
ASG-Manager Products�

Source Language Generation
Version 2.5

Publication Number: MPR0500-25-SLG
Publication Date: September 1999

The information contained herein is the confidential and proprietary information of Allen Systems Group, Inc. Unauthorized use of this information and disclosure to
third parties is expressly prohibited. This technical publication may not be reproduced in whole or in part, by any means, without the express written consent of Allen
Systems Group, Inc.

© 1998-2002 Allen Systems Group, Inc. All rights reserved.
All names and products contained herein are the trademarks or registered trademarks of their respective holders.

ASG Worldwide Headquarters Naples Florida USA | asg.com | info@asg.com
1333 Third Avenue South, Naples, Florida 34102 USA Tel: 239.435.2200 Fax: 239.263.3692 Toll Free: 800.932.5536 (USA only)

© 2002 Allen Systems Group, Inc.
All names and products are trademarks or registered trademarks of their respective holders.

ASG Documentation/Product Enhancement Fax Form
Please FAX comments regarding ASG products and/or documentation to (239) 263-3692.

Company Name Telephone Number Site ID Contact name

Product Name/Publication Version # Publication Date

Product:

Publication:

Tape VOLSER:

Enhancement Request:

ASG Support Numbers
ASG provides support throughout the world to resolve questions or problems regarding
installation, operation, or use of our products. We provide all levels of support during normal
business hours and emergency support during non-business hours. To expedite response time,
please follow these procedures.

Please have this information ready:

� Product name, version number, and release number

� List of any fixes currently applied

� Any alphanumeric error codes or messages written precisely or displayed

� A description of the specific steps that immediately preceded the problem

� The severity code (ASG Support uses an escalated severity system to prioritize service to
our clients. The severity codes and their meanings are listed below.)

� Verify whether you received an ASG Service Pack for this product. It may include
information to help you resolve questions regarding installation of this ASG product. The
Service Pack instructions are in a text file on the distribution media included with the
Service Pack.

If You Receive a Voice Mail Message:

1 Follow the instructions to report a production-down or critical problem.

2 Leave a detailed message including your name and phone number. A Support representative
will be paged and will return your call as soon as possible.

3 Please have the information described above ready for when you are contacted by the Support
representative.

Severity Codes and Expected Support Response Times

ASG provides software products that run in a number of third-party vendor environments. Support
for all non-ASG products is the responsibility of the respective vendor. In the event a vendor
discontinues support for a hardware and/or software product, ASG cannot be held responsible for
problems arising from the use of that unsupported version.

Severity Meaning Expected Support Response
Time

1 Production down,
critical situation

Within 30 minutes

2 Major component of product disabled Within 2 hours

3 Problem with the product, but customer has
work-around solution

Within 4 hours

4 "How-to" questions and enhancement
requests

Within 4 hours

Business Hours Support

Non-Business Hours - Emergency Support

Your Location Phone Fax E-mail

United States and
Canada

800.354.3578 239.263.2883 support@asg.com

Australia 61.2.9460.0411 61.2.9460.0280 support.au@asg.com

England 44.1727.736305 44.1727.812018 support.uk@asg.com

France 33.141.028590 33.141.028589 support.fr@asg.com

Germany 49.89.45716.222 49.89.45716.400 support.de@asg.com

Singapore 65.6332.2922 65.6337.7228 support.sg@asg.com

All other countries: 1.239.435.2200 support@asg.com

Your Location Phone Your Location Phone

United States and
Canada

800.354.3578

Asia 65.6332.2922 Japan/Telecom 0041.800.9932.5536

Australia 0011.800.9932.5536 Netherlands 00.800.3354.3578

Denmark 00.800.9932.5536 New Zealand 00.800.9932.5536

France 00.800.3354.3578 Singapore 001.800.3354.3578

Germany 00.800.3354.3578 South Korea 001.800.9932.5536

Hong Kong 001.800.9932.5536 Sweden/Telia 009.800.9932.5536

Ireland 00.800.9932.5536 Switzerland 00.800.9932.5536

Israel/Bezeq 014.800.9932.5536 Thailand 001.800.9932.5536

Japan/IDC 0061.800.9932.5536 United Kingdom 00.800.9932.5536

All other countries 1.239.435.2200

ASG Web Site
Visit http://www.asg.com, ASG�s World Wide Web site.

Submit all product and documentation suggestions to ASG�s product management team at
http://www.asg.com/asp/emailproductsuggestions.asp.

If you do not have access to the web, FAX your suggestions to product management at (239)
263-3692. Please include your name, company, work phone, e-mail ID, and the name of the ASG
product you are using. For documentation suggestions include the publication number located on
the publication�s front cover.

http://www.asg.com/asp/emailproductsuggestions.asp
http://www.asg.com

Contents
Preface iii
About this Publication iii
Publication Conventions iv

1 Source Language Generation 1
What IS Source Language Generation? 1
Why Generate from the Repository? 2
How Are Source Languages Generated? 2

Record Layouts 3
Generation of Data Structures 3
Fillers 4
Comments 5
Tailoring Capabilities 5

2 Generation of COBOL Data Descriptions 7
How to Generate COBOL Data Descriptions 7
Introduction to COBOL Source Generation 8
COBOL Generation from FILEs 9
COBOL Generation from GROUPs and Arrays 11
COBOL Generation from ITEMs 14

COBOL Generated from ITEM’s Form-description 14
COBOL Generated from ITEM’s CONTENTS Clause 16
COBOL Generated from ITEM’s NOTE and DESCRIPTION
Clauses 17

Generation of COBOL Fillers and Dummy Names 18
Level Numbers 19

3 Generation of PL/I Data Descriptions 21
How to Generate PL/I Data Descriptions 21
Introduction to PL/I Source Generation 22
Storage Attribute Declarations in PL/I 22
PL/I Structures and Level Numbers 22
Based Structures 23
PL/I Generation from Arrays 24
Generating PL/I Elementary Items 25
Generating PL/I INITIAL Attributes 28
Generation of PL/I Fillers and Dummy Names 29
Pointer Variables 29
i

ASG-Manager Products Source Language Generation

ii
4 Generation of Assembler Data Descriptions 31
How to Generate Assembler Data Descriptions 31
Introduction to Assembler Source Generation 31
Assembler Generation from GROUPs 32
Assembler Generation from Arrays 33
Assembler Generation from ITEMs 33
Assembler Edit Patterns 35
Generation of Assembler EQU Statements 37
Generation of Assembler DC Statements 38
Generation of Assembly Fillers and Dummy Names 40

5 Generation of Record Layouts 41
How to Generate Record Layouts 41
Record Layouts: Overview and Example 42
Fields in Record Layouts 43
Format of the Generated Layout 45

6 Tailoring Source Language Generation 47
Installation Macros 47
Source Library Dataset Control 48
Record Layouts Tailoring 48
Source Language Output Format Tailoring 49
Import from COBOL Function Filler Name Conversion 50
Output Source Language Tailoring 51

7 Command Specifications 53
PRODUCE Command 53

Generic Overview of the PRODUCE Command 53
COBOL Generation 54
PL/I Generation 55
Assembler Generation 57
Record Layouts Generation 58
Output Control Options Overview 59
Specifying the Output Dataset 59
Suppressing Output to a Source Library Dataset 61
Controlling Output During Source Language Generation 61
Generation Control Options Overview 61
Deriving Data Names from Aliases 62
Specifying the Format and Contents of Output 63
Suppressing Specified Generation Options 65
Selecting a Form or Version of an ITEM Member 67
Name Editing Options Overview 68
Replacing Names or Name Elements 69
Dropping Names or Name Elements 69
Inserting Characters Into Names 70
Conditional Editing 70
PRODUCE Syntax 72

SHOW PRODUCE-OPTIONS 76
Syntax 77

Index 79

Preface
ASG-Manager Products Source Language Generation describes the ASG-Manager Products
(herein called Manager Products) export function that provides for the production of programming
source language data descriptions and/or record layouts from the data definitions held in the
repository. It is concerned mainly with the generation of COBOL, PL/I, and Assembler data
descriptions and record layouts for conventional file environments. It also tells you where source
language generation for other environments is documented, and provides a basis on which that
documentation builds.

Allen Systems Group, Inc. (ASG) provides professional support to resolve any questions or
concerns regarding the installation or use of any ASG product. Telephone technical support is
available around the world, 24 hours a day, 7 days a week.

ASG welcomes your comments, as a preferred or prospective customer, on this publication or on
any ASG product.

About this Publication

This publication consists of these chapters:

• Chapter 1, "Source Language Generation," introduces source language generation, lists the
benefits it can provide, and gives some information that is common to the generation of
COBOL, PL/I, and Assembler data descriptions.

• Chapter 2, "Generation of COBOL Data Descriptions," describes in detail how COBOL
source language data descriptions are generated.

• Chapter 3, "Generation of PL/I Data Descriptions," describes in detail how PL/I source
language data descriptions are generated.

• Chapter 4, "Generation of Assembler Data Descriptions," describes in detail how Assembler
source language data descriptions are generated.

• Chapter 5, "Generation of Record Layouts," describes in detail how record layouts are
generated.

• Chapter 6, "Tailoring Source Language Generation," summarizes the installation macros
that can be used to tailor the generation of COBOL, PL/I, and Assembler data descriptions
and record layouts to suit the requirements of your installation.

• Chapter 7, "Command Specifications," gives the full specifications of the commands that
can be used to generate COBOL, PL/I, and Assembler data descriptions and record layouts.
iii

ASG-Manager Products Source Language Generation
Publication Conventions
The following conventions apply to syntax diagrams that appear in this publication.

Diagrams are read from left to right along a continuous line (the "main path"). Keywords and
variables appear on, above, or below the main path.

Convention Represents

�� At the beginning of a line indicates the start of a statement.

At the end of a line indicates the end of a statement.

At the end of a line indicates that the statement continues on the line below.

At the beginning of a line indicates that the statement continues from the line
above.

Keywords are in upper-case characters. Keywords and any required punctuation characters or
symbols are highlighted. Permitted truncations are not indicated.

Variables are in lower-case characters.

Statement identifiers appear on the main path of the diagram:

A required keyword appears on the main path:

An optional keyword appears below the main path:

Where there is a choice of required keywords, the keywords appear in a vertical list; one of them
is on the main path:

or

Where there is a choice of optional keywords, the keywords appear in a vertical list, below the
main path:

�

�

�

�

� �COMMAND

� �COMMAND KEYWORD

� �� COMMAND
KEYWORD

� �COMMAND
KEYWORD1
KEYWORD2
KEYWORD3
KEYWORD2

� �COMMAND KEYWORD1

KEYWORD3
KEYWORD2
iv

Preface
The repeat symbol, <<<<<<, above a keyword or variable, or above a whole clause, indicates that
the keyword, variable, or clause may be specified more than once:

A repeat symbol broken by a comma indicates that if the keyword, variable, or clause is specified
more than once, a comma must separate each instance of the keyword, variable, or clause:

The repeat symbol above a list of keywords (one of which appears on the main path) indicates that
any one or more of the keywords may be specified; at least one must be specified:

The repeat symbol above a list of keywords (all of which are below the main path) indicates that
any one or more of the keywords maybe specified, but they are all optional:

Convention Represents

� �COMMAND
KEYWORD1
KEYWORD2

� �
<<<<<<<<

COMMAND variable

� �
<<< , <<
variableCOMMAND

� �

<<<<<<<<<<<<<<<<
COMMAND KEYWORD1

KEYWORD2

� �
<<<<<<<<<<<<<<<<

COMMAND
KEYWORD1
KEYWORD2
v

ASG-Manager Products Source Language Generation
Allen Systems Group, Inc. uses these conventions in publications:

Convention Represents

ALL CAPITALS Directory, path, file, dataset, member, database, program,
command, and parameter names.

Initial Capitals on Each Word Window, field, field group, check box, button, panel (or
screen), option names, and names of keys. A plus sign (+) is
inserted for key combinations (e.g., Alt+Tab).

lowercase italic
monospace

Information that you provide according to your particular
situation. For example, you would replace filename with
the actual name of the file.

Monospace Characters you must type exactly as they are shown. Code,
JCL, file listings, or command/statement syntax.

Also used for denoting brief examples in a paragraph.
vi

1
 1Source Language Generation
This chapter explains Manager Products source language generation and contains these sections:

What IS Source Language Generation?
Source language generation, a Manager Products export function, is the production of
programming source language data descriptions and/or record layouts from the data definitions
held in the repository. Database management system source language statements and MARK IV
file management system source language statements can also be generated.

The generation of COBOL, PL/I, and Assembler data descriptions and record layouts for
conventional file environments is described here.

Output from source language generation consists of an output source dataset (except in CICS
environments) and/or record layouts, a source listing and messages relating to the execution of the
command.

Section Page

What IS Source Language Generation? 1

Why Generate from the Repository? 2

How Are Source Languages Generated? 2

Generation of Data Structures 3

Fillers 4

Comments 5

Tailoring Capabilities 5
1

ASG-Manager Products Source Language Generation
Why Generate from the Repository?
Source language generation is a powerful tool for standardizing data descriptions within an
organization as well as eliminating the tedious task of coding source language data descriptions in
application programs. These are some of the advantages for the Data Administrator:

• Retains control of data definition within the organization

• Extends full Manager Products security procedures right down to coding levels

• Extends naming standards right down to coded data names

• Enables changes to be accomplished swiftly, in a controlled fashion, and with the minimum
duplication of effort

These are some of the advantages for the Systems Analyst/Programmer:

• Eliminates most of the work in interpreting the data structure and in manually coding the
source language data descriptions

• Obtains dynamically computed record layouts of a data structure (independent of any source
language conventions, if desired)

• Obtains automatically generated and therefore correctly defined data descriptions no matter
how large or complex the data structure is

How Are Source Languages Generated?
Source language data descriptions and/or record layouts are generated using the export COBOL,
export PL/I or export Assembler functions, provided by panels selected from the
ASG-MethodManager (herein called MethodManager) menu E00000, or the PRODUCE
command. You can specify these details:

• Whether source language data descriptions or record layouts or both are to be generated

• The programming language in which the descriptions are to be generated

• The names of the repository members from which generation is to take place

If you specify a repository member at a FILE, GROUP, or segment level, the reference paths from,
and including, the repository members specified are followed, and data descriptions are generated
for members on that path. There are some exceptions to this process; see "Generation of Data
Structures" on page 3.

Fillers are automatically generated where necessary. See "Fillers" on page 4.

Comments can optionally be output from NOTE and DESCRIPTION clauses. See "Comments"
on page 5.
2

1 Source Language Generation
There is provision for you to specify these elements:

• The type of source library dataset to be output, and its name

• The format of the generated output

• The forms and versions of the repository members to be used for generation

• The use of aliases or local names, instead of member names, as the basis for the generated
data names

• Editing of the output data names, to be performed as they are being generated

All generated source language data names are checked to conform to source language rules
relating to maximum length and illegal characters. Names are modified if necessary by removing
any illegal characters and shortening long names by removing middle characters.

Record Layouts
Record layouts are tables containing these details:

• The levels and names of groups and items within the record

• The decimal and hexadecimal offsets of the storage fields for the groups and items in the
record

• The length, type, and alignment of the groups and items

• Remarks giving additional information about the member

Use installation macros to tailor layouts for your installation requirements.

Generation of Data Structures
Data descriptions are generated for all encoded members directly and indirectly referred to by each
member named in the generation panel or the PRODUCE command. The complete set of data
descriptions is known as a data structure.

For example, if generation of the data description is to be from the repository member
EMP-IDENT and the member refers to EMP-NAME, EMP-ADDRESS, and TELEPHONE, a data
structure will be created with EMP-IDENT at the top level and EMP-NAME, EMP-ADDR, and
TELEPHONE at the next level down.

Generation takes place in respect of each of the members named, in the order in which they are
named. If any of these members is:

• Not encoded

• Of a member type that is not valid in the context (for example, if a COBOL data description
is to be generated, and the named member is not a FILE, GROUP, or ITEM, or a member of
a user-defined member type based on a FILE, GROUP, or ITEM)

• Protected against access by the current user
3

ASG-Manager Products Source Language Generation
then no generation takes place from that member, a message is issued, and processing continues
with the next member name.

Reference paths are followed from top to bottom and from left to right, until generation of the
structure is complete, subject to these exception conditions:

• If a recursive reference (that is, a reference to a member that has already been encountered
earlier in the reference path) is encountered, then no generation takes place in respect of the
recursive reference, and that reference path is terminated at that point.

• If a reference to a member of a type that is not valid in the context is encountered, then the
path is terminated at that point.

• If a member is encountered with a dummy data entries record, the path is terminated on that
member and a one-character item is generated.

• If Manager Products' security capabilities are implemented and a member is encountered
whose access security level is higher than the user's security level (specific or general,
depending on whether the member is owned or not), then the path from that point, though
followed, is concealed (even if it contains unprotected members). A single filler item is
generated whose length is equal to the length of the protected member, if that member is an
ITEM, else is equal to the sum of the lengths of the items directly or indirectly contained by
the protected member. In such cases, the generated source language and/or record layout is
complete only so far as the total storage space is concerned.

Fillers
Filler names and data descriptions are automatically generated from referenced members where
appropriate. Filler names are generated at these times:

• When a protected member is encountered in a reference path. In this case, a data description
is generated whose length is:

— The length of the protected member, if the protected member is an ITEM

— The sum of the lengths of the items directly or indirectly contained by the protected
member, if the protected member is a GROUP

• When a blank data name would otherwise be generated by editing operations or by the
automatic removal of characters that are illegal in the source language being generated.

• When a filler data description is generated to equalize a redefining and redefined storage
area, or to pad storage when a repository length definition exceeds that permitted in the
source language being generated.

• Where a member name is a name that was generated from a source language filler name by
the import from COBOL functions. See "Import from COBOL Function Filler Name
Conversion" on page 50.

Filler names and data descriptions are language-dependent.
4

1 Source Language Generation
Comments
If tailored in an installation macro, or if specified in the generation panel or in the PRODUCE
command, comments are generated from NOTE and/or DESCRIPTION clauses. You can specify
whether the generation is to be from all or from the first n delimited strings of the specified
clause(s). See "Specifying the Format and Contents of Output" on page 63.

If a NOTE or DESCRIPTION character string is too long to be accommodated in one comment
line, then it is continued over as many comment lines as necessary.

Comments are output immediately following the source code associated with the member
containing the NOTE and/or DESCRIPTION clause.

Comments are not subject to editing.

Tailoring Capabilities

Many aspects of source language generation can be controlled at run-time by specifying
requirements in the generation panel or the PRODUCE command. However, provision is made for
the output to be tailored in advance to your installation standards by the Administrator. This is
done by specifying values for keywords in a series of installation macros when your Manager
Products configuration is installed.

There are separate installation macros to tailor COBOL, PL/I, and Assembler generation, together
with one to tailor the generation of record layouts when no programming language is specified.
Similar macros are provided for database interfaces.

The macros can be used to:

• Specify the source library dataset for output

• Specify which parts of a definition are to be used when generating output

• Tailor the data names to be generated from the definitions in the repository

• Change the format of record layouts

• Tailor the layout of the generated data descriptions

• Tailor filler names

• Tailor the maximum size of data structures

The settings of the installation macros provide the default or standard requirements for tailoring
source language generation; in some cases they can be overridden by the requirements specified at
run time. A command, SHOW PRODUCE-OPTIONS, is provided by which you can interrogate
the settings that are in force at any time. See Chapter 7, "Command Specifications," on page 53.
5

ASG-Manager Products Source Language Generation
6

2
 2Generation of COBOL Data Descriptions
This chapter explains how to generate COBOL data descriptions and contains these sections:

How to Generate COBOL Data Descriptions
To generate COBOL data descriptions, use the export COBOL function, provided by the
MethodManager panel TE11000 or the PRODUCE COBOL command.

How to generate COBOL using panel TE11000 is described in that panel’s Help.

For the specifications of the PRODUCE command, see Chapter 7, "Command Specifications," on
page 53.

Section Page

How to Generate COBOL Data Descriptions 7

Introduction to COBOL Source Generation 8

COBOL Generation from FILEs 9

COBOL Generation from GROUPs and Arrays 11

COBOL Generation from ITEMs 14

Generation of COBOL Fillers and Dummy Names 18

Level Numbers 19
7

ASG-Manager Products Source Language Generation
Introduction to COBOL Source Generation
These are some of the COBOL constructs supported by source language generation:

FD filename
BLOCK CONTAINS
RECORDING MODE IS
LABEL RECORDS ARE
LABEL RECORD IS
DATA RECORD IS
DATA RECORDS ARE
01-49 data-name
ASCENDING KEY IS
DESCENDING KEY IS
FILLER
REDEFINES
OCCURS n TIMES
OCCURS n1 TO n2 TIMES DEPENDING ON
INDEXED BY
PICTURE
SIGN IS LEADING/TRAILING
SIGN IS LEADING/TRAILING SEPARATE CHARACTER
JUSTIFIED
JUSTIFIED RIGHT
SYNCHRONIZED
COMPUTATIONAL - BINARY (for COBOL II)
COMPUTATIONAL-1 (for COBOL II)
COMPUTATIONAL-2 (for COBOL II)
COMPUTATIONAL-3 - PACKED DECIMAL (for COBOL II)
88 condition-name VALUE literal THROUGH literal ...
VALUE literal
VALUE ZERO/ZEROS
VALUE SPACE/SPACES
VALUE LOW-VALUES/HIGH-VALUES
VALUE QUOTES
VALUE ALL literal
EXTERNAL (for COBOL II)
GLOBAL (for COBOL II)
USAGE IS INDEX (for COBOL II)
USAGE IS POINTER (for COBOL II)
USAGE IS DISPLAY-1 (for COBOL II)

Source language generation of COBOL from the repository is checked to conform to American
National Standard COBOL as relating to the data division. However, the character set may be
extended, by tailoring the installation macro, to allow specified non-standard characters to be
output in data names. Warning messages are given where COBOL data descriptions are generated
that do not strictly adhere to the standard (although acceptable to certain compilers), and error
messages are given where illegal COBOL data descriptions would be generated.

Generated data names are not checked against COBOL reserved names.
8

2 Generation of COBOL Data Descriptions
Responsibility for ensuring that any additional characters specified for inclusion in the output
character set are acceptable to the software with which the output will be used rests with the user.

The elements of repository member definitions that generate particular elements of COBOL code
are set out in the following sections.

You can use them to work out what COBOL code is generated from an existing member definition
and to create member definitions to match the contents of the DATA DIVISIONs of existing
COBOL programs.

In the tables, the names referred to as data-name-1, data-name-2... in the COBOL column
correspond to member-name-1, member-name-2... in the repository definition column after
any editing; except that aliases or local names may be used instead of member names if so tailored
or if specified in the generation panel or the PRODUCE command.

COBOL Generation from FILEs

File definitions (FDs) and 01-level record descriptions are generated from a FILE member on the
assumption that the definition of the FILE’s contained members is in accordance with COBOL
hierarchy conventions. You can, however, specify in the generation panel or in the PRODUCE
command, or by tailoring the installation macro, that only FDs or only record descriptions are to
be generated.

Definition in Repository COBOL Source

FILE's member-name FD file-name

FIXED n, VARIABLE n, UNDEFINED n
or SPANNED n (see note 1)

BLOCK CONTAINS n CHARACTERS
RECORDING MODE IS ...

FIXED, VARIABLE, UNDEFINED or
SPANNED

RECORDING MODE IS ...

NO-LABELS LABEL RECORDS ARE OMITTED

STANDARD-LABELS (or no label definition) LABEL RECORDS ARE STANDARD

USER-LABELS module-name (unless
tailored)

LABEL RECORD IS LABEL-AREA

CONTAINS member-name-1 DATA RECORD IS data-name-1.

01 data-name-1.

CONTAINS member-name-1,
member-name-2

DATA RECORDS IS file-name-REC.

01 file-name-REC.

02 data-name-1.

02 data-name-2.
9

ASG-Manager Products Source Language Generation
Notes

1. n is the maximum-block-size (or block-size if FIXED). If the clause is not present
in the member definition, or if it defines a zero maximum-block-size or zero
block-size, then

• For a VSAM file, the BLOCK CONTAINS clause is not generated

• For any other file, BLOCK CONTAINS 0 CHARACTERS is generated

2. If the generation of records only (that is, no FDs) is specified, then the generated output is:

01 data-name-1.
01 data-name-2 REDEFINES data-name-1.

3. The REC suffix in file-name-REC can be tailored.

4. Although the KEYS clause is available in a FILE member-type for definition of any
sequence fields, this clause is ignored during COBOL generation of an FD entry.

CONTAINS member-name-1 ELSE
member-name-2 (see note 2)

DATA RECORDS ARE data-name-1

data-name-2.

01 data-name-1.

01 data-name-2.

CONTAINS member-name-1,
member-name-2

IF condition ELSE member-name-3

IF condition ELSE member-name-4

(member-name-1 may be an indicator)

DATA RECORD IS file-name-REC.

01 file-name-REC.

02 data-name-1.

02 data-name-2.

02 data-name-3.

REDEFINES data-name-2.

02 data-name-4.

REDEFINES data-name-2.

CONTAINS (member-name-1)
member-name-2

DATARECORDISfile-name-REC.
01 file-name-REC.

02 data-name-2 OCCURS n1

TO n 2 TIMES DEPENDING

ON data-name-1.

Definition in Repository COBOL Source
10

2 Generation of COBOL Data Descriptions
COBOL Generation from GROUPs and Arrays

CONTAINS Clause in GROUP Member
Definition in Repository

COBOL Source

member-name-1 ELSE
member-name-2

(members have the same length)

02 data-name-1

02 data-name-2 REDEFINES

data-name-1

member-name-1 ELSE
member-name-2

(length of member-name-1 is greater)

(Unless tailored: see note 1)

02 data-name-1

02 data-name-2 FILLER

REDEFINES data-name-1.

04 data-name-2

04 FILLER

member-name-1 ELSE
member-name-2

(length of member-name-2 is greater)

(see note 1)

02 data-name-1 FILLER.

04 data-name-2

04 FILLER

02 data-name-2

REDEFINES data-name-1

04 FILLER

(n) member-name-1

(see note 2 and note 3)

(item-name-1 version)
member-name-2

(see note 2 and note 3)

(version is optional)

02 data-name-1 OCCURS n TIMES.

02 data-name-2 OCCURS n1 TO

n2 TIMES DEPENDING ON
data-name-1

(n) member-name-1 ELSE
member-name-2

(see note 4)

02 data-name-1 FILLER.

04 data-name-1 OCCURS n TIMES.

02 data-name-2 REDEFINES

data-name-1 FILLER

KEYS member-name ASCENDING

(see note 7 to note 10)

KEYS member-name DESCENDING

(see note 7 to note 10)

INDEXED-BY index-name

(see note 5)

ALIGNED

(see note 6)

ASCENDING KEY IS data-name

DESCENDING KEY IS data-name

INDEXED BY index-name

SYNCHRONIZED
11

ASG-Manager Products Source Language Generation
Notes

1. The installation macro can be tailored so as not to pad unequal redefining members with
fillers. Storage is equalized, irrespective of tailoring, where member-name-1 has the
shorter length.

2. In standard COBOL, the depth of nesting of OCCURS must not exceed three. COBOL II
seven-dimensional arrays are permitted. If an array having an illegal number of levels is
encountered in the repository, generation continues and a warning message is given. An
attempt to generate COBOL from a variable array defined with an ELSE clause would
generate non-standard COBOL (an OCCURS DEPENDING ON clause in the redefined or
redefining item). If this is encountered, the coding is generated and a warning message is
given. An attempt to generate COBOL from an array where the array element is a GROUP
that contains redefining members would produce illegal COBOL. If this is encountered the
coding is generated and a warning message is given.

3. n, n1, and n2 are evaluated from RANGE or IS clauses in item-name-1, or from its
length if there is no RANGE or IS clause. The default for n1 is 1. If the upper bound
exceeds 32767, then 32767 is defaulted. No checks are made on whether data-name-1 is
defined in the COBOL code being generated.

4. The code shown would be generated if the lengths of the array and member-name-2 were
the same, or if the length of member-name-2 were shorter than that of the array and the
installation macro had been tailored so as not to pad unequal redefining members with
fillers.

5. index-name is subject to any name editing specified. A maximum of twelve
index-names may be generated.

6. SYNCHRONIZED is generated for any directly contained ITEM that has BINARY or
FLOATING-POINT form. Alignment is computed from the start of the record description
(assumed to be on a double-word boundary) with the generation of any slack-byte fillers as
required.

7. The PRODUCE output reflects the key information, as long as the definitions being
produced are correctly set up to allow for ascending or descending keys.

8. The KEYS clause only appears in the PRODUCE output if defined in conjunction with the
OCCURS clause.

9. If a key is not reflected as expected in the PRODUCE output, this may be because of the
group level, or of the position of the particular item in the chain, and the way in which it is
nested. The level at which you are producing must be one different from the level which
contains the key.
12

2 Generation of COBOL Data Descriptions
10. This example shows how SLG produces concatenated keys:

RECORD R
°

GROUP GA
°

ITEM IA
°

GROUP GB
°

ITEM IB

If IB has a key and GB occurs several times in GA, then as long as GA has an index, either:

PRODUCE COBOL FROM GA

or

PRODUCE COBOL FROM R

reflects the keys. However, the command:

PRODUCE COBOL FROM GB

will not reflect the key, because it needs to be one group level removed.

If IB has a key, but GB does not occur several times in GA, then the command:

PRODUCE COBOL FROM GA

will not reflect the key, because of the absence of an OCCURS clause in GB.
13

ASG-Manager Products Source Language Generation
COBOL Generation from ITEMs

COBOL Generated from ITEM’s Form-description

q is the number of characters. Where an ITEM is defined as variable length, the maximum length
is used.

ITEM Member Definition in Repository COBOL Source

ALPHABETIC q PIC A(q)

ALPHANUMERIC q ALPHAMERIC q
CHARACTER q

PIC X(q)

LEFT-JUSTIFIED JUSTIFIED

RIGHT-JUSTIFIED JUSTIFIED RIGHT

BITS q (see note 1) PIC X(|(q+7)/8|)

CHARACTER q USAGE GRAPHIC PIC G(q) DISPLAY-1 for COBOL II

CHARACTER 4 USAGE INDEX INDEX for COBOL II

BINARY 8 USAGE POINTER POINTER for COBOL II

HEXADECIMAL q (see note 1) PIC X(|(q+1)/2|)

BINARY n.m (Notes 2, 3, 4, 6) PICS9(n)V9(m) COMPorBINARY
for COBOL II

PACKED-DECIMAL n.m
DECIMAL-PACKED n.m (see note 2 and
note 6)

PICS9(n)V9(m) COMP-3or
PACKED DECIMAL for COBOL II

NUMERIC-CHARACTER n.m (see note 2 and
note 6)

PIC 9(n)V9(m)

SIGNED NUMERIC-CHARACTER n.m
(see note 2 and note 6)

PIC S9(n)V9(m)

WITH LEADING SIGN SIGN IS LEADING

WITH TRAILING SIGN SIGN IS TRAILING

WITH SEPARATE LEADING SIGN SIGN IS LEADING SEPARATE
CHARACTER

WITH SEPARATE TRAILING SIGN SIGN IS TRAILING SEPARATE
CHARACTER

FLOATING-POINT n

n = 1 to 6. (see note 4)

COMP-1

FLOATING-POINT n

n = 7 to 16. (see note 4)

COMP-2

PICTURE (Note 5)
14

2 Generation of COBOL Data Descriptions
n and m represent the number of decimal digits before and after the decimal point respectively.

Repetition symbols are used in generated pictures if there would otherwise be four or more
identical adjacent symbols; for example, 9999 would be replaced by 9(4). This limit of four is
tailorable, but a repetition factor of (1) may not be generated.

Notes

1. An ITEM whose form-description is BITS or HEXADECIMAL generates a
character field of the length that is required to contain the number of bits that constitute the
item. If BITS items are defined as UNALIGNED or NOT-ALIGNED in their containing
GROUP or FILE members, or RNDBIT=NO is specified in the installation macro, then
BITS items are still generated in the source code as CHARACTER fields, but any record
layouts that are generated are not be consistent with the source code.

2. A sign indicator (S) is generated from BINARY and PACKED-DECIMAL items unless
UNSIGNED appears in the ITEM member definition (unless tailored). For
NUMERIC-CHARACTER items, a sign indicator is generated only if SIGNED appears in
the ITEM member definition (unless tailored).

3. Unless tailored, storage allocations for BINARY items are rounded up, using the same
algorithm as a COBOL compiler; thus:

• If (n + m) = 1 to 4, 2 bytes (half word) are allocated

• If (n + m) = 5 to 9, 4 bytes (full word) are allocated

• If (n + m) = 10 to 18, 8 bytes (2 × full word) are allocated

If tailored (RNDBIN = NO), then unaligned BINARY item members containing 1 or 2, and
5 or 6 decimal digits—corresponding to minimum storage requirements of one and three
bytes respectively—are not rounded up to an even number of bytes. Instead they are
translated into PICTURE X and PICTURE X(3) clauses, together with a warning message.
However, even if RNDBIN=NO has been defined, BINARY items which are aligned (see
note 4) or which have over ten decimal digits are rounded as stated above.

The rounding of binary items is defaulted for COBOL, but not for Assembler, PL/I, or
language-independent record layouts. Thus the computed storage allocations for one and
three byte unaligned BINARY item members vary depending on whether or not the
generation is for COBOL.

4. Processing of COBOL binary items (COMPUTATIONAL, COMPUTATIONAL-1, and
COMPUTATIONAL-2), may be optimized by use of the COBOL SYNCHRONIZED
clause. Where a repository BINARY or FLOATING-POINT ITEM is defined as "aligned"
(by direct reference from its containing GROUP or FILE member which includes an
ALIGNED keyword in its definition), then a SYNCHRONISED clause is generated for it.

5. A COBOL PICTURE clause that is equivalent to the ITEM’s PICTURE clause is generated.
A T or R symbol in an ITEM’s picture is replaced by a 9 symbol in the generated COBOL
picture. If the first symbol of an ITEM’s picture is T, then an S symbol is added to the
left-hand side of the generated COBOL picture and a SIGN IS LEADING clause is added to
the whole data description. If the last symbol of an ITEM’s picture is T, then an S symbol is
added to the left-hand side of the COBOL picture.
15

ASG-Manager Products Source Language Generation
6. If n+m is greater than the COBOL maximum (18), then PICTURE X(b) is generated,
where b is the number of bytes of storage needed by the item.

COBOL Generated from ITEM’s CONTENTS Clause

condition-name is subject to name editing.

Unless tailored, level-88 data entries are indented one column relative to the level number of the
preceding conditional variable.

See "COBOL Generated from ITEM’s NOTE and DESCRIPTION Clauses" on page 17 for an
alternative way of generating level-88 data entries.

Notes

1. The value keyword may be SPACES, ZEROS, ZEROES, LOW-VALUES,
HIGH-VALUES, QUOTES, or ALL literal. These will not be produced if the ITEM has no
CONTENTS clause and if the VALUE=NO DGCOB macro definition is used.

ITEM Member Definition in Repository COBOL Source

CONTENTS IS value... or

CONTENTS RANGE value TO value

(The CONTENTS clause does not include an associated
CONDITION-NAME or IF clause.)

value is a keyword (note 1) or a literal (see note 2). If
a list or range of values is specified, the first value is
generated (see note 3).

data-description

VALUE value

If CONTENTS clause is not as above or is omitted, and
form-description is ALPHABETIC,
ALPHANUMERIC, ALPHAMERIC, or
CHARACTER, or is an alphabetic or alphanumeric or
numeric edited PICTURE (see note 3).

data-description

VALUE SPACE(S)

If CONTENTS clause is not as above or is omitted, and
form-description is BINARY, NUMERIC-
CHARACTER, PACKED-DECIMAL, DECIMAL-
PACKED, FLOATING-POINT, or is a numeric
PICTURE that is not edited (see note 3).

data-description

VALUE ZERO(S)

CONTENTS... CONDITION-NAME

condition-name

CONTENTS... IS value... CONDITION-NAME

condition-name

88 condition-name

88 condition-name

VALUE value...

CONTENTS... IS/RANGE value-1 TO

value-2 CONDITION-NAME

condition-name

88 condition-name

VALUE value-1

THROUGH value-2
16

2 Generation of COBOL Data Descriptions
2. Literals generated from delimited character strings are enclosed in double quotation marks
("), unless tailored. Where a member’s character string contains an embedded double
quotation mark, it is replaced with two double quotation marks in the generated literal.
Where a character string contains more than the maximum of 40 characters permitted for
literals generated by the export from COBOL function, the generated literal is truncated to
this limit and a warning message is given.

3. In standard COBOL a VALUE clause is not generated for any elementary data description
that is subordinate to a COBOL REDEFINES or OCCURS clause or is subsequent to an
OCCURS DEPENDING ON clause. In COBOL II a VALUE clause can be generated for an
OCCURS clause.

4. A VALUE is not generated for an ITEM with more than 18 numeric digits.

COBOL Generated from ITEM’s NOTE and DESCRIPTION Clauses
Comments can be generated from NOTE and DESCRIPTION clauses in ITEM (and GROUP and
FILE) members. Their generation is governed by values in the installation macro, subject to output
form specification in the generation panel or to GIVING and OMITTING clauses in the
PRODUCE command. See "Comments" on page 5 for details of comment generation, or
"Specifying the Format and Contents of Output" on page 63 and "Suppressing Specified
Generation Options" on page 65.

Level-88 data entries can be generated from NOTE and/or DESCRIPTION clauses in ITEM
members. The preferred practice is to generate level-88 data entries from CONDITION-NAME
clauses; this alternative of generating them from NOTE and DESCRIPTION clauses is provided
for compatibility with early ASG-DataManager (herein called DataManager) releases. (See
"COBOL Generated from ITEM’s CONTENTS Clause" on page 16 for generation from
CONDITION-NAME.)

The generation of level-88 data entries from NOTE and/or DESCRIPTION clauses is governed by
values in the installation macro, subject to output form specification in the generation panel or to
GIVING and OMITTING clauses in the PRODUCE command. If generation is specified, then the
NOTE and/or DESCRIPTION clauses of ITEM members are scanned for lines that start with the
characters 88 immediately after the opening delimiter, and these are taken as level-88 data entries.
Each entry must be wholly contained within one line.

Comment lines may be interspersed with level-88 lines. For example:

NOTE
'THE FOLLOWING COMMENTS ARE LEVEL-88 STATEMENTS'
'88 AMERI VALUE IS 1.'
'88 EUROPE VALUE IS 2.'
'ORDINARY COMMENTS MAY INTERSPERSE 88S.'
'88 ENGLAND VALUE IS 3.'

A level-88 data entry is output immediately after the source code generated from the member. It is
output in the same format as comments generated from NOTE or DESCRIPTION lines, but
without an asterisk in column 7.
17

ASG-Manager Products Source Language Generation
If generation of both level-88 data entries and comments from NOTE and/or DESCRIPTION
clauses is specified, lines commencing with 88 are not treated as comments. If generation of
level-88 data entries is not specified, no distinction is made between lines in NOTE and
DESCRIPTION clauses that commence with 88 and those that do not.

Level-88 data entries generated from NOTE or DESCRIPTION clauses are not subject to editing.

Generation of COBOL Fillers and Dummy Names

These are the forms of filler names, dummy names, and associated data descriptions that may be
generated:

See "Fillers" on page 4 for general details of the generation of fillers.

FILLER PICTURE X(p) Generated when a protected member is encountered or when
a filler data description to equalize or pad storage or to align
binary items is required.

FILLERnnnnn Generated when a blank data name results from editing
operations or from the automatic deletion of illegal characters
in the name. nnnnn is the running total of fillers generated by
the current panel or PRODUCE command.

FILLER Generated when a member name is encountered which
corresponds to the rules for filler names generated by the
import from COBOL function, except when the member name
is that of a non-redefining redefined member. (See "Import
from COBOL Function Filler Name Conversion" on page 50
for filler names generated by the import from COBOL
function.)

data-name-FILLER Generated as a group name when fillers have been generated
to equalize storage (for unequal redefining members, for fixed
arrays that are redefined, for alignment of binary items by
inserting "slack bytes," or for padding floating-point items).
data-name-FILLER is derived from the name of the
member being padded, after any editing, shortened to 23
characters if necessary by dropping the middle characters.

data-name PICTURE X Generated when a member is encountered with a dummy data
entries record. data-name is derived from the member
name defined in the containing member. PICTURE X reserves
storage of one byte.

PICTURE X Generated when an ITEM is encountered with no length
definition.
18

2 Generation of COBOL Data Descriptions
Level Numbers
Unless otherwise specified by tailoring or in the command, COBOL level numbers are generated
in this sequence:

01, 02, 04, 06, ... 48

This can be tailored by two keywords of the DGCOB installation macro:.

• INCLEV specifies a level number increment in the range 1 to 99. The default is 2.

• INCLEV0 specifies whether level number increments are to begin from zero. The default
YES value gives level numbers as above. The alternative NO value gives level numbers 01,
03, 05, 07 ... (Assuming INCLEV is not tailored.)

Thus, if INCLEV is set to a value i, level numbers will be generated in this sequence:

01, i, 2i, 3i, ...

if INCLEV0 is untailored; or in this sequence:

01, 1+i, 1+2i, 1+3i, ...

if the value of INCLEV0 is tailored to NO.

The generation of level numbers can be further controlled from the PRODUCE COBOL
command, by including this clause:

LEVEL nn

LEVEL nn specifies the initial level-number of the generated data descriptions. nn is an unsigned
integer in the range 1 to 49 inclusive. (See Chapter 7, "Command Specifications," on page 53.)

If nn is a number in whichever of the above sequences applies, then the subsequent level numbers
follow in that sequence. If nn is not a number in the appropriate sequence, then this is the
sequence of level numbers generated:

nn, nn+i-1, nn+2i-1, nn+3i-1, ...

if INCLEV0 is untailored; or in this sequence:

nn, nn+i, nn+2i, nn+3i, ...

if the value of INCLEV0 is tailored to NO.

Levels are automatically indented.

The generation of level-88 data entries is described in "COBOL Generated from ITEM’s
CONTENTS Clause" on page 16.
19

ASG-Manager Products Source Language Generation
20

3
 3Generation of PL/I Data Descriptions
This chapter explains how to generate PL/I data descriptions and contains these sections:

How to Generate PL/I Data Descriptions
To generate PL/I data descriptions, use the export PL/I function provided by the MethodManager
panel TE13000 or the PRODUCE PL/I command.

How to generate PL/I using panel TE13000 is described in that panel’s Help.

For the specifications of the PRODUCE command, see Chapter 7, "Command Specifications," on
page 53.

Section Page

How to Generate PL/I Data Descriptions 21

Introduction to PL/I Source Generation 22

Storage Attribute Declarations in PL/I 22

PL/I Structures and Level Numbers 22

Based Structures 23

PL/I Generation from Arrays 24

Generating PL/I Elementary Items 25

Generating PL/I INITIAL Attributes 28

Generation of PL/I Fillers and Dummy Names 29

Pointer Variables 29
21

ASG-Manager Products Source Language Generation
Introduction to PL/I Source Generation
PL/I source data descriptions can be generated from repository FILE, GROUP, and ITEM
members, or members of user-defined member types based on FILE, GROUP, or ITEM. In the
case of FILEs, generation only takes place if no ITEMs are declared in the CONTAINS clause of
the FILE definition. If any ITEMs are declared in the FILE’s CONTAINS clause, then a message
is issued, generation is suppressed and processing is abandoned for that member-name.

PL/I source data descriptions can be generated with the storage alignments of either the check-out/
optimizer compilers or the F level compiler.

The PL/I 60-character set is generated unless tailored by the installation macro.

Storage Attribute Declarations in PL/I

PL/I storage attribute keywords (ALIGNED, UNALIGNED, STATIC, EXTERNAL, BASED) are
generated under these conditions:

• PL/I structures are generated as ALIGNED or UNALIGNED depending on the presence of
the ALIGNED or UNALIGNED/NOT-ALIGNED in the GROUP (or FILE) member
definition. If neither is given, the UNALIGNED attribute is generated.

• Structures generated from members defined as alternatives by use of ELSE clauses in the
CONTAINS clause of their containing GROUP are generated as BASED.

• Where the keyword STATIC or EXTERNAL is included in the PRODUCT PL/I command,
then all major structures are generated as STATIC or EXTERNAL respectively.

• Where the BASED clause is included in the PRODUCE PL/I command, for example:

PRODUCE PL/I BASED pointer-name FROM DTR009;

then all major structures are generated as BASED on the named pointer.

• When a variable array is defined in the CONTAINS clause of a GROUP member, then it is
generated as a self-defining data structure using the PL/I REFER option.

PL/I Structures and Level Numbers

PL/I structures are generated from GROUP members. Unless declared otherwise using the
LEVEL clause, the major structure level number is 1, and unless tailored, successive
level-numbers are increased by two each time (1, 3, 5, 7, ...) up to a maximum level number of 99.

A PL/I restriction is that the number of levels must not exceed 15.

See "Generation of Data Structures" on page 3 for details of the generation of data structures.
22

3 Generation of PL/I Data Descriptions
Based Structures
PL/I based structures are generated in two formats. This is the first format:

DCL
1 structure-name BASED (pointer-name),
..;

where:

structure-name is the name of the structure to be overlaid.

pointer-name is the pointer variable name as given in the BASED clause of the
PRODUCE PL/I command. It is assumed that pointer-name will be defined by the user.

When BASED is specified, all major based structures are generated in this format.

The second format is generated from alternative members defined in the CONTAINS clause of a
GROUP member. This is the second format:

DCL
level-number structure-name_BASEDn BASED (structure-name_PTR),
...;

DCL structure-name_PTR POINTER;
structure-name_PTR=ADDR (structure-name);

where:

structure-name is the name of the structure to be overlaid.

structure-name_BASEDn is the generated name identifying the structures generated in
this format in the current run. The suffix _BASED may be tailored.

structure-name_PTR is the generated name of the pointer variable. The suffix _PTR
may be tailored.

Where a structure of this type is generated and its length differs from that being overlaid, a filler is
generated to pad the shorter of the two structures. This is the form of the filler:

FILLERnnnnn CHAR (p)

where:

nnnnn is the running total of fillers generated during the run (1-99999).

p is the padded storage in bytes.
23

ASG-Manager Products Source Language Generation
PL/I Generation from Arrays
PL/I structure arrays are generated from definitions of fixed arrays in the CONTAINS clause of a
GROUP member.

For example, if GROUP1 and its contained member GROUP2 are defined in this way:

GROUP CONTAINS (3) GROUP2, ITEM1
.
GROUP CONTAINS (2) ITEM2, ITEM3
.

This output would be generated:

DCL
1 GROUP1,

3 GROUP 2 (3),
5 ITEM2 (2) ...,
5 ITEM3 ...,

3 ITEM1 ...,

PL/I self-defining data structures are generated from definitions of variable arrays in the
CONTAINS clause of a GROUP member. This must be the form of the variable array definition:

CONTAINS (item-name-a version) item-name version

where version may be omitted for either or both of the items.

Note the PL/I restriction that item-name-a must appear in the same structure as the
self-defining data structure.

The PL/I source code generated takes this form:

level-number data-name (data-name_REFER REFER (data-name-a))

where:

data-name-a identifies an element-variable (derived from item-name-a) that is the
object of the REFER option.

data-name is the data name (derived from item-name).

data-name-REFER identifies an element-expression defining the upper bound of the
array. data-name is shortened, if necessary, by dropping the middle characters. The
suffix _REFER may be tailored. The element-expression must be supplied by the user.

Note the PL/I restriction that the structure containing the self-defining data must be BASED.

Any one major PL/I structure can only contain one self-defining data structure.
24

3 Generation of PL/I Data Descriptions
Generating PL/I Elementary Items
PL/I elementary items are generated from repository ITEM members as shown in this table:

where:

q is the number of characters.

n is the number of decimal digits before the decimal point.

m is the number of decimal digits after the decimal point.

s represents the total number of digits in a fixed binary item.

r represents the number of digits after the binary point in a fixed binary item.

p represents the number of decimal digits in the mantissa.

Repository ITEM Definition PL/I Data Description

Form-description Length Definition Generated

ALPHABETIC
ALPHANUMERIC
ALPHAMERIC CHARACTER

q CHARACTER (q)

ALPHABETIC
ALPHANUMERIC
ALPHAMERIC CHARACTER

p TO q CHARACTER (q) VAR

BITS q BIT(q) (see note 1)

HEXADECIMAL q CHARACTER (|q+1)/2|)

NUMERIC-CHARACTER n1.n2 PICTURE (n1)9V(n2)9
(see note 2)

PACKED-DECIMAL n.m (n+m) = 1
to 15 (n+m) =
16 to 31

FIXED DECIMAL (n+m,m)
FIXED DECIMAL (15,m)
(see note 3)

BINARY n.m FIXED BINARY (s,r)
(see note 4)

FLOATING POINT
(unless tailored)

p p = 1 to 6 p
= 7 to 16 p =
17 to 33

FLOAT BINARY (21) FLOAT
BINARY (53) FLOAT
BINARY (109)
(see note 5)

FLOATING POINT (if tailored) p p = 1 to 6 p
= 7 to 16 p =
17 to 33

FLOATING DECIMAL (6)
FLOAT DECIMAL (16)
FLOAT BINARY (33)
(see note 5)

PICTURE - PICTURE (see note 6)
25

ASG-Manager Products Source Language Generation
Floating point precision shown for p = 7 to 16 is the maxima for the VSE compiler.

Floating point precision shown for p = 17 to 33 is the maxima for the VM/CMS compiler.

Notes

1. An item that is defined in the repository as a BITS ITEM may be defined as aligned by
specifying the keyword ALIGNED in the definition of the ITEMs containing GROUP or
FILE members. Fillers are not generated for padding of BITS fields.

2. The PL/I picture that is generated for a NUMERIC-CHARACTER ITEM will also include a
sign symbol if the ITEM’s form description includes these:

• The SIGNED keyword

• The WITH SEPARATE LEADING SIGN or WITH SEPARATE TRAILING SIGN
clauses

This table shows the different ways in which sign symbols (T or S) are included in
generated PL/I pictures:

3. Up to 15 decimal digits are allowed in a PL/I FIXED DECIMAL item. Where a repository
DECIMAL-PACKED or PACKED-DECIMAL ITEM member definition of between 16
and 31 digits is encountered, padding is added in this form:

FILLERnnnnn CHAR (q)

where:

nnnnn is the running total of fillers generated in the run.

q is between 1 and 8 to reserve storage.

ITEM’s Form Description Generated PL/I
Pictures

NUMERIC-CHARACTER 3 '999'

SIGNED NUMERIC-CHARACTER 3 '99T'

SIGNED NUMERIC-CHARACTER 3 WITH LEADING SIGN 'T99'

SIGNED NUMERIC-CHARACTER 3 WITH TRAILING SIGN '99T'

SIGNED NUMERIC-CHARACTER 3 WITH SEPARATE
LEADING SIGN

'S999'

SIGNED NUMERIC-CHARACTER 3 WITH SEPARATE
TRAILING SIGN

'999S'
26

3 Generation of PL/I Data Descriptions
4. A maximum precision of 31 binary digits is allowed in a PL/I FIXED BINARY item. Thus,
where a repository BINARY item of 10 to 31 decimal digits is encountered, padding is
added to the containing generated structure in this form:

FILLERnnnnn CHAR (4).

The value of s is calculated from (n + m) in the same way that r is calculated from m. The
corresponding values of s and (n + m) are shown in this table:

(n + m) or m01 2 3 4 5 6 7 8 9 10 - 31

s or r0 4 7 10 15 17 2024 2731 31

A repository BINARY ITEM member should be defined as ALIGNED (in its containing
member), otherwise the storage allocation computed from it will differ from that computed
by a PL/I compiler, as shown in the table below. This is important where binary items are
defined in based structures, as Manager Products generate fillers to equalize storage of the
redefined and redefining structures.

The rounding up of binary item lengths from 1 to 2 bytes and from 3 to 4 bytes is controlled
by the installation macro keyword RNDBIN. RNDBIN=YES is defaulted for COBOL and
IMS, and RNDBIN=NO is defaulted for PL/I, BAL, MARK IV, and record layouts only
(that is, RECORD-LAYOUTS clause with no language clause).

5. PL/I floating point items are generated as FLOAT BINARY, unless tailored. When tailored,
FLOAT DECIMAL will be generated instead.

Repository BINARY n.m Definition PL/I Storage
Unaligned

Allocation Aligned

(n + m) = 1,2 1 byte 2 bytes (half word)

(n + m) = 3,4 2 bytes 2 bytes (half word)

(n + m) = 5,6 3 bytes 4 bytes (full word)

(n + m) = 7,8,9 4 bytes 4 bytes (full word)
27

ASG-Manager Products Source Language Generation
6. A PL/I PICTURE is the same as the repository PICTURE it is generated from, except for
these points:

• Repetition factors are written before the symbols to which they refer; for example,
A(5) becomes (5)A.

• Where a string of n or more identical picture symbols is encountered in a definition, it
is converted for PL/I to a single symbol and a repetition factor; for example, ZZZZ
becomes 4(Z). n is four unless tailored. This limit of 4 is tailorable, but a repetition
factor of (1) may not be generated.

Generating PL/I INITIAL Attributes
If tailored or specified in the generation panel or in the PRODUCE command, PL/I INITIAL
attributes are generated for elementary data descriptions in this way:

• If an ITEM member has a CONTENTS clause that contains an IS clause or a RANGE
clause without an associated CONDITION-NAME or IF clause, then the literal value (or the
first literal value of a list or range of values) is generated as:

elementary-data-description INIT literal

• If an ITEM member has a CONTENTS clause that does not fulfill the above conditions, or
has no CONTENTS clause at all, or has more than the maximum number of allowed
numeric digits, or the ITEM is a dummy, then either INIT (' ') or INIT (0) is generated
according to the form-description of the form and version of the ITEM being processed:

Non-numeric literals are generated enclosed in single quotes (' '). Where a member’s character
string contains an embedded single quote, it is replaced with two single quotes in the generated
literal.

ITEM Form-description PL/I INITIAL Clause

ALPHABETIC
ALPHANUMERIC
ALPHAMERIC CHARACTER

INIT (' ')

BITS INIT ('0'B)

BINARY
NUMERIC-CHARACTER
PACKED-DECIMAL
DECIMAL-PACKED
FLOATING-POINT

INIT (0)

PICTURE

 alphabetic

 alphanumeric

 numeric

 edited

Depends on picture type:

INIT (' ')

INIT (' ')

INIT (0)

No INITIAL clause is generated.
28

3 Generation of PL/I Data Descriptions
The maximum length of a PL/I non-numeric literal is 62 characters. Where a member’s character
string contains more than this number of characters, the corresponding generated PL/I literal is
truncated to this limit.

Generation of PL/I Fillers and Dummy Names
In the table below, nnnnn is the running total of fillers generated by the current generation panel
or PRODUCE command.

See "Fillers" on page 4 for general details of the generation of fillers.

Pointer Variables
PL/I pointers can be generated from ITEM members whose HELD-AS form is defined as a binary
full word with a USAGE POINTER clause; for example:

ITEM HELD-AS BINARY 8 USAGE POINTER
;

The generated output has this form:

DCL n item-name PTR

where n is the level number, and DCL is present only if n = 1.

Filler or Dummy Name Description

FILLERnnnnn CHAR(p) Generated when a protected member is encountered or when
a filler data description to equalize or pad storage is required.

FILLERnnnnn Generated when a blank data name results from editing
operations or from the automatic deletion of illegal characters
in the name. Also generated when a member name is
encountered which corresponds to the rules for export from
COBOL function filler names.

data-name CHAR(1) Generated when a member is encountered with a dummy data
entries record. data-name is derived from the member
name defined in the containing member. CHAR(1) reserves
storage of one byte.

CHAR(1) Generated when a member is encountered with no length
definition.
29

ASG-Manager Products Source Language Generation
30

4
 4Generation of Assembler Data

Descriptions
This chapter explains how to generate Assembler data descriptions and contains these sections:

How to Generate Assembler Data Descriptions
To generate Assembler data description, use the export Assembler function provided by
MethodManager panel TE12000 or the PRODUCE ASSEMBLER command.

How to generate Assembler using panel TE12000 is described in that panel’s Help.

For specifications of the PRODUCE command, see Chapter 7, "Command Specifications," on
page 53.

Introduction to Assembler Source Generation
Assembler source data descriptions can be generated from repository GROUP and ITEM members
or members of user-defined member types based on GROUP or ITEM.

Section Page

How to Generate Assembler Data Descriptions 31

Introduction to Assembler Source Generation 31

Assembler Generation from GROUPs 32

Assembler Generation from Arrays 33

Assembler Generation from ITEMs 33

Assembler Edit Patterns 35

Generation of Assembler EQU Statements 37

Generation of Assembler DC Statements 38

Generation of Assembly Fillers and Dummy Names 40
31

ASG-Manager Products Source Language Generation
A basic subset of the Assembler language is generated, comprising:

• DC

• DS

• EQU

• ORG

Statements are generated with single operands only.

If tailored, or if specified in the generation panel or the PRODUCE command, Assembler edit
patterns are generated from numeric edited PICTUREs.

Assembler Generation from GROUPs
Generation from a GROUP member is of a named storage area (without any actual storage
allocation) using a zero duplication factor in a DS statement; thus:

group-name DC OCLn

where n is the size of the area, up to a maximum of 65,535 characters. Where n is greater than
65,535 characters, a DS nC statement is generated.

Alternative GROUP members defined by ELSE clauses in the CONTAINS clause of the
containing GROUP rename the storage area; for example:

If this was the GROUPA member definition:

GROUP CONTAINS GROUPB ELSE GROUPC
;

and Assembler was generated from it, this would be the output:

GROUPA DS OCLn
GROUPB DS OCLm
GROUPC DS OCLp

or, if interspersed with DS statements generated from contained ITEM members:

GROUPA DS OCLn
GROUPB DS OCLm

...

...
ORG GROUPA

GROUPC DS OCLp

The ORG statement ensures that GROUPC renames the start of the notational area GROUPA.

The next section discusses Assembler generation from arrays.
32

4 Generation of Assembler Data Descriptions
Assembler Generation from Arrays
Where the CONTAINS clause of a GROUP member defines a fixed array, as:

(n) member-name

then action depends on whether the member is an ITEM or GROUP.

• Where member-name is an ITEM, generation is of a DS statement with a duplication of
n. For example, generation from:

(10) ITEM1

where ITEM1 has a form-description of CHARACTER 4, would be:

ITEM1 DS 10CL4

• Where member-name is a GROUP, generation is of the Assembler definition for that
group followed by a DS statement in this form:

blank DS CLm

where m is the number of bytes necessary to allocate storage sufficient for the number of
times the group recurs; that is, m = (n - 1) X (the length of the group).

Generation from variable arrays is not supported. Where a variable array definition:

(item-name) member-name

or

(item-name version) member-name

is encountered in the CONTAINS clause of a GROUP member, then the Assembler description
for a single occurrence of member-name is generated preceded by this comment:

THE FOLLOWING GROUP OCCURS item-name TIMES

Assembler Generation from ITEMs
The elements of repository member definitions that generate particular elements of Assembler
code are set out in the following table. Where a variable length ITEM definition is encountered,
the maximum length is used.
33

ASG-Manager Products Source Language Generation
If tailored to give initial values, or if so specified in the generation panel or command, DC
statements may be generated in place of DS statements. See "Generation of Assembler DC
Statements" on page 38.

where:

q is the number of characters.

n represents the number of decimal digits before the decimal point.

m represents the number of decimal digits after the decimal point.

p represents the number of characters implied by the picture.

Repository ITEM Definition Assembler Data Description

Form-description Length Definition Generated

ALPHABETIC
ALPHANUMERIC
ALPHAMERIC CHARACTER

q DS CLq

BITS q DS BL.(q) (see note 1)

HEXADECIMAL q DS XL(|q+1)/2|)

NUMERIC-CHARACTER

SIGNED

UNSIGNED

n.m

n.m

DS ZL(n + m)

DS CL(n + m)

PACKED-DECIMAL
DECIMAL-PACKED

n.m DS PL(|(n+m+2)/2|)

BINARY n.m

n+m = 1,2

n+m = 3,4

n+m = 5,6

n+m = 7,8,9

n+m = 10 to 31

Aligned Unaligned

DS H DS BL1

DS H DS HL2

DS F DS FL3

DS F DS FL4

DS DL8 DS DL8

(see note 2)

FLOATING POINT n

n = 1 to 6

n = 7 to 16

(see note 3)

DS EL4

DS DL8

PICTURE - DS CLp
34

4 Generation of Assembler Data Descriptions
Notes

1. An ITEM defined as BITS is generated as a bit length specification field. The length of the
field would be the number of whole bytes required to hold the contents of the BITS field.

If BITS ITEMs are defined as UNALIGNED or NOT-ALIGNED in their containing
GROUP or FILE members, or if RNDBIT=NO is specified in the installation macro
DGBAL, BITS ITEMs are still generated in the source code as bit length specification
fields, but any record layouts generated will not be consistent with the source code.

2. When an aligned binary ITEM is defined with a length of 10 through 31, it is generated as
DL8 and is forced onto a full-word boundary. This allows for the same record layouts to be
used for both COBOL and PL/I as well as Assembler.

3. FLOATING-POINT ITEM members generate aligned Assembler definitions, regardless of
whether they are defined in their containing GROUP members as ALIGNED or
NOT-ALIGNED. When an alignment attribute is defined in the containing GROUP, only
BINARY ITEM members are affected, as shown in the table. If tailored, unaligned
BINARY ITEM definitions that would otherwise generate the operand BL1 (see the table
on page 34), instead map to HL2.

Assembler Edit Patterns
If tailored, or if so specified in the Assembler generation panel or command, Assembler decimal
edit patterns are generated from numeric edited PICTURE definitions. If generated, edit patterns
are output in a block immediately after the source code generated for the member named in the
panel or command.

Edit patterns are output in this way:

item-nameEP DC X'ffssxxxx...'

where:

item-nameEP is the item name after any editing, shortened by dropping middle characters
if necessary and suffixed with EP (unless tailored)

ffssxxxx is the generated edit pattern as an unpunctuated list of hexadecimal values, in
which:

ff is the fill character.

ss is a significance starter or digit selector.

xx is a message character, digit selector, or significance starter.

Where the edit pattern is more than seven hexadecimal values, successive DC statements are
generated.
35

ASG-Manager Products Source Language Generation
Assembler edit patterns are generated from the ITEM PICTURE symbols shown in this table:

Notes

1. Edit patterns generated from these PICTURE symbols:

9 Y /) X , *

form a complete and compatible subset in terms of the repository definition.

PICTURE
Symbol

Hexadecimal Edit
Pattern

Comments

9

I

R

T

20 (digit selector) If PICTURE starts with 9, I, R, or T, ss is set to 21;
otherwise to 20. I, R, and T lose conditional
meanings. (see note 2)

Y

Z

20 or 21
(digit selector or
significance starter,
depending on context)

S

+

-

$

@E (message char)

4E

60

5B

S, +, - and $ lose conditional meanings (see note 2).
See note 3 for symbols in float strings.

/

.

,

61 (message char)

4B

6B

B

CR

DB

0

40 (message char)

C3D9

C4C2

F0

B, CR, DB, and 0 lose conditional meanings (see
note 2).

P

V

F0 (message char)

-

P loses its meaning. V is ignored.

* 20 or 21
(digit selector or
significance starter,
depending on context)

If PICTURE contains an asterisk *, ff is set to 5C,
otherwise to 40.
36

4 Generation of Assembler Data Descriptions
2. Edit patterns generated from these PICTURE symbols:

I R T B CR DB 0 + - $ E

are compatible with the repository definition, but are incomplete in that alternative edit
patterns will need to be coded to meet conditional data-dependent requirements (for
example, to replace CR with spaces if the value to be output is positive).

3. Edit patterns generated from these PICTURE symbols:

$ * - £

are not compatible with their use in repository float strings. Where a string of the same
symbol is encountered (for example, $$$$), the pattern generated is the same as would be
produced by a string of Zs (for example, ZZZZ).

4. Assembler edit patterns operate on packed decimal numbers packed two digits per byte. If
an edit pattern is generated with an odd number of digit selectors following the significance
starter, a message is given that an additional source character is needed, and the significance
starter is preceded by a digit selector to ignore the unused half byte.

Examples of edit patterns generated from an ITEM named ITEMA with the PICTURE clauses
shown:

1 PICTURE '9(2)/(1)9(2)/(1)9(2)' generates
ITEMAEP DC X'40212020612020'

DC X'612020'

2 PICTURE 'E(1)Z(2)9(2)' generates
ITEMAEP DC X'40205B20212020'

3 PICTURE '*(2)9(2)V(1)9(2)' generates
ITEMAEP DC X'5C202021202020'

DC X'20'

4 PICTURE 'E(3)9(2)' generates
ITEMAEP DC X'40202020212020'
* FLOATING CHARACTER LOST

Generation of Assembler EQU Statements
Unless tailored, or unless specified otherwise in the PRODUCE command, EQU statements are
generated from CONDITION-NAME clauses in the CONTENTS clause of the ITEM definition.
They immediately follow the DS statement generated from that ITEM.

This is the format:

item-name DS ...
condition-name-1 EQU value
condition-name-2 EQU value
37

ASG-Manager Products Source Language Generation
where condition-name-1 and condition-name-2 are names, after any editing, declared
in a CONDITION-NAME clause. (See "Name Editing Options Overview" on page 68, "Replacing
Names or Name Elements" on page 69, "Dropping Names or Name Elements" on page 69,
"Inserting Characters Into Names" on page 70, and "Conditional Editing" on page 70 of the
PRODUCE command specifications for name editing options.)

Each condition name must have an associated IS clause for the EQU statement to be fully defined.
If the CONDITION-NAME clause is specified with a RANGE clause or a list of values, or no
value at all, no EQU statement is generated.

Generation of Assembler DC Statements

If tailored, or if so specified in the Assembler generation panel or command, DC statements are
generated in place of DS statements in this way:

• If an ITEM definition has a CONTENTS clause that contains an IS clause or a RANGE
clause, without an associated IF clause, then:

— The literal value (or the first literal value of a list or range of values) is generated as:

DC data-description literal

— For a BINARY form-description with one or two decimal characters, a data description
of HL1 is generated instead of B, followed by the literal.

— For a BINARY, PACKED-DECIMAL, DECIMAL-PACKED, or NUMERIC-
CHARACTER form-description, where the length declaration indicates decimal digits
after an implied decimal point, the literal is generated with any preceding or following
zeros needed to align the decimal point.
38

4 Generation of Assembler Data Descriptions
• If an ITEM definition has a CONTENTS clause that does not fulfill the above conditions,
has no CONTENTS clause, or if the ITEM is a dummy, then either a zero or a space literal
is generated according to the form-description of the form and version of the ITEM being
processed.

Note:
For NUMERIC-CHARACTER, a zero is generated for each character specified in the
data-description.

Non-numeric literals are generated enclosed in single quotes (' '). Where a member’s character
string contains an embedded single quote, it is replaced with two single quotes in the generated
literal.

The maximum length of an Assembler non-numeric literal is eight characters. Where a character
string in an ITEM contains more than eight characters, it is truncated and a warning message is
given.

Form-description Assembler Literal Generated

ALPHABETIC
ALPHANUMERIC
ALPHAMERIC CHARACTER

DC data-description ' '

BINARY
PACKED-DECIMAL
DECIMAL-PACKED
FLOATING-POINT
BITS
HEXADECIMAL

DC data-description '0'

NUMERIC-CHARACTER DC data-description '0...' (Note)

PICTURE

alphabetic

alphanumeric

numeric

edited

Depends on picture type:

DC data-description ' '

DC data-description ' '

DC data-description '0'

DC data-description
39

ASG-Manager Products Source Language Generation
Generation of Assembly Fillers and Dummy Names
These are the forms of filler and dummy names and data descriptions that may be generated for
Assembler:

See "Fillers" on page 4 for general details of the generation of fillers.

(blank) DS CLp Generated where a protected member is encountered, or where a
filler is required to equalize or pad storage.

(blank) Generated where a member-name is encountered that duplicates
a member name already processed, or that corresponds to the rules
for filler names generated by the import from COBOL function.

data-name DC CL1 Generated where a member with a dummy data entries record is
encountered, data-name is derived from the member name
defined in the containing member, and the data description
reserves storage of one byte.

DMFILLER Generated where a member name declared in the generation panel
or command is edited (whether by the use of editing options or by
the automatic deletion of illegal characters from the name) to leave
a blank name.

DS CL1 Is the data description generated where a member with no length
definition is encountered.
40

5
 5Generation of Record Layouts
This chapter explains how to generate record layouts and contains these sections:

How to Generate Record Layouts
To generate language-independent record layouts, use the export function provided by
MethodManager panel TE14000, or issue a PRODUCE RECORD-LAYOUTS command.

Language-dependent record layouts can also be generated, alone or in conjunction with COBOL,
PL/I, or Assembler source data descriptions. For this, the expert mode panel E1E3000 or a
PRODUCE RECORD-LAYOUTS command with additional keywords is used.

How to generate record layouts using panels TE14000 or E1E3000 is described in those panels’
Help.

For the specifications of the PRODUCE command, see Chapter 7, "Command Specifications," on
page 53.

Section Page

How to Generate Record Layouts 41

Record Layouts: Overview and Example 42

Fields in Record Layouts 43

Format of the Generated Layout 45
41

ASG-Manager Products Source Language Generation
Record Layouts: Overview and Example
Record layouts are tables containing these details:

• The levels and names of the GROUPs and ITEMs from which the record layout was
generated

• The decimal and hexadecimal offsets of the storage fields for the groups and items in the
record

• The length, type, and alignment of the groups and items

• Remarks giving additional information about the member

The layouts can be tailored to your own installation requirements by using installation macros.

Figure 1 shows an example of a record layout generated from the group EMP-IDENT on the
DEMO repository.

Figure 1.. Example Record Layout Generated from Group EMP-IDENT

Record layouts can be generated alone or together with source language data descriptions. When
generated together with source language data descriptions, the record layouts are output first; data
names are edited if necessary to conform to the rules of the specified language.

**
* *
* DESCRIPTION OF EMP-IDENT *
* *
**
* * * * * * * *
* DEC *HEX * * * * * *
* OFFSET*OFFSET* LEVEL & NAME *LENGTH* TYPE * ALIGN* REMARKS *
* * * * * * * *
**
* 0 * 0 * 1 * EMP-IDENT * 102 * GROUP* * *
-------------*---*------------------------*------*------*------*-----------------------*
* 0 * 0 * 2 * EMP-NAME * 30 * CHAR * * *
-------------*---*------------------------*------*------*------*-----------------------*
* 30 * 1E * 2 * EMP-ADDR * 50 * CHAR * * *
-------------*---*------------------------*------*------*------*-----------------------*
* 80 * 50 * 2 * TELEPHONE * 22 * GROUP* * *
-------------*---*------------------------*------*------*------*-----------------------*
* 80 * 50 * 3 * HOME-TEL-NO * 11 * NUM * * 11 DIGITS *
-------------*---*------------------------*------*------*------*-----------------------*
* 91 * 58 * 3 * OFF-TEL-NO * 11 * NUM * * 11 DIGITS *
**
42

5 Generation of Record Layouts
These are the names produced in a record layout:

• Member names

• If tailored or if specified in the generation panel or command, language specific aliases, for
those members that have them

• If tailored or if specified in the generation panel or command, context specific local names,
for those members for which such names are declared in KNOWN-AS clauses in the
containing member

If so specified in the generation panel or command, or if tailored by the installation macros, the
horizontal and vertical boxing lines may be omitted, additional line spacing may be inserted
between members, and the number of printing lines per page may be adjusted.

Fields in Record Layouts

These are the fields in the record layouts:

Field Description

DEC/HEX OFFSETS Are the offsets (unless tailored to start positions) in decimal and
hexadecimal, of the storage fields computed for the members
constituting a storage block (or record).

LEVEL AND NAME Is the hierarchical level of the field, followed by the generated name
of the field. Level numbers begin at one (the member from which
record layouts are being produced), and are increased by one for
successively lower levels.

LENGTH Is the computed length of the storage field in bytes. For a GROUP
member, the length is the sum of the lengths of the ITEMs directly or
indirectly contained by it. For variable length items, the maximum
length is used. For fixed arrays, the length is the repetition factor
multiplied by the array element length. For variable arrays the length
is that of a single occurrence of the array element. For dummy
members, a length of one byte is defaulted. Computation of field
lengths for binary items is source language dependent. (See "COBOL
Generation from ITEMs" on page 14, "Generating PL/I Elementary
Items" on page 25, or "Assembler Generation from ITEMs" on
page 33.)

TYPE Is the member's form-description, if the member is an ITEM;
otherwise the member type.

ALIGN Shows whether the ITEM is aligned in storage and on what word
boundary (half word, full word, or double word), as declared by the
keyword ALIGNED in its containing member.
43

ASG-Manager Products Source Language Generation
REMARKS The remarks column gives additional information about the member,
including:

• The member's length definition for numeric ITEM members
(for example 2 BITS, 16.2 DIGITS).

• The sign of numeric ITEM members (for example 10 DIGITS
SIGNED, 14.1 DIGITS UNSIGNED). This information is
only given when record layouts are generated in association
with COBOL.

• The member's PICTURE definition for ITEM members
(unless tailored) DUMMY ENTRY, indicating that the
member is a dummy.

• The repetition factor of arrays declared in the CONTAINS
clause of a GROUP or FILE member (for example OCCURS
10 TIMES, OCCURS VAR TIMES).

• The length of a variable length array.

• NOTE and/or DESCRIPTION clauses defined for the
member. This information is only given if selected in the
generation panel or command, or if tailored.
44

5 Generation of Record Layouts
Format of the Generated Layout
There are three options for the format of the layout generated; the option is chosen using the
keyword WIDEFMT in the installation macro DGREC.

• With WIDEFMT=NO existing layouts are enforced, even if the structure is too long to
display within the layout (see Figure 1 on page 42). This may lead to an error condition if
the offsets or lengths are too large to display.

• With WIDEFMT=YES a wide format layout is selected, irrespective of the size of the
structure (see Figure 2).

• With WIDEFMT=AUTO the wide format is selected only if the structure is large enough to
require it.

Figure 2.. Example Record Layout in Wide Format

**
* *
* DESCRIPTION OF EMP-IDENT *
* *
**
* * * * * * * *
* DEC * HEX * * * * * *
* OFFSET * OFFSET * LEVEL & NAME * LENGTH * TYPE * ALIGN * REMARKS *
* * * * * * * *
**
* 0 * 0 * 1 * EMP-IDENT-TABLE * 27372 * GROUP * * *
----------------*---*------------------------*--------*-------*-------*----------------------------*
* 0 * 0 * 2 * EMP-NAMES * 30 * CHAR * * OCCURS 910 TIMES *
----------------*---*------------------------*--------*-------*-------*----------------------------*
* 27300 * 6AA4 * 2 * EMP-ADDR * 50 * CHAR * * *
----------------*---*------------------------*--------*-------*-------*----------------------------*
* 27350 * 6AD6 * 2 * TELEPHONE * 22 * GROUP * * *
----------------*---*------------------------*--------*-------*-------*----------------------------*
* 27350 * 6AD6 * 3 * HOME-TEL-NO * 11 * CHAR * * 11 DIGITS *
----------------*---*------------------------*--------*-------*-------*----------------------------*
* 27361 * 6AE1 * 3 * OFF-TEL-NO * 11 * NUM * * 11 DIGITS *
**
45

ASG-Manager Products Source Language Generation
46

6
 6Tailoring Source Language Generation
This chapter explains how to tailor source language generation and contains these sections:

Installation Macros
These are the relevant installation macros for tailoring programming source language and record
layouts generation:

• DGCOB for COBOL

• DGPLI for PL/I

• DGBAL for Basic Assembler Language

• DGREC for language-independent record layouts

Each of these macros has a series of keywords with default values, for which alternative values
can be declared. The way in which these macros are applied is described in the Manager Products
installation manual applicable to your environment. That manual also contains complete
definitions of all the keywords and their default and alternative assignable values.

This chapter summarizes the available keywords, grouped by function. Many of the keywords are
common to all four macros.

Section Page

Installation Macros 47

Source Library Dataset Control 48

Record Layouts Tailoring 48

Source Language Output Format Tailoring 49

Import from COBOL Function Filler Name Conversion 50

Output Source Language Tailoring 51
47

ASG-Manager Products Source Language Generation
Source Library Dataset Control
These keywords are defined in DGCOB, DGPLI, and DGBAL:

Record Layouts Tailoring

These keywords are defined in DGCOB, DGPLI, DGBAL, and DGREC unless otherwise stated.
If language-independent record layouts are generated, the DGREC keyword values apply. If
record layouts are generated for or with a programming source language, then the keyword values
of DGCOB, DGPLI, or DGBAL apply, depending on the source language specified.

Note:
Where both apply, KNOWNAS takes precedence over ALIAS.

Keyword Specifies

ACSMETH Type of file, BPAM, or QSAM.

CONCARD Whether a catalog control card is generated.

DDNAME Default library file name.

LIBCC Default catalog control card.

MEMLEN Maximum length of library name.

Keyword Specifies

ALIAS Output language-specific alias instead of member name (not in DGREC).

DESC Maximum number of DESCRIPTION strings to be output as remarks or
comments.

MAXLEN Maximum length of any data structure.

KNOWNAS Output local name instead of member name.

NOTE Maximum number of NOTE strings to be output as remarks or comments.

RECBOX Insert horizontal and vertical boxing lines.

RECPGSI Number of lines per page.

RECPIC Whether to include PICTUREs in record layouts.

RECPOS Output offsets or start positions of fields.

RECSP Line spacing between members.

RNDBIN Whether binary items are to be rounded up.

RNDBIT Whether bit string fields are generated with byte alignment.
48

6 Tailoring Source Language Generation
Source Language Output Format Tailoring
Installation macro keywords controlling the output format of generated source programming
language are listed below:

Keyword Specifies

In DGCOB, DGPLI, and DGBAL:

COLMAIN Start column for COBOL PICTURE and VALUE clauses, PL/I attributes or
Assembler operation codes.

COLSUBS Start column for subsequent COBOL or PL/I statement elements or
Assembler operands.

COLNOTE Start column for comments.

COLSEQ Start column for sequence number.

INCRSEQ Sequence number increment.

LENSEQ Length of sequence number field.

SEQNOQ Whether sequence numbering is required.

In DGCOB and DGPLI:

COL01 Starting column for 01 level number.

INCLEV Level number increment.

OFFSUBS Offset for subsequent level numbers.

SPACING Number of spaces between statement elements.

In DGCOB only:

COL2ND Starting column for second level number.

COLCOND Whether level-88 statements generated from CONDITION-NAME clauses
are to be output in a fixed position or in a position relative to the generated
conditional variable.

COLCPOS As determined by COLCOND, the starting column or the offset of level 88
statements.

INCLEV0 Whether level numbering increments are to begin from zero or from 01.

RECFMGEN Whether the RECORD FORMAT clause is generated unconditionally.

In DGPLI only:

MEMBLEN Maximum length of binary item.

In DGBAL only:

NAMEMAX Maximum length of generated data names.

In DGREC only:

WIDEFMT Record layout generation formatting option.
49

ASG-Manager Products Source Language Generation
Import from COBOL Function Filler Name Conversion
Unless the value of the AUTOCHK keyword is tailored, ITEM and GROUP member names
processed by an export function are checked against a set of pre-specified names defined by
installation macro keywords ATRUNK to GFNL (see below). This set of names represents filler
names that may have been inserted into the repository via the import from COBOL function from
COBOL source code. Where a GROUP or ITEM with such a filler name is found (before any
name editing is applied in the generation process) it is converted according to these rules:

COBOL. Names of members representing fillers are converted back to FILLER.

PL/I. Names of members representing fillers are converted back to FILLERnnnnn (where
nnnnn is the running total of fillers generated by the current generation panel or command).

Assembler. Names of members representing fillers are converted to blanks.

These keywords are defined in DGCOB, DGPLI, and DGBAL:

Keyword Specifies

AUTOCHK Whether to check for and convert fillers.

The character part of the item filler name for the indicated types:

ATRUNK ALPHABETIC

BTRUNK BINARY

CTRUNK CHARACTER

DTRUNK DECIMAL-PACKED

FTRUNK FLOATING-POINT

NTRUNK NUMERIC-CHARACTER.

IFNL The length of the number part of item filler names.

GTRUNK The character part of group filler names.

GFNL The length of the number part of group filler names.
50

6 Tailoring Source Language Generation
Output Source Language Tailoring
These are the installation macro keywords controlling the generated source programming
language output:

Keyword Specifies

In DGCOB, DGPLI, and DGBAL:

ACHAR Additional characters to those in the source language character set, to be
accepted for output in names.

ACHAR2 Any additional valid characters, beyond those specified for ACHAR.

INITVAL Whether VALUE clauses (COBOL), INITIAL attributes (PL/I), or DC
statements are to be generated from ITEM members.

In DGCOB and DGPLI:

MAXSYM Maximum number of PICTURE symbols before a repetition factor is used.

KEYABB Whether keyword abbreviation is required.

In DGCOB only:

BINSIGN Whether BINARY ITEMs are to be signed in the PICTURE clause.

COBOL2 Whether the generated code is COBOL II or VS COBOL.

COMP In COBOL II whether computational or binary/packed decimal keywords
are generated.

COND88 Whether level-88 statements are to be generated from
CONDITION-NAME clauses in ITEMs.

DDESC88 Whether level-88 statements are to be found in DESCRIPTION clauses in
ITEMs.

DECOMMA Whether the decimal point is represented by a full stop (period) or a comma.

DNOTE88 Whether level 88 statements are to be found in NOTE clauses in ITEMs.

FILESUF Suffix for file name when 01 data-name is automatically generated.

GEN Whether both FD and 01 levels, or FD only, or 01 only, are to be generated
from FILEs.

NEZEROS Whether to assume a default value for numeric edited items of ZEROS
(YES) or SPACES (NO). This option is only relevant where the item has a
picture clause including editing symbols, no contents clause is present and
initial values are required.

NUMSIGN Whether NUMERIC ITEMs are to be signed in the PICTURE clause.

PCKSIGN Whether PACKED-DECIMAL ITEMs are to be signed in the PICTURE
clause.

VALUE Whether, on giving initial values, blank or zero contents are generated when
no contents are specified in the item.
51

ASG-Manager Products Source Language Generation
Some of the keywords listed in earlier sections of this chapter also impact the output source
language generated.

QUOTES Whether generated non-numeric literals are to be enclosed within single or
double quotes.

REDFILL Whether unequal redefining members are to be padded with fillers.

ULABNAM Name for use in FD LABEL-RECORDS clause when USER-LABELS is
specified.

In DGPLI only:

BSDSUF Suffix for BASED structure names.

CHARSET Whether to use a 60- or 48-character set.

FLOATYP Whether BINARY or DECIMAL FLOAT is generated.

PNTRSUF Suffix for POINTER names.

REFSUF Suffix for PL/I REFER option.

In DGBAL only:

EPATSUF Edit pattern suffix.

EPPROD Whether edit patterns are to be generated.

EQUATE Whether EQU statements are to be generated from CONDITION-NAME
clauses in ITEM members.

Keyword Specifies
52

7
 7Command Specifications
This chapter describes the Manager Products commands relevant to source language generation.
The commands are documented in alphabetical order of command name. These are the
commands:

PRODUCE Command

The PRODUCE command is used to generate record layouts and/or programming source language
statements or database management system language statements from members of the repository.
The generation of record layouts and COBOL, PL/I, and Assembler data descriptions in
conventional file environments is described here. For the use of the PRODUCE command in other
environments, see "What IS Source Language Generation?" on page 1. Refer to "PRODUCE
Syntax" on page 72 for the syntax of the PRODUCE command.

Generic Overview of the PRODUCE Command
This is the general form of the PRODUCE command:

PRODUCE context qualifier FROM member-name-list control-options ;

where:

context is a keyword identifying the system context (record layouts, programming source
language, database management system, file management system) in which the command is
being used.

qualifier is a context-dependent keyword or clause, or a number of such keywords
and/or clauses, that determine(s) the type of output produced. Some contexts do not require
a qualifier.

member-name-list identifies from one to sixteen encoded members from which
generation is to take place, and optionally defines names to be given to the generated library
members in the output file.

Section Page

PRODUCE Command 53

SHOW PRODUCE-OPTIONS 76
53

ASG-Manager Products Source Language Generation
control-options are optional keywords or clauses that control the operation of the
command. They can be sub-divided into:

• Output control options

• Generation control options

• Name editing options

COBOL Generation
Enter this command to generate standard COBOL data descriptions:

PRODUCE COBOL LEVEL nn FROM member-name-list ;

Enter this command to generate COBOL II data descriptions:

PRODUCE COBOL2 EXTERNAL/GLOBAL/LEVEL nn FROM member-name-list ;

LEVEL nn is optional. It specifies the initial level-number of the generated data descriptions. nn
is an unsigned integer in the range 1 to 49 inclusive. The default is 1.

member-name-list is the names of one or more encoded FILEs, GROUPs, or ITEMs (or
members of a user-defined member type based on a FILE, GROUP, or ITEM) from which the data
description is to be generated. A maximum of sixteen names may be specified. The names must be
separated by commas. You must have sufficient authority to access the members.

Each member name in member-name-list may be followed by this statement:

AS library-name

in which case the output generated from the member is catalogued under library-name in the
output source library dataset. For example:

PRODUCE COBOL FROM FILE-EMP-TRANS, FILE-SORT-TRANS AS QLIB;

catalogs the data description generated from FILE-SORT-TRANS under the name QLIB in the
output source library dataset. library-name must not be more than eight characters long
(unless tailored in the installation macro). The first character must be alphabetic, @, the local
currency symbol with the internal code hexadecimal 5B, %, or @.

If the AS clause is omitted, the output is catalogued under the same name as member-name
provided that member-name is not too long (by default eight characters or the length tailored by
the installation macro). If member-name is too long, no generation takes place in respect of that
member-name.

Data names in the output generated by the command are edited, if necessary, to conform to the
rules of COBOL by:

• Removing any characters that are illegal in COBOL

• Shortening any names that are longer than the maximum permitted in COBOL by removing
middle characters
54

7 Command Specifications
Validation and truncation take place after the name editing options described below have been
executed.

Library-names, whether declared or defaulted, are not subjected to any name editing.

You can specify control-options after member-name-list. The control-options
you can include in the command comprise:

1. Output control options; for example, to specify the dataset to which the output is to be
written.

2. Generation control options; for example, to tailor the output generated by the command.

3. Name editing options to tailor the data names generated by the command.

These are described in the subsections that follow.

EXTERNAL is optional. It specifies that the EXTERNAL keyword is to be generated on the 01
level data description.

GLOBAL is optional. It specifies that the GLOBAL keyword is to be generated on the 01 level
data description.

The EXTERNAL, GLOBAL, and LEVEL keywords are mutually exclusive.

PL/I Generation
Enter this command to generate PL/I data descriptions conforming to the storage alignment of the
PL/I check-out/optimizer compilers:

PRODUCE PL/I state LEVEL nn FROM member-name-list ;

To generate PL/I data descriptions conforming to the storage alignment of the PL/I F level
compiler, enter:

PRODUCE PL/IF state LEVEL nn FROM member-name-list ;

PL/I can alternatively be PLI, PL/1, or PL1.

PL/IF can alternatively be PLIF, PL/1F, or PL1F.

where:

state is optional and relates only to data descriptions produced from GROUP and ITEM
members. It can be any of these:

EXTERNAL STATIC BASED name

where name is a PL/I pointer variable indicating the address on which the generated data
description is based.
55

ASG-Manager Products Source Language Generation
LEVEL nn is optional. When present, nn is an integer specifying the initial level of the
generated data descriptions. nn is an unsigned integer in the range 1 to 99 inclusive. If
LEVEL nn is not specified, an initial level of 1 is assumed. If LEVEL nn is included and
nn is not 1, then the final symbol of each generated PL/I structure is a comma (unless
tailored); otherwise it is a semi-colon.

member-name-list is the names of one or more encoded FILEs, GROUPs, or ITEMs
(or members of a user-defined member type based on a FILE, GROUP, or ITEM) from
which the data descriptions are to be generated. A maximum of sixteen names may be
specified. The names must be separated by commas. You must have sufficient authority to
access the members.

Each member name in member-name-list may be followed by:

AS library-name

in which case the output generated from the member is cataloged under library-name in
the output source library dataset. For example:

PRODUCE PL/I FROM FILE-EMP-TRANS, FILE-SORT-TRANS AS QLIB;

catalogs the data description generated from FILE-SORT-TRANS under the name QLIB in
the output source library dataset. library-name must not be more than eight characters
long (unless tailored in the installation macro). The first character must be alphabetic, @,
the local currency symbol with the internal code hexadecimal 5B, %, or @.

If the AS clause is omitted, the output is cataloged under the same name as member-name
provided that member-name is not too long (by default eight characters or the length
tailored by the installation macro). If member-name is too long, no generation takes place
in respect of that member-name.

Data names in the output generated by the command are edited, if necessary, to conform to the
rules of PL/I by:

• Removing any characters that are illegal in PL/I

• Shortening any names that are longer than the maximum permitted in PL/I by removing
middle characters

Validation and truncation take place after the name editing options described below have been
executed.

Library-names, whether declared or defaulted, are not subjected to any name editing.

You can specify control-options after member-name-list. The control-options
you can include in the command comprise:

1. Output control options; for example, to specify the dataset to which the output is to be
written.

2. Generation control options; for example, to tailor the output generated by the command.
56

7 Command Specifications
3. Name editing options to tailor the data names generated by the command.

These are described in the subsections below.

Assembler Generation
Enter this command to generate Assembler data descriptions:

PRODUCE ASSEMBLER FROM member-name-list ;

ASSEMBLER can alternatively be coded as BAL, ASSEMBLY, or ALC.

member-name-list is the names of one or more encoded GROUPs or ITEMs (or members of
a user defined member type based on a GROUP or ITEM) from which the data description is to be
generated. A maximum of sixteen names may be specified. The names must be separated by
commas. You must have sufficient authority to access the members.

Each member name in member-name-list may be followed by:

AS library-name

in which case the output generated from the member is cataloged under library-name in the
output source library dataset. For example:

PRODUCE BAL FROM FILE-EMP-TRANS, FILE-SORT-TRANS AS QLIB;

catalogs the data description generated from FILE-SORT-TRANS under the name QLIB in the
output source library dataset. library-name must not be more than eight characters long
(unless tailored in the installation macro). The first character must be alphabetic, @, the local
currency symbol with the internal code hexadecimal 5B, %, or @.

If the AS clause is omitted, the output is catalogued under the same name as member-name
provided that member-name is not too long (by default eight characters or the length tailored by
the installation macro). If member-name is too long, no generation takes place in respect of that
member-name.

Data names in the output generated by the command are edited, if necessary, to conform to the
rules of Assembler by:

• Removing any characters that are illegal in Assembler

• Shortening any names that are longer than the maximum specified in the DGBAL
installation macro, by removing middle characters

Validation and truncation take place after the name editing options mentioned below have been
executed.

Library-names, whether declared or defaulted, are not subjected to any name editing.
57

ASG-Manager Products Source Language Generation
You can specify control-options after member-name-list. The control-options
you can include in the command comprise:

1. Output control options; for example, to specify the dataset to which the output is to be
written.

2. Generation control options; for example, to tailor the output generated by the command.

3. Name editing options to tailor the data names generated by the command.

These are described in the subsections below.

Record Layouts Generation
Enter this command to generate language-independent record layouts:

PRODUCE RECORD-LAYOUTS FROM member-name-list ;

member-name-list is the names of one or more encoded FILEs, GROUPs, or ITEMs (or
members of a user defined member type based on a FILE, GROUP, or ITEM) from which the
record layouts are to be generated. A maximum of sixteen names may be specified. The names
must be separated by commas. You must have sufficient authority to access the members.

You can specify control-options after member-name-list. control-options can
be generation-control-options and/or name-editing-options. (See "Generation
Control Options Overview" on page 61 and "Name Editing Options Overview" on page 68.)

To produce record layouts with data names edited if necessary to conform to the rules of COBOL,
PL/I, or Assembler, enter:

PRODUCE RECORD-LAYOUTS FOR language FROM member-name-list ;

language can be any of these:

COBOLCOBOL2PL/IPL/IFBAL _

COBOLIIPL/1PL/1FASSEMBLER _

PLI PLIFASSEMBLY

PL1 PL1FALC

If PL/I or an alternative form is specified, the generated record layout fields will conform to the
storage alignment of the PL/I checkout/optimizer compilers.

If PL/IF or an alternative form is specified, the generated record layout fields will conform to the
storage alignment of the PL/I F level compiler.

You can specify control-options after member-name-list, as for
language-independent record layouts generation.
58

7 Command Specifications
To produce record layouts in addition to programming source language data descriptions, enter:

PRODUCE RECORD-LAYOUTS AND language FROM member-name-list ;

For each listed member-name in turn, a record layout is generated followed by the data
descriptions in the specified language. Data names are edited if necessary to conform to the rules
of the specified language.

member-name-list can include AS clauses to specify library names for the generated source
language. See "COBOL Generation" on page 54, "PL/I Generation" on page 55 and "Assembler
Generation" on page 57 for details in the context of COBOL, PL/I or Assembler.

You can specify control-options after member-name-list. control-options can
include output control options. (See "Output Control Options Overview" on page 59.)

Output Control Options Overview
The destination of output from the PRODUCE command depends on the parameter values
specified in the installation macros as amended by the output control options in the PRODUCE
command itself. These output control options are available:

1. You can specify the dataset or file to which the data descriptions are to be written, and:

• Specify a control card for the dataset in DOS environments.

• Specify the type of dataset and a control card in OS environments.

2. You can suppress output to a source library dataset.

3. You can specify whether or not the data descriptions are to be displayed or printed.

Specifying the Output Dataset
To specify the library dataset to which the source language data descriptions are to be written, add
this statement to the PRODUCE command:

ONTO file-name

For example:

PRODUCE COBOL FROM OFF-NO ONTO OFFDATA;

writes the data descriptions generated from OFF-NO to the dataset OFFDATA. If the ONTO
clause is omitted, then unless generation is suppressed, output is written to the dataset GENLIB
(unless tailored in the installation macro). (For the suppression of generation, see "Suppressing
Output to a Source Library Dataset" on page 61.)
59

ASG-Manager Products Source Language Generation
file-name is the logical file name (ddname or dtfname) used in job control statements to
indicate the external dataset name (physical file name) of the dataset to which the generated
program source data descriptions are to be written. file-name must not be:

• MPRACWF

• MPRDIAG

• MPAID, MPAIDR, MPAIDV, or the name of any concatenated MP-AID

• The name of the repository, or the repository name with a suffix of: B, C, D, E, F, G, H, I, J,
K, L, M, N, R, S, or V

• MPRPOST

Once a library dataset has been opened, then:

• If it is a partitioned dataset, it is closed at the end of the PRODUCE command processing.

• If it is a sequential dataset, it remains open until the end of the Manager Products run, unless
it is explicitly closed by a CLOSE DATASET command. Thus successive PRODUCE
commands may be given either to add to an already opened dataset, or to create a new one.
Any number of datasets may be simultaneously open, subject to the availability of sufficient
virtual storage. However, you can only process the output held in an external dataset if the
dataset has been closed. The CLOSE command allows you to close individual datasets, so
that they can be used for other functions, while keeping others open.

In OS environments, you can specify the type of output dataset to be either a QSAM sequential file
or a BPAM partitioned dataset, by following the ONTO file-name clause with the keyword
SEQUENTIAL or PARTITIONED respectively. The default is a BPAM partitioned dataset,
unless tailored in the installation macro. In DOS environments output is always written to a
sequential dataset: if PARTITIONED is stated in the command, it is converted to SEQUENTIAL.

Unless tailored or specified in the command, the standard IBM library update control card is
output for sequential files:

• Under OS, the IEBUPDTE control card:

'./ ADD LIST=ALL,NAME=?'

• Under DOS/VSE, the MAINT control card:

' CATALS x.?'

• Under DOS/VSE/SP, the LIBR control card:

' CATALOG x.?'

where ? indicates the point at which the generated library-name is to be inserted in the control card
and x is C, P, or A for COBOL, PL/I, and Assembler respectively. The control card is written to
the output dataset immediately before the generated source language data description.
60

7 Command Specifications
You can specify control cards for alternative source library maintenance systems to be written to
the output dataset. This can be done by tailoring the installation macro, or by including in the
command:

ONTO file-name SEQUENTIAL 'control-card'

where control-card is a string of up to 72 characters, being a library system control card
image. Trailing spaces are implied. A single question mark (?) character must be used to indicate
the point at which the generated library member name is to be inserted in the control card.

If PARTITIONED 'control-card' is stated in the command, 'control-card' is
ignored with no message.

Suppressing Output to a Source Library Dataset
To suppress output to a source library dataset, add the keyword NOGENERATION to the
PRODUCE command. For example:

PRODUCE COBOL FROM OFF-NO NOGENERATION;

NOGENERATION can alternatively be NO-GENERATION.

Generation of source language data descriptions and/or record layouts, and their output to a
terminal or a printer, is not inhibited by the NOGENERATION keyword.

It is not necessary to state NOGENERATION when record layouts are produced without source
language data descriptions.

Controlling Output During Source Language Generation
To specify explicitly that the generated source language data descriptions are or are not to be
displayed or printed, add PRINT or NOPRINT respectively to the command. For example:

PRODUCE COBOL FROM OFF-NO PRINT;

NOPRINT can alternatively be NO-PRINT.

In interactive mode, source language data descriptions are not displayed or printed on the terminal
unless PRINT is stated in the command.

In batch mode, source language data descriptions are printed as they are produced, unless
NOPRINT is stated in the command.

PRINT and NOPRINT have no effect on the printing of record layouts or of messages.

Generation Control Options Overview
The output generated by the PRODUCE command depends on the parameter values specified in
the installation macros as amended by the generation control options in the PRODUCE command
itself. These generation control options are available:

1. You can derive data names from aliases taken from the relevant members' ALIAS clauses.
61

ASG-Manager Products Source Language Generation
2. You can override the parameter values in the installation macros specifying the format and
contents of the output.

3. You can override the parameter values in the installation macros and suppress output that
would otherwise be generated.

4. You can state which form and version of ITEM members are to be used by the PRODUCE
command.

Deriving Data Names from Aliases
To derive data names wherever possible from aliases taken from the relevant members' ALIAS
clauses instead of from the members' names, add to the PRODUCE command:

ALIAS n

or

ALIAS alias-type

For example:

PRODUCE COBOL FROM OFF-NO ALIAS 3;

ALIAS can alternatively be WITH-ALIAS.

If ALIAS n is specified, each generated data name is derived if possible from the nth general
alias in the member's ALIAS clause. n is an unsigned integer.

If ALIAS alias-type is specified, each generated data name is derived if possible from the
specific alias of the specified type in the member's ALIAS clause.

If a source language context keyword is present in the command, ALIAS can be specified without
an associated variable. The context keyword is then applied as a default alias-type variable. For
example, if:

PRODUCE PL/I FROM OFF-NO WITH-ALIAS;

is specified, then PL/I specific aliases will be used wherever possible for the generation of data
names. If ALIAS is specified without an associated variable when there is no source language
context keyword in the command, a message is output and the ALIAS keyword is subsequently
ignored.
62

7 Command Specifications
If a member has no alias of the specified number or alias-type, a message is output and the data
name generated in respect of that member is derived from its member name.

Note:
To ensure that specific aliases are always detected when required, the installation macro DALIAS
should be tailored to declare all alternative versions of source language context keywords as
sublists when specifying the alias-type keyword list. For example, all of the keywords PL/I, PLI,
PL/1, PL1, PL/IF, PLIF, PL/1F, and PL1F should be declared in one sublist. See your Manager
Products installation manual.)

You can also specify that data names are to be derived from local names in the containing
members' KNOWN-AS clauses instead of from members' names. If the derivation of data names
from local names and from aliases are both specified, then the derivation from KNOWN-AS
clauses, where present, takes precedence. See "Specifying the Format and Contents of Output" on
page 63.

Specifying the Format and Contents of Output
To specify particular requirements for output generation, overriding the parameter values in the
installation macros, add to the PRODUCE command:

GIVING output-form-1

For example:

PRODUCE ASSEMBLER FROM REC-UPD-DATA GIVING INITIAL-VALUES;

output-form-1 is a list of one or more of these

NOTES or s NOTES
DESCRIPTIONS or s DESCRIPTIONS
n LINE-SPACING or BOXING
PAGE-LENGTH n
FD-ONLY or RECORDS-ONLY or ALL-FILE
CONDITION-NAMES or CONDITION-NAMES FROM NOTES

or CONDITION-NAMES FROM DESCRIPTIONS
EQUATES
INITIAL-VALUES
EDIT-PATTERNS
KNOWN-AS
OFFSETS or START-POSITIONS
TERMINATOR

If two or more options are specified, they must be separated by commas. Options must not be
repeated in the clause. Not more than one from each set of alternative options—indicated by or—
may be specified.
63

ASG-Manager Products Source Language Generation
Details of the effects of the options are set out below. The third column in the table states the
equivalent parameter in the relevant installation macro.

Options Available in the GIVING Clause

Option Effect Parameter

NOTES Contents of NOTE clauses are listed as source
language comments and/or record layout remarks.

NOTE=ALL

s NOTES First s delimited strings in the NOTE clauses are
listed.

NOTE=s

DESCRIPTIONS Contents of DESCRIPTION clauses are listed as
source language comments and/or record layout
remarks.

DESC=ALL

s DESCRIPTIONS First s delimited strings in the DESCRIPTION
clauses are listed.

DESC=s

n LINE-SPACING n blank lines are inserted between consecutive
data elements in record layouts.

RECSP=n

BOXING Boxing lines are inserted in record layouts. This
option must not be specified if LINE-SPACING is
specified.

RECBOX=YES

PAGE-LENGTH n Record layouts contain n print lines per page. RECPGSI=n

FD-ONLY Only FDs are generated from FILE members
(COBOL only). This option must not be specified
if RECORDS-ONLY or ALL-FILE is specified.

GEN=FD

RECORDS-ONLY Only record descriptions are generated from FILE
members (COBOL only). This option must not be
specified if FD-ONLY or ALL-FILE is specified.

GEN=01

ALL-FILE Both FDs and record descriptions are generated
from FILE members (COBOL only). This option
must not be specified if FD-ONLY or
RECORDS-ONLY is specified.

GEN=ALL

CONDITION-NAMES Level-88 statements are generated from
CONDITION-NAME clauses of ITEM members
(COBOL only).

COND88=YES

CONDITION-NAMES
FROM NOTES

Level-88 statements are generated from NOTE
clauses of ITEMs (COBOL only).

DNOTE88=YES

CONDITION-NAMES
FROM
DESCRIPTIONS

Level-88 statements are generated from
DESCRIPTION clauses of ITEMs (COBOL only).

DDESC88=YES

EQUATES EQU statements are generated from
CONDITION-NAMES clauses (with associated
IS clauses) of ITEMs (Assembler only).

EQUATE=YES
64

7 Command Specifications
Suppressing Specified Generation Options
To suppress particular options in output generation, overriding the parameter values in the
installation macros, add to the PRODUCE command:

OMITTING output-form-2

output-form-2 is a list of one or more of these options:

NOTESEQUATES
DESCRIPTIONSINITIAL-VALUES
BOXINGEDIT-PATTERNS
CONDITION-NAMESALIAS
CONDITION-NAMES FROM NOTESKNOWN-AS
CONDITION-NAMES FROM DESCRIPTIONSTERMINATOR

If two or more options are specified, they must be separated by commas; for example:

PRODUCE ASSEMBLER FROM FILE-HIST-MASTER
OMITTING NOTES, DESCRIPTIONS;

Options must not be repeated in the OMITTING clause. The three CONDITION-NAMES options
are mutually exclusive.

INITIAL-VALUES VALUE clauses are generated for COBOL
elementary data descriptions or INITIAL attributes
are generated for PL/I elementary data items or DC
statements are generated (in place of DS
statements) for Assembler data descriptions.

INITVAL=YES

EDIT-PATTERNS Assembler edit patterns are produced. EPPROD=YES

KNOWN-AS Generated data names are derived wherever
possible from local names in the containing
members' KNOWN-AS clauses, instead of from
the members' names or aliases.

KNOWNAS=YES

OFFSETS The first two columns of generated record layouts
contain decimal and hexadecimal offsets. This
option must not be specified if
START-POSITIONS is specified.

RECPOS=NO

START-POSITIONS The first two columns of generated record layouts
contain decimal and hexadecimal start positions.
This option must not be specified if OFFSETS is
specified.

RECPOS=YES

TERMINATOR Each generated structure ends with a semicolon
irrespective of whether or not a LEVEL nn
clause has been included (PL/I only).

Options Available in the GIVING Clause

Option Effect Parameter
65

ASG-Manager Products Source Language Generation
Details of the effects of the options are set out below. The third column in the table states the
equivalent parameter in the relevant installation macro.

Options Available in the OMITTING Clause

Option Effect Parameter

NOTES Suppresses generation of comments from NOTE
clauses.

NOTE=0

DESCRIPTIONS Suppresses generation of comments from
DESCRIPTION clauses.

DESC=0

BOXING Omits boxing lines from record layouts. RECBOX=NO

CONDITION-NAMES Suppresses generation of COBOL level-88
statements from CONDITION-NAME clauses
of ITEMs.

COND88=NO

CONDITION-NAMES
FROM NOTES

Suppresses generation of COBOL level-88
statements from NOTE clauses of ITEMs.

DNOTE88=NO

CONDITION-NAMES
FROM
DESCRIPTIONS

Suppresses generation of COBOL level-88
statements from DESCRIPTION clauses of
ITEMs.

DDESC88=NO

EQUATES Suppresses generation of Assembler EQU
statements from CONDITION-NAME clauses
of ITEMs.

EQUATE=NO

INITIAL-VALUES Suppresses generation of VALUE clauses from
COBOL elementary data descriptions or of
INITIAL attributes for PL/I elementary data
items or of DC statements in place of DS
statements for Assembler.

INITVAL=NO

EDIT-PATTERNS Suppresses generation of edit patterns in
Assembler.

EPPROD=NO

ALIAS Generated data names are not derived from
specific aliases. Except where generation from
KNOWN-AS clauses applies, generated data
names are derived from member names.

ALIAS=NO

KNOWN-AS Generated data names are not derived from local
names in containing members' KNOWN-AS
clauses. Except where generation from
KNOWN-AS clauses applies, generated data
names are derived from member names.

KNOWNAS=NO

TERMINATOR The final line of each generated structure ends in
a comma, irrespective of whether or not a
LEVEL nn clause has been included (PL/I
only).
66

7 Command Specifications
If, for PL/I generation, neither GIVING TERMINATOR nor OMITTING TERMINATOR is
included in the command, then:

• If a LEVEL nn clause is included, and nn is not 1, the final symbol is a comma

• Otherwise, the final symbol is a semi-colon

If OMITTING and GIVING clauses are both present and contain contradictory output-form
specifications (for example, ... GIVING NOTES... OMITTING NOTES...), then, of the
contradictory specifications, the one from whichever of these clauses was last input prevails.

Selecting a Form or Version of an ITEM Member
To specify a particular form and version of an ITEM to be used for generation, add to the
PRODUCE command:

USING form VERSION version

For example:

PRODUCE COBOL FROM EMP-NAME USING HELD-AS VERSION 2;

where:

USING may alternatively be USE.

form is one of these:

• ENTERED-AS

• HELD-AS

• REPORTED-AS

• DEFAULTED-AS

version is an unsigned integer in the range 1 to 15. VERSION version can be omitted in
which case version 1 is assumed. VERSION version is not applicable for the
DEFAULTED-AS form.

If the form and version specified are not present in the ITEM from which generation is taking
place, a message is output, and the lowest-numbered version of the first form encountered in the
search sequence:

DEFAULTED-AS
HELD-AS
ENTERED-AS
REPORTED-AS

is used.

If the form is not specified, but a version is specified, then if the required DEFAULTED-AS
version is not present, the search will continue through the other forms from version 1, irrespective
of the specified version number.
67

ASG-Manager Products Source Language Generation
If the USING clause is omitted, the form and version of ITEM members used are those defined for
their containing GROUPs or FILEs. If the containing member does not state a a version, the
lowest numbered version of the relevant form is assumed. If the containing member does not state
a form, DEFAULTED-AS is assumed.

To avoid excessive output of warning messages when generating from GROUP or FILE members,
you are recommended to include a form keyword in those members' definitions. If there is only
one form of a contained ITEM, then containing GROUPs or FILEs should be defined as also of
that form.

Name Editing Options Overview
The data names output by the PRODUCE command may be generated from member names,
aliases or local names, depending on parameter values specified in the installation macros, unless
overridden by generation control options in the PRODUCE command itself. These data names
may be edited before they are output in source language data descriptions and/or record layouts,
by including editing clauses in the command. (For a description of the relevant generation control
options, see "Generation Control Options Overview" on page 61, "Deriving Data Names from
Aliases" on page 62, "Specifying the Format and Contents of Output" on page 63, and
"Suppressing Specified Generation Options" on page 65.)

The name editing options allow you to:

1. Replace the whole of each data name, or specified strings within each data name, by a
specified string.

2. Drop the whole of each data name, or specified strings within each data name.

3. Insert specified strings within each data name.

4. Specify conditions, individually for each editing clause specified within the name editing
options, under which the clause is to become effective.

Any editing clause you specify will (subject to any specified conditions) apply to all data names
output, but not to library names. Any number of editing clauses may be specified, in any order; but
they must not be interspersed with non-editing clauses. If the generation control option USING is
present in the command, then all editing clauses must immediately follow the USING clause;
subject to this proviso, control options clauses may be in any order and may precede or follow the
FROM clause.

For each data name, editing clauses are applied, in the sequence in which they are presented, to the
data name as left by the preceding editing clause. Each editing clause is applied only once to each
data name; so if you want to change more than one occurrence of a group of characters within data
names, you must repeat the relevant editing clause the requisite number of times.

Names can be expanded up to a maximum of 96 characters during editing. If an editing clause
would cause this length to be exceeded, editing of the name concerned is discontinued, and the
name is reduced to the maximum permitted for the language being generated, by the removal of
middle characters.
68

7 Command Specifications
After all editing specified by editing clauses has been completed, or if no editing clauses are
specified, the final automatic editing of data names to ensure conformity with the rules of the
language being generated is performed. Names are modified if necessary by removing any illegal
characters and shortening long names by removing middle characters.

Replacing Names or Name Elements
To replace each occurrence of a data name output by the PRODUCE command with a given
string, add to the command:

REPLACING ALL WITH 'string'

For example:

PRODUCE COBOL FROM TRANS-DATA REPLACING ALL WITH 'CONV-ITEM';

REPLACING can alternatively be REPLACE.

To replace the first occurrence of string-1 in each name with string, add to the command:

REPLACING 'string-1' WITH 'string'

string and string-1 are strings of not more than 32 printable characters. A space
(hexadecimal 40) is considered to be a printable character.

To replace the first p characters in each name with string, add to the command:

REPLACING (p) WITH 'string'

To replace p characters, starting at character position m in each name, add to the command:

REPLACING m (p) WITH 'string'

p and m are unsigned integers in the range 1 to 96. The sum of p and m must not exceed 97.

Dropping Names or Name Elements
To remove all the characters of each data name output by the PRODUCE command, add to the
command:

DROPPING ALL

To remove the first occurrence of string in each name, add to the command:

DROPPING 'string'

For example:

PRODUCE COBOL FROM REC-EMP-TRANS DROPPING 'REC';

removes the first occurrence of the string REC from any data name generated by the command.
69

ASG-Manager Products Source Language Generation
string is a string of not more than 32 printable characters. A space (hexadecimal 40) is
considered to be a printable character.

To remove the first p characters in each name, add to the command:

DROPPING (p)

To remove p characters, starting at character position m in each name, add to the command:

DROPPING m (p)

p and m are unsigned integers in the range 1 to 96. The sum of p and m must not exceed 97.

Inserting Characters Into Names
To insert a given string at the start of each data name output by the PRODUCE command, add to
the command:

INSERTING 'string' BEFORE ALL

For example:

PRODUCE COBOL FROM TRANS-DATA INSERTING 'IT-' BEFORE ALL;

To insert string before the first occurrence of string-1 in each data name output, add to the
command:

INSERTING 'string' BEFORE 'string-1'

string and string-1 are strings of not more than 32 printable characters. A space
(hexadecimal 40) is considered to be a printable character.

To insert string before character position n of each data name output, add to the command:

INSERTING 'string' BEFORE n

n is an unsigned integer in the range 1 to 96.

You can specify AFTER instead of BEFORE in each of the above formats, in which case
string is inserted, respectively, at the end of each data name, or immediately after the first
occurrence of string-1, or immediately after character position n in each data name.

Conditional Editing
Each editing clause of the name editing options operates on every data name generated, unless it is
made conditional. To make an editing clause conditional, you add a subordinate WHEN clause.
The WHEN clause states a condition that must be satisfied by a data name if the editing clause is
to operate on that data name.
70

7 Command Specifications
The condition stated in a WHEN clause tests each data name, or a any part of each data name, or a
specified part of each data name, for equality or inequality with a specified string. For example:

PRODUCE COBOL FROM OFF-NO
REPLACING 1 (3) WITH 'REC' WHEN ANY EQ 'DMR';

To limit the operation of an editing clause to those names which are the same as a given string,
add:

WHEN ALL EQ 'string'

To limit the operation of an editing clause to those names that contain a given string, add:

WHEN ANY EQ 'string'

To limit the operation of an editing clause to those names containing string in the p character
positions starting at character position m, add:

WHEN m (p) EQ 'string'

string is a string of not more than 32 printable characters. A space (hexadecimal 40) is
considered to be a printable character.

p and m are unsigned integers in the range 1 to 96. The sum of p and m must not exceed 97.

EQ can alternatively be = .

To make the WHEN clause test for inequality, instead of equality, substitute NE (not equal) for EQ
in the above specifications.
71

ASG-Manager Products Source Language Generation
PRODUCE Syntax
� �PRODUCE

AND
FOR

language
RECORD-LAYOUTS

language

� �FROM member-name
AS

<<<<<<<<<<<<<<<<<< , <<<<<<<<<<<<<<<<<<

� �

ONTO

variable-a

NOGENERATION

NO-GENERATION

PRINT
NO-PRINT
NOPRINT

� �

GIVING output-form-1 OMITTING output-form-2

<<<<<<,<<<<<< <<<<<<,<<<<<<

� �

WITH-ALIAS

ALIAS number

alias-type

� �

USE

USING

DEFAULTED-AS

ENTERED-AS

HELD-AS

REPORTED-AS

VERSION version

� �

REPLACE

REPLACING

ALL

(p)

string

m

variable-b

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

� �

DROPPING ALL

(p)

string

m

variable-c

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

� �

INSERTING string variable-d

�

;

.

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
72

7 Command Specifications
where language is:

nn is an assigned integer in the range 1 to 49 inclusive for COBOL, or 1 to 99 inclusive for PL/I,
being the initial level of the generated data description.

pointer is a PL/I pointer available name indicating the address on which the generated data
description is based.

member-name is the name of an encoded repository member from which a record layout and/or
a source language dataset description is to be produced. Up to a maximum of 16 member-names
may be declared.

library-name is the name to be given to the generated library member in the output dataset.
The name must not be more than eight characters. The first character must be alphabetic or @, £
(or a local currency symbol with the internal code hexadecimal 5B), %, or @.

file-name is the logical file name (ddname or dtfname) used in job control statements to
indicate the external dataset name (physical file name) of the dataset to which the generated
program source data descriptions are to be written. file-name must not be:

• MPRACWF

• MPRDIAG

• MPAID, MPAIDR, MPAIDV, or the name of any concatenated MP-AID

• The name of the repository, or the repository name with a suffix of: B, C, D, E, F, G, H, I, J,
K, L, M, N, R, S, or V

• MPRPOST

� �COBOL
LEVEL nn

COBOL2

EXTERNAL
GLOBAL
LEVEL nn

PL/I

PL/IF

PL/1

PL/1F

PLI

PL1F

EXTERNAL

BASED pointer

STATIC

LEVEL nn

BAL

ASSEMBLER

ASSEMBLY

ALC
73

ASG-Manager Products Source Language Generation
variable-a is:

where:

control-card is a character string of up to 72 characters.

output-form-1 is:

where:

s is an unsigned integer specifying a number of consecutive delimited character strings starting
with the first delimited character string of the stated clause.

n is an unsigned integer specifying a number of print lines.

� �PARTITIONED
SEQUENTIAL

'control-card'

� �NOTES
s

DESCRIPTIONS
s

n LINE-SPACING

BOXING

PAGE-LENGTH

RECORDS-ONLY

FD-ONLY

ALL-FILE

CONDITION-NAMES

FROM

NOTES

DESCRIPTION

EQUATES

INITIAL-VALUES

EDIT-PATTERNS

KNOWN-AS

OFFSETS

START-POSITION

TERMINATOR
74

7 Command Specifications
output-form-2 is:

where:

number is an unsigned integer identifying a general alias. The integer must be in the range 1 to g,
where g is the number of ALIASn keywords of the DALIAS macro that have been implemented
with empty values. The maximum possible value of g is 16.

alias-type is a keyword from the alias-type keyword list of the repository.

version is an unsigned integer in the range 1 to 15.

m and p are unsigned integers in the range 1 to 96, specifying a generated data name, starting at
character position m of the name and including p characters. If m is omitted, a value of 1 is
defaulted. The sum of m and p must not exceed 97. A space or spaces must separate m and (p).

string is a character string of not more than 32 printable characters. A space (hexadecimal 40)
is considered to be a printable character.

variable-b is:

where:

string is as defined above.

condition is:

� �NOTES

DESCRIPTIONS

CONDITION-NAMES

FROM

NOTES

DESCRIPTION

EQUATES

INITIAL-VALUES

EDIT-PATTERNS

ALIAS

TERMINATOR

BOXING

KNOWN-AS

� �WITH string
WHEN condition
75

ASG-Manager Products Source Language Generation
where:

m, p, and string are as defined above.

variable-c is:

where:

condition is as defined above.

variable-d is:

where:

nnn is an unsigned integer in the range 1 to 96, specifying a character position in a generated data
name.

condition is as defined above.

string is as defined above.

SHOW PRODUCE-OPTIONS
Use the SHOW PRODUCE-OPTIONS command to display the currently active settings for each
control option of the PRODUCE command.

The command has the form:

SHOW PRODUCE-OPTIONS FOR language ;

where language is any one of the programming languages, database management system
languages, or file management system languages supported by Manager Products' source language
generation capabilities.

� �ALL EQ string

ANY

m

(p)

=

NE

� �

WHEN condition

� �ALL

BEFORE

AFTER

nnn

string

WHEN condition
76

7 Command Specifications
For example:

SHOW PRODUCE-OPTIONS FOR COBOL ;

or

SHOW PRODUCE-OPTIONS FOR IMS PSBGEN ;

The settings displayed are those currently specified in the installation macro relevant to
language (DGCOB, DGPLI, or DGBAL for programming languages, DGREC for
language-independent record layouts, or the corresponding macros for database or file
management system languages). These settings may be overridden by control options in the
PRODUCE command.

If language is a programming language or is RECORD-LAYOUTS, it may be qualified by
SEGMENT-OPTIONS or IOGEN. Either of these keywords relates to the tailoring of data
descriptions output for segment input/output areas for IMS (DL/I). The settings displayed are then
those currently specified in the macro DGSCOB, DGSPLI, DGSBAL, or DGSREC, depending on
language. For example:

SHOW PRODUCE-OPTIONS FOR PL/I IOGEN;

displays the settings of the parameters in DGSPLI.

Syntax

� �SHOW PRODUCE-OPTIONS FOR�

� �TOTAL ;
.

�

ADABAS

MARKIV

MARK-IV

SYSTEM2000

S2K

COBOL

PL/I

PL/1

PLI
PL1

BAL
ASSEMBLER

ALC
RECORD-LAYOUTS

ASSEMBLY

SEGMENT-OPTIONS
IOGEN

IMS
DL/I

DL/1

DLI
DL1

DBDGEN
DATABASE-DESCRIPTIONS

PROGRAM-SPECIFICATIONS

PSBGEN
77

ASG-Manager Products Source Language Generation
78

Index
A
aliases 62

derivation of data names from 62
precedence of KNOWN-AS clause 63
tailoring of installation macro 63

Assembler generation 31
DC statements 38
dummy names 40
ECU statements 37
edit patterns 35
fillers 40
from Arrays 33
from GROUPs 32
from ITEMs 33
PRODUCE command 57

Assembler language
subset generated 32

B
BAL

subset generated 32
BAL generation 31

DC statements 38
dummy names 40
ECU statements 37
edit patterns 35
from Arrays 33
from GROUPs 32
from ITEMs 33
PRODUCE command 57

C
CLOSE command 60
COBOL generation 7

constructs supported 8
dummy names 18
fillers 18
from FILEs 9
from GROUPs and arrays 11
from ITEM’s CONTENTS Clause 16
from ITEM’s form-description 14
from ITEM’s NOTE and
DESCRIPTION clauses 17

PRODUCE command 54
standards 8

comments 5
concatenated keys 13
conditional editing 70
contradictory output-form specifications 67
control card 60
control options 55

displaying 76
generation 61
name editing 68
output 59

D
DALIAS installation macro 63
data structures 3
DC statements 38
ddname 60
DGBAL installation macro 47
DGCOB installation macro 47

level number tailoring 19
DGPLI installation macro 47
DGREC installation macro 47
displaying output 59
DROPPING clause 69
dtfname 60
dummy data entries record 4
dummy names

Assembler 40
COBOL 18
PL/I 29

E
ECU statements 37
edit patterns

Assembler 35

F
filler name conversion 50
fillers 4
79

ASG-Manager Products Source Language Generation

80
Assembler 40
COBOL 18
PL/I 29

form of ITEM 67

G
generation control options 61

aliases 62
format and content of output 63
suppressing 65

GIVING clause 63

I
IEBUPDTE control card 60
INSERTING clause 70
installation macros 47

DALIAS 75
keywords

filler name conversion 50
output source language 51
record layout 47–48
source language output

format 49
source library dataset control 48

overriding values 62
GIVING 63
OMITTING 65

interrogating control options settings 76
ITEM form and version 67

L
level numbers

COBOL 19
level-88 data entries

generation from CONDITION-NAME
clauses 16

generation from NOTE and
DESCRIPTION clauses 17

LIBR control card 60
library dataset

closing 60
specifying 59
suppressing output 59, 61
type 60

library update control card 60
logical file name 60

M
MAINT control card 60

N
name editing 68

automatic 69
conditional 70
DROPPING clause 69
INSERTING clause 70
REPLACING clause 69
WHEN clause 71

NOGENERATION keyword 61
NOPRINT keyword 61

O
OMITTING clause 65
output control options 59
output dataset

closing 60
specifying 59
suppressing output 59, 61
type 60

output form specification
contradictory 67
GIVING 63
OMITTING 65

output source language tailoring 51

P
PL/I generation 21

based structures 23
binary items 27

character set 22
dummy names 29
fillers 29
final symbol 67
from arrays 24
from GROUPs 22
from ITEMs 22
INITIAL attributes 28
level numbers 22
overview 22
pointer variables 29
self-defining data structures 22
storage attributes 22

pointer variables 22
PL/I 29

PRINT keyword 61
printing output 61
PRODUCE command 53

general form 53
syntax 72

protected members 4

R
record layouts 41

data name 42
data names 42
definition 42

Index
example 42
fields in 43
format of 45
generation 41

PRODUCE command 58
tailoring

capabilities 43
installation macro

keywords 47–48
recursive reference 4
reference paths 4
repetition factors

COBOL 15
PL/I 28

REPLACING clause 69

S
self-defining data structure 22
SHOW PRODUCE-OPTIONS command 76
sign symbols in PL/I pictures 26
source language generation

benefits 2
definition 1

source language output format tailoring 49
source library dataset tailoring 48
suppressing output

to printer or terminal 61
to source library dataset 61

T
tailoring capabilities

installation macros 42
interrogation 5

SHOW PRODUCE-OPTIONS
command 76

overview 5

U
USING clause 67

V
version of ITEM 67

W
WHEN clause 70
81

ASG-Manager Products Source Language Generation

82

ASG Worldwide Headquarters Naples Florida USA I asg.com

	CD Contents
	Contents
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Publication Conventions
	ASG Support Numbers
	Business Hours Support
	Non-Business Hours - Emergency Support

	ASG Web Site
	Enhancement Fax Form
	Preface
	About this Publication

	Source Language Generation
	What IS Source Language Generation?
	Why Generate from the Repository?
	How Are Source Languages Generated?
	Record Layouts

	Generation of Data Structures
	Fillers
	Comments
	Tailoring Capabilities

	Generation of COBOL Data Descriptions
	How to Generate COBOL Data Descriptions
	Introduction to COBOL Source Generation
	COBOL Generation from FILEs
	COBOL Generation from GROUPs and Arrays
	COBOL Generation from ITEMs
	COBOL Generated from ITEM’s Form-description
	COBOL Generated from ITEM’s CONTENTS Clause
	COBOL Generated from ITEM’s NOTE and DESCRIPTION Clauses

	Generation of COBOL Fillers and Dummy Names
	Level Numbers

	Generation of PL/I Data Descriptions
	How to Generate PL/I Data Descriptions
	Introduction to PL/I Source Generation
	Storage Attribute Declarations in PL/I
	PL/I Structures and Level Numbers
	Based Structures
	PL/I Generation from Arrays
	Generating PL/I Elementary Items
	Generating PL/I INITIAL Attributes
	Generation of PL/I Fillers and Dummy Names
	Pointer Variables

	Generation of Assembler Data Descriptions
	How to Generate Assembler Data Descriptions
	Introduction to Assembler Source Generation
	Assembler Generation from GROUPs
	Assembler Generation from Arrays
	Assembler Generation from ITEMs
	Assembler Edit Patterns
	Generation of Assembler EQU Statements
	Generation of Assembler DC Statements
	Generation of Assembly Fillers and Dummy Names

	Generation of Record Layouts
	How to Generate Record Layouts
	Record Layouts: Overview and Example
	Fields in Record Layouts
	Format of the Generated Layout

	Tailoring Source Language Generation
	Installation Macros
	Source Library Dataset Control
	Record Layouts Tailoring
	Source Language Output Format Tailoring
	Import from COBOL Function Filler Name Conversion
	Output Source Language Tailoring

	Command Specifications
	PRODUCE Command
	Generic Overview of the PRODUCE Command
	COBOL Generation
	PL/I Generation
	Assembler Generation
	Record Layouts Generation
	Output Control Options Overview
	Specifying the Output Dataset
	Suppressing Output to a Source Library Dataset
	Controlling Output During Source Language Generation
	Generation Control Options Overview
	Deriving Data Names from Aliases
	Specifying the Format and Contents of Output
	Suppressing Specified Generation Options
	Selecting a Form or Version of an ITEM Member
	Name Editing Options Overview
	Replacing Names or Name Elements
	Dropping Names or Name Elements
	Inserting Characters Into Names
	Conditional Editing
	PRODUCE Syntax

	SHOW PRODUCE-OPTIONS
	Syntax

	name:
	number:
	contact name:
	publication:
	product:
	version number:
	pub date:
	comments:

