

SUPRA SERVER PDM

RDM COBOL Programming Guide
(OS/390 & VSE)

P26-8330-62

SUPRA® Server PDM RDM COBOL Programming Guide (OS/390 & VSE)

Publication Number P26-8330-62

 1987, 1991, 1993, 1998, 2000, 2002 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage®
C+A-RE™
CINCOM®
Cincom Encompass®
Cincom Smalltalk™
Cincom SupportWeb®
CINCOM SYSTEMS®

gOOi™

iD CinDoc™
iD CinDoc Web™
iD Consulting™
iD Correspondence™
iD Correspondence Express™
iD Environment™
iD Solutions™
intelligent Document Solutions™
Intermax™

MANTIS®
Socrates®
Socrates® XML
SPECTRA™
SUPRA®
SUPRA® Server
Visual Smalltalk®
VisualWorks®

UniSQL™ is a trademark of UniSQL, Inc.
ObjectStudio® is a registered trademark of CinMark Systems, Inc.

All other trademarks are trademarks or registered trademarks of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, Ohio 45246-3732
U. S. A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

www.cincom.com

Release information for this manual

The SUPRA Server PDM RDM COBOL Programming Guide (OS/390 &
VSE), P26-8330-62, is dated January 15, 2002. This document
supports Release 2.7 of SUPRA Server PDM in IBM mainframe
environments.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. Please take the survey provided with the
online documentation at your convenience.

Cincom Technical Support for SUPRA Server PDM

FAX: (513) 612-2000
 Attn: SUPRA Server Support

E-mail: helpna@cincom.com

Phone: 1-800-727-3525

Mail: Cincom Systems, Inc.
 Attn: SUPRA Server Support
 55 Merchant Street
 Cincinnati, OH 45246-3732
 U. S. A.

mailto:helpna@cincom.com

Contents

About this book ix
Using this document... ix

Document organization ... ix
Revisions to this manual ..x
Conventions .. xi

SUPRA Server documentation series .. xiv

Overview of COBOL application programming with RDM 17
Application programming overview ...18
Understanding RDM views..20

Creating user views..22
Understanding columns and keys ..23

Introduction to the Relational Data Manipulation Language (RDML)25
Introduction to the DBAID utility subset...26

RDM COBOL Programming Guide v

Using the DBAID utility subset 27
DBAID commands list... 28
DBAID formatting guidelines... 31
DBAID commands .. 32

= command.. 32
BYE command... 33
BY-LEVEL command... 34
CAUTIOUS command ... 36
COLUMN-TEXT command.. 37
COMMIT command ... 39
DELETE command.. 40
ERASE command.. 42
FIELD-DEFN command... 43
FORGET command... 45
GET command .. 46
GO command .. 50
INSERT command... 53
KEEP command .. 56
LINESIZE command.. 57
MARK command ... 58
MARKS command ... 59
OPEN command.. 60
PAGESIZE command.. 62
RELEASE command ... 63
RESET command.. 64
SIGN-OFF command... 65
SIGN-ON command .. 66
SURE command.. 67
UPDATE command ... 68
USER-LIST command... 70
USERS command ... 71
VIEW-DEFN command ... 72
VIEWS command .. 73
VIEWS-FOR-USER command.. 74

Contents

vi P26-8330-62

Coding RDM COBOL application programs 75
Using the programmer's report ...76
Coding the DATA DIVISION ...77

Specifying views and user views..78
Specifying TIS-CONTROL ...79
RDM status indicators ..80

Coding the PROCEDURE DIVISION ..84
Signing on/off ...85
Maintaining storage..86
Using the GET statement to retrieve rows ...86
Accessing multiple views ...89
Using the MARK statement to save row position ...90
Using explicit and automatic record holding...91
Handling error conditions ...92
Modifying rows ...93
Using the INSERT statement ...94
Using the COMMIT/RESET statements...95
Handling errors requiring a recompile ..96

RDM COBOL application program statements 97
DATA DIVISION statements ...98

INCLUDE view-data ...98
INCLUDE TIS-CONTROL..101

PROCEDURE DIVISION statements..103
COMMIT...104
DELETE ...105
FORGET ..107
GET..109
INSERT ..114
MARK...116
RELEASE...118
RESET ...119
SIGN-OFF ..120
SIGN-ON..121
UPDATE...122

Compiling and linking an RDM COBOL application program 123
Executing the RDML precompiler ...124
Linking a compiled program..124

Contents

RDM COBOL Programming Guide vii

OS/390 and VSE samples and procedures 125
OS/390 samples and procedures ... 125
VSE samples .. 126

Sample RDM COBOL application program 127

Index 133

Contents

viii P26-8330-62

About this book

Using this document
This manual is for COBOL application programmers who wish to write
RDM COBOL applications for SUPRA PDM.

Document organization
The information in this manual is organized as follows:

Chapter 1—Overview of COBOL application programming with RDM
Presents an overview of the requirements and considerations that a
COBOL programmer needs to be aware of before writing an RDM
COBOL program.

Chapter 2—Using the DBAID utility subset
Describes DBAID utility commands.

Chapter 3—Coding RDM COBOL application programs
Presents requirements and guidelines for coding RDM COBOL
application programs.

Chapter 4—RDM COBOL application program statements
Contains format descriptions and usage considerations for the two
groups of RDM COBOL program statements.

Chapter 5—Compiling and linking an RDM COBOL application
program
Presents information on the RDML Precompiler, including
instructions for executing the precompiler and linking considerations
for each operating system.

Appendix A—OS/390 and VSE samples and procedures
Lists samples and procedures for running certain tasks in OS/390
and VSE environments.

Appendix B—Sample RDM COBOL application program
Displays a sample COBOL application to execute a set of RDML
statements.

Index

RDM COBOL Programming Guide ix

Revisions to this manual
The following changes have been made for this release:

♦ A note was added to the introductory text in “Coding RDM COBOL
application programs” on page 75 to indicate Cincom’s
recommendation for an alternative to use of the REMARKS verb.

♦ References to CMS have been removed.

♦ References to MVS have been changed to OS/390.

About this book

x P26-8330-62

Conventions
The following table describes the conventions used in this document
series:

Convention Description Example
Constant width
type Represents screen images and

segments of code.
PUT 'customer.dat'
GET 'miller\customer.dat'
PUT '\DEV\RMT0'

Slashed b (b/) Indicates a space (blank).
The example indicates that four
spaces appear between the
keywords.

BEGNb/b/b/b/SERIAL

Brackets [] Indicate optional selection of
parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate
one of the following situations:

 A single item enclosed by brackets
indicates that the item is optional
and can be omitted.
The example indicates that you can
optionally enter a WHERE clause.

[WHERE search-condition]

 Stacked items enclosed by
brackets represent optional
alternatives, one of which can be
selected.
The example indicates that you can
optionally enter either WAIT or
NOWAIT. (WAIT is underlined to
signify that it is the default.)

(WAIT)
(NOWAIT)











About this book

RDM COBOL Programming Guide xi

Convention Description Example
Braces { } Indicate selection of parameters.

(Do not attempt to enter braces or
to stack parameters.) Braces
surrounding stacked items
represent alternatives, one of
which you must select.
The example indicates that you
must enter ON or OFF when using
the MONITOR statement.

MONITOR
ON
OFF









Underlining
(In syntax)

Indicates the default value supplied
when you omit a parameter.
The example indicates that if you
do not choose a parameter, the
system defaults to WAIT.

(WAIT)
(NOWAIT)











 Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.
The example indicates that you can
enter either STAT or STATISTICS.

STATISTICS

Ellipsis points... Indicate that the preceding item
can be repeated.
The example indicates that you can
enter multiple host variables and
associated indicator variables.

INTO :host-variable [:ind-
variable],...

About this book

xii P26-8330-62

Convention Description Example
UPPERCASE
lowercase

In most operating environments,
keywords are not case-sensitive,
and they are represented in
uppercase. You can enter them in
either uppercase or lowercase.

COPY MY_DATA.SEQ

HOLD_DATA.SEQ

Italics Indicate variables you replace with
a value, a column name, a file
name, and so on.
The example indicates that you
must substitute the name of a
table.

FROM table-name

Punctuation
marks

Indicate required syntax that you
must code exactly as presented.
() parentheses
. period
, comma
: colon
' ' single quotation marks

(user-id, password, db-name)

INFILE 'Cust.Memo' CONTROL
 LEN4

SMALL CAPS Represent a required keystroke.
Multiple keystrokes are
hyphenated.

ALT-TAB

OS/390
VSE

Information specific to a certain
operating system is flagged by a
symbol in a shadowed box (OS/390)
indicating which operating system
is being discussed. Skip any
information that does not pertain to
your environment.

OS/390 See the SUPRA Server
procedure library
member TIS$RDM for a
list of RDM procedures.

VSE See the SUPRA Server
RDM sublibrary member
TXJ$INDX for a list of
JCL.

About this book

RDM COBOL Programming Guide xiii

SUPRA Server documentation series
SUPRA® Server is the advanced relational database management
system for high-volume, update-oriented production processing. A
number of tools are available with SUPRA Server including DBA
Functions, DBAID, precompilers, SPECTRA, and MANTIS. The following
list shows the manuals and tools used to fulfill the data management and
retrieval requirements for various tasks. Some of these tools are
optional. Therefore, you may not have all the manuals listed. For a brief
synopsis of each manual, refer to the SUPRA Server PDM Digest
(OS/390 & VSE), P26-9062.

Overview

♦ SUPRA Server PDM Digest (OS/390 & VSE), P26-9062

Getting started

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM CICS Connector Systems Programming Guide
(OS/390 & VSE), P26-7452

General use

♦ SUPRA Server PDM Glossary, P26-0675

♦ SUPRA Server PDM Messages and Codes Reference Manual
(RDM/PDM Support for OS/390 & VSE), P26-0126

About this book

xiv P26-8330-62

Database administration tasks

♦ SUPRA Server PDM and Directory Administration Guide (OS/390 &
VSE), P26-2250

♦ SUPRA Server PDM Directory Online User’s Guide (OS/390 & VSE),
P26-1260

♦ SUPRA Server PDM Directory Batch User’s Guide (OS/390 & VSE),
P26-1261

♦ SUPRA Server PDM DBA Utilities User’s Guide (OS/390 & VSE),
P26-6260

♦ SUPRA Server PDM Logging and Recovery (OS/390 & VSE),
P26-2223

♦ SUPRA Server PDM Tuning Guide (OS/390 & VSE), P26-0225

♦ SUPRA Server PDM RDM Administration Guide (OS/390 & VSE),
P26-8220

♦ SUPRA Server PDM RDM PDM Support Supplement (OS/390 &
VSE), P26-8221

♦ SUPRA Server PDM RDM VSAM Support Supplement (OS/390 &
VSE), P26-8222

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

♦ SPECTRA Administrator’s Guide, P26-9220

About this book

RDM COBOL Programming Guide xv

Application programming tasks

♦ SUPRA Server PDM DML Programming Guide (OS/390 & VSE),
P26-4340

♦ SUPRA Server PDM RDM COBOL Programming Guide (OS/390 &
VSE), P26-8330

♦ SUPRA Server PDM RDM PL/1 Programming Guide (OS/390 &
VSE), P26-8331

♦ SUPRA Server PDM Migration Guide (OS/390 & VSE), P26-0550*

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

Report tasks

♦ SPECTRA User’s Guide, P26-9561

Manuals marked with an asterisk (*) are listed more than once because
you use them for multiple tasks.

Educational material is available from your regional Cincom education
department.

About this book

xvi P26-8330-62

1
Overview of COBOL application
programming with RDM

SUPRA is an advanced relational database management system for
high-volume update-oriented processing. The Relational Data Manager
(RDM) is the SUPRA component which accepts and processes requests
from end users and application programmers. RDM retrieves the data
needed for an application program while providing database security and
integrity and insulating the application program from changes to the
database. RDM allows the application programmer to write COBOL
programs without knowing about the physical structure of the database.

RDM supports the OS/390 and VSE (DOS/VSE and VSE Advanced
Functions) operating systems. Within these operating systems, it
supports the following programming languages:

♦ COBOL
♦ COBOL II
♦ CICS COBOL (Command Level)
♦ MANTIS
♦ PL/I

The catalogued procedures for running DBAID, the RDML Precompiler
and Directory reports in your operating system are supplied on your
tailored installation tape.

This chapter presents an overview of the requirements and
considerations that a COBOL programmer needs to be aware of before
writing an RDM COBOL program. This chapter addresses:

♦ The steps for writing an application
♦ Understanding RDM views
♦ Introduction to the Relational Data Manipulation Language (RDML)
♦ Introduction to using the DBAID utility subset

RDM COBOL Programming Guide 17

Application programming overview
The figure on the following page illustrates the sequence for COBOL
application programming with SUPRA RDM. The process has the
following steps:

1. Optionally testing your RDM views using DBAID before testing with
applications, following the guidelines given in “Using the DBAID utility
subset” on page 27.

2. Coding your application program. This involves:

- Addressing the RDM COBOL programming issues covered in
this chapter and the coding requirements and guidelines in
“Coding RDM COBOL application programs” on page 75.

- Embedding RDML statements in your program, following the
instructions given in “RDM COBOL application program
statements” on page 97.

3. Running the RDML Precompiler and linking the compiled program
following the guidelines in “Compiling and linking an RDM COBOL
application program” on page 123. The RDML Precompiler converts
RDML statements into standard COBOL source code. Standard
compilers then convert the COBOL source code into object code.
When the program executes, the Directory uses the physical data
descriptions, and RDM uses the logical data descriptions, to access
the database and present the data in the view requested by the
application program.

Chapter 1 Overview of COBOL application programming with RDM

18 P26-8330-62

Application
Program
Source

Precompiled
Source

Program

Translator
Listing

Precompiler
Listing

Compiler
Listing

Compiled
Program

Linkage
Editor

Executable
Program

CICS
Command
Translator

CICS
Translated

Source
Program

 CICS?

NO

YES

RDM COBOL
Precompiler

COBOL
Compiler

Application programming overview

RDM COBOL Programming Guide 19

Understanding RDM views
RDM provides a view of physical field values from one or many files in a
flat, two-dimensional format of rows. A view is set of one or more rows
describing physical field values within the database. A view is presented
in the form of a table which consists of rows and columns. Views are
defined by the DBA in the Directory by describing the required fields and
by providing access to the file(s) containing these fields. When you write
COBOL application programs with RDM, you do so using the information
contained in the appropriate predefined views assigned by your DBA.

The DBA maintains complete control over the definition and generation of
views of the data, determines data needs, and assists in determining the
best method of structuring views and relationships. It is important,
however, for the application programmer to understand views in order to
write effective application programs.

The following terms are integral to a discussion of views:

♦ Row. A set of one or more related data items stored in computer
memory.

♦ Column. In a row, a specified area used for a particular category of
data.

♦ Value. A quantity assigned to a constant, a variable, a parameter or
a symbol.

♦ Key. One or more data items, the contents of which identify the type
or location of a row, or the ordering of data.

♦ User View. A subset of a view which may consist of all or part of the
view.

In a view, columns are mapped between the externally constructed row
and the physical database. During physical navigation of the database,
RDM collects certain occurrences of the physical records based on the
row definition. RDM then selects the appropriate physical fields and maps
them to the constructed row.

Chapter 1 Overview of COBOL application programming with RDM

20 P26-8330-62

The following figure illustrates a view.

CUSTOMER
Number

E40000
F80081
H22233

CUSTOMER
Name

DOUG REED

TOM LANGDON
ATHENS INC

CUSTOMER
Class

Q1
B4
J1

VIEW—A table of data

ROW
ROW
ROW

COLUMN COLUMN COLUMN

Picture a set of views stored sequentially as a flat file. You can retrieve
records from the file according to relative positioning within the file or by
selecting key values. The operations available to RDM: GET, INSERT,
UPDATE, DELETE, are those needed to manipulate the records on an
occurrence-by-occurrence basis.

Although a view resembles a flat file, there are two important differences:

♦ The ordering of rows within the file is not always controlled by your
maintenance operations.

♦ Fields (columns) can have null values.

The DBA sets up on the Directory views available to you. Refer to the
Relational Data Manager COBOL Programmer's Report for a list of views
available to you. See “Using the programmer's report” on page 76 for
information about this report.

Understanding RDM views

RDM COBOL Programming Guide 21

Creating user views
You can subset the row(s) or reorder the column(s) within a view
according to your needs. This is done in the application program through
RDM language specification. This subset of data is called a user view.
Once the DBA has defined the columns included in a view, you can use
all or part of the view as a user view.

The following figure illustrates a view and a user view.

 CUSTOMER-ORDER-
VIEW

Order Number
Customer Number
Part Number
Quantity Ordered
Part Cost
Total Cost
Ship Date

CUSTOMER-VIEW

Customer Number
Customer Name
Customer Address
Customer Telephone

PRODUCT-VIEW

Part-Number
Part-Name
Part-Cost
Quantity in Stock

Chapter 1 Overview of COBOL application programming with RDM

22 P26-8330-62

Understanding columns and keys
Each view contains one or more columns that the DBA can designate as
keys to the view. The keys can appear anywhere in the view. The DBA
can define four different types of keys:

♦ Unique key

♦ Compound unique key

♦ Simple nonunique key

♦ Compound nonunique key

The simplest view has one unique key. This key value allows you to
select and retrieve data. A unique key must have a valid, non-null value.

In a compound unique key, several columns are designated as unique
logical keys, and the combination of the key values is unique, an "and"
connection between the columns is implied. For example, to check
customer orders for a certain part number, you would use a view with
both customer number and part number as key values. RDM will retrieve
the specific customer number and part number combination if it is
present.

Understanding RDM views

RDM COBOL Programming Guide 23

A nonunique key allows more than one row to contain the same value in
a key column. An example is a customer file where you keep a list of
notes or comments concerning each customer. You do not date the
comments and you do not want more than one key, but for each
customer, you want to retrieve a list of comments that may have been
posted. In this case, the customer number could be defined as a single
nonunique key. When the program does its first GET using a customer
number, it will retrieve the first comment for that customer. A subsequent
GET will retrieve the second comment; the third GET the third comment,
etc. After RDM reaches the last comment for that customer, it will reach a
boundary condition and return a NOT FOUND to the program.

A compound nonunique key is an extension of the simple nonunique key.
Here, more than one column is defined as a nonunique key. However, all
the nonunique keys together still do not completely describe the record
occurrence as unique. You can still have more than one record with the
same compound nonunique key.

You can access a set of rows by assigning values to the keys of the view
(if there are any). The DBA determines which columns are keys and
defines them on the Directory. The keys can be used to locate a specific
record or to perform a generic read. Both types of reads return all
qualifying rows from the views. You can also access a set of rows
sequentially by not supplying any values for the keys.

A required column must contain a valid non-null value in order for the
record to be included in the view. By default, a column is "not required"
and does not need a value.

Chapter 1 Overview of COBOL application programming with RDM

24 P26-8330-62

Introduction to the Relational Data Manipulation Language
(RDML)

While your application programs are written in COBOL, RDM uses the
Relational Data Manipulation Language (RDML) to sign on and off the
system, to maintain storage, to manipulate data, and to control data
recovery. These functions are accomplished by the following RDML
statements:

♦ SIGN-ON/SIGN-OFF. The SIGN-ON statement establishes
communication between the programmer and RDM and identifies
you as the user of the system. The SIGN-OFF statement informs
RDM that you want to terminate your session.

♦ RELEASE/FORGET. The RELEASE and FORGET statements free
internal storage without signing off the system.

♦ DELETE. Removes a row from the view.

♦ GET. Retrieves a row from the view.

♦ INSERT. Inserts a new row into the view.

♦ UPDATE. Updates column values in an existing row.

♦ COMMIT/RESET. Control database recovery. These statements
function differently depending on the environment and recovery
system supported.

Using the Directory data to build division entries, RDML statements are
converted into standard COBOL source code by the RDML Precompiler.
Standard compilers then convert the COBOL source code into object
code. When the program executes, the Directory uses the physical data
descriptions, and RDM uses the logical data descriptions, to access the
database and present the data in the view requested by the application
program.

For information on using the Relational Data Manipulation Language
(RDML), see “Coding RDM COBOL application programs” on page 75;
for the syntax of the RDML statements, see “RDM COBOL application
program statements” on page 97.

Introduction to the Relational Data Manipulation Language (RDML)

RDM COBOL Programming Guide 25

Introduction to the DBAID utility subset
The DBAID utility, an online and batch tool, allows the DBA to define a
new view, open the view, issue RDML statements and examine the
results. The DBA can then change the view, if necessary, reorder for
efficiency, or try different access methods. These activities have no
impact on the Directory.

Certain DBAID commands are also available to non-DBA users for use
when constructing programs that use RDM views. Using the DBAID Utility
subset of commands, you can test a view before testing with applications
until you are sure that the view is correctly defined. You can also use the
DBAID Utility subset as an educational tool for immediate hands-on
experience with the views being accessed.

The DBAID subset has three command categories:

♦ System commands

♦ Built-in view commands

♦ RDML commands

System commands display information about the DBAID Utility currently
executing including current users and active views. Built-in view
commands allow you to inspect a view after it is opened. RDML
commands allow you to test data with a defined view to make sure the
view has been properly defined.

See “Using the DBAID utility subset” on page 27 for more information on
the DBAID subset of commands available to you.

Chapter 1 Overview of COBOL application programming with RDM

26 P26-8330-62

2
Using the DBAID utility subset

A subset of the DBAID utility commands is available to the application
programmer to use for testing a view before testing with applications. To
make sure a view fits your specific requirements, DBAID can be run in a
batch or online environment. Using DBAID, you can run test cases until
you are satisfied that the view is correctly defined.

The DBAID utility subset has three command categories:

♦ System commands. These commands display information about the
currently executing DBAID utility such as current users and active
views.

♦ Built-in view commands. Use these commands to inspect a view
after it is opened.

♦ RDML commands. Use RDML commands to test data with a
defined view to make sure the view has been properly defined.

RDM COBOL Programming Guide 27

DBAID commands list
The following table lists all the commands available to you by category
with a brief description and a section reference for detailed information.

Some DBAID Utility subset commands have specific underlying file
system restrictions. For more information on the restrictions for PDM file
systems, refer to the SUPRA Server PDM RDM PDM Support
Supplement (OS/390 & VSE), P26-8221. For information on VSAM
restrictions, refer to the SUPRA Server PDM RDM VSAM Support
Supplement (OS/390 & VSE), P26-8222.

Command Description Section

System commands
LINESIZE Specifies line width for DBAID output. “LINESIZE command”

on page 57
MARKS Lists all open MARKs and the views

they are marking.
“MARKS command” on
page 59

PAGESIZE Specifies the number of lines on the
page/screen for DBAID output.

“PAGESIZE command”
on page 62

USER-LIST Displays column list for the view
named.

“USER-LIST command”
on page 70

USERS Displays the current users of the
system.

“USERS command” on
page 71

VIEWS Displays all views active in DBAID. “VIEWS command” on
page 73

Chapter 2 Using the DBAID utility subset

28 P26-8330-62

Command Description Section

Built in view commands
BY-LEVEL Displays the column names in the view

by level of occurrence.
“BY-LEVEL command”
on page 34

COLUMN-TEXT Displays the short and long text for a
column in a view. (You can also code
this as FIELD-TEXT.)

“COLUMN-TEXT
command” on page 37

FIELD-DEFN Displays the full description of a
column in a view.

“FIELD-DEFN
command” on page 43

VIEW-DEFN Displays a condensed description of
the view.

“VIEW-DEFN
command” on page 72

VIEWS-FOR-USER Lists the views related to the signed on
user and the short text for the view.

“VIEWS-FOR-USER
command” on page 74

RDML commands
= Reissues previous RDML command. “= command” on

page 32
BYE Causes the DBAID Utility to exit. “BYE command” on

page 33
CAUTIOUS Prohibits an automatic COMMIT. “CAUTIOUS command”

on page 36
COMMIT Makes all updates since last commit

permanent in the database.
“COLUMN-TEXT
command” on page 37

DELETE Removes a view record occurrence
from database.

“DELETE command” on
page 40

ERASE Issues an RDM RESET if an 'X' FSI is
returned.

“ERASE command” on
page 42

FORGET Frees the storage allocated by a
previously issued MARK command.

“FORGET command”
on page 45

GET Retrieves and displays the requested
row for the view indicated.

“GET command” on
page 46

GO Issues multiple GET commands and
displays the rows in tabular format.

“GO command” on
page 50

INSERT Places a view row in the physical
database on relative location specified.

“INSERT command” on
page 53

DBAID commands list

RDM COBOL Programming Guide 29

Command Description Section

RDML commands (cont.)
KEEP Prohibits an automatic RESET. “KEEP command” on

page 56
MARK Marks the current position of the view

name established by the previous GET.
“MARK command” on
page 58

OPEN Readies either a virtual or stored view
for use by the DBAID Utility.

“OPEN command” on
page 60

RELEASE Closes one or all views that have been
opened and releases the occupied
storage.

“RELEASE command”
on page 63

RESET Forces task level abend and rolls back
any database updates since last
commit.

“RESET command” on
page 64

SIGN-OFF Signs off a user from the DBAID Utility. “SIGN-OFF command”
on page 65

SIGN-ON Identifies a user to the DBAID Utility. “SIGN-ON command”
on page 66

SURE Causes a COMMIT after each
successful insert, update, or delete.

“SURE command” on
page 67

UPDATE Updates data values in the database. “UPDATE command”
on page 68

Chapter 2 Using the DBAID utility subset

30 P26-8330-62

DBAID formatting guidelines
DBAID format is a series of commands, with one command per line, and
a maximum of 72 characters per command. The guidelines for formatting
DBAID in a batch environment or in an online environment are the same
except that batch output is to a line printer.

Several DBAID syntax options simplify the use of DBAID:

♦ The FOR option used with the GO command (see “GO command” on
page 50)

♦ The := syntax used with the UPDATE command (see “UPDATE
command” on page 68)

♦ The MASS option used with the INSERT command (see “INSERT
command” on page 53)

You can use an asterisk (*) in DBAID for two functions. An * entered in
column 1 denotes a comment line. For example:
OPEN VIEW

GET VIEW Performs GET on VIEW

*THIS IS A TEST VIEW

You can also use the * in a command as a substitute for the last view
name used. For example:
OPEN VIEW

GET * Performs GET on VIEW

OPEN VIEW2 = * FIELD1,FIELD5 Performs OPEN of user view
 VIEW2 where VIEW2 is created
 from VIEW1 specifying columns
 FIELD1, FIELD5 only.)

GET * Performs GET on VIEW2

Using the * as a substitute for the last view name used is described in
each supported command's explanation.

DBAID formatting guidelines

RDM COBOL Programming Guide 31

DBAID commands
The following sections describe the individual DBAID commands. Each
section contains a description of the command's format, a list of
considerations for using the command, if necessary, and a coding
example or the expected output.

= command
The = command reissues the previous RDML command.

=

Example In the following example, "=" causes another "GET NEXT CUST-PROD:"
GET NEXT CUST-PROD

=

Chapter 2 Using the DBAID utility subset

32 P26-8330-62

BYE command
The BYE command causes you to exit the DBAID Utility.

BYE

General considerations

♦ In an online environment, the BYE command returns you to the RDM
sign-on screen or other user-installed menu screens.

♦ If you entered DBAID with the task already signed-on to RDM, the
BYE command does not perform a SIGN-OFF. If you entered DBAID
with the task signed-off from RDM, the BYE command performs a
sign-off.

♦ In a batch environment, the BYE command terminates the task.

♦ DBAID erases any unsaved virtual views.

DBAID commands

RDM COBOL Programming Guide 33

BY-LEVEL command
The BY-LEVEL command displays the column names in a view by level
of occurrence, starting with the 0 level, followed by level 1, etc. RDM
generates the column number when displaying this data.

BY-LEVEL [view-name [column-number]]

view-name

Description Optional. Specifies the name of the view whose column names you want
to display.

Format Must be a valid, open view.

Considerations

♦ If you omit this parameter, the BY-LEVEL command displays all
column names for all of your open views.

♦ You can enter an * instead of a view-name. This substitutes the last
view-name used.

column-number

Description Optional. Specifies the number of the column whose name is to be
displayed.

Format Numeric characters

Considerations

♦ If you use this parameter, you must have specified a view-name.

♦ If you omit this parameter, the BY-LEVEL command displays all
column names of the specified view.

Chapter 2 Using the DBAID utility subset

34 P26-8330-62

Example
BY-LEVEL

NUMBER VIEW NAME COLUMN NAME LEVEL

 1 CUST-PROD CUST-NO 0

 2 CUST-PROD PROD-NO 1

 3 CUST-PROD RENT 1

 4 CUST-PROD MAINT 1

 5 CUST-PROD INSTALL-DATE 1

 6 CUST-PROD CANCEL-DATE 1

 7 CUST-PROD PURCHASE-PRICE 1

 1 CUSTOMER CUST-NO 0

 2 CUSTOMER NAME 0

 3 CUSTOMER STATE 0

 1 TEST ZONED5 1

 2 TEST PACKED5 1

 3 TEST KEY2 1

DBAID commands

RDM COBOL Programming Guide 35

CAUTIOUS command
The CAUTIOUS command prohibits an automatic COMMIT. This
command is the opposite of the SURE command. DBAID does not issue
a COMMIT when an RDML modifying command returns an "*" FSI.
Instead, you must issue the COMMIT.

CAUTIOUS

General consideration

 DBAID normally issues a COMMIT after every successful RDML
modification. The CAUTIOUS command is not required; however, you
can use it when you want manual control over COMMIT commands when
updating the database.

Chapter 2 Using the DBAID utility subset

36 P26-8330-62

COLUMN-TEXT command
The COLUMN-TEXT command displays the short and long text for a
column in a view.

COLUMN-TEXT [view-name [column-name]]

view-name

Description Optional. Specifies the view to be used.

Format Must be a valid, open view.

Considerations

♦ If you omit this parameter, the COLUMN-TEXT command displays all
column descriptions for all your open views.

♦ You can enter an * instead of a view-name. This substitutes the last
view-name used.

column-name

Description Optional. Identifies the column whose text is to be displayed.

Format The column must already be part of the view.

Considerations

♦ If you use this parameter, you must have specified a view-name.

♦ If you omit this parameter, the COLUMN-TEXT command displays
the short and long text for all columns.

♦ You can substitute FIELD-TEXT as the command for COLUMN-
TEXT.

DBAID commands

RDM COBOL Programming Guide 37

Example
COLUMN-TEXT CUST-PROD PROD-NO

VIEW NAME COLUMN NAME

--

CUST-PROD PROD-NO

--

 SHORT TEXT

PRCU-PROD-NUM SHORT TEXT

67890123456789012345678901234567890123456789012

 LONG TEXT

PRCU-PROD-NUM LONG TEXT 100

PRCU-PROD-NUM LONG TEXT 200

PRCU-PROD-NUM LONG TEXT 300

123456789012345678901234567890123456789012345678901234567890123456789012

Chapter 2 Using the DBAID utility subset

38 P26-8330-62

COMMIT command
The COMMIT command makes all updates since the last COMMIT
permanent in the database.

COMMIT

General consideration

 DBAID issues a COMMIT after every successful RDML modification
unless you have issued a CAUTIOUS command. You can use the
COMMIT command if you have issued a CAUTIOUS command.

DBAID commands

RDM COBOL Programming Guide 39

DELETE command
The DELETE command removes a view row from the database.

DELETE [ALL] view-name

ALL

Description Optional. Deletes all rows retrieved by automatically generated GET
NEXTs using the logical key qualification of the GET command issued
before the DELETE.

Consideration If a program specifies a GET without a USING phrase, DELETE ALL
deletes all rows in a view.

view-name

Description Required. Identifies the name of the view containing the row(s) to be
deleted.

Format Must be a valid, open view.

General considerations

♦ Before performing the DELETE, you must perform a successful GET
command.

♦ You can enter an * instead of a view-name. This causes DBAID to
substitute the last view-name used.

Chapter 2 Using the DBAID utility subset

40 P26-8330-62

Examples

♦ This example deletes the one occurrence of SAMPLE-VIEW you
obtained based on the value in KEY1:

 GET SAMPLE-VIEW FOR UPDATE USING KEY1

 DELETE SAMPLE-VIEW

♦ This example deletes all occurrences of rows you obtained based on
the value in KEY1:

 GET SAMPLE-VIEW FOR UPDATE USING KEY1

 DELETE ALL SAMPLE-VIEW

♦ The previous code processes in the manner shown in this code:
 GET FIRST SAMPLE-VIEW FOR UPDATE USING KEY1.

 DELETE SAMPLE-VIEW.

 RETURN.

 GET NEXT SAMPLE-VIEW FOR UPDATE USING KEY1

 NOT FOUND GO TO CONTINUE.

 DELETE SAMPLE-VIEW.

 GO TO RETURN.

 CONTINUE.

DBAID commands

RDM COBOL Programming Guide 41

ERASE command
The ERASE command causes DBAID to automatically issue an RDM
RESET if an RDML command results in an "X" FSI. This command is the
opposite of the KEEP command and causes RDM to automatically issue
a RESET if an "X" FSI is returned.

ERASE

Chapter 2 Using the DBAID utility subset

42 P26-8330-62

FIELD-DEFN command
The FIELD-DEFN command displays the full description of columns in a
view.

FIELD-DEFN [view-name [column-name]]

view-name

Description Optional. Specifies the view to be used.

Format Must be a valid, open view.

Considerations

♦ If you omit this parameter, the FIELD-DEFN command displays all
column descriptions for all your open views.

♦ You can enter an * instead of a view-name. This causes DBAID to
substitute the last view-name used.

column-name

Description Optional. Identifies the column whose description is to be displayed.

Format The column must already be part of the view.

Considerations

♦ If you use this parameter, you must specify a view-name.

♦ If you omit this parameter, the FIELD-DEFN command displays all
column descriptions of the specified view.

DBAID commands

RDM COBOL Programming Guide 43

Example
FIELD-DEFN

VIEW-NAME (+) CUSTOMER

COLUMN-NAME (+) CUST-NO

COLUMN-POS (+) 0

COLUMN-LEN (+) 5

ASI-POS (+) 60

COLUMN-DEC (+) 0

OUTPUT-LEN (+) 5

MASK-LEN (+) 15

FORMAT (+) Z

EDIT-MASK (+) ZZZZZZZZZZZZZZ9

READING (+) CUST;NO

DELETABLE (+) Y

INSERTABLE (+) Y

REPLACEABLE (+) N

COLUMN-LVL (+) 0

KEY-NUMBER (+) 1

REQUIRED (+) Y

UNIQUE (+) Y

EDIT-TRANS (+) E

ORDERING (-)

MORE

Chapter 2 Using the DBAID utility subset

44 P26-8330-62

FORGET command
The FORGET command frees the storage allocated by a previously
issued MARK command.

FORGET mark-name

mark-name

Description Required. Specifies what mark information should be forgotten.

Format 1–30 alphanumeric characters

Consideration Must be a name you assigned with the MARK command.

General consideration

 Once you issue a FORGET command, you release the indicated mark
and cannot regain it without issuing a new MARK command.

DBAID commands

RDM COBOL Programming Guide 45

GET command
The GET command retrieves and displays a row for the indicated view.

[]
[]

[][]

GET

NEXT
LAST
SAME
FIRST
PRIOR

 FOR UPDATE

AT

 ...



































view-name

mark-name
USING literal literal literal1 2 n

NEXT
LAST
SAME
FIRST
PRIOR























Description Optional. Modifies the order of row retrieval.

Default NEXT If no current position exists, NEXT defaults to FIRST.

Chapter 2 Using the DBAID utility subset

46 P26-8330-62

Considerations

♦ For a unique key:

- GET NEXT retrieves either the row immediately after the current
row or the first row, if no current position exists.

- GET LAST retrieves the last row.

- GET SAME retrieves the latest row if a current position exists.

- GET FIRST retrieves the first row in the view.

- GET PRIOR retrieves either the row immediately before the
current row or the last row if no current position exists.

- Use GET PRIOR only in connection with a "USING key" phrase
for predictable results.

- If the underlying file system cannot perform the GET PRIOR and
GET LAST functions, an error is returned.

♦ For a nonunique key:

- GET NEXT retrieves the next occurrence of the row within the
generic group.

- GET LAST retrieves the last occurrence of the row.

- GET SAME retrieves the latest row if a current position exists.

- GET FIRST retrieves the first occurrence of the row with the
indicated key.

- GET PRIOR will perform a read reverse within the group of
nonunique keyed rows.

view-name

Description Required. Specifies the view to be used.

Format Must be a valid, open view.

Consideration You can enter * instead of a view-name. This causes DBAID to substitute
the last view-name used.

DBAID commands

RDM COBOL Programming Guide 47

FOR UPDATE

Description Optional. Allows you to lock out other users' modifications to the row you
are retrieving.

Considerations

♦ The FOR UPDATE phrase allows you to perform modifications
dependent on the current contents of the row.

♦ If you do not need to be certain of the content of the row, you can use
a GET without the FOR UPDATE phrase. When you use an
UPDATE or DELETE function, the "automatic hold" facility of the
system performs the lock before modifying the row.

♦ FOR UPDATE implies that all physical resources will be locked until
you issue another GET or an INSERT, UPDATE, DELETE, COMMIT,
or RESET. This practice may lead to system inefficiency.

♦ When you issue a GET, RDM can return data to you that is currently
being updated by another tasks. If you subsequently issue a FOR
UPDATE, that update may fail in the following ways:

- The other task has not yet committed. The update will fail with
an FSI=U status and message VIEW HELD BY ANOTHER
TASK - RETRY LATER.

- The other task committed between the GET and the update. The
update will fail with an FSI=D and the message COLUMN
VALUES HAVE BEEN CHANGED.

AT mark-name

Description Optional. Repositions a view previously marked with the MARK
command.

Consideration The USING and AT phrases cannot be used with the same GET
command.

Chapter 2 Using the DBAID utility subset

48 P26-8330-62

USING literal1[literal2 ... literaln]

Description Optional. Identifies a value or set of values to be used for a keyed GET.

Format Either character, hexadecimal, or numeric data. Character and
hexadecimal data must be enclosed in quotes; numeric data need not be,
for example:

USING 'ABCD' - character data
USING 1234 - numeric data
USING X'A10C' - hexadecimal
USING 123 'ABC' - combination (two keys)

Considerations

♦ The number of keys specified in the GET statement must be less
than or equal to the number of keys in your specified column list. No
more than nine keys are allowed in one view.

♦ RDM treats any omitted keys as generic keys. The use of generic
keys is a convenient feature for allowing both direct access to a view
and a sequential scan of many rows. RDM returns all occurrences of
a particular unspecified column as long as the other keys are
satisfied.

♦ The order of specified keys in the USING phrase corresponds to the
order of key declarations in your column list.

DBAID commands

RDM COBOL Programming Guide 49

GO command
The GO command issues a penetration GET request followed by a series
of sweeping GET requests and displays the rows in tabular format.

 GO
NEXT
PRIOR

START

NEXT
LAST
SAME
FIRST
PRIOR
AT

 FOR

FROM
USING

 (...)





















































































view-name

mark-name

number-of-rows

literal literal literal1 2 n

NEXT
PRIOR











Description Optional. Specifies the GET command modifier to be used in retrievals
after the initial penetration.

Default NEXT

view-name

Description Required. Specifies the view to be accessed.

Format Must be a valid, open view.

Consideration You can enter an * instead of a view-name. This causes DBAID to
substitute the last view-name used.

Chapter 2 Using the DBAID utility subset

50 P26-8330-62

START

NEXT
LAST
SAME
FIRST
PRIOR
AT mark-name































Description Optional. Specifies the GET command modifier to be used for the initial
penetration of the database.

Default FIRST

FOR number-of-rows

Description Optional. Indicates the number of rows (or number of GET NEXTs minus
1) to be performed.

Format Numeric characters

Consideration GET NEXTs repeat until the count is exhausted or until the last row is
retrieved, whichever occurs first.

[]FROM
USING ...

















literal literal literal1 2 n

Description Optional. Identifies a value or set of values to use for a keyed GET.

Format Either character or numeric data. Character data, if it includes blanks,
must be enclosed in quotes; numeric data need not be.

Options FROM Uses the key values only on the initial penetration; the
scan is unqualified.

USING Uses the key values for both the initial penetration and
the subsequent scan.

DBAID commands

RDM COBOL Programming Guide 51

Considerations

♦ The number of keys specified in the GET statement must be less
than or equal to the number of keys in your specified column list.

♦ RDM treats any omitted keys as generic keys. The use of generic
keys allows for both direct access to a view and a sequential scan of
many rows. RDM returns all occurrences of a particular unspecified
key as long as the other keys are satisfied.

♦ The order of specified keys in the USING phrase corresponds to the
order of key declarations in your column list.

General considerations

♦ RDM displays the output in columnar fashion. If more data is to be
displayed than will fit on a screen/page, RDM uses an alternate
format.

♦ After the GO command displays a page of rows (see PAGESIZE),
the prompt **MORE** will be issued. Enter a blank line for each
additional page in batch mode, and press "ENTER" for each
additional page in online mode.

♦ At the end of the series of rows retrieved by GO, the prompt **END**
is issued.

♦ Do not use "FOR number-of-rows" for online because it does not
pause until the last screen.

♦ The GO command always looks ahead one more row so it can
determine whether to display the **MORE** or **END** message. It
can be confusing if you issue a GET after the GO because a row may
appear to have been skipped.

Chapter 2 Using the DBAID utility subset

52 P26-8330-62

INSERT command
The INSERT command places a view row in the physical database based
on the relative location specified.

[]INSERT

NEXT
LAST
FIRST
PRIOR

 MASS



















view-name

NEXT
LAST
FIRST
PRIOR



















Description Optional. Specifies the relative location of the row to be inserted in
relation to existing rows. The Access Set Description (ASD) may override
this specification.

Default NEXT If not positioned in the view, NEXT defaults to LAST, and
PRIOR defaults to FIRST.

Considerations For nonuniquely keyed values:

♦ If the DBA specified ordering in the view definition, or if the physical
data manager does not allow program control of ordering, the
specification on the INSERT statement is ignored.

♦ INSERT FIRST places a row in the first position in the view.

♦ INSERT NEXT places a row after the current row. If no current
position exists, the row is placed in the last position in the view.

♦ INSERT PRIOR places a row before the current row. If no current
position exists, the row is placed in the first position in the view.

♦ INSERT LAST places a row in the last position of the view.

DBAID commands

RDM COBOL Programming Guide 53

view-name
Description Required. Specifies the name of the view in which you want the rows

inserted.

Format Must be a valid, open view.

Consideration You can enter an * instead of a view-name. This causes DBAID to
substitute the last view-name used.

MASS
Description Optional. Allows multiple rows to be inserted in the physical database.

Considerations
♦ The positioning parameter specified (NEXT, LAST, FIRST, or

PRIOR) is used on every RDM INSERT command issued by MASS
insert.

♦ Views are entered immediately following this command after the two
prompt lines, MASS INSERT PROCESSING INITIATED and ENTER
"END." TO EXIT MASS INSERT, are displayed (see the second
example, below).

♦ Rows are inserted as flat records. Separate the column values with
commas. To insert rows longer than one line, terminate the list of
values with a comma and continue the input on the next line.

♦ Place multiple rows on a single line by leaving a blank between rows.

♦ Use a pair of single quote marks to insert columns containing
spaces.

♦ If you have columns with no values, enter two consecutive commas
to indicate their absence. This value is treated as a null value for
packed or zoned fields, as a large number (X'40404040' or 67372036
integer) for binary fields, and as blanks for a character field.

♦ Specify END. after entering all rows to be inserted into the view. The
period after END is required.

General considerations
♦ After entering column values on a single insert (not using MASS), the

row is displayed. The message INSERT (Y/N)? appears. Enter a Y to
insert the row. Any other response does not insert the row.

♦ Processing stops if ten errors are detected while using the MASS
insert; otherwise, enter END. to terminate insert processing.

Chapter 2 Using the DBAID utility subset

54 P26-8330-62

Examples

♦ Example of a single INSERT:
 > INSERT *

 NUMBER

 > 9998

 PRODUCT

 > AAAA

 INSTALLED

 > 100883

 NUMBER () 9998

 PRODUCT () AAAA

 INSTALLED () 100883

 INSERT (Y/N)?

 > Y

 FSI: * VSI: + MSG: SUCCESSFUL COMPLETION

♦ Example of a MASS INSERT (single row):
 > INSERT * MASS

 MASS INSERT PROCESSING INITIATED.

 ENTER "END." TO EXIT MASS INSERT.

 > 9997,BBBB,100783

 FSI: * VSI + MSG: SUCCESSFUL COMPLETION

 * Example of MASS insert (using comma to continue to next
line):

 > 9996,CCCC,

 > 100683

 FSI * VSI: + MSG: SUCCESSFUL COMPLETION

 * Example of a MASS insert (multiple rows on a single line):

 > 9995,DDDD,100583 9994,EEEE,100483 9993,FFFF,100383

 FSI * VSI: + MSG: SUCCESSFUL COMPLETION

 FSI * VSI: + MSG: SUCCESSFUL COMPLETION

 FSI * VSI: + MSG: SUCCESSFUL COMPLETION

 * Example of ending the MASS insert processing:

 > END.

 MASS INSERT PROCESSING COMPLETED.

DBAID commands

RDM COBOL Programming Guide 55

KEEP command
The KEEP command prohibits an automatic RESET. This command is
the opposite of the ERASE command. KEEP causes DBAID not to issue
a RESET when it receives an "X" FSI from RDM. Instead, DBAID keeps
the database as it is and allows the user to decide to RESET or not.

KEEP

Chapter 2 Using the DBAID utility subset

56 P26-8330-62

LINESIZE command
The LINESIZE command specifies the number of characters to display in
a line.

LINESIZE [number-of-characters]

number-of-characters

Default 79 characters per line.

Description Optional. Indicates the number of characters to display on a line.

Format 2–3 numeric characters

Options 10 through 132

Considerations

♦ In an online environment, the line size maximum is restricted to the
line capacity of the screen.

♦ If you omit the number-of-characters, the command displays the
current LINESIZE setting.

DBAID commands

RDM COBOL Programming Guide 57

MARK command
The MARK command marks the current position of the view row
established by the previous GET command.

MARK view-name AT mark-name

view-name

Description Required. Identifies the view name established by the previous GET
command.

Format Must be a valid, open view.

Consideration You can enter an * instead of a view-name. This substitutes the last view-
name used.

AT mark-name

Description Required. Assigns a name to the location where the position of the
current view will be marked.

Format 1–30 alphanumeric characters

Consideration The name assigned is the name you use in a later GET AT request to
retrieve this same view row.

General considerations

♦ Use the AT phrase in the GET command to reposition the view at the
position set by the MARK command.

♦ You can create any number of MARKs for a view, but to save internal
memory space, it is best to reuse mark-name when possible.

♦ A mark-name may be reused.

♦ The number of MARKs you can create is limited by the amount of
internal memory space allocated to your task.

Chapter 2 Using the DBAID utility subset

58 P26-8330-62

MARKS command
The MARKS command lists all open MARKs and the views they are
marking.

MARKS

Example output
MARKS

 MARK NAME VIEW NAME

MARK6 CUST-PROD

MARK5 CUST-PROD

MARK4 CUST-PROD

MARK3 CUST-PROD

DBAID commands

RDM COBOL Programming Guide 59

OPEN command
The OPEN command readies a saved or virtual view for use by DBAID.

OPEN [user-view-name=]view-name[column1[,...,columnn]]

user-view-name=

Description Optional. Gives an existing view a name for use in DBAID.

Format 1–30 alphanumeric characters and the special characters # and $. The
first character must be alphabetic or a special character. If the first
character is a special character, the second character must be
alphabetic.

Considerations
♦ If user-view-name is not specified, it will be the same name as the

view-name.

♦ You can use this method (together with the column parameter) to
create many smaller views from one common view.

♦ To OPEN a view that has not been listed or defined in the same
session of DBAID, the user must be related to the view in the
Directory.

view-name

Description Required. Identifies the virtual or stored view to be readied for use.

Format Must be a valid view.

Considerations
♦ You can enter an * instead of a view-name. This substitutes the last

view-name used.

♦ The list of column names can be continued on successive lines by
ending the line you are entering with a comma. The command
"USER-LIST" displays the list of columns used to open the view after
it has been opened.

♦ Issuing an OPEN request on a view without first issuing a LIST
request causes RDM to directly open the view with the user relations
checked but without text available to DBAID.

♦ If a virtual view has the same name as a saved view, the virtual view
is used.

Chapter 2 Using the DBAID utility subset

60 P26-8330-62

column1[,...,columnn]

Description Optional. Identifies the column or list of columns to be included in the
user view. If omitted, all columns in the view are in the user view.

Format The columns must already be part of the view being opened.

General consideration

 The OPEN returns information about the storage used in the form of the
message:
nnnnn BYTES USED IN OPENING VIEW

 where nnnnn is the amount of storage used by the view.

Example
OPEN CP-ONLY = CUST-PROD CUST-NO, PROD-NO

Only CUST-NO and PROD-NO are returned when you do GET CP-
ONLY, even though CUST-PROD has six columns defined.

DBAID commands

RDM COBOL Programming Guide 61

PAGESIZE command
The PAGESIZE command specifies the number of lines to display on a
screen/page.

PAGESIZE [number-of-lines]

number-of-lines

Description Optional. Indicates the number of lines to display on a screen/page.

Default 24 lines

Options Must be greater than 10, with no maximum limit.

Considerations

♦ In an online environment, the PAGESIZE maximum should be no
more than the screen capacity.

♦ If you omit the number-of-lines, the command displays the current
PAGESIZE setting.

Chapter 2 Using the DBAID utility subset

62 P26-8330-62

RELEASE command
The RELEASE command closes a specific view or all views that are
open, and releases the occupied storage within RDM.

RELEASE [view-name]

view-name

Description Optional. Specifies the view to release.

Format Must be a valid, open view.

Considerations

♦ You can enter an * instead of a view-name. This substitutes the last
view-name used.

♦ If you omit this parameter, the RELEASE command releases all of
your open views.

General consideration

 This command does not affect virtual view text of the view(s).

DBAID commands

RDM COBOL Programming Guide 63

RESET command
The RESET command rolls back any database updates since the last
COMMIT point.

RESET

General considerations

♦ Use RESET only after unsuccessful RDML updates. DBAID does not
automatically issue a RESET command when an "X" FSI is returned.
See the KEEP and ERASE commands.

♦ In CICS, a RESET backs out any database updates since the last
COMMIT point but does not restart DBAID.

♦ The RESET command restores your database to the last COMMIT
point and you lose position on all views. Therefore, the GET SAME,
DELETE, or UPDATE commands are not valid after a RESET. A
GET NEXT command positions you on the first record while a GET
PRIOR command positions you on the last record after a RESET.

Chapter 2 Using the DBAID utility subset

64 P26-8330-62

SIGN-OFF command
The SIGN-OFF command signs off the user from DBAID.

SIGN-OFF

General consideration

 Use the SIGN-OFF command to remove yourself as a user without
terminating DBAID.

DBAID commands

RDM COBOL Programming Guide 65

SIGN-ON command
The SIGN-ON command identifies the user to DBAID.

SIGN-ON user-name [password]

user-name

Description Required. Indicates the name of the user.

Format Must be a valid user name already defined on the Directory.

password

Description Optional. Indicates the user's password.

Format Must be a valid password defined on the Directory.

General considerations

♦ In an online environment, initializing DBAID completes the SIGN-ON
before you enter DBAID and need not be repeated.

♦ In a batch environment, DBAID blanks the password field before
printing the output.

Example
SIGN-ON JDOE PRGMPSWD

Chapter 2 Using the DBAID utility subset

66 P26-8330-62

SURE command
The SURE command causes a COMMIT after each successful INSERT,
UPDATE or DELETE. The SURE command is the opposite of the
CAUTIOUS command and causes RDM to automatically issue a
COMMIT if an "*" FSI that alters the database is returned by an RDML
command.

SURE

DBAID commands

RDM COBOL Programming Guide 67

UPDATE command
The UPDATE command updates data values in the database.

UPDATE view-name

 [column1:=literal1[,...,columnn:=literaln]]

view-name

Description Required. Identifies the view you wish to update.

Format Must be a valid, open view.

Consideration You can enter an * instead of a view-name. This causes DBAID to
substitute the last view-name used.

column1:=literal1[,...,columnn:=literaln]

Description Optional. Identifies a column in the view that is to have the value of the
literal.

Format column The column must already be part of the view being updated.

:= Must be coded as shown.

literal Character or numeric data. Hexadecimal value is not allowed.

Chapter 2 Using the DBAID utility subset

68 P26-8330-62

Considerations

♦ In an online environment, DBAID displays each updateable column,
and accepts replacement values. Entering a null line leaves the
column unchanged; entering new data replaces the column value in
the row. After all updateable columns are processed, DBAID displays
the prompt "UPDATE (Y/N)" and requires a response.

♦ In a batch environment, use the "Column, := literal syntax" when
updating columns in the row. DBAID updates only the columns you
specify; all others remain the same. To update a row, indicate the
column you want to update, the :=, and the new value for the column.

♦ Do not use single quotes around character or numeric literals.

♦ Use single quotes to change the value of a column to blanks. A literal
of spaces (keyed in) must be in single quotes. Pressing ENTER does
not affect the column's value.

♦ You cannot use the UPDATE function to modify key column values.

♦ To UPDATE a row, you must first retrieve the row using the GET
command.

♦ You cannot use UPDATE to change all the values in a defined
column to a specific value.

You cannot change all PROD-CODES to "T100."

Example
UPDATE CUST-PROD RENT: = 175.00, MAINT = 50.00

DBAID commands

RDM COBOL Programming Guide 69

USER-LIST command
The USER-LIST command displays the column list for the user view
named.

USER-LIST view-name

view-name

Description Required. Identifies the view or user view to display.

Format Must be a valid view.

Consideration You can enter an * instead of a view-name. This substitutes the last view-
name used.

Example output
USER-LIST PO-CODE-ONLY

USER VIEW NAME : PO-CODE-ONLY

VIEW NAME : CUSTOMER-PURCHASE-ORDER

USER VIEW LIST :

CUST-NO,PURCHASE-ORDER-CODE,END.

Chapter 2 Using the DBAID utility subset

70 P26-8330-62

USERS command
The USERS command displays information about the current users of
the system.

USERS

General considerations

♦ The information displayed with this command includes:

- Station Number—The number of the user's station.

- User Name—The name of the user for that station.

- Time of Sign-on—The sign-on time of that user.

- Processing Time—The total CPU time that user has used.

- Request Count—The number of requests that user has issued.

- Duration of Last Request—The duration of the user's last
request.

♦ This command is operational only in the online environment.

Example output

 In a non-CICS system, a USERS display looks like this:
STN.# USER NAME REQ. # I/O TIME SIGN-ON

LAST REQ.

102 Character Name of User 572 12:05:32 12:06:50

09:02:35

DBAID commands

RDM COBOL Programming Guide 71

VIEW-DEFN command
The VIEW-DEFN command displays a condensed description of a view.

VIEW-DEFN [view-name]

view-name

Description Optional. Specifies the view whose condensed description you want to
display.

Format Must be a valid, open view.

Considerations

♦ You can enter an * instead of a view-name. This causes DBAID to
substitute the last view-name used.

♦ Omitting this parameter displays a condensed description of all your
open views.

Example
> VIEW-DEFN

VIEW-NAME (+) CUSTOMER

INS-ORDER (+) N

TOTAL-SIZE (+) 63

TOTAL-COLUMNS (+) 3

TOTAL-LEVELS (+) 1

TOTAL-DELETABLE (+) 3

TOTAL-INSERTABLE (+) 3

TOTAL-REPLACABLE (+) 3

TOTAL-REQUIRED (+) 1

TOTAL-KEYS (+) 1

TOTAL-NONUNIQUE (+) 0

MORE

Chapter 2 Using the DBAID utility subset

72 P26-8330-62

VIEWS command
The VIEWS command displays all of the views currently active in DBAID.

VIEWS

General consideration

 The information displayed with this command includes:

♦ User View—The name of the user view.

♦ View—The name of the view of which this user view is a part.

♦ Status—Indicates whether the user view is open or released.

Example output
 USER VIEW VIEW STATUS

CUSTOMER-PURCHASE-ORDER CUSTOMER-PURCHASE-ORDER OPENED

PO-CODE-ONLY CUSTOMER-PURCHASE-ORDER OPENED

DBAID commands

RDM COBOL Programming Guide 73

VIEWS-FOR-USER command
The VIEWS-FOR-USER command lists the names and short text for the
views related to the signed on user.

VIEWS-FOR-USER

Example output
VIEWS-FOR-USERS

VIEW NAME DATE TIME

 SHORT DESCRIPTION

CUST-QUERY 08/17/99 17:27:32

PROD-QUERY 08/17/99 17:36:22

PRCU-QUERY 08/17/99 17:30:18

EDUC-QUERY 08/17/99 17:33:20

INST-QUERY 03/16/99 17:45:39

--

SYST-QUERY 10/19/99 13:34:58

...

MORE

Chapter 2 Using the DBAID utility subset

74 P26-8330-62

3
Coding RDM COBOL application
programs

This chapter presents the requirements and general guidelines for coding
RDM COBOL application programs. The following topics are addressed:

♦ Using the programmer's report

♦ Coding the DATA DIVISION

♦ Coding the PROCEDURE DIVISION

There is one special requirement for IDENTIFICATION DIVISION section
and none for the ENVIRONMENT DIVISION section of your programs. If
the verb REMARKS is used, it MUST appear before the line containing
the verb PROGRAM-ID. It is Cincom's recommendation to use the "*"
comment line instead, as the REMARKS verb is no longer an ANSI
standard COBOL verb. Otherwise, code the statements in these two
sections of your program as you would in any COBOL program. See
“Sample RDM COBOL application program” on page 127 for a sample
COBOL program.

After you code your application programs, the Relational Data
Manipulation Language (RDML) Compiler converts the statements into
the proper set of assignments and CALL statements to utilize RDM. Each
RDML statement must start on a line by itself and must end with a period.
Under CICS, you must use command level COBOL; macro level COBOL
is not supported. See “Compiling and linking an RDM COBOL application
program” on page 123 for information on using the RDML Compiler and
for linking the compiled program.

RDM COBOL Programming Guide 75

Using the programmer's report
RDM provides a programmer's report which describes the layout of a
view and the column names in a view. The DBA provides the report
which should be used when you are constructing keyed GETs or when
you are determining the columns to subset for a user view.

The programmer's report provides information about the column type,
column name, and the picture clause generated by the RDML compiler.
The column type may be KEY, NONUNIQUE KEY, or REQUIRED. The
following example shows a programmer's report:

*** RELATIONAL DATA MANAGER COBOL PROGRAMMER'S REPORT FOR SCHEMA QUERYDBM ***

 VIEW: CUST-PROD

 COLUMN TYPE COLUMN NAME PICTURE

 KEY CUST-NO 9(05)

 CUST-NO

 KEY PROD-NO X(0004)

 PRCU-PROD_NUM

 RENT 9(07)V9(02) USAGE COMP-3

 MAINT 9(07)V9(02) USAGE-COMP-3

 INSTALL-DATE 9(06)

 CANCEL-DATE 9(06)

 PURCHASE-PRICE 9(07)V9(02) USAGE COMP-3

Chapter 3 Coding RDM COBOL application programs

76 P26-8330-62

Coding the DATA DIVISION
The DATA DIVISION of a COBOL program describes the information or
data to be processed by the program. This information includes the
input/output records and their data fields. The DATA DIVISION also
defines miscellaneous work areas and the format and characteristics of
each. This section presents the requirements and addresses the general
guidelines for coding statements in the DATA DIVISION of a RDM
COBOL program as follows:

♦ Specifying views and user views

♦ Specifying TIS-CONTROL

♦ Data validation indicators

Do not use COBOL reserved words in a view. The COBOL compiler will
try to interpret them as COBOL commands, not as part of the view.

Coding the DATA DIVISION

RDM COBOL Programming Guide 77

Specifying views and user views
To use a specific view in your program, code an INCLUDE statement
with the name of the view, for example:
01 INCLUDE CUST.

You can create your own user view by selecting columns from a view.
This subset of the view is also specified with the INCLUDE statement.
Indicate the name of your user view as well as the columns to be
included from the view. For example:
01 CUST-MAIL INCLUDE CUST (NAME, ADDRESS, CITY, STATE, ZIP).

Unless you are accessing data values that are shared between views,
each user view can be positioned independently and can act
independently. If you create your own user view, you cannot change the
effect of required columns in terms of their being available for inserts.
However, you can modify the column order in a view. Be aware that
rearranging key columns may adversely affect your application's
performance, and we do not recommend it.

Each INCLUDE statement also has associated row and status data areas
generated by RDM. The row data area specifies where data for each
included view will be placed in the program.

The status data area has one-to-one mapping to the fields in the row data
area and contains one byte of information indicating whether the data is
valid, has changed since your last access, or is missing (see “RDM
status indicators” on page 80 for information on RDM status indicators).
For example:
*

*01 CUSTOMER INCLUDE CUST (CUST-NO,NAME,CITY).

 01 RDM-CUSTOMER.

 10 CUSTOMER.

 20 CUST-NO PIC S9(05).

 20 NAME PIC X(040).

 20 CITY PIC X(020).

 10 ASI-CUSTOMER.

 20 ASI-CUST-NO PIC X.

 20 ASI-NAME PIC X.

 20 ASI-CITY PIC X.

Chapter 3 Coding RDM COBOL application programs

78 P26-8330-62

Specifying TIS-CONTROL
You must include the special view TIS-CONTROL in each program
issuing an RDML request. TIS-CONTROL is used for passing
parameters between the application and RDM and contains operation,
status, and other information required to control access to all views.
When you specify an INCLUDE for TIS-CONTROL, the RDML compiler
generates the following:
*01 INCLUDE TIS-CONTROL.

 10 TIS-OBJECT-NAME PIC X(30).

 10 TIS-OPERATION.

 20 TIS-ID PIC X(2).

 20 TIS-OPCODE PIC X.

 20 TIS-POSITION PIC X.

 20 TIS-MODE PIC X.

 20 TIS-KEYS PIC X.

 10 TIS-FSI PIC X.

 10 TIS-VSI PIC X.

 10 FILLER PIC X(2).

 10 TIS-MESSAGE PIC X(40).

 10 TIS-PASSWORD PIC X(8).

 10 TIS-OPTIONS PIC X(4).

 10 TIS-CONTEXT PIC X(4).

 10 TIS-LVCONTEXT PIC X(4).

If you want to pass rows to external modules (subroutines) from your
application, code an INCLUDE statement in the LINKAGE SECTION of
the subroutine instead of the WORKING-STORAGE SECTION. If a
subroutine issues any RDML commands, it must define, or be passed, a
TIS-CONTROL area.

Use the TIS-OPTIONS field to specify DEBUG and TRACE. To debug an
RDM call, place DBUG in the TIS-OPTIONS field before the call to RDM.
To trace an RDM call, place TRAC in the TIS-OPTIONS field before the
call to RDM. Debug and trace output is written to the DMLPRINT dataset.
To close the DMLPRINT file within an application, place NBUG in the
TIS-OPTIONS field before the call to RDM.

Coding the DATA DIVISION

RDM COBOL Programming Guide 79

RDM status indicators
RDM returns status indicators to the application program to indicate
RDML processing results. Although the status indicators are actually
returned by RDM during execution of the program and should be
checked in the procedure division logic, we discuss them here because
the status indicator fields are located in the RDML Precompiler expanded
INCLUDE code in the DATA DIVISION.

The type and validity of the values you can place in the columns of your
program statements are determined by the DBA. If you code a value
which does not meet established criteria, you will receive a value error in
the form of a status indicator. There are three kinds of status indicators:

♦ Function Status Indicator (FSI)

♦ Attribute (Column) Status Indicator (ASI)

♦ Validity Status Indicators (VSI)

Chapter 3 Coding RDM COBOL application programs

80 P26-8330-62

Function Status Indicator (FSI)
A Function Status Indicator (FSI) reflects the success or failure of your
RDML request. (The FSIs are obtained from TIS-CONTROL.) An
associated message is provided in the TIS-MESSAGE area of
TIS-CONTROL. The following code shows an example of the generation
of this control region. The RDML compiler changes RDML requests into
comments by placing an asterisk in column 7 of each statement. (All
other statements are generated by the RDML compiler).
*01 INCLUDE TIS-CONTROL.
 10 TIS-OBJECT-NAME PIC X(30).
 10 TIS-OPERATION.
 20 TIS-ID PIC X(2).
 20 TIS-OPCODE PIC X.
 20 TIS-POSITION PIC X.
 20 TIS-MODE PIC X.
 20 TIS-KEYS PIC X.
 10 TIS-FSI PIC X.
 10 TIS-VSI PIC X.
 10 FILLER PIC X(2).
 10 TIS-MESSAGE PIC X(40).
 10 TIS-PASSWORD PIC X(8).
 10 TIS-OPTIONS PIC X(4).
 10 TIS-CONTEXT PIC X(4).
 10 TIS-LVCONTEXT PIC X(4).

FSIs have the following meanings:

FSI value Meaning

* Successful.
D Data error. The request would have run with valid

values in the columns. You need to check the ASIs to
find the column(s) that contains the invalid value.

F Fail. This indicates a major error. Something may be
wrong with the database, or you may have attempted to
perform an illegal function on the user view.

N Fail due to occurrence problem. This may be due to a
GET not found or an INSERT duplicate found.

S Security.
U Unavailable resources.
X RESET recommended. While processing, RDML

function modifications were made to the database
before the error condition was detected. Issue a
RESET to restore the database. This code overrides D,
F, S, or U indicators.

Coding the DATA DIVISION

RDM COBOL Programming Guide 81

Attribute (Column) Status Indicator (ASI)
The Attribute (Column) Status Indicator (ASI) reflects the status of each
column defined in your view. ASIs have one-to-one mapping to each
column in the user view and are placed immediately following the last
column in your user view.

You can access ASIs through COBOL-assigned names generated by the
RDML compiler. When you code your program, an INCLUDE statement
for the user view is required. The RDML compiler generates a field for
each column included in the user view. The RDML compiler also
generates a field for each required ASI column by preceding each
column name with the characters ASI-. When you have a data column
name containing more than 26 characters, the RDML compiler truncates
any trailing characters when forming the column status field. The
following is an example of this generation (the asterisk indicates the
statement you code; the RDML compiler generates all other statements):
*01 PROD1 INCLUDE PRODUCT.

 01 LUV-PROD1.

 10 PROD1.

 20 PROD-NO PIC X(004).

 20 PROD-DESC PIC X(040).

 10 ASI-PROD1.

 20 ASI-PROD-NO PIC X.

 20 ASI-PROD-DESC PIC X.

ASIs have the following meanings:

ASI value Meaning

= The column exists and has not changed since the last
access. (Valid for GET processing only.)

- The column is missing. It has a null value. (Valid for
GET processing only.)

+ The column exists but has changed since the last
access. (Valid for GET processing only.)

V The column contains an invalid value.
C Column value changed by another view.
N Used to set a column to its null value. (INSERT and

UPDATE processing only. RDM never returns this.)

Chapter 3 Coding RDM COBOL application programs

82 P26-8330-62

There are four ways to use ASIs:

♦ When you issue a GET command, certain returned columns may not
have a value. You can check this status (on unaltered columns) with
the ASI.

♦ If you receive an FSI indicating a data error, you can use the ASI to
find which columns have illegal values.

♦ When a view contains packed or zoned values, the ASIs allow you to
avoid unintentional abends. You can do this by examining each ASI
for such columns before performing arithmetic or move operations. If
the ASI for a column is "V," the value is actually placed in the row
even though it is not in a valid format. When a "-" ASI is returned, the
field value is a valid zero value for packed, zoned and binary fields.
Note that +, - and = are only meaningful on GET processing. Your
application program ignores these values on INSERT, DELETE and
UPDATE processing. INSERT, DELETE, and UPDATE processing
returns ASIs of +, C, or V.

♦ For INSERT or UPDATE processing, moving N to the ASI for a
column before the function is performed indicates the column is null.

Validity Status Indicator (VSI)
The Validity Status Indicator (VSI) reflects the validity of the user view
row returned by your last RDML request. RDM returns the VSI to the
program in an area generated as part of the programmer-supplied
TIS-CONTROL statement. The VSI helps you determine if any additional
processing of ASIs is needed to correct invalid data or to fill in missing
values. VSIs help you determine the most significant ASI returned by
RDM, according to the hierarchy indicated in the chart below:

VSI value Meaning

C Column value changed by another view.
V At least one invalid ASI was returned.
- No invalid ASIs were returned, but at least one missing

ASI was returned.
+ No invalid or missing ASIs were returned, but at least

one new physical occurrence in the database was
returned.

= No invalid, missing or new physical occurrences were
returned by this RDM function.

Coding the DATA DIVISION

RDM COBOL Programming Guide 83

Coding the PROCEDURE DIVISION
The PROCEDURE DIVISION of a COBOL program identifies the actions
necessary to process, solve, or perform a required function or group of
functions. This section presents the requirements and addresses the
general guidelines for coding statements in the PROCEDURE DIVISION
of a RDM COBOL program.

RDM COBOL PROCEDURE DIVISION programming requirements are
as follows:

♦ Supplying user name when signing on/off (see “Signing on/off” on
page 85)

General RDM COBOL PROCEDURE DIVISION programming guidelines
are addressed as follows:

♦ Maintaining storage (see “Maintaining storage” on page 86)

♦ Retrieving rows (see “Using the GET statement to retrieve rows” on
page 86)

♦ Modifying rows (see “Modifying rows” on page 93)

♦ Controlling database recovery (see “Using the COMMIT/RESET
statements” on page 95)

♦ Handling error conditions. (see “Handling errors requiring a
recompile” on page 96)

Chapter 3 Coding RDM COBOL application programs

84 P26-8330-62

Signing on/off
The only operating system-wide RDM requirement for COBOL
applications is that you must supply a user name with the SIGN-ON
statement. A password is optional, but you must supply it if you have
been assigned a password in the Directory. At run time, RDM checks the
Directory for the validity of the user name (and password, if necessary).

The SIGN-ON statement establishes communication between a task and
the RDM. A task can be a batch job or an online task. When an RDM
COBOL program is a subroutine to another RDM task, the task as a
whole is already signed on, and an additional sign-on is required only if
you are changing the user I.D.

Sign off an RDM COBOL subroutine only if the logical unit of work is
complete and will do no further RDM processing before the next
SIGN-ON.

The SIGN-OFF statement tells RDM that you want to terminate your
session. RDM will release the storage areas acquired. Issue a SIGN-OFF
at the end of every application program.

An example of an RDM COBOL subroutine is an interface to MANTIS.
MANTIS using RDM takes care of the SIGN-ON (when processing a view
statement) and the SIGN-OFF (when the task is terminating). If the RDM
COBOL interface issues a SIGN-OFF, the logical unit of work may be
invalid, and the task as a whole will no longer be in communication with
RDM.

RDM supports a CICS pseudoconversational transaction sequence by
retaining internal context areas for each transaction executed at the
terminal. The application used by the initial transaction must issue an
RDM SIGN-ON. The applications used by each transaction in the
sequence must issue an RDM COMMIT instead of an RDM SIGN-OFF
before releasing control to CICS. Only the initial application in the
sequence issues an RDM SIGN-ON; subsequent applications do not.
The application used by the final transaction in the sequence should
issue an RDM SIGN-OFF.

Coding the PROCEDURE DIVISION

RDM COBOL Programming Guide 85

Maintaining storage
Use the RELEASE and FORGET statements to free internal storage
without signing off the system. Use FORGET to release the storage
allocated by a MARK statement (see “Using the MARK statement to save
row position” on page 90).

Use RELEASE to close a specific view and free the storage allocated for
that one view. If you do this, you lose any MARKs associated with that
view. The RELEASE statement is also useful when you are accessing
multiple views and want to remove all MARKs. You can use RELEASE
(without specifying a view name) to close all views and free all allocated
storage. If you do this, you remove all MARKs, and you lose the current
position in all views you are using.

Using the GET statement to retrieve rows
You can retrieve three types of rows using the GET statement:

♦ Rows containing unique keys

♦ Rows containing nonunique keys

♦ Rows containing no keys

The USING phrase in the GET statement indicates which key values to
use to access the view. The system goes to the indicated view and
retrieves the row for that particular customer.

Chapter 3 Coding RDM COBOL application programs

86 P26-8330-62

Retrieving rows containing unique keys
If the row you want to retrieve has a unique key (for example,
ACCOUNT-NUMBER) and your program supplies a value for the unique
key, the GET command retrieves the specific row having that key. For
example:
MOVE 71560 TO ACCOUNT-NUMBER

GET ACCOUNT-DATA USING ACCOUNT-NUMBER.

RDM retrieves the row in the view, ACCOUNT-DATA, for the
ACCOUNT-NUMBER indicated.

You can retrieve in sequential order all user rows with unique keys. The
statement GET FIRST instructs the system to retrieve the first row in the
user view, for example:
GET FIRST ACCOUNT-DATA.

The statement GET NEXT retrieves the next row, for example:
GET NEXT ACCOUNT-DATA.

A GET NEXT statement automatically retrieves the first row in a user
view if no current position exists (i.e., no other GET statements have
been issued). The GET SAME statement retrieves the same row as
accessed on the previous GET statement; GET PRIOR retrieves the
previous row; and GET LAST retrieves the last row.

After the last user row has been retrieved, a NOT FOUND condition
results. Indicate what should be done in your program:
GET NEXT ACCOUNT-DATA

NOT FOUND GO TO STOP.

Coding the PROCEDURE DIVISION

RDM COBOL Programming Guide 87

Retrieving rows containing nonunique keys
You can also retrieve a row with a nonunique key in sequential order.
Again, the GET FIRST statement retrieves the first row, and the GET
NEXT statement retrieves the next row.

GET NEXT will also automatically retrieve the first row in the view if no
other commands have been issued. Keep two considerations in mind if
you use the GET NEXT statement to retrieve the first row:

♦ GET NEXT operates as GET FIRST if no current position exists.

♦ The DBA may define some nonuniquely keyed views without a logical
key for performing a direct read to the first row. In this case, the
USING phrase is invalid and causes an error. The Relational Data
Manager Programmer's Report shows you if no columns can be used
as keys.

A NOT FOUND condition results when you reach the end of the view.
Supply a NOT FOUND clause on the GET request to tell the system what
to do.

Another method for retrieving a nonuniquely keyed user row is to include
a USING phrase and key value with your GET command.
GET ACCOUNT-TRANS USING ACCOUNT-NO.

The remaining rows with the same key can be retrieved with a GET
NEXT command that contains a USING phrase.
GET NEXT ACCOUNT-TRANS USING ACCOUNT-NO.

The NOT FOUND condition appears after the last row with the specified
key has been retrieved.

The GET PRIOR, GET LAST, and GET SAME commands also operate
on nonuniquely keyed user rows. GET PRIOR retrieves the previous row;
GET LAST retrieves the last row; and GET SAME retrieves the same
row.

Retrieving rows without keys
You can also retrieve a row that does not contain a key. For example, by
repeatedly issuing the request, GET CUST-INFO, you can retrieve in
sequential order every row in the view, CUST-INFO. You can also use
GET FIRST, GET NEXT, GET PRIOR, GET LAST and GET SAME to
retrieve rows without a key.

Chapter 3 Coding RDM COBOL application programs

88 P26-8330-62

Accessing multiple views
You may want to use more than one view in a program. For example, you
may want to code a program which will print a customer name and the
name of the part that customer ordered. Assume that you have a
customer number and order number, and you want to use the views
shown below. The columns in each view are listed below the view name.

 CUSTOMER-ORDER-
VIEW

Order Number
Customer Number
Part Number
Quantity Ordered
Part Cost
Total Cost
Ship Date

CUSTOMER-VIEW

Customer Number
Customer Name
Customer Address
Customer Telephone

PRODUCT-VIEW

Part-Number
Part-Name
Part-Cost
Quantity in Stock

First, retrieve the CUSTOMER-ORDER-VIEW (using the customer
number and the order number as keys) to find the number of the part
ordered. Next, retrieve the CUSTOMER-VIEW (using the customer
number as a key) to find the customer's name. Finally, using the part
number as a key, retrieve the PRODUCT-VIEW to find the name of the
part.
MOVE 12345 TO CUSTOMER NUMBER.

MOVE 67890 TO ORDER-NUMBER.

GET CUSTOMER-ORDER-VIEW USING CUSTOMER-NUMBER, ORDER-NUMBER.

GET CUSTOMER VIEW USING CUSTOMER-NUMBER.

GET PRODUCT-VIEW USING PART-NUMBER OF CUSTOMER-ORDER-VIEW.

Coding the PROCEDURE DIVISION

RDM COBOL Programming Guide 89

Using the MARK statement to save row position
The MARK statement tells RDM to mark the current position of the view
established by the previous GET, UPDATE, or INSERT, for example:
MARK CUSTOMER-VIEW AT SAVE-LV.

The AT phrase specifies where the view MARK should be saved. You
must define the field used, for example, SAVE-LV, in your program as a
PICTURE X(4) field. You may use the AT phrase in the GET statement to
reread the record at the position set by the MARK statement:
GET CUSTOMER-VIEW AT SAVE-LV.

Chapter 3 Coding RDM COBOL application programs

90 P26-8330-62

Using explicit and automatic record holding
With RDM, you can choose explicit or automatic record holding. This
decision depends on program requirements and the process you use to
modify a row.

Explicit record holding
To specify explicit record holding, use the FOR UPDATE clause with the
GET statement, GET FOR UPDATE. Explicit record holding invokes the
record holding and enqueuing facilities of the underlying physical data
manager and prevents other tasks from modifying the row.

Explicit record holding can cause a number of problems. A row is
composed of selected physical fields from many physical files. Holding
each of these physical fields can affect views in other tasks, even though
the held view does not need the fields the other task wants to modify.
Explicit record holding can also tie up resources for long periods and
requires elaborate measures to release needed resources.

Automatic record holding
Automatic record holding allows you to access a row using a GET
statement, and to update or delete the row without an explicit request to
hold the physical records. This allows more efficient processing because
the required record is held immediately before the actual database
modification takes place.

Modifications that affect your row can be made by other tasks between
the time you access the row and the time you update or delete it. To
prevent such modifications from being undetected, RDM checks each
column value in the row. This ensures that the column value is the
original value you retrieved. If any columns have been changed, a data
error occurs, you receive a "D" FSI, RDM flags the changed columns with
a "C" ASI, and produces a "C" VSI. The column values marked with "C"
will not contain the new values but will contain the original values. This
allows you to save the column values and retrieve the altered row to
resolve the conflict.

Coding the PROCEDURE DIVISION

RDM COBOL Programming Guide 91

Handling error conditions
When anything other than an FSI value of "*" is returned, RDM performs
an automatic RESET and repositions you at the top of the view. (See
“RDM status indicators” on page 80 for a list of possible FSI values and
their meanings.) For example, if you perform a GET and then an
UPDATE on a read-only view, the UPDATE will fail and RDM will
reposition you at the top of the view. The next unqualified GET will return
the first row in the view.

To avoid an automatic RESET, you need to code an error paragraph
containing a NOT FOUND statement. The following example illustrates a
sample error-handling paragraph:
PROD-TRAN.
 GET PROD FOR UPDATE USING TRAN-PROD
 NOT FOUND DO;
 PUT SKIP EDIT (‘PROD-NOT-FOUND’) (A);
 CALL ERROR-ON-PROD;
 END;
ERROR-ON-PROD: PROCEDURE;
 IF TIS-FSI='F' THEN
 DISPLAY 'DUE TO A MAJOR PROBLEM ENCOUNTERED
 WHILE ACCESSING THE LOGICAL USER
 VIEW PROD, THIS TASK IS NOW
 SIGNED OFF.');
 SIGN-OFF;
 STOP;
END;

If you do not include an ERROR-ON-PROD paragraph in the program,
the RDML compiler would have generated an automatic RESET as
follows:
ERROR-ON-PROD: PROCEDURE;
 RESET;
END;

You can also add phrases (such as DUP KEY, ELSE, NOT FOUND, etc.)
to your basic program statements to handle common exception
conditions in your paragraph.

When coding an error handling paragraph, the paragraph name should
have the format ERROR-ON-viewname. The view name must be the
same as the name in the 01 level include statement, for example:
01 INCLUDE VIEW-NAME

If you start your view processing with a GET NEXT (default) followed by a
USING phrase, GET NEXT USING KEY1, you have qualified the row, so
GET NEXT USING returns a single row with the designated key.

If only one row has the specified logical key, a repeat of the same GET
returns a NOT FOUND error. Because an error repositions you at the top
of the view, another execution of the GET returns the correct row.

Chapter 3 Coding RDM COBOL application programs

92 P26-8330-62

Modifying rows
The DBA decides upon the modifications you can make to a row. There
are three ways to modify a row:

♦ Update the data that already exists in the row (UPDATE statement)

♦ Delete the row (DELETE statement)

♦ Insert a new row (INSERT statement) (see “Using the INSERT
statement” on page 94)

Issue a COMMIT command after each logical transaction (which may
involve more than one change) to establish the modifications in the
database.

Updating rows
The UPDATE statement allows you to modify column contents. Before
performing UPDATE, you must access the view by using a GET
statement, for example:
GET ACCOUNT-DATA USING KEY1
UPDATE ACCOUNT DATA.

You cannot modify a view key using the UPDATE command. RDM does
not permit replacing a view key because you need the view key to locate
the view row to be replaced. To change a view key, first DELETE the old
row, then INSERT a new one.

Deleting rows
The DELETE statement removes a row from the system. Before
performing DELETE, you must access the view by using a GET
statement, for example:
GET SAMPLE-VIEW USING KEY1
DELETE SAMPLE-VIEW.

This example deletes the one occurrence of SAMPLE-VIEW obtained,
based on the value of KEY1.

The phrase DELETE ALL deletes all rows that would have been retrieved
by a GET FIRST followed by GET NEXTs using the parameters of the
GET statement just prior to the DELETE. In other words, the DELETE
ALL will delete all rows that depend on the key value specified on the
latest GET:
GET SAMPLE-VIEW USING KEY1
DELETE ALL SAMPLE-VIEW.

This deletes all rows with the key value specified.

Coding the PROCEDURE DIVISION

RDM COBOL Programming Guide 93

Using the INSERT statement
The INSERT statement adds a new user row to the database.
INSERT ACCOUNT-DATA.

If you are inserting a user row in nonuniquely keyed rows, you can control
the placement of the new row within the set of rows with the same key
value. You cannot determine the location if the DBA has already defined
an order for the view. The phrases NEXT, FIRST, LAST, or PRIOR may
be added to the INSERT command. For example, INSERT NEXT
ACCOUNT-DATA instructs the system to insert the new row after the
current row (the last row accessed) in the view.

If the view is uniquely keyed, order is already determined. If the value of
the keys to be inserted already exists, the DUP KEY condition results and
RDM performs the action specified on the DUP KEY phrase in the
INSERT statement.
INSERT ACCOUNT-DATA

 DUP KEY GO TO ALREADY-THERE.

Some constraints apply when inserting information. You can always add
a new entity (a customer), assuming you have space on the database.
Typically, you cannot add a new relationship until all the entities being
related exist. You cannot add a relationship between an employee and a
department until you have added the department and employment
entities.

However, you can add an entity and a relationship in one operation. For
example, you can add a new employee and his first department
assignment in a single INSERT request, provided the DBA has allowed
this operation.

Chapter 3 Coding RDM COBOL application programs

94 P26-8330-62

Using the COMMIT/RESET statements
The COMMIT statement makes the changes to the database (INSERT,
DELETE, UPDATE) permanent. The RESET statement instructs the
system to perform the standard error recovery procedure for dealing with
the previous RDML request, (to undo all database changes made by this
task since the last COMMIT).

When Task Level Recovery (TLR) is active, the COMMIT statement
sends all pending updates to disk. A RESET backs out any database
updates since the last COMMIT and continues processing from the
RESET.

If TLR is not active, a RESET statement prints an error message in the
task. The task abend is intentional, and the system prints messages on
the job log indicating the last function statement issued prior to the
RESET. Normally, standard database recovery procedures are
performed, depending on the physical data manager being used.

In the CICS environment, RDM COMMIT/RESET logic works according
to Dynamic Transaction Backout (DTB) processing. A COMMIT makes
all updates permanent to the database and takes a CICS syncpoint. A
RESET backs out any database updates since the last COMMIT and
continues processing from the RESET.

Under CICS DTB, a rollback is performed. If you encounter an error
condition in an online environment, you can back out of the modification
by using the RESET function. This erases all modifications issued since
the last COMMIT command.

For more information about DTB processing, refer to the SUPRA Server
PDM CICS Connector Systems Programmer's Guide (OS/390 & VSE),
P26-7452.

Coding the PROCEDURE DIVISION

RDM COBOL Programming Guide 95

Handling errors requiring a recompile
RDM has several checks to ensure that the program you are running is
current and that the user view it uses is the same as other applications in
the system. When an RDML command is issued in an application
program, RDM checks to see if the columns in the view, as defined in the
Directory, are the same as when the program was last compiled. If not,
an FSI status code is returned and the program must be recompiled and
relinked.

Changes requiring a recompile are:

♦ Data type change (packed to zoned decimal, etc.).

♦ Deleted column (if the column is not part of your user view, you need
not recompile).

♦ Column length change.

♦ A change in the number of decimal places.

Application systems are often composed of several separately compiled
programs that depend on common definitions of data items. These
programs call each other to perform special tasks. RDM checks on each
RDML call to make sure that the definition of the user view is the same
for each program. If you compile a program or subroutine with the same
user view name as another program or subroutine and the user view
definition does not match, RDM generates an error message. The data
used to perform this error checking is contained in the field list generated
at compile time by the RDML compiler.

For information on executing the RDML compiler, see “Compiling and
linking an RDM COBOL application program” on page 123.

Chapter 3 Coding RDM COBOL application programs

96 P26-8330-62

4
RDM COBOL application program
statements

This chapter contains format descriptions and usage considerations for
the two groups of RDM COBOL program statements:

♦ DATA DIVISION statements

♦ PROCEDURE DIVISION statements

Some RDM COBOL program statements have specific underlying file
system restrictions. For more information on the restrictions for PDM file
systems, refer to the SUPRA Server PDM RDM PDM Support
Supplement (OS/390 & VSE), P26-8221. For information on VSAM
restrictions, refer to the SUPRA Server PDM RDM VSAM Support
Supplement (OS/390 & VSE), P26-8222.

RDM COBOL Programming Guide 97

DATA DIVISION statements
The DATA DIVISION of a COBOL program describes the format and
characteristics of data in an application program. You can code the
following statements in either the WORKING-STORAGE SECTION or
the LINKAGE SECTION of your program if using OS/VS Batch COBOL
or CICS Command Level COBOL.

INCLUDE view-data
The INCLUDE statement indicates the views needed for your program
and where (in the DATA DIVISION) to place them.

level-number[user-view-name]

 INCLUDE view-name [(user-column-list)].

level-number

Description Required

Options 01–29

user-view-name

Description Optional. Assigns a name to the user view.

Format Must follow COBOL data-item naming standards.

view-name

Description Required. Indicates the view you want to use.

Format Must be a valid view name.

Chapter 4 RDM COBOL application program statements

98 P26-8330-62

(user-column-list)

Description Optional. Indicates the columns from the particular view you want to use.

Format A list of columns in the specified view separated by commas and all
enclosed by parentheses. The list may be spread over several lines, if
necessary.

Considerations

♦ If you do not include required columns in the view, you cannot
perform INSERTs and some UPDATEs on the view.

♦ Modifying key order in your user view could adversely affect
performance. The DBA has defined the key order on the Directory to
maximize performance.

General considerations

♦ Code an INCLUDE statement in the DATA DIVISION of your COBOL
program to identify the view you want to use.

♦ Code an INCLUDE statement in the LINKAGE SECTION of your
COBOL subroutines when user rows are being passed as
parameters.

♦ Using column lists can enhance the performance of your application
because RDM optimizes the physical accesses required based on
the list of columns in the INCLUDE statement.

♦ Each user view acts independently of all other user views you
include, even if the user views come from the same view.

DATA DIVISION statements

RDM COBOL Programming Guide 99

Examples The following examples will generate data definitions that are placed in
the WORKING-STORAGE SECTION:
*

*01 CUSTOMER INCLUDE CUST (CUST-NO,NAME,CITY).

 01 RDM-CUSTOMER.

 10 CUSTOMER.

 20 CUST-NO PIC S9(05).

 20 NAME PIC X(040).

 20 CITY PIC X(020).

 10 ASI-CUSTOMER.

 20 ASI-CUST-NO PIC X.

 20 ASI-NAME PIC X.

 20 ASI-CITY PIC X.

*

*01 INCLUDE CUS-PRD (CUST-NO,PROD-NO).

 01 RDM-CUS-PRD.

 10 CUS-PRD.

 20 CUST-NO PIC S9(05).

 20 PROD-NO PIC X(004).

 10 ASI-CUS-PRD.

 20 ASI-CUST-NO PIC X.

 20 ASI-PROD-NO PIC X.

*

*01 CONTACT INCLUDE PROD.

 01 RDM-CONTACT.

 10 CONTACT.

 20 PROD-NO PIC X(004).

 20 PROD-DESC PIC X(040).

 20 PROD-RENT PIC S9(07)V9(02) USAGE COMP-3.

 20 PROD-MAINT PIC S9(07)V9(02) USAGE
COMP-3.

 20 PROD-PURCH PIC S9(07)V9(02) USAGE COMP-3.

 10 ASI-CONTACT.

 20 ASI-PROD-NO PIC X.

 20 ASI-PROD-DESC PIC X.

 20 ASI-PROD-RENT PIC X.

 20 ASI-PROD-MAINT PIC X.

 20 ASI-PROD-PURCH PIC X.

Chapter 4 RDM COBOL application program statements

100 P26-8330-62

INCLUDE TIS-CONTROL
Use the INCLUDE TIS-CONTROL statement to include the special view,
TIS-CONTROL, in a program.

level-number INCLUDE TIS-CONTROL.

level-number

Description Required.

Options 01–29

General considerations

♦ You must include the TIS-CONTROL view in each program issuing
an RDML request. Subroutines which are passed views, but which
perform no access themselves, do not need this special view.

♦ Code an INCLUDE TIS-CONTROL statement in the LINKAGE
SECTION of your application program if it is being passed from a
calling module.

♦ The level-number must be between 01 and 29.

♦ Use the TIS-OPTIONS field to specify DEBUG and TRACE; code as
follows:

 DBUG - DEBUG is on

 NBUG - DEBUG is off

 TRAC - TRACE is on

 See “Specifying TIS-CONTROL” on page 79 for instructions on
coding DEBUG and TRACE in your application program.

DATA DIVISION statements

RDM COBOL Programming Guide 101

Example To add the special view TIS-CONTROL to your program, code the
following statement:
01 INCLUDE TIS-CONTROL.

Example output
*

*01 INCLUDE TIS-CONTROL.

 01 TIS-CONTROL.

 10 TIS-OBJECT-NAME PIC X(30).

 10 TIS-OPERATION.

 20 TIS-ID PIC X(2).

 20 TIS-OPCODE PIC X.

 20 TIS-POSITION PIC X.

 20 TIS-MODE PIC X.

 20 TIS-KEYS PIC X.

 10 TIS-FSI PIC X.

 10 TIS-VSI PIC X.

 10 FILLER PIC X(2).

 10 TIS-MESSAGE PIC X(40).

 10 TIS-PASSWORD PIC X(8).

 10 TIS-OPTIONS PIC X(4).

 10 TIS-CONTEXT PIC X(4).

 10 TIS-LVCONTEXT PIC X(4).

Chapter 4 RDM COBOL application program statements

102 P26-8330-62

PROCEDURE DIVISION statements
This section presents alphabetically the RDML PROCEDURE DIVISION
statements. Examples accompany each statement. Some examples also
show the expanded code generated by the RDML Compiler.

When coding batch COBOL applications, it may be advisable to code an
RDM command within an IF statement or a nested IF statement. Follow
these rules for coding RDM commands within an IF statement:

♦ The expansion of an RDM command generates an imbedded IF
statement to determine if an error has occurred on this RDM request.
The generated IF statement ends with an explicit period ('.').

♦ Due to the above rule, if you include the RDM command in an IF
statement, it must be the last statement coded in the IF statement.

♦ To issue multiple RDM commands within the scope of one IF
statement, you can do either:

- Place each RDM command in its own paragraph or section and
perform each command.

- Place each group of RDM commands in its own section or
paragraph and perform the entire section or paragraph.

PROCEDURE DIVISION statements

RDM COBOL Programming Guide 103

COMMIT
The COMMIT statement issues a COMMIT to the underlying physical
data manager in those environments where TLR or DTB is supported.

COMMIT.

General considerations

♦ In those environments where TLR is supported, the COMMIT
statement either returns a successful or restart status. In other
environments, the COMMIT statement always returns a successful
status.

♦ In a CICS DTB environment, a CICS syncpoint function is performed.

♦ To maintain view context in the CICS pseudoconversational mode,
issue a COMMIT instead of a SIGN-OFF before task termination.
The next program executed from the same terminal can continue to
use RDM as if the task had not terminated.

Example The COMMIT statement identifies the recovery point of the task which
precedes it.
COMMIT.

.

.

.

.

Chapter 4 RDM COBOL application program statements

104 P26-8330-62

DELETE
The DELETE statement removes a row from the database.

DELETE [ALL] view-name.

ALL

Description Optional. Deletes all view rows that depend on the logical keys specified
by the previous GET for this view.

Consideration This statement uses the parameters of the GET statement issued just
prior to the DELETE.

view-name

Description Required. Specifies the view you want to use in your deletion.

Format Must be a valid, open view.

PROCEDURE DIVISION statements

RDM COBOL Programming Guide 105

General considerations
♦ The DELETE statement removes an entire row.
♦ DELETEs will not be performed if data integrity will be compromised.

In other words, a customer record cannot be deleted until all
outstanding orders for that customer have been deleted.

♦ An "X" failure status from a DELETE request must be followed by a
RESET to ensure database integrity. If you provide an error-handling
paragraph which does not RESET following an "X" status on
DELETE, it is possible that part of the modification will be done and
part not done.

♦ The DELETE ALL command deletes all rows in a view if the program
specifies a GET without a qualifying USING phrase.

♦ The RDML Precompiler program recognizes DELETE as a view
request on two occasions: 1) when DELETE is followed by a valid
view name, and 2) when DELETE is followed by ALL.

♦ When DELETE is followed by ALL, the specified view is either valid
or invalid. If valid, the preprocessor generates code to handle the
request. If invalid, the preprocessor generates an error message in
the first listing, and the DELETE statement is commented out to the
COBOL compiler.

♦ If you use any other DELETE statement, the preprocessor issues a
warning message that the statement was skipped and was assumed
to be a COBOL statement. The DELETE statement is given to the
COBOL compiler as is, and no code is generated to handle the
statement because it was not considered a legal view request.

♦ The DBA may disallow DELETEs.
Examples

♦ The following example deletes the one occurrence of SAMPLE-VIEW
based on the value of KEY1:

 GET SAMPLE-VIEW USING KEY1.
 DELETE SAMPLE-VIEW.

♦ This example deletes all user view rows that depend on the value in
KEY1:

 GET SAMPLE-VIEW USING KEY1.
 DELETE ALL SAMPLE-VIEW.

♦ This has the same effect as the following set of statements:
 GET FIRST SAMPLE-VIEW USING KEY1.
 MORE.
 DELETE SAMPLE-VIEW.
 GET NEXT SAMPLE-VIEW USING KEY1.
 NOT FOUND GOTO DONE.
 GOTO MORE.
 DONE.

Chapter 4 RDM COBOL application program statements

106 P26-8330-62

FORGET
The FORGET statement frees the storage allocated by a previously
issued MARK statement.

FORGET data-item [NOT FOUND cobol-imperative-statement]

 [ELSE cobol-imperative-statement].

data-item

Description Required. Specifies what MARK information should be forgotten.

Format Must follow COBOL data-item naming standards.

Considerations

♦ The data-item field must be a PIC X(4) data-item.

♦ You must define the data-item field in the DATA DIVISION of the
program, and the field must contain information passed back by a
previously issued MARK statement.

NOT FOUND cobol-imperative-statement

Description Optional. Indicates what should be done if the mark information cannot
be released.

Considerations RDM may not find a mark value if one of the following conditions is true:

♦ The mark has previously been forgotten by another FORGET
statement or by a RELEASE statement.

♦ The data-item was never marked by a MARK statement.

♦ The marked data-item was somehow changed or moved.

ELSE cobol-imperative-statement

Description Optional. Indicates what to do if the mark information release is done.

Consideration The program falls through to the next statement if you do not specify an
ELSE clause.

PROCEDURE DIVISION statements

RDM COBOL Programming Guide 107

General considerations

♦ Once you have issued a FORGET statement, the indicated mark is
released and cannot be regained without issuing a new MARK
statement.

♦ After a successful FORGET, set the data-item field to spaces.

Chapter 4 RDM COBOL application program statements

108 P26-8330-62

GET
The GET statement identifies the row to be retrieved from the view
indicated.

[] []

[][]statementimperativecobolstatementimperativecobol

itemdata
data-itemdata-item

view-name
91

−−−−









−























ELSENOT��FOUND

AT
...

 USING UPDATEFOR

PRIOR
FIRST
SAME
LAST
NEXT

 GET

NEXT
LAST
SAME
FIRST
PRIOR























Description Optional. Indicates the order of row retrieval.

Default NEXT

Options GET NEXT retrieves the next row with the specified keys. If no keys
are supplied, the next sequential row is returned. If no
current row exists, GET NEXT operates as GET FIRST.

GET LAST retrieves the last row in the view with the specified keys.
If no keys are given, RDM returns the last row.

GET SAME retrieves the row just accessed, if a current row exists. If
no current row exists, a NOT FOUND condition is
signaled.

GET FIRST retrieves the first row in the view with the specified keys.
If no keys are given, RDM returns the first row.

GET PRIOR retrieves the previous row with the specified keys. If no
current row exists, GET PRIOR operates as GET LAST.

PROCEDURE DIVISION statements

RDM COBOL Programming Guide 109

Considerations

♦ If the underlying file system cannot perform the GET PRIOR or GET
LAST functions, an error results.

♦ A series of GET NEXTs loops back to the first row and continues if
the statement has no NOT FOUND.

♦ A GET PRIOR view without a USING phrase returns a row if there is
a currently established position for a given key in a row. However,
after processing all prior rows for the key, RDM returns the message:
"PDM DOES NOT SUPPORT THIS OPERATION."

view-name

Description Required. Specifies the name of the view you want to use.

Format Must be a valid view-name.

FOR UPDATE

Description Optional. Allows you to lock out other users' modifications to the rows you
are retrieving.

Considerations

♦ The FOR UPDATE phrase allows you to perform modifications that
depend on the current contents of the row.

♦ If you do not need to be certain of the content of the row, you can use
a GET without the FOR UPDATE phrase. When RDM performs the
UPDATE or DELETE function, the "automatic hold" facility performs
the lock before modifying the row.

♦ Using FOR UPDATE may decrease overall system performance. If
any column values have changed before performing a DELETE or
UPDATE, the function produces a data error ("D" FSI) and flags the
changed columns with a "C" ASI.

Chapter 4 RDM COBOL application program statements

110 P26-8330-62

USING data-item1[...data-item9]

Description Optional. Specifies the key values to use in accessing the view.

Format The data items must be part of a valid view

Considerations

♦ The number of keys specified in the GET statement must be less
than or equal to the number of keys in your specified logical view.

♦ Any omitted keys are treated as generic keys. The use of generic
keys is a convenient feature for allowing both direct access to a row
and a sequential scan of many rows. RDM returns all occurrences of
a particular unspecified column if the other keys are satisfied.

♦ The order of specified keys in the USING phrase must correspond to
the order of key declarations (left to right) in your Programmer's
Report or your user view (see the INCLUDE statement, “INCLUDE
view-data” on page 98). You cannot omit a key that occurs between
two keys you want to specify. (For example, you cannot include KEY1
and KEY3 without including KEY2.)

♦ The USING phrase cannot be used with a GET SAME statement or
with an AT phrase.

♦ If there is only one row for a given key and you try to use the same
key with a GET USING statement to access the row a second time,
you receive an "OCCURRENCE NOT FOUND" message. This
message indicates there are no more occurrences with this particular
logical key specification. In order to access this same row most
efficiently, use a GET SAME statement instead.

♦ The logical key can use up to nine data items.

PROCEDURE DIVISION statements

RDM COBOL Programming Guide 111

AT data-item

Description Optional. Repositions a view based on the mark obtained by a previous
MARK statement.

Format Must be part of a character field of length 4 (PIC X(4)).

Considerations

♦ The data-item is a storage location that contains information
generated by a previous MARK statement.

♦ The USING and AT phrases cannot be used in the same GET
statement.

♦ The AT phrase cannot be specified in a statement using the FIRST,
NEXT, PRIOR, LAST, or SAME positional qualifiers.

NOT FOUND cobol-imperative-statement

Description Optional. Indicates what RDM is to do if it finds no data.

Considerations Data may not be found due to one or more of the following reasons:

♦ No data is available for a keyed GET.

♦ All the existing data is exhausted for a generic GET.

♦ All the data available to the user view is exhausted for a nonkeyed
GET.

♦ A series of GET NEXTs loops back to the first row and continues if
the program does not check for a NOT FOUND.

ELSE cobol-imperative-statement

Description Optional. Indicates what RDM is to do if good data is found.

Consideration The program falls through to the next statement if you do not specify an
ELSE clause.

Chapter 4 RDM COBOL application program statements

112 P26-8330-62

Examples

♦ The following statement retrieves the first row in the view PROD that
matches the supplied key value. The column PROD-TRAN contains
the key value used for retrieving the row.
GET PROD USING PROD-TRAN.

♦ This statement retrieves the view using the KEY PROD-TRAN. The
USING phrase indicates the key to use for retrieving the view.
GET PROD FOR UPDATE USING PROD-TRAN.

♦ This statement retrieves a view that you marked and saved for later
access.
GET PROD AT PROD-MARK.

♦ Repeatedly issuing this request retrieves all PROD rows in the view.
GET PROD.
 .
 .
 .

♦ This request retrieves the row for update.
GET PROD FOR UPDATE.

♦ The following statements retrieve rows in the specified order, i.e.,
NEXT, LAST, SAME, FIRST, PRIOR:
GET NEXT PROD.
 .
 .
 .

GET LAST PROD.
 .
 .
 .

GET SAME PROD.
 .
 .
 .

GET FIRST PROD.
 .
 .
 .

GET PRIOR PROD.
 .
 .
 .

PROCEDURE DIVISION statements

RDM COBOL Programming Guide 113

INSERT
The INSERT statement inserts a new row into the view.

[]INSERT

NEXT
LAST
FIRST
PRIOR

 DUP KEY



















view-name cobol-imperative-statement

NEXT
LAST
FIRST
PRIOR



















Description Optional. Specifies where to insert the row relative to its current position.

Default NEXT

Options INSERT NEXT places the row after the current row, provided the keys
are the same. If the keys are different or if no current row
exists, INSERT NEXT operates as INSERT LAST.

INSERT LAST places the row into the view so that a subsequent GET
LAST command using the same key values retrieves it.

INSERT FIRST places the row in the view so that subsequent GET
FIRST commands using the same key values retrieve it.

INSERT PRIOR places the row in the view before the current row,
provided the keys are the same. If the key values are
different or if there is no current row, INSERT PRIOR
operates as INSERT FIRST.

Considerations
♦ If the DBA specified ordering in the view definition, or if the physical

data manager does not allow program control of ordering, the
specification on the INSERT statement is ignored.

♦ To ensure data integrity, an "X" failure status from an INSERT
request must be followed by a RESET. If you provide an
error-handling paragraph which does not RESET following an "X"
status on INSERT, it is possible that part of the modification will be
done and part not done.

Chapter 4 RDM COBOL application program statements

114 P26-8330-62

view-name

Description Required. Specifies the name of the view into which you want the rows
inserted.

Format Must be a valid, open view.

DUP KEY cobol-imperative-statement

Description Optional. Indicates what RDM should do if the row to be inserted is
uniquely keyed, and if the value of the keys to be inserted already exists
in the database.

General considerations

♦ The DBA and/or the physical data manager being used may disallow
ordering.

♦ For the INSERT to be successful, you must supply all keys and
required columns, and they must be valid and non-null.

♦ Your application program can update a column with a null value by
changing the ASI to "N" or by supplying the null value in the column.

Examples The following examples show various ordering possibilities available for
use with the INSERT statement:
INSERT NEXT PROD.
 .
 .
 .

INSERT LAST PROD.
 .
 .
 .

INSERT FIRST PROD.
 .
 .
 .

INSERT PRIOR PROD.
 .
 .
 .

PROCEDURE DIVISION statements

RDM COBOL Programming Guide 115

MARK
The MARK statement records the current position of the view established
by the last GET, UPDATE, or INSERT statement.

MARK view-name AT data-item

view-name

Description Required. Indicates the view you want to mark.

Format Must be a valid, open view.

AT data-item

Description Required. Specifies where to save the MARK information.

Format Must be a PIC X(4) data-item

Consideration Cincom recommends that you define this column in the DATA DIVISION
of the program and initialize it to the value spaces prior to use.

General considerations

♦ The AT phrase in the GET statement (see “GET” on page 109) is
used to reposition the view at the position set by the MARK
statement.

♦ You can create any number of MARKs for a view, but to conserve
internal memory space, it is best to reuse MARKs or to FORGET
them whenever possible. Each MARK requires its own data item in
the DATA DIVISION.

♦ The number of MARKs that a program can have outstanding at any
time is limited by the size of the available storage. When the program
no longer requires a particular MARK, issue a FORGET command
for the data-item.

Chapter 4 RDM COBOL application program statements

116 P26-8330-62

Example In this example the current position of the user view PROD is marked and
saved at PROD-MARK:
WORKING-STORAGE SECTION.

 .

 .

 .

01 PROD-MARK PIC X(4).

 .

 .

 .

PROCEDURE DIVISION.

 .

 .

 .

 MARK PROD AT PROD-MARK.

 .

 .

 .

 GET PROD AT PROD-MARK.

 .

 .

 .

PROCEDURE DIVISION statements

RDM COBOL Programming Guide 117

RELEASE
The RELEASE statement closes a specific view or all open views, and
frees internal storage space allocated to the RDML processor.

RELEASE [view-name].

view-name

Description Optional. Specifies the view to be released.

Format Must be a valid, open view.

Consideration If you omit this parameter, the RELEASE statement releases all of your
open views.

General considerations

♦ The RELEASE statement is helpful when you are accessing multiple
views. However, if you issue it without a view-name, RELEASE
removes all MARKs (see “MARK” on page 116) and loses the current
position in all views being used.

♦ The RDML Precompiler program only recognizes a RELEASE
request as valid for a view if a period follows the statement. If the
COBOL preprocessor finds anything other than a period, it issues a
warning message saying that it skipped the statement and assumed
it to be a COBOL statement.

♦ If you issue RELEASE without a view-name, reset the MARK fields in
the application to spaces.

Example
RELEASE.

 .

 .

 .

Chapter 4 RDM COBOL application program statements

118 P26-8330-62

RESET
The RESET statement attempts to undo any update, delete, or insert
requests issued since the last COMMIT.

RESET.

General considerations

♦ If you supply no error handling paragraph, the COBOL preprocessor
generates an error routine that issues a RESET request to RDM.

♦ In a non-TLR batch program, this operation prints an error message
and the task abends.

♦ The RDML Precompiler program recognizes a RESET request as
valid only if it is followed by a period. If it finds anything other than a
period, the preprocessor returns a warning message that the
statement was skipped and was assumed to be a COBOL statement.

♦ In the CICS DTB environment, a CICS rollback function is performed.

♦ The RESET command restores your database to the last COMMIT
point and you lose position on all views. Therefore, the GET SAME,
DELETE, or UPDATE commands are not valid after a RESET. A
GET NEXT command positions you on the first row while a GET
PRIOR command positions you on the last row after a RESET.

Example In this example, you indicate a reset:
RESET.

 .

 .

 .

PROCEDURE DIVISION statements

RDM COBOL Programming Guide 119

SIGN-OFF
The SIGN-OFF statement informs RDM that access to the system is no
longer desired.

SIGN-OFF.

General considerations

♦ The SIGN-OFF statement also releases all storage areas that were
acquired to service RDML requests.

♦ Issue a SIGN-OFF at the end of every application program unless it
is a CICS pseudoconversational application program. A CICS
pseudoconversational application program transfers its RDM context
to the next program run from the same terminal. Use a COMMIT,
instead of a SIGN-OFF, for pseudoconversational operation.

♦ SIGN-OFF also causes a COMMIT.

Example In this example, USER1 signs off the system:
 .

 .

 .

SIGN-OFF.

Chapter 4 RDM COBOL application program statements

120 P26-8330-62

SIGN-ON
The SIGN-ON statement identifies the user to RDM.

SIGN-ON user-name [password)

user-name

Description Required. Indicates user's name.

Format Must be assigned in the Directory.

Consideration The user-name must be a COBOL data item name and not a literal.

password

Description Optional. Indicates the user's password. The password is required if the
user has an assigned password in the Directory.

Format Must be assigned in the Directory.

Consideration If a password is specified, it must be a COBOL data item name and not a
literal.

General consideration
 A SIGN-ON request implicitly issues a RELEASE request and frees any

previously allocated storage space.

Example In this example, SST signs on to the system:
DATA DIVISION

 01 USER-NAME PIC X(3) VALUE 'SST'

 .

 .

 .

PROCEDURE DIVISION

 SIGN-ON USER-NAME

PROCEDURE DIVISION statements

RDM COBOL Programming Guide 121

UPDATE
The UPDATE statement updates column values in the database.

UPDATE view-name.

view-name

Description Required. Indicates view name you want to update.

Format Must be a valid, open view

General considerations
♦ Before performing an UPDATE, you must access the view using a

GET statement.

♦ You can use the GET FOR UPDATE phrase before you use the
UPDATE function when computing a new value for a row
(incrementing a counter, etc.). If you are using the UPDATE function
to place a value in a row, you need not issue a GET FOR UPDATE
statement which is not dependent on the values already present.

♦ You cannot update a view key. By altering the view key, you are
requesting a repositioning of the view, not a modification of the
current row. To "update" a view key, you must first delete the old row,
and then insert a new one.

♦ To ensure database integrity, a RESET must follow an "X" failure
status from an UPDATE request. If you provide an error-handling
paragraph that does not RESET following an "X" status on DELETE,
only part of the modification may be done.

♦ The DBA may disallow updates.

♦ Your application program can update a column with a null value by
changing the ASI to "N" or by supplying the null value in the column.

Example The statement UPDATE PROD indicates that you want to update the
view PRODUCT:
GET PROD USING ---

MOVE NEW-DATA TO PRODUCT-FIELD

UPDATE PROD.
 .
 .
 .

Chapter 4 RDM COBOL application program statements

122 P26-8330-62

5
Compiling and linking an RDM
COBOL application program

This chapter presents information on the RDML Precompiler, including
instructions for executing the precompiler and linking considerations for
each operating system.

The RDML Precompiler converts RDML statements into standard
COBOL source code by using information on the Directory to generate
and use data definitions. The standard COBOL compiler then converts
the COBOL source code into object code. When the program executes,
it issues RDML commands. RDM processes these commands by issuing
commands to the underlying physical data manager (e.g., the SUPRA
PDM). RDM then presents the results of these commands to the
program in the form of rows of views.

See “OS/390 and VSE samples and procedures” on page 125 for the
samples and procedures for executing the RDML Precompiler in your
operating environment.

RDM COBOL Programming Guide 123

Executing the RDML precompiler
The RDML Precompiler generates COBOL source statements accepted
by the standard IBM COBOL compilers. You must use the APOST
compile option (strings delimited by apostrophes, not quotes). If this is
not the default at your installation, specify the options as follows:

♦ OS/390—Specify DELIM=APOST in the JCL PARM options for the
COBOL compile step.

♦ VSE—Specify CBL APOST as the first source statement in the
preprocess input.

Cincom also recommends you stipulate the NOSEQ option to avoid
meaningless warning messages from the COBOL compiler.

The parameters for precompiling an RDM COBOL application program
are as follows:

OS/390

 omit PARM altogether for batch, COBOL

 PARM=',COBOL-II' for batch, COBOL2

 PARM='DFH' for CICS, COBOL

 PARM='DFH,COBOL-II' for CICS, COBOL2

VSE

 PARM='FCOBOL' for batch, COBOL

 PARM='FCOBOL,COBOL-II' for batch, COBOL2

 PARM='DFH' for CICS, COBOL

 PARM='DFH,COBOL-II' for CICS, COBOL2

Linking a compiled program
The following operating system dependent considerations apply when
you are linking a compiled application program:

OS/390 In batch OS/390, COBOL applications are linked with CSVILUV.

In OS/390 CICS, COBOL applications are linked with CSVNICIC.

VSE In batch VSE, COBOL applications are linked with CSVIOSVS.

In VSE CICS, COBOL applications are linked with CSVNICIC.

Chapter 5 Compiling and linking an RDM COBOL application program

124 P26-8330-62

A
OS/390 and VSE samples and
procedures

This appendix presents the samples and procedures for running the
following tasks in OS/390 or VSE environments:

♦ RDML Precompiler

♦ Runtime support

♦ Batch DBAID

♦ Batch reports

OS/390 samples and procedures

 Single-task Central

Description Sample Procedure Sample Procedure
Batch COBOL RDML
Precompiler and COBOL
compile

 TISCOBBL TISCOBCL

CICS COBOL RDML
Precompiler and COBOL
compile

 TISCCBBL TISCCBCL

Batch RDM COBOL
Runtime Support

 TISCGOBL TISCGOCL

Batch DBAID TXJBDAID TISAIDBL TXJCDAID TISAIDCL
Batch RDM Impact of
Change Report

TXJICRPT TISICRBL TISICRCL

Batch RDM Reports TXJREPRT TISRPTBL TISRPTCL

RDM COBOL Programming Guide 125

VSE samples

Description Single-task Central
RDML COBOL Precompiler TXJCOBPP
COBOL compile and link of precompiled RDML batch
COBOL applications

TXJCOBCL

CICS precompile COBOL compile and link of
precompiled RDML CICS COBOL applications

TXJCOBCI

Execute batch RDM COBOL applications TXJCOBGO
Batch DBAID TXJBDAID TXJCDAID
Batch RDM Impact of Change Report TXJICRPT
Batch RDM Reports TXJREPRT

Appendix A OS/390 and VSE samples and procedures

126 P26-8330-62

B
Sample RDM COBOL application
program

**

* EXECUTES THE COMPLETE SET OF RDML STATEMENTS ACCESSING THROUGH

* THE PROD, PROD WITH A FIELD LIST, INVC AND BRANCH-CITY-STATE

* LOGICAL VIEWS

**

*

IDENTIFICATION DIVISION. LVC00020

PROGRAM-ID. COBL0019. LVC00030

ENVIRONMENT DIVISION. LVC00060

INPUT-OUTPUT SECTION. LVC00070

FILE-CONTROL. LVC00080

 SELECT TRAN-IN ASSIGN TO UT-S-CRDFILE. LVC00090

 SELECT PRINT-FILE ASSIGN TO UT-S-PRINTOUT. LVC00100

 LVC00110

DATA DIVISION. LVC00120

FILE SECTION. LVC00130

FD TRAN-IN LVC00140

 LABEL RECORDS ARE OMITTED LVC00150

 RECORDING MODE IS F LVC00160

 DATA RECORD IS TRAN-RECORD. LVC00170

 LVC00180

RDM COBOL Programming Guide 127

01 TRAN-RECORD. LVC00190

 05 TRAN-ALL PIC X(80). LVC00200

 05 TRAN-SUB REDEFINES TRAN-ALL. LVC00210

* Q - QUIT, D - DEBUG, T - TRACE, N - NDBG LVC00220

 10 OPTIONS PIC X. LVC00230

* G- GET, U- UPDATE, I- INSERT, D- DELETE, M- MARK LVC00240

* C- COMMIT, A- RESET, R- RELEASE, S- SIGN-ON, OR F- SIGN-OFF LVC00250

 10 OPCODE PIC X. LVC00260

* F- FIRST, N- NEXT, P- PRIOR, L- LAST, A- AT, S- SAME LVC00270

 10 POSIT PIC X. LVC00280

* U- UPDATE, R- RELEASE LVC00290

 10 HOLD PIC X. LVC00300

* 0 THROUGH 9 OR MARK NUMBER IF 'GA' OR 'M' COMMANDS USED LVC00310

 10 KEYS PIC X. LVC00320

* EITHER A VIEW NAME OR A MARK NAME. LVC00330

 10 OBJECT-NAME PIC X(30). LVC00340

 LVC00350

 05 TIS-SIGN-ON REDEFINES TRAN-ALL. LVC00360

 10 TIS-USER-ID PIC X(30). LVC00370

 10 TIS-PASS PIC X(8). LVC00380

 LVC00390

 05 PROD-DATA REDEFINES TRAN-ALL. LVC00400

 10 INP-PROD-NO PIC X(4). LVC00410

 10 INP-PROD-DESC PIC X(40). LVC00420

 10 INP-PROD-RENT PIC 9999999V99. LVC00430

 10 INP-PROD-MAINT PIC 9999999V99. LVC00440

 10 INP-PROD-PURCH PIC 9999999V99. LVC00450

 LVC00460

FD PRINT-FILE LVC00860

 RECORDING MODE IS F LVC00870

 LABEL RECORDS ARE OMITTED LVC00880

 DATA RECORD IS PRINT-REC. LVC00890

01 PRINT-REC PIC X(133). LVC00900

 LVC00910

Appendix B Sample RDM COBOL application program

128 P26-8330-62

WORKING-STORAGE SECTION. LVC00920

 LVC00930

** LVC00940

* LOGICAL VIEW DEFINTIONS * LVC00950

** LVC00960

01 INCLUDE TIS-CONTROL. LVC00970

01 INCLUDE BRANCH-CITY-STATE. LVC01010

01 INCLUDE INVC. LVC01010

01 INCLUDE PROD. LVC01010

** LVC01100

* MARK VALUE DEFINITIONS * LVC01110

** LVC01120

01 MARKS. LVC01130

 05 MARK0 PIC X(4) VALUE SPACES. LVC01140

 LVC01240

01 TOP-OF-FORM PIC X VALUE '1'. LVC01250

01 CNT-PAGE PIC 9(2) COMP-3 VALUE 0. LVC01260

01 HEAD-LINE. LVC01270

 02 FILLER PIC X(30) VALUE SPACE. LVC01280

 02 HEAD-TEXT PIC X(23) VALUE LVC01300

 02 FILLER PIC X(28) VALUE SPACE. LVC01310

 02 HEAD-PG-NAM PIC X(4) VALUE 'PAGE'. LVC01320

 02 HEAD-PAGE PIC Z(3). LVC01330

 LVC01340

01 ABNORMAL-LINE. LVC01350

 02 FILLER PIC X(1) VALUE SPACE. LVC01360

 02 ERR-MSG PIC X(41) LVC01370

 VALUE '**** UNEXPECTED END OF FILE ON INPUT ****'. LVC01380

 02 FILLER PIC X(91) VALUE SPACES. LVC01390

 LVC01400

01 BAD-CODE-LINE. LVC01410

 02 FILLER PIC X(1) VALUE SPACE. LVC01420

 02 ERR-MSG PIC X(41) LVC01430

 VALUE '**** INVALID COMMAND DETECTED ****'. LVC01440

 02 FILLER PIC X(91) VALUE SPACES. LVC01450

 LVC01460

VSE samples

RDM COBOL Programming Guide 129

01 MESSAGE-LINE. LVC01470

 02 MESSAGE-CC PIC X VALUE SPACES. LVC01480

 02 FILLER PIC X(5) VALUE 'FSI: '. LVC01490

 02 OUT-FSI PIC X. LVC01500

 02 FILLER PIC X(6) VALUE ' VSI: '. LVC01510

 02 OUT-VSI PIC X. LVC01520

 02 FILLER PIC X(10) VALUE ' MESSAGE: '. LVC01530

 02 OUT-MESSAGE PIC X(40). LVC01540

 LVC01550

01 REDISPLAY-LINE. LVC01560

 02 REDISPLAY-CC PIC X VALUE SPACES. LVC01570

 02 REDISPLAY-PROMPT PIC X(2) VALUE '> '. LVC01580

 02 OUT-OPTIONS PIC X. LVC01590

 02 OUT-OPCODE PIC X. LVC01600

 02 OUT-POSIT PIC X. LVC01610

 02 OUT-MOD PIC X. LVC01620

 02 OUT-KEYS PIC X. LVC01630

 02 OUT-OBJECT-NAME PIC X(30). LVC01640

 02 FILLER PIC X(91) VALUE SPACES. LVC01650

 LVC01660

01 PRINT-OUT-RECORD. LVC01670

 05 PRINT-OUT-CC PIC X VALUE SPACES. LVC01680

 05 OUT-REC PIC X(131). LVC01690

 05 OUT-SIGN-ON REDEFINES OUT-REC. LVC01700

 10 OUT-USER-ID PIC X(30). LVC01710

 10 OUT-PASS PIC X(8). LVC01720

 05 OUT-PROD REDEFINES OUT-REC. LVC01730

 10 OUT-PROD-NO PIC X(4). LVC01740

 10 OUT-PROD-DESC PIC X(40). LVC01750

 10 OUT-PROD-RENT PIC 9999999V99. LVC01760

 10 OUT-PROD-MAINT PIC 9999999V99. LVC01770

 10 OUT-PROD-PURCH PIC 9999999V99. LVC01780

Appendix B Sample RDM COBOL application program

130 P26-8330-62

 05 OASI-PROD REDEFINES OUT-REC. LVC01790

 10 OASI-PROD-NO PIC X. LVC01800

 10 FILLER PIC X(3). LVC01810

 10 OASI-PROD-DESC PIC X. LVC01820

 10 FILLER PIC X(39). LVC01830

 10 OASI-PROD-RENT PIC X. LVC01840

 10 FILLER PIC X(9). LVC01850

 10 OASI-PROD-MAINT PIC X. LVC01860

 10 FILLER PIC X(9). LVC01870

 10 OASI-PROD-PURCH PIC X. LVC01880

* 05 OUT-CUST REDEFINES OUT-REC. LVC01890

* 05 OUT-CUS-PRD REDEFINES OUT-REC. LVC01900

* 05 OUT-CONTACT REDEFINES OUT-REC. LVC01910

01 EOF PIC XXX VALUE 'NO '.

 LVC01920

PROCEDURE DIVISION. LVC01930

 LVC02870

 PERFORM INITIALIZATION.

 PERFORM READ-TRAN-FILE UNTIL EOF = 'YES'.

 PERFORM TERMINATION.

 STOP RUN.

INITIALIZATION.

 SIGN-ON CINCOM CINCOM.

 RESET.

 OPEN INPUT TRAN-IN.

 READ TRAN-RECORD AT END MOVE 'YES' TO EOF.

 GET INVC FOR UPDATE.

 GET FIRST BRANCH-CITY-STATE

 NOT FOUND PERFORM PRINT-MESSAGE.

GET LAST BRANCH-CITY-STATE USING BRANCH-CITY,

 BRANCH-STATE.

GET NEXT PROD USING PRODUCT-CODE.

GET PRIOR PROD.

GET PRIOR USER-NAME.

VSE samples

RDM COBOL Programming Guide 131

READ-TRAN-FILE.

 MOVE INP-PROD-DESC TO PRODUCT-DESC.

 MOVE INP-PROD-NO TO PRODUCT-CODE.

 INSERT NEXT PROD.

 INSERT NEXT USER-NAME.

 INSERT INVC DUP KEY PERFORM DUP-KEY.

 INSERT FIRST PROD.

 INSERT LAST BRANCH-CITY-STATE.

 INSERT PRIOR PROD.

 MARK PROD AT PRODUCT-CODE.

PRINT-MESSAGE.

 WRITE PRINT-REC FROM ABNORMAL-LINE.

 DELETE ALL BRANCH-CITY-STATE.

 FORGET PRODUCT-CODE NOT FOUND

 PERFORM ERROR-FORGET.

 UPDATE BRANCH-CITY-STATE.

 UPDATE USER-NAME.

ERROR-FORGET.

 MOVE 'BAD RESET' TO OUT-MESSAGE.

 WRITE PRINT-REC FROM MESSAGE-LINE.

TERMINATION.

 DELETE PROD.

 DELETE USER-NAME.

 RELEASE PROD.

 COMMIT.

 SIGN-OFF.

Appendix B Sample RDM COBOL application program

132 P26-8330-62

Index

*

* in DBAID 31

=

= command
defined 29
example 32
syntax 32

A

ALL clause
in DELETE command 40
in DELETE statement 105

application programming 18
ASI. See Attribute (Column)

Status Indicator (ASI)
asterisk (*), in DBAID 31
AT phrase

in GET command 48
in GET statement 112
in MARK command 58
in MARK statement 116

Attribute (Column) Status
Indicator (ASI) 80, 91

and packed values 83
and zoned values 83
defined 82

B

batch DBAID, using 31
batch environment, and data

base recovery 95
built-in logical view commands.

See DBAID built-in view
commands

BYE command
defined 29
syntax 33

BY-LEVEL command
defined 29
example 35
syntax 34

C

catalogued procedures 125
CAUTIOUS command

defined 29
syntax 36

characters per line, specifying 57
CICS environment, and data

base recovery 95
cloumn list, displaying 70
COBOL compiler 124
COBOL program statements 97
COBOL Programmer's Report 21

defined 76
COBOL programs, and RDM 17,

21
COBOL view program, writing 77
column

as a key 23
defined 20
modifying contents of 93

column in view
displaying description of 37
displaying text for 37

column names in view, displaying
34

COLUMN-TEXT command
defined 29
example 38
syntax 37

COMMIT
automatic 67
prohibiting automatic 36

COMMIT command
defined 29
syntax 39

COMMIT statement
defined 25
example 104
syntax 104
using 95

compilers 18, 124
current program, checking for 96

RDM COBOL Programming Guide 133

D

DATA DIVISION statements 98
INCLUDE TIS-CONTROL 101
INCLUDE view-data 98

DATA DIVISION, coding 77
data integrity and DELETE

statement 106
data manipulation, statements for

25
data model overview 20
DBAID

batch environment 31
formatting guidelines 31
signing-off 65
signing-on 66

DBAID built-in view commands
29

BY-LEVEL 34
COLUMN-TEXT 37
FIELD-DEFN 43
VIEW-DEFN 72
VIEWS-FOR-USER 74

DBAID commands 28
built-in view, defined 27
categories 27
RDML, defined 27
system, defined 27

DBAID RDML commands 29
= 32
BYE 33
CAUTIOUS 36
COMMIT 39
DELETE 40
ERASE 42
FORGET 45
GET 46
GO 50
INSERT 53
KEEP 56
MARK 58
OPEN 60
RELEASE 63
SIGN-OFF 65
SIGN-ON 66
SURE 67
UPDATE 68

DBAID system commands 28
LINESIZE 57
MARKS 59
PAGESIZE 62
USER-LIST 70
USERS 71
VIEWS 73

DBAID utility 26, 27
DEBUG 79, 101
DELETE command

defined 29
examples 41
syntax 40

DELETE statement
defined 25
examples 106
syntax 105

DTB. See Dynamic Transaction
Backout (DTB)

DUP KEY phrase, in INSERT
statement 115

duration of last request,
displaying 71

Dynamic Transaction Backout
(DTB)

and CICS environment 95
and COMMIT statement 104
and RESET statement 119

E

ELSE clause
in FORGET statement 107
in GET statement 112

ERASE command
defined 29
syntax 42

error handling 92, 96
exit, from DBAID utility. See BYE

command

F

FIELD-DEFN command
defined 29
example 44
syntax 43

FOR phrase, in GO command 51

Index

134 P26-8330-62

FOR UPDATE phrase
in GET command 48
in GET statement 110

FORGET command
defined 29
syntax 45

FORGET statement
defined 25
syntax 107

formatting guidelines, DBAID 31
FROM phrase, in GO command

51
FSI. See Function Status

Indicator (FSI)
Function Status Indicator (FSI)

80, 91, 92
defined 81

G

GET command
defined 29
syntax 46

GET statement
defined 25
examples 113
syntax 109
using 86

GO command
defined 29
syntax 50

I
INCLUDE statement

example 100
syntax 98

INCLUDE TIS-CONTROL
statement

examples 102
syntax 101

INSERT command
defined 29
examples 55
syntax 53

INSERT statement
defined 25
examples 115
syntax 114
using 94

K

KEEP command
defined 30
syntax 56

key
compound nonunique 23
compound unique 23
defined 20
defining to directory 24
in a logical view 23
nonunique 23
unique 23

L

lines, specifying number to
display 62

LINESIZE command
defined 28
syntax 57

linking a compiled program 124

M

MARK command
defined 30
syntax 58

MARK statement
example 117
syntax 116

MARKS command
defined 28
example 59
syntax 59

MASS phrase, with INSERT
command 54

N

NBUG 101
non-null value 23
NOT FOUND clause

in FORGET statement 107
in GET statement 112

null values 21
with INSERT statement 83, 115
with UPDATE statement 122

Index

RDM COBOL Programming Guide 135

O

OPEN command
defined 30
example 61
syntax 60

OS/390, catalogued procedures
125

P

packed fields, and null value 83
packed values, and ASI 83
PAGESIZE command

defined 28
syntax 62

precompiler
execution of 124

PROCEDURE DIVISION
statements

COMMIT 104
DELETE 105
FORGET 107
GET 109
INSERT 114
MARK 116
RELEASE 118
RESET 119
SIGN-OFF 120
SIGN-ON 121
UPDATE 122

PROCEDURE DIVISION, coding
103

processing time used, displaying
71

programming with RDM,
overview 17

pseudoconversational
applications, signing off/on
85

pseudoconversational program
and COMMIT statement 104,

120
and SIGN-OFF statement 120

R

RDM. See Relational Data
Manager (RDM)

RDML. See Relational Data
Manipulation Language
(RDML)

recompile, when required 96
record

adding 94
inserting 94

record holding
automatic 91
explicit 91

recovery
in batch environment 95
in CICS environment 95
of data 24
of database 95

Relational Data Manager (RDM)
administration of 20
benefits of 17
overview 18
status indicators 80
unsuccessful function 92

Relational Data Manipulation
Language (RDML)

compiler 18, 123
parameters 124
reissue 32

RELEASE command
defined 30
syntax 63

RELEASE statement
defined 25
example 118
syntax 118

Report, COBOL Programmer's
21, 76

request count, displaying 71
RESET

automatic 92
prohibiting automatic 56
using 95
with ERASE command 42

RESET command
defined 30
syntax 64

RESET statement
defined 25
example 119
syntax 119

rollback, CICS 119

Index

136 P26-8330-62

row
adding with INSERT 114
defined 20
deleting with DELETE

statement 105
example 21
modifying 93
passing to external modules 79
removing 93
removing from database, with

DELETE command 40
retrieving, discussion of 86
save position of 90
using DELETE 93
using INSERT 94
using UPDATE 93
with GET command 46
with GET FIRST command 47
with GET FIRST statement 109
with GET LAST command 47
with GET LAST statement 109
with GET NEXT command 47
with GET NEXT statement 109
with GET PRIOR command 47
with GET PRIOR statement 109
with GET SAME command 47
with GET SAME statement 109
with GET statement 109
with nonunique key 88
without a key 88

S

sample RDM COBOL application
program 127

save position, with MARK
statement 90

security 17
signing off 25
signing off/on, and PROCEDURE

DIVISION 85
signing on 25
SIGN-OFF command

defined 30
syntax 65

SIGN-OFF statement
defined 25
example 120
syntax 120

SIGN-ON command
defined 30
example 66
syntax 66

SIGN-ON statement
defined 25
example 121
syntax 121

sign-on time, displaying 71
START clause, with GO

command 51
station number, displaying 71
storage

for FORGET statement 107
freeing 25, 45
maintaining 86
RELEASE command 63
sign-off statement 120
sign-on statement 121
with FORGET command 45
with RELEASE statement 118

SURE command
defined 30
syntax 67

system commands See DBAID
system commands

system performance, effect of
FOR UPDATE clause on
109

T

tabular format display 50
Task Level Recovery (TLR)

and COMMIT statement 104
task, restarting with RESET 119
time of sign-on, displaying 71
TIS-CONTROL 79
TLR. See Task Level Recovery

(TLR)
TRACE 79, 101

U

unsuccessful function (RDM) 92
UPDATE command

defined 30
example 69
syntax 68

Index

RDM COBOL Programming Guide 137

UPDATE statement
defined 25
example 122
syntax 122

user name, displaying 71
user view

changing 22
creating 22
creating from logical view 78
defined 20, 21
example 21

USER-LIST command
defined 28
syntax 70

USERS command
defined 28
example 71
syntax 71

users, displaying information
about 71

USING phrase
in GET command 49
in GET statement 111
in GO command 51

utility, DBAID 26, 27

V

validation of data 80
Validity Status Indicators (VSI)

80, 91
defined 83

value, defined 20
view

changing 22
closing 63
creating 22
defined 20, 21
displaying description of 72
example 21
preparing for use by DBAID 60
to use in program 77
with MARK statement 116
with RELEASE statement 118
with UPDATE statement 122

view program, writing in COBOL
76

view record, inserting in physical
database 54

VIEW-DEFN command
defined 29
example 72
syntax 72

views
active, displaying 73
listing by signed-on user 74
multiple, accessing 89

VIEWS command
defined 28
example 73
syntax 73

VIEWS-FOR-USER command
defined 29
example 74
syntax 74

VSE samples 126
VSI. See Validity Status Indicator

(VSI)

Z

zoned fields, and null value 83
zoned value, and ASI 83

Index

138 P26-8330-62

	Back to DOCUMENTATION MENU
	About this book
	Using this document
	Document organization
	Revisions to this manual
	Conventions

	SUPRA Server documentation series

	Chapter 1 - Overview of COBOL application programming with RDM
	Application programming overview
	Understanding RDM views
	Creating user views
	Understanding columns and keys

	Introduction to the Relational Data Manipulation Language (RDML)
	Introduction to the DBAID utility subset

	Chapter 2 - Using the DBAID utility subset
	DBAID commands list
	DBAID formatting guidelines
	DBAID commands
	= command
	BYE command
	BY˚LEVEL command
	CAUTIOUS command
	COLUMN-TEXT command
	COMMIT command
	DELETE command
	ERASE command
	FIELD-DEFN command
	FORGET command
	GET command
	GO command
	INSERT command
	KEEP command
	LINESIZE command
	MARK command
	MARKS command
	OPEN command
	PAGESIZE command
	RELEASE command
	RESET command
	SIGN-OFF command
	SIGN-ON command
	SURE command
	UPDATE command
	USER-LIST command
	USERS command
	VIEW-DEFN command
	VIEWS command
	VIEWS-FOR-USER command

	Chapter 3 - Coding RDM COBOL application programs
	Using the programmer's report
	Coding the DATA DIVISION
	Specifying views and user views
	Specifying TIS˚CONTROL
	RDM status indicators
	Function Status Indicator (FSI)
	Attribute (Column) Status Indicator (ASI)
	Validity Status Indicator (VSI)

	Coding the PROCEDURE DIVISION
	Signing on/off
	Maintaining storage
	Using the GET statement to retrieve rows
	Retrieving rows containing unique keys
	Retrieving rows containing nonunique keys
	Retrieving rows without keys

	Accessing multiple views
	Using the MARK statement to save row position
	Using explicit and automatic record holding
	Explicit record holding
	Automatic record holding

	Handling error conditions
	Modifying rows
	Updating rows
	Deleting rows

	Using the INSERT statement
	Using the COMMIT/RESET statements
	Handling errors requiring a recompile

	Chapter 4 - RDM COBOL application program statements
	DATA DIVISION statements
	INCLUDE view˚data
	INCLUDE TIS˚CONTROL

	PROCEDURE DIVISION statements
	COMMIT
	DELETE
	FORGET
	GET
	INSERT
	MARK
	RELEASE
	RESET
	SIGN˚OFF
	SIGN˚ON
	UPDATE

	Chapter 5 - Compiling and linking an RDM COBOL application program
	Executing the RDML precompiler
	Linking a compiled program

	Appendix A - OS/390 and VSE samples and procedures
	OS/390 samples and procedures
	VSE samples

	Appendix B - Sample RDM COBOL application program
	Index

