

SUPRA SERVER PDM

RDM PDM Support Supplement
(OS/390 & VSE)

P26-8221-63

SUPRA® Server PDM RDM PDM Support Supplement (OS/390 & VSE)

Publication Number P26-8221-63

 1987, 1990, 1993, 1998, 2000, 2002 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage®
C+A-RE™
CINCOM®
Cincom Encompass®
Cincom Smalltalk™
Cincom SupportWeb®
CINCOM SYSTEMS®

gOOi™

iD CinDoc™
iD CinDoc Web™
iD Consulting™
iD Correspondence™
iD Correspondence Express™
iD Environment™
iD Solutions™
intelligent Document Solutions™
Intermax™

MANTIS®
Socrates®
Socrates® XML
SPECTRA™
SUPRA®
SUPRA® Server
Visual Smalltalk®
VisualWorks®

UniSQL™ is a trademark of UniSQL, Inc.
ObjectStudio® is a registered trademark of CinMark Systems, Inc.

All other trademarks are trademarks or registered trademarks of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, Ohio 45246-3732
U.S.A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

www.cincom.com

Release information for this manual

The SUPRA Server PDM RDM PDM Support Supplement (OS/390 &
VSE), P26-8221-63, is dated January 15, 2002. This document supports
Release 2.7 of SUPRA Server PDM in IBM mainframe environments.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. Please take the survey provided with the
online documentation at your convenience.

Cincom Technical Support for SUPRA Server PDM

FAX: (513) 612-2000
 Attn: SUPRA Server Support

E-mail: helpna@cincom.com

Phone: 1-800-727-3525

Mail: Cincom Systems, Inc.
 Attn: SUPRA Server Support
 55 Merchant Street
 Cincinnati, OH 45246-3732
 U.S.A.

mailto:helpna@cincom.com

RDM PDM Support Supplement v

Contents

About this book vii
Using this document.. vii

Document organization .. vii
Revisions to this manual .. vii
Conventions ...viii

SUPRA Server documentation series ...x

Introduction to the PDM 13
Using RDM to access a PDM database..13
Conceptual system overview...14

Using the PDM with the RDM 15
Physical Data Manager files..16

PDM primary files...17
PDM related files..18
Defining PDM files on the Directory ...19

Defining base views ..20
Column definition in base views..21
ACCESS definition in base views..31

Accessing primary files ..32
Accessing related files ...38
Accessing PDM files using secondary keys...48

Primary file considerations ..54
Processing considerations ...54
Compound control keys ...55

Contents

vi P26-8221-63

Related file considerations.. 56
Standard processing of related files .. 57
Using primary file extensions... 57
Multiple related file usage .. 58
Inserting coded records ... 58
Retrieving coded records in occurrence order... 59
Retrieving related records by record code... 60
Retrieving related records with embedded one-to-one relationships 61
Retrieving related records with embedded one-to-many relationships.......... 62
Retrieving related records with embedded many-to-one relationships.......... 63
Switching linkpaths .. 64
Inserting related records with embedded relationships 64
Optimizing performance .. 65
Maintaining foreign keys .. 65

Secondary key considerations.. 66
Using generic secondary keys... 67
Using the REVERSE keyword ... 68
Using the ONCE keyword.. 68
GET PRIOR/LAST command.. 68

User exits 69

Sample PDM database and base views 71
Sample database.. 71
Example view definitions .. 74

Index 81

RDM PDM Support Supplement vii

About this book

Using this document
This manual provides the database administrator (DBA) with reference
information, including how to define a base view, for using the SUPRA
Relational Data Manager (RDM) to access a SUPRA Physical Data
Manager (PDM). In order to use this manual effectively, you should have
knowledge of PDM file structures and PDM access techniques.

Document organization
The information in this manual is organized as follows:

Chapter 1—Introduction to the PDM
Provides an introduction to RDM and its terminology and PDM and its
terminology.

Chapter 2—Using the PDM with RDM
Provides a brief overview of PDM file structures and the definitions of
PDM files on the Directory.

Chapter 3—User exits
Lists exits available to bypass database calls, perform your own
database of user file calls, or satisfy special requirements.

Appendix A—Sample PDM database and base views
Describes a sample database and shows some base views which
access the database.

Index

Revisions to this manual
The following changes were made for this release:

♦ The NORMAL product is no longer distributed. If you use NORMAL,
retain your files and previous documentation. References to
NORMAL in this document have been deleted.

About this book

viii P26-8221-63

Conventions
The following table describes the conventions used in this document
series:

Convention Description Example
Constant width
type Represents screen images and

segments of code.
PUT 'customer.dat'
GET 'miller\customer.dat'
PUT '\DEV\RMT0'

Slashed b (b/) Indicates a space (blank).
The example indicates that four
spaces appear between the
keywords.

BEGNb/b/b/b/SERIAL

Brackets [] Indicate optional selection of
parameters. (Do not attempt to enter
brackets or to stack parameters.)
Brackets indicate one of the following
situations:

 A single item enclosed by brackets
indicates that the item is optional and
can be omitted.
The example indicates that you can
optionally enter a WHERE clause.

[WHERE search-condition]

 Stacked items enclosed by brackets
represent optional alternatives, one
of which can be selected.
The example indicates that you can
optionally enter either WAIT or
NOWAIT. (WAIT is underlined to
signify that it is the default.)

(WAIT)
(NOWAIT)











Braces { } Indicate selection of parameters.
(Do not attempt to enter braces or to
stack parameters.) Braces
surrounding stacked items represent
alternatives, one of which you must
select.
The example indicates that you must
enter ON or OFF when using the
MONITOR statement.

MONITOR
ON
OFF









About this book

RDM PDM Support Supplement ix

Convention Description Example

Underlining
(In syntax)

Indicates the default value supplied
when you omit a parameter.
The example indicates that if you do
not choose a parameter, the system
defaults to WAIT.

(WAIT)
(NOWAIT)











 Underlining also indicates an
allowable abbreviation or the shortest
truncation allowed.
The example indicates that you can
enter either STAT or STATISTICS.

STATISTICS

UPPERCASE
lowercase

In most operating environments,
keywords are not case-sensitive, and
they are represented in uppercase.
You can enter them in either
uppercase or lowercase.

COPY MY_DATA.SEQ

HOLD_DATA.SEQ

Italics Indicate variables you replace with a
value, a column name, a file name,
and so on.
The example indicates that you must
substitute the name of a table.

FROM table-name

Punctuation
marks

Indicate required syntax that you
must code exactly as presented.
() parentheses
. period
, comma
: colon
' ' single quotation marks

(user-id, password,
 db-name)

INFILE 'Cust.Memo' CONTROL
 LEN4

SMALL CAPS Represent a required keystroke.
Multiple keystrokes are hyphenated.

ALT-TAB

About this book

x P26-8221-63

SUPRA Server documentation series
SUPRA Server is the advanced relational database management system
for high-volume, update-oriented production processing. A number of
tools are available with SUPRA Server including Directory Maintenance,
DBA utilities, DBAID, SPECTRA, and MANTIS. The following list shows
the manuals and tools used to fulfill the data management and retrieval
requirements for various tasks. Some of these tools are optional.
Therefore, you may not have all the manuals listed. For a brief synopsis
of each manual, refer to the SUPRA Server PDM Digest (OS/390 &
VSE), P26-9062.

Overview

♦ SUPRA Server PDM Digest (OS/390 & VSE), P26-9062

Getting started

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM CICS Connector Systems Programming Guide
(OS/390 & VSE), P26-7452

General use

♦ SUPRA Server PDM Glossary, P26-0675

♦ SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126

About this book

RDM PDM Support Supplement xi

Database administration tasks

♦ SUPRA Server PDM and Directory Administration Guide (OS/390 &
VSE), P26-2250

♦ SUPRA Server PDM Directory Online User’s Guide (OS/390 & VSE),
P26-1260

♦ SUPRA Server PDM Directory Batch User’s Guide (OS/390 & VSE),
P26-1261

♦ SUPRA Server PDM DBA Utilities User’s Guide (OS/390 & VSE),
P26-6260

♦ SUPRA Server PDM Logging and Recovery (OS/390 & VSE),
P26-2223

♦ SUPRA Server PDM Tuning Guide (OS/390 & VSE), P26-0225

♦ SUPRA Server PDM RDM Administration Guide (OS/390 & VSE),
P26-8220

♦ SUPRA Server PDM RDM PDM Support Supplement (OS/390 &
VSE), P26-8221

♦ SUPRA Server PDM RDM VSAM Support Supplement (OS/390 &
VSE), P26-8222

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

♦ SPECTRA Administrator’s Guide, P26-9220

About this book

xii P26-8221-63

Application programming tasks

♦ SUPRA Server PDM DML Programming Guide (OS/390 & VSE),
P26-4340

♦ SUPRA Server PDM RDM COBOL Programming Guide (OS/390 &
VSE), P26-8330

♦ SUPRA Server PDM RDM PL/1 Programming Guide (OS/390 &
VSE), P26-8331

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

Report tasks

♦ SPECTRA User’s Guide, P26-9561

Manuals marked with an asterisk (*) are listed more than once because
you use them for multiple tasks.

Educational material is available from your regional Cincom education
department.

RDM PDM Support Supplement 13

1
Introduction to the PDM

The SUPRA Relational Data Manager (RDM) supports access to SUPRA
Physical Data Manager (PDM) files. This manual explains how to use
RDM to access PDM files. Before you can effectively use the information
in this manual, you should:

♦ Understand RDM and its terminology (refer to the SUPRA Server
PDM RDM Administration Guide (OS/390 & VSE), P26-8220)

♦ Understand the PDM and its terminology (refer to the SUPRA Server
PDM and Directory Administration Guide (OS/390 & VSE), P26-2250)

Using RDM to access a PDM database
You can use RDM to access data in a PDM database with a primary file’s
control key or with a secondary key. You can further refine your access
approaches with linkpath or record code information. You can also
sweep a file. You cannot use RDM to access a PDM file record by its
physical location.

If you are starting a new PDM database, you must define its files on the
Directory using Directory Maintenance, and define the base views using
DBAID, before you can access the database with RDM.

If you already have a PDM database, then you have already defined its
files on the Directory. You need not change the files or the file definitions
in any way. You must still define the base views with DBAID; then you
can access the database with RDM.

If you change your PDM files after you define your base views, you might
need to change your base view definitions or your application programs.
Refer to the SUPRA Server PDM RDM Administration Guide (OS/390 &
VSE), P26-8220, for more information.

After you define your base views, you can define derived views which
access your base views. This manual does not discuss derived views.
For information on derived views, refer to the SUPRA Server PDM RDM
Administration Guide (OS/390 & VSE), P26-8220.

Chapter 1 Introduction to the PDM

14 P26-8221-63

RDM can access any combination of SUPRA’s Physical Data Manager
(PDM) files, native VSAM files, and files of any other supported type.
RDM applications can use PDM files in much the same way they use any
other files. Copy book libraries are unnecessary, because the record
formats of the PDM files are stored in the Directory. With RDM,
application programs and end users can manipulate and access data
without any information about the data’s physical location and structure.

Conceptual system overview
The following figure shows how RDM and the conceptual schema
insulate the external schema (which applications use) from the internal
schema (which consists of the physical structure).

Compre-
hensive
Retrieval

Application
Programs NORMAL SPECTRA MANTlS DBAID

EXTERNAL SCHEMA

CONCEPTUAL SCHEMARDM

INTERNAL SCHEMA

Application
Programs

User
Supported

Files

Directory
Files

Future
DBMVSAM

VSAM-KSDS PDM

User
ExitsPDM

VSAM
KSDS PDM PDM

VSAM
KSDS

VSAM
KSDS PDM PDM

RDM PDM Support Supplement 15

2
Using the PDM with the RDM

This chapter gives a brief overview of PDM file structures and the
definition of PDM files on the Directory. This chapter gives a detailed
explanation of the techniques for accessing data on PDM files with RDM.
As part of this explanation, this chapter points out the implications of
different access techniques for performance; your knowledge of these
implications enables you to help the programmer design more efficient
applications.

Chapter 2 Using the PDM with the RDM

16 P26-8221-63

Physical Data Manager files
A Physical Data Manager (PDM) database can contain three types of
files which are relevant to data access by RDM. A primary file contains
data records, each of which includes a unique key, which is sufficient for
accessing the record. A related file contains data records which can be
accessed via pointers (linkpaths) in a primary file’s data record. An index
file contains no data records; it contains definitions and indexes for
secondary keys. A secondary key consists of specified data in the data
records of a primary or a related file, and it provides an alternate method
of accessing those records.

The following figure shows a sample PDM database. “Sample PDM
database and base views” on page 71 describes this sample database in
detail and shows example base views.

INDX
Secondary

Key
Info

CUSTSK01

CUSTSK02

Linkpaths
Secondary

Keys
CUSTLK05

ORDRSK01

CUST
Customer

Info

CUDT
Customer
Extension

ORDR
Order
Info

PROD
Product

Info

PRODLK06

CUSTLK04

Physical Data Manager files

RDM PDM Support Supplement 17

PDM primary files
A PDM primary file is a keyed file. Each data record contains a physical
field called the control key that uniquely identifies that record. Each data
record can be accessed directly by its control key. In the example below,
a primary file named CUST contains customer information. Its control
key is the customer number, which corresponds to the external field
named CUST-NO. The following view can be used to retrieve
information on customer 100. (The view name is CUSTOMER.)
KEY CUST-NO

 CUST-NAME

ACCESS CUST WHERE CUST-NO = CUST-NO

The GET command would be:
GET CUSTOMER USING 100

You can also access primary files through the use of secondary keys. A
secondary key consists of one or more data fields in the data record.
You define, on the Directory, the composition of a secondary key, as well
as the index file to contain its definition and indexing information. A
secondary key need not be contiguous in the data record, and it need not
be unique. You can specify a secondary key value and access the
record(s) with that value. You can access data records sequentially, as if
the records had been sorted in either ascending or descending order by
their secondary key values. For information about using secondary keys
with primary files, see “Accessing PDM files using secondary keys” on
page 48 and “Secondary key considerations” on page 66.

Secondary keys, primary file control keys, and related file linkpath keys
are all physical keys.

A primary file can, but need not, link to one or more related files. You can
use linkpaths to navigate between primary and related files.

Chapter 2 Using the PDM with the RDM

18 P26-8221-63

PDM related files
A related file is related to one or more primary files. In such a primary
file, a data record in the primary file includes a pointer field (linkpath field)
which points to a chain of data records in the related file. The logical
relationship between a related file and a specified linkpath field in each
data record of a primary file is called a linkpath. Each linkpath has a
physical field name. You can also assign a logical name (External Field
name) to a linkpath, a step we strongly encourage you to perform..

A chain of related file records that is related to a given primary file record
via a given linkpath is called a linkpath set or linkpath chain. Each record
in a linkpath chain includes a field that contains a copy of the primary file
record’s key; this field is called a referback field. In relational terms, a
referback field is always a foreign key. Each record in a linkpath chain
includes a pointer field (linkpath field) which points to the next and the
previous records in the chain; the name of this physical field is the same
as the name of the linkpath itself, and the same as the name of the
primary file’s physical linkpath field for this linkpath.

Every related file data record must be a member of at least one linkpath
chain. A related file record can be a member of more than one linkpath
chain, can have more than one referback field, and can relate to more
than one primary file.

A data record in a coded related file is a coded record and consists of two
portions: the base portion, which includes the record code field and other
base fields which are present in every data record in the file; and the
coded portion, which includes coded fields which may not be present in
every record. All data records in the file contain the same set of base
fields; two records with the same record code always contain the same
set of coded fields; two records with different record codes can have
partly or completely different sets of coded fields. Two records with
different record codes can be members of the same linkpath chain. In
such a case, we strongly recommend that the coded portions of all
records be laid out "in parallel." Specifically, if the coded portion contains
the referback on the linkpath connecting the records of the various record
codes, the relative position of the referback field must be the same in the
coded portion for all record codes on that linkpath. RDM cannot properly
process such a linkpath chain if you do not follow this recommendation.

Physical Data Manager files

RDM PDM Support Supplement 19

The linkpath provides an access path from the primary to the related file.
For example, a related file containing transaction information might be
related to a primary file containing customer information. Each customer
record would link to a chain of transaction records for that customer.

You can also access related files through the use of secondary keys.
The discussion of secondary keys in “PDM primary files” on page 17
applies to primary and to related files. For information on using
secondary keys with related files, see “Accessing PDM files using
secondary keys” on page 48 and “Secondary key considerations” on
page 66.

Defining PDM files on the Directory
You must define the PDM files on the Directory in order to access them
using RDM. For information on using Directory Maintenance to define
PDM files, refer to the SUPRA Server PDM Directory Online User’s
Guide (OS/390 & VSE), P26-1260, or the SUPRA Server PDM Directory
Batch User’s Guide (OS/390 & VSE), P26-1261.

Chapter 2 Using the PDM with the RDM

20 P26-8221-63

Defining base views
The Relational Data Manager (RDM) treats data as if it were arranged in
tables (or relations). Each time an RDM command is issued, RDM uses
a view to access a row in the table defined by that view.

You define a view (and therefore a table) with the view definition
statements in DBAID; DBAID then stores the view definition on the
Directory. You can also define a view on to the Directory using Directory
Maintenance; see the Directory Maintenance manuals for details. It is
much easier to define views with DBAID than with Directory Maintenance.

The examples in this manual include only views and RDM commands as
you can use them in DBAID. For information on issuing RDM commands
from application programs, refer to the SUPRA Server PDM RDM
COBOL Programmer’s Guide (OS/390 & VSE), P26-8330, or the SUPRA
Server PDM RDM PL/1 Programmer’s Guide (OS/390 & VSE), P26-8331.

A base view definition consists of the following parts:

♦ Column definition. Defines the columns of a view. You specify the
name and logical properties of each column in the row. Refer to the
SUPRA Server PDM RDM Administration Guide (OS/390 & VSE),
P26-8220, for a complete definition of the Column Definition syntax.

♦ Access definition. Defines the database access. ACCESS
statements define the relationships between files, the sequence in
which the files are used, and which database maintenance functions
affect which files. The ACCESS statement varies depending on the
types of files you are using. If your view uses files other than PDM
files, consult the SUPRA RDM support supplement for that file type to
determine the correct ACCESS statement syntax.

Any valid view always contains at least one column definition and one
ACCESS definition.

Column definition in base views

RDM PDM Support Supplement 21

Column definition in base views
The column definition, entered as part of the base view definition, defines
each column to include in the view and each column’s characteristics.
You must define a column for each field included in a particular view.
You specify the view name as part of the view definition.

 KEY
 NONUNIQUE KEY
 REQ
 FKEY
 [UNIQUE] CONST























[][]

[] [][] []constantname-field

name-fieldname-column

 = ... = =

 ==

KEY

Description Optional. Indicates that this field is required in the view, is used as a
logical key, and forms a unique key either by itself or when combined with
other KEY fields.

Considerations

♦ This defines a required field. The general considerations on page 28
explain the effect of required fields on RDM’s view processing.

♦ The maximum number of KEY and NONUNIQUE KEY fields which
may be defined in a view is nine.

♦ If the field is a physical key, and you issue a GET USING command
with a value for the field, RDM does a direct (or indexed) read.

♦ If the field is not a physical key, and you issue a GET USING
command with a value for the field, RDM does a sequential search of
the file for an equal condition on the field.

♦ If you define a view column as KEY but multiple occurrences of a
given value exist in your database in the field supplying the column,
RDM may not be able to read all the occurrences. To read all such
occurrences, change KEY to NONUNIQUE KEY.

Chapter 2 Using the PDM with the RDM

22 P26-8221-63

NONUNIQUE KEY

Description Optional. Indicates that this field is required in the view, is used as a
logical key, and forms a nonunique key either by itself or when combined
with other KEY and NONUNIQUE KEY fields.

Considerations

♦ This defines a required field. The general considerations on page 28
explain the effect of required fields on RDM’s view processing.

♦ The maximum number of KEY and NONUNIQUE KEY fields which
may be defined in a view is nine.

♦ If the field is a physical key, and you issue a GET USING command
with a value for the field, RDM does a direct (or indexed) read.

♦ If the field is not a physical key, and you issue a GET USING
command with a value for the field, RDM does a sequential scan of
files for an equal condition on the field.

♦ This option allows you to specify a value for the view key in the GET
USING command without requiring a unique occurrence of the key
column.

♦ If a file’s columns include a KEY column and a NONUNIQUE KEY
column, the file is processed as if both columns were nonunique
keys. This is because a nonunique key makes the entire
combination of keys nonunique.

REQ

Description Optional. Indicates that this is a required field for this view.

Consideration This defines a required field. The general considerations on page 28
explain the effect of required fields on RDM’s view processing.

Column definition in base views

RDM PDM Support Supplement 23

FKEY

Description Optional. Indicates this column may contain a null foreign key and is not
required.

Consideration A foreign key field must be identified in the view either as a REQ field or
as an FKEY field in order to enforce referential integrity. Refer to the
SUPRA Server PDM RDM Administration Guide (OS/390 & VSE),
P26-8220, for more information about referential integrity.

[UNIQUE] CONST

Description Optional. Indicates that this column is required in the view, and that the
value of the column must be equal to the given constant for RDM to GET
the row. The default is nonunique unless you specify UNIQUE before
CONST.

Considerations

♦ This defines a required field. The general considerations on page 28
explain the effect of required fields on RDM’s view processing.

♦ The value of the constant is specified as part of the column data:
 CONST field-name = constant

♦ All CONST columns are part of the logical key, but are not returned in
the row.

♦ You must not use a CONST field after a USING clause in the RDML.

♦ You must specify a CONST to supply a constant.

♦ Constants must be valid and non-null.

Chapter 2 Using the PDM with the RDM

24 P26-8221-63

column-name = [=]

Description Optional. Assigns a name to the column which an application program
can use.

Format 1–30 alphanumeric characters and the special characters #, -, _, and $.
The first character must be alphabetic or a special character. If the first
character is a # or $, the second character must be alphabetic.

Considerations

♦ This option allows you to assign a name that might be more
descriptive and meaningful to the application.

♦ Column names need to be unique only within the view.

♦ If you do not specify a column name, applications use the field-name
(see the following parameter) to identify the field.

♦ If you specify multiple field names for a column, you must specify a
column name. RDM considers the first field name to be the column
name.

♦ The field(s) must be from the same domain as the column unless an
override is specified. To override the normal domain checking,
include the optional extra equal sign as shown below:

 REQ REGION = = BRANCH-REGION

Column definition in base views

RDM PDM Support Supplement 25

field-name

Description Required. Indicates the name of the external field or physical field whose
data is returned in the column.

Format Must conform to the naming conventions for external field and physical
field names, as imposed by the Directory.

Considerations

♦ The external field or physical field definition must already exist on the
Directory.

♦ If you code a physical field name, RDM assumes the first four letters
of that name are the name of the file containing the physical field. If
that assumption is false, then you must not code the physical field
name. Instead, you must define an external field name for that field
and use it for the field name.

♦ If the corresponding Physical Field on the Directory has a validation
option of E, the corresponding validation exit entry point must exist.

Chapter 2 Using the PDM with the RDM

26 P26-8221-63

[=] = field-name[...]

Description Optional. Specifies one or more external or physical fields, each of which
corresponds to the same column in the view. These fields are called
redundant fields.

Format Field names must be those of actual fields defined on the Directory.

Considerations

♦ If you specify multiple field names, you must specify a column name.
RDM interprets the first identifier in a column definition for redundant
fields as the column name.

♦ If the column has any of the attributes KEY, REQ, CONST, or
NONUNIQUE KEY, then all of the fields named are required fields.
The general considerations on page 28 explain the effect of required
fields on RDM’s view processing.

♦ If a redundant column has any of the attributes KEY, CONST, or
NONUNIQUE KEY, then when processing a GET, RDM ensures that
all of the fields named have the same given value when a key is
supplied. If a redundant column has none of these attributes, the
fields may have different values during GET processing, and the
value returned to the user is that of the field most recently accessed.

♦ RDM supplies data from fields to columns in the order specified in
the ACCESS statements, which is not necessarily the order on this
statement.

♦ The fields must be from the same domain unless an override is
specified. To override the normal domain checking, include the
optional extra equal sign as shown below:

 REQ REGION = = BRANCH-REGION = REGION-NO

Column definition in base views

RDM PDM Support Supplement 27

= constant

Description Optional. Assigns a constant value to this column.

Format You may specify the value as either:

 X'nnnnnn' Hexadecimal

 nnnnnnnnn Numeric (Binary, Packed, or Zoned)

 'cccc' Character

Considerations

♦ The length of the value depends on the length of the column being
defined.

♦ If the column definition specifies CONST, you must code a constant
value.

Chapter 2 Using the PDM with the RDM

28 P26-8221-63

General considerations for column definition in base views
♦ Any columns defined as REQ, KEY, CONST, or NONUNIQUE KEY

are required fields for the view.

♦ Required columns restrict the number of occurrences in the view. A
valid row must have an occurrence of the required column’s physical
record and a valid non-null value in the field supplying data to the
column.

♦ Required fields affect the operation of RDM, depending on the
command, in the following ways:

- On a direct GET, RDM takes the NOT FOUND option unless all
fields supplying data to required columns are present, valid, and
non-null.

- On a sweeping GET, RDM skips the physical record unless all
fields supplying data to required columns are present, valid, and
non-null.

- On any GET, a column identified with REQ or KEY or
NONUNIQUE KEY in the base view need not be defined in a
derived view.

- On an INSERT or an UPDATE, RDM returns an error unless all
required fields are present, valid, and non-null.

- On a DELETE, required fields have no effect.

♦ If a file’s columns include a KEY column and a NONUNIQUE KEY
column, the file is processed as if both columns were nonunique
keys. This is because a nonunique key makes the entire
combination of keys nonunique.

♦ At the physical level, more than one data element in a record can be
a view key; the keys are treated as a compound key for that physical
record.

♦ All column definition statements must precede the ACCESS
statement(s).

♦ The order of the column definition statements does not affect view
processing.

♦ A constant in a CONST column definition cannot be a null pattern.

♦ A constant must pass the validity checking if the column has
validation criteria associated with it.

Column definition in base views

RDM PDM Support Supplement 29

Examples for column definition in base views

♦ The column definition for this view indicates a customer-product row
which may have multiple product values for each customer.

 100 KEY CUSTOMER-NUMBER = CUST-NO

 200 NONUNIQUE KEY PRODUCT-NUMBER = ORDR-PROD-NO

 300 DESCRIPTION = PROD-DESCRIPTION

 400 DATE-OF-SALE = ORDR-SALE-DATE

 500 SALE-AMOUNT = ORDR-SALE-AMOUNT

 600 FULL-PRICE = PROD-PRICE

♦ This view returns data about employees who have a DURATION-IN-
DEPARTMENT of 0. This indicates that they are currently in the
department.

 100 KEY EMPLOYEE-NUMBER

 200 CONST DURATION-IN-DEPARTMENT=0

 300 NAME=EMPLOYEE-NAME

 400 SKILL-CODE=SKILL-CODE-FOR-EMPLOYEE

 500 DESCRIPTION=SKILL-DESCRIPTION

♦ This example shows the usage of multiple field names.
 100 CUSTOMER-NUMBER = CUST-NO = AUDIT-CUST-NO

- With a GET, the value returned in CUSTOMER-NUMBER
depends on which field (CUST-NO or AUDIT-CUST-NO) is
accessed last. RDM does not guarantee that these two values
are equal in this case.

- An INSERT of a value into CUSTOMER-NUMBER results in the
same value being inserted into CUST-NO and AUDIT-CUST-NO
on the physical database.

- With an UPDATE, a change in CUSTOMER-NUMBER updates
both CUST-NO and AUDIT-CUST-NO.

Chapter 2 Using the PDM with the RDM

30 P26-8221-63

♦ This example shows multiple field names making up a key column.
 100 KEY CUSTOMER-NUMBER = CUST-NO = AUDIT-CUST-NO =
SALES-CUST-NO

♦ RDM treats all fields as keys:

- With a GET, you retrieve only those records that have CUST-NO,
AUDIT-CUST-NO, and SALES-CUST-NO equal to the value
given for CUSTOMER-NUMBER in the USING clause. If no key
value is supplied on the GET command (you omit the USING
clause), RDM does not guarantee that these values are equal as
in the first part of the previous example.

- An INSERT of a value into CUSTOMER-NUMBER causes the
same value to be inserted into all three fields (CUST-NO,
AUDIT-CUST-NO, and SALES-CUST-NO).

- With an UPDATE, a change in CUSTOMER-NUMBER updates
CUST-NO, AUDIT-CUST-NO, and SALES-CUST-NO.

- CUSTOMER-NUMBER is not treated as a field name. If you
intended to define four redundant fields in this column, this
statement would be an error that RDM cannot detect. However,
you can recognize and correct such an error, for example, by
coding a column definition as follows:

 100 KEY CUSTOMER-NUMBER-COLUMN = CUSTOMER-NUMBER

 = CUST-NO

 = AUDIT-CUST-NO

 = SALES-CUST-NO

♦ In this example, both fields (CUST-NO and AUDIT-CUST-NO) are
set to five on all functions:

 100 CONST CUSTOMER-NUMBER = CUST-NO = AUDIT-CUST-NO = 5

ACCESS definition in base views

RDM PDM Support Supplement 31

ACCESS definition in base views
There are two types of ACCESS statements which you can use in your
view to access PDM files:

♦ The generalized ACCESS statement includes the WHERE clause
and leaves the access strategy for RDM to determine.

♦ The specific ACCESS statement includes the USING clause and/or
the VIA clause to specify the control key, linkpath, or secondary key
for accessing the file.

If you use a generalized ACCESS statement, RDM selects an access
strategy when RDM opens the view. RDM determines whether to access
the data through the use of a primary file’s control key, through a linkpath,
through a secondary key, or by scanning the file.

When you use a generalized ACCESS statement, you need to be aware
of the possibility that RDM is scanning the file, even though this might not
be what you intend or expect. RDM statistics were intended to provide
you with information about the operation of your views; they can help you
detect this sort of situation. The DBA user command SHOW-
NAVIGATION, issued after view open, displays the ACCESS strategy
selected for the view.

Chapter 2 Using the PDM with the RDM

32 P26-8221-63

Accessing primary files
The ACCESS statements you use for PDM primary files can be either
generalized or specific. You can use the WHERE clause without the
USING clause so that RDM determines the access strategy (Format 1).
You can use the USING clause so that RDM accesses the file directly
with the file’s control key (Format 2). You can use the WHERE clause
together with the USING clause so that RDM accesses the file directly
and applies additional criteria to the accessed record. You can also
access primary files using a secondary key. See “Accessing PDM files
using secondary keys” on page 48 for more information.

FORMAT 1—Generalized ACCESS statement

ACCESS filename

WHERE field-1 = [=] value [... AND field-n = [=] value]

[GIVING column1 […columnn]]

[[[[]]]][[[[]]]][[[[]]]][[[[]]]]ALLOW SHARED ALL INSERT DEL ETE
UPD ATE
REP

























FORMAT 2—ACCESS specifying a keyed read

ACCESS filename

USING key-field

WHERE field-1 = [=] value [... AND field-n = [=] value]

[GIVING column1 […columnn]]

[[[[]]]][[[[]]]][[[[]]]][[[[]]]]ALLOW SHARED ALL INSERT DEL ETE
UPDATE
REP





















Descriptions for each element of these formats follow. The elements are
described in the order they appear in Format 2 above.

ACCESS definition in base views

RDM PDM Support Supplement 33

ACCESS

Description Required. Identifies the statement as an access definition for the base
view.

filename

Description Required. Identifies the file you are accessing.

Format 4-character logical file name as it exists on the Directory

Consideration The file definition must already exist on the Directory.

USING key-field

Description Conditional. Required for a keyed read, not used for a generalized
statement. Indicates that RDM should access the primary file directly
using the specified key field as the control key.

Format The key field may be a physical field, an external field, a column, or a
constant, or it may be constructed at run time from multiple fields and
constants by use of parentheses. For example:
ACCESS MAS2 USING (FIELD1, '252', FIELD2)

Considerations
♦ Except for a base file (the first file accessed in the view), you must

use a USING or a WHERE clause.

♦ If the control key is subdefined, you can specify those subdefinitions
as the key fields. Each key field specified must correspond to the
subdefined part of the control key as defined on the Directory. You
must use parentheses in the USING to indicate the use of the
subdefinition of the control key field.

♦ If the Directory definition of the control key field is:
 01 MASTCTRL

 02 SUB-PART-1

 03 SUB-PART-1A

 03 SUB-PART-1B

 02 SUB-PART-2

 you could specify the following in a USING clause:
 USING MASTCTRL

 USING (SUB-PART-1, SUB-PART-2)

 USING ((SUB-PART-1A, SUB-PART-1B) SUB-PART-2)

Chapter 2 Using the PDM with the RDM

34 P26-8221-63

♦ Key parts may be omitted, starting at the right-hand side of any group
of key parts in parentheses. For example:

 USING (SUB-PART-1)

♦ When specifying compound keys, key parts may be omitted starting
at the right-hand side of any group of key parts in parentheses. For
example:

 USING (SUB-PART-1)

 USING ((SUB-PART-1A))

♦ RDM does not perform domain compatibility checking when you
specify USING.

ACCESS definition in base views

RDM PDM Support Supplement 35

WHERE field-1 = [=] value [... AND field-n = [=] value]

Description Optional. If you use the WHERE clause together with the USING clause,
the WHERE clause provides additional selection criteria. If you use the
WHERE clause without the USING clause, RDM selects the optimum
access strategy in the following manner:

♦ If the fields in the WHERE clause include the file’s control key, RDM
does a direct access on the file using the control key.

♦ If the fields do not include the control key, but they do include a
secondary key, or the leftmost portion of a secondary key (that
portion being a generic key), RDM does an indexed access on the
file using the whole or partial secondary key.

♦ If the fields do not include the control key, a full secondary key, or a
generic secondary key, RDM scans the file.

Format WHERE Specified as shown.

field-1 Field-1 must be a field in the file. It may be a column, an
external field, or a physical field.

= [=] Specifies an equal comparison between the field and the
value. If both fields have domains, the domains must be
the same unless you override this restriction by
specifying two equal signs. For example:

 ACCESS E$CU WHERE CUST-NAME = = CUST-NO

value Specifies the value that field-1 must match. It can be a
physical field, external field, column, or constant. It does
not have to be a column in the view; it can be a field from
a record supplied by a preceding ACCESS statement.

AND Optional. Allows specification of additional qualifications
for the ACCESS statement.

Considerations
♦ Except for base files (the first file accessed in the view), you must

use USING or WHERE clause.

♦ Field-1 and value must be the same length.

♦ If you wish to force the use of a secondary key, use the VIA clause.

♦ Use RDM statistics to measure the performance of the view when
using the WHERE clause without the USING clause.

♦ Field values used in a join must be valid and non-null. That is, they
must be equal, valid, and non-null for RDM to consider them equal .

Chapter 2 Using the PDM with the RDM

36 P26-8221-63

GIVING column1 [... columnn]

Description Optional. This clause overrides the normal data movement of physical
fields to columns.

Format Keyword GIVING followed by one or more column names as defined on
the Column Definition

Considerations

♦ The GIVING clause allows you to access a file more than once and
retrieve selected columns during each access. For each file which
occurs on more than one ACCESS statement and contains physical
fields which correspond to needed columns, you can specify which
columns should be filled on which access of the file.

♦ If you omit column names on the GIVING clause, RDM uses the file
for navigation only.

♦ If you omit this clause, all columns derived from physical fields in the
file that have not been supplied by some previous ACCESS
statement are filled with values using this ACCESS statement.

ACCESS definition in base views

RDM PDM Support Supplement 37

[[[[]]]][[[[]]]][[[[]]]][[[[]]]]ALLOW SHARED ALL INSERT DELETE
UPDATE
REP











Description Optional. Specifies what physical actions are allowed for the specified
file.

Format Any combination is valid, for example:

ALLOW INS DEL Allows inserts and deletes but not updates.

ALLOW UPD Allows updates but neither inserts nor deletes.

Options SHARED Allows columns to be shared between views.

ALL Allows all three forms of database modifications.

INSERT Allows inserts on the database.

DELETE Allows deletes from the database.

UPDATE / REP Allows updates or replacements on the database.

Considerations

♦ You may place the ALLOW phrase on as many ACCESS statements
as are required to properly maintain the view.

♦ If you omit this clause, the file is accessed for read-only processing.

♦ These options relate to physical I/O on the file, not to the application
program’s RDML.

♦ RDM does not override any restrictions imposed by the PDM. For
example, if the PDM does not allow an INSERT, then RDM does not
allow you to insert even if you specify ALLOW INSERT.

♦ Use of SHARED causes RDM to skip the column comparison
normally performed before you delete or replace records. This
column comparison detects and reports changed column values.
Use of SHARED has no impact on INSERT.

Chapter 2 Using the PDM with the RDM

38 P26-8221-63

Accessing related files
The ACCESS statements you use for PDM related files can be either
generalized or specific. You can use the WHERE clause without the
USING clause so that RDM determines the access strategy (Format 1).
You can use the VIA clause to specify the linkpath that RDM should use
to access the file (Format 2). You can use the WHERE clause together
with the VIA clause so that RDM accesses the file using the specified
linkpath and applies additional criteria to the accessed record.

You can also access related files through the use of a secondary key.
See “Accessing PDM files using secondary keys” on page 48 for more
information.

ACCESS definition in base views

RDM PDM Support Supplement 39

FORMAT 1—Generalized ACCESS statement

ACCESS filename [(record-code1[…,record-coden])]

[ONCE]

WHERE field-1 = [=] value [... AND field-n = [=] value]

[GIVING column1 […columnn]]

[[[[]]]][[[[]]]][[[[]]]][[[[]]]]ALLOW SHARED ALL INSERT DEL ETE
UPDATE
REP





















FORMAT 2—ACCESS statement specifying a linkpath

ACCESS filename





























































−


















+

− ncoderecordcoderecord

;
:

,

...1

 [FROM file [(record-code)]]

 







SCAN
ONCE

[REVERSE] VIA linkpath-field-name

 WHERE field-1 = [=] value [... AND field-n = [=] value]

 [GIVING column1 […columnn]]

 [ALLOW [SHARED] [ALL] [INSERT][DELETE][UPDATE]]

 []







































−

LAST
PRIOR
NEXT
FIRST

DESCENDINGORDER namecolumn

Descriptions for each element of these formats follow. The elements are
described in the order they appear in Format 2 above.

Chapter 2 Using the PDM with the RDM

40 P26-8221-63

ACCESS

Description Required. Identifies the statement as an access definition for the base
view.

filename

Description Required. Identifies the file to be accessed.

Format 4-character file name as defined on the Directory





























































−


















+

− ncoderecordcoderecord

;
:

,

...1

Description Optional. Indicates that RDM should access records with the specified
record code(s) in the specified related file.

Format Each record code must be a valid 2-character record code defined on the
Directory for this related file. Each operator must be one of the special
characters shown (comma, plus sign, colon, semicolon). The operator is
a shorthand method available for specifying record code processing. You
can use this method in place of the FROM clause or in conjunction with it.

♦ Operators:

, Specifies an "or" condition. For example: (HD,CM) causes RDM
to search the file (or the specified linkpath chain in the file, if any)
until either an HD or a CM record is found.

♦ If you use the VIA clause to determine the access strategy, you may
use the following three operators:

+ Specifies record code groups and indicates a one-to-one
relationship. For example: (HD+CM) retrieves only one CM
coded record for each HD coded record retrieved.

: Specifies embedded one-to-many relationships. For example:
(HD:IT) retrieves many IT coded records for each HD coded
record retrieved.

; Specifies embedded many-to-one relationships. For example:
(IT;HD) scans the related file linkpath chain for a record with the
HD record code after finding an IT record.

ACCESS definition in base views

RDM PDM Support Supplement 41

Considerations
♦ If you use the WHERE clause without a VIA clause, you can only

specify multiple record codes with commas (the "or" operator),
indicating that any record with any of the listed record codes may be
acceptable; for example, (HD,CU,OR).

♦ If you specify multiple record codes, then all fields in the WHERE
clause must be base fields.

♦ You may specify combinations of record codes and operators. For
example, (HD+CU:OR) indicates that for every header (HD), there is
one associated customer (CU), and many orders (OR).

♦ Record code specification depends on file and record relationships.
See “Related file considerations” on page 56 for all the possible
processing combinations when accessing PDM related files.

FROM file [(record-code)]

Description Optional. Indicates that RDM should access the current file (whose
name follows the ACCESS keyword in the current statement) using
information obtained (by a preceding ACCESS statement) from a record
in the file named in this clause. This clause can further specify the record
code of the desired source record. This overrides the default navigation
from primary to related files, and allows related-to-related file navigation.

Format FROM Specified as shown.

file 4-character name of a PDM related file defined on the
Directory.

(record-code) 2-character record code valid for the file in this clause, as
defined on the Directory.

Consideration You cannot use the FROM clause without the VIA clause.

Chapter 2 Using the PDM with the RDM

42 P26-8221-63









SCAN
ONCE

[REVERSE] VIA linkpath-field-name

Description Conditional. Required for a statement specifying a linkpath; not used for
a generalized statement. Specifies the linkpath RDM should use to
access the specified related file.

Format The linkpath name must be the external field name for the appropriate
linkpath field as defined on the Directory. The physical field name is
always of the form 'ppppLKxx' (where pppp is the name of the primary
file), for example, CUSTLK05. Since a physical field of this name must
be defined in both the primary and related files, which are linked by the
linkpath, RDM requires that you define an external field name for the
physical field in the related file. Use that external field name as the
linkpath-field-name in the VIA clause or RDM will be unable to determine
the correct navigation strategy.

Options ONCE Indicates that only the first record which meets the
selection criteria is retrieved from the file. Indicates that
a one-to-one relationship exists between the record
obtained by the preceding ACCESS statement and this
one.

SCAN Indicates that RDM should scan the linkpath chain until it
finds a record with the specified record code. Indicates
that a many-to-one relationship exists between the
record obtained by the preceding ACCESS statement
and this one.

REVERSE Indicates that RDM should follow the linkpath chain in
reverse direction.

Considerations

♦ The normal, default situation in which you use the VIA clause is this.
The record obtained by the previous ACCESS statement is a primary
file record. A one-to-many relationship exists between the primary
record and the related records on the linkpath chain. The current
ACCESS statement accesses any records on the chain, in forward
order, which meet the selection criteria. Each of the options (ONCE,
SCAN, and REVERSE) indicates a situation that differs from the
default situation.

♦ RDM does not perform domain checking when you use the VIA
clause.

ACCESS definition in base views

RDM PDM Support Supplement 43

WHERE field-1 = [=] value [... AND field-n = [=] value]

Description Conditional. Required for a generalized statement, optional for a
statement specifying a linkpath. If you use the WHERE clause together
with the VIA clause, the WHERE clause provides additional selection
criteria. If you use the WHERE clause without the VIA clause, RDM
selects the optimum access strategy in the following manner:

♦ If the fields in the WHERE clause include a referback for the related
file, RDM does a direct access on the primary file for that linkpath
using the referback as the control key, and then accesses the related
file using the linkpath field in the primary record.

♦ If the fields do not include a referback, but do include a secondary
key, or the leftmost portion of a secondary key (that portion being a
generic key), RDM does an indexed access on the related file using
the whole or partial secondary key.

♦ If the fields do not include a referback, a full secondary key, or a
generic secondary key, RDM scans the entire related file.

Format WHERE Specified as shown.

field-1 Field-1 must be a field in the file. It may be a column, an
external field, or a physical field.

= [=] Specifies an equal comparison between the field and the
value. If both fields have domains, the domains must be
the same unless you override this restriction by using two
equal signs. For example:

 ACCESS E$CU WHERE CUST-NAME = = CUST-NO

value Specifies the value that field-1 must match. It can be a
physical field, external field, column or constant. It does
not have to be a column in the view; it can be a field from
a record supplied by a preceding ACCESS statement.

AND Optional. Allows specification of additional qualifications
for the ACCESS.

Considerations
♦ Field-1 and value must be the same length.

♦ If you wish to specify a linkpath or secondary key, use the VIA
clause.

♦ Use RDM statistics to measure the performance of the view when
using the WHERE clause without the VIA clause.

♦ Field values used in a join must be valid and non-null.

Chapter 2 Using the PDM with the RDM

44 P26-8221-63

GIVING column1 [... columnn]

Description Optional. Overrides the normal physical field to column data movement.

Format The keyword GIVING followed by one or more column names as defined
on the column definition

Considerations

♦ The GIVING clause allows you to access a file more than once and
retrieve selected columns during each access. For each file which
occurs on more than one ACCESS statement and contains physical
fields which correspond to needed columns, you can specify which
columns should be filled on which access of the file.

♦ If you omit column names on the GIVING clause, RDM uses the file
for navigation only.

♦ If you omit this clause, all columns derived from physical fields in the
file that have not been supplied by some previous ACCESS
statement are filled with values using this ACCESS statement.

ACCESS definition in base views

RDM PDM Support Supplement 45

[] [] [] [] ALLOW SHARED ALL INSERT DEL ETE
UPDATE
REP

 









Description Optional. Specifies what physical actions are allowed for the specified
file.

Format Any combination is valid, for example:

ALLOW INS DEL Allows inserts and deletes but not updates.

ALLOW UPD Allows updates but not inserts and deletes.

Options SHARED Allows columns to be shared between views.

ALL Allows all three forms of database modifications.

INSERT Allows inserts on the database.

DELETE Allows deletes from the database.

UPDATE / REP Allows updates or replacements on the database.

Considerations

♦ You may place the ALLOW clause on as many ACCESS statements
as are required to properly maintain the view.

♦ If you omit this clause, the file is only accessed for read-only
processing.

♦ These options relate to physical I/O on the file, not to the application
program’s RDML.

♦ RDM does not override any restrictions imposed by the PDM. For
example, if the PDM does not allow an INSERT, then RDM does not
allow you to insert even if you specify ALLOW INSERT.

♦ Use of SHARED causes RDM to skip the column comparison
normally performed before you delete or replace records. This
column comparison detects and reports changed column values.
Use of SHARED has no impact on INSERT.

Chapter 2 Using the PDM with the RDM

46 P26-8221-63

[]







































−

LAST
PRIOR
NEXT
FIRST

DESCENDINGORDER namecolumn

Description Optional. Indicates that predetermined ordering criteria are used when
operating on a related file named in the ACCESS statement.

Default All ordering defaults to ascending unless you specify DESCENDING. If
you do not specify ordering in the ACCESS statement, the FIRST/NEXT/
PRIOR/LAST option on the INSERT command can be used by the
application program to control ordering of the physical insertion of
records.

Format Column-name must be a column name defined in the view
Considerations

♦ You can use the ORDER clause only with a VIA clause that specifies
linkpath navigation.

♦ In the case of record codes, you can change the linkpath and column
to use for ordering from ACCESS statement to ACCESS statement
within the same file. The ordering information is used for the GET
USING and INSERT functions.

♦ With the GET USING, RDM uses ordering if the column in the
ORDER clause is also a key (unique or nonunique) to the view.

♦ In the case of INSERT, the ordering criteria are always used. The
chain is first positioned via the order criteria, and the row is inserted
at that position. When inserting a row, the ORDER column is a
required column.

♦ There are two levels of positioning available with the ORDER clause.
In both cases, the ORDER clause overrides
FIRST/NEXT/LAST/PRIOR used with the INSERT statement.

- If you supply a column name in the ORDER clause, then
positioning of FIRST/NEXT/LAST/PRIOR is applied only to
multiple occurrences of the value for that clause.

- If you do not supply a column name in the ORDER clause, then
positioning FIRST/NEXT/LAST/PRIOR is applied to the entire
chain for that file.

♦ If the view is currently not positioned in accordance with the order
clause, the NEXT function acts as LAST and the PRIOR function
acts as FIRST (placing it at the start of the sequence of ordered
columns).

ACCESS definition in base views

RDM PDM Support Supplement 47

♦ The REVERSE option on the VIA clause also affects the order in
which RDM accesses records on the linkpath chain.

♦ ORDER does not correct the sequencing of existing data on a
linkpath chain. For example, suppose the data in an ORDER field on
a linkpath chain happens to be as follows: 1, 3, 9, 4. (This isn't very
clear. I'm trying to describe a linkpath chain of 4 records, and in this
one particular field in each record, the data values you will find if you
read along the chain are 1 then 3 then 9 then 4.) If you now issue an
INSERT that supplies the value 5 in the ORDER field, the current
position can affect your results.

 First, suppose you're currently positioned on the record containing
the 1. RDM sees your requested data value 5 is greater than the
order data at the current position. So RDM scans forward on the
chain, finds 3<5 but 9>5, and inserts the 5 between those 2 records.
It does not scan further down the chain to discover the sequencing
error.

 Now instead suppose you're currently positioned on the record
containing the 4. RDM again sees your requested data value 5 is
greater than the order data at the current position. So RDM scans
forward on the chain. Since it's already at the end of the chain, it
appends the new record to the end of the chain and stops. It does
not scan further back in the chain to discover that the initial data was
out of sequence.

 The moral of the story is this. If you code an ORDER clause, your
data really needs to be in sequence. You should have created the
data with ORDER in the first place. You can't suddenly use an
ORDER clause to access data that was not created in sequence. If
the data is out of sequence, supplying an ORDER clause does not
cause RDM to correct the sequencing and you can get anomalous
results.

Chapter 2 Using the PDM with the RDM

48 P26-8221-63

Accessing PDM files using secondary keys
The following ACCESS statement allows you to access either PDM
primary or related files using a secondary key. You must first define the
secondary key on the Directory. The ACCESS statement for primary or
related files using a secondary key is identical except that you may not
specify a record code when accessing PDM primary files. After you
specify the ACCESS statement and the file name, you may enter the
optional clauses in any order. You can use the WHERE clause to
provide additional selection criteria.

ACCESS filename [(record-code1[…,record-coden])]

[ONCE][REVERSE] VIA secondary-key-name [USING key-field]

WHERE field-1 = [=] value [... AND field-n = [=] value]

[GIVING column1 […columnn]]

[[[[]]]][[[[]]]][[[[]]]][[[[]]]]ALLOW SHARED ALL INSERT DEL ETE
UPDATE
REP





















ACCESS

Description Required. Identifies the statement as an Access Definition for the view.

filename

Description Required. Identifies the file that RDM should access.

Format Must be the 4-character name of the required file as defined on the
Directory.

ACCESS definition in base views

RDM PDM Support Supplement 49

(record-code1[…,record-coden])

Description Optional. Indicates that RDM should access records with the specified
record code(s) in the specified related file.

Format Each record code is two characters long and must be an actual record
code defined on the Directory. The special character separating multiple
record codes must be a comma; colon, semicolon, and plus sign are not
valid in this phrase for secondary keys.

Considerations

♦ You can specify record codes for PDM related files only.

♦ If you specify multiple record codes, all fields that make up the
secondary key must come from the base portion of the data record.

♦ You can specify multiple record codes only with commas (the "or"
operator) as shown, indicating that any record with any of the listed
record codes may be acceptable; for example, (HD,CU,OR).

[ONCE][REVERSE] VIA secondary-key-name

Description Required. Specifies the secondary key RDM should use to access the
file.

Format The name specified must be the name of a valid secondary key as
defined on the Directory. The format of the name is always ‘fileSKnn’, for
example, CUSTSK01.

Options ONCE Indicates that only the first physical record that meets the
selection criteria is returned. See “Using the ONCE
keyword” on page 68 for more information.

REVERSE Indicates that RDM should access the records in order of
descending secondary key values. See “Using the
REVERSE keyword” on page 68 for more information.

Considerations

♦ If you code both a VIA clause and a USING clause, the USING
clause must immediately follow the VIA clause.

♦ RDM does not perform domain compatibility checking when you use
a VIA or USING clause.

Chapter 2 Using the PDM with the RDM

50 P26-8221-63

USING key-field

Description Optional. Indicates that RDM should do an indexed read on the file using
the specified key field to supply the secondary key value.

Format The key field may be a physical field, an external field, a column, or a
constant, or it may be constructed at run time from multiple fields and
constants by use of parentheses. For example:
ACCESS MAS2 VIA MAS2SK03 USING (FIELD1, '252', FIELD2)

Considerations

♦ You can specify key fields from parts of the secondary key as defined
in the Directory. Depending on whether the secondary key is simple
or compound and whether or not the field(s) are subdefined,
determines if and how parentheses should be used.

♦ For a simple secondary key, each pair of parentheses indicates the
sublevel, if any, at which the key fields specified in the USING clause,
are defined.

♦ For example, consider a simple secondary key, built on a field named
INDEXFIELD, which is subdefined as follows:

 01 INDXFIELD

 02 SUB-PART-1

 03 SUB-PART-1A

 03 SUB-PART-1B

 02 SUB-PART-2

 you could specify the following in a USING clause:
 USING INDXFIELD

 USING (SUB-PART-1, SUB-PART-2)

 USING ((SUB-PART-1A, SUB-PART-1B) SUB-PART-2)

♦ Key parts may be omitted, starting at the right-hand side of any group
of key parts in parentheses. For example:

 USING (SUB-PART-1)

 USING ((SUB-PART-1A))

♦ When specifying only the secondary key field, you must omit the
parentheses.

♦ If you code both a VIA clause and a USING clause, the USING
clause must immediately follow the VIA clause

ACCESS definition in base views

RDM PDM Support Supplement 51

♦ For a compound secondary key, if more that one of the fields, which
comprise the key, are specified in the USING clause, then they must
be enclosed in parentheses.

♦ If only the first field comprising the compound key is specified, then
the parentheses are optional.

♦ If the fields specified are subdefinitions of those fields comprising the
compound secondary key, then one pair of parentheses is required
for each level of subdefinition plus one extra pair because the key is
compound. For example, consider a compound secondary key built
on the field defined above, INDXFLD and another field, INDXFLD01,
then you could specify the following in a USING clause:

 USING INDEXFIELD or USING (INDXFIELD)
 USING (INDXFIELD, INDXFLD01)
 USING ((SUB-PART-1, SUB-PART-2), INDXFLD01)
 USING (((SUB-PART-1A, SUB-PART-1B)), SUB-PART-2), INDXFLD01)

♦ As with simple secondary keys, key parts may be omitted starting at
the right-hand side of groups in parentheses.

♦ Constant values must be valid and non-null.

WHERE field-1 = [=] value [... AND field-n = [=] value]

Description Optional. The WHERE clause, used in conjunction with the VIA clause,
provides additional selection criteria.

Format WHERE Specified as shown.

field-1 Field-1 must be a field in the file. It may be a column, an
external field or a physical field.

= [=] Specifies an equal comparison between the field and the
value. If both fields have domains, the domains must be
the same unless you override this restriction by using two
equal signs. For example:
ACCESS E$CU WHERE CUST-NAME = = CUST-NO

value Specifies the value that field-1 must match. It can be a
physical field, external field, column or constant. It does
not have to be a column in the view; it can be a field from
a record supplied by a preceding ACCESS statement.

AND Optional. Allows specification of additional qualifications
for the ACCESS statement.

Chapter 2 Using the PDM with the RDM

52 P26-8221-63

GIVING column1 […columnn]

Description Optional. Overrides the normal physical field to column data movement.

Format Keyword GIVING followed by one or more column names as defined on
the Column Definition

Considerations

♦ The GIVING clause allows you to access a file more than once and
retrieve selected physical fields during each access. For each file
which occurs on more than one ACCESS statement and contains
physical fields which correspond to needed columns, you can specify
which columns should be filled on which access of the file.

♦ If you omit column names on the GIVING clause, no column values
are obtained on this access of the file. The file is used for navigation
only.

♦ If you omit this clause, all columns that are derived from physical
fields in the file, and that have not been supplied by some previous
ACCESS statement, are filled with values using this ACCESS
statement.

ACCESS definition in base views

RDM PDM Support Supplement 53

[[[[]]]][[[[]]]][[[[]]]][[[[]]]]ALLOW SHARED ALL INSERT DEL ETE
UPDATE
REP





















Description Optional. Specifies what physical actions are allowed for the specified
file.

Format Any combination is valid, for example:

ALLOW INS DEL Allows inserts and deletes but not updates.

ALLOW UPD Allows updates but not inserts and deletes.

Options SHARED Allows columns to be shared between views.

ALL Allows all three forms of database modifications.

INSERT Allows inserts on the database.

DELETE Allows deletes from the database.

UPDATE / REP Allows updates or replacements on the database.

Considerations

♦ You may place the ALLOW phrase on as many ACCESS statements
as are required to properly maintain the view.

♦ If you omit this clause, the file is only accessed for read-only
processing.

♦ These options relate to physical I/O on the file, not to the application
program’s RDML.

♦ RDM does not override any restrictions imposed by the PDM. For
example, if the PDM does not allow an INSERT, then RDM does not
allow you to insert even if you specify ALLOW INS.

♦ Use of SHARED causes RDM to skip the column comparison
normally performed before you delete or replace records. This
column comparison detects and reports changed column values.
Use of SHARED has no impact on INSERT.

Chapter 2 Using the PDM with the RDM

54 P26-8221-63

Primary file considerations
This section discusses special considerations for using PDM primary files
with RDM.

The most efficient way to retrieve records from a primary file is to use a
logical key and have it correspond exactly to the control key in the record.
For instance, the base file (the first file accessed) in the view is typically a
keyed file. That ACCESS statement would be in the form:
ACCESS file USING column

or
ACCESS file WHERE field = value

In the first case, the column name would be designated as a key in the
view. For example:
KEY CUST-NO

ACCESS CUST USING CUST-NO

When you use a GET USING command and specify a value for
CUST-NO, RDM performs a direct keyed read using the file’s control key.

The view would be similarly efficient if the field in the WHERE clause
corresponded exactly to the file’s control key. For example,
KEY CUST-NO

ACCESS CUST WHERE CUST-NO = CUST-NO

Processing considerations
You cannot sweep a PDM primary file in a logical sequence, either
forward or backwards, without the use of a secondary key; i.e., you may
not issue a GET LAST or GET PRIOR command for a primary file which
you are not accessing with a secondary key. If you try, RDM returns an
error.

Insertion or deletion of some records in a PDM primary file can change
the physical position and relative physical order of other records.
Therefore, if you are serially processing a primary file while you or
another user is inserting or deleting records in the file, you may retrieve
some records multiple times or not at all.

Primary file considerations

RDM PDM Support Supplement 55

Compound control keys
You may want to include compound control keys for primary files in your
view. These keys are derived from a previous file access, constant
value, or user-supplied field, which are concatenated to form the key’s
value.

To define a compound control key, use a USING phrase on the primary
file ACCESS statement, for example, ACCESS PRI1 USING
('A',SUB-PART-2,SUB-PART-3). Parentheses indicate the beginning and
ending of the compound control key or a subcomponent of the compound
control key. Compound control keys may be nested to any level as long
as the parts of the compound key correspond to the control key definition
in the Directory. The following is an example of a compound control key.

Directory definition: Length of field:
01 PRI1CTRL 20
 02 SUB-PART-1 7
 02 SUB-PART-2 9
 03 SUB-PART-2A 5
 03 SUB-PART-2B 4
 02 SUB-PART-3 4

If you want a view which returns only those columns from the file PRI1
which have a first character of A in the control key, use the following
ACCESS statement:
ACCESS PRI1 USING ('A',SUB-PART-2, SUB-PART-3)

If you also want to restrict access to only those columns with
SUB-PART-2A equal to THURS, then the ACCESS statement should be:
ACCESS PRI1 USING ('A', ('THURS', SUB-PART-2B), SUB-PART-3)

Notice that each left parenthesis indicates a further subdefinition of the
key column and a right parenthesis indicates the end of the subdefinition.

When you use compound control keys, remember that the fields used as
sources for parts of the keys must be the same length as the Directory
definition for the part, for example, any field used as a source for
SUB-PART-3 must be a length of four. No part of a compound key can
be invalid or null.

If you leave out part of a compound control key, it ceases to be a control
key and remains only a logical key. For example,
ACCESS PRI1 USING ('A',('THURS'), SUB-PART-3)

leaves out SUB-PART-2B. RDM cannot access a PDM primary file
directly without a complete control key, so it must sweep the file
searching for a match for the fields in the compound logical key.

Chapter 2 Using the PDM with the RDM

56 P26-8221-63

Related file considerations
This section discusses special considerations for using PDM related files
with RDM.

In most cases, the relationship between a related file and a primary file
represents a one-to-many relationship. For example, records in the
ORDR file are associated to records in the CUST file. You can have
customers with many orders, but you cannot have orders without them
being linked to a customer.

You can create related files with either noncoded record formats or coded
record formats. You can use coded records to build hierarchical
structures within a file, such as header records, comment records, etc.
For more information on PDM files, refer to the SUPRA Server PDM and
Directory Administration Guide (OS/390 & VSE), P26-2250.

Related file data records contain some special physical fields: linkpath
fields, referback fields, and (in coded files only) record codes. You may
not change these fields with an RDM update; RDM returns an error if you
try.

This section describes the various methods you can use to navigate
through related files. Which methods you choose depends on the logical
relationships of the related records to each other and to primary file
records.

Related file considerations

RDM PDM Support Supplement 57

Standard processing of related files
In the most common case, a primary file record has a one-to-many
relationship with related file records. When retrieving occurrences of a
view which accesses data in both the primary and related files, the
program logic should retrieve data in a one-to-many relationship. In this
case, your ACCESS statement should look like this:
ACCESS CUST USING CUST-NO

ACCESS ORDR VIA CUST-LINKPATH-05 (External field name of a
linkpath field)

or, to express the identical view using generalized access, like this:
ACCESS CUST WHERE CUST-NO = CUST-NO

ACCESS ORDR WHERE ORDR-CUST-NO = CUST-NO

Using primary file extensions
You can use a related file as an extension to a primary file. A primary file
data record would relate via a linkpath to one (at most) data record in the
extension related file. The related data record contains information which
could just as well, logically, be contained in the primary record. The
related records would have a one-to-one relationship with primary
records. In other words, each linkpath chain in the extension file contains
only one record.

For example, the customer data file (the related file CUDT) is used as an
extension to the customer file (the primary file CUST). All the fields in
CUST and CUDT could have been defined into CUST alone when the
database was designed; but the extension arrangement can save space
if there are a significant number of customers to whom the CUDT fields
do not apply. To access data contained in the extension file, the
ACCESS statement should look like this:
ACCESS CUST

ACCESS CUDT ONCE VIA CUST-EXTENSION-LINK (External field name of
a linkpath field)

A GET request on this view uses the linkpath defined by
CUST-EXTENSION-LINK to access a record from CUDT, but only once
for each occurrence of a record from CUST. An INSERT adds either the
CUST record or the CUDT record, or both, as defined through the use of
the ALLOW clauses.

Chapter 2 Using the PDM with the RDM

58 P26-8221-63

Multiple related file usage
RDM can navigate from one primary file to multiple related files. If a
primary record relates to more than one linkpath chain, and you specify
the multiple linkpaths in your ACCESS statements, RDM scans the
linkpath chains in parallel, with the occurrences in the view ending when
the longest linkpath chain is exhausted.

The following example retrieves one record from CUST, and then scans
the CUDT and ORDR linkpath chains in parallel in the second level of
hierarchical search.
ACCESS CUST

ACCESS CUDT VIA CUST-EXTENSION-LINK

ACCESS ORDR VIA CUST-LINKPATH-05

If the linkpath chains are not the same length, RDM might reread
previously read occurrences along the shorter linkpath as you continue
down the longer one. For example, if the linkpath chain in CUDT above
contains 10 records but the one in ORDR contains only 5, the first 5 GET
NEXT commands read the first 5 records on each linkpath chain. The
6th GET reads the 6th record in CUDT but reports end-of-chain in
ORDR, returning no data to columns supplied by ORDR. The 7th GET
reads the 7th record in CUDT but starts over again with the first record in
ORDR. In short, a view like this implies that the linkpath chains in the
related files are, in fact, equal length. RDM detects no errors if this
condition is not true, but your processing may not properly reflect your
business model.

Inserting coded records
When RDM processes an INSERT RDML against a coded related file,
the record code must be supplied in the physical record before RDM
passes it to PDM. You can supply the record code as a column in the
view, preferably as a KEY or NONUNIQUE KEY column. Alternatively,
you can supply the record code on the ACCESS statement, in the form
ACCESS file(rc). If you do neither, RDM selects one of the record codes
defined for the file on the Directory. Since you have no control over this
selection, it is essentially random and most unlikely to be the one you
intended.

Related file considerations

RDM PDM Support Supplement 59

Retrieving coded records in occurrence order
You can retrieve data from several coded records in the order they
appear on their linkpath chain. The resulting view may contain columns
drawn from data records with different record codes, subject to the
restriction described in the next paragraph. RDM reads related records
in their order of occurrence by default unless you specify record code
information in your ACCESS statement.

RDM navigates a linkpath by using the referback on the linkpath as the
key. You can add records with different record codes to the same
linkpath. If the referback on this linkpath is in the base portion of the
coded records in the file, there is no problem. But if the referback is in
the coded portion, the Directory and PDM permit you to define the
referback at any offset within the coded portion. However, in such a
case, RDM cannot properly determine the location of the referback key
field for all record codes. RDM selects the first valid referback it can find
in the Directory for that linkpath and uses it for all the record codes on
that linkpath. (Since SUPRA does not define the concept of a "first,"
"second," "third," etc. record code, RDM's selection is essentially at
random.) If the referback is in a different location in each coded portion,
retrievals can be correct only for one of the record codes and are
doomed to failure on all the others. If you intend to process a linkpath
chain that connects related records from multiple record codes, you must
ensure that the referback on that linkpath is at the same relative location
in all the connected coded records. You do this by placing the referback
in the base portion of the record, or by placing the referback at the same
offset within each coded portion of the record. The only exception to this
rule comes if you explicitly provide a single record code in the ACCESS
statement (i.e., ACCESS file(rc)). In this case, since you are telling RDM
to focus on just one of the record codes on the linkpath chain, the offset
of the referback within the coded portions of the other record codes does
not matter.

RDM reads and skips records on the linkpath chain until it finds a record
that contributes a data value for some column in the view, includes any
fields required by the view, and meets any selection criteria for the view;
RDM then returns the necessary fields from that record.

Chapter 2 Using the PDM with the RDM

60 P26-8221-63

Retrieving related records by record code
Another way to process a linkpath chain of coded related records is to
skip through them searching for a record with a specific record code or
with one of a list of record codes. You can specify this type of processing
by putting a list of record codes (in parentheses) after the file name in the
ACCESS statement, as shown:
ACCESS CUST

ACCESS PROD (HD,CM) VIA CUST-TO-ORDERS

These statements cause RDM to read the PROD file until it finds either
an HD or a CM record. At that point, the view retrieves whatever data is
provided in that record. When inserting a record in the view, you must
specify the record code in the view. See “Retrieving coded records in
occurrence order” on page 59 for restrictions on multi-record code
linkpaths.

If you use the WHERE clause on your ACCESS statement, you may
implicitly access multiple record codes in this manner only if all of the
fields in the WHERE clause are base fields. See “Accessing related
files” on page 38 for more information.

Related file considerations

RDM PDM Support Supplement 61

Retrieving related records with embedded one-to-one
relationships

A coded related file contains different types of records, the types being
marked with different record codes. These different record types can
have logical relationships with each other. Such relationships are called
embedded because they exist between records in the same physical file.

In an embedded one-to-one relationship, a record of one type is used as
an extension to a record of another type. This is analogous to the
relationship between a primary record and its extension related record, as
explained in “Using primary file extensions” on page 57. For example,
suppose the coded file REL1’s record codes include HD and EX. An EX
record is always an extension to an HD record, and it always follows its
HD record on the PRI1LKXX linkpath chain. Following an HD record (the
current record) on the chain, and before the next HD record (if any) or the
chain’s end, there is either one EX record or none; if there is one, it is
the current HD record’s extension. The following ACCESS statements
access information from an HD record and from its extension (if any).
ACCESS PRI1

ACCESS REL1 (HD) VIA PRI1-LINKPATH-XX

ACCESS REL1 (EX) FROM REL1 (HD) ONCE VIA PRI1-LINKPATH-XX

or
ACCESS PRI1

ACCESS REL1 (HD+EX) VIA PRI1-LINKPATH-XX

The coded records are grouped in clusters with an HD record being the
first in each cluster and an EX record optionally occurring after that
record. You can think of each cluster as a single occurrence in which the
retrieval of an HD record should trigger an attempt to retrieve one
occurrence of an EX record.

You may access other records in the file at the same time you access
these records with the one-to-one relationships. For example, if, in
addition to HD and EX records, you want a random BR record retrieved
when it is found, use the following syntax:
ACCESS CUST

ACCESS ORDR (HD,BR) VIA CUST-TO-ORDERS

ACCESS ORDR (EX) FROM PROD (HD) ONCE VIA CUST-TO-ORDERS

or
ACCESS CUST

ACCESS ORDR (HD+EX,BR) VIA CUST-TO-ORDERS

See “Retrieving coded records in occurrence order” on page 59 for
restrictions on multi-record code linkpaths.

Chapter 2 Using the PDM with the RDM

62 P26-8221-63

Retrieving related records with embedded one-to-many
relationships

In an embedded one-to-many relationship, a record of one type relates to
a group of records of another type. This is analogous to the one-to-many
relationship between a primary record and the related records on its
linkpath chain. For example, suppose the coded file ORDR’s record
codes include PO (purchase order) and IT (order item). PO records have
a one-to-many relationship with IT records. An IT record always relates
to a PO record, and it always follows its PO record on the CUSTLK05
linkpath chain. Following a PO record (the current record) on the chain,
and before the next PO record (if any) or the chain’s end, there are zero
or more IT records; if there are any, they relate to the current PO record.
The following ACCESS statements access information from each IT
record and from its parent PO record.
ACCESS CUST

ACCESS ORDR (PO) VIA CUST-LINKPATH-O5

ACCESS ORDR (IT) FROM ORDR (PO) VIA CUST-LINKPATH-O5

or
ACCESS CUST

ACCESS ORDR (PO:IT) VIA CUST-LINKPATH-O5

This reads the ORDR file along the CUSTLK05 chain, and starts with the
specified customer’s first record until a PO record is found. The chain is
then read until either an IT or a PO record is found. If an IT record is
found, the row containing PO and IT fields is returned. The search
repeats, returning one row for each IT record, until all IT records for the
particular PO have been accessed. The next occurrence of a PO record
marks the end of that group of order records.

See “Retrieving coded records in occurrence order” on page 59 for
restrictions on multi-record code linkpaths.

Related file considerations

RDM PDM Support Supplement 63

Retrieving related records with embedded many-to-one
relationships

In an embedded many-to-one relationship, a group of records of one type
relate to a record of another type. This is analogous to the many-to-one
relationship between the related records on a linkpath chain and the
primary record for that chain. For example, suppose the coded file
ORDR’s record codes include PO (purchase order) and IT (order item).
IT records have a many-to-one relationship with PO records. An IT
record always relates to the PO record most closely preceding it on the
CUSTLK05 linkpath chain. More than one IT record can relate to the
same PO record.
An embedded many-to-one relationship is a one-to-many relationship
seen from the opposite perspective. “Retrieving related records with
embedded one-to-many relationships” on page 62 shows the
one-to-many relationship between purchase order records (records with
the record code PO on the related file ORDR) and order items (IT
records on ORDR). The example there showed access navigation from
customer to customer’s purchase order to order item. This section’s
example shows navigation in the opposite direction through the same
relationship: from product to order item to purchase order.
ACCESS PROD

ACCESS ORDR (IT) VIA PROD-LINKPATH-06

ACCESS ORDR (PO) FROM ORDR (IT) SCAN REVERSE VIA CUST-LINKPATH-O5

If the last two ACCESS statements above used the same linkpath, you
could combine them into one statement using the ";" syntax, for example,
(IT;PO).

This accesses the ORDR file using the linkpath between PROD and
ORDR. Once an IT record is found on this linkpath chain, RDM switches
linkpaths (see “Switching linkpaths” on page 64) and scans the
CUSTLK05 linkpath chain for a PO record. The REVERSE keyword is
included because the PO record precedes the IT record on the
CUSTLK05 linkpath chain.

See “Retrieving coded records in occurrence order” on page 59 for
restrictions on multi-record code linkpaths.

Chapter 2 Using the PDM with the RDM

64 P26-8221-63

Switching linkpaths
A related file record can be a member of more than one linkpath chain.
Views are not limited to accessing a single linkpath when processing
coded related files. The example in “Retrieving related records with
embedded many-to-one relationships” on page 63 shows where
switching linkpaths can be useful. The only constraint on linkpath
switching is that the record being switched from must be on both linkpath
chains. In the previous example, the IT record type contains both the
PRODLK06 and the CUSTLK05 linkpaths, so RDM could switch linkpaths
at that record. However, the PO record type contains only the
CUSTLK05 linkpath; therefore, switching cannot occur there.

Inserting related records with embedded relationships
When you insert a related record, and the record’s type is the destination
of navigation through an embedded relationship, the values in the
inserted record’s base fields default to those in the parent record’s base
fields. For example, if you insert a record with record code IT, and the
relevant ACCESS statement looks like this,
ACCESS ORDR (IT) FROM PROD (PO) ...

then RDM accesses the existing PO record (the parent record) first. If
the parent record does not exist, your insert fails. By default, RDM gets
the values for the base fields for the inserted IT record from the base
fields of the PO record. If a base data field is provided for the inserted
record in the view, the value from the row overrides the base data copied
from the parent record.

Related file considerations

RDM PDM Support Supplement 65

Optimizing performance
The most efficient way to access a particular record on a linkpath chain is
by a secondary key. If you use a logical key which is not a secondary
key, RDM must search the linkpath chain to find that key value.
However, you should let RDM do the search since it is more efficient than
an application program.

Assigning unique keys to related file records has additional implications
for performance. When you insert a record into a related file that has a
unique logical key, RDM must search the entire linkpath chain to make
sure that there are no duplicate keys. A nonunique key does not present
this problem. Nevertheless, if you need to maintain your key’s
uniqueness on the linkpath chain, it is still more efficient to let RDM do it
than to have the program check all the records on the linkpath chain.

When a search of a related file linkpath chain is required, ordering the
linkpath chain (using the ORDER phrase in the ACCESS Definition - see
“Accessing related files” on page 38) can improve performance. If you
maintain the linkpath chain in a particular order, RDM can then optimize
the search because it can determine where the record should be in the
linkpath and does not have to search the entire linkpath chain.

It is less efficient for the application program to search the file than it is
for RDM to do the search. Therefore, if the application program needs to
search on values that are not physical keys, it is better to define them as
logical keys and let RDM do the searching.

A generalized ACCESS statement (one with the WHERE clause but no
VIA or USING clause) may result in a time-consuming sweep of a file.
Use RDM statistics and the DBAID SHOW-NAVIGATION command to
determine the efficiency of your view and to decide whether to define a
new secondary key.

Maintaining foreign keys
A referback field in a related file is a foreign key and is treated like a
foreign key by the PDM; the PDM automatically enforces referential
integrity for referback fields. Nevertheless, we recommend using RDM’s
referential integrity features to maintain your data’s integrity. Refer to the
SUPRA Server PDM RDM Administration Guide (OS/390 & VSE),
P26-8220, for more information about referential integrity.

Chapter 2 Using the PDM with the RDM

66 P26-8221-63

Secondary key considerations
This section describes the use of secondary keys with RDM. The DBA
can define any physical field or combination of fields within a PDM file as
a secondary key. Secondary keys:

♦ Need not be unique

♦ Need not be contiguous in the data record

♦ May be accessed in either ascending or descending order

♦ Are fully recoverable under all recovery methods supported by the
PDM

♦ May be used as an alternative to accessing a file using a control key
or through a linkpath

♦ Allow you to build views which present data in the order of the
secondary key

♦ Are defined on the Directory using the SK category

♦ Are stored in an index file

To use a secondary key, define it in the Directory, populate it, make it
eligible to RDM, then include it in the ACCESS statement (see
“Accessing PDM files using secondary keys” on page 48). Refer to the
SUPRA Server PDM Directory Online User’s Guide (OS/390 & VSE),
P26-1260, SUPRA Server PDM Directory Batch User’s Guide (OS/390 &
VSE), P26-1261, and SUPRA Server PDM & Directory Administration
Guide (OS/390 & VSE), P26-2250, for information on defining a
secondary key.

Secondary key considerations

RDM PDM Support Supplement 67

The ACCESS statement for secondary keys allows you to use the
REVERSE keyword (see “Using the REVERSE keyword” on page 68)
and the ONCE keyword (see “Using the ONCE keyword” on page 68).
You may also use GET PRIOR and GET LAST to change directions (see
“GET PRIOR/LAST command” on page 68).

The following example shows a simple unique secondary key. This view
allows access to the CUST file with records ordered by the CUST-CITY
value. CUSTSK01 is a secondary key based on the CUST-CITY field.
KEY CUST-CITY
CUST-NO
CUST-NAME
CUST-ADDRESS
ACCESS CUST VIA CUSTSK01 USING CUST-CITY

The following GET command would retrieve data from the CUST file
using the secondary key.
GET FIRST CUST-VIEW USING 'CINCINNATI'

For more examples of views using secondary keys, see “Sample PDM
database and base views” on page 71.

Using generic secondary keys
You can use generic secondary keys instead of full secondary keys to
access PDM files. Any combination of fields that are contiguous in the
key, and that include the leftmost character in the key, is a generic key.
A generic key need not be unique. The use of generic secondary keys
does not require a sweep of the file. In the example below, we use a
generic key derived from the secondary key ORDRSK01. We have
defined ORDRSK01 itself as consisting of the fields ORDR-CUST-NO
(customer number) and ORDR-PO-NUMBER (purchase order number)
in that order.
KEY CUST-NO

KEY ORDR-PO-NUMBER

ORDR-NAME

ORDR-ADDRESS

ACCESS CUST USING CUST-NO

ACCESS ORDR VIA ORDRSK01 USING CUST-NO

This view performs a keyed read on the CUST file, but a generic read is
performed on the ORDR file through the secondary key, ORDRSK01,
since ORDR-PO-NUMBER was not specified in the USING phrase.

Chapter 2 Using the PDM with the RDM

68 P26-8221-63

Using the REVERSE keyword
You can specify that RDM access the secondary key in reverse order by
including the REVERSE keyword on the ACCESS statement (see
“Accessing PDM files using secondary keys” on page 48).

The following view returns the customer numbers in random order and
the purchase order numbers in reverse order. Since the index is stored
in ascending order by default, the purchase order numbers are returned
in descending order.
KEY CUST-NO
KEY ORDR-PO-NUMBER
ORDR-NAME
ORDR-ADDRESS
ACCESS CUST USING CUST-NO
ACCESS ORDR REVERSE VIA ORDRSK01
USING (CUST-NO, ORDR-PO-NUMBER)

Using the ONCE keyword
You can establish a one-to-one relationship with the previous record by
using the ONCE keyword on the ACCESS statement. The following view
returns only the first ORDR record found since it accesses the ORDR file
only once through the secondary key. A subsequent GET would move to
the next CUST record and then get only the first ORDR record based on
the new secondary key value.
KEY CUST-NO
KEY ORDR-PO-NUMBER
ORDR-NAME
ORDR-ADDRESS
ACCESS CUST USING CUST-NO
ACCESS ORDR ONCE VIA ORDRSK01
USING (CUST-NO, ORDR-PO-NUMBER)

GET PRIOR/LAST command
You can use the GET command in application programs or with DBAID to
retrieve rows. Use the GET command in conjunction with the LAST,
FIRST, PRIOR, and NEXT clauses to penetrate and position within a
view. For example,
GET LAST CUST USING 'CINCINNATI'

 or
GET PRIOR CUST USING 'CINCINNATI'

The PDM does not support GET PRIOR or LAST with primary files
unless you specify a secondary key on the ACCESS statement.

RDM PDM Support Supplement 69

3
User exits

Several exits are available to you which allow you to insert processing
routines before and after Physical Data Manager (PDM) calls. You can
use the exits to:

♦ Bypass database calls

♦ Perform your own database or user file calls

♦ Satisfy any special requirements for your system

There are two levels in your processing where you can insert routines:

♦ The RDM processing level which is environment independent

♦ The PDM call processing level which is environment dependent

Chapter 3 User exits

70 P26-8221-63

Values for the PDM function parameter include the following:

ADD-M Add primary record

ADDVA Add related record next on chain

ADDVB Add related record previous on chain

ADDVC Add related record at end of chain

ADDVR Replace related record

DEL-M Delete primary record

DELVD Delete related record

FINDX Read next qualified record (either primary or related)

RDNXT Read next record (either primary or related)

READD Read related record directly

READR Read related record previous on chain

READV Read related record next on chain

READX Read record (either primary or related) via secondary key

WRITM Update primary record

WRITV Update related record

For more information on all of the available RDM user exits, and on using
the function parameter value, refer to the SUPRA Server PDM RDM
Administration Guide (OS/390 & VSE), P26-8220, and the SUPRA Server
PDM & Directory Administration Guide (OS/390 & VSE), P26-2250.

RDM PDM Support Supplement 71

A
Sample PDM database and base views

This Appendix describes a sample database and shows some base
views which access the database.

Sample database
The following figure illustrates the sample database. The double arrows
drawn between the files indicate many-to-one relationships. Following
the diagram are descriptions of the files.

INDX
Secondary

Key
Info

CUSTSK01

CUSTSK02

Linkpaths
Secondary

Keys
CUSTLK05

ORDRSK01

CUST
Customer

Info

CUDT
Customer
Extension

ORDR
Order
Info

PROD
Product

Info

PRODLK06

CUSTLK04

Appendix A Sample PDM database and base views

72 P26-8221-63

The sample database consists of the following:

♦ CUST file. A PDM primary file which contains customer information
such as addresses, city, phone number, etc. The control key to this
file is the customer number (CUST-NO). The secondary key
CUSTSK01 is defined as the field CUST-CITY. The secondary key
CUSTSK02 is defined as the field CUST-NO (same field as the
control key). The file’s data records contain the following fields:

Physical field External field Column name

CUSTCTRL CUST-NO CUST-NO
CUSTNAME CUST-NAME NAME
CUSTADDR CUST-ADDR ADDDRESS
CUSTCITY CUST-CITY CITY
CUSTSTAT CUST-STATE STATE
CUSTPHNE CUST-PHONE PHONE
CUSTZIPC CUST-ZIP ZIP
CUSTLK04 CUST-EXTENSION-LINK
CUSTLK05 CUST-TO-ORDERS

♦ ORDR file. A PDM coded related file which contains order

information such as customer number and list price. The linkpath
referback fields for this file are ORDR-CUST-NO for linkpath
CUSTLK05, and ORDR-PROD-NUMB for linkpath PRODLK06. The
secondary key ORDRSK01 is defined as the concatenation of
ORDR-CUST-NO and ORDR-PO-NUMBER. Which linkpath keys
and other fields are present in a record depend on the record code
for that record. The record codes for this file are:

- PO—Purchase Order

- CN—Contact

- IT—Item

Sample database

RDM PDM Support Supplement 73

The file’s data records contain the following fields:

Physical field External field Column name RC

ORDRCODE ALL
ORDRCUNO ORDR-CUST-NO CUST-NUMBER ALL
CUSTLK05 CUST-LINKPATH-05 ALL
ORDRCONT ORDR-NAME CONTACT-NAME CN
ORDRADDR ORDR-ADDRESS CONTACT-ADDR CN
ORDRTTLE ORDR-TITLE CONTACT-TITLE CN
ORDRPHON ORDR-PHONE CONTACT-PHONE CN
ORDRPONO ORDR-PO-NUMBER PO-NO PO
ORDRITEM ORDR-ITEM ITEM IT
ORDRPROD ORDR-PROD-NUMB PROD-NO IT
PRODLK06 PROD-LINKPATH-06 IT

♦ PROD file. A PDM primary file which contains product information

such as the product number and sales price for an item. The key for
this file is the product number (PRODCTRL). The file’s data records
contain the following fields:

Physical field External field Column name

PRODNUMB PROD-NUMB PROD-NO
PRODDESC PROD-DESC PROD-DESC
PRODLCHG PROD-LEASE-CHRG PROD-RENT
PRODMCHG PROD-MAINT-CHRG PROD-MAINT
PRODPRCE PROD-PURCH-PRICE PROD-PURCH
PRODLK06

Appendix A Sample PDM database and base views

74 P26-8221-63

♦ CUDT file. A PDM related file that is a one-to-one extension of the
CUST file and contains customer credit information. The linkpath
referback field for this file is CUDT-CUST-NO for linkpath
CUSTLK04.

Physical field External field Column name

CUDTCUNO CUDT-CUST-NO CUST-NO
CUDTCRED CUDT-CREDIT-RATING CREDIT-RATING
CUDTCREL CUDT-CREDIT-LIMIT CREDIT-LIMIT
CUDTCREU CUDT-CREDIT-USED CREDIT-USED
CUSTLK04 CUST-LINKPATH-04 (none)

♦ INDX file. An index file which contains secondary key information for

the secondary keys CUSTSK01, CUSTSK02, and ORDRSK01.

Example view definitions
The following examples describe views which access the files shown in
“Sample database” on page 71:

Example view 1. This view shows a direct keyed read using the
customer number as the key. The ALLOW clause allows the
replacement, deletion, and insertion of new customers.
KEY CUST-NO

 ADDRESS = CUST-ADDR

 NAME = CUST-NAME

 STATE = CUST-STATE

ACCESS CUST USING CUST-NO

 ALLOW UPDATE DELETE INSERT

Example view definitions

RDM PDM Support Supplement 75

Example view 2. This view is identical to the view shown above but it
uses the generalized access syntax (the WHERE clause) on the access
statement. RDM determines the most efficient access strategy and
performs a direct-keyed read as in the above view.
KEY CUST-NO

 ADDRESS = CUST-ADDR

 NAME = CUST-NAME

 STATE = CUST-STATE

ACCESS CUST WHERE CUST-NO = CUST-NO

 ALLOW UPDATE DELETE INSERT

Example view 3. This view retrieves every customer who resides in
California. In this view, ‘CA’ is used as a constant so you must place it in
quotes. This view results in a scan of the customer file; RDM must look
at every record to see if the state field contains CA. It would be more
efficient to define an index on the state field; then RDM could use a
secondary key to retrieve only the records you need without scanning.
KEY CUST-NO

 CUST-NAME

 CUST-CITY

ACCESS CUST WHERE CUST-STATE = 'CA'

 ALLOW ALL

Example view 4. This view is the same as the above view except that it
specifies an additional condition which must be met before a record is
retrieved: The customer must reside in Los Angeles, California. This
view would be more efficient if you defined a secondary key on the
concatenation of the city and state fields in either order because then
RDM could access the records directly without scanning the database. If
an index is not available for the city/state concatenation, RDM attempts to
use an index on city or state, if available.
KEY CUST-NO

 CUST-NAME

ACCESS CUST WHERE CUST-STATE = 'CA'

 AND CUST-CITY = 'LOS ANGELES'

 ALLOW ALL

Appendix A Sample PDM database and base views

76 P26-8221-63

Example view 5. This view shows the WHERE clause used to specify
additional selection criteria (state and city) when accessing a file with the
USING clause to specify a direct keyed read. If you don’t specify a
logical key value on the ‘GET’ for the view, RDM scans the file while
searching for a city/state match.
KEY CUST-NO

ACCESS CUST USING CUST-NO

 WHERE CUST-STATE = 'CA'

 AND CUST-CITY = 'LOS ANGELES'

Example view 6. This view shows the use of the coded record
ORDR(IT). Note that although there are no columns from the ORDR file,
a DELETE causes the PROD file record and all records on the ORDR file
on the linkpath PRODLK06 that are chained to the PROD record to be
deleted.
KEY PROD-NO = PROD-NUMB

 PROD-DESC

 PROD-RENT = PROD-LEASE-CHRG

 PROD-MAINT = PROD-MAINT-CHRG

 PROD-PURCH = PROD-PURCH-PRICE

ACCESS PROD USING PROD-NO

 ALLOW ALL

ACCESS ORDR(IT) VIA PROD-LINKPATH-06

 ALLOW DELETE

Example view definitions

RDM PDM Support Supplement 77

Example view 7. This view is identical to the above view, but it uses the
generalized form of the access syntax which enables RDM to determine
the access strategy.
KEY PROD-NO = PROD-NUMB

PROD-DESC

PROD-RENT = PROD-LEASE-CHRG

PROD-MAINT = PROD-MAINT-CHRG

PROD-PURCH = PROD-PURCH-PRICE

ACCESS PROD WHERE PROD-NUMB = PROD-NO

 ALLOW ALL

ACCESS ORDR(IT) WHERE ORDR-PROD-NUMB = PROD-NUMB

 ALLOW DELETE

Example view 8. This view shows the use of two keys. It uses the
customer number to scan through the order list to get all orders
associated with a given customer. An INSERT can succeed only if the
customer exists.
KEY CUST-NO

KEY CONTACT-NAME = ORDR-NAME

 CONTACT-TITLE = ORDR-TITLE

 CONTACT-PHONE = ORDR-PHONE

ACCESS CUST USING CUST-NO

ACCESS ORDR(CN) VIA CUST-LINKPATH-05

 ALLOW ALL

Appendix A Sample PDM database and base views

78 P26-8221-63

Example view 9. This view shows a more complicated view than the
preceding three. It shows which customers ordered each of the products
and shows the purchase order numbers. The view uses a physical field
instead of an external field (ITEM column). Once the IT record is located
on the ORDR file, the file is scanned in REVERSE order along the
CUSTLK05 linkpath. The two ACCESS statements to ORDR show an
example of switching linkpaths.
KEY PROD-NUMB

 DESCRIPTION = PROD-DESC

KEY CUST-NUMBER = ORDR-CUST-NO

 NAME = CUST-NAME

 PO-NO = ORDR-PO-NUMBER

 ITEM = ORDRITEM

ACCESS PROD USING PROD-NO

ACCESS ORDR(IT) VIA PROD-LINKPATH-06

ACCESS ORDR(PO) FROM ORDR(IT) SCAN REVERSE VIA CUST-LINKPATH-05

ACCESS CUST USING CUST-NUMBER

Example view 10. This view allows the insertion of items into a
purchase order. Note the ordering of purchase orders by purchase order
number, and the ordering of items within a purchase order by item
number.
KEY CUST-NO

KEY PO-NO = ORDR-PO-NUMBER

KEY ITEM = ORDRITEM

 PROD-NUMBER = ORDR-PROD-NUMB

 NAME = CUST-NAME

 DESCRIPTION = PROD-DESC

ACCESS CUST USING CUST-NO

ACCESS ORDR(PO) VIA CUST-LINKPATH-05 ORDER PO-NO

 ALLOW ALL

ACCESS ORDR(IT) FROM ORDR(PO) VIA CUST-LINKPATH-05 ORDER ITEM

 ALLOW ALL

ACCESS PROD USING PROD-NUMBER

Example view definitions

RDM PDM Support Supplement 79

Example view 11. This view shows the use of a compound logical key.
In this example, the view is accessed by city and customer name within
the city. CUSTSK01 is a secondary key based on the CUST-CITY field.
The application has two logical keys available, CUST-CITY and
CUST-NAME. Either of the keys may be used for selection.
KEY CUST-CITY

 CUST-NO

KEY CUST-NAME

 CUST-ADDRESS

ACCESS CUST VIA CUSTSK01

 USING CUST-CITY

Example view 12. This view shows the navigation between files through
secondary keys. The value to be used for the index is supplied by the
previous file (CUST supplies CUST-NO) and a logical key
(ORDR-PO-NUMBER). The view returns customer numbers in random
order, but the purchase order numbers for the CUST-NO in question are
returned in ascending order.
KEY CUST-NO

KEY ORDR-PO-NUMBER

 ORDR-NAME

 ORDR-ADDRESS

ACCESS CUST

ACCESS ORDR VIA ORDRSK01

 USING (CUST-NO, ORDR-PO-NUMBER)

Appendix A Sample PDM database and base views

80 P26-8221-63

Example view 13. If you want the customer numbers in order, your view
should look like this:
KEY CUST-NO

KEY ORDR-PO-NUMBER

 ORDR-NAME

 ORDR-ADDRESS

ACCESS CUST VIA CUSTSK02 USING CUST-NO

ACCESS ORDR VIA ORDRSK01

 USING (CUST-NO, ORDR-PO-NUMBER)

CUSTSK02 is the secondary key on the CUST-NO physical key field.

Example view 14. The following view shows the use of a customer
extension file. The CUDT file is a one-to-one extension of the customer
file.
KEY CUST-NO

 CREDIT-RATING = CUDT-CREDIT-RATING

 CREDIT-LIMIT = CUDT-CREDIT-LIMIT

 CREDIT-USED = CUDT-CREDIT-USED

ACCESS CUST USING CUST-NO

ACCESS CUDT ONCE VIA CUST-LINKPATH-04

RDM PDM Support Supplement 81

Index

A

ACCESS statement
described 20
for related files 38
generalized, considerations 31
generalized, for related files 38,

59
generated by NORMAL 31, 32,

38
using secondary keys 48

ACCESS Statement
for primary files 32

ALLOW clause 37, 53
ALLOW option 45

B

Base fields 18, 64
Base files 33, 54
Base views 13, 20

C

Coded fields 18, 60
Coded records 18
Column definition

described 20
format 21

Column definitions
considerations 28
examples 29

Columns, redundant. See
Field(s), redundant

Compound keys 34, 51, 55
CONST option 23, 26

D

Defining columns. See Column
definition

Derived views 13, 28
Direct read example 74

E

Embedded many-to-one
relationships 63

Embedded one-to-many
relationships 62

Embedded related records,
insertion and replacement
62

Environment independent exits
69

Example view definitions 74
Exits 69

F

Fields
base 18, 64
coded 18, 60
linkpath 18, 42
redundant 26
related 18

File access. See ACCESS
statement

File extension 62
Files

base 54
index 16, 17
PDM 13, 16, 19
primary 17, 54
primary, ACCESS 32
primary, extensions 57
related 56
related, ACCESS 38
related, as extensions 57

FKEY option 23
Foreign keys 18, 23, 65
FROM clause 41, 62

G

Generalized ACCESS statement.
See ACCESS statement,
generalized

Generate. 80. See NORMAL
GET PRIOR/LAST 54, 67, 68
GIVING clause 36, 52
GIVING option 44

I
Integrity 23
Intergrity 65

Index

82 P26-8221-63

K

KEY option 21, 26, 28
Keys

compound 34, 51, 55
control 17
foreign 18, 23, 65
generic 67
linkpath 17, 18
logical 65
nonunique 65
physical 17, 26
secondary 17, 66

L

Linkpath
keys 18

Linkpath chains 18
Linkpath example 77
Linkpath fields 18, 42
Linkpath switching 64
Linkpaths 18
Logical key(s) 65
Logical views. See Views

M

Multiple related file usage 58

N

Navigation definition. See
ACCESS statement

NONUNIQUE KEY option 22
Nonunique key(s) 65
NORMAL

general 13, 19
generated ACCESS statement

38
generated ACCESS statements

31, 32

O

ONCE keyword 68
ONCE option 42, 49
One-to-many relationships 42, 56
Optimizing performance 65
ORDER clause 46

P

PDM files 13, 16, 19
Performance optimization 31, 65
Physical keys 17, 26
Primary file extensions 57
Primary files. See Files, primary

R

RDM 13
Record code phrase 40, 41, 49
Records

coded 46
primary 17, 54
related 18, 56
related, relationships between

62
Redundant columns. See

Redundant fields
Redundant fields 26
Referential integrity 23, 65
Related files. See Files, related
Related records. See Records,

related
Relational Data Manager (RDM)

13
Relationships

between related records 62
embedded 62
one-to-many 42, 56

REVERSE keyword 68
REVERSE option 42

S

SCAN option 42
Secondary keys

ACCESS statement 46
defined 16, 17

Serial processing (file sweep) 31,
65

SSecondary keys
considerations 66

Statistics 31
Switching linkpaths 64

U

USING clause 34, 50

Index

RDM PDM Support Supplement 83

V

VIA option 42
Views

base 13, 20
base, example 74
derived 13, 28

W

WHERE clause
general 31
primary files 32, 35
related files 38, 43
secondary keys 51

Index

84 P26-8221-63

	Back to DOCUMENTATION MENU
	About this book
	Using this document
	Document organization
	Revisions to this manual
	Conventions

	SUPRA Server documentation series

	Chapter 1 - Introduction to the PDM
	Using RDM to access a PDM database
	Conceptual system overview

	Chapter 2 - Using the PDM with the RDM
	Physical Data Manager files
	PDM primary files
	PDM related files
	Defining PDM files on the Directory

	Defining base views
	Column definition in base views
	ACCESS definition in base views
	Accessing primary files
	Accessing related files
	Accessing PDM files using secondary keys

	Primary file considerations
	Processing considerations
	Compound control keys

	Related file considerations
	Standard processing of related files
	Using primary file extensions
	Multiple related file usage
	Inserting coded records
	Retrieving coded records in occurrence order
	Retrieving related records by record code
	Retrieving related records with embedded one˚to˚one relationships
	Retrieving related records with embedded one˚to˚many relationships
	Retrieving related records with embedded many˚to˚one relationships
	Switching linkpaths
	Inserting related records with embedded relationships
	Optimizing performance
	Maintaining foreign keys

	Secondary key considerations
	Using generic secondary keys
	Using the REVERSE keyword
	Using the ONCE keyword
	GET PRIOR/LAST command

	Chapter 3 - User exits
	Appendix A - Sample PDM database and base views
	Sample database
	Example view definitions

	Index

