

AD/ADVANTAGE

MANTIS DB2 Programming
OS/390, VSE/ESA

P39-5028-00

AD/Advantage® MANTIS DB2 Programming OS/390, VSE/ESA

Publication Number P39-5028-00

� 1988–1998, 2001 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage®
C+A-RE™
CINCOM®
Cincom Encompass®
Cincom Smalltalk™
Cincom SupportWeb®
CINCOM SYSTEMS®

gOOi™

iD CinDoc™
iD CinDoc Web™
iD Consulting™
iD Correspondence™
iD Correspondence Express™
iD Environment™
iD Solutions™
intelligent Document Solutions™
Intermax™

MANTIS®
Socrates®
Socrates® XML
SPECTRA™
SUPRA®
SUPRA® Server
Visual Smalltalk®
VisualWorks®

All other trademarks are trademarks or registered trademarks of:

Acucobol, Inc.
AT&T
Compaq Computer Corporation
Data General Corporation
Gupta Technologies, Inc.
International Business Machines Corporation
JSB Computer Systems Ltd.

Micro Focus, Inc.
Microsoft Corporation
Systems Center, Inc.
TechGnosis International, Inc.
The Open Group
UNIX System Laboratories, Inc.

or of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, OH 45246-3732
U.S.A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

http://www.cincom.com

Release information for this manual
AD/Advantage MANTIS DB2 Programming, OS/390, VSE/ESA, P39-
5028-00, is dated October 30, 2001. This document supports Release
5.5.01 of MANTIS SQL Support.

We welcome your comments
We encourage critiques concerning the technical content and
organization of this manual. Please take the survey provided with the
online documentation at your convenience.

Cincom Technical Support for AD/Advantage

All customers Web: http://supportweb.cincom.com
U. S. A. customers Phone: 1-800-727-3525
 FAX: (513) 612-2000

Attn: AD/Advantage Support
 Mail: Cincom Systems, Inc.

Attn: AD/Advantage Support
55 Merchant Street
Cincinnati, OH 45246-3732
U. S. A.

Customers outside U. S. A. All: Visit the support links at
http://www.cincom.com to find
contact information for your nearest
Customer Service Center.

http://supportweb.cincom.com/
http://www.cincom.com/

MANTIS DB2 Programming v

Contents

About this book ix
Using this document ...ix

Document organization..ix
Conventions...xi

MANTIS documentation series...xiv
Educational material ...xv

Overview of MANTIS SQL support 17
Embedding SQL statements in MANTIS programs.. 18
Static and dynamic SQL statements .. 19
MANTIS SQL support execution modes .. 20

Dynamic execution mode (DB2 for VSE and VM—formerly SQL/DS—and DB2 for
OS/390) .. 20
Static execution mode (DB2 for OS/390) .. 20
Extended dynamic execution mode (DB2 for VSE and VM—formerly
SQL/DS) .. 21

Embedding SQL statements in MANTIS programs 23
Rules for embedding SQL statements in MANTIS programs..................................... 23
Coding host variables in SQL statements .. 27
Coding indicator variables in SQL statements.. 31
Converting data between MANTIS SQL support and the SQL database................... 32
Specifying SQL data types in host variables .. 34

Programming considerations 37
SQL statement limits .. 39
Scope of SQL cursors and statements... 40
SQL WHENEVER statement.. 40

Using SQL WHENEVER as a declarative statement 44
Scope of the WHENEVER statement ... 45

Contents

vi P39-5028-00

SQLCA in MANTIS SQL support ..45
SQLCA statement syntax...45
SQLCA function syntax ..47
SQLCA elements ...48

SQL COMMIT WORK and ROLLBACK WORK statements50
Binding with the High-Performance Option (HPO) ...51
Running a program from a line number ..51
Error messages...52
Maximum number of host variables..54
Using ENTRY statement parameters as host variables ...54

Dynamic SQL statements 55
SQLDA statement and function ..57

Allocate an SQLDA ..59
Deallocate an SQLDA..60
Set SQLDA header information ...61
Move data into an SQLDA repeating group ...64
Read header elements...67
Move data from an SQLDA repeating group into a MANTIS program...........69

SQL statements larger than 254 characters ...72

Preparing MANTIS SQL support programs for static execution mode
(DB2 for OS/390) 75

Static execution mode vs. dynamic execution mode ..75
Static execution mode..75
Dynamic execution mode...75

Preparing your programs to run in static execution mode ..76
Performance and programming considerations..78

Determining host variable data types...78
SQL indicator variables ..78
Declaring SQL cursors multiple times..79
ENTRY statement parameters as host variables...80
Multiple row result sets with SELECT ..81
Binding on the target system..82

Preparing a program to run in static mode..82
SQL binding the MANTIS program ..82
Generating the SQL support source module ...93
Creating the SQL support load module..97
Creating the DB2 application plan and granting execution authority98
Making SQL support load modules available to MANTIS99

Checking the consistency of a bound program...104
Unbinding SQL bound programs ..107
Maintaining SQL bind information ...110
Running SQL support programs with batch MANTIS ...112

Contents

MANTIS DB2 Programming vii

MANTIS SQL support programs for extended dynamic execution mode
(DB2 for VSE and VM—formerly SQL/DS) 113

Performance and programming considerations ... 115
Determining host variable data types .. 115
Multiple row result sets with SELECT.. 116
Binding on the target system ... 117

Preparing a program to run in extended dynamic execution mode.......................... 117
SQL binding a MANTIS program online .. 118
SQL binding a MANTIS program with batch MANTIS................................. 125
Checking the results of an SQL bind... 127

Checking the consistency of a bound program .. 128
Unbinding SQL bound programs.. 131

Sample MANTIS SQL support programs 135
Insert program using static SQL statements .. 136
Insert program using dynamic SQL statements ... 138
Update program using static SQL statements.. 140
Update program using dynamic SQL statements... 141
Select program using static SQL statements ... 142
Select program using dynamic SQL statements .. 143
Delete program using static SQL statements... 144
Delete program using dynamic SQL statements.. 145
Column select program using dynamic SQL statements ... 146
Hold cursors across a COMMIT ... 147

Features not supported 149

Comparing SQL in MANTIS SQL support to SQL in COBOL 151

SQL keywords 155

Index 157

Contents

viii P39-5028-00

MANTIS DB2 Programming ix

About this book

Using this document
MANTIS is an application development system that consists of design
facilities (e.g., screens and files) and a programming language. This
manual provides information on how to use MANTIS SQL Support to
create MANTIS applications that access databases with SQL, including
programming and execution information.

Document organization
The information in this manual is organized as follows:

Chapter 1—Overview of MANTIS SQL support
Provides an overview of SQL support in MANTIS.

Chapter 2—Embedding SQL statements in MANTIS programs
Describes how to code host and indicator variables in SQL
statements, convert data between MANTIS support and the SQL
database, and specify SQL data types in host variables.

Chapter 3—Programming considerations
Provides limits and specific considerations for MANTIS SQL support.

Chapter 4—Dynamic SQL statements
Describes the differences between dynamic SQL statements in
MANTIS SQL Support and dynamic SQL statements in SQL in
COBOL.

Chapter 5—Preparing MANTIS SQL support programs for static
execution mode (DB2 for OS/390)
Describes the steps required to prepare your programs to run in
static execution mode.

About this book

x P39-5028-00

Chapter 6—MANTIS SQL support programs for extended dynamic
execution mode (DB2 for VSE and VM)
Describes the differences in the procedure used by MANTIS to
create the Access Module and that used by SQL in COBOL.
Extended dynamic execution mode allows the SQL statements in
MANTIS SQL programs to be compiled into a DB2 for VSE and VM
Access Module just as they are for SQL in COBOL.

Appendix A—Sample MANTIS SQL support programs
Contains sample MANTIS SQL support programs using static and
dynamic SQL statements.

Appendix B—Features not supported
Lists features not supported by MANTIS SQL.

Appendix C—Comparing SQL in MANTIS SQL support to SQL in
COBOL
Provides general considerations applied to SQL in MANTIS SQL
Support as compared to SQL in COBOL.

Appendix D—SQL keywords
Lists the SQL keywords used by MANTIS SQL support.

Index

About this book

MANTIS DB2 Programming xi

Conventions
The following table describes the conventions used in this document
series:

Convention Description Example
Constant width
type Represents screen images and

segments of code.
Screen Design Facility
GET NAME LAST
INSERT ADDRESS

Yellow-
highlighted, red
code or screen
text

Indicates an emphasized section of
code or portion of a screen.

00010 ENTRY COMPOUND
00020 .SHOW"WHAT IS THE

CAPITAL AMOUNT?"
00030 .OBTAIN INVESTMENT
00040 EXIT

Slashed b (b/) Indicates a space (blank).
The example indicates that a
password can have a trailing blank.

WRITEPASSb/

Brackets [] Indicate optional selection of
parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate
one of the following situations.

 A single item enclosed by brackets
indicates that the item is optional
and can be omitted.
The example indicates that you can
optionally enter a program name.

COMPOSE [program-name]

 Stacked items enclosed by
brackets represent optional
alternatives, one of which can be
selected.
The example indicates that you can
optionally enter NEXT, PRIOR,
FIRST, or LAST. (NEXT is
underlined to indicate that it is the
default.)

NEXT

PRIOR

FIRST

LAST

�

�

�
�
�
�

�

�

�
�
�
�

About this book

xii P39-5028-00

Convention Description Example
Braces { } Indicate selection of parameters.

(Do not attempt to enter braces or
to stack parameters.) Braces
surrounding stacked items
represent alternatives, one of
which you must select.
The example indicates that you
must enter FIRST, LAST, or a
value for begin.

FIRST

LAST
begin

�

�
�

�
�

�

�
�

�
�

Underlining
(In syntax)

Indicates the default value supplied
when you omit a parameter.
The example indicates that if you
do not specify ON, OFF, or a row
and column destination, the system
defaults to ON.

[] []
SCROLL

ON
OFF

 ,row col

�

�

�
�
�

�

�

�
�
�

 Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.
The example indicates that you can
enter either PRO or PROTECTED.

PROTECTED

Ellipsis points... Indicate that the preceding item
can be repeated.
The example indicates that you can
enter (A), (A,B), (A,B,C), or some
other argument in the same
pattern.

(argument,...)

About this book

MANTIS DB2 Programming xiii

Convention Description Example
UPPERCASE Indicates MANTIS reserved words.

You must enter them exactly as
they appear.
The example indicates that you
must enter CONVERSE exactly as
it appears.

CONVERSE name

Italics Indicate variables you replace with
a value, a column name, a file
name, and so on.
The example indicates that you can
supply a name for the program.

COMPOSE [program-name]

Punctuation
marks

Indicate required syntax that you
must code exactly as presented.
() parentheses
. period
, comma
: colon
; semicolon
' single quotation mark
" " double quotation marks

LET ()
() ROUNDED() = v i
i , j n e1 , e2, e3. . .

About this book

xiv P39-5028-00

MANTIS documentation series
MANTIS is an application development system designed to increase
productivity in all areas of application development, from initial design
through production and maintenance. MANTIS is part of AD/Advantage,
which offers additional tools for application development. Listed below
are the manuals offered with MANTIS in the IBM® mainframe
environment, organized by task. You may not have all the manuals listed
here.

MASTER User tasks

♦ MANTIS Installation, Startup, and Configuration, MVS/ESA, OS/390,
P39-5018

♦ MANTIS Installation, Startup, and Configuration, VSE/ESA, P39-5019

♦ MANTIS Administration, OS/390, VSE/ESA, P39-5005

♦ MANTIS Messages and Codes, OS/390, VSE/ESA, P39-5004*

♦ MANTIS Administration Tutorial, OS/390, VSE/ESA, P39-5027

♦ MANTIS XREF Administration, OS/390, VSE/ESA, P39-0012

General use

♦ MANTIS Quick Reference, OS/390, VSE/ESA, P39-5003

♦ MANTIS Facilities, OS/390, VSE/ESA, P39-5001

♦ MANTIS Language, OS/390, VSE/ESA, P39-5002

♦ MANTIS Program Design and Editing, OS/390, VSE/ESA, P39-5013

♦ MANTIS Messages and Codes, OS/390, VSE/ESA, P39-5004*

♦ AD/Advantage Programming, P39-7001

♦ MANTIS DB2 Programming, OS/390, VSE/ESA, P39-5028

About this book

MANTIS DB2 Programming xv

♦ MANTIS SUPRA SQL Programming, OS/390, VSE/ESA, P39-3105

♦ MANTIS XREF, OS/390, VSE/ESA, OpenVMS, P39-0011

♦ MANTIS Entity Transformers, P39-0013

♦ MANTIS DL/I Programming, OS/390, VSE/ESA, P39-5008

♦ MANTIS SAP Facility, OS/390, VSE/ESA, P39-7000

♦ MANTIS WebSphere MQ Programming, P39-1365

♦ MANTIS Application Development Tutorial, OS/390, VSE/ESA, P39-
5026

Manuals marked with an asterisk (*) are listed twice because you use
them for multiple tasks.

Educational material
AD/Advantage and MANTIS educational material is available from your
regional Cincom education department.

About this book

xvi P39-5028-00

MANTIS DB2 Programming 17

1
Overview of MANTIS SQL support

MANTIS is an application development system for developing, testing,
and executing applications interactively. MANTIS SQL Support is an
extended version of MANTIS. It enables you to create MANTIS
applications that access DB2 for OS/390 or DB2 for VSE and VM
(formerly SQL/DS) databases by using SQL statements embedded in
MANTIS programs. The presence of MANTIS SQL Support does not
affect non-SQL MANTIS applications. MANTIS SQL Support programs
can run side by side or with non-SQL MANTIS programs, with neither
affecting the other.

Programming SQL in MANTIS SQL Support is similar to programming
SQL in other programming languages. This manual refers to SQL in
COBOL as representative of those languages. Because MANTIS is
interpretive rather than compiled, some differences exist between
MANTIS SQL Support and SQL in COBOL. These differences are noted
in this manual and summarized in Appendix C.

Chapter 1 Overview of MANTIS SQL support

18 P39-5028-00

Embedding SQL statements in MANTIS programs
You embed SQL statements in MANTIS programs as standard MANTIS
comments. You must precede each SQL statement with an EXEC_SQL
statement and follow it with an END statement, as shown below. Code
the SQL statement text between these statements as MANTIS comments
(each line must begin with a vertical bar (|), which is the MANTIS
comment character.)

An example of an SQL SELECT statement in a MANTIS program is
shown below. Note that MANTIS automatically sets the indentation level
(number of preceding periods) for all the statements.
04590 ..TEXT EMPL_NAME(30)

04600 ..BIG EMPL_NAME_IV

04610 ..EXEC_SQL

04620 ...| SELECT EMPLNAME

04640 ...| INTO :EMPL_NAME:EMPL_NAME_IV

04650 ...| FROM EMPLOYEE.TABLE

04660 ...| WHERE EMPLNAME = 'SMITH'

04670 ..END

04680 ..DO CLEAN_UP

MANTIS variables can appear in SQL statements (they are required by
some SQL statements). MANTIS variables coded in SQL statements are
called host variables. They transfer data between MANTIS and the SQL
database. Host variables can be followed by indicator variables, which
indicate the presence of NULL or truncated data. A colon (:) must
precede all host and indicator variables coded in SQL statements. Line
4640 above shows how host and indicator variables are used in SQL
statements. See Chapter 2 for more information on host and indicator
variables and embedding SQL statements in MANTIS programs.

Static and dynamic SQL statements

MANTIS DB2 Programming 19

Static and dynamic SQL statements
In this manual, the words “static” and “dynamic” are used in two different
contexts: they both refer to the SQL statement type and the MANTIS SQL
Support execution mode.

Use of static vs. dynamic SQL statements is explained below:

♦ Static SQL statements. Use static SQL statements when you know
all the information required to execute the statement (SQL table
name, column names, etc.) before executing the statement, and the
information will not change. SELECT, INSERT, UPDATE, and
DELETE are examples of static SQL statements. In SQL in COBOL,
you must code these statements in an application program and
precompile and compile them before executing them.

♦ Dynamic SQL statements. Use dynamic SQL statements to
execute other SQL statements that have not been precompiled. Use
dynamic SQL statements when you do not know all of the information
needed to execute the SQL statement before executing the
statement. An example is a query application that allows the user to
input the SQL statement to be executed from an online terminal.
PREPARE, DESCRIBE, EXECUTE, and EXECUTE IMMEDIATE are
examples of dynamic SQL statements. In SQL in COBOL, you must
precompile and compile dynamic SQL statements, but not the SQL
statements they execute. Dynamic SQL statements provide
flexibility, but require more computer resources and deliver less
performance than static SQL statements.

The following sections explain static and dynamic execution modes.

Chapter 1 Overview of MANTIS SQL support

20 P39-5028-00

MANTIS SQL support execution modes
MANTIS SQL Support executes programs in one of three modes:

♦ Dynamic execution mode (DB2 for VSE and VM—formerly
SQL/DS—and DB2 for OS/390)

♦ Static execution mode (DB2 for OS/390 only)

♦ Extended dynamic execution mode (DB2 for VSE and VM only)

Do not confuse static and dynamic SQL statements with static and
dynamic execution modes. Both static and dynamic statements can
execute in static, dynamic, or extended dynamic execution modes.

Dynamic execution mode (DB2 for VSE and VM—formerly SQL/DS—
and DB2 for OS/390)

In dynamic execution mode, MANTIS performs all the processing of each
EXEC_SQL statement just as the statement is encountered. No
precompiling occurs prior to execution. You can code SQL statements in
a MANTIS program and immediately RUN the program. In this mode, all
EXEC_SQL statements are executed using dynamic SQL statements
(MANTIS translates static SQL statements into equivalent dynamic SQL
statements before executing them). Dynamic execution mode is the
default execution mode.

Static execution mode (DB2 for OS/390)
Static execution mode in MANTIS SQL Support is similar to SQL in
COBOL. The SQLBIND process and SQL Generate program extract
SQL statements from the MANTIS program into a BAL (Basic Assembler
Language) source code module. This module is then precompiled and
assembled as is a COBOL program. Instead of using dynamic SQL
statements, the MANTIS program executes EXEC_SQL statements from
the precompiled BAL module. This method of execution provides a
considerable increase in performance and resource use over dynamic
execution mode. Static execution mode is only available when using
DB2 for OS/390. See “Preparing MANTIS SQL support programs for
static execution mode (DB2 for OS/390)” on page 75 for more
information on static execution mode.

MANTIS SQL support execution modes

MANTIS DB2 Programming 21

Extended dynamic execution mode (DB2 for VSE and VM—
formerly SQL/DS)

Extended dynamic execution mode is similar to static execution mode.
The SQLBIND process extracts and compiles EXEC_SQL statements
from MANTIS programs, providing the performance and resource
advantages of static execution mode. However, unlike static execution
mode, this process is done entirely online (static execution mode requires
off-line processes such as precompiling and assembling). Extended
dynamic execution mode uses extended dynamic SQL statements.
These statements are not supported by DB2 for OS/390. Consequently,
extended dynamic execution mode is available only to MANTIS programs
accessing DB2 for VSE and VM. See “MANTIS SQL support programs
for extended dynamic execution mode (DB2 for VSE and VM—formerly
SQL/DS)” on page 113 for more information on extended dynamic
execution mode.

The following chapter explains how to embed SQL statements in
MANTIS programs for all of these execution modes.

Chapter 1 Overview of MANTIS SQL support

22 P39-5028-00

MANTIS DB2 Programming 23

2
Embedding SQL statements in
MANTIS programs

Rules for embedding SQL statements in MANTIS programs
You embed SQL statements in MANTIS programs within an EXEC_SQL-
END block. Begin each SQL statement with EXEC_SQL and terminate
with END. You must begin each line of SQL text between EXEC_SQL
and END with the MANTIS comment character, the vertical bar (|). All
SQL text within the EXEC_SQL-END block must conform to the rules of
SQL syntax (rather than MANTIS syntax), except where host language
syntax is permitted.

When you embed SQL statements in a MANTIS program, the following
rules apply:

♦ Only one SQL statement can be present within an EXEC_SQL-END
block.

..EXEC_SQL

...| OPEN C1

...| FETCH C1 INTO ...

...| CLOSE C1

..END

Invalid: Three SQL statements in the
EXEC_SQL-END block.

Chapter 2 Embedding SQL statements in MANTIS programs

24 P39-5028-00

♦ Any text between EXEC_SQL and END must be part of an SQL
statement and must be preceded by a vertical bar (|). Once
MANTIS SQL Support encounters a vertical bar, the rest of the
program line is considered part of a single SQL statement. Other
MANTIS statements or comments are not permitted.

..EXEC_SQL

...| OPEN C1

...OPENED=TRUE

..END

..EXEC_SQL

...| OPEN C1:OPENED=TRUE

..END

..EXEC_SQL

...| OPEN C1:|EMPLOYEE CURSOR
..END

Invalid: A statement other
than a comment is between
EXEC_SQL and END.

Invalid: A MANTIS
statement is appended to a
valid SQL statement.

Invalid: A comment is
appended to a valid SQL
statement.

♦ A colon within an EXEC_SQL-END block identifies a MANTIS host
variable, not a new statement.

..BIG A

..EXEC_SQL

...| FETCH C1 INTO :A

..END

C1 is an SQL entity;
A is a MANTIS host variable.

♦ An SQL statement appended to an EXEC_SQL statement with a
colon (the character that separates MANTIS statements) is part of
the SQL statement; it is considered to be within the EXEC_SQL-END
block.

..EXEC_SQL:| SELECT NAME

...| FROM EMPL_TABLE

...| WHERE ZIP = '12345'

..END

Valid

Rules for embedding SQL statements in MANTIS programs

MANTIS DB2 Programming 25

♦ In an SQL statement, multiple blanks at the beginning or end of an
SQL statement are treated as a single blank.

..EXEC_SQL

...| OPEN C1

..END

is
equivalent
to

..EXEC_SQL

...| OPEN C1

..END

 All spaces between words on the same or different lines are
compressed at every execution except those contained in a text
literal.
..EXEC_SQL

...|

...| SELECT

...| COL1

...| FROM TABLE

...| WHERE

...| COL1=' ABCDEF '

..END

is
equivalent
to

..EXEC_SQL

...| SELECT COL1 FROM

...| TABLE WHERE

...| COL1=' ABCDEF '

..END

 Although multiple blanks can add to readability, they also incur
additional processing overhead. You may want to avoid using them
for this reason.

♦ An SQL statement in an EXEC_SQL-END block can be broken into
multiple lines. MANTIS SQL Support reads the text on two
consecutive comment lines in an EXEC_SQL-END block as if it were
separated by a single blank (one SQL statement).

..EXEC_SQL

...| OPEN

...| C1

..END

is
equivalent
to

..EXEC_SQL

...| OPEN C1

..END

Chapter 2 Embedding SQL statements in MANTIS programs

26 P39-5028-00

♦ Do not code SQL text literals on more than one line.
..EXEC_SQL

...| SELECT COL1

...| INTO :HOST_VAR

...| FROM TABLE

...| WHERE COL1='ABC

...| DEF'

..END

Invalid: An SQL text literal appears on
more than one line.

♦ A MANTIS statement on the same line as the END statement in an
EXEC_SQL-END block is not executed. This is consistent with the
rules for using END with MANTIS IF, WHILE, WHEN, and UNTIL
statements. MANTIS comments are permitted.

..EXEC_SQL

...| OPEN C1

..END:OPENED=TRUE

OPENED=TRUE is disregarded.

..EXEC_SQL

...| OPEN C1

..END:| C1 IDENTIFIES TAG FILE ENTRIES

A valid
comment.

Coding host variables in SQL statements

MANTIS DB2 Programming 27

Coding host variables in SQL statements
Host variables are MANTIS data variables that are used to provide input
or receive output from the SQL database. A colon (:) prefix identifies
host variables in SQL statements. In the following example, EMPL is a
host variable:
..SMALL EMPL

..EXEC_SQL

...| FETCH CURSOR1 INTO :EMPL

..END

You can explicitly declare host variables as BIG, SMALL, TEXT, or
KANJI. Like other MANTIS variables, undeclared host variables are
implicitly declared as BIG when they are first used. Any previously
undefined MANTIS variable referenced in an SQL statement is
automatically declared as a MANTIS BIG variable.
..BIG A

..EXEC_SQL

...| FETCH C1 INTO :A

..END

is equivalent
to

..EXEC_SQL

...| FETCH C1 INTO :A

..END

Host variables can either be input host variables or output host variables,
depending on how they are used in the SQL statement. Input host
variables contain data that the SQL database requires to perform the
SQL statement; that is, they contain input for DB2. These are usually
search condition values. EMPL2 is an input host variable in the example
below. It contains the employee number of the specific employee to be
selected.

Output host variables are variables that contain data requested from the
SQL database; that is, they contain output from DB2. They are usually
found in SELECT or FETCH statements. In the following example,
EMPL1 is an output host variable since the SQL database will place the
results of the SELECT statement there:
..TEXT EMPL1(30)

..SMALL EMPL2

..EXEC SQL

...| SELECT EMPLNAME

...| INTO :EMPL1 Output host variable

...| FROM EMPL.TABLE

...| WHERE EMPLNO = :EMPL2 Input host variable

..END

Chapter 2 Embedding SQL statements in MANTIS programs

28 P39-5028-00

Normally, host variables are MANTIS variables declared as BIG, SMALL,
TEXT, or KANJI. Certain MANTIS functions and complex data types
(such as SCREEN and FILE) can also be used as host variables,
depending on how they are used in the SQL statements. The following
table shows the MANTIS entities that can be used as SQL host variables:

Declared data variables

Valid for input host
variable

Valid for output host
variable

BIG yes yes
SMALL yes yes

TEXT yes1 yes1
KANJI yes1 Yes1
Immediate numeric functions:
 DATAFREE yes no
 DOLEVEL yes no
 E yes no
 FALSE yes no
 PI yes no
 PROGFREE yes no
 TRUE yes no
 USERWORDS yes no
 ZERO yes no
Immediate text functions:
 DATE KEY yes no
 PASSWORD yes no
 PRINTER yes no
 TERMINAL yes no
 TERMSIZE yes no
 TIME yes no
 USER yes no

1 Input host variables can include both array and substring subscripts. Output host variables may
include array subscripts but cannot include substring subscripts.

Coding host variables in SQL statements

MANTIS DB2 Programming 29

Declared data variables

Valid for input host
variable

Valid for output host
variable

Complex data types:
 ACCESS yes2 no

 FILE yes2 no

 INTERFACE yes2 no

 SCREEN yes2 no

 TOTAL yes2 no

 VIEW yes2 no

ENTRY no no
PROGRAM no no

2 These are treated as TEXT variables.

Chapter 2 Embedding SQL statements in MANTIS programs

30 P39-5028-00

A host variable can be located in a MANTIS array. You can use
arithmetic expressions and MANTIS functions to specify subscripts of
host variables. MANTIS syntax rules apply to subscripting, even though
the subscript is coded in an SQL statement. In the example below, all
text following the colon must conform to MANTIS syntax rules. For
example:
..SMALL N,T

..BIG EMPL(20,40)

..EXEC_SQL

...| FETCH C1 INTO :EMPL(1+N,INT(T))

..END

Prefix only the host variable with a colon, not the other MANTIS variables
referred to in subscript expressions. In the example above, the variables
N and T are not prefixed with a colon, but are MANTIS variables used to
calculate the subscript for the EMPL array.

Accessing host variables directly from within arrays is an extension to
SQL made for MANTIS SQL Support. It may not be available in SQL in
COBOL.

You can use host variables in SQL expressions. A colon, as shown in
the following example, must precede each host variable:
EXEC_SQL

..| INSERT INTO OWNER.TAB (COL-A)

..| VALUES (:SALARY * 1.1)

..END

Coding indicator variables in SQL statements

MANTIS DB2 Programming 31

Coding indicator variables in SQL statements
Indicator variables are host variables that contain information about the
data being sent to or received from the SQL database. Indicator
variables are used to indicate whether the data transferred between
MANTIS and the SQL database was transferred successfully, is NULL, or
was truncated.

Indicator Variable
Value

Description

= 0 Successful transfer.
< 0 Data was NULL on database.
> 0 Data truncated. Value indicates untruncated

length.

Indicator variables are optional, but if used, they must be prefixed with a
colon and immediately follow the corresponding host variable (or
subscript expression). In the following example, EMPLIV and NAMEIV
are indicator variables:
..EXEC_SQL: | SELECT EMPLNO, EMPLNA

...| INTO :EMPL(15,3):EMPLIV, :NAME:NAMEIV

...| FROM EMPLOYEES WHERE DEPT = 17

..END

Like host variables, indicator variables can be defined explicitly or
implicitly. Only SMALL and BIG variables can be used as indicator
variables. The default in implicit declaration is a MANTIS BIG variable.
You can also use an indicator variable to insert a NULL value into the
SQL database. Storing a negative value in an indicator variable causes
the SQL database to make the value of the associated table column
NULL, regardless of the contents of the host variable. In the following
example, a NULL value is inserted for column COLA (regardless of the
value of VAR) when the INSERT statement is executed:
..VARIV=(-1)

..EXEC_SQL

...| INSERT INTO OWNER.TAB (COLA,COLB)

...| VALUES (:VAR:VARIV, :XV:XYIV)

..END

Indicator variables are required to set an SQL table column to NULL, as
in the example above.

Chapter 2 Embedding SQL statements in MANTIS programs

32 P39-5028-00

When accessing the SQL database, you may need to check the indicator
variable before using the data returned by the database. If a table
column is NULL, the value of the associated host variable is not defined.
The contents of the MANTIS host variable may be unchanged or may be
cleared, depending on options selected when MANTIS was installed.
Check with your system administrator for more information.

Converting data between MANTIS SQL support and the SQL
database

MANTIS SQL Support data is always maintained in MANTIS data types
(BIG, SMALL, TEXT, KANJI). If data conversion is required, the SQL
database performs it, unless your program requests MANTIS SQL
Support to convert the data type (see “Specifying SQL data types in host
variables” on page 34). The following table lists permissible data type
conversions. Any combination of MANTIS and SQL data types not listed
in this table may result in run-time errors. Note that loss of precision,
numeric overflow, and data truncation are possible during data
conversion.

Converting data between MANTIS SQL support and the SQL database

MANTIS DB2 Programming 33

The following table shows valid data type conversions:

SQL data type MANTIS data type Considerations
DECIMAL BIG, SMALL Loss of precision may occur when converting

from SQL to MANTIS. Overflow may occur
when converting from MANTIS to SQL.

INTEGER BIG, SMALL Loss of precision may occur when converting
from SQL to MANTIS. Overflow may occur
when converting from MANTIS to SQL.

SMALLINT BIG, SMALL Overflow may occur when converting from
MANTIS to SQL.

FLOAT BIG, SMALL Overflow and/or loss of precision may occur
when converting from SQL to MANTIS
SMALL variables.

CHAR
VARCHAR
LONG
VARCHAR

TEXT Truncation may occur in either direction.
(Check the indicator variable.)

GRAPHIC
VARGRAPHIC
LONG
VARGRAPHIC

KANJI Truncation may occur in either direction.
(Check the indicator variable.)

DATE TEXT Truncation may occur if TEXT size is less
than 10.

TIME TEXT Truncation may occur if TEXT size is less
than 8.

TIMESTAMP TEXT Truncation may occur if TEXT size is less
than 26.

The SQL data types LONG VARCHAR and LONG VARGRAPHIC are
not fully supported in MANTIS SQL Support. They are treated in the
same way as the SQL types VARCHAR and VARGRAPHIC: they are
supported as TEXT or KANJI variables, having a maximum of 254
characters (TEXT) or 127 characters (KANJI).

Chapter 2 Embedding SQL statements in MANTIS programs

34 P39-5028-00

Specifying SQL data types in host variables
MANTIS SQL Support always maintains data in MANTIS data types (BIG,
SMALL, TEXT, KANJI). Data transferred to the SQL database is
presented in the SQL equivalent to these data types (FLOAT, VARCHAR,
VARGRAPHIC). The SQL database then performs any data conversions
required (see “Converting data between MANTIS SQL support and the
SQL database” on page 32).

In some circumstances, conversion by the SQL database is not
desirable. DB2 for OS/390 and DB2 for VSE and VM may not use
indexes to search SQL tables if the data type of the search condition
value is different from that of the table column. For example:
..BIG EMPLOYEE_NUM

..EMPLOYEE_NUM=100

..EXEC_SQL

...| DECLARE C1 CURSOR FOR

...| SELECT FROM EMPLNO,EMPLNA

...| FROM EMPLOYEE.TABLE

...| WHERE EMPLNO>:EMPLOYEE_NUM

..END

If the SQL data type of the EMPLNO table column is INTEGER, an index
defined for this column may not be used to perform the SELECT because
MANTIS presents the value of EMPLOYEE_NUM to the SQL database in
the SQL data type equivalent of BIG, which is FLOAT. Because this data
type is not the same as the EMPLNO column (INTEGER), DB2 may not
use an index for the EMPLNO table column.

This condition only occurs in static or extended dynamic execution
modes. It does not occur in dynamic execution mode. This condition is
caused by the DB2 database, not by MANTIS SQL Support.

MANTIS SQL Support allows your program to specify the SQL data type
for each host variable in an SQL statement. When you specify the SQL
data type, MANTIS SQL Support converts the host variable data to the
requested SQL data type before calling the SQL database.

Specifying SQL data types in host variables

MANTIS DB2 Programming 35

You specify the SQL data type for a host variable by adding the SQL data
type specification to the host variable name in the SQL statement. You
must delimit it with MANTIS comment characters (vertical bars) and it
must precede any subscript or indicator variable definitions. You can
specify conversion only for numeric data types. The conversion must
conform to the same rules for data type declaration as those in the SQL
CREATE TABLE statement. The table at the end of this section shows
the valid SQL data type specifications.

To enable the SQL database to use any available index on the SELECT
statement in the previous example, code the following:
..EXEC_SQL

...| DECLARE C1 CURSOR FOR

...| SELECT EMPLNO,EMPLNA

...| FROM EMPLOYEE.TABLE

...| WHERE EMPLNO>:EMPLOYEE_NUM|INTEGER|

..END

The |INTEGER| added to the EMPLOYEE_NUM host variable name
causes MANTIS SQL Support to convert the value of EMPLOYEE_NUM
from FLOAT to INTEGER before executing the SELECT statement.
When the statement is executed, the same data types are in both the
search condition value (EMPLOYEE_NUM) and the table column, so
DB2 can use any available index.

You can specify an SQL data type for any host variable in any SQL
statement. However, it is only significant for input host variables (it is
ignored for output host variables) and only needed in search conditions
(WHERE clauses).

When you specify an SQL data type, MANTIS SQL Support converts the
data in the host variable to the specified SQL data type and presents it to
the SQL database in this form. This process may introduce slight
variation in the data because the numeric conversion routines used by
MANTIS SQL Support are not the same ones used by the SQL database.
Also note that SQL data type specifications are only needed for programs
that execute in static or extended dynamic execution mode (see
“Preparing MANTIS SQL support programs for static execution mode
(DB2 for OS/390)” on page 75 and “MANTIS SQL support programs for
extended dynamic execution mode (DB2 for VSE and VM—formerly
SQL/DS)” on page 113). Programs executing in dynamic execution
mode do not require the SQL data type specification in order to use an
available index (these restrictions are imposed by DB2, not by MANTIS
SQL Support).

Chapter 2 Embedding SQL statements in MANTIS programs

36 P39-5028-00

In the table below, “pp” and “ss” refer to one or two numeric digits. The
“pp” characters are numeric precision and must be included where they
appear. The “ss” characters are numeric scale digits and are optional.
With the exception of coding one or two numeric digits (where
applicable), the syntax must be coded as shown, with no intervening
blanks.

The SQL data type specification must be delimited by the vertical bar (|)
character and must immediately follow the host variable name, before
any subscript and/or indicator variable expressions. The SQL data type
specifications are shown below with delimiters included.

SQL data type Specification
|DECIMAL(pp,ss)| or
|DEC(pp,ss)|

0 <= pp < 15; 0 <= ss <= pp

|INTEGER| or |INT| No “pp” or “ss” permitted
|SMALLINT| No “pp” or “ss” permitted
|FLOAT(pp)| or |FLOAT| 0 <= pp < 53;

pp < 22 for REAL
pp >= 22 for DOUBLE
PRECISION

|DOUBLE PRECISION| Double precision floating point
(same as MANTIS BIG)

|REAL| Single precision floating point
(same as MANTIS SMALL)

MANTIS DB2 Programming 37

3
Programming considerations

MANTIS SQL Support allows you to execute SQL statements from a
MANTIS program. SQL statements are coded in a MANTIS program as
standard MANTIS comments, enclosed in an EXEC_SQL-END block. As
MANTIS encounters each SQL statement, it prepares it for execution and
then executes it, in effect performing the same steps (preprocess,
compile, link, and execute) that are performed for COBOL programs that
contain embedded SQL statements. However, unlike COBOL programs,
MANTIS programs can be modified (including the SQL statements) and
then immediately re-executed.

Chapter 3 Programming considerations

38 P39-5028-00

Before you begin writing MANTIS SQL Support programs, review the
programming considerations discussed in this chapter:

♦ In dynamic execution mode, a limited number of SQL statements can
be active concurrently. This number varies, depending on the SQL
database in use and the limit set by your administrator. (“SQL
statement limits” on page 39)

♦ The scope of an SQL cursor or statement is local to a program.
Because both are SQL entities and not MANTIS entities, you cannot
pass them as parameters or use them in non-SQL MANTIS
statements. (“Scope of SQL cursors and statements” on page 40)

♦ The WHENEVER statement in MANTIS SQL Support differs slightly
from the WHENEVER statement in other SQL in COBOL. (“SQL
WHENEVER statement” on page 40)

♦ Elements in the SQLCA (SQL Communications Area) are accessed
through a MANTIS function called SQLCA, rather than as elements
of an SQLCA data structure as in SQL in COBOL. (“SQLCA in
MANTIS SQL support” on page 45)

♦ The effects of the SQL COMMIT WORK and ROLLBACK WORK
statements are identical to the COMMIT and RESET statements in
MANTIS. Executing an SQL COMMIT or ROLLBACK causes a
MANTIS COMMIT or RESET to be executed and vice versa. (“SQL
COMMIT WORK and ROLLBACK WORK statements” on page 50)

♦ Any SQL statement or function (EXEC_SQL, SQLCA, SQLDA)
terminates MANTIS HPO (High Performance Option) binding.
(“Binding with the High-Performance Option (HPO)” on page 51)

♦ Running a program from a line number can have unpredictable
results. (“Running a program from a line number” on page 51)

♦ Error messages can come from three different sources: MANTIS
SQL Support, the MANTIS nucleus, and the SQL database. (“Error
messages” on page 52)

♦ MANTIS SQL Support does not limit the number of host variables in
an SQL statement. However, this number may be limited by DB2.
(“Maximum number of host variables” on page 54)

♦ Certain SQL keywords cannot be used as MANTIS host variable
names. (“SQL keywords” on page 155)

♦ Truncation of TEXT data can occur when parameters of MANTIS
ENTRY statements are used as host variables in SQL statements.
(“Using ENTRY statement parameters as host variables” on page 54)

SQL statement limits

MANTIS DB2 Programming 39

SQL statement limits
In dynamic execution mode only, a fixed number of SQL statements can
be used concurrently. This limit is set for your site when MANTIS SQL
Support is installed. The permitted range for DB2 for OS/390 is 0-512
and for DB2 for VSE and VM is 1-510. The default is 10. Your system
administrator can change this number.

This SQL statement limit applies only when executing in dynamic
execution mode. Programs executing in static or extended dynamic
mode are not subject to this limit.

This limit represents the maximum number of SQL statements that can
be concurrently active in your MANTIS program. It is not the maximum
number of SQL statements your program can contain. Your program can
contain as many SQL statements as you wish, but only this maximum
can be active at one time.

In general, each SQL statement in a program counts as one against this
maximum. However, all statements using the same cursor count only as
a single statement against the maximum. Thus, the following code
sequence uses one statement, not four, as applied against the maximum
number of SQL statements:
DECLARE C1 CURSOR

OPEN C1

FETCH C1

CLOSE C1

This maximum exists for each MANTIS program executed, and applies to
all DO levels for that program. Once assigned, an SQL statement is
active until the Logical Unit of Work (LUW) terminates.

If you exceed the maximum permitted number of statements, you will
receive this message:
NUCQMAE:TOO MANY STATEMENTS CONCURRENTLY IN USE

Chapter 3 Programming considerations

40 P39-5028-00

Scope of SQL cursors and statements
The scope of an SQL cursor or statement is local. An SQL cursor or
statement cannot be referenced outside the MANTIS program where it
was defined. Because statements and cursors are SQL entities, not
MANTIS entities, they cannot be passed as parameters or used in non-
SQL MANTIS statements.

Because SQL cursors and statements are local, the name of an SQL
cursor or statement can be used in other programs without conflict.
However, the same SQL cursor or statement defined in different MANTIS
programs each count as one against the maximum number of SQL
statements permitted (see “SQL statement limits” on page 39).

SQL WHENEVER statement
The WHENEVER statement in MANTIS SQL Support differs from the
WHENEVER statement in SQL in COBOL in four ways. In MANTIS SQL
Support:

♦ The WHENEVER statement is interpretive, not compiled.

♦ GOTO is replaced by DO.

♦ STOP is replaced by FAULT.

♦ The default action for SQLERROR is FAULT, not CONTINUE.

The syntax of the MANTIS SQL Support WHENEVER statement is
shown below. Note that any action (DO, FAULT, or CONTINUE) can be
selected for any condition (SQLERROR, SQLWARNING, NOT FOUND).

IF you do not code the WHENEVER statement, the conditions will default
to the actions specified in the considerations below. If you do code the
WHENEVER statement, you must code both condition and action.

WHENEVER

SQLERROR

SQLWARNING

NOT FOUND

DO

FAULT

CONTINUE

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

SQL WHENEVER statement

MANTIS DB2 Programming 41

SQLERROR

Description Optional. Specifies that the SQL database has detected an error. The
SQL statement execution was not successful and he SQLCA SQLCODE
contains a negative value.

Consideration If you do not specify a WHENEVER statement, the SQLERROR default
action is FAULT.

SQLWARNING

Description Optional. Specifies that the SQL database detected a condition that may
require program intervention. The SQL statement execution was
successful. The SQLCA SQLCODE may contain a positive value other
than 100 and/or one or more of the SQLCA SQLWARN flags may
contain nonblank characters.

Consideration If you do not specify a WHENEVER statement, the SQLWARNING
default action is CONTINUE.

NOT FOUND

Description Optional. Specifies that the SQL database cannot find a row to satisfy
your SQL statement, or there are no more rows to be retrieved. The
SQLCA SQLCODE contains 100.

Consideration If you do not specify a WHENEVER statement, the NOT FOUND default
action is CONTINUE.

Chapter 3 Programming considerations

42 P39-5028-00

DO

Description Optional. Specifies a standard MANTIS DO (internal or external) and
corresponds to the WHENEVER-GOTO SQL statement in SQL in
COBOL. WHENEVER-DO transfers control to the specified internal
routine or external program whenever the named condition is
encountered.

Considerations

♦ WHENEVER-DO can transfer control to an internal routine or
external program, which in turn can contain any MANTIS logic,
including CHAIN, EXIT, or STOP statements. The current values of
any DO arguments are passed to the named subroutine or external
program. The subroutine or external program EXIT returns control to
the next statement following the EXEC_SQL that caused the DO to
occur.

♦ The WHENEVER-DO action resembles the existing functionality of
the TRAP statement in MANTIS. If the DO portion of a WHENEVER-
DO contains an error, MANTIS returns a MANTIS error message
associated with the DO statement, not an SQL WHENEVER-type
error. MANTIS displays the line in error in the subroutine or external
program. The WHENEVER statement may be outside of the current
execution path. Remember that DO is executed as a result of an
SQL statement detecting the condition with which the DO action is
associated.

FAULT

Description Optional. Terminates execution of the program and displays the error
message returned by the SQL database in the form of a MANTIS fault
message. FAULT corresponds to the WHENEVER-STOP SQL
statement in SQL in COBOL.

CONTINUE

Description Optional. Permits program execution to continue without interruption
when the named condition occurs. Program execution continues with the
statement following the EXEC_SQL statement in the MANTIS program.
Your program should then check the SQLCA SQLCODE for the results of
each SQL statement execution.

SQL WHENEVER statement

MANTIS DB2 Programming 43

 The following table shows the default action for each condition when the
WHENEVER statement is not coded:

Condition Default action
SQLERROR FAULT
SQLWARNING CONTINUE
NOT FOUND CONTINUE

Example

0230 EXEC_SQL:| WHENEVER SQLERROR DO DO_ROUTINE(PARM1,PARM2,PARM3)

00240 END

00250 EXEC_SQL:| WHENEVER SQLWARNING FAULT

00260 END

00270 EXEC_SQL:| WHENEVER NOT FOUND CONTINUE

00280 END

Chapter 3 Programming considerations

44 P39-5028-00

Using SQL WHENEVER as a declarative statement
In SQL in COBOL, the SQL WHENEVER statement is a declarative
statement. It is processed when the program is precompiled, not when it
is executed. Consequently, in SQL in COBOL the current SQL
WHENEVER setting is determined by its sequential position in the
program.

In MANTIS SQL Support, the WHENEVER statement is an executable
statement. The last executed WHENEVER statement is in effect
regardless of its sequential position in the program. This difference is
important when a WHENEVER statement is used with conditional
statements. The following figure illustrates the different effects of a
declared versus executed WHENEVER statement. C denotes a
condition and 1 and 2 denote actions. The same considerations apply to
UNTIL, WHEN, and IF structures in MANTIS.

SQL in COBOL
pseudocode:

Setting
in effect

MANTIS SQL support
pseudocode:

Setting in effect

20 WHENEVER C1

40 WHILE

50 WHENEVER C2 «═╗
║

70 ENDWHILE ══════╝

80 EXEC_SQL

C1

C1

C2
C2
C2

C2

20 WHENEVER C1

40 WHILE condition

50 WHENEVER C2 «═╗
║

70 ENDWHILE ══════╝

80 EXEC_SQL

C1

C1 FIRST, THEN C2

C1 or
C1 or
C1 or

C1 or C2,
depending on
whether initial
condition is
FALSE or TRUE

Since the setting is
established before run
time, it remains
unchanged regardless of
whether lines 50-70 are
executed.

 The first time statement
40 is executed, the
setting is C1; thereafter it
is C2.
*However, if the WHILE
condition is not true the
first time line 40 is
executed, C1 remains in
effect through line 80
because line 50 was not
executed.

SQLCA in MANTIS SQL support

MANTIS DB2 Programming 45

Scope of the WHENEVER statement
The scope (range) of the WHENEVER statement is every EXEC_SQL
statement in the current MANTIS DO-level until a new WHENEVER
statement is executed. To change from the default WHENEVER
settings, explicitly execute the WHENEVER statement in every external
subprogram.

SQLCA in MANTIS SQL support
In SQL in COBOL, the SQLCA (SQL Communications Area) is a data
structure. SQL in COBOL accesses elements in the SQLCA as items of
data. In MANTIS SQL Support, these elements are accessed through
the SQLCA statement and function.

The SQLCA statement and function move data to and from elements of
the SQLCA structure.

SQLCA statement syntax
The SQLCA statement stores data from the MANTIS program into the
SQLCA.

SQLCA(sqlca_element_name)=expression

sqlca_element_name

Description Required. Specifies the element of the SQLCA that is to receive data.

Format Must be a text literal or expression that evaluates to one of the SQLCA
element names in the following tables.

Consideration Element names must be selected from the list for the SQL database in
use (see the table under “SQLCA elements” on page 48).

expression

Description Required. Specified the data to be transferred into the SQLCA.

Format Must be consistent with the data type of the SQLCA element, text or
numeric.

Consideration Certain SQLCA elements are read-only and cannot have data stored into
them by the MANTIS program.

Chapter 3 Programming considerations

46 P39-5028-00

General considerations

♦ Some SQLCA elements are not present in the DB2 SQLCA. These
are extensions to the SQLCA unique to MANTIS. They are:
DBTYPE, MSGTEXT, and SQLISL.

♦ Although data can be stored in some SQLCA elements, doing so
does not pass any information to the SQL database. The SQLCA is
returned to the MANTIS program after each SQL statement is
executed (EXEC_SQL-END). Any data stored in the SQLCA will be
overwritten when the next SQL statement is executed. You can save
and then restore the SQLCODE value and use it to retrieve the
MSGTEXT value.

Example This example shows how a MANTIS program can retrieve SQL error
message text for an SQLCA error message. The SQLCA statement is
used to store the SQLCODE value in the SQLCA, and the MSGTEXT
function is used to retrieve the error text.
00150 TEXT SQL_ERROR_TEXT(254)

00160 SQLCA("SQLCODE")=(-504)

00170 SQL_ERROR_TEXT=SQLCA("MSGTEXT")

00180 END

SQLCA in MANTIS SQL support

MANTIS DB2 Programming 47

SQLCA function syntax
The SQLCA function, shown below, transfers data from the SQLCA into
the MANTIS program.

SQLCA(sqlca_element_name)

sqlca_element_name

Description Required. Specifies the element of the SQLCA that is to be transferred.

Format Must be a text literal or expression that evaluates to one of the SQLCA
element names in the table under “SQLCA elements” on page 48.

General considerations

♦ Some SQLCA elements are not present in the SQL SQLCA. These
are extensions to the SQLCA unique to MANTIS SQL support. They
are DBTYPE, MSGTEXT, and SQLISL.

♦ If you move an SQLCA TEXT element to a MANTIS variable of
shorter length (for example, an 8-character SQLCA element to a
6-character MANTIS variable), the right-most characters are
truncated.

Example This example shows how data is retrieved from the SQLCA by the
SQLCA function. Line 160 checks the SQLCA SQLCODE to determine if
all table rows have been fetched.
00130 EXEC_SQL

00140 .| FETCH C1 INTO :EMPL_NAME, :EMPL_NAME

00150 END

00160 IF SQLCA("SQLCODE")=100

00170 .DO END_OF_DATA

00180 END

Chapter 3 Programming considerations

48 P39-5028-00

SQLCA elements
The following table lists SQLCA elements, the compatible MANTIS
variable type, and usage notes:

Element
name

MANTIS
compatible data
type

Contents / considerations

Updateable?

SQLCAID TEXT(8) Eyecatcher. Set by SQL. No
SQLCABC BIG Length of SQLCA. Set by SQL. No
SQLCODE BIG Code indicating results of SQL

statement execution. For possible
returned values, refer to your DB2
manual.

Yes

SQLERRM1 TEXT(70) Tokens for insertion into SQL
error message text. The vertical
bar (|) replaces hexadecimal
“FF” as the separator character.

Yes

SQLERRP TEXT(8) SQL diagnostic data. Yes
SQLERRDn BIG SQL diagnostic data.

n ranges between 1-6.
Yes

SQLWARNn TEXT(1) SQL warning flags.
n ranges between 0–A.

Yes

SQLSTATE2 TEXT(5) Indicates the results of SQL
statement execution.

Yes

SQLEXT TEXT(8) DB2
TEXT(5) DB2 for
VSE and VM

Reserved for SQL. Yes

SQLCA in MANTIS SQL support

MANTIS DB2 Programming 49

Element
name

MANTIS
compatible data
type

Contents / considerations

Updateable?

DBTYPE3 TEXT(6) MANTIS SQL extension.
DBTYPE returns the SQL
database currently in use:
♦ “DB2” for DB2 for OS/390
♦ “SQL/DS” for SQL/DS or DB2

for VSE and VM

No

MSGTEXT3 TEXT(254) MANTIS SQL extension.
MSGTEXT returns the SQL error
message text associated with the
current SQLCA SQLCODE.

No

SQLISL3 TEXT(1) MANTIS SQL extension. DB2 for
VSE and VM variable. SQLISL
allows the MANTIS program to set
the SQL/DS or DB2 for VSE and
VM ISOLATION parameter. Not
supported by DB2 for OS/390.
For more information about
SQLISL, refer to the IBM DB2 for
VSE and VM documentation.

Yes

1 If SQLERRM contains multiple character strings and you then show the contents of SQLERRM,

the character strings will be separated by the vertical bar (|). You can use the POINT function
and substring capabilities of MANTIS to split the message for display purposes. MANTIS changes
any vertical bar character (|) found in the string to a broken vertical bar character (¦).

2 SQLSTATE is supported only for DB2 version 2.3 and higher, or SQL/DS version 3.4 and higher.
3 This element is a MANTIS extension to the SQLCA. It is not present in the DB2 SQLCA.

Chapter 3 Programming considerations

50 P39-5028-00

SQL COMMIT WORK and ROLLBACK WORK statements
In MANTIS SQL Support, the SQL COMMIT WORK and ROLLBACK
WORK statements have exactly the same effect on the SQL database as
the MANTIS COMMIT and RESET statements. An SQL COMMIT
WORK or ROLLBACK WORK implies a MANTIS COMMIT and RESET,
and vice versa. Executing an SQL COMMIT WORK or ROLLBACK
WORK statement affects both the SQL database and all resources
known to MANTIS.

In CICS, MANTIS automatically performs a COMMIT at terminal output.
A CICS SYNCHPOINT is executed at each of the following:

♦ Terminal output, unless COMMIT OFF is in effect

♦ COMMIT

♦ RESET

♦ PERFORM, when you perform a routine that returns with a new
transaction ID

Binding with the High-Performance Option (HPO)

MANTIS DB2 Programming 51

Binding with the High-Performance Option (HPO)
You can HPO bind MANTIS SQL Support programs using the MANTIS
BIND command. The binding process stops when EXEC_SQL, SQLCA,
or SQLDA is encountered because they are not bindable statements.
The SQLCA function is discussed in “SQLCA in MANTIS SQL support”
on page 45. Binding (part of the MANTIS High-Performance Option) is
discussed in MANTIS Program Design and Editing, OS/390, VSE/ESA,
P39-5013.

Running a program from a line number
In MANTIS SQL Support you can run programs from a line number.
However, this action can produce unpredictable results when the
program contains SQL statements. Some SQL statements (such as
FETCH) require that other SQL statements (such as DECLARE and
OPEN) be previously executed. Running a program from a line number
can cause errors because SQL statements have not been executed in
the proper sequence. Also, SQL entities (cursors) can be affected by the
MANTIS program display when running in MANTIS programming mode
(the screen display causes a terminal I/O COMMIT, which causes an
SQL COMMIT WORK, which can cause all SQL cursors to be closed).

Chapter 3 Programming considerations

52 P39-5028-00

Error messages
When using MANTIS SQL, you can receive messages from three
sources:

♦ MANTIS nucleus

♦ MANTIS SQL Support

♦ SQL database

Messages from the MANTIS nucleus and SQL support are documented
in MANTIS Messages and Codes, OS/390, VSE/ESA, P39-5004.
Messages from the DB2 database are documented in the appropriate
DB2 manuals.

MANTIS SQL Support messages have a seven-character code like other
MANTIS error messages. All MANTIS SQL error codes contain the letter
“Q”, as shown in the example below:
NUCQFKE: SPECIFIED SQLDA HOST VARIABLE ELEMENT IS UNINITIALIZED.

The way MANTIS SQL Support messages are displayed depends on
whether the error was detected in the MANTIS Full-Screen Editor, the
MANTIS Line Editor, or a MANTIS program:

♦ In the MANTIS Full-Screen Editor. If the message is too long to be
displayed in full on the Message Line at the top of the screen, the
message is displayed in a separate window at the bottom of the
screen.

♦ In the MANTIS Line Editor. The MANTIS statement where the error
was encountered is displayed at the bottom of the edit screen,
followed by the error code and message. If the message is too long
to fit on one line, the remaining text is not displayed.

♦ In a MANTIS program. The message appears at the bottom of the
screen. It wraps to succeeding lines if necessary. The number of
the statement causing the error and the MANTIS program name
appear beneath the error message.

Error messages

MANTIS DB2 Programming 53

Messages from the SQL database contain the 3-character code QDB. A
message from the database contains the SQLCA SQLCODE value and
its associated text message. The format is:
NUCQDBE:+nnnnn:message-text

where +nnnnn is the SQLCA SQLCODE value and message-text is the
message returned from the database. For example:
NUCQDBE:-105:INVALID STRING CONSTANTS

is returned from DB2 if an SQLCODE of -105 is returned to the SQLCA
and the WHENEVER SQLERROR condition was set to FAULT.

To display error message text for SQL database errors, MANTIS SQL
Support must have access to certain SQL resources. For DB2, the SQL
error message text modules (DSNTIAR, DSNTIAM) must be included
when MANTIS is installed. For DB2 for VSE and VM, MANTIS must
have authority to access the SQLDBA.SYSTEXT1 and
SQLDBA.SYSTEXT2 tables. If MANTIS SQL Support cannot access the
SQL error message text, the following message is displayed:
NUCQDBE:+nnnnn: AN SQL ERROR OR WARNING HAS OCCURRED

SQLERRM: xxx|xxx...xxx

The second line contains the contents of the SQLCA SQLERRM
element. This line will not appear for messages for which no SQLCA
SQLERRM was returned.

Chapter 3 Programming considerations

54 P39-5028-00

Maximum number of host variables
The number of host variables that can be defined in a MANTIS program
is limited only by DB2 for OS/390 or DB2 for VSE and VM. MANTIS SQL
Support does not limit the number of host variables that can be defined in
a MANTIS program (apart from the limit of 2048 symbolic names in a
single MANTIS program).

Using ENTRY statement parameters as host variables
If ENTRY statement parameters are used as host variables in SQL
statements in a MANTIS program, be certain that the length of any TEXT
parameters passed do not change from one execution to the next. If this
is not done, the data for TEXT parameters can be truncated. MANTIS
SQL Support will use and maintain the length received on the first
execution. If a TEXT parameter of a different length is used on a
subsequent execution, the new length will be ignored. If the new length is
larger than the existing length, MANTIS will continue to return the existing
length, in effect truncating the data. The following example shows
ENTRY parameters used as host variables:
10120 ENTRY GET_NAME(EMPL_NAME,EMPL_NUMBER)

10130 .EXEC_SQL

10140 ..| FETCH C1 INTO :EMPL_NAME, :EMPL_NUMBER

10150 .END

10160 EXIT

This problem can be eliminated by moving variables passed as ENTRY
statement parameters to variables explicitly defined within the MANTIS
program or subroutine. Then use the explicitly defined variables or host
variables in the SQL statements, as shown in the following example:
10110 ENTRY GET_NAME(EMPL_NAME,EMPL_NUMBER)

10120 .TEXT NAME(30),NUMBER(12):| define as maximal size

10130 .EXEC_SQL

10140 ..| FETCH C1 INTO :NAME, :NUMBER

10150 .END

10160 .EMPL_NAME=NAME

10170 .EMPL_NUMBER=NUMBER

10170 EXIT

MANTIS DB2 Programming 55

4
Dynamic SQL statements

Using dynamic SQL statements in MANTIS SQL Support is somewhat
different than using dynamic SQL statements in SQL in COBOL. If you
are unfamiliar with dynamic SQL statements, you may want to review the
appropriate SQL database manuals for more information before reading
this chapter.

Static and dynamic are the two basic types of SQL statements. You can
use static SQL statements when you know all the information needed to
execute the SQL statement before executing it. SQL SELECT, FETCH,
UPDATE, INSERT, and DELETE are examples of static SQL statements.
Use dynamic SQL statements when you do not know all the necessary
information about an SQL statement before executing it. For example, if
a query application allows a user to enter an SQL statement from an
online terminal, the query program requires dynamic SQL statements.
The DB2 SPUFI and DB2 for VSE and VM ISQL utility programs are
examples of such applications.

Dynamic SQL statements allow you to execute other SQL statements
under control of the application program. PREPARE, DESCRIBE,
EXECUTE, and EXECUTE IMMEDIATE are examples of dynamic SQL
statements. Alternative forms of the DECLARE, OPEN, and FETCH
statements can also be used with dynamic SQL statements.

You can use both static and dynamic SQL statements in the same
MANTIS program and in MANTIS programs executing in dynamic, static,
or extended dynamic execution modes.

Chapter 4 Dynamic SQL statements

56 P39-5028-00

You cannot use host variables in SQL statements that are executed by
dynamic SQL statements. A parameter marker (usually the question
mark character (?)) must replace all host variables in the SQL statement
text. Data is transferred between MANTIS and the SQL database using
an SQLDA (SQL Descriptor Area). When using dynamic SQL
statements, you must procedurally place host variable data into or
retrieve data returned by the SQL database from an SQLDA.

To execute SQL statements using dynamic SQL, you must prepare the
SQL statements with an SQL PREPARE statement and then execute
them with an SQL EXECUTE statement. If data is retrieved, inserted, or
updated in the SQL database, your program must manipulate an SQLDA
between SQL statement preparation and execution. This manipulation
can include allocating and expanding an SQLDA, retrieving data type and
length information from the SQL database using the DESCRIBE
statement, and transferring data between MANTIS variables and an
SQLDA. Appendix A shows examples of MANTIS programs using static
SQL statements and equivalent programs using dynamic SQL
statements.

SQLDA statement and function

MANTIS DB2 Programming 57

SQLDA statement and function
An SQLDA (SQL Descriptor Area) is a data structure that is used to
transfer data between your program and the SQL database when
dynamic SQL statements are used. The following figure shows the
structure of an SQLDA:

.

SQLDAID
SQLDABC

SQLN
SQLD

SQLTYPE1

SQLLEN1

SQLDATA1

SQLIND1

SQLNAME1

SQLTYPE2

SQLLEN2

SQLDATA2

SQLIND2

SQLNAME2

.

.

header
elements

repeating
element1

repeating
element2

(etc.)

An SQLDA is composed of two types of elements: header elements
(which occur once per SQLDA) and repeating elements (which can occur
multiple times in an SQLDA). Repeating elements repeat as a group
(each element occurs only once in a group). This repeating group is
called an SQLVAR. Each element in the SQLDA has a specific name
and contains a specific item of data. These items are explained in the
SQL documentation for the SQL database in use.

Chapter 4 Dynamic SQL statements

58 P39-5028-00

When you execute SQL commands in a COBOL program, you must
explicitly declare each SQLDA element as a data area in your program
and then access SQLDA elements through programming statements. In
MANTIS SQL Support, you access the SQLDA by using the SQLDA
statement and function. In MANTIS SQL Support, when you declare an
SQLDA, an SQLDA with all the elements shown in the preceding
illustration is built for you. The SQLDA contains a default number of
repeating elements (SQLVARS). Your system administrator sets the
default, but you can modify this number in your program.

SQLDA is both a statement and a function. The SQLDA statement
(write) stores data from the MANTIS program into the SQL Descriptor
Area (SQLDA). The SQLDA function (read) transfers data from the
SQLDA into the MANTIS program.

The SQLDA statements are shown below followed by the SQLDA
function. The SQLDA statement is used to allocate or deallocate an
SQLDA, and to transfer data from a MANTIS program into an SQLDA.

SQLDA statement and function

MANTIS DB2 Programming 59

Allocate an SQLDA

SQLDA(sqlda_name)=NEW

sqlda_name

Description Required. Specifies the name of the SQLDA to be allocated.

Format Must be a text literal or expression of 1–18 characters.

Consideration Naming conventions for SQL entities must be followed. Refer to the
appropriate SQL language manual for the SQL database in use.

Example The following example shows how to allocate an SQLDA. Line 150
allocates an SQLDA named the “SQLDA1”.
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 SQL_TEXT="SELECT NAME, STREET, STATE, ZIPCODE"

00140 SQL_TEXT=SQL_TEXT+" FROM EMPLOYEE.TABLE"

00150 SQLDA("SQLDA1")=NEW

00160 IF SQLDA("SQLDA1","SQLN")<4

00170 .SQLDA("SQLDA1","SQLN")=4

00180 END

00190 SQLDA("SQLDA1","SQLD")=4

00200 EXEC_SQL:| PREPARE S1 FROM: SQL_TEXT

00210 END

00220 EXEC_SQL:| DESCRIBE S1 INTO SQLDA1

00230 END

00240 EXEC_SQL:| DECLARE C1 CURSOR FOR S1

00250 END

00260 EXEC_SQL:| OPEN C1

00270 END

00280 EXEC_SQL:| FETCH C1 USING DESCRIPTOR SQLDA1

00290 END

00300 EMPL_NAME=SQLDA("SQLDA1","SQLDATA",1)

00310 EMPL_STREET=SQLDA("SQLDA1","SQLDATA",2)

00320 EMPL_STATE=SQLDA("SQLDA1","SQLDATA",3)

00330 EMPL_ZIP_CODE=SQLDA("SQLDA1","SQLDATA",4)

00340 SQLDA("SQLDA1")=QUIT

Chapter 4 Dynamic SQL statements

60 P39-5028-00

Deallocate an SQLDA

SQLDA(sqlda_name) = QUIT

sqlda_name

Description Required. Specifies the name of the SQLDA to be deallocated.

Format Must be a text literal or expression of 1-18 characters.

Considerations
♦ Naming conventions for SQL entities must be followed. Refer to the

appropriate SQL language manual for the SQL database in use.

♦ Must be a previously defined SQLDA, via SQLDA(sqldaname) =
NEW.

Example The following example shows how to deallocate an SQLDA. Line 340
deallocates an SQLDA named “SQLDA1”.
00100 TEXT SQL_TEXT(254)
00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)
00120 BIG EMPL_ZIP_CODE
00130 SQL_TEXT="SELECT NAME, STREET, STATE, ZIPCODE"
00140 SQL_TEXT=SQL_TEXT+" FROM EMPLOYEE.TABLE"
00150 SQLDA("SQLDA1")=NEW
00160 IF SQLDA("SQLDA1","SQLN")<4
00170 .SQLDA("SQLDA1","SQLN")=4
00180 END
00190 SQLDA("SQLDA1","SQLD")=4
00200 EXEC_SQL:| PREPARE S1 FROM: SQL_TEXT
00210 END
00220 EXEC_SQL:| DESCRIBE S1 INTO SQLDA1
00230 END
00240 EXEC_SQL:| DECLARE C1 CURSOR FOR S1
00250 END
00260 EXEC_SQL:| OPEN C1
00270 END
00280 EXEC_SQL:| FETCH C1 USING DESCRIPTOR SQLDA1
00290 END
00300 EMPL_NAME=SQLDA("SQLDA1","SQLDATA",1)
00310 EMPL_STREET=SQLDA("SQLDA1","SQLDATA",2)
00320 EMPL_STATE=SQLDA("SQLDA1","SQLDATA",3)
00330 EMPL_ZIP_CODE=SQLDA("SQLDA1","SQLDATA",4)
00340 SQLDA("SQLDA1")=QUIT

SQLDA statement and function

MANTIS DB2 Programming 61

Set SQLDA header information

SQLDA(sqlda_name,sqlda_header_element)=expression

sqlda_name

Description Required. Specifies the name of the SQLDA to be accessed.

Format Must be a text literal or expression of 1-18 characters.

Considerations

♦ Naming conventions for SQL entities must be followed. Refer to the
appropriate SQL language manual for the SQL database in use.

♦ Must be a previously defined SQLDA, via SQLDA(sqldaname) =
NEW.

sqlda_header_element

Description Required. Specifies the SQLDA header element that is accessed.

Format Must be a text literal or an expression that evaluates to one of the
SQLDA header element names shown in the table following the next
parameter description.

expression

Description Required. Specifies the data to be transferred from the MANTIS program
into the SQLDA.

Format Must be consistent with the data type of the SQLDA element being stored
(either text or numeric).

Consideration Certain SQLDA elements are read-only and cannot have data from the
MANTIS program stored in them. In some cases, storing data in one
SQLDA element causes MANTIS to automatically update other SQLDA
elements.

Chapter 4 Dynamic SQL statements

62 P39-5028-00

Example In the following example, SQLDA header elements are set in lines 250
and 270:
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 EMPL_NAME="JONES"

00140 EMPL_STREET=" NEW STREET ADDRESS"

00150 EMPL_STATE="OH"

00160 EMPL_ZIP_CODE="12345"

00170 SQL_TEXT="UPDATE EMPLOYEE.TABLE SET"

00180 SQL_TEXT=SQL_TEXT+" NAME = ?, STREET = ?,"

00190 SQL_TEXT=SQL_TEXT+" STATE = ?, ZIP_CODE = ?"

00200 SQL_TEXT=SQL_TEXT+" WHERE NAME = ?"

00210 EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

00220 END

00230 SQLDA ("SQLDA1")=NEW

00240 IF SQLDA("SQLDA1","SQLN")<5

00250 .SQLDA("SQLDA1","SQLN")=5

00260 END

00270 SQLDA("SQLDA1","SQLD")=5

00280 SQLDA("SQLDA1","SQLDATA",1)=EMPL_NAME

00290 SQLDA("SQLDA1","SQLDATA",2)=EMPL_STREET

00300 SQLDA("SQLDA1","SQLDATA",3)=EMPL_STATE

00310 SQLDA("SQLDA1","SQLDATA",4)=EMPL_ZIP_CODE

00320 SQLDA("SQLDA1","SQLDATA",5)=EMPL_NAME

00330 EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1

00340 END

00350 SQLDA("SQLDA1")=QUIT

SQLDA statement and function

MANTIS DB2 Programming 63

 The following table lists and describes the SQLDA header elements:

Header
element
name

MANTIS
compatible
data type

Contents /
considerations

Updateable?

SQLDAID TEXT(8) Eyecatcher. Set by SQL. No
SQLDABC BIG SQLDA length. Set by SQL when the

SQLDA is allocated; modified when SQLN
is changed.

No

SQLN BIG Number of repeating groups (SQLVAR) in
the SQLDA. Set using installation defined
default value when the SQLDA is
allocated. Can be modified by the
MANTIS program if needed.

Yes

SQLD BIG Number of repeating groups currently in
use. Set by SQL as the result of a
DESCRIBE, can be set by program when
necessary.

Yes

Chapter 4 Dynamic SQL statements

64 P39-5028-00

Move data into an SQLDA repeating group

SQLDA(sqlda_name,repeating_element,index)=expression

sqlda_name

Description Required. Specifies the name of the SQLDA to be accessed.

Format Must be a text literal or expression of 1-18 characters.

Consideration Naming conventions for SQL entities must be followed. Refer to the
appropriate SQL language manual for the SQL database in use.

sqlda_repeating_element

Description Required. Specifies the repeating element of the SQLDA that is
accessed.

Format Must be a text literal or expression that evaluates to one of the SQLDA
repeating element names shown in the table following the next parameter
description.

index

Description Required when accessing repeating elements. Specifies the group of
SQLDA repeating elements that is accessed.

Format Must be a numeric literal or expression not less than one and not greater
than the maximum number of repeating groups currently in the SQLDA
(SQLN), inclusive.

SQLDA statement and function

MANTIS DB2 Programming 65

General consideration

 Using certain SQLDA elements causes other SQLDA elements to
automatically be set by MANTIS. For example, storing data into the
SQLDA element “SQLDATA” causes MANTIS to set the data type
(“SQLTYPE”) and data length (“SQLLEN”) elements automatically.
Storing data into the SQLDA “SQLIND” element updates the data type
element (“SQLTYPE”) to show that an indicator variable is present.

Example In the following example, lines 280 - 320 store data from the MANTIS
program into SQLDA repeating group elements.
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 EMPL_NAME="JONES"

00140 EMPL_STREET=" NEW STREET ADDRESS"

00150 EMPL_STATE="OH"

00160 EMPL_ZIP_CODE="12345"

00170 SQL_TEXT="UPDATE EMPLOYEE.TABLE SET"

00180 SQL_TEXT=SQL_TEXT+" NAME = ?, STREET = ?,"

00190 SQL_TEXT=SQL_TEXT+" STATE = ?, ZIP_CODE = ?"

00200 SQL_TEXT=SQL_TEXT+" WHERE NAME = ?"

00210 EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

00220 END

00230 SQLDA ("SQLDA1")=NEW

00240 IF SQLDA("SQLDA1","SQLN")<5

00250 .SQLDA("SQLDA1","SQLN")=5

00260 END

00270 SQLDA("SQLDA1","SQLD")=5

00280 SQLDA("SQLDA1","SQLDATA",1)=EMPL_NAME

00290 SQLDA("SQLDA1","SQLDATA",2)=EMPL_STREET

00300 SQLDA("SQLDA1","SQLDATA",3)=EMPL_STATE

00310 SQLDA("SQLDA1","SQLDATA",4)=EMPL_ZIP_CODE

00320 SQLDA("SQLDA1","SQLDATA",5)=EMPL_NAME

00330 EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1

00340 END

00350 SQLDA("SQLDA1")=QUIT

Chapter 4 Dynamic SQL statements

66 P39-5028-00

Repeating
element
name

MANTIS
compatible
data type

Contents / considerations

Updateable?

SQLTYPE BIG SQL data type code. Code differs
depending on whether set by SQLDATA or
SQLIND. Set when the value of the
variable is transferred via SQLDATA or
SQLIND.

No

SQLLEN BIG Length of data element in current
repeating group. Set when value of
variable is transferred via SQLDATA.

No

SQLDATA TEXT, BIG,
or KANJI

Subfunction that moves data, sets
SQLTYPE and SQLLEN, and sets
address of the data in the SQLDA. Used
to transfer value of variable between
database and MANTIS.

Yes

SQLIND BIG Subfunction that moves data, sets
SQLTYPE and address of the data in the
SQLDA. Used to transfer value of the
indicator variable between database and
MANTIS.

Yes

SQLNAME TEXT(30) SQL column name. Set by SQL, can be
reset by the MANTIS program.

Yes

SQLDA statement and function

MANTIS DB2 Programming 67

Read header elements

SQLDA(sqlda_name,sqlda_header_element)

sqlda_name

Description Required. Specifies the name of the SQLDA to be accessed.

Format Must be a text literal or expression of 1-18 characters.

Consideration Naming conventions for SQL entities must be followed. Refer to the
appropriate SQL language manual for the SQL database in use.

sqlda_header_element

Description Required. Specifies the SQLDA header element that is accessed.

Format Must be a text literal or an expression that evaluates to one of the
SQLDA header element names shown in the table under “Set SQLDA
header information” on page 61.

Chapter 4 Dynamic SQL statements

68 P39-5028-00

Example In the following example, line 160 shows the SQLDA “SQLN” header
element being read from the SQLDA.
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 SQL_TEXT="SELECT NAME, STREET, STATE, ZIPCODE"

00140 SQL_TEXT=SQL_TEXT+" FROM EMPLOYEE.TABLE

00150 SQLDA("SQLDA1")=NEW

00160 IF SQLDA("SQLDA1","SQLN")<4

00170 .SQLDA("SQLDA1","SQLN")=4

00180 END

00190 SQLDA("SQLDA1","SQLD")=4

00200 EXEC_SQL:| PREPARE S1 FROM: SQL_TEXT

00210 END

00220 EXEC_SQL:| DESCRIBE S1 INTO SQLDA1

00230 END

00240 EXEC_SQL:| DECLARE C1 CURSOR FOR S1

00250 END

00260 EXEC_SQL:| OPEN C1

00270 END

00280 EXEC_SQL:| FETCH C1 USING DESCRIPTOR SQLDA1

00290 END

00300 EXEC_SQL:| EXECUTE S2 USING DESCRIPTOR SQLDA1

00310 END

00320 EMPL_NAME=SQLDA("SQLDA1","SQLDATA",1)

00330 EMPL_STREET=SQLDA("SQLDA1","SQLDATA",2)

00340 EMPL_STATE=SQLDA("SQLDA1","SQLDATA",3)

00350 EMPL_ZIP_CODE=SQLDA("SQLDA1","SQLDATA",4)

00360 SQLDA("SQLDA1")=QUIT

SQLDA statement and function

MANTIS DB2 Programming 69

Move data from an SQLDA repeating group into a MANTIS
program

SQLDA(sqlda_name,sqlda_repeating_element,index)

sqlda_name

Description Required. Specifies the name of the SQLDA to be accessed.

Format Must be a text literal or expression of 1-18 characters.

Consideration Naming conventions for SQL entities must be followed. Refer to the
appropriate SQL language manual for the SQL database in use.

sqlda_repeating_element

Description Required. Specifies the repeating element of the SQLDA that is
accessed.

Format Must be a text literal or expression that evaluates to one of the SQLDA
repeating element names (see the table under “Move data into an
SQLDA repeating group” on page 64).

index

Description Required when accessing repeating elements. Specifies the group of
SQLDA repeating elements that is accessed.

Format Must be a numeric literal or expression between one and the maximum
number of repeating groups currently in the SQLDA (SQLN), inclusive.

Chapter 4 Dynamic SQL statements

70 P39-5028-00

Example In the following example, lines 300 - 330 show SQLDA repeating
elements being moved from the SQLDA into the MANTIS program.
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 SQL_TEXT="SELECT NAME, STREET, STATE, ZIPCODE"

00140 SQL_TEXT=SQL_TEXT+" FROM EMPLOYEE.TABLE

00150 SQLDA("SQLDA1")=NEW

00160 IF SQLDA("SQLDA1","SQLN")<4

00170 .SQLDA("SQLDA1","SQLN")=4

00180 END

00190 SQLDA("SQLDA1","SQLD")=4

00200 EXEC_SQL:| PREPARE S1 FROM: SQL_TEXT

00210 END

00220 EXEC_SQL:| DESCRIBE S1 INTO SQLDA1

00230 END

00240 EXEC_SQL:| DECLARE C1 CURSOR FOR S1

00250 END

00260 EXEC_SQL:| OPEN C1

00270 END

00280 EXEC_SQL:| FETCH C1 USING DESCRIPTOR SQLDA1

00290 END

00300 EMPL_NAME=SQLDA("SQLDA1","SQLDATA",1)

00310 EMPL_STREET=SQLDA("SQLDA1","SQLDATA",2)

00320 EMPL_STATE=SQLDA("SQLDA1","SQLDATA",3)

00330 EMPL_ZIP_CODE=SQLDA("SQLDA1","SQLDATA",4)

00340 SQLDA("SQLDA1")=QUIT

SQLDA statement and function

MANTIS DB2 Programming 71

The following table shows the mapping between SQL data types and
MANTIS data types. Use this table to determine what field types DB2 is
returning for a dynamic statement via an SQLDA. You can then assign
the returned fields to a variable of compatible type.

SQL data type

Description

SQL type*
(output
host
variables)

SQL type set
by MANTIS
(input host
variables)

MANTIS
type

DATE Calendar Date 384/385 448/449 TEXT
TIME Time 388/389 448/449 TEXT
TIMESTAMP Timestamp 392/393 448/449 TEXT
VARCHAR Variable String 448/449 448/449 TEXT
CHAR Fixed length string 452/453 448/449 TEXT
LONG VARCHAR Long variable string 456/457 448/449 TEXT
VARGRAPHIC Variable graphic string 464/465 464/465 KANJI
GRAPHIC Fixed length graphic

string
468/469 464/465 KANJI

LONG
VARGRAPHIC

Long variable graphic
string

472/473 464/465 KANJI

FLOAT Floating point number 480/481 480/481 BIG
DECIMAL Packed decimal number 484/485 480/481 BIG
INTEGER Long integer 496/497 480/481 BIG
SMALLINT Short integer 500/501 480/481 BIG

* The first number in the column is used when no indicator variable is present. This value does not

allow NULL values. The second number is used when an indicator variable is present, and NULL
data values can be specified.

Chapter 4 Dynamic SQL statements

72 P39-5028-00

SQL statements larger than 254 characters
To dynamically prepare an SQL statement for execution, use the SQL
PREPARE statement. The SQL statement to be executed is contained
either in the PREPARE statement as a text literal, or in the host variable
specified in the PREPARE statement.

Because the SQL statement is text, the host variable specified in the
PREPARE statement must be a MANTIS TEXT variable. MANTIS TEXT
variables are limited to 254 characters, which can cause a problem for
large SQL statements.

MANTIS SQL Support allows large SQL statements to be placed in a
MANTIS TEXT array. MANTIS SQL Support combines the contents of all
rows in a MANTIS TEXT array into a single SQL statement. This
combined text is then used as the SQL statement text in the SQL
PREPARE statement.

In order to use this feature, the host variable specified in the PREPARE
statement:

♦ Must be declared as a MANTIS TEXT array.

♦ Must not have subscripts specified. If subscripts are present,
MANTIS uses only the text of the subscripted row as the SQL
statement.

When these conditions are met, MANTIS uses the contents of the entire
array as the SQL statement text. The text is combined “as is” from all
rows in the array. No characters are added or deleted so that SQL text
may split row boundaries if required. Rows containing no data are
ignored.

Because ALL rows of the array are combined, some rows may need to
be cleared from one SQL statement execution to another. If they are not
cleared, an SQL statement may be combined with text remaining from a
previous SQL statement. Executing this statement may cause errors that
are difficult to diagnose.

SQL statements larger than 254 characters

MANTIS DB2 Programming 73

An example of how to use a MANTIS TEXT array to contain a large SQL
statement is shown below:

40 ..TEXT SQL_TEXT(10,20)

50 ..SQL_TEXT(1)="SELECT EMPLNO, EMPLN"

60 ..SQL_TEXT(2)="M"

70 ..SQL_TEXT(5)="FROM EMPLOYEE.TABLE"

80 ..SQL_TEXT(6)="WHERE EMPLNO= ?"

90 ..EXEC_SQL

100 ...| PREPARE S1 FROM :SQL_TEXT

110 ..END

120 ..CLEAR SQL_TEXT

Array can be any
length/number.
Text can split array
boundaries.
Rows 3 & 4 ignored-
contains no data.
No spaces are added
or deleted.
No subscripts
specified.
Clear for future use.

The SQL text used by the SQL PREPARE statement in this example is:
SELECT EMPLNO, EMPLNM FROM EMPLOYEE.TABLE WHERE EMPLNO= ?

Chapter 4 Dynamic SQL statements

74 P39-5028-00

MANTIS DB2 Programming 75

5
Preparing MANTIS SQL support
programs for static execution mode
(DB2 for OS/390)

Static execution mode vs. dynamic execution mode

Static execution mode
Static execution mode allows SQL statements in MANTIS SQL programs
to be precompiled in a way similar to SQL in COBOL. The SQL
statements from a MANTIS program are extracted into a BAL (Basic
Assembler Language) source module. The BAL source module is then
precompiled and assembled as is any other program in SQL in COBOL.
When the MANTIS SQL program executes in static execution mode, the
SQL statements are executed from the precompiled BAL module rather
than by dynamic SQL statements. This process allows MANTIS to
execute SQL statements with performance similar to SQL in COBOL.

In MANTIS SQL Support for DB2, executing the program in static
execution mode instead of dynamic execution mode uses fewer
resources.

Dynamic execution mode
In dynamic execution mode, dynamic SQL statements execute all SQL
statements in your MANTIS program, eliminating the need for an SQL
precompile step each time you change the program. You can code SQL
statements in a MANTIS program and immediately RUN the program.
When errors are detected, you can modify these statements and
immediately re-execute the program. The flexibility of dynamic execution
mode requires considerable computer resources. While using these
resources is desirable during program development, they should be
limited when the program is ready for production.

Chapter 5 Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)

76 P39-5028-00

Preparing your programs to run in static execution mode
The five steps required to prepare your programs to run in static
execution mode are:

1. SQL binding the MANTIS program.

 Before you can execute a MANTIS SQL program in static execution
mode, you must SQL bind it. (Do not confuse SQL binding with HPO
(High Performance Option) binding. Both HPO bound and unbound
programs can be SQL bound.) MANTIS SQL programs are SQL
bound using the SQL Bind Facility (see “SQL binding the MANTIS
program” on page 82). When you SQL Bind the MANTIS program,
MANTIS extracts information about each SQL statement in the
MANTIS program and places it on the MANTIS cluster. This
information is in a file called the SQL Bind Information. After
MANTIS creates the SQL Bind Information, MANTIS marks the
program as SQL bound and terminates the SQL Bind Facility. You
must perform all remaining steps outside of MANTIS.

2. Generating the SQL Support Source Module.

 After the SQL bind is complete, a batch utility program reads the SQL
Bind Information output from the SQL Bind and generates a BAL
source code module containing the SQL statements from the
MANTIS program. The BAL source module is called the SQL
Support Source Module.

3. Creating the SQL Support Load Module.

 You then precompile the SQL Support Source Module using the DB2
precompiler for BAL programs. This creates the DB2 Database
Request Module (DBRM) and expanded BAL source code for the
SQL Support Source Module. Assemble (compile) this expanded
source code to create the SQL Support Load Module.

4. Creating the DB2 Application Plan and granting execution authority.

 If necessary, combine the DB2 DBRM created in the previous step
with other DBRMs to create the DB2 Application Plan for the MANTIS
program. Use the DB2 BIND command (do not confuse this with the
MANTIS HPO BIND or SQL BIND commands). Use the DB2
GRANT command to give appropriate execution authority to this
Application Plan.

Preparing your programs to run in static execution mode

MANTIS DB2 Programming 77

5. Making the SQL Support Load Module available to MANTIS.

 Make the SQL Support Module available so MANTIS can execute it
when needed through the MANTIS program executing in static
execution mode. Include (linkedit) the SQL Support Load Module
with MANTIS, or link it alone to the library so that MANTIS can
dynamically load the support module when needed.

For details on the preceding five steps, see “Preparing a program to run
in static mode” on page 82. The following figure illustrates the five steps
required in order to run MANTIS SQL programs in static execution mode:

SQL Bind
MANTIS
program

1
SQL Bound

MANTIS
Program

Original
MANTIS
Program

SQL Bind
Information

2
Generate

SQL Support
Source Module

SQL
Support
Source
Module

BATCH DB2

SQL
Support
Module
DBRM

3
Pre-compile and
assemble SQL
Support Source

Module

SQL
Support

Load
Module

Create DB2
application

plan and grant
execution
authority

Make SQL Support
Load Module

Available to MANTIS

5

4

Application
Plan

CSOPSQL2
and any

other
DBRMs

MANTIS

Chapter 5 Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)

78 P39-5028-00

Performance and programming considerations
Programs executing in static execution mode cannot always execute
exactly as they do in dynamic execution mode. This section lists certain
differences and restrictions for programs executing in static execution
mode. Review these differences before preparing your program for
execution in static mode.

Determining host variable data types
When a MANTIS program is SQL bound, MANTIS temporarily HPO
binds the program (if it is not already HPO bound). This binding
determines the data type and length of MANTIS variables used as host
variables in SQL statements. This information must be known so that
you can perform the precompile and assembly. MANTIS considers any
host variables that are not resolved by the HPO bind to be undefined and
may default to BIG, depending on the option you specify when you
execute the SQL Bind option (see “SQL binding the MANTIS program” on
page 82).

Because HPO binding determines host variable data types, structure the
MANTIS program as if it were to be HPO bound. Define all MANTIS
variables that are used as host variables in the program before any
statements that cause HPO binding to terminate. This is especially true
for nonnumeric variables (TEXT and KANJI). For more information on
HPO binding, refer to MANTIS Facilities, OS/390, VSE/ESA, P39-5001.
If a MANTIS TEXT variable defaults to BIG in the SQL Support Load
Module, the program will not run in static execution mode. Either the
SQL database or MANTIS will return an error, depending on how the text
variable is used.

SQL indicator variables
In dynamic execution mode, when an SQL statement is executed, DB2
may return indicator variables. If so, MANTIS allocates space for them
and permits the SQL statement to execute. However, MANTIS only
returns the value of the indicator variable when the indicator variable is
present in the SQL statement in the MANTIS program.

If a program is prepared for static execution mode, however, MANTIS
cannot determine whether indicator variables will be returned before the
program executes. An SQL statement requiring an indicator variable fails
unless the indicator variable is defined in the MANTIS program. To avoid
this failure in the SQL support module, specify indicator variables in your
SQL statements wherever DB2 requires them.

Performance and programming considerations

MANTIS DB2 Programming 79

Declaring SQL cursors multiple times
In dynamic execution mode, you can declare an SQL cursor multiple
times in the MANTIS program, provided you execute only one of the
DECLARE statements. MANTIS SQL Support does not return an error
until your program executes the second DECLARE statement for an
existing SQL cursor.

In static execution mode, you cannot declare an SQL cursor more than
once. When the SQL Support source module is input to the SQL
precompiler program, the precompiler generates an error for any SQL
cursor defined more than once, regardless of whether the declaration is
ever executed.

The following example shows an SQL cursor declared multiple times in a
MANTIS SQL program. It executes successfully in dynamic execution
mode, but receives an error when you precompile the SQL Support
Module:
EXEC_SQL

.| DECLARE C1 CURSOR FOR SELECT ...

END

IF ZERO=TRUE

.EXEC_SQL

..| DECLARE C1 CURSOR FOR SELECT ...

.END

END

Chapter 5 Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)

80 P39-5028-00

ENTRY statement parameters as host variables
HPO binding is done during the SQL binding. Therefore, do not use
parameters that are passed on an ENTRY statement as host variables in
SQL statements in static execution mode. All ENTRY statement
parameters default to a data type of BIG because their actual data types
cannot be determined until the program is executed. In dynamic
execution mode, parameters passed in an ENTRY statement can be
used as host variables in SQL statements because the data types of the
parameters are known when the SQL statement is executed.

If you must use parameters passed on an ENTRY statement as host
variables in an SQL statement, explicitly define separate MANTIS
variables for the passed parameters; move the parameters to MANTIS
variables and use the explicitly defined variables as host variables in the
SQL statement text. This is shown in the following example. The
ENTRY statement parameters (X, Y, Z) have duplicate explicitly defined
MANTIS variables (Q, R, S) that are used as host variables in the SQL
statement text.
ENTRY ABC(X,Y,Z)

.TEXT Q(10):BIG R

.SMALL S

.S=Z

.EXEC_SQL:| SELECT * INTO :Q, :R FROM SQLTABLE

. . | WHERE SQLCOLUMN = :S

.END

.X=Q

.Y=R

EXIT

Explicitly
define all host
variables.
Set value for
input host
variable.
Binding stops
at this
statement.
Return values
for output
host
variables.

The example above executes successfully in either dynamic or static
execution mode. The following example will execute successfully in
dynamic execution mode but may cause errors in static execution mode.
ENTRY ABC(X,Y,Z)

.EXEC_SQL

..| SELECT * INTO :X, :Y FROM SQLTABLE

..| WHERE SQLCOLUMN>:Z

.END

EXIT

Performance and programming considerations

MANTIS DB2 Programming 81

Multiple row result sets with SELECT
In MANTIS dynamic execution mode, a SELECT statement always
returns the first row of the result set regardless of the number of rows in
the result set. In static execution mode, the SQL database returns an
error if the result set for the SELECT contains more than one row. In the
example below, the first row in the result set built by the SELECT is
always returned, even if the result set contains more than one row. This
example causes an SQL error to occur in static execution mode if the
result set built by the SELECT contains multiple rows.
EXEC_SQL

.| SELECT * INTO :X, :Y FROM SQLTABLE

.| WHERE SQLCOLUMN > :Z

END

You can avoid this problem by using SQL cursors instead of the SELECT
statement in static execution mode. The following example is the
equivalent of the previous example using SQL cursors instead of
SELECT.
EXEC_SQL

.| DECLARE C1 CURSOR FOR SELECT *

.| FROM SQLTABLE WHERE SQLCOLUMN > :Z

END

.|

EXEC_SQL

.| OPEN C1

END

EXEC_SQL

.| FETCH C1 INTO :X, :Y

END

EXEC_SQL

.| CLOSE C1

END

Chapter 5 Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)

82 P39-5028-00

Binding on the target system
It is necessary to SQL bind the MANTIS program on the system where it
will be executed or a clone of that system because SQL binding uses
HPO binding to determine host variable data types. If MANTIS variables
that are used as host variables are defined in HPO bound entities
(screens, files, etc.), and these entities are different on the target system
from those on the system where the SQL bind is done, unpredictable
results, errors, or abends may occur.

Preparing a program to run in static mode
The steps required to prepare a program for static mode execution are:

1. SQL binding the MANTIS program

2. Generating the SQL Support Source Module

3. Pre-compiling and assembling the SQL Support Source Module

4. Creating the DB2 Application Plan and granting execution authority

5. Making the SQL Support Load Module available to MANTIS

Modifying anything created by these steps may result in inconsistent
entities that may prevent your program from being executed in static
execution mode.

SQL binding the MANTIS program
The first step in preparing a MANTIS program to run in static execution
mode is to SQL bind the program using the MANTIS SQL Bind facility.
Access the Bind Options for SQL programs from the MANTIS Program
Design Facility menu shown in the screen illustration under “SQL binding
a MANTIS program online” on page 83. The options include binding,
unbinding, checking, and maintenance actions. If you are unfamiliar with
the Program Design Facility or the Bind Options, refer to MANTIS
Program Design and Editing, OS/390, VSE/ESA, P39-5013, for details.

Preparing a program to run in static mode

MANTIS DB2 Programming 83

SQL binding a MANTIS program online
To SQL bind a MANTIS program, select the SQL Bind option at the
Program Design Facility menu as shown in the following illustration and
press ENTER:

PRGMMENU01 Program Design Facility (TEST) YYYY/MM/DD HH:MM:SS
===>

Please select one of the menu items below.

Program Component Engineering Bind Options Utilities

16 1. List 7. CEF Check 12. HPO Check 18. Audit Trail
2. Edit 8. " Compose 13. " Bind 19. Browse Audit Trail
3. Profile 9. " Decompose 14. " Unbind 20. " Prgm Profile
4. Purge 10. CREF Programs 15. SQL Check 21. Trigger List
5. Copy 11. Bill of Materials 16. " Bind 22. SQL Maint
6. Rename 17. " Unbind

000: READY
F1=HELP F2=EXHELP F3=EXIT F4=PROMPT F5=REFRESH F9=RETRIEVE F12=CANCEL ...

The next panel displayed is the SQLBIND Program Entry panel (see the
following screen illustration). This panel allows you to specify the
program or programs you want to SQL bind. You can specify a single
program name, a range of program names, or a generic pattern of
names. You can also specify Entry Options, Function Options and
Process Statistics.

Chapter 5 Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)

84 P39-5028-00

The Function Options for the SQLBIND Program Entry panel are
described below. For information on the Entry Options or Process
Statistics, refer to MANTIS Facilities, OS/390, VSE/ESA, P39-5001. In
this example, a single program name is specified and the defaults for all
other options are accepted. Press PF6 to execute.

PRGMENT101E SQLBIND Program Entry YYYY/MM/DD HH:MM:SS
===>
From
Library . . . TEST
Name SQL_DB2 Password : :
Description .

Thru
Name

Entry Options Function Options Process Statistics
Immediate? Y Preprocess Options: Processed . .
Confirmation? . . Y . .Save/Replace . . S Skipped . . .
Addendum? N . .Keep/Revoke . . K Errors . . .

. .Block/Noblock . . B
Undefined Variables? 1

000: READY
F1=HELP F2=EXHELP F3=EXIT F4=PROMPT F5=REFRESH F6=EXECUTE F7=CONFIRM ...

Preparing a program to run in static mode

MANTIS DB2 Programming 85

PREPROCESS OPTIONS:

Description Required. Specifies the options to be used for the SQL bind.

SAVE/REPLACE

Description Required. Specifies whether the SQL Bind Information is to be created
(“S”), or if existing SQL Bind Information for the program is to be replaced
(“R”).

Default SAVE ("S")

Considerations

♦ An error will be returned if “S” is specified for a program that has
been previously SQL bound.

♦ For users of earlier releases of MANTIS SQL Support, this option
replaces the REBIND option.

KEEP/REVOKE

Description Ignored. Applies only to programs using DB2 for VSE and VM.

BLOCK/NOBLOCK

Description Ignored. Applies only to programs using DB2 for VSE and VM.

Chapter 5 Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)

86 P39-5028-00

UNDEFINED VARIABLES?

Description Required. Specifies what should be done if undefined variables are
encountered during the SQL Bind.

Default 1

Options 1 QUIT WITH DISPLAY. If any undefined variables are found, MANTIS
displays the undefined variables with their line numbers and does not
SQL bind the program. These variables must be changed in the MANTIS
program or another option must be selected. If no undefined variables
are found, the program is SQL bound.

 2 CONTINUE NO DISPLAY. Binding continues even if undefined
variables are encountered. All undefined variables are assigned a data
type of BIG, but these variables are not displayed.

 3 CONTINUE WITH DISPLAY. Binding continues even if MANTIS
encounters undefined variables. Undefined variables are assigned a
data type of BIG and displayed with their line numbers.

Considerations

♦ Nonnumeric variables that default to BIG can create inconsistencies
that prevent static mode execution (see “Declaring SQL cursors
multiple times” on page 79).

♦ Any undefined variables displayed include the line number on which
they appear. Undefined variables are not displayed with option 2.

♦ If you set SAVE/REPLACE=“R” and the SQL bind fails, any existing
SQL Bind Information records for the named SQL Support Module
are deleted from the MANTIS Cluster. The program will remain
marked as SQL bound and the Support Module created earlier is still
valid. If the SQL program was previously HPO bound, it remains
HPO bound.

Preparing a program to run in static mode

MANTIS DB2 Programming 87

When you press PF6 to execute, MANTIS returns the description of
the program you have specified for binding and asks you to either
CONFIRM or SKIP the action as shown in the following screen
illustration. Press PF7 to confirm the action.

PRGMENT101E SQLBIND Program Entry YYYY/MM/DD HH:MM:SS
===> _
From
Library . . . TEST
Name SQL_DB2 Password : :
Description . DYNAMIC SQL DB2 ACCESS PROGRAM

Thru
Name

Entry Options Function Options Process Statistics
Immediate? Y Preprocess Options: Processed . .
Confirmation? . . Y . .Save/Replace . . S Skipped . . .
Addendum? N . .Keep/Revoke . . Errors

. .Block/Noblock . .
Undefined Variables? 1

SQLBIND SQL_DB2

U01: CONFIRM OR SKIP
F1=HELP F2=EXHELP F3=EXIT F4=PROMPT F5=REFRESH F6=EXECUTE F7=CONFIRM ...

Chapter 5 Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)

88 P39-5028-00

 The next panel displayed is the SQL Bind Information panel (see the
following screen illustration). The options for this panel are described
below. After making any changes or specifications necessary, press
PF6 to complete the binding process. If no errors are encountered, a
confirmation message, NUCQBAI: SQL BIND COMPLETED
SUCCESSFULLY, will be returned. Press PA2 to return to the
Program Design Facility menu. Press PF3 to exit and return to the
MANTIS Facility Selection menu.

SQLBIND SQL BIND INFORMATION PANEL

ACTION............... : SQLBIND :
MANTIS PROGRAM NAME.. : SQL_DB2 :
SQL BINDING TYPE..... : STATIC :
SQL STATEMENTS....... : 5 :

BOUND BY............. : :
BOUND AT............. : :
MANTIS RELEASE....... : :

SQL MODULE NAME : SQLMOD3 :
SQL MODULE OWNER NAME : :
SQL OWNER PASSWORD : :
SQL DATA BASE TYPE .. : DB2 :

ENTER=CONTINUE PF3=EXIT PF6=EXECUTE PA2=CANCEL

Preparing a program to run in static mode

MANTIS DB2 Programming 89

MANTIS PROGRAM NAME

Description Protected. Displays your user name and the name of the MANTIS SQL
program you are binding.

SQL BINDING TYPE

Description Protected. Displays the type of SQL bind that will be performed
(STATIC).

SQL STATEMENTS

Description Protected. Displays the number of SQL statements in the program you
are binding.

SQL MODULE NAME

Description Required. The name of the SQL Support Module. If the SQL program
was previously bound, the name of the previously created SQL Support
Module is displayed; otherwise, this field is blank.

Default The existing SQL Support Module name (if previously bound).

Format 1-7 alphanumeric character symbolic name. The first character may be
A-Z, @, #, $; characters 2-7 may be these characters plus 0-9.

Consideration The name must be unique to the SQL database and to MANTIS.

SQL MODULE OWNER NAME

Description Ignored. Applies only to programs using DB2 for VSE and VM.

SQL OWNER PASSWORD

Description Ignored. Applies only to programs using DB2 for VSE and VM.

SQL DATA BASE TYPE

Description Protected. The database for which the bind will be done.

Default DB2

Consideration DB2 for OS/390 is currently the only database that supports static
execution mode.

Chapter 5 Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)

90 P39-5028-00

SQL binding a MANTIS program with batch MANTIS
You can SQL bind one or more SQL programs by using Batch MANTIS.
Sample input for SQL binding with Batch MANTIS is in the following
screen illustration. Sample JCL to SQL bind MANTIS programs using
Batch MANTIS is supplied with the MANTIS installation tape. Refer to
the installation documentation or contact your system administrator for
more information. Note that the asterisk (*) denotes three separate
fields.

<ECHO=ON>user;password;
<FAULT=OFF>;
<BLANK=OFF>;1;
CONTROL:SQLBIND_FACILITY;

user:program1;name1;owner;preprocess_option*;when undefined_option;password1

user:program2;name2;owner;preprocess_option*;when undefined_option;password2
.
.

<PA2>
<PA2>

Preparing a program to run in static mode

MANTIS DB2 Programming 91

Field equivalents

name 1 SQL_module_name1

owner SQL_module_owner

preprocess_option preprocessing_option (3 fields)

password1 SQL_owner_password1

name 2 SQL_module_name2

password2 SQL_owner_password2

General considerations

♦ Because SQL Bind Information is added to the MANTIS cluster
during an SQL bind, the MANTIS cluster must be updateable by
Batch MANTIS.

♦ The output is routed to the printer, so you may want to place the
PRINTER DD card ahead of the TERMINAL DD card or use
TERMINAL DD DUMMY.

♦ If you process multiple programs that contain undefined variables in
batch, the undefined variables are printed on the page before the
panel containing their program name.

Code Description
0 Successful SQL bind.
4 Warning on SQL bind operation. Successful SQL bind.
8 Error on SQL bind operation. Unsuccessful SQL bind.
16 Fatal error raised on SQL bind operation.

Unsuccessful SQL bind and/or termination of
execution.

Chapter 5 Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)

92 P39-5028-00

Checking the results of an SQL bind
To see whether an SQL program is bound, select option 1 (Program List)
from the Program Design Facility menu (see the screen illustration under
“SQL binding a MANTIS program online” on page 83) and press ENTER.
The next panel displayed is the Program Directory List shown in the
following screen illustration. If the program has been bound, the BND
field will contain an S, meaning that the program has been bound for
static mode execution.

For more information on the Program Directory List and a description of
the fields, refer to MANTIS Program Design and Editing, OS/390,
VSE/ESA, P39-5013.

PRGMLIST01 Program Directory List YYYY/MM/DD HH:MM:SS
===> _
From
Action Name Date Time Ver BND Status
--------- --------------------------------- -------- -------- --- --- ---------

_ SQL_DB2 92/02/22 09:15:37 5 S ACTIVE
_ SQL_PRGM1 92/02/22 09:15:37 5 ACTIVE
_ SQL_PRGM2 92/02/22 09:15:37 5 ACTIVE
_ SQL_PRGM3 92/02/22 09:15:37 5 ACTIVE
_ SQL_PRGM4 92/02/22 09:15:37 5 ACTIVE
_ SQL_PRGM5 92/02/22 09:15:37 5 ACTIVE

.

.

.

F1=HELP F2=EXHELP F3=EXIT F4=PROMPT F5=REFRESH F8=FWD F9=RETRIEVE...

Preparing a program to run in static mode

MANTIS DB2 Programming 93

Generating the SQL support source module
After you SQL bind the MANTIS program, you must generate the SQL
Support Source Module. This step requires the SQL Bind Information
created during the SQL bind. Verify that the SQL bind information is
available before proceeding (see “Checking the results of an SQL bind”
on page 92).

A batch program, SQLGENR (not Batch MANTIS), creates the SQL
Support Source Module. SQLGENER reads the SQL Bind Information
from the MANTIS cluster and outputs the SQL Support Source Module as
a BAL (Basic Assembler Language) source program.

For each execution of the batch SQL Support Source Module generate
program, you can generate one or more SQL Support Source Modules.
The SQL Support Source Module is placed in a designated OS/390
library. Sample input for the batch SQL Support Source Module generate
program is shown in the following code sample. Sample JCL to execute
the batch SQL Support Source Module generate program is included on
the MANTIS installation tape. Refer to the installation documentation or
see your MANTIS system administrator for more information.
//SYSIN DD *

USER(user:password)

DATA1(./ ADD NAME=#######)

DATA9(./ ENDUP)

DELETE(YES)

* THIS IS A COMMENT

support_module_name_1

support_module_name_2

support_module_name_3

support_module_name_4

/*

Chapter 5 Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)

94 P39-5028-00

Considerations

♦ All input statements are placed in the OS/390 JCL SYSIN DD name.
Only the USER (user:password) and one or more SQL Support
Source Module names are required. USER(user:password) specifies
the MANTIS user name and password used to perform the SQL bind.
Processing stops if the user is omitted or unknown to MANTIS or if
the password is invalid.

♦ The DATA1 statement inserts a statement at the beginning of each
SQL Support Source Module generated. In the preceding code
sample, the DATA1 statement inserts the string “. / ADD NAME =
source_module_name” at the beginning of each module, using the
module name from the MANTIS SQL Bind panel. DATA1 is optional;
if not supplied, no string is inserted before each source module.
DATA1() disables the insertion of the string specified in a previous
DATA1 statement. DATA1() inserts a blank line. This statement is
used with the IBM IEBUPDTE utility (see consideration 4).

 You can enter up to 50 characters between the parentheses. To
insert the source program’s name in a statement, place exactly
seven hash characters (#) in the desired location(s). No parentheses
other than the two enclosing the string are allowed. In the preceding
code sample, the DATA1 statement inserts “../ ADD NAME=”
followed by the SQL Support Source Module name before each SQL
Support Source Module generated.

♦ The DATA9 statement inserts a statement after the last SQL Support
Source Module generated. No parentheses other than the two
enclosing the string are allowed. You can enter up to 50 characters
between the parentheses. No substitution of source program name
for pound signs is permitted. DATA9() disables the insertion of the
string specified in a previous DATA9 statement. DATA9() inserts a
blank line. DATA9 is optional; if not supplied, no statement is
inserted after the last support module. In the preceding code
sample, the DATA9 statement inserts this string at the end of the file:
“./ ENDUP”. This statement is used with the IBM IEBUPDTE utility
(see consideration 4).

Preparing a program to run in static mode

MANTIS DB2 Programming 95

♦ The output of the SQL Support Source Module generate program is a
single data set containing the BAL source code for all SQL Support
Modules generated. The DATA1 and DATA9 parameters (see
above) permit control statements to be inserted in the output dataset
for use with the IBM IEBUPDTE utility program. When the SQL
Support Source Module generate program terminates, the
IEBUPDTE program can be executed to create individual SQL
Support Source Modules from the output data set.

♦ When DELETE(YES) is specified, the SQL Bind Information is
deleted from the MANTIS cluster if the SQL Support Source Module
has been generated successfully. You can also set DELETE(NO). If
DELETE(YES), a message is displayed indicating that SQL Bind
Information was deleted. If omitted, DELETE defaults to YES.

If DELETE(YES), the MANTIS cluster must be updateable by the
SQL Source Module generate program for the SQL Bind Information
to be deleted.

Chapter 5 Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)

96 P39-5028-00

General considerations

♦ Any statement that is not a USER, DATA1, DATA9, DELETE, or
comment (*) must be the name of an SQL Support Module.

♦ Any statement beginning with an asterisk (*) in column 1 is a
comment.

♦ Blank statements or leading blanks on any input statements are
ignored.

♦ If an input statement contains an error, DELETE is set to NO when
the error is detected. Unless a subsequent statement specifies
DELETE(YES), the SQL Bind Information remains on the MANTIS
cluster. In this case you need only rerun this step with corrected
input statements.

♦ When input statements are repeated in the output listing, the
password in the USER (user:password) is replaced with 16 asterisks.

If the SQL Support Source Module generation is successful, you receive
a return code of zero and the following confirmation messages in the
output listing:
SQLQGKI INPUT STATEMENT: sql_support_module_name

SQLQGLI SQL SUPPORT SOURCE MODULE GENERATION WAS SUCCESSFUL

SQLQGNI MODULE NAME sql_support_module_name

SQLQGOI PROGRAM NAME ... user:program_name

SQLQGUI SOURCE MODULE GENERATE UTILITY TERMINATED SUCCESSFULLY

You can also view the SQL Support Source Modules in the OS/390
libraries.

Preparing a program to run in static mode

MANTIS DB2 Programming 97

Creating the SQL support load module
After you generate the SQL Support Source Module, you must
precompile it using the DB2 precompiler for BAL programs. You must
assemble and linkedit the expanded source output from the DB2
precompiler with one of the DB2 attach facility modules (DSNCLI for
CICS or DSNELI for TSO batch) to create the SQL Support Load Module.

Sample JCL to precompile, assemble, and linkedit SQL Support Source
Modules is included on the MANTIS installation tape. The sample JCL
includes the following:

♦ OS/390 JCL procedure (PROC) that executes:

- DB2 precompiler

- OS/390 BAL assembler

- Linkage editor programs

♦ OS/390 JCL that executes the PROC

You can use either the sample JCL or your own, equivalent JCL to create
the SQL Support Load Module.

General considerations

♦ Consult the MANTIS installation documentation or your system
administrator for specific JCL to be executed.

♦ The sample JCL that executes the OS/390 PROC contains a
“PROCLIB DD” statement. If your system does not support this
statement, the sample PROC must be cataloged to a system
procedure library or included with the JCL as an “in line” procedure.

♦ Before using the sample PROC, you must modify it. The PROC
references several OS/390 libraries and must be updated with the
names of those libraries on your system. The modifications
necessary to the PROC are documented in the PROC. Refer to that
documentation for more information.

Chapter 5 Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)

98 P39-5028-00

♦ The sample JCL linkedits all CICS SQL Support Load Modules twice.
The output of each linkedit is placed into a separate OS/390 library.
This is done because the DB2 attach facility program is different for
CICS (DSNCLI) than it is for batch (DSNELI). Because the SQL
Support Load Module name is the same for both batch and online,
separate OS/390 libraries are necessary. IMS SQL Support Load
Modules are linkedited only once because the DB2 attach facility
program (ASMTDLI) is the same for online and batch.

♦ If the MANTIS program that is SQL bound contains KANJI data in
any of the SQL statements in the program, the DBCS option must be
specified to the BAL assembler when the SQL Support Source
Module is assembled. This is required because KANJI data in the
MANTIS SQL program can cause BAL “G” type constants to be
generated, which require the DBCS assembler option.

After precompiling, assembling, and linkediting the SQL Support Source
Module, check the output listing for any error messages and verify that
the SQL Support Load Module and DB2 Data Base Request Module
(DBRM) were created.

Creating the DB2 application plan and granting execution
authority

Before using an SQL Support Load Module, you must bind the DBRM
created during the DB2 precompile into a DB2 Application Plan. The
DB2 BIND command creates the DB2 Application Plan (do not confuse it
with the MANTIS HPO or SQL BIND commands). One or more DB2
DBRMs can be bound into a DB2 Application Plan. These can include
the DBRM used for dynamic execution mode (CSOPSQL2), if desired.
After the Application Plan is created, use the DB2 GRANT command to
provide the Application Plan with MANTIS authority.

You can perform the DB2 BIND and GRANT interactively using the DB2I
facility or via a batch job. Sample input for the batch method is included
on the MANTIS installation tape. Refer to the MANTIS installation
documentation or see your MANTIS system administrator for more
information.

If the DB2 BIND and GRANT are successful, DB2 returns an SQLCODE
value of zero. You can verify that the Application Plan was created
successfully by checking the DB2 Catalog for the Application Plan.

Preparing a program to run in static mode

MANTIS DB2 Programming 99

Making SQL support load modules available to MANTIS
The final step in preparing a program for static execution mode is making
the SQL Support Load Module available to MANTIS. Making the SQL
Support Load Module available to MANTIS may require system
maintenance (CICS table maintenance, etc.).

SQL Support Load Modules can be associated with MANTIS in one of the
following three ways:

Not all methods are available (or needed) in all environments. CICS
MANTIS supports all three methods.

♦ Included (linkedited) with MANTIS. The SQL Support Load
Module is linkedited with MANTIS and becomes part of the MANTIS
load module. This method provides the best performance because
MANTIS can directly access the SQL Support Load Module. The
disadvantage of included modules is MANTIS load module size limits
(512K maximum for some releases of CICS) and increased
maintenance to the MANTIS load module.

♦ Temporarily loaded. The SQL Support Load Module is dynamically
loaded when needed. For CICS MANTIS, the SQL Support Load
Module is retained in memory only for the duration of the CICS task.
For CICS pseudo-conversational tasks, the SQL Support Load
Module is deleted at each terminal I/O or at program termination. For
CICS conversational tasks, the SQL Support Load Module is deleted
at program termination.

♦ Permanently loaded. The SQL Support Load Module is not
linkedited with MANTIS. It is installed in the operating environment
(CICS) as a program and dynamically loaded when required. For
CICS, the module is loaded by specifying the CICS “HOLD” option,
causing it to remain in memory, as long as CICS is running.

Chapter 5 Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)

100 P39-5028-00

When choosing between included, temporarily loaded, or permanently
loaded SQL Support Modules, consider the following factors:

♦ How often a static program will be used

♦ The size of SQL Support Load Module(s)

♦ The maximum load module size for your teleprocessing monitor

♦ Performance requirements versus ease of maintenance and
likelihood of change

If you use an SQL Support Module infrequently, consider temporarily
loading it. If you use it often, determine if including it with MANTIS will
exceed your teleprocessing monitor’s capacity (for example, 512K for
some CICS releases) to help you decide whether to include it or
permanently load it. Also, if your SQL Support Module changes
frequently, temporarily or permanently loading it will provide easier
maintenance.

Preparing a program to run in static mode

MANTIS DB2 Programming 101

Including load modules
To include an SQL Support Load Module with MANTIS, you must add the
SQL Support Load Module to the INCLUDE list of the MANTIS
CSOPCUST module and update the MANTIS linkdeck with an INCLUDE
statement for the SQL Support Load Module.

The CSOPCUST module is created by the C$OPCUST macro. This
macro is explained in MANTIS Administration, OS/390, VSE/ESA,
P39-5005. The SQL Support Load Module name must be placed in the
C$OPCUST INCLUDE parameter. C$OPCUST must then be executed
to create a new CSOPCUST module that must then be assembled.

You must manually update the linkdeck for MANTIS with an INCLUDE
statement for the SQL Support Load Module. Sample linkdecks for
MANTIS are supplied with the MANTIS installation tape. To modify the
specific linkdeck, refer to the installation documentation or see your
system administrator.

After you generate and assemble an updated CSOPCUST module and
modify the linkdeck for MANTIS, linkedit MANTIS using the updated
linkdeck to include the new CSOPCUST and SQL Support Load
Modules.

For CICS MANTIS, be certain to linkedit the correct version of the SQL
Support Load Module. The sample JCL supplied with MANTIS to
precompile the SQL Support Load Module creates two SQL Support
Load Modules: one for online (linkedited with the DB2 DSNCLI module)
and one for batch (linkedited with the DB2 DSNELI module). Be sure that
the online copy of the SQL Support Load Module is only linkedited with
CICS MANTIS and that the batch copy of the SQL Support Load Module
is only linkedited with Batch MANTIS. (Either copy of the SQL Support
Load Module can be successfully linkedited with either CICS or Batch
MANTIS. However, errors or abends will occur when the MANTIS
program using the SQL Support Load Module is executed.)

Chapter 5 Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)

102 P39-5028-00

Permanently loading SQL support load modules
To permanently load an SQL Support Load Module in CICS MANTIS, you
must update the INCLUDE list in the CSOPCUST module, generate and
assemble an updated CSOPCUST module, and re-linkedit MANTIS (see
“Including load modules” on page 101). You do not need to modify the
MANTIS linkdeck for permanently loaded SQL Support Load Modules.

The following CICS maintenance is required for permanently loaded SQL
Support Load Modules:

♦ A PPT entry must be made for the SQL Support Load Module (a
sample CICS PPT entry is distributed in the installation tape).

♦ The SQL Support Load Module must be placed in the CICS DFHRPL
library.

To use permanently loaded SQL Support Load Modules in Batch
MANTIS, enter the name of the library containing the SQL Support Load
Module in the STEPLIB JCL statement for the Batch MANTIS job.

General considerations

♦ When linkediting MANTIS with the updated CSOPCUST module, the
linkage editor will issue an IEW0461 error message for each
permanently loaded SQL Support Load Module. You can ignore this
message because the NCAL option was specified on the linkedit.

♦ For CICS MANTIS, be certain that the proper version of the SQL
Support Load Module is available to CICS or Batch MANTIS. CICS
and Batch MANTIS use different versions of the SQL Support Load
Module (see the considerations for included SQL Support Load
Modules in “Permanently loading SQL support load modules” on
page 102). Make sure that the online version of the SQL Support
Load Module is placed in the CICS DFHRPL library and that the
STEPLIB DD statement (and any concatenation to it) in the Batch
MANTIS job specifies the library containing the batch version of the
SQL Support Load Module. (You can load either version of the SQL
Support Load Module by CICS or Batch MANTIS. However, errors or
abends will occur when you execute the MANTIS program using the
SQL Support Load Module.)

Preparing a program to run in static mode

MANTIS DB2 Programming 103

Temporarily loading SQL support load modules
To temporarily load an SQL Support Load Module, you do not need to
modify the MANTIS CSOPCUST module or re-linkedit MANTIS. System
maintenance as described below is required.

For CICS MANTIS:

♦ A PPT entry must be made for the SQL Support Load Module (a
sample CICS PPT entry is distributed on the MANTIS installation
tape).

♦ The SQL Support Load Module must be placed in the CICS DFHRPL
library.

For Batch MANTIS, enter the name of the library containing the SQL
Support Load Module on the STEPLIB statement of the MANTIS job.

General consideration

For CICS and Batch MANTIS, be certain to place the proper version of
the SQL Support Load Module in the DFHRPL or STEPLIB library (see
considerations for permanently loaded SQL Support Load Modules in
“Permanently loading SQL support load modules” on page 102).

Chapter 5 Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)

104 P39-5028-00

Checking the consistency of a bound program
You can check the consistency of the program you have prepared to run
in static execution mode to ensure that all preparation steps have been
performed correctly and that all required entities are consistent with one
another. This check compares the following information from the SQL
bound MANTIS program and the SQL Support Load Module to ensure
that they are the same:

♦ Date of MANTIS SQL Bind

♦ Time of MANTIS SQL Bind

♦ MANTIS user name

♦ MANTIS program name

♦ Number of SQL statements

♦ MANTIS release number

♦ Execution mode (static)

♦ Database type (DB2)

Checking the consistency of a bound program

MANTIS DB2 Programming 105

To perform a consistency check, select the SQL Check option from the
Program Design Facility menu (see the screen illustration under “SQL
binding a MANTIS program online” on page 83). Enter the name of the
program at the SQLCHECK Program Entry panel as shown in the
following screen illustration and press PF6 to execute.

PRGMENT101E SQLCHECK Program Entry YYYY/MM/DD HH:MM:SS
===> _
From
Library . . . TEST
Name SQL_DB2 Password : :
Description .

Thru
Name

Entry Options Function Options Process Statistics

Immediate? Y Display status? . . Y Processed . .
Confirmation? . . Y Skipped . . .
Addendum? N Errors

SQLBIND SQL_DB2

U01: CONFIRM OR SKIP
F1=HELP F2=EXHELP F3=EXIT F4=PROMPT F5=REFRESH F6=EXECUTE F7=CONFIRM ...

Chapter 5 Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)

106 P39-5028-00

MANTIS then returns the SQL Bind Information panel shown in the
following screen illustration which displays either a confirmation that your
program is consistent or the appropriate error message. See “SQL
binding a MANTIS program online” on page 83 for field descriptions.

SQLBIND SQL BIND INFORMATION PANEL

ACTION............... : SQLBIND :
MANTIS PROGRAM NAME.. : SQL_DB2 :
SQL BINDING TYPE..... : STATIC :
SQL STATEMENTS....... : 5 :

BOUND BY............. : TEST :
BOUND AT............. : 92/09/22 09:15:37:
MANTIS RELEASE....... : :

SQL MODULE NAME : DRVTST3 :
SQL MODULE OWNER NAME : :
SQL OWNER PASSWORD : :
SQL DATA BASE TYPE .. : DB2 :

ENTER=CONTINUE PF3=EXIT PF6=EXECUTE PA2=CANCEL

If the consistency check fails, MANTIS provides additional information on
sources of error. You may need to retrace your path through the
preparation steps to determine whether any steps were omitted or
performed out of sequence. Check the SQL Support Load Modules to
see if any were deleted, renamed, or modified. Make sure you have
access to all the libraries that hold these entities. If you need to repeat a
step, you must repeat all subsequent steps as well.

Unbinding SQL bound programs

MANTIS DB2 Programming 107

Unbinding SQL bound programs
You can unbind an SQL program and execute it in dynamic execution
mode whenever you want. You may want to do so to compare the
performance of dynamic execution mode with static execution mode, or if
you want to modify and execute the program without preparing it for static
execution mode.

You can unbind an SQL program in several ways:

Select the SQL Unbind option from the Program Design Facility menu
(see the screen illustration under “SQL binding a MANTIS program
online” on page 83). You will receive the SQLUNBIND Program Entry
panel shown in the following screen illustration. Enter the name of the
program you want to unbind and press PF6 to execute.

PRGMENT101E SQLUNBIND Program Entry YYYY/MM/DD HH:MM:SS
===>
From
Library . . . TEST
Name sql_db2 Password : :
Description .

Thru
Name

Entry Options Function Options Process Statistics
Immediate? Y Display status? . . Y Processed . .
Confirmation? . . N Skipped . . .
Addendum? N Errors

000: READY
F1=HELP F2=EXHELP F3=EXIT F4=PROMPT F5=REFRESH F6=EXECUTE F7=CONFIRM ...

Chapter 5 Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)

108 P39-5028-00

The next panel displayed is the SQL Bind Information Panel, which
displays status information about the program you are unbinding. Press
PF6 to execute and MANTIS returns a message, NUCQBAI: SQL
UNBIND COMPLETED SUCCESSFULLY, confirming the unbind as
shown in the following screen illustration. See “SQL binding a MANTIS
program online” on page 83 for a description of the fields on this panel.

SQLBIND SQL BIND INFORMATION PANEL

ACTION............... : SQLBIND :
MANTIS PROGRAM NAME.. : SQL_DB2 :
SQL BINDING TYPE..... : STATIC :
SQL STATEMENTS....... : 5 :

BOUND BY............. : TEST :
BOUND AT............. : 92/09/22 09:15:37 :
MANTIS RELEASE....... : :

SQL MODULE NAME : DRVTST3 :
SQL MODULE OWNER NAME : :
SQL OWNER PASSWORD : :
SQL DATA BASE TYPE .. : DB2 :

ENTER=CONTINUE PF3=EXIT PF6=EXECUTE PA2=CANCEL
NUCQBAI:SQL UNBIND COMPLETED SUCCESSFULLY

You can also unbind an SQL program by editing the program, changing it
and replacing it.

Unbinding SQL bound programs

MANTIS DB2 Programming 109

General considerations

♦ If you unbind an SQL program and want to run it in static execution
mode again you will have to repeat all of the preparation steps for
static execution mode.

♦ If you change an SQL program that has been bound, MANTIS
automatically unbinds it temporarily. If you RUN the modified
program in programming mode, it will execute in dynamic execution
mode rather than in static execution mode. If you REPLACE the
modified program, it is permanently unbound. If you do not
REPLACE the modified program, the program remains SQL bound.

Chapter 5 Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)

110 P39-5028-00

Maintaining SQL bind information
To view and/or purge SQL Bind Information from the MANTIS cluster,
select the SQL Maint option from the Program Design Facility menu (see
the screen illustration under “SQL binding a MANTIS program online” on
page 83). The next panel is the SQL Bind Information panel shown in the
following screen illustration. This panel lists the MANTIS SQL programs
for which SQL Bind Information exists. It displays module names and
date and time stamps for each.

SQL BIND INFORMATION YYYY/MM/DD...
TEST ** ENTER 'P' to PURGE ** HH:MM:SS...
A MOD NAME --DATE-- --TIME-- ----------MANTIS PROGRAM NAME---------...
p DRVTST3 92/09/22 09:15:37 TEST:SQL_DB2 ...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

If SQL Bind Information for a program is not displayed on this panel, you
cannot assume that the program has never been SQL bound. It is
possible and likely that after programs are successfully running in static
execution mode that their corresponding SQL Bind Information will be
purged.

Maintaining SQL bind information

MANTIS DB2 Programming 111

SQL Bind Information continues to the right of the SQL Bind Information
panel, beyond the MANTIS PROGRAM NAME field (see the preceding
screen illustration). The additional information displayed includes the
MANTIS release number, the number of SQL statements in the
referenced program and the SQL database used by the program. To
view this information enter Window Mode and use the appropriate PF
keys to move around the panel. Press PF9 to exit Window Mode. (For
information on Window Mode, refer to MANTIS Language, OS/390,
VSE/ESA, P39-5002.)

To purge SQL Bind Information for a MANTIS program, enter P in the A
(action) column (see the preceding screen illustration) and press ENTER.
Confirm the purge by pressing PF4.

The Master User can view SQL Bind Information created by another user
by entering the user’s name in the <mantis-user> field at the upper left of
the panel and pressing ENTER. The Master User may also purge another
user’s SQL Bind Information.

General considerations

♦ SQL Bind Information is required to generate SQL Support Source
Modules.

♦ SQL Bind Information is automatically purged during SQL Support
Source Module generation if DELETE is set to YES. This parameter
may be set either explicitly or by default (see “Generating the SQL
support source module” on page 93).

Chapter 5 Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)

112 P39-5028-00

Running SQL support programs with batch MANTIS
Programs that access DB2 must use one of three attach-facility programs
provided by IBM. These attach-facility programs exist for CICS (online),
IMS (online and batch) and TSO (batch). For CICS users to execute
MANTIS SQL Support Programs in batch, the TSO Terminal Monitor
Program (TMP) must be used to invoke MANTIS so that the TSO DB2
attach-facility program can be used. This requires some changes to the
usual OS/390 JCL needed to execute batch MANTIS. For IMS users,
batch MANTIS can execute using the IMS BMP, DLI or DBB facilities.

Sample Batch MANTIS JCL for both TSO and IMS are included on the
MANTIS installation tape. For more information, refer to the installation
documentation or see your system administrator.

For TSO, be sure that the STEPLIB DD statement (and any
concatenation to it) specifies the proper library containing the batch
version of the SQL Support Load Module (see “Temporarily loading SQL
support load modules” on page 103).

MANTIS DB2 Programming 113

6
MANTIS SQL support programs for
extended dynamic execution mode (DB2
for VSE and VM—formerly SQL/DS)

Extended dynamic execution mode allows the SQL statements in
MANTIS SQL programs to be compiled into a DB2 for VSE and VM
Access Module just as they are for SQL in COBOL. The procedure
MANTIS uses to create the Access Module is different than that used by
SQL in COBOL. SQL in COBOL requires each program to be
precompiled and compiled before being executed. The DB2 for VSE and
VM Access Module is created by the precompiler program during the
precompile step. However, MANTIS SQL Support uses extended
dynamic SQL statements to create the Access Module. Extended
dynamic statements allow MANTIS to perform the functions that are
normally done by the precompiler program. Consequently, no precompile
or compile is necessary for MANTIS SQL Support programs to execute in
extended dynamic execution mode. (For more information on extended
dynamic SQL statements, refer to the DB2 for VSE and VM
documentation.)

In dynamic execution mode, MANTIS executes all SQL statements by
dynamic SQL statements, eliminating the SQL precompile step each time
the program is executed. You can code SQL statements in a MANTIS
program and immediately RUN the program. When errors are detected,
you can modify these statements and immediately re-execute the
program. The flexibility of dynamic execution mode requires
considerable computer resources. While using these resources is
desirable during program development, they should be limited when the
program is ready for production. In MANTIS SQL Support for DB2 for
VSE and VM, executing the program in extended dynamic execution
mode instead of dynamic execution mode uses fewer resources.

Chapter 6 MANTIS SQL support programs for extended dynamic execution mode (DB2 for VSE and VM—formerly
SQL/DS)

114 P39-5028-00

Before you can execute a MANTIS SQL program in extended dynamic
execution mode, you must SQL bind it. (Do not confuse SQL binding
with HPO (High Performance Option) binding. Both HPO bound and
unbound programs can be SQL bound.) MANTIS SQL programs are SQL
bound using the SQL Bind Facility (see “SQL binding a MANTIS program
online” on page 118). During the SQL bind, MANTIS SQL Support uses
extended dynamic SQL statements to create the DB2 for VSE and VM
Access Module. See the following figure for an illustration of this
process. When the bind is complete, an Access Module containing all
the SQL statements in the MANTIS program has been created, and the
MANTIS program has been marked as SQL bound. The program is
ready for immediate execution in extended dynamic execution mode.

The following figure shows the step required to run a MANTIS program in
extended dynamic execution mode:

SQL Bound
MANTIS
Program

Original
MANTIS
Program

SQL/DS
Access
Module

MANTIS SQL/DS

Performance and programming considerations

MANTIS DB2 Programming 115

Performance and programming considerations
Programs executing in extended dynamic execution mode cannot always
execute exactly as they do in dynamic execution mode. This section lists
certain differences and restrictions for programs executing in extended
dynamic execution mode. Review these differences before preparing
your program for execution in extended dynamic mode.

Determining host variable data types
When a MANTIS program is SQL bound, MANTIS temporarily HPO
binds the program (if it is not already HPO bound). This binding
determines the data type and length of MANTIS variables used as host
variables in SQL statements. You must know this information so that you
can perform the precompile and assembly. MANTIS considers any host
variables that are not resolved by the HPO bind to be undefined and may
default to BIG, depending on the option you specify when you execute the
SQL Bind option (see “SQL binding a MANTIS program online” on
page 118).

Because HPO binding determines host variable data types, structure the
MANTIS program as if it were to be HPO bound. Define all MANTIS
variables that are used as host variables in the program before any
statements that cause HPO binding to terminate. This is especially true
for nonnumeric variables (TEXT and KANJI). For more information on
HPO binding, refer to MANTIS Facilities, OS/390, VSE/ESA, P39-5001.
If a MANTIS TEXT variable defaults to BIG in the DB2 for VSE and VM
Access Module, the program will not run in extended dynamic execution
mode. Either the SQL database or MANTIS will return an error,
depending on how the text variable is used.

Chapter 6 MANTIS SQL support programs for extended dynamic execution mode (DB2 for VSE and VM—formerly
SQL/DS)

116 P39-5028-00

Multiple row result sets with SELECT
In MANTIS dynamic and extended dynamic execution modes, a SELECT
statement always returns the first row of the result set, regardless of the
number of rows in the result set. In the example below, the first row in
the result set built by the SELECT is always returned, even if the result
set contains more than one row.
EXEC_SQL

.| SELECT * INTO :X, :Y FROM SQLTABLE

.| WHERE SQLCOLUMN > :Z

END

You must use an SQL CURSOR statement if you want to retrieve all of
the rows built by the SELECT in the result set. The following example is
the equivalent of the previous example, using SQL CURSORs instead of
SELECT.
EXEC_SQL

.| DECLARE C1 CURSOR FOR SELECT *

.| FROM SQLTABLE WHERE SQLCOLUMN > :Z

END

.|

EXEC_SQL

.| OPEN C1

END

.|

EXEC_SQL

.| FETCH C1 INTO :X, :Y

END

.|

EXEC_SQL

.| CLOSE C1

END

Preparing a program to run in extended dynamic execution mode

MANTIS DB2 Programming 117

Binding on the target system
SQL bind the MANTIS program on the system where it will be executed
or a clone of that system because SQL binding uses HPO binding to
determine host variable data types. If MANTIS variables that are used as
host variables are defined in HPO bound entities (screens, files, etc.),
and these entities are different on the target system from those on the
system where the SQL bind is done, unpredictable results, errors, or
abends may occur.

Preparing a program to run in extended dynamic execution
mode

To prepare a MANTIS program to run in extended dynamic execution
mode, you must SQL bind the program using the MANTIS SQL Bind
facility. Bind Options for SQL programs are accessed from the MANTIS
Program Design Facility menu shown in the screen illustration under
“SQL binding a MANTIS program online” on page 118. The options
include binding, unbinding, and checking maintenance actions. If you are
unfamiliar with the Program Design Facility or the Bind Options, refer to
MANTIS Program Design and Editing, OS/390, VSE/ESA, P39-5013, for
details.

The SQL Maint option is not functional for programs using DB2 for VSE
and VM or SQL/DS. If you select this option, you will receive the error
message NUCQBUE: SQL DATA BASE DOES NOT SUPPORT
FUNCTION - SQL MAINT. (For information on error messages, refer to
MANTIS Messages and Codes, OS/390, VSE/ESA, P39-5004.)

Chapter 6 MANTIS SQL support programs for extended dynamic execution mode (DB2 for VSE and VM—formerly
SQL/DS)

118 P39-5028-00

SQL binding a MANTIS program online
To SQL bind a MANTIS program, select the SQL Bind option at the
Program Design Facility menu as shown in the following screen
illustration and press ENTER:

PRGMMENU01 Program Design Facility (TEST) YYYY/MM/DD HH:MM:SS
===>

Please select one of the menu items below.

Program Component Engineering Bind Options Utilities

16 1. List 7. CEF Check 12. HPO Check 18. Audit Trail
2. Edit 8. " Compose 13. " Bind 19. Browse Audit Trail
3. Profile 9. " Decompose 14. " Unbind 20. " Prgm Profile
4. Purge 10. CREF Programs 15. SQL Check 21. Trigger List
5. Copy 11. Bill of Materials 16. " Bind 22. SQL Maint
6. Rename 17. " Unbind

000: READY
F1=HELP F2=EXHELP F3=EXIT F4=PROMPT F5=REFRESH F9=RETRIEVE F12=CANCEL ...

Preparing a program to run in extended dynamic execution mode

MANTIS DB2 Programming 119

The next panel displayed is the SQLBIND Program Entry panel (see the
following screen illustration). This panel allows you to specify the
program or programs you want to SQL bind. You can specify a single
program name, a range of program names, or a generic pattern of
names. You can also specify Entry Options, Function Options and
Process Statistics.

The Function Options for the SQLBIND Program Entry panel are
described below. For information on the Entry Options or Process
Statistics, refer to MANTIS Facilities, OS/390, VSE/ESA, P39-5001. In
this example, a single program name is specified and the defaults for all
other options are accepted. Press PF6 to execute.

PRGMENT101E SQLBIND Program Entry YYYY/MM/DD HH:MM:SS
===>
From
Library . . . TEST
Name SQL PRGM1 Password : :
Description .

Thru
Name

Entry Options Function Options Process Statistics
Immediate? Y Preprocess Options: Processed . .
Confirmation? . . Y . .Save/Replace . . S Skipped . . .
Addendum? N . .Keep/Revoke . . K Errors

. .Block/Noblock . . N
Undefined Variables? 1

000: READY
F1=HELP F2=EXHELP F3=EXIT F4=PROMPT F5=REFRESH F6=EXECUTE F7=CONFIRM ...

Chapter 6 MANTIS SQL support programs for extended dynamic execution mode (DB2 for VSE and VM—formerly
SQL/DS)

120 P39-5028-00

PREPROCESS OPTIONS:

Description Required. Specifies the options to be used for the SQL bind.

SAVE/REPLACE

Description Required. Specifies whether the Access Module created during the SQL
bind is to be added to the DB2 for VSE and VM catalog (“S”), or is to
replace an existing Access Module (“R”).

Default SAVE ("S")

Consideration An error will be returned if “S” is specified for an Access Module that
already exists.

KEEP/REVOKE

Description Required. Indicates whether the RUN authorities granted to the existing
Access Module should be kept (“K”) for the new Access Module or
revoked (“R”).

Default KEEP ("K")

BLOCK/NOBLOCK

Description Required. Specifies whether rows retrieved by the Access Module will be
grouped together in blocks (“B”) to improve performance, or accessed
individually (“N”).

Default NOBLOCK ("N")

Consideration Some SQL statements cannot be executed when BLOCK is specified.
See your DB2 for VSE and VM documentation for more information.

Preparing a program to run in extended dynamic execution mode

MANTIS DB2 Programming 121

UNDEFINED VARIABLES?

Description Required. Specifies what should be done if undefined variables are
encountered during the SQL Bind.

Default 1

Options 1 QUIT WITH DISPLAY. If any undefined variables are found, MANTIS
displays the undefined variables with their line numbers and does not
SQL bind the program. These variables must be changed in the MANTIS
program or another option must be selected. If no undefined variables
are found, the program is SQL bound.

 2 CONTINUE NO DISPLAY. Binding continues even if undefined
variables are encountered. All undefined variables are assigned a data
type of BIG, but these variables are not displayed.

 3 CONTINUE WITH DISPLAY. Binding continues even if MANTIS
encounters undefined variables. Undefined variables are assigned a
data type of BIG and displayed with their line numbers.

Considerations

♦ Nonnumeric variables that default to BIG can create inconsistencies
that prevent extended dynamic mode execution (see “Binding on the
target system” on page 117).

♦ Any undefined variables displayed include the line number on which
they appear. Undefined variables are not displayed with option 2.

Chapter 6 MANTIS SQL support programs for extended dynamic execution mode (DB2 for VSE and VM—formerly
SQL/DS)

122 P39-5028-00

When you press PF6 to execute, MANTIS returns the description of the
program you have specified for binding and asks you to either CONFIRM
or SKIP the action as shown in the following screen illustration. Press
PF7 to confirm the action.

PRGMENT101E SQLBIND Program Entry YYYY/MM/DD HH:MM:SS
===>
From
Library . . . TEST
Name SQL PRGM1 Password : :
Description . DYNAMIC SQL/DS ACCESS PROGRAM

Thru
Name

Entry Options Function Options Process Statistics
Immediate? Y Preprocess Options: Processed . .
Confirmation? . . Y . .Save/Replace . . S Skipped . . .
Addendum? N . .Keep/Revoke . . K Errors

. .Block/Noblock . . B
Undefined Variables? 1

SQLBIND SQL PRGM1

U01: CONFIRM OR SKIP
F1=HELP F2=EXHELP F3=EXIT F4=PROMPT F5=REFRESH F6=EXECUTE F7=CONFIRM ...

Preparing a program to run in extended dynamic execution mode

MANTIS DB2 Programming 123

The next panel displayed is the SQL Bind Information panel (see the
following screen illustration). The options for this panel are described
below. After making any changes or specifications necessary, press PF6
to complete the binding process. If no errors are encountered, a
confirmation message, NUCQBAI: SQL BIND COMPLETED
SUCCESSFULLY, will be returned. Press PA2 to return to the Program
Design Facility menu. Press PF3 to exit and return to the MANTIS
Facility Selection menu.

SQLBIND SQL BIND INFORMATION PANEL

ACTION............... : SQLBIND :
MANTIS PROGRAM NAME.. : SQL PRGM1 :
SQL BINDING TYPE..... : EXTENDED DYNAMIC :
SQL STATEMENTS....... : 5 :

BOUND BY............. : TEST :
BOUND AT............. : 91/09/22 09:15:37 :
MANTIS RELEASE....... : :

SQL MODULE NAME : DRVTST3 :
SQL MODULE OWNER NAME : :
SQL OWNER PASSWORD : :
SQL DATA BASE TYPE .. : SQL/DS :

ENTER=CONTINUE PF3=EXIT PF6=EXECUTE PA2=CANCEL

MANTIS PROGRAM NAME

Description Protected. Displays your user name and the name of the MANTIS SQL
program you are binding.

SQL BINDING TYPE

Description Protected. Displays the type of SQL bind that will be performed
(extended dynamic).

SQL STATEMENTS

Description Protected. Displays the number of SQL statements in the program you
are binding.

Chapter 6 MANTIS SQL support programs for extended dynamic execution mode (DB2 for VSE and VM—formerly
SQL/DS)

124 P39-5028-00

SQL MODULE NAME

Description Required. The name of the DB2 for VSE and VM Access Module. If the
MANTIS SQL program was previously bound, the name of the previously
created DB2 for VSE and VM Access Module is displayed; otherwise, this
field is blank.

Default The existing Access Module name (if previously bound).

Format 1-8 alphanumeric character symbolic name. The first character may be
A-Z, @, #, $; characters 2-7 may be these characters plus 0-9.

Consideration The name must be unique to the SQL database and to MANTIS.

SQL MODULE OWNER NAME

Description Optional. Indicates the DB2 for VSE and VM owner of the Access
Module.

Default Current MANTIS user (if unbound) or previous owner (if bound).

Consideration If this field is input, MANTIS will execute an SQL CONNECT to this DB2
for VSE and VM user before the SQL bind begins, specifying SQL
OWNER PASSWORD as the SQL password. When the SQL bind is
complete, MANTIS will execute a COMMIT WORK RELEASE.

SQL OWNER PASSWORD

Description Optional. Specifies a valid DB2 for VSE and VM user password.

Default None.

Consideration This field may be required if the SQL MODULE OWNER NAME field is
input. See the consideration for SQL MODULE OWNER NAME above.

SQL DATA BASE TYPE

Description Protected. The database for which the bind will be done.

Default SQL/DS

Consideration DB2 for VSE and VM (formerly SQL/DS) is currently the only database
that supports extended dynamic execution mode.

Preparing a program to run in extended dynamic execution mode

MANTIS DB2 Programming 125

SQL binding a MANTIS program with batch MANTIS
You can SQL bind one or more SQL programs by using Batch MANTIS.
Sample input for SQL binding with Batch MANTIS is in the following
screen illustration. Sample JCL to SQL bind MANTIS programs using
Batch MANTIS is supplied with the MANTIS installation tape. Refer to
the installation documentation or contact your system administrator for
more information. Note that the asterisk (*) denotes three separate
fields.

<ECHO=ON>user;password;
<FAULT=OFF>;
<BLANK=OFF>;1;
CONTROL:SQLBIND FACILITY;

user:program1;name1;owner;preprocess option*;when undefined option;password;

user:program2;name2;owner;preprocess option*;when undefined option;password;
.
.

<PA2>
<PA2>

Chapter 6 MANTIS SQL support programs for extended dynamic execution mode (DB2 for VSE and VM—formerly
SQL/DS)

126 P39-5028-00

Field equivalents

name 1 SQL_module_name1

owner SQL_module_owner

preprocess_option preprocessing_option (3 fields)

password1 SQL_owner_password1

name 2 SQL_module_name2

password2 SQL_owner_password2

General considerations

♦ Because the MANTIS program is updated during an SQL bind, the
MANTIS cluster must be updateable by Batch MANTIS.

♦ The output is routed to the printer, so you may want to place the
PRINTER DD card ahead of the TERMINAL DD card or use
TERMINAL DD DUMMY.

♦ If you process multiple programs that contain undefined variables in
batch, the undefined variables are printed on the page before the
panel containing their program name.

Preparing a program to run in extended dynamic execution mode

MANTIS DB2 Programming 127

Checking the results of an SQL bind
To see whether an SQL program is bound, select option 1 (Program List)
from the Program Design Facility menu (see the screen illustration under
“SQL binding a MANTIS program online” on page 118) and press ENTER.
The next panel displayed is the Program Directory List shown in the
following screen illustration. If the program has been bound, the BND
field will contain an E, meaning that the program is bound for extended
dynamic execution.

For more information on the Program Directory List and a description of
the fields, refer to MANTIS Program Design and Editing, OS/390,
VSE/ESA, P39-5013.

PRGMLIST01 Program Directory List YYYY/MM/DD HH:MM:SS
===>
From
Action Name Date Time Ver BND Status
--------- --------------------------------- -------- -------- --- --- --------

SQL PRGM 92/02/22 09:15:37 5 ACTIVE
SQL PRGM1 92/02/22 09:15:37 5 E ACTIVE
SQL PRGM2 92/02/22 09:15:37 5 ACTIVE
SQL PRGM3 92/02/22 09:15:37 5 ACTIVE
SQL PRGM4 92/02/22 09:15:37 5 ACTIVE
SQL PRGM5 92/02/22 09:15:37 5 ACTIVE
.
.
.

F1=HELP F2=EXHELP F3=EXIT F4=PROMPT F5=REFRESH F8=FWD F9=RETRIEVE...

Chapter 6 MANTIS SQL support programs for extended dynamic execution mode (DB2 for VSE and VM—formerly
SQL/DS)

128 P39-5028-00

Checking the consistency of a bound program
You can check the consistency of the program you have prepared to run
in extended dynamic execution mode to ensure that all preparation steps
have been performed correctly and that all required entities are
consistent with one another. This check compares the following
information from the SQL bound MANTIS program and DB2 for VSE and
VM (or SQL/DS) Access Module to ensure that they are the same:

♦ Date of MANTIS SQL Bind

♦ Time of MANTIS SQL Bind

♦ MANTIS user name

♦ MANTIS program name

♦ Number of SQL statements

♦ MANTIS release number

♦ Execution mode (extended dynamic)

♦ Database type (SQL/DS)

Checking the consistency of a bound program

MANTIS DB2 Programming 129

To perform a consistency check, select the SQL Check option from the
Program Design Facility menu (see the screen illustration under “SQL
binding a MANTIS program online” on page 118). Enter the name of the
program at the SQLCHECK Program Entry panel as shown in the
following screen illustration and press PF6 to execute.

PRGMENT101E SQLCHECK Program Entry YYYY/MM/DD HH:MM:SS
===>
From
Library . . . TEST
Name SQL PRGM1 Password : :
Description .

Thru
Name

Entry Options Function Options Process Statistics

Immediate? Y Display status? . . Y Processed . .
Confirmation? . . Y Skipped . . .
Addendum? N Errors

SQLBIND SQL DB2

U01: CONFIRM OR SKIP
F1=HELP F2=EXHELP F3=EXIT F4=PROMPT F5=REFRESH F6=EXECUTE F7=CONFIRM ...

Chapter 6 MANTIS SQL support programs for extended dynamic execution mode (DB2 for VSE and VM—formerly
SQL/DS)

130 P39-5028-00

MANTIS then returns the SQL Bind Information panel shown in the
following screen illustration which displays either a confirmation that your
program is consistent or the appropriate error message. See “SQL
binding a MANTIS program online” on page 118 for field descriptions.

SQLBIND SQL BIND INFORMATION PANEL

ACTION............... : SQLCHECK :
MANTIS PROGRAM NAME.. : SQL PRGM1 :
SQL BINDING TYPE..... : EXTENDED DYNAMIC :
SQL STATEMENTS....... : 5 :

BOUND BY............. : TEST :
BOUND AT............. : 91/09/22 09:15:37:
MANTIS RELEASE....... : :

SQL MODULE NAME : DRVTST3 :
SQL MODULE OWNER NAME : :
SQL OWNER PASSWORD : :
SQL DATA BASE TYPE .. : SQL/DS :

ENTER=CONTINUE PF3=EXIT PF6=EXECUTE PA2=CANCEL

If the consistency check fails, MANTIS provides additional information on
sources of error. You may need to check the DB2 for VSE and VM
Access Module to see if it was deleted, renamed, or modified.

Unbinding SQL bound programs

MANTIS DB2 Programming 131

Unbinding SQL bound programs
You can unbind an SQL program and execute it in dynamic execution
mode whenever you want. You may want to do so to compare the
performance of dynamic execution mode with extended dynamic
execution mode, or if you want to modify and execute the program
without preparing it for extended dynamic execution mode.

You can unbind an SQL program in several ways:

Select the SQL Unbind option from the Program Design Facility menu
(see the screen illustration under “SQL binding a MANTIS program
online” on page 118). You will receive the SQLUNBIND Program Entry
panel shown in the following screen illustration. Enter the name of the
program you want to unbind and press PF6 to execute.

PRGMENT101E SQLUNBIND Program Entry YYYY/MM/DD HH:MM:SS
===>
From
Library . . . TEST
Name SQL PRGM1 Password : :
Description .

Thru
Name

Entry Options Function Options Process Statistics
Immediate? Y Display status? . . Y Processed . .
Confirmation? . . N Skipped . . .
Addendum? N Errors

000: READY
F1=HELP F2=EXHELP F3=EXIT F4=PROMPT F5=REFRESH F6=EXECUTE F7=CONFIRM ...

Chapter 6 MANTIS SQL support programs for extended dynamic execution mode (DB2 for VSE and VM—formerly
SQL/DS)

132 P39-5028-00

The next panel displayed is the SQL Bind Information Panel, which
displays status information about the program you are unbinding. If the
DB2 for VSE and VM user shown in the SQL MODULE OWNER NAME
requires a password to access resources owned by this user, enter the
password in SQL OWNER PASSWORD. During the unbind, MANTIS
SQL Support will execute an SQL CONNECT to the DB2 for VSE and VM
user contained in the SQL MODULE OWNER NAME field, specifying the
password contained in the SQL OWNER PASSWORD field. When the
unbind is complete, a COMMIT WORK RELEASE will be executed.

Press PF6 to execute and MANTIS returns a message, NUCQBAI: SQL
UNBIND COMPLETED SUCCESSFULLY, confirming the unbind as
shown in the following screen illustration. See “SQL binding a MANTIS
program online” on page 118 for a description of the fields on this panel.

SQLBIND SQL BIND INFORMATION PANEL

ACTION............... : SQLBIND :
MANTIS PROGRAM NAME.. : SQL PRGM1 :
SQL BINDING TYPE..... : EXTENDED DYNAMIC :
SQL STATEMENTS....... : 5 :

BOUND BY............. : TEST :
BOUND AT............. : 91/09/22 09:15:37 :
MANTIS RELEASE....... : :

SQL MODULE NAME : DRVTST3 :
SQL MODULE OWNER NAME : SQLDBA :
SQL OWNER PASSWORD : :
SQL DATA BASE TYPE .. : SQL/DS :

ENTER=CONTINUE PF3=EXIT PF6=EXECUTE PA2=CANCEL
NUCQBAI:SQL UNBIND COMPLETED SUCCESSFULLY

You can also unbind an SQL program by editing the program, changing it
and replacing it.

Unbinding SQL bound programs

MANTIS DB2 Programming 133

General considerations

♦ If you unbind an SQL program and want to run it in extended dynamic
execution mode again you must SQL bind the program again.

♦ If you change an SQL program that has been bound, MANTIS
automatically unbinds it temporarily. If you RUN the modified
program in programming mode, it will execute in dynamic execution
mode rather than in extended dynamic execution mode. If you
REPLACE the modified program, it is permanently unbound. If you
do not REPLACE the modified program, the program remains SQL
bound.

♦ If a bound program is modified and replaced, it is permanently
unbound (see above). The DB2 for VSE and VM Access Module for
the program may be deleted. If the program is SQL bound again, the
SAVE/REPLACE options of the SQLBIND panel may require “R”
instead of “S” (see “SQL binding a MANTIS program online” on
page 118).

Chapter 6 MANTIS SQL support programs for extended dynamic execution mode (DB2 for VSE and VM—formerly
SQL/DS)

134 P39-5028-00

MANTIS DB2 Programming 135

A
Sample MANTIS SQL support
programs

This appendix contains the following sample MANTIS SQL Support
programs:

♦ Insert program using static SQL statements

♦ Insert program using dynamic SQL statements

♦ Update program using static SQL statements

♦ Update program using dynamic SQL statements

♦ Select program using static SQL statements

♦ Select program using dynamic SQL statements

♦ Delete program using static SQL statements

♦ Delete program using dynamic SQL statements

♦ Column select program using dynamic SQL statements

♦ Holding cursors over a COMMIT statement

Each example program using dynamic SQL statements is equivalent to
the corresponding program using static SQL statements. For clarity, the
examples do not contain error checking or display logic and the
information to be transferred to the database is coded in the programs as
literals.

The different SQL statement types (static and dynamic) should not be
confused with MANTIS SQL Support execution modes (static, dynamic or
extended dynamic). All example programs can be executed in any
MANTIS SQL Support execution mode.

Appendix A Sample MANTIS SQL support programs

136 P39-5028-00

Insert program using static SQL statements
This program inserts one employee into an employee table using static
SQL statements.

10 ENTRY STATIC_INSERT

20 .BIG HIRE_DATE,BIRTH_DATE,JOB_CODE,SALARY,EDUCATION_LEVEL

30 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20),MIDDLE_INITIAL(1),LAST_NAME(20)

40 .TEXT PHONE_NUMBER(4),WORK_DEPARTMENT(3),SEX(1)

50 .|

60 .EMPLOYEE_NUMBER="000120"

70 .FIRST_NAME="SEAN"

80 .MIDDLE_INITIAL=" "

90 .LAST_NAME="O'CONNELL"

100 .BIRTH_DATE=421018

110 .HIRE_DATE=631205

120 .JOB_CODE=58

130 .EDUCATION_LEVEL=14

140 .SALARY=29250

150 .PHONE_NUMBER="2167"

160 .WORK_DEPARTMENT="A00"

170 .SEX="M"

180 .|

Insert program using static SQL statements

MANTIS DB2 Programming 137

190 .EXEC_SQL:| INSERT INTO DSN82.TEMPL

200 ..| (EMPNO,

210 ..| FIRSTNME,

220 ..| MIDINIT,

230 ..| LASTNAME,

240 ..| BRTHDATE,

250 ..| HIREDATE,

260 ..| JOBCODE,

270 ..| EDUCLVL,

280 ..| SALARY,

290 ..| PHONENO,

300 ..| WORKDEPT,

310 ..| SEX)

320 ..| VALUES (:EMPLOYEE_NUMBER,

330 ..| :FIRST_NAME,

340 ..| :MIDDLE_INITIAL,

350 ..| :LAST_NAME,

360 ..| :BIRTH_DATE,

370 ..| :HIRE_DATE,

380 ..| :JOB_CODE,

390 ..| :EDUCATION_LEVEL,

400 ..| :SALARY,

410 ..| :PHONE_NUMBER,

420 ..| :WORK_DEPARTMENT,

430 ..| :SEX)

440 .END

450 EXIT

Appendix A Sample MANTIS SQL support programs

138 P39-5028-00

Insert program using dynamic SQL statements
This program inserts one employee into an employee table using
dynamic SQL statements.

10 ENTRY DYNAMIC_INSERT

20 .BIG HIRE_DATE,BIRTH_DATE,JOB_CODE,SALARY,EDUCATION_LEVEL

30 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20),MIDDLE_INITIAL(1),LAST_NAME(20)

40 .TEXT PHONE_NUMBER(4),WORK_DEPARTMENT(3),SEX(1)

50 .TEXT SQL_TEXT(254)

60 .|

70 .EMPLOYEE_NUMBER="000120"

80 .FIRST_NAME="SEAN"

90 .MIDDLE_INITIAL=" "

100 .LAST_NAME="O'CONNELL"

110 .BIRTH_DATE=421018

120 .HIRE_DATE=631205

130 .JOB_CODE=58

140 .EDUCATION_LEVEL=14

150 .SALARY=29250

160 .PHONE_NUMBER="2167"

170 .WORK_DEPARTMENT="A00"

180 .SEX="M"

190 .|

200 .SQL_TEXT="INSERT INTO DSN82.TEMPL "

210 .'"(EMPNO, FIRSTNME, MIDINIT, LASTNAME, BRTHDATE, "

220 .'"HIREDATE, JOBCODE, EDUCLVL, SALARY, PHONENO, "

230 .'"WORKDEPT, SEX) "

240 .'"VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)"

250 .|

260 .EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

270 .END

280 .|

Insert program using dynamic SQL statements

MANTIS DB2 Programming 139

290 .SQLDA("SQLDA1")=NEW

300 .SQLDA("SQLDA1","SQLN")=12

310 .SQLDA("SQLDA1","SQLD")=12

320 .SQLDA("SQLDA1","SQLDATA",1)=EMPLOYEE_NUMBER

330 .SQLDA("SQLDA1","SQLDATA",2)=FIRST_NAME

340 .SQLDA("SQLDA1","SQLDATA",3)=MIDDLE_INITIAL

350 .SQLDA("SQLDA1","SQLDATA",4)=LAST_NAME

360 .SQLDA("SQLDA1","SQLDATA",5)=BIRTH_DATE

370 .SQLDA("SQLDA1","SQLDATA",6)=HIRE_DATE

380 .SQLDA("SQLDA1","SQLDATA",7)=JOB_CODE

390 .SQLDA("SQLDA1","SQLDATA",8)=EDUCATION_LEVEL

400 .SQLDA("SQLDA1","SQLDATA",9)=SALARY

410 .SQLDA("SQLDA1","SQLDATA",10)=PHONE_NUMBER

420 .SQLDA("SQLDA1","SQLDATA",11)=WORK_DEPARTMENT

430 .SQLDA("SQLDA1","SQLDATA",12)=SEX

440 .|

450 .EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1

460 .END

470 EXIT

Appendix A Sample MANTIS SQL support programs

140 P39-5028-00

Update program using static SQL statements
This program updates one employee in an employee table using static
SQL statements.

10 ENTRY STATIC_UPDATE

20 .BIG HIRE_DATE,BIRTH_DATE

30 .TEXT EMPLOYEE_NUMBER(6)

40 .TEXT FIRST_NAME(20),MIDDLE_INITIAL(1),LAST_NAME(20)

50 .|

60 .EMPLOYEE_NUMBER="000120"

70 .FIRST_NAME="JOHN"

80 .MIDDLE_INITIAL="H"

90 .LAST_NAME="DOE"

100 .BIRTH_DATE=490113

110 .HIRE_DATE=880120

120 .|

130 .EXEC_SQL

140 ..|

150 ..| UPDATE DSN82.TEMPL

160 ..|

170 ..| SET FIRSTNME = :FIRST_NAME,

180 ..| MIDINIT = :MIDDLE_INITIAL,

190 ..| LASTNAME = :LAST_NAME,

200 ..| BRTHDATE = :BIRTH_DATE,

210 ..| HIREDATE = :HIRE_DATE

220 ..|

230 ..| WHERE EMPNO = :EMPLOYEE_NUMBER

240 .END

250 EXIT

Update program using dynamic SQL statements

MANTIS DB2 Programming 141

Update program using dynamic SQL statements
This program updates one employee in an employee table using dynamic
SQL statements.

10 ENTRY DYNAMIC_UPDATE

20 .BIG HIRE_DATE,BIRTH_DATE

30 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20),MIDDLE_INITIAL(1),LAST_NAME(20)

40 .TEXT DA(18),DAPARM(8)

50 .TEXT SQL_TEXT(254)

60 .|

70 .EMPLOYEE_NUMBER="000120"

80 .FIRST_NAME="JOHN"

90 .MIDDLE_INITIAL="H"

100 .LAST_NAME="DOE"

110 .BIRTH_DATE=490113

120 .HIRE_DATE=880120

130 .|

140 .SQL_TEXT="UPDATE DSN82.TEMPL SET "

150 .SQL_TEXT=SQL_TEXT+"FIRSTNME = ?, MIDINIT = ?, LASTNAME = ?, "

160 .SQL_TEXT=SQL_TEXT+"BRTHDATE = ?, HIREDATE = ? "

170 .SQL_TEXT=SQL_TEXT+"WHERE EMPNO = ? "

180 .|

190 .EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

200 .END

210 .|

220 .SQLDA("SQLDA1")=NEW

230 .DA="SQLDA1"

240 .DAPARM="SQLDATA"

250 .SQLDA(DA,"SQLN")=6

260 .SQLDA(DA,"SQLD")=6

270 .SQLDA(DA,DAPARM,1)=FIRST_NAME

280 .SQLDA(DA,DAPARM,2)=MIDDLE_INITIAL

290 .SQLDA(DA,DAPARM,3)=LAST_NAME

300 .SQLDA(DA,DAPARM,4)=BIRTH_DATE

310 .SQLDA(DA,DAPARM,5)=HIRE_DATE

320 .SQLDA(DA,DAPARM,6)=EMPLOYEE_NUMBER

330 .|

340 .EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1

350 .END

360 EXIT

Appendix A Sample MANTIS SQL support programs

142 P39-5028-00

Select program using static SQL statements
This program retrieves employee information for one employee from an
employee table using static SQL statements.

10 ENTRY STATIC_SELECT

20 .BIG HIRE_DATE,BIRTH_DATE,JOB_CODE,SALARY,EDUCATION_LEVEL

30 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20),MIDDLE_INITIAL(1),LAST_NAME(20)

40 .TEXT WORK_DEPARTMENT(3),PHONE_NUMBER(3),SEX(1)

50 .EMPLOYEE_NUMBER="000120"

60 .|

70 .EXEC_SQL:| DECLARE C1 CURSOR FOR

80 ..| SELECT * FROM DSN82.TEMPL

90 ..| WHERE EMPNO = :EMPLOYEE_NUMBER

100 .END

110 .EXEC_SQL:| OPEN C1

120 .END

130 .EXEC_SQL:| FETCH C1 INTO :EMPLOYEE_NUMBER,

140 ..| :FIRST_NAME,

150 ..| :MIDDLE_INITIAL,

160 ..| :LAST_NAME,

170 ..| :BIRTH_DATE,

180 ..| :HIRE_DATE,

190 ..| :JOB_CODE,

200 ..| :EDUCATION_LEVEL,

210 ..| :SALARY,

220 ..| :PHONE_NUMBER,

230 ..| :WORK_DEPARTMENT,

240 ..| :SEX

250 .END

260 .EXEC_SQL:| CLOSE C1

270 .END

280 EXIT

Select program using dynamic SQL statements

MANTIS DB2 Programming 143

Select program using dynamic SQL statements
This program retrieves employee information for one employee from an
employee table using dynamic SQL statements.

10 ENTRY DYNAMIC_SELECT

20 .BIG HIRE_DATE,BIRTH_DATE,JOB_CODE,SALARY,EDUCATION_LEVEL

30 .TEXT EMPLOYEE_NUMBER(6)

40 .TEXT FIRST_NAME(20),MIDDLE_INITIAL(1),LAST_NAME(20)

50 .TEXT WORK_DEPARTMENT(3),PHONE_NUMBER(3),SEX(1)

60 .TEXT SQL_TEXT(254)

70 .|

80 .EMPLOYEE_NUMBER="000120"

90 .SQL_TEXT="SELECT * FROM DSN82.TEMPL"

100 ." WHERE EMPNO = ? "

110 .SQLDA("SQLDA1")=NEW

120 .|

130 .EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

140 .END

150 .EXEC_SQL:| DESCRIBE S1 INTO SQLDA1

160 .END

170 .EXEC_SQL:| DECLARE C1 CURSOR FOR S1

180 .END

190 .EXEC_SQL:| OPEN C1 USING :EMPLOYEE_NUMBER

200 .END

210 .EXEC_SQL:| FETCH C1 USING DESCRIPTOR SQLDA1

220 .END

230 .EXEC_SQL:| CLOSE C1

240 .END

250 .|

260 .EMPLOYEE_NUMBER=SQLDA("SQLDA1","SQLDATA",1)

270 .FIRST_NAME=SQLDA("SQLDA1","SQLDATA",2)

280 .MIDDLE_INITIAL=SQLDA("SQLDA1","SQLDATA",3)

290 .LAST_NAME=SQLDA("SQLDA1","SQLDATA",4)

300 .BIRTH_DATE=SQLDA("SQLDA1","SQLDATA",5)

310 .HIRE_DATE=SQLDA("SQLDA1","SQLDATA",6)

320 .JOB_CODE=SQLDA("SQLDA1","SQLDATA",7)

330 .EDUCATION_LEVEL=SQLDA("SQLDA1","SQLDATA",8)

340 .SALARY=SQLDA("SQLDA1","SQLDATA",9)

350 .PHONE_NUMBER=SQLDA("SQLDA1","SQLDATA",10)

360 .WORK_DEPARTMENT=SQLDA("SQLDA1","SQLDATA",11)

370 .SEX=SQLDA("SQLDA1","SQLDATA",12)

380 EXIT

Appendix A Sample MANTIS SQL support programs

144 P39-5028-00

Delete program using static SQL statements
This program deletes one employee from an employee table using static
SQL statements.

10 ENTRY STATIC_DELETE

20 .TEXT EMPLOYEE_NUMBER(6)

30 .EMPLOYEE_NUMBER "000120"

40 .EXEC_SQL

50 ..|

60 ..| DELETE FROM DSN82.TEMPL

70 ..|

80 ..| WHERE EMPNO = :EMPLOYEE_NUMBER

90 .END

100 EXIT

Delete program using dynamic SQL statements

MANTIS DB2 Programming 145

Delete program using dynamic SQL statements
This program deletes one employee from an employee table using
dynamic SQL statements.

10 ENTRY DYNAMIC_DELETE

20 .TEXT EMPLOYEE NUMBER(6),SQL TEXT(254)

30 .EMPLOYEE_NUMBER "000120"

40 .SQL_TEXT="DELETE FROM DSN82.TEMPL WHERE EMPNO = ? "

50 .|

60 .EXEC_SQL

70 ..|

80 ..| PREPARE S1 FROM :SQL_TEXT

90 ..|

100 .END

110 .EXEC_SQL

120 ..|

130 ..| EXECUTE S1 USING :EMPLOYEE_NUMBER

140 ..|

150 .END

160 EXIT

Appendix A Sample MANTIS SQL support programs

146 P39-5028-00

Column select program using dynamic SQL statements
This program uses dynamic SQL statements to retrieve column names,
data types, lengths, and the first row of the columns from a table
specified by the user.

10 ENTRY SQL_LIST_TABLES

20 .|

30 .| THIS PROGRAM LISTS COLUMNS BASED ON TABLE NAME

40 .|

50 .TEXT TABLE_NAME(32)

60 .TEXT SQL_FUNCTION(100)

70 .SHOW"PLEASE ENTER TABLE NAME "

80 .OBTAIN TABLE_NAME

90 .SQL_FUNCTION="SELECT * FROM" +TABLE_NAME

100 .SQLDA("SQLDA1")=NEW

110 .EXEC_SQL

120 ..| PREPARE S1 FROM :SQL_FUNCTION

130 .END

140 .EXEC_SQL

150 ..| DESCRIBE S1 INTO SQLDA1

160 .END

170 .EXEC_SQL

180 ..| DECLARE C1 CURSOR FOR S1

190 .END

200 .EXEC_SQL

210 ..| OPEN C1

220 .END

230 .EXEC_SQL

240 ..| FETCH C1 USING DESCRIPTOR SQLDA1

250 .END

260 .COUNTER=1

270 .SHOW"COLUMN NAME",AT(45),"LENGTH",AT(55),"DATA"

280 .WHILE COUNTER<=SQLDA("SQLDA1""SQLD")

290 ..SHOW SQLDA("SQLDA1","SQLNAME",COUNTER),

300 ..'AT(25),TXT(SQLDA("SQLDA1","SQLTYPE",COUNTER)),

310 ..'AT(45),TXT(SQLDA("SQLDA1","SQLLEN",COUNTER)),

320 ..'AT(55),(SQLDA("SQLDA1","SQLDATA",COUNTER))

330 ..COUNTER=COUNTER+1

340 .END

350 .WAIT

360 EXIT

Hold cursors across a COMMIT

MANTIS DB2 Programming 147

Hold cursors across a COMMIT
This program shows how an SQL cursor can automatically be
repositioned after an SQL COMMIT. You can do this by requesting that
MANTIS return the value used in the search condition (“HOST_VAR1”)
as a host variable. When the cursor (“C1”) is automatically closed by the
CONVERSE statement (COMMIT at terminal I/O), the OPEN C1
statement will include all values for HOST_VAR1 that are greater than
the last value for HOST_VAR retrieved before the COMMIT. In effect,
this keeps the C1 cursor open across the COMMIT even though it has
actually been closed and reopened. DB2 Version 2 Release 3 and later
versions support the “WITH HOLD” clause of the DECLARE statement,
which allows cursors to be held across a COMMIT statement. (Refer to
the IBM DB2 documentation for further information.)

10 BIG HOST_VAR1,HOST_VAR2,HOST_VAR3

20 HOST_VAR1=ZERO

30 EXEC_SQL

40 .| DECLARE C1 CURSOR FOR

50 .| SELECT COL1, COL2, COL3

60 .| FROM TABLEA

70 .| WHERE COL1>:HOST_VAR1

80 END

90 WHILE SQLCA("SQLCODE")<>100

100 .EXEC_SQL:| OPEN C1

110 .END

120 .EXEC_SQL:| FETCH C1 INTO :HOST_VAR1, :HOST_VAR2, :HOST_VAR3

130 .END

140 .CONVERSE MAP1

150 END

Appendix A Sample MANTIS SQL support programs

148 P39-5028-00

MANTIS DB2 Programming 149

B
Features not supported

The following features are not supported:

♦ The USING LABELS clause of the DESCRIBE statement is not
implemented.

♦ Host variables may not be specified in a SELECT list. In the example
below, the VX host variable is invalid:
SELECT A,:VX,C

INTO :VA,:VB,:VC

Appendix B Features not supported

150 P39-5028-00

♦ Exact line number reference when syntax errors are detected is not
supported in all cases. Once control is transferred to the SQL
database to execute an SQL statement, MANTIS no longer has
control and therefore does not know on which line the error occurred.
For example, if an error occurred in the INTO clause of the following
statement:
01330 ..X=X+1

01340 ..EXEC_SQL

01350 ...|SELECT A,B,C

01360 ...|INTO :VA,:VB),:VC

01370 ...|FROM TABLE.1

01380 ...|WHERE A=1

01390 ..END

01400 ..X=X-VA

<--- Error in this line

 MANTIS will point to the beginning of the SQL statement as being in
error. For example:
01330 ..X=X+1

01340 ..EXEC_SQL

===>0 ...|SELECT A,B,C

01360 ...|INTO :VA,:VB),:VC

01370 ...|FROM TABLE.1

01380 ...|WHERE A=1

01390 ..END

01400 ..X=X-VA

<--- MANTIS points to this line
<--- Error in this line

♦ The contents of one SQLDA structure cannot be implicitly copied into
another in a single instruction. The following statement is not
permitted:
SQLDA("NAME2")=SQLDA("NAME1")

However, each element of an SQLDA can be moved individually to the
corresponding element of a different SQLDA.

MANTIS DB2 Programming 151

C
Comparing SQL in MANTIS SQL
support to SQL in COBOL

The following general considerations apply to SQL in MANTIS SQL
Support as compared to SQL in COBOL:

♦ SQL statements are embedded in a MANTIS application program as
MANTIS comments. Each SQL statement is bracketed with an
EXEC_SQL-END block. No MANTIS comments are permitted within
the EXEC_SQL-END block. All comments within the block are
considered SQL statement text.

♦ In dynamic execution mode, a limited number of SQL statements can
be active at one time. The Master User can modify this number; the
default is 10, and the maximum is 512 for DB2 or 510 for DB2 for
VSE and VM. This maximum applies to the MANTIS program and all
DO levels within the program.

♦ In the SQL WHENEVER statement:

- A MANTIS DO statement replaces the GOTO clause, and STOP
is replaced by FAULT.

- The default for the SQLERROR condition is FAULT; in SQL in
COBOL, the default is CONTINUE.

- WHENEVER settings may have different ranges of applicability
than they would in SQL in COBOL.

♦ SQLCA elements are accessed through the SQLCA function and
statement, rather than as items of data.

♦ SQLDA elements are accessed through the SQLDA function and
statement, rather than as items of data.

Appendix C Comparing SQL in MANTIS SQL support to SQL in COBOL

152 P39-5028-00

♦ MANTIS SQL Support does not support the SQL INCLUDE
statement. The SQLCA and SQLDA functions eliminate the need to
INCLUDE these structures.

♦ SQL BEGIN DECLARE SECTION and END DECLARE SECTION
statements are unnecessary. If you use these statements, MANTIS
SQL Support regards them as comments.

♦ The SQL DECLARE TABLE statement is unnecessary. If you use
this statement, MANTIS SQL Support regards it as a comment.

♦ In MANTIS, quotation marks (") delimit character-string constants. In
SQL, apostrophes (‘) delimit character-string constants.

♦ SQL data types are supported in MANTIS compatible data types.
These are listed in the following table.

Comparing SQL in MANTIS SQL support to SQL in COBOL

MANTIS DB2 Programming 153

Permissible data type conversions between SQL and MANTIS are listed
in the following table. Note that this table is an exact replica of the table
under “Converting data between MANTIS SQL support and the SQL
database” on page 32; it is repeated here for convenience.

SQL data type

MANTIS data
type

Considerations

DECIMAL BIG, SMALL Loss of precision may occur when converting
from SQL to MANTIS. Overflow may occur
when converting from MANTIS to SQL.

INTEGER BIG, SMALL Loss of precision may occur when converting
from SQL to MANTIS. Overflow may occur
when converting from MANTIS to SQL.

SMALLINT BIG, SMALL Overflow may occur when converting from
MANTIS to SQL.

FLOAT BIG, SMALL Overflow and/or loss of precision may occur
when converting from SQL to MANTIS SMALL
variables.

CHAR
VARCHAR
LONG VARCHAR

TEXT Truncation may occur in either direction.

DATE TEXT Truncation may occur if TEXT size is less than
10.

TIME TEXT Truncation may occur if TEXT size is less than
8.

TIMESTAMP TEXT Truncation may occur if TEXT size is less than
26.

The SQL data types LONG VARCHAR and LONG VARGRAPHIC
are not fully supported in MANTIS SQL Support. They are treated in
the same way as the SQL types VARCHAR and VARGRAPHIC: they
are supported as TEXT or KANJI variables, having a maximum of
254 characters (TEXT) or 127 characters (KANJI).

Appendix C Comparing SQL in MANTIS SQL support to SQL in COBOL

154 P39-5028-00

♦ When dynamic SQL statements are used, only data type codes for
MANTIS-compatible data types are returned in the SQLTYPE
element in the SQLDA. Valid data types are thus limited to those
listed in the following table. Note that the first data type code is
returned if no indicator variable is present. The second data type
code is returned when an indicator variable is present. Note that this
table is an exact replica of the table under “Move data from an
SQLDA repeating group into a MANTIS program” on page 69; it is
repeated here for convenience.

SQL data type

Description

SQL
type*

SQL type
set by
MANTIS

MANTIS
type

DATE Calendar date 384/385 448/449 TEXT
TIME Time 388/389 448/449 TEXT
TIMESTAMP Timestamp 392/393 448/449 TEXT
VARCHAR Variable string 448/449 448/449 TEXT
CHAR Fixed length string 452/453 448/449 TEXT
LONG VARCHAR Long variable string 456/457 448/449 TEXT
VARGRAPHIC Variable graphic string 464/465 464/465 KANJI
GRAPHIC Fixed length graphic

string
468/469 464/465 KANJI

LONG VARGRAPHIC Long variable graphic
string

472/473 464/465 KANJI

FLOAT Floating point number 480/481 480/481 BIG
DECIMAL Packed decimal number 484/485 480/481 BIG
INTEGER Long integer 496/497 480/481 BIG
SMALLINT Short integer 500/501 480/481 BIG

* The first number in the column is used when no indicator variable is present. This value does not

allow NULL values. The second number is used when an indicator variable is present, and NULL
data values can be specified.

MANTIS DB2 Programming 155

D
SQL keywords

This appendix lists the SQL keywords used by MANTIS SQL Support.
SQL keywords are not MANTIS reserved words and can be used in
MANTIS SQL programs. However, if SQL keywords are used as host
variable names in SQL statements, errors can occur. MANTIS SQL
Support does limited parsing of the SQL statement text before passing
the SQL statement to the database for execution. During parsing, host
variables, which are the same as SQL keywords, may be taken as
keywords instead of host variables causing a MANTIS fault. In the
example below, MANTIS could display a fault message because
“:COLUMN” is used as a host variable but is an SQL keyword.
.TEXT COLUMN(10), COLUMN1(20), COLUMN2(10)

.EXEC SQL

..| SELECT COLUMN, COLUMN1, COLUMN2

..| INTO :COLUMN, :COLUMN1,:COLUMN2

..| FROM TABLEA

.END SQL Keywords

Appendix D SQL keywords

156 P39-5028-00

The following table lists the SQL keywords used by MANTIS SQL
Support:

ALL
AS
BEGIN
BUFFER
BY
CLOSE
COLUMN
COMMIT
CONNECT
CONTINUE
COPY
CURRENT
CURSOR
DATE
DBNAME
DECLARE
DELETE
DESCRIBE
DESCRIPTOR
DO
DROP
END
EXECUTE
FAULT
FETCH
FIRST
FIRSTPOS
FOR

FOUND
FROM
HOLD
IDENTIFIED
IMMEDIATE
INCLUDE
INDEX
INDEXNAME
INSERT
INTO
IS
KEY
LAST
LENGTH
NEXT
NOT
OF
OPEN
OUT
PACKAGESET
POS
PREPARE
PREV
PROGRAM
PUT
READ
RELEASE

RESET
ROLLBACK
SAME
SEARCH
SECTION
SELECT
SERVER
SET
SQLERROR
SQLEXCEPTION
SQLID
SQLWARNING
STATISTICS
TABLE
TIME
TIMESTAMP
TIMEZONE
TO
UNION
UPDATE
USER
USING
VALUES
WHENEVER
WHERE
WITH
WORK

MANTIS DB2 Programming 157

Index

A

Allocate an SQLDA 59
Apostrophe (‘) 152
Arrays 30, 72
Authority - executing DB2

Application Plan 98

B

Batch MANTIS 112
Binding 51, 82

SQL binding 82
Blanks 25

C

Checking consistency of a bound
program 104

Checking the results of an SQL
bind

extended dynamic execution
mode 127

static execution mode 92
CICS 50
COBOL see SQL in COBOL
Colon character 24
Colon character (

) 18
COMMIT WORK 50
CONTINUE 42
Converting data between

MANTIS and SQL 32, 153
Creating DB2 Application Plan 98
Creating SQL Support Load

Module 97
Cursors 40

D

Data type conversion 33, 153
Data type specification 35
DBTYPE 49
Deallocate an SQLDA 60
Declaring SQL cursors multiple

times 79
DO 42
Dynamic execution mode 20, 151
Dynamic statements 19, 55

E

Embedding SQL statements in
MANTIS programs 18, 151

EMBEDDING SQL statements in
MANTIS programs 23

ENTRY statement parameters as
host variables 54, 80

Error messages 52
EXEC_SQL-END 23
Execution authority - DB2

Application Plan 98
Execution modes 20
Extended dynamic execution

mode x, 21, 113

F

FAULT 42
Features not supported 149

G

Generate SQL Support Source
Module 93

creating 97
sample input 93

H

High-Performance Option (HPO)
51

Host variables 18, 24, 27, 34, 54
data types in extended dynamic

execution mode 115
data types in static execution

mode 78

Index

158 P39-5028-00

I
Included SQL Support Load

Module 99, 101
Indicator variables 18, 31

static execution mode 78

K

Keywords 155

L

Large SQL statements 72

M

Maintaining SQL bind information
111

Making SQL Support Load
Module available to
MANTIS 99

MANTIS entities as host
variables 28

MANTIS SQL Support programs
in static execution mode 75

Move data from SQLDA
repeating group into
program 69

Move data into SQLDA repeating
group 64

MSGTEXT 49
Multiple lines 25
Multiple row result sets with

SELECT 81

N

NOT FOUND 41

P

Permanently loaded SQL
Support Load Module 99,
102

Prepare MANTIS SQL Support
programs for extended
dynamic execution mode
117

Prepare MANTIS SQL Support
programs for static
execution mode 82

Q

Question mark (?) 56
Quotation mark (") 152

R

Read header elements 67
ROLLBACK WORK 50
Row result sets with SELECT

extended dynamic execution
mode 116

static execution mode 81
Running a program from a line

number 51
Running SQL programs with

Batch MANTIS 112

Index

MANTIS DB2 Programming 159

S

Sample batch input for SQL bind
extended dynamic execution

mode 125
static execution mode 91, 126

Sample programs 135
Scope of SQL cursors and

statements 40
SELECT

extended dynamic execution
mode 116

static execution mode 81
Set SQLDA header information

61
Spaces 25
SQL bind (static execution mode)

checking results 92
SQL binding (extended dynamic

execution mode)
batch 125
check consistency 128
check results 127
online 118
unbinding 131

SQL binding (static execution
mode) 82

batch 90
checking consistency 104
maintaining information 110
online 83
unbinding 107

SQL cursors and statements 40
static execution mode 79

SQL data types 34, 152
SQL in COBOL 17, 37, 151
SQL keywords 155
SQL statements

larger than 254 characters 72
limits 39
scope 40, 45

SQL Support Load Module
available to MANTIS 99

SQLABC 48
SQLAID 48
SQLCA 45

COBOL 151
elements 48
function 47
statement 45

SQLCODE 48
SQLD 63

SQLDA 57
COBOL 151
header elements 57, 63
repeating elements 57
statement 59
structure 57

SQLDABC 63
SQLDAID 63
SQLDATA 66
SQLERRDn 48
SQLERRM 48
SQLERROR 41
SQLERRP 48
SQLEXT 48
SQLIND 66
SQLLEN 66
SQLN 63
SQLNAME 66
SQLTYPE 66

codes 154
SQLWARNING 41
SQLWARNn 48
Static execution mode 20, 75

authority - executing DB2
Application Plan 98

Batch MANTIS 112
checking consistency of a

bound program 104
checking results of an SQL

bind 92
creating DB2 Application Plan

98
creating SQL Support Load

Module 97
declaring cursors multiple times

79
execution authority - DB2

Application Plan 98
generate SQL Support Source

Module 93
creating 97
sample input 93

included SQL Support Load
Module 99

maintaining SQL bind
information 110

making SQL Support Load
Module available to
MANTIS 99

multiple row result sets with
SELECT 81

Index

160 P39-5028-00

Static execution mode (cont.)
permanently loaded SQL

Support Load Module 99,
102

preparing 82
row result sets with SELECT’

81
running SQL programs with

Batch MANTIS 112
sample batch input for SQL

bind 91, 126
SELECT 81
SQL binding 82

batch 90
check consistency 104
check results 92
maintaining information 110
online 83
unbinding 107

SQL Support Load Module
available to MANTIS 99

temporarily loaded SQL
Support Load Module 99,
103

unbinding SQL bound
programs 107

Static statements 19

T

Temporarily loaded SQL Support
Load Module 99, 103

Text literals 26

U

Unbinding SQL bound programs
extended dynamic execution

mode 131
static execution mode 107

V

Variables See Host variables,
Indicator variables, MANTIS
variables

Vertical bar (|) 18, 24

W

WHENEVER 40
COBOL 151
declarative statement 44
defaults 43

WHILE loop 44
WORK See COMMIT WORK,

ROLLBACK WORK

	Back to Welcome (OS/390, VSE/ESA)
	About this book
	Using this document
	Document organization
	Conventions

	MANTIS documentation series
	Educational material

	Chapter 1 - Overview of MANTIS SQL support
	Embedding SQL statements in MANTIS programs
	Static and dynamic SQL statements
	MANTIS SQL support execution modes
	Dynamic execution mode (DB2 for VSE and VM—formerly SQL/DS—and DB2 for OS/390)
	Static execution mode (DB2 for OS/390)
	Extended dynamic execution mode (DB2 for VSE and VM—formerly SQL/DS)

	Chapter 2 - Embedding SQL statements in MANTIS programs
	Rules for embedding SQL statements in MANTIS programs
	Coding host variables in SQL statements
	Coding indicator variables in SQL statements
	Converting data between MANTIS SQL support and the SQL database
	Specifying SQL data types in host variables

	Chapter 3 - Programming considerations
	SQL statement limits
	Scope of SQL cursors and statements
	SQL WHENEVER statement
	Using SQL WHENEVER as a declarative statement
	Scope of the WHENEVER statement

	SQLCA in MANTIS SQL support
	SQLCA statement syntax
	SQLCA function syntax
	SQLCA elements

	SQL COMMIT WORK and ROLLBACK WORK statements
	Binding with the high-Performance option (HPO)
	Running a program from a line number
	Error messages
	Maximum number of host variables
	Using ENTRY statement parameters as host variables

	Chapter 4 - Dynamic SQL statements
	SQLDA statement and function
	Allocate an SQLDA
	Deallocate an SQLDA
	Set SQLDA header information
	Move data into an SQLDA repeating group
	Read header elements
	Move data from an SQLDA repeating group into a MANTIS program

	SQL statements larger than 254 characters

	Chapter 5 - Preparing MANTIS SQL support programs for static execution mode (DB2 for OS/390)
	Static execution mode vs. dynamic execution mode
	Static execution mode
	Dynamic execution mode

	Preparing your programs to run in static execution mode
	Performance and programming considerations
	Determining host variable data types
	SQL indicator variables
	Declaring SQL cursors multiple times
	ENTRY statement parameters as host variables
	Multiple row result sets with SELECT
	Binding on the target system

	Preparing a program to run in static mode
	SQL binding the MANTIS program
	SQL binding a MANTIS program online
	SQL binding a MANTIS program with batch MANTIS
	Checking the results of an SQL bind

	Generating the SQL support source module
	Creating the SQL support load module
	Creating the DB2 application plan and granting execution authority
	Making SQL support load modules available to MANTIS
	Including load modules
	Permanently loading SQL support load modules
	Temporarily loading SQL support load modules

	Checking the consistency of a bound program
	Unbinding SQL bound programs
	Maintaining SQL bind information
	Running SQL support programs with batch MANTIS

	Chapter 6 - MANTIS SQL support programs for extended dynamic execution mode (DB2 for VSE and VM—formerly SQL/DS)
	Performance and programming considerations
	Determining host variable data types
	Multiple row result sets with SELECT
	Binding on the target system

	Preparing a program to run in extended dynamic execution mode
	SQL binding a MANTIS program online
	SQL binding a MANTIS program with batch MANTIS
	Checking the results of an SQL bind

	Checking the consistency of a bound program
	Unbinding SQL bound programs

	Appendix A - Sample MANTIS SQL support programs
	Insert program using static SQL statements
	Insert program using dynamic SQL statements
	Update program using static SQL statements
	Update program using dynamic SQL statements
	Select program using static SQL statements
	Select program using dynamic SQL statements
	Delete program using static SQL statements
	Delete program using dynamic SQL statements
	Column select program using dynamic SQL statements
	Hold cursors across a COMMIT

	Appendix B - Features not supported
	Appendix C - Comparing SQL in MANTIS SQL support to SQL in COBOL
	Appendix D - SQL keywords
	Index

