

SUPRA SERVER PDM

PDM DML Programming Guide
(OS/390 & VSE)

P26-4340-64

SUPRA® Server PDM DML Programming Guide (OS/390 & VSE)

Publication Number P26-4340-64

 1989–1998, 2000, 2002 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage®
C+A-RE™
CINCOM®
Cincom Encompass®
Cincom Smalltalk™
Cincom SupportWeb®
CINCOM SYSTEMS®

gOOi™

iD CinDoc™
iD CinDoc Web™
iD Consulting™
iD Correspondence™
iD Correspondence Express™
iD Environment™
iD Solutions™
intelligent Document Solutions™
Intermax™

MANTIS®
Socrates®
Socrates® XML
SPECTRA™
SUPRA®
SUPRA® Server
Visual Smalltalk®
VisualWorks®

UniSQL™ is a trademark of UniSQL, Inc.
ObjectStudio® is a registered trademark of CinMark Systems, Inc.

All other trademarks are trademarks or registered trademarks of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, Ohio 45246-3732
U.S.A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

www.cincom.com

Release information for this manual

The SUPRA Server PDM DML Programming Guide (OS/390 & VSE),
P26-4340-64, is dated January 15, 2002. This document supports
Release 2.7 of SUPRA Server PDM in IBM mainframe environments.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. Please take the survey provided with the
online documentation at your convenience.

Cincom Technical Support for SUPRA Server PDM

FAX: (513) 612-2000
 Attn: SUPRA Server Support

E-mail: helpna@cincom.com

Phone: 1-800-727-3525

Mail: Cincom Systems, Inc.
 Attn: SUPRA Server Support
 55 Merchant Street
 Cincinnati, OH 45246-3732
 U.S.A.

mailto:helpna@cincom.com

Contents

About this book ix
Using this document... ix

Document organization ..x
Revisions to this manual ..x
Conventions .. xi

SUPRA Server documentation series .. xiv

An overview of DML concepts 17
Opening and closing files ..19

Opening and closing primary and related files ...19
Opening and closing secondary key (index) files...21

Adding a primary record..22
Reading a primary record..23
Updating a primary record...25
Deleting a primary record..25
Adding a related record...26
Reading a related record...30
Updating a related record..32
Deleting a related record...33
Reading records via secondary keys ..35
Diagnosing application DML errors ...36
Maintaining database integrity in a task logging environment.....................................40

Logical unit of work ..40
Record holding ...42
Program recovery...46

Using system control DML commands ...47
Opening and closing files with PDM DML ..48
Using system logging commands ..49
Generating statistics...51
Monitoring resources..53
Terminating the PDM with PDM DML ..58

PDM DML Programming Guide v

CALL statements and data lists 59
CALL statements .. 60
Data list parameter keywords ... 62

Command syntax 67
ADD-M .. 68
ADDVA ... 72
ADDVB ... 77
ADDVC ... 82
ADDVR ... 86
CLOSX.. 93
COMIT .. 100
DEL-M... 104
DELVD.. 107
ENDLG ... 112
ENDTO ... 116
FINDX ... 121

FINDX qualifier for BDAM or ESDS primary files .. 129
FINDX qualifier for KSDS primary files.. 130
FINDX qualifier for related files.. 133

FREEX.. 137
MARKL ... 138
OPENX ... 140
QMARK... 149
QUIET... 151
RDNXT ... 152

RDNXT qualifier for BDAM or ESDS primary files....................................... 157
RDNXT qualifier for KSDS primary files .. 158
RDNXT qualifier for related files .. 161

READD ... 165
READM... 169
READR ... 172
READV ... 179
READX ... 187
RESET.. 197
RQLOC... 201
RSTAT.. 203
SHOWX .. 221

SHOWX for status returns... 221
SHOWX for monitoring resources... 224

SINOF... 248
SINON .. 250
SINON (CICS compatibility).. 256
SINON (TIS 1.x compatibility)... 258
SINON (TOTAL compatibility)... 260

Contents

vi P26-4340-64

WRITD ..262
WRITM..264
WRITV ..268

Programming examples 273
Example of IDENTIFICATION, ENVIRONMENT, and DATA divisions274
Example of read-only environment ...278
Example of update mode ..283
Example of recoverable update mode ..291
Example of primary serial processing ...300
Example of related serial processing (physical)..303
Example of related serial processing (logical)...305

Index 307

Contents

PDM DML Programming Guide vii

Contents

viii P26-4340-64

About this book

Using this document
This manual incorporates applicable material from the SUPRA Server
PDM Systems Control Commands Supplement, P26-2215, which has
been discontinued. This manual now contains all PDM Data
Manipulation Language (DML) commands.

This manual is intended for new users and existing users who are
upgrading from SUPRA, TOTAL, or TIS. It contains information for
database administration (DBA) and application programming personnel.
It allows you to maintain your existing applications that issue PDM DML
(Data Manipulation Language) commands. For compatibility differences,
refer to the SUPRA Server PDM Migration Guide (OS/390 & VSE),
P26-0550.

This programming guide contains an overview of concepts of the PDM
DML commands, instructions for coding a call and data-list, the complete
syntax of DML commands, and programming examples.

The terms OS/390 and VSE in this manual refer to the following:

♦ OS/390 to OS/390/XA, OS/390/ESA, and OS/390/OS390

♦ VSE to VSE Advanced Functions, and VSE/ESA

The OS/390 term STEPLIB is used in this manual. The corresponding
concept for VSE is the LIBDEF in effect during the particular step. Also,
the OS/390 term address space is used; the corresponding term for VSE
is partition.

PDM DML Programming Guide ix

Document organization
The information in this manual is organized as follows:

Chapter 1—An overview of DML concepts
Describes DML and how to access data in a SUPRA PDM database.

Chapter 2—CALL statements and data lists
Describes how to make requests to the database by coding CALL
statements to DATBAS, the interface used for access to SUPRA
Server databases. Also discusses the transfer of data between the
database record and the program-supplied data area.

Chapter 3—Command syntax
Contains syntax descriptions for the PDM DML commands.

Chapter 4—Programming examples
Contains DML coding examples.

Index

Revisions to this manual
The following changes have been made for this release:

♦ Removed statements in descriptions of the control-key parameter
that said the PDM returns an error message then “changes the
qualifier to BEGN…” under “RDNXT qualifier for BDAM or ESDS
primary files” on page 157 and “RDNXT qualifier for KSDS primary
files” on page 158.

♦ The CNTRL command has been removed. This is no longer
supported by SUPRA PDM.

♦ A consideration has been added to the data-list parameter under
“READX” on page 187.

About this book

x P26-4340-64

Conventions
The following table describes the conventions used in this document
series:

Convention Description Example
Constant width
type Represents screen images and

segments of code.
PUT 'customer.dat'
GET 'miller\customer.dat'
PUT '\DEV\RMT0'

Slashed b (b/) Indicates a space (blank).
The example indicates that four
spaces appear between the
keywords.

BEGNb/b/b/b/SERIAL

Brackets [] Indicate optional selection of
parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate one
of the following situations:

 A single item enclosed by brackets
indicates that the item is optional
and can be omitted.
The example indicates that you can
optionally enter a WHERE clause.

[WHERE search-condition]

 Stacked items enclosed by brackets
represent optional alternatives, one
of which can be selected.
The example indicates that you can
optionally enter either WAIT or
NOWAIT. (WAIT is underlined to
signify that it is the default.)

(WAIT)
(NOWAIT)











About this book

PDM DML Programming Guide xi

Convention Description Example

Braces { } Indicate selection of parameters.
(Do not attempt to enter braces or to
stack parameters.) Braces
surrounding stacked items
represent alternatives, one of which
you must select.
The example indicates that you
must enter ON or OFF when using
the MONITOR statement.

MONITOR
ON
OFF









Underlining
(In syntax)

Indicates the default value supplied
when you omit a parameter.
The example indicates that if you do
not choose a parameter, the system
defaults to WAIT.

(WAIT)
(NOWAIT)











 Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.
The example indicates that you can
enter either STAT or STATISTICS.

STATISTICS

Ellipsis points... Indicate that the preceding item can
be repeated.
The example indicates that you can
enter multiple host variables and
associated indicator variables.

INTO :host-variable [:ind-
variable],...

About this book

xii P26-4340-64

Convention Description Example

UPPERCASE
lowercase

In most operating environments,
keywords are not case-sensitive,
and they are represented in
uppercase. You can enter them in
either uppercase or lowercase.

COPY MY_DATA.SEQ

HOLD_DATA.SEQ

Italics Indicate variables you replace with a
value, a column name, a file name,
and so on.
The example indicates that you
must substitute the name of a table.

FROM table-name

Punctuation
marks

Indicate required syntax that you
must code exactly as presented.
() parentheses
. period
, comma
: colon
' ' single quotation marks

(user-id, password, db-name)

INFILE 'Cust.Memo' CONTROL
 LEN4

SMALL CAPS Represent a required keystroke.
Multiple keystrokes are hyphenated.

ALT-TAB

OS/390
VSE

Information specific to a certain
operating system is flagged by a
symbol in a shadowed box (OS/390)
indicating which operating system is
being discussed. Skip any
information that does not pertain to
your environment.

OS/390 See the SUPRA Server
procedure library
member TIS$RDM for
a list of RDM
procedures.

VSE See the SUPRA Server
RDM sublibrary
member TXJ$INDX for
a list of JCL.

About this book

PDM DML Programming Guide xiii

SUPRA Server documentation series
SUPRA Server is the advanced relational database management system
for high-volume, update-oriented production processing. A number of
tools are available with SUPRA Server including Directory Maintenance,
DBA utilities, DBAID, SPECTRA, and MANTIS. The following list shows
the manuals and tools used to fulfill the data management and retrieval
requirements for various tasks. Some of these tools are optional.
Therefore, you may not have all the manuals listed. For a brief synopsis
of each manual, refer to the SUPRA Server PDM Digest (OS/390 &
VSE), P26-9062.

Overview

♦ SUPRA Server PDM Digest (OS/390 & VSE), P26-9062

Getting started

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM CICS Connector Systems Programming Guide
(OS/390 & VSE), P26-7452

General use

♦ SUPRA Server PDM Glossary, P26-0675

♦ SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126

About this book

xiv P26-4340-64

Database administration tasks

♦ SUPRA Server PDM and Directory Administration Guide (OS/390 &
VSE), P26-2250

♦ SUPRA Server PDM Directory Online User’s Guide (OS/390 & VSE),
P26-1260

♦ SUPRA Server PDM Directory Batch User’s Guide (OS/390 & VSE),
P26-1261

♦ SUPRA Server PDM DBA Utilities User’s Guide (OS/390 & VSE),
P26-6260

♦ SUPRA Server PDM Logging and Recovery (OS/390 & VSE),
P26-2223

♦ SUPRA Server PDM Tuning Guide (OS/390 & VSE), P26-0225

♦ SUPRA Server PDM RDM Administration Guide (OS/390 & VSE),
P26-8220

♦ SUPRA Server PDM RDM PDM Support Supplement (OS/390 &
VSE), P26-8221

♦ SUPRA Server PDM RDM VSAM Support Supplement (OS/390 &
VSE), P26-8222

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

♦ SPECTRA Administrator’s Guide, P26-9220

About this book

PDM DML Programming Guide xv

Application programming tasks

♦ SUPRA Server PDM DML Programming Guide (OS/390 & VSE),
P26-4340

♦ SUPRA Server PDM RDM COBOL Programming Guide (OS/390 &
VSE), P26-8330

♦ SUPRA Server PDM RDM PL/1 Programming Guide (OS/390 &
VSE), P26-8331

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

Report tasks

♦ SPECTRA User’s Guide, P26-9561

Manuals marked with an asterisk (*) are listed more than once because
you use them for multiple tasks.

Educational material is available from your regional Cincom education
department.

About this book

xvi P26-4340-64

1
An overview of DML concepts

DML means Data Manipulation Language. To access data in a SUPRA
physical manager data (PDM) database, you write an application
program using one of two DML languages. The languages process
through the optional Relational Data Manager (RDM) or the PDM
(Physical Data Manager). With the RDM, you use Relational Data
Manipulation Language (RDML). With the PDM, you use PDM Data
Manipulation Language (PDM DML).

Do not mix RDML and PDM DML within an application because it can
corrupt the database. However, RDML applications and PDM DML
applications can coexist in SUPRA Server operation. Be aware that RDM
relational integrity is not observed for PDM DML applications. PDM DML
does not use the RDM component of SUPRA Server and there are no
logical views of data. For information on RDML, refer to the SUPRA
Server PDM RDM COBOL Programmer's Guide (OS/390 & VSE),
P26-8330, or to the SUPRA Server PDM RDM PL/1 Programming Guide
(OS/390 & VSE), P26-8331.

Your existing TOTAL, TIS, and SUPRA 1.x PDM DML applications can
be executed under SUPRA 2.x. For compatibility considerations, refer to
the SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550.

With PDM DML, you process by accessing one file at a time with one
DML command. You code a CALL to DATBAS for each command (see
“CALL statements and data lists” on page 59 for coding a CALL). You
link DATBAS with your program after its compilation. Two modules are
delivered with SUPRA, one for batch programs (DATBAS) and one for
CICS programs (DATBASC).

PDM DML Programming Guide 17

The first PDM DML command a program must execute is a SINON to
initialize the task with the PDM. Then you can perform whatever
database activities your business function requires: access, search,
update files, and so on. If you update files, do periodic COMITs or
RESETs. The last command a program must execute (when your
business function is complete) is a SINOF.

Other PDM DML commands are for file manipulation, according to which
files you can access. Concerning this, consider that the PDM executes
with a CSIPARM file which names a schema and environment
description on the Directory. The schema and environment description
grant or deny permission to a program to access or update certain files.
Therefore, the schema and environment description affect which files
your application can access with DML commands, and which files you
can update.

The Database Administrator (DBA) places file descriptions in the
Directory and assigns names to each physical field in a record. Your
program uses those names in the data-list parameter of most DML
commands. A data list can name some or all of the fields in a record, in
any order. For information about special keywords in the data list, see
“CALL statements and data lists” on page 59.

On a read, when the PDM returns control to the application (after
servicing the command), the data-area parameter contains the contents
of the data fields named in the data list, in the same order.

The PDM locates each database record by its relative record number
(RRN) in its primary or related file. Many DML commands return an RRN
(relative record number) as one of their outputs. Often, your program
must pass this RRN to a subsequent DML command as an input
parameter.

The following sections of this overview explain how to use PDM DML to
perform functions that affect the database, such as open, add, delete,
read, and write. The overview also discusses error handling and
database integrity for your application. Then complete syntax
descriptions of each DML command are presented in “Command syntax”
on page 67. Simple example applications are presented and explained
step-by-step in “Programming examples” on page 273.

Chapter 1 An overview of DML concepts

18 P26-4340-64

Opening and closing files
For information about opening and closing primary and related files, see
“Opening and closing primary and related files” on page 19. For
information about the indirect opens and closes of secondary key files
(index files), see “Opening and closing secondary key (index) files” on
page 21.

Opening and closing primary and related files
Before any application can process a primary or related file, the file must
be available in the user environment description, and must be open.
Open a primary or related file in one of the following ways:

♦ The setting of the environment description-to-file relationship for each
file requests that the PDM open the file during PDM initialization.

♦ The CICS Connector command OPEN opens a defined group of
files.

♦ A special PDM DML program written by your DBA opens all files with
one or more OPENX commands.

♦ Each PDM DML application issues its own OPENX for the files it
needs.

With the first method using the Directory open, the file can be opened for
read only access or shared update access. With the methods using
OPEN or OPENX, the file can be opened for read only, shared update, or
exclusive update access. An OPENX can open one, multiple, or all files
in the environment description. However, the environment description
actually controls whether the PDM should process or ignore an OPENX
command from a task or the CICS connector.

When a file is opened for read-only access, applications can issue a
primary or related file read command. The PDM returns an error status
code to any task attempting to update the records (add, change, delete).
Your application can update a file only if it is opened for shared update
(SUPD) or exclusive update (EUPD).

Opening and closing files

PDM DML Programming Guide 19

SUPD (shared update) is the recommended open mode for multitask
PDM operating mode. SUPD mode allows multiple tasks to concurrently
update the file. EUPD (exclusive update) mode allows only the opening
task to update the file or to close it from EUPD mode. Use EUPD opens
with caution, and always close and reopen for IUPD or SUPD in a
multitask environment.

To close one or multiple primary or related files, use a CLOSX DML
command. You can do this in individual applications or by a special DBA
application that closes all files at an appropriate time. CLOSX closes a
file if no other tasks are using that file. In a multitask environment, use
CLOSX commands cautiously because they can cause problems for
tasks that execute later and do not open their files.

CLOSX can close a file partially (PART) or completely (COMP). As with
opens, the environment description actually controls whether the PDM
should process or ignore a CLOSX command from a task or the CICS
connector. At PDM termination, the PDM closes files completely and
unlocks them if they are not locked by a failed task.

When task logging is active, you must finalize an OPENX or CLOSX with
either a COMIT or RESET. Do not use both OPENX and CLOSX for a
file in the same logical unit of work. If a task changes a file’s mode and
does not issue a COMIT or RESET, the PDM prevents any other task
from changing that file’s mode. The other task waits for the held file lock
record (unless the wait creates a possible deadlock situation). If the first
task does not issue a COMIT or RESET, the waiting task receives an
error status code.

Chapter 1 An overview of DML concepts

20 P26-4340-64

Opening and closing secondary key (index) files
Index files contain groups of information called secondary keys.
Secondary keys provide an alternate method to access primary or related
file records via the READX (read indexed) command. The RDM uses this
method for certain types of views. An index file can contain information
about more than one secondary key. These multiple secondary keys for
a file can all reside in the same index file or in different index files.

You do not open index files directly. The PDM opens index files when
you (or your environment) open the first primary or related file having a
secondary key defined and stored in the index file. The open mode for
the index file is derived from the open mode of that first file, as follows:

Primary/related file open mode Index file open mode
READ READ
IUPD IUPD
SUPD SUPD
EUPD SUPD

For an OPENX command, if an index file is already open in a lower mode
than your specified mode, it escalates. If already open in a higher mode
than your specified mode, it stays the same.

Index files also cannot be closed directly. When you use COMP
(complete) mode to close the last primary or related file having secondary
keys on a particular index file, the index file also closes COMP. When
you close a primary or related file with PART (partial) mode, any
associated index files that were locked remain locked. To unlock the
index files, you must close all associated primary or related files with
COMP mode.

When a task or RDM issues a READX command, the PDM determines
(from the Directory) which index file to read according to which secondary
key you specify. The PDM reads a record from that index file, and
interprets the contents of that index record to determine which record to
read from the base file. The PDM returns the base record to the task.

Opening and closing files

PDM DML Programming Guide 21

Adding a primary record
In order for your program to add a primary record, the file named in the
file parameter must be open in EUPD or SUPD mode. You use the
ADD-M command to add a record to a primary file. The PDM locates a
space (RRN) for the new record by using a hashing algorithm against the
value in the control-key parameter. If the result produces a synonym
record, the PDM holds any affected synonym records and updates their
pointers. The new record is constructed using the information you place
in the data-list and data-area parameters. Data items not named in the
data list are filled with blanks in the added record. The PDM adds this
record to the file, and in addition, performs maintenance to all secondary
keys that are populated for this file.

Chapter 1 An overview of DML concepts

22 P26-4340-64

Reading a primary record
When accessing records on a primary file, you can navigate the file with
three types of read commands: direct, secondary key serial, or serial.

♦ A direct read reads one specific record, using a control key value.
You can affect sequential processing by repeated reads, increasing
or decreasing the specified key. Use the READM command for a
direct read of a primary file.

♦ A secondary key serial read means repeated reads for sets of
records associated with each secondary key value. Use a repeated
READX command for secondary key serial reads. READX
automatically uses the appropriate index file containing the
secondary key. You can limit the retrievals to those records
containing a specific secondary key value. You can also limit to only
certain secondary key values by using masking information.

 The first READX must use the keyword BEGN in the qualifier field.
Because all secondary keys are in ascending sequence, records can
be retrieved in either a forward or reverse direction on the secondary
key values. To alter the direction of the read, specify the opposite
direction keyword in options, and specify REBD in the qualifier; this
starts reading in the opposite direction. You can start at the beginning
or end of the secondary key values, or with a particular value.

♦ A serial read means repeated reads for records in the sequence they
are physically stored on the file (in RRN order). For ESDS and BDAM
primary files, the returned records are in random logical order since
they are not stored physically in alphanumeric order by control key.
For KSDS primary files, the returned records are in control key order.
Use serial reads for large scale file access or when the records to be
retrieved are not known uniquely by key. The FINDX and RDNXT
commands are available for serial reads.

The RDNXT command serially retrieves all records. The FINDX
command serially searches for a record which satisfies criteria defined in
the argument parameter. The argument parameter specifies which data
items are to be examined, how the test is to be made (a comparison
operator), and what values comprise the criteria. For either FINDX or
RDNXT, you can start at the beginning of the primary file and continue
through it, or start at a specified record and then continue serially
(physically). To start at the physical beginning, use the keyword BEGN in
the qualifier parameter. To start processing with a specific record, use
the control key (of the record where you want the reads to begin) in the
qualifier parameter. Repeat the FINDX or RDNXT to continue serially to
the end of the file. The PDM returns the data of each record and its RRN
location.

Reading a primary record

PDM DML Programming Guide 23

The following figure illustrates a serial read using RDNXT. It shows
which record the PDM retrieves from a file (CUST) if you code the
RDNXT qualifier parameter as BEGN or if you use KEY=control key. If
FINDX were used, the same record would be retrieved in either case if it
met the criteria you specified in the argument parameter.

Portion of request
sequence using

keyword BEGN to
access all records in file

Portion of request
sequence using record’s

control key to begin
accessing records

FUNCTION=RDNXT
FILE=CUST
DATA-LIST=CUSTCTRLEND.
QUALIFIER=BEGN

FUNCTION=RDNXT
FILE=CUST
DATA-LIST=CUSTCTRLEND.
QUALIFIER=KEY=AB

Customer Purchase File (CUST)

RRN1

(Record 3)

(Record 2)

(Record 5)

(Record 7)

(Record 9)

(Record 4)

(Record 6)

(Record 8)

(Record 10)

Remaining data
items/linkpath123AA

Remaining data
items/linkpath123AA

Data returned to your program when the qualifier is set to:

BEGN KEY=control-key

Qualifier contents after first RDNXT 1 6

Data area contents after first RDNXT AA AB

Serial retrieval of primary records using RDNXT

Chapter 1 An overview of DML concepts

24 P26-4340-64

You may want to add (ADD-M) records to or delete (DEL-M) records from
a primary file while serially processing it with a RDNXT, FINDX, or
READX command. Use caution, because your application program might
not have serial access to certain records after the PDM performs the
delete and add logic.

For example, the current record (retrieved serially) could have a synonym
that has not yet been read. If you or another task deletes the current
record, the PDM automatically reorganizes the file and could physically
move the synonym so it is unavailable for the next or a subsequent serial
access.

To avoid this situation, you should issue all ADD-Ms and DEL-Ms after
serial processing is complete. This technique ensures that all records
are available for program analysis. You can execute the WRITM
command while processing a primary file with the RDNXT command
because WRITM does not reorganize synonym chains. WRITM simply
updates in place.

Updating a primary record
Use the WRITM command to update a record in a primary file that is
open in SUPD or EUPD mode. Before you can update a primary record
with WRITM, you must issue a read command (READM) for it. In a
multitask operating mode or when task logging is active, you must issue
the read with explicit record holding (see “Record holding” on page 42).
The PDM uses the specified control key to locate the record to be
updated. The PDM then moves the data items (as specified in the data
list) from the data area to the corresponding sections in the record you
want to update.

Deleting a primary record
Use the DEL-M command to delete a record from a primary file that is
open in SUPD or EUPD mode. The PDM deletes the record whose key
is in the control-key parameter from the file identified by the file
parameter. If you are running your program in a multitask environment or
if task logging is active, you must read (READM) the record with explicit
record holding before you can delete it. The PDM automatically holds
any affected synonym records and updates their pointers. A primary
record cannot be deleted if there are any related file records linked to it.

Updating a primary record

PDM DML Programming Guide 25

Adding a related record
Before your program can add a related record, the file named in the file
parameter must be open in EUPD or SUPD mode. You use an ADDVC,
ADDVB, or ADDVA command to add a record to a related file. The new
record is constructed using the information you place in the data-list and
data-area parameters. Data items not named in the data list are filled
with blanks in the added record. The PDM adds this record to an
available RRN (relative record number location) in the file, and performs
structural maintenance to the linkpaths for the file. This causes automatic
PDM holds on affected primary and related records. In addition, the PDM
performs maintenance to all secondary keys that are populated for this
file.

You can add new records to a chain of related records at various logical
positions within the chain. You can add to the beginning, end, or at any
logical position within the chain. When adding records to a related record
chain, the PDM stores all records belonging to one chain as close
together as possible. The following text and figures explain database
navigation when you use an ADDVC, ADDVB, or ADDVA command.

Use the ADDVC command (add continue) to add a related record at the
logical end of the chain on the controlling linkpath. The PDM also adds
the new record to the end of all other linkpaths defined for this record.
The following figure shows a primary record connected to a chain of three
related records and what happens to the database’s logical structure
when you issue an ADDVC command. Follow the arrows in this figure to
see how the PDM navigates through a single chain of related records.

Chapter 1 An overview of DML concepts

26 P26-4340-64

A 1 3 A b/ 2 RRN1

A 1 3 RRN2

A 2 b/ RRN3

A

A 1 4 A b/ 2 RRN1

A 1 3 RRN2

A 2 4 RRN3

A 3 b/ RRN4 (New record)

Associated
primary record

Related
record chain

Related record chain after
record is added with ADDVC

(Record to be added at this logical
position in the chain; after all existing

records)

Chain read in forward direction
Chain read in reverse direction

Legend:

Related record chain before and after using the ADDVC command

Adding a related record

PDM DML Programming Guide 27

Use the ADDVB command (add before) to add a related record in front of
another related record in a record chain. Before making this addition, you
must know the RRN of the record before which you want to place the new
record; otherwise the PDM will not know where to place the new record.
(Issue a read command to get the RRN of a record.) The PDM adds the
new record logically in front of the record whose RRN you specify in the
reference parameter. The new record is added to the end of all other
linkpaths with which this record is associated. The following figure shows
what happens to the database’s logical structure when you issue an
ADDVB command. This figure also shows how the PDM navigates
(following linkpath pointers) through a single chain of related records.

A 1 3 A b/ 2 RRN1

A 1 3 RRN2
A

A 2 b/ RRN3

A 1 3 A b/ 2 RRN1

A 1 4 RRN2

A 4 b/ RRN3

A 2 3 RRN4 (New record)

Associated
primary record

Related
record chain

Related record chain after
record is added with ADDVB

(Record to be added at this
logical position in the chain;

before the record which
happens to be in RRN3)

Chain read in forward direction
Chain read in reverse direction

Legend:

Related record chain before and after using the ADDVB command

Chapter 1 An overview of DML concepts

28 P26-4340-64

Use the ADDVA command (add after) to add a related record logically
after another related record in a record chain. Before making this
addition, you must know the RRN of the record after which you want to
place the new record; otherwise the PDM will not know where to place
the new record. (Issue a read command to get the RRN of a record.)
The PDM adds the new record logically after the record whose RRN you
specify in the reference parameter. The new record is added to the end
of all other associated linkpaths. The following figure shows what
happens to the database’s logical structure when you issue an ADDVA
command. This figure also shows how the PDM navigates through a
single chain of related records.

A 1 3 A b/ 2 RRN1
A

A 1 3 RRN2

A 2 b/ RRN3

A 1 3 A b/ 4 RRN1

A 4 3 RRN2 (Third record in chain logically)

A 2 b/ RRN3 (Fourth record in chain logically)

A 1 2 RRN4 (New record)

Associated
primary record

Related
record chain

Related record chain after
record is added with ADDVA

(Record to be added at this
logical position in the chain;

after the record which happens
to be in RRN1)

Chain read in forward direction
Chain read in reverse direction

Legend:

Related record chain before and after using the ADDVA command

Adding a related record

PDM DML Programming Guide 29

Reading a related record
When accessing records on a related file, you can navigate the file with
four types of read commands: direct, sequential, secondary key serial, or
serial.

♦ A direct read reads one specific record. The PDM locates the record
to be read by first using the control-key parameter to locate the
associated primary record. This primary record’s linkpath points to
the appropriate chain of related records. Then, using the RRN
specified in the reference parameter, the PDM goes directly to the
required related record. Use the READD command for a direct read
of a related file.

♦ A sequential read means repeated reads for records in a logical
sequence along a linkpath chain. To perform strictly sequential reads,
use a repeated READV or READR command. Use READV for a
forward sequential read of a chain, from its logical beginning to its
logical end. Use READR for a reverse sequential read of a chain,
from its logical end to its logical beginning. When the end of a chain
is reached, you can reinitialize with another control key on the same
linkpath. Thus you can process an entire linkpath (usually the entire
file).

♦ A secondary key serial read means repeated reads for sets of
records associated with each secondary key value. Use a repeated
READX command for secondary key serial reads. READX
automatically uses the appropriate index file containing the
secondary key. You can limit the retrievals to those records
containing a specific secondary key value. You can also limit to only
certain secondary key values by using masking information.

 The first READX must use the keyword BEGN in the qualifier field.
Because all secondary keys are in ascending sequence, the records
can be retrieved using either a forward or reverse direction on the
secondary key values. To alter the direction of the read, specify the
opposite direction keyword in options, and specify REBD in the
qualifier; this starts reading in the opposite direction. You can start at
the beginning or end of the secondary key values, or with a particular
value.

♦ A serial read means repeated reads for records in the sequence they
are physically stored on the file (in RRN order). Use a FINDX or
RDNXT command to perform a serial or serial-sequential read.

Chapter 1 An overview of DML concepts

30 P26-4340-64

The RDNXT command retrieves all records. The FINDX command
searches a file for a record which satisfies criteria defined in the
argument parameter. The argument parameter specifies which data
items are to be examined, how the test is to be made (a comparison
operator), and what values comprise the criteria.

For either FINDX or RDNXT, you can start at the physical beginning of a
file and continue through it by using the keywords BEGN and SERIAL in
the qualifier parameter. Repeat the FINDX or RDNXT to continue to the
end of file. The PDM returns the data of each record and its RRN
location.

For a related file, FINDX and RDNXT can also perform a
serial-sequential read. To make a FINDX or RDNXT serial-sequential,
use a linkpath in the qualifier parameter with either BEGN or a control key
value as the starting point. The serial part of the read involves finding and
returning the first physical head-of-chain record. The sequential part is
reading all other records in that chain. Then the next head-of-chain that
physically follows the first one is retrieved, and so on to the end of the file.

Reading a related record

PDM DML Programming Guide 31

Updating a related record
In order to update a related record, the file must be open in SUPD or
EUPD mode. Before you can update a related record, you must issue a
read command to obtain the RRN. In a multitask operating mode or when
task logging is active, you must issue the read command with explicit
record holding (see “Record holding” on page 42).

When updating a related record, determine if the file is coded or
uncoded. If you are using a coded data list and if the file is coded, you
must include the record code in the data list and data area. If these two
codes do not match or if the code in the record does not match the code
in the data area, an error status code is returned. You can use either the
WRITV or ADDVR command to update a related record.

If the file is uncoded, use a WRITV command. Also use WRITV for a
coded file if you are not changing a record code or control key. The PDM
uses the RRN in the reference parameter to locate the related record.
When the PDM processes a WRITV, like a WRITM, the data items in the
data area are moved to the corresponding location in the record you want
to update.

Use the ADDVR command to update a related record when you want to
change a record code or control key; otherwise use WRITV. The ADDVR
command can remove a related record from one chain and link it to the
end of another chain.

The ADDVR command performs like the WRITV except when the update
requires the addition or deletion of a linkpath in the record. If the record
exists in both the old and new linkpaths and the key changes, the PDM
logically relinks an existing related record into different chains without
physically moving the record. The PDM examines every control key
defined for the record to be processed by comparing the new data area
to the PDM’s I/O area. (The PDM’s I/O area contains the existing record
which is to be updated.) If a control key changes, the PDM removes the
record from the old chain and logically adds the record to the end of the
new chain (the new linkpath is determined by the control key specified in
the data area). The PDM updates the old linkpath and new linkpaths to
reflect the new links. The PDM automatically holds the records affected
by linkpath maintenance.

ADDVR is the only command which can be used to change a record
code or a control key.

Chapter 1 An overview of DML concepts

32 P26-4340-64

Deleting a related record
Use the DELVD command to delete a record from a related file that is
open in SUPD or EUPD mode. If you are running your program in a
multitask environment or if task logging is active, you must read the
record with an explicit hold before you can delete it. The PDM removes
the record whose RRN is in the reference parameter from the file
identified in the file parameter. The PDM also removes the record from
all associated linkpaths and fills the record with blanks so it is available
for immediate reuse (see the following figure). After executing, the PDM
updates the reference parameter with the RRN of the record immediately
preceding the deleted record (in the record chain) identified by the
linkpath parameter.

Deleting a related record

PDM DML Programming Guide 33

A 1 4 A b/ 2 ABCD RRN1

A 1 3 CDEF RRN2

A 2 4 GHIJ RRN3

A 3 b/ KLMN RRN4

A 1 4 A b/ 2 ABCD RRN1

A 1 4 CDEF RRN2

b/ b/ b/ b/ b/ b/ RRN3

A 2 b/ KLMN RRN4

Associated
primary record

Related
record chain

Related record chain after record is deleted

This record to be deleted

(Deleted record)

Chain read in forward direction
Chain read in reverse direction

Legend:

Related record chain before and after using the DELVD command

Chapter 1 An overview of DML concepts

34 P26-4340-64

Reading records via secondary keys
Data can be retrieved by using a secondary key serial read. Refer to
“Reading a primary record” on page 23 for information on secondary key
serial reads.

If you are issuing a READX DML with an end parameter of RLSE and the
data list fields you wish to retrieve are completely contained in the
secondary key, I/O to the primary or related file becomes unnecessary.

There are additional criteria involved in satisfying this I/O performance
feature that are dynamically decided at execution time.

If we have found a coded data element in the secondary key, then in
order for this READX to qualify:

1. The record code must be part of the secondary key.

2. The record code must be at the same offset within the secondary
key.

3. If the record code is not part of the secondary key, then the
secondary key must be built on only one record code (excluding the
base internal record).

Reading records via secondary keys

PDM DML Programming Guide 35

Diagnosing application DML errors
Each PDM DML command returns a status code indicating either the
successful completion of the operation or cancellation due to an error.
You need to code your application to check the status code after each
command and take appropriate action according to various codes that
could be returned. If the status is not **** (success), then some sort of
warning or error condition is indicated. The specific statuses for which to
code differ from one command to another, and are presented with the
status parameter entry for each DML command in “Command syntax” on
page 67.

When coding your program, include two steps in the logic to help handle
errors, warnings, and end-of-processing indicators. First, code logic to
handle and correct certain expected situations. An expected status code
could be a RSTR on a SINON to indicate you are reexecuting your
program after a task or system failure. For the DBA, it could be an ACTV
on an ENDTO to indicate that at least one task is still active.

In some cases, one of several status codes are expected, and the
program’s subsequent processing depends on which status code the
PDM returns. For example, when executing a READM, include logic to
handle an MRNF status code (among others). MRNF tells you a record
with the specified control key value does not exist on this primary file.
When executing the FINDX commands on related files, ENDC and END.
are expected.

Secondly, your program logic must handle all unexpected status codes.
Ignoring these statuses could result in abnormal termination of your
program, loss of database integrity (errors in chains, etc.), or failure of the
database. Unexpected status codes could be a FNAV (file not available)
or an IPAR (invalid parameter) during program testing. They could also
be a notification that a command began executing but could not
complete. The PDM cancels and backs out any processing caused by
that command before it detected the error. For example, if the PDM
detects an error in a record chain while processing a command, that
command is backed out. In addition, all index changes made prior to
discovery of the chain error are backed out. If some processing of the
command was performed before the PDM detected the error (new
linkages were constructed), the PDM attempts to reconstruct the file to its
former configuration.

Chapter 1 An overview of DML concepts

36 P26-4340-64

Usually, the appropriate action for all unexpected status codes is to
produce a formatted report of the status and the DML parameters that
caused the problem and stop the program. The explanation and user
action for all status codes are documented in the SUPRA Server PDM
Messages and Codes Reference Manual (RDM/PDM Support for OS/390
& VSE), P26-0126.

You can also use the TASKEXST option of the SHOWX command in this
report. You issue the SHOWX command immediately following the failed
DML command. This retrieves additional information describing the
failure and is called the task extended status. It begins with a repeat of
the status you received (e.g., IPAR) followed by a 4-digit identification
code and text. These are also documented in the SUPRA Server PDM
Messages and Codes Reference Manual (RDM/PDM Support for OS/390
& VSE), P26-0126.

Do not code logic to handle specific 4-digit identification codes from
SHOWX. These may change with releases of SUPRA Server.

The SHOWX task extended status information (TASKEXT) is always 36
characters in length. Your application always places at least 36 in the
length-in field of the qualifier parameter, and provides a data-area field of
that length.

You need to issue two SHOWX commands: one to request the
information and one to free the PDM context memory. The following
examples show retrieval of task extended status information.

Before issuing the first SHOWX, your application initializes the
parameters as follows:
command : SHOWX

status : output field

option-list : TASK=*,END.

 Request for Task information

qualifier : BEGN0036oooocccc

 BEGN = Means first SHOWX in a series

 0036 = Length of data-area (binary fullword)

 oooo = Blanks

 cccc = Blanks

data-list : TASKEXST,END.

data-area : output field

endp : END.

Diagnosing application DML errors

PDM DML Programming Guide 37

After executing the SHOWX, the PDM updates your status, qualifier, and
data-area fields as follows:
command : SHOWX

status : ****

option-list : TASK=*,END.

qualifier : NEXT00360036cccc

 NEXT = PDM will try for more information if

 the command is repeated with qualifier as-is

 0036 = Length of data-area (unchanged)

 0036 = Returned length of retrieved data in

 data-area

 cccc = Returned PDM context pointer (do not

 modify)

data-list : TASKEXST,END.

data-area : statnnnnmodulenm-add'l info ... END.

endp : END.

Your program can display or print the diagnostic information in the data
area.

You can repeat the SHOWX to free the PDM context memory in either of
the following ways:

♦ Repeat the command with qualifier containing NEXT, just as the
PDM returned it to the application. The PDM finds no more
information, frees the context, and returns END. in the qualifier.

♦ Change NEXT to ENDS in the qualifier and repeat the command.
That tells the PDM you do not want any more information, so the
PDM frees the context memory.

Chapter 1 An overview of DML concepts

38 P26-4340-64

An example of using the second method to free the memory is as follows:
command : SHOWX

status : content ignored on input

option-list: TASK=*,END.

qualifier : ENDS00360036cccc

 ENDS = means no more information is requested

 0036 = contents ignored when input with ENDS

 0036 = contents ignored when input with ENDS

 cccc = PDM context pointer Must remain

 unchanged from receding SHOWX.

data-list : content ignored on input with ENDS

data-area : content ignored on input with ENDS

endp : END.

After this command completes, the status parameter contains **** to
indicate successful execution. The PDM has released its internal context
identified by cccc in the qualifier.

You can consult the table of SHOWX command keywords at the end of
“SHOWX for monitoring resources,” beginning on page 224, to find the
TASK group and the TASKEXST item in that group. There are also other
items available about a task, but they usually have little to do with error
diagnosis.

Diagnosing application DML errors

PDM DML Programming Guide 39

Maintaining database integrity in a task logging environment
When coding an application program, remember that your program is not
the only program executing in the PDM. Therefore, you must do all you
can to maintain the integrity of the database. In a task logging
environment, concepts such as a logical unit of work, record holding, and
recovery can help ensure database integrity. These concepts are
discussed in the following sections.

Logical unit of work
SUPRA Server is designed to process logical units of work (transactions).
A logical unit of work is a group of database requests from one caller that
must all be completed together or not at all. A task may consist of one or
several logical units of work. For example, a logical unit of work could be
entering a purchase order to the system, posting an invoice, or adding a
new customer. If an error occurs, the logical unit of work is incomplete.
In that case, you must undo all the processing before the error.

In a task logging environment, you define the length of a logical unit of
work by issuing COMIT commands. That is, the size of a logical unit of
work is from commit point to commit point. The length of a logical unit of
work determines how far back (in processing) you need to go in order to
continue after an error. If task logging is not active, you might have to go
back to the beginning of your program. If active, you go back just a few
steps to the most recent COMIT. In a task logging environment, all
updates and relevant information are written to a Task Log File on a task
and logical unit of work basis. For more information on task logging and
the Task Log File, refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250.

Chapter 1 An overview of DML concepts

40 P26-4340-64

The following example illustrates a sample program structure which could
be used to implement a logical unit of work using PDM DML:
INITIALIZATION (SINON)

 While not finished, do:

 screen input and validation

 Data Base Update Processing

 If error, then RESET

 else COMIT

 end

TERMINATION (SINOF)

The initialization (SINON) process identifies the new task to the PDM and
allocates a unique internal task identifier. Once you have signed on, you
can begin processing.

You can process the database using either RDML or PDM DML. Do not
use both languages in the same program. Your program can perform
read-only database calls or can update database records. If your
program updates database records, the records are held until committed,
and cannot be accessed by other programs during that time.

If an error is detected while updating, you can remove the updates to the
records by issuing a RESET. If no errors are detected, issue a COMIT to
free any held records. Updates to the records are now permanent; that is,
they can no longer be removed by issuing a RESET. Errors in a logical
unit of work are handled differently based on where the error was
detected:

♦ Detected by the program. Because the logical unit of work is
incomplete when the error is detected, all the processing done before
the error must be undone by issuing a RESET. Your program can
either start a new logical unit of work or sign off, depending on the
severity of the error.

♦ Not detected by the program. If you code your program to execute
COMITs at appropriate times, the PDM can assure the integrity of
your database. The PDM ensures that each logical unit of work is
always complete. If the PDM finds that a program has terminated
normally (batch) or abnormally (batch and online) before signing off,
the PDM resets to the most recent commit point. If the most recent
commit point happens to be a SINON, then the PDM signs off the
task; otherwise, the task remains signed-on, able to be restarted.
This ability means that the PDM will return an RSTR status to the
task when it issues a SINON the next time.

Maintaining database integrity in a task logging environment

PDM DML Programming Guide 41

Record holding
Record holding is a facility within the PDM which protects records from
being updated by two tasks at the same time. A task must reserve (hold)
records before it can update them. Because only one task at a time can
hold a record, record holding controls contention among tasks accessing
the same record. The DML commands that can hold records while they
execute are: ADD-M, ADDVA, ADDVB, ADDVC, ADDVR, DEL-M,
DELVD, FINDX, RDNXT, READD, READM, READR, READV and
READX. Records may be held differently depending on the processes
being performed.

Because more than one task may be accessing the same file in a
multitask environment, concurrent updating of a record by two or more
tasks could occur. This could destroy database integrity. To prevent this,
the multitask PDM uses record holding. The PDM also uses record
holding in a single-task environment when task logging is active.

The PDM holds the records until the record is no longer required (for
example, function completion, COMIT or RESET processing, record
stealing). The DML commands perform two types of record holding
(numbers 1 and 2 following); the PDM does one type of record holding
(number 3 following):

1. Automatic. The PDM automatically holds records to prevent
interference between DML commands. The PDM temporarily holds
additional records that might be needed for completing a DML
function (for example, a primary record on ADDVC, synonyms on
DEL-M). The following commands cause automatic record holding:
ADD-M, ADDVA, ADDVB, ADDVC, ADDVR, DEL-M and DELVD.

 The PDM holds internally all the records affected by the add or delete
(synonym chain of primary records), not only the record to be added
or deleted. The linkpaths in the affected records may be changed as
a result of the add or delete. The system determines which records
could be affected and holds all the affected records for the duration
of the DML command. These holds are in addition to the explicit hold
(see #2) that you must obtain in a multitask or task logging
environment. Automatic record holding is in operation in both task
logging and non-task logging multitask environments:

- If task logging is active, and the held record(s) was updated, the
automatically held record(s) becomes an uncommitted held
record(s) (see #3) after the DML function completes. Otherwise,
it is released for use by other tasks when the DML completes.

- If task logging is not active, automatically held records are
released for use by other tasks when the DML completes.

Chapter 1 An overview of DML concepts

42 P26-4340-64

2. Explicit. An explicit hold is required if you want to update or delete a
record, or if you want to prevent someone else from doing so. Explicit
record holding is accomplished with read commands having END. in
the last parameter instead of RLSE. With END., any record you read
successfully is not held or uncommitted by any other task; you now
hold it. With RLSE, any record you read does not have an explicit
hold on it, but could be an uncommitted record (see #3). You do not
have a hold on it.

 The read commands with which you can use END. are: FINDX,
RDNXT, READD, READM, READR, READV, and READX. You can
explicitly hold only one record per file per task. Your next DML
command to that file can then update this record.

 You can explicitly hold records in both task logging and non-task
logging environments. The only time the PDM does not actually
perform explicit record holding for END. is in a multitask environment
without task logging when a file is open for read only access.

 If task logging is not active, a task requesting a record already
explicitly held by another task is not placed into a wait state, but
immediately receives a HELD status. If the requesting task is an
online task (CICS without task logging), a HELD status is returned to
999 requests. The task requesting access to that record on the
1,000th time is given ownership of that record (record stealing).

 The PDM releases an explicit hold on a record if you:

- Issue a WRITE command for the record (WRITM, WRITV,
ADDVR). Note that this also applies if the update command
receives an error status (IMDL on a DEL-M command). Previous
releases of SUPRA did not always release the explicitly held
record after an error status. With SUPRA 2.4 and higher, a task
will receive a NHLD status if it issues the update command
(DEL-M) for the same record as it received the error status for,
and it has not issued an intervening read with END. If task
logging is active, and the task updates the record, the explicitly
held record becomes an uncommitted record.

- Issue another read command to the same file.

- Issue a FREEX command for the file (allowed only in a non-task
logging environment).

- Lose the record to another task successfully “stealing” it when
task logging is not active.

- Issue a COMIT or RESET for the logical unit of work (this also
releases uncommitted records (see #3) for update holds).

Maintaining database integrity in a task logging environment

PDM DML Programming Guide 43

3. Uncommitted. If task logging is active, records previously held,
either explicitly or automatically, become uncommitted records after
an update to the record completes successfully. Uncommitted record
holding by the PDM prevents interference between transactions that
could jeopardize database integrity. Once a record has been
updated by a task, it and any associated held records cannot be read
with END. or updated by any other task, until the updating task has
committed or reset. However, a read with RLSE is allowed for this
uncommitted record.

 Uncommitted record holding is not performed by specific DML
commands. The PDM provides it to allow updates to be backed out
or committed. Therefore, these records remain uncommitted (and
unavailable for a read with END.) until you issue your next COMIT or
RESET command. At that time, the records are released. The first
task waiting for a hold on each record is given ownership of the
specific record for which it is waiting.

Chapter 1 An overview of DML concepts

44 P26-4340-64

In some cases, two logical units of work may request an automatic or
explicit hold for the same database records simultaneously. In the
following figure, Trans-A holds Record-A and starts processing.
Meanwhile, Trans-B holds Record-B and starts processing. At some
point in time, Trans-A tries to hold Record-B. Since it is already held,
Trans-A waits for Record-B to be released. During Trans-B’s processing,
it tries to hold Record-A, which is held by Trans-A. Therefore, if Trans-B
waits, neither Trans-A nor Trans-B will ever complete since they are
waiting for each other.

Trans-BTrans-A

Record-A
Held

Held

First
request
(waits)

Second
request

Record-B

This situation is called “deadlock,” “deadly embrace” or “fatal embrace.”
The PDM prevents it by returning error status EMBR to TRANS-B
(second request), indicating that a record could not be reserved for
TRANS-B without creating the deadlock situation.

TRANS-B should issue a RESET and then retry its processing from the
most recent commit point. This RESET command resolves the deadlock
by releasing all held resources for the logical unit of work. Contention
between logical units of work can cause poor performance.

Therefore, we recommend that you design your logical units of work so
that different logical units of work in different tasks do not require the
same database records

Maintaining database integrity in a task logging environment

PDM DML Programming Guide 45

Program recovery
A failure can occur requiring you to recover your application program.
These failures can be caused by:

♦ Operator cancels
♦ Application program failures
♦ Hardware failure
♦ Power failure

If the PDM terminates due to one of these failures when task logging is
active, your DBA should warm start the PDM (using the same Task Log
File) with the same CSIPARM file that was in use at the time of the
failure. This provides the same PDM name and same user schema and
environment description. When the warm start is complete, the PDM
opens each file to its most recent committed open mode, and resets each
task to its most recent commit point before the failure. This allows for all
programs to continue from the failure point.

In a task logging environment, if your program fails in the middle of a
logical unit of work, you can restart your program at the most recent
commit point if you have been marking recovery points (commit points)
with the COMIT command and if your SINON access was
RESTART=NORMAL. If your program fails and you have not been
issuing COMIT commands, you must start processing from the
beginning.

In a task logging environment with RESTART=NORMAL, check the
status parameter of the SINON command for RSTR when you restart
your program. If your program has not issued a COMIT command, the
SINON command returns a **** status. If it has issued a COMIT, the
PDM returns the RSTR status. This status code indicates that the
database has been restarted from the Task Log File. You can begin
processing from the most recent commit point taken before the failure.
You can retrieve data you saved at the most recent COMIT by issuing a
RESET. (The PDM identifies the commit point for you.) This data can
include working storage for the program and information required to
reposition input files. See “Programming examples” on page 273 for a
coding example.

Commit points are especially useful for long jobs that update the
database. If task logging is active and you have a long-running task that
does not issue COMITs, many other tasks may have to wait until your
task signs off because records required by those other tasks are held by
your task. Your DBA can specify how long a task waits for held records
in the user environment description.

Chapter 1 An overview of DML concepts

46 P26-4340-64

Using system control DML commands
The database administration personnel can use some of the DML
commands to help control operations of the Physical Data Manager
(PDM). These selected commands enable the DBA to write specialty
programs or exit routines that perform 5 main functions:

1. Increase the PDM’s efficiency and prevent locked files by writing one
special application (or an exit) to open the database files for use by
all other application programs. Another special application can close
them at the end of the processing day. Applications can, of course,
issue their own opens and closes but it is not recommended. Files
can also be opened by using options of the environment description
relationship on the Directory or the CICS Connector. See “Opening
and closing files” on page 19 and “Opening and closing files with
PDM DML” on page 48.

2. Aid in System Log control: volume switching, quieting the database
for log synchronization, and writing your own information to the log.
See “Using system logging commands” on page 49.

3. Monitor PDM performance and use of resources by periodically
writing statistics to the Statistics file with RSTAT. See “Generating
statistics” on page 51.

4. Monitor the RSTAT statistics plus Directory and PDM information by
retrieving them with SHOWX into a special program for display or
print. See “Monitoring resources” on page 53.

5. Terminate a central PDM not attached under a TP monitor with
ENDTO (using this command is the same as using the PDM
Termination utility). See “Terminating the PDM with PDM DML” on
page 58.

All special programs you write for the PDM must contain the SINON and
SINOF commands. The programs should contain a COMIT or RESET
command to end each logical unit of work. This preserves database
integrity and prevents locked records and files.

Using system control DML commands

PDM DML Programming Guide 47

Opening and closing files with PDM DML
In a multitask operating mode, you can use the OPENX and CLOSX
commands to open and close most files when you initialize and terminate
the PDM. If you write a special application to open the files at the
beginning of the day and close them at the end of the day, each individual
application does not need to open and close them separately. However,
in a single-task operating mode, individual applications can issue their
opens and closes.

With the OPENX command, you can open your primary and related files,
either one at a time or as a group. The PDM opens the files you specify in
the realm parameter of the OPENX. OPENX cannot open index files,
Directory files, log files, or the Statistics File, which are all handled by the
PDM.

You also use the realm parameter to specify whether you want the files
opened for shared update, exclusive update, or no update, that is,
read-only:

♦ If you specify shared update (SUPD), all applications can update the
file, not just the one that opened it.

♦ If you specify intent to update (IUPD) or READ, no applications can
update the file; they can only read it. Specifying IUPD allows any task
to reopen with an update mode later; READ does not.

♦ If you specify exclusive update (EUPD), only the application that
opens the file can update it. However, other applications can read it.
Therefore EUPD, if used by this special task, is in effect the same as
opening for READ. This special task normally uses SUPD for most
files, and READ for any static files.

With the CLOSX command, you can unlock and close primary or related
files, either one at a time or as a group. The PDM closes the files you
specify in the realm parameter.

See “Opening and closing files” on page 19 for more information about
opening and closing files.

Chapter 1 An overview of DML concepts

48 P26-4340-64

Using system logging commands
System logging, like task logging, is a method of tracking database
updates.

While system logging is optional, we recommend you use it to help
ensure database integrity.

If you use system logging, you can recover the entire system in the
following situations:

♦ If you are not using the Task Log File or if it is unreadable

♦ If an updated database file is unreadable and must be rebuilt

Using system control DML commands

PDM DML Programming Guide 49

Use the following commands in special applications to control some
system logging activities: ENDLG, MARKL, QUIET, QMARK, and
WRITD. However, you cannot use QUIET, QMARK, and WRITD if you
are also using task logging.

♦ The ENDLG command terminates and initializes the logical System
Log File(s). If you are not using task logging, ENDLG quiesces the
database like the QUIET command. That is, the PDM waits for all
commands to complete and keeps new commands from starting.
Then it writes all updated buffers to the database. When it has
written all the buffers, it resumes executing other commands. If you
are using task logging, the PDM does not quiesce the database. It
only writes the database buffers.

♦ The MARKL command writes any information you want to the
System Log File(s). For example, if you have quiesced the system
with the QUIET command (only in a non-task logging environment),
you could use MARKL to write your own recovery point information.
You can use this command even if task logging is active.

♦ The QUIET command synchronizes the system. QUIET quiesces
the entire system, flushes the I/O and log buffers (physically writes all
pending updates to the database), writes a QUIET record to the
System Log File(s), and frees all held resources. At this point, the
System Log File(s) and the database files are synchronized to a
common point for recovery. You cannot use QUIET with task
logging.

♦ The QMARK command is a combination of QUIET and MARKL
commands. QMARK produces only one record on the System Log
File(s) rather than the two that would be produced if you issued
QUIET and MARKL. You cannot use QMARK with task logging.

♦ The WRITD command writes an entire logical record into a file that
your program opened for exclusive update. WRITD is primarily for
writing recovery programs. When you write the recovery program,
you use the System Log File as input. From it, you obtain the
address and the data area parameters. Be careful using WRITD
because the PDM checks only to see if the file you are writing to
exists. You cannot use WRITD with task logging.

For more information on system logging, refer to the SUPRA Server PDM
and Directory Administration Guide (OS/390 & VSE), P26-2250, and
SUPRA Server PDM Logging and Recovery (OS/390 & VSE), P26-2223.

Chapter 1 An overview of DML concepts

50 P26-4340-64

Generating statistics
The PDM generates statistics when the Statistics File is defined in the
Directory and when statistics gathering has been turned on. These
statistics describe some internal activities of the PDM.

The Statistics File opens when the PDM initializes and closes when the
PDM terminates. The PDM automatically writes initial and final statistics
to the Statistics File at initialization and termination if the file is not a
dummy file.

You may also write the currently accumulated statistics to the Statistics
File at any time during processing. You can clear the accumulators at any
time. When you want statistics written to the Statistics File, you issue an
RSTAT command from a special program you write for this purpose. You
usually issue the command while running a lone application containing a
series of reads or writes that you want to track, or at heavy database
usage times.

You can use statistics during production for tuning to monitor
performance and to use resources efficiently. Statistics are helpful for
establishing optimum blocking factors, the maximum held records value,
optimum buffering, and task timing.

To report the Statistics File information, use the Execution Statistics
utility. For information on this utility, refer to the SUPRA Server PDM DBA
Utilities User’s Guide (OS/390 & VSE), P26-6260. To relate the statistics
gathered with RSTAT to those printed on the Execution Statistics utility
report, use the statistics identifiers listed in the tables at the end of
“RSTAT” on page 203.

Instead of writing to the file with RSTAT, you can see accumulated
statistics online in two ways:

♦ By writing a special application with SHOWX commands (see
“Monitoring resources” on page 53).

♦ By selecting Interactive Services, which uses SHOWX commands.

As statistics features are enhanced, the RSTAT command may change
in format or syntax. Therefore, use this command only in special
routines that you can modify easily.

Using system control DML commands

PDM DML Programming Guide 51

With RSTAT, you can obtain accumulated statistics on the following
internal PDM activities:

♦ Task sign-ons and sign-offs. The total number of tasks that signed
on and the highest number of concurrent tasks signed-on since the
accumulators were last initialized. (The task identifiers S2.01 and
S2.02 in the tables at the end of “RSTAT” on page 203.)

♦ I/O buffer allocations. The physical and logical reads and writes
performed during request processing for each file in the PDM. This
measures the absolute I/O activity, as well as the efficiency of your
buffer assignments and the buffer allocations algorithm in the PDM.
(The statistics identifiers F1.01 to F1.05 and F3.01 to F3.03 in the
tables at the end of “RSTAT” on page 203.)

♦ Record contention. The total number of held records (whether
automatically held, explicitly reserved, or updated), the highest
number of held records at any time, the total number of times a
record desired by a task was held by other tasks, and the total
number of times a held status is returned for the same record. (The
statistics identifiers S3.01 to S3.04 in the tables at the end of
“RSTAT” on page 203.)

♦ I/O and waits for logging. The total number of records written to
the System Log File and Task Log File, the total number of times the
PDM waited for log I/O to complete before writing the next log record,
and the total number of times the PDM waited for log I/O to complete
before writing a data record. The Execution Statistics utility calculates
these statistics from separate statistics for each log file and data file.
(The statistics identifiers F1.01 to F1.05 and F3.01 to F3.03 in the
tables at the end of “RSTAT” on page 203.)

♦ Function or command activity. The total number of each type of
command processed, the level of overlap or concurrency of the
command processing by the PDM, the elapsed processing time for all
commands, and the average processing time for a command. (The
statistics identifiers S4.01 to S4.04, S6.01, S7.01, and S7.02 in the
tables at the end of “RSTAT” on page 203.)

♦ Interface activity. The total number of commands issued to the
PDM, the highest number of commands running concurrently within
the PDM, the total elapsed time on all commands issued to the PDM
and the maximum elapsed time to process a single command for all
applications. (The statistics identifiers S5.01 to S5.07 in the tables at
the end of “RSTAT” on page 203.)

Chapter 1 An overview of DML concepts

52 P26-4340-64

Monitoring resources
For monitoring (to obtain RSTAT statistics, Directory information, and
internal PDM information), you can use the PDM Interactive Services or
code SHOWX in special application programs. You code the SHOWX
command with different options depending on the type of information you
want.

The amount of information that SHOWX can retrieve will vary depending
on your option-list parameter. Therefore, in a program, it is often not
practical to allocate enough data area to receive all the information with
one retrieval. You can provide a smaller data area, and reissue the same
SHOWX several times, letting the PDM control retrievals through the
qualifier. This is somewhat similar to FINDX or RDNXT control.
However, the data area must be large enough for one full set as defined
in the data list, or a complete multiple.

Each time the PDM returns information, the PDM indicates in the qualifier
whether it has returned all or a part of the data. If you want the
remainder, you repeat the SHOWX until the PDM indicates it has
returned all of it and has released the context memory associated with
retrieval. If you do not want it, you reset the qualifier to tell the PDM that
you are finished so it can free the memory.

To code a SHOWX, you provide all the parameters in the order shown in
the following example (complete syntax and options are in “SHOWX” on
page 221). You initialize the following input parameters: command,
option-list, qualifier, and data-list. The example shows the option list and
data list you could use to retrieve some PDM information, including some
DML command statistics:
command : SHOWX

status : output field

option-list: DBM=*,END.

qualifier : BEGN0064oooocccc

 BEGN = First SHOWX in a series

 0064 = data area length of 64 bytes
 (binary fullword)

 0000 = blanks

 cccc = blanks

data-list : DBMXNAME,DBMXTYPE,DBMXRSTZ,DBMXDMLR,DBMXDMLW,

 DBMXDMLA,DBMXTHRC,END.

data-area : character and binary output fields mapped by
 data-list

endp : END.

Using system control DML commands

PDM DML Programming Guide 53

Option-list and data-list. The DBM in the example option-list parameter
above means DBM-group. The DBMX... items in the data-list parameter
mean DBM-group items. You request SHOWX information by using
option list and data list keywords like these. You define a group with the
option list (see the table of options listings under “SHOWX for monitoring
resources,” beginning on page 224). You choose items for the data list
from that group (see the table of SHOWX command keywords at the end
of “SHOWX for monitoring resources,” beginning on page 224). In each
SHOWX command, you can code data list items from only one group; the
group defined by the option list.

The * in the DBM=* option signifies the executing PDM. The
DBMXNAME item requests name, and DBMXTYPE requests whether
single or multitask. DBMXRSTZ requests the time that accumulators
were last cleared; DBMXDMLA requests the number of ADD and DEL
commands; and so on.

Qualifier. The qualifier has four fields as shown. The BEGN in the first
field of qualifier informs the PDM that this is the first iteration of this
SHOWX. In the second field, you place the binary length of the data area
you are assigning for output. You blank the third field, which will receive
the actual length of returned output data. You also blank the fourth field,
which will receive the PDM’s pointer to a context area it creates for your
SHOWX.

Data-area. The data list maps the data area. The program’s definition of
the data area fields must match in lengths, formats, and characteristics to
the data items that are requested. Consult the table of SHOWX
command keywords at the end of “SHOWX for monitoring resources,”
beginning on page 224 for these specifications and to calculate the value
you need in the length-in field of qualifier.

In this example, the data area provided is 64 bytes. Other SHOWX
requests might need more or less. The minimum area needed for this
example would be as follows:
DBMXNAME 8 bytes (according

DBMXTYPE 2 to table

DBMXRSTZ 8 of SHOWX

other 4 items, 4 bytes each 16 commands)

 34

plus END. 4

 minimum 38 bytes length

Chapter 1 An overview of DML concepts

54 P26-4340-64

When the example command completes successfully, the PDM updates
your status, qualifier, and data-area fields:
command : SHOWX

status : ****

option-list: DBM=*,END.

qualifier : NEXT00640038cccc

 NEXT = PDM will try for more information if
 the command is repeated with entire
 qualifier as-is

 0064 = data area length of 64 bytes
 (unchanged)

 0038 = returned output data length of 38
 bytes

 cccc = returned PDM context pointer (do not
 modify)

data-list : DBMXNAME,DBMXTYPE,DBMXRSTZ,DBMXDMLR,DBMXDMLW,
 DBMXDMLA,DBMXTHRC,END.

data-area : |CCDCDDCC|DE|19150421|0018|000E|000E|000B|CDC4|
Hexa-
|39536442|43|910F121F|0038|0038|002E|00C2|554B| decimal
|CINCOMDB|MT|::::::::|::::|::::|::::|::::|END.| Character

 (The colon represents packed decimal and binary data.
 The bars are for documentation only. There are no
 separators of fields in the actual returned data.)

endp : END.

The returned data-area information in the example is interpreted as
follows:
For the multitask PDM named CINCOMDB,

statistics counters were most recently reset:

 on April 15, 1991 (day # 105)

 at 14:22:11 hours.

Since the most recent reset, there have been:

 5000 DML reads

 1000 DML writes

 750 DML adds/deletes

 3250 total held records

In this example, you received all the SHOWX data with one SHOWX
command. Therefore, you should now repeat the SHOWX or change the
first field of your qualifier to ENDS, leaving cccc undisturbed, and repeat
the SHOWX. Either method releases the PDM context memory so that it
is available for other commands.

Using system control DML commands

PDM DML Programming Guide 55

In the next example, using the same data area length of 64, you do not
receive all the data with one iteration of the SHOWX. This example
illustrates the information you would provide to retrieve the logical and
physical I/O statistics for each file in the active environment description.
command : SHOWX

status :

option-list: FILE=ALL,END.

qualifier : BEGN0064oooocccc

 BEGN = First SHOWX in a series

 0064 = data area length of 64 bytes (binary
 fullword)

 oooo = blanks

 cccc = blanks

data-list : FILENAME,FILEBPOL,FILELRED,FILELWRT,FILEIHIT,
 FILEMLTW,FILEPRED,FILEPWRT,FILEFWRT,END.

data-area : character and binary output fields mapped by
 data-list

endp : END.

Since the option list defines the FILE group, the data list can contain only
those names that begin with FILE. There are nine data list items, each
requiring 4 bytes, plus 4 bytes for END., so 40 bytes will be returned.
Since the data area is 64 bytes, only one file’s data can fit. In this
situation, the PDM returns the statistics for only one file with each repeat
of the SHOWX.

When the first iteration completes successfully, the PDM updates your
status, qualifier, and data-area fields:
command : SHOWX

status : ****

option-list: FILE=ALL,END.

qualifier : NEXT00640040cccc

 NEXT = PDM will try for more information if
 the command is repeated with entire
 qualifier as-is

 0064 = data area length of 64 bytes

 0040 = returned output data length of 40
 bytes

 cccc = returned PDM context identifier (do
 not modify)

data-list : FILENAME,FILEBPOL,FILELRED,FILELWRT,FILEIHIT,
 FILEMLTW,FILEPRED,FILEPWRT,FILEFWRT,END.

data-area : |CCDF|CDFF|000F|0002|000C|000C|000F|0009|0006|CDC4|
 6931|2701|0014|001C|0008|0008|000A|0006|0004|554B|
|FIL1|BP01|::::|::::|::::|::::|::::|::::|::::|END.|

endp : END.

Chapter 1 An overview of DML concepts

56 P26-4340-64

The returned data area information from this second example is
interpreted as follows:
For file FIL1, using BP01, the accumulated statistics since the
most recent clearing are:

 500 logical reads

 300 logical writes

 200 reads which found the block already in memory

 200 writes to an already updated block

 250 physical reads

 150 physical writes

 100 forced writes in order to read

In this example, the PDM returned data for only the first file. The data
area does not have enough room for more than one entry.

You can keep repeating the SHOWX without modifying any parameters,
but checking the qualifier after each execution. Each time the PDM
returns data to you, it updates the first field of the qualifier to NEXT.
When the PDM has returned all your data, the PDM changes the
qualifier’s first field to END. That indicates the data area contains no
more data, and that the PDM has released the context memory. Then
you do not need to issue any more SHOWX commands.

If at any iteration you do not want the data for the rest of the files, you can
change the first field of your qualifier to ENDS, leaving cccc undisturbed,
and repeat the SHOWX one more time. This releases the context
memory.

Never change the last field of the qualifier, the context identifier, except to
begin a new SHOWX after freeing the context of a previous SHOWX.

Using system control DML commands

PDM DML Programming Guide 57

Terminating the PDM with PDM DML
Termination of the PDM can be controlled or uncontrolled. Uncontrolled
terminations result from an abend in the system, a hardware failure, and
so on. Controlled terminations occur when you terminate the PDM
intentionally.

If the PDM is attached under CICS, you terminate it with the
DISCONNECT operator command. For more information, refer to the
SUPRA Server PDM CICS Connector Systems Programming Guide
(OS/390 & VSE), P26-7452.

If the PDM is operating in central mode, you can write a special program
to issue the ENDTO command or execute the PDM Termination utility.
They both perform the same activities and offer the same options. For
information on the utility, refer to the SUPRA Server PDM DBA Utilities
User’s Guide (OS/390 & VSE), P26-6260.

A controlled termination can be forced or unforced, meaning how to
handle still-active tasks. It depends on how you code the FORCE
parameter of the ENDTO command or the PDM Termination utility.

If the PDM is attached under CICS, the PDM terminates if the TP monitor
terminates.

Chapter 1 An overview of DML concepts

58 P26-4340-64

2
CALL statements and data lists

Access to SUPRA Server databases, when using PDML (Physical Data
Manipulation Language) instead of RDML, is through an interface named
DATBAS. You link this interface module (DATBASC for CICS programs)
with your compiled application program. You make requests to the
database by coding CALL statements to DATBAS.

Data list processing is the transfer of data between the database record
and the program-supplied data area, using the data list parameter as a
“map” to the data area.

You will find information about these two subjects in this chapter.

PDM DML Programming Guide 59

CALL statements
CALL statements consist of DML commands and parameters. These
parameters name variables defined in your program. The parameters
are positional; that is, they must appear in the order indicated in each
command description. The following examples show the format of a
CALL statement in various languages:

♦ In COBOL:
CALL 'DATBAS' USING 'READM', STATUS, 'CUST', CONTROL-KEY,
DATA-LIST, DATA-AREA, 'END.'.

 or
MOVE 'CUST' TO FILE

MOVE 'READM' TO FUNCTION

MOVE 'END.' TO ENDP

CALL 'DATBAS' USING FUNCTION, STATUS, FILE, CONTROL-KEY,
DATA-LIST, DATA-AREA, ENDP.

♦ In FORTRAN:
CALL DATBAS(FUNCTION, STATUS, FILE, CONTROL-KEY, DATA-LIST,
DATA-AREA, ENDP)

♦ In BASIC:
CALL DATBAS (FUNCTION, STATUS, FILE, CONTROL-KEY, DATA-LIST,
DATA-AREA, ENDP)

♦ In PASCAL (ensure that the procedure definition is declared as
FORTRAN):
DATBAS (FUNCTION, STATUS, FILE, CONTROL-KEY, DATA-LIST,
DATA-AREA, ENDP)

Chapter 2 CALL statements and data lists

60 P26-4340-64

In the READM example, this is what the parameters mean:

DATBAS The name of the interface between your program and
the PDM. You link the DATBAS interface with each
program.

READM The 5-character name of the DML command you want
to execute. You could also code the name of a field
into which you move the DML command name before
calling DATBAS.

STATUS The name of a 4-character area in your program into
which the PDM returns a completion status code. This
code indicates the success of the operation or the
cause of its failure.

FILE The name of a 4-character field into which the program
moves the required file name before calling DATBAS.
You could also code the 4-character name of the file
you want to process.

CONTROL-KEY The name of a variable-length area in your program
that contains the control key value of the primary
record you want to read, or the controlling primary
record of a related record you want to read.

DATA-LIST The name of a variable-length area in your program
that contains the names of the data items requested
from each record. The data list serves as a map of the
data area. You must always delimit a data list with the
keyword END.

DATA-AREA The name of a variable-length area in your program
which will contain the data items named in the data list.

ENDP The 4-character delimiter terminating the parameter
list, whose value is END (or RLSE for some
commands) to indicate the end of the parameter list.

CALL statements

PDM DML Programming Guide 61

Data list parameter keywords
The data list tells the PDM what data items to place in the data area (for
reads) or what is already in the data area (for writes and adds). The data
list and data area must match, or results are unpredictable.

Normally you code the data list as the Directory physical field names of
the data items you want to process. However, you can use some
keywords in your data list, or as your entire data list, to perform special
functions. A data list must always end with “END.” These keywords are:
NONE, **DATA**, **REST**, **BIND**, *FILL=nn, **CODE**,
*CODE=xx, and *COMMON*. The *COMMON* keyword retains
compatibility for existing TOTAL or TIS applications.

NONE Passes no data items from the record to the data area. Use **NONE** if
you want to read and perform a count of records but receive no data.
You must provide a data area parameter although it is not used. You can
use this keyword for either primary or related files. To use **NONE**,
code your data list as follows:
NONE,END.

or
NONEEND.

When processing add or write commands, if **NONE** appears ahead of
the required data list, it is ignored.

DATA Requests the PDM to use all data items in the record. For a read
command, moves the entire data record to the data area. For update
commands, replaces the entire data record (except the root and
linkpaths) with the contents of the data area. For add commands,
constructs the entire data record from the contents of the data area.
(Note that before an add begins, the primary ROOT and primary and
related linkpaths are automatically initialized.) You can use this keyword
for either primary or related files. To use **DATA**, code your data list as
follows:
DATA,END.

or
DATAEND.

Chapter 2 CALL statements and data lists

62 P26-4340-64

REST This is a special keyword mainly used for user-written recovery programs.
For a read command, moves the entire data record to the data area. For
update commands, replaces the entire data record, including the
linkpaths and the root, with the contents of the data area. For add
commands, constructs the entire data record, including the linkpaths and
the root, from the contents of the data area. You can use this for either
primary or related files. To use **REST**, code your data list as follows:
REST,END.

or
RESTEND.

Use such a list with care, as it can jeopardize database integrity.

BIND Resolves the data list by constructing information in memory to eliminate
a table lookup each time the data list is used. SUPRA Server
automatically binds all data lists by using the entire data list as the key
into the internal data list table. If used, **BIND** must be the first word in
the data list. Use or omit commas consistently between items in the list
as usual:
BIND,dataitem1,dataitem2,...dataitemn,END.

or
BINDdataitem1dataitem2,...dataitemnEND.

On the first execution of the command with this list, the PDM changes
BIND to *BNDxxxx, where xxxx is an internal binary identifier used as
a key into the internal data list table.

You can use this keyword for either primary or related files. You can also
use any of the following keywords along with **BIND**.

Data list parameter keywords

PDM DML Programming Guide 63

*FILL=nn Skips the specified number of bytes in the data area during data transfer.
Multiple usage in the same data list is allowed. You can use this keyword
for either primary or related files. You can use values of 00-99 for nn.

You initialize the data area to spaces or any values you want before using
a data list with *FILL=nn keyword(s). You might use *FILL=nn to
preformat a data area so that you can print directly from it after retrieving
a record. For example, to generate a line of print that looks like:
CODE=02 KEY=00001 KEY=00002

you would first initialize the data area to:
CODE= KEY= KEY=

You would then code the data list as follows:
*FILL=05,rrrrCODE,*FILL=06,rrrrKY01,*FILL=06,rrrrKY02,END.

The PDM skips the first 5 bytes, which you have initialized to CODE=,
returns the rrrrCODE value into the next 2 bytes, skips the next six bytes,
and so on, resulting in the line you wanted.

When processing add or write commands, do not use *FILL=nn unless
there are also data items in the data list.

CODE This keyword is for coded related files only, to process only certain record
codes. For a read command, it returns the record code value in the first 2
bytes of the data area. For an update or add command, it gets the record
code from the first 2 bytes of the data area. This keyword, if used, must
be the first element in the data list (possibly **BIND** is first). This
keyword is a prerequisite for using the *CODE=xx keyword.

*CODE=xx This keyword is for coded related files only, to process only certain record
codes. For each occurrence, it identifies which record code the following
sub-data list refers to. This keyword must not be the first item in the data
list; it must follow the **CODE** keyword or another *CODE=xx. It must
not be the last item in the list; at least one data item must follow it.

On most read commands, the PDM merely skips any records with record
codes not identified in the data list. However, if the read command is a
READD, the PDM returns an error status if the code is not identified. On
a write or add command, the PDM performs the request only if the record
in the data area has one of the record codes identified in the data list.
Otherwise the PDM returns an error status. Use *CODE=xx as follows:
CODE,*CODE=xx,dataitem1,*CODE=xx,dataitem1,dataitem2,END.

Chapter 2 CALL statements and data lists

64 P26-4340-64

The following examples further describe the action the PDM takes on the
various types of read, and on adds or updates. All examples refer to the
following data list:
CODE,*CODE=01,RECSelm1,*CODE=02,RECSelm1,RECSkey1

1. When issuing a READD command (read direct), the PDM uses the
RRN in the READD’s reference parameter to locate the record to be
read. Then, the PDM fills the data area with different information
depending on the record code.

 According to the example data list, if the RRN points to a record
whose record code is 02, the data area contains:

 02xy00001

 If the RRN points to a record whose record code is 01, the data area
contains:

 01xy

 However, if the READD RRN points to a record whose record code is
03, the PDM returns an error status code.

2. When performing a series of reads using FINDX, RDNXT, READR,
or READV for a coded file, using the above example data list, the
PDM returns information as described below to the data area and
status.

 Notice that RRN 68 and 70 have a record code of 03, but record
code 03 is not specified in the example data list. When processing a
FINDX, RDNXT, READV, or READR, the PDM simply skips that
record and processes the next record in the chain. You do not
receive an error status as you would on a READD (see #1).

3. When performing an ADDVA, ADDVB, ADDVC, ADDVR or WRITV
with the example coded data list, the PDM processes the request
only if the data area record code is in the data list. The first 2 bytes of
the data area determine which portion of the data list maps the
remainder of data in the data area (*CODE=01 or *CODE=02). If
another record code is in the data area, the PDM returns an error
status.

Data list parameter keywords

PDM DML Programming Guide 65

COMMON This keyword is a compatibility form of **CODE**, to make the data list a
coded data list. Two formats are supported for existing TOTAL and TIS
1.x applications:

The following rules apply when coding a *COMMON* data list:

♦ Use the *COMMON* keyword for compatibility only. For new
applications, use **CODE** (or use the RDML language for the
application).

♦ Unlike **CODE**, *COMMON* must be followed by at least one data
item before a *CODE=xx item.

♦ A data list should follow each *CODE=xx, entry. If you do have data
items common to more than one record code, name them in the
COMMON base data list or in each *CODE=xx sublist, as
appropriate.

♦ Do not name the record code item in any coded data list unless you
also name it as the first item in the base data list.

♦ When writing or adding a record (using the *COMMON* keyword),
include the record code as the first data item in the base data list.
This allows the PDM to determine which of the coded data lists maps
the data area. If you omit the record code or include it somewhere
other than at the beginning of the base data list, results are
unpredictable.

Chapter 2 CALL statements and data lists

66 P26-4340-64

3
Command syntax

This chapter contains syntax descriptions for the PDM DML commands.
The commands are presented alphabetically for easy reference. DML
command parameters are positional and must appear in the order
indicated in the format box. The parameter descriptions explain the
required and optional parts of the format, default values, options, and
considerations. The General considerations explain any special
considerations for using the command.

Each DML command returns a status code indicating the successful
completion of the operation or the nature of the failure. Check the status
code after each DML command, and take corrective action.

PDM DML Programming Guide 67

ADD-M
The ADD-M (Add Primary) command adds a record to a primary file.

ADD-M,status,file,control-key,data-list,data-area,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field
Considerations

♦ If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status codes:
FULL If the file is a KSDS file, you can get a FULL status when

trying to add one record and a **** status on the next add.
This depends on where in the file you are trying to add the
record and how full the file is. Thus, FULL on a KSDS file
may mean only that you cannot add a particular record.

DUPM Returned when the file contains a record whose key equals
the control key of the record you are trying to add.

HELD When accessing a database record currently being held by
another task, the PDM waits until a user-defined time-out
counter expires before it reexamines the status of the lock
request. If the record is still HELD, the PDM returns the
HELD status to the application. The application may elect to
terminate the task or reissue the command. If you choose
recycle logic for HELD statuses, you should implement an
upper limit to the mechanism in the program logic.

EMBR As with the HELD status, the PDM may return EMBR when
another task is using the database record. Distinguishing the
EMBR from the HELD status is the occurrence of a deadly
embrace. Deadly embrace occurs when two tasks, already
owners of a resource (database record), attempt to gather
each other’s resources. To handle an EMBR status, restart
the logical unit of work. Alternatively, you can introduce a
retry mechanism with an upper limit retry count in your
program logic.

Chapter 3 Command syntax

68 P26-4340-64

file

Description Required. Identifies the primary file to be acted upon. You can define a
field containing the name or you can code the actual file name as a literal
in the CALL statement.

Format 4 alphanumeric characters; first character must be alphabetic

Consideration The file must be a primary file, or the PDM returns a fatal status code
(FNTF).

control-key

Description Required. Points to a field containing the key of the primary record to be
added. The PDM uses this key to determine whether a record with the
same control key already exists.

Format Variable length as defined on the Directory

Consideration During the command processing, if the control-key parameter does not
match the corresponding field in your data area, a status code informs
you of the failure. To avoid this, you should use the control-key field
name in the data area for this parameter, rather than define a separate
field.

ADD-M

PDM DML Programming Guide 69

data-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory.

Format dataitem1,dataitem2,...dataitemn,END.

Considerations

♦ The commas between the entries are optional and only serve as
separators; be consistent whether you use them or not.

♦ The data list can include the names of data items and control keys.
Do not name linkpaths or the root field. Do not list any name twice.
If a name is not accepted, the PDM returns an error status code.

♦ You can list the data names in any order. They are processed in the
order listed, not in the order defined on the Directory.

♦ VSE When using a cross-address space central PDM in VSE/AF with
XPCC=YES, the data area mapped by this data-list parameter is
limited by the CSIPARM MAXIO value. This governs DML having no
length parameter. Refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250, for CSIPARM
information.

♦ Data items omitted from the data list and data area are filled with
blanks in the added record.

Chapter 3 Command syntax

70 P26-4340-64

data-area

Description Required. Points to a field containing the data that ADD-M writes on the
primary file.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) named in the
data list.

Considerations
♦ The data area must be large enough to hold values for all data items

named in the data list.

♦ The data area and the data list have corresponding fields. The data
list holds names, and the data area holds a value for each of those
names. You must include the control key name in the data list and
the control key value in the data area.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

General considerations
♦ If the value of the control-key parameter does not match the value of

the control key in the data area, the PDM returns an error status
code.

♦ Do not execute ADD-M commands between consecutive serial
functions, as this can result in records being skipped or read multiple
times in the serial scan.

♦ When you add this new record, the PDM maintains all populated
secondary keys in the specified data file accordingly.

ADD-M

PDM DML Programming Guide 71

ADDVA
The ADDVA (Add Related After) command inserts the new record after
the record whose RRN is in the reference parameter. This placement
occurs only on the linkpath specified by the linkpath parameter. On all
other linkpaths defined for this record, the PDM adds the record to the
end of the respective chains.

ADDVA,status,file,reference,linkpath,control-key,data-list, data-area,end

status
Description Required. Points to a field into which the PDM places a status code

indicating the result of the command.
Format 4-byte field
Considerations

♦ If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status codes:
FULL The PDM returns this status code when no more records can

be added to a file.
MRNF The specified control-key parameter value or a linkpath key

value does not exist in the respective primary file.
HELD When accessing a database record currently being held by

another task, the PDM waits until a user-defined time-out
counter expires before it reexamines the status of the lock
request. If the record is still HELD, the PDM returns the
HELD status to the application. The application may elect to
terminate the task or reissue the command. If you choose
recycle logic for HELD statuses, you should implement an
upper limit to the mechanism in the program logic.

EMBR As with the HELD status, the PDM may return EMBR when
another task is using the database record. Distinguishing the
EMBR from the HELD status is the occurrence of a deadly
embrace. Deadly embrace occurs when two tasks, already
owners of a resource (database record), attempt to gather
each other’s resources. To handle an EMBR status, restart
the logical unit of work. Alternatively, you can introduce a
retry mechanism with an upper limit retry count in your
program logic.

Chapter 3 Command syntax

72 P26-4340-64

file

Description Required. Identifies the related file to be acted upon. You can define a
field containing the name or you can use the actual file name as a literal
in the CALL statement.

Format 4 alphanumeric characters; first character must be alphabetic

Consideration The file must be a related file, or the PDM returns a fatal status code
(FNTF).

reference

Description Required. Points to a field identifying the RRN of the record after which
to add the new record in this chain.

Format 4 alphanumeric characters or a binary fullword

Options LKxx Identifies the last 4 characters of the linkpath named by
the linkpath parameter. Substitute the actual characters
for xx. The PDM adds the record to the end of the
linkpath instead of after a particular record.

rrrr Identifies the RRN of the record after which the new
record is to be added to the linkpath.

Consideration After successful execution, this parameter contains the RRN of the
record just added.

ADDVA

PDM DML Programming Guide 73

linkpath

Description Required. Points to a field containing the name of the linkpath as defined
on the Directory. This parameter indicates which related record chain the
PDM is to process.

Format ppppLKxx where pppp identifies the name of an associated primary
file, LK must appear as shown, and xx represents the
last 2 characters of the linkpath name as defined on the
Directory.

Considerations

♦ If you specify an invalid linkpath, the PDM returns an error status
code.

♦ A related file record can contain more than one linkpath, but the
linkpath parameter names only the controlling linkpath. Each linkpath
must be maintained. ADDVA holds all affected primary and related
records and updates the linkpath pointers.

control-key

Description Required. Points to a field containing the key of the record in the primary
file named in the linkpath parameter.

Format Variable length as defined on the Directory

Consideration During processing, if the control-key field does not match the
corresponding field in your data area, a status code informs you of the
failure. To avoid this, you should use the control-key field name in the
data area for this parameter, rather than define a separate field.

Chapter 3 Command syntax

74 P26-4340-64

data-list

Description Required. Points to a variable-length field containing a list of data items.
This list acts as a map of the layout of the data area. Compose this list
using data names (physical fields) defined on the Directory.

Format dataitem1,dataitem2,...dataitemn,END.

Considerations

♦ The commas between the entries are optional and only serve as
separators; be consistent whether you use them or not.

♦ The data list can include the names of data items, control keys, and
record codes. Do not name linkpaths. Do not list any name twice. If
a name is not accepted, the PDM returns an error status code.

♦ You can list the data names in any order. They are processed in the
order listed, not in the order defined on the Directory. However, for
coded records, the record code must be first in the list. If not,
unpredictable results occur. See “Data list parameter keywords” on
page 62 for coded data list construction rules.

♦ VSE When using a cross-address space central PDM in VSE/AF with
XPCC=YES, the data area mapped by this data-list parameter is
limited by the CSIPARM MAXIO value. This governs DML having no
length parameter. Refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250, for CSIPARM
information.

♦ Data items omitted from the data list and data area are filled with
blanks in the added record.

ADDVA

PDM DML Programming Guide 75

data-area

Description Required. Points to a field containing the data that ADDVA writes on the
related file.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) in the data
list.

Considerations

♦ The data area must be large enough to hold values for all data items
in the data list.

♦ The data area and the data list have corresponding fields. The data
list holds names, and the data area holds a value for each of those
names. You must include the control key name in the data list and
the control key value in the data area.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

General considerations

♦ Adding a record requires the PDM to retrieve a primary record for
each control key defined for that record or record code. Therefore,
these control keys must be present in the data list and data area.
They must be valid (they must represent records which actually exist
in the respective primary files). For coded records, the data area
must contain the data for only one record code.

♦ If the value of the control-key parameter does not match the value of
the control key in the data area, the PDM returns an error status
code.

♦ When you add this new record, the PDM maintains all populated
secondary keys in the specified data file accordingly.

Chapter 3 Command syntax

76 P26-4340-64

ADDVB
The ADDVB (Add Related Before) command adds the new record before
the record whose RRN is in the reference field. This placement occurs
only on the linkpath specified by the linkpath parameter. On all other
linkpaths defined for this record, the PDM adds the record to the end of
the respective chains.

ADDVB,status,file,reference,linkpath,control-key,data-list, data-area,end

status
Description Required. Points to a field into which the PDM places a status code

indicating the result of the command.
Format 4-byte field
Considerations

♦ If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status codes:
FULL The PDM returns this status code when no more records can

be added to a file.
MRNF The specified control-key parameter value or a linkpath key

value does not exist in the respective primary file.
HELD When accessing a database record currently being held by

another task, the PDM waits until a user-defined time-out
counter expires before it reexamines the status of the lock
request. If the record is still HELD, the PDM returns the
HELD status to the application. The application may elect to
terminate the task or reissue the command. If you choose
recycle logic for HELD statuses, you should implement an
upper limit to the mechanism in the program logic.

EMBR As with the HELD status, the PDM may return EMBR when
another task is using the database record. Distinguishing the
EMBR from the HELD status is the occurrence of a deadly
embrace. Deadly embrace occurs when two tasks, already
owners of a resource (database record), attempt to gather
each other’s resources. To handle an EMBR status, restart
the logical unit of work. Alternatively, you can introduce a
retry mechanism with an upper limit retry count in your
program logic.

ADDVB

PDM DML Programming Guide 77

file

Description Required. Identifies the related file to be acted upon. You can define a
field containing the name or you can code the actual file name as a literal
in the CALL statement.

Format 4 alphanumeric characters; first character must be alphabetic

Consideration The file must be a related file.

reference

Description Required. Points to a field identifying the RRN of the record before which
to add the new record in this chain.

Format 4 alphanumeric characters or a binary fullword

Options LKxx Identifies the last 4 characters of the linkpath named by
the linkpath parameter. Substitute the actual characters
for xx. The PDM adds the record to the very beginning
of the linkpath instead of before a particular record.

rrrr Identifies the RRN of the record before which the new
record is to be added to the linkpath.

Consideration After successful execution, this parameter contains the RRN of the
record just added.

Chapter 3 Command syntax

78 P26-4340-64

linkpath

Description Required. Points to a field containing the name of the linkpath as defined
on the Directory. This parameter indicates which related record chain is
to be processed.

Format ppppLKxx where pppp identifies the name of an associated primary
file, LK must appear as shown, and xx represents the
last 2 characters of the linkpath name as defined on the
Directory.

Considerations

♦ If you specify an invalid linkpath, the PDM returns an error status
code.

♦ A related file record can contain more than one linkpath, but the
linkpath parameter names only the controlling linkpath. Each linkpath
must be maintained. ADDVB holds all affected primary and related
records and updates the linkpath pointers.

control-key

Description Required. Points to a field containing the key of the record in the primary
file named in the linkpath parameter.

Format Variable length as defined on the Directory

Consideration During the command processing, if the control-key parameter does not
match the corresponding field in your data area, a status code informs
you of the failure. To avoid this, you should use the control-key field
name in the data area for this parameter, rather than define a separate
field.

ADDVB

PDM DML Programming Guide 79

data-list

Description Required. Points to a variable-length field containing a list of data items.
This list acts as a map of the layout of the data area. Compose this list
using data names (physical fields) defined on the Directory.

Format dataitem1,dataitem2,...dataitemn,END.

Considerations

♦ The commas between the entries are optional and only serve as
separators; be consistent whether you use them or not.

♦ The data list can include the names of data items, control keys, and
record codes. Do not name linkpaths. Do not list any name twice. If
a name is not accepted, the PDM returns an error status code.

♦ You can list the data names in any order. They are processed in the
order listed, not in the order defined on the Directory. However, for
coded records, the record code must be first in the list. If not,
unpredictable results occur. See “Data list parameter keywords” on
page 62 for coded data list construction rules.

♦ VSE When using a cross-address space central PDM in VSE/AF with
XPCC=YES, the data area mapped by this data-list parameter is
limited by the CSIPARM MAXIO value. This governs DML having no
length parameter. Refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250, for CSIPARM
information.

♦ Data items omitted from the data list and data area are filled with
blanks in the added record.

Chapter 3 Command syntax

80 P26-4340-64

data-area

Description Required. Points to a field containing the data that ADDVB writes on the
related file.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) named in the
data list.

Considerations

♦ The data area must be large enough to hold values for all data items
named in the data list.

♦ The data area and the data list have corresponding fields. The data
list holds names, and the data area holds a value for each of those
names. You must include the control key name in the data list and
the control key value in the data area.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

General considerations

♦ Adding a record requires the PDM to retrieve a primary record for
each control key defined for that record or record code. Therefore,
these control keys must be present in the data list and data area.
They must be valid (they must represent records which actually exist
in the respective primary files). For coded records, the data area
must contain the data for only one record code.

♦ If the value of the control-key parameter does not match the value of
the control key in the data area, the PDM returns an error status
code.

♦ When you add this new record, the PDM maintains all populated
secondary keys in the specified data file accordingly.

ADDVB

PDM DML Programming Guide 81

ADDVC
The ADDVC (Add Related Continue) command adds the new record to
the end of the chain on the controlling linkpath and on all other linkpaths
defined for the record.

ADDVC,status,file,reference,linkpath,control-key,data-list, data-area,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Considerations
♦ If the command fails or if the status code indicates some special

condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status codes:

FULL The PDM returns this status code when no more records can
be added to a file.

MRNF The specified control-key parameter value or a linkpath key
value does not exist in the respective primary file.

HELD When accessing a database record currently being held by
another task, the PDM waits until a user-defined time-out
counter expires before it reexamines the status of the lock
request. If the record is still HELD, the PDM returns the
HELD status to the application. The application may elect to
terminate the task or reissue the command. If you choose
recycle logic for HELD statuses, you should implement an
upper limit to the mechanism in the program logic.

EMBR As with the HELD status, the PDM may return EMBR when
another task is using the database record. Distinguishing the
EMBR from the HELD status is the occurrence of a deadly
embrace. Deadly embrace occurs when two tasks, already
owners of a resource (database record), attempt to gather
each other’s resources. To handle an EMBR status, restart
the logical unit of work. Alternatively, you can introduce a
retry mechanism with an upper limit retry count in your
program logic.

Chapter 3 Command syntax

82 P26-4340-64

file

Description Required. Identifies the related file to be acted upon. You can define a
field containing the name or you can code the actual file name as a literal
in the CALL statement.

Format 4 alphanumeric characters; first character must be alphabetic

Consideration The file must be a related file.

reference

Description Required. Points to a field into which the PDM places the RRN of the
added record.

Format 4 alphanumeric characters or a binary fullword

Consideration The content of the reference field is ignored on input with the ADDVC
function. After successful execution, the reference field contains the
RRN of the record just added.

linkpath

Description Required. Points to a field containing the name of the linkpath as defined
on the Directory. This parameter indicates which related record chain is
to be processed.

Format ppppLKxx where pppp identifies the name of an associated primary
file, LK must appear as shown, and xx represents the
last 2 characters of the linkpath name as defined on the
Directory.

Considerations

♦ If you specify an invalid linkpath, the PDM returns an error status
code.

♦ A related file record can contain more than one linkpath, but the
linkpath parameter names only the controlling linkpath. Each linkpath
must be maintained. ADDVC holds all affected primary and related
records and updates the linkpath pointers.

ADDVC

PDM DML Programming Guide 83

control-key

Description Required. Points to a field containing the key of the record in the primary
file named in the linkpath parameter.

Format Variable length as defined on the Directory

Consideration During the command processing, if the control-key parameter does not
match the corresponding field in your data area, a status code informs
you of the failure. To avoid this, you should use the control-key field
name in the data area for this parameter, rather than define a separate
field.

data-list

Description Required. Points to a variable-length field containing a list of data items.
This list acts as a map of the layout of the data area. Compose this list
using data names (physical fields) defined on the Directory.

Format dataitem1,dataitem2,...dataitemn,END.

Considerations
♦ The commas between the entries are optional and only serve as

separators; be consistent whether you use them or not.

♦ The data list can include the names of data items, control keys, and
record codes. Do not name linkpaths. Do not list any name twice. If
a name is not accepted, the PDM returns an error status code.

♦ You can list the data names in any order. They are processed in the
order listed, not in the order defined on the Directory. However, for
coded records, the record code must be first in the list. If not,
unpredictable results occur. See “Data list parameter keywords” on
page 62 for coded data list construction rules.

♦ VSE When using a cross-address space central PDM in VSE/AF with
XPCC=YES, the data area mapped by this data-list parameter is
limited by the CSIPARM MAXIO value. This governs DML having no
length parameter. Refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250, for CSIPARM
information.

♦ Data items omitted from the data list and data area are filled with
blanks in the added record.

Chapter 3 Command syntax

84 P26-4340-64

data-area

Description Required. Points to a field containing the data that ADDVC writes on the
related file.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) named in the
data list.

Considerations

♦ The data area must be large enough to hold values for all data items
named in the data list.

♦ The data area and the data list have corresponding fields. The data
list holds names, and the data area holds a value for each of those
names. You must include the control key name in the data list and
the control key value in the data area.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

General considerations

♦ Adding a record requires the PDM to retrieve a primary record for
each control key defined for that record or record code. Therefore,
these control keys must be present in the data list and data area.
They must be valid (they must represent records which actually exist
in the respective primary files). For coded records, the data area
must contain the data for only one record code.

♦ If the value of the control-key parameter does not match the value of
the control key in the data area, the PDM returns an error status
code.

♦ When you add this new record, the PDM maintains all populated
secondary keys in the specified data file accordingly.

ADDVC

PDM DML Programming Guide 85

ADDVR
The ADDVR (Add Related Replace) command is actually an update
function which allows one or more control keys, or the record code if
coded file, to be changed on an existing record. This functions similarly to
a DELVD and ADDVC without physically moving the record (the RRN
remains the same). If a control key value in the data area is different
from the value of the existing record at that RRN, ADDVR unlinks and
relinks the existing related record into the new chain(s).

ADDVR,status,file,reference,linkpath,control-key,data-list, data-area,end

status
Description Required. Points to a field into which the PDM places a status code

indicating the result of the command.
Format 4-byte field
Considerations

♦ If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status codes:
MRNF You have specified a new control key value for a linkpath,

and that value does not exist in the associated primary file.
HELD When accessing a database record currently being held by

another task, the PDM waits until a user-defined time-out
counter expires before it reexamines the status of the lock
request. If the record is still HELD, the PDM returns the
HELD status to the application. The application may elect to
terminate the task or reissue the command. If you choose
recycle logic for HELD statuses, you should implement an
upper limit to the mechanism in the program logic.

EMBR As with the HELD status, the PDM may return EMBR when
another task is using the database record. Distinguishing the
EMBR from the HELD status is the occurrence of a deadly
embrace. Deadly embrace occurs when two tasks, already
owners of a resource (database record), attempt to gather
each other’s resources. To handle an EMBR status, restart
the logical unit of work. Alternatively, you can introduce a
retry mechanism with an upper limit retry count in your
program logic.

Chapter 3 Command syntax

86 P26-4340-64

file

Description Required. Identifies the related file to be acted upon. You can define a
field containing the name or you can code the actual file name as a literal
in the CALL statement.

Format 4 alphanumeric characters; first character must be alphabetic

Consideration The file must be a related file.

reference

Description Required. Points to a field identifying the RRN of the existing record to
be compared to your data area.

Format 4 alphanumeric characters or a binary fullword

Consideration After successful completion, the RRN remains the same.

ADDVR

PDM DML Programming Guide 87

linkpath

Description Required. Points to a field containing the name of the linkpath as defined
on the Directory. This parameter indicates which related record chain is
to be processed.

Format ppppLKxx where pppp identifies the name of an associated primary
file, LK must appear as shown, and xx represents the
last 2 characters of the linkpath name as defined on the
Directory.

Considerations

♦ If you are changing the record’s code, this field must contain a
linkpath for the new coded record.

♦ If you specify an invalid linkpath, the PDM returns an error status
code.

♦ If the linkpath is in the old record and the new record, and the control
key does not change, the PDM does not disturb that chain.

♦ If the linkpath is in the old record and the new record, and the control
key changes, the PDM removes the record’s RRN from the old chain
and adds it to the end of the new chain.

♦ If the linkpath is in the old record but not in the new record, the PDM
removes the record’s RRN from the old chain and adds it to the end
of the new chain.

♦ If a linkpath other than this one is affected (a different or new control
key in the data area for other linkpaths), similar relinking occurs.

♦ ADDVR holds all affected primary and related records and updates
the linkpath pointers.

Chapter 3 Command syntax

88 P26-4340-64

control-key

Description Required. Points to a field containing the key of the record in the primary
file named by the linkpath parameter.

Format Variable length as defined on the Directory

Considerations

♦ During processing, if the control-key field does not match the
corresponding field in your data area, a status code informs you of
the failure. To avoid this, you should use the control-key field name
in the data area for this parameter, rather than define a separate
field.

♦ If you are changing the key value associated with the linkpath
parameter, this field must contain the new key value.

ADDVR

PDM DML Programming Guide 89

data-list

Description Required. Points to a variable-length field containing a list of data items.
This list acts as a map of the layout of the data area. Compose this list
using data names (physical fields) defined on the Directory.

Format dataitem1,dataitem2,...dataitemn,END.

Considerations

♦ The commas between the entries are optional and only serve as
separators; be consistent whether you use them or not.

♦ The data list can include the names of data items, control keys, and
record codes. Do not name linkpaths. Do not list any name twice. If
a name is not accepted, the PDM returns an error status code.

♦ You can list the data names in any order. They are processed in the
order listed, not in the order defined on the Directory. However, for
coded records, the record code must be first in the list. If not,
unpredictable results occur. See “Data list parameter keywords” on
page 62 for coded data list construction rules.

♦ VSE When using a cross-address space central PDM in VSE/AF with
XPCC=YES, the data area mapped by this data-list parameter is
limited by the CSIPARM MAXIO value. This governs DML having no
length parameter. Refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250, for CSIPARM
information.

♦ Whether or not you are changing the record code, data items omitted
from the data list and data area are filled with blanks in the revised
record.

♦ If you are changing the record’s code, this list must name data items
that are valid for the new code.

♦ You can update the value of any of the data items in addition to
updating control keys or record code.

Chapter 3 Command syntax

90 P26-4340-64

data-area

Description Required. Points to a field containing the data that ADDVR writes on the
related file.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items named in the data list.

Considerations

♦ The data area must be large enough to hold values for all data items
named in the data list.

♦ The data area and the data list have corresponding fields. The data
list holds names and the data area holds a value for each of those
names. You must include the control key name in the data list and
the control key value in the data area.

ADDVR

PDM DML Programming Guide 91

end

Description Required. Points to a field that delimits the parameter list.

Format END.

General considerations

♦ This is the only command you can use to change a record code or a
control-key field.

♦ If you change a record code, it could add or delete a linkpath in the
record. The PDM examines the linkpaths defined in the Directory for
the old and new record codes. Any linkpath not common to both
codes is maintained as required. Additions are made to the logical
end of the chain(s) controlled by the control key(s) in your data-area
parameter.

♦ If a related record is controlled by records in several primary files, you
must include all control keys in the data list and data area. If it is a
coded record, you include only those control keys that apply to the
record code.

♦ You can obtain the RRN for a record by issuing a read command
(e.g., READV). The reference field returned by the READV contains
the RRN of the record just read. In a multitasking environment or if
task logging is active, you must issue the read command with END.
specified as the end parameter before performing the ADDVR.

♦ If the control-key parameter value does not match the corresponding
value in the data area, the PDM returns an error status code.

♦ When you revise this record, the PDM maintains all populated
secondary keys in the specified data file accordingly.

Chapter 3 Command syntax

92 P26-4340-64

CLOSX
CLOSX (close file) logically, and if necessary physically, closes primary
and related files. Logically closing includes checking and updating each
file’s control record. Physically closing involves issuing the CLOSE
command of the host operating system.

In your environment description, there is an OPENX-OPTION. Its setting
determines the outcome of your CLOSX as follows:

♦ If OPENX-OPTION=IGNORE, the PDM does not carry out the
request. You always receive a status indicating success.

♦ If OPENX-OPTION=PROCESS, CLOSX can change the file mode,
unlock the file, and issue the operating system CLOSE command.
These effects depend on the current status lock condition and mode
of the file, and on the type of CLOSX you issue.

♦ If OPENX-OPTION=CHECK, the PDM does not carry out the
request, but the CLOSX can return an error status.

♦ If OPENX-OPTION=CHECK or OPENX-OPTION=IGNORE, you
must terminate the PDM to close any file. Your DBA is most likely to
use the CHECK or IGNORE options if you use a central operating
mode and the file/environment description relationship defines
automatic opening.

You can find which setting is in effect by using a SHOWX command with
the ENVDOPNX data item. The tables at the end of this section present
the various situations and results when the option is PROCESS or
CHECK.

CLOSX,status,realm,end

CLOSX

PDM DML Programming Guide 93

status

Description Required. Points to a field into which the PDM places a status code
indicating the overall result of the command.

Format 4-byte field

Considerations

♦ If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status codes:

CERR Close error. The tables at the end of this section present the
various file conditions possible, and whether a CLOSX
results in a CERR status.

FNAV File is not available for you to close. Issue a SHOWX to
obtain extended status codes.

♦ If you use ALL. in realm, the stat field in that parameter is not set. If
you use a file-list, the stat field for the file causing the error is set to
the same value as this status parameter unless the error is FNTF.

Chapter 3 Command syntax

94 P26-4340-64

realm

Description Required. Points to a list of the REALM= keyword and one or more
12-character entries followed by END. This determines which files to
close and in what mode.

Format END.,
,...,

ALL.
 =REALM









at2filemodestt1filemodsta
modestat

where:

ALL Closes all user files related to this environment
description. This does not include Directory files.

file Identifies the 4-character name of a primary or related
file you want to close.

mode Specifies the type of close you want. The options are:

PART Performs a logical close. This completes
pending output to the file, and unlocks the file if
currently locked. Leaves mode unchanged if
currently READ or IUPD, or changes mode to
IUPD if currently SUPD or EUPD. (This mode is
not valid for KSDS.)

COMP Performs a physical close. This completes
pending output to the file, unlocks the file if
currently locked, changes the mode to null, and
issues the operating system CLOSE command.

stat Provides an area to receive the PDM status code
indicating the result of closing an individual file. You
initialize these fields to blank. If you use ALL., this field
is not set upon completion but the command’s status
field is set.

END. Specifies the delimiter for the realm parameter.

CLOSX

PDM DML Programming Guide 95

Considerations

♦ The commas after each “filemodestat” entry are optional and only
serve as separators; be consistent whether you use them or not. Do
not use commas within an entry.

♦ CLOSX returns a CERR status if another task previously opened the
file for exclusive update (OPENX EUPD mode). Conversely, if your
task opens a file for EUPD, it is the only task allowed to close it. In
most cases, you should reopen it for sharing.

♦ KSDS cannot be partially closed. Therefore, you should not use a
“filePARTstat” entry for KSDS in a file list. You also should not use
“ALL.PARTstat” if the active environment description includes KSDS.
If you use PART, the PDM returns an error status. You are allowed
to issue a CLOSX with COMP for KSDS.

♦ Index files are not permitted in the CLOSX file list. See “Diagnosing
application DML errors” on page 36 about index files.

♦ If you code a file list, and a file name is not found, the PDM does not
set that entry’s stat field. Instead, it sets the command’s status field
to FNTF, and the function is immediately terminated. (This measure
protects memory from being over-written if the list delimiter (END.) is
missing.) To determine which file caused the error, your program
can issue a SHOWX for extended status.

♦ If the PDM processes some of the files successfully, then encounters
an error, the PDM does the following:

- If you used a file list, sets the error code in the stat field for the
file in error (unless FNTF).

- Sets the error code in the command status field.

- Reprocesses all involved files to their original state.

- Does not process the remaining files.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

Chapter 3 Command syntax

96 P26-4340-64

General considerations

♦ If any fatal errors occur on any file in the realm, the PDM restores all
files to their states that existed before executing this CLOSX. In a
task logging environment, you should issue a RESET after a CLOSX
that receives a fatal error. Issue a COMIT after a successful CLOSX
execution.

♦ Do not issue both an OPENX and a CLOSX within the same logical
unit of work.

♦ If you use task logging and your task changes a file’s mode (even if
backed out because of errors), the PDM keeps other tasks from
changing the file’s mode until your task issues a COMIT or RESET.
Any other task that tries to change the file’s mode must wait. The
wait is according to the environment description delay time for held
records (the file lock record is being held). If your task does not
issue a COMIT or RESET to free the file during this time, the other
task receives an error status code.

♦ If you use task logging, a SINOF is not sufficient to commit or reset
an OPENX or CLOSX.

♦ Index files cannot be closed directly. When you use COMP mode to
close the last primary or related file having secondary keys on a
particular index file, the index file also closes COMP. When you
close a primary or related file with PART mode, any associated index
files that were locked remain locked. To unlock the index files, you
must close all associated primary or related files with COMP mode.

CLOSX

PDM DML Programming Guide 97

♦ CLOSX processing results depend upon the following factors:

- The current open or closed state of the file.

- The current value of the lock record.

- The current file mode of the file.

- The mode you request in the realm parameter.

- The environment description PDM access mode (RDONLY or
UPDATE).

- The OPENX-OPTION in the active user environment description.
If the option is IGNORE, you receive a status of ****, but no close
processing occurs. If the option is PROCESS and any records
are reserved by another task, an error status code is returned. If
the option is PROCESS or CHECK, the CLOSX is processed as
shown in the following tables:

Chapter 3 Command syntax

98 P26-4340-64

Current file condition Resultant file condition

File
state

File
lock
record

File
mode

Command
attempted

File
state

File lock
record

File
mode

Status
code
returned

Closed * * CLOSX
(PART)

- - - ****

Open * READ - - - ****
Open * IUPD - - - ****
Open * SUPD - Unlocked IUPD ****
Open * EUPD

(S)
 - Unlocked IUPD ****

Open * EUPD
(D)

 - - - CERR

Closed * * CLOSX
(COMP)

- - null ****

Open * READ Closed - null ****
Open * IUPD Closed - null ****
Open * SUPD Closed Unlocked null ****
Open * EUPD

(S)
 Closed Unlocked null ****

Open * EUPD
(D)

 - - - CERR

Closed * * CLOSX
(PART)

- - - CERR

Open * READ - - - ****
Open * SUPD - - - CERR
Closed * * CLOSX

(COMP)
- - - ****

Open * READ - - - CERR
Open * SUPD - - - CERR

 * PDM does not check (S) Same task attempts the close
 - PDM does not change (D) Different task attempts the close

Concerning the preceding table, when the OPENX-OPTION=CHECK, the
file can be only closed or open for READ or SUPD. This is according to
the file/environment description relationship, where EUPD is not an
option.

CLOSX

PDM DML Programming Guide 99

COMIT
The COMIT command establishes a Task Level Recovery point (commit
point) for this task on the Task Log File. COMIT ends a logical unit of
work, makes permanent all update and file mode changes, releases all
records that are held or locked by the issuing task, and writes a COMIT
record. You can also pass a data area to the Task Log File with the
COMIT. If the PDM recovers the task to this COMIT, the PDM returns
this data area to your task if you issue a RESET after SINON.

COMIT,status,comit-id,length,data-area,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Consideration If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to handle
and possibly correct the situation. For a list of all status codes, refer to
the SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126.

Chapter 3 Command syntax

100 P26-4340-64

comit-id

Description Required. Points to an area containing the literal ASGN or a commit
number to be the identification of this commit point.

Format 4-byte field

Options ASGN The PDM assigns a commit number that is one higher
than the previous commit of this task, if any.

comit-number The PDM uses this 4-byte binary number. It must be at
least one higher than the previous commit ID.

Considerations

♦ Issue the first COMIT after SINON with ASGN as commit identifier.
Subsequent COMITs can continue to use ASGN, or can update this
field to a higher number before issuing the commit. If the number is
not higher, the PDM returns an error status. Using ASGN is
recommended.

♦ After successful execution, the PDM updates this field to contain the
number that was used for this commit record on the Task Log File.

COMIT

PDM DML Programming Guide 101

length

Description Required. Points to an area containing the length of the data in the
data-area parameter, or a zero.

Format Binary fullword

Options zero No user data is written with this commit record.

length value This amount of the data area is added to this commit
record in the Task Log File.

Considerations

♦ Length must be greater than or equal to zero.

♦ Since records are spread physically across Task Log blocks, there is
no theoretical limit to the size of your data area. However, you must
consider your program’s available memory and your Task Log File
capacity.

♦ VSE When using a central PDM in a cross-address space VSE/AF
SP2.1 (XPCC=YES), the maximum length is limited by the CSIPARM
MAXPACKET value. Refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250, for CSIPARM
information.

data-area

Description Required. Points to a field used as the area for any text or memory fields
you want to save and store on the Task Log File. The PDM can pass this
data back to your task if a task recovery resets to this commit point. To
obtain it, issue a RESET after getting an RSTR upon SINON.

Format Variable length

Considerations

♦ The data area should be at least as large as the length specified in
the length parameter.

♦ If the length parameter is zero, the PDM does not examine the data
nor write it to the Task Log File. However, you must code the
data-area parameter to complete this parameter list.

Chapter 3 Command syntax

102 P26-4340-64

end

Description Required. Points to a field that delimits the parameter list.

Format END.

General considerations

♦ If task logging is not active when you issue the COMIT command, the
PDM returns an error status code.

♦ Always use a COMIT after any OPENX or CLOSX to avoid file lock
problems. A SINOF is not sufficient for closing and unlocking in the
event that a warm PDM start is needed.

COMIT

PDM DML Programming Guide 103

DEL-M
The DEL-M (Delete Primary) command deletes the record identified by
the control-key parameter. In a multitask operating mode or if task
logging is active, you must hold the record to be deleted before you can
delete it. The primary record cannot be deleted if there are any related file
records linked to it.

DEL-M,status,file,control-key,data-list,data-area,end

Chapter 3 Command syntax

104 P26-4340-64

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Considerations

♦ If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status codes:

IMDL Returned if there are any related records in any linkpath
associated with the record you are trying to delete. (You
need to issue DELVD for each related record associated with
this primary record before you can issue a DEL-M
successfully.)

MRNF There is no record in the primary file with the specified
control key.

HELD When accessing a database record currently being held by
another task, the PDM waits until a user-defined time-out
counter expires before it reexamines the status of the lock
request. If the record is still HELD, the PDM returns the
HELD status to the application. The application may elect to
terminate the task or reissue the command. If you choose
recycle logic for HELD statuses, you should implement an
upper limit to the mechanism in the program logic.

EMBR As with the HELD status, the PDM may return EMBR when
another task is using the database record. Distinguishing the
EMBR from the HELD status is the occurrence of a deadly
embrace. Deadly embrace occurs when two tasks, already
owners of a resource (database record), attempt to gather
each other’s resources. To handle an EMBR status, restart
the logical unit of work. Alternatively, you can introduce a
retry mechanism with an upper limit retry count in your
program logic.

DEL-M

PDM DML Programming Guide 105

file

Description Required. Identifies the primary file to be acted upon. You can define a
field containing the name or you can code the actual file name as a literal
in the CALL statements.

Format 4 alphanumeric characters; first character must be alphabetic

Consideration The file must be a primary file.

control-key

Description Required. Points to a field containing the key of the primary record to be
processed. The PDM uses this parameter to locate the primary record.

Format Variable length as defined on the Directory

data-list

Description Required. This field is not examined; however, it must point to a valid
address.

Consideration VSE When using a cross-address space central PDM in VSE/AF with
XPCC=YES, the data area mapped by this data-list parameter is limited
by the CSIPARM MAXIO value. This governs DML having no length
parameter. Refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250, for CSIPARM
information.

data-area

Description Required. This field is not examined; however, it must point to a valid
address.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

General considerations
♦ Do not execute the DEL-M command while performing serial reads

with the RDNXT or FINDX commands as this could result in some
records being missed and others being read multiple times.

♦ When you delete this record, the PDM maintains all populated
secondary keys in the specified data file accordingly.

Chapter 3 Command syntax

106 P26-4340-64

DELVD
The DELVD (Delete Related Direct) command deletes the related record
whose RRN is in the reference parameter. This removes it from all
linkpaths, clears it of data, and indicates that it can be reused. In a
multitask operating mode or if task logging is active, you must hold the
record to be deleted before you can delete it.

DELVD,status,file,reference,linkpath,control-key,data-list,
data-area,end

DELVD

PDM DML Programming Guide 107

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Considerations

♦ If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status codes:

MRNF The specified control-key parameter value does not exist in
the respective primary file.

UCTL The specified control-key parameter value does not match
the control key in the record at RRN.

HELD When accessing a database record currently being held by
another task, the PDM waits until a user-defined time-out
counter expires before it reexamines the status of the lock
request. If the record is still HELD, the PDM returns the
HELD status to the application. The application may elect to
terminate the task or reissue the command. If you choose
recycle logic for HELD statuses, you should implement an
upper limit to the mechanism in the program logic.

EMBR As with the HELD status, the PDM may return EMBR when
another task is using the database record. Distinguishing the
EMBR from the HELD status is the occurrence of a deadly
embrace. Deadly embrace occurs when two tasks, already
owners of a resource (database record), attempt to gather
each other’s resources. To handle an EMBR status, restart
the logical unit of work. Alternatively, you can introduce a
retry mechanism with an upper limit retry count in your
program logic.

Chapter 3 Command syntax

108 P26-4340-64

file

Description Required. Identifies the related file to be acted upon. You can define a
field containing the name or you can code the actual file name as a literal
in the CALL statement.

Format 4 alphanumeric characters; first character must be alphabetic

Consideration The file must be a related file.

reference

Description Required. Points to a field identifying the RRN of the related record to be
deleted.

Format 4 alphanumeric characters or a binary fullword.

Consideration When the DELVD command completes, the PDM updates the reference
field to the RRN of the previous logical record in the chain. However, if
the deleted record was logically the first record on the chain, the
reference field is updated to LKxx instead, where xx are the actual
characters from the linkpath name.

linkpath

Description Required. Points to a field containing the name of the linkpath as defined
on the Directory. This parameter indicates which related record chain is
being processed.

Format ppppLKxx where pppp identifies the name of an associated primary
file, LK is a literal, and xx are the last 2 characters of the
linkpath name as defined on the Directory.

DELVD

PDM DML Programming Guide 109

control-key

Description Required. Points to a field containing the key of the record in the primary
file named by the linkpath parameter. Many other primary records may
need updating as a result of this DELVD command.

Format Variable length as defined on the Directory

Considerations

♦ If the control key value does not match the value in the record to be
deleted (RRN), the PDM returns an error status code.

♦ This parameter specifies the key of the controlling primary record.

data-list

Description Required. This field is not examined; however, it must point to a valid
address.

Consideration VSE When using a cross-address space central PDM in VSE/AF with
XPCC=YES, the data area mapped by this data-list parameter is limited
by the CSIPARM MAXIO value. This governs DML having no length
parameter. Refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250, for CSIPARM
information.

data-area

Description Required. This field is not examined; however, it must point to a valid
address.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

Chapter 3 Command syntax

110 P26-4340-64

General considerations

♦ If a DELVD is immediately followed by a READD, it reads the record
logically preceding the deleted record, according to the returned
RRN. If a READV immediately follows, it reads the record logically
following the deleted record.

♦ However, if a READR immediately follows, it skips the record logically
before the deleted record and reads the next preceding record. This
last case must be handled carefully if you are attempting to read all
records. For example, to process a full reverse delete of the chain,
you would code only one READR, as follows: READR, DELVD,
READD, DELVD, READD, DELVD. A forward delete of the chain
would proceed as follows: READV, DELVD, READV, DELVD,
READV, DELVD.

♦ Do not execute the DELVD command while serially reading with the
RDNXT, FINDX, and READX commands, as this could result in
some records being missed and others being read multiple times.

♦ When you delete this record, the PDM maintains all populated
secondary keys in the specified data file accordingly.

DELVD

PDM DML Programming Guide 111

ENDLG
Use the ENDLG command to terminate the current logical System Log
volume and initiate another one. With this command you can end a log
volume at a particular point. When you end the log volume, the PDM
writes to the database files all the database buffers that have been
updated. After the PDM writes the database buffers, it adds an ENDLG
command record to the current System Log volume. The PDM then
writes all updated System Log buffers to the System Log File. At this
point, you can start a new volume.

When ENDLG initiates a new logical volume, it increments the logical
volume number by one. After opening the new logical volume, the PDM
writes an initialization record, file initialization records, and the task
records on the new data set.

ENDLG,status,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Consideration If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to handle
and possibly correct the situation. For a list of all status codes, refer to
the SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

Chapter 3 Command syntax

112 P26-4340-64

General considerations

The following considerations apply to all operating systems:

♦ If task logging is not active, the ENDLG command quiesces the
database; that is, the command keeps any new command from
starting and waits for any pending commands to finish before flushing
buffers.

♦ If task logging is active, ENDLG does not quiesce the database.
ENDLG only flushes database buffers. While the PDM closes the
System Log File, it allows other commands to proceed. One of these
other commands could produce more than one system log record, for
example, a before image and a command record. If so, all the
records may not appear on the same log volume. The records
produced after the System Log File closes appear on another log
volume.

ENDLG

PDM DML Programming Guide 113

OS/390 The following considerations apply to the OS/390 operating system:

♦ If the System Log File is a tape, its physical disposition depends on
the LABEL and DISP parameters on your DD statement in the JCL
describing the System Log File. For the exact results of various
combinations of LABEL and DISP parameters, refer to your IBM
documentation.

♦ If you specified the CLOSE option in your active environment
description, ENDLG closes the System Log File with the CLOSE
macro and then reopens it with the OPEN macro. For more
information on the OPEN and CLOSE macros, refer to your IBM
documentation.

♦ When you close and reopen the same file, you write over the same
volumes. Therefore, when you use the Recover function of the DBA
Utilities, the file may not contain all the images you need to recover
successfully.

♦ If you specified the FEOV option in your active environment
description, the following can occur:

- If the log is on tape, ENDLG starts a new volume for each
System Log File group. The PDM issues the FEOV macro to
the operating system to change tape volumes.

- f the log is on disk, ENDLG operates differently depending on
whether you specified the switching option in the Directory:

♦ If you specified the switching option, ENDLG switches to the next
log file.

- If you are writing to the last log file in the group and you selected
the wrap option, the PDM reuses the first log file.

- If you elected not to wrap from the last log file to the first, the
PDM ignores the ENDLG command and returns a status of
*IGN (IGNORE).

♦ If you did not specify the switching option, the command does
nothing for that log group. The PDM returns a status of *IGN
(IGNORE).

Chapter 3 Command syntax

114 P26-4340-64

VSE The following considerations apply to the VSE operating system:

♦ If you specified the CLOSE option in your active environment
description, the ENDLG command closes the System Log File with
the CLOSE macro and then reopens it with the OPEN macro. For
more information on the OPEN and CLOSE macros, refer to your
IBM documentation.

♦ When you close and reopen the same file, you write over the same
volumes. Therefore, when you use the Recover function of the DBA
Utilities, the file may not contain all the images you need to recover
successfully.

♦ If you specified the FEOV option in your active environment
description, the following can happen:

- If the log is on tape, the ENDLG command starts a new volume
for each System Log File group. However, the command
operates differently depending on which access method you
use:

♦ For all BSAM and OUTPUT access methods, the PDM issues the
FEOV macro to the operating system to change tape volumes.

♦ For the WORK access method, the PDM closes the file and tells the
system operator to mount a new tape volume. When the operator
replies that the new volume is mounted, the PDM reopens the file.

- If the log is on disk, ENDLG operates differently depending on
whether you specified the switching option in the Directory:

♦ If you specified the switching option, the command switches to the
next specified log file.

- If you are writing to the last log file in the group and you selected
the wrap option, the PDM reuses the first log file.

- If you elected not to wrap from the last log file to the first, the
PDM ignores ENDLG and returns a status of *IGN (IGNORE).

♦ If you did not specify the switching option, the command does
nothing for that log group. The PDM returns a status of *IGN
(IGNORE).

ENDLG

PDM DML Programming Guide 115

ENDTO
ENDTO terminates a multitask PDM that is operating in central mode.
Use the ENDTO command only in a special single-purpose program.
Terminating includes verifying shutdown password, checking if any tasks
are signed-on, and closing the System Log File, Task Log File, and
Statistics File (if active).

An alternative to coding a special application for ENDTO is to use the
PDM Termination utility (refer to the SUPRA Server PDM DBA Utilities
User’s Guide (OS/390 & VSE), P26-6260).

ENDTO,status,option-list,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Considerations

♦ If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status code:

ACTV If you specify the option FORCE=NO, this status code is
returned to notify you that an interface still connected to the
PDM has an active task.

Chapter 3 Command syntax

116 P26-4340-64

option-list

Description Required. Points to a field which defines the options you can use to shut
down the multitask central PDM.

Format option-list,END.

Options None of the options are required except password if needed. They can
be coded in any order. END. must be last.

SHUTDOWN=shutdown-password

Description Conditional. A field containing the password used to
terminate the PDM if required by the Directory.

Format 1–8 alphanumeric characters

Considerations

♦ The correct password is required if you defined a
shutdown password in your active environment
description.

♦ You can omit this parameter if no shutdown
password is defined in your active environment
description. It is ignored if coded.

♦ To add or change an existing password, refer to the
SUPRA Server PDM Directory Online User’s Guide
(OS/390 & VSE), P26-1260, or the SUPRA Server
PDM Directory Batch User’s Guide (OS/390 & VSE),
P26-1261.

ENDTO

PDM DML Programming Guide 117

FORCE =
NO
YES









Description Optional. Points to a field which specifies whether to
forcibly terminate the PDM.

Default NO

Options NO Do not terminate if any interface has an active
task. Return a notification in status.

 YES Terminate forcibly if there are tasks still signed on,
otherwise unforced.

Considerations

♦ Code FORCE=NO if all interfaces terminated
normally.

♦ Code FORCE=YES if an interface abended or was
forced to terminate.

♦ If forced termination is required and task logging is
active, all tasks still signed on to the PDM are
RESET but not signed off. If task logging is not
active, all tasks still signed on to the PDM are signed
off.

♦ With forced termination, any open files are closed
without unlocking them. Otherwise, any open files
are closed and unlocked.

Chapter 3 Command syntax

118 P26-4340-64

DBM=pdm-name

Description Optional. Identifies the PDM to be shut down.

Default The PDM name in the CSIPARM file, if specified. If not
specified in CSIPARM, the current job name in OS/390
and VSE.

Format 1–8 alphanumeric characters

Consideration If you code this parameter for a single-task or multitask
PDM for batch, it overrides the PDM name in the
CSIPARM file (if PDM name is not supplied in the
CSIPARM file, this name overrides the current job
name).

INTERFACE=interface-id

Description Optional. Points to a field which identifies the interface
connected to the central PDM for the ENDTO.

Default The interface name in the CSIPARM file, if specified. If
not specified in CSIPARM, the current job name in
OS/390 and VSE.

Format 1–8 alphanumeric characters

Consideration If you code this parameter for a single-task or multitask
PDM for batch, it overrides the PDM name in the
CSIPARM file (if PDM name is not supplied in the
CSIPARM file, this name overrides the current job
name).

END.

Description Required. A field that delimits the option-list.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

ENDTO

PDM DML Programming Guide 119

General considerations

♦ Using FORCE =NO (the default), you cannot shut down the PDM
while any applications are still signed on. You will receive an error
status code if applications are still connected through any interface.

♦ If the PDM is in single-task operating mode, you will receive an error
status code if you issue an ENDTO command. You shut down a
single-task PDM by issuing a SINOF command from the (only)
application.

Chapter 3 Command syntax

120 P26-4340-64

FINDX
The FINDX (Find Record) command performs a serial search of a
primary or related file, or a serial-sequential search of a related file, for a
record that satisfies criteria you defined in the argument parameter. A
found record is termed a value record in this description.

You can start the search at the beginning of the file, at a specific record
location, or at a record identified by a control key. Data items according
to your data list are retrieved into the data area. If using a coded data list,
record codes omitted from the list are not retrieved.

After each read, the PDM updates the qualifier parameter to the next
record’s location in order to simplify the repeated FINDX commands.
You can continue reexecuting the FINDX command until the end of the
file is reached.

FINDX,status,file,qualifier,argument,data-list,data-area,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Considerations

♦ If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ If the command fails, the content of the qualifier parameter is
unreliable. Your program should reinitialize it if you want to continue.

FINDX

PDM DML Programming Guide 121

♦ Code your program to handle the following status codes:

MRNF For an equal search on a primary file with qualifier set to
KEY=control-key (or KSDS KEY=(partial-key)), the specified
control key value does not exist. For a related file with
qualifier set to “linkpathKEY=control-key”, the specified
control key value does not exist on the primary file.

HELD When accessing a database record currently being held by
another task, the PDM waits until a user-defined time-out
counter expires before it reexamines the status of the lock
request. If the record is still HELD, the PDM returns the
HELD status to the application. The application may elect to
terminate the task or reissue the command. If you choose
recycle logic for HELD statuses, you should implement an
upper limit to the mechanism in the program logic.

EMBR As with the HELD status, the PDM may return EMBR when
another task is using the database record. Distinguishing the
EMBR from the HELD status is the occurrence of a deadly
embrace. Deadly embrace occurs when two tasks, already
owners of a resource (database record), attempt to gather
each other’s resources. To handle an EMBR status, restart
the logical unit of work. Alternatively, you can introduce a
retry mechanism with an upper limit retry count in your
program logic.

ENDC End of chain has been reached on this read. The data area
has not been updated from the previous contents. For a
related file first read, with the qualifier set to
“linkpathKEY=control-key”, there are no value records in this
linkpath set. If the first 4 bytes of the qualifier does not
contain NEXT, there are no records at all for this key. You
cannot continue without changing the qualifier. For other
reads using a linkpath qualifier, after the PDM sets qualifier
to NEXT chain-head linkpath, ENDC indicates there were no
more value records in the just-completed linkpath set. You
can continue to the next set by not changing the qualifier.

END. End of file, or end of all linkpath sets when using a linkpath,
has been reached on this read. The data area has not been
updated from the previous contents. For a primary file, no
matter what the qualifier started with, no (more) value
records are found up to end of file. For a related file, if
qualifier started with BEGNb/ b/ b/ b/ SERIAL or rrrrb/ b/ b/ b/ SERIAL,
no (more) value records up to end of file are found. If the
qualifier is using a linkpath, there are no (more) linkpath sets.

Chapter 3 Command syntax

122 P26-4340-64

file

Description Required. Identifies the primary or related file to be acted upon. You can
define a field containing the name or you can use the actual file name as
a literal in the CALL statement.

Format 4 alphanumeric characters; first character must be alphabetic

Consideration The file can be either a related or primary file.

qualifier

Description Required. Points to a variable-length field that establishes the starting
position and maintains the current position in the file being processed.
The size and content of the qualifier field depend on the file type (primary
or related) and the file access method (BDAM, ESDS or KSDS).

Format See “FINDX qualifier for BDAM or ESDS primary files” on page 129,
“FINDX qualifier for KSDS primary files” on page 130, and “FINDX
qualifier for related files” on page 133 for the different qualifier formats to
use with FINDX.

FINDX

PDM DML Programming Guide 123

argument

Description Required. Specifies your search criteria. The argument parameter
directs the PDM to build a character string from a file record, using items
named in the argument’s element-list. It then compares the character
string with the string you specify in the argument’s value, using the
specified operator.

If the comparison meets the condition, the PDM moves the data items
you name in the data-list parameter to the data area. If the comparison
does not meet that condition, the PDM moves no data fields, reads
another record automatically (if you are not using equal key qualifier), and
applies this comparison again.

Format element-list,END..operator.valueEND.

where:

element-list

Description Required. Names the data items in each record from
which to build a character string for comparing to the
value parameter.

Format Variable length consisting of one or more 8-character
data item names followed by END.

Considerations

♦ Commas separating the element names are
optional; the commas must always or never appear
in the list. You can code the element list only as
follows (with any number of elements):

 element,element,element,END.

 or
 elementelementelementEND.

♦ For data items you want retrieved into the data area,
name them separately in the data-list parameter.

END.

Description Required. Specifies the element list delimiter.

Chapter 3 Command syntax

124 P26-4340-64

operator

Description Required. Specifies the type of comparison to be made
between the character string built from the items in the
element list and the one you supply in value.

Format 2-character code enclosed in periods

Options .GT. Greater than

 .LT. Less than

 .EQ. Equal to

 .NE. Not equal to

 .GE. Greater than or equal to

 .LE. Less than or equal to

value

Description Required. Specifies the constant character string to be
compared against the constructed string from each
record. The element list of the argument maps both
strings.

Format 1-n characters according to combined item lengths. No
separators are allowed between individual values.

END.

Description Required. Specifies the value delimiter.

Considerations

♦ The PDM makes all comparisons as though the data
were character. That is, there are no considerations
for packed, zoned or other data types.

♦ VSE IN VSE/AF with XPCC=YES, the maximum
argument length is limited by the CSIPARM
MAXARG value. This length includes element-list,
operator, and value.

FINDX

PDM DML Programming Guide 125

data-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory.

Format dataitem1,dataitem2,...dataitemn,END.

Considerations
♦ The commas between the entries are optional and only serve as

separators; be consistent whether you use them or not.

♦ The data list can include the names of data items, control keys, and
record codes. Do not name linkpaths or a root field. Do not list any
name twice. If a name is not accepted, the PDM returns an error
status code.

♦ You can list the data names in any order. They are processed in the
order listed, not in the order defined on the Directory. However, for
coded records, the record code must be first in the list. If not,
unpredictable results occur. See “Data list parameter keywords” on
page 62 for coded data list construction rules.

♦ VSE When using a cross-address space central PDM in VSE/AF with
XPCC=YES, the data area mapped by this data-list parameter is
limited by the CSIPARM MAXIO value. This governs DML having no
length parameter. Refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250, for CSIPARM
information.

Chapter 3 Command syntax

126 P26-4340-64

data-area

Description Required. Points to a field to contain the retrieved data from items
named in the data list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) named in the
data list.

Considerations
♦ The data area must be large enough to hold values for all data items

named in the data list. For example, if you have one data item in
your data list describing a physical field which is 20 bytes in length,
your data area must be at least 20 bytes.

♦ The data area and the data list have corresponding fields. The data
list holds names, and the data area holds a value for each of those
names.

end

Description Required. Points to a 4-character field that delimits the parameter list
and determines the record-holding function (see “Record holding” on
page 42).

Options END. Holds a retrieved record.

RLSE Does not hold a retrieved record; can read an
uncommitted record.

FINDX

PDM DML Programming Guide 127

General considerations

♦ The FINDX command performs a logical comparison between the
data on the record and the value list in the argument parameter.

♦ Elements in the argument parameter need not be included in the
data-list and data-area parameters.

♦ When serial-sequentially reading a related file, the PDM automatically
changes from the end of a chain to the beginning of the next on the
same linkpath. However, if you want to change linkpaths, you must
reinitialize the qualifier to BEGNb/ b/ b/ b/ new-linkpath, and reexecute the
FINDX command.

♦ Do not execute the ADD-M and DEL-M commands while processing
serial FINDX (on the same file). It may miss some records in the
serial scan and may read others multiple times.

♦ You can execute the WRITM command while processing a primary
file with the serial FINDX command.

Chapter 3 Command syntax

128 P26-4340-64

FINDX qualifier for BDAM or ESDS primary files
The qualifier determines where to begin searching for records, either
physical beginning of file or at a specified key. If the PDM finds a value
record (one that satisfies the argument), it retrieves the record. The PDM
also updates the qualifier to the retrieved BDAM or ESDS primary
record’s location in order to simplify the next FINDX execution in the
serial sweep.























 key-control=

.EQ. KEY

BEGN

Description On the first FINDX of a series, your program must set the qualifier to one
of the two options. For a successful retrieval, the PDM updates the data
area and changes qualifier to the binary RRN of the record just read.

To read the next record in the file, your program must not change
qualifier before issuing the next FINDX. The PDM finds the next serial
record by scanning subsequent RRNs for a nonblank record. If starting
with a particular key value, processing proceeds serially from that point.
Any RRNs prior to that key are not processed.

When the PDM returns the last value record in the file, the next FINDX
returns END. in status, sets qualifier to BEGN, and does not update the
data area. This also occurs if the file is empty on the first read.

You can abandon the retrievals at any point. There is no context involved
for BDAM or ESDS.

Format Use one of the formats following. No blanks are allowed between
characters.

BEGN

Description The PDM starts the value search with the first record (RRN 0/) of the file.

key-control







=
.EQ.

 KEY

Description The PDM starts by locating the record with the specified control-key
value. If found, and is a value record, the PDM returns it and changes
qualifier to rrrr. If found, but is not a value record, the PDM continues
searching serially from this RRN. If not found, the PDM returns an error
status (MRNF).

FINDX

PDM DML Programming Guide 129

FINDX qualifier for KSDS primary files
The qualifier determines where to begin searching for records. If the
PDM finds a value record (one that satisfies the argument), it retrieves
the record. The PDM also updates the qualifier to the next primary
record’s location in order to simplify the next FINDX execution in the
serial sweep. Note that for a KSDS, the serial sweep is also sequential.





















































////

cccc
key-partial

key-partial

key-control

key-control

ENDS
)KEY.GE.(

)(
=
.EQ.

 KEY

KEY.GE.
=
.EQ.

 KEY

bbbbBEGN

Description On the first FINDX of a series, your program must set the qualifier to one
of the first 5 options. (In other words, you cannot use ENDS for the first
read.) For a successful retrieval, the PDM updates the data area and
changes qualifier to NEXTcccc, where cccc points to the context area for
this particular sweep. Each new BEGN or KEY sweep creates a new
context area. Each area contains the control block for that particular
KSDS serial read.

To read the next record, your program must not change qualifier before
issuing the next FINDX. The PDM finds the next record by scanning
forward from this record. If starting with a particular key, processing
proceeds serially from this point. Any locations prior to this key are not
processed.

When the PDM returns the last value record in the file, the next FINDX
returns END. in status, sets qualifier to BEGN, and does not update the
data area. This also occurs if the file is empty on the first read.

If you want to abandon the KSDS retrieval at some point, use the ENDS
option.

Format At least 8 bytes. Use one of the formats following. No blanks are
allowed between characters.

Chapter 3 Command syntax

130 P26-4340-64

BEGNb/ b/ b/ b/

Description The PDM begins searching for a value record at the first record of the file
(first key).

key-control







=
.EQ.

 KEY

Description The PDM starts by locating the record with the specified control-key
value. If not found, the PDM returns an error status (MRNF). (In effect,
the serial read cannot begin at a nonexistent point). If found and is a
value record, the PDM returns it and changes qualifier to NEXTcccc. If
found but is not a value record, the PDM continues searching from this
point for the first value record.

KEY.GE.control-key

Description The PDM starts by locating the record with the specified control-key
value. If the record is found and is a value record, the PDM returns it and
changes qualifier to NEXTcccc. If not found, or if found but is not a value
record, the PDM continues searching from this point for the first value
record.

)(
=
.EQ.

 KEY key-partial








Description The PDM starts by locating the first record whose control-key begins with
the specified partial-key value. If none are found, the PDM returns an
error status (MRNF). (In effect, the serial read cannot begin at a
nonexistent point.) If any are found, the PDM returns the first which is a
value record and changes qualifier to NEXTcccc. If found but none are
value records, the PDM continues searching from this point for the first
value record.

KEY.GE.(partial-key)

Description The PDM starts by locating the first record whose control-key begins with
the specified partial-key value. If any are found, the PDM returns the first
which is a value record and changes qualifier to NEXTcccc. If not found,
or if found but none are value records, the PDM continues searching from
this point for the first value record.

FINDX

PDM DML Programming Guide 131

ENDScccc

Description After the PDM has returned at least one record and changed the qualifier
to NEXTcccc, you can change the first 4 characters of qualifier to this
keyword. Do not disturb the cccc pointer. This qualifier signals the end of
serial processing before the PDM has returned END. in status (end of
file). It allows the PDM to free the context area for this particular KSDS
sweep before end of file is reached. You should use this if you do not
process until END. is returned. Otherwise, ICOR status returns are
probable for all tasks.

When your program changes NEXT to ENDS and issues another FINDX,
the PDM frees the storage, returns END. in status, changes qualifier to
BEGNb/ b/ b/ b/ , and does not update the data area. Your program can begin
another serial sweep or issue any other DML command.

Chapter 3 Command syntax

132 P26-4340-64

FINDX qualifier for related files
The qualifier determines where to begin searching for value records, and
whether the sweep is to be serial or serial-sequential. If you are
processing a coded file using a coded data list, only those records are
examined for the search criteria. The PDM updates the qualifier to the
retrieved record’s binary RRN in order to simplify the next FINDX
execution in the sweep. If serial-sequential (linkpath directed), the PDM
also maintains the head-of-chain RRN in the qualifier.















////
////

key-controllinkpath
linkpath

=KEY
bbbbBEGN

SERIALbbbbBEGN

Description On the first FINDX of a series, your program must set qualifier to one of
the three options. For a successful retrieval, the PDM updates the data
area and changes qualifier to the binary RRN of the record just read.

To read the next record in the file, your program must not change
qualifier before issuing the next FINDX. For a SERIAL read, the PDM
finds the next serial record by scanning subsequent RRNs for a nonblank
record. For a serial-sequential read (linkpath directed), the PDM finds
the physically first chain-head, processes that linkpath set sequentially,
finds the next physical chain-head, and so on. If starting with a particular
key, processing proceeds from that point. Any chain-heads physically
prior to that one are not processed.

When the PDM returns the last value record in the file, or in a linkpath,
the next FINDX returns END. status, sets qualifier to BEGN, and does not
update the data area. This also occurs if the file is empty on the first
read.

You can abandon the retrievals at any point. There is no context involved
for BDAM or ESDS.

Format Use one of the formats following. No blanks are allowed except the 4
blanks (b/ b/ b/ b/) as shown, which are required.

FINDX

PDM DML Programming Guide 133

BEGNb/ b/ b/ b/ SERIAL

Description Use this option to begin serially processing the file. The PDM begins
sweeping the file for a value record at the first record of the file. If the file
is empty or contains no value records, the PDM leaves qualifier
unchanged, sets status to END., and does not update the data area.

For a successful retrieval, the PDM changes qualifier to rrrrb/ b/ b/ b/ SERIAL,
where rrrr is the RRN of the value record. To search for the next value
record, your program must pass this qualifier, unchanged, to the next
FINDX in the series. This directs the PDM to continue serially sweeping
the file for the next physical nonblank record.

When the PDM returns the last value record in the file, the next FINDX
returns END. in status, sets qualifier to BEGNb/ b/ b/ b/ SERIAL, and does not
update the data area.

Chapter 3 Command syntax

134 P26-4340-64

BEGNb/ b/ b/ b/ linkpath

Description Use this option to begin serial-sequential processing of all chains on the
given linkpath name (ppppLKxx). The PDM scans the file for the first
head-of-chain record on this linkpath. If the file is empty, or contains no
value records on the entire linkpath, the PDM sets status to END., leaves
qualifier unchanged, and does not update the data area.

The first value record returned is usually from the first physical
head-of-chain on the linkpath. The PDM changes the qualifier to
rrrrhhhhlinkpath. The rrrr is the RRN of the returned record, and hhhh is
the RRN of the chain-head. However, if there are no value records in the
first set, the PDM signals with ENDC (see later in this description).

The first record returned is both a value record and chained on the
named linkpath. Your program must pass this qualifier, unchanged, to
the next FINDX in the series. This directs the PDM to examine the
forward linkpath pointer and return the next logical record in the linkpath
set (sequential processing) which meets the argument. For each
subsequent returned record, the PDM changes the rrrr value to the newly
retrieved record, leaving hhhh undisturbed.

When the PDM returns the last value record on a chain, the next FINDX
returns ENDC in status, changes the first 4 bytes of qualifier to NEXT,
leaving hhhh undisturbed, and does not update the data area. This
informs your program that all records for this control key have been
processed. To continue sweeping for value records on other chains of
the same linkpath, your program must pass this qualifier, unchanged, to
the next FINDX in the series. With the NEXT qualifier, the PDM
continues with a serial search for the next physical chain-head after hhhh
on this linkpath. When found, the PDM returns the record (if it is a value
record), changes NEXT to rrrr, and hhhh to the new hhhh (as on the first
read).

If, during linkpath processing, you want to bypass some records before
end-of-chain (ENDC), your program may move NEXT to the first 4 bytes
of the qualifier (leaving other information unchanged), and issue the
FINDX. The PDM skips the remaining records of this set and returns the
first value record of the next linkpath set, if any.

When the PDM returns the last value record in the entire linkpath, the
next FINDX returns END. in status, sets the qualifier to BEGNb/ b/ b/ b/
linkpath, and does not update the data area.

FINDX

PDM DML Programming Guide 135

linkpathKEY=control-key

Description Use this option to begin serial-sequential processing at the given chain
on the given linkpath name (ppppLKxx). The PDM accesses the primary
file for a record having the specified control-key value. This access is to
obtain the RRN of the head-of-chain for this linkpath set. Any linkpath
sets whose chain-heads physically precede this one are not processed.

If the key is not found, the PDM returns an error status (MRNF), leaves
qualifier unchanged, and does not update the data area.

If the key is found, but has no related records on this linkpath, the PDM
returns ENDC in status, sets qualifier to mmmmmmmmlinkpath, and does
not update the data area. The value mmmmmmmm denotes the
absence of a valid RRN and chain-head to begin the serial-sequential
read. If your program uses this qualifier on a subsequent FINDX
command, the PDM rejects the command with an error status code. You
must reinitialize the qualifier if you want to start the read elsewhere.

If the key is found, and has value records on this linkpath, processing
proceeds as described under BEGNb/ b/ b/ b/ linkpath. If there are no value
records in this starting set, the PDM signals with ENDC and NEXT. You
can continue from this point. It is possible that this set is the last physical
chain-head. If so, the PDM signals with END. in status.

General consideration

 When serial-sequentially reading a related file, the PDM automatically
changes from the end of a chain to the beginning of the next on the same
linkpath. However, if you want to change linkpaths, you must reinitialize
the qualifier to BEGNb/ b/ b/ b/ new-linkpath, and reexecute the FINDX
command.

Chapter 3 Command syntax

136 P26-4340-64

FREEX
The FREEX command releases any records explicitly held by the task
issuing the command for the specified files. This command can be used
only if task logging is not active.

FREEX,status,files,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4 numeric bytes

Consideration If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to handle
and possibly correct the situation. For a list of all status codes, refer to
the SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126.

files

Description Required. Points to a field that identifies the files containing the explicitly
held record(s).

Options file-name-list Releases all explicitly held records in each file in the file
name list.

ALL Releases all explicitly held records in all files.

Consideration File-name-list is a list of file names not separated by commas or blanks.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

General consideration

 If task logging is active, the PDM returns an error status code.

FREEX

PDM DML Programming Guide 137

MARKL
Use the MARKL command to add an arbitrary text record to the System
Log File. With this command, you can place any information you want
onto the System Log File.

MARKL,status,length,data-area,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Consideration If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to handle
and possibly correct the situation. For a list of all status codes, refer to
the SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126.

length

Description Required. Points to a field defining the length, in bytes, of the text or data
to be written to the System Log File.

Format Binary fullword

Considerations

♦ If length is less than zero, an error status code is returned.

♦ Since records are spread physically across system log blocks, there
is no theoretical limit to the size of your data area. However, you
must consider your program’s available memory and your System
Log File capacity.

♦ VSE When using a central PDM in a cross-address space VSE/AF
SP2.1 (XPCC=YES), the MARKL data area’s maximum length is
limited by the CSIPARM MAXPACKET value. Refer to the SUPRA
Server PDM and Directory Administration Guide (OS/390 & VSE),
P26-2250, for CSIPARM information.

Chapter 3 Command syntax

138 P26-4340-64

data-area

Description Required. Points to a field containing the data to be written to the System
Log File.

Format Variable length

Consideration The data area must be as large as the length specified in the length
parameter.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

General considerations

♦ To execute this command, system logging must be active or you
receive an error status code. Task logging may also be active.

♦ You can execute this command at any time. A QUIET is not required
preceding MARKL.

MARKL

PDM DML Programming Guide 139

OPENX
The OPENX (Open file) command logically, and if necessary physically,
opens one or more files for read-only or shared update for all tasks, or for
exclusive update by this task only. Logically opening involves checking
and updating each file’s control record. Physically opening involves
issuing the OPEN command of the host operating system, and checking
labels.

You can open primary and related files. You cannot open index files,
Directory files, log files, or the Statistics file.

In your environment description, there is an OPENX-OPTION. Its setting
determines the outcome of your OPENX as follows:

♦ If OPENX-OPTION=IGNORE, the PDM does not carry out the
request. You always receive a status indicating success.

♦ If OPENX-OPTION=PROCESS, OPENX can change the file mode,
lock the file, and issue the operating system OPEN. These effects
depend on the current status, lock condition, and mode of the file,
and on the type of OPENX you issue.

♦ If OPENX-OPTION=CHECK, the PDM does not carry out the
request, but the OPENX can return an error status.

You can find which setting is in effect by using a SHOWX command with
the ENVDOPNX data item. The tables at the end of this section present
the various situations and results when the option is PROCESS or
CHECK.

OPENX,status,realm,end

Chapter 3 Command syntax

140 P26-4340-64

status

Description Required. Points to a field into which the PDM places a status code
indicating the overall result of the command.

Format 4-byte field

Considerations
♦ If the command fails or if the status code indicates some special

condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status codes:

OERR The tables at the end of this section present various possible
file conditions where an OPENX results in OERR.

FNAV File is not available for you to open. Issue a SHOWX to see
the extended status. This is usually because another task
has issued an OPENX or CLOSX on the file and has not yet
committed.

♦ If you use ALL. in the realm parameter, the stat field in that
parameter is not set. If you use a file-list, the stat field for the file
causing the error is set to the same value as this status parameter
unless the error is FNTF.

OPENX

PDM DML Programming Guide 141

realm

Description Required. Points to a list of the REALM= keyword and one or more
12-character entries followed by END. This determines which files to
open and in what mode.

Format END.
,...,

, ALL.=REALM








at2filemodestat1filemodest
modestat

where:

ALL. Opens all user files related to the active environment description.
This does not include Directory files.

file Identifies the 4-character name of a primary or related file you
want to open.

mode Specifies the mode (read, update) you want for all files or for
individual files. Options are:

EUPD Marks the file as locked, and for exclusive update by this
task only. Other tasks can read the file but not update it.
This task must logically close the file before it or any task
can open it for a different mode.

IUPD Marks the file as not locked, and for read only by all
tasks. No task can update the file, but any task can lock
it by reopening for SUPD or EUPD without an intervening
close. (This mode is not valid for KSDS.)

READ Marks the file as not locked, and for read only by all
tasks. No task can update the file, and it cannot be
locked without any task first closing it and then opening
for SUPD or EUPD.

SUPD Marks the file as locked, and for reading and shared
updating by all tasks. Any task can logically close the file
and open it for a different mode.

stat Provides an area to receive the PDM status code indicating the
result of opening an individual file. You initialize these fields to
blank. If you use ALL., this field is not set upon completion but
the command’s status field is set.

END. Specifies the delimiter for the realm parameter.

Chapter 3 Command syntax

142 P26-4340-64

Considerations

♦ The commas between each “filemodestat” entry are optional and only
serve as separators; be consistent whether you use them or not. Do
not use commas or blanks within the entry.

♦ KSDS files cannot be opened for IUPD. Therefore, you should not
use a “fileIUPDstat” entry for KSDS in a file list. You also should not
use “ALL.IUPDstat” if the active environment description includes
KSDS. If you use IUPD, the PDM returns an error status.

♦ Index files cannot be named in an entry. The PDM opens them
automatically as needed. See General Considerations, which follow.

♦ If you code a file list, and a file name is not found, the PDM does not
set that entry’s stat field. Instead, it sets the command’s status field
to FNTF, and the function is immediately terminated. (This measure
protects memory from being over-written if the list delimiter (END.) is
missing.) To determine which file caused the error, your program
can issue a SHOWX for extended status.

♦ If the PDM processes some of the files successfully, then encounters
an error, the PDM does the following:

a. If you used a file list, sets the error code in the stat field for the
file in error (unless FNTF)

b. Sets the error code in the command status field

c. Reprocesses all involved files to their original state

d. Does not process the remaining files

end

Description Required. Points to a field that delimits the parameter list.

Format END.

OPENX

PDM DML Programming Guide 143

General considerations

♦ In a multitask operating mode, the DBA should write a special
application to open all files, or use automatic opens, rather than a per
task basis. An automatic open for READ or SUPD is available with
the file/environment description relationship on the Directory. When
used, the PDM opens these files during its initialization.

♦ If any fatal errors occur on any file in the realm, the PDM restores all
files to their states that existed before executing this OPENX. In a
task logging environment, you should issue a RESET command after
an OPENX command that receives a fatal error. Issue a COMIT
after a successful OPENX execution.

♦ Do not issue both an OPENX and a CLOSX within the same logical
unit of work.

♦ If you use task logging and your task changes a file’s mode (even if
backed out because of error), the PDM keeps other tasks from
changing the file’s mode until your task issues a COMIT or RESET.
Any other task that tries to change the file’s mode must wait. The
wait is according to the environment description delay time for held
records (the file lock record is being held). If your task does not
issue a COMIT or RESET to free the file during this time, the other
task receives an error status code.

♦ If you use task logging, a SINOF is not sufficient to commit or reset
an OPENX or CLOSX.

♦ If any task opens a file for EUPD, that task is the only task permitted
to update the file or to close it. Therefore, using EUPD as a mode is
not recommended in teleprocessing environments.

♦ In a single-task environment, a successful open for SUPD means
that no other task can update the file because no other task can use
the same copy of the PDM. In multitask, any task using the same
PDM can update the file.

♦ If the user environment description ACCESS MODE parameter has
RDONLY at PDM initialization, an OPENX for SUPD or EUPD results
in locked files. Since the file is locked, no other task using a different
copy of the PDM can update the file. No task sharing this PDM can
update the file because the specified access mode is RDONLY, not
because the file is locked.

Chapter 3 Command syntax

144 P26-4340-64

♦ If a task opens a file for IUPD, all tasks can read but cannot update
that file. However, any task can lock the file with an open for SUPD.
If this occurs, all tasks sharing the same copy of the PDM can update
the file. This may or may not be contrary to the intentions of the task
that originally opened the file.

♦ You can open primary or related files but not index files. When your
task opens a primary or related file that has index files, the PDM
opens its index files if not already open. The same mode is used
except for EUPD. The following chart shows this effect:

Primary/related file open mode Index file open mode
READ READ
IUPD IUPD
SUPD SUPD
EUPD SUPD

 If an index file is already open in a lower mode than your specified

mode, it escalates. If already open in a higher mode than your
specified mode, it stays the same.

OPENX

PDM DML Programming Guide 145

♦ OPENX processing and results depend on several factors:

- The current open or closed state of the file.

- The current value of the lock record.

- The current file mode of the file.

- The mode you request in the realm parameter.

- The environment description PDM access mode (RDONLY or
UPDATE).

- The OPENX-OPTION in the active user environment description.
If the option is IGNORE, you receive a status of ****, but no open
processing occurs. If the option is PROCESS or CHECK, the
OPENX is processed as shown in the following tables:

Current file condition Resultant file condition

File
state

File
lock
record

File
mode

Command
attempted

File
state

File lock
record

File
mode

Status
code
returned

Closed * * OPENX
(READ)

Open - READ ****

Open * READ - - - ****
Open * IUPD - - - ****
Open * SUPD - - - ****
Open * EUPD

(S)
 - - - ****

Open * EUPD
(D)

 - - - ****

Closed * * OPENX
(IUPD)

Open - IUPD ****

Open * READ - - - OERR
Open * IUPD - - - ****
Open * SUPD - - - ****
Open * EUPD

(S)
 - - - ****

Chapter 3 Command syntax

146 P26-4340-64

Current file condition Resultant file condition

File
state

File
lock
record

File
mode

Command
attempted

File
state

File lock
record

File
mode

Status
code
returned

Open * EUPD
(D)

 - - - ****

Closed Not
Locked

- OPENX
(SUPD)

Open Locked SUPD ****

Closed Locked - - - - OERR
Open * READ - - - OERR
Open Not

Locked
IUPD - Locked SUPD ****

Open Locked IUPD - - - OERR
Open * SUPD - - - ****
Open - EUPD

(S)
 - - - OERR

Open - EUPD
(D)

 - - - OERR

Closed Not
Locked

* OPENX
(EUPD)

Open Locked EUPD ****

Closed Locked * - - - OERR
Open * READ - - - OERR
Open Not

Locked
IUPD - Locked EUPD ****

Open Locked IUPD - - - OERR
Open * SUPD - - - OERR
Open - EUPD

(S)
 - - - OERR

Open - EUPD
(D)

 - - - OERR

 * PDM does not check
 - PDM does not change
(S) Same task attempts the open
(D) Different task attempts the open

OPENX

PDM DML Programming Guide 147

Current file condition Resultant file condition

File
state

File
lock
record

File
mode

Command
attempted

File
state

File lock
record

File
mode

Status
code
returned

Closed * * OPENX
(READ)

- - - OERR

Open * READ - - - ****
Open * SUPD - - - ****
Closed * * OPENX

(IUPD)
- - - OERR

Open * READ - - - OERR
Open * SUPD - - - ****
Closed Not

Locked
- OPENX

(SUPD)
- - - OERR

Closed Locked - - - - OERR
Open * READ - - - OERR
Open * SUPD - - - ****
Closed Not

Locked
- OPENX

(EUPD)
- - - OERR

Closed Locked - - - - OERR
Open * READ - - - OERR
Open * SUPD - - - OERR

* PDM does not check
- PDM does not change

Concerning the preceding table, when the OPENX-OPTION=CHECK, the
file can be only Closed or Open for READ or SUPD. This is according to
the file/environment description relationship, where EUPD is not an
option.

Chapter 3 Command syntax

148 P26-4340-64

QMARK
The QMARK command is a combination of QUIET and MARKL
commands. QMARK flushes the I/O buffers (physically applying all
pending updates to the database) and adds your data area content to the
QUIET record. This command produces only one record on the System
Log File.

QMARK,status,length,data-area,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Consideration If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to handle
and possibly correct the situation. For a list of all status codes, refer to
the SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126.

length

Description Required. Points to a field defining the length, in bytes, of data to be
written to the System Log File.

Format Binary fullword

Considerations

♦ If the length is less than zero, the PDM returns an error status code.

♦ Since records are spread physically across system log blocks, there
is no theoretical limit to the size of your data area. However, you
must consider your program’s available memory and your System
Log File capacity.

♦ VSE When using a central PDM in a cross-address space VSE/AF
SP2.1 (XPCC=YES), the QMARK data area’s maximum length is
limited by the CSIPARM MAXPACKET value. Refer to the SUPRA
Server PDM and Directory Administration Guide (OS/390 & VSE),
P26-2250, for CSIPARM information.

QMARK

PDM DML Programming Guide 149

data-area

Description Required. Points to a field containing the data to be written to the System
Log File.

Format Variable length

Consideration The data area must be as large as the length specified in the length
parameter.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

General consideration

 To execute this command, system logging must be active but task
logging must not be active; otherwise you receive an error status code.

Chapter 3 Command syntax

150 P26-4340-64

QUIET
Use the QUIET command to flush the I/O buffers (physically applying all
pending updates to the database) and to write a QUIET record on the
System Log File. This synchronizes the physical database with data
being manipulated in memory. Synchronization provides a point in the
processing where you can restart the system.

QUIET,status,count,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Consideration If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to handle
and possibly correct the situation. For a list of all status codes, refer to
the SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126.

count

Description Required. Count must be present to complete the parameter list;
however, the data is ignored. You must supply a valid address.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

General considerations

♦ To execute this command, task logging must not be active; otherwise
you receive an error status code. You can issue a QUIET command
even if system logging is not active; however, there is no record of
the QUIET command.

♦ For the QUIET command to provide a definite restart point, all PDM
tasks must be idle and at a recovery point.

♦ You could use a QUIET and MARKL, or a QMARK, to write limited
recovery point information on the System Log File. For instance, you
can save task tables or control blocks.

QUIET

PDM DML Programming Guide 151

RDNXT
The RDNXT (Read Next) command performs a serial read of a primary
or a related file, or a serial-sequential read of a related file. You can start
the read at the beginning, at a specific record location, or at a record
identified by a control key. Data items according to your data list are
retrieved into the data area. If using a coded data list, record codes
omitted from the list are not retrieved.

After each read, the PDM updates the qualifier parameter to the next
record’s location, in order to simplify the repeated RDNXT commands.
You can continue reexecuting the RDNXT command until the end of the
file is reached.

RDNXT processing is essentially the same as FINDX except that RDNXT
does not use a search argument.

RDNXT,status,file,qualifier,data-list,data-area,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Considerations

♦ If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ If the command fails, the content of the qualifier parameter is
unreliable. Your program should reinitialize it if you want to continue.

Chapter 3 Command syntax

152 P26-4340-64

♦ Code your program to handle the following status codes:

MRNF For an equal search on a primary file with qualifier set to
KEY=control-key (or KSDS KEY=(partial-key)), the specified
control-key value does not exist. For a related file with the
qualifier set to “linkpathKEY=control-key”, the specified
control key does not exist on the primary file.

HELD When accessing a database record currently being held by
another task, the PDM waits until a user-defined time-out
counter expires before it reexamines the status of the lock
request. If the record is still HELD, the PDM returns the
HELD status to the application. The application may elect to
terminate the task or reissue the command. If you choose
recycle logic for HELD statuses, you should implement an
upper limit to the mechanism in the program logic.

EMBR As with the HELD status, the PDM may return EMBR when
another task is using the database record. Distinguishing the
EMBR from the HELD status is the occurrence of a deadly
embrace. Deadly embrace occurs when two tasks, already
owners of a resource (database record), attempt to gather
each other’s resources. To handle an EMBR status, restart
the logical unit of work. Alternatively, you can introduce a
retry mechanism with an upper limit retry count in your
program logic.

ENDC End of chain has been reached on this read. The data area
has not been updated from the previous contents. For a
related file first read, with the qualifier set to
“linkpathKEY=control-key”, there are no records in this
linkpath set. You cannot continue without changing the
qualifier. For other reads using a linkpath qualifier, after the
PDM sets qualifier to NEXT chain-head linkpath, ENDC
indicates there were no more records in the just-completed
linkpath set. You can continue to the next set by not
changing the qualifier.

END. End of file, or end of all linkpath sets when using a linkpath,
has been reached on this read. The data area has not been
updated from the previous contents. For a primary file, no
matter what the qualifier started with, no (more) records are
found up to end of file. For a related file, if qualifier started
with BEGNb/ b/ b/ b/ SERIAL or rrrrb/ b/ b/ b/ SERIAL, no (more)
records up to end of file are found. If the qualifier is using a
linkpath, there are no (more) chain-heads.

RDNXT

PDM DML Programming Guide 153

file

Description Required. Identifies the primary or related file to be acted upon. You can
define a field containing the name or you can use the actual file name as
a literal in the CALL statements.

Format 4 alphanumeric characters; first character must be alphabetic

Consideration The file can be either a primary or related file.

qualifier

Description Required. Points to a variable length field that establishes the starting
position and maintains the current position in the file being processed.
The size and content of the qualifier field depend on the file type (primary
or related) and the file access method (BDAM or VSAM).

Format See “RDNXT qualifier for BDAM or ESDS primary files” on page 157,
“RDNXT qualifier for KSDS primary files” on page 158, “RDNXT qualifier
for related files” on page 161 for the different qualifier formats to use with
RDNXT.

Chapter 3 Command syntax

154 P26-4340-64

data-list

Description Required. A variable length field containing a list of data items. This list
acts as a map of the layout of the data area. Compose this list using
data names (physical fields) defined on the Directory.

Format dataitem1,dataitem2,...dataitemn,END.

Considerations

♦ The commas between the entries are optional and only serve as
separators; be consistent whether you use them or not.

♦ The data list can include the names of data items, control keys, and
record codes. Do not name linkpaths. Do not list any name twice. If
a name is not accepted, the PDM returns an error status code.

♦ You can list the data names in any order. They are processed in the
order listed, not in the order defined on the Directory. However, for
coded records, the record code must be first in the list. If not,
unpredictable results occur. See “Data list parameter keywords” on
page 62 for coded data list construction rules.

♦ VSE When using a cross-address space central PDM in VSE/AF with
XPCC=YES, the data area length is limited by the CSIPARM MAXIO
value. Refer to the SUPRA Server PDM and Directory Administration
Guide (OS/390 & VSE), P26-2250, for more information about the
MAXIO keyword.

RDNXT

PDM DML Programming Guide 155

data-area

Description Required. Points to a field containing the retrieved data items named in
the data list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) named in the
data list.

Considerations

♦ The data area must be large enough to hold values for all data items
named in the data list. For example, if you have one data item in
your data list and it describes a physical field which is 20 bytes in
length, your data area must be at least 20 bytes long.

♦ The data area and the data list have corresponding fields. The data
list holds names, and the data area holds a value for each of those
names.

end

Description Required. Points to a 4-character field that delimits the parameter list
and determines the record-holding function (see “Record holding” on
page 42).

Options END. Holds a retrieved record.

RLSE Does not hold a retrieved record; can read an
uncommitted record.

General considerations

♦ When serial-sequentially reading a related file, the PDM automatically
changes from the end of a chain to the next on the same linkpath.
However, if you want to change linkpaths, you must reinitialize the
qualifier to BEGNb/ b/ b/ b/ new-linkpath, and reexecute the RDNXT
command.

♦ Do not execute the ADD-M and DEL-M commands while processing
RDNXT. It may miss some records in the serial scan and may read
others multiple times.

♦ You can execute the WRITM command while processing a primary
file with the RDNXT command.

Chapter 3 Command syntax

156 P26-4340-64

RDNXT qualifier for BDAM or ESDS primary files
The qualifier determines where to begin retrieving records, either physical
beginning of file or at a specified key. The PDM updates the qualifier to
the retrieved BDAM or ESDS primary record’s location in order to simplify
the next RDNXT execution in the serial sweep.

































 key-control
=
.EQ.

 KEY

BEGN

Description On the first RDNXT of a series, your program must set the qualifier to
one of the two options. For a successful retrieval, the PDM updates the
data area and changes qualifier to the binary RRN of the record just read.

To read the next record in the file, your program must not change
qualifier before issuing the next RDNXT. The PDM finds the next serial
record by scanning subsequent RRNs for a nonblank record. If starting
with a particular key value, processing proceeds serially from that point.
Any RRNs prior to that key are not processed.

When the PDM returns the last record in the file, the next RDNXT returns
END. in status, sets qualifier to BEGN, and does not update the data
area. This also occurs if the file is empty on the first read.

You can abandon the retrievals at any point. There is no context involved
for BDAM or ESDS.

Format Use one of the formats following. No blanks are allowed between
characters.

BEGN

Description The PDM starts with the first record (RRN 0/) of the file.

key-control







=
.EQ.

 KEY

Description The PDM starts by locating the record with the specified control-key
value. If found, the PDM changes qualifier to rrrr. If not found, the PDM
returns an error status (MRNF).

RDNXT

PDM DML Programming Guide 157

RDNXT qualifier for KSDS primary files
The qualifier determines where to begin retrieving records. The PDM
updates the qualifier to the retrieved KSDS primary record’s location in
order to simplify the next RDNXT execution in the serial sweep. Note
that for a KSDS, the serial sweep is also sequential.

BEGNb/ b/ b/ b/

key-control







=
.EQ.

 KEY

KEY.GE.control-key

()key-partial
=
.EQ.

 KEY








KEY.GE.(partial-key)

ENDScccc

Description On the first RDNXT of a series, your program must set qualifier to one of
the first 5 options. (In other words, you cannot use ENDS for the first
read.) For a successful retrieval, the PDM updates the data area and
changes qualifier to NEXTcccc, where cccc points to the context area for
this particular sweep. Each new BEGN or KEY sweep creates a new
context area. Each area contains the control block for that particular
KSDS serial read.

To read the next record, your program must not change qualifier before
issuing the next RDNXT. The PDM finds the next record by scanning
forward from this record. If starting with a particular key, processing
proceeds serially from this point. Any locations prior to this key are not
processed.

When the PDM returns the last record in the file, the next RDNXT returns
END. in status, sets qualifier to BEGN, and does not update the data
area. This also occurs if the file is empty on the first read.

If you want to abandon the KSDS retrievals at some point, use the ENDS
option.

Format At least 8 bytes. Use one of the formats following. No blanks are
allowed between characters.

Chapter 3 Command syntax

158 P26-4340-64

BEGNb/ b/ b/ b/

Description The PDM starts with the first record of the file (first key).

key-control







=
.EQ.

 KEY

Description The PDM starts by locating the record with the specified control key
value. If not found, the PDM returns an error status (MRNF). (In effect,
the serial read cannot begin at a nonexistent point.) If found, the PDM
returns it and changes qualifier to NEXTcccc.

KEY.GE.control-key

Description The PDM starts by locating the record with the specified control key
value. If found, the PDM returns it and changes qualifier to NEXTcccc. If
not found, the PDM returns the record whose control key is the next
larger value, and changes qualifier to NEXTcccc.

()key-partial
=
.EQ.

 KEY








Description The PDM starts by locating the first record whose control key begins with
the specified partial-key value. If none are found, the PDM returns an
error status (MRNF). (In effect, the serial read cannot begin at a
nonexistent point.) If any are found, the PDM returns the first one and
changes qualifier to NEXTcccc.

KEY.GE.(partial-key)

Description The PDM starts by locating the first record whose control key begins with
the specified partial-key value. If any are found, the PDM returns the first
one and changes qualifier to NEXTcccc. If none are found, the PDM
returns the record whose control key is the next larger value, and
changes qualifier to NEXTcccc.

RDNXT

PDM DML Programming Guide 159

ENDScccc

Description After the PDM has returned at least one record and changed the qualifier
to NEXTcccc, you can change the first 4 characters of qualifier to this
keyword. Do not disturb the cccc pointer. This qualifier signals the end of
serial processing before the PDM has returned END. in status. It allows
the PDM to free the context area for this particular KSDS sweep before
end of file is reached. You should use this if you do not process until
END. Is returned. Otherwise, ICOR status returns are probable for all
tasks.

When your program changes NEXT to ENDS and issues another
RDNXT, the PDM frees the storage, returns END. in status, changes
qualifier to BEGNb/ b/ b/ b/ , and does not update the data area. Your
program can begin another serial sweep or issue any other DML
command.

Chapter 3 Command syntax

160 P26-4340-64

RDNXT qualifier for related files
The qualifier determines where to begin retrieving records, and whether
the sweep is to be serial or serial-sequential. If you are processing a
coded file using a coded data list, only those records are retrieved. The
PDM updates the qualifier to the retrieved record’s binary RRN in order to
simplify the next RDNXT execution in the sweep. If serial-sequential
(linkpath directed), the PDM also maintains the head-of-chain RRN in the
qualifier.

BEGNb/ b/ b/ b/ SERIAL

BEGNb/ b/ b/ b/ linkpath

linkpathKEY=control-key

Description On the first RDNXT of a series, your program must set qualifier to one of
the three options. For a successful retrieval, the PDM updates the data
area and changes qualifier to the binary RRN of the record just read.

To read the next record in the file, your program must not change
qualifier before issuing the next RDNXT. For a SERIAL read, the PDM
finds the next serial record by scanning subsequent RRNs for a nonblank
record. For a serial-sequential read (linkpath directed), the PDM finds
the physically first chain-head, processes that linkpath set sequentially,
finds the next physical chain-head, and so on. If starting with a particular
key, processing proceeds from that point. Any chain-heads physically
prior to that one are not processed.

When the PDM returns the last record in the file, or in a linkpath, the next
RDNXT returns END. in status, sets qualifier to BEGN, and does not
update the data area. This also occurs if the file is empty on the first
read.

You can abandon the retrievals at any point. There is no context involved
for BDAM or ESDS.

Format Use one of the formats following. No blanks are allowed except the 4
blanks (b/ b/ b/ b/) shown, which are required.

RDNXT

PDM DML Programming Guide 161

BEGNb/ b/ b/ b/ SERIAL

Description Use this option to begin serially processing the file. The PDM starts with
the first physical record. If the file is empty, the PDM sets status to END.,
leaves qualifier unchanged, and does not update the data area.

For a successful retrieval, the PDM changes qualifier to rrrrb/ b/ b/ b/ SERIAL,
where rrrr is the RRN of the returned record.

To read the next record, your program must pass this qualifier,
unchanged, to the next RDNXT in the series. This directs the PDM to
continue serially sweeping the file for the next physical nonblank record.

When the PDM returns the last allocated record in the file, the next
RDNXT returns END. in status, sets qualifier to BEGNb/ b/ b/ b/ SERIAL, and
does not update the data area.

Chapter 3 Command syntax

162 P26-4340-64

BEGNb/ b/ b/ b/ linkpath

Description Use this option to begin serial-sequential processing of all chains on the
given linkpath name (ppppLKxx). The PDM scans the file for the first
head-of-chain record on this linkpath. If the file is empty, or contains no
records on the named linkpath, the PDM sets status to END., leaves
qualifier unchanged, and does not update the data area.

The first record returned is the first physical head-of-chain on the
linkpath. The PDM changes the qualifier to rrrrhhhhlinkpath. The rrrr is
the RRN of the returned record, and hhhh is the RRN of the chain-head.

Your program must pass this qualifier, unchanged, to the next RDNXT in
the series. This directs the PDM to examine the forward linkpath pointer
and return the next logical record in the linkpath set (sequential
processing). For each subsequent returned record, the PDM changes
the rrrr value to the newly retrieved record, leaving hhhh undisturbed.

When the PDM returns the last record on a chain, the next RDNXT
returns ENDC in status, changes the first 4 bytes of the qualifier to NEXT,
leaving hhhh undisturbed, and does not update the data area. This
informs your program that all records for this control key have been
processed. To continue sweeping the linkpath, your program must pass
this qualifier, unchanged, to the next RDNXT in the series. With the
NEXT qualifier, the PDM continues with a serial search for the next
physical chain-head after hhhh on this linkpath. When found, the PDM
returns the record, changes NEXT to rrrr, and hhhh to the new hhhh (as
on the first read).

If, during linkpath processing, you want to bypass some records before
end-of-chain (ENDC), your program may move NEXT to the first 4 bytes
of the qualifier (leaving other information unchanged), and issue the
RDNXT. The PDM skips the remaining records of this set and returns
the first record of the next linkpath set.

When the PDM returns the last record of the last chain in the linkpath, the
next RDNXT returns END. in status, sets the qualifier to BEGNb/ b/ b/ b/
linkpath, and does not update the data area.

RDNXT

PDM DML Programming Guide 163

linkpathKEY=control-key

Description Use this option to begin serial-sequential processing at the given chain
on the given linkpath name (ppppLKxx). The PDM accesses the primary
file for a record having the specified control-key value. This access is to
obtain the RRN of the head-of-chain for this linkpath set. Any linkpath
sets whose chain-heads physically precede this one are not processed.

If the key is not found, the PDM returns an error status (MRNF), leaves
qualifier unchanged, and does not update the data area.

If the key is found, but has no related records on this linkpath, the PDM
returns ENDC in status, sets qualifier to mmmmmmmmlinkpath, and does
not update the data area. The value mmmmmmmm denotes the
absence of a valid RRN and chain-head to begin the serial-sequential
read. If your program uses this qualifier on a subsequent RDNXT
command, the PDM rejects the command with an error status code. You
must reinitialize the qualifier if you want to start the read elsewhere.

If the key is found, and has related records on this linkpath, processing
proceeds as detailed under BEGNb/ b/ b/ b/ linkpath.

General consideration

 When serial-sequentially reading a related file, the PDM automatically
changes from the end of a chain to the next on the same linkpath.
However, if you want to change linkpaths, you must reinitialize the
qualifier to BEGNb/ b/ b/ b/ new-linkpath, and reexecute the RDNXT
command.

Chapter 3 Command syntax

164 P26-4340-64

READD
The READD (Read Direct) command reads the related record specified
by the reference parameter. No other related record is accessed for this
read. Your program must have issued another DML command before
this READD to determine the RRN to use.

READD,status,file,reference,linkpath,control-key,data-list,
data-area,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Considerations

♦ If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status codes:

HELD When accessing a database record currently being held by
another task, the PDM waits until a user-defined time-out
counter expires before it reexamines the status of the lock
request. If the record is still HELD, the PDM returns the
HELD status to the application. The application may elect to
terminate the task or reissue the command. If you choose
recycle logic for HELD statuses, you should implement an
upper limit to the mechanism in the program logic.

EMBR As with the HELD status, the PDM may return EMBR when
another task is using the database record. Distinguishing the
EMBR from the HELD status is the occurrence of a deadly
embrace. Deadly embrace occurs when two tasks, already
owners of a resource (database record), attempt to gather
each other’s resources. To handle an EMBR status, restart
the logical unit of work. Alternatively, you can introduce a
retry mechanism with an upper limit retry count in your
program logic.

READD

PDM DML Programming Guide 165

file

Description Required. Identifies the related file to be acted upon. You can define a
field containing the name or you can use the actual file name as a literal
in the CALL statement.

Format 4 alphanumeric characters; first character must be alphabetic

Consideration The file must be a related file, or the PDM returns an error status code.

reference

Description Required. Points to a 4-character field containing the RRN of the related
record to read.

Format 4 alphanumeric characters or a binary fullword

Consideration When the READD command completes successfully, the reference
parameter still contains the RRN of the retrieved record. That is, the
PDM does not change reference.

linkpath

Description Required. This parameter must be present to complete the parameter
list and must contain a valid address; however, the data to which it points
is not examined.

control-key

Description Required. This parameter must be present to complete the parameter
list and must contain a valid address; however, the data to which it points
is not examined.

Chapter 3 Command syntax

166 P26-4340-64

data-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory.

Format dataitem1,dataitem2,...dataitemn,END.

Considerations

♦ The commas between the entries are optional and only serve as
separators; be consistent whether you use them or not.

♦ The data list can include the names of data items, control keys, and
record codes. Do not name linkpaths. Do not list any name twice. If
a name is not accepted, the PDM returns an error status code.

♦ You can list the data names in any order. They are processed in the
order listed, not in the order defined on the Directory. However, for
coded records, the record code must be first in the list. If not,
unpredictable results occur. See “Data list parameter keywords” on
page 62 for coded data list construction rules.

♦ VSE When using a cross-address space central PDM in VSE/AF with
XPCC=YES, the data area mapped by this data-list parameter is
limited by the CSIPARM MAXIO value. This governs DML having no
length parameter. Refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250, for CSIPARM
information.

READD

PDM DML Programming Guide 167

data-area

Description Required. Points to a field to receive the data items named in the data
list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) named in the
data-list.

Considerations

♦ The data area must be large enough to hold values for all data items
named in the data list. For example, if you have one data item in
your data list and it describes a physical field which is 20 bytes in
length, your data area must be at least 20 bytes long.

♦ The data area and the data list have corresponding fields. The data
list holds names, and the data area holds a value for each of those
names.

end

Description Required. Points to a 4-character field that delimits the parameter list
and determines the record holding function (see “Record holding” on
page 42).

Options END. Holds the retrieved record.

RLSE Does not hold the retrieved record; can read an
uncommitted record.

General considerations

♦ If your program executes a READR or a READV immediately before
the READD, the READD (using the same reference field) reads the
same record again.

♦ If your program issues a READV or READR following a READD, the
PDM reads the next record (if READV) or the preceding record (if
READR).

♦ If your program executes a DELVD immediately after a READD, the
PDM deletes the related record, and the reference parameter then
points to the preceding record. See the DELVD command for further
DELVD considerations.

Chapter 3 Command syntax

168 P26-4340-64

READM
The READM (Read Primary) command reads the record specified by the
control key and places the record into the data area according to the
data-list parameter.

READM,status,file,control-key,data-list,data-area,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Considerations
♦ If the command fails or if the status code indicates some special

condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status codes:

MRNF The specified control-key parameter value does not exist on
the file.

HELD When accessing a database record currently being held by
another task, the PDM waits until a user-defined time-out
counter expires before it reexamines the status of the lock
request. If the record is still HELD, the PDM returns the
HELD status to the application. The application may elect to
terminate the task or reissue the command. If you choose
recycle logic for HELD statuses, you should implement an
upper limit to the mechanism in the program logic.

EMBR As with the HELD status, the PDM may return EMBR when
another task is using the database record. Distinguishing the
EMBR from the HELD status is the occurrence of a deadly
embrace. Deadly embrace occurs when two tasks, already
owners of a resource (database record), attempt to gather
each other’s resources. To handle an EMBR status, restart
the logical unit of work. Alternatively, you can introduce a
retry mechanism with an upper limit retry count in your
program logic.

READM

PDM DML Programming Guide 169

file

Description Required. Identifies the primary file to be acted upon. You can define a
field containing the name or you can use the actual file name as a literal
in the CALL statement.

Format 4 alphanumeric characters; first character must be alphabetic

Consideration The file must be a primary file, or the PDM returns an error status code.

control-key

Description Required. Points to a field containing the key of the primary record to be
processed. The PDM uses this key to identify the primary record being
read.

Format Variable length as defined on the Directory

data-list

Description Required. A variable length field containing a list of data items. This list
acts as a map of the layout of the data area. Compose this list using
data names (physical fields) defined on the Directory.

Format dataitem1,dataitem2,...dataitemn,END.

Considerations

♦ The commas between the entries are optional and only serve as
separators; be consistent whether you use them or not.

♦ The data list can include the names of data items and control keys.
Do not name linkpaths or the root field. Do not list any name twice.
If a name is not accepted, the PDM returns an error status code.

♦ You can list the data names in any order. They are processed in the
order listed, not in the order defined on the Directory.

♦ VSE When using a cross-address space central PDM in VSE/AF with
XPCC=YES, the data area mapped by this data-list parameter is
limited by the CSIPARM MAXIO value. This governs DML having no
length parameter. Refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250, for CSIPARM
information.

Chapter 3 Command syntax

170 P26-4340-64

data-area

Description Required. Points to a field to receive the data from the data items named
in the data list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) named in the
data list.

Considerations

♦ The data area must be large enough to hold values for all data items
named in the data list. For example, if you have one data item which
is 20 bytes long, your data area must be at least 20 bytes long.

♦ The data area and the data list have corresponding fields. The data
list holds names, and the data area holds a value for each of those
names.

end

Description Required. Points to a 4-character field that delimits the parameter list
and determines the record holding function (see “Record holding” on
page 42).

Options END. Holds a retrieved record.

RLSE Does not hold a retrieved record; can read an
uncommitted record.

READM

PDM DML Programming Guide 171

READR
The READR (Read Reverse) command reads a related record. Use it to
follow a chain backward along a specified linkpath. You start the first
read with LKxx in the reference parameter. The PDM accesses the
control key primary record to find the last logical record in this chain.

After the READR, the PDM updates the reference to contain the located
record RRN. Your program can then pass that information as reference
value to the next READR. The PDM uses it to find the preceding logical
record on the chain, and so on until head-of-chain is read.

READR,status,file,reference,linkpath,control-key,data-list,
data-area,end

Chapter 3 Command syntax

172 P26-4340-64

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Considerations

♦ If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status code:

MRNF The specified control-key parameter value does not exist in
the respective primary file.

HELD When accessing a database record currently being held by
another task, the PDM waits until a user-defined time-out
counter expires before it reexamines the status of the lock
request. If the record is still HELD, the PDM returns the
HELD status to the application. The application may elect to
terminate the task or reissue the command. If you choose
recycle logic for HELD statuses, you should implement an
upper limit to the mechanism in the program logic.

EMBR As with the HELD status, the PDM may return EMBR when
another task is using the database record. Distinguishing the
EMBR from the HELD status is the occurrence of a deadly
embrace. Deadly embrace occurs when two tasks, already
owners of a resource (database record), attempt to gather
each other’s resources. To handle an EMBR status, restart
the logical unit of work. Alternatively, you can introduce a
retry mechanism with an upper limit retry count in your
program logic.

♦ You receive **** in status even when the reference parameter is
updated to END., signifying the last record was processed by the
previous read.

READR

PDM DML Programming Guide 173

file
Description Required. Identifies the related file to be acted upon. You can define a

field containing the name or you can use the actual file name as a literal
in the CALL statement.

Format 4 alphanumeric characters; first character must be alphabetic
Consideration The file must be a related file, or the PDM returns an error status code.

reference
Description Required. Points to a field identifying the position in a related record

chain. You use the reference parameter by placing a certain value in this
field to tell the PDM which record to begin with. The PDM returns a
certain value to inform you which related record was processed.

Format 4-byte field
Options LKxx You set this value to the same as the last 4 characters of

the linkpath parameter. Substitute the actual characters
for xx. This value directs the PDM, for READR, to read
the last logical record in the chain for this control key.

rrrr This is set by the PDM to identify the RRN of the record
just read. When you issue a READR with reference still
set to rrrr from the previous READR, the PDM uses this
RRN to locate the preceding logical record in the chain.

Considerations
♦ If the reference parameter contains an RRN, the READR uses the

back pointer in that record to find the RRN of the preceding record.
The preceding record is retrieved and its RRN is placed in the
reference field. Therefore, reference always contains the RRN of the
record just read.

♦ The PDM places the keyword END. in the reference field if you
attempt to go beyond the end of the chain. This signifies that the
previous read returned the first logical record in the chain
(head-of-chain). You can reinitialize the parameters to begin another
chain process.

♦ If the PDM sets END. for a first READR execution with LKxx, the
chain is empty.

♦ Since END. is not valid as input reference for READR, your program
must change this value before it issues another READR. You must,
therefore, include logic in your program to test the reference field for
END. after each command to detect the logical end of the search
(beginning of the chain).

Chapter 3 Command syntax

174 P26-4340-64

linkpath

Description Required. Points to a field containing the name of the linkpath as defined
on the Directory.

Format ppppLKxx pppp identifies the name of an associated primary file,
LK is a constant and xx are the last 2 characters of the
linkpath name as defined on the Directory.

Consideration If you specify an invalid linkpath, the PDM returns an error status code.

control-key

Description Required. Points to a field containing the key of the primary record
controlling the chain. The PDM uses this key to link from a primary
record to a related record.

Format Variable length as defined on the Directory

READR

PDM DML Programming Guide 175

data-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory.

Format dataitem1,dataitem2,...dataitemn,END.

Considerations

♦ The commas between the entries are optional and serve only as
separators; be consistent whether you use them or not.

♦ The data list can include the names of data items, control keys, and
record codes. Do not name linkpaths. Do not list any name twice. If
a name is not accepted, the PDM returns an error status code.

♦ You can list the data names in any order. They are processed in the
order listed, not in the order defined on the Directory. However, for
coded records, the record code must be first in the list. If not,
unpredictable results occur. See “Data list parameter keywords” on
page 62 for coded data list construction rules.

♦ VSE When using a cross-address space central PDM in VSE/AF with
XPCC=YES, the data area mapped by this data-list parameter is
limited by the CSIPARM MAXIO value. This governs DML having no
length parameter. Refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250, for CSIPARM
information.

Chapter 3 Command syntax

176 P26-4340-64

data-area

Description Required. Points to a field to be used as an output area for the data
items named in the data list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) named in the
data list.

Considerations

♦ The data area must be large enough to hold values for all data items
named in the data list. For example, if you have one data item which
is 20 bytes long, your data area must be at least 20 bytes long.

♦ The data area and the data list have corresponding fields. The data
list holds names, and the data area holds a value for each of those
names.

end

Description Required. Points to a 4-character field that delimits the parameter list
and determines the record holding function (see “Record holding” on
page 42).

Options END. Holds a retrieved record.

RLSE Does not hold a retrieved record; can read an
uncommitted record.

READR

PDM DML Programming Guide 177

General considerations

 To begin processing a chain in reverse direction, your program initializes
the parameters as follows:

♦ Sets the control-key parameter to the value you want to process

♦ Sets the file parameter to the name of the related file containing the
chain

♦ Sets the linkpath parameter to the name of the linkpath relating the
primary and related files

♦ Sets the reference parameter to LKxx, where xx are the actual
characters

 Your program then executes READR and the following occurs:

♦ The PDM recognizes LKxx as a request to read the last record in the
chain.

♦ The PDM uses the linkpath parameter to identify a primary file. It
verifies in the Directory that the linkpath relates that primary file and
the related file named in the file parameter.

♦ The PDM uses the control key to read a record from that primary file.

♦ The PDM uses the linkpath field in that primary record to read the last
record on the chain from the related file.

♦ The PDM uses the data-list parameter to move fields from the related
record into the data area.

♦ The PDM changes the value of the reference parameter to the RRN
of the record just read, and returns control to your program.

 To read the preceding logical record in the chain, your program can issue
another READR with the same parameter list with undisturbed values.
The PDM uses the RRN in reference to locate the preceding logical
record and return its RRN and data.

Chapter 3 Command syntax

178 P26-4340-64

READV
The READV (Read Forward) command reads a related record. Use it to
follow a chain forward along a specified linkpath. You start the first read
with LKxx in the reference parameter. The PDM accesses the control key
primary record to find the first logical record in this chain. After the
READV, the PDM updates the reference to contain the located record
RRN. Your program can then pass that information as reference value to
the next READV. The PDM uses it to find the next logical record on the
chain, and so on until end-of-chain is read.

READV,status,file,reference,linkpath,control-key,data-list,
data-area,end

READV

PDM DML Programming Guide 179

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Considerations

♦ If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status code:

MRNF The specified control-key parameter value does not exist in
the respective primary file.

HELD When accessing a database record currently being held by
another task, the PDM waits until a user-defined time-out
counter expires before it reexamines the status of the lock
request. If the record is still HELD, the PDM returns the
HELD status to the application. The application may elect to
terminate the task or reissue the command. If you choose
recycle logic for HELD statuses, you should implement an
upper limit to the mechanism in the program logic.

EMBR As with the HELD status, the PDM may return EMBR when
another task is using the database record. Distinguishing the
EMBR from the HELD status is the occurrence of a deadly
embrace. Deadly embrace occurs when two tasks, already
owners of a resource (database record), attempt to gather
each other’s resources. To handle an EMBR status, restart
the logical unit of work. Alternatively, you can introduce a
retry mechanism with an upper limit retry count in your
program logic.

♦ You receive **** in status even when the reference parameter is
updated to END., signifying the last record was processed by the
previous read.

Chapter 3 Command syntax

180 P26-4340-64

file

Description Required. Identifies the related file to be acted upon. You can define a
field containing the name or you can use the actual file name as a literal
in the CALL statement.

Format 4 alphanumeric characters; first character must be alphabetic

Consideration The file must be a related file or the PDM returns an error status code.

READV

PDM DML Programming Guide 181

reference

Description Required. Points to a field identifying the current position in a related
record chain. You use the reference parameter by placing a certain value
in this field to tell the PDM which record to begin with. The PDM returns
a certain value to inform you which related record was processed.

Format 4-byte field

Options LKxx You set this value to the same as the last 4 characters of
the linkpath parameter. Substitute the actual characters
for xx. This value directs the PDM, for READV, to read
the first logical record in the chain for this control key.

rrrr This is set by the PDM to identify the RRN of the record
just read. When you issue a READR with reference still
set to rrrr from the previous READR, the PDM uses this
RRN to locate the next logical record in the chain.

Considerations

♦ If the reference parameter contains an RRN, the READV uses the
forward pointer in that record to find the RRN of the next record. The
next record is retrieved and its RRN is placed in the reference field.
Therefore, reference always contains the RRN of the record just
read.

♦ The PDM places the keyword END. in the reference field if you
attempt to go beyond the end of the chain. This signifies that the
previous read returned the last logical record in the chain
(end-of-chain). You can reinitialize the parameters to begin another
chain process.

♦ If the PDM sets END. for a first READV execution with LKxx, the
chain is empty.

♦ Since END. is not valid as input reference for READV, your program
must change this value before it issues another READV. You must,
therefore, include logic in your program to test the reference field for
END. after each command to detect the logical end of the search
(end of the chain).

Chapter 3 Command syntax

182 P26-4340-64

linkpath

Description Required. Points to a field containing the name of the linkpath as defined
on the Directory.

Format ppppLKxx pppp identifies the name of an associated primary file,
LK is a constant and xx are the last 2 characters of the
linkpath name as defined on the Directory.

Consideration If you specify an invalid linkpath, the PDM returns an error status code.

control-key

Description Required. Points to a field containing the key of the primary record
controlling the chain. The PDM uses this key to link from a primary
record to a related record.

Format Variable length as defined on the Directory

READV

PDM DML Programming Guide 183

data-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory.

Format dataitem1,dataitem2,...dataitemn,END.

Considerations

♦ The commas between the entries are optional and only serve as
separators; be consistent whether you use them or not.

♦ The data list can include the names of data items, control keys, and
record codes. Do not name linkpaths. Do not list any name twice. If
a name is not accepted, the PDM returns an error status code.

♦ You can list the data names in any order. They are processed in the
order listed, not in the order defined on the Directory. However, for
coded records, the record code must be first in the list. If not,
unpredictable results occur. See “Data list parameter keywords” on
page 62 for coded data list construction rules.

♦ VSE When using a cross-address space central PDM in VSE/AF with
XPCC=YES, the data area mapped by this data-list parameter is
limited by the CSIPARM MAXIO value. This governs DML having no
length parameter. Refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250, for CSIPARM
information.

Chapter 3 Command syntax

184 P26-4340-64

data-area

Description Required. Points to a field to be used as an input/output area for the data
items named in the data list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) named in the
data list.

Considerations

♦ The data area must be large enough to hold values for all data items
named in the data list. For example, if you have one data item which
is 20 bytes long, your data area must be at least 20 bytes long.

♦ The data area and the data list have corresponding fields. The data
list holds names, and the data area holds a value for each of those
names.

end

Description Required. Points to a 4-character field that delimits the parameter list
and determines the record holding function (see “Record holding” on
page 42).

Options END. Holds a retrieved record.

RLSE Does not hold a retrieved record; can read an
uncommitted record.

READV

PDM DML Programming Guide 185

General considerations

 To begin processing a chain in forward direction, your program initializes
the parameters as follows:

♦ Sets the control-key parameter to the value you want to process

♦ Sets the file parameter to the name of the related file containing the
chain

♦ Sets the linkpath parameter to the name of the linkpath relating the
primary and related files

♦ Sets the reference parameter to LKxx, where xx are the actual
characters

 Your program then executes READV and the following occurs:

♦ The PDM recognizes LKxx as a request to read the first logical
record in the chain.

♦ The PDM uses the linkpath parameter to identify a primary file. It
verifies in the

♦ Directory that the linkpath relates that primary file and the related file
named in the file parameter.

♦ The PDM uses the control key to read that record from the primary
file.

♦ The PDM uses the linkpath field in that primary record to read the
first logical record on the chain from the related file.

♦ The PDM uses the data-list parameter to move fields from the related
record into data area.

♦ The PDM changes the value of the reference parameter to the RRN
of the record just read, and returns control to your program.

 To read the next logical record in the chain, your program can issue
another READV with the same parameter list with undisturbed values.
The PDM uses the RRN in reference to locate the next logical record and
return its RRN and data.

Chapter 3 Command syntax

186 P26-4340-64

READX
The READX command accesses primary or related file record(s) using a
secondary key from an index that exists for the file. You can start the
read at the beginning or end of the index file, or at a generic or specific
secondary key value. Data items according to your data list are retrieved
into the data area. If using a coded data list, record codes omitted from
the list are not retrieved. After each read, the PDM updates the qualifier
parameter to the next record’s location, and updates the internal context
area, in order to simplify the repeated READX commands. You can
continue reexecuting the READX command until the end of the file is
reached.

READX,status,file,option-list,qualifier,data-area-len,data-list,
data-area,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Considerations

♦ If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

This command causes the PDM to create a context area for use with
repeated reads. It is important that you control the release of this context
area by checking the qualifier’s qqqq content.

READX

PDM DML Programming Guide 187

♦ Code your program to handle the following warning status codes:

*IPO The requested key was not located at the expected offset in the
index tables, or if at least one internal reference point (RRN) was
not the same on this iteration as on the last. Check the returned
record to make sure it is not a duplicate, or restart the function to
make sure data was not bypassed. This status code is also
returned if the index block containing the requested key on the last
call no longer exists and an index restart was required. In this
case, the returned data is correct. Use SHOWX for extended
status to determine which event occurred.

*NXT Returned if the requested key is not on the index, so the next best
key is returned.

*PON Returned if index positioning was off and the next key was
returned, or if repositioning took place but there were no more
records that matched the key.

HELD When accessing a database record currently being held by another
task, the PDM waits until a user-defined time-out counter expires
before it reexamines the status of the lock request. If the record is
still HELD, the PDM returns the HELD status to the application.
The application may elect to terminate the task or reissue the
command. If you choose recycle logic for HELD statuses, you
should implement an upper limit to the mechanism in the program
logic.

EMBR As with the HELD status, the PDM may return EMBR when another
task is using the database record. Distinguishing the EMBR from
the HELD status is the occurrence of a deadly embrace. Deadly
embrace occurs when two tasks, already owners of a resource
(database record), attempt to gather each other’s resources. To
handle an EMBR status, restart the logical unit of work.
Alternatively, you can introduce a retry mechanism with an upper
limit retry count in your program logic.

LOST The requested key was not located at the expected offset in the
index tables, or if at least one internal reference point (RRN) was
not the same on this iteration as on the last. Check the returned
record to make sure it is not a duplicate, or restart the function to
make sure data was not bypassed. This status code is also
returned if the index block containing the requested key on the last
call no longer exists and an index restart was required. In this
case, the returned data is correct. Use SHOWX for extended
status to determine which event occurred.

 The key you are trying to position at was deleted by another task.
Reestablish your position by restarting the function.

Chapter 3 Command syntax

188 P26-4340-64

file

Description Required. Identifies the primary or related file to be acted upon. You can
define a field containing the name of the or you can use the actual file
name as a literal in the CALL statement.

Format 4 alphanumeric characters; first character must be alphabetic

Consideration The file can be either a related or primary file.

option-list

Description Required. Points to a field defining the options to be used in accessing
the index file.

Format Variable length; maximum field length is 62 bytes. You can use the long
form or abbreviated form of the keywords. Do not mix them. No blanks
are allowed.

()

()
END.,

Y
N

=MK,

Y
N

KC,

R
F

=DR,

=SK

or

END.,
YES
NO

=MASK,

YES
NO

=KEYCOUNT,

REVERSE
FORWARD

=DIRECTION,

SECKEY





















































=





































































−=

name-seckey

nameseckey

Options The options you choose must coordinate with the qualifier parameter.
The options can be coded in any order but must end with END. Use a
comma between each option you code. No blanks are allowed between
options. The options are as follows:

SECKEY=(seckey-name)

Description Required. Identifies the secondary key to use. The
secondary key name must be defined on the Directory
for the file you named in the file parameter.

READX

PDM DML Programming Guide 189

DIRECTION =
FORWARD
REVERSE









Description Mutually exclusive with KEYCOUNT.

Format Specifies a sequence for the PDM to read the secondary
keys on the index file, and, to read the “hit” list for each
secondary key value.

Default FORWARD

KEYCOUNT =
NO
YES









Restriction Mutually exclusive with DIRECTION.

Description Specifies whether you want a count instead of data
records.

Default NO

Options NO The PDM returns an associated data record to the
data area for each READX.

 YES A one-time read to scan the index and return the
totaled index count of the number of data records
having the full or partial value specified in the
qualifier parameter (kkkk...). The PDM returns the
count as a binary number in the first 4 bytes of the
data area.

Considerations

♦ This allows you to traverse the secondary tree
structure without accessing the primary or related
file.

♦ You can use KEYCOUNT in conjunction with
MASK=YES if ssss and kkkk... in the qualifier
denote the full key length.

Chapter 3 Command syntax

190 P26-4340-64

MASK =
NO
YES









Description Specifies whether the kkkk... value in the qualifier
parameter is a literal value or a masked value.

Default NO

Options NO kkkk in the qualifier is an actual full or partial
secondary key value. (A partial value provides a
form of generic search.)

 YES kkkk is a full secondary key masked value. (This
provides another form of generic search.) See
Considerations of the qualifier parameter for the
rules of key mask construction.

END.

Description Specifies the options list delimiter.

READX

PDM DML Programming Guide 191

qualifier

Description Required. Points to a variable length field in which you establish the
starting point, and the PDM maintains the current position, for the serial
indexed reads.

Format qqqqccccrrrrssss[kkkk...]

where:

qqqq A 4-character field that directs the PDM action as follows:

BEGN You code this for the first read. The PDM binds your
option-list parameter content and creates an internal
context area for it, pointed to by cccc.

NEXT Returned after each read so you can continue without
resetting.

REBD You can set qqqq to REBD any time after the first read,
to change the DIRECTION option (in option-list
parameter). The PDM rebinds your options and performs
a read. This returns the next record in the opposite
direction. (The KEYCOUNT and MASK options must be
removed if you do this).

END. Returned on the next read following the final applicable
record, signaling termination of the process and freeing
of context. Also, you can set qqqq to END. any time after
the first read, to terminate the process before the PDM
does, thus freeing the context.

cccc A binary fullword you initialize to blanks. This field points to the
context area the PDM creates for the bound option-list. Do not
alter this field.

rrrr A binary fullword you initialize to blanks. This field receives the
returned RRNs (BDAM and ESDS only) of each data record for
each secondary key. If the associated data file is KSDS, this
value has no meaning. Also, if KEYCOUNT is used, this value
has no meaning.

ssss A zoned numeric field you initialize to zero if no kkkk given, or to
the length (size) of kkkk. In COBOL, this is a PIC 9(4) field.

kkkk... An optional character field you can set to a partial or full
secondary key value if ssss is not zero. This begins the serial
read at a location other than the beginning or end of the index
file.

Chapter 3 Command syntax

192 P26-4340-64

Considerations

♦ On the first READX of a series, your program must set qqqq to
BEGN. If DIRECTION=FORWARD in the options parameter, the
PDM starts with the first secondary key in the index (lowest), or the
first entry that matches kkkk. The “hit” list for this lowest key is
retrieved from beginning to end. If DIRECTION=REVERSE, the
PDM starts with the last (highest), or the last entry that matches kkkk.
The “hit” list for this highest key is retrieved from end to beginning.
Upon successful retrieval of a data record, the PDM changes qqqq to
NEXT, sets cccc to point to the unique bound identifier, and sets rrrr
to the RRN of the returned data record.

 To read the next record in the same DIRECTION, your program must
not change qualifier before issuing the next READX. After the PDM
has returned the last record in the same DIRECTION, the next
READX sets qqqq to END. and frees the internal context.

♦ If you provide a full unmasked kkkk, only one record will match the
secondary key when the index is unique or is over a primary file
control key. In this case, the PDM returns END. in qqqq instead of
NEXT.

♦ Once a READX returns NEXT in the qqqq field, the program can alter
it to either REBD or END. If the program alters it to any other value,
or if it alters other fields in the qualifier, unpredictable results or errors
could occur.

♦ Use END. in qqqq (leaving cccc undisturbed) to terminate processing
prior to the PDM END. signal in qqqq. This frees the context area
(each execution with BEGN creates a new context area). If a great
number of READX commands by one or various tasks are
abandoned without freeing the context, ICOR status returns are
probable for all tasks.

♦ You can use REBD in qqqq (leaving cccc undisturbed), remove the
MASK or KEYCOUNT options if coded, and reinitialize the
DIRECTION in the option-list parameter. This changes the direction
of the secondary key search before END. is reached. The next
READX returns data field values in accordance with the change in
direction. If a MASK was being used, that masking is still in effect.

♦ Initialize the ssss parameter to the length of a kkkk value you provide
(partial or full key value). If you are not using kkkk, initialize ssss to
zero for the first read (BEGN). The READX series will read every
record, starting with the lowest or highest secondary key (according
to DIRECTION).

READX

PDM DML Programming Guide 193

♦ The optional kkkk... parameter directs the PDM to process only the
records that match this beginning or full value. If kkkk value is a
partial key value, ssss should denote the partial length. The search
stops with END. when there are no more keys matching the partial or
full value.

 A full length kkkk can be masked by using MASK=YES in the options
parameter and using the masking characters (as described in the
following) within the kkkk. This provides a generic search.

♦ A mask can consist of any valid EBCDIC value. The characters &, #,
and @ in the value have special meaning to the mask processor. All
other characters in the mask mean that a secondary key value must
match exactly in those positions to qualify for selection. The
comparison is made as if all bytes are character. That is, there are
no considerations for packed, zoned or other data types. The special
meanings are:

a. The character & means that any valid EBCDIC value can be in
this position of the secondary key value.

b. The character # means that a number 0-9 must be in this
position of the secondary key value.

c. The character @ means that a letter (upper or lower) must be in
this position of the secondary key value.

 As an example mask, if you are looking for B100###AA records, use
B100###AA. If you want only the 1009’s, use B1009##@@ or
B1009&&&&. A forward search ends when the first record beginning
with C is encountered. A reverse search ends with the first A record.
However, if you use &1009###AA, the entire secondary key is
scanned before END. because the & in first position requests all keys
(any character in this position).

♦ Since the comparison is made as if all bytes in the key are character
(2.1.6 only), take care if they are not. The binary representation of
the mask characters may be the same as a data value you want to
search.

♦ If you use a mask, be sure to mask the entire length of the secondary
key. If you make it shorter (partial), no match is found. The ssss
field of the qualifier should specify the full length.

♦ The READX returns only those data items named in your data list.
For coded data lists, only the records with those codes are processed
for data retrieval (or for KEYCOUNT).

Chapter 3 Command syntax

194 P26-4340-64

data-area-len

Description Required. Required for compatibility.

Format 4-byte field, set to unsigned zero

data-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory.

Format dataitem1,dataitem2,...dataitemn,END.

Considerations

♦ The commas between the entries are optional and serve only as
separators; be consistent whether you use them or not.

♦ The data list can include the names of data items, control keys, and
record codes. Do not name linkpaths or the root field. Do not list any
name twice. If a name is not accepted, the PDM returns an error
status code.

♦ You can list the data names in any order. They are processed in the
order listed, not in the order defined on the Directory. However, for
coded records, the record code must be first in the list. If not,
unpredictable results occur. See “Data list parameter keywords” on
page 62 for coded data list construction rules.

♦ VSE When using a cross-address space central PDM in VSE/ESA
with XPCC=YES, the data area mapped by this data-list parameter is
limited by the CSIPARM MAXIO value. This governs DML having no
length parameter. Refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250, for CSIPARM
information.

♦ If all the fields in the data-list are contained in the secondary key and
the end parameter is RLSE, your DML request may qualify for the
performance option for indexed reads. See “Diagnosing application
DML errors” on page 36 for more information.

♦ If all the fields in the data-list are contained in the secondary key and
the end parameter is RLSE, your DML request may qualify for the
performance option for indexed reads. See “Reading records via
secondary keys” on page 35 for more information.

READX

PDM DML Programming Guide 195

data-area

Description Required. Points to a field or fields to be used as an input area for the
data to be retrieved from the record.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) named in the
data list.

Considerations

♦ The data area must be large enough to hold values for all data items
named in the data list.

♦ The data-area parameter and the data-list parameter have
corresponding fields. The data list holds names, and the data area
holds a value for each of those names.

end

Description Required. Points to a 4-character field that delimits the parameter list
and determines the record holding function (see “Record holding” on
page 42).

Options END. Holds a retrieved record.

RLSE Does not hold a retrieved record; can read an
uncommitted record.

Consideration END. does not affect the secondary key records on the index file. They
can still undergo maintenance during the READX series.

General considerations

♦ Do not execute the ADD-M, DEL-M, or DELVD commands while
processing a file with READX, since the index structure could be
altered by the add/delete operation. A repeat READX will then not be
positioned correctly. It may miss some records in the scan and may
read others multiple times.

♦ This command causes the PDM to create a unique context area for
use with repeated reads. It is very important that you control the
release of this context area. See the qualifier parameter description
for details.

Chapter 3 Command syntax

196 P26-4340-64

RESET
The RESET command serves two purposes. If issued during regular
processing, RESET restores updated records and file status to their
condition at the most recent COMIT of this task, or its SINON. This backs
out an incomplete logical unit of work. If the RESET is issued in
response to a RSTR status at SINON, the PDM retrieves the task’s
last-saved COMIT data area.

RESET,status,comit-id,length,data-area,END.

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Consideration If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to handle
and possibly correct the situation. For a list of all status codes, refer to
the SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126.

RESET

PDM DML Programming Guide 197

RESET comit-id

Description Required. Points to an area to contain the literal LAST or a commit
number denoting last commit ID.

Format 4-byte field

Options LAST The PDM finds the most recent commit number for this
task.

comit-number A binary fullword denoting the most recent commit
number for this task.

Considerations

♦ The PDM cannot reset further back than the most recent commit.

♦ If you use a commit number, it must be equal to the commit number
the PDM returned to the task’s most recent COMIT. This form of the
parameter is provided so that you can use the COMIT command’s
corresponding field without reinitializing. If you RESET before issuing
any COMIT during regular processing, use zero (or LAST).

♦ If you RESET because of a RSTR status on SINON, use LAST
instead of comit-number.

♦ After completion, the PDM updates this field to the commit number of
the most recent COMIT issued by this task or a zero if this task has
issued no COMITs.

Chapter 3 Command syntax

198 P26-4340-64

length

Description Required. Points to a 4-byte area containing the length of the data-area
parameter.

Format Binary fullword

Considerations

♦ Set this parameter to zero for a regular RESET unless you really
want data you saved at your last COMIT. Set it to the appropriate
length for the special RESET following a RSTR status at SINON.

♦ Length must be at least the length of the data saved by the most
recent COMIT, or the PDM returns a warning status code (*SIZ). In
this case, the first n bytes of commit data are moved to the data area,
where n is the length you specified.

♦ After completion, the PDM updates this field to contain the exact
length of the data that was saved with the most recent COMIT. The
length actually moved to the data area is less if the status return is
*SIZ. If this updated value is zero, there was no saved data, or the
program had not issued a COMIT before this point.

♦ Since records are spread physically across system log blocks, there
is no theoretical limit to the size of your data area. However, you
must consider your program’s available memory and your Task Log
File capacity.

♦ VSE When using a central PDM in a cross-address space VSE/AF
SP2.1 (XPCC=YES), the RESET data area’s maximum length is
limited by the CSIPARM MAXPACKET value. Refer to the SUPRA
Server PDM and Directory Administration Guide (OS/390 & VSE),
P26-2250, for CSIPARM information.

RESET

PDM DML Programming Guide 199

data-area

Description Required. Points to a field to receive the data you saved with the most
recent COMIT.

Considerations

♦ The data area must be at least as long as the length specified in the
associated length parameter.

♦ If you issue a RESET after receiving an RSTR status from SINON,
the PDM returns the commit data you saved at the most recent
commit point taken before program failure.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

General considerations

♦ If task logging is not active when you issue this command, the PDM
returns an error status code.

♦ If this RESET is issued before the program’s first COMIT, the PDM
backs out the incomplete logical unit of work back to the SINON, but
it is still signed on. The PDM returns a zero in the comit-id
parameter.

♦ If your task fails before it issues the first COMIT or RESET, the PDM
backs out the incomplete logical unit of work back to the SINON, and
signs off the task.

Chapter 3 Command syntax

200 P26-4340-64

RQLOC
The RQLOC (Request Location) command executes the PDM hashing
algorithm which determines primary file record locations (see “Adding a
primary record” on page 22). It accepts a control key value as input and
generates an RRN as output. It performs no I/O operations. With this
command, you can, among other things, build a file of control keys and
their respective RRNs. This file can be sorted on RRNs and the data
then processed at maximum speed against the primary file.

RQLOC,status,file,control-key,data-area,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Consideration If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to handle
and possibly correct the situation. For a list of all status codes, refer to
the SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126.

file

Description Required. Identifies the primary file to be acted upon. You can define a
field containing the name or you can use the actual file name as a literal
in the CALL statement.

Description 4 alphanumeric characters; first character must be alphabetic

Considerations

♦ The file must be accessed via ESDS or BDAM, or the PDM returns
an error status code.

♦ The file must be a primary file, or the PDM returns an error status
code.

RQLOC

PDM DML Programming Guide 201

control-key

Description Required. Points to a field containing the key to process. The PDM uses
this key to determine the value of the home location in the file.

Format Variable length as defined in the Directory

data-area

Description Required. Points to a field the PDM uses to return the RRN.

Format Binary fullword

end

Description Required. Points to a field that delimits the parameter list.

Format END.

General consideration

 Your task need not open a file before it issues RQLOC for a key value in
that file. The key value need not even exist.

Chapter 3 Command syntax

202 P26-4340-64

RSTAT
Use the RSTAT command to write statistics to the Statistics File when
the Directory specifies STATS=yes. (See “Generating statistics” on
page 51 for a general discussion of RSTAT usage.)

RSTAT,status,option-list,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Consideration If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to handle
and possibly correct the situation. For a list of all status codes, refer to
the SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126.

RSTAT

PDM DML Programming Guide 203

option-list

Description Required. Points to a field that controls the resetting of the statistics
counters or determines which records, if any, the PDM writes to the
Statistics File.

Format There are two possible formats. When constructing your list, separate
the options with commas and terminate the list with END. No blanks are
allowed between characters.

ACTION=CLEAR,END.
or

() END.,
ALL

=FILE,
YES
NO

=SYSTEM, WRITE=ACTION








































name-file

Options The options depend on which format you chose.

ACTION=CLEAR

Description Required. The PDM resets the statistics counters to
zero and no record is written. All subsequent statistics
are gathered relative to this point, not the start of this
PDM execution.

ACTION=WRITE

Description Required. The PDM writes the accumulated statistics to
the Statistics File, according to the next two parameters.
From this file you can print a report with the Execution
Statistics utility.

When the PDM initializes or terminates, it automatically
writes an initialization or termination record and all
statistics to the Statistics File when STATS=YES. Your
RSTAT commands write additional records in between.
See General Considerations.

Chapter 3 Command syntax

204 P26-4340-64

SYSTEM =
NO
YES









Description Optional. Determines whether the PDM writes a system
statistics record.

()






name-file
ALL

=FILE

Description Optional. Determines whether the PDM writes separate
file statistics records.

Options ALL The PDM writes statistics records for all files.

 (file-name) The PDM writes statistics records for the
named file.

Consideration Omitting this parameter means the PDM does not write
the file statistics records; only the system statistics
record.

END.

Description Required. Specifies the delimiter for the options list.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

RSTAT

PDM DML Programming Guide 205

General considerations

♦ RSTAT operations are not recoverable. Updates to the Statistics File
do not generate before image or after image log records. Also, the
PDM does not generate a function log record for this command.

♦ If you want statistics generated, use Directory Maintenance to enter a
Y for the Statistics Indicator on your environment description. If you
do not enter Y and then issue an RSTAT command, the PDM returns
an error status code.

♦ The PDM generates the first group of records when it initializes. This
group of records contains only initialization statistics. The PDM then
resets the statistics counters to zero, so that all performance data is
separate from initialization data.

♦ The PDM writes a final group of statistics records before closing the
Statistics File at PDM termination. They contain all values since the
last time the statistics counters were reset; that is, since initialization,
or since the last RSTAT command with ACTION=CLEAR issued by
any user.

♦ Due to the asynchronous processing between the PDM and
applications, the command counts in the accumulated statistics
records may differ slightly.

♦ The RSTAT command writes only accumulated statistics to the
Statistics File. The Execution Statistics utility produces calculated
statistics in addition. For information on the calculated statistics and
the utility, refer to the SUPRA Server PDM DBA Utilities User’s Guide
(OS/390 & VSE), P26-6260.

♦ To process the file yourself, you need to know its layout, which is
shown in the following 4 figures. The Statistics File is a sequential
output file defined in the active realm.

Chapter 3 Command syntax

206 P26-4340-64

♦ The table following the file layout figures presents all the statistics
gathered by the RSTAT command. The table shows each statistic’s
identifier on the Execution Statistics report, the field size of the data
area required for holding each statistic, and an explanation of the
statistic. This table also cross references an RSTAT statistic to a
corresponding SHOWX item request where applicable.

Task
name SINON user data Reserved

Record
descriptor

word
PDM job name PDM unique

identifier
Interface

name

4 bytes

12 bytes8 bytes8 bytes

8 bytes8 bytes8 bytes

Statistics
record
type

Current date
 and time

Record
sequence
number

4 bytes8 bytes4 bytes

Statistics record prefix (common to all records)

RSTAT

PDM DML Programming Guide 207

32 bytes8 bytes8 bytes

72 bytes 8 bytes8 bytes

Bootstrap
schema name

Bootstrap
environment

description name

Statistics
record
prefix

2.4 and higher only

ReservedUser schema
name

User
environment

description name

Initialization and termination records

72 bytes 8 bytes8 bytes

Date and time of last
RSTAT CLEAR

Total command
processing
(clock units)

Statistics
record
prefix

System statistics record

Total PDM active
(clock units)

8 bytes

4 bytes8 bytes

Total wait
(clock units)

Total
number of

waits

4 bytes

Total tasks

4 bytes

Max. No.
Concurrent

Tasks

4 bytes

Sum of
Concurrent
Commands

8 bytes

Max. No.
Concurrent
Commands

Total
commands
processed

4 bytes 4 bytes

4 bytes

Total ADD/
DELETE

commands
processed

4 bytes

Total other
commands
processed

4 bytes

Maximum
Held

Records
(0 in ST)

Total
WRITE

commands
processed

Total
READ

commands
processed

4 bytes 4 bytes

4 bytes

Total stolen
records
(2.1.6)

4 bytes

Total
bytes

memory
in K

4 bytes

Used
bytes

memory
in K

Total held
loops
(2.1.6)

Total
records

held
(0 in ST)

4 bytes 4 bytes

4 bytes

Total
bytes XA
memory

in K

4 bytes

Used
bytes XA
memory

in K

4 bytes

Max. bytes
XA

memory
in K

Threshold
memory
percent

Max. bytes
memory

in K

4 bytes 4 bytes

4 bytes

Current
monitored
records

4 bytes

Maximum
monitored
records

4 bytes

Total
monitored

records

Current
held

records
Reserved

4 bytes 4 bytes

Maximum elapsed
time for any command

(clock units)

Reserved (2.4)

2.4 and higher only

Chapter 3 Command syntax

208 P26-4340-64

72 bytes

File statistics record

DDNAME of file
(on directory)

8 bytes

Blocks per
trackBlock size

Logical
record
length

4 bytes 4 bytes

4 bytes

In-memory
hits on

updated
blocks

4 bytes

Logical
names

4 bytes

Multiple
logical

writes to
same block

Logical
reads

Control
interval

size

4 bytes 4 bytes

4 bytes

Forced
writes

36 bytes

Physical
writes

Physical
reads

4 bytes 4 bytes

4 bytes

Locks
after wait

4 bytes

Locks
immediate

4 bytes

Locks
denied

immediate

Embraces
detected

Stolen
records

(no TLF)

4 bytes 4 bytes

Locks
denied

after wait

4 bytes

2.4 and higher only

Logical file
name

Buffer pool
name

4 bytes 4 bytes

4 bytes

Records
per block

4 bytes

Total
logical
records

Statistics
record
prefix

4 bytes

 1 1 1 1

File type

File access method
Coded file Y/N

Reserved

Reserved
Total waits

for
SLG/TLF

4 bytes

RSTAT

PDM DML Programming Guide 209

Common prefix information
Recorded
statistics

Statistic
identifier

Field size

Matching
SHOWX item*

Additional explanation

Record
Descriptor
Word

n/a Fullword n/a 2 bytes binary zeros, 2
bytes record length. For
internal use.

PDM Name n/a 8 bytes DBMXNAME Job name of PDM or
name from
DBM=parameter in
CSIPARM file.

PDM
Unique
Identifier

n/a 8 bytes DBMXNAME For internal PDM use.

Interface
Name

n/a 8 bytes IFCENAME Job name of interface or
name from
INTERFACE=parameter
in CSIPARM.

Task Name n/a 8 bytes TASKNAME User program name.
SINON
User Data

n/a 8 bytes n/a User data supplied to
PDM SINON command.

Statistics
Record
Type

n/a 4 bytes n/a INIT=initialization
TERM=termination
DBMX=system
FILE=file

Date and
time this
record was
generated

n/a Two 4-byte
packed
decimal
numbers, with
Julian date
YYYYDDDF
and Time
OHHMMSSF

n/a The date and time when
the PDM received the
RSTAT command. All
records written by the
same RSTAT command
have the same time and
date.

Record
Sequence
number

n/a Fullword n/a Sequential numbering of
records written during one
RSTAT. For internal
PDM use.

* This column shows how to relate RSTAT statistics to a corresponding item request with the
SHOWX command.

Chapter 3 Command syntax

210 P26-4340-64

Initialization/termination record

Recorded
statistics

Statistic
identifier

Field
size

Matching
SHOWX item*

Additional explanation

Bootstrap
Schema Name

n/a 8 bytes SCHMLNAM Loaded schema name.

Bootstrap
Environment
Description Name

n/a 8 bytes ENVDLNAM Loaded environment
description name.

Schema Name n/a 8 bytes SCHMNAME The name of your active
schema.

Environment
Description Name

n/a 8 bytes ENVDNAME Your active environment
description name.

* This column shows how to relate RSTAT statistics to a corresponding item request with the

SHOWX command.

RSTAT

PDM DML Programming Guide 211

System statistics record

Recorded
statistics

Statistic
identifier

Field size

Matching
SHOWX item*

Additional explanation

Date and
time
statistics
were last
reinitialized

S1.01 Two 4-byte
packed
decimal
numbers, with
Julian date
YYYYDDDF,
and Time
OHHMMSSF

DBMXRSTZ The date and time
statistics counters were
last initialized (by startup
or by the CLEAR option
of the RSTAT
command).

Total
elapsed
time of
commands
issued to
the PDM

S5.05
(2.1.6)
S6.01
(2.4)

Doubleword
(clock units)

DBMXPRTM The total elapsed time of
all applications. This
measures the time from
when PDM interfaces
issue a command until
they receive command
completion.

Amount of
time PDM
was active

S7.01
(2.1.6)
S8.01
(2.4)

Doubleword
(clock units)

DBMXDBTM The total amount of
elapsed time the PDM
was executing.

Amount of
time PDM
was
inactive

S7.02
(2.1.6)
S8.02
(2.4)

Doubleword
(clock units)

DBMXWTTM The total amount of
elapsed time the PDM
was in an operating
system wait mode.

Number of
times PDM
was
inactive

S6.01
(2.1.6)
S7.01
(2.4)

Fullword DBMXWAIT The total number of
times the PDM issued an
operating system wait
because there was no
processing to do.

Total tasks S2.01 Fullword DBMXTSKS The total number of
tasks that signed onto
the PDM. For single-
task PDM environments,
this value is always one.

* This column shows how to relate RSTAT statistics to a corresponding item request with the
SHOWX command.

Chapter 3 Command syntax

212 P26-4340-64

Recorded
statistics

Statistic
identifier

Field size

Matching
SHOWX item*

Additional explanation

Maximum
concurrent
tasks

S2.02 Fullword DBMXMCNT The highest number of
tasks that were ever
signed on simultaneously.
For single-task PDM
environments, this value
is always one.

Total
commands
issued to
the PDM

S5.01 Fullword DBMXCMDS The total number of
commands issued to the
PDM by PDM interfaces.

Maximum
number of
commands
at
command
starts

S5.02 Fullword DBMXMCNC The highest number of
commands processing at
any one command start
(includes the one starting
and those awaiting
processing, see the figure
following these tables).

Sum of
commands
at
command
starts

S5.03 Fullword DBMXSCNC Sum of commands
processing at each
command’s start (see the
figure following these
tables).

Maximum
elapsed
time for any
command
issued to
the PDM

S5.07
(2.1.6)
S6.03
(2.4)

Doubleword
(clock units)

DBMXMCMT The highest elapsed time
to process a single
command out of all
applications.

* This column shows how to relate RSTAT statistics to a corresponding item request with the
SHOWX command.

RSTAT

PDM DML Programming Guide 213

Recorded
statistics

Statistic
identifier

Field size

Matching
SHOWX item*

Additional explanation

Total read
commands

S4.01 Fullword DBMXDMLR The total number of times
FINDX, RDNXT,READD,
READM, READR,
READV, and READX
commands were
executed. This includes
only those commands
recognized by the PDM.

Total
update
commands

S4.02 Fullword DBMXDMLW The total number of times
the WRITD, WRITM, and
WRITV commands were
executed. This includes
only those commands
recognized by the PDM.

Total add
and delete
commands

S4.03 Fullword DBMXDMLA The total number of times
the ADDVR, ADD-M,
ADDVA, ADDVB,
ADDVC, DEL-M and
DELVD commands were
executed. This includes
only those commands
recognized by the PDM.

Total other
commands

S4.04 Fullword DBMXDMLO The total number of
commands executed
other than reads, writes,
adds or deletes. This
includes only those
commands recognized by
the PDM.

Maximum
held
records

S3.02 Fullword DBMXMHRC The highest number of
records held at any one
time. Always zero (0) for
ST.

Total held
records

S3.01
(2.1.6)

Fullword DBMXTHRC The total number of held
records. Always zero (0)
for ST.

* This column shows how to relate RSTAT statistics to a corresponding item request with the
SHOWX command.

Chapter 3 Command syntax

214 P26-4340-64

Recorded
statistics

Statistic
identifier

Field size

Matching
SHOWX item*

Additional explanation

Current
held
records

S3.01
(2.4)

Fullword DBMXCHRC For 2.4, this has no
identifier (is not reported).
The current number of
held records.

Total
records
held by
other tasks

S3.03
(2.1.6)

Fullword DBMXHLDL The total number of times
a record desired by a task
was held by other tasks.
Always zero (0) for ST.

Current
monitored
records

S3.03
(2.4)

Fullword DBMXCIRC The current number of
shared records.

Total
monitored
records

None
(2.4)

Fullword DBMXFIDC The total number of
shared records.

Total held
records
stolen by
another
task

S3.04
(2.1.6)

Fullword DBMXSREC The total number of times
a record was stolen from
a TP Monitor task for use
by another task in the
PDM. When task logging
is active, and for single-
task PDM, this is always
zero.
For 2.4, this is a File
statistic.

* This column shows how to relate RSTAT statistics to a corresponding item request with the

SHOWX command.

RSTAT

PDM DML Programming Guide 215

Recorded
statistics

Statistic
identifier

Field size

Matching
SHOWX item*

Additional explanation

Maximum
monitored
records

S3.04
(2.4)

Fullword DBMXMIRC The highest number of
shared records.

2.4 and higher
only

Total
memory in K

S9.01
S10.01

Fullword DBMXMEMT
DBMXXEMT

The amount of memory
and XA memory available
to the PDM.

Current used
memory in K

S9.02
S10.02

Fullword DBMXMEMU
DBMXXEMU

The amount of memory
and XA memory currently
being used.

Maximum
memory in K

S9.03
S10.03

Fullword DBMXMEMH
DBMXXEMH

The highest amount of
memory and XA memory
used by the PDM.

Threshold
memory in K

S9.04
S10.04

Fullword DBMXMEMP The percentage
used-to-available at which
the PDM begins releasing
non-critical memory.

* This column shows how to relate RSTAT statistics to a corresponding item request with the

SHOWX command.

Chapter 3 Command syntax

216 P26-4340-64

File statistics record (one record for each file accessed)

Recorded
statistics

Statistic
identifier

Field size

Matching
SHOWX item*

Additional explanation

Logical file
name

n/a 4
characters

FILENAME The file name.

DDNAME
of file on
Directory

n/a 8
characters

FILEDDNM The Directory DDNAME for
this file.

Buffer pool
used

n/a 4
characters

FILEBPOL The name of the buffer
pool used by this file.

File type n/a 1
character

FILETYPE P=Primary
R=Related
I=Index file
S=Statistics file
L=System Log file
T=Task Log file

File access
method

n/a 1
character

FILEACES B=BDAM
E=ESDS
K=KSDS
S=BSAM
O=Output VSE
W=Work VSE

Coded file
notice

n/a 1
character

FILECDSW Y=a coded file
N=not a coded file

Total logical
reads

F1.01 Fullword FILELRED The number of times a
record in this file was
logically read.

Total
in-memory
hits on
updated
buffer

F1.04 Fullword FILEIHIT The number of logical
reads for this file that found
the block of data in a
storage buffer which had
already been updated.

* This column shows how to relate RSTAT statistics to a corresponding item request with the
SHOWX command.

RSTAT

PDM DML Programming Guide 217

Recorded
statistics

Statistic
identifier

Field
size

Matching
SHOWX item*

Additional explanation

Total logical
updates

F3.01 Fullword FILELWRT The number of times a
record in this file was
logically written to.

Total
multiple
logical
updates to
same buffer

F3.03 Fullword FILEMLTW The number of logical writes
for this file to storage buffers
that had already been
updated.

Total
physical
reads

F1.02 Fullword FILEPRED The number of times a
record in this file was
physically read by the PDM.

Total
physical
updates

F3.02 Fullword FILEPWRT The number of times the
contents of a buffer for this
file was physically written.

Total
physical
updates
forced by a
physical
read

F1.05 Fullword FILEFWRT The number of logical reads
to this file that forced a
physical update in order to
obtain the buffer for a
physical read.

Total waits
for logging

F6.01 Fullword FILELOGW The number of physical
updates to this file that had to
wait for a physical write to
the Task Log or System Log.

* This column shows how to relate RSTAT statistics to a corresponding item request with the

SHOWX command.

Chapter 3 Command syntax

218 P26-4340-64

2.4 and higher only

Recorded
statistics

Statistic
identifier

Field
size

Matching
SHOWX item*

Additional explanation

Total stolen
records

F7.01 Fullword FILESREC The number of times a
record in this file held by a
task was released
involuntarily and granted to
another task. This can
occur only when task logging
is not active.

Total
embraces
detected

F7.07 Fullword FILEEMBR The number of times a lock
request for a record in this
file was denied because
granting would cause an
unresolvable locking conflict.

Total locks
after wait

F7.03 Fullword FILEGDWT The number of times a
record in this file was locked
after waiting part of DELAY
time for the record to
become available.

Total locks
immediate

F7.02 Fullword FILEGDIM The number of times a
record in this file was
available and locked
immediately upon request.

Total locks
denied
immediate

F7.05 Fullword FILEHDIM The number of times a
record in this file was locked
at the time of request for
immediate.

Total locks
denied after
wait

F7.06 Fullword FILEHDWT The number of times a
record in this file was still
locked after waiting DELAY
time.

* This column shows how to relate RSTAT statistics to a corresponding item request with the

SHOWX command.

RSTAT

PDM DML Programming Guide 219

Time Line

Command
4

Start Stop

Command
5

Start Stop

Command
2

Start Stop

Command
3

Start Stop

Command
1

Start Stop

1 1232
Number of commands processing when each command starts

How the PDM gathers command start statistics

The PDM counts the number of commands processing each time a new
command starts. It counts the command that is starting as the first one.
In the example shown in the preceding figure, only one command is
processing when Command 1 starts—Command 1 itself. When
Command 2 starts, two commands are processing—Command 1 and
Command 2. When Command 3 starts, three commands are
processing. However, when Command 4 starts, Commands 1 and 2
have finished processing, so only two commands are processing—3 and
4. When Command 5 starts, it is the only command processing.

To arrive at the maximum number of commands processing when each
command starts (the S5.02 identifier in preceding tables), PDM picks the
highest number from the figures along the base line—3.

To arrive at the sum of commands processing when commands start (the
S5.03 identifier), the PDM adds the numbers along the base line
(1+2+3+2+1=9).

Chapter 3 Command syntax

220 P26-4340-64

SHOWX
Use the SHOWX command to retrieve internal PDM information. There
are two kinds of information:

♦ For diagnosing application DML errors (non-**** status returns), see
“Diagnosing application DML errors” on page 36 for how to use, and
“SHOWX for status returns” on page 221 for the syntax description.

♦ For monitoring PDM performance and resource usage, see
“Monitoring resources” on page 53 for how to use, and “SHOWX for
monitoring resources” on page 224 for the syntax description.

SHOWX for status returns
Use the first format of SHOWX with TASKEXT to retrieve task extended
status information. This returns internal information stored by the PDM
about a DML error (unsuccessful status return).

SHOWX,status,option-list,qualifier,data-list,data-area,end.

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Consideration If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to handle
and possibly correct the situation. For a list of all status codes, refer to
the SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126.

option-list

Description Required. Points to a field containing the options to use for this SHOWX.

Format option-list,END.

Options TASK=* Current task

TASK=(task-name) Task name from SINON

SHOWX

PDM DML Programming Guide 221

qualifier

Description Required. Points to an area containing your qualifier.

Format 16 bytes for qqqqiiiioooocccc

where:

qqqq A 4-character field that directs the PDM action as follows:

BEGN You code for the first SHOWX.

NEXT Returned after execution.

ENDS You may place over NEXT without modifying cccc.

END. Returned after second execution.

iiii A binary fullword you initialize to the binary length of your data area
(including END.). In COBOL, this is a PIC S9(8) COMP field. This
length must be at least 0036 for SHOWX with TASKEXST. Ensure
that this is set properly. If the space is actually smaller than the
length you specify here, the PDM writes over any data or code
already there, with unpredictable results.

oooo A binary fullword you initialize to blank. This field receives the
actual length of information returned to the data area, including
END. The PDM supplies this value after the BEGN execution.

cccc A binary fullword you initialize to blanks. This field receives the
context-ID. This is the identifier the PDM uses to locate the context
memory where your SHOWX information is stored. Do not modify
this field; leave it as the PDM returns it to you. You reinitialize this
to blanks only for a new SHOWX request.

Consideration See “Diagnosing application DML errors” on page 36 for discussion and
example qualifier usage with SHOWX for TASKEXST.

Chapter 3 Command syntax

222 P26-4340-64

data-list

Description Required. Specifies the keyword you use to request task error
information.

Format TASKEXST,END.

data-area

Description Required. Points to a field to receive the SHOWX information.

Format At least a 36-character area

Considerations

♦ You must code the data area at least as long as the length you
specified in the length-in field in the qualifier parameter.

♦ The returned data is a repeat of the status you received on the prior
failed command, with a 4-byte identification number, and with text
helping to identify the error.

♦ You should not code your application program to handle specific
status identification numbers because they may change with different
releases of SUPRA Server.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

General considerations

♦ Before you can issue a SHOWX command, a task must be signed
on. In other words, you cannot issue a SHOWX for an error on a
SINON. If you do, the PDM returns an error status code to the
SHOWX command.

♦ The SHOWX command is not recoverable. If the PDM fails before
you have retrieved the error information, you must re-create the error
and attempt SHOWX again after PDM restart.

SHOWX

PDM DML Programming Guide 223

SHOWX for monitoring resources
Use the second format of SHOWX to retrieve performance and
monitoring information. For how to use this command, see “Monitoring
resources” on page 53.

SHOWX,status,option-list,qualifier,data-list,data-area,end.

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Consideration If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to handle
and possibly correct the situation. For a list of all status codes, refer to
the SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126.

Chapter 3 Command syntax

224 P26-4340-64

option-list

Description Required. Points to a field containing the hierarchy and identification of
the group level for which you want results.

Format option1[,option2,...],END.

Options The options and their possible values are listed below. Use commas to
separate the options. The value ALL can be used only when the option is
at the end of the hierarchy.

DBM=* Current executing PDM.

SCHEMA=* Your current active schema.

SCHEMA=(schema-name) Your current active schema name.

ENVDESC=* Your current environment description.

ENVDESC=(envdesc-name) Your current environment description name.

BUFFPOOL=(buffpool-name) A buffer pool in this environment.

BUFFPOOL=ALL All buffer pools in this environment.

FILE=(file-name) A file in this environment.

FILE=ALL All files in this environment.

FIELD=(field-name) A physical field name for this file or
secondary key.

FIELD=ALL All physical fields in this file or secondary
key.

SKID=(skid-name) A secondary key name for this file.

SKID=ALL All secondary keys for this file.

INTERFACE=* The interface this task is using.

INTERFACE=(iface-name) Any interface name.

INTERFACE=ALL All known interfaces.

TASK=* This task.

TASK=(task-name) Any task name.

TASK=all All known tasks for this interface.

END. The required option list delimiter.

SHOWX

PDM DML Programming Guide 225

Considerations

♦ Code the option list to define one group, as shown in the following table. This group
determines which keywords from the tables at the end of this section you can choose for
your data list. (The tables at the end of this section show the groups in the same order
presented here.) If you omit a bracketed section, the current entity(s) is assumed.

Option list to define group

Group in
next table

DBM=*,END. DBMX
[DBM=*,]SCHEMA=*,END.
[DBM=*,]SCHEMA=(name,)END.

SCHM
SCHM

[DBM=*,SCHEMA=...,]ENVDESC=*,END.
[DBM=*,SCHEMA=...,]ENVDESC=(name,),END.

ENVD
ENVD

[DBM=*,SCHEMA=...,ENVDESC=...,]BUFFPOOL=(name,)END.
[DBM=*,SCHEMA=...,ENVDESC=...,]BUFFPOOL=ALL,END.

BPOL
BPOL

[DBM=*,SCHEMA=...,ENVDESC=...,]FILE=(name,)END.
[DBM=*,SCHEMA=...,ENVDESC=...,]FILE=ALL,END.

FILE
FILE

[DBM=*,SCHEMA=...,ENVDESC=...,]FILE=(name,)FIELD=(name,)END.
[DBM=*,SCHEMA=...,ENVDESC=...,]FILE=(name,)FIELD=ALL,END.

FELD
FELD

[DBM=*,]INTERFACE=*,END.
[DBM=*,]INTERFACE=(name,),END.
[DBM=*,]INTERFACE=ALL,END.

IFCE
IFCE
IFCE

[DBM=*,INTERFACE=*,]TASK=*,END.
[DBM=*,INTERFACE=*,]TASK=(name),END.
[DBM=*,INTERFACE=*,]TASK=ALL,END.
[DBM=*,]INTERFACE=(name),TASK=*,END.
[DBM=*,]INTERFACE=(name),TASK=(name),END.
[DBM=*,]INTERFACE=(name),TASK=ALL,END.

TASK
TASK
TASK
TASK
TASK
TASK

[DBM=*,SCHEMA=...,ENVDESC=...,]FILE=(name),SKID=(name),END.
[DBM=*,SCHEMA=...,ENVDESC=...,]FILE=(name),SKID=ALL,END.

SKID
SKID

[DBM=*,SCHEMA=...,ENVDESC=...,]FILE=(name),SKID=(name),FIELD=(name),END.
[DBM=*,SCHEMA=...,ENVDESC=...,]FILE=(name),SKID=(name),FIELD=ALL,END.

SKPF
SKPF

♦ You can use the keyword ALL only for the last option in the list. For example, if the items

you want for the data list are in the FILE group, you can use either FILE=ALL or
FILE=(file-name) for the file option. However, if the items are in the FELD group, you can
use only FILE=(file-name) for the file option.

♦ See “Diagnosing application DML errors” on page 36 and “Monitoring resources” on
page 53 for discussions and example option list usage with SHOWX.

Chapter 3 Command syntax

226 P26-4340-64

qualifier

Description Required. Points to an area to contain your qualifier. You initialize the
qualifier parameter the first time with BEGN in the first field, the binary
length of the data area in the second, and blanks in the 3rd and 4th fields.

Format 16 bytes for qqqqiiiioooocccc

where:

qqqq A 4-character field that directs the PDM action as follows:

BEGN You code for the first SHOWX.

NEXT Returned after each execution.

ENDS You may place over NEXT to stop retrieval and free the
PDM context. Do not modify the cccc when doing this.

END. Returned when there is no more information for your
chosen option (PDM has freed the context).

iiii A binary fullword you initialize to the binary length of your data area
(including END.). In COBOL, this is a PIC S9(8) COMP field.
Ensure that this is set properly. If the space is actually smaller than
the length you specify, the PDM writes over any data or code
already there.

oooo A 4-character field you initialize to blanks. This field receives the
actual length of information returned to the data area (including
END.). The PDM supplies this value after each execution.

cccc A 4-character field you initialize to blanks. This field receives the
binary ID of the context area the PDM creates to hold your
SHOWX information. The PDM supplies this value after the first
execution. Do not modify this field for repeated SHOWX iterations.
You change it to blanks only for a new SHOWX request.

Considerations
♦ If you receive a status of **** and the PDM has returned the qualifier

containing END., the PDM has already freed the context area. The
PDM returns END. only when it is returning no data. In this case, you
do not need to repeat the SHOWX command with the qualifier
containing ENDS.

♦ See “Diagnosing application DML errors” on page 36 and “Monitoring
resources” on page 53 for discussions and example qualifier usage
with SHOWX.

SHOWX

PDM DML Programming Guide 227

data-list

Description Required. Specifies a list of keyword items, from the one group defined
in your option list, for which you are requesting information.

Format dataitem1[dataitem2,...],END.

Considerations

♦ See the table of SHOWX command keywords at the end of this
section for valid data item names for the group you specified in your
option-list parameter.

♦ These selected data list items plus END. map the required format
and length of the data area. The data area must be large enough to
contain the result of the entire list; it can be larger than needed.

♦ The data area can be a multiple if you use ALL for the last option in
your option list (see the table of option listings earlier in this section).
The PDM will return multiple entries of the data list for such a
SHOWX. If your data area is not large enough to hold all the multiple
entries, the PDM returns as many complete entries as will fit, and
updates the qualifier to NEXT. If you want the rest, you repeat the
SHOWX command without changing the qualifier.

♦ See “Diagnosing application DML errors” on page 36 and “Monitoring
resources” on page 53 for discussions and example data list usage
with SHOWX.

Chapter 3 Command syntax

228 P26-4340-64

data-area

Description Required. Points to a field to receive the data list items.

Format The structure and characteristics must conform to the definition of the
data list items you selected from the table of SHOWX command
keywords at the end of this section, plus 4 bytes for END..

Considerations

♦ You must make the data area at least large enough to hold a single
entry, that is, one entire data list, plus END. If larger than needed,
the PDM returns as many entries as will fit in the data area.

♦ You must make the data area at least as long as the length-in value
in the qualifier parameter.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

SHOWX

PDM DML Programming Guide 229

General considerations

♦ Before you can issue a SHOWX command, your task must be signed
on. Therefore, you cannot issue a SHOWX for an error on a SINON.
If you do, the PDM returns an error status code to the SHOWX
command.

♦ Although the data-list item TASKEXST,END. returns a status
identification number in the data area, you should not code your
application program to handle specific numbers. They may change
with different releases of SUPRA Server.

♦ When you use the SHOWX command for other than TASKEXST,
code it only in special routines that you can modify easily. The
SHOWX command will change as Cincom enhances SUPRA Server.

♦ The SHOWX command is not recoverable since it is a read-type
command. If the PDM fails before you have obtained all your data,
you must execute the SHOWX command again after restart.
Inconsistencies could occur across a failure.

♦ File statistics and SEK information might not contain valid data
unless the specified file is currently open.

♦ The system and file statistics might not contain valid data unless
STATS=YES.

♦ The data set names for the Directory files and the Task Log File are
not returned with SHOWX (element FILEDSNM). When running in
non-Directory driven mode, the data set names are not returned for
the above and for the Statistics File or System Log File on a
SHOWX.

♦ The following tables present the valid SHOWX data list items in
logical order within their groups.

Chapter 3 Command syntax

230 P26-4340-64

Information about PDM system (DBMX group)

Data item

Format

Length

Returned
value

Meaning

DBMXNAME Character 8 --- Name of PDM.
DBMXTYPE Character 2 ST Single task PDM.
 MT Multitask PDM.
DBMXATCH Character 1 Y PDM is in attached mode.
 N PDM is not in attached

mode.
DBMXCTRL Character 1 Y PDM is in central mode.
 N PDM is not in central mode.
DBMXDLOC Character 1 Y PDM is in the same address

space (ASID) as your
application.

 N PDM is not in same address
space as your application.

DBMXRSTZ Two 4-byte
packed
decimal
numbers
Julian date as
YYYYDDDF
and Time as
OHHMMSSF

8 --- Date and time the RSTAT
command most recently
reset the statistics counters
to zero.

DBMXSYSN Character 4 --- SUPRA Subsystem Name.
DBMXJOBN Character 8 --- Real Job Name. Different

from DBMXNAME if PDM
name supplied.

SHOWX

PDM DML Programming Guide 231

Statistics gathered for PDM system

Data item

Format

Length

Returned
value

Meaning

DBMXDMLR Binary integer 4 --- DML READ commands.
DBMXDMLW Binary integer 4 --- DML WRITE commands.
DBMXDMLA Binary integer 4 --- DML ADD and DELETE

commands.
DBMXDMLO Binary integer 4 --- Other DML commands.
DBMXTHRC Binary integer 4 --- Total number of held

records.
DBMXCHRC Binary integer 4 --- Current number of held

records.
DBMXMHRC Binary integer 4 --- Highest number of held

records.
DBMXHLDL Binary integer 4 --- Number of rejected requests

for records (2.1.6 only).
DBMXSREC Binary integer 4 --- Total stolen records (2.1.6).

For 2.4, this is a File Statistic
(FILEREC).

DBMXCIRC Binary integer 4 --- Current number of shared
records (2.4).

DBMXMIRC Binary integer 4 --- Highest number of shared
records (2.4).

DBMXFIDC Binary integer 4 --- Total number of shared
records (2.4) .

DBMXTSKS Binary integer 4 --- Total number of tasks.
DBMXCCNT Binary integer 4 --- Concurrent tasks at present

time.
DBMXMCNT Binary integer 4 --- Maximum concurrent tasks.
DBMXCMDS Binary integer 4 --- Total number of commands.
DBMXSCNC Binary integer 4 --- Sum of concurrent

commands.
DBMXCCNC Binary integer 4 --- Concurrent commands at

this time.

Chapter 3 Command syntax

232 P26-4340-64

Data item

Format

Length

Returned
value

Meaning

DBMXMCNC Binary integer 4 --- Maximum concurrent
commands.

DBMXMCMT Binary integer 8 --- Highest command elapsed
time.*

DBMXPRTM Binary integer 8 --- Total elapsed time for
command processing.*

DBMXDBTM Binary integer 8 --- Total amount of time the
PDM was active.*

DBMXWTTM Binary integer 8 --- Total amount of time the
PDM waited.*

DBMXWAIT Binary integer 4 --- Total number of times the
PDM waited.

DBMXMXIO Binary integer 4 --- Maximum I/O Area length.
DBMXMXAR Binary integer 4 --- Maximum Argument Field

Length.
DBMXMXPK Binary integer 4 --- Maximum Packet Size.
2.4 and higher only
DBMXMEMT Binary integer 4 --- Total memory in K available

to PDM.
DBMXMEMU Binary integer 4 --- Used memory in K.
DBMXMEMH Binary integer 4 --- Highest memory in K used by

PDM.
DBMXMEMP Binary integer 4 --- Percent used-to-available

memory at which noncritical
is released (threshold).

DBMXXEMT Binary integer 4 --- Total XA memory in K
available to PDM.

DBMXXEMU Binary integer 4 --- Used XA memory in K.
DBMXXEMH Binary integer 4 --- Highest XA memory in K

used by PDM.
* Elapsed times are in clock units. Refer to IBM Principles of Operation.

SHOWX

PDM DML Programming Guide 233

Information about schema (SCHM group)

Data item

Format

Length

Returned
value

Meaning

SCHMNAME Character 8 --- Your schema name (spaces
mean this item is not
applicable).

SCHMNMLN Binary integer 4 --- Length of your schema
name.

SCHMLNAM Character 8 --- Loaded schema name.

Information about environment description (ENVD group)

Data item

Format

Length

Returned
value

Meaning

ENVDNAME Character 8 --- Your environment description
name (spaces mean this
item is not applicable).

ENVDNMLN Binary integer 4 --- Length of your environment
description name.

ENVDLNAM Character 8 --- Loaded environment
description name.

ENVDSTAT Character 1 Y Statistics are being gathered.
 N Statistics not being gathered.
ENVDTSLG Character 1 Y Task logging is active.
 N Task logging is not active.
ENVDSYLG Character 1 Y System logging is active.
 N System logging is not active.
ENVDLGBF Character 1 Y Before images are being

logged to the System Log
File.

 N Before images are not being
logged to the System Log
File.

Chapter 3 Command syntax

234 P26-4340-64

Data item

Format

Length

Returned
value

Meaning

ENVDLGAF Character 1 Y After images are being
logged to the System Log
File.

 N After images are not being
logged to the System Log
File.

ENVDLGAS Character 1 Y All sign-on and sign-off
commands are being logged
to the System Log File.

 N Sign-on and sign-off
commands are not logged to
the System Log File.

ENVDLGUS Character 1 Y Sign-on commands are
logged at sign-on, not when
PDM processes first update
command.

 N Sign-on commands are
being logged when PDM
processes first update
command.

ENVDLGAC Character 1 Y All functions are being
logged to the System Log
File.

 N All functions are not being
logged to the System Log
File.

ENVDLGUC Character 1 Y Update functions are being
logged to the System Log
File.

 N Update functions are not
being logged to the System
Log File.

SHOWX

PDM DML Programming Guide 235

Data item

Format

Length

Returned
value

Meaning

ENVDLGIM Character 1 Y Before or after images are
logged to the System Log
File.

 N Before or after images are
not logged to the System Log
File.

ENVDMXFL Binary integer 4 --- Maximum number of files in
system.

ENVDMXLR Binary integer 4 --- Maximum Logical Record
Length (LRECL) in any file.
(Does not include system
files.)

ENVDMXBZ Binary integer 4 --- Maximum block size.
ENVDMXEL Binary integer 4 --- Maximum data items in any

file.
ENVDMXLK Binary integer 4 --- Maximum linkpaths in any

file.
ENVDMXKY Binary integer 4 --- Maximum key size.
ENVDOPNX Character 1 I OPENX and CLOSX

commands are ignored.
 P OPENX and CLOSX

commands are processed.
 C OPENX and CLOSX

commands are checked
against the current file mode
list. No open or close
commands are actually
processed.

ENVDFEOV Character 1 Y FEOV macro is used to
switch volumes of the
System Log File during
processing of ENDLG.

 N The System Log File is
closed and reopened.

Chapter 3 Command syntax

236 P26-4340-64

Information about buffer pools (BPOL group)

Data item

Format

Length

Returned
value

Meaning

BPOLNAME Character 4 --- Buffer pool name.
BPOLBKSZ Binary integer 4 --- Buffer pool block size.
BPOLDIRB Binary integer 4 --- Number of direct buffers.
BPOLSEQB Binary integer 4 --- Number of sequential

buffers.
BPOLSEQT Binary integer 4 --- Number of sequential

threads.

SHOWX

PDM DML Programming Guide 237

Information about files (FILE group)

Data item

Format

Length

Returned
value

Meaning

FILENAME Character 4 --- File name.
FILEDDNM Character 8 --- File DD name.
FILEDSNM Character 44 --- FILE DSN (Data Set Name)

in Directory.
FILEBPOL Character 4 --- FILE buffer pool name.
FILETYPE Character 1 P Primary file.
 R Related file.
 I Index file.
 S Statistics file.
 L System Log File.
 T Task Log File.
FILELTYP Character 1 N Lock record is native.
 C Lock record is converted.
 O Lock record is other.
FILEOPEN Character 1 C File is closed.
 R File is open for read only.
 I File is open for intent to

update (IUPD).
 S File is open for shared

update (SUPD).
 E File is open for exclusive

update (EUPD).
FILEETSK Character 16 --- Identifier of the task that

owns the file for exclusive
update (EUPD), composed
of the interface name and
task name.

Chapter 3 Command syntax

238 P26-4340-64

Data item

Format

Length

Returned
value

Meaning

FILEACES Character 1 B File is BDAM.
 E File is VSAM ESDS.
 K File is VSAM KSDS.
 S File is BSAM.
 O File is output (VSE typefile).
 W File is work (VSE typefile).
FILECDSW Character 1 Y A coded file.
 N Not a coded file.
FILECREC Binary integer 4 --- Logical record length.
FILEBKSZ Binary integer 4 --- Block size.
FILEBTRK Binary integer 4 --- Blocks per track.
FILERBLK Binary integer 4 --- Records per block.
FILERFIL Binary integer 4 --- Records per file (not

including the file lock record).
FILECVCI Binary integer 4 --- Control interval size.
FILEPRNM Binary integer 4 --- Prime number.
FILEDRSW Character 1 Y File is a Directory file.
 N File is not a Directory file.
FILESPSW Character 1 Y File is a support file (TLF,

SLF, STAT).
 N File is not a support file.
FILEDVIC Character 4 --- Device type.
FILECSKN Character 4 --- Control key’s secondary key

name.

SHOWX

PDM DML Programming Guide 239

Statistics gathered for files

Data item

Format

Length

Returned
value

Meaning

FILELRED Binary integer 4 --- Number of times this file was
logically read.

FILEIHIT Binary integer 4 --- Total number of logical reads
that found the desired block
of data already in a storage
buffer.

FILELWRT Binary integer 4 --- Number of times this file was
logically written to.

FILEMLTW Binary integer 4 --- Number of logical updates to
buffers that have already
been updated.

FILEPRED Binary integer 4 --- Number of times this file was
physically read.

FILEPWRT Binary integer 4 --- Number of times this file was
physically updated.

FILEFWRT Binary integer 4 --- Number of physical updates
forced by a physical read.

FILELOGW Binary integer 4 --- Number of times writes had
to wait for a System or Task
Log File block to be written
first.

FILEIXUB Binary integer 4 --- Number of blocks in use.
FILEIXTS Binary integer 4 --- Total number of secondary

key control records.
FILEIXUS Binary integer 4 --- Number of secondary key

control records in use.

Chapter 3 Command syntax

240 P26-4340-64

2.4 and higher only

Data item

Format

Length

Returned
value

Meaning

FILEEMBR Binary integer 4 --- Number of records not held
because of deadly embrace.

FILEGDIM Binary integer 4 --- Number of records
successfully held with no
waiting.

FILEGDWT Binary integer 4 --- Number of records
successfully held after
waiting.

FILEHDIM Binary integer 4 --- Number of records not held
with no waiting.

FILEHDWT Binary integer 4 --- Number of records not held
after waiting.

FILESREC Binary integer 4 --- Number of records stolen
(only if task logging is not
active).

FILELSBI Character 1 Y Suppress before images.
 N Log before images to System

Log.
FILELSAI Character 1 Y Suppress after images.
 N Log after images to System

Log.
FILELSFN Character 1 Y Suppress function

(command) images.
 N Log function images to

System Log.
FILELTLG Character 1 Y Suppress logging to Task

Log.
 N Perform logging to Task Log.

SHOWX

PDM DML Programming Guide 241

Information about physical fields (FELD group)

Data item

Format

Length

Returned
value

Meaning

FELDNAME Character 8 --- Field name.
FELDLENG Binary integer 4 --- Field length.
FELDDISP Binary integer 4 --- Field displacement.
FELDCODE Character 2 --- Record code (high values

mean the field is valid for all
records in the file).

FELDROOT Character 1 Y Root data item.
 N Not the root data item.
FELDOVLY Character 1 Y Overlay data item.
 N Not the overlay data item.
FELDKEYS Character 1 Y Control key.
 N Not the control key.
FELDCDSW Character 1 Y Code data item.
 N Not a code data item.
FELDPLNK Character 1 Y Primary linkpath.
 N Not a primary linkpath.
FELDRLNK Character 1 Y Related linkpath.
 N Not a related linkpath.
FELDKNAM Character 8 --- The field name for the key

(spaces mean this item is not
applicable).

FELDKFNM Character 4 --- The name of the primary file
(spaces mean this item is not
applicable).

Chapter 3 Command syntax

242 P26-4340-64

Data item

Format

Length

Returned
value

Meaning

FELDKDSP Binary integer 4 --- Key displacement (high
values mean this item is not
applicable).

FELDKLEN Binary integer 4 --- Length of key (high values
mean this item is not
applicable).

2.4 and higher only
FELDNDEC Binary integer 4 --- Number of decimal places.
FELDNVAL Character 32 --- Directory null value, blank

padded on right.
FELDNLEN Binary integer 4 --- Length of null value.
FELDSIGN Character 1 Y Signed data.
 N Not signed data.
FELDTYPE Character 1 B Binary field.
 C Character field.
 F Floating point field.
 K Kanji field.
 P Packed decimal field.
 Z Zoned decimal field.

Information about interfaces (IFCE group)

Data item

Format

Length

Returned
value

Meaning

IFCENAME Character 8 --- Interface identifier.
IFCECOND Character 1 C The interface is connected.
 N The interface is not active.
IFCETYPE Character 1 B STST interface.
 S STMT interface.
 C CICS Connector.

SHOWX

PDM DML Programming Guide 243

Information about tasks (TASK group)

Data item

Format

Length

Returned
value

Meaning

TASKNAME Character 8 --- Task identifier.
TASKEXST Character 32 --- User extended status from

SINON.
TASKCMID Binary integer 4 --- Most recent COMIT ID.
TASKIFCE Character 8 --- Interface identifier.
TASKCMST Binary integer 8 --- Time of most recent COMIT

(stored clock value).
TASKCOND Character 1 A Task is active (signed on).
 N Task is not active. (It is

available for restart.)
TASKRSMD Character 8 NORMAL Restart mode. Task is

considered restartable.
 NONE Task is not restartable.
TASKACRD Character 1 Y Access is READ.
 N Access is not READ.
TASKACUP Character 1 Y Access is UPDATE.
 N Access is not UPDATE.
TASKACRV Character 1 Y Access is RECOVR.
 N Access is not RECOVR.
TASKACLK Character 1 Y Access is LINKS.
 N Access is not LINKS.

Chapter 3 Command syntax

244 P26-4340-64

Information about secondary key IDs (SKID group)

Data item

Format

Length

Returned
value

Meaning

SKIDNAME Character 8 --- Secondary key name
(ffffSKxx).

SKIDINDX Character 4 --- Index file for secondary key.
SKIDKEYL Binary integer 4 --- Length of secondary key,

external definition.
SKIDPTRL Binary integer 4 --- Pointer length, external;

RRN or key.
SKIDDENS Binary integer 4 --- Pointer density.
SKIDUTMN Character 1 Y Utility maintenance in

progress.
 N NOT in utility maintenance.
SKIDOPTS Character 4 ABND SKID option is abend.
 CONT SKID option is continue.
 OPER SKID option is operator

option.
SKIDVERS Character 1 --- Version # of C$TASKCR

control block; shows which
version of PDM used to
format/populate. Used by
Support. RRNS in time
order sequence.

SKIDLGRD Binary integer 4 --- Logical READS.
SKIDLGUP Binary integer 4 --- Logical UPDATES.
SKIDSPLT Binary integer 4 --- Total number of SPLITS.
SKIDSPLM Binary integer 4 --- Total number of SPLITS

involving multiple levels.
SKIDSPLR Binary integer 4 --- Total number of SPLITS

involving ROOT.

SHOWX

PDM DML Programming Guide 245

Data item

Format

Length

Returned
value

Meaning

SKIDSTAT Character 4 POPU Secondary key is populated
and usable.

 PURG Secondary key is
depopulated and purged.

 DPOP Secondary key is
depopulated and not usable.

SKIDUNIQ Binary integer 4 --- Number of unique keys.
SKIDNPTR Binary integer 4 --- Number of pointers.
SKIDNBLK Binary integer 4 --- Number of blocks in tree.
SKIDNLVL Binary integer 4 --- Number of levels (tree

height).
SKIDLLBK Binary integer 4 --- Number of low level blocks

(tree width).
2.4 and higher only
SKIDKYIL Binary integer 4 --- Length of SEK, internal

storage.
SKIDPORD Character 1 S Sorted pointer ordering.
 F FIFO pointer ordering.
SKIDPTIL Binary integer 4 --- Pointer length, internal

storage; RRN or key size.
SKIDPTYP Character 1 D Direct pointer.
 I Indirect pointer.
SKIDSTYP Character 1 Y Data sensitive.
 N Not data sensitive.
SKIDTRAN Character 1 Y Data translate.
 N No data translate.
SKIDUNQK Character 1 Y Unique secondary key.
 N Not unique.

Chapter 3 Command syntax

246 P26-4340-64

Information about SEK physical fields (SKPF group)

Data item

Format

Length

Returned
value

Meaning

SKPFNAME Character 8 --- Physical field name.
SKPFKYCD Character 2 --- Key code for this SKID.
SKPFPFCD Character 2 --- Record code for this

physical field. The value is
FF if field is in base portion;
key code if field is in
variable portion.

2.4 and higher only
SKPFILEN Binary integer 4 --- Index storage length of this

key part.

SHOWX

PDM DML Programming Guide 247

SINOF
The SINOF (Sign-off) command performs task termination activities in a
multitask environment, or PDM and task termination activities in a
single-task environment.

SINOF,status,end

or

SINOF,status,task,end (TIS and TOTAL compatibility)

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Consideration If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to handle
and possibly correct the situation. For a list of all status codes, refer to
the SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126.

Chapter 3 Command syntax

248 P26-4340-64

task

Description Optional. This field is not examined; however, it must contain a valid
address.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

General considerations

♦ The 4-parameter SINOF is presented only for compatibility with TIS
and TOTAL.

We recommend you use the 3-parameter SINOF.

♦ Any DML command the task issues after the SINOF command,
unless another SINON command, returns an error status code.

♦ In a single-task operating mode, the SINOF command closes and
unlocks the files that were open for that task and writes their
database buffers. If a file is open in EUPD and is not KSDS, the
SINOF command closes it partially (it changes the mode to IUPD).
For KSDS files open in EUPD, the close is complete. (Do not
depend on the SINOF when using task logging; always use COMIT
or RESET following opens and closes to prevent locked files.)

♦ In all operating modes where task logging is active, a SINOF writes a
COMIT record to the Task Log File. A SINOF also frees internal
resources. In a single-task operating mode, the SINOF command
also writes the termination statistics record to the Statistics File (if
active).

SINOF

PDM DML Programming Guide 249

SINON
The SINON (Sign-on) command performs task initialization activities in a
multitask environment, or PDM and task initialization activities in a
single-task environment.

SINON,status[,option-list],end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Considerations

♦ If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status code:

RSTR Returned if you are reexecuting your program after a failure if
you had been issuing COMITs. You can issue a RESET to
retrieve commit data you saved. This status code is possible
only if task logging is active.

♦ If your program has not issued a COMIT and then either it or the
PDM abends, a **** status is returned to the SINON when you restart
your program.

Chapter 3 Command syntax

250 P26-4340-64

option-list

Description Optional. Points to a field containing a list of SINON options that may
affect the task’s processing.

Format option-list,END.

Options If this parameter is used, the pointed-to field must contain the keyword
END. even if it contains no options. The option list can contain one or
more of the options described in the following. Use a comma between
each option you code.

REALM=(SCHEMA=schema-id,ENVDESC=env-desc-id)

Description Optional. A field identifying the 1-8 byte names (padded
with spaces if desired) of your schema and environment
description for which this SINON is used.

Default The schema and environment description names in the
REALM parameter of the CSIPARM file.

Consideration If you code this parameter for multitask operating mode,
the realm you identify must match the active schema and
environment description.

DBM=pdm-name

Description Optional. A field identifying the 1-8 byte name of the
PDM with which this SINON communicates.

Default The PDM name in the CSIPARM file, if specified. If not
specified in CSIPARM, the current job name in OS/390
and VSE, or the virtual machine name in CMS.

Considerations

♦ If you code this parameter for a single-task or
multitask PDM for batch, it overrides the PDM name
in the CSIPARM file (if PDM name is not supplied in
the CSIPARM file, this name overrides the current
job name).

♦ If you code this parameter for a task communicating
through a CICS connector, the name must match the
PDM name in the CSIPARM file.

SINON

PDM DML Programming Guide 251

INTERFACE=interface-id

Description Optional. A field identifying the 1-8 character interface
name from which this SINON is issued.

Default The interface name in the CSIPARM file, if specified. If
not specified in CSIPARM, the current job name.

Considerations

♦ If you code this parameter for a task communicating
through a CICS connector, it must match the
interface identifier supplied in the CSIPARM file. If
there is no interface identifier in the CSIPARM file, it
must match the current job name.

♦ In an STST or STMT application task, you can also
change the interface identifier on the CSIPARM file.

TASK=task-id

Description Optional. A field identifying the 1-8 alphanumeric
character identifier for this task.

Default Interface-ID

Considerations

♦ If you code this parameter for a task communicating
through a CICS connector, it must match the task
identifier generated by the CICS connector.

♦ Multiple STMT interfaces may have the same
task-ID; however, the interface names must be
unique.

Chapter 3 Command syntax

252 P26-4340-64

RESTART =
NORMAL
NONE









Description Optional. A field indicating whether the task is to be
treated as restartable after a task or PDM failure in a
task logging environment.

Default The RESTART option of the CSIPARM file.

Options NORMAL The task is restartable if it has issued at
least one COMIT command.

 NONE The task is not restartable.

Considerations

♦ Coding this parameter overrides the RESTART
mode coded in the CSIPARM file.

♦ You cannot code RESTART=NONE for STST tasks;
you must code RESTART=NORMAL or omit the
option.

♦ When a task or system abnormally terminates,
whether the task is restartable depends on its
environment. If the environment does not include
Task Level Recovery (TLR), no task is restartable,
and all tasks must find their restart points.

♦ If the task is restartable, the PDM backs out the
task’s updates to the most recent commit point and
leaves its files locked. When the task signs on
again, it receives an RSTR status and can retrieve
its commit text from the Task Log File with a RESET.
If not restartable, the PDM backs out its updates to
the last commit point, frees its resources, and signs
off the task. When the task signs on again, it
receives an **** status.

SINON

PDM DML Programming Guide 253

ACCESS=(access-option-list)

Description Optional. A field identifying the access mode to be
supported (type of DML allowed).

Default Access mode in active user environment description.

Options UPDATE= NO Controls whether the task can

 YES Read, write, add, and delete.

 RECOVR= NO Controls whether the task can

 YES Execute a WRITD in addition to having
UPDATE access.

Consideration Cincom does not support RECOVR access for anything
other than the PDM Recover/Restore Utilities. Do not
use this PDM access for user applications. This access
disables some automatic processing and may result in
loss of database integrity.

USER=(user-data)

Description Optional. A field containing a character string of user
data. The task can use the string with PDM exits.

Considerations

♦ The user data can be 1-8 alphanumeric, $, #, or @
characters. It cannot begin with a number. If less
than 8 characters, the PDM pads it with blanks on
the right.

♦ This field is normally used only by the DBA in a
special program. For example, use this parameter
to pass security data to the command initialization
exit. For PDM exit information, refer to the SUPRA
Server PDM and Directory Administration Guide
(OS/390 & VSE), P26-2250.

END.

Description Required. A field that delimits the option-list.

Chapter 3 Command syntax

254 P26-4340-64

end

Description Required. Points to a field that delimits the parameter list.

Format END.

General considerations

♦ The SINON command must be the first PDM function executed in a
task, or the PDM returns an error status code.

♦ For an STST application, you can issue a SINON command (after the
SINOF command has been executed) to change the value of realm.
(In a multitask operating mode or a single-task operating mode, you
can issue SINON after SINOF, but only STST allows you to change
the value of realm.)

♦ In a task-logging environment, the SINON causes an automatic
COMIT record on the Task Log File. The commit ID is null.

SINON

PDM DML Programming Guide 255

SINON (CICS compatibility)
The SINON (Sign-on) command performs the task initialization activities.
This form of the SINON command is presented for compatibility with
previous TIS and TOTAL CICS programs. This discussion does not
present all the detail information about each parameter. Refer to the TIS
Recovery System For CICS/VS Interface Guide, P16-7290, TOTAL CICS
(With DTB) Reference Manual, P03-1001, or the Series 80 Recovery
System for CICS/VS Interface Guide, P03-1002, for those details.

SINON,status,csaddr,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Considerations

♦ If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status code:

RSTR Returned if you are reexecuting your program after a failure if
you had been issuing COMITs. You can issue a RESET to
retrieve commit data you had saved. This status code is
possible only if task logging is active.

♦ If your program has not issued a COMIT and then either it or the
PDM abends, a **** status is returned on the SINON when you
restart your program.

Chapter 3 Command syntax

256 P26-4340-64

csaddr

Description Required. Points to a field containing the Common System Area (CSA)
address to use. The CSA is a standard CICS control block.

Consideration SUPRA Server does not require csaddr from a CICS application
program. The PDM does not examine this parameter; however, it must
point to a valid address.

end

Description Required. Points to a field that delimits the parameter list and indicates
the record holding function.

Format END.

Consideration Other forms of this field, (such as RLSE) are not supported.

SINON (CICS compatibility)

PDM DML Programming Guide 257

SINON (TIS 1.x compatibility)
The SINON (Sign-on) command performs task initialization activities in a
multitask environment or system and task initialization in a single-task
environment. This form of the SINON command is presented for
compatibility with TIS.

SINON,status,access,bootmod,task,options,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Considerations

♦ If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status code:

RSTR Returned if you are reexecuting your program after a failure if
you had been issuing COMITs. You can issue a RESET to
retrieve commit data you had saved. This status code is
possible only if task logging is active.

♦ If your program has not issued a COMIT and then either it or the
PDM abends, a **** status is returned on the SINON when you
restart your program.

Chapter 3 Command syntax

258 P26-4340-64

access

Description Required. Points to a field identifying the access mode to be supported
(type of DML allowed).

Options RDONLY Task intends to issue only read commands.

UPDATE Task intends to issue writes, adds, and deletes in
addition to reads.

RECOVR Task intends to issue WRITD.

Considerations
♦ The PDM examines access to determine if the SINON is a

compatibility SINON.

♦ Although this parameter must be a valid option, the user environment
description determines actual access, not this parameter.

bootmod

Description Required. Points to a field containing the bootmod to use (a TIS entity).

Consideration SUPRA Server does not require a bootmod from application programs.
The PDM does not examine this parameter; however, it must point to a
valid address.

task

Description Required. Points to a field containing the name of the task.

Considerations
♦ For batch tasks, the PDM uses this field for the task name.

♦ For CICS, if this task parameter does not match the task name
generated by CICS, you receive an error status code.

options

Description Required. Points to a field containing the TIS options to use.

Consideration SUPRA Server does not require these options from an application
program. The PDM does not examine this parameter; however, it must
point to a valid address.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

SINON (TIS 1.x compatibility)

PDM DML Programming Guide 259

SINON (TOTAL compatibility)
The SINON (sign-on) command performs task initialization activities in a
multitask environment, or system and task initialization in a single-task
environment. This form of the SINON command is presented for
compatibility with TOTAL.

SINON,status,access,dbmod,task,options,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Considerations

♦ If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status code:

RSTR Returned if you are reexecuting your program after a failure if
you had been issuing COMITs. You can issue a RESET to
retrieve commit data you had saved. This status code is
possible only if task logging is active.

♦ If your program has not issued a COMIT and then either it or the
PDM abends, a **** status is returned on the SINON when you
restart your program.

Chapter 3 Command syntax

260 P26-4340-64

access

Description Required. Points to a field identifying the access mode to be supported
(type of DML allowed).

Options RDONLY Task intends to issue only read commands.

UPDATE Task intends to issue writes, adds, and deletes in
addition to reads.

RECOVR Task intends to issue WRITD.

Considerations

♦ The PDM examines access to determine if the SINON is a
compatibility SINON.

♦ Although this parameter must be a valid option, the user environment
description determines actual access, not this parameter.

dbmod

Description Required. Points to a field containing the TOTAL DBMOD to use.

Consideration SUPRA Server does not require a DBMOD name from application
programs. The PDM does not examine this parameter; however, it must
point to a valid address.

task

Description Required. Points to a field containing the name of the task.

Considerations

♦ For batch tasks, the PDM uses this field for the task name.

♦ For CICS, if this task parameter does not match the task name
generated by CICS, you receive an error status code.

options

Description Required. Points to a field containing the TOTAL options to use.

Consideration SUPRA Server does not require these options from an application
program. The PDM does not examine this parameter; however, it must
point to a valid address.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

SINON (TOTAL compatibility)

PDM DML Programming Guide 261

WRITD
The WRITD command writes an entire logical record into the specified
relative record location. For database recovery, this command places a
before or after image from the System Log file into the location occupied
before the failure.

WRITD,status,file,reference,data-area,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Consideration If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to handle
and possibly correct the situation. For a list of all status codes, refer to
the SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126.

file

Description Required. Identifies the primary or related file to be acted upon. You can
define a field containing the name or you can use the actual file name as
literal text in the CALL statement.

Format 4 alphanumeric characters; the first character must be alphabetic

Considerations

♦ The file must be accessed via ESDS or BDAM. If it is KSDS, the
PDM returns a FUNC error status code.

♦ The file cannot be a PDM log file or the Statistics File. If it is, the
PDM returns an error status code.

♦ The requesting task must have opened the file for exclusive update.
If not, the PDM returns an error status code.

Chapter 3 Command syntax

262 P26-4340-64

reference

Description Required. Points to the 4-byte area containing the relative record number
(RRN) of the record to be written.

Format 4 alphanumeric characters or a binary fullword

data-area

Description Required. Points to a field containing the image to be written.

Format Variable length, depending on the logical record length of the file as
defined on the Directory.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

General considerations

♦ If task logging is active when you issue a WRITD, the PDM returns
an error status code.

♦ If you did not define the access mode as RECOVR in your
environment description, the PDM returns an error status code.
Cincom does not support RECOVR access for anything other than
PDM Recover and Restore utilities. RECOVR access disables some
automatic processing and may result in loss of database integrity.

♦ Exercise extreme care when using WRITD since the PDM only
checks to determine whether the file actually exists, and whether the
file is large enough for the record location specified; it checks nothing
else.

WRITD

PDM DML Programming Guide 263

WRITM
The WRITM (Write-Primary) command updates a primary record. The
PDM locates the record to be updated as identified by the control key.
The PDM moves the data elements in the data area to the record
according to the data-list parameter and updates the record.

WRITM,status,file,control-key,data-list,data-area,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Considerations

♦ If the command fails or if the status code indicates some special
condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status codes:

HELD When accessing a database record currently being held by
another task, the PDM waits until a user-defined time-out
counter expires before it reexamines the status of the lock
request. If the record is still HELD, the PDM returns the
HELD status to the application. The application may elect to
terminate the task or reissue the command. If you choose
recycle logic for HELD statuses, you should implement an
upper limit to the mechanism in the program logic.

EMBR As with the HELD status, the PDM may return EMBR when
another task is using the database record. Distinguishing the
EMBR from the HELD status is the occurrence of a deadly
embrace. Deadly embrace occurs when two tasks, already
owners of a resource (database record), attempt to gather
each other’s resources. To handle an EMBR status, restart
the logical unit of work. Alternatively, you can introduce a
retry mechanism with an upper limit retry count in your
program logic.

Chapter 3 Command syntax

264 P26-4340-64

file

Description Required. Identifies the primary file to be acted upon. You can define a
field containing the name or you can use the actual file name as a literal
in the CALL statement.

Format 4 alphanumeric characters; first character must be alphabetic

Consideration The file must be a primary file.

control-key

Description Required. Points to a field containing the key of the primary record to be
processed. The PDM uses this key to locate a primary record.

Format Variable length as defined on the Directory

Consideration During the command processing, if the control-key parameter does not
match the corresponding field in your data area, a status code informs
you of the failure. To avoid this, you should name the control key field in
the data area rather than define a separate field.

WRITM

PDM DML Programming Guide 265

data-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory.

Format dataitem1,dataitem2,...dataitemn,END.

Considerations
♦ The commas between the entries are optional and only serve as

separators; be consistent whether you use them or not.

♦ The data list can include the names of data items and control keys.
Do not name linkpaths or the root field. Do not list any name twice.
If a name is not accepted, the PDM returns an error status code.

♦ You can list the data names in any order. They are processed in the
order listed, not in the order defined on the Directory.

♦ VSE When using a cross-address space central PDM in VSE/AF with
XPCC=YES, the data area mapped by this data-list parameter is
limited by the CSIPARM MAXIO value. This governs DML having no
length parameter. Refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250, for CSIPARM
information.

data-area

Description Required. Points to a field to be used as an output area for the data
items named in the data list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) named in the
data list.

Considerations
♦ The data area must be large enough to hold values for all data items

named in the data list.

♦ The data area and the data list have corresponding fields. The data
list holds names, and the data area holds a value for each of those
names. If you name the control key in the data list, its value must be
equal in both the data area and control key.

Chapter 3 Command syntax

266 P26-4340-64

end

Description Required. Points to a field that delimits the parameter list.

Format END.

General considerations

♦ Do not use this command to attempt to change the control key. If
you must change the value of the control key in the primary record,
your task must read the record, delete it, then add it with a new
control key. Also, if there is a chain of related records subordinate to
the primary record, your task must delete the related chain before it
can delete the primary record.

♦ With the changing of the record, the PDM maintains all populated
secondary keys in the specified data file accordingly.

♦ In a multitask operating mode or if task logging is active, the record
must have been read and held when this command is executed.

WRITM

PDM DML Programming Guide 267

WRITV
The WRITV (Write Related) command updates the record whose RRN is
in the reference field. Your task determines the RRN by executing a
preceding read DML command. The PDM moves the data elements in
the data area to the record according to the data-list parameter and
updates the record.

WRITV,status,file,reference,linkpath,control-key,data-list,data-area,end

status

Description Required. Points to a field into which the PDM places a status code
indicating the result of the command.

Format 4-byte field

Considerations
♦ If the command fails or if the status code indicates some special

condition other than failure, your program should include logic to
handle and possibly correct the situation. For a list of all status
codes, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (RDM/PDM Support for OS/390 & VSE),
P26-0126.

♦ Code your program to handle the following status codes:

HELD When accessing a database record currently being held by
another task, the PDM waits until a user-defined time-out
counter expires before it reexamines the status of the lock
request. If the record is still HELD, the PDM returns the
HELD status to the application. The application may elect to
terminate the task or reissue the command. If you choose
recycle logic for HELD statuses, you should implement an
upper limit to the mechanism in the program logic.

EMBR As with the HELD status, the PDM may return EMBR when
another task is using the database record. Distinguishing the
EMBR from the HELD status is the occurrence of a deadly
embrace. Deadly embrace occurs when two tasks, already
owners of a resource (database record), attempt to gather
each other’s resources. To handle an EMBR status, restart
the logical unit of work. Alternatively, you can introduce a
retry mechanism with an upper limit retry count in your
program logic.

Chapter 3 Command syntax

268 P26-4340-64

file

Description Required. Identifies the related file to be acted upon. You can define a
field containing the name or you can use the actual file name as a literal
in the CALL statement.

Format 4 alphanumeric characters; the first character must be alphabetic

Consideration The file must be a related file, or the PDM returns an error status code.

reference

Description Required. Points to a field identifying the RRN of the specific record to
be updated. You place the RRN in this field to tell the PDM which record
to process.

Format 4 alphanumeric characters or a binary fullword

Options rrrr Identifies the RRN of the record to be updated.

Consideration WRITV does not change the RRN of the record.

linkpath

Description Required. Points to a field containing the name of the linkpath as defined
on the Directory. This parameter indicates which related record chain is
being processed.

Format ppppLKxx where pppp identifies the name of an associated primary
file, LK is a constant, and xx are the last 2 characters of
the linkpath name as defined on the Directory.

Consideration If you specify an invalid linkpath, the PDM returns a status code.

WRITV

PDM DML Programming Guide 269

control-key

Description Required. Points to a field containing the key of the primary record to
process. The PDM uses this key to link a related record to a primary
record.

Format Variable length as defined on the Directory

Considerations
♦ During the command processing, if the control key does not match

the corresponding field in your data area, an error status code
informs you of the failure.

To avoid this, we recommend that the control-key parameter point to
the data area rather than a separate field.

♦ This parameter specifies the key of the controlling primary record.

Chapter 3 Command syntax

270 P26-4340-64

data-list

Description Required. Points to a field containing a list of data items. This list acts
as a map of the layout of the data area. Compose this list using data
names (physical fields) defined on the Directory.

Format dataitem1,dataitem2,...dataitemn,END.

Considerations
♦ The commas between the entries are optional and only serve as

separators; be consistent whether you use them or not.

♦ The data list can include the names of data items, control keys, and
record codes. Do not name linkpaths. Do not list any name twice. If
a name is not accepted, the PDM returns an error status code.

♦ You can list the data names in any order. They are processed in the
order listed, not in the order defined on the Directory. However, for
coded records, the record code must be first in the list. If not,
unpredictable results occur. See “Data list parameter keywords” on
page 62 for coded data list construction rules.

♦ VSE When using a cross-address space central PDM in VSE/AF with
XPCC=YES, the data area mapped by this data-list parameter is
limited by the CSIPARM MAXIO value. This governs DML having no
length parameter. Refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250, for CSIPARM
information.

WRITV

PDM DML Programming Guide 271

data-area

Description Required. Points to a field to be used as an output area for the data
items named in the data list.

Format The structure and characteristics of the data area must conform exactly
to the Directory definition of the data items (physical fields) named in the
data list.

Considerations

♦ The data area must be large enough to hold values for all data items
named in the data list.

♦ The data area and the data list have corresponding fields. The data
list holds names, and the data area holds a value for each of those
names. If you name the control key in the data list, its value must be
equal in both the data area and control key.

end

Description Required. Points to a field that delimits the parameter list.

Format END.

General considerations

♦ Do not attempt to modify linkpaths, control keys or record codes
because the WRITV command will not perform link maintenance;
however, you can include record codes and keys in the data- list and
data-area parameters. To modify linkpaths, control keys, or record
codes, use the ADDVR command.

♦ In a multitask operating mode or if task logging is active, the record
must have been read and held when this command is executed.

Chapter 3 Command syntax

272 P26-4340-64

4
Programming examples

This chapter contains Data Manipulation Language (DML) coding
examples showing common application programming operations. The
examples are written in COBOL, but you can use any general purpose
computer language that supports a CALL statement.

The program structures and COBOL coding techniques in the following
examples are for illustration only and are not intended to show
sophistication of programming.

The example sequences use ANS-COBOL reserved words as
user-supplied names in some instances (e.g., STATUS). Before running
any of the sequences presented here, compare the user-supplied names
to an ANS-COBOL reserved word list to make sure they have no
preassigned meanings.

PDM DML Programming Guide 273

Example of IDENTIFICATION, ENVIRONMENT, and DATA
divisions

IDENTIFICATION DIVISION.

PROGRAM-ID. EXAMPLE.

Comment The IDENTIFICATION, ENVIRONMENT, and DATA divisions listed here
apply to all of the examples in this chapter.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

SELECT TAPE-IN ASSIGN TO SYS006-UT-2400-S.

SELECT TAPE-OUT ASSIGN TO SYS007-UT-2400-S.

Chapter 4 Programming examples

274 P26-4340-64

Comment Input and output tapes must be set up according to device type, operating
system, etc.

DATA DIVISION.

FILE SECTION.

FD TAPE-IN

RECORDING MODE IS F

LABEL RECORDS ARE STANDARD

DATA RECORD IS TAPE-IN-REC.

01 TAPE-IN-REC.

 05 TAPE-CODE PIC X(2).

 05 TAPE-CONTROL PIC X(7).

 05 TAPE-NAME PIC X(20).

 05 TAPE-ADDRESS PIC X(25).

 05 TAPE-CITY PIC X(20).

 05 TAPE-STATE PIC X(2).

 05 TAPE-ZIP PIC X(5).

 05 TAPE-VALUE PIC S9(5)V99.

 05 TAPE-TERMS PIC X(10).

 05 TAPE-DISC PIC SV99.

FD TAPE-OUT

 RECORDING MODE IS F

 LABEL RECORDS ARE STANDARD

 DATA RECORD IS TAPE-OUT-REC.

01 TAPE-OUT-REC.

 05 TO-CODE PIC X(2).

 05 TO-CONTROL PIC X(7).

 05 TO-NAME PIC X(20).

 05 TO-ADDRESS PIC X(25).

 05 TO-CITY PIC X(20).

 05 TO-STATE PIC X(2).

Example of IDENTIFICATION, ENVIRONMENT, and DATA divisions

PDM DML Programming Guide 275

 05 TO-ZIP PIC X(5).

 05 TO-VALUE PIC X9(5)V99.

 05 TO-TERMS PIC X(10).

 05 TO-DISC PIC SV99.

 05 TAPE-RQLOC PIC X(4).

WORKING-STORAGE SECTION.

01 PDM-PARAMETERS.

 05 FUNCTION PIC X(5) VALUE SPACES.

 05 PRIMARY-FILE PIC X(4) VALUE 'CUST'.

 05 RELATED-FILE PIC X(4) VALUE 'CORD'.

 05 REFERENCE PIC X(4) VALUE SPACES.

 05 LINKPATH PIC X(8) VALUE 'CUSTLKOR'.

 05 QUALIFIER PIC X(30) VALUE SPACES.

 05 ENDP PIC X(4) VALUE 'END.'.

01 REALM.

 05 FILLER PIC X(6) VALUE 'REALM='.

 05 ENTRIES PIC X(30) VALUE SPACES.

01 PDM-STATUS.

 05 STATUS PIC X(4) VALUE SPACES.

01 PDM-MISC.

 05 ABEND-DUMP-SWITCH PIC X VALUE SPACE.

 05 IO-SWITCH PIC X VALUE SPACE.

 05 X-PARM PIC X VALUE SPACE.

 05 TAPE-COUNT PIC 9(4) VALUE ZERO.

01 PRIMARY-DATA-LIST.

 05 FILLER PIC X(8) VALUE 'CUSTCTRL'.

 05 FILLER PIC X(8) VALUE 'CUSTNAME'.

 05 FILLER PIC X(8) VALUE 'CUSTADDR'.

 05 FILLER PIC X(8) VALUE 'CUSTCITY'.

 05 FILLER PIC X(8) VALUE 'CUSTSTXX'.

 05 FILLER PIC X(8) VALUE 'CUSTZIPC'.

 05 FILLER PIC X(4) VALUE 'END.'.

Chapter 4 Programming examples

276 P26-4340-64

01 PRIMARY-DATA-AREA.

 05 CONTROL-KEY PIC X(7) VALUE SPACES.

 05 CUSTOMER-NAME PIC X(20) VALUE SPACES.

 05 CUSTOMER-ADDRESS PIC X(25) VALUE SPACES.

 05 CUSTOMER-CITY PIC X(20) VALUE SPACES.

 05 CUSTOMER-STATE PIC X(2) VALUE SPACES.

 05 CUSTOMER-ZIP-CODE PIC 9(5) VALUE ZEROES.

01 RELATED-DATA-LIST.

 05 FILLER PIC X(8) VALUE 'CORDCUST'.

 05 FILLER PIC X(8) VALUE 'CORDVALU'.

 05 FILLER PIC X(8) VALUE 'CORDTERM'.

 05 FILLER PIC X(8) VALUE 'CORDDISC'.

 05 FILLER PIC X(4) VALUE 'END.'.

01 RELATED-DATA-AREA.

 05 CORD-CUSTOMER PIC X(7) VALUE SPACES.

 05 CORD-VALUE PIC S9(5)V99 VALUE ZERO COMP-3.

 05 CORD-TERMS PIC X(10) VALUE SPACES.

 05 CORD-DISC-RATE PIC SV99 VALUE .02 COMP-3.

01 COMIT-AREA.

 05 COMIT-ID PIC X(4) VALUE 'ASGN'.

 05 COMIT-LENGTH PIC 9(8) VALUE 107 COMP.

 05 COMIT-DATA.

 10 COMIT-TAPE-IN-REC PIC X(105).

 10 COMIT-TAPE-COUNT PIC 9(4) VALUE ZERO.

 10 COMIT-IO-SWITCH PIC X VALUE SPACE.

Example of IDENTIFICATION, ENVIRONMENT, and DATA divisions

PDM DML Programming Guide 277

Example of read-only environment
Here is an analysis of the example program that follows:

1. PROGRAM INITIALIZATION—The first step of a task must be a
SINON. If the SINON fails, the task terminates with an error
message by skipping to step 7.

2. PROGRAM-OPEN—This task opens the two PDM files processed in
subsequent steps. You can omit this command in certain
environments. If the OPENX fails, the task terminates with an error
message by skipping to step 8. The task then opens the sequential
input and output files.

3. PROGRAM-MAINLINE—The task reads an input record from
sequential file TAPE-IN. One of the input fields provides the control
key value for the primary file read in step 4. See the record layout
labeled TAPE-IN-REC in “Example of IDENTIFICATION,
ENVIRONMENT, and DATA divisions” on page 274. When TAPE-IN
reaches its end, the task skips to its normal termination processing at
step 12.

4. READ-PRIMARY—The task reads the primary record whose key was
read in step 3. The elements read are named under data name
PRIMARY-DATA-LIST in the WORKING-STORAGE SECTION (see
“Example of IDENTIFICATION, ENVIRONMENT, and DATA
divisions” on page 274). If a record with a requested key does not
exist, the task terminates with an error message by skipping to step
9. If the record exists, the task prepares to read the subordinate
chain in the related file.

5. READ-RELATED—The task reads a related record on the linkpath
named CUSTLKOR. If an error occurs, the task terminates with an
error message by skipping to step 10. If another record on the chain
does not exist, the task loops back to step 3 to process the chain for
another key value.

6. PROGRAM-PROCESSING—If a record was read in step 5, the task
moves selected fields from that record to the output record and writes
the output record to sequential file TAPE-OUT. The task then loops
back to step 5 to read the next record in the same chain.

Chapter 4 Programming examples

278 P26-4340-64

7. STATUS-DISPLAY-SINON—The task prints an error message
reporting the failure of the SINON in step 1. It then skips to abnormal
termination processing at step 11.

8. STATUS-DISPLAY-OPEN—The task prints an error message
reporting the failure of the OPENX in step 2. It then skips to
abnormal termination processing at step 11.

9. STATUS-DISPLAY-PRIM—The task prints an error message
reporting the failure of the READM in step 4. It then skips to
abnormal termination processing at step 11.

10. STATUS-DISPLAY-RELA—The task prints an error message
reporting the failure of the READV in step 5. It then skips to
abnormal termination processing at step 11.

11. ABEND-PARA—This is the abnormal termination processing. First,
the task displays a console message. Then the task checks the
state of the sequential files. If they are open, the task skips to step
12 to close them. If they are not open, the task skips to step 13,
avoiding the close step. In both cases, the task proceeds with its
normal termination processing.

12. NORMAL-EOJ—This is the beginning of the normal termination
processing. The task closes the sequential input and output files.

13. FILE-CLOSE—The task closes the two PDM files. If you omit the
OPENX in step 2, you should omit this step. If the CLOSX fails, the
task generates an error message before continuing with termination
processing.

14. SINOF—The task issues SINOF, then terminates. If the SINOF fails,
the task generates an error message before terminating.

Example of read-only environment

PDM DML Programming Guide 279

Sample coding sequence for read-only environment

The following example shows an implementation of the preceding
analysis. The coding sections are numbered by item to match the
preceding analysis.
PROCEDURE DIVISION.

PROGRAM-INITIALIZATION. (Item 1)

MOVE 'SINON' TO FUNCTION.

CALL 'DATBAS' USING FUNCTION, STATUS, ENDP.

IF STATUS IS NOT EQUAL TO '****' GO TO STATUS-DISPLAY-SINON.

PROGRAM-OPEN. (Item 2)

MOVE 'OPENX' TO FUNCTION.

MOVE 'CUSTREAD****,CORDREAD****,END.' TO ENTRIES.

CALL 'DATBAS' USING FUNCTION, STATUS, REALM, ENDP.

IF STATUS IS NOT EQUAL TO '****' GO TO STATUS-DISPLAY-OPEN.

Comment All files in the REALM have been logically opened, but lock bytes have
not been set because READ was used as the mode in the REALM
parameter.

OPEN INPUT TAPE-IN.

OPEN OUTPUT TAPE-OUT.

MOVE 'X' TO IO-SWITCH.

PROGRAM-MAINLINE. (Item 3)

 READ TAPE-IN AT END GO TO NORMAL-EOJ.

 MOVE TAPE-CONTROL TO CONTROL-KEY.

 MOVE 'READM' TO FUNCTION.

READ-PRIMARY. (Item 4)

 CALL 'DATBAS' USING FUNCTION, STATUS, PRIMARY-FILE,
CONTROL-KEY,

 PRIMARY-DATA-LIST, PRIMARY-DATA-AREA, ENDP.

 IF STATUS IS NOT EQUAL TO '****' GO TO STATUS-DISPLAY-PRIM.

 MOVE 'READV' TO FUNCTION.

 MOVE 'LKOR' TO REFERENCE.

Chapter 4 Programming examples

280 P26-4340-64

Comment The primary record has been read. If found, the related read is set up. If
not, control is passed to a special error handling routine.
READ-RELATED. (Item 5)

 CALL 'DATBAS' USING FUNCTION, STATUS, RELATED-FILE,
REFERENCE,

 LINKPATH, CONTROL-KEY, RELATED-DATA-LIST,
RELATED-DATA-AREA, ENDP.

Comment After reading the related record, inspect to determine if the read was
successful. If so, test the reference field to determine if the related
end-of-chain has been reached.
 IF STATUS IS NOT EQUAL TO '****' GO TO STATUS-DISPLAY-RELA.

 IF REFERENCE IS EQUAL TO 'END.' GO TO PROGRAM-MAINLINE.

PROGRAM-PROCESSING. (Item 6)

 MOVE CORD-CUSTOMER TO TO-NAME.

 MOVE CORD-VALUE TO TO-VALUE.

 WRITE TAPE-OUT-REC. MOVE SPACES TO TAPE-OUT-REC.

 GO TO READ-RELATED.

STATUS-DISPLAY-SINON. (Item 7)

 DISPLAY 'SINON UNSUCCESSFUL - STATUS - ' STATUS.

 GO TO ABEND-PARA.

STATUS-DISPLAY-OPEN. (Item 8)

 DISPLAY 'OPENX UNSUCCESSFUL - REALM - ' REALM.

 GO TO ABEND-PARA.

STATUS-DISPLAY-PRIM. (Item 9)

 DISPLAY 'FUNCTION -' FUNCTION ' STATUS ' STATUS ' FILE '
PRIMARY-FILE

 ' CONTROL-KEY ' CONTROL-KEY.

 GO TO ABEND-PARA.

STATUS-DISPLAY-RELA. (Item 10)

 DISPLAY 'FUNCTION ' FUNCTION ' STATUS ' STATUS ' FILE '
RELATED-FILE

 ' LINKPATH ' LINKPATH ' CONTROL-KEY ' CONTROL-KEY.

 GO TO ABEND-PARA.

Example of read-only environment

PDM DML Programming Guide 281

ABEND-PARA. (Item 11)
 DISPLAY 'ABNORMAL EOJ'.

 IF IO-SWITCH IS EQUAL TO 'X',

 GO TO NORMAL-EOJ.

 GO TO FILE-CLOSE.

NORMAL-EOJ. (Item 12)

 CLOSE TAPE-IN TAPE-OUT.

FILE-CLOSE. (Item 13)

 MOVE 'CLOSX' TO FUNCTION.

 MOVE 'CUSTCOMP****,CORDCOMP****,END.' TO ENTRIES.

 CALL 'DATBAS' USING FUNCTION, STATUS, REALM, ENDP.

 IF STATUS IS EQUAL TO '****' GO TO SINOF.

 DISPLAY ' CLOSX UNSUCCESSFUL - REALM ' REALM.

SINOF. (Item 14)

 MOVE 'SINOF' TO FUNCTION.

 CALL 'DATBAS' USING FUNCTION, STATUS, ENDP.

 IF STATUS IS EQUAL TO '****' GO TO END-OF-JOB.

 DISPLAY 'SINOF UNSUCCESSFUL - STATUS - ' STATUS.

END-OF-JOB.

 STOP RUN.

Chapter 4 Programming examples

282 P26-4340-64

Example of update mode
Here is an analysis of the example program that follows:

1. INITIALIZATION—The first step of a task must be a SINON. If the
SINON fails, the task displays an error message, then terminates by
skipping to step 12.

2. OPENX-PARA—The task opens all PDM files available to its schema
and environment description. The OPENX sets a mode of SUPD in
anticipation of the updates in later steps. If the OPENX fails, the task
displays an error message, then terminates by skipping to step 12.
Otherwise, the task opens its sequential input file.

3. PROGRAM MAINLINE—The mainline loop reads a transaction
record from sequential file TAPE-IN, performs the appropriate
function routine (steps 4 through 11), then loops back to read another
record. The record layout for TAPE-IN is after data name
TAPE-IN-REC in the FILE SECTION in “Example of
IDENTIFICATION, ENVIRONMENT, and DATA divisions” on
page 274. The transaction code is in the field named TAPE-CODE.
When TAPE-IN reaches its end, the loop terminates and the task
skips to step 13 to complete its processing.

4. PRIMARY-ADD—This is the routine that adds a record to a primary
file. The task builds the primary record, calls the general purpose
routine (step 7) to issue an ADD-M command, then returns to the
mainline loop.

5. PRIMARY-DELETE—This is the routine that deletes a record from a
primary file. The task calls the general purpose routine (step 7) to
issue a READM command, calls the general purpose routine again to
issue a DEL-M command, then returns to the mainline loop. The
READM verifies that the record exists, reads the record, and holds it
for the DEL-M. If the READM fails, the task does not try the DEL-M.

6. PRIMARY-CHANGE—This is the routine that changes a record on a
primary file. The task calls the general purpose routine (step 7) to
issue a READM command, changes fields in the record, calls the
general purpose routine again to issue a WRITM command, then
returns to the mainline loop. The READM makes the record
available for update, and the WRITM replaces the updated record on
the file. If the READM fails, the task does not try the WRITM.

Example of update mode

PDM DML Programming Guide 283

7. PRIMARY-CALL—This is the general purpose routine that issues
DML commands for reading and writing primary records. The task
issues the DML command set by the caller of the routine, then
returns. If the command fails, the task prints an error message
before returning.

8. RELATED-ADD—This is the routine that adds a record to the end of
a chain in a related file. The task calls the general purpose routine
(step 7) to issue a READM command, calls the other general
purpose routine (step 11) to issue an ADDVA, then returns to the
mainline loop. The READM verifies that a primary record with the
appropriate key value exists. If such a record does not exist, its
subordinate chain cannot exist; therefore, if the READM fails, the
task does not try the ADDVA. The READM is optional because the
PDM would read the appropriate primary record as part of the
servicing of the ADDVA. The PDM would reject the ADDVA if the
primary record did not exist.

9. RELATED-DELETE—This is the routine that deletes an entire chain
from a related file. The task calls the general purpose routine (step
7) to issue a READM command, repeatedly calls the other general
purpose routine (step 11) to issue READV commands followed by
DELVD commands, then returns to the mainline loop. The READM
verifies that a primary record with the appropriate key value exists. If
such a record does not exist, its subordinate chain cannot exist;
therefore, if the READM fails, the task does not try the READVs and
DELVDs. The READM is optional because the PDM would read the
appropriate primary record as part of the servicing of the first
READV. The PDM would reject the READV if the primary record did
not exist. When a READV sets END. in REFERENCE, the task has
processed the entire chain; therefore, it immediately returns. Note
how this handles the case of an empty chain.

 Each successful DELVD sets REFERENCE to the RRN of the
related record preceding the deleted record on the chain. Since each
DELVD promotes the second record on the chain to the head of the
chain, each DELVD sets REFERENCE to LKOR. The READV in the
next iteration of the loop uses that value of REFERENCE to read the
new head of the chain, and the following DELVD deletes it.

Chapter 4 Programming examples

284 P26-4340-64

10. RELATED-CHANGE—This is the routine that changes a record on a
related file. The task calls the general purpose routine (step 7) to
issue a READM command, repeatedly calls the other general
purpose routine (step 11) to issue READV commands, moves new
field values from the input transactions to the appropriate related
record, calls the second general purpose routine to issue a WRITV
command, then returns to the mainline loop. The READM verifies
that a primary record with the appropriate key value exists. If such a
record does not exist, its subordinate chain cannot exist; therefore, if
the READM fails, the task does not try the READVs and WRITV.

 Each READV reads another record on the identified linkpath
subordinate to the appropriate primary record. You must add logic to
inspect each related record and update only the correct one in the
chain. If a READV sets END. in REFERENCE before the logic
selects a record, the routine prints an error message and returns to
the mainline loop without updating a record. Note how this handles
the cases of both an empty chain and a chain that does not contain a
matching record.

 Each successful READV sets REFERENCE to the RRN of the record
just read. If the task updates a record, the WRITV uses that value of
reference to replace the related record.

11. RELATED-CALL—This is the general purpose routine that issues
DML commands for reading and writing related records. The task
issues the DML command set by the caller of the routine, then
returns. If the command fails, the task prints an error message
before returning.

12. ABNORMAL-EOJ—This is the abnormal termination processing.
First, the task displays a console message. Then the task checks
the state of TAPE-IN. If it is open, the task skips to step 13 to close
it. If it is not open, the task skips to step 14, avoiding the close step.
In both cases, the task proceeds with its normal termination
processing.

13. TAPE-EOJ—This is the beginning of the normal termination
processing. The task closes the TAPE-IN input file.

14. END-CONTROL—The task closes the PDM files it opened in step 2.
If the CLOSX fails, the task generates an error message before
continuing with termination processing.

15. END-SINOF—The task issues SINOF, then terminates. If the SINOF
fails, the task generates an error message before terminating.

Example of update mode

PDM DML Programming Guide 285

Sample coding sequence for update environment

The following example shows an implementation of the preceding
analysis. The coding sections are numbered by item to match the
preceding analysis.
PROCEDURE DIVISION.

INITIALIZATION. (Item 1)

MOVE 'SINON' TO FUNCTION.

CALL 'DATBAS' USING FUNCTION, STATUS, ENDP.

IF STATUS IS EQUAL TO '****' GO TO OPENX-PARA.

DISPLAY 'SINON' STATUS.

GO TO ABNORMAL-EOJ.

OPENX-PARA. (Item 2)

MOVE 'ALL.SUPD****,END.' TO ENTRIES.

MOVE 'OPENX' TO FUNCTION.

CALL 'DATBAS' USING FUNCTION, STATUS, REALM, ENDP.

IF STATUS IS EQUAL TO '****' GO TO FILE-INITIALIZE.

DISPLAY 'OPENX UNSUCCESSFUL' STATUS.

GO TO ABNORMAL-EOJ.

FILE-INITIALIZE.

OPEN INPUT TAPE-IN.

MOVE 'X' TO IO-SWITCH.

PROGRAM-MAINLINE. (Item 3)

READ TAPE-IN AT END

GO TO TAPE-EOJ.

MOVE TAPE-CONTROL TO CONTROL-KEY.

IF TAPE-CODE = '01'

GO TO PRIMARY-ADD.

IF TAPE-CODE = '02'

GO TO PRIMARY-DELETE.

IF TAPE-CODE = '03'

GO TO PRIMARY-CHANGE.

IF TAPE-CODE = '04'

Chapter 4 Programming examples

286 P26-4340-64

GO TO RELATED-ADD.

IF TAPE-CODE = '05'

GO TO RELATED-DELETE.

IF TAPE-CODE = '06'

GO TO RELATED-CHANGE.

GO TO PROGRAM-MAINLINE.

PRIMARY-ADD. (Item 4)

Comment At this point you would move data from the input record to the
PRIMARY-DATA-AREA.

MOVE 'ADD-M' TO FUNCTION.

PERFORM PRIMARY-CALL THRU PRIMARY-CALL-X.

GO TO PROGRAM-MAINLINE.

PRIMARY-DELETE. (Item 5)

MOVE 'READM' TO FUNCTION.

PERFORM PRIMARY-CALL THRU PRIMARY-CALL-X.

IF STATUS NOT = '****' GO TO PROGRAM-MAINLINE.

MOVE 'DEL-M' TO FUNCTION.

PERFORM PRIMARY-CALL THRU PRIMARY-CALL-X.

GO TO PROGRAM-MAINLINE.

PRIMARY-CHANGE. (Item 6)

MOVE 'READM' TO FUNCTION.

PERFORM PRIMARY-CALL THRU PRIMARY-CALL-X.

IF STATUS NOT = '****' GO TO PROGRAM-MAINLINE.

Example of update mode

PDM DML Programming Guide 287

Comment At this point the program updates the primary file data elements by
moving the input fields to the fields in PRIMARY-DATA-AREA.

MOVE 'WRITM' TO FUNCTION.

PERFORM PRIMARY-CALL THRU PRIMARY-CALL-X.

GO TO PROGRAM-MAINLINE.

PRIMARY-CALL. (Item 7)

CALL 'DATBAS' USING FUNCTION, STATUS,

PRIMARY-FILE, CONTROL-KEY,

PRIMARY-DATA-LIST, PRIMARY-DATA-AREA, ENDP.

IF STATUS IS EQUAL TO '****' GO TO PRIMARY-CALL-X.

DISPLAY 'FUNCTION ' FUNCTION ' STATUS ' STATUS ' FILE '

PRIMARY-FILE ' CONTROL-KEY ' CONTROL-KEY.

PRIMARY-CALL-X.

EXIT.

RELATED-ADD. (Item 8)

MOVE 'READM' TO FUNCTION.

PERFORM PRIMARY-CALL THRU PRIMARY-CALL-X.

IF STATUS IS NOT EQUAL TO '****' GO TO PROGRAM-MAINLINE.

MOVE 'ADDVA' TO FUNCTION.

MOVE 'LKOR' TO REFERENCE.

PERFORM RELATED-CALL THRU RELATED-CALL-X.

GO TO PROGRAM-MAINLINE.

RELATED-DELETE. (Item 9)

MOVE 'READM' TO FUNCTION.

PERFORM PRIMARY-CALL THRU PRIMARY-CALL-X.

IF STATUS IS NOT EQUAL TO '****' GO TO PROGRAM-MAINLINE.

Comment This value of REFERENCE directs READV to read the first related record
on the chain of master record CONTROL-KEY.

MOVE 'LKOR' TO REFERENCE.

Chapter 4 Programming examples

288 P26-4340-64

Comment The following loop deletes an entire chain in the related file.

RELATED-DEL-READ.

MOVE 'READV' TO FUNCTION.

PERFORM RELATED-CALL THRU RELATED-CALL-X.

Comment Check status then reference.

IF STATUS IS NOT EQUAL TO '****' GO TO PROGRAM-MAINLINE.

IF REFERENCE IS EQUAL TO 'END.' GO TO PROGRAM-MAINLINE.

MOVE 'DELVD' TO FUNCTION.

PERFORM RELATED-CALL THRU RELATED-CALL-X.

IF STATUS NOT EQUAL TO '****' GO TO PROGRAM-MAINLINE.

GO TO RELATED-DEL-READ.

RELATED-CHANGE. (Item 10)

MOVE 'READM' TO FUNCTION.

PERFORM PRIMARY-CALL THRU PRIMARY-CALL-X.

IF STATUS NOT EQUAL TO '****' DISPLAY 'UNABLE TO CHANGE RELATED
RECORD'

GO TO PROGRAM MAINLINE.

MOVE 'LKOR' TO REFERENCE.

RELATED-CHG-READ.

MOVE 'READV' TO FUNCTION.

PERFORM RELATED-CALL THRU RELATED-CALL-X.

Comment Check status then reference.

IF STATUS NOT EQUAL TO '****' GO TO PROGRAM-MAINLINE.

IF REFERENCE IS EQUAL TO 'END.' DISPLAY 'END OF CHAIN REACHED'

GO TO PROGRAM-MAINLINE.

Example of update mode

PDM DML Programming Guide 289

Comment Perform a test to identify which related record should change and loop to
RELATED-CHG-READ on no match. Otherwise, update the found
record.
MOVE TAPE-TERMS TO CORD-TERMS.

MOVE 'WRITV' TO FUNCTION.

PERFORM RELATED-CALL THRU RELATED-CALL-X.

IF STATUS NOT EQUAL TO '****' DISPLAY 'RELATED CHANGE
UNSUCCESSFUL'.

GO TO PROGRAM-MAINLINE.

RELATED-CALL. (Item 11)

CALL 'DATBAS' USING FUNCTION, STATUS, RELATED-FILE, REFERENCE,
LINKPATH,

CONTROL-KEY, RELATED-DATA-LIST, RELATED-DATA-AREA, ENDP.

IF STATUS = '****' GO TO RELATED-CALL-X.

DISPLAY 'FUNCTION ' FUNCTION ' STATUS ' STATUS ' FILE '
RELATED-FILE.

RELATED-CALL-X.

EXIT.

ABNORMAL-EOJ. (Item 12)

DISPLAY 'ABNORMAL JOB TERMINATION'

IF IO-SWITCH IS EQUAL TO 'X' GO TO TAPE-EOJ.

GO TO END-CONTROL.

TAPE-EOJ. (Item 13)

CLOSE TAPE-IN.

END-CONTROL. (Item 14)

MOVE 'CLOSX' TO FUNCTION.

MOVE 'ALL.COMP****,END.' TO ENTRIES.

CALL 'DATBAS' USING FUNCTION, STATUS, REALM, ENDP.

IF STATUS IS EQUAL TO '****' GO TO END-SINOF.

DISPLAY 'CLOSX UNSUCCESSFUL - STATUS' STATUS

GO TO END-SINOF.

END-SINOF. (Item 15)
MOVE 'SINOF' TO FUNCTION.

CALL 'DATBAS' USING FUNCTION, STATUS, ENDP.

IF STATUS IS NOT EQUAL TO '****' DISPLAY 'FUNCTION ' FUNCTION

' STATUS ' STATUS.

END-ALL.

STOP RUN.

Chapter 4 Programming examples

290 P26-4340-64

Example of recoverable update mode
This example adds recoverability and restartability to the previous
example. Because most of the processing is identical, only the
differences are discussed here. The changes fall into two categories:
preparing the program for failure and handling a failure.

To prepare for a failure, the program issues a COMIT command between
consecutive logical units of work (item 18). COMIT directs the PDM to
complete I/O pending on behalf of this task, to release resources held by
this task, and to identify a recovery point for this task. In addition, the
COMIT preserves three items of application-dependent data: the number
of the input record the task has processed in the preceding logical unit of
work, the image of that record, and a switch indicating whether the task
has opened its PDM files (item 17). This data is important when the task
handles a failure.

In a task logging environment, when a task issues OPENX, the PDM
prevents other tasks from accessing the opened files until the first task
issues COMIT. In this example, the task allows other tasks to access the
PDM files it has opened when it issues COMIT before reading its first
input record. Subsequent COMITs merely separate consecutive logical
units of work.

When a failure occurs, the operating system terminates the task. When
you restart the task, the PDM requires that for recovery purposes, the
task execute in the same environment. In other words, you must use the
same task identifier, the same interface identifier, the same job name,
the same CSIPARM file, and so on In addition, this program requires
that you supply the same input file. Do not remove the input records
successfully processed before the failure.

To handle the failure, the task checks for RSTR status returned after
SINON (item 16). The RSTR status indicates that the PDM recognizes
that your task failed earlier and is now attempting to restart.

Example of recoverable update mode

PDM DML Programming Guide 291

The program directs that after your task receives RSTR in response to a
SINON, the next DML command your task issues is a RESET (item 19).
RESET with a commit identifier of LAST directs the PDM to recover the
PDM files to their state at the last COMIT completed before the failure.
The PDM reopens files as appropriate. (Any uncommitted updates were
recovered at the time of task failure, or if the PDM failed, at PDM warm
start.) In this example, RESET also retrieves the application-dependent
data saved by that COMIT.

The data item COMIT-IO-SWITCH indicates whether the PDM files were
open at the time of the failure (item 21). If the task failed before its first
COMIT, RESET cannot retrieve any application-dependent data. In this
case, COMIT-IO-SWITCH contains its initial value indicating that the
PDM has not reopened the files and the task must do so. If the task
failed after it issued its first COMIT, RESET retrieves
application-dependent data indicating that the PDM has reopened the
files. The task branches back to its initialization logic and continues as if
it were executing for the first time.

If the task failed between its first and second COMITs, RESET retrieves
zero in COMIT-TAPE-COUNT (item 20). This indicates that the task was
processing its first input record at the time of the failure and it must
reread and reprocess that first record. Also, the task branches back to its
initialization logic.

If the task failed after its second or any subsequent COMIT, RESET
retrieves a positive value in COMIT-TAPE-COUNT (item 20). The task
must read and not process that number of records because those
records were successfully processed before the failure. After reading the
last such record, the task must verify that the record matches the record
image retrieved by RESET (item 22). The match succeeds when the
record is the last one successfully processed before the failure. In this
case, the task resumes its mainline processing to read and process the
next record. If the match fails, you have probably not supplied the same
input file. If the program signs off, you cannot resubmit the job, so it
stops the run immediately without a commit. Resubmit the job with the
correct input file.

Chapter 4 Programming examples

292 P26-4340-64

Notice that the program also terminates immediately during a restart if
the RESET fails. This is an unusual method of terminating a task that
processes PDM files. The usual method of terminating invokes closing
files (CLOSX) and signing off (SINOF). If the task successfully signs off
and you resubmit the job, the subsequent SINON receives a **** status.
Following an unsuccessful termination, the SINON executed on a second
or subsequent restart again receives a RSTR status and the subsequent
RESET restarts the task from the same commit point with the same
application-dependent data.

Sample coding sequence for recoverable update environment

The following example is a repeat of the previous example with one
exception. This example shows the use of COMIT and RESET in an
update environment. This technique makes the program restartable.
PROCEDURE DIVISION.

 INITIALIZATION. (Item 1)

 MOVE 'SINON' TO FUNCTION.

 CALL 'DATBAS' USING FUNCTION, STATUS, ENDP.

 IF STATUS IS EQUAL TO '****' GO TO OPENX-PARA.

 IF STATUS IS EQUAL TO 'RSTR' GO TO PROGRAM-RESTART.
 (Item 16)

 DISPLAY 'SINON' STATUS.

 GO TO ABNORMAL-EOJ.

 OPENX-PARA. (Item 2)

 MOVE 'ALL.SUPD****,END.' TO ENTRIES.

 MOVE 'OPENX' TO FUNCTION.

 CALL 'DATBAS' USING FUNCTION, STATUS, REALM, ENDP.

 IF STATUS IS EQUAL TO '****' GO TO FILE-INITIALIZE.

 DISPLAY 'OPENX UNSUCCESSFUL' STATUS.

 GO TO ABNORMAL-EOJ.

 FILE-INITIALIZE.

 OPEN INPUT TAPE-IN.

 MOVE 'X' TO IO-SWITCH.

 MOVE IO-SWITCH TO COMIT-IO-SWITCH. (Item 17)

 PROGRAM-MAINLINE. (Item 3)

 MOVE 'COMIT' TO FUNCTION. (Item 18)

Example of recoverable update mode

PDM DML Programming Guide 293

 MOVE TAPE-COUNT TO COMIT-TAPE-COUNT.

 MOVE TAPE-IN-REC TO COMIT-TAPE-IN-REC.

 CALL 'DATBAS' USING FUNCTION, STATUS, COMIT-ID,
COMIT-LENGTH,

 COMIT-DATA, ENDP.

 PROGRAM-MAIN-RESTART

 READ TAPE-IN AT END

 GO TO TAPE-EOJ.

 ADD 1 TO TAPE-COUNT.

 MOVE TAPE-CONTROL TO CONTROL-KEY.

 IF TAPE-CODE = '01'

 GO TO PRIMARY-ADD.

 IF TAPE-CODE = '02'

 GO TO PRIMARY-DELETE.

 IF TAPE-CODE = '03'

 GO TO PRIMARY-CHANGE.

 IF TAPE-CODE = '04'

 GO TO RELATED-ADD.

 IF TAPE-CODE = '05'

 GO TO RELATED-DELETE.

 IF TAPE-CODE = '06'

 GO TO RELATED-CHANGE.

 GO TO PROGRAM-MAINLINE.

PRIMARY-ADD. (Item 4)

Chapter 4 Programming examples

294 P26-4340-64

Comment At this point you would move data from the input record to the
PRIMARY-DATA-AREA.

MOVE 'ADD-M' TO FUNCTION.

PERFORM PRIMARY-CALL THRU PRIMARY-CALL-X.

GO TO PROGRAM-MAINLINE.

PRIMARY-DELETE. (Item 5)

 MOVE 'READM' TO FUNCTION.

 PERFORM PRIMARY-CALL THRU PRIMARY-CALL-X.

 IF STATUS NOT = '****' GO TO PROGRAM-MAINLINE.

 MOVE 'DEL-M' TO FUNCTION.

 PERFORM PRIMARY-CALL THRU PRIMARY-CALL-X.

 GO TO PROGRAM-MAINLINE.

PRIMARY-CHANGE. (Item 6)
 MOVE 'READM' TO FUNCTION.
 PERFORM PRIMARY-CALL THRU PRIMARY-CALL-X.
 IF STATUS NOT = '****' GO TO PROGRAM-MAINLINE.

Example of recoverable update mode

PDM DML Programming Guide 295

Comment At this point the primary file data elements are updated by moving the
input fields to the fields in PRIMARY-DATA-AREA.
MOVE 'WRITM' TO FUNCTION.
PERFORM PRIMARY-CALL THRU PRIMARY-CALL-X.
GO TO PROGRAM-MAINLINE.

PRIMARY-CALL. (Item 7)
 CALL 'DATBAS' USING FUNCTION, STATUS, PRIMARY-FILE,
CONTROL-KEY,

 PRIMARY-DATA-LIST, PRIMARY-DATA-AREA, ENDP.
 IF STATUS IS EQUAL TO '****' GO TO PRIMARY-CALL-X.
 DISPLAY 'FUNCTION ' FUNCTION ' STATUS ' STATUS ' FILE '
 PRIMARY-FILE ' CONTROL-KEY ' CONTROL-KEY.
PRIMARY-CALL-X.
 EXIT.

RELATED-ADD. (Item 8)
 MOVE 'READM' TO FUNCTION.
 PERFORM PRIMARY-CALL THRU PRIMARY-CALL-X.
 IF STATUS IS NOT EQUAL TO '****' GO TO PROGRAM-MAINLINE.
 MOVE 'ADDVA' TO FUNCTION.
 MOVE 'LKOR' TO REFERENCE.
 PERFORM RELATED-CALL THRU RELATED-CALL-X.
 GO TO PROGRAM-MAINLINE.

RELATED-DELETE. (Item 9)
 MOVE 'READM' TO FUNCTION.
 PERFORM PRIMARY-CALL THRU PRIMARY-CALL-X.
 IF STATUS IS NOT EQUAL TO '****' DISPLAY 'UNABLE TO DELETE
RELATED'

 GO TO PROGRAM-MAINLINE.

Comment This value of REFERENCE directs READV to read the first record on the
chain.

MOVE 'LKOR' TO REFERENCE.

RELATED-DEL-READ.

 MOVE 'READV' TO FUNCTION.

 PERFORM RELATED-CALL THRU RELATED-CALL-X.

Chapter 4 Programming examples

296 P26-4340-64

Comment Check status then reference.
IF STATUS IS NOT EQUAL TO '****' GO TO PROGRAM-MAINLINE.

IF REFERENCE IS EQUAL TO 'END.' GO TO PROGRAM-MAINLINE.

MOVE 'DELVD' TO FUNCTION.

PERFORM RELATED-CALL THRU RELATED-CALL-X.

IF STATUS NOT EQUAL TO '****' GO TO PROGRAM-MAINLINE.

GO TO RELATED-DEL-READ.

RELATED-CHANGE. (Item 10)

 MOVE 'READM' TO FUNCTION.

 PERFORM PRIMARY-CALL THRU PRIMARY-CALL-X.

 IF STATUS NOT EQUAL TO '****' DISPLAY 'UNABLE TO CHANGE
RELATED'

 GO TO PROGRAM MAINLINE.

 MOVE 'LKOR' TO REFERENCE.

RELATED-CHG-READ.

 MOVE 'READV' TO FUNCTION.

 PERFORM RELATED-CALL THRU RELATED-CALL-X.

Example of recoverable update mode

PDM DML Programming Guide 297

Comment Check status then reference.
IF STATUS NOT EQUAL TO '****' GO TO PROGRAM-MAINLINE.

IF REFERENCE IS EQUAL TO 'END.' DISPLAY 'END OF CHAIN REACHED'

GO TO PROGRAM-MAINLINE.

MOVE TAPE-TERMS TO CORD-TERMS.

MOVE 'WRITV' TO FUNCTION.

PERFORM RELATED-CALL THRU RELATED-CALL-X.

IF STAT NOT EQUAL TO '****' DISPLAY 'RELATED CHANGE
UNSUCCESSFUL'.

GO TO PROGRAM-MAINLINE.

RELATED-CALL. (Item 11)
 CALL 'DATBAS' USING FUNCTION, STATUS, RELATED-FILE, REFERENCE,
LINKPATH,

 CONTROL-KEY, RELATED-DATA-LIST, RELATED-DATA-AREA, ENDP.
 IF STATUS = '****' GO TO RELATED-CALL-X.
 DISPLAY 'FUNCTION ' FUNCTION ' STATUS ' STATUS ' FILE '
RELATED-FILE.

RELATED-CALL-X.
 EXIT.
PROGRAM-RESTART. (Item 19)
 DISPLAY 'PROGRAM RESTART IN PROGRESS'
 MOVE 'RESET' TO FUNCTION.
 MOVE 'LAST' TO COMIT-ID.
 CALL 'DATBAS' USING FUNCTION, STATUS, COMIT-ID, COMIT-LENGTH,
 COMIT-DATA, ENDP.
 IF STATUS IS NOT EQUAL TO '****'
 DISPLAY 'FUNCTION ' FUNCTION ' STATUS ' STATUS
 STOP RUN.
 IF COMIT-TAPE-COUNT=ZERO (Item 20)
 IF COMIT-IO-SWITCH IS NOT EQUAL TO 'X' (Item 21)
 GO TO FILE-INITIALIZE
 ELSE GO TO OPENX-PARA.
 MOVE COMIT-IO-SWITCH TO IO-SWITCH.

 SKIP-FOR-RECORD.
 READ TAPE-IN AT END GO TO TAPE-EOJ.
 ADD 1 TO TAPE-COUNT.
 IF TAPE-COUNT IS NOT EQUAL TO COMIT-TAPE-COUNT
 DISPLAY 'SKIPPING FOR RESTART: ' TAPE-IN-REC.
 GO TO SKIP-FOR-RECORD.

Chapter 4 Programming examples

298 P26-4340-64

 CHECK-MATCH. (Item 22)
 IF TAPE-IN-REC IS NOT EQUAL TO COMIT-TAPE-IN-REC
 DISPLAY 'MISMATCH IN RESTART INPUT TAPE'
 STOP RUN.
 DISPLAY 'RESTARTING WITH: ' TAPE-IN-REC.
 GO TO PROGRAM-MAIN-RESTART.

 ABNORMAL-EOJ. (Item 12)

 DISPLAY 'ABNORMAL JOB TERMINATION'

 IF IO-SWITCH IS EQUAL TO 'X' GO TO TAPE-EOJ.

 GO TO END-CONTROL.

 TAPE-EOJ. (Item 13)

 CLOSE TAPE-IN.

 END-CONTROL. (Item 14)

 MOVE 'CLOSX' TO FUNCTION.

 MOVE 'ALL.COMP****,END.' TO ENTRIES.

 CALL 'DATBAS' USING FUNCTION, STATUS, REALM, ENDP.

 IF STATUS IS EQUAL TO '****' GO TO END-SINOF.

 DISPLAY 'FUNCTION ' FUNCTION ' STATUS ' STATUS.

 GO TO END-SINOF.

 END-SINOF. (Item 15)

 MOVE 'SINOF' TO FUNCTION.

 CALL 'DATBAS' USING FUNCTION, STATUS, ENDP.

 IF STATUS IS NOT EQUAL TO '****' DISPLAY 'FUNCTION ' FUNCTION

' STATUS ' STATUS.

 END-ALL.

 STOP RUN.

Example of recoverable update mode

PDM DML Programming Guide 299

Example of primary serial processing
This example shows how to read every record in a primary file by
sweeping the file serially with RDNXT. RDNXT reads the records in the
order they are stored on disk.

1. INITIALIZATION—The first step of a task must be a SINON. If the
SINON fails, the task terminates with an error message.

2. OPEN—The task opens the PDM file to prepare for the following
serial sweep of the file. The OPENX sets a mode of EUPD to
reserve the entire file for this task. This is recommended because if
another task updates the file, this task might process some record
twice or skip a record. If the OPENX fails, the task generates an
error message and terminates by skipping to step 6.

3. SERIAL-INITIAL—The task sets QUALIFIER to BEGN. This value
directs the first RDNXT command to read the first allocated record in
the file.

4. SERIAL-READ—The task repeatedly issues RDNXT commands to
read every record in the file in ascending order of disk addresses.
Following a successful RDNXT, your task can inspect any fields in
the record, but it is recommended that your task not update any
record before completing the serial sweeps. Following this
processing, the task loops back to issue another RDNXT.

 RDNXT can be unsuccessful either because it has reached the end
of the file or because it encounters an error. At the end of the file, the
task terminates normally by skipping to step 5. On an error, the task
terminates abnormally by generating an error message before
skipping to step 5.

5. CLOSE—This is the beginning of normal termination processing or
the beginning of abnormal termination processing following an error
in step 4. The task closes the PDM file it opened in step 2. If the
CLOSX fails, the task generates an error message before continuing
with termination processing.

6. SINOF—This is the continuation of normal termination processing or
the beginning of abnormal termination processing following an error
in step 2. (A failure in step 2 means the file is not open so step 2
skips to this step to avoid the CLOSX in step 5.) The task issues
SINOF, then terminates. If the SINOF fails, the task generates an
error message before terminating.

Chapter 4 Programming examples

300 P26-4340-64

Sample coding sequence for serial processing of primary files
PROCEDURE DIVISION.

INITIALIZATION. (Item 1)

 MOVE 'SINON' TO FUNCTION.

 CALL 'DATBAS' USING FUNCTION, STATUS, ENDP.

 IF STATUS IS EQUAL TO '****' GO TO OPEN.

 DISPLAY 'SINON FAILURE - STATUS ' STATUS.

 DISPLAY 'ABNORMAL JOB TERMINATION'.

 STOP RUN.

OPEN. (Item 2)

 MOVE 'OPENX' TO FUNCTION.

 MOVE 'CUSTEUPD****,END.' TO ENTRIES.

 CALL 'DATBAS' USING FUNCTION, STATUS, REALM, ENDP.

 IF STATUS = '****' GO TO SERIAL-INITIAL.

 DISPLAY 'OPENX FAILURE - REALM ' REALM.

 GO TO SINOF.

SERIAL-INITIAL. (Item 3)

 MOVE 'RDNXT' TO FUNCTION.

 MOVE 'BEGN SERIAL' TO QUALIFIER.

SERIAL-READ. (Item 4)

 CALL 'DATBAS' USING FUNCTION, STATUS, PRIMARY-FILE, QUALIFIER,

 PRIMARY-DATA-LIST, PRIMARY-DATA-AREA, ENDP.

 IF STATUS IS EQUAL TO 'END.' GO TO CLOSE.

 IF STATUS IS NOT EQUAL TO '****' DISPLAY 'RDNXT FAILURE
-STATUS ' STATUS

 GO TO CLOSE.

Example of primary serial processing

PDM DML Programming Guide 301

Comment At this point, you may do whatever data manipulation you desire.

GO TO SERIAL-READ.

CLOSE. (Item 5)

 MOVE 'CLOSX' TO FUNCTION.

 MOVE 'CUSTCOMP****,END.' TO ENTRIES.

 CALL 'DATBAS' USING FUNCTION, STATUS, REALM, ENDP.

 IF STATUS IS EQUAL TO '****' GO TO SINOF.

 DISPLAY 'CLOSX FAILURE - REALM - ' REALM.

SINOF. (Item 6)

 MOVE 'SINOF' TO FUNCTION.

 CALL 'DATBAS' USING FUNCTION, STATUS, TASK, ENDP.

 IF STATUS IS EQUAL TO '****' GO TO JOB-END.

 DISPLAY 'SINOF FAILURE - STATUS' STATUS.

 JOB-END.

 STOP RUN.

Chapter 4 Programming examples

302 P26-4340-64

Example of related serial processing (physical)
This program shows that the coding for serially reading a related file with
RDNXT is nearly identical to the coding in the previous example for a
primary file. The only difference is in the parameter fields of the CALL
‘DATBAS’ statement that executes the RDNXT command.

Sample coding sequence for serial processing of related files

PROCEDURE DIVISION.

INITIALIZATION.

MOVE 'SINON' TO FUNCTION.
CALL 'DATBAS' USING FUNCTION, STATUS, ENDP.
IF STATUS IS EQUAL TO '****' GO TO OPEN.
DISPLAY 'SINON FAILURE - STATUS ' STATUS.
INITIAL-ABEND.
DISPLAY TASK 'TASK ABNORMALLY TERMINATED'.
STOP RUN.

OPEN.
MOVE 'OPENX' TO FUNCTION.
MOVE 'CORDREAD****,END.' TO ENTRIES.
CALL 'DATBAS' USING FUNCTION, STATUS, REALM, ENDP.
IF STATUS = '****' GO TO SERIAL-INITIAL.
DISPLAY 'OPENX FAILURE STATUS ' STATUS 'REALM' REALM.
GO TO SINOF.

SERIAL-INITIAL.
MOVE 'RDNXT' TO FUNCTION.
MOVE 'BEGN' TO QUALIFIER.

SERIAL-READ.
CALL 'DATBAS' USING FUNCTION, STATUS, RELATED-FILE, QUALIFIER,
RELATED-DATA-LIST, RELATED-DATA-AREA, ENDP.
IF STATUS IS EQUAL TO 'END.' GO TO CLOSE.
IF STATUS IS NOT EQUAL TO '****' DISPLAY 'RDNXT FAILURE - STATUS
' STATUS

GO TO CLOSE.

Example of related serial processing (physical)

PDM DML Programming Guide 303

Comment At this point, you can do whatever data manipulation you desire.

CLOSE.

 MOVE 'CLOSX' TO FUNCTION.

 MOVE 'CORDCOMP****,END.' TO ENTRIES.

 CALL 'DATBAS' USING FUNCTION, STATUS, REALM, ENDP.

 IF STATUS IS EQUAL TO '****' GO TO SINOF.

 DISPLAY FUNCTION REALM.

SINOF.

 MOVE 'SINOF' TO FUNCTION.

 CALL 'DATBAS' USING FUNCTION, STATUS, ENDP.

 IF STATUS IS EQUAL TO '****' GO TO JOB-END.

 DISPLAY 'SINOF FAILURE - STATUS ' STATUS.

JOB-END.

 STOP RUN.

Chapter 4 Programming examples

304 P26-4340-64

Example of related serial processing (logical)
The coding in this example of RDNXT is nearly the same as the previous
example, but the processing is much different. It does not read the entire
file. This example reads only those related records chained on a
particular linkpath. Also, the program reads each chain in linkpath sets;
that is, consecutive RDNXT commands read successive records in a
chain subordinate to one primary record. The following analysis
highlights only the differences between this example and the previous
example.

1. RDNXT-PREP—The task sets QUALIFIER to ‘BEGN CUSTLKOR’.
This directs the first RDNXT command to read the first record on a
chain linked on linkpath CUSTLKOR.

2. RDNXT-READ—This step performs all the same processing as the
similar step in “Example of related serial processing (physical)” on
page 303, but also checks for ENDC in STATUS. ENDC indicates
that the preceding RDNXT read the last record on the chain and this
RDNXT did not read a record. ENDC also indicates that QUALIFIER
now contains the value that directs the next RDNXT to read the first
record on the next chain of the same linkpath. The task immediately
loops back to issue another RDNXT.

 When the END. is returned, it signals the end of all chains on this
linkpath. This may not have been all records on the file if there are
other linkpaths.

Example of related serial processing (logical)

PDM DML Programming Guide 305

Sample coding sequence for serial processing of related files by chain
PROCEDURE DIVISION.

INITIALIZATION.
 MOVE 'SINON' TO FUNCTION.
 CALL 'DATBAS' USING FUNCTION, STATUS, ENDP.
 IF STATUS IS NOT EQUAL TO '****' GO TO ABEND-PARA.
 MOVE 'OPENX' TO FUNCTION.
 MOVE 'CORDEUPD****,END.' TO ENTRIES.
 CALL 'DATBAS' USING FUNCTION, STATUS, REALM, ENDP.
 IF STATUS IS EQUAL TO '****' GO TO RDNXT-PREP.
 GO TO ABEND-PARA.

RDNXT-PREP. (Item 1)
 MOVE 'RDNXT' TO FUNCTION.
 MOVE 'BEGN CUSTLKOR' TO QUALIFIER.

RDNXT-READ. (Item 2)
 CALL 'DATBAS' USING FUNCTION, STATUS, RELATED-FILE, QUALIFIER,
 RELATED-DATA-LIST, RELATED-DATA-AREA, ENDP.
 IF STATUS IS EQUAL TO '****'
 GO TO DATA-PROCESS.
 IF STATUS = 'ENDC'
 GO TO RDNXT-READ.
 IF STATUS IS EQUAL TO 'END.'
 GO TO CLOSE.
 GO TO ABEND-PARA.

DATA-PROCESS.

Comment At this point, you can do whatever data manipulation you desire.
 GO TO RDNXT-READ.

CLOSE.

 MOVE 'CLOSX' TO FUNCTION.

 MOVE 'CORDCOMP****,END.' TO ENTRIES.

 CALL 'DATBAS' USING FUNCTION, STATUS, REALM, ENDP.

 IF STATUS IS EQUAL TO '****' GO TO SINOF.

ABEND-PARA.

 DISPLAY 'ABNORMAL JOB TERMINATION'.

 DISPLAY 'FUNCTION - ' FUNCTION ' STATUS ' STATUS.

SINOF.

 MOVE 'SINOF' TO FUNCTION.

 CALL 'DATBAS' USING FUNCTION, STATUS, ENDP.

 IF STATUS NOT EQUAL '****'

 DISPLAY 'ABNORMAL JOB TERMINATION'

 DISPLAY 'FUNCTION - ' FUNCTION ' STATUS ' STATUS.

 STOP RUN.

Chapter 4 Programming examples

306 P26-4340-64

Index

*

****, status code, in error
handling 36

BIND, data list keyword 63
CODE, data list keyword 64
DATA, data list keyword 62
NONE, data list keyword 62
REST, data list keyword 63
*, in SHOWX 54
*CODE=xx

compatibility 66
*CODE=xx, data list keyword 64
COMMON, data list keyword 66
*FILL=nn, data list keyword 64
*IGN status code and ENDLG

command 114, 115
*IPO status code, READX

command 188
*NXT status code, READX

command 188
*PON status code, READX

command 188

A

access mode, PDM 98, 146, 254,
263

Add Primary command. See
ADD-M command

Add Related After command. See
ADDVA command

Add Related Before command.
See ADDVB command

Add Related Continue command.
See ADDVC command

Add Related Replace command.
See ADDVR command

adding
primary records 22
related records 26

ADD-M command
record holding 22, 42
serial processing 25, 71, 128,

156, 196
syntax description 68

ADDVA command
introduction 26, 29
navigation 29
record code processing 65
record holding 42
syntax description 72

ADDVB command
introduction 26, 28
navigation 28
record code processing 65
record holding 42
syntax description 77

ADDVC command
introduction 26
navigation 26
record code processing 65
record holding 42
syntax description 82

ADDVR command
record code processing 65
record holding 32, 42, 43
syntax description 86
to change record code or

control key 32, 86
algorithm, hashing

for primary RRN 22
for primary run 201

application programs, linking 60
argument parameter, FINDX

command 124
automatic record holding 42

B

BDAM files
and WRITD 262
primary serial records 23
qualifier

FINDX command 129, 133
RDNXT command 157, 161

BEGN, in qualifier
FINDX

BDAM or ESDS related 129,
133

KSDS 130
KSDS 159
RDNXT

BDAM or ESDS related 157,
162

READX 192
SHOWX 37, 54, 222, 227

PDM DML Programming Guide 307

BIND, in **BIND** 63
binding

the data list, any command 63
the qualifier, READX 192

blocking factors, establishing 51
bound qualifier, READX 192
buffers, tuning 51

C

CALL statement, for DML
commands 60, 273

cccc, qualifier context area
FINDX, KSDS 130
RDNXT, KSDS 158
READX 192
SHOWX 37, 54, 222, 227

CERR status code 94, 98
CICS applications, linking 59
closing

primary and related files 20
secondary key (index) files 21

closing files
at SINOF 97, 249
with PDM DML 48

CLOSX command
file condition before and after

98
introduction 20
success factors 97
syntax description 93
with PDM DML 48

COBOL, coding examples 273
CODE, in **CODE** 64
CODE, in *CODE=xx 64
coded records

changing control key 32
changing record code 32
record code processing 64

COMIT command
coding example 291
introduction 40
logical unit of work 40
passing data to TLF 102
syntax description 100
when opening and closing files

20, 97, 144
command activity statistics 51,

207

commit point
establish, COMIT command 40,

97, 100, 144, 291, 293
restore files, RESET command

197
restoring files using RESET 41,

46
common data items, data list 66
common prefix, statistics file

records 210
common statistics record prefix

207
COMMON, in **COMMON** 66
comparison operator, in FINDX

125
complete, file close mode. See

COMP
context area, cccc qualifier

SHOWX 53
context area, qualifier, cccc

FINDX, KSDS 130
RDNXT, KSDS 158
READX 192
SHOWX 37, 222, 227

control key, changing
in a related record 32
in related record 86

counting records
KEYCOUNT, READX 194
using **NONE** 62

cross-address space, central
PDM, data length limitation

ADD-M 70
ADDVA 75
ADDVB 80
ADDVC 84
ADDVR 90
COMIT 102
FINDX 126
MARKL 138
QMARK 149
RDNXT 155
READD 167
READM 170
READR 176
READV 184
READX 195
RESET 199
WRITM 266
WRITV 271

Index

308 P26-4340-64

CSIPARM
in task level recovery 46
introduction 18
MAXIO value. See cross-

address space
MAXPACKET value. See cross-

address space
with SINON parameters 252

D

data area
introduction 18, 59, 62
length limitation. See cross-

address space
passing with COMIT command

102, 293
retrieving with RESET

command 200, 297
data division, COBOL, coding

example 273
data list

binding 63
coded records 64
compatibility 66
inserting blanks 64
introduction 18, 59
keywords

BIND 63
CODE 64
DATA 62
NONE 62
REST 63
*CODE=xx 64
COMMON 66
*FILL=nn 64

moving all fields 63
moving no fields 62

Data Manipulation Language
(DML) 273

status code returned from
commands 36, 61, 67

Data Manipulation Language
(DML), PDM commands

ADD-M 68
ADDVA 72
ADDVB 77
ADDVC 82
ADDVR 86
CLOSX 93
COMIT 100
DEL-M 104

DELVD 107
ENDLG 112
ENDTO 116
FINDX 121
FREEX 137
MARKL 138
OPENX 140
QMARK 149
QUIET 151
RDNXT 152
READD 165
READM 169
READR 172
READV 179
READX 187
RESET 197
RQLOC 201
RSTAT 203
SHOWX 221
SINOF 248
SINON 250
SINON, CICS 256
SINON, TIX 258
SINON, TOTAL 260
WRITD 262
WRITM 264
WRITV 268

DATA, in **DATA** 62
data-area parameter 61
data-area parameter, purpose 18
database integrity

logical unit of work 40, 291
program recovery 46
record holding 42
system logging 49

database navigation, illustrations
adding related records 26
deleting related records 33
reading serially 25

data-list parameter 61
purpose 18

DATBAS 59
DATBASC 59
deadlock situation 45
deadly embrace 45
Delete Primary command. See

DEL-M command
Delete Related Direct command.

See DELVD command

Index

PDM DML Programming Guide 309

DEL-M command
introduction 25
record holding 25, 42
serial processing 25, 106, 128,

156, 196
syntax description 104

DELVD command
and READX processing 196
effect with read commands

111, 168
in reverse delete operation 111,

168
introduction 33
navigation 33
record holding 33, 42
syntax description 107

diagnosing errors 36, 67, 221
direct read, of related record 30,

165
DIRECTION option, READX 190,

192
directory environment description

18, 46
directory environment

description. See also
environment description

directory schema 18, 46, 251
DML. See Data Manipulation

Language (DML)

E

EMBR status code
deadly embrace 45
READX command 188

END
as delimiter, DML commands

43, 44
in qualifier parameter

SHOWX 38, 53
END.

as delimiter, DML commands
61, 62

in qualifier parameter
READX 192, 193
SHOWX 222, 227

in reference parameter
READR 174
READV 182

in status parameter
FINDX 122, 129
RDNXT 153, 157

ENDC, in status parameter
FINDX 122, 133
RDNXT 153, 163

ENDLG command
syntax description 112
system logging 50

ENDS, in qualifier parameter 55
FINDX, KSDS 132
RDNXT, KSDS 160
SHOWX 38, 222, 227

ENDTO
in qualifier parameter, SHOWX

58
syntax description 116

environment description
CLOSX command 93, 98
during warm recovery 46
ENDLG command 113, 115
introduction 18
OPENX command 140, 144
RSTAT command 206
SINON command 251
WRITD 263

errors, diagnosing 36, 67, 221
ESDS files

primary serial reads 23
qualifier

FINDX command 123, 129,
133

RDNXT command 154, 157,
161

EUPD
file open mode

for OPENX command. See
exclusive update (EUPD)

upon closing. See exclusive
update (EUPD). See
exclusive update (EUPD)

file open mode. See exclusive
update (EUPD)

introduction 19
exclusive update

general considerations 144
exclusive update (EUPD)

index files 21
introduction 19
updating files 19

Execution Statistics utility report
51

explicit record holding 43
extended memory usage 216,

233

Index

310 P26-4340-64

F

failure, task 46
fatal embrace 45
file

primary. See primary file
related. See related file

file statistics record 209, 217
files

closing
CLOSX command 93
SINOF command 248

opening
OPENX command 140

resetting records, RESET 197
searching for particular records

FINDX command 121
READX command 187

statistics on 52, 217
user

adding records 22, 26
closing

introduction 20
deleting records 25, 26
locked. See locked files
opening

introduction 19, 21, 48
reading records 23, 30
resetting records (RESET)

41, 46
searching for particular

records
FINDX command 23
READX command 30

serial processing 23, 30
updating records 25, 32
using files, coding examples

273
FILL, in *FILL=nn 64
find next record command. See

FINDX command
FINDX command

argument parameter 124
introduction 23, 30
KSDS primary file 130
qualifier

BDAM or ESDS file 129, 133
record code processing 65
record holding 42
syntax description 121

FNTF status code
for CLOSX command 94, 96
for OPENX command 141, 143

free records command. See
FREEX command

FREEX command
record holding 43
syntax description 137

function activity statistics 52, 209,
212

H

hashing algorithm, for primary rrn
22

hashing algorithm, for primary
RRN 201

HELD status code, READX
command 188

hold records, discussion 42

I
I/O buffer allocation statistics 52
ICOR status, unreleased context

FINDX 132
RDNXT 160
READX 193

index files
introduction. See also

secondary key
initialization

CICS compatibility SINON 256
of task, SINON 250
TIS compatibility SINON 258
TOTAL compatibility SINON

260
initialization statistics record 207,

211
integrity, of database 40
intended update (IUPD)

cannot use for KSDS 142, 143
general considerations 145
index files 21
introduction 21, 48
OPENX 140
updating files 20

intended update(IUPD) upon
closing 98

Index

PDM DML Programming Guide 311

interface activity statistics 52
IUPD, file open mode

OPENX 140
upon closing 98

K

key, control
changing value in related

record 32
reading a related record 31

KEY, control
introduction 61

KEY=control key, qualifier
parameter

reading with FINDX 24, 122,
129

reading with RDNXT 24, 152
KEYCOUNT option 190
keywords, for data list 62
kkkk in qualifier, READX 192
KSDS files, primary

and SINOF 249
cannot use IUPD open 142
cannot use PART close 95
primary serial reads 23
qualifier

FINDX command 123, 130
RDNXT command 154, 158

record sequence 23

L

linking CICS programs with
DATBASC 59

linkpathKEY=control-key 122
LKxx, in reference parameter

ADDVA 73
ADDVB 78
DELVD 109
READR 174
READV 182

locked files
and SINOF 249

logging I/O statistics 52
logging. See task logging. See

system logging
logical unit of work 40

M

MARKL
syntax description 138

MARKL command
system logging 50

MASK option, READX 191, 192,
194

MAXARG, FINDX 125
MAXIO, CSIPARM file. See

cross-address space
MAXPACKET, CSIPARM file.

See cross-address space
MRNF status code 36
multitask environment

file closing 20
file updates 20, 25
record holding 42

N

navigation, database illustrations
adding related records 26
deleting related records 33
reading serially 24

NEXT
RDNXT

BDAM or ESDS related using
linkpath 163

KSDS 158
READX 192
SHOWX 222, 227

NEXT, in qualifier
FINDX

BDAM or ESDS related using
linkpath 135

ESDS 130
SHOWX 38, 57

NONE, in **NONE** 62

O

OERR status code 141, 146
opening

files with PDM DML 48
primary and related files 19
secondary key (index) files 21

Index

312 P26-4340-64

OPENX command
file status condition before and

after 146
introduction 19
success factors 146
syntax description 140
with PDM DML 48
with secondary key (index) files

21
OPENX-OPTION, environment

description
CLOSX 93, 98
OPENX 140, 146

operator, comparison in FINDX
125

P

Packet Size, data area limitation.
See cross-address space

PART, file close mode
at SINOF 97
in CLOSX command 95
not for KSDS 95, 96

PDM DML
concepts 17
system control 47
with RDML 17

PDM DML. See Data
Manipulation Language
(DML)

PDM, retrieving statistical
information 51, 53

Physical Data Manager (PDM) 17
physical fields, named in data list

61
ppppLKxx, in qualifier

FINDX, related file 135, 136
RDNXT, related file 163

primary files
adding records 22
closing

CLOSX command 93
introduction 20, 48
SINOF command 248

deleting records 25
opening

introduction 19, 48
OPENX command 140

reading records 23

RESET command 41, 46, 197
searching for particular records

FINDX 121
FINDX command 23
READX 187

serial processing 23
updating records 25
using files, coding examples

273
program initialization, coding

examples 273
program recovery

coding example 291
discussion 40, 46

Q

QMARK command
syntax description 149
system logging 50

qualifier
FINDX command

BDAM or ESDS primary files
129

KSDS primary file 130
related file 133

RDNXT command
BDAM or ESDS primary files

157
KSDS primary files 158
related files 161

READX command 192
SHOWX 54
SHOWX command 37, 222,

227
qualifier context area

READX 193
qualifier context area, cccc,

releasing
FINDS, KSDS 132
RDNXT, KSDS 160
SHOWX 37, 53, 222, 227

qualifier values
BEGN. See BEGN
END. See END
ENDC. See ENDC
ENDS. See ENDS
KEY=. See KEY=
NEXT. See NEXT
ppppLKxx. See ppppLKxx
REBD. See REBD

Index

PDM DML Programming Guide 313

QUIET
command syntax 151

QUIET command
system logging 50

R

RDML. See Relational Data
Manipulation Language
(RDML)

RDNXT command
introduction 23, 30
record code processing 65
record holding 42
syntax description 152

RDXT command
qualifier

BDAM or ESDS file 157, 161
KSDS primary file 158

read found argument command.
See FINDX command

Read Next command. See
RDNXT

read primary command. See
READM command

read related direct command.
See READD command

read related forward command.
See READV command

read related reverse command.
See READR command

read using index command. See
READX command

read, file open mode
index files 21
introduction 19, 21, 48
updating files 19

READ, file open mode
for OPENX command 140
general considerations 144
OPENX 140
upon closing 98

READD command
in reverse delete operation 111,

168
introduction 30
record code processing 65
record holding 42
syntax description 165

reading primary records 23
reading related records 30

READM command
introduction 23
record holding 42
syntax description 169

READR command
in reverse delete order 111,

168
introduction 30
record code processing 65
record holding 42
syntax description 172

READV command
introduction 30
qualifier 192
record code processing 65
record holding 42
syntax description 179

READX command
index files 21
introduction 23, 30
record holding 42
releasing context 193
syntax description 187

REBD, in qualifier, READX 23,
30, 192, 193

record codes in related files
changing, ADDVR command

32, 86
keyword data list processing 64

record contention statistics 52
record count, READX

KEYCOUNT 190
record counting

NONE 62
record holding

additional
during primary record add 22
during primary record delete

25
during related record add 26
during related record delete

33
automatic for some commands

42
database integrity 42
explicit

END., 43
logical unit of work 40
preventing deadly embrace 45
required in multi-task and task

logging 43
uncommitted, by PDM 42, 44

Index

314 P26-4340-64

record layouts, RSTAT statistics
file 207, 209

record processing, special data
lists 62

records
adding 22, 26
coded. See coded records
committing 40
counting with READX

KEYCOUNT 190
deleting 25, 33
finding primary RRN, RQLOC

command 201
finding specific secondary keys,

READX command 193
finding specific values, FINDX

23, 31
finding specific values, FINDX

command 121
holding, freeing 42
reading 23, 30
relinking related, ADDVR 32
relinking related, ADDVR

command 86
restoring from update, RESET

41, 46
restoring from update, RESET

command 197
searching for, FINDX 23
searching for, FINDX command

31, 121
statistics 51
updating (rewriting/changing)

25, 32
recoverability, of SHOWX

command 223, 230
recovery

system level 46, 49, 262
task level

coding example 291
establish commit point,

COMIT 40
establish commit point,

COMIT command 100
program recovery discussion

46
restore to last commit,

RESET 41, 46
RSTR status code 41, 46,

102, 197, 200, 250

related files
adding records 26
changing record code or control

key 32
closing

CLOSX command 93
introduction 20, 48
SINOF command 248

deleting records 33
opening

introduction 19, 48
OPENX command 140

reading records 30
record code processing 64
resetting records, RESET 41,

46
resetting records, RESET

command 197
searching for particular records

FINDX 31
FINDX command 121
READX command 193

sequentialy processing 30
serial processing 30
updating records 32
using files, coding examples

273
Relational Data Manipulation

Language (RDML) 17, 41
relative record number

assigning primary 22
assigning related 26
introduction 18
navigation 24, 26, 28, 29, 33
record code processing 64
related record delete 33

Relative Record Number
and related record delete 111
find primary, RQLOC command

201
obtaining for ADDVR 92

releasing context areas. See
context area

releasing held records 42
Request Location command. See

RQLOC command
RESET command

introduction 41
syntax description 197
usage after SINON RSTR

status 41, 46, 250
REST, in **REST** 63

Index

PDM DML Programming Guide 315

RESTART
passing data with COMIT 102
retrieving data with RESET 200
SINON command 253

reverse delete, related file 111,
168

reverse READX 190
RLSE, as delimiter, DML

commands 43
RLSE, as delimter, DML

commands 61
RSTAT command

introduction 51
statistics written by 207, 209,

210
syntax description 203

RSTR status code
coding example 291
from SINON 200, 250
introduction 41, 46

S

schema
introduction 18
RSTAT 207, 211
SINON 251
warm recovery 46

searching for records
FINDX argument 121
READX kkkk 193

SECKEY option, READX 189
secondary key

index file 21
read records using 23, 30, 187

sequential read
of related file 303, 305
of related files 30

serial read
primary file 23

serial read, FINDX, RDNXT,
READX

illustration of primary RDNXT
24

RDNXT coding examples 300,
303, 305

related file 30
serial-sequential read, of related

file 31

shared update (SUPD)
general considerations 144
index files 21
introduction 19
OPENX 140
upon closing 98

SHOWX
data item list 231

SHOWX command
for diagnosing status codes 36
for monitoring resources 53
syntax descriptions 221, 224

shutting down central PDM 58
shutting password, ENDTO 117
signing on/off, coding examples

273
sign-off command. See SINOFF

command
single-task environment

file closing 249
record holding 42

SINOF command
syntax description 248

SINOFF command
introduction 18

SINON command
compatibility SINONs

CICS 256
TIS 258
TOTAL 260

in program recovery 46
introduction 18
syntax description 250

ssss in qualifier, READX 192
statistics

how to generate 206
retrieving with RSTAT

command 51, 203, 221
retrieving with SHOWX

command 51, 53
viewing online 51
written by RSTAT command

207, 210
statistics file

and RSTAT command 51
how to incorporate 51

Index

316 P26-4340-64

Statistics File
common statistics record prefix

207, 210
file statistics record 209, 217
how to incorporate 206
initialization and termination

records 207, 211
record layouts 207, 209
RSTAT command 203
system statistics record 209,

212
Statistics Indicator parameter

206
statistics record prefix 207
status code

EMBR 45
FNTF 96
ICOR 132, 160, 193
returned by every DML

command 36, 61, 67
status, file

condition with CLOSX
command 98

condition with OPENX
command 146

SUPD
introduction 19

SUPD, file open mode
OPENX 140
upon closing. See also shared

update
suppressed logging for a file,

SHOWX 241
switching option, and ENDLG

command 114, 115
System Log File

ENDLG command 112
system logging 50

system logging
suppressed for a file 240
using 49

system statistics record 209, 212

T

task extended status, SHOWX
37, 221

task level recovery point,
establish 40

Task Log File
establish commit point, COMIT

40
establish commit point, COMIT

command 100
logical unit of work 40
program recovery 46
system logging 49

task logging
logical unit of work 40
program recovery 46
read with explicit hold before

file updates 25, 32
record holding 42
suppressed for a file 240
system logging 49

task sign-on statistics 52
tasks, initializing with SINON 18,

250
CICS compatibility 256
TIS compatibility 258
TOTAL compatibility 260

termination
of PDM 58, 116
of task

coding examples 273
SINOF command 18

unsuccessful SINOF 293
termination statistics record 207,

209

Index

PDM DML Programming Guide 317

U

uncoded files, and related record
update 32

uncommitted record holding 44
UPDATE access mode, SINON

254
update mode, program

coding example 283
updating a primary file

adding records 22
deleting records 25
updating records 25

updating a related file
adding records 26
deleting records 33
updating records 32

W

WRITD command
syntax description 262
system logging 50

Write Primary command. See
WRITM command

Write Related command. See
WRITV command

WRITM command
introduction 25
record holding 25, 43
serial processing 25
syntax description 264, 268

WRITV command
introduction 32
record code processing 65
record holding 32, 43
updating a related record 32

X

XA memory used 209, 216, 234

Index

318 P26-4340-64

	Back to DOCUMENTATION MENU
	About this book
	Using this document
	Document organization
	Revisions to this manual
	Conventions

	SUPRA Server documentation series

	Chapter 1 - An overview of DML concepts
	Opening and closing files
	Opening and closing primary and related files
	Opening and closing secondary key (index) files

	Adding a primary record
	Reading a primary record
	Updating a primary record
	Deleting a primary record
	Adding a related record
	Reading a related record
	Updating a related record
	Deleting a related record
	Reading records via secondary keys
	Diagnosing application DML errors
	Maintaining database integrity in a task logging environment
	Logical unit of work
	Record holding
	Program recovery

	Using system control DML commands
	Opening and closing files with PDM DML
	Using system logging commands
	Generating statistics
	Monitoring resources
	Terminating the PDM with PDM DML

	Chapter 2 - CALL statements and data lists
	CALL statements
	Data list parameter keywords

	Chapter 3 - Command syntax
	ADD˚M
	ADDVA
	ADDVB
	ADDVC
	ADDVR
	CLOSX
	COMIT
	DEL˚M
	DELVD
	ENDLG
	ENDTO
	FINDX
	FINDX qualifier for BDAM or ESDS primary files
	FINDX qualifier for KSDS primary files
	FINDX qualifier for related files

	FREEX
	MARKL
	OPENX
	QMARK
	QUIET
	RDNXT
	RDNXT qualifier for BDAM or ESDS primary files
	RDNXT qualifier for KSDS primary files
	RDNXT qualifier for related files

	READD
	READM
	READR
	READV
	READX
	RESET
	RQLOC
	RSTAT
	SHOWX
	SHOWX for status returns
	SHOWX for monitoring resources

	SINOF
	SINON
	SINON (CICS compatibility)
	SINON (TIS 1.x compatibility)
	SINON (TOTAL compatibility)
	WRITD
	WRITM
	WRITV

	Chapter 4 - Programming examples
	Example of IDENTIFICATION, ENVIRONMENT, and DATA divisions
	Example of read˚only environment
	Example of update mode
	Example of recoverable update mode
	Example of primary serial processing
	Example of related serial processing (physical)
	Example of related serial processing (logical)

	Index

