

SUPRA SERVER PDM

Logging and Recovery Guide
(OS/390 & VSE)

P26-2223-64

SUPRA® Server PDM Logging and Recovery Guide (OS/390 & VSE)

Publication Number P26-2223-64

 1989–1994, 1997, 1998, 2000, 2002 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage®
C+A-RE™
CINCOM®
Cincom Encompass®
Cincom Smalltalk™
Cincom SupportWeb®
CINCOM SYSTEMS®

gOOi™

iD CinDoc™
iD CinDoc Web™
iD Consulting™
iD Correspondence™
iD Correspondence Express™
iD Environment™
iD Solutions™
intelligent Document Solutions™
Intermax™

MANTIS®
Socrates®
Socrates® XML
SPECTRA™
SUPRA®
SUPRA® Server
Visual Smalltalk®
VisualWorks®

UniSQL™ is a trademark of UniSQL, Inc.
ObjectStudio® is a registered trademark of CinMark Systems, Inc.

All other trademarks are trademarks or registered trademarks of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, Ohio 45246-3732
U.S.A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

www.cincom.com

Release information for this manual

The SUPRA Server PDM Logging and Recovery Guide (OS/390 & VSE),
P26-2223-64, is dated January 15, 2002. This document supports
Release 2.7 of SUPRA Server.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. Please take the survey provided with the
online documentation at your convenience.

Cincom Technical Support for SUPRA Server PDM

FAX: (513) 612-2000
 Attn: SUPRA Server Support

E-mail: helpna@cincom.com

Phone: 1-800-727-3525

Mail: Cincom Systems, Inc.
 Attn: SUPRA Server Support
 55 Merchant Street
 Cincinnati, OH 45246-3732
 U.S.A.

mailto:helpna@cincom.com

Contents

About this book ix
Using this document... ix

Document organization ..x
Revisions to this manual ..x
Conventions .. xi

SUPRA Server documentation series .. xiv

Using SUPRA logging 17
Using SUPRA logging ...18

Backing off changes...19
Restarting tasks ...19
Reapplying changes...20
Analyzing activity ..20

Selecting types of SUPRA PDM logging ...21
PDM task logging ...21
PDM system logging ..23

Identifying your logging needs...24

Creating the PDM task log file 25
Reviewing the task log file’s attributes ..26
Defining the task log file in the bootstrap modules..27
Defining the task logging environment with directory maintenance32
Suppressing task logging ..35
Placing the task log file ...35
Formatting the task log file ..36
Logical record types written in the task log file image blocks......................................37
Logical record types written in the task log file SFT blocks...38

Logging and Recovery Guide v

Creating PDM system log file groups 39
Choosing logging options ... 41
Choosing log group characteristics... 43

Multiple logical volumes... 43
File attributes ... 44
Group attributes ... 45
Buffers ... 45

Defining system logging in the bootstrap modules ... 46
Defining the log groups with directory maintenance ... 47
Placing the disk log files ... 50
Initializing system log files... 51
Logical record types written in the System Log File.. 53

Running SUPRA with logging 55
Recovering files .. 56
Backing up data files... 57
Committing tasks .. 57
Saving special data on log files .. 58
Starting a new logical volume on the PDM system log... 59
Resetting tasks ... 59
Purging dangling tasks ... 60
Restarting tasks.. 61
Warm starting the PDM .. 61
Recovering from PDM task and system failure .. 62

Task failure .. 62
System failure .. 63

Defining special cases and problems in recovery... 66
Recovering KSDS VSAM files ... 67
Secondary key populate or depopulate function considerations 68
Warm start or recovery failure on secondary keys .. 68
Processing isolation with single-task PDM .. 69
Recovering a file during a format function ... 69
Multiple PDM recovery... 70

Contents

vi P26-2223-64

Recovering SUPRA CICS applications 71
Preparing CICS and SUPRA for recovery...72

Recovering CICS application programs...72
How CICS and the PDM recover ...74

Recovering after a CICS task abend...75
Recovering RDML applications..75
Recovering MANTIS applications ..76
Recovering directory maintenance...76

Recovering after a CICS system abend..77
Recovering RDML applications..78
Recovering MANTIS applications ..78
Recovering directory maintenance...78

Recovering after a PDM system abend ..79
Recovering RDML applications..80
Recovering MANTIS applications ..80
Recovering directory maintenance...80

Recovering after both CICS and the PDM abend ...81
Recovering RDML applications..81
Recovering MANTIS applications ..81
Recovering directory maintenance...81

Recovering and restoring the SUPRA PDM from the System Log 83
Considerations ..84
Running recover and restore in the appropriate environment.....................................85
Determining the need for the Log File I/O Exit ..87
Switching system log files ...87

Using tape data sets ..88
Using disk data sets ...90
Combining both disk and tape data sets ..92

Using the Log File I/O Exit in recovery 93
Using the Log File I/O Exit under OS/390 ...94

Creating the load module CSUORCUX ...96
Coding UCL for the Log File I/O Exit program ...97
Coding job control language ..98
Listing data sets ...100
Handling errors...103
Creating a system log to use with the exit program104
Processing the Log File I/O Exit program ..105

Contents

Logging and Recovery Guide vii

Using the Log File I/O Exit under VSE.. 109
Compiling and link editing modules ... 111
Coding UCL for the Log File I/O Exit program... 112
Coding job control language .. 113
Coding the volume list ... 114
Sending messages to the output listing... 118
Sending messages to the console... 119
Processing the Log File I/O Exit program.. 120

Glossary of terms 127

Index 131

Contents

viii P26-2223-64

About this book

Using this document
The guide explains how to plan and implement the several types of
SUPRA Server logging and how to use the log files to recover database
information after a system problem occurs. It covers the following topics:

♦ The SUPRA PDM Task Log File and Task Level Recovery (TLR)

♦ The SUPRA PDM System Log

♦ The SUPRA PDM System Log multiple logical volumes feature

To effectively use this manual, you should have a general knowledge of
SUPRA Server features. You should also know how to plan and
implement a SUPRA Server database system.

This document is a reorganized and updated version of the SUPRA
Server 1.3.5 Logging and Recovery Guide. SUPRA 2.1.6 and higher
reflect the following internal improvements in the SUPRA Server software
and responses to customer requests:

♦ Sections on reviewing and unlocking SUPRA PDM files, format of the
UCL Control Section and Recovery Functions, and Writing Recovery
Exits have been moved to the SUPRA Server PDM DBA Utilities
User’s Guide (OS/390 & VSE), P26-6260.

♦ New sections detail writing logical record types and switching system
log files.

♦ As of release 2.4: New file level log suppression in the File to
Environment Description gives the ability to suppress task logging for
a single file.

Logging and Recovery Guide ix

Document organization
The information in this manual is organized as follows:

Chapter 1—Using SUPRA logging
Describes SUPRA logging and gives an overview of how to use it.

Chapter 2—Creating the PDM task log file
Describes how to define and format the PDM Task Log File
dimensions for your operating environment.

Chapter 3—Creating PDM system log file groups
Describes the System Log File and how to change the characteristics
to meet your requirements.

Chapter 4—Running SUPRA with logging
Describes procedures to follow before, during, and after logging.

Chapter 5—Recovering SUPRA CICS applications
Describes the recovery facilities of CICS and the SUPRA PDM.

Chapter 6—Recovering and restoring the SUPRA RDM from the
System Log
Describes the Recover, Restore, and Log Print functions.

Chapter 7—Using the Log File I/O Exit in recovery
Describes a Log File I/O Exit for running the recovery functions of the
SUPRA DBA utilities.

Glossary of terms

Index

Revisions to this manual
The following changes have been made for this release:

♦ Some updates have been made to the CICS-related information in
Chapter 5, “Recovering SUPRA CICS applications” starting on
page 71.

About this book

x P26-2223-64

Conventions
The following table describes the conventions used in this document
series:

Convention Description Example
Constant width
type Represents screen images and

segments of code.
PUT 'customer.dat'
GET 'miller\customer.dat'
PUT '\DEV\RMT0'

Slashed b (b/) Indicates a space (blank).
The example indicates that four
spaces appear between the
keywords.

BEGNb/b/b/b/SERIAL

Brackets [] Indicate optional selection of
parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate one
of the following situations:

 A single item enclosed by brackets
indicates that the item is optional
and can be omitted.
The example indicates that you can
optionally enter a WHERE clause.

[WHERE search-condition]

 Stacked items enclosed by brackets
represent optional alternatives, one
of which can be selected.
The example indicates that you can
optionally enter either WAIT or
NOWAIT. (WAIT is underlined to
signify that it is the default.)

(WAIT)
(NOWAIT)











About this book

Logging and Recovery Guide xi

Convention Description Example

Braces { } Indicate selection of parameters.
(Do not attempt to enter braces or to
stack parameters.) Braces
surrounding stacked items
represent alternatives, one of which
you must select.
The example indicates that you
must enter ON or OFF when using
the MONITOR statement.

MONITOR
ON
OFF









Underlining
(In syntax)

Indicates the default value supplied
when you omit a parameter.
The example indicates that if you do
not choose a parameter, the system
defaults to WAIT.

(WAIT)
(NOWAIT)











 Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.
The example indicates that you can
enter either STAT or STATISTICS.

STATISTICS

Ellipsis points... Indicate that the preceding item can
be repeated.
The example indicates that you can
enter multiple host variables and
associated indicator variables.

INTO :host-variable [:ind-
variable],...

About this book

xii P26-2223-64

Convention Description Example

UPPERCASE
lowercase

In most operating environments,
keywords are not case-sensitive,
and they are represented in
uppercase. You can enter them in
either uppercase or lowercase.

COPY MY_DATA.SEQ

HOLD_DATA.SEQ

Italics Indicate variables you replace with a
value, a column name, a file name,
and so on.
The example indicates that you
must substitute the name of a table.

FROM table-name

Punctuation
marks

Indicate required syntax that you
must code exactly as presented.
() parentheses
. period
, comma
: colon
' ' single quotation marks

(user-id, password, db-name)

INFILE 'Cust.Memo' CONTROL
 LEN4

SMALL CAPS Represent a required keystroke.
Multiple keystrokes are hyphenated.

ALT-TAB

OS/390
VSE

Information specific to a certain
operating system is flagged by a
symbol in a shadowed box (OS/390)
indicating which operating system is
being discussed. Skip any
information that does not pertain to
your environment.

OS/390 See the SUPRA Server
procedure library
member TIS$RDM for
a list of RDM
procedures.

VSE See the SUPRA Server
RDM sublibrary
member TXJ$INDX for
a list of JCL.

About this book

Logging and Recovery Guide xiii

SUPRA Server documentation series
SUPRA Server is the advanced relational database management system
for high-volume, update-oriented production processing. A number of
tools are available with SUPRA Server including DBA Functions, DBAID,
precompilers, SPECTRA, and MANTIS. The following list shows the
manuals and tools used to fulfill the data management and retrieval
requirements for various tasks. Some of these tools are optional.
Therefore, you may not have all the manuals listed. For a brief synopsis
of each manual, refer to the SUPRA Server PDM Digest (OS/390 &
VSE), P26-9062.

Overview

♦ SUPRA Server PDM Digest (OS/390 & VSE), P26-9062

Getting started

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM CICS Connector Systems Programming Guide
(OS/390 & VSE), P26-7452

General use

♦ SUPRA Server PDM Glossary, P26-0675

♦ SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126

About this book

xiv P26-2223-64

Database administration tasks

♦ SUPRA Server PDM and Directory Administration Guide (OS/390 &
VSE), P26-2250

♦ SUPRA Server PDM Directory Online User’s Guide (OS/390 & VSE),
P26-1260

♦ SUPRA Server PDM Directory Batch User’s Guide (OS/390 & VSE),
P26-1261

♦ SUPRA Server PDM DBA Utilities User’s Guide (OS/390 & VSE),
P26-6260

♦ SUPRA Server PDM Logging and Recovery (OS/390 & VSE),
P26-2223

♦ SUPRA Server PDM Tuning Guide (OS/390 & VSE), P26-0225

♦ SUPRA Server PDM RDM Administration Guide (OS/390 & VSE),
P26-8220

♦ SUPRA Server PDM RDM PDM Support Supplement (OS/390 &
VSE), P26-8221

♦ SUPRA Server PDM RDM VSAM Support Supplement (OS/390 &
VSE), P26-8222

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

♦ SPECTRA Administrator’s Guide, P26-9220

About this book

Logging and Recovery Guide xv

Application programming tasks

♦ SUPRA Server PDM DML Programming Guide (OS/390 & VSE),
P26-4340

♦ SUPRA Server PDM RDM COBOL Programming Guide (OS/390 &
VSE), P26-8330

♦ SUPRA Server PDM RDM PL/1 Programming Guide (OS/390 &
VSE), P26-8331

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

Report tasks

SPECTRA User’s Guide, P26-9561

Manuals marked with an asterisk (*) are listed more than once because
you use them for multiple tasks.

Educational material is available from your regional Cincom education
department.

About this book

xvi P26-2223-64

1
Using SUPRA logging

Logging automatically records a process for the purpose of undoing or
redoing that process. Recovery is the undoing or redoing of a process
with the help of logged information.

SUPRA logging makes a record of changes to the contents of SUPRA
files or to the status of SUPRA files or tasks. SUPRA recovery reverses
or reapplies the logged changes.

Logging and Recovery Guide 17

Using SUPRA logging
Logging permits recovery, restoration, or resetting of a failed database. It
assumes a point exists in the processing cycle where the data is valid.
Data images and function images may be recorded in a number of ways
and at different times in a processing cycle. Logging also captures
control information during the processing cycle.

Two types of logging are available: task logging and system logging. You
can use either, or both, or no logging at all.

Cincom recommends you use both.

System logging allows the entire system to be recovered if the Task Log
File is unreadable or unusable, or if an updated data file is unreadable
and must be reloaded. When you use system logging but not task
logging, Task Level Recovery is not active (non-TLR).

You define your logging requirements by coding statements in the
bootstrap Directory environment description or through Directory
Maintenance for your user environment description. For more
information on the statements you code in the bootstrap Directory
environment description, see “Creating the PDM task log file” on page 25.
For more information on the statements you code in your user
environment description, refer to the SUPRA Server PDM and Directory
Administration Guide, P26-2250. The following sections discuss both
types of logging, the types of log files, and the logical record types
logged.

File dependent logging is available in SUPRA Server 2.4 and above. File
dependent logging allows you to suppress logging for individual files.
Suppressing logging for individual files is suggested only for the MANTIS
and SPECTRA Slide files. If logging is suppressed for any other
individual files, it is the DBA’s responsibility to ensure that data integrity
and recoverability needs are not compromised. To ensure consistent
level of recoverability, all interconnected Primary, Related, and Index files
must have the same task, system before image, and system after image
log options.

Chapter 1 Using SUPRA logging

18 P26-2223-64

Backing off changes
Logging allows you to back off or reverse recent changes to a specified
point called a commit point. This ensures that all data and control
information affected by the changes are restored to a state where they
are internally consistent.

SUPRA Server can use logged data to back off changes made by a task,
including updates to file contents and opening or closing of files, to the
task’s most recent commit point. Each application specifies its own
commit points and can back off the changes.

An application can back off its own tasks’ changes to the last commit by
issuing a reset instruction.

SUPRA PDM automatically backs off the changes of some or all of its
tasks to the last commit in response to a forced disconnect command,
forced termination command, abnormal termination, or restart following
an abnormal termination.

With the Recover function of the SUPRA DBA Utilities, you can back off
all the PDM’s tasks’ changes after an abnormal termination either to the
last commit or back through the earliest change logged. For information
about coding the Recover function, refer to the SUPRA Server PDM DBA
Utilities User’s Guide (OS/390 & VSE), P26-6260.

Restarting tasks
When a task terminates abnormally for any reason, the task’s changes
are backed off to its last commit point. If this commit point is not the
task’s sign-on point, SUPRA Server considers the task to be still logically
signed on. Enough information is retained in the Task Log File to restart
the task from that commit point.

The capability to back off changes to the last commit in SUPRA Server,
combined with the capability to restart a task that ended abnormally, is
called Task Level Recovery.

Using SUPRA logging

Logging and Recovery Guide 19

Reapplying changes
Logging also provides the capability to reapply changes that were logged.
This becomes necessary when SUPRA PDM files are lost or damaged,
for example, through device failure.

To reapply changes, reload the affected files from your backup copies
and run the Restore function of the SUPRA DBA utilities. This function
reapplies the logged changes starting with the oldest logged change and
ending with either the latest logged change or latest commit point for
each task.

Cincom recommends restoring to the latest commit points. For
information about coding the Restore function, refer to the SUPRA
Server PDM DBA Utilities User’s Guide (OS/390 & VSE), P26-6260.

Analyzing activity
Logging can also provide analysis information on the activity being
logged. You can use SUPRA DBA Utilities to print the contents of the
PDM System Log or you can write your own applications to read these
files.

Chapter 1 Using SUPRA logging

20 P26-2223-64

Selecting types of SUPRA PDM logging
The SUPRA PDM performs the task and system logging. It logs different
types of information and data. It is important to use the right type of
logging since there are limits on the types of logged data’s usefulness.

PDM task logging
The PDM saves enough information for all tasks and transactions to
perform task level recovery. The PDM monitors the activity of each task
and prevents task interference.

The PDM writes to the Task Log File during normal processing to record
a task’s activity. When abnormal processing is required (user RESET or
task failure), the PDM reads the Task Log File and backs out the task’s
update activity to its last commit point.

The benefits you gain from using task logging are:

♦ One task’s failure need not adversely affect subsequent tasks. The
PDM ensures data integrity.

♦ Updated transactions which have been applied successfully can be
backed out. If you do not want the updates applied (even if there was
no problem), you can have those updates backed out (or undone)
using RESET, provided you have not committed (COMIT) since the
updates were done.

Selecting types of SUPRA PDM logging

Logging and Recovery Guide 21

The Task Log File consists of three sections:

♦ Task Log ID block contains a file control record with the last status
of the PDM (whether recovery is necessary at all, or if recovery is
partially completed). The Task Log ID block functions as the Task
Log File’s lock record. The block also contains information (PDM
name, Directory schema and environment description pair) to ensure
the Task Log File is matched with the correct PDM. This is the first
block in the Task Log File.

♦ Image blocks contain information about changes to the database by
tasks in the system (file mode before images, record before images,
commit records, secondary key change log records, and secondary
key block log records).

♦ System File Table (SFT) blocks contain information about the
current status of files and information necessary to rebuild the PDM
environment (descriptions of each file in the PDM and its buffering,
status of each file, and active environment description).

 The SFT starts at the end of the Task Log File and continues toward
the start of the Task Log File. If image blocks and SFT blocks meet,
the Task Log File is full.

If you use task logging and a forced termination or system failure occurs,
you must use the same Task Log File and PDM name that was in use
when the forced termination or failure occurred the next time you execute
SUPRA Server. Also, you must not update your boot schema,
environment description, or validation module. By using the same Task
Log File and PDM name, the following events occur:

♦ All uncommitted task update activity at the time of forced termination
or system failure is undone.

♦ All user database files and Directory files are returned to the last
commit point.

♦ All files are returned to the last committed open mode (Closed, Read,
EUPD, IUPD, SUPD).

♦ Restartable tasks can retrieve data stored at the last COMIT. This
allows tasks to restart from the point of failure. Tasks that are not
restartable are backed out to their last commit point and all
associated PDM resources are discarded.

Task logging ensures that changes made to a database are written to the
Task Log File first. For information on running the PDM with task
logging, see “Defining the task log file in the bootstrap modules” on
page 27.

Chapter 1 Using SUPRA logging

22 P26-2223-64

PDM system logging
When you specify system logging, the PDM saves chronological audit
information to one or more sequential files. This is called the System Log
File Group. You can partially control the type of information (before
images, after images, PDM commands, sign-ons, sign-offs) saved on the
System Log File in the Directory environment description or the REALM
environment description. Refer to the SUPRA Server PDM Directory
Online User’s Guide (OS/390 & VSE), P26-1260, or the SUPRA Server
PDM Directory Batch User’s Guide (OS/390 & VSE), P26-1261, for more
information on controlling system logging.

The System Log File Group(s) stores the information that system logging
gathers in System Log Files. A System Log File is a sequential string of
blocks. Each block contains a block prefix, all or part of a log record (or
multiple records), and a block suffix. Logical records are variable length,
but blocks are fixed length. Fixed-blocked record format makes reading
a disk System Log File more efficient. The System Log File(s) is also
buffered for better performance.

The PDM writes to the System Log File Group during normal processing,
but does not read the System Log File Group. No image records are
written to the System Log File Group during a warm start. The Recovery,
Restore, and Log Print Utilities read the System Log File Group. Refer to
the SUPRA Server PDM DBA Utilities User’s Guide (OS/390 & VSE),
P26-6260, for more information.

System logging optionally provides for:

♦ Database file device failure
♦ Task Log File device failure
♦ History of changes (by task) for debugging

If you specify synchronization of the System Log File, system logging
ensures changes made to a database file are written to the System Log
File before they are made to the database. The PDM writes any System
Log File buffer connected to a database buffer, waits for the write to
complete and breaks the connection before writing the database buffer.

If you create your System Log File using an IBM 3480 tape drive, you
must code a DCB=OPTCD=W parameter in the System Log File’s DD
statement. This is needed to ensure the integrity of the System Log File.

The PDM supports redundant system logging (all information goes to
separate log files concurrently) to allow for failure of your System Log
File. The PDM also supports a logical System Log File through log
groups made up of one or more physical data sets (log file switching).

Selecting types of SUPRA PDM logging

Logging and Recovery Guide 23

Identifying your logging needs

For the SUPRA PDM, Cincom recommends you specify task logging and
system logging, with system logging options that include before-image
logging and after-image logging. Task logging and system logging
provide the maximum recovery options for PDM database files and for
restart of PDM tasks.

Logging creates significant overhead in your SUPRA Server system. To
measure the overhead in your installation, you may want to perform test
runs with and without logging. After carefully considering the information
in this manual, you may decide to do without some of the logging
capabilities offered here.

All SUPRA logging and recovery takes place at the physical component
level for the SUPRA PDM. Only byte-string files and PDM database files
are logged and can be recovered by SUPRA Server in non-CICS
environments. For example, RDM can access non-PDM files, such as
native VSAM files, but cannot recover such files. The SPECTRA
Personal File System (PFS), which can be a PDM database file or a non-
PDM file, provides another example. A non-PDM PFS allows faster
access, but only a PDM PFS can be logged and recovered.

Logging is not a substitute for backups. You must periodically make
backups of all files containing valuable data.

Chapter 1 Using SUPRA logging

24 P26-2223-64

2
Creating the PDM task log file

You may define and format the PDM Task Log File dimensions for your
operating environment. If you want to use the Task Log File, you must
have PDM task logging defined for your operating system. Your
installation tape includes a description which you may use, or you can
define your Task Log File to meet your needs.

Logging and Recovery Guide 25

Reviewing the task log file’s attributes
To review the Task Log File description on your installation tape, look at
the Modify Schema input transaction used to define it (see “Defining the
task log file in the bootstrap modules” on page 27) or use Interactive
Services, as follows:

1. Bring up SUPRA. You can use any existing CSIPARM member that
specifies task logging, or you can create and use a new member with
these contents:
DIRECTORY=(SCHEMA=CSTASCHM,ENVDESC=CSTATLOG),END.

2. Log on with your user ID and password. At the Software Selection
menu, select Interactive Services.

3. At the Interactive Services main menu, select Physical File Services.

4. At the Physical File Services “select option” screen, specify physical
file information and the Task Log File name, TLOG.

For more details on Interactive Services, refer to the SUPRA Server PDM
and Directory Administration Guide (OS/390 & VSE), P26-2250.

The Task Log File must be a BDAM or ESDS file. You can run Modify
Schema to change any of the task log characteristics. See “Defining the
task log file in the bootstrap modules” on page 27 for more information on
changing the description of your Task Log File. Your installation tape
also includes several bootstrap Directory environment descriptions.
Some of these have task logging specified and provide buffering options
for the Task Log File. If the installation tape’s description of the buffering
does not meet your requirements, you must run the Create Environment
Description to change the buffering.

The block size of the Task Log File must be large enough to
accommodate the largest amount of information describing a data file to
the PDM. See “Defining the task log file in the bootstrap modules” on
page 27 for the Task Log File space calculation.

Before you can use the Task Log File, you must allocate it and then
format it using the Format function of the SUPRA DBA utilities. For more
information on the Format function of the SUPRA DBA utilities and to see
a JCL sample to format the Task Log File, refer to the SUPRA Server
PDM DBA Utilities User’s Guide (OS/390 & VSE), P26-6260.

Chapter 2 Creating the PDM task log file

26 P26-2223-64

Defining the task log file in the bootstrap modules
To run the PDM with task logging, the following must be true:

♦ The Task Log File must be defined in the CSTASCHM boot schema
supplied on the installation tape.

♦ A boot environment description must have the TASK-LOGGING
option set to YES and the Task Log File must be related to a buffer
pool. Such an environment description is suitable for running with
task logging. The boot environment description CSTATLOG supplied
on the installation tape fits these requirements.

♦ A boot environment description must have the Task Log File related
to a buffer pool and the TASK-LOGGING option must be set to NO.
Such an environment description is suitable for formatting the Task
Log File. The boot environment description CSTANONE supplied on
the installation tape fits these requirements.

If you want to change the characteristics of the Task Log File, change its
buffering, or add a new environment description with task logging, you
must use some combination of the bootstrap utility programs: Modify
Schema, Create Environment Description, and Create Validation Module.
The installation tape provides sample input members for these programs.
These inputs are used in creating the bootstrap modules provided on the
tape.

You must run the bootstrap utility programs in the proper order.

♦ If you are changing the boot schema:

1. Run Modify Schema.

2. Run Create Environment Description for any boot environment
you are changing or adding.

3. Run Create Validation Module.

♦ If you are not changing the boot schema:

1. Run Create Environment Description for each boot
 environment description you are changing or adding.

2. Run Create Validation Module.

Defining the task log file in the bootstrap modules

Logging and Recovery Guide 27

You must run Create Validation Module even if you do not modify its
input.

The Modify Schema input that refers to the Task Log File consists of
statements similar to the following:
FILE=TLOG

ACCESS-METHOD=BDAM

DDNAME=C$TTLOG

BLOCKSIZE=8192

LOGICAL-BLOCKS-PER-TRACK=5

TOTAL-LOGICAL-RECORDS=900

END-FILE

If you consider changing the Task Log File’s characteristics, be aware of
the following:

♦ TOTAL-LOGICAL-RECORDS when applied to a Task Log File
actually means total blocks.

Cincom recommends a file size of about 1000 blocks. As more
tasks execute simultaneously and more updates are performed by
each task in a single transaction, more space is used on the file.
Space is freed for reuse by the commit at the end of each
transaction. If your database activity exceeds the Task Log File’s
capacity, the PDM terminates abnormally with an appropriate
message.

Cincom recommends a block size of at least 3000 bytes. The
minimum block sizes are 512 bytes for BDM and 505 bytes for ESDS
VSAM. The PDM performs best if the block size is large enough to
hold the largest logical records in your database.

Chapter 2 Creating the PDM task log file

28 P26-2223-64

♦ For an ESDS VSAM Task Log File, the block size should be seven
bytes less than the control interval size. The control interval size
must be 512, 1024, or a multiple of 2048.

Your choices for ACCESS-METHOD are BDAM and ESDS. Cincom
recommends that you use BDAM because it has less access method
overhead processing.

- If ACCESS-METHOD is ESDS, you must omit LOGICAL-
BLOCKS- PER-TRACK.

- If ACCESS-METHOD is BDAM and you change BLOCKSIZE,
you must specify the correct value for LOGICAL-BLOCKS-PER-
TRACK. Refer to the appropriate IBM Reference Summary to
calculate the correct value for the direct access device you are
using.

- If you change ACCESS-METHOD from ESDS to BDAM, you
must specify the correct value for LOGICAL-BLOCKS-PER-
TRACK.

- If ACCESS-METHOD is BDAM and you do not change
BLOCKSIZE, specifying LOGICAL-BLOCKS-PER-TRACK is
optional. If you do specify a value for LOGICAL-BLOCKS-PER-
TRACK, it must be the correct value.

Defining the task log file in the bootstrap modules

Logging and Recovery Guide 29

The Create Environment Description input for the boot environment
description CSTATLOG includes statements that are relevant to task
logging. These statements are similar to the following:
FILE=TLOG,C$BL,SUPD

BUFFER=C$BL=(15,0,0)

TASK-LOGGING=YES

The only statement you can change is the number of direct buffers in the
buffer pool.

Cincom recommends 15, as shown here. You can reduce this number to
save memory, but performance may be degraded.

The Task Log File should have its own buffer pool. The number of serial
threads and the number of serial buffers per thread in that buffer pool
should always be specified as 0, as shown here.

The Create Environment Description input for the boot environment
description CSTANONE includes statements that are relevant to task
logging. These statements are similar to the following:
FILE=TLOG,C$BL,SUPD

BUFFER=C$BL=(2,0,0)

TASK-LOGGING=NO

Cincom recommends that you change nothing in this input.

Chapter 2 Creating the PDM task log file

30 P26-2223-64

The Create Validation Module input includes statements like the
following:
SCHEMA=CSTASCHM

ENVDESC=CSTANONE

ENVDESC=CSTAREAD

ENVDESC=CSTASUPD

ENVDESC=CSTATLOG

If you are adding boot environment descriptions, add ENVDESC=
statements with their names. Note that all ENVDESC= statements must
follow the corresponding SCHEMA= statement.

For more details on using the bootstrap utility programs, refer to the
SUPRA Server PDM and Directory Administration Guide (OS/390 &
VSE), P26-2250.

The location of the input files for the bootstrap utility programs and the
directions for running the programs vary according to your operating
system:

♦ For OS/390 and VSE, use the sample JCL library members
TXJBMODS, TXJBENVD, and TXJBVMOD to run Modify Schema,
Create Environment Description, and Create Validation Module,
respectively. Each of these members points to its input.

Defining the task log file in the bootstrap modules

Logging and Recovery Guide 31

Defining the task logging environment with directory
maintenance

Your Directory environment, as well as your boot environment, must
contain appropriate definitions to run with task logging. To run Directory-
driven with task logging, the following must be true:

♦ Your Directory schema must contain a definition for the Task Log
File.

♦ Your Directory environment description must define a buffer pool and
relate the Task Log File to the buffer pool.

♦ Your Directory environment description must specify the task-logging
option.

The Directory schema BURRYSCH and the Directory environment
description BURRYENV, supplied on the Directory on your installation
tape, are suitable for running Directory-driven with task logging.

To use your own Directory schema with task logging, add the Task Log
File to the schema:

1. At the Directory Maintenance category menu, enter FI to select the
file category.

2. At the appropriate prompts on the file command menu, enter AD to
select the ADD command and enter the schema name and the Task
Log File name (TLOG).

3. At the first file add screen, enter the ddname as C$TTLOG, file type
as TASKLOG, and the access method as the Task Log File’s access
method (BDAM or ESDS). You need not enter or change any other
fields on the screen. You need not access the other two file add
screens.

4. Return to the Directory Maintenance category menu.

At run time, the PDM uses the boot schema’s specifications for block
size, number of blocks, and so on, and ignores those of the Directory
schema.

Chapter 2 Creating the PDM task log file

32 P26-2223-64

To use your own Directory environment description with task logging,
modify the environment description as follows:

1. Specify the task-logging option:

a. At the Directory Maintenance category menu, enter ED to select
the environment description category.

b. At the appropriate prompts on the environment description
command menu, enter CG to select the CHANGE command and
enter the schema name and environment description name.

c. At the first environment description change screen, enter the task
log option as Y (yes). You need not enter or change any other
fields on the screen. You need not access the second
environment description change screen.

d. Return to the Directory Maintenance category menu.

2. Add a buffer pool for the Task Log File:

a. At the Directory Maintenance category menu, enter BP to select
the buffer pool category.

b. At the appropriate prompts on the buffer pool command menu,
enter AD to select the ADD command and enter the schema
name, environment description name, and four-character name
you choose for the new buffer pool.

c. At the buffer pool add screen, enter the direct buffer count, the
serial buffer count, and the serial thread count as 2, 0, and 0,
respectively.

d. Return to the Directory Maintenance category menu.

3. Relate the Task Log File to the new buffer pool:

a. At the Directory Maintenance category menu, enter FI to select
the file category.

b. At the appropriate prompts on the file command menu, enter RC
to select the RELATIONSHIP CHANGE command and enter the
schema name and Task Log File name (TLOG).

c. At the appropriate prompts on the file relate change screen, enter
the environment description name, an open mode of SUPD, and
the name of the new buffer pool.

d. Return to the Directory Maintenance category menu.

The number of buffers in this new buffer pool is not important. At run
time, the PDM ignores this buffer pool and uses the buffer pool related to
the Task Log File in the boot environment description.

Defining the task logging environment with directory maintenance

Logging and Recovery Guide 33

Finally, after you use Directory Maintenance to update a schema, you
must consistency check the schema to make it and its environment
descriptions usable:

1. At the Directory Maintenance category menu, enter SC to select the
schema category.

2. At the appropriate prompts on the schema command menu, enter CK
to select the CHECK command and enter the schema name.

3. At the schema check screen, specify Y (yes) for INCON PHYSICAL
ENTITIES and ALL LOGICAL ENTITIES. Specify N (no) for the
remaining prompts. Allow time for the function to complete.

4. Return to the Directory Maintenance category menu.

For more details on using Directory Maintenance, refer to the SUPRA
Server PDM Directory Online User’s Guide (OS/390 & VSE), P26-1260,
or the SUPRA Server PDM Directory Batch User’s Guide (OS/390 &
VSE), P26-1261.

Chapter 2 Creating the PDM task log file

34 P26-2223-64

Suppressing task logging
When defining an environment description to file relationship in SUPRA
Server 2.4 and above, you may choose to suppress task logging for the
file. Suppress logging for individual files only for the MANTIS and
SPECTRA Slide files. Do not suppress logging for any other files.

You may not suppress logging for a Directory file.

If you suppress task logging for any individual files, then before and after
system logging must also be suppressed. It is the DBA’s responsibility to
ensure that data integrity and recoverability needs are not compromised.
For recoverability purposes, all interconnected Primary, Related, and
Index files must have the same task, system before image, and system
after image log options. The DBA should use Security Groups and
Maintenance Restriction to deny users the ability to AD/CG the
environment description to file relationships logging options.

Logging suppress options are only considered if the Environment
Description specifies that particular type of PDM logging.

To use File Level Log Suppression:

At the Task Logging Option field, enter YES to perform logging per the
Environment Description. Enter NO to suppress logging for the file.

If either after image or before image logging is not suppressed, then task
logging may not be suppressed. Formatting the Task Log File

Placing the task log file
Log files are the most frequently accessed files in the PDM.

For the most efficient use of your direct access devices, Cincom
recommends that the Task Log File reside on a device separate from
your most frequently accessed user files.

Suppressing task logging

Logging and Recovery Guide 35

Formatting the task log file
Use the Format function of the SUPRA DBA utilities to format the Task
Log File after its creation and before its first use. Format the Task Log
File before running a new release of SUPRA Server. Never format any
Task Log File unless the system terminated normally on its last run.

If the PDM is forced down or terminates abnormally, the Task Log File
contains recovery information. When you start the PDM again, task level
recovery takes place automatically based on that information. If you do
not want to recover, destroy the information by formatting the Task Log
file.

Your OS/390 or VSE installation tape provides a sample JCL member for
formatting the Task Log File. The sample TXJFTLOG points to its own
input. The input includes statements that are similar to the following:
CONTROL(BEGIN)
ENV-DESC(CSTANONE)
SCHEMA(CSTASCHM)
FUNCTION(FORMAT)
FILE(TLOG)
CONTROL(END)

Do not change this input.

For more details on using the Format function, refer to the SUPRA
Server PDM DBA Utilities User’s Guide (OS/390 & VSE), P26-6260.

Chapter 2 Creating the PDM task log file

36 P26-2223-64

Logical record types written in the task log file image blocks
The following logical record types are written to the Task Log File image
blocks:

♦ Record before images contain the contents of the database records
and information identifying the task and transaction. The record
before images are used for backing out to the most recent commit
point. Only the first before image for any record updated by a task
during a particular transaction is logged. KSDS DEL-M images are
an exception to this; they are logged regardless of previous activity to
that key.

♦ File mode before images contain the file name and the open mode
at the most recent commit. If you issue a CLOSX or OPENX
command and change the open mode of the file, a file mode before
image is written to the Task Log File. The file mode before images
are also used for backing out to the most recent commit point. The
file mode before images are used to complete opens and closes at
the end of the transaction.

♦ Commit records are written when you issue a COMIT or SINON
command. When a commit record is written to the Task Log File,
you can supply additional data to be written also. When you issue a
RESET command, you get this information back. Commit records
point to the beginning of the transaction during which a RESET
command is issued. For a warm start, the valid commit records
indicate which tasks are active when the system failed. (A SINOF is
the end of a task and the task’s last transaction. A commit record
may be written for a SINOF command if you changed the open mode
during processing of that transaction. In any case, the successful
completion of SINOF implies no valid commit records still exist for
that task.)

♦ Index change log images contain the secondary key just added,
changed or deleted. Task Level Recovery (TLR) performs a logical
recovery of these images as opposed to physically applying the
secondary key images on the index file.

♦ Index block log records contain the contents of a physical block in
the index file prior to structural maintenance occurring against the
index file.

The Task Log File does not contain record after images or function log
records.

Logical record types written in the task log file image blocks

Logging and Recovery Guide 37

Logical record types written in the task log file SFT blocks
The following logical record types are written to the Task Log File SFT
blocks:

♦ File description records contain the current open status of the file,
the owning task, and the physical description (device, buffer pool,
physical fields, internal records, and secondary keys).

♦ Environment description records contain a copy of the
environment description used to initialize the PDM.

♦ Buffer pool records contain information about a single buffer pool
(number of direct buffers, etc.).

♦ File group records contain information about System Log File
groups (which files and in what order) and options.

Chapter 2 Creating the PDM task log file

38 P26-2223-64

3
Creating PDM system log file groups

The installation tape contains a description of a System Log File in a
Directory bootstrap schema. Use this description only in a non-Directory-
driven or bootstrap mode. A System Log File can be a BDAM, ESDS or
BSAM file. If this description does not meet your requirements, you must
run Modify Schema to change any of the characteristics. See “Choosing
log group characteristics” on page 43 for more information on changing
the description of your System Log File(s).

For system logging in a Directory-driven mode, you must select system
logging through Directory Maintenance (refer to the SUPRA Server PDM
Directory Online User’s Guide (OS/390 & VSE), P26-1260, or the SUPRA
Server PDM Directory Batch User’s Guide (OS/390 & VSE), P26-1261).
Before you can use a System Log File, you must allocate it and then (for
BDAM or ESDS only) format it using the Format function of the SUPRA
DBA utilities.

The PDM writes the log records you select to the System Log File as
required. For a description of these logical record types, see “Logical
record types written in the System Log File” on page 53. Applications can
put user specified data on the System Log File using the QMARK and
MARKL commands. Refer to the SUPRA Server PDM DML
Programming Guide (OS/390 & VSE), P26-4340, for the syntax of
QMARK and MARKL.

Logging and Recovery Guide 39

You can use an additional log group to create a shadow log file. For
more information on using additional log groups, see “Recovering and
restoring the SUPRA PDM from the System Log” on page 83. While the
main log file should be synchronized (to ensure recoverability), it is
advantageous for the shadow file to be unsynchronized. This
unsynchronization of the shadow file shortens wait time, I/O operations
and shadow file space. Note that an unsynchronized System Log File is
unsuitable for recovery.

If you want to log selectively (log certain information to one log group but
not to another), you must use the logical write exit to do the selection.
For example, if you want Group 1 to contain before images but not
function records, and Group 2 function records but not before images,
you must use a logical write exit. The exit based on log group name and
logical record type decides whether to skip writing the given logical
records to the given file.

The System Log File can span several tape reels when you log directly to
tape; it spans several data sets when you use log groups. This spanning
enables you to use only part of the file during system recovery. When
you use only part of it, Log Print and Recover to last-commit can run
more quickly. Dividing the System Log File into several parts requires an
exit program using the PDM’s logical write exit to switch to the next data
set. For more information on PDM exits, refer to the SUPRA Server PDM
and Directory Administration Guide (OS/390 & VSE), P26-2250.

Chapter 3 Creating PDM system log file groups

40 P26-2223-64

Choosing logging options
You specify five system logging options in your environment description:
the four log record options and the end log option. These options have
no effect on task logging.

The four log record options are represented by a four-character string in
Directory Maintenance and other places. The choices for each character
in this string are as follows:

1. First character: sign-ons (and sign-offs):

N log no sign-ons

U log only sign-ons for update tasks

A log all sign-ons

2. Second character: before-images:

N log no before-images

B log all before-images

3. Third character: physical DML functions (other than sign-ons and
sign-offs):

N log no functions

U log only update functions

A log all functions

4. Fourth character: after-images:

N log no after-images

A log all after-images

If the log record options string is NNNN, no system logging takes place.

Choosing logging options

Logging and Recovery Guide 41

Considerations

♦ If you use a log record options value other than NNNN, you must
have a system log file group defined in the active schema and related
to a buffer pool in the active environment description.

♦ If you log before images or after images, you must also log update
sign-ons.

♦ To be able to run the Recover function of the SUPRA DBA utilities to
back off updates, you must log at least before images and update
sign-ons.

♦ To be able to run the Restore function of the SUPRA DBA utilities to
reapply updates, you must log at least after images and update
sign-ons.

Function logging may be useful for analysis of database activity. Unless
you plan such use, Cincom does not recommend using resources on this
option.

For maximum recovery capability, Cincom recommends you use task
logging and system logging together and use the system logging options
ABNA.

The end log option, which you specify in the environment description,
also affects system logging. This option tells the PDM what to do in each
log group in response to an ENDLG physical DML instruction. Your
choices are:

C Close: close and reopen the current System Log File.

F Force end-of-volume: switch to the next logical volume if possible;
otherwise, ignore the instruction.

If you want to use the System Log to do any recovery, always specify end
log option F.

Chapter 3 Creating PDM system log file groups

42 P26-2223-64

Choosing log group characteristics
There are several possible configurations for log groups and the
characteristics you can assign to them at the file, group, and buffer level.
For information on defining log group characteristics on the Directory, see
“Defining the log groups with directory maintenance” on page 47.

Multiple logical volumes
The System Log is also called a log group because it can consist of
multiple logical volumes that can reside on one or more data sets. The
multiple logical volumes feature enables you to break the System Log
into portions of manageable size. The System Log can become very
large because, unlike a Task Log File, the System Log is a
chronologically sequential record of activity. Space in the log is never
reused. The longer your PDM runs and performs transactions, the larger
the System Log grows.

Without multiple logical volumes, the potentially large size of the System
Log leads to two problems:

♦ If the System Log consists of a single file and the PDM uses all of the
space available on that file, the PDM terminates abnormally.

♦ The recovery functions of the SUPRA DBA utilities must read the
entire log as input, even though only part of the log may be relevant
to the function’s purpose.

When you use the multiple logical volumes feature, the System Log is
divided into logical volumes as the PDM writes it. Each logical volume
starts with information that:

♦ Identifies the log, volume, and PDM

♦ Describes the environment and each file

♦ Gives the current status of each file and task

This means the recovery functions that use the System Log as input do
not necessarily need to read the entire log. They can start at the
beginning of any logical volume. For more information on System Log
Files, see “Switching system log files” on page 87.

Choosing log group characteristics

Logging and Recovery Guide 43

File attributes
Considerations for choosing the characteristics of the file(s) in a log
group include the following:

♦ You can specify BSAM, BDAM, ESDS, OUTP, and WORK access
methods for a System Log File. (OUTP and WORK are for VSE tape
devices only.) The RECOVER/RESTORE/LOG PRINT utility
accesses a disk System Log File directly regardless of how the
SUPRA PDM created the file. For an ESDS file, the utility uses
ESDS. For a BSAM or BDAM file, the utility uses BDAM.

Cincom recommends a block size of at least 3000 bytes. The
minimum block sizes are 505 bytes for ESDS VSAM and 512 bytes
for the other access methods. The PDM performs best if the block
size is large enough to hold the largest logical records in your
database.

♦ All the files in a log group must have the same block size.

♦ For an ESDS VSAM file, the block size should be seven bytes less
than the control interval size. The control interval size must be 512,
1024, or a multiple of 2048.

♦ For VSE FBA users, BDAM is not valid.

Chapter 3 Creating PDM system log file groups

44 P26-2223-64

Group attributes
At the log group level, set the volume-maximum-RBN for each file in the
group and set the wrap and synchronization options.

The volume-maximum-RBN is the highest relative block number to be
written to a logical volume before switching to the next logical volume.

Cincom recommends you set this value to about five percent less than
the estimated capacity of the disk file or tape reel. Do not set this value
(leave it at 0) for an ESDS VSAM file or a BDAM file. The volume-
maximum-RBN is then calculated automatically as the highest RBN in
the file.

The synchronization option ensures that the before image of each
database update is logged before the database is updated and that all
data for a transaction is logged when the transaction commits. You must
set this option to YES to run the Recover function successfully against
this log group. If you set this option to NO, you can save processing time
and log file space and still run the Restore function. However, if you want
to guarantee that the Restore function restores all updates of the last
transactions completed before termination, you must set this option to
YES to force the necessary data onto the log at every commit point.

Cincom recommends the use of the wrap option to reuse files in the log
group. Be aware that this option is valid only for groups with two to four
files all on disk.

Buffers

Cincom recommends 2–5 buffers per log group. The minimum of one
buffer per log group degrades performance. (The number of files in a log
group is irrelevant to the number of buffers needed.) System Log Files
must not share a buffer pool with data files.

Choosing log group characteristics

Logging and Recovery Guide 45

Defining system logging in the bootstrap modules
Cincom suggests that you not define system logging in the bootstrap
modules for two reasons:

♦ The definitions have effect only if you run non-Directory-driven with
system logging. That configuration has minimal usefulness. When
you run Directory-driven, the PDM ignores the bootstrap definition of
system logging in favor of whatever is on the Directory.

♦ When you define system logging on the bootstrap, you cannot specify
multiple logical volumes, multiple data sets, the logical write exit, or
the new volume exit.

For information on how to define a System Log and its options in the
bootstrap modules using the bootstrap utility programs, refer to the
SUPRA Server PDM and Directory Administration Guide (OS/390 &
VSE), P26-2250.

Chapter 3 Creating PDM system log file groups

46 P26-2223-64

Defining the log groups with directory maintenance
Your Directory environment must contain appropriate definitions to run
with system logging. In order to run Directory-driven with system logging,
the following must be true:

♦ Your Directory schema must contain definition(s) for the System Log
File(s).

♦ Your Directory environment description must define log group(s)
containing the System Log File(s).

♦ Your Directory environment description must define buffer pool(s)
and relate the System Log File(s) to them.

♦ Your Directory environment description must specify system-logging
options (other than NNNN) and a suitable end log option.

When you have a Directory schema you want to use with system logging,
add each System Log File to the schema as follows:

1. At the Directory Maintenance category menu, enter FI to select the
file category.

2. At the appropriate prompts on the file command menu, enter AD to
select the ADD command and enter the schema name and System
Log File name.

3. At the first file add screen, enter the ddname, file type as SYSTLOG,
access method, file device type, logical record length (which in this
case means block size), and total logical records (for an ESDS or
BDAM file only). You need not access the other two file add screens.

4. Return to the Directory Maintenance category menu.

Defining the log groups with directory maintenance

Logging and Recovery Guide 47

When you have a Directory environment description you want to use with
system logging, do the following:

1. Specify the appropriate environment description options:

a. At the Directory Maintenance category menu, enter ED to select
the environment description category.

b. At the appropriate prompts on the environment description
command menu, enter CG to select the CHANGE command and
enter the schema name and environment description name.

c. At the first environment description change screen, enter the log
record options. Enter the end log option as F.

d. At the second environment description change screen, enter the
logical write exit and the new volume exit (if applicable).

e. Return to the Directory Maintenance category menu.

2. Add a log group for the System Log File(s):

a. At the Directory Maintenance category menu, enter LG to select
the log group category.

b. At the appropriate prompts on the buffer pool command menu,
enter AD to select the ADD command and enter the schema
name, environment description name, and eight-character name
you choose for the new log group.

c. At the appropriate prompts on the log group add screen, enter
the wrap option, synchronization option, System Log File
name(s), and volume-maximum-RBN for each file.

d. Return to the Directory Maintenance category menu.

Chapter 3 Creating PDM system log file groups

48 P26-2223-64

3. Add a buffer pool for the System Log File(s) (note that files in a log
group can and should share a buffer pool):

a. At the Directory Maintenance category menu, enter BP to select
the buffer pool category.

b. At the appropriate prompts on the buffer pool command menu,
enter AD to select the ADD command and enter the schema
name, environment description name, and four-character name
you choose for the new buffer pool.

c. At the buffer pool add screen, enter the direct buffer count, serial
buffer count, and serial thread count as 2, 0, and 0, respectively.

d. Return to the Directory Maintenance category menu.

4. Relate the System Log File(s) to the new buffer pool:

a. At the Directory Maintenance category menu, enter FI to select
the file category.

b. At the appropriate prompts in the file command menu, enter RC
to select the RELATIONSHIP CHANGE command and enter the
schema name and System Log File name.

c. At the appropriate prompts in the file relate change screen, enter
the environment description name, an open mode of SUPD, and
the name of the new buffer pool.

d. Return to the Directory Maintenance category menu.

Defining the log groups with directory maintenance

Logging and Recovery Guide 49

Finally, after you use Directory Maintenance to update a schema, you
must consistency check the schema to make it and its environment
descriptions usable:

1. At the Directory Maintenance category menu, enter SC to select the
schema category.

2. At the schema command menu, enter CK to select the CHECK
command and enter the schema name.

3. At the schema check screen, specify Y (yes) for INCON PHYSICAL
ENTITIES and ALL LOGICAL ENTITIES. Specify N (no) for the
remaining prompts. Allow time for the function to complete.

4. Return to the Directory Maintenance category menu.

You may wish to use File Level Log Suppression to suppress logging for
individual MANTIS and SPECTRA files. For more information on this
procedure, see “Suppressing task logging” on page 35.

For more details on using Directory Maintenance, refer to the SUPRA
Server PDM Directory Online User’s Guide (OS/390 & VSE), P26-1260,
or the SUPRA Server PDM Directory Batch User’s Guide (OS/390 &
VSE), P26-1261.

Placing the disk log files

Log files are the most frequently accessed files in the PDM. For the
most efficient use of your direct access devices, Cincom recommends
that disk System Log Files reside on a device separate from your most
frequently accessed user files and from the Task Log File. This method
also protects you against loss of both user and log files from a single
device failure.

Chapter 3 Creating PDM system log file groups

50 P26-2223-64

Initializing system log files
You must format each direct access System Log File (a disk file that uses
BDAM or ESDS VSAM access method) after its creation and before its
first use. In OS/390, you must initialize a tape before using it as part of a
System Log. You need not format System Log Files that reside on tape
devices. You need not format BSAM System Log Files, whether on disk
or on tape.

Use the Format function of the SUPRA DBA utilities to format each direct
access System Log File:

For OS/390

1. Create a new JCL member by copying the sample JCL member for
formatting the Task Log File, TXJFTLOG.

2. Change the CSIPARM member name reference in the JCL from
TXPBEND to TXPBNONE.

3. Create a new UCLCODE member. Change the UCLCODE member
name reference in the JCL from TXUFTLOG to the name of the new
member.

4. Put the following statements in your new UCLCODE member.
Substitute the name(s) of your Directory schema and environment
description (which must define the file(s) you are formatting) and the
name(s) of the file(s):
CONTROL(BEGIN)

 ENV-DESC(user-schema)

 SCHEMA(user-envdesc)

FUNCTION(FORMAT)

 FILE(slog-1)

 FILE(slog-2)

CONTROL(END)

5. Run the JCL.

Initializing system log files

Logging and Recovery Guide 51

For VSE

1. Create a new JCL member by copying the sample JCL member for
formatting the Task Log File, TXJFTLOG.

2. Change the CSIPARM input in the JCL from END. to:
DIRECTORY=(SCHEMA=CSTASCHM,ENVDESC=CSTANONE),END.

3. Change the UCLCODE input in the JCL from:
CONTROL(BEGIN)

 ENV-DESC(CSTANONE)

 SCHEMA(CSTASCHM)

FUNCTION(FORMAT)

 FILE(TLOG)

CONTROL(END)

 to the following. Substitute the name(s) of your Directory schema
and environment description (which must define the file(s) you are
formatting) and the name(s) of the file(s):
CONTROL(BEGIN)

 ENV-DESC(user-schema)

 SCHEMA(user-envdesc)

FUNCTION(FORMAT)

 FILE(slog-1)

 FILE(slog-2)

CONTROL(END)

4. Run the JCL.

For more details on using the Format function, refer to the SUPRA
Server PDM DBA Utilities User’s Guide (OS/390 & VSE), P26-6260.

Chapter 3 Creating PDM system log file groups

52 P26-2223-64

Logical record types written in the System Log File
The following logical record types are written to the System Log File:

♦ PDM initialization and termination records indicate the start and
end of the System Log File. A PDM initialization record is written to
the System Log File when the PDM is initialized, when files within a
System Log File Group are changed, or when a logical volume
change occurs on a tape System Log File. A PDM termination record
is written when you issue an unforced ENDTO (in a multitask
operating mode) or a SINOF command (in a single-task operating
mode).

 An initialization record contains the current logical volume number
and the number of the most recently committed volume (the earliest
volume that might need to be included in a recover-to-last-commit
operation). Every logical volume begins with an initialization record,
file-initialization records for each defined file, and task records to
each active task.

♦ File initialization records describe the physical characteristics of a
file, along with that file’s initial open mode when the System Log File
was started. The file initialization record on the System Log File is
similar to the System File Table entry on the Task Log File.

♦ Task records indicate the presence of an active task, the task’s
COMMIT ID, name, and whether it has uncommitted updates on this
System Log File.

♦ Command or function records for any DML command are
generated at the successful completion of a specified DML
command. The command record contains the interface name, the
task name, and command information. If the DML command is an
I/O command, the record which is added, deleted, read or written is
also contained in the command record. If the command is not an I/O
command, the data written to the System Log File varies. For
example, for an OPENX command, the OPENX options are written.
Command records (SINON, SINOF, QUIET, QMARK, COMIT,
RESET) are used to recover the database to the last commit point.
Refer to the SUPRA Server PDM Directory Online User’s Guide
(OS/390 & VSE), P26-1260, or the SUPRA Server PDM Directory
Batch User’s Guide (OS/390 & VSE), P26-1261, for information on
specifying function logging.

Logical record types written in the System Log File

Logging and Recovery Guide 53

♦ Image records include before or after images for all updates. They
also contain task identification information. The number of before
images written to the System Log File depends on whether task
logging is active. If task logging is active, one before image is written
to the System Log File for a given physical record for a given
transaction. If task logging is not active, one before image is written
to the System Log File for each data record updated. If you specified
before or after image options, a before and after image is logged for
every KSDS file add or delete.

 With index images and KSDS image records, the System Log File
block is flushed immediately (rather than delayed, as for BDAM and
ESDS). Therefore, the block on the System Log File may not be fully
utilized. Heavy updates of KSDS files could also affect throughput.

♦ Index change log images containing the secondary key just added,
changed or deleted. Task Level Recovery (TLR) performs a logical
recovery of these images, as opposed to physically applying the
secondary key images on the index file.

♦ Index block log records containing the contents of a physical block
in the index file prior to structural maintenance occurring against the
index file.

♦ File mode before image records are written if task logging is also
active (for an OPEN or CLOSE DML command).

♦ System event records are for future use.

♦ An end of volume record, if it appears, is the last record in a logical
volume. It is used only on a direct access method (BDAM or ESDS)
System Log File when the log is going to switch to another data set
and there are unused blocks in the current data set.

One PDM initialization record, one PDM termination record (on a normal
termination), and one or more file initialization records are written to the
System Log File. These records are written for each file defined to the
PDM in the bootstrap Directory schema, or in the user schema, or in both
(except for the System Log File, the Task Log File, and the Statistics
File).

Chapter 3 Creating PDM system log file groups

54 P26-2223-64

4
Running SUPRA with logging

To take advantage of running SUPRA with logging active, there are
procedures to follow before, during, and after running logging.

Logging and Recovery Guide 55

Recovering files
When you create or modify an application program to use the recover or
restart features of the PDM, consider the update conditions for the
application’s files after a failure. The following list shows possible
conditions and how to obtain them:

♦ Updates are backed out to each task's last commit point. When
a task fails, all of its updates since the last commit are undone and
the effects of the incomplete transaction are removed from the
database. In a task logging environment, this is the only possible
outcome, unless there is physical damage to a device containing the
Task Log File or one of the updated files. (If there is physical
damage to updated files, no damage to the Task Log, and system
logging of after images was performed, the affected file(s) can be
reloaded from tape backup and restored using the Restore function
of the SUPRA DBA utilities. Task Level Recovery proceeds when the
PDM is restarted.) The backout (or reset) to commit occurs either at
the time of failure or when the PDM is restarted with the same Task
Log File and options.

♦ Updates are backed out to the PDM's last quiet point. Use the
Recover function of the SUPRA DBA utilities to last-commit. Quiets
are not supported in a task logging environment, and commits are
not supported in a non-task-logging environment.

♦ Contents of update files have been backed out to the point of
failures. Use this option only if the file(s) has been physically
damaged and reloaded from backup. For this condition, use the
Restore function of the SUPRA DBA utilities. The consistency of
affected files, internally or with each other, cannot be assured.

♦ Updates are not important after a failure. However, the affected
files must be unlocked and be consistent internally and with each
other. This option usually applies to scratch files, work files, and
slide files. Generally, these files can be made consistent by
formatting the file, reloading the file, or using one of the first three
options above.

Considerations

♦ The recover and restore utilities do not recover or restore format
functions.

♦ If a format is in progress when a failure occurs, you cannot recover
the file being formatted.

♦ If a format has completed, you can recover the file to the last commit.
However, you cannot restore the file or recover to log begin.

Chapter 4 Running SUPRA with logging

56 P26-2223-64

Backing up data files
Before starting to run the PDM with logging, back up all important files.
You must identify which of your files contain valuable data. You must
periodically make backups of these files. Logging is not a substitute for
backups.

Scratch files and work files contain no valuable data and need not be
backed up or logged.

Committing tasks
Issue commit instructions in your application. Commit points include the
start (sign-on) of a task and each point when the task issues a commit
instruction. The application should issue commit instructions periodically,
but not in the middle of a logical unit of work (that is, not in the midst of a
series of updates that are logically closely interrelated). Issuing a commit
instruction makes permanent all changes made by the task up to that
point.

Backing up data files

Logging and Recovery Guide 57

Saving special data on log files
If you migrated to SUPRA Server from TOTAL, you can use the following
physical DML instructions to save user-specified data on PDM log files. If
you are using an RDM application, the RDM will perform this function
automatically.

♦ COMIT can save user data in a commit record on the PDM Task Log
File. RESET retrieves this data from the most recent commit. An
application can use this feature to backout an incomplete logical unit
of work and resume processing. In the event of a task or system
failure, work can be resumed at the point of last commit when the
task restarts. In order to take advantage of this feature, the
application must be made restartable by specifying
RESTART=NORMAL in the CSIPARM file for the interface.
Cincom’s batch Directory Maintenance is such an application.

♦ MARKL and QMARK save user data in special records on the PDM
System Log. Such a record can serve as a marker indicating the
point when a significant event occurred (a file backup, for example).
The PDM logical write exit could force a new logical volume at this
point. The recovery exit could selectively apply images depending on
whether they preceded or followed the marker record.

For more information about these instructions, refer to the SUPRA Server
PDM DML Programming Guide (OS/390 & VSE), P26-4340.

Chapter 4 Running SUPRA with logging

58 P26-2223-64

Starting a new logical volume on the PDM system log
While running the PDM, switch logical System Log volumes at
appropriate times. The PDM completes one logical volume and starts
writing to the next when one of the following happens:

♦ The relative block number on the current volume reaches a user-
specified limit (VOL-MAX-RBN, specified on the Directory).

♦ The logical-write user exit returns an action indicator of NVOL.

♦ An application issues the physical DML instruction ENDLG (and the
end log option is force-end-of-volume).

Resetting tasks
While running the PDM, your applications should issue reset instructions
when appropriate. A reset backs off all updates the task made since the
last commit. This ensures that all data and control information affected
by the changes are restored to a state where they are internally
consistent. If a problem is detected in a transaction or the transaction
cannot successfully complete, a reset is appropriate.

SUPRA PDM and CICS Connector automatically back off the changes of
some or all of their tasks to the last commit in response to a forced
disconnect command, forced termination command, abnormal
termination, or restart following an abnormal termination.

Starting a new logical volume on the PDM system log

Logging and Recovery Guide 59

Purging dangling tasks
When a task known to the PDM terminates abnormally (without signing
off) and the PDM is running with Task Level Recovery, the PDM normally
treats the task as restartable. The PDM maintains information about the
task and holds resources for the task in expectation of restarting the task.
The PDM cannot be shut down unforced under these circumstances. If
the PDM is forced down, it will retain information about the task in the
Task Log File.

If you do not intend to restart tasks, you can specify RESTART=NONE in
the CSIPARM file for the PDM. This prevents the PDM from holding
resources for failed tasks. For information about the RESTART=
parameter, refer to the SUPRA Server PDM and Directory Administration
Guide (OS/390 & VSE), P26-2250.

If your CSIPARM specifies (or defaults to) RESTART=NORMAL, but you
have a failed task you will never restart, you should purge the task from
the PDM. Interactive Services can be used to purge tasks for interfaces
currently not connected to the PDM:

1. At the Interactive Services main menu, specify PDM services.

2. At the PDM Services menu, specify Task Management.

3. At the Task Management screen, leave the default values in place
and press ENTER. A list of interfaces appears.

4. Select the interface to which the task belongs. A list of tasks
appears. Follow the directions on the screen to purge the task.

For more details on Interactive Services, refer to the SUPRA Server PDM
and Directory Administration Guide (OS/390 & VSE), P26-2250.

Chapter 4 Running SUPRA with logging

60 P26-2223-64

Restarting tasks
In order to restart a task, it must be signed on again to the PDM. If the
restart is successful, the PDM returns a status of RSTR. If you are using
an RDM application, the RDM will perform this function automatically.

Warm starting the PDM
The PDM warm starts when you resubmit a job. When Task Level
Recovery is active at the time of a system failure, the PDM automatically
warm starts if the environment description, schema, PDM name, or job
name (if the PDM name defaults to the job name) have not been
changed.

You cannot warm start a central mode PDM under OS/390 in another
step of the same job that brought it up. You must warm start it as a
separate job.

Restarting tasks

Logging and Recovery Guide 61

Recovering from PDM task and system failure
Two types of uncontrolled termination or failure can occur during
processing: a task failure or a system failure. This section explains how
to recover and restore your database in case of failure.

Task failure
A task failure occurs when a task or its interface fails. A task may fail in
either of the following two environments:

♦ Task logging is active. When the PDM is running under Task Level
Recovery (TLR) and a batch task failure occurs, the PDM can
recover the database files to the last commit point. If a CICS task
fails, the CICS backout exit program issues a RESET and SINOF for
the task.

 If CICS or the CICS Connector fails, the PDM recovers the database
files for all of the tasks signed on to the interface. Resources
necessary to restart a task are kept by the PDM for restartable tasks.
All resources are discarded for non-restartable tasks.

♦ Task logging is not active. When the PDM is running with no task
logging (non TLR), the PDM cannot recover database files for the
failing task or interface. All PDM resources controlled by the task
and interface are freed. The PDM continues processing, and the
database may be corrupt due to work not completed by the failed
task.

 If Task Level Recovery is not enabled, the PDM releases only files
that were opened EUPD. You are responsible for logical integrity of
your database. System logging is recommended in this environment.

Chapter 4 Running SUPRA with logging

62 P26-2223-64

System failure
For purposes of logging and recovery, a system failure may occur when
anything fails that causes the PDM to fail. The following table outlines the
symptoms, causes, and procedures you should follow to correct failures
under several uncontrolled terminations.

In a system failure, the PDM dumps additional information along with the
normal system dump. This information is in the form of snap dumps.
Snap dumps are selective dynamic dumps.

For OS/390 and VSE, the PDM issues snap dump requests in various
places in its abend processing. Each snap has a snap title and snapped
data. In VSE, which does not support snap titles, the title is snapped
before the snapping of the data. This results in two snaps for each snap
point, instead of one as for OS/390.

OS/390

VSE

In OS/390 the snapped data is output to a PDMSNAP data set. You
must include a PDMSNAP DD card in the JCL for the PDM job step.

In VSE, the PDUMP Facility does not control the destination of the
snapped data. It is determined by VSE.

When recovering a system with task logging, warm start the PDM with
the same environment description (that is, use the same CSIPARM file
with its contents unchanged). Also, use the same Task Log File so you
can restore your environment. (In OS/390, if the PDM is in central or
attached central operating mode, you cannot run two PDMs in the same
job.)

If one or more of your KSDS VSAM files was opened for update at the
time of a system failure, do not follow the steps outlined in the following
table; see “Recovering KSDS VSAM files” on page 67.

Recovering from PDM task and system failure

Logging and Recovery Guide 63

Symptom Cause of failure Procedure to correct failure

Status of IOER—
no abend

Device Failure and the PDM
continues processing
(reading primary/related
files). The IOER was not on
a physical database update,
so the PDM can continue
because integrity of the
database is not
compromised.

a. Restore the affected database files from
the system backups.

b. Run the RESTORE function of the
SUPRA DBA utilities against the affected
database files to the desired point (last
commit or log end) for all Systems Logs
since the last system backup.

Status of IOER
followed by U998

Device failure where the
PDM terminates if writing or
reading the Task Log File.

Attempt to warm start PDM.
a. If successful warm start: terminate the

PDM; fix the Task Log File.
b. If unsuccessful warm start: run the

RECOVER function of the SUPRA DBA
utilities to the last commit. Format the
Task Log File; cold start the PDM.

Status of IOER
followed by U998
abend

Device failure and the PDM
terminates. The IOER was
on a physical database
update. The PDM cannot
continue because database
integrity would be
compromised.

TLR:
a. Restore the pack or affected database

files from the system backups.
b. Run the RESTORE function of the

SUPRA DBA utilities against the affected
database files to last commit. Run the
RECOVER function for all other files.
Format the Task Log File.

c. Cold start the PDM.
NON- TLR:
a. Restore the pack or affected database

files from system backups.
b. Run the RESTORE function of the

SUPRA DBA utilities against the affected
database files to log end.

c. Run the RECOVER function of the
SUPRA DBA utilities to last quiet on all
files.

d. Cold start the PDM.

Chapter 4 Running SUPRA with logging

64 P26-2223-64

Symptom Cause of failure Procedure to correct failure

Status of IOER
followed by U998

Device failure where the
PDM terminates if writing to
the Statistics File.

TLR:
a. Resolve the IOER to the statistics File
b. Warm Start the PDM.
NON-TLR:
a. Run the RECOVER function of the

SUPRA DBA utilities to the last quiet.
b. Fix the Statistics File problem.
c. Start the PDM.

Status of IOER
followed by U998

Device failure where the
PDM terminates if writing to
the System Log.

TLR:
If you have a subsequent failure, determine
whether you will need the System Log.
a. If you need the System Log for restore

capabilities, determine if it is intact: If it
is intact, warm start the PDM. If it is not
intact, warm start the PDM, terminate the
PDM and run the system backups.

b. If you do not need the System Log for
restore capabilities, warm start the PDM.

NON-TLR:
Determine if the System Log can be used for
recovery:
a. If it can be used, run the RECOVER

function of the SUPRA DBA utilities to
the last quiet; start the PDM.

b. If it cannot be used, restore all database
files from the system backups; run the
RESTORE function of the SUPRA DBA
utilities one or more times for all System
Logs since the last backup; start the
PDM and redo all transactions from this
PDM execution.

Power failure,
CPU failure, PDM
software failure

Nothing affecting the PDM’s
recovery is damaged (Task
Log File, System Log).

TLR:
Warm start the PDM.
NON-TLR:
a. Run the RECOVER function of the

SUPRA DBA utilities to the last quiet.
b. Start the PDM.

Recovering from PDM task and system failure

Logging and Recovery Guide 65

Defining special cases and problems in recovery
There are circumstances where, because of the type of activity on the
PDM at the time of failure, the standard recovery procedures are
inapplicable or insufficient.

Considerations:

♦ If a failure occurs after a Format function and a Recover or Restore
function is required, unpredictable results occur unless you simply
recover the file to the last commit.

♦ If a failure occurs during a Format function, you must reformat the file
since its current state is unpredictable.

Chapter 4 Running SUPRA with logging

66 P26-2223-64

Recovering KSDS VSAM files
KSDS VSAM database files present a special recovery problem. When
you attempt to add a record to a KSDS VSAM file and the control interval
in which the new record belongs is full, VSAM splits the control interval.
VSAM divides the records in the full control interval between two control
intervals. VSAM updates the index and then adds the records.

If VSAM is aborted between the time the control interval is split and the
time the index is updated, the resulting KSDS VSAM file is inconsistent
internally and cannot be fixed.

To aid the Recover function in determining whether the VSAM write has
been completed, the PDM automatically writes both before and after
images to the System Log File.

The Recover function matches all before and after combinations. If a
before image is not matched with an after image, the Recover function
produces a message indicating an error may have occurred during a
control interval split. Therefore, if the PDM fails for any reason and you
had been adding records to KSDS VSAM files at the time of the failure,
do the following:

1. Do not warm start the PDM.

2. Run the Recover function of the SUPRA DBA utilities. If a control
interval split may have been in progress at the time of failure, the
Recover function produces a message to that effect. If a control
interval split was not in progress at the time of failure, you are
finished.

3. If the Recover function detects possible control interval splits, reload
the previous backup of the affected KSDS VSAM files. Then execute
the Restore function to restore the affected KSDS VSAM file(s) from
the system backups to the point to which the rest of the database
was recovered (last commit, last quiet, or log end).

Defining special cases and problems in recovery

Logging and Recovery Guide 67

Secondary key populate or depopulate function considerations
When running the Recover function against a System Log to recover a
PDM that was performing a Populate or Depopulate function at the time
of failure, execute the Recover function to last commit and normal
recovery proceeds. If the Populate or Depopulate function is unfinished,
you should depopulate and repopulate after recovery if necessary.

If the PDM fails during a populate or depopulate function, the index file’s
free chain may be corrupt. To be sure the chain is intact, reformat the
index file and populate all secondary keys related to that index file.

If you did not execute the Recover function to last commit, depopulate
the secondary key and repopulate after recovery if necessary.

If a system failure occurs during a Populate or Depopulate function, any
secondary key undergoing utility maintenance at the time of failure must
be depopulated and purged. After purging, populate the secondary key
again. You may need to reformat the index file to recover parts of the
free space chain. Warm Start or Recovery Failure on Secondary Keys.

Warm start or recovery failure on secondary keys
Failure during a warm start or recovery has unpredictable effects on
secondary keys. If a failure occurs during a warm start or recovery while
doing an index split:

♦ The index file free-space chain may be damaged.

♦ You may need to format the index file, or some blocks may be
inaccessible permanently.

♦ The secondary keys may be damaged and unrecoverable. In this
case a depopulate and repopulate does not work. You must reformat
the index file.

Rerunning a warm start or recovery may cause data file index file
synchronization errors on the secondary keys. If this occurs:

♦ The index file freespace chain is undamaged.

♦ The secondary keys are structurally intact.

♦ If you did not perform any maintenance on the base files, the
secondary keys are logically intact.

Chapter 4 Running SUPRA with logging

68 P26-2223-64

Processing isolation with single-task PDM
When recovering a single-task PDM, a sign-on with
ACCESS=RECOVER results in processing isolation of base and index
files. This means that:

♦ Opening the base file does not automatically open the index file.

♦ You can open the index file.

♦ Changes to index files are not automatically reflected in base files,
and changes to base files are not automatically reflected in index
files.

♦ If you issue a READX, unpredictable results occur.

Recovering a file during a format function
When recovering a file during a Format function, follow these
considerations:

♦ If the file did not exist before the Format function:

- Execute the Recover function to log beginning.

- The system is as it was prior to the existence of that file.
However, the file contains invalid data. Either delete or reformat
the file.

♦ If the file existed before the Format function but did not contain data:

- Recover to log beginning.

- The file contains invalid data.

- You must create and format the file before executing the Restore
function to log end.

♦ If the file existed before the Format function and contained data, do
not restore to log end or last commit.

Defining special cases and problems in recovery

Logging and Recovery Guide 69

Multiple PDM recovery
If you update file(s) using multiple PDMs serially and execute the
Recover or Restore function, the file can be seriously damaged. If you
execute the Recover function to last commit, no damage occurs. If you
execute the Recover function to log begin or perform any type of Restore
function, results are unpredictable since you must get the data from
multiple PDM log files.

If a PDM updates and subsequently closes a file, and another PDM
accesses and updates the same file, the System Log Files for both PDMs
together make up a logical System Log File. You must run two recovers
and restores (one for each file) in the correct order.

If the situation just described occurs, and the first PDM then reopens and
updates the file after the second PDM has closed the file, the System Log
Files (if used) can corrupt the database. Depending on the sequence of
events, the recovery process can corrupt the database if proper
procedures are not established. Each user must examine the overall
system and develop recovery procedures which use Cincom-supplied
recovery techniques to ensure database integrity.

Chapter 4 Running SUPRA with logging

70 P26-2223-64

5
Recovering SUPRA CICS applications

The recovery facilities of CICS and the SUPRA PDM are used to recover
SUPRA CICS applications. The CICS and PDM facilities should be
synchronized for optimum operation. Recovery can be made from task
and system abends for RDM, SPECTRA, MANTIS, and Directory
Maintenance

CSTXOPRM options SYNC=C or SYNC=U allow the user to gain some
control over PDM and CICS synchronization. For details on these
options, refer to the SUPRA Server PDM CICS Connector Programming
Guide (OS/390 & VSE), P26-7452

Logging and Recovery Guide 71

Preparing CICS and SUPRA for recovery
The PDM requires task logging. The SPECTRA Personal File System
data set must be a protected CICS resource or PDM file to be
guaranteed recoverable.

Recovering CICS application programs
Recovery of CICS applications requires an understanding of the CICS
connector component of SUPRA Server, the available exit points and
supplied exit routines, and the operator control commands for the
connector. For details on these items, refer to the SUPRA Server PDM
CICS Connector Programming Guide (OS/390 & VSE), P26-7452.

Briefly, for the CICS connector to function, you must perform the
following steps. Once they are done, these facilities are available for
recovery purposes.

♦ Define any native VSAM files (non-PDM VSAM files) or DL/I
databases you access through CICS as CICS-protected
(recoverable) resources. These can include native KSDS VSAM files
or DL/I databases you access through RDM or RRDS VSAM
Personal File Data for SPECTRA. CICS then recovers these files
when a CICS task abend occurs.

The Cincom provided Task Related User Exit (TRUE) issues a
RESET DML instruction to the PDM when a CICS task abend occurs,
so that any PDM updates by that task are rolled back to the last
commit point. For more information on CICS exits and the
CSTXOPRM macro, refer to the SUPRA Server PDM CICS
Connector Systems Programming Guide (OS/390 & VSE), P26-7452.

Cincom recommends that you use PDM task logging for any SUPRA
PDM that performs updates, regardless of whether the update
requests come through CICS.

 If the SPECTRA Personal File System (PFS) data set is a PDM file, it
can be recovered by the PDM after a task or system abend. If the
PFS data set is an RRDS VSAM file and is defined as a CICS-
protected resource, it can be recovered by CICS after a task abend.
If the PFS data set is not a PDM or RRDS VSAM file, its recovery
after an abend depends on the timing of the failure; if the failure
occurs during PFS processing, the PFS data set may contain
uncommitted updates.

Chapter 5 Recovering SUPRA CICS applications

72 P26-2223-64

For recovery purposes, all CICS application programs:

♦ Must synchronize CICS sync points/rollbacks and PDM
commits/resets. PDM and CICS use different recovery systems, and
these systems are not synchronized. If applications depend on more
than one recovery mechanism in a single logical unit of work,
recovery cannot be guaranteed, because the commits to the different
recovery systems are not synchronized. (For instructions on using
the COMMIT command, refer to the SUPRA Server PDM RDM
Administration Guide (OS/390 & VSE), P26-8220.)

 The synchronization can be done by the programmer in each
program’s logic. One method for handling the PDM commits and
resets is to use a DBA-written exit (DATBASXT) in the DATBASC
linked with each program.

 Another method is to let the CICS connector exit logic handle the
PDM side of synchronization. (Refer to the SUPRA Server PDM
CICS Connector Systems Programming Guide (OS/390 & VSE),
P26-7452, for information on CICS Connector exits and the
CSTXOPRM macro.)

♦ Must check for synchronization during recovery of PDM and CICS
resources after a failure. The program can compare the sync point
data retrieved from a user CICS journal with the commit data from
the PDM. If the CSIPARM Option RESTART is coded as
RESTART=NORMAL the task receives a RSTR status from the PDM
upon re-SINON, and can retrieve the saved commit data with the
RESET command. If the sync point data does not match the commit
data, the failure occurred during the time between the CICS sync
point and the PDM commit point. This is termed the recovery
window, and means that the two are not synchronized.

To use RESTART=NORMAL every CICS transaction must be written
to handle recovery, and must attempt to re-SINON after a failure. If
this is not the case you should use RESTART=NONE in your CICS
CSIPARM.

You can synchronize the two and eliminate the recovery window only
by controlling your own COMIT/RESET.

Preparing CICS and SUPRA for recovery

Logging and Recovery Guide 73

How CICS and the PDM recover
When a task abends, the following occurs:

♦ CICS recovers CICS-recoverable resources to the most recent sync
point.

♦ The PDM issues a RESET and SINOF on behalf of the abending task.

When CICS or the PDM abends, the following occurs:

♦ CICS recovers to the most recent sync point the resources you
defined as recoverable for each active task.

♦ The PDM recovers its resources to the most recent commit point for
each signed-on task. You define a PDM commit point in one of two
ways:
- Explicitly by a COMIT command (if task logging is active)
- Implicitly by a SINON or SINOF command.

 When the operations staff subsequently reconnects the CICS
connector to the PDM after a CICS or PDM abend, the following
occurs:

If the CSIPARM RESTART option = NORMAL:
- Tasks which are signed on but have not committed are

recovered to the point of sign-on. Then they are signed off. All
other tasks remain signed on to the PDM. However, a CICS
Connector STATUS operator control command will not show
these tasks in its displayed count fields.

- For any tasks which have not issued COMIT commands, the
PDM returns a **** status to any SINON commands issued after
the reconnect.

- For any tasks which have issued COMIT commands, the PDM
returns an RSTR (restart) status to all SINON commands issued
after the reconnect. The RSTR status indicates that the SINON
command has completed correctly and that the database is
restarting the task from the Task Log File. If you specified
commit data on the COMIT command, issue a RESET command
to retrieve that commit data. Your application may require
special processing to handle the RSTR status.

If the CSIPARM RESTART option = NONE:
- Tasks which are signed on are recovered to the point of last

commit. Then they are signed off.

Chapter 5 Recovering SUPRA CICS applications

74 P26-2223-64

Recovering after a CICS task abend
After a task abend, CICS provides automatic recovery for the CICS
resources you define as recoverable. To recover after a CICS task
abends, reissue your transaction.

Recovering RDML applications
If a Relational Data Manipulation Language (RDML) task abends, the
RDML interface recovers PDM resources to the most recent RDML
commit point. CICS rolls back CICS protected resources.

If C$VOOPTM SYNCTYP=Y is coded:

♦ If you issue an RDML RESET instruction, it requests a CICS
ROLLBACK and a PDM RESET request.

♦ An RDML COMMIT or sign-off instruction also issues a PDM COMMIT
and a CICS sync point. The CICS sync point commits any non-PDM
resources that are CICS protected. This is especially important if you
use RDM to update native VSAM files or DL/I databases.

C$VOOPTM SYNCTYP=Y and CSTXOPRM SYNC=C address the same
problems. If both are coded as above you will duplicate the PDM/CICS
comits and syncpoints. (Refer to the SUPRA Server PDM CICS
Connector Systems Programming Guide (OS/390 & VSE), P26-7452 and
the SUPRA Server PDM RDM Administration Guide (OS/390 & VSE),
P26-8220

Every application must issue a sign-off instruction when it is terminating
from CICS. Pseudoconversational tasks doing a pseudo-conversational
return to CICS do not have to sign-off at that point. They should issue a
commit instruction instead. Both pseudo-conversational and
conversational applications must issue a sign-off on their final return to
CICS. Failure to issue a sign-off leaves the task as an active task in the
PDM and needlessly ties up PDM resources.

Recovering after a CICS task abend

Logging and Recovery Guide 75

Recovering MANTIS applications
If a MANTIS application task fails, the CICS Exit Program backs out any
CICS and PDM updates performed during the incomplete logical unit of
work and displays an error message. The MANTIS task terminates. You
must sign back on to the MANTIS system.

VSAM file or DL/I database updates are reset to the last sync point if the
files have been defined as recoverable to CICS.

For more information on MANTIS recovery, refer to your MANTIS
documentation.

Recovering directory maintenance
If an abend occurs while you are running Directory Maintenance
transactions and there are no uncommitted updates, CICS returns an
abend message and the CICS connector returns the message “Backout
Successful.” To reset, you must reissue the Directory Maintenance
transaction to bring Directory Maintenance back up. You receive a
standard sign-on screen, and the files are restored to the most recent
commit point.

If an abend occurs while you are running Directory Maintenance
transactions and there are uncommitted updates, CICS returns an abend
message and the CICS connector returns the message “Backout
Unsuccessful.” A Directory Maintenance Restart screen appears.

If a terminal READ or WRITE failure occurs, there is no message
because the terminal is out of service. To determine the cause of the
failure, review the CICS Dump Data Set and the CICS Connector Activity
Audit Trail. Check whether reset and sign-off instructions were issued
and check for reset failure. Refer to the IBM documentation for
information on how to print the dump data set. To recover from a READ
or WRITE failure, process as above for the messages “Backout
Successful” and “Backout Unsuccessful.”

Chapter 5 Recovering SUPRA CICS applications

76 P26-2223-64

Recovering after a CICS system abend
To recover after CICS abends, you must do the following:

♦ Emergency restart CICS.

♦ Reconnect the CICS connector to the PDM in one of these ways:

- Automatically, if you installed the automatic connect option at
CICS initialization.

- Manually, by issuing the CONNECT operator control command.

CICS resources are recovered to the most recent sync point of each
task. The PDM automatically recovers SUPRA Server resources when it
detects that CICS abended. If the PDM is operating in the attached
operating mode, the PDM recovers when it is restarted. PDM resources
are recovered to the most recent commit point for each signed-on task.

After you emergency restart CICS, reconnect the CICS connector to the
PDM. Depending on the options you installed at CICS initialization, this
can be done automatically. You can also use the CONNECT operator
control command.

If you emergency restart CICS and there are no uncommitted updates,
the Sign-on screen is returned.

You must use the same terminal (TCT TERMINAL-ID) as the original
task for RESTART to be detected.

Recovering after a CICS system abend

Logging and Recovery Guide 77

Recovering RDML applications
To recover resources for all active tasks at the time of an abend,
emergency restart CICS. The PDM automatically recovers its resources
if task logging is active. CICS recovers VSAM resources if you included
VSAM recovery in CICS. If you did not include VSAM recovery in CICS,
the PDM updates are backed out, but the corresponding VSAM updates
are not backed out. This is a problem only if the RDM application mixes
PDM and VSAM updates. For recovery of DL/I databases in a CICS
environment, refer to the appropriate IBM CICS IMS manuals.

Recovering MANTIS applications
When CICS abends, the PDM detects the abend and backs out
uncommitted SUPRA PDM updates automatically. CICS emergency
restart will recover VSAM files if you defined the files as recoverable. If
you did not define the VSAM files as recoverable, the PDM updates are
backed out, but the corresponding VSAM updates are not backed out.
This is a problem only if a MANTIS application program mixes PDM and
VSAM updates in the same logical unit of work. Refer to your MANTIS
documentation for more information on MANTIS recovery. For recovery
of DL/I databases in a CICS environment, refer to the appropriate IBM
CICS IMS manuals.

Recovering directory maintenance
When CICS abends, restart CICS and enter the Directory Maintenance
transaction ID. If the task issued a commit instruction, Directory
Maintenance may receive a RESTART status and display the Restart
screen.

Chapter 5 Recovering SUPRA CICS applications

78 P26-2223-64

Recovering after a PDM system abend
If CICS is not connected to the PDM when the PDM abends, no recovery
is necessary for the CICS connector.

If CICS is connected to the PDM when the PDM abends, all current
commands and those issued after the PDM abends receive a NOTO
status. To recover, you must take the following steps:

♦ Disconnect the CICS connector from the PDM with the
DISCONNECT operator control command.

♦ Restart the PDM if the PDM is operating in a central operating mode.

♦ Reconnect the CICS connector to the PDM in one of these ways:

- Automatically, if you installed the automatic connect option at
CICS initialization.

- Manually, by issuing the CONNECT operator control command.

If the CICS Connector is connected to the PDM when the PDM abends,
all current PDML instructions and all RDML instructions issued after the
point of PDM failure receive a NOTO status.

To recover, disconnect the CICS Connector with the DISCONNECT
command. If the PDM is operating in central mode, restart the PDM,
then reconnect the interface using the CONNECT command. Upon
restart, the PDM recovers all PDM resources for all tasks signed on at
the time of PDM failure. If the PDM is operating in attached or attached
central mode when the abend occurs, issue the CONNECT command to
restart the PDM.

After you restart the PDM in a central operating mode, you must
synchronize any updates being performed by tasks not running under
CICS.

Recovering after a PDM system abend

Logging and Recovery Guide 79

Recovering RDML applications
RDM application programs receive a fatal status from the CICS
connector when a PDM system abends. A RDM RESET instruction
cannot be used because the PDM is not active. PDM files are recovered
when the PDM is restarted. If the application is updating VSAM files or
DL/I databases with RDM, issue a CICS ROLLBACK command to
recover the files.

Recovering MANTIS applications
If the PDM abends, the MANTIS application task receives a NOTO
status, which is converted to an error message for the application
program. Retry the task.

When you restart and reconnect the PDM, MANTIS may still receive
notice that the task is not signed on and pass an error message to the
application program. If this occurs, terminate the MANTIS task to ensure
synchronization between PDM and CICS resources.

Recovering directory maintenance
If the PDM fails during a Directory Maintenance session, you receive the
message “Backout Unsuccessful.” When it reconnects, the PDM
interrogates the Task Log File and issues a warm connect. If the task
issued a commit, the PDM returns a RESTART status to Directory
Maintenance after the sign-on instruction is issued, and Directory
Maintenance displays a Restart screen showing the last update
successfully completed.

If a commit was not issued, you receive a normal sign-on screen. You
must use the same terminal (terminal ID) as the original task.

Chapter 5 Recovering SUPRA CICS applications

80 P26-2223-64

Recovering after both CICS and the PDM abend
To recover after concurrent CICS and PDM abends, you must take the
following steps:

♦ Emergency restart CICS.

♦ Restart the PDM to recover the PDM resources.

♦ Reconnect the CICS connector to the PDM in one of these ways:

- Automatically, if you installed the automatic connect option at
CICS initialization.

- Manually, by issuing the CONNECT operator control command.

Recovering RDML applications
If you are using RDML when CICS and the PDM abend concurrently,
emergency restart CICS to recover CICS resources and restart the PDM
to recover PDM resources.

Recovering MANTIS applications
Retry the MANTIS task after the PDM is restarted and reconnected.
CICS resets CICS file updates if you defined the files as recoverable.
The PDM backs out uncommitted PDM updates when you restart it.

Recovering directory maintenance
No task level recovery is attempted at the time of an abend. Recovery is
performed to the beginning of all logical units of work when the SUPRA
PDM is restarted. Log on to Directory Maintenance and resume your
work from the last screen entered before system failure.

Recovering after both CICS and the PDM abend

Logging and Recovery Guide 81

Chapter 5 Recovering SUPRA CICS applications

82 P26-2223-64

6
Recovering and restoring the SUPRA
PDM from the System Log

Three SUPRA DBA utilities functions use the PDM System Log as input:
the Recover function, which backs off changes, the Restore function,
which reapplies changes, and the Log Print function, which prints the
log’s contents. You use these functions when the PDM has terminated
and is not running.

When you cannot use the Task Log File to recover the database, you can
use the Recover function to back off updates to the last commit. The
Recover function has two phases. In the analysis phase, the Recover
function reads the System Log file from the beginning, collecting and
optionally printing information. In the image application phase, the
Recover function reads the System Log file backwards from the end,
applying before images to the database. The Recover function stops
reading and applying images either at the last commit for each task or at
the start of the file.

When PDM files are lost or damaged, you can use the Restore function
to reapply updates to the last commit. You must reload the affected files
from your backup copies before running the Restore function. The
Restore function has two phases. In the analysis phase, the Restore
function reads the System Log file from the beginning, collecting and
optionally printing information. In the image application phase, the
Restore function reads the System Log file forward from the beginning,
applying after images to the database. The Restore function stops
reading and applying images either at the last commit for each task or at
the end of the file.

You can use the Log Print function to print selected information from the
System Log file without updating the database. The Log Print function
has one phase, the analysis phase, which corresponds to the analysis
phase of the Recover and Restore functions. The Log Print function
reads the System Log file from the beginning, collecting and optionally
printing information.

For information on coding Recover, Restore, and Log Print, refer to the
SUPRA Server PDM DBA Utilities User’s Guide (OS/390 & VSE), P26-
6260.

Logging and Recovery Guide 83

Considerations
♦ The Recover function depends on before-image log records. For the

Recover function to work, the PDM’s active environment description
must specify the before-image logging option.

♦ The Restore function depends on after-image log records. For the
Restore function to work, the PDM’s active environment description
must specify the after-image logging option.

♦ The Recover and Restore functions cannot recover system events,
such as formatting, loading, populating, and depopulating, because
these activities are not logged. The Recover function to last commit
is not affected by system events.

♦ If you changed a file’s definition with Active Schema Maintenance
during the PDM’s run, attempting to recover that file with either the
Recover function to log begin or the Restore function has
unpredictable results.

♦ When you run the Recover function against a tape System Log under
the VSE operating system, you must have a write-enable ring on the
tape.

♦ With the VSE operating system using tape,
RECOVER/RESTORE/LOG PRINT must have the tape drive
positioned on the data file. Without exits, the utility does not process
the tape label.

♦ For FBA users, to RECOVER/RESTORE/LOG PRINT from disk
VSAM, ESDS must be used. Otherwise the FBA log file can be
copied to a labeled tape for processing.

♦ When you run the Recover, Restore, or Log Print function against a
tape System Log under the OS/390 operating system, the tape must
be initialized before the System Log records are written or copied
onto it. If the tape is not initialized, the function may fail with the IBM
message IOS000I. When this happens, copy the System Log onto
initialized tape(s) and try the function again.

♦ When you are not doing physical recovery you are not assured that
the recovery will be physically exactly the same. Depending on how
you specified Secondary Keys, it is possible that following the
recovery the Index File may not look exactly the same as before.
However, the Index File will be logically complete and consistent.
This means that if your application is order entry dependent, you may
notice minor differences.

Chapter 6 Recovering and restoring the SUPRA PDM from the System Log

84 P26-2223-64

Running recover and restore in the appropriate environment
The Recover and Restore functions must be run in an appropriate
environment: non-Directory-driven, non-task-logging mode. The
CSIPARM must include the DIRECTORY= parameter but not the
REALM= parameter. The bootstrap environment description must
specify, either explicitly or by default:

♦ TASK-LOGGING=NO

♦ STATISTICS=NO

♦ LOGGING=NNNN

♦ OPENX-OPTION=PROCESS

It must also specify an open mode of NONE for the files. The file
definitions in the bootstrap schema must be identical to the
corresponding definitions used by the terminated PDM. An example of a
suitable CSIPARM member follows:
DIRECTORY=(SCHEMA=CSTASCHM,ENVDESC=CSTANONE),END.

In some cases, you can run the Recover, Restore, and Log Print
functions against part of the System Log instead of the whole log.

Considerations

♦ To run the Recover, Restore, and Log Print functions against part of
the System Log, you must be using the multiple logical volumes
feature, and the portion of the log you use must start at the beginning
of a logical volume.

♦ You can run the Log Print function against a portion of the log starting
with any logical volume.

♦ You can start to run the Recover function to last commit against a
portion of the log starting with any logical volume. (If the portion does
not include a commit point for every task, the Recover function
terminates after the analysis phase and gives you a message
identifying the volume with which to start.)

♦ You would normally run the Recover function to log begin or the
Restore function against the entire log, starting with the first logical
volume (volume number 0). These functions will not execute starting
with any other volume unless there is an exit present.

Running recover and restore in the appropriate environment

Logging and Recovery Guide 85

If your operating system is OS/390 or VSE, your installation tape provides
the following sample JCL members for the Recover, Restore, and Log
Print functions. Use these samples as models for your JCL:

TXJPMSLG Run the Log Print function against a System Log that
consists of multiple data sets.

TXJPSSLG (VSE only) Run the Log Print function against a System
Log that consists of a single data set.

TXJRCVLF Run the Recover function to last commit against a
System Log that consists of a single data set.

TXJRCVLG Run the Recover function to last commit against a
System Log that consists of multiple data sets.

TXJRSTLG (VSE only) Run the Restore function to last commit
against a System Log that consists of multiple data sets.

TXJRSTOR Run the Restore function to last commit against a
System Log that consists of a single data set.

Chapter 6 Recovering and restoring the SUPRA PDM from the System Log

86 P26-2223-64

Determining the need for the Log File I/O Exit
You may need the Log File I/O Exit to run the Recover, Restore, or Log
Print function. Needing this exit depends on the device type of your
System Log, the number of data sets in the log (or in the portion of the
log you run against), and the operating system you run under. “Using the
Log File I/O Exit in recovery” on page 93 discusses the Log File I/O Exit
and its use in detail.

Switching system log files
The recovery functions (Recover, Restore, and Log Print) use the System
Log File to recover the Directory files and the PDM database files. When
you execute the Restore function or Recover to log-begin, you must use
the entire System Log File.

However, when you execute Recover to last-commit, you have the option
to use only the last part of the System Log File. Also when you use the
Log Print function, you are able to use whatever part of the System Log
File you want. When you use only part of the file, those functions can
execute faster than if you use the entire file.

To take advantage of this time saving feature, you must construct your
System Log File so that it is divided into multiple logical volumes (several
tape reels or disk data sets). Then you can select only the tape reel or
disk data set you need. Another advantage of using several tapes or
disks is that your System Log File never fills up. When the PDM fills one
reel or disk, it just writes to another one. Then the PDM never
abnormally terminates from a full system log file.

When you create a System Log File with several reels or disks, however,
the recovery functions cannot read it. They can read only one tape reel
or disk data set. To enable them to switch to the next reel or data set
requires an exit program. For information on the PDM’s logical write exit,
refer to the SUPRA Server PDM and Directory Administration Guide
(OS/390 & VSE), P26-2250.

Cincom provides exit points for maximum flexibility, so you can switch
reels or data sets as you like. The only restriction is that you must pass
them in sequential order.

For more information on the Log File I/O Exit, “Using the Log File I/O Exit
in recovery” on page 93.

Determining the need for the Log File I/O Exit

Logging and Recovery Guide 87

Using tape data sets
You determine the number of reels in a logical log volume by the way you
set the VOL-MAX-BLOCKS parameter in Directory maintenance. If you
set the maximum number of blocks in a volume to less than the capacity
of a tape reel, you have only one reel per volume. If you set the
maximum number higher, you have more than one in each volume.

When you create the tape data set on Directory maintenance, you must
declare the type of file to be either WORK or SYSTLOG. If you code
WORK, you must set the VOL-MAX-BLOCKS parameter to less than the
size of a reel. When you code WORK, the PDM abnormally terminates if
you let it write to the end of the tape reel. The advantage of coding
WORK is that the PDM executes faster because it can overlap the I/O.

The following figure shows an example of type 2, a tape data set. This
type of System Log File is not divided into data sets and can be used by
both WORK and SYSTLOG. In order for you to select a part of it for
recovery, the PDM divides it into logical log volumes. In this case, it
makes each reel a logical log volume of one data set.

Logical
Volume 1

1 Tape data set

Logical
Volume 2

Logical
Volume 3

One tape data set containing three logical volumes

Chapter 6 Recovering and restoring the SUPRA PDM from the System Log

88 P26-2223-64

If you code SYSTLOG in type 2, the PDM cannot overlap I/O, but it can
automatically switch to the next reel without abending. In this case, the
PDM creates an infinite number of tape reels. Then you can let the PDM
write to the end of a tape, and you can set the maximum blocks in a
volume to a number larger than the capacity of a reel.

When you have more than one reel in a logical volume, you need to keep
track of the reels so you can submit the ones you want to use in recovery
to the exit program. To keep track of the reels in a logical volume, you
can use the console messages the PDM prints when it begins and ends a
logical volume.

When you submit the list of reels to the exit program, you must include all
the reels in a logical volume. For example, if you need only the last reel
for a Recover to last-commit, you could submit reel three in the preceding
figure or reel six in the following figure. If you need the last two reels, you
could submit reels two and three in the preceding figure. You must
submit all reels in the Logical Volume in the following figure. If you leave
out any reels, the Recover function stops soon after it begins executing.

To figure out which logical volumes to submit, start by submitting the last
one. If Recover needs more, it prints an error message stating the
number of the logical volume it needs.

1 Tape data set

One tape data set with six tapes
in three logical volumes

Logical
Volume 1

Logical
Volume 2

Logical
Volume 3

Switching system log files

Logging and Recovery Guide 89

Using disk data sets
The following figure shows an example of type 3, disk data sets. In this
example, you have defined two disks and selected the wrap option.
When the PDM starts logging, it writes to disk A.

When the PDM has filled A, it signals you to begin dumping to tape. If B
has not been used, the PDM will begin logging to B immediately. If B has
been used, the PDM will write a message to the system console
requesting to use B. An operator reply is required.

When B has completed dumping to tape, execute log switching and wrap
log files by replying yes at the system console prompt. After filling B, you
dump it to another tape as you did for A above, and the PDM wraps
around to fill A again. Thus, the PDM can continue indefinitely filling data
sets, so the System Log File never fills up, and you can select only the
data set you need for recovery.

Disk A

Logical
Volume 1

Disk B

Logical
Volume 2

Log
switch

Log
switch

W
R
A
P

O
P
T
I
O
N

Two disk data sets with wrap option

PDM Logging User managed process

Tape 1
(One log
volume)

Tape 4
(One log
volume)

Tape 3
(One log
volume)

Tape 2
(One log
volume)

(Dump to tape)

4

2

3

1

Chapter 6 Recovering and restoring the SUPRA PDM from the System Log

90 P26-2223-64

The following figure shows another example of disk data sets. In this
example, you have made the disk data sets so large that they require two
tapes.

When you dump disks to tapes, the PDM makes a logical log volume with
the tapes dumped from one disk. For example in the preceding figure,
when you dumped the first disk to a tape, the PDM made it one log
volume. When you dumped a disk to two tapes in the following figure, it
made a logical log volume of them. Thus, you determine the number of
tape reels in a logical log volume when you set the size of the disk data
set. If you use a small disk data set, it is easier to keep track of the reels
in a logical volume.

Disk A

Logical
Volume 1

Disk B

Logical
Volume 2

Log
switch

Log
switch

W
R
A
P

O
P
T
I
O
N

Two disk data sets that dump to two tapes each

PDM Logging User managed process

Data set 1
(One log
volume)

Data set 4
(One log
volume)

Data set 3
(One log
volume)

Data set 2
(One log
volume)

(Dump to tape)

4

2

3

1

Switching system log files

Logging and Recovery Guide 91

Combining both disk and tape data sets
The following figure shows an example of type 4, a combination of disk
and tape data sets. Each time the PDM fills a disk, you dump it to tape.
You determine the number of reels in a logical log volume the same way
as when you have disk data sets only. The main difference is that, in this
case, the PDM ignores the wrap option. After the PDM fills the last disk,
it begins filling the tape data set. Then it operates the same way as when
you have a tape data set only. You set the number of reels in a logical
volume the same way as when you have a tape data set.

Two disk data sets and one tape data set

PDM Logging User managed process

(Dump to tape) User -
determined
number of
tape reels

(Dump to tape) User -
determined
number of
tape reels

Tape data
set

Logical
Volume 3

Disk A

Logical
Volume 1

Disk B

Logical
Volume 2

Log
switch

Log
switch

Chapter 6 Recovering and restoring the SUPRA PDM from the System Log

92 P26-2223-64

7
Using the Log File I/O Exit in recovery

Cincom provides a Log File I/O Exit for the OS/390 and VSE operating
systems. You may need this or an equivalent exit to run the recovery
functions of the SUPRA DBA utilities: Recover, Restore, and Log-Print.
Needing this exit depends on the device type of your System Log, the
number of data sets in the log or the portion of the log you run against,
and the operating system, as shown in the following table.

You need the exit when running
under:

If your System Log portion consists of: OS/390 VSE

A single disk data set NO NO
A single tape data set on one reel NO NO
A single tape data set on several reels NO YES
Several data sets YES YES

You can use the Log File I/O Exit in one of three ways:

♦ You can use the exit unchanged.

♦ You can modify the exit.

♦ You can use the exit as a model to write your own.

While the Log File I/O Exit is flexible enough to use in many situations, it
can read only tape reels. If you do not modify the exit, you must move
your disk data sets to tape. The OS/390 exit requires tapes with standard
labels, and the VSE exit requires nonlabeled tapes. However, you may
want to modify the exit program so it can read disk data sets.

The uses of the OS/390 and VSE exits are explained in “Using the Log
File I/O Exit under OS/390” below and “Using the Log File I/O Exit under
VSE” on page 109, respectively.

Logging and Recovery Guide 93

Using the Log File I/O Exit under OS/390
Before using the sample exit program, perform the steps summarized
below and described in the following sections:

1. If your System Log includes disk data sets, move them to tape. The
System Log must consist of tape data sets with standard labels.

2. You must create the load module CSUORCUX, which is not on the
release tape. The figure at the end of “Processing the Log File I/O
Exit program” on page 105 illustrates CSUORCUX and its
components. For more information on creating CSUORCUX, see
“Creating the load module CSUORCUX” on page 96.

3. In the UCL, invoke the load module CSUORCUX as a standard exit
program. For more information, see “Coding UCL for the Log File I/O
Exit program” on page 97.

4. In the JCL, code files in addition to the ones normally needed to
execute the recovery functions. The additional DD statements are
for the output and data set list files and for each System Log File data
set you want to use in recovery. For more information, see “Coding
job control language” on page 98.

5. In the data set list file, enter a record containing the ddname of each
of the data sets that you want to use in the current run of recovery.
For more information, see “Listing data sets” on page 100.

The examples in each section work together to make one example. The
UCL example under “Coding UCL for the Log File I/O Exit program” on
page 97, the JCL samples referenced on your installation tape, and the
data set list example in the examples under “Listing data sets” on
page 100 illustrate executing the Recover function to last-commit using
three data sets.

Chapter 7 Using the Log File I/O Exit in recovery

94 P26-2223-64

Considerations

♦ All data sets must be tape files with standard labels and the same
block size. Data sets may have one or more physical tape reels.

♦ The sample exit handles a maximum of 100 data sets. If you try to
execute with more than 100 data sets, you get an error message.
The recovery functions stop processing before they use any data
sets. If you need to use more than 100 data sets, you must change
the maximum size of the array, DATASET-LIST, in the source code
in CSUUXRCO. You may make the array size smaller than 100.
After changing the source code, you must recompile CSUUXRCO,
then link edit the CSUORCUX load module again.

♦ When you are using a single tape data set without an exit and you
code either STATISTICS (EXTENDED) or STATISTICS (ALL) in the
UCL, you get volume information in the extended statistics report at
the end of the log analysis phase. When you use an exit to perform
the log file I/O, you do not get this volume information.

Using the Log File I/O Exit under OS/390

Logging and Recovery Guide 95

Creating the load module CSUORCUX
Before using the exit program, you must create the CSUORCUX load
module, which is not on the release tape. Please ignore the object
members for CSUUXCAP, CSUUXRCO, and CSUUXRAS on the release
tape. To create the load module, follow these three steps:

1. Assemble the modules, CSUUXCAP and CSUUXRAS, with the
source members provided.

2. Compile the COBOL module, CSUUXRCO, with the source
members provided. You must specify the APOST option in your
compiler options.

To help in problem diagnosis, Cincom recommends you specify the
PMAP option. When you compile, concatenate the appropriate
COBOL library in the SYSLIB JCL statement.

3. Link edit the CSUZRCUX link deck to create the CSUORCUX load
module. When you link edit, concatenate the appropriate COBOL
library in the SYSLIB JCL statement.

When you execute a recovery function, you do not have to concatenate a
COBOL load library in the STEPLIB DD statement.

Chapter 7 Using the Log File I/O Exit in recovery

96 P26-2223-64

Coding UCL for the Log File I/O Exit program
This sample exit is dynamically loaded into memory at execution time
from the STEPLIB DD libraries. When you execute a recovery function,
the CSUORCUX exit load module must reside in a library concatenated
in the STEPLIB DD statement.

To invoke the sample exit, code the CSUORCUX exit program in the
STANDARD-EXIT statement of the UCL, as shown in the following
example:
CONTROL (BEGIN)
**
** RECOVER TO LAST-COMMIT
** USER EXIT PERFORMS SYSTEM LOG FILE I/O
**
LOG-FILE ()
 SEQ-ERROR (ERROR)
FUNCTION (RECOVER)
 STATE (LAST-COMMIT)
 STANDARD-EXIT (CSUORCUX) STATISTICS (ALL)
 FILE (ALL)
**
CONTROL (END)

The recovery functions use only BLOCK-SIZE, SEQ-ERROR, PDM-ID-
ERROR, and LOG-ID-ERROR statements in the control section of the
UCL. (For information on coding these statements, refer to the SUPRA
Server PDM DBA Utilities User’s Guide (OS/390 & VSE), P26-6260.) The
recovery functions ignore any values you code in the ACCESS-METHOD,
DEVICE, and LOG-FILE statements. The values for these statements
are supplied in the source code of the exit program. You must code the
LOG-FILE statement because you code statements subordinate to it,
such as the SEQ-ERROR statement.

Caution: You must code SEQ-ERROR (ERROR) to keep the recovery
function from corrupting the database when a System Log data set is
missing or out of order.

A recovery function considers a missing or out-of-order data set to be a
sequence error and takes the action you coded in the SEQ-ERROR
statement. If you code SEQ-ERROR (ERROR), the recovery function
stops while analyzing the log file, that is, before applying any images.
Applying images when a data set is missing or out of order could corrupt
the database.

The Recover and Restore functions can corrupt the database only while
applying images, not while analyzing the log file. The Log-Print function
cannot corrupt the database because it only analyzes the file.

Using the Log File I/O Exit under OS/390

Logging and Recovery Guide 97

Coding job control language
In addition to the declaration statements already required to execute a
recovery function, you must code DD statements for two special files the
sample exit uses and for each data set in the System Log you want to
use.

Two DD statements are for the following special files:

Statement name I/O Description

CSUUXOUT output General output file: You use the file to echo the records
read from the CSUUXDSN file and to print any warning or
error messages the exit generates. You must code this file
in the JCL.

CSUUXDSN input Data set list file: You use the file to hold the list of data
sets in the System Log that you will use in recovery. You
must code this file in the JCL. It is described in more detail
in “Listing data sets” on page 100.

The CSUUXIN file, declared in the source code of CSUUXRCO, is
commented out. This file provides an example of a general input file.
You can omit this file from the JCL.

Chapter 7 Using the Log File I/O Exit in recovery

98 P26-2223-64

The remaining DD statements are for the data sets in the System Log.
You need to consider the following information when coding them:

♦ You must code a DD statement for each data set in the System Log
that you want to use in the current recovery run. For example, if you
want to use only the last two data sets in a System Log of ten data
sets, you need DD statements for only those two. If you code all ten,
the PDM ignores the ones it does not need.

♦ If you want to use only the last logical volume(s) in a tape data set, as
in the illustration under “Listing data sets” on page 100, you must also
code the volume serial number parameter (VOL=SER=nnnnnn) after
the data set name parameter.

♦ The recovery functions read the data sets serially, so the job requires
only one tape drive. If you have as many tape drives as data sets,
you can allow the job to have more tape drives. If you code all the
data sets in the System Log with UNIT=TAPE, the operating system
tries to allocate a tape drive for each data set in the JCL.

♦ To use only one tape drive serially, use the volume affinity
subparameter (AFF) of the UNIT parameter in the JCL. For the first
data set, code UNIT=TAPE. For the second data set, code
UNIT=AFF=ddname1 where “ddname1” is the DDNAME of the first
data set in the list. For the third data set, code UNIT=AFF=ddname2,
and so on.

Your installation tape provides JCL samples. For more information, refer
to these samples on the installation tape:

TXJPMSLG Logprint-multiple data set system log file.

TXJRCVLG Recover to last commit using multiple data set system
log.

Using the Log File I/O Exit under OS/390

Logging and Recovery Guide 99

Listing data sets
In the data set list file, you must code all the data sets in the System Log
that you want used in the current run of the recovery function. Use a
//CSUUXDSN DD statement to identify the data set list file in the JCL. In
the CSUUXDSN file, identify the following:

♦ The data set DD statements in the JCL you want to use in the
recovery function. You must code one data set record for each data
set you want to use.

♦ The order of data sets on the System Log File. You must code the
records in the same order as the data sets on the System Log.

In the data set list file, you code data set records and comment records.
Construct the records in the file as shown in the following figure. Use an
asterisk (*) in column 1 to indicate a comment record. The recovery
functions ignore all other characters in that record. The recovery
functions assume that any record not marked with an asterisk is a data
set record.

1 2-80

54-8010-5391-8

Record layout in CSUUXDSN file

Comment record

Data set record

Column 1

Column 2-80

length 1

length 79

asterisk

ignored

Column 1-8

Column 9

length 8

length 1

DDNAME - must match corresponding DD
statement in JCL

filler

DDNAME - reserved for future use; currently
ignored

filler

Column 10-53 length 44

Column 54-80 length 27

Chapter 7 Using the Log File I/O Exit in recovery

100 P26-2223-64

The data set record contains two fields: DDNAME and DSNAME. The
DDNAME field contains the DDNAME that corresponds to the DD
statement in the JCL that describes the actual data set. The DSNAME
field contains the DSNAME that corresponds to the DD statement in the
JCL. The DSNAME field is not used by the exit and is reserved for future
use. To visually verify that the data set record points to the correct DD
statement, use the field to hold the correct DSNAME. For example, if the
DD statement looked like this:
//SLOG0001 DD DISP=OLD,DSNAME=SYSLOG.D87FEB01

the DDNAME field would contain SLOG0001. The DSNAME field could
contain SYSLOG.D87FEB01, comments, or blanks.

For example, on a Recover function to last-commit, uncommitted records
might be on only the last three data sets. Only those three data sets
need DD statements in the JCL and need to be in the data set list file.

The recovery functions can determine when a data set from the System
Log is in the wrong order or is missing from the data set list. When these
errors occur, recovery takes the action you coded in the SEQ-ERROR
statement in the UCL. To stop the utilities from processing, code SEQ-
ERROR (ERROR). For more information, see “Coding UCL for the Log
File I/O Exit program” on page 97.

Using the Log File I/O Exit under OS/390

Logging and Recovery Guide 101

The following code listings show data set list examples. Both examples
accomplish the same result because both contain the necessary data set
records with the correct DDNAME field. The second example has no
comment records and contains blanks in the DSNAME field.

Example 1
*
* THE FOLLOWING ARE TAPE DATASETS IN THE SYSTEM LOG
* THEY BEGIN AT 01 AUG 1988
*
* (THE DATASETS COMMENTED OUT ARE NOT USED IN THE RECOVERY)
*
*
*SLF0001 SYSLOG.TAP86001.ONE
*SLF0002 SYSLOG.TAP86002.ONE
*SLF0003 SYSLOG.TAP86002.TWO
*SLF0004 SYSLOG.TAP86002.THREE
 .

 .

 .

*SLF0022 SYSLOG.TAP86011.TWO
*SLF0023 SYSLOG.TAP86012.ONE
*
* (THE FOLLOWING DATASETS ARE USED IN THE RECOVERY FUNCTION)
*
SLF0024 SYSLOG.TAP86012.TWO

SLF0025 SYSLOG.TAP86013.ONE

SLF0026 SYSLOG.TAP86013.TWO

*
* END OF DATASET LIST
*

Example 2
SLF0024

SLF0025

SLF0026

Chapter 7 Using the Log File I/O Exit in recovery

102 P26-2223-64

Handling errors
At execution time, the exit prints error or warning messages in the
CSUUXOUT output listing file. The exit program echoes all the records
from the CSUUXDSN input data set list file to the output file exactly as it
reads them. After this output, the exit prints any error or warning
messages. The recovery function stops after the exit prints an error
message, but continues processing after the exit prints a warning
message.

Messages contain a standard Cincom message identifier, an identifier (or
nested identifiers) to trace which routines generated the message, and
the message text. For example, the following message implies that the
routine OPENSLF called the routine OPENDSN, and the open error
occurred in OPENDSN:
CSUU2937E: OPENSLF: OPENDSN: OPEN ERROR FOR DATASET WITH
DDNAME=dddddddd

In some cases, the IBM macro SYNADAF generates a message. The
message has the following structure:
rrrrrrr: JJJJJJJJ,SSSSSSSS,UUU,TT,DDDDDDDD,OOOOOO,EEE ...
EEE,RRRRRRR,AAAAA

The following table explains the structure.

Field Length Description

r 7 Message header refers to the name of a higher-
level routine within CSUUXRAS.

J 8 Job name
S 8 Step name
U 3 Unit address
T 2 Device type
D 8 DDNAME
O 6 Operation attempted
E 15 Error description
R 7 Relative block number
A 5 Access method

For more information about the messages returned, refer to the SUPRA
Server PDM Messages and Codes Reference Manual (RDM/PDM
Support for OS/390 & VSE), P26-0126.

Using the Log File I/O Exit under OS/390

Logging and Recovery Guide 103

Creating a system log to use with the exit program
The following is a suggested method of creating a System Log with
several data sets:

♦ Define a log group for your System Log with two to four BSAM disk
data sets.

♦ As data sets fill up, switch to the next data set in the circular log
group and create a tape data set from the disk data set that fills.

♦ As you create each data set, add a data set record to the
CSUUXDSN file and comment it out by adding an asterisk at the
beginning of the record. Add a DD statement to the JCL stream you
will use during a recovery function and comment it out.

♦ Make sure the DDNAMEs and DSNAMEs in the CSUUXDSN file
match those in the JCL.

♦ When you want to execute a recovery function, uncomment out only
those data sets you need for that run by removing the asterisk from
the beginning of the record. The recovery function ignores all the
other data set records in the CSUUXDSN file and all the DD
statements the function does not use.

♦ When you execute recovery, code SEQ-ERROR (ERROR) under the
LOG-FILE statement in the control section, and code CSUORCUX in
the STANDARD-EXIT statement in the FUNCTION section. Code
the remaining UCL as you would in any other execution of a recovery
function.

For more details on creating System Logs, see “Creating PDM system
log file groups” on page 39.

Chapter 7 Using the Log File I/O Exit in recovery

104 P26-2223-64

Processing the Log File I/O Exit program
The Log File I/O Exit program contains code to read from the System Log
and to switch from one tape data set to another. The program is
provided in source code, so you can see the logic the program uses.

You can use this program in three ways:

♦ You can incorporate this program’s logic into exit programs you
already have.

♦ You can use this program as a prototype for writing your own
program.

♦ You can add your own code to this program to use in any of the other
recovery exit points.

The sample program contains logic to handle each of the 15 exit points
called from the recovery functions. The program’s logic is described
below, and its structure is illustrated in the figure at the end of this
section. For more detail, see the code and the documentation blocks
within the code.

The sample exit program consists of the following modules:

CSUUXCAP A small cap routine, written in assembler: On the first
call, the routine calls the COBOL procedure, ILBOSTP0,
and then CSUUXRCO. On subsequent calls, the routine
calls only CSUUXRCO. ILBOSTP0 tells COBOL that it is
not a mainline program to keep COBOL from
reinitializing itself each time it is called. CSUUXCAP
contains a simple set of logic that is transparent to the
recovery function and exit program.

CSUUXRCO The COBOL portion of the exit: CSUUXRCO handles all
exit points, initializes and terminates, and calls
CSUUXRAS for more specific processing at the four Log
File I/O Exit points. CSUUXRCO contains general logic
so you can expand it to use with other exit points.

CSUUXRAS The assembler portion of the exit: CSUUXRAS handles
the actual log file I/O and System Log switching.
CSUUXRAS is driven by CSUUXRCO. CSUUXRAS
contains specific logic, but you can add more log file I/O
logic.

CSUZRCUX The recovery functions’ exit link deck: CSUZRCUX is
used in a composite link-edit to create the CSUORCUX
load module that is the actual exit program. This load
module contains the above modules and the ILBOSTP0
routine called by CSUUXCAP.

Using the Log File I/O Exit under OS/390

Logging and Recovery Guide 105

#1

Piece of system log you are using

#2 #n

Structure of the log file I/O exit in MVS

. . .

CSUUXOUT
(output listing)CSUUXDSN

(input file)

CSUUXRAS

CSUUXRCO

CSUUXCAP

CSULRCAP
(recovery utility)

.

.

. CSUOUTIL
(DBA Utilities
load module)

CSUORCUX
(Log file I/O

exit load
module)

Chapter 7 Using the Log File I/O Exit in recovery

106 P26-2223-64

Processing in CSUUXRCO
The COBOL portion of the exit program, CSUUXRCO, contains a
separate program for each exit point. At most of the exit points, the
programs do no processing. CSUUXRCO includes only the logic
necessary to read the data sets in the System Log and switch to the next
data set. The following table summarizes its logic:

Exit Exit name Description of logic

1 Initialization Open output message file, CSUUXOT. Turn on exit points 1, 2,
5, 8, 12, 13, 14, and 15 (so the recovery function calls them at
the appropriate times). Turn off all other exit points.

2 Termination Close output message file, CSUUXOUT
3 Analysis phase:

Read a block
No processing

4 Analysis phase:
Print a block

No processing

5 Analysis phase:
Read a record

If an end-of-volume record is read, set an internal flag.

6 Analysis phase:
Print a record

No processing

7 Application phase:
Read a block

(Not called from the Log-Print function)
No processing

8 Application phase:
Read a record

(Not called from the Log-Print function)
No processing

9 Application phase:
Apply a record

(Not called from the Log-Print function)
No processing

10 Application phase:
Print an applied image

(Not called from the Log-Print function)
No processing

11 Application phase:
Buffering technique

(Not called from the Log-Print function)
No processing

12 Log file open Open data set list (CSUUXDSN) file. For each data set in the
CSUUXDSN File:
- Read from data set list file.
- Echo into output message file.
- Store in an array.
Close data set list file. Call routine in CSUUXRAS to open first
data set in System Log File.

13 Log file read Call routine in CSUUXRAS to read forward (or backward) one
block from the System Log File, switching to next (or previous)
data set when necessary.

14 Log reset (Not called from the Log-Print function) Call routine in
CSUUXRAS to reset the System Log.
Restore: Reset log file to read forward from beginning of file.
Recover: Reset log file to read backward from end of file.

15 Log file close Call routine in CSUUXRAS to close the last data set in the
System Log.

Using the Log File I/O Exit under OS/390

Logging and Recovery Guide 107

Processing in CSUUXRAS
The previous module, CSUUXRCO, calls this assembler portion of the
exit, CSUUXRAS, at each of the four Log File I/O Exit points. The
following table summarizes the logic for the CSUUXRAS module:

Routine Called by Calls Description of logic
OPENSLF CSUUXRCO

exit #12
GETDSN
OPENDSN

- Initialize system context.
- Get first data set (GETDSN).
- Open first data set (OPENDSN).
- Get buffer space for all reads.

READSLF CSUUXRCO
exit #13

CLOSDSN
GETDSN
OPENDSN

Read next/previous block (depending on
whether reading forward or backward).
If end/beginning of current data set:
- Close current data set (CLOSDSN).
- Get next/previous data set (GETDSN).
- Open next/previous data set
(OPENDSN).

RSETSLF CSUUXRCO
exit #14

CLOSDSN
GETDSN
OPENDSN

If the function is Restore:
- Close current data set (CLOSDSN).
- Set system context to read forward from
 first data set
- Get first data set (GETDSN).
- Open first data set (OPENDSN).
If the function is Recover:- Set system
context to read backward from current
position in current data set.

CLOSSLF CSUUXRCO
exit #15

CLOSDSN - Close final data set (CLOSDSN).
- Free buffer space.

GETDSN OPENSLF
READSLF
RSETSLF

None (Performs no processing)
(Reserved for future use)
(Currently, all data sets are in the JCL and
do not require any logic to get them.)

OPENDSN OPENSLF
READSLF
RSETSLF

None - Open current data set.
- Set system context to point to
 beginning/ending of data set.

CLOSDSN READSLF
RSETSLF
CLOSSLF

None Close current data set.

Chapter 7 Using the Log File I/O Exit in recovery

108 P26-2223-64

Using the Log File I/O Exit under VSE
Before using the sample exit program, you must perform the steps
summarized below and described in the following sections:

1. If your System Log includes disk data sets, move them to tape. The
System Log must consist of tape data sets on nonlabeled tapes.

2. You must create the load module CSUODUX, which is not on the
release tape. For an illustration of CSUODUX and its components,
see the illustration at the end of “Processing the Log File I/O Exit
program” on page 120. For more information, see “Compiling and
link editing modules” on page 111.

3. In the UCL, invoke the load module CSUODUX as a standard exit
program, and code the correct block size of the System Log. For
more information, see “Coding UCL for the Log File I/O Exit program”
on page 112.

4. In the JCL, you must code files in addition to the ones normally
needed to execute the recovery functions. The additional statements
are for the output and volume list files and for each System Log File
data set you want to use in recovery. For more information, see
“Coding job control language” on page 113.

5. Enter as a record in the volume list file each of the physical reels of
tape that you want to be used in the current run of recovery. For
more information, see “Coding the volume list” on page 114.

The examples given in each section work together to make one
example. The UCL example in “Coding UCL for the Log File I/O Exit
program” on page 112, the JCL samples referenced on your
installation tape, and the volume-list example at the end of “Coding
the volume list” on page 114 show how to execute the Recover
function to last-commit with three volumes.

Using the Log File I/O Exit under VSE

Logging and Recovery Guide 109

Considerations

♦ You must put all volumes on tape reels with the same block size.

♦ The sample exit can handle a maximum of 100 tape reels. If you try
to run with more than this number of volumes, you get an error
message and recovery stops processing before it uses any volumes.
If you need to use more than 100 reels, you must change the
maximum size of the array, DATASET-LIST, in the source code in
CSUUXDCO. You may also change the size of the array to less than
100. After changing the source code, you must recompile
CSUUXDCO, then link edit the CSUODUX load module with the
CSUZDUX link module again.

♦ When you are using a single volume tape without an exit and you
code either STATISTICS (EXTENDED) or STATISTICS (ALL) in the
UCL, you get volume information in the extended statistics report at
the end of the log analysis phase. When you use an exit program to
perform the log file I/O, you do not get this volume information.

♦ The sample exit program stops processing for only two reasons:

- An internal logic error occurred. When this happens, the
recovery function prints a message to the CSUUXOT file
describing the error.

- The operator aborts the utility. When this happens, the function
does not print a descriptive message in the CSUUXOT file.
Therefore, you must keep track of the messages sent to the
console.

Chapter 7 Using the Log File I/O Exit in recovery

110 P26-2223-64

Compiling and link editing modules
When you first receive a release tape, you must create the CSUODUX
load module. The release tape contains object members for
CSUUXDCP, CSUUXDAS, and CSUUXDCO. Ignore all except
CSUUXDAS.

1. Assemble the CSUUXDCP module with the source member
provided. (You cannot assemble the CSUUXDAS module because
you are not given the source code, only the object code.)

2. Compile the COBOL source module, CSUUXDCO. You must specify
the APOST option in your compiler options. To help in problem
diagnosis, Cincom recommends you specify the PMAP option.
When you compile, concatenate the appropriate COBOL library in the
LIBDEF statement in the JCL.

3. To create the CSUODUX load module, link edit the CSUZDUX link
deck. When you link edit, concatenate the appropriate COBOL
library in the LIBDEF statement in the JCL.

When you execute recovery, you do not have to concatenate a COBOL
library in the LIBDEF statement in the JCL.

Using the Log File I/O Exit under VSE

Logging and Recovery Guide 111

Coding UCL for the Log File I/O Exit program
This sample exit is dynamically loaded into memory at execution time
from the library(s). When you execute a recovery function, the
CSUODUX exit load module must reside in the core image library
concatenated in the LIBDEF statement.

To invoke the sample exit, code the CSUODUX exit program in the
STANDARD-EXIT statement in the UCL used to run the recovery
function. You must also code the correct block size of the System Log in
the BLOCK-SIZE statement. For an example of the UCL, see the
following code sample.

The recovery functions use only BLOCK-SIZE, SEQ-ERROR, PDM-ID-
ERROR, and LOG-ID-ERROR statements in the control section of the
UCL. (For information on coding these statements, refer to the SUPRA
Server PDM DBA Utilities User’s Guide (OS/390 & VSE), P26-6260.) The
recovery functions ignore any values you code in the ACCESS-METHOD,
DEVICE-ADDRESS, DEVICE, and LOG-FILE statements. The values
for these statements are supplied in the source code of the exit program.
You must still code the LOG-FILE statement because you must code
statements subordinate to it.
CONTROL (BEGIN)

**
** RECOVER TO LAST-COMMIT
** USER EXIT PERFORMS SYSTEM LOG FILE I/O
**
LOG-FILE()

 BLOCK-SIZE (32767)

**
FUNCTION (RECOVER)

 STATE (LAST-COMMIT)

 STANDARD-EXIT (CSUODUX)

 STATISTICS (ALL)

 FILE (ALL)

**
CONTROL (END)

Chapter 7 Using the Log File I/O Exit in recovery

112 P26-2223-64

Coding job control language
In addition to the declaration statements already required when executing
a recovery function, you must include declaration statements in the JCL
for two special files the exit program uses and for the tape reels you want
to use from the System Log.

You need ASSGN statements for the following special files:

Statement name I/O Description

CSUUXOT output General output file: This file echoes the records read from
the CSUUXDS file and prints any warning or error
messages the exit generates. The file is tied to device
SYS040, but you can change this assignment by altering
the file definition in CSUUXDCO. You must code this file
in the JCL.

CSUUXDS input Volume list file: This file reads the list of volume serial
numbers in the System Log that you will use in the
recovery run. The file is tied to device SYS041, but you
can change this assignment by altering the file definition in
CSUUXDCO. You must code this file in the JCL. For
more information on this file, see “Coding the volume list”
on page 114.

The CSUUXIN file, found in the source code of CSUUXDCO, is
commented out. This file provides an example of a general input file.
Omit this file from the JCL.

You need one TLBL statement and one ASSGN statement for the
System Log. You need to consider the following information when coding
them:

♦ These declarations are used by the set of tape reels in the System
Log that you want to use in the current recovery run.

♦ The recovery functions use the tape reels serially, so the job requires
only one tape drive.

♦ This file is tied to device SYS010, but you can change this
assignment by altering the file’s value that is coded into CSUUXDCO.

♦ You can also change the TLBL name, LOGFILE, by altering the value
of the TLBL name that is coded into CSUUXDCO.

Using the Log File I/O Exit under VSE

Logging and Recovery Guide 113

Your installation tape provides JCL samples. For more information, refer
to these samples on the installation tape:

TXJRCVLG Recover function to LAST-COMMIT on a multiple data
set PDM System Log using the Log File I/O Exit
program.

TXJRSTLG Restore function to LAST-COMMIT on a multiple data
set PDM System Log using the Log File I/O Exit
program.

TXJPMSLG Print contents of a multiple data set PDM System Log
using the Log File I/O Exit program.

Coding the volume list
The volume list is a list of volume serial numbers that drives the exit
program to tell the operator which tape reels to mount.

When you create the volume list file for the JCL, you must code one entry
for each physical reel of tape you use in the recovery functions. In some
cases, you may not want to use all of the reels in the System Log. If so,
you need to keep track of the tape reels that make up each logical log
volume so you can specify the reels you need.

Use an assignment statement to indicate the volume list file in the JCL.
In the volume list file, CSUUXDS, you identify the following:

♦ Number of tape volumes you want to use in the recovery function

♦ Volume serial numbers

♦ Order of those volumes on the System Log

Code comment records and volume records in the volume list file.
Distinguish comment records by putting an asterisk in column 1. The
recovery function ignores all other characters in that record. The function
assumes that any record not marked with an asterisk is a volume record.

In the volume list file, code one volume record for each tape you want to
use in the recovery function by putting its volume serial number in the
VOL-SER field. You code the records in the same order as the tapes in
the System Log.

Chapter 7 Using the Log File I/O Exit in recovery

114 P26-2223-64

The following figure illustrates constructing the comment and volume
records.

1 2-80

7-801-6

Record layout in CSUUXDS file

Column 1

Column 2-80

length 1

length 79

asterisk

comments (ignored)

Column 1-6

Column 7-80

length 6

length 74

volume-serial number of tape

filler (ignored)

Comment record

Volume record

Create the volume list as follows:

♦ As the PDM creates each volume, add a volume record to the
CSUUXDS file and comment it out (that is, add an asterisk to the
beginning of the record).

♦ When you want to execute recovery, uncomment (that is, remove the
asterisk from the beginning of the record) only those volumes you
need for that execution. The recovery function ignores all the other
volume records in the CSUUXDS file.

For example, on a Recover function to last-commit, the uncommitted
records might be on only the last three volumes. In that case, only those
three need to be in the volume list file. For a sample volume list, see the
example listings at the end of this section.

Using the Log File I/O Exit under VSE

Logging and Recovery Guide 115

If you make errors on the volume list, the exit program can identify some
of them are because it is driven by the list. The exit program can identify
the following problems:

♦ When the operator has mounted the wrong tape

♦ When you listed a tape in the wrong order

♦ When you left a tape out of the middle of the list

If the operator mounts the wrong tape, the exit program sends the
operator a console message indicating which tape to mount. If the list is
incorrect, the operator should abort the recovery function, correct the list,
and execute it again.

The exit program cannot tell if you omitted tapes from the beginning or
end of the list. Thus, the exit program cannot warn you if you do not use
the entire System Log when executing a Restore function or a Recover
function to Log-begin.

Caution: If you do not use the entire System Log with the Restore
function or the Recover function to Log-begin, you risk corrupting your
database.

If you are executing a Recover function to last-commit, you must use a
set of contiguous logical volumes that includes the last volume. For
example, if you have a System Log of three logical log volumes, you
cannot list just the tapes in the first and second logical volume. You must
list the tapes in all three volumes. Likewise, if you list the tapes in the
second logical volume, you must list those in the third volume.

Caution: If you list tapes in the middle, but not the end, of the System
Log, you risk corrupting your database.

Chapter 7 Using the Log File I/O Exit in recovery

116 P26-2223-64

Example 1
(mono)*
* THE FOLLOWING ARE TAPE DATASETS IN THE SYSTEM LOG
* (THE DATASETS COMMENTED OUT ARE NOT USED IN THE RECOVERY)
*003231
*012345
*005678
 .

 .

 .

*000096
*006667
*
* (THE FOLLOWING DATASETS ARE USED IN THE RECOVERY FUNCTION)
001234

002345

003456

*
* END OF DATASET LIST

Example 2
(mono)001234

002345

003456

Both examples accomplish the same result because both contain the
necessary volume records with the correct VOL-SER field. The second
example has no comment records.

Using the Log File I/O Exit under VSE

Logging and Recovery Guide 117

Sending messages to the output listing
The exit program echoes all the records from the volume list file,
CSUUXDS, to the output listing file, CSUUXOT, exactly as it reads them.
(For an illustration of these files, see the figure at the end of “Processing
the Log File I/O Exit program” on page 120.) Later during execution, the
recovery function prints error or warning messages into the CSUUXOT
output file. The recovery function aborts after the exit prints an error
message but continues processing after the exit prints a warning
message.
Messages from the exit program to the output listing contain a standard
Cincom message identifier, a trace of which program(s) generated the
message, and the message text.

For more information about the messages returned, refer to the SUPRA
Server PDM Messages and Codes Reference Manual (RDM/PDM
Support for OS/390 & VSE), P26-0126.

Chapter 7 Using the Log File I/O Exit in recovery

118 P26-2223-64

Sending messages to the console
The exit program sends messages that contain a standard Cincom
message identifier and message text to the console.

During the execution of a recovery function, the exit sends messages to
the console to request the mounting of each System Log tape by its
volume serial number as it is needed. The exit determines the need for
each tape volume by its position in the System Log as indicated in the
volume list file.

After sending the mount message, the exit waits for your reply. To allow
the function’s processing to resume, you must mount the correct tape
and reply GO. To terminate the function’s processing, you must reply
ABORT.

You must mount and ready a tape before replying GO. Even if you are
going to mount the same volume, the tape must be unloaded and
remounted.

You have the option to stop processing with an ABORT reply only during
the log analysis phase of the function. Once the function has begun the
image application phase, the exit no longer accepts a reply of ABORT.

If, after you have mounted the tape and replied GO, the exit detects that
the tape is invalid or out of sequence, the exit sends an appropriate error
message to the console. The exit then sends the mount message again
and waits for your reply.

Using the Log File I/O Exit under VSE

Logging and Recovery Guide 119

Processing the Log File I/O Exit program
The Log File I/O Exit program contains code to read the System Log and
to switch tape reels. The CSUUXDCP and CSUUXDCO modules are
released to you in source code, and the CSUUXDAS module is in object
code. With the source code, you can see the logic the program uses.
With the object code, you can use the module without assembling it.

You can use this program in three ways:

♦ You can incorporate this program’s logic into exit programs you may
already have.

♦ You can use this program as a prototype for writing your own
program.

♦ You can add your own code to this program to use in any of the other
recovery exit points.

The sample program contains logic to handle each of the 15 exit points in
the recovery functions. The program’s logic is described below, and its
structure is illustrated in the figure at the end of this section. For more
detail, see the code and the documentation blocks within the code.

Chapter 7 Using the Log File I/O Exit in recovery

120 P26-2223-64

The sample exit program consists of the following modules, which are on
your release tape:

CSUUXDCP A small cap routine, written in assembler: On the first
call, the routine calls a COBOL procedure, ILBDSET0,
and then CSUUXDCO. On subsequent calls, the routine
calls only CSUUXDCO. ILBDSET0 tells the COBOL exit
program that it is not a mainline program and so keeps
COBOL from reinitializing itself each time it is called.
CSUUXDCP contains a simple set of logic that is meant
to be transparent to recovery and the exit program.

CSUUXDCO The COBOL portion of the exit program: CSUUXDCO
handles all the exit points, initializes and terminates, and
calls CSUUXDAS for more specific processing at the
four Log File I/O Exit points. CSUUXDCO contains
general logic so you can expand it and use it with the
other exit points. However, if you leave CSUUXDCO as
it is on the release tape, you may need to specify the
APOST option when you compile it for COBOL under
VSE.

CSUUXDAS The assembler portion of the exit: CSUUXDAS reads
the System Log and switches tape reels. It is driven by
CSUUXDCO. CSUUXDAS contains specific logic, but it
is meant to be expandable to add more log file I/O logic.

CSUZDUX The recovery functions exit link deck: CSUZDUX is used
in a composite linkedit to create the CSUODUX load
module, which is the actual exit program. This load
module contains the above modules and some internal
Cincom modules.

Using the Log File I/O Exit under VSE

Logging and Recovery Guide 121

#1

Piece of system log you are using

#2 #n

Structure of the log file I/O exit in VSE

. . .

CSUUXOT
(output listing)CSUUXDS

(input file)

CSUUXDAS

CSUUXDCO

CSUUXDCP

CSULRCAP
(recovery utility)

.

.

. CSUOUTIL
(DBA Utilities
load module)

CSUODUX
(Log file I/O

exit load
module)

(operator console)

Chapter 7 Using the Log File I/O Exit in recovery

122 P26-2223-64

Processing in CSUUXDCO
The COBOL portion of the exit program, CSUUXDCO, contains a
separate routine for each exit point. At most of the exit points, no
processing is performed. CSUUXDCO includes only the logic necessary
to perform log file I/O with System Log File switching. The following table
is a summary of the logic for the CSUUXDCO module:

Exit Exit name Description of logic
1 Initialization Open output message file (CSUUXOT). Turn on exit

points 1, 2, 5, 8, 12, 13, 14, and 15 (so recovery function
will call them at the appropriate times). Turn off all other
exit points.

2 Termination Close output message file (CSUUXOT)
3 Analysis phase:

Read a block
No processing

4 Analysis phase:
Print a block

No processing

5 Analysis phase:
Read a record

If you read an end of volume record, set an internal flag.

6 Analysis phase:
Print a record

No processing

7 Application phase:
Read a block

(Not called from the Log-Print function)
No processing

8 Application phase:
Read a record

(Not called from the Log-Print function)
Set an internal flag if you read an end-of-volume record
and you are executing the Recover function. Ignore the
record if you are executing the Restore function.

9 Application phase:
Apply a record

(Not called from the Log-Print function)
No processing

10 Application phase:
Print an applied
image

(Not called from the Log-Print function)
No processing

Using the Log File I/O Exit under VSE

Logging and Recovery Guide 123

Exit Exit name Description of logic
11 Application phase:

Buffering technique
(Not called from the Log-Print function)
No processing

12 Log file open Open volume list (CSUUXDS) file. For each volume in
the CSUUXDS file:
- Read from volume list file.
- Echo into output message (CSUUXOT) file.
- Store in an array.
Close volume list file. Call OPENSLF routine in
CSUUXDAS to open first volume in System Log.

13 Log file read Call READSLF routine in CSUUXDAS to read forward (or
backward) one block from the System Log, switching to
next (or previous) volume when necessary.

14 Log file reset (Not called from the Log-Print function) Call RSETSLF
routine in CSUUXDAS to reset the System Log File.
Restore: Reset System Log to read forward from
beginning of file.
Recover: Reset System Log to read backward from end
of file.

15 Log file close Call CLOSSLF routine in CSUUXDAS to close the last
volume in the System Log.

Chapter 7 Using the Log File I/O Exit in recovery

124 P26-2223-64

Processing in CSUUXDAS
CSUUXDCO calls the assembler portion of the exit, CSUUXDAS, at each
of the four Log File I/O Exit points. The following table is a summary of
the logic for the CSUUXDAS module.

Routine Called by Calls Description of logic

OPENSLF CSUUXDCO
exit #12

OPENDSN - Initialize system context.
- Store address of volume list array.
- Open file used for writing to operator.
- Get buffer space for all reads.
- Open first volume (OPENDSN).

READSLF CSUUXDCO
exit #13

CLOSDSN
OPENDSN

- Handle end of volume if forced by an
 end of volume record.
- Read next/previous block (depending
 on whether you are reading forward or
 backward).
- Handle I/O error, if necessary.
- Handle wrong length record, if
 necessary.
If end/beginning of current volume:
- If last/first volume in volume list:
- Indicate end-of-file exit action.
- Close current volume (CLOSDSN).
- Open next/previous volume
 (OPENDSN).

RSETSLF CSUUXDCO
exit #14

CLOSDSN
OPENDSN

If reset is premature, abort with message.
If the function is Restore:
- Close current volume (CLOSDSN).
- Set system context to read forward
 from first volume.
- Open first volume (OPENDSN).

If the function is Recover:
- Set system context to read backward from
current position in current volume.
– Reposition tape if necessary, (for
 example, back up across invalid
 record).
- Write tapemark on tape (needed when opening
a file for reading backwards).
- Open the tape for reading backwards.

CLOSSLF CSUUXDCO
exit #15

CLOSDSN - Close final volume (CLOSDSN).
- Close file used for writing to operator
- Free buffer space.

Using the Log File I/O Exit under VSE

Logging and Recovery Guide 125

Routine Called by Calls Description of logic

OPENDSN OPENSLF
READSLF
RSETSLF

None 1. Write to operator to mount tape and await reply: If file
open from previous mount attempt:
- Close file.
- Tell operator to dismount closed tape.
- Tell operator to mount current tape.
- Ask for reply of GO or ABORT.
- If GO reply, go to (2). If ABORT reply:
- If application phase, ABORT reply is invalid, go to (1)
- Request confirmation of ABORT reply.
- If second ABORT reply, abort recovery.
- If reply is neither GO nor ABORT, ask for reply again

(up to ten times, then assume GO).
2. Open current volume:

- Set up DTF for forward/backward open.
- If backward, position to end of tape.
- Open current volume.
- If open not successful, allow operator to mount

again, go to (1).
3. Check for invalid or out-of-sequence volumes:

- Read firstlast record on volume.
- If I/O error, allow operator to mount again, go to (1).
- If wrong length record, allow operator to mount

again, go to (1).
- If End of File found, allow operator to mount again,

go to (1).
If this is first volume in volume list: THEN
- Store log file ID, PDM ID, and volume number

(assume values from first vol. are correct).
ELSE
- If log file ID is not correct, display mount again; that

is, go to (1).
- If PDM ID is not correct, display mount again; that is,

go to (1).
- If volume number is out of sequence, display mount

again; that is, go to (1).
- Reset volume to position it was in before first/last

record was read.
4. Set system context:

- Set system context to point to beginning/ending of
volume.

CLOSDSN READSLF
RSETSLF
CLOSSLF

None - Close current volume.
- Write to operator to dismount current tape.
- Accumulate relative block number across volumes.

Chapter 7 Using the Log File I/O Exit in recovery

126 P26-2223-64

Glossary of terms

block
The portion of a file which is read or written in a single physical
input/output operation. The portion of a file which is read into or written
from a single buffer.

commit point
For a given task, a point during PDM processing when the task commits,
signs off, or is reset. A commit point occurs because of a command
(commit, reset, or sign-off). At the commit point, a task’s updated buffers
are flushed, and temporary resources held by the task, such as held
records, are released.

data record
A record that contains data, especially user data. It is distinguished from
records that contain only control information, and from free-space
records that contain no information.

log group
A PDM System Log File Group, synonymous with a PDM System Log,
which is a group of one or more files (data sets). The Log Group entity,
defined on the Directory as part of an environment description, describes
a System Log File Group.

logical record
1. In a relational context, a tuple or row in a relation. Tuple is the

preferred term.

2. A record; a logical subdivision of a file. It is distinguished from the
physical block, which is that portion of a file which is read or written in
a single physical input/output operation.

Logging and Recovery Guide 127

logical volume
A division of a PDM System Log. Every PDM System Log consists of
one or more numbered logical volumes, starting with volume zero. The
transition from one logical volume to the next usually coincides with the
transition from one log tape to the next, or from one log data set to the
next.

physical block
A block. The portion of a file which is read or written in a single physical
input/output operation. The portion of a file which is read into or written
from a single buffer.

physical record
1. In a relational context, a record; a subdivision of a file. It is

distinguished from a tuple in a relation.

2. In IBM terminology, a block. The portion of a file which is read or
written in a single physical input/output operation. The portion of a
file which is read into or written from a single buffer.

quiet point
A point during PDM processing when no physical DML instruction (except
the QUIET instruction) is in progress, all updated buffers are flushed, and
all temporary resources, such as held records, are released. This point
can only be caused by the QUIET DML instruction and only in a non-task-
logging environment.

RBA
Relative byte address.

RBN
Relative block number.

record
A subdivision of a file.

Glossary of terms

128 P26-2223-64

relative block number (RBN)
A number identifying one block in a given file, relative to zero. The first
block in a file has the RBN zero, the second has the RBN one, and so on.

relative BYTE address (RBA)
The location of a field or record in a given file, identified by the number of
the byte at the beginning of the field, relative to zero. A field beginning
with the first byte in a file has the RBA zero, a field beginning with the
second byte has the RBA one, and so on.

relative record number (RRN)
A number identifying one record in a given file, relative to zero. The first
record in a file has the RRN zero, the second has the RRN one, and so
on. RRNs are meaningful only when all the file’s records have the same
fixed physical length.

RRN
Relative record number.

SFT
System File Table.

system file table (SFT)
The portion of the PDM Task Log File containing system-level rather than
task-level information. SFT information includes the environment
description, file descriptions, and the open status of each file.

system log file group
Synonymous with PDM System Log, which is a group of one or more files
(data sets). The Log Group entity, defined on the Directory as part of an
environment description, describes the System Log File Group.

task level recovery (TLR)
The capability to back off a task’s updates to its last commit point and to
restart the task at that point after an abnormal termination.

Glossary of terms

Logging and Recovery Guide 129

TLR
Task Level Recovery.

transaction
All the activity of a PDM task between one commit point and the next.

tuple
In a relational context, a logical record is a tuple or row in a relation.

VOL-MAX-RBN
The maximum relative block number (RBN) allowed for a given logical
volume in a System Log File Group. Acts as a limit on the size of the
volume; if VOL-MAX-RBN is 100, the maximum number of blocks in the
volume is 101.

Glossary of terms

130 P26-2223-64

Index

A

Active Schema Maintenance 84
activity analysis 20
after image logging 35

B

back off changes 19
BDAM file 26, 39, 44
before image logging 35
block size

PDM System Log(s) 44
PDM Task Log File 26

bootstrap modules
recovery functions 85
scheme, task logging 27
system logging 46
task logging 26, 27, 30
utilities, task logging 27
validation module (VALMOD),

task logging 27
BSAM file 39
buffers

buffer pool records 38
PDM Task Log File 27, 30

C

changes, backing off, reapplying,
restarting 19

CICS
CONNECT command 77, 79
DISCONNECT command 79
exits 72
Program Control Table (PCT)

72
recovery 72
ROLLBACK command 75
syncpoint 73

COMIT 21, 58

command records 53
Create Environment Description.

See bootstrap
Create VALMOD. See bootstrap
CSIPARM file

Interactive Data Services 26
recovery function 85

CSUORCUX, OS/390, creating
load module 96

CSUUXDAS, VSE, processing
log file I/O Exit in 125

CSUUXDCO
VSE, processing log file I/O

Exiting 98
VSE, processing Log File I/O

Exiting 123
CSUUXDRAS

OS/390, processing log file I/O
Exiting 108

CSUUXDS, OS/390
coding volume list 114
record layout in 115

CSUUXDSN, OS/390, record
layout 100

D

data set list, OS/390 examples
102

DATA sets, listing 100
depopulate function, secondary

key 68
Directory Environment

Description(s)
CICS, recovery after task

abend 74
log groups, defining 47
system logging 47
task logging 32

Directory Maintenance
CICS, recovery after system

abend 78, 80
Directory Schema(s)

system logging 47
task logging 32

disk data sets, using 90
DL/I Database, access 72
DML command 53, 58

Logging and Recovery Guide 131

E

Environment Description(s)
bootstrap, recovery functions

85
bootstrap, task logging 30
Directory, system logging 47
Directory, task logging 32
records 38

errors
messages 103

ESDS VSAM file(s)
PDM System Log File 39, 44,

45
PDM Task Log File 26

exits
CICS Exit Program 72
Log File I/O. See Log File I/O

Exit

F

file backup 57
description record 38
forced termination 22
group record 38
initialization records 53
mode before image record 37
recovering 56

File Level Log Suppression 35
Format function

recovering during 69
system log file 51
task log file 36

G

group attributes 45

I
I/O Exit. See Log File I/O Exit
image blocks 22
image record 54
index block log record 37, 54
index change log images record

37, 54
index split, failure during 68
initializing System Log files 51

installation tape
description 39
JCL samples supplied 114

Interactive Data Services
PDM Task Log File attributes

25
PDM task purging 60

K

KSDS VSAM file(s), recovery 67

L

load module, creating
CSUORCUX 96

Log File I/O Exit
console messages 119
general 93
OS/390 94

coding JCL for 98
coding UCL for 97
CSUUXRAS processing 108
CSUUXRCO processing 107
determining need of 93
error handling 103
module creation 94
program logic 105
structure 105

output file messages 118
VSE 109

coding JCL for 113
coding UCL for 112
determining need of 93
module creation 111
structure 121

log file switching 87
log group(s) 39, 47
logging

options, PDM system Log 41
PDM. See PDM system

logging; PDM task logging
selecting types of 21
uses 18

logical record types 37
logical volumes 43
logical write exit 87

Index

132 P26-2223-64

M

MANTIS applications, CICS
recovery after system abend 80
recovery after task abend 76
Slide # files 18, 35

MARKL 58
modify schema. See bootstrap

utilities
multiple logical volumes,

switching 87
multiple PDM Recovery 70

N

new volume exit 46

P

PDM initialization and termination
records 53

PDM System Log File Group(s).
See PDM system logging

PDM system logging
analyzing need of 23
block size 44
bootstrap modules 46
characteristics 23, 43
creating for exit program 104
definition 18, 23
Directory Maintenance 47
end log option 42
file description 39
file group 23
format 51
I/O exit. See Log File I/O Exit
initializing 51
log record options 41
logical volumes 43
options 41
PDM exits 39, 87
record types 53
redundant system logging 23
switching 87
synchronization option,

description 23, 45
wrap option, description 45, 90

PDM task logging
access method 27

analyzing need of 21
allocate 26
attributes, changing 27

attributes, reviewing 25
benefits of 21
bootstrap modules 27
bootstrap utility program 27
buffers 27, 30

defining in the bootstrap
modules 27

defining with Directory
Maintenance 32

definition 18, 21
file size 28
formatting 36
log file 21
logical record types 37
placing 35
reviewing 25
S.F.T. blocks 38
suppressing 35

Personal File System (PFS),
SPECTRA, recovery 72

Physical Data Manager (PDM)
multiple, recovery 70
populate function, secondary

keys 68
purging tasks 60
system failure 63
task failure 62, 64
warm start 61
write log records 39

purging, dangling tasks 60

R

record before image record 37
recovery

bootstrap environment
description 85

CICS 72
CSIPARM file 85
Directory Maintenance 76
during format 69
exits, general 93
KSDS VSAM files 63
Log File I/O Exit 93
multiple PDMs 70
PDM 83
populate or depopulate 68
secondary keys 64
special cases 66
system log 83
task level 60, 62
task Level 18

Index

Logging and Recovery Guide 133

RESTART= 60
restartable tasks 61

S

schema(s)
bootstrap, tasks logging 27
Directory, system logging 47
Directory, task logging 32
SFT blocks 38

secondary key,
populate/depopulate 68

SEQ-ERROR, recovery function
UCL statement 101

SPECTRA
Personal File System (PFS)

recovery 72
Slide files 18, 35

STANDARD-EXIT, recovery
function UCL statement 112

STATE, recovery function UCL
statement 97

STATISTICS, recovery function
UCL statement 110

SUPRA migrating 58
switching System Log Files 87
system failure 63
System File Table (SFT) 22

T

tape data sets, using 88
task failure 62, 64
Task Level Recovery 18, 37, 60,

62
Task Log File, PDM. See PDM

task logging
Task Log ID Block 22
task(s)

CICS, abends and recovery 72
committing 19, 56, 57
dangling 60
failure 62, 64
logfile 26
purging 60
records 53
resetting 59
restartable 61
restarting 19

TLR. See Task Level Recovery
TOTAL migrating 58

U

UCL. See Utilities Command
Language

utilities
bootstrap 27
format function, formatting PDM

System Log File(s) 51
format function, formatting PDM

Task Log File 36
format function, recovering 69

Utilities Command Language
(UCL)

Log File I/O Exit 97
OS/390 97
VSE 112

V

validation module, task logging
27

VALMOD. See validation module
Volume List, example 116
VSAM file(s)

ESDS
PDM System Log File 45

KSDS, recovery of 67
native, recovery by CICS 72
RRDS, SPECTRA PFS,

recovery by CICS 72
VSE FBA users 44

W

warm start
index split 68
PDM 61
secondary keys 68

Index

134 P26-2223-64

	Back to DOCUMENTATION MENU
	About this book
	Using this document
	Document organization
	Revisions to this manual
	Conventions

	SUPRA Server documentation series

	Chapter 1 - Using SUPRA logging
	Using SUPRA logging
	Backing off changes
	Restarting tasks
	Reapplying changes
	Analyzing activity

	Selecting types of SUPRA PDM logging
	PDM task logging
	PDM system logging

	Identifying your logging needs

	Chapter 2 - Creating the PDM task log file
	Reviewing the task log file’s attributes
	Defining the task log file in the bootstrap modules
	Defining the task logging environment with directory maintenance
	Suppressing task logging
	Placing the task log file
	Formatting the task log file
	Logical record types written in the task log file image blocks
	Logical record types written in the task log file SFT blocks

	Chapter 3 - Creating PDM system log file groups
	Choosing logging options
	Choosing log group characteristics
	Multiple logical volumes
	File attributes
	Group attributes
	Buffers

	Defining system logging in the bootstrap modules
	Defining the log groups with directory maintenance
	Placing the disk log files
	Initializing system log files
	Logical record types written in the System Log File

	Chapter 4 - Running SUPRA with logging
	Recovering files
	Backing up data files
	Committing tasks
	Saving special data on log files
	Starting a new logical volume on the PDM system log
	Resetting tasks
	Purging dangling tasks
	Restarting tasks
	Warm starting the PDM
	Recovering from PDM task and system failure
	Task failure
	System failure

	Defining special cases and problems in recovery
	Recovering KSDS VSAM files
	Secondary key populate or depopulate function considerations
	Warm start or recovery failure on secondary keys
	Processing isolation with single-task PDM
	Recovering a file during a format function
	Multiple PDM recovery

	Chapter 5 - Recovering SUPRA CICS applications
	Preparing CICS and SUPRA for recovery
	Recovering CICS application programs
	How CICS and the PDM recover

	Recovering after a CICS task abend
	Recovering RDML applications
	Recovering MANTIS applications
	Recovering directory maintenance

	Recovering after a CICS system abend
	Recovering RDML applications
	Recovering MANTIS applications
	Recovering directory maintenance

	Recovering after a PDM system abend
	Recovering RDML applications
	Recovering MANTIS applications
	Recovering directory maintenance

	Recovering after both CICS and the PDM abend
	Recovering RDML applications
	Recovering MANTIS applications
	Recovering directory maintenance

	Chapter 6 - Recovering and restoring the SUPRA PDM from the System Log
	Considerations
	Running recover and restore in the appropriate environment
	Determining the need for the Log File I/O Exit
	Switching system log files
	Using tape data sets
	Using disk data sets
	Combining both disk and tape data sets

	Chapter 7 - Using the Log File I/O Exit in recovery
	Using the Log File I/O Exit under OS/390
	Creating the load module CSUORCUX
	Coding UCL for the Log File I/O Exit program
	Coding job control language
	Listing data sets
	Handling errors
	Creating a system log to use with the exit program
	Processing the Log File I/O Exit program
	Processing in CSUUXRCO
	Processing in CSUUXRAS

	Using the Log File I/O Exit under VSE
	Compiling and link editing modules
	Coding UCL for the Log File I/O Exit program
	Coding job control language
	Coding the volume list
	Sending messages to the output listing
	Sending messages to the console
	Processing the Log File I/O Exit program
	Processing in CSUUXDCO
	Processing in CSUUXDAS

	Glossary of terms
	block
	commit point
	data record
	log group
	logical record
	logical volume
	physical block
	physical record
	quiet point
	RBA
	RBN
	record
	relative block number (RBN)
	relative BYTE address (RBA)
	relative record number (RRN)
	RRN
	SFT
	system file table (SFT)
	system log file group
	task level recovery (TLR)
	TLR
	transaction
	tuple
	VOL-MAX-RBN

	Index

