

SUPRA SERVER PDM

DBA Utilities User’s Guide
(OS/390 & VSE)

P26-6260-63

SUPRA® Server PDM DBA Utilities User’s Guide (OS/390 & VSE)

Publication Number P26-6260-63

 1983–1988, 1991, 1992, 1994, 1998, 2000, 2002 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage®
C+A-RE™
CINCOM®
Cincom Encompass®
Cincom Smalltalk™
Cincom SupportWeb®
CINCOM SYSTEMS®

gOOi™

iD CinDoc™
iD CinDoc Web™
iD Consulting™
iD Correspondence™
iD Correspondence Express™
iD Environment™
iD Solutions™
intelligent Document Solutions™
Intermax™

MANTIS®
Socrates®
Socrates® XML
SPECTRA™
SUPRA®
SUPRA® Server
Visual Smalltalk®
VisualWorks®

UniSQL™ is a trademark of UniSQL, Inc.
ObjectStudio® is a registered trademark of CinMark Systems, Inc.

All other trademarks are trademarks or registered trademarks of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, Ohio 45246-3732
U.S.A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Please see your Cincom
representative to be certain the items are available to you.

www.cincom.com

Release information for this manual

The SUPRA Server PDM DBA Utilities User’s Guide (OS/390 & VSE),
P26-6260-63, is dated January 15, 2002. This document supports
Release 2.7 of SUPRA Server PDM in IBM mainframe environments.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. Please take the survey provided with the
online documentation at your convenience.

Cincom Technical Support for SUPRA Server PDM

FAX: (513) 612-2000
 Attn: SUPRA Server Support

E-mail: helpna@cincom.com

Phone: 1-800-727-3525

Mail: Cincom Systems, Inc.
 Attn: SUPRA Server Support
 55 Merchant Street
 Cincinnati, OH 45246-3732
 U.S.A.

mailto:helpna@cincom.com

Contents

About this book xi
Using this document... xi

Document organization ... xi
Revisions to this manual ... xiii
Conventions .. xiv

SUPRA Server documentation series .. xvi

Using the DBA utilities 19
DBA utilities overview..19

Utility functions and applications ..21
Non-UCL utilities and applications ...22

Executing functions that require UCL..23
Using the hierarchical structure of UCL ...24
Formatting UCL..25
Coding null arguments ...26
Coding arguments..27
Validating programs ...28

Executing utilities that do not require UCL ..29
Executing utilities with different types of files ..30
Running debug and trace for DBA utilities ..31

Using the DEBUG function...32
Using the XTRACE function...32

Executing the functions 33
Defining files..33

Defining files for functions that use UCL in OS/390.......................................33
Defining files for functions that use UCL in VSE..36

Defining files for the Execution Statistics utility ...38
File definitions for Execution Statistics in OS/390..38
File definitions for Execution Statistics in VSE...39
Defining files for the PDM Termination utility ...40

DBA Utilities User’s Guide v

Choosing run-time options.. 42
Defining the amount of storage ... 43
Coding the run-time interface parameters ... 44
Setting the STACK parameter ... 46

Inserting exit programs into functions... 49
Using sort programs ... 52

Allocating sort memory .. 53
Allocating sort work space... 54
Handling errors in sort programs ... 56

Coding the control section 57
Coding the UCL for the control section... 58
Determining control statements for functions ... 86

Coding the Format function 87
Format function syntax ... 88

Coding the Sorted-Populate function 91
Coding the UCL for the Sorted-Populate function .. 92
Writing exit programs.. 97

Selecting exit points... 97
Summary of data parameters and valid actions .. 99

Requesting statistics... 102

Coding the Depopulate function 105
Coding the UCL for the Depopulate function .. 106
Writing exit programs.. 112

Selecting exit points... 112
Summary of data parameters and valid actions .. 114

Requesting statistics... 117

Coding the Reorganize function 119
Coding the UCL for the Reorganize function .. 119
Writing exit programs.. 124

Selecting exit points... 125
Summary of data parameters and valid actions .. 126

Requesting statistics... 129

Contents

vi P26-6260-63

Coding the File Statistics function 131
Coding the UCL for the File Statistics function..132

Programming examples ...136
Requesting file statistics..137

Requesting Basic File Information (BASE) ..138
Requesting Current File Size (SIZE) ..139
Requesting Linkpath Statistics (LINK)..140
Requesting Chain Statistics (CHAIN)...141
Requesting Record Code Statistics (CODE)..146

Coding the Expand function 147

Coding the Version 1 Unload and Load functions 153
Coding the UCL for the Unload function ...155
Coding the UCL for the Load function...169
Writing exit programs ..181

Modifying the data record...182
Deleting the current data record...182
Adding a new data record ..183

Retaining the format of the data file ..184
Formatting the run control record...185
Formatting the pre-header record ..186
Formatting the file header record...187
Formatting the data records...188
Formatting the file trailer record ...190

Examples of Unload, Load, and Modify functions ...191
Example 1—Unloading and loading all of the Burry’s database files...........200
Example 2—Unloading, changing and loading files.....................................213

Coding the Version 2 Unload, Load, and Insert Linkpath functions 225
Version 2 overview..225

What to do with linkpaths when you unload and load228
Coding the CSIPARM file for Unload, Load, and Insert Linkpath..............................230

Coding CSIPARM file and run control statements for PDM files230
Coding CSIPARM file and run control statements for directory files............231

Coding JCL for Unload, Load, and Insert Linkpath functions....................................232
Files you define in OS/390 JCL..233
Files you define in VSE JCL...234

Contents

DBA Utilities User’s Guide vii

Unloading PDM files ... 235
Defining files .. 235
Coding run control statements... 242
Coding file control statements ... 254

Unloading Directory files ... 264
Using exit points ... 265

Using exit point 10 ... 267
Using exit point 20 ... 279
Using exit point 30 ... 286

Loading PDM files... 292
Defining files .. 292
Coding run control statements for the Load function................................... 302
Coding the file control statements for the Load function 317

Loading Directory files .. 322
Coding the Insert Linkpath function .. 322

Defining files .. 325
Coding control statements... 328

Examples of Unload, Load, and Insert Linkpath functions 333
Internal schema of Burry's database ... 335
Internal schema of files before unloading.. 338
Internal schema of files after unloading... 340
Unloading and loading all of Burry's database files 342
Unloading, changing, and loading files .. 352

Coding the Print function 363
Coding the UCL for the Print function ... 363
Writing exit programs.. 376
Print examples .. 377

Coding the Modify function 381
Coding the Modify function ... 381
Coding the UCL for the Modify function.. 382
Writing exit programs.. 393
Modify examples... 394

Coding the PDM Termination utility 399
Coding the PDM Termination utility .. 399
Coding the input statements for the PDM Termination utility.................................... 400
PDM termination example .. 402

Contents

viii P26-6260-63

Coding the Execution Statistics utility for release 2.1.6 403
Coding the Execution Statistics utility for release 2.1.6...403
Defining the files..404
Arrangement of the statistics report ..405

Sample of the Physical Data Manager identification page...........................406
Sample of the group identification page...406
Sample of the system statistics page...407
Sample of the file statistics page..411
Sample of the file statistics totals for group ...413
Sample of the termination page ...416

Coding the Execution Statistics utility for release 2.4 417
Coding the Execution Statistics utility for release 2.4..417
Defining the files..418
Arrangement of the statistics report ..419

Sample of the Physical Data Manager identification page...........................420
Sample of the group identification page...420
Sample of the system statistics page...421
Sample of the file statistics page..426
Sample of the file statistics totals for group ...429
Sample of the termination page ...432

Coding the Inter-Directory Copy utility 433
Coding the Inter-Directory Copy utility...433
Coding the input statements for the Inter-Directory Copy utility435

Optional input statements ..437
Signon input statement ..438
Copy table input statement...439
Edit mask input statement..439
User input statement ..440
Security group input statement ..441
Schema input statement ..442
Conceptual schema input statement..443
Domain input statement ...444

Executing the Inter-Directory Copy utility ..445
OS/390 ...445
VSE ..445

Inter-Directory Copy example..446

Contents

DBA Utilities User’s Guide ix

Coding the Recover, Restore, and Log-Print utilities 447
Coding the Recover, Restore, and Log-Print functions .. 447
Coding the UCL for the Recover and Restore functions .. 449
Coding the UCL for the Log-Print function.. 456
Writing exit programs.. 461

Selecting exit points... 462
Valid actions .. 469

Examples .. 471
Recover example... 471
Restore example ... 475
Log-Print example.. 481

Coding the Review function 485
Coding the Review function .. 485
Coding the UCL for the Review function... 486
Review example ... 487

Coding the Unlock function 489
Coding the Unlock function... 489

Index 493

Contents

x P26-6260-63

About this book

Using this document
This manual tells how to code utilities to help control and monitor a
SUPRA database. It is written for database administrators familiar with
the SUPRA Physical Data Manager and Directory concepts.

The first chapter of this manual explains functions available to you. for
information about using the utilities with Series 80 and SUPRA 1.x files,
refer to the SUPRA Server PDM Migration Guide (OS/390 & VSE),
P26-0550.

Document organization
The information in this manual is organized as follows:

Chapter 1—Using the DBA utilities
Describes the utilities available to organize and maintain data and
perform a broad range of functions.

Chapter 2—Executing the functions
Describes what is required to execute functions and provides special
considerations.

Chapter 3—Coding the control section
Describes how to code a control section, which defines the
processing environment for the functions you want to perform.

Chapter 4—Coding the Format function
Describes how to code the format function to format database files.

Chapter 5—Coding the Sorted-Populate function
Describes how to code the Sorted Populate function, a secondary
key function to create the secondary key structure on large files.

Chapter 6—Coding the Depopulate function
Describes how to code the Depopulate function to delete secondary
keys.

DBA Utilities User’s Guide xi

Chapter 7—Coding the Reorganize function
Describes how to code the Reorganize function to correct
deterioration of a secondary key structure.

Chapter 8—Coding the File Statistics function
Describes how to code the File Statistics function to get reports on
various physical and logical characteristics of database files.

Chapter 9—Coding the Expand function
Describes how to code the Expand function to enlarge database files
that are too full for acceptable performance.

Chapter 10—Coding the Version 1 Unload and Load functions
Describes how to code the Version 1 Unload function to extract
records from a database file and write them to a sequential output
file. Also describes the Load function, which copies records from
sequential files to database files.

Chapter 11—Coding the Version 2 Unload, Load, and Insert
Linkpath functions
Describes how to code the Version 2 Unload, Load, and Insert
Linkpath functions if performance of Unload and Load functions is
critical or you are reloading the files in a SUPRA converted or Series
80 format.

Chapter 12—Coding the Print function
Describes how to code the Print function to print records from a
database file.

Chapter 13—Coding the Modify function
Describes how to code the Modify function to update records in
database files.

Chapter 14—Coding the PDM Termination utility
Describes how to code the PDM Termination utility, used to shut
down the PDM by executing a single function.

Chapter 15—Coding the Execution Statistics utility for release 2.1.6
Describes how to code the Execution Statistics utility (CSUXSTAT) to
generate a statistics report in release 2.1.6.

Chapter 16—Coding the Execution Statistics Utility for release 2.4
Describes how to code the Execution Statistics utility (CSUXSTAT) to
generate a statistics report in release 2.4.

About this book

xii P26-6260-63

Chapter 17—Coding the Inter-Directory Copy utility
Describes how to code the Inter-Directory Copy utility to copy
information from one SUPRA directory to another.

Chapter 18—Coding the Recover, Restore, and Log-Print functions
Describes how to code the Recover, Restore, and Log Print functions
to back off updates tot he last commit, reapply updates when files are
lost or damaged, or print selected information from the System Log
File without updating the database.

Chapter 19—Coding the Review function
Describes how to code the Review function to determine whether
database files are locked.

Chapter 20—Coding the Unlock function
Describes how to code the Unlock function to examine each field in
the lock record of files you specify, show incorrect fields, and update
lock records to indicate the file is locked.

Index

Revisions to this manual
The following changes have been made for this release:

♦ Revised the Considerations for the SECONDARY-KEY parameter on
page 95.

♦ Added a Consideration for the PRESERVE clause on page 256.

♦ Revised Element List illustrations on pages 262 and 320.

♦ Added a consideration for the Element List statement beginning on
page 318.

♦ Revised information in the section “Defining the LINKWK02/LNKWRK2
file” on page 327.

♦ Revised the output filename for the Inter-Directory Copy utility to LTRX,
under “VSE” on page 445.

About this book

DBA Utilities User’s Guide xiii

Conventions
The following table describes the conventions used in this document
series:

Convention Description Example
Constant width
type Represents screen images and

segments of code.
PUT 'customer.dat'
GET 'miller\customer.dat'
PUT '\DEV\RMT0'

Slashed b (b/) Indicates a space (blank).
The example indicates that four
spaces appear between the
keywords.

BEGNb/b/b/b/SERIAL

Brackets [] Indicate optional selection of
parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate
one of the following situations:

 A single item enclosed by brackets
indicates that the item is optional
and can be omitted.
The example indicates that you can
optionally enter a WHERE clause.

[WHERE search-condition]

 Stacked items enclosed by
brackets represent optional
alternatives, one of which can be
selected.
The example indicates that you can
optionally enter either WAIT or
NOWAIT. (WAIT is underlined to
signify that it is the default.)

(WAIT)
(NOWAIT)











Braces { } Indicate selection of parameters.
(Do not attempt to enter braces or
to stack parameters.) Braces
surrounding stacked items
represent alternatives, one of
which you must select.
The example indicates that you
must enter ON or OFF when using
the MONITOR statement.

MONITOR
ON
OFF









About this book

xiv P26-6260-63

Convention Description Example
Underlining
(In syntax)

Indicates the default value supplied
when you omit a parameter.
The example indicates that if you do
not choose a parameter, the system
defaults to WAIT.

(WAIT)
(NOWAIT)











 Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.
The example indicates that you can
enter either STAT or STATISTICS.

STATISTICS

Ellipsis points... Indicate that the preceding item can
be repeated.
The example indicates that you can
enter multiple host variables and
associated indicator variables.

INTO :host-variable
[:ind-variable],...

UPPERCASE
lowercase

In most operating environments,
keywords are not case-sensitive, and
they are represented in uppercase.
You can enter them in either
uppercase or lowercase.

COPY MY_DATA.SEQ

HOLD_DATA.SEQ

Italics Indicate variables you replace with a
value, a column name, a file name,
and so on.
In this example, you must substitute
the name of a table.

FROM table-name

Punctuation
marks

Indicate required syntax that you
must code exactly as presented.
() parentheses
. period
, comma
: colon
' ' single quotation marks

(user-id, password,
 db-name)

INFILE 'Cust.Memo'
CONTROL LEN4

SMALL CAPS Represent a required keystroke.
Multiple keystrokes are hyphenated.

ALT-TAB

OS/390
VSE

Information specific to a certain
operating system is flagged by a
symbol in a shadowed box (OS/390)
indicating which operating system is
being discussed. Skip any
information that does not pertain to
your environment.

OS/390 See the SUPRA Server
procedure library member
TIS$RDM for a list of RDM
procedures.
VSE See the SUPRA Server
RDM sublibrary member
TXJ$INDX for a list of JCL.

About this book

DBA Utilities User’s Guide xv

SUPRA Server documentation series
SUPRA Server is the advanced relational database management system
for high-volume, update-oriented production processing. A number of
tools are available with SUPRA Server including Directory Maintenance,
DBA utilities, DBAID, SPECTRA, and MANTIS. The following list shows
the manuals and tools used to fulfill the data management and retrieval
requirements for various tasks. Some of these tools are optional.
Therefore, you may not have all the manuals listed. For a brief synopsis
of each manual, refer to the SUPRA Server Digest (OS/390 & VSE),
P26-9062.

Overview

♦ SUPRA Server Digest (OS/390 & VSE), P26-9062

Getting started

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM CICS Connector Systems Programming Guide
(OS/390 & VSE), P26-7452

General use

♦ SUPRA Server PDM Glossary, P26-0675

♦ SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126

About this book

xvi P26-6260-63

Database administration tasks

♦ SUPRA Server PDM and Directory Administration Guide (OS/390 &
VSE), P26-2250

♦ SUPRA Server PDM Directory Online User’s Guide (OS/390 & VSE),
P26-1260

♦ SUPRA Server PDM Directory Batch User’s Guide (OS/390 & VSE),
P26-1261

♦ SUPRA Server PDM DBA Utilities User’s Guide (OS/390 & VSE),
P26-6260

♦ SUPRA Server PDM Logging and Recovery (OS/390 & VSE),
P26-2223

♦ SUPRA Server PDM Tuning Guide (OS/390 & VSE), P26-0225

♦ SUPRA Server PDM RDM Administration Guide (OS/390 & VSE),
P26-8220

♦ SUPRA Server PDM RDM PDM Support Supplement (OS/390 &
VSE), P26-8221

♦ SUPRA Server PDM RDM VSAM Support Supplement (OS/390 &
VSE), P26-8222

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

♦ SPECTRA Administrator’s Guide, P26-9220

About this book

DBA Utilities User’s Guide xvii

Application programming tasks

♦ SUPRA Server PDM DML Programming Guide (OS/390 & VSE),
P26-4340

♦ SUPRA Server PDM RDM COBOL Programming Guide (OS/390 &
VSE), P26-8330

♦ SUPRA Server PDM RDM PL/1 Programming Guide (OS/390 &
VSE), P26-8331

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

Report tasks

♦ SPECTRA User’s Guide, P26-9561

Manuals marked with an asterisk (*) are listed more than once because
you use them for multiple tasks.

Educational material is available from your regional Cincom education
department.

About this book

xviii P26-6260-63

1
Using the DBA utilities

You can use the DBA utilities to organize and maintain data, and perform
a broad range of functions.

DBA utilities overview
Of the 14 DBA utilities, you are likely to begin with the Format function to
format new files. You can use the Load function to add data to the new
primary and related files. You can also use the Load function to both
format and add data to files in one step.

After you load the files, you can use the Sorted-Populate function to take
information from them to create secondary keys for the index files. You
can maintain the index files with the Depopulate and Reorganize
functions. The Depopulate function deletes secondary keys, and the
Reorganize function corrects the deterioration of the secondary key tree
structure that can occur with updates. With the Reorganize function, you
can rebuild a tree structure without accessing its primary or related file.

Once you have created your files, you can monitor their growth and
access time with the File Statistics and the Execution Statistics Utility
functions. When the files are too full for acceptable performance, you can
use the Expand function to enlarge the related files. The Unload and
Load functions can also be used to enlarge primary and related files. In
addition, the Load function repairs damaged linkpaths and arranges the
files so the PDM can access them more efficiently.

DBA Utilities User’s Guide 19

While you can use the Load and Unload functions to format and enlarge
files, the main purpose of these functions is to repair and reorganize files.
Depending on the format in which you want the files loaded, you can
choose one of two different versions of the Unload and Load functions.
The Version 1 Load and Unload functions automatically change any file's
format to that of SUPRA native files.

With the Version 2 Load and Unload functions, you can leave files in their
original format or change them to any other format. In addition, the
Version 2 functions repair damaged linkpaths and run much faster than
the Version 1 functions.

The Version 2 Insert Linkpath function adds linkpath data to primary files
without your reloading them. The Load function also updates the linkpath
fields with correct data.

For routine maintenance, you can use the Print and Modify functions.
With the Print function, you can see the records in database files. With
the Modify function, you can update records and blank out linkpaths. This
enables you to use the Version 1 Unload and Load functions to unload
and load related files, without unloading and loading their associated
primary files.

You execute all the functions listed in “Utility functions and applications”
on page 21 from a common driver module. To use any of these utilities,
code a Utilities Command Language (UCL) program. In the UCL
program, you can code any number of different functions.

OS/390 You submit the UCL program by executing the CSUOUTIL load module
in OS/390 and VSE. In OS/390, you can also use the general utility
cataloged procedure TISUTUTL. For more information, refer to the
SUPRA Server PDM and Directory Administration Guide (OS/390 &
VSE), P26-2250.

Chapter 1 Using the DBA utilities

20 P26-6260-63

Utility functions and applications
The following table lists utility functions and their applications:

Utility Applications
Format Formats a database file. The Format function sets all records in the

file to blanks and writes a file control record on the file. Use this
function only with SUPRA native files.

Sorted-Populate Puts secondary key information from primary and related files into
index files.

Depopulate Deletes secondary keys.
Reorganize Corrects the deterioration of the tree structure that can result from

updating the database.
File Statistics Displays the physical and logical characteristics of database files.

Use this function only with SUPRA native files.
Expand Expands the capacity of an existing related file. Use this function only

with SUPRA native files.
Version 1
Unload

Extracts records from a database file and writes them to a sequential
output medium. Use this function only with SUPRA native files. You
can use the Version 1 Load and Unload functions to convert Series
80 or SUPRA converted files to the SUPRA native format. However,
these functions cannot convert SUPRA native files to Series 80 or
SUPRA converted format.

Version 1 Load Formats database files and write data records from a sequential
medium to the files. Use this function only with SUPRA native files.
You can use the Version 1 Load and Unload functions to convert
Series 80 or SUPRA converted files to the SUPRA native format.
However, these functions cannot convert SUPRA native files to
Series 80 or SUPRA converted format.

Print Prints records from a database file. Use this function with SUPRA
native, SUPRA converted, and Series 80 files.

Modify Updates records in a database file. Use this function with SUPRA
native, SUPRA converted, and Series 80 files.

Recover Backs off updates to the database after an abend.
Restore Reapplies updates to the database after an abend.
Log-Print Prints selected information from the System Log File without updating

the database.
Review Determines whether database files are locked.
Unlock Unlocks database files after an abend.

DBA utilities overview

DBA Utilities User’s Guide 21

Non-UCL utilities and applications
You do not use UCL with the utilities listed in the following table:

Utility Applications
Version 2
Unload

Extracts records from Series 80, SUPRA converted, SUPRA native,
or SUPRA Directory files at high speed and writes them to a
sequential output medium appropriate for the Version 2 Load utility.

Version 2 Load Formats Series 80, SUPRA converted, or SUPRA native database
files and writes data records at high speed from a sequential medium
(the output from a Version 2 Unload function) to the files.

Version 2 Insert
Linkpath

Inserts linkpath data into Series 80, SUPRA converted, SUPRA
native, or SUPRA Directory files without reloading primary files. The
input for this utility must be the output of the Version 2 Load utility.

PDM
Termination

Shuts down the PDM.

Execution
Statistics

Generates system statistics.

Inter-Directory
Copy

Copies information from one SUPRA Directory to another.

Chapter 1 Using the DBA utilities

22 P26-6260-63

Executing functions that require UCL
To program the Utility functions in “Utility functions and applications” on
page 21, you must use UCL. UCL is a procedural language that uses
statements to identify the functions to be performed. The CONTROL
statement initiates the control section, which establishes the processing
environment for the Utility functions.

The FUNCTION statement initiates a function such as load or unload.
You can code the FUNCTION statement more than once, and you can
combine many functions in a single UCL program. However, some
combinations of functions are not recommended. These combinations
are described in the appropriate chapters. The following example shows
how to organize a simple UCL program:
CONTROL (BEGIN)

 supporting control statements

 FUNCTION (name)

 supporting function statements

 FUNCTION (name)

 supporting function statements

CONTROL (END)

Executing functions that require UCL

DBA Utilities User’s Guide 23

Using the hierarchical structure of UCL
UCL has a hierarchical structure. After each CONTROL or FUNCTION
statement, you code a number of subordinate statements. For example,
in the following UCL program, LIST is subordinate to CONTROL, and
FILE is subordinate to FUNCTION. This manual shows the subordinate
statements by indenting them.
CONTROL (BEGIN)

 LIST (name)

FUNCTION (name)

 FILE (name)

CONTROL (END)

To code a subordinate statement, you must code all of its superordinate
statements. For example, you must code a FUNCTION statement before
you code a FILE statement. This restriction also applies when
subordinate statements have subordinates. In the following UCL
example, the CONTROL statement has a subordinate statement, SORT,
which has a subordinate statement, MEMORY. You must code the SORT
statement before you code the MEMORY statement.
CONTROL (BEGIN)

 SORT ()

 MEMORY (500K)

 FUNCTION (SORTED-POPULATE)

 STATISTICS (ALL)

 FILE (PTMF)

 SECONDARY-KEY (PTMFSK01,PTMFSK02)

 LOAD-DENSITY (80)

 SECONDARY-KEY (PTMFSK03)

 LOAD-DENSITY (90)

 FILE (RANV)

CONTROL (END)

Chapter 1 Using the DBA utilities

24 P26-6260-63

Formatting UCL
UCL has a free-form format that allows almost any coding style. Even
though this manual lists only one statement per line and indents to show
subordination, you do not need to follow this structure. For example, you
can code the following example this way:
COMMAND (argument)

 STATEMENT (argument)

 STATEMENT (argument)

 STATEMENT (argument)

Or this way:
COMMAND (argument)

STATEMENT (argument) STATEMENT (argument) STATEMENT (argument)

When you put statements on the same line, you can put any number of
spaces between them, or you can leave out spaces. You can also insert
comments in your UCL program. You can provide any information you
wish about your program in these comments. To show that information is
a comment, put an asterisk in column 1. You must place your comments
after CONTROL (BEGIN) and before CONTROL (END) as in the
following example:
CONTROL (BEGIN)

**

* THIS UCL PROGRAM WILL FORMAT

* ALL USER FILES.

**

 ENV-DESC (MYDESC)

 SCHEMA (MYSCHEMA)

 FUNCTION (FORMAT)

* CUSTOMER FILE *

 FILE (CUST)

* PURCHASE ORDER FILE*

 FILE (PORD)

CONTROL (END)

Executing functions that require UCL

DBA Utilities User’s Guide 25

Coding null arguments
Default values are provided for many statements so that you need not
code all statements. However, whenever you code a subordinate
statement to specify an option, you must also code the subordinate
statement's superordinate statement even if you code it with a null
argument. To code a null argument, put open and close parentheses
after the statement. You do not need to include a space between them.
The following is an example of a statement with a null argument:
LIST ()

 HEADER (YES)

To code the HEADER statement, you must first code the LIST statement.
If you code the HEADER statement without coding the LIST statement,
you receive an error message.

Chapter 1 Using the DBA utilities

26 P26-6260-63

Coding arguments
When you code a statement name and an argument, you must enclose
the argument in parentheses. You can use spaces or not as you like. For
example, the following statement formats are valid:
STATEMENT(argument)

STATEMENT (argument)

STATEMENT (argument)

STATEMENT ()

STATEMENT ()

STATEMENT()

You code an argument differently depending on whether it is one of a set
or one of a list of items. In the following example, the format shows a
number of options in a set:
SUMMARY-DATA ([ALL][FILE][NONE][FUNCTION][CUMULATIVE])

When the format shows an option is in a set, you can select any number
of options from the set. When you code the options, separate them with
one or more spaces. For example, if you select FILE and FUNCTION,
you can code them like this:
SUMMARY-DATA (FILE FUNCTION)

If the format shows the argument can be a list, however, it looks like the
following example:
















list-element

ALL
 ELEMENT

If you code a list of elements instead of ALL, separate the elements with
commas, as shown in the following example:
ELEMENT(ELEMENT1,ELEMENT2,ELEMENT3)

You can also separate the items in a list with any number of spaces, as
shown in the following examples:
ELEMENT (ELEMENT1, ELEMENT2, ELEMENT3)

ELEMENT (ELEMENT1, ELEMENT2, ELEMENT3)

Do not embed spaces within an item. For example, ELEMENT1 and
ELEMENT 1 do not mean the same thing.

Executing functions that require UCL

DBA Utilities User’s Guide 27

Validating programs
The program listing follows the opening message CSUL0101I:
COMMENCING COMMAND VALIDATION. The listing is an image of
your input program.

Errors are identified by an error flag (**ERROR**), error pointer (@), and
a three-digit number. These three indicators appear immediately after
each line in which an error occurs. The following annotated listing
identifies errors in lines 18 and 21:

Line number Line text Indicator
1 CONTROL (BEGIN) Valid Command
2 ENV-DESC (MYDESC) Valid Command
 .

.

17 FUNCTION (PRINT) Valid Command
18 FILE CUST Invalid Command
ERROR @001 Inserted Error Information

Error Number
Error Pointer

19 RECORD (ALL) Valid Command
20 ELEMENT (ALL) Valid Command
21 FILE (ABC#) Invalid Command
ERROR @015 Inserted Error Information

Error Number
Error Pointer

 .
.

44 CONTROL (END) Valid Command

The error flag appears in the line number column in the left margin. The
pointer identifies the error's exact location in the line. The three-digit
number specifies the error's cause or condition. Only one error is
reported in each line. For example, in line 18, the number 001 indicates
the open parenthesis is missing. The pointer is immediately below the file
called CUST where the open parenthesis should be. Since only one error
is reported in each line, nothing indicates that the close parenthesis is
also missing.

If a UCL programming error occurs, validation continues flagging errors
to the end of the program. No function processing is done until you
correct all errors and rerun the job.

Chapter 1 Using the DBA utilities

28 P26-6260-63

Executing utilities that do not require UCL
The utilities listed below do not use UCL. See the applicable chapters for
the input statements for these utilities:

♦ Version 2 Load function (see “Coding the Version 2 Unload, Load,
and Insert Linkpath functions” on page 225)

♦ Version 2 Unload function (see “Coding the Version 2 Unload, Load,
and Insert Linkpath functions” on page 225)

♦ Version 2 Insert Linkpath function (see “Coding the Version 2 Unload,
Load, and Insert Linkpath functions” on page 225)

♦ PDM Termination (see “Coding the PDM Termination utility” on
page 399)

♦ Execution Statistics utility (see “Coding the Execution Statistics utility
for release 2.1.6” on page 403 or “Coding the Execution Statistics
utility for release 2.4” on page 417)

♦ Inter-Directory Copy (see “Coding the Inter-Directory Copy utility” on
page 433)

You execute each of these utilities as separate programs.

Executing utilities that do not require UCL

DBA Utilities User’s Guide 29

Executing utilities with different types of files
You can execute all the utilities with SUPRA native files. However, you
cannot execute all of them with Series 80 or SUPRA converted files.

If you use the following utilities with a Series 80 or SUPRA converted file,
the results are unpredictable, and you may damage the file:

♦ Expand

♦ Modify

If you use the following utilities with a Series 80 or SUPRA converted file,
the results are unpredictable, but you do not damage the file:

♦ File Statistics

♦ Print

If you use these utilities with a Series 80 file, the following results:

♦ Format—creates an empty SUPRA native file (not Series 80 or
SUPRA converted file).

♦ Version 1 Load—creates SUPRA native file. Pre-SUPRA PDMs
cannot use the file, and the Unload function cannot convert it back to
pre-SUPRA PDM format. To process Series 80 or SUPRA converted
files, use the Version 2 Unload and Load functions.

You can run the following utilities with a Series 80 file or a SUPRA
converted file:

♦ Version 1 Unload—the Version 1 Load utility creates only SUPRA
native files.

♦ Version 2 Load

♦ Version 2 Unload

♦ Version 2 Insert Linkpath

Chapter 1 Using the DBA utilities

30 P26-6260-63

Running debug and trace for DBA utilities
Debug and trace facilities are available for DBA Utilities. On occasion,
you may need debug output to help your technical service center resolve
a usage or production problem.

Use Utility Control Language statements to activate debugging and
tracing.

To run debug or trace in OS/390 environments, add this statement to
your JCL:
//OUTPUT DD DSN =*

To run debug or trace in VSE environments, add these statements to
your JCL for printed output or for disk output:

For printer:
//ASSGN OUTPUT,SYSLST

For disk:
//DLBL OUTPUT,'xxxx',,SD

//EXTENT SYSnnn,xxxx

These statements define the output file for the output produced by debug
or trace.

Running debug and trace for DBA utilities

DBA Utilities User’s Guide 31

Using the DEBUG function
The DEBUG function causes the utilities to print out debugging
information during utility execution. DEBUG produces a substantial
amount of output. However, the amount of debugging support and the
meaning of the DEBUG options is not consistent across the utilities
functions.

The DEBUG parameter must be part of the CONTROL section of a UCL
program. Code the parameter as follows:

DEBUG (

ALL
DML
FUNCTION
TRACE

)



















♦ ALL returns all types of debugging information.

♦ DML returns a listing of Physical View DML CALL parameters.

♦ FUNCTION returns the activities of all function processing.

♦ TRACE returns logical calls.

Using the XTRACE function
The XTRACE function enables tracing in the utilities' parser. Each
modification of the parsing stack triggers a listing of the stack and other
relevant information. This information provides a history of the parsing
stack including pushing and popping of tokens according to the grammar
rules. You must understand compilers and parsers in order to understand
the output.

Code the XTRACE parameter as follows:

XTRACE (
ON
OFF

)







You may code XTRACE anywhere in a UCL program. You may enable
the trace function for the entire UCL program or trace only a few
statements in the program.

Chapter 1 Using the DBA utilities

32 P26-6260-63

2
Executing the functions

When you execute functions that require UCL, you must define files and
code run-time options. In addition, some functions sort and some
functions have exit points where you can insert exit programs. In all
cases, there are special considerations.

Defining files
To execute the functions, you must define files for libraries, input, output,
work, Directory, and PDM. For the functions that use UCL, you can use
the file definitions in “Defining files for functions that use UCL” on
page 33.

To define files for functions that do not use UCL, see “Coding the Version
2 Unload, Load, and Insert Linkpath functions” on page 225 for the
Version 2 Unload, Load, and Insert Linkpath functions, “Defining files for
the Execution Statistics utility” on page 38 for the Execution Statistics
utility, and “Defining files for the PDM Termination utility” on page 40 for
the PDM Termination utility.

Defining files for functions that use UCL in OS/390
You define different files in OS/390 and VSE. Differences are noted
where they occur.

OS/390 To execute functions in OS/390, you must define the files listed in “File
definitions in OS/390” on page 34. The figure in “Files you define for
functions that do not sort in OS/390” on page 35 illustrates the
configuration of the files needed for functions that do not sort. The figure
in “Files you define for functions that sort in OS/390” on page 35 shows
the additional files needed for functions that sort.

In OS/390, you can use the file definitions in the cataloged procedure
TISUTUTL. You do not need to read further unless you want more details
about defining files.

DBA Utilities User’s Guide 33

File definitions in OS/390

Type of file Name of file Use of file

Libraries in
OS/390

STEPLIB In this data set concatenation, you declare the
libraries where the system looks for the function's
load module, the single-task PDM load module, and
any exit programs you code.

 SORTLIB In this data set concatenation, you declare the
libraries where the system looks for the sort
program.

Input INPUT You code the UCL in this data set.
 CSIPARM In this data set and in the SCHEMA and ENV-DESC

statements in the UCL control section, you code the
input to the single-task PDM.

Output Data
Sets

OUTPUT You define this data set to hold the output that the
functions create.

 SYSOUT You define this data set to hold output that the
operating system creates.

 SYSUDUMP You define this data set to hold output from a dump,
if you request one.

Work Files CSUWORK You define this data set for the functions to use as a
work file as they interpret and execute the UCL.

 CSI#WK0n (where n=1, 2, 3, and 4.) You define these data sets
for sort work space. You need these data sets only
for functions that sort.

Other Files Directory You define these files for all functions except
Log-Print.

 PDM You define these files only when the function needs
them. For example, if you are executing the File
Statistics utility against only the Directory files, you
do not need to define.

Chapter 2 Executing the functions

34 P26-6260-63

Files you define for functions that do not sort in OS/390
The following figure illustrates the configuration of the files needed for
functions that do not sort.

CSUOUTIL (OS/390)
CSIPARM

INPUT

SYSOUT

SYSUDUMP

OUTPUT

CSUWORK Directory
Files

Your
PDM
Files

Files you define for functions that sort in OS/390
The following figure shows the additional files needed for functions that
sort.

CSUOUTIL (OS/390)
CSIPARM

INPUT

SYSOUT

SYSUDUMP

OUTPUT

CSUWORK Directory
Files

Your
PDM
Files

SORT

PROGRAM

CSI#WK01
CSI#WK02
CSI#WK03
CSI#WK04

Defining files

DBA Utilities User’s Guide 35

Defining files for functions that use UCL in VSE

VSE To execute functions in VSE, you must define the files listed in the
following table. “Files you define for functions that do not sort in VSE” on
page 37 illustrates the files you must define for functions that do not sort;
“Files you define for functions that sort in VSE” on page 37 shows the
files for functions that sort.

File definitions in VSE

Type of file Name of file Use of file

Libraries LIBDEF In the library definition search chain, you declare the
libraries and sublibraries where the system looks for
the function's program, the PDM program, the sort
program, and any exit programs you code.

Input SYSIPT In this system logical unit, you code the UCL.
 CSIPARM In this data set and in the SCHEMA and ENV-DESC

statements in the UCL control section, you code the
input to the single-task PDM. (You do not need this
file for the Log-Print function.)

Output SYSLST You define this system logical unit for the output
from the functions, the operating system, and any
dump you request.

Work Files CSUWORK You define this data set for the functions to use as a
work file as they interpret and execute the UCL.

 CSI#WK1 You define this data set for sort work space. You
need this data set only for functions that sort.

Other Files Directory You define these files for all functions.
 PDM You define these files only when the function needs

them. For example, if you run File Statistics with only
the Directory files, you do not need to define PDM
files.
Define your PDM files as direct access (does not
apply to VSAM). In the Format, Version 1 Load, and
Expand functions, also define the same files as
sequential access and prefix their names with a Z.
For example, DLBL PQRSTUV becomes DLBL
ZPQRSTU.

Chapter 2 Executing the functions

36 P26-6260-63

Files you define for functions that do not sort in VSE

CSUOUTIL
CSIPARM

SYSIPT
SYSLST

CSUWORK Directory
Files

Your
PDM
Files

Files you define for functions that sort in VSE

CSUOUTIL
CSIPARM

SYSIPT

SYSLST

CSUWORK Directory
Files

Your
PDM
Files

SORT
PROGRAM

CSI#WK01
UTLRCVR

Defining files

DBA Utilities User’s Guide 37

Defining files for the Execution Statistics utility
The Execution Statistics utility does not require UCL. The files you define
for this utility are not quite the same as for the functions that require UCL.

The following table lists the files you define in OS/390. “File definitions for
Execution Statistics in VSE” on page 39 lists the files you define for VSE.
“Files you define for Execution Statistics in OS/390” on page 38 shows
the configuration of the OS/390 files. “Files you define for Execution
Statistics in VSE” on page 39 shows the configuration of the VSE files.

In OS/390 and VSE, see the sample JCL member TXJPSTAT. You do
not need to read further unless you want more details about defining files.

File definitions for Execution Statistics in OS/390

Type of file Name of file Use of file

Libraries STEPLIB In this data set concatenation, you declare in OS/390
the libraries where the system looks for the
function's load module, the single-task PDM load
module, and any exit programs you code.

Input Data Sets INPUT In this data set, you code the record size and block
size of the STATS file.

 STATS You define this data set to hold execution statistics
records from the PDM.

Output Data
Sets

OUTPUT You define this data set to hold the output from the
function.

 SYSUDUMP You define this data set to hold output from a dump,
if you request one.

Files you define for Execution Statistics in OS/390
The Execution Statistics utility uses no work, Directory, or PDM files.

CSUXSTAT
INPUT

STATS

OUTPUT

SYSUDUMP

Chapter 2 Executing the functions

38 P26-6260-63

File definitions for Execution Statistics in VSE
In VSE, you define the files listed below. The figure following the table
shows their configuration.

Type of file Name of file Use of file

Libraries LIBDEF In the library definition search chain, you declare the
libraries and sublibraries where the system looks for the
function's program, the PDM program, the sort program,
and any exit programs you code.

Input SYSIPT In this system logical unit, you code the record size and
block size of the STATS file.

 STATS You define this data set to hold execution statistics
records from the PDM.

Output SYSLST You define this system logical unit for the output from the
functions, the operating system, and any dump you
request.

Files you define for Execution Statistics in VSE
The Execution Statistics utility uses no work, Directory, or PDM files.

CSUXSTAT
SYSIPT

STATS
SYSLST

Defining files for the Execution Statistics utility

DBA Utilities User’s Guide 39

Defining files for the PDM Termination utility
The PDM Termination utility does not require UCL. The files you define
for this utility are not quite the same as for the functions that require UCL.

The following table lists the files you define in OS/390. “File definitions for
PDM Termination in VSE” on page 41 lists the files you define for VSE.
“Files you define for PDM Termination in OS/390” on page 41 shows the
configuration of the OS/390 files. “Files you define for PDM Termination
in VSE” on page 41 shows the configuration of the VSE files.

In OS/390, you can use the file definitions in the cataloged procedure
TISDBTMC.

File definitions for PDM Termination in OS/390

Type of file Name of file Use of file

Library STEPLIB In this data set concatenation, you declare the
libraries where the system looks for the function's
load module, the single-task PDM load module, and
any exit programs you code.

Input Data Set INPUT In this data set, you code the input to the PDM
Termination utility.

 CSIPARM You code this data set to hold the same CSIPARM
information that you used to initialize your PDM.

Output Data Set OUTPUT You define this data set to hold the output that the
functions create.

 SYSUDUMP You define this data set to hold a dump if you
request one.

Chapter 2 Executing the functions

40 P26-6260-63

Files you define for PDM Termination in OS/390
The PDM Termination utility uses no work, Directory, or PDM files.

CSUTTERM
INPUT OUTPUT

SYSUDUMPCSIPARM

File definitions for PDM Termination in VSE
The following table lists the files you define for VSE:

Type of file Name of file Use of file

Library LIBDEF In the library definition search chain, you declare the
libraries and sublibraries where the system looks for
the function's program, the PDM program, the sort
program, and any exit programs you code.

Input SYSIPT In this system logical unit, you code the input to the
PDM termination utility.

 CSIPARM You code this data set to hold the same CSIPARM
information that you used to initialize your PDM.

Output SYSLST You define this system logical unit for the output
from the functions and the operating system, and for
any dump you request.

Files you define for PDM Termination in VSE
The PDM Termination utility uses no work, Directory, or PDM files.

CSUTTERM
INPUT

SYSLST
CSIPARM

Defining files for the Execution Statistics utility

DBA Utilities User’s Guide 41

Choosing run-time options
Several parameters affect the run-time environment. You code these
parameters when you execute the Execution Statistics utility or any
functions that require UCL. Do not code these parameters when you
execute the Version 2 Unload, Load, and Insert Linkpath functions.

To set the run-time environment, you must code the size of the region or
partition, the stack, and possibly the I/O buffers. You must also indicate
whether you want to print a dump or just messages. Your code would
look like one of the following examples, depending on your operating
system.

OS/390 In OS/390, code the following:
//stepname EXEC yourpgm,PARM='[your run-time

 parameters to the operating system]/

 [your function's run-time parameters]'

An example would look like this:
//FUNCTION EXEC CSUOUTIL,PARM='/STACK=300K,NOSPIE,NODUMP'

VSE In VSE, code the following:
// EXEC yourpgm,SIZE=[your size parameter],

 PARM='[your run-time parameters to the operating system]/

 [your function's run-time parameters]

An example would look like this:
// EXEC CSUOUTIL,SIZE=(AUTO,150K),PARM='/STACK=300K,NOSPIE,NODUMP'

Chapter 2 Executing the functions

42 P26-6260-63

Defining the amount of storage
You must have sufficient storage available to hold the following:

♦ The function's program

♦ The size of the stack/heap you code in the STACK parameter in the
JCL

♦ The single-task PDM

♦ The sort work space you code in the MEMORY statement of the UCL
(including space for the sort program, if the function uses one)

♦ The exit program if you code one in the STANDARD-EXIT statement
of the UCL

OS/390 In OS/390, code the size of the address space in the REGION parameter
of the JOB statement in the JCL.

VSE In VSE, you must set the size of your partition when you initialize VSE.
When you execute the functions, set the SIZE parameter on the EXEC
statement in the JCL to the size of your function. For example, you can
code SIZE=AUTO or SIZE=xxxK, where xxx is larger than the function.

In VSE, if your function has a sort program, add the size of the sort work
space to the size of the function. For example, code SIZE=(AUTO,xxxK)
where xxx is larger than the memory you allocated in the MEMORY
statement of the UCL, or code SIZE=yyyK where yyy is larger than the
function and the sort work space added together.

Choosing run-time options

DBA Utilities User’s Guide 43

Coding the run-time interface parameters
After you set the amount of memory, code the following run-time
parameters in any order. The last two interact with each other. To see the
results of their possible combinations, see “Results of different
combinations of SPIE and DUMP” on page 45. Follow the coding
recommendations to avoid difficulty.

IOBUF=yyyK OS/390 This parameter indicates the amount of storage to return to OS/390 for
I/O buffers and control blocks after the STACK value is allocated. (Not valid in
VSE.) Since little of the function's I/O uses this storage, the 36K default is
sufficient.

We recommend not coding this parameter.

STACK=xxxK This parameter sets the amount of storage for the run-time stack/heap. The
functions need at least 8K. If you do not code this parameter, the default is the
entire region.

You will want to leave room in your region for loading other programs, such as
the PDM or an exit program, so we recommend always coding this parameter.

For further information and recommended values, see “Setting the STACK
parameter” on page 46.

SPIE/NOSPIE This parameter indicates whether the run-time interface should intercept
program checks by the operating system.

The default is SPIE; however, we recommend coding NOSPIE (not intercept
them).

DUMP/NODUMP You can use this parameter to indicate whether you want a dump of the address
space in OS/390 or the partition in VSE. This parameter determines whether you
get a dump when:

♦ The run-time interface intercepts a program check. If you coded NOSPIE,
the run-time interface does not catch a program check and the operating
system creates a dump.

♦ A run-time error occurs. If a run-time error occurs, you do not need a dump.
The default is DUMP; however, we recommend coding NODUMP.

Chapter 2 Executing the functions

44 P26-6260-63

Results of different combinations of SPIE and DUMP

Run-time
options

Action on abend generated by
run-time system (2506, a
stack/heap collision)

Action on abend generated by
operating system (SOC1, an
operation exception)

SPIE, DUMP Run-time system generates
abend

Run-time system catches abend

 Run-time system prints
messages

Run-time system may print
messages

 Run-time system returns abend
code (2506)

Run-time system returns abend
code (2531)

 Run-time system prints dump Run-time system prints dump
SPIE, NODUMP Run-time system generates

abend
Run-time system catches abend

 Run-time system prints
messages

Run-time system may print
messages

 Run-time system returns abend
code (2506)

Run-time system returns abend
code (2531)

 Run-time system prints no dump Run-time system prints no dump
NOSPIE, DUMP Run-time system generates

abend
Run-time system does not catch
abend

 Run-time system prints
messages

Operating system performs
abend logic

 Run-time system returns abend
code (2506)

Operating system returns abend
code (50C1)

 Run-time system prints dump Operating system may print
dump

NOSPIE,
NODUMP
(recommended)

Run-time system generates
abend

Run-time system does not catch
abend

 Run-time system prints
messages

Operating system performs
abend logic

 Run-time system returns abend
code (2506)

Operating system returns abend
code (50C1)

 Run-time system prints no dump Operating system may print
dump

Choosing run-time options

DBA Utilities User’s Guide 45

Setting the STACK parameter
When you code the STACK parameter, you set aside an area of memory
called the stack/heap for the functions to use. The stack/heap has two
areas, the Procedure Call Stack and the Dynamic Memory Heap, as
shown in the following figure.

Stack

(Unused)

Heap

0

xxx K

As the figure shows, the stack starts at the beginning of the area. It
stores some run-time information and all global variables. In addition,
when each procedure starts, it allocates an area on the stack to store its
local variables, and call and return information.

As the procedure calls more nested procedures, the stack grows larger.
As the nested procedures return, the stack grows smaller. Thus, the size
of the stack depends on the levels of nesting in the procedure calls, and
the number and size of the procedures' parameters and local variables.
As the stack gets larger, it allocates space toward the heap area.

The heap is the area that functions dynamically allocate at run-time. In it
they store internal context information, that is, variables that are not
stored in the stack area. When the functions no longer need the space,
they free it. As an area is freed, it can be reallocated. Thus, this area
varies in size. When a procedure allocates the first heap area, it starts at
the end of the space. When a procedure allocates a new area, it takes
the new area from the space closer to the stack. As the following figure
shows, when the stack and heap get larger, the unused space between
them gets smaller.

Stack

(Unused)

Heap

0

xxx K

Chapter 2 Executing the functions

46 P26-6260-63

Estimating the size of the stack/heap
Because the size of the stack/heap varies, it is difficult to provide reliable
estimates or formulas to determine the size. It is best to use the STACK
value in the JCL example for each function. If this number proves to be
insufficient, use “File definitions for PDM Termination in VSE” on page 41
to estimate how much larger to make it.

You know when the size is too small because you receive an error
message and an abend code at run-time. The message states that the
stack and heap have collided; that is, they are out of memory.

To estimate how much larger to make the stack, consider the level of
complexity in the UCL program. Complex tasks require more space. For
example, if you code the LIST option for the Unload function, more
procedures are called and you need more stack space.

Because the heap area is allocated dynamically, its size varies more than
the stack and is harder to predict. In functions that require UCL, the heap
gets larger as the UCL gets more complex. The size of the heap depends
on the number of control blocks the functions create for internal use.

Choosing run-time options

DBA Utilities User’s Guide 47

To help you determine which functions may require more space, The
following table shows the functions that use the stack/heap and on what
their size depends.

Function

Variation in
stack size

Resulting from

Execution
Statistics

Very Little

PDM
Termination

Very Little

Expand Average
Format Little
Review Little
Unlock Little
Print Average
Modify Average
File Statistics Much Complexity of most complex database file.
Log-Print Very Much Number of tasks and database files it must analyze.
Recover Very Much Number of tasks and database files it must analyze

and the size of the largest log record if more than 32K.
Restore Very Much Number of tasks and database files it must analyze

and the size of the largest log record if more than 32K.
Version 1
Unload

Much Complexity of most complex database file.

Version 1 Load Much Complexity of most complex database file.
Sorted-Populate Much The number and complexity of the index files and

secondary keys, and the number of record codes for
the most complex file.

Depopulate Much The number and complexity of the index files and
secondary keys, and the number of record codes for
the most complex file.

Reorganize Much The number and complexity of the index files and
secondary keys, and the number of record codes for
the most complex file.

Chapter 2 Executing the functions

48 P26-6260-63

Inserting exit programs into functions
At an exit point in a function's code, the function passes control to an exit
program you have written. In some cases, the function passes
information to your exit program and the exit program passes information
back to the function. In other cases, the exit program performs a task.

These functions have exit points where you can insert an exit program:

♦ Print

♦ Modify

♦ Version 1 Unload and Load

♦ Sorted-Populate

♦ Depopulate

♦ Reorganize

♦ Recover

♦ Restore

♦ Log-Print

For information on the exit points in the Version 2 Unload function, see
“Using exit points” on page 265.

Inserting exit programs into functions

DBA Utilities User’s Guide 49

To use an exit program in any of these functions, code the name of the
exit program in the STANDARD-EXIT statement of the UCL for the
function. Before the function begins executing, your exit program is
dynamically loaded. If you coded an exit program for a previous function
in the same UCL program, your old exit program is deleted before the
new one is loaded.

You can write your exit program in any language that supports the IBM
Subroutine Calling Conventions. You must save and restore registers.

If you are writing an exit program in COBOL:

♦ OS/390 Under OS/390, you must issue a call to the COBOL routine
ILBOSTP0 before calling the COBOL subroutine.

♦ VSE Under VSE, issue the call to ILBDSET0.

For more information on the ILBOSTP0 or ILBDSET0 routines, refer to
the appropriate IBM COBOL manual.

On entry to your own exit program, follow these conventions:

♦ Register 0—Unpredictable
♦ Register 1—Parameter list address
♦ Register 2–12—Unpredictable
♦ Register 13—Address of an area of 18 fullwords that can be used by

an exit routine
♦ Register 14—Return address
♦ Register 15—Entry point address of your exit program

Your exit program does not need to be re-entrant, and you can call your
exit program whatever you want.

There is only one exit point in the Print, Modify, and Version 1 Unload and
Load functions. For these functions, the parameter list looks like the one
in the following table.

Chapter 2 Executing the functions

50 P26-6260-63

Parameter list addresses and contents for a single exit point

Parameter

Data
type

Contents before exit
(passed to exit program)

Contents after exit (passed
from exit program)

Record n bytes of
data

Data record Must be unchanged

Function
name

8 bytes
character

Name of function, like
PRINT

Same data or changed data if
permitted

There are several exit points in the Sorted-Populate, Depopulate, and
Reorganize functions. When you have more than one exit point, you must
code all the exit logic in one module. All the exit points branch to the
single entry point in the module. On the basis of the exit point number in
the second parameter, your exit program must determine the exit point to
which control is being passed. As the following table shows, different
parameters are used when there are multiple exit points.

Parameter list addresses and contents for multiple exit
points

Parameter

Data
type

Contents before exit
(passed to exit program)

Contents after exit (passed
from exit program)

Function
name

16 bytes
character

Name of function, like
DEPOPULATE

Must be unchanged

Exit point 4 bytes
integer

Exit point number, like 1 Must be unchanged

Action
indicator

8 bytes
character

b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ or other valid values

Data Variable Data associated with exit
point data

Same data or changed data if
permitted

Inserting exit programs into functions

DBA Utilities User’s Guide 51

Using sort programs
The Version 1 Load, Sorted-Populate, File Statistics, Version 2 Load, and
Version 2 Unload functions use a sort program. The File Statistics
function sorts only if you code STATISTICS (CHAIN) or STATISTICS
(LINK) for a coded related file. For information on the Version 2 Unload
and Load functions, see “Coding the Version 2 Unload, Load, and Insert
Linkpath functions” on page 225.

For the Version 1 Load, Sorted-Populate, and File Statistics functions,
code the name of the sort program you want to use in the SORT
statement in the UCL control section. Depending on your sort program
and the amount of data to be sorted, you may need to allocate more than
the default amount of sort memory. You may also need to allocate sort
work files.

Use of a SORTCNTL file to alter normal EBCDIC sort ordering is not
supported. Use of SORTCNTL to alter the standard collating sequence
may cause the utilities to fail and/or corrupt the database.

Chapter 2 Executing the functions

52 P26-6260-63

Allocating sort memory
To allocate memory, code the amount in the MEMORY statement in the
UCL control section. Generally, the program sorts faster if you allocate
more memory.

Depending on your operating system, the memory you allocate may be
virtual instead of real memory. Be sure there is enough real memory to
support the virtual memory you allocate. If the operating system restricts
the sort program to a smaller amount of real memory, it can slow
performance. A sort memory value of approximately 300K less than the
amount of real memory is recommended, but the best value will depend
upon the nature of your individual sort program.

For example, assume you are executing the Sorted-Populate function
and you allocate 900K of sort memory. As you check the function while it
executes, you see that it is using an average of 700K, and the paging
rate is high. This indicates that the operating system is allowing the
utilities and the sort program only 700K of real memory, and the utilities
and sort are trying to use 900K of virtual memory. If you reduce the
memory to 400K, your sort program uses 200K, the utilities use about
300K, and the operating system allows about 700K. The paging rate
decreases, and your program sorts faster.

Using sort programs

DBA Utilities User’s Guide 53

Allocating sort work space
Each sort program has its own method of calculating the amount of sort
work space it needs to execute. However, all calculations are based on
the amount of data to be sorted, which you must determine.

In each function, the sort program sorts only one file at a time and uses
the same sort work space for each file. Therefore, you must decide which
file has the most data to be sorted and calculate the amount of data for
that file. If you are not sure which file needs the most space, make the
appropriate calculation for all the files and pick the largest.

You calculate the work sort space differently for each function. See the
following sections for each calculation.

The Version 1 Load function sorts variable-length records. The
Sorted-Populate and File Statistics functions sort fixed-length records.

For the Version 1 Load function
To calculate the amount of data for the work space in the Load function,
multiply the length of the records by the number of records. To calculate
the length, add the lengths of all the parts shown in “Formatting the data
records” on page 188 and multiply that total by the number of records in
the file.

For the Sorted-Populate function
To calculate the amount of data for the Sorted-Populate function, multiply
the length of the records by the number of records. To calculate the
length, add 17 bytes to the longest secondary key. To calculate the
number of records, multiply the number of secondary keys by the number
of active records in the file.

If you are populating secondary keys for key-sequenced data sets
(KSDS), you calculate the length of the record differently: add 13 bytes to
the longest secondary key and then add the length of the KSDS primary
file key.

If you are populating secondary keys for coded, related files, the function
sorts fewer records if some keys are not defined for all the record codes.
In that case, you would need less space for sorting.

Chapter 2 Executing the functions

54 P26-6260-63

For the File Statistics Function
In the File Statistics function, the length of the sort records depends on
the type of statistics you requested and the type of file for which you
requested statistics.

♦ If you request chain statistics on a primary file, the length of the sort
record is 23 bytes. If you request chain statistics on a related file, the
length is 19 bytes plus the size of the largest key. Choose the largest
key from all the linkpaths on which you requested statistics. The
record lengths are the same if you request both link and chain
statistics.

♦ If you request link statistics and do not request chain statistics on a
coded related file, the length of the sort record is 11 bytes. If you
request link statistics and do not request chain statistics on a file that
is not a coded related file, there is no sort.

Once you have the length of the sort record, calculate the number of
records. Again, the number depends on the type of statistics and the type
of file. In addition, there are two types of sort records: type one for link
statistics and type two for chain statistics.

♦ If you requested link statistics for a coded related file, the number of
type one sort records is the same as the number of records in the
file. If the file is primary or non-coded related, there are no type one
records. These numbers are not affected by whether you request
chain statistics in addition to link statistics.

♦ If you requested chain statistics, you must figure the number of type
two sort records. This number depends on the type of file. If you
request statistics on a primary file, the number of sort records is the
same as the number of records in the primary file. If you request
statistics on a related file, multiply the number of records in the file by
the number of linkpaths on which the File Statistics function is
collecting statistics. These numbers are the same if you also request
link statistics.

Once you have the number of type one and type two sort records, add
the numbers to get the total number of records and multiply the total by
the length of the longest sort record.

Using sort programs

DBA Utilities User’s Guide 55

Handling errors in sort programs
In most cases, when the sort program abends or passes a bad status
back to the function, the function prints an error message and stops
processing. You should correct the error indicated by the message.

However, if you coded RC16=ABE when you installed your sort program,
the function cannot print a message when the sort program fails. You
have indicated that if the sort program has problems, it should abend and
return a code of 16. It does not dump and may not print out a message. If
the sort program has problems, you simply receive a return code of
U0016 when you execute any function that sorts, that is, the
Sorted-Populate, File Statistics, or Version 1 Load functions.

Chapter 2 Executing the functions

56 P26-6260-63

3
Coding the control section

For utilities that require UCL, you must begin by coding a control section.
The control section defines the processing environment for the functions
you want to perform and can contain the following parts of the
environment:

♦ The names of the database schema and environment description

♦ The content and format of the output listing

♦ Options for the sort program

♦ Description of the output data file

♦ Description of the log file

The sample UCL program on the following page shows the names of the
schema, environment description, sort program, and output data file.

Within the control section, you can code any number of FUNCTION
statements to perform the tasks you need. You begin the function
statements with FUNCTION commands. (In this example, the function
sections have been abbreviated for clarity.) After the control and function
sections, you code CONTROL (END).
CONTROL (BEGIN) Initiates UCL program.
 ENV-DESC (MYDESC) Names environment description.
 SCHEMA (MYSCHEMA) Names schema.
 SORT (SORTPROG) Names sort program.
 DATA-FILE (OUTFILE) Names data file.
 LABEL (YES) Denotes labeled data file.
 FUNCTION (name) Invokes a function.
 FUNCTION (name) Invokes a function.
 FUNCTION (name) Invokes a function.
 FUNCTION (name) Invokes a function.
CONTROL (END) Terminates program.

For information on how to code the function sections, see the remaining
chapters in this manual.

DBA Utilities User’s Guide 57

Coding the UCL for the control section
The following format and format descriptions show how to code a control
section. You must code CONTROL and FUNCTION statements for all
functions. Most statements have supplied defaults; however, you must
supply values for the SCHEMA and ENV-DESC statements.

CONTROL (
BEGIN
END)









 ENV-DESC (environment-description-name)

 SCHEMA (schema-name)

 FORMAT (
NO
YES

)



















 DIAGNOSTICS (
ABEND
SIMPLE
EXTENDED

)
































Chapter 3 Coding the control section

58 P26-6260-63

[]([] [] [] [] []
[] [] [])

()[]
[] [] []()[]

LIST ALL NONE AFTER BEFORE BLOCK SYSTEM
 FUNCTION DESCRIPTION APPLIED- IMAGES

HEADER (
NO
YES)

 EXTENSION ' '

 SUPPRESS ELEMENT SPACE REFER

 LINES (
1

)

 DATA - FORMAT (
HEX
CHAR)
















































































































string

nnn

























SORT (

SORT
)

 MEMORY (
120k

K
)

program - name

nnnnn























































()

CONSOLE (
NO
YES

)

NOTIFY
REPLY

 ' '





















































operator - msg - text

Coding the UCL for the control section

DBA Utilities User’s Guide 59

DATA - FILE (
CSUDATA

)

 LABEL (
NO
YES

)

 RECORD - FORMAT (

F
V
FB
VB

)

 RECORD - SIZE (
b

)

 BLOCK - SIZE (
b

)

 DEVICE (
DISK
TAPE

)

ddname

nnnnn

nnnnn





































































/



















/























































































































 ([] [] [] []
[])

SUMMARY - DATA ALL FILE NONE FUNCTION
 CUMULATIVE













Chapter 3 Coding the control section

60 P26-6260-63

()

()

()

()

()

()

LOG - FILE
LOGFILE

 ACCESS- METHOD
BSAM
BDAM
ESDS

 DEVICE
DISK
TAPE
VSAM

 DEVICE- ADDRESS
SYS010
SYS

 BLOCK - SIZE
b

 SEQ - ERROR

EOF
ERROR
IGNORE
WARNING
INFORMATION

ddname

nnn

nnnnn

































































































/






















































()

()


























































































































































 PDM - ID - ERROR

EOF
ERROR
IGNORE
WARNING
INFORMATION

 LOG - ID - ERROR

EOF
ERROR
IGNORE
WARNING
INFORMATION








































































Coding the UCL for the control section

DBA Utilities User’s Guide 61

 ()FUNCTION

FORMAT
SORTED - POPULATE
DEPOPULATE
REORGANIZE
FILE - STATS
EXPAND
UNLOAD
LOAD
RECOVER
RESTORE
LOG - PRINT
REVIEW
UNLOCK
PRINT
MODIFY

 ...



























































()CONTROL
BEGIN
END









Description Required. Marks the beginning and end of a utility control program.

Options BEGIN

 END

Considerations

♦ CONTROL (BEGIN) must be the first statement and CONTROL
(END) must be the last statement in every program.

♦ If you code any statements before CONTROL (BEGIN), they cause
an error in your program. If you code any after CONTROL (END),
they are ignored.

♦ If you do not code an argument for CONTROL, you receive
unpredictable results.

Chapter 3 Coding the control section

62 P26-6260-63

ENV-DESC (environment-description-name)

Description Required. Identifies the environment description and requests sign-on to
the database.

Format 1–8 alphanumeric characters. The first character must be alphabetic.

Considerations

♦ Use this statement for all functions described in this manual.

♦ The schema and environment description combine to define the
database to the utilities and the PDM.

♦ You can operate on only Directory files by naming a bootstrap
schema and environment description. In that case, do not code either
the DIRECTORY or REALM parameter in your CSIPARM file.

♦ You can operate on your own files by naming your own schema and
environment description. In that case, you must code a DIRECTORY
parameter in the CSIPARM file. In the DIRECTORY parameter,
name the bootstrap schema and environment description used when
the PDM initializes. Do not code the REALM parameter in the
CSIPARM file.

♦ Do not code a bootstrap environment description with your own
schema or vice-versa.

♦ Code all database files with a file open mode of NONE, an access
option of UPDATE, and an OPENX option of PROCESS. For more
information, refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250.

♦ Do not code ENV-DESC when executing the Recover or Restore
functions. Refer to the SUPRA Server PDM Logging and Recovery
Guide (OS/390& VSE),P26-2223, for their special CSIPARM file
considerations.

♦ For the special requirements of the Expand function's CSIPARM file,
see “Coding the Expand function” on page 147.

Coding the UCL for the control section

DBA Utilities User’s Guide 63

SCHEMA (schema-name)

Description Required. Identifies the schema you want used for the functions you
named.

Format 1–8 alphanumeric characters. The first character must be alphabetic.

Considerations Use this statement for all functions described in this manual.

♦ The schema and environment description combine to describe the
database to the utilities and the PDM.

♦ You can operate on only Directory files by naming a bootstrap
schema and an environment description. In that case, do not code
either DIRECTORY or REALM parameters in your CSIPARM file.

♦ You can operate on your own files by naming your own schema and
environment description. In that case, you must code a DIRECTORY
parameter in the CSIPARM file. In the DIRECTORY parameter, code
the bootstrap schema and environment description used when the
PDM initializes. Do not code the REALM parameter in the CSIPARM
file.

♦ Do not code a bootstrap schema with your own environment
description or vice-versa.

♦ Do not code SCHEMA when executing the Recover or Restore
functions. Refer to the SUPRA Server PDM Logging and Recovery
Guide (OS/390 & VSE), P26-2223, for their special CSIPARM file
considerations.

♦ For the special requirements of the Expand function's CSIPARM file,
see “Coding the Expand function” on page 147.

Chapter 3 Coding the control section

64 P26-6260-63

()FORMAT
NO
YES

 









Restriction Use this statement only for the Version 1 Load function.

Description Optional. Determines whether the Load function should format any files
not found on the input file but that you coded in the control section.

Default NO

Considerations

♦ We recommend that you do not code FORMAT (YES). If you want to
format files for which you supplied no data on the input data file, wait
until you receive the output listing from the Load function. Then you
can see which files the Load function did not load with data, and you
can format them with the Format function. For information on the
Format function, see “Coding the Format function” on page 87.

Caution: Exercise extreme caution when you code FORMAT (YES)
because it can lose your data. If you list the wrong file or misspell a
file's name, the Load function will not find it in the input file. When it
formats the file, it changes the data to blank records.

♦ If you use FORMAT (YES), the environment description must have a
file open mode of NONE and an access mode of UPDATE. For more
information, refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250.

♦ When you code FILE (ALL), only your own database files (i.e., your
primary, related and index files) are formatted. Task Log, System
Log, Statistics, and Directory files are not formatted.

Coding the UCL for the control section

DBA Utilities User’s Guide 65

()DIAGNOSTICS
ABEND
SIMPLE
EXTENDED

















Description Optional. Determines the type of diagnostic report to be provided on
abnormal termination. You can use this statement with all functions.

Default EXTENDED

Options ABEND You receive simple and extended diagnostics and a
system dump when necessary.

SIMPLE You receive simple diagnostics normally of only one line.

EXTENDED You receive simple and extended diagnostics.

Chapter 3 Coding the control section

66 P26-6260-63

LIST ([ALL] [NONE] [AFTER] [BEFORE] [BLOCK] [SYSTEM] [FUNCTION]
[DESCRIPTION] [APPLIED-IMAGES])

Restriction Use this statement only with the Print, Modify, Version 1 Unload and
Load, Recover, Restore, and Log-Print functions.

Description Optional. Indicates the content and format of the output listing.

Default For the Modify, Version 1 Unload and Load, Recover, Restore, and
Log-Print functions, the default is NONE. For the Print function, the
default is ALL.

Options ALL Implements all applicable options.

NONE Implements none of the options.

AFTER Lists after images for Recover, Restore, and
Log-Print. For Modify, it lists a record after it is
changed.

BEFORE Lists before images for Recover, Restore, and
Log-Print. For Modify, it lists a record before it is
changed.

BLOCK Lists log file block headers. (For Recover, Restore,
and Log-Print only.)

SYSTEM Lists system log file records. (For Recover, Restore,
and Log-Print only.)

FUNCTION Lists function image records for the log file. (For
Recover, Restore, and Log-Print only.)

DESCRIPTION Lists log record data formats. (For Recover, Restore,
and Log-Print only.)

APPLIED-IMAGES Lists log images applied to the database for the
Recover and Restore functions.

Coding the UCL for the control section

DBA Utilities User’s Guide 67

Considerations

♦ If the LIST options are not applicable to a particular function, they are
ignored. For example, for the Modify function, LIST(BLOCK) is
ignored.

♦ If you code LIST(ALL) for the Recover, Restore, and Log-Print
functions, you receive a list of all records for all files. Therefore, if you
select certain files and records and use LIST(ALL), records for
unselected files and records are printed as well.

♦ The Print function prints a current image of each file and record that
you request, regardless of the arguments you code for this
statement. The Print function examines only the DATA-FORMAT
statement.

♦ If you code multiple options, leave one space between each option.

Chapter 3 Coding the control section

68 P26-6260-63

HEADER (
NO
YES

)









Restriction You can only code this statement following a list statement.

Description Optional. Used for all functions to indicate whether to print the standard
utility header on the output listing.

Default YES

Considerations

♦ The standard title, "DATABASE ADMINISTRATOR UTILITIES," is
always printed.

♦ If you code HEADER (NO), the second header line is not printed.

♦ If you code HEADER (YES) or HEADER () without the EXTENSION
statement, the second header line, "FUNCTION= ... FILE= ..." is
printed.

♦ If you code HEADER (YES) or HEADER () with the EXTENSION
statement, the second header line contains the extension.
"FUNCTION= ... FILE=..." is not printed.

EXTENSION (‘string’)

Restriction You can only code this statement following HEADER (YES) or
HEADER ().

Description Optional. Used with all functions to print your own header after the
standard title.

Format 1–120 alphanumeric characters enclosed in single quotes.

Consideration If the message text contains a single quote, you must code it as two
consecutive single quotes. For example, if the actual message is
ABCD'EFG'H, you must code it as 'ABCD"EFG"H'. When you figure the
length of the message, two single quotes count as one character.

Coding the UCL for the control section

DBA Utilities User’s Guide 69

SUPPRESS ([ELEMENT] [SPACE] [REFER])

Restrictions

♦ Use this statement only for the Print and Modify functions.

♦ You can only code this statement following a HEADER statement.

Description Optional. Lists the heading options you want suppressed on the output
listing.

Options ELEMENT Do not print element names above the corresponding
data element.

SPACE Do not insert spaces between data elements.

REFER Do not print the relative record number (RRN) of each
record above the record.

Consideration The ELEMENT and SPACE options apply only when you supply a list of
element names in the function part of the UCL. If you code ELEMENT
(ALL), no names are printed regardless of what you code in the
SUPPRESS statement.

()LINES
1
nnn











Restrictions

♦ Use this statement only for the Recover, Restore, and Log-Print
functions.

♦ You can only code this statement following a LIST statement.

Description Optional. Indicates the number of output lines you want printed for each
data record. Depending on the record length and data format, an output
line may constitute several physical lines of output.

Default 1

Format 1–3 numeric characters

Options 1 Prints one logical line of output.

nnn Prints the specified number of output lines.

Chapter 3 Coding the control section

70 P26-6260-63

DATA - FORMAT (
HEX
CHAR

)









Restrictions

♦ Use this statement for the Print, Modify, Load, Unload, Recover,
Restore, and Log-Print functions.

♦ You can only code this statement following the LIST statement.

Description Optional. Indicates the format of the data records in the output listing.

Default CHAR

Options HEX Records are printed in over/under hexadecimal format.

CHAR Records are printed in character format.

()SORT
SORT
program-name











Restriction Use this statement only for the Sorted-Populate, Version 1 Load, and File
Statistics functions.

Description Optional. Identifies the sort program to be used.

Default SORT

Format 1–8 alphanumeric characters

Consideration The sort name you code must be available in your execution library.

Coding the UCL for the control section

DBA Utilities User’s Guide 71

()MEMORY
120k

Knnnnn










Restrictions

♦ Use this statement only for the Sorted-Populate, Version 1 Load, and
File Statistics functions.

♦ You can only code this statement following a SORT statement.

Description Optional. Indicates the amount of memory you want allocated for the sort
program.

Default 120K

Format 1–5 numeric characters followed by K

Considerations

♦ More memory results in better performance.

♦ The amount of memory you code must be available in the region or
partition in which you are executing the utilities. For more details on
execution-time parameters, see “Executing the functions” on
page 33.

CONSOLE (
NO
YES

)









Restriction Use this statement only for the Recover, Restore, and Log-Print
functions.

Description Optional. Indicates whether the system console is to display messages.

Default NO

Chapter 3 Coding the control section

72 P26-6260-63

()NOTIFY
REPLY

 ' '







operator-msg-text

Description Optional. Specifies the text of the notification message displayed by the
system console

Format 1–50 alphanumeric characters enclosed in single quotes

Options NOTIFY Notification message only

REPLY Notification message and operator response

Considerations

♦ If you code the REPLY statement, the operator must reply to the
console message.

♦ If the message contains single quotes, code each as two consecutive
single quotes. For example, if the message is ABCD'EFG'H, code it
as 'ABCD"EFG"H'. When you figure the length of the message, count
two single quotes as one character.

♦ If you do not code CONSOLE (YES), this statement is ignored.

DATA - FILE (
CSUDATA

)
ddname











Restriction Use this statement only for the Version 1 Unload and Load functions.

Description Optional. Identifies the ddname that refers to the Unload/Load function's
data file.

Default OS/390 ddname of CSUDATA

 VSE DLBL name of CSUDATA and logical device name of SYS021

Format 1–7 alphanumeric characters

Consideration In your JCL, the data file must have the ddname specified in this
statement.

Coding the UCL for the control section

DBA Utilities User’s Guide 73

LABEL (
NO
YES

)









Restrictions

♦ Use this statement only for the Version 1 Unload and Load functions.

♦ You can only use this statement following a DATA-FILE statement.

Description Optional. Indicates whether the data file on tape contains standard labels.

Default YES

Options NO The data file is on an unlabeled tape.

YES The data file is on a labeled tape.

Consideration This statement is ignored if you do not code DEVICE (TAPE).

RECORD - FORMAT (

F
V
FB
VB

)



















Restrictions

♦ Use this statement only for the Version 1 Unload function.

♦ You can only use this statement following a DATA-FILE statement.

Description Optional. Indicates the format of the data file records.

Default VB

Options F Fixed format

V Variable format

FB Fixed blocked format

VB Variable blocked format

Consideration Only the Unload function uses this statement. The Load function takes its
record format from the run control record. If you code this statement for
the Load function, it is ignored.

Chapter 3 Coding the control section

74 P26-6260-63

RECORD - SIZE (
b

)
/







nnnnn

Restrictions

♦ Use this statement only for the Version 1 Unload function.

♦ You can only use this statement following a DATA-FILE statement.

Description Optional. Indicates the logical record length of the data file records.

Default b/

Format 1–5 numeric characters

Considerations

♦ You must make the record size large enough to handle all of the data
fields you want to unload plus the unloaded record prefix.

♦ If you code V (variable) or VB (variable blocked) in the
RECORD-FORMAT statement, you must add the four bytes for the
record length descriptor when you calculate the size of the record.

♦ The smallest record size is 48 bytes. The largest record size is
32,500 bytes or the track size of the disk drives, whichever is smaller.
You must code a value that is at least equal to the sum of the
following items:

- Length of the data (the logical record length of the largest file)

- Length of the control key

- Length of the control information (14 bytes)

 For the structure of the unloaded record, see “Coding the Version
1 Unload and Load functions” on page 153.

♦ If you do not code a record size, the system selects an appropriate
default value.

♦ Only the Unload function uses this statement. The Load function
takes its record size from the run control record and ignores any
value you code in this statement.

Coding the UCL for the control section

DBA Utilities User’s Guide 75

BLOCK - SIZE (
b

)
/









nnnnn

Restrictions

♦ Use this statement only for the Version 1 Unload function.

♦ You can only use this statement following a DATA-FILE statement.

Description Optional. Selects the block size for the data file.

Default b/

Format 1–5 numeric characters

Considerations

♦ If the option for the RECORD-FORMAT statement is

F The BLOCK-SIZE must equal the RECORD-SIZE

V The BLOCK-SIZE must equal the RECORD-SIZE plus 4

FB The BLOCK-SIZE must be an even multiple of the
RECORD-SIZE

VB The BLOCK-SIZE must be the number of records per block
times the RECORD-SIZE plus 4

♦ If you do not code a block size, the system selects an appropriate
value.

♦ The Load function takes the record format from the run control record
and ignores any value you code here.

Chapter 3 Coding the control section

76 P26-6260-63

DEVICE (
DISK
TAPE

)









Restrictions

♦ Use this statement only for the Version 1 Unload and Load functions.

♦ You can only use this statement following a DATA-FILE statement.

Description Optional. Indicates the device type for the data file.

Default DISK

SUMMARY-DATA ([ALL] [FILE] [NONE] [FUNCTION] [CUMULATIVE])

Description Optional. Identifies the intervals at which you want summary data
reported. The utilities accumulate and present this data on the output
listing.

Default CUMULATIVE

Options ALL The utilities accumulate and list summary data for the
FILE, FUNCTION, and CUMULATIVE intervals.

FILE The utilities list summary data after processing each
completed file for the Sorted-Populate, Version 1 Unload
and Load, Print, Modify, and File Statistics functions.

NONE The utilities provide no data.

FUNCTION The utilities list summary data after each
Sorted-Populate, Version 1 Unload and Load, Print,
Modify, and File Statistics function. They accumulate the
data for all files the function processed.

CUMULATIVE The utilities list summary data after completing the UCL
program. They accumulate the data for all functions and
files processed by the UCL program. The utilities print
summary data only if you executed at least one of the
following functions: Sorted-Populate, Version 1 Unload or
Load, Print, Modify, or File Statistics.

Consideration You may code any combination of listing intervals. However, you cannot
code ALL or NONE in combination with any other argument.

Coding the UCL for the control section

DBA Utilities User’s Guide 77

()LOG - FILE
LOGFILE
ddname









Restriction Use this statement only for the Recover, Restore, and Log-Print
functions.

Description Optional. Identifies the ddname that refers to the System Log File.

Default LOGFILE

Format 1–7 alphanumeric characters

Considerations

♦ The Log-Print, Recover, and Restore functions can process a
System Log File of only one data set. For information on processing
a System Log File of several data sets, refer to the SUPRA Server
PDM Logging and Recovery Guide (OS/390 & VSE), P26-2223.

♦ In your JCL, you must define the System Log File with the ddname
you indicate on this statement. If you use the default for this
statement, you must use the ddname LOGFILE.

♦ If a standard exit reads the System Log File, the exit ignores the file
name you code in this statement.

Chapter 3 Coding the control section

78 P26-6260-63

()ACCESS- METHOD
BSAM
BDAM
ESDS

















Restrictions

♦ Use only for Recover, Restore, and Log-Print functions.

♦ You can only use this statement following a LOG-FILE statement.

Description Optional. Indicates the access method used to create the System Log
File.

Default BSAM

Options BSAM Basic Sequential Access Method

BDAM Basic Direct Access Method

ESDS Entry Sequenced Data Set (VSAM)

Considerations

♦ If you code DEVICE (TAPE), you cannot code ACCESS-METHOD
(BDAM) or ACCESS-METHOD (ESDS).

♦ If you code DEVICE (VSAM) under LOG-FILE, you must code
ACCESS-METHOD (ESDS). No other methods are allowed with a
VSAM device, including the default, BSAM.

♦ If a standard exit reads the System Log File, the exit ignores the
access method you code.

♦ SUPRA supports FBA devices with VSAM (ESDS/KSDS) or as
BSAM. Direct access or BDAM access is not supported. FBA users
need to recover/restore from tape or ESDS log file. The system log
tape must be labeled for the Restore function. Unless the exits are
implemented, RESTORE/RECOVER/LOG-PRINT do not process
tape labels. Therefore, the tape must be positioned on the data file
(MTC FSF, 181,1).

Coding the UCL for the control section

DBA Utilities User’s Guide 79

()DEVICE
DISK
TAPE
VSAM

















Restrictions

♦ Use only for Recover, Restore, and Log-Print functions.

♦ You can only use this statement following a LOG-FILE statement.

Description Optional. Indicates the type of storage device for the System Log File.

Default DISK

Considerations

♦ When you code DEVICE (VSAM), you must code ACCESS-
METHOD (ESDS).

♦ If a standard exit reads the System Log File, the exit ignores the
device you code in this statement.

()DEVICE - ADDRESS
SYS010
SYSnnn











Restrictions

♦ VSE only.

♦ Use only for Recover, Restore, and Log-Print functions.

♦ You can only use this statement following a LOG-FILE statement.

Description Optional. Indicates the logical unit address of the System Log File.

Default SYS010

Options SYS010 Logical device name is SYS010.

SYSnnn Logical device name is SYS followed by the three-digit
number you specify.

Consideration If a standard exit reads the System Log File, the exit ignores the device
address you code in this statement.

Chapter 3 Coding the control section

80 P26-6260-63

VSE ()BLOCK - SIZE
b/







nnnnn

Restrictions

♦ VSE only.

♦ Use only for Recover, Restore, and Log-Print functions.

♦ You can only use this statement following a LOG-FILE statement.

Description Optional. Indicates the size of the log block.

Default b/

Format 1–5 numeric characters

()SEQ - ERROR

EOF
ERROR
IGNORE
WARNING
INFORMATION























Restriction You can only use this statement following a LOG-FILE statement.

Description Optional. Presents a message stating the action you want taken if a block
sequence error occurs on the System Log File.

Default EOF

Options EOF Treat the exception as an end-of-file and continue
processing.

ERROR Present an error message and terminate processing.

IGNORE Take no action and continue processing.

WARNING Present a warning message and continue processing.

INFORMATION Present an informational message and continue
processing.

Coding the UCL for the control section

DBA Utilities User’s Guide 81

()PDM - ID - ERROR

EOF
ERROR
IGNORE
WARNING
INFORMATION























Restrictions

♦ Use only for the Recover, Restore, and Log-Print functions.

♦ You can only use this statement following a LOG-FILE statement.

Description Optional. Presents a message stating the action required after a PDM-ID
error.

Default EOF

Options EOF Treat the exception as an end-of-file and continue
processing.

ERROR Present an error message and terminate processing.

IGNORE Take no action and continue processing.

WARNING Present a warning message and continue processing.

INFORMATION Present an informational message and continue
processing.

Chapter 3 Coding the control section

82 P26-6260-63

()LOG - ID - ERROR

EOF
ERROR
IGNORE
WARNING
INFORMATION























Restrictions

♦ Use only for the Recover, Restore, and Log-Print functions.

♦ You can only use this statement following a LOG-FILE statement.

Description Optional. Presents an action message after a log identifier error.

Default EOF

Options EOF Treat the exception as an end-of-file and continue
processing.

ERROR Present an error message and terminate processing.

IGNORE Take no action and continue processing for the function.

WARNING Present a warning message and continue processing.

INFORMATION Present an informational message and continue
processing.

Coding the UCL for the control section

DBA Utilities User’s Guide 83

()FUNCTION

FORMAT
SORTED - POPULATE
DEPOPULATE
REORGANIZE
FILE - STATS
EXPAND
UNLOAD
LOAD
RECOVER
RESTORE
LOG - PRINT
REVIEW
UNLOCK
PRINT
MODIFY



























































Description Required. Selects the function. Except for the Expand and Unload
functions, you may code functions more than once in a UCL program.
Some combinations of functions are not valid.

Options FORMAT Formats a database file into SUPRA native format. (See
“Coding the Format function” on page 87.)

SORTED-POPULATE
Creates the secondary key's tree structure. (See “Coding
the Sorted-Populate function” on page 91.)

DEPOPULATE Deletes secondary keys. (See “Coding the Depopulate
function” on page 105.)

REORGANIZE Rebuilds the tree structure after you have updated it.
(See “Coding the Reorganize function” on page 119.)

FILE-STATS Reports the physical and logical characteristics of the
primary or related SUPRA native format files you are
examining. (See “Coding the File Statistics function” on
page 131.)

EXPAND Expands the capacity of existing related SUPRA native
format files. (See “Coding the Expand function” on
page 147).

Chapter 3 Coding the control section

84 P26-6260-63

UNLOAD Extracts records from database files and writes them to a
sequential output medium. You can use the resulting
data file only to reload the files into SUPRA native
format. (See “Coding the Version 1 Unload and Load
functions” on page 153.)

LOAD Formats database files into SUPRA native format and
writes data records to the files from a sequential
medium. (See “Coding the Version 1 Unload and Load
functions” on page 153.)

RECOVER Recovers PDM database files from a SUPRA PDM
System Log File. (See “Coding the Recover, Restore,
and Log-Print utilities” on page 447.)

RESTORE Restores PDM database files from a SUPRA PDM
System Log File. (See “Coding the Recover, Restore,
and Log-Print utilities” on page 447.)

LOG-PRINT Prints the contents of the SUPRA PDM System Log File
and reports statistics for the log file and PDM files. (See
“Coding the Recover, Restore, and Log-Print utilities” on
page 447.)

REVIEW Examines SUPRA native and converted files to see if
they are locked and prints an appropriate message. (See
“Coding the Review function” on page 485.)

UNLOCK Resets the lock field in a database file that did not go
through the normal PDM close logic due to an abend or
system failure. Use Unlock with extreme caution. If you
use the Unlock function instead of recovery procedures,
you may corrupt your database. (See “Coding the Unlock
function” on page 489.)

PRINT Prints records from a database file. (See “Coding the
Print function” on page 363.)

MODIFY Updates records in a database file. (See “Coding the
Modify function” on page 381.)

Coding the UCL for the control section

DBA Utilities User’s Guide 85

Determining control statements for functions
Once you are familiar with the information in the preceding section, use
the following figure for quick reference to the control statements needed
for each function. The control statements are indented to show the
hierarchical structure.

CONTROL STATEMENTS FUNCTION

Fo
rm

at

So
rte

d-
Po

pu
la

te

D
ep

op
ul

at
e

R
eo

rg
an

iz
e

Fi
le

 S
ta

tis
tic

s

Ex
pa

nd

U
nl

oa
d

Lo
ad

Pr
in

t

M
od

ify

R
ec

ov
er

R
es

to
re

Lo
g-

Pr
in

t

R
ev

ie
w

U
nl

oc
k

CONTROL R R R R R R R R R R R R R R R
ENV-DESC R R R R R R R R R R R R R R R
SCHEMA R R R R R R R R R R R R R R R
FORMAT O
DIAGNOSTICS O O O O O O O O O O O O O O O
LIST O O O O O O O
HEADER O O O O O O O O O O
EXTENSION O O O O O O O O O O
SUPPRESS O O
LINES O O O
DATA-FORMAT O O O O O O O
SORT O O O O
MEMORY O O O
CONSOLE O O O
NOTIFY O O O
REPLY O O O
DATA-FILE O O
LABEL O O
RECORD-FORMAT O
RECORD-SIZE O
BLOCK-SIZE O
DEVICE O O
LOG-FILE O O O
ACCESS-METHOD O O O
DEVICE O O O
DEVICE-ADDRESS O O O
BLOCK-SIZE O O O
SEQ-ERROR O O O
PDM-ID-ERROR O O O
LOG-ID-ERROR O O O
SUMMARY-DATA O O O O O O O
FUNCTION R R R R R R R R R R R R R R R

Legend: R Required O Optional (blank) Not used by function

Chapter 3 Coding the control section

86 P26-6260-63

4
Coding the Format function

Before you add any records, you must format the PDM database files. In
addition, you must format Directory files, the System Log File, and the
Task Log File before you use them. You do not need to format the BSAM
files or the Statistics file.

You can use Format to format database files or use the Version 1 Load
function to format and add records in one step. Both functions format only
files in SUPRA native format. To create files in compatibility or converted
format, you must use the Version 2 Load utility.

When you use Format, it builds the file control records for index, primary,
and related files. Format also sets all records to spaces, except with
key-sequenced data sets where it only writes the file control record to the
file.

Warning: If you format an existing, non-VSAM file, you set the records
to blanks. Therefore, you should not format files that contain data you
need. You should format only files that are empty, backed up, or no
longer needed. If you format over an index file, you delete the secondary
keys. If you want to repopulate the file, you must depopulate and purge it
first.

After you code the control section as shown in “Coding the control
section” on page 57, you can code the Format function as shown in the
following format.

DBA Utilities User’s Guide 87

Format function syntax

()

()

FUNCTION FORMAT

FILE
ALL

 ,...
file-name-list









FUNCTION (FORMAT)

Description Required. Invokes the Format function.

()FILE
ALL

 ,...
file-name-list









Description Required. Names the database files you want formatted.

Format File names must be 4 alphanumeric characters. The first character must
be alphabetic. Separate names with commas.

Options ALL Formats all index, primary, and related files in the
schema.

file-name-list Formats the files you name. You can format database,
Directory, System Log, or Task Log files.

Chapter 4 Coding the Format function

88 P26-6260-63

Considerations
♦ When you use Format you should not use task or system logging,

which slow performance and serve no purpose. In addition, if you use
logging and abnormally terminate, you cannot restart.

- To format a System Log File, turn system logging off, that is,
code the option in the environment description with nnnn. In the
control section of the UCL, code the user schema and
environment description. All files in the user environment
description must have an open mode of NONE. In the CSIPARM
file, code the DIRECTORY parameter using the boot schema
and environment description.

- To format a Task Log File, turn task logging off by coding the
option in the bootstrap environment description with n. In the
control section, code the bootstrap schema and environment
description. In the CSIPARM file, do not code a DIRECTORY or
REALM parameter.

- To format a Directory file, code the bootstrap schema and
environment description in the control section. In the CSIPARM
file, do not code a DIRECTORY or REALM parameter.

- To format database files, code your schema and environment
description in the control section of the UCL. In the CSIPARM
file, code a bootstrap schema and environment description in the
DIRECTORY parameter. Do not code the REALM parameter.

♦ If you code FILE (ALL), the function formats only index, primary, and
related files. It does not format the Directory, Statistics, System Log,
or Task Log files.

♦ If you code FILE (ALL), the function formats the files in alphabetical
order with index files first, and then primary and related files.

♦ You must delete and redefine a VSAM file (ESDS or KSDS) before
you format it.

♦ To format Directory files, you must code FILE (file-name). In the
control section, you must code a bootstrap schema and environment
description. In the CSIPARM file, do not code a DIRECTORY
parameter.

♦ If you code FILE(), the function does not format any file.

♦ The record length of a key-sequenced data set must be at least the
size of the key displacement, plus the key length, plus 25 bytes.

♦ You can code the FILE statement one or more times.

Format function syntax

DBA Utilities User’s Guide 89

Examples

♦ When you want to initialize your files for use by the PDM, you must
first format them. For example, if you want to add data to the PANM,
RANV, and PO01 files that are found in the UTILSCHM schema,
code the following:

 CONTROL (BEGIN)
 ENV-DESC (UTEDOOUS)
 SCHEMA (UTILSCHM)
 FUNCTION (FORMAT)
 FILE (PANM, RANV)
 FILE (PO01)
 CONTROL (END)

♦ This example shows the code and the listing that you receive after
the code is validated and executed.

 CSUL0101I : COMMENCING COMMAND VALIDATION.
 1 CONTROL(BEGIN)
 2 ***
 3 * *
 4 * FORMAT EXAMPLE #1 DESCRIPTION *
 5 * *
 6 * OBJECTIVE: FORMAT THE DATABASE FILES PRIOR TO *
 7 * USE BY THE PDM. *
 8 * *
 9 * *
 10 ***
 11 ENV-DESC(UTED00US)
 12 SCHEMA(UTILSCHM)
 13 FUNCTION(FORMAT)
 14 FILE(PANM,RANV)
 15 FILE(P001)
 16 CONTROL(END)
CONTENTS OF SOURCE LINES OUTSIDE 1...72 MARGINS IGNORED.
 0 SYNTAX ERRORS DETECTED.
 16 COMMAND LINES READ.
 1 CONTROL SECTIONS ANALYZED.
 1 FUNCTION COMMANDS ANALYZED.

 CSUL0102I : COMMENCING COMMAND EXECUTION.
 CSUL0301I : COMMENCING CONTROL SECTION USING ENVIRONMENT DESCRIPTION UTED00US AND
SCHEMA UTILSCHM.

 CSUL0302I : COMMENCING FORMAT PROCESS.
 CSUL0311I : COMMENCING FORMAT AGAINST FILE PANM.
 CSUL2800I : FILE PANM IS NOW FORMATTED.
 CSUL0321I : FORMAT PROCESSING AGAINST FILE PANM TERMINATING NORMALLY.
 CSUL0311I : COMMENCING FORMAT AGAINST FILE RANV.
 CSUL2800I : FILE RANV IS NOW FORMATTED.
 CSUL0321I : FORMAT PROCESSING AGAINST FILE RANV TERMINATING NORMALLY.
 CSUL0311I : COMMENCING FORMAT AGAINST FILE P001.
 CSUL2800I : FILE P001 IS NOW FORMATTED.
 CSUL0321I : FORMAT PROCESSING AGAINST FILE P001 TERMINATING NORMALLY.
 CSUL0303I : FORMAT PROCESS TERMINATING.
 CSUL0305I : CONTROL SECTION TERMINATING.
 CSUL0307I : ALL CONTROL SECTIONS PROCESSED.
 CSUL0103I : DATABASE UTILITIES SUCCESSFUL TERMINATION.

Chapter 4 Coding the Format function

90 P26-6260-63

5
Coding the Sorted-Populate function

The Sorted-Populate function is the first of three secondary key functions.
With the Sorted-Populate function, you can create the secondary key tree
structure on large files more quickly than with the Directory Maintenance
POPULATE command. When you use the Sorted-Populate function to
populate a secondary key, you can request statistics, add your own exit
program, and indicate how much of each block you want to hold records.

As its name implies, the Sorted-Populate function's increased efficiency
comes from sorting. You need to estimate the amount of sort memory
and sort work space required. For information on calculating the
amounts, see “Using sort programs” on page 52. For more information
on coding the UCL, see “Coding the UCL for the Sorted-Populate
function” on page 92.

The other secondary key functions, Depopulate and Reorganize, enable
you to maintain secondary keys. The Depopulate function deletes
secondary keys. The Reorganize function corrects the deterioration of the
tree structure that occurs from updating it. These functions are explained
in “Coding the Depopulate function” on page 105 and “Coding the
Reorganize function” on page 119.

DBA Utilities User’s Guide 91

Coding the UCL for the Sorted-Populate function
After you code the control section as shown in “Coding the control
section” on page 57, you can code the Sorted-Populate function as
shown in the following format:

()

()

()[]

()

()

[]

FUNCTION SORTED - POPULATE

 STATISTICS
ALL
BASE
NONE

 STANDARD - EXIT

 FILE
ALL

 ,...

SECONDARY - KEY
ALL

 LOAD - DENSITY (0 - 99)
 ,...









































































exit-name

file-name-list

key-name-list

FUNCTION (SORTED-POPULATE)

Description Required. Executes the Sorted-Populate function.

Consideration Performance is highly sensitive to the number of buffers in the INDEX
file's buffer pool. The recommended number of buffers is twice the
expected tree height plus three. If you do not know the expected tree
height, use 10–15 buffers. Too few buffers will cause buffer thrashing
and substantial performance degradation. The number of DATA file
buffers is not critical—one or two is sufficient.

Chapter 5 Coding the Sorted-Populate function

92 P26-6260-63

()STATISTICS
ALL
BASE
NONE

















Description Optional. Indicates the statistics reports you want generated.

Default BASE

Options ALL You receive statistics reports on both index files and
secondary keys.

BASE You receive reports on only the secondary keys.

NONE You receive no statistics reports.

Considerations
♦ You may request statistics only once.

♦ If you request statistics, you must code this statement before the
FILE statement(s).

STANDARD-EXIT (exit-name)

Description Optional. Indicates you want to use an exit program with this function.

Default The function skips the exit points.

Format 1–8 alphanumeric characters. The first character must be alphabetic.

Considerations
♦ You may code the exit only once.

♦ If you code the exit, you must code it before the FILE statement.

♦ If you code the STANDARD-EXIT statement, you must make the exit
program available for the function to load. You must put the exit
program in your execution library.

♦ Sorted-Populate loads the exit program before processing each file
you code in each FILE statement. The function deletes the exit
program when it completes processing each file.

♦ For a description of the exit points in this function, see “Writing exit
programs” on page 97.

Coding the UCL for the Sorted-Populate function

DBA Utilities User’s Guide 93

()FILE
ALL

 ,...
file-name-list









Description Required. Names the database files you want to populate with secondary
keys.

Format File names must be 4 alphanumeric characters. The first character must
be alphabetic. Separate names with commas.

Considerations

♦ You must code the FILE statement at least once, and you can code it
as many times as you like.

♦ You must code the FILE statement after all other Sorted-Populate
statements.

♦ You can code only primary and related files.

♦ If you code FILE (ALL), the function populates every secondary key
for every primary and related file in the schema and environment
description.

♦ If you code FILE (ALL), you cannot code any other FILE statements.

♦ When the function begins processing each file, it opens the file for
exclusive update (EUPD open mode). When the function finishes, it
closes the file. If you code a file in more than one FILE statement, the
function opens, sweeps, and closes it each time.

♦ If you want to populate one data file with several secondary keys, you
can code several FILE statements. This method takes more I/O and
more CPU time, but less sort work space. However, since this
method degrades performance, you should do this only if sort work
space is a problem.

Chapter 5 Coding the Sorted-Populate function

94 P26-6260-63

()SECONDARY - KEY
ALL
key-name-list











Restrictions

♦ To code the SECONDARY-KEY statement, you must code the FILE
statement.

♦ If you coded FILE (ALL) or a file list with more than one file name,
you cannot code SECONDARY-KEY (key-name-list).

Description Optional. Indicates the secondary keys you want populated.

Default ALL

Format Secondary key names must be 8 alphanumeric characters. Separate
names with commas.

Considerations

♦ You can code the SECONDARY-KEY statement as many times as
you like, or not at all.

♦ If you code SECONDARY-KEY (ALL), the function populates all
secondary keys for the files you code in the FILE statement.

♦ If you code SECONDARY-KEY (ALL), you cannot code any other
SECONDARY-KEY statements.

♦ If a secondary key is damaged or depopulated but not purged, you
cannot populate it. You must depopulate and purge it first. Likewise,
you cannot use this function on a populated secondary key until you
depopulate and purge it.

♦ Sorted-Populate handles a maximum of 512 internal elements. If
Sorted-Populate generates more than 512 elements, the utility
displays a CSUL0502S message containing CODE=3202, and
terminates abnormally. If this occurs, you must use the Directory
Maintenance utilities for the secondary key(s). This problem will most
likely occur on a related file containing many coded records. The
utility builds an element list containing all elements for each record
code, plus all elements that make up each secondary key.

Coding the UCL for the Sorted-Populate function

DBA Utilities User’s Guide 95

LOAD-DENSITY (0–99)

Restriction To code the LOAD-DENSITY statement, you must code the
SECONDARY-KEY statement.

Description Optional. Indicates how full you want the index file blocks.

Default 0

Options 0–99

Considerations

♦ You can code the LOAD-DENSITY statement only once for each
SECONDARY-KEY statement.

♦ If you code LOAD-DENSITY (0), the function loads each secondary
key to the load density defined for the secondary key on the
Directory.

♦ If you code a load density between 1 and 99, the function fills the
index file blocks as closely as possible to that percentage,
considering the key-data length and block size.

Chapter 5 Coding the Sorted-Populate function

96 P26-6260-63

Writing exit programs
With the exit points from the Sorted-Populate function, you can collect
data about secondary keys, turn off exit points, abort Sorted-Populate
processing, and see statistics.

See “Inserting exit programs into functions” on page 49 for information on
how exit programs are loaded, how they operate, the languages you can
use to write them, and the register conventions you must follow. In
register 1, for example, you must code the parameter list addresses. The
following table describes the parameter list addresses.

Parameter

Data
type

Contents before exit
(passed to exit program)

Contents after exit (passed
from exit program)

Function
name

16 bytes
character

SORTED-POPULATEb/ Must be unchanged

Exit point 4 bytes
integer

Exit point number Must be unchanged

Action
indicator

8 bytes
character

b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ or other valid values

Data Variable Data associated with exit
point data

Same data or changed data if
permitted

If your exit program changes anything it is not authorized to change, the
results are unpredictable.

To use the exit points, see the following sections, which give the exit
number, the data associated with an exit, and the valid actions.

Selecting exit points
To use an exit point, you must know when it occurs in the function, what
data is passed, and what actions your program can take at that point.
The following table shows when an exit point occurs. “Data parameters”
on page 99 shows the data parameters, and “Valid actions for exit
programs in Sorted-Populate” on page 100 shows the actions you can
take. An example shows the order in which the function takes the exit
points.

Writing exit programs

DBA Utilities User’s Guide 97

When exit points occur

Exit Phase When exit occurs

1 Initialization During initialization just before the function opens the PDM file
2 Termination After the function has completed all processing
3 Secondary key

initialization
Just before the function starts populating the secondary key

4 Secondary key
termination

After the function completes populating a secondary key

5 Data file sweep Just after each RDNXT issued to the PDM that returns
asterisks or an END. status

6 Data file sweep Before passing the secondary key entry record to the SORT
program

7 Secondary key
population

After the sort program returns the secondary key entry record

8 Secondary key
statistics

After the function prints a secondary key statistics line in the
base statistics report

9 Index file
statistics

After the function prints an index file statistics line in the
extended statistics report

At each exit point, your program can indicate whether action should
continue or stop. To continue, your program should return blanks. To
stop processing, your program should return ABORT.

ABORT has a different scope at different exit points. At exits on the file
level (1, 2, 5, 6, 8, and 9), the function stops processing that file and
continues with the next file. At exit points on the secondary key level (3,
4, and 7), the function stops processing that secondary key and
continues with the next secondary key in the same file.

In addition to continuing or aborting, your program at the first exit point
can also change the switches in the data parameter from Y (Yes) to N
(No). When your program changes a switch, it turns off the exit point and
the function does not take the exit. If your program changes a switch
from Y to N, it must also return an action of SETb/ b/ b/ b/ . The programs at
the other exit points cannot change the data parameter.

Chapter 5 Coding the Sorted-Populate function

98 P26-6260-63

Summary of data parameters and valid actions
Data parameters
The following table shows the data parameters for each exit program.

Exit Use Data parameter
1 Initialization The four-character file name followed by a string of nine Y

(yes) or N (no) switches to set exit settings. Each switch turns
on or off its exit point.

2 Termination The four-character file name followed by a fullword integer
containing the function return code (0, 4, 8, or 16)

3 Secondary key
initialization

The secondary key name

4 Secondary key
termination

The secondary key name

5 Data file sweep The data area from the just completed RDNXT function
6 Data file sweep The secondary key's entry record just before it is passed to the

SORT program
7 Secondary key

population
The secondary key's entry record just after the SORT program
returns it

8 Secondary key
statistics

The statistics in the detail line in the order in which they appear
in the statistics reports. All numbers are fullword binary
integers.

9 Index key
statistics

The statistics in the detail line in the order in which they appear
in the statistics reports. All numbers are fullword binary
integers.

Writing exit programs

DBA Utilities User’s Guide 99

Valid actions for exit programs in Sorted-Populate
The following table shows the actions you can take with Sorted-Populate.

Action
indicators

Exit Use Data parameter b/ S A
1 Set exit points 13 bytes containing a four-byte file name and

a string of nine Ys. Your program may
change the Y to N to turn off the exit point. If
your program changes the setting, it must
return SETb/ b/ b/ b/ b/

Y Y Y

2 Get return code The file name followed by the return code: 0
(complete), 4 (warning), 8 (error), 16 (internal
error)

Y N Y

3 Gather information
or add processing

8-character name of secondary key Y N Y

4 Gather information
or add processing

8-character name of secondary key Y N Y

5 Gather information
or add processing

Data area from the RDNXT command Y N Y

6 Gather information
or add processing

The secondary key's entry record before it
goes to the sort program

Y N Y

7 Gather information
or add processing

The secondary key's entry record after the
sort program returns it

Y N Y

8 Get the secondary
key's statistics

The secondary key's statistics Y N Y

9 Get the index file's
statistics

The index file's statistics Y N Y

Legend: b/ = b/ b/ b/ b/ b/ b/ b/ b/ - Action continues

 S = SETb/ b/ b/ b/ b/ - Data contents changed
 A = ABORTb/ b/ b/ - Terminates recovery

Chapter 5 Coding the Sorted-Populate function

100 P26-6260-63

Example The exit points are taken in the following order when you are populating
two secondary keys, ffffSK01 and ffffSK02, that both reside in index file
IX01. In the UCL, you requested all statistics:

Exit point
number

Point in processing

Once per
record
(Loop)

Once for
each
ffffSK01

Once for
each
ffffSK02

 1
! 5 " #
! 6 Loop
 $
! 6 % &

 3
! 7
 4
 3
! 7
 4
 8

 8

 9

 2

During initialization of the Sorted-populate function
After RDNXT sweeps the data file for secondary keys
Before the function passes ffffSK01 records to the SORT
program
Before the function passes ffffSK02 records to the SORT
program.
Before the function starts populating ffffSK01
After the SORT program returns each ffffSK01 record
After the function finishes populating ffffSK01
Before the function starts populating ffffSK02
After the SORT program returns each fffSK02 record
After the function finishes populating ffffSK02
After the function prints a secondary key statistics line in
the base statistics report for ffffSK01
After the function prints a secondary key statistics line in
the base statistics report for ffffSK02
After the function prints an index file statistics line in the
extended statistics report for IX01
Just before the Sorted-Populate function terminates

Writing exit programs

DBA Utilities User’s Guide 101

Requesting statistics
When you request statistics, you receive information on the secondary
keys in the files you listed. After populating the file, the function prints the
following base statistics for each secondary key:

♦ The status code (indicating whether population was successful)

♦ The index file name

♦ The number of key values (number of data records being indexed)

♦ The number of unique key values

♦ The number of blocks in the secondary key

♦ The number of levels in the secondary key

♦ The number of low level blocks in the secondary key

If you requested extended statistics, the function also prints the following
information for each ex file:

♦ The number of blocks in the file

♦ The number of blocks in use before and after population

♦ The number of free blocks before and after population

Chapter 5 Coding the Sorted-Populate function

102 P26-6260-63

The following two code samples show examples of the base and
extended statistics. You receive these statistics when you code the
following in the function section of the UCL.

Example 1 This example shows base statistics on the Sorted-Populate function.
FUNCTION(SORTED-POPULATE)

 STATISTICS(ALL)

 FILE(PANM)

 SECONDARY-KEY(ALL)

 LOAD-DENSITY(80)

 CSUL3376I : BEGINNING OF SORTED-POPULATE STATISTICS (BASE).

 LOW LEVEL

 NUMBER OF BLOCKS IN LEVELS IN BLOCKS IN

SECONDARY INDEX NUMBER OF UNIQUE SECONDARY SECONDARY SECONDARY

KEY NAME STATUS FILE KEY VALUES KEY VALUES KEY KEY KEY

_________ ______ _____ ____________ _____________ ___________ _________ _________

PANMSK01 **** I001 89,989 89,990 1,727 3 1,698

PANMSK02 **** I001 89,989 89,990 4,270 4 4,091

CSUL3381I : END OF SORTED-POPULATE STATISTICS (BASE).

Requesting statistics

DBA Utilities User’s Guide 103

Example 2 This example shows extended statistics on the Sorted-Populate function.
 CSUL3370I : BEGINNING OF SORTED-POPULATE STATISTICS (EXTENDED).

 BEFORE SORTED-POPULATE AFTER SORTED-POPULATE

 ______________________ _____________________

 NUMBER OF NUMBER OF NUMBER OF

INDEX BLOCKS IN BLOCKS NUMBER OF BLOCKS NUMBER OF

FILE FILE IN USE FREE BLOCKS IN USE FREE BLOCKS

_____ _________ _________ ___________ _________ ___________

I001 7,005 163 6,842 6,160 845

 CSUL3375I : END OF SORTED-POPULATE STATISTICS (EXTENDED).

Chapter 5 Coding the Sorted-Populate function

104 P26-6260-63

6
Coding the Depopulate function

The Depopulate function is the second of three secondary key functions.
With the Depopulate function, you can delete secondary keys. The
Depopulate function works like the Sorted-Populate function that creates
secondary keys. That is, the Depopulate function has exclusive access to
the file, and opens and closes the file each time you code it in a FILE
statement. In addition, you can request some of the same statistics and
add your own exit program.

An additional parameter in the Depopulate function enables you to
reclaim index file blocks when you depopulate the secondary key. You
must reclaim the blocks before you can repopulate the key.

DBA Utilities User’s Guide 105

Coding the UCL for the Depopulate function
After you code the control section as shown in “Coding the control
section” on page 57, you can code the Depopulate function as shown in
the following format.

()

()

()[]

()

()

()

FUNCTION DEPOPULATE

 STATISTICS
ALL
BASE
NONE

 STANDARD - EXIT

 FILE
ALL

 ...

SECONDARY - KEY
ALL

 PURGE
NO
YES

 ...





















































































exit-name

file-name-list

key-name-list

Chapter 6 Coding the Depopulate function

106 P26-6260-63

FUNCTION (DEPOPULATE)

Description Required. Executes the Depopulate function.

()STATISTICS
ALL
BASE
NONE

















Restriction If you code the STATISTICS statement, you must code it before the FILE
statement.

Description Optional. Indicates the kinds of statistics reports you want generated.

Default BASE

Options ALL You receive statistics reports on both index files and
secondary keys.

BASE You receive reports on only the secondary keys.

NONE You receive no statistics reports.

Considerations

♦ If you want statistics, you must code the Depopulate function.

♦ You may code the STATISTICS statement only once.

Coding the UCL for the Depopulate function

DBA Utilities User’s Guide 107

STANDARD-EXIT (exit-name)

Restriction If you code the STANDARD-EXIT statement, you must code it before the
FILE statement.

Description Optional. Indicates you want to use an exit program with this function.

Default The function skips the exit points.

Format 1–8 alphanumeric characters. The first character must be alphabetic.

Considerations

♦ If you want to take the exit, you must code the Depopulate function.

♦ You may code the STANDARD-EXIT statement only once.

♦ If you want to use an exit program, you must make it available for the
function to load. That is, you must put the exit program in your
execution library.

♦ “Writing exit programs” on page 112 describes exit points.

Chapter 6 Coding the Depopulate function

108 P26-6260-63

()FILE
ALL

 ...
file-name-list









Description Required. Names the data files for which you want to depopulate
secondary keys.

Format File names must be 4 alphanumeric characters. The first character must
be alphabetic. Separate names with commas.

Considerations

♦ You must code the FILE statement at least once.

♦ You must code the FILE statement after the other Depopulate
statements.

♦ You may code only primary and related files.

♦ If you code FILE (ALL), the function depopulates all secondary keys
for every primary and related file in the schema/environment
description.

♦ If you code FILE (ALL), you cannot code any other FILE statements.

♦ When the function processes each file, it opens and closes the file. If
you code a file in more than one FILE statement, the function opens
and closes the file each time. You can depopulate several secondary
keys in one file by coding one FILE statement and several
SECONDARY-KEY statements. This reduces I/O and CPU time, but
requires more sort work space.

♦ Depopulate opens the file for exclusive update (EUPD open mode).
Thus, no other program can use the file while you are deleting
secondary keys.

Coding the UCL for the Depopulate function

DBA Utilities User’s Guide 109

()SECONDARY - KEY
ALL
key-name-list











Restriction You can code the SECONDARY-KEY statement only after a FILE
statement.

Description Optional. Identifies the secondary keys you want to depopulate.

Default ALL

Format Secondary key names must be 8 alphanumeric characters. Separate
names with commas.

Considerations

♦ You may code the SECONDARY-KEY statement as many times as
you like, or not at all.

♦ If you code SECONDARY-KEY (ALL), the function depopulates all
secondary keys for the files you coded in the parent FILE statement.

♦ If you code SECONDARY-KEY (ALL), you cannot code any other
SECONDARY-KEY statements.

♦ SECONDARY-KEY (key-name-list) is invalid if you coded FILE (ALL)
or a file list with more than one file name.

Chapter 6 Coding the Depopulate function

110 P26-6260-63

()PURGE
NO
YES











Restriction If you code the PURGE statement, you must code the
SECONDARY-KEY statement.

Description Optional. Indicates whether you want the index file blocks reclaimed as
the key is depopulated.

Default YES

Options NO The index file blocks are not reclaimed.

YES The index file blocks are reclaimed.

Considerations

♦ You can code PURGE only once for each SECONDARY-KEY
statement.

♦ You can code PURGE (NO) only if the secondary keys are
populated.

♦ You can code PURGE (YES) if the secondary keys are populated,
damaged, or depopulated but not purged.

♦ To repopulate a secondary key, you must have depopulated and
purged it. You cannot repopulate a secondary key that is
depopulated, but not purged.

Coding the UCL for the Depopulate function

DBA Utilities User’s Guide 111

Writing exit programs
With the exit points from the Depopulate function, you can collect data
about secondary keys, turn off exit points, terminate depopulate
processing, and see statistics.

“Inserting exit programs into functions” on page 49 discusses how your
exit programs are loaded, how they operate, the languages you can use
to write them, and the register conventions you must follow. In register 1,
for example, you must code the parameter list addresses. For a
description of the parameter list addresses, see the following table:

Parameter

Data type

Contents before exit
(passed to exit program)

Contents after exit (passed
from exit program)

Function
name

16 bytes
character

DEPOPULATE Must be unchanged

Exit point 4 bytes
integer

Exit point number Must be unchanged

Action
indicator

8 bytes
character

b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ or other valid
values

Data Variable Data associated with exit
point changed

Same data or changed data
if permitted

If your exit program changes anything it is not authorized to change, the
results are unpredictable.

To use the exit points, see the following sections, which show the exit
number, the data associated with the exit, and the valid actions.

Selecting exit points
To use an exit point, you must know when it occurs in the function, what
data is passed, and what actions your program can take at that point.
The following table shows when exit points occur. The tables in
“Summary of data parameters and valid actions” on page 114 show the
data parameters for each exit program and the actions your exit program
can take. Finally, an example shows the order in which the function takes
the exit points.

Chapter 6 Coding the Depopulate function

112 P26-6260-63

When exit points occur
The following table shows when exit points occur:

Exit Phase When exit occurs

1 Initialization After the function has initialized
2 Termination After the function has completed all processing
3 Secondary key

initialization
Just before the function starts depopulating the secondary key

4 Secondary key
termination

After the function completes depopulating a secondary key

8 Secondary key
statistics

After the function prints a secondary key statistics line in the
base statistics report

9 Index file
statistics

After the function prints an index file statistics line in the
extended statistics report

At each exit point, your program can indicate whether the function should
continue or stop processing. To continue, your program should return
blanks. To stop processing, your program should return ABORT.

ABORT has a different scope at different exit points. At exits on the file
level (1, 2, 8, and 9), the function stops processing that file and continues
with the next file. At exit points on the secondary key level (3 and 4), the
function stops processing that secondary key and continues with the next
secondary key in the same file.

In addition to continuing or aborting, your program at the first exit point
can also change the switches in the data parameter from Y (Yes) to N
(No). When your program changes a switch, it turns off the exit point and
the function does not take the exit. If your program changes a switch
from Y to N, it must also return an action of SETb/ b/ b/ b/ b/ . The programs at
the other exit points cannot change the data parameter.

Writing exit programs

DBA Utilities User’s Guide 113

Summary of data parameters and valid actions
The following table shows the data parameters for each exit program:

Exit Use Data parameter
1 Initialization The 4-character file name followed by a string of nine Y (YES)

or N (NO) switches. Each switch turns on or off its exit point.
All switches are initially set to YES.

2 Initialization
termination

The 4-character file name followed by a fullword integer
containing the function return code (0, 4, 8, or 16)

3 Secondary key
initialization

The secondary key name

4 Secondary key
termination

The secondary key name

8 Secondary key
statistics

The statistics in the detail line in the order they appear in the
statistics reports. All numbers are fullword binary integers.

9 Index key
statistics

The statistics in the detail line in the order they appear in the
statistics reports. All numbers are fullword binary integers.

Chapter 6 Coding the Depopulate function

114 P26-6260-63

The following table shows valid actions for exit programs in Depopulate:

Action
indicators

Exit Use Data parameter b/ S A
1 Set exit points 13 bytes containing a four-byte file name and

a string of nine Ys. Your program may
change the Y to N to turn off the exit point. If
your program changes the setting, it must
return SETb/ b/ b/ b/ b/ .

Y Y Y

2 Get return code The file name followed by the return code: 0
(complete), 4 (warning), 8 (error), 16
(internal error)

Y Y Y

3 Gather information
or add processing

8-character name of secondary key Y N Y

4 Gather information
or add processing

8-character name of secondary key Y N Y

5 Does not exist in
Depopulate

6 Does not exist in
Depopulate

7 Does not exist in
Depopulate

8 Get the secondary
key's statistics

The secondary key's statistics Y N Y

9 Get the index file's
statistics

The index file's statistics Y N Y

Legend: b/ = b/ b/ b/ b/ b/ b/ b/ b/ - Action continues

 S = SETb/ b/ b/ b/ b/ - Data contents changed
 A = ABORTb/ b/ b/ - Terminates recovery

Writing exit programs

DBA Utilities User’s Guide 115

In this example, the exit points are taken in the following order when you
depopulate two secondary keys, ffffSK01 and ffffSK02, that both reside in
index file IX01. In the UCL, you requested all statistics.

Exit
point
number

Point in processing

1 During initialization of the Depopulate function
3 Before the function starts depopulating ffffSK01
4 After the function finishes depopulating ffffSK01
3 Before the function starts depopulating ffffSK02
4 After the function finishes depopulating ffffSK02
8 After the function prints a secondary key statistics line in

the base statistics report for ffffSK01
8 After the function prints a secondary key statistics line in

the base statistics report for ffffSK02
9 After the function prints an index file statistics line in the

extended statistics report for IX01
2 Just before the Depopulate function terminates

Chapter 6 Coding the Depopulate function

116 P26-6260-63

Requesting statistics
You receive statistics when you code the following in the function section
of the UCL:

()
()

()
()

FUNCTION DEPOPULATE
 STATISTICS ALL
 FILE PANM
 SECONDARY - KEY ALL

When you request statistics, you receive information on the secondary
keys in the files you listed. After depopulating the file, the function prints
the following base statistics for each secondary key:

♦ The status code (indicating whether depopulation was successful)

♦ The index file name

♦ The number of blocks in the secondary key before it was
depopulated

When you request the extended statistics, the function also prints the
following information for each index file:

♦ The number of blocks in the file

♦ The number of blocks in use before and after depopulation

♦ The number of free blocks before and after depopulation

Requesting statistics

DBA Utilities User’s Guide 117

Examples of both the base and extended statistics are in the following
two code samples.

Example 1 This example shows base statistics on the Depopulate function.
 CSUL3759I : BEGINNING OF DEPOPULATE STATISTICS (BASE).

 BLOCKS IN

 SECONDARY

 SECONDARY INDEX KEY BEFORE

 KEY NAME STATUS FILE DEPOPULATE

 -------- ---- ---- ----------

 PANMSK01 **** I001 1,727

 PANMSK02 **** I001 4,270

 CSUL3763I : END OF DEPOPULATE STATISTICS (BASE).

Example 2 This example shows extended statistics on the Depopulate function.
 CSUL3776I : BEGINNING OF DEPOPULATE STATISTICS (EXTENDED).

 BEFORE DEPOPULATION AFTER DEPOPULATION

 ---------------------- -----------------------

 NUMBER OF NUMBER OF NUMBER OF

INDEX BLOCKS IN BLOCKS NUMBER OF BLOCKS NUMBER OF

FILE FILE IN USE FREE BLOCKS IN USE FREE BLOCKS

---- ----------- ---------- -------------- ---------- ------------

I001 7,005 6,160 845 163 6,842

CSUL3781I : END OF DEPOPULATE STATISTICS (EXTENDED).

Chapter 6 Coding the Depopulate function

118 P26-6260-63

7
Coding the Reorganize function

The Reorganize function enables you to correct the deterioration of the
secondary key tree structure that can result from updates. The
Reorganize function rebuilds the tree structure without accessing the
primary or related file from which the secondary key came.

The Reorganize function works like the Sorted-Populate function. That is,
the Reorganize function has exclusive access to the file, and opens and
closes the file each time you code it in a FILE statement. In addition, you
can request the same statistics, add an exit program, and indicate how
full you want the index file blocks.

Coding the UCL for the Reorganize function
After you code the control section as shown in “Coding the control
section” on page 57, you can code the Reorganize function as shown in
the following format:

()

()

()[]

()

()

()[]
...

99-0 DENSITY-LOAD

list-name-key
ALL

 KEY-SECONDARY

...
list-name-file

ALL
 FILE

 name-exit EXIT-STANDARD
NONE
BASE
ALL

 STATISTICS

REORGANIZE FUNCTION








































































DBA Utilities User’s Guide 119

FUNCTION (REORGANIZE)

Description Required. Executes the Reorganize function.

Consideration Performance is highly sensitive to the number of buffers in the INDEX
file's buffer pool. The recommended number of buffers is twice the
expected tree height plus three. If you do not know the expected tree
height, 10–15 buffers is recommended. The DATA file buffering is not
important because Reorganize does not read the DATA file.

()STATISTICS
ALL
BASE
NONE

















Restriction If you request statistics, you must code this statement before the FILE
statement(s).

Description Optional. Indicates the kinds of statistics reports you want generated.

Default BASE

Options ALL You receive statistics reports on both index files and
secondary keys.

BASE You receive reports on only the secondary keys.

NONE You do not receive statistics reports.

Consideration You may request statistics only once.

Chapter 7 Coding the Reorganize function

120 P26-6260-63

STANDARD-EXIT (exit-name)

Restriction If you code the STANDARD-EXIT statement, you must code it before the
FILE statement.

Description Optional. Indicates you want to use an exit program with this function.

Default The function skips the exit points.

Format 1–8 alphanumeric characters. The first character must be alphabetic.

Considerations

♦ You may code this statement only once.

♦ If you code the STANDARD-EXIT statement, you must make your
exit program available for the function to load. You must put the exit
program in your execution library.

♦ “Writing exit programs” on page 124 describes the exit points in this
function.

Coding the UCL for the Reorganize function

DBA Utilities User’s Guide 121

()FILE
ALL

 ...
file-name-list









Description Required. Names the database files that need their secondary keys
reorganized.

Format File names must be 4 alphanumeric characters. The first character must
be alphabetic. Separate names with commas.

Considerations

♦ You must code the FILE statement at least once. After that, you can
code it as many times as you like.

♦ You must code the FILE statement after all the other REORGANIZE
statements.

♦ You can code only primary and related files.

♦ If you code FILE (ALL), the function reorganizes all secondary keys
for every primary and related file in the schema and environment
description.

♦ If you code FILE (ALL), you cannot code any other FILE statements.

♦ When the function processes each file, it opens and closes the file. If
you code a file in more than one FILE statement, the function opens
and closes the file each time.

Chapter 7 Coding the Reorganize function

122 P26-6260-63

()SECONDARY - KEY
ALL
key-name-list











Restriction To code the SECONDARY-KEY statement, you must code the FILE
statement.

Description Optional. Indicates the secondary keys you want reorganized.

Default ALL

Format Secondary key names must be 8 alphanumeric characters. Separate
names with commas.

Considerations
♦ You can code the SECONDARY-KEY statement as many times as

you like, or not at all.

♦ If you code SECONDARY-KEY (ALL), the function reorganizes all
secondary keys for the files you coded in the parent FILE statement.

♦ If you code SECONDARY-KEY (ALL), you cannot code any other
SECONDARY-KEY statements.

♦ You cannot code SECONDARY-KEY (key-name-list) if you coded
FILE (ALL) or a file list with more than one file name.

LOAD-DENSITY (0–99)

Restriction To code the LOAD-DENSITY statement, you must code the
SECONDARY-KEY statement.

Description Optional. Indicates how full you want the index file blocks.

Default 0

Options 0–99

Considerations You can code the LOAD-DENSITY statement only once.

♦ If you code LOAD-DENSITY (0), the function loads each secondary
key to the load density defined for the secondary key on the
Directory.

♦ If you code a load density between 1 and 99, the function fills the
index file blocks as closely as possible to that percentage.

Coding the UCL for the Reorganize function

DBA Utilities User’s Guide 123

Writing exit programs
With the exit points from the Reorganize function, you can collect data
about your secondary keys, turn off exit points, and see statistics.

“Inserting exit programs into functions” on page 49 explains how your exit
programs are loaded, how they operate, the languages you can use to
write them, and the register conventions you must follow.

In register 1, for example, you must code the parameter list addresses.
The following table describes the parameter list addresses:

Parameter

Data
type

Contents before exit
(passed to exit program)

Contents after exit (passed
from exit program)

Function
name

16 bytes
character

REORGANIZE Must be unchanged

Exit point 4 bytes
integer

Exit point number Must be unchanged

Action
indicator

8 bytes
character

b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ or other valid values

Data Variable Data associated with exit
point data

Same data or changed data if
permitted

If your exit program changes anything it is not authorized to change, the
results are unpredictable.

To use the exit points, see the following sections, which show the exit
number, the data associated with the exit, and the valid actions.

Chapter 7 Coding the Reorganize function

124 P26-6260-63

Selecting exit points
To use an exit point, you must know when it occurs in the function, what
data is passed, and what actions you can take at that point. The following
table shows when exit points occur. “Summary of data parameters and
valid actions” on page 126 shows the data parameters and the actions
your program can take. Finally, an example situation shows the order in
which the function takes the exit points.

Exit Phase When exit occurs

1 Initialization After the function has initialized
2 Termination After the function has completed all processing
3 Secondary key

initialization
Just before the function starts reorganizing the secondary key

4 Secondary key
termination

After the function completes reorganizing a secondary key

8 Secondary key
statistics

After the function prints a secondary key statistics line in the
base statistics report

9 Index file
statistics

After the function prints an index file statistics line in the
extended statistics report

At each exit point, your program can indicate whether the function should
continue or stop processing. To continue, your program should return
blanks. To stop processing, your program should return ABORT.

ABORT has a different scope at different exit points. At exits on the file
level (1, 2, 8, and 9), the function stops processing that file and continues
with the next file. At exit points on the secondary key level (3 and 4), the
function stops processing that secondary key and continues with the next
secondary key in the same file.

In addition to continuing or aborting, your program at the first exit point
can also change the switches in the data parameter from Y (Yes) to N
(No). When your program changes a switch, it turns off the exit point and
the function does not take the exit. If your program changes a switch
from Y to N, it must also return an action of SETb/ b/ b/ b/ b/ . The programs at
the other exit points cannot change the data parameter.

Writing exit programs

DBA Utilities User’s Guide 125

Summary of data parameters and valid actions
The following table shows the data parameters for each exit program:

Exit Use Data parameter
1 Initialization The 4-character file name followed by a string of nine Y (yes)

or N (no) switches. Each switch turns on or off its exit point. All
nine switches are initially set to YES.

2 Termination The 4-character file name followed by a fullword integer
containing the function return code (0, 4, 8, or 16)

3 Secondary key
initialization

The secondary key name

4 Secondary key
termination

The secondary key name

8 Secondary key
statistics

The statistics in the detail line in the order they appear in the
statistics reports. All numbers are fullword binary integers.

9 Index key
statistics

The statistics in the detail line in the order they appear in the
statistics reports. All numbers are fullword binary integers.

Chapter 7 Coding the Reorganize function

126 P26-6260-63

The following table shows valid actions for exit programs in Reorganize:

Action
indicators

Exit Use Data parameter b/ S A

1 Set exit points 13 bytes containing a four-byte file name and
a string of nine Ys. Your program may
change the Y to N to turn off the exit point. If
your program changes the setting, it must
return SETb/ b/ b/ b/ b/ .

Y Y Y

2 Get return code The file name followed by the return code: 0
(complete), 4 (warning), 8 (error), 16 (internal
error)

Y N Y

3 Gather information
or add processing

8-character name of secondary key Y N Y

4 Gather information
or add processing

8-character name of secondary key Y N Y

5 Does not exist in
Reorganize

6 Does not exist in
Reorganize

7 Does not exist in
Reorganize

8 Get the secondary
key's statistics

The secondary key's statistics Y N Y

9 Get the index file's
statistics

The index file's statistics Y N Y

Legend: b/ = b/ b/ b/ b/ b/ b/ b/ b/ - Action continues

 S = SETb/ b/ b/ b/ b/ - Data contents changed
 A = ABORTb/ b/ b/ - Terminates recovery

Writing exit programs

DBA Utilities User’s Guide 127

The exit points are taken in the following order when you are reorganizing
two secondary keys, ffffSK01 and ffffSK02, that both reside in index file
IX01. In the UCL, you requested all statistics.

Exit
point
number

Point in processing

1 During initialization of the Reorganize function
3 Before the function starts reorganizing ffffSK01
4 After the function finishes reorganizing ffffSK01
3 Before the function starts reorganizing ffffSK02
4 After the function finishes reorganizing ffffSK02
8 After the function prints a secondary key statistics line in

the base statistics report for ffffSK01
8 After the function prints a secondary key statistics line in

the base statistics report for ffffSK02
9 After the function prints an index file statistics line in the

extended statistics report for IX01
2 Just before the Reorganize function terminates

Chapter 7 Coding the Reorganize function

128 P26-6260-63

Requesting statistics
You receive statistics when you code the following in the function section
of the UCL:

()
()

()
()

()

FUNCTION REORGANIZE
 STATISTICS ALL
 FILE PANM
 SECONDARY - KEY ALL
 LOAD - DENSITY 80

When you request statistics, you receive information on the secondary
keys in the files you listed. After reorganizing the file, the function prints
the following base statistics for each secondary key:

♦ The status code (whether reorganization was successful)

♦ The index file name

♦ The number of blocks in the secondary key before it was reorganized

♦ The number of key values

♦ The number of unique key values

♦ The number of blocks in the secondary key before and after
reorganization

♦ The number of levels in the secondary key before and after
reorganization

♦ The number of low level blocks in the secondary key before and after
reorganization

If you requested extended statistics, the function also prints the following
information for each index file:

♦ The number of blocks in the file

♦ The number of blocks in use before and after reorganization

♦ The number of free blocks before and after reorganization

Requesting statistics

DBA Utilities User’s Guide 129

The following two code samples show examples of the base and
extended statistics.

Example 1 This example shows base statistics on the Reorganize function.
 CSUL3574I : BEGINNING OF REORGANIZE STATISTICS (BASE)

 BEFORE REORGANIZATION AFTER REORGANIZATION

 ----------------------------- -----------------------

 LOW LEVEL LOW LEVEL

 NUMBER OF BLOCKS IN LEVELS IN BLOCKS IN BLOCKS IN LEVELS IN BLOCKS IN

SECONDARY INDEX NUMBER OF UNIQUE SECONDARY SECONDARY SECONDARY SECONDARY SECONDARY SECONDARY

KEY NAME STATUS FILE KEY VALUES KEY VALUES KEY KEY KEY KEY KEY KEY

--------- ------ ---- ---------- ----------- ----------- ---------- ---------- --- --- ---------

PANMSK01 **** I001 89,989 89,990 1,727 3 1,698 1,727 3 1,698

PANMSK02 **** I001 89,989 89,990 4,270 4 4,091 4,270 4 4,091

CSUL3578I : END OF REORGANIZE STATISTICS (BASE).

Example 2 This example shows extended statistics on the Reorganize function.
 CSUL3591I : BEGINNING OF REORGANIZE STATISTICS (EXTENDED).

 BEFORE REORGANIZATION AFTER REORGANIZATION

 ----------------------- ----------------------

 NUMBER OF NUMBER OF NUMBER OF

 INDEX BLOCKS IN BLOCKS NUMBER OF BLOCKS NUMBER OF

 FILE FILE IN USE FREE BLOCKS IN USE FREE BLOCKS

 ------ ---------- ---------- ------------ ---------- ------------

 I001 7,005 6,160 845 6,160 845

 CSUL3596I : END OF REORGANIZE STATISTICS (EXTENDED).

Chapter 7 Coding the Reorganize function

130 P26-6260-63

8
Coding the File Statistics function

After you have used your database files, you may want to use the File
Statistics function. With it, you can get reports on various physical and
logical characteristics of the database files that are in the SUPRA native
format.

You cannot get meaningful information about index files. For this
information, cyclically use the Execution Statistics function and analyze
the index file results.

With File Statistics reports, you can monitor file growth and predict
expansion needs. You may also verify linkages and monitor the time
needed to access records. If you use the File Statistics function on a
cyclical basis, you can optimize file performance.

If you request statistics on key-sequenced data sets or entry-sequenced
data sets, you may receive no report or only partial reports because the
information is not available to the function. For more information on the
reports you can receive, see the samples in “Requesting file statistics” on
page 137.

When you request statistics on linkpaths or chains, the File Statistics
function sorts the information before printing it. Therefore, you must
allocate sort work space for the sort. To calculate the amount of sort work
space, see “Using sort programs” on page 52.

DBA Utilities User’s Guide 131

Coding the UCL for the File Statistics function
After you code the control section as shown in “Coding the control
section” on page 57, you can code the File Statistics function according
to the following format. For information on work files and JCL, refer to the
SUPRA Server PDM and Directory Administration Guide (OS/390 &
VSE), P26-2250.

()

()

()

()

[] [] [] [] [] []()[]

FUNCTION FILE - STATS

 FILE
ALL

 ...

 CLOSE
NO
YES

 LINKPATH
b

 STATISTICS ALL BASE SIZE LINK CHAIN CODE

file-name

linkpath-list





























/



















Chapter 8 Coding the File Statistics function

132 P26-6260-63

FUNCTION (FILE-STATS)

Description Required. Invokes the File Statistics function.

()FILE
ALL

 ...
file-name









Description Required. Names the database file(s) on which you want to see statistics.

Format 4 alphanumeric characters. The first character must be alphabetic.

Options ALL You receive statistics on all the primary and related files
in the schema. You cannot get statistics on index files,
Task Log Files, or System Log Files.

file-name You receive statistics on the specified file.

Considerations

♦ If you code FILE (ALL), you receive the statistics in alphabetical order
by file with primary files first and then related files. A message
indicating that you do not receive statistics for index files appears
before the primary files.

♦ If you want statistics on Directory files, you must code Directory files
by name. You cannot get statistics on Directory files by coding FILE
(ALL).

♦ The file names you code must exist in the schema you coded in the
control section.

♦ Do not code FILE (file-name-list).

♦ If you name individual files, you must code each one in a separate
FILE statement. They are processed in the order in which you list
them.

♦ You may code only primary or related files.

Coding the UCL for the File Statistics function

DBA Utilities User’s Guide 133

()CLOSE
NO
YES











Description Optional. Specifies whether to explicitly close the file after the File
Statistics function reads it.

Default YES

()LINKPATH
b/







linkpath-list

Description Optional. Indicates the linkpaths on which you want to gather statistics.

Format Linkpath names must be 8 alphanumeric characters. Separate names
with commas.

Default b/

Options b/ Gathers statistics on all linkpaths for primary and
noncoded related files. You must use only base linkpaths
for coded related files.

linkpath-list Gathers statistics on linkpaths you name.

Consideration You must code at least one of the linkpaths in the overlay portion of the
record if you request statistics on a coded, related file that does not
contain a linkpath in the base portion of the record.

Chapter 8 Coding the File Statistics function

134 P26-6260-63

STATISTICS ([ALL] [BASE] [SIZE] [LINK] [CHAIN] [CODE])

Description Optional. Indicates the content and format of the statistics report.

Default BASE

Options ALL You receive all possible statistics.

BASE You receive a report of basic file information. For an
example, see “Requesting Basic File Information
(BASE)” on page 138.

SIZE You receive a report on current file size. For an example,
see “Requesting Current File Size (SIZE)” on page 139.

LINK You receive a report of linkpath statistics. For an
example, see “Requesting Linkpath Statistics (LINK)” on
page 140.

CHAIN You receive a report on chain length statistics and chain
migration statistics for primary or related files, plus a
report on synonym statistics for primary files only. For an
example, see “Requesting Chain Statistics (CHAIN)” on
page 141.

CODE You receive a report on record code statistics for coded,
related files. For an example, see “Requesting Record
Code Statistics (CODE)” on page 146.

Considerations

♦ If you name a noncoded file in the FILE statement, STATISTICS
(CODE) is ignored.

♦ If you name a primary file which has no linkpath elements,
STATISTICS (LINK) is ignored.

♦ The File Statistics function prints generated reports in the same order
regardless of the order of the options you code in the STATISTICS
statement.

Coding the UCL for the File Statistics function

DBA Utilities User’s Guide 135

Programming examples
Example 1 The code in this example will produce the following reports for all the files

in the schema called (CINDIREV): basic file information, current file size,
chain length and migration statistics, and linkpath statistics. This code
also produces extended diagnostics and uses a sort program named
SORT.
CONTROL (BEGIN)

 ENV-DESC (CINDIREV)

 SCHEMA (CINDIRSC)

DIAGNOSTICS (EXTENDED)

SORT (SORT)

FUNCTION (FILE-STATS)

FILE (ALL)

 STATISTICS (BASE SIZE CHAIN LINK)

CONTROL (END)

Example 2 The following example produces Current File Size and Linkpath Statistics
reports for only a few files and linkpaths:
CONTROL (BEGIN)

 ENV-DESC (CINDIREV)

 SCHEMA (CINDIRSC)

FUNCTION (FILE-STATS)

 FILE (C$-S)

 LINKPATH (C$-#LKST, C$-#LKHD, C$-#LKWV)

 STATISTICS (SIZE LINK)

 FILE (C$-#)

 LINKPATH (C$-#LKST)

 STATISTICS (SIZE LINK)

CONTROL (END)

Chapter 8 Coding the File Statistics function

136 P26-6260-63

Requesting file statistics
When you use the File Statistics function, you get a printout containing a
title page and the reports you requested. The following figure is a sample
title page. The remaining figures in this chapter show examples of the
reports you receive.

When you receive the printout, you can check the title page to see
whether you received the statistics you wanted and whether coding errors
have occurred. The title page shown below indicates that you received
the following types of statistics on the C$-D file: basic, size, linkpath,
chain, and record code.

 FUNCTION = FILE-STATISTICS FILE = C$-D
 DDDDDDDD BBBBBBBB AAA
 DDDDDDDDD BBBBBBBBB AAAAA
 DD DD BB BB AA AA
 DD DD BB BB AA AA
 DD DD BBBBBBBB AA AA
 DD DD BBBBBBBB AAAAAAAAA
 DD DD BB BB AAAAAAAAA
 DD DD BB BB AA AA
 DDDDDDDDD BBBBBBBBB AA AA
 DDDDDDDD BBBBBBBB AA AA

 SSSSSSS TTTTTTTT AAA TTTTTTTT IIIIII SSSSSSS TTTTTTTT IIIIII CCCCCCC SSSSSSS
 SSSSSSSSS TTTTTTTT AAAAA TTTTTTTT IIIIII SSSSSSSSS TTTTTTTT IIIIII CCCCCCCCC SSSSSSSSS
 SS SS TT AA AA TT II SS SS TT II CC CC SS SS
 SS TT AA AA TT II SS TT II CC SS
 SSSSSSSS TT AA AA TT II SSSSSSSS TT II CC SSSSSSSS
 SSSSSSSS TT AAAAAAAAA TT II SSSSSSSS TT II C SSSSSSSS
 SS TT AAAAAAAAA TT II SS TT II CC SS
 SS SS TT AA AA TT II SS SS TT II CC CC SS SS
 SSSSSSSSS TT AA AA TT IIIIII SSSSSSSSS TT IIIIII CCCCCCCCC SSSSSSSSS
 SSSSSSS TT AA AA TT IIIIII SSSSSSS TT IIIIII CCCCCCC SSSSSSS

 FILE NAME C$-D
 ENV-DESC NAME CINDIREN
 SCHEMA NAME CINDIRSC
 STATISTICS BASE SIZE LINK CHAIN CODE

Requesting file statistics

DBA Utilities User’s Guide 137

Requesting Basic File Information (BASE)
To receive the Basic File Information report, code BASE on the
STATISTICS statement in your UCL. This report is a summary of
physical and logical characteristics for primary or related files in the
schema you indicated (see the following figure).

For key-sequenced data sets, you receive no information on block size or
record capacity. For files using the BDAM access method, the control
interval size is not available.

 FUNCTION = FILE-STATISTICS FILE = C$-#
 CCCCCCC $ # #
 CCCCCCCCC $$$$$$$ # #
 CC CC $$ $ $$ # #
 CC $$ $ $$ #########
 CC $$$$$$ ------- # #
 CC $$$$$$ ------- # #
 CC $$ $ $$ #########
 CC CC $$ $ $$ # #
 CCCCCCCCC $$$$$$$ # #
 CCCCCCC $ # #
 FILE TYPE = PRIMARY
 B A S I C F I L E I N F O R M A T I O N

 SCHEMA NAME CINDIRSC
 ACCESS METHOD BDAM

 LOGICAL RECORD LENGTH 374
 BLOCKSIZE 4488
 CONTROL INTERVAL SIZE N/A
 LOGICAL RECORDS PER BLOCK 12
 LOGICAL BLOCKS IN FILE 600

 MAXIMUM DATA RECORDS 7199
 CONTROL RECORDS 1
 TOTAL LOGICAL RECORDS 7200

 NOTE - SOME ITEMS MAY NOT BE AVAILABLE DEPENDING ON ACCESS METHOD.

Chapter 8 Coding the File Statistics function

138 P26-6260-63

Requesting Current File Size (SIZE)
To receive the Current File Size report, code SIZE on the STATISTICS
statement. The report monitors the growth of primary and related files to
determine when you need to expand them. The report prints record and
block statistics. The following figure shows statistics on the primary file
C$-#.

The File Statistics function calculates the average data records per block
in the entire file and the average data records per block in the blocks with
data records. The report shows those averages below the statistics. For
key-sequenced data sets, the only size statistics available are the
numbers of active data records, control records, and records in use.

 FUNCTION = FILE-STATISTICS FILE = C$-#
 CCCCCCC $ # #
 CCCCCCCCC $$$$$$$ # #
 CC CC $$ $ $$ # #
 CC $$ $ $$ #########
 CC $$$$$$ ------- # #
 CC $$$$$$ ------- # #
 CC $$ $ $$ #########
 CC CC $$ $ $$ # #
 CCCCCCCCC $$$$$$$ # #
 CCCCCCC $ # #
FILE TYPE = PRIMARY
 C U R R E N T F I L E S I Z E
 ACTUAL % OF
 FILE
 NUMBER CAPACITY
 RECORD STATISTICS
 ACTIVE DATA RECORDS 2627 36.486
 CONTROL RECORDS 1 0.014
 RECORDS IN USE 2628 36.500
 UNUSED RECORDS 4572 63.500
 TOTAL LOGICAL RECORDS 7200 100.000
 BLOCK STATISTICS
 EMPTY BLOCKS 4 0.667
 BLOCKS IN USE 596 99.333
 FULL BLOCKS 1 0.167
 LOGICAL BLOCKS IN FILE 600 100.000
 AVERAGE DATA RECORDS/BLOCK IN ENTIRE FILE 4.378
 AVERAGE DATA RECORDS/BLOCK IN BLOCKS WITH DATA RECORDS 4.408
 NOTE - SOME ITEMS MAY NOT BE AVAILABLE DEPENDING ON ACCESS METHOD.

Requesting file statistics

DBA Utilities User’s Guide 139

Requesting Linkpath Statistics (LINK)
To receive the Linkpath Statistics report, code LINK on the STATISTICS
statement. You can receive linkpath statistics on both primary and related
files.

The following figures are examples of reports for a primary file and a
related file. Use this report to verify the accuracy of linkages for the files
you select. If you have key-sequenced data sets, you do not receive
statistics on file capacity or maximum data records. For a coded related
file, you also receive the number of records for each record code on each
linkpath.

 FUNCTION = FILE-STATISTICS FILE = C$-#

 CCCCCCC $ # #
 CCCCCCCCC $$$$$$$ # #
 CC CC $$ $ $$ # #
 CC $$ $ $$ #########
 CC $$$$$$ ------- # #
 CC $$$$$$ ------- # #
 CC $$ $ $$ #########
 CC CC $$ $ $$ # #
 CCCCCCCCC $$$$$$$ # #
 CCCCCCC $ # #
 FILE TYPE = PRIMARY
 L I N K P A T H S T A T I S T I C S
 LINKPATH RECORDS WITH % OF % OF RECORDS WITH % OF % OF
 ACTIVE ACTIVE FILE NON-ACTIVE ACTIVE FILE
 LINKPATH DATA RECORDS CAPACITY LINKPATH DATA RECORDS CAPACITY
 C$-#LKHD 1259 47.925 17.489 1368 52.075 19.003
 C$-#LKST 1259 47.925 17.489 1368 52.075 19.003
 C$-#LKWU 2453 93.376 34.074 174 6.624 2.417
 C$-#LKDA 767 29.197 10.654 1860 70.803 25.837
 C$-#LKTT 1262 48.040 17.530 1365 51.960 18.961

 ACTIVE DATA RECORDS 2627 2627
 MAXIMUM DATA RECORDS 7199 7199

 NOTE - SOME ITEMS MAY NOT BE AVAILABLE DEPENDING ON ACCESS METHOD.

The following figure shows a related file:
 FUNCTION = FILE-STATISTICS FILE = C$-S

 CCCCCCC $ SSSSSSS
 CCCCCCCCC $$$$$$$ SSSSSSSSS
 CC CC $$ $ $$ SS SS
 CC $$ $ $$ SS
 CC $$$$$$ ------- SSSSSSSS
 CC $$$$$$ ------- SSSSSSSS
 CC $$ $ $$ SS
 CC CC $$ $ $$ SS SS
 CCCCCCCCC $$$$$$$ SSSSSSSSS
 CCCCCCC $ SSSSSSS
 FILE TYPE = RELATED
 L I N K P A T H S T A T I S T I C S
 T O T A L S F O R S P E C I F I E D L I N K P A T H S
 RECORD NUMBER % OF % OF
 OF ACTIVE FILE
 LINKPATH CODE RECORDS DATA RECORDS CAPACITY
 C$- #LKST TOTAL 7392 100.000 23.072
 DT 6020 81.439 18.790
 HD 1372 18.561 4.282

 ACTIVE DATA RECORDS 7392
 MAXIMUM DATA RECORDS 32039

 NOTE - SOME ITEMS MAY NOT BE AVAILABLE DEPENDING ON ACCESS METHOD.

Chapter 8 Coding the File Statistics function

140 P26-6260-63

Requesting Chain Statistics (CHAIN)
Code CHAIN on the STATISTICS statement to receive the following
reports:

♦ Chain Length Statistics report (for primary or related files)

♦ Chain Migration Statistics report (for primary or related files)

♦ Synonym Statistics report (for primary files only)

Requesting Chain Length Statistics on primary files
When you receive the Chain Length Statistics report for primary files, you
get the number of records randomized to the same home location. With
this report, you can monitor the physical structure of chains and their
accessing characteristics. In this report, the number in chain value is the
actual number of records chained together. The following figure is an
example of the report:

 FUNCTION = FILE-STATISTICS FILE = C$-N

 CCCCCCC $ N NN
 CCCCCCCCC $$$$$$$ NN NN
 CC CC $$ $ $$ NNN NN
 CC $$ $ $$ NNNN NN
 CC $$$$$$ ------- NN NN NN
 CC $$$$$$ ------- NN NN NN
 CC $$ $ $$ NN NNNN
 CC CC $$ $ $$ NN NNN
 CCCCCCCCC $$$$$$$ NN NN
 CCCCCCC $ NN N
 FILE TYPE = PRIMARY
 C H A I N L E N G T H S T A T I S T I C S
 RECORDS RANDOMIZED TO SAME HOME LOCATION
 NUMBER NUMBER % OF
 IN OF TOTAL
 CHAIN CHAINS CHAINS

 1 1879 84.336
 2 305 13.689
 3 40 1.795
 4 3 0.135
 5 1 0.045
 6 0 0.000
 7 0 0.000
 8 0 0.000
 9 0 0.000
 10 0 0.000
 OVER 10 0 0.000
 TOTAL CHAINS 2228
 CHAIN LENGTH - MINIMUM 1
 MAXIMUM 5
 AVERAGE 1.179

Requesting file statistics

DBA Utilities User’s Guide 141

Requesting Chain Length Statistics on related files
When you request the Chain Length Statistics report for related files, you
get the number of records on linkpath chains. You get one report for each
linkpath you select.

The number in chain value is the actual number of records chained
together. The chain lengths are reported for ranges that are tailored to
your particular linkpaths based on the distribution of chain lengths in the
file. At least 80% of all chains fall into the defined range; the rest are
under the minimum and over the maximum. For the report to be
accurate, you must make the keys to linkpaths on related files 245 bytes
or less. The following figure is an example of the report:

 FUNCTION = FILE-STATISTICS FILE = C$-S

 CCCCCCC $ SSSSSSS
 CCCCCCCCC $$$$$$$ SSSSSSSSS
 CC CC $$ $ $$ SS SS
 CC $$ $ $$ SS
 CC $$$$$$ ------- SSSSSSSS
 CC $$$$$$ ------- SSSSSSSS
 CC $$ $ $$ SS
 CC CC $$ $ $$ SS SS
 CCCCCCCCC $$$$$$$ SSSSSSSSS
 CCCCCCC $ SSSSSSS
FILE TYPE = RELATED
 C H A I N L E N G T H S T A T I S T I C S
 LINKPATH = C$-#LKST
 NUMBER NUMBER % OF
 IN OF TOTAL
 CHAIN CHAINS CHAINS
 UNDER 2 0 0.000
 2 - 43 1243 98.729
 44 - 85 2 0.159
 86 - 127 8 0.635
 128 - 169 1 0.079
 170 - 211 2 0.159
 212 - 253 0 0.000
 254 - 295 0 0.000
 296 - 337 2 0.159
 338 - 379 0 0.000
 380 - 421 0 0.000
 OVER 421 1 0.079
 TOTAL CHAINS 1259
 CHAIN LENGTH - MINIMUM 2
 MAXIMUM 425
 AVERAGE 5.871

Chapter 8 Coding the File Statistics function

142 P26-6260-63

Requesting Chain Migration Statistics on primary files
When you receive the Chain Migration Statistics report for primary files,
you get the number of block boundaries traversed and the number of
different blocks encountered. The number of block boundaries traversed
may equal or exceed the number of blocks encountered. A block
traverses more than one boundary if a block contains many
noncontiguous records on the same chain. Statistics are not returned for
the number of different blocks encountered.

The following figure is an example of the report for a primary file.
 FUNCTION = FILE-STATISTICS FILE = C$-#

 CCCCCCC $ # #
 CCCCCCCCC $$$$$$$ # #
 CC CC $$ $ $$ # #
 CC $$ $ $$ #########
 CC $$$$$$ ------- # #
 CC $$$$$$ ------- # #
 CC $$ $ $$ #########
 CC CC $$ $ $$ # #
 CCCCCCCCC $$$$$$$ # #
 CCCCCCC $ # #
 FILE TYPE = PRIMARY
 C H A I N M I G R A T I O N S T A T I S T I C S
 NUMBER OF BLOCK BOUNDARIES TRAVERSED NUMBER OF DIFFERENT BLOCKS ENCOUNTERED
 NUMBER OF NUMBER % OF NUMBER NUMBER % OF
 BLOCK OF TOTAL OF OF TOTAL
 BOUNDARIES CHAINS CHAINS BLOCKS CHAINS CHAINS

 1 2 0.091 1 0 0.000
 2 0 0.000 2 0 0.000
 3 0 0.000 3 0 0.000
 4 0 0.000 4 0 0.000
 5 0 0.000 5 0 0.000
 6 0 0.000 6 0 0.000
 7 0 0.000 7 0 0.000
 8 0 0.000 8 0 0.000
 9 0 0.000 9 0 0.000
 10 0 0.000 10 0 0.000
 OVER 10 0 0.000 OVER 10 0 0.000
 TOTAL CHAINS 2193 TOTAL CHAINS 2193

Requesting file statistics

DBA Utilities User’s Guide 143

Requesting Chain Migration Statistics on related files
When you receive the Chain Migration Statistics report for related files,
you get the same statistics that you get for primary files. You receive one
report for each linkpath you code.

The numbers are reported for ranges that are tailored to your particular
linkpaths based on the number of blocks in the linkpath's chains. At least
80% of all chains fall into the defined range; the rest are under the
minimum and over the maximum. The following figure shows an example
of a report for a related file.

Statistics are not returned for the number of different blocks encountered:
FILE TYPE = RELATED
 C H A I N M I G R A T I O N S T A T I S T I C S
 LINKPATH = C$-#LKST
 NUMBER OF BLOCK BOUNDARIES TRAVERSED NUMBER OF DIFFERENT BLOCKS ENCOUNTERED
 NUMBER OF NUMBER % OF NUMBER NUMBER % OF
 BLOCK OF TOTAL OF OF TOTAL
 BOUNDARIES CHAINS CHAINS BLOCKS CHAINS CHAINS

 1 13 1.033 1 0 0.000
 2 1 0.079 2 0 0.000
 3 3 0.238 3 0 0.000
 4 0 0.000 4 0 0.000
 5 0 0.000 5 0 0.000
 6 1 0.079 6 0 0.000
 7 0 0.000 7 0 0.000
 8 0 0.000 8 0 0.000
 9 0 0.000 9 0 0.000
 10 0 0.000 10 0 0.000
OVER 10 0 0.000 OVER 10 0 0.000
 TOTAL CHAINS 1259 TOTAL CHAINS 1259
 AVERAGE NUMBER OF READS TO TRAVERSE ENTIRE CHAIN - 1.024

Chapter 8 Coding the File Statistics function

144 P26-6260-63

Requesting Synonym Statistics on primary files
When you request the Synonym Statistics report, you get the actual
number of records in a file and the percentage of capacity. With this
report, you can monitor the number and length of synonym chains in
primary files.

You also receive the average number of physical reads to obtain a
record. The average is calculated as follows: (active data records +
number of records not in home block)/active data records. For an
example, use the numbers in the following figure. Add the active data
records, 2626, to the number of records not in home block, 0, and divide
by the active data records, 2626. The result is 1.

 FUNCTION = FILE-STATISTICS FILE = C$-N

 CCCCCCC $ N NN
 CCCCCCCCC $$$$$$$ NN NN
 CC CC $$ $ $$ NNN NN
 CC $$ $ $$ NNNN NN
 CC $$$$$$ ------- NN NN NN
 CC $$$$$$ ------- NN NN NN
 CC $$ $ $$ NN NNNN
 CC CC $$ $ $$ NN NNN
 CCCCCCCCC $$$$$$$ NN NN
 CCCCCCC $ NN N
FILE TYPE = PRIMARY
 S Y N O N Y M S T A T I S T I C S
 ACTUAL % OF
 FILE
 NUMBER CAPACITY
 RECORDS AT HOME LOCATION 2228 31.473
 RECORDS NOT AT HOME LOCATION 398 5.622
 RECORDS IN HOME BLOCK 2626 37.
 RECORDS NOT IN HOME BLOCK 0 0.000

 ACTIVE DATA RECORDS 2626
 MAXIMUM DATA RECORDS 7079

 AVERAGE NUMBER OF PHYSICAL READS
 TO OBTAIN A RECORD 1.000

Requesting file statistics

DBA Utilities User’s Guide 145

Requesting Record Code Statistics (CODE)
To receive the Record Code Statistics report, include CODE on the
STATISTICS statement. You receive statistics on only the coded files. If
you included noncoded files in your UCL, the function ignores CODE for
those files. With this report, you get the number of coded records, their
percentage of active records, and the percentage of total file capacity
they take up. The following figure is an example of this report:

 FUNCTION = FILE-STATISTICS FILE = C$-T

 CCCCCCC $ TTTTTTTT
 CCCCCCCCC $$$$$$$ TTTTTTTT
 CC CC $$ $ $$ TT
 CC $$ $ $$ TT
 CC $$$$$$ ------- TT
 CC $$$$$$ ------- TT
 CC $$ $ $$ TT
 CC CC $$ $ $$ TT
 CCCCCCCCC $$$$$$$ TT
 CCCCCCC $ TT
FILE TYPE = RELATED
 R E C O R D C O D E S T A T I S T I C S
 RECORD NUMBER % OF % OF
 OF ACTIVE FILE
 CODE RECORDS DATA RECORDS CAPACITY
 LT 515 28.981 4.471
 ST 1262 71.019 10.956

 ACTIVE DATA RECORDS 1777
 MAXIMUM DATA RECORDS 11519
 NOTE - SOME ITEMS MAY NOT BE AVAILABLE DEPENDING ON ACCESS METHOD.

Chapter 8 Coding the File Statistics function

146 P26-6260-63

9
Coding the Expand function

When the database files are too full for acceptable performance, you
need to enlarge them. To do this, you can choose from several functions
depending on the type and format of the file. The Unload and Load
functions enlarge both primary and related files. If you want to change the
file's format to SUPRA native format, you must use the Version 1
functions described in “Coding the Version 1 Unload and Load functions”
on page 153. If you want to leave the files in the same format, you must
use the Version 2 functions described in “Coding the Version 2 Unload,
Load, and Insert Linkpath functions” on page 225.

The Expand function enlarges only related files that are already in
SUPRA native format. It copies the file as it currently exists to the new
location, adds additional space to the end of the file, and formats the new
space to blanks.

Because the new space is added at the end, a disproportionate share of
the data is in the front of the file. Since this may affect performance, use
the Expand function only when absolutely necessary.

If you use the Expand function with any other function, you should code it
before the others

After you code the control section as shown in “Coding the control
section” on page 57, you can code the Expand function as shown in the
following format and example.

()

()

FUNCTION EXPAND

 FILE
ALL

 ...
file-name-list









DBA Utilities User’s Guide 147

FUNCTION (EXPAND)

Description Required. Indicates you want to expand the capacity of a SUPRA related
file.

Considerations
♦ You can only add space. You cannot copy a file by coding the same

old and new total logical records.

♦ You need to use two schemas: one in the REALM parameter in the
CSIPARM file and one in the UCL. In the schema in the REALM
parameter, you must put a description of the file as it currently exists.
In the schema and environment description you include in the UCL,
you must put the description of the file after expansion.

♦ You need to code two data sets (the old data set and a new data set)
with two different ddnames. You must prefix the ddname of the old
data set with an O. For example, if you want to expand the CUST file
and the ddname for this file is CUSTWXYZ, then you change the
ddname for the old data set to OCUSTWXY.

 Since the eighth character is dropped when you add the O, you
cannot expand in the same job step two files whose ddnames differ
only in the eighth character.

♦ VSE In VSE, indicate that access to BDAM files is sequential direct
(SD). (VSAM is automatically sequential direct.)

♦ To expand Directory files, you must code the schema and
environment description in the REALM parameter in the CSIPARM
file. You can create a second bootstrap schema by copying
CSTASCHM, renaming it, and then running the Modify Schema utility
against the renamed bootstrap schema. You must regenerate the
environment descriptions with the new bootstrap schema name in the
UCL. You must also regenerate the Valmod. While you code the new
bootstrap schema in the UCL, you code the old bootstrap schema in
the CSIPARM file.

♦ Do not format ESDS files prior to running the Expand function.

Chapter 9 Coding the Expand function

148 P26-6260-63

()FILE
ALL

 ...
file-name-list









Description Required. Names the database files you want expanded.

Format File names must be 4 alphanumeric characters. The first character must
be alphabetic. Separate names with commas.

Considerations

♦ If you code FILE (ALL), the function expands all related files in
alphabetical order.

♦ You may code any number of FILE statements following each
FUNCTION command.

♦ The file names you code must be in the schema you included in the
control section.

♦ You cannot code FILE (ALL) for Directory files. You must code
Directory Files by name.

Requesting file statistics

DBA Utilities User’s Guide 149

Example 1 The following example expands the CUST, ACCR, PORT and VEND
files. Note that the file names must be in the schema included in the
control section.

CONTROL (BEGIN) Initiates UCL program.
 ENV-DESC (MYDESC) Names environment description.
 SCHEMA (MYSCHEMA) Names schema.
FUNCTION (EXPAND) Invokes the Expand function.
 FILE (CUST) Names files to be expanded.
 FILE (ACCR,PORD,VEND) Names files to be expanded.
CONTROL (END) Terminates program.

OS/390 In OS/390, the following ddnames would be defined:

ddname File description
//CUSTWXYZ DD DSN=new file name CUST Expanded file with name CUST.
//OCUSTWXY DD DSN=old file name CUST Old file with name CUST.
//ACCRWXYZ DD DSN=new file name ACCR Expanded file with name ACCR.
//OACCRWXY DD DSN=old file name ACCR Old file with name ACCR.
//PORDWXYZ DD DSN=new file name PORD Expanded file with name PORD.
//OPORDWXY DD DSN=old file name PORD Old file with name PORD.
//VENDWXYZ DD DSN=new file name VEND Expanded file with name VEND.
//OVENDWXY DD DSN=old file name VEND Old file with name VEND.

VSE In VSE, you would code the following:

ddname File description
// DLBL CUSTXYZ,'DATA_QUAL.CUST',0,SD Expanded file with name CUST.
// DLBL OCUSTXY,'DATA_QUAL.OCUST',0,SD Old file with name CUST.
// DLBL ACCRXYZ,'DATA_QUAL.ACCR',0,SD Expanded file with name ACCR.
// DLBL OACCRXY,'DATA_QUAL.OACCR',0,SD Old file with name ACCR.
// DLBL PORDXYZ,'DATA_QUAL.PORD',0,SD Expanded file with name PORD.
// DLBL OPORDXY,'DATA_QUAL.OPORD',0,SD Old file with name PORD.
// DLBL VENDXYZ,'DATA_QUAL.VEND',0,SD Expanded file with name VEND.
// DLBL OVENDXY,'DATA_QUAL.OVEND',0,SD Old file with name VEND.

Chapter 9 Coding the Expand function

150 P26-6260-63

Example 2 This example shows the code and the listing that you receive after the
code is validated and executed.

 CSUL0101I : COMMENCING COMMAND VALIDATION.
 1 CONTROL(BEGIN)
 2 ***
 3 * *
 4 * EXPAND EXAMPLE #1 DESCRIPTION *
 5 * *
 6 * OBJECTIVE: EXPAND AN EXISTING RELATED FILE. *
 7 * *
 8 * NOTES: *
 9 * *
10 * 1. THE SCHEMA AND ENV-DESC SPECIFIED IN THE UCL *
11 * CONTAINS THE DESCRIPTION OF THE NEW FILE FOR *
12 * EXPAND. *
13 * *
14 * 2. CSIPARM CONTAINS THE FOLLOWING PARAMETER *
15 * WHICH DESCRIBES THE FILE AS IT IS CURRENTLY: *
16 * *
17 * REALM=(SCHEMA=XXXXXXXX,ENVDESC=XXXXXXXX) *
18 * *
19 * *
20 ***
21 ENV-DESC(UTED00US)
22 SCHEMA(UTILSC)
23 FUNCTION(EXPAND)
24 FILE(R002)
25 CONTROL(END)
CONTENTS OF SOURCE LINES OUTSIDE 1...72 MARGINS IGNORED.
 0 SYNTAX ERRORS DETECTED.
25 COMMAND LINES READ.
 1 CONTROL SECTIONS ANALYZED.
 1 FUNCTION COMMANDS ANALYZED. CSUL0102I : COMMENCING COMMAND EXECUTION.
 CSUL0301I : COMMENCING CONTROL SECTION USING ENVIRONMENT DESCRIPTION UTED00US AND SCHEMA UTILSC .
 CSUL0302I : COMMENCING EXPAND PROCESS.
 CSUL0311I : COMMENCING EXPAND AGAINST FILE R002.
 CSUL1102I : FILE R002 IS NOW EXPANDED.
 CSUL0321I : EXPAND PROCESSING AGAINST FILE R002 TERMINATING NORMALLY.
 CSUL0303I : EXPAND PROCESS TERMINATING.
 CSUL0305I : CONTROL SECTION TERMINATING.
 CSUL0307I : ALL CONTROL SECTIONS PROCESSED.
 CSUL0103I : DATABASE UTILITIES SUCCESSFUL TERMINATION.

Requesting file statistics

DBA Utilities User’s Guide 151

Chapter 9 Coding the Expand function

152 P26-6260-63

10
Coding the Version 1 Unload and Load
functions

The Version 1 Unload function extracts records from a database file and
writes them to a sequential output file. It can extract records from files in
Series 80, SUPRA converted, or SUPRA native format. The Unload
function then builds the records in the output file in a format compatible
with the Load function, so that you can reload them.

The Version 1 Load function copies the records from the sequential file to
database files. Before copying the records, the Load function sorts them.
Therefore, you need to allocate work space for the sort program. To
calculate the amount of work space, see “Allocating sort work space” on
page 54.

The Load function formats records in the SUPRA native format but does
not, however, format in Series 80 or SUPRA converted formats. If you
want files in these formats, you must use the Version 2 Unload and Load
functions described in “Coding the Version 2 Unload, Load, and Insert
Linkpath functions” on page 225.

You can use the Load function to create new files. Since the files do not
yet exist, you do not execute the Unload function. Instead, you create a
sequential file that looks as if the Unload function created it. For the
format of the file, see “Retaining the format of the data file” on page 184.

If your database files have secondary keys , you must depopulate them
either before or after unloading the files. The example in “Examples of
Unload, Load, and Modify functions” on page 191 shows the secondary
keys being depopulated before unloading the files. However, if you are
unloading files to obtain a backup copy, you must depopulate before you
load.

DBA Utilities User’s Guide 153

To depopulate the secondary keys, use the Depopulate function in
“Coding the Depopulate function” on page 105 or the Directory
Maintenance DEPOPULATE command with the Remove parameter.
After you have reloaded the files , you can repopulate them with the
Sorted-Populate function in “Coding the Sorted-Populate function” on
page 91 or the Directory Maintenance POPULATE command. For details
on the commands, refer to the SUPRA Server PDM Directory Online
User’s Guide (OS/390 & VSE), P26-1260, or the SUPRA Server PDM
Directory Batch User’s Guide (OS/390 & VSE), P26-1261.

When you code your JCL to unload and load files with secondary keys,
you must include the index files because the Unload and Load functions
open the index files when they open the associated data files. However,
the functions only open the index files; the functions do not process the
index files if they are depopulated.

If you do not depopulate before you load, the Load function reloads a
duplicate set of the secondary keys. If there is not enough space in the
index file for the duplicate keys, the PDM abends. If there is enough
space for the duplicate set, you receive error messages indicating invalid
chains. To solve the problem, simply depopulate and repopulate. You
do not need to unload and load again.

If performance is critical, use the Version 2, Unload, Load, and Insert
Linkpath functions. Version 2 functions are certified for OS/390 and VSE
only.

The Version 2 functions are not compatible with these Version 1
functions. The only input you can use with the Version 1 Load function is
the output of Version 1 Unload function or a program you code.

Chapter 10 Coding the Version 1 Unload and Load functions

154 P26-6260-63

Coding the UCL for the Unload function
After you code the control section as shown in “Coding the control
section” on page 57, you can code the Unload function as shown in the
following format. However, if you have no files and need to load files first,
see the Load function’s format in “Coding the UCL for the Load function”
on page 169. For UCL examples to unload and load, see “Examples of
Unload, Load, and Modify functions” on page 191.

()[]

FUNCTION (UNLOAD)
 [STANDARD EXIT ()]

 FILE (
ALL

) ...

LINKPATH (

b
)

 PRESERVE (
NO
YES

)

 CLEAR LINKS

 RRN RANGE (
l

)

 [CRITERIA ([, ,.. . ,]
 . . [...]

 END.

− −

−








/
−









































− −

−
−

− −
− − −

































exit name

file name

access linkpath

linkpath list

ow rrn
 high rrn

low rrn high rrn
element1 element2 elementn
operator datavalue1 datavalue2 datavaluen

)]

RECORD (

ALL
)

 ELEMENT (
ALL

)
 ...

record code

element list

−








−




























Coding the UCL for the Unload function

DBA Utilities User’s Guide 155

FUNCTION (UNLOAD)

Description Required. Invokes the Unload function.

Considerations

♦ If you code the Unload and Load functions in the same UCL program,
you must code the Unload function first.

♦ You may code the Unload function only once in any UCL program.
However, you may code as many files to be unloaded as you like.

♦ You must match the position and length of data in element lists you
use for the Unload and Load functions. If the element lengths in the
schema you use to load the file do not match those in the Unload
function, use *FILL=nn to make their lengths equal. For more
detailed information and an example of how to use this parameter,
see the considerations under the ELEMENT statement.

♦ If you want to change the description of a file in OS/390 or VSE, you
cannot unload and load in the same UCL program. In OS/390 and
VSE, the utilities use only a single schema. You need to code the
Load function in another UCL program, so you can describe the file
differently in another schema.

STANDARD-EXIT (exit-name)

Restriction If you code this statement, it must precede the FILE statements.

Description Optional. Indicates you want to invoke the exit program you name while
unloading each record. For guidelines on writing exit programs, see
“Writing exit programs” on page 181.

Format 1–8 alphanumeric characters. The first character must be alphabetic.

Considerations

♦ You must make your exit program available to be loaded by the
Unload function. You must put the exit program in your execution
library.

♦ Only one exit at a time resides in memory. If you code a new exit
name in a subsequent function, the utility deletes the current exit
program before loading the new one.

♦ If you code an invalid exit program, an error results.

Chapter 10 Coding the Version 1 Unload and Load functions

156 P26-6260-63

FILE
ALL

() . . .
file name−−−−









Description Required. Names the files you want unloaded.
Format 4 alphanumeric characters. The first character must be alphabetic.
Considerations

♦ If you code FILE (ALL), the function unloads only your database files,
not the Directory files. If you have index files, you must depopulate
them before you unload all of your files.

♦ If you code FILE (ALL), the function unloads the primary and then the
related files in alphabetical order.

♦ To unload Directory files, you must code FILE (file-name), not FILE
(ALL). In the control section, code the bootstrap schema and
environment description. In the CSIPARM file, do not code a
DIRECTORY or REALM parameter.

♦ Do not code both FILE (ALL) and FILE (ffff).

♦ The Unload function always opens files for exclusive update. When
the Unload function finishes, it explicitly closes them.

♦ You cannot code FILE (file-name-list).

♦ If you are loading a related file, you must load all associated primary
files at the same time. If you want to avoid unloading and loading an
associated primary file, you must clear all linkpaths that connect it to
the related file before loading the related file. The easiest way to
clear the linkpaths is to use the Modify function with QUALIFIER
(SERIAL). With the Modify function, you can change linkpaths so
they contain eight blanks.

Warning: Be careful that you modify the correct linkpath(s), or you
will destroy the linkpath and the connection between the files. To
recreate a destroyed linkpath, you must unload and load the primary
and related files that shared the linkpath.

♦ When loading a primary file, you do not need to load all of the
associated related files. Instead, you must clear the primary file
linkpaths connected to the related files you are loading. However,
you must no clear linkpaths connected to related files that you are not
loading. You can use the CLEAR-LINKS statement in the Unload or
Load function. For an example of loading a primary file without all of
its related files, see “Examples of Unload, Load, and Modify
functions” on page 191.

Coding the UCL for the Unload function

DBA Utilities User’s Guide 157

LINKPATH (
b

)
/

−








access linkpath

Restriction Use this statement only for related files.

Description Optional. Indicates the access linkpath to use to unload a related file.
The Unload function ignores this statement when you unload primary
files.

Default b

Format 8 alphanumeric character linkpath name in the format ffffLKxx, where ffff
is the name of the primary file, and LKxx is the linkpath.

Options b Use the first linkpath defined for that file.

access-linkpath Uses the specified linkpath.

Considerations

♦ You must code a linkpath that is in the base portion of the record.

♦ If you code FILE (ALL), LINKPATH (ffffLKxx) is normally invalid
unless your schema specifies the same linkpath in all related files.

♦ You should code the same access linkpath to load a file that you
used to unload it.

♦ If you use the default linkpath value, be careful when you unload from
an old schema and load to a new schema. Since the default linkpath
is the first defined linkpath in the schema, make sure that the first
defined linkpath in both schemas is the same.

♦ You must not code LINKPATH (access-linkpath-list).

Chapter 10 Coding the Version 1 Unload and Load functions

158 P26-6260-63

PRESERVE
NO
YES

()









Restrictions

♦ Use this statement only for related files.

♦ Use this statement only following the LINKPATH statement.

Description Optional. Indicates whether to retain the existing chain sequence when
unloading a related file.

Default NO

Considerations

♦ Do not use PRESERVE (YES) to unload a file that has corrupted
chains or any form of chain damage.

♦ The Unload function retains the chain sequence only on the primary
access linkpath.

♦ When you unload Directory files, code PRESERVE (YES).

♦ When reloading your files, do not code a SEQUENCE statement, or
you will lose the preserved chain sequence.

Coding the UCL for the Unload function

DBA Utilities User’s Guide 159

CLEAR-LINKS (linkpath-list)

Restriction Use this statement only for primary files.

Description Optional. Identifies the linkpaths you want blanked in a primary file.

Format Linkpath names must be 4 alphanumeric characters in the format LKxx.
The first two characters should be LK, and the last two should represent
a linkpath name.

Considerations

♦ IMPORTANT: When unloading a primary file that has a related file
linked to it, this statement must list all primary file linkpaths to the
related file.

♦ You do not need to use this statement if you intend to clear the
linkpaths in the Load function.

We recommend that you clear the linkpaths in the Load function so
that you can decide which files to load at that time. If you clear
linkpaths when unloading, you must load all of those files

♦ If you do not list linkpaths, they are not blanked, but retain their
current pointer values. If you are unloading a related file without its
primary file, you should not blank the linkpath.

♦ If you code the CLEAR-LINKS statement, it must precede the
RECORD statements.

♦ All linkpaths that you code must be in the primary file that you are
unloading.

♦ Any linkpath you code in this statement you must also code in the
ELEMENT statement by coding ELEMENT (ALL) or explicitly coding
the linkpaths in ELEMENT (element-list).

Chapter 10 Coding the Version 1 Unload and Load functions

160 P26-6260-63

RRN - RANGE ()
low rrn

high rrn
low rrn high rrn

−−−−
−−−− −−−−

−−−− −−−− −−−−

















Description Optional. Indicates a range of relative record numbers that you want
retrieved for non-KSDS files. Records outside the range are not
retrieved.

Format rrn Must be 1–9 numeric characters.

Options low-rrn Unloads records having relative record numbers
from low-rrn to the end of the file.

- high-rrn Unloads records having relative record numbers
from the beginning of the file to the high-rrn.

low-rrn – high-rrn Unloads records having relative record numbers
from low-rrn through high-rrn.

Considerations

♦ If you code the RRN-RANGE statement, it must precede the
RECORD statements.

♦ If the RRN-RANGE statement you code does not contain a valid data
record, no data records are unloaded.

♦ The dash (-) is a positional separator in front of high-rrn and between
the low and high-rrns. You must code it in those two options. You do
not need to code it in the first option (low-rrn).

Coding the UCL for the Unload function

DBA Utilities User’s Guide 161

CRITERIA (element1[element2,…,elementn].operator.datavalue1
[datavalue2…datavaluen]END.)

Description Optional. Establishes an argument string that selects the records you
want processed.

Format for element
8 alphanumeric characters. The first character in each name must be
alphabetic. Separate the names with commas.

Format for operator
.EQ. Equal
.NE. Not equal
.GT. Greater than
.LT. Less than
.GE. Greater than or equal to
.LE. Less than or equal to

Format for datavalue
String of 1–4096 bytes. You must put it after the period following the
Boolean operator and follow it with END. If you code more than one
element, you must not separate the data values with commas, blanks, or
other delimiters.

Considerations
♦ Put a period before and after each Boolean operator.
♦ If you code the CRITERIA statement, you must put it before the

RECORD statements.
♦ You can use any number of spaces before the element list, after

END., and on either side of the commas.
♦ If you code an element name, you must also code it in the ELEMENT

statement unless you coded ELEMENT (ALL).
♦ You cannot code a null element list in the criteria argument.
♦ If you code an element in the criteria argument, the element must be

in all the records you want unloaded from the file.
♦ You must make the data values the same length as the

corresponding elements you code.
♦ You may cross input lines with data if necessary, stopping in column

72 and continuing on the next line in column 1. (If you put data in
columns 73–80, it is lost.)

♦ If you do not code END., the rest of the UCL program is considered
data.

Chapter 10 Coding the Version 1 Unload and Load functions

162 P26-6260-63

RECORD
ALL

()
record code−−−−









Description Optional. Indicates the record you want unloaded.

Default ALL

Format 2 alphanumeric characters

Considerations
♦ If you code this statement, you must code the ELEMENT statement.

Together, they provide a map of your database record to the Unload
and Load functions.

♦ When unloading primary files or noncoded, related files, always code
RECORD (ALL); otherwise, the function unloads nothing.

♦ If you are unloading a coded related file, you must specify RECORD
(record-code) if you included redefined element names in the
element list.

Caution: You can lose coded records if you make errors while using
RECORD (record-code).

♦ If you specify RECORD (record-code), be careful to include all
appropriate record codes. If you leave out a record code or you
forget to load an unloaded record code, you lose any records that
belong to that record code.

♦ List only record codes that are in the file you are unloading.

♦ If you code more than one RECORD statement, do not code
RECORD (ALL) in conjunction with RECORD (record-code).

♦ If you coded FILE (ALL), you must code RECORD (ALL).

♦ If you code RECORD (), the function unloads no records.

Coding the UCL for the Unload function

DBA Utilities User’s Guide 163

ELEMENT
ALL

()
element list−−−−









Restriction Required if you code the RECORD statement.

Description Indicates the data elements you want unloaded.

Default ALL

Format Element names must be 8 alphanumeric characters. The first character
must be alphabetic. Separate names with commas.

Considerations

♦ Together, the RECORD and ELEMENT statements provide a map of
your data record to the Unload and Load functions. For more detail
on the data record, see “Formatting the data records” on page 188.

Caution: You can lose elements if you make errors when you code
ELEMENT (element-list).

♦ If you forget to code an element that is in the unloaded file or load an
element that you unloaded, that element will be blank.

♦ If RECORD (ALL) has been coded, then:
((number of record codes) x (number of elements specified+1)) + 3

 must be ≤ 256.

 If you have not coded RECORD (ALL), then:
 (number of record codes) + (number of elements specified) + 3

 must be ≤ 256.

♦ If you code ELEMENT (ALL), you cannot change the structure of the
file. When you code ELEMENT (ALL), the Unload function picks up
each record from the database file exactly as it is on the schema and
puts the record in the data file. When you load, the Load function
picks up each record from the data file and puts the record into the
database file exactly as it is on the schema. Thus if you plan to
change the structure of the file, you must use ELEMENT (element-
list).

Chapter 10 Coding the Version 1 Unload and Load functions

164 P26-6260-63

♦ When you code ELEMENT (element-list), the unload function pulls
the elements off your database record in the order in which you code
them in the list and puts them in the data record. The Load function
uses its element list to map the data record and to put the elements
into your database record using the order in the Load schema.

♦ When you code ELEMENT (element-list), you do not need to list the
element names in the same order as the schema.

♦ If you use an element list, do not code any linkpath elements for a
related file.

♦ If you use an element list, you must code the key first in the list. The
key element in a list for a related file is the data element associated
with the specified access linkpath.

♦ If you want to change the file’s structure in the new schema, you
must make the element lists in the Unload and Load function match
the data record. When you change the size of elements, use the
*FILL=nn parameter. (Here nn is the number of spaces that are
different. If you want to change more than 99 spaces, you can code
multiple *FILL parameters in succession.)

♦ You can add elements, delete elements, increase their size, and
decrease their size with the *FILL=nn parameter.

 To add an element so it is automatically filled with blanks, do not
code the element name in the Unload function’s element list. (It is
not there already).) Code the element name at the end of the Load
function’s element list.

 You can also add an element so that it appears in the data record
where you can modify it with an exit program. Your exit program can
be in either the Unload or Load function. To add an element to the
data record, code the *FILL=nn parameter in the Unload function’s
element list where you want the element to appear in the data record.
In the Load function’s element list, code the element name where it
will map to the same portion of the data record.

 To delete an element, do not unload or load it. That is, leave it out of
the element lists in both functions.

Coding the UCL for the Unload function

DBA Utilities User’s Guide 165

 To increase the size of an element, code *FILL=nn in the Unload
function’s element list. Replace nn with the number of bytes you
want to add to the element. You can code *FILL=nn before, after, or
both before and after the element name. In the Load’s element list,
code just the element name. The bytes are added in the Unload
function and automatically set to blanks. You can modify these
blanks with an exit program in either the Unload or Load function.

 To reduce the size of an element, first code the element name in the
Unload function’s element list. Next, in the Load function’s element
list, code *FILL=nn before or after that element. The Load function
then ignores the number of bytes you code in the position of the
*FILL=nn element.

Whenever you change the elements or their size, you must make
similar changes in the schemas you use for the Unload and Load
functions.

 For an example of how the *FILL parameter works, assume you are
making the following changes:

- Deleting ELEMENT3 with 8 bytes.

- Adding ELEMENT8 with 5 bytes.

- Adding ELEMENT9 with 4 bytes.

- Decreasing the size of ELEMENT6 from 8 to 4 bytes by removing
the first 4 bytes.

- Adding 4 bytes to the front of ELEMENT5 to increase its size
from 8 to 12 bytes.

 To make these changes, code this element list in the Unload
function:

 ELEMENT (ELEMCTRL, ELEMENT2, ELEMENT4, *FILL=04, ELEMENT5, ELEMENT6, ELEMENT7).

 As a result, your data record would look like this:

. . . . P E L E M D b b F R E b b F R E O O 0 H b b b b b b 9 6 7 5 O O b b 7 9 8 0 1 2 C I N T I . b b

Record
Length

File
Name

Reserved Control
Key

ELEMCTRL ELEMENT4 ELEMENT5 ELEMENT6 ELEMENT7

File
Type

Record
Type

RQLOC
Value

Record
Code

ELEMENT2 *FILL=04

Chapter 10 Coding the Version 1 Unload and Load functions

166 P26-6260-63

 In the Load function, code this element list:
 ELEMENT (ELEMCTRL, ELEMENT2, ELEMENT4, ELEMENT5, *FILL=04,
 ELEMENT6, ELEMENT7, ELEMENT8, ELEMENT9)

 During execution, the data records are passed from the Unload
function to the Load function by way of the data file (CSUDATA).
Thus, this element list maps the same data record as follows:

. . . . P E L E M D b b F R E b b F R E O O 0 H b b b b b b 9 6 7 5 O O b b 7 9 8 0 1 2 C I N T I . b b

Record
Length

File
Name

Reserved Control
Key

ELEMCTRL ELEMENT4 ELEMENT5 ELEMENT6 ELEMENT7

File
Type

Record
Type

RQLOC
Value

Record
Code

ELEMENT2 *FILL=04

 As you can see, the number of spaces in the *FILL parameter
actually appears in the data record as spaces. You can modify this
space with an exit program in both the Unload and Load functions.

 The newly added ELEMENT8 and ELEMENT9 do not appear
because they are automatically filled with spaces. These spaces do
not show up in the data record because you did not code *FILL=09 in
the Unload element list to create the necessary spaces.

♦ When you code ELEMENT (ALL), the Unload and Load functions see
the database record the same way it is on the database file. That is,
it is complete with the linkpath fields, record codes, and root fields.

♦ If you code an exit program with ELEMENT (ALL), you must be
aware of what the data record looks like. See the description in
Consideration 10, above.

♦ It is possible, but not recommended, to use ELEMENT (ALL) in the
Unload function and then use an element list in the Load function,
and vice-versa. If you do this, you must make the element list match
the data record created when you coded ELEMENT (ALL). For
example, you must code the elements in the same order as on the
schema. You must also code *FILL=08 wherever a linkpath occurs
because you cannot code linkpath names in the element list for a
related file.

Coding the UCL for the Unload function

DBA Utilities User’s Guide 167

♦ You may use ELEMENT (ALL) in conjunction with an element list.
For example, you may code the following:

 RECORD (01)

 ELEMENT (ELEMENT1,ELEMENT2,ELEMENT3)

 RECORD (02)

 ELEMENT (ALL)

♦ If you code FILE(ALL), do not code ELEMENT (element-list) unless
your schema has only one file.

♦ Additional constraints apply in the following situations:

In this context: ELEMENT (element-list) must conform to these rules:
FILE(primary-file) You must code the primary file’s control key first in the element

list.
Do not include the root element in the element list.

FILE(related-file) The first key defined in the schema for the related file must be
the first in the element list.
Do not code linkpaths in the element list.

FILE (related-file)
LINKPATH(ffffLKxx)

You must put the key associated with linkpath ffffLKxx first in the
element list.
Do not code the linkpath in the element list.

FILE (coded-file)
no access-linkpath

You must put the first key associated with the linkpath defined in
the base portion of the record first in the element list.

FILE (noncoded-file) You must put the key first in the element list.
FILE (coded-file)
LINKPATH (ffffLKxx)

You must put the key associated with linkpath ffffLKxx first in the
element list.
Do not code linkpaths in the element list.

CLEAR-LINKS
(LKxx-list)

You must put the same names in the element list that you put in
the LKxx-list.

RECORD (record-
code)

You must put the same names in the element list that you put in
the record code unless you coded ELEMENT (ALL).

FILE (coded-file)
RECORD (ALL)

Do not include redefined element names in the element list.

Chapter 10 Coding the Version 1 Unload and Load functions

168 P26-6260-63

Coding the UCL for the Load function
After you code the control section as shown in “Coding the control
section” on page 57, you can code the Load function as shown in the
following format. For UCL examples of unloading and loading, see
“Examples of Unload, Load, and Modify functions” on page 191.

FUNCTION(LOAD)
[STANDARD - EXIT()]

FILE (
ALL

LINKPATH (

CLEAR LINKS

SEQUENCE()

DIRECTION(
ASCEND
DESCEND

DATA TYPE(

HEX
CHAR
ZONED DEC
PACKED DEC

exit - name

file - name

access - linkpath
linkpath list

sort - list

list

list









////



















−−−− −−−−









 −−−−











−−−−
−−−−

−−−−



















−−−−

















































) ...

)

[()]

)

b














−−−−








−−−−




























RECORD
ALL

ELEMENT
ALL

()

()
...

record code

element list

Coding the UCL for the Load function

DBA Utilities User’s Guide 169

FUNCTION (LOAD)

Description Required. Invokes the Load function.

Considerations

♦ If you load and unload in the same UCL program, you must code the
Load function after the Unload function.

♦ You must match the position and length of data in element lists you
use for the Load and Unload functions. If the element lengths you
coded in the schema used to load the file do not match those in the
Unload function, use *FILL=nn to make their lengths equal. For more
information and an example of how to use the *FILL parameter, see
the considerations under the ELEMENT statement.

♦ If you want to change the description of the file, you cannot execute
the Unload and Load functions in the same UCL program. The
utilities use only one schema in a UCL program.

STANDARD-EXIT (exit-name)

Restriction If you code this statement, you must put it before the FILE statements.

Description Optional. Indicates you want the exit program you name invoked while
loading each record. For guidelines on writing exit programs, see
“Writing exit programs” on page 181.

Format 1–8 alphanumeric characters. The first character must be alphabetic.

Considerations

♦ You must put your exit program in your execution library, so it is
available to be loaded.

♦ Only one exit at a time resides in memory. If you code a new
exitname in a subsequent function, the function deletes the current
exit program before loading the new one.

Chapter 10 Coding the Version 1 Unload and Load functions

170 P26-6260-63

FILE (
ALL
file - name









) . . .

Description Required. Names the database files you want loaded.

Format 4 alphanumeric characters. The first character must be alphabetic.

Considerations
♦ If you code FILE (ALL), you can load all primary and related files, but

not Directory files. If you have index files, you must depopulate them
before you unload and repopulate them after you load.

♦ If you code FILE (ALL), the files are loaded in alphabetical order with
primary files first, then the related files.

♦ To load Directory files, you must code FILE (file-name). In the
control section, code the bootstrap schema and environment
description. In the CSIPARM file, do not code a DIRECTORY or
REALM parameter.

♦ Do not code FILE (ALL) in conjunction with FILE (file-name).

♦ The Load function always opens files for exclusive update. When the
Load function finishes, it explicitly closes them.

♦ You do not need to load all the unloaded files.

♦ You cannot code FILE (file-name-list).

♦ If you are loading a related file, you must load all associated primary
files at the same time. If you want to avoid unloading and loading an
associated primary file, you must clear all linkpaths in the primary
files that connect to the related file before loading. The easiest way
is to use the Modify function with QUALIFIER (SERIAL). With the
Modify function, you can change the linkpaths so they contain eight
blanks. Be careful that you modify the correct linkpath(s), or you will
destroy the linkpath and the connection between the files. To
recreate a destroyed linkpath, unload and load the primary and
related file that shared the linkpath.

♦ When loading a primary file, you do not need to load all of the
associated related files. Instead, you must clear the primary file
linkpaths connected to the related files you are loading. however,
you must not clear linkpaths connected to related files that you are
not loading. You can use the CLEAR-LINKS statement in the Unload
or Load function. For an example of how to load a primary file
without all its related files, see “Examples of Unload, Load, and
Modify functions” on page 191.

Coding the UCL for the Load function

DBA Utilities User’s Guide 171

LINKPATH (
b/







access - linkpath

)

Restriction Use this statement only for related files.

Description Optional. Indicates the access linkpath to use when loading a related file.
The Load function ignores this statement when you load primary files.

Default b

Format 8 alphanumeric character linkpath name in the format ffffLKxx, where ffff
is the primary file, and LKxx is the linkpath.

Options b Uses the first linkpath defined in the schema for that file
as the access linkpath.

ffffLKxx Uses the specified linkpath.

Considerations

♦ The access linkpath must be in the base portion of the record.

♦ If you code FILE (ALL), LINKPATH (ffffLKxx) is normally invalid
unless your schema specifies the same linkpath in all related files.

♦ When you load a file, you should code the same access linkpath as
when you unloaded it.

♦ Be careful when you unload from an old schema and load to a new
schema if you use the default linkpath value. Since the default
linkpath is the first defined linkpath in the schema, make sure that the
first defined linkpath in both schemas is the same.

♦ You must not code LINKPATH (access-linkpath-list).

Chapter 10 Coding the Version 1 Unload and Load functions

172 P26-6260-63

CLEAR-LINKS (linkpath-list)

Restriction Use this statement only for primary files. This statement is ignored for
related files.

Description Optional. Indicates which linkpaths you want blanked in a primary file.

Format Linkpath names must be 4 alphanumeric characters in the format LKxx,
where xx is a linkpath name.

Considerations

♦ IMPORTANT: When loading a primary file and the related file linked
to it, this statement must list all primary file linkpaths to that related
file.

♦ You do not need to list the linkpaths if the Unload function cleared
them.

However, we recommend that you clear linkpaths in this function so
that you can decide which files to load at this time. (If you clear
linkpaths when unloading, you have not choice but to reload all those
files.)

♦ If you do not list linkpaths, they are not blanked, but retain their
current pointer values. If you are unloading a related file without its
primary file, you should not blank the linkpath.

♦ If you code the CLEAR-LINKS statement, you must code it before the
RECORD statements.

♦ All linkpaths that you code must be in the primary file that you are
loading.

♦ Any linkpath you code in this statement you must also code in the
ELEMENT statement, either by coding ELEMENT (ALL) or by
explicitly coding the linkpaths in ELEMENT (element-list).

Coding the UCL for the Load function

DBA Utilities User’s Guide 173

SEQUENCE (sort-list)

Restriction If you code a SEQUENCE statement, you must code it before the
RECORD statements.

Description Optional. Names the elements you want added to the standard sort
sequence fields.

Format 8 alphanumeric characters.

Considerations
♦ If you coded PRESERVE (YES) in the Unload function and want to

retain your chain sequence, do not code the SEQUENCE statement.

♦ If you code a sort-list of elements in this statement, you must also
code them in the list of elements to be loaded. You do not need to
do this if you code ELEMENT (ALL).

♦ Name only elements that are valid for the file you are loading.

♦ Sorting slows performance. The more fields you sort, the more
performance is degraded. The maximum number of fields you can
sort is 62.

♦ The elements you select to sort must be in the base portion of the
record and at a displacement of 4000 bytes of less in the data file.

♦ You may not use more than 252 bytes for all your sort fields plus the
length of the access linkpath key or control key.

♦ Fields in related files are sorted in the following order:

a. RQLOC of the record
b. Control key for the access linkpath
c. Sort elements you coded in the SEQUENCE statement

♦ Records in related files are sorted first by RQLOC (request location
or RRN), which leaves the records that hashed to the same location
(synonyms) grouped together. Next, the synonyms are sorted by
control key, which leaves records with the same control keys that are
in the same linkpath chain grouped together. Finally, the records with
the same control keys are sorted within linkpath chains.

♦ Thus, any SEQUENCE statements you code will sort the records
within individual linkpath chains in the access linkpath.

♦ With primary files, records are sorted first by RQLOC, and then by
control keys. Since control keys are unique, there are no duplications
and additional sorting is not necessary. Thus, this statement is not
needed and slows the Load function needlessly.

Chapter 10 Coding the Version 1 Unload and Load functions

174 P26-6260-63

DIRECTION(
ASCEND
DESCEND









 −−−− list)

Restriction You can only use this statement following a SEQUENCE statement.

Description Optional. Indicates the direction in which you want a corresponding sort-
field element to be sorted.

Default ASCEND

Considerations

♦ You may code many fields in conjunction with the SEQUENCE
statement. For example, you can code the following:

 SEQUENCE (ELEMENT1,ELEMENT2,ELEMENT3)

 DIRECTION (ASCEND,DESCEND,ASCEND)

♦ The DIRECTION list corresponds one-to-one with the SEQUENCE
list. That is, the first element in the sequence list is sorted in the first
direction listed. The second element is sorted in the second
direction. If the DIRECTION list is exhausted, the default direction is
used for subsequent elements in the SEQUENCE list. In the
preceding example, if you added ELEMENT4 to the SEQUENCE list,
but not to the DIRECTION list, ELEMENT4 would be sorted in
ascending order.

Coding the UCL for the Load function

DBA Utilities User’s Guide 175

DATA - TYPE (

HEX
CHAR
ZONED - DEC
PACKED - DEC



















−−−− list)

Restriction You can only use this statement following a SEQUENCE statement.

Description Optional. Indicates the format or type of data elements you listed in the
SEQUENCE statement.

Default CHAR

Options HEX The data element is a hexadecimal field

CHAR The data element is a character field

ZONED-DEC The data element is a zoned decimal field

PACKED-DEC The data element is a packed decimal field

Considerations

♦ You may code many entries in conjunction with the SEQUENCE
statement. For example, you may code the following:

 SEQUENCE (ELEMENT1,ELEMENT2,ELEMENT3)

 DIRECTION (ASCEND,DESCEND,ASCEND)

 DATA-TYPE (CHAR,HEX,ZONED-DEC)

♦ Code your entries in the same order as the elements in the
SEQUENCE statement. In the preceding example, you must code
ELEMENT1’s data type first and ELEMENT2’s data type second.
ELEMENT1 is a character field, and ELEMENT2 is a hexadecimal
field.

♦ If the DATA-TYPE list is exhausted, the default data type is used for
subsequent elements in the SEQUENCE list. For example, if you
coded an ELEMENT4 but not another data type, the data type would
be assumed to be Character.

Chapter 10 Coding the Version 1 Unload and Load functions

176 P26-6260-63

RECORD (
ALL
record - code









) . .

Description Optional. Indicates the records you want loaded.

Default ALL

Format 2 alphanumeric characters

Considerations

♦ If you code this statement, you must also code the ELEMENT
statement. Together, they provide a map of your data record to the
Unload and Load functions.

♦ When loading primary files or noncoded related files, you must code
RECORD (ALL); otherwise, no loading occurs.

♦ When you are loading a coded related file, you must code RECORD
(record-code) if you are going to include redefined element names in
the element list or if you want to refer to only specific record codes.

Caution: You can lose coded records if you make errors while using
RECORD (record-code).

♦ If you use RECORD (record-code), include all of the appropriate
record codes. If you forget to include a record-code that was in the
file when you unloaded it or to load an unloaded record-code, you will
lose any records that begin with that record-code.

♦ List only record codes that are in the file you are loading.

♦ Do not code RECORD (ALL) in conjunction with RECORD (record-
code).

♦ If you coded FILE (ALL), you must code RECORD (ALL).

♦ If you code RECORD (), no records are loaded.

Coding the UCL for the Load function

DBA Utilities User’s Guide 177

ELEMENT (
ALL
element - list









)

Restriction Required if you coded the RECORD statement.

Description Indicates the elements you want loaded.

Default ALL

Format Element names must be 8 alphanumeric characters. The first character
must be alphabetic. Separate names with commas.

Considerations

♦ If you code the RECORD statement, you must code the ELEMENT
statement. Together, they provide a map of your data record to the
Unload and Load functions. For more detail on the data record, see
“Formatting the data records” on page 188.

Caution: You can lose elements if you make errors when you code
ELEMENT (element-list).

♦ If you forget to code an element that is in the unloaded file or load an
element that you unloaded, that element will be blank.

♦ If RECORD (ALL) has been coded, then:
((number of record codes)x(number of elements specified +1)) + 3

 must be ≤ 256.

♦ If you have not coded RECORD (ALL), then:
 (number of record codes) + (number of elements specified) + 3

 must be ≤ 256.

Chapter 10 Coding the Version 1 Unload and Load functions

178 P26-6260-63

♦ If you code ELEMENT (ALL), you cannot change the structure of the
file. When you code ELEMENT (ALL), the Unload function picks up
each record from the database file exactly as it is on the schema and
puts the record in the data file. When you load, the Load function
picks up each record from the data file and puts the record into the
database file exactly as it is on the schema. Thus if you plan to
change the structure of the file, you must use ELEMENT (element-
list).

♦ When you code ELEMENT (element-list), the Unload function pulls
the elements off your database record in the order in which you code
them in the list and puts them in the data record. The Load function
uses its element list to map the data record and to put the elements
into your database record using the order in the Load schema.

♦ When you code ELEMENT (element-list), you do not need to list the
element names in the same order as the schema.

♦ If you use an element list, you must code the key first in the list. The
key element in a list for a related file is the data element associated
with the specified access linkpath.

♦ If you use an element list, do not code any linkpath elements for a
related file.

♦ If you want to change the file’s structure in the new schema, you
must make the element lists in the Unload and Load function match
the data record. When you change the size of elements, use the
*FILL=nn parameter. (Here nn is the number of spaces that are
different.) If you want to change more than 99 spaces, you can code
multiple *FILL parameters in succession.

♦ You can add elements, delete elements, increase their size, and
decrease their size with the *FILL=nn parameter. Detailed directions
and examples are in Consideration 10 of the Unload function’s
ELEMENT statement in “Coding the UCL for the Unload function” on
page 155.

♦ If you code an exit program with ELEMENT (ALL), you must be
aware of what the data record looks like. See the description in the
preceding consideration .

♦ When you code ELEMENT (ALL), the Unload and Load functions see
the database record the same way it is on the database file. That is,
it is complete with the linkpath fields, record codes, and root fields.

Coding the UCL for the Load function

DBA Utilities User’s Guide 179

♦ It is possible, but not recommended, to use ELEMENT (ALL) in the
Unload function and then use an element list in the Load function,
and vice-versa. If you do this, you must make the element list match
the data record created when you coded ELEMENT (ALL). For
example, you must code the elements in the same order as on the
schema. You must also code *FILL-08 wherever a linkpath occurs
because you cannot code linkpath names in the element list for a
related file.

♦ You may use ELEMENT (ALL) in conjunction with an element list.
For example, you may code the following:

 RECORD (01)

 ELEMENT (ELEMENT1,ELEMENT2,ELEMENT3)

 RECORD (02)

 ELEMENT (ALL)

♦ If you code FILE (ALL), do not code ELEMENT (element-list) unless
your schema has only one file.

♦ Additional constraints apply in the following situations:

In this context: ELEMENT (element-list) must conform to these rules:
FILE(primary-file) First entry in the element-list must be the primary file control-

key. Do not include the root element in the element list.
FILE(related-file)
no access-linkpath

First entry in the element-list must be the first key defined in
schema for related file. Do not include linkpaths in the element
list.

FILE (related-file)
LINKPATH(ffffLKxx)

First entry in element-list must be the key associated with
ffffLKxx. Do not include linkpaths in the element list.

FILE (coded-file)
no access-linkpath

First entry in element-list must be the key associated with the
first linkpath defined in the base portion of the record. Do not
include linkpaths in element-list.

FILE (coded-file)
LINKPATH (ffffLKxx)

First entry in element-list must be the key associated with
linkpath ffffLKxx. Do not include linkpaths in the element list.

CLEAR-LINKS
(LKxx-list)

Names appearing in LKxx-list must appear in element-list,
unless ELEMENT (ALL) is specified..

FILE (coded-file)
RECORD (ALL)

Do not include redefined element names in the element list.

Chapter 10 Coding the Version 1 Unload and Load functions

180 P26-6260-63

Writing exit programs
There are exit points in both the Unload and Load functions. The Unload
function’s exit point is located after the record is extracted from the
database but before it is written to the output file. Thus, when the record
is passed to your exit program, the program may modify the record,
delete it, or add a new one. The Unload function passes to your program
the address of the current record and the address of the function name.

The Load function’s exit point is after the records are sorted and the
primary file linkpaths have been created. The Load function passes the
address of the current record and the address of the function name to
your exit program. The program can modify or delete, but not add,
records.

For information on how the exit programs are loaded, how they operate,
the languages you can use to write them, and the register conventions
you must follow, see “Inserting exit programs into functions” on page 49.
In register 1, for example, you must code the parameter list address. For
a description of the parameter list address, see the following table:

Parameter

Data type

Contents before exit
(passed to exit program)

Contents after exit (passed
from exit program)

Record n bytes of
data

Data record Must be unchanged

Function
name

8 bytes
character

UNLOADbb or LOADbbbb Must be unchanged

If your exit program changes anything it is not authorized to change, the
results are unpredictable.

Writing exit programs

DBA Utilities User’s Guide 181

Modifying the data record
You can modify a record with exit programs in both the Unload and Load
functions. You may modify any data field in the record except the control
key and the data record prefix. These fields are saved before calling your
exit program. If you alter any part of them, they are restored. Your exit
program may alter any other data field.

You exit program should use register 15 to pass a return code of 0 back
to the Exit Interface to indicate either that no action was taken or that the
record was modified. The record is then written to the output data file.

Deleting the current data record
You can delete a record with exit programs in both the Unload and Load
functions. To delete a record that is passed to your program, your
program should pass a return code of 8 in register 15 back to the Exit
Interface. Then, the record is not written to the output data file.

Chapter 10 Coding the Version 1 Unload and Load functions

182 P26-6260-63

Adding a new data record
You can add a record only with an exit program in the Unload function.
To add a data record ahead of the one that was passed to the exit
program:

♦ Pass a return code of 4 in register 15 to the Exit Interface.

♦ Pass the address of the record to be added back in register 1.

Do not move the new record back to the utility data area with your
program. The Exit Interface moves the record into the Unload module’s
data area.

In your program, you must create the new data record in the format
described in “Formatting the data records” on page 188.

After the Unload function writes the new record to the output data file, it
passes the previous record back to your program via the Exit Interface.

You must use caution when adding new records with exit programs.

We recommend that you add all records near the beginning because the
Unload function does not make further calls to your program when it
reaches the end of the database file.

If you try to add records interspersed with ones you are unloading, you
may not get the opportunity to add all your records before the function
reads the last record from your file. Adding records at the beginning
does not add to processing time because the Unload function does not
sort them. Therefore, your program does not need to check for collating
sequence before adding records.

However, if you are unloading a related file with the PRESERVE (YES)
option, you must insert records into the place you want them in the chain.

Writing exit programs

DBA Utilities User’s Guide 183

Retaining the format of the data file
The data file is a sequential work file that passes records from the
Unload to the Load function. You define the data file to the Unload and
Load functions when you code the DATA-FILE statements in the control
section of the UCL or when you use the defaults.

However, you need to be aware of the format in these situations:

♦ When you create a data file by writing your own program instead of
using the Unload function. You must build the records in the correct
format so you can use the data file as input to the Load function.

♦ When you write exit programs for the Unload and Load functions. As
you delete, modify, or add records in your exit program, you need to
keep the formats of the records intact.

The records on the data file are in the following order:

♦ Run control record (one record per data file)

♦ File pre-header record (one record per database file unloaded)

♦ File header record (one record per database file unloaded)

♦ Data records (one or more records per database file unloaded)

♦ File trailer records (one record per database file unloaded)

You need only one run control record on each data file and it must be the
first record on the first volume. You follow it with a set of records for
every file that you unloaded or you want to load. The set consists of a file
pre-header record, a file header record, a number of data records, and a
file trailer record.

You put the primary files first in the data file, and then the related files.
You list both types of files in ascending sequence by database file name.

Indicate the record length in the first field in each record. You indicate
the record length whether the format is fixed or variable.

Chapter 10 Coding the Version 1 Unload and Load functions

184 P26-6260-63

Formatting the run control record
You need to put the run control record first on the data file. You need
only one run control record per file. If you leave out the run control
record, the Unload and Load functions do not execute.

The following is the format for the run control record:

Run
Date

Run
Time

Record
Type

Record
Format

Record
Size

Block
Size

File
Name

File
Type

Schema
Name

Env-Desc
Name

Record
Length

bytes 4 1 4 1 8 8 2 4 4 8 8

where:

♦ Record length is a 4-byte field containing the binary integer 48.

♦ File type is a 1-byte field that is blank (X’40’).

♦ File name is a 4-byte field that is blank (4 X’40’).

♦ Record type is a 1-byte field containing a “C”.

♦ Run date is an 8-byte field containing the date that the Unload
function executed. The format is either MM/DD/YY or DD/MM/YY,
depending on your Common Logic Module (CLM) option.

♦ Run time is an 8-byte field containing the time the Unload function
began unloading this file. The format is HH:MM:SS.

♦ Record format is a 2-byte field containing the record format of the
data file. You can have Fb, FB, Vb, or VB.

♦ Record size is a 4-byte hexadecimal field containing the record size
of the data file.

♦ Block size is a 4-byte hexadecimal field containing the block size of
the data file.

♦ Schema name is an 8-byte field containing the name of the schema
used to unload the files on the data file.

♦ Env-Desc name is an 8-byte field containing the name of the
environment description used to unload the files on the data file.

Consideration The minimum length of the run control record is 52 bytes. If the data file
is longer than that, you must add blanks to the rest of the record.

Retaining the format of the data file

DBA Utilities User’s Guide 185

Formatting the pre-header record
Pre-header records are optional in files you create yourself and are used
when a file is not in its expected position. The Load function reads a pre-
header record for the next file, then it can process the next file normally.
If you include pre-header records, you need one for each file.

The following is the format you need to use for the pre-header record:

 UnusedFile
Name

File
Type

Record
Length

bytes 4 1 4 26

where:

♦ Record length is a 4-byte field containing the binary integer 31.

♦ File type is a 1-byte field containing an R for related files of a P for
primary files.

♦ File name is a 4-byte field containing the file name for the pre-header
record.

♦ Unused is a 26-byte field that is not used.

Chapter 10 Coding the Version 1 Unload and Load functions

186 P26-6260-63

Formatting the file header record
You need one file header record for every file on the data file. If you
leave out the file header record, the Load function attempts to bypass
that file and process the next file. If you do not have file header records
for any of the files, the Load function processes no files.

The following is the format you need for the file header record:

Run
Date

Run
Time

Record
Type

User
Code

Access
Linkpath

File
Name

File
Type

Record
Length

bytes 4 1 4 1 8 8 1 8

where:

♦ Record length is a 4-byte field containing the binary integer 31.

♦ File type is a 1-byte field containing an R for related files or a P for
primary files.

♦ File name is a 4-byte field containing the name of the unloaded or
loaded file.

♦ Record type is a 1-byte field containing an H for file header records.

♦ Run date is an 8-byte field containing the date the Unload function
began unloading this file. The format is MM/DD/YY or DD/MM/YY,
depending on the CLM option.

♦ Run time is an 8-byte field containing the time the Unload function
began unloading this file. The format is HH:MM:SS.

♦ User code is a 1-byte field containing a C if the Unload function
created this data file. If you created the data file with your program,
you should put a U in this field.

♦ Access linkpath is an 8-byte field. For a related file, this field
contains the name of the linkpath used to control the unload or load.
For a primary file, this field contains blanks (8 X ’40).

Consideration The minimum length of the file header record is 31 bytes. If the record is
longer than 31 bytes, the remainder is filled with blanks.

Retaining the format of the data file

DBA Utilities User’s Guide 187

Formatting the data records
You need one data record for every database record that you selected.

The following is the format for a data record:

Reserved RQLOC
Value

Record
Type

Control-
Key

Record
Code

Unloaded
Data

File
Name

File
Type

Record
Length

bytes 4 1 4 1 2 4 1-256 2 1-n

where:

♦ Record length is a 4-byte binary integer containing the length of the
record. For the value, see Consideration 1 below and subtract 4 from
the sum. The record length itself is not included.

♦ File type is a 1-byte field containing an R for related files or a P for
primary files.

♦ File name is a 4-byte field containing the name of the file that is
unloaded or loaded.

♦ Record type is a 1-byte field containing a D for data records.

♦ Reserved is a 2-byte field reserved for internal use.

♦ RQLOC value is a 4-byte field. The contents vary depending on the
file type and the options you selected with the Unload or Load
function. For the possible values, see Consideration 4 below.

♦ Control-Key is a 1- to 256-byte field containing the key associated
with the data that was unloaded or loaded. For primary files, it is the
ffffCTRL element value. For related files, it is the key associated with
the access linkpath.

♦ Record code is a 2-byte field containing a record code for a coded
record or blanks for a noncoded file.

♦ Unloaded data is a 1- to n-byte field containing all data that was
unloaded from the record, including the control key and record code.

Chapter 10 Coding the Version 1 Unload and Load functions

188 P26-6260-63

Considerations
♦ You need to calculate the length of the data record as follows:

LRECL+4 (for record length) + 12 (for prefix length) + key
length + 2 (for record code) + length of all elements to be
unloaded

♦ When you create data records with an exit program instead of
unloading them from a file, you must insert all the elements as
defined on the Directory, including the 2-byte reserved field.

♦ To understand what is in the Unloaded Data field, see the RECORD
and ELEMENT statements in the UCL. Include the record code and
the control key even though they are already defined in the data
record prefix.

♦ The RQLOC value field contains different values at different times. If
you are creating your own data file or adding a data record, you must
fill the RQLOC field with the value in Considerations A or B below,
depending on the type of file and how you coded the PRESERVE
statement. The last 3 considerations below describe how this field is
used by the loader during processing.

- After you unload primary or related files with PRESERVE (NO),
the RQLOC value field contains (4 X’FF’).

- After you unload a related file with PRESERVE (YES), the
RQLOC value field contains a sequential count.

- While you are loading a primary file, the RQLOC value field
contains the RQLOC value calculated from the control key.

- While you are loading a related file with PRESERVE (NO), the
RQLOC value field contains a RQLOC value calculated from the
control key defined by access-linkpath.

- While you are loading a related file with PRESERVE (YES), the
RQLOC value field contains a sequential count.

Retaining the format of the data file

DBA Utilities User’s Guide 189

Formatting the file trailer record
You need one file trailer record for every file in the data file. You must
put this record after the last data record on each file. If the Load function
finds no trailer record, it assumes that the Unload function encountered a
nonrecoverable error while creating the data file and stopped before
reaching the end-of-file. If the Load function finds no trailer record, it
prints out a message and bypasses the file.

The following is the format you must use for each file trailer record:

Run
Date

Run
Time

Record
Type

Reserved Record
Count

File
Name

File
Type

Record
Length

bytes 4 1 4 1 8 8 2 4

where:
♦ Record length is a 4-byte field containing the binary integer 28.

♦ File type is a 1-byte field containing an R for related files or a P for
primary files.

♦ File name is a 4-byte field containing the name of the file just
processed.

♦ Record type is a 1-byte field containing a T for trailer records.

♦ Run date is an 8-byte field containing the date that the Unload
function finished. The format is either MM/DD/YY or DD/MM/YY,
depending on the CLM option.

♦ Run time is an 8-byte field containing the time the Unload function
finished.

♦ Reserved is a 2-byte field reserved for internal use.

♦ Record count is a 4-byte field containing a binary count of the
number of data records unloaded or loaded for this file. Control,
header, and trailer records are not included. If the load was
unsuccessful, this field contains X’FFFF’.

Considerations
♦ The Load function compares the Record Count field to the number of

records it loaded. Any discrepancy in the count produces an error
message.

♦ When you create files, you must include a file trailer record. The
Record Count field must be accurate.

Chapter 10 Coding the Version 1 Unload and Load functions

190 P26-6260-63

Examples of Unload, Load, and Modify functions
Two examples illustrate how to use the Unload, Load, and Modify
functions. The first example shows how to unload and reload all the files
in the Burry’s database. The second example shows how to unload,
change the structure, and reload four of the files: two primary and two
related. The change in structure shows how to use the *FILL parameter
to add and delete elements in the files. Both examples illustrate when to
clear linkpaths. The second example also shows how to use the Modify
function to clear a linkpath to a file that was not unloaded.

Since it is necessary to depopulate and repopulate files when you unload
and reload them, those steps are shown in both examples. Since the
intention here is to reload immediately, the examples show the index files
depopulated before unloading. If you are unloading to get a backup copy
that you may never reload, you do not need to depopulate. If you ever
want to reload the backup copy, you must depopulate first.

To help you understand the examples, the following figure shows the files
in the Burry’s database. The tables that follow this figure show the files’
internal schema. The first table shows the four files that will change as
they are unloaded. The modified internal schema in the second table
shows the four changed files as they are loaded.

The description of the Burry’s database files may not match those on
your release of SUPRA. Therefore, do not use them as a basis for
decisions you make about Burry’s. In addition, these descriptions are not
complete; they contain only the information you need to unload and load.

Examples of Unload, Load, and Modify functions

DBA Utilities User’s Guide 191

= Primary

= Related

= Index

E$RG
Region

E$BR
Branch

E$MB
Manifest for

Branch

E$MF
Manifest

E$IN
Invoice

E$SK
Branch
Stock

E$ML
Manifest

Line

E$VS
Vendor
Stock

E$CU
Customer

E$IL
Invoice

Line

E$PD
Product

E$PL
PO
Line

E$SU
Supplier

E$ST
Structure

E$PF
Product
Group

E$PO
Purchase

Order

E$XA E$XF E$XP

SK01
SK02

SK01
SK02

SK01
SK02

SK01
SK02

LK01

SK01

SK01
SK02

LK01
(HD)

LK01 LK03

SK01 LK01 LK02 LK01 SK01

SK01 LK01

Descriptions of the files in the preceding figure are listed alphabetically in
the following table so you can refer to them easily. The files whose
structures change are included in the second table where additional
information is given.

Chapter 10 Coding the Version 1 Unload and Load functions

192 P26-6260-63

The following table lists the internal schema of the Burry’s database:

Name
of file

Type of file

Physical fields

Length of
physical fields

Name of
secondary keys

E$BR Primary E$BRROOT
E$BRCTRL
E$BRLK01
E$BRNAME
E$BRADDR
E$BRCITY
E$BRSTAT
E$BRZIPC
E$BRREGN
E$BRDRTE
E$BRSALQ
E$BRSTFQ

8
4
8
20
20
13
2
5
3
2
9
5

E$BRSK01

E$CU Primary E$CUROOT
E$CUCTRL
E$CUNAME
E$CUADDR
E$CUCITY
E$CUSTAT
E$CUZIPC
E$CUCLAS
E$CUCRAT
E$CUCLIM
E$CUBRAN

8
6
20
20
13
2
5
2
2
9
4

E$CUSK01
E$CUSK02

E$IL Related E$ILE$IN
E$ILLK01
EILEPD
E$ILQNTY
E$ILPRCE

4
8
9
5
9

E$ILSK01

Examples of Unload, Load, and Modify functions

DBA Utilities User’s Guide 193

Name
of file

Type of file

Physical fields

Length of
physical fields

Name of
secondary keys

E$IN Related E$INROOT
E$INCTRL
E$INLK01
E$INLK04
E$INSLMN
E$INTOTL
E$INBRAN
E$INDATE
E$INCUST

8
4
8
8
4
9
4
5
6

E$INSK01
E$INSK02

E$MB Related E$MBE$BR
E$MBLK01
EMBEMF
E$MBFILL

4
8
5
4

none

E$MF Primary E$MFROOT
E$MFCTRL
E$MFLK01
E$MFTOTL
E$MFBRAN
E$MFDATE

8
5
8
9
4
5

none

E$ML Related E$MLE$MF
E$MLLK01
EMLEPD
E$MLQNTY
E$MLVLUE

5
8
9
5
9

E$MLSK01

E$PG Primary E$PGROOT
E$PGCTRL
E$PGDESC

8
2
30

none

Chapter 10 Coding the Version 1 Unload and Load functions

194 P26-6260-63

Name
of file

Type of file

Physical fields

Length of
physical fields

Name of
secondary keys

E$RG Primary E$RGROOT
E$RGCTRL
E$RGNAME

8
3
20

E$SK Related E$SKE$BR
ESKEPD
E$SKLK03
E$SKQNTY
E$SKBINL
E$SKSYTD

4
9
8
5
5
9

E$SKSK01

E$SU Primary E$SUROOT
E$SUCTRL
E$SULK01
E$SUNAME
E$SUADDR
E$SUCITY
E$SUSTAT
E$SUZIPC

8
6
8
20
20
13
2
5

E$SUSK01

E$VS Primary E$VSROOT
E$VSCTRL
EVSESU
EVSEPD
E$VSNUMB
E$VSVCST

8
15

E$VSSK01
E$VSSK02

To see the change in structure, you need additional information about the
files: the logical record length, total logical records, type of physical field,
and number of decimal places. The type of field can be binary,
character, or zoned decimal, which is shown as B, C, and Z in the
following table.

Examples of Unload, Load, and Modify functions

DBA Utilities User’s Guide 195

The following table shows the internal schema of files before unloading:

Name
of file

Type
of file

Physical
fields

Length of
physical
fields

Type of
physical
field

Decimal

Name of
secondary
keys

E$PD Primary E$PDROOT
E$PDCTRL
E$PDLK01
E$PDLK02
E$PDLK03
E$PDDESC
E$PDWQTY
E$PDPRCE
E$PDPGRP

8
9
8
8
8
30
5
9
2

B
C
B
B
B
C
Z
Z
C

0
0
0
0
0
0
0
2
0

E$PDLK01

LOGICAL RECORD LENGTH = 87
TOTAL LOGICAL RECORDS = 484
E$PO Primary E$POROOT

E$POCTRL
E$POLK01
E$POTOTL
E$PODATE

8
6
8
9
5

B
C
B
Z
Z

0
0
0
2
0

none

LOGICAL RECORD LENGTH = 36
TOTAL LOGICAL RECORDS = 1177
E$ST Related E$STASSM

E$PDLK01
E$STCOMP
E$PDLK02
E$STQNTY

9
8
9
8
5

C
B
C
B
Z

0
0
0
0
0

none

LOGICAL RECORD LENGTH = 39
TOTAL LOGICAL RECORDS = 1078

Chapter 10 Coding the Version 1 Unload and Load functions

196 P26-6260-63

Name
of file

Type
of file

Physical
fields

Length of
physical
fields

Type of
physical
field

Decimal

Name of
secondary
keys

E$PL Coded
Related

Base
Portion

 E$PLCODE
EPLEPO
E$POLK01
E$PLDATA

2
6
8
31

C
C
B
C

0
0
0
0

E$PLSK01
E$PLSK01

LOGICAL RECORD LENGTH = 47
HD portion
redefines
E$PLDATA

EPLESU
E$SULK01
E$PLDATE
E$PLFILL

6
8
5
12

C
B
Z
C

0
0
0
0

LOGICAL RECORD LENGTH of redefined portion = 31
LN portion
redefines
E$PLDATA

EPLESU
EPLEPD
E$PLCOST
E$PLFILL

9
5
9
8

C
Z
Z
C

0
0
2
0

LOGICAL RECORD LENGTH of redefined portion = 31
PD portion
redefines
E$PLDATA

E$PLDELN
E$PLDELD
E$PLDELQ
E$PLDELP
E$PLFILR

2
5
5
9
10

B
Z
Z
C
C

0
0
0
0
0

LOGICAL RECORD LENGTH of redefined portion = 31
TOTAL LOGICAL RECORDS = 902

Examples of Unload, Load, and Modify functions

DBA Utilities User’s Guide 197

The following table shows the internal schema of the files after
modification. Asterisks mark the changes.

Name
of file

Type
of file

Physical
fields

Length of
physical
fields

Type of
physical
field

Decimal

Name of
secondary
keys

E$PD

*
*
*

Primary E$PDROOT
E$PDCTRL
E$PDLK01
E$PDLK02
E$PDLK03
E$PDDESC
E$PDWQTY
E$PDPRCE
E$PDPGRP
E#PDDES2

8
9
8
8
8
30
5
7
12
20

B
C
B
B
B
C
Z
Z
C
C

0
0
0
0
0
0
0
0
0
0

E$PDLK01

* LOGICAL RECORD LENGTH = 115
 TOTAL LOGICAL RECORDS = 484
E$PO Primary E$POROOT

E$POCTRL
E$POLK01
E$POTOTL
E$PODATE

8
6
8
9
5

B
C
B
Z
Z

0
0
0
2
0

* LOGICAL RECORD LENGTH = 36
 TOTAL LOGICAL RECORDS = 1200
E$ST

*
*

Related E$STASSM
E$PDLK01
E$STCOMP
E$PDLK02
E$STQNTY
E$STCOMM

9
8
9
8
5
20

C
B
C
B
Z
C

0
0
0
0
0
0

* LOGICAL RECORD LENGTH = 59
 TOTAL LOGICAL RECORDS = 1078

Chapter 10 Coding the Version 1 Unload and Load functions

198 P26-6260-63

Name
of file

Type of
file

Physical
fields

Length of
physical
fields

Type of
physical
field

Decimal

Name of
secondary
keys

E$PL Coded
Related

Base
Portion

 E$PLCODE
EPLEPO
E$POLK01
E$PLDATA

2
6
8
31

C
C
B
C

0
0
0
0

E$PLSK01
E$PLSK01

 LOGICAL RECORD LENGTH = 47
HD portion
redefines
E$PLDATA

EPLESU
E$SULK01
E$PLDATE
E$PLFILL

6
8
5
12

C
B
Z
C

0
0
0
0

 LOGICAL RECORD LENGTH of redefined portion = 31
LN portion
redefines
E$PLDATA

EPLESU
EPLEPD
E$PLCOST
E$PLFILL

9
5
9
8

C
Z
Z
C

0
0
2
0

 LOGICAL RECORD LENGTH of redefined portion = 31
PD portion
redefines
E$PLDATA
*

*

E$PLDELN
E$PLDELD

E$PLDELP
E$PLFILR

2
5

9
15

B
Z

C
C

0
0

0
0

 LOGICAL RECORD LENGTH of redefined portion = 31
* TOTAL LOGICAL RECORDS = 950

Examples of Unload, Load, and Modify functions

DBA Utilities User’s Guide 199

Example 1—Unloading and loading all of the Burry’s database
files

You unload and reload all of your files to improve performance after many
updates have changed the structure of the files. You can determine
when you need to unload in two ways:

♦ When your applications begin finding broken linkpath chains.

♦ When your files are no longer structured for best performance. For
example, your primary files have many out-of-block synonyms. You
can determine if you have structural degradation by executing the
File Statistics function regularly.

Unloading and reloading files have the following benefits:

♦ Repairing broken linkpath chains.

♦ Reorganizing the synonym chains in primary files to minimize the
number of out-of-block synonyms.

♦ Reorganizing the linkpath chains in related files to optimize access
along the primary (or access) linkpath.

♦ Reorganizing the secondary key tree structure in the index files.

The last benefit is actually a result of depopulating and repopulating—
steps you must take before and after you unload and load. You execute
four functions when you unload and load: the Depopulate, Unload, Load,
and Sorted-Populate functions.

Chapter 10 Coding the Version 1 Unload and Load functions

200 P26-6260-63

UCL samples
Before you unload, you must depopulate all your secondary keys. The
following UCL is for the Depopulate function:
CONTROL(BEGIN)

*

 ENV-DESC (BURRYENN)

 SCHEMA (BURRYSCH)

LIST (ALL)

 DATA-FORMAT (HEX CHAR)

 DIAGNOSTICS (EXTENDED)

*

FUNCTION(DEPOPULATE)

 STATISTICS (ALL)

 FILE (E$BR)

 FILE (E$CU)

 FILE (E$IL)

 FILE (E$IN)

 FILE (E$ML)

 FILE (E$PD)

 FILE (E$PL)

 FILE (E$SK)

 FILE (E$SU)

 FILE (E$VS)

*

CONTROL(END)

Examples of Unload, Load, and Modify functions

DBA Utilities User’s Guide 201

After you depopulate secondary keys, you can unload your files. The
following UCL unloads all the Burry’s database files:
CONTROL(BEGIN)

*

 ENV-DESC (BURRYENN)

 SCHEMA (BURRYSCH)

LIST (ALL)

 DATA-FORMAT (HEX CHAR)

 DATA-FILE (CSUDATA)

 DEVICE (DISK)

*

FUNCTION(UNLOAD)

*

**** PRIMARY FILES ****

 FILE (E$BR)

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$CU)

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$IN)

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$RG)

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$MF)

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$PD)

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$VS)

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$SU)

 RECORD(ALL)

 ELEMENT(ALL)

Chapter 10 Coding the Version 1 Unload and Load functions

202 P26-6260-63

 FILE (E$PO)

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$PG)

 RECORD(ALL)

 ELEMENT(ALL)

*

**** RELATED FILES ****

 FILE (E$IL)

 LINKPATH()

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$SK)

 LINKPATH()

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$MB)

 LINKPATH()

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$ML)

 LINKPATH()

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$ST)

 LINKPATH()

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$PL)

 LINKPATH()

 RECORD(ALL)

 ELEMENT(ALL)

*

CONTROL(END)

Examples of Unload, Load, and Modify functions

DBA Utilities User’s Guide 203

After you unload your files, you can reload them. The following UCL
reloads all Burry’s database files and clears all linkpaths:
CONTROL(BEGIN)

*

 ENV-DESC (BURRYENN)

 SCHEMA (BURRYSCH)

LIST (ALL)

 DATA-FORMAT (HEX CHAR)

 DATA-FILE (CSUDATA)

 DEVICE (DISK)

*

FUNCTION(LOAD)

*

**** PRIMARY FILES ****

 FILE (E$BR)

 CLEAR-LINKS(LK01)

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$CU)

 CLEAR-LINKS()

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$IN)

 CLEAR-LINKS(LK01)

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$RG)

 CLEAR-LINKS()

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$MF)

 CLEAR-LINKS(LK01)

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$PD)

 CLEAR-LINKS(LK01,LK02,LK03)

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$VS)

 CLEAR-LINKS()

 RECORD(ALL)

 ELEMENT(ALL)

Chapter 10 Coding the Version 1 Unload and Load functions

204 P26-6260-63

 FILE (E$SU)

 CLEAR-LINKS(LK01)

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$PO)

 CLEAR-LINKS(LK01)

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$PG)

 CLEAR-LINKS()

 RECORD(ALL)

 ELEMENT(ALL)

*

**** RELATED FILES ****

 FILE (E$IL)

 LINKPATH()

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$SK)

 LINKPATH()

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$MB)

 LINKPATH()

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$ML)

 LINKPATH()

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$ST)

 LINKPATH()

 RECORD(ALL)

 ELEMENT(ALL)

 FILE (E$PL)

 LINKPATH()

 RECORD(ALL)

 ELEMENT(ALL)

*

CONTROL(END)

Examples of Unload, Load, and Modify functions

DBA Utilities User’s Guide 205

After you reload your files, you can repopulate your index files with
secondary keys. The following UCL is for the Sorted-Populate function:
CONTROL(BEGIN)

*

 ENV-DESC (BURRYENN)

 SCHEMA (BURRYSCH)

LIST (ALL)

 DATA-FORMAT (HEX CHAR)

 DIAGNOSTICS (EXTENDED)

*

FUNCTION(SORTED-POPULATE)

 STATISTICS (ALL)

 FILE (E$BR)

 FILE (E$CU)

 FILE (E$IL)

 FILE (E$IN)

 FILE (E$ML)

 FILE (E$PD)

 FILE (E$PL)

 FILE (E$SK)

 FILE (E$SU)

 FILE (E$VS)

*

CONTROL(END)

Chapter 10 Coding the Version 1 Unload and Load functions

206 P26-6260-63

Sample listing
The following listing shows the output you receive as a result of the
sample UCL:

CSUL0101I : COMMENCING COMMAND VALIDATION.

 1 CONTROL(BEGIN)

 2 *

 3 ENV-DESC (BURRYENN)

 4 SCHEMA (BURRYSCH)

 5 LIST (ALL)

 6 DATA-FORMAT (HEX CHAR)

 7 DATA-FILE (CSUDATA)

 8 DEVICE (DISK)

 9 *

 10 FUNCTION(UNLOAD)

 11 *

 12 **** PRIMARY FILES ****

 13 FILE (E$BR)

 14 RECORD(ALL)

 15 ELEMENT(ALL)

 16 FILE (E$CU)

 17 RECORD(ALL)

 18 ELEMENT(ALL)

 19 FILE (E$IN)

 20 RECORD(ALL)

 21 ELEMENT(ALL)

 22 FILE (E$RG)

 23 RECORD(ALL)

 24 ELEMENT(ALL)

 25 FILE (E$MF)

 26 RECORD(ALL)

 27 ELEMENT(ALL)

 28 FILE (E$PD)

 29 RECORD(ALL)

 30 ELEMENT(ALL)

 31 FILE (E$VS)

 32 RECORD(ALL)

 33 ELEMENT(ALL)

 34 FILE (E$SU)

 35 RECORD(ALL)

 36 ELEMENT(ALL)

Examples of Unload, Load, and Modify functions

DBA Utilities User’s Guide 207

 37 FILE (E$PO)

 38 RECORD(ALL)

 39 ELEMENT(ALL)

 40 FILE (E$PG)

 41 RECORD(ALL)

 42 ELEMENT(ALL)

 43 *

 44 **** RELATED FILES ****

 45 FILE (E$IL)

 46 LINKPATH()

 47 RECORD(ALL)

 48 ELEMENT(ALL)

 49 FILE (E$SK)

 50 LINKPATH()

 51 RECORD(ALL)

 52 ELEMENT(ALL)

 53 FILE (E$MB)

 54 LINKPATH()

 55 RECORD(ALL)

 56 ELEMENT(ALL)

 57 FILE (E$ML)

 58 LINKPATH()

 59 RECORD(ALL)

 60 ELEMENT(ALL)

 61 FILE (E$ST)

 62 LINKPATH()

 63 RECORD(ALL)

 64 ELEMENT(ALL)

 65 FILE (E$PL)

 66 LINKPATH()

 67 RECORD(ALL)

 68 ELEMENT(ALL)

 69 *

 70 CONTROL(END)

CONTENTS OF SOURCE LINES OUTSIDE 1…72 MARGINS IGNORED.

 0 SYNTAX ERRORS DETECTED.

 70 COMMAND LINES READ.

 1 CONTROL SECTIONS ANALYZED.

 1 FUNCTION COMMANDS ANALYZED.

Chapter 10 Coding the Version 1 Unload and Load functions

208 P26-6260-63

CSUL0102I : COMMENCING COMMAND EXECUTION.

CSUL0301I : COMMENCING CONTROL SECTION USING ENVIRONMENT DESCRIPTION BURRYENN AND SCHEMA BURRYSCH.

CSUL0302I : COMMENCING UNLOAD PROCESS.

CSUL0311I : COMMENCING UNLOAD AGAINST FILE E$BR.

CSUL1703I : UNLOADING PRIMARY FILE E$BR TO DATA FILE CREATED ON 10/31/88 AT 14:39:47.

CSUL1704I : 39 DATA RECORDS WRITTEN TO DATA FILE DURING UNLOAD PROCESSING.

CSUL0349I : END-OF-FILE HAS BEEN ENCOUNTERED ON THE CURRENT FILE.

CSUL0321I : UNLOAD PROCESSING AGAINST FILE E$BR TERMINATING NORMALLY

CSUL0311I : COMMENCING UNLOAD AGAINST FILE E$CU.

CSUL1703I : UNLOADING PRIMARY FILE E$CU TO DATA FILE CREATED ON 10/31/88 AT 14:39:47.

CSUL1704I : 43 DATA RECORDS WRITTEN TO DATA FILE DURING UNLOAD PROCESSING.

CSUL0349I : END-OF-FILE HAS BEEN ENCOUNTERED ON THE CURRENT FILE.

CSUL0321I : UNLOAD PROCESSING AGAINST FILE E$CU TERMINATING NORMALLY

CSUL0311I : COMMENCING UNLOAD AGAINST FILE E$IN.

CSUL1703I : UNLOADING PRIMARY FILE E$IN TO DATA FILE CREATED ON 10/31/88 AT 14:39:47.

CSUL1704I : 96 DATA RECORDS WRITTEN TO DATA FILE DURING UNLOAD PROCESSING.

CSUL0349I : END-OF-FILE HAS BEEN ENCOUNTERED ON THE CURRENT FILE.

CSUL0321I : UNLOAD PROCESSING AGAINST FILE E$IN TERMINATING NORMALLY

 .

 .

 .

 FUNCTION = UNLOAD FILE = E$ST

CSUL0311I : COMMENCING UNLOAD AGAINST FILE E$ST.

CSUL1703I : UNLOADING RELATED FILE E$ST TO DATA FILE CREATED ON 10/31/88 AT 14:40:24 USING
LINKPATH E$PDLK01.

CSUL1704I : 67 DATA RECORDS WRITTEN TO DATA FILE DURING UNLOAD PROCESSING.

CSUL0349I : END-OF-FILE HAS BEEN ENCOUNTERED ON THE CURRENT FILE.

CSUL0321I : UNLOAD PROCESSING AGAINST FILE E$ST TERMINATING NORMALLY

CSUL0303I : UNLOAD PROCESS TERMINATING

CSUL0305I : CONTROL SECTION TERMINATING

CSUL0306I : SUMMARY DATA FOR TERMINATING CONTROL SECTION:

CSUL0361I : NUMBER OF READS ISSUED TO THE PDM = 3699

CSUL0362I : NUMBER OF RECORDS RECEIVED FROM THE PDM = 3683

CSUL0363I : NUMBER OF RECORDS PROCESSED = 3683

CSUL0364I : NUMBER OF RECORDS PRINTED = 0

CSUL0365I : NUMBER OF RECORDS UPDATED = 0

CSUL0366I : NUMBER OF WRITES ISSUED TO PDM = 0

CSUL0307I : ALL CONTROL SECTIONS PROCESSED.

Examples of Unload, Load, and Modify functions

DBA Utilities User’s Guide 209

CSUL0308I : CUMULATIVE SUMMARY DATA FOR ALL CONTROL SECTIONS :

CSUL0361I : NUMBER OF READS ISSUED TO THE PDM = 3699

CSUL0362I : NUMBER OF RECORDS RECEIVED FROM THE PDM = 3683

CSUL0363I : NUMBER OF RECORDS PROCESSED = 3683

CSUL0364I : NUMBER OF RECORDS PRINTED = 0

CSUL0365I : NUMBER OF RECORDS UPDATED = 0

CSUL0366I : NUMBER OF WRITES ISSUED TO PDM = 0

CSUL0103I : DATA BASE UTILITIES SUCCESSFUL TERMINATION.

CSUL0101I : COMMENCING COMMAND VALIDATION.

 1 CONTROL(BEGIN)

 2 *

 3 ENV-DESC (BURRYENN)

 4 SCHEMA (BURRYSCH)

 5 LIST (ALL)

 6 DATA-FORMAT (HEX CHAR)

 7 DATA-FILE (CSUDATA)

 8 DEVICE (DISK)

 9 *

 10 FUNCTION(LOAD)

 11 *

 12 **** PRIMARY FILES ****

 13 FILE (E$BR)

 14 CLEAR-LINKS(LK01)

 15 RECORD(ALL)

 16 ELEMENT(ALL)

 17 FILE (E$CU)

 18 CLEAR-LINKS()

 19 RECORD(ALL)

 20 ELEMENT(ALL)

 21 FILE (E$IN)

 22 CLEAR-LINKS(LK01)

 23 RECORD(ALL)

 24 ELEMENT(ALL)

 25 FILE (E$RG)

 26 CLEAR-LINKS()

 27 RECORD(ALL)

 28 ELEMENT(ALL)

 29 FILE (E$MF)

 30 CLEAR-LINKS(LK01)

 31 RECORD(ALL)

 32 ELEMENT(ALL)

Chapter 10 Coding the Version 1 Unload and Load functions

210 P26-6260-63

 33 FILE (E$PD)

 34 CLEAR-LINKS(LK01,LK02,LK03)

 35 RECORD(ALL)

 36 ELEMENT(ALL)

 37 FILE (E$VS)

 38 CLEAR-LINKS()

 39 RECORD(ALL)

 40 ELEMENT(ALL)

 41 FILE (E$SU)

 42 CLEAR-LINKS(LK01)

 43 RECORD(ALL)

 44 ELEMENT(ALL)

 45 FILE (E$PO)

 46 CLEAR-LINKS(LK01)

 47 RECORD(ALL)

 48 ELEMENT(ALL)

 49 FILE (E$PG)

 50 CLEAR-LINKS()

 51 RECORD(ALL)

 52 ELEMENT(ALL)

 53 *

 54 **** RELATED FILES ****

 55 FILE (E$IL)

 56 LINKPATH()

 57 RECORD(ALL)

 58 ELEMENT(ALL)

 59 FILE (E$SK)

 60 LINKPATH()

 61 RECORD(ALL)

 62 ELEMENT(ALL)

 63 FILE (E$MB)

 64 LINKPATH()

 65 RECORD(ALL)

 66 ELEMENT(ALL)

 67 FILE (E$ML)

 68 LINKPATH()

 69 RECORD(ALL)

 70 ELEMENT(ALL)

 71 FILE (E$ST)

 72 LINKPATH()

 73 RECORD(ALL)

 74 ELEMENT(ALL)

 75 FILE (E$PL)

 76 LINKPATH()

 77 RECORD(ALL)

 78 ELEMENT(ALL)

 78 *

 80 CONTROL(END)

CONTENTS OF SOURCE LINES OUTSIDE 1…72 MARGINS IGNORED.

 0 SYNTAX ERRORS DETECTED.

 80 COMMAND LINES READ.

 1 CONTROL SECTIONS ANALYZED.

 1 FUNCTION COMMANDS ANALYZED.

Examples of Unload, Load, and Modify functions

DBA Utilities User’s Guide 211

CSUL0102I : COMMENCING COMMAND EXECUTION.

CSUL0301I : COMMENCING CONTROL SECTION USING ENVIRONMENT DESCRIPTION BURRYENN AND SCHEMA BURRYSCH.

CSUL0302I : COMMENCING LOAD PROCESS.

CSUL0311I : COMMENCING LOAD AGAINST FILE E$BR.

CSUL1300I : LOADING FILES WHICH WERE UNLOADED ON 10/31/88 AT 14:39:46.

 USING UNLOAD SCHEMA BURRYSCH AND UNLOAD ENVIRONMENT DESCRIPTION BURRYENN .

 FILES ARE BEING LOADED USING SCHEMA BURRYSCH AND ENVIRONMENT DESCRIPTION BURRYENN .

CSUL1302I : 39 DATA RECORDS READ FROM DATA FILE DURING LOAD PROCESSING.

CSUL2800I : FILE E$BR IS NOW FORMATTED.

CSUL0321I : LOAD PROCESSING AGAINST FILE E$BR TERMINATING NORMALLY

 FUNCTION = LOAD FILE = E$CU

CSUL0311I : COMMENCING LOAD AGAINST FILE E$CU.

CSUL1302I : 43 DATA RECORDS READ FROM DATA FILE DURING LOAD PROCESSING.

CSUL2800I : FILE E$CU IS NOW FORMATTED.

CSUL0321I : LOAD PROCESSING AGAINST FILE E$CU TERMINATING NORMALLY

 .

 .

 .

 FUNCTION = LOAD FILE = E$SK

CSUL0311I : COMMENCING LOAD AGAINST FILE E$SK.

CSUL1302I : 2628 DATA RECORDS READ FROM DATA FILE DURING LOAD PROCESSING.

CSUL2800I : FILE E$SK IS NOW FORMATTED.

CSUL0321I : LOAD PROCESSING AGAINST FILE E$SK TERMINATING NORMALLY

 FUNCTION = LOAD FILE = E$ST

CSUL0311I : COMMENCING LOAD AGAINST FILE E$ST.

CSUL1302I : 67 DATA RECORDS READ FROM DATA FILE DURING LOAD PROCESSING.

CSUL2800I : FILE E$ST IS NOW FORMATTED.

CSUL0321I : LOAD PROCESSING AGAINST FILE E$ST TERMINATING NORMALLY

CSUL0303I : LOAD PROCESS TERMINATING

CSUL0305I : CONTROL SECTION TERMINATING

CSUL0306I : SUMMARY DATA FOR TERMINATING CONTROL SECTION:

CSUL0361I : NUMBER OF READS ISSUED TO THE PDM = 0

CSUL0362I : NUMBER OF RECORDS RECEIVED FROM THE PDM = 0

CSUL0363I : NUMBER OF RECORDS PROCESSED = 0

CSUL0364I : NUMBER OF RECORDS PRINTED = 0

CSUL0365I : NUMBER OF RECORDS UPDATED = 0

CSUL0366I : NUMBER OF WRITES ISSUED TO PDM = 3683

CSUL0307I : ALL CONTROL SECTIONS PROCESSED.

CSUL0308I : CUMULATIVE SUMMARY DATA FOR ALL CONTROL SECTIONS :

CSUL0361I : NUMBER OF READS ISSUED TO THE PDM = 0

CSUL0362I : NUMBER OF RECORDS RECEIVED FROM THE PDM = 0

CSUL0363I : NUMBER OF RECORDS PROCESSED = 0

CSUL0364I : NUMBER OF RECORDS PRINTED = 0

CSUL0365I : NUMBER OF RECORDS UPDATED = 0

CSUL0366I : NUMBER OF WRITES ISSUED TO PDM = 3683

Chapter 10 Coding the Version 1 Unload and Load functions

212 P26-6260-63

Example 2—Unloading, changing and loading files
You can unload and reload to make changes to the structure of some
files. In addition to changing the structure of the file, you also gain the
same benefits as when you unload and reload them; that is, you repair
broken linkpath chains, minimize the number of out-of-block synonyms,
optimize access along primary linkpaths, and reorganize tree structures.

In this example, you are making three changes to the primary file, E$PD:

♦ Decreasing the size of element E$PDPRCE from 9 to 7 bytes by
removing the two zoned decimals from the front of the element.

♦ Adding the 20-character element E$PDDES2 to the end of the
record.

♦ Increasing the size of element E$PDPGRP from 2 to 12 bytes by
adding 10 characters to the front.

You are making one change to the related file E$ST: adding a
20-character element E$STCOMM to the end.

You are making one change to the primary file E$PO: increasing its size
from 1177 to 1200 total logical records.

You are making two changes to the primary file E$PL:

♦ Increasing its size from 902 to 950 total logical records.

♦ In the PD portion, deleting the element E$PLDELQ, which has five
zoned decimals, and increasing the corresponding fill element,
E$PLFILL, from 10 to 15 characters. You are leaving the HD and LN
portions the same.

To make these changes, you perform the same steps as in the first
example where you unloaded all files: depopulate, unload, load, and
populate. However, in this example, you add another step before the
Load function: you clear the linkpath to the file E$SU with the Modify
function. Thus, you execute five functions when you unload and load
only some of the files. The UCL for each function follows.

Examples of Unload, Load, and Modify functions

DBA Utilities User’s Guide 213

Depopulating files
The first step is to depopulate the secondary keys for the files E$PD and
E$PL. There are no secondary keys for the files E$ST and E$PO. The
following UCL is for the Depopulate function:
CONTROL(BEGIN)

*

 ENV-DESC (BURRYENN)

 SCHEMA (BURRYOLD)

 LIST (ALL)

 DATA-FORMAT (HEX CHAR)

 DIAGNOSTICS (EXTENDED)

*

FUNCTION(DEPOPULATE)

 STATISTICS (ALL)

 FILE (E$PD)

 FILE (E$PL)

*

CONTROL(END)

Chapter 10 Coding the Version 1 Unload and Load functions

214 P26-6260-63

Unloading files
The second step is to unload the four files.

To unload E$PD, perform these steps:

♦ Clear linkpaths LK01 and LK02. Do not clear LK03 because it
connects to a file that is not unloaded, E$SK. To clear linkpaths
LK01 and LK02 implicitly, do not include them in the element list.
Although not shown in this example, you could include the linkpaths
in the element list and code them in the CLEAR-LINKS statement to
clear them explicitly.

♦ Increase the size of E$PDPGRP by adding *FILL=10 to the element
list.

♦ You do not need to code the *FILL parameter to add element
E$PDDES2, because you will add it to the end of the element list in
the Load function’s UCL.

To unload E$PO, code ELEMENT (ALL) because you are not changing
any elements. The linkpath is cleared in the Load step.

To unload E$ST, list it in the FILE statement. You do not need to code a
*FILL parameter to add the E$STCOMM element because you will add it
to the end of the element list in the Load function’s UCL.

To unload E$PL, perform these steps:

♦ Either list the elements in the HD and LN records, or code ALL in the
element list. This example shows both ways.

♦ Increase the size of E$PLFILR by adding *FILL=05.

♦ Delete the element E$PLDELQ by not including it in the element list.

Examples of Unload, Load, and Modify functions

DBA Utilities User’s Guide 215

The following UCL shows these steps:
CONTROL(BEGIN)

* ENV-DESC (BURRYENN)

 SCHEMA (BURRYOLD)

 LIST (ALL)

 DATA-FORMAT (HEX-CHAR)

 DATA-FILE (CSUDATA)

 DEVICE (DISK)

* FUNCTION(UNLOAD)

*

**** PRIMARY FILES ****

 FILE(E$PD)

 RECORD(ALL)

 ELEMENT(E$PDCTRL,E$PDLK03,E$PDDESC,E$PDWQTY,E$PDPRCE,*FILL=10,E$PDPGRP)

 FILE(E$PO)

 RECORD(ALL)

 ELEMENT(ALL)

*

**** RELATED FILES ****

 FILE(E$ST)

 LINKPATH(E$PDLK01)

 RECORD(ALL)

 ELEMENT(E$STASSM,E$STQNTY,E$STCOMP)

 FILE(E$PL)

 LINKPATH(E$POLK01)

 RECORD(HD)

 ELEMENT(EPLEPO,E$PLCODE,E$PLESU,EPLDATE,E$PLFILL)

 RECORD(LN)

 ELEMENT(ALL)

 RECORD(PD)

 ELEMENT(EPLEPO,E$PLCODE,E$PLDELN,E$PLDELD,E$PLDELP,*FILL=05,E$PLFILR)

*

CONTROL(END)

Chapter 10 Coding the Version 1 Unload and Load functions

216 P26-6260-63

Clearing the linkpath to a file that was not unloaded
The third step is to clear the linkpath from the file E$PL to the file E$SU.
When you unload and load the file E$PL, the linkpath from E$PL to
EPO, EPOLK01, is cleared so that it can accept the newly created
linkpath information that the Load function inserts. However, since you
do not unload or load E$SU, use the Modify function to clear the linkpath
E$SULK01. The following UCL shows how to code the Modify function:
CONTROL(BEGIN)

*

 ENV-DESC (BURRYENN)

 SCHEMA (BURRYSCH)

 LIST(NONE)

*

FUNCTION(MODIFY)

*

 FILE(E$SU)

 QUALIFIER(SERIAL)

 RECORD(ALL)

 ELEMENT(E$SULK01)

 DATA(. END.)

*

CONTROL(END)

Loading files
The fourth step is to load the four files.

To load E$PD, use the same element list you used in the unload step.

♦ Add the element E$PDDES2 to the element list.

♦ Add *FILL=02 to decrease the size of the E$PDPRCE element.

To load the E$PO file, complete these steps:

♦ Code ELEMENT (ALL) because you are not changing any elements.

♦ Because you coded ALL for the element list, code LK01 in the
BLANK-LINKS statement to clear the linkpath.

When you load E$ST, code the element E$STCOMM at the end of the
element list.

When you load E$PL, remove *FILL from the element list.

Examples of Unload, Load, and Modify functions

DBA Utilities User’s Guide 217

The following UCL illustrates these steps:
CONTROL(BEGIN)

*

ENV-DESC (BURRYENN)

 SCHEMA (BURRYSCH)

 LIST(ALL)

 DATA-FORMAT (HEX-CHAR)

 DATA-FILE (CSUDATA)

 DEVICE (DISK)

*

FUNCTION(LOAD)

*

**** PRIMARY FILES ****

 FILE(E$PD)

 RECORD(ALL)

 ELEMENT(E$PDCTRL,E$PDLK03,E$PDDESC,E$PDWQTY,*FILL=02,E$PDPRCE,E$PDPGRP,E$PDDES2)

 FILE(E$PO)

 CLEAR-LINKS(LK01)

 RECORD(ALL)

 ELEMENT(ALL)

*

**** RELATED FILES ****

 FILE(E$ST)

 LINKPATH(E$PDLK01)

 RECORD(ALL)

 ELEMENT(E$STASSM,E$STQNTY,E$STCOMP,E$STCOMM)

 FILE(E$PL)

 LINKPATH(E$POLK01)

 RECORD(HD)

 ELEMENT(ESPEPO, E$SPCODE, E$SPESU, ESPDATE, E$SPFILL)

 RECORD(LN)

 ELEMENT(ALL)

 RECORD(PD)

 ELEMENT(EPLEPO,E$PLCODE,E$PLDELN,E$PLDELD,E$PLDELP,E$PLFILR)

*

CONTROL(END)

Chapter 10 Coding the Version 1 Unload and Load functions

218 P26-6260-63

Populating files
The last step is to populate the secondary keys for the files E$PD and
E$PL. The other two files had no secondary keys. The following UCL
illustrates how to code the Sorted-Populate function:
CONTROL(BEGIN)

*

 ENV-DESC (BURRYENN)

 SCHEMA (BURRYSCH)

 LIST(ALL)

 DATA-FORMAT (HEX CHAR)

 DIAGNOSTICS (EXTENDED)

*

FUNCTION(SORTED-POPULATE)

 STATISTICS(ALL)

 FILE(E$PD)

 FILE(E$PL)

*

CONTROL(END)

Examples of Unload, Load, and Modify functions

DBA Utilities User’s Guide 219

Sample listing
The following listing shows the output you receive as a result of the
sample statements:

CSUL0101I : COMMENCING COMMAND VALIDATION.

 1 CONTROL(BEGIN)

 2 *

 3 ENV-DESC (BURRYENN)

 4 SCHEMA (BURRYOLD)

 5 LIST(ALL)

 6 DATA-FORMAT (HEX CHAR)

 7 DATA-FILE (CSUDATA)

 8 DEVICE (DISK)

 9 *

 10 FUNCTION(UNLOAD)

 11 *

 12 **** PRIMARY FILES ****

 13 FILE(E$PD)

 14 RECORD(ALL)

 15 ELEMENT(E$PDCTRL,E$PDLK03,E$PDDESC,E$PDWQTY,

 16 E$PDPRCE,*FILL=10,E$PDPGRP)

 17 FILE(E$PO)

 18 RECORD(ALL)

 19 ELEMENT(ALL)

 20 *

 21 **** RELATED FILES ****

 22 FILE(E$ST)

 23 LINKPATH(E$PDLK01)

 24 RECORD(ALL)

 25 ELEMENT(E$STASSM,E$STQNTY,E$STCOMP)

 26 FILE(E$PL)

 27 LINKPATH(E$POLK01)

 28 RECORD(HD)

 29 ELEMENT(EPLEPO,E$PLCODE,E$PLESU,EPLDATE,E$PLFILL)

 30 RECORD(LN)

 31 ELEMENT(ALL)

 32 RECORD(PD)

 33 ELEMENT(EPLEPO,E$PLCODE,E$PLDELN,E$PLDELD,E$PLDELP,

 34 *FILL=05,E$PLFILR)

 35 *

 36 CONTROL(END)

CONTENTS OF SOURCE LINES OUTSIDE 1..72 MARGINS IGNORED.

 0 SYNTAX ERRORS DETECTED.

 36 COMMAND LINES READ.

 1 CONTROL SECTIONS ANALYZED.

 1 FUNCTION COMMANDS ANALYZED.

Chapter 10 Coding the Version 1 Unload and Load functions

220 P26-6260-63

CSUL0102I : COMMENCING COMMAND EXECUTION.

CSUL0301I : COMMENCING CONTROL SECTION USING ENVIRONMENT DESCRIPTION BURRYENN AND SCHEMA BURRYOLD.

CSUL0302I : COMMENCING UNLOAD PROCESS.

CSUL0311I : COMMENCING UNLOAD AGAINS FILE E$PD.

CSUL1703I : UNLOADING PRIMARY FILE E$PD TO DATA FILE CREATED ON 10/31/88 AT 15:32:57.

CSUL1704I : 88 DATA RECORDS WRITTEN TO DATA FILE DURING UNLOAD PROCESSING.

CSUL0349I : END-OF-FILE HAS BEEN ENCOUNTERED ON THE CURRENT FILE

CSUL0321I : UNLOAD PROCESSING AGAINST FILE E$PD TERMINATING NORMALLY

 FUNCTION=UNLOAD FILE=E$PO

CSUL0311I : COMMENCING UNLOAD AGAINST FILE E$PO.

CSUL1703I : UNLOADING PRIMARY FILE E$PO TO DATA FILE CREATED ON 10/31/88 AT 15:32:59.

CSUL1704I : 26 DATA RECORDS WRITTEN TO DATA FILE DURING UNLOAD PROCESSING.

CSUL0349I : END-OF-FILE HAS BEEN ENCOUNTERED ON THE CURRENT FILE

CSUL0321I : UNLOAD PROCESSING AGAINST FILE E$PO TERMINATING NORMALLY

 FUNCTION=UNLOAD FILE=E$PL

CSUL0311I : COMMENCING UNLOAD AGAINST FILE E$PL.

CSUL1701I : UNLOADING RELATED FILE E$PL TO DATA FILE CREATED ON 10/31/88 AT 15:33:03 USING
LINKPATH E$POLK01.

CSUL1704I : 122 DATA RECORDS WRITTEN TO DATA FILE DURING UNLOAD PROCESSING.

CSUL0349I : END-OF-FILE HAS BEEN ENCOUNTERED ON THE CURRENT FILE

CSUL0321I : UNLOAD PROCESSING AGAINST FILE E$PL TERMINATING NORMALLY

 FUNCTION=UNLOAD FILE=E$ST

CSUL0311I : COMMENCING UNLOAD AGAINST FILE E$ST.

CSUL1701I : UNLOADING RELATED FILE E$ST TO DATA FILE CREATED ON 10/31/88 AT 15:33:05 USING
LINKPATH E$PDLK01.

CSUL1704I : 67 DATA RECORDS WRITTEN TO DATA FILE DURING UNLOAD PROCESSING.

CSUL0349I : END-OF-FILE HAS BEEN ENCOUNTERED ON THE CURRENT FILE

CSUL0321I : UNLOAD PROCESSING AGAINST FILE E$ST TERMINATING NORMALLY

CSUL0303I : UNLOAD PROCESS TERMINATING

CSUL0305I : CONTROL SECTION TERMINATING

CSUL0306I : SUMMARY DATA FOR TERMINATING CONTROL SECTION:

CSUL0361I : NUMBER OF READS ISSUED TO THE PDM = 307

CSUL0362I : NUMBER OF RECORDS RECEIVED FROM THE PDM = 303

CSUL0363I : NUMBER OF RECORDS PROCESSED = 303

CSUL0364I : NUMBER OF RECORDS PRINTED = 0

CSUL0365I : NUMBER OF RECORDS UPDATED = 0

CSUL0366I : NUMBER OF WRITES ISSUED TO PDM = 0

CSUL0307I : ALL CONTROL SECTIONS PROCESSED.

CSUL0308I : CUMULATIVE SUMMARY DATA FOR ALL CONTROL SECTIONS :

CSUL0361I : NUMBER OF READS ISSUED TO THE PDM = 307

CSUL0362I : NUMBER OF RECORDS RECEIVED FROM THE PDM = 303

CSUL0363I : NUMBER OF RECORDS PROCESSED = 303

CSUL0364I : NUMBER OF RECORDS PRINTED = 0

CSUL0365I : NUMBER OF RECORDS UPDATED = 0

CSUL0366I : NUMBER OF WRITES ISSUED TO PDM = 0

CSUL0103I : DATA BASE UTILITIES SUCCESSFUL TERMINATION.

CSUL0101I : COMMENCING COMMAND VALIDATION.

Examples of Unload, Load, and Modify functions

DBA Utilities User’s Guide 221

 1 CONTROL(BEGIN)

 2 *

 3 ENV-DESC (BURRYENN)

 4 SCHEMA (BURRYSCH)

 5 LIST(NONE)

 6 *

 7 FUNCTION(MODIFY)

 8 *

 9 FILE(E$SU)

 10 QUALIFIER(SERIAL)

 11 RECORD(ALL)

 12 ELEMENT(E$SULK01)

 13 DATA(. END.)

 14 *

 15 CONTROL(END)

CONTENTS OF SOURCE LINES OUTSIDE 1..72 MARGINS IGNORED.

 0 SYNTAX ERRORS DETECTED

 15 COMMAND LINES READ.

 1 CONTROL SECTIONS ANALYZED.

 1 FUNCTION COMMANDS ANALYZED.

CSUL0102I : COMMENCING COMMAND EXECUTION.

CSUL0301I : COMMENCING CONTROL SECTION USING ENVIRONMENT DESCRIPTION BURRYENN AND SCHEMA BURRYSCH.

CSUL0302I : COMMENCING MODIFY PROCESS.

CSUL0311I : COMMENCING MODIFY AGAINS FILE E$SU.

CSUL0349I : END-OF-FILE HAS BEEN ENCOUNTERED ON THE CURRENT FILE

CSUL0321I : MODIFY PROCESSING AGAINST FILE E$SU TERMINATING NORMALLY

CSUL0303I : MODIFY PROCESS TERMINATING

CSUL0305I : CONTROL SECTION TERMINATING

CSUL0306I : SUMMARY DATA FOR TERMINATING CONTROL SECTION:

CSUL0361I : NUMBER OF READS ISSUED TO THE PDM = 15

CSUL0362I : NUMBER OF RECORDS RECEIVED FROM THE PDM = 14

CSUL0363I : NUMBER OF RECORDS PROCESSED = 14

CSUL0364I : NUMBER OF RECORDS PRINTED = 0

CSUL0365I : NUMBER OF RECORDS UPDATED = 14

CSUL0366I : NUMBER OF WRITES ISSUED TO PDM = 14

CSUL0307I : ALL CONTROL SECTIONS PROCESSED.

CSUL0308I : CUMULATIVE SUMMARY DATA FOR ALL CONTROL SECTIONS :

CSUL0361I : NUMBER OF READS ISSUED TO THE PDM = 15

CSUL0362I : NUMBER OF RECORDS RECEIVED FROM THE PDM = 14

CSUL0363I : NUMBER OF RECORDS PROCESSED = 14

CSUL0364I : NUMBER OF RECORDS PRINTED = 0

CSUL0365I : NUMBER OF RECORDS UPDATED = 14

CSUL0366I : NUMBER OF WRITES ISSUED TO PDM = 14

CSUL0103I : DATA BASE UTILITIES SUCCESSFUL TERMINATION.

CSUL0101I : COMMENCING COMMAND VALIDATION.

Chapter 10 Coding the Version 1 Unload and Load functions

222 P26-6260-63

 1 CONTROL(BEGIN)

 2 *

 3 ENV-DESC (BURRYENN)

 4 SCHEMA (BURRYSCH)

 5 LIST(ALL)

 6 DATA-FORMAT (HEX-CHAR)

 7 DATA-FILE (CSUDATA)

 8 DEVICE (DISK)

 9 *

 10 FUNCTION(LOAD)

 11 *

 12 **** PRIMARY FILES ****

 13 FILE(E$PD)

 14 RECORD(ALL)

 15 ELEMENT(E$PDCTRL,E$PDLK03,E$PDDESC,E$PDWQTY,

 16 *FILL=02,E$PDPRCE,E$PDPGRP,E$PDDES2)

 17 FILE(E$PO)

 18 CLEAR-LINKS(LK01)

 19 RECORD(ALL)

 20 ELEMENT(ALL)

 21 *

 22 **** RELATED FILES ****

 23 FILE(E$ST)

 24 LINKPATH(E$PDLK01)

 25 RECORD(ALL)

 26 ELEMENT(E$STASSM,E$STQNTY,E$STCOMP,E$STCOMM)

 27 FILE(E$PL)

 28 LINKPATH(E$POLK01)

 29 RECORD(HD)

 30 ELEMENT(ESPEPO, E$SPCODE, E$SPESU, ESPDATE, E$SPFILL)

 31 RECORD(LN)

 32 ELEMENT(ALL)

 33 RECORD(PD)

 34 ELEMENT(EPLEPO,E$PLCODE,E$PLDELN,E$PLDELD,E$PLDELP,E$PLFILR)

 35 *

 36 CONTROL(END)

CONTENTS OF SOURCE LINES OUTSIDE 1…72 MARGINS IGNORED.

 0 SYNTAX ERRORS DETECTED.

 36 COMMAND LINES READ.

 1 CONTROL SECTIONS ANALYZED.

 1 FUNCTION COMMANDS ANALYZED.

Examples of Unload, Load, and Modify functions

DBA Utilities User’s Guide 223

CSUL0102I : COMMENCING COMMAND EXECUTION.

CSUL0301I : COMMENCING CONTROL SECTION USING ENVIRONMENT DESCRIPTION BURRYENN AND SCHEMA BURRYSCH.

CSUL0302I : COMMENCING LOAD PROCESS.

CSUL0311I : COMMENCING LOAD AGAINS FILE E$PD.

CSUL1300I : LOADING FILES WHICH WERE UNLOADED ON 10/31/88 AT 15:32:55.

 USING UNLOAD SCHEMA BURRYOLD AND UNLOAD ENVIRONMENT DESCRIPTION BURRYENN.

 FILES ARE BEING LOADED USING SCHEMA BURRYSCH AND ENVIRONMENT DESCRIPTION BURRYENN.

CSUL1302I : 88 DATA RECORDS READ FROM DATA FILE DURING LOAD PROCESSING.

CSUL2800I : FILE E$PD IS NOW FORMATTED.

CSUL0321I : LOAD PROCESSING AGAINST FILE E$PD TERMINATING NORMALLY

 FUNCTION=LOAD FILE=E$PO

CSUL0311I : COMMENCING LOAD AGAINST FILE E$PO.

CSUL1302I : 26 DATA RECORDS READ FROM DATA FILE DURING LOAD PROCESSING.

CSUL2800I : FILE E$PO IS NOW FORMATTED.

CSUL0321I : LOAD PROCESSING AGAINST FILE E$PO TERMINATING NORMALLY

 FUNCTION=LOAD FILE=E$PL

CSUL0311I : COMMENCING LOAD AGAINST FILE E$PL.

CSUL1302I : 122 DATA RECORDS READ FROM DATA FILE DURING LOAD PROCESSING.

CSUL2800I : FILE E$PL IS NOW FORMATTED.

CSUL0321I : LOAD PROCESSING AGAINST FILE E$PL TERMINATING NORMALLY

 FUNCTION=UNLOAD FILE=E$ST

CSUL0311I : COMMENCING LOAD AGAINST FILE E$ST.

CSUL1302I : 67 DATA RECORDS READ FROM DATA FILE DURING LOAD PROCESSING.

CSUL2800I : FILE E$ST IS NOW FORMATTED.

CSUL0321I : LOAD PROCESSING AGAINST FILE E$ST TERMINATING NORMALLY

CSUL0303I : LOAD PROCESS TERMINATING

CSUL0305I : CONTROL SECTION TERMINATING

CSUL0306I : SUMMARY DATA FOR TERMINATING CONTROL SECTION:

CSUL0361I : NUMBER OF READS ISSUED TO THE PDM = 0

CSUL0362I : NUMBER OF RECORDS RECEIVED FROM THE PDM = 0

CSUL0363I : NUMBER OF RECORDS PROCESSED = 0

CSUL0364I : NUMBER OF RECORDS PRINTED = 0

CSUL0365I : NUMBER OF RECORDS UPDATED = 0

CSUL0366I : NUMBER OF WRITES ISSUED TO PDM = 303

CSUL0307I : ALL CONTROL SECTIONS PROCESSED.

CSUL0308I : CUMULATIVE SUMMARY DATA FOR ALL CONTROL SECTIONS :

CSUL0361I : NUMBER OF READS ISSUED TO THE PDM = 0

CSUL0362I : NUMBER OF RECORDS RECEIVED FROM THE PDM = 0

CSUL0363I : NUMBER OF RECORDS PROCESSED = 0

CSUL0364I : NUMBER OF RECORDS PRINTED = 0

CSUL0365I : NUMBER OF RECORDS UPDATED = 0

CSUL0366I : NUMBER OF WRITES ISSUED TO PDM = 303

CSUL0103I : DATA BASE UTILITIES SUCCESSFUL TERMINATION.

Chapter 10 Coding the Version 1 Unload and Load functions

224 P26-6260-63

11
Coding the Version 2 Unload, Load, and
Insert Linkpath functions

Version 2 overview
Use the Version 2 Unload, Load, and Insert Linkpath functions if
performance is critical or you are reloading the files in a SUPRA
converted or Series 80 format. These are the only functions you may use
to convert files from the SUPRA native format to the SUPRA converted or
Series 80 format. With these functions, you may unload a file in any
format (SUPRA native, SUPRA converted, or Series 80) and then reload
the file in the same or any other format.

When you use this version of the Unload function, you must use the
Version 2 Load Function to reload. When you use the Version 1 Unload
function, you must use the Version 1 Load function to reload.

DBA Utilities User’s Guide 225

Use the Version 1 Unload and Load functions in the following situations:

♦ Performance is not critical.

♦ You are loading files in the SUPRA native format.

♦ You want to code elements in the redefined portion of a coded
related file.

♦ You want to use the UCL or other features of those functions.

To depopulate secondary keys, use the Directory Maintenance
DEPOPULATE command with the Remove parameter or the Depopulate
function described in “Coding the Depopulate function” on page 105.
After you have reloaded the files, you can repopulate secondary keys with
the Sorted-Populate function described in “Coding the Sorted-Populate
function” on page 91 or the Directory Maintenance POPULATE
command. For details on the DEPOPULATE and POPULATE
commands, refer to the SUPRA Server PDM Directory Online User's
Guide (OS/390 & VSE), P26-1260, or the SUPRA Server PDM Directory
Batch User's Guide (OS/390 & VSE), P26-1261.

The Version 2 Unload function (CSUNLOAD) unloads SUPRA Directory
or PDM files at serial speed to a tape or disk device. It restructures the
files into the format and sequence required by the Version 2 Load
function.

The Version 2 Load function (CSULOADR) loads SUPRA Directory or
PDM files from the output of the Version 2 Unload function. In addition,
this function automatically establishes linkage information.

The Version 2 Insert Linkpath function (CSUINSRT) inserts linkpath data
that the Load function saved in the work files. The Insert Linkpath
function inserts the data into Directory or PDM primary files. However,
because the Load function establishes linkpath information, you do not
need to use Insert Linkpath in most cases.

The Version 2 Unload and Load functions do not process index files. If
your PDM files have secondary keys, you must depopulate them either
before or after unloading them. Then you must repopulate them after you
load. If you execute the Insert Linkpath function, you can use it before or
after you repopulate.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

226 P26-6260-63

Use the Insert Linkpath function when you are unloading and loading only
some of your files. For example, you may unload a related file and only
one of the primary files to which it is connected. After you reload the files,
insert the connection to the primary file you did not unload. The following
figure illustrates this process.

Unload/Load these two files

PR01 PR02 PR03

RE01 RE02 RE03

LK00 LK01 LK02 LK03 LK04

Version 2 overview

DBA Utilities User’s Guide 227

What to do with linkpaths when you unload and load
In the preceding figure, you need to use the Insert Linkpath function for
linkpath LK01. You do not need to use it for any other linkpath. These
four linkpaths illustrate the four possible states for your linkpaths. The
following table explains what action you need to take in each case.

Description

Example
linkpath

Action

Effect

You do not unload
either the primary or
the related file to
which the linkpath is
connected.

LK04 and
LK00

None The linkpath
information remains as
it was before you
unloaded.

You unload and load
both the primary and
related file to which
the linkpath is
connected.

LK02 Code LK02 in the
BLANK-LINKS file of the
Unload function's control
parameter for file PR02.

The linkpath
information in the
OUTFILE is blanked in
the unload step and
then recreated and
inserted in the load
step.

You unload and load
the primary file to
which the linkpath is
connected, but not
the related file.

LK03 None. Do not code LK03
in the BLANK-LINKS
parameter for file PR02.

The linkpath
information is left intact
and remains the same
as it was before you
unloaded.

You unload and load
the related file to
which the linkpath is
connected, but not
the primary file.

LK01 Execute the Insert
Linkpath function and
code PR01 in the FILES
parameter and
PR01LK01 in the
CLEARLKS parameter of
the Insert Linkpath run
control statement. (Do
not code PR01LK00 in
the CLEARLKS
parameter.)

The linkpath
information is created
in the load step. The
linkpath information is
then blanked and
inserted in the insert
step.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

228 P26-6260-63

For each of the Version 2 functions, you must code the CSIPARM file,
JCL to define files, and control statements. To find the information on
each function, see the following sections:

Information Section
Coding the CSIPARM file for Unload,
Load, and Insert Linkpath functions

“Coding the CSIPARM file for Unload, Load, and
Insert Linkpath” on page 230

Coding the JCL for Unload, Load,
and Insert Linkpath functions

“Coding JCL for Unload, Load, and Insert
Linkpath functions” on page 232

Unloading PDM files “Unloading PDM files” on page 235
Unloading Directory files “Unloading Directory files” on page 264
Using exit points in the Unload
function

“Using exit points” on page 265

Loading PDM files “Loading PDM files” on page 292
Loading Directory files “Loading Directory files” on page 322
Inserting linkpath data “Coding the Insert Linkpath function” on

page 322
Examples of Unload, Load, and
Insert functions

“Examples of Unload, Load, and Insert Linkpath
functions” on page 333

Version 2 overview

DBA Utilities User’s Guide 229

Coding the CSIPARM file for Unload, Load, and Insert
Linkpath

When you use Version 2 functions, you need to code the CSIPARM file.
In the environment description, you must code an open mode of NONE
for all files read by these functions. Also, if you change the schema and
environment description in the run control statements, you must change
the DIRECTORY and REALM parameters in the CSIPARM file.

Coding CSIPARM file and run control statements for PDM files
The following table shows how to code the CSIPARM file and run control
statements for PDM files. If you are processing Directory files, see
“Coding CSIPARM file and run control statements for directory files” on
page 231.

In Version 2
utility

Code

For PDM files with no
changes in schema

For PDM files with
changes in schema

UNLOAD CSIPARM
file

DIRECTORY=
(bootschema,
bootenvdesc)

DIRECTORY=
(bootschema, bootenvdesc)

 CSIPARM
file

REALM= (yourschema,
yourenvdesc)

REALM=(youroldschema,
ouroldenvdesc)

 Run control
statements

no NEW-SCHEMA
no NEW-ENVDESC

NEW-SCHEMA=
yournewschema
NEW-ENVDESC=
yournewenvdesc

LOAD CSIPARM
file

DIRECTORY=
(bootschema,
bootenvdesc)

DIRECTORY=
(bootschema, bootenvdesc)

 CSIPARM
file

REALM= (yourschema,
yourenvdesc)

REALM= (yournewschema,
yournewenvdesc)

 Run control
statements

SCHEMA=yourschema SCHEMA= yournewschema

INSERT
LINKPATH

CSIPARM
file

DIRECTORY=
(bootschema,
bootenvdesc)

DIRECTORY=
(bootschema, bootenvdesc)

 CSIPARM
file

REALM= (yourschema,
yourenvdesc)

REALM= (yournewschema,
yournewenvdesc)

 Run control
statements

none none

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

230 P26-6260-63

Coding CSIPARM file and run control statements for directory
files

If you are processing Directory files, refer to the following table:

In Version 2
utility

Code

For directory files with
no changes in schema

For directory files with
changes in schema

UNLOAD CSIPARM
file

no DIRECTORY
parameter

no DIRECTORY parameter

 CSIPARM
file

REALM= (bootschema,
bootenvdesc)

REALM= (oldbootschema,
oldbootenvdesc)

 Run control
statements

no NEW-SCHEMA
no NEW-ENVDESC

NEW-SCHEMA=
newbootschema
NEW-ENVDESC=
newbootenvdesc

LOAD CSIPARM
file

DIRECTORY=
(bootschema,
bootenvdesc)

DIRECTORY=
(newbootschema,
newbootenvdesc)

 CSIPARM
file

no REALM parameter no REALM parameter

 Run control
statements

SCHEMA= bootschema SCHEMA= newbootschema

INSERT
LINKPATH

CSIPARM
file

DIRECTORY=
(bootschema,
bootenvdesc)

DIRECTORY=
(newbootschema,
newbootenvdesc)

 CSIPARM
file

no REALM parameter no REALM parameter

 Run control
statements

none none

Coding the CSIPARM file for Unload, Load, and Insert Linkpath

DBA Utilities User’s Guide 231

Coding JCL for Unload, Load, and Insert Linkpath functions
The following figures show the files that you must define in OS/390 and
VSE. You use some files to hold your input to the functions and others to
hold output from the functions. The CSIPARM and CSUAUX files, which
hold input to the Unload, Load, and Insert Linkpath functions, are
examples of input files.

Other input files hold run control and file control statements.

OS/390 In OS/390, SYSIN and PARM hold these statements for the Unload
function; SYSIN holds them for the Load and Insert Linkpath functions.

VSE In VSE, SYSIPT holds them for all three functions.

Other files hold output from one function that becomes input to another.
The OUTFILE (OUTPUT in VSE) and CSU#REC files hold output from
the Unload function and input to the Load function. Similarly, the linkwork
files are output from the Load function and input to the Insert Linkpath
function. Therefore, you must code these files the same for each
function.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

232 P26-6260-63

Files you define in OS/390 JCL

UNLOAD

CSIPARM

CSUAUX

SYSPRINT

DATABASE FILES

SYSIN
(Run Control Statements)

PARM
(File Control Statements)

SYSUDUMP

SORT

(in SORTLIB)
SYSOUT
CSI#WK01
CSI#WK02
CSI#WK03

LOAD

CSIPARM

CSUAUX

SYSPRINTSYSIN
(Run and File Control
Statements) SYSUDUMP

SORT

(in SORTLIB)
SYSOUT
CSI#WK01
CSI#WK02
CSI#WK03

Database files

OUTFILE

SYSUTI

CSU#REC

CSU#REC

LINKWK01

LINKWK01

LINKWK02

INSERT

CSIPARM

CSUAUX
SYSPRINT

SYSIN
(Run Control Statements)

SYSUDUMP

Database files

LINKWK02

Coding JCL for Unload, Load, and Insert Linkpath functions

DBA Utilities User’s Guide 233

Files you define in VSE JCL

UNLOAD

CSIPARM

CSUAUX

SYSLST

DATABASE FILES

SYSIPT
(Run and File Control
Statements)

SORT

(SORTLIB not used here)
SYSOUT
SORTWK1
SORTWK2
SORtWK3

LOAD

CSIPARM

CSUAUX

SYSLSTSYSIPT
(Run and File Control
Statements) Database files

SORT

(in SORTLIB)
SYSOUT
SORTWK1
SORTWK2
SORTWK3

Z-prefixed database files

OUTPUT

INPUT

CSU#REC

CSU#REC

LINKWRK1

LINKWRK1

LINKWRK2

INSERT

CSIPARM

CSUAUX

SYSIN
(Run Control Statements)

SYSLST

Database files

LINKWRK2

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

234 P26-6260-63

Unloading PDM files
To use the Version 2 Unload function, you do not code UCL. Instead, you
must code the following input:

♦ File definitions

♦ Run control statements

♦ File control statements

You may also insert your own code at exit points.

Defining files
To execute the Unload function in OS/390 or VSE, you define the files
listed in the following table in your JCL, and execute the Unload program
named CSUNLOAD. In OS/390, rather than coding all the file definitions,
you can use the cataloged procedure TISUTUNL. If you want to change
the symbolic parameters in TISUTUNL, refer to the SUPRA PDM and
Directory Administration Guide, P26-2250.

Unloading PDM files

DBA Utilities User’s Guide 235

File definitions for the Unload function

DD or file name Description Considerations

OS/390 CSI#WKnn

Identifies the sort
work files.

VSE For VSE, see SORTWKn.
If not enough virtual storage is allocated
to sort in place, identify the needed sort
work files (CSI#WK01, CSI#WK02, and
CSI#WK03). Format and space
allocation are identical to standard
SORTWKnn statements as defined in the
appropriate sort manual.

CSIPARM Identifies the
CSIPARM file,
which contains
control information
that the PDM
needs.

See “Coding the CSIPARM file for
Unload, Load, and Insert Linkpath” on
page 230.

CSU#REC Holds the number
of records that you
unloaded for each
file.

See “Defining the CSU#REC file” on
page 238.

CSUAUX Holds the auxiliary
information to
define files that are
not in native format.

See “Defining the CSUAUX file” on
page 238.

OS/390 ffffffff

VSE fffffff and Zffffff

Use to define the
file you want
unloaded.

You may code up to 57 primary and 57
related files. File names must be defined
in the SUPRA Directory for the schema
you are unloading.
VSE For VSE, you must code primary
and related files on two separate DLBL
statements. Code each file twice: once
for direct access with the file name (fffffff)
on the DLBL statement and the second
time for sequential access with a Z
before the file name. Truncate to seven
characters (Zffffff).

OUTFILE Indicates the file
where you want
data from all
unloaded files
written.

See “Defining the OUTFILE” on
page 241.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

236 P26-6260-63

DD or file name Description Considerations

OS/390 PARM

Holds the file control
statements.

See “Coding file control statements” on
page 254. VSE For VSE, see discussion
on SYSIPT.

OS/390 SORTLIB

Indicates the library
holding the standard
sort program.

This file has no counterpart in VSE.

VSE SORTWKn

Indicates the work
files you want used
in sorting.

OS/390 For OS/390, see discussion on
CSI#WKnn.
If insufficient virtual storage is allocated
to sort in place, identify the required
standard sort work files (SORTWK1,
SORTWK2, SORTWK3), as defined in
the appropriate sort manual.

OS/390 SYSIN

Holds the run control
statements.

See “Coding run control statements” on
page 242. VSE For VSE, see discussion
on SYSIPT.

VSE SYSIPT

Holds the run control
and file control
statements.

SYSIPT contains two files, separated by
a /* control statement. The first file, which
contains run control statements, is
discussed in “Coding run control
statements” on page 242. The second
file, which contains file control
statements, is discussed in “Coding file
control statements” on page 254.

VSE SYSLST

OS/390 SYSPRINT

Indicates the output
file for the printed
listing of all control
statements,
diagnostic
messages, etc.

OS/390 SYSOUT Indicates the file you
want the standard
sort program to use.

OS/390 SYSUDUMP Indicates a dump file. Optional.

Unloading PDM files

DBA Utilities User’s Guide 237

Defining the CSU#REC file
The Unload function creates the CSU#REC file, which passes the
number of records to the Load function so that you can unload and load
in one job. After the Unload step, the CSU#REC file contains one record
for each file you unloaded.

After the Unload function passes the CSU#REC file, the Load utility reads
it sequentially. Each record holds a four-byte file name and a fullword
binary integer indicating the number of records unloaded for that file. The
Load function does not use the rest of the 80 bytes. The file is fixed block
and has a block size of 800 bytes.

VSE For VSE, its SYS number is SYS021.

Defining the CSUAUX file
In the CSUAUX file, you describe database files as you want them
reloaded, not as they are when unloaded. You must code the files that
you want loaded in Series 80 or converted format. You use the CSUAUX
file to pass the Unload function the additional parameters from the Series
80 or converted files. When you code the CSUAUX file, you must indicate
the format in which you want the files reloaded. For related files, you
must indicate the number of records per cylinder and how full you want
the files when they are reloaded.

While you do not need to code files that you want loaded in native format,
we recommend that you include all your files so that you can set up the
CSUAUX file once to use with all jobs.

When you code the files, you must code a separate record for each file;
you cannot put more than one file on a record.

You create no problems by including all the files because the PDM
ignores statements for files that are not loaded. For example, if you want
to reload files in native format, all the statements and parameters would
be unnecessary. However, you must include an CSUAUX file in the job
stream even if the file is blank.

The PDM also ignores unnecessary parameters and records. If you
repeat a parameter in a record, the PDM uses the last one. If you repeat
a record for a file, the PDM uses the first one and ignores the others.
However, you cannot code null parameter values. When you leave out
the value, the function does not use the default.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

238 P26-6260-63

You must make the format of the CSUAUX file fixed or fixed blocked and
the logical record length 80 bytes. The function uses only the first 73
bytes and ignores the rest.

You can separate the parameters with any number of blanks or commas.
The parameters are keyword rather than positional; therefore, you do not
need to put them in any particular order.

FILE = RCYL = CYLL =
80

 LOAD =
COMPATIBILITY
CONVERTED
NATIVE

ffff nnnn
nnnn

























FILE=ffff

Description Required. Names the file for which you are passing parameters.

Format 4 alphanumeric characters. The first character must be alphabetic.

Considerations

♦ You must code a separate record in the CSUAUX file for each file
you want to unload. In each record, you must name the file you want
unloaded.

♦ If you do not name the file on a record, the Unload function ignores
all parameters on that record.

RCYL=nnnn

Restriction Required for related files that you want loaded in Series 80 or converted
format.

Description Indicates the number of records per logical cylinder.

Format 1–16 numeric characters

Considerations

♦ You must code this parameter for all related files that you do not want
loaded in native format.

♦ As the active records in the Directory or PDM files you are coding
increase or decrease, you may need to change this value. The active
records may change if you are changing them on the new schema.

Unloading PDM files

DBA Utilities User’s Guide 239

CYLL =
80
nnn









Restriction Required for related files that you want loaded in Series 80 or converted
format.

Description Indicates the maximum percent of each logical cylinder that you want
filled with data records during the load function.

Default 80

Options 0–100

Considerations

♦ You must code this parameter for all related files that you do not want
loaded in native format.

♦ As the active records in the Directory or PDM files increase or
decrease, you may need to change this value. The active records
may change if you are changing them on the new schema.

 LOAD =
COMPATIBILITY
CONVERTED
NATIVE

















Description Required. Specifies the format in which you want the file loaded.

Default NATIVE

Options COMPATIBILITY Database files in Series 80 format.

CONVERTED Series 80 database files that have been changed to
the converted format with the File Convert utility or
have previously been loaded in the converted file
format. For further information, refer to the SUPRA
Server PDM and Directory Administration Guide
(OS/390 & VSE), P26-2250.

NATIVE Newly created SUPRA database files, files that used
to be converted, or Series 80 files that have been
changed to a native file format.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

240 P26-6260-63

The following example shows how to code the CSUAUX file's statement:

E$BR is a primary file, and E$BI is a related file. You want both loaded in
compatibility format. You want the related file loaded with 10,298 records
per logical cylinder and a cylinder load limit of 85%.
FILE=E$BI,RCYL=10298,CYLL=85,LOAD=COMPATIBILITY

FILE=E$BR,LOAD=COMPATIBILITY

In this example, both the primary file, E$CN, and the related file, E$CM,
are native files. Therefore, you do not need to code the RCYL or CYLL
parameter for the related file. Although it is shown in this example, you do
not need to code LOAD=NATIVE because it is the default.
FILE=E$CN LOAD=NATIVE

FILE=E$CM LOAD=NATIVE

Defining the OUTFILE
As indicated in “File definitions for the Unload function” on page 236, the
output file for the Unload function is the OUTFILE in OS/390. In VSE, it is
the OUTPUT file. In VSE, you must code the characteristics of the
OUTPUT file in the run control records. For more information, see
“Coding the RECFORM statement (VSE only)” on page 249.

You use the OUTFILE to hold the records from the files you unload. You
must write the unloaded files to the OUTFILE sequentially whether you
use tape or disk. The OUTFILE becomes the SYSUT1 input file for the
Load function. (In VSE, the OUTPUT file becomes the INPUT file.)
Therefore, you must define the file exactly the same way in the JCL for
the Unload and Load functions.

In your JCL, you must indicate whether you are using a disk or tape unit
and whether the format of the records is fixed or fixed blocked. The latter
is recommended. When you code the logical record length (LRECL), add
at least eight bytes to the largest logical record length of any file you
unloaded. When you code the block size, code it a multiple of the LRECL
parameter.

Unloading PDM files

DBA Utilities User’s Guide 241

Coding run control statements
After you define the SYSIN file in OS/390 or the SYSIPT file in VSE, you
code the run control statements in it. You use the run control statements
to indicate to the Unload function the new schema, environment
description, primary or related files, and sort program to use.

In some statements, you code only one parameter; in others, you code
more than one. In either case, begin each statement in position 1. Some
statements may require more than one record. If they do, start each
statement on a new record (except for SORTNAME and WORK for
VSE). You must code the RELATED: file list before the PRIMARY: file
list, and code each list in ascending sequence by file name.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

242 P26-6260-63

Run control statements for the Unload function
The following table gives you a brief description of the statements.

Statement Description Section

DUMP Indicates whether you want a
storage dump printed when
errors occur.

“Coding the DUMP statement”
on page 244

NEW-SCHEMA /
NEW-ENVDESC

Indicates the names of the
new schema and environment
description you want used
when the files are reloaded.

“Coding the
NEW-SCHEMA/NEW-ENVDES
C statement” on page 245

RELATED: Lists the names of the related
files you want unloaded.

“Coding the RELATED:
statement” on page 247

V-E: Lists the names of the related
files you want unloaded.

“Coding the V-E: statement” on
page 248

PRIMARY: Lists the names of the primary
files you want unloaded.

“Coding the PRIMARY:
statement” on page 248

S-E: Lists the names of the primary
files you want unloaded.

“Coding the S-E: statement” on
page 249

VSE RECFORM Defines the characteristics of
the OUTPUT file.

“Coding the RECFORM
statement (VSE only)” on
page 249

SORTNAME Names the sort program if not
the standard program.

“Coding the SORTNAME
statement” on page 252

VSE WORK Indicates the number of tape
files or disk extents available
for intermediate sort storage.

“Coding the WORK statement
(VSE only)” on page 253

TEST Checks and validates all
statements without unloading
the files.

“Coding the TEST statement”
on page 253

Unloading PDM files

DBA Utilities User’s Guide 243

Coding the DUMP statement
Use the DUMP statement to indicate whether you want a storage dump
printed if Unload encounters errors.

DUMP =
no
yes









DUMP =
no
yes









Description Optional. Controls printing of a storage dump if Unload encounters errors.

Default NO

Considerations

♦ Place this statement first.

♦ If you code DUMP=NO, you receive a return code of 12 if Unload
encounters errors. If you code DUMP=YES, an error results in
abnormal termination with a dump.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

244 P26-6260-63

Coding the NEW-SCHEMA/NEW-ENVDESC statement
If you are unloading and reloading a file without changing the physical
configuration, you should not code NEW-SCHEMA and NEW-ENVDESC
statements. If you omit them, the function uses the descriptions in the
CSIPARM file for both the old and the new environment.

However, if you change the physical configuration, such as by increasing
the number of tracks, you must create the new schema and environment
description. If you change some files and not others, you must still code
NEW-SCHEMA and NEW-ENVDESC statements.

You must create the new schema and environment description in your
Directory files before you unload. To access information it needs from the
new schema and environment description, the Unload function signs on
separately to the PDM. When it actually unloads the files, the function
signs off and then signs back on with the old schema and environment
description.

When you code the new schema and environment description, you must
include the same elements that you will define in the CSIPARM file for
the Load function. In addition, you must code both the NEW-SCHEMA
and NEW-ENVDESC statements.

To unload your PDM files, your CSIPARM file must specify your bootstrap
schema and environment description in the DIRECTORY parameter, and
your schema and environment description in the REALM parameter. For
more information on coordinating the CSIPARM file with the
NEW-SCHEMA and NEW-ENVDESC statements, see “Coding
CSIPARM file and run control statements for PDM files” on page 230.

NEW-SCHEMA=schemaname, NEW-ENVDESC=envdescname

Unloading PDM files

DBA Utilities User’s Guide 245

NEW-SCHEMA=schemaname

Restriction Required if you change the physical configuration of a file.

Description Conditional. Identifies the schema containing the file definitions you want
used when the files are reloaded.

Format 1–8 alphanumeric characters

NEW-ENVDESC=envdescname

Restriction Required if you change the physical configuration of a file.

Description Conditional. Identifies the environment description containing the file
definitions you want used when the files are reloaded.

Format 1–8 alphanumeric characters

Consideration Calculations of RQLOC values are based on values in the new schema
and new environment description.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

246 P26-6260-63

Coding the RELATED: statement
Use the RELATED: statement to list the names of the related files you
want unloaded. If you do not want to unload any related files, omit this
statement.

List the names of the related files in ascending sequence. Code the
RELATED: statement before the PRIMARY: statement.

The V-E: statement, which serves the same purpose as the RELATED:
statement, is supported for compatibility with existing Series 80 and TIS
1.x job streams. You may use the Series 80 V-E: statement in place of
the RELATED: statement. However, use one or the other, not both.

RELATED:rrrr1 [rrrr2 ...rrrrn] END.

or

V-E:vvvv1 [vvvv2 ...vvvvn] END.

RELATED:rrrr1 [rrrr2 ...rrrrn] END.
V-E:vvvv1 [vvvv2 ...vvvvn] END.

Description Optional. Identifies the related file(s) you want unloaded.

Format
♦ Code RELATED: in positions 1–8 of the first record only, or code V-

E: in positions 1–4.

♦ You may use up to three records for this statement. If you use more
than one record, begin file names in position 1 of the second and
third records.

♦ Use all 80 positions unless it is the last or only record.

Considerations
♦ By using up to three records, you may identify up to 57 files.

♦ Unload your PDM files in a separate job from your Directory files.

♦ You must code END. immediately after the last file name to indicate
the end of the control statement.

Unloading PDM files

DBA Utilities User’s Guide 247

Coding the V-E: statement
The V-E: statement serves the same purpose as the RELATED:
statement. It is supported for compatibility with existing Series 80 and TIS
1.x job streams. For the format of the V-E: statement, see the RELATED:
statement, “Coding the RELATED: statement” on page 247.

Coding the PRIMARY: statement
Code the PRIMARY: statement to list the names of the primary files you
want unloaded. If you do not want to unload any primary files, omit this
statement.

List names of primary files in ascending sequence. Code all RELATED:
statements before PRIMARY: statements.

You may use the Series 80 S-E: statement in place of the PRIMARY:
statement. However, use one or the other, not both. The S-E: statement
is supported for compatibility with existing Series 80 and TIS 1.x job
streams.

PRIMARY:pppp1 [pppp2 ...ppppn] END.

or

S-E:mmmm1 [mmmm2 ...mmmmn] END.

PRIMARY:pppp1 [pppp2 ...ppppn] END.
S-E:mmmm1 [mmmm2 ...mmmmn] END.

Description Optional. Identifies the primary file(s) you want unloaded.
Format

♦ Code PRIMARY: in positions 1–8 of the first record only, or code S-E:
in positions 1–4.

♦ You can use up to three records. If you use more than one record,
begin file names in position 1 of the second and third records.

♦ Fill all 80 positions unless it is the last or only record.

Considerations
♦ By using up to three input records, you may identify up to 57 files.

♦ Unload your PDM files in a separate job from your Directory files.

♦ You must code END. immediately after the last file name to indicate
the end of the control statement.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

248 P26-6260-63

Coding the S-E: statement
The S-E: statement is supported for compatibility with existing Series 80
and TIS 1.x job streams. It serves the same purpose as the PRIMARY:
statement. For the format of the S-E: statement, see “Coding the
PRIMARY: statement” on page 248.

Coding the RECFORM statement (VSE only)
Use the RECFORM statement to define the characteristics of the
OUTPUT file. The statement is optional because defaults are supplied for
all parameters. If you code any of the parameters, you must separate
them from any other statement. You can use continuation lines, but you
do not need to use continuation characters. Also, you must code them
exactly like the parameters you code in the RECFORM statement for the
Load utility. For information on the RECFORM statement in the Load
function, see “Coding the RECFORM statement (VSE only)” on
page 311.

RECFORM =
FIXBLK
FIXUNB

















 ,DEVICE =









DISK
TAPE





 ,FILABL =
NO
STD































 ,BLKSIZE =
1000

N


















,RECSIZE =
100
N

 ,DEVADDR =
SYS030
SYS



































nnn

Unloading PDM files

DBA Utilities User’s Guide 249

RECFORM =
FIXBLK
FIXUNB



















Description Optional. Indicates the format of the records in the file.

Default FIXBLK

Options FIXBLK Fixed-length, blocked records

FIXUNB Fixed-length, unblocked records

,DEVICE =
DISK
TAPE









Description Optional. Indicates the device type of the file.

Options DISK Disk device

TAPE Magnetic tape unit

,FILABL =
NO
STD









Restriction Valid only when DEVICE=TAPE.

Description Optional. Indicates whether the tape contains file labels.

Default NO

Options NO Does not contain labels

STD Contains standard labels

,BLKSIZE =
1000

n








Description Optional. Indicates the file's block size.

Default 1000

Format Use numeric characters.

Consideration You must code a value that is a multiple of the value in the RECSIZE
parameter.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

250 P26-6260-63

,RECSIZE =
100
n









Description Optional. Indicates the file's record size in bytes.

Default 100

Format Use numeric characters.

Considerations Add the following items to determine the value of this parameter:

S The sum of the lengths of the data elements you want unloaded plus
the length of the control key. Calculate this for each file you unload
and use the largest value.

+4 The length of the file name. Always add this value.

+X where X is:

+2 The length of the record code. Add this if you are unloading at
least one related file with coded records and are not unloading
any primary files.

+4 The RQLOC. Add this if unloading primary files, regardless of the
above.

+0 If neither of the above.

,DEVADDR =
SYS030
SYSnnn









Description Optional. Indicates the device address (SYS number symbolic unit)
associated with the file.

Default SYS030

Format nnn Must be 3 digits

Unloading PDM files

DBA Utilities User’s Guide 251

Coding the SORTNAME statement
Use the SORTNAME statement to name the sort program you want
used.

SORTNAME =
IERRCO00
SORT
progname















OS/390

VSE

Description Optional. Identifies the sort program.

Default OS/390 IERRCO00

 VSE SORT

Format 1–8 alphanumeric characters

Consideration VSE For VSE, code the SORTNAME and WORK statements on the
same record. Separate the statements with a comma.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

252 P26-6260-63

Coding the WORK statement (VSE only)
Use the WORK statement to indicate the number of tape drives or disk
extents available for intermediate storage during sorts.

WORK =
1
n









Description Optional. Indicates the number of tape drives or disk extents available for
intermediate storage during sorts.

Default 1

Options 1–9

Consideration Code the WORK and SORTNAME statements on the same record.
Separate the statements with a comma.

Coding the TEST statement
Use the TEST statement to indicate whether the Unload function should
validate the run control statements. If you code TEST=YES, the Unload
function opens and closes the SUPRA files, but does not unload them. It
points out any errors in the run control statements, so you can correct
them. To actually unload files, code TEST=NO.

TEST =
NO
YES









Description Optional. Indicates whether the Unload utility is to actually unload the files
or just analyze the statements.

Default NO

Options NO The Unload function analyzes the statements and
unloads the files.

YES The Unload function validates all run control statements
without actually unloading the files.

Unloading PDM files

DBA Utilities User’s Guide 253

Coding file control statements
After defining the files and coding the run control statements, you code
file control statements. For OS/390, you must code the file control
statements in the PARM file. For VSE, you must code them in a second
SYSIPT file. You must put the second SYSIPT file directly after the run
control statements and end-of-file record in the first SYSIPT file.

Use the file control statements to define the layout of the output data
record and select and order the data you want unloaded. You code some
of these statements with several parameters while you code others with
only one. You must code some statements with more than one record. In
that case, start each statement on a new record. Code the file name in
positions 1–4, the parameters in positions 5–76, and leave positions 77–
80 blank.

Code the statements for the related files first, and then those for primary
files. For each related file, you may code a LINKPATH statement if you
want, and then you must code an Element List statement. For each
primary file, you must code an Element List statement, and then you may
code a BLANK-LINKS statement if you like.

You must code file control statements for all files that you coded in the
RELATED: and PRIMARY: run control statements. In addition, you must
code them in the same order.

File control statements for the Unload function
The following table gives a brief description of each statement you need
to code.

Statement Description Reference

LINKPATH Indicates the linkpath you want
used as an access linkpath to
unload a related file.

“Coding the LINKPATH
statement” on page 255

Element list Indicates the data elements you
want unloaded from a particular
file.

“Coding the Element List
statement” on page 257

BLANK-LINKS Indicates the primary file linkpaths
you want blanked while unloading
the primary file.

“Coding the BLANK-LINKS
statement” on page 263

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

254 P26-6260-63

Coding the LINKPATH statement
Use the LINKPATH statement to identify the access linkpath for
unloading a related file. You can unload a file faster if you use the primary
access linkpath because it is clustered for faster performance. The other
linkpaths are not clustered. When you identify the access linkpath, you
must name the same one in both the Unload and the Load functions.

You must select an access linkpath and its associated key from the base
portion of a record. If you select coded records, you cannot use a linkpath
in the redefined portion. You must code a LINKPATH statement
immediately before the Element List statement with which it is
associated.

If you want to unload several, but not all, coded records, code several
LINKPATH statements and several element lists. The following sequence
illustrates how to do this:
TV01LINKPATH=ppppLKxx

TV01ALL.END

TV02LINKPATH=ppppLKxx,RC=01

TV02TV02CODETV02KEYITV02DATAEND.

TV02LINKPATH=ppppLKxx,RC=02

TV02TV02CODETV02KEYITV02DATAEND.

[rrrrLINKPATH=ppppLKxx]

,PRESERVE =
NO
YES



















[,RC=yy]

rrrrLINKPATH=ppppLKxx

Description Optional. Identifies the access linkpath you want used to unload a related
file.

Format rrr 4-character related file name.

ppppLKxx The linkpath name as coded in the schema.

Unloading PDM files

DBA Utilities User’s Guide 255

,PRESERVE =
NO
YES



















Description Optional. Indicates whether to preserve the order of the records on the
access linkpath chains.

Default NO
Considerations

♦ If you code PRESERVE=NO, the Unload function uses the standard
sort program. It sorts related file data in ascending sequence by
access control key. (The Unload function sorts primary files in
ascending sequence by RQLOC.)

♦ If you code PRESERVE=YES, the Unload function writes the records
in sequence by the linkpath you code without sorting the records.

♦ Do not code PRESERVE=YES if the related file has integrity
problems. If you do, the Load function determines that duplicate
linkpaths exist and does not load the file.

♦ If chains are broken and you want to preserve the order of the record,
code PRESERVE=NO and use an exit program to control the sorting
sequence.

♦ VSE In VSE when you code PRESERVE=YES, code the files as
direct access in your JCL. When you code PRESERVE=NO, code
the file as sequential access.

♦ If you code the PRESERVE clause, it must appear on the same line
as the LINKPATH statement.

,RC=yy

Restriction Use for coded records only.
Description Optional. Use this parameter to unload only the records with the record

code you supply.
Format 2-character record code as defined in the Directory.
Considerations

♦ If you want to code elements in your element list that are in the
redefined portion of a coded file, use the Version 1 Unload function
for that file. You can use the Version 1 functions for one file and use
the Version 2 functions for the rest of the files.

♦ You must code the statements for the record codes in the same
order as they are defined in the schema.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

256 P26-6260-63

Coding the Element List statement
Use the Element List statement to indicate the data elements you want
unloaded from the file. The unloaded data is sequentially written to the
OUTFILE discussed in “Defining the OUTFILE” on page 241. The
formats of primary and related records in the OUTFILE are different when
you supply an element list and when you request all the elements. For an
illustration of the different formats, see the figure at the end of this
section.

[]
ffff

element nn element nn2, * FILL = * FILL =
ALL. END.









ffff

Description Required. Identifies the file.

Format 4-character file name as coded in the schema. Code the file name in
positions 1–4.

Unloading PDM files

DBA Utilities User’s Guide 257

[]element nn element nn2, * FILL = * FILL =
ALL.









Description Required. Identifies the individual element(s) or all elements (ALL.).

Format To unload all elements, code ALL. in positions 5–8. For an element list,
use positions 5–76. Positions 77–80 are ignored.

Considerations

♦ You may specify between one and 100 data elements on a maximum
of 12 records.

♦ For a related file containing coded records, you must supply the
record code as the first element and the control key associated with
the specified linkpath as the second. For noncoded, related records,
supply the control key as the first element. For a primary file, code
the name of the control key as the first element.

♦ To specify particular record codes, you must provide a separate
LINKPATH statement and element list for every record code you are
unloading. When you code each LINKPATH statement, you must
append the RC (record code) parameter. In addition, you must put
the record codes in the same order as in the schema.

♦ Generally, if you need to refer to the redefined portion of coded
records at a level more detailed than rrrrDATA, you can do so only
with the Unload function.

 Since you cannot code elements in the redefined portion with the
Version 2 Load function, you must use the Version 1 Unload and
Load functions for that file.

 If you still want to refer to the redefined portion in the Version 2
Unload function, you should not leave any of that portion undefined or
define any part with the FILLER element name. In addition, if you are
changing this area for the database you are loading, you must unload
only the data you are reloading or you must use the *FILL=nn
parameter in the Unload record to add space for new elements.

♦ For related files, you must code the Element List statement
immediately after the LINKPATH statement to which it applies.

♦ If you are unloading linkpaths for primary files, the linkpaths must
follow the control key in the element list and you must define them in
the same order as in the schema.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

258 P26-6260-63

♦ You can add elements, delete them, and increase their size with the
*FILL=nn parameter. However, you cannot decrease their size with
the *FILL=nn parameter. To do that, you must use an exit program at
exit point 20 or 30.

 To add an element so it is automatically filled with blanks, do not
code the element name in the Unload function's element list. Code
the element name at the end of the Load function's element list.

 You can also add an element so it appears in the data record where
you can modify it with an exit program. To add an element, code the
*FILL=nn parameter in the Unload function's element list where you
want the element to appear in the data record. In the Load's element
list, code the element name where it will map to the same portion of
the data record.
To delete an element, do not unload or load it. That is, leave it out of
the element lists in both functions.
To increase the size of an element, code *FILL=nn in the Unload
function's element list. Replace nn with the number of bytes you want
to add to the element. You can code *FILL=nn before or after the
element name. You can also code it twice, both before and after the
name. In the Load's element list, code just the element name.
Bytes are added in the Unload function and automatically set to
blanks. You can modify these blanks with an exit program in either
the Unload or Load function.
To decrease the size of an element, first code the element name in
the Unload function's element list. Include an exit program at exit
point 20 or 30 to change the size. Code the exit program to shift the
data in the record before it goes to the OUTFILE in the Unload
function. Shift the data you want to keep so it covers the data you
want to delete.
Whenever you change the elements or their size, you must make
similar changes in the schemas you use for the Unload and Load
functions. For an example of how to account for internal schema
changes in your element list, assume you are making the following
changes:
- Deleting ELEMENT3 with eight bytes
- Adding ELEMENT8 with five bytes
- Adding ELEMENT9 with four bytes
- Decreasing the size of ELEMENT6 from eight to four bytes by

removing the first four bytes.
- Adding four bytes to the front of ELEMENT5 to increase its size

from eight to 12 bytes

Unloading PDM files

DBA Utilities User’s Guide 259

 To make these changes, code this element list in the Unload
function:

 ELEMELEMCTRLELEMENT2ELEMENT4*FILL=04ELEMENT5ELEMENT6

 ELEMENT7*FILL=09

 As a result, your data record would look like this:

bE L E M F R E H 9 6 7 5 O O 7 9 8 0 1 2 C I N T I .

File
Name

RQLOC
Value ELEMENT2 *FILL=04

ELEMCTRL ELEMENT4

O O O b b b b b bb b b

ELEMENT6ELEMENT5 ELEMENT7 *FILL=09

In the Load function, code this element list:
 ELEMELEMCTRLELEMENT2ELEMENT4ELEMENT5ELEMENT6

 ELEMENT7ELEMENT8ELEMENT9

 During execution, the data records are passed from the Unload to the
Load function by way of the OUTFILE (or INPUT in VSE). To
decrease the size of ELEMENT6 by four bytes, you shifted
ELEMENT7, ELEMENT8, and ELEMENT9 to the left four bytes with
an exit program. Thus, this element list maps to the same data
record as follows:

bE L E M F R E H 9 6 7 5 O O 1 2 C I N T I .

File
Name

RQLOC
Value ELEMENT2

ELEMCTRL

O O O b b b b b b b

ELEMENT7ELEMENT5
<unused>

(caused by shift)

08 bb bb b b bb b b b bb

ELEMENT4 ELEMENT9

ELEMENT8ELEMENT6

 As you can see, the number of spaces in the *FILL parameter
actually appear in the data record as spaces. You can modify this
space with exit programs in both the Unload and Load functions.

 The newly added ELEMENT8 and ELEMENT9 do not appear
because they are automatically filled with spaces. These spaces do
not show up in the data record because you did not code the
*FILL=09 in the Unload element list to create the necessary spaces.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

260 P26-6260-63

♦ Since you cannot exceed the maximum of 12 records per file, the
space required to code each *FILL=nn parameter may reduce the
total number of data elements permitted for the Unload function.

♦ You may expand two adjacent elements with only one *FILL=nn
parameter if the first element is at the end of the field and the second
is at the beginning of the field. To do this, code a value equal to the
total number of spaces required for both elements.

♦ The bytes inserted by the *FILL parameter are set to spaces (X'40')
in the output record. You may need to increase the LRECL
parameter for OUTFILE to account for the extra fields.

♦ If you code ALL. in the Unload function, code it also in the Load
function.

♦ All element names you code must have been previously defined for
the file in the appropriate schema. That is, in the Unload element list,
the elements must be defined in the schema used to unload the old
schema. In the Load element list, the elements must be defined in
the schema used to load the new schema, or if there is no change in
schemas, the old schema.

♦ It is not necessary to specify the elements in the same order as they
appear in the schema.

♦ When you are unloading and loading to recreate related files and not
coding ALL. in the element list, you must code all control keys
defined for each unloaded file. This includes the control key for the
access linkpath as well as the control keys for all the secondary
linkpaths. Coding of the control keys helps ensure database integrity.
A control key not defined in the new schema is an exception.

♦ You must code END. immediately after the last element to indicate
the end of the control statement.

Unloading PDM files

DBA Utilities User’s Guide 261

ffff
PRIMARY

FILE
NAME

RQLOC
VALUE

CONTROL-

KEY

All remaining data elements and LINKPATHS
as coded on the ELEM-LIST control card(s)
(CONTROL-KEY is excluded).

Primary
Record Format

ffff
RELATED

FILE
NAME

ACCESS-KEY

All remaining data elements as coded
on the ELEM-LIST control card(s)
(ACCESS-KEY is excluded).

Standard Related
Record Format

ffff
RELATED

FILE
NAME

RECORD

CODE

ACCESS-

KEY

All remaining data elements as coded
on the ELEM-LIST control card(s)
(ACCESS-KEY is excluded).

Coded Related
Record Format

ffff
PRIMARY

FILE
NAME

RQLOC
VALUE

CONTROL-

KEY

All data elements excluding the
root field in the order in which
they appear in the internal
record control card(s)
(CONTROL-KEY excluded).

Primary Record
Format with

Linkpaths in File

ffff
PRIMARY

FILE
NAME

RQLOC
VALUE

CONTROL-

KEY

All data elements excluding the root field in the order
in which they appear in the internal record
(CONTROL-KEY excluded).

Primary Record
Format without

Linkpaths

ffff
RELATED

FILE
NAME

ACCESS-KEY

All data elements in the order in which
they appear in the internal record
(ACCESS-KEY excluded).

Standard Related
Record Format

ffff
RELATED

FILE
NAME

RECORD

CODE

ACCESS-

KEY

All data elements in the order in which they appear
in the internal record
(RECORD CODE and ACCESS-KEY excluded).

Coded Related
Record Format

All LINKPATHS in the
order in which they
appear in the internal
record

ELEM-LIST = Element list you supply

ELEM-LIST = ALL. END.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

262 P26-6260-63

Coding the BLANK-LINKS statement
Use the BLANK-LINKS statement to identify the linkpaths you want
cleared while unloading the primary file. The linkpaths are set to blanks
on the Unload output file (OUTFILE), but not on the primary file from
which they were unloaded.

ppppBLANK-LINKS=LKxx1 [LKxx2 ...LKxxn]END.

ppppBLANK-LINKS=LKxx1 [LKxx2 ...LKxxn] END.

Description Optional. Identifies the primary file (pppp) containing the linkpaths (LKxx)
you want blanked.

Format pppp 4 alphanumeric character primary file name
xx 2 alphanumeric linkpath identifier

Considerations
♦ You must code the same primary file (pppp) that you coded in the

Element List statement immediately before this statement.

♦ You can code a maximum of 14 linkpaths (LKxx) on this statement.
Code only one statement per file.

♦ When the Load function reloads the file, it inserts valid linkpath data
into all linkpaths for which there is link data. If there is no link data,
that linkpath chain is empty.

♦ You code the BLANK-LINKS statement for a linkpath depending on
whether the related file to which it is connected is unloaded and
loaded at the same time as its primary file. If the related file is loaded,
code its linkpath to be blanked. If the related file is not loaded, do not
code its linkpath to be blanked.

♦ If you incorrectly code a linkpath to be blanked, the valid chain
information is deleted. It will appear that there are no related file
records connected to that primary file. Since your database is
corrupted, you will have to execute the Unload and Load functions
correctly to recreate the chain information.

♦ If you neglect to code a linkpath to be blanked, it retains its current
chain information. Because the information is no longer valid, your
database will be corrupt. To clear and recreate the chain information,
you must execute the Unload and Load functions correctly.

♦ You must code END. immediately after the last linkpath to indicate
the end of the control statement.

Unloading PDM files

DBA Utilities User’s Guide 263

Unloading Directory files
Unload the Directory files in a separate job from your PDM files. When
you unload Directory files, you must define the same files as you did to
unload PDM files. For directions, see “Defining files” on page 235. When
you unload the related files, always code PRESERVE=YES to preserve
the order of the records.

While you need run control and file control statements, you do not need
to code them. The run control statements are provided in the data
member, CSUSUNLD. The file control statements are in data member,
CSUPUNLD. After installation is complete, you may alter only the NEW-
SCHEMA and NEW-ENVDESC statements in CSUSUNLD. You cannot
alter any statements in CSUPUNLD.

In your CSIPARM file, code the bootstrap schema and environment
description. If you code NEW-SCHEMA and NEW-ENVDESC
statements, you must code the bootstrap schema and environment
description in the REALM parameter of your CSIPARM file. In that case,
do not code the DIRECTORY parameter. “Coding CSIPARM file and run
control statements for directory files” on page 231 shows how to
coordinate coding your CSIPARM file with your run control statements.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

264 P26-6260-63

Using exit points
There are three exit points in the Unload Function:

♦ At exit point 10 (entry point USERE10), your program can add sort
parameters to those the Unload function automatically uses: the file
name and a control key. During normal operation, the Unload
function automatically sorts the records in a file according to the file
name and a control key. The function can sort according to any
additional record fields you code.

♦ At exit point 20 (entry point USERE20), your program can modify or
delete records before the Unload function sorts them. Your program
cannot add records at this point.

♦ At exit point 30 (entry point USERE30), you can modify or delete
records after the Unload function sorts them. You can also add
records in sequence with those you are unloading.

The following figure illustrates the exit points in the Unload function where
the function can access each of the exit programs. When you take the
exits, the Unload function automatically passes control to your exit
program at the proper point in the processing cycle. After your exit has
executed, control automatically returns to the Unload function.

To use your exit programs, you must relinkedit the Unload function with
the linkdeck, CSUULKUN. Include in the Linkage Editor input the exit
module(s) containing the entry points you want to use: USERE10,
USERE20, and/or USERE30. Do this by adding INCLUDE control
statements after the INCLUDE statement for module CSUUMRND in the
CSUULKUN linkdeck Cincom has supplied.

The name of your exit program must be a CSECT name or entry point in
your program. While you must write your program for exit point 10 in
Assembler, you may write programs for the other two in either COBOL or
Assembler. Assembler language examples for all three exit points and
COBOL examples for exit points 20 and 30 are provided.

Using exit points

DBA Utilities User’s Guide 265

Exit Points

no

no

no

no

yes

yes

yes

yes

Begin

End
More

Files to be
Unloaded

Validate Control
Statements,
Build Sort

Statements

USERE10

Record Images,
Diagnostics,
Etc.

USERE10
Program

USERE20
ProgramUSERE20

Extract and
Format

Records

USERE30 USERE30
Program

Sort
Phase

Write
Output

Output

Sort
Work
Files

SUPRA
Files

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

266 P26-6260-63

Using exit point 10
At exit point 10 (USERE10), you can code additional fields to use as sort
parameters. The Unload function sorts records according to file name
and then control key. For a primary file, there is no need to sort by any
additional fields because the control keys are unique. Sorting by other
fields does not change the order of the records.

However, for a related file, you may continue sorting by another field.
When the Unload function sorts related records by control key, it groups
together all records in a chain on the access linkpath. If you sort by other
fields, you can order the groups of records within the same control key to
control the order of the records on the chain.

Whether you code additional sort parameters or not, the Unload function
builds a SORT statement after validating the run control and file control
statements. Before reading the records from each file, it checks to see
whether you have included a program for exit point 10.

If so, the Unload function sets up register 1 with the address of a 3-word
parameter list. In the first word, it puts the address of the first character of
the SORT statement. In the second word, it puts the address of the last
character of the SORT statement. In the third word, it puts the address of
a 4-character field with the name of the file you are unloading. More
information on the registers is in “Using registers” on page 269.

The Unload function passes its SORT statement to your program when it
passes control to it, that is, once for each file you unload. If your exit
program will modify the SORT statement, it must first move the statement
to a work area large enough to hold it plus your additional sort
parameters.

When your program builds a new SORT statement, it must retain the file
name and control key used by the Unload function. When you add sort
parameters, you must code them according to the restrictions in the
appropriate sort manual.

After your exit program has built the new SORT statement, it must
change the first two full words pointed to by register 1 so that they point to
the first and last characters of the new SORT statement. When your
program is finished, it returns control to the Unload function through
register 14.

Using exit points

DBA Utilities User’s Guide 267

The following figure shows the steps that your exit program must take.

If you coded PRESERVE=YES in the LINKPATH statement for a file, the
Unload function does not call your exit program for that file; it passes the
SORT statement it generated to the SORT program unchanged. To
preserve the order of the records on the linkpath, the Unload function
writes the records in sequence without sorting them.

Save Registers

Move SORT Statement

Modify SORT Statement

Modify Addresses

Restore Addresses

Return Control
to the Unload

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

268 P26-6260-63

Using registers
When the Unload function calls your program at exit point 10, these four
registers contain the following information. When your exit program
returns control to the Unload function, it must restore all 16 registers to
their contents at entry.

Register Function

R1 Address of a 3-word parameter list. The first word
contains the address of the first character of the SORT
statement. The second word contains the address of
the last character of the SORT statement. The third
word contains the address of the four-character field
with the file name.

R13 Address of a standard 72-byte save area. In this area,
your exit program saves the contents of the registers
when it enters. When it exits, your program restores
them from this area.

R14 Return address. Your exit program returns control to the
Unload function at this address.

R15 Address of entry point USERE10.

Using exit points

DBA Utilities User’s Guide 269

Retaining values in the SORT statement
You need to retain the values in the SORT statement that the Unload
function generates, so you can include them in the new SORT statement
that your program generates. The Unload function generates them in the
following format:

OS/390 b/ SORT FIELDS=(1,xxxxx,CH,A,yyyyy,zzzzz,CH,A),SIZE=Evvvvvvvb/

VSE SORT FIELDS=(1,xxxxx,CH,A,yyyyy,zzzzz,CH,A),WORK=nb/

xxxxx

Description Represents a 5-byte numeric field indicating the length of the first sort
parameter. This sort parameter consists of the file name for related files
and the file name plus the RQLOC value for primary files.

yyyyy

Description Represents a 5-byte field indicating the position of the second sort
parameter within the unloaded record. This sort parameter is the linkpath
control key.

zzzzz

Description Represents a 5-byte numeric field indicating the length of the second sort
parameter.

vvvvvvv

Description Represents a 7-byte numeric field indicating the estimated number of
records to be sorted.

n

Description Represents a 1-byte numeric field defining the number of work files
available to the sort program.

For a complete description of the sort program and the sort statement,
refer to your sort manual. Also, see the examples in “Sample programs
for exit point 10” on page 271.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

270 P26-6260-63

Sample programs for exit point 10
Two examples show how to use a program at exit point 10 to sort
records. The Unload function sorts only on the key field. If you want to
sort by another field as well, you can insert a program here. The first
example shows a specific solution in Assembler for the sample problem
given below. After the specific solution is a generalized program that you
can use for the sample problem or any similar one. All you need to do in
the generalized program is substitute your own values (file names, etc.)
in the appropriate places.

The following problem is the basis for the two examples:

Assume you wish to unload a related file which, when unloaded, has
records in the OUTPUT file in the following format:

FILE NAME
(4 bytes)

KEY
(6 bytes)

DATE
(5 bytes)

DATA
(n bytes)

Also assume you want to keep the records in sequence by key and date.

Using exit points

DBA Utilities User’s Guide 271

Record sequence by Unload SORT parameters and extended SORT
parameters provided by program at exit point 10. Since the Unload
function sorts only on the key, you may use a program at exit point 10 to
code the date field as an additional sort field as shown in the following
figure.

KEY3 DATE3

KEY3 DATE2

KEY3 DATE1

KEY2 DATE3

KEY2 DATE2

KEY2 DATE1

KEY1 DATE3

KEY1 DATE2

KEY1 DATE1

Control-
key
field

Date
field

Data
field

Records are in sequence
by control-key and by
date within control-key.
No linkpaths are shown
in the records because the
Unload function does not
unload linkpaths when
unloading records.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

272 P26-6260-63

OS/390 The following is an Assembler program for exit point 10 to run in
OS/390:

USERE10 CSECT Entry point.
 USING *,R15 R15 will be the base register.
 STM R14,R12,12(R13) Save Unload's registers.
 L R2,0(,R1) Pick up starting address of SORT
* statement.
 MVC SRTSTMT(43),0(R2) Move the first 43 characters of
* the old SORT statement to
* work area.
 MVC SRTSIZE(16),43(R2) Move estimated total number of
* records to be sorted to SRTSIZE.
 LA R2,SRTSTMT Start of SORT statement.
 ST R2,0(R1) Store new start of SORT
* statement in first word of *
 parameter list.
 LA R2,ESRTSTMT End of SORT statement.
 ST R2,4(,R1) Store new end of SORT statement
* in second word of parameter *
 list.
 LM R14,R12,12(R13) Restore Unload's registers.
 BR R14 Return to Unload.
SRTSTMT DC C' SORT FIELDS=' Area for old SORT parameters.
 DC C'(1,xxxxx,CH,A,'
 DC C'yyyyy,zzzzz,CH,A'
MYSRT DC C',11,5,CH,A' Additional SORT parameters.
SRTSIZE DC C'),SIZE=Evvvvvvv'
ESRTSTMT DC C' ' End of new SORT statement.
 END

Using exit points

DBA Utilities User’s Guide 273

VSE The following is a program for exit point 10 written for VSE:
USERE10 CSECT Entry point.
 USING *,R15 R15 will be the base register.
 STM R14,R12,12(R13) Save Unload's register.
 L R2,0(,R1) Pick up starting address of SORT
* statement.
 MVC SRTSTMT(42),0(R2) Move the first 42 characters of
* the old SORT statement to
* work area.
 MVC SRTWORK(9),42(R2) Move number of available work
* files to work area.
 LA R2,SRTSTMT Start of SORT statement.
 ST R2,0(,R1) Store new start of SORT
* statement in first word of
* parameter list.
 LA R2,ESRTSTMT End of SORT statement.
 ST R2,4(,R1) Store new end of SORT statement
* in second word of parameter
* list.
 LM R14,R12,12(R13) Restore Unload's registers.
 BR R14 Return to Unload.
SRTSTMT DC C'SORT FIELDS=' Area for old SORT parameters.
 DC C'(1,xxxxx,CH,A,'
 DC C'yyyyy,zzzzz,CH,A'
MYSRT DC C',11,5,CH,A' Additional SORT parameters.
SRTWORK DC C'),WORK=n' ESRTSTMT
 DC C' ' End of new SORT statement.
 END

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

274 P26-6260-63

The following is a generalized program written for OS/390 and VSE:

You need to code and link this program only once for the environment
where you want to execute it. In this example, a load module containing
additional sort fields was created for each file where you want to use
additional sort fields. The program for exit point 10 searches a table for
the file currently being processed. If found, it loads the module
corresponding to that file. It then builds the SORT statement in the
loaded module by adding the segments of the original SORT statement
to the additional sort fields. The program returns pointers to the beginning
and end of this new SORT statement.

USERE10 CSECT Entry point.
 STM R14,R12,12(R13) Save Unload's registers.
 LR R12,R15 Load Base register.
 USING USERE10,R12 R12 will be the base register.
 ST R1,SAVE1 Save register R1.
 LM R2,R4,0(R1) Load the registers with
* parameters - R2 contains the
* starting address of the SORT
* statement. R3 contains ending
* address of SORT statement, and
* R4 contains address of file name.
*
* The following code is a simple table search:
*
 LA R11,TABLE-4 Point R11 one entry short of
* first entry in table.
 LA R6,(TABEND-TABLE)/4 Place number of entries in table*
 in R6.
LOOP LA R11,4(,R11) Increment R11 to point to next *
 entry in table.
 CLC 0(4,R4),0(R11) Compare table entry with file
* name supplied as SORT parameter.
 BE EXITN Branch if file name is in table.
 BCT R6,LOOP Continue searching table unless *
 searched entire table.
RETURN LM R14,R12,12(R13) Restore Unload's registers.
 BR R14 Return control to Unload.

The following code constructs a module name:
EXITN DS 0H This routine executes only when
* the table of file names
* contains a match against the
* file name passed as the third
* input parameter.

At this point, the code for OS/390 and VSE differs.

Using exit points

DBA Utilities User’s Guide 275

OS/390 Environments
 MVC MODPRFX,0(R4) R4 points to the third input
* parameter (SUPRA file name).
* This instruction builds a string
* of the form ffffUS10.
 LOAD EPLOC=MODNAME The load module, whose
* 8-character name is now
* found at MODNAME, is loaded into
* virtual storage and its address
* is returned in R0.
 LR R1, R0 Register 1 now contains the *
 address of the first byte of
* module ffffnUS10.

The following instructions move additional sort field definitions into the
original SORT statement for the file.

 LM R4,R5,0(R1) Pick up start and end addresses
* of new SORT statement.
 MVC 0(43,R4),0(R2) Move original sort fields.
 MVC 0(16,R5),43(R2) Move original size parameter.
 L R1,SAVE1 Restore original register 1.
 LA R5,16(,R5) Bump to end of SORT.
 STM R4,R5,0(R1) Store addresses of modified SORT
* statement in SORT parameter list.
 B RETURN Branch to RETURN.

The following table requires one entry for each file requiring additional
parameters in the SORT statement:

TABLE DS 0F Header label.
 DC C'ffff1' Appropriate number of four-
 DC C'ffff2' character file names.
 DC C'ffffn'
 .
 .
 .
 DC C'END.' Code this only if you code no
* file name.
TABEND EQU * End of the above list.

The following area contains the constructed module name passed as the
parameter to the load module:

MODNAME DS 0D
MODPRFX DC CL4'ffff' File name moved from table.
MODEND DC CL4'US10' Any four characters you choose
* as a common ending for the
* loaded module names.
SAVE1 DS F Area to save original parameter
* pointer.
 END

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

276 P26-6260-63

The following code illustrates a sample of a module loaded by the
preceding program. You must replace ffffn with the name of a file for
which you want to add a sort field. You must also code the same file
name in the table at label TABLE in the preceding program. You can
code any valid sort parameters at label YOURSORT. You can code as
many of these modules as you need.

ffffnUS10 CSECT Use 4-character file name.
 DC A(SRTBEG) Required as shown.
 DC A(SRTEND) Required as shown.
SRTBEG DC CL43' ' Required as shown.
YOURSORT DC C',11,5,CH,A' Additional SORT parameters.
* The date starts 11 bytes into *
 the record and is 5 bytes long.
SRTEND DC CL16' ' Required as shown.
 END

The following routine constructs a phase name:

VSE Environments
 MVC MODPRFX,0(R4) R4 points to the third input
* parameter (SUPRA file name).
* Builds a string of the form
* ffffUS10.
 LA R1,MODNAME The load phase, whose
 LA R0,MODADDR 8-character name is now
 LOAD (1),(0) found at MODNAME, is loaded into
* virtual storage and its address *
 is returned in R1; that is,
* register 1 now contains the *
 address of the first byte of
* phase ffffnUS10.

The following instructions override the default Unload parameters with
those specified by the CSECT associated with the file.

 LM R4,R5,0(R1) Pick up unrelocated start and
* end addresses of new SORT
* statement.
 AR R4,R1 Relocate ADCONs.
 AR R5,R1
 MVC 0(42,R4),0(R2) Move original sort fields.
 MVC 0(9,R5),42(R2) Move original work parameter.
 L R1,SAVE1 Restore original register 1.
 LA R5,9(,R5) Bump to end of SORT.
 STM R4,R5,0(R1) Store addresses of modified SORT *
 statement in SORT parameter list.
 B RETURN Branch to RETURN.

Using exit points

DBA Utilities User’s Guide 277

The following table requires one entry for each file requiring additional
parameters in the SORT statement:

TABLE DS 0F Header label.
TABENT DS 0F To supply appropriate implied *
 length of entry for searching.
 DC C'ffff1' Appropriate number of four-
 DC C'ffff2' character file names.
 DC C'ffffn'
 .
 .
 .
 DC C'END.' Code this only if you code no *
 file name.
TABEND EQU * End of the above list.

The following area contains the constructed phase name passed as the
parameter to the load module:

MODNAME DS 0D
MODPRFX DC CL4'ffff' File name moved from table.
MODEND DC CL4'US10' Any four characters you choose
* as a common ending for the
* loaded phase names.
SAVE1 DS F Area to save original parameter
 DS 0D pointer.
MODADDR DS CLnnn Where nnn is the size of the
* largest program loaded.
 END

The following code illustrates a sample of a phase loaded by the
preceding program. You must replace ffffn with the name of a file for
which you want to add a sort field. You must also code the same file
name in the table at label TABLE in the preceding program. You can
code any valid sort parameters at label YOURSORT to satisfy your
requirements. You can code as many of these phases as you need. This
phase must be link edited at +0.

ffffnUS10 CSECT Use 4-character file name.
 DC A(SRTBEG) Required as shown.
 DC A(SRTEND) Required as shown.
SRTBEG DC CL42' ' Required as shown.
YOURSORT DC C',11,5,CH,A' Additional SORT parameters.
* The date starts 11 bytes into
* the record and is 5 bytes long.
SRTEND DC CL9' ' Required as shown.
 END

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

278 P26-6260-63

Using exit point 20
At exit point 20 (USERE20), you can modify or delete a record before
sorting it. The figure in “Using exit points” on page 265 shows the point
where the Unload function checks to see whether you have included a
program for exit point 20. This point is after the function extracts and
formats a record from the file and before it passes the record to the
SORT program.

If you have included a program, the Unload function loads register 15
with the starting address of your program. At the same time, it loads
register 1 with the address of the record you want written to the output
file. The Unload function then passes control to your program once for
each record it unloads. If it is unloading related files and you coded
PRESERVE=YES, the function does not access your exit program and
preserves the order of the records on the linkpath.

The following figure shows the steps that your exit program takes. It
evaluates each record according to your criteria and either deletes the
record or passes it on for further processing.

Processing at Exit Point 20

yesno

no

Save Registers

Record
to be

Deleted?

Modify
Record

Set
Return
Code

Restore
Registers

Return
Control to

Unload

Set
Return
Code

Using exit points

DBA Utilities User’s Guide 279

If you want to delete the record, your program should place a return code
of 4 in register 15 (or in 'RETURN-CODE' in COBOL). This returns
control to the Unload function and deletes the record. After your program
processes the last record, it returns control to the function which then
passes control to the SORT program.

If you do not want the record deleted, your program can modify it. After
modification, your program should place a return code of 0 in register 15
(or 'RETURN-CODE' in COBOL) and return control to the Unload
function. The Unload function then passes the record on to the SORT
program.

If you have defined or expanded fields with the *FILL=nn parameter in the
element list, you may initialize them in your program at either exit point 20
or 30. For examples of programs you can insert at exit point 20, see
“Sample programs for exit point 20” on page 281.

Using registers
When the Unload function calls your program at exit point 20, these four
registers contain the following information. When your exit program
returns to the Unload function, it must restore all registers, except 15, to
their contents at entry. Register 15 must contain a return code, as shown
below.

Register Function

R1 Address of a fullword containing the address of the
record you want sorted.

R13 Address of a standard 72-byte save area. In this area,
your program saves the contents of the registers as
they were when it gained control. When it returns
control, it uses the contents in this area to restore them.

R14 Return address. Your exit returns control to the Unload
function at this address.

R15 At entry, address of entry point USERE20. At exit, this
register contains one of the following return codes:
0 Directs the Unload function to pass the record to

SORT.
4 Directs the Unload function not to pass the record to

the SORT program.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

280 P26-6260-63

Sample programs for exit point 20
Since exit points 10 and 20 are frequently used together, this example
presents a problem illustrating the use of both exits. It shows example
programs in both Assembler and COBOL languages for exit point 20.
Also shown are modifications to the programs for exit point 10. These
modifications make the exit point 10 programs applicable to the example
shown below.

Assume you wish to unload a related file which, when unloaded, has
records in the OUTPUT file in the following format:

FILE NAME
(4 bytes)

RECORD CODE
(2 bytes)

KEY
(5 bytes)

DATA
(n bytes)

You want to keep the records in a specific sequence within the key. You
want the record codes in the following order: HR, DT, CR, and DB. These
are the only record codes in the file. As before, you use the program at
exit point 10 to extend the sort parameter so it includes the record code.
Since the record codes are not in alphabetical order, this program at exit
point 20 modifies the record codes into a collating sequence. Exit point
20 changes HR to 01, DT to 02, CR to 03, and DB to 04. After sorting,
exit point 30 restores the record codes to their original values. “Record
code modification by exit programs illustrating the use of exit points 20
and 30” on page 284 illustrates the changes to the record codes.
“Record sequence before and after being sorted with record codes
modified at exit points 20 and 30” on page 285 shows the sequence of
records in the file before and after the sort.

The following are the modifications to the programs at exit point 10:

The coding is the same as shown in the Assembler program, except that
the MYSRT statement is changed to read as follows:
MYSRT DC C',5,2,CH,A'

Using exit points

DBA Utilities User’s Guide 281

The following are the modifications to the generalized program:

The coding is the same as shown in the generalized routine, except that
the YOURSORT statement is changed to read as follows:
YOURSORT DC C',5,2,CH,A'

You can use the programs at exit point 10 to add the record code to the
sort fields already generated by the Unload function. Since the record
code is located in the fifth and sixth positions of the unloaded records,
you can change the exit point 10 programs as described below. The
changes are the same for both OS/390 and VSE.

If you use the Assembler exit program, make the following change:
MYSRT DC C',5,2,CH,A'

If you use the generalized exit program, make the following change:
YOURSORT DC C',5,2,CH,A'

The following is an Assembler program for exit point 20:
USERE20 CSECT Entry point.
 USING *,R15 R15 will be the base register.
 STM R14,R12,12(R13) Save Unload's registers.
 L R1,0(,R1) Pick up address of record from
* Unload.
 LA R2,TABLE Address of start of conversion
* table.
USERE201 DS 0H
 CLC 0(4,R2),HEXFF End of table?
 BE USERE202 If invalid record code, delete
* record.
 CLC 0(,R2),4(R1) Does table match record code in *
 record?
 BE USERE203 If match, change to internal
* code.
 LA R2,4(,R2) Check next code.
 BUSERE201 Try next entry in table.
USERE202 DS 0H No match, delete record.
 LM R14,R12,12(R13) Restore Unload's registers.
 LA R15,4 Set return code to delete record.
 BR R14 Return.
USERE203 DS 0H Match, sort record.
 MVC 4(2,R1),2(R2) Change record code to internal
* code.
 LM R14,R12,12(R13) Restore Unload's registers.
 SR R15,R15 Set return to sort record.
 BR R14 Return control to Unload.
TABLE DC C'HR01' Table of record code values.
 DC C'DT02'
 DC C'CR03'
 DC C'DB04'
HEXFF DC XL4'FFFFFFFF'
 END

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

282 P26-6260-63

The following is a COBOL program for exit point 20:
IDENTIFICATION DIVISION.

PROGRAM-ID. USERE20.

DATA DIVISION.

WORKING-STORAGE SECTION.

 01 TABLE. Record code conversion table.

 02 FILLER PIC X(4) VALUE 'HR01'.

 02 FILLER PIC X(4) VALUE 'DT02'.

 02 FILLER PIC X(4) VALUE 'CR03'.

 02 FILLER PIC X(4) VALUE 'DB04'.

 01 TABS REDEFINES TABLE.

 02 SEARCH-TAB OCCURS 4 TIMES Four entries are to be redefined.

 INDEXED BY TAB-1.

 03 TAB-ARG PIC XX. Value to represent record code

 03 TAB-PLUG PIC XX. in sort.

LINKAGE SECTION.

 01 RECORD-LAYOUT. Record passed to exit from

 02 FILE-NAME PIC XXXX. Unload.

 02 RECORD-CODE PIC XX.

 02 KEY PIC X(5).

 02 BALANCE-OF-DATA PIC X(90). Corresponds to Unload element list.

PROCEDURE DIVISION.

 USING RECORD-LAYOUT.

BEGIN.

 SET TAB-1 TO 1. Start at beginning of table.

 SEARCH SEARCH-TAB Search table for matching record code.

 AT END GO TO WRONGO Go to WRONGO if no match.

 WHEN RECORD-CODE EQUALS Go to FOUNDEM if a match is found.

 TAB-ARG(TAB-1)

 GO TO FOUNDEM.

WRONGO.

 MOVE 4 TO RETURN-CODE. Set return code to delete record.

 GOBACK. Return.

FOUNDEM. Change record code to value used for sort.

 MOVE TAB-PLUG(TAB-1) TO

 RECORD-CODE.

 MOVE 0 TO RETURN-CODE. Set return code to sort this record.

 GOBACK. Return.

Using exit points

DBA Utilities User’s Guide 283

Record code modification by exit programs illustrating the
use of exit points 20 and 30

01 A

Record
Code
field

Control-
key
field

Data
fields

Record codes are changed from
HR to 01; DT to 02; CR to 03;
and DB to 04 for sorting. These
are the values to be used by the
SORT program to sort the
records into ascending collating
sequence by record code and
control-key. Original record code
values will be restored after all
records in the file have been
sorted.

Content of a record after modification using exit 20

02 A

03 A

04 A

HR A

Record
Code
field

Control-
key
field

Data
fields

Record codes have been restored
to their original values. Record
codes have been restored from
01 to HR; 02 to DT; 03 to CR;
and 04 to DB.

Content of a record after modification using exit 30

DT A

CR A

DB A

HR A

Record
Code
field

Control-
key
field

Data
fields

Record codes are HR, DT, CR,
and DB. (Actual records will not
be in sequence, as shown here.)
The control-key may be any valid
control-key value, e.g., A, B, C,
etc. Any of the record codes may
appear with any control-key. The
control-key value A is used here
for illustrative purposes only.

Content of a record prior to modification using exit 20

DT A

CR A

DB A

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

284 P26-6260-63

Record sequence before and after being sorted with record
codes modified at exit points 20 and 30

CR B

DT A

DB B

HR A

HR B

DB A

CR A

DT B

Record
Code
field

Control-
key
field

Data
fields

Records are in random
order prior to being sorted

DB B

CR B

DT B

HR B

DB A

CR A

DT A

HR A

Record
Code
field

Control-
key
field

Data
fields

Records are now in
sequence by record code
and control-key. Desired
record code sequence is
HR, DT, CR, and DB, as
shwon here.

Record sequence after sort

Record sequence prior to sort

Record codes are modified
by Exit 20 prior to being
sorted and restored to their
original values by Exit 30
after being sorted.

Using exit points

DBA Utilities User’s Guide 285

Using exit point 30
At exit point 30 (USERE30), you can delete, modify, or add records in the
output file. The figure in “Using exit points” on page 265 shows the point
where the Unload function checks to see if you have included a program
for exit point 30. It is after the sort phase, but before the function writes
the unloaded records to the output file.

If you have included a program, the Unload function loads register 15
with the starting address of your program. At the same time, it loads
register 1 with the address of the record you want written to the output
file. The Unload function passes control to your program once for every
record. After your program has processed the last record, it returns
control to the Unload function.

The figure at the end of this section shows the steps that your program
must take. At the beginning of your program, it should save the contents
of the Unload registers by moving them to a 72-byte save area. Its
beginning address is in register 13.

Next, your program evaluates each record according to criteria you
define. Then it adds, deletes, or modifies the record and has the Unload
function write it to the output file. Your program tells the Unload function
what to do with each record by placing a return code in register 15 (or in
'RETURN-CODE' in COBOL). After it sets the return code, it returns
control to the function, which either deletes the record or writes it to the
output file.

If you are adding records, you must have previously sorted them
according to the same criteria, put them in the same element list format,
and put them in the same order as the rest of the records. When the
Unload function adds a record, it inserts it in front of the record it just
passed to your exit program. After your program adds the record, the
Unload function automatically makes the original record it just passed to
your program available again.

If you have defined or expanded fields with the *FILL=nn parameter in the
element list, you may initialize them with your program at either exit point
20 or 30.

The Unload function calls this exit whether you have coded
PRESERVE=YES or PRESERVE=NO.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

286 P26-6260-63

yes

yes

yes

Processing at Exit Point 30

no

no

no

Save
Registers

Record
to be

Deleted

Record
to be

Modified

Record
to be

Added

Set Return
Code to 0

Restore
Registers

Return
Control to

Unload

Modify
Record

Set Return
Code to 0

Set Return
Code to 8

Add
Record

Set Return
Code to 4

Using exit points

DBA Utilities User’s Guide 287

Using registers
When the Unload function calls your program at exit point 30, these four
registers contain the following information. When your exit program
returns to the Unload function, it must restore all registers, except 15, to
their contents at entry. Register 15 must contain a return code, as shown
below.

Register Function

R1 Address of a fullword containing the address of the
record you want written.

R13 Address of a standard 72-byte save area. In this area,
your exit program saves the contents of the registers at
entry and restores them from this area at exit.

R14 Return address. Your exit program returns control to the
Unload function at this address.

R15 At entry, address of entry point USERE20. At exit, this
register contains one of the following return codes:
0 Directs the Unload function to write the record to the

output file.
4 Directs the Unload function to add the record and

write it to the output file.
8 Directs the Unload function to delete the record.

When the exit program returns a code of 4, it directs the Unload function
to add a record. When the Unload function adds records, it must insert
them in front of the record it is processing. When the Unload function
accesses your program the next time, it automatically makes the original
record available again.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

288 P26-6260-63

The example below illustrates this process. In this case, you want to add
Record 8. It must go before Record 10 and after Record 6. The second
time the Unload function accesses your program, it passes Record 10 to
your program. When your program returns control, it directs the Unload
function to add Record 8. After the Unload function writes Record 8 to the
output file, it again passes Record 10 to your program for deletion or
modification. This time, your program directs Unload to write it to the
output file.

Access Passed Process Return code

1st Record 6 WRITE RECORD 8 0
2nd Record 10 ADD RECORD 8 4
3rd Record 10 WRITE RECORD 10 0
4th Record 15 WRITE RECORD 15 0

Using exit points

DBA Utilities User’s Guide 289

Sample programs for exit point 30
These Assembler and COBOL programs for exit point 30 solve the
problem stated in “Sample programs for exit point 10” on page 271 for
exit point 10. This exit program restores the record codes to their original
values.

“Record sequence before and after being sorted with record codes
modified at exit points 20 and 30” on page 285 shows the record
sequence before and after being sorted with record codes modified by
programs for exit points 20 and 30.

The following is an Assembler program:
USERE30 CSECT Entry point.

 USING *,R15 R15 will be the base register.

 STM R14,R12,12(R13) Save Unload's registers.

 L R1,0(,R1) Pick up address of record.

 LA R2,TABLE Address of start of table.

USERE301 DS 0H

 CLC 0(4,R2),HEXFF End of table?

 BE USERE302 If invalid code, delete record.

 CLC 2(4,R2),4(R1) Does table match code in record?

 BE USERE303 If match, change back to record code.

 LA R2,4(,R2) Check next code.

 B USERE301 Try next entry in table.

USERE302 DS 0H No match - delete record.

 LM R14,R12,12(R13) Restore Unload's registers.

 LA R15,8 Set return code to delete record.

 BR R14 Return.

USERE303 DS 0H Match, unload record.

 MVC 4(2,R1),0(R2) Change internal code back to record code.

 LM R14,R12,12(R13) Restore Unload's registers.

 SR R15,R15 Set return code to unload record.

 BR R14 Return.

TABLE DC C'HR01' Table of record code values.

 DC C'DT02'

 DC C'CR03'

 DC C'DB04'

HEXFF DC XL4'FFFFFFFF'

 END

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

290 P26-6260-63

The following is a COBOL program for exit point 30:
IDENTIFICATION DIVISION.

PROGRAM-ID. USERE30.

DATA DIVISION.

WORKING-STORAGE SECTION.

 01 TABLE. Record code conversion table.

 02 FILLER PIC X(4) VALUE 'HR01'.

 02 FILLER PIC X(4) VALUE 'DT02'.

 02 FILLER PIC X(4) VALUE 'CR03'.

 02 FILLER PIC X(4) VALUE 'DB04'.

 01 TABS REDEFINES TABLE.

 02 SEARCH-TAB OCCURS 4 TIMES Four entries are to be redefined.

 INDEXED BY TAB-1.

 03 TAB-ARG PIC XX.

 03 TAB-PLUG PIC XX. Value to represent record code in sort.

LINKAGE SECTION.

 01 RECORD-LAYOUT. Record passed to exit from Unload.

 02 FILE-NAME PIC XXXX.

 02 RECORD-CODE PIC XX.

 02 KEY PIC X(5).

 02 BALANCE-OF-DATA PIC X(90). Corresponds to Unload element list.

PROCEDURE DIVISION

 USING RECORD-LAYOUT.

BEGIN.

 SET TAB-1 TO 1. Start at beginning of table.

 SEARCH SEARCH-TAB Search table for matching record code.

 AT END GO TO ALSO-WRONGO Go to ALSO-WRONGO if no match.

 WHEN RECORD-CODE EQUALS Go to FOUNDEM-AGAIN if a match is

 TAB-PLUG(TAB-1) found.

 GO TO FOUNDEM-AGAIN.

ALSO-WRONGO.

 MOVE 8 TO RETURN-CODE. Set return code to delete record.

 GOBACK. Return.

FOUNDEM-AGAIN.

 MOVE TAB-ARG(TAB-1) TO Match found in table. Change

 RECORD CODE. value used for sort back to record code.

 MOVE 0 TO RETURN-CODE. Set return code to unload this record.

 GOBACK. Return.

Using exit points

DBA Utilities User’s Guide 291

Loading PDM files
The Version 2 Load Function (CSULOADR) loads SUPRA Directory or
PDM files from the output of the Version 2 Unload function. The Load
function also automatically updates the linkpath fields with correct data.
You can load the files in any format: SUPRA native, SUPRA converted,
or Series 80.

Use the Version 2 Load function only with output files created by the
Version 2 Unload function. The Version 2 Load function does not operate
with files created by the Version 1 Unload utility.

The Version 2 Unload function unloads only Directory and PDM files; it
does not unload index files. Therefore, you cannot load index files with
the Version 2 Load function.

If your PDM files have secondary keys, you must depopulate them before
you unload them and repopulate them after you load them. For more
information, see the introduction to this chapter.

Before you load a PDM VSAM file, allocate it with the IDCAMS utility, but
do not format it.

To use the Version 2 Load function, you do not code UCL. Instead, you
code the following input:

♦ File definitions

♦ Run control statements

♦ File control statements

Defining files
To execute the Load function, you must define the files listed in “File
definitions for the Load function” on page 295 in your JCL and execute
the Unload program named CSUNLOAD. In OS/390, you can use the
cataloged procedure TISUTLOD. If you want to change any of the
symbolic parameters in TISUTLOD, refer to the SUPRA PDM and
Directory Administration Guide, P26-2250. If you do not want to use the
cataloged procedure, you can follow the same procedure as in VSE. The
following figures show the files that you must define in OS/390 and VSE.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

292 P26-6260-63

Files you define in OS/390 JCL to load

UNLOAD

LOAD

CSIPARM

CSUAUX

SYSPRINTSYSIN
(Run and File Control
Statements) SYSUDUMP

SORT

(in SORTLIB)
SYSOUT
SORTWK1
SORTWK2
SORTWK3

Database files

OUTFILE

SYSUTI

CSU#REC

CSU#REC

LINKWR01

LINKWR01

LINKWR02

INSERT

LINKWR02

Loading PDM files

DBA Utilities User’s Guide 293

Files you define in VSE JCL to load

UNLOAD

LOAD

CSIPARM

CSUAUX

SYSLSTSYSIPT
(Run and File Control
Statements) Database files

SORT

(in SORTLIB)
SYSOUT
SORTWK1
SORTWK2
SORTWK3

Z-prefixed database files

OUTPUT

INPUT

CSU#REC

CSU#REC

LINKWRK1

LINKWRK1

LINKWRK2

INSERT

LINKWRK2

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

294 P26-6260-63

File definitions for the Load function
To execute the Load function, you must define the files listed below in
your JCL and execute CSUNLOAD.

DD or file name Description Considerations

OS/390 CSI#WKnn Identifies the sort
work files.

VSE For VSE, see the SORTWKn
definition.
If not enough virtual storage is allocated to
sort in place, identify the needed sort work
files (CSI#WK01, CSI#WK02 and
CSI#WK03). Format and space allocation
are identical to standard SORTWKnn
statements as defined in the appropriate
sort manual.

CSIPARM Identifies the
CSIPARM file, which
contains control
information needed
by the PDM.

Code an open mode of NONE in the
environment description for all files you
want the Unload and Load functions to
read. Also, code the task log option as
NONE in the environment description or
the Utility will abend.

CSU#REC Holds the number of
records the Unload
function unloaded.

When you supply the CSU#REC file to the
Load function, you must ensure that the
file comes from the same run of the
Unload utility as the INPUT file. For more
information, see “Defining the CSU#REC
file” on page 238.

CSUAUX Holds the auxiliary
information for the
files that are not in
native format.

See “Defining the CSUAUX file” on
page 238.

OS/390 ffffffff
VSE fffffff and Zffffff

Names the files you
want loaded.

You may code up to 57 primary files and
57 related files. The file name must be
coded in the SUPRA Directory for the
schema you are loading.
For VSE, you must code primary and
related files on two separate DLBL
statements. Code each file twice: once for
direct access with the file name (fffffff) on
the DLBL statement and the second time
for sequential access with a Z before the
file name. Truncate to seven characters
(Zffffff).

Loading PDM files

DBA Utilities User’s Guide 295

DD or file name Description Considerations

VSE INPUT Holds the data for all
files you want
loaded.

This must be the OUTFILE output file of
the Unload execution. See “Defining the
OUTFILE” on page 241.

OS/390 LINKWK01
VSE LNKWRK1

Indicates the first
See linkage work
file.

See “Coding the LINKWK01/LNKWRK1
file” on page 297.

OS/390 LINKWK02
VSE LNKWRK2

Indicates the second
linkage work file.

See “Coding the LINKWK02/LNKWRK2
file” on page 300.

SORTLIB Indicates the library
containing the
standard sort
program.

VSE SORTWKn Identifies work files
for sorting.

OS/390 For OS/390, see the CSI#WKnn
definition.
If insufficient virtual storage is allocated to
sort in place, identify the required standard
sort work files (SORTWK1, SORTWK2,
SORTWK3) as defined in the appropriate
sort manual.

OS/390 SYSIN
VSE SYSIPT

Holds the run control
and file control
statements.

See “Coding run control statements for the
Load function” on page 302 and “Coding
the Element List statement” on page 318.

VSE SYSLST
OS/390 SYSPRINT

Identifies the output
file for the printed
listing of all control
statements,
diagnostic
messages, etc.

SYSOUT Identifies the file the
standard sort
program uses.

OS/390 SYSUDUMP Indicates that you
want a storage dump
taken and written to
this file if an abend
occurs.

Optional.

OS/390 SYSUT1 Holds the data for all
files you want
loaded.

This must be the OUTFILE output file of
the Unload execution. See “Defining the
OUTFILE” on page 241.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

296 P26-6260-63

Coding the LINKWK01/LNKWRK1 file
The first linkage work file is LINKWK01 in OS/390 and LNKWRK1 in
VSE. You need the file in these situations:

♦ For loading related files

♦ For loading primary files that are connected by linkpaths to related
files you are also loading.

You use the file to receive linkage data the Load function generates while
loading related files. The Load function then inserts the linkage data into
the primary files with which they are associated.

If you are loading primary files but not the related files with which they are
associated, you can omit this linkage work file because the Load function
does not generate any linkage information.

If you are loading related files, you can insert the linkpath data into the
associated primary files by executing the Insert Linkpath function. If you
do so, you must use a permanent file or pass this linkage work file to the
Insert Linkpath function in a later step. The latter possibility is illustrated
in “Files you define in OS/390 JCL to load” on page 293 and “Files you
define in VSE JCL to load” on page 294.

Loading PDM files

DBA Utilities User’s Guide 297

To allocate the linkage work file, you need to know the number of records
in the file. You can determine the number in two steps:

1. Execute the File Statistics function to obtain chain statistics for every
related file you will load.

2. Add the number of chains in the linkpaths for all the related files you
are loading.

When you code your JCL for this file, you need to calculate the logical
record length (LRECL). You do that by adding 20 bytes to the value in the
MAXKEY parameter in the run control statements. (You may have coded
it or allowed it to default.) The purpose of the 20 bytes is shown in the
following table. You must calculate and code the LRECL parameter
exactly because the Load function calculates this value itself under some
conditions and its value must match yours.

Position (bytes) Contents
1–4 Primary file name
5–8 Home location relative record number (RQLOC)

of primary record
9–12 Linkpath name (LKxx)
13–16 Relative record number (RRN) of first record in

the related chain
17–20 RRN of last record in the related chain
21–n Primary file control key. Maximum key length is

256 bytes.

You code the rest of your JCL differently depending on whether you are
loading primary or related files:

♦ For related files, use DISP=(NEW,KEEP,DELETE)

♦ For primary files, use DISP=(OLD,DELETE,KEEP)

♦ For related and primary files together, use
DISP=(NEW,DELETE,KEEP)

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

298 P26-6260-63

When you load related files, you should code the BLKSIZE parameter for
the file. You should make it at least as large as the LRECL parameter you
coded. If you make the BLKSIZE parameter larger than the LRECL
parameter, it must be a multiple of the LRECL parameter. The Load
function uses your value to calculate the number it actually uses. It uses
a number that is less than or equal to the BLKSIZE parameter you code.
For example, if the record length is 1024 bytes and you code a block size
of 10,500 bytes, the Load function uses 10,240.

If you do not code the BLKSIZE parameter, it defaults to 10K for tape
devices or the maximum size for the DASD used. In that case, the Load
function sets the record format to fixed blocked.

When you load only primary files with linkage data from loading their
associated related files, you must code the LRECL and BLKSIZE
parameters exactly as they were in the job that loaded these related files.

Loading PDM files

DBA Utilities User’s Guide 299

Coding the LINKWK02/LNKWRK2 file
The second linkage work file is LINKWK02 in OS/390, LNKWRK2 in
VSE. The file has different uses depending on whether you are loading
related or primary files:

♦ For related files, it holds secondary linkage data

♦ For primary files, it holds out-of-block synonym records

In both cases, the record format is preset to fixed blocked. The Load
function internally calculates the record length (LRECL) at run time by
adding 22 bytes to the largest related key length.

VSE In VSE, we recommend that you code the record length yourself rather
than letting it default. Code it in the RECSIZE parameter of the run
control statements. To determine the record length, you must make two
calculations—one for related and one for primary files—and choose the
higher of the two values.

For related files, add at least 22 bytes to the length of the largest key.
(See the record formats for the purpose of the 22 bytes below.) Select
the largest key from the access and secondary linkpath keys of the
related files.

For primary files, use the length of the largest record in the primary files.

If you are loading only primary files, determine the number of records in
two steps:

1. Execute the File Statistics function to obtain the number of out-of-
block synonyms for each primary file you want to load.

2. If you are not loading the files with new block sizes, code the largest
number for any of these files.

 If you are decreasing or increasing the block size, you can expect the
number of out-of-block synonyms (and therefore the number of
records required) to increase or decrease slightly in reverse
proportion to the change in block size. That is, if you increase the
size of the block, you have fewer out-of-block synonyms and need
fewer records. When you change the block size, you cannot arrive at
an exact number; you have to estimate the number.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

300 P26-6260-63

If you are loading only related files or related and primary files, you
determine the number of records in three steps:

1. Execute the File Statistics function to obtain the linkpath statistics for
all the related files you want to load.

2. Add the number of records containing each secondary linkpath.

3. Use the highest number.

You must code a multiple of the LRECL parameter for the BLKSIZE
parameter. In VSE, we recommend you code the block size in the
BLKSIZE parameter rather than let it default.

If you use a tape device for this file, use DISP=(NEW,PASS) to avoid
unloading and reloading the tape between each primary file.

If you want to estimate the amount of sort work space, consider the
format of the records for the first sort:

Position (bytes) Contents
1–4 Related file name
5–12 Secondary Linkpath name
13–16 Relative position in file (RRN)
17–18 Record code
19–20 Displacement of control key into related file
21–22 Length of primary control key
23–n Primary record control key

The following is the format of the records for the second sort:

Position (bytes) Contents
1–4 Related file name
5–8 Relative position in file (RRN)
9–12 Linkpath (Previous)
13–16 Linkpath (Next)
17–18 Displacement of Linkpath into related record

Loading PDM files

DBA Utilities User’s Guide 301

Coding run control statements for the Load function
With run control statements, you can control the execution of the Load
function. You may code some of these statements with several
parameters and others with only one. You may need to code some
statements with more than one record, but you cannot code two different
statements on the same record, except in VSE where you can code
SORTCORE, SORTNAME, and WORK statements on one record. You
must begin each run control statement in position 1.

You must code the RELATED: file list before the PRIMARY: file list, and
list the files in ascending order. You are free to code all the other run
control statements in any order.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

302 P26-6260-63

All the run control statements are shown in the following table with a brief
description.

Statement Description Section
SCHEMA Indicates the name of the schema you

want used to load the database.
“Coding the SCHEMA
statement” on page 304

RELATED: Names the related files you want
loaded.

“Coding the RELATED:
statement” on page 305

V-E: Alternate form of RELATED:
statement.

“Coding the V-E:
statement” on page 306

PRIMARY: Names the primary files you want
loaded.

“Coding the PRIMARY:
statement” on page 306

S-E: Alternate form of PRIMARY:
statement.

“Coding the S-E:
statement” on page 307

MAXKEY Indicates the length of the longest
primary file control key in the related
files you want loaded.

“Coding the MAXKEY
statement” on page 307

VSE LINKWKnn Defines the characteristics of the
LNKWRK1 and LNKWRK2 files.

“Coding the LINKWKnn
statements (VSE only)” on
page 308

VSE RECFORM Defines the characteristics of the
INPUT file.

“Coding the RECFORM
statement (VSE only)” on
page 311

SORTCORE Indicates the amount of virtual storage
the function can use for the SORT
program.

“Coding the SORTCORE
statement” on page 314

SORTNAME Names the sort program if it is not the
standard program.

“Coding the SORTNAME
statement” on page 315

VSE WORK Indicates the number of tape devices
or disk extents available for
intermediate sort storage.

“Coding the WORK
statement (VSE only)” on
page 316

Loading PDM files

DBA Utilities User’s Guide 303

Coding the SCHEMA statement
With the SCHEMA statement, you name the schema you want to use for
loading your database files. If you are loading Directory files, name the
bootstrap schema.

SCHEMA =
schemaname
bootschema









SCHEMA =
schemaname
bootschema









Description Required. Names the schema you want the function to use when loading
your database files.

Format 1–8 alphanumeric characters

Consideration To load your PDM files, the CSIPARM file must have your bootstrap
schema and environment description in the DIRECTORY parameter and
your schema and environment description in the REALM parameter.
When you code this run control statement, you should code your
schema. To coordinate coding your run control statements with your
CSIPARM file, see “Coding CSIPARM file and run control statements for
PDM files” on page 230.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

304 P26-6260-63

Coding the RELATED: statement
With the RELATED: statement, you can name the related files you want
loaded. If you have no related files to load, you can omit this statement. If
you code it, put it before the PRIMARY: statement.

You may use the Series 80 V-E: statement in place of the RELATED:
statement. However, use one or the other, not both.

RELATED:rrrr1[rrrr2...rrrrn]END.

or

V-E:vvvv1[vvvv2...vvvvn]END.

RELATED:rrrr1[rrrr2...rrrrn]END.
V-E:vvvv1[vvvv2...vvvvn]END.

Description Optional. Identifies the related files you want loaded.

Format

♦ Code RELATED: in positions 1–8 of the first record only, or code V-
E: in positions 1–4.

♦ You may use up to three records for this statement. If you use
several records, begin the file names in position 1 of the second and
third records.

♦ Use all 80 positions unless you are coding the last statement.

Considerations

♦ Arrange related file names in ascending order, and define them with
JCL statements.

♦ Load your PDM files and Directory files in separate jobs.

♦ You can name up to 57 files by using several records.

♦ You must code END. immediately after the last file name to indicate
the end of the file list.

Loading PDM files

DBA Utilities User’s Guide 305

Coding the V-E: statement
The V-E: statement is supported for compatibility with existing Series 80
and TIS 1.x job streams. It serves the same purpose as the RELATED:
statement. For coding information, see “Coding the RELATED:
statement” on page 305.

Coding the PRIMARY: statement
With the PRIMARY: statement, you can name the primary files you want
loaded. You can omit this statement if you have no primary files to load. If
you code this statement, put it after the RELATED: statement.

You may use the Series 80 S-E: statement in place of the PRIMARY:
statement. However, use one or the other, not both.

PRIMARY:pppp1[pppp2...ppppn]END.

or

S-E:mmmm1[mmmm2...mmmmn]END.

PRIMARY:pppp1[pppp2...ppppn]END.
S-E:mmmm1[mmmm2...mmmmn]END.

Description Optional. Identifies the primary files you want loaded.
Format

♦ Code PRIMARY: in positions 1–8 of the first record only, or code S-E:
in positions 1–4.

♦ You can use up to three records for this statement. If you use more
than one, begin the file names in position 1 of the second and third
records.

♦ Fill all 80 positions unless you are coding the last statement.

Considerations
♦ Arrange the primary file names in alphabetical order, and define them

with JCL statements.

♦ Load your PDM files and Directory files in separate jobs.

♦ You can name up to 57 primary files by using several records.

♦ You must code END. immediately after the last file name to indicate
the end of the file list.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

306 P26-6260-63

Coding the S-E: statement
The S-E: statement is supported for compatibility with existing Series 80
and TIS 1.x job streams. It serves the same purpose as the PRIMARY:
statement. For information on coding it, see “Coding the PRIMARY:
statement” on page 306.

Coding the MAXKEY statement
With the MAXKEY statement, you can indicate the length of the longest
primary file control key in the primary and related files you want loaded.
You need to code this statement for various internal calculations and
functions.

MAXKEY =
256
n









MAXKEY =
256
n









Description Optional. Indicates the length of the longest primary file control key in the
related files you want loaded.

Default 256

Options 1–256

Consideration For efficient use of time and space by the sort program, do not use the
default if the actual length of the longest control key is much shorter than
256 bytes.

Loading PDM files

DBA Utilities User’s Guide 307

Coding the LINKWKnn statements (VSE only)
With the LINKWKnn statements, you can define the characteristics of the
linkage work files: LNKWRK1 and LNKWRK2. You can code the
parameters on more than one line.

If you use this LNKWRK1 file later in the Insert Linkpath function, you
must code the same LINKWK01 parameters for the Insert Linkpath
function that you code here. For more information on coding the
statement for that function, see “Coding the LINKWKnn statements (VSE
only)” on page 331.

LINKWK : DEVICE =
DISK

TAPE ,FILABL =
NO
STD

nn 

















































,BLKSIZE =
1000

n


















,RECSIZE =
1000

,DEVADDR =
SYS030
SYSn nnn



























LNKWKnn

Restriction Required if you code DEVICE, FILABL, BLKSIZE, RECSIZE, or
DEVADDR parameters.

Description Required. Identifies the LINKWKnn statement.

Options LINKWK01: The function defines the LNKWRK1 file.

LINKWK02: The function defines the LNKWRK2 file.

Format Code in positions 1–9.

Consideration You can omit the LINKWK01 statement if you are loading primary files
without LNKWRK1 information.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

308 P26-6260-63

DEVICE =
DISK
TAPE









Description Optional. Use this parameter to indicate the file's device type.

Options DISK Disk device

TAPE Magnetic tape unit

,FILABL =
NO
STD









Restriction This parameter is valid only when DEVICE=TAPE.

Description Optional. Indicates whether the tape contains file labels.

Default NO

Options NO Does not contain labels

STD Contains standard labels

,BLKSIZE =
1000

n








Restriction Required if the RECSIZE is greater than 1000.

Description Indicates the file's block size in bytes. If the RECSIZE is less than or
equal to 1000, use this parameter to achieve a higher blocking factor.

Default 1000

Format Use numeric characters.

Consideration To determine the block size, see “Coding the LINKWK01/LNKWRK1 file”
on page 297 and “Coding the LINKWK02/LNKWRK2 file” on page 300.

Loading PDM files

DBA Utilities User’s Guide 309

,RECSIZE =
1000

n








Description Required. Indicates the file's record size in bytes.

Default 1000

Format Use numeric characters.

Consideration To determine the record size. see “Coding the LINKWK01/LNKWRK1
file” on page 297 and “Coding the LINKWK02/LNKWRK2 file” on
page 300.

,DEVADDR =
SYS030
SYSnnn









Description Optional. Identifies the device address (SYS number symbolic unit)
associated with the file.

Default SYS030

Format nnn Must be 3 digits.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

310 P26-6260-63

Coding the RECFORM statement (VSE only)
With the RECFORM statement, you can define the characteristics of the
INPUT file. All parameters are optional since defaults are supplied. If you
code any parameters, you must separate them from any other
statements. You can continue a parameter on the next line. When you do
so, do not code a continuation character.

The parameters must match any parameters you coded on the
RECFORM statement in the Unload function. See “Coding the
RECFORM statement (VSE only)” on page 249.

RECFORM =
FIXBLK
FIXUNB



















,DEVICE =
DISK

TAPE ,FILABL =
NO
STD

























































,BLKSIZE =
1000

n


















,RECSIZE =
100

 ,DEVADDR =
SYS030
SYSn nnn





































RECFORM =
FIXBLK
FIXUNB









Description Optional. Indicates the record format of the file.

Default FIXBLK

Options FIXBLK Fixed-length, blocked records

 FIXUNB Fixed-length, unblocked records

Loading PDM files

DBA Utilities User’s Guide 311

,DEVICE =
DISK
TAPE









Description Optional. Indicates the device type of the file.

Options DISK Disk device

TAPE Magnetic tape unit

,FILABL =
NO
STD









Restriction This statement is valid only when DEVICE=TAPE.

Description Optional. Indicates whether the tape contains file labels.

Default NO

Options NO Does not contain labels

STD Contains standard labels

,BLKSIZE =
1000

n








Description Optional. Indicates the file's block size in bytes.

Default 1000

Format Use numeric characters.

Consideration You must code a multiple of the record size (RECSIZE). For example, if
the record size is 100 bytes, the block size can be 200, 300, 1000, and so
on.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

312 P26-6260-63

,RECSIZE =
100
n









Description Optional. Indicates the file's record size in bytes.

Default 100

Format Use numeric characters.

Consideration To determine the value of this parameter, add the following amounts:

S The sum of the lengths of the data elements you want loaded plus
the length of the control key. Calculate this for each file you load and
use the largest value.

+4 The length of the file name. Always add this value.

+X where "X" is:

+2 The length of the record code. Add this if you are loading at least
one related file with coded records and are not loading any
primary files.

+4 The RQLOC. Add this if loading primary files, regardless of the
above.

+0 Neither of the above.

,DEVADDR =
SYS030
SYSnnn









Description Optional. Identifies the device address (SYS number symbolic unit)
associated with the file.

Default SYS030

Format nnn Must be 3 digits

Loading PDM files

DBA Utilities User’s Guide 313

Coding the SORTCORE statement
With the SORTCORE statement, you can indicate the amount of virtual
storage the SORT program can use.

SORTCORE =
12000
24000
 n















OS/390

VSE

SORTCORE =
12000
24000
 n















Description Optional. Indicates the number of bytes of virtual storage the SORT
program can use.

Default OS/390 12000 bytes

 VSE 24000

Options 12000–999999999

Considerations

♦ If you specify less than 12000, the SORT program overrides that
figure with 12000 bytes and tries to execute.

♦ If you code a value larger than the amount of space available in the
address space, the operating system abnormally terminates the Load
function.

♦ VSE In VSE, you can code the SORTCORE, SORTNAME, and
WORK statements on the same record. When you do so, separate
the statements with commas.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

314 P26-6260-63

Coding the SORTNAME statement
With the SORTNAME statement, you can name the sort program you
want the Load function to use.

SORTNAME =
IERRCO00
SORT
progname

















OS/390

VSE

SORTNAME =
IERRCO00
SORT
progname

















Description Optional. Identifies the sort program.

Default OS/390 IERRCO00

 VSE SORT

Format 1–8 alphanumeric characters

Consideration VSE In VSE, you can code the SORTCORE, SORTNAME, and WORK
statements on the same record. When you do so, separate the
statements with commas.

Loading PDM files

DBA Utilities User’s Guide 315

Coding the WORK statement (VSE only)
With the WORK statement, you can code the number of tape devices or
disk extents available for intermediate storage while sorting.

WORK =
4
n









WORK =
4
n









Description Optional. Indicates the number of tape devices or disk extents available
for intermediate storage while sorting.

Default 4

Options 1–9

Consideration You can code the WORK, SORTNAME, and SORTCORE statements on
the same record. If you do so, separate the statements with commas.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

316 P26-6260-63

Coding the file control statements for the Load function
With file control statements, you can control the order of the data
elements you are loading. You may code several parameters in some of
these statements, while in others you may code only one. Some
statements may require more than one record, but you cannot code two
different statements on the same record.

You must code the statements for the files in the same order as in the
RELATED: and PRIMARY: run control statements. You must code the
related file information before the primary file information. When you
code the information, you may code a LINKPATH statement for each
related file if you like. Then you must code an Element List statement for
each related and primary file, in that order.

The following table briefly describes each statement.

Statements Description Section
Element List Indicates the data elements you want

loaded for a particular file.
“Coding the Element List
statement” on page 318

LINKPATH Indicates the linkpath you want used as
the access linkpath for loading a related
file.

“Coding the LINKPATH
statement” on page 321

Loading PDM files

DBA Utilities User’s Guide 317

Coding the Element List statement
With the Element List statement, you can indicate the data elements you
want loaded from the file (ffff) you identified. The figure at the end of this
section illustrates the format of the records as they appear on the
SYSUT1 file (OS/390) or INPUT file (VSE).

[]ffff
element element element2 n, ...
ALL.

END.












ffff

Description Required. Identifies the file containing the elements you want loaded.

Format 4-character file name coded in the schema.

Consideration Place the file name in positions 1–4 of each Element List statement.

[]element element element2 n, ...
ALL.

END.












Description Required. Identifies the individual element(s) or all (ALL.) elements you
want loaded.

Format

♦ You can code from 1 to 100 data elements in a maximum of 12
records. See the last consideration on the following page.

♦ If you use ALL., code it in positions 5–8.

♦ Code the element list in positions 5–76; anything in positions 77–80
is ignored.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

318 P26-6260-63

Considerations

♦ For related files, you must code the Element List statement
immediately after the LINKPATH statement to which it applies.

♦ If you coded ALL. in the Unload function, you must also code it in the
Load function.

♦ All element names you code must have been previously defined for
the file in the schema on the SUPRA Directory.

♦ You do not need to code all elements of the file in the same order as
they appear in the SUPRA Directory. However, you must code the
elements in the same position in the Unload and Load functions.

♦ To understand how to code your element list to add, delete, expand,
or contract elements in your files, see Considerations 6 through 9 of
the Unload function's Element List statement in “Coding the Element
List statement” on page 257.

♦ If you are loading related files without record codes, you must code
the control key associated with the access linkpath first in the
Element List statement, regardless of its physical position in the
record in the database file. (This does not apply if you are using ALL.)

♦ If you are loading coded records, you must put the record code data
element immediately before the control key in the Element List
statement. (This does not apply if you are using ALL.)

♦ When you load related files with an explicit element list, you must
code the control keys of all secondary linkpaths for the file as defined
in the Directory. When you code the control keys, you help ensure
the integrity of the database.

♦ When you are loading primary files, you must code ppppCTRL first
unless you are using ALL.

♦ You must code END. immediately after ALL. or the last element to
indicate the termination of the element list.

♦ Note that if the number of data elements total more than 100, the
V2LOADR will get a U1000 error if the 100 plus fields or ALL. are
specified. To avoid this situation, have one or more parent Physical
Fields defined that encompass the whole record in less than 101
elements that can be used to do the V2LOAD. This error can occur
even if you specify ALL. when the elements that make up the record
are greater than 100.

Loading PDM files

DBA Utilities User’s Guide 319

ffff
PRIMARY

FILE
NAME

RQLOC
VALUE

CONTROL-

KEY

All remaining data elements and LINKPATHS
as coded on the ELEM-LIST control card(s)
(CONTROL-KEY is excluded).

Primary
Record Format

ffff
RELATED

FILE
NAME

ACCESS-KEY

All remaining data elements as coded
on the ELEM-LIST control card(s)
(ACCESS-KEY is excluded).

Standard Related
Record Format

ffff
RELATED

FILE
NAME

RECORD

CODE

ACCESS-

KEY

All remaining data elements as coded
on the ELEM-LIST control card(s)
(ACCESS-KEY is excluded).

Coded Related
Record Format

ffff
PRIMARY

FILE
NAME

RQLOC
VALUE

CONTROL-

KEY

All data elements excluding the
root field in the order in which
they appear in the internal
record control card(s)
(CONTROL-KEY excluded).

Primary Record
Format with

Linkpaths in File

ffff
PRIMARY

FILE
NAME

RQLOC
VALUE

CONTROL-

KEY

All data elements excluding the root field in the order
in which they appear in the internal record
(CONTROL-KEY excluded).

Primary Record
Format without

Linkpaths

ffff
RELATED

FILE
NAME

ACCESS-KEY

All data elements in the order in which
they appear in the internal record
(ACCESS-KEY excluded).

Standard Related
Record Format

ffff
RELATED

FILE
NAME

RECORD

CODE

ACCESS-

KEY

All data elements in the order in which they appear
in the internal record
(RECORD CODE and ACCESS-KEY excluded).

Coded Related
Record Format

All LINKPATHS in the
order in which they
appear in the internal
record

ELEM-LIST = Element list you supply

ELEM-LIST = ALL. END.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

320 P26-6260-63

Coding the LINKPATH statement
With the LINKPATH statement, you can identify the linkpath you want
used as the primary linkpath to load a related file.

rrrrLINKPATH=ppppLKxx

Restriction Use this statement only for related files.

Description Optional. Identifies the primary linkpath you want used to load a related
file.

Format rrrr 4-character related file name.

ppppLKxx The linkpath name as coded in the schema.

Considerations

♦ The primary linkpath and its associated control key that you use must
be in the base portion of a coded record rather than the redefined
portion.

♦ This statement must immediately precede the Element List statement
of the related file to which it applies.

Loading PDM files

DBA Utilities User’s Guide 321

Loading Directory files
You must load Directory files and PDM files in separate jobs.

If you are loading all the Directory files, the run control statements and file
control statements are in data member CSUSLOAD. After installation is
complete, you cannot modify this member.

In your CSIPARM file, you must code the bootstrap schema and
environment description. When you code the SCHEMA control statement
in “Coding the SCHEMA statement” on page 304, you should use the
same schema that you coded in the CSIPARM file. “Coding CSIPARM
file and run control statements for directory files” on page 231 shows how
to coordinate coding your CSIPARM file with your run control statements.

Coding the Insert Linkpath function
The Insert Linkpath function (CSUINSRT) dynamically inserts linkpath
data into primary files without your unloading and reloading them. The
Insert Linkpath function also inserts linkpath data into Directory or PDM
files.

You use this function when you unload and load part of your files. For
example, you may unload several related files and one of the primary
files to which they are connected, but you may not unload all the primary
files to which they are connected. After you reload, you need to insert the
connections to the files you did not unload. For more information on when
to use this function, see “What to do with linkpaths when you unload and
load” on page 228.

If you are already unloading and loading all the primary files, you do not
need to use this function because the Load function inserts linkpath data.
The Load function also creates the input to this function when it loads the
associated related files. The following figures illustrate the output of the
Load function becoming the input to the Insert Linkpath function.

Use this function only with files loaded by the Version 2 Load function.

To use the Insert Linkpath function, you need to code file definitions and
control statements. JCL examples follow the explanation of the
statements.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

322 P26-6260-63

OS/390 The following figure shows files you define in OS/390 JCL to
insert linkpath data:

LOAD

CSIPARM

CSUAUX SYSPRINT

SYSIN
(Run Control Statements)

SYSUDUMP

Database files

LINKWK01

LINKWK01

LINKWK02

INSERT

LINKWK02

Coding the Insert Linkpath function

DBA Utilities User’s Guide 323

VSE The following figure shows files you define in VSE JCL to insert
linkpath data:

LOAD

CSIPARM

CSUAUX SYSLST

SYSIPT
(Run Control Statements)

Database files

LINKWRK1

LINKWRK1

LINKWRK2

INSERT

LINKWRK2

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

324 P26-6260-63

Defining files
To execute the Insert Linkpath function in OS/390 or VSE, you must
define the files listed in the following table in your JCL and execute the
Insert Linkpath program, CSUINSRT. In OS/390, rather than coding all
the file definitions, you can use the cataloged procedure TISUTINS.

File Description Considerations
CSIPARM: Identifies the CSIPARM file

which contains control
information that the PDM
needs.

See “Coding the CSIPARM file for
Unload, Load, and Insert Linkpath”
on page 230.

CSUAUX: Holds the auxiliary
information for the files that
are not in native format.

See “Defining the CSUAUX file” on
page 238.

ffffffff Indicates the SUPRA
primary files you want
processed by the Insert
Linkpath function.

You may specify up to 57 primary
files. File names must be specified
in the SUPRA Directory for the
schema you are using.
For VSE, you must always code
primary files as direct access on
their DLBL statements.

OS/390 LINKWK01
VSE LNKWRK1

Indicates the first linkage
work file, which contains
linkpath data generated in
the related file load for
insertion into the associated
primary files.

See “Defining the
LINKWK01/LNKWRK1 file” on
page 326.

OS/390 LINKWK02
VSE LNKWRK2

Indicates the second linkage
work file for synonym
processing.

See “Defining the
LINKWK02/LNKWRK2 file” on
page 327.

OS/390 SYSIN
VSE SYSIPT

Holds the run control
statements.

See “Coding control statements”
on page 328.

VSE SYSLST
OS/390 SYSPRINT

Indicates the output file for
the printed listing of all
control statements,
diagnostics messages, etc.

OS/390 SYSUDUMP Indicates a dump file. Optional.

Coding the Insert Linkpath function

DBA Utilities User’s Guide 325

Defining the LINKWK01/LNKWRK1 file
The first linkage work file in OS/390 is LINKWK01; in VSE it is
LNKWRK1. The Load function creates this file while loading associated
related files. It uses the file to hold linkpath pointers to the first and last
record for each key on the related files. This file becomes input to the
Insert Linkpath function. This function uses the file to update pointers to
the first and last records in the corresponding primary records.

Since this is the same file you defined in the Load function, you must
code the same LRECL and BLKSIZE parameters that you coded for the
Load function.

You must also maintain the same format for the data that you used in the
Load function:

Position in bytes Contents
1–4 Primary file name.
5–8 Home location relative record number (RQLOC

value) of primary record.
9–12 Linkpath name (LKxx).
13–16 RRN of first record in the related chain.
17–20 RRN of last record in the related chain.
21–n Primary file control key of the record you want

to load. Maximum key length is 256 bytes.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

326 P26-6260-63

Defining the LINKWK02/LNKWRK2 file
The second linkage work file in OS/390 is LINKWK02; in VSE it is
LNKWRK2. It is used to hold records that have no keys in the Primary
file. After the last record for the Primary file is processed, the work file is
used as input for dummy record insertions into the Primary file.

For OS/390, LINKWK02 LRECL and BLKSIZE must be the same as
LINKWK01. For VSE, LNKWRK2 RECSIZE and BLKSIZE must be the
same as LNKWRK1.

This file does not have the same number of records as the corresponding
file for the Load function. In this function, determine the number of
records for this file in three steps:

1. Execute the File Statistics function to obtain the number of out-of-
block synonyms for each primary file you loaded.

2. Multiply each file's number of out-of-block synonyms by the number
of linkpaths it contains.

3. Use the largest number for one file.

Coding the Insert Linkpath function

DBA Utilities User’s Guide 327

Coding control statements
The INSERT and LINKWKnn statements control the execution of the
Insert Linkpath function. The following table briefly describes each
statement. Some statements may require more than one record, but you
cannot put two different statements on the same record.

Statement Description Section

INSERT Names the primary files into which you
want to insert linkage information.

“Coding the INSERT
statement” on page 328

LINKWKnn (VSE
only)

Defines the characteristics of the
LNKWRK1 and LNKWRK2 files.

“Coding the LINKWKnn
statements (VSE only)” on
page 331

Coding the INSERT statement
Use the INSERT statement to name the primary files into which you want
to insert linkage information. You can put the DBMOD, FILES, and
CLEARLKS parameters in any order. You can continue them over
several records by placing a continuation character in position 72.

[]INSERT FILES = (
ALL.

....)
1 2 nffff ffff ffff .









[][]

[]

,CLEARLKS = (LK LK ... LK .)

,DBMOD =

,END

1pppp xx pppp xx pppp xx

schemaname

2 n

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

328 P26-6260-63

INSERT

Description Required. Identifies the control statement.

Consideration Place at least one blank character before and after the INSERT
parameter.

[]FILES = (
ALL.

... .)
1ffff ffff ffff2 n









Description Required. Names the file(s) you want to update.

Format File names must be 4 alphanumeric characters. Terminate the list with a
period, and surround it with parentheses. Do not separate the file names.

Considerations

♦ List the file names in alphabetical order.

♦ If you code a list of files in the FILES parameter and you want to clear
a linkpath in one particular file, you must name the linkpath in the
CLEARLKS parameter. When you code the CLEARLKS parameter,
you must replace the pppp portion with a file you named in the FILES
parameter. If you code linkpaths that do not match a file in the FILES
parameter, they are ignored.

♦ The function updates only the files you code even if the first linkage
work file contains linkage information for other files.

Coding the Insert Linkpath function

DBA Utilities User’s Guide 329

,CLEARLKS=(ppppLKxx1[ppppLKxx2...ppppLKxxn].)

Description Optional. Indicates that you want blanks moved into the linkpath you
coded for each record of the primary file if there is no linkage data for the
linkpath.

Format Linkpath names must be 8 alphanumeric characters. Terminate the list
with a period, and surround it with parentheses. Do not separate the
linkpath names.

Considerations

♦ The linkpath names must be defined in the schema you coded.

♦ You must list linkpaths in alphabetical order.

♦ This parameter is needed because the linkage work files do not
necessarily contain linkage data for every record in the primary file. If
there is linkage data for a record, the function inserts it in the
appropriate linkpath field. If there is no data and you have coded the
linkpath in CLEARLKS, the function sets the linkpath field to blanks.

 If there is no data and you have not coded the linkpath in the
CLEARLKS parameter, the function leaves the linkpath untouched. In
that case, the linkpath field contains the linkage data from before it
was unloaded and loaded. Since that linkage data may be invalid,
your database may be corrupt.

♦ In the FILES parameter, you should list all linkpath names for all files
that have linkpath data to be inserted. This will take care of the
situation where there is no linkage data for a particular record and the
linkpath contains incorrect data.

,DBMOD=schemaname

Description Optional. Use this parameter only for compatibility with existing Series 80
job streams; it is ignored.

Format 1–8 alphanumeric characters

Consideration Do not code this parameter when creating new job streams.

,END.

Description Required. Indicates the termination of the control statement.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

330 P26-6260-63

Coding the LINKWKnn statements (VSE only)
Use the LINKWKnn statements to define the characteristics of the
linkage work files: LNKWRK1 and LNKWRK2. You can code any
parameter on more than one line.

You must code the parameters identically to those you coded on the
LINKWKnn statements in the step that loaded the associated related
files. For information on this file in the Load function, see “Coding the
LINKWKnn statements (VSE only)” on page 308.

LINKWKnn:
DEVICE =

DISK
TAPE

 ,FILABL =
NO
STD

 









































[,BLKSIZE =n]

[,RECSIZE =n] ,DEVADDR =SYSnnn

LINKWKnn:

Description Required. Identifies the LINKWKnn statement.

Options LINKWK01: The function defines file LNKWRK1.

LINKWK02: The function defines file LNKWRK2.

Format Code in positions 1–9.

,DEVICE =
DISK
TAPE









Description Optional. Indicates the device type of the file.

Options DISK Disk device

 TAPE Magnetic tape unit

Coding the Insert Linkpath function

DBA Utilities User’s Guide 331

,FILABL =
NO
STD









Restriction This parameter is valid only when DEVICE=TAPE.

Description Optional. Indicates whether the tape contains file labels.

Default NO

Options NO Does not contain labels

STD Contains standard labels

,BLKSIZE=n

Restriction For LINKWK01, you must code the same value you used in the step that
loaded the associated related files.

Description Optional. Indicates the file's block size in bytes.

Format Use a numeric character.

Consideration To determine the size, see “Defining the LINKWK01/LNKWRK1 file” on
page 326 and “Defining the LINKWK02/LNKWRK2 file” on page 327.

,RECSIZE=n

Restriction Required for the LINKWK01 statement. Optional for the LINKWK02
statement. For the LINKWK01 statement, you must code the same value
you used in the step that loaded the associated related files.

Description Indicates the file's record size in bytes.

Format One numeric character.

Consideration To determine the size, see “Defining the LINKWK01/LNKWRK1 file” on
page 326 and “Defining the LINKWK02/LNKWRK2 file” on page 327

,DEVADDR=SYSnnn

Description Required. Indicates the device address (SYS number symbolic unit)
associated with the file.

Format nnn Must be 3 digits

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

332 P26-6260-63

Examples of Unload, Load, and Insert Linkpath functions
Two examples illustrate how to use the Unload, Load, and Insert Linkpath
functions. The first example shows how to unload and reload all the files
in the Burry's database. The second one shows how to unload, change
the structure, and reload four of the files: two primary and two related.
The structure change shows how to use the *FILL parameter to increase
the size of elements and an exit program to decrease the size of
elements in the files. The second example also shows how to use the
Insert Linkpath function. Both examples illustrate when to clear linkpaths.

Since it is necessary to depopulate and repopulate files, those steps are
shown in both examples. Since the intention here is to reload
immediately, the examples show the index files depopulated before
unloading. When you are unloading to get a backup copy that you may
never reload, you do not need to depopulate. However, if you ever want
to reload the backup copy, you must depopulate first.

To help you understand the examples, The following figure shows the
files in Burry's database. “Internal schema of Burry's database” on
page 335 and “Internal schema of files before unloading” on page 338
show the internal schema of the files. The latter shows the files that will
change as they are unloaded. The modified internal schema in “Internal
schema of files after unloading” on page 340 shows the changed files as
they are loaded.

The descriptions of the Burry's database files may not match those on
the release of SUPRA that you have. Therefore, do not use these
descriptions as a basis for decisions you make about Burry's. In addition,
these descriptions are not complete; they contain only the information
you need to unload and load.

Examples of Unload, Load, and Insert Linkpath functions

DBA Utilities User’s Guide 333

= Primary

= Related

= Index

E$RG
Region

E$BR
Branch

E$MB
Manifest for

Branch

E$MF
Manifest

E$IN
Invoice

E$SK
Branch
Stock

E$ML
Manifest

Line

E$VS
Vendor
Stock

E$CU
Customer

E$IL
Invoice

Line

E$PD
Product

E$PL
PO
Line

E$SU
Supplier

E$ST
Structure

E$PF
Product
Group

E$PO
Purchase

Order

E$XA E$XF E$XP

SK01
SK02

SK01
SK02

SK01
SK02

SK01
SK02

LK01

SK01

SK01
SK02

LK01
(HD)

LK01 LK03

SK01 LK01 LK02 LK01 SK01

SK01 LK01

The files in the preceding figure are listed alphabetically in “Internal
schema of Burry's database” on page 335. “Internal schema of files
before unloading” on page 338 lists files whose structures change.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

334 P26-6260-63

Internal schema of Burry's database

Name of
file

Type of file

Physical fields

Length of
physical
fields

Name of
secondary
keys

E$BR Primary E$BRROOT
E$BRCTRL
E$BRLK01
E$BRNAME
E$BRADDR
E$BRCITY
E$BRSTAT
E$BRZIPC
E$BRREGN
E$BRDRTE
E$BRSALQ
E$BRSTFQ

8
4
8
20
20
13
2
5
3
2
9
5

E$BRSK01

E$CU Primary E$CUROOT
E$CUCTRL
E$CUNAME
E$CUADDR
E$CUCITY
E$CUSTAT
E$CUZIPC
E$CUCLAS
E$CUCRAT
E$CUCLIM
E$CUBRAN

8
6
20
20
13
2
5
2
2
9
4

E$CUSK01
E$CUSK02

Examples of Unload, Load, and Insert Linkpath functions

DBA Utilities User’s Guide 335

Name of
file

Type of file

Physical fields

Length of
physical
fields

Name of
secondary
keys

E$IL Related E$ILE$IN
E$INLK01
EILEPD
E$ILQNTY
E$ILPRCE

4
8
9
5
9

E$ILSK01

E$IN Primary E$INROOT
E$ICTRLN
$INLK01
E$INLK04
E$INSLMN
E$INTOTL
E$INBRAN
E$INDATE
E$INCUST

8
4
8
8
4
9
4
5
6

E$INSK01
E$INSK02

E$MB Related E$MBE$BR
E$BRLK01
EMBEMF
E$MBFILL

4
8
5
4

none

E$MF Primary E$MFROOT
E$MFCTRL
E$MFLK01
E$MFTOTL
E$MFBRAN
E$MFDATE

8
5
8
9
4
5

 none

E$ML Related E$MLE$MF
E$MFLK01
EMLEPD
E$MLQNTY
E$MLVLUE

5
8
9
5
9

E$MLSK01

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

336 P26-6260-63

Name of
file

Type of file

Physical fields

Length of
physical
fields

Name of
secondary
keys

E$PG Primary E$PGROOT
E$PGCTRL
E$PGDESC

8
2
30

none

E$RG Primary E$RGROOT
E$RGCTRL
E$RGNAME

8
3
20

E$SK Related E$SKE$BR
ESKEPD
E$PDLK03
E$SKQNTY
E$SKBINL
E$SKSYTD

4
9
8
5
5
9

E$SKSK01

E$SU Primary E$SUROOT
E$SUCTRL
E$SULK01
E$SUNAME
E$SUADDR
E$SUCITY
E$SUSTAT
E$SUZIPC

8
6
8
20
20
13
2
5

E$SUSK01

E$VS Primary E$VSROOT
E$VSCTRL
EVSESU
EVSEPD
E$VSNUMB
E$VSVCST

8
15

E$VSSK01
E$VSSK02

Examples of Unload, Load, and Insert Linkpath functions

DBA Utilities User’s Guide 337

To see the change in structure, you need additional information about the
files: the logical record length, total logical records, type of physical field,
and the number of decimal places. The type of field can be binary,
character, or zoned decimal, which is shown as B, C, and Z.

Internal schema of files before unloading

Name
of file

Type
of file

Physical
fields

Length of
physical
fields

Type of
physical
field

Decimal
places

Name of
secondary
keys

E$PD Primary E$PDROOT
E$PDCTRL
E$PDLK01
E$PDLK02
E$PDLK03
E$PDDESC
E$PDWQTY
E$PDPRCE
E$PDPGRP

 8
 9
 8
 8
 8
 30
 5
 9
 2

 B
 C
 B
 B
 B
 C
 Z
 Z
 C

 0
 0
 0
 0
 0
 0
 0
 2
 0

E$PDLK01

LOGICAL RECORD LENGTH = 87
TOTAL LOGICAL RECORDS = 484
E$PO Primary E$POROOT

E$POCTRL
E$POLK01
E$POTOTL
E$PODATE

 8
 6
 8
 9
 5

 B
 C
 B
 Z
 Z

 0
 0
 0
 2
 0

 none

LOGICAL RECORD LENGTH = 36
TOTAL LOGICAL RECORDS = 1177
E$ST Related E$STASSM

E$PDLK01
E$STCOMP
E$PDLK02
E$STQNTY

 9
 8
 9
 8
 5

 C
 B
 C
 B
 Z

 0
 0
 0

 0

none

LOGICAL RECORD LENGTH = 39
TOTAL LOGICAL RECORDS = 1078

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

338 P26-6260-63

Name
of file

Type
of file

Physical
fields

Length of
physical
fields

Type of
physical
field

Decimal
places

Name of
secondary
keys

E$PL Coded
Related

Base portion E$PLCODE
EPLEPO
E$POLK01
E$PLDATA

 2
 6
 8
 31

 C
 C
 B
 C

 0
 0
 0
 0

E$PLSK01
E$PLSK02

LOGICAL RECORD LENGTH = 47
HD portion redefines E$PLDATA
 EPLESU

E$SULK01
E$PLDATE
E$PLFILL

 6
 8
 5
 12

 C
 B
 Z
 C

 0
 0
 0
 0

LOGICAL RECORD LENGTH of Redefined portion = 31
LN portion redefines E$PLDATA
 EPLEPD

E$PLQNTY
E$PLCOST
E$PLFILL

 9
 5
 9
 8

 C
 Z
 Z
 C

 0
 0
 2
 0

LOGICAL RECORD LENGTH of Redefined portion = 31
PD portion redefines E$PLDATA
 E$PLDELN

E$PLDELD
E$PLDELQ
E$PLDELP
E$PLFILR

 2
 5
 5
 9
 10

 B
 Z
 Z
 C
 C

 0
 0
 0
 0
 0

LOGICAL RECORD LENGTH of Redefined portion = 31
TOTAL LOGICAL RECORDS = 902

Examples of Unload, Load, and Insert Linkpath functions

DBA Utilities User’s Guide 339

Internal schema of files after unloading

Name
of file

Type
of file

Physical
fields

Length of
physical
fields

Type of
physical
field

Decimal
places

Name of
secondary
keys

E$PD

*
*
*

Primary E$PDROOT
E$PDCTRL
E$PDLK01
E$PDLK02
E$PDLK03
E$PDDESC
E$PDWQTY
E$PDPRCE
E$PDPGRP
E$PDDES2

 8
 9
 8
 8
 8
 30
 5
 7
 12
 20

 B
 C
 B
 B
 B
 C
 Z
 Z
 C
 C

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

E$PDLK01

* LOGICAL RECORD LENGTH = 115
 TOTAL LOGICAL RECORDS = 484
E$PO Primary E$POROOT

E$POCTRL
E$POLK01
E$POTOTL
E$PODATE

 8
 6
 8
 9
 5

 B
 C
 B
 Z
 Z

 0
 0
 0
 2
 0

 LOGICAL RECORD LENGTH = 36
* TOTAL LOGICAL RECORDS = 1200
E$ST

*

Related E$STASSM
E$PDLK01
E$STCOMP
E$PDLK02
E$STQNTY
E$STCOMM

 9
 8
 9
 8
 5
 20

 C
 B
 C
 B
 Z
 C

 0
 0
 0
 0
 0
 0

* LOGICAL RECORD LENGTH = 59
 TOTAL LOGICAL RECORDS = 1078

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

340 P26-6260-63

Name
of file

Type
of file

Physical
fields

Length of
physical
fields

Type of
physical
field

Decimal
places

Name of
secondary
keys

E$PL Coded,
Related

Base portion E$PLCODE
EPLEPO
E$POLK01
E$PLDATA

 2
 6
 8
 31

 C
 C
 B
 C

 0
 0
 0
 0

E$PLSK01
E$PLSK02

 LOGICAL RECORD LENGTH = 47
HD portion redefines E$PLDATA
 EPLESU

E$SULK01
E$PLDATE
E$PLFILL

 6
 8
 5
 12

 C
 B
 Z
 C

 0
 0
 0
 0

 LOGICAL RECORD LENGTH of Redefined portion = 31
LN portion redefines E$PLDATA
 EPLEPD

 9
 5
 9
 8

 C
 Z
 Z
 C

 0
 0
 2
 0

 LOGICAL RECORD LENGTH of Redefined portion = 31
PD portion redefines E$PLDATA
 E$PLDELN

E$PLDELD
E$PLDELQ
E$PLDELP
E$PLFILR

 2
 5
 5
 9
 10

 B
 Z
 Z
 C
 C

 0
 0
 0
 0
 0

 LOGICAL RECORD LENGTH of Redefined portion = 31
* TOTAL LOGICAL RECORDS = 950

Examples of Unload, Load, and Insert Linkpath functions

DBA Utilities User’s Guide 341

Unloading and loading all of Burry's database files
You unload and reload all of your files to improve performance after many
updates have changed the files' structure. You can determine when you
need to unload in two ways:

♦ When your applications begin finding broken linkpath chains.

♦ When your files are no longer structured for best performance, for
example, when your primary files have many out-of-block synonyms.
You can determine whether you have this problem by executing the
File Statistics function regularly.

Unloading and reloading files have the following benefits:

♦ Repairing broken linkpath chains

♦ Reorganizing the synonym chains in primary files to minimize the
number of out-of-block synonyms

♦ Reorganizing the linkpath chains in related files to optimize access
along the primary linkpath

♦ Reorganizing the secondary key tree structure in the index files

The last function is actually a result of depopulating and repopulating—
steps you must take before and after you unload and load. You execute
four functions when you unload and load: the Depopulate, Unload, Load,
and Sorted-Populate functions.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

342 P26-6260-63

Sample UCL and control statements
The following UCL and control statements illustrate how to code these
four functions in OS/390.

The first step in unloading is to depopulate all your secondary keys. The
following UCL is for the Depopulate function:
CONTROL(BEGIN)

*

 ENV-DESC (BURRYENN)

 SCHEMA (BURRYSCH)

 LIST (ALL)

 DATA-FORMAT (HEX CHAR)

 DIAGNOSTICS (EXTENDED)

*

FUNCTION(DEPOPULATE)

 STATISTICS (ALL)

 FILE (E$BR)

 FILE (E$CU)

 FILE (E$IL)

 FILE (E$IN)

 FILE (E$ML)

 FILE (E$PD)

 FILE (E$PL)

 FILE (E$SK)

 FILE (E$SU)

 FILE (E$VS)

*

CONTROL(END)

VSE In VSE, you need to include other run control statements to unload and
load, for example, the RECFORM statement.

Examples of Unload, Load, and Insert Linkpath functions

DBA Utilities User’s Guide 343

After you depopulate your secondary keys, you can unload your files. The
following input includes the CSIPARM file, auxiliary file, run control, and
file control statements to unload all of Burry's database files and clear all
linkpaths:

//CSIPARM DD * CSIPARM INPUT

DIRECTORY=(SCHEMA=CSTASCHM,ENVDESC=CSTANONE),

REALM=(SCHEMA=BURRYSCH,ENVDESC=BURRYENN),

END.

/*

//*

//CSUAUX DD * AUXILIARY INPUT FILE

FILE=E$IL LOAD=NATIVE

FILE=E$MB LOAD=NATIVE

FILE=E$ML LOAD=NATIVE

FILE=E$PL LOAD=NATIVE

FILE=E$SK LOAD=NATIVE

FILE=E$ST LOAD=NATIVE

FILE=E$BR LOAD=NATIVE

FILE=E$CU LOAD=NATIVE

FILE=E$IN LOAD=NATIVE

FILE=E$MF LOAD=NATIVE

FILE=E$PD LOAD=NATIVE

FILE=E$PG LOAD=NATIVE

FILE=E$PO LOAD=NATIVE

FILE=E$RG LOAD=NATIVE

FILE=E$SU LOAD=NATIVE

FILE=E$VS LOAD=NATIVE

/*

//SYSIN DD * RUN CONTROL RECORDS

RELATED:EILEMBEMLEPLESKESTEND.

PRIMARY:EBRECUEINEMFEPDEPGEPOERGESUEVSEND.

SORTNAME=SORT

DUMP=YES

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

344 P26-6260-63

/*

//*

//PARM DD * FILE CONTROL RECORDS

E$ILLINKPATH=E$INLK01

E$ILALL.END.

E$MBLINKPATH=E$BRLK01

E$MBALL.END.

E$MLLINKPATH=E$MFLK01

E$MLALL.END.

E$PLLINKPATH=E$POLK01

E$PLALL.END.

E$SKLINKPATH=E$PDLK03

E$SKALL.END.

E$STLINKPATH=E$PDLK01

E$STALL.END.

E$BRALL.END.

E$BRBLANK-LINKS=LK01END.

E$CUALL.END.

E$INALL.END.

E$INBLANK-LINKS=LK01END.

E$MFALL.END.

E$MFBLANK-LINKS=LK01END.

E$PDALL.END.

E$PDBLANK-LINKS=LK01LK02LK03END.

E$PGALL.END.

E$POALL.END.

E$POBLANK-LINKS=LK01END.

E$RGALL.END.

E$SUALL.END.

E$SUBLANK-LINKS=LK01END.

E$VSALL.END.

Examples of Unload, Load, and Insert Linkpath functions

DBA Utilities User’s Guide 345

After you unload your files, you can reload them. The following input
includes CSIPARM file, auxiliary file, run control, and file control
statements for the Load function:

//CSIPARM DD * CSIPARM INPUT

DIRECTORY=(SCHEMA=CSTASCHM,ENVDESC=CSTANONE),

REALM=(SCHEMA=BURRYSCH,ENVDESC=BURRYENN),

END.

/*

//*

//CSUAUX DD * AUXILIARY INPUT FILE

FILE=E$IL LOAD=NATIVE

FILE=E$MB LOAD=NATIVE

FILE=E$ML LOAD=NATIVE

FILE=E$PL LOAD=NATIVE

FILE=E$SK LOAD=NATIVE

FILE=E$ST LOAD=NATIVE

FILE=E$BR LOAD=NATIVE

FILE=E$CU LOAD=NATIVE

FILE=E$IN LOAD=NATIVE

FILE=E$MF LOAD=NATIVE

FILE=E$PD LOAD=NATIVE

FILE=E$PG LOAD=NATIVE

FILE=E$PO LOAD=NATIVE

FILE=E$RG LOAD=NATIVE

FILE=E$SU LOAD=NATIVE

FILE=E$VS LOAD=NATIVE

/*

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

346 P26-6260-63

//*

//* RUN CONTROL AND

//SYSIN DD * FILE CONTROL RECORDS

RELATED:EILEMBEMLEPLESKESTEND.

PRIMARY:EBRECUEINEMFEPDEPGEPOERGESUEVSEND.

SCHEMA=BURRYSCH

SORTNAME=SORT

E$ILLINKPATH=E$INLK01

E$ILALL.END.

E$MBLINKPATH=E$BRLK01

E$MBALL.END.

E$MLLINKPATH=E$MFLK01

E$MLALL.END.

E$PLLINKPATH=E$POLK01

E$PLALL.END.

E$SKLINKPATH=E$PDLK03

E$SKALL.END.

E$STLINKPATH=E$PDLK01

E$STALL.END.

E$BRALL.END.

E$CUALL.END.

E$INALL.END.

E$MFALL.END.

E$PDALL.END.

E$PGALL.END.

E$POALL.END.

E$RGALL.END.

E$SUALL.END.

E$VSALL.END.

/*

Examples of Unload, Load, and Insert Linkpath functions

DBA Utilities User’s Guide 347

After you reload your files, you need to repopulate all your index files with
secondary keys. The following UCL is for the Sorted-Populate function:
CONTROL(BEGIN)

*

 ENV-DESC (BURRYENN)

 SCHEMA (BURRYSCH)

 LIST (ALL)

 DATA-FORMAT (HEX CHAR)

 DIAGNOSTICS (EXTENDED)

*

FUNCTION (SORTED- POPULATE)

STATISTICS (ALL)

 FILE (E$BR)

 FILE (E$CU)

 FILE (E$IL)

 FILE (E$IN)

 FILE (E$ML)

 FILE (E$PD)

 FILE (E$PL)

 FILE (E$SK)

 FILE (E$SU)

 FILE (E$VS)

*

CONTROL(END)

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

348 P26-6260-63

Sample listings
The following listings illustrate the output you receive as a result of the
sample UCL and statements:

 TTTTTTTT IIIIII SSSSSSS
 TTTTTTTT IIIIII SSSSSSSSS
 TT II SS SS
 TT II SS
 TT II SSSSSSSS
 TT II SSSSSSSS
 TT II SS
 TT II SS SS
 TT IIIIII SSSSSSSSS
 TT IIIIII SSSSSSS
 DDDDDDDD BBBBBBBB AAA
 DDDDDDDDD BBBBBBBBB AAAAA
 DD DD BB BB AA AA
 DD DD BB BB AA AA
 DD DD BBBBBBBB AA AA
 DD DD BBBBBBBB AAAAAAAAA
 DD DD BB BB AAAAAAAAA
 DD DD BB BB AA AA
 DDDDDDDDD BBBBBBBBB AA AA
 DDDDDDDD BBBBBBBB AA AA
UU UU TTTTTTTT IIIIII LL IIIIII TTTTTTTT IIIIII EEEEEEEEE SSSSSSS
UU UU TTTTTTTT IIIIII LL IIIIII TTTTTTTT IIIIII EEEEEEEEE SSSSSSSSS
UU UU TT II LL II TT II EE SS SS
UU UU TT II LL II TT II EE SS
UU UU TT II LL II TT II EEEEEE SSSSSSSS
UU UU TT II LL II TT II EEEEEE SSSSSSSS
UU UU TT II LL II TT II EE SS
UU UU TT II LL II TT II EE SS SS
UUUUUUUUU TT IIIIII LLLLLLLLL IIIIII TT IIIIII EEEEEEEEE SSSSSSSSS
 UUUUUUU TT IIIIII LLLLLLLLL IIIIII TT IIIIII EEEEEEEEE SSSSSSS
 F U N C T I O N : U N L O A D
 E N V I R O N M E N T:
 RELATED:EILEMBEMLEPLESKESTEND. 00030000
 PRIMARY:EBRECUEINEMFEPDEPGEPOERGESUEVSEND. 00020000
 SORTNAME=SORT 00050000
 DUMP=YES 00060000
TIS DATABASE ADMINISTRATOR UTILITIES CINCOM SYSTEMS, INC. 88/309 13:21:24
 PAGE 2CSUAUX FILE RECORDS:

FILE=E$IL LOAD=NATIVE 00030000
FILE=E$MB LOAD=NATIVE 00030000
FILE=E$ML LOAD=NATIVE 00030000
FILE=E$PL LOAD=NATIVE 00030000
FILE=E$SK LOAD=NATIVE 00030000
FILE=E$ST LOAD=NATIVE 00030000
FILE=E$BR LOAD=NATIVE 00030000
FILE=E$CU LOAD=NATIVE 00030000
FILE=E$IN LOAD=NATIVE 00030000
FILE=E$MF LOAD=NATIVE 00030000
FILE=E$PD LOAD=NATIVE 00030000
FILE=E$PG LOAD=NATIVE 00030000
FILE=E$PO LOAD=NATIVE 00030000
FILE=E$RG LOAD=NATIVE 00030000
FILE=E$SU LOAD=NATIVE 00030000
FILE=E$VS LOAD=NATIVE 00030000

END OF CSUAUX FILE RECORDS.
NO ERRORS ENCOUNTERED IN THE CSUAUX FILE.
 BEGINNING THE UNLOAD FUNCTION. E$ILLINKPATH=E$INLK01
 E$ILALL.END.
 E$IL UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 217

Examples of Unload, Load, and Insert Linkpath functions

DBA Utilities User’s Guide 349

E$MBLINKPATH=E$BRLK01
E$MBALL.END.
 E$MB UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 29
E$MLLINKPATH=E$MFLK01
E$MLALL.END.
 E$ML UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 78
E$PLLINKPATH=E$POLK01
E$PLALL.END.
 E$PL UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 122
E$SKLINKPATH=E$PDLK03
E$SKALL.END.
 E$SK UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 2,628
E$STLINKPATH=E$PDLK01
E$STALL.END.
 E$ST UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 67
E$BRALL.END.
E$BRBLANK-LINKS=LK01END.
 E$BR UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 39
E$CUALL.END.
 E$CU UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 43
E$INALL.END.
E$INBLANK-LINKS=LK01END.
 E$IN UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 96
E$MFALL.END.
E$MFBLANK-LINKS=LK01END.
 E$MF UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 29
E$PDALL.END.
E$PDBLANK-LINKS=LK01LK02LK03END.
 E$PD UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 88
E$PGALL.END.
 E$PG UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 6
E$POALL.END.
E$POBLANK-LINKS=LK01END.
 E$PO UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 26
E$RGALL.END.
 E$RG UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 10
E$SUALL.END.
E$SUBLANK-LINKS=LK01END.
 E$SU UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 14
E$VSALL.END.
 E$VS UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 191
UNLOAD FUNCTION COMPLETE.
F U N C T I O N: L O A D
E N V I R O N M E N T
RELATED:EILEMBEMLEPLESKESTEND. 00030000
PRIMARY:EBRECUEINEMFEPDEPGEPOERGESUEVSEND. 00020000
SCHEMA=BURRYSCH 00050000
SORTNAME=SORT 00050000

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

350 P26-6260-63

CSUAUX FILE RECORDS:
FILE=E$IL LOAD=NATIVE 00030000
FILE=E$MB LOAD=NATIVE 00030000
FILE=E$ML LOAD=NATIVE 00030000
FILE=E$PL LOAD=NATIVE 00030000
FILE=E$SK LOAD=NATIVE 00030000
FILE=E$ST LOAD=NATIVE 00030000
FILE=E$BR LOAD=NATIVE 00030000
FILE=E$CU LOAD=NATIVE 00030000
FILE=E$IN LOAD=NATIVE 00030000
FILE=E$MF LOAD=NATIVE 00030000
FILE=E$PD LOAD=NATIVE 00030000
FILE=E$PG LOAD=NATIVE 00030000
FILE=E$PO LOAD=NATIVE 00030000
FILE=E$RG LOAD=NATIVE 00030000
FILE=E$SU LOAD=NATIVE 00030000
FILE=E$VS LOAD=NATIVE 00030000
END OF CSUAUX FILE RECORDS.
NO ERRORS ENCOUNTERED IN THE CSUAUX FILE.
BEGINNING THE LOAD FUNCTION.(E$IL)
E$ILLINKPATH=E$INLK01
E$ILALL.END.
E$IL LOADED SUCCESSFULLY - COUNT = 217(E$MB)
E$MBLINKPATH=E$BRLK01
E$MBALL.END.
E$MB LOADED SUCCESSFULLY - COUNT = 29(E$ML)
E$MLLINKPATH=E$MFLK01
E$MLALL.END.
E$ML LOADED SUCCESSFULLY - COUNT = 78(E$PL)
E$PLLINKPATH=E$POLK01
E$PLALL.END.
E$PL LOADED SUCCESSFULLY - COUNT = 122
E$PL - SECONDARY LINKS INSERTED SUCCESSFULLY - COUNT = 26(E$SK)
E$SKLINKPATH=E$PDLK03
E$SKALL.END.
E$SK LOADED SUCCESSFULLY - COUNT = 2,628(E$ST)
E$STLINKPATH=E$PDLK01
E$STALL.END.
E$ST LOADED SUCCESSFULLY - COUNT = 67
E$ST - SECONDARY LINKS INSERTED SUCCESSFULLY - COUNT = 67

(E$BR)
E$BRALL.END.OUT-OF-BLOCK SYNONYM RECORD COUNT = 0
E$BR LOADED SUCCESSFULLY - COUNT = 39
(E$CU)
E$CUALL.END.OUT-OF-BLOCK SYNONYM RECORD COUNT = 0
E$CU LOADED SUCCESSFULLY - COUNT = 43(E$IN)
E$INALL.END.OUT-OF-BLOCK SYNONYM RECORD COUNT = 0
E$IN LOADED SUCCESSFULLY - COUNT = 96(E$MF)
E$MFALL.END.OUT-OF-BLOCK SYNONYM RECORD COUNT = 0
E$MF LOADED SUCCESSFULLY - COUNT = 29(E$PD)
E$PDALL.END.OUT-OF-BLOCK SYNONYM RECORD COUNT = 0
E$PD LOADED SUCCESSFULLY - COUNT = 88(E$PG)
E$PGALL.END.OUT-OF-BLOCK SYNONYM RECORD COUNT = 0
E$PG LOADED SUCCESSFULLY - COUNT = 6(E$PO)
E$POALL.END.OUT-OF-BLOCK SYNONYM RECORD COUNT = 0
E$PO LOADED SUCCESSFULLY - COUNT = 26(E$RG)
E$RGALL.END.OUT-OF-BLOCK SYNONYM RECORD COUNT = 0
E$RG LOADED SUCCESSFULLY - COUNT = 10(E$SU)
E$SUALL.END.OUT-OF-BLOCK SYNONYM RECORD COUNT = 0
E$SU LOADED SUCCESSFULLY - COUNT = 14(E$VS)
E$VSALL.END.OUT-OF-BLOCK SYNONYM RECORD COUNT = 0
E$VS LOADED SUCCESSFULLY - COUNT = 191
LOAD FUNCTION COMPLETE.

Examples of Unload, Load, and Insert Linkpath functions

DBA Utilities User’s Guide 351

Unloading, changing, and loading files
You can unload and reload to make changes to the structure of some
files. In addition to changing the structure of the file, you also gain the
same benefits as when you unload and reload them; that is, you repair
broken linkpath chains, minimize the number of out-of-block synonyms,
optimize access along primary linkpaths, and reorganize tree structures.

In this example, you are making three changes to the primary file E$PD:

♦ Decreasing the size of element E$PDPRCE from nine to seven bytes
by removing the two zoned decimals from the front of the element.

♦ Adding the 20-character element E$PDDES2 to the end of the
record.

♦ Increasing the size of element E$PDPGRP from two to 12 bytes by
adding ten characters to the front of it.

You are making one change to the related file E$ST: adding a
20-character element, E$STCOMM, to the end of it.

You are making one change to the primary file E$PO: increasing its size
from 1177 to 1200 total logical records.

You are making one change to the primary file E$PL: increasing its size
from 902 to 950 total logical records.

To make these changes, you perform the same four steps as in the first
example where you unloaded all files: depopulate, unload, load, and
populate. However, in this example, you add another step after the Load
function: you insert linkpath information into the E$SU file. Thus, you
execute five functions. The following UCL and control statements show
each step in OS/390.

VSE In VSE, you need to include other run control statements to unload and
load, like the RECFORM statement.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

352 P26-6260-63

Depopulating files
The first step is to depopulate the secondary keys in the files E$PD and
E$PL. You do not need to depopulate the other two files because they
have no secondary keys. The UCL for the Depopulate function follows:
(mono)
CONTROL(BEGIN)

*

 ENV-DESC (BURRYENN)

 SCHEMA (BURRYOLD)

 LIST (ALL)

 DATA-FORMAT (HEX CHAR)

 DIAGNOSTICS (EXTENDED)

*

FUNCTION(DEPOPULATE)

 STATISTICS (ALL)

 FILE (E$PD)

 FILE (E$PL)

*

CONTROL(END)

Examples of Unload, Load, and Insert Linkpath functions

DBA Utilities User’s Guide 353

Unloading files
The second step is to unload the four files.

1. To unload E$PD, you complete the following steps:

a. Clear linkpaths LK01 and LK02. You do not clear linkpath LK03
because it connects to a file that is not unloaded, E$SK. To clear
linkpaths LK01 and LK02 implicitly, you do not include them in
the element list. Although not shown in this example, you could
have included the linkpaths in the element list and coded them in
the BLANK-LINKS parameter to clear the linkpaths explicitly.

b. Increase the size of the E$PDPGRP element by adding *FILL=10
to the element list.

c. Add the element E$PDDES2 by adding *FILL=20 to the element
list.

d. Delete the two zoned decimals from the E$PDPRCE element by
coding exit program USER20 or USER30. Use an exit program
to shift the remaining seven zoned decimals in the element to the
left. They cover up the first two decimals which essentially
deletes them. The following figure shows what you would see in
the OUTFILE data record before your exit program:

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

354 P26-6260-63

E $ P D # # # # T K - 0

File
Name

RQLOC
Value E$PDCTRL

4 2 0

E$PDLK03 E$PDDESC

- P # # # # # # # # T A P E A C C E S S O R Y K I T

b b b bbA Vb b b bb b b b bb

To be
Shifted Left

E$PDDESC E$PDWQTY *FILL=10 E$PDPRCE*FILL=20E$PDPGRP

b b b bb b b b bb 0 0 8 2 1 b b b bb 0 0 0 0 0 1 6 0 0

 The following figure shows what your OUTFILE looks like after your
exit program.

E $ P D # # # # T K - 0

File
Name

RQLOC
Value E$PDCTRL

4 2 0

E$PDLK03 E$PDDESC

- P # # # # # # # # T A P E

b b b bb 0 0 8 2 1

E$PDDESC E$PDWQTY E$PDGRP

Was
Shifted Left

E$PDPRCEE$PDDES2

b b b bb A V b b b bb b b b bb b b b bb b b b bb 0 0 0 1 6 0 0 0 0

Ignored

A C C E S S O R Y K I T

You must use an exit program because you cannot use *FILL to
delete elements in the Version 2 Load function. In the Version 1 Load
function, you could code *FILL=02 instead of the exit program.

2. To unload E$PO, complete the following steps:

a. Code ELEMENT (ALL) because you are not changing any
elements.

b. Since you coded ALL in the element list, code E$POLK01 in the
BLANK-LINKS statement.

3. To unload E$ST, code *FILL=20 to add the E$STCOMM element.

4. To unload E$PL, you can list the record codes separately or as a
single element list. This example shows them as a single element list
with ALL elements coded.

Examples of Unload, Load, and Insert Linkpath functions

DBA Utilities User’s Guide 355

The following CSIPARM file, auxiliary file, run control, and file control
statements illustrate these steps:

//CSIPARM DD * CSIPARM INPUT

DIRECTORY=(SCHEMA=CSTASCHM,ENVDESC=CSTANONE),

REALM=(SCHEMA=BURRYOLD,ENVDESC=BURRYENN),

END.

/*

//*

//CSUAUX DD * AUXILIARY INPUT FILE

FILE=E$PL LOAD=NATIVE

FILE=E$ST LOAD=NATIVE

FILE=E$PD LOAD=NATIVE

FILE=E$PO LOAD=NATIVE

/*

//*

//SYSIN DD * RUN CONTROL RECORDS

RELATED:EPLESTEND.

PRIMARY:EPDEPOEND.

NEW-SCHEMA=BURRYSCH,NEW-ENVDESC=BURRYENN

SORTNAME=SORT

DUMP=YES

/*

//*

//PARM DD * FILE CONTROL RECORDS

E$PLLINKPATH=E$POLK01

E$PLALL.END.

E$STLINKPATH=E$PDLK01

ESTESTASSME$STQNTYE$STCOMP*FILL=20END.

EPDEPDCTRLE$PDLK03E$PDDESCE$PDWQTY*FILL=10E$PDPGRPE$PDPRCEEND.

E$POALL.END.

E$POBLANK-LINKS=LK01END.

/*

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

356 P26-6260-63

Loading files
The third step is to load the four files.

1. Load E$PD using the same element list that you used in the Unload
function except you leave out the *FILL entries and add the element
E$PDDES2.

2. Load E$PO by coding ALL in the element list.

3. Load E$ST by replacing *FILL with the element E$STCOMM.

4. Load E$PL by coding ALL in the element list.

The following input statements illustrate these steps:
//CSIPARM DD * CSIPARM INPUT

DIRECTORY=(SCHEMA=CSTASCHM,ENVDESC=CSTANONE),

REALM=(SCHEMA=BURRYSCH,ENVDESC=BURRYENN),

END.

/*

//*

//CSUAUX DD * AUXILIARY INPUT FILE

FILE=E$PL LOAD=NATIVE

FILE=E$ST LOAD=NATIVE

FILE=E$PD LOAD=NATIVE

FILE=E$PO LOAD=NATIVE

/*

//*

//* RUN CONTROL AND

//SYSIN DD * FILE CONTROL RECORDS

RELATED:EPLESTEND.

PRIMARY:EPDEPOEND.

SCHEMA=BURRYSCH

SORTNAME=SORT

E$PLLINKPATH=E$POLK01

E$PLALL.END.

E$STLINKPATH=E$PDLK01

ESTESTASSME$STQNTYE$STCOMPE$STCOMMEND.

EPDEPDCTRLE$PDLK03E$PDDESCE$PDWQTYE$PDPGRPE$PDDES2E$PDPRCEEND.

E$POALL.END.

/*

Examples of Unload, Load, and Insert Linkpath functions

DBA Utilities User’s Guide 357

Inserting linkpath data for a file that was not loaded
The fourth step is to insert linkpath data. When you unload and load the
file E$PL, linkpath information is created for the linkpaths E$POLK01 and
E$SULK01. When you load the file E$PO, the Load function inserts the
linkpath information for E$POLK01. Since you did not load the file E$SU,
you must use the Insert Linkpath function to insert the information for
E$SULK01. The following CSIPARM file, auxiliary file, and run control
statements illustrate this step:

//CSIPARM DD * CSIPARM INPUT

DIRECTORY=(SCHEMA=CSTASCHM,ENVDESC=CSTANONE),

REALM=(SCHEMA=BURRYSCH,ENVDESC=BURRYENN),

END.

/*

//*

//CSUAUX DD * AUXILIARY INPUT FILE

FILE=E$PL LOAD=NATIVE

FILE=E$ST LOAD=NATIVE

FILE=E$PD LOAD=NATIVE

FILE=E$PO LOAD=NATIVE

/*

//*

//SYSIN DD * RUN CONTROL RECORDS

INSERT FILES=(E$SU.) X

,CLEARLKS=(E$SULK01.) X

,END.

/*

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

358 P26-6260-63

Populating files
The fifth step is to populate the secondary keys for the files E$PD and
E$PL. You do not need to populate the other two files because they had
no secondary keys. The UCL for the Sorted-Populate function follows:
CONTROL(BEGIN)

*

 ENV-DESC (BURRYENN)

 SCHEMA (BURRYSCH)

 LIST (ALL)

 DATA-FORMAT (HEX CHAR)

 DIAGNOSTICS (EXTENDED)

*

FUNCTION (SORTED-

POPULATE)

 STATISTICS (ALL)

 FILE (E$PD)

 FILE (E$PL)

*

CONTROL(END)

Examples of Unload, Load, and Insert Linkpath functions

DBA Utilities User’s Guide 359

Sample listing
The following listing shows the output you receive as a result of the
sample UCL and statements:

 TTTTTTTT IIIIII SSSSSSS
 TTTTTTTT IIIIII SSSSSSSSS
 TT II SS SS
 TT II SS
 TT II SSSSSSSS
 TT II SSSSSSSS
 TT II SS
 TT II SS SS
 TT IIIIII SSSSSSSSS
 TT IIIIII SSSSSSS
 DDDDDDDD BBBBBBBB AAA
 DDDDDDDDD BBBBBBBBB AAAAA
 DD DD BB BB AA AA
 DD DD BB BB AA AA
 DD DD BBBBBBBB AA AA
 DD DD BBBBBBBB AAAAAAAAA
 DD DD BB BB AAAAAAAAA
 DD DD BB BB AA AA
 DDDDDDDDD BBBBBBBBB AA AA
 DDDDDDDD BBBBBBBB AA AA
UU UU TTTTTTTT IIIIII LL IIIIII TTTTTTTT IIIIII EEEEEEEEE SSSSSSS
UU UU TTTTTTTT IIIIII LL IIIIII TTTTTTTT IIIIII EEEEEEEEE SSSSSSSSS
UU UU TT II LL II TT II EE SS SS
UU UU TT II LL II TT II EE SS
UU UU TT II LL II TT II EEEEEE SSSSSSSS
UU UU TT II LL II TT II EEEEEE SSSSSSSS
UU UU TT II LL II TT II EE SS
UU UU TT II LL II TT II EE SS SS
UUUUUUUUU TT IIIIII LLLLLLLLL IIIIII TT IIIIII EEEEEEEEE SSSSSSSSS
 UUUUUUU TT IIIIII LLLLLLLLL IIIIII TT IIIIII EEEEEEEEE SSSSSSS(ep)
 F U N C T I O N : U N L O A D
 E N V I R O N M E N T:
 RELATED:EPLESTEND.
 PRIMARY:EPDEPOEND.
 NEW-SCHEMA=BURRYSCH,NEW-ENVDESC=BURRYENN
 SORTNAME=SORT
 DUMP=YES
CSUAUX FILE RECORDS:
FILE=E$PL LOAD=NATIVE
FILE=E$ST LOAD=NATIVE
FILE=E$PD LOAD=NATIVE
FILE=E$PO LOAD=NATIVE
END OF CSUAUX FILE RECORDS.
NO ERRORS ENCOUNTERED IN THE CSUAUX FILE.
CSUAUX FILE RECORDS:
FILE=E$PL LOAD=NATIVE
FILE=E$ST LOAD=NATIVE
FILE=E$PD LOAD=NATIVE
FILE=E$PO LOAD=NATIVE
END OF CSUAUX FILE RECORDS.
NO ERRORS ENCOUNTERED IN THE CSUAUX FILE.

 BEGINNING THE UNLOAD FUNCTION. E$PLLINKPATH=E$POLK01
 E$PLALL.END.
 E$PL UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 122
 E$STLINKPATH=E$PDLK01
 ESTESTASSME$STQNTYE$STCOMP*FILL=20END.
 E$ST UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 67
 EPDEPDCTRLE$PDLK03E$PDDESCE$PDWQTY*FILL=10E$PDPGRPE$PDPRCEEND.
 E$PD UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 88
 E$POALL.END.
 E$POBLANK-LINKS=LK01END.
 E$PO UNLOADED SUCCESSFULLY
 NUMBER OF RECORDS UNLOADED = 26
 UNLOAD FUNCTION COMPLETE.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

360 P26-6260-63

 TTTTTTTT IIIIII SSSSSSS
 TTTTTTTT IIIIII SSSSSSSSS
 TT II SS SS
 TT II SS
 TT II SSSSSSSS
 TT II SSSSSSSS
 TT II SS
 TT II SS SS
 TT IIIIII SSSSSSSSS
 TT IIIIII SSSSSSS
 DDDDDDDD BBBBBBBB AAA
 DDDDDDDDD BBBBBBBBB AAAAA
 DD DD BB BB AA AA
 DD DD BB BB AA AA
 DD DD BBBBBBBB AA AA
 DD DD BBBBBBBB AAAAAAAAA
 DD DD BB BB AAAAAAAAA
 DD DD BB BB AA AA
 DDDDDDDDD BBBBBBBBB AA AA
 DDDDDDDD BBBBBBBB AA AA
UU UU TTTTTTTT IIIIII LL IIIIII TTTTTTTT IIIIII EEEEEEEEE SSSSSSS
UU UU TTTTTTTT IIIIII LL IIIIII TTTTTTTT IIIIII EEEEEEEEE SSSSSSSSS
UU UU TT II LL II TT II EE SS SS
UU UU TT II LL II TT II EE SS
UU UU TT II LL II TT II EEEEEE SSSSSSSS
UU UU TT II LL II TT II EEEEEE SSSSSSSS
UU UU TT II LL II TT II EE SS
UU UU TT II LL II TT II EE SS SS
UUUUUUUUU TT IIIIII LLLLLLLLL IIIIII TT IIIIII EEEEEEEEE SSSSSSSSS
UUUUUUU TT IIIIII LLLLLLLLL IIIIII TT IIIIII EEEEEEEEE SSSSSSS
F U N C T I O N : L O A D
E N V I R O N M E N T :RELATED:EPLESTEND.
PRIMARY:EPDEPOEND.
SCHEMA-BURRYSCH
SORTNAME-SORT

CSUAUX FILE RECORDS:
FILE-E$PL LOAD-NATIVE
FILE-E$ST LOAD-NATIVE
FILE-E$PD LOAD-NATIVE
FILE-E$PO LOAD-NATIVE
END OF CSUAUX FILE RECORDS.
NO ERRORS ENCOUNTERED IN THE CSUAUX FILE.
BEGINNING THE LOAD FUNCTION.(E$PL)
E$PLLINKPATH-E$POLK01
E$PLALL.END.
E$PL LOADED SUCCESSFULLY - COUNT - 122
E$PL - SECONDARY LINKS INSERTED SUCCESSFULLY - COUNT - 28(E$ST)
E$STLINKPATH-E$PDLK01
ESTEASSME$STONTYE$STCOMPE$STCOMMEND.
E$ST LOADED SUCCESSFULLY - COUNT - 67
E$PL - SECONDARY LINKS INSERTED SUCCESSFULLY - COUNT - 67(E$PD)
EPDEPOCTRLE$PDLK03E$PDDESCE$PDWQTYE$PDPGRPE$PDDES2E$PDPRCEEND.
OUT-OF-BLOCK SYNONYM RECORD - COUNT - 0
E$PD - LOADED SUCCESSFULLY - COUNT - 88(E$P0)
E$P0ALL.END.OUT-OF-BLOCK SYNONYM RECORD COUNT - 0
E$P0 LOADED SUCCESSFULLY - COUNT - 26LOAD FUNCTION COMPLETE.

Examples of Unload, Load, and Insert Linkpath functions

DBA Utilities User’s Guide 361

 TTTTTTTT IIIIII SSSSSSS
 TTTTTTTT IIIIII SSSSSSSSS
 TT II SS SS
 TT II SS
 TT II SSSSSSSS
 TT II SSSSSSSS
 TT II SS
 TT II SS SS
 TT IIIIII SSSSSSSSS
 TT IIIIII SSSSSSS
 DDDDDDDD BBBBBBBB AAA
 DDDDDDDDD BBBBBBBBB AAAAA
 DD DD BB BB AA AA
 DD DD BB BB AA AA
 DD DD BBBBBBBB AA AA
 DD DD BBBBBBBB AAAAAAAAA
 DD DD BB BB AAAAAAAAA
 DD DD BB BB AA AA
 DDDDDDDDD BBBBBBBBB AA AA
 DDDDDDDD BBBBBBBB AA AA
UU UU TTTTTTTT IIIIII LL IIIIII TTTTTTTT IIIIII EEEEEEEEE SSSSSSS
UU UU TTTTTTTT IIIIII LL IIIIII TTTTTTTT IIIIII EEEEEEEEE SSSSSSSSS
UU UU TT II LL II TT II EE SS SS
UU UU TT II LL II TT II EE SS
UU UU TT II LL II TT II EEEEEE SSSSSSSS
UU UU TT II LL II TT II EEEEEE SSSSSSSS
UU UU TT II LL II TT II EE SS
UU UU TT II LL II TT II EE SS SS
UUUUUUUUU TT IIIIII LLLLLLLLL IIIIII TT IIIIII EEEEEEEEE SSSSSSSSS
UUUUUUU TT IIIIII LLLLLLLLL IIIIII TT IIIIII EEEEEEEEE SSSSSSS
F U N C T I O N : I N S E R T L I N K P A T H

E N V I R O N M E N T :

INSERT FILES=(E$SU.) X
,CLEARLKS=(E$SULK01.) X
,END. CSUAUX FILE RECORDS:

FILE=E$PL LOAD=NATIVE
FILE=E$ST LOAD=NATIVE
FILE=E$PD LOAD=NATIVE
FILE=E$PO LOAD=NATIVE

END OF CSUAUX FILE RECORDS.
NO ERRORS ENCOUNTERED IN THE CSUAUX FILE.UTL-000 ** NO EDIT ERRORS **

UTL-000 ** BEGINNING THE INSERT LINKPATH FUNCTION.

UTL-075 FILE NOT SPECIFIED TO BE UPDATED; SKIPPING THIS FILE **E$PD**

UTL-075 FILE NOT SPECIFIED TO BE UPDATED; SKIPPING THIS FILE **E$PO**UTL-092 COUNT OF RECORDS UPDATED **********09**

UTL-093 PROCESSING COMPLETE FOR FILE **E$SU**UTL-000 ** INSERT LINKPATH FUNCTION COMPLETE.

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

362 P26-6260-63

12
Coding the Print function

Use the Print function when you want to print records from a database
file. For related files, you may not print linkpaths. For primary files, you
may print linkpaths, but you may not print root fields.

Coding the UCL for the Print function
After you code the control section as shown in “Coding the control
section” on page 57, you can code the Print function as shown in the
following format. For UCL examples, see “Print examples” on page 377.

FUNCTION (PRINT)

 [STANDARD-EXIT (exit-name)]

 FILE (
ALL

) ...
file-mode









 OPEN - MODE (

READ
IUPD
SUPD
EUPD

)







































 CLOSE (
NO
YES

) 



















DBA Utilities User’s Guide 363

[]

[]

QUALIFIER (
DIRECT
SERIAL
SEQUENTIAL

)

 LINKPATH ()

 KEY (
D' '
X' '
C' '

 RRN ()

 RRN- RANGE (- -
- -

)

 MAXIMUM (
b

)

 [CRITERIA ([1















































































/



















access-linkpath

dec-string
hex-string
char-string

record-rrn

low-rrn
high-rrn

low-rrn high-rrn

record-count

element element2

)

 ,...,
] . .
 [. ...]end.)

1element operator datavalue
datavalue datavalue

n

2 n





















































































RECORD (
ALL

)

 ELEMENT (
ALL

)

 ...
record-code

element-list







































Chapter 12 Coding the Print function

364 P26-6260-63

FUNCTION (PRINT)

Description Required. Invokes the Print function.

STANDARD-EXIT (exit-name)

Description Optional. Names an exit program you want to invoke.

Format 1–8 alphanumeric characters. The first character must be alphabetic.

Considerations

♦ If you code this statement, you must put it before the FILE
statements.

♦ You must make your exit program available to be loaded by the
function. That is, it must reside in your execution library.

♦ Only one exit at a time resides in memory. If you code a new exit
name in a subsequent function, the function deletes the current exit
before it loads the new exit.

FILE (
ALL

) ...
file-name









Description Required. Indicates the file you want printed.

Format 4 alphanumeric characters. The first character must be alphabetic.

Considerations

♦ If you code FILE (ALL), the function prints the files in alphabetical
order with primary files first and then the related files. A message
stating you cannot print index files precedes the primary files.

♦ If you code FILE (ALL), the function prints all your PDM files in the
schema. To print Directory files, code FILE (file-name).

♦ You cannot code FILE (file-name-list).

Coding the UCL for the Print function

DBA Utilities User’s Guide 365

OPEN - MODE (

READ
IUPD
SUPD
EUPD

)



















Description Optional. Indicates how you want the function to open the file.

Default READ

Options READ The function opens the file for read-only access.

IUPD The function opens the file with intent to update.

SUPD The function opens the file for shared update.

EUPD The function opens the file for exclusive update.

Consideration If you code the OPEN-MODE statement, you must put it before any
RECORD statements.

CLOSE (
NO
YES

)









Description Optional. Indicates whether you want the file explicitly closed after
printing.

Default YES

Chapter 12 Coding the Print function

366 P26-6260-63

QUALIFIER (
DIRECT
SERIAL
SEQUENTIAL

)
















Description Optional. Indicates the access mode you want the function to use to print
the current file.

Default SERIAL

Options DIRECT Reads a specific record either by RRN or by key. For
more information, see the second consideration, below.

SERIAL Accesses the file serially without regard to chain
sequence.

SEQUENTIAL Accesses the related file sequentially by a specific
linkpath.

Considerations
♦ Do not code QUALIFIER (SEQUENTIAL) for a primary file.

♦ As shown in the format, QUALIFIER has three options. Depending on
the type of file (primary (P) or related (R)) and the access mode you
code, the following statements are either required (r), optional (o), or
invalid (i):

QUALIFIER: DIRECT SERIAL SEQUENTIAL

File Type: P R P R P R
RRN i r i i i i
LINKPATH i i i i i r
KEY r i i i i o
RRN-RANGE i i o o i i
MAXIMUM i i o o i o

♦ If you code the QUALIFIER statement, you must put it before the
RECORD statements.

♦ If you code QUALIFIER (DIRECT), the function prints only one
record.

♦ If you code QUALIFIER (SEQUENTIAL) and the LINKPATH and KEY
statements, the function prints only the chain containing the key you
coded.

♦ If you code QUALIFIER (SEQUENTIAL) and the LINKPATH
statement, but not the KEY statement, the function prints all the
chains associated with the linkpath.

Coding the UCL for the Print function

DBA Utilities User’s Guide 367

LINKPATH (access-linkpath)

Restrictions

♦ Use this statement only for sequential access to related files.

♦ You can only use this statement after a QUALIFIER statement.

Description Optional. Determines the access linkpath for a related file you are
reading sequentially.

Format ffffLKxx, where ffff is a primary file linked to a related file through linkpath
LKxx

Considerations

♦ The access linkpath may exist in either the base or the redefined
portion of a coded record.

♦ If you code RECORD (ALL) with an access linkpath, that linkpath
must exist in all records.

♦ You cannot code LINKPATH (linkpath-list).

Chapter 12 Coding the Print function

368 P26-6260-63

KEY (
D' '
X' '
C' '

)
ec-string
hex-string
char-string















Restriction You can only use this statement after a QUALIFIER statement.

Description Optional. Indicates the key you want the function to use for direct access
to a primary file or sequential access to a related file.

Format D'dec-string' A decimal string of 1 to 256 bytes preceded by a D and
surrounded by single quotes. This string is a 1–256 byte
key that must match the actual key length.

X'hex-string' A hexadecimal string of 2 to 512 bytes preceded by an X
and surrounded by single quotes. This string is a 1–256
byte key. The length must be an even number and twice
the actual key length.

C'char-string' A character string of 1 to 256 bytes preceded by a C and
surrounded by single quotes. This string is a 1–256 byte
key and must match the actual key length.

Considerations

♦ If a character string contains more than one quote, you must code
two quotes for each actual quote. For example, you must code
ABCD'EF'G as C'ABCD"EF"G'.

♦ Any key you code must be the correct length for the file.

Coding the UCL for the Print function

DBA Utilities User’s Guide 369

RRN (record-rrn)

Restrictions

♦ Use this statement only for direct access to related files.

♦ You can only use this statement after a QUALIFIER statement.

Description Optional. Selects a relative record number in a non-KSDS related file that
you want the function to read directly.

Format 1–9 decimal characters

Considerations

♦ You must code a record-rrn if you are printing a related file and you
coded QUALIFIER (DIRECT).

♦ You must code a record-rrn that is within the boundary of the file.

♦ Do not code FILE (ALL) with the RRN statement if any files are key-
sequenced data sets.

Chapter 12 Coding the Print function

370 P26-6260-63

RRN- RANGE (-)
low-rrn

high-rrn
low-rrn - high-rrn

















Restrictions

♦ Do not use with key-sequenced data sets.

♦ You can only use this statement after a QUALIFIER statement.

Description Optional. Indicates a range of relative record numbers you want retrieved.
The function does not retrieve records outside the range you code.

Format 1–9 decimal characters for each rrn

Options low-rrn Retrieves records having RRNs from low-rrn through the
end of the file.

-high-rrn Retrieves records having RRNs from the beginning of
the file to high-rrn.

low-rrn–high-rrn Retrieves records having RRNs from low-rrn through
high-rrn.

Considerations

♦ Do not code FILE (ALL) with the RRN-RANGE statement if any files
are key-sequenced data sets.

♦ If the low-rrn you code is not a valid data record, the function
accesses the first data record with a higher RRN than the one you
coded.

♦ If you are printing a related file and the RRN you code is in the middle
of a chain, the function does not print prior records on that chain.

♦ Do not code the RRN-RANGE statement if you coded QUALIFIER
(DIRECT) or QUALIFIER (SEQUENTIAL).

Coding the UCL for the Print function

DBA Utilities User’s Guide 371

MAXIMUM (
b/







record-count
)

Restriction You can only use this statement after a QUALIFIER statement.

Description Optional. Determines the maximum number of records to print.

Default b/

Format 1–9 decimal characters

Considerations

♦ If you code MAXIMUM (b/), the function prints all records.

♦ To code MAXIMUM, you must have already coded QUALIFIER.

♦ If you code the MAXIMUM statement, you must put it must before the
RECORD statements.

♦ The function includes in this count only valid data records that pass
all other selection criteria. For example, if you specify an argument
(via the CRITERIA statement), all data records must first pass the
argument validation before the function adds them to the maximum
record counter.

♦ If you code a number that exceeds the total number of records in the
file, the function stops processing at the end of the file.

♦ If you code a value that exceeds the total number of records in this
file, the function stops at the end of the file.

Chapter 12 Coding the Print function

372 P26-6260-63

CRITERIA (element1[,element2,...,elementn].operator.datavalue1
[.datavalue2...datavaluen]END.)

Restriction You can only use this statement after a QUALIFIER statement.

Description Optional. Establishes an argument string to select the records you want
printed.

Considerations

♦ If you code this statement, put it before the RECORD statements.

♦ You can code any number of spaces before the element list, after
END., and on either side of the separating commas.

♦ If you do not code END, the function considers the rest of the
program as data.

Format for element
One or more 8 alphanumeric character element names. You must make
the first character in each name alphabetic and separate the names with
commas.

Considerations

♦ If you code an element name in the argument, you must also code it
in the ELEMENT statement unless you code ELEMENT (ALL).

♦ You cannot code a null element list in the criteria argument.

♦ If you name an element in the criteria argument, it must be in all the
records you want printed from the file.

Format for operator
.EQ. Equal
.NE. Not equal
.GT. Greater than
.LT. Less than
.GE. Greater than or equal to
.LE. Less than or equal to

Consideration You must code a period before and after the Boolean operator. Only one
operator may be specified.

Coding the UCL for the Print function

DBA Utilities User’s Guide 373

Format for datavalue
Any valid EBCDIC value. You can code the actual hexadecimal
representation of any value of any data type in your UCL statement. You
must put a period before data value and END. after it.

Considerations

♦ You must make data values the same length as the element lengths
in the element list.

♦ Do not put spaces between data values.

♦ Your data may cross input line boundaries if necessary. You must
stop in column 72 and continue on the next line in column 1. (If you
put data in columns 73–80, it is lost.)

RECORD (
ALL
record-code








)

Description Optional. Indicates the records you want printed.

Default ALL

Format 2 alphanumeric characters

Considerations

♦ If you code this statement, you must code the ELEMENT statement.

♦ Do not code RECORD (ALL) if you intend to code the element list
with redefined element names for a coded related file.

♦ For primary files, always code RECORD (ALL).

♦ The record code you indicate must be in the file to be printed.

♦ If you code multiple RECORD statements, do not code ALL with a
specific record code.

♦ If you code FILE (ALL), do not code RECORD (record-code).

♦ If you code RECORD (), the function prints no records.

Chapter 12 Coding the Print function

374 P26-6260-63

ELEMENT (
ALL

)
element-list









Restriction Required if you code the RECORD statement.

Description Indicates the data elements you want printed.

Default ALL

Format Element names must be 8 alphanumeric characters. The first character
must be alphabetic. Separate names with commas.

Considerations
♦ If you code FILE (ALL), do not code ELEMENT (element-list).

♦ You can use ELEMENT (ALL) in conjunction with an element-list. For
example, the following is correct:

 RECORD (01)

 ELEMENT (ELEMENT1,ELEMENT2)

 RECORD (02)

 ELEMENT (ALL)

♦ The key element for a related file is the one associated with the
access linkpath you coded.

♦ Additional constraints apply in the following situations:

In this context:

ELEMENT (element-list)
must conform to these rules:

FILE(primary-file) Do not include the root element in element-list.
FILE(related-file)
no access-linkpath

Do not include linkpaths in element-list.

FILE(related-file) Do not include linkpaths in element-list. LINKPATH(ffffLKxx)
FILE(coded-file)
no access-linkpath

First entry in element-list must be ffffCODE where ffff is the
coded file name. Do not include linkpaths in element-list.

FILE(coded-file)
LINKPATH(ffffLKxx)

First entry in element-list must be ffffCODE where ffff is the
coded file name. Do not include linkpaths in element-list.

RECORD(record-
code)

Names appearing in the element list must exist in record code.

FILE(coded-file)
RECORD(ALL)

Do not include redefined element names in element-list.

Coding the UCL for the Print function

DBA Utilities User’s Guide 375

Writing exit programs
You can use the exit point from the Print function to examine the records
you are printing. The function invokes your exit program after it prints the
record. Therefore, there are no return codes from this exit. Your program
can collect statistics or data on the records it is passed, but it cannot
modify, delete or add records.

For information on how your exit programs are loaded, how they operate,
the languages you can use to write them, and the register conventions
you must follow, see “Inserting exit programs into functions” on page 49.
For example, you must code the parameter list addresses in register 1.
For a description of parameter list addresses, see the following table.

Parameter

Data type

Contents before exit
(passed to exit program)

Contents after exit (passed
from exit program)

Record n bytes of
data

Data record Must be unchanged

Function
Name

8 bytes
character

PRINTb/ b/ b/ Must be unchanged

If your exit program changes anything it is not authorized to change, the
results are unpredictable.

Chapter 12 Coding the Print function

376 P26-6260-63

Print examples
Example 1 The following example prints the elements in the records of all files in the

schema coded in the control section:
CONTROL (BEGIN)

 ENV-DESC(MYDESC)

 SCHEMA(MYSCHEMA)

FUNCTION (PRINT)

 FILE (ALL)

 RECORD (ALL)

 ELEMENT (ALL)

CONTROL (END)

Example 2 This example prints data from the CUST file and invokes the exit
program EXIT0001. You request the record in the CUST file by coding its
key, the decimal string C'001234'. You request the file be opened for
read-only and accessed directly. Since CUST is a primary file, the
function prints all record codes, specifically the CUSTCTRL and
CUSTNAME elements. The function reads the second file, PORD,
sequentially by way of the CUSTLKPO linkpath. The function prints
various elements in the HD and IT records.
CONTROL (BEGIN)

 ENV-DESC(MYDESC)

 SCHEMA(MYSCHEMA)

FUNCTION (PRINT)

 STANDARD-EXIT (EXIT0001)

 FILE (CUST)

 OPEN-MODE (READ)

 QUALIFIER (DIRECT)

 KEY (C'001234')

 RECORD (ALL)

 ELEMENT (CUSTCTRL, CUSTNAME)

 FILE (PORD)

 QUALIFIER (SEQUENTIAL)

 LINKPATH (CUSTLKPO)

 RECORD (HD)

 ELEMENT (PORDCMNT, PORDDATE, PORDVEND, PORDCARR)

 RECORD (IT)

 ELEMENT (PORDITEM, PORDIQTY)

CONTROL (END)

Print examples

DBA Utilities User’s Guide 377

Example 3 These following examples show sample input and output of the Print
function:

CSUL0101I : COMMENCING COMMAND VALIDATION.
 1 CONTROL(BEGIN)
 2 ***
 3 * *
 4 * PRINT EXAMPLE #1 DESCRIPTION *
 5 * *
 6 * OBJECTIVE: PRINT RECORDS FROM THE DIRECTORY. *
 7 * *
 8 * NOTES: *
 9 * *
10 * 1. FROM THE C$-# FILE, PRINT THE SPECIFIED *
11 * ELEMENTS FROM THE RECORDS ONLY IF C$-#NAME *
12 * SATISFIES THE STATED CRITERIA. *
13 * *
14 * 2. MOVE SERIALLY THROUGH FILE C$-S, AND PRINT *
15 * A MAXIMUM OF 10 RECORDS. *
16 * *
17 * *
18 ***
19 ENV-DESC(CINDIREN)
20 SCHEMA(CINDIRSC)
21 DIAGNOSTICS(EXTENDED)
22 LIST()
23 HEADER(YES)
24 EXTENSION('PRINT EXAMPLE 1')
25 FUNCTION(PRINT)
26 FILE(C$-#)
27 CRITERIA (C$-#NAME.EQ.01 END.)
28 RECORD(ALL)
29 ELEMENT(C$-#CODE,
30 C$-#NAME,
31 C$-#ATTM,
32 C$-#ATUI)
33 FILE(C$-S)
34 QUALIFIER(SERIAL)
35 MAXIMUM(10)
36 RECORD(ALL)
37 ELEMENT(ALL)
38 CONTROL(END)
CONTENTS OF SOURCE LINES OUTSIDE 1...72 MARGINS IGNORED.
0 SYNTAX ERRORS DETECTED.
38 COMMAND LINES READ.
1 CONTROL SECTIONS ANALYZED.
1 FUNCTION COMMANDS ANALYZED.

PRINT EXAMPLE 1

CSUL0102I : COMMENCING COMMAND EXECUTION.
CSUL0301I : COMMENCING CONTROL SECTION USING ENVIRONMENT DESCRIPTION CINDIREN AND SCHEMA CINDIRSC.
CSUL0302I : COMMENCING PRINT PROCESS.
CSUL0311I : COMMENCING PRINT AGAINST FILE C$-#.
REFER = 00000865
C$-#CODE C$-#NAME C$-#ATTM C$-#ATUI
24 01 112511 DIR. MIGR. SL 2114 ->SL 2116
REFER = 00000925
C$-#CODE C$-#NAME C$-#ATTM C$-#ATUI
16 01 120154 CSI-DBA
REFER = 0000093F
C$-#CODE C$-#NAME C$-#ATTM C$-#ATUI
16 01 112512 DIR. MIGR. SL 2114 ->SL 2116
REFER = 00000993
C$-#CODE C$-#NAME C$-#ATTM C$-#ATUI
16 01 150956 CSI-DBA
REFER = 00000B36
C$-#CODE C$-#NAME C$-#ATTM C$-#ATUI
16 01 120342 CSI-DBA

Chapter 12 Coding the Print function

378 P26-6260-63

REFER = 00000ECE
C$-#CODE C$-#NAME C$-#ATTM C$-#ATUI
24 01 110310 CSI-DBA
REFER = 00001230
C$-#CODE C$-#NAME C$-#ATTM C$-#ATUI
16 01 112518 DIR. MIGR. SL 2114 ->SL 2116
REFER = 000014F6
C$-#CODE C$-#NAME C$-#ATTM C$-#ATUI
16 01 151526 CSI-DBA
REFER = 00001B0A
C$-#CODE C$-#NAME C$-#ATTM C$-#ATUI
24 01 112535 DIR. MIGR. SL 2114 ->SL 2116
CSUL0349I : END-OF-FILE HAS BEEN ENCOUNTERED ON THE CURRENT FILE.
PRINT EXAMPLE 1
CSUL0321I : PRINT PROCESSING AGAINST FILE C$-# TERMINATING NORMALLY.
PRINT EXAMPLE 1 CSUL0311I : COMMENCING PRINT AGAINST FILE C$-S.
REFER = 00000001
DT /1213 >
REFER = 00000002
HD 2224
REFER = 00000003
DT 2224
REFER = 00000004
HD /i0709
REFER = 00000005
DT /i0709 / NONESLFB / /
REFER = 0000001B
HD /1213
REFER = 00000059
DT 1213 / %R / !
REFER = 0000005A
DT 1213 / %/ /
REFER = 0000005B
DT /1612 / /
REFER = 0000005C
DT /1612 / ?)
CSUL0346I : THE SPECIFIED MAXIMUM NUMBER OF RECORDS FOR THE CURRENT FILE HAVE BEEN PROCESSED.
CSUL0321I : PRINT PROCESSING AGAINST FILE C$-S TERMINATING NORMALLY.
CSUL0303I : PRINT PROCESS TERMINATING.
CSUL0305I : CONTROL SECTION TERMINATING.
CSUL0306I : SUMMARY DATA FOR TERMINATING CONTROL SECTION :
CSUL0101I : COMMENCING COMMAND VALIDATION.
 1 CONTROL(BEGIN)
 2 ***
 3 * *
 4 * PRINT EXAMPLE #2 DESCRIPTION *
 5 * *
 6 * OBJECTIVE: PRINT ELEMENTS FROM THE DATABASE FILES. *
 7 * *
 8 * *
 9 * NOTES: *
10 * *
11 * 1. FOR THE C$-T FILE, PRINT ELEMENTS FOR ALL *
12 * RECORDS IN THE SPECIFIED LINKPATH CHAIN. *
13 * *
14 * 2. MOVE SERIALLY THROUGH THE C$-D FILE AND: *
15 * *
16 * A. PRINT THE 2 SPECIFIED ELEMENTS FOR *
17 * RECORD CODE 07 RECORDS WITHIN RRN-RANGE *
18 * 5900-6810. *
19 * *
20 * B. PRINT ALL ELEMENTS FOR RECORD CODE 14 *
21 * RECORDS WITHIN RRN-RANGE 5900-6810. *
22 * *
23 * *
24 ***
25 ENV-DESC(CINDIREN)
26 SCHEMA(CINDIRSC)
27 DIAGNOSTICS(EXTENDED)
28 LIST()
29 HEADER(YES)
30 EXTENSION('PRINT EXAMPLE 2')

Print examples

DBA Utilities User’s Guide 379

31 FUNCTION(PRINT)
32 FILE(C$-T)
33 QUALIFIER(SEQUENTIAL)
34 LINKPATH(C$-#LKTT)
35 KEY(X'000000C0')
36 RECORD(ALL)
37 ELEMENT(ALL)
38 FILE(C$-D)
39 QUALIFIER(SERIAL)
40 RRN-RANGE(5900-6810)
41 RECORD(07)
42 ELEMENT(C$-DCODE,
43 C$-D07TP)
44 RECORD(14)
45 ELEMENT(ALL)
46 CONTROL(END)
CONTENTS OF SOURCE LINES OUTSIDE 1...72 MARGINS IGNORED.
0 SYNTAX ERRORS DETECTED.
46 COMMAND LINES READ.
1 CONTROL SECTIONS ANALYZED. 1 FUNCTION COMMANDS ANALYZED.PRINT EXAMPLE 2

CSUL0102I : COMMENCING COMMAND EXECUTION.
CSUL0301I : COMMENCING CONTROL SECTION USING ENVIRONMENT DESCRIPTION CINDIREN AND SCHEMA CINDIRSC.
CSUL0302I : COMMENCING PRINT PROCESS.
CSUL0311I : COMMENCING PRINT AGAINST FILE C$-T.
REFER = 000027F9
ST |P[/CALCULATES AVERAGE, MAXIMUM, MINIMUM & TOTAL. 5
REFER = 000027F5
LT |P[s c /STATISTICS IS A TERM USED WITH THE STATISTICS COLLECTION COMMANDS (WHEN 9 6
REFER = 000027F6
LT |P[s c HCHANGES AND WHEN FINISHED). WHEN SPECIFIED, QUERY WILL CALCULATE 5 7
REFER = 000027F7
LT |P[s c AND DISPLAY THE AVERAGE, MAXIMUM, MINIMUM AND TOTAL OF THE 6 8
REFER = 000027F8
LT |P[s c /ASSOCIATED VALUE. 7 /
REFER = 000027FA
LT |P[s c 4- 8 /
REFER = 000027FB
LT |P[s c /WHEN FINISHED PRINT STATISTICS OF SALES /
CSUL0348I : END-OF-CHAIN HAS BEEN ENCOUNTERED ON THE CURRENT FILE AND SPECIFIED LINKPATH.
CSUL0321I : PRINT PROCESSING AGAINST FILE C$-T TERMINATING NORMALLY.
PRINT EXAMPLE 2 CSUL0311I : COMMENCING PRINT AGAINST FILE C$-D.
REFER = 0000171B
C$-DCODE C$-D07TP
07 BP TLFB N
REFER = 00001722
14 / s cB HC$-N,CSI-DIR-RPTR-NAME-
QUAL FIND DEFN FROM INPUT US NAME / /
REFER = 00001723
14 / s cB C$-#.NADF,CSI-DIR-NM-DEFN FIND CAT. CODE FROM US DEFN
REFER = 00001724
14 / s cB /C$-T,C$-#LKTT FIND US TEXT FROM US DEFN / /
 o
 o
 o
C$-DCODE C$-D07TP
07 BP / /USRM N
REFER = 00001A6E
C$-DCODE C$-D07TP
07 BP SLFB N
CSUL0347I : THE SPECIFIED LAST RECORD FOR THE CURRENT FILE HAS BEEN PROCESSED.
CSUL0321I : PRINT PROCESSING AGAINST FILE C$-D TERMINATING NORMALLY.
CSUL0303I : PRINT PROCESS TERMINATING.
CSUL0305I : CONTROL SECTION TERMINATING.

Chapter 12 Coding the Print function

380 P26-6260-63

13
Coding the Modify function

Coding the Modify function
Use the Modify function to update records in database files. You can
update all or some database elements in each type of record. You can
print records before, after, or both before and after you update them.

You can update all but the following elements:

♦ The ROOT field in a primary file

♦ Control keys in primary or related files

♦ Code element in a coded file

♦ Linkpaths in a related file

While you cannot update linkpaths in a related file, you can update
linkpaths in a primary file. This enables you to unload and load a related
file, but not the primary files with which it is associated. To do this, you
use the Modify function to clear the linkpaths in the primary files as in
“Examples of Unload, Load, and Modify functions” on page 191. The
procedure involves the following three steps:

1. Using the Version 1 Unload function to unload the related file.

2. Using the Modify function to change the linkpath elements in the
primary file(s) so they contain eight blanks.

3. Using the Version 1 Load function to reload the related file.

As the Load function processes the related file, it recreates the linkpath
information and stores it in the blanked linkpath element(s). The UCL to
clear the linkpaths is shown in the second example in “Modify examples”
on page 394.

If you are using the Version 2 Unload and Load functions, you cannot use
the Modify function to clear the linkpaths. You must use the Insert
Linkpath function.

DBA Utilities User’s Guide 381

Coding the UCL for the Modify function
After you code the control section as shown in “Coding the control
section” on page 57, you can code the Modify function as shown in the
following format. For UCL examples, see “Modify examples” on
page 394.

FUNCTION (MODIFY)
STANDARD-EXIT (exit-name)
FILE (file-name) ...

 OPEN - MODE (
SUPD
EUPD



















)

 CLOSE (
NO
YES



















)

 QUALIFIER (
SERIAL
DIRECT
SEQUENTIAL

)














 [] RRN () record-rrn

 [] LINKPATH () access-linkpath

 KEY (
D' '
X' '
C' '

)
dec-string
hex-string
char-string































 MAXIMUM (
b

)
/

















record-count

[[]

]END.)]...[.
.. ,...,,(CRITERIA

n2

1n21

datavaluedatavalue
datavalueoperatorelementelementelement

 ...
 END.)(.DATA

(ELEMENT

)
ALL

(RECORD































string-data
list-element

code-record

Chapter 13 Coding the Modify function

382 P26-6260-63

FUNCTION (MODIFY)

Description Required. Invokes the Modify function.

Consideration If the PDM returns a bad status, the Modify function closes and locks the
file.

STANDARD-EXIT (exit-name)

Description Optional. Indicates the name of an exit program you want to invoke to
process each modified record. For information on coding an exit
program, see “Writing exit programs” on page 393.

Format 1–8 alphanumeric characters. The first character must be alphabetic.

Considerations

♦ If you code this statement, you must put it before the FILE
statements.

♦ You must make your exit program available to be loaded by the
Modify function. That is, it must reside in your execution library.

♦ Only one exit at a time resides in memory. If you code a new exit
name in a subsequent function, the function deletes the current exit
before it loads the new one.

FILE (file-name)

Description Required. Indicates the file you want the Modify function to access.

Format 4 alphanumeric characters. The first character must be alphabetic.

Considerations

♦ You cannot code FILE (file-name-list) or FILE (ALL).

♦ You cannot use the Modify function to change an index file.

Coding the UCL for the Modify function

DBA Utilities User’s Guide 383

OPEN - MODE (
SUPD
EUPD

)









Description Optional. Indicates how you want the file opened for processing.

Default SUPD

Options SUPD Opens the file for shared update.

EUPD Opens the file for exclusive update.

Consideration If you code this statement, you must put it before any RECORD
statements.

CLOSE (
NO
YES

)









Description Optional. Indicates whether you want the function to explicitly close the
file after modification.

Default YES

QUALIFIER (
SERIAL
DIRECT
SEQUENTIAL

)














Description Required. Indicates the access mode you want the function to use when
it modifies the current file.

Options SERIAL Accesses the file serially without regard to chain
sequence.

DIRECT Accesses a specific record either by RRN or key.

SEQUENTIAL Accesses a related file sequentially by a specific linkpath.

Chapter 13 Coding the Modify function

384 P26-6260-63

Considerations

♦ Do not code QUALIFIER (SEQUENTIAL) for a primary file.

♦ As shown in the format, the QUALIFIER statement has three options.
Depending on the type of file (primary (P) or related (R)) and the
access mode you select, the statements are required (r), optional (o),
or invalid (i) as follows:

QUALIFIER DIRECT SERIAL SEQUENTIAL

File type P R P R P R
RRN i r i i i i
LINKPATH i r i i i r
KEY r r i i i r
MAXIMUM i i o o i o

♦ If you code QUALIFIER (SEQUENTIAL) and the LINKPATH and KEY

statements, the function modifies only the chain containing the key
you code.

♦ If you code QUALIFIER (DIRECT), the function modifies only one
record.

♦ If you code the QUALIFIER statement, you must put it before the
RECORD statements.

♦ If you code QUALIFIER (SERIAL), you can modify many elements.
The function modifies the elements you code for the record code you
indicate. If you code RECORD (ALL), the function modifies every
record.

♦ If you modify a coded related file, there must be at least one linkpath
in the base portion of the file.

Coding the UCL for the Modify function

DBA Utilities User’s Guide 385

RRN (record-rrn)

Restrictions

♦ Use this statement for direct access to related files.

♦ You can only use this statement after a QUALIFIER statement.

Description Optional. Indicates a relative record number in a related file you want
read directly.

Format 1–9 decimal characters

Consideration You must code this statement if you are modifying a related file and you
coded QUALIFIER (DIRECT).

LINKPATH (access-linkpath)

Restrictions

♦ Use this statement for related files with direct or sequential access.

♦ You can only use this statement after a QUALIFIER statement.

Description Optional. Determines the access linkpath for a related file.

Format ffffLKxx, where ffff is a primary file linked to a related file through linkpath
LKxx

Considerations

♦ The access linkpath may exist either in the base or the redefined
portion of a coded record.

♦ If you code RECORD (ALL) with an access linkpath, that linkpath
must exist in all records.

♦ You cannot code LINKPATH (access-linkpath-list).

Chapter 13 Coding the Modify function

386 P26-6260-63

KEY (
D' '
X' '
C' '

)
dec-string
hex-string
char-string















Restrictions

♦ Invalid for sequential access to a primary file or any serial access.

♦ You can only use this statement after a QUALIFIER statement.

Description Optional. Selects a key you want the function to use for direct access to a
primary or related file, or sequential access to a related file.

Format D'dec-string' A decimal string of 1 to 256 bytes preceded by a D and
surrounded by single quotes. This string must match the
actual key length.

X'hex-string' A hexadecimal string of 2 to 512 bytes that is preceded
by an X and surrounded by single quotes. The length
must be an even number and exactly twice the actual
key length.

C'char-string' A character string of 1 to 256 bytes preceded by a C and
surrounded by single quotes. This string must match the
actual key length. If a character string contains quotes,
you must code two quotation marks for each quote. For
example, you must code ABC D'EF'G as C'ABC"EF"G'.

Coding the UCL for the Modify function

DBA Utilities User’s Guide 387

MAXIMUM (
b

)
/

















record-count

Restrictions

♦ You can use this statement for serial access to primary or related
files, or sequential access to related files. You cannot use it for direct
access to primary or related files or for sequential access to primary
files.

♦ You can only use this statement after a QUALIFIER statement.

Description Optional. Determines the maximum number of records to modify.

Default b/

Format 1–9 decimal characters

Considerations

♦ If you code MAXIMUM (b/), the function modifies all records.

♦ To code the MAXIMUM statement, you must have already coded the
QUALIFIER statement.

♦ If you code the MAXIMUM statement, you must put it before the
RECORD statements.

♦ The function counts only valid data records that pass all other
selection criteria. For example, if you code an argument with the
CRITERIA statement, all data records must first pass the argument
validation before the function adds them to the maximum record
counter.

♦ If you code a number that exceeds the total number of records in this
file, the function stops processing at the end of the file.

♦ If you code MAXIMUM (0), no records are processed.

Chapter 13 Coding the Modify function

388 P26-6260-63

CRITERIA (element1[,element2,...,elementn].operator.datavalue1
[.datavalue2...datavaluen]END.)

Restriction You can only use this statement after a QUALIFIER statement.

Description Optional. Establishes an argument string to select the records you want
modified.

Considerations
♦ If you code this statement, put it before the RECORD statements.

♦ You can code any number of spaces before the element list, after
END., or on either side of the separating commas.

♦ If you do not code END., the function considers the rest of the
program as data.

Format for element
One or more 8 alphanumeric character element names. You must make
the first character in each name alphabetic and separate the names with
commas.

Considerations
♦ If you code an element name in the argument, you must code the

element name in the ELEMENT statement unless you code
ELEMENT (ALL).

♦ You cannot code a null element list.

♦ If you name an element in the CRITERIA argument, it must be in all
records you want modified in the file.

Format for operator
Only one Boolean operator may be specified. The following operators are
valid:

.EQ. Equal

.NE. Not equal

.GT. Greater than

.LT. Less than

.GE. Greater than or equal to

.LE. Less than or equal to
Consideration You must code a period before and after each Boolean operator.

Coding the UCL for the Modify function

DBA Utilities User’s Guide 389

Format for datavalue
Any valid EBCDIC value. You can code the actual hexadecimal
representation of any value of any data type in your UCL statement. You
must put a period before datavalue and END. after it.

Considerations

♦ You must make the data values the same length as element names.

♦ You cannot put spaces between data values.

♦ Your data may cross input line boundaries if necessary. If so, you
must stop in column 72 and continue on the next line in column 1. (If
you put data in columns 73–80, it is lost.)

RECORD (
ALL

)
record-code









Description Optional. Indicates the record you want modified.

Default ALL

Format 2 alphanumeric characters

Considerations

♦ If you code this statement, you must code ELEMENT and DATA
statements.

♦ If you code RECORD (ALL), the function modifies all record codes.

♦ Do not code RECORD (ALL) if you intend to code the element list
with redefined element names for a coded related file.

♦ For primary files, always code RECORD (ALL).

♦ If you code a record-code here, it must be in the file you are
modifying.

♦ If you code several RECORD statements, do not code ALL with a
specific record-code.

♦ If you code RECORD (), the function modifies no records.

Chapter 13 Coding the Modify function

390 P26-6260-63

ELEMENT (element-list)

Restriction Required if you code the RECORD statement.

Description Indicates the data elements you want modified.

Format Element names must be 8 alphanumeric characters. The first character
must be alphabetic. Separate names with commas.

Considerations

♦ The key element for a related file is the one associated with the
access linkpath you coded.

♦ Additional constraints apply in the following situations:

In this context:

ELEMENT (element-list) must
conform to these rules:

FILE(primary-file) Do not include the root element in the
element-list.

FILE(related-file) Do not code linkpaths in the element
list.

FILE(related-file)
LINKPATH(ffffLKxx)

Do not code linkpaths in the element
list.

FILE(coded-file)
no access-linkpath

First entry in the element list must be
ffffCODE where ffff is the coded file
name.
Do not code linkpaths in the element
list.

FILE(noncoded-file) The key must be the first element in
the list.

FILE(coded-file)
LINKPATH (ffffLKxx)

First entry in the element list must be
ffffCODE where ffff is the coded file
name.
Do not code linkpaths in the element
list.

RECORD(record-code) Names appearing in the element list
must exist in record code.

FILE(coded-file)
RECORD(ALL)

Do not include redefined element
names in the element list.

Coding the UCL for the Modify function

DBA Utilities User’s Guide 391

DATA (.data-stringEND.)

Description Required. Provides a string of data you want the function to use to modify
an existing database record.

Format Any valid EBCDIC value. You can code the actual hexadecimal value of
any data type in your UCL statement. You must put a period before
data-string and END. after it.

Considerations

♦ You must make the data values in the string the same type and
length as the data they replace. They must correspond on a
one-to-one basis with the list you coded in the ELEMENT statement.

♦ Do not put blanks between data values.

♦ Your data may cross input line boundaries if necessary. If you code
multiple lines, you must stop in column 72 and continue on the next
line in column 1. (If you put data in columns 73–80, it is lost.)

Chapter 13 Coding the Modify function

392 P26-6260-63

Writing exit programs
You can use the exit point from the Modify function to examine the
records you are modifying. The function invokes your exit program after it
modifies the record. Therefore, there are no return codes. Your program
can collect statistics or data on the records it is passed, but you cannot
modify, delete, or add records.

For information on how your exit programs are loaded, how they operate,
the languages you can use to write them, and the register conventions
you must follow, see “Inserting exit programs into functions” on page 49.
For example, you must code the parameter list addresses in register 1.
For a description of the parameter list addresses, see the following table.

Parameter

Data type

Contents before exit
(passed to exit program)

Contents after exit (passed
from exit program)

Record n bytes of
data

Data record Must be unchanged

Function
Name

8 bytes
character

MODIFYb/ b/ Must be unchanged

If your exit program changes anything it is not authorized to change, the
results are unpredictable.

Writing exit programs

DBA Utilities User’s Guide 393

Modify examples
Example 1 The following example shows you how to modify the CUST file and

invoke an exit program EXIT0004. You code the UCL so the function
opens the file for exclusive update and access it directly. You indicate the
record you want to modify the CUST file by coding its key, the decimal
string C'001234'. Since CUST is a primary file, the function processes all
record codes, modifying specifically the CUSTNMBR and CUSTNAME
elements. In the DATA statement, you indicate the data string that you
want to take the place of the elements listed in the ELEMENT statement.
CONTROL (BEGIN)

 ENV-DESC (MYDESC)

 SCHEMA (MYSCHEMA)

FUNCTION (MODIFY) Invokes Modify function

 STANDARD-EXIT (EXIT0004) Indicates your exit program

 FILE (CUST) Indicates CUST file

 OPEN-MODE (EUPD) Indicates CUST open mode

 QUALIFIER (DIRECT) Indicates CUST access mode

 KEY (C'001234') Indicates CUST key value

 RECORD (ALL) All records required for

 primary file
 ELEMENT (CUSTNMBR, CUSTNAME) Indicates CUST elements

 DATA (.01209JOHN PAUL JONES END.) Indicates CUST data
CONTROL (END)

Example 2 The following example shows how to code the function section to clear
linkpaths in primary files. Clearing linkpaths with the Modify function
enables you to unload and load related files, but not the primary files with
which they are associated.
FUNCTION (MODIFY)

FILE (CUST)

 QUALIFIER (SERIAL)

 RECORD (ALL)

 ELEMENT (CUSTLK010

 DATA (. END.)

Chapter 13 Coding the Modify function

394 P26-6260-63

Example 3 The following example shows sample input and output.
 CSUL0101I : COMMENCING COMMAND VALIDATION.
 1 CONTROL(BEGIN)
 2 ***
 3 * *
 4 * MODIFY EXAMPLE #1 DESCRIPTION *
 5 * *
 6 * OBJECTIVES: *
 7 * *
 8 * 1. FOR THE PRIMARY FILE PANM RECORD WITH KEY 'PKEY8' *
 9 * CHANGE THE ELEMENT PANMDATA TO THE NEW VALUE. *
 10 * *
 11 * *
 12 * 2. FOR THE RELATED FILE RANV RECORD WITH RRN 4, *
 13 * CHANGE THE ELEMENT RANVFIL3 TO THE NEW VALUE. *
 14 * *
 15 * *
 16 ***
 17 ENV-DESC(UTED00US)
 18 SCHEMA(UTILSCHM)
 19 LIST(ALL)
 20 HEADER(YES)
 21 EXTENSION(' MODIFY EXAMPLE #1')
 22 **
 23 FUNCTION(MODIFY)
 24 FILE(PANM)
 25 QUALIFIER(DIRECT)
 26 KEY(C'PKEY8')
 27 RECORD(ALL)
 28 ELEMENT(PANMDATA)
 29 DATA(.* THE NEW DATA NAME *END.)
 30 **
 31 FILE(RANV)
 32 QUALIFIER(DIRECT)
 33 RRN(0004)
 34 LINKPATH(PANMLK01)
 35 KEY(C'PKEY8')
 36 RECORD(03)
 37 ELEMENT(RANVFIL3)
 38 DATA(.***** THE NEW DATA FIELD FOR RANVFIL3 ****END.)
 39 **
 40 CONTROL(END)
CONTENTS OF SOURCE LINES OUTSIDE 1...72 MARGINS IGNORED.
 0 SYNTAX ERRORS DETECTED.
 40 COMMAND LINES READ.
 1 CONTROL SECTIONS ANALYZED.
 1 FUNCTION COMMANDS ANALYZED.

MODIFY EXAMPLE #1

 CSUL0102I : COMMENCING COMMAND EXECUTION.
 CSUL0301I : COMMENCING CONTROL SECTION USING ENVIRONMENT DESCRIPTION UTED00US AND SCHEMA UTILSCHM.
 CSUL0302I : COMMENCING MODIFY PROCESS.
 CSUL0311I : COMMENCING MODIFY AGAINST FILE PANM.
 CSUL1400I : RECORD IMAGE BEFORE MODIFY IS :

PANMDATA
DATAFORPANMPKEY8
CSUL1401I : RECORD IMAGE AFTER MODIFY IS :

PANMDATA
* THE NEW DATA NAME *
 CSUL0345I : THE SPECIFIED RECORD IN THE CURRENT FILE HAS BEEN DIRECTLY ACCESSED AND PROCESSED.
 CSUL0321I : MODIFY PROCESSING AGAINST FILE PANM TERMINATING NORMALLY.
MODIFY EXAMPLE #1

Modify examples

DBA Utilities User’s Guide 395

 CSUL0311I : COMMENCING MODIFY AGAINST FILE RANV.
 CSUL1400I : RECORD IMAGE BEFORE MODIFY IS :

RANVFIL3

 CSUL1401I : RECORD IMAGE AFTER MODIFY IS :

RANVFIL3
***** THE NEW DATA FIELD FOR RANVFIL3 ****
 CSUL0345I : THE SPECIFIED RECORD IN THE CURRENT FILE HAS BEEN DIRECTLY ACCESSED AND PROCESSED.
 CSUL0321I : MODIFY PROCESSING AGAINST FILE RANV TERMINATING NORMALLY.
 CSUL0303I : MODIFY PROCESS TERMINATING.
 CSUL0305I : CONTROL SECTION TERMINATING.
 CSUL0306I : SUMMARY DATA FOR TERMINATING CONTROL SECTION :
 CSUL0361I : NUMBER OF READS ISSUED TO THE PDM = 2
 CSUL0362I : NUMBER OF RECORDS RECEIVED FROM THE PDM = 2
 CSUL0363I : NUMBER OF RECORDS PROCESSED = 2
 CSUL0364I : NUMBER OF RECORDS PRINTED = 4
 CSUL0365I : NUMBER OF RECORDS UPDATED = 2
 CSUL0366I : NUMBER OF WRITES ISSUED TO PDM = 2
 CSUL0307I : ALL CONTROL SECTIONS PROCESSED.
 CSUL0308I : CUMULATIVE SUMMARY DATA FOR ALL CONTROL SECTIONS :
 CSUL0361I : NUMBER OF READS ISSUED TO THE PDM = 2
 CSUL0362I : NUMBER OF RECORDS RECEIVED FROM THE PDM = 2
 CSUL0363I : NUMBER OF RECORDS PROCESSED = 2
 CSUL0364I : NUMBER OF RECORDS PRINTED = 4
 CSUL0365I : NUMBER OF RECORDS UPDATED = 2
 CSUL0366I : NUMBER OF WRITES ISSUED TO PDM = 2
 CSUL0103I : DATABASE UTILITIES SUCCESSFUL TERMINATION.

Chapter 13 Coding the Modify function

396 P26-6260-63

Example 4 The following example shows sample input and output.

 CSUL0101I : COMMENCING COMMAND VALIDATION.
 1 CONTROL(BEGIN)
 2 ***
 3 * *
 4 * MODIFY EXAMPLE #2 DESCRIPTION *
 5 * *
 6 * OBJECTIVE: *
 7 * *
 8 * 1. FOR THE RELATED FILE RANV, READ SEQUENTIALLY ALONG *
 9 * THE SPECIFIED LINKPATH AND MODIFY THE ELEMENT *
 10 * SPECIFIED FOR EACH STATED RECORD CODE. *
 11 * *
 12 * *
 13 ***
 14 ENV-DESC(UTED00US)
 15 SCHEMA(UTILSCHM)
 16 LIST(ALL)
 17 HEADER(YES)
 18 EXTENSION(' MODIFY EXAMPLE #2')
 19 DATA-FORMAT(CHAR HEX)
 20 FUNCTION(MODIFY)
 21 FILE(RANV)
 22 QUALIFIER(SEQUENTIAL)
 23 LINKPATH(PANMLK01)
 24 KEY(C'PKEY8')
 25 RECORD(01)
 26 ELEMENT(RANVFIL1)
 27 DATA(
 28 .*** THE NEW DATA FIELD FOR RANVFIL1 **END.)
 29 RECORD(02)
 30 ELEMENT(RANVFIL2)
 31 DATA(
 32 .***** THE NEW DATA FIELD FOR RANVFIL2 ****END.)
 33 RECORD(03)
 34 ELEMENT(RANVFIL3)
 35 DATA(.***** THE NEW DATA FIELD FOR RANVFIL3 ****END.)
 36 CONTROL(END)
CONTENTS OF SOURCE LINES OUTSIDE 1...72 MARGINS IGNORED.
 0 SYNTAX ERRORS DETECTED.
 36 COMMAND LINES READ.
 1 CONTROL SECTIONS ANALYZED.
 1 FUNCTION COMMANDS ANALYZED.
 MODIFY EXAMPLE #2

 CSUL0102I : COMMENCING COMMAND EXECUTION.
 CSUL0301I : COMMENCING CONTROL SECTION USING ENVIRONMENT DESCRIPTION UTED00US AND SCHEMA UTILSCHM.
 CSUL0302I : COMMENCING MODIFY PROCESS.
 CSUL0311I : COMMENCING MODIFY AGAINST FILE RANV.
 CSUL1400I : RECORD IMAGE BEFORE MODIFY IS :

Modify examples

DBA Utilities User’s Guide 397

REFER = 0000002C

RANVFIL1

44
00
CSUL1401I : RECORD IMAGE AFTER MODIFY IS :

REFER = 0000002C

RANVFIL1
*** THE NEW DATA FIELD FOR RANVFIL1 **
55544444ECC4DCE4CCEC4CCCDC4CDD4DCDECCDF4444455
CCC00000385055604131069534066909155693100000CC
CSUL1400I : RECORD IMAGE BEFORE MODIFY IS :

REFER = 00000003

RANVFIL2
RANVfIL2BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
DCDE8CDFCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
915569322222222222222222222222222222222222
CSUL1401I : RECORD IMAGE AFTER MODIFY IS :

REFER = 00000003

RANVFIL2
***** THE NEW DATA FIELD FOR RANVFIL2 ****
555554ECC4DCE4CCEC4CCCDC4CDD4DCDECCDF45555
CCCCC038505560413106953406690915569320CCCC
CSUL1400I : RECORD IMAGE BEFORE MODIFY IS :

REFER = 00000004

RANVFIL3

44
00
CSUL1401I : RECORD IMAGE AFTER MODIFY IS :

MODIFY EXAMPLE #2

REFER = 00000004

RANVFIL3
***** THE NEW DATA FIELD FOR RANVFIL3 ****
555554ECC4DCE4CCEC4CCCDC4CDD4DCDECCDF45555
CCCCC038505560413106953406690915569330CCCC
 CSUL0348I : END-OF-CHAIN HAS BEEN ENCOUNTERED ON THE CURRENT FILE AND SPECIFIED LINKPATH.
 CSUL0321I : MODIFY PROCESSING AGAINST FILE RANV TERMINATING NORMALLY.
 CSUL0303I : MODIFY PROCESS TERMINATING.
 CSUL0305I : CONTROL SECTION TERMINATING.

Chapter 13 Coding the Modify function

398 P26-6260-63

14
Coding the PDM Termination utility

Coding the PDM Termination utility
Use the PDM Termination utility to shut down the PDM by executing a
single function.

To execute the PDM Termination utility:

♦ Code the appropriate input statements.

♦ OS/390 In OS/390, execute the JCL sample TXJSHUTP, or use the
cataloged procedure TISDBTMC.

♦ VSE In VSE, submit the JCL sample TXJSHUTP.

This utility does not use UCL. Instead, it has its own form of input
statements. For information on defining files, see “Defining files for the
PDM Termination utility” on page 40.

If the PDM Termination utility encounters any errors when validating the
input, it does not proceed to the PDM with the termination process. The
utility calls the PDM only if the input is valid.

DBA Utilities User’s Guide 399

Coding the input statements for the PDM Termination utility
Enter the following statements in the INPUT file to designate how you
want the PDM shut down. You can put the statements in any order. You
can code all of the statements on one line, or you may put one statement
on a line.

PASSWORD (shutdown-password)

 FORCE (
NO
YES

) 

















 [DBMNAME (dbmname)]

 CONSOLE (
NO
YES

) 

















PASSWORD (shutdown-password)

Restriction Required if there is a password in the environment description.

Description Identifies the shutdown password. With this statement, you can restrict
the use of this utility to the DBA or an authorized person.

Format 1–8 byte password as defined in the environment description.

Considerations

♦ If you enter an invalid password, the PDM returns an error status
instead of terminating.

♦ If there is no password in the environment description, do not code
this statement.

Chapter 14 Coding the PDM Termination utility

400 P26-6260-63

FORCE (
NO
YES

) 

















Description Optional. Indicates whether the PDM should be shut down while tasks
are still logged on.

Default NO

Options NO If all tasks are signed off, the PDM shuts down. If tasks
are signed on, the PDM does not shut down and a
message is returned.

YES The utility shuts down the PDM even if tasks are signed
on, but after all current functions are executed. The utility
closes files without unlocking them. If task logging is
active, all tasks signed on are reset. If task logging is not
active, all tasks are signed off.

DBMNAME (dbmname)

Description Optional. Identifies the PDM you want shut down.

Default If you do not code dbmname, the PDM uses the name in the CSIPARM
file.

Format 1–8 alphanumeric characters. The first character must be alphabetic.

CONSOLE (
NO
YES

) 

















Description Optional. Indicates whether the utility is to display a message on the
operator's console stating that the PDM shutdown was successful or
unsuccessful.

Default NO

Coding the input statements for the PDM Termination utility

DBA Utilities User’s Guide 401

PDM termination example
The following is an example of input:
FORCE(YES) CONSOLE(NO) DBMNAME(PDMTEST)

The following messages result from the input:
CSUL4000I : THE FOLLOWING INPUT CONTROL STATEMENTS WERE SPECIFIED

FORCE-OPTION : YES

DBMNAME : PDMTEST

CONSOLE OPTION: NO

CSUL4011I : DATABASE SHUTDOWN SUCCESSFUL. STATUS = ****

Chapter 14 Coding the PDM Termination utility

402 P26-6260-63

15
Coding the Execution Statistics utility
for release 2.1.6

Coding the Execution Statistics utility for release 2.1.6
Use the Execution Statistics utility (CSUXSTAT) to generate a statistics
report. This report shows the contents of the statistics file and
calculations based on the contents.

The PDM places a group of statistics records in a statistics file at these
times:

♦ When the PDM finishes initializing

♦ When an application issues a Read Statistics (RSTAT) PDML
command

♦ When the PDM terminates

The Execution Statistics utility generates a report from a PDM statistics
file. For more information on generating a PDM statistics file, refer to the
SUPRA Server PDM DML Programming Guide (OS/390 & VSE),
P26-4340.

DBA Utilities User’s Guide 403

Defining the files
The Execution Statistics utility does not use UCL or access Directory or
database files. To execute the utility, you need to define only two files:
INPUT and STATS. The INPUT file describes the record size and block
size of the STATS file. The STATS file is created during PDM execution
and contains statistics records. When you define the INPUT file, you
must code record size in positions 1–4, a blank in position 5, and block
size in positions 6–9. Use leading zeros in both fields.

When you code the record size, you must make it at least 512 bytes. You
must set the record size through Directory Maintenance so that Directory
Maintenance automatically calculates the block size. Make sure the block
size is an even multiple of the record size and then add 4 because the file
is blocked. The block size must be at least 516 bytes.

The following formula shows the calculation:
the block size = (the record size * n) + 4

The record size and block size must exactly match the file definition you
used when you executed the Execution Statistics utility. That is, the
record size and block size must match the values used in the JCL in
OS/390 and VSE. The file definition in the Execution Statistics utility must
match the file definition used when the file was created during execution
of the PDM. Therefore, in your JCL for the PDM, utilities, and INPUT file,
set your record size to 512 and block size to 516.

To get Directory Maintenance to set the block size to 516, you may need
to set the record size to 516 in Directory Maintenance and 512 in the JCL.

To execute the utility in OS/390 or VSE, see sample JCL member
TXJPSTAT. For information on the TIS/XA Selection Facility, refer to the
SUPRA Server PDM and Directory Administration Guide (OS/390 &
VSE), P26-2250.

See “Defining files for the Execution Statistics utility” on page 38 for more
information on defining files.

Chapter 15 Coding the Execution Statistics utility for release 2.1.6

404 P26-6260-63

Arrangement of the statistics report
An execution statistics report consists of:

♦ A SUPRA DBA utilities title page

♦ A DBA execution statistics report title page

♦ A Physical Data Manager identification page

♦ At least one group report

♦ An execution statistics termination page

Each group report shows a single group of statistics that was placed in
the statistics file at the same time. A group report contains:

♦ A group identification page

♦ A system statistics page

♦ A set of file statistics pages (one page for each file defined to the
PDM)

♦ A file statistics totals page

The following sections show samples of each type of page.

Arrangement of the statistics report

DBA Utilities User’s Guide 405

Sample of the Physical Data Manager identification page
A Physical Data Manager identification page similar to the one shown
below is printed once at the beginning of each execution statistics report.
 FUNCTION = EXECUTION STATISTICS

P H Y S I C A L D A T A M A N A G E R

I D E N T I F I C A T I O N

PDM NAME EE73EX01

BOOT SCHEMA CINDIRSC

BOOT ENVIRONMENT DESCRIPTION CINDIRTU

USER SCHEMA UTILSCHM

USER ENVIRONMENT DESCRIPTION UTED50EX

DATE AND TIME OF PDM INITIALIZATION NOV. 01, 1992
10:15:10

Sample of the group identification page
The group identification page shown below is printed at the beginning of
each group report. The table following this sample gives more information
on each statistic.

 FUNCTION = EXECUTION STATISTICS

 G R O U P I D E N T I F I C A T I O N

 F O R G R O U P 2

G1.01 STATISTICS GROUP TYPE PDM TERMINATION

G2.01 DATE AND TIME EXECUTION STATISTICS WERE ISSUED NOV. 01, 1992 10:18:13

Statistic
identifier

Explanation

G1.01 This shows the reason the PDM placed a group of records in the
statistics file. For example, the PDM completes initialization, an
RSTAT command is issued with the FILE option, or the PDM
completes termination.

G2.01 This shows the date and time the PDM placed the group of statistics
records in the statistics file.

Chapter 15 Coding the Execution Statistics utility for release 2.1.6

406 P26-6260-63

Sample of the system statistics page
A system statistics page similar to the one shown below is the first set of
statistics in each group report. These PDM system-level statistics cover
the time from when the statistics were last reset (S1.01) until they were
placed in the statistics file (G2.01). They are not specific to the task that
issued the RSTAT command and caused the statistics to be placed in the
file.

For more information on each statistic, see the table following this
sample.

 FUNCTION = EXECUTION STATISTICS

 GROUP 2.1
 S Y S T E M S T A T I S T I C S
S1.01 DATE AND TIME STATISTICS WERE LAST RESET NOV. 01, 1992 10:16:07
S1.02 FIRST GROUP OF EXECUTION STATISTICS SINCE RESET? YES
S2.01 TOTAL TASKS 2
S2.02 MAXIMUM CONCURRENT TASKS 5
S3.01 TOTAL HELD RECORDS 1,439
S3.02 MAXIMUM HELD RECORDS 584
S3.03 TOTAL RECORDS HELD BY OTHER TASKS 0
S3.04 TOTAL HELD RECORDS STOLEN BY ANOTHER TASK 0
S4.01 TOTAL READ COMMANDS 121
21.96%
S4.02 TOTAL UPDATE COMMANDS 9
1.63%
S4.03 TOTAL ADD AND DELETE COMMANDS 389
70.60%
S4.04 TOTAL OTHER COMMANDS 30
5.44%
S5.01 TOTAL COMMANDS ISSUED TO THE PDM 551
S5.02 MAXIMUM NUMBER OF COMMANDS AT COMMAND STARTS 4
S5.03 SUM OF COMMANDS AT COMMAND STARTS 1,402
S5.04 AVERAGE NUMBER OF COMMANDS AT COMMAND STARTS (S5.03/S5.01)
2.54AVG.
S5.05 TOTAL ELAPSED TIME ON COMMANDS ISSUED TO THE PDM 00:03:20.676
S5.06 AVERAGE ELAPSED TIME PER COMMAND ISSUED TO THE PDM (S5.05/S5.01) 00:00:00.364
S5.07 MAXIMUM ELAPSED TIME FOR ANY COMMAND ISSUED TO THE PDM 00:00:11.086
S6.01 NUMBER OF TIMES PDM WAS INACTIVE 3,175
S6.02 AVERAGE NUMBER OF TIMES PDM WAS INACTIVE PER COMMAND (S6.01/S5.01)
5.76AVG.
S7.01 AMOUNT OF TIME PDM WAS ACTIVE (HH:MM:SS.SSS) 00:00:25.587
20.28%
S7.02 AMOUNT OF TIME PDM WAS INACTIVE 00:01:40.575
79.72%
 ------------ -----------
S7.03 TOTAL PDM TIME (S7.01+S7.02) 00:02:06.162
100.00%
S7.04 AVERAGE AMOUNT OF TIME PDM WAS ACTIVE PER COMMAND (S7.01/S5.01) 00:00:00.046

Arrangement of the statistics report

DBA Utilities User’s Guide 407

Statistics
identifier

Additional information

S1.01 The date and time the memory storage area (where statistics are
accumulated) was last reset.

S1.02 First set of execution statistics since reset? Yes or No.
S2.01 The total number of SINON commands issued to the PDM. It includes sign-

ons that failed and sign-ons used to reconnect an active task after a task or
system failure (task-level recovery only).

S2.02 The maximum number of tasks that were signed on at any one time.
S3.01 The number of times a record was automatically reserved, explicitly reserved,

or locked.
S3.02 The maximum number of records automatically reserved, explicitly reserved,

or locked simultaneously.
S3.03 The number of requests by a batch task for a record already held by a TP task

in a non-task level recovery environment.
S3.04 The number of times a record was stolen from a CICS task for use by another

task. When task logging is active and when you are using a batch PDM, this
value is always 0.

S4.01 The number of times read commands were issued to the PDM by PDM
interfaces. The statistic includes commands that failed in the PDM, but does
not include commands issued to a PDM interface and not passed to the PDM.

S4.02 The number of times write commands were issued to the PDM by PDM
interfaces. The statistic includes commands that failed in the PDM, but does
not include commands issued to a PDM interface and not passed to the PDM.

S4.03 The number of times add and delete commands were issued to the PDM by
PDM interfaces. The statistic includes commands that failed in the PDM, but
does not include commands that the PDM interface did not pass to the PDM.

S4.04 The number of commands other than reads, writes, adds, or deletes that the
PDM interfaces issued to the PDM. The statistic includes commands that
failed in the PDM, but does not include commands that the PDM interfaces did
not pass to the PDM.

S5.01 The number of commands that PDM interfaces issued to the PDM. The
statistic does not include commands the PDM interfaces did not pass to the
PDM.

S5.02 The maximum number of commands processing simultaneously (see the
figure following this table). A command is processing if it has been passed to
the PDM and not yet returned to the interface.

Chapter 15 Coding the Execution Statistics utility for release 2.1.6

408 P26-6260-63

Statistics
identifier

Additional information

S5.03 Sum of commands processing when a command starts processing,
including commands starting and already processing. Use this statistic to
calculate the average number of commands being processed by the PDM
when commands start processing (see the figure following this table).

S5.04 The sum of commands at command starts (S5.03) divided by the total
number of commands issued to the PDM (S5.01).

S5.05 The total elapsed time of all commands. The elapsed time for a single
command begins when the PDM interface issues the command to the PDM
and ends when the PDM interface receives notice that the command
completed. This statistic is given in hours, minutes, seconds, and
milliseconds.

S5.06 The elapsed time on commands issued to the PDM (S5.05) divided by total
commands issued (S5.01). This statistic is given in hours, minutes, seconds,
and milliseconds.

S5.07 The maximum elapsed time to process a single command out of all the
commands in this group report. This statistic is given in hours, minutes,
seconds, and milliseconds.

S6.01 The number of times the PDM issued an operating system wait because
there was no processing to do.

S6.02 The average number of times the PDM was inactive per command. This
value is calculated by dividing the number of times the PDM was inactive
(S6.01) by the total commands issued to the PDM (S5.01).

S7.01 The amount of time, in hours, minutes, seconds, and milliseconds, that the
PDM was executing.

S7.02 The amount of time, in hours, minutes, seconds, and milliseconds, that the
PDM was in an operating system wait mode.

S7.03 Total amount of active (S7.01) and inactive PDM time (S7.02), in hours,
minutes, seconds, and milliseconds.

S7.04 The average time the PDM took to execute a command, in hours, minutes,
seconds, and milliseconds. This number is calculated by dividing the amount
of time the PDM was active (S7.01) by the number of commands issued by
the PDM (S5.01).

Arrangement of the statistics report

DBA Utilities User’s Guide 409

The following figure illustrates how statistics for command starts are
gathered:

start stop
Command 5

Time Line

1 2 3 2 1

start stop
Command 2

start stop
Command 3

start stop
Command 4

start stop
Command 1

Number of commands
processing when each
command starts

The PDM counts the number of commands processing each time a new
command starts. The PDM counts the command that is starting as the
first command. In this example, only one command, Command 1, is
processing when Command 1 starts. When Command 2 starts, two
commands are processing: Commands 1 and 2. When Command 3
starts, three commands are processing. However, when Command 4
starts, Commands 1 and 2 have finished processing, so only two
commands are processing: Commands 3 and 4. When Command 5
starts, it is the only command processing.

To arrive at the maximum number of commands processing when each
command starts (S5.02), the PDM picks the highest number from the
figures along the base line (3).

To arrive at the sum of commands processing when commands start
(S5.03), the PDM adds the numbers along the base line (1+2+3+2+1=9).

Chapter 15 Coding the Execution Statistics utility for release 2.1.6

410 P26-6260-63

Sample of the file statistics page
A file statistics page, like the one shown below, is included in the group
report. There is one page for each file defined to the PDM when the
statistics record group was placed in the statistics file. The files defined to
the PDM include all database, Directory, log, and statistics files. The
statistics describe the activity for the file from the time the statistics were
last reset (S1.01) until the statistics record group was placed in the
statistics file (G2.01). These statistics are at the PDM file level, and,
therefore, are not specific to the task which issued the RSTAT command.
For more information on each statistic, see the table following this
sample.

 FUNCTION = EXECUTION STATISTICS
 GROUP 2.18
 F I L E S T A T I S T I C S
 F O R F I L E P002
FILE TYPE PRIMARY LOGICAL RECORD LENGTH 57
FILE CODED NO BLOCK SIZE 9,405
FILE DDNAME P002 BLOCKS PER TRACK 15
ACCESS METHOD BDAM RECORDS PER BLOCK 165
BUFFER POOL USRM TOTAL LOGICAL RECORDS 660
 CONTROL INTERVAL SIZE 0
F1.01 TOTAL LOGICAL READS 132
F1.02 TOTAL PHYSICAL READS 7
F1.03 TOTAL IN-MEMORY HITS (F1.01-F1.02) 125
F1.04 TOTAL IN-MEMORY HITS ON UPDATED BUFFER 0
F1.05 TOTAL PHYSICAL UPDATES FORCED BY A PHYSICAL READ 6
F2.01 AVERAGE LOGICAL READS PER PHYSICAL READ (F1.01/F1.02) 18.86AVG.
F2.02 % OF LOGICAL READS WHICH WERE IN-MEMORY HITS ((F1.03/F1.01)*100) 94.70%
F2.03 % OF IN-MEMORY HITS WHICH WERE TO AN UPDATED BUFFER ((F1.04/F1.03)*100) 0.00%
F2.04 % OF PHYSICAL READS FORCING A PHYSICAL UPDATE ((F1.05/F1.02)*100) 4.55%
F3.01 TOTAL LOGICAL UPDATES 129
F3.02 TOTAL PHYSICAL UPDATES 9
F3.03 TOTAL MULTIPLE LOGICAL UPDATES TO THE SAME BUFFER 0
F3.04 AVERAGE LOGICAL UPDATES PER PHYSICAL UPDATE (F3.01/F3.02) 14.33AVG.
F3.05 % OF PHYSICAL UPDATES WHICH WERE MULTIPLE UPDATES ((F3.03/F3.02)*100) 0.00%
F4.01 TOTAL LOGICAL I/O (F1.01+F3.01) 261
F4.02 TOTAL PHYSICAL I/O (F1.02+F3.02) 16
F4.03 AVERAGE LOGICAL I/O PER PHYSICAL I/O (F4.01/F4.02) 16.31AVG.
F5.01 % OF LOGICAL I/O WHICH WERE LOGICAL READS ((F1.01/F4.01)*100) 50.57%
F5.02 % OF LOGICAL I/O WHICH WERE LOGICAL UPDATES ((F3.01/F4.01)*100) 49.43%
F5.03 % OF PHYSICAL I/O WHICH WERE PHYSICAL READS ((F1.02/F4.02)*100) 43.75%
F4 % OF PHYSICAL I/O WHICH WERE PHYSICAL UPDATES ((F3.02/F4.02)*100) 56.25%
F6.01 NUMBER OF TIMES PHYSICAL WRITES TO A DATABASE FILE
WERE DELAYED BECAUSE A LOG FILE BLOCK HAD TO BE WRITTEN 1

Arrangement of the statistics report

DBA Utilities User’s Guide 411

Identifier Additional information

F1.01 The number of times a record was logically read.
F1.02 The number of times a record was physically read.
F1.03 The number of times a record was logically read and was already in memory

(F1.01-F1.02).
F1.04 The number of logical reads that found the desired block of data in a updated

storage buffer.
F1.05 The number of forced physical updates that occurred because a logical read

required a buffer for a physical read.
F2.01 The number of logical reads (F1.01) divided by the number of physical reads

(F1.02).
F2.02 The percentage of logical reads (F1.01) that were in-memory hits (F1.03).
F2.03 The percentage of in-memory hits (F1.03) that were hits on an updated storage

buffer (F1.04).
F2.04 The number of physical reads (F1.02) that forced a physical write to obtain a buffer

(F1.05).
F3.01 The number of times a record was logically updated. A record is logically updated

when it is logically added to the file, deleted from the file, or changed in the file.
F3.02 The number of times the contents of a buffer were physically written. For Task and

System Log Files, F3.02 may exceed F3.01 because a single logical record may
span several physical blocks. This can cause several buffers to be physically written
for a single logical write.

F3.03 The number of logical updates to storage buffers that have already been updated.
F3.04 The number of logical updates (F3.01) divided by the number of physical updates

(F3.02).
F3.05 The number of updates to previously updated buffers (F3.03) as a percentage of

physical updates (F3.02).
F4.01 The number of logical read and update (change, add, or delete) commands

received by the PDM.
F4.02 The number of physical read and update operations performed by the PDM.
F4.03 The number of logical I/O transactions (F4.01) divided by the number of physical I/O

transactions (F4.02).
F5.01 The logical read (F1.01) commands as a percentage of logical I/O commands

(F4.01).
F5.02 The logical update (F3.01) commands as a percentage of logical I/O commands

(F4.01).
F5.03 The physical reads (F1.02) as a percentage of physical I/Os (F4.02).
F5.04 The physical updates (F3.02) as a percentage of physical I/Os (F4.02).
F6.01 The number of times physical writes to a database file were delayed because a

System or Task Log File block had to be physically written first. This statistic is 0 for
files other than primary, related, and index files.

Chapter 15 Coding the Execution Statistics utility for release 2.1.6

412 P26-6260-63

Sample of the file statistics totals for group
A file statistics totals page, like the one shown below, is included in each
group report following the individual file statistic pages. Except for T1.00
and T6.02–T6.05, these statistics summarize the corresponding statistics
on the individual file statistics pages. These statistics summarize PDM
activity at the file level from the time the statistics were last reset (S1.01)
until the statistics record group was placed in the statistics file (G2.01).
These statistics summarize Directory files, log files, and statistics files in
addition to database files. They are not specific to the task that issued the
RSTAT command. For more information on each statistic, see the table
following this sample.

 FUNCTION = EXECUTION STATISTICS
 GROUP 2.28
 F I L E S T A T I S T I C S
 T O T A L S F O R G R O U P 2
T1.00 NUMBER OF FILES FOR WHICH STATISTICS WERE ACCUMULATED 26
T1.01 TOTAL LOGICAL READS 3,931
T1.02 TOTAL PHYSICAL READS 527
T1.03 TOTAL IN-MEMORY HITS (T1.01-T1.02) 3,404
T1.04 TOTAL IN-MEMORY HITS ON UPDATED BUFFER 2,832
T1.05 TOTAL PHYSICAL UPDATES FORCED BY A PHYSICAL READ 301
T2.01 AVERAGE LOGICAL READS PER PHYSICAL READ (T1.01/T1.02) 7.46AVG.
T2.02 % OF LOGICAL READS WHICH WERE IN-MEMORY HITS ((T1.03/T1.01)*100) 86.59%
T2.03 % OF IN-MEMORY HITS WHICH WERE TO AN UPDATED BUFFER ((T1.04/T1.03)*100) 83.20%
T2.04 % OF PHYSICAL READS FORCING A PHYSICAL UPDATE ((T1.05/T1.02)*100) 7.66%
T3.01 TOTAL LOGICAL UPDATES 7,602
T3.02 TOTAL PHYSICAL UPDATES 2,558
T3.03 TOTAL MULTIPLE LOGICAL UPDATES TO THE SAME BUFFER 17
T3.04 AVERAGE LOGICAL UPDATES PER PHYSICAL UPDATE (T3.01/T3.02) 2.97AVG.
T3.05 % OF PHYSICAL UPDATES WHICH WERE MULTIPLE UPDATES ((T3.03/T3.02)*100) 0.66%
T4.01 TOTAL LOGICAL I/O (T1.01+T3.01) 11,533
T4.02 TOTAL PHYSICAL I/O (T1.02+T3.02) 3,085
T4.03 AVERAGE LOGICAL I/O PER PHYSICAL I/O (T4.01/T4.02) 3.74AVG.
T5.01 % OF LOGICAL I/O WHICH WERE LOGICAL READS ((T1.01/T4.01)*100) 34.08%
T5.02 % OF LOGICAL I/O WHICH WERE LOGICAL UPDATES ((T3.01/T4.01)*100) 65.92%
T5.03 % OF PHYSICAL I/O WHICH WERE PHYSICAL READS ((T1.02/T4.02)*100) 17.08%
T5.04 % OF PHYSICAL I/O WHICH WERE PHYSICAL UPDATES ((T3.02/T4.02)*100) 82.92%
T6.01 NUMBER OF TIMES PHYSICAL WRITES TO A DATABASE FILE
WERE DELAYED BECAUSE A LOG FILE BLOCK HAD TO BE WRITTEN 144 94.12%
T6.02 NUMBER OF TIMES LOGICAL WRITES TO A LOG FILE WERE DELAYED
BECAUSE A LOG FILE BLOCK HAD TO BE WRITTEN 9 5.88%
 ----------- ----------
T6.03 NUMBER OF TIMES WRITES WERE DELAYED BECAUSE
A LOG FILE BLOCK HAD TO BE WRITTEN (T6.01+T6.02) 153 100.00%
T6.04 TOTAL NUMBER OF WRITES TO THE LOG FILE(S) 5,440
T6.05 AVERAGE LOGICAL LOG FILE BLOCK WRITES PER LOG FILE DELAY
 (T6.04/T6.03) 35.56AVG.

Arrangement of the statistics report

DBA Utilities User’s Guide 413

Statistics
identifier

Additional information

T1.00 The number of files defined to the PDM when the statistics record group was
placed in the statistics file.

T1.01 The number of times a record was logically read.
T1.02 The number of times a record was physically read.
T1.03 The number of times a record was logically read and was already in

memory.
T1.04 The number of logical reads that found the desired block of data in a storage

buffer.
T1.05 The number of forced physical updates that occurred because a logical read

required a buffer for a physical read.
T2.01 The number of logical reads (T1.01) divided by the number of physical reads

(T1.02).
T2.02 The percentage of logical reads (T1.01) that were in-memory hits (T1.03).
T2.03 The percentage of in-memory hits (T1.03) that were hits on an updated

buffer (T1.04).
T2.04 The number of physical reads (T1.02) that forced a physical write to obtain a

buffer (T1.05).
T3.01 The number of times a record was logically updated. A record is logically

updated when it is logically added to the file, deleted from the file, or
changed in the file.

T3.02 The number of times the contents of a buffer were physically written.
T3.03 The number of logical updates to storage buffers that have already been

updated.
T3.04 The number of logical updates (T3.01) divided by the number of physical

updates (T3.02).
T3.05 The number of updates to previously updated buffers (T3.03) as a

percentage of physical updates (T3.02).
T4.01 The number of logical read and update (change, add, or delete) commands

received by the PDM.
T4.02 The number of times physical read and update operations were performed

by the PDM.
T4.03 The number of logical I/O transactions (T4.01) divided by the number of

physical I/O transactions (T4.02).

Chapter 15 Coding the Execution Statistics utility for release 2.1.6

414 P26-6260-63

Statistics
identifier

Additional information

T5.01 The logical read (T1.01) commands as a percentage of logical I/O
commands (T4.01).

T5.02 The logical update (T3.01) commands as a percentage of logical I/O
commands (T4.01).

T5.03 The physical read (T1.02) commands as a percentage of physical I/Os
(T4.02).

T5.04 The physical updates (T3.02) as a percentage of physical I/Os (T4.02).
T6.01 The number of times physical writes to a database file were delayed

because a System or Task Log File block had to be physically written first.
T6.02 The number of times a log file record (or when spanning records, a log

record segment) could not be logically written because a System or Task
Log File block had to be physically written.

T6.03 The number of times logical writes to a log file and physical writes to a
database file were delayed because a System or Task Log File block had to
be written (T6.01 + T6.02).

T6.04 The number of logical writes to the System and Task Log Files. When
spanning records, each block in the record is considered a separate logical
write.

T6.05 The number of records logically written to the log file(s) (T6.04) divided by
the number of delays (T6.03).

Arrangement of the statistics report

DBA Utilities User’s Guide 415

Sample of the termination page
The termination page appears after at least one group report.
 FUNCTION = EXECUTION STATISTICS

E X E C U T I O N S T A T I S T I C S

 T E R M I N A T I O N

PDM NAME EE73EX01

BOOT SCHEMA CINDIRSC

BOOT ENVIRONMENT DESCRIPTION CINDIRTU

USER SCHEMA UTILSCHM

USER ENVIRONMENT DESCRIPTION UTED50EX

TOTAL PDM EXECUTION STATISTICS GROUPS 2

TOTAL RECORDS ON STATISTICS FILE 56

Chapter 15 Coding the Execution Statistics utility for release 2.1.6

416 P26-6260-63

16
Coding the Execution Statistics utility
for release 2.4

Coding the Execution Statistics utility for release 2.4
Use the Execution Statistics utility (CSUXSTAT) to generate a statistics
report. This report shows the contents of the statistics file and
calculations based on the contents.

The PDM places a group of statistics records in a statistics file at these
times:

♦ When the PDM finishes initializing

♦ When an application issues a Read Statistics (RSTAT) PDML
command

♦ When the PDM terminates

The Execution Statistics utility generates a report from a PDM statistics
file. For more information on generating a PDM statistics file, refer to the
SUPRA Server PDM DML Programming Guide (OS/390 & VSE),
P26-4340.

DBA Utilities User’s Guide 417

Defining the files
The Execution Statistics utility does not use UCL or access Directory or
database files. To execute the utility, you need to define only two files:
INPUT and STATS. The INPUT file describes the record size and block
size of the STATS file. The STATS file is created during PDM execution
and contains statistics records. When you define the INPUT file, you
must code record size in positions 1–4, a blank in position 5, and block
size in positions 6–9. Use leading zeros in both fields.

When you code the record size, you must make it at least 512 bytes. You
must set the record size through Directory Maintenance so that Directory
Maintenance automatically calculates the block size. Make sure the block
size is an even multiple of the record size and then add 4 because the file
is blocked. The block size must be at least 516 bytes.

The following formula shows the calculation:
 the block size = (the record size * n) + 4

The record size and block size must exactly match the file definition you
used when you executed the Execution Statistics utility. That is, the
record size and block size must match the values used in the JCL. The
file definition in the Execution Statistics utility must match the file
definition used when the file was created during execution of the PDM.
Therefore, in your JCL for the PDM, utilities, and INPUT file, set your
record size to 512 and block size to 516.

To get Directory Maintenance to set the block size to 516, you may need
to set the record size to 516 in Directory Maintenance and 512 in the JCL.

To execute the utility, see sample JCL member TXJPSTAT. For
information on the TIS/XA Selection Facility, refer to the SUPRA Server
PDM and Directory Administration Guide (OS/390 & VSE), P26-2250.

See “Defining files for the Execution Statistics utility” on page 38 for more
information on defining files.

Chapter 16 Coding the Execution Statistics utility for release 2.4

418 P26-6260-63

Arrangement of the statistics report
An execution statistics report consists of:

♦ A SUPRA DBA utilities title page

♦ A DBA execution statistics report title page

♦ A Physical Data Manager identification page

♦ At least one group report

♦ An execution statistics termination page

Each group report shows a single group of statistics that was placed in
the statistics file at the same time. A group report contains:

♦ A group identification page

♦ A system statistics page

♦ A set of file statistics pages (one page for each file defined to the
PDM)

♦ A file statistics totals page

The following sections show samples of each type of page.

Arrangement of the statistics report

DBA Utilities User’s Guide 419

Sample of the Physical Data Manager identification page
A Physical Data Manager identification page similar to the one shown
below is printed once at the beginning of each execution statistics report.
 FUNCTION = EXECUTION STATISTICS

P H Y S I C A L D A T A M A N A G E R

I D E N T I F I C A T I O N

PDM NAME EE73EX01

BOOT SCHEMA CINDIRSC

BOOT ENVIRONMENT DESCRIPTION CINDIRTU

USER SCHEMA UTILSCHM

USER ENVIRONMENT DESCRIPTION UTED50EX

DATE AND TIME OF PDM INITIALIZATION NOV. 01, 1992
10:15:10

Sample of the group identification page
A group identification page similar to the one shown below is printed at
the beginning of each group report. The table following this sample gives
more information on each statistic.

 FUNCTION = EXECUTION STATISTICS

 G R O U P I D E N T I F I C A T I O N

 F O R G R O U P 2

G1.01 STATISTICS GROUP TYPE PDM TERMINATION

G2.01 DATE AND TIME EXECUTION STATISTICS WERE ISSUED NOV. 01, 1992 10:18:13

Statistic
identifier

Explanation

G1.01 This shows the reason the PDM placed a group of records in the
statistics file. For example, the PDM completes initialization, an
RSTAT command is issued with the FILE option, or the PDM
completes termination.

G2.01 This shows the date and time the PDM placed the group of statistics
records in the statistics file.

Chapter 16 Coding the Execution Statistics utility for release 2.4

420 P26-6260-63

Sample of the system statistics page
A system statistics page similar to the one shown below is the first set of
statistics in each group report. These PDM system-level statistics cover
the time from when the statistics were last reset (S1.01) until they were
placed in the statistics file (G2.01). They are not specific to the task that
issued the RSTAT command and caused the statistics to be placed in the
file.

For more information on each statistic, see the table following this
sample.

 FUNCTION = EXECUTION STATISTICS

 GROUP 1.1

 S Y S T E M S T A T I S T I C S

S1.01 DATE AND TIME STATISTICS WERE LAST RESET NOV. 12, 1992 10:35:24
S1.02 FIRST GROUP OF EXECUTION STATISTICS SINCE RESET? YES

S2.01 TOTAL TASKS 1
S2.02 MAXIMUM CONCURRENT TASKS 1

S3.01 CURRENT RECORD HOLDING ENTRIES IN USE 0
S3.02 MAXIMUM RECORD HOLDING ENTRIES USED 0
S3.03 CURRENT MONITOR ENTRIES (READ LOCKS) IN USE 0
S3.04 MAXIMUM MONITOR ENTRIES (READ LOCKS) USED 0

S4.01 TOTAL READ COMMANDS 516 99.61%
S4.02 TOTAL UPDATE COMMANDS 0 0.00%
S4.03 TOTAL ADD AND DELETE COMMANDS 0 0.00%
S4.04 TOTAL OTHER COMMANDS 2 0.39%

S5.01 TOTAL COMMANDS ISSUED TO THE PDM 518
S5.02 MAXIMUM NUMBER OF COMMANDS AT COMMAND STARTS 1
S5.03 SUM OF COMMANDS AT COMMAND STARTS 518
S5.04 AVERAGE NUMBER OF COMMANDS AT COMMAND STARTS (S5.03/S5.01) 1.00AVG.

S6.01 TOTAL ELAPSED TIME ON COMMANDS ISSUED TO THE PDM 00:00:00.000
S6.02 AVERAGE ELAPSED TIME PER COMMAND ISSUED TO THE PDM (S6.01/S5.01) 00:00:00.000
S6.03 MAXIMUM ELAPSED TIME FOR ANY COMMAND ISSUED TO THE PDM 00:00:00.000

S7.01 NUMBER OF TIMES PDM WAS INACTIVE 757
S7.02 AVERAGE NUMBER OF TIMES PDM WAS INACTIVE PER COMMAND (S7.01/S5.01) 1.46AVG.

S8.01 AMOUNT OF TIME PDM WAS ACTIVE (HH:MM:SS.SS) 00:00:13.717 53.00%
S8.02 AMOUNT OF TIME PDM WAS INACTIVE 00:00:12.166 47.00%
S8.03 TOTAL PDM TIME (S8.01+S8.02) 00:00:25.883 100.00%
S8.04 AVERAGE AMOUNT OF TIME PDM WAS ACTIVE PER COMMAND (S8.01/S5.01) 00:00:00.026 S9.01 TOTAL
BYTES OF MEMORY (IN K) 1,460
S9.02 TOTAL BYTES OF MEMORY USED AT PRESENT TIME (IN K) 464 31.78%
S9.03 MAXIMUM BYTES OF MEMORY USED (IN K) 464 31.78%
S9.04 THRESHOLD MEMORY 90%
S10.01 TOTAL BYTES OF XA MEMORY (IN K) 6.144
S10.02 TOTAL BYTES OF XA MEMORY USED AT PRESENT TIME (IN K) 148 2.41%
S10.03 MAXIMUM BYTES OF XA MEMORY USED (IN K) 148 2.41%

Arrangement of the statistics report

DBA Utilities User’s Guide 421

Statistics
identifier

Additional information

S1.01 The date and time the memory storage area (where statistics are
accumulated) was last reset.

S1.02 First set of execution statistics since reset? Yes or No.
S2.01 The total number of SINON commands issued to the PDM. It includes sign-

ons that failed and sign-ons used to reconnect an active task after a task or
system failure (task-level recovery only).

S2.02 The maximum number of tasks that were signed on at any one time.
S3.01 The number of record holding entries in use by the PDM.
S3.02 The highest number of record holding entries with read locks in use by the

PDM since statistics were last reset.
S3.03 The current number of monitored entries with read locks in use by the PDM.
S3.04 The highest number of monitored entries with read locks in use by the PDM

since statistics were last reset.
S4.01 The number of times read commands were issued to the PDM by PDM

interfaces. The statistic includes commands that failed in the PDM, but does
not include commands issued to a PDM interface and not passed to the
PDM.

S4.02 The number of times write commands were issued to the PDM by PDM
interfaces. The statistic includes commands that failed in the PDM, but does
not include commands issued to a PDM interface and not passed to the
PDM.

S4.03 The number of times add and delete commands were issued to the PDM by
PDM interfaces. The statistic includes commands that failed in the PDM, but
does not include commands that the PDM interface did not pass to the
PDM.

S4.04 The number of commands other than reads, writes, adds, or deletes that the
PDM interfaces issued to the PDM. The statistic includes commands that
failed in the PDM, but does not include commands that the PDM interfaces
did not pass to the PDM.

S5.01 The number of commands that PDM interfaces issued to the PDM. The
statistic does not include commands the PDM interfaces did not pass to the
PDM.

S5.02 The maximum number of commands processing simultaneously (see the
figure following this table). A command is processing if it has been passed to
the PDM and not yet returned to the interface.

Chapter 16 Coding the Execution Statistics utility for release 2.4

422 P26-6260-63

Statistics
identifier

Additional information

S5.03 Sum of commands processing when a command starts processing,
including commands starting and already processing. Use this statistic to
calculate the average number of commands being processed by the PDM
when commands start processing (see the figure following this table).

S5.04 The sum of commands at command starts (S5.03) divided by the total
number of commands issued to the PDM (S5.01).

S6.01 The total elapsed time of all commands. The elapsed time for a single
command begins when the PDM interface issues the command to the PDM
and ends when the PDM interface receives notice that the command
completed. This statistic is given in hours, minutes, seconds, and
milliseconds.

S6.02 The elapsed time on commands issued to the PDM (S6.01) divided by total
commands issued (S5.01). This statistic is given in hours, minutes, seconds,
and milliseconds.

S6.03 The maximum elapsed time to process a single command out of all the
commands in this group report. This statistic is given in hours, minutes,
seconds, and milliseconds.

S7.01 The number of times the PDM issued an operating system wait because
there was no processing to do.

S7.02 The average number of times the PDM was inactive per command. This
value is calculated by dividing the number of times the PDM was inactive
(S7.01) by the total commands issued to the PDM (S5.01).

S8.01 The amount of time, in hours, minutes, seconds, and milliseconds, that the
PDM was executing.

S8.02 The amount of time, in hours, minutes, seconds, and milliseconds, that the
PDM was in an operating system wait mode.

S8.03 Total amount of active (S8.01) and inactive PDM time (S8.02), in hours,
minutes, seconds, and milliseconds.

S8.04 The average time the PDM took to execute a command, in hours, minutes,
seconds, and milliseconds. This number is calculated by dividing the amount
of time the PDM was active (S8.01) by the number of commands issued by
the PDM (S5.01).

S9.01 The amount of memory specified to the PDM to be allocated as work space.
Refer to the SUPRA Server PDM and Directory Administration Guide
(OS/390 & VSE), P26-2250, for additional information.

Arrangement of the statistics report

DBA Utilities User’s Guide 423

Statistics
identifier

Additional information

S9.02 The amount of memory that is currently being used.
S9.03 The highest amount of memory used (S9.02) since statistics were last reset.
S9.04 The percentage (S9.02/S9.01*100) of allocated memory used at which the

PDM will begin releasing noncritical memory. Refer to the SUPRA Server
PDM and Directory Administration Guide (OS/390 & VSE), P26-2250, for
additional information.

S10.01 The amount of memory specified to the PDM to be allocated as work space.
Refer to the SUPRA Server PDM and Directory Administration Guide
(OS/390 & VSE), P26-2250, for additional information.

S10.02 The amount of memory above the 16-megabyte line that is currently being
used.

S10.03 The highest amount of memory above the 16-megabyte line used (S10.02)
since statistics were last reset.

Chapter 16 Coding the Execution Statistics utility for release 2.4

424 P26-6260-63

start stop
Command 5

Time Line

1 2 3 2 1

start stop
Command 2

start stop
Command 3

start stop
Command 4

start stop
Command 1

Number of commands
processing when each
command starts

The PDM counts the number of commands processing each time a new
command starts. The PDM counts the command that is starting as the
first command. In this example, only one command, Command 1, is
processing when Command 1 starts. When Command 2 starts, two
commands are processing: Commands 1 and 2. When Command 3
starts, three commands are processing. However, when Command 4
starts, Commands 1 and 2 have finished processing, so only two
commands are processing: Commands 3 and 4. When Command 5
starts, it is the only command processing.

To arrive at the maximum number of commands processing when each
command starts (S5.02), the PDM picks the highest number from the
figures along the base line (3).

To arrive at the sum of commands processing when commands start
(S5.03), the PDM adds the numbers along the base line (1+2+3+2+1=9).

Arrangement of the statistics report

DBA Utilities User’s Guide 425

Sample of the file statistics page
A file statistics page, like the one shown below, is included in the group
report. There is one page for each file defined to the PDM when the
statistics record group was placed in the statistics file. The files defined to
the PDM include all database, Directory, log, and statistics files. The
statistics describe the activity for the file from the time the statistics were
last reset (S1.01) until the statistics record group was placed in the
statistics file (G2.01). These statistics are at the PDM file level, and,
therefore, are not specific to the task which issued the RSTAT command.

For more information on each statistic, see the table following this
sample.

 FUNCTION = EXECUTION STATISTICS
 GROUP 1.10
 F I L E S T A T I S T I C S
 F O R F I L E M002
FILE TYPE PRIMARY LOGICAL RECORD LENGTH 61
FILE CODED NO BLOCK SIZE 9,394
FILE DDNAME M002 BLOCKS PER TRACK 2
ACCESS METHOD BDAM RECORDS PER BLOCK 154
BUFFER POOL USRM TOTAL LOGICAL RECORDS 616
 CONTROL INTERVAL SIZE 0
F1.01 TOTAL LOGICAL READS 4
F1.02 TOTAL PHYSICAL READS 3
F1.03 TOTAL IN-MEMORY HITS (F1.01-F1.02) 1
F1.04 TOTAL IN-MEMORY HITS ON UPDATED BUFFER 1
F1.05 TOTAL PHYSICAL UPDATES FORCED BY A PHYSICAL READ 0 F2.01 AVERAGE
LOGICAL READS PER PHYSICAL READ (F1.01/F1.02) 1.33AVG.
F2.02 % OF LOGICAL READS WHICH WERE IN-MEMORY HITS ((F1.03/F1.01)*100) 25.00%
F2.03 % OF IN-MEMORY HITS WHICH WERE TO AN UPDATED BUFFER ((F1.04/F1.03)*100) 100.00%
F2.04 % OF PHYSICAL READS FORCING A PHYSICAL UPDATE ((F1.05/F1.02)*100) 0.00%

F3.01 TOTAL LOGICAL UPDATES 1
F3.02 TOTAL PHYSICAL UPDATES 1
F3.03 TOTAL MULTIPLE LOGICAL UPDATES TO THE SAME BUFFER 0
F3.04 AVERAGE LOGICAL UPDATES PER PHYSICAL UPDATE (F3.01/F3.02) 1.00AVG.
F3.05 % OF PHYSICAL UPDATES WHICH WERE MULTIPLE UPDATES ((F3.03/F3.02)*100) 0.00%

F4.01 TOTAL LOGICAL I/O (F1.01+F3.01) 5
F4.02 TOTAL PHYSICAL I/O (F1.02+F3.02) 4
F4.03 AVERAGE LOGICAL I/O PER PHYSICAL I/O (F4.01/F4.02) 1.25AVG.

F5.01 % OF LOGICAL I/O WHICH WERE LOGICAL READS ((F1.01/F4.01)*100) 80.00%
F5.02 % OF LOGICAL I/O WHICH WERE LOGICAL UPDATES ((F3.01/F4.01)*100) 20.00%
F5.03 % OF PHYSICAL I/O WHICH WERE PHYSICAL READS ((F1.02/F4.02)*100) 75.00%
F5.04 % OF PHYSICAL I/O WHICH WERE PHYSICAL UPDATES ((F3.02/F4.02)*100) 25.00%

F6.01 TOTAL PHYSICAL UPDATE WAITS DUE TO LOG FILE UPDATES 0

F7.01 TOTAL STOLEN LOCKED RECORDS 0
F7.02 TOTAL SUCCESSFUL LOCKS WITHOUT WAITING 2
F7.03 TOTAL SUCCESSFUL LOCKS AFTER WAITING 0
F7.04 TOTAL SUCCESSFUL LOCKS (F7.01+F7.02+F7.03) 2
F7.05 TOTAL FAILED LOCKS WITHOUT WAITING 0
F7.06 TOTAL FAILED LOCKS AFTER WAITING 1
F7.07 TOTAL EMBRACES DETECTED 0
F7.08 TOTAL FAILED LOCKS (F7.05+F7.06+F7.07) 1

F8.01 TOTAL LOCKS REQUESTED (F7.04+F7.08) 3
F8.02 % OF TOTAL LOCKS WHICH WERE SUCCESSFUL ((F7.04/F8.01)*100) 66.67%
F8.03 % OF TOTAL LOCKS WHICH FAILED ((F7.08/F8.01)*100) 33.33%

Chapter 16 Coding the Execution Statistics utility for release 2.4

426 P26-6260-63

Statistics
identifier

Additional information

F1.01 The number of times a record was logically read.
F1.02 The number of times a record was physically read.
F1.03 The number of times a record was logically read and was already in memory

(F1.01–F1.02).
F1.04 The number of logical reads that found the desired block of data in a

updated storage buffer.
F1.05 The number of forced physical updates that occurred because a logical read

required a buffer for a physical read.
F2.01 The number of logical reads (F1.01) divided by the number of physical reads

(F1.02).
F2.02 The percentage of logical reads (F1.01) that were in-memory hits (F1.03).
F2.03 The percentage of in-memory hits (F1.03) that were hits on an updated

storage buffer (F1.04).
F2.04 The number of physical reads (F1.02) that forced a physical write to obtain a

buffer (F1.05).
F3.01 The number of times a record was logically updated. A record is logically

updated when it is logically added to the file, deleted from the file, or
changed in the file.

F3.02 The number of times the contents of a buffer were physically written. For
Task and System Log Files, F3.02 may exceed F3.01 because a single
logical record may span several physical blocks. This can cause several
buffers to be physically written for a single logical write.

F3.03 The number of logical updates to storage buffers that have already been
updated.

F3.04 The number of logical updates (F3.01) divided by the number of physical
updates (F3.02).

F3.05 The number of updates to previously updated buffers (F3.03) as a
percentage of physical updates (F3.02).

F4.01 The number of logical read and update (change, add, or delete) commands
received by the PDM.

F4.02 The number of physical read and update operations performed by the PDM.
F4.03 The number of logical I/O transactions (F4.01) divided by the number of

physical I/O transactions (F4.02).

Arrangement of the statistics report

DBA Utilities User’s Guide 427

Statistics
identifier

Additional information

F5.01 The logical read (F1.01) commands as a percentage of logical I/O
commands (F4.01).

F5.02 The logical update (F3.01) commands as a percentage of logical I/O
commands (F4.01).

F5.03 The physical reads (F1.02) as a percentage of physical I/Os (F4.02).
F5.04 The physical updates (F3.02) as a percentage of physical I/Os (F4.02).
F6.01 The number of times physical writes to a database file were delayed

because a System or Task Log File block had to be physically written first.
This statistic is 0 for files other than primary, related, and index files.

F7.01 The number of times ownership of a held record was changed from one task
to another without the first task voluntarily releasing the record. This can
occur only when task logging is set to NO. Refer to the SUPRA Server PDM
and Directory Administration Guide (OS/390 & VSE), P26-2250, for
additional information.

F7.02 The number of times a request to lock a record was immediately granted.
F7.03 The number of times a request to lock a record was granted after waiting for

the record to become available.
F7.04 The total number of times a request to lock a record was granted.
F7.05 The number of times a request to lock a record was immediately denied.
F7.06 The number of times a request to lock a record was denied after exceeding

the TP monitor delay time or the batch delay time. Refer to the SUPRA
Server PDM Directory Online User's Guide (OS/390 & VSE), P26-1260, for
additional information.

F7.07 The number of times a request to lock a record was denied because
granting the request would cause an unresolvable locking conflict.

F7.08 The total number of times a request to lock a record was denied.
F8.01 The total number of lock requests.
F8.02 The percentage of lock requests (F8.01) that were granted (F7.04).
F8.03 The percentage of lock requests (F8.01) that were denied (F7.08).

Chapter 16 Coding the Execution Statistics utility for release 2.4

428 P26-6260-63

Sample of the file statistics totals for group
A file statistics totals page, like the one shown below, is included in each
group report following the individual file statistic pages. Except for T1.00
and T6.02–T6.05, these statistics summarize the corresponding statistics
on the individual file statistics pages. These statistics summarize PDM
activity at the file level from the time the statistics were last reset (S1.01)
until the statistics record group was placed in the statistics file (G2.01).
These statistics summarize Directory files, log files, and statistics files in
addition to database files. They are not specific to the task that issued the
RSTAT command.

For more information on each statistic, see the table following this
sample.

 FUNCTION = EXECUTION STATISTICS
 GROUP 1.21
 F I L E S T A T I S T I C S

 T O T A L S F O R G R O U P 1

T1.00 NUMBER OF FILES FOR WHICH STATISTICS WERE ACCUMULATED 19

T1.01 TOTAL LOGICAL READS 885
T1.02 TOTAL PHYSICAL READS 67
T1.03 TOTAL IN-MEMORY HITS (T1.01-T1.02) 818
T1.04 TOTAL IN-MEMORY HITS ON UPDATED BUFFER 417
T1.05 TOTAL PHYSICAL UPDATES FORCED BY A PHYSICAL READ 1

T2.01 AVERAGE LOGICAL READS PER PHYSICAL READ (T1.01/T1.02) 13.21AVG.
T2.02 % OF LOGICAL READS WHICH WERE IN-MEMORY HITS ((T1.03/T1.01)*100) 92.43%
T2.03 % OF IN-MEMORY HITS WHICH WERE TO AN UPDATED BUFFER ((T1.04/T1.03)*100) 50.98%
T2.04 % OF PHYSICAL READS FORCING A PHYSICAL UPDATE ((T1.05/T1.02)*100) 1.49%

T3.01 TOTAL LOGICAL UPDATES 42
T3.02 TOTAL PHYSICAL UPDATES 123
T3.03 TOTAL MULTIPLE LOGICAL UPDATES TO THE SAME BUFFER 0
T3.04 AVERAGE LOGICAL UPDATES PER PHYSICAL UPDATE (T3.01/T3.02) 0.34AVG.
T3.05 % OF PHYSICAL UPDATES WHICH WERE MULTIPLE UPDATES ((T3.03/T3.02)*100) 0.00%

T4.01 TOTAL LOGICAL I/O (T1.01+T3.01) 927
T4.02 TOTAL PHYSICAL I/O (T1.02+T3.02) 190
T4.03 AVERAGE LOGICAL I/O PER PHYSICAL I/O (T4.01T4.02) 4.88AVG.

T5.01 % OF LOGICAL I/O WHICH WERE LOGICAL READS ((T1.01/T4.01)*100) 95.47%
T5.02 % OF LOGICAL I/O WHICH WERE LOGICAL UPDATES ((T3.01/T4.01)*100) 4.53%
T5.03 % OF PHYSICAL I/O WHICH WERE PHYSICAL READS ((T1.02/T4.02)*100) 35.26%
T5.04 % OF PHYSICAL I/O WHICH WERE PHYSICAL UPDATES ((T3.02/T4.02)*100) 64.74%

T6.01 TOTAL PHYSICAL UPDATE WAITS DUE TO LOG FILE UPDATES 0 0.00%
T6.02 TOTAL LOGICAL UPDATE WAITS DUE TO LOG FILE UPDATES 1 100.00%
T6.03 TOTAL UPDATE WAITS DUE TO LOG FILE UPDATES (T6.01+T6.02) 1 100.00%
T6.04 TOTAL NUMBER OF UPDATES TO THE LOG FILES(S) 29
T6.05 AVERAGE LOGICAL LOG FILE UPDATES PER LOG FILE WAIT (T6.04/T6.03) 29.00AVG.

T7.01 TOTAL STOLEN LOCKED RECORDS 0
T7.02 TOTAL SUCCESSFUL LOCKS WITHOUT WAITING 2
T7.03 TOTAL SUCCESSFUL LOCKS AFTER WAITING 0
T7.04 TOTAL SUCCESSFUL LOCKS (T7.01+T7.02+T7.03) 2
T7.05 TOTAL FAILED LOCKS WITHOUT WAITING 0
T7.06 TOTAL FAILED LOCKS AFTER WAITING 1
T7.07 TOTAL EMBRACES DETECTED 0
T7.08 TOTAL FAILED LOCKS (T7.05+T7.06+T7.07) 1

T8.01 TOTAL LOCKS REQUESTED (T7.04+T7.08) 3
T8.02 % OF TOTAL LOCKS WHICH WERE SUCCESSFUL ((T7.04/T8.01)*100) 66.67%
T8.03 % OF TOTAL LOCKS WHICH FAILED ((T7.08/T8.01)*100) 33.33%

Arrangement of the statistics report

DBA Utilities User’s Guide 429

Statistics
identifier

Additional information

T1.00 The number of files defined to the PDM when the statistics record group was placed
in the statistics file.

T1.01 The number of times a record was logically read.
T1.02 The number of times a record was physically read.
T1.03 The number of times a record was logically read and was already in memory.
T1.04 The number of logical reads that found the desired block of data in a storage buffer.
T1.05 The number of forced physical updates that occurred because a logical read

required a buffer for a physical read.
T2.01 The number of logical reads (T1.01) divided by the number of physical reads (T1.02).
T2.02 The percentage of logical reads (T1.01) that were in-memory hits (T1.03).
T2.03 The percentage of in-memory hits (T1.03) that were hits on an updated buffer

(T1.04).
T2.04 The number of physical reads (T1.02) that forced a physical write to obtain a buffer

(T1.05).
T3.01 The number of times a record was logically updated. A record is logically updated

when it is logically added to the file, deleted from the file, or changed in the file.
T3.02 The number of times the contents of a buffer were physically written.
T3.03 The number of logical updates to storage buffers that have already been updated.
T3.04 The number of logical updates (T3.01) divided by the number of physical updates

(T3.02).
T3.05 The number of updates to previously updated buffers (T3.03) as a percentage of

physical updates (T3.02).
T4.01 The number of logical read and update (change, add, or delete) commands received

by the PDM.
T4.02 The number of times physical read and update operations were performed by the

PDM.
T4.03 The number of logical I/O transactions (T4.01) divided by the number of physical I/O

transactions (T4.02).
T5.01 The logical read (T1.01) commands as a percentage of logical I/O commands

(T4.01).

Chapter 16 Coding the Execution Statistics utility for release 2.4

430 P26-6260-63

Statistics
identifier

Additional information

T5.02 The logical update (T3.01) commands as a percentage of logical I/O commands
(T4.01).

T5.03 The physical read (T1.02) commands as a percentage of physical I/Os (T4.02).
T5.04 The physical updates (T3.02) as a percentage of physical I/Os (T4.02).
T6.01 The number of times physical writes to a database file were delayed because a

System or Task Log File block had to be physically written first.
T6.02 The number of times a log file record (or when spanning records, a log record

segment) could not be logically written because a System or Task Log File block had
to be physically written.

T6.03 The number of times logical writes to a log file and physical writes to a database file
were delayed because a System or Task Log File block had to be written (T6.01 +
T6.02).

T6.04 The number of logical writes to the System and Task Log Files. When spanning
records, each block in the record is considered a separate logical write.

T6.05 The number of records logically written to the log file(s) (T6.04) divided by the
number of delays (T6.03).

T7.01 The number of times ownership of a held record was changed from one task to
another without the first task voluntarily releasing the record. This can occur only
when task logging is set to NO. Refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250, for additional information.

T7.02 The number of times a request to lock a record was immediately granted.
T7.03 The number of times a request to lock a record was granted after waiting for the

record to become available.
T7.04 The total number of times a request to lock a record was granted.
T7.05 The number of times a request to lock a record was immediately denied.
T7.06 The number of times a request to lock a record was denied after exceeding the TP

monitor delay time or the batch delay time. Refer to the SUPRA Server PDM
Directory Online User's Guide (OS/390 & VSE), P26-1260, for additional information.

T7.07 The number of times a request to lock a record was denied because granting the
request would cause an unresolvable locking conflict.

T7.08 The total number of times a request to lock a record was denied.
T8.01 The total number of lock requests.
T8.02 The percentage of lock requests (T8.01) that were granted (T7.04).
T8.03 The percentage of lock requests (T8.01) that were denied (T7.08).

Arrangement of the statistics report

DBA Utilities User’s Guide 431

Sample of the termination page
The termination page appears after at least one group report.
 FUNCTION = EXECUTION STATISTICS

E X E C U T I O N S T A T I S T I C S

 T E R M I N A T I O N

PDM NAME EE73EX01

BOOT SCHEMA CINDIRSC

BOOT ENVIRONMENT DESCRIPTION CINDIRTU

USER SCHEMA UTILSCHM

USER ENVIRONMENT DESCRIPTION UTED50EX

TOTAL PDM EXECUTION STATISTICS GROUPS 2

TOTAL RECORDS ON STATISTICS FILE 56

Chapter 16 Coding the Execution Statistics utility for release 2.4

432 P26-6260-63

17
Coding the Inter-Directory Copy utility

Coding the Inter-Directory Copy utility
Use the Inter-Directory Copy utility to copy information from one SUPRA
Directory to another. Inter-Directory Copy creates batch Directory
Maintenance transactions from the source Directory. These transactions
can be passed to batch Directory Maintenance to be applied to a target
Directory. In the target Directory, Directory Maintenance will mark as
inconsistent every copied Access Set, Conceptual Schema, File, Internal
Record, Logical View, Relation, Schema, or Secondary Key entity.

This utility does not use UCL. “Executing the Inter-Directory Copy utility”
on page 445 describes how to execute this utility.

This utility copies the following entities in the hierarchy shown and
includes all attribute data, relationships, and short and long text:

♦ Schema
External fields
Files
 Internal Records
 Physical Fields
 Secondary Keys
 Key Codes
Environment Descriptions
 Buffer Pools
 Log Groups
Logical Views
Access Sets

♦ Security Groups
Maintenance Restrictions

♦ Conceptual Schemas
Relation
Primary Key
Foreign Keys
Attributes

♦ Domain
♦ Users

Procedures

DBA Utilities User’s Guide 433

Before executing the batch Directory Maintenance transactions, you must
enter a valid ID and password. When processing the transactions, you
may use any of the run options such as +SYNTAX to check syntax. At
this point, you can optionally edit the transactions prior to executing batch
Directory Maintenance. This utility can be run to generate transactions to
be held and input later, or for logical back-up. For details, refer to SUPRA
Server PDM Directory Batch User's Guide (OS/390 & VSE), P26-1261.

OS/390 (OS/390 only) You cannot use members of a partitioned data set to hold
the output from DIRCOPYP. Write the output data sets as sequential
data sets, and then use the IEBCOPY utility to load them onto the
partitioned data sets.

Chapter 17 Coding the Inter-Directory Copy utility

434 P26-6260-63

Coding the input statements for the Inter-Directory Copy
utility

When you submit input statements for the Inter-Directory Copy utility,
they are echoed, as they appear, to your transaction file. You must
submit them in the following order:

1. The batch Directory Maintenance statements are optional and can go
in any order. The only exception is the +SIGNON statement, which is
required and must go last. You can code it only once.

2. If you code the user input statement, you must put it next.

3. If you code the security group statement, you must code it after the
user input statement.

4. If you code the schema input statement, you must code it after the
user input statement.

5. If you code the conceptual schema input statement, you must code it
after the schema input statement.

6. You can code the copy table, edit mask, and domain input
statements anywhere. Their order is not important.

If you code statements in the wrong order, you receive error messages.
For example, you must copy a user before you copy the user's security
group. That is, you must identify the users before you can give them
security clearance.

Coding the input statements for the Inter-Directory Copy utility

DBA Utilities User’s Guide 435

While the order of the statements is important, the number is not. There
is no limit to the number of statements you can code. For example, you
can code several users and several security groups. However, if you do
not code any input statements, the utility copies nothing. The following
table shows the relationship between your input statements and the
transaction file to which they are echoed.

Statement input Ordering Notes
BDM + statements You must put all the statements you use in

the first group.
+SIGNON is the
only required
statement.

COPY-TA The order does not matter. Optional
COPY-EM The order does not matter. Optional
COPY-US Must precede COPY-SG and COPY-SC. Optional
COPY-SG Must follow COPY-US. Optional
COPY-SC Must follow COPY-US. Optional
COPY-CS Must follow COPY-SC. Optional
COPY-DM Must follow COPY-SC. Optional

Chapter 17 Coding the Inter-Directory Copy utility

436 P26-6260-63

Optional input statements
Positions 1–7

 Any of the batch Directory Maintenance run option definition statements:

+DATA

+NODATA

+PAGING

+NOPAGING

+SEQUENCE

+NOSEQUENCE

+ERRCONT

+NULL

+SYNTAX

Description Optional. The run option definition statements offer processing and
printing options. For example, you can check syntax or continue
processing after an error.

Consideration These statements are for batch Directory Maintenance processing. The
Inter-Directory Copy utility simply includes them among the transactions
created. You should code these statements before any other input
statements. For more information about run option definition statements,
refer to the SUPRA Server PDM Directory Batch User's Guide (OS/390 &
VSE), P26-1261.

Coding the input statements for the Inter-Directory Copy utility

DBA Utilities User’s Guide 437

Signon input statement
Positions 1–7

+SIGNON

Description Required. Signs on the user for this utility and for batch Directory
Maintenance.

Consideration The +SIGNON statement becomes part of the output of the Inter-
Directory Copy utility.

Positions 9–38

user-id

Description Required. Identifies an existing user on the target Directory.

Format 1–30 alphanumeric or special characters (#, $, and -)

Consideration The ID you code in the User-ID field must exist on the Directory and must
be related to the Directory-Copy Logical View. (You may use the RELATE
command to establish this relationship.) For security, you must be an
authorized user (DBA) to copy Security Group and User entities.

Positions 40–69

password

Description Required. Indicates the password assigned to user.

Format 1–30 alphanumeric characters

Chapter 17 Coding the Inter-Directory Copy utility

438 P26-6260-63

Copy table input statement
Positions 1–7

COPY-TA

Description Optional. Copies the specified Table.

Positions 9–38

table name

Description Required. Identifies the Table you want to copy from the source
Directory.

Format 1–30 alphanumeric or special characters (#, $, and -)

Edit mask input statement
Positions 1–7

COPY-EM

Description Optional. Copies the specified Edit Mask.

Positions 9–38

edit mask name

Description Required. Identifies the Edit Mask you want to copy from the source
Directory.

Format 1–30 alphanumeric or special characters (#, $, and -)

Coding the input statements for the Inter-Directory Copy utility

DBA Utilities User’s Guide 439

User input statement
Positions 1–7

COPY-US

Restriction If you do not sign on as a DBA, the utility ignores this statement.

Description Optional. Copies the specified User.

Consideration Must precede all COPY-SC statements.

Positions 9–38

source-user-name

Description Required. Identifies the name of the User you want to copy from the
source Directory.

Format 1–30 alphanumeric or special characters (#, $, and -)

Positions 40–69

target-user-name

Description Optional. Identifies the User name for the target Directory.

Format 1–30 alphanumeric or special characters (#, $, and -)

Consideration When you change the name of a user, the old password remains in
effect. To change the password, edit the batch Directory Maintenance
transactions that result from this utility or process an additional
transaction in a subsequent batch Directory Maintenance run.

Chapter 17 Coding the Inter-Directory Copy utility

440 P26-6260-63

Security group input statement
Positions 1–7

COPY-SG

Restriction If you do not sign on as a DBA, the utility ignores this statement.

Description Optional. Copies a Security Group and all child Maintenance Restrictions.

Consideration Must follow the COPY-US statement(s).

Positions 9–38

security-group-name

Description Required. Identifies the Security Group you want to copy from the source
Directory.

Format 1–30 alphanumeric or special characters (#, $, and -)

Consideration Maintenance Restrictions for the Security Group are also copied.

Positions 40–69

target-security-group-name

Description Optional. Identifies the Security Group name for the target Directory.

Format 1–30 alphanumeric or special characters (#, $, and -)

Coding the input statements for the Inter-Directory Copy utility

DBA Utilities User’s Guide 441

Schema input statement
Positions 1–7

COPY-SC

Description Optional. Copies a schema and all related entities.

Consideration Must follow the COPY-US statement(s).

Positions 9–38

source-schema-name

Description Required. Identifies the schema you want to copy from the source
Directory.

Format 1–8 alphanumeric or special characters (#, $, and @)

Positions 40–69

target-schema-name

Description Optional. Identifies the schema name for the target Directory.

Format 1–8 alphanumeric or special characters (#, $, and @)

Chapter 17 Coding the Inter-Directory Copy utility

442 P26-6260-63

Conceptual schema input statement
Positions 1–7

COPY-CS

Description Optional. Copies a Conceptual Schema and generates all relationships
between Schema and Conceptual Schema.

Consideration Must follow the COPY-SC statement(s).

Positions 9–38

source-conceptual-schema-name

Description Required. Identifies the Conceptual Schema you want to copy from the
source Directory.

Format 1–30 alphanumeric or special characters (#, $, and -)

Positions 40–69

target-conceptual-schema-name

Description Optional. Identifies the Conceptual Schema name for the target Directory.

Format 1–30 alphanumeric or special characters (#, $, and -)

Consideration When you code COPY-CS, this utility generates AD DM batch Directory
Maintenance statements, which add the Domains needed for the
Attributes. If you copy multiple Conceptual Schemas that are related to a
common Domain, the utility generates duplicate AD DM statements. The
second and subsequent AD DM transactions cause Directory
Maintenance to return the error message, "Entity Already Exists." For
Directory Maintenance to continue processing after this error, you must
code the +ERRCONT run option definition statement.

Coding the input statements for the Inter-Directory Copy utility

DBA Utilities User’s Guide 443

Domain input statement
Positions 1–7

COPY-DM

Description Optional. Copies a Domain.

Positions 9–38

source-domain

Description Required. Identifies the Domain you want to copy from the source
Directory.

Format 1–30 alphanumeric or special characters (#, $, and -)

Positions 40–69

target-domain

Description Optional. Identifies the Domain name for the target Directory.

Format 1–30 alphanumeric or special characters (#, $, and -)

Chapter 17 Coding the Inter-Directory Copy utility

444 P26-6260-63

Executing the Inter-Directory Copy utility

OS/390
To execute the Inter-Directory Copy utility in OS/390, submit sample JCL
member TXJDRCPY. This member uses the cataloged procedure
TISDMCPY. All sample JCL members are in the SUPRA product library
on your installation tape.

The Inter-Directory Copy utility writes the output (the Batch Directory
Maintenance transactions) to a data set with the ddname LTRX. The
utility produces a listing that shows all the input records and any error
messages.

You cannot use members of a partitioned data set to hold the output from
this utility. Direct the output to sequential data sets and, if you want, use
the IBM IEBCOPY utility to load them into partitioned data set(s).

VSE
To execute the Inter-Directory Copy utility in VSE, submit the sample JCL
member TXJDRCPY. This member uses the cataloged procedure
TISDMCPY. All sample JCL members are located in the SUPRA product
library on your installation tape.

To create the trigger file, code the input statements as OBJMAINT input
in the first step of the sample.

The Inter-Directory Copy utility writes the output (the Batch Directory
Maintenance transactions) to a data set with the filename LTRX. The
utility produces a listing that shows all the input records and any error
messages.

Executing the Inter-Directory Copy utility

DBA Utilities User’s Guide 445

Inter-Directory Copy example
Sample input for the Inter-Directory Copy utility:
+SIGNON userid password

+NOPAGING

+NODATA

+ERRCONT

+NOSEQUENCE

COPY-TA CSIA

COPY-TA CSIB

COPY-TA CSIC

COPY-TA CSID

COPY-TA CSIE

COPY-EM A

COPY-EM B

COPY-EM C

COPY-EM D

COPY-EM E

COPY-US CINCOM NEW-CINCOM

COPY-SC CSISCH20 NEWSCH20

Chapter 17 Coding the Inter-Directory Copy utility

446 P26-6260-63

18
Coding the Recover, Restore, and Log-
Print utilities

Coding the Recover, Restore, and Log-Print functions
When you cannot use the Task Log File to recover the database, you can
use the Recover function to back off updates to the last commit. The
Recover function has two phases. In the analysis phase, the Recover
function reads the System Log File from the beginning, collecting and
optionally printing information. In the image application phase, the
Recover function reads the System Log File backwards from the end,
applying before-images to the database. The Recover function stops
reading and applying images either at the last commit for each task or at
the start of the file.

When PDM files are lost or damaged, you can use the Restore function
to reapply updates to the last commit. You must reload the affected files
from your backup copies before running the Restore function. The
Restore function has two phases. In the analysis phase, the Restore
function reads the System Log File from the beginning, collecting and
optionally printing information. In the image application phase, the
Restore function reads the System Log File forward from the beginning,
applying after-images to the database. The Restore function stops
reading and applying images either at the last commit for each task or at
the end of the file.

DBA Utilities User’s Guide 447

You can use the Log-Print function to print selected information from the
System Log File without updating the database. The Log-Print function
has one phase, the analysis phase, which corresponds to the analysis
phase of the Recover and Restore functions. The Log-Print function
reads the System Log File from the beginning, collecting and optionally
printing information.

A UCL program can invoke a combination of the Recover, Restore, and
Log-Print functions. A UCL program that invokes a combination of these
three functions may not invoke any other function.

For additional information on PDM system logging and the Recover,
Restore, and Log-Print functions, refer to the SUPRA Server PDM
Logging and Recovery Guide (OS/390 & VSE), P26-2223.

Chapter 18 Coding the Recover, Restore, and Log-Print utilities

448 P26-6260-63

Coding the UCL for the Recover and Restore functions
After you code the control section as shown in “Coding the control
section” on page 57, code the Recover and Restore functions as shown
in the following format. For UCL examples, see “Examples” on page 471.

FUNCTION (
RECOVER
RESTORE

)







 STATE (
LOG - END
LOG - BEGIN
LAST - COMMIT

)














 []STANDARD - EXIT ()exit-name

 OPEN - FILE (
INITIAL
DYNAMIC

)









 STATISTIC (
ALL
BASE
NONE

)
































 FILE (
ALL

) ...
file-name









RRN - RANGE (

)

 [D' '] [-D' ']
KEY - RANGE ([x' '] [-X' '])
 [C'] [-C' ']

low-rrn
-high-rrn
low-rrn - high rrn

low-dec-key hi-dec-key
low-hex-key hi-hex-key
low-chr-key hi-chr-key















































Coding the UCL for the Recover and Restore functions

DBA Utilities User’s Guide 449

FUNCTION (
RECOVER
RESTORE

)







Description Required. Invokes the function.

STATE (
LOG - END
LOG - BEGIN
LAST - COMMIT

)














Description Required. Indicates the point to which you want to recover the database.

Options LOG-END Recover the database to the logical end of the System
Log File.

LOG-BEGIN Recover the database to the logical beginning of the
System Log File.

LAST-COMMIT Recover the database to the last commit point on the
System Log File.

Considerations

♦ If you are not using Task Level Recovery and you code STATE
(LAST-COMMIT), the function recovers database files to the last
quiet point on the System Log File.

♦ If you are using Task Level Recovery and you code STATE (LAST-
COMMIT), the function recovers each task to its own last commit
point.

Chapter 18 Coding the Recover, Restore, and Log-Print utilities

450 P26-6260-63

STANDARD-EXIT (exit-name)

Description Optional. Indicates the name of the exit program you want to invoke. For
information on coding exit programs, see “Writing exit programs” on
page 461.

Format 1–8 alphanumeric characters. The first character must be alphabetic.

Considerations

♦ If you code this statement, you must put it before the FILE
statements.

♦ Your exit program must reside in your execution library.

♦ Only one exit at a time resides in memory. If you code a new exit
name in a subsequent function, the function deletes the current exit
before it loads the new one.

♦ For information on the Cincom-supplied Log File I/O exit, refer to the
SUPRA Server PDM Logging and Recovery Guide (OS/390 & VSE),
P26-2223.

OPEN - FILE (
INITIAL
DYNAMIC

)









Description Required. Indicates when you want the function to open the files to be
recovered.

Default INITIAL

Options INITIAL Opens the files during initialization of the image
application phase.

DYNAMIC During the image application phase, the function opens
each file as it encounters the first image to be applied to
the file.

Considerations
♦ If you code this statement, you must put it before the FILE

statements.

♦ If you code OPEN-FILE (DYNAMIC) and the System Log File does
not contain any images to be applied to a file, the function does not
open the file and the file may still be locked at the end of the function.
In that case, use the Unlock function to unlock the file.

Coding the UCL for the Recover and Restore functions

DBA Utilities User’s Guide 451

STATISTIC (
ALL
BASE
NONE

)
































Description Optional. Indicates which statistics to report.

Default BASE

Options ALL Reports basic and separate statistics on each database
file.

BASE Reports basic file information for the entire System Log
File.

NONE Does not report statistics.

Consideration If you code this statement, you must put it before the FILE statements.

Chapter 18 Coding the Recover, Restore, and Log-Print utilities

452 P26-6260-63

FILE (
ALL

) ...
file-name









Description Required. Identifies the file you want the function to recover.

Format 4 alphanumeric characters. The first character must be alphabetic.

Options ALL Recovers all index, primary, related, and Directory files,
but does not recover System Log, Task Log, or Statistics
files.

file-name Recovers the specified file.

Considerations

♦ The file name must be in the System Log File.

♦ The function does not automatically recover index files when it
recovers the data file with which they are associated. To recover
index files, you must code FILE (ALL) or code the index file in a FILE
statement.

♦ When the function recovers an index file, it recovers the secondary
keys it contains.

♦ You can code FILE (ALL) only one time.

♦ You cannot code both FILE (ALL) and FILE (file-name). You must
use one or the other.

♦ You cannot code FILE (file-name-list).

♦ If you code FILE (), the function does not recover any files.

♦ When you code FILE (ALL) or several FILE (file-name) statements,
the function prints the records in the order it reads them from the
System Log File, not in the order you code the files.

♦ If you code LIST (ALL) in the control section, the function prints
records for all files regardless of the FILE statements you code.
However, you must code a FILE statement.

♦ You can code the FILE statement and its subordinate statements one
or more times.

Coding the UCL for the Recover and Restore functions

DBA Utilities User’s Guide 453

RRN - RANGE ()
low-rrn
-high-rrn
low-rrn - high-rrn















Restriction Use this statement only following a FILE statement.

Description Optional. Applies images to records having relative record numbers
within the specified range.

Format 1–9 numeric characters for each relative record number (rrn).

Options low-rrn Applies images to records having relative record
numbers greater than or equal to the specified low-rrn.

-high-rrn Applies images to records having relative record
numbers less than or equal to the specified high-rrn.

low-rrn–high-rrn Retrieves records having relative record numbers from
low-rrn through high-rrn.

Considerations

♦ During log analysis, the function prints before, after, or function
images within this range if you code LIST (BEFORE), LIST (AFTER),
or LIST (FUNCTION) in the control section. During image application,
the function applies before-images within this range to the database
files.

♦ If you code both low-rrn and high-rrn, low-rrn must be less than or
equal to high-rrn.

♦ If you code FILE (ALL), the function ignores this statement.

♦ This statement is not valid for KSDS or index files.

Chapter 18 Coding the Recover, Restore, and Log-Print utilities

454 P26-6260-63

 [D'low-dec-key'][-D'hi-dec-key']
KEY-RANGE ([X'low-hex-key'][-X'hi-hex-key'])
 [C'low-chr-key'][-C'hi-chr-key']

Restriction Use this statement only following a FILE statement.

Description Optional. Applies images to records having keys within the specified
range.

Format 1–256 decimal digits for D'low-dec-key' or D'hi-dec-key'

 1–512 hexadecimal digits for X'hi-hex-key' or X'low-hex-key'

 1–256 character digits for C'hi-chr-key' or C'low-chr-key'

Options D'low-dec-key' Applies images to records having decimal keys from the
low-dec-key to the end of the file.

-D'hi-dec-key' Applies images to records having decimal keys from the
beginning of the file through the hi-dec-key.

'low-hex-key' Applies images to records having hexadecimal keys from
the low-hex-key to the end of the file.

-X'hi-hex-key' Applies images to records having hexadecimal keys from
the beginning of the file through the hi-hex-key.

C'low-chr-key' Applies images to records having character keys from
low-chr-key to the end of the file.

-C'hi-chr-key' Applies images to records having character keys from
the beginning of the file through hi-chr-key.

Considerations
♦ During log analysis, the function prints before, after, or function

images within this range if you code LIST (BEFORE), LIST (AFTER),
or LIST (FUNCTION) in the control section. During image application,
the function applies before-images within this range to the database
files.

♦ If you code both low key and high key, low key must be less than or
equal to high key.

♦ The key lengths must match the record lengths exactly. You cannot
pad or make other length adjustments.

♦ If you code FILE (ALL), the function ignores this statement.

♦ This statement is valid only for KSDS files.

Coding the UCL for the Recover and Restore functions

DBA Utilities User’s Guide 455

Coding the UCL for the Log-Print function
After you code the control section as shown in “Coding the control
section” on page 57, code the Log-Print function as shown in the
following format. For UCL examples, see “Examples” on page 471.

FUNCTION (LOG-PRINT)

 [STANDARD-EXIT (exit-name)]

 STATISTIC (
ALL
BASE
NONE

)
































 FILE (
ALL

) ...
file-name









RRN - RANGE (

)

 [D' '] [-D' ']
KEY - RANGE ([x' '] [-X' '])
 [C'] [-C' ']

low-rrn
-high-rrn
low-rrn - high rrn

low-dec-key hi-dec-key
low-hex-key hi-hex-key
low-chr-key hi-chr-key















































Chapter 18 Coding the Recover, Restore, and Log-Print utilities

456 P26-6260-63

FUNCTION (LOG-PRINT)

Description Required. Invokes the Log-Print function.

STANDARD-EXIT (exit-name)

Description Optional. Indicates the name of the exit program you want to invoke. For
information on coding exit programs, see “Writing exit programs” on
page 461.

Format 1–8 alphanumeric characters. The first character must be alphabetic.

Considerations

♦ If you code this statement, you must put it before the FILE
statements.

♦ Your exit program must reside in your execution library.

♦ Only one exit at a time resides in memory. If you code a new exit
name in a subsequent function, the function deletes the current exit
before it loads the new one.

♦ For information on the Cincom-supplied Log File I/O exit, refer to the
SUPRA Server PDM Logging and Recovery Guide (OS/390 & VSE),
P26-2223.

STATISTIC (
ALL
BASE
NONE

)
































Description Optional. Indicates which statistics to report.

Default BASE

Options ALL Reports basic and separate statistics on each database
file.

BASE Reports basic file information for the entire System Log
File.

NONE Does not report statistics.

Consideration If you code this statement, you must put it before the FILE statements.

Coding the UCL for the Log-Print function

DBA Utilities User’s Guide 457

FILE (
ALL

) ...
file-name









Description Required. Identifies the file for which you want information printed.

Format 4 alphanumeric characters. The first character must be alphabetic.

Options ALL Prints information for all index, primary, related, and
Directory files, but does not print information for System
Log, Task Log, or Statistics files.

file-name Prints information for the specified file.

Considerations

♦ The file name must be in the System Log File.

♦ Log-Print does not automatically print information for index files when
it prints the data file with which they are associated. To print
information for index files, code FILE (ALL) or code the index file in a
FILE statement.

♦ When Log-Print prints information for an index file, it also prints
information for all secondary keys within the file.

♦ You can code FILE (ALL) only one time.

♦ You cannot code both FILE (ALL) and FILE (file-name). You must
use one or the other.

♦ You cannot code FILE (file-name-list).

♦ If you code FILE (), the function does not print any file image
information.

♦ When you code FILE (ALL) or several FILE (file-name) statements,
the function prints the records in the order it reads them from the
System Log File, not in the order you code the files.

♦ If you code LIST (ALL) in the control section, the function prints
records for all files regardless of the FILE statements you code.
However, you must code a FILE statement.

♦ You can code the FILE statement and its subordinate statements one
or more times.

Chapter 18 Coding the Recover, Restore, and Log-Print utilities

458 P26-6260-63

RRN - RANGE ()
low-rrn
-high-rrn
low-rrn - high-rrn















Restriction Use this statement only following a FILE statement.

Description Optional. Prints records having relative record numbers within the
specified range.

Format 1–9 numeric characters for each relative record number (rrn).

Options low-rrn Prints records having relative record numbers greater
than or equal to the low-rrn.

-high-rrn Prints records having relative record numbers less than
or equal to the high-rrn.

low-rrn–high-rrn Prints records having relative record numbers from low-
rrn through high-rrn.

Considerations

♦ If you code LIST (BEFORE), LIST (AFTER), or LIST (FUNCTION) in
the control section, the function prints before, after, or function
images within this range.

♦ If you code both low-rrn and high-rrn, low-rrn must be less than or
equal to high-rrn.

♦ If you code FILE (ALL), the function ignores this statement.

♦ This statement is not valid for KSDS or index files.

Coding the UCL for the Log-Print function

DBA Utilities User’s Guide 459

 [D'low-dec-key'][-D'hi-dec-key']
KEY-RANGE ([X'low-hex-key'][-X'hi-hex-key'])
 [C'low-chr-key'][-C'hi-chr-key']

Description Optional. Prints records having keys within the specified range.

Format 1–256 decimal digits for D'low-dec-key' or D'hi-dec-key'

 1–512 hexadecimal digits for X'hi-hex-key' or X'low-hex-key'

 1–256 character digits for C'hi-chr-key' or C'low-chr-key'

Options D'low-dec-key' Prints records having decimal keys from the low-dec-key
to the end of the file.

-D'hi-dec-key' Prints records having decimal keys from the beginning of
the file through the hi-dec-key.

X'low-hex-key' Prints records having hexadecimal keys from the low-
hex-key to the end of the file.

-X'hi-hex-key' Prints records having hexadecimal keys from the
beginning of the file through the hi-hex-key.

C'low-chr-key' Prints records having character keys from low-chr-key to
the end of the file.

-C'hi-chr-key' Prints records having character keys from the beginning
of the file through hi-chr-key.

Considerations
♦ If you code LIST (BEFORE), LIST (AFTER), or LIST (FUNCTION) in

the control section, the function prints before, after, or function
images within this range.

♦ If you code both low key and high key, low key must be less than or
equal to high key.

♦ The key lengths must match the record lengths exactly. You cannot
pad or make other length adjustments.

♦ If you code FILE (ALL), the function ignores this statement.

♦ This statement is valid only for KSDS files.

♦ Recover, Restore, Log-Print Exits

Chapter 18 Coding the Recover, Restore, and Log-Print utilities

460 P26-6260-63

Writing exit programs
You can use exit points from the Recover, Restore, and Log-Print
functions to do the following additional tasks:

♦ Handle all I/O from the System Log File.

♦ Control the application of before images.

♦ Control the printing of System Log records.

♦ Collect data about the contents of the System Log File.

♦ Change the way buffer pools are set up for the PDM's use when the
Recover function applies the images.

For information on how exit programs are loaded, how they operate, the
languages you can use to write them, and the register conventions you
must follow, see “Inserting exit programs into functions” on page 49. In
register 1, for example, you must code the parameter list addresses. For
a description of the parameter list addresses, see the following table.

Parameter

Data type

Contents before exit
(passed to exit program)

Contents after exit (passed
from exit program)

Function
Name

16 bytes
character

Name of Function Must be unchanged

Exit Point 4 bytes
integer

Exit point number Must be unchanged

Action
Indicator

8 bytes
character

b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ b/ or other valid
values

Data Variable Data associated with exit
point data

Same data or changed data if
permitted

If your exit program changes anything it is not authorized to change, the
results are unpredictable.

To use the exit points, see the following sections, which show the exit
number, the data associated with an exit, and the valid actions.

For information on the Cincom-supplied Log File I/O exit, refer to the
SUPRA Server PDM Logging and Recovery Guide (OS/390 & VSE),
P26-2223.

Writing exit programs

DBA Utilities User’s Guide 461

Selecting exit points
To use an exit point, you must know when it occurs in the function, what
data is passed, and what actions your program can take at that point.
The following table shows when exit points occur. To determine the
action you can take, use the tables in the following sections:

♦ “Initialization and termination exits” on page 464

♦ “Open and close log file exits” on page 465

♦ “Analysis phase exits” on page 466

♦ “Application phase exits” on page 467

These tables group the exit points by the phase of the function:
initialization and termination phases, log open and close phases, analysis
and image application phase. (The image application phase exit points
do not apply to the Log-Print function.) Once you are familiar with the exit
points, use the table in “Valid actions” on page 469 as a reference aid.

Exit Phase When exit occurs

1 Initialization After the function has initialized.
2 Termination After the function has completed all processing.
3 Analysis After each read of a log block that did not result in a physical or

logical end-of-file.
4 Analysis After each read of a log block and before the printing of a log

block.
Note: This exit occurs only if you code LIST (ALL) or LIST
(BLOCK) in the UCL control section.

5 Analysis After each log record has been retrieved.
6 Analysis After each log record has been retrieved and the print selection

criteria have been applied, but before the record is printed.
Note: This exit occurs only if the record meets the print criteria
you code in the LIST statement in the UCL control section.

7 Image
Application

After each read of a log block that did not result in a physical or
logical end-of-file.

8 Image
Application

After each log record is retrieved.

9 Image
Application

After each log image record has been retrieved and the
application criteria have been applied, but before the image is
applied to the database.

Chapter 18 Coding the Recover, Restore, and Log-Print utilities

462 P26-6260-63

Exit Phase When exit occurs

10 Image
Application

After each log image record has been applied to the database,
but before the image is printed.
Note: This exit point occurs only if you code LIST (ALL) or
LIST (APPLIED-IMAGES) in the UCL control section.
This exit point occurs only if you code LIST (ALL) or LIST
(APPLIED-IMAGES) in the UCL control section.

11 Image
Application

Before any images are applied to the database. (This exit is
inactive by default. Use exit 1 to activate this exit. The other
exits are active by default.)

12 Log Open Before the log is opened.
13 Analysis and

Image
Application

Before a log block is read.

14 Image
Application

Before the log is reset.

15 Log Close Before the log is closed.

Writing exit programs

DBA Utilities User’s Guide 463

Initialization and termination exits

To take these actions: Do this:
Leave exit settings as
they are

Use exit 1 and action indicator b/ b/ b/ b/ b/ b/ b/ b/ . Do not change the
data parameter. The initial setting turns on all exits except exit
11.

Turn exits on and off Use exit 1 and action indicator SETb/ b/ b/ b/ b/ . Change the
appropriate setting(s) in the data parameter.
The data parameter is a 15-byte character string containing Y
for yes (exit is taken) or N for no (exit is not taken).
Note that the log I/O exits 12, 13, and 15 must be all on or all
off. For example, you cannot open the file yourself and then
let the function read it.

Monitor return code at
termination

Use exit 2 and action indicator b/ b/ b/ b/ b/ b/ b/ b/ . Do not change the
data parameter. The data parameter contains the four-byte
return code:
0 - processing complete
4 - warning: problem, but processing complete
8 - error: processing not complete

Chapter 18 Coding the Recover, Restore, and Log-Print utilities

464 P26-6260-63

Open and close log file exits

To take these actions: Do this:
Allow the function Use exit 12 and action indicator b/ b/ b/ b/ b/ b/ b/ b/ . Do to open the log

not change the data parameter.
Warning: Exits 13, 14, and 15 must be active and must
return b/ b/ b/ b/ b/ b/ b/ b/ , or the function abends.

Open the log with your
own program

Use exit 12 and action indicator SKIPb/ b/ b/ b/ .
The data parameter is a fullword integer containing the log
block size you coded in the UCL (or 0 if not specified). If the
block size is 0 or incorrect, you must code the correct size in
the data parameter. You must also supply the log blocks (exit
13) in the analysis and image application phases, reset the log
(exit 14) in the image application phase, and close the log
(exit 15).

Abort during open Use exit 12 and action indicator ABORTb/ b/ b/ .
Allow the function to
close the log

Use exit 15 and action indicator b/ b/ b/ b/ b/ b/ b/ b/ . Do not change the
data parameter. Take this action only if the function opened
the log. That is, exit 12 is inactive, or exit 12 is active but did
not open the log file (return action indicator was b/ b/ b/ b/ b/ b/ b/ b/).
Warning: If exit 12 is active, and the return action indicator
was SKIPb/ b/ b/ b/ , the function abends.

Writing exit programs

DBA Utilities User’s Guide 465

Analysis phase exits

To take these actions: Do this:
Close the log with your
own program

Use exit 15 and action indicator SKIPb/ b/ b/ b/ . Do not change the
data parameter. You must take this action if you opened the
log with your own program. That is, exit 12 is active and the
return action indicator was SKIPb/ b/ b/ b/ .
Warning: If exit 12 did not open the log, the function abends.

Abort during close Use exit 15 and action indicator ABORTb/ b/ b/ .
Use the function to read
the log blocks

Use exit 13 and action indicator b/ b/ b/ b/ b/ b/ b/ b/ . Do not change the
data parameter. Take this action only if the function opened
the log. That is, exit 12 was inactive or was active but did not
open the log (return action indicator was b/ b/ b/ b/ b/ b/ b/ b/).
Warning: If exit 12 is active and the return action indicator
was SKIPb/ b/ b/ b/ , the function abends.

Read the log blocks
with your own program

Use exit 13 and action indicator SKIPb/ b/ b/ b/ . Take this action
only if your program opened the log file. That is, exit 12 is
active, and the return action indicator was SKIPb/ b/ b/ b/ .
Warning: If exit 12 did not open the log, the function abends.
The data parameter is the previous log block. Supply a log
block that matches the block size specified in exit 12.

Indicate there are no
more log blocks to be
passed

Use exit 13 and action indicator EOFb/ b/ b/ b/ b/ (force end-of-file).
Do not change the data parameter. Exit 12 must be active,
and the return action indicator must have been SKIPb/ b/ b/ b/
Warning: If exit 12 did not open the log, the function abends.

Abort while the log
blocks are being read

Use exit 13 and action indicator ABORTb/ b/ b/ .

Monitor reading of log
block

Use exit 3 and action indicator b/ b/ b/ b/ b/ b/ b/ b/ . Do not change the
data parameter (log block).

Indicate a logical end-
of-file condition to stop
reading the log

Use exit 3 and action indicator EOFb/ b/ b/ b/ b/ (force end-of-file).
Do not change the data parameter (log block). The log block
just read will not be included.

Print log block Use exit 4 and action indicator b/ b/ b/ b/ b/ b/ b/ b/ . Do not change the
data parameter (block).

Skip printing of log
block

Use exit 4 and action indicator SKIPb/ b/ b/ b/ . Do not change the
data parameter (block).

Chapter 18 Coding the Recover, Restore, and Log-Print utilities

466 P26-6260-63

To take these actions: Do this:
Monitor reading of log
records

Use exit 5 and action indicator b/ b/ b/ b/ b/ b/ b/ b/ . Do not change the
data parameter (record).

Monitor printing of log
records

Use exit 6 and action indicator b/ b/ b/ b/ b/ b/ b/ b/ . Do not change the
data parameter (record).

Skip printing of log
records

Use exit 6 and action indicator SKIPb/ b/ b/ b/ . Do not change the
data parameter (record).

Application phase exits

To take these actions: Do this:
Use the function to read
the log block

Use exit 13 and action indicator b/ b/ b/ b/ b/ b/ b/ b/ . Use this exit only
if the function opened the log. That is, exit 12 was inactive or
was active but did not open the log (return action indicator
was b/ b/ b/ b/ b/ b/ b/ b/).
Warning: If exit 12 is active and the return action indicator
was SKIPb/ b/ b/ b/ , the function abends.

Read the log block with
your own program

Use exit 13 and action indicator SKIPb/ b/ b/ b/ . The data
parameter is the previous log block. Take this action only if
your program opened the log. That is, exit 12 is active, and
the return action indicator was SKIPb/ b/ b/ b/ .
Warning: If exit 12 did not open the log, the function abends.
Supply a log block that matches the block size in exit 12.
Supply the log blocks in reverse order, starting with the log
block coded in the data parameter of exit 14. Note that the log
block might not be the last block passed in the analysis
phase.

Abort while the log
blocks are being read

Use exit 13 and action indicator ABORTb/ b/ b/ .

Monitor reading of log
blocks

Use exit 7 and action indicator b/ b/ b/ b/ b/ b/ b/ b/ . Do not change the
data parameter (block).

Monitor reading of log
records

Use exit 8 and action indicator b/ b/ b/ b/ b/ b/ b/ b/ . Do not change the
data parameter (log record).

Leave buffer
information as is

Use exit 11 and action indicator b/ b/ b/ b/ b/ b/ b/ b/

Writing exit programs

DBA Utilities User’s Guide 467

To take these actions: Do this:
Change buffer
information

Use exit 11 and SETb/ b/ b/ b/ b/ to indicate that the data parameter
has been changed. The data parameter is two fullwords
containing numbers: the first number specifies the method (see
below), and the second number specifies the number of buffers
or the amount of memory required. The default is option 2: 4
buffers per pool.
Method Options:
1 - Buffers per file (code the number)
2 - Buffers for the whole buffer pool (code the number)
3 - Amount of memory (code the actual number of bytes)

Apply before-image
record to the database

Use exit 9 and action indicator b/ b/ b/ b/ b/ b/ b/ b/ . Do not change the
data parameter (before-image).

Skip applying the
before-image record to
the data

Use exit 9 and action indicator SKIPb/ b/ b/ b/ . Do not change the
data parameter base(before-image).
Caution: Failure to apply all images could corrupt the
database.

Print applied image Use exit 10 and action indicator b/ b/ b/ b/ b/ b/ b/ b/ Do not change the
data parameter (applied image).

Skip printing of applied
image

Use exit 10 and action indicator SKIPb/ b/ b/ b/ . Do not change the
data parameter.

Use the function to
reset the log

Use exit 14 and action indicator b/ b/ b/ b/ b/ b/ b/ b/ . Take this action
only if the function opened the log. That is, exit 12 is inactive.
Warning: If exit 12 is active and the return action indicator was
SKIPb/ b/ b/ b/ , the function abends. Do not change the data
parameter.

Reset log with your own
program

Use exit 14 and action indicator SKIPb/ b/ b/ b/ . Take this action
only if your program opened the log. That is, exit 12 is active,
and the return action indicator was SKIPb/ b/ b/ b/ .
Warning: If exit 12 did not open the log, the function abends.
Do not change the data parameter. The data parameter is a
fullword containing the relative block number (RBN) that the
function reads first in the image application phase. RBN 0 is the
first block of the first logical volume. The function increments or
decrements the RBN value by one for each block it reads from
that point. Use this number to determine which block to supply
in exit 13.

Abort during reset Use exit 14 and action indicator ABORTb/ b/ b/ .

Chapter 18 Coding the Recover, Restore, and Log-Print utilities

468 P26-6260-63

Valid actions
Once you are familiar with the information in the preceding section, use
the following table for quick reference.

 Action indicators
Exit Use Data parameter b/ b/ b/ b/ b/ b/ b/ b/ EOFb/ b/ b/ b/ b/ SKIPb/ b/ b/ b/ SETb/ b/ b/ b/ b/ ABORTb/ b/ b/

1 Set exit
settings

15-byte ‘Y’
and ‘N’
string (may
be changed)

Y N N Y N

2 Get return
code

0 (complete)
4 (warning)
8 (error)

Y N N N N

3 Monitor
block read
(analysis)

Log file
block

Y Y N N N

4 Print Block
(analysis)

Log file
block

Y N Y N N

5 Monitor
record read
(analysis)

Log record Y N N N N

6 Print record
(analysis)

Log record Y N Y N N

7 Monitor
block read
(apply)

Log file
block

Y N N N N

8 Monitor
record read
(apply)

Log record Y N N N N

9 Apply before
image
(apply)

Log record Y N Y N N

10 Print applied
image
(apply)

Applied
image

Y N Y N N

Writing exit programs

DBA Utilities User’s Guide 469

 Action indicators
Exit Use Data parameter b/ b/ b/ b/ b/ b/ b/ b/ EOFb/ b/ b/ b/ b/ SKIPb/ b/ b/ b/ SETb/ b/ b/ b/ b/ ABORTb/ b/ b/

11 Apply buffer
(apply)

Buffer
technique
(may be
changed)

Y N N Y N

12 Open log file fullword
integer
specifying
block size
(may be
changed)

Y N Y N Y

13 Supply log
block
(analysis,
apply)

Previous log
block (may
be changed)

Y1 Y2 Y3 N Y

14 Reset log
file (apply)

Fullword
integer
containing
the relative
block
number

Y1 N Y3 N Y

15 Close log
file

Blanks Y1 N Y3 N Y

b/ b/ b/ b/ b/ b/ b/ b/ Action continues
EOFb/ b/ b/ b/ b/ Force end-of-file
SKIPb/ b/ b/ b/ Action is not taken or your own exit performs it.
SETb/ b/ b/ b/ b/ Data comments changed.
ABORTb/ b/ b/ Terminates recovery
1 Exit 12 must either be inactive or have b/ b/ b/ b/ b/ b/ b/ b/ as the return action indicator.
2 Valid only for analysis. Also see footnote 3.
3 Exit 12 must be active and have SKIPb/ b/ b/ b/ as the return action indicator.

Chapter 18 Coding the Recover, Restore, and Log-Print utilities

470 P26-6260-63

Examples
This section shows output from sample runs of the Recover, Restore,
and Log-Print functions.

Recover example

 CSUL0101I : COMMENCING COMMAND VALIDATION.

 1 CONTROL(BEGIN)

 2 LIST(APPLIED-IMAGES)

 3 LINES(2)

 4 DATA-FORMAT(HEX CHAR)

 5 LOG-FILE(LOGFILE)

 6 FUNCTION(RECOVER)

 7 STATE(LOG-BEGIN)

 8 OPEN-FILE(DYNAMIC)

 9 FILE(ALL)

 10 CONTROL(END)

CONTENTS OF SOURCE LINES OUTSIDE 1...72 MARGINS IGNORED.

 0 SYNTAX ERRORS DETECTED.

 10 COMMAND LINES READ.

 1 CONTROL SECTIONS ANALYZED.

 1 FUNCTION COMMANDS ANALYZED.

 CSUL0102I : COMMENCING COMMAND EXECUTION.

 CSUL0310I : COMMENCING CONTROL SECTION.

 CSUL0302I : COMMENCING RECOVER PROCESS.

 FUNCTION = RECOVER

 CSUL2100I : START OF SYSTEM LOG FILE ANALYSIS.

 CSUL2110I : END OF FILE DUE TO PDM TERMINATION RECORD :

 BLOCK = 29, RECORD = 127.

 FUNCTION = RECOVER

 CSUL2161I : SYSTEM LOG FILE ANALYSIS STATISTICS (BASE).

Examples

DBA Utilities User’s Guide 471

 LOG FILE DDNAME LOGFILE

 NUMBER OF LOG VOLUMES 1

 LOG DEVICE TYPE DISK

 NUMBER OF LOG BLOCKS 29

 NUMBER OF SPANNING BLOCKS 12

 SPANNING BLOCKS AS A PERCENTAGE OF TOTAL BLOCKS 41.38%

 NUMBER OF LOG RECORDS 127

 AVERAGE NUMBER OF LOG RECORDS PER BLOCK 4.38AVG.

 NUMBER OF SPANNING RECORDS 2

 SPANNING RECORDS AS A PERCENTAGE OF TOTAL RECORDS 1.57%

 NUMBER OF RECORD BYTES 64,166

 NUMBER OF UNUSED BYTES 23,530

 UNUSED BYTES AS A PERCENTAGE OF TOTAL BYTES 26.83%

 NUMBER OF COMMAND RECORDS 8

 COMMAND RECORDS AS A PERCENTAGE OF TOTAL RECORDS 6.30%

 NUMBER OF BEFORE IMAGES 5

 BEFORE IMAGES AS A PERCENTAGE OF TOTAL RECORDS 3.94%

 NUMBER OF AFTER IMAGES 12

 AFTER IMAGES AS A PERCENTAGE OF TOTAL RECORDS 9.45%

 NUMBER OF CONTROL RECORDS 102

 CONTROL RECORDS AS A PERCENTAGE OF TOTAL RECORDS 80.31%

 TOTAL NUMBER OF TASKS ON THE LOG 6

 NUMBER OF UPDATE TASKS ON THE LOG 1

 NUMBER OF TASKS SIGNED ON AT THE END OF THE LOG 0

 NUMBER OF FILES ON THE LOG 28

 CSUL2163I : END OF SYSTEM LOG FILE ANALYSIS STATISTICS (BASE).

 CSUL2101I : END OF SYSTEM LOG FILE ANALYSIS.

Chapter 18 Coding the Recover, Restore, and Log-Print utilities

472 P26-6260-63

The output from the Recover function follows:
 FUNCTION = RECOVER

 CSUL2108I : START OF IMAGE APPLICATION PHASE.

 CSUL2116I : BEFORE IMAGE RECORD: BLOCK = 26, RECORD = 97.

 EB24JADV EB24JADV EB24SADV IMAG µb±_Dí< E$MB

 0008 CCFFDCCE CCFFDCCE CCFFECCE FFFFFFFFFFFFFFFFFFFFFFFF CDCC B872CC40 0000 C5DC FFFFFFFF

 0006 52241145 52241145 52242145 FFFFFFFFFFFFFFFFFFFFFFFF 9417 02484FC0 0000 5B42 FFFFFFFF

 BEFR ADDVC

 CCCD 0000 0004 0000 0001 CCCEC FFFFFFFF

 2569 0000 004C 0000 0005 14453 FFFFFFFF

 CSUL2116I : BEFORE IMAGE RECORD: BLOCK = 26, RECORD = 93.

 EB24JADV EB24JADV EB24SADV IMAG µb±_DÄ_ E$MB

 0008 CCFFDCCE CCFFDCCE CCFFECCE FFFFFFFFFFFFFFFFFFFFFFFF CDCC B872CB60 0000 C5DC FFFFFFFF

 0006 52241145 52241145 52242145 FFFFFFFFFFFFFFFFFFFFFFFF 9417 02484FD0 0000 5B42 FFFFFFFF

 BEFR ADDVC

 CCCD 0000 0004 0000 0001 CCCEC FFFFFFFF

 2569 0000 004B 0000 0005 14453 FFFFFFFF

 CSUL2116I : BEFORE IMAGE RECORD: BLOCK = 26, RECORD = 89.

 EB24JADV EB24JADV EB24SADV IMAG µb±_D_— E$MB

 0008 CCFFDCCE CCFFDCCE CCFFECCE FFFFFFFFFFFFFFFFFFFFFFFF CDCC B872C390 0000 C5DC FFFFFFFF

 0006 52241145 52241145 52242145 FFFFFFFFFFFFFFFFFFFFFFFF 9417 02484BA0 0000 5B42 FFFFFFFF

 BEFR ADDVC

 CCCD 0000 0004 0000 0001 CCCEC FFFFFFFF

 2569 0000 004A 0000 0005 14453 FFFFFFFF

 CSUL2116I : BEFORE IMAGE RECORD: BLOCK = 26, RECORD = 85.

 EB24JADV EB24JADV EB24SADV IMAG µb±_D_« E$MB

 0008 CCFFDCCE CCFFDCCE CCFFECCE FFFFFFFFFFFFFFFFFFFFFFFF CDCC B872C240 0000 C5DC FFFFFFFF

 0006 52241145 52241145 52242145 FFFFFFFFFFFFFFFFFFFFFFFF 9417 02484C80 0000 5B42 FFFFFFFF

 BEFR ADDVC

 CCCD 0000 0009 0000 0001 CCCEC FFFFFFFF

 2569 0000 0048 0000 0005 14453 FFFFFFFF

 CSUL2116I : BEFORE IMAGE RECORD: BLOCK = 26, RECORD = 82.

 EB24JADV EB24JADV EB24SADV IMAG µb±_Cò» E$BR

 000D CCFFDCCE CCFFDCCE CCFFECCE FFFFFFFFFFFFFFFFFFFFFFFF CDCC B872CAB0 0000 C5CD FFFFFFFF

 0004 52241145 52241145 52242145 FFFFFFFFFFFFFFFFFFFFFFFF 9417 02483E70 0000 5B29 FFFFFFFF

 BEFR ADD-M

 CCCD 0000 000E 0000 0006 CCC6D FFFFFFFF

 2569 0000 000F 0008 0003 14404 FFFFFFFF

Examples

DBA Utilities User’s Guide 473

 CSUL2164I : SYSTEM LOG FILE APPLICATION STATISTICS (BASE).

 FUNCTION TYPE RECOVER

 TOTAL APPLIED IMAGES 5

 SKIPPED IMAGES (FILE-ERROR) 0

 SKIPPED IMAGES (USER-EXIT) 0

 APPLIED IMAGES AS A PERCENTAGE OF TOTAL RECORDS 3.94%

 NUMBER OF FILES TO WHICH IMAGES WERE APPLIED 2

 NUMBER OF FILES WITHOUT PROCESSING ERRORS 24

 NUMBER OF FILES WITH PROCESSING ERRORS 0

 CSUL2166I : END OF SYSTEM LOG FILE APPLICATION STATISTICS (BASE).

 CSUL2109I : END OF IMAGE APPLICATION PHASE.

 CSUL2114I : OPERATION COMPLETED SUCCESSFULLY . 0 WARNINGS AND 0 ERRORS WERE ISSUED.

 CSUL0303I : RECOVER PROCESS TERMINATING.

 CSUL0305I : CONTROL SECTION TERMINATING.

 CSUL0307I : ALL CONTROL SECTIONS PROCESSED.

 CSUL0103I : DATA BASE UTILITIES SUCCESSFUL TERMINATION.

Chapter 18 Coding the Recover, Restore, and Log-Print utilities

474 P26-6260-63

Restore example

 CSUL0101I : COMMENCING COMMAND VALIDATION.

 1 CONTROL(BEGIN)

 2 LIST(APPLIED-IMAGES)

 3 LINES(2)

 4 DATA-FORMAT(HEX CHAR)

 5 LOG-FILE(LOGFILE)

 6 FUNCTION(RESTORE)

 7 STATE(LOG-END)

 8 FILE(ALL)

 9 CONTROL(END)

CONTENTS OF SOURCE LINES OUTSIDE 1...72 MARGINS IGNORED.

 0 SYNTAX ERRORS DETECTED.

 9 COMMAND LINES READ.

 1 CONTROL SECTIONS ANALYZED.

 1 FUNCTION COMMANDS ANALYZED.

 CSUL0102I : COMMENCING COMMAND EXECUTION.

 CSUL0310I : COMMENCING CONTROL SECTION.

 CSUL0302I : COMMENCING RESTORE PROCESS.

 FUNCTION = RESTORE

 CSUL2100I : START OF SYSTEM LOG FILE ANALYSIS.

 CSUL2110I : END OF FILE DUE TO PDM TERMINATION RECORD :

 BLOCK = 29, RECORD = 127.

Examples

DBA Utilities User’s Guide 475

 CSUL2161I : SYSTEM LOG FILE ANALYSIS STATISTICS (BASE).

 LOG FILE DDNAME LOGFILE

 NUMBER OF LOG VOLUMES 1

 LOG DEVICE TYPE DISK

 NUMBER OF LOG BLOCKS 29

 NUMBER OF SPANNING BLOCKS 12

 SPANNING BLOCKS AS A PERCENTAGE OF TOTAL BLOCKS 41.38%

 NUMBER OF LOG RECORDS 127

 AVERAGE NUMBER OF LOG RECORDS PER BLOCK 4.38AVG.

 NUMBER OF SPANNING RECORDS 2

 SPANNING RECORDS AS A PERCENTAGE OF TOTAL RECORDS 1.57%

 NUMBER OF RECORD BYTES 64,166

 NUMBER OF UNUSED BYTES 23,530

 UNUSED BYTES AS A PERCENTAGE OF TOTAL BYTES 26.83%

 NUMBER OF COMMAND RECORDS 8

 COMMAND RECORDS AS A PERCENTAGE OF TOTAL RECORDS 6.30%

 NUMBER OF BEFORE IMAGES 5

 BEFORE IMAGES AS A PERCENTAGE OF TOTAL RECORDS 3.94%

 NUMBER OF AFTER IMAGES 12

 AFTER IMAGES AS A PERCENTAGE OF TOTAL RECORDS 9.45%

 NUMBER OF CONTROL RECORDS 102

 CONTROL RECORDS AS A PERCENTAGE OF TOTAL RECORDS 80.31%

 TOTAL NUMBER OF TASKS ON THE LOG 6

 NUMBER OF UPDATE TASKS ON THE LOG 1

 NUMBER OF TASKS SIGNED ON AT THE END OF THE LOG 0

 NUMBER OF FILES ON THE LOG 28

 CSUL2163I : END OF SYSTEM LOG FILE ANALYSIS STATISTICS (BASE).

 CSUL2101I : END OF SYSTEM LOG FILE ANALYSIS.

Chapter 18 Coding the Recover, Restore, and Log-Print utilities

476 P26-6260-63

 CSUL2108I : START OF IMAGE APPLICATION PHASE.

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 83.

 EB24JADV EB24JADV EB24SADV IMAG µb±_C¶_ E$BR

 000D CCFFDCCE CCFFDCCE CCFFECCE FFFFFFFFFFFFFFFFFFFFFFFF CDCC B872CB20 0000 C5CD FFFFFFFF

 0004 52241145 52241145 52242145 FFFFFFFFFFFFFFFFFFFFFFFF 9417 02483130 0000 5B29 FFFFFFFF

 AFTR ADD-M

 CCED 0000 000E 0000 0006 CCC6D FFFFFFFF

 1639 0000 000F 0008 0003 14404 FFFFFFFF

 HUGO D. SMYTHE 11111 ANYSTREET ANYCITY IN123450010212345678912345

 44444444000044444444CECD4C44EDEECC444444FFFFF4CDEEEDCCE44444CDECCEE444444CDFFFFFFFFFFFFFFFFFFFFFFFF

 00000000000000000000847604B024838500000011111015823955300000158393800000095123450010212345678912345

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 84.

 EB24JADV EB24JADV EB24SADV IMAG µb±_D_- E$BR

 000D CCFFDCCE CCFFDCCE CCFFECCE FFFFFFFFFFFFFFFFFFFFFFFF CDCC B872C2D0 0000 C5CD FFFFFFFF

 0004 52241145 52241145 52242145 FFFFFFFFFFFFFFFFFFFFFFFF 9417 02484AB0 0000 5B29 FFFFFFFF

 AFTR ADDVC

 CCED 0000 000E 0000 0006 CCCEC FFFFFFFF

 1639 0000 000F 0008 0003 14453 FFFFFFFF

 _q _qHUGO D. SMYTHE 11111 ANYSTREET ANYCITY IN123450010212345678912345

 44444444000000090009CECD4C44EDEECC444444FFFFF4CDEEEDCCE44444CDECCEE444444CDFFFFFFFFFFFFFFFFFFFFFFFF

 00000000000000480048847604B024838500000011111015823955300000158393800000095123450010212345678912345

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 86.

 EB24JADV EB24JADV EB24SADV IMAG µb±_D_V E$MB

 0008 CCFFDCCE CCFFDCCE CCFFECCE FFFFFFFFFFFFFFFFFFFFFFFF CDCC B872C2E0 0000 C5DC FFFFFFFF

 0006 52241145 52241145 52242145 FFFFFFFFFFFFFFFFFFFFFFFF 9417 02484C50 0000 5B42 FFFFFFFF

 AFTR ADDVC

 CCED 0000 0009 0000 0001 CCCEC FFFFFFFF

 1639 0000 0048 0000 0005 14453 FFFFFFFF

 31441AAAA

 000044444444FFFFFCCCC

 000000000000314411111

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 87.

 EB24JADV EB24JADV EB24SADV IMAG µb±_D_ñ E$BR

 000D CCFFDCCE CCFFDCCE CCFFECCE FFFFFFFFFFFFFFFFFFFFFFFF CDCC B872C390 0000 C5CD FFFFFFFF

 0004 52241145 52241145 52242145 FFFFFFFFFFFFFFFFFFFFFFFF 9417 024849E0 0000 5B29 FFFFFFFF

 AFTR ADDVC

 CCED 0000 000E 0000 0006 CCCEC FFFFFFFF

 1639 0000 000F 0008 0003 14453 FFFFFFFF

 _q _›HUGO D. SMYTHE 11111 ANYSTREET ANYCITY IN123450010212345678912345

 44444444000000090004CECD4C44EDEECC444444FFFFF4CDEEEDCCE44444CDECCEE444444CDFFFFFFFFFFFFFFFFFFFFFFFF

 0000000000000048004A847604B024838500000011111015823955300000158393800000095123450010212345678912345

Examples

DBA Utilities User’s Guide 477

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 88.

 EB24JADV EB24JADV EB24SADV IMAG µb±_D_k E$MB

 0008 CCFFDCCE CCFFDCCE CCFFECCE FFFFFFFFFFFFFFFFFFFFFFFF CDCC B872C390 0000 C5DC FFFFFFFF

 0006 52241145 52241145 52242145 FFFFFFFFFFFFFFFFFFFFFFFF 9417 02484A20 0000 5B42 FFFFFFFF

 AFTR ADDVC

 CCED 0000 0009 FFFF 0001 CCCEC FFFFFFFF

 1639 0000 0048 FFFF 0005 14453 FFFFFFFF

 _›31441AAAA

 000044440004FFFFFCCCC

 00000000004A314411111

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 90.

 EB24JADV EB24JADV EB24SADV IMAG µb±_D__ E$MB

 0008 CCFFDCCE CCFFDCCE CCFFECCE FFFFFFFFFFFFFFFFFFFFFFFF CDCC B872C310 0000 C5DC FFFFFFFF

 0006 52241145 52241145 52242145 FFFFFFFFFFFFFFFFFFFFFFFF 9417 02484C60 0000 5B42 FFFFFFFF

 AFTR ADDVC

 CCED 0000 0004 0000 0001 CCCEC FFFFFFFF

 1639 0000 004A 0000 0005 14453 FFFFFFFF

 _q 31441BBBB

 000000094444FFFFFCCCC

 000000480000314412222

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 91.

 EB24JADV EB24JADV EB24SADV IMAG µb±_D]ë E$BR

 000D CCFFDCCE CCFFDCCE CCFFECCE FFFFFFFFFFFFFFFFFFFFFFFF CDCC B872CB40 0000 C5CD FFFFFFFF

 0004 52241145 52241145 52242145 FFFFFFFFFFFFFFFFFFFFFFFF 9417 02484D40 0000 5B29 FFFFFFFF

 AFTR ADDVC

 CCED 0000 000E 0000 0006 CCCEC FFFFFFFF

 1639 0000 000F 0008 0003 14453 FFFFFFFF

 _q _.HUGO D. SMYTHE 11111 ANYSTREET ANYCITY IN123450010212345678912345

 44444444000000090004CECD4C44EDEECC444444FFFFF4CDEEEDCCE44444CDECCEE444444CDFFFFFFFFFFFFFFFFFFFFFFFF

 0000000000000048004B847604B024838500000011111015823955300000158393800000095123450010212345678912345

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 92.

 EB24JADV EB24JADV EB24SADV IMAG µb±_DØ_ E$MB

 0008 CCFFDCCE CCFFDCCE CCFFECCE FFFFFFFFFFFFFFFFFFFFFFFF CDCC B872CB30 0000 C5DC FFFFFFFF

 0006 52241145 52241145 52242145 FFFFFFFFFFFFFFFFFFFFFFFF 9417 02484E40 0000 5B42 FFFFFFFF

 AFTR ADDVC

 CCED 0000 0004 FFFF 0001 CCCEC FFFFFFFF

 1639 0000 004A FFFF 0005 14453 FFFFFFFF

 _q _.31441BBBB

 000000090004FFFFFCCCC

 00000048004B314412222

Chapter 18 Coding the Recover, Restore, and Log-Print utilities

478 P26-6260-63

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 94.

 EB24JADV EB24JADV EB24SADV IMAG µb±_DÄ1 E$MB

 0008 CCFFDCCE CCFFDCCE CCFFECCE FFFFFFFFFFFFFFFFFFFFFFFF CDCC B872CBF0 0000 C5DC FFFFFFFF

 0006 52241145 52241145 52242145 FFFFFFFFFFFFFFFFFFFFFFFF 9417 02484F10 0000 5B42 FFFFFFFF

 AFTR ADDVC

 CCED 0000 0004 0000 0001 CCCEC FFFFFFFF

 1639 0000 004B 0000 0005 14453 FFFFFFFF

 _› 31441CCCC

 000000044444FFFFFCCCC

 0000004A0000314413333

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 95.

 EB24JADV EB24JADV EB24SADV IMAG µb±_Dè% E$BR

 000D CCFFDCCE CCFFDCCE CCFFECCE FFFFFFFFFFFFFFFFFFFFFFFF CDCC B872CC60 0000 C5CD FFFFFFFF

 0004 52241145 52241145 52242145 FFFFFFFFFFFFFFFFFFFFFFFF 9417 02484DC0 0000 5B29 FFFFFFFF

 AFTR ADDVC

 CCED 0000 000E 0000 0006 CCCEC FFFFFFFF

 1639 0000 000F 0008 0003 14453 FFFFFFFF

 _q _<HUGO D. SMYTHE 11111 ANYSTREET ANYCITY IN123450010212345678912345

 44444444000000090004CECD4C44EDEECC444444FFFFF4CDEEEDCCE44444CDECCEE444444CDFFFFFFFFFFFFFFFFFFFFFFFF

 0000000000000048004C847604B024838500000011111015823955300000158393800000095123450010212345678912345

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 96.

 EB24JADV EB24JADV EB24SADV IMAG µb±_Dì_ E$MB

 0008 CCFFDCCE CCFFDCCE CCFFECCE FFFFFFFFFFFFFFFFFFFFFFFF CDCC B872CC30 0000 C5DC FFFFFFFF

 0006 52241145 52241145 52242145 FFFFFFFFFFFFFFFFFFFFFFFF 9417 02484E80 0000 5B42 FFFFFFFF

 AFTR ADDVC

 CCED 0000 0004 FFFF 0001 CCCEC FFFFFFFF

 1639 0000 004B FFFF 0005 14453 FFFFFFFF

 _› _<31441CCCC

 000000040004FFFFFCCCC

 0000004A004C314413333

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 98.

 EB24JADV EB24JADV EB24SADV IMAG µb±_DíI E$MB

 0008 CCFFDCCE CCFFDCCE CCFFECCE FFFFFFFFFFFFFFFFFFFFFFFF CDCC B872CCC0 0000 C5DC FFFFFFFF

 0006 52241145 52241145 52242145 FFFFFFFFFFFFFFFFFFFFFFFF 9417 02484F90 0000 5B42 FFFFFFFF

 AFTR ADDVC

 CCED 0000 0004 0000 0001 CCCEC FFFFFFFF

 1639 0000 004C 0000 0005 14453 FFFFFFFF

 _. 31441DDDD

 000000044444FFFFFCCCC

 0000004B0000314414444

Examples

DBA Utilities User’s Guide 479

 CSUL2164I : SYSTEM LOG FILE APPLICATION STATISTICS (BASE).

 FUNCTION TYPE RESTORE

 TOTAL APPLIED IMAGES 12

 SKIPPED IMAGES (FILE-ERROR) 0

 SKIPPED IMAGES (USER-EXIT) 0

 APPLIED IMAGES AS A PERCENTAGE OF TOTAL RECORDS 9.45%

 NUMBER OF FILES TO WHICH IMAGES WERE APPLIED 2

 NUMBER OF FILES WITHOUT PROCESSING ERRORS 24

 NUMBER OF FILES WITH PROCESSING ERRORS 0

 CSUL2166I : END OF SYSTEM LOG FILE APPLICATION STATISTICS (BASE).

 CSUL2109I : END OF IMAGE APPLICATION PHASE.

 CSUL2114I : OPERATION COMPLETED SUCCESSFULLY . 0 WARNINGS AND 0 ERRORS WERE ISSUED.

 CSUL0303I : RESTORE PROCESS TERMINATING.

 CSUL0305I : CONTROL SECTION TERMINATING.

 CSUL0307I : ALL CONTROL SECTIONS PROCESSED.

 CSUL0103I : DATA BASE UTILITIES SUCCESSFUL TERMINATION.

Chapter 18 Coding the Recover, Restore, and Log-Print utilities

480 P26-6260-63

Log-Print example
The following example shows input and output for the Log-Print function.
The function prints the records and before-images before the System Log
Analysis Statistics.

 CSUL0101I : COMMENCING COMMAND VALIDATION.

 1 CONTROL(BEGIN)

 2 LIST(BEFORE AFTER)

 3 LINES(2)

 4 DATA-FORMAT(HEX CHAR)

 5 DIAGNOSTICS(EXTENDED)

 6 LOG-FILE()

 7 DEVICE(TAPE)

 8 SEQ-ERROR(ERROR)

 9 FUNCTION(LOG-PRINT)

 10 STATISTICS(ALL)

 11 FILE(ALL)

 12 CONTROL(END)

CONTENTS OF SOURCE LINES OUTSIDE 1...72 MARGINS IGNORED.

 0 SYNTAX ERRORS DETECTED.

 12 COMMAND LINES READ.

 1 CONTROL SECTIONS ANALYZED.

 1 FUNCTION COMMANDS ANALYZED.

 CSUL0102I : COMMENCING COMMAND EXECUTION.

 CSUL0310I : COMMENCING CONTROL SECTION.

 CSUL0302I : COMMENCING LOG-PRINT PROCESS.

 CSUL2100I : START OF SYSTEM LOG FILE ANALYSIS.

 CSUL2116I : BEFORE IMAGE RECORD: BLOCK = 26, RECORD = 82.

 EB24JADV EB24JADV EB24SADV IMAG µc¨˜_ó- E$BR

 BEFR ADD-M

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 83.

 EB24JADV EB24JADV EB24SADV IMAG µc¨˜_Å¥ E$BR

 AFTR ADD-M

 HUGO D. SMYTHE 11111 ANYSTREET ANYCITY IN123450010212345678912345

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 84.

 EB24JADV EB24JADV EB24SADV IMAG µc¨˜__ E$BR

 AFTR ADDVC

 _q _qHUGO D. SMYTHE 11111 ANYSTREET ANYCITY IN123450010212345678912345

 CSUL2116I : BEFORE IMAGE RECORD: BLOCK = 26, RECORD = 85.

 EB24JADV EB24JADV EB24SADV IMAG µc¨˜__ì E$MB

 BEFR ADDVC

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 86.

 EB24JADV EB24JADV EB24SADV IMAG µc¨˜__° E$MB

 AFTR ADDVC

Examples

DBA Utilities User’s Guide 481

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 87.

 EB24JADV EB24JADV EB24SADV IMAG µc¨˜___ E$BR

 AFTR ADDVC

 _q _›HUGO D. SMYTHE 11111 ANYSTREET ANYCITY IN123450010212345678912345

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 88.

 EB24JADV EB24JADV EB24SADV IMAG µc¨˜___ E$MB

 AFTR ADDVC

 _›31441AAAA

 CSUL2116I : BEFORE IMAGE RECORD: BLOCK = 26, RECORD = 89.

 EB24JADV EB24JADV EB24SADV IMAG µc¨˜___ E$MB

 BEFR ADDVC

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 90.

 EB24JADV EB24JADV EB24SADV IMAG µc¨˜__] E$MB

 AFTR ADDVC

 _q 31441BBBB

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 91.

 EB24JADV EB24JADV EB24SADV IMAG µc¨˜_›E E$BR

 AFTR ADDVC

 _q _.HUGO D. SMYTHE 11111 ANYSTREET ANYCITY IN123450010212345678912345

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 92.

 EB24JADV EB24JADV EB24SADV IMAG µc¨˜_.~ E$MB

 AFTR ADDVC

 _q _.31441BBBB

 CSUL2116I : BEFORE IMAGE RECORD: BLOCK = 26, RECORD = 93.

 EB24JADV EB24JADV EB24SADV IMAG µc¨˜_<L E$MB

 BEFR ADDVC

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 94.

 EB24JADV EB24JADV EB24SADV IMAG µc¨˜_(ª E$MB

 AFTR ADDVC

 _› 31441CCCC

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 95.

 EB24JADV EB24JADV EB24SADV IMAG µc¨˜_¨\ E$BR

 AFTR ADDVC

 _q _<HUGO D. SMYTHE 11111 ANYSTREET ANYCITY IN123450010212345678912345

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 96.

 EB24JADV EB24JADV EB24SADV IMAG µc¨˜_�x E$MB
 AFTR ADDVC

 _› _<31441CCCC

 CSUL2116I : BEFORE IMAGE RECORD: BLOCK = 26, RECORD = 97.

 EB24JADV EB24JADV EB24SADV IMAG µc¨˜_!¹ E$MB

 BEFR ADDVC

 CSUL2116I : AFTER IMAGE RECORD: BLOCK = 26, RECORD = 98.

 EB24JADV EB24JADV EB24SADV IMAG µc¨˜_$_ E$MB

 AFTR ADDVC

 _. 31441DDDD

 CSUL2110I : END OF FILE DUE TO PDM TERMINATION RECORD :

 BLOCK = 29, RECORD = 127.

Chapter 18 Coding the Recover, Restore, and Log-Print utilities

482 P26-6260-63

 CSUL2161I : SYSTEM LOG FILE ANALYSIS STATISTICS (BASE).

 LOG FILE DDNAME LOGFILE

 NUMBER OF LOG VOLUMES 1

 LOG DEVICE TYPE TAPE

 NUMBER OF LOG BLOCKS 29

 NUMBER OF SPANNING BLOCKS 12

 SPANNING BLOCKS AS A PERCENTAGE OF TOTAL BLOCKS 41.38%

 NUMBER OF LOG RECORDS 127

 AVERAGE NUMBER OF LOG RECORDS PER BLOCK 4.38AVG.

 NUMBER OF SPANNING RECORDS 2

 SPANNING RECORDS AS A PERCENTAGE OF TOTAL RECORDS 1.57%

 NUMBER OF RECORD BYTES 64,166

 NUMBER OF UNUSED BYTES 23,530

 UNUSED BYTES AS A PERCENTAGE OF TOTAL BYTES 26.83%

 NUMBER OF COMMAND RECORDS 8

 COMMAND RECORDS AS A PERCENTAGE OF TOTAL RECORDS 6.30%

 NUMBER OF BEFORE IMAGES 5

 BEFORE IMAGES AS A PERCENTAGE OF TOTAL RECORDS 3.94%

 NUMBER OF AFTER IMAGES 12

 AFTER IMAGES AS A PERCENTAGE OF TOTAL RECORDS 9.45%

 NUMBER OF CONTROL RECORDS 102

 CONTROL RECORDS AS A PERCENTAGE OF TOTAL RECORDS 80.31%

 TOTAL NUMBER OF TASKS ON THE LOG 6

 NUMBER OF UPDATE TASKS ON THE LOG 1

 NUMBER OF TASKS SIGNED ON AT THE END OF THE LOG 0

 NUMBER OF FILES ON THE LOG 28

 CSUL2163I : END OF SYSTEM LOG FILE ANALYSIS STATISTICS (BASE).

Examples

DBA Utilities User’s Guide 483

 CSUL2130I : SYSTEM LOG FILE ANALYSIS STATISTICS (EXTENDED).

 FILE ACCESS FILE ADD DELETE READ WRITE BEFORE AFTER CONTROL

 NAME METHOD TYPE COMMANDS COMMANDS COMMANDS COMMANDS IMAGES IMAGES RECORDS

 C$-# BDAM PRIMARY 0 0 0 0 0 0 4

 C$-D BDAM RELATED 0 0 0 0 0 0 4

 C$-N BDAM PRIMARY 0 0 0 0 0 0 4

 C$-S BDAM RELATED 0 0 0 0 0 0 4

 C$-T BDAM RELATED 0 0 0 0 0 0 4

 E$BR BDAM PRIMARY 0 0 0 0 1 5 4

 E$CU BDAM PRIMARY 0 0 0 0 0 0 4

 E$IL BDAM RELATED 0 0 0 0 0 0 4

 E$IN BDAM PRIMARY 0 0 0 0 0 0 4

 E$MB BDAM RELATED 0 0 0 0 4 7 4

 E$MF BDAM PRIMARY 0 0 0 0 0 0 4

 E$ML BDAM RELATED 0 0 0 0 0 0 4

 E$PD BDAM PRIMARY 0 0 0 0 0 0 4

 E$PG BDAM PRIMARY 0 0 0 0 0 0 4

 E$PL BDAM RELATED 0 0 0 0 0 0 4

 E$PO BDAM PRIMARY 0 0 0 0 0 0 4

 E$RG BDAM PRIMARY 0 0 0 0 0 0 4

 E$SK BDAM RELATED 0 0 0 0 0 0 4

 E$ST BDAM RELATED 0 0 0 0 0 0 4

 E$SU BDAM PRIMARY 0 0 0 0 0 0 4

 E$VS BDAM PRIMARY 0 0 0 0 0 0 4

 E$XA BDAM INDEX 0 0 0 0 0 0 4

 E$XF BDAM INDEX 0 0 0 0 0 0 4

 E$XP BDAM INDEX 0 0 0 0 0 0 4

 SLG2 BDAM SYS LOG 0 0 0 0 0 0 1

 SLOG BDAM SYS LOG 0 0 0 0 0 0 1

 STAT BSAM STATS FI 0 0 0 0 0 0 1

 TLOG BDAM TASK LOG 0 0 0 0 0 0 1

 ___________ ___________ ___________ ___________ ___________ ___________ __________

 TOTALS 0 0 0 0 5 12 100

 SLF VOLUME ENDING ENDING

 SEQUENCE # BLOCK RECORD

 1 00000001 29 127

 CSUL2131I : END OF SYSTEM LOG FILE ANALYSIS STATISTICS (EXTENDED).

 CSUL2101I : END OF SYSTEM LOG FILE ANALYSIS.

 CSUL2114I : OPERATION COMPLETED SUCCESSFULLY . 0 WARNINGS AND 0 ERRORS WERE ISSUED.

 CSUL0303I : LOG-PRINT PROCESS TERMINATING.

 CSUL0305I : CONTROL SECTION TERMINATING.

 CSUL0307I : ALL CONTROL SECTIONS PROCESSED.

 CSUL0103I : DATA BASE UTILITIES SUCCESSFUL TERMINATION.

Chapter 18 Coding the Recover, Restore, and Log-Print utilities

484 P26-6260-63

19
Coding the Review function

Coding the Review function
You use the Review function to determine whether database files are
locked. The Review function prints a message indicating whether files are
locked, but does not unlock the files.

When a file is unlocked after an abend, the file was not open for update
at the time of the abend, and the abend should not have affected its
contents.

When a file is locked after an abend, the file was open for update at the
time of the abend. The file may have been updated since the last commit,
or the abend may have interrupted an update in progress, damaging the
contents of the file. You should recover the file using Task Level
Recovery by warm starting the PDM, using the Recover function, or using
the Restore function.

DBA Utilities User’s Guide 485

Coding the UCL for the Review function
After you code the control section as shown in “Coding the control
section” on page 57, you can code the Review function as shown in the
following format. For UCL examples, see “Review example” on page 487.

...)
ALL

 (FILE

(REVIEW) FUNCTION









list-name-file

FUNCTION (REVIEW)

Description Required. Invokes the Review function.

FILE (
ALL

) ...
file-name-list









Description Required. Names the files you want to review.

Format File names must be 4 alphanumeric characters. The first character must
be alphabetic. Separate names with commas.

Options ALL Reviews all index, primary, and related files in the
schema.

file-name-list Reviews the files you name.

Considerations
♦ If you code FILE (ALL), Review processes your user database files in

alphabetical order, processing index files first, primary files second,
and related files last. The Review function does not process Directory
files.

♦ If you code FILE (file-name-list), Review processes the named files.
You can name user database files and/or Directory files.

♦ If you code FILE (ALL), you cannot code any other FILE statements.

♦ If you code FILE (), the function does not process any files.

♦ If you specify primary or related files, the Review function does not
automatically process the associated index files. You must explicitly
name the index files you want to process.

♦ You can code the FILE statement one or more times.

Chapter 19 Coding the Review function

486 P26-6260-63

Review example
Example 1. To print a message indicating whether the CUST, ACCR,
PORD, and VEND files are locked, code the following:
CONTROL (BEGIN)

 ENV-DESC (MYDESC)

 SCHEMA (MYSCHEMA)

FUNCTION (REVIEW)

 FILE (CUST)

 FILE (ACCR,PORD,VEND)

CONTROL (END)

Example 2. This example shows sample input and output.
CSUL0101I : COMMENCING COMMAND VALIDATION

 1 CONTROL(BEGIN)

 2 ***

 3 * *

 4 * REVIEW EXAMPLE #1 DESCRIPTION *

 5 * *

 6 * OBJECTIVE: DETERMINE WHETHER OR NOT THE *

 7 * SPECIFIED FILES ARE LOCKED *

 8 * *

 9 * *

 10 ***

 11 ENV-DESC(UTEDOOUS)

 12 SCHEMA(UTILSCHM)

 13 FUNCTION(REVIEW)

 14 FILE(PANM,RANV,P001)

 15 CONTROL(END)

CONTENTS OF SOURCE LINES OUTSIDE 1…72 MARGINS IGNORED.

 0 SYNTAX ERRORS DETECTED.

 15 COMMAND LINES READ.

 1 CONTROL SECTIONS ANALYZED.

 1 FUNCTION COMMANDS ANALYZED.

Review example

DBA Utilities User’s Guide 487

CSUL0102I : COMMENCING COMMAND EXECUTION

CSUL0301I : COMMENCING CONTROL SECTION USING ENVIRONMENT DESCRIPTION UTEDOOUS AND SCHEMA UTILSCHM

CSUL0302I : COMMENCING REVIEW PROCESS

CSUL0311I : COMMENCING REVIEW AGAINST FILE PANM

CSUL1604I : FILE PANM IS LOCKED. PDMNAME = TESTPDM

CSUL0321I : REVIEW PROCESSING AGAINST FILE PANM TERMINATING NORMALLY

CSUL0311I : COMMENCING REVIEW AGAINST FILE RANV

CSUL1604I : FILE RANV IS LOCKED. PDMNAME = TESTPDM

CSUL0321I : REVIEW PROCESSING AGAINST FILE RANV TERMINATING NORMALLY

CSUL0311I : COMMENCING REVIEW AGAINST FILE P001

CSUL1603I : FILE P001 IS NOT LOCKED.

CSUL0321I : REVIEW PROCESSING AGAINST FILE P001 TERMINATING NORMALLY

CSUL0303I : REVIEW PROCESS TERMINATING.

CSUL0305I : CONTROL SECTION TERMINATING.

CSUL0307I : ALL CONTROL SECTIONS PROCESSED.

CSUL0103I : DATA BASE UTILITIES SUCCESSFUL TERMINATION.

Chapter 19 Coding the Review function

488 P26-6260-63

20
Coding the Unlock function

Coding the Unlock function
The Unlock function examines each field in the lock record of the files
you specify. If any fields are incorrect, the Unlock function prints an error
message showing the incorrect field. If all fields are correct and indicate
that the file is locked, the Unlock function updates the lock record to show
that the file is unlocked.

When a file is locked after an abend, the file was open for update at the
time of the abend. The file may have been updated since the last commit
or the abend may have interrupted an update in progress, damaging the
contents of the file. You should recover the file using Task Level
Recovery by warm starting the PDM, using the Recover function, or using
the Restore function.

If a file is locked after an abend and you believe the file had not been
updated at the time of the abend, you may want to unlock the file with the
Unlock function. If you are wrong, the damage to the database is
unpredictable. Therefore, we strongly discourage the use of the Unlock
function.

After you code the control section as shown in “Coding the control
section” on page 57, you can code the Unlock function as shown in the
following format. For UCL examples, see “Coding the Unlock function” on
page 489.

DBA Utilities User’s Guide 489

FUNCTION (UNLOCK)

FILE (
ALL

) . ..
file-name-list









FUNCTION (UNLOCK)

Description Required. Invokes the Unlock function.

FILE (
ALL

) . ..
file-name-list









Description Required. Names the files you want to unlock.

Format File names must be 4 alphanumeric characters. The first character must
be alphabetic. Separate names with commas.

Options ALL Unlocks all index, primary, and related files in the schema.

 file-name-list Unlocks the files you name.

Considerations

♦ If you code FILE (ALL), Unlock processes your user database files in
alphabetical order, processing index files first, primary files second,
and related files last. The Unlock function does not process Directory
files.

♦ If you code FILE (file-name-list), Unlock processes the named files.
You can name user database files and/or Directory files.

♦ If you code FILE (ALL), you cannot code any other FILE statements.

♦ If you code FILE (), Unlock does not process any files.

♦ If you specify primary or related files, the Unlock function does not
automatically process the associated index files. You must explicitly
name the index files you want to process.

♦ You can code the FILE statement one or more times.

Chapter 20 Coding the Unlock function

490 P26-6260-63

Example 1 To unlock the CUST, ACCR, PORD, and VEND files, code the following:
CONTROL (BEGIN)

 ENV-DESC (MYDESC)

 SCHEMA (MYSCHEMA)

FUNCTION (UNLOCK)

 FILE (CUST)

 FILE (ACCR,PORD,VEND)

CONTROL (END)

Example 2 This example shows sample input and output.
CSUL0101I : COMMENCING COMMAND VALIDATION

 1 CONTROL(BEGIN)

 2 **

 3 * *

 4 * UNLOCK EXAMPLE #1 DESCRIPTION *

 5 * *

 6 * OBJECTIVE: TO RESET THE LOCK BYTE IN SPECIFIED *

 7 * DATA BASE FILES *

 8 * *

 9 * NOTES: *

 10 * *** *

 11 * * * *

 12 * * 1. EXERCISE EXTREME CAUTION WHEN USING THE * *

 13 * * UNLOCK FUNCTION. DATABASE FILES MAY * *

 14 * * BE SEVERELY DAMAGED WHEN MISUSED. * *

 15 * * * *

 16 * * 2. ALL FILES THAT ARE LOCKED AFTER A PDM * *

 17 * * OR SYSTEM ABEND SHOULD BE RECOVERED * *

 18 * * THROUGH THE USE OF THE RECOVER FUNCTION.* *

 19 * * * *

 20 * *** *

 21 * *

 22 **

 23 ENV-DESC(UTEDOOUS)

 24 SCHEMA(UTILSCHM)

 25 FUNCTION(UNLOCK)

 26 FILE(PANM,RANV,P001)

 27 CONTROL(END)

Coding the Unlock function

DBA Utilities User’s Guide 491

CONTENTS OF SOURCE LINES OUTSIDE 1…72 MARGINS IGNORED.

 0 SYNTAX ERRORS DETECTED.

 27 COMMAND LINES READ.

 1 CONTROL SECTIONS ANALYZED.

 1 FUNCTION COMMANDS ANALYZED.

CSUL0102I : COMMENCING COMMAND EXECUTION

CSUL0301I : COMMENCING CONTROL SECTION USING ENVIRONMENT DESCRIPTION UTEDOOUS AND SCHEMA UTILSCHM

CSUL0302I : COMMENCING UNLOCK PROCESS

CSUL0311I : COMMENCING UNLOCK AGAINST FILE PANM

CSUL1805I : UNLOCKING FILES WHICH ARE LOCKED DUE TO SYSTEM ABEND COULD RESULT IN STRUCTURAL DAMAGE

CSUL1804I : FILE PANM IS NOW UNLOCKED. PDMNAME WAS TESTPDM

CSUL0321I : UNLOCK PROCESSING AGAINST FILE PANM TERMINATING NORMALLY

CSUL0311I : COMMENCING UNLOCK AGAINST FILE RANV

CSUL1805I : UNLOCKING FILES WHICH ARE LOCKED DUE TO SYSTEM ABEND COULD RESULT IN STRUCTURAL DAMAGE

CSUL1804I : FILE RANV IS NOW UNLOCKED. PDMNAME WAS TESTPDM

CSUL0321I : UNLOCK PROCESSING AGAINST FILE RANV TERMINATING NORMALLY

CSUL0311I : COMMENCING UNLOCK AGAINST FILE P001

CSUL1805I : UNLOCKING FILES WHICH ARE LOCKED DUE TO SYSTEM ABEND COULD RESULT IN STRUCTURAL DAMAGE

CSUL1603I : FILE P001 IS NOT LOCKED.

CSUL0321I : UNLOCK PROCESSING AGAINST FILE P001 TERMINATING NORMALLY

CSUL0303I : UNLOCK PROCESS TERMINATING.

CSUL0305I : CONTROL SECTION TERMINATING.

CSUL0307I : ALL CONTROL SECTIONS PROCESSED.

CSUL0103I : DATA BASE UTILITIES SUCCESSFUL TERMINATION.

Chapter 20 Coding the Unlock function

492 P26-6260-63

Index

*

*FILL parameter
changing length of elements

170, 179, 258
equalizing length of elements

156
example 260
exit programs 280, 286
Unload function (Version 1) 165
unloading files 354

+

+SIGNON statement for Inter-
Directory Copy utility 435

A

abnormal termination 66
access linkpath

in file header record 187
specifying for

Modify function 386
Print function 368
Unload function (Version 2)

255
access mode

direct 367, 384
Modify function 384
Print function 367
sequential 367, 384
serial 367, 384

access time 131
ACCESS-METHOD statement 79
arguments

coding 27
list of 27

B

backup copy 153, 333
BASE See Basic File Information
base statistics

Depopulate function 117
Reorganize function 129
Sorted-Populate function 102

Basic File Information 138
batch Directory Maintenance See

Directory Maintenance
BLANK-LINKS statement 254,

263
BLKSIZE parameter

LINKWKnn statement
Insert Linkpath function 332
Load function (Version 2) 309

RECFORM statement for Load
function (Version 2) 312

Unload function (Version 2) 250
BLOCK-SIZE statement 76, 81
Boolean operators in CRITERIA

statement 162, 373, 389
Burry's database

internal schema 191, 335
unloading and loading 200, 342

C

cataloged procedures
TISDBTMC 40, 399
TISDMCPY 445
TISUTINS 325
TISUTLOD 292
TISUTNL 235
TISUTUTL 20, 33

CHAIN See Chain Length
Statistics Report

Chain Length Statistics report
141

Chain Migration Statistics
reports 143
requesting 143

chains
reorganizing 200, 342
sequence retention when

unloading 159, 256
CLEAR-LINKS statement

Load function (Version 1) 173
Unload function (Version 1) 160

CLEARLKS parameter 330

DBA Utilities User’s Guide 493

CLOSE statement
File Statistics function 134
Modify function 384
Print function 366

coded records
loading 319
unloading 163, 256

coded related file
access linkpath 386
loading 177
modifying 385, 390
statistics 135, 146

coding arguments 26, 27
comments in UCL 25
conceptual schema input

statement 435, 443
conceptual schemas 443
CONSOLE statement

control section of UCL 72
PDM Termination utility 401

control section of UCL
ACCESS-METHOD statement

79
BLOCK-SIZE statement 76, 81
coding 58
CONSOLE statement 72
CONTROL statement 62
control statements for functions

86
DATA-FILE statement 73
DATA-FORMAT statement 71
DEVICE statement 77, 80
DEVICE-ADDRESS statement

80
DIAGNOSTICS statement 66
ENV-DESC statement 63
EXTENSION statement 69
FORMAT statement 65
FUNCTION statement 84
HEADER statement 69
LABEL statement 74
LINES statement 70
LIST statement 67
LOG-FILE statement 78
LOG-ID-ERROR statement 83
MEMORY statement 72
NOTIFY statement 73
PDM-ID-ERROR statement 82
RECORD-FORMAT statement

74

RECORD-SIZE statement 75
REPLY statement 73
SCHEMA statement 64
SEQ-ERROR statement 81
SORT statement 71
SUMMARY-DATA statement 77
SUPPRESS statement 70

CONTROL statement 62
control statements 328
converted format files

Series 80 21, 22, 240
SUPRA 30, 87
unloading 225

copy table input statement 435,
439

CRITERIA statement
Modify function 389
Print function 373
Unload function (Version 1) 162

CSI#REC file 236
CSI#WK0n file 34
CSI#WK1 file 36
CSI#WKnn sort work files 236,

295
CSIPARM file

coordinating with run control
statements 230

Expand function 149
Insert Linkpath function 325
Load function (Version 2) 295
OS/390 34, 40
Unload function (Version 2) 236
unloading and loading

Directory files 231, 264, 322
PDM files 230

VSE 36, 41
CSU#REC file

defining 238
Load function (Version 2) 295

CSUAUX file
defining 238
files in converted and Series 80

format 238
Insert Linkpath function 325
Load function (Version 2) 295
Unload function (Version 2)

236, 238
CSUINSRT 226, 322
CSULOADR 226, 292
CSUNLOAD 226, 235, 292

Index

494 P26-6260-63

CSUOUTIL load module 20
CSUPUNLD 264
CSUSLOAD 322
CSUSUNLD 264
CSUULKUN 265
CSUWORK file

OS/390 34
VSE 36

CSUXSTAT 403, 417
Current File Size information

report 139
CYLL parameter 240

D

damaged linkpath repair 19, 200,
342

data elements
Modify function 391
Print function 375

data file format 184
data members

CSUPUNLD 264
CSUSLOAD 322
CSUSUNLD 264

data parameters for exit
programs 99, 114, 126

data records
exit programs

adding with 183
deleting with 182
modifying with 182

formatting 188
order on data file 184

DATA statement 392
database files

Burry's 191, 334
formatting 87, 89
loading 169
statistics 131
unloading 155, 225

DATA-FILE statement 73
DATA-FORMAT statement 71
DATA-TYPE statement 176
DBMNAME statement 401
DBMOD parameter 330
debug facility 31
DEBUG function 32
DEBUG parameter 32
DEPOPULATE command 154,

226

Depopulate function
coding 105, 106
examples 201, 214, 343, 353
exit programs 112
FILE statement 109
FUNCTION statement 107
general information 19, 21
PURGE statement 111
SECONDARY-KEY statement

110
STANDARD-EXIT statement

108
statistics 117
STATISTICS statement 107

DEVADDR parameter
LINKWKnn statement

Insert Linkpath function 332
Load function (Version 2) 310

RECFORM statement for Load
function (Version 2) 313

Unload function (Version 2) 251
DEVICE parameter

LINKWKnn statement
Insert Linkpath function 331
Load function (Version 2) 309

RECFORM statement for Load
function (Version 2) 312

Unload function (Version 2) 250
DEVICE statement 77, 80
DEVICE-ADDRESS statement 80
DIAGNOSTICS statement 66
direct access mode 367, 384
DIRECTION statement 175
Directory copying 433
Directory files

coding CSIPARM file and run
control statements 231

expanding 147
formatting 87, 89
inserting linkpath data 322
loading 171, 292, 322
OS/390 34
printing 363
unloading 157, 225, 264
VSE 36

Directory Maintenance
DEPOPULATE command 154,

226
POPULATE command 91, 154,

226
setting record size for INPUT

file 404, 418

Index

DBA Utilities User’s Guide 495

DIRECTORY parameter 89
domains

copying 444
input statement 435, 444

DUMP parameter 44, 45
DUMP statement 243, 244

E

edit mask copying 439
edit mask input statement 435,

439
Element List statement 254, 257,

318
ELEMENT statement

Load function (Version 1) 178
Modify function 391
Print function 375
Unload function (Version 1) 164

elements
adding 165, 259
deleting 165, 259, 355
loading 318
modifying 381
selecting

for Load function (Version 1)
178

for Unload function (Version
1) 164

size
decreasing 166, 259
increasing 166, 259

unloading 257
END parameter 330
entry-sequenced data set

(ESDS) 131
ENV-DESC statement 63
error

flag 28
in sort programs 56
number 28
PDM Termination Utility 399
pointer 28

ESDS See entry-sequenced data
set

EUPD open mode 94, 109, 366,
384

EXEC statement 43

Execution Statistics utility
coding

for release 2.1.6 403
for release 2.4 417

file definitions 38
general information 19, 22

exit point 10
sample programs 271
Unload function (Version 2)

265, 267
exit point 20

sample programs 281
Unload function (Version 2)

265, 279
exit point 30

sample programs 290
Unload function (Version 2)

265, 286
exit point parameter lists

Depopulate function 112
Load function (Version 1) 50
Log-Print function 461
Modify function 50, 393
Print function 50, 376
Recover function 461
Reorganize function 124
Restore function 461
Sorted-Populate function 97, 99
Unload function (Version 1) 50
Version 1 Unload and Load

functions 181
exit programs

adding data records 183
conventions 50
data parameters 126
deleting

data records 182
elements 355

Depopulate function 108, 112
exit point 10 267
exit point 20 279
exit point 30 286
inserting into functions 49
Log-Print function 461
Modify function 393
modifying data records 182
Print function 376
Recover function 461
Reorganize function 124
Restore function 461
Sorted-Populate function 97

Index

496 P26-6260-63

exit programs (cont.)
Unload function (Version 2) 265
valid actions 100, 115, 127
Version 1 Load and Unload

function 181
Expand function

coding 147
examples 151
FILE statement 150
FUNCTION statement 149
general information 19, 21

extended statistics
Depopulate function 117
Reorganize function 129
Sorted-Populate function 102

EXTENSION statement 69

F

FILABL parameter
LINKWKnn statement

Insert Linkpath function 332
Load function (Version 2) 309

RECFORM statement for Load
function (Version 2) 312

Unload function (Version 2) 250
file control statements

CSUPUNLD 264
Unload function (Version 2)

254, 317
file definitions

in OS/390 33, 34, 38, 40
in VSE 36, 39, 41

file header record
formatting 187
order on data file 184

FILE parameter 239
file performance optimization 131
file pre-header record 184
FILE statement

Depopulate function 109
Expand function 150
File Statistics function 133
Format function 88
Load function (Version 1) 171
Log-Print function 458
Modify function 383
Print function 365
Recover function 453
Reorganize function 122
Restore function 453
Review function 486

Sorted-Populate function 94
Unload function (Version 1) 157
Unlock function 490

file statistics
group totals 413, 429

File Statistics
reports 137

File Statistics function
CLOSE statement 134
coding 131, 132
examples 136
FILE statement 133
FUNCTION statement 133
general information 19, 21
LINKPATH statement 134
reports 137
sort work space 55
STATISTICS statement 135

file statistics page in Execution
Statistics 411, 426

file trailer records 184, 190
files

building control record 87
closing

for Modify function 384
for Print function 366

coded related
access linkpath 386
loading 177
modifying 385, 390
statistics 135, 146

creating backup copies 153
defining

in OS/390 33
in OS/390 JCL 233, 293, 323
in VSE JCL 234, 294, 324

examples of unloading and
loading 191

Execution Statistics utility 38,
404, 418

formatting
with Format function 87
with FORMAT statement 65

growth 131
inserting linkpath data 322
Load function (Version 2) 295
loading 292
opening

for Modify function 384
for Print function 366

PDM Termination utility 40

Index

DBA Utilities User’s Guide 497

files (cont.)
statistics 131, 411, 426
Unload function (Version 2) 235
unloading 155, 235
VSAM 292

FILES parameter 329, 330
FORCE statement 401
format

compatibility 87
converted 21, 22, 30, 87
data file 184
data records 188
records in SYSUT1 and INPUT

file 320
Series 80 21, 22, 30, 240
SUPRA converted 21, 22, 30
SUPRA native 87, 131
UCL 23, 25

Format function
coding 87
FILE statement 88
FUNCTION statement 88
general information 19, 21

FORMAT statement 65
FUNCTION statement

control section of UCL 84
Depopulate function 107
Expand function 149
File Statistics function 133
Format function 88
Load function (Version 1) 170
Log-Print function 457
Modify function 383
Print function 365
Recover function 450
Reorganize function 120
Restore function 450
Review function 486
Sorted-Populate function 92
Unload function (Version 1) 156
Unlock function 490

functions
DEBUG 32
Depopulate

coding 105
examples 343, 353
general information 19, 21

executing 33
Expand 19, 21, 147
File Statistics 19, 21, 131
Format 19, 21, 87
Insert Linkpath 20, 22, 322

inserting exit programs in 49
Load 19
Load (Version 1) 20, 21, 169
Load (Version 2) 20, 22, 292
Log-Print 21, 447, 456
Modify 20, 21, 381
Print 20, 21, 363
Recover 21, 447
Reorganize 19, 21, 119
Restore 21, 447
review 485
Review 21
Sorted-Populate 19, 21, 91
UCL not required 22, 29
UCL required 23
Unload (Version 1) 20, 21, 155
Unload (Version 2) 20, 22
Unlock 21, 489
XTRACE 32

G

group identification page 406,
420

H

HEADER statement 69
heap area 46
hierarchical structure of UCL 24

I
IDCAMS utility 292
IEBCOPY utility 434
ILBDSET0 routine 50
ILBOSTP0 routine 50
index files

density of blocks 96, 123
loading 171
reclaiming blocks 105, 111
unloading 154, 157

input file
defining in VSE 39

INPUT file
Execution Statistics utility 404,

418
Load function (Version 2) 296
OS/390 34, 38, 40
PDM Termination utility 400

Index

498 P26-6260-63

input files
defining

in OS/390 34, 38, 40
in VSE 36, 41

PDM Termination utility 40
input statements 435
Insert Linkpath function

BLKSIZE parameter 332
CLEARLKS parameter 330
coding 225, 322
control statements 328
CSIPARM file 325
CSUAUX file 325
DBMOD parameter 330
DEVADDR parameter 332
DEVICE parameter 331
END parameter 330
examples 333
FILABL parameter 332
FILES parameter 329
general information 20, 22
INSERT statement 328
LINKWK01/LNKWRK1 file 325,

326
LINKWK02/LNKWRK2 file 325,

327
LINKWKnn statement 328
LINKWKnn statements 331
RECSIZE parameter 332
SYSIN file 325
SYSIPT file 325
SYSLST file 325
SYSPRINT file 325
SYSUDUMP file 325
use 226

INSERT statement 328
Inter-Directory Copy utility

coding 433
input statements 435

conceptual schema input
statement 443

copy table input statement 439
domain input statement 444
edit mask input statement 439
example 446
executing

in OS/390 445
in VSE 445

general information 22

schema input statement 442
security group input statement

441
signon input statement 438
user input statement 440

IOBUF parameter 44
IUPD open mode 366

J

JCL 232
JOB statement 43

K

KEY statement
Modify function 387
Print function 369

KEY-RANGE statement
Log-Print function 460
Recover function 455
Restore function 455

keys
secondary

deleting 87, 105
depopulating 226
index files 19
tree structure 119

selecting to access files 387
key-sequenced data set (KSDS)

basic information 138
current size 139
formatting 89
statistics 131, 140

KSDS See key-sequenced data
set

L

LABEL statement 74
LIBDEF file

VSE 36, 39, 41
library files

Execution Statistics utility 38,
39

OS/390 34
PDM Termination utility 40, 41

LINES statement 70
LINK See Linkpath Statistics
linkage verification 131

Index

DBA Utilities User’s Guide 499

linkage work files
allocating space

Insert Linkpath function 326
LINKWK01/LNKWRK1 297
Load function (Version 2) 297

defining characteristics 331
format 326
LINKWK02/LNKWRK2 300

linkdeck CSUULKUN 265
LINKPATH statement

after Element List statement
319

File Statistics function 134
Load function (Version 1) 172
Load function (Version 2) 321
Modify function 386
Print function 368
Unload function (Version 1) 158
Unload function (Version 2)

254, 255
linkpaths

blanking in primary files 160,
263

blanking with CLEARLKS
parameter 330

chains 200, 342
clearing

with BLANK-LINKS statement
263

with Modify function 157, 171,
381, 394

data 22, 226, 322, 358
modifying 381
printing 363
repairing by unloading and

loading files 200, 342
selecting primary to load file

321
statistics 140
unloading and loading files 227,

228
updating 20, 292, 381
with Modify function 217

LINKWK01/LNKWRK1 file
coding 297
defining 326
Insert Linkpath function 325
Load function (Version 2) 296

LINKWK02/LNKWRK2 file
coding 300
defining 327

Insert Linkpath function 325
Load function (Version 2) 296,

300
LINKWKnn statement

Insert Linkpath function 331
Load function (Load function

(Version 2) 303
Load function (Version 2) 308

LINKWKnn statements
Insert Linkpath function 328

list of arguments 27
LIST statement 67
Load function (Version 1)

CLEAR-LINKS statement 173
coding 169
DATA-TYPE statement 176
DIRECTION statement 175
ELEMENT statement 178
examples 191
exit programs 181
FILE statement 171
FUNCTION statement 170
general information 19, 20, 21
LINKPATH statement 172
RECORD statement 177
retaining data file format 184
SEQUENCE statement 174
sort work space 54
sorting unloaded record 153
STANDARD-EXIT statement

170
Load function (Version 2)

BLKSIZE parameter 309, 312
coding 225, 292
CSI#WKnn sort work files 295
CSIPARM file 295
CSU#REC file 295
CSUAUX file 295
DEVADDR parameter 310, 313
DEVICE parameter 309, 312
Element List statement 318
examples 333
FILABL parameter 309, 312
file control statements 317
general information 19, 20, 22
INPUT file 296
LINKPATH statement 321
LINKWK01/LNKWRK1 file 296,

297
LINKWK02/LNKWRK2 file 296,

300

Index

500 P26-6260-63

Load function (Version 2) (cont.)
LINKWKnn statements 303,

308
LRECL parameter 299
MAXKEY statement 303, 307
PRIMARY statement 303, 306
RECFORM statement 303, 311
RECSIZE parameter 310, 313
RELATED statement 303, 305
run control statements 302
SCHEMA statement 303, 304
S-E statement 303, 307
SORTCORE statement 303,

314
SORTLIB file 296
SORTNAME statement 303,

315
SORTWKn file 296
SYSIN file 296
SYSIPT file 296
SYSLST file 296
SYSOUT file 296
SYSPRINT file 296
SYSUDUMP file 296
SYSUT1 file 296
V-E statement 303, 306
WORK statement 303, 316

load modules
CSUOUTIL 20

LOAD parameter 240
LOAD-DENSITY statement

Reorganize function 123
Sorted-Populate function 96

LOG-FILE statement 78
LOG-ID-ERROR statement 83
Log-Print function

coding 447, 456
examples 481
exit programs 461
FILE statement 458
FUNCTION statement 457
general information 21
KEY-RANGE statement 460
RRN-RANGE statement 459
STANDARD-EXIT statement

457
STATISTIC statement 457
use 448

LRECEL parameter 299

M

maximum number
modified records 388
printed records 372

MAXIMUM statement
Modify function 388
Print function 372

MAXKEY statement 303, 307
memory for sort program 53, 72
MEMORY statement 53, 72
Modify function

clearing linkpaths 157
CLOSE statement 384
CRITERIA statement 389
DATA statement 392
ELEMENT statement 391
examples 191
exit programs 393
FILE statement 383
FUNCTION statement 383
general information 20, 21
KEY statement 387
LINKPATH statement 386
MAXIMUM statement 388
OPEN-MODE statement 384
QUALIFIER statement 384
RECORD statement 390
RRN statement 386
STANDARD-EXIT statement

383
using to clear linkpaths 171

Modify function examples 394
Modify Schema utility 149

N

native format fields
converting

Series 80 files 21, 22
SUPRA converted files 21, 22

unloading and loading 153, 225
native format file expansion 147
NEW-SCHEMA/NEW-ENVDESC

statement 243, 245
NODUMP parameter 44, 45
NONE open mode 230, 295
non-UCL utilities 22
NOSPIE parameter 44, 45
NOTIFY statement 73
null arguments 26

Index

DBA Utilities User’s Guide 501

O

open mode
EUPD 94, 109, 366, 384
IUPD 366
NONE 230, 295
READ 366
SUPD 366, 384

OPEN-FILE statement
Recover function 451
Restore function 451

OPEN-MODE statement
Modify function 384
Print function 366

optional input statements 437
OUTFILE

defining 241
Unload function (Version 2) 257

OUTFILE file 236
out-of-block synonym records

minimizing by unloading and
loading files 200, 300, 342

number 300, 327
OUTPUT file

defining in VSE 41
Execution Statistics Utility 38,

39
OS/390 34, 38, 40
PDM Termination Utility 40
Unload function (Version 2)

241, 249
VSE 36, 39

P

parameter lists for exit points
Depopulate function 112
Load function (Version 1) 50
Log-Print function 461
Modify function 50, 393
Print function 50, 376
Recover function 461
Reorganize function 124
Restore function 461
Sorted-Populate function 97
Unload function (Version 1) 50
Version 1 Unload and Load

functions 181

parameters
*FILL

changing length of elements
170, 179, 258

equalizing length of elements
156

example 260
exit programs 280, 286
Unload function (Version 1)

165
unloading files 354

BLKSIZE 250, 309, 312, 332
CLEARLKS 330
CYLL 240
DBMOD 330
DEBUG 32
DEVADDR 251, 310, 313, 332
DEVICE 250, 309, 312, 331
DIRECTORY 89
DUMP 44, 45
END 330
FILABL 250, 309, 312, 332
FILE 239
FILES 329, 330
IOBUF 44
LOAD 240
LRECL 299
NODUMP 44, 45
NOSPIE 44, 45
PASSWORD 438
PRESERVE 256
RC 256
RCYL 239
REALM 89
RECSIZE 251, 310, 313, 332
REGION 43
SIZE 43
SPIE 44, 45
STACK 44, 46
XTRACE 32

PARM file 237
PASSWORD parameter 438
PASSWORD statement 400
PDM See Physical Data Manager
PDM files

coding CSIPARM file and run
control statements 230

inserting linkpath data 322
loading 292
OS/390 34
unloading 235
VSE 36

Index

502 P26-6260-63

PDM termination utility
file definitions 40

PDM Termination utility
CONSOLE statement 401
DBMNAME statement 401
example 402
FORCE statement 401
general information 22
PASSWORD statement 400

PDM Termination Utility
coding 399, 400

PDM-ID-ERROR statement 82
Physical Data Manager (PDM)

identification page in Execution
Statistics 406, 420

shutting down
active tasks 401
with PDM Termination Utility

399
POPULATE command 91, 154,

226
pre-header record 186
PRESERVE parameter 256
PRESERVE statement 159
primary files

basic information on 138
chain length statistics 141
Chain Migration Statistics 143
expanding 147
inserting linkpath data 325, 328
loading 306
modifying 381
printing 363
synonym statistics 145
unloading 158, 248

primary linkpath 322
PRIMARY statement 243, 248,

303, 306
Print function

CLOSE statement 366
coding UCL for 363
CRITERIA statement 373
ELEMENT statement 375
examples 377
exit programs 376
FILE statement 365
FUNCTION statement 365
general information 20, 21
KEY statement 369
LINKPATH statement 368
MAXIMUM statement 372
OPEN-MODE statement 366

QUALIFIER statement 367
RECORD statement 374
RRN statement 370
RRN-RANGE 371
STANDARD-EXIT statement

365
processing environment 57
PURGE statement 111

Q

QUALIFIER statement
Modify function 384
Print function 367

R

RC parameter 256
RCYL parameter 239
READ open mode 366
REALM parameter 89, 149
RECFORM statement

Load function (Version 2) 303,
311

Unload function (Version 2)
243, 249

Record Code Statistics
reports 146
requesting 146

record format of SYSUT1 and
INPUT file 320

RECORD statement
Load function (Version 1) 177
Modify function 390
Print function 374
Unload function (Version 1) 163

RECORD-FORMAT statement 74
records

file control 87
format 320
maximum number modified 388
maximum number printed 372
modifying 381
printing 363
selecting

for Load function (Version 1)
177

for Modify function 389
for Print function 373
for Unload function (Version

1) 163

Index

DBA Utilities User’s Guide 503

RECORD-SIZE statement 75
Recover function

coding 447, 449
examples 471
exit programs 461
FILE statement 453
FUNCTION statement 450
general information 21
KEY-RANGE statement 455
OPEN-FILE statement 451
RRN-RANGE statement 454
STANDARD-EXIT statement

451
STATE statement 450
STATISTIC statement 452

RECSIZE parameter
LINKWKnn statement

Insert Linkpath function 332
Load function (Version 2) 310

RECFORM statement for Load
function (Version 2) 313

Unload function (Version 2) 251
REGION parameter 43
registers

exit point 10 269
exit point 20 280
exit point 30 288

related files
basic information on 138
chain length statistics 142
Chain Migration Statistics 144
expanding 147
formatting 87
loading 171, 305
modifying 381
printing 363, 370
RRN selection 386
unloading 158, 251, 258

RELATED statement 243, 247,
303, 305

relative record numbers (RRN)
selecting

in related file 370, 386
in Unload function (Version 1)

161
specifying range to retrieve 371

Reorganize function
coding 119
exit programs 124
FILE statement 122
FUNCTION statement 120
general information 19, 21

LOAD-DENSITY statement 123
requesting statistics 129
SECONDARY-KEY statement

123
STANDARD-EXIT statement

121
STATISTICS statement 120

REPLY statement 73
Restore function

coding 447, 449
examples 475
exit programs 461
FILE statement 453
FUNCTION statement 450
general information 21
KEY-RANGE statement 455
OPEN-FILE statement 451
RRN-RANGE statement 454
STANDARD-EXIT statement

451
STATE statement 450
STATISTIC statement 452

Review function
coding 485, 486
example 487
FILE statement 486
FUNCTION statement 486
general information 21

RQLOC value 189
RRN See relative record number
RRN statement

Modify function 386
Print function 370

RRN-RANGE statement
Log-Print function 459
Print function 371
Recover function 454
Restore function 454
Unload function (Version 1) 161

RSTAT command 403, 417
run control record 184, 185
run control statements

coding Load function (Version
2) 302

coordinating with CSIPARM file
230

CSUSUNLD 264
Unload function (Version 2)

242, 243
unloading and loading PDM

files 230
validating 253

Index

504 P26-6260-63

run-time interface parameters 44
run-time options

choosing 42
examples 42

S

sample JCL members
TXJDRCPY 445
TXJPSTAT 404
TXJSHUTP 399

schema copying 442
schema input statement 435, 442
SCHEMA statement

control section of UCL 64
Load function (Version 2) 304
Load function Version 2) 303

S-E statement
Load function (Version 2) 303,

307
Unload function (Version 2)

243, 249
secondary keys

creating 91
deleting 21, 87, 105
depopulating 105, 153, 226,

292
tree structure 21, 91, 119

SECONDARY-KEY statement
Depopulate function 110
Reorganize function 123
Sorted-Populate function 95

security group input statement
435, 441

SEQ-ERROR statement 81
SEQUENCE statement 174
sequential access mode 367,

384
serial access mode 367, 384
Series 80 format files

executing utilities 30
inserting linkpath data 22
loading 21, 22
modifying 21
Unload function (Version 2) 240
unloading 21, 22, 225

signon input statement 438
SIZE See Current File Size
SIZE parameter 43
sort fields 174
sort memory 53, 72

SORT program
exit point 20 279
specifying for Load function

(Version 2) 314
virtual storage 314

sort programs
allocating space 153
errors 56
using 52

sort sequence 174
SORT statement

control section of UCL 71
retaining values in 270
sort programs 52
Unload function (Version 2) 267

sort work files
CSI#WKnn 236, 295

sort work space
allocating 54
File Statistics function 55
Load function (Version 1) 54
Sorted-Populate function 54

SORTCORE statement 303, 314
Sorted-Populate function

coding 91, 92
examples 206, 219, 348, 359
exit programs for 97
FILE statement 94
FUNCTION statement 92
general information 19, 21
LOAD-DENSITY statement 96
requesting statistics 102
SECONDARY-KEY statement

95
sort work space 54
STANDARD-EXIT statement 93
STATISTICS statement 93

SORTLIB file
Load function (Version 2) 296
OS/390 34
Unload function (Version 2) 237

SORTNAME statement
Load function (Version 2) 303,

315
Unload function (Version 2)

243, 252
SORTWKn file

Load function (Version 2) 296
Unload function (Version 2) 237

SPIE parameter 44, 45

Index

DBA Utilities User’s Guide 505

STACK parameter
estimating size 47
use 44, 46

stack/heap area 46
STANDARD-EXIT statement

Depopulate function 108
exit programs 50
Load function (Version 1) 170
Log-Print function 457
Modify function 383
Print function 365
Recover function 451
Reorganize function 121
Restore function 451
Sorted-Populate function 93
Unload function (Version 1) 156

STATE statement
Recover function 450
Restore function 450

statements
+SIGNON 435
ACCESS-METHOD 79
BLANK-LINKS 254, 263
BLOCK-SIZE 76, 81
CLEAR-LINKS 160, 173
CLOSE 134, 366, 384
conceptual schema input 435,

443
CONSOLE 72, 401
CONTROL 62
copy table input 435, 439
CRITERIA 162, 373, 389
DATA 392
DATA FORMAT 71
DATA-FILE 73
DATA-TYPE 176
DBMNAME 401
DEVICE 77, 80
DEVICE-ADDRESS 80
DIAGNOSTICS 66
DIRECTION 175
domain input 435
DUMP 243, 244
edit mask input 435, 439
ELEMENT 164, 178, 375, 391
Element List 254, 257, 318
ENV-DESC 63
EXEC 43
EXTENSION 69

FILE
Depopulate function 109
Expand function 150
File Statistics function 133
Format function 88
Load function (Version 1) 171
Log-Print function 458
Modify function 383
Print function 365
Recover function 453
Reorganize function 122
Restore function 453
Review function 486
Sorted-Populate function 94
Unload function (Version 1)

157
Unlock function 490

file control 254, 317
FORCE 401
FORMAT 65
FUNCTION 84

Depopulate function 107
Expand function 149
File Statistics function 133
Format function 88
Load function (Version 1) 170
Log-Print function 457
Modify function 383
Print function 365
Recover function 450
Reorganize function 120
Restore function 450
Review function 486
Sorted-Populate function 92
Unload function (Version 1)

156
Unlock function 490

HEADER 69
INSERT 328
JOB 43
KEY 369, 387
KEY-RANGE 455, 460
LABEL 74
LINES 70

Index

506 P26-6260-63

statements (cont.)
LINKPATH

File Statistics function 134
Load function (Version 1) 172
Load function (Version 2) 321
Modify function 386
Print function 368
Unload function (Version 1)

158
Unload function (Version 2)

254, 255
LINKWKnn 303, 308, 328, 331
LIST 67
LOAD-DENSITY 96, 123
LOG-FILE 78
LOG-ID-ERROR 83
MAXIMUM 372, 388
MAXKEY 303, 307
MEMORY 53, 72
NEW-SCHEMA/NEW-

ENVDESC 243, 245
NOTIFY 73
OPEN-FILE 451
OPEN-MODE 366, 384
optional input 437
PASSWORD 400
PDM-ID-ERROR 82
PRESERVE 159
PRIMARY: 243, 248, 303, 306
PURGE 111
QUALIFIER 367, 384
RECFORM 243, 249, 303, 311
RECORD 163, 177, 374, 390
RECORD-FORMAT 74
RECORD-SIZE 75
RELATED: 243, 247, 303, 305
REPLY 73
RRN 370, 386
RRN-RANGE 161, 371, 454,

459
run control 243, 302
SCHEMA 64, 303, 304
schema input 435, 442
S-E 243, 249, 303, 307
SECONDARY-KEY 95, 110,

123
security group 435
security group input 441
SEQ-ERROR 81
SEQUENCE 174
signon input 438
SORT 52, 71, 267

SORTCORE 303, 314
SORTNAME 243, 252, 303,

315
STANDARD-EXIT

Depopulate function 108
exit programs 50
Load function (Version 1) 170
Log-Print function 457
Modify function 383
Print function 365
Recover function 451
Reorganize function 121
Restore function 451
Sorted-Populate function 93
Unload function (Version 1)

156
STATE 450
STATISTIC 452, 457
STATISTICS 93, 107, 120, 135
subordinate 24
SUMMARY-DATA 77
superordinate 24
SUPPRESS 70
TEST 243, 253
user input 435, 440
V-E 243, 248, 303, 306
WORK 243, 253, 303, 316

STATISTIC statement
Log-Print function 457
Recover function 452
Restore function 452

statistics
base 102, 117, 129
Basic File Information 138
chain 141
collecting with exit program

376, 393
Current File Size 139
Depopulate function 117
extended 102, 117, 129
file 131, 411, 426
generating 403, 417
record codes 146
Reorganize function 129
requesting 102, 117
Sorted-Populate function 102
synonym 145
system 407, 421

Index

DBA Utilities User’s Guide 507

statistics reports
content 137
format 137
generating with Execution

Statistics utility 403, 417
STATISTICS statement

Depopulate function 107
File Statistics function 135
Reorganize function 120
Sorted-Populate function 93

STATS file 418
Execution Statistics utility 404
OS/390 38
VSE 39

STEPLIB file
OS/390 34, 38, 40

storage 43
subordinate statements 24
SUMMARY-DATA statement 77
SUPD open mode 366, 384
superordinate statement 24
SUPPRESS statement 70
SUPRA native format fields

converting Series 80 files 21
converting SUPRA converted

files 21
unloading and loading 153, 225

synonym
chain reorganization 200
records 300
statistics

reports 145
requesting 145

SYSIN file
Insert Linkpath function 325
Load function (Version 2) 296
Unload function (Version 2) 237

SYSIPT file
Insert Linkpath function 325
Load function (Version 2) 296
Unload function (Version 2) 237
VSE 36, 39, 41

SYSLST file
Insert Linkpath function 325
Load function (Version 2) 296
Unload function (Version 2) 237
VSE 36, 39, 41

SYSOUT file
Load function (Version 2) 296
OS/390 34
Unload function (Version 2) 237

SYSPRINT file
Insert Linkpath function 325
Load function (Version 2) 296
Unload function (Version 2) 237

System Log File 447
System Log file format 89
System Log File format 87
system statistics page 407, 421
SYSUDUMP file

Insert Linkpath function 325
Load function (Version 2) 296
OS/390 34, 38, 40
Unload function (Version 2) 237

SYSUT1 file 296

T

tables 439
Task Level Recovery 450, 485
Task Log File format 87, 89
termination 66
termination page in Execution

Statistics 416, 432
TEST statement 243, 253
TISDBTMC cataloged procedure

40, 399
TISDMCPY cataloged procedure

445
TISUTINS cataloged procedure

325
TISUTLOD cataloged procedure

292
TISUTUNL cataloged procedure

235
TISUTUTL cataloged procedure

20, 33
trace facility 31
TRACE facility 32
tree structure of secondary keys

91, 119
TXJDRCPY sample JCL member

445
TXJPSTAT sample JCL member

38, 404, 418
TXJSHUTP sample JCL member

399

Index

508 P26-6260-63

U

UCL See Utility Command
Language

Unload function
general information 20

Unload function (Version 1)
CLEAR-LINKS statement 160
coding 153, 155
CRITERIA statement 162
ELEMENT statement 164
examples 191
exit programs 181
FILE statement 157
FUNCTION statement 156
general information 20, 21
LINKPATH statement 158
PRESERVE statement 159
RECORD statement 163
retaining data file format 184
RRN-RANGE statement 161
STANDARD-EXIT statement

156
Unload function (Version 2)

BLANK-LINKS statement 254,
263

BLKSIZE parameter 250
coding 225, 235
CSI#WKnn sort work files 236
CSIPARM file 236
CSU#REC file 236, 238
CSUAUX file 236, 238
CYLL parameter 240
DEVADDR parameter 251
DEVICE parameter 250
DUMP statement 243, 244
Element List statement 257
ELEMENT list statement 254
examples 333
exit points 265
FILABL parameter 250
file control statements 254
FILE parameter 239
general information 20, 22
LINKPATH statement 254, 255
LOAD parameter 240

NEW-SCHEMA/NEW-
ENVDESC statement 243,
245

OUTFILE file 236, 241
OUTPUT file 249
PARM file 237
PRESERVE parameter 256
PRIMARY statement 243, 248
RC parameter 256
RCYL parameter 239
RECFORM statement 243, 249
RECSIZE parameter 251
RELATED statement 243, 247
run control statements 242
S-E statement 243, 249
sorting in 265, 267
SORTLIB file 237
SORTNAME statement 243,

252
SORTWKn file 237
SYSIN file 237
SYSIPT file 237
SYSLST file 237
SYSOUT file 237
SYSPRINT file 237
SYSUDUMP file 237
TEST statement 243, 253
V-E statement 243, 248
WORK statement 243, 253

Unlock function
coding 489
examples 491
FILE statement 490
FUNCTION statement 490
general information 21

user input statement 435, 440
utilities

Execution Statistics 19, 22,
403, 417

functions 21
Inter-Directory Copy 22, 433
PDM termination 399
PDM Termination 22

Index

DBA Utilities User’s Guide 509

Utility Command Language
(UCL)

coding
control section 58
Depopulate function 106
File Statistics function 132
Load function (Version 1) 169
Log-Print function 456
Modify function 382
Print function 363
Recover function 449
Reorganize function 119
Restore function 449
Review function 486
Sorted-Populate function 92
Unload function (Version 1)

155
coding control section 57
control statements for functions

86
executing functions that require

23
executing utilities that do not

require 29
formatting 25
general information 20
hierarchical structure 24
programs

comments in 25
formatting 25
hierarchical structure 24

sample program 57
submitting programs 20

V

validating programs 28
values in SORT statement

retaining 270
V-E statement 243, 248, 303,

306
Version 1 Load function See

Load function (Version 1)
Version 1 Unload function See

Unload function (Version 1)
Version 2 Load function See

Load function (Version 2)
Version 2 Unload function See

Unload function (Version 2)
virtual storage for SORT program

314
VSAM file 292

W

work files 34, 36
WORK statement

Load function (Version 2) 303,
316

Unload function (Version 2)
243, 253

X

XTRACE function 32
XTRACE parameter 32

Index

510 P26-6260-63

	Back to DOCUMENTATION MENU
	About this book
	Using this document
	Document organization
	Revisions to this manual
	Conventions

	SUPRA Server documentation series

	Chapter 1 - Using the DBA utilities
	DBA utilities overview
	Utility functions and applications
	Non-UCL utilities and applications

	Executing functions that require UCL
	Using the hierarchical structure of UCL
	Formatting UCL
	Coding null arguments
	Coding arguments
	Validating programs

	Executing utilities that do not require UCL
	Executing utilities with different types of files
	Running debug and trace for DBA utilities
	Using the DEBUG function
	Using the XTRACE function

	Chapter 2 - Executing the functions
	Defining files
	Defining files for functions that use UCL in OS/390
	File definitions in OS/390
	Files you define for functions that do not sort in OS/390
	Files you define for functions that sort in OS/390

	Defining files for functions that use UCL in VSE
	File definitions in VSE
	Files you define for functions that do not sort in VSE
	Files you define for functions that sort in VSE

	Defining files for the Execution Statistics utility
	File definitions for Execution Statistics in OS/390
	Files you define for Execution Statistics in OS/390

	File definitions for Execution Statistics in VSE
	Files you define for Execution Statistics in VSE

	Defining files for the PDM Termination utility
	File definitions for PDM Termination in OS/390
	Files you define for PDM Termination in OS/390
	File definitions for PDM Termination in VSE
	Files you define for PDM Termination in VSE

	Choosing run˚time options
	Defining the amount of storage
	Coding the run˚time interface parameters
	Results of different combinations of SPIE and DUMP

	Setting the STACK parameter
	Estimating the size of the stack/heap

	Inserting exit programs into functions
	
	Parameter list addresses and contents for a single exit point
	Parameter list addresses and contents for multiple exit points

	Using sort programs
	Allocating sort memory
	Allocating sort work space
	For the Version 1 Load function
	For the Sorted˚Populate function
	For the File Statistics Function

	Handling errors in sort programs

	Chapter 3 - Coding the control section
	Coding the UCL for the control section
	Determining control statements for functions

	Chapter 4 - Coding the Format function
	Format function syntax

	Chapter 5 - Coding the Sorted-Populate function
	Coding the UCL for the Sorted˚Populate function
	Writing exit programs
	Selecting exit points
	When exit points occur

	Summary of data parameters and valid actions
	Data parameters
	Valid actions for exit programs in Sorted˚Populate

	Requesting statistics

	Chapter 6 - Coding the Depopulate function
	Coding the UCL for the Depopulate function
	Writing exit programs
	Selecting exit points
	When exit points occur

	Summary of data parameters and valid actions

	Requesting statistics

	Chapter 7 - Coding the Reorganize function
	Coding the UCL for the Reorganize function
	Writing exit programs
	Selecting exit points
	Summary of data parameters and valid actions

	Requesting statistics

	Chapter 8 - Coding the File Statistics function
	Coding the UCL for the File Statistics function
	Programming examples

	Requesting file statistics
	Requesting Basic File Information (BASE)
	Requesting Current File Size (SIZE)
	Requesting Linkpath Statistics (LINK)
	Requesting Chain Statistics (CHAIN)
	Requesting Chain Length Statistics on primary files
	Requesting Chain Length Statistics on related files
	Requesting Chain Migration Statistics on primary files
	Requesting Chain Migration Statistics on related files
	Requesting Synonym Statistics on primary files

	Requesting Record Code Statistics (CODE)

	Chapter 9 - Coding the Expand function
	Chapter 10 - Coding the Version 1 Unload and Load functions
	Coding the UCL for the Unload function
	Coding the UCL for the Load function
	Writing exit programs
	Modifying the data record
	Deleting the current data record
	Adding a new data record

	Retaining the format of the data file
	Formatting the run control record
	Formatting the pre-header record
	Formatting the file header record
	Formatting the data records
	Considerations

	Formatting the file trailer record
	Considerations

	Examples of Unload, Load, and Modify functions
	Example 1—Unloading and loading all of the Burry’s database files
	UCL samples
	Sample listing

	Example 2—Unloading, changing and loading files
	Depopulating files
	Unloading files
	Clearing the linkpath to a file that was not unloaded
	Loading files
	Populating files
	Sample listing

	Chapter 11 - Coding the Version 2 Unload, Load, and Insert Linkpath functions
	Version 2 overview
	What to do with linkpaths when you unload and load

	Coding the CSIPARM file for Unload, Load, and Insert Linkpath
	Coding CSIPARM file and run control statements for PDM files
	Coding CSIPARM file and run control statements for directory files

	Coding JCL for Unload, Load, and Insert Linkpath functions
	Files you define in OS/390 JCL
	Files you define in VSE JCL

	Unloading PDM files
	Defining files
	File definitions for the Unload function
	Defining the CSU#REC file
	Defining the CSUAUX file
	Defining the OUTFILE

	Coding run control statements
	Run control statements for the Unload function
	Coding the DUMP statement
	Coding the NEW˚SCHEMA/NEW˚ENVDESC statement
	Coding the RELATED: statement
	Coding the V-E: statement
	Coding the PRIMARY: statement
	Coding the S-E: statement
	Coding the RECFORM statement (VSE only)
	Coding the SORTNAME statement
	Coding the WORK statement (VSE only)
	Coding the TEST statement

	Coding file control statements
	File control statements for the Unload function
	Coding the LINKPATH statement
	Coding the Element List statement
	Coding the BLANK-LINKS statement

	Unloading Directory files
	Using exit points
	Using exit point 10
	Using registers
	Retaining values in the SORT statement
	Sample programs for exit point 10

	Using exit point 20
	Using registers
	Sample programs for exit point 20
	Record code modification by exit programs illustrating the use of exit points 20 and 30
	Record sequence before and after being sorted with record codes modified at exit points 20 and 30

	Using exit point 30
	Using registers
	Sample programs for exit point 30

	Loading PDM files
	Defining files
	Files you define in OS/390 JCL to load
	Files you define in VSE JCL to load
	File definitions for the Load function
	Coding the LINKWK01/LNKWRK1 file
	Coding the LINKWK02/LNKWRK2 file

	Coding run control statements for the Load function
	Coding the SCHEMA statement
	Coding the RELATED: statement
	Coding the V-E: statement
	Coding the PRIMARY: statement
	Coding the S-E: statement
	Coding the MAXKEY statement
	Coding the LINKWKnn statements (VSE only)
	Coding the RECFORM statement (VSE only)
	Coding the SORTCORE statement
	Coding the SORTNAME statement
	Coding the WORK statement (VSE only)

	Coding the file control statements for the Load function
	Coding the Element List statement
	Coding the LINKPATH statement

	Loading Directory files
	Coding the Insert Linkpath function
	Defining files
	Defining the LINKWK01/LNKWRK1 file
	Defining the LINKWK02/LNKWRK2 file

	Coding control statements
	Coding the INSERT statement
	Coding the LINKWKnn statements (VSE only)

	Examples of Unload, Load, and Insert Linkpath functions
	Internal schema of Burry's database
	Internal schema of files before unloading
	Internal schema of files after unloading
	Unloading and loading all of Burry's database files
	Sample UCL and control statements
	Sample listings

	Unloading, changing, and loading files
	Depopulating files
	Unloading files
	Loading files
	Inserting linkpath data for a file that was not loaded
	Populating files
	Sample listing

	Chapter 12 - Coding the Print function
	Coding the UCL for the Print function
	Writing exit programs
	Print examples

	Chapter 13 - Coding the Modify function
	Coding the Modify function
	Coding the UCL for the Modify function
	Writing exit programs
	Modify examples

	Chapter 14 - Coding the PDM Termination utility
	Coding the PDM Termination utility
	Coding the input statements for the PDM Termination utility
	PDM termination example

	Chapter 15 - Coding the Execution Statistics utility for release 2.1.6
	Coding the Execution Statistics utility for release 2.1.6
	Defining the files
	Arrangement of the statistics report
	Sample of the Physical Data Manager identification page
	Sample of the group identification page
	Sample of the system statistics page
	Sample of the file statistics page
	Sample of the file statistics totals for group
	Sample of the termination page

	Chapter 16 - Coding the Execution Statistics utility for release 2.4
	Coding the Execution Statistics utility for release 2.4
	Defining the files
	Arrangement of the statistics report
	Sample of the Physical Data Manager identification page
	Sample of the group identification page
	Sample of the system statistics page
	Sample of the file statistics page
	Sample of the file statistics totals for group
	Sample of the termination page

	Chapter 17 - Coding the Inter-Directory Copy utility
	Coding the Inter˚Directory Copy utility
	Coding the input statements for the Inter-Directory Copy utility
	Optional input statements
	Signon input statement
	Copy table input statement
	Edit mask input statement
	User input statement
	Security group input statement
	Schema input statement
	Conceptual schema input statement
	Domain input statement

	Executing the Inter-Directory Copy utility
	OS/390
	VSE

	Inter-Directory Copy example

	Chapter 18 - Coding the Recover, Restore, and Log-Print utilities
	Coding the Recover, Restore, and Log˚Print functions
	Coding the UCL for the Recover and Restore functions
	Coding the UCL for the Log-Print function
	Writing exit programs
	Selecting exit points
	Initialization and termination exits
	Open and close log file exits
	Analysis phase exits
	Application phase exits

	Valid actions

	Examples
	Recover example
	Restore example
	Log-Print example

	Chapter 19 - Coding the Review function
	Coding the Review function
	Coding the UCL for the Review function
	Review example

	Chapter 20 - Coding the Unlock function
	Coding the Unlock function

	Index

