
ASG-Manager Products�

REXX Interface User�s Guide
Version 2.5.1

Publication Number: MPR0200-251-REXX
Publication Date: November 2001

The information contained herein is the confidential and proprietary information of Allen Systems Group, Inc. Unauthorized use of this information and disclosure to
third parties is expressly prohibited. This technical publication may not be reproduced in whole or in part, by any means, without the express written consent of Allen
Systems Group, Inc.

© 1998-2002 Allen Systems Group, Inc. All rights reserved.
All names and products contained herein are the trademarks or registered trademarks of their respective holders.

ASG Worldwide Headquarters Naples Florida USA | asg.com | info@asg.com
1333 Third Avenue South, Naples, Florida 34102 USA Tel: 239.435.2200 Fax: 239.263.3692 Toll Free: 800.932.5536 (USA only)

© 2002 Allen Systems Group, Inc.
All names and products are trademarks or registered trademarks of their respective holders.

ASG Documentation/Product Enhancement Fax Form
Please FAX comments regarding ASG products and/or documentation to (239) 263-3692.

Company Name Telephone Number Site ID Contact name

Product Name/Publication Version # Publication Date

Product:

Publication:

Tape VOLSER:

Enhancement Request:

ASG Support Numbers
ASG provides support throughout the world to resolve questions or problems regarding
installation, operation, or use of our products. We provide all levels of support during normal
business hours and emergency support during non-business hours. To expedite response time,
please follow these procedures.

Please have this information ready:

� Product name, version number, and release number

� List of any fixes currently applied

� Any alphanumeric error codes or messages written precisely or displayed

� A description of the specific steps that immediately preceded the problem

� The severity code (ASG Support uses an escalated severity system to prioritize service to
our clients. The severity codes and their meanings are listed below.)

� Verify whether you received an ASG Service Pack for this product. It may include
information to help you resolve questions regarding installation of this ASG product. The
Service Pack instructions are in a text file on the distribution media included with the
Service Pack.

If You Receive a Voice Mail Message:

1 Follow the instructions to report a production-down or critical problem.

2 Leave a detailed message including your name and phone number. A Support representative
will be paged and will return your call as soon as possible.

3 Please have the information described above ready for when you are contacted by the Support
representative.

Severity Codes and Expected Support Response Times

ASG provides software products that run in a number of third-party vendor environments. Support
for all non-ASG products is the responsibility of the respective vendor. In the event a vendor
discontinues support for a hardware and/or software product, ASG cannot be held responsible for
problems arising from the use of that unsupported version.

Severity Meaning Expected Support Response
Time

1 Production down,
critical situation

Within 30 minutes

2 Major component of product disabled Within 2 hours

3 Problem with the product, but customer has
work-around solution

Within 4 hours

4 "How-to" questions and enhancement
requests

Within 4 hours

Business Hours Support

Non-Business Hours - Emergency Support

Your Location Phone Fax E-mail

United States and
Canada

800.354.3578 239.263.2883 support@asg.com

Australia 61.2.9460.0411 61.2.9460.0280 support.au@asg.com

England 44.1727.736305 44.1727.812018 support.uk@asg.com

France 33.141.028590 33.141.028589 support.fr@asg.com

Germany 49.89.45716.222 49.89.45716.400 support.de@asg.com

Singapore 65.6332.2922 65.6337.7228 support.sg@asg.com

All other countries: 1.239.435.2200 support@asg.com

Your Location Phone Your Location Phone

United States and
Canada

800.354.3578

Asia 65.6332.2922 Japan/Telecom 0041.800.9932.5536

Australia 0011.800.9932.5536 Netherlands 00.800.3354.3578

Denmark 00.800.9932.5536 New Zealand 00.800.9932.5536

France 00.800.3354.3578 Singapore 001.800.3354.3578

Germany 00.800.3354.3578 South Korea 001.800.9932.5536

Hong Kong 001.800.9932.5536 Sweden/Telia 009.800.9932.5536

Ireland 00.800.9932.5536 Switzerland 00.800.9932.5536

Israel/Bezeq 014.800.9932.5536 Thailand 001.800.9932.5536

Japan/IDC 0061.800.9932.5536 United Kingdom 00.800.9932.5536

All other countries 1.239.435.2200

ASG Web Site
Visit http://www.asg.com, ASG�s World Wide Web site.

Submit all product and documentation suggestions to ASG�s product management team at
http://www.asg.com/asp/emailproductsuggestions.asp.

If you do not have access to the web, FAX your suggestions to product management at (239)
263-3692. Please include your name, company, work phone, e-mail ID, and the name of the ASG
product you are using. For documentation suggestions include the publication number located on
the publication�s front cover.

http://www.asg.com/asp/emailproductsuggestions.asp
http://www.asg.com

i

Contents

Preface .iii
About this Publication . iv

Publication Conventions . v

1 The REXX Interface for the Manager Products Repository. 1

2 Overview of the REXX Interface . 3
Interface Modes. 4
TEMPORARY Mode . 4
PERMANENT Mode . 5
RESIDENT Mode . 5
SERVER Mode . 5

Selecting Modes . 6
Initializing with REXXMSPI . 6
Activating SERVER Mode . 9
Executing LOGON with the Initialization Call . 10

3 Differences for ISPF (RESIDENT and PERMANENT Modes) 13
Using the SHUTDOWN Command. 14

Starting REXX Procdures . 15

4 Persistent Sessions (SERVER Mode). 17
Creating Persistent Sessions. 17

Terminating and Resuming Applications . 18

ASG-Manager Products REXX Interface User’s Guide

ii

5 Syntax of the MPIO Call . 21

6 REXX Interface Variables . 23

7 The OUTMAP Function . 25

8 Variable Services for the Communication with MMR/CMR 29

9 DACCESS from Within the REXX Application. 31

10 The SWAP Function . 41

Appendix A
DCONTROL Area . 45

Appendix B
Return Codes of MethodManager/ControlManager . 47

Appendix C
Return Codes. 49

Index. 53

iii

Preface

This ASG-Manager Products REXX Interface User’s Guide provides information on
using the REXX interface with ASG-Manager Products (herein called Manager
Products).

Within the Manager Family of Program Products (excluding ASG-MethodManager,
herein called MethodManager), ASG-ControlManager (herein called ControlManager)
and ASG-DictionaryManager (herein called DictionaryManager) are co-requisites of
each other. Both are environmental prerequisites (EPR) in as much as they must be at the
latest version and release Level for each and every other Manager Product to execute
correctly. This EPR rule applies to Manager Products in both Mainframe Environments
(MFE) and Programmable Workstation Environments (PWSE). ControlManager and
DictionaryManager complement each other in providing a gateway environment to Open
Systems Interconnection (OSI) across information engineering techniques and
dictionaries/directories/repositories from ASG and other vendors. Thus, ControlManager
and DictionaryManager enable Manager Products users to position themselves to take
full advantage of the Manager Products family in providing a Computer Aided Software
Engineering (CASE) environment.

Allen Systems Group, Inc. (ASG) provides professional support to resolve any questions
or concerns regarding the installation or use of any ASG product. Telephone technical
support is available around the world, 24 hours a day, 7 days a week.

ASG welcomes your comments, as a preferred or prospective customer, on this
publication or on any ASG product.

ASG-Manager Products REXX Interface User’s Guide

iv

About this Publication
This publication consists of these chapters:

• Chapter 1, "The REXX Interface for the Manager Products Repository," provides
an overview of how the REXX interface works with Manager Products repositories.

• Chapter 2, "Overview of the REXX Interface," describes the components the
REXX interface uses.

• Chapter 3, "Differences for ISPF (RESIDENT and PERMANENT Modes),"
describes the ISPF differences for RESIDENT/PERMANENT modes.

• Chapter 4, "Persistent Sessions (SERVER Mode)," describes the SERVER mode
used to create persistent sessions.

• Chapter 5, "Syntax of the MPIO Call," describes the syntax and functions for the
MPIO statement.

• Chapter 6, "REXX Interface Variables," describes the variables available in the
REXX interface.

• Chapter 7, "The OUTMAP Function," describes using the output buffer function.

• Chapter 8, "Variable Services for the Communication with MMR/CMR," describes
the variable interface for setting and reading DYR variables using the REXX
interface.

• Chapter 9, "DACCESS from Within the REXX Application," describes the
DACCESS function.

• Chapter 10, "The SWAP Function," describes the SWAP method used with
MethodManager.

Preface

v

Publication Conventions
ASG uses these conventions in technical publications:

Convention Represents

ALL CAPITALS Directory, path, file, dataset, member, database,
program, command, and parameter names.

Initial Capitals on Each Word Window, field, field group, check box, button, panel (or
screen), option names, and names of keys. A plus sign
(+) is inserted for key combinations (e.g., Alt+Tab).

lowercase italic
monospace

Information that you provide according to your
particular situation. For example, you would replace
filename with the actual name of the file.

Monospace Characters you must type exactly as they are shown.
Code, JCL, file listings, or command/statement syntax.

Also used for denoting brief examples in a paragraph.

Vertical Separator Bar (|)
with underline

Options available with the default value underlined (e.g.,
Y|N).

ASG-Manager Products REXX Interface User’s Guide

vi

1

1 1The REXX Interface for the Manager
Products Repository

The purpose of the REXX interface is to extract and process Manager Products repository
data from within a REXX application. You can easily change the information in the
repository. To keep the data interface simple, the information is passed in the REXX
environment. That is, information is exchanged in the Manager Products repository using
the variables of the REXX application.

You can execute MethodManager and ControlManager functions from REXX in the
MVS operating system. You can also use the REXX interface, MethodManager, and
ControlManager in batch mode as long as no other part of the REXX application requires
an ISPF environment.

The delivery tape includes the REXX interface and is identified by the FU-code RX01.
You will need to customize MP.CORP to use the REXX interface DACCESS or SWAP
function. You perform the customization by modifying and constructing the
EXECUTIVE routines in the file MP.CORP. The other functions do not need
customization.

ASG-Manager Products REXX Interface User’s Guide

2

3

2 2 Overview of the REXX Interface

This diagram demonstrates the relations between the various components of the REXX
interface:

The DCONTROL area is created during the initialization of the application. This means,
in ISPF, two split-screen applications can each work with their own area.

Initialize the interface once in the application that uses it. This is usually done during the
early stages of the application.

Repository
REXX-Variablen-Services

DMRUS-
Output-
Puffer

U/I-
DCONTROL

REXXMSPI

REXXMSPE

REXX-
Applikation

Variable

Application

Buffer

ME
TH
OD
MA
NA
GE
R

CO
NT
RO
LM
AN
AG
ER

ASG-Manager Products REXX Interface User’s Guide

4

Figure 1 • Initializing the interface

/* REXX ------- the application ------- */
 ...
 set some variables for initialization
 ...

 CALL REXXMSPI
 IF MPIORC > 0 THEN DO
 SAY '### Error in REXX-MSP interface, RC='MPIORC
 EXIT
 END
 ...

The initialization is usually done in the REXX procedure that contains the start of the
application as the main procedure. When this procedure ends, the connection to
MethodManager and ControlManager (herein called MMR/CMR) closes.

Interface Modes

The invocation of REXXMSPI is responsible for the internal initialization of the REXX
interface. After the call completes successfully, the interface is in one of these modes:

• Temporary

• Permanent

• Resident

• Server

TEMPORARY Mode
The TEMPORARY mode reserves a temporary area for the REXX application. This area
is released automatically when the application terminates.

An MMR/CMR session started via the LOGON command terminates automatically.

In an ISPF split screen environment, two REXX applications initialized in
TEMPORARY mode have separate MMR/CMR sessions with their own data areas.

2 Overview of the REXX Interface

5

PERMANENT Mode

The PERMANENT mode calls REXXMSPI to activate a subtask that reserves up to 8
areas for an equal number of MMR/CMR sessions. Under ISPF, with a split screen, up to
two subtasks of this type can be active in their own area.

Usually the parent-task in the REXX application terminates the subtask using a
SHUTDOWN call. If this does not happen, MVS terminates the subtasks IKJMSPCT and
IKJMSPWD with abend A03.

A normal panel dialog can run under ISPF between the start and the end of the subtask.
This dialog enables an interactive use of the areas permanently available in the
background (and their MMR/CMR sessions). In order to uncouple parallel activities,
there is usually one REXX area assigned to each ISPF split screen application.

RESIDENT Mode

The RESIDENT mode reserves areas in the same way as for the PERMANENT mode,
but differs in that the subtask is only activated once in the address space. Each additional
invocation of REXXMSPI—independent of the ISPF split screen application that
executes the call—uses this task and its areas.

This mode allows you to route both sides of the ISPF split screen into one area. In this
case, it is the responsibility of the applications to synchronize the corresponding
command execution and the usage of the output.

SERVER Mode

The SERVER mode is only available if ASG-Manager Products Server Facility (herein
called MPSF) is active. Using this mode, a client REXX application can establish a
persistent connection with MPSF and execute all Manager Products (MPR) commands
via MPSF. You can activate persistency using a special terminating function in
REXXMSPI.

The SERVER mode should not be confused with the RESIDENT and PERMANENT
modes kept for compatibility. These modes allow the creation of persistent sessions
within an ISPF address-space which keeps ISPF/TSO, the REXX-i/f tasks, the client
REXX application, and the complete MPR software in that address-space.

Note:
RESIDENT and PERMANENT modes cannot be used to establish SERVER
connections.

ASG-Manager Products REXX Interface User’s Guide

6

Selecting Modes

REXXMSPI evaluates the value of the variable MPIOMPFCT. The value of this variable
determines one of these modes:

In batch mode (not ISPF in batch mode), the modes PERSISTENT or RESIDENT are
equal to TEMPORARY as there is no REXX-i/f persistency mode available outside ISPF
online REXX applications.

Always execute a LOGOFF and subsequent SHUTDOWN for PERMANENT and/or
RESIDENT modes to assure a smooth transition. After SHUTDOWN, the interface can
no longer be used from within the application.

Initializing with REXXMSPI

The initialization via REXXMSPI completes these tasks:

• Provides the central U/I DCONTROL area and additional input/output buffers.

• Activates the REXX language environment (by using ATTACH) in order to make
the sub-function MPIO available. Use this function to execute all subsequent
MMR/CMR functions until the last call, which is usually LOGOFF.

Mode Value

TEMPORARY This is the standard setting.

PERMANENT In this mode, each ISPF screen application has its own fixed
areas.

RESIDENT In ISPF, all applications have a common pool of areas.

SERVER The REXX application communicates its commands to a
dedicated MPSF execution task.

RESUME Under ISPF, a search for a PERMANENT and/or RESIDENT
area, which may already exist, is requested. If such an area is not
available, the TEMPORARY mode is activated.

When a SERVER mode connection is established and the
previous REXX client task terminates with the special
termination call, use RESUME to continue using the MPSF
session. Persistent sessions have to watch for time-outs of their
MPSF tasks.

SHUTDOWN A PERMANENT/RESIDENT/SERVER mode previously
initialized by this application is terminated.

2 Overview of the REXX Interface

7

After the initialization completes, all function calls are executed via this new REXX
command:

MPIO ... additional operands ...

REXX executes this function dynamically via a call to REXXMSPE.

The communication between the REXX application, the interface, and MMR/CMR is
implemented via the REXX variable services. When specifying an MPIO function,
REXX variables are either filled with input values or they are filled on return with output
values.

The variables currently defined for the communication when executing commands are
described in Chapter 3, "Differences for ISPF (RESIDENT and PERMANENT Modes),"
on page 13.

Neither TSO nor ISPF is required to run the REXX interface. This enables you to use it in
batch mode.

Figure 2 • Example job

//REXXBTCH EXEC PGM=IRXJCL,
// PARM='REXXAPP parms'
//STEPLIB DD DISP=SHR,DSN=MP.LOADLIB
//SYSEXEC DD DISP=SHR,DSN=MP.REXX.APPS
//SYSTSPRT DD SYSOUT=*
//* -- for using METHODMANAGER
//MPAID DD DISP=SHR,DSN=Your.Mpaid
//...
//repos DD DISP=SHR,DSN=Your.Data.Repository.INDEX
//...
//MPIN DD DUMMY
//MPOUT DD SYSOUT=*
//MPRDIAG DD ...

Several variables are defined for controlling the REXXMSPI settings. Usually, the
defaults defined within by the interface routines are sufficient.

For example, these commands activate the REXX interface for a specific REXX
application:

MPIOMPFCT = 'mode'
...
CALL REXXMSPI
...

ASG-Manager Products REXX Interface User’s Guide

8

With the REXX interface you can create up to eight DCONTROL areas for the
RESIDENT or PERMANENT modes. These areas are parallel within a session and all
other modes are exactly one session per connection. Under ISPF split-screen, every ISPF
REXX application has its own session or uses one common session depending on the
chosen modes.

The first call to REXXMSPI initializes all U/I DCONTROL areas. The default setting for
the number of areas is 1, but can be set to a higher value (for RESIDENT or
PERMANENT) by setting the variable MPIOAREAS:

MPIOMPFCT = 'RESIDENT' or 'PERMANENT'
MPIOAREAS = n
...
MPIOAREALINES = lines
MPIOOUTPAGES = out-blocks
...
CALL REXXMSPI
...

where:

n is the number of areas. The maximum defined is 8, a value smaller than 1 is
treated as an error.

MPIOAREALINES is an optional variable that defines the maximum number of
command lines handled via these areas. Each line here has a maximum length of
255 characters. The default value is 250. This variable can be used in all modes.

MPIOOUTPAGES specifies the maximum size of the output area in 4K blocks. If
for a standard query for members (e.g., LIST ONLY xxx) the output lines have a
length of 72 characters, you can keep about 1137 lines using this variable:

MPIOAREALINES = 20

The default value is 8. For example, 8 x 4096 = 32768 bytes, about 430 lines.

This variable can also be used in any mode.

Each area managed by IKJMSPCT has its own unique ID and can only be accessed by
subsequent REXX procedures when this ID is specified. The variable MPIOMPID sets
the ID during the initialization:

MPIOMPFCT = 'mode'
...
MPIOMPID = 'cccccccc0001'
...
CALL REXXMSPI
...

2 Overview of the REXX Interface

9

where cccccccc is the first 8 characters specified by the user as an arbitrary string
(blanks are permitted, but can be confusing). The last four digits have to be specified in a
predefined way, resulting in a string of 12 characters. This ID is assigned verbatim to the
first DCONTROL, and then IKJMSPCT automatically continues by assigning to the
second the value cccccccc0002 and so on.

Activating SERVER Mode

The SERVER mode is activated by using several special variables:

MPIOMPFCT = 'SERVER'
MPIOMPSRV = 'mpsf-luname'
MPIOMPHND = 0
...
CALL REXXMSPI
...

where mpsf-luname is a unique MPSF APPC name. Any MPSF task can be connected
as SERVER. Connections unavailable to MPSF tasks produce an error from REXXMSPI.
See the ASG-Manager Products Server Facility User’s Guide for more information.

MPSF returns a handle (a numeric value) in the variable MPIOMPHND that uniquely
identifies the active session. It is the task of the REXX application to keep this handle for
a following REXX application to RESUME and re-establish the persistent connection

See Chapter 4, "Persistent Sessions (SERVER Mode)," on page 17 for additional
information about SERVER mode sessions.

To resume a persistent session in another REXX-application

� Use this call:

MPIOMPFCT = 'RESUME'
MPIOMPSRV = 'mpsf-luname'
MPIOMPHND = previous-session-handle
...
CALL REXXMSPI
...

where:

mpsf-luname is the name which has been assigned as a unique MPSF
APPC name.

MPIOMPHND contains a previously returned session handle. If the session has
been terminated (time-out, MPSF shutdown, etc.), an error returns.

ASG-Manager Products REXX Interface User’s Guide

10

Executing LOGON with the Initialization Call

In all initializing modes it is possible to execute a LOGON together with the initialization
call. The LOGON to ControlManager has to be handed over as first command after the
initialization call.

For each area, you can specify a logon sequence with a maximum of 9 lines:

MPIOMPFCT = 'mode'
...
MPIOLOGON.i.0 = m
MPIOLOGON.i.1 = 'first command line for the i-th area'
 ...
MPIOLOGON.i.m = ' last line for the i-th area'
...
CALL REXXMSPI
...

The first line MPIOLOGON.i.1 is usually the LOGON command, while the subsequent
lines activate specific dictionaries.

If MPIOAREAS = 1 (this is the default), pass the start up LOGON by entering:

MPIOMPFCT = 'mode'
...
MPIOLOGON.0 = m
MPIOLOGON.1 = 'first command line'
 ...
MPIOLOGON.m = ' last line'
...
CALL REXXMSPI
...

If for one area the variable MPIOLOGON.0 = 0 or MPIOLOGON.i.0 = 0, no LOGON
executes for this area. The first normal command may trigger an AUTOLOGON.

The call to REXXMSPI returns with some variables set to reflect the success or failure of
the initialization. The main return code of the REXX interface is kept in the variable:

MPIOMPFCT = 'mode'
...
CALL REXXMSPI
SAY '---- return from REXX i/f initialization, RC=' MPIORC

2 Overview of the REXX Interface

11

The variable MPIORC contains the return-code of the REXX interface for this call and
for all subsequent calls. If the interface itself detects an erroneous condition, it gives a
return code as stated in Appendix C, "Return Codes" on page 49. This table provides an
overview:

The return codes 4...16 are not return-codes of the REXX interface but are mapped into
the variable MPIORC when these conditions are met:

• The REXX interface checks all parameters of the request and finds no error

• The command to execute was handed over via the interface to ControlManager
(CMR) and executed there

• The result was received from CMR and included a CMR/DMR return code between
4 through 16

In this case, MPIORC contains the return code value from CMR.

After the successful initialization, the execution of MPR commands is done by a special
REXX interface execution syntax:

MPIOMPFCT = 'mode'
...
CALL REXXMSPI
...
...
MPIOCMD.0 = n /* number of command lines to execute */
MPIOCMD.1 = 'first command line'
...
MPIOCMD.n = 'last command line'
...
ADDRESS ATTACH "MPIO COMMAND"
SAY '---- return from REXX i/f command execution, RC=' MPIORC

More forms of this MPIO function are given in Chapter 5, "Syntax of the MPIO Call," on
page 21.

Error Code Meaning

MPIORC = 0 Execution of this request was successful and without any error.

MPIORC = 4...16 See meaning below.

MPIORC >= 32 A very severe error occurred during processing of the request in
the REXX interface.

ASG-Manager Products REXX Interface User’s Guide

12

13

3 3Differences for ISPF (RESIDENT and
PERMANENT Modes)

In ISPF split screen mode you can use the variant MPIOMPFCT= 'RESIDENT' with this
call sequence:

• Screen-1—REXX procedure after CALL REXXMSPI with 'RESIDENT'

• Screen-2—Calls REXXMSPI with 'RESIDENT' as well and uses from this point on
the areas of screen-1

• Screen-1—Calls a procedure, which in turn calls other ISPF functions via the MPR
command ISPF

• Screen-2—Calls procedures that use ISPF functions as well

This input is required:

Screen 1 MPIOMPFCT = 'PERMANENT'
MPIOMPID = 'iiiiiiii0001'
MPIOAREAS = 1
MPIOLOGON.0 = m
...
CALL REXXMSPI

Screen 2 MPIOMPFCT = 'PERMANENT'
MPIOMPID = 'kkkkkkkk0001' different from above
MPIOAREAS = 1
MPIOLOGON.0 = n
...
CALL REXXMSPI

Both screens now operate separate areas and do not interfere with one another.

Both screens must also make a SHUTDOWN (see "Using the SHUTDOWN Command"
on page 14) and it is necessary to ensure the setting of the LOCK-ID in MPIOMPID is
correct in all call REXX procedures.

ASG-Manager Products REXX Interface User’s Guide

14

After calling REXXMSPI, these variables are available besides MPIORC = 0 (read only):

Enter this to reuse an area initialized as resident by other REXX procedures:

MPIOMPFCT = 'RESUME'
MPIOMPID = 'cccccccc000n'
CALL REXXMSPI
IF MPIORC > 0 then ...
...

where:

cccccccc is the 8-character ID of the area to be accessed, as it was specified
during initialization.

000n is the internal position of the area '0001' up to a maximum of '0008'.

Using the SHUTDOWN Command

The resident areas continue to exist until either the task that has executed the initialization
call REXXMSPI (with 'RESIDENT' or 'PERMANENT') terminates or until you enter the
SHUTDOWN command to have the REXX procedure explicitly terminate:

MPIOMPFCT = 'SHUTDOWN'
CALL REXXMSPI

Variable Value Description

MPIOCTIS RES IKJMSPCT controls all areas RESIDENT for all users.

TMP The area has been created only temporarily for the calling
REXX procedure and is removed when the procedure ends.

MPIOCTLOGON NO No LOGON executed yet.

YES A first command has been executed successfully. It is
assumed that a valid session (with AUTOLOGON) is active.

3 Differences for ISPF (RESIDENT and PERMANENT Modes)

15

Starting REXX Procdures

All REXX procedures may start with this code if the initialization is executed under
ISPF:

MPIOMPFCT = 'RESIDENT' or 'PERMANENT'
MPIOMPID = 'cccccccc0001'
...
CALL REXXMSPI
...

The procedure executed first also carries out the initialization. All of the subsequent
procedures work internally with MPIOMPFCT= 'RESUME'.

ASG-Manager Products REXX Interface User’s Guide

16

17

4 4Persistent Sessions (SERVER Mode)

You can create persistent sessions using the mode MPIOMPFCT= 'SERVER'. These
sessions allow the client applications to terminate without the MPSF task terminating.
The MPSF task waits for another client application that resumes that pending session.
The persistent SERVER mode is equivalent to the old PERMANENT and RESIDENT
modes except it is not restricted to ISPF only, and MPSF controls the session.

Creating Persistent Sessions

MPSF creates persistent sessions and assigns them a unique handle (numerical value) for
this session. The creating application has to request this handle during its initialization
call:

MPIOMPFCT = 'SERVER'
MPIOMPSRV = 'mpsf-luname'
MPIOMPHND = 0
...
CALL REXXMSPI
...
IF MPIORC = 0 THEN DO
 SAY "--- session handle is now = " MPIOMPHND
 ...
END
...

You must set the variable MPIOMPHND to 0 for this call. If the session was established,
the REXX interface returns the new handle value in this variable. You can also keep this
handle for applications that follow. For ISPF you may enter:

...
MPIOHND = MPIOMPHND
"ISPEXEC VPUT (MPIOHND) PROFILE"
...

An application that does not want to establish a persistent session, may simply ignore the
value of MPIOMPHND as it returns. However, every application that wants to start a new
session with MPSF has to use the above given command sequence.

ASG-Manager Products REXX Interface User’s Guide

18

Terminating and Resuming Applications

If an application wants to terminate but wants to allow subsequent applications to resume
this session, it must terminate with this command:

...
MPIOSCOD = ''
ADDRESS ATTACH “MPIO COMMAND '$$DEALLOCATE$$'"
MPIOMPFCT = 'SHUTDOWN'
CALL REXXMSPI
...

If this code executes correctly, the next application resumes with that pending session
(until its time-out terminates it otherwise).

Use the initialization call to resume a pending session:

...
 /* try to find a session handle to resume */
 /* for ISPF: */
 "ISPEXEC VGET (MPIOHND) PROFILE"
...
MPIOMPFCT = 'RESUME'
MPIOMPSRV = 'mpsf-luname'
MPIOMPHND = previous-session-handle
...
CALL REXXMSPI
...
IF MPIORC = 0 THEN DO
 SAY "--- session handle reused = " MPIOMPHND
 ...
END
...

After this call to REXXMSPI, the value of MPIOMPHND gives the handle and it should
be the same value as the previous-session-handle. If not, MPSF creates a new
session (because the previous one did not exist anymore).

4 Persistent Sessions (SERVER Mode)

19

Enter this call if you want the application to terminate a (non-)persistent session and the
MPSF task:

...
MPIOSCOD = ''
ADDRESS ATTACH "MPIO COMMAND 'LOGOFF.'"
MPIOMPFCT = 'SHUTDOWN'
CALL REXXMSPI
...
 /* plus for example for ISPF: */
 MPIOHND = 0
 "ISPEXEC VPUT (MPIOHND) PROFILE"
...

The LOGOFF command terminates the MPSF session, freeing all its resources. The final
SHUTDOWN clears all REXX interface resources.

ASG-Manager Products REXX Interface User’s Guide

20

21

5 5Syntax of the MPIO Call

The MPIO statement design is similar to that used by the REXX function MVS/EXECIO:

MPIO sub-function [Operands according to function]

where sub-function consists of these commands:

These are the basic functions of the REXX interface for executing commands:

COMMAND. The command (or the command sequence) is passed to MMR/CMR,
processed, and the output is immediately made available to the REXX application in the
variable MPIOOUT.

The next call executes a new command.

EXECUTE. As with COMMAND, the command is handed over and executed. In
contrast with COMMAND, the output of MMR/CMR remains in the internal interface
buffers. Only the MPIOxxx variables, which specify the number of available output
lines, are filled.

Subsequent OUTMAP calls can retrieve this data.

EXECUTD. This command is only available in PERMANENT or RESIDENT mode.

Here, the commands are passed to MMR/CMR as well, but contrary to EXECUTE,
control is immediately returned to the REXX application.

Subsequent WAIT calls are necessary to determine the end of the asynchronous
execution. Until the execution has ended, no additional commands can be executed via
the busy subtask IKJMSPCT (in PERMANENT mode, several tasks can be available).

OUTMAP. Special mapping for MPIOOUT onto variables.

{ COMMAND
EXECUTE
EXECUTD

} [{
 STEM MPIOCMD.
"a one-line-command" ... }]

ASG-Manager Products REXX Interface User’s Guide

22

WAIT. Waits for the EXECUTD commands to complete.

CONTROL. DCONTROL control parameter via DOPTION.1 .. 9 and DBUFFLEN
(default = 8192 Bytes)

Without operands:

The variables MPIODOPTION.1 to MPIODOPTION.9 and MPIODBUFFLEN are
used.

Operand = ccccccccc: The parameter is stored in OPTION1..9, up to the
maximum of 9 characters.

Operand = RESET: The default values are reset.

DGET. Reads GLOBAL variables from MethodManager and making them available in
REXX variables.

DPUT. Writes REXX variables into GLOBAL variables in MMR/CMR.

DACCESS. Reads (all) member attributes.

SWAP. Switches to interactive mode in MethodManager. This function is only available
to MethodManager customers.

23

6 6REXX Interface Variables

All variables available in the REXX interface start with the prefix MPIO.

After a successful call of REXXMSPI for initialization, the variable MPIOVERSION
contains the valid version of the REXX interface. This information, among other things,
is used for troubleshooting. If necessary, additional internal debugging variables are
available. The included examples contain several small routines that can log this
additional data if needed. In your applications, this group of variables is not needed.

Passing a command stream via the interface to the U/I, and then to MMR/CMR, is
executed similar to MVS-EXECIO via a STEM variable with the standard name
MPIOCMD.

Alternatively, you can use the operand STEM xxx. to specify a different name for
handing over the commands. You can use these standard names:

After verifying the parameters, the contents of MPIOCMD.1 ... MPIOCMD.n is handed
over to MMR/CMR. If the parameters are incorrect, the variable MPIORC is set to return
code >0 and the function is immediately terminated.

Appendix C, "Return Codes," on page 49 lists all the return codes currently used by the
REXX interface.

Variable Description

MPIOCMD.0. Numeric, specifies the number of following elements, the maximum
depends on the setting of MPIOAREALINES.

MPIOCMD.1.

MPIOCMD.n

The command(s) as string lines with a maximum of 80 characters.

ASG-Manager Products REXX Interface User’s Guide

24

After calling MMR/CMR, the variables are set to these results:

If the function COMMAND is used, all output lines are returned to the calling REXX
procedure (according to the setting of the DOPTION flags). If the lines are processed
only at a later stage, ASG recommends starting the command with EXECUTE. In this
case, the output is kept in an internal output buffer and can be retrieved later with a
subsequent OUTMAP call.

Note:
The next COMMAND or EXECUTE sequence overwrites this buffer with new data.

If the executed function has created output lines, they are retrieved and stored in the
STEM variable MPIOOUT:

Some commands (e.g., LOGOFF) do not create output (except the return codes).

Result Description

MPIORC Return code of the interface and MPR command status.

If the REXX interface does not execute any MPR command the MPIORCMPR variable
has the default value -1.

If MPR commands are executed, the variable will contain the same value as MPIORC.
The MPIORC variables can have these values:

MPIODRETURN A 4-character string from DRETURN,,.DSEVRITY. See Appendix
C, "Return Codes," on page 49.

MPIODOPT A 9-character string with the OPTION1..9 values.

MPIOTOTL Numeric value of DOUTTOTL.

MPIOTOTM Numeric value of DOUTTOTM.

MPIOWAIT Numeric value of DOUTWAIT.

MPIOOLNS Numeric value of all output lines.

Variable Description

MPIOOUT.0 Numeric, number of output lines (= value of MPIOOLNS)

MPIOOUT.1
MPIOOUT.m

The output lines with a maximum length of 256

25

7 7The OUTMAP Function

After COMMAND or EXECUTE, you can read the output buffer as often as you want
(until the next COMMAND/EXECUTE call). The output can be requested in three
different forms:

• Direct by handing over the output lines with a maximum line length of 256, as they
are stored in the output buffer:

"MPIO OUTMAP"

• Splitting the output into columns, which are defined by the specification of the start
column and the column width:

"MPIO OUTMAP FIELDS var-1. start-1 length-1 [var-2 ..]"

For example:

• Splitting the lines into words and storing them in column variables:

"MPIO OUTMAP WORDS stem-var-1. [stem-var-2 ...]"

For splitting the lines into words, it may be useful to ignore certain parts of the
output lines. For this purpose, you can insert two special definitions between the
variables receiving the individual values:

... SKIP.nn ... and ... TO.ccc ...

where:

nn specifies a number greater than zero of words to skip in each line.

ccc specifies the start column of the word search. With TO.ccc, you can assign a
column area multiple times.

Col-1 32 45 55 58

DE-ITEM-1 ITEM SCE ENC OWNER

DE-ITEM-2 ITEM

ASG-Manager Products REXX Interface User’s Guide

26

For example:

"... WORDS VAR1. SKIP.1 VAR.2 TO.50 VAR3. .. "

results in:

Figure 3 • Initialization example

ADDRESS ATTACH

"MPIO COMMAND 'LOGON ADMIN PASSWORD ADMIN NO-PROFILE;'
SAY MPIORC

MPIOCMD.0 = 2
MPIOCMD.1 = 'DICTIONARY DEMO;'
MPIOCMD.2 = 'AUTHORITY DEMO;'
"MPIO COMMAND MPIOCMD."

MPIOCMD.0 = 1
MPIOCMD.1 = 'LIST ONLY DE-HAW;'
"MPIO COMMAND MPIOCMD."
DO i = 1 TO MPIOOUT.0
SAY RIGHT(i,3) MPIOOUT.i
END

"MPIO COMMAND ‘LOGOFF'"
ADDRESS MVS

ignored Col.50

Word-1 Word-2 Word-3 Word-4 ...

7 The OUTMAP Function

27

After the initialization—which has been omitted here—these commands are passed to the
REXX interface:

Figure 4 • Using external files

 ADDRESS TSO "ALLOC FI(MPIN) DA('a-file')"
 cmds.0 = 4
 cmds.1 = 'REPLACE member-xy;'
 cmds.2 = 'ITEM'
 cmds.3 = ' HELD-AS CHAR 30'
 cmds.4 = ';'
 "EXECIO * DISKW MPIN (STEM cmds. FINIS"
 ...

 ADDRESS ATTACH
 "MPIO CONTROL '01'"
 ... "MPIO COMMAND"
..... "MPIO CONTROL '00'"
 ...

The MPIO-CONTROL redirects the input of the REXX interface from MPIOCMD. to
the external file that has been allocated under the DD name MPIN. The subsequent call
without the specification of additional operands after COMMAND automatically
switches to MPIN and returns the output via MPIOOUT.

Before executing the next normal command, you should switch back with an ADDRESS
ATTACH "MPIO CONTROL '00' ".

For an example, see the sub-procedure MPRY in REXXCMD.

Command Description

MPIO COMMAND "LOGON ... The first command to be executed is a LOGON to
start the MMR/CMR session.

MPIOCMD.i = t...

 and

MPIO COMMAND MPIOCMD.

The variable MPIOCMD. is used to pass two
commands as block.

MPIOCMD.1 = ‘LIST ONLY ... The first actual command.

MPIO ... LOGOFF The end for now.

ASG-Manager Products REXX Interface User’s Guide

28

29

8 8Variable Services for the Communication
with MMR/CMR

A simple variable interface for setting and reading DYR variables is available with the
REXX Version 2.2.0 interface.

This sub-function requires the existence of the procedures EX-REXX-***, which should
be available in the MPAID with the name MPREXD****. Customizable routines are
delivered on the release tape in file MP.CORP.

Only GLOBAL variables can be accessed, since the procedures used here have no
memory for other pools.

DYR GLOBAL variables are read with:

ADDRESS ATTACH "MPIO DGET rexx-var msp-var"

where:

rexx-var is the STEM name of the REXX variables that should receive the
value(s).

msp-var is the name of the MSP variable, which may also be an ARRAY.

On execution, these cases are distinguished:

• The variable (MPIORC > 0) is not defined.

• The variable contains only a single value.

The REXX variable with the name rexx-var contains the value.

• The variable consists of an array (ARRAYHI > 1).

The REXX variable rexx-var.0 contains the number of array elements, the REXX
variables rexx-var.1 ... rexx-var.n correspond to the values in the DYR array. If the
array is not filled completely, the corresponding elements are missing in REXX.

ASG-Manager Products REXX Interface User’s Guide

30

Use this command to set the PROCL GLOBAL variables:

ADDRESS ATTACH "MPIO DPUT rexx-var msp-var"

where:

rexx-var is the STEM name of the REXX variables that contain the value(s).

msp-var is the name of the DYR variable of type GLOBAL, which should
receive the values from REXX.

If a STEM is specified as a REXX variable (XYZ. ..., e.g.), the complete array with
XYZ.0 elements is stored in a real array.

A special variant of DPUT is

ADDRESS ATTACH "MPIO DPUT rexx-var msp-member MEMBER"

where:

rexx-var is the name STEM of the REXX variable that contains the complete
source of a member definition.

msp-member (if there is an active repository for the application at that time) is the
name of the contents encoded in the current repository under the member name .

31

9 9DACCESS from Within the REXX
Application

The DACCESS function largely corresponds to the function used in the Manager
Products procedure language. Use the following to call it from REXX:

ADDRESS ATTACH "MPIO DACCESS msp-member [options]"

where msp-member is the name of a member in the current repository.

Internally, the procedure EX-REXX-QMTS is called (in the MPAID MPREXDQMTS),
which branches to a member type specific sub-procedure after a DACCESS to the
corresponding member, where all (or at least some) attributes of the member are
processed and passed to the REXX interface.

Since member types usually can have an arbitrary number of attributes, a fixed access
function for attributes is not useful. For this reason, the user has to execute a generation
for the required member types before DACCESS is used for the first time from within
REXX. This generation is executed in a MethodManager session with:

REXX-ACGEN member-type [xxxx] [options] ;

where:

member-type is the complete ENCODE-KEYWORD of the desired member
type. It is indicated for DACCESS for a member of this type in the variable
MEMBER_TYPE.

xxxx is a unique name with a maximum of 4 characters, which identifies the
generated MethodManager DYR procedure EX-REXX-QMTS-xxxx (in the
MPAID: MPREXDxxxx). If another generation is executed after changes in the
member type, this short name may be omitted.

Examples:

REXX-ACGEN EXECUTIVE-ROUTINE EXEC ;
REXX-ACGEN DV-FELD ITEM ;

ASG-Manager Products REXX Interface User’s Guide

32

These items are required to execute REXX-ACGEN:

• The execution takes place in the repository with the UDS that contains the desired
member types

• The member type EXECUTIVE-ROUTINE is available in this repository

The routines EX-REXX-QMTS and EX-REXX-QMTS-encode-keyword generated
by REXX-ACGEN are only available for the REXX interface. The data interface used by
these routines is not available for customer uses.

The result of a REXX call of MPIO DACCESS msp-member is a set of REXX
variables, which contain with the same name as their counterparts in the MPR procedure
language, the corresponding attribute values (e.g., after DACCESS EX-REXX-QUVR):

ACCESS_MEMBER "EX-REXX-QUVR"
MEMBER_CONDITION "ENCODED"
MEMBER_TYPE "EXECUTIVE-ROUTINE"
...
EXECUTIVE_LEVEL "unknown"
COUNT_CONTENTS 41

With regard to the last variable from the example above, consider these items:

• If there is a generated access routine for the member type of the member
msp-member, DACCESS passes the 2 variables ACCESS_MEMBER and
MEMBER_CONDITION filled with msp-member and ENCODED, respectively.

• DACCESS without further operands only makes the base attributes of the member
type available.

• The command DACCESS msp-member WITH COUNTS creates the variables
COUNT_xyz, which contain the number of available attribute values for each
repeated attribute.

• With DACCESS msp-member COUNTS, only the COUNT variables are created.

• With DACCESS msp-member WITH rep-attr (further attr), you can access these
attributes themselves. Their values can be found in the corresponding STEM
variables with the number in rexx-var.0.

An access to a rep-attr can fill several variables if the corresponding clause has
several sub-values.

• With DACCESS msp-member ONLY attribute, only the requested attribute is
handed over.

• DACCESS msp-member ALL returns all attributes of the member (that are
filled).

• With DACCESS msp-member SOURCE, the complete source is returned in the
REXX STEM variable SOURCE. This also works for members that are not
encoded.

9 DACCESS from Within the REXX Application

33

The REXX variables largely correspond to the names that can be checked with:

SHOW MEMBER-TYPE VARIABLES FOR MEMBER-TYPE member-type ;

Here are some remarks regarding the host command REXX-ACGEN:

Each MPIO DACCESS member call of the REXX interface corresponds on the host side
to the execution of the procedure MPREXDQMTS in this form:

MPREXDQMTS member [options] ;

The procedure MPREXDQMTS executes these sub-functions:

• Executing a DACCESS MEMBER member WITH SITUATION.

If the return code of this function is not 0, DUMMY, SOURCE-ONLY, and
non-existing members receive special treatment.

• For the current repository (determined via the variable &DICT), the member type
of the member (in the DACCESS variable MEMBER_TYPE) is mapped to a
generated access routine MPREXDxxxx.

If no routine is found, the routine MPREXDQUDF is called, which notifies the
REXX interface of this error condition. This usually returns to the application with
MPIORC = 56/57.

• The localized access routine MPREXDxxxx is called. It generates the transfer data
for the desired attributes for the member type. The REXX interface receives this
data.

• The interface generates from the transfer data, the filled REXX variables and
additional control information, which can be retrieved by the application.

Construct the procedure EX-REXX-QMTS-PROTOTYP during the installation of the
REXX interface. It generates in the MPAID first, empty frame procedure
MPREXDQMTS, which does not yet know a user repository and the member type.

ASG-Manager Products REXX Interface User’s Guide

34

With each subsequent REXX-ACGEN call:

• A member type specific routine EX-REXX-QMTS-encode-keyword is saved in
the corresponding repository (for this reason, each repository has to contain the
member type EXECUTIVE-ROUTINE). This routine is stored in the MPAID with
the name MPREXDxxxx, where xxxx is a suffix with a maximum of 4 characters
that can be chosen freely by the customer, as long as it does not correspond to one
of the names used by the REXX interface (e.g., QMTS itself, QUVR, STVR, etc.).

• The routine EX-REXX-QMTS is completed via the current version
MPREXDQMTS in the MPAID and constructed again. At the same time, queries to
the repository and the member type are inserted automatically.

Caution! When generating existing routines again: MPREXDQMTS and all access
routines are retained.

If a new generation is required, the procedure EX-REXX-QMTS should not be modified
manually. A CONSTRUCT should be done for the member
EX-REXX-QMTS-PROTOTYP from the ADMIN repository, with subsequent
REXX-ACGEN calls for all required member types.

Figure 5 • Example for the automation of the generation

MPXX LITERAL=^
PARSE ARG hierarchy data-uds data-dict
 data-auth data-status

DICT ADMIN;
AUTH hihi;
STA data-uds;

ARRAYGEN ^list 'WHICH MEMBER-TYPES CONST UH-hierarchy'^;

COMMAND MBRS MBRK

cnt = 0
DO over Member-type-member in "list"

 abbrev = SUBSTR(member-name,1,4)
 IF in METHODMANAGER THEN DO
 DACCESS MEMBER member-name;
 DRETRIEVE FIRST ALIAS;
 abbrev = ALIAS_NAME(1)
 DRELEASE MEMBER member-name;
 END

 cnt = cnt+1
 MBRS(cnt) = member-name
 MBRK(cnt) = abbrev

END

DICT data-dict;
AUTH data-auth;
STA data-status;

9 DACCESS from Within the REXX Application

35

DO FOR ARRAYHI(^MBRS^)
 m = FDO(^DFOR^)

 CEXEC REXX-ACGEN MBRS(m) MBRK(m)
 [options];

END

The procedure REXX-ACGEN allows some customization via additional parameters:

The settings described above can also be made in the Exit procedure
EX-REXX-ACGEN-USEREXIT.

In this user exit, the variable SITCATR has been defined. The variable names defined
there are created as REXX variables after the internal DACCESS MEMBER xxxx
WITH SITUATION. By default, BASE_MEMBER_TYPE, MEMBER_CONDITION,
and MEMBER_ER_INTEGRITY are defined.

Parameter Description

NOUDR User defined relationships are ignored.

UDR Additional variables are generated for the UDRS and SUDRS. UDR and
NOUDR exclude one another.

ARRAY All attribute variables generated by the REXX interface are transferred
with:

 var.0 = Number of variable values

 var.1

 ... The values of the attribute

 var.n

Without this option, the elementary attributes are stored without "var.0"
and for single values only with var = value.

COUNTS The variables COUNT_var are generated.

Without this option, these variables are only created for a call
DACCESS member WITH COUNTS.

COUNT and ARRAY exclude one another.

REF All references departing from the member are created as well. In this case
variables are:

COUNT_REFERENCES

REF_NAME.x Name of member

REF_RELATIONSHIP.x Relationship keyword

REF_MEMBER_TYPE.x Member type

ASG-Manager Products REXX Interface User’s Guide

36

An additional exit, EX-REXX-ACGEN-GENEXIT is available. Use this exit to complete
MPREXDQMTS or MPREXDxxxx in the source. This exit is activated if the command
uses the parameter GENEXITxxxx, where xxxx is identical with the MPAID name in
the procedure EX-REXX-ACGEN-GENEXIT (default = MPREXD$GNX). The exit is
called immediately after the creation of the encode keyword EXECUTIVE. It can then
create additional clauses. After it has returned, the MPAID-NAME clause and the
CONTENTS clause are generated.

Among the attributes created for each member type, the COMMON-ATTRIBUTES play
a special role, since they are created or ignored in REXX-ACGEN via a filter function.
Internally, a SHOW MEM VAR FOR COMMON is executed for the generation process,
with subsequent filtering to omit undesired attributes.

The filter consists of a procedure variable DROPATTR in the procedure
EX-REXX-ACGEN-USEREXIT that suppresses by default the attributes QUERY,
FREQUENCY, SECURITY-CLASSIFICATION, EFFECTIVE-DATE,
OBSOLETE-DATE, and ACCESS-AUTHORITY.

If you make changes to the procedure, you should construct it again.

In general, the names of the variables provided by the REXX interface to the application
correspond to the attributes, with these exceptions:

• Attributes having a dash in their name create REXX variables with the underscore
character (_) instead of the dash (-).

• Repeated attributes that have the suffix var-NAME in the SHOW MEM VAR ...
are created as REXX variables without this suffix. Other suffixes automatically
suppressed are -ARE, -IS, and -TO.

• The CATALOGUE attribute is generated as the REXX variable CATALOG.

• The sub-attribute SEE-QUALIFICATION becomes the REXX variable SEE_FOR.

• Sub-attributes of attributes are mapped as STEM variables with the corresponding
qualifier name parts in REXX. The rules applied for this mapping have been
defined for the MPR base member types and, due to their complexity, will not be
explained here. If you need more information, please contact the ASG Service
Desk.

In the process of correcting errors in this area, these naming rules might lead to new
forms of REXX variables for complex member types . To reduce the complexity in
customer applications, ASG recommends using the REXX interface additional STEM
variable MPIODACCESS.xx. This variable is provided after DACCESS.

9 DACCESS from Within the REXX Application

37

MPIODACCESS.xx makes the attribute name structure more comprehensible. This table
defines the variable options:

Figure 6 is an example for accessing complex attributes for DACCESS.

Figure 6 • The member GR-BOOK

 GROUP
 CATALOG
 'MMR'
 NOTE 'Customizing the panel interface'
 SEE GR-MMR-COMMON FOR 'Original member'
 CONTAINS
 MDG_TABLE_FIELD_CHAR
 , MDG_COMMAND_LINE_CHAR IF FE-1 EQ 'A'
 ELSE MDG_BOOK IF FE-1 EQ 'B'
 , MDG_LINE_COMMAND_CHAR
 ...
 , MDG_STMAX IF FE-2 EQ '1'
 ELSE MDG_BOOK_2 IF FE-2 EQ '2'
 ...
 , MDG_MATRIX_SIZE_ONLINE
 , MDG_MATRIX_SIZE_BATCH

Variable Description

MPIODACCESS.0 Number of all variables returned by DACCESS = number of
attributes.

MPIODACCESS.i Name of the REXX variable assigned to the corresponding
attribute (e.g., ACCESS_MEMBER, NOTE, SEE).

MPIODACCESS.i.TYP character = C character value, N numerical value, or U the
value is missing

(optional) character = * values are in an array

MPIODACCESS.i.CNT Number of values if the attribute is type C or N.

ASG-Manager Products REXX Interface User’s Guide

38

Returns for MPIO DACCESS GR-BOOK ALL:

ACCESS_MEMBER = GR-BOOK
MEMBER_TYPE = GROUP
CATALOG.0 = 3
CATALOG.1 = MMR
CATALOG.2 = GR2
CATALOG.3 = MR0
NOTE.0 = 1
NOTE.1 = Customizing
CONTAINS.0 = 9
CONTAINS.1 = MDG_TABLE_FIELD_CHAR
CONTAINS.1.INDEXED_BY.0 = 0
CONTAINS.1.CONDITION.0 = 0
CONTAINS.1.ELSE.0 = 0
CONTAINS.2 = MDG_COMMAND_LINE_CHAR
CONTAINS.2.INDEXED_BY.0 = 0
CONTAINS.2.CONDITION.0 = 1
CONTAINS.2.CONDITION.1 = IF
CONTAINS.2.CONDITION.COMPARATOR = FE-1
CONTAINS.2.CONDITION.OPERATOR = EQ
CONTAINS.2.CONDITION.COMPARAND = A
CONTAINS.2.ELSE.0 = 1
CONTAINS.2.ELSE.1.CONTAINS.1 = MDG_BOOK

CONTAINS.8 = MDG_MATRIX_SIZE_ONLINE
CONTAINS.8.INDEXED_BY.0 = 0
CONTAINS.8.CONDITION.0 = 0
CONTAINS.8.ELSE.0 = 0
CONTAINS.9 = MDG_MATRIX_SIZE_BATCH
CONTAINS.9.INDEXED_BY.0 = 0
CONTAINS.9.CONDITION.0 = 0
CONTAINS.9.ELSE.0 = 0

To supplement DACCESS, the sub-function DEXPAND has been added:

ADDRESS ATTACH "MPIO DEXPAND member [options]"

The available options are the DEXPAND operands documented in the ASG-Manager
Products Procedures Language:

Operand Option Description

FOR language Language for the expanded form (must be available as
a Functional Unit)

USE

USING form HELD-AS etc.

VERSION vvv Version for items

9 DACCESS from Within the REXX Application

39

The operands can be abbreviated.

After the call, the variables EXPANDED_MEMBER = member of the DEXPAND call
and the important variables are available. You can use MPIODACCESS.i to get their
names.

GIVING KNOWN-AS Additional creation of the KNOWN-AS names

ALIAS

WITH-ALIAS alias-type Use the ALIAS

Operand Option Description

ASG-Manager Products REXX Interface User’s Guide

40

41

10 10The SWAP Function

The SWAP function is another method of the REXX interface available for
MethodManager customers:

MPIO SWAP [profile-exec � #]

This function is used for switching to the interactive MethodManager mode from within a
REXX application. This switching requires that

• The REXX application is running in an interactive environment (TSO, ISPF, or
similar)

• Some additional preparations are made with regard to MethodManager

SWAP always switches to the current interactively displayable mode of the current
MethodManager session. For example, the currently valid TSS or LCS panel displays and
the dialog is continued from this point on as user dialog. The REXX application is from
this point on deactivated.

The interactive execution—also indirectly via procedures—of the command
MMR-SWAP ends this MethodManager mode and reactivates the sleeping REXX
application. The application can continue the processing, but needs to take into account
that the MethodManager environment may have changed during the interactive phase.

To minimize the side-effects of unintentional interactive activities, each entry via MPIO
SWAP is executed via a profile routine, which is executed each time before activating the
interactive mode. This routine has the predefined MPAID name MMRSWP0000.

This is an example routine supplied as EX-MMRSWP0000:

MPXX LITERAL=:
 GLOBAL MDG_MMR_SWAP
 IF MDG_MMR_SWAP EQ :ON: OR -
 MDG_MMR_SWAP EQ :AUPD: -
 THEN DO
 MPR :NOPR SET PF02 IMMED MMR-SWAP;:
 IF &PVAL NE :: THEN DO
 MPR &PVAL ;
 END
 END

ASG-Manager Products REXX Interface User’s Guide

42

When creating this profile procedure, make sure that the global variable
MDG_MMR_SWAP is defined by the REXX interface and expected within the Manager
Products software at certain points with these predefined contents:

MPIO SWAP always acts on these additional pieces of information:

Note:
The contents of MPIOCMD.1 are always evaluated as direct command. To avoid
problems, assign an empty string to this variable before invoking MPIO SWAP, if only
the switching is desired.

The supplied test procedure REXXCMD contains a small sub-procedure MPRZ that
demonstrates the internal call of MPIO SWAP.

A typical case for switching via MPIO SWAP is if you want to execute the
MethodManager function AUPD from within a REXX application. You can implement
this as follows:

/* REXX --------------------- starting AUPD --------------- */
 ...
CALL REXXMSPI
 ...
MPIOCMD.1 = 'AUPD '!!member-name
ADDRESS ATTACH "MPIO SWAP #"
ADDRESS ISPEXEC "VGET (MMRAUPD) SHARED)"
 ...

OFF Normal mode, the REXX application executes commands

ON Interactive mode called by REXX application with MPIO SWAP

AUPD Interactive mode, automatic entry directly into AUPD (for usage, see
below)

undefined No processing from within REXX

Operand after SWAP Can be the character #, in this case the standard
profile MMRSWP0000 is executed.

If a procedure name is specified instead of '#', this
procedure is executed instead of MMRSWP0000.

A SWAP without profile procedure is not possible.

Value in the REXX variable
MPIOCMD.1

A regular MethodManager command with operands
as far as they are specified.

MPIOCMD.0 and

MPIOCMD.2 ... are ignored

This command is also passed to the profile routine,
which usually after its initialization and test parts
executes this command via the variable &PVAL.

10 The SWAP Function

43

For AUPD, a new additional EXIT has been introduced in MethodManager, which
permits, together with the MethodManager variable MDG_MMR_SWAP and the ISPF
variable MMRAUPD, extended control over the interactive mode via MPIO SWAP.

If AUPD is terminated, control is automatically returned to the REXX application,
without the necessity to enter an MMR-SWAP manually.

If AUPD is terminated in a regular way with F3, three sub-cases have to be distinguished:

• The edited member has not been changed. In this case, the variable MMRAUPD
contains on return the value member-name UNCHANGED

• The edited member has been saved and encoded. The variable MMRAUPD then
contains the value member-name ENCODED

• If an error occurs during the encoding, the user receives the corresponding
messages and can decide how to proceed with the AUPD

If AUPD is aborted with cancel, control is returned to the REXX application as well. The
variable MMRAUPD then contains the value member-name CANCEL.

The storing of a value in the variable MMRAUPD occurs in the new exit EC9949. This
exit is supplied together with the software as an example. In this case its only task is to
assign a value to the ISPF variable MMRAUPD by means of the two call parameters and
to save it as SHARED variable. If the REXX application does not need the information
about how the AUPD was terminated, the exit is not required in this form.

Currently, the exit is called by the two command members MPEAC1100 and
MPEAC1020, which handle the two cases mentioned above. At the same time it
represents an AUPD-Clean-Up exit, which may also be useful in other cases.

If, from within an AUPD session activated with MPIO, SWAP activities are started by
the user superseding the AUPD, or which bring the dialog into different MethodManager
functions, an automatic return is no longer useful, since the dialog status may be
undefined.

ASG-Manager Products REXX Interface User’s Guide

44

45

Appendix A
DCONTROL Area

These are the default settings for the DCONTROL area:

Note:
The shaded fields must not be changed.

DDMR CM00 Not changeable

DBUFFLEN 8192 Via CONTROL sub-function

DINPLEN 19 Computed from the initialized input buffer

DINPLREC 255 Fixed

DOUTLEN 256 Fixed

DOPTION1 0 0 neither INPUT nor OUTPUT created

1 OUTPUT in output file, INPUT acc. DOPTION2

DOPTION2 3 0 Input from DINPUT buffer or parameter (DOPTION8)

1 Input from file

2 Input from file, print if DOPTION1 = 1

3 Input like 0, print if DOPTION1 = 1

4 Input like 0, then input from file, for EOF DOPTION2 =1 set

5 Input like 4, print if DOPTION1 = 1

DOPTION3 1 0 DINPLEN is size of INPUT buffer

1 DINPLEN is number of input lines

DOPTION4 0 0 Return to caller if all input lines processed

1 Return after each line

DOPTION5 2 0 Only output lines in DOUTPUT buffer

1 Only messages

2 Output lines and messages

ASG-Manager Products REXX Interface User’s Guide

46

DOPTION6 1 0 Output lines in format of POST/MAIL

1 In normal print output format

DOPTION7 1 0 Access Call Work File (ACWF) if necessary

1 no ACWF

DOPTION8 1 0 Input is in DINPUT buffer

1 Input is in 3rd parameter of UI call

DOPTION9 2 0 Execution in Batch

1 Execution in Online (then Break-Detection)

2 Execution Online without Break.

47

Appendix B
Return Codes of

MethodManager/ControlManager
This appendix describes the MethodManager/ControlManager return codes as
documented in the ASG-DataManager User Interface. In case of inconsistencies in this
documentation, the ASG-DataManager User Interface takes precedence.

DRETURN 0

1

2

3

The output contains data

The output contains messages

No output created

No output and the MethodManager/ControlManager session has
ended

DRETURN1 0

1

2

The work file was used for storing results

The work file was not required

The work file was required for storing, but could not be opened

DRETURN2 0

1

2

3

4

5

6

7

8

The input has been processed

EOF in the input (command not terminated properly?)

The input file could not be opened (not possible in REXX
interface)

A severe error has interrupted the processing

The processing was interrupted with the BREAK key

Unable to connect to MPSF

Client timeout occured

Server task has abended

Server shutdown was done

The values 1 or 2 are only possible if DOPTION2 = 1,2,4, or 5
was set. Should not normally occur in the REXX interface.

ASG-Manager Products REXX Interface User’s Guide

48

DSEVRITY ()

I

W

E

S

C

No messages

One or more information messages

One or more warning messages

One or more error messages

One or more severe error messages

One or more critical error messages

49

Appendix C
Return Codes

These are the return codes of the REXX interface:

0 all actions executed. If MPR commands were executed and DRETURN2
 = 0, a maximum of I messages were detected.
4 all actions executed. If MPR commands were executed and DRETURN2
 = 0, a maximum of W messages were detected.

8 all actions executed. If MPR commands were executed and DRETURN2
 = 0, a maximum of E messages were detected.

12 all actions executed. If MPR commands were executed and DRETURN2
 = 0, a maximum of S messages were detected.

16 all actions executed. If MPR commands were executed and DRETURN2
 = 0, a maximum of C messages were detected.

32 all actions executed. If MPR commands were executed and DRETURN2
 = 0, other terminating conditions were detected.

36 DRETURN2 = 1: End-Of-Data on command input

37 DRETURN2 = 2: MPIN missing or invalid

38 DRETURN2 = 3: MPR failed (typically abended)

39 DRETURN2 = 4: BREAK-KEY (only for normal online UI)

40 DRETURN2 = 5: Unable to connect to MPSF

41 DRETURN2 = 6: Client timeout occured

42 DRETURN2 = 7: Server task has abended

43 DRETURN2 = 8: Server shutdown has occured

50 ### SEVERE ERROR IN DPUT-DACCESS SAVE
 the variable MPIODACCESS.xxx could not
 be saved
51 ### SEVERE ERROR IN DPUT-DACCESS SAVE
 the variable MPIODACCESS.xxx.TYP could not
 be saved

ASG-Manager Products REXX Interface User’s Guide

50

52 ### SEVERE ERROR IN DPUT-DACCESS SAVE
 the variable MPIODACCESS.0 could not
 be saved
 the variable attribute.0 could not
 be saved
53 ### SEVERE ERROR IN DPUT-DACCESS SAVE
 the variable attribute.xxx could not
 be saved
54 ### SEVERE ERROR IN DPUT-DACCESS SAVE
 reserved
55 ### SEVERE ERROR IN DPUT- ASSIGN
 reserved
56 ### SEVERE ERROR IN DPUT-DACCESS SAVE
 the variable MPIODACCESS.xxx.CNT could not
 be saved
 the variable MPIODACCESS.xxx.LOW could not
 be saved
57 ### SEVERE ERROR IN DPUT-DACCESS SAVE
 the number of values of an attribute is
 invalid, please check MPREXDQMTS
58 ### SEVERE ERROR IN DPUT-DACCESS SAVE
 the specification Low:High for an attribute is
 invalid, please check MPREXDQMTS ...
59 ### SEVERE ERROR IN DPUT-DACCESS SAVE
 the data type specification for an attribute is
 invalid, please check MPREXDQMTS ...
60 ### SEVERE ERROR IN DPUT-DACCESS SAVE
 The data type of an attribute needs to be
 followed by either the Low:High specification
 or directly by the value assignment.
 Please check MPREXDQMTS ... output
63 ### SEVERE ERROR IN DPUT-DACCESS SAVE
 The name of an attribute is >= 80 Bytes.
 Please check MPREXDQMTS ... output
64 ### SEVERE MISSING/INVALID FUNCTION
68 ### SEVERE INVALID DURING PENDING OPERATION
69 ### SEVERE INVALID SUB-FUNCTION OF MPIO
70 ### SEVERE INVALID DCONTROL PARAMETER
71 ### SEVERE BAD # OF COMMAND LINES
72 ### SEVERE INVALID OUTMAP PARAMETERS
73 ### SEVERE MISSING 1ST OPERAND IN DGET
74 ### SEVERE MISSING 2ND OPERAND IN DGET
75 ### SEVERE ASSIGNMENT ARRAY RANGE INVALID
76 ### SEVERE ASSIGNMENT VALUE TOO LARGE
77 ### SEVERE ASSIGNMENT ERROR
80 ### SEVERE NO DCONTROL AREA
81 ### SEVERE NOT LOCKED TO THIS TASK
82 ### SEVERE INVALID LENGTH
83 ### SEVERE HEADER IS INVALID
90 ### SEVERE REXXMSPI: Invalid MPIOAREA Count (> 8)
91 ### SEVERE REXXMSPI: Invalid MPIOLOGON.0 Count
92 ### SEVERE REXXMSPI: Too many MPIOLOGON.xxx lines
93 ### SEVERE REXXMSPI: Invalid MPIOAREALINES Value

94 ### SEVERE REXXMSPE: IKJMSPCT abended due to CMR-Abend
95 ### SEVERE REXXMSPI: termination after IKJMSPCT-Abend

Appendix C - Return Codes

51

 For sub-functions not available:

99 ### SEVERE NOT YET IMPLEMENTED

 Internal errors that ASG should be notified of:

100 ### SEVERE REXXMSPI: SHUTDOWN for non-resident area
101 ### SEVERE REXXMSPI: SHUTDOWN and Subtask is not active
102 ### SEVERE REXXMSPI: TCB-addresses missmatch
103 ### SEVERE REXXMSPI: IKJMSPCT is locked
104 ### SEVERE REXXMSPI: IKJMSPCT locked denied
105 ### SEVERE REXXMSPI: IKJMSPCT not properly released
106 ### SEVERE REXXMSPI: IKJMSPWD not properly released

ASG-Manager Products REXX Interface User’s Guide

52

53

Index

A
applications

resuming 18
terminating 18

C
components 3
conventions page v

D
DACCESS function 31

I
initializing

REXXMSPI 6–9
initializing the interface 4
interface modes 4
ISPF split screen mode 13

L
LOGON executing 10

M
modes

ISPF split screen 13
PERMANENT 5
RESIDENT 5
SERVER 5
TEMPORARY 4

MPIO syntax 21
MPIOMPFCT variable 6

O
output buffer 25

P
parameters

customization 35
PERMANENT mode 5
persistent sessions 17

creating 17

R
RESIDENT mode 5
resuming applications 18
return codes 49

MMR/CMR 47
REXX procedures

starting 15

S
SERVER mode 5

activating 9
SWAP function 41

T
TEMPORARY mode 4
terminating applications 18

V
variables 23

ASG-Manager Products REXX Interface User’s Guide

54

ASG Worldwide Headquarters Naples Florida USA I asg.com

	CD Contents
	Contents
	Index
	A
	C
	D
	I
	L
	M
	O
	P
	R
	S
	T
	V

	Publication Conventions
	ASG Support Numbers
	Business Hours Support
	Non-Business Hours - Emergency Support

	ASG Web Site
	Enhancement Fax Form
	Preface
	About this Publication

	The REXX Interface for the Manager Products Repository
	Overview of the REXX Interface
	Interface Modes
	TEMPORARY Mode
	PERMANENT Mode
	RESIDENT Mode
	SERVER Mode

	Selecting Modes
	Initializing with REXXMSPI
	Activating SERVER Mode
	Executing LOGON with the Initialization Call

	Differences for ISPF (RESIDENT and PERMANENT Modes)
	Using the SHUTDOWN Command
	Starting REXX Procdures

	Persistent Sessions (SERVER Mode)
	Creating Persistent Sessions
	Terminating and Resuming Applications

	Syntax of the MPIO Call
	REXX Interface Variables
	The OUTMAP Function
	Variable Services for the Communication with MMR/CMR
	DACCESS from Within the REXX Application
	The SWAP Function
	Appendix A
	Appendix B
	Appendix C

	name:
	number:
	contact name:
	publication:
	product:
	version number:
	pub date:
	comments:

