCB record, dummy database record, dummy segment or dummy
item record, respectively.

Examples

See "Application View" on page 13. The member SKILLEMP-PCB is for a logical data structure
that resides in a LOGICAL database. The application to which this PCB member relates is
sensitive to the 3 segments SKILL, NAME and EXPR, and processes them all by the GET ONLY
option.

The member AUTOREG-PCB in "Application View" on page 13 is for a logical data structure of
two segments, NAMEID and CITY, that reside in a HDAM database indexed by a secondary
index. The segments are processed by the GET option. SECONDARY-SEQUENCE is specified
to indicate that this logical data structure is processed using a secondary sequence with the index
target segment NAMEID as the root segment.

The example below shows a PCB member for a logical data structure residing in the HDAM
database SKILLINYV, illustrated in Figure 2 on page 6:

ADD SKILLINV-PCB;
PCB STRUCTURE
BY GET, INSERT
SEGMENT SKILLMAST
SEGMENT SKILLNAM
SEGMENT EXPRMAST BY INSERT PATH
SEGMENT EDCUMAST BY INSERT

I

This logical data structure as a whole has processing options of GET and INSERT specified. The
segment EXPRMAST has overriding options of INSERT PATH specified. For the segment
EDUCMAST, the overriding option INSERT allows this segment to be in the path of segments to
be inserted.

3 DataManager Data Definition Statements for a DL/I Environment

For a SENSITIVE-FIELDS example, using the segment ASY-PACK shown in Figure 3 on page
9, a PCB member could be defined thus:

ADD ASY-PACK-PCB;
PCB STRUCTURE
BY GET ONLY
SEGMENT ASY-LINE
SEGMENT ASY-PACK
SENSITIVE-FIELD PACK-NO, 10, QTY-REQD

DataManager System, Program, and Module Data Definition
Statements for a DL/I Environment

Outline of the SYSTEM, PROGRAM, and MODULE Data Definition Statements for a
DL/I Environment

The data definition statements for DataManager SYSTEM, PROGRAM, and MODULE members
acting on conventional files are described in the ASG-Manager Products Dictionary/Repository
User's Guide. For the DL/I interface, a further clause, the PROCESSES clause, is included in the
formats of those statements. This section describes that clause. For a full specification of the
SYSTEM, PROGRAM, and MODULE data definition statements in a DL/I environment,
therefore, this section must be read in conjunction with the relevant parts of the ASG-Manager
Products Dictionary/Repository User's Guide.

The PROCESSES clause is available also in some other DataManager interface facilities. Its
purpose is to specify an application’s processing of its data within a specific environment. The
clause has a number of alternative environment-dependent formats. In a DL/I environment, the
PROCESSES clause defines an application’s view of the DL/I databases accessed by the
application.

The PROCESSES clause specifies the details of these DL/I features that an application SYSTEM,
PROGRAM, or MODULE may utilize:

. The PROGRAM-COMMUNICATION-BLOCK or PCB members accessed by the
application

. Segment-search-arguments

The PCB members named in the PROCESSES clause are used by the Source Language
Generation facility when producing Program Specification Block (PSB) control statements (see

"Application View" on page 18, "DataManager Data Definition Statements for DL/I Program
Communication Blocks" on page 82, and "Generating DL/I PSB Control Statements" on

page 137).

The segment search argument details may be used by the Source Language Generation facility
when producing Database Description (DBD) control statements (see "Application View" on
page 18 and "Generating DL/I DBD Control Statements" on page 131).

91

ASG-DataManager DL/I Interface: DOS

Specification of the PROCESSES Clause

92

Syntax
PROCESSES (DL/I
DL/1
DLI
DL1
CONTAINS pcb-namel,pcb-name] ... [SSAS clausel]
SSAS clause

where:
pcb-name is the name of a Program Communication Block (PCB) member.

SSAS clause is a clause having this format:

SSAS
SEGMENT segment-name USED-IN clause
[USED-IN clause]...
[SEGMENT segment-name USED-IN clause
[USED-IN clause]...]...

{SEGMENT—SEARCH—ARGUMENTS

where segment -name is the name of a segment member.
USED-IN clause is a clause having this format:

USED-IN ssa-name
[COMMAND-CODES [_{EERST—OCCURRENCE 1
LAST-OCCURRENCE

[[,1 [(IO-MOVE
NOREPLACE }
NO-REPLACE

[[,] ENQUEUE 'class']

[[,] NULL [poisitions]]]
[QUALIFIED-ON search-field operator]

where:

ssa-name is the segment-search-argument name, being a name that is valid in the programming
language (COBOL, PL/I, or Assembler) relevant to the member that contains the PROCESSES
clause in which this USED-IN clause appears.

class is an alphabetic character in the range A to J.

positions is an unsigned integer.

search-fieldis aname as stated in remark 16.

3 DataManager Data Definition Statements for a DL/| Environment

operator is of this format:

‘L—' A‘L—"Q v‘m‘z I ‘m
2] H | H | 10

where:

EQ or = means equal to.

NE means not equal to.

GT or > means greater than.

GE means greater than or equal to.

LT or < means less than.

LE means less than or equal to.

Remarks

1. The keyword DL/I (or one of its permitted variants) or IMS must immediately follow the
PROCESSES keyword to indicate that a DL/I application view is being defined. The
keyword IMS is synonymous with DL/I and its variants. It is included in the syntax for

compatibility with the OS version of the interface.

2. If the CONTAINS subordinate clause is present, it must immediately follow the DL/I or
IMS keyword.

3. Ifthe Source Language Generation facility is to be used to produce Database Description
(DBD) control statements for the database to which the segment belongs, at which time it is
to generate the segment’s search fields only (as opposed to generating all of the fields
contained by the segment), a USED-IN clause must be specified to indicate which of the
segment’s fields are its search fields. (See "Application View" on page 13 and "Generating
DL/1 DBD Control Statements" on page 131.)

4. If the condition stated in remark 3 on page 93 does not apply, the USED-IN clause is
omitted.

5. The USED-IN keyword must be followed immediately by ssa-name which must be unique
in the PROCESSES clause.

93

ASG-DataManager DL/I Interface: DOS

94

10.

11.

12.

13.

14.

15.

The COMMAND-CODES clause is declared if the SEGMENT-SEARCH-ARGUMENT is
to contain one or more command codes to provide functional variations applicable to either
the call function or the segment qualification.

For retrieval calls, the command code FIRST-OCCURRENCE allows backing-up within a
database record (starting with the first occurrence of this segment type under its parent, or
with the first occurrence of this segment type after a position established earlier in the
hierarchy) in order to satisfy the call.

For insert calls, the command code FIRST-OCCURRENCE is used for segments having a
non-unique sequence field or no sequence field, and an insert rule of HERE, to specify that
occurrences of this segment are to be inserted as the first segment on the twin chain.

For retrieval calls, the command code LAST-OCCURRENCE specifies that the last
occurrence of this segment under its parent that satisfies the qualification statement is to be
retrieved; or if there is no qualification statement, then the last occurrence of this segment
under its parent is to be retrieved.

For insert calls, the command code LAST-OCCURRENCE is used for segments having a
non-unique sequence field or no sequence field and an insert rule of HERE, to specify that
occurrences of this segment are to be inserted as the last segment on the twin chain.

The IO-MOVE command code is valid only for path calls: in the relevant PCB member,
PATH must be included in the segment’s processing-options-2, or, if these are
omitted, in the STRUCTURE clause’s processing-options-1. For retrieval calls, the
command code specifies that this segment is to be moved to the application program’s
input/output area. For insert calls, it designates the first segment that is to be inserted from
the input/output area.

The NOREPLACE or NO-REPLACE command code specifies that for a replace call
following a path retrieval call, this segment will not have been changed, and is therefore not
to be replaced.

The command code ENQUEUE class specifies that this segment is to be enqueued for
single update, where class is the class identifier used on the dequeue call to dequeue all
resources enqueued by the user with that class.

The command code NULL [positions] enables a fixed number of bytes to be set aside
for command codes, which may be set on or off by the application. The number of null bytes
to be generated is specified by positions. If positions is omitted, one byte is assumed.

The QUALIFIED-ON clause defines information that DL/I uses to test the value of this
segment’s key or data fields within the database, to determine whether the segment meets
the user’s specifications.

16.

17.

18.

3 DataManager Data Definition Statements for a DL/| Environment

The QUALIFIED-ON keyword, if present, must be followed immediately by search-field,
which can identify a field of any of these types:

A GROUP or ITEM member that is contained directly or indirectly by this segment;
including:

— For alogical child segment, the destination parent’s concatenated key

— Foralogical segment or a logical concatenated segment, the physical segment(s)
represented by this segment

If a member is indirectly contained by the segment, and is defined as an array in the
data definition of its containing group, it must not be specified as search-field.

A field specified as sequence-key-name or concatenated-key-name in the data
definition of:

— This segment

— The physical segment(s) represented by this segment, if this segment is a logical
segment or a logical concatenated segment

(See further in remark 17 on page 95.)

If this segment is an index target segment or a logical segment representing an index
target segment, and is not a logical concatenated segment or a dependant of a logical
concatenated segment, then a field defined as an index-search-field-name in the data
definition of a related index pointer segment.

If this segment is an index pointer segment, the field defined as key-name in this
segment’s data definition. In this case, the field specified by search-field includes any
susbequence fields specified in the segment’s data definition.

If search-field is a sequence key field in the data definition of a virtual logical child
segment, then the field includes all sequence key fields that follow it in that data definition.

The operator specifies the manner in which the contents of the search-field are to be tested
against the comparative value.

95

ASG-DataManager DL/I Interface: DOS

96

19. When the member containing the PROCESSES clause is encoded, if any member whose
name appears in that member’s data definition has no data entries record, DataManager
creates a dummy data entries record for the latter member, in accordance with these rules:

. If the name appears in a CONTAINS clause that immediately follows PROCESSES
IMS or PROCESSES DL/I (or a variant), DataManager creates a dummy PCB
member. (This member is described in the informatory message as a DUMMY
STRUCTURE PCB, for compatibility with the OS version of the interface, in which
other kinds of PCB members can also exist.)

. If the name appears in a CONTAINS clause that does not immediately follow
PROCESSES IMS or PROCESSES DL/I (or a variant), DataManager creates a
dummy module member.

. If the name appears anywhere in the QUALIFIED-ON clause, DataManager
generates a dummy item member.

. If the name appears in any other clause, the dummy is created as defined in the
specification of the SYSTEM, PROGRAM, or MODULE member in the
ASG-Manager Products Dictionary/Repository User's Guide.

Examples
Refer to the example in "Application View" on page 13. This example shows a PROCESSES

clause declaring two PCB members, each for a different database, and the segment search
arguments required for that application.

For the first segment, SKILL, there is a USED-IN clause that defines a COMMAND-CODE and a
QUALIFIED-ON clause for a search field. For the segment EXPR there is a USED-IN clause
which defines no COMMAND-CODE but does have a QUALIFIED-ON clause for a search field.

For the third segment, NAMEID, there is again a USED-IN clause that defines a
COMMAND-CODE and a QUALIFIED-ON clause for a search field. The segment CITY has a
USED-IN clause specified, but has no COMMAND-CODE or QUALIFIED-ON clause.

This example shows a PROCESSES clause for an application requiring one PCB member,
SKILLINV-PCB (see the example at the end of "DataManager Data Definition Statements for
DL/I Program Communication Blocks" on page 82):

PROCESSES DL/I
CONTAIMS SKILLINV-PCB
SEGMENT - SEARCH-ARGUMENTS
SEGMENT SKILMAST USED-IN SKILMAST-SSA
QUALIFIED-ON SKILLCODE EQ
SEGMENT SKILLNAME USED-IN SKILLNAM-SSA
QUALIFIED-ON SURNAME EQ
SEGMENT EXPRMAST USED-IN EXPRMAST-SSA
COMMAND-CODE IO-MOVE
SEGMENT EDCUMAST USED-IN EDCUMAST-SSA

3 DataManager Data Definition Statements for a DL/| Environment

Segment-search arguments are specified for 4 segments. The segments SKILMAST and
SKILLNAME each have a USED-IN clause defining a QUALIFIED-ON clause for a search field.
For the segment EXPRMAST, the USED-IN clause defines the COMMAND-CODE I0-MOVE
to indicate that this segment is the first in a path of segments to be inserted. No
COMMAND-CODE or QUALIFIED-ON clauses are specified for the segment EDUCMAST.

97

ASG-DataManager DL/I Interface: DOS

98

Extensions to DataManager Commands
for DL/l Databases

Introduction

DataManager provides powerful facilities for documenting, interrogating, and processing the data
definitions of the various types of DL/I databases and their components. These facilities are
provided by means of:

. Additional member-type keywords in those commands that permit member-type selection
(see "DL/I Member-type Keywords" on page 99)

. Additional condition keywords in the WHICH and WHAT commands (see "Condition
Keywords for Which and What Commands" on page 102)

DL/l Member-type Keywords
The syntax of these DataManager commands (defined in the ASG-Manager Products
Dictionary/Repository User’s Guide):
. BULK ENCODE
. BULK PRINT
. BULK REPORT
o GLOSSARY
. LIST
. PERFORM
. WHICH

includes a number of member-type selection keywords that enable the processing to be confined to
members of the selected type or types.

The member-type selection keywords include the keyword DATABASES. This keyword selects
all members at the database level of the member-type hierarchy; if more than one Data Base
Management System interface is included in the implementation of DataManager, then database
members defined under any of the implemented interfaces are selected.

99

ASG-DataManager DL/I Interface: DOS

100

If the DL/I Interface is included in the implementation, additional keywords are made available to
permit the selection to be confined to:

All DL/T databases

A specific category or specific categories of DL/I databases
All DL/I segments

A specific category or specific categories of segments

Any of the internal member types described in "Special DataManager Member Types" on
page 17 (except for BULK ENCODE and BULK PRINT)

4 Extensions to DataManager Commands for DL/I Databases

These are the additional member-type selection keywords:
. DL/I-DATABASES

. DL/1-DATABASES

. DLI-DATABASES

o DL1-DATABASES

J GSAM-DATABASES

) HSAM-DATABASES

o SHSAM-DATABASES

. HISAM-DATABASES

o SHISAM-DATABASES

o HDAM-DATABASES

o HIDAM-DATABASES

. PHYSICAL-DATABASES

. LOGICAL-DATABASES

o SECONDARY-INDEX-DATABASES
. SEGMENTS

o PHYSICAL-SEGMENTS

J LOGICAL-SEGMENTS

. INDEX-POINTER-SEGMENTS

. PROGRAM-COMMUNICATION-BLOCKS
. PCBS

J SEQUENCE-KEYS

o DL/I-DATASETS

o DL/1-DATASETS

. DLI-DATASETS

. DL1-DATASETS

. INDEX-SEARCH-FIELDS

J SYSTEM-RELATED-FIELDS

J CONCATENATED-KEYS

. CONCATENATED-KEY-NAMES

These are not relevant for BULK ENCODE or BULK PRINT because members of these types
have no source records.

101

ASG-DataManager DL/I Interface: DOS

Condition

Introduction

102

These keywords are also available in the Controller's commands to save the contents of a data
dictionary and to analyze a data dictionary's disk space usage. (These are documented in the
ASG-Manager Products Controller's Manual.)

It is thus possible to obtain complete documentation of DL/I databases at the database or at any
component level; to interrogate on database type and on any component type; and to select by
database type or component type for manipulation by BULK ENCODE or through PERFORM
commands.

Keywords for Which and What Commands

The WHICH command enables the user to interrogate the data dictionary as to which members, of
selected types (see "DL/I Member-type Keywords" on page 99), satisfy selected conditions.
Among the conditions that can be stated are that the members named in the response should USE a
member named in the command, or that they should CONSTITUTE the member named in the
command. These conditions can be restricted by a VIA clause, or by alternative verb keywords, to
references to or from other members via a particular clause of a data definition. Similar conditions
can be stated in the WHAT command, but without the restriction of the interrogation to selected
categories of members.

The DL/I Interface provides further keywords for the condition clause.

The tables in the following sections give information on these keywords:

. The Member Type Interrogation table in "Member Type Interrogations" on page 106
explains which VIA keywords are appropriate for use with a particular DL/I member type,
to interrogate various aspects of its definition.

. The Interrogation Syntax table in "Interrogation Syntax" on page 112 lists in alphabetical
order the keywords that can be used in a VIA clause, together with the member types with
which they can be used, and the responses that will be obtained.

. The Alternative Verb Keyword table in "Alternative Verb Keywords" on page 130 offers
alternative verb keywords that can be used instead of same USES and CONSTITUTES
constructions.

The Interrogation Syntax and Alternative Verb Keyword tables together give the possible values
for the selection, member-type, alternative-verb-keyword, and via-keyword variables in a WHICH
command of the form:

WHICH selection USES member-name VIA via-keyword ;
CONSTITUTES

alternative-verb-keyword member-name

Examples

4 Extensions to DataManager Commands for DL/I Databases

For example, to find out which process members use a particular segment in the segment search
argument, the VIA keyword SSAS is used. The entry for SSAS in the Interrogation Syntax table
shows that the format of the required command would be:

PROGRAMS logical-segment-name

WHICH MODULES USE index-pointer-segment-name VIA SSAS;
SYSTEMS physical-segment-name

There is no alternative verb keyword available for this interrogation.

The member types listed for selection and member-name, the alternative verb keywords, and the
keywords for use in the VIA clause are additional to those available for the generalized version of
the WHICH command. The exceptions to this are the BOUND, CONTAINS, IF, and NAME
keywords, and the alternative verb keyword CONTAINS; these are included in the tables to
demonstrate their use with DL/I-specific member types.

If any of the keywords are also available for interrogating a DataManager definition of another
Data Base Management System, and the user's implementation of DataManager includes an
interface to that system, responses to interrogations can also include members that are defined for
that other Database Management System.

Throughout the following sections, any of the alternative forms DL/1-DATABASES,
DLI-DATABASES, and DL1-DATABASES are accepted for the keyword DL/I-DATABASES.
Similarly, the alternative forms DL/1-DATASETS, DLI-DATASETS, and DL1-DATASETS are
accepted for the keyword DL/I-DATASETS.

The keywords for use in the VIA clause allow every clause of a member definition to be
interrogated. The examples that follow show how the keywords can be used to interrogate the
DataManager definitions of some important DL/I concepts.

Generated Fields Interrogation

The GENERATES clause of physical segment or index pointer segment data definitions can be
interrogated using the keyword GENERATES in the VIA clause, or by using the alternative verb
keywords GENERATES or GENERATED-BY. For example, these commands could be used to
obtain a list of all the fields that are directly specified in the GENERATES clause of the segments
residing in a particular database:

KEEP WHICH PHYSICAL-SEGMENTS DIRECTLY CONSTITUTE

physical-database-name;

PERFORM "ALSO KEEP WHICH ITEMS, GROUPS, SEQUENCE-KEYS"
"DIRECTLY CONSTITUTE * VIA GENERATES;"
KEPT-DATA CLEAR-KEPT-DATA;

LIST KEPT-DATA ALPHABETICALLY;

103

ASG-DataManager DL/I Interface: DOS

If an alternative verb keyword were used, the PERFORM command might read:

PERFORM "ALSO KEEP WHICH ITEMS, GROUPS, SEQUENCE-KEYS"
"DIRECTLY GENERATED-BY *;"
KEPT-DATA CLEAR-KEPT-DATA;

Hierarchical Path Interrogation

Hierarchical path interrogation is performed by using the keywords PARENT or FATHER in the
VIA clause, or by using the alternative verb keywords FATHERS or FATHERED-BY. For
example, using the example illustrated by the syntax in "Specification of the Data Definition
Statement for a HISAM Type DL/I Database" on page 62, the response to the command:

WHICH SEGMENTS USE JOB-TITLE VIA PARENT;

would consist of the segments DEPARTMENT, EMPLOYEE-NUMBER, and JOB-STATUS,
which are direct or indirect parents of segment JOB-TITLE.

The command:
WHICH SEGMENTS DIRECTLY CONSTITUTE DIRECTORY JOB-STATUS VIA FATHER;

would cause the segments SALARY and JOB-TITLE, which are direct dependents of segment
JOB-STATUS, to be output.

Using the alternative verb keywords, the first interrogation could be:
WHICH SEGMENTS FATHER JOB-TITLE;
and the second:

WHICH SEGMENTS DIRECTLY FATHERED-BY JOB-STATUS

Logical Relationship Interrogation

The TO keyword interrogates the relationship between logical child segments and their destination
parent segments, as specified in the RELATED-AS clause of the logical child segment definition.
For example, the command:

WHICH PHYSICAL-SEGMENTS DIRECTLY CONSTITUTE ASY-LINE VIA TO;

when used with the syntax in "Specification of the Data Definition Statement for a Segment that
Resides in a Physical Database" on page 24 would respond with the segment PRODPART.

Secondary Index Relationship Interrogation

104

The relationships between index pointer segments and index target segments can be ascertained by
using the TARGET keyword.

4 Extensions to DataManager Commands for DL/I Databases

Using the example illustrated in Figure 3 on page 9, the command:

WHICH INDEX-POINTER-SEGMENTS DIRECTLY USE NAMEID VIA TARGET;
would respond with the segment COLORSEG.

The relationship between index pointer segments and source segments can be interrogated using
the SOURCE keyword. Thus, the interrogation:

WHICH INDEX-POINTER-SEGMENTS DIRECTLY USE AUTOMBLE VIA SOURCE;
would respond with the segment COLORSEG.

Segment Search Argument Interrogation

The SSAS keyword can be used to find out which segments are used by a particular process
member via its SEGMENT-SEARCH-ARGUMENTS clause. This could be achieved by the
command:

WHICH SEGMENTS DIRECTLY CONSTITUTE process-member-name VIA SSAS;
Using the PROCESSES clause example in "Specification of the PROCESSES Clause" on page 92,

the response would consist of the segments SKILMAST, SKILLNAM, EXPRMAST, and
EDUCMAST.

The QUALIFIED-ON keyword is used to find out the relationships between process member
types and the fields specified in the QUALIFIED-ON subordinate clause of the
SEGMENT-SEARCH-ARGUMENTS clause. Again, using the example in "Specification of the
PROCESSES Clause" on page 92, the response to the command:

WHICH MEMBERS DIRECTLY CONSTITUTE process-member-name VIA QUALIFIED-ON;

would include the members SKLLCODE, SURNAME, and INITIAL.

Sensitive Segment And Sensitive Field Interrogation

The relationships between structure type Program Communication Blocks (PCBS) and the
sensitive segments and fields specified in them can be interrogated using the SEGMENT or
SENSITIVE-FIELDS keywords respectively. For example, using the second example of a

n

structure type PCB in "DataManager Data Definition Statements for DL/I Program
Communication Blocks" on page 82, the command:

WHICH SEGMENTS DIRECTLY CONSTITUTE ASY-PACK-PCB VIA SEGMENT;
would respond with the segments ASY-LINE and ASY-PACK.

The command:

WHICH MEMBERS DIRECTLY CONSTITUTE ASY-PACK-PCB VIA SENSITIVE-FIELDS;

using the same example, would respond with the members PACK-NO, PROD-NO, and
QTY-REQD.

105

ASG-DataManager DL/I Interface: DOS

Sequence Key Interrogation

The SEQUENCE-KEY clause can be used to interrogate the relationships between sequence key
fields and segments in which they are specified.

These commands could be used to ascertain the sequence key fields of the logical database
SKILLEMP illustrated in Figure 2 on page 6:

KEEP WHICH PHYSICAL-SEGMENTS CONTAINED-BY SKILLEMP;
PERFORM 'WHICH ITEMS, GROUPS, SEQUENCE-KEYS DIRECTLY'
'"CONSTITUTE * VIA SEQUENCE-KEY;'
KEPT-DATA CLEAR-KEPT-DATA;

This pair of commands would respond with the members SURNAME, PAYRNUMB,
SKLLCODE, QUALCODE, and EMPLOYEE-NO.

Variable Length Array Interrogation

The BOUND keyword can be used to interrogate the relationship between variable length arrays
and physical segments. For example, the command:

WHICH PHYSICAL-SEGMENTS USE NUMBER-OF-LINES VIA BOUND;
would respond with the names of the physical segments whose CONTAINS clauses refer directly

or indirectly to a variable length array, the number of occurrences of which is based on the value
of the item NUMBER-OF-LINES.

Member Type Interrogations

106

The purpose of this table is to summarize, for each DL/I-specific member type, the VIA keywords
that may be used to interrogate various clauses of the member definition.

In the first column of the table, the member types are listed in the order of databases, segments,
Program Communication Blocks (PCBs), and process members. The second column lists the
keywords that are available for interrogating clauses in members of a particular type. The third
column explains, for each keyword, the relationship between the member type and the clause, or
subordinate clause, of the member type data definition that the keyword interrogates.

Member Type Interrogation

Member Type Keyword for Usein Relationship Interrogated by Keyword
VIA Clause

HDAM-DATABASES CONTAINS Relationship between HDAM or HIDAM

HIDAM-DATABASES databases and segment members that are

contained in the database.

DL/I- DATASETS Relationship between HDAM or HIDAM
databases and the data file members specified in
the DATASETS clause of the database data
definition statement.

4 Extensions to DataManager Commands for DL/I Databases

Member Type Interrogation

Member Type Keyword for Usein Relationship Interrogated by Keyword
VIA Clause
Hierarchical parent and child relationship
{ Eﬁﬁgﬁ?g } between segments whose names are listed in the
CONTAINS clause of the database data

definition statement.

RANDOMIZING Relationship between HDAM and H.IDAM
MODULES databases and module members specified in the
RANDOMIZING-MODULES clause of the

RANDOMIZING ..
MODULES database data definition statement.
HISAM-DATABASES CONTAINS Relationship between HSAM or HISAM

databases and segment members that are

HSAM-DATABASES contained in the database.

DL/I- DATASETS Relationship between HSAM or HISAM
databases and the data file members that
constitute the database (that is, the data file
members specified in the DATASETS clause of
the database data definition statement).

FATHERS Hierarchical parent and child relatlor.lshlp.
PARENTS between segments whose names are listed in the
CONTAINS clause of the database data
definition statement.
LOGICAL- CONTAINS Relationship between LOGICAL databases and
DATABASES segment members contained directly or
indirectly in the database.
FATHERS Hierarchical parent and child I’elatIOI.IShlp.
PARENTS between segments whose names are listed in the
CONTAINS clause of the database data
definition statement.
SECONDARY- CONTAINS Relationship between secondary index
INDEX-DATABASES databases and the index pointer segment

contained in the database.

DL/I-DATASETS Relationship between secondary index
databases and the dataset members that
constitute the database (that is, the datasets
specified in the DATASETS clause of the
database data definition statement).

INDEX-POINTER- BOUND Relationship between index pointer segments

SEGMENT and variable length arrays specified directly or
indirectly as groups or items in the CONTAINS
clause of the segment data definition statement.

107

ASG-DataManager DL/I Interface: DOS

108

Member Type Interrogation

Member Type

Keyword for Use in
VIA Clause

Relationship Interrogated by Keyword

CONTAINS

DUPLICATE-
DATA-FIELDS

GENERATES

IF

—A
1=
R

MAINTENANCE-
EXITS

ON

SEARCH-KEY-
FIELDS

SEQUENCE-KEYS

Relationship between index pointer segments
and group and/or item members specified in the
CONTAINS clause of the segment data
definition statement.

Relationship between index pointer segments
and items, groups and/or system related fields
specified in the DUPLICATE-DATA-FIELDS
clause of the index pointer segment data
definition statement.

Relationship between index pointer segments
and members of any of the types that may be
specified in the GENERATES clause of the
index pointer segment data definition statement.

Relationship between index pointer segments
and item and/or group members specified in IF
subordinate clauses in the CONTAINS clause
of the index pointer segment data definition
statement.

Relationship between index pointer segments
and members that may be specified in the
IN/OF subordinate clause of the GENERATES
clause of the index pointer segment data
definition statement.

Relationship between index pointer segments
and module members specified in the
MAINTENANCE-EXITS clause of the index
pointer segment data definition statement.

Relationship between index pointer segments
and the member specified in the ON
subordinate clause of the RELATED-TO clause
of the index pointer segment data definition
statement [that is, the index search field
(XDFLD)].

Relationship between index pointer SEGMENT
segments and group and/or item members
specified as search key fields in the
SEARCH-KEY-FIELDS clause of the segment
data definition statement.

Relationship between index pointer segments
and the member specified as the sequence key
in the SEQUENCE-KEY clause of the segment
data definition statement.

4 Extensions to DataManager Commands for DL/I Databases

Member Type Interrogation

Member Type

Keyword for Use in
VIA Clause

Relationship Interrogated by Keyword

LOGICAL-SEGMENT

PHYSICAL-
SEGMENT

SOURCE

SUBSEQUENCE-
FIELDS

TARGET

CONTAINS

DATABASES
IN-
DATABASES

BOUND

CONCATENATED
-KEY-
CONSTITUENTS
(source segments
only)

CONCATENATED
-KEY-FIELDS
(source segments
only)

CONCATENATED
-KEY-NAMES
(logical child
segments only)

CONTAINS

Relationship between index pointer segments
and the index source segment specified in the
SOURCE clause of the segment data definition
statement.

Relationship between index pointer segments
and items, groups, and/or system related fields
specified in the SUBSEQUENCE-FIELDS
clause of the segment data definition statement.

Relationship between index pointer segments
and the index target segment specified in the
RELATED-TO clause of the index pointer
segment data definition statement.

Relationship between logical segments and
physical segments contained by the segment.

Relationship between logical segments and the
physical database in which the physical
segment contained by the logical segment
resides (specified by the IN subordinate clause
of the logical segment data definition
statement).

Relationship between physical segments and
variable length arrays specified directly or
indirectly as groups or items in the CONTAINS
clause of the segment data definition statement.

Relationship between physical segments and
fields specified in the CONCATENATED-
KEY-FIELDS clause of the physical segment
data definition statement. Only those fields
specified before the AS CKxxxxx subordinate
clause are included.

Relationship between physical segments and
system related fields specified in the AS
CXxxxxx subordinate clause of the
CONCATENATED-KEY-FIELDS clause in
the segment data definition statement.

Relationship between physical segments and
the member specified as a concatenated key
name in the CONCATENATED-KEY-NAME
clause of the segment data definition statement.

Relationship between physical segments and
group and/or item members contained directly
or indirectly in the segment.

109

ASG-DataManager DL/I Interface: DOS

110

Member Type Interrogation

Member Type

Keyword for Use in
VIA Clause

Relationship Interrogated by Keyword

EDIT-
COMPRESSION-
EXITS

GENERATES

IF

RENAMES (logical
child segments only)

SEQUENCE-KEY-
CONSTITUENTS
(logical child
segments only)

SEQUENCE-KEY

TO (logical child
segments only)

WITH (paired
logical child
segments only)

Relationship between physical segments and
module members specified in the
EDIT-COMPRESSION-EXITS clause of the
segment data definition statement.

Relationship between physical segments and
fields that can be specified in the GENERATES
clause of the segment data definition.

Relationship between physical segments and
item and/or group members specified in IF
subordinate clauses of the CONTAINS clause
of the segment data definition statement.

Relationship between physical segment and
members of any of the types that are specified in
the IN/OF subordinate clause of the
GENERATES clause of the segment data
definition statement.

Relationship between logical child segments
and items, groups and sequence key members
specified in the RENAMES clause of the
logical child segment data definition statement.

Relationship between logical child segments
and fields specified in the SEQUENCE-KEY
clause of the segment data definition statement,
when the AS subordinate clause of the
SEQUENCE-KEY clause has also been
specified. Only the entries preceding the AS
subordinate clause are included in the response.

Relationship between physical segments and
the item or group member specified in the
SEQUENCE-KEY clause of the segment data
definition statement, when the AS subordinate
clause has not been specified. Also, when the
AS clause has been specified, the relationship
between the physical segment and the sequence
key name specified in the AS clause.

Relationship between logical child segments
and the destination parent segment specified in
the TO subordinate clause of the
RELATED-AS clause of the physical segment
data definition statement.

Relationship between the logical child segment
and the segment with which it is paired, as
specified in the WITH subordinate clause of the
segment data definition statement.

4 Extensions to DataManager Commands for DL/I Databases

Member Type Interrogation

Member Type Keyword for Usein Relationship Interrogated by Keyword

VIA Clause

PCB (GSAM type) Relationship between PCBs and the GSAM
E\IA_TABASES database named in the PCB data definition
DATABASES statement.

EXIT-ROUTINES Relationships between PCB and module,
program, or system members specified in the
EXIT-ROUTINES of the PCB data definition
statement.

NAME Relationship between PCBs and the PCB
specified in the NAME clause of the PCB data
definition statement.

SECONDARY- Relationship between PCBs and the index

SEQUENCE-ON pointer segment specified in the ON
subordinate clause of the
SECONDARY-SEQUENCE clause of the PCB
data definition statement.

SEGMENT Relationship between PCBs and sensitive
segments specified in the SEGMENT clause of
the PCB data definition statement.

SENSITIVE- Relationship between PCB and fields specified

FIELDS as sensitive by means of the
SENSITIVE-FIELDS clause of the PCB data
definition statement.

MODULE PROGRAM CONTAINS Relationship between module, program or
SYSTEM system members and the PCB members which

QUALIFIED-ON

SSAS

they use; that is, the PCB members specified in
the CONTAINS subordinate clause of the
PROCESSES-clause of the module, program or
system data definition statement.

Relationship between module, program or
system members and the segment search fields
specified in the QUALIFIED-ON subordinate
clause of the PROCESSES clause of the
module, program or system data definition
statement.

Relationship between module, program or
system members and the segment members
specified in the SSAS subordinate clause of the
PROCESSES clause of the module, program or
system data definition statement.

111

ASG-DataManager DL/I Interface: DOS

Interrogation Syntax

112

This table provides the user with the information required to construct an interrogation of the
form:

WHICH selection USES member-name VIA via-keyword ;
CONSTITUTES

alternative-verb-keyword member-name

The first column lists, in alphabetical order, the keywords that can be used in a VIA clause. The
second column lists all the meaningful member types that could be specified for the selection
variable in a USES interrogation. The third column lists the member types from which the member
named in the member-name variable should be selected if a meaningful response is to be obtained.
The fourth and fifth columns give, respectively, information similar to that in the second and third
columns, except that the member types given are those that are meaningful in a CONSTITUTES
interrogation.

The final column explains the response that will be obtained from either a USES or
CONSTITUTES interrogation, and includes any notes concerning the use of the keyword. The
responses detailed here are those that appear when the interrogation has been qualified by the
keyword DIRECTLY. If DIRECTLY is not specified, both direct relationships and indirect
relationships established by CONTAINS clauses are reported on.

In addition to the member types listed in the second and fourth columns, the general selection
keywords MEMBERS, KEPT-DATA, and INDEX-NAMES may be used, although meaningful
responses will be obtained only when these categories include members of the types listed in the
second and fourth columns.

The values that may be supplied for the alternative-verb-keyword variable are described in
"Alternative Verb Keywords" on page 130.

4 Extensions to DataManager Commands for DL/I Databases

-osuodsal 3y U1 POpN[OUL AT dSNE[J d)eUIpIOqns

XXXXXID SV yoes 0} Jorxd payyroads

SA9y 9ouanbas pue ‘sdnoid ‘swon A[uQ
‘uore3o11oiul 9y Jo Jed SWLBU-IdqUIS) UT
paweu juowas [eorsAyd oy Jo asned SATAI
-AT-AALVYNALYONOD 2y} ur payroads

SI Jey) A9 9ouanbas 1o/pue dnoi3 1o0/pue wayn

yoea Jo dureu 3y sureqQ ‘STLALILSNOD

*9sneyo djeurpIoqns
XXXXXID SV 2y) Surpasad asne[o

o o yed ayp ur seadde jsnw Sweu-IoqUIOW
Aq paweu JoquIOW 9y], ‘U0NE301I)UI

o1 Jo Jed oweU-19qUISW AU} UT PIWRU K33
9ouonbas 10 w10 dnoi3 ay) ‘UonIULFIp BIep Si
Joesned SATAIA-ATA-ddLYNAILVONOD

oy ur ‘salyroads ey Juow3os (A1uo
©o1sAyd yoes Jo oweu ay sure : SJUAWISAS 99IN0S —
[eorsAyd yoea j U surelqo ‘SASN)) I 10045 SLNANOHS SININLILSNOD
"SJUOWISAS 90IN0S XOPUI SB PIULIIP dIe Jey) INENOHS - SINANWDHS -AE)
syuowi3as [eo1sAyd 03 A[uo sarjdde promAay siyy, -T¥DISAHA SWHLI WALI -TYOISAHd -JALYNALYONOD
‘uoneSorajur oy} Jo Jed oWeU-IoqUUL
a3 ur pawreu Juswgos [eorsAyd 1o juow3os
10jutod Xopur ay) Ul paurejuod Aeire [ISud|
J]qeLIeA B JOJ punoq AeLIe UB S Pasn S1Jey) W)l
{oes JO sureu oy surelqQ -S4 LNLILSNOD
‘uorye3oIour SINHWDHAS
oy Jo 1ed sweU-IOqUISW JY} UL POWEU =
woYl Ay} JO anfea 9y} £q payg1oads SI S90UILINI00 ~ q.@wwmwmw %
Jo Joquunu osoym Aerre 3Sud| 9[qeLiea €
Surejuod Jey) Juawgdas [eorsAyd 1o/pue Juow3as INHNDHAS - SINHWDHAS _
Jarutod Xapul yoea Jo swieu Ay surelqQ :SHSN -JYALNIO - XAANT SWHLI WNHLI -YHLNIOd-XHANI aNnod
QWBU-IIqUIdUW SPIOMAIY UOI)II[IS QWBU-IIqUIdW SPJIOMAIY UOIII[IS
10§ s3dA) Jdquidw adfy-1quowr a0y sad£) ddquudw adKy-rquuaw Isnep VA Y}

sajoN/uoneue[dxy

[NJSuIuBIA

[nJSuruBdA

suopego.1ul SLALLLSNOD

[nJSuruBdA

[nJSuIuBdIA

m-—@m«ﬁwchhoﬁ-m SHSN

Ul IS 10§ PAOMAIY

XeJUAQ
uone3o.LIRu

113

ASG-DataManager DL/l Interface: DOS

‘uonedorrour ayj Jo Jed

QWERU-IOqUIAW U} U PAWweu Juowdas 1jurod
Xopul J0 ‘Quawgas [eo1sAyd oy Jo uonIuyIp eyep
JORSNB HNVN-ATN-TALVNALVONOD
o ur payyroads st Jery) A9y PIjeUBOUOD

oy Jo swreu oy sure1qQ -SHLNLILSNOD

‘uorye3orIour

a1 Jo 1ed SwRU-IOqUISW I} U PIWERU

Jweu A9y PIJRUIIBIUOD O ‘UONIULIP BIEP

SH JO osne[d HNVN-ATN-AHLVNALVINOD
oy ur sayy1oads

jey) JuowFos-1ojurod-xapur Jo Juow3as
[eo1sAyd oy Jo owreu oy sureiqQ :SHSN

‘uoryegoardqur) Jo ped sweu-1oquow

Jy ur pawreu Juaw3as [edIsAyd oy} Jo uon UL
BJEP OU) JO OSNB[O JBUIPIOQNS XXX XX D

SV QU3 ul payroads st Jey) p[oLy paje[ol wojsAs
[dea Jo aureu oy surelqQ :SHLNLILSNOD

"($7 93ed U0 ,,958qeIB(] [BOISAU © UL SopIsay

Je[[} JUSWISag € 10] Juotioje)s uoniugo(] eje(q

3} JO UONBONIAAS,, 99S) XX XXX WI0J 3y}
J0 9q 1snw payy sIy [‘uorie3oridur oy jo yed
QWEBU-IOqUIAUL Q) Ul PAUIRY P[] PIJB[I WI)SAS
) ‘UOT)IUIJOP BIEP SII JO OSNE[O 9JeUIPIOqNS
XXXXXD SV U} Ul ‘safroads ey juowidos
[eo1sAyd oy Jo owreu oy surejqQ :SHSN

*SJUSWIZOS 99IN0S XIPUI SB PAULIIP e B}
syuowi3os [eo1sAyd 03 sarjdde Ajuo promAay iy,

LNHNDHS
-TYOISAHd

(ATuo sjuswbss
spinos)
LNHNDHS

-TYOISAHd

HNYN-AHX
-@HLVYNHLYONOD

SdTHIA

~QHLYTHI-WHLSAS

HNYN - AHM
-@HLVYNHLYONOD

aTdaIdg
~J4dILYTHI-WHLSAS

sajoN/uoneueidxy

dWEU-I13qUIdW
10§ $3dA) Jdqudw
[nJSUIuBIA

SPIOMAIY UOI)IIIS
adKy-rquuaw
[nJSuruedA

suopego.1ul STLALLLSNOD

dWeU-I13qUIdW
10} s9d£) Joquidw
[NJSuIuedA

SINHANDHS
SINAWDAS SHNYN -ZXE)
-TYDISAHd -QILYNILYONOD

SINHANDHS
SINAWDAS SATAIA -XEA
-T¥DISAHd -QILYNILYONOD

SPIOMAIY UON)IIIS
adKy-1quuaw Isnep VA Y}

[NJSuIuedA

m-—@m«ﬁwchhoﬁ-m SHSN

Ul 3SN J10J PAOMAIN

XBJUAS
uone3o.rIRu

<

—
—

4 Extensions to DataManager Commands for DL/I Databases

*(TT11 95¢ed U0, XBJUAS UONES0IIoU],

995) pasn aq P[Nod X g-AANIV.LNOD pue
SNIV.LNOD SPIOMASY G104 Y} ‘asne[d YIA oy
ur promAay SNIV.LNOD 2yp Suisn jo peajsuf

‘uoryegoardqul 9y Jo ped sweu-1oquow

) Ul paweu AseqeIep J) JO UOIUIIIP

©)ep 91} JO 3sne[d SNTV.INOD oY) Ul pargroads
S Jey) yuaw3as [eo1sAyd Jo/pue [ed130]

[oea Jo aureu oy surelqQ :SHLNLILSNOD

‘uorjeSorraiur oy} Jo jred

QWIBU-IOQUISW S} UI paweu Juowdas [earsAyd
10 [e0130] 9y} ‘UONIUIIAP BIBP SI JO ASNE[O
SNIV.LNOD 2y ut ‘saij1oads jey) oseqeep
[e9130[yoea Jo suwieu A surejqO :SASN

(ZT1 98ed U0, XeJUAS UOIIESOIIU],,

005) pasn aq P[nod Xg-JANIV.LNOD pue
SNIV.LNOD SPI0MASY qIoA 91} *asne[o VIA oy}
ut promAdy SNIV.INOD oy Sutsn jo peajsuf

‘uoredoIour

a1 Jo 1ed SwRU-IOqUISW I} UI PIWERU
9seqejep 9y} JO UOTIIULJOp Bjep 9y} JO osne[o
SNIV.LNOD 2y ut paygroads quawi3as [earsAyd
[oea Jo aureu oy surelqQ :SHLNLILSNOD

‘uonegoLIa1ul Y} Jo Jed oweu-IoquAUL

oy ur pawreu Juawdas [eo1sAyd oy ‘uonruyop

BJBP SH JO asne[d SNIV.LNOD 93 ul ‘sarjroads
Jet]) 9seqelep Yoed Jo dweu oy sure}qQ :SASN

dSVEV.LYd
-TYOIDOT

HSVIVLVA-WYSHS

dSVEV.LYd
-WY¥SIHS

HSVEVLVA-WVYSH
HSVYIV.LVA-WYSTH
HSVYIV.LVA-WYdIH

HSVEVLVA-WYdH

SILNANDHS

SINAWDHS
-T¥DISXHA

LNHNDHES -TYOIDOT

SINANDHS

SINAWDHS
-T¥DISXHA

LNHNDHS
-TIYOISAHd

LNHNDHES -TYOIDOT

SINHNDAS
-TIYOISAHd

SHSVYEV.LYd
SHSVEVIVA-1I/71ad

SESVIV.LIVYA
-T¥OIDOT

SHSVYIV.LVYd
SHSVEVIVA-1I/71a
SHSVIV.LVA-WYSHS

SHSVYIV.LYd
-WYSIHS

SEHSVIV.LIVYA
-TVOISAHd

SHSVIVIVA-WYSH
SHSYEY.IVYA-WYSIH
SHSYEY.IVYA-WYAIH

ASYEV.LVA-WYAH

SNIV.INOD

SNIV.LNOD

sajoN/uoneueidxy

dWEU-I13qUIdW
10§ $3dA) Jdqudw
[nJSUIuBIA

SPIOMAIY UOI)IIIS
adKy-rquuaw
[nJSuruedA

suopego.1ul STLALLLSNOD

dWeU-I13qUIdW
10} s9d£) Joquidw
[NJSuIuedA

SPIOMAIY UON)IIIS
adKy-1quuaw
[NJSuIuedA

suoneso.LIuUl SESN

ISNEP VIA 2}
Ul 3SN J10J PAOMAIN

XBJUAS
uone3o.rIRu

115

ASG-DataManager DL/l Interface: DOS

(ZT1 98ed U0, XBJUAS UOIIESOIIU],,

005) pasn aq P[nod Ag-JANIV.LNOD pue
SNIV.LNOD SPI0mASY qIoA 31} *asne[o VIA oy}
ut promAdy SNIV.INOD oy Sutsn jo peajsuf

‘uonegoLIaiul Ay} Jo Jed sweu-1oquIAUL

oy ur pawreu Quowdas 1jurtod xapur

931 JO UOnIULySp BIep 9y} Jo 9Sne[d SNIV.INOD
oy ur payyroads st yey ‘won 10/pue dnoi3d

{oes Jo sureu oy surelqQ -S4 LNLILSNOD

‘uoryegolrdul 9y Jo ped sweu-1oquow

oy ur pauwreu way Jo dnoid oY) ‘uonuIFIp
BJP S} JO 9sne[d SNIV.LNOD Y3 Ul ‘sa1j1oads
jey) Juowas Iojurod xopur Jo/pue Juow3as
earsAyd yoes jo sweu ay surelqQ :SASN

‘(ZTT o5¢ed to , XejuAS uonesoiroiu],,

995) pasn aq P[Nod X g-AANIV.LNOD pue
SNIV.LNOD SPIOMASY G104 3y} ‘asne[d YIA oy
ur p1omA SNIV.LNOD yp Suisn jo peajsuf

‘uonegoLIaiul Ay} Jo Jed sweu-IoquAUL

dU) Ul POWEU 9SeqBIEP XIPUI AIBPUO0IIS

931 JO UOnIULISp BIep 9y} Jo 9Sne[d SNIV.LNOD
oy ur payroads st ey yuowdas 193urod xopur
{oes JO sureu oy surelqQ -S4 LNLILSNOD

‘uorye3oIour

2y Jo 1ed oweRU-IOqUISW 9] UT PIWERU JUWFIS
10jutod Xopur Oy} ‘UOTHIUIJOP BIEP SII JO OSNE[O
SNIV.LNOD 911 Ul ‘so1j10ads 1ey) dseqerep
Xopur A1epu099s oY) JO dweu Y} surejqQ :SASN

LNHNDHS
-TYOISAHd

LNHNDHS
~JHLNIOd-XdANI

dSVEV.LYd

HSVYIVLVA-XHANT
-AdYANODHS

SdnNodd
SWHLI

SINANDHS

SLNHNDAS
-~dHLNIOd-XdANI

dnoydd
WNHLI

LNHNDHS
~JHLNIOd-XdANI

SINANDHS

SINAWDHS
-T¥DISXHA

SLNHNDAS
~YHLNIOd-XdANI

SHSVYEV.LYd
SHSVEVIVA-1I/71d

SHSVIV.LVA-XHdNT
-AIVANODHS

SNIV.LNOD

SNIV.LNOD

sajoN/uoneueidxy

dWEU-I13qUIdW
10§ $3dA) Jdqudw
[nJSUIuBIA

SPIOMAIY UOI)IIIS
adKy-rquuaw
[nJSuruedA

suopego.1ul STLALLLSNOD

dWeU-I13qUIdW
10} s9d£) Joquidw
[NJSuIuedA

SPIOMAIY UON)IIIS
adKy-1quuaw
[NJSuIuedA

suoneso.LIuUl SESN

ISNEP VIA 2}
Ul 3SN J10J PAOMAIN

XBJUAS
uone3o.rIRu

O
—
—

4 Extensions to DataManager Commands for DL/I Databases

‘(TTT 95¢ed to , XejuAS uonesoiroiu],,

995) pasn aq P[Nod X g-AANIV.LNOD pue
SNIV.LNOD SPIOMA3Y G104 Y} ‘asne[d YIA oy
ur p1omA SNIV.LNOD 2y} Suisn jo peajsuf

‘uorye3oIour

a1 Jo 1ed SWRU-IOqUISW AU} U PIWERU

woysAs 10 werdoid ‘Ompow oy} Jo uonIUIFOp
BIBp 3 JO IsNB[d SHSSHOOUd 2y} JO

asne[d dyeuIpIoqns SNIV.LNOD 93 ul parjroads
st1e1 ‘(gDd) ¥o0[d uonesunwwo)) weidoid
[oea Jo aureu oy surelqQ :SHLNLILSNOD

‘uonego1Iour 9y} Jo Jed SWRU-IdqUIaW O] Ul
paweu (gDd) Jo0[d uonedrunwwo)) werdoid

c SX0071d SXD071d ST Tara
oY) ‘uonIuLIp BIEP $I1 JO 9sne[o SHSSADOUd WEISAS o o INANNOD -NOIIVAINANNOD SWHLSAS
oy} Jo dsneyd AjeuIpIoqns SNITVINOD v N SoeEeTS
Ay ur ‘safy1oads Jey) wasAs Jo/pue weirgoid WYHEDOAd Zﬂmwow WYHEDOAd mzmmwow
10/pue S[npouwr goes Jo suwreu ay) surelqQ :SHSN HTNAON sSdod g0d SHTNAON SNIV.INOD
‘(1T 95ed U0, XeJuAS UONes0LIoI],,
005) pasn 3q p[nod Xg-JANIV.INOD pue
SNIV.LNOQD SpI0mAdY qI0A 9y} ‘9SNE[d VA oY)
ut p1oMASY SNIV.LNOO 93 Suisn jo peajsuf
‘uorjeSorraiur oy} Jo jred
QWIBU-IOQUIAW 9Y) UI PAWERU Juow3as [eo130]
94} Jo uonruiyap ejep oy} Jo asne[d SNIV.INOD
oy ur paygroads st jey yuow3as [eorsAyd
{oes JO sureu oy surelqQ -S4 LNLILSNOD
‘uorye3oIour
2y} Jo 1ed oWEU-IOqUISW 9] UT PIWERU JUWFIS e e
[eo1sAyd ayj ‘uonulop eyep si Jo asne[od mHZmzwmm mHZmzwmm
SNIV.LNOD 9y ur ‘say10ads jey) juow3as LNHNDHS SILNHNDHS SINHNDAS SILNHNDHS
[80130] YoBD JO dureu oY) surelqQ :SHSN -T¥DIDOT -T¥DISAHd -T¥DISAHd -T¥DID0T SNIY.INOD
QWBU-IIqUIdW SPIOMAIY UOI)II[IS QWBU-IIqUIAW SPJIOMAIY UODIIIS
10§ $3dA) Jdqudw adSy-1quidwr a0y sad£) Jdquudw adKy-1quuaw Isnep VA Y}

sajoN/uoneueidxy

[nJSUIuBIA

[nJSuruedA

suopego.1ul STLALLLSNOD

[NJSuIuedA

[NJSuIuedA

m-—@m«ﬁwchhoﬁ-m SHSN

Ul 3SN J10J PAOMAIN

XBJUAS
uone3o.rIRu

117

ASG-DataManager DL/l Interface: DOS

‘uone3oi123ul oy} Jo jred sweu-Ioquiow

dUJ) Ul pawreu aseqeiep) JO JUSWA)L)S
uonIuLP BIEP Y} JO ISNE STHSVIVA

oy} ur payIoads st eyl ‘LASYIVA-1/1d

4oed Jo sweu dy3 sureiqO ‘SALNLILSNOD
‘uorjeSo11oiul o) Jo Jed Sweu-19qUIdW AY) Ul
poweu qUIdW SV LVA-T/ 1A Y} ‘UonIuyap
BJep S)1 JO 3sne[d SLASV.ILVA 2y} ul ‘sarjroads
Jey) aseqeiep Ay} Jo dweu 3y} sureqO ~JYISN

‘uorjegol1diul oY) Jo 1red sweu-1oquIdw Ay}

Ul paweu Juowsas [e0130] AU} JO UOTHULIIP BIep
oy} Jo asneyo NI oy ut pay1oads st jey ‘oseqerep
oy Jo sweu oy sure1qQ -SHLNLILSNOD

‘uonedorrour ayj Jo Jed

QWEBU-IOQUIAW) Ul paweu Jseqelep NVSIH
10 WVAIH 10 WVAH 9y} ‘uoniuyap ejep

S} JO asne[d NJ oy uI ‘saijroads jey) juowsas
Teo130] yoes Jo owreu oy} surelqQ :SASN

HSVYIV.LVA-XHANT
-XAIYANODHES

HSVYdVv.LvYd
-IWYSIHS

HSVYIVYLVA-IWYSHS
HSVYIV.LVA-WYSTH
HSVYIVYLVA-WYAIH

HSYIVILVA-WNYAH

LNHNDHS
-TYOIDOT

SIESVIVA-1I/1a

SHSYIV.LVd
SHSVEVIVA-1I/71a

SHSYIVIVA
-T¥DISAHA

SHSYLIV.IVA-WYAIH
SHSVEVIVA-WYdH

SHSYIV.LYd
SHSVEVIVA-1I/71a

SHSVYIV.LVA -XHANI
-AYVYANODHES

SHSYIY.IYA
-IYDISAHA

SASYAVIVYA-WYSTHS
SHSYEY.LVA-WYSHS
SHSYEV.IVA-WYSIH

SASVAVLIVA-WYSH
SHSYEV.LVA-WYAIH

ILESYIVA-I/1a HSVYEVIVA-WYaH

SLNHNDHS
HSVYIVLVA-WYJIH SINANOTS
HSVIYLVYA-NYAH -TYOIDOT

SIESYIVA-I/71a

SHSVYIVY.LYd

sajoN/uoneueidxy

dWEU-I13qUIdW
10§ $3dA) Jdqudw
[nJSUIuBIA

SPIOMAIY UOI)IIIS
adKy-rquuaw
[nJSuruedA

suopego.1ul STLALLLSNOD

dWeU-I13qUIdW
10} s9d£) Joquidw
[NJSuIuedA

SPIOMAIY UON)IIIS
adKy-1quuaw

m-—@m«ﬁwchhoﬁ-m SHSN

asnep VIA 2y

[NJSUIUBIJA] UI SN JA0J PAOMAIN

XBJUAS
uone3o.rIRu

oo}
—
—

4 Extensions to DataManager Commands for DL/I Databases

‘uoredo11oiul 9y Jo Jed SWLBU-IdqUIS 9} UT
powreu juowi3os [eo1sAyd ay) Jo uonIuyap BIEp
oy} Jo osne[d IIXH-NOISSHIdINOD-LIdd
oy} ur paygroads st et ‘o[npowr

9} Jo aureu a1 surelqQ -SYLNALILSNOD

‘uoryegolrdqur 9y Jo ped sweu-1oquow

) Ul pawWEU [NPOU oY} ‘UOHTUIFIP

eep s Jo osne[d LIXH-NOISSHIdINOD-LIdd
o ur ‘saryroads Jety) Juow3as

[earsAyd yoes jo sweu ay surelqQ :SASN

‘uoryedoIour

a1 Jo 1ed SwRU-IOqUISW AU} U PIWERU
Juow3as 1jurod xopur oy} Jo uonIULOp BIEP
oy} Jo osne[d SATHIA-VLIVA-dLvIITdNd
oy ur payy1oads st jeyy

‘PIoY pare[al wIsAs Jo/pue dnoi3 10/pue Wt
[dea Jo aureu oy surelqQ :SHLNLILSNOD

(9 95ed

T0 ,,958qeIe(] XOpU[AIEpU0IaS € Ul SpIsay Je)
LNHNDHS ® 10§ justiofel§ uontuys(g ered
3} JO UONEBINIdAAS,, 995) XXXXX) WI0J
21} JO 9 JSNUW dWLU-IOqUIdW J0J PI1oads proy
Ppate[a1-wdIsAs Aue ‘uoniedorrojur SS() € Ul

‘uoryeSorIoI Ay

J0 11ed QWEBU-T0qUUSW S} UT pAWEU P[olf PAJE[ol
w)sAs 10 ‘dnoid ‘war ay) ‘uonIuIIp BIRp

Si Jo asned SATHIA-VLIVA-4LVOI'T1dNd
o ur ‘saiyroads Jet)) Juow3as

Joyutod XOpUI Yoes JO aweu oy} surelqQ :SASN

LNHNDHS
-TYOISAHd

LNHNDHS
-dH4LNIOd-XHANT

SHTAAON

SATHIA
HLYTHI-NHLSAS

SdNodd
SWALT

HTNAON

aTdaId
-QHLYTHI-NHLSAS

dnoydd
WNHLI

SILNHNDAS

SINAWDHS
-IYDISAHA

SLNHNDHS

SLNHNDHS
-dHINIOd-XHANT

SLIX™
-NOISSHIAN0D
-11ad

SATAIA-VINA
-HI¥DITANd

sajoN/uoneueidxy

dWEU-I13qUIdW
10§ $3dA) Jdqudw
[nJSUIuBIA

SPIOMAIY UOI)IIIS
adKy-rquuaw
[nJSuruedA

suopego.1ul STLALLLSNOD

dWeU-I13qUIdW
10} s9d£) Joquidw
[NJSuIuedA

SPIOMAIY UON)IIIS
adKy-1quuaw
[NJSuIuedA

m-—@m«ﬁwchhoﬁ-m SHSN

ISNEP VIA 2}
Ul 3SN J10J PAOMAIN

XBJUAS
uone3o.rIRu

119

ASG-DataManager DL/l Interface: DOS

‘pasnoq ued Ag-AdddHLVA

pue SYAH.LV A SPIOMADY qI0A oY) ‘@sne[d
VIA 2P Ul (SLNHYVJ 10) SYAHLY A PIoMASY
o Sursn jo peaisu] ‘SINHAVd PIOMAY o
)M SNOWAUOUAS ST SYFH LV A PIOMAY oy [,

*91qe) AQ-pash s Juow3as ay) WOIJ Surelqo I jeyl

aseqejep 1s11J Y AJuo sossadold 1oFeuejyeIRQ
‘promAdY sty Suisn pojeFoLIuI SI oseqeep
QUO UBL[} 2IOW UI SIPISAI JBLf) JUIWTS © J]

‘uoryegoIour

o Jo Med sweu-19qUIAW AU} UT PArj1oads
Juow3as oy Jo Juapuadop e SI Jer Juow3os
oo JO sweu oy} ureiqQO :SHLNLILSNOD

‘uonegoLIaiul Ay} Jo Jed sweu-IoquUAUL
oy ur payy1oads Juaw3os oy Jo judred e
SI1B[}JUAWZOs YIB2 JO dWeu oy} surelqQ :SHSN

‘uone3ol123ul 9y} Jo jred sweu-Ioquiow

o} ur pauwreu g d oY} JO UOHTUIFOp ejep

a3 Jo asne[d SANILNOY-LIXH Y Ul pay1oads
SI Jet]} Wa)sAs 10/pue weidoid J0/pue onpowt

[oE3 JO dweu dys surelqO ‘SALNLILSNOD

‘uone3oLIuI Ay}

J0 11ed SWRU-IqUISW AU} Ul PIWEU WISAS 10
‘wresdord ‘ornpow oy} JuUSWIeIS UOHIULFIP BIep
$}1 30 asne[d SANILNOY-LIXH U ut sayy103ds
et} §D0d Yoee Jo suweu oy surelqQ :SHSN

LNHNDHS
-TYOISAHd

LNHNDHS
-TYOIDOT

200714
-NOILVDINNNWNOD
-IWYIDOdd

g0d

SLNHNDHS

SINAWDHS
-IYDISAHA

SINAWDES
-I¥DIDOT

SWHLSAS
SWY¥D0dd
SHTAAON

LNHNDHS
-TYOISAHd

LNHNDHES -TYOIDOT

WHLSAS
WYID0dd
HTNAON

SLNHNDHS

SINAWDHS
-IYDISAHA

SINAWDHS
-I¥DIDOT

SXD071d
-NOILVYDINNNWNOD
-IWZIDOdd

sgod

SYHHLVA

SENIINOY-XIXHE

sajoN/uoneueidxy

dWEU-I13qUIdW
10§ $3dA) Jdqudw
[nJSUIuBIA

SPIOMAIY UOI)IIIS
adKy-rquuaw
[nJSuruedA

suopego.1ul STLALLLSNOD

dWeU-I13qUIdW
10} s9d£) Joquidw
[NJSuIuedA

SPIOMAIY UON)IIIS
adKy-1quuaw
[NJSuIuedA

m-—@m«ﬁwchhoﬁ-m SHSN

ISNEP VIA 2}
Ul 3SN J10J PAOMAIN

XBJUAS
uone3o.rIRu

=3
N
—

4 Extensions to DataManager Commands for DL/I Databases

‘(ZT1 95¢ed U0 ,,XBJUAS UONESOIIOU],, 99S) pasn
2q ued Ad-AHLVIINAD pue SHLVIANTD
SPIOMADY qIOA o) ‘ASne[d VA O}

ul SHLVIANTD piomAay oyj Suisn Jo pedjsuf
‘uoryegolrdul 9y Jo ped sweu-1oquow

oy ur pawreu juowdas [eorsAyd ayp

SHNYN-ATM
Jo uonruyap ejep A Jo osne[d SHLVIINID — AALYNALYONOD
AU ur payyroads are Jey) ‘SIoquIAW o}
Jo Aue jo sowreu oy surejqQ :SHLNLLLSNOD SAHEA AdA
-QILYNILYDONOD -QILYNILYDONOD
‘uone3olI23ul 9y} Jo Jred sweu-Ioquiow
o) UT paureu £a3 pojeua)eouod 10 A3y douonbos SAHM-HDNHNOHS AEM-HDONHNOES SININDES

‘dno13 ‘woy1 Ay ‘uonIUIJOp BIEP S JO ASNE[O SdnowEd dN0¥s -

SALVYANTD 93 ur ‘sarj1oads jey) judwgos INZNOHES - SINAWDHS o
[eo1sAyd xapur yoes jo sweu ay) sureiqQ ‘SASN -TYDISXAHA SWHLI WELI -TYDISXHA SHIVIENID
*(Z11 25ed U0, XeJUAS UONESOIIU], 29S) pasn

9q ued A9-AdLVIdINID Pue SHLVIINHD
SPIOMADY QIOA) ‘ASNE[O YA Y}
ul SHLYJANAD promAdy oy Suisn jo peajsu]
‘uonegoLaNL SAEY - ONANDHS AEM - HONHNOES
a1 Jo 1ed sweu-19qUIdW 9y} UI PIWeU -
uonIurjop elep ay) Jo asne[d SHLVIANID SATAIA-dHELVTHI aTdrd
AU ur payyroads are Jey) ‘SIoquuAW o} -WHLSXAS -QHLYTHI-WHLSAS
Jo Aue jo soureu oy) sure)qQ :SHLNLILSNOD SATEIA aTEIa
‘uorjeSo11oiul o) Jo Jed sweu-19quUIdW AY) Ul -HOYVHES -XHANI -HOYVHES -XHANI S INAWDHES
PoWBU JOqUIdW JY) ‘UONIULJIP BIBP S} JO dSNe[d SdnoTs dN0¥S

SHLVIANTD 2y ut ‘sayyroads jeyy judwgas LINZNOIS - SINAWDAS o

Iayurod Xapur yoes Jo SWeU oY surelqQ :SASN -¥HINIOJ -XHTANT SWHLI WHELI -¥IINIOd-XHANI SHIVIENID
QWBU-IIqUIdUW SPIOMAIY UON)II[IS JWBU-IIqUIdW SPJIOMAIY UOIII[IS
10§ $3dA) Jdqudw adSy-1quidwr a0y sad£) Jdquudw adKy-1quuaw Isnep VA Y}

sajoN/uoneueidxy

[nJSUIuBIA

[nJSuruedA

suopego.1ul STLALLLSNOD

[NJSuIuedA

[NJSuIuedA

suoneso.LIuUl SESN

Ul 3SN J10J PAOMAIN

XBJUAS
uone3o.rIRu

121

ASG-DataManager DL/l Interface: DOS

‘uonego1rour 9y} Jo Jed SWRU-IdqUIaW O} Ul
paweu Juow3as 19jutod Xapur 9y} JO UORIULIP
e1ep 34} JO 9sne[d IIXH-HONVNHLNIVIA
oy ur paygroads St je ‘O[npowr

oy Jo sweu oy sure1qQ -SHLNLILSNOD

‘uoryedoardur 9y Jo ped sweu-1oquow

) Ul pawWEU [NPOU oY} ‘UOHTUIFIP

Bjep S) Jo osne[d LIXH-AONVNALINIVIA

o ur ‘saiyroads Jer)) Juow3as

19urod xopur yoes Jo suwreu Y sureiqQ :SASN

'SHSVIV.LYA 99

‘uoryegoardul) Jo ped sweu-1oquow

oy} ur paweu uAwas 1urod xapur

9y} JO UONIULIOP BIEP O} JO ISNB[O JeUIPIOQNS
JO/NI 9y ul payg1roads ST ey} ‘SIaquiow oy}

Jo Aue yo oweu ayy surerqQ :SFLNLILSNOD

‘uoryedordul 9y Jo ped sweu-1oquow
oy} Ul pawey JOqUIdW JY} ‘UONIULIP BIEP SII JO
osne[d SHLVYANTD 2y} JO 9sne[o djeurpioqns

JO/NI a3 ur ‘sany10ads jey) Juowdas
19urod xopur yoes Jo sureu 9y sureiqQ :SASN

‘uoryedorour

a1 Jo 1ed SuRU-IOqUISW I} U PIWERU
Juow3as TeorsAyd Jo Juow3as 1ajutod xapur
‘aseqeIEp NVSD U JO UORIULIP elep oy}

Jo osne[d SNTV.LNOD 92U} JO 9sne[o 9jeurpioqns
AT a3 ur paggroads st jeyy ‘dnoid 1o/pue wan
[oea Jo aureu oy surelqQ :SHLNLILSNOD

‘uonegoLIaiul Ay} Jo Jed sweu-1oquAU

oy ur pawreu dnoi3 10 WYl Y ‘UOBIULIP
BJBP S)I JO asne[d SNIV.LNOD 23 JO asne[o
Sreurpioqns J[oy} ul ‘saigroads jey) juow3os
Teo1sAyd 1o/pue 193urod Xapul Jo/pue Iseqejep
INVSD Yoes Jo suret ot surelqQ -SHSN

LNHNDHS
~JHLNIOd-XdANI

LNHNDHS
~JHLNIOd-XdANI

LNHNDHS
-TYOISAHd

LNHNDHS
~JHLNIOd-XdANI

SHTNAOW

SXEM-HDNHENOHS

SdTHIA
-HOYVHS -XHANT

SATHIA
~QHLVTHI-WHLSAS

Sdno¥s

SdNodd
SWHLI

HTNAON

AEMX-EDNHNOES

aTdaIdg
-HOYVHS -XHANT

aTdaIdg
~QHLVTHI-WHLSAS

dnodd

dnoydd
WNHLI

SINANDHS

SLNHNDHS
~YHLNIOd-XdANI

SILNHNDAS

SLNHNDAS
~YHLNIOd-XdANI

SILNHNDAS

SINAWDHS
-T¥DISXHA

SLNHNDHS
~YHLNIOd-XdANI

SLIXH
-HONVNHLNIVAN

SHSVIVLVA-NI

sajoN/uoneueidxy

dWEU-I13qUIdW
10§ $3dA) Jdqudw
[nJSUIuBIA

SPIOMAIY UOI)IIIS
adKy-rquuaw
[nJSuruedA

suopego.1ul STLALLLSNOD

dWeU-I13qUIdW
10} s9d£) Joquidw
[NJSuIuedA

SPIOMAIY UON)IIIS
adKy-1quuaw
[NJSuIuedA

suoneso.LIuUl SESN

ISNEP VIA 2}
Ul 3SN J10J PAOMAIN

XBJUAS
uone3o.rIRu

N
N
—

4 Extensions to DataManager Commands for DL/I Databases

‘uoryegoardul Y Jo ped sweu-1oquow

Y} ur pawreu wioysAs 1o ‘werdord ‘omnpowr oy SHNYN -AHA
JO uonruIFap eiep) Jo asne[d SHSSADOUd -JdLVYNILYONOD
oy} JO osne[d ojeuIpioqns ZO-Q&E&«DO SR AT
31 TH POLISSAS 312 Jqy) “SIaqusu - QHLYNILYONOD - QHLYNHLYONOD
Jo soureu dy sureqQ :SALNLILSNOD
) SAEM -HONHNOHES AE-HONENOHS
uore3orIour
a3 Jo Jed sweU-19qUISW Y} UI PIWeRU PJaIf SATHIA dTa1d
JY) ‘UONIUIFOP BIBP SIT JO dsne[d SHSSHADO Y] WHLSAS -HOYVHS -XHANT -HOYVHS -XHANT SWHLSAS
3y} Jo asne[d Aeurpioqns NO-AAIIITVNO 5 SroEeTS
y ur ‘soyy1oads jer) woysAs J1o0/pue weidord WYIDOHEd mmbow dno¥d mzﬂmwow _
J1o/pue S[NPOwW YI.3 JO Uk Y} surelqQ :SHSN dINAON SWHLI WHLI SHTNAOKW NO-QEIAITVAO
"SYHHLVA 998 SINHYVA
‘uone3oIayul
93 Jo yred owreu -1oqUIdW A} UI PIWEBU
Juaw3as 1urod Xapul o) JO UONIULJIP BIEP Y}
Joasne[d NO 9y ut pay1oads st jey ‘proyy yoreas
Xopur oy o sweu ay} sureyqQO :SHLNLILSNOD
‘uone301191uI 9y} Jo Jed Sweu-IoquIow Y} —_—
Ul poWeU P} YoIeds XIpul Ay} ‘UONIULFIP BIep SININDAES
$31 JO 9sne[o NO Y Ul ‘sdly1oads jeyy judwgas SINZWDHS SATHIA a1dId SINEWDES o
Tojurod Xopur Aty JO oIy oY) SUILIqQ :SHSN - VHINIOJ - XHANI -HOYUVES -XHANI -HOYUVES -XHIANI -¥IINIOd-XHANI NO
"NI 99§ 40
‘uoryegoardul 9y Jo ped sweu-1oquow
Y3 ul paweu gdd Sy JO uoniuysp
BIEP 9} JO 9SNE[O JIN'VN Y3 Ul parjroads st jey
‘dDd 2yrjo sweu d sureIqO ‘SHLALLLSNOD
‘uore3orIduI
: : preleli:i SMD0TId prelelii:i SMDOTId
O} JO 1Ed QUIBU-IQUISW O} U POWEL 1)1 1 TM0D -NOTLYOINARWOD — -NOTIIWOINAWAOD -NOIL¥DINAWWOD
€.)d ot} UORIULIOP LYEP $11JO OSNEBI HINVN o} -WYdD0dd ~WYdD0dd -WYdD0dd ~WYdD0dd
ur ‘saiy10ads jey) (gDd) N00[g UONEdIUNUWo)) s s _
weIgo1d yoed Jo dweu oy surelqQ :SASN g0d sg0d g0d sg0d HNYN
QWBU-IIqUIdW SPIOMAIY UOI)II[IS QWBU-IIqUIAW SPJIOMAIY UODIIIS
10§ $3dA) Jdqudw adSy-1quidwr a0y sad£) Jdquudw adKy-1quuaw Isnep VA Y}

sajoN/uoneueidxy

[nJSUIuBIA

[nJSuruedA

suopego.1ul STLALLLSNOD

[NJSuIuedA

[NJSuIuedA

suoneso.LIuUl SESN

Ul 3SN J10J PAOMAIN

XBJUAS
uone3o.rIRu

123

ASG-DataManager DL/l Interface: DOS

‘uore3o11oiul 9y Jo Jed SWLBU-IdqUIS S} UI
pawreu juowdas 1jutod Xapur Ay) JO UONIUOP
BJep oy} Jo osne[d SATHIA-ATA-HOAVAS
oy ur payyoads are jey) ‘sdnoid 1o/pue
SWwaN Jo saureu syj surelqQ -SHLNLLLSNOD

‘uone3oLIa1ul Y} Jo Jed sweu-IoquUIAUL
oy ur pawreu dnoi3 10 WYl Y ‘UOBIULIP

SLNHNDHS
eyep s)1 jo asne[do SATHIA-AdN-HOUVAS 54n0%5 Jn0U5
oy u ‘say10ads 1Y) Juow3os LNHNDHS - SLNHNDHS SaTHId
1ourod xapul yoes Jo swreu ay) surelqQ :SASN -JTLNIOd-XHANI SWHLI WNHLI -dHINIOd -XHANT -AHY-HOYVHS
‘uone3o11a3ur 9y} Jo 1ed Sweu-IoquIaW Y}
Ul paweu Judwgas pliyo [ed130] 9y} JO UOBIULOP
©)Ep o) JO ASNe[d SHNVNAY oY) ul payoads
a1e Jey) ‘sKoy 9ouanbas 1o/pue sdnoisd 10/pue
SUwId) Jo saweu oy} sutelqQ -SHLNLILSNOD
‘uorye3oroul Ay Jo
jred QWRU-IOqUISW JY) UI paWeU A3 99udnbas
10 ‘dnoi3 ‘Wl oY) ‘UONIULFIP BIEP S} JO OSNE[d
SAINVNTY 2y uI ‘safjroads jer Juowdas
0 1801301 YoBd JO dweU JY) Sure) : SLNHNDHS
PIIYD [e2150] [oea) surelqO -S4snN (£Juo syuawsas pyiyo - 2005 S
"Juow3ds [e0130]) INHWDHS - SINIWDIS e
pIIyo [eo13of 03 d[qeordde Ajuo st promAay sty -TYDISAHA SWALI WALI -T¥DISAHA SHNYNI
‘uone301191uI Ay} Jo Jed Sweu-IoquIow Y}
ur pauwreu oseqeiep NV IH Y} JO UOTITUTIIp ejep
S Jo osne[d SHTNAOW-DNISINOANVY
ot ur paygroads st jer) onpow
A Jo owreu Ay surelqQ :SALNLILSNOD SHSYEVLYA
‘uoryedolrdul) Jo ped sweu-1oquow SHSVEVYIVA-I/T1a SHTNAOW
U} UI poWEU S[NPOW Y} ‘UOHIUIJIP BJep SHSYEVING -DNIZINOANYY
Si Jo osne[d SHTNAOW-DNISINOANVY T _YDISAHA SHTNAON
o ur ‘soly1oads Jey) aseqeep L - - ONTIZ INOANTY
INVH Yyoes Jo dureu dyy sureqQ ‘SAS(SEHSYEVIVA-WYAH SHETNAON ATNAON SHSYEVIVA-WYAH
QWBU-IIqUIdUW SPIOMAIY UON)II[IS JWBU-IIqUIdW SPJIOMAIY UOIII[IS
10§ $3dA) Jdqudw adSy-1quidwr a0y sad£) Jdquudw adKy-1quuaw Isnep VA Y}

sajoN/uoneueidxy

[nJSUIuBIA

[nJSuruedA

suopego.1ul STLALLLSNOD

[NJSuIuedA

[NJSUIUBIJA] UI SN JA0J PAOMAIN

suoneso.LIuUl SESN

XBJUAS
uone3o.rIRu

<
N
—

4 Extensions to DataManager Commands for DL/I Databases

‘uorye3orIour

oy Jo 1ed suweu-IdqUIDW JY) UI pawel gOd
od£y armyonns oy} Jo UOnIULOP BIEP S JO ISne[d
INANDIS 23 ur pagroads st et Juaw3os
[oea Jo aureu oy surelqQ SHLNLILSNOD

‘uone3o123ul 9y} Jo jred Sweu-Ioquiow

O} UT POUTEU JUSWSas Y} “‘UOTHIUIJOP BIEp SII
Jo asne NANDAS Y ut ‘sayroads jey) gOd
od£y aamonns yoes Jo sweu oy sureiqQ :SASN

'sgDd 2d4
armonys 0} 9[qedrjdde A[uo st piomAay siy],

‘uorjegol1diul oY) Jo 1red sweu-1oquow Ay}

ur paweu gHd 2dA1 21monns oy Jo UOHIULIP
e1ep oY) Jo asne[o FONANOIS-AIVANOIHS
91} JO Isne[d eUIpIOqNS

NO 9y ur paygroads st jeyy Juowdoas soyurod
Xopurayy jo sweuayj surelqQ -SHLALILSNOD

‘uone3oIayul

oy Jo 1red oweU-19qUISW S} UI POWEU JUSWTOS
10jutod Xopul Jy) ‘UOHIULJOP BIEP SII JO ISNEe[O
HONANOEIS -AIVANODHS 9y Jo dsne[o
ojeurpioqns NO Y3 ul ‘saijroads 1ey) gDd
od£y aamonns yoes Jo sweu oy sureiqQ :SASN

'sgDd 2d4
armgonys 0} 9[qedrjdde A[uo st piomAay siy],

SLNHNDHS

SILNHNDHS
-TYOISAHd

SILNHNDAS
-TYOIDOT

SLNHNDAS

g0d ~dHLNIOd-XHANT

SLNHNDHS

SLNHNDAS

g0d -~dHLNIOd-XHANI

LNHNDHS
-TYOISAHd

LNHNDHES -TYOIDOT

LNHNDHS
-dHINIOd-XHANT

LNHNDHS
-dHINIOd-XHANT

sdod

syo01d
-NOTL¥D INOWKOD
-WaD0dd

sgod

syD01d
-NOTL¥D INOWKOD
-WaD0dd

LNHWNDHS

NO-HDONHENOES
-AYYANODHES

sajoN/uoneueidxy

dWEU-I13qUIdW
10§ $3dA) Jdqudw
[nJSUIuBIA

SPIOMAIY UOI)IIIS
adKy-rquuaw
[nJSuruedA

suopego.1ul STLALLLSNOD

dWeU-I13qUIdW
10} s9d£) Joquidw
[NJSuIuedA

SPIOMAIY UON)IIIS
adKy-1quuaw
[NJSuIuedA

m-—@m«ﬁwchhoﬁ-m SHSN

ISNEP VIA 2}
Ul 3SN J10J PAOMAIN

XBJUAS
uone3o.rIRu

125

ASG-DataManager DL/l Interface: DOS

‘uonegoLaiul Ay} Jo Jed sweu-IoquAUL

oy ur paygroads Juow3as priyo [eo130] 9y} JO
uontuyap v1ep 9y Jo 9sne[d AGN-FONANOHS
oy ur payroads st jey) dnoi3 1o/pue WL

{oes JO sureu oy surelqQ -S4 LNLILSNOD

‘uonedorrour oy Jo Jed

QWERU-I9qUIAW Ay} Ul paweu dnoi3 1o way
‘uonruyap eyep s Jo osne[o AFN-AONANOIS
o ur ‘saiyroads Jety) Juow3as

PIIYD [e0130] Yoed Jo dweu oY) sureiqQ :SASN

‘) Ul pal103ds 9s0Y3 Jou Asned Sy
s 9paoaid Jer) SI9qUISW 9SOy} A[UO Sapn[oul
osuodsar oy "asne[o SATN-HONANOIS

(Auo
SJUoWI3AS PIIYD

oy ur payyroads usdq sey asne[o [EO150] [EILA) SdNOTD J00UO mHZmzwmm
SJeUIPIOQNS SV UB USYM A[UO PUE ‘SJUSWFIS INZINOIS - SINAWDHS SINANLILSNOD
PIIYd [ed130] 03 d[qeardde ATuo st promAay sty -TYDISAHA SIWHLI WHLI -T¥DISXHA -AE-EONHINOES
‘uone3oLIuI Ay}
Jo yed sweu-1oquidw Ay ur paweu gHd 2d4)
amjonns oYy Jo dsne[o SATAII-AALLISNAS
oy ut payyroads are jey) sroquuowr
Jo dureu oYy sure)qQ ‘SALNLILSNOD SHWYN-AEA
-QELYNZLYONOD
‘uoredoIour
a3 Jo 1ed SWRU-ISqUISW Y} UI PIWEU JOqUIdW SXHEM AEA
d} ‘UONIUIFOP BIBP SIT JO dSNe[d S THIA -@dLYNALYONOD -@ILYNHLYONOD o
-JALLISNAS dw ut ‘sayroads jeyp g0d) e) sadd
odA} oIJoNIS GIEs JO SWEU 37 SUEIO) ‘SAS SAEN moZmDom XTI -FONENOES
. 5dnouD dno¥n SAO0TE
sgDd 2dKy - -NOIL¥DINAKWKOD SaTdId
armonxs 03 d[qedridde A[uo st p1omASY SIy L g0d SWHLI WALI -WYID0dd -HATILISNAS
QWBU-IIqUIdUW SPIOMAIY UON)II[IS JWBU-IIqUIdW SPJIOMAIY UOIII[IS
10§ $3dA) Jdqudw adSy-1quidwr a0y sad£) Jdquudw adKy-1quuaw Isnep VA Y}

sajoN/uoneueidxy

[nJSUIuBIA

suopego.1ul STLALLLSNOD

[nJSuruedA [nJSuruedA

[NJSUIUBIJA] UI SN JA0J PAOMAIN

m-—@m«ﬁwchhoﬁ-m SHSN

XBJUAS
uone3o.rIRu

\O
N
—

4 Extensions to DataManager Commands for DL/I Databases

‘uoryegolrdgqul 9y Jo ped sweu-1oquow

o ur pawreu Judwidas 1ajurod xopur oy} Jo
uonTuyap vjep) Jo 9sne[d ATN-FONANOHS
o ur payyroads st jey) Aoy oouanbos

9} Jo aureu a1 surelqQ -SYLNALILSNOD

‘uorjeSorraiur oy Jo yred

Jwieu-19quIsw Ay} ul pawreu Kox-aoudnbas oyy
‘uontuyop eep si Jo osnejo AFY-AONANOHS
oy ur ‘salyroads jey) Juow3os

101utod Xopur Ay} Jo Aweu Ay} surelqO :SHSN

‘uonegoLIaiul Y} Jo Jed sweu-IoquaUL
a3 ur pawreu Judw3os [eorsAyd oy Jo

uonIuLAP eIEp Y Jo N[O ATN-HONANOHS
oy} ur payy10ads Udaq SABY ISAY) AIAYM

juasaxd
SI 9SNE[O JJRUIPIOQNS S UB USYM ‘Pary1oads
JoquIaw [BUIUI K93 9ouanbas yoeyq

1o ‘quesaxd s1 asne[o ayeuIpiogns
SV ou a1oym ‘paygroads dnois 1o woy yoeq

1951}
J0 2u0 jo duweu oy suILIQO :SALNLILSNOD

“Juasaxd s1 9sne[o ajeuIpiogns Sy ue Ji
‘uonedorrour ay) Jo red sweu-10qUIdW O}
Ul POWEY JOqUUAU [BUIIUT £33 9ouanbas oy,

10 ‘quasard jou sI asne[d euIplogns Sy
ue J1 ‘uone3o11oul oy Jo 11ed Sweu-IoquIdW
oy ur paweu dnoi3 10 w1 Y],

UOTIUIIAP BIEP SI JO ASNE[o A A

-IONANOES 2y ur ‘sany1oads jey) Juowdas
earsAyd yoes jo sweu ayy surelqQ :SASN

SLNHNDHS
-dHLNIOd-XHANI

SILNHNDAS
-TYOISAHd

SAHEM -HDONHNOHES

SAEM -HONHNOHES
SdNodd
SWALT

SAEM -HONHNOHES

AT -HONHNOES
dnoydd
WNHLI

SINAWNOHS
SINAWOIS

-YHLNIOd-XHANI

SINAWDHS
SINAWDHS

SAHEM -HONINOHES

-TYOISAHd

SAIM -HDNZN0HES

sajoN/uoneueidxy

dWEU-I13qUIdW
10§ $3dA) Jdqudw
[nJSUIuBIA

SPIOMAIY UOI)IIIS
adKy-rquuaw
[nJSuruedA

suopego.1ul STLALLLSNOD

dWeU-I13qUIdW
10} s9d£) Joquidw
[NJSuIuedA

SPIOMAIY UON)IIIS
adKy-1quuaw
[NJSuIuedA

m-—@m«ﬁwchhoﬁ-m SHSN

ISNEP VIA 2}
Ul 3SN J10J PAOMAIN

XBJUAS
uone3o.rIRu

127

ASG-DataManager DL/l Interface: DOS

‘uore3o1oiul 9y Jo Jed SWLBU-IdqUIS 9} UT
paweu juowdas 1utod Xapur Ay) JO UoONIUOp
©1Bp 91} Jo osnefo SATAII-AINANOASINS

oy ur paygroads st jey

‘PIoY Pareal wdIsAs J0/pue dnoig 10/pue WL
{oes JO sureu oy surelqQ -S4 LNLILSNOD

‘uorye3orIour

2y Jo 1ed ouIRU-IqUISW AU} Ul PIWEU P[oLf SATHIA aTaId
Po3e[a1 WdISAS 10 ‘dnoid ‘woy oy ‘uonIuop -QHLYTHI-WHLSAS -dHLYTIY-WALSAS
©1Ep S)I JO osne[d SATATA-FONANOASINS 55
ot} ur “say10ads Jey) JUOWSs INIWOIS mmDoW 4noEs SINAWDIES sa1aId
Jarutod Xapul yoea Jo swieu Ay surelqQ :SHSN -JYALNIO - XAANT SWHLI WNHLI -YHLNIOd-XHANI -HONINOESENS
‘uone3oIayul
o Jo ured swreu-1oquiaw Ay} ul pawreu werdoid
10 “WQ)SAS ‘Qrnpouwu JY3 JO UOTIULIIP BIEP) JO
asne[d SHSSADOUJ Y JO osne[o ojeurpioqns
SININNOYV-HOYVAS-LNINDIS
oy ur paygroads st ey Quow3os o
10jurod xopur Jo/pue [eo1sAyd 1o/pue [ed130] SINHWDHAS
[dea Jo aureu oy surelqQ :SHLNLILSNOD SINTNOHES
‘uone3011a3ur 9y} JO 1red dweU-IoquIow -TYDISAHd ININDHAS
oy} Ul paureu JUIWSIS oY) ‘UONIUIIP SININOTS -TYDISAHd
BlRp S JO asne[d SHSSADOYUd Y1 Jo WHLSAS — o SWHLSAS
-IYOIDOT LNHWDHS-TVOIDOT
osne[d SINHINNDYEV -HOYVAS-LNINDHIS WRID0N SHED0Hd
y ur ‘solyroads ey woysAs 10/pue weidord SINANDHAS ININDES - _
10/pue s[npoul Yyoes Jo awreu 3y} sureiqQ :SHSMN HTNAON ~dHLNIOd-XHANI -dHLNIOd-XHANI SHTNAOKW SYSS
uonegoiamul Ay} Jo ed oweU-IoquAU
o3 uI paweu Judw3os Jojurod xopul
a4} Jo uonIuyap ejep ayj Jo asne[d JHYN0S
oy ur payyroads s jey Juow3as 90In0s
Xopurayy jo suweusy) surelqQ -SHLALILSNOD
‘uorye3oIour (&uo
a1 Jo 1ed SwRU-IOqUISW AU} U PIWERU = =
JUQWIFOS 99INOS XIPUI) ‘UOTIUIJOP BIEP SII JO m&Zmzwmm JUOWIBIS 20I105) SINANDHES
asne[d FOYNOS Y1 Ul ‘sayroads jey Juswgas LNHNDHS SILNHNDHS LNHNDHS SLNHNDHS
Iayurod Xapur yoes Jo SWeU oY surelqQ ‘SIS -¥HINIOJ -XHIANT -TIYOISAHd -TIYOISAHd ~YHLNIOd-XdANI H0dN0s
QWBU-IIqUIdW SPIOMAIY UOI)II[IS QWBU-IIqUIAW SPJIOMAIY UODIIIS
10§ $3dA) Jdqudw adSy-1quidwr a0y sad£) Jdquudw adKy-1quuaw Isnep VA Y}

sajoN/uoneueidxy

[nJSUIuBIA

[nJSuruedA

suopego.1ul STLALLLSNOD

[NJSuIuedA

[NJSUIUBIJA] UI SN JA0J PAOMAIN

suoneso.LIuUl SESN

XBJUAS

uopedorul R

4 Extensions to DataManager Commands for DL/I Databases

‘uonegoLIaiul Ay} Jo Jed sweu-IoquUUL

oy Ul pawreu JudWFos pIIyo [ed130] oY)

JO uonIuySp BIEp Sy Ul 9sne)d SY-Ad.LVTad
oy} Jo asne[d jeurpioqns HIIM

o ur payyroads st jey) ‘quowi3as piyo [eo130]
9} Jo aureu a1 surelqQ -SYLNALILSNOD
“(paared s1I1 YOIYM Ypim

Juow3as PIIYo [8O130] 9y} “SI Jey}) UONBIOLIAIUI
a1 Jo Med owRU-IqUISW AU} UI PIWERU

(ATuo syuow3as

(ATuo syuswgos

JuUoW3Is PIIYO [BOI30] Y} ‘UONIULIP ©Iep SI JO —_— —_—
asne[d SY-QALV T U} JO 9sne[o ojeurpioqns P10 [eo150[) waZmzomm P10 [BoI50Y) waZmzomm
H.LIM 99} ut ‘sarjroads jet juowgos INZWOHS SINAWDHES INIWOIS SINAWDHS _
PIIYD [J150] Sy JO Swieu 3y} SureyqQ :SHSN -TYDISAHd -T¥DISAHA -T¥DISAHA -TVDISAHd HLIM
‘uonegoLIaiul Ay} Jo Jed sweu-IoquAUL
Jy uI paweu JudwIas plIyo [ed130[Ay} JO
UONIUIJIP BIEP OY} JO IsNB[D djeuIpioqns O L, Oy}
ur payyroads st jey) ‘yuowdos juared uoneunsop
oy Jo sweu oy sure1qQ -SHLNLILSNOD
‘uonesoLUI me jo tcm (AJuo syuowiSos (&1uo syuow3os
QWBU-IOQUISW OY) Ul PAWRU JUIWTIS Judie — —
UONBUISIP Y] ‘UONIULIP BIBP SI JO ISNE[O PITY [B2150]) mrﬁzMzwmm yuared uoneunsap) mrﬁzMzwmm
areuIpIOgns O, 94} UI ‘SalJ10ads 1By JUdWIas INANDES SINANDIS INANDES SINANDIS o
PIIYo [e9150] Yora JO duIeu A} SurelqQ :SASN -TYDISAHA -TY¢DISAHd -TYDISKHd -TYDISAHA oL
‘uonegoLIaiul Ay} Jo Jed sweu-IoquIAUL
oy ur pawreu Juswdas 1ojurod xopur oy
JO uontulyap ejep 9y} Jo asne[o O L-A4dLvVTdd
oy} ur payyroads st Jey yuow3os jo31e)
Xopurayy jo suweusy) surelqQ -SHLALILSNOD
‘uorye3oIour (&uo
2y Jo 1ed oweRU-IOqUISW 9] UT PIWERU JUWFIS e e
1051€) XOpUI 9} ‘UOTHIUIJOP BIEP S JO OSNE[O mrﬁzMzwmm SudWBas 123181 SINANDHES
OL-QI.LVTAY 2y ul ‘sayyroads jey) juowgas LNANDHS SILNHNDHS SINHNDAS SLNHNDHS .
Iayutod Xapur yoes Jo SWeU oY surelqQ ‘SIS -¥HAINIOJ -XHTANT -TIYOISAHd -TIYOISAHd ~YHLNIOd-XdANI LADIV.L
QWBU-IIqUIdW SPIOMAIY UOI)II[IS QWBU-IIqUIAW SPJIOMAIY UODIIIS
10§ $3dA) Jdqudw adSy-1quidwr a0y sad£) Jdquudw adKy-1quuaw Isnep VA Y}

sajoN/uoneueidxy

[nJSUIuBIA

[nJSuruedA

suopego.1ul STLALLLSNOD

[NJSuIuedA

[NJSuIuedA

suoneso.LIuUl SESN

Ul 3SN J10J PAOMAIN

XBJUAS
uone3o.rIRu

129

ASG-DataManager DL/I Interface: DOS

Alternative Verb Keywords

A number of verb keywords are available for use as alternatives to certain USES and
CONSTITUTES interrogations. When these keywords are used, there is no need for a VIA clause
to be supplied.

For example, the interrogation:

WHICH selection FATHERS member-name;

is equivalent to:

WHICH selected USES member-name VIA PARENT |;
FATHERS

The equivalents are shown in this table:

Alternative Verb Keyword Equivalent USES/CONSTITUTES Interrogation

CONTAINS member-name USES member-name VIA CONTAINS
CONTAINED-BY member-name CONSTITUTES member-name VIA CONTAINS
FATHERS member-name

USES member-name VIA | PARENT
FATHER

FATHERED-BY member-name

CONSTITUTES member-name VIA | PARENT
FATHERS
GENERATES member-name USES member-name VIA GENERATED

GENERATED-BY member-name CONSTITUTES member-name VIA GENERATES

130

DL/l Source Language Generation from
DataManager

Introduction

The Source Language Generation facility can produce DL/I statements of these types:

. DL/I Database Description control statements (which can subsequently be used as input for
an DL/I DBD generation)
. DL/I Program Specification Block control statements (which can subsequently be used as

input for a DL/I PSB generation)

. Record layouts and/or COBOL, PL/I, or Assembler data description statements for users’
segment input/output areas (defined through PCB members)

. Record layouts and/or COBOL, PL/I, or Assembler data description statements for Program
Communication Block (PCB) masks

. Record layouts and/or COBOL, PL/I, or Assembler data description statements for segment
search arguments

Generation of these statements is achieved by use of the PRODUCE command, described in the
ASG-Manager Products Source Language Generation publication. The variations of the
PRODUCE command required for the generations listed above are described in this chapter.

The PRODUCE command can also be used to generate MARK IV File Definition forms from
encoded DL/I-DATABASE and SEGMENT members. The use of the PRODUCE command for
this purpose is documented in the ASG-DataManager MARK IV Interface publication.

Generating DL/I DBD Control Statements

The installation macro DGDBD allows you to tailor generated DL/I DBD control statements to
your own requirements. This macro is described in the Appendix, "Macros for Tailoring the

DataManager DL/I Interface." on page 159.

This is the syntax of the PRODUCE command for generating DL/I Database Description (DBD)
control statements:

131

ASG-DataManager DL/I Interface: DOS

132

Syntax

PRODUCE [IMS {QATABASE—DESCRIPTIONS } [FOR (PL/I)]

EL/I DBDGEN PL/1
EL/l PLI
DLI PL1
DL1

[[SEARCH-FIELDS] [NO-ASSEMBLY-PRINT]

DIRECT-FIELDS
GENERATES-FIELDS
ALL-FIELDS

[PRIMARY-INDEX [DATABASE database-name] [SEGMENT segment-name]
[SEQUENCE-KEY sequence-key-name] [AS library-name]]

FROM member-name [AS library-namel]

[, member-name [AS library-name]]...

[control-options] {; }

where:

database-name, segment -name, and sequence -key-name are valid DL/l names;
database-name must not include a zero character.

member-name is the name of an encoded member that is a DL/I-DATABASE.

library-name is the name to be given to the generated library member in the output file.
It must not be more than 16 characters, of which the first character must be alphabetic or one
of the characters #, local currency symbol with the internal code hexadecimal 5B, or %.

control-options is a series of optional clauses that are defined in the ASG-Manager
Products Source Language Generation publication; except that:

. The USE or USING clause defined there is excluded
. Only the KNOWN-AS option is valid in the GIVING clause
. Only the KNOWN-AS and ALIAS options are valid in the OMITTING clause

. If both the keywords NO-GENERATION and NO-PRINT are present in the
command, no processing takes place

Remarks

1. The first three elements of the command must be the first three shown in the format. They
must be in the order shown.

2. Specify a FOR clause when you want DBD FIELD control statements to include the two

additional bytes required by PL/I for variable length fields.

5 DL/l Source Language Generation from DataManager

None of the keywords SEARCH-FIELDS, DIRECT-FIELDS, GENERATES FIELDS, or
ALL-FIELDS, or the PRIMARY-INDEX clause (and hence remark 4 on page 133 through
remark 12 on page 134 and remark 18 on page 135 through remark 20 on page 136
describing these keywords) are relevant when processing a LOGICAL database.

If any of the keywords SEARCH-FIELDS, DIRECT-FIELDS, GENERATES-FIELDS,
ALL-FIELDS, or NO-ASSEMBLY-PRINT, or the PRIMARY-INDEX clause are present
in the command, they must precede the FROM clause.

If none of the keywords SEARCH-FIELDS, DIRECT-FIELDS, GENERATES- FIELDS, or
ALL-FIELDS is specified in the command, SEARCH-FIELDS is assumed.

If any of the keywords SEARCH-FIELDS, DIRECT-FIELDS, GENERATES-FIELDS, or
ALL-FIELDS is specified, DBD FIELD control statements are automatically generated for
these types of field:

. Sequence key fields
. Index-search-fields (XDFLDS), if index target segments are being processed

. System-related fields whose names are prefixed by a slash (/), if index source
segments are being processed

. Any field that is directly specified in the GENERATES clause of the segment being
processed

If one of the keywords SEARCH-FIELDS, DIRECT-FIELDS, or ALL-FIELDS is
specified, that is if GENERATES-FIELDS is not specified, DBD FIELD control statements
are automatically generated for the following types of fields also:

When processing a physical segment:

. Segment search fields that are directly or indirectly contained by the segment. These
fields are specified in the QUALIFIED-ON clause of the PROCESSES clause of
SYSTEM, PROGRAM, or MODULE members that refer to the segment.

. Sensitive fields that are directly or indirectly contained by the segment. These fields
are specified in the SENSITIVE-FIELDS clause of PCB members.

When processing an index pointer segment:

. Any field that is used as a segment search field, or a sensitive field, or which is
directly specified in the GENERATES clause of the segment being processed, but
only if these fields constitute the user data part of the index pointer segment.

When processing an index source segment:

. Any field that is required for secondary indexing, that is, any field that directly occurs
in the SEARCH, SUBSEQUENCE, or DUPLICATE-DATA lists of any index
pointer segment that uses the index source segment being processed.

SEARCH-FIELDS specifies that DBD FIELD control statements are to be generated only
for the fields described in remark 5 on page 133 and remark 6 on page 133.

133

ASG-DataManager DL/I Interface: DOS

134

10.

11.

12.

13.

14.

15.

16.

DIRECT-FIELDS specifies that DBD FIELD control statements are to be generated for the
fields described in remark 5 on page 133 and remark 6 on page 133, and for fields that are
directly specified in the CONTAINS clause of the segment being processed.

GENERATES-FIELDS specifies that DBD FIELD control statements are only to be
generated for the fields described in remark 5 on page 133 and for the fields that are directly
specified in the GENERATES clause of the segment being processed.

Thus, the GENERATES-FIELDS keyword suppresses the automatic generation by
DataManager of fields that are specified as segment search fields, sensitive fields or fields
used for secondary indexing, as described in remark 6 on page 133.

If GENERATES-FIELDS is specified, then when an index pointer segment is processed,
DBD FIELD control statements are generated for all fields specified in the GENERATES
clause regardless of whether they are part of the user data, or the SEARCH,
SUBSEQUENCE, or DUPLICATE-DATA parts of the index pointer segment, or part of the
target segment’s concatenated key, (if this is included in the index pointer segment).

ALL-FIELDS specifies that DBD FIELD control statements are to be generated for:
. All the fields that constitute the segment when a physical segment is being processed.

. The sequence key field and all of the fields that constitute the user data part of the
segment when an index pointer segment is being processed.

When processing arrays, DataManager generates a DBD FIELD control statement for the
first occurrence of the array.

SEGM control statements are generated, in the correct hierarchical sequence, for each
segment whose name is listed in the CONTAINS clause of the database’s data definition.

For segments that participate in any logical or secondary indexing relationship, the operands
for the SEGM control statements and their respective LCHILD control statements are
obtained from the data definitions both of the segments being processed and of the segments
to which these are related.

The operands for the DBD and DATASET control statements are obtained from the
database’s data definition. The DBDNAME applied to the generated DBD control
statements is the database name.

17.

18.

19.

5 DL/l Source Language Generation from DataManager

For a HIDAM database:

The DBD control statements generated, if valid when complete, are immediately
followed by the DBD control statements for its primary index database, which are
generated automatically.

The names to be applied to the primary index database, its index pointer segment and
the segment’s sequence key field, can be specified in the PRIMARY-INDEX clause
of the PRODUCE command.

If any of these names is not specified in the command, but is specified in the
ACCESS clause of the HIDAM database definition, then the name specified in the
latter clause is applied.

If different names are specified for the same entity in the PRODUCE command and
the ACCESS clause, the name specified in the PRODUCE command is applied.

Where neither the PRODUCE command nor the ACCESS clause specifies the
relevant name:

— The name applied to the primary index database is the name of the HIDAM
database suffixed with I.

— The name of the index pointer segment is the name of the HIDAM root segment
suffixed with L.

— The name applied to the sequence key field of the index pointer segment is the
name of the sequence key field for the HIDAM root segment suffixed with 1.

If any of these names becomes too long when suffixed with I, it is shortened by
dropping the middle character.

The DBD control statements for the primary index database are written to the output
file as a separate member. The library name of this member can be specified by the
AS library-name subordinate clause of the PRIMARY-INDEX clause. If this clause is
omitted, the library name applied is the library name of the HIDAM DBD control
statements suffixed with I. If this name becomes too long when suffixed with I, it is
not truncated, (see remark 22 on page 136), and generation of the member containing
the control statements does not take place.

In order to avoid this situation, a valid library name can be specified in the AS
library-name subordinate clause of the PRIMARY-INDEX clause, or the MEMLEN
parameter of the DGDBD tailoring macro can be used to extend the permissible
length of library names (see "The Macros DGDBD and DGPSB" on page 160).

If NO-ASSEMBLY-PRINT is stated in the command, an Assembler PRINT NOGEN
statement is generated, to eliminate listing of the DBD control statements when they are
assembled.

The PRIMARY-INDEX clause can be present in the command only if one (and only one) of
the member-names in the FROM clause is the name of a HIDAM database. If more than one
of the member-names in the FROM clause are the names of HIDAM databases, and a
PRIMARY-INDEX clause is present in the command, no generation is performed in respect
of any HIDAM database name other than the first.

135

ASG-DataManager DL/I Interface: DOS

136

20.

21.

22.

23.

24.

25.

26.

27.

28.

The PRIMARY-INDEX clause specifies, in respect of a HIDAM database named in the
FROM clause, user names that are to be applied to:

. The corresponding primary index database

. The index pointer segment of the primary index database

. The sequence key field of the index pointer segment

. The library member name of the Database Description control statements for the

primary index database

AS clauses are relevant only if DBD control statements are being written to an output
dataset.

Each AS clause present in the command relates only to the member name that immediately
precedes it. It declares a name under which the generated DBD control statements are to be
cataloged in the output source library dataset.

For each member-name for which no AS clause is specified, library-name is defaulted to
member-name if member-name conforms to the length restriction on library-name. The
length restriction on library-name is a maximum of eight characters (unless tailored, see
MEMLEN). If member-name is longer than the permitted maximum length for
library-name, no generation takes place in respect of that member-name, a message is
output, and processing continues with the next member-name or command.

Library-names, whether declared or defaulted, are not subjected to any name editing, nor to
any ALIAS or WITH-ALIAS clauses (see the ASG-Manager Products Source Language
Generation publication) that may be present in the command.

If ONTO filename is not specified in the PRODUCE command, a default file name of
GENLIB is used (unless another name is specified by the DDNAME parameter of the
macro DGDBD; see "The Macros DGDBD and DGPSB" on page 160).

The USE or USING clause is not applicable in the PRODUCE command for generation of
DBD control statements, as the form and version of GROUP and ITEM members are
obtained from the containing SEGMENT data definitions.

Other control-options clauses are as specified in the ASG-Manager Products Source
Language Generation publication, except that the GIVING clause may only specify
KNOWN-AS, and tile OMITTING clause may only specify OMITTING KNOWN-AS
and/or ALIAS.

If GIVING KNOWN-AS is specified, generated data names are based wherever possible on
local-names from:

. Containing members’ KNOWN-AS clauses
. Logical child segments’ RENAMES clauses

instead of on the members’ names or aliases. (The equivalent DGDBD macro keyword
usage is KNOWNAS=YES.)

5 DL/l Source Language Generation from DataManager

Generating DL/l PSB Control Statements

The installation macro DGPSB allows generated DL/I PSB control statements to be tailored to the
installation’s own requirements. This macro is described in Appendix, "Macros for Tailoring the
DataManager DL/I Interface," on page 159.

This is the syntax of the PRODUCE command for generating DL/I Program Specification Block
(PSB) control statements:

Syntax

PRODUCE | IMS PROGRAM-SPECIFICATIONS
DL/I {EBGEN }
DL/1
DLI
DL1

[FOR (PL/I |] [NO-ASSEMBLY - PRINT]
PL/1
PLI
PL1

FROM member-name [AS library-namel]
[, member-name [AS library-name]]...

[control-options] {; }

where:

member -name is the name of an encoded member that is a SYSTEM, a PROGRAM, or a
MODULE.

library-name is the name to be given to the generated library member in the output file.
It must not be more than 16 characters, of which the first character must be alphabetic or one
of the characters #, local currency symbol with the internal code hexadecimal 5B, or %.

control-options is a series of optional clauses that are defined in the ASG-Manager
Products Source Language Generation publication; except that:

. Only the INITIAL-VALUES and/or KNOWN-AS options are valid in the GIVING
clause

. Only the ALIAS and/or INITIAL-VALUES and/or KNOWN-AS options are valid in
the OMITTING clause

. If both the keywords NO-GENERATION and NO-PRINT are present in the
command, no processing takes place

Remarks

1. The first elements in the command must be the first three shown in the format. They must be
in the order shown.

137

ASG-DataManager DL/I Interface: DOS

138

Specify a FOR clause when you want DBD FIELD control statements to include the two
additional bytes required by PL/I for variable length fields.

The optional keyword NO-ASSEMBLY -PRINT must, if present, precede the FROM
clause.

The PSBNAME applied to the generated PSB control statements is the SYSTEM,
PROGRAM, or MODULE member name.

The language operands for the PSBGEN control statement is obtained from the
LANGUAGE clause of the SYSTEM, PROGRAM, or MODULE member being processed,
provided that the character string in that clause is any of these:

ALC ASSEMBLER ASSEMBLY BAL COBOL
PLI PLI PL/I PL/1 RPG

If the character string is not one of these, or if the LANGUAGE clause is not present, then
COBOL is assumed. The remaining types of control statements are generated from the PCB
members listed in the CONTAINS subordinate clause of the PROCESSES clause in the data
definition of the SYSTEM, PROGRAM, or MODULE member.

PCB control statements are generated in the same sequence as that in which PCB members
have been defined in the PROCESSES clause.

For the PCB for a logical-data-structure, if KEYLENGTH has not been specified in the PCB
definition then the value of the KEYLENGTH operand is calculated by DataManager as the
length of the largest concatenated key for all data-sensitive segments specified in the
relevant member.

The PROCSEQ operand is generated by DataManager if one of the SEGMENT clauses
specified for the PCB member contains the keyword SECONDARY-SEQUENCE.

SENSEG control statements are generated in the correct hierarchical sequence for:
. Each SEGMENT clause specified in a logical-data-structure PCB member
. Each segment along the hierarchical paths to those segments

subject to a maximum of 500 segments.

10.

11.

12.

13.

14.

15.

16.

17.

5 DL/l Source Language Generation from DataManager

Following each SENSEG statement generated, if sensitive fields are defined for that
segment in the PCB data definition, DataManager generates:

. A SENFLD statement for each sensitive field specified that is directly or indirectly
contained by the segment

. A VIRFLD statement for each sensitive field specified that is directly or indirectly
contained by the segment

. A SENFLD statement for each constituent member of a sensitive field that is
indirectly contained by the segment, if SUBFIELDS has been specified for the
sensitive field in the PCB member definition

° A VIRFLD statement for each constituent member of a sensitive field that is
indirectly contained by the segment, if SUBFIELDS has been specified for the
sensitive field in the PCB member definition

The statements are generated in the order in which the sensitive fields are specified, and the
start position for each sensitive field is calculated from the lengths of any preceding
sensitive fields together with any preceding filler-bytes specified.

If it is required to generate a VALUE operand on any VIRFLD statement, then:
. The relevant item member’s definition must include a CONTENTS IS clause.

. Either the control-option GIVING INITIAL-VALUES must be specified in the
PRODUCE command, or the values of INITVAL in the DGPSB macro must be YES.

All names generated are subject to any editing specified in the command.

AS clauses are relevant only if PSB control statements are being written to an output
dataset.

Each AS clause present in the command relates only to the member -name that
immediately precedes it. It declares a name under which the generated PBC control
statements are to be cataloged in the output source library dataset.

For each member-name for which no AS clause is specified, 1ibrary-name is defaulted
to member-name if member-name conforms to the length restriction on
library-name. The length restriction on 1ibrary-name is a maximum of 8
characters (unless tailored, see MEMLEN). If member -name is longer than the permitted
maximum length for 1ibrary-name, no generation takes place in respect of that
member-name, a message is output, and processing continues with the next

member -name or command.

Library-names, whether declared or defaulted, are not subjected to any name editing,
nor to any ALIAS or WITH-ALIAS clauses (see the ASG-Manager Products Source
Language Generation publication) that may be present in the command.

If ONTO file-name is not specified in the PRODUCE command, DataManager uses a
default file name of GENLIB (unless another name is specified by the DDNAME parameter
of the macro DGPSB; see Appendix, "Macros for Tailoring the DataManager DL/I
Interface," on page 159).

139

ASG-DataManager DL/I Interface: DOS

18.

19.

20.

21.

Except as stated in remark 19 on page 140, the USE or USING control-options clause is not
applicable in the PRODUCE command for generation of PSB control statements, as the
form and version of any group or item sensitive field are obtained from the containing
SEGMENT data definition.

The USE or USING clause is relevant only:

. If it is required to use the DL/I TYPE conversion facility on sensitive fields, when the
form and version to which the fields are to be converted can be specified in this clause

. When processing virtual fields

Other control-options clauses are as specified in the ASG-Manager Products Source

Language Generation publication, except that:

. The GIVING clause may only include INITIAL-VALIES and/or KNOWN-AS.

. The OMITTING clause may only include the options ALIAS, INITIAL-VALUES,
and KNOWN-AS.

If GIVING KNOWN-AS is specified, generated data names are based whenever possible on

local-names from:

. KNOWN-AS clauses specified for the sensitive fields in the PCB member definition

. Containing members’ KNOWN-AS clauses, when processing the members that
constitute a sensitive field. (The members that constitute the sensitive field are only
processed if SUBFIELDS has been specified for the sensitive field in the PCB
member definition.)

instead of on the members’ names or aliases. (The equivalent DGPSB macro keyword usage
is KNOWNAS=YES.)

It should be noted that the generated data names are not based on the KNOWN-AS clauses
that are directly specified in the SEGMENT definition’s CONTAINS clause.

Generation of COBOL, PL/I, or Assembler Data Description
Statements for Segment Input/Output Areas

The PRODUCE Command

The format of the PRODUCE command to generate COBOL, PL/I, or Assembler data description
statements (and/or record layouts) for segment input/output areas is as described in the

140

ASG-Manager Products Source Language Generation publication.

The member-name in the FROM clause must be the name of an encoded SEGMENT member, and
the USE or USING clause is not applicable (because the form and version of contained GROUP
and ITEM members are determined from the segment data definition). If the USE or USING
clause is present in the command because it is required for members of other types also named in
the FROM clause, it is ignored when SEGMENT members are processed.

5 DL/l Source Language Generation from DataManager

The PRODUCE command can also generate COBOL, PL/I, or Assembler data description
statements for certain types of DL/I fields for which data dictionary members of special internal
types exist. See "Miscellaneous DL/I Fields" on page 148. In these cases, the member-name in the
FROM clause is the name of the field for which the internal member was created.

Installation Macros

Three installation macros are provided, which allow the names that are to be applied to certain
lines of the generated data descriptions to be specified. These are the macros:

. DOSCOB, which is relevant to COBOL language generation
. DGSPLI, which is relevant to PL/I language generation

. DGSBAL, which is relevant to Assembler language generation

These macros are described in the Appendix, "Macros for Tailoring the DataManager DL/I
Interface." on page 159.

The data description statements that are generated for the various types of segments are described
in ""Simple Physical Segments" on page 142 through "Miscellaneous DL/I Fields" on page 148.

A fourth installation macro, DGSREC, applies if record layouts are produced without associated
source language data description generation. This macro is also described in the Appendix.

|

'Macros for Tailoring the DataManager DL/I Interface," on page 159.

The installation macros DGCOB, DOPLI, DGBAL, and DGREC, described in the ASG-Manager
Products Source Language Generation publication, also apply, respectively, when segment
input/output area data descriptions are generated in COBOL, in PL/I, in Assembler, or in record
layout form without associated source language.

Segment Input/Output Areas: Items Defined as BINARY or BITS

Except as stated below, if a binary item or a bit string item is ALIGNED by virtue of the definition
of the containing GROUP or SEGMENT, then:

. A one-byte binary item is rounded up to two bytes in length
. A three-byte binary item is rounded up to four bytes in length
. A five-, six-, or seven-byte binary item is rounded up to eight bytes in length.

. Each bit string item begins on the next available byte boundary

If a binary or bit string item is a sequence key field, or a part of a sequence key field, of

. A destination parent segment, or

. An index pointer segment, or

. An index source segment, or

. A segment in the hierarchical path of a destination parent segment, an index pointer segment

or an index source segment

141

ASG-DataManager DL/I Interface: DOS

then when it forms part of

. A logical child segment, by virtue of the destination parent’s concatenated key, or
. An index pointer segment, by virtue of the index target segment’s concatenated key, or
. A system related field, by virtue of the index source segment’s concatenated key

the binary or bit string item is not aligned. The length of unaligned binary items is not rounded up
unless the value of RNDBIN in the relevant macro DGCOB, DGPLI, DGBAL, or DGREC is
YES. Bit string items, if not aligned, do not begin at the next byte boundary unless the RNDBIT
parameter in the tailoring macros is set to YES. If the lengths of binary or bit string items are to be
consistent in different contexts (for example, in CONTAINS clauses and in concatenated keys) or
in different languages (for example, COBOL and BAL) the value of RNDBIN and RNDBIT in
these macros must be set to YES.

Simple Physical Segments

For a simple physical segment that participates in no logical or secondary indexing relationships,
data description statements are generated in the same manner as for a GROUP member.

Logical Child Segments

142

The COBOL, PL/I, or Assembler data description statements generated for a logical child segment
include the concatenated key of the destination parent.

A line is generated containing the name to be applied to the concatenated key. The name output is
the name specified in the CONCATENATED-KEY-NAME clause of the segment definition, if
specified; otherwise the name is obtained from the macro DGSCOB, DOSPLI, DGSBAL, or
DGSREC, as appropriate. This line is followed by the description of the constituent concatenated
keys, each one generated separately down to ITEM level. If there is any intersection data, it is
preceded by a line containing the name to be applied to the user data, which is also obtained from
the appropriate macro. The two names obtained, whether from the segment definition or from the
appropriate macro, are subjected to any editing that is specified in the command.

The following illustrates the structure of COBOL or PL/I data description statements generated for
a logical child segment:

01 LOGICAL-CHILD-SEGMENT-NAME
03 CONCATENATED-KEY-NAME
05 KEYA
05 KEYB
05 KEYC
03 USER-DATA-NAME
05 FIELDA
05 FIELDB
05 FIELDC

If the data definition for a logical child segment includes AS sequence-key-name, the generated
data description statements do not include sequence-key-name. If required, COBOL, PL/I, or
Assembler data description statements for this type of field can be generated separately in their
own right, as described in "Miscellanecous DL/I Fields" on page 148.

5 DL/l Source Language Generation from DataManager

The application program could include a COPY or %INCLUDE statement for the segment,
followed by a COPY or %INCLUDE statement for the sequence-key-name field; then if the
program is written in Assembler, the sequence-key-name field can be ORGed back to the starting
position of the sequence key field; or if the program is written in PL/I, the sequence-key-name
field can be generated as a based structure whose pointer is set to the starting position of the
sequence key field.

Destination Parent Segments

Destination parent segments are treated as ordinary physical segments; that is, data description
statements are generated in the same manner as for a GROUP member.

Index Target and Index Source Segments

Index target and index source segments are treated as ordinary physical segments; that is, data
description statements are generated in the same manner as for a GROUP member.

If COBOL, PL/I, or Assembler data description statements are required for XDFLD fields (that is,
index-search-field-name fields that are defined in SEGMENT INDEX-POINTER members) or for
system related fields, they can be generated separately in their own right, as described in
"Miscellaneous DL/I Fields" on page 148.

Logical Segments and Logical Concatenated Segments

The COBOL, PL/I, or Assembler data description statements for a logical segment are generated
from the physical segment represented by the logical segment; except that the name in the first
statement is that of the logical segment.

The data description statements generated for a logical concatenated segment are generated from
the two physical segments represented by the logical concatenated segment (except that the name
in the first statement is that of the logical concatenated segment). The following illustrates the
structure of COBOL or PL/I data description statements generated for a logical concatenated
segment:

01 CONCATENATED-SEGMENT-NAME
03 LOGICAL-CHILD-SEGMENT-NAME
05 CONCATENATED-KEY-NAME
07 KEYA
07 KEYB
07 KEYC
05 USER-DATA-NAME
07 FIELDA
07 FIELDB
07 FIELOC
03 DESTINATION-PARENT-SEGMENT-NAME
05 FIELDD
05 KEYC
05 FIELDE

143

ASG-DataManager DL/I Interface: DOS

In this illustration two different lines are generated for KEYC, the key field of the destination
parent; however, the fields can be distinguished from one another in the application program by
qualifying the appropriate field with either the logical child segment name or the destination
parent segment name. In Assembler data description statements, the second and subsequent
occurrences of duplicated names are blanked out.

Variable Length Segments

144

A variable length segment is defined to DataManager by specifying that the segment contains,
directly or indirectly, a variable length item member. A segment that directly or indirectly contains
a variable length array is not recognized as a variable length segment by DataManager.

If COBOL data description statements are to be generated for a variable length segment, the
segment must contain a variable length ITEM member, and this member must be redefined by a
variable length array. This is to satisfy the requirements of the VS COBOL compiler, which only
recognizes a segment as being of variable length if a variable length array is contained in the
segment.

For example, if a COBOL data description were generated from this data definition:

CONTAINS
ITEMA ELSE (ITEMB)ITEMC

I

the VS COBOL compiler would output a warning message and compilation would continue.
However, this definition:

CONTAINS
(ITEMB) ITEMC ELSE ITEMA

would cause the VS COBOL compiler to output an error message and compilation would fail.

The COBOL, PL/I, or Assembler data description statements generated for a variable length
segment include a line for the two byte size field. The name to be applied to this line is taken from
the macro DGSCOB, DOSPLI, DGSBAL, or DGSREC, as appropriate. The name is subjected to
any editing specified in the command.

This illustrates the structure of COBOL or PL/I data description statements generated for a
variable length physical segment:

01 SEGMENT-NAME
03 SIZE-FIELD-NAME
03 FIELDA
03 FIELDB

Path Calls

5 DL/l Source Language Generation from DataManager

This illustrates the structure of COBOL or PL/I data description statements generated for a
variable length logical concatenated segment:

01 CONCATENATED-SEGMENT-NAME
03 LOGICAL-CHILD-SEGMENT-NAME
05 SIZE-FIELD-NAME
05 CONCATENATED-KEY-NAME
07 KEYA
07 KEYB
07 KEYC
05 USER-DATA-NAME
07 FIELDA
07 FIELDB
07 FIELDC
03 DESTINATION-PARENT-SEGMENT-NAME
05 SIZE-FIELD-NAME
05 FIELDD
05 KEYC
05 FIELDE

If both parts of a logical concatenated segment are variable length, then the two size fields can be
distinguished from one another in the application program, by qualifying the required size field
with either the logical child segment name or the destination parent segment name, as appropriate.
In Assembler data description statements, the second and subsequent occurrences of duplicated
names are blanked out.

Data description statements for a user’s input/output area that is to handle segments accessed in a
path call can be obtained in this way:

. A separate COBOL, PL/I, or Assembler data description must be generated for each of the
data sensitive segments to be processed in the path call. (The starting level number can be
specified in the command.)

. The application program must then issue for its input/output area contiguous COPY or
%INCLUDE statements for each of the data sensitive segments to be concatenated.

Index Pointer Segments

The Source Language Generation facility produces a complete and comprehensive set of COBOL,
PL/I, or Assembler data description statements for index pointer segments.

The macros DGSCOB, DGSPLI, DGSBAL, and DGSREC are used widely in the generation of
these data description statements. The statements generated include statements containing names,
obtained from the appropriate macro, that identify and separate parts of the index pointer segment.
These are parts of the segment to which there is no particular requirement to apply a name in the
data dictionary data definition, but which the user might possibly wish to process as entities. The
approach is adopted to make it easier for the user to process any constituent parts of the index
pointer segments.

145

ASG-DataManager DL/I Interface: DOS

This example illustrates the structure of COBOL or PL/I data description statements generated for
a complex index pointer segment. All constituent members are generated down to ITEM level. All
names are subject to any editing specified in the PRODUCE command.

Data Description Statements See Remark Number:

01 INDEX-POINTER-SEGMENT-NAME 1
03 KEY-NAME 2
05 INDEX-FIELD-NAME 2,3
07 FIELD-A
07 FIELD-B
07 FIELD-C
05 SUBSEQUENCE-NAME 4
07 CKA 5
09 KEYA
09 FIELD-D
07 SXA 6
07 CKB 7
09 KEYB
03 DUPLICATE-DATA-NAME 8
05 CKA
07 KEYA
07 FIELD-D
05 CKB
07 KEYB
05 CKC
07 FIELD-E
03 USER-DATA-NAME 9
05 FIELD-F
05 FIELD-G

05 FIELD-H

Remarks
1. The first line contains the member-name of the index pointer segment for which data

description statements are being generated, and is always generated (except, for COBOL
generation, when the value of the GEN keyword of the DOCOB macro is FD).

146

5 DL/l Source Language Generation from DataManager

2. This name is obtained from the member’s data definition, and is always generated.

3. This field includes the members defined in the related index source segment’s definition to
constitute the search field. It represents the search field that can be used in
segment-search-arguments when accessing the related index target segment.

4. SUBSEQUENCE-NAME is obtained from the macro DGSCOB, DOSPLI, or DGSBAL, as
appropriate. It is generated only if subsequence fields are specified for the index pointer
segment. The field includes the system related fields defined in the related index source
segment’s definition, that are specified in the index pointer segment’s definition to
constitute the subsequence fields.

5. This is a system related field of the type that is constituted by any part of the source
segment’s concatenated key. In this illustration its constituent members are a sequence key
field followed by a constituent member of the next contiguous sequence key field in the
source segment’s concatenated key.

6. This is a system related field of the type that prompts DL/I to generate a unique four byte
value.

7. This is another system related field of the type that is constituted by any part of the source
segment’s concatenated key; but this field has only one constituent, a sequence key field.

8. DUPLICATE-DATA-NAME is obtained from the macro DOSCOB, DGSPLI, or DGSBAL
as appropriate. It is generated only if duplicate-data fields are specified in the index pointer
segment. The field includes the system related fields defined in the related index source
segment’s definition, that are specified in the index pointer segment’s definition to
constitute the duplicate-data fields.

9. USER-DATA-NAME is obtained from the macro DGSCOB, DGSPLI, or DGSBAL as
appropriate. It is generated only if the index pointer segment contains user data.

With COBOL and PL/I data description statements, any duplicate names that are generated can be
distinguished from one another by qualifying them with higher level fields whose names are
unique.

When Assembler data description statements are generated, each of the fields constituting the
index-field-data, subsequence-data, duplicate-data and the DL/I generated concatenated-key-data
are given unique names by DataManager, to allow for the same field appearing more than once in
the segment. This is achieved by concatenating each constituent field name to either the
INDEX-FIELD-NAME, SUBSEQUENCE-NAME, or DUPLICATE-DATA-NAME, depending
on where it appears. If a name becomes too long it is shortened by dropping characters from the
middle.

To ensure uniqueness of field names where more than one segment is involved, the user must, if
necessary, use separate PRODUCE commands for the different segments, and include editing
clauses in the PRODUCE commands.

147

ASG-DataManager DL/I Interface: DOS

Miscellaneous DL/I Fields

The DataManager Source Language Generation facility can be used to generate record layouts or
COBOL, PL/I, or Assembler data description statements for these types of DL/I fields:

. Sequence-key-name fields, with a line generated for each constituent member down to
ITEM level. If a sequence-key-name field has been defined for a virtual logical child
segment, only the sequence-key-name field named in the PRODUCE command is
generated. If more than one sequence-key-name field is defined for the segment, then each
one required must be generated separately; contiguous COPY or %INCLUDE statements
can subsequently be issued in the application program to include them concatenated
together.

. Index-search-field-name fields (XDFLDs), with a line generated for each constituent
member down to ITEM level

. System-related fields, with a line generated for each constituent member down to ITEM
level

. Concatenated-key-name fields, with a line generated for each constituent member down to
ITEM level

Generation of COBOL, PL/I, or Assembler Data Description
Statements for Segment Sensitive Fields Input/Output Areas

148

The format of the PRODUCE command to generate COBOL, PL/I, or Assembler data description
statements (and/or record layouts) for segment sensitive fields input/output areas is as specified in
the ASG-Manager Products Source Language Generation publication, with the addition of a
qualifier clause. This is the format of the qualifier clause, which immediately precedes the
command’s FROM clause:

USED-IN pcb-name

where pcbhb-name is the name of a STRUCTURE type PROGRAM-COMMUNICATION-
BLOCK or PCB member.

The member-name in the FROM clause must be the name of a SEGMENT member.

This form of the PRODUCE command first generates a source language (or record layout) data
description line for the segment being processed. A line is then generated for each sensitive field
specified for that segment in the PCB member named in the USED-IN clause. These lines are
generated for the fields in the order in which the fields are specified, with fillers generated
wherever filler-bytes are specified in the PCB member.

If no sensitive fields have been specified for the segment in the PCB member definition, then
statements or record layouts are generated as they would be normally, as if the USED-IN clause
had not been specified.

5 DL/l Source Language Generation from DataManager

If GIVING KNOWN-AS is specified, the generated data names are based on local-names from:
. KNOWN-AS clauses specified for the sensitive fields in the PCB member definition

. Containing members’ KNOWN-AS clauses, when processing the members that constitute a
sensitive field

instead of on the members’ names or aliases. (The equivalent DGCOB, DGPLI, DGBAL, or
DGREC macro keyword usage is KNOWNAS=YES.)

It should be noted that the generated data names are not based on the KNOWN-AS clauses that are
directly specified in the SEGMENT definition’s CONTAINS clause.

Example

Using the example segment ASY-PACK shown in Figure 3 on page 9 and the related example
PCB member ASY-PACK-PCB shown in the examples section of "DataManager Data Definition
Statements for DL/I Program Communication Blocks" on page 82 (example of STRUCTURE
type PCB), this command could be issued to generate COBOL data description statements for the
segment sensitive fields input/output area:

PRODUCE COBOL USED-IN ASY-PACK-PCB FROM ASY-PACK;
These would be the generated source language statements:

01 ASY-PACK,
03 PACK-NO ---,
03 FILLER PIC XX,
03 PROD-NO ---,
03 QTY-REQD.

149

ASG-DataManager DL/I Interface: DOS

Generation of COBOL, PL/Il, or Assembler Data Description
Statements for PCB Masks

150

The PRODUCE command can be used to generate COBOL, PL/I or Assembler data description
statements and/or record layouts for PCB masks. In order to do this, each PCB mask must be
defined to DataManager as a GROUP containing these members:

An ITEM member with a length of eight bytes and a CHARACTER form-description, to
receive the database name returned by DL/I

An ITEM member with a length of two bytes and a CHARACTER form-description, to
receive the segment level number returned by DL/I

An ITEM member with a length of two bytes and a CHARACTER form-description, to
receive the status code returned by DL/I

An ITEM member with a length of four bytes and a CHARACTER form-description, to
contain the list of processing options required by DL/I

An ITEM member with a length of four bytes and a BINARY form-description, to be used
by DL/I for internal linkage

An ITEM member with a length of eight bytes and a CHARACTER form-description, to
contain the segment name returned by DL/I

An ITEM member with a length of four bytes and a BINARY form-description, to contain
the length of the key feedback area

An ITEM member with a length of four bytes and a BINARY form-description, to receive
the figure returned by DL/I for the number of sensitive segment types to which the
application program is sensitive

An ITEM member with a CHARACTER form-description and of sufficient length to
receive the concatenated key of the segment returned by DL/I. The length of this item is
defined by the value of the length of key feedback field.

5 DL/l Source Language Generation from DataManager

Example
This example shows how a PCB mask, named DB-PCB, might be defined to DataManager.

ADD DB-PCB;

GROUP

CONTAINS DB-NAME, SEG-LEVEL, STAT-CODE, PROC-OPT, FILLER,
SEG-NAME, LN-KFB, NU-SENSEG, KEY-FB

ADD DB-NAME;

ITEM

HELD-AS CHAR 8

ADD SEG-LEVEL;

ITEM

HELD-AS CHAR 2

ADD STAT-CODE;

ITEM

HELD-AS CHAR 2

ADD PROC-OPT;

ITEM

HELD-AS CHAR 4

ADD FILLER;

ITEM

HELD-AS BINARY 9;

ADD SEG-NAME;

ITEM

HELD-AS CHAR 8

ADD LENG-KFB;

ITEM

HELD-AS BINARY 9

ADD NU-SENSEG

ITEM

HELD-AS BINARY 9

ADD KEY-FB;

ITEM

HELD-AS CHAR 100

COBOL data description statements could be generated from this definition by this command:

PRODUCE COBOL FROM DB-PCB NOGEN PRINT USING HELD-AS;

151

ASG-DataManager DL/I Interface: DOS

These statements would be produced:

01 DB-PCB
02 DB-NAME PIC X (8).
02 SEG-LEVEL PIC XX.
02 STAT-CODE PIC XX.

02 PROC-OPT PIC X (4).

02 FILLER PIC S9(9) COMP.
02 SEG-NAME PIC X(8).

02 LEN-KFB PIC S9(9) COMP.
02 NU-SENSEG PIC S9(9) COMP.
02 KEY-FB PIC X(100).

PL/I data description statements could be generated by this command:
PRODUCE PL/I FROM DB-PCB NOGEN PRINT USING HELD-AS;

and these statements would be produced:

DCL

01 DB-PCB,
3 DB-NAME CHAR (8),
3 SEG-LEVEL CHAR (2),
3 STAT-CODE CHAR (2),
3 PROC-OPT CHAR (4),
3 FILLER FIXED BIN (31),
3 SEG-NAME CHAR (8),
3 LEN-KFB FIXED BIN (31),
3 NU-SENSEG FIXED BIN (31),
3 KEY-FB CHAR (100)

Assembler data description statements could be generated by this command:

PRODUCE BAL FROM DB-PCB NOGEN PRINT USING
HELD-AS DROPPING "-";

and these statements would be produced:

DBPCB DS 0CL136
DBNAME DS CL8
SEGLEVEL DS CL2
STATCODE DS CL2

PROCOPT DS CL4

FILLER DS FL4

SEGNAME DS CL8

LENKFB DS FL4

NUSENSEG DS FL4

KEYFB DS CL100

* END OF GROUP DBPCB

’

152

5 DL/l Source Language Generation from DataManager

Generation of COBOL, PL/Il, or Assembler Data Description
Statements for Segment Search Arguments

The definition of segment search arguments used during the generation of DBD control statements
is described in "Specification of the PROCESSES Clause" on page 92. The section below
describes how to define segment search arguments for the generation of COBOL, PL/I, or
Assembler, or record layouts.

The PRODUCE command can be used to generate COBOL, PL/I, or Assembler data description
statements and/or record layouts for segment search arguments. In order to do this, each segment
search argument for which data description statements are to be generated must be defined to
DataManager as a GROUP member, and its component parts must be defined as ITEM members
contained by that GROUP.

An unqualified segment search argument should be defined as a GROUP containing:

. An ITEM member with a length of eight bytes, a CHARACTER form-description, and a
CONTENTS clause that specifies the name of the segment to be searched.

. An ITEM member with a length of one byte, a CHARACTER form-description, and a
CONTENTS clause that specifies the asterisk character (*). This field is necessary only if a
command code is included in the segment search argument.

. An ITEM member with a length of one to four bytes and a CHARACTER form description.
This field will receive command codes from the application program. Alternatively, the
member could have a CONTENTS clause specifying up to four command codes for the
segment search argument. This field is not required if no command codes are to be included
in the segment search argument.

. An ITEM member with a length of one byte, a CHARACTER form description, and a
CONTENTS clause that specifies a space character.

A qualified segment search argument should be defined as a GROUP containing the first three
items listed above, plus:

. An ITEM member with a length of one byte, a CHARACTER form description, and a
CONTENTS clause that specifies the left parenthesis character to indicate the start of the
qualification statement.

. An ITEM member with a length of eight bytes, a CHARACTER form-description, and a
CONTENTS clause that specifies the name of the search field.

. An ITEM member with a length of two bytes, a CHARACTER form-description, and a
CONTENTS clause that specifies the relational operator.

. An ITEM member with a CHARACTER form-description, and a CONTENTS clause that
specifies the value that is to be compared with the values of the fields being searched. The
length of this field must be the same as that specified in the DataManager data definition of
the segment search field.

. An ITEM member with a length of one byte, and a CHARACTER form-description, with a
CONTENTS clause that specifies the right parenthesis character to indicate the end of the
qualification statement.

153

ASG-DataManager DL/I Interface: DOS

The standard segment search argument format described above and illustrated below may be
varied in two ways:

. If the C command code is used to retrieve a segment by its concatenated key, the
qualification statement must be replaced by an ITEM member with a CHARACTER
form-description and of the appropriate length to receive the concatenated key of the
required segment.

. Fields can be included to allow multiple qualification statements to be specified. The fields
required would be, for each additional qualification statement:

— An ITEM member with a length of one byte, a CHARACTER form-description, and a
CONTENTS clause that specifies the logical operator

— An ITEM member with a CONTENTS clause that specifies the name of the search
field, as described above

— AnITEM member with a CONTENTS clause that specifies the relational operator, as
described above

— An ITEM member with a CONTENTS clause that specifies the value to be compared
with the values of fields being searched, as described above.

Example

This segment search argument:

Segment Name * Command Begin Field Name R.O. Value End
Code QS QS

TEST-SEG * --- (TESTFLD EQ AA)

154

5 DL/l Source Language Generation from DataManager

could be defined as a GROUP named TEST-SSA containing the ITEMs SSEGNAME, SCCSEP,
SCOMCODE, SLPAREN, SFLDNAME, SCOMPOP, SFLDVAL, and SRPAREN, as shown
here:

ADD TEST-SSA;

GROUP

CONTAINS SSEGNAME, SCCSEP, SCOMCODE, SLPAREN, SFLDNAME,
SCOMPOP, SFLDVAL, SRPAREN

ADD SSEGNAME;

ITEM

HELD-AS CHAR 8

CONTENTS IS "TEST-SEG"

ADD SCCSEP;

ITEM

HELD-AS CHAR 1

CONTENTS IS "=*"

ADD SCOMCODE;

ITEM

HELD-AS CHAR 4

CONTENTS IS "---"

ADD SLPAREN;

ITEM

HELD-AS CHAR 1

CONTENTS IS " ("

ADD SFLDNAME;

ITEM

HELD-AS CHAR 8

CONTENTS IS "TESTFLD"

ADD SCOMPOP;

ITEM

HELD-AS CHAR 2

CONTENTS IS "EQ"

ADD SFLDVAL;

ITEM

HELD-AS CHAR 2

CONTENTS IS "AA"

ADD SRPAREN;

ITEM

HELD-AS CHAR 1

CONTENTS IS ")

I

155

ASG-DataManager DL/I Interface: DOS

COBOL data description statements could then be generated from this definition by this
command:

PRODUCE COBOL FROM TEST-SSA NOGEN PRINT USING HELD-AS
GIVING INITIAL VALUES;

These data description statements would be generated:

01 TEST-SSA.

02 SSEGNAME PIC X (8)
VALUE "TEST-SEG".
02 SCCSEP PIC X
VALUE "*n,
02 SCOMCODE PIC X (4)
VALUE "---",
02 SLPAREN PIC X
VALUE " (".
02 SFLDNAME PIC X (8)
VALUE "TESTFLD".
02 SCOMPOP PIC XX
VALUE "EQ".
02 SFLDVAL PIC XX
VALUE "AA".
02 SRPAREN PIC X
VALUE ")".

PL/I data description statements could be generated by this command:

PRODUCE PL/I FROM TEST-SSA NOGEN PRENT USING HELD-AS GIVING
INITIAL-VALUES;

and these statements would be produced:

DCL
1 TEST-SSA,
3 SSEGNAME CHAR(8)
INIT ('TEST-SEG'),
3 SCCSEP CHAR (1)
INIT ('*'),
3 SCOMCODE CHAR (4)
INIT ('----"),
3 SLPAREN CHAR (1)
INIT ('('),
3 SFLDNAME CHAR(8)
INIT ('TESTFLD'),
3 SCOMPOP CHAR(2)
INIT ('EQ'),
3 SFLDVAL CHAR(2)
INIT ('AA'),
3 SRPAREN CHAR (1)
INIT (')"');

156

5 DL/l Source Language Generation from DataManager

BAL data description statements could be generated by this command:

PRODUCE BAL FROM TEST-SSA NOGEN PRINT USING HELD-AS
DROPPING "-" GIVING INITIAL-VALUES;

and these statements would be produced:

TESTSSA DS DCL27

SSEGNAME DC CL8'TEST-SEG'

SCCSEP DC CL1'=*"'

SCOMCODE DC CL4'----"

SLPAREN DC CL14' ('

SFLDNAME DC CL8'TESTFLD'

SCOMPOP DC CL2'EQ'

SFLDVAL DC CL2'AA'

SRPAREN DC CL1i'")'

* END OF GROUP TESTSSA

157

ASG-DataManager DL/I Interface: DOS

158

Appendix

Macros for Tailoring the DataManager DL/I
Interface

Implementation of the DL/l Interface Macros

Several macros (additional to those described in the ASG-Manager Products Source Language
Generation publication) are available to enable DL/I interface output generated by the PRODUCE
command of DataManager to be tailored to conform to a particular installation’s standards. These
are the macros:

. DGDBD, to enable the output of Database Description (DBD) control statements to be
tailored

. DGPSB, to enable the output of Program Specific Blocks (PSB) control statements to be
tailored

. DGSCOB, to enable COBOL source language output to be tailored
. DGSPLLI, to enable PL/I source language output to be tailored
. DGSBAL, to enable Assembler source language to be tailored

. DGSREC, to enable the output of record layouts to be tailored

These macros are supplied as source modules on the installation tape. The tables in "The Macros
DGDBD and DGPSB" on page 160 (for DGDBD and DGPSB) and "The Macros DGSCOB,
DGSPLI, DGSBAL, and DGSREC" on page 161 (for DGSCOB, DGSPLI, DGSBAL, and
DGSREQC) list the keywords of the macros, for which values can be specified when DataManager
is installed. For any macro, if the supplied default values of all these keywords are acceptable, no
further action need be taken in respect of the macro. If any values are to be changed, the procedure
described in the ASG-Manager Products Installation in DOS Environments publication must be
carried out.

These are the names of the resulting assembled module:
. DILSS if the macro is DGDBD

. DILS9 if the macro is DGPSB

. DIL99 if the macro is DGSCOB

. DIL9S if the macro is DGSPLI

. DIL97 if the macro is DGSBAL

. DIL96 if the macro is DGSREC

159

ASG-Manager Products DL/l Interface

The Macros DGDBD and DGPSB

160

The macros DGDBD and DGPSB respectively enable the generation of Database Description
(DBD) control statements and of Program Specification Block (PSB) control statements to be
tailored. This table lists the keywords of these macros for which values can be specified when
DataManager is installed:.

The Macros DGDBD and DGPSB: Keywords Specifiable on Installation

Keyword Specifies Default Value Alternative
Values
ACHAR The hexadecimal values of any additional ~ No default Any valid
characters that are to be accepted for output hexadecimal
in names produced by the Source value, or a sub-list
Generation facility, to enable characters not of such values

in the standard source language set to be
output (see Note 1)

ALIAS Whether IMS specific aliases are to be NO YES (see Note 2)
generated instead of member names
COLMAIN Starting character position for statement 10 Up to 99
type
COLSUBS Starting character position for keyword of 16 Up to 99
operand
CONCARD Whether a control card is to be produced YES NO (see Note 3)
DDNAME Default library name 'GENLIB' 'name’' (see
Note 4)
INITVAL Whether VALUE operands are to be NO YES
(in DGPSB generated on VIRFLO statements
only)
KNOWNAS Whether local-names from KNOWN-AS NO YES (see Note 2)

clauses are to be generated instead of
member names

LENMENT Maximum length of main entry 71 Up to 99
LIBCC The format of the control card output as the (See the A delimited
first record of a QSAM FILE (unless ASG-Manager character string of
overridden by 'control card' on an ONTO Products Source 1 to 72 characters
clause) Language including a
Generation question mark (?)
publication)
MEMLEN Maximum length of library-name 8 Upto 16
RNDBIN Rounding of binary items YES NO
RNDBIT Whether bit string fields are to be generated NO YES

with byte alignment

Appendix - Macros for Tailoring the DataManager DL/l Interface

Notes

The standard Source Language Generation facility output character set for Database
Description (DBD) and Program Specification Block (PSB) control statements conforms to
that defined for COBOL for the data division. This character set can be extended to allow
non-standard characters to be output in names, by entering the hexadecimal value of each
required character as a value to ACHAR. The user should ensure that any extra characters
that are added to the output character set in this way are used only in ways that are permitted
by the software with which DataManager is used.

If both ALIAS=YES and KNOWNAS=YES apply, then when a data name is generated for
a member that has an ALIAS clause and is subject to a containing member’s KNOWN-AS
clause, the KNOWN-AS local-name takes precedence.

When the value CONCARD=NO is used, to suppress the generation of a control card, the
production of BKEND cards is also suppressed.

'name' is a valid name which is not more than 32 characters in length. It must be presented
within quotes and must be different from all other name values specified or used by default
for the same macro.

The Macros DGSCOB, DGSPLI, DGSBAL, and DGSREC

The purpose and applicability of these macros are defined in "Generation of COBOL, PL/I, or
Assembler Data Description Statements for Segment Input/Output Areas" on page 140. This table

lists the keywords of these macros for which values can be specified when DataManager is
installed:.

The Macros DGSCOB, DGSPLI, DGSBAL, and DGSREC: Keywords Specifiable on
Installation

Keyword Specifies Default Value Alternative

Values

CONKEY Inalogical child segment: the name to be 'CONCAT-KEY' 'name’

applied to the destination parent’s
concatenated key. The value specified by
CONKEY is only used when no
CONCATENATED-KEY-NAME clause
has been specified in the SEGMENT
member’s data definition

CONSTNT The name to be applied to the 'CONSTANT' 'name’

CONSTANT field of an index pointer
segment

DUPDATA The name to be applied to the duplicate 'DUP-DATA-FLD' 'name'

SIZE

data fields of an index pointer segment

The name to be applied to the SIZE field 'SIZE-FIELD' 'name’'
of a variable length segment

161

ASG-Manager Products DL/l Interface

The Macros DGSCOB, DGSPLI, DGSBAL, and DGSREC: Keywords Specifiable on

Installation
Keyword Specifies Default Value Alternative
Values

SUBSEQ The name to be applied to the 'SIZE-FIELD' 'name’
subsequence fields of an index pointer
segment

SUBSEQ The name to be applied to the 'SUBSEQUENCE- 'name'
subsequence fields of an index pointer ~ FIELD'
segment

USERDAT The name to be applied to the user-date 'USER-DATA' 'name’
field of logical child and index pointer
segments

Note.

1. 'name’' is a valid name that is not more than 32 characters in length. It must be presented

within quotes and must be different from all other name values specified or used by default
for the same macro.

162

Index

A
alignment 32
arrays
FIELD control statements for 134

B
BACKWARD-LOGICAL-TWIN pointer 29
BOUND interrogation keyword 109

C
COBOL SYNCHRONIZED keyword 32
common clauses 22, 28, 50, 56, 58, 62, 66,
71,75,79, 84
CONCATENATED 29
concatenated 29
concatenated key 29
index source segment 31
index target segment 31
internal member type 29
name 30
sensitive segments in PCB 138
CONCATENATED-KEY-
CONSTITUENTS interrogation
keyword 109
CONCATENATED-KEY-FIELDS
clause 31
CONCATENATED-KEY-NAME 29
CONCATENATED-KEY-NAME clause 29
CONCATENATED-KEY-NAMES
interrogation keyword 109
CONTAINS interrogation keyword 106
conventions page vi
crossing logical relationships 76

D

data description statement generation
for segment I/O areas 87

data set overflow 63

database
loading (processing option) 85
primary index 22
reading processing option 85

updating processing option 85
database definition

OUTPUT clause 59
Database Description (DBD) Control

Statements 22

for LOGICAL database 75

for primary index database 71
DATABASES interrogation keyword 109
DATASET control statements 134
DATASETS clause 58
DBD FIELD Control Statements 52
destination parent segment 29
DEVICE clause 59
DL/I- DATASETS

interrogation keyword 106
duplicate data fields across segments 33
DUPLICATE-DATA-FIELDS

interrogation keyword 108
DUPLICATE-DATA-FIELDS clause 51

E

edit/compression routine for segment 36

EDIT-COMPRESSION-EXITS
interrogation keyword 110

exit, user 36

F

FATHERS interrogation keyword 107
floating point items 50
FORWARD-LOGICAL-TWIN pointer 29
FREQUENCY-FREE-BLOCKS clause 67

G
GENERATES
interrogation keyword 108, 110
GENERATES-FIELDS keyword in
PRODUCE command 133
GENLIB output file 136
GSAM database
input data set 58
interrogation of 122

163

ASG-DataManager DL/I Interface: DOS

164

H
HDAM database 67
ACCESS clause 67
ANCHOR-POINTS clause 67
definition 67
INSERTION-BYTES-MAXIMUM
clause 67
RANDOMIZING-MODULE
clause 67
RELATIVE-BLOCK-MAXIMUM
clause 67
root segment of 35
HELD-AS form of ITEM 51

|

IN-DATABASES interrogation
keyword 122

installation macros 141

L
LCHILD control statements 134
logical concatenated segment 76

M

MAINTENANCE-EXITS interrogation
keyword 108

MARK 1V file definition forms 131

N
NO-ASSEMBLY-PRINT keyword 138

(0]

OF interrogation keyword 110
ON interrogation keyword 108
output source library data set 136

P
PARENTS interrogation keyword 107
path calls 145
physical database
interrogation of 109
primary index database 135
PRODUCE command
ALL-FIELDS keyword 133
AS clause 135
control options 131
DIRECT-FIELDS keyword 133
FROM clause 133
PRIMARY-INDEX clause 135
SEARCH-FIELDS keyword 133
USE clause 136
USING clause 136
Program Communication Block

interrogation of 117
SEGMENT clause 138
PSB control statements
generation 137
library-names 136
PROCSEQ operand 138
PSBGEN control statement operands 138

Q
QUALIFIED-ON interrogation
keyword 111

R
RENAMES interrogation keyword 110

S
SEARCH-KEY-FIELDS interrogation
keyword 108
secondary indexing, fields for 133
SECONDARY- SEQUENCE-ON
interrogation keyword 111
SEGM control statements 134
SEGMENT
interrogation keyword 111
SENSEG control statements 138
SENSITIVE-FIELDS interrogation
keyword 111
SEQUENCE-KEY interrogation
keyword 108
SEQUENCE-KEY-CONSTITUENTS
interrogation keyword 110
SOURCE
interrogation keyword 109
SSAS
interrogation keyword 111
SUBSEQUENCE-FIELDS interrogation
keyword 109

T
TARGET interrogation keyword 109
TO interrogation keyword 110

U
user data 133

ASG Worldwide Headquarters Naples Florida USA | asg.com

	CD Contents
	Contents
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U

	Publication Conventions
	ASG Support Numbers
	Business Hours Support
	Non-Business Hours - Emergency Support

	ASG Web Site
	Enhancement Fax Form
	Preface
	About this Publication

	DataManager DL/I Interface Facilities
	The DL/I Environment and DataManager
	Introduction
	Segments
	Databases
	Application View

	Further Information
	Segments
	DL/I Data Fields
	DL/I Databases
	Special DataManager Member Types
	Application View

	DataManager Data Definition Statements for a DL/I Environment
	Introduction
	DataManager Data Definition Statements for DL/I Segments
	Outline of the SEGMENT Data Definition Statement
	Specification of the Data Definition Statement for a Segment that Resides in a Physical Database
	Specification of the Data Definition Statement for a SEGMENT that Resides in a Logical Database
	Specification of the Data Definition Statement for a SEGMENT that Resides in a Secondary Index Da...

	DataManager Data Definition Statements for DL/I Databases
	Outline of the DL/I-DATABASE Data Definition Statement
	Specification of the Data Definition Statement for a HSAM Type DL/I Database
	Specification of the Data Definition Statement for a HISAM Type DL/I Database
	Specification of the Data Definition Statement for a HDAM Type DL/I Database
	Specification of the Data Definition Statement for a HIDAM Type DL/I Database
	Specification of the Data Definition Statement for a LOGICAL Type DL/I Database
	Specification of the Data Definition Statement for a SECONDARY-INDEX Type DL/I Database

	DataManager Data Definition Statements for DL/I Program Communication Blocks
	DataManager System, Program, and Module Data Definition Statements for a DL/I Environment
	Outline of the SYSTEM, PROGRAM, and MODULE Data Definition Statements for a DL/I Environment
	Specification of the PROCESSES Clause

	Extensions to DataManager Commands for DL/I Databases
	Introduction
	DL/I Member-type Keywords
	Condition Keywords for Which and What Commands
	Introduction
	Examples
	Member Type Interrogations
	Interrogation Syntax
	Alternative Verb Keywords

	DL/I Source Language Generation from DataManager
	Introduction
	Generating DL/I DBD Control Statements
	Generating DL/I PSB Control Statements
	Generation of COBOL, PL/I, or Assembler Data Description Statements for Segment Input/Output Areas
	The PRODUCE Command
	Installation Macros
	Segment Input/Output Areas: Items Defined as BINARY or BITS
	Simple Physical Segments
	Logical Child Segments
	Destination Parent Segments
	Index Target and Index Source Segments
	Logical Segments and Logical Concatenated Segments
	Variable Length Segments
	Path Calls
	Index Pointer Segments
	Miscellaneous DL/I Fields

	Generation of COBOL, PL/I, or Assembler Data Description Statements for Segment Sensitive Fields ...
	Generation of COBOL, PL/I, or Assembler Data Description Statements for PCB Masks
	Generation of COBOL, PL/I, or Assembler Data Description Statements for Segment Search Arguments

	Appendix
	Implementation of the DL/I Interface Macros
	The Macros DGDBD and DGPSB
	The Macros DGSCOB, DGSPLI, DGSBAL, and DGSREC

