

AD/ADVANTAGE

MANTIS Rdb Programming OpenVMS

P39-1350-00

AD/Advantage® MANTIS Rdb Programming OpenVMS

Publication Number P39-1350-00

� 1993, 1994, 1997, 1998, 1999, 2001 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage®
C+A-RE™
CINCOM®
Cincom Encompass®
Cincom Smalltalk™
Cincom SupportWeb®
CINCOM SYSTEMS®

gOOi™

iD CinDoc™
iD CinDoc Web™
iD Consulting™
iD Correspondence™
iD Correspondence Express™
iD Environment™
iD Solutions™
intelligent Document Solutions™

MANTIS®
Mindspeed™
MindspeedXML™
SPECTRA™
SUPRA®
SUPRA® Server
Visual Smalltalk®
VisualWorks®

All other trademarks are trademarks or registered trademarks of:

Acucobol, Inc.
AT&T
Compaq Computer Corporation
Data General Corporation
Gupta Technologies, Inc.
International Business Machines Corporation
JSB Computer Systems Ltd.

Micro Focus, Inc.
Microsoft Corporation
Systems Center, Inc.
TechGnosis International, Inc.
The Open group
UNIX System Laboratories, Inc.

or of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, Ohio 45246-3732
U. S. A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

http://www.cincom.com/

Release information for this manual

The AD/Advantage MANTIS Rdb Programming OpenVMS,
P39-1350-00, is dated February 12, 2001. This document supports
Release 2.8 of MANTIS.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. Please take the survey provided with the
online documentation at your convenience.

Cincom Technical Support for AD/Advantage

FAX: (513) 612-2000
 Attn: MANTIS Support

E-mail: helpna@cincom.com

Phone: 1-800-727-3525

Mail: Cincom Systems, Inc.
 Attn: MANTIS Support
 55 Merchant Street
 Cincinnati, OH 45246-3732
 U. S. A.

mailto:helpna@cincom.com

MANTIS Rdb Programming OpenVMS v

Contents

About this book ix
Using this document ...ix

Document organization..ix
Revisions to this manual.. x
Conventions...xi

MANTIS documentation series...xiv
Educational material ...xv

MANTIS SQL support overview 17
Software requirements for MANTIS SQL support .. 19
Differences between SQL in MANTIS and SQL in COBOL 19
Logical names .. 20
Static and dynamic SQL ... 20
Security... 20

System maintenance 21
MANTIS SQL options ... 22
Update user profile ... 22
Signing on... 23

Embedding SQL statements in MANTIS programs 25
Embedding rules... 26
Using host variables ... 29

Referencing values in a MANTIS array ... 30
MANTIS versus SQL data types.. 30

Indicator variables .. 31
Data conversion between MANTIS SQL support and the Rdb/VMS database.......... 32
MANTIS interface to Rdb.. 34

Programming considerations 35
Running an EXEC_SQL-END block ... 37
The scope of cursors, statements and SQLDAs .. 38

Contents

vi P39-1350-00

Connection to the Rdb/VMS database..39
Disconnection from the Rdb/VMS database ...40
The MANTIS EXEC_SQL statement ..41
The SQL WHENEVER statement...43

Declarative versus interpretive WHENEVER statements47
Scope of the WHENEVER statement ..48

The SQL COMMIT/ROLLBACK statement ...48
The SQL SET DBNAME statement ..48
The SQLCA in MANTIS SQL support ...49

SQLCA syntax..49
SQLCA elements ...51

COMMIT and ROLLBACK and MANTIS SQL support’s COMMIT and RESET53
Error messages...55

Dynamic SQL in MANTIS SQL support 57
An overview of dynamic SQL ..57

Executing a statement dynamically..59
Code sequence for dynamic SQL ..59

The SQLDA structure..61
Allocate an SQLDA ..63
Deallocate an SQLDA..64
Move data from your program into an SQLDA header element.....................65
Move data from your program into an SQLDA repeating element.................69
Move data from an SQLDA header element into your program.....................73
Move data from an SQLDA repeating element into your program.................74

Sample MANTIS SQL programs 77
A static insert routine...78
A dynamic insert routine..80
A static update routine ..82
A dynamic update routine ...83
A static select routine ..85
A dynamic select routine ...86
A static delete routine..88
A dynamic delete routine...89
A dynamic query-like function ...90
A dynamic column select ..93

Features not supported 95

Differences: MANTIS SQL support versus SQL in COBOL; MANTIS
versus SQL 97

SQL in MANTIS SQL support versus SQL in COBOL..97

Contents

MANTIS Rdb Programming OpenVMS vii

MANTIS versus SQL .. 99

Index 101

Contents

viii P39-1350-00

MANTIS Rdb Programming OpenVMS ix

About this book

Using this document
MANTIS® is an application development system that consists of design
facilities (for example, screens and files) and a programming language.
This manual describes MANTIS SQL Support for Rdb/VMS™.

Document organization
The information in this manual is organized as follows:

Chapter 1—MANTIS SQL support overview
Provides an overview of MANTIS SQL support and how to use it to
create MANTIS applications that use SQL.

Chapter 2—System maintenance
Provides supplemental information to MANTIS administration and
installation documents for the Master User.

Chapter 3—Embedding SQL statements in MANTIS programs
Describes the rules you must follow when embedding SQL
statements in a MANTIS program.

Chapter 4—Programming considerations
Describes implications for program design resulting from the
interpretive nature of MANTIS SQL support.

Chapter 5—Dynamic SQL in MANTIS SQL support
Discusses how dynamic SQL works in MANTIS SQL support.

Appendix A—Sample MANTIS SQL programs
Provides examples of static and dynamic MANTIS SQL programs.

Appendix B—Features not supported
Lists the features of SQL that are not supported for Rdb SQL.

About this book

x P39-1350-00

Appendix C—Differences: MANTIS SQL support versus SQL in
COBOL; MANTIS versus SQL
Summarizes the differences between SQL in MANTIS SQL support
and SQL in other languages.

Index

Revisions to this manual
The following changes have been made for this release:

♦ Updated Publication Release Number from P25-1350-03 to
P39-1350-00.

♦ Updated publication titles and numbers under “MANTIS
documentation series” on page xiv and the entire document.

♦ Updated “Software requirements for MANTIS SQL support” on
page 19.

♦ Updated Facility Selection screen in “System maintenance” on
page 21.

About this book

MANTIS Rdb Programming OpenVMS xi

Conventions
The following table describes the conventions used in this document
series:

Convention Description Example
Constant width
type Represents screen images and

segments of code.
Screen Design Facility
GET NAME LAST
INSERT ADDRESS

Slashed b (b/) Indicates a space (blank).
The example indicates that a
password can have a trailing blank.

WRITEPASSb/

Brackets [] Indicate optional selection of
parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate
one of the following situations.

 A single item enclosed by brackets
indicates that the item is optional
and can be omitted.
The example indicates that you can
optionally enter a program name.

COMPOSE [program-name]

 Stacked items enclosed by
brackets represent optional
alternatives, one of which can be
selected.
The example indicates that you can
optionally enter NEXT, PRIOR,
FIRST, or LAST. (NEXT is
underlined to indicate that it is the
default.)

�
�
�
�

�

�

�
�
�
�

�

�

LAST

FIRST

PRIOR

NEXT

About this book

xii P39-1350-00

Convention Description Example
Braces { } Indicate selection of parameters.

(Do not attempt to enter braces or
to stack parameters.) Braces
surrounding stacked items
represent alternatives, one of
which you must select.
The example indicates that you
must enter FIRST, LAST, or a
value for begin.

�
�

�
�

�

�
�

�
�

�

LAST

FIRST

begin

Underlining
(In syntax)

Indicates the default value supplied
when you omit a parameter.
The example indicates that if you
do not specify ON, OFF, or a row
and column destination, the system
defaults to ON.

[][] �
�
�

�

�

�
�
�

�

�

colrow ,

OFF

ON

 SCROLL

 Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.
The example indicates that you can
enter either PRO or PROTECTED.

PROTECTED

Ellipsis points... Indicate that the preceding item
can be repeated.
The example indicates that you can
enter (A), (A,B), (A,B,C), or some
other argument in the same
pattern.

(argument,...)

About this book

MANTIS Rdb Programming OpenVMS xiii

Convention Description Example
UPPERCASE Indicates MANTIS reserved words.

You must enter them exactly as
they appear.
The example indicates that you
must enter CONVERSE exactly as
it appears.

CONVERSE name

Italics Indicate variables you replace with
a value, a column name, a file
name, and so on.
The example indicates that you can
supply a name for the program.

COMPOSE [program-name]

Punctuation
marks

Indicate required syntax that you
must code exactly as presented.
() parentheses
. period
, comma
: colon
' ' single quotation marks

[] [] [] =)ROUNDED(
)(

)(
 LET e3...e2,,e1n

ji,

i
v �

�

�
�
�

�

UNIX
OpenVMS

Information specific to a certain
operating system is flagged by a
symbol in a shadowed box (e.g.,
UNIX) indicating which operating

system is being discussed. Skip
any information that does not
pertain to your environment.

UNIX DBA will run on any
terminal that supports
the cursor library.

About this book

xiv P39-1350-00

MANTIS documentation series
MANTIS is an application development system designed to increase
productivity in all areas of application development, from initial design
through production and maintenance. MANTIS is part of AD/Advantage®,
which offers additional tools for application development. Below are
listed the manuals offered with MANTIS in the OpenVMS™ and UNIX®
environments, organized by task. You may not have all the manuals that
are listed here. For a synopsis of each manual, refer to the
AD/Advantage MANTIS Application Development Tutorial
OpenVMS/UNIX, P39-1340.

Getting started

♦ AD/Advantage MANTIS 2.8.x Installation and Startup
OpenVMS/UNIX, P39-0027*

General use

♦ AD/Advantage MANTIS Facilities OpenVMS/UNIX, P39-1300*

♦ AD/Advantage MANTIS Language OpenVMS/UNIX, P39-1310

♦ AD/Advantage MANTIS Messages and Codes OpenVMS/UNIX,
P39-1330*

♦ AD/Advantage MANTIS Application Development Tutorial
OpenVMS/UNIX, P39-1340

♦ AD/Advantage MANTIS SUPRA SQL Programming OpenVMS/UNIX,
P39-1345

♦ AD/Advantage MANTIS Rdb Programming UNIX, P39-1350

♦ AD/Advantage MANTIS Oracle Programming UNIX, P39-1355

Manuals marked with an asterisk (*) are listed twice because you use
them for different tasks.

About this book

MANTIS Rdb Programming OpenVMS xv

Master User tasks

♦ AD/Advantage MANTIS Facilities OpenVMS/UNIX, P39-1300*

♦ AD/Advantage MANTIS Administration OpenVMS/UNIX, P39-1320

♦ AD/Advantage MANTIS 2.8.x Installation and Startup
OpenVMS/UNIX, P39-0027*

Manuals marked with an asterisk (*) are listed twice because you use
them for different tasks.

Educational material
MANTIS educational material is available from your regional Cincom
education department.

About this book

xvi P39-1350-00

MANTIS Rdb Programming OpenVMS 17

MANTIS SQL support overview

MANTIS is an application development system for developing, testing,
executing, and documenting applications interactively. MANTIS SQL
Support is an extended version of MANTIS. It enables you to create
MANTIS applications that access database systems with SQL.

The presence of MANTIS SQL Support does not affect non-SQL
MANTIS applications. MANTIS SQL Support programs can thus run side
by side or in conjunction with non-SQL MANTIS programs, with neither
affecting the other.

You embed SQL statements in a MANTIS application program as
standard MANTIS comments. As MANTIS SQL Support encounters
each SQL statement, it transparently prepares it for execution and
executes it. The embedding of SQL in MANTIS looks similar to the
preprocessor output for SQL statements embedded in other host
languages such as COBOL.

Chapter 1 MANTIS SQL support overview

18 P39-1350-00

Precede each SQL statement with an EXEC_SQL statement and follow it
with an END statement, as shown below. The vertical bar (|) is the
MANTIS comment character. MANTIS automatically sets the indentation
level (number of preceding periods for the EXEC_SQL structure).
4580 TEXT EMP_NAME(30)

4590 X=N*RATE

4600 EXEC_SQL

4610 .| SELECT EMPLNAME

4620 .| INTO :EMPL_NAME

4630 .| FROM EMPLOYEE.TABLE

4640 .| WHERE EMPLNAME="SMITH"

4650 END

4660 DO CLEAN_UP

MANTIS variables in SQL statements are called host variables.
Syntactically, a colon always precedes a host variable in an SQL
statement. An input host variable is a MANTIS variable passed to SQL
and is used to select, insert, delete, or update data. A MANTIS variable
which receives data from the database is called an output host variable.
Host variables are also used as parameters of the SQL statements.
Optionally, you can specify an indicator variable along with a host
variable. The database system sets the indicator variable to indicate null
values or to signal that a value was truncated. “Embedding SQL
statements in MANTIS programs” on page 25 describes embedding SQL
statements in MANTIS programs.

Software requirements for MANTIS SQL support

MANTIS Rdb Programming OpenVMS 19

Software requirements for MANTIS SQL support
Software requirements for MANTIS SQL Support for Oracle/Rdb/ include
Open/VMS Release 6.2 and above. It runs against the Oracle Rdb/ 7.0
databases.

Differences between SQL in MANTIS and SQL in COBOL
SQL in MANTIS SQL Support is essentially the same as its
implementations in third-generation languages, such as FORTRAN and
COBOL. (For convenience, in MANTIS documentation these
implementations are generalized as “SQL in COBOL.”) Some differences
do exist between MANTIS SQL Support and SQL in COBOL, mostly due
to the interpretive, rather than compiled, nature of MANTIS. These
differences are noted in the appropriate chapters of this manual and are
summarized in “Differences: MANTIS SQL support versus SQL in
COBOL; MANTIS versus SQL” on page 97 . In brief, they are as follows:

♦ In the SQL WHENEVER statement: WHENEVER settings may have
different effects when used with conditional statements than they
would in SQL in COBOL due to the interpretive nature of MANTIS.

♦ The GOTO clause is replaced by a standard MANTIS DO statement,
and STOP is replaced by FAULT.

♦ The default for the condition SQLERROR is FAULT; in SQL in
COBOL, the default is CONTINUE.

♦ WHENEVER settings may have different ranges of applicability than
they would in SQL in COBOL.

♦ SQLCA elements are accessed through the SQLCA function.

♦ Elements in SQLDAs are accessed through the SQLDA function.

♦ In a MANTIS SQL Support application, messages come from three
sources: the MANTIS nucleus, MANTIS SQL Support, and the
database system. For explanations and actions for MANTIS SQL
Support messages, refer to AD/Advantage MANTIS Messages and
Codes OpenVMS/UNIX, P39-1330.

Chapter 1 MANTIS SQL support overview

20 P39-1350-00

Logical names
In this manual, the term logical name refers to an identifier or variable
which stands for another name or value.

In MANTIS for OpenVMS, the logical names used by MANTIS
correspond directly to OpenVMS logical names.

In MANTIS for UNIX, logical names are implemented as environment
variables. You must ensure that any shell variables you want to affect
MANTIS are exported or inherited into the environment in which MANTIS
is executing.

Static and dynamic SQL
A MANTIS SQL Support application can be either static or dynamic. In a
static application, all SQL statements are defined before run time. In a
dynamic application, SQL statements are not defined until run time; they
are specified during program execution.

Security
Security in MANTIS SQL Support is handled solely through the database
system and MANTIS. Make sure that users have authorized access to
the views they require.

MANTIS Rdb Programming OpenVMS 21

System maintenance

The following considerations assume that you have installed MANTIS. If
you are installing MANTIS or MANTIS SQL Support, refer to
AD/Advantage MANTIS Administration OpenVMS/UNIX, P-39-1320, and
AD/Advantage MANTIS 2.8.x Installation and Startup OpenVMS/UNIX,
P39-0027. This chapter supplements those publications.

As the Master User, you have certain facilities and information that are
available to you alone. When you sign on as Master User, your Facility
Selection menu appears as shown in the following screen illustration.

M A N T I S

FACILITY SELECTION

Run A Program 1 Sign On As Another User 11
Display A Prompter 2 Transfer Facility 12
Design A Program 3 Edit MANTIS Messages 13
Design A Screen 4 Directory Facility 14
Design A File Profile 5 Universal Export Facility .. 15
Design A Prompter 6 Update Shared Entity List .. 16
Design A User Profile 7 Update Language Codes 17
Design An Interface 8 MANTIS Maintenance 18
Design An Ultra File View .. 9 Spectra 19
Design An External File View 10 Search Facility.............. 20

List of Current Mantis Users. 21
Exit MANTIS CANCEL

: :

Chapter 2 System maintenance

22 P39-1350-00

MANTIS SQL options
Two MANTIS options affect SQL support: SQLSSNINC and
SQLVARINC. For information on these options, refer to AD/Advantage
MANTIS Administration OpenVMS/UNIX, P-39-1320.

Update user profile
The MANTIS User Profile contains a field in which you specify the default
SQL DBTYPE. Either SUPRA, RDB, or ORACLE can be specified in this
field.

The default DBTYPE sets the user’s current DBTYPE when the user
signs on to MANTIS. The current DBTYPE always determines which
SQL database system MANTIS uses.

The current DBTYPE can be changed at any time by the MANTIS
EXEC_SQL and SQLCA statements.

Not all DBTYPEs are supported on all platforms. For example, Rdb/VMS
only runs in the OpenVMS environments.

Signing on

MANTIS Rdb Programming OpenVMS 23

Signing on
The MANTIS RDI interface performs automatic attachment to the
Rdb/VMS database identified by the logical name SQL$DATABASE.
This method of attachment is the same as that used by third-generation
language programs (such as FORTRAN or COBOL) which are
processed by the Rdb precompilers.

MANTIS does not support explicit database connection by any embedded
SQL statement (such as the SUPRA CONNECT statement). MANTIS
does support the setting of the logical name SQL$DATABASE in several
ways, as specified in “Connection to the Rdb/VMS database” on page
39 .

Consideration

The MANTIS logical MANTIS_RDI_IF must be defined in order to
connect to the RDB SQL database. This logical is defined in the
MANTIS_CLASS_XXXX_INIT.COM procedure where XXXX is the class
name.

Chapter 2 System maintenance

24 P39-1350-00

MANTIS Rdb Programming OpenVMS 25

Embedding SQL statements in
MANTIS programs

This chapter describes the rules you must follow when embedding SQL
statements in a MANTIS program. It also explains how to reference host
variables and MANTIS entities, and how the database system converts
data values between SQL and MANTIS. A general working knowledge of
MANTIS, of Rdb/VMS , and of SQL is assumed. For more information on
MANTIS language conventions, refer to AD/Advantage MANTIS
Language OpenVMS/UNIX, P39-1310.

Chapter 3 Embedding SQL statements in MANTIS programs

26 P39-1350-00

Embedding rules
You embed SQL statements in a MANTIS application program as
standard MANTIS comments (preceded by a vertical bar). Standard SQL
syntax rules apply. Each SQL statement is bracketed with an
EXEC_SQL-END block, as shown below. As the examples show,
EXEC_SQL causes the statements that follow it to be indented.

Follow these rules when embedding SQL statements in a MANTIS
application program. Standard rules for using MANTIS comments apply.

♦ Only one SQL statement can be within an EXEC_SQL-END block.

..EXEC_SQL Invalid: Three SQL statements

...| OPEN C1 in the EXEC_SQL-END block.

...| FETCH C1 INTO ...

...| CLOSE C1

..END

♦ Any text between EXEC_SQL and END must be part of an SQL
statement and must be preceded by a vertical bar (|). Once MANTIS
SQL Support encounters a vertical bar, the rest of the physical line is
considered a single SQL statement. Other MANTIS statements or
comments are not permitted.

..EXEC_SQL Invalid: A statement other than a

...| OPEN C1 comment is between EXEC_SQL and

...OPENED = TRUE END.

...END

...EXEC_SQL Invalid: A MANTIS statement is

...| OPEN C1:OPENED=TRUE appended to a valid SQL statement.

..END

..EXEC_SQL Invalid: A comment is appended

...| OPEN C1:|EMPLOYEE CURSOR to a valid SQL statement.

..END

Embedding rules

MANTIS Rdb Programming OpenVMS 27

♦ A colon within an EXEC_SQL-END block identifies a MANTIS host
variable, not a new statement.
..EXEC_SQL

...| FETCH C1 INTO :A C1 is an SQL entity;

..END A is a MANTIS host variable

♦ An SQL statement in an EXEC_SQL-END block can be broken into
multiple lines. MANTIS reads the text on two consecutive comment
lines in an EXEC_SQL-END block as if it were separated by a single
blank (one statement).

..EXEC_SQL is equivalent to ..EXEC_SQL

...| OPEN ...| OPEN C1

...| C1 ..END

..END

 SQL text literals (characters between apostrophes) may not span
lines.

♦ In an SQL statement, multiple blanks at the beginning or end of an
SQL statement, or even spaces between words on the same line, are
treated as a single blank.

..EXEC_SQL is equivalent to ..EXEC_SQL

...| OPEN C1 ...| OPEN C1

..END ..END

 Multiple spaces between words in statements are compressed.

..EXEC_SQL is equivalent to ..EXEC_SQL

...| ...| OPEN C1

...| OPEN ..END

...| C1

...|

..END

Chapter 3 Embedding SQL statements in MANTIS programs

28 P39-1350-00

♦ An SQL statement “attached” to an EXEC_SQL statement with a
colon (the MANTIS statement-separator character) is part of the SQL
statement; it is considered to be within the EXEC_SQL-END block.

..EXEC_SQL:| SELECT ... Valid

...| FROM

...| WHERE

..END

♦ A MANTIS statement on the same line as the END in an
EXEC_SQL-END block is not executed. This rule is consistent with
the rules for using END with MANTIS IF, WHILE, FOR, WHEN, and
UNTIL statements. MANTIS comments are permitted.
..EXEC_SQL

...| OPEN C1

..END:OPENED=TRUE “OPENED=TRUE” is disregarded

..EXEC_SQL

...| OPEN C1

..END:| C1 IDENTIFIES TAG FILE ENTRIES A valid comment

Using host variables

MANTIS Rdb Programming OpenVMS 29

Using host variables
A MANTIS variable used to provide input or receive output from the
database is called a host variable. A host variable is identified within an
SQL statement by a colon prefix. In the following example, EMPL is a
host (MANTIS) variable.
..SMALL EMPL

..EXEC_SQL

...| FETCH CURSOR1 INTO :EMPL

..END

Like other MANTIS variables, host variables are implicitly declared when
they are first used if they are not explicitly declared before appearing in
the EXEC_SQL-END block. Any previously undefined MANTIS variable
referred to in an SQL statement is automatically declared as a MANTIS
BIG variable. (A MANTIS BIG variable is a numeric floating-point
variable 16 digits long.)

..BIG A is equivalent to ..EXEC_SQL

..EXEC_SQL ...| FETCH C1 INTO :A

...| FETCH C1 INTO :A ..END

..END

If necessary, you may explicitly declare a host variable as a type other
than BIG.

Chapter 3 Embedding SQL statements in MANTIS programs

30 P39-1350-00

Referencing values in a MANTIS array
A host variable can be an item in a MANTIS array. You can use
arithmetic expressions and MANTIS functions to specify subscripts of
host variables. MANTIS rules apply to subscripting, even though the
subscript is in an SQL statement. In the example below, all text following
the colon must conform to MANTIS syntax. For example:
..SMALL EMPL (20,40)

..EXEC_SQL

...| FETCH ENTRY1 INTO :EMPL(1+N,INT(T))

..END

Only the host variable, not other MANTIS variables referred to in
subscript expressions, can be prefixed with a colon. In the example
above, the variables N and T are not prefixed with a colon, but are
assumed to be MANTIS variables.

You may use host variables in SQL expressions. Each host variable
must be preceded by a colon, as shown in the following example:
..EXEC_SQL

..| INSERT INTO OWNER.TAB (COLA)

..| VALUES (:SALARY * 1.1)

..END

MANTIS versus SQL data types
When the database system transfers data to or from a host variable,
MANTIS causes the database system to automatically convert the data’s
type from an SQL type to a MANTIS type, and vice versa. See “Data
conversion between MANTIS SQL support and the Rdb/VMS database”
on page 32 for a summary of how types are converted. Be sure to note
that truncation, overflow, and rounding may occur.

Indicator variables

MANTIS Rdb Programming OpenVMS 31

Indicator variables
Optionally, you can include an indicator variable along with a host
variable in SQL statements.

As its name implies, the indicator variable indicates whether the host
variable contains a real value or is NULL or MISSING. Indicator variables
are interpreted as follows:

Value Meaning
 =0 The host variable is a defined value, no error.
<0 The host variable is a NULL or MISSING value.

An indicator variable is prefixed with a colon and immediately follows the
corresponding host variable (or subscript expression). In the following
example, EMPLIV and NAMEIV are indicator variables.
..EXEC_SQL: | SELECT EMPLNO, EMPLNA

...| INTO :EMPL(15,3):EMPLIV, :NAME:NAMEIV

...| FROM EMPLOYEES WHERE DEPT = 17

..END

Like host variables, indicator variables can be explicitly or implicitly
defined. Only numeric variables can be used as indicator variables. The
default in implicit declaration is a MANTIS BIG variable. Variable types
are described in “Data conversion between MANTIS SQL support and the
Rdb/VMS database” on page 32. Rdb/VMS interprets indicator values as
integers whereas they may be specified as floating point values in
MANTIS. Therefore a value of -0.9 will not specify a NULL value
because it is converted to zero before being interpreted.

When reading data from the database (SELECT/FETCH), you should
supply indicator variables for any columns that may contain NULL values.

If the column is NULL, the value of the host variable is not defined.
Check the value of the indicator before examining the host variable data.

Chapter 3 Embedding SQL statements in MANTIS programs

32 P39-1350-00

Data conversion between MANTIS SQL support and the
Rdb/VMS database

Rdb performs data conversion between all data types, including
conversions between numeric and string data types. Be sure to match
host variable data types with database columns so that correct results are
obtained.

Rdb does not flag truncation of data as a warning.

The following Rdb data types can be returned in the SQLDA.

 SQLTYPE Description

449 VARCHAR Variable length string up to length 65535
453 CHAR Space padded character string
481 FLOAT 4 or 8 byte floating point, depending on

SQLLEN
485 DECIMAL Packed-decimal with precision and scale

specified by SQLLEN
497 INTEGER 4 byte integer
501 SMALLINT 2 byte integer
503 DATE 64-bit number in OpenVMS absolute date-

time format
505 QUADWORD 8 byte integer

Data conversion between MANTIS SQL support and the Rdb/VMS database

MANTIS Rdb Programming OpenVMS 33

MANTIS data types can only be INTEGER, SMALL, BIG, DECIMAL or
TEXT, but can be mapped to any Rdb/VMS data type, so data transfer
between MANTIS host variables and database columns may frequently
involve conversions. The following conversion error conditions apply:

♦ MANTIS string → Rdb/VMS numeric

- The MANTIS string is not a valid number in decimal or scientific
E-notation.

- The MANTIS string contains commas.

- The magnitude of the converted MANTIS string is greater than
the magnitude supported by the target number.

♦ MANTIS numeric ↔ Rdb/VMS number

- The magnitude of the source number is greater than the
magnitude supported by the target number.

♦ MANTIS string → Rdb/VMS DATE

(Note: string format should be “YYYYMMDDHHMMSSNN.”)

- The MANTIS string is less than 8 characters in length.

- The MANTIS string does not specify a valid date and time (up to
its length or to 16 places, whichever is less).

Chapter 3 Embedding SQL statements in MANTIS programs

34 P39-1350-00

MANTIS interface to Rdb
MANTIS interfaces to Rdb and Rdb/VMS via a dynamically loaded
shareable image. This image is identified by the logical name
MANTIS_RDI_IF, and is referred to as the RDI interface. This interface
imposes certain limitations and restrictions on the Rdb support in
MANTIS. The primary limitation is that MANTIS executes all embedded
SQL statements dynamically, and MANTIS dynamic SQL support is
merely another layer over its underlying use of dynamic SQL.

Another limitation involves the relationship between embedded SQL
statements and cursor names. MANTIS must PREPARE all embedded
SQL statements before executing them. The RDI interface requires that
when a statement is prepared, the cursor name associated with that
statement must also be nominated on the same call.

However, for MANTIS dynamic SQL support, cursor names are not
known at the time of the PREPARE (since MANTIS executes
interpretively). MANTIS resolves this problem by declaring cursors for all
prepared statements that could possibly require them. These statements
include:

♦ DECLARE

♦ Static SELECT

♦ Statements that are parameters to PREPARE

In this manual the term ‘real cursor‘ is used to refer to cursors declared
internally by MANTIS, to distinguish them from cursor names declared in
a MANTIS program. When a real cursor is created for a non-SELECT
dynamic statement, it is (effectively) a wasted resource.

The RDI interface supplied on the MANTIS release tape supports up to
100 cursors with no limit on the number of statements.

MANTIS Rdb Programming OpenVMS 35

Programming considerations

To use MANTIS SQL Support, you simply embed the appropriate SQL
statements in your MANTIS application program as standard MANTIS
comments, enclosed in EXEC_SQL-END blocks. As MANTIS SQL
Support encounters each SQL statement, it prepares it for execution and
then executes it, in effect performing the same steps (preprocess,
compile, link, and load before the run) that are executed with a COBOL
program that contains embedded SQL statements. However, unlike
COBOL, the MANTIS program can be modified, including the SQL
statements, and then immediately re-executed by issuing the RUN
command.

Chapter 4 Programming considerations

36 P39-1350-00

The fact that MANTIS SQL Support is interpretive has several
implications for program design, as you will see in this chapter. Before
you begin writing MANTIS SQL Support programs, you should be aware
of these implications and other programming considerations. Briefly, they
are as follows:

♦ MANTIS stores an EXEC_SQL-END block as a single line of text
internally and associates the line number of the last program line in
the block with this single line. There are minor distinctions between
bound and unbound versions of a program.

♦ The scope of a cursor or SQL statement is local. Since both are SQL
entities and not MANTIS entities, you cannot pass them as
parameters or use them in non-SQL MANTIS statements.

♦ The WHENEVER statement in MANTIS SQL Support differs slightly
from the WHENEVER statement used in other languages. It has
different syntax, defaults, and possibly effects.

♦ Elements in the SQLCA are accessed through a MANTIS function
called SQLCA, rather than as elements of an SQLCA data structure.

♦ The effects of COMMIT and ROLLBACK in Rdb/VMS differ slightly
from COMMIT and RESET in MANTIS. In Rdb/VMS, COMMIT
commits only SQL, and only for the specified SQL session. In
MANTIS, COMMIT and RESET commit everything (including SQL).

♦ Error messages can come from different sources: MANTIS SQL
Support, the MANTIS nucleus, and the database system.

Each of these topics is discussed in detail in this chapter.

Running an EXEC_SQL-END block

MANTIS Rdb Programming OpenVMS 37

Running an EXEC_SQL-END block
The EXEC_SQL-END block may continue over several program lines,
but when executed it internally becomes a single line of text to MANTIS
SQL Support. If you enter the following block:
10 EXEC_SQL

20 | SELECT * FROM table-name

30 | WHERE col-name > :MIN_VALUE

40 END

you can execute it using the RUN command by entering “RUN 10.”
MANTIS stores the block as a single line of text and associates it with the
last program line in the SQL block, in this example, line 40. Therefore, if
MANTIS encounters an error in the program block, it returns the error
message and displays line 40.

If you bind the program, however, MANTIS stores the block as a single
line and associates it with the line number of the last SQL statement, in
this case line 30. If you want to run the bound block using the RUN
command, you must enter “RUN 30,” If MANTIS encounters an error in
the program block, it returns the error message and displays line 30.

Chapter 4 Programming considerations

38 P39-1350-00

The scope of cursors, statements and SQLDAs
Cursors, statements, and named SQLDAs are identified by names, and
are basic to dynamic SQL programs. The scope of a cursor name,
statement name, or SQLDA name is limited to the program or external
subprogram context in which the name is declared. When a cursor,
statement or SQLDA name is redeclared in an external subprogram, it
refers to a different structure.

MANTIS maps statement and cursor names onto RDB statement and
cursor names. The scope of the RDB statement and cursor names is the
MANTIS main program, or the entire connect time to the Rdb/VMS
database. This mapping requires further explanation, since certain error
conditions relating to open cursors can cause real cursor names to be
displayed in error messages.

As each MANTIS cursor is opened, another global real cursor name of
the form ‘Cnnn’ (where ‘nnn’ is a 3-digit number allocated by MANTIS) is
allocated and mapped to the MANTIS cursor name. Therefore, each
MANTIS external subprogram maps a range of real cursor names. Upon
subprogram EXIT, MANTIS closes all real cursors that are open. This
frees up that range of real cursor names for the next subprogram to be
called, or for the next invocation of the same subprogram.

The limited scope of a MANTIS cursor name is illustrated by this
mapping. MANTIS cursor C1 in main program MAIN might be mapped to
real cursor C001, and MANTIS cursor C1 in external subprogram SUB
could be mapped to real cursor C006.

Connection to the Rdb/VMS database

MANTIS Rdb Programming OpenVMS 39

Connection to the Rdb/VMS database
The MANTIS RDI interface performs automatic attachment to the
Rdb/VMS database identified by the logical name SQL$DATABASE.
This method of attachment is the same as that used by third generation
language programs (such as FORTRAN or COBOL) which are
processed by the RDB precompilers.

MANTIS does not support explicit database connection by any embedded
SQL statement (such as the SUPRA CONNECT statement). MANTIS
does support the setting of the logical name SQL$DATABASE as follows:

♦ SQLCA(“DBNAME”)=“RDB” (see MANTIS SQLCA statement)

♦ EXEC_SQL: | SET DBNAME dbname-spec

♦ The MANTIS SET $LOGICAL statement

♦ EXEC_SQL(“RDB”)

The new value of SQL$DATABASE will be set in the PROCESS logical
name table in USER mode.

Chapter 4 Programming considerations

40 P39-1350-00

Disconnection from the Rdb/VMS database
MANTIS detaches from the Rdb/VMS database by executing the SQL
FINISH statement. This can be performed explicitly by a MANTIS
program, or implicitly by the MANTIS nucleus.

Possible causes of disconnection are:

♦ EXEC_SQL: | FINISH

♦ EXEC_SQL: | COMMIT [WORK] RELEASE

♦ MANTIS main program context cleanup

♦ A MANTIS CHAIN statement, if the MANTIS option for database
sign-off on a CHAIN statement is enabled.

MANTIS main program context cleanup occurs in the following
circumstances:

♦ The current TEST program context is released in Program Design as
the result of a NEW, LOAD, EDIT or RUN command; or when the
Program Design Facility is exited.

♦ When a main program terminates in RUN mode (when not under the
control of Program Design).

The MANTIS EXEC_SQL statement

MANTIS Rdb Programming OpenVMS 41

The MANTIS EXEC_SQL statement
The common usage of this statement has already been shown in the
examples in this manual. This section discusses the use of EXEC_SQL
for multiple session support.

[]()[][]

END

 | : , EXEC_SQL

�
�
�

�

�

�
�
�

�

�

continued statement-sql

statement-sqlexp2exp1

exp1

Description Specify the database subsystem type (DBTYPE).

Format A text expression equal to “SUPRA,” “RDB,” or “ORACLE.”

exp2

Description Optional. Specify connect session number when exp1 is used to specify
SUPRA or ORACLE as the DBTYPE.

Format A numeric expression equal to a session number in the range of one
through eight.

Chapter 4 Programming considerations

42 P39-1350-00

General considerations

♦ Multiple session support refers to the ability to connect to different
SQL databases concurrently, for example, to SUPRA and Rdb/VMS
databases. It also refers to the ability to have multiple connections to
some databases (e.g., SUPRA), but you can only be connected to
one Rdb/VMS database at a time.

♦ Another element of the EXEC_SQL statement is the current
DBTYPE, defined as the default used when one is not specified in an
EXEC_SQL statement. The current DBTYPE can be SUPRA, RDB,
or ORACLE and, once set, remains in place until either:

- Explicitly changed by another EXEC_SQL or SQLCA statement

- Implicitly changed by signing on to another MANTIS user

 The Master User can specify your default DBTYPE in your MANTIS
user profile. If this function is not performed by the Master User,
MANTIS uses SUPRA as the default.

Not all DBTYPEs are supported on all platforms. For example, Rdb/VMS
support is restricted to the OpenVMS environment.

The SQL WHENEVER statement

MANTIS Rdb Programming OpenVMS 43

The SQL WHENEVER statement
The WHENEVER statement in MANTIS SQL Support differs from that of
SQL in COBOL in four ways:

♦ It is interpretive, not compiled.

♦ GOTO is replaced by DO.

♦ The default for SQLERROR is FAULT, not CONTINUE.

♦ FAULT is an extra WHENEVER action that allows program
termination upon the specified condition.

The syntax of the MANTIS SQL Support WHENEVER statement is
shown below. Note that any action (DO, FAULT, or CONTINUE) can be
selected for any condition (SQLERROR, SQLWARNING, NOT FOUND).

WHENEVER condition action

Chapter 4 Programming considerations

44 P39-1350-00

condition

Description Required. Indicate the condition you want to check for.

Options Valid conditions are SQLERROR, SQLWARNING, and NOT FOUND.
Each is explained in more detail below.

SQLERROR

Description Optional. Specifies that the database returned an error
code as the result of an SQL statement; SQLCODE < 0.

Default action FAULT

SQLWARNING

Description Optional. Indicates that SQLCA(“SQLWARN0”) = “W” and
that SQLCODE = 0.

Default action CONTINUE

NOT FOUND

Description Optional. Indicates that the database cannot find a row to
satisfy your SQL statement, or there are no more rows to
fetch (SQLCODE = 100).

Default action CONTINUE

The SQL WHENEVER statement

MANTIS Rdb Programming OpenVMS 45

action

Description Required. Specify the action to be taken when the named condition is
met.

Options Valid actions are DO entry-name[(parms)], FAULT, and CONTINUE.

DO entry-name[(parms)]

Description Optional. Indicates a standard MANTIS DO (internal or
external) and corresponds to the WHENEVER-GOTO SQL
statement in SQL in COBOL. WHENEVER-DO transfers
control to the specified internal routine or external program
whenever the named condition is encountered.

Considerations

♦ WHENEVER-DO can transfer control to an internal routine or
external program, which in turn can contain any MANTIS logic,
including CHAIN, EXIT, or STOP statements. The current values of
any DO arguments at the time of the EXEC_SQL that caused the DO
to occur are passed to the named subroutine. The subroutine EXIT
returns control to the next statement following the EXEC_SQL that
caused the DO to occur.

♦ The WHENEVER-DO action resembles the existing functionality of
the SET TRAP statement in MANTIS. If the DO portion of a
WHENEVER-DO contains an error, MANTIS returns a MANTIS error
message associated with the DO statement, not an SQL
WHENEVER-type error. MANTIS displays the line in error in the
subroutine. The WHENEVER statement may be outside of the
current execution path. Remember that DO is executed as a result
of an SQL statement raising the condition with which the DO action is
associated.

Chapter 4 Programming considerations

46 P39-1350-00

FAULT

Description Optional. Terminates execution of the program and
displays the generated database system message in the
form of a MANTIS fault (error) message.

Only if WHENEVER condition FAULT is in effect will
MANTIS SQL Support intercept the specified condition and
fault the MANTIS program. Remember that FAULT is the
default action for SQLERROR.

CONTINUE

Description Optional. Permits program execution to continue without
interruption when the named condition occurs. Your
program should then check SQLCODE for the results of
each EXEC_SQL.

 The following table provides a quick reference for the
WHENEVER conditions and default actions.

Condition Default action
SQLERROR FAULT
SQLWARNING CONTINUE
NOT FOUND CONTINUE

Example

00200 |

00210 | SET 'WHENEVER' SETTINGS TO DESIRED VALUES

00220 |

00230 EXEC_SQL:| WHENEVER SQLERROR DO DO_ROUTINE(PARM1,PARM2,PARM3)

00240 END

00250 EXEC_SQL:| WHENEVER SQLWARNING FAULT

00260 END

00270 EXEC_SQL:| WHENEVER NOT FOUND CONTINUE

00280 END

The SQL WHENEVER statement

MANTIS Rdb Programming OpenVMS 47

Declarative versus interpretive WHENEVER statements
When SQL is embedded in COBOL, WHENEVER is a declarative
statement. It is processed when the program is precompiled, not at
execution time. Thus, in a COBOL program the current WHENEVER
setting is determined by sequential position. By setting we mean the
combination of condition and action that the WHENEVER statement
specifies. For example, in the statement:
WHENEVER SQLWARNING CONTINUE

SQLWARNING is the condition and CONTINUE is the action. Together,
they make up the setting. (Remember that a WHENEVER setting is
actually an accumulation of three settings: one each for the conditions
SQLERROR, SQLWARNING and NOT FOUND.)

In contrast, in MANTIS SQL Support the last-executed WHENEVER
statement is in effect regardless of its relative sequential position in the
program. This difference is important when a WHENEVER is used with
conditional statements. The following figure illustrates the different
effects of a declared versus interpreted WHENEVER statement. C
denotes a condition and 1 and 2 denote actions. The same
considerations apply to FOR, UNTIL, WHEN, and IF structures in
MANTIS.

* However, if the WHILE condition is not true
the first time line 40 is executed, C1 remains
in effect through line 80 because line 50 was
not executed.

The first time statement 40 is executed,
the setting is C1; thereafter it is C2.

Since the setting is established before
run time, it remains unchanged
regardless of whether lines 50-70 are
executed.

Setting
in effect

C1
|

C1
C2
C2
C2
C2

Setting
in effect

SQL in COBOL
pseudocode:

20 WHENEVER C1
"

40 WHILE condition
50 WHENEVER C2

"
70 ENDWHILE
80 EXEC_SQL

MANTIS SQL Support
pseudocode:

20 WHENEVER C1
"

40 WHILE condition
50 WHENEVER C2

"
70 ENDWHILE
80 EXEC_SQL

C1
|

C2 FIRST, THEN C2*
C1 or C2*
C1 or C2*
C1 or C2*
C1 or C2*

Chapter 4 Programming considerations

48 P39-1350-00

Scope of the WHENEVER statement
The scope of the WHENEVER statement is the current MANTIS
DOLEVEL and every EXEC_SQL until a new WHENEVER is executed.
If the default WHENEVER settings are not desired, WHENEVER must be
issued in each externally done program.

The SQL COMMIT/ROLLBACK statement

[][]RELEASE WORK
ROLLBACK
COMMIT

�
�
�

�
�
�

The RELEASE parameter is supported for compatibility with MANTIS
support for SUPRA SQL, and is a request to disconnect from the
database (FINISH) upon successful completion of the COMMIT or
ROLLBACK.

The SQL SET DBNAME statement
This statement provides an alternate way to change the setting of
SQLCA(“DBNAME”). It allows you to specify the Rdb/VMS database
names to use in all subsequent connects. Refer to the section on
SQLCA elements for more information.

The format for using the SET DBNAME statement is:

�
�
�

�
�
� −

parameter
name'database'

:
 DBNAME SET

The SQLCA in MANTIS SQL support

MANTIS Rdb Programming OpenVMS 49

The SQLCA in MANTIS SQL support
In SQL in COBOL, the SQLCA (SQL Communications Area) is a data
structure. An SQL in COBOL application accesses elements in the
SQLCA as items of data. In MANTIS SQL Support, the SQLCA function
and statement perform the complementary operations of reading and
writing elements of the SQLCA structure. All standard SQLCA
capabilities are provided.

SQLCA syntax
The syntax of the built-in SQLCA function (read) is shown first; the
SQLCA statement (write), second, below.

sqlca-element = SQLCA(element_name)

SQLCA(element_name) = sqlca-element-value

sqlca-element

Description Required. Specify a MANTIS variable or array element to receive the
value of your SQLCA element.

Format Valid MANTIS variable reference: a scalar variable, a subscripted array,
or a substring reference.

Consideration The data type of sqlca-element must be compatible with the data type of
the SQLCA element referenced in the SQLCA function.

Chapter 4 Programming considerations

50 P39-1350-00

element_name

Description Required. Is or contains the name of the element to be returned or read.

Format Valid SQLCA element, as listed in “SQLCA elements” on page 51

Considerations

♦ Quotation marks (“”) are required when element_name is specified
as a text literal. For example:
.IF SQLCA("SQLCODE")<ZERO

..DO ERROR_CONDITION_ROUTINE

.END

♦ A text variable containing the element_name is also valid. For
example:
.CACODE="SQLCODE"

.IF SQLCA(CACODE)<ZERO

..DO ERROR_CONDITION_ROUTINE

.END

Because the SQLCA is a built-in function, it is not declared. An
INCLUDE SQLCA statement is not required or recommended.

sqlca-element-value

Description Required. Specify a value to be assigned to your SQLCA element.

Format Valid MANTIS expression or text literal of the appropriate type
(dependent upon the element type)

Consideration The data type of sqlca-element-value must be compatible with the data
type of the SQLCA element referenced in the SQLCA statement.

The SQLCA in MANTIS SQL support

MANTIS Rdb Programming OpenVMS 51

SQLCA elements
The following table lists SQLCA elements, the compatible MANTIS
variable type, and usage notes.

Element MANTIS variable* Usage notes

DBTYPE TEXT(6) Multiple session support
DBNAME TEXT(64) Multiple session support
SQLCAID TEXT(8) Read only
SQLCABC NUMERIC Read only
SQLCODE NUMERIC
SQLERRML NUMERIC Read only
SQLERRMC TEXT(70)
SQLERRP TEXT(8)
SQLERRDn NUMERIC n ranges from 1–6
SQLWARNn TEXT(1) n ranges from 0–7
SQLEXT TEXT(84) Read only

* If a data value is moved from an SQLCA element to a MANTIS variable of

shorter length (e.g., an eight-character SQLCA element to a six-character
MANTIS variable), the right-most characters are truncated.

Remember that SQLCAID, SQLCABC, SQLERRML, and SQLEXT are
read-only. Although values can be written into the other elements, doing
so does not pass any information to the database. In addition, since
these elements are written to by the database, their contents may be
destroyed at each EXEC_SQL statement execution. See the following
discussion of SQLERRMC for more information.

For portable, nonvolatile MANTIS software, you should consider the
entire SQLCA structure as read-only.

Chapter 4 Programming considerations

52 P39-1350-00

Additional elements added to MANTIS SQL Support are described in
further detail here:

DBTYPE The SQLCA(“DBTYPE”) statement allows you to specify
the database with which MANTIS SQL Support will
communicate. Specifies a one- to six-character text
value for the current DBTYPE, as explained in the
section on the EXEC_SQL statement. Allowed values
for DBTYPE are “SUPRA,” “RDB,” and “ORACLE.” All
EXEC_SQL statements executed will now access the
relational database implied by the DBTYPE, by default.

DBNAME Specifies a 1–64 character text value which becomes the
database name used in all subsequent connects. If you
do not specify a database name, MANTIS obtains it from
the translation of the logical name SQL$DATABASE.

SQLERRMC The SQLERRMC element and associated length
parameter returns the error message text for the current
SQLCODE. For example:
EXEC_SQL

...

END

IF SQLCA ("SQLCODE")<0

.SHOW SQLCA("SQLERRMC");

END

 SQLCA (“SQLCODE”) is reset to zero at an implicit
COMMIT. Any solicited input while MANTIS has
COMMIT ON causes an implicit COMMIT. MANTIS will
always issue an implicit COMMIT at any terminal read
operation, unless the program or user explicitly turns the
automatic COMMIT logic off with the COMMIT OFF
statement.

COMMIT and ROLLBACK and MANTIS SQL support’s COMMIT and RESET

MANTIS Rdb Programming OpenVMS 53

COMMIT and ROLLBACK and MANTIS SQL support’s
COMMIT and RESET

In MANTIS SQL Support, SQL’s COMMIT and ROLLBACK statements
have exactly the same effect on the database as the standard MANTIS
COMMIT and RESET statements. The use of an SQL COMMIT or
ROLLBACK does not imply a MANTIS COMMIT or RESET, but the use
of a MANTIS COMMIT or RESET does imply an SQL COMMIT or
ROLLBACK. Execution of an SQL COMMIT statement commits only
SQL, and only for the specified SQL session. MANTIS automatically
performs a COMMIT at terminal input.

For more information on cursor positioning, consult the VAX SQL
Reference Manual, AA-JM32B-TE.

Rdb/VMS is very sensitive to the COMMIT. Care should be taken when
using COMMIT and RESET in embedded SQL applications, and the
following considerations should be kept in mind.

Considerations

♦ MANTIS COMMIT and RESET functions also COMMIT/ROLLBACK
the current SQL transaction. Embedded SQL COMMIT and
ROLLBACK statements only affect the SQL database.

♦ MANTIS COMMIT is performed in the following circumstances:

- When MANTIS COMMIT statement is encountered.

- When any terminal input function (CONVERSE, OBTAIN, WAIT,
or MORE prompt) is encountered by any MANTIS program
(including Program Design when reading command lines), unless
COMMIT OFF has been specified.

- When MANTIS runs the main program cleanup, as outlined
above, the COMMIT is performed prior to database
disconnection.

Chapter 4 Programming considerations

54 P39-1350-00

♦ MANTIS RESET is performed in the following circumstances:

- When MANTIS RESET statement is encountered.

- When a MANTIS FAULT occurs, except for breakpoint faults.

♦ Beware of the effect of the terminal input request by Program Design
at this point. Your MANTIS program may go into a resource wait
state, trying to update a table that another user may be reading (via
SELECT).

♦ You must give careful consideration to the use of COMMIT and
RESET in your embedded SQL applications, as well.

♦ Some database updates may not be validated until they are
committed (for INTEGRITY). For example, when you attempt to
insert a NULL value into a column with the NOT NULL attribute, your
SQL COMMIT statement may fail, and will continue to fail until the
transaction containing the illegal operation is rolled back.

♦ COMMIT closes all open cursors. If your cursors have to remain
open across any terminal input, you must include a MANTIS
COMMIT OFF statement in your main program.

If you are in Program Design, and have set a breakpoint, then a
RESET will not occur when the breakpoint is hit (the breakpoint is a
FAULT condition). However, unless you have done a COMMIT OFF,
an automatic COMMIT will occur when Program Design prompts you
for the next input line. Be aware that this can occur, as it could result
in the program behaving differently under breakpoints.

When a MANTIS COMMIT fails to COMMIT Rdb/VMS, MANTIS
automatically attempts to ROLLBACK only the Rdb/VMS database.

Error messages

MANTIS Rdb Programming OpenVMS 55

Error messages
This section discusses the types of messages you may receive and how
they are displayed in MANTIS Program Design mode and at execution
time. You can receive messages from three sources: the MANTIS
nucleus, MANTIS SQL Support, and the database system.

When MANTIS encounters an error, it displays the fault message first,
then the statement where the error occurred and the text of that line.
Messages from the database system are prefaced with the three-
character code 750. A message from the database contains the
SQLCODE value and its associated text message. The format is:
750 SQLERROR:nnnn: ###...

where nnnn is the three- or four-digit SQLCODE value and “###...” is the
message returned from the database.

For example:
750 SQLERROR:-1: %SQL-F-SYNTAX_ERR, syntax error.

would be returned from Rdb/VMS if an SQLCODE indicating invalid string
constants was returned to the SQLCA and the WHENEVER SQLERROR
condition was set to FAULT.

For explanations and actions for all messages generated by MANTIS,
refer to AD/Advantage MANTIS Messages and Codes OpenVMS/UNIX,
P39-1330.

Chapter 4 Programming considerations

56 P39-1350-00

MANTIS Rdb Programming OpenVMS 57

Dynamic SQL in MANTIS SQL support

This chapter discusses how dynamic SQL works in MANTIS SQL
Support. Dynamic SQL in MANTIS SQL Support differs somewhat from
dynamic SQL in other languages. If you’re new to dynamic SQL
programming, you may want to review this information.

An overview of dynamic SQL
Dynamic SQL is a method for executing SQL statements when data such
as SQL statements, tables, or column names is needed, but is not known
by the program before program execution begins. For example, if an
application requires a user to interactively enter an SQL statement at the
terminal during program execution, the application must use dynamic
SQL.

Virtually any statement in a static application can also be executed
dynamically. The principal statements that enable you to execute SQL
statements dynamically are PREPARE, DESCRIBE, EXECUTE, and
EXECUTE IMMEDIATE. Alternate forms of DECLARE, OPEN, and
FETCH statements are used in dynamic SQL. Communication to and
from the database is done using these statements and an SQLDA data
structure. This structure consists of header elements and repeating
elements (each repeating element group is sometimes called SQLVAR).
The SQLDA contains metadata (e.g., data length and data type) about
the data going between your program and the database. The SQLDA can
be thought of as a representation and repository of the data being
transferred.

Chapter 5 Dynamic SQL in MANTIS SQL support

58 P39-1350-00

Programs using dynamic SQL must procedurally define data about the
SQL statements and host variables. In static SQL programs, the SQL
preprocessor determines this information. A single program can contain
either static SQL statements, dynamic SQL statements, or both.

Not all Rdb statements can be executed dynamically (such as the
SELECT statement). This causes some problems for MANTIS SQL
support, which executes all embedded SQL statements dynamically.
MANTIS overcomes the limitation on dynamic execution of SELECT by
implicitly performing DECLARE and OPEN statements for each static
SELECT statement.

To support this mode of operation, MANTIS supports auto-cursor FETCH
statements (the cursor-name is optional in the embedded SQL FETCH
statement). An auto-cursor FETCH always applies to the most recently
executed static SELECT statement (which may be in a calling program
context).

The following SQL statements may not be executed dynamically (by way
of the dynamic PREPARE and EXECUTE statements).

BEGIN DECLARE SECTION* FINISH
CLOSE IMPORT
CREATE VIEW INCLUDE*
DECLARE CURSOR INTEGRATE**
DECLARE STATEMENT** OPEN
DECLARE TABLE** PREPARE
DESCRIBE SELECT [INTO]
EDIT QUIT
END DECLARE SECTION* RELEASE
EXECUTE SET**
EXPORT SHOW**
FETCH WHENEVER

* May be embedded in a MANTIS program, but are ignored when executed.
** Not supported in MANTIS programs, and will cause errors when executed.

An overview of dynamic SQL

MANTIS Rdb Programming OpenVMS 59

Executing a statement dynamically
In general, to be executed dynamically, most SQL statements must be
prepared with a PREPARE statement and then executed with an
EXECUTE statement. If data is being retrieved, inserted, or updated, the
program must manipulate the SQLDA between preparation and
execution. This manipulation can include allocating and expanding an
SQLDA, retrieving metadata from SQL with the DESCRIBE statement,
and causing data transfer between SQL and MANTIS variables. The
code sequence examples included in this chapter illustrate how
dynamically executed SQL statements and the SQLDA work together in
dynamic routines.

Code sequence for dynamic SQL
The following code provides a sample SELECT and FETCH sequence for
dynamic SQL. The syntax for the PREPARE, DESCRIBE, and
EXECUTE statements used here appears in the appropriate Rdb/VMS
documentation. Sample code for the SQLDA built-in statement and
function (described in “The SQLDA structure” on page 61) is also
included in this example.

SELECT statement with input parameters
50 TEXT DA:DA= "sqlda-name"

60 SQLDA(DA)=NEW

70 TEXT SELECT_STMT (250)

80 EXEC_SQL:| PREPARE stmt-name INTO sqlda-name FROM :SELECT_STMT

90 END

100 EXEC_SQL:| DECLARE cursor-name CURSOR FOR stmt-name

110 END

120 SQLDA(DA,"SQLHOSTVAR",I)=input-parameter:| I = 1 TO SQLDA(DA,"SQLN")

130 EXEC_SQL:| OPEN cursor-name USING DESCRIPTOR sqlda-name

140 END

FETCH statement with output parameters
70 EXEC_SQL:| FETCH cursor-name USING DESCRIPTOR sqlda-name

80 END

90 SHOW SQLDA(DA,"SQLHOSTVAR",I):| I = 1 TO SQLDA(DA,"SQLD")

Chapter 5 Dynamic SQL in MANTIS SQL support

60 P39-1350-00

Other statements with input parameters
30 TEXT UPDATE_STMT (250)

40 EXEC_SQL:| PREPARE stmt-name FROM :UPDATE_STMT

50 END

60 EXEC_SQL:| DESCRIBE stmt-name INTO sqlda-name

70 END

80 SQLDA(DA,"SQLHOSTVAR",I)=input-parameter:| I = 1 TO SQLDA(DA,"SQLN")

90 EXEC_SQL:| EXECUTE stmt-name USING DESCRIPTOR sqlda-name

100 END

The first SQLDA statement allocates the SQLDA. Next, the PREPARE
statement dynamically compiles the SQL statement. Then, the
DESCRIBE statement returns metadata about the results of the SQL
statement in the SQLDA. You may want to include the next SQLDA
statement to supply values for input host variables. The EXECUTE
statement tells the processor to execute the named statement. Finally,
you may include the SQLDA built-in function to transfer data from a host
variable.

Complete example code for dynamic insert, update, delete, and select
routines are in “Sample MANTIS SQL programs” on page 77, along with
their static equivalents.

The SQLDA structure

MANTIS Rdb Programming OpenVMS 61

The SQLDA structure
In dynamic SQL support, SQL communicates with your program via an
SQLDA (SQL Descriptor Area). An SQLDA is a data structure that holds
information about data (metadata) that is transferred between your
program and the database.

The following figure represents the structure of an SQLDA. The first four
elements are header elements; they occur once per SQLDA. The next six
elements repeat once per data item. A data item is either one column of
an SQL table (output from SQL to your program) or the value of a host
variable (input to SQL from your program). The maximum number of
entries is 300. “SQLDA header elements” on page 68 and “SQLDA
repeating elements” on page 75 summarize header and repeating
elements.

SQLDAID SQLDABC SQLDN SQLD

SQLNAME

SQLLEN

SQLIND

SQLNAME

SQLLEN

SQLIND

SQLTYPE

SQLFRAC

SQLDATA

SQLTYPE

SQLFRAC

SQLDATA

1

1

1

1

1

1

2

2 2

2

22

:

:

Repeating
Element

Repeating
Elements

Header
Elements

2

1

SQLDA names must follow the rules for MANTIS variable names so that
the MANTIS Parser can recognize them in embedded SQL statements.

Chapter 5 Dynamic SQL in MANTIS SQL support

62 P39-1350-00

In other programming languages, you must explicitly declare each
SQLDA element as a data area in your program and then access SQLDA
elements through programming statements. In MANTIS SQL Support,
when you declare an SQLDA, an SQLDA with all the elements shown in
the preceding illustration is built for you. The SQLDA contains the default
number of repeating elements set by your Master User as one of your
MANTIS Options. This value can be modified by your program.

The MANTIS SQLDA built-in statement and function allow your MANTIS
program to create and maintain SQLDA data structures which are in turn
used with programmed dynamic SQL statements. Your MANTIS
program can use the SQLDA statement to create a named SQLDA
structure and to set input host variable information. The sqlda-name
parameter must include a text expression or literal which contains the
name of a valid MANTIS variable. Your program can use the SQLDA
function to retrieve information (output host variable information) about
SQL table columns. The SQLDA statement and function are described
and illustrated in the sections that follow. Their uses are outlined below:

♦ To allocate or deallocate an SQLDA:
SQLDA(sqlda-name)=NEW

SQLDA(sqlda-name)=QUIT

♦ To move data from your program into an SQLDA:
SQLDA(sqlda-name,header-element)=expression

SQLDA(sqlda-name,repeating-element,index)=expression

♦ To move data from an SQLDA into your program:
mantis-variable=SQLDA(sqlda-name,header-element)

mantis-variable=SQLDA(sqlda-name,repeating-element,index)

In this syntax, sqlda-name, header-element, repeating-element, and
index refer to standard MANTIS variables, literals, or expressions.
Header elements are listed in “SQLDA header elements” on page 68 and
“SQLDA repeating elements” on page 75. In the examples above, index
refers to the sequential occurrence of the repeating element group in the
SQLDA.

The SQLDA structure

MANTIS Rdb Programming OpenVMS 63

Allocate an SQLDA
Use the following SQLDA statement to allocate a new SQLDA.

SQLDA(sqlda-name) = NEW

sqlda-name

Description Required. Specify the name of the SQLDA.

Format 1–18 character text expression

Consideration The expression result must be a valid MANTIS symbolic name of 1–18
characters.

General considerations

♦ This statement allocates a new, empty SQLDA structure with the
default number of repeating elements. The default is set at
installation as one of your MANTIS Options by your Master User.
Within your program you can also modify an SQLDA’s size by
resetting the value of SQLMAX (see the discussion of SQLMAX that
follows).

♦ If you declare an SQLDA of the same name as one that already
exists, the second SQLDA statement is ignored.

♦ The scope of an SQLDA is the current DO level. For example, you
can have two SQLDAs of the same name on different DO levels.
Within a DO level, however, you can only access SQLDAs defined
for that DO level.

Example
SQLDA("SQLDA1")=NEW

Chapter 5 Dynamic SQL in MANTIS SQL support

64 P39-1350-00

Deallocate an SQLDA
Use the following SQLDA statement to deallocate an SQLDA.

SQLDA(sqlda-name) = QUIT

sqlda-name

Description Required. Specify the name of the SQLDA to be deallocated.

Format Must be a valid variable name of 1–18 characters

Consideration The sqlda-name may be any valid MANTIS text expression or text literal.

General consideration

♦ This statement deallocates an existing SQLDA by name. An SQLDA
defined at a DO level is also deallocated when that DO level is exited.
SQLDAs are also deallocated in the case of a RUN without a line
number. A RUN with a line number may produce unpredictable
results if you have modified the program.

Example
SQLDA("SQLDA1")=QUIT

The SQLDA structure

MANTIS Rdb Programming OpenVMS 65

Move data from your program into an SQLDA header element
Use the following SQLDA statement to set header or column-name
information in the SQLDA.

SQLDA(sqlda-name,header-element) = expression

sqlda-name

Description Required. Supply the name of a previously allocated SQLDA.

header-element

Description Required. Provide the name of an SQLDA header element into which
you are moving data.

Options Only three header elements may be set: SQLN, SLQMAX, and SQLD.

SQLN SQLN and SQLMAX are the same in Rdb support. See
SQLMAX below.
SQLDA("DA1","SQLN") = 10

SQLMAX SQLMAX is the actual number of repeating groups in the
physical SQLDA structure. The value can range from 1–
300. Setting this number in your program causes the
SQLDA to expand or contract by the specified number of
repetitions. Once physically expanded, the space
occupied by the SQLDA will never physically contract.
For example, if an SQLDA named DA1 has 20 repeating
occurrences, the following statement will reduce the
logical occurrences to five; however, physical space for
20 remains (these numbers are arbitrary).
SQLDA("DA1","SQLMAX") = 5

Chapter 5 Dynamic SQL in MANTIS SQL support

66 P39-1350-00

SQLD SQLD is the number of SELECT LIST columns, or the
number of host variable MARKERS currently described
in the SQLDA repeating elements. An SQLDA cannot
describe both SELECT LIST columns and MARKERS at
the same time. When processing a dynamic SELECT
statement containing input host variable parameters, the
statement must be DESCRIBED twice; first, to obtain the
number and type of input parameters which must be
supplied in an OPEN statement, and second, to obtain
the number and type of output column results from a
FETCH statement.

MANTIS will perform the DESCRIBE SELECT LIST on your behalf, using
the SQLDA named in the USING clause of the FETCH statement. You
are responsible for describing MARKERS into the SQLDA named in the
OPEN statement’s USING clause.
SQLDA("DA1","SQLD") = 8

The SQLDA structure

MANTIS Rdb Programming OpenVMS 67

expression

Description Required. Supply the SQLDA variable count.

Format Standard MANTIS variable, literal, or expression

Consideration Since all SQLDA header elements that can be set are numeric, the
expression must also always be numeric.

General considerations

♦ In a third-generation language like FORTRAN and COBOL, when a
DESCRIBE statement is executed, if the SQLDA is too small (SQLN
is less than the number of items that will be returned as a result of
the DESCRIBE), SQL sets SQLD to the required number and
terminates. The program must then expand the SQLDA accordingly.
By contrast, MANTIS SQL Support automatically expands the
SQLDA to the required size if the SQLDA is too small to accept the
results of a DESCRIBE. You can check the number of occurrences
after the DESCRIBE by examining the SQLD value.

♦ There are two other read-only header elements illustrated in “The
SQLDA structure” on page 61: SQLDAID and SQLDABC. If you
attempt to use a read-only element in this SQLDA statement, you will
generate a fault.

Example
SQLDA("SQLDA1","SQLN") = TOTAL_NEEDED

Chapter 5 Dynamic SQL in MANTIS SQL support

68 P39-1350-00

SQLDA header elements

Element Function How set/when used Results Updateable?

SQLDAID Eyecatcher Set by MANTIS when
the SQLDA is created

“SQLDA” No

SQLABC Size of the
SQLDA in bytes

Set by MANTIS when
the SQLDA is created,
or when SQLN is
changed by the
SQLDA statement

16+(44*SQLN) No

SQLN /
SQLMAX

Total number of
host variables in
SQLDA

Set using value from
MANTIS options when
SQLDA is allocated,
can be changed by the
SQLDA statement

Number of
repeating
groups allocated

Yes

SQLD Current number
of SELECT LIST
columns or host
variable
MARKERS
described in the
SQLDA

Set as a result of a
PREPARE INTO and
DESCRIBE
statements; can be set
by the SQLDA
statement, but is not
necessary because
MANTIS always does
implicit DESCRIBE
MARKERS where
necessary

Number of input
or output
variables
described in
SQLDA

Yes

The SQLDA structure

MANTIS Rdb Programming OpenVMS 69

Move data from your program into an SQLDA repeating element
Use the following SQLDA statement to supply values for input host
variables, setting the value of repeating elements.

SQLDA(sqlda-name, repeating-element, index) = expression

sqlda-name

Description Required. Supply the name of a previously allocated SQLDA.

repeating-element

Description Required. Specify the name of the repeating element into which you are
moving data.

Options Three repeating elements may be set: SQLNAME, SQLIND, and
SQLDATA.

SQLNAME Provides the column name returned by SQL. It can also
be set by your program. SQLCOLNAME has a type of
TEXT and a length of 18. Note that although you can
modify the SQLCOLNAME element, it does not have an
effect on the database. In addition, the database writes
to this element, so its contents may be destroyed at each
EXEC_SQL statement execution.

SQLIND Contains the indicator value. The indicator value
indicates whether the host variable contains a real value,
or is NULL or MISSING (see “Indicator variables” on
page 31). Possible indicator values and their meanings
include:

Value Meaning
 < 0 The host variable data is NULL or MISSING.
 > = 0 The host variable contains real values.

Chapter 5 Dynamic SQL in MANTIS SQL support

70 P39-1350-00

SQLDATA In a third-generation program, this element holds a four-
byte binary address. This address is used to access the
data item being transferred between the program and the
database. A third-generation program must acquire
space for the data item and place the space’s address in
this element. In MANTIS SQL Support, this element is
used to automatically perform the following actions when
you are transferring data into the SQLDA:

♦ Allocate a data area for the data item, or expand the
data area if necessary.

♦ Set the value of SQLDATA to the address of the data
area. This address is used internally by MANTIS
SQL Support; your program does not need to
manipulate this value.

♦ Move data from the MANTIS host variable into the
SQLDA data area.

♦ Set SQLTYPE and SQLLEN to match the definition
of the MANTIS variable according to the SQLTYPE
values in “MANTIS SQL support data type
conversion” on page 72. SQLLEN is set to the
length of the MANTIS variable.

 If you are transferring data out of the SQLDA, this
element simply performs the transfer.

Note as well that the SQLDATA element may have a type of numeric or
string. When you do not know the type of data you want to retrieve from
the database in advance, use the SQLTYPE to determine the data type.

index

Description Required. Specify the sequential occurrence of the repeating element
into which you are moving data. The value should be relative to 1.

The SQLDA structure

MANTIS Rdb Programming OpenVMS 71

expression

Description Required. Supply an SQLVAR element value.

Format Standard MANTIS variable, literal, or expression

Consideration The expression may be either text or numeric. There are no limitations.

General considerations

♦ SQLLEN and SQLTYPE will be set to the length and data type of the
MANTIS expression.

♦ SQLTYPE is always set to the MANTIS equivalent data type. A data
type conversion table appears below.

♦ For compatibility with MANTIS support for SUPRA SQL, MANTIS
recognizes the SUPRA SQL element names as equivalent to the Rdb
element names. Use the Rdb names as follows:

VAX_SQL SUPRA_SQL
SQLNAME SQLCOLNAME
SQLIND SQLHOSTIND
SQLDATA SQLHOSTVAR
SQLLEN SQLCOLLENGTH
SQLTYPE SQLCOLTYPE/SQLHOSTVARTY

♦ Rdb uses the SQLTYPE element to describe the data type in the

Rdb/VMS database, and to receive the host variable data type from
MANTIS. MANTIS will set SQLLEN and SQLTYPE to the MANTIS
data type (whenever you set SQLDATA with the SQLDA statement).
Previous contents of the elements (which may have been set by a
previous DESCRIBE statement) may be lost.

Example
SQLDA("SQLDA1","SQLHOSTVAR",9) = SALARY

Chapter 5 Dynamic SQL in MANTIS SQL support

72 P39-1350-00

MANTIS SQL support data type conversion

Rdb TYPE

Description

SQLTYPE set
by MANTIS

MANTIS type

VARCHAR 449 Varying string to 64K 449 TEXT / MIXED /
KANJI

CHAR 453 Blank padded string 449 TEXT / MIXED /
KANJI

FLOAT 481 Floating point 481 SMALL / BIG
INTEGER 497 4-byte integer 481 BIG*
SMALLINT 501 2-byte integer 481 BIG*
DECIMAL 485 Packed-decimal 485 TEXT
DATE 503 64-bit integer 449 TEXT / MIXED /

KANJI
QUADWORD 505 8-byte integer 485 DECIMAL**

* MANTIS uses BIG to read integer data from the database because there may be an implied decimal

point, for example, INTEGER(2).
** MANTIS uses DECIMAL to read QUADWORD column data from the database in case they contain

more significant digits than a BIG variable can hold.
The SQLDA statement is used to assign either string or numeric MANTIS
data to an SQLDA repeating element. MANTIS will set the SQLTYPE to
449, 481 or 485 accordingly. If the SQLDA statement is not used in this
way, MANTIS will assign SQLTYPES as shown in the table above,
replacing the existing values of SQLTYPE.

The SQLDA structure

MANTIS Rdb Programming OpenVMS 73

Move data from an SQLDA header element into your program
Use the following SQLDA function to read header elements.

mantis-variable = SQLDA(sqlda-name,header-element)

mantis-variable

Description Required. Supply the name into which the SQLDA header element is to
be placed.

Format Standard MANTIS variable

sqlda-name

Description Required. Specify the name of a previously allocated SQLDA.

header-element

Description Required. Provide the name of the header element you are reading.

General considerations

♦ No index value is permitted.

♦ You may read all header elements.

Example
TOTAL_NEEDED = SQLDA(“SQLDA1”,”SQLD”)

Chapter 5 Dynamic SQL in MANTIS SQL support

74 P39-1350-00

Move data from an SQLDA repeating element into your program
Use the following SQLDA function to transfer data from a repeating
element into a MANTIS variable.

mantis-variable = SQLDA(sqlda-name, repeating-element, index)

mantis-variable

Description Required. Specify the destination into which the SQLDA repeating
element is to be placed.

Format Standard MANTIS variable or array element reference

sqlda-name

Description Required. Specify the name of a previously allocated SQLDA.

repeating-element

Description Required. Supply the name of the repeating element to be read.

index

Description Required. Provide the sequential occurrence of the repeating element to
be read. This value should be relative to 1.

General considerations

♦ You may read all repeating elements.

♦ Data types between repeating elements and MANTIS variables must
match.

Example
EMPLOYEE_NUMBER = SQLDA(“SQLDA1”,”SQLDATA”, 1)

The SQLDA structure

MANTIS Rdb Programming OpenVMS 75

SQLDA repeating elements

Element Function How set/when used Results Updateable?

SQLNAME /
SQLCOLNAMES

QL column name Set by Rdb/VMS as the
result of a PREPARE
INTO or DESCRIBE
statement

Column name Yes

SQLTYPE /
SQLCOLTYPE

Data type in the
database or the
host variable data
type

Set by Rdb/VMS as the
result of a PREPARE
INTO or DESCRIBE
statement; set by
MANTIS prior to
EXECUTE, OPEN,
FETCH statements and
by the SQLDA
statement

See “MANTIS
SQL support data
type conversion”
on page 72

No

SQLLEN /
SQLCOLLENGTH

Maximum number
of bytes for a
column in the
database, or actual
number of host
variable bytes

Set by Rdb/VMS as the
result of a PREPARE
INTO or DESCRIBE
statement; set by
MANTIS prior to
EXECUTE, OPEN,
FETCH statements and
by the SQLDA
statement

4 or 8 for numeric
columns, or
maximum or
actual string
length

No

SQLFRAC /
SQLCOLRFAC

Number of decimal
places for
INTEGER,
SMALLINT, or
QUADWORD data
types

Set by Rdb/VMS as the
result of a PREPARE
INTO or DESCRIBE
statement

Number of places
specified in the
CREATE TABLE
statement

No

SQLIND /
SQLHOSTIND

The value of the
NULL or MISSING
indicator variable

Set by Rdb/VMS as the
result of a FETCH
statement; set by the
MANTIS SQLDA
statement

< = -1, NULL
value; otherwise,
the value is
defined and
addressed by
SQLDATA

Yes

SQLDATA /
SQLHOSTVAR

Address host
variable data

Set by MANTIS prior to
EXECUTE, OPEN,
FETCH statements,
and by the MANTIS
SQLDA statement

Address of
MANTIS variable
in the MANTIS
data work area, or
address of
MANTIS data
after being copied
or converted into
work buffer

Yes

Chapter 5 Dynamic SQL in MANTIS SQL support

76 P39-1350-00

MANTIS Rdb Programming OpenVMS 77

Sample MANTIS SQL programs

MANTIS HELP includes prompters for the dynamic SQL statements
interpreted by MANTIS. These prompters are subject to syntax rules
determined by the support for Rdb.

Use the following HELP commands:

♦ HELP EXEC_SQL

♦ HELP SQL (displays a list of available Rdb/VMS help prompters)

♦ HELP RDB DECLARE

Each of the Rdb/VMS specific HELP prompters includes an example
program that is reproduced in the EXAMPLES program library. You can
access these programs by running EXAMPLES:APPLICATIONS and
selecting SQL EXAMPLES from the menu.

For clarity, the following examples do not contain error checking or
display logic. Employee information is hardcoded into the programs. Each
static example has the same functionality as the dynamic example on the
page which follows it.

Appendix A Sample MANTIS SQL programs

78 P39-1350-00

A static insert routine
10 ENTRY STATIC_INSERT

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A STATIC SQL "INSERT"

40 .| STATEMENT. IT INSERTS ONE EMPLOYEE INTO AN EMPLOYEE

50 .| TABLE.

60 .|

70 .BIG HIRE_DATE, BIRTH_DATE, JOB_CODE,SALARY, EDUCATION_LEVEL

80 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20), MIDDLE_INITIAL(1),LAST_NAME(20)

90 .TEXT PHONE_NUMBER(4),WORK_DEPARTMENT(3),SEX(1)

100 .|

110 .EMPLOYEE_NUMBER = "000120"

120 .FIRST_NAME="SEAN"

130 .MIDDLE_INITIAL= " "

140 .LAST_NAME = "O'CONNELL"

150 .BIRTH_DATE=421018

160 .HIRE_DATE=631205

170 .JOB_CODE=58

180 .EDUCATION_LEVEL=14

190 .SALARY=29250

200 .PHONE_NUMBER="2167"

210 .WORK_DEPARTMENT="A00"

220 .SEX="M"

230 .|

240 .EXEC_SQL:| INSERT INTO FRED.TEMPL

250 ..| (EMPNO,

260 ..| FIRSTNME,

270 ..| MIDINIT,

280 ..| LASTNAME,

290 ..| BRTHDATE,

300 ..| HIREDATE,

310 ..| JOBCODE,

320 ..| EDUCLVL,

330 ..| SALARY,

A static insert routine

MANTIS Rdb Programming OpenVMS 79

340 ..| PHONENO,

350 ..| WORKDEPT,

360 ..| SEX)

370 ..| VALUES (:EMPLOYEE_NUMBER,

380 ..| :FIRST_NAME,

390 ..| :MIDDLE_INITIAL,

400 ..| :LAST_NAME,

410 ..| :BIRTH_DATE,

420 ..| :HIRE_DATE,

430 ..| :JOB_CODE,

440 ..| :EDUCATION_LEVEL,

450 ..| :SALARY,

460 ..| :PHONE_NUMBER,

470 ..| :WORK_DEPARTMENT,

480 ..| :SEX)

490 .END

500 EXIT

Appendix A Sample MANTIS SQL programs

80 P39-1350-00

A dynamic insert routine
10 ENTRY DYNAMIC_INSERT

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A DYNAMIC SQL "INSERT"

40 .| STATEMENT. IT INSERTS ONE EMPLOYEE INTO AN EMPLOYEE

50 .| TABLE.

60 .|

70 .BIG HIRE_DATE,BIRTH_DATE,JOB_CODE,SALARY, EDUCATION_LEVEL

80 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20), MIDDLE_INITIAL(1),LAST_NAME(20)

90 .TEXT PHONE_NUMBER(4),WORK_DEPARTMENT(3),SEX(1)

100 .TEXT SQL_TEXT(254)

110 .|

120 .EMPLOYEE_NUMBER="000120"

130 .FIRST_NAME="SEAN"

140 .MIDDLE_INITIAL=" "

150 .LAST_NAME="O'CONNELL"

160 .BIRTH_DATE=421018

170 .HIRE_DATE=631205

180 .JOB_CODE=58

190 .EDUCATION_LEVEL=14

200 .SALARY=29250

210 .PHONE_NUMBER="2167"

220 .WORK_DEPARTMENT="A00"

230 .SEX="M"

240 .|

250 .SQL_TEXT="INSERT INTO FRED.TEMPL"

260 .'"(EMPNO, FIRSTNME, MIDINIT, LASTNAME, BRTHDATE",

270 .'"HIREDATE, JOBCODE, EDUCLVL, SALARY, PHONENO",

280 .'"WORKDEPT, SEX)"

290 .'"VALUES (?,?,?,?,?,?,?,?,?,?,?,?)"

300 .|

310 .EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

320 .END

330 .|

A dynamic insert routine

MANTIS Rdb Programming OpenVMS 81

340 .SQLDA("SQLDA1") = NEW

350 .SQLDA("SQLDA1","SQLMAX")=12

360 .EXEC_SQL:| DESCRIBE S1 INTO SQLDA1

370 .END

380 .SQLDA("SQLDA1","SQLDATA",1)=EMPLOYEE_NUMBER

390 .SQLDA("SQLDA1","SQLDATA",2)=FIRST_NAME

400 .SQLDA("SQLDA1","SQLDATA",3)=MIDDLE_INITIAL

410 .SQLDA("SQLDA1","SQLDATA",4)=LAST_NAME

420 .SQLDA("SQLDA1","SQLDATA",5)=BIRTH_DATE

430 .SQLDA("SQLDA1","SQLDATA",6)=HIRE_DATE

440 .SQLDA("SQLDA1","SQLDATA",7)=JOB_CODE

450 .SQLDA("SQLDA1","SQLDATA",8)=EDUCATION_LEVEL

460 .SQLDA("SQLDA1","SQLDATA",9)=SALARY

470 .SQLDA("SQLDA1","SQLDATA",10)=PHONE_NUMBER

480 .SQLDA("SQLDA1","SQLDATA",11)=WORK_DEPARTMENT

490 .SQLDA("SQLDA1","SQLDATA",12)=SEX

500 .|

510 .EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1

520 .END

530 EXIT

Appendix A Sample MANTIS SQL programs

82 P39-1350-00

A static update routine
10 ENTRY STATIC_UPDATE

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A STATIC SQL "UPDATE"

40 .| STATEMENT. IT UPDATES ONE EMPLOYEE FROM AN EMPLOYEE

50 .| TABLE.

60 .|

70 .BIG HIRE_DATE,BIRTH_DATE

80 .TEXT EMPLOYEE_NUMBER(6)

90 .TEXT FIRST_NAME(20),MIDDLE_INITIAL(1),LAST_NAME(20)

100 .|

110 .EMPLOYEE_NUMBER="000120"

120 .FIRST_NAME="JOHN"

130 .MIDDLE_INITIAL="H"

140 .LAST_NAME="DOE"

150 .BIRTH_DATE=490113

160 .HIRE_DATE=880120

170 .|

180 .EXEC_SQL

190 ..|

200 ..| UPDATE FRED.TEMPL

210 ..|

220 ..| SET FIRSTNME = :FIRST_NAME,

230 ..| MIDINIT = :MIDDLE_INITIAL,

240 ..| LASTNAME = :LAST_NAME,

250 ..| BRTHDATE = :BIRTH_DATE,

260 ..| HIREDATE = :HIRE_DATE

270 ..|

280 ..| WHERE EMPNO = :EMPLOYEE_NUMBER

290 .END

300 EXIT

A dynamic update routine

MANTIS Rdb Programming OpenVMS 83

A dynamic update routine
10 ENTRY DYNAMIC_UPDATE

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A DYNAMIC SQL "UPDATE"

40 .| STATEMENT. IT UPDATES ONE EMPLOYEE FROM AN EMPLOYEE

50 .| TABLE.

60 .|

70 .BIG HIRE_DATE,BIRTH_DATE

80 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20), MIDDLE_INITIAL(1),LAST_NAME(20)

90 .TEXT DA(18),DAPARM(8)

100 .TEXT SQL_TEXT(254)

110 .|

120 .EMPLOYEE_NUMBER="000120"

130 .FIRST_NAME="JOHN"

140 .MIDDLE_INITIAL="H"

150 .LAST_NAME="DOE"

160 .BIRTH_DATE=490113

170 .HIRE_DATE=880120

180 .|

190 .SQL_TEXT="UPDATE FRED.TEMPL SET"

200 .SQL_TEXT=SQL_TEXT+"FIRSTNME = ?, MIDINIT = ?, LASTNAME = ?,"

210 .SQL_TEXT=SQL_TEXT+"BRTHDATE = ?, HIREDATE = ?"

220 .SQL_TEXT=SQL_TEXT+"WHERE EMPNO = ?"

230 .|

240 .EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

250 .END

260 .|

270 .SQLDA("SQLDA1")=NEW

280 .DA="SQLDA1"

290 .DAPARM="SQLDATA"

300 .SQLDA(DA,"SQLMAX")=6

310 .EXEC_SQL:| DESCRIBE S1 INTO SQLDA1

320 .END

Appendix A Sample MANTIS SQL programs

84 P39-1350-00

330 .SQLDA(DA,DAPARM,1)=FIRST_NAME

340 .SQLDA(DA,DAPARM,2)=MIDDLE_INITIAL

350 .SQLDA(DA,DAPARM,3)=LAST_NAME

360 .SQLDA(DA,DAPARM,4)=BIRTH_DATE

370 .SQLDA(DA,DAPARM,5)=HIRE_DATE

380 .SQLDA(DA,DAPARM,6)=EMPLOYEE_NUMBER

390 .|

400 .EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1

410 .END

420 EXIT

A static select routine

MANTIS Rdb Programming OpenVMS 85

A static select routine
10 ENTRY STATIC_SELECT

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A STATIC SQL "SELECT"

40 .| STATEMENT. IT RETRIEVES EMPLOYEE INFORMATION FOR ONE

50 .| EMPLOYEE FROM AN EMPLOYEE TABLE.

60 .|

70 .BIG HIRE_DATE,BIRTH_DATE,JOB_CODE,SALARY, EDUCATION_LEVEL

80 .TEXT EMPLOYEE_NUMBER(6),FIRST_NAME(20), MIDDLE_INITIAL(1),LAST_NAME(20)

90 .TEXT WORK_DEPARTMENT(3),PHONE_NUMBER(3),SEX(1)

100 .EMPLOYEE_NUMBER="000120"

110 .|

120 .EXEC_SQL:| DECLARE C1 CURSOR FOR

130 ..| SELECT * FROM FRED.TEMPL

140 ..| WHERE EMPNO = :EMPLOYEE_NUMBER

150 .END

160 .EXEC_SQL:| OPEN C1

170 .END

180 .EXEC_SQL:| FETCH C1 INTO :EMPLOYEE_NUMBER,

190 ..| :FIRST_NAME,

200 ..| :MIDDLE_INITIAL,

210 ..| :LAST_NAME,

220 ..| :WORK_DEPARTMENT,

230 ..| :PHONE_NUMBER,

240 ..| :HIRE_DATE,

250 ..| :JOB_CODE,

260 ..| :EDUCATION_LEVEL,

270 ..| :SEX,

280 ..| :BIRTH_DATE,

290 ..| :SALARY

300 .END

310 .EXEC_SQL:| CLOSE C1

320 .END

330 EXIT

Appendix A Sample MANTIS SQL programs

86 P39-1350-00

A dynamic select routine
10 ENTRY DYNAMIC_SELECT

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A DYNAMIC SQL "SELECT"

40 .| STATEMENT. IT RETRIEVES EMPLOYEE INFORMATION FOR ONE

50 .| EMPLOYEE FROM AN EMPLOYEE TABLE.

60 .|

70 .BIG HIRE_DATE,BIRTH_DATE,JOB_CODE,SALARY, EDUCATION_LEVEL

80 .TEXT EMPLOYEE_NUMBER(6)

90 .TEXT FIRST_NAME(20),MIDDLE_INITIAL(1),LAST_NAME(20)

100 .TEXT WORK_DEPARTMENT(3),PHONE_NUMBER(3),SEX(1)

110 .TEXT SQL_TEXT(254)

120 .|

130 .EMPLOYEE_NUMBER="000120"

140 .SQL_TEXT="SELECT * FROM FRED.TEMPL"

150 .'"WHERE EMPNO = ?"

160 .|

170 .EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

180 .END

190 .EXEC_SQL:| DECLARE C1 CURSOR FOR S1

200 .END

210 .EXEC_SQL:| OPEN C1 USING :EMPLOYEE_NUMBER

220 .END

230 .SQL_TEXT="FETCH C1 USING DESCRIPTOR"

240 .EXEC_SQL:| PREPARE S2 FROM :SQL_TEXT

250 .END

260 .SQLDA("SQLDA1")=NEW

270 .EXEC_SQL:| DESCRIBE S2 INTO SQLDA1

280 .END

290 .EXEC_SQL:| EXECUTE S2 USING DESCRIPTOR SQLDA1

300 .END

310 .EXEC_SQL:| CLOSE C1

320 .END

A dynamic select routine

MANTIS Rdb Programming OpenVMS 87

330 .|

340 .EMPLOYEE_NUMBER=SQLDA("SQLDA1","SQLDATA",1)

350 .FIRST_NAME=SQLDA("SQLDA1","SQLDATA",2)

360 .MIDDLE_INITIAL=SQLDA("SQLDA1","SQLDATA",3)

370 .LAST_NAME=SQLDA("SQLDA1","SQLDATA",4)

380 .WORK_DEPARTMENT=SQLDA("SQLDA1","SQLDATA",5)

390 .PHONE_NUMBER=SQLDA("SQLDA1","SQLDATA",6)

400 .HIRE_DATE=SQLDA("SQLDA1","SQLDATA",7)

410 .JOB_CODE=SQLDA("SQLDA1","SQLDATA",8)

420 .EDUCATION_LEVEL=SQLDA("SQLDA1","SQLDATA",9)

430 .SEX=SQLDA("SQLDA1","SQLDATA",10)

440 .BIRTH_DATE=SQLDA("SQLDA1","SQLDATA",11)

450 .SALARY=SQLDA("SQLDA1","SQLDATA",12)

460 EXIT

Appendix A Sample MANTIS SQL programs

88 P39-1350-00

A static delete routine
10 ENTRY STATIC_DELETE

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A STATIC SQL "DELETE"

40 .| STATEMENT. IT DELETES ONE EMPLOYEE FROM AN EMPLOYEE

50 .| TABLE.

60 .|

70 .TEXT EMPLOYEE_NUMBER(6)

80 .EMPLOYEE_NUMBER "000120"

90 .EXEC_SQL

100 ..|

110 ..| DELETE FROM FRED.TEMPL

120 ..|

130 ..| WHERE EMPNO = :EMPLOYEE_NUMBER

140 .END

150 EXIT

A dynamic delete routine

MANTIS Rdb Programming OpenVMS 89

A dynamic delete routine
Note that using an SQLDA is not required because no data is transferred
between the database system and the MANTIS program.

10 ENTRY DYNAMIC_DELETE

20 .|

30 .| THIS PROGRAM IS AN EXAMPLE OF A DYNAMIC SQL "DELETE"

40 .| STATEMENT. IT DELETES ONE EMPLOYEE FROM AN EMPLOYEE

50 .| TABLE.

60 .|

70 .TEXT EMPLOYEE_NUMBER(6),SQL_TEXT(254)

80 .EMPLOYEE_NUMBER "000120"

90 .SQL_TEXT="DELETE FROM FRED.TEMPL WHERE EMPNO = ?"

100 .|

110 .EXEC_SQL

120 ..|

130 ..| PREPARE S1 FROM :SQL_TEXT

140 ..|

150 .END

160 .EXEC_SQL

170 ..|

180 ..| EXECUTE S1 USING :EMPLOYEE_NUMBER

190 ..|

200 .END

Appendix A Sample MANTIS SQL programs

90 P39-1350-00

A dynamic query-like function
This program enables you to interactively execute SQL statements and
display the column data resulting from the execution of those statements
at your terminal.

10 ENTRY Rdb/VMS QUERY

20 .|

30 .| This example illustrates the use of dynamic SQL to

40 .| perform a QUERY-like function.

50 .|

60 .TEXT STMT(255),TEXT PARM(80), DA MARKERS, DA SELECT

70 .PROGRAM Rdb/VMS SHOW TABLE ("EXAMPLES:Rdb/VMS SHOW TABLE","CASINO")

80 .DA MARKERS="DA MARKERS"

90 .DA SELECT="DA SELECT"

100 .SQLDA(DA MARKERS)=NEW

110 .SQLDA(DA SELECT)=NEW

120 | Define SQL Error Handler - QHANDLER

130 .EXEC SQL:| WHENEVER SQLERROR DO QHANDLER

140 .END

150 | Prompt SQL statements and execute them

160 .WHILE NOT(FINISHED):

170 ..STMT="":ERROR=FALSE

180 ..SHOW "SQL>":OBTAIN STMT

190 ..IF KEY<>"ENTER"OR STMT=""

200 ...FINISHED=TRUE

210 ..ELSE

220 ...EXEC SQL:| PREPARE S1 SELECT LIST INTO DA SELECT FROM :STMT

230 ...END

240 ...IF NOT(ERROR)

250EXEC SQL:| DESCRIBE S1 MARKERS INTO DA MARKERS

260END

A dynamic query-like function

MANTIS Rdb Programming OpenVMS 91

270IF SQLCA("SQLCODE")=0

280IF SQLDA(DA SELECT,"SQLD")>:0| If it's a SELECT STATEMENT

290DO Rdb/VMS SHOW TABLE(STMT)

300ELSE

310IF SQLDA(DA MARKERS,"SQLD")>0

320DO SQLDA INPUT(DA MARKERS)

330EXEC SQL:| EXECUTE S1 USING DESCRIPTOR DA MARKERS

340END

350ELSE:| No host variable parameters

360EXEC SQL:| EXECUTE IMMEDIATE :STMT

370END

380END

390END

400END

410 ...END

420 ..END

430 .END

440 EXIT

450 |

460 | Allow continuation after failure to execute SQL statement

470 | 480 ENTRY QHANDLER

490 .SHOW "*** SQL ERROR CODE =";SQLCA("SQLCODE")

500 .SHOW "*** SQL MESSAGE =";SQLCA("SQLERRMC")

510 .ERROR=TRUE

520 .SHOW "*** press RETURN to continue";:WAIT

530 EXIT

540 |

550 ENTRY SQLDA INPUT(DA)

560 .NINPUT=SQLDA(DA,"SQLD")

570 .BIG NVAL:TEXT TYPE(15),TVAL(50)

580 .I=1

Appendix A Sample MANTIS SQL programs

92 P39-1350-00

590 .WHILE I<=NINPUT

600 ..DO SQLTYPE(DA,I,TYPE)

610 ..SHOW "Input";I;"("TYPE(2)")";

620 ..IF TYPE(1,1)="N"

630 ...OBTAIN NVAL:SQLDA(DA,"sqldata",I)=NVAL

640 ...SQLDA(DA,"SQLDATA",I)=NVAL

650 ..ELSE

660 ...OBTAIN TVAL:SQLDA(DA,"sqldata",I)=TVAL

670 ...SQLDA(DA,"SQLDATA",I)=TVAL

680 ..END

690 ..I=I+1

700 .END

710 EXIT

720 |

730 ENTRY SQLTYPE(DA,VARX,TYPE)

740 .TC=SQLDA(DA,"SQLTYPE",I)

750 .WHEN TC=449

760 ..TYPE="TVARCHAR"

770 .WHEN TC=453

780 ..TYPE="TCHAR"

790 .WHEN TC=481

800 ..TYPE="NFLOAT"

810 .WHEN TC=485

820 ..TYPE="NDECIMAL"

830 .WHEN TC=497

840 ..TYPE="NINTEGER"

850 .WHEN TC=501

860 ..TYPE="NSMALLINT"

870 .WHEN TC=503

880 ..TYPE="TDATE"

890 .WHEN TC=505

900 ..TYPE="NQUADWORD"

910 .END WHEN

920 EXIT

A dynamic column select

MANTIS Rdb Programming OpenVMS 93

A dynamic column select
This program retrieves the column name, type, and length, and the first
row of the column from a table specified by the user. The program uses
dynamically executed statements.

10 ENTRY SQL_LIST_COLUMNS

20 .|

30 .| THIS PROGRAM LISTS COLUMNS BASED ON TABLE NAME

40 .|

50 .TEXT TABLE_NAME(32)

60 .TEXT SQL_FUNCTION(100)

70 .COUNTER=1

80 .SHOW "PLEASE ENTER TABLE NAME:"

90 .OBTAIN TABLE_NAME

100 .SQL_FUNCTION="SELECT * FROM"+TABLE_NAME

110 .EXEC_SQL

120 ..| EXECUTE IMMEDIATE :SQL_FUNCTION

130 .END

140 .SQL_FUNCTION="FETCH USING DESCRIPTOR"

150 .EXEC_SQL:| PREPARE S1 FROM :SQL_FUNCTION

160 .END

170 .SQLDA("SQLDA1")=NEW

180 .EXEC_SQL:| DESCRIBE S1 INTO SQLDA1

190 .END

200 .EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1

210 .END

220 .COUNTER=COUNTER+1

230 .SHOW"COLUMN NAME",AT(25),"TYPE",AT(45), "LENGTH",AT(55),"DATA"

240 .WHILE COUNTER<SQLDA("SQLDA1","SQLD")

250 ..SHOW SQLDA("SQLDA1","SQLCOLNAME",COUNTER)

260 ..'AT(25),SQLDA("SQLDA1","SQLTYPE",COUNTER)

270 ..'AT(45),SQLDA("SQLDA1","SQLLENGTH",COUNTER)

280 ..'AT(55),SQLDA("SQLDA1","SQLDATA",COUNTER)

290 ..COUNTER=COUNTER+1

300 .END

310 .WAIT

320 EXIT

Appendix A Sample MANTIS SQL programs

94 P39-1350-00

MANTIS Rdb Programming OpenVMS 95

Features not supported

The following features of SQL are not supported for Rdb/VMS:

♦ Host variables may not be specified in a SELECT list. For example:
SELECT A,:VX,C

INTO :VA,:VB,:VC

 VX is invalidly used as a host variable.

♦ Exact line number reference upon the detection of a syntax error is
not supported in all cases. Once control is transferred to the
database system in the execution of an SQL statement, MANTIS no
longer has control and therefore cannot keep track of where the error
was encountered. For example, if an error occurred in the INTO
clause of the following statement:
1330 ..X=X+1

1340 ..EXEC SQL

1350 ...|SELECT A,B,C

1360 ...|INTO :VA,:VB),:VC <-- error in this line, the “)” on “:VB)”
1370 ...|FROM TABLE.1

1380 ...|WHERE A=1

1390 ..END

1400 ..X=X-VA

Appendix B Features not supported

96 P39-1350-00

 For unbound programs, MANTIS points to the last line in the program
block. For bound programs, MANTIS points to the line before the
END statement. For example:
1330 ..X=X+1

1340 ..EXEC SQL

1350 ...|SELECT A,B,C

1360 ...|INTO :VA,:VB),:VC <--- error in this line, the “)” on “:VB)”
1370 ...|FROM TABLE.1

1380 ...|WHERE A=1 <--- FAULTS display this line when bound
1390 ..END <--- FAULTS display this line when unbound
1400 ..X=X-VA

♦ The contents of one SQLDA structure cannot be implicitly copied into
another in a single instruction. The following statement is not
permitted.
SQLDA("NAME2") = SQLDA("NAME1")

 However, each element of an SQLDA can be passed individually to
the corresponding element of a different SQLDA.

♦ MANTIS programs containing dynamic SQL statements are not
portable between MANTIS SQL Support for the IBM mainframe and
MANTIS SQL Support for OpenVMS and UNIX. You can, however,
port programs containing static embedded SQL between the two
systems.

MANTIS Rdb Programming OpenVMS 97

Differences: MANTIS SQL support
versus SQL in COBOL; MANTIS
versus SQL

SQL in MANTIS SQL Support is essentially the same as SQL in
FORTRAN and COBOL. In this manual, SQL in these non-MANTIS
languages is called SQL in COBOL for convenience.

This appendix summarizes the differences between SQL in MANTIS SQL
Support and SQL in other languages. More information is provided in the
sections specified.

SQL in MANTIS SQL support versus SQL in COBOL
♦ You embed SQL statements in a MANTIS application program as

standard MANTIS comments and delimit each SQL statement with
an EXEC SQL-END block. No MANTIS comments are permitted
within the EXEC SQL-END block. All comments within the block are
considered SQL statement text.

Appendix C Differences: MANTIS SQL support versus SQL in COBOL; MANTIS versus SQL

98 P39-1350-00

♦ In the SQL WHENEVER statement:

- The GOTO clause is replaced by a standard MANTIS DO
statement, and STOP is replaced by FAULT. See “The SQL
WHENEVER statement” on page 43.

- The default for the condition SQLERROR is FAULT; in SQL in
COBOL, the default is CONTINUE. See “The SQL WHENEVER
statement” on page 43”.

- WHENEVER settings may have different ranges of applicability
than they would in SQL in COBOL. See “Scope of the
WHENEVER statement” on page 48.

♦ SQLCA elements are accessed through the SQLCA
statement/function rather than as items of data. See “The SQLCA in
MANTIS SQL support” on page 49.

♦ Elements in SQLDAs are accessed through the SQLDA
statement/function, rather than as items of data. See “The scope of
cursors, statements and SQLDAs” on page 38.

♦ In a MANTIS SQL Support application, you may receive messages
from three sources: the MANTIS nucleus, MANTIS SQL Support, and
the database system. For detailed explanations and actions, refer to
AD/Advantage MANTIS Messages and Codes OpenVMS/UNIX,
P39-1330.

♦ MANTIS SQL Support does not support an SQL INCLUDE
statement, as INCLUDE denotes a preprocessor action. The SQLCA
and SQLDA functions eliminate the need to INCLUDE these
structures. For more information on SQLDA, see “The scope of
cursors, statements and SQLDAs” on page 38; for more information
on SQLCA, see “The SQLCA in MANTIS SQL support” on page 49.

♦ DECLARE statements are unnecessary for tables and views.

MANTIS versus SQL

MANTIS Rdb Programming OpenVMS 99

MANTIS versus SQL
♦ In MANTIS, quotation marks (“) delimit character-string constants. In

SQL, apostrophes (‘) delimit character-string constants.

♦ Permissible data type conversions between SQL and MANTIS are
listed in “Data conversion between MANTIS SQL support and the
Rdb/VMS database” on page 32.

♦ Only data type codes for MANTIS-compatible data types are returned
in the SQLCOLTYPE element in the SQLDA. Valid data types are
thus limited to those listed in “SQLCA elements” on page 51.

Appendix C Differences: MANTIS SQL support versus SQL in COBOL; MANTIS versus SQL

100 P39-1350-00

MANTIS Rdb Programming OpenVMS 101

Index

|
|

description 18
in an EXEC_SQL-END block

26

A

accessing
SQLCA elements 19
SQLDAs 19

allocate, an SQLDA 63
array, using host variables in 30
auto-cursor FETCH 58

B

BIG variable 29
binding 37
blanks, using in an EXEC_SQL-

END block 27
breakpoint, and use of RESET 54

C

COBOL SQL, differences from
MANTIS SQL support 19

code sequence, for dynamic SQL
59

colons
in an EXEC_SQL-END block

27
using with host variables 30

columns, indicator variables for
31

comment character 18
comments

in an EXEC_SQL-END block
28

in SQL statements 26
COMMIT 48

failure of MANTIS COMMIT 54

using in embedded SQL
applications 53–54

connection 23. See also sign-on
to Rdb/VMS 39

CONTINUE 46
conversion See data conversion
cursor names See also real

cursor
dynamic SQL support 34
MANTIS mapping of 38

cursors, keeping open 54

D

data type conversion
error conditions 33
MANTIS SQLDA vs. VAX SQL

72
data type Conversion

MANTIS vs. Rdb/VMS 32
data types

MANTIS vs. SQL 30
VAX SQL 32

data, moving
from an SQLDA header

element into your program
73

from an SQLDA repeating
element into your program
74

from your program into an
SQLDA repeating element
69

from your program into and
SQLDA header element 65

DBNAME 51, 52
DBTYPE 22, 51, 52
deallocate, an SQLDA 64
defaults

DBTYPE 22
SQLERROR 19
WHENEVER condtions 46

disconnection
from Rdb/VMS 40
possible causes of 40

DO 45
dynamic SQL

code sequence for 59
cursor names 34
defined 57
description 20

Index

102 P39-1350-00

E

elements, SQLCA 51–52
embedding SQL statements

described 17
rules for 26–28

END 18
environment variables 20
error conditions, during data

conversion 33
error messages 55
EXEC_SQL

syntax for 41–42
using for DBTYPE 22

EXEC_SQL-END block
examples 26–28
executing 37
rules for using 26–28
storage of in a MANTIS SQL

support program 36
using colons in 27
using mulitple blanks in 27
using mulitple lines in 27
using text in 26
with a MANTIS statement 28

explicit sign-on 23

F

Facility Selection Menu 21
failure of COMMIT 54
FAULT 43, 46
FETCH

auto-cursor 58
example 59

G

GOTO, MANTIS SQL support
equivalent 43

H

header elements
moving data from 73
moving data into 65–68
SQLD 66
SQLDA 68
SQLMAX 65

host variables
description of 18

indentification of 27
number of 66
using colons in 30
using in a MANTIS array 30
using in an EXEC_SQL-END

block 30

I
implicit sign-on, to Rdb/VMS 23
indentation level 18
indicator variables

example 31
using in SQL statements 31

input host variable, description of
18

L

logical names 20
required for Rdb/VMS sign-on

23

M

main program cleanup 40
MANTIS RDI interface

description 39
MANTIS RDI Interface

description 23
restrictions for VAX SQL 34

MANTIS SQL Options 22
MANTIS SQL support

data type conversion 32, 72
differences from SQL in

COBOL 19
function of 17
interface to VAX SQL 34
messages 19
processing of SQL statements

17
security 20
software requirements for 19

MANTIS SQL support programs
considerations for writing 36
rules for embedding SQL

statements 26–28
running with nonSQL MANTIS

programs 17
MANTIS statements

in SQL statements 26

Index

MANTIS Rdb Programming OpenVMS 103

with and EXEC_SQL-END
block 28

MANTIS variables 18. See also
host variables

MANTIS_RDI_IF 23, 34
mapping, of cursor names and

statements 38
Master User 21
messages, source of in a

MANTIS SQL support
program 19

multiple lines, using in an
EXEC_SQL-END block 27

N

nonSQL MANTIS programs,
using with MANTIS SQL
programs 17

O

Oracle, interpretation of indicator
variables 31

output host variable 18

P

PREPARE 34
processing, SQL statements 17
program cleanup See main

program cleanup

R

Rdb/VMS
connection to 39
data conversion 32
disconnection from 40
interpretation of indicator

variables 31
MANTIS interface to 34
signing on to 23

RDI interface See MANTIS RDI
Interface

real cursor 34
repeating elements

moving data from 74
moving data into 69–72
SQLCOLNAME 69
SQLDATA 70

SQLHOSTIND 69
SQLHOSTVAR 70
SQLNAME 69

requirements
for MANTIS SQL support 19
logicals for Rdb/VMS sign-on

23
RESET, using in embedded SQL

applications 53
ROLLBACK 48

using in embedded SQL
statements 53–54

rules
for COMMIT and RESET in

embedded SQL
applications 53–54

for embedding SQL statements
in a MANTIS program 26–
28

RUN 37

S

security, in MANTIS SQL support
20

SELECT, example 59
SET DBNAME 48
sign-off See disconnection
sign-on See also connection

to Rdb/VMS 23
software requirements, for

MANTIS SQL support 19
spaces, using in an EXEC_SQL-

END block 27
SQL statement name 38
SQL statements

COMMIT 48
dynamic execution of 57
embedding in MANTIS

programs 17
END 18
EXEC_SQL 18, 41
invalid for dynamic execution

58
invalid uses of 26
MANTIS processing of 17
ROLLBACK 48
SET DBNAME 48
syntax,general 18
using indicator variables in 31
WHENEVER 43–46

declarative vs. interpretive 47

Index

104 P39-1350-00

differences between MANTIS
SQL and COBOL SQL 19

SQL Statements
embedding rules 26–28

SQL$DATABASE, supported
setting of 39

SQLABC 68
SQLCA

elements 51–52
syntax for 49–50
using for DBTYPE 22

SQLCABC 51
SQLCAID 51
SQLCODE 51
SQLCOLLENGTH 75
SQLCOLNAME 69
SQLCOLNAMES 75
SQLCOLRFRAC 75
SQLCOLTYPE 75
SQLD 66, 68
SQLDA

accessing 19
allocating 63
deallocate 64
header elements

list of 68
moving data from 73
moving data into 65
SQLD 66
SQLMAX 65

name of 38
repeating elements

list of 75
moving data from 74
moving data into 69–72
SQLCOLNAME 69
SQLDATA 70
SQLHOSTIND 69
SQLHOSTVAR 70
SQLIND 69
SQLNAME 69

size of 67
structure of 61
valid data types 32

SQLDAID 68
SQLDATA 70, 75
SQLERRDn 51
SQLERRMC 51, 52
SQLERRML 51
SQLERROR 44
SQLERRP 51
SQLEXT 51

SQLFRAC 75
SQLHOSTIND 69, 75
SQLHOSTVAR 70, 75
SQLIND 69, 75
SQLLEN 75
SQLMAX 65, 68
SQLN 68
SQLNAME 69, 75
SQLTYPE 75
SQLVARINC 22
SQLWARNING 44
SQLWARNn 51
static SQL,description 20
Super User See Master User
SUPRA, interpretation of

indicator variables 31
syntax

COMMIT 48
EXEC_SQL-END 41–42
ROLLBACK 48
SET DBNAME 48
SQLCA 49–50
WHENEVER 43–46

T

text, rules for embedding in an
EXEC_SQL-END block 26

U

updating, MANTIS user profile 22
user Pprofile

enhancements to 22
user profile

updating 22

V

values, for indicator variables 31
variables See MANTIS variables

or host variables
VAX SQL

data types 32
MANTIS interface to 34

vertical bar
description 18
in an EXEC_SQL-END block

26

Index

MANTIS Rdb Programming OpenVMS 105

W

WHENEVER
actions

CONTINUE 46
DO 45
FAULT 46

conditions
SQLERROR 44
SQLWARNING 44

declarative vs. interpretive 47
defaults 46
syntax for 43–46

Index

106 P39-1350-00

	Back to Welcome (OpenVMS Alpha)
	Back to Welcome (OpenVMS VAX)
	About this book
	Using this document
	Document organization
	Revisions to this manual
	Conventions

	MANTIS documentation series
	Educational material

	Chapter 1 - MANTIS SQL support overview
	Software requirements for MANTIS SQL support
	Differences between SQL in MANTIS and SQL in COBOL
	Logical names
	Static and dynamic SQL
	Security

	Chapter 2 - System maintenance
	MANTIS SQL options
	Update user profile
	Signing on

	Chapter 3 - Embedding SQL statements in MANTIS programs
	Embedding rules
	Using host variables
	Referencing values in a MANTIS array
	MANTIS versus SQL data types

	Indicator variables
	Data conversion between MANTIS SQL support and the Rdb/VMS database
	MANTIS interface to Rdb

	Chapter 4 - Programming considerations
	Running an EXEC_SQL-END block
	The scope of cursors, statements and SQLDAs
	Connection to the Rdb/VMS database
	Disconnection from the Rdb/VMS database
	The MANTIS EXEC_SQL statement
	The SQL WHENEVER statement
	Declarative versus interpretive WHENEVER statements
	Scope of the WHENEVER statement

	The SQL COMMIT/ROLLBACK statement
	The SQL SET DBNAME statement
	The SQLCA in MANTIS SQL support
	SQLCA syntax
	SQLCA elements

	COMMIT and ROLLBACK and MANTIS SQL support’s COMMIT and RESET
	Error messages

	Chapter 5 - Dynamic SQL in MANTIS SQL support
	An overview of dynamic SQL
	Executing a statement dynamically
	Code sequence for dynamic SQL

	The SQLDA structure
	Allocate an SQLDA
	Deallocate an SQLDA
	Move data from your program into an SQLDA header element
	SQLDA header elements

	Move data from your program into an SQLDA repeating element
	MANTIS SQL support data type conversion

	Move data from an SQLDA header element into your program
	Move data from an SQLDA repeating element into your program
	SQLDA repeating elements

	Appendix A - Sample MANTIS SQL programs
	A static insert routine
	A dynamic insert routine
	A static update routine
	A dynamic update routine
	A static select routine
	A dynamic select routine
	A static delete routine
	A dynamic delete routine
	A dynamic query-like function
	A dynamic column select

	Appendix B - Features not supported
	Appendix C - Differences: MANTIS SQL support versus SQL in COBOL; MANTIS versus SQL
	SQL in MANTIS SQL support versus SQL in COBOL
	MANTIS versus SQL

	Index

