AD/ADVANTAGE

MANTIS for Windows SQL Support for
SUPRA Programming Guide

P19-2307-01

& CINCOM

he Smart Choices

AD/Advantage ® MANTIS for Windo ws SQL Support for SUPR A Programming
Guide

Publication Number P19-2307-01

© 1989, 1998, 1999 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage® DOCVIEW™ M/Spell™
AuroraDS® EAGLE ADVANTAGES" M/Text™
cINCOM® Enterprise Analyst Series™ NORMAL®
CINCOM SYSTEMS® MANTEXT® PC CONTACT®
MANTIS® SPECTRA™

® META*STAR® SUPRA®
CONTROL™ M/Archive™ SUPRA® server
CONTROL:Financial™ M/Exchange™ The Smart Choice®
CONTROL:Manufacturing™ M/Graph™ TIS/XA™
CPCS™ M/Post™ TOTAL®

TOTAL FrameWork®

All other trademarks are trademarks or registered trademarks of:

Acucobol, Inc. JSB Computer Systems Ltd.
AT&T Micro Focus, Inc.

Data General Corporation Microsoft Corporation

Digital Equipment Corporation Systems Center, Inc.

Gupta Technologies, Inc. TechGnosis International, Inc.
International Business Machines Corporation UNIX System Laboratories, Inc.

or of their respective companies.

Cincom Systems, Inc.

55 Merchant Street
Cincinnati, OH 45246-3732
U.S.A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

www.cincom.com

Release information for this manual

AD/Advantage MANTIS for Windows SQL Support for SUPRA
Programming Guide, P19-2307-01, is dated November 30, 1998. This
document supports Release 2.2.01 and higher of MANTIS for Windows.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. A Reader Comment Sheet is included at the
end of the manual for your convenience.

Cincom Technical Support for AD/Advantage

FAX: (513) 612-2000
Attn: MANTIS Support

E-mail: helpna@cincom.com

Phone: 1-800-727-3525

Mail: Cincom Systems, Inc.
Attn: MANTIS Support
55 Merchant Street
Cincinnati, OH 45246-3732
U.S.A.

Contents

About this book vii
USING thiS OCUMENT.......oiiiiiiii e Vi
DOCUMENT OFQANIZALION. .. .uiviiee e ittt e e e e e e e e e e s s e e e e e e s e e e e e e s ennneees viii
(070] 01 V7=T o1 1Te] o S T ERR PRI iX
MANTIS dOCUMENTALION SEIIES......eiiiiiiiiie ittt ettt e et e e snbeee e e Xii
Overview 13
Embedding SQL statements in MANTIS SQL SUPPOItcuveeiiiiieiiiiieiiiie e 14
SQL in MANTIS SQL Support versus SQL N C.....uvvvveeeeiiiiiieeee e e e e e 15
Embedding SQL statements in MANTIS programs 17
EMDEddiNG TUIES ... 17
HOSE VAITADIES ...ttt e et e e et e e s snbeeeeee 21
Referencing values in @ MANTIS Arrayccoovieeiiiiieeiiiie e 22
MANTIS versus SQL data tyPeS......uuuveeeeiiiiiiiiiiee st e e e e e 22
INAICALOr VANIADIES ... 23
Data conversion between MANTIS SQL Support and SUPRAccccocevieveeeevecinnnen, 24
Programming considerations 25
EXEC _SQL-END ...oiiiiiiiieiitiiie ettt ettt e e e st e e e st e e e st ae e s snbeaeesssbeeeeaans 27
Cursors, statements, and SQLDASccoiiiiiiiiiiiiiieieiei e bbb 28
Connection to SUPRA and multiple SeSSioN SUPPOItcoovveeeiiiiieeiiiieeiiieee s 29
Disconnection from SUPRA ..ottt ettt e e nnaeea e 30
MANTIS EXEC_SQL StAIEMENTeiiiiiiiiiiiiiiiiiieieieiee ettt ee e e e eeeeeeeeeeeeeeeeeeeees 31
SQL WHENEVER Stat€mMeENt.......cccuuiiiiiiie e e e e et e e et eeeeaan e eeas 33
Declarative versus interpretive WHENEVER statementscccccceeeivneeen. 38
WHENEVER Statement ... 38
SQL COMMIT/ROLLBACK StatemMENTSccciiiiiieiiiiieeiiiieeeseiiieeeesiiee e ssiree e nnee e 39
SQL SET DBNAME State€mMeENtuiiiiiiii e e e e e e e e e e e e e eean e eees 39

MANTIS for Windows SQL Support for SUPRA Programming Guide v

Contents

SQLCA IN MANTIS SQL SUPPOI . ..eetieiitiiieeiiiieee sttt e e siiee e siate e sniaeeessnseaeesnsseeeesnnseees 40
SQLCA SYNTAX. . citiiiiitiiiee ettt e e et e e e e e e e e e e anraaa 40
SQLCA EIBMENTS ..ottt e e e e e e e 42
COMMIT and ROLLBACK in SUPRA and COMMIT and RESET in MANTIS SQL
YU o] o L] SO PP TP PPTUPPPRPPPTTN 45
Y o] 1 L=ESIST= To [T PP PPPPPP PP PSPPPRN 46
Dynamic SQL in MANTIS SQL Support 47
Execute an SQL statement dynamicallyccooiiiiiiiiiiiiiiici e 48
ST]I 1 1 1 T (= 50
Allocate an SQLDA ..o a e 52
Deallocate an SQLDAcoiiiiieiiieee bbb bbb b aaaaabrarabane 53
Move data from your program into an SQLDA header element.................... 54
Move data from your program into an SQLDA repeating element................. 57
Move data from an SQLDA header element into your program............c........ 60
Move data from an SQLDA repeating element into your program................. 61
Sample MANTIS SQL programs 65
StAtIC INSEIMT FOULINE ...ttt 66
DYNAMIC INSEIT FOULINEvviieiiiiiie sttt e s e e et e e e e e e enees 68
StatiC UPAALE FOULINE ..ottt e e e et e e e e e e e eeeaeeeanns 70
DyNamicC UPALE FOULINEeiiiiiiiieiitiiie ettt ettt et e e e e e e 71
StALIC SEIECT FOULINEeeiiiiiiiiiiieeeeeee ettt eaeaeees 72
DYNAMIC SEIECE FOULINEeeiieieiiiie ettt e et e e e nees 73
Y= L (oo (=] = (I o 11 1 LI PPPRPPPPP 75
DyNamicC delete FOULINEoeiiiiiiieiiiiie ettt e e e e e 75
SQL qQUETY TUNCHION .ottt e e e e e e et e e e e e e e ennes 76
DyNamic COIUMN SEIECTciiiiiiiieiiiie et 79
Features not supported 81
MANTIS SQL Support error messages 83

Differences: MANTIS SQL Support versus SQL in C; MANTIS versus

SQL 99
SQL in MANTIS SQL Support versus SQL iN Cooveeiiiiiiiiieeeiiiiieeee e 99
MANTIS VEISUS SQL..iiiiitiiieiiiiie ettt ettt e et e e et e e e et e e e e nnbe e e e e e 100

Index 101

vi P19-2307-01

About this book

Using this document

MANTIS® is an application development system that consists of design
facilities (e.g., screens and files) and a programming language. MANTIS
SQL Support is used to create MANTIS applications that access SUPRA.
This manual explains how to code MANTIS SQL programs. Beginning
with an overview, the manual discusses the rules for combining MANTIS
and SQL, programming considerations, and dynamic MANTIS SQL.
Sample programs are provided.

This manual supplements MANTIS for Windows Facilities Reference
Manual, P19-2301, MANTIS for Windows Language Reference Manual,
P19-2302, and documentation on the SUPRA database system. System
administration considerations for MANTIS SQL Support are in MANTIS
for Windows SQL Support for SUPRA Administration Guide, P19-2308.

MANTIS for Windows SQL Support for SUPRA Programming Guide Vi

About this book

Document organization
The information in this manual is organized as follows:

Chapter 1—Overview
Provides an overview of MANTIS and MANTIS SQL Support.

Chapter 2—Embedding SQL statements in MANTIS programs
Describes the rules you must follow when embedding SQL
statements in a MANTIS program. It also explains how to reference
host variables and MANTIS entities, and how SUPRA converts data
values between SQL and MANTIS.

Chapter 3—Programming considerations
Discusses implications related to the interpretive nature of MANTIS
SQL Support.

Chapter 4—Dynamic SQL in MANTIS SQL Support
Discusses how dynamic SQL works in MANTIS SQL Support.

Appendix A—Sample MANTIS SQL programs
Provides listings of sample MANTIS SQL programs.

Appendix B—Features not supported
Lists features that are not supported by MANTIS for Windows.

Appendix C—MANTIS SQL Support error messages
Lists MANTIS SQL Support messages, and provides a suggested
corrective action.

Appendix D—Differences: MANTIS SQL Support versus SQL in C;
MANTIS versus SQL
Summarizes the differences between SQL in MANTIS SQL Support
and SQL in other languages.

Index

viii P19-2307-01

About this book

Conventions
The following table describes the conventions used in this document

series:
| Convention | Description | Example
Constant width i Screen Design Facility
ype Represents screen images and BT NAME PAGT
segments of code. INSERT ADDRESS
Slashed b (1) Indicates a space (blank). WRITEPASSb
The example indicates that a
password can have a trailing blank.
Brackets [] Indicate optional selection of

parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate
one of the following situations:

A single item enclosed by brackets =~ COMPOSE program-name |
indicates that the item is optional
and can be omitted.

The example indicates that you can
optionally enter a program name.

Stacked items enclosed by NEXT
brackets represent optional PRIOR
alternatives, one of which can be

selected. FIRST

The example indicates that you can LAST
optionally enter NEXT, PRIOR,

FIRST, or LAST. (NEXT is

underlined to indicate that it is the

default.)

MANTIS for Windows SQL Support for SUPRA Programming Guide ix

About this book

I Convention

I Description

IExampIe

Braces { }

Indicate selection of parameters.
(Do not attempt to enter braces or
to stack parameters.) Braces
surrounding stacked items
represent alternatives, one of
which you must select.

The example indicates that you
must enter FIRST, LAST, or a
value for begin.

FIRST
begin
LAST

Underlining

Indicates the default value supplied
when you omit a parameter.

The example indicates that if you
do not specify ON, OFF, or a row
and column destination, the system
defaults to ON.

ON
SCROLL | OFF
[row] [.col]

Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.

The example indicates that you can
enter either PRO or PROTECTED.

PROTECTED

Ellipsis points...

Indicate that the preceding item
can be repeated.

The example indicates that you can
enter (A), (A,B), (A,B,C), or some
other argument in the same
pattern.

(argument ,...)

SMALL CAPS

Represent a keystroke. Multiple
keystrokes are hyphenated.

ALT-TAB

P19-2307-01

About this book

I Convention

I Description

IExampIe

UPPERCASE

Indicates MANTIS reserved words.

You must enter them exactly as
they appear.

The example indicates that you
must enter CONVERSE exactly as
it appears.

CONVERSEname

lowercase

Indicates generic names of
parameters for which you supply
specific values as needed.

COMPOSHjrogram-name]

Italics

Indicate variables you replace with
a value, a column name, a file
name, and so on.

The example indicates that you can

supply a name for the program.

COMPOSE program-name]

Punctuation
marks

Indicate required syntax that you
must code exactly as presented.

() parentheses
. period
, comma
: colon
single quotation marks

[LET]v E:)J)] [ROUNDED(n)]=e1[,e2,e3.].

MANTIS for Windows SQL Support for SUPRA Programming Guide

Xi

About this book

MANTIS documentation series

Xii

MANTIS is fourth-generation programming language used for application
development. MANTIS is part of AD/Advantage®, which offers additional
tools for application development. The following list shows the manuals
offered with MANTIS for Windows, organized by task. You may not have
all the manuals that are listed here.

Getting started

¢ MANTIS for Windows Administration Guide, P19-2304*

General use

¢ MANTIS for Windows Language Reference Manual, P19-2302

¢ MANTIS for Windows Facilities Reference Manual, P19-2301

¢ MANTIS for Windows Quick Reference, P19-2303

SQL support

¢ MANTIS for Windows SQL Support for SUPRA Programming Guide,
P19-2307

¢ MANTIS for Windows SQL Support for SUPRA Administration Guide,
P19-2308*

Master user tasks
¢ MANTIS for Windows Administration Guide, P19-2304*

¢ MANTIS for Windows SQL Support for SUPRA Administration Guide,
P19-2308*

MNOTE Manuals marked with an asterisk (*) are listed twice because you use
e them for different tasks.

- J—

MOTE MANTIS educational material is available from your regional Cincom

education department.

P19-2307-01

1

Overview

MANTIS is an application development system for developing, testing,
executing, and documenting applications interactively. MANTIS SQL
Support is an extended version of MANTIS for Windows that enables you
to create MANTIS applications that access SUPRA using SQL. System
administration information is provided in MANTIS for Windows SQL
Support for SUPRA Administration Guide, P19-2308.

The presence of MANTIS SQL Support does not affect non-SQL
MANTIS applications. MANTIS SQL Support programs can run side-by-
side or in conjunction with non-SQL MANTIS programs, with neither
affecting the other.

As each SQL statement is encountered, MANTIS transparently prepares
and executes the statement. Data values are implicitly passed between
SQL variables (see SALARY in the code sample under “Embedding SQL
statements in MANTIS SQL Support” on page 14) and MANTIS variables
(see EMP SAL in the code sample under “Embedding SQL statements in
MANTIS SQL Support” on page 14).

MANTIS for Windows SQL Support for SUPRA Programming Guide 13

Chapter 1 Overview

Embedding SQL statements in MANTIS SQL Support

Embedding SQL in MANTIS is similar to embedding SQL statements in
other host languages. You embed SQL statements in a MANTIS
application program as standard MANTIS comments. The broken
vertical bar (}) is the MANTIS comment character. Precede each SQL
statement with an EXEC_SQL statement and follow it with an END
statement, as shown in the following example (MANTIS automatically
sets the indentation level (number of preceding periods (.)) for the
EXEC_SQL structure):

4580 TEXT EMP NAME(30)

4590 BIG EMP SAL

4600 WHILE SQLCODE<>100

4610 EXEC_SQL

4620 .! SELECT SALARY

4630 .! INTO :EMP SAL

4640 .! FROM EMPLOYEE TABLE

4650 .! WHERE NAME=:EMP NAME

4660 END

4670 DO BONUS ROUTINE

MANTIS variables in SQL statements are called host variables.
Syntactically, a colon (:) always precedes a host variable in an SQL
statement (as in line 4630 above). An input host variable is a MANTIS
variable passed to SQL and is used to select, insert, delete, or update
data. A MANTIS variable that receives data from SUPRA is called an
output host variable. Host variables are also used as parameters of the
SQL statements. Optionally, you can specify an indicator variable along
with a host variable. SUPRA sets the indicator variable to indicate null
values or to signal that a value was truncated. “Embedding SQL
statements in MANTIS programs” on page 17 describes embedding SQL
statements in MANTIS programs.

14 P19-2307-01

SQL in MANTIS SQL Support versus SQL in C

SQL in MANTIS SQL Support versus SQL in C

SQL in MANTIS SQL Support is essentially the same as its
implementation in SQL in C. The differences exist because MANTIS is
an interpretive rather than a compiled language. These differences are
noted in the appropriate chapters of this manual and are summarized in
“Differences: MANTIS SQL Support versus SQL in C; MANTIS versus
SQL" on page 99.

MANTIS for Windows SQL Support for SUPRA Programming Guide 15

Chapter 1 Overview

16 P19-2307-01

2

Embedding SQL statements in
MANTIS programs

This chapter describes the rules you must follow when embedding SQL
statements in a MANTIS program. It also explains how to reference host
variables and MANTIS entities, and how SUPRA converts data values
between SQL and MANTIS. A general working knowledge of MANTIS,
SUPRA, and SQL is assumed. A summary of MANTIS language
conventions is in MANTIS for Windows Language Reference Manual,
P19-2302.

Embedding rules

You embed SQL statements in a MANTIS application program as
standard MANTIS comments. The broken vertical bar () is the MANTIS
comment character. Standard rules apply for using MANTIS comments.
Precede each SQL statement with an EXEC_SQL statement and follow it
with an END statement. Standard SQL syntax rules apply for all text
between the EXEC_SQL and END statements. As the examples show,
EXEC_SQL causes the statements that follow it to be indented.

MANTIS for Windows SQL Support for SUPRA Programming Guide 17

Chapter 2 Embedding SQL statements in MANTIS programs

The following rules apply when embedding SQL statements in a MANTIS
application program:

¢ Only one SQL statement can be within an EXEC_SQL-END block.
The following example shows an invalid statement:

EXEC_SQL Invalid: Three SQL statements in
.1 OPEN C1 the EXEC_SQL-END block.

. FETCH C1 INTO ...

. CLOSE C1

END

¢ Any text between EXEC_SQL and END must be part of an SQL
statement and must be preceded by a broken vertical bar (). Once
MANTIS SQL Support encounters a broken vertical bar, it treats the
rest of the program line as a single SQL statement. Other MANTIS
statements or comments are not permitted. The following examples
show invalid statements:

EXEC_SQL Invalid: A statement other
.1 OPEN C1 than a comment is between

OPENED=TRUE EXEC_SQL and END.

END

EXEC_SQL Invalid: A MANTIS statement
.l OPEN C1:OPENED=TRUE is appended to a valid SQL
END Statement.

EXEC_SQL Invalid: A comment is

.l OPEN C1:JEMPLOYEE CURSOR appended to a valid SQL

END statement.

¢+ A colon within an EXEC_SQL-END block identifies a MANTIS host
variable, not a new statement, as the following example

demonstrates:
EXEC_SQL Clis an SQL entity; Ais a
L FETCHCL1INTO A MANTIS host variable.
END

18 P19-2307-01

Embedding rules

¢ An SQL statement in an EXEC_SQL-END block can be broken into
multiple lines, as shown in the following example:

EXEC_SQL is equivalent to EXEC_SQL
.l OPEN . OPEN C1
1c1 END

END

MANTIS reads the text on two consecutive comment lines in an
EXEC_SQL-END block as if it were separated by a single blank (one
statement). SQL text literals (characters between apostrophes) can
not span lines.

+ In an SQL statement, multiple blanks at the beginning or end of an
SQL statement, or even spaces between words on the same line, are
treated as a single blank. The following example demonstrates how
multiple blanks at the beginning of a statement are treated as a

single blank:
EXEC_SQL is equivalent to EXEC_SQL
! OPENC1 . OPEN C1
END END

Multiple spaces between words in statements are compressed, as
shown in the following example

EXEC_SQL is equivalent to EXEC_SQL
A . OPEN C1
.. OPEN END
lcl

N

.END

MANTIS for Windows SQL Support for SUPRA Programming Guide 19

Chapter 2 Embedding SQL statements in MANTIS programs

¢ An SQL statement on the same line as an EXEC_SQL statement is
part of the SQL statement; it is considered to be within the
EXEC_SQL-END block. The following example shows a valid
statement:

EXEC_SQL:} SELECT ...
. FROM ...

' WHERE ...

END

Valid

¢ A MANTIS statement on the same line as the END in an
EXEC_SQL-END block is not part of the EXEC_SQL-END block and
is not executed, as shown in the following example.

EXEC_SQL

“OPENED=
JOPEN C1 TRUE” is
END:OPENED=TRUE disregarded.
EXEC_SQL A valid comment.
J OPEN C1

END:! C1 IDENTIFIES TAG FILE ENTRIES
This rule is consistent with the rules for using END with MANTIS IF,

WHILE, FOR, WHEN, and UNTIL statements. MANTIS comments
are permitted.

20 P19-2307-01

Host variables

Host variables

A MANTIS variable that provides input to or receives output from SUPRA
is called a host variable. A host variable is identified within an SQL
statement by a colon prefix. In the following example, EMPL is a host
variable (MANTIS variable):

..SMALL EMPL

.EXEC_SQL

.. FETCH CURSOR1 INTO :EMPL
.END

Like other MANTIS variables, host variables are implicitly declared when
they are first used if they are not explicitly declared before appearing in
the EXEC_SQL-END block. Any previously undefined MANTIS variable
referred to in an SQL statement is automatically declared as a MANTIS
BIG variable. (A MANTIS BIG variable is a numeric floating point variable
that holds up to 15 digits.)

.BIGA is equivalent EXEC_SQL
..EXEC_SQL to { FETCH C1 INTO :A
... FETCH C1INTO :A END

..END

If necessary, you can explicitly declare a host variable as a type other
than BIG.

MANTIS for Windows SQL Support for SUPRA Programming Guide 21

Chapter 2 Embedding SQL statements in MANTIS programs

22

Referencing values in a MANTIS array

A host variable can be an element in a MANTIS array. You can use
arithmetic expressions and MANTIS functions to specify subscripts of
host variables. MANTIS rules apply to subscripting, even though the
subscript is in an SQL statement. In the following example, all text
following the colon must conform to MANTIS syntax:

..SMALL EMPL(20,40)

.EXEC_SQL

...l FETCH ENTRY1 INTO :EMPL(1+N,INT(T))

.END

MOTE Only the host variable, not other MANTIS variables referred to in
el subscript expressions, can be prefixed with a colon. In the previous
o — example, the variables N and T are not prefixed with a colon, but are

assumed to be MANTIS variables.

MANTIS versus SQL data types

Data sent to and from SUPRA is BIG, or TEXT. Any conversion of data
from one data type to another is performed by SUPRA. Consult the table
in “Data conversion between MANTIS SQL Support and SUPRA” on
page 24 for a summary of how types are converted. Be sure to note that
truncation, overflow, and rounding may occur.

P19-2307-01

Indicator variables

Indicator variables

You can include an indicator variable along with a host variable in SQL
statements. As its name implies, the indicator variable indicates whether
the host variable contains a real value or is NULL (does not exist).
Indicator variables are interpreted as follows:

IVaIue IMeaning

=0 Host variable contains data.
<0 Host variable data is NULL (does not exist).
>0 Host variable contains truncated data. The indicator

variable value is the original length of the host variable data.

An indicator variable is prefixed with a colon and immediately follows the
corresponding host variable (or subscript expression). In the following
example, EMPLIV and NAMEIV are indicator variables:

..EXEC_SQL: | SELECT EMPLNO, EMPLNA
...] INTO:EMPL(15,3):EMPLIV,:NAME:NAMEIV
..., FROM EMPLOYEES WHERE DEPT=17
..END

Like host variables, indicator variables can be explicitly or implicitly
defined. Only SMALL and BIG variables can be used as indicator
variables. The default in implicit declaration is a MANTIS BIG variable.
Variable types are described in “Data conversion between MANTIS SQL
Support and SUPRA” on page 24. Note that indicator values are
interpreted by SUPRA SQL as integers whereas they are specified as
floating point values in MANTIS. Therefore a value of -0.9 will not specify
a NULL value because it is converted to O before being interpreted.

When reading data from SUPRA (SELECT/FETCH), you must supply
indicator variables for any columns that allow NULL values.

NOTE

O —

If the column is NULL, the value of the host variable is not defined.
Check the value of the indicator before examining the host variable data.

MANTIS for Windows SQL Support for SUPRA Programming Guide 23

Chapter 2 Embedding SQL statements in MANTIS programs

Data conversion between MANTIS SQL Support and SUPRA

Data sent to and from SUPRA is BIG, or TEXT. Any conversion of data
from one data type to another is performed by SUPRA. The following
table lists permissible data conversions. Check the notes for information
about overflow, truncation, and rounding. Any combination of MANTIS
and SQL data types not listed below results in a run-time error.
Truncation is indicated through the SQLWARN elements in the SQLCA
and indicator variables, if used.

|SQL data type

| MANTIS data type

| Notes

0 (Fixed) BIG When converting from MANTIS to SQL,
overflow may occur.
SMALL When converting from MANTIS to SQL,
overflow may occur.
1 (Float) BIG When converting from MANTIS to SQL,
overflow may occur.
SMALL When converting from MANTIS to SQL,
overflow may occur.
2 (Character) TEXT When converting in either direction,
truncation may occur.
4 (Date) TEXT When converting in either direction,
truncation may occur.
5 (Time) TEXT When converting in either direction,
truncation may occur.
6 (String) TEXT When converting in either direction,

truncation may occur.

24

P19-2307-01

3

Programming considerations

To use MANTIS SQL Support, you simply embed the appropriate SQL
statements in your MANTIS application program as standard MANTIS
comments, enclosed in EXEC_SQL-END blocks. As each SQL
statement is encountered, MANTIS prepares and executes it, in effect
performing the same steps (preprocess, compile, link, and run) that are
executed with a C program that contains embedded SQL statements.
However, unlike C programs, the MANTIS program can be modified,
including the SQL statements, and then immediately reexecuted by
issuing the RUN command. The fact that MANTIS SQL Support is
interpretive has several implications for program design, as discussed in
this chapter.

Before you begin writing MANTIS SQL Support programs, you should be
aware of the following implications and other programming
considerations:

¢ MANTIS stores an EXEC_SQL-END block as a single line of text
internally and associates the line number of the last program line in
the block with this single line. There are minor distinctions between
bound and unbound versions of a program. (See “EXEC_SQL-END”
on page 27.)

¢ The scope of a cursor or SQL statement name is local to a MANTIS
program context. Because both are SQL entities and not MANTIS
entities, you cannot pass them as parameters or use them in non-
SQL MANTIS statements. (See “Cursors, statements, and SQLDAS”
on page 28.)

MANTIS for Windows SQL Support for SUPRA Programming Guide 25

Chapter 3 Programming considerations

26

*

The WHENEVER statement in MANTIS SQL Support differs slightly
from the WHENEVER statement used in other languages. It has
different syntax, defaults, and possible effects (see “SQL
WHENEVER statement” on page 33).

Elements in the SQLCA (SQL Communications Area) are accessed
through a MANTIS function called SQLCA, rather than as elements
of an SQLCA data structure (see “SQLCA in MANTIS SQL Support”
on page 40).

The effects of COMMIT and ROLLBACK in SUPRA differ slightly
from COMMIT and RESET in MANTIS. In MANTIS SQL Support, an
SQL COMMIT WORK commits only SQL updates, and only for the
specified SQL session. In MANTIS, COMMIT and RESET commit
everything, including SQL (see “COMMIT and ROLLBACK in SUPRA
and COMMIT and RESET in MANTIS SQL Support” on page 45).

Error messages can come from different sources: MANTIS SQL
Support, the MANTIS nucleus, and SUPRA (see “Error messages”
on page 46).

Elements in the SQLDA (SQL Descriptor Area) are accessed through

a MANTIS function called SQLDA, rather than as elements of an
SQLDA data structure (see “SQLDA structure” on page 50).

P19-2307-01

EXEC_SOQL-END

EXEC_SQL-END

The EXEC_SQL-END block may continue over several program lines,
but when executed, it internally becomes a single line of text to MANTIS
SQL Support. Enter the following block:

10 EXEC_SQL

20} SELECT * FROM table-name
30 | WHERE col-name>:MIN VALUE
40 END

You can execute it using the RUN command by entering RUN 10.
MANTIS stores the block as a single line of text and associates it with the
last program line in the SQL block, in this example, line 40. Therefore, if
MANTIS encounters an error in the program block, it returns the error
message and displays line 40.

If you bind the program, however, MANTIS stores the block as a single
line and associates it with the line number of the last SQL statement, in
this case line 30. If you want to run the bound SQL block using the RUN
command, enter RUN 30. If MANTIS encounters an error in the SQL
block, it returns the error message and displays line 30.

MANTIS for Windows SQL Support for SUPRA Programming Guide 27

Chapter 3 Programming considerations

Cursors, statements, and SQLDAs

SQL statement names are MANTIS entities and not SQL entities. Hence,
their scope is limited strictly to the program or external subprogram
where they are prepared. SQL cursors are SQL entities and not MANTIS
entities. Cursors are global to SUPRA but local to a MANTIS program
context, which has the following implications:

¢ You cannot pass SQL statements and cursors as parameters or use
them in non-SQL MANTIS statements because SQL statements and
cursors are SQL entities and not MANTIS entities.

¢ You should not declare or use the same cursor in two different
programs because it may not work.

A cursor is synonymous with the name of a result table and can be used
in FETCH statements even though they have not been explicitly declared
or opened. Because MANTIS interprets cursor names differently in
different statements, a cursor name can be declared and opened in one
program and used in a FETCH statement in an external subprogram.
However, you cannot open a cursor that is declared in a calling program
because MANTIS uses the cursor name to link the OPEN statement to
the DECLARE statement and cursor names are local in scope from
MANTIS’s point of view.

The following examples illustrate this point:

Allowed Not Allowed

EXEC_SQL:| DECLARE C1... EXEC_SQL:| DECLARE C1

END END

EXEC_SQL:| OPEN C1 DO suB —

END

DO SuB -

ENTRY SUB > ENTRY SUB >
EXEC_SQL:| FETCH C1... EXEC_SQL:| OPEN C1
END END
: EXEC_SQL:| FETCH C1

EXIT END

EXIT

28 P19-2307-01

Connection to SUPRA and multiple session support

Connection to SUPRA and multiple session support

MANTIS supports explicit and implicit database connection, as described
in MANTIS for Windows SQL Support for SUPRA Administration Guide,
P19-2308.

Multiple session support allows you to connect up to eight SUPRA
databases concurrently. You can specify the name of the SUPRA
database in your MANTIS program in one of two ways:

¢ SQLCA("DBNAME")="database-name" (See “SQLCA in MANTIS SQL
Support” on page 40.)

¢ EXEC_SQL:} SET DBNAME dbname-spec (See “MANTIS EXEC_SQL
statement” on page 31 and “SQL SET DBNAME statement” on
page 39.)

The specified DBNAME will be used on the next implicit or explicit
database connection.

Having specified the database name, you can then specify the SUPRA

session number which is associated with a database connection. The
session number can only be specified on an EXEC_SQL statement.

MANTIS for Windows SQL Support for SUPRA Programming Guide 29

Chapter 3 Programming considerations

Disconnection from SUPRA

30

MANTIS disconnects from SUPRA by executing an SQL COMMIT
WORK RELEASE statement. This can be performed explicitly by a
MANTIS program or implicitly by the MANTIS nucleus.

Possible causes of disconnection are as follows:
¢ EXEC_SQL:| COMMIT [WORK] RELEASE
¢ MANTIS main program context clean-up

¢ A MANTIS CHAIN statement, if the MANTIS option for database
sign-off on a CHAIN statement is enabled

MANTIS main program context clean-up occurs in the following
circumstances:

¢+ The current test program context is released in Program Design as
the result of a NEW, LOAD, EDIT, or RUN command, or when the
Program Design Facility is exited.

¢ When a main program terminates in RUN mode; that is, when not
under the control of Program Design.

P19-2307-01

MANTIS EXEC_SQL statement

MANTIS EXEC_SQL statement

The common usage of this statement has already been shown in the
examples in this manual. This section discusses using EXEC_SQL for
multiple session support.

EXEC_SQL[(expl[,exp2]][: | SQL statement]
| SQL statement continued . . .

END

expl

Description

Default

Format

Considerations

Optional. Specifies the database system type (DBTYPE), or the SUPRA
SQL CONNECT session number when multiple SUPRA connections are
required.

The current DBTYPE remains in effect until one of the following occurs:
+ ltis explicitly changed by an EXEC_SQL or SQLCA statement.
+ Itis implicitly changed by signing on to another MANTIS user.

Text expression equal to SUPRA or a numeric expression evaluating to a
session number in the range of 1-8.

¢ Ifitis a numeric session number, the current DBTYPE must be
SUPRA.

¢ The default DBTYPE is specified in the MANTIS User Profile by
using the Master User Facilities.

MANTIS for Windows SQL Support for SUPRA Programming Guide 31

Chapter 3 Programming considerations

exp2

Description Optional. Specifies the CONNECT session number when the first
expression is used to specify SUPRA as the DBTYPE.

Format Numeric expression equal to a session number in the range of 1-8.
General consideration

MANTIS support for SUPRA SQL offers multiple session support within
SUPRA.

Example
..EXEC_SQL("SUPRA"):! SELECT EMPLNO, EMPLNA
../ INTO :EMPL,:NAME
... FROM EMPLOYEES WHERE DEPT=17
.END

32 P19-2307-01

SQOL WHENEVER statement

SQL WHENEVER statement

The WHENEVER statement in MANTIS SQL Support differs from that of
SQL in C in the following ways:

¢ ltis interpretive, not compiled.

¢ GOTO is replaced by DO, and STOP is replaced by FAULT.

¢ The default for SQLERROR is FAULT, not CONTINUE.

The syntax of the MANTIS SQL Support WHENEVER statement is
shown below. Note that any action (DO, FAULT, or CONTINUE) can be

selected for any condition (SQLERROR, SQLWARNING, NOT FOUND,
or SQLEXCEPTION).

WHENEVER condition action

condition
Description Required. Indicates the condition you want to check for.
Options Valid conditions are SQLERROR, SQLWARNING, NOT FOUND, and
SQLEXCEPTION. Each is explained in more detail below:
SQLERROR
Description Optional. Indicates that SUPRA returned an error code

as the result of an SQL statement; SQLCODE<O0.

Default action FAULT

SQL WARNING

Description Optional. Indicates that SQLCA(SQLWARNO)=W and
that SQLCODE=0.

Default action CONTINUE

MANTIS for Windows SQL Support for SUPRA Programming Guide 33

Chapter 3 Programming considerations

NOT FOUND

Description Optional. Indicates that SUPRA cannot find a row to
satisfy your SQL statement, or there are no more rows to

fetch (SQLCODE=100).

Default action CONTINUE

SQL EXCEPTION

Description Optional. Indicates SQL timeout error conditions;
SQLCODE>100. Timeouts can be configured for locks
and access to SUPRA.

Default action CONTINUE

34 P19-2307-01

SQOL WHENEVER statement

action

Description

Options

Required. Specifies the action to be taken when the named condition is

met.

Valid actions are DO entry-name[(parms)], FAULT, and CONTINUE.

DO entry-name [(parms)]

Description

Considerations

Optional. Indicates a standard MANTIS DO (internal or
external) that corresponds to the WHENEVER-GOTO
SQL statement in SQL in C. WHENEVER-DO transfers
control to the specified internal routine or external
program whenever the named condition is encountered.

WHENEVER-DO can transfer control to an internal
routine or external program, which in turn can contain
any MANTIS logic, including CHAIN, EXIT, or STOP
statements. The current values of any DO arguments at
the time of the EXEC_SQL that caused the DO to occur
are passed to the named subroutine. The subroutine
EXIT returns control to the next statement following the
EXEC_SQL that caused the DO to occur.

The WHENEVER-DO action resembles the existing
functionality of the SET TRAP statement in MANTIS for
Windows. If the DO portion of a WHENEVER-DO
contains an error, MANTIS returns a MANTIS error
message associated with the DO statement, not an SQL
WHENEVER-type error. MANTIS displays the line in
error in the subroutine. The WHENEVER statement may
be outside of the current execution path. Remember
that DO is executed as a result of an SQL statement
raising the condition with which the DO action is
associated.

MANTIS for Windows SQL Support for SUPRA Programming Guide 35

Chapter 3 Programming considerations

FAULT

Description

Optional. Terminates execution of the program and
displays the error message returned by SUPRA in the
form of a MANTIS fault message.

Only if the WHENEVER condition FAULT is in effect will
MANTIS SQL Support intercept the specified condition
and fault the MANTIS program. Remember that FAULT
is the default action for SQLERROR.

CONTINUE

Description

Optional. Permits program execution to continue without
interruption when the named condition occurs. Your
program should then check the SQLCA SQLCODE for
the results of each EXEC_SQL.

The following table provides a quick reference for the WHENEVER
conditions and default actions:

| Condition | Default action
SQLERROR FAULT
SQLWARNING CONTINUE
NOT FOUND CONTINUE
SQLEXCEPTION CONTINUE

36

P19-2307-01

SQOL WHENEVER statement

Example

00200 !
00210 ! SET 'WHENEVER' SETTINGS TO DESIRED VALUES
00220 !

00230 EXEC_SQL:} WHENEVER SQLERROR DO DO
ROUTINE(PARM1,PARM2,PARM3)

00240 END

00250 EXEC_SQL:} WHENEVER SQLWARNING FAULT
00260 END

00270 EXEC_SQL:} WHENEVER NOT FOUND CONTINUE
00280 END

00290 EXEC_SQL:} WHENEVER SQLEXCEPTION CONTINUE
00300 END

MANTIS for Windows SQL Support for SUPRA Programming Guide 37

Chapter 3 Programming considerations

Declarative versus interpretive WHENEVER statements

In SQL in C, WHENEVER is a declarative statement that is processed
when the program is precompiled, not when it is executed. Thus,inaC
program the current WHENEVER setting is determined by its location in

the source program.

In contrast, in MANTIS SQL Support the last-executed WHENEVER
statement is in effect regardless of its location in the program. This
difference is important when a WHENEVER statement is used with
conditional statements. The following illustrates the different effects of a
declared versus interpreted WHENEVER statement. In the following
figure, the letter C denotes a condition, and 1 and 2 denote actions. The
same considerations apply to FOR, UNTIL, WHEN, and IF structures in

MANTIS.
SQLiInC Setting MANTIS SQL Setting
pseudocode in effect Support in effect
pseudocode
20 WHENEVER C1 Cl 20 WHENEVER C1 Cl
: | : |
40 WHILE condition] C1 40 WHILE condition HSt,
then C2*
50 WHENEVER C2 c2 50 WHENEVER C2 ClorC2*
. Cc2 . C1lor @¢2*
70 ENDWHILE Cc2 70 ENDWHILE ClorC2*
80 EXEC_SQL Cc2 80 EXEC_SQL ClorC2*

Since the setting is established before run
time, it remains unchanged regardless of
whether lines 50-70 are executed.

The first time statement 40 is executed, the
setting is C1; thereafter it is C2.

WHENEVER statement

The scope of the WHENEVER statement is the current MANTIS
DOLEVEL and every EXEC_SQL until a new WHENEVER is executed.

If the default WHENEVER settings are not desired, WHENEVER must be
issued in each externally done program.

38

P19-2307-01

SQL COMMIT/ROLLBACK statements

SQL COMMIT/ROLLBACK statements

The SQL COMMIT/ROLLBACK statements perform the following
functions:

¢ COMMIT. Terminates the Logical Unit of Work (LUW) and

applies any SUPRA updates or changes made during the
LUW.

¢ ROLLBACK . Terminates the LUW and backs out any SUPRA
updates or changes.

COMMIT [WORK] [RELEASE]

ROLLBACK

The WORK parameter is supported for compatibility with MANTIS SQL
Support for the IBM mainframe, but if you specify it, it will be ignored.
WORK applies to both COMMIT and ROLLBACK.

The RELEASE parameter is a request to disconnect from SUPRA upon
successful completion of the COMMIT or ROLLBACK (see
“Disconnection from SUPRA” on page 30).

SQL SET DBNAME statement

The SQL SET DBNAME statement provides an alternate way to change
the setting of SQLCA(DBNAME). It allows you to specify the SUPRA
name to use in all subsequent connects. See “SQLCA elements” on
page 42 for more information.

SET DBNAME 'database-name''
:parameter

MANTIS for Windows SQL Support for SUPRA Programming Guide 39

Chapter 3 Programming considerations

SQLCA in MANTIS SQL Support

In SQL in C, the SQLCA (SQL Communications Area) is a data structure.
An application written in SQL in C accesses elements in the SQLCA as
items of data. In MANTIS SQL Support, the SQLCA function and
statement perform the complementary operations of reading and writing
elements of the SQLCA structure. All standard SQLCA capabilities are
provided.

SQLCA syntax

In the following example, the syntax of the built-in SQLCA function (read)
is shown first and the SQLCA statement (write) is shown second:

mantis-variable =SQLCA(element-name)

SQLCA(element-name)=expression

Because the SQLCA is a built-in function, it is not declared. An
INCLUDE SQLCA statement is not required or recommended.

mantis-variable

40

Description

Format

Consideration

Required. Specifies a value for your SQLCA element, or a variable to
receive the value of your SQLCA element (depending on if a statement or
function is used).

Can be one of the following:

¢ MANTIS variable name (possibly subscripted). For an SQLCA
function.

¢+ Avalid MANTIS expression. For an SQLCA statement.
+ Alliteral of the appropriate type. For an SQLCA statement.

The data type for the MANTIS variable depends on the specified
element-name (see the table under “SQLCA elements” on page 42).

P19-2307-01

SQLCA in MANTIS SQL Support

element-name

Description

Format

Consideration

Required. s or contains the name of the element to be returned/read
(SQLCA function), or set/written (SQLCA statement).

Valid SQLCA element, as listed in the table under “SQLCA elements” on
page 42.

Quotation marks (“) are required when element-name is specified as a
text literal. For example:

IF SQLCA("SQLCODE")<ZERO

.DO ERROR CONDITION ROUTINE

END

A text variable containing the element-name is also valid. For example:

CACODE="SQLCODE"
IF SQLCA(CACODE)<ZERO

.DO ERROR CONDITION ROUTINE
END

expression

Description

Required. Specifies any MANTIS expression that is the compatible data
type of the SQLCA element that you are storing.

General considerations

¢ Toread a particular SQLCA field, use the format:

sqlca-element-value =SQLCA(element-name)

+ To update a particular SQLCA field, use the format:

SQLCA(element-name)= sqlca-element-value

MANTIS for Windows SQL Support for SUPRA Programming Guide 41

Chapter 3 Programming considerations

SQLCA elements

The following table lists SQLCA elements, the compatible MANTIS
variable type, and usage notes:

| Element | MANTIS variable ' |Usage notes
DBTYPE TEXT(6) Unique to MANTIS SQL Support
DBNAME TEXT(64) Unique to MANTIS SQL Support
SQLCAID TEXT(8) Read only
SQLCABC NUMERIC Read only
SQLCODE NUMERIC
SQLERRML NUMERIC Read only
SQLERRMC TEXT(70) Read only
SQLERRP TEXT(8) Read only
SQLERRDnN NUMERIC nranges from 1-6
SQLWARNnRN TEXT(1) nranges from O0-F
SQLEXT TEXT(84) Read only
MSGTEXT TEXT(256) Read only; unique to MANTIS SQL Support

" If a data value is moved from an SQLCA element to a MANTIS variable of shorter length (e.g., an

8-character SQLCA element to a 6-character MANTIS variable), the right-most characters are
truncated.

SQLCAID, SQLCABC, SQLERRML, SQLERRMC, SQLERRP, SQLEXT,
and MSGTEXT are read-only. Although values can be written into the
other elements, doing so does not pass any information to SUPRA. In
addition, because these elements are used by SUPRA, their contents
may be changed when each EXEC_SQL statement is executed. See the
following discussion of MSGTEXT for more information.

MNOTE For portable, nonvolatile MANTIS software, consider the entire SQLCA
i structure as read-only.

42 P19-2307-01

SQLCA in MANTIS SQL Support

Additional elements added to MANTIS SQL Support are:

DBTYPE

Description

Format

Options

Consideration

Optional. Specifies the database with which MANTIS SQL Support will
communicate.

1- to 6-character text value for the current DBTYPE, as explained in
“MANTIS EXEC_SQL statement” on page 31.

SUPRA

All EXEC_SQL statements executed will access the database name
specified by DBTYPE.

DBNAME

Description

Format

Consideration

Optional. Specifies the database name used in all subsequent
connections to SUPRA.

1- to 64-character text value.

If you do not specify a database name, MANTIS obtains it from the
DBNAME environment variable.

MANTIS for Windows SQL Support for SUPRA Programming Guide 43

Chapter 3 Programming considerations

MSGTEXT

44

Description

Considerations

Optional. Returns the error message text for the current SQLCODE so it
can be manipulated within a MANTIS program, if needed. For example:

EXEC_SQL

END

IF SQLCA("SQLCODE")<0
.SHOW SQLCA("MSGTEXT");
END

¢ SQLCA(SQLCODE) is reset to 0 at an implicit COMMIT. An implicit
COMMIT is issued at any terminal read operation, unless the
program or user explicitly turns off the automatic COMMIT logic by
using the COMMIT OFF statement.

+ If, for some reason, your system administrator does not install the
text of SUPRA error messages, the following message will be
displayed for all SUPRA errors:

750 SQLERROR:nnnn:

In this message, the nnnn is the number for the SQL error.

P19-2307-01

COMMIT and ROLLBACK in SUPRA and COMMIT and RESET in MANTIS SQL Support

COMMIT and ROLLBACK in SUPRA and COMMIT and RESET
in MANTIS SQL Support

In MANTIS SQL Support, SQL COMMIT WORK and ROLLBACK WORK
statements have exactly the same effect on SUPRA as the standard
MANTIS COMMIT and RESET statements. However, using an SQL
COMMIT or ROLLBACK does not imply a MANTIS COMMIT or RESET,
but using a MANTIS COMMIT or RESET does imply an SQL COMMIT or
ROLLBACK. Executing an SQL COMMIT statement commits only SQL
updates, and only for the specified SQL session. MANTIS automatically
performs a COMMIT at terminal input for all SUPRA sessions. For more
information, refer to the appropriate SUPRA Server SQL Programmer’s
Guide. MANTIS COMMIT is performed in the following circumstances:

¢ When a MANTIS COMMIT statement is encountered.

¢ When any terminal input function (CONVERSE, OBTAIN, WAIT, or
MORE prompt) is executed by any MANTIS program (including
Program Design when reading command lines), unless COMMIT
OFF has been specified.

¢ During MANTIS main program termination, the COMMIT is
performed prior to SUPRA disconnection.

MANTIS RESET is performed in the following circumstances:
¢ When a MANTIS RESET statement is encountered.

¢ When a MANTIS fault occurs, except for breakpoint faults.

If you are in Program Design and have set a breakpoint, a RESET does
not occur when the breakpoint is encountered (the breakpoint is a fault
condition). However, unless you have specified a COMMIT OFF, an
automatic COMMIT occurs when Program Design prompts you for the
next input line. Be aware that this can occur, because it could result in
the program behaving differently under breakpoints.

Give careful consideration to using COMMIT and RESET in your MANTIS
SQL applications, as well.

MANTIS for Windows SQL Support for SUPRA Programming Guide 45

Chapter 3 Programming considerations

Error messages

You can receive messages from three sources: the MANTIS nucleus,
MANTIS SQL Support, and SUPRA. MANTIS facility and programming
messages are documented in MANTIS for Windows Language
Reference Manual, P19-2302, and MANTIS for Windows Facilities
Reference Manual, P19-2301. MANTIS SQL Support messages appear
in “MANTIS SQL Support error messages” on page 83 of this manual.

When MANTIS encounters an SQL error from SUPRA, it displays a fault
message. The statement where the error occurred, and the text of that
line. Messages from SUPRA are prefaced with the 3-character MANTIS
fault code 750. A message from the SUPRA contains the SQLCODE
value and its associated error message text. The format is as follows:

750 SQLERROR:nnnn: ###...
In the previous example, nnnnis the 3- or 4-digit SQLCODE value and
###... is the message returned by SUPRA. The following is displayed by

MANTIS when SUPRA returns -802 in the SQLCA SQLCODE, and the
WHENEVER SQLERROR condition was set to FAULT:

750 SQLERROR:-802: INVALID NUMERIC INPUT PARAMETER VALUE

46 P19-2307-01

A

Dynamic SQL in MANTIS SQL
Support

This chapter discusses how dynamic SQL works in MANTIS SQL
Support. Dynamic SQL in MANTIS SQL Support differs somewhat from
dynamic SQL in other languages. If you are new to dynamic SQL
programming, you may want to review this information.

Dynamic SQL is a method for executing SQL statements when data such
as SQL statements, tables, or column names are needed, but is not
known by the program before program execution begins. For example, if
an application requires a user to interactively enter an SQL statement at
the terminal during program execution, the application must use dynamic
SQL. The I/SQL utility is an example of such an application.

Virtually any statement in a static application can also be executed
dynamically. The main statements that enable you to execute SQL
statements dynamically are PREPARE, DESCRIBE, EXECUTE, and
EXECUTE IMMEDIATE. Alternate forms of DECLARE, OPEN, and
FETCH statements are used in dynamic SQL. Communication to and
from the database is done using these statements and an SQLDA data
structure.

The SQLDA data structure consists of header elements and repeating
elements (each repeating element group is called SQLVAR). Each
SQLVAR contains metadata (such as data length and data type) about
the data going between your program and SUPRA. Consider the SQLDA
as a representation and repository of the data being transferred.

MANTIS for Windows SQL Support for SUPRA Programming Guide 47

Chapter 4 Dynamic SQL in MANTIS SQL Support

Programs using dynamic SQL must procedurally define data about the
SQL statements and host variables. In static SQL programs, the SQL
preprocessor determines this information. A single program can contain
either static SQL statements, dynamic SQL statements, or both.

Execute an SQL statementd ynamically

In general, to execute a statement dynamically, you must prepare an
SQL statement with a PREPARE statement and then execute it with an
EXECUTE statement. If data is being retrieved, inserted, or updated, the
program must manipulate an SQLDA between preparation and
execution. This manipulation can include allocating and expanding an
SQLDA, retrieving metadata from SUPRA with the DESCRIBE
statement, and causing data transfer between SUPRA and MANTIS host

variables.

The following code provides a sample SELECT and FETCH sequence for
dynamic SQL. The syntax for the PREPARE, DESCRIBE, and
EXECUTE statements used here appears in the SUPRA Server SQL
Commands Reference Manual, P26-2420. Sample code for the SQLDA
built-in statement and function (described in “SQLDA structure” on

page 50) is also included in this example:

SELECT statement with input parameters

50 TEXT DA:DA="sglda-name"

60 SQLDA(DA)=NEW

70 TEXT SELECT STMT(250)

80 SELECT STMT="SELECT * FROM EMPLOYEE WHERE EMPNO=?"

90 EXEC_SQL:} PREPARE stmt-name INTO sglda-name FROM :SELECT
STMT

100 END
110 EXEC_SQL:} DECLARE cursor-name CURSOR FOR stmt-name
120 END

130 SQLDA(DA,"SQLHOSTVAR",)=input-parameter:! | = 1 TO
SQLDA(DA,"SQLN")

140 EXEC_SQL:} OPEN cursor-name USING DESCRIPTOR sglda-name
150 END

48 P19-2307-01

Execute an SQL statement dynamically

FETCH statement with output parameters

70 EXEC_SQL:} FETCH cursor-name USING DESCRIPTOR sqglda-name
80 END
90 SHOW SQLDA(DA,"SQLHOSTVAR",I):;} =1 TO SQLDA(DA,"SQLD")

Other statements with input parameters

20 TEXT UPDATE STMT(250)

30 UPDATE STMT="UPDATE EMPLOYEE SET FIRSTNME=:FIRST NAME WHERE
EMPNO=?"

40 EXEC_SQL:} PREPARE stmt-name FROM :UPDATE STMT
50 END

60 EXEC_SQL:} DESCRIBE stmt-name INTO sglda-name

70 END

80 SQLDA(DA,"SQLHOSTVAR",l)=input-parameter:} | =1 TO
SQLDA(DA,"SQLN")

90 EXEC_SQL:} EXECUTE stmt-name USING DESCRIPTOR sglda-name
100 END

Complete code for dynamic insert, update, delete, and select routines are
in “Sample MANTIS SQL programs” on page 65, along with their static
equivalents.

MANTIS for Windows SQL Support for SUPRA Programming Guide 49

Chapter 4 Dynamic SQL in MANTIS SQL Support

SQLDA structure

In dynamic SQL support, data is transferred between your program and
SUPRA by using and SQLDA (SQL Descriptor Area). An SQLDA is a
data structure that holds information about data (metadata) that is
transferred between your program and the database.

50

The following figure shows the structure of an SQLDA. The first four
elements are header elements; they occur once per SQLDA. The next
nine elements repeat once per data item. A data item is either one
column of an SQL table (output from SUPRA to your program) or the
value of a host variable (input to SUPRA from your program). The
maximum number of entries is 300. The following table summarizes
header and repeating elements:

SQLDAID SQLMAX SQLN SQLD
SQLCOLNAME;

SQLCOLIO, SQLCOLMODE;
SQLCOLTYPE; SQLCOLLENGTH;
SQLCOLFRAC; SQLHOSTFIND,

SQLHOSTVARTY; SQLHOSTVAR;
SQLCOLNAME,

SQLCOLIO, SQLCOLMODE,
SQLCOLTYPE, SQLCOLLENGTH,
SQLCOLFRAC, SQLHOSTFIND,

SQLHOSTVARTY, SQLHOSTVAR,

P19-2307-01

Header
Elements

Repeating
Element;

Repeating
Element;

SQLDA structure

In SQL in C, you must explicitly declare each SQLDA element as a data
area in your program and then access SQLDA elements through
programming statements. In MANTIS SQL Support, when you declare
an SQLDA, an SQLDA with all the elements above is built for you. The
SQLDA contains the default number of repeating elements set by the
Master User in the configuration file. This value can be modified by your
program with the SQLMAX header element (see “Move data from your
program into an SQLDA header element” on page 54).

The MANTIS SQLDA statement allows your MANTIS program to create
and maintain SQLDA data structures which are in turn used with dynamic
SQL statements. Your MANTIS program can use the SQLDA statement
to create a named SQLDA structure and to place host variable
information into the SQLDA. The sqglda-name parameter must be a text
expression, literal, or the name of a valid MANTIS variable. Your
program can also use the SQLDA function to retrieve information from
the SQLDA. The SQLDA statement and function are described and
illustrated in the sections that follow. Their uses are outlined in the
following list:

¢ To allocate or deallocate an SQLDA:
SQLDA(sglda-name)=NEW
SQLDA(sglda-name)=QUIT

¢ To move data from your program into an SQLDA:

SQLDA(sglda-name,header-element)=expression
SQLDA(sglda-name,repeating-element,index)=expression

¢ To move data from an SQLDA into your program:

mantis-variable=SQLDA(sglda-name,header-element)
mantis-variable=SQLDA(sqlda-name,repeating-element,index)

In this syntax, sqlda-name, header-element, repeating-element, and
index refer to standard MANTIS variables, literals, or expressions.
MANTIS syntax must be followed with the exception of sqlda-name which
requires SQL naming conventions. In SQL, a name must begin with an
alphabetic character and cannot exceet 18 characters. The only special
characters allowed are #, $, and @. Using special characters in an
embedded SQL statement causes MANTIS to generate faults. Header
elements and repeating elements are listed in the tables in “SQLDA
header elements” on page 56 and “SQLDA repeating elements” on
page 62. In the examples above, index refers to the sequential
occurrence of the repeating element group in the SQLDA.

MANTIS for Windows SQL Support for SUPRA Programming Guide 51

Chapter 4 Dynamic SQL in MANTIS SQL Support

Allocate an SQLDA

To allocate a new SQLDA, use the following SQLDA statement:

SQLDA(sglda-name)=NEW

sqlda-name

52

Description

Format

Example

Required. Specifies the name of the SQLDA.

Valid text expression evaluating to a valid SQLDA name of 1-18
characters.

SQLDA("SQLDA1")=NEW

General considerations

+ This statement allocates a new, empty SQLDA structure with the

default number of repeating elements. The default is a MANTIS
option that can be modified by the Master User (refer to MANTIS for
Windows SQL Support for SUPRA Administration Guide, P19-2308).
Within your program you can also modify an SQLDA'’s size by
resetting the value of SQLMAX (see the discussion of SQLMAX in
the table under “SQLDA header elements” on page 56).

If you declare an SQLDA of the same name as one that already
exists, the second SQLDA statement is ignored.

The scope of an SQLDA is the current DO level. For example, you
can have two SQLDAs of the same name on different DO levels.
Within a DO level, however, you can only access SQLDAs defined
for that DO level.

P19-2307-01

SQLDA structure

Deallocate an SQLDA
To deallocate an SQLDA, use the following SQLDA statement:

SQLDA(sglda-name)=QUIT

sqlda-name
Description Required. Specifies the name of the SQLDA to be deallocated.

Format Valid text expression evaluating to a valid SQLDA name of 1-18
characters.

Example
SQLDA("SQLDA1")=QUIT

General Considerations
+ This statement deallocates an existing SQLDA by name.

¢ An SQLDA defined at a DO level is also deallocated when that DO
level is exited.

¢ SQLDAs are also deallocated in the case of a RUN without a line
number.

¢ A RUN with a line number may produce unpredictable results if you
have modified the program.

MANTIS for Windows SQL Support for SUPRA Programming Guide 53

Chapter 4 Dynamic SQL in MANTIS SQL Support

Move data from your program into an SQLDA header element

Use the following SQLDA statement to set header or column-name
information in the SQLDA:

SQLDA(sglda-name ,header-element)=expression

sqglda-name
Description

Format

Required. Specifies the name of a previously allocated SQLDA.

Valid text expression evaluating to a valid SQLDA name of 1-18
characters.

header-element

Description

Options

54

Required. Indicates the name of an SQLDA header element into which
you are moving data.

SQLN SQLN is the number of repeating groups (SQLVARS) currently in
use. The value can range from 1 through SQLMAX. This value is
normally set as a result of a DESCRIBE statement. In some cases,
SQLN must be set by your program (e.g., when you are inserting data).

SQLDA("DAL","SQLN")=10

SQLMAX SQLMAX is the total number of repeating groups available in
the SQLDA. The value can range from 1-300. Setting this number in
your program causes the SQLDA to expand or contract by the specified
number of repetitions. Once physically expanded, the space occupied by
the SQLDA never physically contracts. For example, if an SQLDA
named DAL has 20 repeating occurrences, the following statement
reduces the logical occurrences to five; however, physical space for 20
remains (these numbers are arbitrary):

SQLDA("DAL","SQLMAX")=5

SQLD SQLD is the total number of output host variables in the SQLDA.
The value of SQLD must be less than or equal to SQLN.

SQLDA("DAL","SQLD")=8

P19-2307-01

SQLDA structure

expression

Description Required. Specifies the SQLDA variable count.

Format Standard MANTIS variable, literal, or expression.

Consideration Since all SQLDA header elements that can be set are numeric, the
expression must also always be numeric.

Example

SQLDA("SQLDA1","SQLN")=TOTAL NEEDED

General considerations

*

In SQL in C, when a DESCRIBE statement is executed, if the SQLDA
is too small (SQLMAX is less than the number of items that will be
returned as a result of the DESCRIBE), SUPRA sets SQLN to the
required number and terminates. The program must then expand
the SQLDA accordingly. By contrast, MANTIS SQL Support
automatically expands the SQLDA to the required size if the SQLDA
is too small to accept the results of a DESCRIBE. You can check the
number of occurrences after the DESCRIBE by examining the SQLN
value.

The other header element illustrated in the previous figure,
SQLDAID, is read-only. If you attempt to use a read-only element in
this SQLDA statement, you will cause a MANTIS fault.

MANTIS for Windows SQL Support for SUPRA Programming Guide 55

Chapter 4 Dynamic SQL in MANTIS SQL Support

SQLDA header elements

The following table shows how and when SQL header elements are
used, what the results are, and whether they can be updated:

| Element | How set/when used | Results | Updatable?
SQLDAID
Eyecatcher Set by SQL Normally No
contains
SQLDA
SQLN
Total number of Set, as a result of a DESCRIBE, to Number of Yes
host variables in the total number of host variable host variables
SQLDA parameters in the statement required
(except for DESCRIBE in FETCH
USING DESCRIPTOR where
SQLN is set to the number of result
table columns)
SQLMAX
Number of Set using value from Configuration Number of Yes
repeating groups file when SQLDA is allocated; can repeating
in SQLDA be modified in program if needed groups
allocated
SQLD
Total number of Set as a result of a DESCRIBE to Number of Yes
output host the number of output host variables output
variables in (except for DESCRIBE in FETCH MANTIS
SQLDA USING DESCRIPTOR where variables
SQLD is set to the number of result described in
table columns) SQLDA
56 P19-2307-01

SQLDA structure

Move data from your program into an SQLDA repeating element

To supply values for input host variables and to set the value of repeating
elements, use the following SQLDA statement:

SQLDA(sglda-name ,repeating-element ,index)=expression

sqglda-name

Description

Required. Specifies the name of a previously allocated SQLDA.

repeating-element

Description

Options

Required. Specifies the name of the repeating element into which you
are moving data.

SQLCOLNAME Provides the column name returned by SUPRA. It can
also be set by your program. SQLCOLNAME has a type of TEXT and a
length of 18. Note that although you can modify the SQLCOLNAME
element, it does not have an effect on the database. In addition, the
database writes to this element, so its contents may be destroyed at each
EXEC_SQL statement execution.

SQLHOSTIND See “Indicator variables” on page 23 which describes the
interpretation of an indicator variable and of the host variable data when a
column is NULL (does not exist). Also note the following list of values
and meanings for indicator variables:

IVaIue I Meaning
=0 The host variable contains data.
<0 The host variable is NULL (does not exist).
>0 The host variable contains truncated data. The

indicator variable value is the original length of the
host variable data.

MANTIS for Windows SQL Support for SUPRA Programming Guide 57

Chapter 4 Dynamic SQL in MANTIS SQL Support

SQLHOSTVAR In SQL in C, this element holds a memory address. This
address is used programmatically to access the data item being
transferred between the program and the database. In SQL in C, the
program must acquire space for the data item and place the space’s
address in this element. In MANTIS SQL Support, SQLHOSTVAR is
used to automatically perform these actions for you. When you are
transferring data into the SQLDA, this element automatically:

¢ Allocates a data area for the data item or expands the data area, if
necessary.

¢+ Sets the value of SQLHOSTVAR to the address of the data area.
This address is used internally by MANTIS SQL Support; your
program does not need to manipulate this value.

+ Moves data from the MANTIS host variable into the SQLDA data
area.

¢ Sets SQLCOLTYPE and SQLCOLLENGTH to match the definition of
the MANTIS variable according to the SQLCOLTYPE values in the
following table. SQLCOLLENGTH is set to the length of the MANTIS
variable.

If you are transferring data out of the SQLDA, this element simply
performs the transfer. Note as well that the SQLHOSTVAR element may
have a type of numeric or string. When you do not know the type of data
you want to retrieve from the database in advance, use the
SQLCOLTYPE and SQLHOSTVARTY elements to determine the data

type.

index
Description Required. Specifies the relative occurrence of the repeating element into
which you are moving data. The value should be relative to 1.
expression
Description Required. Specifies an SQLVAR element value.
Format Standard MANTIS variable, literal, or expression.

58

Consideration The expression may be either text or numeric. There are no limitations.

Example

SQLDA("SQLDAL","SQLHOSTVAR",9)=SALARY

P19-2307-01

General considerations

*

SQLDA structure

SQLCOLLENGTH and SQLHOSTVARTY will be set to the length
and data type of the MANTIS expression.

SQLHOSTVARTY is always set to the MANTIS equivalent data type.
A data type conversion table is shown in the following example:

| SUPRADRDM

| MANTIS SQLDA

| MANTIS

IData type IData code I Data type

IData code I Data type

| (SQLCOLTYPE) | (SQLHOSTVARTY) |

Fixed 0 Float (8 bytes long) 3 BIG/SMALL

Float 1 Float (8 bytes long) 3 BIG/SMALL

Character 2 Character string (filled with 6 TEXT
blanks)

Date 4 Character string 6 TEXT

Time 5 Character string 6 TEXT

String 6 Character string (with 8 TEXT
nonprintable characters)

MOTE Certain representations of numeric data in the SQL database may cause

conversion errors in the data values. You can avoid this by using the
appropriate MANTIS numeric data type (BIG or SMALL) to store the
data. If conversion errors appear when you are using a SMALL data type
to store a value, try BIG instead, and vice versa.

MANTIS for Windows SQL Support for SUPRA Programming Guide

59

Chapter 4 Dynamic SQL in MANTIS SQL Support

Move data from an SQLDA header element into your program
Use the following SQLDA function to read header elements:

mantis-variable =SQLDA(sqlda-name ,header-element)

mantis-variable

Description Required. Specifies the variable into which the SQLDA header element
is to be placed.

Format Standard MANTIS variable name.
sqglda-name
Description Required. Specifies the name of a previously allocated SQLDA.

header-element
Description Required. Provides the name of the header element you are reading.

Example
TOTAL NEEDED=SQLDA("SQLDA1","SQLN")

General considerations
¢+ No index value is permitted.

¢ You may read all header elements.

60 P19-2307-01

SQLDA structure

Move data from an SQLDA repeating element into your program

Use the following SQLDA function to transfer data from a repeating
element into a MANTIS variable:

mantis-variable =SQLDA(sqlda-name ,repeating-element ,index)

mantis-variable

Description Required. Specifies the variable into which the SQLDA repeating
element is to be placed.

Format Standard MANTIS variable name.
sqlda-name
Description Required. Specifies the name of a previously allocated SQLDA.

repeating-element

Description Required. Specifies the name of the repeating element to be read.
index
Description Required. Provides the relative occurrence of the repeating element to

be read. This value should be relative to 1.

Example
EMPLOYEE NUMBER=SQLDA("SQLDA1","SQLHOSTVAR" 1)

General considerations
+ You may read all repeating elements.

+ Data types between repeating elements and MANTIS variables must
match.

MANTIS for Windows SQL Support for SUPRA Programming Guide 61

Chapter 4 Dynamic SQL in MANTIS SQL Support

SQLDA repeating elements

The following table shows how and when SQL repeating elements are
used, what the results are, and whether they can be updated:

How set/when

Element used Results Updatable?
SQLCOLNAME
SQL column name Set by DRDM as Column or header name Yes

the result of a
DESCRIBE; can
be set by program

SQLCOLIO

Indicates whether Set by DRDM as 0 = Input No
parameter is input the result of a 1 = Output

or output DESCRIBE

SQLCOLMODE

Indicates whether Set as the result of 0 = Not allowed No
NULL values are a DESCRIBE <> 0 = Allowed

allowed

SQLCOLTYPE

Data type as it Set by DRDM as SQLCOLTYPE No
resides on the the result of a BIG/SMALLO Fixed

database. Code DESCRIBE. 1 Float

differs depending TEXT 2 Character

on whether it is set TEXT 4 Date

by SQLCOLTYPE 5 Time

or 6 String
SQLHOSTVARTY'

SQLCOLLENGTH

Total number of Set by DRDM as BIG/SMALL: 8 No
bytes used to store the result of a TEXT: maximum column

the data DESCRIBE or by length when set by

MANTIS when DESCRIBE, MANTIS
data is transferred variable current length
by SQLHOSTVAR. when set by SQLDA

" The SQLHOSTVAR element may have a type of numeric or string. When you do not know the

type of data you want to retrieve from the database in advance, use the SQLCOLTYPE and
SQLHOSTVARTY elements to determine the data type.

62 P19-2307-01

SQLDA structure

How set/when

Element used Results Updatable?
SQLCOLFRAC
Number of decimal Set by DRDM as 1 for FLOAT column types No
positions for FIXED the result of a
column types DESCRIBE and not
used by MANTIS
since all numeric
data is floating point
SQLHOSTIND
Contains the value Used to indicate the =0 Defined value; no Yes
of the indicator presence of NULL errors
variable variables and <0 NULL value
truncated data. Set >0 Original column
by DRDM during length due to truncated
SQL function can value
be set by your
program
SQLHOSTVARTY
Contains the data Set by MANTIS SQLHOSTVARTYJr No
type of the data in when BIG/SMALL 3 Float
the SQLDA™ SQLHOSTVAR is TEXT 6 Character string
used filled with blanks
SQLHOSTVAR
Subfunction that Used to transfer Data stored in MANTIS Yes

physically transfers
data between
MANTIS data areas
and the SQLDA
data areas

value of variable
between database
and MANTIS

variable or SQLDA,
SQLCOLTYPE and
SQLCOLLENGTH set
according to value being
transferred when data is
moved into SQLDA

" These are not the only SQLHOSTVARTY codes, but a list of codes for MANTIS-compatible data

. bpes.

The SQLHOSTVAR element may have a type of numeric or string. When you do not know the

type of data you want to retrieve from the database in advance, use the SQLCOLTYPE and
SQLHOSTVARTY elements to determine the data type.

MANTIS for Windows SQL Support for SUPRA Programming Guide

63

Chapter 4 Dynamic SQL in MANTIS SQL Support

64 P19-2307-01

A

Sample MANTIS SQL programs

MANTIS HELP includes prompters for the dynamic SQL statements
interpreted by MANTIS. These prompters are subject to the syntax rules
for SUPRA SQL.

Use the following HELP commands:

¢ HELP EXEC_SQL

¢ HELP SQL (displays a list of available SUPRA help prompters)
¢ HELP SUPRA-DECLARE

Each of the SUPRA-specific HELP prompters includes an example
program that is reproduced in the EXAMPLES program library.

For clarity, the following examples do not contain error checking or
display logic. Employee information is hardcoded into the programs.
Each static example has the same functionality as the dynamic example
that follows.

MANTIS for Windows SQL Support for SUPRA Programming Guide 65

Appendix A Sample MANTIS SQL programs

Static insert routine
10 ENTRY STATIC INSERT

20 .BIG HIRE DATE,BIRTH DATE,JOB CODE,SALARY,EDUCATION LEVEL

30 .TEXT EMPLOYEE NUMBER(6),FIRST NAME(20),MIDDLE INITIAL(1),LAST NAME(20)

40 .TEXT PHONE NUMBER(4), WORK DEPARTMENT(3),SEX(1)
50 .!

60 .EMPLOYEE NUMBER="000120"
70 .FIRST NAME="SEAN"

80 .MIDDLE INITIAL=""

90 .LAST NAME="O'CONNELL"

100 .BIRTH DATE=421018

110 .HIRE DATE=631205

120 .JOB CODE=58

130 .EDUCATION LEVEL=14

140 .SALARY=29250

150 .PHONE NUMBER="2167"

160 .WORK DEPARTMENT="A00"

170 .SEX="M"

180 .|

190 .EXEC_SQL:! INSERT INTO EMPLOYEE.TABLE
200 ..! (EMPNO,

210 ..! FIRSTNME,

220 ..! MIDINIT,

230 .. LASTNAME,

240 ..! BRTHDATE,

250 ..! HIREDATE,

260 ..! JOBCODE,

270 ..! EDUCLVL,

280 ..! SALARY,

290 ..! PHONENO,

300 ..! WORKDEPT,

310 ..! SEX)

320 ..! VALUES (:EMPLOYEE NUMBER,
330 ..! ‘FIRST NAME,

340 ..! :MIDDLE INITIAL,

66

P19-2307-01

350 ..
360 ..
370 ..
380 ..
390 ..
400 ..
410 ..
420 ..
430 ..
.END

440

450 EXIT

MANTIS for Windows SQL Support for SUPRA Programming Guide

:LAST NAME,

:BIRTH DATE,

‘HIRE DATE,

:JOB CODE,
:EDUCATION LEVEL,
:SALARY,

:PHONE NUMBER,
‘WORK DEPARTMENT,
:SEX)

Static insert routine

67

Appendix A Sample MANTIS SQL programs

Dynamic insert routine
10 ENTRY DYNAMIC INSERT

68

20
30
40
50
60
70

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340

.BIG HIRE DATE,BIRTH DATE,JOB CODE,SALARY,EDUCATION LEVEL
TEXT EMPLOYEE NUMBER(6),FIRST NAME(20),MIDDLE INITIAL(L),LAST NAME(20)
.TEXT PHONE NUMBER(4), WORK DEPARTMENT(3),SEX(1)

TEXT SQL TEXT(254)

Ml

.EMPLOYEE NUMBER="000120"
80 .
.MIDDLE INITIAL=""

FIRST NAME="SEAN"

.LAST NAME="O'CONNELL"
.BIRTH DATE=421018

.HIRE DATE=631205

.JOB CODE=58

.EDUCATION LEVEL=14
.SALARY=29250

.PHONE NUMBER="2167"
.WORK DEPARTMENT="A00"
SEX="M"

1
‘

.SQL TEXT="INSERT INTO EMPLOYEE.TABLE"
."(EMPNO,FIRSTNME,MIDINIT,LASTNAME ,BRTHDATE",
"HIREDATE,JOBCODE,EDUCLVL,SALARY,PHONENO",

"WORKDEPT,SEX)"

.EXEC_SQL:} PREPARE S1 FROM :SQL TEXT
.END

I

i

.SQLDA("SQLDA1")=NEW
.SQLDA("SQLDA1","SQLMAX")=12
.EXEC_SQL:} DESCRIBE S1 INTO SQLDA1
.END

.SQLDA("SQLDA1","SQLHOSTVAR",1)=EMPLOYEE NUMBER

.SQLDA("SQLDA1","SQLHOSTVAR",2)=FIRST NAME

P19-2307-01

350
360
370
380
390
400
410
420
430
440
450
460
470

Dynamic insert routine

.SQLDA("SQLDA1","SQLHOSTVAR",3)=MIDDLE INITIAL
.SQLDA("SQLDA1","SQLHOSTVAR",4)=LAST NAME
.SQLDA("SQLDA1","SQLHOSTVAR",5)=BIRTH DATE
.SQLDA("SQLDA1","SQLHOSTVAR",6)=HIRE DATE
.SQLDA("SQLDA1","SQLHOSTVAR",7)=JOB CODE
.SQLDA("SQLDA1","SQLHOSTVAR",8)=EDUCATION LEVEL
.SQLDA("SQLDA1","SQLHOSTVAR",9)=SALARY
.SQLDA("SQLDA1","SQLHOSTVAR",10)=PHONE NUMBER
.SQLDA("SQLDA1","SQLHOSTVAR",11)=-WORK DEPARTMENT
.SQLDA("SQLDA1","SQLHOSTVAR",12)=SEX

1
.EXEC_SQL:} EXECUTE S1 USING DESCRIPTOR SQLDA1
.END

480 EXIT

MANTIS for Windows SQL Support for SUPRA Programming Guide 69

Appendix A Sample MANTIS SQL programs

Static update routine
10 ENTRY STATIC UPDATE

70

20
30
40
50
60
70
80
90
100
110
120
130

140.
150.
160 .
170 ..
180 ..

190

200 ..
210 ..
220 ..
230 ..

240
250

.BIG HIRE DATE,BIRTH DATE
.TEXT EMPLOYEE NUMBER(6)
.TEXT FIRST NAME(20),MIDDLE INITIAL(1),LAST NAME(20)

R

.EMPLOYEE NUMBER="000120"
.FIRST NAME="JOHN"

.MIDDLE INITIAL="H"

.LAST NAME="DOE"

.BIRTH DATE=490113
.HIRE DATE=880120

EXEC_SQL

UPDATE EMPLOYEE.TABLE

R
1
R
X
| SET FIRSTNME=:FIRST NAME,
| MIDINIT=:MIDDLE INITIAL,
-l LASTNAME=:LAST NAME,
| BRTHDATE=:BIRTH DATE,
| HIREDATE=:HIRE DATE
1
1
1
1

WHERE EMPNO=:EMPLOYEE NUMBER
.END
EXIT

P19-2307-01

Dynamic update routine

Dynamic update routine
10 ENTRY DYNAMIC UPDATE

20 .BIG HIRE DATE,BIRTH DATE
30 .TEXT EMPLOYEE NUMBER(6),FIRST NAME(20),MIDDLE INITIAL(1),LAST NAME(20)
40 .TEXT DA(18),DAPARM(8)

50 .TEXT SQL TEXT(254)

60 .!

70 .EMPLOYEE NUMBER="000120"

80 .FIRST NAME="JOHN"

90 .MIDDLE INITIAL="H"

100 .LAST NAME="DOE"

110 .BIRTH DATE=490113

120 .HIRE DATE=880120

130 .|

140 .SQL TEXT="UPDATE EMPLOYEE.TABLE SET "

150 .SQL TEXT=SQL TEXT+"FIRSTNME=?,MIDINIT=?,LASTNAME=?,"
160 .SQL TEXT=SQL TEXT+'BRTHDATE=? HIREDATE=? "

170 .SQL TEXT=SQL TEXT+"WHERE EMPNO=?"

180 .|

190 .EXEC_SQL:! PREPARE S1 FROM :SQL TEXT

200 .END

210 .}

220 .SQLDA("SQLDAL")=NEW

230 .DA="SQLDAL"

240 .DAPARM="SQLHOSTVAR"

250 .SQLDA(DA,"SQLMAX")=6

260 .EXEC_SQL:! DESCRIBE S1 INTO SQLDA1

270 .END

280 .SQLDA(DA,DAPARM,1)=FIRST NAME

290 .SQLDA(DA,DAPARM,2)=MIDDLE INITIAL

300 .SQLDA(DA,DAPARM,3)=LAST NAME

310 .SQLDA(DA,DAPARM,4)=BIRTH DATE

320 .SQLDA(DA,DAPARM,5)=HIRE DATE

330 .SQLDA(DA,DAPARM,6)=EMPLOYEE NUMBER

340 .!

350 .EXEC_SQL:} EXECUTE S1 USING DESCRIPTOR SQLDA1
360 .END

370 EXIT

MANTIS for Windows SQL Support for SUPRA Programming Guide 71

Appendix A Sample MANTIS SQL programs

Static select routine
10 ENTRY STATIC SELECT

20 .BIG HIRE DATE,BIRTH DATE,JOB CODE,SALARY,EDUCATION LEVEL

30 .TEXT EMPLOYEE NUMBER(6),FIRST NAME(20),MIDDLE INITIAL(1),LAST NAME(20)
40 .TEXT WORK DEPARTMENT(3),PHONE NUMBER(3),SEX(1)

50 .EMPLOYEE NUMBER="000120"

72

60 .

70 .EXEC_SQL:} DECLARE C1 CURSOR FOR

80 ..! SELECT * FROM EMPLOYEE.TABLE
90 ..! WHERE EMPNO = :EMPLOYEE NUMBER
100 .END

110 .EXEC_SQL:! OPEN C1

120 .END

130 .EXEC_SQL:! FETCH C1 INTO :EMPLOYEE NUMBER,
140 .} ‘FIRST NAME,

150 ..! :MIDDLE INITIAL,

160 ..! :LAST NAME,

170 ..} “WORK DEPARTMENT,

180 ..! :PHONE NUMBER,

190 .| ‘HIRE DATE,

200 ..! :JOB CODE,

210 ..! :EDUCATION LEVEL,

220 ..! ‘SEX,

230 .. ‘BIRTH DATE,

240 ..! :SALARY

250 .END

260 .EXEC_SQL:} CLOSE C1

270 .END

280 EXIT

P19-2307-01

Dynamic select routine

Dynamic select routine
10 ENTRY DYNAMIC SELECT

20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

270
280
290

300.

310
320

330.

.BIG HIRE DATE,BIRTH DATE,JOB CODE,SALARY,EDUCATION LEVEL
TEXT EMPLOYEE NUMBER(6)

TEXT FIRST NAME(20),MIDDLE INITIAL(L),LAST NAME(20)
.TEXT WORK DEPARTMENT(3),PHONE NUMBER(3),SEX(1)
TEXT SQL TEXT(254)

Ml
.EMPLOYEE NUMBER="000120"
.SQL TEXT="SELECT * FROM EMPLOYEE.TABLE "

"WHERE EMPNO = ?"

1

|

.EXEC_SQL:! PREPARE S1 FROM :SQL TEXT

END

EXEC_SQL:! DECLARE C1 CURSOR FOR S1

END

.EXEC_SQL:! OPEN C1 USING :EMPLOYEE NUMBER
.END

.SQL TEXT="FETCH C1 USING DESCRIPTOR"
.EXEC_SQL:! PREPARE S2 FROM :SQL TEXT

.END

.SQLDA("SQLDA1"=NEW

EXEC_SQL:! DESCRIBE S2 INTO SQLDA1

.END

EXEC_SQL:} EXECUTE S2 USING DESCRIPTOR SQLDA1
.END

EXEC_SQL:! CLOSE C1

.END

I

i

.EMPLOYEE NUMBER=SQLDA("SQLDA1","SQLHOSTVAR",1)
FIRST NAME=SQLDA("SQLDA1","SQLHOSTVAR",2)
.MIDDLE INITIAL=SQLDA("SQLDA1","SQLHOSTVAR",3)
.LAST NAME=SQLDA("SQLDA1","SQLHOSTVAR",4)

WORK DEPARTMENT=SQLDA("SQLDA1","SQLHOSTVAR",5)

MANTIS for Windows SQL Support for SUPRA Programming Guide

73

Appendix A Sample MANTIS SQL programs

74

340
350
360
370
380
390
400

.PHONE NUMBER=SQLDA("SQLDA1","SQLHOSTVAR",6)
.HIRE DATE=SQLDA("SQLDA1","SQLHOSTVAR",7)

.JOB CODE=SQLDA("SQLDAL1","SQLHOSTVAR",8)
.EDUCATION LEVEL=SQLDA("SQLDA1","SQLHOSTVAR",9)
.SEX=SQLDA("SQLDA1","SQLHOSTVAR",10)

.BIRTH DATE=SQLDA("SQLDA1","SQLHOSTVAR",11)
.SALARY=SQLDA("SQLDA1","SQLHOSTVAR",12)

410 EXIT

P19-2307-01

Static delete routine

Static delete routine
10 ENTRY STATIC DELETE
20 .TEXT EMPLOYEE NUMBER(6)
30 .EMPLOYEE NUMBER="000120"

40 .EXEC_SQL

50 ..!

60 .| DELETE FROM EMPLOYEE.TABLE

70..!

80 .. WHERE EMPNO = :EMPLOYEE NUMBER
90 .END

100 EXIT

Dynamic delete routine

MNOTE Using an SQLDA is not required because no data is transferred
i between the database system and the MANTIS program.

=]

10 ENTRY DYNAMIC DELETE

20 .TEXT EMPLOYEE NUMBER(6),SQL TEXT(254)
30 .EMPLOYEE NUMBER="000120"

40 .SQL TEXT="DELETE FROM EMPLOYEE.TABLE WHERE EMPNO=?"
50 .!

60 .EXEC_SQL

70!

80 .. PREPARE S1 FROM :SQL TEXT

90 ..!

100 .END

110 .EXEC_SQL

120 ..

130 ..! EXECUTE S1 USING :EMPLOYEE NUMBER
140 .}
150 .END

MANTIS for Windows SQL Support for SUPRA Programming Guide 75

Appendix A Sample MANTIS SQL programs

SQL query function

10 ENTRY SQL QUERY

76

20.

30
40
50

60 .
70.
80 .

90

100.

110

120.

130
140
150
160
170
180
190
200
210

220 ..
230.
240 ..
250 ..
260 .
270 ..
280 ..
290.
300 ..
310 ..

320 ..
330.
340 ..
350 ..
360

370.

This example illustrates the use of dynamic SQL to perform a
QUERY:-like function.

E.g.
INSERT INTO table VALUES (?,?,...
SELECT * FROM table
SELECT * FROM table WHERE column > ?
SELECT * FROM table INTO ?,?,... WHERE column = ?
COMMIT WORK RELEASE is NOT recommended

TEXT STMT(255), TEXT PARM(80),DA CMD,DA FETCH
.DA CMD="DA CMD"

.DA FETCH="DA FETCH"

.SQLDA(DA CMD)=NEW

.SQLDA(DA FETCH=NEW

.EXEC_SQL:!WHENEVER SQLERROR DO QHANDLER
END

.WHILE NOT(FINISHED)

.1 Prompt for next SQL statement and execute it

STMT=""

.SHOW "SQL>";:OBTAIN STMT

IF KEY<>"ENTER" OR STMT=""
FINISHED=TRUE

ELSE

.UNPAD STMT BEFORE
.STMT=UPPERCASE(STMT)

JIF POINT(STMT-"?")=0:! Any host variables?
...SQLDA(DA CMD,"SQLN")=0

..SQLDA(DA CMD,"SQLD")=0
.EXEC_SQL:IEXECUTE IMMEDIATE :STMT
END

..ELSE:} Yes, use SQLDA

P19-2307-01

SQL query function

380EXEC_SQL:|PREPARE S1 INTO DA CMD FROM :STMT
390END

400IF SQLDA(DA CMD,"SQLN")>SQLDA(DA CMD,"SQLD")
410DO SQLDA INPUT(DA CMD)

420 ...END
430EXEC_SQL:EXECUTE S1 USING DESCRIPTOR DA CMD
440 ...END
450 ...END

460 ...IF SQLCA("SQLCODE")=0

470IF STMT(1,6)="SELECT" AND POINT(STMT-"INTO")=0
480|

490] A SELECT without an INTO clause:

500; FETCH all rows from result table

510!

520WHILE SQLCA("SQLCODE")=0

530...... EXEC_SQL:FETCH USING DESCRIPTOR DA FETCH
540 END

550 IF SQLCA("SQLCODE")=0

560 DO SQLDA OUTPUT(DA FETCH)

570 END

580END

590ELSE:} No result table to process

600IF SQLDA(DA CMD,"SQLD")>0 AND SQLCA("SQLCODE")=0
610 DO SQLDA OUTPUT(DA CMD)

620END

630END

640 ...END

650 ..END

660 .END

670 EXIT

680 |

690 | Allow continuation after failure to execute SQL statement
700 |

710 ENTRY QHANDLER

720 .SHOW "*#** SQL ERROR CODE =";SQLCA("SQLCODE")
730 .SHOW "***:SQLCA("SQLERRMC")

MANTIS for Windows SQL Support for SUPRA Programming Guide 77

Appendix A Sample MANTIS SQL programs

740 .SHOW "*** Press ENTER to continue, CANCEL to stop";:WAIT
750 .IF KEY<>"ENTER"

760 .. STOP

770 .END

780 EXIT

790 |

800 | Process Input host-variable parameters (?)
810 |

820 ENTRY SQLDA INPUT(DA)

830 .1=0

840 .WHILE I<SQLDA(DA,"SQLN")

850 ..I=1+1

860 ..IF SQLDA(DA,"SQLCOLIO",1)=0:} An input parameter
870 ...SHOW "Enter Input parameter";l;";";

880 ...WHEN SQLDA(DA,"SQLCOLTYPE",l)<2
890OBTAIN BIG PARM

900SQLDA(DA,"SQLHOSTVAR",1)=BIG PARM
910 ...WHEN SQLDA(DA,"SQLCOLTYPE",1)>2
920TEXT BUFFER

930OBTAIN TEXT PARM

940SQLDA(DA,"SQLHOSTVAR",)=TEXT PARM
950 ...END

960 ..END

970 .END

980 EXIT

990 |

1000 | Process Output host-variable parameters
1010}

1020 ENTRY SQLDA OUTPUT(DA)

1030 .1=0

1040 .WHILE I<SQLDA(DA,"SQLN")

1050 ..I=1+1

1060 ..IF SQLDA(DA,"SQLCOLIO" I)=1:! An output parameter
1070 ...SHOW SQLDA(DA,"SQLHOSTVAR"l),

1080 ..END

1090 .END

1100 .SHOW

1110 EXIT

78 P19-2307-01

Dynamic column select

Dynamic column select
10 ENTRY SQL LIST COLUMNS

20 !
30 .|
40 !

THIS PROGRAM LISTS COLUMNS BASED ON TABLE NAME

50 .TEXT TABLE NAME(32)

60 .TEXT SQL FUNCTION(100) Contains the SQL statement
70 .SHOW "PLEASE ENTER TABLE NAME:"

80 .OBTAIN TABLE NAME

90 .SQL FUNCTION="SELECT * FROM "+TABLE NAME Creates the SQL statement
100 .EXEC_SQL

110 ..! EXECUTE IMMEDIATE :SQL FUNCTION Creates the result set

120 .END

130 .SQL FUNCTION="FETCH USING DESCRIPTOR"

140 .EXEC_SQL:} PREPARE S1 FROM :SQL FUNCTION Prepares the SQL statement
150 .END

160 .SQLDA("SQLDA1")=NEW

170 .EXEC_SQL:! DESCRIBE S1 INTO SQLDA1 Returns table column data into
180 .END the SQLDA

190 .EXEC_SQL:! EXECUTE S1 USING DESCRIPTOR SQLDA1 Retrieves first row of data from
200 .END the table

210 .COUNTER=1

220 .SHOW"COLUMN NAME",AT(25),"TYPE" AT(45),"LENGTH",AT(55),"DATA"

230 .WHILE COUNTER<SQLDA("SQLDA1","SQLD")

240 ..SHOW SQLDA("SQLDA1","SQLCOLNAME",COUNTER) Displays returned data

250 ..'AT(25),SQLDA("SQLDA1","SQLCOLTYPE",COUNTER)

260 ..'AT(45),SQLDA("SQLDA1","SQLCOLLENGTH",COUNTER)

270 ..'AT(55),SQLDA("SQLDA1","SQLHOSTVAR",COUNTER)

280 ..COUNTER=COUNTER+1

290 .END

300 .WAIT

310 EXIT

MANTIS for Windows SQL Support for SUPRA Programming Guide 79

Appendix A Sample MANTIS SQL programs

80 P19-2307-01

Features not supported

The following features of SQL are not supported in MANTIS for Windows:

¢ Host variables may not be specified in a SELECT list. For example:

SELECT A,:VX,C
INTO :VA,:VB,:VC VX is invalidly used as a host variable.

+ Exact line number reference upon the detection of a syntax error is
not supported in all cases. Once control is transferred to the
database system in the execution of an SQL statement, MANTIS no
longer has control and therefore cannot keep track of where the error
was encountered. For example:

1330.
1340 ..

1350

X=X+1

EXEC_SQL

...;SELECT A,B,C
1360 ..
1370 ..
1380 ..
1390 ..
1400 .

JINTO :VA,:VB),:.VC € FError in this line
.JFROM TABLE.1

AWHERE A=1

END

X=X-VA

MANTIS for Windows SQL Support for SUPRA Programming Guide 81

Appendix B Features not supported

For unbound programs, MANTIS points to the last line in the program
block. For bound programs, MANTIS points to the line before the
END statement. For example:

1330 .X=X+1

1340 ..EXEC_SQL

1350 ...ISELECT A,B,C

1360 ...[INTO :VA,:VB),:VC € Errorin this line

1370 ...,FROM TABLE.1

1380 ...|WHERE A=1 € FAULTS display this line when
bound

1390 ..END € FAULTS display this line when
unbound

1400 ..X=X-VA

+ The contents of one SQLDA structure cannot be implicitly copied into
another in a single instruction. The following statement is not
permitted:

SQLDA("NAME2")=SQLDA("NAME1")

However, each element of an SQLDA can be passed individually to
the corresponding element of a different SQLDA.

82 P19-2307-01

C

MANTIS SQL Support error messages

In a MANTIS SQL Support application, you may receive messages from
three sources: MANTIS SQL Support, the MANTIS nucleus, and the
database system. This appendix lists the MANTIS SQL Support
messages and provides a suggested corrective action.

Messages from the MANTIS nucleus are documented in MANTIS for
Mainframe Error Messages, P19-5004.

Database system messages are documented in the SUPRA
documentation. Messages from the database system start with -nnnn.

720 The SQLDA name is missing or incorrectly specified.
Explanation The statement or function expects an SQLDA name as a
parameter. Either the SQLDA name is missing or the
specified SQLDA name is invalid.

Action An SQLDA name must evaluate to a nonzero-length text
string. Add or correct the SQLDA name parameter.

MANTIS for Windows SQL Support for SUPRA Programming Guide 83

Appendix C MANTIS SQL Support error messages

721 The SQLDA element name is missing or incorrectly specified.

Explanation The SQLDA element name is the second SQLDA
parameter and must be specified as a TEXT expression
that evaluates to one of the following:

SQLDAID SQLCOLNAME/ SQLHOSTIND/
SQLNAME SQLIND
SQLMAX SQLCOLIO SQLHOSTVARTY/
SQLTYPE
SQLN SQLCOLMODE SQLHOSTVAR/
SQLDATA
SQLD SQLCOLTYPE/ SQLCOLFRAC
SQLTYPE
SQLCOLLENGTHY/
SQLLEN
The element names separated by a slash (/) are
synonymous.
Action Add or correct the SQLDA element name.
722 The SQLDA variable index is missing or incorrectly

specified.

Explanation The third SQLDA parameter specifies the index (from 1)
into the repeating element (SQLVAR) array of the named
SQLDA structure and must be a numeric expression.

Action Add or correct the SQLDA variable index parameter.

84 P19-2307-01

MANTIS SQL Support error messages

723 The SQLCA element name is missing or incorrectly specified.

Explanation The first SQLCA parameter addresses a given field of
the SQLCA (global SQL Communications Area). It must
be a TEXT expression that evaluates to one of the

following:
DBTYPE SQLERRD1 SQLWARNO
DBNAME SQLERRD2 SQLWARN1
SQLCAID SQLERRD3 :

SQLCABC SQLERRD4 SQLWARN7

SQLCODE SQLERRDS5 SQLWARNS

SQLERRML SQLERRDG6 : SUPRA ONLY
SQLERRMC SQLWARNF
SQLEXT
Action Add or correct the SQLCA element name.
725 An embedded host variable indicator is not numeric.

Explanation You have specified an indicator variable that is not
numeric. A numeric variable is required to store the
following:
¢ =0 Error free, non-NULL host variable data transfer

¢ <0 Associated host variable is NULL

¢ >0 Original column length when output host variable
truncation has occurred (SQLWARNING).

Action Specify a numeric indicator variable.
726 The SQLDA variable index is out of range.
Explanation The third SQLDA parameter is an index into the
SQLVAR repeating elements of the SQLDA. The value
you have specified is not in the allowed range: 1—
SQLMAX.

Action Modify the SQLDA variable index value.

MANTIS for Windows SQL Support for SUPRA Programming Guide 85

Appendix C MANTIS SQL Support error messages

727 The specified host variable is not yet allocated.

Explanation There is no host variable data for the specified SQLVAR
entry.

Action The specified SQLVAR entry has not been set by the
SQLDA statement or has not been set as a result of an
EXECUTE statement.

728 The SQLDA or SQLCA element is read-only.

Explanation You have attempted to assign a value to a read-only field
of the SQLCA or SQLDA structure. Certain fields are
protected against programmed update because MANTIS
SQL Support relies on their unaltered contents for
internal consistency. Read-only fields are as follows:

IsqQLcA | SQLDA
SQLCABC SQLDAID SQLCOLTYPE/SQLTYPE
SQLCAID SQLCOLIO SQLCOLLENGTH/SQLLEN
SQLERRML SQLABC SQLHOSTVARTY/SQLTYPE
SQLERRMC SQLCOLMODE SQLCOLFRAC
SQLERRP
SQLEXT
MSGTEXT
The element names separated by a slash (/) are
synonymous.
Action Omit any assignments for read-only fields.

86 P19-2307-01

MANTIS SQL Support error messages

729 The value of the SQLDA or SQLCA element is the wrong data
type.
Explanation The specified data to be assigned to the SQLDA or the

SQLCA element does not match the data type of the
element. You have tried to assign a text value to a
numeric element, or vice versa. The settable element
data types are as follows:

IsqLca | sQLDA
DBTYPE TEXT(8) SQLMAX NUMERIC
DBNAME TEXT(64) SQLN NUMERIC
SQLCODE NUMERIC SQLD NUMERIC
SQLCOLNAME/ TEXT(18/30)
SQLNAME
SQLWARNRN TEXT(1) SQLHOSTVAR/ NUMERIC or
SQLDATA TEXT
SQLERRD~N NUMERIC SQLHOSTIND/ NUMERIC
SQLIND
Action Correct the data type you have specified.
730 The value of the SQLDA element is out of range.
Explanation You have attempted to set SQLN, SQLD, or SQLMAX to
an illegal value. For IBM SQL support, SQLMAX and
SQLN are synonyms for the same field (SQLN) of the
SQLDA. These values are restricted as follows:
¢ SQLMAX -> 1-300
¢ SQLN -> 1-SQLMAX
¢ SOQLD->1-SQLN
Action Correct the value you have specified.
731 The specified SQL DBTYPE is not supported.
Explanation The specified DBTYPE is not supported. The DBTYPE
element is used to specify the SQL system when multiple
SQL systems are active.
Action Specify SUPRA.

MANTIS for Windows SQL Support for SUPRA Programming Guide 87

Appendix C MANTIS SQL Support error messages

88

732

733

735

737

Substrings for output host variables are not supported in
compatibility mode.

Explanation You have specified substring subscripts on an output
host variable. This is not compatible with MANTIS for
the IBM mainframe.

Action Use a temporary TEXT variable as the output host
variable and perform a MANTIS substring assignment as
required.

The SQL session number is invalid.

Explanation The SQL session number must be in the range from one
through eight. It is used to specify the session number
for multiple concurrent CONNECT’s to SUPRA SQL.
The default is 1.

Action Enter an SQL session number in the range of one
through eight.

The DBNAME parameter is missing or incorrectly specified.

Explanation The SQL SET DBNAME statement parameter must be
either a quoted string literal or an embedded host
variable.

Action Correct the SET DBNAME statement.

A numeric session parameter is not valid when the DBTYPE is
not "SUPRA".

Explanation You have specified a numeric session parameter when
the current or selected SQL DBTYPE is not SUPRA.
Only SUPRA SQL supports multiple sessions that can be
selected by session number on the EXEC_SQL
statement. The current DBTYPE is established at user
sign-on time and remains in effect until explicitly changed
by an SQLCA or EXEC_SQL statement. The most
probable cause of this error occurs when the program is
expecting SUPRA as the current DBTYPE, but it has
been set to a different value.

Action Specify SUPRA as the selected SQL DBTYPE before
entering a numeric session parameter.

P19-2307-01

MANTIS SQL Support error messages

738 The cursor name is missing or incorrectly specified.

Explanation The cursor name in the WHERE CURRENT OF clause
of an SQL DELETE or UPDATE statement is not
specified correctly.

Action Correct the DELETE or UPDATE statement. MANTIS
expects the CURRENT OF clause to be specified as
follows: CURRENT OF cursor-name.

748 There is no result table for the FETCH with auto-cursor.

Explanation The FETCH statement has not specified a cursor-name.
This is an auto-cursor, (implicit cursor) request.

Action You must execute a SELECT statement in the program
before executing a FETCH with auto-cursor.

749 An embedded host variable is missing.

Explanation The host variable list is incorrectly specified. There is a
missing colon after a comma in the list.

Action Check the list carefully. Note that every host variable in
the list must be preceded by a colon and that indicator
variables, if specified, are not preceded by a comma.

750 SQLERROR:NNNN: ###...

Explanation An error has occurred in the SQL system. The
SQLCODE shown immediately after the MANTIS fault
code is followed by the error message text generated by
the SQL system. By default, MANTIS only generates
this fault in the case of SQLERROR conditions (when
SQLCODE is less than zero). The MANTIS program will
continue after SQLWARNING, SQLEXCEPTION, and
NOT FOUND conditions. You can use the SQL
WHENEVER statement to handle (or fault on) any or all
of the four possible SQL error conditions.

Action Please consult the appropriate SQL reference manual for
probable cause of the error and corrective action.

MANTIS for Windows SQL Support for SUPRA Programming Guide 89

Appendix C MANTIS SQL Support error messages

90

751

752

753

754

No SQL database name has been specified for connection.

Explanation An SQL database name is required for connection to the
SQL system. If the first SQL statement executed is not a
CONNECT statement, MANTIS performs an implicit
CONNECT using the values of the following system
environment variables: DBUSER, DBPASS, and
DBNAME. If DBNAME is not defined, MANTIS uses the
DBNAME established by the SUPRA/XUSER command.
If connection using DBUSER fails, MANTIS attempts an
implicit CONNECT using the names set up by the
SUPRA XUSER command.

Action Ensure that the DBNAME environment variable identifies
a valid SUPRA database, or that you have executed
SUPRA XUSER and obtained correct parameters for an
implicit CONNECT.

The SQL statement text is missing or incorrectly coded.

Explanation The SQL statement text for the EXEC_SQL statement is
missing. An EXEC_SQL statement must be followed by
at least one nonblank MANTIS comment line. The most
likely cause of this error is when the SQL statement text
is coded on the same line as the EXEC_SQL verb and
either the colon or comment character is missing (:}).

Action Correct the EXEC_SQL statement line in your program.

The cursor has not been OPENED.

Explanation Before a FETCH operation can be executed on a cursor
(named result table), the cursor must first be opened by
the OPEN statement.

Action Use the OPEN statement to open the cursor.

The cursor name has not been DECLARED.

Explanation The cursor named in the OPEN statement has not yet
been declared in a DECLARE statement.

Action Use the DECLARE statement to declare the cursor.

P19-2307-01

MANTIS SQL Support error messages

755 The statement name has not been PREPARED.

Explanation You must use a PREPARE statement to declare a
statement name before you can use that statement in a
dynamic DECLARE or EXECUTE statement.

Action Check that the execution path of the program includes a
PREPARE statement which declares the statement
name.
756 The named SQLDA has not been allocated.

Explanation A named SQLDA must be allocated via the SQLDA
statement before it can be used in any other statement.

Action Use the SQLDA statement to allocate the named
SQLDA. For example:
SQLDA(“sgldal”)=NEW
EXEC_SQL:} PREPARE s1 INTO sqgldal FROM:STMT
END

757 The BEGIN/END statement is incorrectly specified.

Explanation The BEGIN DECLARE SECTION and END DECLARE
SECTION statements, as well as the INCLUDE
statement, do not perform any function in MANTIS SQL
Support other than documentation.

Action Code BEGIN/END DECLARE SECTION as follows:

EXEC_SQL: | BEGIN DECLARE SECTION
END

EXEC_SQL: | END DECLARE SECTION
END

MANTIS for Windows SQL Support for SUPRA Programming Guide 91

Appendix C MANTIS SQL Support error messages

92

758

759

760

761

The named SQLDA was created for a different DBTYPE.

Explanation

Action

The SQLDA named in the SQL statement was created
for another DBTYPE and cannot be used for the current
DBTYPE. An SQLDA inherits the DBTYPE that is
current when it is created by the SQLDA(sglda-
name)=NEW statement.

Your program may have altered the current DBTYPE
before attempting to use the SQLDA. If your program
does use multiple SQL systems, it must ensure that
named SQLDAs created for a given SQL product are
used for that system only. Use the SHOW
SQLDA(sqglda-name, DBTYPE) statement in your
program to prove that this is the case. Place this
statement just before the SQLDA statement that creates
the named SQLDA and just before the statement at fault.

An embedded host variable data type is incorrect.

Explanation

Action

The MANTIS data type of an embedded host variable
conflicts with its usage. You have attempted to
substitute a text parameter where a numeric value is
required, or vice versa.

Correct the data type.

The FROM clause is missing or incorrectly specified.

Explanation

Action

The FROM clause is mandatory in the PREPARE
statement. It is either missing or you have incorrectly
placed it.

Add the clause or correct its placement.

The SQL statement specification is missing or incorrectly

specified.

Explanation

Action

An SQL statement specification occurs with an
embedded host variable or as an SQL string literal. Itis
mandatory in the PREPARE and EXECUTE IMMEDIATE
statements.

Add the SQL statement specification or correct the
specification.

P19-2307-01

MANTIS SQL Support error messages

762 The SQL statement name is missing or incorrectly specified.

Explanation An SQL statement name is mandatory in the PREPARE
and DESCRIBE statements and expected in the
DECLARE statement if the FOR clause does not specify
a recognized SQL verb.

Action Add the SQL statement name or correct its specification.
763 Failure on SQL COMMIT, attempting to ROLLBACK instead.

Explanation A MANTIS COMMIT has failed on an SQL database.
This could happen because of:

¢ Database sign-off (disconnect) as a result of:
- NEW, LOAD, EDIT, or RUN commands

- Main program termination in RUN mode, or exiting
Program Design

- CHAIN statement when the MANTIS option to sign-off
is enabled

¢ MANTIS COMMIT statement
¢ Implicit COMMIT by MANTIS on a terminal input (unless
COMMIT OFF has been executed by the running

program)

Because the only usual remedy for this type of error is to
perform an SQL ROLLBACK function, MANTIS tries to
ROLLBACK the current transaction for you.

Action Correct the cause of the COMMIT failure: usually some
database updates that violate integrity rules.

MANTIS for Windows SQL Support for SUPRA Programming Guide 93

Appendix C MANTIS SQL Support error messages

764 The MANTIS SQL statement/cursor name limit has been
exceeded.

Explanation The MANTIS interface to the Database Manager limits
both the number of cursors and the number of dynamic
SQL statements that can be used. Calculate the number
of dynamic SQL statements allowed by summing the
following (for the main program and all of its
subprograms):

¢ The number of SQL statement names
¢ The number of static DECLARE statements

The current interface supports a total of eight
concurrently used cursors and or/prepared statements.

Action Simplify your application if possible. Otherwise, contact
your local Cincom representative for more information.

765 There is more than one result table row for the singleton
SELECT (INTO).

Explanation The singleton SELECT statement was specified by the
INTO clause of the SELECT statement. This is a
request to obtain a result table with, at most, one row.
The result of the executed SELECT statement has more
than one row.

Action The WHERE clause of the SELECT statement should be
tightened to restrict the number of result rows to one (or
none). Otherwise, you must use a nonsingleton SELECT
in conjunction with the DECLARE, OPEN, and/or FETCH
statements.

94 P19-2307-01

MANTIS SQL Support error messages

766 The WHENEVER condition is missing or incorrectly specified.

Explanation The WHENEVER condition must be specified as the first
parameter. Only the following keywords are valid for the
WHENEVER condition:

| Keyword | SUPRA SQL |1BM sQL
SQLERROR (SQLCODE<0) (SQLCODE<0)
SQLEXCEPTION (SQLCODE>100) (Not Applicable)
NOT FOUND (SQLCODE=100) (SQLCODE=100)
SQLWARNING (SQLCODE>100 and (SQLCODE>0 and
SQLWARNO=W) SQLCODE<>100 OR
SQLWARNO<>*“")
Action Add the WHENEVER condition or correct its placement.
767 The WHENEVER action is missing or incorrectly specified.

Explanation The WHENEVER action must be specified as the
second parameter. Only the following keywords are valid
for the WHENEVER action:

¢ CONTINUE. (Default for SQLEXCEPTION, NOT FOUND,
and SQLWARNING)

¢ FAULT. (Default for SQLERROR)
¢ DO. (Never the default)
Action Add the WHENEVER action or correct its placement.
768 The USING parameter is missing or incorrectly specified.
Explanation The dynamic USING clause in the OPEN, FETCH, and
EXECUTE statements can specify either a
DESCRIPTOR or a host variable list. Neither of these is

specified correctly.

Action Add or correct the USING parameter.

MANTIS for Windows SQL Support for SUPRA Programming Guide 95

Appendix C MANTIS SQL Support error messages

96

769

770

771

772

773

775

The DECLARE CURSOR statement is incorrectly specified.

Explanation The keyword FOR is missing from the DECLARE
CURSOR statement.

Action Add the keyword FOR to your DECLARE CURSOR
statement.

The INTO clause is missing.

Explanation The INTO clause is mandatory in the DESCRIBE
statement. It must be specified immediately after the
statement name.

Action Add the INTO clause to your DESCRIBE statement.

The INTO parameter is missing or incorrectly specified.

Explanation The INTO clause on the FETCH statement must specify
a host variable list.

Action Correct the host variable list in the INTO clause.

The host variable is incorrectly specified.

Explanation The embedded host variable does not identify a MANTIS
variable correctly. This error means that the word
following the colon is not a valid MANTIS symbolic name.

Action Correct the variable specification.

The FETCH statement is incorrectly specified.

Explanation The FETCH statement requires either an INTO clause or
a USING clause to specify the output data destination.

Action Add the INTO or USING clause to your FETCH
statement.

One of NEW or QUIT keywords expected but not specified.

Explanation An SQLDA statement with one parameter can only be
used to allocate and deallocate SQLDA structures. The
only valid values for the right-hand side of the
assignment are the keywords NEW and QUIT.

Action Add the appropriate keyword.

P19-2307-01

MANTIS SQL Support error messages

778 The END statement is missing after the SQL statement text.
Explanation The EXEC_SQL comment block is terminated by an
END statement. Any other noncommented statement is
not allowed.

Action Add an END statement to terminate your EXEC_SQL
statement block.

779 The embedded SQL statement has a syntax error.
Explanation This is an internal problem. MANTIS SQL Support has
encountered a syntax error in an embedded SQL
statement.

Action Please contact your local Cincom representative.

MANTIS for Windows SQL Support for SUPRA Programming Guide 97

Appendix C MANTIS SQL Support error messages

98 P19-2307-01

D

Differences: MANTIS SQL Support
versus SQL in C; MANTIS versus SQL

SQL in MANTIS SQL Support is essentially the same as SQL in C. In
this manual, SQL in these non-MANTIS languages is called SQL in C for
convenience.

This appendix summarizes the differences between SQL in MANTIS SQL
Support and SQL in other languages. More information is provided in the
sections specified.

SQL in MANTIS SQL Support versus SQL in C

¢ SQL statements are embedded in a MANTIS application program as
standard MANTIS comments and delimit each SQL statement with
an EXEC_SQL-END block. No MANTIS comments are permitted
within the EXEC_SQL-END block. All comments within the block are
considered SQL statement text.

¢ Inthe SQL WHENEVER statement:

- The GOTO clause is replaced by a standard MANTIS DO
statement, and STOP is replaced by FAULT.

- The default for the condition SQLERROR is FAULT; in SQL in C,
the default is CONTINUE.

- WHENEVER settings may have different ranges of applicability
in C than they would in SQL.

MANTIS for Windows SQL Support for SUPRA Programming Guide 99

Appendix D Differences: MANTIS SQL Support versus SQL in C; MANTIS versus SQL

*

SQLCA elements are accessed through the SQLCA
statement/function rather than as items of data.

Elements in SQLDAs are accessed through the SQLDA
statement/function, rather than as items of data.

In a MANTIS SQL Support application, you may receive messages
from three sources: the MANTIS nucleus, MANTIS SQL Support,

and the database system. MANTIS SQL Support messages are in
“MANTIS SQL Support error messages” on page 83 of this manual.

MANTIS SQL Support does not support an SQL INCLUDE
statement, as INCLUDE denotes a preprocessor action. The SQLCA
and SQLDA functions eliminate the need to INCLUDE these
structures.

DECLARE statements are unnecessary for tables and views.

MANTIS versus SQL

*

100

In MANTIS, quotation marks (*) delimit character-string constants. In
SQL, apostrophes () delimit character-string constants.

Permissible data-type conversions between SQL and MANTIS are
listed in the table in “Data conversion between MANTIS SQL Support
and SUPRA” on page 24.

Only data-type codes for MANTIS-compatible data types are returned
in the SQLCOLTYPE element in the SQLDA. Valid data types are
thus limited to those listed in the table in “Move data from your
program into an SQLDA repeating element” on page 57.

P19-2307-01

Index

A

allocate an SQLDA 52
arrays, referencing values in 22

C

C,SQLin 15, 51, 99
COMMIIT statement 30, 39, 45
CONTINUE 36

cursors 28

D

data conversion 24, 60
data types 22, 24
DBNAME 39, 43
DBTYPE 43
deallocate an SQLDA 53
declarative versus interpretive
WHENEVER statements 38
DESCRIBE 47
differences between SQL in
MANTIS and SQL in C 15,
99
disconnecting from SUPRA 30
dynamic SQL
description of 47
embedding SQL in MANTIS 14,
17
sample programs 48

E

error messages

how displayed 44

list of 83
EXEC_SQL statement 31
EXEC_SQL-END 27

MANTIS for Windows SQL Support for SUPRA Programming Guide

EXECUTE 47
EXECUTE IMMEDIATE 47

F

FAULT 36
features not supported 81

H

host variables 21

indicator variables 23

M

MANTIS data types vs. SQL data
types 22
MANTIS SQL Support
WHENEVER defaults 36
MANTIS vs. SQL 99
maximum number of entries in an
SQLDA structure 50
messages
how displayed 44
list of 83
move data
from program to SQLDA
header element 54
from program to SQLDA
repeating element 57
from SQLDA header element to
program 60
from SQLDA repeating element
to program 61
MSGTEXT 44
multiple session support 29

N
NOT FOUND 34

101

Index

P

permissable data type
conversions 24

PREPARE 47

programming considerations 25

R

release levels supported 13
RESET statement 45
ROLLBACK statement 39, 45

S

sample MANTIS SQL programs
65

SQL EXCEPTION 34

SQL in C 13, 51, 99

SQL SET DBNAME 39

102

SQL vs. MANTIS 99
SQL WARNING 33
SQL WHENEVER statement 33
SQLCA 40

elements 42
SQLDA 28, 50

header elements 55

repeating elements 61
SQLERROR 33
SQLHOSTIND 57
SQLHOSTVAR 58
SQLTYPE codes 50
statements 28
SUPRA

connection 29

multiple session support 29

W
WHENEVER statement 33, 38

P19-2307-01

Reader Comment Sheet

Name

Job title/function:

Company name:

Address

Telephone number: Date:

How often do you use this manual? O Daily O Weekly O Monthly O Less
How long have you been using this product? [Months [Years

Can you find the information you need? O Yes O No Please comment.

Is the information easy to understand? [Yes O No Please comment.

Is the information adequate to perform your task? [Yes [O No Please comment.

General comment

To respond, please fax to Larry Fasse at (513) 612-2000.

pro.2507.01 ECINCOM

	Back to Welcome (Windows)
	About this book
	Using this document
	Document organization
	Conventions

	MANTIS documentation series

	Chapter 1 - Overview
	Embedding SQL statements in MANTIS SQL Support
	SQL in MANTIS SQL Support versus SQL in C

	Chapter 2 - Embedding SQL statements in MANTIS programs
	Embedding rules
	Host variables
	Referencing values in a MANTIS array
	MANTIS versus SQL data types

	Indicator variables
	Data conversion between MANTIS SQL Support and SUPRA

	Chapter 3 - Programming considerations
	EXEC_SQL-END
	Cursors, statements, and SQLDAs
	Connection to SUPRA and multiple session support
	Disconnection from SUPRA
	MANTIS EXEC_SQL statement
	SQL WHENEVER statement
	Declarative versus interpretive WHENEVER statements
	WHENEVER statement

	SQL COMMIT/ROLLBACK statements
	SQL SET DBNAME statement
	SQLCA in MANTIS SQL Support
	SQLCA syntax
	SQLCA elements

	COMMIT and ROLLBACK in SUPRA and COMMIT and RESET in MANTIS SQL Support
	Error messages

	Chapter 4 - Dynamic SQL in MANTIS SQL Support
	Execute an SQL statement dynamically
	SQLDA structure
	Allocate an SQLDA
	Deallocate an SQLDA
	Move data from your program into an SQLDA header element
	SQLDA header elements

	Move data from your program into an SQLDA repeating element
	Move data from an SQLDA header element into your program
	Move data from an SQLDA repeating element into your program
	SQLDA repeating elements

	Appendix A - Sample MANTIS SQL programs
	Static insert routine
	Dynamic insert routine
	Static update routine
	Dynamic update routine
	Static select routine
	Dynamic select routine
	Static delete routine
	Dynamic delete routine
	SQL query function
	Dynamic column select

	Appendix B - Features not supported
	Appendix C - MANTIS SQL Support error messages
	Appendix D - Differences: MANTIS SQL Support versus SQL in C; MANTIS versus SQL
	SQL in MANTIS SQL Support versus SQL in C
	MANTIS versus SQL

	Index

