

AD/ADVANTAGE

MANTIS DB2 Programming
UNIX

P39-1360-00

AD/Advantage
MANTIS DB2 Programming, UNIX

Publication Number P39-1360-00

� 2001 Cincom Systems, Inc.
All Rights Reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage®
C+A-RE™
CINCOM®
Cincom Encompass®
Cincom Smalltalk™
Cincom SupportWeb®
CINCOM SYSTEMS®

gOOi™

iD CinDoc™
iD CinDoc Web™
iD Consulting™
iD Correspondence™
iD Correspondence Express™
iD Environment™
iD Solutions™
intelligent Document Solutions™
Intermax™

MANTIS®
Socrates®
Socrates® XML
SPECTRA™
SUPRA®
SUPRA® Server
Visual Smalltalk®
VisualWorks®

All other trademarks are trademarks or registered trademarks of:

Acucobol, Inc.
AT&T
Compaq Computer Corporation
Data General Corporation
Gupta Technologies, Inc.
International Business Machines Corporation
JSB Computer Systems Ltd.

Micro Focus, Inc.
Microsoft Corporation
Systems Center, Inc.
TechGnosis International, Inc.
The Open Group
UNIX System Laboratories, Inc.

or of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, Ohio 45246-3732
U. S. A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

http://www.cincom.com/

Release information for this manual
AD/Advantage MANTIS DB2 Programming, UNIX, P39-1360-00, is dated
October 30, 2001. This document supports Release 5.5.01 of MANTIS.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. At your convenience, please take the
survey provided with the online documentation.

Cincom Technical Support for AD/Advantage

All customers Web: http://supportweb.cincom.com
U. S. A. customers Phone: 1-800-727-3525
 FAX: (513) 612-2000

Attn: AD/Advantage Support
 Mail: Cincom Systems, Inc.

Attn: AD/Advantage Support
55 Merchant Street
Cincinnati, OH 45246-3732
U. S. A.

Customers outside U. S. A. All: Visit the support links at
http://www.cincom.com to find
contact information for your nearest
Customer Service Center.

http://supportweb.cincom.com/
http://www.cincom.com/

MANTIS DB2 Programming v

Contents

About this book xi
Using this document...xi

MANTIS overview..xi
Document organization ..xii
Conventions... xiii

MANTIS documentation series...xvi
Educational material ... xvii

MANTIS SQL Support overview 19
Introduction... 19
MANTIS SQL Support and non-SQL MANTIS applications....................................... 19
Embedding SQL statements in a MANTIS application program 20

Procedure for embedding an SQL statement.. 20
Sample code for an embedded SQL statement .. 20
How MANTIS processes embedded SQL statements 21

Host variables... 21
Introduction to host variables .. 21
Input host variable (variable that provides input to the database) 22
Output host variable (variable that receives data from a database) 23
Host variables as parameters of SQL statements... 24

Indicator variables .. 25
Description... 25
Sample code.. 25

MANTIS SQL Support software requirements ... 26
Supported DB2 version ... 26
Binding MANTIS against a DB2 database .. 26

Differences between SQL in MANTIS and SQL in COBOL 27
Logical names .. 27
Static and dynamic SQL... 28
Security... 28

Contents

vi P39-1360-00

System maintenance 29
Master User facilities...29
MANTIS SQL options..30
Updating the User Profile..30

Specifying the default SQL DBTYPE...30
Default SQL DBTYPE and the current SQL DBTYPE...................................30
Current SQL DBTYPE and the MANTIS EXEC_SQL and
SQLCA statements ..30

Connecting to DB2..31
Explicit or implicit connect to DB2..31
Examples of explicit connection to DB2...31

Embedding SQL statements in MANTIS programs 33
Rules for embedding SQL statements in a MANTIS program....................................34

Follow the standard SQL syntax rules ...34
Embed an SQL statement as a standard MANTIS comment........................34
Follow the standard MANTIS comment rules ..34
Place an SQL statement within an EXEC_SQL-END block34
Place only one SQL statement within an EXEC_SQL-END block35
Apart from the SQL statement, do not include any other MANTIS
statements in an EXEC_SQL-END block ..36
Do not place a comment or a MANTIS statement on the same line as an
SQL statement ...37
Within an EXEC_SQL-END block, use a colon to represent a host
variable (the colon will not represent a new statement)37
If desired, split an SQL statement across multiple comment lines within an
EXEC_SQL-END block..38
In an SQL statement, use as many spaces as desired39
If you use a colon to attach an SQL statement to an EXEC_SQL
statement, that SQL statement exists within the EXEC_SQL-END block40
If you place a MANTIS statement on the same line as the END in an
EXEC_SQL-END block, MANTIS will not execute that statement41
A MANTIS comment is permitted to be on the same line as the END in an
EXEC_SQL-END block..41

Using host variables..42
Definition of a host variable ...42
Sample code ..42
Declaring host variables...43
Referencing values in a MANTIS array ...44
MANTIS data types vs. SQL data types ..45

Contents

MANTIS DB2 Programming vii

Indicator variables .. 46
Definition.. 46
Creating an indicator variable.. 46
Interpreting an indicator variable... 46
Sample code.. 46
Defining indicator variables ... 47

Data conversion between MANTIS SQL Support and DB2 48

Programming considerations 49
Chapter summary... 49
MANTIS SQL Support and SQL statements .. 51

How to use MANTIS SQL Support .. 51
How MANTIS SQL Support processes SQL statements 51
SQL statements and cursors as SQL entities ... 51

Varying line numbers associated with an EXEC_SQL-END block 52
Line number associated with an EXEC_SQL-END block in an
unbound program .. 52
Line number associated with an EXEC_SQL-END block in a
bound program .. 53

Scope of cursors, statements, and SQLDA data structures 54
Basic elements of dynamic SQL programs... 54
Local scope for cursor name, statement name, or SQLDA name 54
Mapping MANTIS cursor names and MANTIS statement names onto DB2
cursor names and DB2 statement names... 54
MANTIS cursors and real cursor names ... 55

DB2 connection and disconnection.. 56
Connection to DB2 .. 56
Disconnection from DB2.. 57

MANTIS EXEC_SQL statement, used for multiple session support 58
Syntax definition for the EXEC_SQL statement.. 59

SQL WHENEVER statement.. 61
Differences between WHENEVER statement in MANTIS SQL Support
and WHENEVER statement in SQL in COBOL .. 61
Syntax for MANTIS SQL Support WHENEVER statement........................... 61
Quick reference for WHENEVER conditions and default actions 66
Sample code for DO, FAULT, and CONTINUE .. 66
Declarative (COBOL) vs. interpretive (MANTIS) WHENEVER statements .. 67
Scope of the WHENEVER statement ... 68

SQLCA function and SQLCA statement .. 69
SQLCA in SQL in COBOL vs. SQLCA in MANTIS SQL Support 69
Syntax for SQLCA function and SQLCA statement 69
DBTYPE, an additional element for the SQLCA statement 73
SQLCA elements... 74

Contents

viii P39-1360-00

COMMIT/ROLLBACK and COMMIT/RESET ...75
Error messages...77

Message sources...77
Information that MANTIS generally displays for an error...............................77
Information that MANTIS displays for an error from the database system....78

Dynamic SQL in MANTIS SQL Support 79
Who should read this chapter? ...79
Dynamic SQL overview...79

Definition of dynamic SQL ...79
Example of when to use dynamic SQL..79
Principal statements for dynamically executing SQL statements..................80
SQLDA data structure..80
Defining data about SQL statements and host variables81
SQL statements that you cannot execute dynamically..................................82
Auto-cursor FETCH statements...83
Executing a statement dynamically ...83
Dynamic SQL sample code for creating an SQLDA data structure...............84

SQLDA data structure...87
Figure representing SQLDA data structure ...87
Data item..88
SLQDA names ...88
Declaring SQLDA elements in other programming languages vs.
declaring them in MANTIS SQL Support ...88
Number of repeating elements in an SQLDA data structure88
Built-in SQLDA statement and built-in SQLDA function89
Sample code for the SLQDA statement and SQLDA function.......................90

Cursors for prepared statements ..108

MANTIS SQL sample programs 109
Introduction ...109
INSERT routines ...110

Static INSERT routine..110
Dynamic INSERT routine...112

UPDATE routines..114
Static UPDATE routine ..114
Dynamic UPDATE routine ...115

SELECT routines ..117
Static SELECT routine ...117
Dynamic SELECT routine ..118

DELETE routines ..120
Static DELETE routine ...120
Dynamic DELETE routine ..121

Dynamic QUERY-like function..122
Dynamic column select ...124

Contents

MANTIS DB2 Programming ix

SQL features that are not supported for DB2 SQL 127
SQL features that are not supported for DB2 SQL .. 127

MANTIS SQL Support vs. SQL in COBOL 129
Differences between MANTIS SQL Support and SQL in COBOL 130

MANTIS vs. SQL 133
Differences between MANTIS and SQL... 133

Index 135

Contents

x P39-1360-00

MANTIS DB2 Programming xi

About this book

Using this document
This guide describes MANTIS SQL Support for the version of DB2 that
runs under UNIX. MANTIS SQL Support is an extended version of
MANTIS that enables you to create MANTIS applications that use SQL
to access database systems.

MANTIS overview
MANTIS® is an application development system that consists of the
following:

♦ A programming language.

♦ Design facilities. For example:

- Screens

- Files

The MANTIS system is designed to increase your productivity in all
areas of application development, from initial design through production
and maintenance. MANTIS is a part of AD/Advantage, which offers
additional tools for application development.

About this book

xii P39-1360-00

Document organization
Here are summaries for each chapter in this guide:

Chapter 1—MANTIS SQL Support overview
Provides an overview of MANTIS SQL Support. Describes using it to
create MANTIS applications that use SQL.

Chapter 2—System maintenance
Supplements the information found in MANTIS Administration,
OpenVMS/UNIX, P39-1320, with information specific to DB2.
Provides information on Master User facilities, MANTIS SQL options,
updating the User Profile, and signing on to DB2.

Chapter 3—Embedding SQL statements in MANTIS programs
Describes the rules that you must follow when embedding SQL
statements in a MANTIS program.

Chapter 4—Programming considerations
Describes the program design implications resulting from the
interpretive nature of MANTIS SQL Support.

Chapter 5—Dynamic SQL in MANTIS SQL Support
Discusses how dynamic SQL works in MANTIS SQL Support.

Appendix A—Sample MANTIS SQL programs
Provides examples of dynamic MANTIS SQL programs and their
equivalent static MANTIS SQL programs.

Appendix B—Features not supported for DB2 SQL
Lists the SQL features that are not supported for DB2 SQL.

Appendix C—MANTIS SQL Support vs. SQL in COBOL
Summarizes the differences between MANTIS SQL Support and
SQL in COBOL.

Appendix D—MANTIS vs. SQL
Summarizes the differences between MANTIS and SQL.

Index

About this book

MANTIS DB2 Programming xiii

Conventions
The following table describes the conventions used in this document.
These conventions will help you identify statements, commands, and
references within the text and software.

Convention Description Example
Constant width
type Represents screen images and

segments of code.
Screen Design Facility
GET NAME LAST
INSERT ADDRESS

Yellow-
highlighted, red
code or screen
text

Indicates an emphasized section of
code or portion of a screen.

00010 ENTRY COMPOUND
00020 .SHOW"WHAT IS THE

CAPITAL AMOUNT?"
00030 .OBTAIN INVESTMENT
00040 EXIT

Slashed b (b/) Indicates a space (blank).
The example indicates that a
password can have a trailing blank.

WRITEPASSb/

Brackets [] Indicate optional selection of
parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate
one of the following situations.

 A single item enclosed by brackets
indicates that the item is optional
and can be omitted.
The example indicates that you
can optionally enter a program
name.

COMPOSE [program-name]

 Stacked items enclosed by
brackets represent optional
alternatives, one of which can be
selected.
The example indicates that you
can optionally enter NEXT, PRIOR,
FIRST, or LAST. (NEXT is
underlined to indicate that it is the
default.)

�
�
�
�

�

�

�
�
�
�

�

�

LAST

FIRST

PRIOR

NEXT

About this book

xiv P39-1360-00

Convention Description Example
Braces { } Indicate selection of parameters.

(Do not attempt to enter braces or
to stack parameters.) Braces
surrounding stacked items
represent alternatives, one of
which you must select.
The example indicates that you
must enter FIRST, LAST, or a
value for begin.

�
�

�
�

�

�
�

�
�

�

LAST

FIRST

begin

Underlining
(In syntax)

Indicates the default value supplied
when you omit a parameter.
The example indicates that if you
do not specify ON, OFF, or a row
and column destination, the
system defaults to ON.

[][] �
�
�

�

�

�
�
�

�

�

colrow ,

OFF

ON

 SCROLL

 Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.
The example indicates that you
can enter either PRO or
PROTECTED.

PROTECTED

Ellipsis points... Indicate that the preceding item
can be repeated.
The example indicates that you
can enter (A), (A,B), (A,B,C), or
some other argument in the same
pattern.

(argument,...)

About this book

MANTIS DB2 Programming xv

Convention Description Example
UPPERCASE Indicates MANTIS reserved words.

You must enter them exactly as
they appear.
The example indicates that you
must enter CONVERSE exactly as
it appears.

CONVERSE name

Italics Indicate variables you replace with
a value, a column name, a file
name, and so on.
The example indicates that you
can supply a name for the
program.

COMPOSE [program-name]

Punctuation
marks

Indicate required syntax that you
must code exactly as presented.
() parentheses
. period
, comma
: colon
; semicolon
' single quotation
mark
" " double quotation
marks

LET ()
() ROUNDED() = v i
i , j n e1 , e2, e3. . .

About this book

xvi P39-1360-00

MANTIS documentation series
The manuals offered with MANTIS in the OpenVMS™ and UNIX®
environments are listed below:

Getting started

♦ MANTIS 2.8.01 Installation and Startup, OpenVMS/UNIX, P39-0027*

General use

♦ MANTIS Facilities, OpenVMS/UNIX, P39-1300*

♦ MANTIS Language, OpenVMS/UNIX, P39-1310

♦ MANTIS Messages and Codes, OpenVMS/UNIX, P39-1330

♦ MANTIS Application Development Tutorial, OpenVMS/UNIX, P39-
1340

♦ MANTIS SUPRA SQL Programming, OpenVMS/UNIX, P39-1345

♦ AD/Advantage Programming, P39-7001

♦ AD/Advantage MANTIS Entity Transformers, P39-0013

♦ AD/Advantage Component Management Facility, P19-2131

♦ MANTIS Oracle Programming, UNIX, P39-1355

♦ MANTIS DB2 Programming, UNIX, P39-1360

♦ MANTIS WebSphere MQ Programming, P39-1365

Manuals marked with an asterisk (*) are listed twice because you can
use them for multiple tasks.

About this book

MANTIS DB2 Programming xvii

Master User tasks

♦ MANTIS Facilities, OpenVMS/UNIX, P39-1300*

♦ MANTIS Administration, OpenVMS/UNIX, P39-1320

♦ MANTIS 2.8.01 Installation and Startup, OpenVMS/UNIX, P39-0027*

Manuals marked with an asterisk (*) are listed twice because you can
use them for multiple tasks.

About this book

xviii P39-1360-00

MANTIS DB2 Programming 19

1
MANTIS SQL Support overview

Introduction
MANTIS is an application development system that enables you to
interactively perform the following for applications:

♦ Develop

♦ Test

♦ Execute

♦ Document

MANTIS SQL Support, an extended version of MANTIS, enables you to
create MANTIS applications that use SQL to access database systems.

MANTIS SQL Support and non-SQL MANTIS applications
The presence of MANTIS SQL Support does not affect non-SQL
MANTIS applications. Therefore, MANTIS SQL Support programs can
run concurrently with, or in conjunction with, non-SQL MANTIS
programs, without them affecting each other.

Chapter 1 MANTIS SQL Support overview

20 P39-1360-00

Embedding SQL statements in a MANTIS application program

Procedure for embedding an SQL statement
Embed SQL statements in a MANTIS application program as standard
MANTIS comments. To embed an SQL statement, perform the
following:

1. Using a text editor, open a MANTIS application program to which
you would like to add an embedded SQL statement.

2. On a new line, enter an EXEC_SQL statement.

3. On the following line, enter a desired SQL statement.

Although you can enter only one SQL statement in an EXEC_SQL-
END block, you can split this statement across multiple lines. Begin
each line of your SQL statement with the comment character: a
vertical bar (|).

4. On the following line, enter an END statement.

Sample code for an embedded SQL statement

The appearance of a MANTIS program with embedded SQL statements
is similar to the appearance of the preprocessor output for SQL
statements embedded in other host languages, such as COBOL.

See the following sample code for an embedded SQL statement:
4580 TEXT EMP_NAME(30)

4590 BIT EMP_SAL

4600 WHILE SQLCA("SQLCODE")<>1403

4610 .EXEC_SQL

4620 ..| SELECT SALARY

4630 ..| INTO :EMPL_SAL

4640 ..| FROM EMPLOYEE_TABLE

4650 ..| WHERE NAME=:EMP_NAME

4660 .END

4670 END

4680 DO BONUS_ROUTINE

Host variables

MANTIS DB2 Programming 21

How MANTIS processes embedded SQL statements
As MANTIS SQL Support encounters each SQL statement in a MANTIS
program, MANTIS SQL Support performs the following:

1. Transparently prepares the SQL statement for execution.

2. Executes the SQL statement.

For further information on embedding SQL statements in MANTIS
programs, see “Embedding SQL statements in MANTIS programs” on
page 33.

Host variables

Introduction to host variables
MANTIS variables in SQL statements are called host variables. In an
SQL statement, a colon always precedes a host variable. There are
three kinds of host variables:

♦ Input host variables. See “Input host variable (variable that
provides input to the database)” on page 22.

♦ Output host variables. See “Output host variable (variable that
receives data from a database)” on page 23.

♦ Host variables as parameters of SQL statements. See “Host
variables as parameters of SQL statements” on page 24.

Chapter 1 MANTIS SQL Support overview

22 P39-1360-00

Input host variable (variable that provides input to the database)
Description
An input host variable is a MANTIS variable that is:

♦ Passed to SQL

♦ Used to perform one of the following:

- Select data

- Insert data

- Delete data

- Update data.

The “input” in “input host variable” is from the perspective of the DB2
database, not the MANTIS program. Therefore, the input host variable
provides output from the MANTIS program and input to the DB2
database.

Sample code
In the following sample code, “:EMP_NAME” is an input host variable:
4580 TEXT EMP_NAME(30)

4590 BIT EMP_SAL

4600 WHILE SQLCA("SQLCODE")<>1403

4610 .EXEC_SQL

4620 ..| SELECT SALARY

4630 ..| INTO :EMPL_SAL

4640 ..| FROM EMPLOYEE_TABLE

4650 ..| WHERE NAME=:EMP_NAME

4660 .END

4670 END

4680 DO BONUS_ROUTINE

Host variables

MANTIS DB2 Programming 23

Output host variable (variable that receives data from a
database)

Description
An output host variable is a MANTIS variable that receives data from a
database. “Output” in “output host variable” is from the perspective of
the DB2 database, not the MANTIS program. Therefore, the output host
variable provides output from the DB2 database and input to the
MANTIS program.

Sample code
In the following sample code, “:EMPL_SAL” is an output host variable.
4580 TEXT EMP_NAME(30)

4590 BIT EMP_SAL

4600 WHILE SQLCA("SQLCODE")<>1403

4610 .EXEC_SQL

4620 ..| SELECT SALARY

4630 ..| INTO :EMPL_SAL

4640 ..| FROM EMPLOYEE_TABLE

4650 ..| WHERE NAME=:EMP_NAME

4660 .END

4670 END

4680 DO BONUS_ROUTINE

Chapter 1 MANTIS SQL Support overview

24 P39-1360-00

Host variables as parameters of SQL statements
Description
You can use host variables as parameters of SQL statements.

Sample code
In the following sample code, “:EMP_NAME” is a parameter of an SQL
statement:
4580 TEXT EMP_NAME(30)

4590 BIT EMP_SAL

4600 WHILE SQLCA("SQLCODE")<>1403

4610 .EXEC_SQL

4620 ..| SELECT SALARY

4630 ..| INTO :EMPL_SAL

4640 ..| FROM EMPLOYEE_TABLE

4650 ..| WHERE NAME=:EMP_NAME

4660 .END

4670 END

4680 DO BONUS_ROUTINE

Indicator variables

MANTIS DB2 Programming 25

Indicator variables

Description
Optionally, you can specify an indicator variable along with a host
variable. The database system sets the indicator variable to indicate one
of the following:

♦ Null value

♦ Value was truncated

For more information on indicator variables, see “Indicator variables” on
page 46.

Sample code
In the following sample code, “:EMPLIV” and “:NAMEIV” are indicator
variables:
EXEC_SQL: | SELECT EMPLNO, EMPLNA

.| INTO :EMPLIV, :NAMEIV

.| FROM EMPLOYEES WHERE DEPT = 17

END

Chapter 1 MANTIS SQL Support overview

26 P39-1360-00

MANTIS SQL Support software requirements

Supported DB2 version
MANTIS SQL Support for DB2 works against DB2 UDB Release 7.1
databases.

Binding MANTIS against a DB2 database
Before you run the MANTIS program, the MANTIS DB2 administrator
must perform a binding process in order to store a MANTIS package in
the database.

Bind file information for the MANTIS DB2 administrator
Below is the required bind file information for the MANTIS DB2
administrator:

♦ Name: db2_int.bnd

♦ Directory in which it is located: $MAN_ROOT/libdb2

Sample code
Below is sample code for binding MANTIS against a DB2 sample
database:
CD $MAN_ROOT/libdb2

DB2 CONNECT TO SAMPLE USER DB2INST1 USING IBMDB2

DB2 BIND DB2_INT.BND

For detailed information about the DB2 BIND command, refer to
Command Reference for DB2.

Differences between SQL in MANTIS and SQL in COBOL

MANTIS DB2 Programming 27

Differences between SQL in MANTIS and SQL in COBOL
The SQL implementation in MANTIS SQL Support is similar to the SQL
implementations in third-generation languages like FORTRAN and
COBOL.

For convenience, this guide refers to all third-generation SQL
implementations as “SQL in COBOL.”

There are some differences between MANTIS SQL Support and SQL in
COBOL. These differences are mostly due to the interpretive (as
opposed to compiled) nature of MANTIS. For a summary of these
differences, see “MANTIS SQL Support vs. SQL in COBOL” on
page 129.

Logical names

In this guide, “logical name” refers to an identifier or variable which
stands for another name or value.

OpenVMS and UNIX differ in their logical name implementations:

♦ OpenVMS. OpenVMS logical names correspond directly to MANTIS
logical names.

♦ UNIX. UNIX implements logical names as environment variables.
Ensure that any shell variables that must affect MANTIS are
exported or inherited into the environment in which MANTIS is
executing.

Chapter 1 MANTIS SQL Support overview

28 P39-1360-00

Static and dynamic SQL
A MANTIS SQL Support application can be either static or dynamic:

♦ Static. All SQL statements are defined before run time.

♦ Dynamic. All SQL statements are defined at run time. SQL
statements are specified during program execution.

Security
Together, the database system and MANTIS handle security in MANTIS
SQL Support. Ensure that users have authorized access to the views
that they require.

MANTIS DB2 Programming 29

2
System maintenance

The considerations in this chapter assume that you have already
installed MANTIS. This chapter supplements MANTIS Administration,
OpenVMS/UNIX, P39-1320.

Master User facilities
As the Master User, you alone can access certain facilities and
information. When you sign on as MASTER, your Facility Selection
menu appears as shown below:

M A N T I S

FACILITY SELECTION

Run A Program 1 Sign On As Another User 11
Display A Prompter 2 Transfer Facility 12
Design A Program 3 Edit MANTIS Messages 13
Design A Screen 4 Directory Facility 14
Design A File Profile 5 Universal Export Facility .. 15
Design A Prompter 6 Update Shared Entity List .. 16
Design A User Profile 7 Update Language Codes 17
Design An Interface 8 MANTIS Maintenance 18
Design An Ultra File View .. 9 Spectra 19
Design An External File View 10 Search Facility.............. 20

List of Current Mantis Users. 21
Exit MANTIS CANCEL

: :

Chapter 2 System maintenance

30 P39-1360-00

MANTIS SQL options
Two MANTIS options affect SQL support:

♦ SQLSSNINC

♦ SQLVARINC

For information on these options, refer to MANTIS Facilities,
OpenVMS/UNIX, P39-1300.

Updating the User Profile

Specifying the default SQL DBTYPE
Specify the default SQL DBTYPE in the MANTIS User Profile's Default
SQL DBTYPE field. In this field, specify one of the following SQL
DBTYPEs:

♦ DB2

♦ ORACLE

♦ RDB

♦ SUPRA

Default SQL DBTYPE and the current SQL DBTYPE
When the user signs on to MANTIS, the default DBTYPE sets the user’s
current SQL DBTYPE. The current DBTYPE always determines which
SQL database system MANTIS uses.

Current SQL DBTYPE and the MANTIS EXEC_SQL and SQLCA
statements

The MANTIS EXEC_SQL and SQLCA statements can change the
current DBTYPE at any time.

Not all DBTYPEs are supported on all platforms. For example:
♦ Rdb/VMS runs only in OpenVMS environments.
♦ DB2 runs only in AIX environments.

Connecting to DB2

MANTIS DB2 Programming 31

Connecting to DB2

For considerations on connecting to DB2, and for information on
disconnection from DB2, see “DB2 connection and
disconnection” on page 56.

Explicit or implicit connect to DB2
You can connect to DB2 either explicitly or implicitly:

♦ Explicit connect. Occurs through the SQL CONNECT statement:

]] USING [USER

] [[TO CONNECT

�
�
�

�
�
�

−�
�
�

�
�
�

−
−

�
�
�

�
�
�

−
−

variablehost
password

variablehost
nameionauthorizat

variablehost
nameserver

♦ Implicit connect. Occurs when the first SQL statement is executed
and there is no CONNECT statement. MANTIS for UNIX supports
the implicit sign-on facility provided by DB2.

Examples of explicit connection to DB2
There are several possible variations on explicit connection:

Connecting to a DB2 server using all default values
Description. In this example, you connect to the DB2 server using
default values for the following:

♦ Server

♦ Username

♦ Password

Sample code. See the following sample code:
EXEC_SQL

.| CONNECT

END

Chapter 2 System maintenance

32 P39-1360-00

Connecting to a DB2 server called “SAMPLE”
Description. In this example, you connect to the DB2 server called
“SAMPLE” using default values for the following:

♦ Username

♦ Password

Sample code. See the following sample code:
EXEC_SQL

.| CONNECT TO SAMPLE

END

Connecting to a DB2 server using MANTIS variables for
username and password
Description. In this example, you connect to the default DB2 server
using MANTIS variables for the following:

♦ Username

♦ Password

Sample code. See the following sample code:
EXEC_SQL

.| CONNECT USER :AIXUSER USING :PASSWORD

END

MANTIS DB2 Programming 33

3
Embedding SQL statements in
MANTIS programs

This chapter assumes a working knowledge of MANTIS, DB2, and SQL.

This chapter describes the following:

♦ Rules for embedding SQL statements in a MANTIS program.
See “Rules for embedding SQL statements in a MANTIS program”
on page 34.

♦ How to reference host variables. See “Using host variables” on
page 42.

♦ How to use indicator variables. See “Indicator variables” on
page 46.

♦ How the database system converts data values between
MANTIS SQL Support and the DB2 database. “Data conversion
between MANTIS SQL Support and DB2” on page 48.

For more information on MANTIS language conventions, refer to
MANTIS Language, OpenVMS/UNIX, P39-1310.

Chapter 3 Embedding SQL statements in MANTIS programs

34 P39-1360-00

Rules for embedding SQL statements in a MANTIS program

Follow the standard SQL syntax rules
Follow the standard SQL syntax rules for SQL statements embedded
within a MANTIS program. For these rules, refer to the SQL Reference
DB2 guide.

Embed an SQL statement as a standard MANTIS comment
Embed an SQL statement in a MANTIS application program as a
standard MANTIS comment. That is, precede the SQL statement with a
vertical bar (|).

Follow the standard MANTIS comment rules
For SQL statements embedded within a MANTIS program, follow the
MANTIS comment rules. To find these rules, refer to MANTIS
Language, OpenVMS/UNIX, P39-1310.

Place an SQL statement within an EXEC_SQL-END block
Rule
Place an SQL statement within an EXEC_SQL-END block.

Statements within the EXEC_SQL-END block are indented.

Sample code
See the following sample code:
EXEC_SQL

.| OPEN C1

END

Rules for embedding SQL statements in a MANTIS program

MANTIS DB2 Programming 35

Place only one SQL statement within an EXEC_SQL-END block
Rule
Place only one SQL statement within an EXEC_SQL-END block.

You can divide a single SQL statement across several lines.

Sample invalid code (what to avoid)
The following sample code is invalid because there are three separate
SQL statements in the EXEC_SQL-END block, and only one is allowed.
EXEC_SQL

.| OPEN C1

.| FETCH C1 INTO ...

.| CLOSE C1

END

Sample valid code
The following sample code is valid because it contains a single SQL
statement that is divided across several lines:
4610 .EXEC_SQL

4620 ..| SELECT SALARY

4630 ..| INTO :EMPL_SAL

4640 ..| FROM EMPLOYEE_TABLE

4650 ..| WHERE NAME=:EMP_NAME

4660 .END

Chapter 3 Embedding SQL statements in MANTIS programs

36 P39-1360-00

Apart from the SQL statement, do not include any other MANTIS
statements in an EXEC_SQL-END block

Rule
Apart from the SQL statement, do not include any other MANTIS
statements in an EXEC_SQL-END block. MANTIS SQL Support permits
only the SQL statement within the SQL statement’s EXEC_SQL-END
block.

Sample invalid code (what to avoid)
In the following sample code, a MANTIS statement other than the SQL
statement is located in the EXEC_SQL-END block:
EXEC_SQL

.| OPEN C1

.OPENED = TRUE

END

Rules for embedding SQL statements in a MANTIS program

MANTIS DB2 Programming 37

Do not place a comment or a MANTIS statement on the same
line as an SQL statement

Rule
Do not place a comment or another MANTIS statement on the same line
as an SQL statement. Once MANTIS SQL Support encounters a vertical
bar, MANTIS SQL Support considers the rest of the physical line to be a
single SQL statement.

Sample invalid code (what to avoid)
See the following invalid sample code:

♦ (Invalid code). In the following sample code, a MANTIS statement
is appended to a valid SQL statement:
EXEC_SQL

.| OPEN C1:OPENED=TRUE

END

♦ (Invalid code). In the following sample code, a MANTIS comment is
appended to a valid SQL statement:
EXEC_SQL

.| OPEN C1:||EMPLOYEE CURSOR

END

Within an EXEC_SQL-END block, use a colon to represent a
host variable (the colon will not represent a new statement)

Rule
Use a colon within an EXEC_SQL-END block to represent a host
variable. The colon will not represent a new statement, even though,
outside of an EXEC_SQL-END block, the colon is the MANTIS
statement-separator character.

Sample code
See the following sample code. In this code, “C1” is an SQL entity and
“A” is a host variable.
EXEC_SQL

.| FETCH C1 INTO :A

END

Chapter 3 Embedding SQL statements in MANTIS programs

38 P39-1360-00

If desired, split an SQL statement across multiple comment
lines within an EXEC_SQL-END block

Rule
If desired, split an SQL statement across multiple comment lines within
an EXEC_SQL-END block. MANTIS reads the text in two or more
consecutive comment lines within the same EXEC_SQL-END block as if
it were separated by a single blank. That is, all of the text lines, together,
compose one statement.

SQL text literals (characters between apostrophes) may not span
multiple comment lines.

Sample code
The following two pieces of sample code are equivalent:

EXEC_SQL is equivalent to EXEC_SQL

.| OPEN .| OPEN C1

.| C1 END

END

Rules for embedding SQL statements in a MANTIS program

MANTIS DB2 Programming 39

In an SQL statement, use as many spaces as desired
Rule
In an SQL statement, use as many spaces as desired. MANTIS SQL
Support treats multiple blanks at the beginning or end of an SQL
statement, or spaces between words on the same line, as a single blank.

Sample code
Consider the usage of spaces in the following sample code:

♦ The following two pieces of sample code are equivalent:

EXEC_SQL is equivalent to EXEC_SQL

.| OPEN C1 .| OPEN C1

END END

♦ The following two pieces of sample code are equivalent:

EXEC_SQL is equivalent to EXEC_SQL

.| .| OPEN C1

.| OPEN END

.| C1

.|

END

Chapter 3 Embedding SQL statements in MANTIS programs

40 P39-1360-00

If you use a colon to attach an SQL statement to an EXEC_SQL
statement, that SQL statement exists within the EXEC_SQL-END
block

Rule
If you use a colon to attach an SQL statement to an EXEC_SQL
statement, that SQL statement exists within the EXEC_SQL-END block.
The SQL statement is considered to all or part of the single SQL
statement that is allowed within the EXEC_SQL-END block.

Sample code
Consider the following sample code, in which the first part of the SQL
statement is attached to the EXEC_SQL statement and the second part
of the SQL statement is within the EXEC_SQL-END block:
EXEC_SQL: | FETCH C1

.| INTO :EMPL

END

Rules for embedding SQL statements in a MANTIS program

MANTIS DB2 Programming 41

If you place a MANTIS statement on the same line as the END in
an EXEC_SQL-END block, MANTIS will not execute that
statement

Rule
If you place a MANTIS statement on the same line as the END in an
EXEC_SQL-END block, MANTIS will not execute that statement. This is
consistent with the way MANTIS treats a MANTIS statement added to an
END in each of the following kinds of MANTIS block:

♦ IF-END

♦ WHILE-END

♦ FOR-END

♦ WHEN-END

♦ UNTIL-END

Sample code
See the following sample code, in which MANTIS disregards
“OPENED=TRUE”:
EXEC_SQL

.| OPEN C1

END:OPENED=TRUE

A MANTIS comment is permitted to be on the same line as the
END in an EXEC_SQL-END block

Rule
A MANTIS comment is permitted to be on the same line as the END in
an EXEC_SQL-END block.

Sample code
Consider the following sample code, in which the comment is on the
same line as the END:
EXEC_SQL

.| OPEN C1

END :| C1 IDENTIFIES TAG FILE ENTRIES

Chapter 3 Embedding SQL statements in MANTIS programs

42 P39-1360-00

Using host variables

Definition of a host variable
A “host variable” is a MANTIS variable in an SQL statement that provides
input to, or receives output from, the connected database. Create a host
variable within an SQL statement by prefixing a variable name with a
colon.

Sample code
See the following sample code, in which “:SALARY” is a host variable:
EXEC_SQL

.| INSERT INTO OWNER.TAB (COLA)

.| VALUES (:SALARY * 1.1)

END

Using host variables

MANTIS DB2 Programming 43

Declaring host variables
Description
You may define a variable explicitly or implicitly:

♦ Explicit definition. You may explicitly declare a host variable
before it appears in the SQL statement, and you can declare this
variable to be any type.

♦ Implicit definition. If you do not explicitly declare a host variable,
MANTIS implicitly declares the host variable the first time MANTIS
uses it (as MANTIS does with other MANTIS variables). MANTIS
automatically declares an implicitly-defined host variable in an SQL
statement as a MANTIS BIG variable.

A MANTIS BIG variable is a numeric floating-point variable that is 16
digits long.

Sample code
See the following sample code for explicit and implicit definition. The two
pieces of sample code are equivalent.

♦ Explicit definition. See the following sample code:
BIG A
EXEC_SQL

.| FETCH C1 INTO :A

END

♦ Implicit definition. See the following sample code:
EXEC_SQL

.|FETCH C1 INTO :A

END

Chapter 3 Embedding SQL statements in MANTIS programs

44 P39-1360-00

Referencing values in a MANTIS array
Description
You can use a host variable as an item in a MANTIS array. Use
arithmetic expressions and MANTIS functions to specify subscripts of
host variables.

Sample code
In the following sample code, a subscript of a host variable refers to an
item in a MANTIS array:

In the following sample code, all code that comes after the colon must
conform to MANTIS syntax. MANTIS rules apply to subscripting, even
though the subscript is located in an SQL statement.

You can prefix only the host variable with a colon. You cannot use a
colon to prefix any of the other MANTIS variables to which you refer in
subscript expressions. In the following sample code, a colon does not
prefix the variables N and T, and these variables are assumed to be
MANTIS variables.

SMALL EMPL (20,40)

EXEC_SQL

.| FETCH ENTRY1 INTO :EMPL(1+N,INT(T))

END

Using host variables

MANTIS DB2 Programming 45

MANTIS data types vs. SQL data types
Database system to MANTIS translation
When the connected database system transfers data from one of its
variables to a host variable, MANTIS causes the database system to
automatically convert the data’s type from an SQL type to a MANTIS
type.

MANTIS to database system translation
When MANTIS transfers data from one of its host variables to the
connected database system, MANTIS causes the database to
automatically convert the data’s type from a MANTIS type to an SQL
type.

More information on data type translation
For a summary of how database systems convert to and from MANTIS
data types, see “Data conversion between MANTIS SQL Support and
DB2” on page 48.

Risks of data type translation
During data-type-translation from a database variable to an SQL
variable, any of the following problems may occur:

♦ Rounding

♦ Truncation

♦ Overflow

Chapter 3 Embedding SQL statements in MANTIS programs

46 P39-1360-00

Indicator variables

Definition
Optionally, you can include an indicator variable along with a host
variable in an SQL statement. As its name implies, the indicator variable
indicates whether the host variable:.

♦ Contains a real value

♦ Is NULL or MISSING

Creating an indicator variable
Prefix an indicator variable name with a colon. Place the indicator
variable immediately after the corresponding host variable or subscript
expression.

Interpreting an indicator variable
Interpret an indicator variable as follows:

♦ If the indicator variable contains zero: The host variable contains
a defined value. No error has occurred.

♦ If the indicator variable contains a value that is less than zero:
The host variable contains a NULL or MISSING value.

Sample code
In the following sample code, EMPLIV and NAMEIV are indicator
variables:
EXEC_SQL: | SELECT EMPLNO, EMPLNA

.| INTO :EMPL(15,3):EMPLIV, :NAME:NAMEIV

.| FROM EMPLOYEES WHERE DEPT = 17

END

Indicator variables

MANTIS DB2 Programming 47

Defining indicator variables
Explicit vs. implicit definition
Like host variables, indicator variables can be defined explicitly or
implicitly:

♦ Explicit definition. Consider the following:

- When you explicitly define a variable, you can use only a
numeric variable as an indicator variable.

For descriptions of variable types, see “Data conversion
between MANTIS SQL Support and DB2” on page 48.

- If you explicitly define an indicator variable as a floating point
value, DB2 still interprets it as an integer. Therefore, a value of
-0.9 in an indicator variable will not specify a NULL or MISSING
value (that is, a value that is less than zero). Instead, the value
will be converted to zero before it is interpreted.

♦ Implicit definition. By default, MANTIS defines the indicator
variable as a MANTIS BIG variable.

Supplying indicator values for any columns that may contain
NULL values
When using SELECT or FETCH to read data from the database, supply
an indicator variable for each column that may contain a NULL value.
Check the value of the indicator variable before examining the host
variable data. If the indicator variable shows that the column is NULL,
the value of the host variable is undefined.

Chapter 3 Embedding SQL statements in MANTIS programs

48 P39-1360-00

Data conversion between MANTIS SQL Support and DB2
DB2 performs data conversion between all data types (including between
numeric and string data types). Be sure to match host variable data
types with database columns so that you obtain correct results.

The following table shows valid data type conversions:

SQL data type MANTIS data type(s) Considerations
DECIMAL BIG, SMALL Consider the following:

♦ When converting from SQL to MANTIS,
loss of precision may occur.

♦ When converting from MANTIS to SQL,
overflow may occur.

INTEGER BIG, SMALL Consider the following:
♦ When converting from SQL to MANTIS,

loss of precision may occur.
♦ When converting from MANTIS to SQL,

overflow may occur.
SMALLINT BIG, SMALL When converting from MANTIS to SQL,

overflow may occur.
FLOAT BIG, SMALL When converting from an SQL FLOAT

variable to a MANTIS SMALL variable,
overflow and/or loss of precision may
occur.

CHAR
VARCHAR

TEXT Consider the following:
♦ When converting from SQL to MANTIS,

truncation may occur.
♦ When converting from MANTIS to SQL,

truncation may occur.
♦ The string can have a variable length,

from 1–65535 characters.
DATE TEXT If TEXT size is less than 10, truncation may

occur.
TIME TEXT If TEXT size is less than 8, truncation may

occur.
TIMESTAMP TEXT If TEXT size is less than 26, truncation may

occur.

MANTIS DB2 Programming 49

4
Programming considerations

MANTIS SQL Support’s interpretive nature has several program design
implications. Before you begin writing MANTIS SQL Support programs,
learn about these implications, which are described throughout this
chapter.

Chapter summary
This chapter contains the following sections:

♦ MANTIS SQL Support and SQL statements. Briefly describes
several important aspects of MANTIS SQL statements. See
“MANTIS SQL Support and SQL statements” on page 51.

♦ Varying line numbers associated with an EXEC_SQL-END block.
Internally, MANTIS stores an EXEC_SQL-END block as a single line
of text. This section describes how MANTIS associates various line
numbers, contained within the block, with this single line of text. See
“Varying line numbers associated with an EXEC_SQL-END block” on
page 52.

♦ Scope of cursors, statements, and named SQLDA data
structures. Describes the local scope of cursors, statements, and
SQLDA data structures, as well as the mapping of global real cursor
names to MANTIS cursor names. See “Scope of cursors,
statements, and SQLDA data structures” on page 54.

♦ DB2 connection and disconnection. Lists considerations for using
MANTIS SQL Support to connect to, and disconnect from, DB2. See
“DB2 connection and disconnection” on page 56.

Chapter 4 Programming considerations

50 P39-1360-00

♦ MANTIS EXEC_SQL statement, used for multiple session
support. Describes the EXEC_SQL statement syntax and describes
how to use the MANTIS EXEC_SQL statement for multiple session
support. See “MANTIS EXEC_SQL statement, used for multiple
session support” on page 58.

♦ SQL WHENEVER statement. Lists considerations for using the
WHENEVER statement. Also lists differences between the
WHENEVER statement in MANTIS and in other languages. See
“SQL WHENEVER statement” on page 61.

♦ SQLCA function and SQLCA statement. Describes differences
between SQLCA access in COBOL and SQLCA access in MANTIS
SQL Support. Also describes the elements that compose the
SQLCA function and the SQLCA statement. See “SQLCA function
and SQLCA statement” on page 69.

♦ COMMIT/ROLLBACK and COMMIT/RESET. Lists considerations
for MANTIS’s COMMIT/ROLLBACK statement and MANTIS SQL
Support’s COMMIT/RESET statement. See “COMMIT/ROLLBACK
and COMMIT/RESET” on page 75.

♦ Error messages. This section provides general information about
all MANTIS error messages and more specific information about
MANTIS error messages from a database. See “Error messages” on
page 77.

MANTIS SQL Support and SQL statements

MANTIS DB2 Programming 51

MANTIS SQL Support and SQL statements

How to use MANTIS SQL Support
To use MANTIS SQL Support, perform the following:

1. Place an appropriate SQL statement in a MANTIS comment.

Identify a line as a MANTIS comment by beginning the line with a
vertical bar (|).

2. Enclose the MANTIS comment in an EXEC_SQL-END block.

3. Place the EXEC_SQL-END block, containing the MANTIS comment,
in your MANTIS application program.

4. Repeat steps 1-3 for as many SQL statements as you require in your
MANTIS application program.

How MANTIS SQL Support processes SQL statements
As MANTIS SQL Support encounters each SQL statement, it prepares
the SQL statement for execution and then executes the SQL statement.
In effect, it performs the same steps (preprocess, compile, link, and load
before the run) that are performed for a COBOL program containing
embedded SQL statements.

Unlike a COBOL program, the MANTIS program (including its SQL
statements) can be modified and then, through the RUN command,
immediately re-executed.

SQL statements and cursors as SQL entities
Both cursors and SQL statements are SQL entities and not MANTIS
entities. Because of this, you cannot perform the following:

♦ Pass them as parameters

♦ Use them in non-SQL MANTIS statements

Chapter 4 Programming considerations

52 P39-1360-00

Varying line numbers associated with an EXEC_SQL-END
block

An EXEC_SQL-END block may span several program lines. However,
when you execute the EXEC_SQL-END block, MANTIS SQL Support
stores the block internally as a single line of text.

Line number associated with an EXEC_SQL-END block in an
unbound program

Description
MANTIS SQL Support stores an EXEC_SQL-END block internally as a
single line of text. If the program is unbound, MANTIS associates this
single line with different program lines for different purposes:

♦ For executing the program: For the purpose of program execution,
MANTIS associates the EXEC_SQL-END block with the first line in
the EXEC_SQL-END block. For example, to execute the following
sample code, enter “RUN 10”.

♦ For labeling an error message: For the purpose of labeling an
error-message, MANTIS associates the EXEC-SQL-END block with
the last line in the EXEC_SQL-END block. Therefore, if MANTIS
encounters an error in the following sample code, it returns the
appropriate error message and displays “40” for line 40.

Sample code
See the following sample code:
10 EXEC_SQL

20 .| SELECT * FROM table-name

30 .| WHERE col-name > :MIN_VALUE

40 END

Varying line numbers associated with an EXEC_SQL-END block

MANTIS DB2 Programming 53

Line number associated with an EXEC_SQL-END block in a
bound program

Description
MANTIS SQL Support stores an EXEC_SQL-END block internally as a
single line of text. If the program is bound, MANTIS associates this
single line with the line number of the last SQL statement (the line
immediately preceding the END statement).

For example, to execute the following sample code, enter “RUN 30.” If
MANTIS encounters an error in the program block, it returns the
appropriate error message and displays “30” for line 30.

Sample code
See the following sample code:
10 EXEC_SQL

20 .| SELECT * FROM table-name

30 .| WHERE col-name > :MIN_VALUE

40 END

Chapter 4 Programming considerations

54 P39-1360-00

Scope of cursors, statements, and SQLDA data structures

Basic elements of dynamic SQL programs
The following are identified by names and are basic to dynamic SQL
programs:

♦ Cursors

♦ Statements

♦ SQLDA data structures

Local scope for cursor name, statement name, or SQLDA name
The scope of a cursor name, statement name, or SQLDA data structure
name is local. That is, it is limited to the program or external subprogram
context in which the name is declared. When a cursor name, statement
name, or SQLDA name is redeclared in an external subprogram, the
name refers to a different structure.

Mapping MANTIS cursor names and MANTIS statement names
onto DB2 cursor names and DB2 statement names

MANTIS maps cursor names and statement names onto DB2 cursor
names and statement names. The scope of the DB2 cursor names and
statement names is one of the following:

♦ MANTIS main program

♦ Entire connect time to the DB2 database

Scope of cursors, statements, and SQLDA data structures

MANTIS DB2 Programming 55

MANTIS cursors and real cursor names
The mapping of cursor names requires further explanation, since certain
error conditions relating to open cursors can cause error messages to
display real cursor names.

As each MANTIS cursor is opened, the MANTIS nucleus allocates and
maps a global real cursor name of the form “Cnnn” (where “nnn” is a
three-digit number allocated by MANTIS) to the MANTIS cursor name.
Therefore, each MANTIS external subprogram maps a range of real
cursor names.

When the EXIT subprogram executes, MANTIS closes all real cursors
that are open. This frees up that range of real cursor names for the next
subprogram to be called or for the same subprogram to be invoked
again.

The limited scope of a MANTIS cursor name is illustrated by the
following mapping:

♦ MANTIS cursor C1 in main program MAIN might be mapped to real
cursor C001.

♦ MANTIS cursor C1 in external subprogram SUB might be mapped to
real cursor C006.

Chapter 4 Programming considerations

56 P39-1360-00

DB2 connection and disconnection

For the difference between explicit and implicit connection, and
for examples of explicit connection to DB2, see “Connecting to
DB2” on page 31.

Connection to DB2
MANTIS supports the DB2 type 1 database connection.

For more information on the DB2 type 1 database connection, refer to
the SQL Reference DB2 manual.

Connection considerations
Consider the following for a MANTIS connection to DB2:

♦ One concurrent connection. A MANTIS program can only connect
to one DB2 application server at a time.

♦ “DB2 implicit connect” and implicit connection. If a “DB2 implicit
connect” is available, the MANTIS program implicitly connects to the
default DB2 application server.

♦ Explicit connection. A MANTIS program can explicitly connect to a
server that is different from the currently-connected DB2 server.

DB2 connection and disconnection

MANTIS DB2 Programming 57

Disconnection from DB2
SQL CONNECT RESET statement
MANTIS detaches from the DB2 database by executing the
SQL CONNECT RESET statement. MANTIS can execute the
CONNECT RESET statement in two ways:

♦ Explicitly. Performed by a MANTIS program.

♦ Implicitly. Performed by the MANTIS nucleus.

Possible causes of disconnection
Possible causes of disconnection are:

♦ A MANTIS program executes an SQL CONNECT RESET
statement. The format for this statement is:
EXEC_SQL: | CONNECT RESET END

♦ MANTIS main program context cleanup. This occurs in the
following circumstances:

- The MANTIS nucleus releases the current TEST program
context in Program Design as the result of a NEW, LOAD, EDIT,
or RUN command.

- The user exits the Program Design Facility.

- A main program terminates in RUN mode, when that main
program is not under Program Design’s control.

♦ A MANTIS program executes a MANTIS CHAIN statement.
Disconnection occurs only if the MANTIS option for database sign-off
on a CHAIN statement is enabled.

♦ A CONNECT TO statement changes the DB2 application server
that is connected to the MANTIS program.

Chapter 4 Programming considerations

58 P39-1360-00

MANTIS EXEC_SQL statement, used for multiple session
support

This section discusses the use of EXEC_SQL for multiple session
support.

This guide’s examples have already demonstrated the EXEC_SQL
statement’s common usage. See the following:

♦ “Embedding SQL statements in MANTIS programs” on page 33

♦ “Place an SQL statement within an EXEC_SQL-END block” on
page 34

MANTIS EXEC_SQL statement, used for multiple session support

MANTIS DB2 Programming 59

Syntax definition for the EXEC_SQL statement
Below is the syntax definition for the EXEC_SQL statement:

[]()[][]

END

 | : , EXEC_SQL

�
�
�

�

�

�
�
�

�

�

continued statement-sql

statement-sqlexp2exp1

exp1

Description When you require multiple DB2 database connections, specify one of the
following:

♦ Database subsystem type (DBTYPE)

♦ DB2 SQL CONNECT session number

Format One of the following:

♦ Text expression. One of these text expressions:

- SUPRA

- RDB

- ORACLE

- DB2

♦ Numeric expression. A session number ranging from one through
five. (If you use a numeric session number, the current DBTYPE
must be DB2.)

exp2

Description Optional. When you have used exp1 to specify SUPRA or ORACLE as
the DBTYPE, use exp2 to specify the connect session number.

Format A numeric expression, equal to a session number ranging from one
through five.

Chapter 4 Programming considerations

60 P39-1360-00

General considerations

Consider the following:

♦ Multiple session support. This refers to the following:

- The ability to connect to different SQL databases concurrently;
for example, to both SUPRA and ORACLE databases.

- The ability to have multiple connections to a single database.
You can only do this with certain databases, such as SUPRA.

You can only connect to one Rdb/VMS or DB2 database at a
time.

♦ Current DBTYPE. The current DBTYPE, an element of the
EXEC_SQL statement, is the default DBTYPE that is used when a
DBTYPE is not specified in an EXEC_SQL statement. The current
DBTYPE can be changed in two ways:

- Explicitly—Performed by another EXEC_SQL or SQLCA
statement.

- Implicitly—Performed when you sign on to another MANTIS
user.

The Master User can specify your default current DBTYPE in your
MANTIS user profile; if he or she does not, MANTIS uses SUPRA as
the default current DBTYPE.

Not all DBTYPEs are supported on all platforms. For example:

♦ Rdb/VMS support is only available on the OpenVMS
environment.

♦ DB2 support is only available on the AIX platform.

SQL WHENEVER statement

MANTIS DB2 Programming 61

SQL WHENEVER statement

Differences between WHENEVER statement in MANTIS SQL
Support and WHENEVER statement in SQL in COBOL

The WHENEVER statement in MANTIS SQL Support differs from the
one in SQL in COBOL in four ways:

♦ It is interpretive and not compiled.

♦ MANTIS DO replaces GOTO.

♦ FAULT is an extra WHENEVER action that allows program
termination upon occurrence of a specified condition.

♦ The default for SQLERROR is FAULT, not CONTINUE.

Syntax for MANTIS SQL Support WHENEVER statement
Below is the syntax for the MANTIS SQL Support WHENEVER
statement:

Any action (DO, FAULT, or CONTINUE) can be selected for any
condition (SQLERROR, SQLWARNING, or NOT FOUND).

WHENEVER condition action

Chapter 4 Programming considerations

62 P39-1360-00

condition

Description Required. Specifies the condition for which you are checking.

Options Valid conditions are:

♦ SQLERROR

♦ SQLWARNING

♦ NOT FOUND

These conditions are explained below:

SQLERROR

Description Optional. Indicates the following:

♦ The database returned an error code as the
result of an SQL statement.

♦ SQLCODE < 0.

Default action FAULT

SQLWARNING

Description Optional. Indicates the following:

♦ SQLCA(“SQLWARN0”) = “W”

♦ SQLCODE = 0

Default action CONTINUE

NOT FOUND

Description Optional. Indicates just one of the following:

♦ The database cannot find a row to satisfy your
SQL statement.

♦ There are no more rows to fetch (SQLCODE =
100).

Default action CONTINUE

SQL WHENEVER statement

MANTIS DB2 Programming 63

action

Description Required. Specifies the action to be taken when the specified condition
is met.

Options Valid actions are the following:

♦ DO entry-name[(parms)]

♦ FAULT

♦ CONTINUE.

DO entry-name[(parms)]

Description Optional. Specifies one of the following:

♦ Standard MANTIS internal DO

♦ Standard MANTIS external DO

Corresponds to the WHENEVER-GOTO SQL
statement of SQL in COBOL’s WHENEVER-DO
statement. Whenever the named condition is
encountered, DO transfers control to the specified
internal subroutine or external program.

Chapter 4 Programming considerations

64 P39-1360-00

Considerations

♦ The following steps are performed:

1. WHENEVER-DO transfers control from the
calling program to an internal subroutine or
to an external program. In the process,
WHENEVER-DO passes the DO argument
values (current at the execution time of the
EXEC_SQL statement preceding the DO
statement) to the internal subroutine or to
the external program.

2. The internal subroutine or external program
executes its logic. This logic can include
any MANTIS logic, such as CHAIN, EXIT, or
STOP statements.

3. The EXIT subroutine returns control to the
calling program. The calling program
resumes at the first statement following the
EXEC_SQL-END block in which the DO is
located.

♦ The WHENEVER-DO statement resembles the
existing functionality of the SET TRAP statement
in MANTIS. If the DO portion of a WHENEVER-
DO statement contains an error, MANTIS
returns a MANTIS error message associated
with the DO statement, not an SQL
WHENEVER-type error. With the error
message, MANTIS displays the number of the
subroutine line that contains the error. If any
part of a WHENEVER statement contains an
error, MANTIS will detect that error whether the
WHENEVER statement is in the execution path
or not.

DO is executed as a result of an SQL statement
raising the condition with which the DO action is
associated.

SQL WHENEVER statement

MANTIS DB2 Programming 65

FAULT

Description Optional. Performs the following:

♦ Terminates program execution.

♦ Displays the generated database system
message in the form of a MANTIS fault (error)
message.

MANTIS SQL Support will only intercept the
specified condition and fault the MANTIS program if
WHENEVER condition FAULT is in effect.
Remember that FAULT is the default action for
SQLERROR.

CONTINUE

Description Optional. When the named condition occurs,
CONTINUE permits program execution to proceed
without interruption. After the named condition
occurs, your program should check SQLCODE for
the results of each EXEC_SQL.

Chapter 4 Programming considerations

66 P39-1360-00

Quick reference for WHENEVER conditions and default actions
The following table provides a quick reference for each WHENEVER
condition and its associated default action.

WHENEVER Condition Default action
SQLERROR FAULT
SQLWARNING CONTINUE
NOT FOUND CONTINUE

Sample code for DO, FAULT, and CONTINUE
Consider the following sample code for DO, FAULT, and CONTINUE:
200 |

210 | SET 'WHENEVER' SETTINGS TO DESIRED VALUES

220 |

230 EXEC_SQL

235 .| WHENEVER SQLERROR DO DO_ROUTINE(PARM1,PARM2,PARM3)

240 END

250 EXEC_SQL:| WHENEVER SQLWARNING FAULT

260 END

270 EXEC_SQL:| WHENEVER NOT FOUND CONTINUE

280 END

SQL WHENEVER statement

MANTIS DB2 Programming 67

Declarative (COBOL) vs. interpretive (MANTIS) WHENEVER
statements

Declarative WHENEVER statement for SQL embedded in
COBOL
When SQL is embedded in COBOL, WHENEVER is a declarative
statement. WHENEVER is processed when the user precompiles the
program, rather than when the user executes the program. Thus, in a
COBOL program, the current “WHENEVER setting”—that is, the
combination of condition (such as SQLWARNING) and action (such as
CONTINUE) specified by the WHENEVER statement—is determined by
sequential position, regardless of the execution path at runtime.

A WHENEVER statement can have three settings:

♦ One setting for the condition SQLERROR

♦ One setting for the condition SQLWARNING

♦ One setting for the condition NOT FOUND

Interpretive WHENEVER statement for SQL embedded in
MANTIS
When SQL is embedded in MANTIS, WHENEVER is an interpretive
statement. The last-executed WHENEVER statement is in effect,
regardless of its position in the program sequence.

Chapter 4 Programming considerations

68 P39-1360-00

When the difference between MANTIS SQL Support and SQL
in COBOL is important
The difference between MANTIS SQL Support (last-executed
WHENEVER being in effect) and SQL in COBOL (most recent
WHENEVER in program sequence being in effect) is important when you
use a WHENEVER statement with conditional statements.
The following figure shows the different effects of a declarative vs.
interpretive WHENEVER statement:

SQL in CO BOL
pseudocode:

Setting in
effect:

20 WHENEVER C1 C1
" |

40 WHILE condition C1
50 WHENEVER C2 C2

" C2
70 ENDWHILE C2
80 EXEC_SQL C2

Since the setting is established before
run tim e, the setting rem ains
unchanged regardless of w hether the
program executes lines 50–70.

M ANTIS SQL Support
pseudocode

Setting in
effect:

20 WHENEVER C1 C1
" |

40 WHILE condition C1 first, then C2*
50 WHENEVER C2 C1 or C2*

" C1 or C2*
70 ENDWHILE C1 or C2*
80 EXEC_SQL C1 or C2*

The first tim e the program executes line 40, the
setting is C1; the setting is thereafter C2.
* If the W HILE condition is not true the first tim e
the program executes line 40, C1 rem ains the
setting through line 80 because the program did
not execute line 50.

The consideration regarding WHENEVER in MANTIS SQL Support vs.
WHENEVER in SQL in COBOL also apply to the following MANTIS
structures:
♦ FOR
♦ UNTIL
♦ WHEN
♦ IF

Scope of the WHENEVER statement
The scope of the WHENEVER statement is one of the following:

♦ The current MANTIS DOLEVEL

♦ Every EXEC_SQL until a new WHENEVER is executed

If you do not want the default WHENEVER settings, have each
externally-done program issue WHENEVER.

SQLCA function and SQLCA statement

MANTIS DB2 Programming 69

SQLCA function and SQLCA statement

SQLCA in SQL in COBOL vs. SQLCA in MANTIS SQL Support
SQLCA in SQL in COBOL
In SQL in COBOL, the SQLCA (SQL Communications Area) is a data
structure. An SQL in COBOL application accesses elements in the
SQLCA as data items.

SQLCA in MANTIS SQL Support
In MANTIS SQL Support, the following two items provide all standard
SQLCA capabilities:

♦ SQLCA function. For reading SQLCA structure elements.

♦ SQLCA statement. For writing SQLCA structure elements.

Syntax for SQLCA function and SQLCA statement
Syntax overview
Below is the syntax for:

♦ SQLCA function. For reading SQLCA structure elements.

sqlca-element = SQLCA(element_name)

♦ SQLCA statement. For writing SQLCA structure elements.

SQLCA(element_name) = sqlca-element-value

Chapter 4 Programming considerations

70 P39-1360-00

Syntax elements for the SQLCA function and SQLCA
statement
Consider the following elements:

sqlca-element

Description Required. Specifies a MANTIS variable or array element to receive the
value of your SQLCA element.

Format Valid MANTIS variable reference:

♦ Scalar variable

♦ Subscripted array

♦ Substring reference

Consideration The data type of sqlca-element must be compatible with the data type of
the SQLCA element referenced as element_name in the SQLCA
function.

SQLCA function and SQLCA statement

MANTIS DB2 Programming 71

element_name

Description Required. Specifies one of the following:

♦ A text literal that is the name of the element to be returned or read.

♦ A text variable containing the name of the element to be returned or
read.

Format Text expression evaluating to a valid SQLCA element, as listed in
“SQLCA elements” on page 74.

Consideration You can specify element_name in two different ways:

♦ As a text literal. When you specify element_name as a text literal,
you must use quotation marks (“”). For example:
.IF SQLCA("SQLCODE")<ZERO

..DO ERROR_CONDITION_ROUTINE

.END

♦ In a text variable. For example:
.CACODE="SQLCODE"

.IF SQLCA(CACODE)<ZERO

..DO ERROR_CONDITION_ROUTINE

.END

Because the SQLCA function is built in, it is not declared. Cincom does
not require or recommend an INCLUDE SQLCA statement.

Chapter 4 Programming considerations

72 P39-1360-00

sqlca-element-value

Description Required. Specifies a value to be assigned to your SQLCA element.

Format Text or numeric MANTIS expression.

Consideration The data type of sqlca-element-value must be compatible with the data
type of the SQLCA element referenced as element_name in the SQLCA
statement.

Cincom has added an additional element, DBTYPE, to MANTIS SQL
Support. The following section describes it.

SQLCA function and SQLCA statement

MANTIS DB2 Programming 73

DBTYPE, an additional element for the SQLCA statement
The DBTYPE element for the SQLCA statement enables you to specify
the database with which MANTIS SQL Support will communicate.

Syntax
Below is the syntax for the SQLCA statement’s additional element:

SQLCA(“DBTYPE”)

Syntax element
Below is the additional element for the SQLCA statement:

DBTYPE

Description Specifies a text value, one to six characters in length, for the current
DBTYPE.

For more information on the DBTYPE, see “Updating the User Profile” on
page 30.

Format The following DBTYPE values are valid:

♦ SUPRA

♦ ORACLE

♦ RDB

♦ DB2

Consideration By default, after execution of the SQLCA(“DBTYPE”) statement, all
executed EXEC_SQL statements may access the relational database
implied by the DBTYPE.

Chapter 4 Programming considerations

74 P39-1360-00

SQLCA elements
The following table lists the compatible MANTIS data type for each
SQLCA element name.

If you move a data value from an SQLCA element to a MANTIS variable
of shorter length, some of the right-hand characters are truncated. For
example, this occurs if you move an eight-character SQLCA element to a
six-character MANTIS variable.

SQLCA
element
name

Compatible
MANTIS
data type

Element contents

Element considerations

SQLCAID TEXT(8) Eyecatcher. Set by SQL.
SQLCABC BIG Length of SQLCA. Set by SQL.
SQLCODE BIG Code indicating results of

SQL statement execution.

SQLERRMC TEXT(70) Tokens for insertion into
SQL error message text.

SQLERRP TEXT(8) SQL diagnostic data.
SQLERRDn BIG SQL diagnostic data.

n ranges from 1–6.

SQLWARNn TEXT(1) SQL warning flags.

n ranges from 0–A.

SQLSTATE TEXT(5) Indicates the result of
SQL statement execution.

For portable, nonvolatile MANTIS software, consider the entire SQLCA
structure to be read-only.

COMMIT/ROLLBACK and COMMIT/RESET

MANTIS DB2 Programming 75

COMMIT/ROLLBACK and COMMIT/RESET
Regarding SQL’s COMMIT/ROLLBACK statement and MANTIS SQL
Support’s COMMIT/RESET statement, consider the following:

♦ RELEASE parameter for COMMIT/ROLLBACK. Cincom
recommends that you do not use the COMMIT/ROLLBACK
RELEASE parameter. This parameter is a request to disconnect
from the database upon successful completion of the COMMIT or
ROLLBACK. Rather than the RELEASE parameter, use the SQL
CONNECT RESET statement to disconnect from the database.

♦ DB2 and COMMIT. By default, the MANTIS nucleus automatically
issues COMMIT every time MANTIS reads from the terminal for a
CONVERSE, OBTAIN, or WAIT statement. Be careful when using
COMMIT and RESET in applications with embedded SQL.

♦ COMMIT/ROLLBACK vs. COMMIT/RESET. Regarding
COMMIT/ROLLBACK vs. COMMIT/RESET, consider the following:

- MANTIS SQL Support’s COMMIT/ROLLBACK statement has
exactly the same effect on the database as the MANTIS
COMMIT/RESET statement.

- An executed COMMIT/ROLLBACK does not imply a
COMMIT/RESET. However, an executed COMMIT/RESET
implies a COMMIT/ROLLBACK.

- The MANTIS COMMIT/RESET statements
COMMIT/ROLLBACK the current SQL transaction. Embedded
SQL COMMIT/ROLLBACK statements affect only the SQL
database.

♦ Scope of an SQL COMMIT statement. Execution of an SQL
COMMIT statement commits only SQL, and only for the specified
SQL session.

♦ COMMIT and terminal input. MANTIS automatically performs a
COMMIT at terminal input.

COMMIT/RESET can affect SQL cursor position. For more
information on cursor positioning, refer to the SQL Reference DB2
guide.

Chapter 4 Programming considerations

76 P39-1360-00

♦ When MANTIS COMMIT executes. MANTIS COMMIT executes in
the following circumstances:

- MANTIS encounters a MANTIS COMMIT statement.

- Any MANTIS program (including Program Design, when you are
reading command lines) encounters any terminal input function
(CONVERSE, OBTAIN, WAIT, or MORE prompt), unless you
have specified COMMIT OFF.

- When MANTIS runs the main program cleanup, before database
disconnection.

♦ When MANTIS RESET executes. MANTIS RESET executes in the
following circumstances:

- MANTIS encounters a MANTIS RESET statement.

- A MANTIS FAULT (excluding a breakpoint fault) occurs, .

♦ Be careful of a terminal input request by Program Design. When
Program Design makes a terminal input request, beware of the
request’s effect. Your MANTIS program may go into a resource wait
state because it is attempting to update a table that another user is
reading (via SELECT).

♦ Be careful of COMMIT/RESET. Carefully consider the use of
COMMIT and RESET in your embedded SQL applications.

If you are in Program Design and have set a breakpoint, a RESET
will not occur when program execution encounters a breakpoint (the
breakpoint is a FAULT condition). However, unless you have
performed a COMMIT OFF, an automatic COMMIT will occur when
Program Design prompts you for the next input line. This could
result in unintentional COMMITs of DB2 transactions.

When a MANTIS COMMIT fails to COMMIT DB2, MANTIS
automatically attempts to ROLLBACK only the DB2 database.

Error messages

MANTIS DB2 Programming 77

Error messages

Message sources
You can receive messages from three sources:

♦ MANTIS nucleus

♦ MANTIS SQL Support

♦ Database system

Information that MANTIS generally displays for an error
When MANTIS encounters an error, it generally displays the following:

♦ Fault message

♦ Statement in which the error occurred

♦ Text of the line containing the statement in which the error occurred

For details on all of MANTIS’s error messages, refer to MANTIS
Messages and Codes, OpenVMS/UNIX, P39-1330.

Chapter 4 Programming considerations

78 P39-1360-00

Information that MANTIS displays for an error from the database
system

Description
An error message from the database system consists of the following:

♦ The following three-character code: 750.

♦ The following text string: SQLERROR.

♦ The three- or four-digit SQLCODE value. In the following format
sample, nnnn represents this.

♦ The SQLCODE value’s associated text message. In the following
format sample, ###… represents this.

Format sample
In the following sample:

♦ nnnn is the SQLCODE value

♦ ###... is the SQLCODE value’s associated text message

Here is the format sample:
750 SQLERROR:nnnn: ###...

MANTIS DB2 Programming 79

5
Dynamic SQL in MANTIS SQL
Support

Who should read this chapter?
Read this chapter if you fall into one of the following categories:

♦ You are new to dynamic SQL programming.

♦ You are new to dynamic SQL programming in MANTIS SQL
Support, but have experience with dynamic SQL programming in
other languages (dynamic SQL in MANTIS SQL Support differs from
dynamic SQL in other languages).

Dynamic SQL overview

Definition of dynamic SQL
Dynamic SQL is a method for executing SQL statements when a
program needs the following information, but does not possess this
information before the program executes:

♦ SQL statements

♦ Tables

♦ Column names

Example of when to use dynamic SQL
An application must use dynamic SQL if, during program execution, it
requires a user to interactively enter an SQL statement at the terminal.

Chapter 5 Dynamic SQL in MANTIS SQL Support

80 P39-1360-00

Principal statements for dynamically executing SQL statements
You can dynamically execute almost any statement that you would find
in a static application. The principal statements enabling you to
dynamically execute SQL statements are:

♦ PREPARE

♦ DESCRIBE

♦ EXECUTE

♦ EXECUTE IMMEDIATE.

♦ DECLARE (alternate form)

♦ OPEN (alternate form)

♦ FETCH (alternate form)

You accomplish communication to and from the database using the
statements listed above and an SQLDA data structure.

SQLDA data structure
The SQLDA data structure used in database communication is a
representation and repository of the data being transferred.

The SQLDA data structure used in database communication consists of:

♦ Header elements.

♦ Repeating elements. Each repeating element group is sometimes
called an SQLVAR.

The SQLDA data structure contains metadata (for example, data length
and data type) about the data passing between your program and the
database.

Dynamic SQL overview

MANTIS DB2 Programming 81

Defining data about SQL statements and host variables
A single program can contain static SQL statements, dynamic SQL
statements, or both:

♦ Only static SQL statements. The MANTIS program procedurally
defines data about its SQL statements and host variables.

♦ Only dynamic SQL statements. The SQL preprocessor defines the
data about the MANTIS program’s SQL statements and host
variables.

♦ Both static and dynamic SQL statements. The MANTIS program
procedurally defines data about its static SQL statements and host
variables, and the SQL preprocessor defines data about the MANTIS
program’s dynamic SQL statements and host variables.

Chapter 5 Dynamic SQL in MANTIS SQL Support

82 P39-1360-00

SQL statements that you cannot execute dynamically
You cannot execute all DB2 statements dynamically.

Example: SELECT statement
An example of a statement that you cannot execute dynamically is the
SELECT statement. Because MANTIS SQL Support executes all
embedded SQL statements dynamically, MANTIS must overcome this
limitation on the SELECT statement. It does this by implicitly performing
DECLARE and OPEN statements for each static SELECT statement.

All statements that you cannot execute dynamically
You cannot execute the following SQL statements dynamically through
the dynamic PREPARE and EXECUTE statements:

♦ CLOSE

♦ CREATE VIEW

♦ DECLARE CURSOR

♦ DESCRIBE

♦ EXECUTE

♦ FETCH

♦ OPEN

♦ PREPARE

♦ RELEASE

♦ SELECT [INTO]

♦ WHENEVER

Dynamic SQL overview

MANTIS DB2 Programming 83

Auto-cursor FETCH statements
To support dynamic SQL, MANTIS uses auto-cursor FETCH statements.
In the embedded SQL FETCH statement, the cursor-name is optional.
An auto-cursor FETCH statement always applies to the most recently
executed static SELECT statement (which may be in a calling program
context).

Executing a statement dynamically
To execute a statement dynamically, you usually perform the following:

1. Use the PREPARE statement to prepare the SQL statement.

2. If you are retrieving, inserting, or updating data, use program logic to
manipulate the SQLDA data structure. This SQLDA manipulation
can include:

♦ Allocating and expanding an SQLDA data structure.

♦ Using the DESCRIBE statement to retrieve metadata from SQL.

♦ Causing data transfer between SQL and MANTIS variables.

For an illustration of how dynamically executed SQL statements and
the SQLDA data structure work together in dynamic routines, see
“Dynamic SQL sample” on page 84.

3. Use the EXECUTE statement to execute the SQL statement.

Chapter 5 Dynamic SQL in MANTIS SQL Support

84 P39-1360-00

Dynamic SQL sample code for creating an SQLDA data
structure

Introduction
The following sample code provides an example of how to create an
SQLDA data structure. This code includes examples of the built-in
SQLDA statement and SQLDA function (described in “SQLDA data
structure” on page 87).

For details on the syntax for the PREPARE, DESCRIBE, and EXECUTE
statements used in this sample code, refer to the SQL Reference DB2
guide.

Dynamic SQL overview

MANTIS DB2 Programming 85

Sample code
Below is sample code for creating an SQLDA data structure:

10 TEXT UPDATE_STMT (250)

15 TEXT DA: DA="sqlda-name"

16 SQLDA(DA)=NEW

20 EXEC_SQL:|PREPARE stmt-name FROM :UPDATE_STMT

30 END

40 EXEC_SQL:|DESCRIBE stmt-name INTO sqlda-name

50 END

60 FOR I = 1 TO SQLDA(DA,"SQLD")

70 SQLDA(DA,"SQLHOSTVAR",I)=input-parameter

80 END

90 EXEC_SQL:|EXECUTE stmt-name USING DESCRIPTOR sqlda-name

100 END

Explanation of the sample code
In the preceding sample code, the following occur:

1. The first SQLDA statement allocates the SQLDA data structure.

2. The PREPARE statement dynamically compiles the SQL statement.

3. The DESCRIBE statement returns metadata about the results of the
SQL statement in the SQLDA data structure.

4. (This statement is optional) The second SQLDA statement supplies
values for input host variables.

5. The EXECUTE statement tells the processor to execute the named
statement.

At the end of the program, you may include the SQLDA built-in function
to transfer data from a host variable.

Chapter 5 Dynamic SQL in MANTIS SQL Support

86 P39-1360-00

Additional sample code
To find dynamic and static sample code for the following, see “MANTIS
SQL sample programs” on page 109:

♦ INSERT

♦ UPDATE

♦ SELECT

♦ DELETE

♦ A dynamic QUERY-like routine

♦ A dynamic column-select routine

SQLDA data structure

MANTIS DB2 Programming 87

SQLDA data structure
In dynamic SQL, SQL communicates with your program via an SQLDA
(SQL Descriptor Area) data structure. An SQLDA data structure holds
“information about data” (known as metadata) that is transferred between
your program and the database.

Figure representing SQLDA data structure
The following figure represents the structure of an SQLDA data structure.
It contains the following elements:
♦ Header elements. These are the first four elements in the figure

below. They occur once per SQLDA data structure.
♦ Repeating elements. These are the next six elements in the figure

below. They repeat once per data item.

For more information on header elements and repeating elements, see
“SQLDA header elements” on page 96 and “SQLDA repeating elements”
on page 105.

SQLDAID SQLDABC SQLDN SQLD

SQLNAME

SQLLEN

SQLIND

SQLNAME

SQLLEN

SQLIND

SQLTYPE

SQLFRAC

SQLDATA

SQLTYPE

SQLFRAC

SQLDATA

1

1

1

1

1

1

2

2 2

2

22

:

:

Repeating
Element

Repeating
Elements

Header
Elements

2

1

Chapter 5 Dynamic SQL in MANTIS SQL Support

88 P39-1360-00

Data item
A data item is one of the following:

♦ One column of an SQL table. This is the output from SQL to your
program.

♦ The value of a host variable. This is the input to SQL from your
program.

The maximum number of entries in a data item is 300.

SLQDA names
SQLDA names must follow the rules for MANTIS variable names, so that
the MANTIS parser can recognize them in embedded SQL statements.

Declaring SQLDA elements in other programming languages vs.
declaring them in MANTIS SQL Support

MANTIS SQL Support differs from other programming languages in
SQLDA element declaration and access:

♦ Other programming languages. To declare and access SQLDA
elements, you must perform the following:

1. Explicitly declare each SQLDA element as a data area in your
program.

2. Access the SQLDA elements through programming statements.

♦ MANTIS SQL Support. When you declare an SQLDA data
structure, MANTIS SQL Support automatically builds an SQLDA data
structure with all the elements shown in the preceding figure (see
“Figure representing SQLDA data structure” on page 87).

Number of repeating elements in an SQLDA data structure
An SQLDA data structure contains the default number of repeating
elements (your Master User set this in your SQLVARINC MANTIS
Options). Your program can modify this value.

SQLDA data structure

MANTIS DB2 Programming 89

Built-in SQLDA statement and built-in SQLDA function
The built-in SQLDA statement and built-in SQLDA function enable your
MANTIS program to create and maintain SQLDA data structures. You
can then use programmed dynamic SQL statements with these SQLDA
data structures.

Use the SQLDA statement and function for different purposes:

♦ SQLDA statement. Your MANTIS program can use the SQLDA
statement to perform the following:

- Create a named SQLDA data structure.

- Send information (input host variable information) to SQL.

In the SQLDA statement, the sqlda-name parameter must include a
text expression or literal that contains the name of a valid MANTIS
variable.

♦ SQLDA function. Your program can use the SQLDA function to
retrieve information (output host variable information) about SQL
table columns.

Chapter 5 Dynamic SQL in MANTIS SQL Support

90 P39-1360-00

Sample code for the SLQDA statement and SQLDA function
Introduction
Following sections. The following sections provide format samples for
various uses of the SQLDA statement and SQLDA function:
♦ Using the SLQDA statement:

- “Allocating an SQLDA data structure” on page 91

- “Deallocating an SQLDA data structure” on page 92

- “Moving data from your program into an SQLDA header element”
on page 93

- “Moving data from your program into an SQLDA repeating
element” on page 97

♦ Using the SLQDA function:

- “Moving data from an SQLDA header element into your program”
on page 102

- “Moving data from an SQLDA repeating element into your
program” on page 103

Items to replace in the syntax. In the syntax described by the following
sections, you must replace the following with standard MANTIS
variables, literals, or expressions:
♦ sqlda-name

♦ header-element

For a list of header elements, see “SQLDA header elements” on
page 96.

♦ repeating-element

For a list of repeating elements, see “SQLDA repeating elements” on
page 105.

♦ index (refers to the sequential occurrence of the repeating element
group in the SQLDA data structure)

SQLDA data structure

MANTIS DB2 Programming 91

Allocating an SQLDA data structure
Description. Use this SQLDA statement to allocate a new SQLDA data
structure.

Syntax. See the following syntax:

SQLDA(sqlda-name) = NEW

Syntax element. See the following syntax element:

sqlda-name

Description Required. Specifies the name of the new SQLDA data structure.

Format MANTIS text expression, 1–18 characters in length.

Consideration The expression result must be a valid MANTIS symbolic name with a
length of 1–18 characters.

General considerations

Consider the following:

♦ This statement allocates a new, empty SQLDA data structure with
the default number of repeating elements. (At installation, your
Master User set the default number of repeating elements as one of
your MANTIS Options.)

♦ Within your program, you can modify an SQLDA data structure’s size
by resetting the value of SQLMAX (see the SQLMAX discussion).

♦ If you use an SQLDA statement to declare a second SQLDA data
structure with the same name as a first, pre-existing SQLDA data
structure, MANTIS ignores your SQLDA statement.

♦ The scope of an SQLDA data structure is the current DO level. You
can create two SQLDA data structures, both with the same name, on
two different DO levels. However, within a single DO level, you can
only access SQLDA data structures defined for that DO level.

Example

See the following sample code:
SQLDA("SQLDA1")=NEW

Chapter 5 Dynamic SQL in MANTIS SQL Support

92 P39-1360-00

Deallocating an SQLDA data structure
Description. Use this SQLDA statement to deallocate an SQLDA data
structure.

Syntax. See the following syntax:

SQLDA(sqlda-name) = QUIT

Syntax element. See the following syntax element:

sqlda-name

Description Required. Specifies the name of the SQLDA data structure to be
deallocated.

Format MANTIS text expression.

Consideration The text expression must specify the name of a previously-allocated
SQLDA data structure.

General considerations

Consider the following:

♦ This statement deallocates an existing SQLDA data structure by
name.

♦ When a DO level is exited, MANTIS automatically deallocates all
SQLDA data structures that were defined at that DO level.

♦ If you execute a RUN without specifying a line number, MANTIS
automatically deallocates all SQLDA data structures.

A RUN with a line number may produce unpredictable results if you
have modified the program in which you are running the specific line.

Example

See the following sample code:
SQLDA("SQLDA1")=QUIT

SQLDA data structure

MANTIS DB2 Programming 93

Moving data from your program into an SQLDA header
element
Use this SQLDA statement to set header or column-name information in
the SQLDA data structure. See the following syntax:

SQLDA(sqlda-name,header-element) = expression

sqlda-name

Description Required. Specifies the name of a previously-allocated SQLDA data
structure.

Chapter 5 Dynamic SQL in MANTIS SQL Support

94 P39-1360-00

header-element

Description Required. Specifies the name of the SQLDA header element into which
you are moving data.

Format MANTIS text expression.

Options You may set only the following three header elements:

♦ SQLN. (In DB2 support, SQLN and SQLMAX are the same. See
SQLMAX in the following bullet.)
SQLDA("DA1","SQLN") = 10

♦ SQLMAX. The number of repeating groups in the physical SQLDA
data structure. This value can range from 1–300. Setting this
number in your program causes the SQLDA data structure to expand
or contract by the specified number of repetitions. Once physically
expanded, the space occupied by the SQLDA data structure will
never physically contract. For example, if an SQLDA data structure
named DA1 has 20 repeating occurrences, the following statement
will reduce the logical occurrences to five; however, physical space
for 20 remains (these numbers are arbitrary).
SQLDA("DA1","SQLMAX") = 5

♦ SQLD. The number of repeating groups currently in use. SQL sets it
as the result of a PREPARE INTO or DESCRIBE statement.
However, when necessary, the program can set it.
SQLDA("DA1","SQLD") = 8

Considerations

Consider the following:

♦ For more information on possible header-element values, see the
table under SQLDA header elements.

♦ The other header element illustrated in “SQLDA data structure” on
page 87, SQLDAID, is read-only. Attempting to use a read-only
element in this SQLDA statement generates a fault.

SQLDA data structure

MANTIS DB2 Programming 95

expression

Description Required. Specifies the SQLDA variable count.

Format MANTIS numeric expression.

Consideration Since all settable SQLDA header elements are numeric, the expression
must also always be numeric.

General consideration

Consider the following:

♦ A third-generation language like FORTRAN or COBOL handles the
execution of a DESCRIBE statement differently than MANTIS SQL
Support:

- Third-generation language—If the SQLDA is too small (that is, if
SQLN is less than the number of items that will be returned as a
result of the PREPARE INTO or DESCRIBE statement), SQL
sets SQLN to the required number and terminates. The program
must then expand the SQLDA data structure to the required size.

- MANTIS SQL Support—If the SQLDA data structure is too small
to accept the results of a DESCRIBE statement, MANTIS SQL
Support automatically expands the SQLDA data structure to the
required size. To check the number of repeating elements after
MANTIS executes the DESCRIBE statement, examine the SQLD
value.

Example

Consider the following sample code:
SQLDA("SQLDA1","SQLN") = TOTAL_NEEDED

Chapter 5 Dynamic SQL in MANTIS SQL Support

96 P39-1360-00

SQLDA header elements. The following table lists the SQLDA header
elements. Use this table to complete header-element in the SQLDA
statement under “Moving data from your program into an SQLDA header
element” on page 93.

Element How it is set Results Updateable?
SQLN/SQLMAX.
Total number of host
variables in the
SQLDA data
structure.

Can be set in the following
ways:
♦ Automatically set when

MANTIS allocates SQLDA,
using a value from the
MANTIS Options.

♦ Manually set by the
SQLDA statement.

Number of
repeating
groups
allocated.

Yes.

SQLD. Current
number of columns
described in the
SQLDA data
structure

Can be set in the following
ways:
♦ Automatically set as a

result of a PREPARE
INTO or DESCRIBE
statement.

♦ Manually set by the
SQLDA statement.

Number of
input or output
variables
described in
SQLDA.

Yes.

SQLDAID. Set by DB2. Normally
contains
“SQLDA”.

No.

SQLDA data structure

MANTIS DB2 Programming 97

Moving data from your program into an SQLDA repeating
element
Use this SQLDA statement to supply values for input host variables,
setting the values of repeating elements. See the following syntax:

SQLDA(sqlda-name, repeating-element, index) = expression

sqlda-name

Description Required. Specifies the name of a previously-allocated SQLDA.

repeating-element

Description Required. Specifies the name of the repeating element into which you
are moving data.

Format Mantis text expression.

Options You may set the following three repeating elements:

♦ SQLNAME. Specifies the column name returned by SQL (your
program can also set the column name). SQLNAME has a type of
TEXT and a length of 18. Although you can modify the SQLNAME
element, your modifications do not affect the database. In addition,
the database writes to the SQLNAME element, so the SQLNAME
element’s contents may be destroyed each time MANTIS executes
an EXEC_SQL statement.

Chapter 5 Dynamic SQL in MANTIS SQL Support

98 P39-1360-00

♦ SQLIND. Specifies the indicator value. The indicator value indicates
what the host variable contains:

- A real value

- NULL

- MISSING

For more information on indicator variables, see “Indicator variables”
on page 46

Possible indicator values and their meanings are:
- Less than zero—The host variable data is NULL or MISSING.
- Greater than or equal to zero—The host variable contains real

values.

♦ SQLDATA. Has different behavior in third-generation languages and
in MANTIS SQL Support:

- Third-generation languages—The SQLDATA element holds a
four-byte binary address that a program and DB2 use to access
the data item being transferred between the program and DB2.
A third-generation program must acquire space for the data item
and place the space’s address in this element.

- MANTIS SQL Support—The MANTIS nucleus uses the
SQLDATA element to automatically perform the following actions
when you transfer data into the SQLDA data structure:
1. Allocate a data area for the data item, if necessary.

2. Expand the data area, if necessary.

3. Set the value of SQLDATA to the address of the data area.

MANTIS SQL Support uses this address internally, and your
program does not need to manipulate this value.

4. Move data from the MANTIS host variable into the SQLDA
data area.

5. Set SQLTYPE and SQLLEN to match the definition of the
MANTIS variable, according to the SQLTYPE values in
“MANTIS SQL Support data type conversion” on page 101.
The MANTIS program sets SQLLEN to the length of the
MANTIS variable.

SQLDA data structure

MANTIS DB2 Programming 99

Considerations

Consider the following:

♦ If you are transferring data out of the SQLDA, the SQLDATA element
simply performs the transfer.

♦ The SQLDATA element may have a type of numeric or string. When
you do not know, in advance, the type of data you want to retrieve
from the database, use the SQLTYPE elements to determine the
data type.

index

Description Required. Specifies the sequential occurrence of the repeating element
into which you are moving data. The occurrence is relative to one rather
than zero; for example, the eighth occurrence of the repeating element
has an index value of eight.

Format Mantis numeric expression.

expression

Description Required. Specifies an SQLVAR element value.

Format MANTIS text or numeric expression.

Consideration Consider the following:

♦ The expression may be either text or numeric.

♦ There are no limitations on the expression.

Chapter 5 Dynamic SQL in MANTIS SQL Support

100 P39-1360-00

General considerations

Consider the following:

♦ MANTIS sets:

- SQLLEN to the length of the MANTIS expression.

- SQLTYPE to the equivalent data type in MANTIS (a data type
conversion table appears below).

♦ For compatibility with MANTIS support for SUPRA SQL, MANTIS
recognizes the SUPRA SQL element names as equivalent to the
DB2 element names. Use the DB2 names as follows:

DB2 SQL SUPRA SQL
SQLNAME SQLCOLNAME
SQLIND SQLHOSTIND
SQLDATA SQLHOSTVAR
SQLLEN SQLCOLLENGTH
SQLTYPE SQLCOLTYPE/SQLHOSTVARTY

♦ MANTIS SQL Support uses the SQLTYPE element to perform the
following:
- Describe the data type in the DB2 database.
- Receive the host variable data type from MANTIS.
Whenever you use the SQLDA statement to set SQLDATA, MANTIS
sets:
- SQLLEN to the length of the MANTIS expression
- SQLTYPE to the MANTIS data type
At this point, previous contents of the elements, which a previous
DESCRIBE statement may have set, may be lost.

Example

See the following sample code:
SQLDA("SQLDA1","SQLHOSTVAR",9) = SALARY

SQLDA data structure

MANTIS DB2 Programming 101

MANTIS SQL Support data type conversion. You can use the SQLDA
statement to assign either string or numeric MANTIS data to an SQLDA
data structure’s repeating element. MANTIS sets the SQLTYPE to one
of the following:

♦ 1

♦ 2

♦ 12

If you do not use the SQLDA statement to assign string or numeric
MANTIS data to an SQLDA data structure’s repeating element, MANTIS
assigns SQLTYPEs as shown in the following table, replacing the
existing values of SQLTYPE.

SQL data
type

Description

SQL type
(documented in
DB2 SQL
Reference
manual)

SQL type
set by
MANTIS

MANTIS type

DATE Calendar Date 384/385 448/449 TEXT
TIME Time 388/389 448/449 TEXT
TIMESTAMP Timestamp 392/393 448/449 TEXT
VARCHAR Variable String 448/449 448/449 TEXT
CHAR Fixed length string 452/453 448/449 TEXT
FLOAT Floating point

number
480/481 480/481 BIG

DECIMAL Packed decimal
number

484/485 480/481 BIG

INTEGER Long integer 496/497 480/481 BIG
SMALLINT Short integer 500/501 480/481 BIG

Chapter 5 Dynamic SQL in MANTIS SQL Support

102 P39-1360-00

Moving data from an SQLDA header element into your
program
Use this SQLDA function to read header elements. See the following
syntax:

mantis-variable = SQLDA(sqlda-name,header-element)

mantis-variable

Description Required. Specifies the name into which the SQLDA header element is
to be placed.

Format MANTIS variable or array occurrence.

sqlda-name

Description Required. Specifies the name of a previously-allocated SQLDA data
structure.

Format MANTIS text expression.

header-element

Description Required. Specifies the name of the header element you are reading.

Format MANTIS text expression.

General considerations

♦ No index value is permitted.

♦ You may read all header elements.

Example

Consider the following sample code:
TOTAL_NEEDED = SQLDA("SQLDA1","SQLN")

SQLDA data structure

MANTIS DB2 Programming 103

Moving data from an SQLDA repeating element into your
program
Use this SQLDA function to transfer data from a repeating element into a
MANTIS variable in your program. See the following syntax:

mantis-variable = SQLDA(sqlda-name, repeating-element, index)

mantis-variable

Description Required. Specifies the destination into which the SQLDA repeating
element is to be placed.

Format MANTIS variable or array element reference.

sqlda-name

Description Required. Specifies the name of a previously-allocated SQLDA.
Format MANTIS text expression.

repeating-element

Description Required. Specifies the name of the repeating element to be read.

Format MANTIS text expression.

Consideration To fill out this element, see the table under SQLDA repeating elements.

Chapter 5 Dynamic SQL in MANTIS SQL Support

104 P39-1360-00

index

Description Required. Specifies the sequential occurrence of the repeating element
to be read. The occurrence is relative to one, rather than zero; for
example, the eighth occurrence of the repeating element has an index
value of eight.

Format MANTIS numeric expression.

General considerations
Consider the following:

♦ You may read all repeating elements.

♦ Data types between repeating elements and MANTIS variables must
match.

Example
Consider the following sample code:
EMPLOYEE_NUMBER = SQLDA("SQLDA1","SQLHOSTVAR",1)

SQLDA data structure

MANTIS DB2 Programming 105

SQLDA repeating elements. The following table lists the SQLDA
repeating elements. Use this table to complete repeating-element in the
SQLDA statement under “Moving data from an SQLDA repeating
element into your program” on page 103.

Element How it is set Results Updateable?
SQLNAME /
SQLCOLNAME.
SQL column name.

Can be set in the
following ways:
♦ By DB2, as the result

of a PREPARE INTO
statement.

♦ By DB2, as the result
of a DESCRIBE
statement.

Column name. Yes

SQLTYPE /
SQLCOLTYPE. One
of the following:
♦ Data type in the

database.
♦ Host variable data

type.

Can be set in the
following ways:
♦ By DB2, as the result

of a PREPARE INTO
statement.

♦ By DB2, as the result
of a DESCRIBE
statement.

♦ By MANTIS, prior to
an EXECUTE
statement.

♦ By MANTIS, prior to
an OPEN statement.

♦ By MANTIS, prior to a
FETCH statement.

♦ By the MANTIS
SQLDA statement.

See “MANTIS
SQL Support data
type conversion”
on page 101.

No

Chapter 5 Dynamic SQL in MANTIS SQL Support

106 P39-1360-00

Element How it is set Results Updateable?
SQLLEN /
SQLCOLLENGTH.
One of the following:
♦ Maximum number

of bytes for a
column in the
database.

♦ Actual number of
host variable
bytes.

Can be set in the
following ways:
♦ By DB2, as the result

of a PREPARE INTO
statement.

♦ By DB2, as the result
of a DESCRIBE
statement.

♦ By MANTIS, prior to
an EXECUTE
statement.

♦ By MANTIS, prior to
an OPEN statement.

♦ By MANTIS, prior to a
FETCH statement.

♦ By the MANTIS
SQLDA statement.

Results in one of
the following:
♦ 4 for numeric

columns.
♦ 8 for numeric

columns.
♦ Maximum.
♦ Actual string

length.

No

SQLFRAC /
SQLCOLFRAC.
Number of decimal
places for DECIMAL
and FLOAT.

Can be set in the
following ways:
♦ By DB2, as the result

of a PREPARE INTO
statement.

♦ By DB2, as the result
of a DESCRIBE
statement.

Number of places
specified in the
CREATE TABLE
statement

No

SQLDA data structure

MANTIS DB2 Programming 107

Element How it is set Results Updateable?
SQLIND /
SQLHOSTIND. The
value of the NULL or
MISSING indicator
variable.

Can be set in the
following ways:
♦ By DB2, as the result

of a FETCH
statement.

♦ By the MANTIS
SQLDA statement.

Results in one of
the following:
♦ A value that is

less than or
equal to -1.

♦ NULL..
♦ A value that is

defined and
addressed by
SQLDATA.

Yes

SQLDATA /
SQLHOSTVAR.
Address host variable
data.

Can be set in the
following ways:
♦ By MANTIS, prior to

an EXECUTE
statement.

♦ By MANTIS, prior to
an OPEN statement.

♦ By MANTIS, prior to a
FETCH statement.

♦ By the MANTIS
SQLDA statement.

Results in one of
the following:
♦ Address of

MANTIS
variable in the
MANTIS data
work area.

♦ Address of
MANTIS data
after being
copied or
converted into
work buffer.

Yes

Chapter 5 Dynamic SQL in MANTIS SQL Support

108 P39-1360-00

Cursors for prepared statements
For MANTIS Dynamic SQL Support, cursor names are not known at the
time of the PREPARE. (This is because MANTIS executes
interpretively). MANTIS resolves this problem by declaring cursors for all
prepared statements that could possibly require them. These statements
include:

♦ DECLARE

♦ Static SELECT

♦ Statements that are parameters to PREPARE

MANTIS DB2 Programming 109

A
MANTIS SQL sample programs

Introduction
Regarding the sample programs in this appendix, consider the following:

♦ These programs do not contain

- Error-checking logic

- Display logic

♦ These programs contain hard-coded employee information.

♦ Each static program has the same functionality as the dynamic
program that follows it.

Appendix A MANTIS SQL sample programs

110 P39-1360-00

INSERT routines

Static INSERT routine
Consider the following sample code for a static INSERT routine:

10 ENTRY STATIC_INSERT

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A STATIC SQL "INSERT"

40 .| STATEMENT. IT INSERTS ONE EMPLOYEE INTO AN EMPLOYEE

50 .| TABLE.

60 .|

70 .BIG HIRE_DATE, BIRTH_DATE, JOB_CODE,SALARY, EDUCATION_LEVEL

80 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20)

85 .'MIDDLE_INITIAL(1),LAST_NAME(20)

90 .TEXT PHONE_NUMBER(4),WORK_DEPARTMENT(3),SEX(1)

100 .|

110 .EMPLOYEE_NUMBER = "000120"

120 .FIRST_NAME="SEAN"

130 .MIDDLE_INITIAL= " "

140 .LAST_NAME = "O'CONNELL"

150 .BIRTH_DATE=421018

160 .HIRE_DATE=631205

170 .JOB_CODE=58

180 .EDUCATION_LEVEL=14

INSERT routines

MANTIS DB2 Programming 111

190 .SALARY=29250

200 .PHONE_NUMBER="2167"

210 .WORK_DEPARTMENT="A00"

220 .SEX="M"

230 .|

240 .EXEC_SQL:| INSERT INTO FRED.TEMPL

250 ..| (EMPNO,

260 ..| FIRSTNME,

270 ..| MIDINIT,

280 ..| LASTNAME,

290 ..| BRTHDATE,

300 ..| HIREDATE,

310 ..| JOBCODE,

320 ..| EDUCLVL,

330 ..| SALARY,

340 ..| PHONENO,

350 ..| WORKDEPT,

360 ..| SEX)

370 ..| VALUES (:EMPLOYEE_NUMBER,

380 ..| :FIRST_NAME,

390 ..| :MIDDLE_INITIAL,

400 ..| :LAST_NAME,

410 ..| :BIRTH_DATE,

420 ..| :HIRE_DATE,

430 ..| :JOB_CODE,

440 ..| :EDUCATION_LEVEL,

450 ..| :SALARY,

460 ..| :PHONE_NUMBER,

470 ..| :WORK_DEPARTMENT,

480 ..| :SEX)

490 .END

500 EXIT

Appendix A MANTIS SQL sample programs

112 P39-1360-00

Dynamic INSERT routine
Consider the following sample code for a dynamic INSERT routine:

10 ENTRY DYNAMIC_INSERT

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A DYNAMIC SQL "INSERT"

40 .| STATEMENT. IT INSERTS ONE EMPLOYEE INTO AN EMPLOYEE

50 .| TABLE.

60 .|

70 .BIG HIRE_DATE,BIRTH_DATE,JOB_CODE,SALARY

75 .BIG EDUCATION_LEVEL

80 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20)

85 .TEXT MIDDLE_INITIAL(1),LAST_NAME(20)

90 .TEXT PHONE_NUMBER(4),WORK_DEPARTMENT(3),SEX(1)

100 .TEXT SQL_TEXT(254)

110 .|

120 .EMPLOYEE_NUMBER="000120"

130 .FIRST_NAME="SEAN"

140 .MIDDLE_INITIAL=" "

150 .LAST_NAME="O'CONNELL"

160 .BIRTH_DATE=421018

170 .HIRE_DATE=631205

180 .JOB_CODE=58

190 .EDUCATION_LEVEL=14

200 .SALARY=29250

210 .PHONE_NUMBER="2167"

220 .WORK_DEPARTMENT="A00"

230 .SEX="M"

240 .|

250 .SQL_TEXT="INSERT INTO FRED.TEMPL"

260 .'"(EMPNO, FIRSTNME, MIDINIT, LASTNAME, BRTHDATE",

270 .'"HIREDATE, JOBCODE, EDUCLVL, SALARY, PHONENO",

280 .'"WORKDEPT, SEX)"

290 .'"VALUES (?,?,?,?,?,?,?,?,?,?,?,?)"

INSERT routines

MANTIS DB2 Programming 113

300 .|

310 .EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

320 .END

330 .|

340 .SQLDA("SQLDA1") = NEW

350 .SQLDA("SQLDA1","SQLMAX")=12

360 .EXEC_SQL:| DESCRIBE S1 INTO SQLDA1

370 .END

380 .SQLDA("SQLDA1","SQLDATA",1)=EMPLOYEE_NUMBER

390 .SQLDA("SQLDA1","SQLDATA",2)=FIRST_NAME

400 .SQLDA("SQLDA1","SQLDATA",3)=MIDDLE_INITIAL

410 .SQLDA("SQLDA1","SQLDATA",4)=LAST_NAME

420 .SQLDA("SQLDA1","SQLDATA",5)=BIRTH_DATE

430 .SQLDA("SQLDA1","SQLDATA",6)=HIRE_DATE

440 .SQLDA("SQLDA1","SQLDATA",7)=JOB_CODE

450 .SQLDA("SQLDA1","SQLDATA",8)=EDUCATION_LEVEL

460 .SQLDA("SQLDA1","SQLDATA",9)=SALARY

470 .SQLDA("SQLDA1","SQLDATA",10)=PHONE_NUMBER

480 .SQLDA("SQLDA1","SQLDATA",11)=WORK_DEPARTMENT

490 .SQLDA("SQLDA1","SQLDATA",12)=SEX

500 .|

510 .EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1

520 .END

530 EXIT

Appendix A MANTIS SQL sample programs

114 P39-1360-00

UPDATE routines

Static UPDATE routine
Consider the following sample code for a static UPDATE routine:

10 ENTRY STATIC_UPDATE

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A STATIC SQL "UPDATE"

40 .| STATEMENT. IT UPDATES ONE EMPLOYEE FROM AN EMPLOYEE

50 .| TABLE.

60 .|

70 .BIG HIRE_DATE,BIRTH_DATE

80 .TEXT EMPLOYEE_NUMBER(6)

90 .TEXT FIRST_NAME(20),MIDDLE_INITIAL(1),LAST_NAME(20)

100 .|

110 .EMPLOYEE_NUMBER="000120"

120 .FIRST_NAME="JOHN"

130 .MIDDLE_INITIAL="H"

140 .LAST_NAME="DOE"

150 .BIRTH_DATE=490113

160 .HIRE_DATE=880120

170 .|

180 .EXEC_SQL

190 ..|

200 ..| UPDATE FRED.TEMPL

210 ..|

220 ..| SET FIRSTNME = :FIRST_NAME,

230 ..| MIDINIT = :MIDDLE_INITIAL,

240 ..| LASTNAME = :LAST_NAME,

250 ..| BRTHDATE = :BIRTH_DATE,

260 ..| HIREDATE = :HIRE_DATE

270 ..|

280 ..| WHERE EMPNO = :EMPLOYEE_NUMBER

290 .END

300 EXIT

UPDATE routines

MANTIS DB2 Programming 115

Dynamic UPDATE routine
Consider the following sample code for a dynamic UPDATE routine:

10 ENTRY DYNAMIC_UPDATE

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A DYNAMIC SQL "UPDATE"

40 .| STATEMENT. IT UPDATES ONE EMPLOYEE FROM AN EMPLOYEE

50 .| TABLE.

60 .|

70 .BIG HIRE_DATE,BIRTH_DATE

80 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20),

85 .'MIDDLE_INITIAL(1),LAST_NAME(20)

90 .TEXT DA(18),DAPARM(8)

100 .TEXT SQL_TEXT(254)

110 .|

120 .EMPLOYEE_NUMBER="000120"

130 .FIRST_NAME="JOHN"

140 .MIDDLE_INITIAL="H"

150 .LAST_NAME="DOE"

160 .BIRTH_DATE=490113

170 .HIRE_DATE=880120

180 .|

190 .SQL_TEXT="UPDATE FRED.TEMPL SET"

200 .'"FIRSTNME = ?, MIDINIT = ?, LASTNAME = ?,"

210 .'"BRTHDATE = ?, HIREDATE = ?"

220 .'"WHERE EMPNO = ?"

230 .|

240 .EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

250 .END

260 .|

Appendix A MANTIS SQL sample programs

116 P39-1360-00

270 .SQLDA("SQLDA1")=NEW

280 .DA="SQLDA1"

290 .DAPARM="SQLDATA"

300 .SQLDA(DA,"SQLD")=6

310 .EXEC_SQL:| DESCRIBE S1 INTO SQLDA1

320 .END

330 .SQLDA(DA,DAPARM,1)=FIRST_NAME

340 .SQLDA(DA,DAPARM,2)=MIDDLE_INITIAL

350 .SQLDA(DA,DAPARM,3)=LAST_NAME

360 .SQLDA(DA,DAPARM,4)=BIRTH_DATE

370 .SQLDA(DA,DAPARM,5)=HIRE_DATE

380 .SQLDA(DA,DAPARM,6)=EMPLOYEE_NUMBER

390 .|

400 .EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1

410 .END

420 EXIT

SELECT routines

MANTIS DB2 Programming 117

SELECT routines

Static SELECT routine
Consider the following sample code for a static SELECT routine:

10 ENTRY STATIC_SELECT

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A STATIC SQL "SELECT"

40 .| STATEMENT. IT RETRIEVES EMPLOYEE INFORMATION FOR ONE

50 .| EMPLOYEE FROM AN EMPLOYEE TABLE.

60 .|

70 .BIG HIRE_DATE,BIRTH_DATE,JOB_CODE,SALARY

75 .BIG EDUCATION_LEVEL

80 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20)

85 .TEXT MIDDLE_INITIAL(1),LAST_NAME(20)

90 .TEXT WORK_DEPARTMENT(3),PHONE_NUMBER(3),SEX(1)

100 .EMPLOYEE_NUMBER="000120"

110 .|

120 .EXEC_SQL:| DECLARE C1 CURSOR FOR

130 ..| SELECT * FROM FRED.TEMPL

140 ..| WHERE EMPNO = :EMPLOYEE_NUMBER

150 .END

160 .EXEC_SQL:| OPEN C1

170 .END

180 .EXEC_SQL:| FETCH C1 INTO :EMPLOYEE_NUMBER,

190 ..| :FIRST_NAME,

200 ..| :MIDDLE_INITIAL,

210 ..| :LAST_NAME,

220 ..| :WORK_DEPARTMENT,

230 ..| :PHONE_NUMBER,

240 ..| :HIRE_DATE,

250 ..| :JOB_CODE,

260 ..| :EDUCATION_LEVEL,

270 ..| :SEX,

280 ..| :BIRTH_DATE,

290 ..| :SALARY

300 .END

310 .EXEC_SQL:| CLOSE C1

320 .END

330 EXIT

Appendix A MANTIS SQL sample programs

118 P39-1360-00

Dynamic SELECT routine
Consider the following sample code for a dynamic SELECT routine:

10 ENTRY DYNAMIC_SELECT

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A DYNAMIC SQL "SELECT"

40 .| STATEMENT. IT RETRIEVES EMPLOYEE INFORMATION FOR ONE

50 .| EMPLOYEE FROM AN EMPLOYEE TABLE.

60 .|

70 .BIG HIRE_DATE,BIRTH_DATE,JOB_CODE,SALARY

75 .BIG EDUCATION_LEVEL

80 .TEXT EMPLOYEE_NUMBER(6)

90 .TEXT FIRST_NAME(20),MIDDLE_INITIAL(1),LAST_NAME(20)

100 .TEXT WORK_DEPARTMENT(3),PHONE_NUMBER(3),SEX(1)

110 .TEXT SQL_TEXT(254)

120 .|

130 .EMPLOYEE_NUMBER="000120"

140 .SQL_TEXT="SELECT * FROM FRED.TEMPL"

150 .'"WHERE EMPNO = ?"

160 .|

170 .EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

180 .END

190 .EXEC_SQL:| DECLARE C1 CURSOR FOR S1

200 .END

210 .EXEC_SQL:| OPEN C1 USING :EMPLOYEE_NUMBER

220 .END

230 .SQL_TEXT="FETCH C1 USING DESCRIPTOR"

240 .EXEC_SQL:| PREPARE S2 FROM :SQL_TEXT

250 .END

260 .SQLDA("SQLDA1")=NEW

270 .EXEC_SQL:| DESCRIBE S2 INTO SQLDA1

280 .END

290 .EXEC_SQL:| EXECUTE S2 USING DESCRIPTOR SQLDA1

SELECT routines

MANTIS DB2 Programming 119

300 .END

310 .EXEC_SQL:| CLOSE C1

320 .END

330 .|

340 .EMPLOYEE_NUMBER=SQLDA("SQLDA1","SQLDATA",1)

350 .FIRST_NAME=SQLDA("SQLDA1","SQLDATA",2)

360 .MIDDLE_INITIAL=SQLDA("SQLDA1","SQLDATA",3)

370 .LAST_NAME=SQLDA("SQLDA1","SQLDATA",4)

380 .WORK_DEPARTMENT=SQLDA("SQLDA1","SQLDATA",5)

390 .PHONE_NUMBER=SQLDA("SQLDA1","SQLDATA",6)

400 .HIRE_DATE=SQLDA("SQLDA1","SQLDATA",7)

410 .JOB_CODE=SQLDA("SQLDA1","SQLDATA",8)

420 .EDUCATION_LEVEL=SQLDA("SQLDA1","SQLDATA",9)

430 .SEX=SQLDA("SQLDA1","SQLDATA",10)

440 .BIRTH_DATE=SQLDA("SQLDA1","SQLDATA",11)

450 .SALARY=SQLDA("SQLDA1","SQLDATA",12)

460 EXIT

Appendix A MANTIS SQL sample programs

120 P39-1360-00

DELETE routines

Static DELETE routine
Consider the following sample code for a static DELETE routine:

10 ENTRY STATIC_DELETE

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A STATIC SQL "DELETE"

40 .| STATEMENT. IT DELETES ONE EMPLOYEE FROM AN EMPLOYEE

50 .| TABLE.

60 .|

70 .TEXT EMPLOYEE_NUMBER(6)

80 .EMPLOYEE_NUMBER "000120"

90 .EXEC_SQL

100 ..|

110 ..| DELETE FROM FRED.TEMPL

120 ..|

130 ..| WHERE EMPNO = :EMPLOYEE_NUMBER

140 .END

150 EXIT

DELETE routines

MANTIS DB2 Programming 121

Dynamic DELETE routine
Consider the following sample code for a dynamic DELETE routine:

Using an SQLDA is unnecessary because no data is transferred
between the database system and the MANTIS program.

10 ENTRY DYNAMIC_DELETE

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A DYNAMIC SQL "DELETE"

40 .| STATEMENT. IT DELETES ONE EMPLOYEE FROM AN EMPLOYEE

50 .| TABLE.

60 .|

70 .TEXT EMPLOYEE_NUMBER(6),SQL_TEXT(254)

80 .EMPLOYEE_NUMBER "000120"

90 .SQL_TEXT="DELETE FROM FRED.TEMPL WHERE EMPNO = ?"

100 .|

110 .EXEC_SQL

120 ..|

130 ..| PREPARE S1 FROM :SQL_TEXT

140 ..|

150 .END

160 .EXEC_SQL

170 ..|

180 ..| EXECUTE S1 USING :EMPLOYEE_NUMBER

190 ..|

200 .END

Appendix A MANTIS SQL sample programs

122 P39-1360-00

Dynamic QUERY-like function
This program enables you to perform the following:

1. Interactively execute SQL statements.

2. At your terminal, display the column data resulting from the
execution of those statements.

See the following sample code for a dynamic QUERY-like function:
10 ENTRY DB2_QUERY

20 CLEAR

30 HEAD "DYNAMIC EXAMPLE"

40 |

50 | This example illustrates the use of dynamic SQL to

60 | perform a QUERY-like function.

70 |

80 TEXT STMT(80),TMP(6),DA

90 PROGRAM DB2_SHOW_TABLE("EXAMPLES:DB2_SHOW_TABLE","CASINO")

100 DA="DA"

110 SQLDA(DA)=NEW

120 EXEC_SQL:| WHENEVER SQLERROR DO QHANDLER

130 END

Dynamic QUERY-like function

MANTIS DB2 Programming 123

140 WHILE NOT(FINISHED):| Prompt SQL statements

150 STMT="":ERROR=FALSE

160 SHOW "SQL>";:OBTAIN STMT

170 IF KEY<>"ENTER"OR STMT=""

180 FINISHED=TRUE

190 ELSE

200 UNPAD STMT BEFORE

210 TMP=UPPERCASE(STMT(1,6))

220 IF TMP<>"SELECT"

230 EXEC_SQL:| EXECUTE IMMEDIATE :STMT

240 END

250 ELSE

260 EXEC_SQL:| PREPARE S1 FROM :STMT

270 END

280 IF NOT(ERROR)

290 EXEC_SQL:| DESCRIBE S1 INTO DA

300 END

310 IF SQLCA("SQLCODE")=0

320 DO DB2_SHOW_TABLE(STMT)

330 END

340 END

350 END

360 END

370 END

380 EXIT

390 |

400 | Allow continuation after failure to execute SQL statement

410 |

420 ENTRY QHANDLER

430 SHOW "*** SQL ERROR CODE =";SQLCA("SQLCODE")

440 SHOW "*** SQL MESSAGE =";SQLCA("SQLERRMC")

450 ERROR=TRUE

460 SHOW "*** Press RETURN to continue";:WAIT

470 EXIT

Appendix A MANTIS SQL sample programs

124 P39-1360-00

Dynamic column select
This program uses dynamically-executed statements to retrieve the
following information from a table specified by the user:

♦ Column name

♦ Type

♦ Length

♦ First row of the column

See the following sample code for dynamic column select:
10 ENTRY SQL_LIST_COLUMNS

20 .|

30 .| THIS PROGRAM LISTS COLUMNS BASED ON TABLE NAME

40 .|

50 .TEXT TABLE_NAME(32)

60 .TEXT SQL_FUNCTION(100)

70 .COUNTER=1

80 .SHOW "PLEASE ENTER TABLE NAME:"

90 .OBTAIN TABLE_NAME

100 .SQL_FUNCTION="SELECT * FROM"+TABLE_NAME

110 .EXEC_SQL

120 ..| EXECUTE IMMEDIATE :SQL_FUNCTION

130 .END

140 .SQL_FUNCTION="FETCH USING DESCRIPTOR"

150 .EXEC_SQL:| PREPARE S1 FROM :SQL_FUNCTION

160 .END

170 .SQLDA("SQLDA1")=NEW

Dynamic column select

MANTIS DB2 Programming 125

180 .EXEC_SQL:| DESCRIBE S1 INTO SQLDA1

190 .END

200 .EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1

210 .END

220 .COUNTER=COUNTER+1

230 .SHOW"COLUMN NAME",AT(25),"TYPE",AT(45),

232 .`"LENGTH",AT(55),"DATA"

240 .WHILE COUNTER<SQLDA("SQLDA1","SQLD")

250 ..SHOW SQLDA("SQLDA1","SQLCOLNAME",COUNTER)

260 ..'AT(25),SQLDA("SQLDA1","SQLTYPE",COUNTER)

270 ..'AT(45),SQLDA("SQLDA1","SQLLENGTH",COUNTER)

280 ..'AT(55),SQLDA("SQLDA1","SQLDATA",COUNTER)

290 ..COUNTER=COUNTER+1

300 .END

310 .WAIT

320 EXIT

Appendix A MANTIS SQL sample programs

126 P39-1360-00

MANTIS DB2 Programming 127

B
SQL features that are not supported for
DB2 SQL

SQL features that are not supported for DB2 SQL
The following features of SQL are not supported for DB2 SQL:
♦ Specifying a host variable in a SELECT list. Consider the

following example, which is invalid because it specifies VX as a host
variable in a SELECT list:
SELECT A,:VX,C
INTO :VA,:VB,:VC

♦ In some cases, exact line number referencing upon syntax error
detection. In the execution of an SQL statement, once control is
transferred to the database system, MANTIS cannot keep track of
where the error was encountered. For the rest of this bullet point,
consider the following sample code:
1330 ..X=X+1
1340 ..EXEC SQL
1350 ...|SELECT A,B,C
1360 ...|INTO :VA,:VB),:VC
1370 ...|FROM TABLE.1
1380 ...|WHERE A=1
1390 ..END
1400 ..X=X-VA

An error occurs in the INTO clause (line 1360) of the preceding
sample code. In this INTO clause, there should not be a right
parenthesis. MANTIS SQL Support reports this error differently for a
bound program than for an unbound program:
- For a bound program—In the FAULT, MANTIS points to the line

of the last SQL statement (the line immediately preceding the
END statement). In the preceding sample code, this is line 1380.

- For an unbound program—In the FAULT, MANTIS points to the
last line in the program block. In the preceding sample code, this
is line 1390.

Appendix B SQL features that are not supported for DB2 SQL

128 P39-1360-00

♦ Using a single instruction, implicitly copying the contents of
one SQLDA data structure into another. You can individually
pass each element of one SQLDA data structure to the
corresponding element of a different SQLDA data structure.
However, MANTIS SQL Support does not permit the following
statement:
SQLDA("NAME2") = SQLDA("NAME1")

♦ Porting MANTIS programs containing dynamic SQL statements
between MANTIS SQL Support for the IBM mainframe and
MANTIS SQL Support for OpenVMS and UNIX. Although you
cannot port programs containing dynamic SQL statements between
the two systems, be aware that you are able to port programs
containing static embedded SQL between the two systems.

MANTIS DB2 Programming 129

C
MANTIS SQL Support vs. SQL in
COBOL

For convenience, this guide refers to all third-generation SQL
implementations as “SQL in COBOL.”

SQL in MANTIS SQL Support is very similar to SQL in COBOL.
However, there are some differences, which this appendix summarizes.

Appendix C MANTIS SQL Support vs. SQL in COBOL

130 P39-1360-00

Differences between MANTIS SQL Support and SQL in
COBOL

Consider the following differences between MANTIS SQL Support and
SQL in COBOL:

♦ MANTIS SQL Support permits no MANTIS comments (that are
not all or part of an SQL statement) within an EXEC_SQL-END
block. In a MANTIS program, you must embed an SQL statement
as a standard MANTIS comment and surround the SQL statement
with an EXEC_SQL-END block. MANTIS SQL Support considers all
comments within this block to be SQL statement text. For example,
consider the following sample code, in which lines 4620 through
4650 are within the EXEC_SQL-END block:
4610 EXEC_SQL

4620 .| SELECT SALARY

4630 .| INTO :EMPL_SAL

4640 .| FROM EMPLOYEE_TABLE

4650 .| WHERE NAME=:EMP_NAME

4660 END

COBOL, however, permits comments within an EXEC_SQL-END
block.

♦ WHENEVER settings. Due to the interpretive nature of MANTIS,
WHENEVER settings, when used with conditional statements, may
have different effects than they would under SQL in COBOL.

♦ DO statement vs. GOTO statement. In an SQL WHENEVER
statement, MANTIS SQL Support uses the MANTIS DO statement
where MANTIS in COBOL would use a GOTO clause. For more
information, see “SQL WHENEVER statement” on page 61.

♦ STOP statement vs. FAULT statement. In an SQL WHENEVER
statement, MANTIS SQL Support uses the FAULT statement where
MANTIS in COBOL would use a STOP statement. For more
information, see “SQL WHENEVER statement” on page 61.

♦ Default for the SQLERROR condition. In an SQL WHENEVER
statement, MANTIS SQL Support uses a default of FAULT for the
SQLERROR condition, while SQL in COBOL uses a default of
CONTINUE for the SQLERROR condition.

Differences between MANTIS SQL Support and SQL in COBOL

MANTIS DB2 Programming 131

♦ Ranges of applicability for WHENEVER settings. In an SQL
WHENEVER statement, MANTIS SQL Support’s WHENEVER
settings may have different ranges of applicability than the
WHENEVER settings in SQL in COBOL. For more information, see
“Scope of the WHENEVER statement” on page 61.

♦ Accessing SQLCA elements. MANTIS SQL Support accesses
SQLCA elements through the SQLCA statement and the SQLCA
function, while SQL in COBOL accesses SQLCA elements as data
items. For more information, see “SQLCA function and SQLCA
statement” on page 69.

♦ Accessing elements in SQLDA data structures. MANTIS SQL
Support accesses SQLDA elements through the SQLDA statement
and the SQLDA function, while SQL in COBOL accesses SQLDA
elements as data items. For more information, see “Scope of
cursors, statements, and SQLDA data structures” on page 54.

♦ Message sources. In a MANTIS SQL Support application,
messages come to you from three sources:

- MANTIS nucleus

- MANTIS SQL Support

- Database system

To find detailed explanations for, and actions to take in response to,
MANTIS SQL Support messages, refer to MANTIS Messages and
Codes, OpenVMS/UNIX, P39-1330.

♦ SQLCA and SQLDA functions vs. SQL INCLUDE statements.
MANTIS SQL Support uses the SQLCA and SQLDA functions where
SQL in COBOL would use SQL INCLUDE statements. (MANTIS
SQL Support does not support an SQL INCLUDE statement;
INCLUDE denotes a preprocessor action.) For more information on:

- SQLCA—See “SQLCA function and SQLCA statement” on
page 69.

- SQLDA—See “Scope of cursors, statements, and SQLDA data
structures” on page 54.

♦ DECLARE statements. In MANTIS SQL Support, unlike in SQL in
COBOL, DECLARE statements are unnecessary for tables and
views.

Appendix C MANTIS SQL Support vs. SQL in COBOL

132 P39-1360-00

MANTIS DB2 Programming 133

D
MANTIS vs. SQL

Differences between MANTIS and SQL
Consider the following differences between MANTIS and SQL:

♦ Character-string-constant delimiters. In MANTIS, double quotes
(") delimit character-string constants. However, in SQL, apostrophes
(') delimit character-string constants.

♦ Data types. SQL uses different data types than MANTIS. This
requires conversion between the two kinds of data types. Permitted
data type conversions are listed in “Data conversion between
MANTIS SQL Support and DB2” on page 48.

Only data type codes for MANTIS-compatible data types are
returned in the SQLCOLTYPE element of an SQLDA data structure.
Valid data types are therefore limited to those listed in “SQLCA
elements” on page 74. SQL supports many more data types than
MANTIS.

Appendix D MANTIS vs. SQL

134 P39-1360-00

MANTIS DB2 Programming 135

Index

A

allocating an SQLDA 91

C

COBOL SQL, differences
from MANTIS SQL
Support 27

column select, dynamic 124
COMMIT, using in

embedded SQL
applications 75

CONNECT 31
connection to and

disconnection from
DB2 56

cursor scope 54
cursors for prepared

statements 108

D

data type conversion
between MANTIS vs.
DB2 48

DB2
connection and

disconnection 56
data conversion 48
signing on to 31
SQL features that are not

supported for DB2 SQL
127

DBTYPE 30
DELETE routines 120
disconnection from and

connection to DB2 56
dynamic SQL

cursor names 108
definition 28
overview 79

E

embedding SQL statements
description 20
rules for 34

environment variables 27
error messages 77
EXEC_SQL-END block

line numbers associated
with 52

syntax for 58
explicit sign-on to DB2 31

G

GOTO, MANTIS SQL
Support equivalent 61

H

host variables
description 21
using 42

I
implicit sign-on to DB2 31
indicator variables

description 25
using in SQL statements

46
input host variables 22
INSERT routines 110

L

logical names 27

Index

136 P39-1360-00

M

MANTIS
differences from SQL 133
variables. See also host

variables
MANTIS SQL Options 30
MANTIS SQL Support

data type conversion 48
differences from SQL in

COBOL 27, 130
processing of SQL

statements 20
programs

considerations for writing
49

rules for embedding SQL
statements 34

running with non-SQL
MANTIS programs 19

security 28
software requirements 26
SQL statements and 51

Master User facilities 29

N

non-SQL MANTIS programs,
using with MANTIS
SQL programs 19

O

output host variable 23

P

parameter of SQL statement
24

processing SQL statements
20

Q

QUERY-like function,
dynamic 122

R

requirements for MANTIS
SQL Support software
26

RESET, using in embedded
SQL applications 75

ROLLBACK, using in
embedded SQL
statements 75

rules for COMMIT and
RESET in embedded
SQL applications 75

Index

MANTIS DB2 Programming 137

S

sample code
DELETE routines 120
dynamic column select 124
dynamic QUERY-like

function 122
INSERT routines 110
SELECT routines 117
UPDATE routines 114

scope of cursors,
statements, and named
SQLDA data structures
54

security in MANTIS SQL
Support 28

SELECT routines 117
sign-off. See disconnection
sign-on to DB2 31
SQL

differences from MANTIS
133

features that are not
supported for DB2 SQL
127

statements
CONNECT 31
dynamic execution of 80
embedding in MANTIS

programs 20
EXEC_SQL 58
invalid for dynamic

execution 82
MANTIS processing of 20
rules for embedding in a

MANTIS program 34
using indicator variables

in 46
WHENEVER 61

SQLCA function and SQLCA
statement 69

SQLDA
allocating 91
data structure scope 54
repeating elements 104
structure of 87

SQLSSNINC 30
SQLVARINC 30
statement scope scope 54
static SQL 28
Super User. See Master

User
syntax

EXEC_SQL-END 58
WHENEVER 61

U

UPDATE routines 114
updating MANTIS user

profile 30

V

variables. See MANTIS
variables or host
variables

W

WHENEVER 61

Index

138 P39-1360-00

	Back to Welcome (UNIX)
	About this book
	Using this document
	MANTIS overview
	Document organization
	Conventions

	MANTIS documentation series
	Educational material

	Chapter 1 - MANTIS SQL Support overview
	Introduction
	MANTIS SQL Support and non-SQL MANTIS applications
	Embedding SQL statements in a MANTIS application program
	Procedure for embedding an SQL statement
	Sample code for an embedded SQL statement
	How MANTIS processes embedded SQL statements

	Host variables
	Introduction to host variables
	Input host variable (variable that provides input to the database)
	Description
	Sample code

	Output host variable (variable that receives data from a database)
	Description
	Sample code

	Host variables as parameters of SQL statements
	Description
	Sample code

	Indicator variables
	Description
	Sample code

	MANTIS SQL Support software requirements
	Supported DB2 version
	Binding MANTIS against a DB2 database
	Bind file information for the MANTIS DB2 administrator
	Sample code

	Differences between SQL in MANTIS and SQL in COBOL
	Logical names
	Static and dynamic SQL
	Security

	Chapter 2 - System maintenance
	Master User facilities
	MANTIS SQL options
	Updating the User Profile
	Specifying the default SQL DBTYPE
	Default SQL DBTYPE and the current SQL DBTYPE
	Current SQL DBTYPE and the MANTIS EXEC_SQL and SQLCA statements

	Connecting to DB2
	Explicit or implicit connect to DB2
	Examples of explicit connection to DB2
	Connecting to a DB2 server using all default values
	Connecting to a DB2 server called “SAMPLE”
	Connecting to a DB2 server using MANTIS variables for username and password

	Chapter 3 - Embedding SQL statements in MANTIS programs
	Rules for embedding SQL statements in a MANTIS program
	Follow the standard SQL syntax rules
	Embed an SQL statement as a standard MANTIS comment
	Follow the standard MANTIS comment rules
	Place an SQL statement within an EXEC_SQL-END block
	Rule
	Sample code

	Place only one SQL statement within an EXEC_SQL-END block
	Rule
	Sample invalid code (what to avoid)
	Sample valid code

	Apart from the SQL statement, do not include any other MANTIS statements in an EXEC_SQL-END block
	Rule
	Sample invalid code (what to avoid)

	Do not place a comment or a MANTIS statement on the same line as an SQL statement
	Rule
	Sample invalid code (what to avoid)

	Within an EXEC_SQL-END block, use a colon to represent a host variable (the colon will not represent a new statement)
	Rule
	Sample code

	If desired, split an SQL statement across multiple comment lines within an EXEC_SQL-END block
	Rule
	Sample code

	In an SQL statement, use as many spaces as desired
	Rule
	Sample code

	If you use a colon to attach an SQL statement to an EXEC_SQL statement, that SQL statement exists within the EXEC_SQL-END block
	Rule
	Sample code

	If you place a MANTIS statement on the same line as the END in an EXEC_SQL-END block, MANTIS will not execute that statement
	Rule
	Sample code

	A MANTIS comment is permitted to be on the same line as the END in an EXEC_SQL-END block
	Rule
	Sample code

	Using host variables
	Definition of a host variable
	Sample code
	Declaring host variables
	Description
	Sample code

	Referencing values in a MANTIS array
	Description
	Sample code

	MANTIS data types vs. SQL data types
	Database system to MANTIS translation
	MANTIS to database system translation
	More information on data type translation
	Risks of data type translation

	Indicator variables
	Definition
	Creating an indicator variable
	Interpreting an indicator variable
	Sample code
	Defining indicator variables
	Explicit vs. implicit definition
	Supplying indicator values for any columns that may contain NULL values

	Data conversion between MANTIS SQL Support and DB2

	Chapter 4 - Programming considerations
	Chapter summary
	MANTIS SQL Support and SQL statements
	How to use MANTIS SQL Support
	How MANTIS SQL Support processes SQL statements
	SQL statements and cursors as SQL entities

	Varying line numbers associated with an EXEC_SQL-END block
	Line number associated with an EXEC_SQL-END block in an unbound program
	Description
	Sample code

	Line number associated with an EXEC_SQL-END block in a bound program
	Description
	Sample code

	Scope of cursors, statements, and SQLDA data structures
	Basic elements of dynamic SQL programs
	Local scope for cursor name, statement name, or SQLDA name
	Mapping MANTIS cursor names and MANTIS statement names onto DB2 cursor names and DB2 statement names
	MANTIS cursors and real cursor names

	DB2 connection and disconnection
	Connection to DB2
	Connection considerations

	Disconnection from DB2
	SQL CONNECT RESET statement
	Possible causes of disconnection

	MANTIS EXEC_SQL statement, used for multiple session support
	Syntax definition for the EXEC_SQL statement

	SQL WHENEVER statement
	Differences between WHENEVER statement in MANTIS SQL Support and WHENEVER statement in SQL in COBOL
	Syntax for MANTIS SQL Support WHENEVER statement
	Quick reference for WHENEVER conditions and default actions
	Sample code for DO, FAULT, and CONTINUE
	Declarative (COBOL) vs. interpretive (MANTIS) WHENEVER statements
	Declarative WHENEVER statement for SQL embedded in COBOL
	Interpretive WHENEVER statement for SQL embedded in MANTIS
	When the difference between MANTIS SQL Support and SQL in COBOL is important

	Scope of the WHENEVER statement

	SQLCA function and SQLCA statement
	SQLCA in SQL in COBOL vs. SQLCA in MANTIS SQL Support
	SQLCA in SQL in COBOL
	SQLCA in MANTIS SQL Support

	Syntax for SQLCA function and SQLCA statement
	Syntax overview
	Syntax elements for the SQLCA function and SQLCA statement

	DBTYPE, an additional element for the SQLCA statement
	Syntax
	Syntax element

	SQLCA elements

	COMMIT/ROLLBACK and COMMIT/RESET
	Error messages
	Message sources
	Information that MANTIS generally displays for an error
	Information that MANTIS displays for an error from the database system
	Description
	Format sample

	Chapter 5 - Dynamic SQL in MANTIS SQL Support
	Who should read this chapter?
	Dynamic SQL overview
	Definition of dynamic SQL
	Example of when to use dynamic SQL
	Principal statements for dynamically executing SQL statements
	SQLDA data structure
	Defining data about SQL statements and host variables
	SQL statements that you cannot execute dynamically
	Example: SELECT statement
	All statements that you cannot execute dynamically

	Auto-cursor FETCH statements
	Executing a statement dynamically
	Dynamic SQL sample code for creating an SQLDA data structure
	Introduction
	Sample code
	Explanation of the sample code
	Additional sample code

	SQLDA data structure
	Figure representing SQLDA data structure
	Data item
	SLQDA names
	Declaring SQLDA elements in other programming languages vs. declaring them in MANTIS SQL Support
	Number of repeating elements in an SQLDA data structure
	Built-in SQLDA statement and built-in SQLDA function
	Sample code for the SLQDA statement and SQLDA function
	Introduction
	Allocating an SQLDA data structure
	Deallocating an SQLDA data structure
	Moving data from your program into an SQLDA header element
	Moving data from your program into an SQLDA repeating element
	Moving data from an SQLDA header element into your program
	Moving data from an SQLDA repeating element into your program

	Cursors for prepared statements

	Appendix A - MANTIS SQL sample programs
	Introduction
	INSERT routines
	Static INSERT routine
	Dynamic INSERT routine

	UPDATE routines
	Static UPDATE routine
	Dynamic UPDATE routine

	SELECT routines
	Static SELECT routine
	Dynamic SELECT routine

	DELETE routines
	Static DELETE routine
	Dynamic DELETE routine

	Dynamic QUERY-like function
	Dynamic column select

	Appendix B - SQL features that are not supported for DB2 SQL
	SQL features that are not supported for DB2 SQL

	Appendix C - MANTIS SQL Support vs. SQL in COBOL
	Differences between MANTIS SQL Support and SQL in COBOL

	Appendix D - MANTIS vs. SQL
	Differences between MANTIS and SQL

	Index

