Cincom

SUPRA SERVER PDM

DBA Utilities User’s Guide
(OS/390 & VSE)

P26-6260-63

SUPRA® Server PDM DBA Utilities User’s Guide (OS/390 & VSE)

Publication Number P26-6260-63

0 1983-1988, 1991, 1992, 1994, 1998, 2000, 2002 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage® iD CinDoc™ MANTIS®
C+A-RE™ iD CinDoc Web™ Socrates®
CINCOM® o iD Consulting™ Socrates® XML
Cincom Encompass iD Correspondence™ SPECTRA™
Cincom Smalitalk™ iD Correspondence Express™ SUPRA®
Cincom SupportWeb iD Environment™ SUPRA® Server
CINCOM SYSTEMS iD Solutions™ Visual Smalltalk®

i intelligent Document Solutions™ VisualWorks®
gOOoi™ Intermax™

UniSQL™ is a trademark of UniSQL, Inc.
ObjectStudio™ is a registered trademark of CinMark Systems, Inc.

All other trademarks are trademarks or registered trademarks of their respective companies.

Cincom Systems, Inc.

55 Merchant Street
Cincinnati, Ohio 45246-3732
U.S.A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Please see your Cincom
representative to be certain the items are available to you.

www.cincom.com

Release information for this manual

The SUPRA Server PDM DBA Utilities User’s Guide (0S/390 & VSE),
P26-6260-63, is dated January 15, 2002. This document supports
Release 2.7 of SUPRA Server PDM in IBM mainframe environments.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. Please take the survey provided with the
online documentation at your convenience.

Cincom Technical Support for SUPRA Server PDM

FAX: (513) 612-2000
Attn: SUPRA Server Support

E-mail: helpna@cincom.com

Phone: 1-800-727-3525

Mail: Cincom Systems, Inc.
Attn: SUPRA Server Support
55 Merchant Street
Cincinnati, OH 45246-3732
U.S.A.

mailto:helpna@cincom.com

Contents

About this book Xi
USING thiS QOCUMENT.......iieeiii e e e e e e e e s e eaeeaee s Xi
DocumeNnt OrganiZationoooiiiueiieiie e e e e e e e e e Xi

Revisions to thiS ManUualccoiiiiiiieii e Xiii

(0701 01V/=T 01 110] o SO PPPPPRPPPRR Xiv

SUPRA Server doCUumMENtation SEIIESiiiiiiiieiiiiiee et XVi

Using the DBA utilities 19
DBA ULIlItIES OVEIVIEW ... nnnnnnnnnnnnes 19

Utility functions and appliCationseeeeeeiiiiiiiiiie e 21

Non-UCL utilities and appliCationsccooiiuiiiiiiie i 22

Executing functions that require UCL..........ccooiiiiiiiiiie e seen e 23

Using the hierarchical structure of UCLooviiiiiiiiiiiiieiieeeee e 24

o] g = 1111 Vo T o USRS 25

Coding NUIL ArgUMENTS ...t ee e e 26

(O T0 [1aTo = 10 81 g 1Y o] €SP 27

Validating PrOOramMScoiie it e e e e e e e 28

Executing utilities that do Not require UCLccvvviviieeiiiiiieece e 29
Executing utilities with different types of files ..., 30
Running debug and trace for DBA ULIlItIESccvviiiiieiiiieee e 31

Using the DEBUG fUNCHON........coiiiiiiiiiiiaeee e 32

Using the XTRACE fUNCHON.........cociiiiiiee e e e e e e e e 32

Executing the functions 33
DEefiNING FllES ...ttt e e e e 33
Defining files for functions that use UCL in OS/390.........cccoveveeiiieeniiineen 33

Defining files for functions that use UCL in VSEoccoiiiiiiiiiiiiiiiieeeeee 36

Defining files for the Execution StatiStics ULtycovveiiiiiiieiiiiee e, 38

File definitions for Execution Statistics in OS/390..........ccvvvvviviiieiiiiiiiiieeeeeee, 38

File definitions for Execution Statistics in VSE.........cccccoce i 39

Defining files for the PDM Termination utilitycccooeiiiiieiiiiiiniiiiiieeeeee 40

DBA Utilities User's Guide \Y

Contents

(O aToTo 1S o To I U] B 110 LT 0] o] 1T] o £SO 42
Defining the amount Of STOragecooviiiiiiiiieiie e 43

Coding the run-time interface parameters........cccccvvvciviieeie e icciiiie e 44

Setting the STACK Parametercouiiiiiiiiiiiiieeee i e 46

Inserting exit programs iNto fUNCLIONScuviiiiiiiiiiiiiic e e 49

USING SO PrOGIAIMSeiiiieieiiiiiieeee e e e e e ettt ee e e e e s assbe e eeaeaeaaaasnbeaeeeaaeeaaaannbesreeaaeeeaaannes 52

P {[oTox= 111 a e K=Y] fa 1 T=10 Vo] o 20 53

Allocating SOrt WOIK SPACEuviiiiieiiiiiiiiiiee et e e 54

Handling errors in SOrt ProgramsSoccvvvveereeeeeseciiieeee e e e e s s e e e e e e snanaeees 56

Coding the control section 57
Coding the UCL for the control SECHON............ueiiiiiiiiiiiiii e 58
Determining control statements for fUNCLIONScccvvviviiiei e 86
Coding the Format function 87
Format fUNCHION SYNTAX ...ccooiiiiiiiiiiii et e e et a e e e e 88
Coding the Sorted-Populate function 91
Coding the UCL for the Sorted-Populate functionccccccveeeiiiciiiieeee e 92

WIItING ©XIT PrOGIAIMS. ...ciiiiiiiiiiie et e ettt e e ettt e e e e e s et e e e e e e e e anebbaeeeaaeeeeaannnes 97
SeleCting EXIt POINTS ...c.iiiiiiiiiie e e s e e e e e e s e e e e e e e e anns 97

Summary of data parameters and valid actionscccccceeevviiiiiieie e, 99

REQUESTING STALISHICS .. .uvvriiiiie e e i e e e e e e e e e st e e e e e e s 102
Coding the Depopulate function 105
Coding the UCL for the Depopulate funCtion ... 106

WIItING ©XIE PrOGIAIMS. ..itiiie ettt ettt et e e et e e e st e e e s bbeeeesbaeeeeanes 112
Selecting eXit POINTS ... a e 112

Summary of data parameters and valid actionscccccoeveviiieenniieeeenne 114

ReEQUESTING STALISICSuteieeiie ettt e et e e e e 117
Coding the Reorganize function 119
Coding the UCL for the Reorganize funCtionooovvviiiiieiiiiiiee e 119

WIItING ©XIT PrOGIAIMS. ..cciiiiiiititii it e ettt e e et e e e e e e st e e e e e e s e annbeeeeaeaeeaaannnes 124
Selecting eXit POINTSeiiiiiiiee it 125

Summary of data parameters and valid actionsccccccvveeiiiiiiiieeeeenenns 126

REQUESEING SEALISHICSeeiiiiiiiie it 129

vi P26-6260-63

Contents

Coding the File Statistics function 131
Coding the UCL for the File Statistics fuNCtioN..........ccccceeeviciiviiiie e 132
Programming eXampPlesccoooiiiiiiiiiia e 136

Requesting file StatiSTICS......cuurriiiee i e e 137
Requesting Basic File Information (BASE)c..uveviiiiiiiiiiiiiieee e 138

Requesting Current File Size (SIZE) ...t 139

Requesting Linkpath Statistics (LINK)........cooiiiiiiiiiiiice e 140

Requesting Chain StatisticS (CHAIN)........ccoiiiiiiiiiiiee e 141

Requesting Record Code StatisticS (CODE).........ccuieiiiiiiiiiiieeeiiiiieeeeeee 146

Coding the Expand function 147
Coding the Version 1 Unload and Load functions 153
Coding the UCL for the Unload fuNCHONcoocvviiiiieee e 155

Coding the UCL for the Load fUNCLIONccooiiiiiiiiiiee e 169

WIItING ©XIT PrOGIAIMS .. .uveieiiieee e e ittt et e e e e e st e e e e e s e et e e e e e e s s s snnteaeeeaeeesesnnntnnneeeees 181
Modifying the data reCord. ... 182

Deleting the current data reCord...........ccveeeiiiiiiiieeee e 182

Adding @ NeW data rECONMoouuiiiiieiee e 183

Retaining the format of the data fileccccceevi i 184
Formatting the run control reCOrd...........coouiiiiiiiiiiiie e 185

Formatting the pre-header reCord........ccccceeviiiiiiiiiie e 186

Formatting the file header record..........cccccoooiiiiiiiiiii e 187

Formatting the data reCords..........ccuvveiiieeee i 188

Formatting the file trailer reCord ... 190

Examples of Unload, Load, and Modify fuNCHIONSccccvuviiriiee i 191
Example 1—Unloading and loading all of the Burry’s database files........... 200

Example 2—Unloading, changing and loading files..........cccccccceviiiiiiinnnnnn. 213

Coding the Version 2 Unload, Load, and Insert Linkpath functions 225

VEISION 2 OVEIVIEW ...ttt e ettt ettt e e e e ettt e e e e e e skttt et e e e e e e e annnnbbeeeeaaeeeanns 225
What to do with linkpaths when you unload and loadcccccvvvveeeennns 228
Coding the CSIPARM file for Unload, Load, and Insert Linkpath..............cccccoonnnee. 230
Coding CSIPARM file and run control statements for PDM files 230
Coding CSIPARM file and run control statements for directory files............ 231
Coding JCL for Unload, Load, and Insert Linkpath functions.............ccccccvvveevviinnnen. 232
Files you define in OS/390 JCL......occuiiiiiiiaee e 233
Files you define iN VSE JCL...uuuiiiiiiiiiiiiiiiee et sanen e e 234

DBA Utilities User's Guide Vil

Contents

(8] o= To [T aTo T =d I 1Y/ I 11 S 235
DefiNiNG fllES ...eeiiieiiie e 235

Coding run coNntrol StAtEMENTS.......uuuiiiiee i e 242

Coding file control StateMEeNtSooeiiiiiiiiiiiie e 254
Unloading DIir€CtOrY fil@Suuuieei it e e 264
USING EXIE POINES ettt e e et e e e e e e s et e e e e e e e e e e nnnnbneeeaaeeas 265
USING €XIt POINT 10 ..uuiviiieiieee e e it e e e e e s s e e e e e e s st e e e e e e e e snnanneeeeeeeenennn 267

USING €XIE POINE 20 ...ttt e e e e e e e e e e e e e annes 279

USING €XIt POINT 30 ...uuiviiiiiieeee it e e e e s e e e e e e e s r e e e e e e e st reaeeeeeennn 286
LoAdING PDM filES ...ttt e 292
DEfINING FIES .evveieeee it e e e e e e e e e e e nnnes 292

Coding run control statements for the Load function.............cccocciiinnnns 302

Coding the file control statements for the Load functioncccceeeeeens 317
Loading DIr€CtOry filESeeiie i 322
Coding the Insert Linkpath fUNCHIONccoiiiiiiiiiicc e 322
DEfiNING fllES ...eeiiieiii e e 325

Coding coNtrol STAtEMENTSccciiiiiiiee e e e 328
Examples of Unload, Load, and Insert Linkpath functionsccccccoiiiiiiiiiiennnns 333
Internal schema of Burry's databasecccccceoveiiviiiiiee e 335

Internal schema of files before unloading.............ccoeeviiiiiiii e, 338

Internal schema of files after unloading.........cccooocvviveieee i 340
Unloading and loading all of Burry's database filesc.cccoviiiiiiiiinnnnnne. 342
Unloading, changing, and loading fileSccccceeiiiiiiiinee e 352
Coding the Print function 363
Coding the UCL for the Print fUNCLIONcouviiiiiiiee e 363
WIItING ©XIE PrOGIAIMS. ..itiiii ettt ettt et e e e st e e e st e e e abbeeeesbaeeeeane 376
PrINT @XAMPIES ..ot e e e e e e a e e 377
Coding the Modify function 381
Coding the Modify fUNCLIONcoiiiiiiiiiieiee e 381
Coding the UCL for the Modify fUNCION............oeiiiiiie e 382
WIItING EXIE PrOGIAIMS. ..citiiiee ittt ettt ettt e e et et e e st e e e abbeeeeabaeeeeane 393
MOAIfy @XAMPIES ...t a s 394
Coding the PDM Termination utility 399
Coding the PDM Termination ULcooiiiieiiiiie e 399
Coding the input statements for the PDM Termination utility.............cccccceevviiiiinnen. 400
PDM termination @XamIPIEc..eeiiiiieiee et 402

viii P26-6260-63

Coding the Execution Statistics utility for release 2.1.6

Coding the Execution Statistics utility for release 2.1.6.........cccccceeeeveiennee.
DefiNing the flleS.......ei e
Arrangement of the StatiStiCS repOrt........ccccovcviieiiee e

Sample of the Physical Data Manager identification page

Sample of the group identification page..........cccccvveveveeviiivinnnnnn.
Sample of the system statistiCS page.......ccceeveiivrieiiiieiiiiiiiieeenn,
Sample of the file statistiCs page.........cccvevveeeiiiiiiiiieee e
Sample of the file statistics totals for groupccccceeeiiiiiieene.n.
Sample of the termination pageccccccvvveeeviiiiiiiiee e,

Coding the Execution Statistics utility for release 2.4

Coding the Execution Statistics utility for release 2.4..........ccoeeeeeiiinnnn.
DefiNiNg the fileS....uuuiiiie e
Arrangement of the StatiStiCS report ..o

Sample of the Physical Data Manager identification page

Sample of the group identification page..........cccccveeveeeiniiiiiienneen.
Sample of the system statistiCS Page.....ccccveeevvvcvvrvereeeeeiiiiiieeeeen,
Sample of the file statistics page.........ccuveevieeiiiiiiie e,
Sample of the file statistics totals for groupcccceveveevviivvvennnn.
Sample of the termination page ...,

Coding the Inter-Directory Copy utility

Coding the Inter-Directory Copy ULIlity.........ceeeeeiiiiiiieieeee i
Coding the input statements for the Inter-Directory Copy utility................
Optional input StatEMENTSceveeeeiiiiiiiiiiee e
Signon iNpUt StatemMenteveiiiiie e
Copy table input statement...........ccoovciviieiee e
Edit mask input statement..........cooooiiiiiiieee e
User iNput StatemMeNt...........uvvvvieeiiiiieiece e
Security group input statementcceeeeiieiiiiiii e
Schema input StatemMeNtovveeiiiiiiiiiiiie e
Conceptual schema input statement..........cccoeiviiieiieininniiiiieeenn.
Domain input StatEMENtcvveeeiiiiiiiiiiiee e
Executing the Inter-Directory Copy ULIlityooocviiiiiiiiiiiieeeee e
OS/390 ...t

DBA Utilities User's Guide

Contents

403

................ 403

417

................ 417

Contents

Coding the Recover, Restore, and Log-Print utilities 447
Coding the Recover, Restore, and Log-Print fUNCtionsccccoecvivveeeeesvciiiieennn, 447

Coding the UCL for the Recover and Restore functionscccoccuvieeieeeniiiiiiiennenn. 449

Coding the UCL for the Log-Print funCtion..........cccceeeiiiiiiiiiec e 456

WIItING ©XIT PrOGIAIMS. ..ceii ittt e e ettt e e ettt e e e e e e e sttt e e e e e e s e annbeeeeaaeeeaaannnes 461
SeleCting EXIt POINTS ...c.iiiiiiiii e e e e e e e e e e e e e 462

Valid QCHIONS ... e e e e 469

= 10 0]][471
RECOVEN EXAMPIE ...t e e 471

RESIOrE EXAMPIE ... 475

LOG-Print @XamPle..........oeiiiiiiiie e 481

Coding the Review function 485
Coding the ReVIEW fUNCHIONoiiiiiiiiiiic e 485

Coding the UCL for the ReView fUNCHON............coooaiiiiiiiiieee e 486

REVIEW EXAMPIE ..ot e e e e e e e e s et e e e e e e e sennnnraeneeeees 487
Coding the Unlock function 489
Coding the UNIOCK fFUNCHIONooi it 489

Index 493

X P26-6260-63

About this book

Using this document

This manual tells how to code utilities to help control and monitor a
SUPRA database. It is written for database administrators familiar with
the SUPRA Physical Data Manager and Directory concepts.

The first chapter of this manual explains functions available to you. for
information about using the utilities with Series 80 and SUPRA 1.x files,
refer to the SUPRA Server PDM Migration Guide (0S/390 & VSE),
P26-0550.

Document organization

The information in this manual is organized as follows:

Chapter 1—Using the DBA utilities
Describes the utilities available to organize and maintain data and
perform a broad range of functions.

Chapter 2—Executing the functions
Describes what is required to execute functions and provides special
considerations.

Chapter 3—Coding the control section
Describes how to code a control section, which defines the
processing environment for the functions you want to perform.

Chapter 4—Coding the Format function
Describes how to code the format function to format database files.

Chapter 5—Coding the Sorted-Populate function
Describes how to code the Sorted Populate function, a secondary
key function to create the secondary key structure on large files.

Chapter 6—Coding the Depopulate function

Describes how to code the Depopulate function to delete secondary
keys.

DBA Utilities User's Guide Xi

About this book

Xii

Chapter 7—Coding the Reorganize function
Describes how to code the Reorganize function to correct
deterioration of a secondary key structure.

Chapter 8—Coding the File Statistics function
Describes how to code the File Statistics function to get reports on
various physical and logical characteristics of database files.

Chapter 9—Coding the Expand function
Describes how to code the Expand function to enlarge database files
that are too full for acceptable performance.

Chapter 10—Coding the Version 1 Unload and Load functions
Describes how to code the Version 1 Unload function to extract
records from a database file and write them to a sequential output
file. Also describes the Load function, which copies records from
sequential files to database files.

Chapter 11—Coding the Version 2 Unload, Load, and Insert
Linkpath functions
Describes how to code the Version 2 Unload, Load, and Insert
Linkpath functions if performance of Unload and Load functions is
critical or you are reloading the files in a SUPRA converted or Series
80 format.

Chapter 12—Coding the Print function
Describes how to code the Print function to print records from a
database file.

Chapter 13—Coding the Modify function
Describes how to code the Modify function to update records in
database files.

Chapter 14—Coding the PDM Termination utility
Describes how to code the PDM Termination utility, used to shut
down the PDM by executing a single function.

Chapter 15—Coding the Execution Statistics utility for release 2.1.6
Describes how to code the Execution Statistics utility (CSUXSTAT) to
generate a statistics report in release 2.1.6.

Chapter 16—Coding the Execution Statistics Utility for release 2.4

Describes how to code the Execution Statistics utility (CSUXSTAT) to
generate a statistics report in release 2.4.

P26-6260-63

About this book

Chapter 17—Coding the Inter-Directory Copy utility
Describes how to code the Inter-Directory Copy utility to copy
information from one SUPRA directory to another.

Chapter 18—Coding the Recover, Restore, and Log-Print functions
Describes how to code the Recover, Restore, and Log Print functions
to back off updates tot he last commit, reapply updates when files are
lost or damaged, or print selected information from the System Log
File without updating the database.

Chapter 19—Coding the Review function
Describes how to code the Review function to determine whether
database files are locked.

Chapter 20—Coding the Unlock function
Describes how to code the Unlock function to examine each field in
the lock record of files you specify, show incorrect fields, and update
lock records to indicate the file is locked.

Index

Revisions to this manual

The following changes have been made for this release:

¢

Revised the Considerations for the SECONDARY-KEY parameter on
page 95.

Added a Consideration for the PRESERVE clause on page 256.
Revised Element List illustrations on pages 262 and 320.

Added a consideration for the Element List statement beginning on
page 318.

Revised information in the section “Defining the LINKWKO2/LNKWRK2
file” on page 327.

Revised the output filename for the Inter-Directory Copy utility to LTRX,
under “VSE” on page 445.

DBA Utilities User's Guide Xiii

About this book

Conventions
The following table describes the conventions used in this document

series:
Convention |Description Example
Constant wi dth Represents screen images and PUT ' custoner . dat ,
type GET 'm |l er\custoner. dat
segments of code. PUT ' \ DEV\ RMTO'
Slashed b () Indicates a space (blank). BEGNDDDDSERI AL
The example indicates that four
spaces appear between the
keywords.
Brackets [] Indicate optional selection of

parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate
one of the following situations:

A single item enclosed by brackets =~ [WHERE search-condi tion]
indicates that the item is optional
and can be omitted.

The example indicates that you can
optionally enter a WHERE clause.

Stacked items enclosed by QWAIT) O
brackets represent optional gNOWNT)E
alternatives, one of which can be

selected.

The example indicates that you can
optionally enter either WAIT or
NOWAIT. (WAIT is underlined to
signify that it is the default.)

Braces { } Indicate selection of parameters.
(Do not attempt to enter braces or
to stack parameters.) Braces
surrounding stacked items
represent alternatives, one of
which you must select.

The example indicates that you
must enter ON or OFF when using
the MONITOR statement.

N
MONITOR a
EPFFD

Xiv P26-6260-63

About this book

|C0nvention Description |Examp|e
Underlining Indicates the default value supplied MWAIT) 0O
(In syntax) when you omit a parameter. gNOWNT)E
The example indicates that if you do
not choose a parameter, the system
defaults to WAIT.
Underlining also indicates an STATI STI CS
allowable abbreviation or the
shortest truncation allowed.
The example indicates that you can
enter either STAT or STATISTICS.
Ellipsis points... Indicate that the preceding item can I NTO : host-vari abl e
be repeated, [;i nd-vari abl e] e
The example indicates that you can
enter multiple host variables and
associated indicator variables.
UPPERCASE In most operating environments, COPY MY_DATA. SEQ
lowercase keywords are not case-sensitive, and HOLD DATA. SEQ
they are represented in uppercase.
You can enter them in either
uppercase or lowercase.
Italics Indicate variables you replace witha ~ FROM t abl e- nanme

Punctuation
marks

SMALL CAPS

2]
m

DBA Utilities User's Guide

value, a column name, a file name,
and so on.
In this example, you must substitute
the name of a table.
Indicate required syntax that you
must code exactly as presented.
() parentheses

period
, comma
: colon
single quotation marks
Represent a required keystroke.
Multiple keystrokes are hyphenated.
Information specific to a certain
operating system is flagged by a
symbol in a shadowed box ((0s/39d])
indicating which operating system is
being discussed. Skip any
information that does not pertain to
your environment.

(user-id, password,

db- nane)
I NFI LE ' Cust. Meno'
CONTROL LEN4
ALT-TAB
See the SUPRA Server

procedure library member
TIS$RDM for a list of RDM
procedures.

See the SUPRA Server
RDM sublibrary member
TXJ$INDX for a list of JCL.

XV

About this book

SUPRA Server documentation series

XVi

SUPRA Server is the advanced relational database management system
for high-volume, update-oriented production processing. A number of
tools are available with SUPRA Server including Directory Maintenance,
DBA utilities, DBAID, SPECTRA, and MANTIS. The following list shows
the manuals and tools used to fulfill the data management and retrieval
requirements for various tasks. Some of these tools are optional.
Therefore, you may not have all the manuals listed. For a brief synopsis
of each manual, refer to the SUPRA Server Digest (0S/390 & VSE),
P26-9062.

Overview

¢ SUPRA Server Digest (OS/390 & VSE), P26-9062

Getting started

¢ SUPRA Server PDM Migration Guide (O0S/390 & VSE), P26-0550*

¢ SUPRA Server PDM CICS Connector Systems Programming Guide
(OS/390 & VSE), P26-7452

General use
¢ SUPRA Server PDM Glossary, P26-0675

¢ SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for 0S/390 & VSE), P26-0126

P26-6260-63

About this book

Database administration tasks

¢

DBA Utilities User's Guide

SUPRA Server PDM and Directory Administration Guide (0S/390 &
VSE), P26-2250

SUPRA Server PDM Directory Online User’s Guide (O0S/390 & VSE),
P26-1260

SUPRA Server PDM Directory Batch User's Guide (0S/390 & VSE),
P26-1261

SUPRA Server PDM DBA Utilities User’s Guide (OS/390 & VSE),
P26-6260

SUPRA Server PDM Logging and Recovery (OS/390 & VSE),
P26-2223

SUPRA Server PDM Tuning Guide (OS/390 & VSE), P26-0225

SUPRA Server PDM RDM Administration Guide (OS/390 & VSE),
P26-8220

SUPRA Server PDM RDM PDM Support Supplement (OS/390 &
VSE), P26-8221

SUPRA Server PDM RDM VSAM Support Supplement (OS/390 &
VSE), P26-8222

SUPRA Server PDM Migration Guide (0OS/390 & VSE), P26-0550*

SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

SPECTRA Administrator's Guide, P26-9220

XVil

About this book

Xviii

Application programming tasks

¢

SUPRA Server PDM DML Programming Guide (OS/390 & VSE),
P26-4340

SUPRA Server PDM RDM COBOL Programming Guide (OS/390 &
VSE), P26-8330

SUPRA Server PDM RDM PL/1 Programming Guide (OS/390 &
VSE), P26-8331

SUPRA Server PDM Migration Guide (0S/390 & VSE), P26-0550*

SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

Report tasks

¢ SPECTRA User's Guide, P26-9561
NOTE Manuals marked with an asterisk (*) are listed more than once because
" you use them for multiple tasks.
NOTE Educational material is available from your regional Cincom education

department.

P26-6260-63

1

Using the DBA utilities

You can use the DBA utilities to organize and maintain data, and perform
a broad range of functions.

DBA utilities overview

Of the 14 DBA utilities, you are likely to begin with the Format function to
format new files. You can use the Load function to add data to the new
primary and related files. You can also use the Load function to both
format and add data to files in one step.

After you load the files, you can use the Sorted-Populate function to take
information from them to create secondary keys for the index files. You
can maintain the index files with the Depopulate and Reorganize
functions. The Depopulate function deletes secondary keys, and the
Reorganize function corrects the deterioration of the secondary key tree
structure that can occur with updates. With the Reorganize function, you
can rebuild a tree structure without accessing its primary or related file.

Once you have created your files, you can monitor their growth and
access time with the File Statistics and the Execution Statistics Utility
functions. When the files are too full for acceptable performance, you can
use the Expand function to enlarge the related files. The Unload and
Load functions can also be used to enlarge primary and related files. In
addition, the Load function repairs damaged linkpaths and arranges the
files so the PDM can access them more efficiently.

DBA Utilities User's Guide 19

Chapter 1 Using the DBA utilities

20

While you can use the Load and Unload functions to format and enlarge
files, the main purpose of these functions is to repair and reorganize files.
Depending on the format in which you want the files loaded, you can
choose one of two different versions of the Unload and Load functions.
The Version 1 Load and Unload functions automatically change any file's
format to that of SUPRA native files.

With the Version 2 Load and Unload functions, you can leave files in their
original format or change them to any other format. In addition, the
Version 2 functions repair damaged linkpaths and run much faster than
the Version 1 functions.

The Version 2 Insert Linkpath function adds linkpath data to primary files
without your reloading them. The Load function also updates the linkpath
fields with correct data.

For routine maintenance, you can use the Print and Modify functions.
With the Print function, you can see the records in database files. With
the Modify function, you can update records and blank out linkpaths. This
enables you to use the Version 1 Unload and Load functions to unload
and load related files, without unloading and loading their associated
primary files.

You execute all the functions listed in “Utility functions and applications”
on page 21 from a common driver module. To use any of these utilities,
code a Utilities Command Language (UCL) program. In the UCL
program, you can code any number of different functions.

You submit the UCL program by executing the CSUOUTIL load module
in OS/390 and VSE. In OS/390, you can also use the general utility
cataloged procedure TISUTUTL. For more information, refer to the
SUPRA Server PDM and Directory Administration Guide (OS/390 &
VSE), P26-2250.

P26-6260-63

DBA utilities overview

Utility functions and applications

The following table lists utility functions and their applications:

Utility

|App|ications

Format

Sorted-Populate

Depopulate
Reorganize

File Statistics
Expand

Version 1
Unload

Version 1 Load

Print
Modify

Recover
Restore
Log-Print

Review
Unlock

Formats a database file. The Format function sets all records in the
file to blanks and writes a file control record on the file. Use this
function only with SUPRA native files.

Puts secondary key information from primary and related files into
index files.

Deletes secondary keys.

Corrects the deterioration of the tree structure that can result from
updating the database.

Displays the physical and logical characteristics of database files.
Use this function only with SUPRA native files.

Expands the capacity of an existing related file. Use this function only
with SUPRA native files.

Extracts records from a database file and writes them to a sequential
output medium. Use this function only with SUPRA native files. You
can use the Version 1 Load and Unload functions to convert Series
80 or SUPRA converted files to the SUPRA native format. However,
these functions cannot convert SUPRA native files to Series 80 or
SUPRA converted format.

Formats database files and write data records from a sequential
medium to the files. Use this function only with SUPRA native files.
You can use the Version 1 Load and Unload functions to convert
Series 80 or SUPRA converted files to the SUPRA native format.
However, these functions cannot convert SUPRA native files to
Series 80 or SUPRA converted format.

Prints records from a database file. Use this function with SUPRA
native, SUPRA converted, and Series 80 files.

Updates records in a database file. Use this function with SUPRA
native, SUPRA converted, and Series 80 files.

Backs off updates to the database after an abend.
Reapplies updates to the database after an abend.

Prints selected information from the System Log File without updating
the database.

Determines whether database files are locked.
Unlocks database files after an abend.

DBA Utilities User's Guide

21

Chapter 1 Using the DBA utilities

Non-UCL utilities and applications

You do not use UCL with the utilities listed in the following table:

Utility |App|ications
Version 2 Extracts records from Series 80, SUPRA converted, SUPRA native,
Unload or SUPRA Directory files at high speed and writes them to a

Version 2 Load

Version 2 Insert
Linkpath

PDM
Termination

Execution
Statistics

Inter-Directory
Copy

sequential output medium appropriate for the Version 2 Load utility.

Formats Series 80, SUPRA converted, or SUPRA native database
files and writes data records at high speed from a sequential medium
(the output from a Version 2 Unload function) to the files.

Inserts linkpath data into Series 80, SUPRA converted, SUPRA
native, or SUPRA Directory files without reloading primary files. The
input for this utility must be the output of the Version 2 Load utility.

Shuts down the PDM.

Generates system statistics.

Copies information from one SUPRA Directory to another.

22

P26-6260-63

Executing functions that require UCL

Executing functions that require UCL

To program the Utility functions in “Utility functions and applications” on
page 21, you must use UCL. UCL is a procedural language that uses
statements to identify the functions to be performed. The CONTROL
statement initiates the control section, which establishes the processing
environment for the Utility functions.

The FUNCTION statement initiates a function such as load or unload.
You can code the FUNCTION statement more than once, and you can
combine many functions in a single UCL program. However, some
combinations of functions are not recommended. These combinations
are described in the appropriate chapters. The following example shows
how to organize a simple UCL program:
CONTROL (BEG N)
supporting control statements
FUNCTI ON (nane)
supporting function statenents
FUNCTI ON (nane)
supporting function statenents
CONTROL (END)

DBA Utilities User's Guide 23

Chapter 1 Using the DBA utilities

Using the hierarchical structure of UCL

UCL has a hierarchical structure. After each CONTROL or FUNCTION
statement, you code a number of subordinate statements. For example,
in the following UCL program, LIST is subordinate to CONTROL, and
FILE is subordinate to FUNCTION. This manual shows the subordinate
statements by indenting them.
CONTROL (BEG N)
LI ST (nane)
FUNCTI ON (nane)
FI LE (nane)
CONTROL (END)

To code a subordinate statement, you must code all of its superordinate
statements. For example, you must code a FUNCTION statement before
you code a FILE statement. This restriction also applies when
subordinate statements have subordinates. In the following UCL
example, the CONTROL statement has a subordinate statement, SORT,
which has a subordinate statement, MEMORY. You must code the SORT
statement before you code the MEMORY statement.
CONTROL (BEG N)
SORT ()
MEMORY (500K)
FUNCTI ON (SORTED- POPULATE)
STATI STI CS (ALL)
FI LE (PTMF)
SECONDARY- KEY (PTMFSKO1, PTMFSKO02)
LOAD- DENSI TY (80)
SECONDARY- KEY (PTMFSKO03)
LOAD- DENSI TY (90)
FI LE (RANV)
CONTROL (END)

24 P26-6260-63

Executing functions that require UCL

Formatting UCL

UCL has a free-form format that allows almost any coding style. Even
though this manual lists only one statement per line and indents to show
subordination, you do not need to follow this structure. For example, you
can code the following example this way:
COMVAND (ar gument)
STATEMENT (ar gunent)
STATEMENT (ar gunent)
STATEMENT (ar gunent)

Or this way:

COMVAND (ar gunent)
STATEMENT (argument) STATEMENT (argunent) STATEMENT (argunent)

When you put statements on the same line, you can put any number of
spaces between them, or you can leave out spaces. You can also insert
comments in your UCL program. You can provide any information you
wish about your program in these comments. To show that information is
a comment, put an asterisk in column 1. You must place your comments
after CONTROL (BEGIN) and before CONTROL (END) as in the
following example:
CONTROL (BEG N)
* TH'S UCL PROGRAM W LL FORNAT
* ALL USER FI LES.
ENV- DESC (MYDESC)
SCHEMA (MYSCHEMA)
FUNCTI ON (FORMAT)

* CUSTOMER FI LE *
FI LE (CUST)

* PURCHASE ORDER FI LE*
FI LE (PORD)

CONTROL (END)

DBA Utilities User's Guide 25

Chapter 1 Using the DBA utilities

26

Coding null arguments

Default values are provided for many statements so that you need not
code all statements. However, whenever you code a subordinate
statement to specify an option, you must also code the subordinate
statement's superordinate statement even if you code it with a null
argument. To code a null argument, put open and close parentheses
after the statement. You do not need to include a space between them.
The following is an example of a statement with a null argument:

LI ST ()
HEADER (YES)

To code the HEADER statement, you must first code the LIST statement.
If you code the HEADER statement without coding the LIST statement,
you receive an error message.

P26-6260-63

Executing functions that require UCL

Coding arguments

When you code a statement name and an argument, you must enclose
the argument in parentheses. You can use spaces or not as you like. For
example, the following statement formats are valid:

STATEMENT(ar gunent)

STATEMENT (ar gunent)

STATEMENT (argunent)

STATEMENT ()

STATEMENT ()

STATEMENT()

You code an argument differently depending on whether it is one of a set
or one of a list of items. In the following example, the format shows a
number of options in a set:

SUMVARY- DATA ([ALL] [FI LE] [NONE] [FUNCTI ON] [CUMULATI VE])

When the format shows an option is in a set, you can select any number
of options from the set. When you code the options, separate them with
one or more spaces. For example, if you select FILE and FUNCTION,
you can code them like this:

SUMVARY- DATA (FI LE FUNCTI ON)

If the format shows the argument can be a list, however, it looks like the
following example:

ALL
ELEMENT
| enent - |ist

If you code a list of elements instead of ALL, separate the elements with
commas, as shown in the following example:

ELEMENT(ELEMENT1, ELEMENT2, ELEMENT3)

You can also separate the items in a list with any number of spaces, as
shown in the following examples:

ELEMENT (ELEMENT1, ELEMENT2, ELEMENT3)
ELEMENT (ELEMENTZ, ELEMVENT2, ELEMENT3)

Do not embed spaces within an item. For example, ELEMENT1 and
ELEMENT 1 do not mean the same thing.

DBA Utilities User's Guide 27

Chapter 1 Using the DBA utilities

Validating programs

The program listing follows the opening message CSUL0101l:
COMMENCING COMMAND VALIDATION. The listing is an image of
your input program.

Errors are identified by an error flag (**ERROR**), error pointer (@), and
a three-digit number. These three indicators appear immediately after
each line in which an error occurs. The following annotated listing
identifies errors in lines 18 and 21.:

||Line number |Linetext |Indicator

1 CONTROL (BEGQ N) Valid Command

2 ENV- DESC (MYDESC) Valid Command

17 FUNCTI ON (PRI NT) Valid Command

18 FILE CUST Invalid Command

** ERROR* * @01 Inserted Error Information
Error Number
Error Pointer

19 RECORD (ALL) Valid Command

20 ELEMENT (ALL) Valid Command

21 FI'LE (ABC#H) Invalid Command

** ERROR* * @15 Inserted Error Information
Error Number
Error Pointer

44 CONTROL (END) Valid Command

The error flag appears in the line number column in the left margin. The
pointer identifies the error's exact location in the line. The three-digit
number specifies the error's cause or condition. Only one error is
reported in each line. For example, in line 18, the number 001 indicates
the open parenthesis is missing. The pointer is immediately below the file
called CUST where the open parenthesis should be. Since only one error
is reported in each line, nothing indicates that the close parenthesis is

also missing.
NOTE If a UCL programming error occurs, validation continues flagging errors
" to the end of the program. No function processing is done until you
2 correct all errors and rerun the job.

28 P26-6260-63

Executing utilities that do not require UCL

Executing utilities that do not require UCL

The utilities listed below do not use UCL. See the applicable chapters for
the input statements for these utilities:

¢

Version 2 Load function (see “Coding the Version 2 Unload, Load,
and Insert Linkpath functions” on page 225)

Version 2 Unload function (see “Coding the Version 2 Unload, Load,
and Insert Linkpath functions” on page 225)

Version 2 Insert Linkpath function (see “Coding the Version 2 Unload,
Load, and Insert Linkpath functions” on page 225)

PDM Termination (see “Coding the PDM Termination utility” on
page 399)

Execution Statistics utility (see “Coding the Execution Statistics utility
for release 2.1.6” on page 403 or “Coding the Execution Statistics
utility for release 2.4” on page 417)

Inter-Directory Copy (see “Coding the Inter-Directory Copy utility” on
page 433)

You execute each of these utilities as separate programs.

DBA Utilities User's Guide

29

Chapter 1 Using the DBA utilities

Executing utilities with different types of files

You can execute all the utilities with SUPRA native files. However, you
cannot execute all of them with Series 80 or SUPRA converted files.

If you use the following utilities with a Series 80 or SUPRA converted file,
the results are unpredictable, and you may damage the file:

¢ Expand
¢+ Modify

If you use the following utilities with a Series 80 or SUPRA converted file,
the results are unpredictable, but you do not damage the file:

¢ File Statistics
¢ Print
If you use these utilities with a Series 80 file, the following results:

¢ Format—creates an empty SUPRA native file (not Series 80 or
SUPRA converted file).

¢ Version 1 Load—creates SUPRA native file. Pre-SUPRA PDMs
cannot use the file, and the Unload function cannot convert it back to
pre-SUPRA PDM format. To process Series 80 or SUPRA converted
files, use the Version 2 Unload and Load functions.

You can run the following utilities with a Series 80 file or a SUPRA
converted file:

¢ Version 1 Unload—the Version 1 Load utility creates only SUPRA
native files.

¢ Version 2 Load
¢ Version 2 Unload

¢ Version 2 Insert Linkpath

30 P26-6260-63

Running debug and trace for DBA utilities

Running debug and trace for DBA utilities

Debug and trace facilities are available for DBA Utilities. On occasion,
you may need debug output to help your technical service center resolve
a usage or production problem.

Use Utility Control Language statements to activate debugging and
tracing.

To run debug or trace in OS/390 environments, add this statement to
your JCL:

//QUTPUT DD DSN =*

To run debug or trace in VSE environments, add these statements to
your JCL for printed output or for disk output:

For printer:
/1 ASSGN QUTPUT, SYSLST

For disk:

//DLBL OUTPUT, ' xxxx',, SD
/1 EXTENT SYSnnn, XxXxx

These statements define the output file for the output produced by debug
or trace.

DBA Utilities User's Guide 31

Chapter 1 Using the DBA utilities

32

Using the DEBUG function

The DEBUG function causes the utilities to print out debugging
information during utility execution. DEBUG produces a substantial
amount of output. However, the amount of debugging support and the
meaning of the DEBUG options is not consistent across the utilities
functions.

The DEBUG parameter must be part of the CONTROL section of a UCL
program. Code the parameter as follows:

CALL 0
FomL Q

DEBUG (
FFUNCTION]
BrRACE H

¢ ALL returns all types of debugging information.
¢ DML returns a listing of Physical View DML CALL parameters.
¢ FUNCTION returns the activities of all function processing.

¢ TRACE returns logical calls.

Using the XTRACE function

The XTRACE function enables tracing in the utilities' parser. Each
modification of the parsing stack triggers a listing of the stack and other
relevant information. This information provides a history of the parsing
stack including pushing and popping of tokens according to the grammar
rules. You must understand compilers and parsers in order to understand
the output.

Code the XTRACE parameter as follows:
N
XTRACE ([D B
OFFE

You may code XTRACE anywhere in a UCL program. You may enable
the trace function for the entire UCL program or trace only a few
statements in the program.

P26-6260-63

2

Executing the functions

When you execute functions that require UCL, you must define files and
code run-time options. In addition, some functions sort and some
functions have exit points where you can insert exit programs. In all
cases, there are special considerations.

Defining files

To execute the functions, you must define files for libraries, input, output,
work, Directory, and PDM. For the functions that use UCL, you can use
the file definitions in “Defining files for functions that use UCL” on

page 33.

To define files for functions that do not use UCL, see “Coding the Version
2 Unload, Load, and Insert Linkpath functions” on page 225 for the
Version 2 Unload, Load, and Insert Linkpath functions, “Defining files for
the Execution Statistics utility” on page 38 for the Execution Statistics
utility, and “Defining files for the PDM Termination utility” on page 40 for
the PDM Termination utility.

Defining files for functions that use UCL in OS/390

You define different files in OS/390 and VSE. Differences are noted
where they occur.

To execute functions in OS/390, you must define the files listed in “File
definitions in OS/390” on page 34. The figure in “Files you define for
functions that do not sort in OS/390” on page 35 illustrates the
configuration of the files needed for functions that do not sort. The figure
in “Files you define for functions that sort in 0OS/390” on page 35 shows
the additional files needed for functions that sort.

In OS/390, you can use the file definitions in the cataloged procedure
TISUTUTL. You do not need to read further unless you want more details
about defining files.

DBA Utilities User's Guide 33

Chapter 2 Executing the functions

File definitions in OS/390

Type of file |Name of file |Use of file

Libraries in STEPLIB In this data set concatenation, you declare the

0S/390 libraries where the system looks for the function's
load module, the single-task PDM load module, and
any exit programs you code.

SORTLIB In this data set concatenation, you declare the
libraries where the system looks for the sort
program.

Input INPUT You code the UCL in this data set.

CSIPARM In this data set and in the SCHEMA and ENV-DESC
statements in the UCL control section, you code the
input to the single-task PDM.

Output Data OUTPUT You define this data set to hold the output that the
Sets functions create.

SYSOUT You define this data set to hold output that the
operating system creates.

SYSUDUMP You define this data set to hold output from a dump,
if you request one.

Work Files CSUWORK You define this data set for the functions to use as a
work file as they interpret and execute the UCL.

CSI#WKOn (where n=1, 2, 3, and 4.) You define these data sets
for sort work space. You need these data sets only
for functions that sort.

Other Files Directory You define these files for all functions except
Log-Print.
PDM You define these files only when the function needs

them. For example, if you are executing the File
Statistics utility against only the Directory files, you
do not need to define.

34

P26-6260-63

Defining files

Files you define for functions that do not sort in OS/390
The following figure illustrates the configuration of the files needed for

functions that do not sort.

CSIPARM

— | CSUOUTIL (0S/390)
INPUT

SYSOUT

SYSUDUMP

ool

CSUWORK Directory Your
Files PDM
Files

OUTPUT

Files you define for functions that sort in OS/390
The following figure shows the additional files needed for functions that

sort.
SYSOUT
SYSUDUMP
—>
CSIPARM OUTPUT
—> CSUOQUTIL (0S/390)
INPUT
> <> CSI#WKO01
SORT <> CSI#WK02
I I I PROGRAM | ¢ csi#wKO3
. <> CSI#WK04
CSUWORK Directory Your
Files PDM
Files
DBA Utilities User's Guide 35

Chapter 2 Executing the functions

Defining files for functions that use UCL in VSE

vsg| To execute functions in VSE, you must define the files listed in the
following table. “Files you define for functions that do not sort in VSE” on
page 37 illustrates the files you must define for functions that do not sort;
“Files you define for functions that sort in VSE” on page 37 shows the
files for functions that sort.

File definitions in VSE

Type of file |Name of file |Use of file

Libraries LIBDEF In the library definition search chain, you declare the
libraries and sublibraries where the system looks for
the function's program, the PDM program, the sort
program, and any exit programs you code.

Input SYSIPT In this system logical unit, you code the UCL.

CSIPARM In this data set and in the SCHEMA and ENV-DESC
statements in the UCL control section, you code the
input to the single-task PDM. (You do not need this
file for the Log-Print function.)

Output SYSLST You define this system logical unit for the output
from the functions, the operating system, and any
dump you request.

Work Files CSUWORK You define this data set for the functions to use as a
work file as they interpret and execute the UCL.
CSI#WK1 You define this data set for sort work space. You
need this data set only for functions that sort.
Other Files Directory You define these files for all functions.
PDM You define these files only when the function needs

them. For example, if you run File Statistics with only
the Directory files, you do not need to define PDM
files.

Define your PDM files as direct access (does not
apply to VSAM). In the Format, Version 1 Load, and
Expand functions, also define the same files as
sequential access and prefix their names with a Z.
For example, DLBL PQRSTUV becomes DLBL
ZPQRSTU.

36 P26-6260-63

Defining files

Files you define for functions that do not sort in VSE

CSIPARM

’ CSUOUTIL ' | SYSLST

P

CSUWORK Directory Your
Files PDM
Files

SYSIPT

Files you define for functions that sort in VSE

CSIPARM —* | SYSLST
’ CSUQOUTIL
SYSIPT
«— SORT “—> CSI#WKO01
I I I PROGRAM | «— UTLRCVR
CSUWORK Directory Your
Files PDM
Files

DBA Utilities User's Guide 37

Chapter 2 Executing the functions

Defining files for the Execution Statistics utility

The Execution Statistics utility does not require UCL. The files you define
for this utility are not quite the same as for the functions that require UCL.

The following table lists the files you define in 0S/390. “File definitions for
Execution Statistics in VSE” on page 39 lists the files you define for VSE.
“Files you define for Execution Statistics in OS/390” on page 38 shows
the configuration of the OS/390 files. “Files you define for Execution
Statistics in VSE” on page 39 shows the configuration of the VSE files.

In OS/390 and VSE, see the sample JCL member TXJPSTAT. You do
not need to read further unless you want more details about defining files.

File definitions for Execution Statistics in OS/390

Type of file | Name of file

|Use of file

Libraries STEPLIB

Input Data Sets INPUT

STATS
Output Data OUTPUT
Sets

SYSUDUMP

In this data set concatenation, you declare in OS/390
the libraries where the system looks for the
function's load module, the single-task PDM load
module, and any exit programs you code.

In this data set, you code the record size and block
size of the STATS file.

You define this data set to hold execution statistics
records from the PDM.

You define this data set to hold the output from the
function.

You define this data set to hold output from a dump,
if you request one.

Files you define for Execution Statistics in OS/390
The Execution Statistics utility uses no work, Directory, or PDM files.

INPUT

STATS

38

OUTPUT

CSUXSTAT ’
SYSUDUMP

P26-6260-63

Defining files for the Execution Statistics utility

File definitions for Execution Statistics in VSE

In VSE, you define the files listed below. The figure following the table
shows their configuration.

Type of file Name of file

Use of file

Libraries LIBDEF

Input SYSIPT
STATS

Output SYSLST

In the library definition search chain, you declare the
libraries and sublibraries where the system looks for the
function's program, the PDM program, the sort program,

and any exit programs you code.

In this system logical unit, you code the record size and

block size of the STATS file.

You define this data set to hold execution statistics

records from the PDM.

You define this system logical unit for the output from the
functions, the operating system, and any dump you

request.

Files you define for Execution Statistics in VSE
The Execution Statistics utility uses no work, Directory, or PDM files.

SYSIPT

STATS

DBA Utilities User's Guide

’ CSUXSTAT

' SYSLST

39

Chapter 2 Executing the functions

Defining files for the PDM Termination utility

The PDM Termination utility does not require UCL. The files you define
for this utility are not quite the same as for the functions that require UCL.

The following table lists the files you define in 0S/390. “File definitions for
PDM Termination in VSE” on page 41 lists the files you define for VSE.
“Files you define for PDM Termination in OS/390” on page 41 shows the
configuration of the OS/390 files. “Files you define for PDM Termination
in VSE” on page 41 shows the configuration of the VSE files.

In OS/390, you can use the file definitions in the cataloged procedure
TISDBTMC.

File definitions for PDM Termination in OS/390

Type of file |Name of file |Use of file

Library STEPLIB In this data set concatenation, you declare the
libraries where the system looks for the function's
load module, the single-task PDM load module, and
any exit programs you code.

Input Data Set INPUT In this data set, you code the input to the PDM
Termination utility.
CSIPARM You code this data set to hold the same CSIPARM
information that you used to initialize your PDM.
Output Data Set OUTPUT You define this data set to hold the output that the

functions create.

SYSUDUMP You define this data set to hold a dump if you
request one.

40 P26-6260-63

Defining files for the Execution Statistics utility

Files you define for PDM Termination in OS/390
The PDM Termination utility uses no work, Directory, or PDM files.

INPUT » » OUTPUT

CSUTTERM
CSIPARM * > SYSUDUMP

File definitions for PDM Termination in VSE
The following table lists the files you define for VSE:

Type of file |Name of file |Use of file

Library LIBDEF In the library definition search chain, you declare the
libraries and sublibraries where the system looks for
the function's program, the PDM program, the sort
program, and any exit programs you code.

Input SYSIPT In this system logical unit, you code the input to the
PDM termination utility.
CSIPARM You code this data set to hold the same CSIPARM
information that you used to initialize your PDM.
Output SYSLST You define this system logical unit for the output

from the functions and the operating system, and for
any dump you request.

Files you define for PDM Termination in VSE
The PDM Termination utility uses no work, Directory, or PDM files.

INPUT *

CSUTTERM » SYSLST
CSIPARM *

DBA Utilities User's Guide 41

Chapter 2 Executing the functions

Choosing run-time options

<
(7))
m

42

Several parameters affect the run-time environment. You code these
parameters when you execute the Execution Statistics utility or any
functions that require UCL. Do not code these parameters when you
execute the Version 2 Unload, Load, and Insert Linkpath functions.

To set the run-time environment, you must code the size of the region or
partition, the stack, and possibly the 1/O buffers. You must also indicate
whether you want to print a dump or just messages. Your code would
look like one of the following examples, depending on your operating
system.

In OS/390, code the following:

'/ stepname EXEC your pgm PARME' [your run-tine
paraneters to the operating systeni/
[your function's run-tine paraneters]'

An example would look like this:
/1 FUNCTI ON EXEC CSUQUTI L, PARME' / STACK=300K, NOSPI E, NODUMP'

In VSE, code the following:

/1 EXEC your pgm S| ZE=[your size paraneter],
PARME' [your run-tinme paraneters to the operating systeni/
[your function's run-tine paraneters]

An example would look like this:
/1 EXEC CSUQUTI L, SI ZE=(AUTO, 150K) , PARM=' / STACK=300K, NOSPI E, NODUMP'

P26-6260-63

Choosing run-time options
Defining the amount of storage
You must have sufficient storage available to hold the following:
¢ The function's program

¢ The size of the stack/heap you code in the STACK parameter in the
JCL

¢ The single-task PDM

¢ The sort work space you code in the MEMORY statement of the UCL
(including space for the sort program, if the function uses one)

¢ The exit program if you code one in the STANDARD-EXIT statement
of the UCL

In OS/390, code the size of the address space in the REGION parameter
of the JOB statement in the JCL.

In VSE, you must set the size of your partition when you initialize VSE.
When you execute the functions, set the SIZE parameter on the EXEC
statement in the JCL to the size of your function. For example, you can
code SIZE=AUTO or SIZE=xxxK, where xxx is larger than the function.

<
(7))
m

In VSE, if your function has a sort program, add the size of the sort work
space to the size of the function. For example, code SIZE=(AUTO,xxxK)
where xxx is larger than the memory you allocated in the MEMORY
statement of the UCL, or code SIZE=yyyK where yyy is larger than the
function and the sort work space added together.

DBA Utilities User's Guide 43

Chapter 2 Executing the functions

Coding the run-time interface parameters

IOBUF=yyyK

TIF!

STACK=xxxK

TIF! |

SPIE/NOSPIE

TIF

After you set the amount of memory, code the following run-time
parameters in any order. The last two interact with each other. To see the
results of their possible combinations, see “Results of different
combinations of SPIE and DUMP” on page 45. Follow the coding
recommendations to avoid difficulty.

This parameter indicates the amount of storage to return to OS/390 for
1/0 buffers and control blocks after the STACK value is allocated. (Not valid in
VSE.) Since little of the function's I/O uses this storage, the 36K default is
sufficient.

We recommend not coding this parameter.

This parameter sets the amount of storage for the run-time stack/heap. The
functions need at least 8K. If you do not code this parameter, the default is the
entire region.

You will want to leave room in your region for loading other programs, such as
the PDM or an exit program, so we recommend always coding this parameter.

For further information and recommended values, see “Setting the STACK
parameter” on page 46.

This parameter indicates whether the run-time interface should intercept
program checks by the operating system.

The default is SPIE; however, we recommend coding NOSPIE (not intercept
them).

DUMP/NODUMP You can use this parameter to indicate whether you want a dump of the address

44

space in OS/390 or the partition in VSE. This parameter determines whether you
get a dump when:

¢ The run-time interface intercepts a program check. If you coded NOSPIE,
the run-time interface does not catch a program check and the operating
system creates a dump.

¢ Arun-time error occurs. If a run-time error occurs, you do not need a dump.
The default is DUMP; however, we recommend coding NODUMP.

P26-6260-63

Choosing run-time optio

Results of different combinations of SPIE and DUMP

ns

Action on abend generated by

Action on abend generated by

Run-time run-time system (2506, a operating system (SOC1, an
options stack/heap collision) operation exception)
SPIE, DUMP Run-time system generates Run-time system catches abend
abend
Run-time system prints Run-time system may print
messages messages
Run-time system returns abend Run-time system returns abend
code (2506) code (2531)
Run-time system prints dump Run-time system prints dump
SPIE, NODUMP Run-time system generates Run-time system catches abend
abend
Run-time system prints Run-time system may print
messages messages
Run-time system returns abend Run-time system returns abend
code (2506) code (2531)
Run-time system prints no dump Run-time system prints no dump
NOSPIE, DUMP Run-time system generates Run-time system does not catch
abend abend
Run-time system prints Operating system performs
messages abend logic
Run-time system returns abend Operating system returns abend
code (2506) code (50C1)
Run-time system prints dump Operating system may print
dump
NOSPIE, Run-time system generates Run-time system does not catch
NODUMP abend abend
(recommended)

Run-time system prints
messages

Run-time system returns abend
code (2506)

Run-time system prints no dump

Operating system performs
abend logic

Operating system returns abend
code (50C1)

Operating system may print
dump

DBA Utilities User's Guide

45

Chapter 2 Executing the functions

Setting the STACK parameter

When you code the STACK parameter, you set aside an area of memory
called the stack/heap for the functions to use. The stack/heap has two
areas, the Procedure Call Stack and the Dynamic Memory Heap, as
shown in the following figure.

Stack “—0
(Unused)
Heap +— xxx K

As the figure shows, the stack starts at the beginning of the area. It
stores some run-time information and all global variables. In addition,
when each procedure starts, it allocates an area on the stack to store its
local variables, and call and return information.

As the procedure calls more nested procedures, the stack grows larger.
As the nested procedures return, the stack grows smaller. Thus, the size
of the stack depends on the levels of nesting in the procedure calls, and
the number and size of the procedures' parameters and local variables.
As the stack gets larger, it allocates space toward the heap area.

The heap is the area that functions dynamically allocate at run-time. In it
they store internal context information, that is, variables that are not
stored in the stack area. When the functions no longer need the space,
they free it. As an area is freed, it can be reallocated. Thus, this area
varies in size. When a procedure allocates the first heap area, it starts at
the end of the space. When a procedure allocates a new area, it takes
the new area from the space closer to the stack. As the following figure
shows, when the stack and heap get larger, the unused space between
them gets smaller.

Stack “—o0
(Unused)
Heap +— xxx K

46 P26-6260-63

Choosing run-time options

Estimating the size of the stack/heap

Because the size of the stack/heap varies, it is difficult to provide reliable
estimates or formulas to determine the size. It is best to use the STACK
value in the JCL example for each function. If this number proves to be
insufficient, use “File definitions for PDM Termination in VSE” on page 41
to estimate how much larger to make it.

You know when the size is too small because you receive an error
message and an abend code at run-time. The message states that the
stack and heap have collided; that is, they are out of memory.

To estimate how much larger to make the stack, consider the level of
complexity in the UCL program. Complex tasks require more space. For
example, if you code the LIST option for the Unload function, more
procedures are called and you need more stack space.

Because the heap area is allocated dynamically, its size varies more than
the stack and is harder to predict. In functions that require UCL, the heap
gets larger as the UCL gets more complex. The size of the heap depends
on the number of control blocks the functions create for internal use.

DBA Utilities User's Guide 47

Chapter 2 Executing the functions

To help you determine which functions may require more space, The
following table shows the functions that use the stack/heap and on what
their size depends.

Variation in
Function stack size Resulting from
Execution Very Little
Statistics
PDM Very Little
Termination
Expand Average
Format Little
Review Little
Unlock Little
Print Average
Modify Average
File Statistics Much Complexity of most complex database file.
Log-Print Very Much Number of tasks and database files it must analyze.
Recover Very Much Number of tasks and database files it must analyze
and the size of the largest log record if more than 32K.
Restore Very Much Number of tasks and database files it must analyze
and the size of the largest log record if more than 32K.
Version 1 Much Complexity of most complex database file.
Unload
Version 1 Load Much Complexity of most complex database file.
Sorted-Populate Much The number and complexity of the index files and

secondary keys, and the number of record codes for
the most complex file.

Depopulate Much The number and complexity of the index files and
secondary keys, and the number of record codes for
the most complex file.

Reorganize Much The number and complexity of the index files and
secondary keys, and the number of record codes for
the most complex file.

48 P26-6260-63

Inserting exit programs into functions

Inserting exit programs into functions
At an exit point in a function's code, the function passes control to an exit
program you have written. In some cases, the function passes
information to your exit program and the exit program passes information
back to the function. In other cases, the exit program performs a task.
These functions have exit points where you can insert an exit program:
¢ Print
¢ Modify
¢ Version 1 Unload and Load
¢ Sorted-Populate

¢ Depopulate

¢ Reorganize

¢ Recover
¢ Restore
¢ Log-Print

For information on the exit points in the Version 2 Unload function, see
“Using exit points” on page 265.

DBA Utilities User's Guide 49

Chapter 2 Executing the functions

To use an exit program in any of these functions, code the name of the
exit program in the STANDARD-EXIT statement of the UCL for the
function. Before the function begins executing, your exit program is
dynamically loaded. If you coded an exit program for a previous function
in the same UCL program, your old exit program is deleted before the
new one is loaded.

You can write your exit program in any language that supports the IBM
Subroutine Calling Conventions. You must save and restore registers.

If you are writing an exit program in COBOL.:

. Under OS/390, you must issue a call to the COBOL routine
ILBOSTPO before calling the COBOL subroutine.

¢ Under VSE, issue the call to ILBDSETO.

For more information on the ILBOSTPO or ILBDSETO routines, refer to
the appropriate IBM COBOL manual.

On entry to your own exit program, follow these conventions:

¢+ Register 0—Unpredictable

¢ Register 1—Parameter list address

¢ Register 2-12—Unpredictable

¢ Register 13—Address of an area of 18 fullwords that can be used by
an exit routine

¢ Register 14—Return address

¢ Register 15—Entry point address of your exit program

Your exit program does not need to be re-entrant, and you can call your
exit program whatever you want.

There is only one exit point in the Print, Modify, and Version 1 Unload and

Load functions. For these functions, the parameter list looks like the one
in the following table.

50 P26-6260-63

Inserting exit programs into functions

Parameter list addresses and contents for a single exit point

Data Contents before exit Contents after exit (passed
Parameter |type (passed to exit program) from exit program)
Record n bytes of Data record Must be unchanged

data
Function 8 bytes Name of function, like Same data or changed data if
name character PRINT permitted

There are several exit points in the Sorted-Populate, Depopulate, and
Reorganize functions. When you have more than one exit point, you must
code all the exit logic in one module. All the exit points branch to the
single entry point in the module. On the basis of the exit point number in
the second parameter, your exit program must determine the exit point to
which control is being passed. As the following table shows, different
parameters are used when there are multiple exit points.

Parameter list addresses and contents for multiple exit

points

Data Contents before exit Contents after exit (passed
Parameter |type (passed to exit program) from exit program)
Function 16 bytes Name of function, like Must be unchanged
name character = DEPOPULATE
Exit point 4 bytes Exit point number, like 1 Must be unchanged

integer
Action 8 bytes bbbbiD bbb or other valid values
indicator character
Data Variable Data associated with exit Same data or changed data if

point data permitted

DBA Utilities User's Guide 51

Chapter 2 Executing the functions

Using sort programs

52

The Version 1 Load, Sorted-Populate, File Statistics, Version 2 Load, and
Version 2 Unload functions use a sort program. The File Statistics
function sorts only if you code STATISTICS (CHAIN) or STATISTICS
(LINK) for a coded related file. For information on the Version 2 Unload
and Load functions, see “Coding the Version 2 Unload, Load, and Insert
Linkpath functions” on page 225.

For the Version 1 Load, Sorted-Populate, and File Statistics functions,
code the name of the sort program you want to use in the SORT
statement in the UCL control section. Depending on your sort program
and the amount of data to be sorted, you may need to allocate more than
the default amount of sort memory. You may also need to allocate sort
work files.

MNOTE

O e—

Use of a SORTCNTL file to alter normal EBCDIC sort ordering is not
supported. Use of SORTCNTL to alter the standard collating sequence
may cause the utilities to fail and/or corrupt the database.

P26-6260-63

Using sort programs

Allocating sort memory

To allocate memory, code the amount in the MEMORY statement in the
UCL control section. Generally, the program sorts faster if you allocate
more memory.

Depending on your operating system, the memory you allocate may be
virtual instead of real memory. Be sure there is enough real memory to
support the virtual memory you allocate. If the operating system restricts
the sort program to a smaller amount of real memory, it can slow
performance. A sort memory value of approximately 300K less than the
amount of real memory is recommended, but the best value will depend
upon the nature of your individual sort program.

For example, assume you are executing the Sorted-Populate function
and you allocate 900K of sort memory. As you check the function while it
executes, you see that it is using an average of 700K, and the paging
rate is high. This indicates that the operating system is allowing the
utilities and the sort program only 700K of real memory, and the utilities
and sort are trying to use 900K of virtual memory. If you reduce the
memory to 400K, your sort program uses 200K, the utilities use about
300K, and the operating system allows about 700K. The paging rate
decreases, and your program sorts faster.

DBA Utilities User's Guide 53

Chapter 2 Executing the functions

Allocating sort work space

Each sort program has its own method of calculating the amount of sort
work space it needs to execute. However, all calculations are based on
the amount of data to be sorted, which you must determine.

In each function, the sort program sorts only one file at a time and uses
the same sort work space for each file. Therefore, you must decide which
file has the most data to be sorted and calculate the amount of data for
that file. If you are not sure which file needs the most space, make the
appropriate calculation for all the files and pick the largest.

You calculate the work sort space differently for each function. See the
following sections for each calculation.

The Version 1 Load function sorts variable-length records. The
Sorted-Populate and File Statistics functions sort fixed-length records.

For the Version 1 Load function

To calculate the amount of data for the work space in the Load function,
multiply the length of the records by the number of records. To calculate
the length, add the lengths of all the parts shown in “Formatting the data
records” on page 188 and multiply that total by the number of records in
the file.

For the Sorted-Populate function

To calculate the amount of data for the Sorted-Populate function, multiply
the length of the records by the number of records. To calculate the
length, add 17 bytes to the longest secondary key. To calculate the
number of records, multiply the number of secondary keys by the number
of active records in the file.

If you are populating secondary keys for key-sequenced data sets
(KSDS), you calculate the length of the record differently: add 13 bytes to
the longest secondary key and then add the length of the KSDS primary
file key.

If you are populating secondary keys for coded, related files, the function
sorts fewer records if some keys are not defined for all the record codes.
In that case, you would need less space for sorting.

54 P26-6260-63

Using sort programs

For the File Statistics Function

In the File Statistics function, the length of the sort records depends on
the type of statistics you requested and the type of file for which you
requested statistics.

¢ If you request chain statistics on a primary file, the length of the sort
record is 23 bytes. If you request chain statistics on a related file, the
length is 19 bytes plus the size of the largest key. Choose the largest
key from all the linkpaths on which you requested statistics. The
record lengths are the same if you request both link and chain
statistics.

¢ If you request link statistics and do not request chain statistics on a
coded related file, the length of the sort record is 11 bytes. If you
request link statistics and do not request chain statistics on a file that
is not a coded related file, there is no sort.

Once you have the length of the sort record, calculate the number of
records. Again, the number depends on the type of statistics and the type
of file. In addition, there are two types of sort records: type one for link
statistics and type two for chain statistics.

¢ If you requested link statistics for a coded related file, the number of
type one sort records is the same as the number of records in the
file. If the file is primary or non-coded related, there are no type one
records. These numbers are not affected by whether you request
chain statistics in addition to link statistics.

¢ If you requested chain statistics, you must figure the number of type
two sort records. This number depends on the type of file. If you
request statistics on a primary file, the number of sort records is the
same as the number of records in the primary file. If you request
statistics on a related file, multiply the number of records in the file by
the number of linkpaths on which the File Statistics function is
collecting statistics. These numbers are the same if you also request
link statistics.

Once you have the number of type one and type two sort records, add
the numbers to get the total number of records and multiply the total by
the length of the longest sort record.

DBA Utilities User's Guide 55

Chapter 2 Executing the functions

Handling errors in sort programs

In most cases, when the sort program abends or passes a bad status
back to the function, the function prints an error message and stops
processing. You should correct the error indicated by the message.

However, if you coded RC16=ABE when you installed your sort program,
the function cannot print a message when the sort program fails. You
have indicated that if the sort program has problems, it should abend and
return a code of 16. It does not dump and may not print out a message. If
the sort program has problems, you simply receive a return code of
U0016 when you execute any function that sorts, that is, the
Sorted-Populate, File Statistics, or Version 1 Load functions.

56 P26-6260-63

Coding the control section

For utilities that require UCL, you must begin by coding a control section.
The control section defines the processing environment for the functions
you want to perform and can contain the following parts of the
environment:

¢ The names of the database schema and environment description
¢ The content and format of the output listing

¢ Options for the sort program

¢ Description of the output data file

¢ Description of the log file

The sample UCL program on the following page shows the names of the
schema, environment description, sort program, and output data file.

Within the control section, you can code any humber of FUNCTION
statements to perform the tasks you need. You begin the function
statements with FUNCTION commands. (In this example, the function
sections have been abbreviated for clarity.) After the control and function
sections, you code CONTROL (END).

CONTROL (BEG N) Initiates UCL program.
ENV- DESC (MYDESC) Names environment description.
SCHEMA (MYSCHEMA) Names schema.
SORT (SORTPROG) Names sort program.
DATA- FI LE (OQUTFI LE) Names data file.
LABEL (YES) Denotes labeled data file.
FUNCTI ON (nane) Invokes a function.
FUNCTI ON (nane) Invokes a function.
FUNCTI ON (nane) Invokes a function.
FUNCTI ON (nane) Invokes a function.
CONTROL (END) Terminates program.

For information on how to code the function sections, see the remaining
chapters in this manual.

DBA Utilities User's Guide 57

Chapter 3 Coding the control section

Coding the UCL for the control section

The following format and format descriptions show how to code a control
section. You must code CONTROL and FUNCTION statements for all
functions. Most statements have supplied defaults; however, you must
supply values for the SCHEMA and ENV-DESC statements.

CONTROL @EGINE)
ND

ENV-DESC (environment-description-name)

SCHEMA (schema-name)

O INO OO
ORMAT (7
FORMAT ([/1

0 ABEND OO0
biaGNosTICS ($iMPLE
H FEXTENDEDEH

58 P26-6260-63

Coding the UCL for the control section

IST ([ALL] [NONE] [AFTER| [BEFORE [BLOCK[SYSTEM
[FUNCTION] [DESCRIPTION [APPLIED-IMAGES)

HEADER (%D

0 EsP

[EXTENSION (string’)

[supPRESS ([ELEMENT][SPACH [REFER)|

moOoOod

g.lNES q Dg
0 (H'InnBD

EDDATA FORMAT(I}IEX DS
a renarpH

o

mooooooooooooosttsHSsESsYSsS o oo

ORT (DSORT
H)rogram -namer]

0 20k
(MEMORY (El 5
0 HmnnnKD

U]]DDDDDQD

i
BFfftooooo

[NO
=

U

g
O
pd
7}
O
[
m
Q\E|

ONOTIFYED et text)
operator - msg -tex
HRepLy 5 P g

mOoooOoo
mOoooOooong

DBA Utilities User's Guide 59

Chapter 3 Coding the control section

60

[CSUDATA 0
DATA - FILE (51 0
0 dname [0
0 0
0 0
0 INO 0
O ABEL (SD O
O O @DD 0
0 0
0 0
o T o
0
O O . S’ 0y
B ERECORD FORMAT (. D)%
0 g dBg e
0
0 0
0 0
0 0
S [RECORD - SIZE (% E)D S
0 nnnnD 0O
0 0
0 0
A % 00 J
0 [BLOCK - SIZE (O) I
o B EULLLUSCI
0 0
0 0
0 0 ISK 0.0 0
0 [] DEVICE (%?— S)D 0
0 0 OAPED O
0 0
0 0
0 0

s
0
B

UMMARY - DATA ([ALL] [FILE [NONE [FUNCTION E

[CUMULATIVE])

P26-6260-63

Coding the UCL for the control section

@dname D)

OG- FILE (4 ocriLed

BSAMQO O

ACCESS- METHOD (HBDAME)

HESDS H H

modo

0 DISK O O
EVICE (raPE D)7

H FvsAmH H

0 [(5YS010 0,0
[DEVICE- ADDRESS (.. . 0)O
g sysnnnd’g

0 B 00
éﬁLOCK-SIZE(%nnnng)g

(EOF
HERROR
EQ- ERROR (UGNORE
ARNING
HNFORMATION

I:II:II:II:I@I:II:II:I
MmOooooono
SN—
o s

(EOF 0
HERROR .
DM- ID- ERROR (OGNORE 0)
SNARNING E
HNFORMATIONH

oooogooo

(EOF 0
LERROR]
OG- ID- ERROR (UGNORE S)
ARNING
HNFORMATIONH

1 1 e o e 25 o

e S o o E e e oo noooooooooooDoooo00000000 0000000000000

i o

DBA Utilities User's Guide 61

Chapter 3 Coding the control section

FUNCTION (%JOAD

[FORMAT
“SORTED - POPULATE
[DEPOPULATE
-REORGANIZE
LFILE - STATS
EXPAND

NLOAD

B?ECOVER
[RESTORE
H.0G- PRINT
[REVIEW
HNLocK
[PRINT
HoDIFY

0
0
0

0 A

CONTROL (

62

Description

Options

Considerations

EBEGIND)

0
O

Required. Marks the beginning and end of a utility control program.

BEGIN

END

¢

CONTROL (BEGIN) must be the first statement and CONTROL

(END) must be the last statement in every program.

If you code any statements before CONTROL (BEGIN), they cause
an error in your program. If you code any after CONTROL (END),

they are ignored.

If you do not code an argument for CONTROL, you receive

unpredictable results.

P26-6260-63

Coding the UCL for the control section

ENV-DESC (environment-description-name)

Description Required. Identifies the environment description and requests sign-on to
the database.

Format 1-8 alphanumeric characters. The first character must be alphabetic.

Considerations

DBA Utilities User's Guide

Use this statement for all functions described in this manual.

The schema and environment description combine to define the
database to the utilities and the PDM.

You can operate on only Directory files by naming a bootstrap
schema and environment description. In that case, do not code either
the DIRECTORY or REALM parameter in your CSIPARM file.

You can operate on your own files by nhaming your own schema and
environment description. In that case, you must code a DIRECTORY
parameter in the CSIPARM file. In the DIRECTORY parameter,
name the bootstrap schema and environment description used when
the PDM initializes. Do not code the REALM parameter in the
CSIPARM file.

Do not code a bootstrap environment description with your own
schema or vice-versa.

Code all database files with a file open mode of NONE, an access
option of UPDATE, and an OPENX option of PROCESS. For more
information, refer to the SUPRA Server PDM and Directory
Administration Guide (0S/390 & VSE), P26-2250.

Do not code ENV-DESC when executing the Recover or Restore
functions. Refer to the SUPRA Server PDM Logging and Recovery
Guide (0S/390& VSE),P26-2223, for their special CSIPARM file
considerations.

For the special requirements of the Expand function's CSIPARM file,
see “Coding the Expand function” on page 147.

63

Chapter 3 Coding the control section

SCHEMA (schema-name)

64

Description Required. Identifies the schema you want used for the functions you
named.

Format 1-8 alphanumeric characters. The first character must be alphabetic.

Considerations Use this statement for all functions described in this manual.

¢

The schema and environment description combine to describe the
database to the utilities and the PDM.

You can operate on only Directory files by naming a bootstrap
schema and an environment description. In that case, do not code
either DIRECTORY or REALM parameters in your CSIPARM file.

You can operate on your own files by nhaming your own schema and
environment description. In that case, you must code a DIRECTORY
parameter in the CSIPARM file. In the DIRECTORY parameter, code
the bootstrap schema and environment description used when the
PDM initializes. Do not code the REALM parameter in the CSIPARM
file.

Do not code a bootstrap schema with your own environment
description or vice-versa.

Do not code SCHEMA when executing the Recover or Restore
functions. Refer to the SUPRA Server PDM Logging and Recovery
Guide (0OS/390 & VSE), P26-2223, for their special CSIPARM file
considerations.

For the special requirements of the Expand function's CSIPARM file,
see “Coding the Expand function” on page 147.

P26-6260-63

Coding the UCL for the control section

FORMAT(E}(_(E)sg)

Restriction Use this statement only for the Version 1 Load function.

Description Optional. Determines whether the Load function should format any files
not found on the input file but that you coded in the control section.

Default NO
Considerations

¢ We recommend that you do not code FORMAT (YES). If you want to
format files for which you supplied no data on the input data file, wait
until you receive the output listing from the Load function. Then you
can see which files the Load function did not load with data, and you
can format them with the Format function. For information on the
Format function, see “Coding the Format function” on page 87.

MNOTE Caution: Exercise extreme caution when you code FORMAT (YES)

5 m— because it can lose your data. If you list the wrong file or misspell a

= file's name, the Load function will not find it in the input file. When it
formats the file, it changes the data to blank records.

¢ If you use FORMAT (YES), the environment description must have a
file open mode of NONE and an access mode of UPDATE. For more
information, refer to the SUPRA Server PDM and Directory
Administration Guide (OS/390 & VSE), P26-2250.

¢ When you code FILE (ALL), only your own database files (i.e., your

primary, related and index files) are formatted. Task Log, System
Log, Statistics, and Directory files are not formatted.

DBA Utilities User's Guide 65

Chapter 3 Coding the control section

[ABEND [
DIAGNOSTICS ((SIMPLE [))

HEXTENDED H

Description Optional. Determines the type of diagnostic report to be provided on
abnormal termination. You can use this statement with all functions.

Default EXTENDED
Options ABEND You receive simple and extended diagnostics and a
system dump when necessary.
SIMPLE You receive simple diagnostics normally of only one line.

EXTENDED You receive simple and extended diagnostics.

66 P26-6260-63

Coding the UCL for the control section

LIST ([ALL] [NONE] [AFTER] [BEFORE] [BLOCK] [SYSTEM] [FUNCTION]
[DESCRIPTION] [APPLIED-IMAGES])

Restriction Use this statement only with the Print, Modify, Version 1 Unload and
Load, Recover, Restore, and Log-Print functions.

Description Optional. Indicates the content and format of the output listing.

Default For the Modify, Version 1 Unload and Load, Recover, Restore, and
Log-Print functions, the default is NONE. For the Print function, the

default is ALL.
Options ALL
NONE

AFTER

BEFORE

BLOCK

SYSTEM

FUNCTION

DESCRIPTION

APPLIED-IMAGES

DBA Utilities User's Guide

Implements all applicable options.
Implements none of the options.

Lists after images for Recover, Restore, and
Log-Print. For Modify, it lists a record after it is
changed.

Lists before images for Recover, Restore, and
Log-Print. For Modify, it lists a record before it is
changed.

Lists log file block headers. (For Recover, Restore,
and Log-Print only.)

Lists system log file records. (For Recover, Restore,
and Log-Print only.)

Lists function image records for the log file. (For
Recover, Restore, and Log-Print only.)

Lists log record data formats. (For Recover, Restore,
and Log-Print only.)

Lists log images applied to the database for the
Recover and Restore functions.

67

Chapter 3 Coding the control section

68

Considerations

¢

If the LIST options are not applicable to a particular function, they are
ignored. For example, for the Modify function, LIST(BLOCK) is
ignored.

If you code LIST(ALL) for the Recover, Restore, and Log-Print
functions, you receive a list of all records for all files. Therefore, if you
select certain files and records and use LIST(ALL), records for
unselected files and records are printed as well.

The Print function prints a current image of each file and record that
you request, regardless of the arguments you code for this
statement. The Print function examines only the DATA-FORMAT
statement.

If you code multiple options, leave one space between each option.

P26-6260-63

Coding the UCL for the control section

HEADER (SJL;@

Restriction

Description

Default

You can only code this statement following a list statement.

Optional. Used for all functions to indicate whether to print the standard
utility header on the output listing.

YES

Considerations

¢ The standard title, "'DATABASE ADMINISTRATOR UTILITIES," is
always printed.

¢ If you code HEADER (NO), the second header line is not printed.

¢ If you code HEADER (YES) or HEADER (') without the EXTENSION
statement, the second header line, "FUNCTION= ... FILE=..." is
printed.

¢ If you code HEADER (YES) or HEADER (') with the EXTENSION
statement, the second header line contains the extension.
"FUNCTION= ... FILE=..." is not printed.

EXTENSION (‘string’)

Restriction

Description

Format

Consideration

You can only code this statement following HEADER (YES) or
HEADER ().

Optional. Used with all functions to print your own header after the
standard title.

1-120 alphanumeric characters enclosed in single quotes.

If the message text contains a single quote, you must code it as two
consecutive single quotes. For example, if the actual message is
ABCD'EFG'H, you must code it as '"ABCD"EFG"H'. When you figure the
length of the message, two single quotes count as one character.

DBA Utilities User's Guide 69

Chapter 3 Coding the control section

SUPPRESS ([ELEMENT] [SPACE] [REFER])

Restrictions

Description

Options

Consideration

¢ Use this statement only for the Print and Modify functions.
¢ You can only code this statement following a HEADER statement.

Optional. Lists the heading options you want suppressed on the output
listing.

ELEMENT Do not print element names above the corresponding
data element.

SPACE Do not insert spaces between data elements.

REFER Do not print the relative record number (RRN) of each
record above the record.

The ELEMENT and SPACE options apply only when you supply a list of
element names in the function part of the UCL. If you code ELEMENT
(ALL), no names are printed regardless of what you code in the
SUPPRESS statement.

[1D)

LINES (ChnnP

70

Restrictions

Description

Default
Format

Options

¢ Use this statement only for the Recover, Restore, and Log-Print
functions.

¢ You can only code this statement following a LIST statement.
Optional. Indicates the number of output lines you want printed for each
data record. Depending on the record length and data format, an output
line may constitute several physical lines of output.

1

1-3 numeric characters

1 Prints one logical line of output.

nnn Prints the specified number of output lines.

P26-6260-63

Coding the UCL for the control section

DATA - FORMAT (=% S
FCHARF

Restrictions

¢ Use this statement for the Print, Modify, Load, Unload, Recover,
Restore, and Log-Print functions.

¢ You can only code this statement following the LIST statement.

Description Optional. Indicates the format of the data records in the output listing.

Default CHAR
Options HEX Records are printed in over/under hexadecimal format.
CHAR Records are printed in character format.
[SORT O
SORT (0)

Hnrogram—nameg

Restriction Use this statement only for the Sorted-Populate, Version 1 Load, and File
Statistics functions.

Description Optional. Identifies the sort program to be used.
Default SORT
Format 1-8 alphanumeric characters

Consideration The sort name you code must be available in your execution library.

DBA Utilities User's Guide 71

Chapter 3 Coding the control section

120k 0O

0)

MEMORY (R

Restrictions

¢ Use this statement only for the Sorted-Populate, Version 1 Load, and
File Statistics functions.

¢ You can only code this statement following a SORT statement.

Description Optional. Indicates the amount of memory you want allocated for the sort

program.
Default 120K
Format 1-5 numeric characters followed by K

Considerations
¢ More memory results in better performance.

¢ The amount of memory you code must be available in the region or
partition in which you are executing the utilities. For more details on
execution-time parameters, see “Executing the functions” on
page 33.

CONSOLE ([E}N(_(E)s§

Restriction Use this statement only for the Recover, Restore, and Log-Print
functions.

Description Optional. Indicates whether the system console is to display messages.

Default NO

72 P26-6260-63

Coding the UCL for the control section

INOTIFY[O

B?EPLY E (‘operator-msg-text’)

Description Optional. Specifies the text of the notification message displayed by the
system console

Format 1-50 alphanumeric characters enclosed in single quotes
Options NOTIFY Notification message only
REPLY Notification message and operator response

Considerations

¢ If you code the REPLY statement, the operator must reply to the
console message.

¢ If the message contains single quotes, code each as two consecutive
single quotes. For example, if the message is ABCD'EFG'H, code it
as 'ABCD"EFG"H'. When you figure the length of the message, count
two single quotes as one character.

¢ If you do not code CONSOLE (YES), this statement is ignored.

[CSUDATA

DATA - FILE (Ejd
name [Jj
Restriction Use this statement only for the Version 1 Unload and Load functions.

Description Optional. Identifies the ddname that refers to the Unload/Load function's
data file.

Default ddname of CSUDATA
DLBL name of CSUDATA and logical device name of SYS021

Format 1-7 alphanumeric characters

Consideration In your JCL, the data file must have the ddname specified in this
statement.

DBA Utilities User's Guide 73

Chapter 3 Coding the control section

LABEL(@EE@

Restrictions

Description
Default

Options

Consideration

¢ Use this statement only for the Version 1 Unload and Load functions.
¢ You can only use this statement following a DATA-FILE statement.

Optional. Indicates whether the data file on tape contains standard labels.

YES
NO The data file is on an unlabeled tape.
YES The data file is on a labeled tape.

This statement is ignored if you do not code DEVICE (TAPE).

F O
0

RECORD - FORMAT (&0

74

Restrictions

Description
Default

Options

Consideration

FB U

Ve

¢ Use this statement only for the Version 1 Unload function.

¢ You can only use this statement following a DATA-FILE statement.
Optional. Indicates the format of the data file records.

VB

F Fixed format

V Variable format

FB Fixed blocked format

VB Variable blocked format

Only the Unload function uses this statement. The Load function takes its

record format from the run control record. If you code this statement for
the Load function, it is ignored.

P26-6260-63

Coding the UCL for the control section

1) O
RECORD - SIZE ([T 0)
Emnnng

Restrictions

¢ Use this statement only for the Version 1 Unload function.

¢ You can only use this statement following a DATA-FILE statement.
Description Optional. Indicates the logical record length of the data file records.
Default b
Format 1-5 numeric characters
Considerations

¢ You must make the record size large enough to handle all of the data
fields you want to unload plus the unloaded record prefix.

¢ If you code V (variable) or VB (variable blocked) in the
RECORD-FORMAT statement, you must add the four bytes for the
record length descriptor when you calculate the size of the record.

¢ The smallest record size is 48 bytes. The largest record size is
32,500 bytes or the track size of the disk drives, whichever is smaller.

You must code a value that is at least equal to the sum of the
following items:

- Length of the data (the logical record length of the largest file)
- Length of the control key
- Length of the control information (14 bytes)

For the structure of the unloaded record, see “Coding the Version
1 Unload and Load functions” on page 153.

¢ If you do not code a record size, the system selects an appropriate
default value.

¢ Only the Unload function uses this statement. The Load function

takes its record size from the run control record and ignores any
value you code in this statement.

DBA Utilities User's Guide 75

Chapter 3 Coding the control section

B 0
BLOCK - SIZE (O] 0)
@ nnnn@

Restrictions
¢ Use this statement only for the Version 1 Unload function.
¢ You can only use this statement following a DATA-FILE statement.
Description Optional. Selects the block size for the data file.
Default b
Format 1-5 numeric characters
Considerations
¢ If the option for the RECORD-FORMAT statement is
F The BLOCK-SIZE must equal the RECORD-SIZE
V The BLOCK-SIZE must equal the RECORD-SIZE plus 4

FB The BLOCK-SIZE must be an even multiple of the
RECORD-SIZE

VB The BLOCK-SIZE must be the number of records per block
times the RECORD-SIZE plus 4

¢ If you do not code a block size, the system selects an appropriate
value.

¢ The Load function takes the record format from the run control record
and ignores any value you code here.

76 P26-6260-63

Coding the UCL for the control section

(DISK O

DEVICE (rT—on
(%‘APEE)

Restrictions

Description

Default

¢ Use this statement only for the Version 1 Unload and Load functions.

¢ You can only use this statement following a DATA-FILE statement.

Optional. Indicates the device type for the data file.

DISK

SUMMARY-DATA ([ALL] [FILE] [NONE] [FUNCTION] [CUMULATIVE])

Description

Default

Options

Consideration

Optional. Identifies the intervals at which you want summary data
reported. The utilities accumulate and present this data on the output

listing.
CUMULATIVE

ALL

FILE

NONE

FUNCTION

CUMULATIVE

The utilities accumulate and list summary data for the
FILE, FUNCTION, and CUMULATIVE intervals.

The utilities list summary data after processing each
completed file for the Sorted-Populate, Version 1 Unload
and Load, Print, Modify, and File Statistics functions.

The utilities provide no data.

The utilities list summary data after each
Sorted-Populate, Version 1 Unload and Load, Print,
Modify, and File Statistics function. They accumulate the
data for all files the function processed.

The utilities list summary data after completing the UCL
program. They accumulate the data for all functions and
files processed by the UCL program. The utilities print
summary data only if you executed at least one of the
following functions: Sorted-Populate, Version 1 Unload or
Load, Print, Modify, or File Statistics.

You may code any combination of listing intervals. However, you cannot
code ALL or NONE in combination with any other argument.

DBA Utilities User's Guide

77

Chapter 3 Coding the control section

LOG- FILE (ddname D)
HoGFILEH
Restriction Use this statement only for the Recover, Restore, and Log-Print
functions.
Description Optional. Identifies the ddname that refers to the System Log File.
Default LOGFILE
Format 1-7 alphanumeric characters

78

Considerations

¢ The Log-Print, Recover, and Restore functions can process a
System Log File of only one data set. For information on processing
a System Log File of several data sets, refer to the SUPRA Server
PDM Logging and Recovery Guide (OS/390 & VSE), P26-2223.

¢ Inyour JCL, you must define the System Log File with the ddname
you indicate on this statement. If you use the default for this
statement, you must use the ddname LOGFILE.

¢ If a standard exit reads the System Log File, the exit ignores the file
name you code in this statement.

P26-6260-63

Coding the UCL for the control section

ACCESS-METHOD (
Restrictions

¢

¢

(BSAM[I

0
BDAM)
FESDS B

Use only for Recover, Restore, and Log-Print functions.

You can only use this statement following a LOG-FILE statement.

Description Optional. Indicates the access method used to create the System Log

File.

Default BSAM

Options BSAM Basic Sequential Access Method
BDAM Basic Direct Access Method
ESDS Entry Sequenced Data Set (VSAM)

Considerations

¢

DBA Utilities User's Guide

If you code DEVICE (TAPE), you cannot code ACCESS-METHOD
(BDAM) or ACCESS-METHOD (ESDS).

If you code DEVICE (VSAM) under LOG-FILE, you must code
ACCESS-METHOD (ESDS). No other methods are allowed with a
VSAM device, including the default, BSAM.

If a standard exit reads the System Log File, the exit ignores the
access method you code.

SUPRA supports FBA devices with VSAM (ESDS/KSDS) or as
BSAM. Direct access or BDAM access is not supported. FBA users
need to recover/restore from tape or ESDS log file. The system log
tape must be labeled for the Restore function. Unless the exits are
implemented, RESTORE/RECOVER/LOG-PRINT do not process
tape labels. Therefore, the tape must be positioned on the data file
(MTC FSF, 181,1).

79

Chapter 3 Coding the control section

DISK [
DEVICE (JAPE 1)

F/SAMH
Restrictions
¢ Use only for Recover, Restore, and Log-Print functions.
¢ You can only use this statement following a LOG-FILE statement.
Description Optional. Indicates the type of storage device for the System Log File.
Default DISK
Considerations

¢ When you code DEVICE (VSAM), you must code ACCESS-
METHOD (ESDS).

¢ If a standard exit reads the System Log File, the exit ignores the
device you code in this statement.

[(5YS010 O
DEVICE - ADDRESS (Tvs 0)
nnnpj
Restrictions
¢ VSE only.

¢ Use only for Recover, Restore, and Log-Print functions.
¢ You can only use this statement following a LOG-FILE statement.

Description Optional. Indicates the logical unit address of the System Log File.

Default SYS010
Options SYS010 Logical device name is SYS010.
SY Snnn Logical device name is SYS followed by the three-digit

number you specify.

Consideration If a standard exit reads the System Log File, the exit ignores the device
address you code in this statement.

80 P26-6260-63

Coding the UCL for the control section

BLOCK - SIZE (Eé‘—; D)

nnnn%

Restrictions

¢ VSE only.

¢ Use only for Recover, Restore, and Log-Print functions.

¢ You can only use this statement following a LOG-FILE statement.
Description Optional. Indicates the size of the log block.
Default b

Format 1-5 numeric characters

[EOF
IERROR
SEQ - ERROR (OGNORE
ARNING
HNFORMATIONH

OoOoogodg

Restriction You can only use this statement following a LOG-FILE statement.

Description Optional. Presents a message stating the action you want taken if a block
sequence error occurs on the System Log File.

Default EOF
Options EOF Treat thg exception as an end-of-file and continue
processing.
ERROR Present an error message and terminate processing.
IGNORE Take no action and continue processing.
WARNING Present a warning message and continue processing.

INFORMATION Present an informational message and continue
processing.

DBA Utilities User's Guide 81

Chapter 3 Coding the control section

(EOCF
HERROR

SVARNING

O
O
O

PDM - ID - ERROR (OGNORE J)
O
H

82

Restrictions

Description

Default

Options

HNFORMATION

¢+ Use only for the Recover, Restore, and Log-Print functions.
¢ You can only use this statement following a LOG-FILE statement.

Optional. Presents a message stating the action required after a PDM-ID
error.

EOF

EOF Treat th(_e exception as an end-of-file and continue
processing.

ERROR Present an error message and terminate processing.

IGNORE Take no action and continue processing.

WARNING Present a warning message and continue processing.

INFORMATION Present an informational message and continue
processing.

P26-6260-63

Coding the UCL for the control section

[EOF O
IERROR .
LOG- ID - ERROR (JGNORE 0)
BNARNING E
HNFORMATIONH

Restrictions
¢+ Use only for the Recover, Restore, and Log-Print functions.
¢ You can only use this statement following a LOG-FILE statement.

Description Optional. Presents an action message after a log identifier error.

Default EOF
Options EOF Treat thg exception as an end-of-file and continue
processing.
ERROR Present an error message and terminate processing.
IGNORE Take no action and continue processing for the function.
WARNING Present a warning message and continue processing.

INFORMATION Present an informational message and continue
processing.

DBA Utilities User's Guide 83

Chapter 3 Coding the control section

FUNCTION (%OAD

84

[(FORMAT

ESORTED - POPULATE,

[(DEPOPULATE
SREORGANIZE
(FILE- STATS
EEXPAND

NLOAD

SQECOVER
[RESTORE

H OG- PRINT
[REVIEW
HnLOCK
(PRINT
AMODIFY

Description

Options

O
U

MmMMOOOoOooOOooooomOoodoogno

Required. Selects the function. Except for the Expand and Unload
functions, you may code functions more than once in a UCL program.
Some combinations of functions are not valid.

FORMAT

Formats a database file into SUPRA native format. (See
“Coding the Format function” on page 87.)

SORTED-POPULATE

DEPOPULATE

REORGANIZE

FILE-STATS

EXPAND

Creates the secondary key's tree structure. (See “Coding
the Sorted-Populate function” on page 91.)

Deletes secondary keys. (See “Coding the Depopulate
function” on page 105.)

Rebuilds the tree structure after you have updated it.
(See “Coding the Reorganize function” on page 119.)

Reports the physical and logical characteristics of the
primary or related SUPRA native format files you are
examining. (See “Coding the File Statistics function” on
page 131.)

Expands the capacity of existing related SUPRA native
format files. (See “Coding the Expand function” on
page 147).

P26-6260-63

UNLOAD

LOAD

RECOVER

RESTORE

LOG-PRINT

REVIEW

UNLOCK

PRINT

MODIFY

DBA Utilities User's Guide

Coding the UCL for the control section

Extracts records from database files and writes them to a
sequential output medium. You can use the resulting
data file only to reload the files into SUPRA native
format. (See “Coding the Version 1 Unload and Load
functions” on page 153.)

Formats database files into SUPRA native format and
writes data records to the files from a sequential
medium. (See “Coding the Version 1 Unload and Load
functions” on page 153.)

Recovers PDM database files from a SUPRA PDM
System Log File. (See “Coding the Recover, Restore,
and Log-Print utilities” on page 447.)

Restores PDM database files from a SUPRA PDM
System Log File. (See “Coding the Recover, Restore,
and Log-Print utilities” on page 447.)

Prints the contents of the SUPRA PDM System Log File
and reports statistics for the log file and PDM files. (See
“Coding the Recover, Restore, and Log-Print utilities” on
page 447.)

Examines SUPRA native and converted files to see if
they are locked and prints an appropriate message. (See
“Coding the Review function” on page 485.)

Resets the lock field in a database file that did not go
through the normal PDM close logic due to an abend or
system failure. Use Unlock with extreme caution. If you
use the Unlock function instead of recovery procedures,
you may corrupt your database. (See “Coding the Unlock
function” on page 489.)

Prints records from a database file. (See “Coding the
Print function” on page 363.)

Updates records in a database file. (See “Coding the
Modify function” on page 381.)

85

Chapter 3 Coding the control section

Determining control statements for functions

Once you are familiar with the information in the preceding section, use
the following figure for quick reference to the control statements needed
for each function. The control statements are indented to show the
hierarchical structure.

CONTROL STATEMENTS FUNCTION

2
A
gl=|8|2 = £
HEEEEIHE SHHEAHE
El2|a|l5]|ol8le(BlelT|8]|B]l&|S]|L
o|lololo|l=|Xx]|E|lolElL|2o|lo]lal|l2]ce
Lln|laolg|lojJu[D|lala|lSle|le|la]lx]D
CONTROL RIRIRIRIR|IRIRIRIRIRIRIR|IRIRIR
ENV-DESC RIRIRIRIRIRIRIRIRIRIRIRIRIRIR
SCHEMA RIR|IR|IR|R|R|R|R|R|R|R|R|R|R]|R
FORMAT 0
DIAGNOSTICS (0N el ol Nl Ne) Oolo]lojlo]lololofo
LIST olololololo]oO
HEADER 0 olojlolofloflofoflofoO
EXTENSION [6) (o} ol el ol Hol Nel Hol Hol Ne)
SUPPRESS Ol0
LINES olo]o
DATA-FORMAT Ololoflo]Oo]O]O
SORT (6] 010 (6]
MEMORY 0 0 0
CONSOLE olo]o
NOTIFY 0]l]0]0O
REPLY olo]o
DATA-FILE olo
LABEL Ol10
RECORD-FORMAT (6]
RECORD-SIZE 0
BLOCK-SIZE [6)
DEVICE ol0
LOG-FILE olo]o
ACCESS-METHOD 0]l0]0O
DEVICE 0]l0]0O
DEVICE-ADDRESS olo]o
BLOCK-SIZE olo]o
SEQ-ERROR 0]l]0]0O
PDM-ID-ERROR olo]o
LOG-ID-ERROR olo]o
SUMMARY-DATA [6) O0]l0]lO|JO]O]O
FUNCTION RIRIRIRIRIRIRIRIRIRIRIRIRIRIR

Legend: R Required O Optional (blank) Not used by function

86 P26-6260-63

A

Coding the Format function

Before you add any records, you must format the PDM database files. In
addition, you must format Directory files, the System Log File, and the
Task Log File before you use them. You do not need to format the BSAM
files or the Statistics file.

You can use Format to format database files or use the Version 1 Load
function to format and add records in one step. Both functions format only
files in SUPRA native format. To create files in compatibility or converted
format, you must use the Version 2 Load utility.

When you use Format, it builds the file control records for index, primary,
and related files. Format also sets all records to spaces, except with
key-sequenced data sets where it only writes the file control record to the
file.

NOTE

Warning: If you format an existing, non-VSAM file, you set the records
to blanks. Therefore, you should not format files that contain data you
need. You should format only files that are empty, backed up, or no
longer needed. If you format over an index file, you delete the secondary
keys. If you want to repopulate the file, you must depopulate and purge it
first.

After you code the control section as shown in “Coding the control
section” on page 57, you can code the Format function as shown in the
following format.

DBA Utilities User's Guide 87

Chapter 4 Coding the Format function

Format function syntax

FUNCTION (FORMAT

CALL

)
O
FILE (Bile—name—listg)

FUNCTION (FORMAT)

Description Required. Invokes the Format function.

CALL

FlLE(%ile—name-list

O
a),...
0)

Description Required. Names the database files you want formatted.

Format File names must be 4 alphanumeric characters. The first character must
be alphabetic. Separate names with commas.

Options ALL Formats all index, primary, and related files in the
schema.

file-name-list Formats the files you name. You can format database,
Directory, System Log, or Task Log files.

88 P26-6260-63

Considerations
¢

DBA Utilities User's Guide

Format function syntax

When you use Format you should not use task or system logging,
which slow performance and serve no purpose. In addition, if you use
logging and abnormally terminate, you cannot restart.

- Toformat a System Log File, turn system logging off, that is,
code the option in the environment description with nnnn. In the
control section of the UCL, code the user schema and
environment description. All files in the user environment
description must have an open mode of NONE. In the CSIPARM
file, code the DIRECTORY parameter using the boot schema
and environment description.

- Toformat a Task Log File, turn task logging off by coding the
option in the bootstrap environment description with n. In the
control section, code the bootstrap schema and environment
description. In the CSIPARM file, do not code a DIRECTORY or
REALM parameter.

- To format a Directory file, code the bootstrap schema and
environment description in the control section. In the CSIPARM
file, do not code a DIRECTORY or REALM parameter.

- To format database files, code your schema and environment
description in the control section of the UCL. In the CSIPARM
file, code a bootstrap schema and environment description in the
DIRECTORY parameter. Do not code the REALM parameter.

If you code FILE (ALL), the function formats only index, primary, and
related files. It does not format the Directory, Statistics, System Log,
or Task Log files.

If you code FILE (ALL), the function formats the files in alphabetical
order with index files first, and then primary and related files.

You must delete and redefine a VSAM file (ESDS or KSDS) before
you format it.

To format Directory files, you must code FILE (file-name). In the
control section, you must code a bootstrap schema and environment
description. In the CSIPARM file, do not code a DIRECTORY
parameter.

If you code FILE(), the function does not format any file.

The record length of a key-sequenced data set must be at least the
size of the key displacement, plus the key length, plus 25 bytes.

You can code the FILE statement one or more times.

89

Chapter 4 Coding the Format function

Examples

¢ When you want to initialize your files for use by the PDM, you must
first format them. For example, if you want to add data to the PANM,
RANV, and POOL1 files that are found in the UTILSCHM schema,
code the following:
CONTROL (BEG N)
ENV- DESC (UTEDOOUS)
SCHEMA (UTI LSCHW)
FUNCTI ON (FORVAT)
FI LE (PANM RANV)
FI LE (PC01)
CONTROL (END)

¢ This example shows the code and the listing that you receive after
the code is validated and executed.

CSUL01011I : COMMVENCI NG COMVAND VALI DATI ON.

1 CONTROL (BEG N)

2 R R R R R RS S EEE R R R R RS R EEEREEEEE R R R R R EREEEEEEEREREEREERESEEEESEE]
3 * *
4 * FORMAT EXAMPLE #1 DESCRI PTI ON *
5 * *
6 * OBJECTIVE: FORMAT THE DATABASE FILES PRI OR TO *
7 * USE BY THE PDM *
8 * *
9 * *
10 R R R R R RS SRR R R R R R RS EEEE R R R R R R R R R R EREEEEEEEREREREEREESEEEESESE]
11 ENV- DESC({ UTEDOOUS)
12 SCHEMA(UTI LSCHM)
13 FUNCTI ON(FORMAT)
14 FI LE(PANM RANV)
15 FI LE(POO1)
16 CONTROL (END)

CONTENTS OF SOURCE LINES OUTSIDE 1...72 MARG NS | GNORED.

0 SYNTAX ERRORS DETECTED.
16 COVMVAND LI NES READ.

1 CONTROL SECTI ONS ANALYZED.

1 FUNCTI ON COVVANDS ANAL YZED.

CSUL01021 : COMVENCI NG COMVAND EXECUTI ON.
CSUL03011I : COMMVENCI NG CONTROL SECTI ON USI NG ENVI RONVENT DESCRI PTI ON UTEDOOUS AND
SCHEMA UTI LSCHM

CSUL0302I : COMMENCI NG FORVAT PROCESS.

CSUL0311l : COMVENCI NG FORNVAT AGAI NST FI LE PANM

CSUL28001 : FILE PANM IS NOW FORVATTED.

CSUL03211 : FORNAT PROCESSI NG AGAI NST FI LE PANM TERM NATI NG NORMALLY.
CSUL03111 : COMMENCI NG FORVAT AGAI NST FI LE RANV.

CSUL28001 : FILE RANV | S NOW FORVATTED.

CSUL03211 : FORVAT PROCESSI NG AGAI NST FI LE RANV TERM NATI NG NORVALLY.
CSUL0311l : COMVENCI NG FORNVAT AGAI NST FI LE POO1.

CSUL28001 : FILE PO01 I'S NOW FORVATTED.

CSUL03211 : FORNAT PROCESSI NG AGAI NST FI LE PO01 TERM NATI NG NORMALLY.
CSUL0303I : FORVAT PROCESS TERM NATI NG

CSUL03051 : CONTROL SECTI ON TERM NATI NG,
CSUL03071 : ALL CONTROL SECTI ONS PROCESSED.
CSUL0103!1 : DATABASE UTI LI TI ES SUCCESSFUL TERM NATI ON.

90 P26-6260-63

5

Coding the Sorted-Populate function

The Sorted-Populate function is the first of three secondary key functions.
With the Sorted-Populate function, you can create the secondary key tree
structure on large files more quickly than with the Directory Maintenance
POPULATE command. When you use the Sorted-Populate function to
populate a secondary key, you can request statistics, add your own exit
program, and indicate how much of each block you want to hold records.

As its name implies, the Sorted-Populate function's increased efficiency
comes from sorting. You need to estimate the amount of sort memory
and sort work space required. For information on calculating the
amounts, see “Using sort programs” on page 52. For more information
on coding the UCL, see “Coding the UCL for the Sorted-Populate
function” on page 92.

The other secondary key functions, Depopulate and Reorganize, enable
you to maintain secondary keys. The Depopulate function deletes
secondary keys. The Reorganize function corrects the deterioration of the
tree structure that occurs from updating it. These functions are explained
in “Coding the Depopulate function” on page 105 and “Coding the
Reorganize function” on page 119.

DBA Utilities User's Guide 91

Chapter 5 Coding the Sorted-Populate function

Coding the UCL for the Sorted-Populate function

After you code the control section as shown in “Coding the control
section” on page 57, you can code the Sorted-Populate function as
shown in the following format:

FUNCTION (SORTED - POPULATE)

0 ALl OO0
0 0 _O\O
[STATISTICS (BASEQ)T
] MONEH £

[STANDARD - EXIT (exit-name)|

CALL

FILE (%ile-name-list

O
P

([ALL EI)

O
[SECONDARY-KEY (fyo " e st

[LOAD - DENSITY (0- 99) |

[|
MOoOoOoOoOoo

FUNCTION (SORTED-POPULATE)
Description Required. Executes the Sorted-Populate function.

Consideration Performance is highly sensitive to the number of buffers in the INDEX
file's buffer pool. The recommended number of buffers is twice the
expected tree height plus three. If you do not know the expected tree
height, use 10-15 buffers. Too few buffers will cause buffer thrashing
and substantial performance degradation. The number of DATA file
buffers is not critical—one or two is sufficient.

92 P26-6260-63

Coding the UCL for the Sorted-Populate function

(ALL O
STATISTICS (BASE[)
HNONEH
Description Optional. Indicates the statistics reports you want generated.
Default BASE
Options ALL You receive statistics reports on both index files and
secondary keys.
BASE You receive reports on only the secondary keys.
NONE You receive no statistics reports.

Considerations
¢

¢

You may request statistics only once.

If you request statistics, you must code this statement before the
FILE statement(s).

STANDARD-EXIT (exit-name)

Description Optional. Indicates you want to use an exit program with this function.

Default The function skips the exit points.

Format 1-8 alphanumeric characters. The first character must be alphabetic.

Considerations
’

DBA Utilities User's Guide

You may code the exit only once.

If you code the exit, you must code it before the FILE statement.

If you code the STANDARD-EXIT statement, you must make the exit
program available for the function to load. You must put the exit
program in your execution library.

Sorted-Populate loads the exit program before processing each file
you code in each FILE statement. The function deletes the exit
program when it completes processing each file.

For a description of the exit points in this function, see “Writing exit
programs” on page 97.

93

Chapter 5 Coding the Sorted-Populate function

CALL

FILE (%ile-name-list

O

D 1

0)

Description Required. Names the database files you want to populate with secondary
keys.

Format File names must be 4 alphanumeric characters. The first character must
be alphabetic. Separate names with commas.

Considerations

¢ You must code the FILE statement at least once, and you can code it
as many times as you like.

¢ You must code the FILE statement after all other Sorted-Populate
statements.

¢ You can code only primary and related files.

¢ If you code FILE (ALL), the function populates every secondary key
for every primary and related file in the schema and environment
description.

¢ If you code FILE (ALL), you cannot code any other FILE statements.

¢ When the function begins processing each file, it opens the file for
exclusive update (EUPD open mode). When the function finishes, it
closes the file. If you code a file in more than one FILE statement, the
function opens, sweeps, and closes it each time.

¢ If you want to populate one data file with several secondary keys, you
can code several FILE statements. This method takes more I/O and
more CPU time, but less sort work space. However, since this
method degrades performance, you should do this only if sort work
space is a problem.

94 P26-6260-63

Coding the UCL for the Sorted-Populate function

ALL 0
)

SECONDARY -KEY ey nameist]

Restrictions

¢ To code the SECONDARY-KEY statement, you must code the FILE
statement.

¢ If you coded FILE (ALL) or a file list with more than one file name,
you cannot code SECONDARY-KEY (key-name-list).

Description Optional. Indicates the secondary keys you want populated.
Default ALL

Format Secondary key names must be 8 alphanumeric characters. Separate
names with commas.

Considerations

¢ You can code the SECONDARY-KEY statement as many times as
you like, or not at all.

¢ If you code SECONDARY-KEY (ALL), the function populates all
secondary keys for the files you code in the FILE statement.

¢ If you code SECONDARY-KEY (ALL), you cannot code any other
SECONDARY-KEY statements.

¢ If a secondary key is damaged or depopulated but not purged, you
cannot populate it. You must depopulate and purge it first. Likewise,
you cannot use this function on a populated secondary key until you
depopulate and purge it.

¢ Sorted-Populate handles a maximum of 512 internal elements. If
Sorted-Populate generates more than 512 elements, the utility
displays a CSUL0502S message containing CODE=3202, and
terminates abnormally. If this occurs, you must use the Directory
Maintenance utilities for the secondary key(s). This problem will most
likely occur on a related file containing many coded records. The
utility builds an element list containing all elements for each record
code, plus all elements that make up each secondary key.

DBA Utilities User's Guide 95

Chapter 5 Coding the Sorted-Populate function

LOAD-DENSITY (0-99)

Restriction To code the LOAD-DENSITY statement, you must code the
SECONDARY-KEY statement.

Description Optional. Indicates how full you want the index file blocks.
Default 0

Options 099

Considerations

¢ You can code the LOAD-DENSITY statement only once for each
SECONDARY-KEY statement.

¢ If you code LOAD-DENSITY (0), the function loads each secondary
key to the load density defined for the secondary key on the
Directory.

¢ If you code a load density between 1 and 99, the function fills the

index file blocks as closely as possible to that percentage,
considering the key-data length and block size.

96 P26-6260-63

Writing exit programs

Writing exit programs

With the exit points from the Sorted-Populate function, you can collect
data about secondary keys, turn off exit points, abort Sorted-Populate
processing, and see statistics.

See “Inserting exit programs into functions” on page 49 for information on
how exit programs are loaded, how they operate, the languages you can
use to write them, and the register conventions you must follow. In
register 1, for example, you must code the parameter list addresses. The
following table describes the parameter list addresses.

Data Contents before exit Contents after exit (passed
Parameter |type (passed to exit program) from exit program)
Function 16 bytes SORTED-POPULATELl Must be unchanged
name character
Exit point 4 bytes Exit point number Must be unchanged
integer
Action 8 bytes bbbbiLD bbb or other valid values
indicator character
Data Variable Data associated with exit Same data or changed data if

point data

permitted

If your exit program changes anything it is not authorized to change, the
results are unpredictable.

To use the exit points, see the following sections, which give the exit
number, the data associated with an exit, and the valid actions.

Selecting exit points

To use an exit point, you must know when it occurs in the function, what
data is passed, and what actions your program can take at that point.
The following table shows when an exit point occurs. “Data parameters”
on page 99 shows the data parameters, and “Valid actions for exit
programs in Sorted-Populate” on page 100 shows the actions you can
take. An example shows the order in which the function takes the exit

points.

DBA Utilities User's Guide

97

Chapter 5 Coding the Sorted-Populate function

When exit points occur

|Exit |Phase |When exit occurs
1 Initialization During initialization just before the function opens the PDM file
2 Termination After the function has completed all processing
3 Secondary key Just before the function starts populating the secondary key
initialization
4 Secondary key After the function completes populating a secondary key
termination
5 Data file sweep Just after each RDNXT issued to the PDM that returns
asterisks or an END. status
6 Data file sweep Before passing the secondary key entry record to the SORT
program
7 Secondary key After the sort program returns the secondary key entry record
population
8 Secondary key After the function prints a secondary key statistics line in the
statistics base statistics report
9 Index file After the function prints an index file statistics line in the
statistics extended statistics report

At each exit point, your program can indicate whether action should
continue or stop. To continue, your program should return blanks. To
stop processing, your program should return ABORT.

ABORT has a different scope at different exit points. At exits on the file
level (1, 2, 5, 6, 8, and 9), the function stops processing that file and
continues with the next file. At exit points on the secondary key level (3,
4, and 7), the function stops processing that secondary key and
continues with the next secondary key in the same file.

In addition to continuing or aborting, your program at the first exit point
can also change the switches in the data parameter from Y (Yes) to N
(No). When your program changes a switch, it turns off the exit point and
the function does not take the exit. If your program changes a switch
from Y to N, it must also return an action of SETbbbB. The programs at
the other exit points cannot change the data parameter.

98 P26-6260-63

Writing exit programs

Summary of data parameters and valid actions

Data parameters
The following table shows the data parameters for each exit program.

| Exit | Use | Data parameter
1 Initialization The four-character file name followed by a string of nine Y
(yes) or N (no) switches to set exit settings. Each switch turns
on or off its exit point.
2 Termination The four-character file name followed by a fullword integer
containing the function return code (0, 4, 8, or 16)
3 Secondary key The secondary key name
initialization
4 Secondary key The secondary key nhame
termination
5 Data file sweep The data area from the just completed RDNXT function
6 Data file sweep The secondary key's entry record just before it is passed to the
SORT program
7 Secondary key The secondary key's entry record just after the SORT program
population returns it
8 Secondary key The statistics in the detail line in the order in which they appear
statistics in the statistics reports. All numbers are fullword binary
integers.
9 Index key The statistics in the detail line in the order in which they appear
statistics in the statistics reports. All numbers are fullword binary

integers.

DBA Utilities User's Guide

99

Chapter 5 Coding the Sorted-Populate function

Valid actions for exit programs in Sorted-Populate

The following table shows the actions you can take with Sorted-Populate.

Action
indicators
|Exit |Use | Data parameter W E |T
1 Set exit points 13 bytes containing a four-byte file name and Y Y Y
a string of nine Ys. Your program may
change the Y to N to turn off the exit point. If
your program changes the setting, it must
return SETBBBHHY
2 Get return code The file name followed by the return code: 0 Y N Y
(complete), 4 (warning), 8 (error), 16 (internal
error)
3 Gather information 8-character name of secondary key Y N Y
or add processing
4 Gather information 8-character name of secondary key Y N Y
or add processing
5 Gather information Data area from the RDNXT command Y N Y
or add processing
6 Gather information ~ The secondary key's entry record before it Y N Y
or add processing goes to the sort program
7 Gather information ~ The secondary key's entry record after the Y N Y
or add processing sort program returns it
8 Get the secondary The secondary key's statistics Y N Y
key's statistics
9 Get the index file's The index file's statistics Y N Y
statistics
Legend: B = bbbbbbbH - Action continues
S = SETbbbbl - Data contents changed
A = ABORTbbBYH - Terminates recovery
100 P26-6260-63

Writing exit programs

Example The exit points are taken in the following order when you are populating
two secondary keys, ffffSK0O1 and ffffSK02, that both reside in index file
IX01. In the UCL, you requested all statistics:
Exit point
number Point in processing
1 During initialization of the Sorted-populate function
Once per »5 € K After RDNXT sweeps the data file for secondary keys
record >6 Loop Before the function passes ffffSKO1 records to the SORT
(Loop) N program
»>6 > 7 Before the function passes ffffSK02 records to the SORT
program.
3 Before the function starts populating ffffSK01
Once for > 7 After the SORT program returns each ffffSKO1 record
each P :
4
HISKOL After the funct|0r1 finishes populat-lng ffffSKO1
3 Before the function starts populating ffffSK02
Once for > 7 After the SORT program returns each fffSK02 record
each 4 After the function finishes populating ffffSK02
ffffSK02 8 After the function prints a secondary key statistics line in
the base statistics report for ffffSKO1
8 After the function prints a secondary key statistics line in
the base statistics report for ffffSK02
9 After the function prints an index file statistics line in the
extended statistics report for 1X01
2 Just before the Sorted-Populate function terminates

DBA Utilities User's Guide

101

Chapter 5 Coding the Sorted-Populate function

Requesting statistics

When you request statistics, you receive information on the secondary
keys in the files you listed. After populating the file, the function prints the
following base statistics for each secondary key:

102

¢

¢

¢

¢

The status code (indicating whether population was successful)
The index file name

The number of key values (number of data records being indexed)
The number of unique key values

The number of blocks in the secondary key

The number of levels in the secondary key

The number of low level blocks in the secondary key

If you requested extended statistics, the function also prints the following
information for each ex file:

¢

¢

¢

The number of blocks in the file
The number of blocks in use before and after population

The number of free blocks before and after population

P26-6260-63

Requesting statistics

The following two code samples show examples of the base and
extended statistics. You receive these statistics when you code the
following in the function section of the UCL.

Example 1 This example shows base statistics on the Sorted-Populate function.
FUNCTI ON(SORTED- POPULATE)
STATI STI CS(ALL)
FI LE(PANM)
SECONDARY- KEY(ALL)
LOAD- DENSI TY(80)
CSUL33761 : BEG NNING OF SORTED- POPULATE STATI STICS (BASE).

LOW LEVEL

NUMBER OF BLOCKS IN LEVELS IN BLOCKS IN

SECONDARY I NDEX NUMBER OF UNI QUE SECONDARY SECONDARY SECONDARY
KEY NAVE STATUS FILE KEY VALUES KEY VALUES KEY KEY KEY
PANVBKO1 *¥**x% 1001 89, 989 89, 990 1,727 3 1,698
PANVSK02 *¥**x% 1001 89, 989 89, 990 4,270 4 4,091

CSUL33811 : END OF SORTED- POPULATE STATI STICS (BASE).

DBA Utilities User's Guide 103

Chapter 5 Coding the Sorted-Populate function

Example 2 This example shows extended statistics on the Sorted-Populate function.
CSUL33701 : BEG NNING OF SORTED- POPULATE STATI STICS (EXTENDED) .

BEFORE SORTED- POPULATE AFTER SORTED- POPULATE

NUMBER OF NUMBER OF NUMBER OF
I NDEX BLOCKS I N BLOCKS NUMBER OF BLOCKS NUMBER OF
FI LE FI LE I'N USE FREE BLOCKS | N USE FREE BLOCKS
1001 7, 005 163 6, 842 6, 160 845

CSUL33751 : END OF SORTED- POPULATE STATI STI CS (EXTENDED) .

104 P26-6260-63

6

Coding the Depopulate function

The Depopulate function is the second of three secondary key functions.
With the Depopulate function, you can delete secondary keys. The
Depopulate function works like the Sorted-Populate function that creates
secondary keys. That is, the Depopulate function has exclusive access to
the file, and opens and closes the file each time you code it in a FILE
statement. In addition, you can request some of the same statistics and
add your own exit program.

An additional parameter in the Depopulate function enables you to

reclaim index file blocks when you depopulate the secondary key. You
must reclaim the blocks before you can repopulate the key.

DBA Utilities User's Guide 105

Chapter 6 Coding the Depopulate function

Coding the UCL for the Depopulate function

After you code the control section as shown in “Coding the control
section” on page 57, you can code the Depopulate function as shown in
the following format.

FUNCTION (DEPOPULATE)

O [ALL OO
0 O _0\O
OSTATISTICS (BASEQ)D
] iNONER f

[STANDARD - EXIT (exit-name))|

CALL g
FILE (Bile—name-listg)

[ALL D)D
0

ECONDARY - KEY (Qey-namelist B

oOoOoooogd
oOoOooo

[INO [
PURGE (B@E)

106 P26-6260-63

Coding the UCL for the Depopulate function

FUNCTION (DEPOPULATE)

Description Required. Executes the Depopulate function.

CALL O
STATISTICS ((BASE[)
HNONEH
Restriction If you code the STATISTICS statement, you must code it before the FILE
statement.

Description Optional. Indicates the kinds of statistics reports you want generated.

Default BASE
Options ALL You receive statistics reports on both index files and
secondary keys.
BASE You receive reports on only the secondary keys.
NONE You receive no statistics reports.

Considerations
¢ If you want statistics, you must code the Depopulate function.

¢ You may code the STATISTICS statement only once.

DBA Utilities User's Guide 107

Chapter 6 Coding the Depopulate function

STANDARD-EXIT (exit-name)

Restriction If you code the STANDARD-EXIT statement, you must code it before the
FILE statement.

Description Optional. Indicates you want to use an exit program with this function.
Default The function skips the exit points.
Format 1-8 alphanumeric characters. The first character must be alphabetic.
Considerations
¢ If you want to take the exit, you must code the Depopulate function.
¢ You may code the STANDARD-EXIT statement only once.

¢ If you want to use an exit program, you must make it available for the
function to load. That is, you must put the exit program in your
execution library.

¢ “Writing exit programs” on page 112 describes exit points.

108 P26-6260-63

Coding the UCL for the Depopulate function

CALL 4
FILE (Bile-name-listg) '

Description Required. Names the data files for which you want to depopulate
secondary keys.

Format File names must be 4 alphanumeric characters. The first character must
be alphabetic. Separate names with commas.

Considerations
¢ You must code the FILE statement at least once.

¢ You must code the FILE statement after the other Depopulate
statements.

¢ You may code only primary and related files.

¢ If you code FILE (ALL), the function depopulates all secondary keys
for every primary and related file in the schema/environment
description.

¢ If you code FILE (ALL), you cannot code any other FILE statements.

¢ When the function processes each file, it opens and closes the file. If
you code a file in more than one FILE statement, the function opens
and closes the file each time. You can depopulate several secondary
keys in one file by coding one FILE statement and several
SECONDARY-KEY statements. This reduces I/0 and CPU time, but
requires more sort work space.

¢+ Depopulate opens the file for exclusive update (EUPD open mode).

Thus, no other program can use the file while you are deleting
secondary keys.

DBA Utilities User's Guide 109

Chapter 6 Coding the Depopulate function

ALL O
)

SECONDARY -KEY (ey name-list]

Restriction You can code the SECONDARY-KEY statement only after a FILE
statement.

Description Optional. Identifies the secondary keys you want to depopulate.

Default ALL

Format Secondary key names must be 8 alphanumeric characters. Separate
names with commas.

Considerations

¢ You may code the SECONDARY-KEY statement as many times as
you like, or not at all.

¢ If you code SECONDARY-KEY (ALL), the function depopulates all
secondary keys for the files you coded in the parent FILE statement.

¢ If you code SECONDARY-KEY (ALL), you cannot code any other
SECONDARY-KEY statements.

¢ SECONDARY-KEY (key-name-list) is invalid if you coded FILE (ALL)
or a file list with more than one file name.

110 P26-6260-63

Coding the UCL for the Depopulate function

INO O
PURGE (0)
HYESH
Restriction If you code the PURGE statement, you must code the
SECONDARY-KEY statement.

Description Optional. Indicates whether you want the index file blocks reclaimed as
the key is depopulated.

Default YES
Options NO The index file blocks are not reclaimed.
YES The index file blocks are reclaimed.

Considerations

¢ You can code PURGE only once for each SECONDARY-KEY
statement.

¢ You can code PURGE (NO) only if the secondary keys are
populated.

¢ You can code PURGE (YES) if the secondary keys are populated,
damaged, or depopulated but not purged.

¢ To repopulate a secondary key, you must have depopulated and

purged it. You cannot repopulate a secondary key that is
depopulated, but not purged.

DBA Utilities User's Guide 111

Chapter 6 Coding the Depopulate function

Writing exit programs

With the exit points from the Depopulate function, you can collect data
about secondary keys, turn off exit points, terminate depopulate
processing, and see statistics.

“Inserting exit programs into functions” on page 49 discusses how your
exit programs are loaded, how they operate, the languages you can use
to write them, and the register conventions you must follow. In register 1,
for example, you must code the parameter list addresses. For a
description of the parameter list addresses, see the following table:

Contents before exit Contents after exit (passed
Parameter Data type (passed to exit program) from exit program)
Function 16 bytes DEPOPULATE Must be unchanged
name character
Exit point 4 bytes Exit point number Must be unchanged

integer

Action 8 bytes bbbbiLD bbb or other valid
indicator character values
Data Variable Data associated with exit Same data or changed data

point changed if permitted

If your exit program changes anything it is not authorized to change, the
results are unpredictable.

To use the exit points, see the following sections, which show the exit
number, the data associated with the exit, and the valid actions.

Selecting exit points

To use an exit point, you must know when it occurs in the function, what
data is passed, and what actions your program can take at that point.
The following table shows when exit points occur. The tables in
“Summary of data parameters and valid actions” on page 114 show the
data parameters for each exit program and the actions your exit program
can take. Finally, an example shows the order in which the function takes
the exit points.

112 P26-6260-63

Writing exit programs

When exit points occur
The following table shows when exit points occur:

|Exit |Phase |When exit occurs
1 Initialization After the function has initialized
2 Termination After the function has completed all processing
3 Secondary key Just before the function starts depopulating the secondary key
initialization
4 Secondary key After the function completes depopulating a secondary key
termination
8 Secondary key After the function prints a secondary key statistics line in the
statistics base statistics report
9 Index file After the function prints an index file statistics line in the
statistics extended statistics report

At each exit point, your program can indicate whether the function should
continue or stop processing. To continue, your program should return
blanks. To stop processing, your program should return ABORT.

ABORT has a different scope at different exit points. At exits on the file
level (1, 2, 8, and 9), the function stops processing that file and continues
with the next file. At exit points on the secondary key level (3 and 4), the
function stops processing that secondary key and continues with the next
secondary key in the same file.

In addition to continuing or aborting, your program at the first exit point
can also change the switches in the data parameter from Y (Yes) to N
(No). When your program changes a switch, it turns off the exit point and
the function does not take the exit. If your program changes a switch
from Y to N, it must also return an action of SETbbbblH. The programs at
the other exit points cannot change the data parameter.

DBA Utilities User's Guide 113

Chapter 6 Coding the Depopulate function

Summary of data parameters and valid actions
The following table shows the data parameters for each exit program:

|Exit |Use |Data parameter

1 Initialization The 4-character file name followed by a string of nine Y (YES)
or N (NO) switches. Each switch turns on or off its exit point.
All switches are initially set to YES.

2 Initialization The 4-character file name followed by a fullword integer
termination containing the function return code (0, 4, 8, or 16)

3 Secondary key The secondary key nhame
initialization

4 Secondary key The secondary key name
termination

8 Secondary key The statistics in the detail line in the order they appear in the
statistics statistics reports. All numbers are fullword binary integers.

9 Index key The statistics in the detail line in the order they appear in the
statistics statistics reports. All numbers are fullword binary integers.

114 P26-6260-63

Writing exit programs

The following table shows valid actions for exit programs in Depopulate:

Action

indicators
|Exit |Use |Data parameter |hﬁ_ |? |T
1 Set exit points 13 bytes containing a four-byte file nameand Y Y Y

a string of nine Ys. Your program may
change the Y to N to turn off the exit point. If
your program changes the setting, it must
return SETHBBBH.

2 Get return code The file name followed by the return code: 0 Y Y Y
(complete), 4 (warning), 8 (error), 16
(internal error)

3 Gather information 8-character name of secondary key Y N Y
or add processing

4 Gather information 8-character name of secondary key Y N Y
or add processing

5 Does not exist in
Depopulate

6 Does not exist in
Depopulate

7 Does not exist in
Depopulate

8 Get the secondary The secondary key's statistics Y N Y
key's statistics

9 Get the index file's The index file's statistics Y N Y
statistics

Legend: B = bbbbBbBbL - Action continues

S = SETbbbb - Data contents changed

A = ABORTbbBH - Terminates recovery

DBA Utilities User's Guide 115

Chapter 6 Coding the Depopulate function

In this example, the exit points are taken in the following order when you
depopulate two secondary keys, ffffSKO1 and ffffSK02, that both reside in
index file IX01. In the UCL, you requested all statistics.

Exit
point
number Point in processing

During initialization of the Depopulate function

Before the function starts depopulating ffffSK01
After the function finishes depopulating ffffSK01
Before the function starts depopulating ffffSK02
After the function finishes depopulating ffffSK02

o A WA W

After the function prints a secondary key statistics line in
the base statistics report for ffffSK0O1

8 After the function prints a secondary key statistics line in
the base statistics report for ffffSK02

9 After the function prints an index file statistics line in the
extended statistics report for 1X01

2 Just before the Depopulate function terminates

116 P26-6260-63

Requesting statistics

Requesting statistics

You receive statistics when you code the following in the function section
of the UCL.:

FUNCTION(DEPOPULATE)
STATISTICS(ALL)
FILE(PANM)

SECONDARY - KEY(ALL)

When you request statistics, you receive information on the secondary
keys in the files you listed. After depopulating the file, the function prints
the following base statistics for each secondary key:

¢ The status code (indicating whether depopulation was successful)

¢ The index file name

¢ The number of blocks in the secondary key before it was
depopulated

When you request the extended statistics, the function also prints the
following information for each index file:

¢ The number of blocks in the file
¢ The number of blocks in use before and after depopulation

¢ The number of free blocks before and after depopulation

DBA Utilities User's Guide 117

Chapter 6 Coding the Depopulate function

Examples of both the base and extended statistics are in the following

two code samples.

Example 1 This example shows base statistics on the Depopulate function.
CSUL37591 : BEG NNI NG OF DEPCPULATE STATI STI CS (BASE) .
BLOCKS I N
SECONDARY
SECONDARY | NDEX KEY BEFCRE
KEY NAME STATUS FILE DEPOPULATE
PANMSKO1 ~ **** | 001 1,727
PANMSKO2 ~ **** | 001 4,270
CSUL37631 : END OF DEPOPULATE STATI STI CS (BASE).
Example 2 This example shows extended statistics on the Depopulate function.
CSUL37761 : BEG NNING OF DEPOPULATE STATI STICS (EXTENDED) .
BEFORE DEPOPULATI ON AFTER DEPCPULATI ON
NUMBER OF NUMBER OF NUMBER OF
INDEX BLOCKS IN BLOCKS NUMBER OF BLOCKS NUMBER OF
FI LE FI LE IN USE FREE BLOCKS I N USE FREE BLOCKS
1 001 7,005 6, 160 845 163 6, 842
CSUL37811 : END OF DEPOPULATE STATI STI CS (EXTENDED) .
118 P26-6260-63

v

Coding the Reor ganize function

The Reorganize function enables you to correct the deterioration of the
secondary key tree structure that can result from updates. The
Reorganize function rebuilds the tree structure without accessing the
primary or related file from which the secondary key came.

The Reorganize function works like the Sorted-Populate function. That is,
the Reorganize function has exclusive access to the file, and opens and
closes the file each time you code it in a FILE statement. In addition, you
can request the same statistics, add an exit program, and indicate how
full you want the index file blocks.

Coding the UCL for the Reorganize function

After you code the control section as shown in “Coding the control
section” on page 57, you can code the Reorganize function as shown in
the following format:

FUNCTION (REORGANIZE)

0 [ALL OO
BraTisTics (BASED)]
H ENONEH H
[STANDARD - EXIT (exit -name)
FILE (AL D)

: . a)..
H‘He—name-llstg
[ALL

ECONDARY -KEY (Hey -name-list

O
0)
g

[LOAD-DENSITY (0-99)

101 P
oOoOogooOooo;o

DBA Utilities User's Guide 119

Chapter 7 Coding the Reorganize function

FUNCTION (REORGANIZE)
Description Required. Executes the Reorganize function.

Consideration Performance is highly sensitive to the number of buffers in the INDEX
file's buffer pool. The recommended number of buffers is twice the
expected tree height plus three. If you do not know the expected tree
height, 10-15 buffers is recommended. The DATA file buffering is not
important because Reorganize does not read the DATA file.

ALL O
STATISTICS ([BASEQ)

FANONE]

Restriction If you request statistics, you must code this statement before the FILE
statement(s).

Description Optional. Indicates the kinds of statistics reports you want generated.

Default BASE
Options ALL You receive statistics reports on both index files and
secondary keys.
BASE You receive reports on only the secondary keys.
NONE You do not receive statistics reports.

Consideration You may request statistics only once.

120 P26-6260-63

Coding the UCL for the Reorganize function

STANDARD-EXIT (exit-name)

Restriction If you code the STANDARD-EXIT statement, you must code it before the
FILE statement.

Description Optional. Indicates you want to use an exit program with this function.
Default The function skips the exit points.
Format 1-8 alphanumeric characters. The first character must be alphabetic.
Considerations
¢ You may code this statement only once.
¢ If you code the STANDARD-EXIT statement, you must make your
exit program available for the function to load. You must put the exit

program in your execution library.

¢ “Writing exit programs” on page 124 describes the exit points in this
function.

DBA Utilities User's Guide 121

Chapter 7 Coding the Reorganize function

CALL

FILE(%ile-name-list

0

a)...

0)

Description Required. Names the database files that need their secondary keys
reorganized.

Format File names must be 4 alphanumeric characters. The first character must
be alphabetic. Separate names with commas.

Considerations

¢ You must code the FILE statement at least once. After that, you can
code it as many times as you like.

¢ You must code the FILE statement after all the other REORGANIZE
statements.

¢ You can code only primary and related files.

¢ If you code FILE (ALL), the function reorganizes all secondary keys
for every primary and related file in the schema and environment
description.

¢ If you code FILE (ALL), you cannot code any other FILE statements.

¢ When the function processes each file, it opens and closes the file. If

you code a file in more than one FILE statement, the function opens
and closes the file each time.

122 P26-6260-63

Coding the UCL for the Reorganize function

SECONDARY -KEY (

[ALL 0
%ey-n ame-list E

Restriction To code the SECONDARY-KEY statement, you must code the FILE
statement.

Description Optional. Indicates the secondary keys you want reorganized.

Default ALL

Format Secondary key names must be 8 alphanumeric characters. Separate
names with commas.

Considerations
¢

You can code the SECONDARY-KEY statement as many times as
you like, or not at all.

If you code SECONDARY-KEY (ALL), the function reorganizes all
secondary keys for the files you coded in the parent FILE statement.

If you code SECONDARY-KEY (ALL), you cannot code any other
SECONDARY-KEY statements.

You cannot code SECONDARY-KEY (key-name-list) if you coded
FILE (ALL) or a file list with more than one file name.

LOAD-DENSITY (0-99)

Restriction To code the LOAD-DENSITY statement, you must code the
SECONDARY-KEY statement.

Description Optional. Indicates how full you want the index file blocks.

Default 0

Options 0-99

Considerations You can code the LOAD-DENSITY statement only once.

¢

DBA Utilities User's Guide

If you code LOAD-DENSITY (0), the function loads each secondary
key to the load density defined for the secondary key on the
Directory.

If you code a load density between 1 and 99, the function fills the
index file blocks as closely as possible to that percentage.

123

Chapter 7 Coding the Reorganize function

Writing exit programs

With the exit points from the Reorganize function, you can collect data
about your secondary keys, turn off exit points, and see statistics.

“Inserting exit programs into functions” on page 49 explains how your exit
programs are loaded, how they operate, the languages you can use to
write them, and the register conventions you must follow.

In register 1, for example, you must code the parameter list addresses.
The following table describes the parameter list addresses:

Data Contents before exit Contents after exit (passed
Parameter |type (passed to exit program) from exit program)
Function 16 bytes REORGANIZE Must be unchanged
name character
Exit point 4 bytes Exit point number Must be unchanged
integer
Action 8 bytes bbbbiLD bbb or other valid values
indicator character
Data Variable Data associated with exit Same data or changed data if

point data permitted

If your exit program changes anything it is not authorized to change, the
results are unpredictable.

To use the exit points, see the following sections, which show the exit
number, the data associated with the exit, and the valid actions.

124 P26-6260-63

Writing exit programs

Selecting exit points

To use an exit point, you must know when it occurs in the function, what
data is passed, and what actions you can take at that point. The following
table shows when exit points occur. “Summary of data parameters and
valid actions” on page 126 shows the data parameters and the actions
your program can take. Finally, an example situation shows the order in
which the function takes the exit points.

|Exit |Phase When exit occurs
1 Initialization After the function has initialized

2 Termination After the function has completed all processing

3 Secondary key Just before the function starts reorganizing the secondary key
initialization

4 Secondary key After the function completes reorganizing a secondary key
termination

8 Secondary key After the function prints a secondary key statistics line in the
statistics base statistics report

9 Index file After the function prints an index file statistics line in the
statistics extended statistics report

At each exit point, your program can indicate whether the function should
continue or stop processing. To continue, your program should return
blanks. To stop processing, your program should return ABORT.

ABORT has a different scope at different exit points. At exits on the file
level (1, 2, 8, and 9), the function stops processing that file and continues
with the next file. At exit points on the secondary key level (3 and 4), the
function stops processing that secondary key and continues with the next
secondary key in the same file.

In addition to continuing or aborting, your program at the first exit point
can also change the switches in the data parameter from Y (Yes) to N
(No). When your program changes a switch, it turns off the exit point and
the function does not take the exit. If your program changes a switch
from Y to N, it must also return an action of SEThbbBB. The programs at
the other exit points cannot change the data parameter.

DBA Utilities User's Guide 125

Chapter 7 Coding the Reorganize function

Summary of data parameters and valid actions
The following table shows the data parameters for each exit program:

|Exit |Use |Data parameter

1 Initialization The 4-character file name followed by a string of nine Y (yes)
or N (no) switches. Each switch turns on or off its exit point. All
nine switches are initially set to YES.

2 Termination The 4-character file name followed by a fullword integer
containing the function return code (0, 4, 8, or 16)

3 Secondary key The secondary key nhame
initialization

4 Secondary key The secondary key name
termination

8 Secondary key The statistics in the detail line in the order they appear in the
statistics statistics reports. All numbers are fullword binary integers.

9 Index key The statistics in the detail line in the order they appear in the
statistics statistics reports. All numbers are fullword binary integers.

126 P26-6260-63

Writing exit programs

The following table shows valid actions for exit programs in Reorganize:

Action
indicators
|Exit |Use | Data parameter Ib_ E |T
1 Set exit points 13 bytes containing a four-byte file name and Y Y Y
a string of nine Ys. Your program may
change the Y to N to turn off the exit point. If
your program changes the setting, it must
return SETHBBBH.
2 Get return code The file name followed by the return code: 0 Y N Y
(complete), 4 (warning), 8 (error), 16 (internal
error)
3 Gather information 8-character name of secondary key Y N Y
or add processing
4 Gather information 8-character name of secondary key Y N Y
or add processing
5 Does not exist in
Reorganize
6 Does not exist in
Reorganize
7 Does not exist in
Reorganize
8 Get the secondary The secondary key's statistics Y N Y
key's statistics
9 Get the index file's The index file's statistics Y N Y
statistics
Legend: B = bbbbbbbd - Action continues
S = SETbbbb - Data contents changed

A = ABORTbBBY

DBA Utilities User's Guide

- Terminates recovery

127

Chapter 7 Coding the Reorganize function

The exit points are taken in the following order when you are reorganizing
two secondary keys, ffffSK0O1 and ffffSK02, that both reside in index file
IX01. In the UCL, you requested all statistics.

Exit
point
number Point in processing

During initialization of the Reorganize function

Before the function starts reorganizing ffffSK01
After the function finishes reorganizing ffffSK01
Before the function starts reorganizing ffffSK02
After the function finishes reorganizing ffffSK02

o A WA W

After the function prints a secondary key statistics line in
the base statistics report for ffffSK0O1

8 After the function prints a secondary key statistics line in
the base statistics report for ffffSK02

9 After the function prints an index file statistics line in the
extended statistics report for 1X01

2 Just before the Reorganize function terminates

128 P26-6260-63

Requesting statistics

Requesting statistics

You receive statistics when you code the following in the function section
of the UCL.:

FUNCTION(REORGANIZE)
STATISTICS(ALL)
FILE(PANM)
SECONDARY - KEY(ALL)
LOAD - DENSITY(80)

When you request statistics, you receive information on the secondary
keys in the files you listed. After reorganizing the file, the function prints
the following base statistics for each secondary key:

¢ The status code (whether reorganization was successful)

¢ Theindex file name

¢ The number of blocks in the secondary key before it was reorganized
¢ The number of key values

¢ The number of unique key values

¢ The number of blocks in the secondary key before and after
reorganization

¢ The number of levels in the secondary key before and after
reorganization

¢ The number of low level blocks in the secondary key before and after
reorganization

If you requested extended statistics, the function also prints the following
information for each index file:

¢ The number of blocks in the file
¢ The number of blocks in use before and after reorganization

¢ The number of free blocks before and after reorganization

DBA Utilities User's Guide 129

Chapter 7 Coding the Reorganize function

The following two code samples show examples of the base and
extended statistics.

Example 1 This example shows base statistics on the Reorganize function.
CSUL35741 : BEG NNI NG OF REORGANI ZE STATI STI CS (BASE)

BEFORE REORGANI ZATI ON AFTER REORGANI ZATI ON

LOW LEVEL LOW LEVEL
NUMBER OF BLOCKS IN LEVELS IN BLOCKS IN BLOCKS IN LEVELS IN BLOCKS IN
SECONDARY I NDEX NUMBER OF UNI QUE SECONDARY SECONDARY SECONDARY SECONDARY SECONDARY SECONDARY
KEY NAME STATUS FILE KEY VALUES KEY VALUES KEY KEY KEY KEY KEY KEY
PANMVBKO1 *xkk 1001 89, 989 89, 990 1,727 3 1, 698 1,727 3 1, 698
PANMBKO2 *xkk 1001 89, 989 89, 990 4,270 4 4,091 4,270 4 4,091
CSUL3578! : END OF REORGAN ZE STATI STI CS (BASE).
Example 2 This example shows extended statistics on the Reorganize function.

CSUL35911 : BEG NNI NG OF REORGANI ZE STATI STI CS (EXTENDED) .
BEFORE RECRGANI ZATI ON AFTER REORGANI ZATI ON

NUMBER OF NUMBER OF NUMBER CF
I NDEX BLOCKS IN BLOCKS NUMBER CF BLOCKS NUMBER COF
FILE FILE I N USE FREE BLOCKS I N USE FREE BLOCKS
1 001 7,005 6, 160 845 6, 160 845

CSUL35961 : END OF REORGANI ZE STATI STI CS (EXTENDED) .

130 P26-6260-63

Coding the File Statistics function

After you have used your database files, you may want to use the File
Statistics function. With it, you can get reports on various physical and
logical characteristics of the database files that are in the SUPRA native
format.

MNOTE

O e—

You cannot get meaningful information about index files. For this
information, cyclically use the Execution Statistics function and analyze
the index file results.

With File Statistics reports, you can monitor file growth and predict
expansion needs. You may also verify linkages and monitor the time
needed to access records. If you use the File Statistics function on a
cyclical basis, you can optimize file performance.

MNOTE

O e—

If you request statistics on key-sequenced data sets or entry-sequenced
data sets, you may receive no report or only partial reports because the
information is not available to the function. For more information on the
reports you can receive, see the samples in “Requesting file statistics” on
page 137.

When you request statistics on linkpaths or chains, the File Statistics
function sorts the information before printing it. Therefore, you must
allocate sort work space for the sort. To calculate the amount of sort work
space, see “Using sort programs” on page 52.

DBA Utilities User's Guide 131

Chapter 8 Coding the File Statistics function

Coding the UCL for the File Statistics function

After you code the control section as shown in “Coding the control
section” on page 57, you can code the File Statistics function according
to the following format. For information on work files and JCL, refer to the
SUPRA Server PDM and Directory Administration Guide (OS/390 &

VSE), P26-2250.

FUNCTION (FILE - STATS)

(CALL D)
FILE %ile—name%

NO
ES

)

0
m:LOSE(

[|
OoOoO

D)D

IIDI]_INKPATH(P
anpath-list% B

[STATISTICS (LUl [BASE] [sizE] [LINKI [cHAIN [coDE)]

132

P26-6260-63

Coding the UCL for the File Statistics function

FUNCTION (FILE-STATS)

Description Required. Invokes the File Statistics function.

CALL

FILE(%ile-name

d
).

Description Required. Names the database file(s) on which you want to see statistics.

Format 4 alphanumeric characters. The first character must be alphabetic.

Options ALL You receive statistics on all the primary and related files

in the schema. You cannot get statistics on index files,
Task Log Files, or System Log Files.

file-name You receive statistics on the specified file.

Considerations

¢

DBA Utilities User's Guide

If you code FILE (ALL), you receive the statistics in alphabetical order
by file with primary files first and then related files. A message
indicating that you do not receive statistics for index files appears
before the primary files.

If you want statistics on Directory files, you must code Directory files
by name. You cannot get statistics on Directory files by coding FILE
(ALL).

The file names you code must exist in the schema you coded in the
control section.

Do not code FILE (file-name-list).
If you name individual files, you must code each one in a separate
FILE statement. They are processed in the order in which you list

them.

You may code only primary or related files.

133

Chapter 8 Coding the File Statistics function

INO O
)

CLOSE(Ekggg

Description Optional. Specifies whether to explicitly close the file after the File
Statistics function reads it.

Default YES

1) 0
LINKPATH (. _0)
%lnkpath—llst 0
Description Optional. Indicates the linkpaths on which you want to gather statistics.

Format Linkpath names must be 8 alphanumeric characters. Separate nhames
with commas.

Default b
Options b Gathers statistics on all linkpaths for primary and
noncoded related files. You must use only base linkpaths
for coded related files.
linkpath-list Gathers statistics on linkpaths you name.

Consideration You must code at least one of the linkpaths in the overlay portion of the
record if you request statistics on a coded, related file that does not
contain a linkpath in the base portion of the record.

134 P26-6260-63

Coding the UCL for the File Statistics function

STATISTICS ([ALL] [BASE] [SIZE] [LINK] [CHAIN] [CODE])

Description Optional. Indicates the content and format of the statistics report.

Default BASE
Options ALL

BASE

SIZE

LINK

CHAIN

CODE

Considerations

You receive all possible statistics.

You receive a report of basic file information. For an
example, see “Requesting Basic File Information
(BASE)” on page 138.

You receive a report on current file size. For an example,
see “Requesting Current File Size (SIZE)” on page 139.

You receive a report of linkpath statistics. For an
example, see “Requesting Linkpath Statistics (LINK)” on
page 140.

You receive a report on chain length statistics and chain
migration statistics for primary or related files, plus a
report on synonym statistics for primary files only. For an
example, see “Requesting Chain Statistics (CHAIN)” on
page 141.

You receive a report on record code statistics for coded,
related files. For an example, see “Requesting Record
Code Statistics (CODE)” on page 146.

¢ If you name a noncoded file in the FILE statement, STATISTICS
(CODE) is ignored.

¢ If you name a primary file which has no linkpath elements,
STATISTICS (LINK) is ignored.

¢ The File Statistics function prints generated reports in the same order
regardless of the order of the options you code in the STATISTICS

statement.

DBA Utilities User's Guide

135

Chapter 8 Coding the File Statistics function

Programming examples

Example 1 The code in this example will produce the following reports for all the files
in the schema called (CINDIREV): basic file information, current file size,
chain length and migration statistics, and linkpath statistics. This code
also produces extended diagnostics and uses a sort program named
SORT.

CONTROL (BEG N)

ENV- DESC (Cl NDI REV)

SCHEMA (CI NDI RSO)

DI AGNOSTI CS (EXTENDED)
SORT (SORT)
FUNCTI ON (FI LE- STATS)
FILE (ALL)

STATI STI CS (BASE SI ZE CHAI N LI NK)
CONTROL (END)

Example 2 The following example produces Current File Size and Linkpath Statistics
reports for only a few files and linkpaths:
CONTROL (BEG N)
ENV- DESC (Cl NDI REV)
SCHENMA (CI NDI RSC)
FUNCTI ON (FI LE- STATS)
FILE (C$-9)
LI NKPATH (C$- #LKST, C$- #LKHD, C$- #LKW/)
STATI STI CS (Sl ZE LI NK)
FILE (CS$-#)
LI NKPATH (C$- #LKST)
STATI STI CS (Sl ZE LI NK)
CONTROL (END)

136 P26-6260-63

Requesting file statistics

Requesting file statistics

When you use the File Statistics function, you get a printout containing a
titte page and the reports you requested. The following figure is a sample
titte page. The remaining figures in this chapter show examples of the

reports you receive.

When you receive the printout, you can check the title page to see
whether you received the statistics you wanted and whether coding errors
have occurred. The title page shown below indicates that you received
the following types of statistics on the C$-D file: basic, size, linkpath,

chain, and record code.

SSSSSSS TTTTTTTT
SSSSSSSSS TTTTTTTT
SS SS T
SS T
SSSSSSSS T
SSSSSSSS T
SS T
SS SS T
SSSSSSSSS T
SSSSSSS T

FUNCTI ON = FI LE- STATI STI CS FILE = C$-D
DDDDDDDD ~ BBBBBBBB AAA
DDDDDDDDD BBBBBBBBB AAAAA
DD DD BB BB AA AA
DD DD BB BB AA AA
DD DD BBBBBBBB AA AA
DD DD BBBBBBBB AAAAAAAAA
DD DD BB BB AAAAAAAAA
DD DD BB BB AA AA
DDDDDDDDD BBBBBBBBB AA AA
DDDDDDDD BBBBBBBB ~ AA AA
AAA TITTTTTT [ARRRN SSSSSSS TTTTTTTT [ARRRN Ccccece SSSSSSS
AAAAA TTTTTTTT [ARRRY] SSSSSSSSS TTTTTTTT [ARRRY] CCCCCCCCC SSSSSSSSS
AA AA T I SS SS T I cC CC ss SS
AA AA T N SS T N cc SS
AA AA T I SSSSSSSS T I cC SSSSSSSS
AAAAAAAAA T N SSSSSSSS T N C SSSSSSSS
AAAAAAAAA T I SS T I cC SS
AA AA T N SS SS T N cc CC sS SS
AA AA T [ARRRN SSSSSSSSS T [ARRRN CCCCCCCCC SSSSSSSSS
AA AA T Leren SSSSSSS T Leren cceeece SSSSSSS
FI LE NAME C$-D
ENV- DESC NAME Cl NDI REN
SCHEMA NAVE Cl NDI RSC
STATI STI CS BASE SI ZE LI NK CHAI N CODE

DBA Utilities User's Guide

137

Chapter 8 Coding the File Statistics function

Requesting Basic File Information (BASE)

To receive the Basic File Information report, code BASE on the

STATISTICS statement in your UCL. This report is a summary of
physical and logical characteristics for primary or related files in the
schema you indicated (see the following figure).

For key-sequenced data sets, you receive no information on block size or
record capacity. For files using the BDAM access method, the control

interval size is not available.

FUNCTI ON = FI LE- STATI STI CS

CCccece
CCCCCCCCC $33$5$$$
CcC $$ $ $3
$$ $ 8%
B
$EE$$S - ------
$$ $ $$
CC $$ $ $%
CCCCCCCCC $$$$5$8$
ccceece $

888888

FI LE TYPE = PRI MARY

I+
I+
I+
I+
H+
H+
H+

**
3*
HHHFFHHEFTHHR

3+
s
HHHFFHHEFTHHR

3*
*

BASI C FILE | NFORMATI ON

SCHEMA NAVE
ACCESS METHOD

LOG CAL RECORD LENGTH
BLOCKSI ZE

CONTROL | NTERVAL SI ZE
LOG CAL RECORDS PER BLOCK
LOG CAL BLOCKS IN FILE

MAXI MUM DATA RECORDS
CONTROL RECORDS
TOTAL LOG CAL RECORDS

Cl NDI RSC
BDAM

FILE = C$-#

NOTE - SOME | TEMS MAY NOT BE AVAI LABLE DEPENDI NG ON ACCESS METHOD.

138

P26-6260-63

Requesting file statistics

Requesting Current File Size (SIZE)

To receive the Current File Size report, code SIZE on the STATISTICS
statement. The report monitors the growth of primary and related files to
determine when you need to expand them. The report prints record and
block statistics. The following figure shows statistics on the primary file
C$-#.

The File Statistics function calculates the average data records per block
in the entire file and the average data records per block in the blocks with
data records. The report shows those averages below the statistics. For
key-sequenced data sets, the only size statistics available are the
numbers of active data records, control records, and records in use.

FUNCTI ON = FI LE- STATI STI CS FILE = C$-#
Ccceecce $ # #
COOCCOOCC — $$$555$ # o #
CC CC $8 $ $% 4 #
CcC $3 5 $% B
o $$$S$S ------- % #
cc F R S # o #
cC $$ $ 3 HHtHHHHH R
o CC $$ 5 3% # o #
CCOCCOOCC — $$$55$$ 4 #
ccceece $ # #
FI LE TYPE = PRI MARY
CURRENT FI'LE SI ZE
ACTUAL % OF
FI LE
NUMBER CAPACI TY
RECORD STATI STI CS
ACTI VE DATA RECORDS 2627 36. 486
CONTROL RECORDS 1 0.014
RECORDS | N USE 2628 36. 500
UNUSED RECORDS 4572 63. 500
TOTAL LOG CAL RECORDS 7200 100. 000
BLOCK STATI STI CS
EMPTY BLOCKS 4 0. 667
BLOCKS I N USE 596 99. 333
FULL BLOCKS 1 0. 167
LOG CAL BLOCKS I N FILE 600 100. 000
AVERAGE DATA RECORDS/ BLOCK I N ENTI RE FI LE 4.378
AVERAGE DATA RECORDS/ BLOCK | N BLOCKS W TH DATA RECORDS 4.408

NOTE - SOMVE | TEMS MAY NOT BE AVAI LABLE DEPENDI NG ON ACCESS NETHOD.

DBA Utilities User's Guide

139

Chapter 8 Coding the File Statistics function

Requesting Linkpath Statistics (LINK)

To receive the Linkpath Statistics report, code LINK on the STATISTICS
statement. You can receive linkpath statistics on both primary and related
files.

The following figures are examples of reports for a primary file and a
related file. Use this report to verify the accuracy of linkages for the files
you select. If you have key-sequenced data sets, you do not receive
statistics on file capacity or maximum data records. For a coded related
file, you also receive the number of records for each record code on each

linkpath.
FUNCTI ON = FI LE- STATI STI CS FILE = C$-#
Ccceeece $ # #
CCCCCCCCC $3$38%$ # #
cCc CC 38 $ $% # #
CcC $3 5 $% HiHHHHH R
cCc R # #
CcC PSS ------- # #
cC $ $ $$ HHtHHHHH R
cC CC 38 $ $% # #
CCCCCCCCC $3$$$%% # #
cceeece $ # #
FI LE TYPE = PRI MARY
LI NKPATH STATI STI CS
LI NKPATH RECORDS W TH % OF % OF RECORDS W TH % OF % OF
ACTI VE ACTI VE FI LE NON- ACTI VE ACTI VE FI LE
LI NKPATH DATA RECORDS CAPACI TY LI NKPATH DATA RECORDS CAPACI TY
C$- #LKHD 1259 47.925 17. 489 1368 52.075 19. 003
C$- #LKST 1259 47.925 17. 489 1368 52. 075 19. 003
C3$- #LKWJ 2453 93. 376 34.074 174 6.624 2.417
C$- #LKDA 767 29.197 10. 654 1860 70. 803 25. 837
C$- #LKTT 1262 48. 040 17.530 1365 51. 960 18.961
ACTI VE DATA RECORDS 2627 2627
MAXI MUM DATA RECORDS 7199 7199

NOTE - SOME | TEMS MAY NOT BE AVAI LABLE DEPENDI NG ON ACCESS METHOD.

The following figure shows a related file:

FI LE TYPE = RELATED

FUNCTI ON = FI LE- STATI STI CS FILE = C3-S
Cooooee $ SSSSSSS
COCOCCOCC — $$$$$$$ SSSSSSSSS
cc cC $$ % $% ss ss
cc $$ S $$ ss
cc $$$$$$ ------- SSSSSSSS
cc $$$$SS - ------ SSSSSSSS
cc $$ 5 $$ ss
cc $$ S 3% ss ss
COCCOOCCC — $$$$$$$ SSSSSSSSS
SSSSSSS
LI NKPATH STATI STI CS
TOTALS FOR SPECIFIED LINKPATHS
NUMVBER % OF % OF
oF ACTI VE FI LE
LI NKPATH CODE RECORDS DATA RECORDS CAPACI TY
C$- #LKST TOTAL 7392 100. 000 23.072
DT 6020 81. 439 18. 790
HD 1372 18. 561 4.282
ACTI VE DATA RECCRDS 7392
MAXI MUM DATA RECORDS 32039

NOTE - SOME | TEMS MAY NOT BE AVAI LABLE DEPENDI NG ON ACCESS METHOD.

140

P26-6260-63

Requesting Chain Statistics (CHAIN)

Requesting file statistics

Code CHAIN on the STATISTICS statement to receive the following

reports:
¢ Chain Length Statistics report (for primary or related files)
¢ Chain Migration Statistics report (for primary or related files)

¢ Synonym Statistics report (for primary files only)

Requesting Chain Length Statistics on primary files

When you receive the Chain Length Statistics report for primary files, you
get the number of records randomized to the same home location. With

this report, you can monitor the physical structure of chains and their

accessing characteristics. In this report, the number in chain value is the

actual number of records chained together. The following figure is an

example of the report:

FI LE TYPE = PRI MARY

FUNCTI ON = FI LE- STATI STI CS FILE = C$-N

CCCCCCC $ N NN
CCCCCCCCC $$35$3$$ NN NN
cC CC $$ $ 88 NNN NN
cC $$ & $3 NNNN NN
cC $$$8$$ ------- NN NN NN
cc PSS ------- NN NN NN
cC $$ $ 83 NN NNNN
cc CC $$ $ $3 NN NNN
CCCCCCCCC $3$$$%$ NN NN

cceecce $ NN N

CHAI N LENGTH STATI STI CS
RECORDS RANDOM ZED TO SAME HOMVE LOCATI ON

NUMBER NUMBER % OF
I'N OF TOTAL
CHAI'N CHAI NS CHAI NS
1 1879 84. 336
2 305 13. 689
3 40 1.795
4 3 0.135
5 1 0. 045
6 0 0. 000
7 0 0. 000
8 0 0. 000
9 0 0. 000
10 0 0. 000
OVER 10 0 0. 000
TOTAL CHAI NS 2228
CHAI'N LENGTH - M NI MUM 1
MAXI MUM 5
AVERAGE 1.179

DBA Utilities User's Guide

141

Chapter 8 Coding the File Statistics function

Requesting Chain Length Statistics on related files

When you request the Chain Length Statistics report for related files, you
get the number of records on linkpath chains. You get one report for each

linkpath you select.

The number in chain value is the actual number of records chained
together. The chain lengths are reported for ranges that are tailored to
your particular linkpaths based on the distribution of chain lengths in the
file. At least 80% of all chains fall into the defined range; the rest are
under the minimum and over the maximum. For the report to be
accurate, you must make the keys to linkpaths on related files 245 bytes

or less. The following figure is an example of the report:

FI LE TYPE = RELATED
LI NKPATH = C$- #LKST

UNDER
2 -

44 -
86 -
128 -
170 -
212 -
254 -
296 -
338 -
380 -
OVER

CHAI

FUNCTI ON = FI LE- STATI STI CS

coccooe $ SSSSSSS
COCCOCCCC — $$$$$$$ SSSSSSSSS
cc cC $$ % $% ss ss
cc $3 5 $% ss
cc $$$$$$ ------- SSSSSSSS
cc $3$$$$ ------- SSSSSSSS
cc $$ 5 $$ ss
cc cC $3 5 $% ss ss
COCCOOCCC — $$$$$$$ SSSSSSSSS
$ SSSSSSS

HAI' N LENGTH STATI STI CS

NUMBER NUMBER % OF
I'N OF TOTAL
CHAIN CHAI NS CHAI NS

2 0 0. 000
43 1243 98.729
85 2 0. 159

127 8 0. 635
169 1 0.079
211 2 0. 159
253 0 0. 000
295 0 0. 000
337 2 0. 159
379 0 0. 000
421 0 0. 000
421 1 0.079
TOTAL CHAI NS 1259
N LENGTH - M NI MUM 2
MAXI MUM 425
AVERAGE 5.871

FILE = C$-S

142

P26-6260-63

Requesting file statistics

Requesting Chain Migration Statistics on primary files

When you receive the Chain Migration Statistics report for primary files,
you get the number of block boundaries traversed and the number of
different blocks encountered. The number of block boundaries traversed
may equal or exceed the number of blocks encountered. A block
traverses more than one boundary if a block contains many
noncontiguous records on the same chain. Statistics are not returned for
the number of different blocks encountered.

The following figure is an example of the report for a primary file.

FUNCTI ON = FI LE- STATI STI CS FILE = C$-#
[cecevee $ # #
CCOCOCOCC — $$$$$$$ # #
cc cC $$ $ 3% # #
cc $$ $ $% HHRHRRART
cc $5$$$S - ---- # #
cc $E$$$$ - ------ # #
cC $$ % 3% S
cC cC $$ $ $% # #
COCOCCOCC $$$$5$% # o #
ccococe $ # #
FILE TYPE = PRI MARY
CHAI N MI GRATI ON STATI STI CS
NUMBER OF BLOCK BOUNDARI ES TRAVERSED NUMBER OF DI FFERENT BLOCKS ENCOUNTERED
NUVBER OF NUMVBER % OF NUVBER NUVBER % OF
BLOCK oF TOTAL oF oF TOTAL
BOUNDARI ES CHAI NS CHAI NS BLOCKS CHAI NS CHAI NS
1 2 0.091 1 0 0. 000
2 0 0. 000 2 0 0. 000
3 0 0. 000 3 0 0. 000
4 0 0. 000 4 0 0. 000
5 0 0. 000 5 0 0. 000
6 0 0. 000 6 0 0. 000
7 0 0. 000 7 0 0. 000
8 0 0. 000 8 0 0. 000
9 0 0. 000 9 0 0. 000
10 0 0. 000 10 0 0. 000
OVER 10 0 0. 000 OVER 10 0 0. 000
TOTAL CHAI NS 2193 TOTAL CHAI NS 2193
DBA Utilities User's Guide 143

Chapter 8 Coding the File Statistics function

Requesting Chain Migration Statistics on related files

When you receive the Chain Migration Statistics report for related files,
you get the same statistics that you get for primary files. You receive one
report for each linkpath you code.

The numbers are reported for ranges that are tailored to your particular
linkpaths based on the number of blocks in the linkpath's chains. At least
80% of all chains fall into the defined range; the rest are under the
minimum and over the maximum. The following figure shows an example
of a report for a related file.

Statistics are not returned for the number of different blocks encountered:

FI LE TYPE = RELATED

OVER

LI NKPATH = C$- #LKST
NUMBER OF BLOCK BOUNDARI ES TRAVERSED

CHAI N MI GRATI ON STATI STI CS
NUMBER OF DI FFERENT BLOCKS ENCOUNTERED

NUMBER OF NUMBER % OF NUMBER NUMBER % OF
BLOCK OF TOTAL OF OF TOTAL
BOUNDARI ES CHAI NS CHAI NS BLOCKS CHAI NS CHAI NS
1 13 1.033 1 0 0. 000
2 1 0. 079 2 0 0. 000
3 3 0.238 3 0 0. 000
4 0 0. 000 4 0 0. 000
5 0 0. 000 5 0 0. 000
6 1 0.079 6 0 0. 000
7 0 0. 000 7 0 0. 000
8 0 0. 000 8 0 0. 000
9 0 0. 000 9 0 0. 000
10 0 0. 000 10 0 0. 000

10 0 0. 000 OVER 10 0 0. 000
TOTAL CHAI NS 1259 TOTAL CHAINS 1259
AVERAGE NUMBER OF READS TO TRAVERSE ENTI RE CHAIN - 1.024

144

P26-6260-63

Requesting file statistics

Requesting Synonym Statistics on primary files

When you request the Synonym Statistics report, you get the actual
number of records in a file and the percentage of capacity. With this
report, you can monitor the number and length of synonym chains in

primary files.

You also receive the average number of physical reads to obtain a
record. The average is calculated as follows: (active data records +
number of records not in home block)/active data records. For an
example, use the numbers in the following figure. Add the active data
records, 2626, to the number of records not in home block, 0, and divide
by the active data records, 2626. The result is 1.

FI LE TYPE = PRI MARY

FUNCTI ON = FI LE- STATI STI CS

CCCCCCC $ N
CCCCCCCCC $$5$3$$ NN
cC CC $$ $ $3 NNN
cc $$ & $3 NNNN
cC B NN N
cC R NN
cC $$ $ $$ NN
cC CC $$ $ $% NN
CCCCCCCCC $3$$$%$ NN

Ccccoeee $ NN

SYNONYM STATI STI CS

RECORDS AT HOME LOCATI ON
RECORDS NOT AT HOME LOCATI ON
RECORDS | N HOVE BLOCK
RECORDS NOT | N HOME BLOCK

ACTI VE DATA RECORDS
MAXI MUM DATA RECORDS

AVERAGE NUMBER OF PHYSI CAL READS
TO OBTAIN A RECORD

NN

NN

NN

N NN
NN NN
NNNN
NNN
NN

ACTUAL

NUMBER
2228

398

2626

2626

1.000

FILE = C$-N

% OF
FILE
CAPACI TY
31.473
5.622

0. 000

7079

DBA Utilities User's Guide

145

Chapter 8 Coding the File Statistics function

Requesting Record Code Statistics (CODE)

To receive the Record Code Statistics report, include CODE on the
STATISTICS statement. You receive statistics on only the coded files. If
you included noncoded files in your UCL, the function ignores CODE for
those files. With this report, you get the number of coded records, their
percentage of active records, and the percentage of total file capacity
they take up. The following figure is an example of this report:

FUNCTI ON = FI LE- STATI STI CS FILE = C$-T
CCCCCCC $ TTTTTTTT
CCCCCCCCC $3$$$%$ TTTTTTTT
cc CC $$ $ $3 T
cC $$ $ 8% T
cc PSS - T
cC $$$6$$ ------- T
cc $$ $ 8% T
cC CC $$ $ 88 T
CCCCCCCCC $$$$3$$ T
ccececce $ T

FI LE TYPE = RELATED
RECORD CODE STATI STI CS

RECORD NUVBER % OF % OF
OF ACTI VE FILE
CCDE RECORDS DATA RECORDS CAPACI TY
LT 515 28.981 4.471
ST 1262 71.019 10. 956
ACTI VE DATA RECORDS 1777
MAXI MUM DATA RECORDS 11519

NOTE - SOME | TEMS MAY NOT BE AVAI LABLE DEPENDI NG ON ACCESS METHOD.

146 P26-6260-63

9

Coding the Expand function

When the database files are too full for acceptable performance, you
need to enlarge them. To do this, you can choose from several functions
depending on the type and format of the file. The Unload and Load
functions enlarge both primary and related files. If you want to change the
file's format to SUPRA native format, you must use the Version 1
functions described in “Coding the Version 1 Unload and Load functions”
on page 153. If you want to leave the files in the same format, you must
use the Version 2 functions described in “Coding the Version 2 Unload,
Load, and Insert Linkpath functions” on page 225.

The Expand function enlarges only related files that are already in
SUPRA native format. It copies the file as it currently exists to the new
location, adds additional space to the end of the file, and formats the new
space to blanks.

Because the new space is added at the end, a disproportionate share of
the data is in the front of the file. Since this may affect performance, use
the Expand function only when absolutely necessary.

MNOTE

O e—

If you use the Expand function with any other function, you should code it
before the others

After you code the control section as shown in “Coding the control
section” on page 57, you can code the Expand function as shown in the
following format and example.

FUNCTION (EXPAND)

CALL

FILE(%ile-name-list

0
a)...
0)

DBA Utilities User's Guide 147

Chapter 9 Coding the Expand function

FUNCTION (EXPAND)

Description

Considerations

148

Required. Indicates you want to expand the capacity of a SUPRA related

file.

¢

You can only add space. You cannot copy a file by coding the same
old and new total logical records.

You need to use two schemas: one in the REALM parameter in the
CSIPARM file and one in the UCL. In the schema in the REALM
parameter, you must put a description of the file as it currently exists.
In the schema and environment description you include in the UCL,
you must put the description of the file after expansion.

You need to code two data sets (the old data set and a new data set)
with two different ddnames. You must prefix the ddname of the old
data set with an O. For example, if you want to expand the CUST file
and the ddname for this file is CUSTWXYZ, then you change the
ddname for the old data set to OCUSTWXY.

Since the eighth character is dropped when you add the O, you
cannot expand in the same job step two files whose ddnames differ
only in the eighth character.

In VSE, indicate that access to BDAM files is sequential direct
(SD). (VSAM is automatically sequential direct.)

To expand Directory files, you must code the schema and
environment description in the REALM parameter in the CSIPARM
file. You can create a second bootstrap schema by copying
CSTASCHM, renaming it, and then running the Modify Schema utility
against the renamed bootstrap schema. You must regenerate the
environment descriptions with the new bootstrap schema name in the
UCL. You must also regenerate the Valmod. While you code the new
bootstrap schema in the UCL, you code the old bootstrap schema in
the CSIPARM file.

Do not format ESDS files prior to running the Expand function.

P26-6260-63

Requesting file statistics

LL

FILE (7 B).
%lle-name-llst 0

Description Required. Names the database files you want expanded.

Format File names must be 4 alphanumeric characters. The first character must
be alphabetic. Separate names with commas.

Considerations

¢ If you code FILE (ALL), the function expands all related files in
alphabetical order.

¢ You may code any number of FILE statements following each
FUNCTION command.

¢ The file names you code must be in the schema you included in the
control section.

¢ You cannot code FILE (ALL) for Directory files. You must code
Directory Files by name.

DBA Utilities User's Guide 149

Chapter 9 Coding the Expand function

Example 1 The following example expands the CUST, ACCR, PORT and VEND
files. Note that the file names must be in the schema included in the
control section.

CONTROL (BEG N) Initiates UCL program.
ENV- DESC (MYDESC) Names environment description.
SCHEMA (MYSCHEMA) Names schema.
FUNCTI ON (EXPAND) Invokes the Expand function.
FI LE (CUST) Names files to be expanded.
FI LE (ACCR, PORD, VEND) Names files to be expanded.
CONTROL (END) Terminates program.
In 0OS/390, the following ddnames would be defined:
|ddname File description
[T QUSTVKYZ DD DSN=new file name QUST Expanded file with name CUST.
/1 ACCRWKYZ DD DSN=new file name ACCR Expanded file with name ACCR.
/1 PORDWKYZ DD DSN=new file nanme PORD Expanded file with name PORD.
/1 VENDWKYZ DD DSN=new fil e name VEND Expanded file with name VEND.
In VSE, you would code the following:
|ddname File description
/7" DLBL QUSTXYZ, " DATA_QUAL. QUST", 0, SD Expanded file with name CUST.
// DLBL OCUSTXY,' DATA_QUAL. OCUST', 0, SD Old file with name CUST.
/1 DLBL ACCRXYZ, " DATA_QUAL. ACCR , 0, SD Expanded file with name ACCR.
/1" DLBL CACCRXY, " DATA_QUAL. OACCR , 0, SD Old file with name ACCR.
/1 DLBL PORDXYZ, " DATA_QUAL. PORD', 0, SD Expanded file with name PORD.
// DLBL OPORDXY,' DATA_QUAL. OPORD , 0, SD 0ld file with name PORD.
/1" DLBL VENDXYZ, ' DATA_QUAL. VEND', 0, SD Expanded file with name VEND.
// DLBL OVENDXY,' DATA_QUAL. OVEND , 0, SD

Old file with name VEND.

150

P26-6260-63

Requesting file statistics

Example 2 This example shows the code and the listing that you receive after the
code is validated and executed.

CSUL0101l : COWMENCI NG COMVAND VALI DATI ON.

1 CONTROL(BEG N)

2 IR R E R R R R R R R R R R R R R S R R R R R R R R R R R R R R R E R R EEEEEEERE RS
3 . .
4 * EXPAND EXAMPLE #1 DESCRI PTI ON *
5 . .
6 * OBJECTIVE: EXPAND AN EXI STI NG RELATED FI LE. *
7 . .
8 * NOTES: *
9 . .
10 * 1. THE SCHEMA AND ENV- DESC SPECI FI ED I N THE UCL *
11 * CONTAI NS THE DESCRI PTI ON OF THE NEW FI LE FCR *
12 * EXPAND. *
13 * *
14 * 2. CSI PARM CONTAI NS THE FOLLOW NG PARAVETER *
15 * VHI CH DESCRI BES THE FILE AS I T |'S CURRENTLY: *
16 * *
17 * REAL M=(SCHEMA=XXXXXXXX, ENVDESC=XXXXXXXX) *
18 * *
19 * *
20 R R E R E R R R EEEEEEEREEE S
21 ENV- DESC(UTEDOOUS)
22 SCHEMA(UTI LSC)
23 FUNCTI ON(EXPAND)
24 FI LE(R002)
25 CONTROL (END)
CONTENTS OF SOURCE LI NES QUTSIDE 1...72 MARG NS | GNORED.

0 SYNTAX ERRCRS DETECTED.
25 COMVAND LI NES READ.

1 CONTROL SECTI ONS ANAL YZED.

1 FUNCTI ON COVMANDS ANAL YZED. CSUL0102I : COWMENCI NG COMMAND EXECUTI ON.

CSUL0301I COMVENCI NG CONTRCOL SECTI ON USI NG ENVI RONVENT DESCRI PTI ON UTEDOOUS AND SCHEMA UTI LSC
CSUL03021 : COMVENCI NG EXPAND PROCESS.

CSUL0311l : COMVENCI NG EXPAND AGAI NST FI LE R002.

CSUL1102l : FILE RO02 |I'S NOW EXPANDED.

CSUL03211 : EXPAND PROCESSI NG AGAI NST FI LE RO02 TERM NATI NG NORMALLY.
CSUL0303I : EXPAND PROCESS TERM NATI NG

CSUL03051 : CONTROL SECTI ON TERM NATI NG
CSUL03071 : ALL CONTROL SECTI ONS PROCESSED.
CSUL0103I : DATABASE UTI LI TI ES SUCCESSFUL TERM NATI ON.

DBA Utilities User's Guide 151

Chapter 9 Coding the Expand function

152 P26-6260-63

10

Coding theVersion 1 Unload and L oad
functions

The Version 1 Unload function extracts records from a database file and
writes them to a sequential output file. It can extract records from files in
Series 80, SUPRA converted, or SUPRA native format. The Unload
function then builds the records in the output file in a format compatible
with the Load function, so that you can reload them.

The Version 1 Load function copies the records from the sequential file to
database files. Before copying the records, the Load function sorts them.
Therefore, you need to allocate work space for the sort program. To
calculate the amount of work space, see “Allocating sort work space” on
page 54.

The Load function formats records in the SUPRA native format but does
not, however, format in Series 80 or SUPRA converted formats. If you
want files in these formats, you must use the Version 2 Unload and Load
functions described in “Coding the Version 2 Unload, Load, and Insert
Linkpath functions” on page 225.

You can use the Load function to create new files. Since the files do not
yet exist, you do not execute the Unload function. Instead, you create a
sequential file that looks as if the Unload function created it. For the

format of the file, see “Retaining the format of the data file” on page 184.

If your database files have secondary keys , you must depopulate them
either before or after unloading the files. The example in “Examples of
Unload, Load, and Modify functions” on page 191 shows the secondary
keys being depopulated before unloading the files. However, if you are
unloading files to obtain a backup copy, you must depopulate before you
load.

DBA Utilities User's Guide 153

Chapter 10 Coding the Version 1 Unload and Load functions

154

To depopulate the secondary keys, use the Depopulate function in
“Coding the Depopulate function” on page 105 or the Directory
Maintenance DEPOPULATE command with the Remove parameter.
After you have reloaded the files , you can repopulate them with the
Sorted-Populate function in “Coding the Sorted-Populate function” on
page 91 or the Directory Maintenance POPULATE command. For details
on the commands, refer to the SUPRA Server PDM Directory Online
User’s Guide (OS/390 & VSE), P26-1260, or the SUPRA Server PDM
Directory Batch User’s Guide (OS/390 & VSE), P26-1261.

When you code your JCL to unload and load files with secondary keys,
you must include the index files because the Unload and Load functions
open the index files when they open the associated data files. However,
the functions only open the index files; the functions do not process the
index files if they are depopulated.

If you do not depopulate before you load, the Load function reloads a
duplicate set of the secondary keys. If there is not enough space in the
index file for the duplicate keys, the PDM abends. If there is enough
space for the duplicate set, you receive error messages indicating invalid
chains. To solve the problem, simply depopulate and repopulate. You
do not need to unload and load again.

MNOTE

O e—

If performance is critical, use the Version 2, Unload, Load, and Insert
Linkpath functions. Version 2 functions are certified for 0S/390 and VSE
only.

The Version 2 functions are not compatible with these Version 1
functions. The only input you can use with the Version 1 Load function is
the output of Version 1 Unload function or a program you code.

P26-6260-63

Coding the UCL for the Unload function

Coding the UCL for the Unload function

After you code the control section as shown in “Coding the control
section” on page 57, you can code the Unload function as shown in the
following format. However, if you have no files and need to load files first,
see the Load function’s format in “Coding the UCL for the Load function”
on page 169. For UCL examples to unload and load, see “Examples of
Unload, Load, and Modify functions” on page 191.

FUNCTION (UNLOAD)
[STANDARD -EXIT (exit —name)]

LL
FILE(? E)
ile —namep

S.INKPATH (Db D)D

0 %ccess —Iinkpath% B

O O
O]

UPRESERVE (%j E) O

B ESO B

[CLEAR - LINKS(linkpath ~list)]

0 dlow —rrn 0 B
"RRN-RANGE (& high ~rrn N
H How —rrn = high -rrng H

[CRITERIA (elementl [,element2,...,elementn]
.operator.datavaluel [datavalue?2...datavaluen]

END.)]
O CALL o, d
[RECORD ([]___ 0) 0
0 [Jecord —codey "
O H
LL
JELEMENT (oo 00
=i relement —listg 'g

DBA Utilities User's Guide 155

Chapter 10 Coding the Version 1 Unload and Load functions

FUNCTION (UNLOAD)

Description

Considerations

Required. Invokes the Unload function.

¢ If you code the Unload and Load functions in the same UCL program,
you must code the Unload function first.

¢ You may code the Unload function only once in any UCL program.
However, you may code as many files to be unloaded as you like.

¢ You must match the position and length of data in element lists you
use for the Unload and Load functions. If the element lengths in the
schema you use to load the file do not match those in the Unload
function, use *FILL=nn to make their lengths equal. For more
detailed information and an example of how to use this parameter,
see the considerations under the ELEMENT statement.

¢ If you want to change the description of a file in OS/390 or VSE, you
cannot unload and load in the same UCL program. In OS/390 and
VSE, the utilities use only a single schema. You need to code the
Load function in another UCL program, so you can describe the file
differently in another schema.

STANDARD-EXIT (exit-name)

156

Restriction

Description

Format

Considerations

If you code this statement, it must precede the FILE statements.

Optional. Indicates you want to invoke the exit program you name while
unloading each record. For guidelines on writing exit programs, see
“Writing exit programs” on page 181.

1-8 alphanumeric characters. The first character must be alphabetic.

¢ You must make your exit program available to be loaded by the
Unload function. You must put the exit program in your execution
library.

¢ Only one exit at a time resides in memory. If you code a new exit
name in a subsequent function, the utility deletes the current exit
program before loading the new one.

¢ If you code an invalid exit program, an error results.

P26-6260-63

Coding the UCL for the Unload function

CALL a

FILE
(Bile —-namep]
Description
Format

Considerations

o---

Required. Names the files you want unloaded.

4 alphanumeric characters. The first character must be alphabetic.

¢

If you code FILE (ALL), the function unloads only your database files,
not the Directory files. If you have index files, you must depopulate
them before you unload all of your files.

If you code FILE (ALL), the function unloads the primary and then the
related files in alphabetical order.

To unload Directory files, you must code FILE (file-name), not FILE
(ALL). In the control section, code the bootstrap schema and
environment description. In the CSIPARM file, do not code a
DIRECTORY or REALM parameter.

Do not code both FILE (ALL) and FILE (ffff).

The Unload function always opens files for exclusive update. When
the Unload function finishes, it explicitly closes them.

You cannot code FILE (file-name-list).

If you are loading a related file, you must load all associated primary
files at the same time. If you want to avoid unloading and loading an
associated primary file, you must clear all linkpaths that connect it to
the related file before loading the related file. The easiest way to
clear the linkpaths is to use the Modify function with QUALIFIER
(SERIAL). With the Modify function, you can change linkpaths so
they contain eight blanks.

NOTE

DBA Utilities User's Guide

Warning: Be careful that you modify the correct linkpath(s), or you
will destroy the linkpath and the connection between the files. To
recreate a destroyed linkpath, you must unload and load the primary
and related files that shared the linkpath.

When loading a primary file, you do not need to load all of the
associated related files. Instead, you must clear the primary file
linkpaths connected to the related files you are loading. However,
you must no clear linkpaths connected to related files that you are not
loading. You can use the CLEAR-LINKS statement in the Unload or
Load function. For an example of loading a primary file without all of
its related files, see “Examples of Unload, Load, and Modify
functions” on page 191.

157

Chapter 10 Coding the Version 1 Unload and Load functions

LINKPATH (Dli , %)
%ccess —linkpathj
Restriction Use this statement only for related files.

Description Optional. Indicates the access linkpath to use to unload a related file.
The Unload function ignores this statement when you unload primary

files.
Default)
Format 8 alphanumeric character linkpath name in the format ffffLKxx, where ffff

is the name of the primary file, and LKxx is the linkpath.

Options) Use the first linkpath defined for that file.
access-linkpath Uses the specified linkpath.

Considerations
¢ You must code a linkpath that is in the base portion of the record.

¢ If you code FILE (ALL), LINKPATH (ffffLKxx) is normally invalid
unless your schema specifies the same linkpath in all related files.

¢ You should code the same access linkpath to load a file that you
used to unload it.

¢ If you use the default linkpath value, be careful when you unload from
an old schema and load to a new schema. Since the default linkpath
is the first defined linkpath in the schema, make sure that the first
defined linkpath in both schemas is the same.

¢ You must not code LINKPATH (access-linkpath-list).

158 P26-6260-63

Coding the UCL for the Unload function

PRESERVE (H(@

Restrictions
¢ Use this statement only for related files.
¢ Use this statement only following the LINKPATH statement.

Description Optional. Indicates whether to retain the existing chain sequence when
unloading a related file.

Default NO
Considerations

¢ Do not use PRESERVE (YES) to unload a file that has corrupted
chains or any form of chain damage.

¢ The Unload function retains the chain sequence only on the primary
access linkpath.

¢ When you unload Directory files, code PRESERVE (YES).

¢ When reloading your files, do not code a SEQUENCE statement, or
you will lose the preserved chain sequence.

DBA Utilities User's Guide 159

Chapter 10 Coding the Version 1 Unload and Load functions

CLEAR-LINKS (linkpath-list)

Restriction Use this statement only for primary files.

Description Optional. ldentifies the linkpaths you want blanked in a primary file.

Format Linkpath names must be 4 alphanumeric characters in the format LKxx.
The first two characters should be LK, and the last two should represent
a linkpath name.

Considerations

¢

IMPORTANT: When unloading a primary file that has a related file
linked to it, this statement must list all primary file linkpaths to the
related file.

You do not need to use this statement if you intend to clear the
linkpaths in the Load function.

NOTE

160

We recommend that you clear the linkpaths in the Load function so
that you can decide which files to load at that time. If you clear
linkpaths when unloading, you must load all of those files

If you do not list linkpaths, they are not blanked, but retain their
current pointer values. If you are unloading a related file without its
primary file, you should not blank the linkpath.

If you code the CLEAR-LINKS statement, it must precede the
RECORD statements.

All linkpaths that you code must be in the primary file that you are
unloading.

Any linkpath you code in this statement you must also code in the

ELEMENT statement by coding ELEMENT (ALL) or explicitly coding
the linkpaths in ELEMENT (element-list).

P26-6260-63

Coding the UCL for the Unload function

fdiow —rrn]
RRN - RANGE (3- high —rrn 0
How -rrn = high —rrng

Description Optional. Indicates a range of relative record numbers that you want
retrieved for non-KSDS files. Records outside the range are not

retrieved.
Format rrn Must be 1-9 numeric characters.
Options low-rrn Unloads records having relative record numbers
from low-rrn to the end of the file.
- high-rrn Unloads records having relative record numbers

from the beginning of the file to the high-rrn.

low-rrn —high-rrn Unloads records having relative record numbers

Considerations

DBA Utilities User's Guide

from low-rrn through high-rrn.

If you code the RRN-RANGE statement, it must precede the
RECORD statements.

If the RRN-RANGE statement you code does not contain a valid data
record, no data records are unloaded.

The dash (-) is a positional separator in front of high-rrn and between
the low and high-rrns. You must code it in those two options. You do
not need to code it in the first option (low-rrn).

161

Chapter 10 Coding the Version 1 Unload and Load functions

CRITERIA (elementl[element2,...,elementn].operator.datavaluel
[datavalue2...datavaluen]END.)

162

Description Optional. Establishes an argument string that selects the records you
want processed.

Format for element

8 alphanumeric characters. The first character in each name must be
alphabetic. Separate the names with commas.

Format for operator

EQ.
.NE.
.GT.

LT.

.GE.

.LE.

Equal

Not equal

Greater than

Less than

Greater than or equal to
Less than or equal to

Format for datavalue
String of 1-4096 bytes. You must put it after the period following the
Boolean operator and follow it with END. If you code more than one
element, you must not separate the data values with commas, blanks, or
other delimiters.

Considerations

Put a period before and after each Boolean operator.

If you code the CRITERIA statement, you must put it before the
RECORD statements.

You can use any number of spaces before the element list, after
END., and on either side of the commas.

If you code an element name, you must also code it in the ELEMENT
statement unless you coded ELEMENT (ALL).

You cannot code a null element list in the criteria argument.

If you code an element in the criteria argument, the element must be
in all the records you want unloaded from the file.

You must make the data values the same length as the
corresponding elements you code.

You may cross input lines with data if necessary, stopping in column
72 and continuing on the next line in column 1. (If you put data in
columns 73-80, it is lost.)

If you do not code END., the rest of the UCL program is considered
data.

P26-6260-63

Coding the UCL for the Unload function

LL
RECORD (EA;

B

ffecord —code]

Description Optional. Indicates the record you want unloaded.

Default ALL

Format 2 alphanumeric characters

Considerations
¢

If you code this statement, you must code the ELEMENT statement.
Together, they provide a map of your database record to the Unload
and Load functions.

When unloading primary files or noncoded, related files, always code
RECORD (ALL); otherwise, the function unloads nothing.

If you are unloading a coded related file, you must specify RECORD
(record-code) if you included redefined element names in the
element list.

Caution: You can lose coded records if you make errors while using
RECORD (record-code).

DBA Utilities User's Guide

If you specify RECORD (record-code), be careful to include all
appropriate record codes. If you leave out a record code or you
forget to load an unloaded record code, you lose any records that
belong to that record code.

List only record codes that are in the file you are unloading.

If you code more than one RECORD statement, do not code
RECORD (ALL) in conjunction with RECORD (record-code).

If you coded FILE (ALL), you must code RECORD (ALL).

If you code RECORD (), the function unloads no records.

163

Chapter 10 Coding the Version 1 Unload and Load functions

ELEMENT (O, __
¥

164

CALL

B

lement —list

Restriction
Description
Default

Format

Considerations

Required if you code the RECORD statement.
Indicates the data elements you want unloaded.
ALL

Element names must be 8 alphanumeric characters. The first character
must be alphabetic. Separate names with commas.

¢ Together, the RECORD and ELEMENT statements provide a map of
your data record to the Unload and Load functions. For more detalil
on the data record, see “Formatting the data records” on page 188.

Caution: You can lose elements if you make errors when you code
ELEMENT (element-list).

¢ If you forget to code an element that is in the unloaded file or load an
element that you unloaded, that element will be blank.

¢ If RECORD (ALL) has been coded, then:

((nunber of record codes) x (nunber of elenents specified+l)) + 3

must be < 256.

If you have not coded RECORD (ALL), then:

(nunber of record codes) + (nunber of elenents specified) + 3

must be < 256.

¢ If you code ELEMENT (ALL), you cannot change the structure of the
file. When you code ELEMENT (ALL), the Unload function picks up
each record from the database file exactly as it is on the schema and
puts the record in the data file. When you load, the Load function
picks up each record from the data file and puts the record into the
database file exactly as it is on the schema. Thus if you plan to
change the structure of the file, you must use ELEMENT (element-
list).

P26-6260-63

DBA Utilities User's Guide

Coding the UCL for the Unload function

When you code ELEMENT (element-list), the unload function pulls
the elements off your database record in the order in which you code
them in the list and puts them in the data record. The Load function
uses its element list to map the data record and to put the elements
into your database record using the order in the Load schema.

When you code ELEMENT (element-list), you do not need to list the
element names in the same order as the schema.

If you use an element list, do not code any linkpath elements for a
related file.

If you use an element list, you must code the key first in the list. The
key element in a list for a related file is the data element associated
with the specified access linkpath.

If you want to change the file’s structure in the new schema, you
must make the element lists in the Unload and Load function match
the data record. When you change the size of elements, use the
*FILL=nn parameter. (Here nn is the number of spaces that are
different. If you want to change more than 99 spaces, you can code
multiple *FILL parameters in succession.)

You can add elements, delete elements, increase their size, and
decrease their size with the *FILL=nn parameter.

To add an element so it is automatically filled with blanks, do not
code the element name in the Unload function’s element list. (It is
not there already).) Code the element name at the end of the Load
function’s element list.

You can also add an element so that it appears in the data record
where you can modify it with an exit program. Your exit program can
be in either the Unload or Load function. To add an element to the
data record, code the *FILL=nn parameter in the Unload function’s
element list where you want the element to appear in the data record.
In the Load function’s element list, code the element name where it
will map to the same portion of the data record.

To delete an element, do not unload or load it. That is, leave it out of
the element lists in both functions.

165

Chapter 10 Coding the Version 1 Unload and Load functions

To increase the size of an element, code *FILL=nn in the Unload
function’s element list. Replace nn with the number of bytes you
want to add to the element. You can code *FILL=nn before, after, or
both before and after the element name. In the Load’s element list,
code just the element name. The bytes are added in the Unload
function and automatically set to blanks. You can modify these
blanks with an exit program in either the Unload or Load function.

To reduce the size of an element, first code the element name in the
Unload function’s element list. Next, in the Load function’s element
list, code *FILL=nn before or after that element. The Load function
then ignores the number of bytes you code in the position of the
*FILL=nn element.

NOTE Whenever you change the elements or their size, you must make
" similar changes in the schemas you use for the Unload and Load
2 functions.

For an example of how the *FILL parameter works, assume you are
making the following changes:

- Deleting ELEMENTS3 with 8 bytes.
- Adding ELEMENTS8 with 5 bytes.
- Adding ELEMENT?9 with 4 bytes.

- Decreasing the size of ELEMENT®6 from 8 to 4 bytes by removing
the first 4 bytes.

- Adding 4 bytes to the front of ELEMENTS5 to increase its size
from 8 to 12 bytes.

To make these changes, code this element list in the Unload
function:

ELEMENT (ELEMCTRL, ELEMENT2, ELEMENT4, *FILL=04, ELEMENT5, ELEMENT6, ELEMENT7).

As a result, your data record would look like this:

Record File Reserved Control ELEMCTRL ELEMENT4 ELEMENT5 ELEMENT6 ELEMENT7
Length Name Key
A\ A\ A\ v v A\ v v v
|- []-] |P|EILIEINID|'PI'P|- I-I-I-|FIRIE|PI¢|FIRIE|OIO|°IH|PI‘PI¢I1P|'PI*PI9I6I7I5IOIO blp|7|o[8lO[1[2| V[N T|!] [p]#
R T L A 4 !
File Record RQLOC Record ELEMENT2 *FILL=04
Type Type Value Code

166 P26-6260-63

Coding the UCL for the Unload function

In the Load function, code this element list:
ELEMENT (ELEMCTRL, ELEMENT2, ELEMENT4, ELEMENT5, *FILL=04,
ELEMENT6, ELEMENT7, ELEMENT8, ELEMENTO)

During execution, the data records are passed from the Unload
function to the Load function by way of the data file (CSUDATA).
Thus, this element list maps the same data record as follows:

Record File Reserved Control ELEMCTRL ELEMENT4 ELEMENTS ELEMENT6 ELEMENT7?7
Length Name Key
v v v v v v v A\ v
!- []| |P|EILIEINID|'PI¢|- []-] !FIRIE|PIb|FIRIE|q0|0I4PI'PI*PI*PI*PI*PI9I6I7I5IOIO|NN7I9|8I0I112’CI'INITI' [I*PI*P!
+ TS A A A
File Record RQLOC Record ~ ELEMENT2 *FILL=04
Type Type Value Code

As you can see, the number of spaces in the *FILL parameter
actually appears in the data record as spaces. You can modify this
space with an exit program in both the Unload and Load functions.

The newly added ELEMENT8 and ELEMENT9 do not appear
because they are automatically filled with spaces. These spaces do
not show up in the data record because you did not code *FILL=09 in
the Unload element list to create the necessary spaces.

¢ When you code ELEMENT (ALL), the Unload and Load functions see
the database record the same way it is on the database file. That is,
it is complete with the linkpath fields, record codes, and root fields.

¢ If you code an exit program with ELEMENT (ALL), you must be
aware of what the data record looks like. See the description in
Consideration 10, above.

¢ ltis possible, but not recommended, to use ELEMENT (ALL) in the
Unload function and then use an element list in the Load function,
and vice-versa. If you do this, you must make the element list match
the data record created when you coded ELEMENT (ALL). For
example, you must code the elements in the same order as on the
schema. You must also code *FILL=08 wherever a linkpath occurs
because you cannot code linkpath names in the element list for a
related file.

DBA Utilities User's Guide 167

Chapter 10 Coding the Version 1 Unload and Load functions

¢ You may use ELEMENT (ALL) in conjunction with an element list.
For example, you may code the following:
RECORD (01)
ELEMENT (ELEMENT1, ELEVENT2, ELEMENT3)
RECORD (02)
ELEMENT (ALL)

¢ If you code FILE(ALL), do not code ELEMENT (element-list) unless
your schema has only one file.

¢ Additional constraints apply in the following situations:

|In this context: |ELEMENT (element-list) must conform to these rules:
FILE (primary-file) You must code the primary file’s control key first in the element
list.
Do not include the root element in the element list.
FILE(related-file) The first key defined in the schema for the related file must be

the first in the element list.
Do not code linkpaths in the element list.
FILE (related-file) You must put the key associated with linkpath fffflLKxx first in the

LINKPATH(ffffLKxx) ~ lementlist.
Do not code the linkpath in the element list.

FILE (coded-file) You must put the first key associated with the linkpath defined in
no access-linkpath the base portion of the record first in the element list.

FILE (noncoded-file) You must put the key first in the element list.

FILE (coded-file) You must put the key associated with linkpath fffflLKxx first in the

LINKPATH (ffffLkxx) ~ element list.
Do not code linkpaths in the element list.

CLEAR-LINKS You must put the same names in the element list that you put in
(LKxx-list) the LKxx-list.

RECORD (record- You must put the same names in the element list that you put in
code) the record code unless you coded ELEMENT (ALL).

FILE (coded-file) Do not include redefined element names in the element list.

RECORD (ALL)

168 P26-6260-63

Coding the UCL for the Load function

Coding the UCL for the Load function

After you code the control section as shown in “Coding the control
section” on page 57, you can code the Load function as shown in the
following format. For UCL examples of unloading and loading, see
“Examples of Unload, Load, and Modify functions” on page 191.

FUNCTION(LOAD)

[STANDARD - EXIT (exit - name)]
OALL

FILE
(Bne nameD)
b 0,0
INKPATH
%I' (5ccess - IlnkpathH) S

[CLEAR = LINKS (linkpath —=list)]

O
O
O
O
O
EBEQUENCE(sort - list)

SCEND O
E @IRECTION(m E,—hs to
0 Hescenol T g
O O HEX
: o EHAR

ATA - TYPE

o % (Zonep - pEC
H & S’ACKED -DEC
O CALL O
RECORD([T___ % 0
0 |jecord —-codef] 0
O o
O ELEMENT ([T O
H (Eplement —listg g

73
—
~

e oooooooooo

o
o
i
o
o
o

DBA Utilities User's Guide

169

Chapter 10 Coding the Version 1 Unload and Load functions

FUNCTION (LOAD)

Description Required. Invokes the Load function.

Considerations

If you load and unload in the same UCL program, you must code the
Load function after the Unload function.

You must match the position and length of data in element lists you
use for the Load and Unload functions. If the element lengths you
coded in the schema used to load the file do not match those in the
Unload function, use *FILL=nn to make their lengths equal. For more
information and an example of how to use the *FILL parameter, see
the considerations under the ELEMENT statement.

If you want to change the description of the file, you cannot execute
the Unload and Load functions in the same UCL program. The
utilities use only one schema in a UCL program.

STANDARD-EXIT (exit-name)

Restriction

Description

If you code this statement, you must put it before the FILE statements.

Optional. Indicates you want the exit program you name invoked while
loading each record. For guidelines on writing exit programs, see

“Writing exit programs” on page 181.

Format

Considerations

170

1-8 alphanumeric characters. The first character must be alphabetic.

You must put your exit program in your execution library, so it is
available to be loaded.

Only one exit at a time resides in memory. If you code a new

exithame in a subsequent function, the function deletes the current
exit program before loading the new one.

P26-6260-63

Coding the UCL for the Load function

[ALL
I:ILE(EI[iIe - nameH)"'

Description Required. Names the database files you want loaded.

Format 4 alphanumeric characters. The first character must be alphabetic.

Considerations
’

DBA Utilities User's Guide

If you code FILE (ALL), you can load all primary and related files, but
not Directory files. If you have index files, you must depopulate them
before you unload and repopulate them after you load.

If you code FILE (ALL), the files are loaded in alphabetical order with
primary files first, then the related files.

To load Directory files, you must code FILE (file-name). In the
control section, code the bootstrap schema and environment
description. In the CSIPARM file, do not code a DIRECTORY or
REALM parameter.

Do not code FILE (ALL) in conjunction with FILE (file-name).

The Load function always opens files for exclusive update. When the
Load function finishes, it explicitly closes them.

You do not need to load all the unloaded files.
You cannot code FILE (file-name-list).

If you are loading a related file, you must load all associated primary
files at the same time. If you want to avoid unloading and loading an
associated primary file, you must clear all linkpaths in the primary
files that connect to the related file before loading. The easiest way
is to use the Modify function with QUALIFIER (SERIAL). With the
Modify function, you can change the linkpaths so they contain eight
blanks. Be careful that you modify the correct linkpath(s), or you will
destroy the linkpath and the connection between the files. To
recreate a destroyed linkpath, unload and load the primary and
related file that shared the linkpath.

When loading a primary file, you do not need to load all of the
associated related files. Instead, you must clear the primary file
linkpaths connected to the related files you are loading. however,
you must not clear linkpaths connected to related files that you are
not loading. You can use the CLEAR-LINKS statement in the Unload
or Load function. For an example of how to load a primary file
without all its related files, see “Examples of Unload, Load, and
Modify functions” on page 191.

171

Chapter 10 Coding the Version 1 Unload and Load functions

[th g
LINKPATH([T
H(%ccess -linkpath E)

172

Restriction Use this statement only for related files.

Description Optional. Indicates the access linkpath to use when loading a related file.
The Load function ignores this statement when you load primary files.

Default b

Format 8 alphanumeric character linkpath name in the format ffffLKxx, where ffff
is the primary file, and LKxx is the linkpath.

Options) Uses the first linkpath defined in the schema for that file
as the access linkpath.
L Kxx Uses the specified linkpath.

Considerations

¢

The access linkpath must be in the base portion of the record.

If you code FILE (ALL), LINKPATH (fffflLKxx) is normally invalid
unless your schema specifies the same linkpath in all related files.

When you load a file, you should code the same access linkpath as
when you unloaded it.

Be careful when you unload from an old schema and load to a new
schema if you use the default linkpath value. Since the default
linkpath is the first defined linkpath in the schema, make sure that the
first defined linkpath in both schemas is the same.

You must not code LINKPATH (access-linkpath-list).

P26-6260-63

Coding the UCL for the Load function

CLEAR-LINKS (linkpath-list)

Restriction Use this statement only for primary files. This statement is ignored for
related files.

Description Optional. Indicates which linkpaths you want blanked in a primary file.

Format Linkpath names must be 4 alphanumeric characters in the format LKxx,
where xx is a linkpath name.

Considerations

IMPORTANT: When loading a primary file and the related file linked
to it, this statement must list all primary file linkpaths to that related
file.

You do not need to list the linkpaths if the Unload function cleared
them.

NOTE

DBA Utilities User's Guide

However, we recommend that you clear linkpaths in this function so
that you can decide which files to load at this time. (If you clear
linkpaths when unloading, you have not choice but to reload all those
files.)

If you do not list linkpaths, they are not blanked, but retain their
current pointer values. If you are unloading a related file without its
primary file, you should not blank the linkpath.

If you code the CLEAR-LINKS statement, you must code it before the
RECORD statements.

All linkpaths that you code must be in the primary file that you are
loading.

Any linkpath you code in this statement you must also code in the

ELEMENT statement, either by coding ELEMENT (ALL) or by
explicitly coding the linkpaths in ELEMENT (element-list).

173

Chapter 10 Coding the Version 1 Unload and Load functions

SEQUENCE (sort-list)

174

Restriction If you code a SEQUENCE statement, you must code it before the
RECORD statements.

Description Optional. Names the elements you want added to the standard sort
sequence fields.

Format 8 alphanumeric characters.

Considerations
¢

If you coded PRESERVE (YES) in the Unload function and want to
retain your chain sequence, do not code the SEQUENCE statement.

If you code a sort-list of elements in this statement, you must also
code them in the list of elements to be loaded. You do not need to
do this if you code ELEMENT (ALL).

Name only elements that are valid for the file you are loading.

Sorting slows performance. The more fields you sort, the more
performance is degraded. The maximum number of fields you can
sort is 62.

The elements you select to sort must be in the base portion of the
record and at a displacement of 4000 bytes of less in the data file.

You may not use more than 252 bytes for all your sort fields plus the
length of the access linkpath key or control key.

Fields in related files are sorted in the following order:

a. RQLOC of the record
b. Control key for the access linkpath
c. Sort elements you coded in the SEQUENCE statement

Records in related files are sorted first by RQLOC (request location
or RRN), which leaves the records that hashed to the same location
(synonyms) grouped together. Next, the synonyms are sorted by
control key, which leaves records with the same control keys that are
in the same linkpath chain grouped together. Finally, the records with
the same control keys are sorted within linkpath chains.

Thus, any SEQUENCE statements you code will sort the records
within individual linkpath chains in the access linkpath.

With primary files, records are sorted first by RQLOC, and then by
control keys. Since control keys are unique, there are no duplications
and additional sorting is not necessary. Thus, this statement is not
needed and slows the Load function needlessly.

P26-6260-63

Coding the UCL for the Load function

[ASCEND 0O .
DIRECTION (bescenol list)

Restriction You can only use this statement following a SEQUENCE statement.

Description Optional. Indicates the direction in which you want a corresponding sort-
field element to be sorted.

Default ASCEND

Considerations

DBA Utilities User's Guide

You may code many fields in conjunction with the SEQUENCE
statement. For example, you can code the following:

SEQUENCE (ELEMENT1, ELEMENT2, ELEMENT3)
DI RECTI ON (ASCEND, DESCEND, ASCEND)

The DIRECTION list corresponds one-to-one with the SEQUENCE
list. That is, the first element in the sequence list is sorted in the first
direction listed. The second element is sorted in the second
direction. If the DIRECTION list is exhausted, the default direction is
used for subsequent elements in the SEQUENCE list. In the
preceding example, if you added ELEMENT4 to the SEQUENCE list,
but not to the DIRECTION list, ELEMENT4 would be sorted in
ascending order.

175

Chapter 10 Coding the Version 1 Unload and Load functions

MHEX

&HAR
DATA - TYPE(

176

ZONED -DEC O

a
a

O-list)

BackeD - pECH

Restriction You can only use this statement following a SEQUENCE statement.

Description Optional. Indicates the format or type of data elements you listed in the

SEQUENCE statement.

Default CHAR

Options HEX The data element is a hexadecimal field
CHAR The data element is a character field

ZONED-DEC The data element is a zoned decimal field

PACKED-DEC The data element is a packed decimal field

Considerations

You may code many entries in conjunction with the SEQUENCE
statement. For example, you may code the following:

SEQUENCE (ELEMENT1, ELEMENT2, ELEMENT3)
DI RECTI ON (ASCEND, DESCEND, ASCEND)
DATA- TYPE (CHAR, HEX, ZONED- DEC)

Code your entries in the same order as the elements in the
SEQUENCE statement. In the preceding example, you must code
ELEMENT1's data type first and ELEMENT?2’s data type second.
ELEMENTL is a character field, and ELEMENT2 is a hexadecimal
field.

If the DATA-TYPE list is exhausted, the default data type is used for
subsequent elements in the SEQUENCE list. For example, if you
coded an ELEMENT4 but not another data type, the data type would
be assumed to be Character.

P26-6260-63

Coding the UCL for the Load function

LL
RECORD (HA;

B)..

fecord - codepj

Description Optional. Indicates the records you want loaded.

Default ALL

Format 2 alphanumeric characters

Considerations

¢

If you code this statement, you must also code the ELEMENT
statement. Together, they provide a map of your data record to the
Unload and Load functions.

When loading primary files or noncoded related files, you must code
RECORD (ALL); otherwise, no loading occurs.

When you are loading a coded related file, you must code RECORD
(record-code) if you are going to include redefined element names in
the element list or if you want to refer to only specific record codes.

NOTE

Caution: You can lose coded records if you make errors while using
RECORD (record-code).

DBA Utilities User's Guide

If you use RECORD (record-code), include all of the appropriate
record codes. If you forget to include a record-code that was in the
file when you unloaded it or to load an unloaded record-code, you will
lose any records that begin with that record-code.

List only record codes that are in the file you are loading.

Do not code RECORD (ALL) in conjunction with RECORD (record-
code).

If you coded FILE (ALL), you must code RECORD (ALL).

If you code RECORD (), no records are loaded.

177

Chapter 10 Coding the Version 1 Unload and Load functions

CALL
ELEMENT (O0___
([plement - Iisté5

Restriction Required if you coded the RECORD statement.
Description Indicates the elements you want loaded.
Default ALL

Format Element names must be 8 alphanumeric characters. The first character
must be alphabetic. Separate names with commas.

Considerations

¢ If you code the RECORD statement, you must code the ELEMENT
statement. Together, they provide a map of your data record to the
Unload and Load functions. For more detail on the data record, see
“Formatting the data records” on page 188.

NOTE Caution: You can lose elements if you make errors when you code
e ELEMENT (element-list).

¢ If you forget to code an element that is in the unloaded file or load an
element that you unloaded, that element will be blank.

¢ If RECORD (ALL) has been coded, then:

((nunber of record codes)x(nunber of elenments specified +1)) + 3

must be < 256.

¢ If you have not coded RECORD (ALL), then:

(nunber of record codes) + (nunber of elenments specified) + 3

must be < 256.

178 P26-6260-63

DBA Utilities User's Guide

Coding the UCL for the Load function

If you code ELEMENT (ALL), you cannot change the structure of the
file. When you code ELEMENT (ALL), the Unload function picks up
each record from the database file exactly as it is on the schema and
puts the record in the data file. When you load, the Load function
picks up each record from the data file and puts the record into the
database file exactly as it is on the schema. Thus if you plan to
change the structure of the file, you must use ELEMENT (element-
list).

When you code ELEMENT (element-list), the Unload function pulls
the elements off your database record in the order in which you code
them in the list and puts them in the data record. The Load function
uses its element list to map the data record and to put the elements
into your database record using the order in the Load schema.

When you code ELEMENT (element-list), you do not need to list the
element names in the same order as the schema.

If you use an element list, you must code the key first in the list. The
key element in a list for a related file is the data element associated
with the specified access linkpath.

If you use an element list, do not code any linkpath elements for a
related file.

If you want to change the file’s structure in the new schema, you
must make the element lists in the Unload and Load function match
the data record. When you change the size of elements, use the
*FILL=nn parameter. (Here nn is the number of spaces that are
different.) If you want to change more than 99 spaces, you can code
multiple *FILL parameters in succession.

You can add elements, delete elements, increase their size, and
decrease their size with the *FILL=nn parameter. Detailed directions
and examples are in Consideration 10 of the Unload function’s
ELEMENT statement in “Coding the UCL for the Unload function” on
page 155.

If you code an exit program with ELEMENT (ALL), you must be
aware of what the data record looks like. See the description in the
preceding consideration .

When you code ELEMENT (ALL), the Unload and Load functions see
the database record the same way it is on the database file. That is,
it is complete with the linkpath fields, record codes, and root fields.

179

Chapter 10 Coding the Version 1 Unload and Load functions

¢ ltis possible, but not recommended, to use ELEMENT (ALL) in the
Unload function and then use an element list in the Load function,
and vice-versa. If you do this, you must make the element list match
the data record created when you coded ELEMENT (ALL). For
example, you must code the elements in the same order as on the
schema. You must also code *FILL-08 wherever a linkpath occurs
because you cannot code linkpath names in the element list for a
related file.

¢ You may use ELEMENT (ALL) in conjunction with an element list.
For example, you may code the following:
RECORD (01)
ELEMENT (ELEMENT1, ELEMENT2, ELEMENT3)
RECORD (02)
ELEMENT (ALL)

¢ If you code FILE (ALL), do not code ELEMENT (element-list) unless
your schema has only one file.

¢ Additional constraints apply in the following situations:

|In this context: |ELEMENT (element-list) must conform to these rules:
FILE (primary-file) First entry in the element-list must be the primary file control-
key. Do not include the root element in the element list.
FILE (related-file) First entry in the element-list must be the first key defined in
no access-linkpath ﬁscthema for related file. Do not include linkpaths in the element
FILE (related-file) First entry in element-list must be the key associated with

LINKPATH(FFfILKxX) ffffLKxx. Do not include linkpaths in the element list.

FILE (coded-file) First entry in element-list must be the key associated with the
no access-linkpath first Iinkpath defin.ed in the bqse portion of the record. Do not
include linkpaths in element-list.

FILE (coded-file) First entry in element-list must be the key associated with
LINKPATH (ffffLKxX) linkpath fffflLKxx. Do not include linkpaths in the element list.
CLEAR-LINKS Names appearing in LKxx-list must appear in element-list,
(LKxx-list) unless ELEMENT (ALL) is specified..

FILE (coded-file) Do not include redefined element names in the element list.

RECORD (ALL)

180 P26-6260-63

Writing exit programs

Writing exit programs

There are exit points in both the Unload and Load functions. The Unload
function’s exit point is located after the record is extracted from the
database but before it is written to the output file. Thus, when the record
is passed to your exit program, the program may modify the record,
delete it, or add a new one. The Unload function passes to your program
the address of the current record and the address of the function name.

The Load function’s exit point is after the records are sorted and the
primary file linkpaths have been created. The Load function passes the
address of the current record and the address of the function name to
your exit program. The program can modify or delete, but not add,
records.

For information on how the exit programs are loaded, how they operate,
the languages you can use to write them, and the register conventions
you must follow, see “Inserting exit programs into functions” on page 49.
In register 1, for example, you must code the parameter list address. For
a description of the parameter list address, see the following table:

Contents before exit Contents after exit (passed
Parameter Data type (passed to exit program) |from exit program)
Record n bytes of Data record Must be unchanged
data
Function 8 bytes UNLOADDY or LOADDBBY Must be unchanged
name character
NOTE If your exit program changes anything it is not authorized to change, the

0 o—

results are unpredictable.

DBA Utilities User's Guide 181

Chapter 10 Coding the Version 1 Unload and Load functions

Modifying the data record

You can modify a record with exit programs in both the Unload and Load
functions. You may modify any data field in the record except the control
key and the data record prefix. These fields are saved before calling your
exit program. If you alter any part of them, they are restored. Your exit
program may alter any other data field.

You exit program should use register 15 to pass a return code of 0 back
to the Exit Interface to indicate either that no action was taken or that the
record was modified. The record is then written to the output data file.

Deleting the current data record

You can delete a record with exit programs in both the Unload and Load
functions. To delete a record that is passed to your program, your
program should pass a return code of 8 in register 15 back to the Exit
Interface. Then, the record is not written to the output data file.

182 P26-6260-63

Writing exit programs

Adding a new data record

You can add a record only with an exit program in the Unload function.
To add a data record ahead of the one that was passed to the exit
program:

¢ Pass areturn code of 4 in register 15 to the Exit Interface.
¢ Pass the address of the record to be added back in register 1.

Do not move the new record back to the utility data area with your
program. The Exit Interface moves the record into the Unload module’s
data area.

In your program, you must create the new data record in the format
described in “Formatting the data records” on page 188.

After the Unload function writes the new record to the output data file, it
passes the previous record back to your program via the Exit Interface.

You must use caution when adding new records with exit programs.

NOTE We recommend that you add all records near the beginning because the
Unload function does not make further calls to your program when it
2 reaches the end of the database file.

If you try to add records interspersed with ones you are unloading, you
may not get the opportunity to add all your records before the function
reads the last record from your file. Adding records at the beginning
does not add to processing time because the Unload function does not
sort them. Therefore, your program does not need to check for collating
sequence before adding records.

However, if you are unloading a related file with the PRESERVE (YES)
option, you must insert records into the place you want them in the chain.

DBA Utilities User's Guide 183

Chapter 10 Coding the Version 1 Unload and Load functions

Retaining the format of the data file

184

The data file is a sequential work file that passes records from the
Unload to the Load function. You define the data file to the Unload and
Load functions when you code the DATA-FILE statements in the control
section of the UCL or when you use the defaults.

However, you need to be aware of the format in these situations:

¢ When you create a data file by writing your own program instead of
using the Unload function. You must build the records in the correct
format so you can use the data file as input to the Load function.

¢ When you write exit programs for the Unload and Load functions. As
you delete, modify, or add records in your exit program, you need to
keep the formats of the records intact.

The records on the data file are in the following order:

¢ Run control record (one record per data file)

¢ File pre-header record (one record per database file unloaded)

¢ File header record (one record per database file unloaded)

¢ Data records (one or more records per database file unloaded)

¢ File trailer records (one record per database file unloaded)

You need only one run control record on each data file and it must be the
first record on the first volume. You follow it with a set of records for
every file that you unloaded or you want to load. The set consists of a file
pre-header record, a file header record, a number of data records, and a
file trailer record.

You put the primary files first in the data file, and then the related files.
You list both types of files in ascending sequence by database file name.

Indicate the record length in the first field in each record. You indicate
the record length whether the format is fixed or variable.

P26-6260-63

Retaining the format of the data file

Formatting the run control record

You need to put the run control record first on the data file. You need
only one run control record per file. If you leave out the run control
record, the Unload and Load functions do not execute.

The following is the format for the run control record:

Record File File Record Run Run Record Record Block Schema | Env-Desc
Length Type Name Type Date Time Format Size Size Name Name
bytes 4 1 4 1 8 8 2 4 4 8 8
where:

¢+ Record length is a 4-byte field containing the binary integer 48.

¢ Filetype is a 1-byte field that is blank (X'40").

¢ File name is a 4-byte field that is blank (4 X'40").

¢ Record type is a 1-byte field containing a “C”.

¢ Run date is an 8-byte field containing the date that the Unload
function executed. The format is either MM/DD/YY or DD/MM/YY,
depending on your Common Logic Module (CLM) option.

¢ Run time is an 8-byte field containing the time the Unload function
began unloading this file. The format is HH:MM:SS.

¢ Record format is a 2-byte field containing the record format of the
data file. You can have Fb, FB, Vb, or VB.

¢ Record size is a 4-byte hexadecimal field containing the record size
of the data file.

¢ Block size is a 4-byte hexadecimal field containing the block size of
the data file.

¢ Schema name is an 8-byte field containing the name of the schema
used to unload the files on the data file.

¢ Env-Desc name is an 8-byte field containing the name of the
environment description used to unload the files on the data file.

Consideration The minimum length of the run control record is 52 bytes. If the data file
is longer than that, you must add blanks to the rest of the record.

DBA Utilities User's Guide 185

Chapter 10 Coding the Version 1 Unload and Load functions

Formatting the pre-header record

Pre-header records are optional in files you create yourself and are used
when a file is not in its expected position. The Load function reads a pre-
header record for the next file, then it can process the next file normally.
If you include pre-header records, you need one for each file.

The following is the format you need to use for the pre-header record:

Record File File Unused
Length Type Name
bytes 4 1 4 26
where:

¢+ Record length is a 4-byte field containing the binary integer 31.

¢+ Filetype is a 1-byte field containing an R for related files of a P for
primary files.

¢ File name is a 4-byte field containing the file name for the pre-header
record.

¢ Unused is a 26-byte field that is not used.

186 P26-6260-63

Retaining the format of the data file

Formatting the file header record

You need one file header record for every file on the data file. If you
leave out the file header record, the Load function attempts to bypass
that file and process the next file. If you do not have file header records
for any of the files, the Load function processes no files.

The following is the format you need for the file header record:

Record File File Record Run Run User Access
Length Type Name Type Date Time Code Linkpath
bytes 4 1 4 1 8 8 1 8
where:
¢ Record length is a 4-byte field containing the binary integer 31.
¢+ Filetype is a 1-byte field containing an R for related files or a P for
primary files.
¢ File name is a 4-byte field containing the name of the unloaded or
loaded file.
¢ Record type is a 1-byte field containing an H for file header records.
¢ Run date is an 8-byte field containing the date the Unload function
began unloading this file. The format is MM/DD/YY or DD/MM/YY,
depending on the CLM option.
¢ Run time is an 8-byte field containing the time the Unload function
began unloading this file. The format is HH:MM:SS.
¢ User code is a 1-byte field containing a C if the Unload function
created this data file. If you created the data file with your program,
you should put a U in this field.
¢ Access linkpath is an 8-byte field. For a related file, this field

contains the name of the linkpath used to control the unload or load.
For a primary file, this field contains blanks (8 X '40).

Consideration The minimum length of the file header record is 31 bytes. If the record is
longer than 31 bytes, the remainder is filled with blanks.

DBA Utilities User's Guide

187

Chapter 10 Coding the Version 1 Unload and Load functions

188

Formatting the data records

You need one data record for every database record that you selected.

The following is the format for a data record:

bytes

Record File File Record | Reserved [RQLOC | Control- Record | Unloaded
Length Type Name Type Value Key Code Data
4 1 4 1 2 4 1-256 2 1-n

where:

¢ Record length is a 4-byte binary integer containing the length of the
record. For the value, see Consideration 1 below and subtract 4 from
the sum. The record length itself is not included.

¢+ Filetype is a 1-byte field containing an R for related files or a P for
primary files.

¢ File name is a 4-byte field containing the name of the file that is
unloaded or loaded.

¢ Record type is a 1-byte field containing a D for data records.

¢ Reserved is a 2-byte field reserved for internal use.

¢ RQLOC value is a 4-byte field. The contents vary depending on the
file type and the options you selected with the Unload or Load
function. For the possible values, see Consideration 4 below.

¢ Control-Key is a 1- to 256-byte field containing the key associated
with the data that was unloaded or loaded. For primary files, it is the
ffffCTRL element value. For related files, it is the key associated with
the access linkpath.

¢ Record code is a 2-byte field containing a record code for a coded
record or blanks for a noncoded file.

¢ Unloaded data is a 1- to n-byte field containing all data that was

unloaded from the record, including the control key and record code.

P26-6260-63

Retaining the format of the data file

Considerations

¢ You need to calculate the length of the data record as follows:

LRECL+4 (for record length) + 12 (for prefix length) + key
length + 2 (for record code) + length of all elements to be
unl oaded

¢ When you create data records with an exit program instead of
unloading them from a file, you must insert all the elements as
defined on the Directory, including the 2-byte reserved field.

¢ To understand what is in the Unloaded Data field, see the RECORD
and ELEMENT statements in the UCL. Include the record code and
the control key even though they are already defined in the data
record prefix.

¢ The RQLOC value field contains different values at different times. If
you are creating your own data file or adding a data record, you must
fill the RQLOC field with the value in Considerations A or B below,
depending on the type of file and how you coded the PRESERVE
statement. The last 3 considerations below describe how this field is
used by the loader during processing.

- After you unload primary or related files with PRESERVE (NO),
the RQLOC value field contains (4 X'FF).

- After you unload a related file with PRESERVE (YES), the
RQLOC value field contains a sequential count.

- While you are loading a primary file, the RQLOC value field
contains the RQLOC value calculated from the control key.

- While you are loading a related file with PRESERVE (NO), the
RQLOC value field contains a RQLOC value calculated from the
control key defined by access-linkpath.

- While you are loading a related file with PRESERVE (YES), the
RQLOC value field contains a sequential count.

DBA Utilities User's Guide 189

Chapter 10 Coding the Version 1 Unload and Load functions

190

Formatting the file trailer record

You need one file trailer record for every file in the data file. You must
put this record after the last data record on each file. If the Load function
finds no trailer record, it assumes that the Unload function encountered a
nonrecoverable error while creating the data file and stopped before
reaching the end-of-file. If the Load function finds no trailer record, it
prints out a message and bypasses the file.

The following is the format you must use for each file trailer record:

Record File File Record Run Run Reserved | Record
Length Type Name Type Date Time Count
bytes 4 1 4 1 8 8 2 4
where:
¢ Record length is a 4-byte field containing the binary integer 28.
¢+ Filetype is a 1-byte field containing an R for related files or a P for
primary files.
¢ File name is a 4-byte field containing the name of the file just
processed.
¢ Record type is a 1-byte field containing a T for trailer records.
¢ Run date is an 8-byte field containing the date that the Unload
function finished. The format is either MM/DD/YY or DD/MM/YY,
depending on the CLM option.
¢ Run time is an 8-byte field containing the time the Unload function
finished.
¢ Reserved is a 2-byte field reserved for internal use.
¢ Record count is a 4-byte field containing a binary count of the

number of data records unloaded or loaded for this file. Control,
header, and trailer records are not included. If the load was
unsuccessful, this field contains X’FFFF'.

Considerations

¢

The Load function compares the Record Count field to the number of
records it loaded. Any discrepancy in the count produces an error
message.

When you create files, you must include a file trailer record. The
Record Count field must be accurate.

P26-6260-63

Examples of Unload, Load, and Modify functions

Examples of Unload, Load, and Modify functions

Two examples illustrate how to use the Unload, Load, and Modify
functions. The first example shows how to unload and reload all the files
in the Burry's database. The second example shows how to unload,
change the structure, and reload four of the files: two primary and two
related. The change in structure shows how to use the *FILL parameter
to add and delete elements in the files. Both examples illustrate when to
clear linkpaths. The second example also shows how to use the Modify
function to clear a linkpath to a file that was not unloaded.

Since it is necessary to depopulate and repopulate files when you unload
and reload them, those steps are shown in both examples. Since the
intention here is to reload immediately, the examples show the index files
depopulated before unloading. If you are unloading to get a backup copy
that you may never reload, you do not need to depopulate. If you ever
want to reload the backup copy, you must depopulate first.

To help you understand the examples, the following figure shows the files
in the Burry's database. The tables that follow this figure show the files’
internal schema. The first table shows the four files that will change as
they are unloaded. The modified internal schema in the second table
shows the four changed files as they are loaded.

MNOTE

O e—

The description of the Burry's database files may not match those on
your release of SUPRA. Therefore, do not use them as a basis for
decisions you make about Burry’s. In addition, these descriptions are not
complete; they contain only the information you need to unload and load.

DBA Utilities User's Guide 191

Chapter 10 Coding the Version 1 Unload and Load functions

Dy 5 -
E$RG E$BR E$SMF
Region Branch Manifest
R, R, Branch
SKo1 LKO1
SKO1 ES$IN E$SK SKO01 SK01 E$ML
SK02 Invoice Branch [SK02 Manifest
Stock ¥Line/
LKO3 gﬁg;
al» . O
E$CU ESIL E$PD SKO1 E$SPL (HD) E$SU
Customer Invoice Product SK0? PO Supplier
Line Line
SKO1 SKO01 Lko1| |LK02 LKO1 SK01
= Primary E$ST E$PF E$PO
Structure Product Purchase
NN N
D = Related
8 = Index E$XA E$XF E$XP

(

N

Descriptions of the files in the preceding figure are listed alphabetically in
the following table so you can refer to them easily. The files whose
structures change are included in the second table where additional
information is given.

192 P26-6260-63

The following table lists the internal schema of the Burry's database:

Examples of Unload, Load, and Modify functions

Name
of file

|Type of file

Physical fields

Length of
physical fields

Name of

secondary keys

E$BR

E$CU

ES$IL

Primary

Primary

Related

DBA Utilities User's Guide

E$BRROOT
E$BRCTRL
E$BRLKO1
E$BRNAME
E$BRADDR
E$BRCITY
E$BRSTAT
E$BRZIPC
E$BRREGN
E$BRDRTE
E$BRSALQ
E$BRSTFQ
E$CUROOT
E$CUCTRL
E$CUNAME
E$CUADDR
E$CUCITY
E$CUSTAT
E$CUZIPC
E$CUCLAS
E$SCUCRAT
E$CUCLIM
E$SCUBRAN
ESILESIN
E$ILLKO1
ESILE$SPD
ESILQNTY
ES$ILPRCE

8
4
8

o 00 U1 ©O N W o1 N

RN DN
w O O

© 01 © 0 b~ M O NDNOODN

E$BRSKO1

E$CUSKO1
E$CUSKO02

E$ILSKO1

193

Chapter 10 Coding the Version 1 Unload and Load functions

Name Length of Name of
of file Type of file |Physical fields physical fields |secondary keys

ESIN Related E$INROOT E$INSKO1
E$SINCTRL ES$INSKO02
E$INLKO1
E$INLKO4
E$INSLMN
ESINTOTL
E$INBRAN
ESINDATE
ES$SINCUST
E$MB Related E$SMBE$BR
E$MBLKO1
ESMBESMF
E$SMBFILL
E$SMF Primary E$SMFROOT
E$SMFCTRL
E$SMFLKO1
ESMFTOTL
E$SMFBRAN
E$SMFDATE
E$SML Related ESMLESMF
E$SMLLKO1
E$SMLES$PD
ESMLONTY
E$SMLVLUE
E$PG Primary E$PGROOT
E$PGCTRL
E$PGDESC

none

none

E$MLSKO1

none

N 00 © 01 © 00 U1 U1 h © 0O U1 0 » O1 O O O h ©O 00 00 &~ ©

w
o

194 P26-6260-63

Examples of Unload, Load, and Modify functions

Name Length of Name of
of file Type of file | Physical fields physical fields |secondary keys
ESRG Primary ESRGROOT 8
E$RGCTRL 3
E$RGNAME 20
E$SK Related E$SKE$BR 4 E$SKSKO1
E$SKES$PD 9
E$SKLKO3 8
E$SKQNTY 5
E$SKBINL 5
E$SKSYTD 9
E$SU Primary E$SUROOT 8 E$SUSKO1
E$SUCTRL 6
E$SULKO1 8
E$SUNAME 20
E$SUADDR 20
E$SUCITY 13
E$SUSTAT 2
E$SUZIPC 5
E$VS Primary E$VSROOT 8 E$VSSKO1
E$VSCTRL 15 E$VSSKO02
E$VSES$SSU
EVSEPD
E$VSNUMB
E$VSVCST

To see the change in structure, you need additional information about the
files: the logical record length, total logical records, type of physical field,
and number of decimal places. The type of field can be binary,
character, or zoned decimal, which is shown as B, C, and Z in the
following table.

DBA Utilities User's Guide

195

Chapter 10 Coding the Version 1 Unload and Load functions

The following table shows the internal schema of files before unloading:

Length of
Name |Type Physical physical
of file | of file fields fields

Type of
physical
field

Decimal

Name of
secondary
keys

E$PD Primary E$PDROOT 8
E$SPDCTRL
E$PDLKO1
E$PDLKO02
E$PDLKO3
E$PDDESC 30
E$PDWQTY 5
E$PDPRCE 9
E$PDPGRP 2
LOGICAL RECORD LENGTH =87
TOTAL LOGICAL RECORDS =484
E$PO Primary E$POROOT
E$POCTRL
E$POLKO1
E$SPOTOTL
E$SPODATE
LOGICAL RECORD LENGTH = 36
TOTAL LOGICAL RECORDS = 1177
E$ST Related E$STASSM
E$PDLKO1
E$STCOMP
E$PDLKO02
E$STQNTY
LOGICAL RECORD LENGTH =39
TOTAL LOGICAL RECORDS =1078

g1 © 00 O

U1 0 © 0 ©

196

(o8]

N N O ® ONNO®Im®TO

N O ®TO

O N O O O O O O O

O N O O O

o O O O O

E$PDLKO1

none

none

P26-6260-63

Examples of Unload, Load, and Modify functions

Length of |Type of Name of
Name |Type Physical physical physical secondary
of file of file fields fields field Decimal |keys
E$PL Coded
Related
Base E$PLCODE 2 C 0 E$PLSKO1
Portion ESPLESPO 6 C 0 E$PLSKO1
E$POLKO1 8 B 0
E$PLDATA 31 C 0
LOGICAL RECORD LENGTH = 47
HD portion ESPLE$SU 6 C 0
redefines E$SULKOL 8 B 0
E$SPLDATA
E$PLDATE 5 Z 0
E$PLFILL 12 C 0
LOGICAL RECORD LENGTH of redefined portion = 31
LN portion E$PLES$SU 9 C 0
redefines ESPLESPD 5 z 0
E$SPLDATA
E$PLCOST 9 z 2
E$PLFILL 8 C 0
LOGICAL RECORD LENGTH of redefined portion = 31
PD portion E$PLDELN 2 B 0
redefines E$PLDELD 5 z 0
E$SPLDATA
E$PLDELQ 5 Z 0
E$PLDELP 9 C 0
E$PLFILR 10 C 0

LOGICAL RECORD LENGTH of redefined portion = 31

TOTAL LOGICAL RECORDS =902

DBA Utilities User's Guide

197

Chapter 10 Coding the Version 1 Unload and Load functions

The following table shows the internal schema of the files after

modification. Asterisks mark the changes.

Length of |Type of Name of
Name |Type Physical physical physical secondary
of file of file fields fields field Decimal |keys
E$PD Primary E$PDROOT 8 B 0 E$PDLKO1
E$PDCTRL 9 C 0
E$PDLKO1 8 B 0
E$PDLKO2 8 B 0
E$PDLKO3 8 B 0
E$PDDESC 30 C 0
E$PDWQTY 5 z 0
* E$PDPRCE 7 z 0
* E$PDPGRP 12 C 0
* E#PDDES2 20 C 0
* LOGICAL RECORD LENGTH =115
TOTAL LOGICAL RECORDS =484
E$PO Primary E$POROOT 8 B 0
E$POCTRL 6 C 0
E$POLKO1 8 B 0
E$POTOTL 9 z 2
E$PODATE 5 z 0
* LOGICAL RECORD LENGTH =36
TOTAL LOGICAL RECORDS = 1200
E$ST Related E$STASSM 9 C 0
E$PDLKO1 8 B 0
E$STCOMP 9 C 0
E$PDLKO2 8 B 0
* E$STONTY 5 z 0
* E$STCOMM 20 C 0

* LOGICAL RECORD LENGTH =59
TOTAL LOGICAL RECORDS = 1078

198

P26-6260-63

Examples of Unload, Load, and Modify functions

Length of |[Type of Name of
Name |Type of |Physical physical physical secondary
of file file fields fields field Decimal |keys
E$PL Coded
Related
Base E$PLCODE 2 C 0 E$PLSKO1
Portion ESPLESPO 6 c 0 E$PLSKO1
E$POLKO1 8 B 0
E$PLDATA 31 C 0
LOGICAL RECORD LENGTH = 47
HD portion ESPLE$SU 6 C 0
redefines E$SULKOL 8 B 0
E$SPLDATA
E$PLDATE 5 Z 0
E$PLFILL 12 C 0
LOGICAL RECORD LENGTH of redefined portion = 31
LN portion E$PLES$SU 9 C 0
redefines ESPLE$SPD 5 z 0
E$SPLDATA
E$PLCOST 9 z 2
E$PLFILL 8 C 0
LOGICAL RECORD LENGTH of redefined portion = 31
PD portion E$PLDELN 2 B 0
redefines E$PLDELD 5 z 0
E$SPLDATA
E$PLDELP 9 C 0
* E$PLFILR 15 C 0

LOGICAL RECORD LENGTH of redefined portion = 31
* TOTAL LOGICAL RECORDS =950

DBA Utilities User's Guide

199

Chapter 10 Coding the Version 1 Unload and Load functions

Example 1—Unloading and loading all of the Burry’s database
files

You unload and reload all of your files to improve performance after many
updates have changed the structure of the files. You can determine
when you need to unload in two ways:

¢ When your applications begin finding broken linkpath chains.

¢ When your files are no longer structured for best performance. For
example, your primary files have many out-of-block synonyms. You
can determine if you have structural degradation by executing the
File Statistics function regularly.

Unloading and reloading files have the following benefits:

¢ Repairing broken linkpath chains.

¢ Reorganizing the synonym chains in primary files to minimize the
number of out-of-block synonyms.

¢ Reorganizing the linkpath chains in related files to optimize access
along the primary (or access) linkpath.

¢ Reorganizing the secondary key tree structure in the index files.
The last benefit is actually a result of depopulating and repopulating—
steps you must take before and after you unload and load. You execute

four functions when you unload and load: the Depopulate, Unload, Load,
and Sorted-Populate functions.

200 P26-6260-63

Examples of Unload, Load, and Modify functions

UCL samples

Before you unload, you must depopulate all your secondary keys. The
following UCL is for the Depopulate function:
CONTROL(BEG N)
ENV- DESC (BURRYENN)
SCHEMA (BURRYSCH)
LI ST (ALL)
DATA- FORVAT (HEX CHAR)
DI AGNOSTI CS (EXTENDED)
FUNCTI ON(DEPOPULATE)
STATI STI CS (ALL)
FI LE (E$BR)
FI LE (E$CU)
FILE (ES$IL)
FILE (ES$IN)
FI LE (E$M)
FI LE (E$PD)
FI LE (E$PL)
FI LE (E$SK)
FI LE (E$SU)
FI LE (E$VS)

*

CONTROL (END)

DBA Utilities User's Guide 201

Chapter 10 Coding the Version 1 Unload and Load functions

After you depopulate secondary keys, you can unload your files. The

following UCL unloads all the Burry's database files:
CONTROL(BEG N)

.
ENV- DESC (BURRYENN)
SCHEMA (BURRYSCH)

LI ST (ALL)

DATA- FORMAT (HEX CHAR)
DATA- FI LE (CSUDATA)
DEVI CE (DI SK)

*

FUNCTI ON(UNLOAD)
.
%% PRI MARY FI LES ****
FI LE (E$BR)
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$CU)
RECORD(ALL)
ELENMENT(ALL)
FILE (E$IN)
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$RQ
RECORD(ALL)
ELENMENT(ALL)
FI LE (ESMF)
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$PD)
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$VS)
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$SU)
RECORD(ALL)
ELENMENT(ALL)

202

P26-6260-63

FI LE (E$PO)
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$PQ)
RECORD(ALL)
ELENMENT(ALL)

*

**** RELATED FI LES ****

FILE (ES$IL)
LI NKPATH()
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$SK)
LI NKPATH()
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$MB)
LI NKPATH()
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$M.)
LI NKPATH()
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$ST)
LI NKPATH()
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$PL)
LI NKPATH()
RECORD(ALL)
ELENMENT(ALL)

*

CONTROL(END)

DBA Utilities User's Guide

Examples of Unload, Load, and Modify functions

203

Chapter 10 Coding the Version 1 Unload and Load functions

After you unload your files, you can reload them. The following UCL
reloads all Burry’s database files and clears all linkpaths:
CONTROL(BEG N)
ENV- DESC (BURRYENN)
SCHEMA (BURRYSCH)
LI ST (ALL)
DATA- FORVAT (HEX CHAR)
DATA- FI LE (CSUDATA)
DEVI CE (DI SK)

*

FUNCTI ON(LOAD)
*
*%%% PRI MARY FI LES ****
FI LE (E$BR)
CLEAR- LI NKS(LKO1)
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$CU)
CLEAR- LI NKS()
RECORD(ALL)
ELENMENT(ALL)
FILE (E$IN)
CLEAR- LI NKS(LKO1)
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$RQ
CLEAR- LI NKS()
RECORD(ALL)
ELENMENT(ALL)
FI LE (ESMF)
CLEAR- LI NKS(LKO1)
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$PD)
CLEAR- LI NKS(LKO1, LKO2, LKO3)
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$VS)
CLEAR- LI NKS()
RECORD(ALL)
ELENMENT(ALL)

204 P26-6260-63

FI LE (E$SU)
CLEAR- LI NKS(LKO1)
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$PO)
CLEAR- LI NKS(LKO1)
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$PQ
CLEAR- LI NKS()
RECORD(ALL)
ELENMENT(ALL)
*
%% RELATED FI LES ****
FILE (ES$IL)
LI NKPATH()
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$SK)
LI NKPATH()
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$MB)
LI NKPATH()
RECORD(ALL)
ELENMENT(ALL)
FILE (E$M.)
LI NKPATH()
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$ST)
LI NKPATH()
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$PL)
LI NKPATH()
RECORD(ALL)
ELENMENT(ALL)

*

CONTROL(END)

DBA Utilities User's Guide

Examples of Unload, Load, and Modify functions

205

Chapter 10 Coding the Version 1 Unload and Load functions

After you reload your files, you can repopulate your index files with
secondary keys. The following UCL is for the Sorted-Populate function:

CONTROL(BEG N)
ENV- DESC (BURRYENN)
SCHEMA (BURRYSCH)
LI ST (ALL)
DATA- FORMAT (HEX CHAR)
DI AGNOSTI CS (EXTENDED)
FUNCTI ON(SORTED- PCPULATE)
STATI STI CS (ALL)
FI LE (E$BR)
FI LE (E$CU)
FILE (ES$IL)
FILE (E$IN)
FILE (E$M.)
FI LE (E$PD)
FI LE (ES$PL)
FI LE (E$SK)
FI LE (E$SU)
FI LE (E$VS)

*

CONTROL(END)

206 P26-6260-63

Examples of Unload, Load, and Modify functions

Sample listing
The following listing shows the output you receive as a result of the

sample UCL:
CSUL0101I ;. COWMENCI NG COVWAND VALI DATI ON.
1 CONTROL(BEG N)
2 .
3 ENV- DESC (BURRYENN)
4 SCHEMA (BURRYSCH)
5 LI ST (ALL)
6 DATA- FORVAT (HEX CHAR)
7 DATA- FI LE (CSUDATA)
8 DEVI CE (DI SK)
9 .
10 FUNCTI ON(UNL OAD)
11 *
12 ****x PRI MARY FI LES ****
13 FI LE (E$BR)
14 RECORD(ALL)
15 ELENMENT(ALL)
16 FI LE (E$CU)
17 RECORD(ALL)
18 ELEMENT(ALL)
19 FILE (E$IN)
20 RECORD(ALL)
21 ELENMENT(ALL)
22 FI LE (E$RG
23 RECORD(ALL)
24 ELEMENT(ALL)
25 FI LE (E$SMF)
26 RECORD(ALL)
27 ELENMENT(ALL)
28 FI LE (E$PD)
29 RECORD(ALL)
30 ELEMENT(ALL)
31 FI LE (E$VS)
32 RECORD(ALL)
33 ELENMENT(ALL)
34 FI LE (E$SU)
35 RECORD(ALL)
36 ELEMENT(ALL)

DBA Utilities User's Guide 207

Chapter 10 Coding the Version 1 Unload and Load functions

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

CONTENTS OF SOURCE LI NES QUTSIDE 1..72 MARG NS | GNORED.

0
70
1
1

208

FI LE (E$PO
RECORD(ALL)
ELEMENT(ALL)
FI LE (E$PQ
RECORD(ALL)
ELEMENT(ALL)
«
*%x% RELATED FI LES ****
FILE (ES$IL)
LI NKPATH()
RECORD(ALL)
ELEMENT(ALL)
FI LE (E$SK)
LI NKPATH()
RECORD(ALL)
ELEMENT(ALL)
FI LE (E$MB)
LI NKPATH()
RECORD(ALL)
ELEMENT(ALL)
FILE (E$M.)
LI NKPATH()
RECORD(ALL)
ELEMENT(ALL)
FILE (E$ST)
LI NKPATH()
RECORD(ALL)
ELEMENT(ALL)
FI LE (E$PL)
LI NKPATH()
RECORD(ALL)
ELENMENT(ALL)

*

CONTROL (END)

SYNTAX ERRORS DETECTED.
COMVAND LI NES READ.

CONTROL SECTI ONS ANALYZED.
FUNCTI ON COMVANDS ANALYZED.

P26-6260-63

CsuL01021
CSUL0301I
CSUL0302I
CSUL0311I
CSUL1703I
CSUL17041
CSUL03491
CSUL03211
CSUL0311I
CSUL1703I
CSUL17041
CSUL0349I
CSUL03211
CSUL0311I
CSUL1703I
CSUL17041
CSUL03491
CSUL03211

CSUL0311I
CSUL1703I

Examples of Unload, Load, and Modify functions

COMMVENCI NG COMVAND EXECUTI ON.
COMMENCI NG CONTROL SECTI ON USI NG ENVI RONMVENT DESCRI PTI ON BURRYENN AND SCHEVA BURRYSCH.
COMMVENCI NG UNLOAD PROCESS.
COMMVENCI NG UNLOAD AGAI NST FI LE E$BR.
UNLOADI NG PRI MARY FI LE E$BR TO DATA FI LE CREATED ON 10/31/88 AT 14:39:47.
39 DATA RECORDS WRI TTEN TO DATA FI LE DURI NG UNLOAD PROCESSI NG
END- OF- FI LE HAS BEEN ENCOUNTERED ON THE CURRENT FI LE.
UNLQAD PROCESSI NG AGAI NST FI LE E$BR TERM NATI NG NORVALLY
COMMVENCI NG UNLOAD AGAI NST FI LE E$CU.
UNLOADI NG PRI MARY FI LE E$CU TO DATA FI LE CREATED ON 10/31/88 AT 14:39: 47.
43 DATA RECORDS WRI TTEN TO DATA FI LE DURI NG UNLOAD PROCESSI NG
END- OF- FI LE HAS BEEN ENCOUNTERED ON THE CURRENT FI LE.
UNLCAD PROCESSI NG AGAI NST FI LE E$CU TERM NATI NG NORVALLY
COMMENCI NG UNLOAD AGAI NST FI LE E$IN.
UNLOADI NG PRI MARY FI LE E$I N TO DATA FI LE CREATED ON 10/31/88 AT 14:39:47.
96 DATA RECORDS WRI TTEN TO DATA FI LE DURI NG UNLOAD PROCESSI NG
END- OF- FI LE HAS BEEN ENCOUNTERED ON THE CURRENT FI LE.
UNLQAD PROCESSI NG AGAI NST FI LE E$I N TERM NATI NG NORVALLY

FUNCTI ON = UNLOAD FILE = E$ST
COWMMENCI NG UNLOAD AGAI NST FI LE ES$ST.
UNLOADI NG RELATED FI LE E$ST TO DATA FI LE CREATED ON 10/31/88 AT 14:40: 24 USI NG

LI NKPATH E$PDLKOL.

CSUL17041
CSUL0349I
CSUL03211
CSUL0303I
CSUL0305I
CSUL0306I
CSUL03611
CSUL0362I
CSUL0363I
CSUL0364I
CSUL0365I
CSUL0366I
CSUL03071

67 DATA RECORDS WRI TTEN TO DATA FI LE DURI NG UNLOAD PROCESSI NG
END- OF- FI LE HAS BEEN ENCOUNTERED ON THE CURRENT FI LE.
UNLOAD PROCESSI NG AGAI NST FI LE E$ST TERM NATI NG NORVALLY
UNLOAD PROCESS TERM NATI NG
CONTROL SECTI ON TERM NATI NG
SUMVARY DATA FOR TERM NATI NG CONTROL SECTI ON:
NUMBER OF READS | SSUED TO THE PDM =3699
NUMBER OF RECORDS RECEI VED FROM THE PDM = 3683
NUMBER OF RECORDS PROCESSED = 3683

NUMBER OF RECORDS PRI NTED = 0
NUMBER OF RECORDS UPDATED = 0
NUMBER OF WRI TES | SSUED TO PDM = 0

ALL CONTRCL SECTI ONS PROCESSED.

DBA Utilities User's Guide 209

Chapter 10 Coding the Version 1 Unload and Load functions

CSUL0308I
CSUL03611
CSUL03621
CSUL0363I
CSUL03641
CSUL0365I
CSUL03661
CSUL0103I
CSUL01011
1

© 0 N O g b~ WN

W WWRNNNNNNNMNNRNDNERERERERERRER PR B B
N R O © 0 N0 0~ WOWNRO®©O®NOOWO_WNIR O

210

CUMULATI VE SUMVARY DATA FOR ALL CONTROL SECTI ONS :

NUMBER OF
NUMBER OF
NUMBER OF
NUMBER OF
NUMBER OF
NUMBER OF
DATA BASE

READS | SSUED TO THE PDM =3699

RECORDS RECEI VED FROM THE PDM =

RECORDS PROCESSED = 3683

RECORDS PRI NTED =
RECORDS UPDATED =
WRI TES | SSUED TO PDM =

UTI LI TIES SUCCESSFUL TERM NATI ON.

COMVENCI NG COMVAND VALI DATI ON.

0
0

0

CONTROL(BEG N)

*

ENV- DESC (BURRYENN)
SCHEMA (BURRYSCH)

LI ST (ALL)
DATA- FORMAT (HEX CHAR)

*

DATA- FI LE (CSUDATA)
DEVI CE (DI SK)

FUNCTI ON(LOAD)

*

%% PRIMARY FILES **

FI LE (E$BR)
CLEAR- LI NKS(LKO1)
RECORD(ALL)
ELEMENT(ALL)
FI LE (E$CU)
CLEAR- LI NKS()
RECORD(ALL)
ELEMENT(ALL)
FILE (E$IN)
CLEAR- LI NKS(LKO1)
RECORD(ALL)
ELEMENT(ALL)
FI LE (E$RQ
CLEAR- LI NKS()
RECORD(ALL)
ELEMENT(ALL)
FI LE (E$MF)
CLEAR- LI NKS(LKO1)
RECORD(ALL)
ELEMENT(ALL)

3683

P26-6260-63

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
78
80

Examples of Unload, Load, and Modify functions

FI LE (E$PD)
CLEAR- LI NKS(LKO1, LK02, LK03)
RECORD(ALL)
ELEMENT(ALL)
FILE (E$VS)
CLEAR- LI NKS()
RECORD(ALL)
ELEMENT(ALL)
FI LE (E$SU)
CLEAR- LI NKS(LKO1)
RECORD(ALL)
ELEMENT(ALL)
FI LE (E$PO
CLEAR- LI NKS(LKO1)
RECORD(ALL)
ELENMENT(ALL)
FI LE (E$PQ
CLEAR- LI NKS()
RECORD(ALL)
ELENMENT(ALL)

*x%% RELATED FILES ****
FILE (ES$IL)
LI NKPATH()
RECORD(ALL)
ELEMENT(ALL)
FI LE (E$SK)
LI NKPATH()
RECORD(ALL)
ELEMENT(ALL)
FI LE (ESMB)
LI NKPATH()
RECORD(ALL)
ELEMENT(ALL)
FILE (E$M.)
LI NKPATH()
RECORD(ALL)
ELEMENT(ALL)
FILE (ES$ST)
LI NKPATH()
RECORD(ALL)
ELEMENT(ALL)
FILE (ES$PL)
LI NKPATH()
RECORD(ALL)
ELEMENT(ALL)

*

CONTROL (END)

CONTENTS OF SOURCE LI NES QUTSIDE 1..72 MARG NS | GNORED.

0
80
1
1

DBA Utilities User's Guide

SYNTAX ERRORS DETECTED.
COMWAND LI NES READ.

CONTROL SECTI ONS ANALYZED.
FUNCTI ON COMMANDS ANAL YZED.

211

Chapter 10 Coding the Version 1 Unload and Load functions

CSUL01021
CSUL0301I
CSUL03021
CSUL0311I
CSUL1300I

CSuL1302I
CSUL2800I
CSuUL0321lI

CSUL0311I
CSUL1302I
CSUL2800!I
CSUL03211

CSUL0311I
CSUL13021
CSUL2800I
CSUL03211

CSUL03111
CSUL1302I
CSUL2800I
CSUL03211
CSUL0303lI
CSUL0305I
CSUL03061
CSUL03611
CSUL03621
CSUL0363lI
CSUL03641
CSUL0365I
CSUL03661
CSUL03071
CSUL0308I
CSUL03611
CSUL03621
CSUL0363I
CSUL03641
CSUL0365I
CSUL03661

212

COMMVENCI NG COMVAND EXECUTI ON.
COMMENCI NG CONTROL SECTI ON USI NG ENVI RONMVENT DESCRI PTI ON BURRYENN AND SCHEVA BURRYSCH.
COMMENCI NG LOAD PROCESS.
COMMENCI NG LOAD AGAI NST FI LE E$BR.
LOADI NG FI LES WHI CH VERE UNLOADED ON 10/ 31/88 AT 14:39: 46.
USI NG UNLOAD SCHEMA BURRYSCH AND UNLOAD ENVI RONMENT DESCRI PTI ON BURRYENN .
FI LES ARE BEI NG LOADED USI NG SCHEMA BURRYSCH AND ENVI RONMENT DESCRI PTI ON BURRYENN .
39 DATA RECORDS READ FROM DATA FI LE DURI NG LOAD PROCESSI NG.
FI LE E$BR | S NOW FORVATTED.
LOAD PROCESSI NG AGAI NST FI LE E$BR TERM NATI NG NORVALLY
FUNCTI ON = LOAD FILE = E$CU
COMMENCI NG LOAD AGAI NST FI LE E$CU.
43 DATA RECORDS READ FROM DATA FI LE DURI NG LOAD PROCESSI NG,
FI LE E$CU | S NOW FORVATTED.
LOAD PROCESSI NG AGAI NST FI LE E$CU TERM NATI NG NORVALLY

FUNCTI ON = LOAD FILE = E$SK
COMMENCI NG LOAD AGAI NST FI LE E$SK.
2628 DATA RECORDS READ FROM DATA FI LE DURI NG LOAD PROCESSI NG
FI LE E$SK IS NOW FORVATTED.
LOAD PROCESSI NG AGAI NST FI LE E$SK TERM NATI NG NORVALLY
FUNCTI ON = LOAD FILE = E$ST
COWMENCI NG LOAD AGAI NST FI LE ES$ST.
67 DATA RECORDS READ FROM DATA FI LE DURI NG LOAD PROCESSI NG
FI LE E$ST |'S NOW FORVATTED.
LOAD PROCESSI NG AGAI NST FI LE E$ST TERM NATI NG NORVALLY
LOAD PROCESS TERM NATI NG
CONTROL SECTI ON TERM NATI NG
SUMVARY DATA FOR TERM NATI NG CONTROL SECTI ON:

NUMBER COF READS | SSUED TO THE PDM = 0

NUMBER OF RECORDS RECEI VED FROM THE PDM = 0
NUMBER OF RECORDS PROCESSED = 0

NUMBER OF RECORDS PRI NTED = 0

NUMBER OF RECORDS UPDATED = 0

NUMBER OF WRI TES | SSUED TO PDM = 3683

ALL CONTROL SECTI ONS PROCESSED.
CUMULATI VE SUMVARY DATA FOR ALL CONTROL SECTI ONS :

NUMBER COF READS | SSUED TO THE PDM = 0

NUMBER OF RECORDS RECEI VED FROM THE PDM = 0
NUMBER OF RECORDS PROCESSED = 0

NUVBER OF RECORDS PRI NTED = 0

NUMBER COF RECORDS UPDATED = 0

NUMBER OF WRI TES | SSUED TO PDM = 3683

P26-6260-63

Examples of Unload, Load, and Modify functions

Example 2—Unloading, changing and loading files

You can unload and reload to make changes to the structure of some
files. In addition to changing the structure of the file, you also gain the
same benefits as when you unload and reload them; that is, you repair
broken linkpath chains, minimize the number of out-of-block synonyms,
optimize access along primary linkpaths, and reorganize tree structures.

In this example, you are making three changes to the primary file, E$PD:

¢ Decreasing the size of element ESPDPRCE from 9 to 7 bytes by
removing the two zoned decimals from the front of the element.

¢ Adding the 20-character element ESPDDES?2 to the end of the
record.

¢ Increasing the size of element ESPDPGRP from 2 to 12 bytes by
adding 10 characters to the front.

You are making one change to the related file E$ST: adding a
20-character element ESSTCOMM to the end.

You are making one change to the primary file E$PO: increasing its size
from 1177 to 1200 total logical records.

You are making two changes to the primary file E$PL:
¢ Increasing its size from 902 to 950 total logical records.

¢ Inthe PD portion, deleting the element ESPLDELQ, which has five
zoned decimals, and increasing the corresponding fill element,
E$PLFILL, from 10 to 15 characters. You are leaving the HD and LN
portions the same.

To make these changes, you perform the same steps as in the first
example where you unloaded all files: depopulate, unload, load, and
populate. However, in this example, you add another step before the
Load function: you clear the linkpath to the file E$SU with the Modify
function. Thus, you execute five functions when you unload and load
only some of the files. The UCL for each function follows.

DBA Utilities User's Guide 213

Chapter 10 Coding the Version 1 Unload and Load functions

Depopulating files
The first step is to depopulate the secondary keys for the files E$PD and
E$PL. There are no secondary keys for the files E$ST and E$PO. The
following UCL is for the Depopulate function:
CONTROL(BEG N)
ENV- DESC (BURRYENN)
SCHEMA (BURRYOLD)
LI ST (ALL)
DATA- FORMAT (HEX CHAR)
DI AGNOSTI CS (EXTENDED)
FUNCTI ON(DEPOPULATE)
STATI STI CS (ALL)
FI LE (E$PD)
FI LE (E$PL)

*

CONTROL(END)

214 P26-6260-63

Examples of Unload, Load, and Modify functions

Unloading files
The second step is to unload the four files.

To unload E$PD, perform these steps:

¢

Clear linkpaths LKO1 and LKO2. Do not clear LKO3 because it
connects to a file that is not unloaded, E$SK. To clear linkpaths
LKO1 and LKO2 implicitly, do not include them in the element list.
Although not shown in this example, you could include the linkpaths
in the element list and code them in the CLEAR-LINKS statement to
clear them explicitly.

Increase the size of ESPDPGRP by adding *FILL=10 to the element
list.

You do not need to code the *FILL parameter to add element
E$PDDES2, because you will add it to the end of the element list in
the Load function’s UCL.

To unload E$PO, code ELEMENT (ALL) because you are not changing
any elements. The linkpath is cleared in the Load step.

To unload E$ST, list it in the FILE statement. You do not need to code a
*FILL parameter to add the E$STCOMM element because you will add it
to the end of the element list in the Load function’s UCL.

To unload E$PL, perform these steps:

¢

DBA Utilities User's Guide

Either list the elements in the HD and LN records, or code ALL in the
element list. This example shows both ways.

Increase the size of E$PLFILR by adding *FILL=05.

Delete the element E$SPLDELQ by not including it in the element list.

215

Chapter 10 Coding the Version 1 Unload and Load functions

The following UCL shows these steps:
CONTROL(BEG N)
* ENV- DESC (BURRYENN)
SCHEMA (BURRYOLD)
LI ST (ALL)
DATA- FORVAT (HEX- CHAR)
DATA- FI LE (CSUDATA)
DEVI CE (DI SK)
* FUNCTI ON(UNLQAD)
“
*%x% PRI MARY FILES ****
FI LE(E$PD)
RECORD(ALL)
ELEMENT(ESPDCTRL, E$PDLK0O3, ESPDDESC, E$PDWQTY, E$PDPRCE, * FI LL=10, E$PDPGRP)

FI LE(E$PO)
RECORD(ALL)
ELENMENT(ALL)
*%%% RELATED FI LES ****
FI LE(E$ST)
LI NKPATH(E$PDLK01)
RECORD(ALL)
ELENMENT(E$STASSM E$STQNTY, E$STCOVP)
FI LE(E$PL)
LI NKPATH(E$POLK01)
RECORD(HD)
ELEMENT(EPLEPO, E$PLCODE, E$PLE$SU, ESPLDATE, E$PLFI LL)
RECORD(LN)
ELENMENT(ALL)
RECORD(PD)
ELEMENT(EPLEPO, E$PLCODE, E$PLDELN, E$PLDELD, E$PLDELP, *FI LL=05, E$PLFI LR)

*

CONTROL (END)

216 P26-6260-63

Examples of Unload, Load, and Modify functions

Clearing the linkpath to a file that was not unloaded

The third step is to clear the linkpath from the file E$PL to the file E$SU.
When you unload and load the file E$PL, the linkpath from E$PL to
EPO, EPOLKO1, is cleared so that it can accept the newly created
linkpath information that the Load function inserts. However, since you
do not unload or load E$SU, use the Modify function to clear the linkpath
E$SULKO1. The following UCL shows how to code the Modify function:
CONTROL(BEG N)

ENV- DESC (BURRYENN)

SCHEMA (BURRYSCH)

LI ST(NONE)

*

FUNCTI ON(MODI FY)

*

FI LE(E$SU)
QUALI FI ER(SERI AL)

RECORD(ALL)
ELEMENT(E$SULKO1)
DATA(. END.)

*

CONTROL (END)

Loading files
The fourth step is to load the four files.

To load E$PD, use the same element list you used in the unload step.

¢ Add the element E3PDDES?2 to the element list.

¢ Add *FILL=02 to decrease the size of the ESPDPRCE element.

To load the E$PO file, complete these steps:

¢ Code ELEMENT (ALL) because you are not changing any elements.

¢ Because you coded ALL for the element list, code LKO1 in the
BLANK-LINKS statement to clear the linkpath.

When you load E$ST, code the element ESSTCOMM at the end of the
element list.

When you load E$PL, remove *FILL from the element list.

DBA Utilities User's Guide 217

Chapter 10 Coding the Version 1 Unload and Load functions

The following UCL illustrates these steps:
CONTROL(BEG N)

.
ENV- DESC (BURRYENN)
SCHEMA (BURRYSCH)
LI ST(ALL)
DATA- FORMAT (HEX- CHAR)
DATA- FI LE (CSUDATA)
DEVI CE (DI SK)

*

FUNCTI ON(LQAD)

*

%% PRIMARY FILES **
FI LE(E$PD)

RECORD(ALL)

ELENMENT(E$PDCTRL, E$PDLK03, ESPDDESC, ESPDWQTY, * FI LL=02, E$PDPRCE, E$PDPGRP, ESPDDES?)
FI LE(E$PO)
CLEAR- LI NKS(LKO1)
RECORD(ALL)
ELEMENT(ALL)
.
%% RELATED FI LES ****
FI LE(E$ST)
LI NKPATH(ESPDLKO1)
RECORD(ALL)
ELEMENT(E$STASSM E$STONTY, ESSTCOVP, E$STCOW)
FI LE(E$PL)
LI NKPATH(ESPOLKO1)
RECORD(HD)
ELEMENT(ESPESPO, E$SPCODE, E$SPESU, ESPDATE, E$SPFILL)
RECORD(LN)
ELEMENT(ALL)
RECORD(PD)
ELENMENT(EPLEPO, E$PLCODE, E$PLDELN, E$PLDELD, E$SPLDELP, ESPLFI LR)

*

CONTROL(END)

218 P26-6260-63

Examples of Unload, Load, and Modify functions

Populating files

The last step is to populate the secondary keys for the files E$PD and
E$PL. The other two files had no secondary keys. The following UCL
illustrates how to code the Sorted-Populate function:

CONTROL(BEG N)
.
ENV- DESC (BURRYENN)
SCHEMA (BURRYSCH)
LI ST(ALL)
DATA- FORMAT (HEX CHAR)
DI AGNOSTI CS (EXTENDED)
.
FUNCTI ON(SORTED- PCPULATE)
STATI STI CS(ALL)
FI LE(E$PD)
FI LE(E$PL)

*

CONTROL(END)

DBA Utilities User's Guide 219

Chapter 10 Coding the Version 1 Unload and Load functions

Sample listing
The following listing shows the output you receive as a result of the
sample statements:

CSUL0101l : COMMENCI NG COVMAND VALI DATI ON.
1 CONTROL(BEG N)

2 *

3 ENV- DESC (BURRYENN)

4 SCHEMA (BURRYOLD)

5 LI ST(ALL)

6 DATA- FORMAT (HEX CHAR)

7 DATA- FI LE (CSUDATA)

8 DEVI CE (DI SK)

9 =

10 FUNCTI ON(UNLOAD)

11

12 **** PRIMARY FILES ****

13 FI LE(E$PD)

14 RECORD(ALL)

15 ELEMENT(ESPDCTRL, E$PDLKO3, ESPDDESC, ESPDWQTY,
16 E$PDPRCE, *FI LL=10, ESPDPGRP)

17 FI LE(E$PO)

18 RECORD(ALL)

19 ELEMENT(ALL)

20 *

21 **** RELATED FILES ****

22 FI LE(E$ST)

23 LI NKPATH(ESPDLKO1)

24 RECORD(ALL)

25 ELEMVENT(E$STASSM E$STQNTY, ESSTCOWP)
26 FI LE(E$PL)

27 LI NKPATH(ESPOLKO1)

28 RECORD(HD)

29 ELEMENT(EPLEPO, E$PLOCDE, ESPLE$SU, ESPLDATE, ESPLFI LL)
30 RECORD(LN)

31 ELEMENT(ALL)

32 RECORD(PD)

33 ELEMENT(EPLEPO, E$PLCCDE, E$PLDELN, E$PLDELD, E$PLDELP,
34 *Fl LL=05, E$PLFI LR)

35 *

36 CONTROL(END)
CONTENTS OF SOURCE LI NES QUTSIDE 1..72 MARG NS | GNORED.
0 SYNTAX ERRORS DETECTED.
36 COMVAND LI NES READ.
1 CONTROL SECTI ONS ANALYZED.
1 FUNCTI ON COVMANDS ANALYZED.

220 P26-6260-63

CsuL01021
CSUL0301I
CSUL0302I
CSUL0311I
CSUL1703I
CSUL17041
CSUL03491
CSUL03211

CSUL0311lI
CSUL1703I
CSUL1704I
CSUL0349I
CSUL0321lI

CSUL0311I
CSUL17011

Examples of Unload, Load, and Modify functions

COMMVENCI NG COMVAND EXECUTI ON.
COMMENCI NG CONTROL SECTI ON USI NG ENVI RONMVENT DESCRI PTI ON BURRYENN AND SCHEVA BURRYOLD.
COMMVENCI NG UNLOAD PROCESS.
COMMVENCI NG UNLOAD AGAI NS FI LE E$PD.
UNLOADI NG PRI MARY FI LE E$PD TO DATA FI LE CREATED ON 10/31/88 AT 15:32:57.
88 DATA RECORDS WRI TTEN TO DATA FI LE DURI NG UNLOAD PROCESSI NG,
END- OF- FI LE HAS BEEN ENCOUNTERED ON THE CURRENT FI LE
UNLOAD PROCESSI NG AGAI NST FI LE E$PD TERM NATI NG NORMALLY

FUNCTI ON=UNLOAD FI LE=E$PO

COMMENCI NG UNLOAD AGAI NST FI LE E$PO.

UNLOADI NG PRI MARY FI LE E$PO TO DATA FI LE CREATED ON 10/31/88 AT 15:32:59.
26 DATA RECORDS WRI TTEN TO DATA FI LE DURI NG UNLOAD PROCESSI NG,

END- OF- FI LE HAS BEEN ENCOUNTERED ON THE CURRENT FI LE

UNLOAD PROCESSI NG AGAI NST FI LE E$PO TERM NATI NG NORMALLY

FUNCTI ON=UNLOAD FI LE=ESPL

COMMENCI NG UNLOAD AGAI NST FI LE ES$PL.
UNLOADI NG RELATED FI LE E$SPL TO DATA FI LE CREATED ON 10/ 31/88 AT 15:33: 03 USI NG

LI NKPATH E$POLKO1.

CSUL17041
CSUL0349I
CSUL0321lI

CSUL0311I
CSUL17011

122 DATA RECORDS WRI TTEN TO DATA FI LE DURI NG UNLOAD PROCESSI NG
END- OF- FI LE HAS BEEN ENCOUNTERED ON THE CURRENT FI LE
UNLOAD PROCESSI NG AGAI NST FI LE E$PL TERM NATI NG NORMALLY
FUNCTI ON=UNLQOAD FI LE=E$ST
COMMVENCI NG UNLOAD AGAI NST FI LE ES$ST.
UNLOADI NG RELATED FI LE E$ST TO DATA FI LE CREATED ON 10/31/88 AT 15:33: 05 USI NG

LI NKPATH E$PDLKO1.

CSUL17041
CSUL03491
CSUL03211
CSUL0303I
CSUL0305I
CSUL0306I
CSUL03611
CSUL0362I
CSUL0363I
CSUL0364I
CSUL0365I
CSUL0366I
CSUL03071
CSUL0308I
CSUL03611
CSUL0362I
CSUL0363lI
CSUL0364I
CSUL0365I
CSUL0366I
CSUL0103I
CSUL01011

67 DATA RECORDS WRI TTEN TO DATA FI LE DURI NG UNLOAD PROCESSI NG,
END- OF- FI LE HAS BEEN ENCOUNTERED ON THE CURRENT FI LE
UNLOAD PROCESSI NG AGAI NST FI LE E$ST TERM NATI NG NORMALLY
UNLOAD PROCESS TERM NATI NG
CONTROL SECTI ON TERM NATI NG
SUMVARY DATA FOR TERM NATI NG CONTROL SECTI ON:
NUMBER OF READS | SSUED TO THE PDM =307
NUMBER OF RECORDS RECEI VED FROM THE PDM = 303
NUMBER OF RECORDS PROCESSED = 303

NUMVBER OF RECORDS PRI NTED = 0
NUMBER OF RECORDS UPDATED = 0
NUMBER OF WRI TES | SSUED TO PDM = 0

ALL CONTROL SECTI ONS PROCESSED.

CUMULATI VE SUMMARY DATA FOR ALL CONTROL SECTIONS :
NUMBER OF READS | SSUED TO THE PDM =307

NUMBER OF RECORDS RECEI VED FROM THE PDM = 303
NUMBER OF RECORDS PROCESSED = 303

NUMBER OF RECORDS PRI NTED = 0
NUMBER OF RECORDS UPDATED = 0
NUMBER OF WRI TES | SSUED TO PDM = 0

DATA BASE UTI LI TI ES SUCCESSFUL TERM NATI ON.
COMMVENCI NG COMMAND VAL DATI ON.

DBA Utilities User's Guide 221

Chapter 10 Coding the Version 1 Unload and Load functions

*

*

1
2
3
4
5
6
7
8 *
9

10

11

12

13

14 *

CONTROL(BEG N)

ENV- DESC (BURRYENN)
SCHEMA (BURRYSCH)
LI ST(NONE)

FUNCTI ON(MODI FY)

FI LE(E$SU)
QUALI FI ER(SERI AL)
RECORD(ALL)
ELEMENT(E$SULKO1)
DATA(. END.)

15 CONTROL(END)
CONTENTS OF SOURCE LI NES QUTSIDE 1..72 MARG NS | GNORED.
0 SYNTAX ERRORS DETECTED
15 COMMAND LI NES READ.
1 CONTROL SECTI ONS ANALYZED.
1 FUNCTI ON COVVANDS ANAL YZED.

CSUL01021
CSUL03011
CSUL03021
CSUL0311I
CSUL03491
CSUL03211
CSUL0303lI
CSUL0305I
CSUL03061
CSUL03611
CSUL03621
CSUL0363lI
CSUL03641
CSUL0365I
CSUL03661
CSUL03071
CSUL0308I
CSUL03611
CSUL03621
CSUL0363lI
CSUL03641
CSUL0365I
CSUL03661
CSUL0103I
CSUL01011

222

COMVENCI NG COMVAND EXECUTI ON.

COMMENCI NG CONTROL SECTI ON USI NG ENVI RONMVENT DESCRI PTI ON BURRYENN AND SCHEVA BURRYSCH.

COMMVENCI NG MODI FY PROCESS.
COMMENCI NG MODI FY AGAINS FI LE E$SU.

END- OF- FI LE HAS BEEN ENCOUNTERED ON THE CURRENT FI LE
MODI FY PROCESSI NG AGAI NST FI LE E$SU TERM NATI NG NORMALLY

MODI FY PROCESS TERM NATI NG
CONTROL SECTI ON TERM NATI NG

SUMVARY DATA FOR TERM NATI NG CONTROL SECTI ON:

NUMBER OF READS | SSUED TO THE PDM = 15
NUMBER OF RECORDS RECEI VED FROM THE PDM =
NUMBER OF RECORDS PROCESSED = 14

NUMBER OF RECORDS PRI NTED = 0
NUMBER OF RECORDS UPDATED = 14
NUMBER OF WRI TES | SSUED TO PDM = 14

ALL CONTROL SECTI ONS PROCESSED.

CUMULATI VE SUMVARY DATA FOR ALL CONTROL SECTI ONS :

NUMBER OF READS | SSUED TO THE PDM = 15
NUMBER OF RECORDS RECEI VED FROM THE PDM =
NUMBER OF RECORDS PROCESSED = 14

NUMBER OF RECORDS PRI NTED = 0
NUMBER COF RECORDS UPDATED = 14
NUMBER OF WRI TES | SSUED TO PDM = 14

DATA BASE UTI LI TI ES SUCCESSFUL TERM NATI ON.
COMMVENCI NG COMMAND VAL DATI ON.

14

14

P26-6260-63

© 00 N O g b~ W NP

W oW WWWWNNNNNRNNNRNRNEREERRRR R B B p
OB WNRPO®© ®~NO AR WNIRPRO®OO®-NOOOUMWNR O

36

Examples of Unload, Load, and Modify functions

CONTROL(BEG N)
.
ENV- DESC (BURRYENN)
SCHEMA (BURRYSCH)
LI ST(ALL)
DATA- FORMAT (HEX- CHAR)
DATA- FI LE (CSUDATA)
DEVI CE (DI SK)

*

FUNCTI ON(LOAD)
.
*%x% PRI MARY FILES ****
FI LE(E$PD)
RECORD(ALL)
ELEMENT(ESPDCTRL, E$PDLKO3, ESPDDESC, ESPDWQTY,
*Fl LL=02, E$PDPRCE, E$PDPGRP, E$PDDES2)
FI LE(E$PO)
CLEAR:- LI NKS(LKO1)
RECORD(ALL)
ELEMENT(ALL)
.
*%x% RELATED FI LES ****
FI LE(E$ST)
LI NKPATH(E$PDLKO1)
RECORD(ALL)
ELEMENT(ESSTASSM E$SSTQNTY, ESSTCOVP, ESSTCOW)
FI LE(E$PL)
LI NKPATH(E$POLKO1)
RECORD(HD)

ELEMENT(ESPEPO, E$SPCODE, E$SPESU, ESPDATE, E$SPFILL)

RECORD(LN)
ELEMENT(ALL)
RECORD(PD)

ELEMENT(ESPLEPO, EPLCODE, E$PLDELN, E$PLDELD, ESPLDELP, ESPLFI LR)

*

CONTROL(END)

CONTENTS OF SOURCE LI NES QUTSIDE 1..72 MARG NS | GNORED.

0
36
1
1

SYNTAX ERRORS DETECTED.
COMVAND LI NES READ.

CONTROL SECTI ONS ANALYZED.
FUNCTI ON COMVANDS ANALYZED.

DBA Utilities User's Guide

223

Chapter 10 Coding the Version 1 Unload and Load functions

CSUL01021
CSUL0301I
CSUL03021
CSUL0311I
CSUL1300I

CSuL1302I
CSUL2800I
CSuUL0321lI

CSUL0311I
CSUL1302I
CSUL2800!I
CSUL03211

CSUL0311I
CSUL1302I
CSUL2800I
CSUL03211

CSUL0311I
CSUL1302I
CSUL2800I
CSUL03211
CSUL0303I
CSUL0305I
CSUL0306l!
CSUL03611
CSUL0362I
CSUL0363I
CSUL0364I
CSUL0365I
CSUL0366I
CSUL03071
CSUL0308I
CSUL03611
CSUL0362I
CSUL0363I
CSUL0364I
CSUL0365I
CSUL0366I
CSUL0103I

224

COMVENCI NG COMVAND EXECUTI ON.

COMMENCI NG CONTROL SECTI ON USI NG ENVI RONMVENT DESCRI PTI ON BURRYENN AND SCHEVA BURRYSCH.

COMMENCI NG LOAD PROCESS.

COMMENCI NG LOAD AGAINS FI LE E$PD.

LOADI NG FI LES WHI CH VERE UNLOADED ON 10/31/88 AT 15:32:55.

USI NG UNLOAD SCHEMA BURRYOLD AND UNLOAD ENVI RONMENT DESCRI PTI ON BURRYENN.

FI LES ARE BEI NG LOADED USI NG SCHEMA BURRYSCH AND ENVI RONVENT DESCRI PTI ON BURRYENN.

88 DATA RECORDS READ FROM DATA FI LE DURI NG LOAD PROCESSI NG.
FI LE E$PD | S NOW FORVATTED.
. LOAD PROCESSI NG AGAI NST FI LE E$PD TERM NATI NG NORVALLY
FUNCTI ON=LOAD FI LE=E$PO
COMMENCI NG LOAD AGAI NST FI LE E$PO.
26 DATA RECORDS READ FROM DATA FI LE DURI NG LOAD PROCESSI NG
FI LE E$PO | S NOW FORVATTED.
LOAD PROCESSI NG AGAI NST FI LE E$PO TERM NATI NG NORVALLY
FUNCTI ON=LOAD FI LE=ESPL
COWMENCI NG LOAD AGAI NST FI LE E$PL.
122 DATA RECORDS READ FROM DATA FI LE DURI NG LOAD PROCESSI NG
FILE E$PL |'S NOW FORVATTED.
LOAD PROCESSI NG AGAI NST FI LE E$PL TERM NATI NG NORVALLY
FUNCTI ON=UNLQOAD FI LE=E$ST
COMMENCI NG LOAD AGAI NST FI LE ES$ST.
67 DATA RECORDS READ FROM DATA FI LE DURI NG LOAD PROCESSI NG
FI LE E$ST |'S NOW FORVATTED.
LOAD PROCESSI NG AGAI NST FI LE E$ST TERM NATI NG NORVALLY
LOAD PROCESS TERM NATI NG
CONTROL SECTI ON TERM NATI NG
SUMVARY DATA FOR TERM NATI NG CONTROL SECTI ON:
NUMBER OF READS | SSUED TO THE PDM = 0

NUMBER OF RECORDS RECEI VED FROM THE PDM = 0
NUMBER OF RECORDS PROCESSED = 0

NUMBER OF RECORDS PRI NTED = 0

NUMBER OF RECORDS UPDATED = 0

NUMBER OF WRI TES | SSUED TO PDM = 303

ALL CONTRCL SECTI ONS PROCESSED.
CUMULATI VE SUMVARY DATA FOR ALL CONTROL SECTIONS :
NUMBER OF READS | SSUED TO THE PDM = O

NUMBER OF RECORDS RECEI VED FROM THE PDM = 0
NUMBER OF RECORDS PROCESSED = 0

NUMBER OF RECORDS PRI NTED = 0

NUMBER OF RECORDS UPDATED = 0

NUMBER OF WRI TES | SSUED TO PDM = 303

DATA BASE UTI LI TI ES SUCCESSFUL TERM NATI ON.

P26-6260-63

11

Coding theVersion 2 Unload, L oad, and
Insert Linkpath functions

Version 2 overview

Use the Version 2 Unload, Load, and Insert Linkpath functions if
performance is critical or you are reloading the files in a SUPRA
converted or Series 80 format. These are the only functions you may use
to convert files from the SUPRA native format to the SUPRA converted or
Series 80 format. With these functions, you may unload a file in any
format (SUPRA native, SUPRA converted, or Series 80) and then reload
the file in the same or any other format.

NOTE When you use this version of the Unload function, you must use the
Version 2 Load Function to reload. When you use the Version 1 Unload
2 function, you must use the Version 1 Load function to reload.

DBA Utilities User's Guide 225

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

226

Use the Version 1 Unload and Load functions in the following situations:
¢ Performance is not critical.
¢ You are loading files in the SUPRA native format.

¢ You want to code elements in the redefined portion of a coded
related file.

¢+ You want to use the UCL or other features of those functions.

NOTE

The Version 2 Unload and Load functions do not process index files. If
your PDM files have secondary keys, you must depopulate them either
before or after unloading them. Then you must repopulate them after you
load. If you execute the Insert Linkpath function, you can use it before or
after you repopulate.

To depopulate secondary keys, use the Directory Maintenance
DEPOPULATE command with the Remove parameter or the Depopulate
function described in “Coding the Depopulate function” on page 105.
After you have reloaded the files, you can repopulate secondary keys with
the Sorted-Populate function described in “Coding the Sorted-Populate
function” on page 91 or the Directory Maintenance POPULATE
command. For details on the DEPOPULATE and POPULATE
commands, refer to the SUPRA Server PDM Directory Online User's
Guide (OS/390 & VSE), P26-1260, or the SUPRA Server PDM Directory
Batch User's Guide (OS/390 & VSE), P26-1261.

The Version 2 Unload function (CSUNLOAD) unloads SUPRA Directory
or PDM files at serial speed to a tape or disk device. It restructures the
files into the format and sequence required by the Version 2 Load
function.

The Version 2 Load function (CSULOADR) loads SUPRA Directory or
PDM files from the output of the Version 2 Unload function. In addition,
this function automatically establishes linkage information.

The Version 2 Insert Linkpath function (CSUINSRT) inserts linkpath data
that the Load function saved in the work files. The Insert Linkpath
function inserts the data into Directory or PDM primary files. However,
because the Load function establishes linkpath information, you do not
need to use Insert Linkpath in most cases.

P26-6260-63

Version 2 overview

Use the Insert Linkpath function when you are unloading and loading only
some of your files. For example, you may unload a related file and only
one of the primary files to which it is connected. After you reload the files,
insert the connection to the primary file you did not unload. The following

figure illustrates this process.

PRO1

LKOO

Unload/Load these two files

LKO1 LKO2

PR0O2

LKO3 LKO4

PRO3

DBA Utilities User's Guide

227

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

What to do with linkpaths when you unload and load

In the preceding figure, you need to use the Insert Linkpath function for
linkpath LKO1. You do not need to use it for any other linkpath. These
four linkpaths illustrate the four possible states for your linkpaths. The
following table explains what action you need to take in each case.

Example

Description linkpath Action Effect

You do not unload LKO4 and None The linkpath

either the primary or LKOO information remains as

the related file to it was before you

which the linkpath is unloaded.

connected.

You unload and load LKO02 Code LKO02 in the The linkpath

both the primary and BLANK-LINKS file of the information in the

related file to which Unload function's control ~ OUTFILE is blanked in

the linkpath is parameter for file PR0O2. the unload step and

connected. then recreated and
inserted in the load
step.

You unload and load LKO3 None. Do not code LKO3 The linkpath

the primary file to in the BLANK-LINKS information is left intact

which the linkpath is parameter for file PR0O2. and remains the same

connected, but not as it was before you

the related file. unloaded.

You unload and load LKO1 Execute the Insert The linkpath

the related file to
which the linkpath is
connected, but not
the primary file.

Linkpath function and
code PROL1 in the FILES
parameter and
PRO1LKO1 in the
CLEARLKS parameter of
the Insert Linkpath run
control statement. (Do
not code PRO1LKOO in
the CLEARLKS
parameter.)

information is created
in the load step. The
linkpath information is
then blanked and
inserted in the insert
step.

228

P26-6260-63

Version 2 overview

For each of the Version 2 functions, you must code the CSIPARM file,
JCL to define files, and control statements. To find the information on
each function, see the following sections:

Information Section
Coding the CSIPARM file for Unload, “Coding the CSIPARM file for Unload, Load, and
Load, and Insert Linkpath functions Insert Linkpath” on page 230
Coding the JCL for Unload, Load, “Coding JCL for Unload, Load, and Insert
and Insert Linkpath functions Linkpath functions” on page 232
Unloading PDM files “Unloading PDM files” on page 235
Unloading Directory files “Unloading Directory files” on page 264
Using exit points in the Unload “Using exit points” on page 265
function
Loading PDM files “Loading PDM files” on page 292
Loading Directory files “Loading Directory files” on page 322
Inserting linkpath data “Coding the Insert Linkpath function” on
page 322
Examples of Unload, Load, and “Examples of Unload, Load, and Insert Linkpath
Insert functions functions” on page 333

DBA Utilities User's Guide 229

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Coding the CSIPARM file for Unload, Load, and Insert

Linkpath

When you use Version 2 functions, you need to code the CSIPARM file.
In the environment description, you must code an open mode of NONE
for all files read by these functions. Also, if you change the schema and
environment description in the run control statements, you must change
the DIRECTORY and REALM parameters in the CSIPARM file.

Coding CSIPARM file and run control statements for PDM files

The following table shows how to code the CSIPARM file and run control
statements for PDM files. If you are processing Directory files, see
“Coding CSIPARM file and run control statements for directory files” on

page 231.
In Version 2 For PDM files with no For PDM files with
utility Code changes in schema changes in schema
UNLOAD CSIPARM DIRECTORY= DIRECTORY=
file (bootschema, (bootschema, bootenvdesc)
bootenvdesc)
CSIPARM REALM= (yourschema, REALM=(youroldschema,
file yourenvdesc) ouroldenvdesc)
Run control no NEW-SCHEMA NEW-SCHEMA=
statements no NEW-ENVDESC yournewschema
NEW-ENVDESC=
yournewenvdesc
LOAD CSIPARM DIRECTORY= DIRECTORY=
file (bootschema, (bootschema, bootenvdesc)
bootenvdesc)
CSIPARM REALM= (yourschema, REALM= (yournewschema,
file yourenvdesc) yournewenvdesc)
Run control SCHEMA=yourschema SCHEMA-= yournewschema
statements
INSERT CSIPARM DIRECTORY= DIRECTORY=
LINKPATH file (bootschema, (bootschema, bootenvdesc)
bootenvdesc)
CSIPARM REALM= (yourschema, REALM= (yournewschema,
file yourenvdesc) yournewenvdesc)
Run control none none
statements

230

P26-6260-63

Coding the CSIPARM file for Unload, Load, and Insert Linkpath

Coding CSIPARM file and run control statements for directory

files
If you are processing Directory files, refer to the following table:
In Version 2 For directory files with For directory files with
utility Code no changes in schema changes in schema
UNLOAD CSIPARM no DIRECTORY no DIRECTORY parameter
file parameter
CSIPARM REALM= (bootschema, REALM= (oldbootschema,
file bootenvdesc) oldbootenvdesc)
Run control no NEW-SCHEMA NEW-SCHEMA=
statements no NEW-ENVDESC newbootschema
NEW-ENVDESC=
newbootenvdesc
LOAD CSIPARM DIRECTORY= DIRECTORY=
file (bootschema, (newbootschema,
bootenvdesc) newbootenvdesc)
CSIPARM no REALM parameter no REALM parameter
file
Run control ~ SCHEMA= bootschema SCHEMA= newbootschema
statements
INSERT CSIPARM DIRECTORY= DIRECTORY=
LINKPATH file (bootschema, (newbootschema,
bootenvdesc) newbootenvdesc)

CSIPARM
file

Run control
statements

no REALM parameter

none

no REALM parameter

none

DBA Utilities User's Guide

231

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Coding JCL for Unload, Load, and Insert Linkpath functions

232

<
m

The following figures show the files that you must define in 0S/390 and
VSE. You use some files to hold your input to the functions and others to
hold output from the functions. The CSIPARM and CSUAUX files, which
hold input to the Unload, Load, and Insert Linkpath functions, are
examples of input files.

Other input files hold run control and file control statements.

In 0S/390, SYSIN and PARM hold these statements for the Unload
function; SYSIN holds them for the Load and Insert Linkpath functions.

In VSE, SYSIPT holds them for all three functions.

Other files hold output from one function that becomes input to another.
The OUTFILE (OUTPUT in VSE) and CSU#REC files hold output from
the Unload function and input to the Load function. Similarly, the linkwork
files are output from the Load function and input to the Insert Linkpath
function. Therefore, you must code these files the same for each
function.

P26-6260-63

Coding JCL for Unload, Load, and Insert Linkpath functions

Files you define in OS/390 JCL

DATABASE FILES (in SORTLIB)
—> SYsSouT
CSIPARM ¢ SORT <+“—>» CSI#WKO01
«—> +—> CSI#WK02
CSUAUX <+—> CSI#WKO03
—
SYSIN UNLOAD SYSPRINT
(Run Control Statements) —
PARM SYSUDUMP
(File Control Statements) l l
OUTFILE CSU#REC
SYSUTI CSU#REC (in SORTLIB)
—> SysouT
CSIPARM l l SORT <+“—> CSI#WKO01
<« +—> CSI#WK02
CSUAUX <+—> CSI#WKO03
—
SYSIN LOAD SYSPRINT
d Fil |
et ™ — | sysubumpP
I I Database files
LINKWKO1 LINKWKO02
LINKWKO1
CSIPARM
SYSPRINT
CSUAUX
— INSERT ~ | SYSUDUMP
SYSIN :
(Run Control Statements) Datab ase f||eS
LINKWKO02

DBA Utilities User's Guide 233

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Files you define in VSE JCL

DATABASE FILES (SORTLIB not used here)
—> SYSouT
CSIPARM v SORT 4+—» SORTWK1
«— +—» SORTWK2
CSUAUX <+—> SORtWK3
—
SYSIPT UNLOAD
(Run and File Control — SYSLST
Statements)
OUTPUT CSU#REC
INPUT CSU#REC (in SORTLIB)
— SYSOUT
CSIPARM l SORT 4—» SORTWK1
«—> +—» SORTWK2
CSUAUX <+—>» SORTWK3
—
SYSIPT LOAD SYSLST
g;r;ﬁgge contrl ' Database files
I I Z-prefixed database files
LINKWRK1 LINKWRK2
LINKWRK1
CSIPARM
SYSLST
CSUAUX >
INSERT — -
Database files
SYSIN
(Run Control Statements)

!

LINKWRK2

234 P26-6260-63

Unloading PDM files

Unloading PDM files

To use the Version 2 Unload function, you do not code UCL. Instead, you
must code the following input:

+ File definitions
¢ Run control statements
¢+ File control statements

You may also insert your own code at exit points.

Defining files

To execute the Unload function in OS/390 or VSE, you define the files
listed in the following table in your JCL, and execute the Unload program
named CSUNLOAD. In OS/390, rather than coding all the file definitions,
you can use the cataloged procedure TISUTUNL. If you want to change
the symbolic parameters in TISUTUNL, refer to the SUPRA PDM and
Directory Administration Guide, P26-2250.

DBA Utilities User's Guide 235

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

File definitions for the Unload function

|DD or file name

|Description

|C0nsiderations

CSI#WKnn

CSIPARM

CSU#REC

CSUAUX

os/39q| fffffff

\vs| fffffff and Zfffff

OUTFILE

236

Identifies the sort
work files.

Identifies the
CSIPARM file,
which contains
control information
that the PDM
needs.

Holds the number
of records that you
unloaded for each
file.

Holds the auxiliary
information to
define files that are

not in native format.

Use to define the
file you want
unloaded.

Indicates the file
where you want
data from all
unloaded files
written.

For VSE, see SORTWKAn.

If not enough virtual storage is allocated
to sort in place, identify the needed sort
work files (CSI#WKO01, CSI#WKO02, and
CSI#WKO03). Format and space
allocation are identical to standard
SORTWKnn statements as defined in the
appropriate sort manual.

See “Coding the CSIPARM file for
Unload, Load, and Insert Linkpath” on
page 230.

See “Defining the CSU#REC file” on
page 238.

See “Defining the CSUAUX file” on
page 238.

You may code up to 57 primary and 57
related files. File names must be defined
in the SUPRA Directory for the schema
you are unloading.

For VSE, you must code primary
and related files on two separate DLBL
statements. Code each file twice: once
for direct access with the file name (fffffff)
on the DLBL statement and the second
time for sequential access with a Z
before the file name. Truncate to seven
characters (Zffffff).

See “Defining the OUTFILE” on
page 241.

P26-6260-63

Unloading PDM files

|DD or file name

Description

Considerations

PARM

SORTLIB

SORTWKn

SYSIN

SYSIPT

SYSLST

SYSPRINT

SYSOUT

SYSUDUMP

Holds the file control
statements.

Indicates the library
holding the standard
sort program.

Indicates the work
files you want used
in sorting.

Holds the run control
statements.

Holds the run control
and file control
statements.

Indicates the output
file for the printed
listing of all control
statements,
diagnostic
messages, etc.
Indicates the file you

want the standard
sort program to use.

Indicates a dump file.

See “Coding file control statements” on
page 254. For VSE, see discussion
on SYSIPT.

This file has no counterpart in VSE.

For OS/390, see discussion on
CSI#WKnn.

If insufficient virtual storage is allocated
to sort in place, identify the required
standard sort work files (SORTWK1,
SORTWK2, SORTWK3), as defined in
the appropriate sort manual.

See “Coding run control statements” on
page 242. For VSE, see discussion
on SYSIPT.

SYSIPT contains two files, separated by
a /* control statement. The first file, which
contains run control statements, is
discussed in “Coding run control
statements” on page 242. The second
file, which contains file control
statements, is discussed in “Coding file
control statements” on page 254.

Optional.

DBA Utilities User's Guide

237

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

238

2]
m

Defining the CSU#REC file

The Unload function creates the CSU#REC file, which passes the
number of records to the Load function so that you can unload and load
in one job. After the Unload step, the CSU#REC file contains one record
for each file you unloaded.

After the Unload function passes the CSU#REC file, the Load utility reads
it sequentially. Each record holds a four-byte file name and a fullword
binary integer indicating the number of records unloaded for that file. The
Load function does not use the rest of the 80 bytes. The file is fixed block
and has a block size of 800 bytes.

For VSE, its SYS number is SYS021.

Defining the CSUAUX file

In the CSUAUX file, you describe database files as you want them
reloaded, not as they are when unloaded. You must code the files that
you want loaded in Series 80 or converted format. You use the CSUAUX
file to pass the Unload function the additional parameters from the Series
80 or converted files. When you code the CSUAUX file, you must indicate
the format in which you want the files reloaded. For related files, you
must indicate the number of records per cylinder and how full you want
the files when they are reloaded.

While you do not need to code files that you want loaded in native format,
we recommend that you include all your files so that you can set up the
CSUAUKX file once to use with all jobs.

When you code the files, you must code a separate record for each file;
you cannot put more than one file on a record.

You create no problems by including all the files because the PDM
ignores statements for files that are not loaded. For example, if you want
to reload files in native format, all the statements and parameters would
be unnecessary. However, you must include an CSUAUX file in the job
stream even if the file is blank.

The PDM also ighores unnecessary parameters and records. If you
repeat a parameter in a record, the PDM uses the last one. If you repeat
a record for a file, the PDM uses the first one and ignores the others.
However, you cannot code null parameter values. When you leave out
the value, the function does not use the default.

P26-6260-63

Unloading PDM files

You must make the format of the CSUAUX file fixed or fixed blocked and
the logical record length 80 bytes. The function uses only the first 73
bytes and ignores the rest.

You can separate the parameters with any number of blanks or commas.
The parameters are keyword rather than positional; therefore, you do not
need to put them in any particular order.

[COMPATIBILITYO

(B0 O
FILE=fff RCYL =nnnn CYLL =~ OLOAD = (CONVERTED .
Ay ANATIVE E

FILE=ffff
Description
Format

Considerations

Required. Names the file for which you are passing parameters.

4 alphanumeric characters. The first character must be alphabetic.

¢ You must code a separate record in the CSUAUX file for each file
you want to unload. In each record, you must name the file you want
unloaded.

¢ If you do not name the file on a record, the Unload function ignores
all parameters on that record.

RCYL=nnnn

Restriction

Description
Format

Considerations

Required for related files that you want loaded in Series 80 or converted
format.

Indicates the number of records per logical cylinder.

1-16 numeric characters

¢ You must code this parameter for all related files that you do not want
loaded in native format.

¢ As the active records in the Directory or PDM files you are coding
increase or decrease, you may need to change this value. The active
records may change if you are changing them on the new schema.

DBA Utilities User's Guide 239

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

CYLL =

EiE
O0od

Restriction Required for related files that you want loaded in Series 80 or converted
format.

Description Indicates the maximum percent of each logical cylinder that you want
filled with data records during the load function.

Default 80
Options 0-100
Considerations

¢ You must code this parameter for all related files that you do not want
loaded in native format.

¢ As the active records in the Directory or PDM files increase or
decrease, you may need to change this value. The active records
may change if you are changing them on the new schema.

[(COMPATIBILITYO

LOAD = LONVERTED [
ENATIVE H
Description Required. Specifies the format in which you want the file loaded.
Default NATIVE
Options COMPATIBILITY Database files in Series 80 format.

CONVERTED Series 80 database files that have been changed to
the converted format with the File Convert utility or
have previously been loaded in the converted file
format. For further information, refer to the SUPRA
Server PDM and Directory Administration Guide
(OS/390 & VSE), P26-2250.

NATIVE Newly created SUPRA database files, files that used

to be converted, or Series 80 files that have been
changed to a native file format.

240 P26-6260-63

Unloading PDM files

The following example shows how to code the CSUAUX file's statement:

E$BR is a primary file, and E$BI is a related file. You want both loaded in
compatibility format. You want the related file loaded with 10,298 records
per logical cylinder and a cylinder load limit of 85%.

FI LE=E$BI , RCYL=10298, CYLL=85, LOAD=COVPATI BI LI TY
FI LE=E$BR, LOAD=COVPATI BI LI TY

In this example, both the primary file, E$CN, and the related file, ESCM,
are native files. Therefore, you do not need to code the RCYL or CYLL
parameter for the related file. Although it is shown in this example, you do
not need to code LOAD=NATIVE because it is the default.

FI LESE$SCN LOAD=NATI VE
FI LESE$SCM LOAD=NATI VE

Defining the OUTFILE

As indicated in “File definitions for the Unload function” on page 236, the
output file for the Unload function is the OUTFILE in OS/390. In VSE, it is
the OUTPUT file. In VSE, you must code the characteristics of the
OUTPUT file in the run control records. For more information, see
“Coding the RECFORM statement (VSE only)” on page 249.

You use the OUTFILE to hold the records from the files you unload. You
must write the unloaded files to the OUTFILE sequentially whether you
use tape or disk. The OUTFILE becomes the SYSUT1 input file for the
Load function. (In VSE, the OUTPUT file becomes the INPUT file.)
Therefore, you must define the file exactly the same way in the JCL for
the Unload and Load functions.

In your JCL, you must indicate whether you are using a disk or tape unit
and whether the format of the records is fixed or fixed blocked. The latter
is recommended. When you code the logical record length (LRECL), add
at least eight bytes to the largest logical record length of any file you
unloaded. When you code the block size, code it a multiple of the LRECL
parameter.

DBA Utilities User's Guide 241

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Coding run control statements

After you define the SYSIN file in OS/390 or the SYSIPT file in VSE, you
code the run control statements in it. You use the run control statements
to indicate to the Unload function the new schema, environment
description, primary or related files, and sort program to use.

In some statements, you code only one parameter; in others, you code
more than one. In either case, begin each statement in position 1. Some
statements may require more than one record. If they do, start each
statement on a new record (except for SORTNAME and WORK for
VSE). You must code the RELATED: file list before the PRIMARY: file
list, and code each list in ascending sequence by file name.

242 P26-6260-63

Unloading PDM files

Run control statements for the Unload function
The following table gives you a brief description of the statements.

Statement

| Description

|Secti0n

DUMP

NEW-SCHEMA /
NEW-ENVDESC

RELATED:
V-E:
PRIMARY:

S-E:

RECFORM

SORTNAME

WORK

TEST

Indicates whether you want a
storage dump printed when
errors occur.

Indicates the names of the
new schema and environment
description you want used
when the files are reloaded.

Lists the names of the related
files you want unloaded.

Lists the names of the related
files you want unloaded.

Lists the names of the primary
files you want unloaded.

Lists the names of the primary
files you want unloaded.

Defines the characteristics of
the OUTPUT file.

Names the sort program if not
the standard program.

Indicates the number of tape
files or disk extents available
for intermediate sort storage.

Checks and validates all
statements without unloading
the files.

“Coding the DUMP statement”
on page 244

“Coding the
NEW-SCHEMA/NEW-ENVDES
C statement” on page 245

“Coding the RELATED:
statement” on page 247

“Coding the V-E: statement” on
page 248

“Coding the PRIMARY:
statement” on page 248
“Coding the S-E: statement” on
page 249

“Coding the RECFORM
statement (VSE only)” on
page 249

“Coding the SORTNAME
statement” on page 252

“Coding the WORK statement
(VSE only)” on page 253

“Coding the TEST statement”
on page 253

DBA Utilities User's Guide

243

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Coding the DUMP statement

Use the DUMP statement to indicate whether you want a storage dump
printed if Unload encounters errors.

5
o

DUMP

1
2]
OO

[ho
DUMP = D_e

0
0
yesQo

Description

Default

Considerations

244

Optional. Controls printing of a storage dump if Unload encounters errors.

NO

¢ Place this statement first.
¢ If you code DUMP=NO, you receive a return code of 12 if Unload

encounters errors. If you code DUMP=YES, an error results in
abnormal termination with a dump.

P26-6260-63

Unloading PDM files

Coding the NEW-SCHEMA/NEW-ENVDESC statement

If you are unloading and reloading a file without changing the physical
configuration, you should not code NEW-SCHEMA and NEW-ENVDESC
statements. If you omit them, the function uses the descriptions in the
CSIPARM file for both the old and the new environment.

However, if you change the physical configuration, such as by increasing
the number of tracks, you must create the new schema and environment
description. If you change some files and not others, you must still code
NEW-SCHEMA and NEW-ENVDESC statements.

You must create the new schema and environment description in your
Directory files before you unload. To access information it needs from the
new schema and environment description, the Unload function signs on
separately to the PDM. When it actually unloads the files, the function
signs off and then signs back on with the old schema and environment
description.

When you code the new schema and environment description, you must
include the same elements that you will define in the CSIPARM file for
the Load function. In addition, you must code both the NEW-SCHEMA
and NEW-ENVDESC statements.

To unload your PDM files, your CSIPARM file must specify your bootstrap
schema and environment description in the DIRECTORY parameter, and
your schema and environment description in the REALM parameter. For
more information on coordinating the CSIPARM file with the
NEW-SCHEMA and NEW-ENVDESC statements, see “Coding
CSIPARM file and run control statements for PDM files” on page 230.

NEW-SCHEMA=schemaname, NEW-ENVDESC=envdescname

DBA Utilities User's Guide 245

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

NEW-SCHEMA=schemaname
Restriction Required if you change the physical configuration of a file.

Description Conditional. Identifies the schema containing the file definitions you want
used when the files are reloaded.

Format 1-8 alphanumeric characters

NEW-ENVDESC=envdescname
Restriction Required if you change the physical configuration of a file.

Description Conditional. Identifies the environment description containing the file
definitions you want used when the files are reloaded.

Format 1-8 alphanumeric characters

Consideration Calculations of RQLOC values are based on values in the new schema
and new environment description.

246 P26-6260-63

Unloading PDM files

Coding the RELATED: statement

Use the RELATED: statement to list the names of the related files you
want unloaded. If you do not want to unload any related files, omit this
statement.

List the names of the related files in ascending sequence. Code the
RELATED: statement before the PRIMARY: statement.

The V-E: statement, which serves the same purpose as the RELATED:
statement, is supported for compatibility with existing Series 80 and TIS
1.x job streams. You may use the Series 80 V-E: statement in place of
the RELATED: statement. However, use one or the other, not both.

RELATED:rrrrd [rrrr2 ...rrrrn] END.

or

V-E:vvvvl [vvvv2 ...vvvvn] END.

RELATED:rrrrd [rrrr2 ...rrrrn] END.

V-E:vvvvl [vvvv2 ..
Description

Format

Considerations

.vvvvn] END.

Optional. Identifies the related file(s) you want unloaded.

¢ Code RELATED: in positions 1-8 of the first record only, or code V-
E: in positions 1-4.

¢+ You may use up to three records for this statement. If you use more
than one record, begin file names in position 1 of the second and
third records.

¢ Use all 80 positions unless it is the last or only record.

¢ By using up to three records, you may identify up to 57 files.
¢ Unload your PDM files in a separate job from your Directory files.

¢ You must code END. immediately after the last file name to indicate
the end of the control statement.

DBA Utilities User's Guide 247

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Coding the V-E: statement

The V-E: statement serves the same purpose as the RELATED:
statement. It is supported for compatibility with existing Series 80 and TIS
1.x job streams. For the format of the V-E: statement, see the RELATED:
statement, “Coding the RELATED: statement” on page 247.

Coding the PRIMARY: statement

Code the PRIMARY: statement to list the names of the primary files you
want unloaded. If you do not want to unload any primary files, omit this
statement.

List names of primary files in ascending sequence. Code all RELATED:
statements before PRIMARY: statements.

You may use the Series 80 S-E: statement in place of the PRIMARY:
statement. However, use one or the other, not both. The S-E: statement
is supported for compatibility with existing Series 80 and TIS 1.x job
streams.

PRIMARY:ppppl [pppp2 ...ppppn] END.

or

S-EEmmmm1 [mmmm2 ..mmmmn] END.

PRIMARY:ppppl [pppp2 ...ppppn] END.
S-E:mmmml [mmmm2..mmmmn] END.

248

Description
Format

Considerations

Optional. Identifies the primary file(s) you want unloaded.

¢ Code PRIMARY: in positions 1-8 of the first record only, or code S-E:
in positions 1-4.

¢ You can use up to three records. If you use more than one record,
begin file names in position 1 of the second and third records.

¢ Fill all 80 positions unless it is the last or only record.

¢ By using up to three input records, you may identify up to 57 files.
¢ Unload your PDM files in a separate job from your Directory files.

¢ You must code END. immediately after the last file name to indicate
the end of the control statement.

P26-6260-63

Unloading PDM files

Coding the S-E: statement

The S-E: statement is supported for compatibility with existing Series 80
and TIS 1.x job streams. It serves the same purpose as the PRIMARY:
statement. For the format of the S-E: statement, see “Coding the
PRIMARY: statement” on page 248.

Coding the RECFORM statement (VSE only)

Use the RECFORM statement to define the characteristics of the
OUTPUT file. The statement is optional because defaults are supplied for
all parameters. If you code any of the parameters, you must separate
them from any other statement. You can use continuation lines, but you
do not need to use continuation characters. Also, you must code them
exactly like the parameters you code in the RECFORM statement for the
Load utility. For information on the RECFORM statement in the Load
function, see “Coding the RECFORM statement (VSE only)” on

page 311.
0 CFIXBLK [T DISK [™o 0 0 O
[RECFORM = i %DEVICE 0 QFILABL i S
0 IXUNBTE £ OTAPE s B -
0 (1000
OBLKSIZE=
0 ON

O oo1d [(BYS030 11
LRECSIZE = D_D] LDEVADDR = il
0 EDD %YSnnn M

DBA Utilities User's Guide 249

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

L ECFORM = FXBLK
0 Fixuna>

Description Optional. Indicates the format of the records in the file.

Default FIXBLK
Options FIXBLK Fixed-length, blocked records
FIXUNB Fixed-length, unblocked records
DISK O
,DEVICE = DT 0
OTAPEQ

Description Optional. Indicates the device type of the file.

Options DISK Disk device

TAPE Magnetic tape unit

o)
FILABL = .
57D

Restriction Valid only when DEVICE=TAPE.

Description Optional. Indicates whether the tape contains file labels.

Default NO
Options NO Does not contain labels
STD Contains standard labels
000
,BLKSIZE = B]L—B
on o

Description Optional. Indicates the file's block size.

Default 1000

Format Use numeric characters.

Consideration You must code a value that is a multiple of the value in the RECSIZE

parameter.

250 P26-6260-63

Unloading PDM files

(1000
JRECSIZE=[T]

aon o
Description Optional. Indicates the file's record size in bytes.
Default 100
Format Use numeric characters.
Considerations Add the following items to determine the value of this parameter:

S The sum of the lengths of the data elements you want unloaded plus
the length of the control key. Calculate this for each file you unload
and use the largest value.

+4 The length of the file name. Always add this value.

+X where Xis:
+2 The length of the record code. Add this if you are unloading at

least one related file with coded records and are not unloading

any primary files.

+4 The RQLOC. Add this if unloading primary files, regardless of the
above.

+0 If neither of the above.

(5YS030 0O

,DEVADDR = O
YSnnnpj

Description Optional. Indicates the device address (SYS number symbolic unit)
associated with the file.
Default SYS030

Format nnn Must be 3 digits

DBA Utilities User's Guide 251

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Coding the SORTNAME statement

Use the SORTNAME statement to name the sort program you want
used.

DERRCOOOB

SORTNAME = ESORT O

HprognameH]

Description Optional. Identifies the sort program.

Default IERRCO00
SORT
Format 1-8 alphanumeric characters

Consideration For VSE, code the SORTNAME and WORK statements on the
same record. Separate the statements with a comma.

252 P26-6260-63

Unloading PDM files

Coding the WORK statement (VSE only)

Use the WORK statement to indicate the number of tape drives or disk
extents available for intermediate storage during sorts.

WORK =

e
]

Description Optional. Indicates the number of tape drives or disk extents available for
intermediate storage during sorts.

Default 1
Options 1-9

Consideration Code the WORK and SORTNAME statements on the same record.
Separate the statements with a comma.

Coding the TEST statement

Use the TEST statement to indicate whether the Unload function should
validate the run control statements. If you code TEST=YES, the Unload
function opens and closes the SUPRA files, but does not unload them. It
points out any errors in the run control statements, so you can correct
them. To actually unload files, code TEST=NO.

NO O
TEST =
Fest

Description Optional. Indicates whether the Unload utility is to actually unload the files
or just analyze the statements.

Default NO
Options NO The Unload function analyzes the statements and
unloads the files.
YES The Unload function validates all run control statements

without actually unloading the files.

DBA Utilities User's Guide 253

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Coding file control statements

After defining the files and coding the run control statements, you code
file control statements. For OS/390, you must code the file control
statements in the PARM file. For VSE, you must code them in a second
SYSIPT file. You must put the second SYSIPT file directly after the run
control statements and end-of-file record in the first SYSIPT file.

Use the file control statements to define the layout of the output data
record and select and order the data you want unloaded. You code some
of these statements with several parameters while you code others with
only one. You must code some statements with more than one record. In
that case, start each statement on a new record. Code the file name in
positions 1-4, the parameters in positions 5-76, and leave positions 77—
80 blank.

Code the statements for the related files first, and then those for primary
files. For each related file, you may code a LINKPATH statement if you
want, and then you must code an Element List statement. For each
primary file, you must code an Element List statement, and then you may
code a BLANK-LINKS statement if you like.

You must code file control statements for all files that you coded in the
RELATED: and PRIMARY: run control statements. In addition, you must
code them in the same order.

File control statements for the Unload function

The following table gives a brief description of each statement you need
to code.

Statement Description Reference

LINKPATH Indicates the linkpath you want “Coding the LINKPATH
used as an access linkpath to statement” on page 255
unload a related file.

Element list Indicates the data elements you “Coding the Element List
want unloaded from a particular statement” on page 257
file.

BLANK-LINKS Indicates the primary file linkpaths ~ “Coding the BLANK-LINKS
you want blanked while unloading statement” on page 263
the primary file.

254 P26-6260-63

Unloading PDM files

Coding the LINKPATH statement

Use the LINKPATH statement to identify the access linkpath for
unloading a related file. You can unload a file faster if you use the primary
access linkpath because it is clustered for faster performance. The other
linkpaths are not clustered. When you identify the access linkpath, you
must name the same one in both the Unload and the Load functions.

You must select an access linkpath and its associated key from the base
portion of a record. If you select coded records, you cannot use a linkpath
in the redefined portion. You must code a LINKPATH statement
immediately before the Element List statement with which it is
associated.

If you want to unload several, but not all, coded records, code several
LINKPATH statements and several element lists. The following sequence
illustrates how to do this:

TVO1LI NKPATH=ppppLKxx

TVO1ALL. END

TVO2LI NKPATH=ppppLKxx, RC=01

TVO02TVO2CODETVO2KEY! TVO2DATAEND.

TVO2LI NKPATH=ppppLKxx, RC=02

TVO2TVO2CODETVO2KEY! TVO2DATAEND.

[rrrrLINKPATH=ppppLKxx]

0 0
[JPRESERVE = ENW_ %
0 OYES
[[RC=yy]

rrrrLINKPATH=ppppLKXxx

Description

Format

Optional. Identifies the access linkpath you want used to unload a related
file.

rer 4-character related file name.

pppPPLK XX The linkpath name as coded in the schema.

DBA Utilities User's Guide 255

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

0 [NO
LPRESERVE = [V M
0 O'ES
Description Optional. Indicates whether to preserve the order of the records on the
access linkpath chains.
Default NO
Considerations

¢ If you code PRESERVE=NO, the Unload function uses the standard
sort program. It sorts related file data in ascending sequence by
access control key. (The Unload function sorts primary files in
ascending sequence by RQLOC.)

¢ If you code PRESERVE=YES, the Unload function writes the records
in sequence by the linkpath you code without sorting the records.

¢ Do not code PRESERVE=YES if the related file has integrity
problems. If you do, the Load function determines that duplicate
linkpaths exist and does not load the file.

¢ If chains are broken and you want to preserve the order of the record,
code PRESERVE=NO and use an exit program to control the sorting
sequence.

. In VSE when you code PRESERVE=YES, code the files as
direct access in your JCL. When you code PRESERVE=NO, code
the file as sequential access.

¢ If you code the PRESERVE clause, it must appear on the same line
as the LINKPATH statement.

RC=yy

Restriction Use for coded records only.

Description Optional. Use this parameter to unload only the records with the record
code you supply.

Format 2-character record code as defined in the Directory.
Considerations

¢ If you want to code elements in your element list that are in the
redefined portion of a coded file, use the Version 1 Unload function
for that file. You can use the Version 1 functions for one file and use
the Version 2 functions for the rest of the files.

¢ You must code the statements for the record codes in the same
order as they are defined in the schema.

256 P26-6260-63

Unloading PDM files

Coding the Element List statement

Use the Element List statement to indicate the data elements you want
unloaded from the file. The unloaded data is sequentially written to the
OUTFILE discussed in “Defining the OUTFILE” on page 241. The
formats of primary and related records in the OUTFILE are different when
you supply an element list and when you request all the elements. For an
illustration of the different formats, see the figure at the end of this
section.

Celement, [*FILL =nn element2 *FILL =nn]O
ffff O CEND.
FALL. 0

fff

Description

Format

Required. Identifies the file.

4-character file name as coded in the schema. Code the file name in
positions 1-4.

DBA Utilities User's Guide 257

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

galement, [*FILL =nn element2 *FILL = nn]%
FALL.

258

Description

Format

Considerations

O

Required. Identifies the individual element(s) or all elements (ALL.).

To unload all elements, code ALL. in positions 5-8. For an element list,
use positions 5-76. Positions 77-80 are ignored.

You may specify between one and 100 data elements on a maximum
of 12 records.

For a related file containing coded records, you must supply the
record code as the first element and the control key associated with
the specified linkpath as the second. For noncoded, related records,
supply the control key as the first element. For a primary file, code
the name of the control key as the first element.

To specify particular record codes, you must provide a separate
LINKPATH statement and element list for every record code you are
unloading. When you code each LINKPATH statement, you must
append the RC (record code) parameter. In addition, you must put
the record codes in the same order as in the schema.

Generally, if you need to refer to the redefined portion of coded
records at a level more detailed than rrrrDATA, you can do so only
with the Unload function.

Since you cannot code elements in the redefined portion with the
Version 2 Load function, you must use the Version 1 Unload and
Load functions for that file.

If you still want to refer to the redefined portion in the Version 2
Unload function, you should not leave any of that portion undefined or
define any part with the FILLER element name. In addition, if you are
changing this area for the database you are loading, you must unload
only the data you are reloading or you must use the *FILL=nn
parameter in the Unload record to add space for new elements.

For related files, you must code the Element List statement
immediately after the LINKPATH statement to which it applies.

If you are unloading linkpaths for primary files, the linkpaths must

follow the control key in the element list and you must define them in
the same order as in the schema.

P26-6260-63

DBA Utilities User's Guide

Unloading PDM files

You can add elements, delete them, and increase their size with the
*FILL=nn parameter. However, you cannot decrease their size with
the *FILL=nn parameter. To do that, you must use an exit program at
exit point 20 or 30.

To add an element so it is automatically filled with blanks, do not
code the element name in the Unload function's element list. Code
the element name at the end of the Load function's element list.

You can also add an element so it appears in the data record where
you can modify it with an exit program. To add an element, code the
*FILL=nn parameter in the Unload function's element list where you

want the element to appear in the data record. In the Load's element
list, code the element name where it will map to the same portion of

the data record.

To delete an element, do not unload or load it. That is, leave it out of
the element lists in both functions.

To increase the size of an element, code *FILL=nn in the Unload
function's element list. Replace nn with the number of bytes you want
to add to the element. You can code *FILL=nn before or after the
element name. You can also code it twice, both before and after the
name. In the Load's element list, code just the element name.

Bytes are added in the Unload function and automatically set to
blanks. You can modify these blanks with an exit program in either
the Unload or Load function.

To decrease the size of an element, first code the element name in
the Unload function's element list. Include an exit program at exit
point 20 or 30 to change the size. Code the exit program to shift the
data in the record before it goes to the OUTFILE in the Unload
function. Shift the data you want to keep so it covers the data you
want to delete.

Whenever you change the elements or their size, you must make
similar changes in the schemas you use for the Unload and Load
functions. For an example of how to account for internal schema
changes in your element list, assume you are making the following
changes:

- Deleting ELEMENT3 with eight bytes
- Adding ELEMENTS8 with five bytes
- Adding ELEMENT9 with four bytes

- Decreasing the size of ELEMENT®6 from eight to four bytes by
removing the first four bytes.

- Adding four bytes to the front of ELEMENTS to increase its size
from eight to 12 bytes

259

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

To make these changes, code this element list in the Unload
function:
ELEMELEMCTRLELEMENT2EL EMENT4* FI LL=04ELEVMENT5SELEVENT6
ELEMENT7* FI LL=09

As a result, your data record would look like this:

Fle RQLOC
Name Value ELEMENT2 *FILL=04 ELEMENTS ELEMENT6 ELEMENT? *FILL=09

v v v v v

v
N Y W Y O AT RN ANRREETY RENANMEE
! KR '

ELEMCTRL ELEMENT4

In the Load function, code this element list:

ELEVMELEMCTRLEL EMENT2EL EMENT4EL EMENTSEL EMENT6
ELEMENT7ELEMENT8ELEMENT9

During execution, the data records are passed from the Unload to the
Load function by way of the OUTFILE (or INPUT in VSE). To
decrease the size of ELEMENT®6 by four bytes, you shifted
ELEMENT7, ELEMENTS, and ELEMENT9 to the left four bytes with
an exit program. Thus, this element list maps to the same data
record as follows:

File RQLOC <unused>
Name Value ELEMENT2 ELEMENT5 ELEMENT6 ELEMENT? ELEMENTS8 (caused by shift)

v v v v v v v

v
b oo b b oo oo coselisdw Ll
! I 4 '

ELEMCTRL ELEMENT4 ELEMENT9

As you can see, the number of spaces in the *FILL parameter
actually appear in the data record as spaces. You can modify this
space with exit programs in both the Unload and Load functions.

The newly added ELEMENT8 and ELEMENT9 do not appear
because they are automatically filled with spaces. These spaces do
not show up in the data record because you did not code the
*FILL=09 in the Unload element list to create the necessary spaces.

260 P26-6260-63

Unloading PDM files

¢ Since you cannot exceed the maximum of 12 records per file, the
space required to code each *FILL=nn parameter may reduce the
total number of data elements permitted for the Unload function.

¢ You may expand two adjacent elements with only one *FILL=nn
parameter if the first element is at the end of the field and the second
is at the beginning of the field. To do this, code a value equal to the
total number of spaces required for both elements.

¢ The bytes inserted by the *FILL parameter are set to spaces (X'40")
in the output record. You may need to increase the LRECL
parameter for OUTFILE to account for the extra fields.

¢ If you code ALL. in the Unload function, code it also in the Load
function.

¢ All element names you code must have been previously defined for
the file in the appropriate schema. That is, in the Unload element list,
the elements must be defined in the schema used to unload the old
schema. In the Load element list, the elements must be defined in
the schema used to load the new schema, or if there is no change in
schemas, the old schema.

¢ Itis not necessary to specify the elements in the same order as they
appear in the schema.

¢ When you are unloading and loading to recreate related files and not
coding ALL. in the element list, you must code all control keys
defined for each unloaded file. This includes the control key for the
access linkpath as well as the control keys for all the secondary
linkpaths. Coding of the control keys helps ensure database integrity.
A control key not defined in the new schema is an exception.

¢ You must code END. immediately after the last element to indicate
the end of the control statement.

DBA Utilities User's Guide 261

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

ELEM-LIST = Element list you supply

ffff
: _| Allremaining data elements and LINKPATHS
Reczrrldml?n;)r/m at PR'I:’YII_IAERY I\Q/S\II:SE CONK-EF$OL as coded on the ELEM-LIST control card(s)
NAME (CONTROL-KEY is excluded).
fit All ining d I ded
_ remaining data elements as code
S;ch%&;;dg?lr:;d REIF_ﬁ_'II;ED ACCESS-KEY on the ELEM-LIST control card(s)
NAME (ACCESS-KEY is excluded).
fit All ining d I ded
Coded Related RELATED | RECORD | ACCESS- remaining data elements as code
on the ELEM-LIST control card(s)
Record Format NFAI\IK/IEE CODE KEY (ACCESS-KEY is excluded).
ELEM-LIST = ALL. END.
ffff) All dgta e_Iements exc_luding the
Primary Record PRIMARY RQLOC CONTROL- All LIl_lKPA_THS inthe | root field in the ordfer in which
X order in which they they appear in the internal
Li:lfr;s;\?vr:t'l;ile > FILE VALUE KEY appear in the internal record control card(s)
P NAME record (CONTROL-KEY excluded).
ffff
Primary Record > PRIMARY RQLOC CONTROL- All data elements excluding the root field in the order
} in which they appear in the internal record
FOLTna;p“;'ILhS"”t NﬂkAEE VALUE KEY (CONTROL-KEY excluded).
ffff
Standard Related > RELATED ACCESS-KEY All data elements in the order in which
they appear in the internal record
Record Format NﬂkAEE (ACCESS-KEY excluded).
ffff
Coded Related > RELATED | RECORD | ACCESS- All data elements in the order in which they appear
in the internal record
Record Format N';I\II;/IEE CODE KEY (RECORD CODE and ACCESS-KEY excluded).

262

P26-6260-63

Unloading PDM files

Coding the BLANK-LINKS statement

Use the BLANK-LINKS statement to identify the linkpaths you want
cleared while unloading the primary file. The linkpaths are set to blanks
on the Unload output file (OUTFILE), but not on the primary file from
which they were unloaded.

pPPPBLANK-LINKS=LKxx1 [LKxX2 ...LKxxn JEND.

PPPPBLANK-LINKS=LKxx1 [LKxx2 ...LKxxn] END.

Description Optional. Identifies the primary file (pppp) containing the linkpaths (LKxx)
you want blanked.

Format ppPPp 4 alphanumeric character primary file name

XX

Considerations
¢

DBA Utilities User's Guide

2 alphanumeric linkpath identifier

You must code the same primary file (pppp) that you coded in the
Element List statement immediately before this statement.

You can code a maximum of 14 linkpaths (LKxx) on this statement.
Code only one statement per file.

When the Load function reloads the file, it inserts valid linkpath data
into all linkpaths for which there is link data. If there is no link data,
that linkpath chain is empty.

You code the BLANK-LINKS statement for a linkpath depending on
whether the related file to which it is connected is unloaded and
loaded at the same time as its primary file. If the related file is loaded,
code its linkpath to be blanked. If the related file is not loaded, do not
code its linkpath to be blanked.

If you incorrectly code a linkpath to be blanked, the valid chain
information is deleted. It will appear that there are no related file
records connected to that primary file. Since your database is
corrupted, you will have to execute the Unload and Load functions
correctly to recreate the chain information.

If you neglect to code a linkpath to be blanked, it retains its current
chain information. Because the information is no longer valid, your
database will be corrupt. To clear and recreate the chain information,
you must execute the Unload and Load functions correctly.

You must code END. immediately after the last linkpath to indicate
the end of the control statement.

263

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Unloading Directory files

264

Unload the Directory files in a separate job from your PDM files. When
you unload Directory files, you must define the same files as you did to
unload PDM files. For directions, see “Defining files” on page 235. When
you unload the related files, always code PRESERVE=YES to preserve
the order of the records.

While you need run control and file control statements, you do not need
to code them. The run control statements are provided in the data
member, CSUSUNLD. The file control statements are in data member,
CSUPUNLD. After installation is complete, you may alter only the NEW-
SCHEMA and NEW-ENVDESC statements in CSUSUNLD. You cannot
alter any statements in CSUPUNLD.

In your CSIPARM file, code the bootstrap schema and environment
description. If you code NEW-SCHEMA and NEW-ENVDESC
statements, you must code the bootstrap schema and environment
description in the REALM parameter of your CSIPARM file. In that case,
do not code the DIRECTORY parameter. “Coding CSIPARM file and run
control statements for directory files” on page 231 shows how to
coordinate coding your CSIPARM file with your run control statements.

P26-6260-63

Using exit points

Using exit points

There are three exit points in the Unload Function:

¢ At exit point 10 (entry point USERE10), your program can add sort
parameters to those the Unload function automatically uses: the file
name and a control key. During normal operation, the Unload
function automatically sorts the records in a file according to the file
name and a control key. The function can sort according to any
additional record fields you code.

¢ At exit point 20 (entry point USEREZ20), your program can modify or
delete records before the Unload function sorts them. Your program
cannot add records at this point.

¢ At exit point 30 (entry point USERE30), you can modify or delete
records after the Unload function sorts them. You can also add
records in sequence with those you are unloading.

The following figure illustrates the exit points in the Unload function where
the function can access each of the exit programs. When you take the
exits, the Unload function automatically passes control to your exit
program at the proper point in the processing cycle. After your exit has
executed, control automatically returns to the Unload function.

To use your exit programs, you must relinkedit the Unload function with
the linkdeck, CSUULKUN. Include in the Linkage Editor input the exit
module(s) containing the entry points you want to use: USERE10,
USEREZ20, and/or USERE30. Do this by adding INCLUDE control
statements after the INCLUDE statement for module CSUUMRND in the
CSUULKUN linkdeck Cincom has supplied.

The name of your exit program must be a CSECT name or entry point in
your program. While you must write your program for exit point 10 in
Assembler, you may write programs for the other two in either COBOL or
Assembler. Assembler language examples for all three exit points and
COBOL examples for exit points 20 and 30 are provided.

DBA Utilities User's Guide 265

266

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

SUPRA
Files

More
Files to be
Unloaded

yes
Validate Control Record Images,
Statements, Diagnostics,
Build Sort Etc.
Statements \/\
yes USERE10
Program
no g [
Extract and
Format
Records
yes USEREZ20
Program
no g |
Sort
Phase
yes USERE30
Program
no g [
Write
Output

&

Exit Points

P26-6260-63

Using exit points

Using exit point 10

At exit point 10 (USERE10), you can code additional fields to use as sort
parameters. The Unload function sorts records according to file name
and then control key. For a primary file, there is no need to sort by any
additional fields because the control keys are unigue. Sorting by other
fields does not change the order of the records.

However, for a related file, you may continue sorting by another field.
When the Unload function sorts related records by control key, it groups
together all records in a chain on the access linkpath. If you sort by other
fields, you can order the groups of records within the same control key to
control the order of the records on the chain.

Whether you code additional sort parameters or not, the Unload function
builds a SORT statement after validating the run control and file control
statements. Before reading the records from each file, it checks to see
whether you have included a program for exit point 10.

If so, the Unload function sets up register 1 with the address of a 3-word
parameter list. In the first word, it puts the address of the first character of
the SORT statement. In the second word, it puts the address of the last
character of the SORT statement. In the third word, it puts the address of
a 4-character field with the name of the file you are unloading. More
information on the registers is in “Using registers” on page 269.

The Unload function passes its SORT statement to your program when it
passes control to it, that is, once for each file you unload. If your exit
program will modify the SORT statement, it must first move the statement
to a work area large enough to hold it plus your additional sort
parameters.

When your program builds a new SORT statement, it must retain the file
name and control key used by the Unload function. When you add sort
parameters, you must code them according to the restrictions in the
appropriate sort manual.

After your exit program has built the new SORT statement, it must
change the first two full words pointed to by register 1 so that they point to
the first and last characters of the new SORT statement. When your
program is finished, it returns control to the Unload function through
register 14.

DBA Utilities User's Guide 267

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

268

The following figure shows the steps that your exit program must take.

If you coded PRESERVE=YES in the LINKPATH statement for a file, the
Unload function does not call your exit program for that file; it passes the
SORT statement it generated to the SORT program unchanged. To
preserve the order of the records on the linkpath, the Unload function
writes the records in sequence without sorting them.

Save Registers

I
Move SORT Statement

I
Modify SORT Statement
[
Modify Addresses
[

Restore Addresses

Return Control
to the Unload

P26-6260-63

Using exit points

Using registers

When the Unload function calls your program at exit point 10, these four
registers contain the following information. When your exit program
returns control to the Unload function, it must restore all 16 registers to
their contents at entry.

Register Function

R1 Address of a 3-word parameter list. The first word
contains the address of the first character of the SORT
statement. The second word contains the address of
the last character of the SORT statement. The third
word contains the address of the four-character field
with the file name.

R13 Address of a standard 72-byte save area. In this area,
your exit program saves the contents of the registers
when it enters. When it exits, your program restores
them from this area.

R14 Return address. Your exit program returns control to the
Unload function at this address.

R15 Address of entry point USERE10.

DBA Utilities User's Guide 269

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Retaining values in the SORT statement

You need to retain the values in the SORT statement that the Unload
function generates, so you can include them in the new SORT statement
that your program generates. The Unload function generates them in the
following format:

BSORT FIELDS=(1,xxxxx,CH,A,yyyyy,zzzzz,CH,A),SIZE=Evvvvvvvi

SORT FIELDS=(1,xxxxx,CH,A yyyyy,zzzzz,CH,A), WORK=n

XXXXX
Description Represents a 5-byte numeric field indicating the length of the first sort
parameter. This sort parameter consists of the file name for related files
and the file name plus the RQLOC value for primary files.
yyyyy
Description Represents a 5-byte field indicating the position of the second sort
parameter within the unloaded record. This sort parameter is the linkpath
control key.
72777
Description Represents a 5-byte numeric field indicating the length of the second sort
parameter.
VVVVVVV
Description Represents a 7-byte numeric field indicating the estimated number of
records to be sorted.
n
Description Represents a 1-byte numeric field defining the number of work files
available to the sort program.
For a complete description of the sort program and the sort statement,
refer to your sort manual. Also, see the examples in “Sample programs
for exit point 10” on page 271.
270 P26-6260-63

Using exit points

Sample programs for exit point 10

Two examples show how to use a program at exit point 10 to sort
records. The Unload function sorts only on the key field. If you want to
sort by another field as well, you can insert a program here. The first
example shows a specific solution in Assembler for the sample problem
given below. After the specific solution is a generalized program that you
can use for the sample problem or any similar one. All you need to do in
the generalized program is substitute your own values (file names, etc.)
in the appropriate places.

The following problem is the basis for the two examples:

Assume you wish to unload a related file which, when unloaded, has
records in the OUTPUT file in the following format:

e

FILE NAME KEY DATE DATA
(4 bytes) (6 bytes) (5 bytes) (n bytes)

Also assume you want to keep the records in sequence by key and date.

DBA Utilities User's Guide 271

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

272

Record sequence by Unload SORT parameters and extended SORT
parameters provided by program at exit point 10. Since the Unload
function sorts only on the key, you may use a program at exit point 10 to
code the date field as an additional sort field as shown in the following
figure.

KEY3

DATES

KEY3

DATE2

KEY3

DATE1

KEY2

DATES

KEY2

DATE2

KEY2

DATE1

KEY1

DATES

KEY1

DATE2

KEY1

DATE1

Control-
key
field

Date
field

Data
field

Records are in sequence
by control-key and by

date within control-key.

No linkpaths are shown

in the records because the
Unload function does not
unload linkpaths when
unloading records.

P26-6260-63

Using exit points

The following is an Assembler program for exit point 10 to run in

0S/390:
USERE10 CSECT
USI NG * R15
STM R14, R12, 12(R13)
L R2, 0(, R1)
*
M/C SRTSTMI(43), 0(R2)
*
MC SRTSI ZE(16) , 43(R2)
LA R2, SRTSTMT
ST R2, O(R1)
*
LA R2, ESRTSTMT
ST Rz, 4(, R1)
*
LM R14, R12, 12(R13)
BR R14
SRTSTMI DC C SORT FlI ELDS='
DC C (1, xxxxx, CH A’
DC C yyyyy, zzzzz, CH A
MYSRT DC C,11,5 CH A
SRTSI ZE DC C), Sl ZE=Evvvvvvy'
ESRTSTMI DC c
END

DBA Utilities User's Guide

Entry point.

R15 will be the base register.
Save Unl oad's registers.

Pick up starting address of SORT
statenment.

Move the first 43 characters of
the old SORT statenent to

wor k ar ea.

Move estinmated total number of
records to be sorted to SRTSI ZE.
Start of SORT statenent.

Store new start of SORT
statement in first word of *
paraneter list.

End of SORT statenent.

Store new end of SORT st at enent
in second word of paraneter *
list.

Restore Unload's registers.
Return to Unl oad.

Area for old SORT paraneters.

Addi tional SORT paraneters.

End of new SORT st atenent.

273

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

The following is a program for exit point 10 written for VSE:

USERE10 CSECT
USI NG
STM
L

wC

wC

LA

ST

LA

ST

SRTSTMI

MYSRT
SRTWORK

BEEEE8%=

m
Z
O

274

* RI5
R14, R12, 12(R13)
R2, 0(, R1)

SRTSTMT(42) , O(R2)

SRTWORK(9) , 42(R2)

R2, SRTSTMI
R2,0(, R1)

R2, ESRTSTMI
R2, 4(, R1)

R14, R12, 12(R13)
R14

C SORT Fl ELDS='

C (1, xxxxx, CH A"

C yyyyy,zzzzz, CH A

C,11,5,CH A
C), WORK=n'
&l

Entry point.

R15 will be the base register.
Save Unl oad's register.

Pick up starting address of SORT
st at enent .

Move the first 42 characters of
the old SORT statenent to

wor k ar ea.

Move nunber of avail abl e work
files to work area.

Start of SORT statenent.

Store new start of SORT
statenment in first word of
paraneter |ist.

End of SORT statenent.

Store new end of SORT statenent
in second word of paraneter
list.

Restore Unl oad's registers.
Return to Unl oad.

Area for old SORT paraneters.

Addi ti onal SORT paraneters.
ESRTSTMI
End of new SORT statenent.

P26-6260-63

Using exit points

The following is a generalized program written for OS/390 and VSE:

You need to code and link this program only once for the environment
where you want to execute it. In this example, a load module containing
additional sort fields was created for each file where you want to use
additional sort fields. The program for exit point 10 searches a table for
the file currently being processed. If found, it loads the module
corresponding to that file. It then builds the SORT statement in the
loaded module by adding the segments of the original SORT statement
to the additional sort fields. The program returns pointers to the beginning
and end of this new SORT statement.

USERE10 CSECT
ST™M
LR

USI NG
ST

LM

The follow ng code is

EE R

LA

*

LA
LOOP LA
CLC

BE
BCT

RETURN LM
BR

R14, R12, 12(R13)
R12, R15
USERE10, R12

RL, SAVEL

R2, R4, O(R1)

a sinple table search:

RL1, TABLE- 4

R6, (TABEND- TABLE) / 4
RL1, 4(, RL1)

0(4, R4), O(RL1)

EXI TN
R6, LOOP

R14, R12, 12(R13)
R14

Entry point.

Save Unl oad's registers.

Load Base register.

R12 will be the base register.
Save regi ster RI1.

Load the registers with
paraneters - R2 contains the
starting address of the SORT
statement. R3 contains ending
address of SORT statenent, and
R4 contains address of file nane.

Poi nt R11 one entry short of
first entry in table.

Pl ace number of entries in table*
in R6.

Increment R11 to point to next *
entry in table.

Conpare table entry with file
nane supplied as SORT paraneter.
Branch if file name is in table.
Conti nue searching table unless *
searched entire table.

Restore Unload's registers.
Return control to Unl oad.

The following code constructs a module name:

EXITN DS

EE

OH

This routine executes only when
the table of file nanes
contains a match agai nst the
file nane passed as the third

i nput paraneter.

At this point, the code for OS/390 and VSE differs.

DBA Utilities User's Guide

275

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

*

EE R

TABLE

TABEND

MODPRFX
MODEND
*

SAVE1

276

0S/390 Environments

wcC MODPRFX, 0(R4) R4 points to the third input
paraneter (SUPRA file nane).
This instruction builds a string
of the form ffffUS10.

LOAD EPL OC=MODNANME The | oad nmodul e, whose
8-character name is now
found at MODNAME, is |oaded into
virtual storage and its address
is returned in RO.

LR R1, RO Regi ster 1 now contains the *
address of the first byte of
nodul e ffffnUS10.

The following instructions move additional sort field definitions into the
original SORT statement for the file.

LM R4, R5, O(R1) Pick up start and end addresses
of new SORT statenent.

wC 0(43,R4),0(R2) Move original sort fields.

wcC 0(16, R5), 43(R2) Move original size paraneter.

L R1, SAVEL Restore original register 1.

LA R5, 16(, R5) Bunp to end of SORT.

ST™M R4, R5, O(R1) Store addresses of nodified SORT
statement in SORT paraneter |ist.

B RETURN Branch to RETURN.

The following table requires one entry for each file requiring additional
parameters in the SORT statement:

DS OF Header | abel .
DC Cffffl Appropriate nunber of four-
DC cCffff2 character file nanes.
DC Cffffn'
iDC C END."' Code this only if you code no
file nane.
EQU * End of the above list.
The following area contains the constructed module name passed as the
parameter to the load module:
DS 0D
DC CL4' ffff’ File nane noved fromtable.
DC CL4' Us10' Any four characters you choose
as a comon ending for the
| oaded nodul e nanes.
DS F Area to save original paraneter
poi nter.
END

P26-6260-63

Using exit points

The following code illustrates a sample of a module loaded by the
preceding program. You must replace ffffn with the name of a file for
which you want to add a sort field. You must also code the same file
name in the table at label TABLE in the preceding program. You can
code any valid sort parameters at label YOURSORT. You can code as
many of these modules as you need.

ffffnUS10

SRTBEG
YOURSORT
*

SRTEND DC

CSECT

A(SRTBEG)
A(SRTEND)

CL43"
C,11,5 CH A

CLie" '

Use 4-character file nane.
Requi red as shown.

Requi red as shown.

Requi red as shown.

Addi tional SORT paraneters.

The date starts 11 bytes into *
the record and is 5 bytes |ong.
Requi red as shown.

The following routine constructs a phase name:

VSE Environments

wC

LA
LA
LCAD

MODPRFX, 0(R4)

RL, MODNAVE
RO, MODADDR
(1), (0)

R4 points to the third input
paraneter (SUPRA file nane).
Builds a string of the form
ffffUSL0.

The | oad phase, whose
8-character name is now

found at MODNAME, is |oaded into
virtual storage and its address *
is returned in Rl; that is,

regi ster 1 now contains the *
address of the first byte of
phase ffffnUS10.

The following instructions override the default Unload parameters with
those specified by the CSECT associated with the file.

LM

AR
AR
mC
mC

LA
ST™M

DBA Utilities User's Guide

R4, R5, O(R1)

R4, RL
RS, RL

0(42, R4), O(R2)
0(9, R5) , 42(R2)
RL, SAVEL

RS, 9(, R5)

R4, R5, O(R1)

RETURN

Pi ck up unrelocated start and
end addresses of new SORT

st at enent .

Rel ocat e ADCONs.

Move original sort fields.

Move original work paraneter.
Restore original register 1.

Bunp to end of SORT.

Store addresses of nodified SORT *
statement in SORT paraneter |ist.
Branch to RETURN.

277

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

TABLE
TABENT

TABEND

MODPRFX
MODEND
*

SAVE1
MODADDR

ffffnUS10

SRTBEG
YOURSORT

*

SRTEND

278

888 88

g

883

DS
DS
END

BEEE

78

The following table requires one entry for each file requiring additional
parameters in the SORT statement:

OF
OF

Cffff1
Cffff2
Cffffn

C END."'

Header | abel .

To supply appropriate inplied *
Il ength of entry for searching.
Appropriate nunber of four-
character file nanes.

Code this only if you code no *
file name.
End of the above list.

The following area contains the constructed phase name passed as the

parameter to the load module:

0D
CL4 ffff'
CL4' Us10'

oD
CLnnn

Fil e nane noved fromtable.

Any four characters you choose
as a comon ending for the

| oaded phase nanes.

Area to save original paraneter
poi nter.

Where nnn is the size of the

| argest program | oaded.

The following code illustrates a sample of a phase loaded by the
preceding program. You must replace ffffn with the name of a file for
which you want to add a sort field. You must also code the same file
name in the table at label TABLE in the preceding program. You can
code any valid sort parameters at label YOURSORT to satisfy your
requirements. You can code as many of these phases as you need. This

phase must be link edited at +0.

CSECT
A(SRTBEG)

A(SRTEND)
cL42'
C,11,5, CH A

CL9'

Use 4-character file name.
Requi red as shown.

Requi red as shown.

Requi red as shown.

Addi ti onal SORT paraneters.
The date starts 11 bytes into
the record and is 5 bytes |ong.
Requi red as shown.

P26-6260-63

Using exit points

Using exit point 20

At exit point 20 (USEREZ20), you can modify or delete a record before
sorting it. The figure in “Using exit points” on page 265 shows the point
where the Unload function checks to see whether you have included a
program for exit point 20. This point is after the function extracts and
formats a record from the file and before it passes the record to the
SORT program.

If you have included a program, the Unload function loads register 15
with the starting address of your program. At the same time, it loads
register 1 with the address of the record you want written to the output
file. The Unload function then passes control to your program once for
each record it unloads. If it is unloading related files and you coded
PRESERVE=YES, the function does not access your exit program and
preserves the order of the records on the linkpath.

The following figure shows the steps that your exit program takes. It
evaluates each record according to your criteria and either deletes the
record or passes it on for further processing.

Save Registers

no Record yes

to be
W
y y
Modify Set

Return
Record Code

I
Set
Return
Code
I

Restore
Registers

I
Return
Control to
Unload

Processing at Exit Point 20

DBA Utilities User's Guide 279

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

If you want to delete the record, your program should place a return code
of 4 in register 15 (or in 'RETURN-CODE' in COBOL). This returns
control to the Unload function and deletes the record. After your program
processes the last record, it returns control to the function which then
passes control to the SORT program.

If you do not want the record deleted, your program can modify it. After
modification, your program should place a return code of 0 in register 15
(or 'RETURN-CODE' in COBOL) and return control to the Unload
function. The Unload function then passes the record on to the SORT
program.

If you have defined or expanded fields with the *FILL=nn parameter in the
element list, you may initialize them in your program at either exit point 20
or 30. For examples of programs you can insert at exit point 20, see
“Sample programs for exit point 20” on page 281.

Using registers

When the Unload function calls your program at exit point 20, these four
registers contain the following information. When your exit program
returns to the Unload function, it must restore all registers, except 15, to
their contents at entry. Register 15 must contain a return code, as shown
below.

Register Function

R1 Address of a fullword containing the address of the
record you want sorted.
R13 Address of a standard 72-byte save area. In this area,

your program saves the contents of the registers as
they were when it gained control. When it returns
control, it uses the contents in this area to restore them.

R14 Return address. Your exit returns control to the Unload
function at this address.

R15 At entry, address of entry point USEREZ20. At exit, this
register contains one of the following return codes:

0 Directs the Unload function to pass the record to
SORT.

4 Directs the Unload function not to pass the record to
the SORT program.

280 P26-6260-63

Using exit points

Sample programs for exit point 20

Since exit points 10 and 20 are frequently used together, this example
presents a problem illustrating the use of both exits. It shows example
programs in both Assembler and COBOL languages for exit point 20.
Also shown are modifications to the programs for exit point 10. These
modifications make the exit point 10 programs applicable to the example
shown below.

Assume you wish to unload a related file which, when unloaded, has
records in the OUTPUT file in the following format:

e

FILE NAME RECORD CODE KEY DATA
(4 bytes) (2 bytes) (5 bytes) (n bytes)

You want to keep the records in a specific sequence within the key. You
want the record codes in the following order: HR, DT, CR, and DB. These
are the only record codes in the file. As before, you use the program at
exit point 10 to extend the sort parameter so it includes the record code.
Since the record codes are not in alphabetical order, this program at exit
point 20 modifies the record codes into a collating sequence. Exit point
20 changes HR to 01, DT to 02, CR to 03, and DB to 04. After sorting,
exit point 30 restores the record codes to their original values. “Record
code modification by exit programs illustrating the use of exit points 20
and 30" on page 284 illustrates the changes to the record codes.
“Record sequence before and after being sorted with record codes
modified at exit points 20 and 30" on page 285 shows the sequence of
records in the file before and after the sort.

The following are the modifications to the programs at exit point 10:

The coding is the same as shown in the Assembler program, except that
the MYSRT statement is changed to read as follows:

MYSRT DC C,5 2 CHA

DBA Utilities User's Guide 281

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

The following are the modifications to the generalized program:

The coding is the same as shown in the generalized routine, except that
the YOURSORT statement is changed to read as follows:

YOURSORT DC C,52,CHA
You can use the programs at exit point 10 to add the record code to the
sort fields already generated by the Unload function. Since the record
code is located in the fifth and sixth positions of the unloaded records,

you can change the exit point 10 programs as described below. The
changes are the same for both OS/390 and VSE.

If you use the Assembler exit program, make the following change:
MYSRT DC C,52,CHA

If you use the generalized exit program, make the following change:
YOURSORT DC C,52,CHA

The following is an Assembler program for exit point 20:

USERE20 CSECT Entry point.

USI NG * R15 R15 will be the base register.

STM R14, R12, 12(R13) Save Unl oad's registers.

L R1, O(, R1) Pi ck up address of record from
* Unl oad.

LA R2, TABLE Address of start of conversion
* tabl e.
USERE201 DS OH

CLC 0(4, R2), HEXFF End of table?

BE USERE202 If invalid record code, delete
* record.

CLC 0(,R2), 4(R1) Does table nmatch record code in *

record?

BE USERE203 If match, change to internal
* code.

LA R2, 4(, R2) Check next code.

BUSERE201 Try next entry in table.
USERE202 DS OH No match, delete record.

LM R14, R12, 12(R13) Restore Unload's registers.

LA R15, 4 Set return code to delete record.

BR R14 Ret ur n.
USERE203 DS OH Mat ch, sort record.

MmC 4(2,R1), 2(R2) Change record code to internal
* code.

LM R14, R12, 12(R13) Restore Unload's registers.

SR R15, R15 Set return to sort record.

BR R14 Return control to Unl oad.
TABLE DC C HRO1' Tabl e of record code val ues.

DC C D102’

DC C CRO3'

DC C DB04'
HEXFF DC XL4' FFFFFFFF

m
Z
O

282 P26-6260-63

Using exit points

The following is a COBOL program for exit point 20:

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. USERE20.
DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.
01 TABLE.

02 FILLER PI C X(4) VALUE ' HRO1'.
02 FILLER PI C X(4) VALUE 'DTO02'.
02 FILLER PI C X(4) VALUE ' CRO3'.
02 FILLER PI C X(4) VALUE ' DB04'.

01 TABS REDEFI NES TABLE.
02 SEARCH TAB OCCURS 4 TI MES
| NDEXED BY TAB- 1.
03 TAB-ARG PIC XX
03 TAB-PLUG PIC XX

LI NKAGE SECTI ON.
01 RECORD- LAYOUT.
02 FILE- NAVE PI C XXXX.
02 RECORD- CODE Pl C XX.
02 KEY PIC X(5).

02 BALANCE- OF- DATA PI C X(90).

PROCEDURE Dl VI SI ON.
USI NG RECORD- LAYQUT.

BEG N.
SET TAB-1 TO 1.
SEARCH SEARCH TAB
AT END GO TO WRONGO
WHEN RECORD- CODE EQUALS
TAB- ARG(TAB- 1)
GO TO FOUNDEM
VIRONGO.
MOVE 4 TO RETURN- CODE.
GOBACK.
FOUNDEM
MOVE TAB- PLUG(TAB-1) TO
RECORD- CODE.
MOVE 0 TO RETURN- CODE.
GOBACK.

DBA Utilities User's Guide

Record code conversion table.

Four entries are to be redefined.
Val ue to represent record code

in sort.

Record passed to exit from
Unl oad.

Corresponds to Unload el ement |ist.

Start at begi nning of table.

Search table for matching record code.

Go to WRONGO i f no mat ch.
Go to FOUNDEM i f a match is found.

Set return code to delete record.
Ret ur n.

Change record code to val ue used for sort.

Set return code to sort this record.
Ret ur n.

283

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Record code modification by exit programs illustrating the

use of exit points 20 and 30

Content of a record prior to modification using exit 20

Record Control- Data
Code key fields
field field

Record codes are HR, DT, CR,
HR A and DB. (Actual records will not
be in sequence, as shown here.)
The control-key may be any valid
control-key value, e.g., A, B, C,
DT A etc. Any of the record codes may
appear with any control-key. The
control-key value A is used here
CR A for illustrative purposes only.

DB A

Content of arecord after modification using exit 20

Record Control- Data
Code key fields
field field

Record codes are changed from
01 A HR to 01; DT to 02; CR to 03;
and DB to 04 for sorting. These
are the values to be used by the
02 A SORT program to sort the
records into ascending collating
sequence by record code and
control-key. Original record code

03 A values will be restored after all
records in the file have been
sorted.

04 A

Content of a record after modification usina exit 30

Record Control- Data
Code key fields
field field
HR A Record codes have been restored
to their original values. Record
codes have been restored from
01to HR; 02 to DT, 03 to CR;
DT A and 04 to DB.
CR A
DB A

284

P26-6260-63

Using exit points

Record sequence before and after being sorted with record

codes modified at exit points 20 and 30

DBA Utilities User's Guide

Record sequence prior to sort

CR B
DT A
DB B
HR A
HR B
DB A
CR A
DT B

Record Control- Data

Code key fields

field field

Record sequence after sort

DB B
CR B
DT B
HR B
DB A
CR A
DT A
HR A

Record Control- Data

Code key fields

field field

Records are in random
order prior to being sorted

Record codes are modified
by Exit 20 prior to being
sorted and restored to their
original values by Exit 30
after being sorted.

Records are now in
sequence by record code
and control-key. Desired
record code sequence is
HR, DT, CR, and DB, as
shwon here.

285

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

286

Using exit point 30

At exit point 30 (USERE30), you can delete, modify, or add records in the
output file. The figure in “Using exit points” on page 265 shows the point
where the Unload function checks to see if you have included a program
for exit point 30. It is after the sort phase, but before the function writes
the unloaded records to the output file.

If you have included a program, the Unload function loads register 15
with the starting address of your program. At the same time, it loads
register 1 with the address of the record you want written to the output
file. The Unload function passes control to your program once for every
record. After your program has processed the last record, it returns
control to the Unload function.

The figure at the end of this section shows the steps that your program
must take. At the beginning of your program, it should save the contents
of the Unload registers by moving them to a 72-byte save area. Its
beginning address is in register 13.

Next, your program evaluates each record according to criteria you
define. Then it adds, deletes, or modifies the record and has the Unload
function write it to the output file. Your program tells the Unload function
what to do with each record by placing a return code in register 15 (or in
'RETURN-CODE' in COBOL). After it sets the return code, it returns
control to the function, which either deletes the record or writes it to the
output file.

If you are adding records, you must have previously sorted them
according to the same criteria, put them in the same element list format,
and put them in the same order as the rest of the records. When the
Unload function adds a record, it inserts it in front of the record it just
passed to your exit program. After your program adds the record, the
Unload function automatically makes the original record it just passed to
your program available again.

If you have defined or expanded fields with the *FILL=nn parameter in the
element list, you may initialize them with your program at either exit point
20 or 30.

The Unload function calls this exit whether you have coded
PRESERVE=YES or PRESERVE=NO.

P26-6260-63

Using exit points

Save
Registers

yes | SetReturn
Codeto 8
Modify Set Return
Record Codeto O

.| SetReturn
Code to 4

Set Return
Codeto 0

!

Restore
Registers

!

Return
Control to
Unload

Processing at Exit Point 30

DBA Utilities User's Guide 287

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

288

Using registers

When the Unload function calls your program at exit point 30, these four
registers contain the following information. When your exit program
returns to the Unload function, it must restore all registers, except 15, to
their contents at entry. Register 15 must contain a return code, as shown
below.

Register Function

R1 Address of a fullword containing the address of the
record you want written.
R13 Address of a standard 72-byte save area. In this area,

your exit program saves the contents of the registers at
entry and restores them from this area at exit.

R14 Return address. Your exit program returns control to the
Unload function at this address.

R15 At entry, address of entry point USEREZ20. At exit, this
register contains one of the following return codes:

0 Directs the Unload function to write the record to the
output file.

4 Directs the Unload function to add the record and
write it to the output file.

8 Directs the Unload function to delete the record.

When the exit program returns a code of 4, it directs the Unload function
to add a record. When the Unload function adds records, it must insert
them in front of the record it is processing. When the Unload function
accesses your program the next time, it automatically makes the original
record available again.

P26-6260-63

Using exit points

The example below illustrates this process. In this case, you want to add
Record 8. It must go before Record 10 and after Record 6. The second
time the Unload function accesses your program, it passes Record 10 to
your program. When your program returns control, it directs the Unload
function to add Record 8. After the Unload function writes Record 8 to the
output file, it again passes Record 10 to your program for deletion or
moadification. This time, your program directs Unload to write it to the

output file.
Access |Passed Process Return code
1% Record 6 WRITE RECORD 8 0
2" Record 10 ADD RECORD 8 4
3¢ Record 10 ~ WRITE RECORD 10 0
4" Record 15 WRITE RECORD 15 0

DBA Utilities User's Guide

289

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Sample programs for exit point 30

These Assembler and COBOL programs for exit point 30 solve the
problem stated in “Sample programs for exit point 10” on page 271 for
exit point 10. This exit program restores the record codes to their original
values.

“Record sequence before and after being sorted with record codes
modified at exit points 20 and 30" on page 285 shows the record
sequence before and after being sorted with record codes modified by
programs for exit points 20 and 30.

The following is an Assembler program:

USERE30 CSECT Entry point.
USING *,R15 R15 will be the base register.
STMR14, R12, 12(R13) Save Unl oad's registers.
L RL1,0(,Rl) Pick up address of record.
LA R2, TABLE Address of start of table.
USERE301 DS OH
CLC 0(4, R2), HEXFF End of table?
BE USERE302 If invalid code, delete record.
CLC 2(4,R2),4(Rl) Does table match code in record?
BE USERE303 If match, change back to record code.
LA R2,4(,R2) Check next code.
B USERE301 Try next entry in table.
USERE302 DS OH No match - delete record.
LM R14, R12, 12(R13) Restore Unl oad's registers.
LA R15,8 Set return code to delete record.
BR R14 Return.
USERE303 DS OH Match, unl oad record.
MC 4(2,R1l),0(R2) Change internal code back to record code.
LM R14, R12, 12(R13) Restore Unl oad's registers.
SR R15, R15 Set return code to unload record.
BR R14 Return.
TABLE DC C HRO1' Tabl e of record code val ues.
DC C DT02'
DC C CR03'
DC C DB04'
HEXFF DC XL4' FFFFFFFF'
END

290 P26-6260-63

Using exit points

The following is a COBOL program for exit point 30:

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. USERESO0.
DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.
01 TABLE.
02 FILLER PIC X(4)
02 FILLER PIC X(4)
02 FILLER PIC X(4)
02 FILLER PIC X(4) VALUE '
01 TABS REDEFI NES TABLE.
02 SEARCH TAB OCCURS 4 TI MES
| NDEXED BY TAB-1.
03 TAB- ARG PI C XX
03 TAB-PLUG PI C XX

VALUE '
VALUE '

LI NKAGE SECTI ON.
01 RECORD- LAYOUT.

02 FILE- NAVE PI C XXXX.

02 RECORD- CODE Pl C XX.

02 KEY PIC X(5).

02 BALANCE- OF- DATA PI C X(90).
PROCEDURE DI VI SI ON

USI NG RECORD- LAYOUT.

BEG N.
SET TAB-1 TO 1.
SEARCH SEARCH TAB
AT END GO TO ALSO- WRONGO
WHEN RECORD- CODE EQUALS
TAB- PLUG(TAB- 1)
GO TO FOUNDEM AGAI N.

ALSO- WRONGO.
MOVE 8 TO RETURN- CODE.
GOBACK.

FOUNDEM AGAI N.

MOVE TAB- ARG(TAB-1) TO
RECORD CODE.

MOVE 0 TO RETURN- CODE.

GOBACK.

DBA Utilities User's Guide

HRO1' .
Dro2' .
VALUE ' CRO3' .
DBO4' .

Record code conversion table.

Four entries are to be redefined.

Val ue to represent record code in sort.

Record passed to exit from Unl oad.

Corresponds to Unload el ement |ist.

Start at begi nning of table.

Search table for matching record code.
Go to ALSO WRONGO i f no mat ch.

Go to FOUNDEM AGAIN if a match is

f ound.

Set return code to delete record.
Ret ur n.

Match found in table. Change

val ue used for sort back to record code.
Set return code to unload this record.
Ret ur n.

291

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Loading PDM files

The Version 2 Load Function (CSULOADR) loads SUPRA Directory or
PDM files from the output of the Version 2 Unload function. The Load
function also automatically updates the linkpath fields with correct data.
You can load the files in any format: SUPRA native, SUPRA converted,
or Series 80.

NOTE Use the Version 2 Load function only with output files created by the
5 m— Version 2 Unload function. The Version 2 Load function does not operate
= with files created by the Version 1 Unload utility.

The Version 2 Unload function unloads only Directory and PDM files; it
does not unload index files. Therefore, you cannot load index files with
the Version 2 Load function.

NOTE If your PDM files have secondary keys, you must depopulate them before
" you unload them and repopulate them after you load them. For more
g— information, see the introduction to this chapter.

Before you load a PDM VSAM file, allocate it with the IDCAMS utility, but
do not format it.

To use the Version 2 Load function, you do not code UCL. Instead, you
code the following input:

¢ File definitions
¢+ Run control statements

¢ File control statements

Defining files

To execute the Load function, you must define the files listed in “File
definitions for the Load function” on page 295 in your JCL and execute
the Unload program named CSUNLOAD. In 0S/390, you can use the
cataloged procedure TISUTLOD. If you want to change any of the
symbolic parameters in TISUTLOD, refer to the SUPRA PDM and
Directory Administration Guide, P26-2250. If you do not want to use the
cataloged procedure, you can follow the same procedure as in VSE. The
following figures show the files that you must define in OS/390 and VSE.

292 P26-6260-63

Loading PDM files

Files you define in OS/390 JCL to load

UNLOAD

| |

OUTFILE CSU#REC
SYSUTI CSU#REC (in SORTLIB)
— SYSOouUT
CSIPARM l l SORT +—» SORTWK1
«—> +—» SORTWK2
CSUAUX <+—> SORTWK3
SYSIN LOAD SYSPRINT
ety o — | sysubumpP
I I Database files
LINKWRO1 LINKWRO02
LINKWRO1
INSERT

!

LINKWRO02

DBA Utilities User's Guide 293

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Files you define in VSE JCL to load

UNLOAD

| |

OUTPUT CSU#REC
INPUT CSU#REC (in SORTLIB)
— SYSOUT
CSIPARM l l SORT +—» SORTWK1
«— +—> SORTWK?2
CSUAUX <+—>» SORTWK3
SYSIPT LOAD SYSLST
é’?:{;ﬂ;“mii'e contrl ' Database files
I I Z-prefixed database files
LINKWRK1 LINKWRK2
LINKWRK1

|

INSERT

!

LINKWRK?2

294 P26-6260-63

Loading PDM files

File definitions for the Load function

To execute the Load function, you must define the files listed below in
your JCL and execute CSUNLOAD.

|DD or file name

Description

|Considerations

CSIH#WKnn

CSIPARM

CSU#REC

CSUAUX

0s/390| ffffffff
VsH] ffffff and Zffff

DBA Utilities User's Guide

Identifies the sort
work files.

Identifies the
CSIPARM file, which
contains control
information needed
by the PDM.

Holds the number of
records the Unload
function unloaded.

Holds the auxiliary
information for the
files that are not in
native format.

Names the files you
want loaded.

For VSE, see the SORTWKn
definition.

If not enough virtual storage is allocated to
sort in place, identify the needed sort work
files (CSI#WKO01, CSI#WKO02 and
CSI#WKO03). Format and space allocation
are identical to standard SORTWKnn
statements as defined in the appropriate
sort manual.

Code an open mode of NONE in the
environment description for all files you
want the Unload and Load functions to
read. Also, code the task log option as
NONE in the environment description or
the Utility will abend.

When you supply the CSU#REC file to the
Load function, you must ensure that the
file comes from the same run of the
Unload utility as the INPUT file. For more
information, see “Defining the CSU#REC
file” on page 238.

See “Defining the CSUAUX file” on
page 238.

You may code up to 57 primary files and
57 related files. The file name must be
coded in the SUPRA Directory for the
schema you are loading.

For VSE, you must code primary and
related files on two separate DLBL
statements. Code each file twice: once for
direct access with the file name (fffffff) on
the DLBL statement and the second time
for sequential access with a Z before the
file name. Truncate to seven characters
(Zffffff).

295

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

|DD or file name

Description

Considerations

INPUT

05/390| LINKWKO01
\VSE| LNKWRK1

05/390| LINKWKO02
\VSE| LNKWRK2

SORTLIB

SORTWKn

05/390| SYSIN
\VSE| SYSIPT

VSE| SYSLST
0S/390| SYSPRINT

SYSOUT

SYSUDUMP

SYSUT1

Holds the data for all
files you want
loaded.

Indicates the first
See linkage work
file.

Indicates the second
linkage work file.

Indicates the library
containing the
standard sort
program.

Identifies work files
for sorting.

Holds the run control
and file control
statements.

Identifies the output
file for the printed
listing of all control
statements,
diagnostic
messages, etc.

Identifies the file the
standard sort
program uses.

Indicates that you
want a storage dump
taken and written to
this file if an abend
occurs.

Holds the data for all
files you want
loaded.

This must be the OUTFILE output file of
the Unload execution. See “Defining the
OUTFILE” on page 241.

See “Coding the LINKWKO1/LNKWRK1
file” on page 297.

See “Coding the LINKWKO2/LNKWRK2
file” on page 300.

For OS/390, see the CSI#WKnn
definition.

If insufficient virtual storage is allocated to
sort in place, identify the required standard
sort work files (SORTWK1, SORTWK2,
SORTWKA3) as defined in the appropriate
sort manual.

See “Coding run control statements for the
Load function” on page 302 and “Coding
the Element List statement” on page 318.

Optional.

This must be the OUTFILE output file of
the Unload execution. See “Defining the
OUTFILE” on page 241.

296

P26-6260-63

Loading PDM files

Coding the LINKWKO1/LNKWRK1 file

The first linkage work file is LINKWKO1 in OS/390 and LNKWRK1 in
VSE. You need the file in these situations:

¢ For loading related files

¢ For loading primary files that are connected by linkpaths to related
files you are also loading.

You use the file to receive linkage data the Load function generates while
loading related files. The Load function then inserts the linkage data into
the primary files with which they are associated.

If you are loading primary files but not the related files with which they are
associated, you can omit this linkage work file because the Load function
does not generate any linkage information.

If you are loading related files, you can insert the linkpath data into the
associated primary files by executing the Insert Linkpath function. If you
do so, you must use a permanent file or pass this linkage work file to the
Insert Linkpath function in a later step. The latter possibility is illustrated
in “Files you define in OS/390 JCL to load” on page 293 and “Files you
define in VSE JCL to load” on page 294.

DBA Utilities User's Guide 297

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

298

To allocate the linkage work file, you need to know the number of records
in the file. You can determine the number in two steps:

1. Execute the File Statistics function to obtain chain statistics for every
related file you will load.

2. Add the number of chains in the linkpaths for all the related files you
are loading.

When you code your JCL for this file, you need to calculate the logical
record length (LRECL). You do that by adding 20 bytes to the value in the
MAXKEY parameter in the run control statements. (You may have coded
it or allowed it to default.) The purpose of the 20 bytes is shown in the
following table. You must calculate and code the LRECL parameter
exactly because the Load function calculates this value itself under some
conditions and its value must match yours.

Position (bytes) |Contents

1-4 Primary file name

5-8 Home location relative record number (RQLOC)
of primary record

9-12 Linkpath name (LKxx)

13-16 Relative record number (RRN) of first record in
the related chain

17-20 RRN of last record in the related chain

21-n Primary file control key. Maximum key length is
256 bytes.

You code the rest of your JCL differently depending on whether you are
loading primary or related files:

¢ For related files, use DISP=(NEW,KEEP,DELETE)
¢ For primary files, use DISP=(OLD,DELETE,KEEP)

¢ For related and primary files together, use
DISP=(NEW,DELETE,KEEP)

P26-6260-63

Loading PDM files

When you load related files, you should code the BLKSIZE parameter for
the file. You should make it at least as large as the LRECL parameter you
coded. If you make the BLKSIZE parameter larger than the LRECL
parameter, it must be a multiple of the LRECL parameter. The Load
function uses your value to calculate the number it actually uses. It uses
a number that is less than or equal to the BLKSIZE parameter you code.
For example, if the record length is 1024 bytes and you code a block size
of 10,500 bytes, the Load function uses 10,240.

If you do not code the BLKSIZE parameter, it defaults to 10K for tape
devices or the maximum size for the DASD used. In that case, the Load
function sets the record format to fixed blocked.

When you load only primary files with linkage data from loading their

associated related files, you must code the LRECL and BLKSIZE
parameters exactly as they were in the job that loaded these related files.

DBA Utilities User's Guide 299

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

300

<
m

Coding the LINKWKO02/LNKWRKZ2 file

The second linkage work file is LINKWKO02 in 0S/390, LNKWRK?2 in
VSE. The file has different uses depending on whether you are loading
related or primary files:

¢ For related files, it holds secondary linkage data
¢ For primary files, it holds out-of-block synonym records
In both cases, the record format is preset to fixed blocked. The Load

function internally calculates the record length (LRECL) at run time by
adding 22 bytes to the largest related key length.

In VSE, we recommend that you code the record length yourself rather
than letting it default. Code it in the RECSIZE parameter of the run
control statements. To determine the record length, you must make two
calculations—one for related and one for primary files—and choose the
higher of the two values.

For related files, add at least 22 bytes to the length of the largest key.
(See the record formats for the purpose of the 22 bytes below.) Select
the largest key from the access and secondary linkpath keys of the
related files.

For primary files, use the length of the largest record in the primary files.

If you are loading only primary files, determine the number of records in
two steps:

1. Execute the File Statistics function to obtain the number of out-of-
block synonyms for each primary file you want to load.

2. If you are not loading the files with new block sizes, code the largest
number for any of these files.

If you are decreasing or increasing the block size, you can expect the
number of out-of-block synonyms (and therefore the number of
records required) to increase or decrease slightly in reverse
proportion to the change in block size. That is, if you increase the
size of the block, you have fewer out-of-block synonyms and need
fewer records. When you change the block size, you cannot arrive at
an exact number; you have to estimate the number.

P26-6260-63

Loading PDM files

If you are loading only related files or related and primary files, you
determine the number of records in three steps:

1. Execute the File Statistics function to obtain the linkpath statistics for
all the related files you want to load.

2. Add the number of records containing each secondary linkpath.
3. Use the highest number.

You must code a multiple of the LRECL parameter for the BLKSIZE
parameter. In VSE, we recommend you code the block size in the
BLKSIZE parameter rather than let it default.

If you use a tape device for this file, use DISP=(NEW,PASS) to avoid
unloading and reloading the tape between each primary file.

If you want to estimate the amount of sort work space, consider the
format of the records for the first sort:

Position (bytes) |Contents

1-4 Related file name

5-12 Secondary Linkpath name

13-16 Relative position in file (RRN)

17-18 Record code

19-20 Displacement of control key into related file
21-22 Length of primary control key

23-n Primary record control key

The following is the format of the records for the second sort:

Position (bytes) |Contents

1-4 Related file name

5-8 Relative position in file (RRN)

9-12 Linkpath (Previous)

13-16 Linkpath (Next)

17-18 Displacement of Linkpath into related record

DBA Utilities User's Guide 301

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Coding run control statements for the Load function

With run control statements, you can control the execution of the Load
function. You may code some of these statements with several
parameters and others with only one. You may need to code some
statements with more than one record, but you cannot code two different
statements on the same record, except in VSE where you can code
SORTCORE, SORTNAME, and WORK statements on one record. You
must begin each run control statement in position 1.

You must code the RELATED: file list before the PRIMARY: file list, and

list the files in ascending order. You are free to code all the other run
control statements in any order.

302 P26-6260-63

Loading PDM files

All the run control statements are shown in the following table with a brief

description.
Statement Description Section
SCHEMA Indicates the name of the schemayou “Coding the SCHEMA
want used to load the database. statement” on page 304
RELATED: Names the related files you want “Coding the RELATED:
loaded. statement” on page 305
V-E: Alternate form of RELATED: “Coding the V-E:
Statement. statement” on page 306
PRIMARY: Names the primary files you want “Coding the PRIMARY:
loaded. statement” on page 306
S-E: Alternate form of PRIMARY: “Coding the S-E:
Statement. statement” on page 307
MAXKEY Indicates the length of the longest “Coding the MAXKEY

LINKWKnnN

RECFORM

SORTCORE

SORTNAME

WORK

primary file control key in the related
files you want loaded.

Defines the characteristics of the
LNKWRK1 and LNKWRK?2 files.

Defines the characteristics of the
INPUT file.

Indicates the amount of virtual storage
the function can use for the SORT
program.

Names the sort program if it is not the
standard program.

Indicates the number of tape devices
or disk extents available for
intermediate sort storage.

statement” on page 307

“Coding the LINKWKnn

statements (VSE only)” on

page 308

“Coding the RECFORM
statement (VSE only)” on
page 311

“Coding the SORTCORE
statement” on page 314

“Coding the SORTNAME
statement” on page 315
“Coding the WORK
statement (VSE only)” on
page 316

DBA Utilities User's Guide

303

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Coding the SCHEMA statement

With the SCHEMA statement, you name the schema you want to use for
loading your database files. If you are loading Directory files, name the
bootstrap schema.

[(schemaname[]

SCHEMA =
B)ootschema E

304

[schemaname(
SCHEMA = 0
Baootschema 0

Description

Format

Consideration

Required. Names the schema you want the function to use when loading
your database files.

1-8 alphanumeric characters

To load your PDM files, the CSIPARM file must have your bootstrap
schema and environment description in the DIRECTORY parameter and
your schema and environment description in the REALM parameter.
When you code this run control statement, you should code your
schema. To coordinate coding your run control statements with your
CSIPARM file, see “Coding CSIPARM file and run control statements for
PDM files” on page 230.

P26-6260-63

Loading PDM files

Coding the RELATED: statement

With the RELATED: statement, you can name the related files you want
loaded. If you have no related files to load, you can omit this statement. If
you code it, put it before the PRIMARY: statement.

You may use the Series 80 V-E: statement in place of the RELATED:
statement. However, use one or the other, not both.

RELATED:rrrrd[rrrr2...rrrrn]END.

or

V-E:vvvvl[vvvv2...vvvVvn]END.

RELATED:rrrri[rrrr2...rrrrn]END.
V-E:vvvvl[vvvv2..vvvVvn]END.

Description Optional. Identifies the related files you want loaded.

Format

¢

Considerations

DBA Utilities User's Guide

Code RELATED: in positions 1-8 of the first record only, or code V-
E: in positions 1-4.

You may use up to three records for this statement. If you use
several records, begin the file names in position 1 of the second and
third records.

Use all 80 positions unless you are coding the last statement.

Arrange related file names in ascending order, and define them with
JCL statements.

Load your PDM files and Directory files in separate jobs.
You can name up to 57 files by using several records.

You must code END. immediately after the last file name to indicate
the end of the file list.

305

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Coding the V-E: statement

The V-E: statement is supported for compatibility with existing Series 80
and TIS 1.x job streams. It serves the same purpose as the RELATED:
statement. For coding information, see “Coding the RELATED:
statement” on page 305.

Coding the PRIMARY: statement

With the PRIMARY: statement, you can name the primary files you want
loaded. You can omit this statement if you have no primary files to load. If
you code this statement, put it after the RELATED: statement.

You may use the Series 80 S-E: statement in place of the PRIMARY:
statement. However, use one or the other, not both.

PRIMARY:ppppl[pppp2...ppppn]END.

or

S-E:mmmml[mmmm2..mmmmn]END.

PRIMARY:ppppl[pppp2...ppppn]END.
S-EEmmmmi[mmmm2..mmmmn]END.

306

Description
Format

Considerations

Optional. Identifies the primary files you want loaded.

¢ Code PRIMARY: in positions 1-8 of the first record only, or code S-E:
in positions 1-4.

¢ You can use up to three records for this statement. If you use more
than one, begin the file names in position 1 of the second and third

records.

¢ Fill all 80 positions unless you are coding the last statement.

¢ Arrange the primary file names in alphabetical order, and define them
with JCL statements.

¢ Load your PDM files and Directory files in separate jobs.
¢ You can name up to 57 primary files by using several records.

¢ You must code END. immediately after the last file name to indicate
the end of the file list.

P26-6260-63

Loading PDM files

Coding the S-E: statement

The S-E: statement is supported for compatibility with existing Series 80
and TIS 1.x job streams. It serves the same purpose as the PRIMARY:
statement. For information on coding it, see “Coding the PRIMARY::
statement” on page 306.

Coding the MAXKEY statement

With the MAXKEY statement, you can indicate the length of the longest
primary file control key in the primary and related files you want loaded.
You need to code this statement for various internal calculations and

functions.
(p560
MAXKEY =T 0O
on g
56
MAXKEY = BZLE
gn g

Description Optional. Indicates the length of the longest primary file control key in the
related files you want loaded.

Default 256
Options 1-256

Consideration For efficient use of time and space by the sort program, do not use the
default if the actual length of the longest control key is much shorter than
256 bytes.

DBA Utilities User's Guide 307

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Coding the LINKWKnn statements (VSE only)

With the LINKWKnn statements, you can define the characteristics of the
linkage work files: LNKWRK1 and LNKWRK2. You can code the
parameters on more than one line.

If you use this LNKWRKZ1 file later in the Insert Linkpath function, you
must code the same LINKWKO1 parameters for the Insert Linkpath
function that you code here. For more information on coding the
statement for that function, see “Coding the LINKWKnn statements (VSE
only)” on page 331.

E DISK uN

LINKWKnNn: @EVICE:ET O NO EE%
APE[FILABL = 0

g o 1D

O o o iy
O 000!
OBLKSIZE=[T [
O on mm

(10001J (5YS030 [1J
,RECSIZE=[_ [1JDEVADDR = M

on o %YSnnnm

LNKWKnn

308

Restriction
Description

Options

Format

Consideration

Required if you code DEVICE, FILABL, BLKSIZE, RECSIZE, or
DEVADDR parameters.

Required. Identifies the LINKWKnn statement.
LINKWKOL1: The function defines the LNKWRK1 file.
LINKWKO02: The function defines the LNKWRK?2 file.
Code in positions 1-9.

You can omit the LINKWKO1 statement if you are loading primary files
without LNKWRKZ1 information.

P26-6260-63

Loading PDM files

ISK
DEVICE = E'; .

OrAPEQ
Description Optional. Use this parameter to indicate the file's device type.
Options DISK Disk device

TAPE Magnetic tape unit

INO O
,FILABL = 0
%DD

Restriction This parameter is valid only when DEVICE=TAPE.

Description Optional. Indicates whether the tape contains file labels.

Default NO
Options NO Does not contain labels
STD Contains standard labels
CLooon
,BLKSIZE=[T O
aon o

Restriction Required if the RECSIZE is greater than 1000.

Description Indicates the file's block size in bytes. If the RECSIZE is less than or
equal to 1000, use this parameter to achieve a higher blocking factor.

Default 1000
Format Use numeric characters.

Consideration To determine the block size, see “Coding the LINKWKO01/LNKWRK1 file”
on page 297 and “Coding the LINKWKO02/LNKWRK2 file” on page 300.

DBA Utilities User's Guide 309

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

000
,RECSIZE = E,l;%

on o
Description Required. Indicates the file's record size in bytes.
Default 1000
Format Use numeric characters.

Consideration To determine the record size. see “Coding the LINKWKO01/LNKWRK1
file” on page 297 and “Coding the LINKWKO02/LNKWRK?2 file” on
page 300.

5YS0300

,DEVADDR = 0
YSnnnp

Description Optional. Identifies the device address (SYS number symbolic unit)
associated with the file.

Default SY S030

Format nnn Must be 3 digits.

310 P26-6260-63

Loading PDM files

Coding the RECFORM statement (VSE only)

With the RECFORM statement, you can define the characteristics of the
INPUT file. All parameters are optional since defaults are supplied. If you
code any parameters, you must separate them from any other
statements. You can continue a parameter on the next line. When you do
so, do not code a continuation character.

NOTE The parameters must match any parameters you coded on the
RECFORM statement in the Unload function. See “Coding the

= RECFORM statement (VSE only)” on page 249.
O
0 0o
O IXBLK EDISK 0
[RECFORM = EFIXUNB% BDEVICE [NO [@ B
D WD DTAPEDFILABL mileks
E D D H E
O CLooo!
GBLKSIZE=[T [
O on m
O fLoo10 £5YS030 [
LRECSIZE =T [MQHDEVADDR = il
0 on mo YSnnnp

[(FIXBLKO

RECFORM =
FixuneH

Description Optional. Indicates the record format of the file.
Default FIXBLK
Options FIXBLK Fixed-length, blocked records

FIXUNB Fixed-length, unblocked records

DBA Utilities User's Guide 311

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

ISK
,DEVICE = E H

TAPE[
Description Optional. Indicates the device type of the file.
Options DISK Disk device

TAPE Magnetic tape unit

0
,FILABL = N B
gDD

Restriction This statement is valid only when DEVICE=TAPE.

Description Optional. Indicates whether the tape contains file labels.

Default NO
Options NO Does not contain labels
STD Contains standard labels
L0000
,BLKSIZE=[T [
on o

Description Optional. Indicates the file's block size in bytes.

Default 1000

Format Use numeric characters.

Consideration You must code a multiple of the record size (RECSIZE). For example, if

the record size is 100 bytes, the block size can be 200, 300, 1000, and so
on.

312 P26-6260-63

Loading PDM files

(1000
JRECSIZE=[T]

aon o
Description Optional. Indicates the file's record size in bytes.
Default 100
Format Use numeric characters.
Consideration To determine the value of this parameter, add the following amounts:

S The sum of the lengths of the data elements you want loaded plus
the length of the control key. Calculate this for each file you load and
use the largest value.

+4 The length of the file name. Always add this value.
+X where "X" is:

+2 The length of the record code. Add this if you are loading at least
one related file with coded records and are not loading any
primary files.

+4 The RQLOC. Add this if loading primary files, regardless of the
above.

+0 Neither of the above.

(5YS030 0O

,DEVADDR = O
YSnnnpj

Description Optional. Identifies the device address (SYS number symbolic unit)
associated with the file.

Default SY S030

Format nnn Must be 3 digits

DBA Utilities User's Guide 313

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Coding the SORTCORE statement

With the SORTCORE statement, you can indicate the amount of virtual
storage the SORT program can use.

[.20000

SORTCORE = F24000H]

dn 0

(120000

SORTCORE = 4000%

An

Description Optional. Indicates the number of bytes of virtual storage the SORT
program can use.

Default 12000 bytes
24000

Options 12000-999999999

Considerations

¢ If you specify less than 12000, the SORT program overrides that
figure with 12000 bytes and tries to execute.

¢ If you code a value larger than the amount of space available in the
address space, the operating system abnormally terminates the Load
function.

. In VSE, you can code the SORTCORE, SORTNAME, and
WORK statements on the same record. When you do so, separate
the statements with commas.

314 P26-6260-63

Loading PDM files

Coding the SORTNAME statement

With the SORTNAME statement, you can name the sort program you
want the Load function to use.

JERRCO00]

SORTNAME = ESORT O
HorognameH

OERRCOO000
SORTNAME = %ORT E

Horogname H

Description Optional. Identifies the sort program.

Default IERRCO00
SORT
Format 1-8 alphanumeric characters

Consideration In VSE, you can code the SORTCORE, SORTNAME, and WORK
statements on the same record. When you do so, separate the
statements with commas.

DBA Utilities User's Guide 315

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Coding the WORK statement (VSE only)

With the WORK statement, you can code the number of tape devices or
disk extents available for intermediate storage while sorting.

WORK:%E

g
WORK=%B
MmO

Description Optional. Indicates the number of tape devices or disk extents available
for intermediate storage while sorting.

Default 4
Options 1-9

Consideration You can code the WORK, SORTNAME, and SORTCORE statements on
the same record. If you do so, separate the statements with commas.

316 P26-6260-63

Loading PDM files

Coding the file control statements for the Load function

With file control statements, you can control the order of the data
elements you are loading. You may code several parameters in some of
these statements, while in others you may code only one. Some
statements may require more than one record, but you cannot code two
different statements on the same record.

You must code the statements for the files in the same order as in the
RELATED: and PRIMARY: run control statements. You must code the
related file information before the primary file information. When you
code the information, you may code a LINKPATH statement for each
related file if you like. Then you must code an Element List statement for
each related and primary file, in that order.

The following table briefly describes each statement.

Statements Description Section

Element List Indicates the data elements you want “Coding the Element List
loaded for a particular file. statement” on page 318

LINKPATH Indicates the linkpath you want used as ~ “Coding the LINKPATH
the access linkpath for loading a related statement” on page 321
file.

DBA Utilities User's Guide 317

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Coding the Element List statement

With the Element List statement, you can indicate the data elements you
want loaded from the file (ffff) you identified. The figure at the end of this
section illustrates the format of the records as they appear on the
SYSUTL1 file (OS/390) or INPUT file (VSE).

Felement ,[elementz. . .elementn]
ffff ND.

ffff
Description

Format

Required. Identifies the file containing the elements you want loaded.

4-character file name coded in the schema.

Consideration Place the file name in positions 1-4 of each Element List statement.

LL.

Description

Format

318

@Iement,[elementz. ..eIemenh]%ND

Required. Identifies the individual element(s) or all (ALL.) elements you
want loaded.

¢ You can code from 1 to 100 data elements in a maximum of 12
records. See the last consideration on the following page.

¢ If you use ALL., code it in positions 5-8.

¢ Code the element list in positions 5-76; anything in positions 77-80
is ignored.

P26-6260-63

Considerations

DBA Utilities User's Guide

Loading PDM files

For related files, you must code the Element List statement
immediately after the LINKPATH statement to which it applies.

If you coded ALL. in the Unload function, you must also code it in the
Load function.

All element names you code must have been previously defined for
the file in the schema on the SUPRA Directory.

You do not need to code all elements of the file in the same order as
they appear in the SUPRA Directory. However, you must code the
elements in the same position in the Unload and Load functions.

To understand how to code your element list to add, delete, expand,
or contract elements in your files, see Considerations 6 through 9 of
the Unload function's Element List statement in “Coding the Element
List statement” on page 257.

If you are loading related files without record codes, you must code
the control key associated with the access linkpath first in the
Element List statement, regardless of its physical position in the
record in the database file. (This does not apply if you are using ALL.)

If you are loading coded records, you must put the record code data
element immediately before the control key in the Element List
statement. (This does not apply if you are using ALL.)

When you load related files with an explicit element list, you must
code the control keys of all secondary linkpaths for the file as defined
in the Directory. When you code the control keys, you help ensure
the integrity of the database.

When you are loading primary files, you must code ppppCTRL first
unless you are using ALL.

You must code END. immediately after ALL. or the last element to
indicate the termination of the element list.

Note that if the number of data elements total more than 100, the
V2LOADR will get a U1000 error if the 100 plus fields or ALL. are
specified. To avoid this situation, have one or more parent Physical
Fields defined that encompass the whole record in less than 101
elements that can be used to do the V2LOAD. This error can occur
even if you specify ALL. when the elements that make up the record
are greater than 100.

319

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

ELEM-LIST = Element list you supply

ffff
; _| Allremaining data elements and LINKPATHS
Reczrrldml?n;)r/m at PR'I:’YII_IAERY I\Q/S\II:SE CONK-EF$OL as coded on the ELEM-LIST control card(s)
NAME (CONTROL-KEY is excluded).
fit All ining d | ded
_ remaining data elements as code
S;chc;%dlziflr:;d REIF_ﬁ_'II;ED ACCESS-KEY on the ELEM-LIST control card(s)
NAME (ACCESS-KEY is excluded).
fit All ining d | ded
Coded Related RELATED | RECORD | ACCESS- remaining data elements as code
on the ELEM-LIST control card(s)
Record Format NFAI\IK/IEE CODE KEY (ACCESS-KEY is excluded).
ELEM-LIST = ALL. END.
ffff) All dgta e_Iements exc_luding the
Primary Record PRIMARY RQLOC CONTROL- All LIl_lKPA_THS inthe | root field in the ordfer in which
X order in which they they appear in the internal
Lir::l?r;r?tsvivr:t:;ile > FILE VALUE KEY appear in the internal record control card(s)
P NAME record (CONTROL-KEY excluded).
ffff
Primary Record > PRIMARY RQLOC CONTROL- All data elements excluding the root field in the order
] in which they appear in the internal record
FOLTna;p“;'ILhS"”t NﬂkAEE VALUE KEY (CONTROL-KEY excluded).
ffff
Standard Related > RELATED ACCESS-KEY All data elements in the order in which
they appear in the internal record
Record Format NﬂkAEE (ACCESS-KEY excluded).
ffff
Coded Related > RELATED | RECORD | ACCESS- All data elements in the order in which they appear
in the internal record
Record Format N';I\II;/IEE CODE KEY (RECORD CODE and ACCESS-KEY excluded).

320

P26-6260-63

Loading PDM files

Coding the LINKPATH statement

With the LINKPATH statement, you can identify the linkpath you want
used as the primary linkpath to load a related file.

rrrrLINKPATH=ppppLKxx

Restriction Use this statement only for related files.

Description Optional. Identifies the primary linkpath you want used to load a related

file.
Format reer 4-character related file name.
ppppLKxx The linkpath name as coded in the schema.

Considerations
¢ The primary linkpath and its associated control key that you use must
be in the base portion of a coded record rather than the redefined
portion.

¢ This statement must immediately precede the Element List statement
of the related file to which it applies.

DBA Utilities User's Guide 321

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Loading Directory files

You must load Directory files and PDM files in separate jobs.

If you are loading all the Directory files, the run control statements and file
control statements are in data member CSUSLOAD. After installation is
complete, you cannot modify this member.

In your CSIPARM file, you must code the bootstrap schema and
environment description. When you code the SCHEMA control statement
in “Coding the SCHEMA statement” on page 304, you should use the
same schema that you coded in the CSIPARM file. “Coding CSIPARM
file and run control statements for directory files” on page 231 shows how
to coordinate coding your CSIPARM file with your run control statements.

Coding the Insert Linkpath function

322

The Insert Linkpath function (CSUINSRT) dynamically inserts linkpath
data into primary files without your unloading and reloading them. The
Insert Linkpath function also inserts linkpath data into Directory or PDM
files.

You use this function when you unload and load part of your files. For
example, you may unload several related files and one of the primary
files to which they are connected, but you may not unload all the primary
files to which they are connected. After you reload, you need to insert the
connections to the files you did not unload. For more information on when
to use this function, see “What to do with linkpaths when you unload and
load” on page 228.

If you are already unloading and loading all the primary files, you do not
need to use this function because the Load function inserts linkpath data.
The Load function also creates the input to this function when it loads the
associated related files. The following figures illustrate the output of the
Load function becoming the input to the Insert Linkpath function.

NOTE

Use this function only with files loaded by the Version 2 Load function.

To use the Insert Linkpath function, you need to code file definitions and
control statements. JCL examples follow the explanation of the
statements.

P26-6260-63

Coding the Insert Linkpath function

The following figure shows files you define in 0S/390 JCL to

insert linkpath data:

LOAD
LINKWKO1 LINKWKO02
LINKWKO1
CSIPARM l
CSUAUX
— INSERT
SYSIN
(Run Control Statements)
LINKWKO02

DBA Utilities User's Guide

SYSPRINT

SYSUDUMP

Database files

323

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

The following figure shows files you define in VSE JCL to insert

linkpath data:

CSIPARM

LOAD

LINKWRK1

LINKWRK1

LINKWRK2

CSUAUX

SYSIPT

(Run Control Statements)

INSERT

SYSLST

Database files

324

LINKWRK2

P26-6260-63

Defining files
To execute the Insert Linkpath function in OS/390 or VSE, you must
define the files listed in the following table in your JCL and execute the

Insert Linkpath program, CSUINSRT. In OS/390, rather than coding all
the file definitions, you can use the cataloged procedure TISUTINS.

Coding the Insert Linkpath function

File Description Considerations

CSIPARM: Identifies the CSIPARM file See “Coding the CSIPARM file for
which contains control Unload, Load, and Insert Linkpath”
information that the PDM on page 230.
needs.

CSUAUX: Holds the auxiliary See “Defining the CSUAUX file” on
information for the files that page 238.
are not in native format.

ffffffff Indicates the SUPRA You may specify up to 57 primary

0s/390] LINKWKO1
VSE LNKWRK1

05/390| LINKWKO02
\VSE| LNKWRK?2

05/390| SYSIN
\VSE| SYSIPT

Vse SYSLST
0S/390| SYSPRINT

SYSUDUMP

primary files you want
processed by the Insert
Linkpath function.

Indicates the first linkage
work file, which contains
linkpath data generated in
the related file load for
insertion into the associated
primary files.

Indicates the second linkage
work file for synonym
processing.

Holds the run control
statements.

Indicates the output file for
the printed listing of all
control statements,
diagnostics messages, etc.

Indicates a dump file.

files. File names must be specified
in the SUPRA Directory for the
schema you are using.

For VSE, you must always code
primary files as direct access on
their DLBL statements.

See “Defining the
LINKWKO1/LNKWRK1 file” on
page 326.

See “Defining the
LINKWKO2/LNKWRK2 file” on
page 327.

See “Coding control statements”
on page 328.

Optional.

DBA Utilities User's Guide

325

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Defining the LINKWKO1/LNKWRK1 file

The first linkage work file in OS/390 is LINKWKO1; in VSE it is
LNKWRKZ1. The Load function creates this file while loading associated
related files. It uses the file to hold linkpath pointers to the first and last
record for each key on the related files. This file becomes input to the
Insert Linkpath function. This function uses the file to update pointers to
the first and last records in the corresponding primary records.

Since this is the same file you defined in the Load function, you must
code the same LRECL and BLKSIZE parameters that you coded for the
Load function.

You must also maintain the same format for the data that you used in the
Load function:

Position in bytes |C0ntents

1-4 Primary file name.

5-8 Home location relative record number (RQLOC
value) of primary record.

9-12 Linkpath name (LKxx).

13-16 RRN of first record in the related chain.

17-20 RRN of last record in the related chain.

21-n Primary file control key of the record you want

to load. Maximum key length is 256 bytes.

326 P26-6260-63

Coding the Insert Linkpath function

Defining the LINKWKO2/LNKWRK?2 file

The second linkage work file in OS/390 is LINKWKO02; in VSE it is
LNKWRK?2. It is used to hold records that have no keys in the Primary
file. After the last record for the Primary file is processed, the work file is
used as input for dummy record insertions into the Primary file.

For OS/390, LINKWKO02 LRECL and BLKSIZE must be the same as
LINKWKO1. For VSE, LNKWRK2 RECSIZE and BLKSIZE must be the
same as LNKWRK1.

This file does not have the same number of records as the corresponding
file for the Load function. In this function, determine the number of
records for this file in three steps:

1. Execute the File Statistics function to obtain the number of out-of-
block synonyms for each primary file you loaded.

2. Multiply each file's number of out-of-block synonyms by the number
of linkpaths it contains.

3. Use the largest number for one file.

DBA Utilities User's Guide 327

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Coding control statements

The INSERT and LINKWKnn statements control the execution of the
Insert Linkpath function. The following table briefly describes each
statement. Some statements may require more than one record, but you
cannot put two different statements on the same record.

Statement | Description Section
INSERT Names the primary files into which you “Coding the INSERT
want to insert linkage information. statement” on page 328
LINKWKnn (VSE Defines the characteristics of the “Coding the LINKWKnn
only) LNKWRK1 and LNKWRK2 files. statements (VSE only)” on
page 331

Coding the INSERT statement

Use the INSERT statement to name the primary files into which you want
to insert linkage information. You can put the DBMOD, FILES, and
CLEARLKS parameters in any order. You can continue them over
several records by placing a continuation character in position 72.

INSERT FILES it .
- (Bfff [FFFf 2. FFFf) .E”

[, CLEARLKS = (ppppLKxxL[ppppLKXXZ. . ppppLKxxn].)]

[, DBMOD = schemaname]

,END

328 P26-6260-63

Coding the Insert Linkpath function

INSERT
Description Required. Identifies the control statement.

Consideration Place at least one blank character before and after the INSERT

parameter.
FILES gk .
- (Sfff [ffffo. . FEEf] .9

Description Required. Names the file(s) you want to update.

Format File names must be 4 alphanumeric characters. Terminate the list with a
period, and surround it with parentheses. Do not separate the file names.

Considerations
¢ List the file names in alphabetical order.

¢ If you code a list of files in the FILES parameter and you want to clear
a linkpath in one particular file, you must name the linkpath in the
CLEARLKS parameter. When you code the CLEARLKS parameter,
you must replace the pppp portion with a file you named in the FILES
parameter. If you code linkpaths that do not match a file in the FILES
parameter, they are ignored.

¢ The function updates only the files you code even if the first linkage
work file contains linkage information for other files.

DBA Utilities User's Guide 329

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

,CLEARLKS=(ppppLKxx1[ppppLKxX2...ppppLKxxn].)

Description Optional. Indicates that you want blanks moved into the linkpath you
coded for each record of the primary file if there is no linkage data for the
linkpath.

Format Linkpath names must be 8 alphanumeric characters. Terminate the list
with a period, and surround it with parentheses. Do not separate the
linkpath names.

Considerations
¢ The linkpath names must be defined in the schema you coded.
¢ You must list linkpaths in alphabetical order.

¢ This parameter is needed because the linkage work files do not
necessarily contain linkage data for every record in the primary file. If
there is linkage data for a record, the function inserts it in the
appropriate linkpath field. If there is no data and you have coded the
linkpath in CLEARLKS, the function sets the linkpath field to blanks.

If there is no data and you have not coded the linkpath in the
CLEARLKS parameter, the function leaves the linkpath untouched. In
that case, the linkpath field contains the linkage data from before it
was unloaded and loaded. Since that linkage data may be invalid,
your database may be corrupt.

¢ Inthe FILES parameter, you should list all linkpath names for all files
that have linkpath data to be inserted. This will take care of the
situation where there is no linkage data for a particular record and the
linkpath contains incorrect data.

,DBMOD=schemaname

Description Optional. Use this parameter only for compatibility with existing Series 80
job streams; it is ignored.

Format 1-8 alphanumeric characters

Consideration Do not code this parameter when creating new job streams.

,END.

Description Required. Indicates the termination of the control statement.

330 P26-6260-63

Coding the Insert Linkpath function

Coding the LINKWKnn statements (VSE only)

Use the LINKWKnn statements to define the characteristics of the
linkage work files: LNKWRK21 and LNKWRK2. You can code any
parameter on more than one line.

NOTE You must code the parameters identically to those you coded on the
5 — LINKWKnn statements in the step that loaded the associated related
. —_ files. For information on this file in the Load function, see “Coding the
LINKWKnn statements (VSE only)” on page 308.
] O [NO O OO .
LINKWKnn: J EVICE = [DISK QFILABL = TDD OO B
ED = ETAPE 0 000 g
[, BLKSIZE =n]
[LRECSIZE =n] ,DEVADDR =SYSnnn
LINKWKnn:
Description Required. Identifies the LINKWKnn statement.
Options LINKWKO1: The function defines file LNKWRK1.
LINKWKO2: The function defines file LNKWRK2.
Format Code in positions 1-9.
ISK
,DEVICE = P E
TAPEQ
Description Optional. Indicates the device type of the file.
Options DISK Disk device

TAPE Magnetic tape unit

DBA Utilities User's Guide 331

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

,FILABL = S\IFSDE
Restriction This parameter is valid only when DEVICE=TAPE.
Description Optional. Indicates whether the tape contains file labels.
Default NO
Options NO Does not contain labels
STD Contains standard labels
,BLKSIZE=n
Restriction For LINKWKO1, you must code the same value you used in the step that
loaded the associated related files.
Description Optional. Indicates the file's block size in bytes.
Format Use a numeric character.

Consideration

To determine the size, see “Defining the LINKWKO1/LNKWRK1 file” on
page 326 and “Defining the LINKWKO02/LNKWRK2 file” on page 327.

,RECSIZE=n

Restriction

Description
Format

Consideration

Required for the LINKWKO1 statement. Optional for the LINKWKO02
statement. For the LINKWKO1 statement, you must code the same value
you used in the step that loaded the associated related files.

Indicates the file's record size in bytes.
One numeric character.

To determine the size, see “Defining the LINKWKO1/LNKWRKZ1 file” on
page 326 and “Defining the LINKWKO02/LNKWRK?2 file” on page 327

,DEVADDR=SYSnnn

Description

Format

332

Required. Indicates the device address (SYS number symbolic unit)
associated with the file.

nnn Must be 3 digits

P26-6260-63

Examples of Unload, Load, and Insert Linkpath functions

Examples of Unload, Load, and Insert Linkpath functions

Two examples illustrate how to use the Unload, Load, and Insert Linkpath
functions. The first example shows how to unload and reload all the files
in the Burry's database. The second one shows how to unload, change
the structure, and reload four of the files: two primary and two related.
The structure change shows how to use the *FILL parameter to increase
the size of elements and an exit program to decrease the size of
elements in the files. The second example also shows how to use the
Insert Linkpath function. Both examples illustrate when to clear linkpaths.

Since it is necessary to depopulate and repopulate files, those steps are
shown in both examples. Since the intention here is to reload
immediately, the examples show the index files depopulated before
unloading. When you are unloading to get a backup copy that you may
never reload, you do not need to depopulate. However, if you ever want
to reload the backup copy, you must depopulate first.

To help you understand the examples, The following figure shows the
files in Burry's database. “Internal schema of Burry's database” on

page 335 and “Internal schema of files before unloading” on page 338
show the internal schema of the files. The latter shows the files that will
change as they are unloaded. The modified internal schema in “Internal
schema of files after unloading” on page 340 shows the changed files as
they are loaded.

The descriptions of the Burry's database files may not match those on
the release of SUPRA that you have. Therefore, do not use these
descriptions as a basis for decisions you make about Burry's. In addition,
these descriptions are not complete; they contain only the information
you need to unload and load.

DBA Utilities User's Guide 333

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

SKO01
SK02

E$CU
Customer

SKO01
SK02

N
=
)

= Primary

= Related

= Index

334

D
E$RG
Region

~

-

ES$IN
Invoice

ES$IL
Invoice
Line

SKO1

E$BR
Branch

(

SKO1

E$SK
Branch
\Stock

-
A
o
w

J

E$PD
Product

LKO1 LK02

E$ST
Structure

0

SKO01
SKO02

Branch

SKO01

SKO1
SKO02

D

E$PF
Product

N

D

E$XF

~

)

E$SMF
Manifest

LKO1

E$SML
Manifest

E$PO
Purchase

Order
N

-

E$XP

N~

SKO1
SKO02

E$SU
Supplier

SKO01

The files in the preceding figure are listed alphabetically in “Internal
schema of Burry's database” on page 335. “Internal schema of files
before unloading” on page 338 lists files whose structures change.

P26-6260-63

Examples of Unload, Load, and Insert Linkpath functions

Internal schema of Burry's database

Length of Name of

Name of physical secondary
file Type of file Physical fields fields keys
E$BR Primary E$BRROOT 8 E$BRSKO1

E$BRCTRL 4

E$BRLKO1 8

E$BRNAME 20

E$BRADDR 20

E$BRCITY 13

E$BRSTAT 2

E$BRZIPC 5

E$BRREGN 3

E$BRDRTE 2

E$BRSALQ 9

E$BRSTFQ 5
E$CU Primary E$CUROOT 8 E$CUSKO1

E$CUCTRL 6 E$CUSKO02

E$CUNAME 20

E$CUADDR 20

E$CUCITY 13

E$CUSTAT 2

E$CUZIPC 5

E$CUCLAS 2

E$CUCRAT 2

E$CUCLIM 9

E$CUBRAN 4

DBA Utilities User's Guide

335

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Length of Name of
Name of physical secondary
file Type of file Physical fields fields keys
ES$IL Related ESILESIN E$ILSKO1
ES$INLKO1
ESILESPD
ESILONTY
E$ILPRCE
ESIN Primary ESINROOT
ES$ICTRLN
$INLKO1
ES$INLKO4
E$INSLMN
ESINTOTL
E$INBRAN
ESINDATE
ESINCUST
E$SMB Related E$MBE$BR
E$BRLKO1
E$SMBESMF
E$SMBFILL
ESMF Primary ESMFROOT
E$SMFCTRL
E$SMFLKO1
E$SMFTOTL
E$MFBRAN
E$SMFDATE
E$ML Related E$SMLE$SMF
E$SMFLKO1
E$SMLE$PD
ESMLONTY
E$SMLVLUE

N

E$INSKO1
ESINSKO02

none

none

E$MLSKO1

© 01 © 00 U1 o1 A © 0 01 00O OTOO DN OO O© D O©OOWSPD OO O O ©

336 P26-6260-63

Examples of Unload, Load, and Insert Linkpath functions

Length of Name of
Name of physical secondary
file Type of file Physical fields fields keys
E$SPG Primary E$PGROOT 8 none
E$PGCTRL 2
E$PGDESC 30
E$RG Primary ESRGROOT 8
E$RGCTRL 3
E$SRGNAME 20
E$SK Related E$SKE$BR 4 E$SKSKO1
E$SKES$PD 9
E$PDLKO3 8
E$SKQNTY 5
E$SKBINL 5
E$SKSYTD 9
E$SU Primary E$SUROOT 8 E$SUSKO1
E$SUCTRL 6
E$SULKO1 8
E$SUNAME 20
E$SUADDR 20
E$SUCITY 13
E$SUSTAT 2
E$SUZIPC 5
E$VS Primary E$VSROOT 8 E$VSSKO1
E$VSCTRL 15 E$VSSKO02
EVSESU
E$VSES$PD
E$VSNUMB
E$VSVCST

DBA Utilities User's Guide

337

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

To see the change in structure, you need additional information about the
files: the logical record length, total logical records, type of physical field,
and the number of decimal places. The type of field can be binary,
character, or zoned decimal, which is shown as B, C, and Z.

Internal schema of files before unloading

Length of |Type of Name of
Name |Type Physical physical physical Decimal |secondary
of file of file fields fields field places keys
E$PD Primary E$PDROOT 8 B 0 E$PDLKO1
E$PDCTRL 9 C 0
E$PDLKO1 8 B 0
E$PDLKO2 8 B 0
E$PDLKO3 8 B 0
E$PDDESC 30 C 0
E$PDWQTY 5 z 0
E$PDPRCE 9 z 2
E$PDPGRP 2 C 0
LOGICAL RECORD LENGTH = 87
TOTAL LOGICAL RECORDS = 484
E$PO Primary E$POROOT 8 B 0 none
E$POCTRL 6 C 0
E$POLKO1 8 B 0
E$POTOTL 9 z 2
E$PODATE 5 z 0
LOGICAL RECORD LENGTH = 36
TOTAL LOGICAL RECORDS = 1177
E$ST Related E$STASSM 9 C 0 none
E$PDLKO1 8 B 0
E$STCOMP 9 C 0
E$PDLKO2 8 B
E$STONTY 5 z 0
LOGICAL RECORD LENGTH = 39
TOTAL LOGICAL RECORDS = 1078

338 P26-6260-63

Examples of Unload, Load, and Insert Linkpath functions

Length of |Type of Name of
Name |Type Physical physical physical Decimal |secondary
of file of file fields fields field places keys
E$PL Coded
Related
Base portion E$PLCODE 2 C 0 E$PLSKO1
E$PLES$PO 6 C 0 E$PLSKO02
E$POLKO1 8 B 0
E$PLDATA 31 C 0
LOGICAL RECORD LENGTH = 47
HD portion redefines ESPLDATA
EPLESU 6 C 0
E$SULKO1 8 B 0
E$PLDATE 5 z 0
E$PLFILL 12 C 0
LOGICAL RECORD LENGTH of Redefined portion = 31
LN portion redefines ESPLDATA
EPLEPD 9 C 0
E$SPLONTY 5 z 0
E$PLCOST 9 z 2
E$PLFILL _8 C 0
LOGICAL RECORD LENGTH of Redefined portion = 31
PD portion redefines ESPLDATA
E$PLDELN 2 B 0
E$PLDELD 5 z 0
E$PLDELQ 5 z 0
E$PLDELP 9 C 0
E$PLFILR 10 C 0

LOGICAL RECORD LENGTH of Redefined portion = 31
TOTAL LOGICAL RECORDS =

902

DBA Utilities User's Guide

339

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Internal schema of files after unloading

Length of |Type of Name of
Name |Type Physical physical physical Decimal secondary
of file of file fields fields field places keys
E$PD Primary E$PDROOT 8 B 0 E$PDLKO1
E$PDCTRL 9 C 0
E$PDLKO1 8 B 0
E$PDLKO02 8 B 0
E$PDLKO3 8 B 0
E$PDDESC 30 C 0
E$SPDWQTY 5 z 0
* E$PDPRCE 7 z 0
* E$PDPGRP 12 C 0
* E$PDDES2 20 C 0
* LOGICAL RECORD LENGTH = 115
TOTAL LOGICAL RECORDS = 484
E$PO Primary E$POROOT 8 B 0
E$POCTRL 6 C 0
E$POLKO1 8 B 0
E$SPOTOTL 9 z 2
E$PODATE _5 z 0
LOGICAL RECORD LENGTH = 36
* TOTAL LOGICAL RECORDS = 1200
E$ST Related E$STASSM 9 C 0
E$PDLKO1 8 B 0
E$STCOMP 9 C 0
E$PDLKO2 8 B 0
E$STONTY 5 z 0
* E$STCOMM 20 C 0
* LOGICAL RECORD LENGTH = 59
TOTAL LOGICAL RECORDS = 1078

340

P26-6260-63

Examples of Unload, Load, and Insert Linkpath functions

Length of |Type of Name of
Name |Type Physical physical physical Decimal |secondary
of file of file fields fields field places keys
ES$PL Coded,
Related
Base portion E$PLCODE 2 C 0 E$PLSKO1
E$PLES$PO 6 C 0 E$PLSKO02
E$POLKO1 8 B 0
E$PLDATA 31 C 0
LOGICAL RECORD LENGTH = 47
HD portion redefines ESPLDATA
EPLESU 6 C 0
E$SULKO1 8 B 0
E$PLDATE 5 z 0
E$PLFILL 12 C 0
LOGICAL RECORD LENGTH of Redefined portion = 31
LN portion redefines ESPLDATA
EPLEPD 9 C 0
5 z 0
9 z 2
_8 C 0
LOGICAL RECORD LENGTH of Redefined portion = 31
PD portion redefines ESPLDATA
E$PLDELN 2 B 0
E$PLDELD 5 z 0
E$PLDELQ 5 z 0
E$PLDELP 9 C 0
E$PLFILR 10 C 0

LOGICAL RECORD LENGTH of Redefined portion = 31

* TOTAL LOGICAL RECORDS =

950

DBA Utilities User's Guide

341

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Unloading and loading all of Burry's database files

You unload and reload all of your files to improve performance after many
updates have changed the files' structure. You can determine when you
need to unload in two ways:

¢ When your applications begin finding broken linkpath chains.

¢ When your files are no longer structured for best performance, for
example, when your primary files have many out-of-block synonyms.
You can determine whether you have this problem by executing the
File Statistics function regularly.

Unloading and reloading files have the following benefits:

¢ Repairing broken linkpath chains

¢ Reorganizing the synonym chains in primary files to minimize the
number of out-of-block synonyms

¢ Reorganizing the linkpath chains in related files to optimize access
along the primary linkpath

¢ Reorganizing the secondary key tree structure in the index files
The last function is actually a result of depopulating and repopulating—
steps you must take before and after you unload and load. You execute

four functions when you unload and load: the Depopulate, Unload, Load,
and Sorted-Populate functions.

342 P26-6260-63

Examples of Unload, Load, and Insert Linkpath functions

Sample UCL and control statements

The following UCL and control statements illustrate how to code these
four functions in OS/390.

In VSE, you need to include other run control statements to unload and
load, for example, the RECFORM statement.

The first step in unloading is to depopulate all your secondary keys. The
following UCL is for the Depopulate function:

CONTROL(BEG N)

ENV- DESC (BURRYENN)

SCHEMA (BURRYSCH)

LI ST (ALL)

DATA- FORMAT (HEX CHAR)

DI AGNOSTI CS (EXTENDED)
FUNCTI O\(DEPOPULATE)

STATI STI CS (ALL)

FI LE (E$BR)

FI LE (E$CU)

FILE (ES$IL)

FILE (E$IN)

FILE (E$M.)

FI LE (E$PD)

FI LE (ES$PL)

FI LE (E$SK)

FI LE (E$SU)

FI LE (E$VS)

*

CONTROL(END)

DBA Utilities User's Guide 343

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

344

After you depopulate your secondary keys, you can unload your files. The
following input includes the CSIPARM file, auxiliary file, run control, and
file control statements to unload all of Burry's database files and clear all
linkpaths:

/1 CSI PARM

DI RECTORY=(SCHEMA=CSTASCHM ENVDESC=CSTANONE)
REAL M=(SCHEMA=BURRYSCH, ENVDESC=BURRYENN)

END.

/*

I1*

/1 CSUAUX

FI LE=ESI L
FI LE=E$SMB
FI LE=ESML
FI LE=ESPL
FI LE=E$SK
FI LE=E$ST
FI LE=E$BR
FI LE=E$SCU
FI LE=ES$I N
FI LE=ESMF
FI LE=E$PD
FI LE=E$SPG
FI LE=E$SPO
FI LE=ESRG
FI LE=E$SU
FI LE=E$VS
/*

/1 SYSIN

RELATED: E$| LESMBESM_E$PLESSKE$SSTEND
PRI MARY: EBRESCUES| NE$SMFE$SPDE$SPGESPOESRGES SUESVSEND.

w*

DD *
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE

m*

SORTNAME=SORT

DUMP=YES

CSI PARM | NPUT

AUXI LI ARY | NPUT FILE

RUN CONTROL RECORDS

P26-6260-63

Examples of Unload, Load, and Insert Linkpath functions

/ *

I1*

/1 PARM DD *

E$I LLI NKPATH=E$| NLKO1
E$I LALL. END.

ESMBLI NKPATH=E$BRLKO1
ESMBALL. END.

ESMLLI NKPATH=E$MFLKO1
ESMLALL. END.

E$SPLLI NKPATH=E$POLKO1
ESPLALL. END.

E$SKLI NKPATH=E$PDLKO3
E$SKALL. END.

E$STLI NKPATH=E$PDLKO1
E$SSTALL. END.

E$BRALL. END.

E$BRBLANK- LI NKS=LKO1END.
ESCUALL. END.

E$I NALL. END.

E$| NBLANK- LI NKS=LKO1END.
ESMFALL. END.

ESMFBLANK- LI NKS=LKO1END.
E$SPDALL. END.

E$SPDBLANK- LI NKS=LKO1LKO2LKO3END.
ESPGALL. END.

E$SPOALL. END.

E$SPOBLANK- LI NKS=LKO1END.
ESRGALL. END.

E$SSUALL. END.

E$SUBLANK- LI NKS=LKO1END.
E$SVSALL. END.

DBA Utilities User's Guide

FI LE CONTROL RECORDS

345

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

346

After you unload your files, you can reload them. The following input
includes CSIPARM file, auxiliary file, run control, and file control

statements for the Load function:

/1 CSI PARM DD *

DI RECTORY=(SCHEMA=CSTASCHM ENVDESC=CSTANONE) ,
REAL M=(SCHEMA=BURRYSCH, ENVDESC=BURRYENN)

END.

| *

/1*

/1 CSUAUX

FI LE=ES$I L
FI LEEE$SMB
FI LESE$SM.
FI LESE$PL
FI LEFE$SK
FI LE=E$ST
FI LE=E$BR
FI LESE$SCU
FI LESE$I N
FI LE=E$SMF
FI LE=E$PD
FI LE=E$PG
FI LE=E$PO
FI LE=ESRG
FI LESE$SU
FI LESE$VS
| *

DD *
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE
LOAD=NATI VE

CSI PARM | NPUT

AUXI LI ARY | NPUT FI LE

P26-6260-63

Examples of Unload, Load, and Insert Linkpath functions

I1*

I1* RUN CONTROL AND
/1 SYSIN DD * FI LE CONTROL RECORDS
RELATED: E$| LESVMBESM_E$PLESSKESSTEND.

PRI MARY: EBRESCUES| NE$SMFE$SPDESPGES POESRGES SUES$VSEND.
SCHEMA=BURRYSCH

SORTNAME=SORT

E$I LLI NKPATH=E$| NLKO1

ES$I LALL. END.

ESMBLI NKPATH=E$BRLKO1

ESMBALL. END.

ESM_LI NKPATH=E$MFLKO1

ESMLALL. END.

E$SPLLI NKPATH=E$POLKO1

ESPLALL. END.

E$SKLI NKPATH=E$PDLKO3

E$SKALL. END.

E$STLI NKPATH=E$PDLKO1

E$SSTALL. END.

E$BRALL. END.

ESCUALL. END.

E$I NALL. END.

ESMFALL. END.

E$SPDALL. END.

ESPGALL. END.

E$SPOALL. END.

ESRGALL. END.

E$SSUALL. END.

ESVSALL. END.

/ *

DBA Utilities User's Guide 347

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

After you reload your files, you need to repopulate all your index files with
secondary keys. The following UCL is for the Sorted-Populate function:

CONTROL(BEG N)

ENV- DESC (BURRYENN)

SCHEMA (BURRYSCH)

LI ST (ALL)

DATA- FORMAT (HEX CHAR)

DI AGNOSTI CS (EXTENDED)
FUNCTI ON (SORTED- POPULATE)
STATI STI CS (ALL)

FI LE (E$BR)

FI LE (E$CU)

FILE (ES$IL)

FILE (E$IN)

FILE (E$M.)

FI LE (E$PD)

FI LE (ES$PL)

FI LE (E$SK)

FI LE (E$SU)

FI LE (E$VS)

*

CONTROL(END)

348 P26-6260-63

Examples of Unload, Load, and Insert Linkpath functions

Sample listings

The following listings illustrate the output you receive as a result of the
sample UCL and statements:

TTTTTTTT [AEREN SSSSSSS
TTTTTTTT [AEREN SSSSSSSSS
T Il SS SS
T I SS
T Il SSSSSSSS
T I SSSSSSSS
T Il SS
T I SS SS
T [AEREN SSSSSSSSS
T LI SSSSSSS
DDDDDDDD ~ BBBBBBBB AAA
DDDDDDDDD BBBBBBBBB AAAAA
DD DD BB BB AA AA
DD DD BB BB AA AA
DD DD BBBBBBBB AA AA
DD DD BBBBBBBB AAAAAAAAA
DD DD BB BB AAAAAAAAA
DD DD BB BB AA AA
DDDDDDDDD BBBBBBBBB ~ AA AA
DDDDDDDD BBBBBBBB ~ AA AA
w W TTTTTTTT LErrn LL LErrn TTTTTTTT e EEEEEEEEE =~ SSSSSSS
wJ W TTTTTTTT [AEREN LL [AEREN TTTTTTTT [AEREN EEEEEEEEE SSSSSSSSS
w w T I LL I T Il EE SS SS
wJ wJ T I LL I T I EE SS
w w T I LL I T Il EEEEEE SSSSSSSS
wJ wJ T I LL I T I EEEEEE SSSSSSSS
w w T I LL I T Il EE SS
wJ uwJ T I LL I T I EE SS SS
UUUUUUUUJ T LErrn LLLLLLLLL rrrred T e EEEEEEEEE SSSSSSSSS
UUUUUUU T [AEREN LLLLLLLLL Trrrnd T [AEREN EEEEEEEEE =~ SSSSSSS
FUNCTI ON: UNL OAD
ENVI RONMENT:
RELATED: E$| LESMBESM_E$PLESSKESSTEND. 00030000
PRI MARY: EBRESCUES! NEMFEPDESPGES POE$SRGES SUESVSEND. 00020000
SORTNAME=SCRT 00050000
DUVP=YES 00060000
TI'S DATABASE ADM NI STRATCOR UTI LI TI ES Cl NCOM SYSTEMS, | NC. 88/ 309 13:21: 24
PAGE 2CSUAUX FI LE RECORDS:
FI LESES$I L LOAD=NATI VE 00030000
FI LESESMB LOAD=NATI VE 00030000
FI LESESM. LOAD=NATI VE 00030000
FI LE=E$PL LOAD=NATI VE 00030000
FI LEFE$SK LOAD=NATI VE 00030000
FI LE=E$ST LOAD=NATI VE 00030000
FI LESE$BR LOAD=NATI VE 00030000
FI LESE$SCU LOAD=NATI VE 00030000
FI LESESI N LOAD=NATI VE 00030000
FI LE=ESMF LOAD=NATI VE 00030000
FI LESESPD LOAD=NATI VE 00030000
FI LESE$SPG LOAD=NATI VE 00030000
FI LESESPO LOAD=NATI VE 00030000
FI LESE$SRG LOAD=NATI VE 00030000
FI LESE$SU LOAD=NATI VE 00030000
FI LE=E$VS LOAD=NATI VE 00030000
END OF CSUAUX FI LE RECORDS.
NO ERRORS ENCOUNTERED | N THE CSUAUX FI LE.
BEG NNI NG THE UNLOAD FUNCTI ON. E$I LLI NKPATH=E$| NLKO1

ES$I LALL. END.
E$I L UNLOADED SUCCESSFULLY
NUMBER OF RECORDS UNLQADED = 217

DBA Utilities User's Guide 349

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

E$MBLI NKPATH=E$BRLKO1

ESMBALL. END.

E$MB UNLQADED SUCCESSFULLY
NUMBER OF RECORDS UNLQADED =

E$SM_LI NKPATH=E$MFLKO1

ESMLALL. END.

E$M. UNLQADED SUCCESSFULLY
NUMBER OF RECORDS UNLQADED =

E$SPLLI NKPATH=E$POLKO1

ESPLALL. END.

E$PL UNLOADED SUCCESSFULLY
NUMBER OF RECORDS UNLQADED =

E$SKLI NKPATH=E$PDLKO3

E$SKALL. END.

E$SK UNLOADED SUCCESSFULLY
NUMBER OF RECORDS UNLQADED =

E$STLI NKPATH=E$PDLKO1

E$STALL. END.

E$ST UNLOADED SUCCESSFULLY
NUMBER OF RECORDS UNLQADED =

E$BRALL. END.

E$SBRBLANK- LI NKS=LKO1END.

E$BR UNLOADED SUCCESSFULLY
NUMBER OF RECORDS UNLQADED =

E$CUALL. END.

E$CU UNLOADED SUCCESSFULLY
NUMBER OF RECORDS UNLQADED =

E$I NALL. END.

E$| NBLANK- LI NKS=LKO1END.

E$I N UNLOADED SUCCESSFULLY
NUMBER OF RECORDS UNLQADED =

ESMFALL. END.

E$SMFBLANK- LI NKS=LKO1END.

E$MF UNLOADED SUCCESSFULLY
NUMBER OF RECORDS UNLQADED =

E$PDALL. END.

E$PDBLANK- LI NKS=LKO1LKO2LKO3END.
E$PD UNLOADED SUCCESSFULLY
NUMBER OF RECORDS UNLQADED =

ESPGALL. END.

E$PG UNLOADED SUCCESSFULLY
NUMBER OF RECORDS UNLQADED =

E$POALL. END.

E$SPOBLANK- LI NKS=LKO1END.

E$PO UNLQADED SUCCESSFULLY
NUMBER OF RECORDS UNLQADED =

E$SRGALL. END.

E$RG UNLOADED SUCCESSFULLY
NUMBER OF RECORDS UNLQADED =

E$SSUALL. END.

E$SUBLANK- LI NKS=LKO1END.

E$SU UNLOADED SUCCESSFULLY
NUMBER OF RECORDS UNLQADED =

E$VSALL. END.

E$VS UNLOADED SUCCESSFULLY
NUMBER OF RECORDS UNLQADED =

UNLQAD FUNCTI ON COWPLETE.

FUNCTI ON LOAD

ENVI RONMENT

RELATED: E$| LESMBESM_E$SPLESSKESSTEND.

29

78

122

2,628

67

39

43

96

29

88

26

10

14

191

PRI MARY: EBRESCUES! NEMFEPDESPGES POESRGES SUESVSEND.

SCHEMA=BURRYSCH
SORTNAME=SCRT

00030000
00020000
00050000
00050000

350

P26-6260-63

Examples of Unload, Load, and Insert Linkpath functions

CSUAUX FI LE RECORDS:

FI LESES$I L LOAD=NATI VE 00030000
FI LESESMB LOAD=NATI VE 00030000
FI LESESM. LOAD=NATI VE 00030000
FI LE=E$PL LOAD=NATI VE 00030000
FI LESE$SK LOAD=NATI VE 00030000
FI LE=E$ST LOAD=NATI VE 00030000
FI LESE$BR LOAD=NATI VE 00030000
FI LESE$SCU LOAD=NATI VE 00030000
FI LEESI N LOAD=NATI VE 00030000
FI LE=ESMF LOAD=NATI VE 00030000
FI LESESPD LOAD=NATI VE 00030000
FI LESE$SPG LOAD=NATI VE 00030000
FI LESESPO LOAD=NATI VE 00030000
FI LESE$SRG LOAD=NATI VE 00030000
FI LESE$SU LOAD=NATI VE 00030000
FI LE=E$VS LOAD=NATI VE 00030000

END OF CSUAUX FI LE RECORDS.

NO ERRORS ENCOUNTERED | N THE CSUAUX FI LE.
BEG NNI NG THE LOAD FUNCTION. (ES$IL)

E$I LLI NKPATH=E$I NLKO1

E$I LALL. END.

E$I L LOADED SUCCESSFULLY - COUNT = 217(E$MB)
ESMBLI NKPATHEESBRLKO1

E$SMBALL. END.

E$MB LOADED SUCCESSFULLY - COUNT = 29(ESM.)
E$SM_LI NKPATHEESMFLKO1

ESMLALL. END.

E$M. LOADED SUCCESSFULLY - COUNT = 78(E$PL)
ESPLLI NKPATHEESPOLKO1

E$PLALL. END.

E$PL LOADED SUCCESSFULLY - COUNT = 122

E$PL - SECONDARY LINKS | NSERTED SUCCESSFULLY - COUNT = 26(E$SK)
E$SKLI NKPATH=E$PDLKO3

E$SKALL. END.

E$SK LOADED SUCCESSFULLY - COUNT = 2,628(E$ST)
E$STLI NKPATH=E$PDLKO1

E$SSTALL. END.

E$ST LOADED SUCCESSFULLY - COUNT = 67

E$ST - SECONDARY LINKS | NSERTED SUCCESSFULLY - COUNT = 67
(E$BR)

E$BRALL. END. OUT- OF- BLOCK SYNONYM RECORD COUNT = 0
E$BR LOADED SUCCESSFULLY - COUNT = 39
(EsQU)

E$CUALL. END. OUT- OF- BLOCK SYNONYM RECCRD COUNT = 0
E$CU LOADED SUCCESSFULLY - COUNT = 43(E$IN)

E$I NALL. END. OUT- OF- BLOCK SYNONYM RECCRD COUNT = 0
E$I N LOADED SUCCESSFULLY - COUNT = 96(ESMF)
ESMFALL. END. OUT- OF- BLOCK SYNONYM RECCRD COUNT = 0
E$MF LOADED SUCCESSFULLY - COUNT = 29(E$PD)
E$SPDALL. END. OUT- OF- BLOCK SYNONYM RECCRD COUNT = 0
E$PD LOADED SUCCESSFULLY - COUNT = 88(E$PG)
E$SPGALL. END. OUT- OF- BLOCK SYNONYM RECCRD COUNT = 0
E$PG LOADED SUCCESSFULLY - COUNT = 6(E$PO)
E$SPQALL. END. OUT- OF- BLOCK SYNONYM RECCRD COUNT = 0
E$PO LOADED SUCCESSFULLY - COUNT = 26(E$RG)
ESRGALL. END. OUT- OF- BLOCK SYNONYM RECCRD COUNT = 0
E$RG LOADED SUCCESSFULLY - COUNT = 10(E$SU)
E$SUALL. END. OUT- OF- BLOCK SYNONYM RECCRD COUNT = 0
E$SU LOADED SUCCESSFULLY - COUNT = 14(E$VS)
E$VSALL. END. OUT- OF- BLOCK SYNONYM RECCRD COUNT = 0
E$VS LOADED SUCCESSFULLY - COUNT = 191

LOAD FUNCTI ON COVPLETE.

DBA Utilities User's Guide 351

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Unloading, changing, and loading files

You can unload and reload to make changes to the structure of some
files. In addition to changing the structure of the file, you also gain the
same benefits as when you unload and reload them; that is, you repair
broken linkpath chains, minimize the number of out-of-block synonyms,
optimize access along primary linkpaths, and reorganize tree structures.

In this example, you are making three changes to the primary file E$PD:

¢ Decreasing the size of element ESPDPRCE from nine to seven bytes
by removing the two zoned decimals from the front of the element.

¢ Adding the 20-character element ESPDDES?2 to the end of the
record.

¢ Increasing the size of element ESPDPGRP from two to 12 bytes by
adding ten characters to the front of it.

You are making one change to the related file E$ST: adding a
20-character element, ESSTCOMM, to the end of it.

You are making one change to the primary file E$PO: increasing its size
from 1177 to 1200 total logical records.

You are making one change to the primary file E$PL: increasing its size
from 902 to 950 total logical records.

To make these changes, you perform the same four steps as in the first
example where you unloaded all files: depopulate, unload, load, and
populate. However, in this example, you add another step after the Load
function: you insert linkpath information into the E$SU file. Thus, you
execute five functions. The following UCL and control statements show
each step in OS/390.

In VSE, you need to include other run control statements to unload and
load, like the RECFORM statement.

352 P26-6260-63

Examples of Unload, Load, and Insert Linkpath functions

Depopulating files
The first step is to depopulate the secondary keys in the files E$PD and
E$PL. You do not need to depopulate the other two files because they
have no secondary keys. The UCL for the Depopulate function follows:
(mono)
CONTROL(BEG N)
ENV- DESC (BURRYENN)
SCHEMA (BURRYOLD)
LI ST (ALL)
DATA- FORVAT (HEX CHAR)
DI AGNCSTI CS (EXTENDED)
FUNCTI ON(DEPOPULATE)
STATI STI CS (ALL)
FI LE (E$PD)
FI LE (E$PL)

*

CONTROL(END)

DBA Utilities User's Guide 353

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

354

Unloading files
The second step is to unload the four files.

1. Tounload E$PD, you complete the following steps:

a.

Clear linkpaths LKO1 and LKO2. You do not clear linkpath LK03
because it connects to a file that is not unloaded, E$SK. To clear
linkpaths LKO1 and LKO2 implicitly, you do not include them in
the element list. Although not shown in this example, you could
have included the linkpaths in the element list and coded them in
the BLANK-LINKS parameter to clear the linkpaths explicitly.

Increase the size of the ESPDPGRP element by adding *FILL=10
to the element list.

Add the element E3PDDES?2 by adding *FILL=20 to the element
list.

Delete the two zoned decimals from the E3PDPRCE element by
coding exit program USER20 or USER30. Use an exit program
to shift the remaining seven zoned decimals in the element to the
left. They cover up the first two decimals which essentially
deletes them. The following figure shows what you would see in
the OUTFILE data record before your exit program:

P26-6260-63

Examples of Unload, Load, and Insert Linkpath functions

File RQLOC

Name Value E$PDCTRL E$PDLKO3 E$PDDESC

\ \ v v v
!:III|III|IIIIIIII|:IIIIIII|IIIIIIlIlIIII Lttty
E$PDDESC E$PDWQTY *FILL=10 E$PDPGRP *FILL=20 E$PDPRCE

v v v \
[|I [1] |/I/I/I/I/I/I/I/I/ I/| | |/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/| AR |
1
To be

Shifted Left

The following figure shows what your OUTFILE looks like after your
exit program.

Fle RQLOC
Name Value E$PDCTRL E$PDLKO3 E$PDDESC
\ v v v v
!:||||||||IIIIIII||:||||||I||I|||Ill|||||II||I|||I|II/
E$PDDESC E$PDWQTY E$PDGRP E$PDDES2 E$PDPRCE Ignored
v v v v v v

|| I|I [11 |/I’I’I’I’I/I’I’I’I’I | |’I’I/I’I’I/I’I’I/I’I’I/I/l’I/I’l/I/I’I’ RN ’ | !

Was
Shifted Left

You must use an exit program because you cannot use *FILL to
delete elements in the Version 2 Load function. In the Version 1 Load
function, you could code *FILL=02 instead of the exit program.

2. Tounload E$PO, complete the following steps:

a. Code ELEMENT (ALL) because you are not changing any
elements.

b. Since you coded ALL in the element list, code E$POLKOL1 in the
BLANK-LINKS statement.

3. Tounload E$ST, code *FILL=20 to add the E$STCOMM element.
4. To unload E$PL, you can list the record codes separately or as a

single element list. This example shows them as a single element list
with ALL elements coded.

DBA Utilities User's Guide 355

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

356

The following CSIPARM file, auxiliary file, run control, and file control

statements illustrate these steps:
/1CSI PARM DD *

DI RECTORY=(SCHEMA=CSTASCHM ENVDESC=CSTANONE) ,

REAL M=(SCHEMA=BURRYQOLD, ENVDESC=BURRYENN) ,
END.

/ *

I1*

/1 CSUAUX DD *

FI LE=ESPL LOAD=NATI VE

FI LE=ESST LOAD=NATI VE

FI LE=E$SPD LOAD=NATI VE

FI LE=E$SPO LOAD=NATI VE

/ *

I1*

/1 SYSIN DD *

RELATED: E$PLESSTEND.

PRI MARY: EPDEPOEND.

NEW SCHENMA=BURRYSCH, NEW ENVDESC=BURRYENN
SORTNAME=SORT

DUMP=YES

/ *

I1*

/1 PARM DD *

E$SPLLI NKPATH=E$POLKO1

ESPLALL. END.

E$STLI NKPATH=E$PDLKO1
ESSTESSTASSMESSTONTYESSTCOVP* FI LL=20END.

CSI PARM | NPUT

AUXI LI ARY | NPUT FILE

RUN CONTROL RECORDS

FI LE CONTROL RECORDS

EPDESPDCTRLE$PDLKO3E$PDDESCESPDWOTY* FI LL=10E$PDPGRPE$PDPRCEEND.

E$SPOALL. END.
E$SPOBLANK- LI NKS=LKO1END.
/ *

P26-6260-63

Examples of Unload, Load, and Insert Linkpath functions

Loading files
The third step is to load the four files.

1. Load E$PD using the same element list that you used in the Unload
function except you leave out the *FILL entries and add the element
E$PDDES2.

2. Load E$PO by coding ALL in the element list.
3. Load E$ST by replacing *FILL with the element E$STCOMM.
4. Load E$PL by coding ALL in the element list.

The following input statements illustrate these steps:

/1 CSI PARM DD * CSI PARM | NPUT
DI RECTORY=(SCHEMA=CSTASCHM ENVDESC=CSTANONE) ,

REAL M=(SCHEMA=BURRYSCH, ENVDESC=BURRYENN) ,

END.

/ *

I1*

/1 CSUAUX DD * AUXI LI ARY | NPUT FILE
FI LE=ESPL LOAD=NATI VE

FI LE=ESST LOAD=NATI VE

FI LE=E$SPD LOAD=NATI VE

FI LE=E$SPO LOAD=NATI VE

/ *

I1*

I1* RUN CONTROL AND
/1 SYSIN DD * FI LE CONTROL RECORDS
RELATED: E$PLESSTEND.

PRI MARY: EPDEPOEND.

SCHEMA=BURRYSCH

SORTNAME=SORT

E$SPLLI NKPATH=E$POLKO1

ESPLALL. END.

E$STLI NKPATH=E$PDLKO1

ESSTESSTASSMESSTONT YE$STCOVPESSTCOMVEND.

EPDESPDCTRL E$PDL K03 E$PDDESCES PDWQT YES PDPGRPES$ PDDES2 E$ PDPRCEEND.
E$SPOALL. END.

/ *

DBA Utilities User's Guide 357

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

358

Inserting linkpath data for a file that was not loaded

The fourth step is to insert linkpath data. When you unload and load the
file E$PL, linkpath information is created for the linkpaths E$POLKO01 and
E$SULKO1. When you load the file E$PO, the Load function inserts the
linkpath information for EBPOLKO1. Since you did not load the file E$SU,
you must use the Insert Linkpath function to insert the information for
E$SULKO1. The following CSIPARM file, auxiliary file, and run control

statements illustrate this step:

/1 CSI PARM DD *

DI RECTORY=(SCHEMA=CSTASCHM ENVDESC=CSTANONE) ,
REAL M=(SCHEMA=BURRYSCH, ENVDESC=BURRYENN) ,

END.
/ *

11+

//CSUAUX DD *

FI LESESPL LOAD=NATI VE
FI LESE$SST LOAD=NATI VE
FI LESESPD LOAD=NATI VE
FI LESESPO LOAD=NATI VE
/ *

1+

/ISYSIN DD *

| NSERT FI LES=(E$SU.)

, CLEARLKS=(E$SULKO1.)
, END.

/ *

CSI PARM | NPUT

AUXI LI ARY | NPUT FILE

RUN CONTROL RECORDS

P26-6260-63

Examples of Unload, Load, and Insert Linkpath functions

Populating files

The fifth step is to populate the secondary keys for the files E$PD and
E$PL. You do not need to populate the other two files because they had
no secondary keys. The UCL for the Sorted-Populate function follows:

CONTROL(BEG N)
.
ENV- DESC (BURRYENN)
SCHEMA (BURRYSCH)
LI ST (ALL)
DATA- FORMAT (HEX CHAR)
DI AGNOSTI CS (EXTENDED)
.
FUNCTI ON (SORTED-
POPULATE)
STATI STI CS (ALL)
FI LE (E$PD)
FI LE (E$PL)

*

CONTROL(END)

DBA Utilities User's Guide 359

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

Sample listing

The following listing shows the output you receive as a result of the
sample UCL and statements:

TTTTTTTT [AERNE SSSSSSS

TITTTTTT [AERNE SSSSSSSSS

T I SS Ss

T I SS

T I SSSSSSSS

T I SSSSSSSS

T I S

T I SS SS

T [AERNE SSSSSSSSS

T L SSSSSSS
DDDDDDDD BBBBBBBB AAA
DDDDDDDDD BBBBBBBBB AAAAA
DD DD BB BB AA AA
DD DD BB BB AA AA
DD DD BBBBBBBB AA AA
DD DD BBBBBBBB AAAAAAAAA
DD DD BB BB AAAAAAAAA
DD DD BB BB AA AA
DDDDDDDDD BBBBBBBBB ~ AA AA
DDDDDDDD BBBBBBBB ~ AA AA
uwJ W TTTTTTTT [AERNE LL [AERNE TTTTTTTT
uw W TTTTTTTT [AERNE LL LErnn TITTTTTT
uw uwJ T I LL I T
uw uw T I LL I T
uwJ uw T I LL I T
uw uw T I LL I T
uwJ uw T I LL I T
uwJ uwJ T I LL I T
UUUUUUUUU T [AERNE LLLLLLLLL [AERNE T
UuuuuuJ T [AERNE LLLLLLLLL [ARRAR! T

FUNCTI ON: U
ENVI RONMENT:

RELATED: E$SPLESSTEND.
PRI MARY: EPDEPOEND.
NEW SCHEMA=BURRYSCH, NEW ENVDESC=BURRYENN
SORTNAME=SORT
DUMP=YES

CSUAUX FI LE RECORDS:

FI LESE$SPL LOAD=NATI VE

FI LE=E$ST LOAD=NATI VE

FI LESE$PD LOAD=NATI VE

FI LESESPO LOAD=NATI VE

END OF CSUAUX FI LE RECORDS.

NO ERRORS ENCOUNTERED | N THE CSUAUX FI LE.

CSUAUX FI LE RECORDS:

FI LESE$SPL LOAD=NATI VE

FI LESE$SST LOAD=NATI VE

FI LE=E$PD LOAD=NATI VE

FI LEEE$PO LOAD=NATI VE

END OF CSUAUX FI LE RECORDS.

NO ERRORS ENCOUNTERED | N THE CSUAUX FI LE.

BEG NNI NG THE UNLOAD FUNCTI ON.
E$SPLALL. END.

EEEEEEEEE
EEEEEEEEE

EEEEEEEEE
EEEEEEEEE

SSSSSSS
SSSSSSSSS
ss ss
ss
SSSSSSSS

SSSSSSSS

ss
ss ss
SSSSSSSSS
SSSSSSS(ep

ESPLLI NKPATH=E$POLKO1

E$SPL UNLOADED SUCCESSFULLY
NUMBER OF RECORDS UNLOADED =

ESSTLI NKPATH=E$PDLKO1
E$STESSTASSVESSTONTYESSTCOMP* FI LL=20END.

E$ST UNLOADED SUCCESSFULLY

NUMBER OF RECORDS UNLOADED =
EPDEPDCTRLE$PDLKO3E$PDDESCE$SPDWOTY* FI LL=10E$PDPGRPES$PDPRCEEND.

E$PD UNLOADED SUCCESSFULLY

NUMBER OF RECORDS UNLOADED =

E$SPOALL. END.
ESPOBLANK- LI NKS=LKO1END.

E$PO UNLOADED SUCCESSFULLY
NUMBER OF RECORDS UNLOADED =

UNLOAD FUNCTI ON COVPLETE.

122

67

88

26

360

P26-6260-63

Examples of Unload, Load, and Insert Linkpath functions

TITTTTTT [ARRNE SSSSSSS
TTTTTTTT [AERNE SSSSSSSSS
T I SS SS
T I SS
T I SSSSSSSS
T I SSSSSSSS
T I SS
T I SS SS
T [ARRNE SSSSSSSSS
TT IR SSSSSSS
DDDDDDDD ~ BBBBBBBB AAA
DDDDDDDDD BBBBBBBBB AAAAA
DD DD BB BB AA AA
DD DD BB BB AA AA
DD DD BBBBBBBB AA AA
DD DD BBBBBBBB AAAAAAAAA
DD DD BB BB AAAAAAAAA
DD DD BB BB AA AA
DDDDDDDDD BBBBBBBBB ~ AA AA
DDDDDDDD BBBBBBBB ~ AA AA
uw W TTTTTTTT [ARRNE LL [AERNE TITTTTTT [AERNE EEEEEEEEE
uw W TTTTTTTT [AERNE LL [AERNE TTTTTTTT [AERNE EEEEEEEEE
uw uw T I LL I T I EE
uw uwJ T I LL I T I EE
uw uw T I LL I T I EEEEEE
uw uw T I LL I T I EEEEEE
uw uw T I LL I T I EE
uwJ uJ T I LL I T I EE
UUUUUUUUU T [ARRNE LLLLLLLLL [AERNE T [AERNE EEEEEEEEE
UUUuuuJ T [ARRER LLLLLLLLL [AERNE TT [AERNE EEEEEEEEE
FUNCTI ON: LOAD

ENVI RONME NT : RELATED: ESPLE$STEND.
PRI MARY: EPDEPOEND.

SCHEMA- BURRYSCH

SORTNAME- SORT

CSUAUX FI LE RECORDS:

FI LE- ESPL LOAD- NATI VE

FI LE- ESST LOAD- NATI VE

FI LE- ESPD LOAD- NATI VE

FI LE- ESPO LOAD- NATI VE

END OF CSUAUX FI LE RECORDS.

NO ERRORS ENCOUNTERED | N THE CSUAUX FI LE.

BEG NNI NG THE LOAD FUNCTI ON. (E$PL)

E$PLLI NKPATH- ESPOLKO1

ESPLALL. END.

E$PL LOADED SUCCESSFULLY - COUNT - 122

ESPL - SECONDARY LI NKS | NSERTED SUCCESSFULLY - COUNT - 28(E$ST)
E$STLI NKPATH- ESPDLKO1

E$STESASSMESSTONT YE$SSTCOMPESSTCOMVEND.

E$ST LOADED SUCCESSFULLY - COUNT - 67

ESPL - SECONDARY LINKS | NSERTED SUCCESSFULLY - COUNT - 67(E$PD)
EPDEPC[TRLE$PDLKO3E$PDDESCE$PEN[FYE$PDPGRPE$PDDESZE$PDPRCEEND

QUT- OF- BLOCK SYNONYM RECORD - COUNT -

E$PD - LOADED SUCCESSFULLY - COUNT - 88(E$PO)
ESPOALL. END. QUT- OF- BLOCK SYNONYM RECORD COUNT 0
E$PO LOADED SUCCESSFULLY - COUNT - 26LOAD FUNCTI ON COVPLETE.

SSSSSSS
SSSSSSSSS
SS SSs
SS
SSSSSSSS

SSSSSSSS

SS
SS SS
SSSSSSSSS
SSSSSSS

DBA Utilities User's Guide

361

Chapter 11 Coding the Version 2 Unload, Load, and Insert Linkpath functions

TITITTIT LIl SSSSSSS
TTITITTTT LI SSSSSSSSS
T I ss ss
T I ss
T I SSSSSSSS
T I SSSSSSSS
T I ss
T I ss SS
T N SSSSSSSSS
T 1 SSSSSSS
DDDDDDDD — BBBBBBBB AAA
DDDDDDDDD BBBBBBBBB ~ AAAAA
DD DD BB BB AA AA
DD DD BB BB AA AA
DD DD BBBBBBBE AA AA
DD DD BBBBBBBB AAAAAAAAA
DD DD BB BB AAAAAAAAA
DD DD BB BB AA AA
DDDDDDDDD BBBBBBBBB AA AA
DDDDDDDD ~ BBBBBBBB AA AA
w W TTTTTITT LI LL 1 TITTTTIT LIl EEEEEEEEE SSSSSSS
w W TTTTTITT LI LL I TTITITITT LI EEEEEEEEE ~ SSSSSSSSS
w w T I LL I T I ss ss
w w T I LL I T I EE ss
w w T I LL I T I EEEEEE SSSSSSSS
w w T I LL I T I EEEEEE SSSSSSSS
w w T I LL I T I EE ss
u T I LL I T I EE ss ss
UUUUUUUUU TT T LLLLLLLLL 111111 TT T EEEEEEEEE SSSSSSSSS
UUUUUUU T 1 LLLLLLLLL 11100 T 1 EEEEEEEEE ~ SSSSSSS
FUNCTI ON: I NSERT LI NKPATH
ENVI RONMENT:
| NSERT FI LES=(E$SU.) X
, CLEARLKS=(E$SULKO1.) X

, END. CSUAUX FI LE RECORDS:
FI LEE$SPL LOAD=NATI VE
FI LESE$SST LOAD=NATI VE
FI LE=E$PD LOAD=NATI VE
FI LESE$PO LOAD=NATI VE

END OF CSUAUX FI LE RECORDS.
NO ERRORS ENCOUNTERED | N THE CSUAUX FI LE. UTL-000 ** NO EDI T ERRORS **

UTL-000 ** BEG NNI NG THE | NSERT LI NKPATH FUNCTI ON.
UTL- 075 FILE NOT SPECI FI ED TO BE UPDATED; SKIPPING THI S FI LE **E$PD**
UTL- 075 FILE NOT SPECI FI ED TO BE UPDATED; SKIPPING THI S FILE **E$PO**UTL- 092 COUNT OF RECORDS UPDATED **** %% x Qg *

UTL- 093 PROCESSI NG COMPLETE FOR FI LE **E$SU**UTL- 000 ** | NSERT LI NKPATH FUNCTI ON COMPLETE.

362 P26-6260-63

12

Coding the Print function

Use the Print function when you want to print records from a database
file. For related files, you may not print linkpaths. For primary files, you
may print linkpaths, but you may not print root fields.

Coding the UCL for the Print function

After you code the control section as shown in “Coding the control
section” on page 57, you can code the Print function as shown in the
following format. For UCL examples, see “Print examples” on page 377.

FUNCTION (PRINT)

[STANDARD-EXIT (exit-name)]

FILE (ALL Ij)

Bne modery”
a [(READO O
§)PEN MODE (SUPD D) 0
0 (suPDU
0 UPDY

INO O, O
DIiLOSE(E(D)D

DBA Utilities User's Guide 363

Chapter 12 Coding the Print function

364

(DIRECT O

UALIFIER ([SERIAL 9

FSEQUENTIALH

[LINKPATH (access-linkpath)]
a [D'dec-string' OO
%EY(5<'hex—string' 5%

H ' char-string'HH

[RRN (record-rrn)]

IIDIZII:lI:H:II:II:lI:H:II:lI:H:II:IDDDDDDDDDDDDDDDDDDDDDD%:ID

LL
ECORD ([AD—
Tecor

DDDDDD%D

0 dow-rrn 0 B
IRRN - RANGE (3 -high-rrn 90
H How-rrn - -high-rrn g H

O m 0, o
MAXIMUM (H oo
0 ecord-countg

[CRITERIA (elementi[element: ,...,

d—codeg)

CALL
ELEMENT (o0

OOoOoOOoooooooooooooooooooonooooooogogo

element.] .operator. datavalue: 0
[.datavalue: ...datavalues]end.) B

B

O

OooOoooOood

Oodd
N—r

relement-list

P26-6260-63

Coding the UCL for the Print function

FUNCTION (PRINT)

Description Required. Invokes the Print function.

STANDARD-EXIT (exit-name)
Description Optional. Names an exit program you want to invoke.
Format 1-8 alphanumeric characters. The first character must be alphabetic.
Considerations

¢ If you code this statement, you must put it before the FILE
statements.

¢ You must make your exit program available to be loaded by the
function. That is, it must reside in your execution library.

¢ Only one exit at a time resides in memory. If you code a new exit
name in a subsequent function, the function deletes the current exit
before it loads the new exit.

LL
FILE (? B)
ile-namepj

Description Required. Indicates the file you want printed.
Format 4 alphanumeric characters. The first character must be alphabetic.
Considerations
¢ If you code FILE (ALL), the function prints the files in alphabetical
order with primary files first and then the related files. A message

stating you cannot print index files precedes the primary files.

¢ If you code FILE (ALL), the function prints all your PDM files in the
schema. To print Directory files, code FILE (file-name).

¢ You cannot code FILE (file-name-list).

DBA Utilities User's Guide 365

Chapter 12 Coding the Print function

[READ[]
A
HUPD
SUPDL
HFUPDE

OPEN - MODE ()

Description Optional. Indicates how you want the function to open the file.

Default READ

Options READ The function opens the file for read-only access.
IUPD The function opens the file with intent to update.
SUPD The function opens the file for shared update.
EUPD The function opens the file for exclusive update.

Consideration If you code the OPEN-MODE statement, you must put it before any
RECORD statements.

INO O
CLOSE (.- .)
YeEsH

Description Optional. Indicates whether you want the file explicitly closed after
printing.

Default YES

366 P26-6260-63

Coding the UCL for the Print function

[DIRECT 0
QUALIFIER (SERIAL B)
ESEQUENTIALH

Description Optional. Indicates the access mode you want the function to use to print
the current file.

Default SERIAL
Options DIRECT Reads a specific record either by RRN or by key. For
more information, see the second consideration, below.
SERIAL Accesses the file serially without regard to chain

sequence.

SEQUENTIAL Accesses the related file sequentially by a specific

Considerations
¢

¢

DBA Utilities User's Guide

linkpath.

Do not code QUALIFIER (SEQUENTIAL) for a primary file.

As shown in the format, QUALIFIER has three options. Depending on
the type of file (primary (P) or related (R)) and the access mode you
code, the following statements are either required (r), optional (o), or
invalid (i):

|QUALIFIER: | DIRECT | SERIAL | SEQUENTIAL
| File Type: lPp |[R | P | R | P [R
RRN i r i i i i
LINKPATH i i i i i r
KEY r i i i i o]
RRN-RANGE i i 0 0 i i
MAXIMUM i i o] 0 [o]

If you code the QUALIFIER statement, you must put it before the
RECORD statements.

If you code QUALIFIER (DIRECT), the function prints only one
record.

If you code QUALIFIER (SEQUENTIAL) and the LINKPATH and KEY
statements, the function prints only the chain containing the key you
coded.

If you code QUALIFIER (SEQUENTIAL) and the LINKPATH
statement, but not the KEY statement, the function prints all the
chains associated with the linkpath.

367

Chapter 12 Coding the Print function

LINKPATH (access-linkpath)
Restrictions
¢ Use this statement only for sequential access to related files.
¢ You can only use this statement after a QUALIFIER statement.

Description Optional. Determines the access linkpath for a related file you are
reading sequentially.

Format ffffLKxx, where ffff is a primary file linked to a related file through linkpath
LKXxx

Considerations

¢ The access linkpath may exist in either the base or the redefined
portion of a coded record.

¢ If you code RECORD (ALL) with an access linkpath, that linkpath
must exist in all records.

¢ You cannot code LINKPATH (linkpath-list).

368 P26-6260-63

Coding the UCL for the Print function

(D'ec-string' 0O
1 i ' D
KEY (%(hex-string' J)

Ebchar-string'H

Restriction You can only use this statement after a QUALIFIER statement.

Description Optional. Indicates the key you want the function to use for direct access
to a primary file or sequential access to a related file.

Format D'dec-string’ A decimal string of 1 to 256 bytes preceded by a D and
surrounded by single quotes. This string is a 1-256 byte
key that must match the actual key length.

X'hex-string’ A hexadecimal string of 2 to 512 bytes preceded by an X
and surrounded by single quotes. This string is a 1-256
byte key. The length must be an even number and twice
the actual key length.

C'char-string' A character string of 1 to 256 bytes preceded by a C and
surrounded by single quotes. This string is a 1-256 byte
key and must match the actual key length.

Considerations
¢ If a character string contains more than one quote, you must code
two quotes for each actual quote. For example, you must code
ABCD'EF'G as C'ABCD"EF"G'.

¢+ Any key you code must be the correct length for the file.

DBA Utilities User's Guide 369

Chapter 12 Coding the Print function

RRN (record-rrn)
Restrictions
¢ Use this statement only for direct access to related files.
¢ You can only use this statement after a QUALIFIER statement.

Description Optional. Selects a relative record number in a non-KSDS related file that
you want the function to read directly.

Format 1-9 decimal characters
Considerations

¢ You must code a record-rrn if you are printing a related file and you
coded QUALIFIER (DIRECT).

¢ You must code a record-rrn that is within the boundary of the file.

¢ Do not code FILE (ALL) with the RRN statement if any files are key-
sequenced data sets.

370 P26-6260-63

Coding the UCL for the Print function

dow-rrn O
RRN- RANGE (3 high-rrn 3
How-rrn - high-rrn
Restrictions
¢ Do not use with key-sequenced data sets.

¢ You can only use this statement after a QUALIFIER statement.

Description Optional. Indicates a range of relative record numbers you want retrieved.
The function does not retrieve records outside the range you code.

Format 1-9 decimal characters for each rrn

Options low-rrn Retrieves records having RRNs from low-rrn through the
end of the file.

-high-rrn Retrieves records having RRNs from the beginning of
the file to high-rrn.

low-rrn=high-rrn Retrieves records having RRNs from low-rrn through
high-rrn.

Considerations

¢ Do not code FILE (ALL) with the RRN-RANGE statement if any files
are key-sequenced data sets.

¢ If the low-rrn you code is not a valid data record, the function
accesses the first data record with a higher RRN than the one you
coded.

¢ If you are printing a related file and the RRN you code is in the middle
of a chain, the function does not print prior records on that chain.

¢ Do not code the RRN-RANGE statement if you coded QUALIFIER
(DIRECT) or QUALIFIER (SEQUENTIAL).

DBA Utilities User's Guide 371

Chapter 12 Coding the Print function

MAXIMUM ([@3 5
Eecord-countg

Restriction You can only use this statement after a QUALIFIER statement.

Description Optional. Determines the maximum number of records to print.

Default)}

Format 1-9 decimal characters

Considerations

372

If you code MAXIMUM (b), the function prints all records.
To code MAXIMUM, you must have already coded QUALIFIER.

If you code the MAXIMUM statement, you must put it must before the
RECORD statements.

The function includes in this count only valid data records that pass
all other selection criteria. For example, if you specify an argument
(via the CRITERIA statement), all data records must first pass the
argument validation before the function adds them to the maximum
record counter.

If you code a number that exceeds the total number of records in the
file, the function stops processing at the end of the file.

If you code a value that exceeds the total number of records in this
file, the function stops at the end of the file.

P26-6260-63

Coding the UCL for the Print function

CRITERIA (elementl[,element2,...,elementn].operator.datavaluel
[.datavalue2...datavaluen]END.)

Restriction You can only use this statement after a QUALIFIER statement.

Description Optional. Establishes an argument string to select the records you want
printed.

Considerations

¢ If you code this statement, put it before the RECORD statements.

¢ You can code any number of spaces before the element list, after
END., and on either side of the separating commas.

¢ If you do not code END, the function considers the rest of the
program as data.

Format for element
One or more 8 alphanumeric character element names. You must make

the first character in each name alphabetic and separate the names with
commas.

Considerations

¢ If you code an element name in the argument, you must also code it
in the ELEMENT statement unless you code ELEMENT (ALL).

¢ You cannot code a null element list in the criteria argument.

¢ If you name an element in the criteria argument, it must be in all the
records you want printed from the file.

Format for operator
.EQ. Equal

.NE. Not equal

.GT. Greater than

LT. Less than

.GE. Greater than or equal to
LE. Less than or equal to

Consideration You must code a period before and after the Boolean operator. Only one
operator may be specified.

DBA Utilities User's Guide 373

Chapter 12 Coding the Print function

Format for datavalue
Any valid EBCDIC value. You can code the actual hexadecimal

Considerations

representation of any value of any data type in your UCL statement. You
must put a period before data value and END. after it.

You must make data values the same length as the element lengths
in the element list.

Do not put spaces between data values.
Your data may cross input line boundaries if necessary. You must

stop in column 72 and continue on the next line in column 1. (If you
put data in columns 73-80, it is lost.)

CALL

RECORD (O
[Tecord-codep

374

Description
Default
Format

Considerations

Optional. Indicates the records you want printed.
ALL

2 alphanumeric characters

If you code this statement, you must code the ELEMENT statement.

Do not code RECORD (ALL) if you intend to code the element list
with redefined element names for a coded related file.

For primary files, always code RECORD (ALL).
The record code you indicate must be in the file to be printed.

If you code multiple RECORD statements, do not code ALL with a
specific record code.

If you code FILE (ALL), do not code RECORD (record-code).

If you code RECORD (), the function prints no records.

P26-6260-63

Coding the UCL for the Print function

CALL
ELEMENT (O,

relement-list

Restriction Required if you code the RECORD statement.

Description Indicates the data elements you want printed.

Default ALL

Format Element names must be 8 alphanumeric characters. The first character
must be alphabetic. Separate names with commas.

Considerations
’

¢

If you code FILE (ALL), do not code ELEMENT (element-list).

You can use ELEMENT (ALL) in conjunction with an element-list. For
example, the following is correct:

RECORD (01)

ELEMENT (ELEMENT1, ELEVENT2)

RECORD (02)

ELEMENT (ALL)

The key element for a related file is the one associated with the
access linkpath you coded.

Additional constraints apply in the following situations:

In this context:

ELEMENT (element-list)
must conform to these rules:

FILE (primary-file)
FILE (related-file)
no access-linkpath
FILE(related-file)

FILE(coded-file)
no access-linkpath

FILE(coded-file)
LINKPATH(ffffLKxx)

RECORD(record-
code)

FILE(coded-file)
RECORD(ALL)

Do not include the root element in element-list.
Do not include linkpaths in element-list.

Do not include linkpaths in element-list. LINKPATH(fffflLKxx)

First entry in element-list must be ffffCODE where ffff is the
coded file name. Do not include linkpaths in element-list.

First entry in element-list must be ffffCODE where ffff is the
coded file name. Do not include linkpaths in element-list.

Names appearing in the element list must exist in record code.

Do not include redefined element names in element-list.

DBA Utilities User's Guide

375

Chapter 12 Coding the Print function

Writing exit programs

You can use the exit point from the Print function to examine the records
you are printing. The function invokes your exit program after it prints the
record. Therefore, there are no return codes from this exit. Your program
can collect statistics or data on the records it is passed, but it cannot
modify, delete or add records.

For information on how your exit programs are loaded, how they operate,
the languages you can use to write them, and the register conventions
you must follow, see “Inserting exit programs into functions” on page 49.
For example, you must code the parameter list addresses in register 1.
For a description of parameter list addresses, see the following table.

Contents before exit Contents after exit (passed
Parameter |Datatype (passed to exit program) |from exit program)
Record n bytes of Data record Must be unchanged
data
Function 8 bytes PRINTbb Must be unchanged
Name character

If your exit program changes anything it is not authorized to change, the
results are unpredictable.

376 P26-6260-63

Print examples

Print examples

Example 1 The following example prints the elements in the records of all files in the
schema coded in the control section:

CONTROL (BEG N)
ENV- DESC({ MYDESC)
SCHEMA(MYSCHEMA)

FUNCTI ON (PRI NT)

FI LE (ALL)
RECCRD (ALL)
ELEMENT (ALL)
CONTROL (END)

Example 2 This example prints data from the CUST file and invokes the exit
program EXITO00L. You request the record in the CUST file by coding its
key, the decimal string C'001234'". You request the file be opened for
read-only and accessed directly. Since CUST is a primary file, the
function prints all record codes, specifically the CUSTCTRL and
CUSTNAME elements. The function reads the second file, PORD,
sequentially by way of the CUSTLKPO linkpath. The function prints
various elements in the HD and IT records.

CONTROL (BEG N)
ENV- DESC(MYDESC)
SCHEMA(MYSCHEMA)
FUNCTI ON (PRI NT)
STANDARD- EXI T (EXI T0O001)
FI LE (CUST)
OPEN- MODE (READ)
QUALI FI ER (DI RECT)
KEY (C 001234")
RECORD (ALL)
ELEMENT (CUSTCTRL, CUSTNAME)
FI LE (PORD)
QUALI FI ER (SEQUENTI AL)
LI NKPATH (CUSTLKPO)
RECORD (HD)
ELEMENT (PORDCMNT, PORDDATE, PORDVEND, PORDCARR)
RECORD (1 T)
ELEMENT (PORDI TEM PORDI QTY)
CONTROL (END)

DBA Utilities User's Guide 377

Chapter 12 Coding the Print function

Example 3 These following examples show sample input and output of the Print
function:

CSUL0101l : COMMENCI NG COMVAND VALI DATI ON.

1 CONTROL(BEG N)

2 P e e
3 « «
4 * PRINT EXAMPLE #1 DESCRI PTI ON *
5 « «
6 * OBJECTIVE: PRI NT RECORDS FROM THE DI RECTCRY. *
7 « «
8 * NOTES: *
9 « «
10 * 1. FROM THE C$-# FILE, PRINT THE SPECI FI ED *
11 * ELEMENTS FROM THE RECORDS ONLY | F C$- #NANE *
12 * SATI SFI ES THE STATED CRI TERI A. *
13 * *
14 * 2. MOVE SERIALLY THROUGH FILE C$-S, AND PRINT *
15 * A MAXI MUM OF 10 RECORDS. *
16 * *
17 * *
18 R R
19 ENV- DESC(Cl NDI REN)

20 SCHEMA(CI NDI RSC)

21 DI AGNOSTI CS(EXTENDED)

22 LI ST()

23 HEADER(YES)

24 EXTENSI ON(' PRI NT EXAMPLE 1')

25 FUNCTI ON(PRI NT)

26 FI LE(C$- #)

27 CRI TERI A (C$- #NAME. EQ 01 END.)

28 RECORD(ALL)

29 EL EMENT(C$- #CODE,

30 CS$- #NAME,

31 C$- #ATTM

32 C$- #ATUI)

33 FI LE(C$- S)

34 QUALI FI ER(SERI AL)

35 MAXI MUM(10)

36 RECORD(ALL)

37 ELEMENT(ALL)

38 CONTROL (END)

CONTENTS OF SOURCE LINES QUTSIDE 1...72 MARG NS | GNORED.

0 SYNTAX ERRORS DETECTED.

38 COMVAND LI NES READ.

1 CONTROL SECTI ONS ANALYZED.

1 FUNCTI ON COVMMANDS ANAL YZED.

PRI NT EXAMPLE 1

CSUL01021 : COMMENCI NG COMVAND EXECUTI ON.
CSUL03011 : COMMENCI NG CONTRCOL SECTI ON USI NG ENVI RONMENT DESCRI PTI ON CI NDI REN AND SCHEMA CI NDI RSC.
CSUL03021 : COMMENCI NG PRI NT PRCCESS.

CSUL0311l : COMMENCI NG PRI NT AGAI NST FILE C$-#.

REFER = 00000865

C$- #CODE C$- #NAMVE C$- #ATTM C$- #ATUI

24 01 112511 DR MGR SL 2114 ->SL 2116
REFER = 00000925

C$- #CODE C$- #NAMVE C$- #ATTM C$- #ATUI

16 01 120154 Csl - DBA

REFER = 0000093F

C$- #CODE C$- #NAMVE C$- #ATTM C$- #ATUI

16 01 112512 DR MGR SL 2114 ->SL 2116
REFER = 00000993

C$- #CODE C$- #NAMVE C$- #ATTM C$- #ATUI

16 01 150956 Csl - DBA

REFER = 00000B36

C$- #CODE C$- #NAMVE C$- #ATTM C$- #ATUI

16 01 120342 Csl - DBA

378 P26-6260-63

Print examples

REFER = 00000ECE

C$- #CODE C$- #NAMVE C$- #ATTM C$- #ATUI

24 01 110310 CslI - DBA

REFER = 00001230

C$- #CODE C$- #NAMVE C$- #ATTM C$- #ATUI

16 01 112518 DR MGR SL 2114 ->SL 2116
REFER = 000014F6

C$- #CODE C$- #NAMVE C$- #ATTM C$- #ATUI

16 01 151526 CslI - DBA

REFER = 00001BOA

C$- #CODE C$- #NAMVE C$- #ATTM C$- #ATUI

24 01 112535 DIR MGR SL 2114 ->SL 2116

CSUL03491 : END-OF-FI LE HAS BEEN ENCOUNTERED ON THE CURRENT FI LE.

PRI NT EXAMPLE 1

CSUL03211 : PRINT PROCESSI NG AGAI NST FI LE C$-# TERM NATI NG NORVALLY.
PRI NT EXAMPLE 1 CSUL0311l : COMMENCI NG PRI NT AGAI NST FILE C3$-S.
REFER = 00000001

DT /1213 >

REFER = 00000002

HD 2224

REFER = 00000003

DT 2224

REFER = 00000004

HD /i0709

REFER = 00000005

DT /i0709 / NONESLFB I

REFER = 0000001B

HD /1213

REFER = 00000059

DT 1213 IR !

REFER = 0000005A

DT 1213 I % /

REFER = 0000005B

bDr /1612 / /

REFER = 0000005C

pr /1612 / ?

CSUL03461 : THE SPECI FI ED MAXI MUM NUMBER OF RECORDS FOR THE CURRENT FI LE HAVE BEEN PROCESSED.
CSUL0321l : PRINT PROCESSI NG AGAI NST FI LE C$-S TERM NATI NG NORMALLY.
CSUL0303!1 : PRINT PROCESS TERM NATI NG

CSUL03051 : CONTROL SECTI ON TERM NATI NG

CSUL03061 : SUMMARY DATA FOR TERM NATI NG CONTROL SECTI ON :

CSUL01011 : COMMENCI NG COMVAND VALI DATI ON.

1 CONTROL(BEG N)

5 ot et AT
3 « .
4 * PRINT EXAMPLE #2 DESCRI PTI ON *
5 « .
6 * OBJECTIVE: PRINT ELEMENTS FROM THE DATABASE FI LES. *
7 « .
8 . .
9 * NOTES: *
10 * *
11 * 1. FOR THE C$-T FILE, PRINT ELEMENTS FOR ALL *
12 * RECCRDS | N THE SPECI FI ED LI NKPATH CHAI N. *
13 * *
14 * 2. MOVE SERIALLY THROUGH THE C$-D FILE AND: *
15 * *
16 * A PRINT THE 2 SPECI FI ED ELEMENTS FOR *
17 * RECORD CCDE 07 RECORDS W THI N RRN- RANGE *
18 * 5900- 6810. *
19 * *
20 * B. PRINT ALL ELEMENTS FOR RECORD CODE 14 *
21 * RECORDS W THI N RRN\- RANGE 5900- 6810. *
22 * *
23 * *
A KRRk KR KR KRRk
25 ENV- DESC(G NDI REN)
26 SCHEMA(I NDI RSC)
27 DI AGNGSTI CS(EXTENDED)
28 LI ST()
29 HEADER(YES)
30 EXTENSI ON(* PRI NT EXANPLE 2')

DBA Utilities User's Guide 379

Chapter 12 Coding the Print function

31 FUNCTI ON(PRI NT)

32 FI LE(C$- T)

33 QUALI FI ER(SEQUENTI AL)

34 LI NKPATH(C$- #LKTT)

35 KEY(X' 00000000')

36 RECORD(ALL)

37 ELEMENT(ALL)

38 FI LE(C$- D)

39 QUALI FI ER(SERI AL)

40 RRN- RANGE(5900- 6810)

a1 RECORD(07)

42 ELEMENT(C$- DCCDE,

43 C$- DO7TP)

44 RECORD(14)

45 ELEMENT(ALL)

46 CONTROL (END)

CONTENTS OF SOURCE LI NES QUTSIDE 1...72 MARG NS | GNORED.
0 SYNTAX ERRORS DETECTED.

46 COMVAND LI NES READ.

1 CONTROL SECTI ONS ANALYZED. 1 FUNCTI ON COMVANDS ANALYZED. PRI NT EXAMPLE 2

CSUL0102I : COMMVENCI NG COMVAND EXECUTI ON.

CSUL03011 : COMMENCI NG CONTROL SECTI ON USI NG ENVI RONMVENT DESCRI PTI ON CI NDI REN AND SCHEMA ClI NDI RSC.

CSUL03021 : COMMENCI NG PRI NT PRCCESS.

CSUL0311l : COMMENCI NG PRI NT AGAINST FILE C$-T.

REFER = 000027F9

ST | P[/CALCULATES AVERAGE, MAXIMM M N MUM & TOTAL.

REFER = 000027F5

LT |P[s ¢ /STATISTICS IS A TERM USED W TH THE STATI STI CS COLLECTI ON COMWANDS (WHEN
REFER = 000027F6

LT |P[s ¢ HCHANGES AND WHEN FI NI SHED). WHEN SPECI FI ED, QUERY W LL CALCULATE
REFER = 000027F7

LT |P[s ¢ AND DI SPLAY THE AVERAGE, MAXIMUM M NI MUM AND TOTAL OF THE

REFER = 000027F8

LT |P[s c /ASSOCI ATED VALUE.

REFER = 000027FA

~N o o ©

o ~N o

LT |P[s c 4- 8 |/
REFER = 000027FB
LT |P[s ¢ /WHEN FI NI SHED PRI NT STATI STICS OF SALES /
CSUL0348! : END- OF- CHAI N HAS BEEN ENCOUNTERED ON THE CURRENT FI LE AND SPECI FI ED LI NKPATH.
CSUL0321l : PRINT PROCESSI NG AGAI NST FI LE C$- T TERM NATI NG NORMALLY.
PRI NT EXAMPLE 2 CSUL0311l : COMVENCI NG PRI NT AGAI NST FILE C$-D.
REFER = 0000171B
- DCODE C3$-DO7TP
07 BP TLFB N
REFER = 00001722
14 |/ s cB HC$- N, CSI- Dl R RPTR- NAME-
QUAL FI ND DEFN FROM | NPUT US NAMVE /
REFER = 00001723
14 !/ s cB C$- #. NADF, CSI - DI R- NV DEFN FIND CAT. CODE FROM US DEFN
REFER = 00001724
14 / s cB /C$-T,C$-#LKTT FIND US TEXT FROM US DEFN /
o
o
o
C$- DCODE C3$-DO7TP
07 BP / /USRM N
REFER = 00001A6E
C$- DCODE C$- DO7TP
07 BP SLFB N
CSUL03471 : THE SPECI FI ED LAST RECORD FOR THE CURRENT FI LE HAS BEEN PROCESSED.
CSUL03211 : PRINT PROCESSI NG AGAI NST FI LE C$- D TERM NATI NG NORVALLY.
CSUL0303I : PRINT PROCESS TERM NATI NG
CSUL0305!1 : CONTROL SECTI ON TERM NATI NG
380 P26-6260-63

13

Coding the M odify function

Coding the Modify function

Use the Modify function to update records in database files. You can
update all or some database elements in each type of record. You can
print records before, after, or both before and after you update them.

You can update all but the following elements:
¢ The ROOT field in a primary file

¢ Control keys in primary or related files

¢ Code element in a coded file

¢ Linkpaths in a related file

While you cannot update linkpaths in a related file, you can update
linkpaths in a primary file. This enables you to unload and load a related
file, but not the primary files with which it is associated. To do this, you
use the Modify function to clear the linkpaths in the primary files as in
“Examples of Unload, Load, and Modify functions” on page 191. The
procedure involves the following three steps:

1. Using the Version 1 Unload function to unload the related file.

2. Using the Modify function to change the linkpath elements in the
primary file(s) so they contain eight blanks.

3. Using the Version 1 Load function to reload the related file.

As the Load function processes the related file, it recreates the linkpath
information and stores it in the blanked linkpath element(s). The UCL to
clear the linkpaths is shown in the second example in “Modify examples”
on page 394.

If you are using the Version 2 Unload and Load functions, you cannot use
the Modify function to clear the linkpaths. You must use the Insert
Linkpath function.

DBA Utilities User's Guide 381

Chapter 13 Coding the Modify function

Coding the UCL for the Modify function

After you code the control section as shown in “Coding the control
section” on page 57, you can code the Modify function as shown in the
following format. For UCL examples, see “Modify examples” on

page 394.

FUNCTION (MODIFY)
STANDARD-EXIT (exit-name)
FILE (file-name) ...

g [SUPD
PEN - MODE
SD (%UPD@E
[q:LOSE (% 5D
[SERIAL g
QUALIFIER (HZ)IRECT E)
HSEQUENTIALH

[RRN (record-rrn) |

[LINKPATH (access-linkpath) |
a [(D'dec-string' O O
g(EY(%('hex—string' E) B
H Hc'char-string’d H
0 0
MAXIMUM (B O b
0 Hecord countD 0

[CRITERIA (element 1[,elementz,..., elementn] .operator .datavalue:
[.datavalue:...datavalue.]END.)]

0
ECORD (D— D) 0
[Tecord - codef] 0

ELEMENT (element - list E---
DATA (data - stringéEND.) O
O

oOoooOoomsd

O

382 P26-6260-63

Coding the UCL for the Modify function

FUNCTION (MODIFY)
Description Required. Invokes the Modify function.

Consideration If the PDM returns a bad status, the Modify function closes and locks the
file.

STANDARD-EXIT (exit-name)

Description Optional. Indicates the name of an exit program you want to invoke to
process each modified record. For information on coding an exit
program, see “Writing exit programs” on page 393.

Format 1-8 alphanumeric characters. The first character must be alphabetic.
Considerations

¢ If you code this statement, you must put it before the FILE
statements.

¢ You must make your exit program available to be loaded by the
Modify function. That is, it must reside in your execution library.

¢ Only one exit at a time resides in memory. If you code a new exit
name in a subsequent function, the function deletes the current exit
before it loads the new one.

FILE (file-name)
Description Required. Indicates the file you want the Modify function to access.
Format 4 alphanumeric characters. The first character must be alphabetic.
Considerations
¢ You cannot code FILE (file-name-list) or FILE (ALL).

¢ You cannot use the Modify function to change an index file.

DBA Utilities User's Guide 383

Chapter 13 Coding the Modify function

[SUPDO
OPEN - MODE (1)
HEuPDH

Description
Default

Options

Consideration

Optional. Indicates how you want the file opened for processing.

SUPD
SUPD Opens the file for shared update.
EUPD Opens the file for exclusive update.

If you code this statement, you must put it before any RECORD
statements.

o)
CLOSE (DNESE)
HYEsH

Description Optional. Indicates whether you want the function to explicitly close the
file after modification.
Default YES
[(SERIAL O
HD O
QUALIFIER ([DIRECT 0)
HSEQUENTIALH
Description Required. Indicates the access mode you want the function to use when
it modifies the current file.
Options SERIAL Accesses the file serially without regard to chain
sequence.
DIRECT Accesses a specific record either by RRN or key.

384

SEQUENTIAL Accesses a related file sequentially by a specific linkpath.

P26-6260-63

Coding the UCL for the Modify function

Considerations
¢ Do not code QUALIFIER (SEQUENTIAL) for a primary file.

¢ As shown in the format, the QUALIFIER statement has three options.
Depending on the type of file (primary (P) or related (R)) and the
access mode you select, the statements are required (r), optional (0),
or invalid (i) as follows:

|QUALIFIER | DIRECT | SERIAL | SEQUENTIAL
| File type |l P |[R | P [R | P |R
RRN i r i i i i
LINKPATH i r i i i r
KEY r r i [i r
MAXIMUM i [0 0 i 0

¢ If you code QUALIFIER (SEQUENTIAL) and the LINKPATH and KEY
statements, the function modifies only the chain containing the key
you code.

¢ If you code QUALIFIER (DIRECT), the function modifies only one
record.

¢ If you code the QUALIFIER statement, you must put it before the
RECORD statements.

¢ If you code QUALIFIER (SERIAL), you can modify many elements.
The function modifies the elements you code for the record code you
indicate. If you code RECORD (ALL), the function modifies every
record.

¢ If you modify a coded related file, there must be at least one linkpath
in the base portion of the file.

DBA Utilities User's Guide 385

Chapter 13 Coding the Modify function

RRN (record-rrn)
Restrictions
¢ Use this statement for direct access to related files.
¢ You can only use this statement after a QUALIFIER statement.

Description Optional. Indicates a relative record number in a related file you want
read directly.

Format 1-9 decimal characters

Consideration You must code this statement if you are modifying a related file and you
coded QUALIFIER (DIRECT).

LINKPATH (access-linkpath)
Restrictions
¢ Use this statement for related files with direct or sequential access.
¢ You can only use this statement after a QUALIFIER statement.
Description Optional. Determines the access linkpath for a related file.

Format ffffLKxx, where ffff is a primary file linked to a related file through linkpath
LKxx

Considerations

¢ The access linkpath may exist either in the ba