

SUPRA SERVER PDM

System Administration Guide
(VMS)

P25-0130-47

SUPRA® Server PDM System Administration Guide (VMS)

Publication Number P25-0130-47

 1988−1989, 1990, 1993, 1994, 1996−2002 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage®
C+A-RE™
CINCOM®
Cincom Encompass®
Cincom Smalltalk™
Cincom SupportWeb®
CINCOM SYSTEMS®

gOOi™

iD CinDoc™
iD CinDoc Web™
iD Consulting™
iD Correspondence™
iD Correspondence Express™
iD Environment™
iD Solutions™
intelligent Document Solutions™
Intermax™

MANTIS®
Socrates®
Socrates® XML
SPECTRA™
SUPRA®
SUPRA® Server
Visual Smalltalk®
VisualWorks®

UniSQL™ is a trademark of UniSQL, Inc.
ObjectStudio® is a registered trademark of CinMark Systems, Inc.

All other trademarks are trademarks or registered trademarks of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, Ohio 45246-3732
U.S.A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

www.cincom.com

Release information for this manual

The SUPRA Server PDM System Administration Guide (VMS),
P25-0130-47, is dated January 15, 2002. This document supports
Release 2.4 of SUPRA Server.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. Please take the survey provided with the
online documentation at your convenience.

Cincom Technical Support for SUPRA Server PDM

FAX: (513) 612-2000
 Attn: SUPRA Server Support

E-mail: helpna@cincom.com

Phone: 1-800-727-3525

Mail: Cincom Systems, Inc.
 Attn: SUPRA Server Support
 55 Merchant Street
 Cincinnati, OH 45246-3732
 U.S.A.

mailto:helpna@cincom.com

Contents

About this book ix
Using this document... ix

Document organization ..x
Revisions to this manual ... xi
Conventions ... xii

SUPRA Server documentation series ... xv

SUPRA Server overview 17
SUPRA Server components..19

The Physical Data Manager ...21
The Directory..23
The Relational Data Manager ..24

SUPRA Server administration utilities ...25
Selecting a SUPRA Server facility...27
Related products ...29

SPECTRA ..29
MANTIS..30

Understanding the Physical Data Manager (PDM) 31
Configuring the PDM...33

Groupwide PDM...34
Systemwide PDM...35
Multiple systemwide PDM ..36
Systemwide and groupwide PDM ..37
Multiple systemwide and groupwide PDM..38

Initializing the PDM..39
Manual PDM initiation ..40
Automatic PDM initiation ..42
Initiating the PDM on a network ...48

Specifying a database ...50
Using a database prefix ..51
Writing SUPRA Server PDM user exits ..55

System Administration Guide v

Defining your operating environment 57
Creating a PDM environment ... 58
Defining logicals for your PDM environment... 62

LOGICALS.COM ... 63
PDM_LOGICALS_*.COM.. 87
pdmname_USER_INIT.COM... 109
SUPRA_SYMBOL.COM .. 110

Modifying VMS system parameters .. 111

Entering input parameters 113
Creating a PDM start-up resource file .. 114

Assigning a UIC name to the PDM.. 115
Specifying PDM quotas ... 116

Entering parameters for the PDM input file .. 125
Setting up and using PDM file protection checking .. 141

Communicating with the SUPRA Server PDM 145
Using the PDM operator commands .. 146

Activating an index (ACTIVATE).. 147
Deactivating an index (DEACTIVATE) .. 149
Disabling a database (DISABLE)... 151
Displaying a database (DISPLAY) ... 154
Dumping the contents of the System Log for a database (DUMPSLF)....... 158
Enabling a database (ENABLE) .. 160
Populating an index (POPULATE)... 162
Specifying read-only access for a database (READONLY)......................... 164
Shutting down a database (SHUTDOWN) .. 167
Unloading a database (UNLOAD) ... 169
Specifying update access for a database (UPDATE).................................. 171

Communicating with the SUPRA Server PDM through CSIOPCOM 174
Using CSIOPCOM commands .. 180
Running CSIOPCOM in batch ... 182

Automating operator communication.. 183
Restricting use of PDM commands .. 185
Communicating with the PDM through the VMS REPLY command......................... 189

Contents

vi P25-0130-47

Setting up the SUPRA Server Directory database 193
The SUPRA Server Directory database..195

Estimating the SUPRA Server Directory data set sizes196
Setting up the SUPRA Server Directory user names...................................197

Changing the definition of the SUPRA Server Directory database198
Creating a recovery point ...199
Modifying the SUPRA Server Directory database..200
Modifying the SUPRA Server Directory data sets ..204

Tuning your database 207
Tuning your physical database..208

Defining the file access method ...208
Avoiding fragmented files...208
Using data sets ..209
Defining logical units of work..216
Managing buffers ...217
Improving database performance with PDM cache219

Optimizing Relational Data Manager performance ...227
Accessing data sets ...227
Choosing an RDM access method ..228
Using bound views ...229
Using Global Views ..229

Using indexes..230
Designing application programs..232

Record holding ...232
Managing record holding..234
Preventing a deadly embrace...237
Optimizing the frequency of commits...237
Understanding client read-ahead buffering ..238
Context position considerations ...239
Application programming considerations ...239
PDM application guidelines ..242

Migrating a database 243
Migrating into SUPRA Server..245
Migrating from SUPRA Server ..246
Generating a DDL file..247
Using the DDL Load Facility..248

Signing on to CSIDDLLOAD ..250
Loading the DDL file...251
Checking CSIDDLLOAD error conditions ..257

Compiling the database description ..258
Formatting data sets ...258
Adding records ..258

Contents

System Administration Guide vii

Example user exits 259
COBOL user exits... 259

COBOL user exit 1... 260
COBOL user exit 2... 263
COBOL command file to compile and link the exits 266

FORTRAN user exit.. 267
FORTRAN user exit... 267
FORTRAN command file to compile and link the exit 268

PDM statistics output 269

Example mailbox-reading program 275

Optional SUPRA Server logicals 279

SUPRA Server logical names 281

Index 291

Contents

viii P25-0130-47

About this book

Using this document
The manual is written primarily for the system administrator responsible
for maintaining and tuning the SUPRA Server system, although DBAs
and programmers may wish to use the tuning guidelines in “Tuning your
database” on page 207.

Prerequisites for this manual include an understanding of VMS
architecture, the DCL command language and system management, and
high-level programming languages such as BASIC, COBOL, FORTRAN,
and PASCAL.

This manual describes:

♦ SUPRA Server components and related products.

♦ The Physical Data Manager (PDM) in full detail.

♦ How to define your operating environment using SUPRA Server
administration utilities, command procedures, and logicals and
symbols.

♦ SUPRA Server input parameter files.

♦ How to communicate with the PDM using the PDM operator
interface.

♦ How to set up the SUPRA Server Directory.

♦ How to get the best performance from your SUPRA Server database.

♦ How to migrate your database to and from other platforms.

The appendices provide sample user exit, a description of PDM statistics
output, an example mailbox-reading program, a list of optional SUPRA
Server logical names, and a complete listing of the SUPRA logical
names.

System Administration Guide ix

Document organization
The information in this manual is organized as follows:

Chapter 1—SUPRA Server overview
Describes SUPRA Server components, administration utilities, and
related products.

Chapter 2—Understanding the Physical Data Manager (PDM)
Describes how to configure and initialize the PDM.

Chapter 3—Defining your operating environment
Describes how to create a PDM environment, define logicals, and
modify VMS system parameters.

Chapter 4—Entering input parameters
Describes how to create a PDM start-up resource file, enter
parameters, and use PDM file protection checking.

Chapter 5—Communicating with the SUPRA Server PDM
Describes how to use the PDM Operator commands and how to
communicate with the PDM in various ways.

Chapter 6—Setting up the SUPRA Server directory database
Describes the SUPRA Server directory database and how to change
its definition.

Chapter 7—Tuning your database
Describes how to tune your database and optimize performance.

Chapter 8—Migrating a database
Describes how to migrate to and from SUPRA Server, generate a
DDL file, format data sets, and add records.

Appendix A—Example user exits
Provides example COBOL and FORTRAN user exits.

Appendix B—PDM statistics output
Describes the statistics written to the log file when you select
STATISTICS=Y in the PDM input file.

Appendix C—Example mailbox-reading program
Presents a COBOL program to read the PDM messages from a
mailbox.

Appendix D—Optional SUPRA Server logicals
Lists optional SUPRA Server logicals. These logicals change the
normal behavior of SUPRA Server.

Appendix E—SUPRA Server logical names
Lists the logical names needed to run SUPRA Server.

Index

About this book

x P25-0130-47

Revisions to this manual
The following changes were made for this release:

♦ Calculations were added to the following parameters:

- “AST_LIMIT” on page 118
- “BUFFER_LIMIT” on page 119
- “ENQUEUE_LIMIT” on page 120
- “EXTENT” on page 121
- “FILE_LIMIT” on page 121
- “IO_BUFFERED” on page 122
- “IO_DIRECT” on page 122
- “PAGE_FILE” on page 123

♦ The CSIINDEX logical was added on page 74.

♦ The RUNDIRM logical was added on page 81.

♦ The [xxx_]SUPRAD_CSI_PDM_MACS logical was added on
page 97.

♦ “WARMSTART_DATASET_ERROR” on page 139.

♦ Information was added to number seven under “Using DBA utilities
on UDD files” on page 206.

♦ Information on MAXIMUM_WORKING_SET was added on page 117.

♦ Information about understanding read-ahead buffering was added.
See “Understanding client read-ahead buffering” on page 238.

♦ All references to revision 2.3 changed to read 2.4.

♦ The following logical names were added to Appendix E:

- CSIINDEX
- CSIPLVS_DEB
- RUNDIRM
- [xxx_]SUPRAD_CSI_PDM_MACS
- SUPRA_LIBRARY
- SUPRA_UPGRADE

 See "SUPRA Server logical names" on page 281 for the complete
listing of logicals.

About this book

System Administration Guide xi

Conventions
The following table describes the conventions used in this document
series:

Convention Description Example
Constant width
type Represents screen images and

segments of code.
PUT 'customer.dat'
GET 'miller\customer.dat'
PUT '\DEV\RMT0'

Slashed b (b/) Indicates a space (blank).
The example indicates that four
spaces appear between the
keywords.

BEGNb/b/b/b/SERIAL

Brackets [] Indicate optional selection of
parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate
one of the following situations.

 A single item enclosed by brackets
indicates that the item is optional
and can be omitted.
The example indicates that you can
optionally enter a WHERE clause.

[WHERE search-condition]

 Stacked items enclosed by
brackets represent optional
alternatives, one of which can be
selected.
The example indicates that you can
optionally enter either WAIT or
NOWAIT. (WAIT is underlined to
signify that it is the default.)

(WAIT)
(NOWAIT)











About this book

xii P25-0130-47

Convention Description Example

Braces { } Indicate selection of parameters.
(Do not attempt to enter braces or
to stack parameters.) Braces
surrounding stacked items
represent alternatives, one of
which you must select.
The example indicates that you
must enter ON or OFF when using
the MONITOR statement.

MONITOR
ON
OFF









Underlining
(In syntax)

Indicates the default value supplied
when you omit a parameter.
The example indicates that if you
do not choose a parameter, the
system defaults to WAIT.

(WAIT)
(NOWAIT)











 Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.
The example indicates that you can
enter either STAT or STATISTICS.

STATISTICS

Ellipsis points... Indicate that the preceding item
can be repeated.
The example indicates that you can
enter multiple host variables and
associated indicator variables.

INTO :host-variable [:ind-
variable],...

About this book

System Administration Guide xiii

Convention Description Example

UPPERCASE
lowercase

In most operating environments,
keywords are not case-sensitive,
and they are represented in
uppercase. You can enter them in
either uppercase or lowercase.

COPY MY_DATA.SEQ

HOLD_DATA.SEQ

Italics Indicate variables you replace with
a value, a column name, a file
name, and so on.
The example indicates that you
must substitute the name of a
table.

FROM table-name

Punctuation
marks

Indicate required syntax that you
must code exactly as presented.
() parentheses
. period
, comma
: colon
' ' single quotation marks

(user-id, password, db-name)

INFILE 'Cust.Memo' CONTROL
 LEN4

SMALL CAPS Represent a keystroke. Multiple
keystrokes are hyphenated.

ALT-TAB

About this book

xiv P25-0130-47

SUPRA Server documentation series
SUPRA Server is the advanced relational database management system
for high-volume, update-oriented production processing. A number of
tools are available with SUPRA Server including DBA Functions, DBAID,
precompilers, SPECTRA, and MANTIS. The following list shows the
manuals and tools used to fulfill the data management and retrieval
requirements for various tasks. Some of these tools are optional.
Therefore, you may not have all the manuals listed. For a brief synopsis
of each manual, refer to the SUPRA Server PDM Digest for VMS
Systems, P25-9062.

Overview

♦ SUPRA Server PDM Digest for VMS Systems, P25-9062

Getting started

♦ SUPRA Server PDM VMS Installation Guide, P25-0147

♦ SUPRA Server PDM VMS Tutorial, T25-2263

General use

♦ SUPRA Server PDM Glossary, P26-0675

♦ SUPRA Server PDM Messages and Codes Reference Manual
(PDM/RDM Support for UNIX & VMS), P25-0022

Database administration tasks

♦ SUPRA Server PDM Database Administration Guide (UNIX & VMS),
P25-2260

♦ SUPRA Server PDM System Administration Guide (VMS), P25-0130

♦ SUPRA Server PDM Utilities Reference Manual (UNIX & VMS),
P25-6220

♦ SUPRA Server PDM Directory Views (VMS), P25-1120

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

♦ SPECTRA Administrator’s Guide, P26-9220**

About this book

System Administration Guide xv

Application programming tasks

♦ SUPRA Server PDM Programming Guide (UNIX & VMS), P25-0240

♦ SUPRA Server PDM System Administration Guide (VMS), P25-0130

♦ SUPRA Server PDM RDM Administration Guide (VMS), P25-8220

♦ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

♦ MANTIS Planning Guide, P25-1315**

Report tasks

♦ SPECTRA User’s Guide, P26-9561**

Manuals marked with an asterisk (*) are listed twice because you use
them for different tasks.

Educational material is available from your regional Cincom education
department.

About this book

xvi P25-0130-47

1
SUPRA Server overview

SUPRA Server is an interactive database system that allows you to use
advanced features for control of data resources and high programming
productivity. SUPRA Server accommodates the varying data processing
needs of its VMS users by providing a variety of integrated components
and related products.

SUPRA Server consists of an intricately connected system of powerful
components. Each component has important functionality that allows you
to efficiently and effectively administer the SUPRA Server database.

System Administration Guide 17

The SUPRA Server directory structure is outlined in the following figure:

SUPRA

dev:[directory]

.PDM_23

.PATCH_WORK

.PATCHES

.LIBRARY

.HELP

.EXE

.EXAMPLES

.DICT

.REPORT

.TEST_EXE

.AUXIL

.BURRYS

.CLEAN_DICT

.CLEAN_EXE

.COMS

You can customize the locations of these areas by using the
SUPRA_MENU.COM administration utility (see “Creating a PDM
environment” on page 58).

Chapter 1 SUPRA Server overview

18 P25-0130-47

SUPRA Server components
The integrated components of SUPRA Server combine to give you a fully
functioning SUPRA Server system. This chapter introduces these
components and prepares you for detailed descriptions of the
components that are found in subsequent chapters.

The following figure illustrates the SUPRA Server system, complete with
the SUPRA Server components and related products that can help you
effectively use your SUPRA Server system. The SUPRA Server
components are indicated by the bold boxes; the related products are
indicated by an asterisk and are marked optional.

PDML
ApplicationsSPECTRA *

* Optional

 RDM PDM

Directory

PDM
Data
Files

RMS
Data
Files

DBA Functions
or

Directory
Maintenance

MANTIS *

RDML
Applications

RDML
Precompilers *

SPECTRA is not available in Alpha environments.

SUPRA Server components

System Administration Guide 19

The following table shows the functionality of the SUPRA Server
components:

Component Functionality
Physical Data Manager
(PDM)

Recovery
Heterogeneous cluster and network
support
Automatic restart
Reads, updates, and deletes data
Services requests for data

Directory DBA functions
Fast utilities
Batch Directory Maintenance
Database verify utilities
Batch validate, compile, and print

Relational Data
Manager (RDM)

DBAID
Global view creation
View binding
RDML

Chapter 1 SUPRA Server overview

20 P25-0130-47

The Physical Data Manager
The Physical Data Manager (PDM) runs as a multitasking, detached
VMS process. The PDM controls the storage of and access to data in
user databases. It is the underlying control method that all other
components use to access physical data.

You use the PDM either directly or indirectly through the other SUPRA
Server components. Application programmers can write programs that
use:

♦ Physical Data Manipulation Language (PDML) to directly manipulate
data held on SUPRA Server databases.

♦ Relational Data Manipulation Language (RDML) statements to invoke
the PDM through the Relational Data Manager (RDM).

♦ MANTIS to manipulate data on SUPRA Server databases.
End users on VAX systems use SPECTRA to access the PDM through
RDM views and queries.

SUPRA Server components

System Administration Guide 21

Regardless of the access method, the PDM provides the following
additional features:

♦ Automatic restart. If a database is running on a machine that fails,
and a user attempts to access a database on the failed machine, the
PDM is initiated on the first available machine. The first available
machine is determined from the preferred machine list. See
“Defining your operating environment” on page 57 for a description of
automatic restart.

♦ Heterogeneous cluster and network support. Provided by the
PDM for each database by using a preferred machine list.
Heterogeneous Cluster Support allows a task from one machine to
access a database running on another machine, where both
machines form part of the same cluster. SUPRA Server Network
Support enables a task from one node to access a database running
on another node, where both nodes form part of the same network.
These facilities enable the transfer of data between machines on a
cluster, or nodes on a network. “Defining your operating
environment” on page 57 describes how to set up your PDM to start
on any machine in a cluster or network in descending order of
preference. This order of preference depends on the order of
machines as specified in the preferred machine list.

♦ Recovery methods, including:

- Task level recovery, which resets the database to the last
successful commit point after a system or task failure.

- System level recovery, which restores the database to its state
just prior to a device failure by reapplying logged after images.

- Shadow recording, which duplicates each data set change on a
shadow data set, and switches to the duplicate data set when a
failure occurs.

- Recovery unit journaling, which is optionally available for task
level recovery for the RMS data sets you can use with the RDM.

Chapter 1 SUPRA Server overview

22 P25-0130-47

The Directory
The SUPRA Server Directory is the central point for all SUPRA Server
components. It contains all the VMS system information and all the data
descriptions (metadata) required by the PDM. The SUPRA Server
Directory also contains the relational entities required by the RDM.
Although it does not contain user data (user databases contain this), it
contains a common repository of what data exists and where. See
“Setting up the SUPRA Server Directory database” on page 193 for more
information on the Directory and how to maintain it.

The following figure shows the structure of the SUPRA Server Directory:

Related Data Set

UDD2
Relationship

Data

Related Data Set

UDD3
Comments,

etc.

Primary Data Set

UDD1
Entities &
Attributes

UDD1LK21
UDD1LK22
UDD1LK23

UDD1LK31
UDD1LK32

SUPRA Server components

System Administration Guide 23

The Relational Data Manager
The database administrator (DBA) designs base views and derived views
of data held in SUPRA Server databases. The RDM then enables
application programmers and end users to use these views to access the
database without concerning themselves with its physical structure. They
do not need to know anything about navigation through the database; the
RDM retrieves the required data while providing database security and
integrity. In addition, the RDM allows the DBA to change and restructure
the database without requiring programmers to rewrite or recompile their
programs. The RDM also provides programmers with a simple
Relational Data Manipulation Language (RDML) for retrieving and
modifying the database contents. Refer to the SUPRA Server PDM RDM
Administration Guide (VMS), P25-8220, for details of RDM processing
and use.

The RDM provides the following facilities to help the DBA define and
maintain views:

♦ DBAID. Used by the DBA to define new views, open views, issue
RDML statements, and examine the results. The DBA can then
change the view and immediately test it again. DBAID can execute in
batch or online.

 Non-DBA users can use the programmer’s subset of DBAID
commands to test whether a logical view meets application
requirements before production runs. Refer to the SUPRA Server
PDM RDM Administration Guide (VMS), P25-8220, for a description
of the DBAID test facility.

♦ View binding. Binding stores preopened copies of logical views on
the Directory. Logical View functions in DBA or the DBAID BIND
command can be used to bind logical views. Each subsequent view
access uses the bound copy, thus saving the processing time
required to open the view. “Tuning your database” on page 207
discusses the performance advantages of using bound views.

♦ Global view creation. The global view facility lets the DBA place a
preopened copy of frequently used logical views in global memory.
This allows all users to share a permanently loaded open view
definition. “Tuning your database” on page 207 discusses the
performance advantages of using global views. Refer to the SUPRA
Server PDM RDM Administration Guide (VMS), P25-8220, for details
of how to use the global view facility.

Chapter 1 SUPRA Server overview

24 P25-0130-47

SUPRA Server administration utilities
SUPRA Server comes with a set of administration utilities that help you
administer SUPRA Server in your VMS environment. These utilities are
located in the [...SUPRA.PDM_24.COMS] subdirectory. Once you define
your environment, the logical SUPRA_COMS points to this directory. The
following figure lists some of the files that are stored in SUPRA_COMS:

SUPRA_MENU.COM

LOGICALS.COM

CUSTOM.COM

EXPLAIN.COM

MAKE_CLASS.COM

PATCH.COM

SUPRA_COMS

UPGRADE.COM

SUPRA_SYMBOL.COM

DEINSTALL_SUPRA23_PDM_IMAGES.COM

INSTALL_SUPRA23_PDM_IMAGES.COM

As a result of creating a PDM environment, the following files are created
in the SUPRA_LIBRARY directory:

♦ PDM_LOGICALS_*.COM (this file is now located in the
SUPRA_LIBRARY directory)

♦ PDM_START_*.COM

♦ pdmname_USER_INIT.COM

♦ PDM_OPTIONS_*.INP

See “Creating a PDM environment” on page 58 for a complete
description of these files.

SUPRA Server administration utilities

System Administration Guide 25

SUPRA Server administration utilities allow you to configure your
environment with logical and symbol definitions. Details of the
administration utilities and their corresponding logicals and symbols are
in “Defining your operating environment” on page 57.

The following command procedures help you configure your PDM
environment:

♦ SUPRA_SYSTEM.COM. When you define your first PDM system,
this procedure is created in the SUPRA_COMS directory. This
command procedure sets up all of the standard SUPRA Server
logicals for each PDM system defined. It does this by making the
appropriate calls to LOGICALS.COM and PDM_LOGICALS_*.COM
(see below).

♦ LOGICALS.COM. Defines general SUPRA Server logicals in the
logical name table specified.

♦ PDM_LOGICALS_*.COM. Defines logicals needed for a specific
PDM environment and the specific database(s) associated with it.
This procedure is created when you use SUPRA_MENU.COM to
create a PDM environment. This file is now located in the
SUPRA_LIBRARY directory.

♦ SUPRA_SYMBOL.COM. Defines VMS symbols that you use to
access various utilities from the DCL command line. You can also
access many of these facilities from the SUPRA Server Facilities
Menu detailed in “Defining your operating environment” on page 57.

Throughout this manual, an asterisk represents either the 6-character
UIC group number for a groupwide PDM, 000000 for a systemwide PDM,
or the 1- to 8-character name of a multiple systemwide PDM.

Chapter 1 SUPRA Server overview

26 P25-0130-47

Selecting a SUPRA Server facility
After you log on and enter the DCL command RUN SUPRA, the SUPRA
Server Facilities Menu appears as shown in the following screen
illustration. To select a facility, enter its number in the “Enter choice no.”
field and press RETURN. Press function key PF2 instead of RETURN to
display a description of the selected facility. Press function key PF1 to
return to the DCL command level.

CINCOM SYSTEMS SUPRA FACILITIES RELEASE 2.4

 *** ***
 ******* ******* Select required facility :
 ********** ********** 1 : DBA function
 ************ ************ 2 : Global view creation
 ************* ************* 3 : SPECTRA
 ************** ************** 4 : "DBAID" facility
 ************** ************** 5 : BASIC pre-processor
 6 : COBOL pre-processor
 ************** ************** 7 : FORTRAN pre-processor
 ************** ************** 8 : MANTIS
 ************* *************
 ************ ************
 ********** **********
 ******* *******
 *** ***

 Enter choice no.:

Options 2, 3, and 4, Global view creation, SPECTRA, and DBAID facility,
require that you also enter the database name if you have not assigned
the logical name CSI_SCHEMA.

Option 3 is available only in VAX environments.

Selecting a SUPRA Server facility

System Administration Guide 27

The following table shows where to find more documentation for each
option on the menu:

Option Documented in
DBA function SUPRA Server PDM Database

Administration Guide (UNIX & VMS),
P25-2260

Global view creation SUPRA Server PDM RDM
Administration Guide (VMS), P25-8220

SPECTRA SPECTRA User’s Guide, P26-9561
(available only in VAX environments)

DBAID facility SUPRA Server PDM RDM
Administration Guide (VMS), P25-8220

BASIC preprocessor SUPRA Server PDM Programming
Guide (UNIX & VMS), P25-0240

COBOL preprocessor SUPRA Server PDM Programming
Guide (UNIX & VMS), P25-0240

FORTRAN preprocessor SUPRA Server PDM Programming
Guide (UNIX & VMS), P25-0240

MANTIS MANTIS manuals

Chapter 1 SUPRA Server overview

28 P25-0130-47

Related products
The following related products may help you effectively use your SUPRA
Server system:

SPECTRA
End users use SPECTRA, an advanced query language, for reporting
and updating data. These users need no programming knowledge to
write SPECTRA processes to interrogate databases, nor do they need to
use application programs. This reduces the burden on the application
programmers. In addition, programmers and the DBA can use
SPECTRA to create and store processes for use by any authorized user.

SPECTRA uses the views defined by the DBA on the SUPRA Server
Directory. The same views can be used by application programs,
SPECTRA, and the DBAID facility. Thus, all the advantages of the
Relational Data Manager (RDM) are available to end users, as well as to
programmers.

SPECTRA is not available in Alpha environments.

Related products

System Administration Guide 29

MANTIS
MANTIS is an application development tool with facilities to design
programs, scenarios, files, screens, prompters, and interfaces to
applications written in other languages. The MANTIS programmer can
access all SUPRA Server components. MANTIS offers high
programming productivity and fourth-generation prototyping facilities. In
addition, MANTIS applications are portable across hardware platforms.

SPECTRA is designed as an ad hoc query tool, not an application
development environment. Those users that require a full application
development environment should consider using MANTIS.

Chapter 1 SUPRA Server overview

30 P25-0130-47

2
Understanding the Physical Data
Manager (PDM)

The Physical Data Manager (PDM) runs as a detached VMS process. It
controls the storage of and access to data.

The PDM runs as a multithreaded process. Multithreading allows
numerous applications to use the PDM at the same time and leads to
efficient use of system resources.

System Administration Guide 31

The following figure shows the structure of PDM processing and the
types of files handled by the PDM:

Communication
Global
Section

CSIGIM

CSIGIM

CSIGIM

CSIGIM

Batch
Process

Batch
Process

INTERACTIVE TASKSBATCH PROCESSES

The
Physical

Data Manager
(PDM)

System
Log
File

Task
Log
File

Index
Files

Directory
Database

Files

Database
Description

Files

Data
Files

CSIDAP CSIDAP

CSIDAP CSIDAP

Chapter 2 Understanding the Physical Data Manager (PDM)

32 P25-0130-47

Configuring the PDM
How you configure your PDM depends on how you want users to have
access to your database(s). Decide on the following options before you
generate your PDM system:
♦ Groupwide PDM. This PDM can be accessed exclusively by

members of the specific VMS UIC group. It can only load groupwide
databases for the specific UIC group.

♦ Systemwide PDM. This PDM can be accessed by users in different
VMS UIC groups. It can load systemwide or groupwide databases.
If users in different UIC groups need to access the same data, you
must use a systemwide database that is serviced by a systemwide
PDM.

♦ Multiple systemwide PDM. Multiple PDMs can be accessed by
users in different VMS UIC groups. If you need more than one PDM
that is systemwide, you must use multiple systemwide PDMs. This
PDM configuration is a systemwide PDM and it can service both
systemwide and groupwide databases.

 This configuration permits insulation between two or more
systemwide PDMs. For example, a crash of a multiple systemwide
PDM used for test purposes will not affect a different multiple
systemwide PDM used for production.

The PDM runs as a detached process. All logical definitions that will be
used by the PDM process must be available to it. This requires the
logical definitions for a groupwide PDM to be made at the group level.
For a systemwide database, they must be made at the system level. For
a multiple systemwide PDM, certain logicals must be at the system level
and the rest must be in the special logical name table
CSI_PDM_pdmname, as described in “Defining logicals for your PDM
environment” on page 62.
If CSI_PDMID is in the group table, the PDM is groupwide. If
CSI_PDMID is in the system table and not in the group table, the PDM is
systemwide. See “PDM_LOGICALS_*.COM” on page 87. If the logical
CSI_SYSPDMID is defined, the PDM is multiple systemwide. See
“pdmname_USER_INIT.COM” on page 109.
You can combine groupwide PDMs with systemwide and multiple
systemwide PDMs. You can find examples of this in “Systemwide and
groupwide PDM” on page 37 and “Multiple systemwide and groupwide
PDM” on page 38.

If your processing requirements change and you need to reconfigure your
PDM environment, use SUPRA_MENU.

Configuring the PDM

System Administration Guide 33

Groupwide PDM
A groupwide PDM and the databases it services are only available to
users that are in the same VMS UIC group as the PDM. Each groupwide
PDM has a specific corresponding VMS Global Section. The logicals of a
groupwide PDM are in the group logical name table LNM$GROUP_*,
where * is the number of the VMS UIC group.

The following figure illustrates a VMS system with a groupwide PDM
environment:

The
Physical

Data Manager
(PDM)

Batch
Process

Batch
Process

UIC 100

UIC 100 UIC 100

UIC 100

Group-wide
Global
Section

INTERACTIVE TASKSBATCH PROCESSES

Logicals reside in the LNM$GROUP_000100 table.

Each batch and interactive task has the logical CSI_PDMID
defined to the same value as a result of executing
SUPRA_COMS:PDM_LOGICALS_000100.COM.

Chapter 2 Understanding the Physical Data Manager (PDM)

34 P25-0130-47

Systemwide PDM
A systemwide PDM can be accessed by users in different VMS UIC
groups. You use a systemwide PDM if users in different VMS UIC
groups need to access the same data. The logicals for a systemwide
PDM are defined in the system logical name table LNM$SYSTEM.

A systemwide PDM can service groupwide and systemwide databases.

The following figure illustrates a systemwide PDM system with two
different VMS UIC groups:

The
Physical

Data Manager
(PDM)

Batch
Process

Batch
Process

INTERACTIVE TASKSBATCH PROCESSES

System-wide
Global
Section

UIC GROUP 200

UIC GROUP 100 UIC GROUP 200

UIC GROUP 100

Logicals reside in the LNM$SYSTEM table.

Each batch and interactive task has the logical
CSI_PDMID defined to 000000 as a result of executing
PDM_LOGICALS_000000.COM.

Configuring the PDM

System Administration Guide 35

Multiple systemwide PDM
A multiple systemwide PDM environment allows you to have more than
one systemwide PDM. Each VMS UIC group has access to several
PDMs. The PDMs use systemwide VMS Global Sections for
communication with the application tasks.

The logicals for the PDMs are in the special logical name table
CSI_PDM_*. An additional logical, CSI_SYSPDMID, specifies the name
of the PDM that is used. This logical is defined in the file
pdmname_USER_INIT.COM (see “pdmname_USER_INIT.COM” on
page 109). It can be defined in any logical name table available to the
application task. For more information on logical name tables, see
“Defining logicals for your PDM environment” on page 62.

The following figure illustrates a multiple systemwide PDM configuration
with four separate VMS UIC groups and three PDMs:

UIC GROUP 200
Batch

Process

UIC GROUP 100
The

Physical
Data Manager

(PDM)

Batch
Process

The
Physical

Data Manager
(PDM)

Batch
Process

UIC GROUP 100
The

Physical
Data Manager

(PDM)

UIC GROUP 400

UIC GROUP 200

UIC GROUP 300

System-wide
Global
Section

System-wide
Global
Section

System-wide
Global
Section

Logicals reside in the CSI_PDM_MSW1 table.

Logicals reside in the CSI_PDM_MSW2 table.

Logicals reside in the CSI_PDM_MSW3 table.

Each batch and interactive task has the logical CSI_SYSPDMID defined
as MSW1 as a result of executing SUPRA_COMS:MSW1_USER_INIT.COM.

Each batch and interactive task has the logical CSI_SYSPDMID defined
as MSW2 as a result of executing SUPRA_COMS:MSW2_USER_INIT.COM.

Each batch and interactive task has the logical CSI_SYSPDMID defined
as MSW3 as a result of executing SUPRA_COMS:MSW3_USER_INIT.COM.

Chapter 2 Understanding the Physical Data Manager (PDM)

36 P25-0130-47

Systemwide and groupwide PDM
You can use both systemwide and groupwide PDMs on the same VMS
system. In such a configuration, the users using the groupwide PDM
cannot access a systemwide PDM. For example, the VMS UIC group
000100 in the following figure can only use the related groupwide PDM.

The following figure illustrates two VMS UIC groups connected to a
systemwide PDM, and one VMS UIC group connected to a groupwide
PDM:

Batch
Process

UIC GROUP 100

Batch
Process

The
Physical

Data Manager
(PDM)

UIC GROUP 400

UIC GROUP 200

UIC GROUP 100

The
Physical

Data Manager
(PDM)

System-wide
Global
Section

Logicals reside in the LNM$GROUP_000100 table.

Logicals reside in the LNM$SYSTEM table.

Group-wide
Global
Section

Each batch and interactive task has the logical CSI_PDMID defined as
000100 as a result of executing SUPRA_COMS:PDM_LOGICALS_000100.COM.
CSI_SYSPDMID is not defined.

Each batch and interactive task has the logical CSI_PDMID defined as
000000 as a result of executing SUPRA_COMS:PDM_LOGICALS_000000.COM.
CSI_SYSPDMID is not defined.

Configuring the PDM

System Administration Guide 37

Multiple systemwide and groupwide PDM
You can use both multiple systemwide and groupwide PDMs on the
same VMS system.

The following figure illustrates four VMS UIC groups with two multiple
systemwide PDM configurations, and one groupwide PDM configuration:

Batch
Process

UIC GROUP 100
The

Physical
Data Manager

(PDM)

Batch
Process

The
Physical

Data Manager
(PDM)

Batch
Process

UIC GROUP 100
The

Physical
Data Manager

(PDM)

UIC GROUP 400

UIC GROUP 200

UIC GROUP 300

UIC GROUP 100

System-wide
Global
Section

System-wide
Global
Section

Logicals reside in the LNM$GROUP_000100 table.

Logicals reside in the CSI_PDM_MSW1 table.

Logicals reside in the CSI_PDM_MSW2 table.

Group-wide
Global
Section

Each batch and interactive task has the logical CSI_PDMID defined as
000100 as a result of executing SUPRA_COMS:PDM_LOGICALS_000100.COM.
CSI_SYSPDMID is not defined.

Each batch and interactive task has the logical CSI_SYSPDMID defined
as MSW1 as a result of executing SUPRA_COMS:MSW1_USER_INIT.COM.

Each batch and interactive task has the logical CSI_SYSPDMID defined
as MSW2 as a result of executing SUPRA_COMS:MSW2_USER_INIT.COM.

Chapter 2 Understanding the Physical Data Manager (PDM)

38 P25-0130-47

Initializing the PDM
PDM initiation methods allow you to control whether you initiate your
PDM automatically or manually. If you initiate the PDM automatically, the
first attempt to use a database initiates the PDM. If you initiate the PDM
manually, you must initiate the PDM at the command level before any
users attempt to sign on to any database serviced by the PDM. If you are
using manual initiation and the PDM has not been initiated before a user
attempts to use a database, the user will receive an error message and
will not be able to access the database.

The logical definition CSI_AUTOSTART tells SUPRA Server whether to
initiate the PDM automatically or manually. When you set
CSI_AUTOSTART to YES, the PDM initiates automatically. When you
set CSI_AUTOSTART to NO, the PDM must be manually initiated.

You choose your PDM initiation method when you use
SUPRA_MENU.COM to create your PDM environment. After you set
CSI_AUTOSTART to either YES or NO, it will be defined in the procedure
PDM_LOGICALS_*.COM for your PDM. For details on logical definitions,
CSI_AUTOSTART, and PDM_LOGICALS_*.COM, see “Defining your
operating environment” on page 57.

If you have defined your original environment with CSI_AUTOSTART set
to NO and wish to change it's value to YES, you will also need to define a
logical name in the SUPRA_LIBRARY:PDM_LOGICALS_*.COM file. It
needs to be created at the same level and in the same table as the other
logical names defined in this procedure. The logical name is CSI_*
where the * is the 6-digit group UIC or the 000000 system UIC or the
translation of the CSI_SYSPDMID logical name. This logical name points
to the SUPRA_LIBRARY:PDM_START_*.COM file. For example:
$ DEFINE/NOLOG/TABLE=LNM$GROUP_000100 CSI_000100
DKAO:[CINCOM.SUPRA.PDM_24.LIBRARY]PDM_START_000100.COM

Initializing the PDM

System Administration Guide 39

Manual PDM initiation
If you set the logical CSI_AUTOSTART to NO, you must initiate the PDM
manually before you can access your PDM or any database your PDM
services. To initiate the PDM manually, enter the following command at
the DCL prompt:
$ @CSI_*

where * represents the 6-digit UIC group number for a groupwide PDM,
000000 for a systemwide PDM, or the 1- to 8-character name of your
multiple systemwide PDM (see “Defining your operating environment” on
page 57).

Always initiate the PDM manually to test your setup before you rely on
automatic initiation. During this test, it is best to use the PDM input
parameter CONSOLE=Y. This causes the PDM to send error messages
to the VMS operator console (see “Entering parameters for the PDM
input file” on page 125). You can also check the CSIPDMLOG file to see
any error messages.

If an attempted automatic PDM start-up fails repeatedly, it will return an
error status of NMAC and will not attempt any further restarts.

Chapter 2 Understanding the Physical Data Manager (PDM)

40 P25-0130-47

The following figure illustrates the process of manual PDM initiation using
a groupwide PDM for UIC group 100:

Start-up
Program Log

File

CSISTRLOG

CSISTR

CSIPDM
PDM Input

Parameter File

CSIPDMINP

PDM
Log File

CSIPDMLOG

Initiates

PDM Start-up
Resource File

CSISTRINP

Executes

$ @CSI_000100

Initializing the PDM

System Administration Guide 41

Automatic PDM initiation
During automatic PDM initiation (which you choose by setting the logical
CSI_AUTOSTART to YES), the first task to attempt database access is
granted a PDM initiation lock. This prevents other tasks from starting the
PDM on another machine. The task then communicates with the PDM by
using CSIDAP either through the global section (if the task is on the
same machine as the PDM) or through DECnet (if the task and PDM are
running on different machines). When the PDM has started on one of the
machines on the preferred machine list, the PDM initiation lock is
released to allow other tasks to communicate with the PDM. The
following figure illustrates the process of automatic PDM initiation:

CSISTR
PDM Start-up
Resource File

CSISTRINP

CSIPDM
PDM Input

Parameter File

CSIPDMINP

Error Message

Communication
Global
Section

VMS
Mailbox

Is PDM Local?

Yes

No

Application Tasks
e.g., RDM CSIGIM CSIDAP

Yes

Is PDM Local?

No

PDM Initiation
Command File
CSI_nnnnnn

invoked
remotely

Start-up
Program Log

File

CSISTRLOG

PDM
Log File

CSIPDMLOG

No

No

Yes

Yes

Start
here:

Is PDM
Available?

CSI_AUTOSTART=
YES?

Chapter 2 Understanding the Physical Data Manager (PDM)

42 P25-0130-47

Automatic PDM initiation starts a PDM without any user intervention. It
can be used on the first PDM start-up, and it can start the PDM after a
failure. It needs no user intervention because it is initiated and controlled
by the first application task that tries to access a database serviced by
the PDM.

If the PDM fails, any attempt to use the failed PDM restarts the PDM.
The PDM could fail for the following reasons:

♦ Hardware fault such as a machine check

♦ Software fault such as a PDM abort

The initiating task creates a VMS lock for the PDM, thus preventing other
tasks from restarting the PDM for the same database. Automatic PDM
initiation uses the preferred machine list to identify alternative machines
on which the PDM can run. The preferred machine list is identified by the
logical name dbname_CSI_PDM_MACS, which is defined in the
PDM_LOGICALS_*.COM procedure (see “PDM_LOGICALS_*.COM” on
page 87).

Once the PDM has started or restarted, the PDM initiation lock is
released. After the PDM is restarted, all tasks that were signed on to the
database are reconnected, and their current logical units of work are
reset via the automatic database warm start. When the warm start is
complete, the PDM returns a status of DRST (dynamic reset) to each
task. The tasks must then reapply any modifications made since the last
successful COMIT point.

Once you have successfully connected to a PDM, CSIDAP will only
communicate with that PDM. The preferred machine list will not be
translated again.

Initializing the PDM

System Administration Guide 43

Examples of automatic PDM initiation. The following figure illustrates
an example cluster/network configuration consisting of five machines,
VMSA through VMSE. Three databases, SUPRAD, TESTDB and
BURRYS, are active. TESTDB is loaded in one copy of the PDM on
machine VMSB, SUPRAD and BURRYS are loaded in another copy of
the PDM on machine VMSC. The following tasks access these
databases:

♦ TASK-X on machine VMSA

♦ TASK-Y on machine VMSD

♦ TASK-Z on machine VMSE

TASK-Z

Machine
VMSA

BURRYS

SUPRAD

TASK-X

PDM running databases

TASK-X

TASK-Y

TASK-Z

TASK-Y

TASK-Y

TASK-X

PDM running databases

TESTDB

Machine
VMSD

Machine
VMSE

Machine
VMSC

Machine
VMSB

accesses
Task-X

TESTDB

accesses
Task-Y

SUPRAD accesses
Task-Z

SUPRAD

accesses
Task-Z

BURRYS

Chapter 2 Understanding the Physical Data Manager (PDM)

44 P25-0130-47

Both copies of the PDM share the same global section name. The
preferred machine list logical definitions for the three databases are as
follows:
$ DEFINE TESTDB_CSI_PDM_MACS VMSB, VMSC

$ DEFINE SUPRAD_CSI_PDM_MACS VMSC, VMSA, VMSB, VMSD, VMSE

$ DEFINE BURRYS_CSI_PDM_MACS VMSC, VMSA, VMSB, VMSD, VMSE

All three databases have been initiated on the first machine on their
preferred machine list. See “PDM_LOGICALS_*.COM” on page 87 for a
description of how to set up a preferred machine list for each database.

Assume machine VMSB fails. The database TESTDB, running on
machine VMSB, is no longer available. TASK-X, which is using database
TESTDB from machine VMSA, will receive a message to say that its
PDM has gone down. The first database access after the PDM failure
will:

1. Look up the first machine on the machine list identified by the logical
name TESTDB_CSI_PDM_MACS. This machine is VMSB.

2. Discover that VMSB is unavailable.

3. Look up the next machine on the machine list identified by the logical
name TESTDB_CSI_PDM_MACS. This machine is VMSC.

4. Determine whether a PDM is running on VMSC.

5. Find the PDM that is already running on VMSC (servicing databases
SUPRAD and BURRYS).

6. Set up communication with the PDM on VMSC through DECnet and
start up database TESTDB.

Initializing the PDM

System Administration Guide 45

The following figure illustrates the cluster/network configuration after the
PDM completes Step 6:

T

Machine
VMSA

BURRYS

SUPRAD

TASK-X

PDM running databases

TASK-Y

TASK-Z

TASK-Y

TASK-Y

Machine
VMSD

Machine
VMSE

Machine
VMSC

Machine
VMSB

TASK-X

accesses
Task-X

TESTDB

accesses
Task-Y

SUPRAD

accesses
Task-Z

SUPRAD

accesses
Task-Z

BURRYS

TASK-X

goes down

TESTDB

If machine VMSC now fails, all tasks connected to it are disconnected.
The next task to access SUPRAD starts the PDM on VMSA (the next
machine in the preferred machine list for SUPRAD). The PDM is then
local for Task-X, also running on VMSA, but Task-X has no access to the
PDM. Task-Y on VMSD and Task-Z on VMSE will connect to VMSA
when they next access SUPRAD.

Chapter 2 Understanding the Physical Data Manager (PDM)

46 P25-0130-47

Any application task that tries to use TESTDB receives a NMAC status
code because none of the machines on the preferred machine list are
available. However, if either VMSB or VMSC becomes available before a
task attempts to access TESTDB, the PDM for that database restarts
there.

The next task to access BURRYS starts it in machine VMSA, the next
machine on the BURRYS preferred machine list. The following figure
illustrates this new machine configuration:

TASK-Z

Machine
VMSA

TASK-Y

TASK-Y

Machine
VMSD

Machine
VMSE

Machine
VMSB

TASK-X

is down

Machine
VMSC

TASK-X

goes down

TASK-Z

PDM running database

SUPRAD

TASK-X

BURRYS

Task-Y
accesses
SUPRAD

TASK-Z

Task-Z
accesses
SUPRAD

Task-Z
accesses
BURRYS

Initializing the PDM

System Administration Guide 47

Initiating the PDM on a network
Before you try to access the PDM from a network, you must determine
whether the PDM is already running. You should run CSI_FINDPDM
whenever you know the machine you are using is likely to be used as a
PDM machine and might service networked tasks. SUPRA Server uses
the network image CSI_FINDPDM to determine whether the PDM is
already active on the local machine.

You can set CSI_FINDPDM to be activated automatically by the first task
that needs to use the PDM. Alternatively, you can start CSI_FINDPDM
as a detached process before you run any SUPRA Server application or
at system initiation time. CSI_FINDPDM uses very few resources when it
is not servicing any network requests.

The image CSI_FINDPDM must be installed with privileges when you
invoke it directly or indirectly from a nonprivileged account. The
command procedure INSTALL_SUPRA24_PDM_IMAGES.COM installs
this image with the appropriate privileges.

CSI_FINDPDM has one parameter, RQST_BUFQUO, which determines
the number of remote requests VMS can buffer in the Network Mailbox.
The default value for this parameter is 12. This means a maximum of 12
remote network tasks can queue requests to CSI_FINDPDM
simultaneously.

To manually invoke CSI_FINDPDM with the RQST_BUFQUO parameter,
you need to create an input parameter file containing the
RQST_BUFQUO parameter and a command procedure containing the
run command and qualifiers.

Chapter 2 Understanding the Physical Data Manager (PDM)

48 P25-0130-47

A sample input parameter file is:
!

! Sample Input parameter file for the

! CSI_FINDPDM program :

! File spec, is e.g., SUPRA_EXE:CSI_FINDPDM.INP

!

RQST_BUFQUO=6

!

!

A sample command file for starting up CSI_FINDPDM as a detached
process is:
$!

$!

$! Sample Command file to start up CSI_FINDPDM

$! File spec is, e.g., SUPRA_EXE:FINDPDM.COM

$!

$RUN/DETACHED -

 /INPUT = SUPRA_EXE:CSI_FINDPDM.INP -

 /OUTPUT = SUPRA_EXE:CSI_FINDPDM.LOG -

 SUPRA_EXE:CSI_FINDPDM_2400.EXE

Initializing the PDM

System Administration Guide 49

Specifying a database
Once you have defined your PDM environment, you use the logical
definition CSI_SCHEMA to specify to the RDM which database to use.
CSI_SCHEMA is described below.

CSI_SCHEMA dbname

Description Required. Database name used by all RDM applications.

Format 6-character database name

Logical name table
Any

Consideration This logical is used in conjunction with CSI_PREFIX.

Chapter 2 Understanding the Physical Data Manager (PDM)

50 P25-0130-47

Using a database prefix
A database prefix allows you to distinguish between databases of the
same name that are serviced by the same PDM. CSI_PREFIX must be
defined only for those users who need to access that specific database.
The definitions for your prefixed databases can be included in the
PDM_LOGICALS_*.COM procedure for your PDM.

This section describes how to use a database prefix for groupwide
databases serviced by a groupwide PDM. To apply a database prefix to
a database serviced by a systemwide or multiple systemwide PDM,
substitute /SYSTEM or /TABLE=CSI_PDM_* (where * is the name of
your multiple systemwide PDM) for /GROUP in the prefixed logical
definitions described below.

Example of database prefixing. Assume you have three databases
called TESTDB, all used by tasks in UIC group 000125 on machine
VMSA. Each database uses a different compiled database description
(.MOD file). You can have only one group-level logical name TESTDB
pointing to one compiled database description. The database prefix
allows you to distinguish the other two by creating a group-level logical
name xxx_TESTDB for each database, where xxx is a unique 1- to
3-character prefix identifier. For example:
$ DEFINE/GROUP xxx_TESTDB dev:[directory]dbname.MOD

The following figure illustrates this example configuration of three
compiled database descriptions for the database TESTDB:

DSKB:[PROD]
TESTDB.MOD

DEM_TESTDBPRD_TESTDB TESTDB

TASK-X TASK-Y TASK-Z

UIC 000125

accesses
TESTDB

accesses
TESTDB

accesses
TESTDB

Machine
VMSA

points to points to points to

PDM

DSKC:[DEMO]
TESTDB.MOD

DSKA:[PDM.FILES]
TESTDB.MOD

Using a database prefix

System Administration Guide 51

The logical definitions are given below:
$! Group-level logical names for the three TESTDB compiled
database

$! descriptions.

$!

$DEFINE /GROUP DIRECTORY DSKA:[PDM.DIRECTORY]

$DEFINE /GROUP DATAFILES DSKA:[PDM.FILES]

$DEFINE /GROUP PRD_DATAFILES DSKB:[PROD]

$DEFINE /GROUP DEM_DATAFILES DSKC:[DEMO]

$!

$DEFINE /GROUP TESTDB DATAFILES:TESTDB.MOD

$DEFINE /GROUP PRD_TESTDB PRD_DATAFILES:TESTDB.MOD

$DEFINE /GROUP DEM_TESTDB DEM_DATAFILES:TESTDB.MOD

$!

$DEFINE /GROUP TESTDB_CSI_PDM_MACS VMSA,VMSB,VMSC

$DEFINE /GROUP PRD_TESTDB_CSI_PDM_MACS VMSB,VMSA,VMSC

$DEFINE /GROUP DEM_TESTDB_CSI_PDM_MACS VMSC,VMSA,VMSB

$!

You can use the 1- to 3-character prefix with the logical name
xxx_dbname_CSI_PDM_MACS to define a different preferred machine
list for each prefixed database.

TASK-X, TASK-Y, and TASK-Z in the preceding figure run in UIC group
000125 on machine VMSA. They all sign on to a TESTDB database;
however, each task uses a different compiled database description
(TESTDB.MOD). To identify the compiled database description they are
accessing, tasks may or may not define the process-level logical name:
$ DEFINE CSI_PREFIX xxx

where xxx is the 1- to 3-character identifier prefixing the logical database
name (as you defined in the PDM_LOGICALS_*.COM command
procedure).

Chapter 2 Understanding the Physical Data Manager (PDM)

52 P25-0130-47

The values of CSI_PREFIX for TASK-X, TASK-Y, and TASK-Z are
defined as:

♦ TASK-X $DEFINE CSI_PREFIX PRD

♦ TASK-Y $DEFINE CSI_PREFIX DEM

♦ TASK-Z Needs no logical definition for CSI_PREFIX because
TESTDB points to the default compiled database description.

Each task can define only one value for CSI_PREFIX, and can redefine it
to access a different compiled database description from its next
application. Any task that omits the logical definition CSI_PREFIX
accesses the default database identified by the unprefixed logical name
TESTDB.

When a task that has the logical CSI_PREFIX defined accesses a
database, the PDM first attempts to translate the prefixed logical
database name. Then, if no prefixed version of the database name
logical exists, the PDM attempts to translate the unprefixed database
name to find the default compiled database description.

The PDM will attempt to apply the same prefix rules to other logicals
used by the database to locate physical dataset files, log files, and index
files.

Using a database prefix

System Administration Guide 53

Considerations for using database prefixes

♦ If you use any logical names in the directory specification for the
compiled database description file, make sure you add the prefix to
the appropriate logical name. For example:
DEFINE/GROUP DATAFILES DSKA:[PDM.FILES]

DEFINE/GROUP TESTDB DATAFILES:TESTDB.MOD

DEFINE/GROUP DEM_TESTDB DATAFILES:TESTDB.MOD

 This accesses the same compiled database description for both the
prefixed and the unprefixed versions of TESTDB. To ensure that the
prefixed database accesses the appropriate file in this example, you
should make the following logical definitions:
DEFINE/GROUP DATAFILES DSKA:[PDM.FILES]

DEFINE/GROUP TESTDB DATAFILES:TESTDB.MOD

DEFINE/GROUP DEM_DATAFILES DSKC:[DEMO]

DEFINE/GROUP DEM_TESTDB DEM_DATAFILES:TESTDB.MOD

 DATAFILES still points to DSKA:[PDM.FILES], but the prefixed
database now uses the compiled database description held in
DSKC:[DEMO].

♦ If one task loads a database without a prefix, a subsequent task can
define a prefix for that database and sign on using the prefix. If this
happens, the database is associated with the prefix and subsequent
tasks must use the prefix when signing on. The first task, however,
can still use the loaded database and sign off without problems.

♦ Once a database has been associated with a prefix, the prefix cannot
be changed or removed without first unloading the database. See
“Unloading a database (UNLOAD)” on page 169.

Chapter 2 Understanding the Physical Data Manager (PDM)

54 P25-0130-47

Writing SUPRA Server PDM user exits
In addition to standard PDM operation, SUPRA Server provides user
exits as entry points into the PDM. These entry points are a way to have
the PDM run your own user-written, custom-designed code before and/or
after a PDM function is executed. User exits are implemented as a
single shareable image.

Implement user exit modules by following these steps:

1. Create a sharable image with the following characteristics:

Entry
point

Entry point name

Point of initiation

#1 CSD_UPDM_USEREX1 Immediately before the
start of PDML function
processing.

#2 CSD_UPDM_USEREX2 Immediately after
completion of PDML
function processing.

2. Before you execute your SUPRA Server PDM application program,

define the logical name CSI_USEREX to point to the image. For
example, the following definition creates the logical CSI_USEREX in
the process logical name table:
DEFINE CSI_USEREX dev:[dir]:MY_USEREX.EXE

 You can include this logical assignment in the logical name table
according to the scope you wish to give the user exits, and in the
appropriate command files
(SUPRA_COMS:PDM_LOGICALS_*.COM).

If you do not define the logical CSI_USEREX, the user exits are not
called.

Writing SUPRA Server PDM user exits

System Administration Guide 55

Each user exit supplies an identical parameter list consisting of the
SUPRA Server PDML function call parameters. You can examine these
parameters before and after PDM function processing. The call
mechanism for each parameter is call-by-reference.

“Example user exits” on page 259 contains example user exits in COBOL
and FORTRAN with examples of command files to compile and link the
exits. The COBOL example uses both before and after exits. The
FORTRAN example uses only the after exit.

A sample user exit is provided in SUPRA_EXAMPLES. A vested version
of the image is provided for use in Alpha environments.

For all Alpha versions and all versions 2.3 or higher on VAX, you must
include a new additional parameter, Nargs or p0. See “COBOL user
exits” on page 259 and “FORTRAN user exit” on page 267. This new
parameter is a placeholder containing the number of arguments passed.
It is unused but must be present.

Chapter 2 Understanding the Physical Data Manager (PDM)

56 P25-0130-47

3
Defining your operating environment

SUPRA Server comes with a full set of components that help you
configure your system in VMS. This chapter provides you with complete
details of these components and describes the logicals and symbols
used to define your operating environment.

When you install SUPRA Server, you install a set of command
procedures that helps you define your operating environment and
administer your SUPRA Server system. The following list explains the
functionality of these command procedures:

♦ SUPRA_MENU.COM: Performs many installation functions that help
you administer your SUPRA Server environment. See “Creating a
PDM environment” on page 58.

♦ INSTALL_SUPRA 24_PDM_IMAGES.COM: Installs the necessary
SUPRA Server images. This command procedure must be invoked
before you attempt to access SUPRA Server.

♦ SUPRA_SYMBOL.COM: Defines VMS symbols to facilitate using
SUPRA Server components and administration utilities from the DCL
command level.

♦ LOGICALS.COM: Creates general SUPRA Server logicals.

System Administration Guide 57

Creating a PDM environment
Before you can use SUPRA Server, you must first define your operating
environment. When you install SUPRA Server on your VMS system, one
of the first steps you take is to create a PDM environment using the
administration utility SUPRA_MENU.COM. You continue to use
SUPRA_MENU.COM to define each PDM environment you need.
SUPRA_MENU.COM and similar utilities for other Cincom products use a
common set of command procedures. This common set of command
procedures uses a CLB file, which is placed in
SYS$COMMON:[CINCOM] at the time of your installation.

You can change the location of the common utilities from the default of
SYS$COMMON:[CINCOM] by defining the logical CSI_PRODUCT_FILE
to point to the directory location of these common utilities.

When you create or maintain a PDM environment, SUPRA_MENU.COM
creates and maintains the following file in the directory identified by
SUPRA_COMS:

♦ SUPRA_SYSTEM.COM: Designed for use at VMS system start-up
to define all PDM environments.

 SUPRA_MENU.COM also creates and maintains the following files in the
directory identified by SUPRA_LIBRARY:

♦ PDM_LOGICALS_*.COM: Defines all logicals that are specific to a
particular PDM.

♦ PDM_OPTIONS_*.INP: The input parameters for the specified PDM.

♦ PDM_START_*.COM: The PDM start-up procedure.

♦ pdmname_USER_INIT.COM: Only created for a multiple
systemwide PDM. Used to define the logical CSI_SYSPDMID for the
specified multiple systemwide PDM.

The wild card character * represents the 6-character UIC group number
for a groupwide PDM, 000000 for a systemwide PDM, or the 1- to
8-character name of a multiple systemwide PDM.

Chapter 3 Defining your operating environment

58 P25-0130-47

The SUPRA_MENU.COM functions help you configure your SUPRA
Server system during installation and administer your SUPRA Server
system after installation. When you invoke SUPRA_MENU.COM, you
can:

♦ Move portions of the SUPRA Server system to different VMS
directories (CUSTOM.COM).

♦ Deinstall SUPRA Server Known images
(DEINSTALL_SUPRA24_PDM_ IMAGES.COM).

♦ Browse the introduction and tutorial of the SUPRA_MENU.COM
routines (EXPLAIN.COM).

♦ Install SUPRA Server Known images (INSTALL_SUPRA24_PDM_
IMAGES.COM).

♦ Initialize and configure a PDM environment (MAKE_CLASS.COM).

♦ Upgrade an existing SUPRA Server 1.1.1 system to SUPRA Server
2.4 (UPGRADE.COM).

You can run the command procedures called by SUPRA_MENU.COM
stand-alone.

Creating a PDM environment

System Administration Guide 59

The procedure INSTALL_SUPRA24_PDM_IMAGES.COM, which is
located in the directory identified by the logical definition SUPRA_COMS,
should be included in your SYSTARTUP or executed before you attempt
to access any PDM. This procedure installs various SUPRA Server
images with the appropriate qualifiers and privileges. Some of the
SUPRA Server images require privileges as shown in the following table:

Image name Privilege Reason needed

CSIPDM DETACH Used in creating other VMS processes, such as
during System Log dumping.

 SYSLCK Used to allocate systemwide VMS locks.
 SYSGBL Allows the PDM to create systemwide global sections.
 WORLD Used for multiprocess interoperation, such as

Client/Server synchronization.
 EXQUOTA Guarantee that critical information can always be

logged.
 SYSNAM Used to create systemwide logical definitions.
 SYSPRV Access resources as if the process has a system

UIC.
 ALTPRI Allows the PDM to change its base execution priority

as specified by the PDM Input Parameter File
(CSIPDMINP) option PRIORITY.

 BYPASS Allows access to any file. Enables the PDM to control
Client task access to data based on VMS security
and the PDM Input Parameter File (CSIPDMINP)
parameters UICCHECK and ACLCHECK.

 CMEXEC Allows the PDM to perform executive mode functions,
such as manipulating RMS locks.

Chapter 3 Defining your operating environment

60 P25-0130-47

Image name Privilege Reason needed

CSISTR CMKRNL Allows the PDM Startup program to perform kernel
mode functions, such as setting the detached PDM
process UIC.

 DETACH Used to create the detached PDM Server process.
 SYSPRV Access resources as if the process has a system

UIC.
 WORLD To control the execution of the PDM Server owned by

other UIC groups during PDM Initiation.
 GROUP To control the execution of the PDM Server in the

same UIC group during PDM Initiation.
 TMPMBX Allows creation of temporary mailbox devices.
 NETMBX Allows creation of network devices.
CSI_FINDPDM SYSLCK Used to allocate systemwide VMS locks.
 SYSNAM Used to create systemwide logical definitions.
 SYSPRV Access resources as if the process has a system

UIC.
 WORLD Used for multiprocess interoperation, such as

Client/Server initiation.
 TMPMBX Allows creation of temporary mailbox devices.
 NETMBX Allows creation of network devices.

When you define your first PDM system, a procedure named
SUPRA_SYSTEM.COM is created in the directory identified by the logical
definition SUPRA_COMS. Subsequent PDM definitions will update this
procedure. SUPRA_SYSTEM.COM should also be included in your
SYSTARTUP, or executed before you attempt to access any PDM.

SUPRA_SYSTEM.COM will contain two lines for each active PDM
environment. The first line executes LOGICALS.COM for the PDM (see
“LOGICALS.COM” on page 63). The second line executes
PDM_LOGICALS_*.COM (see “PDM_LOGICALS_*.COM” on page 87).

You can use comments that are inserted each time you create or
maintain a PDM environment to track changes to an existing PDM
system. These comments indicate the level of the PDM (groupwide,
systemwide, or multiple systemwide), the name of the process updating
the file, and the date and time of the change.

Creating a PDM environment

System Administration Guide 61

Defining logicals for your PDM environment
The PDM runs as a detached process. This detached process accesses
the logical definitions through logical name tables. Each logical definition
needed by SUPRA Server must be assigned to one of several types of
logical name tables. Some logicals must reside in a specific table, while
some can be defined in any table.

The administration utilities that are described throughout this chapter
automatically define logicals at the level that is appropriate for your PDM.
The common levels of logical name tables are described below.

♦ If your PDM is groupwide, the logical name table where your PDM
logical definitions reside is the group table.

♦ If your PDM is systemwide, the logical name table where your PDM
logical definitions reside is the system table.

♦ If your PDM is multiple systemwide, the logical name table where
your PDM logical definitions reside is a specially defined shareable
table. This table is named CSI_PDM_pdmname.

The scope of a logical name is defined by the logical name table(s) in
which it appears. A logical name can appear in more than one logical
name table.

A logical name that occurs in more than one logical name table can be
associated with a different equivalence name in each logical name table.
To avoid confusion, the system searches logical name tables in a
particular order and uses the first definition found, regardless of any other
occurrences. The default logical name table search sequence is
PROCESS, JOB, GROUP, and SYSTEM. However, you can change this
order to suit your requirements. See your VMS documentation for
details.

Some logicals must be defined in the system table when using either a
systemwide or a multiple systemwide PDM (see “LOGICALS.COM”
below and “Optional SUPRA Server logicals” on page 279).

Chapter 3 Defining your operating environment

62 P25-0130-47

LOGICALS.COM
The procedure LOGICALS.COM is located in the directory identified by
the logical SUPRA_COMS. This procedure defines general SUPRA
Server logicals in a specified logical name table. The appropriate
parameter specifying the logical name table is passed to
LOGICALS.COM when it is executed by the SUPRA_SYSTEM.COM
procedure. If you choose to execute the LOGICALS.COM procedure
without using SUPRA_SYSTEM.COM, you must pass the appropriate
parameter.

LOGICALS.COM can be called in one of the following ways:

♦ $ @LOGICALS GROUP. Defines the logicals in the UIC group
logical name table of the current process.

♦ $ @LOGICALS SYSTEM. Defines the logicals in the system logical
name table.

♦ $ @LOGICALS LNM$GROUP_*. Defines the logicals in the UIC
group logical name table identified by *.

♦ $ @LOGICALS CSI_PDM_pdmname. Defines logicals in the
appropriate logical name table used by a multiple systemwide PDM,
and creates that logical name table if needed. Certain logicals are
also defined in the system logical name table.

Defining logicals for your PDM environment

System Administration Guide 63

Some components of SUPRA Server will not function properly in a
multiple systemwide PDM environment unless certain logicals are defined
in the system logical name table. LOGICALS.COM will define these
special logicals in the system logical name table instead of the
CSI_PDM_pdmname table. The reasons for this requirement are
described below.

When CSI_SYSPDMID is defined, CSISTR and CSIPDM obtain access
to the CSI_PDM_pdmname logical name table. However, the images
identified by the logicals CSISTR and CSIPDM cannot be found in a
multiple systemwide environment unless the definitions SUPRA_EXE,
CSISTR, and CSIPDM are in the system logical name table.

CSTUDSLF, the System Log Dump program, which also runs as a
detached process, must also have access to the CSI_PDM_pdmname
table. To activate, the shareable images with which CSTUDSLF is linked
must be available. These images are CSIGIM (through the logical
SUPRAPDM) and CSIDAP. These logicals must also be placed in the
system logical name table in a multiple systemwide PDM environment.
This is done automatically by the LOGICALS.COM routine.

For systemwide and multiple systemwide PDMs, certain logicals may
need to be defined with the /EXECUTIVE_MODE option. This
requirement comes from the VMS Run Time Library routine
LIB$FIND_IMAGE_SYMBOL. Both MANTIS and SPECTRA use this
routine. To avoid problems with this RTL routine, LOGICALS.COM
defines the affected logicals in /EXECUTIVE_MODE for systemwide and
multiple systemwide PDM environments.

Chapter 3 Defining your operating environment

64 P25-0130-47

The following table lists in alphabetical order the logicals that are created
by the procedure LOGICALS.COM. Additional information on these
logicals follows the table. Note that the variable svclvl in equivalence
names is replaced with the service level of SUPRA Server.

Logical name Equivalence name Description

BGRN SUPRA_EXE:
CSUBGRN_svclvl.EXE

Provides background DBA
utilities.

CSDUSSERV SUPRAPDM Used by users who
upgraded from ULTRA.

CSIDAP SUPRA_EXE:
CSIDAP_svclvl.EXE

PDM interface module.

CSIDAP_DEB SUPRA_EXE:
CSIDAP_DEB_svclvl.EXE

Used for testing by Cincom
Support.

CSIDBA SUPRA_EXE:
CSIDBA_svclvl.EXE

Provides DBA facilities.

CSI_DBA SUPRA_REPORT Directory containing Batch
Directory Maintenance and
Directory Views.

CSIDBAUTL SUPRA_EXE:
CSIDBAUTL_svclvl.EXE

Provides online DBA
utilities.

CSIDBPDM SUPRA_EXE:
CSIDBPDM_svclvl.EXE

Database testing tool.

CSIDBVER SUPRA_EXE:
CSIDBVER_svclvl.EXE

Database integrity
verification utility.

CSIDDLLOAD SUPRA_EXE:
CSIDDLLOAD_svclvl.EXE

Loads TOTAL- compatible
DDL.

CSIDMPANL SUPRA_EXE:
CSIDMPANL_svclvl.EXE

Provides a PDM dump
analysis.

CSI_EXEC_DISPATCH SUPRA_EXE:CSI_EXEC_
DISPATCH_svclvl.EXE

Executive mode dispatcher.

CSI_EXEC_
DISPATCH_DEB

SUPRA_EXE:CSI_EXEC_
DISPATCH_DEB_svclvl.EXE

Used for testing by Cincom
Support.

Defining logicals for your PDM environment

System Administration Guide 65

Logical name Equivalence name Description

CSIGIM SUPRA_EXE:
CSIGIM_svclvl.EXE

General Interface Module.

CSIGIM_DEB SUPRA_EXE:
CSIGIM_DEB_svclvl.EXE

Used for testing by Cincom
Support.

CSIINDEX SUPRA_COMS:
CSIINDEX.CLD

Command definition file for
the Index utility.

CSI_KERNEL_
DISPATCH

SUPRA_EXE:CSI_KERNEL_
DISPATCH.svclvl.EXE

Kernel mode dispatcher.

CSI_KERNEL_
DISPATCH_DEB

SUPRA_EXE:CSI_KERNEL_
DISPATCH_DEB_svclvl.EXE

Used for testing by Cincom
Support.

CSILOCKS SUPRA_AUXIL:
CSILOCKS_svclvl.EXE

Reports on VMS locks
granted to a process.

CSIOAUTH SUPRA_EXE:
CSIOAUTH_svclvl.EXE

CSIOPCOM command
authorization program.

CSIOPCOM SUPRA_EXE:
CSIOPCOM_svclvl.EXE

Alternative to VMS OPCOM
Utility.

CSIPDM SUPRA_EXE:
CSIPDM_svclvl.EXE

Detached PDM image.

CSIPDM_DEB SUPRA_EXE:
CSIPDM_DEB_svclvl.EXE

Used for testing by Cincom
Support.

CSIPDM_PATCH (security patch contents) Security patch logical for the
PDM.

CSI_SMENU SUPRA_EXE:
CSI_SMENU_svclvl.EXE

Menu for SUPRA Server
components.

CSISTR SUPRA_EXE:
CSISTR_svclvl.EXE

PDM startup routine.

CSMCHANGEDB SUPRA_EXE:
CSMCHANGEDB_svclvl.EXE

Fast Utilities program.

CSMCOMBAT SUPRA_EXE:
CSMCOMBAT_svclvl.EXE

Batch validate, compile, and
print program.

CSTUDSLF SUPRA_EXE:
CSTUDSLF_svclvl.EXE

System log dump program.

CSTUFMT SUPRA_EXE:
CSTUFMT_svclvl.EXE

Stand-alone format
program.

Chapter 3 Defining your operating environment

66 P25-0130-47

Logical name Equivalence name Description

CSTUFMTSHR SUPRA_EXE:
CSTUFMTSHR_svclvl.EXE

Shareable format image.

CSTUIDX SUPRA_EXE:
CSTUIDX_svclvl.EXE

Stand-alone index
maintenance utility.

CSTUIDXSHR SUPRA_EXE:
CSTUIDXSHR_svclvl.EXE

Shareable index
maintenance image.

CSTURCV SUPRA_EXE:
CSTURCV_svclvl.EXE

Stand-alone recovery
program.

CSTURCVSHR SUPRA_EXE:
CSTURCVSHR_svclvl.EXE

Shareable recovery image.

CSVBASIC SUPRA_EXE:
CSVBASIC_svclvl.EXE

BASIC RDML preprocessor.

CSVCOBOL SUPRA_EXE:
CSVCOBOL_svclvl.EXE

COBOL RDML
preprocessor.

CSVDBAID SUPRA_EXE:
CSVDBAID_svclvl.EXE

DBAID utility.

CSVFORTRA SUPRA_EXE:
CSVFORTRA_svclvl.EXE

FORTRAN RDML
preprocessor.

CSVGLOBAL SUPRA_EXE:
CSVGLOBAL_svclvl.EXE

Provides global view
creation.

CSVIPLVS SUPRA_EXE:
CSVIPLVS_svclvl.EXE

SUPRA Server Relational
Data Manager.

CSVIPLVS_DEB SUPRA_EXE:
CSVIPLVS_DEB_svclvl.EXE

Used for testing by Cincom
Support.

CSXSCREEN SUPRA_EXE:
CSXSCREEN_svclvl.EXE

Screen handler.

DBAEDT SUPRA_EXE:DBAEDT.EDT Customized DBA EDT
environment.

DBVER SUPRA_COMS:
CSIDBVER.CLD

Command verb for
CSIDBVER utility.

RUNBASIC SUPRA_COMS:
RUNBASIC.COM

Command file to run the
BASIC RDML preprocessor.

Defining logicals for your PDM environment

System Administration Guide 67

Logical name Equivalence name Description

RUNCOBOL SUPRA_COMS:RUNCOBOL.
COM

Command file to run the
COBOL RDML
preprocessor.

RUNDBAID SUPRA_COMS:
RUNDBAID.COM

Command file to run the
DBAID utility.

RUNDIRM SUPRA_COMS:
RUNDIRM.COM

Command file to run the
DIRM utility.

RUNFORTRA SUPRA_COMS:
RUNFORTRA.COM

Command file to run the
FORTRAN RDML
preprocessor.

SUPRA SUPRA_EXE:
CSI_SMENU_svclvl.EXE

SUPRA Server main menu.

SUPRA_AUXIL dev:[directory.SUPRA.PDM_2
4.AUXIL]

Directory containing
unsupported auxiliary
images.

SUPRA_BASE dev:[directory.SUPRA.PDM_2
4]

Base SUPRA Server
directory.

SUPRA_BURRYS dev:[directory.
SUPRA.PDM_24.BURRYS]

Directory containing the
BURRYS database.

SUPRA_CLEAN_ DICT dev:[directory.SUPRA.PDM_2
4.CLEAN_DICT]

Directory containing an
original copy of the
Directory database
SUPRAD.

SUPRA_CLEAN_ EXE dev:[directory.
SUPRA.PDM_24.CLEAN_EX
E]

(VAX environments only.)
Directory containing original
copies of SUPRA Server
images. Used in applying
maintenance.

SUPRA_COMS dev:[directory.
SUPRA.PDM_24.COMS]

Directory containing SUPRA
Server command
procedures.

SUPRA_DICT dev:[directory.
SUPRA.PDM_24.DICT]

Directory available for your
use to hold a Directory
database (SUPRAD).

Chapter 3 Defining your operating environment

68 P25-0130-47

Logical name Equivalence name Description

SUPRA_ EXAMPLES dev:[directory.SUPRA.PDM_2
4. EXAMPLES]

Directory containing
example procedures and
information.

SUPRA_EXE dev:[directory.
SUPRA.PDM_24.EXE]

Directory containing SUPRA
Server images.

SUPRA-HELP SUPRA_HELP:
SUPRA-HELP.HLB

Identifies the help text
library used by the DBA
utility.

SUPRA_HELP dev:[directory.
SUPRA.PDM_24.HELP]

Directory containing the
online help text library for
the DBA utility.

SUPRA_LIBRARY dev:[directory.SUPRA.PDM_2
4.LIBRARY]

Directory containing PDM
setup files.

SUPRA_PATCH_
WORK

dev:[directory.
SUPRA.PATCH_WORK]

Directory used to apply
maintenance.

SUPRAPDM CSIGIM Shareable PDM image
linked with applications.

SUPRA_PDM_
PATCHES

dev:[directory.
SUPRA.PDM_24.PATCHES]

Directory containing security
codes (VAX and Alpha).

SUPRA_REPORT dev:[directory.
SUPRA.PDM_24.REPORT]

Directory containing Batch
Directory Maintenance and
Directory Views.

SUPRA_TEST_EXE dev:[directory.
SUPRA.PDM_24.TEST_EXE]

Directory for test versions of
the SUPRA Server images.

SYS$ULTRA CSI_DIRDB For users who upgraded
from ULTRA.

ULTRAPDM SUPRAPDM For users who upgraded
from ULTRA.

Defining logicals for your PDM environment

System Administration Guide 69

BGRN SUPRA_EXE:CSUBGRN_svclvl.EXE

Description Required. Provides background DBA utilities.

Logical name table
Any

CSDUSSERV SUPRAPDM

Description Optional. Used by users who upgraded from ULTRA.

Logical name table
Group, System

Considerations
♦ For systemwide and multiple systemwide PDM environments, this

logical is defined in the system logical name table. See the
considerations for CSTUDSLF.

♦ For systemwide and multiple systemwide PDM environments,
CSDUSSERV is defined in the system logical name table in
executive mode. This prevents errors when you access SUPRA
Server by using the VMS Run Time Library routine
LIB$FIND_IMAGE_SYMBOL while the calling image (such as
MANTIS and SPECTRA) is installed with privileges.

CSIDAP SUPRA_EXE:CSIDAP_svclvl.EXE

Description Required. PDM interface module.

Logical name table
Group, System

Considerations
♦ For systemwide and multiple systemwide PDM environments, this

logical is defined in the system logical name table. See the
considerations for CSTUDSLF.

♦ For systemwide and multiple systemwide PDM environments,
CSIDAP is defined in the system logical name table in executive
mode. This prevents errors when you access SUPRA Server by
using the VMS Run Time Library routine
LIB$FIND_IMAGE_SYMBOL while the calling image (such as
MANTIS and SPECTRA) is installed with privileges.

Chapter 3 Defining your operating environment

70 P25-0130-47

CSIDAP_DEB SUPRA_EXE:CSIDAP_DEB_svclvl.EXE

Description Optional. Used for testing by Cincom Support.

Logical name table
Any

Consideration This is a version of the CSIDAP image that was linked with debug. This
debug image is used by Cincom Support for testing.

CSIDBA SUPRA_EXE:CSIDBA_svclvl.EXE

Description Required. Provides DBA facilities.

Logical name table
Any

Consideration The symbol DBA, defined in SUPRA_COMS:SUPRA_ SYMBOL.COM,
executes this image.

CSI_DBA SUPRA_REPORT

Description Optional. Specifies the directory for Batch Directory Maintenance and
Directory Views.

Default SUPRA_REPORT

Format VMS directory specification or logical pointing to a directory

Logical name table
Any

CSIDBAUTL SUPRA_EXE:CSIDBAUTL_svclvl.EXE

Description Optional. Provides online DBA utilities.

Logical name table
Any

CSIDBPDM SUPRA_EXE: CSIDBPDM_svclvl.EXE

Description Optional. Database testing tool.

Logical name table
Any

Consideration Used to access databases directly using PDML.

Defining logicals for your PDM environment

System Administration Guide 71

CSIDBVER SUPRA_EXE:CSIDBVER_svclvl.EXE

Description Optional. Database integrity verification utility.

Logical name table
Any

Considerations

♦ Verifies data set integrity (physical record locations and record
pointers).

♦ Gathers physical statistics about data sets.

♦ Verifies data set physical characteristics with the information in the
compiled database description file and the information on the
SUPRAD Directory.

♦ For details of use, refer to the SUPRA Server PDM Utilities
Reference Manual (UNIX & VMS), P25-6220.

CSIDDLLOAD SUPRA_EXE:CSIDDLLOAD_svclvl.EXE

Description Optional. Loads TOTAL-compatible DDL.

Logical name table
Any

CSIDMPANL SUPRA_EXE:CSIDMPANL_svclvl.EXE

Description Optional. Provides a PDM dump analysis.

Logical name table
Any

Consideration This utility can be used by Cincom Support to analyze the dump file
produced by a PDM failure or by a PRINT OPCOM command.

Chapter 3 Defining your operating environment

72 P25-0130-47

CSI_EXEC_DISPATCH SUPRA_EXE:CSI_EXEC_ DISPATCH_svclvl.EXE

Description Required. Executive mode dispatcher.

Logical name table
Group, System

Considerations
♦ For systemwide and multiple systemwide PDM environments, this

logical is defined in the system logical name table. See the
considerations for CSTUDSLF.

♦ For systemwide and multiple systemwide PDM environments,
CSI_EXEC_DISPATCH is defined in the system logical name table in
executive mode. This prevents errors when you access SUPRA
Server by using the VMS Run Time Library routine
LIB$FIND_IMAGE_SYMBOL while the calling image (such as
MANTIS) is installed with privileges.

CSI_EXEC_DISPATCH_DEB SUPRA_EXE:CSI_EXEC_DISPATCH_ DEB_svclvl.EXE

Description Optional. Used for testing by Cincom Support.

Logical name table
Any

Consideration This is a version of the CSIGIM image that was linked with debug. This
debug image is used by Cincom Support for testing.

CSIGIM SUPRA_EXE:CSIGIM_svclvl.EXE

Description Required. General Interface Module.

Logical name table
Group, System

Considerations
♦ For systemwide and multiple systemwide PDM environments, this

logical is defined in the system logical name table. See the
considerations for CSTUDSLF.

♦ For systemwide and multiple systemwide PDM environments,
CSIGIM is defined in the system logical name table in executive
mode. This prevents errors when you access SUPRA Server by
using the VMS Run Time Library routine
LIB$FIND_IMAGE_SYMBOL while the calling image (such as
MANTIS and SPECTRA) is installed with privileges.

Defining logicals for your PDM environment

System Administration Guide 73

CSIGIM_DEB SUPRA_EXE:CSIGIM_DEB_svclvl.EXE

Description Optional. Used for testing by Cincom Support.

Logical name table
Any

Consideration This is a version of the CSIGIM image that was linked with debug. This
debug image is used by Cincom Support for testing.

CSIINDEX SUPRA_COMS:CSIINDEX.CLD

Description Optional. Command definition file for the Index utility.

Logical name table
Any

CSI_KERNEL_DISPATCH SUPRA_EXE:CSI_KERNEL_ DISPATCH.svclvl.EXE

Description Required. Kernel mode dispatcher.

Logical name table
Group, System

Considerations

♦ For systemwide and multiple systemwide PDM environments, this
logical is defined in the system logical name table. See the
considerations for CSTUDSLF.

♦ For systemwide and multiple systemwide PDM environments,
CSI_KERNEL_DISPATCH is defined in the system logical name
table in executive mode. This prevents errors when you access
SUPRA Server by using the VMS Run Time Library routine
LIB$FIND_IMAGE_SYMBOL while the calling image (such as
MANTIS) is installed with privileges.

CSI_KERNEL_DISPATCH_DEB SUPRA_EXE:CSI_KERNEL_DISPATCH_DEB_svclvl.EXE

Description Optional. Used for testing by Cincom Support.

Logical name table
Any

Consideration This is a version of the CSIGIM image that was linked with debug. This
debug image is used by Cincom Support for testing.

Chapter 3 Defining your operating environment

74 P25-0130-47

CSILOCKS SUPRA_AUXIL:CSILOCKS_svclvl.EXE

Description Optional. Reports on VMS locks granted to a process.

Logical name table
Any

CSIOAUTH SUPRA_EXE:CSIOAUTH_svclvl.EXE

Description Required. CSIOPCOM command authorization program.

Logical name table
Any

CSIOPCOM SUPRA_EXE:CSIOPCOM_svclvl.EXE

Description Required. Utility provided as an alternative to the VMS OPCOM Utility.

Logical name table
Any

Consideration For details on using CSIOPCOM, see “Communicating with the SUPRA
Server PDM through CSIOPCOM” on page 174.

CSIPDM SUPRA_EXE:CSIPDM_svclvl.EXE

Description Required. PDM image executed by the detached PDM process.

Logical name table
Group, System

Consideration For systemwide and multiple systemwide PDM environments, this logical
is defined in the system logical name table. See the considerations for
CSTUDSLF.

CSIPDM_DEB SUPRA_EXE:CSIPDM_DEB_svclvl.EXE

Description Optional. Used for testing by Cincom Support.

Logical name table
Any

Consideration This is a version of the CSIPDM image that was linked with debug. This
debug image is used by Cincom Support for testing.

Defining logicals for your PDM environment

System Administration Guide 75

CSIPDM_PATCH (security patch contents)

Description Required. Security patch for Alpha PDM.

Logical name table
Group, System, or CSI_PDM_pdmname

Consideration This logical is required for Alpha environments only.

CSI_SMENU SUPRA_EXE: CSI_SMENU_svclvl.EXE

Description Optional. Menu for SUPRA Server components.

Logical name table
Any

Considerations

♦ You might not have access to all of the components on the menu
(see “Selecting a SUPRA Server facility” on page 27).

♦ The symbol SUPRA, defined in SUPRA_COMS:SUPRA_
SYMBOL.COM, runs this image.

CSISTR SUPRA_EXE: CSISTR_svclvl.EXE

Description Required. Starts up the detached PDM process.

Logical name table
Group or System

Consideration In a multiple systemwide PDM environment, CSISTR gives itself access
to the CSI_PDM_pdmname logical name table. However, in order for any
process to automatically initiate the PDM (the logical CSI_AUTOSTART
is set to Y), or for various automatically initiated SUPRA Server utilities to
initiate the PDM, this logical must be defined in the system logical name
table in a multiple systemwide PDM environment.

CSMCHANGEDB SUPRA_EXE:CSMCHANGEDB_svclvl.EXE

Description Optional. Fast Utilities program.

Logical name table
Any

Consideration You must first set the CHANGEDB command using
SUPRA_EXE:CHANGEDB.CLD.

Chapter 3 Defining your operating environment

76 P25-0130-47

CSMCOMBAT SUPRA_EXE:CSMCOMBAT_svclvl.EXE

Description Required. Batch validate, compile, and print program.

Logical name table
Group, System, or CSI_PDM_pdmname

Consideration You must first set the COMBAT command using
SUPRA_EXE:COMBAT.CLD.

CSTUDSLF SUPRA_EXE:CSTUDSLF_svclvl.EXE

Description Required. System log dump program.

Logical name table
Group, System, or CSI_PDM_pdmname

Considerations

♦ This image is executed as a detached process.

♦ In a multiple systemwide PDM environment, CSTUDSLF grants itself
access to the multiple systemwide shareable logical name table
CSI_PDM_pdmname. However, for the CSTUDSLF image to
activate, it must be able to find the shareable images with which it is
linked. Therefore, LOGICALS.COM puts the definitions for these
images, SUPRAPDM, CSIGIM, CSIDAP, and SUPRA_EXE, in the
system logical name table for systemwide and multiple systemwide
PDM environments.

CSTUFMT SUPRA_EXE:CSTUFMT_svclvl.EXE

Description Required. Stand-alone format program.

Logical name table
Any

CSTUFMTSHR SUPRA_EXE:CSTUFMTSHR_svclvl.EXE

Description Required. Shareable format image.

Logical name table
Any

Defining logicals for your PDM environment

System Administration Guide 77

CSTUIDX SUPRA_EXE: CSTUIDX_svclvl.EXE

Description Required. Stand-alone index maintenance utility.

Logical name table
Any

Consideration Provides access to the index utilities without using the DBA utility.

CSTUIDXSHR SUPRA_EXE: CSTUIDXSHR_svclvl.EXE

Description Required. Shareable index maintenance image.

Logical name table
Any

Consideration Index utility used by the DBA utility and CSTUIDX.

CSTURCV SUPRA_EXE:CSTURCV_svclvl.EXE

Description Required. Stand-alone recovery program.

Logical name table
Any

CSTURCVSHR SUPRA_EXE:CSTURCVSHR_svclvl. EXE

Description Required. Shareable recovery image.

Logical name table
Any

CSVBASIC SUPRA_EXE:CSVBASIC_svclvl.EXE

Description Optional. The BASIC RDML preprocessor.

Logical name table
Any

CSVCOBOL SUPRA_EXE:CSVCOBOL_svclvl.EXE

Description Optional. The COBOL RDML preprocessor.

Logical name table
Any

Chapter 3 Defining your operating environment

78 P25-0130-47

CSVDBAID SUPRA_EXE:CSVDBAID_svclvl.EXE

Description Required. The DBAID utility.

Logical name table
Any

CSVFORTRA SUPRA_EXE:CSVFORTRA_svclvl.EXE

Description Optional. The FORTRAN RDML preprocessor.

Logical name table
Any

CSVGLOBAL SUPRA_EXE:CSVGLOBAL_svclvl.EXE

Description Required. The global view creation utility.

Logical name table
Any

CSVIPLVS SUPRA_EXE:CSVIPLVS_svclvl.EXE

Description Required. The SUPRA Server Relational Data Manager.

Logical name table
Group, System

Consideration For systemwide and multiple systemwide PDM environments, CSVIPLVS
is defined in the system logical name table in executive mode. This
prevents errors when you access SUPRA Server by using the VMS Run
Time Library routine LIB$FIND_IMAGE_SYMBOL while the calling image
(such as MANTIS and SPECTRA) is installed with privileges.

CSVIPLVS_DEB SUPRA_EXE:CSVIPLVS_DEB_svclvl.EXE

Description Optional. Used for testing by Cincom Support.

Logical name table
Any

Consideration This is a version of CSVIPLVS image that was linked with debug. This
debug image is used by Cincom Support for testing.

Defining logicals for your PDM environment

System Administration Guide 79

CSXSCREEN SUPRA_EXE:CSXSCREEN_svclvl.EXE

Description Required. Screen handler.

Logical name table
Any

DBAEDT SUPRA_EXE:DBAEDT.EDT

Description Optional. Customized DBA EDT environment for Logical View
Maintenance.

Logical name table
Any

Considerations
♦ You must have access to the EDT user environment to do Logical

View Maintenance.

♦ If you do not already use an EDT start-up file, you can point the
logical EDTINI to SUPRA_EXE:DBAEDT.EDT instead of using the
logical DBAEDT.

♦ If you already use the logical EDTINI to point to an EDT start-up file,
use the DBAEDT logical to point to SUPRA_EXE:DBAEDT.EDT or
place the DBAEDT.EDT file in the VMS directory from which you run
DBA.

♦ You can change the name of the DBAEDT.EDT file as long as you
use either the EDTINI or DBAEDT logical definition to point to the file.

DBVER SUPRA_COMS:CSIDBVER.CLD

Description Optional. Command verb for the CSIDBVER utility.

Logical name table
Any

RUNBASIC SUPRA_COMS:RUNBASIC.COM

Description Optional. Command file to run the optional BASIC RDML preprocessor.

Logical name table
Any

Consideration Use this command procedure to generate standard BASIC code from an
RDML BASIC program.

Chapter 3 Defining your operating environment

80 P25-0130-47

RUNCOBOL SUPRA_COMS:RUNCOBOL.COM

Description Optional. Command file to run the optional COBOL RDML preprocessor.

Logical name table
Any

Consideration Use this command procedure to generate standard COBOL code from an
RDML COBOL program.

RUNDBAID SUPRA_COMS:RUNDBAID.COM

Description Optional. Command file to run DBAID.

Logical name table
Any

Consideration This command procedure defines logicals and then executes the DBAID
utility.

RUNDIRM SUPRA_COMS:RUNDIRM.COM

Description Required. Command file to run the DIRM utility.

Logical name table
Any

RUNFORTRA SUPRA_COMS:RUNFORTRA.COM

Description Optional. Command file to run the optional FORTRAN RDML
preprocessor.

Logical name table
Any

Consideration Use this command procedure to generate standard FORTRAN code from
an RDML FORTRAN program.

SUPRA SUPRA_EXE:CSI_SMENU_svclvl.EXE

Description Required. SUPRA Server main menu.

Default SUPRA_EXE:CSI_SMENU_svclvl.EXE

Logical name table
Any

Defining logicals for your PDM environment

System Administration Guide 81

SUPRA_AUXIL dev:[directory.SUPRA.PDM_24.AUXIL]

Description Optional. Directory containing unsupported utilities used by Cincom
Support.

Logical name table
Any

SUPRA_BASE dev:[directory.SUPRA.PDM_24]

Description Optional. Base SUPRA Server directory.

Logical name table
Any

SUPRA_BURRYS dev:[directory.SUPRA.PDM_24.BURRYS]

Description Optional. Directory containing the BURRYS database used in learning
about SUPRA Server.

Logical name table
Any

SUPRA_CLEAN_DICT dev:[directory.SUPRA.PDM_24.CLEAN_DICT]

Description Required. Directory containing an unused Directory database
(SUPRAD).

Logical name table
Any

Consideration Used when you create or maintain a PDM environment with
SUPRA_MENU.COM.

SUPRA_CLEAN_EXE dev:[directory.SUPRA.PDM_24.CLEAN_EXE]

Description Required. Directory containing original, unpatched SUPRA Server
images.

Logical name table
Any

Consideration Used in applying patch maintenance in VAX environments only.

Chapter 3 Defining your operating environment

82 P25-0130-47

SUPRA_COMS dev:[directory.SUPRA.PDM_24.COMS]

Description Required. Directory containing SUPRA Server command procedures.

Logical name table
Any

Consideration This directory contains utility procedures and PDM environment definition
files.

SUPRA_DICT dev:[directory.SUPRA.PDM_24.DICT]

Description Optional. Provided for your use as a SUPRA Directory database
(SUPRAD) location.

Logical name table
Any

SUPRA_EXAMPLES dev:[directory.SUPRA.PDM_24.EXAMPLES]

Description Optional. Directory containing example command procedures and
information.

Logical name table
Any

SUPRA_EXE dev:[directory.SUPRA.PDM_24.EXE]

Description Required. Directory containing SUPRA Server images.

Default dev:[directory.SUPRA.PDM_24.EXE]

Format VMS directory specification

Logical name table
Group or System

Considerations
♦ For systemwide and multiple systemwide PDM environments, this

logical is defined in the system logical name table. See the
considerations for CSIGIM, CSISTR, and CSTUDSLF.

♦ For systemwide and multiple systemwide PDM environments,
SUPRA_EXE is defined in the system logical name table in executive
mode. This prevents errors when you access SUPRA Server by
using the VMS Run Time Library routine
LIB$FIND_IMAGE_SYMBOL while the calling image (such as
MANTIS and SPECTRA) is installed with privileges.

Defining logicals for your PDM environment

System Administration Guide 83

SUPRA-HELP SUPRA_HELP:SUPRA-HELP.HLB

Description Required. Help library for SUPRA Server.

Default SUPRA_HELP:SUPRA-HELP.HLB

Logical name table
Any

SUPRA_PATCH_WORK dev:[directory.SUPRA.PATCH_WORK]

Description Required. Area provided for applying maintenance.

Logical name table
Any

SUPRAPDM CSIGIM

Description Required. Used to link the SUPRA Server shareable image with
applications.

Logical name table
Group, System

Considerations

♦ For systemwide and multiple systemwide PDM environments, this
logical is defined in the system logical name table. See the
considerations for CSTUDSLF.

♦ For systemwide and multiple systemwide PDM environments,
SUPRAPDM is defined in the system logical name table in executive
mode. This prevents errors when you access SUPRA Server by
using the VMS Run Time Library routine
LIB$FIND_IMAGE_SYMBOL while the calling image (such as
MANTIS and SPECTRA) is installed with privileges.

SUPRA_PDM_PATCHES dev:[directory.SUPRA.PDM_24.PATCHES]

Description Required. Directory containing security codes (VAX and Alpha).

Logical name table
Any

Chapter 3 Defining your operating environment

84 P25-0130-47

SUPRA_REPORT dev:[directory.SUPRA.PDM_24.REPORT]

Description Optional. Directory containing Batch Directory Maintenance and
Directory Views.

Logical name table
Any

SUPRA_TEST_EXE dev:[directory.SUPRA.PDM_24.TEST_EXE]

Description Optional. Points to the directory provided for testing SUPRA Server
images.

Format VMS directory specification

Logical name table
Group, System

Considerations

♦ For systemwide and multiple systemwide PDM environments, this
logical is defined in the system logical name table. See the
considerations for CSTUDSLF.

♦ For systemwide and multiple systemwide PDM environments,
SUPRA_TEXT_EXE is defined in the system logical name table in
executive mode. This prevents errors when you access SUPRA
Server by using the VMS Run Time Library routine
LIB$FIND_IMAGE_SYMBOL while the calling image (such as
MANTIS and SPECTRA) is installed with privileges.

SYS$ULTRA CSI_DIRDB

Description Optional. Provided for users who upgraded from ULTRA.

Logical name table
Group, System, or CSI_PDM_pdmname

ULTRAPDM SUPRAPDM

Description Optional. Provided for users who upgraded from ULTRA.

Logical name table
Group, System

Consideration Note the considerations for SUPRAPDM.

Defining logicals for your PDM environment

System Administration Guide 85

The LOGICALS.COM procedure does not automatically create the
logicals listed in the following table. You can add these logicals manually.
The requirements for entering each logical follows the table.

Logical name Equivalence name Description

CHANGEDB SUPRA_COMS :CHANGEDB.CLD Command definition file for Fast
Utilities.

COMBAT SUPRA_COMS :COMBAT.CLD Command definition file for
validate, compile, and print
program.

CSVLINK SUPRA_COMS :CSVLINK.COM Command file to link RDM
application programs.

RUNCSV SUPRA_COMS :RUNCSV.COM Command file to run an RDM
application.

ULTRADBMS SUPRAPDM For users who upgraded from
ULTRA 1.4.

CHANGEDB SUPRA_COMS :CHANGEDB.CLD

Description Optional. Specifies a command definition file to run Fast Utilities.

Logical name table Any

COMBAT SUPRA_COMS :COMBAT.CLD

Description Optional. Command definition file to run validate, compile, and
print programs.

Logical name table Any

CSVLINK SUPRA_COMS :CSVLINK.COM

Description Optional. Command file to link RDM application programs.

Logical name table Any

RUNCSV SUPRA_COMS :RUNCSV.COM

Description Optional. Command file to run an RDM application.

Logical name table Any

ULTRADBMS SUPRAPDM

Description Optional. For users upgrading from ULTRA 1.4.

Logical name table Group or System

Consideration Note the considerations for SUPRAPDM.

Chapter 3 Defining your operating environment

86 P25-0130-47

PDM_LOGICALS_*.COM
The procedure PDM_LOGICALS_*.COM (where * is the 6-character UIC
group number for a groupwide PDM, 000000 for a systemwide PDM, or
the 1- to 8-character name of a multiple systemwide PDM) defines
logicals that are specific to a PDM environment.
PDM_LOGICALS_*.COM can be invoked automatically from the
SUPRA_SYSTEM.COM procedure.

The logicals that can be defined in PDM_LOGICALS_*.COM are broken
into two groups: automatically included and manually added. The
automatically included logicals are created for you when you create or
maintain your PDM environment using SUPRA_MENU.COM. The
manually added logicals are those you can add to
PDM_LOGICALS_*.COM to fit your processing needs.

Defining logicals for your PDM environment

System Administration Guide 87

Logical names automatically included in PDM_LOGICALS_*.COM.
The logicals listed in the following table are automatically included in
PDM_LOGICALS_ *.COM. Some of the logicals are included as
comments. To define these logicals, remove the comment character (!).

Additional information on the logicals in this table follows the table:

Logical name Equivalence name Description
CSI_* dev:[directory]

PDM_START_*.COM
PDM start-up command
procedure.

CSI_AUTOSTART YES or NO Enable/disable automatic PDM
start-up.

CSI_CONSOLE OPERn Operator console to which
CSIDAP messages are sent.

[xxx_]CSI_DIRDB dev:[directory] Location of Directory database
(SUPRAD).

CSI_DMPANL dev:[directory] CSI_DMP.ANL Location of PDM crash dump
file.

CSI_MRELAY TRUE Sends CSIDAP to a mailbox to
be read by a user-written
program.

CSIOPCOM_AUTH dev:[directory]
CSIOPCOM_AUTH.LIS

CSIOPCOM command
authorization file.

CSIOPCOM_SNAPS dev:[directory]
CSIOPCOM_SNAPS.LIS

File for dumped CSIOPCOM
screens.

*CSI_PDMID pdmname Identifies the name of the PDM
for group and systemwide
PDMs.

CSIPDMINP dev:[directory]
PDM_OPTIONS_*.INP

PDM input parameter file.

CSIPDMLOG dev:[directory] CSIPDM.LOG Log file for PDM messages.
CSISTRLOG dev:[directory] CSISTR.LOG Output file for PDM start-up

program.
[xxx_]dbname dev:[directory] dbname.MOD Points to compiled database

description file(s).
[xxx_]dbname_CSI_
PDM_MACS

list of machines Preferred machine list for a
database.

[xxx_]SUPRAD dev:[directory] SUPRAD.MOD Directory compiled database
description.

[xxx_]SUPRAD_CSI_
PDM_MACS

mac1[,mac2…macn] Preferred machine list.

* Refers to the 6-digit group number for a groupwide PDM, 000000 for a systemwide PDM, or the

translation of the logical CSI_SYSPDMID (the PDM name) for a multiple systemwide PDM.
* Only included for groupwide or systemwide PDM environments.

Chapter 3 Defining your operating environment

88 P25-0130-47

CSI_* dev:[directory]PDM_START_*.COM

Description Required. Points to the PDM start-up procedure, where * is the
6-character UIC group number for a groupwide PDM, 6 zeros for a
systemwide PDM, or the 1- to 8-character name of your multiple
systemwide PDM.

Default dev:[directory]PDM_START_*.COM, where dev:[directory] is identified by
the logical SUPRA_LIBRARY.

Format VMS file specification

Logical name table
Group or System

CSI_AUTOSTART YES
NO







Description Optional. Enables or disables the automatic PDM initiation.

Default YES

Logical name table
Any

Considerations

♦ You set this logical when you create or maintain your PDM
environment.

♦ If automatic PDM initiation is disabled, you must manually start the
PDM before any databases serviced by that PDM can be accessed
on that machine.

♦ If you have originally defined this logical name as NO and wish to set
it's value to YES you will also need to define the logical name CSI_*
in the SUPRA_LIBRARY:PDM_LOGICALS_*.COM file. The logical
name must be at the same level and in the same table as the rest of
the logical names in this procedure. The logical CSI_* points to the
SUPRA_LIBRARY:PDM_START_*.COM file. (* is the 6-digit group
UIC, the 000000 system UIC, or the translation of the
CSI_SYSPDMID logical name.)

Defining logicals for your PDM environment

System Administration Guide 89

CSI_CONSOLE OPERn

Description Optional. Specifies the one operator console to which CSIDAP sends
messages.

Format Any valid operator console number (OPER1 - OPER12)

Logical name table
Group, System, or CSI_PDM_pdmname

[xxx_]CSI_DIRDB dev:[directory]

Description Required. Location of the Directory database SUPRAD.

Format xxx_ 1–3 alphanumeric characters followed by “_” (the
optional database prefix)

dev:[directory] VMS directory specification

Logical name table
Group, System, or CSI_PDM_pdmname

CSI_DMPANL dev:[directory]CSI_DMP.ANL

Description Optional. Location of PDM crash dump file.

Default dev:[directory]CSI_DMP.ANL, where dev:[directory] is identified by the
logical CSI_DIRDB.

Format VMS file specification

Logical name table
Group, System, or CSI_PDM_pdmname

Considerations

♦ If you do not define this logical, a file with the name CSI_DMPANL
will be created when the PDM fails. It will be created in the VMS
directory in which the PDM was started.

♦ The SUPRA Server PDM operator command PRINT will also use this
logical when creating a dump of an active database.

♦ This file may be analyzed by Cincom Support personnel.

Chapter 3 Defining your operating environment

90 P25-0130-47

CSI_MRELAY TRUE

Description Optional. Sends PDM messages to a mailbox to be read by a
user-written program.

Logical name table
Any

Considerations
♦ This logical is defined at your request when you create a PDM

environment.

♦ See “Automating operator communication” on page 183 for
information about creating a mailbox-reading program.

♦ This logical definition also appears in the manually added logicals
section of PDM_LOGICALS_*.COM.

CSIOPCOM_AUTH dev:[directory]CSIOPCOM_AUTH.LIS

Description Optional. CSIOPCOM command authorization file.

Default dev:[directory]CSIOPCOM_AUTH.LIS, where dev:[directory] is identified
by the logical CSI_DIRDB.

Format VMS file specification

Logical name table
Any

Consideration By default, users with SYSPRV and OPER privileges have access to all
PDM operator commands through CSIOPCOM if there is no logical
definition for CSIOPCOM_AUTH. Users with lower privileges without a
CSIOPCOM command authorization file can only use the DISPLAY
command.

CSIOPCOM_SNAPS dev:[directory]CSIOPCOM_SNAPS.LIS

Description Optional. File for dumped CSIOPCOM screens.

Format VMS file specification

Logical name table
Any

Consideration See “Communicating with the SUPRA Server PDM through CSIOPCOM”
on page 174 for information on CSIOPCOM.

Defining logicals for your PDM environment

System Administration Guide 91

CSI_PDMID pdmname

Description Required for groupwide or systemwide PDMs. Specify the logical in the
group or system table, depending on whether the PDM should run
groupwide or systemwide, respectively.

Format pdmname is the 1–8 character name identifying the PDM.

Logical name table
Group, System

Considerations

♦ If this logical is in both the group and the system tables, users in that
group may only access the groupwide PDM or any available multiple
systemwide PDM, but not a systemwide PDM. See “Understanding
the Physical Data Manager (PDM)” on page 31.

♦ CSI_SYSPDMID supersedes CSI_PDMID. See “LOGICALS.COM”
on page 63.

CSIPDMINP dev:[directory]PDM_OPTIONS_*.INP

Description Optional. PDM input file.

Default dev:[directory]PDM_OPTIONS_*.INP, where dev:[directory] is identified by
the logical SUPRA_LIBRARY.

Format VMS file specification

Logical name table
Group, System, or CSI_PDM_pdmname

Consideration Describes the PDM input parameters (see “Entering parameters for the
PDM input file” on page 125).

Chapter 3 Defining your operating environment

92 P25-0130-47

CSIPDMLOG dev:[directory]CSIPDM.LOG

Description Optional. Identifies the output file to which the PDM will send its
messages.

Format VMS file specification

Logical name table
Group, System, or CSI_PDM_pdmname

Consideration If you do not define the logical name CSIPDMLOG, the PDM will create a
file called CSIPDMLOG in the VMS directory in which the PDM was
started.

CSISTRLOG dev:[directory]CSISTR.LOG

Description Required. Identifies the output file to which the PDM start-up image
CSISTR will send its messages.

Default dev:[directory]CSISTR.LOG, where dev:[directory] is identified by the
logical CSI_DIRDB.

Format VMS file specification

Logical name table
Group, System, or CSI_PDM_pdmname

Considerations

♦ The database access program CSIDAP uses this log file on a local
start-up. Therefore, the logical name CSISTRLOG must point to a
valid file specification.

♦ The file this logical name points to should be unique for each PDM
you wish to start.

Defining logicals for your PDM environment

System Administration Guide 93

[xxx_]dbname dev:[directory]dbname.MOD

Description Required. Points to a compiled database description file.

Format xxx_ 1–3 alphanumeric characters followed by “_”
(the optional database prefix)

dbname 6 alphanumeric characters

dev:[directory]dbname.MOD File specification for compiled database
description file

Logical name table
Group, System, or CSI_PDM_pdmname

Considerations

♦ Define a separate logical name for each database you want to load.

♦ You must define this logical name before you can format the physical
files for the database.

♦ This logical must exist before you can use the database.
SUPRA_COMS: SUPRA_SYSTEM.COM can be executed at system
start-up to set up the environment for all selected PDMs.

♦ The 1 to 3-character prefix allows you to differentiate between
databases of the same name that are serviced by the same PDM.
See “Specifying a database” on page 50 for a description of how to
use a database prefix.

Chapter 3 Defining your operating environment

94 P25-0130-47

[xxx_]dbname_CSI_PDM_MACS mac1[,mac2...macn]

Description Required. A list of machines, in descending order of preference, on
which the specified PDM for this database can run (the preferred
machine list).

Format xxx_ 1–3 alphanumeric characters followed by “_” (the
optional database prefix)

dbname 6 alphanumeric characters
mac1 1–6 alphanumeric character node name
[,mac2...macn] List of 1–6 alphanumeric character node names

Logical name table
Any

Considerations
♦ mac1 is the node name of the first choice machine on which the PDM

can run.
♦ [,mac2...macn] are the node names of any other machines on which

the PDM can run, in descending order of preference.
♦ Create a preferred machine list for each database.

♦ If the preferred machine list contains more than one machine,
duplicate the logical assignments on each machine that might
execute an application.

♦ The logical name [xxx_]dbname_CSI_PDM_MACS must be
accessible to all applications that can use the specified database. By
placing this logical name in the group logical name table, you restrict
access to applications in the same group as the initiating task. By
placing this logical name in the system logical name table, you allow
access to all applications on the system. By placing this logical name
in the CSI_PDM_pdmname logical name table, you allow access to
all applications on the system where CSI_SYSPDMID is the same as
pdmname.

♦ This logical must exist before you can use the database.
SUPRA_COMS: SUPRA_SYSTEM.COM can be executed at system
start-up to set up the environment for all selected PDMs.

♦ The PDM can load a database on an alternative machine if the
physical files it uses are accessible from that machine, for example, if
they reside on clustered disks, dual-ported disks, or disks local to the
active machine.

♦ The 1 to 3-character prefix allows you to specify a different preferred
machine list for each prefixed database. See “Using a database
prefix” on page 51 for a description of how to use a database prefix.

Defining logicals for your PDM environment

System Administration Guide 95

[xxx_]SUPRAD dev:[directory]SUPRAD.MOD

Description Required. The Directory compiled database description logical.

Default dev:[directory] The same as that identified by the logical CSI_DIRDB

Format xxx_ 1–3 alphanumeric characters followed by “_” (the optional database
prefix)

 dev:[directory] VMS directory specification

Logical name table
Group, System, or CSI_PDM_pdmname

Chapter 3 Defining your operating environment

96 P25-0130-47

[xxx_]SUPRAD_CSI_PDM_MACS mac1[,mac2…macn]

Description Required. A list of machines, in descending order of preference, on
which the specified PDM for this database can be run (the preferred
machine list).

Format xxx_ 1–3 alphanumeric characters followed by “_” (the
optional database prefix)

mac1 1-6 alphanumeric character node name
[,mac2...macn] List of 1-6 alphanumeric character node names

Logical name table
Any

Considerations
♦ mac1 is the node name of the first choice machine on which the PDM

can run.
♦ [,mac2...macn] are the node names of any other machines on which

the PDM can run, in descending order of preference.
♦ Create a preferred machine list for each SUPRAD database.
♦ If the preferred machine list contains more than one machine,

duplicate the logical assignments on each machine that might
execute an application.

♦ The logical name [xxx_]SUPRAD_CSI_PDM_MACS must be
accessible to all applications that can use the specified SUPRAD
database. By placing this logical name in the group logical name
table, you restrict access to applications in the same group as the
initiating task. By placing this logical name in the system logical
name table, you allow access to all applications on the system. By
placing this logical name in the CSI_PDM_pdmname logical name
table, you allow access to all applications on the system where
CSI_SYSPDMID is the same as pdmname.

♦ This logical must exist before you can use the database.
SUPRA_COMS:SUPRA_SYSTEM.COM can be executed at system
start-up to set up the environment for all selected PDMs.

♦ The PDM can load a database on an alternative machine if the
physical files it uses are accessible from that machine, for example, if
they reside on clustered disks, dual-ported disks, or disks local to the
active machine.

♦ The 1 to 3-character prefix allows you to specify a different preferred
machine list for each prefixed SUPRAD database. See "Using a
database prefix" on page 54 for a description of how to use a
database prefix.

Defining logicals for your PDM environment

System Administration Guide 97

Logical names manually added to PDM_LOGICALS_*.COM.
Depending on your requirements, you should include the logical
definitions shown in the following table in the PDM_LOGICALS_*.COM
procedure for your PDM, in LOGICALS.COM, or elsewhere in your
system start-up routines. Additional information on these logicals follows
the table.

You can define CSI_MRELAY in PDM_LOGICALS_*.COM by making
that selection when you define your PDM system through
SUPRA_MENU.COM.

Logical name Equivalence name Description

BATCH_GLOBAL_
INPUT

dev:[directory]
filename.ext

Input text file used to create a global view
file.

CSI_ALLOW_DUP_
RECORD_CODE

TRUE Allow duplicate record code in element list.

CSI_FINDPDM dev:[directory]
CSI_FINDPDM.COM

Command file to enable automatic
CSI_FINDPDM start-up.

CSI_MRELAY2 TRUE Sends CSIDAP messages to a mailbox to
be read by a user-written program.

CSI_NODIRECTORY TRUE Prevents RDM from signing on to the
SUPRA Server Directory.

CSI_PREFIX 1 to 3-character prefix Specifies the prefix used to distinguish
databases of the same name used in the
same group or system.

CSI_REINIT_ON_SINON TRUE Retranslate csi_prefix at each sinon.
CSI_RMS_RU_ON TRUE Enables RMS Journaling.
CSISTRINP dev:[directory]

CSISTR.INP
PDM start-up resource file.

CSI_USEREX filename.EXE PDM user exit.
CSI_VAL_EXIT dev:[directory] image-

name.EXE
Identifies the Shareable image you write to
do RDM Domain Validation.

CSI_WILD_EN x Equal or next wild card character.
CSI_WILD_EQ x Equal only wild card character.
CSUBGRN_CONTINUE_
ON_ERROR

TRUE Allow unload/reload to continue regardless
of error count.

DBAID_HELP_
NOSPAWN

TRUE Allow dbaid to use lbr$output_help.

DUMPSLF_
[xxx_]dbname

dev:[directory]filename
.ext

Location of the system log dump input file.

GVSCHEMA filename.GBL Specifies the global view file.
GVSCHEMA_SYS TRUE Indicates that the global view file is to be

loaded systemwide.

Chapter 3 Defining your operating environment

98 P25-0130-47

BATCH_GLOBAL_INPUT dev:[directory]filename.ext

Description Optional. Input text file used to create a global view file.

Format VMS file specification

Logical name table
Any

Consideration Refer to the SUPRA Server PDM RDM Administration Guide (VMS),
P25-8220, for information on how to create global view files.

CSI_ALLOW_DUP_RECORD_CODE TRUE

Description Optional. Permit a record code to be repeated in an element list as was
needed in ULTRA.

Default FALSE

Logical name table
Group logical name table for a groupwide database, or system logical
name table for a systemwide database.

Considerations

♦ This feature on VAX was previously an optional patch and is now
implemented as an optional logical name. It is intended for use in a
special situation and is not intended for general use.

Cincom does not recommend the use of this logical name. If you are
uncertain whether you need this feature or not, then you probably do
not need it.

♦ CSI_ALLOW_DUP_RECORD_CODE replaces the previous logical
name CSI_DUPLICATE_CODE which was used in FC 950516.

♦ This logical name is *only* checked at pdm startup initialization and
therefore must be defined prior to pdm startup. Defining this logical
name after the pdm server process has started will have no effect.

♦ Replaces patches 907753, 927548, 950516, and 950641 used in
previous VAX releases.

Defining logicals for your PDM environment

System Administration Guide 99

CSI_FINDPDM dev:[directory]CSI_FINDPDM.COM

Description Optional. Command file used to automatically start a task that
determines if a PDM is running on a networked node.

Logical name table
Group, System

Considerations

♦ Even if this logical is defined, this is only used for remote PDM
access in a networked environment.

♦ With this logical defined, the command procedure it points to is
activated automatically the first time an attempt is made to access a
remote networked PDM.

♦ See “Initiating the PDM on a network” on page 48 for details on the
contents of the CSI_FINDPDM.COM file.

♦ In a networked environment, this logical should be defined on any
node in which the PDM may be run.

CSI_MRELAY TRUE

Description Optional. Sends PDM messages to a mailbox to be read by a
user-written program.

Logical name table
Any

Considerations

♦ This logical can be defined at your request when you create a PDM
environment.

♦ This logical definition also appears with the automatically included
logicals section of PDM_LOGICALS_*.COM.

♦ See “Automating operator communication” on page 183 and
“Example mailbox-reading program” on page 275 for information
about creating a mailbox-reading program.

Chapter 3 Defining your operating environment

100 P25-0130-47

CSI_NODIRECTORY TRUE

Description Optional. Prevents RDM from signing on to the SUPRA Server Directory.

Default FALSE

Logical name table
Any

Considerations

♦ Any value other than TRUE is considered FALSE.

♦ To use your database through the RDM without the SUPRA Server
Directory, you must use a Global View file identified by the logical
GVSCHEMA. The Global View file then provides the user access
authority, passwords, and preopened copies of the views.

♦ Any view that is not included in the Global View file will not be
available for use when CSI_NODIRECTORY is defined to TRUE.

♦ Refer to the SUPRA Server PDM RDM Administration Guide (VMS),
P25-8220, for information on how to create global view files.

♦ When CSI_NODIRECTORY is defined to TRUE, you cannot
precompile any RDML applications.

Defining logicals for your PDM environment

System Administration Guide 101

CSI_PREFIX xxx

Description Optional. Prefix used to distinguish databases of the same name
serviced by the same PDM.

Format 1–3 characters

Logical name table
Any

Consideration All logicals for the database should be prefixed. If the PDM does not find
prefixed database logicals, any unprefixed database logicals are used.
See “Specifying a database” on page 50.

CSI_REINIT_ON_SINON TRUE

Description Optional. Permit user to change CSI_PREFIX after SINOF but before
image termination.

Default FALSE

Logical name table

Any

Considerations

♦ Logical name CSI_REINIT_ON_SINON can be defined as TRUE,
forcing the logical name CSI_PREFIX to be translated at each
SINON. This allows an application to SINOF, redefine CSI_PREFIX,
then SINON again, using a different database.

♦ Replaces patches 927252 and 932856 used in previous VAX
releases.

Chapter 3 Defining your operating environment

102 P25-0130-47

CSI_RMS_RU_ON TRUE

Description Optional. Enables RMS Recovery Unit (RU) Journaling on RDM RMS
data sets.

Logical name table
Any

Considerations
♦ RMS data sets are maintained by the RDM, not the PDM. RMS

Recovery Unit Journaling records all updates to RMS data sets in a
way similar to task logging for PDM data sets.

♦ After a program or system failure, RU Journaling automatically
recovers each RMS file to the last successful commit point.

♦ RU Journaling does not support network operations. Any attempt to
access an RMS file marked for RU Journaling from a remote node is
rejected.

♦ For details on how to implement Recovery Unit Journaling, refer to
the SUPRA Server PDM Database Administration Guide (UNIX &
VMS), P25-2260.

CSISTRINP dev:[directory]CSISTR.INP

Description Required. Identifies the start-up resource input file.

Logical name table
Group, System, or CSI_PDM_pdmname

Considerations
♦ A template of this file is supplied for you with the name CSISTR.CSI

in the directory identified by the logical SUPRA_LIBRARY. You can
also create the input file using a VMS editor.

♦ A comment line with a default definition is provided in
PDM_LOGICALS_*.COM as dev:[directory]CSISTR.INP, where
dev:[directory] is the same as identified by the logical CSI_DIRDB.

♦ The file to which this logical name points should be unique for each
PDM you wish to start.

♦ You can specify the PDM UIC owner and VMS process quotas and
limits in the start-up resource file (see “Entering input parameters” on
page 113).

Defining logicals for your PDM environment

System Administration Guide 103

CSI_USEREX filename.EXE

Description Optional. PDM user exit image.

Format VMS file specification

Logical name table
Any

Consideration See “Writing SUPRA Server PDM user exits” on page 55 and “Example
user exits” on page 259 for more information on PDM user exits.

CSI_VAL_EXIT

Description Optional. RDM Domain Validation image.

Format VMS file specification

Logical name table
Any

Consideration Refer to the SUPRA Server PDM RDM Administration Guide (VMS),
P25-8220, for more information.

CSI_WILD_EN x

Description Optional. Wild card character used to specify that an equal or next RDM
generic read return the value.

Default *

Format Any character

Logical name table
Any

Consideration The RDM uses the value of this logical as the wild card character. This
wild card character specifies an equal or next match during generic reads
by using a secondary key on character data. For additional information,
refer to the SUPRA Server PDM RDM Administration Guide (VMS),
P25-8220.

Chapter 3 Defining your operating environment

104 P25-0130-47

CSI_WILD_EQ x

Description Optional. Equal only wild card character for RDM generic reads.

Default =

Format Any character

Logical name table
Any

Consideration When doing generic reads using a secondary key on character data, the
RDM will use the value of this logical to specify the wild card character for
an equal or next match. For additional information, refer to the SUPRA
Server PDM RDM Administration Guide (VMS), P25-8220.

CSUBGRN_CONTINUE_ON_ERROR TRUE

Description Optional. Allow unlimited errors with utilities.

Default FALSE

Logical name table
Any

Considerations

♦ Logical name CSUBGRN_CONTINUE_ON_ERROR can be defined
as TRUE to allow CSUBGRN to continue executing regardless of the
number of errors encountered.

This could result in an infinite loop.

♦ Replaces patches 898554, 898572, 927202, 928549, and 930391
used in previous VAX releases.

Defining logicals for your PDM environment

System Administration Guide 105

DBAID_HELP_NOSPAWN TRUE

Description Optional. DBAID help doesn’t need to spawn.

Default FALSE

Logical name table

Any

Considerations

♦ The HELP command within CSVDBAID spawns a subprocess to do
DCL $HELP. This can be a performance problem on some systems.
This implements an optional logical name to change the HELP
command to call LBR$OUTPUT_HELP routine which runs in the
same VMS process as CSVDBAID. This occurs when the logical
name DBAID_HELP_NOSPAWN is defined as TRUE.

♦ Advantage—The HELP command gives better performance because
the overhead of spawning a subprocess is eliminated.

♦ Disadvantage—The behavior of the HELP command is slightly
modified to no longer prompt “Press RETURN to continue…”
between pages and to require a <cr> after a ? is entered.

This new behavior is the same as the other DEC layered products
internal help.

Chapter 3 Defining your operating environment

106 P25-0130-47

DUMPSLF_[xxx_]dbname dev:[directory]filename.ext

Description Optional. Identifies the location of the system log dump input file.

Format xxx_ 1–3 alphanumeric characters followed by “_” (the
optional database prefix)

dbname 6-character name of your database

dev:[directory] VMS directory specification

filename.ext VMS file specification

Logical name table
Group logical name table for a groupwide database, or system logical
name table for a systemwide database

Considerations
♦ This logical is required when system logging is activated. Refer to

the SUPRA Server PDM Database Administration Guide (UNIX &
VMS), P25-2260, for details on system log recovery.

♦ For a systemwide database, this logical must be in the VMS system
logical name table even if the systemwide database is serviced by a
multiple systemwide PDM. See the considerations for the logical
CSTUDSLF in “LOGICALS.COM” on page 63.

GVSCHEMA filename.GBL

Description Optional. Global view file containing selected views in a preopened state.

Format VMS file specification

Logical name table
Any

Considerations
♦ This is only used for RDM access to your database.

♦ Use of this logical with the logical CSI_NODIRECTORY set to TRUE
allows you to bypass use of the SUPRA Server Directory database
(SUPRAD).

♦ Refer to the SUPRA Server PDM RDM Administration Guide (VMS),
P25-8220, for information on the creation and proper use of the
global view file.

Defining logicals for your PDM environment

System Administration Guide 107

GVSCHEMA_SYS TRUE

Description Optional. Specifies that the global view file should be loaded into a
systemwide global section instead of a groupwide global section.

Logical name table
Any

Considerations

♦ If this logical is not defined, or if it is defined as any value other than
TRUE, the global view file is loaded in a groupwide global section.

♦ Refer to the SUPRA Server PDM RDM Administration Guide (VMS),
P25-8220, for more information on global view files.

Chapter 3 Defining your operating environment

108 P25-0130-47

pdmname_USER_INIT.COM
The procedure pdmname_USER_INIT.COM defines the logical
CSI_SYSPDMID for a multiple systemwide PDM. The procedure
pdmname_USER_INIT.COM is only generated when you create a
multiple systemwide PDM environment. This procedure should be
invoked by each application task prior to attempting to use any database
serviced by this multiple systemwide PDM.

pdmname_USER_INIT.COM defines the logical CSI_SYSPDMID in the
process logical name table, unless you call the procedure with the logical
name table as the optional parameter. For example:
$ @SUPRA_LIBRARY:TESTPDM_USER_INIT.COM

$ @SUPRA_LIBRARY:TESTPDM_USER_INIT.COM LNM$GROUP_000100

where TESTPDM is the name of the multiple systemwide PDM.

CSI_SYSPDMID pdmname

Description Required for multiple systemwide PDMs.

Format pdmname 1–8 character name identifying the PDM.

Logical name table
Any

Considerations

♦ CSI_SYSPDMID supersedes CSI_PDMID. See
“PDM_LOGICALS_*.COM” on page 87.

♦ If you pass a parameter into the pdmname_USER_INIT.COM file that
table must be included in the table search list logical LNM$FILE_DEV
that is defined in each user process or one of the default tables for
each process. Otherwise the user process will not see the logical
defined by the pdmname_USER_INIT.COM.

Defining logicals for your PDM environment

System Administration Guide 109

SUPRA_SYMBOL.COM
The procedure SUPRA_SYMBOL.COM is located in the directory
identified by the logical SUPRA_COMS . It defines the symbols shown in
the following table to access various utilities from the DCL command line.

Symbol Function
DBA Initiates the DBA Facility.
DBAID Runs the DBAID utility.
DIRM Initiates the Batch Directory Maintenance

utility.
FORMAT Formats data set files and/or log files from

the command line.
GLOBAL Creates a Global View File.
REPORT Generates DBA Reports.
RUNBASIC Precompiles an RDML program written in

BASIC.
RUNCOBOL Precompiles an RDML program written in

COBOL.
RUNFORTRA*N Precompiles an RDML program written in

FORTRAN.
SUPRA_MENU Initiates the SUPRA Server Administration

Utilities.

You can choose to execute SUPRA_SYMBOL.COM from your SYLOGIN
procedure. The symbols beginning with RUN are for optional
components that you may not have.

Chapter 3 Defining your operating environment

110 P25-0130-47

Modifying VMS system parameters
To run SUPRA Server on your VMS system, your system parameters
must allow sufficient resources for your PDM(s) to operate. Use standard
VMS utilities to maintain your system parameters.

We recommend using AUTOGEN. See your VMS documentation for
details.

The parameters you may need to change for SUPRA Server are:

♦ The size of the system disk buffers

♦ The amount of memory any given process may take

♦ The amount of CPU time a process is given

♦ Number of global pages

♦ Number of global sections

♦ PQL parameters, which you can also control with the parameters in
the CSISTRINP start-up resource file (see “Creating a PDM start-up
resource file” on page 114).

Alterations made using AUTOGEN do not become effective until you
reboot the machine.

Modifying VMS system parameters

System Administration Guide 111

Chapter 3 Defining your operating environment

112 P25-0130-47

4
Entering input parameters

You do not need to recreate a new environment for your production and
test PDMs. Rerun the SUPRAPDM_SERVICE_LEVEL.COM and
LOGICALS.COM before bringing up a new PDM.

This chapter describes the input parameters for your PDM start-up
resource file (identified by the logical CSISTRINP) and your PDM input
file (identified by the logical CSIPDMINP). It also describes in more detail
how you can use VMS file protection and Access Control Lists (ACLs) to
control access to your data.

A template for your PDM start-up resource file is provided in
SUPRA_LIBRARY with the name CSISTR.CSI. The PDM input file is
created for you based on your responses when creating your PDM
environment using SUPRA_MENU.COM.

System Administration Guide 113

Creating a PDM start-up resource file
The detached PDM process uses a different set of resources than those
used by the typical application. You specify these resources in the PDM
start-up resource file, which is identified by the logical name CSISTRINP.

A template PDM start-up resource file is provided in SUPRA_LIBRARY
with the name CSISTR.CSI. Alternatively, you can create the file using a
standard editor such as EDIT/EDT or EDIT/TPU. You include in this file
all the resources and quotas you wish to apply to the PDM by specifying
each parameter and its value. For example: SUBPROCESS_LIMIT=10
allows the PDM to create up to ten subprocesses. Start any comment
lines with an exclamation mark in column one. In addition to specifying
resources and quotas in the PDM start-up resource file, you can force the
PDM to start under a particular UIC name.

If you do not specify a start-up resource file, the PDM uses the UIC name
of the initiating task and the SYSGEN PQL default values. If these
defaults are lower than the minimum suggested to run the PDM, the PDM
sends a warning message to its log file (CSIPDMLOG) and continues
execution. If the PDM process exhausts its resources, your application
or the PDM may fail.

You can use the start-up resource file to allocate specific quotas to the
PDM in one of two ways:

♦ Force the PDM to start up under a specified UIC name using the
PDM_UIC_OWNER=(user-name) parameter in the start-up resource
file. You can then give the specified UIC all the quotas you wish to
allocate to the PDM process.

♦ Set the PDM quotas at start-up using the start-up resource file
parameters.

Both methods use the start-up image identified by the logical CSISTR,
and a resource file identified by the logical CSISTRINP, which contains
either a specification for the PDM UIC name or a set of PDM quotas or
both.

Chapter 4 Entering input parameters

114 P25-0130-47

Assigning a UIC name to the PDM
To assign a particular UIC name to the PDM, include the
PDM_UIC_OWNER parameter in the start-up resource file. If you
include this parameter in the start-up resource file, the PDM will always
start under the specified UIC name, no matter which application task
initiates it.

You can specify parameters in uppercase or lowercase. The syntax of
the UIC name parameter is:

PDM_UIC_OWNER=(uic-name)

Description Optional. Specifies the owner of the process in which the PDM image is
being run.

Default Owner of the process initiating the PDM

Format Valid VMS UIC name

Consideration If the UIC name specified is invalid, the PDM will send a warning;
however, the start-up will continue with the PDM taking the same UIC
name as the initiating task.

Creating a PDM start-up resource file

System Administration Guide 115

Specifying PDM quotas
You can specify quotas by entering parameters in the PDM start-up
resource file. Type the parameters in uppercase or lowercase. You can
define any or all of the parameters listed in the following table:

Parameter specified in start-up
resource file

VMS SYSGEN equivalent

AST_LIMIT PQL_DASTLM
BUFFER_LIMIT PQL_DBYTLM
ENQUEUE_LIMIT PQL_DENQLM
EXTENT PQL_DWSEXTENT
FILE_LIMIT PQL_DFILLM
IO_BUFFERED PQL_DBIOLM
IO_DIRECT PQL_DDIOLM
MAXIMUM_WORKING_SET PQL_DWSQUOTA
PAGE_FILE PQL_DPGFLQUOTA
QUEUE_LIMIT PQL_DTQELM
SUBPROCESS_LIMIT PQL_DPRCLM
WORKING_SET PQL_DWSDEFAULT

Any values you specify in the PDM start-up resource file must be greater
than the system-defined minimum for detached processes. The system
minimum and default values can be the same. Refer to the appropriate
VMS documentation for a list of minimum and default VMS values or use
the following VMS command:
$ RUN SYS$SYSTEM:SYSGEN

SYSGEN> SHOW/PQL

Minimum values are PQL_M(quota-name).

Default values are PQL_D(quota-name).

Once you have included PDM quotas in the PDM start-up resource file,
you can change them if necessary. You modify the value in the resource
file, shut down the PDM and restart it. The new PDM process will
automatically obtain the new quotas.

Chapter 4 Entering input parameters

116 P25-0130-47

All output from CSISTR goes only to the file you specify using the logical
name CSISTRLOG. Therefore, you can check this log file to find out
whether the PDM has started successfully. If the PDM fails repeatedly,
an error status of NMAC is returned and the PDM does not try to restart.

MAXIMUM_WORKING_SET should always be at least the same amount
and usually higher than WORKING_SET, and less than or equal to
WSEXTENT.

1. PGFLQUOTA—Page file quota, which is the limitation of pageable
memory that may be used by the process.

2. WSEXTENT—Working set extent, which is the limitation on physical
memory that may be used by the process.

If the sum of these two process quotas is greater that the SYSGEN
parameter VIRTUALPAGECNT, then the task is permitted access to only
the number of pages of memory specified by VIRTUALPAGECNT.

The PDM process normally uses less than the full amount of the page file
quota—this is quite likely for normal loads as the whole of WSEXTENT
may be available to the PDM process. When the machine is more
heavily loaded then only WSQUOTA is guaranteed, which puts a
correspondingly heavier load on the page file.

Details on each of the PDM quotas are on the following pages.

Creating a PDM start-up resource file

System Administration Guide 117

AST_LIMIT=(value)

Description Optional. Specifies the maximum number of Asynchronous System
Traps (ASTs) the PDM can have outstanding.

Default 24

Minimum The optimum value depends on the number of pending ASTs. The
recommended minimum value for SUPRA Server is 100.

Consideration If not specified, the AST_LIMIT value is taken from the SYSGEN
parameter PQL_DASTLM.

Calculation A + B + C + 3

 where:

A + B = MAXTASKS

C = MAXTHREADS * (number of databases loaded in the PDM)

Chapter 4 Entering input parameters

118 P25-0130-47

BUFFER_LIMIT=(value)

Description Optional. Specifies the maximum amount of memory, in bytes, the PDM
can use for buffered I/O operations or temporary mailbox creation.

Default 8192

Minimum The recommended minimum value for SUPRA Server is 40000.

Consideration If not specified, the BUFFER_LIMIT value is taken from the SYSGEN
parameter PQL_DBYTLM.

Calculation BUFFER_LIMIT= (amount to open PDM) + (128 * number of files to open) +
(largest buffer operation)

where:

♦ (amount to open to PDM) = (BUFFER_LIMIT quota specified for
PDM) minus (Buffered I/O Byte count quota after just running
CSISTR without loading any dbmods)

♦ Buffered I/O Byte count quota = shown using the $SHOW
PROCESS/QUOTA/ID=nnn command

♦ nnn = the PID of the PDM process

 Additionally, each file that is concurrently open may require 128 units of
Byte Count Quota.

Creating a PDM start-up resource file

System Administration Guide 119

ENQUEUE_LIMIT=(value)

Description Optional. Specifies the number of lock requests the PDM can have
outstanding at any one time.

Default 30

Minimum The recommended minimum value for SUPRA Server is 200.

Consideration If not specified, the ENQUEUE_LIMIT value is taken from the SYSGEN
parameter PQL_DENQLM.

Calculation The parameter setting for RMS_DFMBFIDX (multibuffer count for RMS
index files) is:
SET RMS/BUFFER=xx/system

 SHOW RMS command will indicate the current value of this parameter.
It is worth noting that increasing the value for MULTIBUFFER count
reduces I/O, thereby speeding up the application. If the multibuffer count
is set up on a systemwide basis, then the number of locks held by the
RMS will be:
number index files opened * multi-buffer-count

 On top of locks used by SUPRA PDM itself, PDM requires additional lock
quota for RMS to perform its own record locking. The number of locks
required is:
number of secondary keys*multi-buffer-count

usually the system parameter RMS_DFMBC.

Chapter 4 Entering input parameters

120 P25-0130-47

EXTENT=(value)

Description Optional. Specifies the maximum size to which the PDM can increase its
physical memory.

Default 200

Minimum The recommended minimum value for SUPRA Server is 4096.

Considerations

♦ If not specified, the EXTENT value is taken from the SYSGEN
parameter PQL_DWSEXTENT.

♦ The value cannot be greater than the value for the SYSGEN
parameter WSMAX.

Calculation After the PDM has loaded the databases, check the peak virtual memory
size of the PDM process by using one of the following:

♦ $show process/accounting

♦ $show process/continuous

 and set the WSEXTENT as close to that value as is reasonable for your
site. Make sure that WSEXTENT (EXTENT in the csipdminp file) does
not exceed 133% of PGFLQUO (PAGE_FILE in the csipdminp file).

FILE_LIMIT=(value)

Description Optional. Specifies the maximum number of files the PDM can have
open at any one time.

Default 16

Minimum The recommended minimum value for SUPRA Server is 512.

Consideration If not specified, the FILE_LIMIT value is taken from the SYSGEN
parameter PQL_DFILLM.

Calculation Maximum number of files the PDM server processes will concurrently
have open. This includes the dbmod file, log files, dataset files, index
files, and DECnet remote task connections for all loaded databases
including the SUPRAD database, datasets, and tasklog.

Creating a PDM start-up resource file

System Administration Guide 121

IO_BUFFERED=(value)

Description Optional. Specifies the maximum number of buffered I/O operations the
PDM can have outstanding.

Default 18

Minimum The recommended minimum value for SUPRA Server is 50.

Consideration If not specified, the IO_BUFFERED value is taken from the SYSGEN
parameter PQL_DBIOLM.

Calculation Determine by monitoring the PDM process and setting the limit slightly
above the values reached during peak processing.

IO_DIRECT=(value)

Description Optional. Specifies the maximum number of direct I/O operations the
PDM can have outstanding.

Default 18

Minimum The recommended minimum value for SUPRA Server is 20.

Consideration If not specified, the IO_DIRECT value is taken from the SYSGEN
parameter PQL_DDIOLM.

Calculation Determine by monitoring the PDM process and setting the limit slightly
above the values reached during peak processing.

MAXIMUM_WORKING_SET=(value)

Description Optional. Specifies the amount of physical memory guaranteed to the
PDM, assuming there are sufficient resources.

Default 200

Minimum The recommended minimum value for SUPRA Server is 1000.

Considerations

♦ If not specified, the MAXIMUM_WORKING_SET value is taken from
the SYSGEN parameter PQL_DWSQUOTA.

♦ The value cannot be greater than the value for the PDM quota
EXTENT.

Chapter 4 Entering input parameters

122 P25-0130-47

PAGE_FILE=(value)

Description Optional. Specifies the maximum number of pages that can be allocated
in the paging file for the PDM.

Default 2048

Minimum The recommended minimum value for SUPRA Server is 40000.

Consideration If not specified, the PAGE_FILE value is taken from the SYSGEN
parameter PQL_DPGFLQUOTA.

Calculation PAGE_FILE = 4000 (for Alpha or 1400 for VAX) + 1.35 * (all dbmod
sizes + largest dbmod size) / 512.

This equation factors in the largest dbmod size twice, thus allowing room
for memory fragmentation. The dbmod sizes, as shown with the
csiopcom command display/databases, are in bytes and thus are divided
by 512 to convert to pagelets.

QUEUE_LIMIT=(value)

Description Optional. Specifies the maximum number of timer queue entries the
PDM can have outstanding at any one time.

Default 8

Minimum The recommended minimum value for SUPRA Server is 20.

Consideration If not specified, the QUEUE_LIMIT value is taken from the SYSGEN
parameter PQL_DTQELM.

Calculation Determine by monitoring the PDM process and setting the limit slightly
above the values reached during peak processing.

SUBPROCESS_LIMIT=(value)

Description Optional. Specifies the maximum number of subprocesses the PDM can
create.

Default 8

Minimum The recommended minimum value for SUPRA Server is 8.

Consideration If not specified, the SUBPROCESS_LIMIT value is taken from the
SYSGEN parameter PQL_DPRCLM.

Creating a PDM start-up resource file

System Administration Guide 123

WORKING_SET=(value)

Description Optional. Specifies the limit on the number of pages in the initial working
set for the PDM.

Default 100

Minimum This value must not be greater than the value specified in the
MAXIMUM_WORKING_SET parameter. The recommended minimum
value for SUPRA Server is 500.

Consideration If not specified, the WORKING_SET value is taken from the SYSGEN
parameter PQL_DWSDEFAULT.

Example The following is an example PDM start-up resource file:
AST_LIMIT=100

BUFFER_LIMIT=40000

ENQUEUE_LIMIT=200

EXTENT=4096

FILE_LIMIT=512

IO_BUFFERED=50

IO_DIRECT=20

MAXIMUM_WORKING_SET=1000

PAGE_FILE=40000

QUEUE_LIMIT=20

SUBPROCESS_LIMIT=8

WORKING_SET=500

A template file is provided for you in SUPRA_LIBRARY:CSISTR.CSI. See the
description of the logical CSISTRINP.

Chapter 4 Entering input parameters

124 P25-0130-47

Entering parameters for the PDM input file
When you generate a PDM system using SUPRA_MENU.COM, the
answers you give to some of the questions result in the PDM input file,
which is named SUPRA_LIBRARY:PDM_OPTIONS_*.INP (where * is the
6-digit group number for a groupwide PDM, 000000 for a systemwide
PDM, or the translation of CSI_SYSPDMID for a multiple systemwide
PDM). The PDM input file contains the input parameters for the PDM.

The PDM input file is identified by the logical name CSIPDMINP. This
logical is defined in the PDM_LOGICALS_*.COM procedure (see
“PDM_LOGICALS_*.COM” on page 87). The PDM translates the logical
name CSIPDMINP to locate the PDM input file and uses the parameters
it contains to initiate the PDM.

The parameters in the input file are:

ACLCHECK
CONSOLE
DYNSLOCK
IDXCNVERR
IDXDUPERR
IDXTIMEOUT
INTERVAL
LOGFLUSH

MAXDATA
MAXTASKS
MAXTHREADS
MRELAY
MULTIHOLD
OPERATOR
PDMNAME
PRIORITY

RETRY
SINGLEUNLOAD
SLFDUMPPRI
STATISTICS
SYSOPCOM
TIMEOUT
UICCHECK
WARMSTART_
 DATASET_ERROR

Details on each of these parameters are on the following pages.

Entering parameters for the PDM input file

System Administration Guide 125

ACLCHECK= Y
N







Description Optional. Specifies whether the PDM checks for any Access Control
Lists (ACL) set on PDM data set files, task log files, or system log files
before allowing a task to access them.

Default N

Considerations

♦ When ACLCHECK=Y, the PDM does not check for ACLs placed on
the compiled database description (database-name.MOD) file or on
index files.

♦ You can use this parameter with UICCHECK. See “Setting up and
using PDM file protection checking” on page 141.

CONSOLE= Y
N







Description Optional. Specifies whether the PDM will send informational and error
messages to operator terminals.

Default Y

Options Y Displays informational and error messages on operator terminals.

N Suppresses all PDM messages from being displayed on operator
terminals except “Reply with a SUPRA PDM command,” which is
controlled by the parameter SYSOPCOM.

Consideration The operator terminal that messages may be sent to is identified by the
OPERATOR parameter.

Chapter 4 Entering input parameters

126 P25-0130-47

DYNSLOCK= Y
N







Description Optional. Specifies whether you want the data sets in a database to
remain locked if they have been updated by a task which fails to sign off
normally when no task logging is in use (when logical data corruption is
likely).

Warning: Use of the DISABLE/DYNAMIC operator command overrides
this option (if you issue DISABLE/DYNAMIC for the database, then the
files will be unlocked regardless of the DYNSLOCK setting, and the
database will be disabled when the data sets have been updated by a
task which fails to sign off normally when no task logging is in use.) See
“Disabling a database (DISABLE)” on page 151 for a complete
description of DISABLE/ DYNAMIC.

Warning: If a task fails to sign off normally when data sets have been
updated and there is no active task log, the updated data sets may be
logically incorrect.

Default Y

Options Y Data sets remain locked if the task fails to sign off normally and
updates have been made when no task log is active.

N Data sets do NOT remain locked if the task fails to sign off normally
and updates have been made and no task log is active.

Considerations

♦ Setting the parameter value to Y keeps file locking consistent with
earlier releases of the PDM.

♦ If the PDM fails and there is no active task log, the updated data sets
will remain locked.

Entering parameters for the PDM input file

System Administration Guide 127

IDXCNVERR= Y
N







Description Optional. Specifies the action you want the PDM to take when it
encounters an error while converting data into a sortable format for the
index file.

Default Y

Options Y The PDM backs out the updates to the PDM data set and returns a
status of IDAT to the application. This causes the PDM to keep the
index file consistent with its associated PDM data set.

N The PDM does not back out the updates to the PDM data set.
Instead, the PDM deactivates the index file because the file is
inconsistent with its associated PDM data set.

IDXDUPERR= Y
N







Description Optional. Specifies the action you want the PDM to take when duplicate
secondary keys are not allowed and the PDM attempts to insert into an
index file a record that has the same secondary key value as another
record in that index file.

Default Y

Options Y The PDM backs out the updates to the PDM data set and returns a
status of DUPI to the application. This causes the PDM to keep the
index file consistent with its associated PDM data set.

N The PDM does not back out the updates to the PDM data set.
Instead, the PDM deactivates the index file because the file is
inconsistent with its associated PDM data set.

IDXTIMEOUT=nnnn

Description Optional. Specifies the number of intervals (see INTERVAL) to wait for
an index file’s I/O request to complete before canceling that index file’s
I/O request.

Default 0

Consideration 0 indicates that the index files’ I/O requests should never be canceled.

Chapter 4 Entering input parameters

128 P25-0130-47

INTERVAL=nnnn

Description Optional. Specifies a period of time, measured in hundredths of a
second.

Default 5

Options 1–1000

Consideration This time period is used by the IDXTIMEOUT, TIMEOUT, and RETRY
parameters.

LOGFLUSH= Y
N







Description Optional. Indicates whether you want CSIPDM messages flushed to the
CSIPDMLOG file for viewing while the PDM is still up and running.

Default Y

Consideration There is a performance penalty associated with message flushing,
especially when STATISTICS are enabled.

Entering parameters for the PDM input file

System Administration Guide 129

MAXDATA=nnnnn

Description Optional. Sets the maximum size of the message buffer used for
communication between the PDM and applications, in number of bytes.

Default 4096

Options 0–32767

Considerations

♦ The message area must be large enough to contain all the
parameters passed to the PDM. These include the following:

- User data area

- Element list

- Key field

- Status function

- End parameters

♦ The value of MAXDATA * MAXTASKS determines the size of the
global section used by the PDM for communication between the PDM
and application tasks. The greater you make either of these, the
greater the global page requirement.

Chapter 4 Entering input parameters

130 P25-0130-47

MAXTASKS=nnnn

Description Optional. Specifies the maximum number of tasks allowed to
concurrently access the PDM.

Default 50

Options 1–1000

Considerations

♦ You may wish to impose a maximum to ensure good performance for
tasks that access the PDM.

♦ The value of MAXDATA * MAXTASKS determines the size of the
global section used by the PDM. The greater you make either of
these, the greater the global page requirement.

♦ Each RDM application running with a SUPRA Server Directory
requires up to two tasks each time it signs on to a database. See the
description of the logical CSI_NODIRECTORY.

♦ This is the limit for the PDM, which can impact the MAX-TASKS and
MAX-UPDATE-TASKS for all databases serviced by this PDM.

Entering parameters for the PDM input file

System Administration Guide 131

MAXTHREADS=nnn

Description Optional. Specifies the maximum number of functions the PDM can
process concurrently for each database it services.

Default 3

Options 1–100

Considerations

♦ The optimum value for MAXTHREADS is the number of tasks + 2, up
to a maximum of 100. The more threads you have, the more
concurrent I/Os you can have. The optimum value will vary from site
to site.

♦ Too low a value for MAXTHREADS could cause the PDM to
hibernate while there is work to do. This will happen if each of the
active threads is waiting on an event, such as the completion of a
physical disk I/O.

♦ Too high a value can waste virtual memory.

♦ It is better to have too high a value than too low a value because
PDM threads can increase database throughput dramatically.

Chapter 4 Entering input parameters

132 P25-0130-47

MRELAY= Y
N







Description Optional. Specifies whether to send console messages output by the
PDM and the system log dump program, CSTUDSLF, to a VMS mailbox.

Default N

Considerations

♦ If you specify Y, users must write programs to pick up console
messages from the mailbox. If the mailbox fills up, the PDM keeps a
count of the number of messages lost and displays this number on
the next successful send.

♦ You can use MRELAY in conjunction with the logical name
CSI_MRELAY to trap all messages from the Database Access
program identified by the logical CSIDAP. See “Automating operator
communication” on page 183 and “Example mailbox-reading
program” on page 275 for more details about writing a mailbox-
reading program to read the PDM messages.

MULTIHOLD= Y
N







Description Optional. Specifies whether you want a task to be able to explicitly read
and hold more than one record per file in a single logical unit of work.

Default Y

Consideration If you want your SUPRA Server applications to be more compatible with
ULTRA, you should enable MULTIHOLD. If, however, you want your
applications to be more compatible with IBM SUPRA Server, you should
disable MULTIHOLD.

Entering parameters for the PDM input file

System Administration Guide 133

OPERATOR= OPER
OPER1

nn





Description Optional. Identifies the VMS operator number which may send
commands to the PDM and receive messages from the PDM.

Default OPER1

Options OPER1–OPER12

Considerations

♦ You can specify only one operator number in the input file, although
you can enable more than one terminal as that operator number.

♦ The PDM sends all messages to the OPER terminal(s) except those
messages with severity level L (log only). These are sent to the PDM
log file (CSIPDMLOG).

♦ When the PDM input parameter SYSOPCOM is enabled, VMS
OPCOM prompts all specified operator terminals at regular intervals
(5 or 10 minutes). Use the VMS REPLY command to respond to the
operator prompt to enter a PDM operator command. See the VMS
documentation for a description of the VMS REPLY command and its
parameters and qualifiers (the repeated operator message is a VMS
facility not controlled by the PDM).

PDMNAME=pdmname

Restriction Only for a multiple systemwide PDM.

Description Required only if using a multiple systemwide PDM. Specifies the name
of the multiple systemwide PDM.

Format 1–8 alphanumeric characters

Consideration pdmname must be the same as the equivalence string for the logical
name CSI_SYSPDMID.

Chapter 4 Entering input parameters

134 P25-0130-47

PRIORITY=nn

Description Optional. Sets the VMS priority of the detached PDM process.

Default Base priority of the invoking process

Options 1–15

Considerations

♦ You do not need the ALTPRI privilege to set the priority of the PDM
as an input file parameter. Therefore, the initiating task can assign
the PDM a priority higher than its own. This is because the CSIPDM
image file is installed with ALTPRI.

Cincom recommends that you set the PDM server base priority to a
value higher than that of the interactive and batch client tasks it will
service. However, a base priority greater than 9 could result in
competition with many VMS system processes which have base
priorities in the 10–15 range. Since the PDM server should have a
priority greater than that of the client tasks it will service, process
preemption must be considered. The SYSGEN parameter
PRIORITY_OFFSET is used to specify the priority offset for process
preemption. Therefore, the PDM server priority should be set to the
sum of the base priority for interactive tasks (generally 4) plus the
value of PRIORITY_OFFSET (sometimes 3), plus 1 if you do not
want the PDM server to be preempted by an application client task.
Refer to your VMS documentation for a complete discussion of VMS
process priority preemption and PRIORITY_OFFSET.

Entering parameters for the PDM input file

System Administration Guide 135

RETRY=nnn

Description Optional. Specifies the number of times the PDM attempts to obtain a
held record before returning a HELD status.

Default 5

Options 1–100

Consideration The PDM waits for the period specified in numbers of intervals before
retrying. For example, INTERVAL=5, RETRY=10 causes the PDM to
retry ten times at 5/100 second intervals.

SINGLEUNLOAD= Y
N







Description Optional. Indicates whether you want the CSIPDM server process to
unload a dbmod from memory upon the signing off of a SINGLE mode
job.

Default Y

Consideration Normally a dbmod should be unloaded after a SINGLE mode job
completes in order that normal UPDATE processing may proceed. If you
set this parameter to N, then you are responsible for manually unloading
the dbmod (using the CSIOPCOM command UNLOAD).

Chapter 4 Entering input parameters

136 P25-0130-47

SLFDUMPPRI=nnnn

Description Optional. Specifies the VMS process base priority of the dump of the
system log files if the user need to change it from the same base priority
as the PDM.

Default PDM priority value

Options 1–15

Considerations

♦ A lower priority value could result in a longer time period before
completing a system log dump.

♦ A value at or higher than the PDM’s own priority could result in more
contention with processing that is already signed on and running.

STATISTICS= Y
N







Description Optional. Indicates whether you want detailed PDM statistics. These
statistics include physical I/O counts, the number of in-memory buffer
hits, and many more items (see “PDM statistics output” on page 269).

Default N

Considerations

♦ Y sends the statistics to the following:

- The PDM log file as identified by the logical name CSIPDMLOG

- The message reading mailbox if MRELAY=Y

♦ Statistics are always gathered by the PDM, but are not automatically
displayed when this parameter is set to N.

♦ You can use operator commands to display statistics even when this
parameter is set to N. Use the commands ENABLE STATISTICS
and DISPLAY /STATISTICS to do so.

Entering parameters for the PDM input file

System Administration Guide 137

SYSOPCOM= Y
N







Description Optional. Specifies whether you can send commands to the SUPRA
Server PDM using the VMS OPCOM utility.

Default Y

Options Y To communicate with the PDM via both the VMS REPLY command
and the CSIOPCOM facility.

N To communicate only through CSIOPCOM.

Consideration When SYSOPCOM is set to Y, VMS OPCOM prompts all specified
operator terminals at regular intervals (5 or 10 minutes). Use the VMS
REPLY command to respond to the operator prompt to enter a PDM
operator command. See the VMS documentation for a description of the
VMS REPLY command and its parameters and qualifiers (the operator
message is a VMS facility not controlled by the PDM).

When SYSOPCOM is set to N, and a database index has its INDEX-
CORRUPT-ACTION set to O (Operator), the PDM server will still prompt
the user as the operator console.

TIMEOUT=nnnnn

Description Optional. Specifies the period, in numbers of intervals, before a task is
dynamically reset and signed off if it remains inactive.

Default 0 (no dynamic sign off due to application task inactivity)

Options 0–10000

Chapter 4 Entering input parameters

138 P25-0130-47

UICCHECK= Y
N







Description Optional. Specifies whether the PDM checks the UIC-based protection
set on PDM data set files, task log files, and system log files before
allowing a task to access them.

Default N

Considerations

♦ When UICCHECK=Y, the PDM does not check the protection set on
the compiled database description (database-name.MOD) file or on
index files.

♦ Use this parameter in conjunction with ACLCHECK to control PDM
file protection checking. See “Setting up and using PDM file
protection checking” on page 141 for a full description of how to set
up and use PDM file protection checking.

WARMSTART_DATASET_ERROR=
















O
C
A

Description Optional. Indicates how the PDM should process data set errors
identified during warm start recovery.

Default C

Options A Abort - Warm start recovery aborted.

C Continue - Errors like file not found, or invalid data set size are
ignored - This is the previous behavior.

O Operator - Operator message is sent to the console asking the user
whether warm start recovery should continue - Default response is
No.

Considerations

♦ When parameter is set to O and the error is found, startup will pause
until an answer from the operator is received.

♦ Refer to the SUPRA Server PDM Messages and Codes Reference
Manual (PDM/RDM Support for UNIX & VMS), P25-0022, for the
accompanying codes this message can generate.

Entering parameters for the PDM input file

System Administration Guide 139

Example The following example illustrates the contents of a PDM input file which
specifies values for all possible parameters.
ACLCHECK=N

CONSOLE=Y

DYNSLOCK=Y

IDXCNVERR=Y

IDXDUPERR=Y

IDXTIMEOUT=0

INTERVAL=33

LOGFLUSH=Y

MAXDATA=4096

MAXTASKS=11

MAXTHREADS=13

MRELAY=N

MULTIHOLD=Y

OPERATOR=OPER9

PDMNAME=SYS1

PRIORITY=7

RETRY=10

SINGLEUNLOAD=Y

STATISTICS=N

SYSOPCOM=N

TIMEOUT=0

UICCHECK=N

Chapter 4 Entering input parameters

140 P25-0130-47

Setting up and using PDM file protection checking
The SUPRA Server PDM image (identified by the logical CSIPDM) is
installed with the BYPASS privilege. This privilege allows the PDM to
access any file on your system. The two PDM input parameters
ACLCHECK and UICCHECK allow you to control how the PDM checks
protection on files before allowing a task to access them.

You can use the ACLCHECK=Y parameter in the PDM input file to cause
the PDM to check the Access Control Lists (ACLs) on database files.
ACLs allow you to define more selective database access rights than you
can through UIC-based protection alone. You can define which tasks
can access database files and what operations they can perform on
those files.

In addition, you can set up the PDM to override the ACL and UIC-based
protection. This means you can protect sensitive files against DCL
access so users cannot dump a file from DCL. However, because the
PDM can bypass the file protection, those users can access the files
through the PDM.

Setting up and using PDM file protection checking

System Administration Guide 141

The following shows the different combinations of the ACLCHECK and
UICCHECK parameters and how the PDM functions based on those
combinations:

ACLCHECK=Y and UICCHECK=Y. The PDM checks both the ACL and
the UIC-based protection of a data file against the UIC of the accessing
task as follows:

♦ If there is an Access Control Entry (ACE) which denies access, the
PDM rejects the attempted operation with an error.

♦ If there is an ACE which allows access, the PDM proceeds with the
operation.

♦ If there is no ACE for the accessing task, the PDM checks the UIC-
based protection.

You might set up your PDM protection checking to check both ACLs and
UIC-based protection if you want to specify the operations that each PDM
task can perform without giving unrestricted access to all tasks or limiting
them to the same level of access. For example, assume you have one
important data file, PERSONNEL.INF, and five accessing tasks, BOSS,
MANAGER, ADMIN, PLEB1, and PLEB2. You could set up the ACL for
PERSONNEL.INF as follows:
(IDENTIFIER=[BOSS],ACCESS=READ+WRITE)
(IDENTIFIER=[MANAGER],ACCESS=READ+WRITE)
(IDENTIFIER=[ADMIN]+INTERACTIVE,ACCESS=READ+WRITE)
(IDENTIFIER=[PLEB1],ACCESS=NONE)

(IDENTIFIER=[PLEB2],ACCESS=NONE)

If BOSS, MANAGER, or ADMIN attempts to access PERSONNEL.INF,
the PDM checks the ACL and allows the task to perform the operations
specified in its ACE. PLEB1 and PLEB2 would have no access. If any
other UIC attempted to access the file, the PDM would check the
UIC-based protection. To make sure that no other users could access
PERSONNEL.INF, you could include the following ACE last in the list:
(IDENTIFIER=[*],ACCESS=NONE)

Chapter 4 Entering input parameters

142 P25-0130-47

ACLCHECK=N and UICCHECK=NB. The PDM bypasses all protection
checking, allowing tasks to use the PDM to access data files they may be
prevented from accessing in any other way by the ACL and UIC-based
protection.

This is particularly useful, for example, with a payroll database in which
you want to allow tasks to access data only through the PDM, and not
from DCL command level. This prevents users from dumping the
contents of your payroll files or accessing them in any way other than
through the PDM.

You would set up the file ACE to allow no access; for example:
(IDENTIFIER=[*],ACCESS=NONE)

ACLCHECK=N and UICCHECK Y. The PDM checks the UIC-based file
protection only, bypassing any ACLs.

ACLCHECK=Y and UICCHECK=N. The PDM checks the ACLs only,
bypassing any UIC-based file protection. If there is no ACE for the
specified task, access is denied.

Setting up and using PDM file protection checking

System Administration Guide 143

General considerations

♦ Use one of the following VMS commands to define ACLs:
SET ACL /EDIT filename.type

EDIT/ACL filename.type

SET FILE/ACL filename.type

♦ For VMS Version 5 and above, DEC recommends you use SET ACL
/EDIT instead of SET FILE/ACL.

♦ Refer to Digital’s VMS Access Control List (ACL) Editor Manual for
details on how to create ACLs.

♦ The PDM checks for ACLs set on data set, task and system log files,
but does not check for ACLs placed on:

- The compiled database description (database-name.MOD) file,
because tasks need to access this file through CSIDAP before
the PDM accesses the file

- Index files, because users who can access the database files
should also be able to access connected index files

SUPRA Server 2.4 does not support the system-defined identifiers
DIALUP and REMOTE due to a VMS limitation.

Chapter 4 Entering input parameters

144 P25-0130-47

5
Communicating with the SUPRA
Server PDM

The SUPRA Server PDM runs as a detached process. You can
communicate with the PDM by using a set of PDM operator commands.
You enter PDM operator commands in one of two ways:

♦ Through CSIOPCOM, a screen-based interface to the SUPRA
Server PDM that offers comprehensive online help (see
“Communicating with the SUPRA Server PDM through CSIOPCOM”
on page 174)

♦ Through the VMS REPLY command (see “Communicating with the
PDM through the VMS REPLY command” on page 189)

Eleven PDM operator commands are available; however, you may not
want to give all users access to all operator commands. The user
authorization program, which is identified by the logical CSIOAUTH,
allows you to specify the commands available to each user. You run
CSIOAUTH to create a user authorization file to which you assign the
logical name CSIOPCOM_AUTH. For details about CSIOAUTH, see
“Restricting use of PDM commands” on page 185.

The user authorization file applies only to users communicating with the
PDM through CSIOPCOM. Users of the VMS REPLY command can
enter any PDM operator command; however, these users must have the
OPER privilege.

You can also write your own interface to SUPRA Server PDM.
“Automating operator communication” on page 183 describes how to
direct the SUPRA Server PDM messages to a mailbox. You can read
these messages through a user-written program. This section also
contains an example mailbox-reading program in pseudocode. See
“Example mailbox-reading program” on page 275 for an example
mailbox-reading program written in COBOL.

You can use the PDML OPCOM command to send operator commands
to the PDM from user-written programs. Refer to the SUPRA Server
PDM Programming Guide (UNIX & VMS), P25-0240, for more
information.

System Administration Guide 145

Using the PDM operator commands
The SUPRA Server PDM operator commands control PDM usage. The
following table lists the operator commands the PDM recognizes:

Command Description
ACTIVATE Starts logging index records on the specified

index file(s).
DEACTIVATE Stops logging index records on the specified

index file(s).
DISABLE Unloads one or all database(s) and prevents

anyone else from reloading.
DISPLAY Displays the status of loaded databases, the

status of sign-on tasks, statistics, or held
records.

DUMPSLF Dumps a system log component manually.
ENABLE Cancels the DISABLE restriction.
POPULATE Populates one or more indexes by reading

records from the PDM data set and writing
corresponding index records to the index file.

READONLY Sets one or all database(s) to read-only
processing.

SHUTDOWN Unloads all databases and stops the PDM.
UNLOAD Unloads one or all databases.
UPDATE Cancels the READONLY restriction.

Chapter 5 Communicating with the SUPRA Server PDM

146 P25-0130-47

Activating an index (ACTIVATE)
ACTIVATE initiates index record logging. Each subsequent change to
the data file is reflected by corresponding changes to the index file(s).
Changes to the data file include updating, adding, or deleting records.

ACTIVATE index [xxx_]database-name []uic - group - number

 [AT node-name]

index

Description Required. Specifies the index file to be activated for logging.

Format dsetIXyy

where

dset is the 4 alphanumeric character data set name

IX is entered as shown

yy is the 2 alphanumeric character index name

Consideration If the index has been deactivated for any length of time, run the check
option of the index maintenance utility program identified by the logical
CSTUIDX. This checks the index records and updates them where
necessary, and automatically activates the index.

[xxx_]database-name

Description Required. Identifies the database for which index logging is to take
effect.

Format xxx_ 1–3 alphanumeric characters followed by “_” (the
optional database prefix)

database-name 6 alphanumeric characters

Using the PDM operator commands

System Administration Guide 147

[]uic - group - number

Description Optional. Identifies the group number if more than one database of the
same name is loaded in different groups.

Format 1–6 digit UIC group number enclosed in brackets

Consideration You can omit any leading zeros; however, you must enter the brackets.

AT node-name

Description Optional. Directs the command to the remote PDM running at the
specified node.

Format 1–6 alphanumeric characters

Considerations

♦ If you omit this parameter, the command is directed to the local PDM.

♦ Use this parameter only if you are communicating with a remote PDM
through the CSIOPCOM interface (see “Communicating with the
SUPRA Server PDM through CSIOPCOM” on page 174.)

Chapter 5 Communicating with the SUPRA Server PDM

148 P25-0130-47

Deactivating an index (DEACTIVATE)
DEACTIVATE stops logging index records to the specified index. This
means the index file will no longer be updated with modifications to the
data set file.

DEACTIVATE index [xxx_]database-name []uic - group - number

 [AT node-name]

index

Description Required. Specifies the index file for which logging is to be deactivated.

Format dsetIXyy

where

dset is the 4 alphanumeric character data set name

IX is entered as shown

yy is the 2 alphanumeric character index name

Consideration Before reactivating the index, run the check option of the index
maintenance utility program, CSTUIDX, to check the index records and
update them where necessary. Check automatically activates the index.

[xxx_]database-name

Description Required. Identifies the database for which index logging is to take
effect.

Format xxx_ 1–3 alphanumeric characters followed by “_” (the
optional database prefix)

database-name 6 alphanumeric characters

Using the PDM operator commands

System Administration Guide 149

[uic-group-number]

Description Optional. Identifies the group number if more than one database of the
same name is loaded in different groups.

Format 6-digit UIC group number enclosed in brackets

Consideration You can omit any leading zeros; however, you must enter the brackets.

AT node-name

Description Optional. Passes the command to the remote PDM running at the
specified node.

Format 1–6 alphanumeric characters

Considerations

♦ If you omit this parameter, the command is directed to the local PDM.

♦ Use this parameter only if you are communicating with a remote PDM
through the CSIOPCOM interface (see “Communicating with the
SUPRA Server PDM through CSIOPCOM” on page 174).

Chapter 5 Communicating with the SUPRA Server PDM

150 P25-0130-47

Disabling a database (DISABLE)
DISABLE has three basic functions:

♦ Signing off each task using a database, unloading the database, then
preventing the database from being reloaded until the restriction is
lifted using the ENABLE command (“Enabling a database (ENABLE)”
on page 160). See also the UNLOAD command (“Unloading a
database (UNLOAD)” on page 169).

♦ Creating the condition where a dynamic sign off from a database will
cause the database to be disabled, all other tasks to be signed off,
and the database to be unloaded and prevented from reloading until
the restriction is removed with the ENABLE command.

♦ Disabling the automatic display of PDM statistics.

DISABLE

[]

[]

/COMIT
/SINOF
/FORCE

 [_] []
ALL

/DYNAMIC [_] []

STATISTICS























































xxx database - name uic - group - number

xxx database - name uic - group - number

 AT node - name

Using the PDM operator commands

System Administration Guide 151

[]

[]

/COMIT
/SINOF
/FORCE

 [_] []
ALL

/DYNAMIC [_] []

STATISTICS























































xxx database - name uic - group - number

xxx database - name uic - group - number

Description Required. Specifies the object(s) of the DISABLE command.

Format xxx_ 1–3 alphanumeric characters followed by “_” (the
optional database prefix)

database-name 6 alphanumeric characters

[uic-group-number] 6-digit UIC group number enclosed in brackets

Options /COMIT Signs off each task from the specified database or all
databases after the task’s next COMIT or RESET
function.

/SINOF Waits until the last task has signed off the specified
database or all databases.

/FORCE Resets any uncommitted updates and signs off each
task immediately from the specified database or all
databases.

/DYNAMIC Dynamically signs off all tasks, unloads and disables the
database when that database is likely to contain logical
data corruption, when a task which has updated a data
set fails to sign off normally when there is no active task
log.

STATISTICS Disables the automatic displaying of PDM statistics.

Warning: The DISABLE/DYNAMIC operator command overrides the
PDM input parameter DYNSLOCK (if you issue DISABLE/DYNAMIC for
the database, the files will be unlocked regardless of the DYNSLOCK
setting, and the database will be disabled when the data sets have been
updated by a task which fails to sign off normally when no task logging is
in use.)

Chapter 5 Communicating with the SUPRA Server PDM

152 P25-0130-47

Considerations

♦ The uic-group-number parameter specifies a group number if more
than one database of the same name is loaded in different groups.
You can omit any leading zeros; however, you must enter the
brackets.

♦ The ALL parameter dynamically signs off each task and disables and
unloads all databases. The PDM then creates the following logical
name:

 DISABLED_global-section-name TRUE

 The PDM places this logical assignment in either the group or
system logical name table according to whether it refers to a
groupwide or systemwide PDM global section. This logical
assignment stops any attempt to load any database.

♦ Use the ENABLE command to cancel these restrictions.

♦ DISABLE/DYNAMIC is designed for CONTROL:Manufacturing sites.
If a task gets dynamically signed off from a database for which you
have entered DISABLE/DYNAMIC, all other tasks running on that
database will be forcibly signed off and the database will be disabled.

♦ Under DISABLE/DYNAMIC, if the PDM fails and there is no active
task log, the updated data sets will remain locked.

AT node-name

Restriction Use this parameter only if you are communicating with a remote PDM
through the CSIOPCOM interface (see “Communicating with the SUPRA
Server PDM through CSIOPCOM” on page 174).

Description Optional. Directs the command to the PDM running at the specified
node.

Default If you omit this parameter, the command is directed to the local PDM.

Format 1–6 alphanumeric characters

Using the PDM operator commands

System Administration Guide 153

Displaying a database (DISPLAY)
DISPLAY lists some or all of the following details on the screen according
to the parameters you specify:

♦ Database name

♦ Whether the database is loaded in systemwide or groupwide global
sections

♦ UIC group number

♦ The number of bytes in memory taken up by the database

♦ The state of the database (Fail, Inactive, or Active)

♦ The number of active tasks

♦ The number of active functions

♦ The number of active threads

♦ Database statistics

♦ Database held records

[] []

[]name-node

number-group-uicname-database

set-data
set-data

set-data

 AT

ALL
][xxx_

]=[/FILE /INDICES
]=DS[/FILE/HELDRECOR

]=[/FILE S/STATISTIC
/TASKS
/DATABASES

 DISPLAY


































Chapter 5 Communicating with the SUPRA Server PDM

154 P25-0130-47

[] []


































ALL

][_

]=FILE/INDICES[/

]=DS[/FILE/HELDRECOR

]=[/FILE S/STATISTIC

/TASKS

/DATABASES

numberuic-group-amedatabase-nxxx

data-set

data-set

data-set

Description Required. Specifies the object(s) of the DISPLAY function.

Format xxx_ 1–3 alphanumeric characters followed by “_” (the
optional database prefix)

database-name 6 alphanumeric characters

[uic-group-number] 1–6 digit number enclosed in brackets

data-set 4-character PDM data set name

Options /DATABASES Displays the status of one or all loaded databases.

/TASKS Displays the status of signed-on tasks for one or all
loaded databases.

/STATISTICS Displays PDM statistics for one or all loaded
databases or one data set.

/HELDRECORDS Displays the RRN (relative record number) and
operating system task (process) for records held in
the PDM servers internal holding table.

/INDICES Displays the status of the indices for one or all
loaded databases of one data set.

Using the PDM operator commands

System Administration Guide 155

Considerations

♦ The uic-group-number parameter specifies a UIC group number if
more than one database of the same name is loaded in different
groups. You can omit any leading zeros; however, you must enter
the brackets.

♦ The /FILE parameter specifies the data set for which statistics are
requested.

♦ DISPLAY/STATISTICS may tie up your terminal for some time
unless you use the CSIOPCOM command SET OUTPUT (file-spec)
to direct output to a disk file (see “Using CSIOPCOM commands” on
page 180).

♦ If you are using multiple physical databases, you can display
statistics for all databases to which the specified data set is
connected by entering:

 DISPLAY /STATISTICS ALL /FILE=data-set

♦ See “PDM statistics output” on page 269 for a description of the PDM
statistics output.

♦ DISPLAY/HELDRECORDS will display the entire record holding table
(up to 65536 entries) for a database unless you specify /FILE= to
reduce output.

Cincom recommends the use of /FILE= with /HELDRECORDS as
follows:

DISPLAY/HELDRECORDS (database) /FILE=(dataset)

♦ DISPLAY/INDICES output can be reduced by using the /FILE option
or the output can be redirected via the CSIOPCOM command SET
OUTPUT (file-spec) to disk.

♦ For information on the codes returned with the display commands,
refer to the explanations for CSTI061R and CSTI064R in the SUPRA
Server PDM Messages and Codes Reference Manual (PDM/RDM
Support for UNIX & VMS), P25-0022.

Chapter 5 Communicating with the SUPRA Server PDM

156 P25-0130-47

AT node-name

Restriction Use this parameter only if you are communicating with a remote PDM
through the CSIOPCOM interface (see “Communicating with the SUPRA
Server PDM through CSIOPCOM” on page 174).

Description Optional. Directs the command to the PDM running at the specified
node.

Default If you omit this parameter, the command is directed to the local PDM.

Format 1–6 alphanumeric characters

Using the PDM operator commands

System Administration Guide 157

Dumping the contents of the System Log for a database
(DUMPSLF)

The DUMPSLF command is used to manually request the PDM to dump
the contents of System Log File components. The PDM must dump the
contents of each System Log File component before it can be reused,
and before you can run System Log Recovery.

The PDM can carry out this procedure automatically (see “Understanding
the Physical Data Manager (PDM)” on page 31). However, after a
system failure, one or both log files may contain data which has not yet
been dumped. Alternatively, you may wish to dump remaining data to
have a complete system log history. You may need this to run the
recovery program because the PDM does not automatically dump the
system log file if it is not full.

Use the DUMPSLF command in the following situations:

♦ To dump one or both System Log File components manually before
starting System Level Recovery. Refer to the SUPRA Server PDM
Database Administration Guide (UNIX & VMS), P25-2260, for a
description of System Level Recovery.

♦ To dump data from a system log which is not full.

DUMPSLF [xxx_]database-name [uic-group-number]
[AT node-name]

Chapter 5 Communicating with the SUPRA Server PDM

158 P25-0130-47

[xxx_]database-name

Description Required. Specifies the database for which the System Log File is to be
dumped.

Format xxx_ 1–3 alphanumeric characters followed by “_” (the
optional database prefix)

database-name 6 alphanumeric characters

Consideration The PDM does not allow you to dump an active System Log File if
after-image records are still being logged to it. Use the UNLOAD
command (“Unloading a database (UNLOAD)” on page 169) or the
DISABLE command (“Disabling a database (DISABLE)” on page 151) to
sign off these tasks.

[uic-group-number]

Description Optional. Specifies the UIC group number if more than one database of
the same name is loaded in different groups.

Format 6-digit UIC group number enclosed in brackets

Consideration You can omit any leading zeros; however, you must enter the brackets.

AT node-name

Description Optional. Directs the command to the PDM running at the specified
node.

Format 1–6 alphanumeric characters

Considerations

♦ If you omit this parameter, the command is directed to the local PDM.

♦ Use this parameter only if you are communicating with a remote PDM
through the CSIOPCOM interface (see “Communicating with the
SUPRA Server PDM through CSIOPCOM” on page 174).

Using the PDM operator commands

System Administration Guide 159

Enabling a database (ENABLE)
ENABLE cancels the restriction imposed by the DISABLE command
(“Disabling a database (DISABLE)” on page 151), allowing tasks to
reload a previously disabled database.

ENABLE
[][]xxx_ database - name uic - group - number[]

ALL
STATISTICS













 AT node - name

[][]xxx_ database - name uic - group - number[]
ALL
STATISTICS













Description Required. Specifies the object of the ENABLE command.

Format xxx_ 1–3 alphanumeric characters followed by “_” (the
optional database prefix)

database-name 6 alphanumeric characters

[uic-group-number] 1–6 digit number enclosed in brackets

Options [xxx_]database-name Cancels the restriction imposed by the DISABLE
command on the specified database.

[[uic-group-number]] UIC group number

ALL Deassigns the logical name DISABLED_
global_section-name, allowing the PDM to load any
database.

STATISTICS Sends PDM statistics output to the PDM log file,
any message reading mailbox, and the CSIOPCOM
screen. Does not send output to the operator
console.

Consideration The uic-group-number parameter specifies a UIC group number if more
than one database of the same name is loaded in different groups. You
specify the UIC group number to identify the logical name table the PDM
must search in order to locate the compiled database description file.
You can omit any leading zeros; however, you must enter the brackets.

Chapter 5 Communicating with the SUPRA Server PDM

160 P25-0130-47

AT node-name

Description Optional. Directs the command to the PDM running at the specified
node. Omit the AT keyword to pass the command to the local PDM.

Format 1–6 alphanumeric characters

Consideration Use this parameter only if you are communicating with a remote PDM
through the CSIOPCOM interface (see “Communicating with the SUPRA
Server PDM through CSIOPCOM” on page 174).

Using the PDM operator commands

System Administration Guide 161

Populating an index (POPULATE)
POPULATE populates and activates one or more index files by reading
records from the data file and writing corresponding index records to the
index file. Once you have run POPULATE, the index is ready for use.

POPULATE index [xxx_]database-name []uic - group - number
 AT node - name

index

Description Required. Identifies the index to be populated.

Format dsetIXyy

where

dset is the 4 alphanumeric character data set name

IX is entered as shown

yy is the 2 alphanumeric character index name.

Considerations

♦ POPULATE always formats a new index file before writing the index
records. This minimizes the risk of inconsistencies between index
files and their data files. If you defined a shadow index, POPULATE
also formats a new shadow index file before writing the index records
to it.

♦ If population of the main index file fails, both the main and the
shadow index files are marked as invalid. If the population succeeds
for the main index file, but fails for the shadow file, only the shadow
file is marked as invalid and PDM indexing processing can proceed
on the main index file alone.

Chapter 5 Communicating with the SUPRA Server PDM

162 P25-0130-47

[xxx_]database-name

Description Required. Specifies the database in which the index is defined.

Format xxx_ 1–3 alphanumeric characters followed by “_” (the
optional database prefix)

database-name 6 alphanumeric characters

[uic-group-number]

Description Optional. Specifies the UIC group number if more than one database of
the same name is loaded in different groups.

Format 1–6 digit UIC group number enclosed in brackets

Consideration You can omit any leading zeros; however, you must enter the brackets.

AT node-name

Description Optional. Directs the command to the PDM running at the specified
node.

Format 1–6 alphanumeric characters

Considerations

♦ If you omit this parameter, the command is directed to the local PDM.

♦ Use this parameter only if you are communicating with a remote PDM
through the CSIOPCOM interface (see “Communicating with the
SUPRA Server PDM through CSIOPCOM” on page 174).

Using the PDM operator commands

System Administration Guide 163

Specifying read-only access for a database (READONLY)
READONLY sets the specified database or all databases to read-only
access, dynamically signs off all active update tasks in the database(s),
and unloads the specified database(s). See also the UNLOAD command
(“Unloading a database (UNLOAD)” on page 169) and the UPDATE
command (“Specifying update access for a database (UPDATE)” on
page 171).

READONLY
/COMIT
/SINOF
/FORCE













[][]xxx_ database - name uic - group - number[]
ALL









 AT node - name

/COMIT
/SINOF
/FORCE













Description Required. Specifies how tasks are to be signed off.

Options /COMIT Signs off each task after its next COMIT or RESET.

/SINOF Waits until the last task has signed off.

/FORCE Resets any uncommitted updates and signs off each
task immediately.

Chapter 5 Communicating with the SUPRA Server PDM

164 P25-0130-47

[][]xxx_ database - name uic - group - number[]
ALL









Description Required. Specifies whether one or all databases are to be set to
read-only access.

Format xxx_ 1–3 alphanumeric characters followed by “_” (the
optional database prefix)

database-name 6 alphanumeric characters

[uic-group-number] 1–6 digit number enclosed in brackets

Options [xxx_]database-name Sets the specified database to read-only.

[[uic-group-number]] UIC group number

ALL Sets all databases to read-only.

Considerations

♦ The uic-group-number parameter specifies a UIC group number if
more than one database of the same name is loaded in different
groups. You can omit any leading zeros; however, you must enter
the brackets.

♦ Use the UPDATE command to cancel the READONLY restriction.

♦ If you use the ALL parameter with the READONLY command, you
must also specify the ALL parameter with the UPDATE command.
The SUPRA Server PDM does not allow you to set all databases to
read only access and then cancel the restriction for a specified
database. Likewise, if you set a single database to READONLY, you
cannot cancel that restriction with the UPDATE ALL command; the
UPDATE command must specify the same single database as was
specified in the READONLY command.

Using the PDM operator commands

System Administration Guide 165

AT node-name

Description Optional. Directs the command to the PDM running at the specified
node.

Format 1–6 alphanumeric characters

Considerations

♦ If you omit this parameter, the command is directed to the local PDM.

♦ Use this parameter only if you are communicating with a remote PDM
through the CSIOPCOM interface (see “Communicating with the
SUPRA Server PDM through CSIOPCOM“ on page 174).

Chapter 5 Communicating with the SUPRA Server PDM

166 P25-0130-47

Shutting down a database (SHUTDOWN)
SHUTDOWN signs off all tasks, unloads all loaded databases, and then
terminates the PDM process. Any connected tasks get an ENDT status.
SHUTDOWN implicitly disables automatic restart. However, automatic
start-up will still occur if a new task attempts to access the PDM. You
can start up the PDM manually if you wish. See “Understanding the
Physical Data Manager (PDM)” on page 31 for a description of PDM
initiation procedures.

SHUTDOWN
/COMIT
/SINOF
/FORCE












 pdmname AT node - name

/COMIT
/SINOF
/FORCE













Description Required. Specifies how tasks are to be signed off.

Options /COMIT Signs off each task after its next COMIT or RESET.

/SINOF Waits until the last task has signed off.

/FORCE Resets any uncommitted updates and signs off each
task immediately.

Considerations

♦ Any task attempting a database sign-on will reinitialize the PDM
provided automatic PDM initiation is enabled.

♦ The PDM name is the translation of CSI_PDMID for groupwide or
systemwide PDMs, or CSI_SYSPDMID for multiple systemwide
PDMs.

pdmname

Description Required. The name of the PDM.

Format 1–8 alphanumeric characters

Using the PDM operator commands

System Administration Guide 167

AT node-name

Description Optional. Directs the command to the PDM running at the specified
node.

Format 1–6 alphanumeric characters

Considerations

♦ If you omit this parameter, the command is directed to the local PDM.

♦ Use this parameter only if you are communicating with a remote PDM
through the CSIOPCOM interface (see “Communicating with the
SUPRA Server PDM through CSIOPCOM” on page 174).

Chapter 5 Communicating with the SUPRA Server PDM

168 P25-0130-47

Unloading a database (UNLOAD)
UNLOAD unloads the specified database after first signing off each task
using it. The database can be reloaded by any subsequent task
attempting a sign-on. If you wish to unload the database and prevent any
new tasks from reloading it, use the DISABLE command (“Disabling a
database (DISABLE)” on page 151).

UNLOAD
/COMIT
/SINOF
/FORCE













[][]xxx_ database - name uic - group - number[]
ALL









AT node - name

/COMIT
/SINOF
/FORCE













Description Required. Specifies how tasks are to be signed off.

Options /COMIT Signs off each task after its next COMIT or RESET.

/SINOF Waits until the last task has signed off.

/FORCE Resets any uncommitted updates and signs off each
task immediately.

Using the PDM operator commands

System Administration Guide 169

[][] []xxx_ database - name uic - group - number
ALL









Description Required. Specifies whether one or all databases are to be unloaded.

Format xxx_ 1–3 alphanumeric characters followed by “_” (the
optional database prefix)

database-name 6 alphanumeric characters

[uic-group-number] 1–6 digit number enclosed in brackets

Options [xxx_]database-name Unloads the specified database.

[[uic-group-number]] UIC group number

ALL Unloads all databases.

Consideration The uic-group-number parameter specifies a UIC group number if more
than one database of the same name is loaded in different groups. You
can omit any leading zeros; however, you must enter the brackets.

AT node-name

Description Optional. Directs the command to the PDM running at the specified
node.

Format 1–6 alphanumeric characters

Considerations

♦ If you omit this parameter, the command is directed to the local PDM.

♦ Use this parameter only if you are communicating with a remote PDM
through the CSIOPCOM interface (see “Communicating with the
SUPRA Server PDM through CSIOPCOM” on page 174).

Chapter 5 Communicating with the SUPRA Server PDM

170 P25-0130-47

Specifying update access for a database (UPDATE)
UPDATE cancels the READONLY command and sets databases to allow
UPDATE access.

UPDATE [][]xxx_ database - name uic - group - number[]
ALL









 AT node - name

[][]xxx_ database - name uic - group - number[]
ALL









Description Required. Specifies whether one or all databases are to be set to
UPDATE access.

Format xxx_ 1–3 alphanumeric characters followed by “_” (the
optional database prefix)

database-name 6 alphanumeric characters

[uic-group-number] 1–6 digit number enclosed in brackets

Options [xxx_]database-name Allows update access to the specified database.

[[uic-group-number]] UIC group number

ALL Allows update access to all databases.

Using the PDM operator commands

System Administration Guide 171

Considerations

♦ The uic-group-number parameter specifies a UIC group number if
more than one database of the same name is loaded in different
groups. You can omit any leading zeros; however, you must enter
the brackets.

♦ The UPDATE command does not load databases unloaded by the
READONLY command.

♦ If you set all databases to read-only mode using READONLY ALL,
you must use UPDATE ALL to cancel this restriction. If you set a
specified database to read-only mode, you must explicitly specify that
database with the UPDATE command to cancel the restriction.
UPDATE ALL permits updates on only those databases affected by
READONLY ALL.

 For example, after the following sequence of commands through the
CSIOPCOM interface, the database TESTDB remains in read-only
mode:

 ==>READONLY/COMIT TESTDB[125]

 ==>READONLY/FORCE ALL

 ==>UPDATE ALL

 After the UPDATE ALL, the PDM displays the following message:
 CSTI156I All databases are now available for update 14

 However, the database TESTDB remains in read-only mode. This is
because the UPDATE ALL command affects only those databases
unloaded by the READONLY ALL command. TESTDB, having
already been set to READONLY, is affected by neither READONLY
ALL nor UPDATE ALL. To cancel the read-only restriction on
TESTDB, specify the database name with the UPDATE command as
follows:

 ==>UPDATE TESTDB[125]

Chapter 5 Communicating with the SUPRA Server PDM

172 P25-0130-47

AT node-name

Description Optional. Directs the command to the PDM running at the specified
node.

Format 1–6 alphanumeric characters

Considerations

♦ If you omit this parameter, the command is directed to the local PDM.

♦ Use this parameter only if you are communicating with a remote PDM
through the CSIOPCOM interface (see “Communicating with the
SUPRA Server PDM through CSIOPCOM” on page 174).

Using the PDM operator commands

System Administration Guide 173

Communicating with the SUPRA Server PDM through
CSIOPCOM

CSIOPCOM is a screen-based user interface through which you can
enter PDM operator commands. In addition to context-related online
help, pop-up menus from which to select PDM operator commands with
a single keystroke, and function key support, CSIOPCOM offers:

♦ Two CSIOPCOM commands: LIST and SET

♦ A batch interface to the PDM

CSIOPCOM allows you to communicate with any PDM on the network.
Therefore, you must always specify the [AT node-name] parameter to the
PDM operator command to access a remote PDM.

No special privileges are needed to use CSIOPCOM. However, you
should ensure that each user has access to a user authorization file
through the logical name CSIOPCOM_AUTH. You create user
authorization files using CSIOAUTH (see “Restricting use of PDM
commands” on page 185). Without a user authorization file, CSIOPCOM
users with SYSPRV and OPER privileges can access all PDM operator
commands. CSIOPCOM users without these privileges can access only
the DISPLAY command.

To run CSIOPCOM and issue SUPRA Server PDM operator commands,
type
$RUN CSIOPCOM

Chapter 5 Communicating with the SUPRA Server PDM

174 P25-0130-47

The initial screen appears:

SUPRAPDM Operator Interface 2.4

 (C) Cincom Systems, Inc. 1992.
 All Rights Reserved.
 Use of this software is governed by a license
 agreement. This software contains confidential
 and proprietary information of Cincom Systems,
 Inc. which is protected by copyright, trade
 secret, and trademark law.

 ==>
 <PF1>=Refresh <PF2>=Help <PF3>=List Cmds <PF4>=Screen Dump <CTRL/Z>=Exit

You can enter any authorized PDM operator command on the command
line at the bottom of the screen. For example:
SHUTDOWN /COMIT TESTPDM AT VMS2

will shut down the PDM named TESTPDM on node VMS2 when the last
task is signed off. Each task is signed off on the next COMIT.

Communicating with the SUPRA Server PDM through CSIOPCOM

System Administration Guide 175

The CSIOPCOM interface supports the function keys shown in the
following table. The function keys are displayed on the bottom of the
screen.

Function
key

Description

1 Refreshes the screen display.
2 Displays related online help.
3 Lists the PDM commands you are authorized to use in

a pop-up menu.
4 Dumps the current screen to a file identified by the

logical name CSIOPCOM_SNAPS.

Press CTRL-Z to exit to the DCL command level.

Refreshing the screen. Press function key PF1 to refresh the screen
and delete any characters from the command line.

Chapter 5 Communicating with the SUPRA Server PDM

176 P25-0130-47

Displaying online help. If you have defined the logical name
SUPRA_HELP (which is automatically defined by LOGICALS.COM), you
can press function key PF2 at any stage during CSIOPCOM processing
to display context-related help. For example, if you type DISPLAY at the
command line and then press function key PF2, the following help screen
displays:

SUPRAPDM Operator Interface 2.4

CSIOPCOM

 DISPLAY

 Displays the current status of specified databases or tasks,
 listing the following details on the screen according to the
 parameters and qualifiers you specify:

 o Database name (6, 8, 9 or 10 characters)
 o If the database is loaded in system-wide (S) or group-wide
 (G) global sections
 o UIC group number (6 digits, leading zeros ignored)
 o The number of bytes in memory taken up by the database
 o The state of the database, Fail, Inactive or Active
 o The number of active tasks
 o The number of active functions

Press RETURN to continue...
 ==> DISPLAY
 <PF1>=Refresh <PF2>=Help <PF3>=List Cmds <PF4>=Screen Dump <CTRL/Z>=Exit

Use the online help if you are unsure of the syntax of a PDM command.

Communicating with the SUPRA Server PDM through CSIOPCOM

System Administration Guide 177

Displaying a pop-up menu listing PDM commands. The DBA can use
CSIOAUTH to restrict the PDM commands available to certain users.
Press function key PF3 to display the PDM commands that you have
been authorized to use in a pop-up menu.

SUPRAPDM Operator Interface 2.4

 +---------------------+
 ¦Valid SUPRAPDM ¦
 ¦ commands are : ¦
 ¦ ¦
 ¦ A - DISPLAY ¦
 ¦ B - UNLOAD ¦
 ¦ C - SHUTDOWN ¦
 ¦ D - READONLY ¦
 ¦ E - UPDATE ¦
 ¦ F - DISABLE ¦
 ¦ G - ENABLE ¦
 ¦ H - DUMPSLF ¦
 ¦ I - PRINT ¦
 ¦ J - ACTIVATE ¦
 ¦ K - DEACTIVATE ¦
 ¦ L - POPULATE ¦
 ¦Select option letter or ¦
 ¦press RETURN to exit : ¦
 +------------------------+

 ==>
 <PF1>=Refresh <PF2>=Help <PF3>=List Cmds <PF4>=Screen Dump <CTRL/Z>=Exit

The above example gives access to all the PDM operator commands.
Type the key letter (A through L) to select a PDM command. Do not
press RETURN. CSIOPCOM displays the command keyword (DISPLAY,
UNLOAD, SHUTDOWN, etc.) at the command line ready for you to type
any qualifiers and parameters. When you press RETURN after entering a
PDM command, the screen clears, and the output from the command is
shown at the top left of the display area.

Chapter 5 Communicating with the SUPRA Server PDM

178 P25-0130-47

Dumping CSIOPCOM screens. To enable the screen dump facility,
define the logical name CSIOPCOM_SNAPS to point to a valid VMS file
specification:
$ DEFINE CSIOPCOM_SNAPS DUA3:[DOCS.PDM]CSIOPCOM_SNAPS.LIS

If you then press function key PF4, CSIOPCOM dumps the current
screen to the file CSIOPCOM_SNAPS.LIS in DUA3:[DOCS.PDM]. If you
press function key PF4 without having first defined the logical name
CSIOPCOM_SNAPS, CSIOPCOM writes the screen image to a file
called CSIOPCOM_SNAPS.LIS in your default directory.

CSIOPCOM creates only one CSIOPCOM_SNAPS file during a single
session. If you press function key PF4 more than once, CSIOPCOM
appends each screen to the end of the CSIOPCOM_SNAPS file.

If you dump screens during several CSIOPCOM sessions without
redefining CSIOPCOM_SNAPS, CSIOPCOM creates a higher version of
the CSIOPCOM_SNAPS file for each session from which you dump one
or more screens.

You can define CSIOPCOM_SNAPS in the PDM_LOGICALS_
.COM procedure. See “PDM_LOGICALS_.COM” on page 87.

Communicating with the SUPRA Server PDM through CSIOPCOM

System Administration Guide 179

Using CSIOPCOM commands
CSIOPCOM supports two additional commands: LIST and SET. These
commands are not for communication with the PDM, although their
syntax is similar to that of PDM commands.

LIST

Description Displays all authorized SUPRA Server PDM commands in a window from
which you can select a command.

Considerations

♦ Do not use this command when running in batch.

♦ This command works only from the CSIOPCOM interface, not from
VMS OPCOM. It is equivalent to pressing function key PF3.

The SET command sends input to and output from CSIOPCOM to both
the terminal and a disk file, or to a disk file only.

SET
LOG
NOLOG
OUTPUT
NOOUTPUT

file - spec

file - spec

















Chapter 5 Communicating with the SUPRA Server PDM

180 P25-0130-47

LOG
NOLOG
OUTPUT
NOOUTPUT

file - spec

file - spec

















Description Required. Specifies the disposition of CSIOPCOM logging.

Format file-spec VMS file specification

Options LOG file-spec Logs all input and output to the specified file and
displays it on the terminal screen.

NOLOG Terminates logging.

OUTPUT file-spec Sends all input and output to the specified file only,
redefining SYS$OUTPUT.

NOOUTPUT Sends output back to SYS$OUTPUT.

Considerations

♦ You can enter the SET command only from the CSIOPCOM interface
to the PDM. The VMS OPCOM interface does not support this
function.

♦ The SET OUTPUT file-spec command is particularly useful with the
DISPLAY STATISTICS PDM operator command. It allows you to
send the statistics to a file without scrolling through the entire display
on your terminal.

Communicating with the SUPRA Server PDM through CSIOPCOM

System Administration Guide 181

Running CSIOPCOM in batch
To run CSIOPCOM in batch, create a command file containing the RUN
command and any CSIOPCOM commands that you want to execute.
For example:
$! Command File SHUTDOWN_PDMTEST.COM

$! Displays the status of all databases

$! currently running in the PDM, and then shuts down the PDM

$!

$ RUN CSIOPCOM

DISPLAY/DATABASES AT VMS780

SHUTDOWN /FORCE PDMTEST AT VMS780

$ EXIT

To execute the command file online, type:
$ @SHUTDOWN_PDMTEST.COM

Chapter 5 Communicating with the SUPRA Server PDM

182 P25-0130-47

Automating operator communication
You can write applications to send operator commands to the PDM and
to receive operator messages from various SUPRA Server components.
These applications can reduce the need for manual operator intervention
in administering your SUPRA Server system.

Writing applications to send commands to the PDM. You can send
operator commands to the PDM by using OPCOM, a PDML function that
allows an application to send SUPRA Server operator commands (see
“Using the PDM operator commands” on page 146). For information
about the use of the SUPRA Server PDML function OPCOM, refer to the
SUPRA Server PDM Programming Guide (UNIX & VMS), P25-0240.

Writing applications to receive SUPRA Server messages. SUPRA
Server messages are output by the PDM, CSIDAP, and the system log
dump utility (CSTUDSLF). To direct these messages to a mailbox that
you can read from your program, define the following:

♦ The PDM input file parameter MRELAY=Y for PDM and System Log
Dump utility (CSIUDSLF) messages

♦ The logical CSI_MRELAY as TRUE for CSIDAP messages

The mailbox name is constructed by linking together the following:

♦ The translation of CSI_PDMID for a groupwide or a systemwide
PDM, or CSI_SYSPDMID for a multiple systemwide PDM

♦ An underscore

♦ The 6-digit UIC group number for a groupwide PDM, or 000000 for a
systemwide or a multiple systemwide PDM

For example, if the logical name CSI_PDMID equates to TESTPDM, and
the PDM is systemwide, the mailbox name will be TESTPDM_000000.
Alternatively, if the PDM is running in the group 000145, with CSI_PDMID
equating to QADBD, the mailbox name will be QADBD_000145.

The number of messages SUPRA Server can send to the mailbox is
determined by the SYSGEN parameters DEFMBXFUFQUO and
DEFMBXMXMSG. If the PDM cannot send any more messages to the
mailbox, either because there is no active mailbox-reading program, or
because the program is not picking the messages up fast enough, it will
keep a count of the number of messages that it was unable to send. On
the next successful send, it will output the message:

 MESSAGES LOST=nnnn

Automating operator communication

System Administration Guide 183

Example message-reading program. The following is a skeleton
message-reading program in pseudocode. You should start your
message-reading program before SUPRA Server (CSIDAP and/or
CSIPDM) starts sending messages and fills up the mailbox buffer. See
“Example mailbox-reading program” on page 275 for an example
message-reading program written in COBOL.
Program Mailbox_read

Begin-code

 Construct the mailbox name

 Create a Mailbox using the name constructed, with a buffer
quota size of 2048 and message size of 1024.

 While (ok to continue)

 begin-while

 Queue Asynchronous READ on the Mailbox by calling

 SYS$QIO and specify a completion AST - say mbx_ast.

 Hibernate or do something useful while call is being

 completed.

 Do something with the message received.

 Decide whether to continue with loop.

 End-while.

End-code.

Procedure mbx_ast

Begin-code

 ! This procedure will be executed when the call to the QIO

 ! system service has been completed, when a message

 ! is received.

 If main program is hibernating then

 Call SYS$WAKE to wake up main program.

End-code.

Chapter 5 Communicating with the SUPRA Server PDM

184 P25-0130-47

Restricting use of PDM commands
SUPRA Server allows you to create files which authorize subsets of PDM
OPCOM commands for one or more users. You create a user
authorization file and make it available to a specified user or group of
users in two stages:

1. Run CSIOAUTH and reply to the prompts to create an authorization
file.

2. Define the logical name CSIOPCOM_AUTH pointing to the
authorization file created. See “PDM_LOGICALS_*.COM” on
page 87 for details on CSIOPCOM_AUTH.

By default, users with SYSPRV and OPER privileges have access to all
PDM operator commands through CSIOPCOM if there is no logical
definition for CSIOPCOM_AUTH. Users with lower privileges can access
only the DISPLAY operator command unless they have a user
authorization file that gives access to other PDM operator commands.

To run the authorization file creation program, CSIOAUTH, you need both
SYSPRV and OPER privileges. The following sequence of screens
illustrates how to create an authorization file. Run the authorization
program by entering:
$ RUN CSIOAUTH

Restricting use of PDM commands

System Administration Guide 185

This displays the authorization screen for the first PDM command,
DISPLAY, shown below:

SUPRA PDM Operator Command
Authorization Program 2.4

Permit SUPRA PDM Command <DISPLAY > (Y/N/<CTRL>/Z) :

 (c) Cincom Systems, Inc. 1992
 Use of this software is governed by a license
 agreement. This software contains confidential
 and proprietary information of Cincom Systems,
 Inc. which is protected by copyright, trade
 secret, and trademark law.

Valid responses include:

♦ Y to allow a PDM command

♦ N to deny a PDM command

♦ CTRL-Z to skip to the prompt for the authorization file name or, if the
authorization file name prompt is displayed, to abandon the selection.

Pressing CTRL-Z causes CSIOAUTH to deny all subsequent PDM
commands. Thus, if you press CTRL-Z after having permitted the first two
PDM commands, all other PDM commands will be denied.

Chapter 5 Communicating with the SUPRA Server PDM

186 P25-0130-47

As you reply to the “Permit SUPRA PDM Command” prompt, including
and excluding PDM commands from the authorization file, the results are
displayed on the screen as follows:

SUPRA PDM Operator Command Authorization Program 2.4

 Permit SUPRA PDM Command <DUMPSLF > (Y/N/<CTRL>/Z)

 ----Commands permitted----- ----Commands denied-----
DISPLAY		SHUTDOWN
UNLOAD		READONLY
		UPDATE
		DISABLE
		ENABLE
		DUMPSLF
		PRINT
 ------------ -------------------------

The above screen shows a partially completed authorization session.
This screen prompts the user to define the authorization for the
DUMPSLF command, while listing the PDM commands permitted or
denied so far.

Restricting use of PDM commands

System Administration Guide 187

Once you have permitted or denied the last SUPRA Server PDM
command, CSIOAUTH prompts you to enter the file specification for the
authorization file as follows:

SUPRA PDM Operator Command Authorization Program 2.4

 Enter File Specification for Authorization data:

 ----Commands permitted----- -----Commands denied-----
DISPLAY		SHUTDOWN
UNLOAD		READONLY
		UPDATE
		DISABLE
		ENABLE
		DUMPSLF
		PRINT
 ------------ -------------------------

Enter a valid VMS file specification, including directory specification if
necessary. After you have entered the file specification, CSIOAUTH exits
to the DCL command level. See “PDM_LOGICALS_*.COM” on page 87
for details on defining the logical CSIOPCOM_AUTH to point to the
authorization file.

Chapter 5 Communicating with the SUPRA Server PDM

188 P25-0130-47

Communicating with the PDM through the VMS REPLY
command

You can use the VMS REPLY operator command to communicate with
the PDM by following these steps:

1. Set the PDM input parameter SYSOPCOM=Y to display the VMS
OPCOM prompt “Reply with a SUPRA PDM Command” at regular
intervals at enabled PDM operator terminals.

2. Set the PDM input parameter OPERATOR=OPERn, where n is an
operator number in the range of 1 to 12, to identify the PDM operator
ID.

3. Enable one or more operator terminals by entering the following VMS
command: REPLY/TEMPORARY/ENABLE=OPERn, where n is the
operator number specified with the PDM input parameter
OPERATOR=. The OPER privilege is required for this command.

The PDM then sends all messages to the operator console. It sends
messages that do not have a severity of “L” to the PDM operator ID
specified in the PDM input file. You can specify only one operator ID per
PDM (for example, OPERATOR=OPER9); however, you can enable as
many operator terminals per operator number as you wish.

At least one operator terminal should be enabled for the PDM at all times.
Should all operator terminals be disabled, VMS OPCOM will cancel the
outstanding Reply request, disabling communication with the detached
PDM process. If this occurs, you can reestablish communication by
causing the PDM to send another operator message. A database load,
for example, will cause the PDM to reestablish operator communication
with VMS OPCOM.

You can always communicate with the PDM using CSIOPCOM.

Communicating with the PDM through the VMS REPLY command

System Administration Guide 189

The Database Access Program, identified by the logical CSIDAP, also
displays messages on the central operator console. To ensure that
messages from the Database Access Program go to the same operator
terminals as those from the central PDM image, assign the logical name
CSI_CONSOLE to the operator ID used for the PDM messages. The
operator ID used for PDM messages is set using the PDM input
parameter CONSOLE. See “PDM_LOGICALS_*.COM” on page 87 for
details on defining CSI_CONSOLE. See “Entering parameters for the
PDM input file” on page 125 for details on setting the PDM input
parameter CONSOLE.

You can prevent the PDM operator messages from appearing on a
terminal by entering REPLY/DISABLE=OPERn or setting the PDM input
parameters CONSOLE and SYSOPCOM to N.

When the PDM input parameter SYSOPCOM=Y, VMS OPCOM issues
operator prompts at enabled operator terminals at regular intervals (5 or
10 minutes). The following is an example operator prompt:
%%%%%%%%%%% OPCOM 15-Nov-1996 11:32:46.43 %%%%%%%%%%%

Request 143, from user CONTROLLER on VMS1

CSTI006O QAPROC, Reply with a SUPRA PDM command.

Enter the PDM operator commands in response to the operator prompts
using the following format:

REPLY /PEND =
/TO =







 request-no "pdm-operator-command "

/PEND =
/TO =







Description Required. Specifies the disposition of PDM operator command requests.

Options /PEND= Keeps the request in a wait state, thereby retaining the
same message number.

/TO= Completes the request and causes a new number to be
generated for the next message.

Consideration Refer to the VMS documentation for details of this command.

Chapter 5 Communicating with the SUPRA Server PDM

190 P25-0130-47

request-no

Description Required. The message number to which you are replying.

Format 1–n digits

"pdm-operator command "

Description Optional. A PDM operator command. (See “Using the PDM operator
commands” on page 146 for descriptions of all PDM operator
commands.)

Format Must be enclosed in double quotation marks.

General consideration

Do not use the [AT node-name] parameter with PDM operator
commands that are issued through VMS OPCOM, because the request
number you specify uniquely identifies the PDM.

The following example illustrates a sample operator session in which the
operator enters a selection of PDM operator commands. Bold type
indicates user input, normal type indicates system response.
$

%%%%%%%%%%% OPCOM 9-JUN-1996 16:29:45.55 %%%%%%%%%%%

Request 200, from user ROGERS on CORP1

CSTI006O MARK22, Reply with a SUPRA PDM command.

$ REPLY/TO=200 "DISPLAY/DATABASES ALL"

DISPLAY/DATABASES ALL

16:35:46.53, request 200 was completed by operator _CORP1$TNA85:

%%%%%%%%%%% OPCOM 9-JUN-1996 16:35:46.54 %%%%%%%%%%%

Message from user ROGERS on CORP1

CSTI064R NAME G/S GROUP SIZE STATE TASKS FUNCTIONS
THREADS

 MRPDBO G 000140 458716 A 1 0
0

%%%%%%%%%%% OPCOM 9-JUN-1996 16:35:46.54 %%%%%%%%%%%

Request 201, from user ROGERS on CORP1

CSTI006O MARKR22, Reply with a SUPRA PDM command.

Communicating with the PDM through the VMS REPLY command

System Administration Guide 191

$ REPLY/PEND=201 "DISPLAY/TASKS ALL"

%%%%%%%%%%% OPCOM 9-JUN-1996 16:36:05.07 %%%%%%%%%%%

Message from user ROGERS on CORP1

CSTI061R MRPDBO(AU-000140) TASKNAME TASKID MODE
STATE

 _TNA81: 0002 U I

$ REPLY/PEND=201 "SHUTDOWN/FORCE MARKR22"

$

%%%%%%%%%%% OPCOM 9-JUN-1996 16:36:21.98 %%%%%%%%%%%

Message from user ROGERS on CORP1

CSTI022E MRPDBO[000140], _TNA81:, 0002, *DBTEST*,
 task dynamically signed off - reason code is 14.

$

%%%%%%%%%%% OPCOM 9-JUN-1996 16:36:22.42 %%%%%%%%%%%

Message from user ROGERS on CORP1

CSTI004I MARKR22, Data Base MRPDBO[000140] unloaded.

$

%%%%%%%%%%% OPCOM 9-JUN-1996 16:36:22.42 %%%%%%%%%%%

Message from user ROGERS on CORP1

CSTI002I MARKR22, SUPRA PDM release 2.4 terminated.

$

Chapter 5 Communicating with the SUPRA Server PDM

192 P25-0130-47

6
Setting up the SUPRA Server Directory
database

The DBA accesses the SUPRA Server Directory database to define and
maintain database descriptions using these facilities:

♦ DBA functions. Database administrators use the DBA functions to
define and maintain:

- The SUPRA Server Directory database itself (SUPRAD)

- User database and data set descriptions stored on the SUPRA
Server Directory database

- Logical data items stored on the SUPRA Server Directory
database

- Logical views stored on the SUPRA Server Directory database

 In addition, the Directory controls:

- Database users

- Access rights

- Enrolling of RDML programs

 The DBA utility also provides the following tools:

- Recovery functions

- DBA utilities

 Refer to the SUPRA Server PDM Database Administration Guide
(UNIX & VMS), P25-2260, for details on how to use the DBA
functions. Refer to the SUPRA Server PDM Utilities Reference
Manual (UNIX & VMS), P25-6220, for details on DBA utilities.

System Administration Guide 193

♦ Fast utilities. The DBA or system administrator uses Fast utilities to
make physical changes to databases, including the Directory
database SUPRAD. You can use Fast utilities both online and in
batch. Refer to the SUPRA Server PDM Utilities Reference Manual
(UNIX & VMS), P25-6220, for details on Fast utilities.

♦ Batch validate, compile, and print. The batch validate, compile,
and print program, called COMBAT, is supplied with the DBA
validate, compile, and print functions. The DBA can invoke COMBAT
from within SUPRA DBA or from the command level.

 COMBAT allows the DBA to submit a database validate, compile,
and/or print function to the batch queue. Refer to the SUPRA Server
PDM Database Administration Guide (UNIX & VMS), P25-2260, for
an explanation of the batch validate, compile, and print functions.

♦ Format data sets. The format program, called CSTUFMT, runs
from SUPRA DBA or from the command level. Format creates and
formats the physical files that will hold the data.

♦ Format, populate, and check indices. The index facilities program
identified by the logical CSTUIDX runs both from DBA and from the
command level. CSTUIDX formats the physical files that will hold the
index records and populates these files from data already held on
your data files. Once populated, you need only activate your index
files to write an index record each time you write a data record. The
check function verifies index files that have been deactivated for any
length of time. The check function will correct any inaccurate index
records.

Chapter 6 Setting up the SUPRA Server Directory database

194 P25-0130-47

The SUPRA Server Directory database
The SUPRA Server Directory is stored on the database SUPRAD.
SUPRAD consists of the following three data sets and task log:

♦ UDD1—A primary data set holding entities and some attributes

♦ UDD2—A related data set holding relationships between entities

♦ UDD3—A related data set holding comment information, bound view
data, and view access definitions

♦ UDDTLOG—Task log for roll back recovery holding before images

You can optionally define a system log for roll forward recovery for the
SUPRA Server Directory.

The following figure shows the structure of the SUPRAD database in
more detail. The lines in the figure represent linkpaths between the data
sets. Specify the primary linkpaths, UDD1LK21 and UDD1LK31, when
you run UNLOAD/RELOAD or when you run the Statistics utility from
DBA utilities.

Related Data Set

UDD2
Relationship

Data

Related Data Set

UDD3
Comments,

etc.

Primary Data Set

UDD1
Entities &
Attributes

UD
D1

LK
22 UDD1LK32

UD
D1

LK
21

UD
D1

LK
23

UDD1LK31

The SUPRA Server Directory database

System Administration Guide 195

Estimating the SUPRA Server Directory data set sizes
The Directory data sets, like your private data sets, operate more
efficiently if they are sized properly. Use the following general guidelines
to estimate the sizes of the Directory data sets for your system:

♦ Each entity requires two records on UDD1, one record on UDD2, and
one record on UDD3.

♦ Each relationship requires one record on UDD2. Each entity has at
least one relationship; many entities have more. You can estimate
the number of relationships as the number of entities times four.

♦ UDD2 requires two and a half times as many records as UDD1.

♦ Each line of comment or navigation definition requires one record on
UDD3.

♦ The Directory contains special information used by Directory
maintenance and the definition of SUPRAD. Allow for this in your
estimates as shown in the following table:

Directory
data set

Records storing
directory
maintenance
information

Records
storing
SUPRAD
definition

Total
records
required
by data set

Total
records
available
at install

Blocks
required

UDD1 500 200 700 5000 1200
UDD2 1100 450 1550 10020 3120
UDD3 2500 300 2800 8000 2048

Chapter 6 Setting up the SUPRA Server Directory database

196 P25-0130-47

Setting up the SUPRA Server Directory user names
The Directory contains initial user names for your use. The following two
user names, both of which have blank passwords, are included:

♦ DATABASE-DESCRIPTIONS—Accesses all the databases, views,
and so on, you will define.

♦ DATA-DICTIONARY—Accesses only the definition of the Directory,
SUPRAD.

Sign on to DBA with the user name DATABASE-DESCRIPTIONS to
create less privileged user names for your staff, then change the
passwords of the two initial user names. Note that certain utilities may
require you to reset the password on either or both of the above user
names to the original default of blank.

The Directory also contains the user name PUBLIC. When Relational
Data Manager (RDM) programs are preprocessed, PUBLIC enrolls the
programs onto the Directory. Program enrollment provides the DBA with
a record of when the program was last modified and how many times it
has been preprocessed. If you choose to remove the user name
PUBLIC, you can still preprocess and run programs, but no record of
them is made in the SUPRA Server Directory.

The user name UTILITIES is used only to execute the FORMAT, DBA
utilities, or RECOVERY functions. This user name is not stored on the
Directory. You must use the user name UTILITIES when running the
FORMAT, DBA utilities, or RECOVERY functions against SUPRAD. You
will learn the password at installation. Since this user name is not stored
on the Directory, you cannot change the password.

In some cases the UTILITIES username cannot be used to format the
TASKLOG for SUPRAD. In those cases, you must be sure
SUPRAD.MOD is unloaded from the PDMs memory and then invoke
format directly from the DCL prompt:
$ RUN CSIOPCOM

UNLOAD/FORCE SUPRAD

$ RUN CSTUFMT

The SUPRA Server Directory database

System Administration Guide 197

Changing the definition of the SUPRA Server Directory
database

You can change certain parts of the definition of the Directory database,
SUPRAD. This database is defined on the Directory and you must sign
on to DBA with the user name DATA-DICTIONARY to modify it. You
cannot alter the structure of SUPRAD, but you can change the following
characteristics:

♦ Data set size(s)

♦ File specifications

♦ File shadowing

♦ System logging

♦ The number of buffers

♦ The maximum number of update tasks allowed

After you have been running the SUPRA Server Directory for some time,
you may need to modify the Directory definition if:

♦ A LOAD status occurs when you sign off from DBA. This indicates
that UDD2 and/or UDD3 have reached their load limit.

♦ A FULL status occurs. This indicates that at least one of the UDD
files has no free space left.

Chapter 6 Setting up the SUPRA Server Directory database

198 P25-0130-47

Creating a recovery point
A recovery point is a point from which a database can be recovered after
changes have been made. Before making any changes to SUPRAD, you
must create a good recovery point. Situations that require a recovery
point include:

♦ Changing database metadata; for example, changing file size, adding
data items, changing lengths of data items, deleting data items, and
resetting load limits on data sets.

♦ Compiling a database description, such as SUPRAD.MOD.

♦ Moving your compiled database description to a different disk or
directory location, if system logging is defined.

♦ Reorganizing the data using either DBA utilities or Fast utilities.
Refer to the SUPRA Server PDM Utilities Reference Manual (UNIX &
VMS), P25-6220.

♦ Running applications that do not do task logging.

♦ Establishing a base for recovery after a device failure.

To create a recovery point for your SUPRA Server Directory database,
follow these steps:

1. Unload SUPRAD from the PDM.

2. Dump the SUPRAD System Log Files, if any.

3. Format the SUPRAD System Log Files, if any.

4. Use the VMS Backup utility to back up all SUPRAD files, including:

- Compiled database description (SUPRAD.MOD)

- Data sets (UDD1.CSI, UDD2.CSI, UDD3.CSI)

- Task log (UDDTLOG.CSI)

- System log dump files, if using system logging

The dumps from the system logs can be used to roll forward from the
previous recovery point up to the current recovery point.

Changing the definition of the SUPRA Server Directory database

System Administration Guide 199

Modifying the SUPRA Server Directory database
The Directory is central to the operation of SUPRA Server. Follow these
steps before modifying your Directory:

1. Ensure that no user is signed on to the Directory running Directory
reports, RDM applications, DBAID, SPECTRA (VAX only), or RDML
language preprocessors.

2. Create a recovery point for the Directory database SUPRAD (see
“Creating a recovery point” on page 199).

Keep a copy of a listing of the Directory database to be sure of its original
details. This listing is contained in a file named SUPRAD.LIS.

To modify the Directory database (SUPRAD), take these steps:

1. Sign on as user name DATA-DICTIONARY.

2. Make your changes, referring to the table in this section for required
actions.

3. Validate and compile SUPRAD.

4. Back up the new Directory-compiled database description, the UDD
data sets, the UDDTLOG, and the System Log File if you are using
one (create a new recovery point).

Compiling SUPRAD generates a new compiled database description file
(SUPRAD.MOD unless you have changed the file specification).
However, the SUPRA Server PDM continues to use the previous
SUPRAD.MOD until it is unloaded from the PDM. When a user signs on,
either implicitly (after using FORMAT) or explicitly (in an application),
SUPRA Server uses the new SUPRAD.MOD.

Chapter 6 Setting up the SUPRA Server Directory database

200 P25-0130-47

If you have made changes to the definition of the task log for SUPRAD,
you must format a new task log after compiling SUPRAD. This is
essential if you change the task log size, the task log block size, or the
value of MAXTASKs. The following table lists all possible changes to
SUPRAD and the corresponding actions required after compilation.

If you have defined a system log for SUPRAD, you must format a new
system log after making your Directory modifications. This is essential if
you change the system log number of blocks or the system log block
size. The following table lists all possible changes to SUPRAD and the
corresponding actions required after compilation.

SUPRA DBA uses the Directory to operate. During maintenance, the
Directory might not be valid. Therefore, to sign on to SUPRA DBA
without signing on to the Directory, use the special user name UTILITIES.
The user name UTILITIES gives access only to FORMAT, UTILITIES,
and RECOVERY. Use these functions to re-create a valid Directory, then
sign on as usual.

If you select FORMAT, UTILITIES, or RECOVERY from a user name
other than UTILITIES, the system signs off for you regardless of whether
you have actually run the utility. If you select another function, SUPRA
Server signs on again using your original user name.

In some cases the UTILITIES username cannot be used to format the
TASKLOG for SUPRAD. In those cases, you must be sure
SUPRAD.MOD is unloaded from the PDMs memory and then invoke
format directly from the DCL prompt:
$ RUN CSIOPCOM

UNLOAD/FORCE SUPRAD

$ RUN CSTUFMT

The following table lists the database details on the Directory that you can
change and the actions you must take if you make the change:

Changing the definition of the SUPRA Server Directory database

System Administration Guide 201

Parameter type

Parameter name

Action required as a result of the
modification

Database Details DATABASE-PASSWORD No further action.
 MAX-HELD-RECORDS Do not reduce this value from 200.
 MAX-TASKS Format a new task log. The size of the

task log may change. The value it holds
must match that in the compiled
database description.

 MAX-UPDATE-TASKS Format a new task log.
 SHADOW-OPTION If you changed this from N, make a copy

of the relevant data sets, using the
names used in the file specifications.

 SINGLE-TASK If you change this to Y, SUPRA Server
sets MAX-TASKS and MAX-UPDATE-
TASKS to one. Therefore, format a new
task log. If you changed it to N, no
further action is required unless you
change MAX-TASKS or MAX-UPDATE-
TASKS.

Task Log Details TASK-LOG-BLOCK-SIZE Format a new task log.
 TASK-LOG-NO-OF-

BLOCKS
Format a new task log.

 TASK-LOG-FILE-SPEC Copy or rename the existing task log to
the specified file or format a new task
log.

 TASK-LOG-SHADOW-
FILE-SPEC

Copy or rename the existing task log to
the specified file or format a new one.

System Log
Details

SYSTEM-LOG-BLOCK-
SIZE

Format a new system log.

 SYSTEM-LOG-NO-OF-
BLOCKS

Format a new system log.

 FILE-1-FILE-SPEC If just created, format a new system log.
If changed, copy the existing system log
or format a new one.

 FILE-2-FILE-SPEC If just created, format a new system log.
If changed, copy the existing system log
or format a new one.

Chapter 6 Setting up the SUPRA Server Directory database

202 P25-0130-47

Parameter type

Parameter name

Action required as a result of the
modification

System Log
Details (cont.)

FILE-1-SHADOW-FILE-
SPEC

Copy or rename the system log or format
a new one.

 FILE-2-SHADOW-FILE-
SPEC

Copy or rename the system log or format
a new one.

Data Set Buffers NUMBER-OF-COPIES-
OF-BUFFER

No further action.

 Buffer use (which data sets
share which buffers,
including deleting buffers
and creating new buffers).

No further action.

Data Set Details TOTAL-LOGICAL-
RECORDS

Unload and reload data set.

 LOGICAL-RECORDS-PER-
BLOCK

Unload and reload data set.

 CONTROL-INTERVAL Unload and reload data set.
 LOAD-LIMIT Unload and reload data set.
 RECORD CODES Cannot be changed.
 DATA ITEMS Cannot be changed.
Data Set File
Specifications

ALLOCATION - 1/2/3/4 Unload and reload data set.

 FILE-SPEC - 1/2/3/4 Copy or rename data set.
 SHADOW-FILE-SPEC -

1/2/3/4
Copy or rename data set.

Changing the definition of the SUPRA Server Directory database

System Administration Guide 203

Modifying the SUPRA Server Directory data sets
You can increase the size or change the load limit of Directory data sets
in UDD1, UDD2, and UDD3 using either:

♦ Fast utilities by changing the /TOTAL-RECORDS and /LOAD-LIMIT
qualifiers (see “Using Fast utilities on UDD files” below).

♦ DBA utilities by using the unload and reload function (see “Using
DBA utilities on UDD files” on page 206).

Considerations

♦ You cannot use the Expand and Reset functions to modify Directory
data sets UDD1, UDD2, and UDD3, because Expand and Reset
update both the Directory and the data sets.

♦ Do not confuse the old SUPRAD.MOD and the new SUPRAD.MOD.
If UDD1, UDD2, and UDD3 do not exactly match SUPRAD.MOD, do
not sign on to DBA, explicitly or implicitly, except with the user name
UTILITIES.

Using Fast utilities on UDD files
You can use Fast utilities (CHANGEDB) to modify the UDD files.

Before you execute the Fast utilities against UDD files, create a recovery
point for your Directory (see “Creating a recovery point” on page 199). To
change the Directory data sets using Fast utilities, enter the command
CHANGEDB at the command line with a list of qualifiers. You must
specify the user name DATA-DICTIONARY to modify the Directory. For
example, to increase the file size and reset the load limit for the related
data set UDD2, enter the CHANGEDB command in the following format:
$ CHANGEDB /DATASET=UDD2 -
-$ /RELATED /TOTAL_RECORDS=20000 -
-$ /LOAD_LIMIT=90 -
-$ SUPRAD -
-$ /USERNAME=DATA-DICTIONARY

Chapter 6 Setting up the SUPRA Server Directory database

204 P25-0130-47

Alternatively, to alter more than one Directory data set at a time, use a
change file containing a list of modifications. For example, the following
change file modifies UDD1, UDD2, and UDD3:
! Change file UDDCHANGE.DAT
/DATASET=UDD1 /PRIMARY /TOTAL_RECORDS=10000
/DATASET=UDD2 /RELATED /TOTAL_RECORDS=20000 /LOAD_LIMIT=90
/DATASET=UDD3 /RELATED /TOTAL_RECORDS=10000

You can include only data set parameters in a change file. You cannot
include the Directory Access parameters /USERNAME and
/PASSWORD, or the database parameters /SIGNON_DB_NAME,
/DB_PASSWORD, and /OUTPUT. Specify these parameters on the
command line.

For more information on using Fast utilities, refer to the SUPRA Server
PDM Utilities Reference Manual (UNIX & VMS), P25-6220.

Invoke Fast utilities with a change file as follows:
$ CHANGEDB -
-$ /CHANGE_FILE=UDDCHANGE.DAT -
-$ SUPRAD -
-$ /USERNAME=DATA-DICTIONARY

If you wish to use more than one physical file for any UDD data set,
remember that each UDD data set has a default file allocation of
(1,0,0,0)—all the records are held in the first file specified and none are
held in the other three. You must modify the file allocation value to reflect
the number of physical files you define for each UDD data set. Fast utility
usage, including details of file allocations, is described in more detail in
the SUPRA Server PDM Utilities Reference Manual (UNIX & VMS),
P25-6220.

Always create a recovery point for the Directory before you attempt any
modifications. See “Creating a recovery point” on page 199.

Changing the definition of the SUPRA Server Directory database

System Administration Guide 205

Using DBA utilities on UDD files
To unload/reload data sets using DBA utilities, perform the following
steps:

1. Create a recovery point for the SUPRA Server Directory database
SUPRAD (see “Creating a recovery point” on page 199).

2. Copy the existing SUPRAD.MOD file to another physical file. For
example:

 $ COPY SUPRAD.MOD SUPRAD.SRC

3. Sign on to DBA with the user name DATA-DICTIONARY and perform
the required changes. Change only one data set.

4. Validate and compile the database SUPRAD. This creates a new
SUPRAD.MOD file.

5. Exit from DBA and sign on again with the user name UTILITIES.

6. Select the Utilities function from the main menu.

7. Select the unload/reload function from the utilities menu (function 1
for primary data sets or function 2 for related data sets). Specify
SUPRAD.SRC as the source database file specification, and the new
SUPRAD.MOD (created in Step 4) as the target. You must preserve
the sequence of records on UDD2 and UDD3 when using
unload/reload utilities. If you do not, then DBA can go haywire.

8. Repeat Steps 1 to 7 for each data set you want to change. You must
invoke several utilities jobs, but you need to modify, validate, and
compile the SUPRAD database only once for the primary data set
UDD1, and once for the related data sets UDD2 and UDD3.

To unload and reload more than one Directory data set, first ensure that
only one utilities job at a time runs against the Directory. When the
utilities jobs finish, you can use the updated Directory, although taking a
recovery point first is recommended. Refer to the SUPRA Server PDM
Utilities Reference Manual (UNIX & VMS), P25-6220, for a detailed
description of DBA utilities.

Chapter 6 Setting up the SUPRA Server Directory database

206 P25-0130-47

7
Tuning your database

SUPRA Server is designed to provide optimum performance. When
installed and implemented correctly, SUPRA Server can provide good
response time and efficient work throughput. If your SUPRA Server
performance deteriorates, that is response time increases, and batch
jobs and application programs execute slowly, you can use these tuning
guidelines to examine the way your system is running and look for ways
to improve performance.

This chapter contains suggestions to help you tune your SUPRA Server
system to improve overall performance. It is important to use the
methods given in this chapter as guidelines only, not rules. You will find
that some methods have more effect on performance than others; tuning
is often a matter of trial and error.

Tuning can be broken down into the following general areas:

♦ System tuning

♦ Physical database tuning

♦ Logical database tuning

♦ Optimizing program design

This chapter discusses physical and logical database tuning, and efficient
program design.

System Administration Guide 207

Tuning your physical database
The first step in designing an efficient database is to normalize your
organization’s data. Data normalization involves reducing the
transactions and data flow pathways to their simplest form. You can then
use this framework as the basis for the physical database design. Refer
to the SUPRA Server PDM Database Administration Guide (UNIX &
VMS), P25-2260, for details on how to normalize your data.

Defining the file access method
You define the file access method for your database during database
definition, selecting either QIO or RMS. A selection of QIO allows the
PDM to choose the optimum access method on a file-by-file basis
according to whether the file is local or remote. If the file is local, the
PDM uses QIO access; if the file is remote, the PDM uses RMS access.
QIO access to files can be multithreaded and provides optimum
performance for local files. RMS access is single-threaded, which makes
it slower than QIO. However, it is the only access method supported by
DECnet. It is better to specify QIO for the file access method to allow the
PDM to determine the best access method. It is also preferable to keep
files on devices local to the PDM.

Avoiding fragmented files
It is important to keep disk files contiguous. The SUPRA Server
FORMAT utility attempts to create contiguous files; however, if this is not
possible, FORMAT creates fragmented files and warns you if the file is in
more than three fragments. You might also create fragmented files using
the DBA utility unload/reload function. In this case, no warning is
displayed.

Fragmented files cause performance to deteriorate. To eliminate
fragmentation, you should perform a VMS BACKUP and RESTORE on
each disk on a regular basis. Also, you can use a VMS
COPY/CONTIGUOUS command.

Chapter 7 Tuning your database

208 P25-0130-47

Using data sets
An important consideration for data set usage is the amount of wasted
space in each block. For example, if records are 260 bytes long and
blocks are 512 bytes long, each block holds one record plus 252 bytes of
wasted space. You can avoid this wasted space by reducing the size of
each record by four bytes, if possible, or by increasing the block size so a
smaller proportion of the file is wasted. This is a major consideration
when you use very large files.

Evaluating redundant data items
Redundant data items are data items that appear in more than one data
set. Redundant data items can improve the speed of data retrieval.
However, they increase the processing time needed to update
information and can cause database inconsistencies. Before you define
redundant data items, consider the trade-off between speed of retrieval
and speed of update.

Using primary data sets
You should retain primary data sets for keyed access only. Non-keyed,
repeating data can be moved from primary data sets to related data sets.
This reduces the size of primary records, and allows more
records-per-block and fewer out-of-block synonyms in the primary data
sets. Transaction data contained in primary data sets can be converted
to related data sets. For instance, if a primary data set contains a large
amount of optional comment data, you can place this comment data in an
associated related data set.

Tuning your physical database

System Administration Guide 209

Optimizing primary record retrieval
The PDM uses a hashed addressing technique, based on the value of
the record key, to calculate a home address in the file for each primary
record. The record key is randomized to give a relative record number
(RRN) or home address. In some cases, two or more record keys
randomize to the same RRN. These records are known as “synonyms.”
When synonyms occur, SUPRA Server places the first record in the
home address and chains all subsequent synonyms together (a
“synonym chain”) as shown below:

A B C

A, B, and C are primary records whose record keys have all randomized
to the same RRN. To retrieve record C (the last record in the chain), the
PDM calculates the home address, retrieves A, finds that the record keys
do not match, follows the chain to B, finds that the records keys still do
not match, and then follows the chain to retrieve C.

The PDM attempts to place all synonyms in the same block so programs
can retrieve any record in the synonym chain with only one physical I/O
operation. The block in which a record’s key value hashes to is called the
home block for that record. If there is not enough room in the home
block for a synonym record, the PDM places it in another block. Each
block that the PDM has to search to retrieve a given record may require
another physical I/O operation. The worst case, using the above
example, would be if each synonym were in a different block. Three
physical I/Os may be necessary to retrieve record C. If the file is
fragmented so that the blocks are not contiguous, the above example
could require even more physical I/Os to complete.

Chapter 7 Tuning your database

210 P25-0130-47

To optimize system performance, you should try to minimize the number
of out-of-block synonyms. Since synonyms are bound to occur, you need
to leave a certain percentage of file space free so most records can be
placed in the home block. The following figure shows the out-of-block
synonym rates measured at various packing densities and blocking
factors.

35

30

25

20

15

10

5

0

40

1

5

10

40
20

 0 10 20 30 40 50 60 70 80 90 100

Out-of-
Block

Synonym
Rate (%)

File Density (% full)

Block Size
(records
per block)

The preceding figure describes the two factors that affect the out-of-block
synonym rate:

♦ File density—Number of records in use as a percentage of file
capacity, also known as the packing density

♦ Block size—Number of records per block

You can substantially reduce the out-of-block synonym rate by lowering
file density and increasing block size. As a general rule, a density of 80%
provides an acceptable level of out-of-block synonyms. The ideal block
size depends on your type of application and the space you have
available. However, it is possible to increase the block size to such an
extent that it takes too long to read a list. Therefore, you must balance
the benefits of reducing out-of-block synonyms against the data transfer
time. A large data transfer time may give your task improved
performance; however, it may degrade system efficiency.

Tuning your physical database

System Administration Guide 211

Using related data sets
The PDM stores related records in linked lists. Each related record can
be associated with one or more primary records. The objective of
blocking related data sets is to maintain a linked list of average length
within one block. This means only one physical I/O is needed to perform
successive actions on that single list (“chain”).

You specify the block size in the logical-records-per-block field when you
define the file specifications for related data sets. Refer to the SUPRA
Server PDM Database Administration Guide (UNIX & VMS), P25-2260,
for more information on specifying block size.

To work out the optimum block size for your application, establish the
average length of a list of related records connected by a primary
linkpath. You may need to return to the file specification screen several
times to alter and test the effect of different block sizes. The values
entered for control interval and load limit also affect whether a list of
records overflows onto another block. The following sections discuss
these considerations in more detail.

An important consideration for related data set usage is the amount of
wasted space in each block. For example, if records are 260 bytes long
and blocks are 512 bytes long, each block holds one record plus 252
bytes of wasted space. You can avoid this wasted space by reducing the
size of each record by four bytes, if possible, or by increasing the block
size so a smaller proportion of the file is wasted. This is a major
consideration when you use very large files.

Avoiding fragmented chains
The record chains of related data sets that are often updated may also
become fragmented. Ideally, all the records for any given chain should
be placed in the same control interval.

To avoid the deterioration in performance caused by fragmented chains,
run the Fast utilities on volatile related data sets regularly. This may bring
fragmented chains back into the same control interval for data sets that
are below the LOAD level. Refer to the SUPRA Server PDM Utilities
Reference Manual (UNIX & VMS), P25-6220, for a description of Fast
utilities.

Chapter 7 Tuning your database

212 P25-0130-47

Defining the control interval and load limit
You define values for the control interval and load limit at the data set file
specification screen in DBA. Refer to the SUPRA Server PDM Database
Administration Guide (UNIX & VMS), P25-2260, for information on the
DBA specification screens. The control interval specifies the number of
related records whose allocation the PDM controls as a single unit. The
load limit specifies the load capacity for the control interval expressed as
a percentage. The control interval and load limit values affect the
addition of records to a related data set in the following ways:

♦ If an application program adds a record to an existing list of related
records, the PDM places the new record in a control interval that
contains other records in the same list, if possible.

♦ If the new record is the first record of a new list of related records, or
belongs to a list in a full control interval, the PDM puts it in a control
interval that is below its load limit, if there is one.

♦ A control interval that is above its load limit accepts records only in
lists that have already started in that control interval. However, when
all control intervals are above their load limit, new lists may start in
one of these control intervals, and subsequent sign-offs return the
status LOAD.

The searching the PDM must do in the last case can cause severe
performance degradation. Sign-on and sign-off PDML functions, and
most subsequent PDML function requests, can remain pending while this
search is ongoing.

Sometimes a new list starts in a block in which other lists have already
started because the block is in a control interval that is below its load
limit. This could cause parts of each list to overflow into different blocks
or control intervals if many other additions are performed, thus causing
chain fragmentation across control intervals. One technique that avoids
this situation when loading a related data set is to force each new list to
start in a new control interval by setting a low load limit. You can later
use the DBA RESET function to increase the load limit after determining
the average length of your lists. Refer to the SUPRA Server PDM
Database Administration Guide (UNIX & VMS), P25-2260, for a
description of how to use the RESET function.

Tuning your physical database

System Administration Guide 213

Establishing the primary linkpath
A related record can be a member of as many relationships or linkpath
chains as needed. However, since only one occurrence of the record
exists for all the relationships, it cannot be placed in an optimum physical
location for each linkpath of which it is a member. It is important to
identify the primary linkpath for each related data set and ensure that as
many programs as possible use it when adding records. You need the
following information to determine the primary, or preferred, linkpath:

♦ Average length of each chain

♦ Frequency of access along each chain

As a rule, the primary linkpath should either identify the longest chains or
the chains most frequently accessed. In practice, the primary linkpath is
usually a compromise between the two.

To ensure that programs use the primary linkpath, either specify the
primary linkpath to the PDM through the PDML linkpath parameter, or
make sure all logical views that are allowed to add records to the file use
the primary linkpath name in the ACCESS statements. (Note that in this
context, “primary” refers to the preferred linkpath chain.)

Chapter 7 Tuning your database

214 P25-0130-47

Using coded records
Processing long lists of related records is time consuming. You can
alleviate this problem by using coded records with a header-and-detail
structure. For example, in the following figure, the lines on either side of
the related records represent different linkpaths. You can scan down the
HD records until you are close to the required record. You can then
change linkpaths and scan serially through the DT records.

Related Records

HD

DT

DT

DT

HD

Primary
Record

DT

DT

DT

HD

Code-directed reads are more efficient than reading all the records on the
linkpath until you find a record with the required code.

Tuning your physical database

System Administration Guide 215

Defining logical units of work
SUPRA Server is designed to process logical units of work. A logical unit
of work is a group of database requests that must be completed together
or not at all. For example, a logical unit of work involving transferring
funds from a checking to a savings account might require subtracting the
amount from an account balance record in a checking data set, and
adding the amount to an account balance record in a savings data set.
Either the entire logical unit of work or none of it should be done. Partially
completed logical units of work result in logical data corruption. As in this
example, if the application were to only deduct the amount from the
checking account without also crediting the amount in the savings
account, the account balance would be incorrect. This is an example of
logical data corruption.

Any errors that occur within the processing of the logical unit of work
require that all updates that occurred within the logical unit of work be
reset. This can be accomplished by the application issuing a RESET
function. However, if no problems occur while processing the logical unit
of work, then the application can make that entire logical unit of work
permanent by issuing a COMMIT function.

Any RESET or COMMIT function will reset or make permanent,
respectively, all updates that have occurred since the most recent
COMMIT, RESET, or SINON function.

The following example illustrates a sample program structure which could
be used to implement a logical unit of work:
INITIALIZATION (Sign on)

While not finished, do:

 screen input and validation

 Database Update Processing

 If error, then reset

 else commit

end

TERMINATION (Sign off)

If your program updates database records, the records are held until the
next RESET, COMIT, or SINOF.

If a task terminates before signing off, as with a CONTROL/Y, a VMS
STOP command, or a DELETE/ENTRY on a batch job, the PDM will
automatically issue a RESET and SINOF on behalf of the aborted task.
This is called a dynamic sign off.

Chapter 7 Tuning your database

216 P25-0130-47

Managing buffers

You can improve online responsiveness and dramatically reduce some
batch run times by using PDM Cache, a high-performance buffer-
handling option (see “Improving database performance with PDM cache”
on page 219).

Buffer organization and buffer use at run time affect performance. There
is a trade-off between memory and disk I/O performance. As your
buffers become larger and more numerous, they occupy more memory,
but your disk I/Os become fewer and larger. As you reduce the number
and size of your buffers, you increase the memory available, at the cost
of disk I/O performance. However, since commercial applications more
often suffer from being I/O-bound than memory-bound, you should aim to
improve disk I/O. Consider the following when deciding on your buffer
strategy:

♦ You can allocate a pool of buffers defining the areas used for input
from and output to primary and related data sets. The number of
buffers in the buffer pool depends on how you use your database.
For example, a multiuser database needs a larger pool of buffers
than a single-user database.

♦ The PDM flushes the buffer contents to disk whenever a task
performs a commit or signs off. The PDM also writes the buffer
contents to disk when a task needs a block which is not in memory
and no unused buffers exist. A reset also causes buffer flushes.

♦ The size of a data set record helps determine buffer size. The PDM
calculates the size of a buffer automatically using the maximum block
size of the data set. For example, if a data set contains five 300-byte
records per block, its block size must be at least 1536 bytes.

♦ It can be useful to share buffers among data sets with the same
block size. However, if data sets with different block sizes use the
same buffer pool, the size of all buffers in the buffer pool will be set to
the largest block size of any data set associated with the buffer pool.

Tuning your physical database

System Administration Guide 217

♦ Related data sets are organized with all records on a chain as close
together as possible. A large value for records-per-block allows
many serial accesses without disk I/O. It can be helpful to specify a
large number of records-per-block to cut down the number of I/Os.

♦ Another factor affecting the number of copies of buffers is
simultaneous use of the database by multiple tasks. If the only copy
of a buffer is in use, then another task must wait until the buffer is
free, which may severely degrade performance. In a multitasking
environment, you should monitor buffer handling to avoid thrashing.
Thrashing takes place when excess I/O prevents useful work. You
can change the number of buffer copies, alter the way buffers are
shared between data sets, recompile the database, and monitor the
performance of the database.

Chapter 7 Tuning your database

218 P25-0130-47

Improving database performance with PDM cache
You can improve online responsiveness and dramatically reduce some
batch run times by using PDM Cache. PDM Cache is a high-
performance buffer-handling option which reduces CPU usage by the
PDM server process. With PDM Cache, the PDM server process
employs an alternate algorithm to search the buffer pool. This algorithm
allows the use of larger buffer pools without dramatically draining the
computer’s processing reserve.

If PDM Cache is enabled without implementing the necessary tuning,
performance benefits may be negligible. To effectively use PDM Cache,
follow the guidelines below and use the DBA Toolkit offered through
Cincom BCS Client Services. DBA Toolkit offers a dbmod generator, a
PDM Monitor, a Fast Database Schema Generator utility, and a database
statistics report generator.

Database performance tuning is a complex, ongoing activity dependent
on numerous criteria and requiring regular monitoring and adjustments.
There is no single setup which is optimal for all sites or even for the same
site at different times. However, one of the most important ingredients in
tuning any application’s performance is its use of memory buffers.
Tuning buffer use will allow you to maximize the benefits of PDM Cache.
To effectively tune buffer use, it is helpful to review how buffers are
searched.

Tuning your physical database

System Administration Guide 219

Understanding buffer search algorithms
When data records are accessed from a SUPRA Server database, they
are maintained in memory buffer pools. These buffer pools are searched
when an application task requests a record. The following search
algorithms are used:

♦ Serial Scan—The list of buffers is linearly searched from beginning to
end until the desired buffer is found. This is the only method used by
the standard PDM. This method is used by PDM Cache V2 when
there are fewer than 20 buffers (see Hashing).

♦ Last Used, First Searched—The list of pointers-to-buffers is
constantly reorganized so that the last referenced buffer is placed at
the beginning of the list. Thus, buffer handling is optimized for
subsequent records located in the same buffer. This method is used
by PDM Cache V1 unless there are sufficient private buffers to buffer
the entire data set (see RAM Disk).

♦ Hashing—An internal algorithm determines (within 20 buffer
searches) the actual buffer location within the list of buffers. The
buffer can then be accessed directly. This method is used by PDM
Cache V2 when there are at least 20 buffers.

♦ RAM Disk—A record’s RRN is used to directly locate the actual
buffer in memory. This method is activated in PDM Cache V1 when
the DBA assigns a private buffer to a single file with as many copies
of buffers as logical SUPRA blocks in the file. (A private buffer is a
buffer exclusively assigned to a single database file.)

Chapter 7 Tuning your database

220 P25-0130-47

The following table shows algorithm use under different conditions
(where n = the number of logical blocks in the file):

 Buffer search algorithms

PDM
cache use

Number
of buffers

Serial scan

Last used,
first searched

Hashing

RAM disk

None 1 to 19
20 to n-1
n

X
X
X

V1 1 to 19
20 to n-1n

 X
X

 X

V2 1 to 19
20 to n-1
n

X X
X

As can be seen in the preceding table, the number of buffers is a
determining factor in algorithm use. Serial scanning is most efficient for a
small number of copies of each buffer. As the number of buffers
increases, performance can seriously degrade due to the CPU time
required for each buffer search. In extreme cases, a search could
require more time than a physical I/O, thereby negating the advantage of
introducing a large number of buffers. This many-buffers situation is
where the performance benefits of PDM Cache can be realized.

For example, let us say you have a standard PDM with a small number of
buffers, and you wish to improve performance:

♦ If you add buffers without enabling PDM Cache, performance may
improve.

♦ If you continue to add buffers without enabling PDM Cache, you will
reach a point of diminishing returns. Eventually, performance will
degrade.

♦ If you enable PDM Cache without adding buffers, performance will
likely be unaffected.

♦ If you implement a combination of both PDM Cache and more
buffers, a dramatic reduction in run times is likely.

Tuning your physical database

System Administration Guide 221

Tuning for PDM Cache use

As with any caching product, PDM Cache V2 requires the memory
buffers to be populated with data before they can be effective. The PDM
Cache fills a buffer when the data is first accessed from disk; buffers are
not preloaded. Thus, there is no performance benefit for the first access
to a SUPRA logical block. For example, if buffers are provided to buffer
an entire data set in memory, and the data set is swept with DATBAS
RDNXT functions, performance will be no better than if a small number
of buffers had been allocated. After the buffers have been loaded with
data, subsequent reads should be much faster.

Minimizing dbmod load time
One of the impacts of using a large number of buffers is the additional
time required by the PDM server process to load the corresponding
dbmod file and create the memory buffers. If the dbmod is loaded once
for many users in UPDATE mode, this is not an issue. But if dbmod is
being unloaded and loaded between each job in a lengthy series of
SINGLE mode jobs, this can be time-consuming. You can circumvent
this problem by creating a special UPDATE dbmod with all the
characteristics of a SINGLE mode dbmod (MAX-UPDATE-TASKS=1, no
task or system logging, and no record-holding). This special dbmod can
then allow batch jobs to sign on in UPDATE mode and still have
exclusive use of the dbmod.

This special UPDATE dbmod cannot be generated with the standard
csidba utility. It can only be generated using the dbmod generator
feature of DBA Toolkit offered through Cincom BCS Client Services. Any
support issues concerning this special dbmod must be handled by Client
Services.

Chapter 7 Tuning your database

222 P25-0130-47

Optimizing data set buffering
To take full advantage of PDM Cache, you must allocate the proper
number of buffers to each data set. The proper number will vary by data
set depending on the physical size of the data set and its activity. It will
also vary by site depending on CPU speed, system load, and available
memory. Small data sets and/or data sets with low I/O rates require
fewer buffers. Larger data sets and/or data sets with high I/O rates
require more buffers.

Before you can optimize your data set buffers, you must collect statistics
about your database activity, particularly the logical I/O (LIO) and physical
I/O (PIO) rates for each data set. A physical read is a read which
requires disk access, while a logical read without a physical read is a
buffer hit (an in-memory read which does not require disk access). LIOs
are good for performance; PIOs are bad for performance. Providing
more buffers increases the likelihood of an LIO over a PIO.

I/O statistics are written to the PDM log file when a file is closed (if the
PDM input parameter STATISTICS=Y). I/O statistics can also be
gathered online using the PDM Monitor feature of the DBA Toolkit.
However, before making your buffer allocation decisions, you must also
take into account the issue of PDM process memory (discussed next).

Tuning your physical database

System Administration Guide 223

Tuning PDM process memory
The more buffers you add in a dbmod, the more memory you need to
allocate to the PDM server process. The amount of memory allocated
depends on how much you have and how much you can afford to give to
the process. However, once PDM Cache has been enabled, increasing
buffers is “the name of the game.” Your goal is to balance performance
and memory usage. Ideally, the PDM server process would have enough
working set allocated to result in a zero page-fault rate (always finding
the desired pages in memory).

The memory that a particular dbmod is using can be determined after it is
loaded by using the CSIOPCOM command DISPLAY/DATABASES and
dividing the displayed size by 512.

If you increase buffers in a dbmod, the PDM server process will require
more virtual memory to load the dbmod into memory. Insufficient virtual
memory in the PDM server process will result in a CSTI140F operator
message and an IDBM status returned to the application. PDM virtual
memory is controlled by the PAGE_FILE parameter in the CSISTRINP
file. Check the PAGE_FILE setting to see if it is adequate (using the
method discussed later).

Avoid trading a data set I/O for a pagefile I/O. Even if the PDM server
process has enough pagefile quota, you must also ensure that it has
enough working set to run at optimum efficiency. If the PDM’s working
set is too small, the operating system will spend too much time page-
faulting the PDM server process. The PDM working set is controlled by
the EXTENT parameter in the CSISTRINP file. You need to see if the
EXTENT setting is adequate (using the method discussed next).

To see if the PAGE_FILE and EXTENT settings are adequate, use the
following DCL command after the PDM has been through heavy use:
$SHOW PROCESS/ACCOUNTING/IDENTIFICATION=pdm-pid

Chapter 7 Tuning your database

224 P25-0130-47

This will display the peak virtual size (limited by PAGE_FILE) and the
peak working set size (limited by EXTENT). If either of these peak
values is close to corresponding setting in the CSISTRINP file , the
CSISTRINP setting should probably be increased (or it will soon need to
be). If the peak working set size reaches the full value of the EXTENT
setting, the PDM server process will likely suffer from page-faulting due
to insufficient physical memory.

The PAGE_FILE setting is limited by the VMS system parameter
VIRTUALPAGECNT and the size of the SYS$SYSTEM:PAGEFILE.SYS
file.
The EXTENT setting is limited by the VMS system parameter WSMAX.
It is not uncommon for each of these parameter values to be in the
100,000–500,000 range. The appropriate settings for a particular site
should be determined through regular monitoring and iterative
adjustments.

Tuning your physical database

System Administration Guide 225

CONTROL:Manufacturing tuning considerations
In most shops, the MRP/MPS review processor (MPSMP070) is the
longest-running batch job of the nightly job stream. Established
CONTROL: customers have learned that a dbmod dedicated solely to
MP070 is crucial for reducing MP070 run time. This is still true today, but
the PDM Cache can make MP070 run significantly faster. To optimize
MP070 performance, consider the following:

♦ Identify the subset of data sets used by MPSMP070. This may
include (but not be limited to): BATD, BATM, BILL, INVD, LOCM,
MSGS, OORD, ORDM, PART, PTDM, RQMT, SCAL, SCRM, SITD,
SITM, SRCG, TABM, and TABV.

♦ Ensure that the LOGICAL-RECORDS-PER-BLOCK for each data set
gives a SUPRA logical block size of 4096 bytes (possible exceptions
are SCAL, PLV1, and/or LOCM which may need to be 8192, and
should therefore, not share a buffer pool with a 4096 data set).

♦ Identify the MP070 hot files which could use more buffer copies. This
may include (but not be limited to): PART, PTDM, RQMT, ORDM,
and OORD.

♦ Define more buffer copies for the batch environment to take
advantage of additional free memory which is typically available at
night.

♦ Use the DBA Toolkit’s Fast Database Schema Generator utility to
create a non-logging, non-record holding, MAX-TASKS=1, heavily
buffered, UPDATE mode database (multiple tasks with no record-
holding can cause corruption).

♦ Set the batch tasks’ sinon mode to UPDATE instead of SINGLE.
This is usually done by controlling the definition of the logical name
CTRL_DB_MODE.

♦ Ensure that the read-ahead feature is active by defining the logical
name CSI_READAHEAD with a value of YES.

♦ Turn off indexing at the start of the batch stream, and perform an
index populate at the end of the batch stream.

Chapter 7 Tuning your database

226 P25-0130-47

Optimizing Relational Data Manager performance
To improve performance when accessing SUPRA Server PDM data sets
under VMS, you must understand what causes the Relational Data
Manager (RDM) to scan records when fulfilling a view request.

The RDM is the means by which programs access the physical database.
Make sure the views you create access the database efficiently;
otherwise, performance can deteriorate.

Accessing data sets
To obtain the best performance results when accessing data sets, define
physical keys as logical keys in your RDM views. The next best option is
to define secondary keys as logical keys. If you assign a logical key to a
data item that is not a physical key or a secondary key, or that is only part
of a physical key or secondary key, the RDM serially scans the data set
to find records with the specified value. This type of processing degrades
performance. However, the performance cost of defining logical keys
that are not physical keys or secondary keys must be balanced against
the advantages. It is less efficient for an application program to search
for a record than it is for the RDM to do the search.

In a primary data set, the physical key is always unique, so any logical
key assigned to the physical key is unique. A physical key in a related
data set may or may not be unique. A secondary key may or may not
have been specified as unique.

You can specify unique logical keys or nonunique logical keys. If you
assign a unique logical key to a related data set physical key that is not
unique, the RDM must search the linkpath chain from beginning to end to
ensure that the key is not duplicated before it can insert a record. If you
assign a unique logical key to a data item that is not a unique physical
key or a unique secondary key, the RDM must search the entire data set
before inserting or updating a record. This degrades performance. If you
specify a nonunique logical key, the RDM does not need to check for
duplicates before inserting or updating a record. Therefore, when your
application requirements permit, use nonunique logical keys for fields
which are not unique physical keys or unique secondary keys.

Any time you need a data item that is not the physical key of a primary
data set to be a unique logical key, consider defining a unique secondary
key on it. Also consider secondary keys for data items that will be used
as nonunique logical keys.

Optimizing Relational Data Manager performance

System Administration Guide 227

Choosing an RDM access method
The RDM offers two methods of specifying ACCESS statements:

♦ Specific access syntax which consists of the USING and/or VIA
clause and a specified key, linkpath, or secondary key.

♦ Generalized access syntax consisting of the WHERE clause which
instructs the RDM to determine the optimum access strategy in the
following order of preference:

Related data set Primary data set Related data set
1st choice Control Key Linkpath
2nd choice Secondary Key Secondary key
3rd choice Sequential Sequential

 In most cases, it is efficient to use the generalized access syntax and

let the RDM choose the best access method. However, in some
cases you might want to force the RDM to access the data via a
secondary key, for example, producing a customer report ordered by
customer number where customer number is the control key to the
customer record. If you use the generalized access syntax, the RDM
will access the customer records using the control key customer
number. However, the records may not be retrieved in order. If you
define an index (secondary key) on customer number, you can use
the specific access syntax to force the RDM to retrieve the records in
order by accessing them via the secondary key.

 Once you have defined your views, use the DBAID command
SHOW-NAVIGATION to check that the RDM is using the access
method you want. Also, use the STATS commands to check that the
RDM is not scanning the records—that there are few PDM reads for
each RDML GET.

 If you use indexes, you do not need to specify the ORDER clause in
your RDM views. This reduces processing overhead.

Chapter 7 Tuning your database

228 P25-0130-47

Using bound views
View binding allows you to have a preopened copy of a view stored on
the Directory. View binding improves performance in the initial access to
a view by reducing the processing time required for a request to open a
view.

Using Global Views
The Global View Facility stores a copy of preopened views in a file which
programs use as a shared VMS global memory section. This saves the
RDM the processing overhead of opening views when application
programs first access them. The global view also contains SUPRA
Server user information and passwords so the RDM can run without any
access to the SUPRA Server Directory (by setting the logical
CSI_NODIRECTORY to TRUE).

Using global views not only reduces the processing time needed to open
views, but it also reduces the memory needed by RDM tasks. This is
because each RDM task can access a single copy of the preopened
views stored in global memory.

You can decide which views to make global by determining the frequency
of use of the views. You then define global views and generate the global
view file using the Global View Creation function.

If you include a view in the global view file, the global view definition
overrides the view definition on the Directory. To include a modified view
(or remove a view) in the global view file, you must create a new global
view file. Subsequent RDM tasks can use the new global view file. Refer
to the SUPRA Server PDM RDM Administration Guide (VMS), P25-8220,
for details of how to create and use global view files.

Optimizing Relational Data Manager performance

System Administration Guide 229

Using indexes
You define indexes during database definition by connecting them to a
data set. Each data set can have one or more indexes. Each index can
contain one or more secondary keys and each secondary key can be
connected to one or more data items. Consider the following when
defining an index:

♦ For best performance, you should define no more than four
secondary keys per index, and from one to four indexes per data set.

♦ It is more efficient to group all the secondary keys for one data set in
one index, rather than create several indexes each containing one
secondary key. However, if you want to be able to deactivate
selected secondary keys, define each secondary key in its own index.
When you deactivate an index, you implicitly deactivate all secondary
keys it contains.

♦ If performance is a problem, you can make a small improvement by
setting INDEX-READ-VERIFY = NO on the index attributes screen.
This turns off the automatic check for index corruption and is fairly
safe if used on an index you do not intend to deactivate. Frequent
deactivation increases the risk of index records becoming out of date,
no longer matching updated data records. If the index subsequently
becomes corrupted and you have specified
INDEX-READ-VERIFY=NO, results will be unpredictable.

You can obtain tremendous performance benefits from using indexes
during read-only operations; however, indexing becomes an overhead
during maintenance operations such as insert, update, or delete.

Chapter 7 Tuning your database

230 P25-0130-47

Using secondary keys to access data offers the following advantages
over using primary keys and linkpaths:

♦ Fast online lookup of non-volatile data. For example, customer
records can be keyed on customer number. However, you could
define an index on customer name and initials for more flexible
retrieval of customer records. The flexibility results from the ability to
key into the customer record using name instead of number. Also,
because secondary keys support generic reads (a search based on
only part of the key), you can use wild card characters to retrieve
records matching the partial key that is supplied. The use of
secondary keys on records such as customer records, which seldom
change once entered, incurs minimal performance overhead.

♦ Periodic report generation based on secondary keys rather than
primary keys. For example, you may want to produce monthly
reports ordered by product number within product class. The primary
data set has product number as its primary key, and product class as
a data field. To generate your reports, you define an index with
secondary keys for product class and product number. You bring the
index up-to-date and activate it once a month using the CHECK
indexing utility. After you produce the report, you deactivate the
index for the rest of the month to avoid the performance overhead of
maintaining the index.

♦ Reduced overhead in maintaining a sequenced primary linkpath. By
defining a secondary key on a sequencing field and the foreign key,
the PDM no longer needs to maintain the chain of related records in
sequence. Instead, it can use the index to retrieve records in order
by inserting records at the bottom of the chain instead of sequentially
searching the chain for the logical position. This may improve
INSERT performance by avoiding the search and reducing physical
I/O, and eliminates the need for the RDM ORDER clause. For
example, to retrieve all identical surnames in first name order, place
a secondary key on the sequencing field (first name).

♦ Sequenced secondary linkpath simulation. The WHERE clause
(generalized access syntax) instructs the RDM to select the optimum
access method. When accessing related data sets using the
WHERE clause, the RDM will always use a linkpath in preference to
a secondary key. If you define the data item used in the linkpath as a
secondary key, the RDM will maintain an index on that data item,
which, in effect, sequences the secondary linkpath. Referential
integrity is ensured if you are using the RDM. If you are not using the
RDM, you must make sure the application program includes logic to
enforce referential integrity.

Using indexes

System Administration Guide 231

Designing application programs
Application program design can have a far-reaching effect on the
efficiency of your system. The following guidelines apply to all programs
that access the PDM.

Record holding
Record holding is a feature of the PDM that protects records from being
updated by two or more tasks at the same time. The maximum number
of records that can be held for a database is determined by the product of
MAX-HELD-RECORDS and MAX-UPDATE-TASKS.

When the PDM input parameter MULTIHOLD=N, a task can explicitly
read and hold only one record per file per logical unit of work. With each
subsequent request to explicitly read and hold a record, all previous
explicitly held records for the file are released for the task. With
MULTIHOLD=N, only the latest record explicitly read will be held for the
task.

When the PDM input parameter MULTIHOLD=Y, a task can explicitly
read and hold as many records as the record holding table permits.

All records held by a task will be released at the next commit, reset, or
sign-off.

Chapter 7 Tuning your database

232 P25-0130-47

Holding records with RDML

♦ GET commands with the UPDATE option cause the records retrieved
to be held.

♦ INSERT, DELETE, and UPDATE commands cause all records
needed to process the function to be held. This includes records
needed to maintain the linkpaths or synonym chains.

Holding records with PDML

♦ Use of the end parameter “END.” on read functions causes the
retrieved record to be held. Read functions are RDNXT, READD,
READM, READR, READV, and READX.

♦ Functions which add, delete, or update records cause all records
needed to process the function to be held. This includes records
needed to maintain the linkpaths or synonym chains. These
functions are ADD-M, ADDVA, ADDVB, ADDVC, ADDVR, DEL-M,
DELVD, WRITM, and WRITV.

♦ The CNTRL function is also used to hold records.

Record holding is disabled when a task signs on to a database in
SINGLE mode (refer to the SUPRA Server PDM Programming Guide
(UNIX & VMS), P25-0240), formats files, runs the DBA utilities, or when
MAX-HELD-RECORDS is set to zero.

Designing application programs

System Administration Guide 233

Managing record holding
RDM application programs may use the RDML commands GET, GET
FOR UPDATE, and UPDATE. GET retrieves the record, but does not
hold it. GET FOR UPDATE retrieves and holds the record. UPDATE
holds and updates the record. The duration of the record holding and the
success of the update depend on how you combine these commands
along with the COMMIT and RESET commands in a program.

The following examples illustrate three methods of retrieving and
updating records. Use the method in Example 1 to minimize record
holding. Use the method in Example 2 if it is important that the update
succeed. Use the method in Example 3 to ensure that the record is not
modified or deleted until the end of your logical unit of work.

Example Code Explanation

1 GET
.
.
.
UPDATE

Retrieves the record, but does not hold it until
later in the program when the program performs
the UPDATE. This minimizes record holding.

2 GET FOR UPDATE
.
.
.
UPDATE

Retrieves and holds the record. By the time the
program updates the record, it will have held it
for some time. This method ensures the
success of the update by preventing any other
program from updating the record. However, it
can impair performance if used on records
which are accessed by many programs.

3 GET FOR UPDATE
.
.
.
.

Holds the record without updating it. This
method ensures that other programs cannot
update the record until the end of your logical
unit of work, but will impair performance if used
on records which are accessed by many
programs.

Chapter 7 Tuning your database

234 P25-0130-47

Consider the following regarding record holding:

♦ If a process requires exclusive use of your database, you can select
the single-task option with no logging. The single-task option
bypasses all record-holding logic and disables task level recovery,
which thereby improves performance. Always create a recovery
point before running a task in single mode. Failure of a single mode
task requires a restore of the last recovery point.

♦ As the number of held records increases, the time taken to search
the holding table increases.

♦ Note that the holding table is a pool of entries available for all users.
Thus, if you define MAX-UPDATE-TASKS to be 10, and MAX-HELD-
RECORDS to be 100, then one user holding 1000 records could use
the entire record holding table.

♦ You can control the number of times the PDM will try to get and hold
a record being held by another task (retries) and the time between
retries by setting the PDM input parameters RETRY and INTERVAL
(see “Entering parameters for the PDM input file” on page 125). The
PDM performs the number of retries specified in RETRY, and waits
for the length of time specified in INTERVAL between retries before
returning a HELD status to an application task. If you encounter an
excessive number of HELDs, you can try to increase the number of
retries and/or the interval between retries. More retries use CPU
cycles, which can cause performance deterioration. A longer interval
between retries reduces CPU cycles; however, the record may be
stolen by another task before the interval is up. For overall system
performance, it is better to increase the interval and reduce the
number of retries.

♦ It is much more efficient for the PDM to do the retries for a record
held by another task than it is for an application program.

Designing application programs

System Administration Guide 235

♦ These three methods minimize record holding:

- Avoiding excessive record holding: When more than one task
is signed on to a database, records that are held by another task
are temporarily unavailable. Since some records are accessed
frequently by many programs, ensure that each record hold is as
infrequent and as brief as possible. Do not hold a record until it
is necessary to do so, and commit as soon as possible after
updating, or reset as soon as the need has been determined. To
this end, make sure that no program holds records while it waits
for a response from the user. This allows other tasks to access
those records that would otherwise be held.

- Reducing the duration of record holding: A program that
needs to update several records may place a hold on each
record, collect the update information, update each record, and
then release the record holds. If the performance of your system
is degraded by numerous processes trying to access the same
records concurrently, you can reorganize your application
programs so they gather all the information necessary to update
the records first, and obtain the record holds only when all the
update information has been collected. This reduces the amount
of time each record is held by a process and helps minimize
record contention.

- Altering the order of record holding: Sometimes many tasks
compete to update a subset of data. You can reduce record
contention in such cases by modifying the order in which your
application programs issue requests for record holds. Ensure
that your programs first request holds on the records that are
more likely to be held by other tasks. Then, if another task
already holds one of these records, the reset requires less
processing time.

Chapter 7 Tuning your database

236 P25-0130-47

Preventing a deadly embrace
In some cases, two tasks may request the same database records
simultaneously. For example, Task A holds Record x and starts
processing. Meanwhile, Task B holds Record y and starts processing.
At some point, Task A tries to hold Record y. Since y is already held by
B, Task A receives a HELD status. During Task B’s processing, it tries to
hold Record x, which is held by A. Since x is already held by A, Task B
receives a HELD status. Therefore, if neither A nor B releases their held
records, then neither task will ever complete since they are waiting for
each other. This situation is called a deadlock, deadly embrace, or fatal
embrace.

Any task receiving a HELD status can retry the function a finite number of
times. If the HELD status persists, the application should issue a RESET
and then retry its processing from the most recent commit point. The
RESET command resolves a deadlock by releasing all held resources for
the logical unit of work. Contention between logical units of work can
cause poor performance. Consider having the PDM do the retries
instead of your application program (see “Managing record holding” on
page 234).

Optimizing the frequency of commits
Consider the frequency of commits. Excessive commits and infrequent
commits can both be inefficient. Excessive commits increase physical
I/O and affect performance. Long commit intervals lead to large
record-holding tables which take excessive time to search. Held records
are unavailable to other users until the next commit, reset, or sign-off
function is performed. See “Defining logical units of work” on page 216
for further details on logical units of work.

Designing application programs

System Administration Guide 237

Understanding client read-ahead buffering
Client read-ahead buffering is a mechanism used by the database
access program (DATBAS) and PDM to improve performance of both
sequential and serial reads when no record holding is being done. When
your application executes a read function, RDNXT, READV, READR, or
READX with the end parameter set to RLSE, the record is read and
returned to your application without holding the record. It is also possible
to turn off record holding by using the SINGLE SIGN-ON mode as
explained in the SUPRA Server PDM Programming Guide (UNIX &
VMS), P25-0240.

When DATBAS, either single-task or multitask, gets a request for a read
function with no record holding, it requests the record from the PDM as
usual. If the application makes another request without changing the file,
the element list, the qualifier, the reference, or the end parameters,
DATBAS requests that PDM place as many records as possible into the
interprocess communication area without causing any additional I/O. In
the case of READX, DATBAS requests that 10 records be returned if
they will fit into the interprocess communication area.

Upon receiving the interprocess communication area from PDM,
DATBAS copies it to one of three read-ahead buffers created
automatically in the applications local memory. There is a read-ahead
buffer for RDNXT, one for READV and READR, and one for READX.

When the application makes another request for the same file, the record
is extracted from the read-ahead buffer. No access to the PDM is
required. This continues until all the records in the buffer are exhausted,
or one of the parameters changes, or a COMIT function is executed.

Because there are three read-ahead buffers, it is possible to intermix the
functions without losing the buffers. Your application could perform a mix
of RDNXT, READV or READR, and READX as well as any other read or
update functions and retain all the previously read records. Many
programs perform sequences of reads to find data they are looking for.

As an example your program might do a RDNXT through the primary
data set. For each primary record found, the program might perform a
series of READV functions to read a set of related records. Both the
RDNXT and READV functions in this example would be able to use the
read-ahead buffers. If the program does a READV from two different data
sets, alternating back and forth, no read-ahead buffering is possible for
the READV functions. The performance of the application could be
improved by accessing all of the records in one set and then accessing
all the records in the other set. This process best uses read-ahead
buffering.

Chapter 7 Tuning your database

238 P25-0130-47

Context position considerations
The position within a data set is retained by your application in the
qualifier parameter. Your position is never lost regardless of the read-
ahead buffering.

Application programming considerations
The application programmer does not have to specifically code for read-
ahead buffers. The behavior of the PDM is identical with or without read-
ahead buffering with the following exceptions:

♦ Because more records are being returned to the application
program’s process, there is a higher likelihood that the data read will
be updated by another task while the reading application has the
records in the read-ahead buffers. this could cause some
applications to behave slightly differently with read-ahead buffering
active. It may be more likely to get IVRP errors when reading with
READV and READR when read-ahead is active.

♦ When read-ahead buffering is active, the behavior of *FILL= can be
slightly modified. The values passed in the data area are not
necessarily the ones used to fill the data area of the returned records.
When DATBAS requests multiple records from PDM, the data area
containing the *FILL= values are passed to PDM and are used to fill
all of the records read. This works for most applications. However,
this will not work for applications that modify the *FILL= data on each
DATBAS call.

Designing application programs

System Administration Guide 239

Turning off read-ahead buffering
If your application fits either of the above patterns, you will have to turn off
the read-ahead feature. This can be done by defining the logical name
CSI_READAHEAD with the following VMS command:
 –$ DEFINE CSI_READAHEAD NO

Note this is a process logical name and read-ahead can be turned off
without affecting other applications running on the same PDM server. To
turn read-ahead off for all applications define it in a shared logical name
table such as group or system.

Turning on read-ahead buffering
To turn on the read-ahead feature, you may either remove the
CSI_READAHEAD logical name with the deassign command or change
its value to YES with the define command

Printing read-ahead buffer statistics
Additionally, the logical name CSI_READAHEAD_STATISTICS may be
set to the value of YES in order to produce read-ahead statistics. The
statistics are printed to the console to which the CSI_CONSOLE logical
name points. If the CSI_READAHEAD_STATISTICS logical name is not
defined, no statistics will be printed.

The following message will be printed to the console:
SINOF statistics (program name)(database)Total Calls Buffered Calls
 RDNXT (nnnn) (nnnn)
 READV/READR (nnnn) (nnnn)
 READX (nnnn) (nnnn)

The Total Calls column shows the total number of calls made by the
application for each function. The Buffered Calls column shows the
number of calls that were executed using the read-ahead buffers. These
functions were performed without accessing the PDM server.

The CSI_READAHEAD and CSI_READAHEAD_STATISTICS logical
names can be defined in any logical name table. They do not have to be
defined in the same table. By defining them in a process table, the values
assigned will apply only to the process. By defining them in a group table,
they will apply to all members of the group. By defining them to a system
table, they will apply to all users of the PDM system.

Chapter 7 Tuning your database

240 P25-0130-47

Remote application considerations
Read-ahead buffering is supported for remote applications linked with
DATBAS and using either DECnet (from a VMS node) or TCP/IP (from
either a UNIX node or a PC Windows node). The logical names
CSI_READAHEAD and CSI_READAHEAD_STATISTICS must be
defined on the remote machine.

Performance tuning using the MAXDATA PDM input
parameter
Read-ahead buffering uses the data area defined by the MAXDATA PDM
input parameter to transfer records from PDM to DATBAS. The size of
this area and the size of the data requested in the element list parameter
limit the number of records that can be transferred in one request to the
PDM server. Performance is usually improved by reducing the number of
PDM server requests. By increasing the MAXDATA PDM input
parameter, more records can be transferred from PDM to DATBAS in
one PDM server request, reducing the number of PDM server requests
required to read a data set or set of records. This is especially important
if the amount of data being requested in your program is very large. The
minimum and default value for MAXDATA is 4096, the maximum is
32767.

Designing application programs

System Administration Guide 241

PDM application guidelines
The following suggestions apply only to PDML applications:

♦ Controlling data item lists. It is preferable to minimize the length of
the data item lists in your application programs. Do not request data
items that the program does not process. Also, keep the sequence
of the data item lists the same as the physical sequence of the data
items in the record wherever possible. This speeds up processing
and improves performance.

♦ Binding data items. Bind frequently accessed data items to
increase efficiency. The program searches the data item list only one
time - the first time it is used. Data item binding is worthwhile
whenever the same data item list is used more than once, regardless
of the number of data items. Refer to the SUPRA Server PDM
Programming Guide (UNIX & VMS), P25-0240, for further information
about binding data items.

♦ Selecting access routes. When you issue an ADDVA, ADDVB,
ADDVC, or ADDVR, make sure you choose the most efficient
linkpath.

Chapter 7 Tuning your database

242 P25-0130-47

8
Migrating a database

This chapter provides details on how to move a database description and
all data for the database. The move may be to or from a Cincom
database management system (DBMS) on an operating environment
other than VMS, or to or from a Cincom DBMS on VMS. In all cases, the
following are required:

♦ Data Definition Language (DDL) file describing your database

♦ Sequential files containing your data

Make a back-up (create a recovery point) of your SUPRA Server
Directory database (SUPRAD) before you try to load DDL and/or any
data into a database (see “Creating a recovery point” on page 199). Be
sure to back up SUPRAD.MOD, the UDD files, and any logs for
SUPRAD. Make sure no tasks are accessing the Directory when you
create the back-up copy.

Use these basic migration steps on your source system:

1. Generate DDL file from the source database

2. Generate a sequential file containing the data from each data set

System Administration Guide 243

Use these basic migration steps on your target system:

1. Back up the source SUPRA Server Dictionary and all associated data
sets

2. Load the DDL

3. Validate and compile the database description

4. Format data sets and log files

5. Load data from the sequential files into the data sets

SUPRA Server for VMS does not currently support DDL for logical data
items or logical views.

Chapter 8 Migrating a database

244 P25-0130-47

Migrating into SUPRA Server
When you migrate your database into SUPRA Server, use the
documentation from the source system to generate the DDL input file.
Generate sequential files of data by generating one from each of your
data sets. Move to the new operating environment and do any required
character set conversions before you attempt the migration.

Cincom PDM
DDL Generator DDL File DDL Load

Facility

SUPRA
PDM

DBA ADD
Utility

DBMS or
PDM

Application to
Create Sequential

File

Directory
Files

User Files/
User Data Sets

Sequential
Files of Data

Directory
Files

User
Data Sets

Source Target

Migrating into SUPRA Server

System Administration Guide 245

Migrating from SUPRA Server
When migrating from OpenVMS SUPRA Server, you must generate the
DDL file and the sequential files of data. See “Generating a DDL file”
below for details on generating the DDL file that will be used on the target
system.

You must copy the data from each data set in your SUPRA Server
database and put it into sequential files. These files will be used on the
target system to add records to the new database. Character set
conversion may be done either as you create the sequential files, or after
these files have been moved to the target system. Operating
environment restrictions may apply.

SUPRA
PDM

User
Data Sets

Application to
Create Sequential

Files

Sequential
Files of Data To Target

DDL FileDBA Print
Utility To Target

Directory
Files

Chapter 8 Migrating a database

246 P25-0130-47

Generating a DDL file
Before you can migrate your database to another operating environment
or release of SUPRA Server, you must first generate a copy of your
database definition in DDL format. To do this, you must set the logical
definition COB$SWITCHES, then select the DBA Print function. The
logical name causes DBA Print to generate a copy of the database
description in DDL format.

The steps to generate a DDL file are:

1. Back up (create a recovery point) the SUPRA Server Directory
database (SUPRAD) and all associated files (see “Creating a
recovery point” on page 199).

2. Set the COBOL switch COB$SWITCHES as follows:
 $ DEFINE /USER_MODE COB$SWITCHES 1

3. Sign on to DBA and select Print (Function 7) from the Database
Description Function Menu to create a DDL file of the database you
specify.

A user mode logical is only used by the next image you execute in your
process. If you submit the print to run in batch, remember to make the
logical name available to the batch process. If you do this by creating the
definition in the group logical name table, any other user in the same UIC
group printing a database description will generate a DDL file instead of
the normal print listing file.

Generating a DDL file

System Administration Guide 247

Using the DDL Load Facility
The DDL Load Facility, which is identified by the logical CSIDDLLOAD,
loads a database description onto the SUPRA Server Directory using an
existing Data Definition Language (DDL) file. Use the DDL Load Facility
to load a database description from one Directory to another.

You can use Batch Directory Maintenance to copy a database. For more
information, refer to the SUPRA Server PDM Utilities Reference Manual
(UNIX & VMS), P25-6220.

The SUPRA Server Directory allows no duplication of database and data
set names. If you are starting with a clean Directory, you will have no
problems. However, if you already have databases and data sets
defined, you must ensure that the name of the database and the names
of the data sets you are about to add do not already exist on the
Directory.

Be especially careful if the DDL Load Facility has already been run
unsuccessfully in update mode, as the Directory may have been partially
updated. Delete the database descriptions through DBA before trying
again, or restore the back-up copy of the Directory and use the restored
version. If you attempt to load a database under a name that already
exists on the Directory, SUPRA Server responds with a message and
returns to the command level without completing the load.

The DDL Load Facility generates a listing output file named
DDLLOAD.LOG containing the DDL transactions and any errors. This
file is created in your current default directory.

Chapter 8 Migrating a database

248 P25-0130-47

The following figure illustrates a data model of the physical directory
structure. The DDL Load Facility adds the entities, their attributes, and
the relationships according to this framework. Each box represents an
entity and each line represents a relationship.

Data Set Database
Description

Task
Log
Task
Log

System
LogBuffer

File
Specification

Record

Physical
Data Item

Validation
Table

Domain

many-to-many relationship

one-to-one relationship

one-to-many relationship

Using the DDL Load Facility

System Administration Guide 249

Signing on to CSIDDLLOAD
Initiate the DDL Load Facility from the command level to display the initial
SUPRA Server sign-on screen:
$ RUN CSIDDLLOAD

CINCOM SYSTEMS SUPRA DATABASE ADMINISTRATION RELEASE 2.4

 *** ***
 ******* *******
 ********** **********
 ************ ************
 ************* *************
 ************** **************
 ************** ************** Username :

 ************** ************** Password :
 ************** **************
 ************* *************
 ************ ************
 ********** **********
 ******* *******
 *** ***

 CINCOM SYSTEMS SUPRA DBA

The top line of the sign-on screen is a standard heading and is displayed
on every screen requiring data entry. The information includes CINCOM
SYSTEMS, the SUPRA Server title, and the current date and time of
entry.

Enter your valid username/password combination as defined to SUPRA
Server. If you do not enter the correct username/password combination
successfully after three attempts, you will be signed off of the DLL Load
Facility.

Chapter 8 Migrating a database

250 P25-0130-47

Loading the DDL file
After you have successfully signed on, you are prompted to give the full
file specification for the DDL input file. Select CHECK ONLY or UPDATE
mode, and specify the name of the database.

CINCOM SYSTEMS DDL LOAD FUNCTION

File containing DDL or <return> to exit
:testdb.ddl

CHECK ONLY or UPDATE data directory (C or U) :
(<PF4> will select U) : U

Do you want to take options for each data set in turn? (Y/N)
(<PF4> will select NO) : Y

Change Name of database ? (<PF4> will select TESTDB)
or <PF1> to exit : <PF4>

FILE CONTAINING DDL

Description Identifies the complete file specification of the DDL input file.

Format Up to 64 alphanumeric characters

Consideration If you enter the name of a file that does not exist or cannot be opened, an
error message is displayed and you are allowed three more attempts. If
these further attempts fail, CSIDDLLOAD terminates.

Using the DDL Load Facility

System Administration Guide 251

CHECK ONLY OR UPDATE

Description Indicates whether you want to check or update the Directory.

Options C Check-only mode does not affect the Directory.

U Update mode updates the SUPRA Server Directory with your data.

Considerations

♦ Check-only mode performs a syntax check and does not update the
Directory.

♦ CSIDDLLOAD is not a validation routine and assumes that the DDL
is correct.

OPTIONS FOR EACH DATA SET

Description Indicates whether you want to use the DDL Load Options screen.

Options Y This gives the DDL Load Options screen for each data set specified
in the DDL file.

N Each data set is automatically added and not renamed.

Consideration You should answer Y if you already have data sets in your SUPRA Server
Directory which have the same name as the ones in your DDL file.

Chapter 8 Migrating a database

252 P25-0130-47

NAME OF DATABASE

Restriction Displayed only in update mode.

Description Specifies the new name of the database description as it will be stored in
the SUPRA Server Directory.

Format 6 alphanumeric characters. The first character must be alphabetic.

Considerations

♦ To select the database name contained on the DDL file, press
function key PF4.

♦ This parameter allows you to rename the database description before
it goes to the Directory.

♦ If the name you select already exists on the Directory, CSIDDLLOAD
displays the message:

 (dbname) already exists on the directory <return>

♦ When you press RETURN, you exit to the command level without
completing the load.

After you enter the DDL Load Function screen, if you replied Y to the
options questions, SUPRA Server returns the DDL Load Options screen.
Indicate what action you wish to take on the data set by entering the
applicable number in the Option field.

CINCOM SYSTEMS DDLLOAD LOAD FUNCTION - DATA SETS

 Options for data set SET1

 1: Insert data set as it is
 2: Rename and add this data set
 3: Ignore this data set

 Option:

Using the DDL Load Facility

System Administration Guide 253

ENTER CHOICE NO.

Description Specifies the action for each data set.

Options 1 Loads the data set.

2 Loads the data set under a different name (useful if a data set of that
name already exists on the Directory).

3 Omits the data set from the load.

Considerations

♦ If you select option 2 and rename SET1 to SET2, as in the following
example, the SUPRA Server Directory data set will be called SET2,
and all its records and data item names will be prefixed by SET2.
The file specification names will not be changed, so remember to
change them after the load is finished, if required, using DBA
functions (refer to the SUPRA Server PDM Database Administration
Guide (UNIX & VMS), P25-2260).

♦ If you select option 2 and rename a primary data set, check for
linkpaths to related data sets that reference the original name.
Change the linkpath references in the related data set using DBA
functions.

♦ If you select option 3 to ignore this data set, it has the same effect as
if all DDL for the data set had been removed from the input file. You
may have specified a buffer intended for this data set in the DLL.
This buffer will be created on the SUPRA Server Directory, but it will
not belong to any data set.

Chapter 8 Migrating a database

254 P25-0130-47

Example The following example shows the screens that are displayed if you select
option 2 for Enter Choice No:

CINCOM SYSTEMS DDLLOAD LOAD FUNCTION

New name for data set SET1 : SET2

Using the DDL Load Facility

System Administration Guide 255

There is a time interval between each menu while the data set, records,
data items, and file specifications are loaded onto the SUPRA Server
Directory. The system then displays a confirmation screen:

CINCOM SYSTEMS DDLLOAD RUN SUMMARY

 ddlload.log created for your information

 Number of DDL errors : 0

<< Press any key to terminate DDLLOAD >>

The entities and relationships are added to the Directory as they are read.
Comments that belong to a particular entity are also added to the
Directory, regardless of whether they occur in one contiguous block in the
DDL file.

Chapter 8 Migrating a database

256 P25-0130-47

Checking CSIDDLLOAD error conditions
The DDL Load Facility uses the DDL input file and generates a listing
output file. It is not a validation routine, and will stop if an error is
encountered on either of these files.

Status codes
If a bad status occurs on either the input file or the listing output file, the
DDL Load Facility displays a message indicating the name of the file and
the error status code from the operating system. If CSIDDLLOAD is
attempting to open your DDL file, the error message is displayed after
three unsuccessful attempts.

SUPRA Server error messages
SUPRA Server Directory errors, internal coding errors, and some I/O
errors result in an error condition for which the system displays a SUPRA
Server error message. For the corrective action for any message you
may receive, refer to the SUPRA Server PDM Messages and Codes
Reference Manual (PDM/RDM Support for UNIX & VMS), P25-0022.

Listing output file messages
Error messages in the listing output file indicate an error in the DDL. This
does not normally occur. However, warnings may be issued for DDL
statements that are not valid for OpenVMS SUPRA Server.

Using the DDL Load Facility

System Administration Guide 257

Compiling the database description
After you have successfully loaded your database description into the
SUPRA Server Directory using the DDL Load Facility, use the DBA
Facilities (or COMBAT, the batch database compile program) to validate
and compile your database description. (Refer to the SUPRA Server
PDM Database Administration Guide (UNIX & VMS), P25-2260.)

Formatting data sets
Before you can add records to the newly compiled database, you must
format all files (data sets and recovery log files). Use the DBA
Administration Facilities (or CSTUFMT) to format the files. Refer to the
SUPRA Server PDM Database Administration Guide (UNIX & VMS),
P25-2260, for details.

Adding records
Before you can use your new database, you must load your data. The
data from your source system database was copied into sequential files
that have been transferred to the target system. To add this data to your
newly formatted data sets, you can use the Utilities option of the DBA
Administration Facilities to add records to each data set. Refer to the
SUPRA Server PDM Utilities Reference Manual (UNIX & VMS),
P25-6220, for details. Alternatively, you can write an application to add
the data to the database.

Chapter 8 Migrating a database

258 P25-0130-47

A
Example user exits

This appendix presents example user exits written in COBOL and
FORTRAN. The COBOL example uses both the before and after exits
for VAX and ALPHA; the FORTRAN example uses only the after exit.
Command files for compiling and linking both examples are provided at
the end of each section.

For all Alpha versions and beginning with version 2.4 on VAX, you must
include a new additional parameter, Nargs or p0. See “COBOL user
exits” below and “FORTRAN user exit” on page 267. This new
parameter is a placeholder containing the number of arguments passed.
It is unused but must be present.

COBOL user exits
The COBOL user exits trace PDML parameters to check whether they
are being passed correctly between the application program and the
PDM. The before exit displays the parameters before the call to the
PDM. The after exit displays the parameters after the call to the PDM. In
addition, the after exit shows the status of each PDML call. The traced
PDML functions are ADDVA, ADDVB, ADDVC, DELVD, READR, and
READV.

System Administration Guide 259

COBOL user exit 1
IDENTIFICATION DIVISION.
PROGRAM-ID. CSD_UPDM_USEREX1.
*
* This is an example of a BEFORE exit.
* (a BEFORE exit is called before the parameters are passed to
* SUPRA PDM for execution)
* This example processes RELATED DML functions only.
*
ENVIRONMENT DIVISION.
*
DATA DIVISION.
*
WORKING-STORAGE SECTION.
*
01 I PIC S9(4) COMP.
*
01 KEY-HEX.
 03 KEY-HEX-CHAR PIC X(8) OCCURS 2.
*
01 KEY-CHARACTER.
 03 KEY-CHAR PIC X OCCURS 8.
*
01 REFER-CHARACTER.
 03 REFER-CHAR PIC X OCCURS 4.
*
01 REFER-HEX PIC X(8).
*
LINKAGE SECTION.
*
01 NARGS PIC S9(9) COMP.
01 P1-FUNCTION PIC X(5).
01 P2-STATUS PIC X(4).
01 P3-DATASET.
 03 P3-UDD PIC XXX.
 03 P3-FILLER PIC X.
01 P4-REFER.
 03 P4-REFER-COMP PIC 9(9) COMP.
01 P5-LINKPATH PIC X(8).
01 P6-CTRL-KEY.
 03 P6-CTRL-KEY-COMP PIC 9(9) COMP OCCURS 2.
* For this example the Control Key (above) is 8 bytes
01 P7-ELEM-LIST PIC X(28).
* For this example the Element list is 3 element names + END.
01 P8-DATA-AREA PIC X(24).
* For this example the Data Area is 24 bytes.
01 P9-ENDP PIC X(4).

Appendix A Example user exits

260 P25-0130-47

*

PROCEDURE DIVISION USING NARGS P1-FUNCTION P2-STATUS

 P3-DATASET P4-REFER

 P5-LINKPATH P6-CTRL-KEY

 P7-ELEM-LIST P8-DATA-AREA P9-ENDP.

*

MAIN SECTION.

*

M1.

* Ignore calls to Directory Database.

 IF P3-UDD = "UDD" GO TO MX.

*

* Check Function Type

 IF P1-FUNCTION = "ADDVA" OR "ADDVB" OR "ADDVC"

 OR "ADDVR" OR "DELVD" OR "READV"

 OR "READD" OR "READR"

 PERFORM RELATED-FUNCTION.

*

* Ignore any other function

MX.

 EXIT PROGRAM.

*

RELATED-FUNCTION SECTION.

*

RF1.

* Convert Refer parameter value to hex

 MOVE P4-REFER TO REFER-CHARACTER.

 CALL "OTS$CVT_L_TZ" USING BY REFERENCE P4-REFER-COMP

 BY DESCRIPTOR REFER-HEX

 BY VALUE 8

 OMITTED.

*

* Ensure input Refer value is printable

 PERFORM CHECK-REFER-VALUE TEST BEFORE

 VARYING I FROM 1 BY 1 UNTIL I > 4.

*

* Convert Control Key value to hex

 MOVE P6-CTRL-KEY TO KEY-CHARACTER.

 PERFORM CONVERT-KEY TEST BEFORE

 VARYING I FROM 1 BY 1 UNTIL I > 2.

COBOL user exits

System Administration Guide 261

*
* Ensure input Control Key value is printable
 PERFORM CHECK-KEY-VALUE TEST BEFORE
 VARYING I FROM 1 BY 1 UNTIL I > 8.
*
* Display parameters (element list & data area ignored)
 DISPLAY "Passed to PDM :- ".
 DISPLAY " Function : " P1-FUNCTION.
 DISPLAY " Status : " P2-STATUS.
 DISPLAY " Dataset : " P3-DATASET.
 DISPLAY " Refer : " REFER-CHARACTER " = " REFER-HEX.
 DISPLAY " Linkpath : " P5-LINKPATH.
 DISPLAY " Key : " KEY-CHARACTER " = "
 KEY-HEX-CHAR(1) " " KEY-HEX-CHAR(2).
 DISPLAY " Endp : " P9-ENDP.
*
RFX.
 EXIT.
*
CHECK-REFER-VALUE SECTION.
*
CRV1.
 IF REFER-CHAR(I) NOT NUMERIC
 AND REFER-CHAR(I) NOT ALPHABETIC
 MOVE "." TO REFER-CHAR(I).
CRVX.
 EXIT.
*
CONVERT-KEY SECTION.
*
CK1.
 CALL "OTS$CVT_L_TZ" USING BY REFERENCE P6-CTRL-KEY-COMP(I)
 BY DESCRIPTOR KEY-HEX-CHAR(I)
 BY VALUE 8
 OMITTED.
CKX.
 EXIT.
*
CHECK-KEY-VALUE SECTION.
*
CKV1.
 IF KEY-CHAR(I) NOT NUMERIC
 AND KEY-CHAR(I) NOT ALPHABETIC
 MOVE "." TO KEY-CHAR(I).
CKVX.
 EXIT.

Appendix A Example user exits

262 P25-0130-47

COBOL user exit 2
IDENTIFICATION DIVISION.
PROGRAM-ID. CSD_UPDM_USEREX2.
*
* This is an example of an AFTER exit.
* (an AFTER exit is called after the parameters are passed
* back from SUPRA PDM's execution)
* This example processes RELATED DML functions only.
*
ENVIRONMENT DIVISION.
*
DATA DIVISION.
*
WORKING-STORAGE SECTION.
*
01 I PIC S9(4) COMP.
*
01 KEY-HEX.
 03 KEY-HEX-CHAR PIC X(8) OCCURS 2.
*
01 KEY-CHARACTER.
 03 KEY-CHAR PIC X OCCURS 8.
*
01 REFER-CHARACTER.
 03 REFER-CHAR PIC X OCCURS 4.
*
01 REFER-HEX PIC X(8).
*
LINKAGE SECTION.
*
01 NARGS PIC S9(9) COMP.
01 P1-FUNCTION PIC X(5).
01 P2-STATUS PIC X(4).
01 P3-DATASET.
 03 P3-UDD PIC XXX.
 03 P3-FILLER PIC X.
01 P4-REFER.
 03 P4-REFER-COMP PIC 9(9) COMP.
01 P5-LINKPATH PIC X(8).
01 P6-CTRL-KEY.
 03 P6-CTRL-KEY-COMP PIC 9(9) COMP OCCURS 2.
* For this example the Control Key (above) is 8 bytes
01 P7-ELEM-LIST PIC X(28).
* For this example the Element list is 3 element names + END.
01 P8-DATA-AREA PIC X(24).
* For this example the Data Area is 24 bytes.
01 P9-ENDP PIC X(4).

COBOL user exits

System Administration Guide 263

*

PROCEDURE DIVISION USING NARGS P1-FUNCTION P2-STATUS

 P3-DATASET P4-REFER

 P5-LINKPATH P6-CTRL-KEY

 P7-ELEM-LIST P8-DATA-AREA P9-ENDP.

*

MAIN SECTION.

*

M1.

* Ignore calls to Directory Database.

 IF P3-UDD = "UDD" GO TO MX.

*

* Check Function Type

 IF P1-FUNCTION = "ADDVA" OR "ADDVB" OR "ADDVC"

 OR "ADDVR" OR "DELVD" OR "READV"

 OR "READD" OR "READR"

 PERFORM RELATED-FUNCTION.

*

* Ignore any other function

MX.

 EXIT PROGRAM.

*

RELATED-FUNCTION SECTION.

*

RF1.

* Convert Refer parameter value to hex

 MOVE P4-REFER TO REFER-CHARACTER.

 CALL "OTS$CVT_L_TZ" USING BY REFERENCE P4-REFER-COMP

 BY DESCRIPTOR REFER-HEX

 BY VALUE 8

 OMITTED.

*

* Ensure input Refer value is printable

 PERFORM CHECK-REFER-VALUE TEST BEFORE

 VARYING I FROM 1 BY 1 UNTIL I > 4.

*

* Convert Control Key value to hex

 MOVE P6-CTRL-KEY TO KEY-CHARACTER.

 PERFORM CONVERT-KEY TEST BEFORE

 VARYING I FROM 1 BY 1 UNTIL I > 2.

Appendix A Example user exits

264 P25-0130-47

*
* Ensure input Control Key value is printable
 PERFORM CHECK-KEY-VALUE TEST BEFORE
 VARYING I FROM 1 BY 1 UNTIL I > 8.
*
* Display parameters (element list & data area ignored)
 DISPLAY "Passed back from PDM :- ".
 DISPLAY " Function : " P1-FUNCTION.
 DISPLAY " Status : " P2-STATUS.
 DISPLAY " Dataset : " P3-DATASET.
 DISPLAY " Refer : " REFER-CHARACTER " = " REFER-HEX.
 DISPLAY " Linkpath : " P5-LINKPATH.
 DISPLAY " Key : " KEY-CHARACTER " = "
 KEY-HEX-CHAR(1) " " KEY-HEX-CHAR(2).
 DISPLAY " Endp : " P9-ENDP.
*
RFX.
 EXIT.
*
CHECK-REFER-VALUE SECTION.
*
CRV1.
 IF REFER-CHAR(I) NOT NUMERIC
 AND REFER-CHAR(I) NOT ALPHABETIC
 MOVE "." TO REFER-CHAR(I).
CRVX.
 EXIT.
*
CONVERT-KEY SECTION.
*
CK1.
 CALL "OTS$CVT_L_TZ" USING BY REFERENCE P6-CTRL-KEY-COMP(I)
 BY DESCRIPTOR KEY-HEX-CHAR(I)
 BY VALUE 8
 OMITTED.
CKX.
 EXIT.
*
CHECK-KEY-VALUE SECTION.
*
CKV1.
 IF KEY-CHAR(I) NOT NUMERIC
 AND KEY-CHAR(I) NOT ALPHABETIC
 MOVE "." TO KEY-CHAR(I).
CKVX.
 EXIT.

COBOL user exits

System Administration Guide 265

COBOL command file to compile and link the exits
$!

$! Command file to compile and link the sample COBOL PDM User Exit.

$!

$! Compile user exit 1 or Before Exit

$ Cobol/noansi csi_pdm_exit1

$!

$! Compile User exit 2 or After Exit.

$ Cobol/noansi csi_pdm_exit2

$!

$! Link the two compiled objects to form an Executable Image.

$! Note that the names of the exits, CSD_UPDM_USEREX1 and

$! CSD_UPDM_USEREX2 MUST be declared as UNIVERSAL symbols.

$!

$! To activate the User exits, do the following before running your

$! SUPRAPDM Applications :

$! DEFINE CSI_USEREX dev:[directory]CSI_PDM_EXIT.EXE

$!

$ Link/share=csi_pdm_exit.exe csi_pdm_exit1, csi_pdm_exit2, -supra_

examples:CSI_USEREX.OPT/OPT

$ Exit

Where the file SUPRA_EXAMPLES:CSI_USEREX.OPT has a VAX and
an AXP version to take care of the option differences between systems:

VAX version of SUPRA_EXAMPLES:CSI_USEREX.OPT
supra_examples:csi_userex.opt

UNIVERSAL=CSD_UPDM_USEREX1

UNIVERSAL=CSD_UPDM_USEREX2

AXP version of SUPRA_EXAMPLES:CSI_USEREX.OPT
Supra_examples:csi_userex.opt

symbol_vector=(CSD_UPDM_USEREX1=procedure,CSD_UPDM_USEREX2=proced
ure)

Appendix A Example user exits

266 P25-0130-47

FORTRAN user exit
The FORTRAN user exit traces the primary and related user database
functions to check that the PDML parameters are passed correctly
between the application program and the PDM. As this example shows,
you do not need to use both before and after exits.

FORTRAN user exit
 subroutine csd_updm_userex2(p0,p1,p2,p3,p4,p5,p6)
c
c SUPRAPDM After Exit example :
c This sample Fortran program traces some of the parameters
c after making a DML call to the user database files.
c
c
c Note that this exit uses Numeric dummy arguments
c because they are passed by reference from the PDM.
c Dummy Numeric arguments may not be Equivalenced to character
c strings, thus the mapping of the arguments from numerical
c addresses to character strings are done in two steps.
c
 implicit none
 character*5 function
 character*4 stat, dataset
 character*8 linkpath
 integer*4 p0
 real*8 p1,pp1
 integer*4 p2,p3,pp2,pp3
 real*8 p4,p5,pp5,p6
 equivalence (pp1,function),(pp2,stat)
 equivalence (pp3,dataset),(pp5,linkpath)
c
c
 pp1=p1
 pp2=p2
 pp3=p3
c
c Ensure we only trace calls to user databases by examining
c the dataset argument - this parameter is only available if
c it is one of a dataset access functions.
c
 if (((function .eq. 'ADD-M') .or.
1 (function .eq. 'DEL-M') .or.
2 (function .eq. 'READM') .or.
3 (function .eq. 'WRITM')) .and.
4 (dataset .ne. 'UDD1') .and.
5 (dataset .ne. 'UDD2') .and.
6 (dataset .ne. 'UDD3')) goto 20
c
 if (((function .eq. 'ADDVA') .or.
1 (function .eq. 'ADDVB') .or.
2 (function .eq. 'ADDVC') .or.
3 (function .eq. 'ADDVR') .or.
4 (function .eq. 'DELVD') .or.
5 (function .eq. 'READD') .or.
6 (function .eq. 'READR') .or.
7 (function .eq. 'READV') .or.

FORTRAN user exit

System Administration Guide 267

8 (function .eq. 'WRITV')) .and.
9 (dataset .ne. 'UDD1') .and.
1 (dataset .ne. 'UDD2') .and.
2 (dataset .ne. 'UDD3')) goto 30
c
c Ignore the rest of the functions
 goto 99
c
20 write (*,100) function,stat,dataset,p4
 goto 99
30 pp5=p5
 write (*,110) function,stat,dataset,linkpath,p6
99 return
c
100 format (' ',A5,' ',A4,' ',A4,' ',Z16)
110 format (' ',A5,' ',A4,' ',A4,' ',A8,' ',Z16)
 end

FORTRAN command file to compile and link the exit
$!

$! Command file to compile and link the sample FORTRAN PDM User
Exit

$!

$! Please note that this example uses only the After exit

$!

$! Compile the Fortran program containing the After Exit.

$ FORTRAN CSI_PDM_EXIT_FOR

$!

$! Link the compile object to form an Executable Image.

$! Note that the name of the exit, CSD_UPDM_EXIT2 MUST be
declared

$! as UNIVERSAL Symbol.

$!

$! To activate the User Exit, do the following before running
your

$! SUPRAPDM applications :

$!

$! $DEFINE CSI_USEREX dev:[directory]CSI_PDM_EXIT_FOR.EXE

$!

$! To deactivate the exit, DEASSIGN the logical name CSI_USEREX.

$ Link/share=CSI_PDM_EXIT_FOR.EXE CSI_PDM_EXIT_FOR.OBJ, -

supra_examples:CSI_USEREX.OPT/OPT

$ Exit

Appendix A Example user exits

268 P25-0130-47

B
PDM statistics output

This Appendix describes the statistics written to the log file when you
select STATISTICS=Y in the PDM input file. The log file is identified by
the logical CSIPDMLOG.

CSTI008S (database), (process name), (task id), TASK SINOF STATISTIC

 READS WRITES ADDS DELETES MISC HELDS IHELDS
(reads) (writes) (adds) (deletes) (misc) (helds) (int helds)

Explanation: The PDM produces this message whenever a task signs
off. The columns have the following meaning:

♦ READS The total number of READ DML functions issued by the
task.

♦ WRITES The total number of WRITE DML functions issued by the
task.

♦ ADDS The total number of ADD DML functions issued by the task.

♦ DELETES The total number of DELETE DML functions issued by
the task.

♦ MISC The total number of COMIT, RESET, SINON, and SINOF
DML functions issued by the task.

♦ HELDS The number of times any function issued by this task had to
be retried because of a record hold. For example, if a function
attempts to access a record that is already held for update, that
function is backed out, a hold request is added to the queue for that
record, and the function is placed in the retrying queue. When the
record is free, the function is transferred to the allocating queue
ready to be restarted.

♦ IHELDS The number of internal held conditions encountered. In
practice, this value is the same as the HELDS column except that, in
this case, the function was able to restart immediately instead of
waiting in the retrying queue.

System Administration Guide 269

CSTI011S (database), (data set), DML FILE FUNCTION STATISTICS,

READS WRITES ADDS DELETES MISC

(reads) (writes) (adds) (deletes) (misc)

Explanation: The PDM produces this message whenever it physically
closes a file. A file is physically closed when the last task to use it issues
a logical close for that file. This could be as the last task signs off during
normal processing or as a result of an operator command to close down
the database or the PDM (SHUTDOWN, UNLOAD).

The columns have the following meaning:

♦ READS The total number of READ DML functions used on the file
since it was physically opened.

♦ WRITES The total number of WRITE DML functions used on the file
since it was physically opened.

♦ ADDS The total number of ADD DML functions used on the file
since it was physically opened.

♦ DELETES The total number of DELETE DML functions used on the
file since it was physically opened.

♦ MISC The total number of RQLOC DML functions used on the file
since it was physically opened.

Appendix B PDM statistics output

270 P25-0130-47

CSTI012S (database), (data set), PHYSICAL FILE I/O & MISC FILE STATISTICS,

BUFSNAVL BFLUSHES PREADS PWRITES
(buf not avail) (buf flushes) (phys reads) (phys writes)

LREADS LWRITES HELDS IHELDS
(logical reads) (logical writes) (helds) (int helds)

Explanation: This message is issued with CSTI011L. The columns have
the following meaning:

♦ BUFSNAVL The number of times a logical read function had to wait
for a buffer to be freed.

♦ BFLUSHES The number of times a logical read function had to
flush a buffer to use it. A read function first searches the pool of
buffers for the record. If the record is not there, the read function
searches for an empty buffer to use. If no empty buffer is available,
the read function searches for an unlocked buffer. A BFLUSH
occurs when an unlocked buffer is found that contains modified
records which must be flushed before the buffer can be used.

♦ PREADS The number of physical reads performed on the file. A
physical read reads in as much of the file as can be contained in one
buffer. In VMS, for example, 25 physical reads would be needed to
read a file that has 50 VMS sectors and a buffer size of 1024 bytes.
If a file has too few buffers, or if the buffers are too small, then the
number of physical reads needed increases.

♦ PWRITES The number of physical writes performed on the file.
Normally this value equals the number of BFLUSHES plus the
number of buffers.

♦ LREADS The number of logical read operations performed on the
file. The target of a logical read is one database record which may
be found in one of the buffers for the file. A physical read is
performed if the database record is not found in a buffer. The
number of logical reads should therefore greatly exceed the number
of physical reads. The number of logical reads should also exceed
the number of DML functions since, for example, one ADDVR could
generate three or four logical reads.

PDM statistics output

System Administration Guide 271

♦ LWRITES The number of logical writes used on the file. Currently,
this column gives useful figures only for the task log and system log.

♦ HELDS The number of times any function issued for this file had to
be retried because of a record hold. For example, if a function
attempts to access a record that is already held for update, that
function is backed out, a hold request is added to the queue for that
record, and the function is placed in the retrying queue. When the
record is free, the function is transferred to the allocating queue
ready to be restarted.

♦ IHELDS The number of internal held conditions encountered. In
practice, this value is the same as the HELDS column, except in this
case, the function was able to restart immediately instead of waiting
in the retrying queue.

Appendix B PDM statistics output

272 P25-0130-47

CSTI055S (database), DATABASE STATISTICS,

SINONS SINOFS DYNSINOFS LFULS DFULS

(sinons) (sinofs) (dynamic sinofs) (lfuls) (dfuls)

Explanation: The PDM produces this message when the last task signs
off from the specified database. The columns have the following
meaning:

♦ SINONS The number of SINON DML functions issued for the
database.

♦ SINOFS The number of SINOF DML functions issued for the
database.

♦ DYNSINOFS The number of dynamic SINOFS issued for the
database. Dynamic SINOFS include applications which exit without
signing off or applications which are signed off as a result of an
operator command.

♦ LFULS Reserved for future use.

♦ DFULS Reserved for future use.

PDM statistics output

System Administration Guide 273

CSTI056S (database), DATABASE STATISTICS,
CONTASKS CONFUNCS THREADS NFILFNCS TLFBUFSTLS CONUPTSKS

nnnnnn nnnnnn nnn nnnnnn nnnnnn nnnnnn

Explanation: This message is produced with CSTI055I. The columns
have the following meaning:

♦ CONTASKS The maximum number of tasks concurrently signed on
to the database.

♦ CONFUNCS The maximum number of functions concurrently
issued to the database. Since a task can issue only one function at a
time, the CONFUNCS figure should be less than or equal to the
CONTASKS figure.

♦ THREADS The maximum number of threads concurrently active,
executing a function on the database.

♦ NFILFNCS Reserved for future use.

♦ TLFBUFSTLS The number of times a task log file (TLF) buffer had
to be “stolen.” When a thread attempts to acquire a TLF buffer, it
first tries to get a free buffer. If none are available, the task must
steal a buffer that is not currently locked after first flushing it.

♦ CONUPTSKS The maximum number of update tasks concurrently
signed on to the database.

Appendix B PDM statistics output

274 P25-0130-47

C
Example mailbox-reading program

This appendix presents a COBOL program to read the PDM messages
from a mailbox. In this example, the mailbox is SUPRA24_000114,
constructed using the equivalence name for CSI_PDMID (SUPRA24 in
this case) and the UIC group in which the PDM is running (000114 in this
case). Substitute your own mailbox name to use this program.

Before you can read PDM messages from a mailbox, you must:

♦ Set the PDM input file parameter MRELAY=Y to send all PDM
messages from CSIPDM to your mailbox.

♦ Define the logical name CSI_MRELAY to TRUE to send all console
messages from CSIDAP to your mailbox.

See “Automating operator communication” on page 183 for a detailed
description of how to write a user interface to the SUPRA Server PDM.

System Administration Guide 275

Example Mailbox-Reading Program, MAIL-BOX-TRAP.COB
**
* *
* Program : mail-box-trap.cob *
* *
* Sample program to read messages from a mailbox which *
* SUPRAPDM sends operator messages to. *
* *
* To compile and link *
* $ Cobol/Noansi Mail-box-trap *
* $ Link Mail-box-trap *
* *
* To execute *
* $ define/table=lnm$process_directory - *
* lnm$temporary_mailbox lnm$group *
* $ Run mail-box-trap *
* *
* *
* *
**
Identification division.
Program-id. mail_box_trap.

*
*
Data division.

*
Working-storage section.

*
01 stat pic 9(9) comp.
01 max_msg pic 9(4) comp value 1024.
01 buf_quo pic 9(4) comp value 2048.
01 mbx_name pic x(15) value " ".
01 mbx_chan pic 9(4) comp.
01 mbx_mess pic x(132).
01 msg_len pic 9(9) comp value 132.
01 pid_in_hex pic x(8).
01 iosb.
03 iosb-stat pic 9(4) comp.
03 iosb-count pic 9(4) comp.
03 iosb-devdata pic 9(9) comp.
01 nothing pic 9(9) comp value 0.
01 io_func pic 9(9) comp value 49.

* IO$_READVBLK.
*
Procedure division.

Start-program.

Appendix C Example mailbox-reading program

276 P25-0130-47

 Perform get_mail_box_id.

 Perform create_mail_box.

*
Infinite_loop.

*
* This is the main code that reads the mailbox messages.
* Instead of using SYS$QIOW, you can use SYS$QIO with
* a completion AST, so that your program can perform
* another useful function while it is waiting for a
* mailbox message.
*
 Move spaces to mbx_mess.
 call "SYS$QIOW" using by value nothing,
 mbx_chan,
 io_func,
 by reference iosb,
 by value nothing,
 by value nothing,
 by reference mbx_mess,
 by value msg_len,
 by value nothing,
 nothing,
 nothing,
 nothing,
 giving stat.
 if stat not = 1
 perform read_error.

*
* Convert the PID of the sender to hexadecimal format.
*
 Call "OTS$CVT_L_TZ" Using By Reference iosb-devdata,
 By Descriptor pid-in-hex,
 By Value 8,
 nothing.

*
* Display the message received.
*
 Display "Suprapdm Message received from PID ", pid-in-hex
 UNDERLINED.
 Display mbx_mess.
 Display "".

*
* Go to read another message
*
 Go to infinite_loop.

*
get_mail_box_id.

Example mailbox-reading program

System Administration Guide 277

*
* This section gets the mailbox name from SYS$INPUT.
* The mailbox name is made up of the form xxxxxxxx_nnnnnn
* where
* xxxxxxxx is the translated value of CSI_SYSPDMID or
CSI_PDMID,

* nnnnnn is the group number of the PDM if the PDM is
* group-wide, 000000 if the PDM is system wide or multiple
* system-wide.
*
* e.g., SUPRA24_000114
* if CSI_PDMID is "SUPRA24" and PDM is running in Group
000114.

*
 Display "Please Enter Mail Box Name :" Underlined with no
advancing.

 Accept mbx_name.
 Call "STR$UPCASE" using by descriptor mbx_name,
 mbx_name.

*
*
* This section calls the system service SYS$CREMBX to create
* a mailbox with the name obtained.
*
create_mail_box.
 call "SYS$CREMBX" using by value nothing,
 by reference mbx_chan,
 by value max_msg,
 by value buf_quo,
 by value nothing,
 by value nothing,
 by descriptor mbx_name,
 giving stat.
 if stat not = 1
 call "SYS$EXIT" using by value stat.

 Display "Commencing read from mailbox " with no
advancing.

 Display mbx_name BOLD.
 Display "< Terminate by pressing CTRL/Y. >" BOLD.

*
*
read_error.
 call "SYS$DASSGN" using by value mbx_chan.
 Display "Error reading from Mailbox, status is ".
 call "SYS$EXIT" using by value stat.
 exit program.

*

Appendix C Example mailbox-reading program

278 P25-0130-47

D
Optional SUPRA Server logicals

The following table lists optional SUPRA Server logicals. These logicals
change the normal behavior of SUPRA Server. The logicals can be
placed in any logical name table accessible to your process.

Logical name

Equivalence
name

Function

CSI_ALLOW_DUP_
RECORD_CODE

TRUE Allows duplicate record codes in a user
element list as was needed by ULTRA.

CSI_REINIT_ON_SINON TRUE Forces the logical CSI_PREFIX to be
translated at each SINON, allowing an
application to SINOF, redefine
CSI_PREFIX, then SINON again using a
different database.

CSI_SCHEDULED_
WAKEUP

FALSE When TRUE (the default and previous
behavior) then the datbas client does
scheduled wakeup system service calls to
guarantee that the client never hangs in
HIB state due to a missed wakeup call.
However, these extra system calls can in
some situations incur a substantial
performance overhead. Optionally setting
this logical name to FALSE disables the
scheduled wakeup calls at the expense of
potential client process hangs.

CSUBGRN_CONTINUE_
ON_ERROR

TRUE BGRN will continue to execute regardless
of the number of errors.
Warning: Use of this logical could result in
an infinite loop.

DBAID_HELP_
NOSPAWN

TRUE Changes the CSVDBAID HELP command
to call LBR$OUTPUT_HELP instead of
spawning to do a DCL $HELP.

System Administration Guide 279

Appendix D Optional SUPRA Server logicals

280 P25-0130-47

E
SUPRA Server logical names

The table later in this section lists the logical names needed to run
SUPRA Server. The Table column gives the logical name table in which
you can place the logical name:

♦ P Process table

♦ G Group table

♦ S System table

♦ MSW Multiple systemwide shareable table, which is identified by the
logical name table CSI_PDM_pdmname.

♦ G/S Group table if you are running a groupwide PDM, system table
if you are running a systemwide PDM.

♦ G/S/MSW Group table if you are running a groupwide PDM, system
table if you are running a systemwide PDM, or the multiple
systemwide table if you are running a multiple systemwide PDM.

♦ Any It does not matter which table, provided you define the logical
name in a logical name table accessible to your process.

For more information on logical names, see “Defining your operating
environment” on page 57. For more information about logical name
tables, see “Configuring the PDM” on page 33.

The scope of a logical name is defined by the logical name tables in
which it appears. One logical name can appear in more than one logical
name table.

System Administration Guide 281

A logical name which occurs in more than one table can be associated
with a different equivalence name in each logical name table. To avoid
confusion, the system searches logical name tables in a particular order
and uses the first logical name found, regardless of any other
occurrences. The default logical name table search sequence is
PROCESS, JOB, GROUP, and finally SYSTEM. However, you can
change this order to suit your requirements. Refer to your VMS
documentation.

In the following table, several equivalence names contain the variable
svclvl. This variable is replaced with the service level of SUPRA Server.

Logical name Table Equivalence name Function
BATCH_GLOBAL_
INPUT

Any dev:[dir]filename.ext Input text file used
to create a global
view file.

BGRN Any SUPRA_EXE:
CSUBGRN_svclvl.EXE

Provides
background DBA
utilities.

CHANGEDB Any SUPRA_COMS:
CHANGEDB.CLD

Command
definition file for
Fast utilities.

COMBAT Any SUPRA_COMS :
COMBAT.CLD

Command
definition file for
validate, compile,
and print program.

CSDUSSERV G/S SUPRAPDM Used by users who
upgraded from
ULTRA.

CSI_* G/S dev:[dir]PDM_START_
*.COM

PDM start-up
command
procedure.

CSI_AUTOSTART Any YES or NO Enable/disable
automatic PDM
start-up.

CSI_CONSOLE G/S/MSW OPERn Operator console
that CSIDAP
messages are sent
to.

* Refers to the 6-digit group number for a groupwide PDM, 000000 for a systemwide PDM, or the
translation of CSI_SYSPDMID for a multiple systemwide PDM.

Appendix E SUPRA Server logical names

282 P25-0130-47

Logical name Table Equivalence name Function
CSIDAP G/S SUPRA_EXE:

CSIDAP_svclvl.EXE
PDM interface
module.

CSIDAP_DEB Any SUPRA_EXE
CSIDAP_DEB_svclvl.EXE

Used for testing by
Cincom Support.

CSIDBA Any SUPRA_EXE:
CSIDBA_svclvl.EXE

Provides DBA
facilities.

CSI_DBA Any SUPRA_REPORT Directory
containing Batch
Directory
Maintenance and
Directory Views.

CSIDBAUTL Any SUPRA_EXE:
CSIDBAUTL_svclvl.EXE

Provides online
DBA utilities.

CSIDBPDM Any SUPRA_AUXIL:
CSIDBPDM_svclvl.EXE

Database testing
tool.

CSIDBVER Any SUPRA_EXE
CSIDBVER_svclvl.EXE

Database integrity
verification utility.

CSIDDLLOAD Any SUPRA_EXE:
CSIDDLLOAD_svclvl.EXE

Loads TOTAL-
compatible DDL.

[xxx_]CSI_DIRDB G/S/MSW dev:[dir] Location of
Directory database
(SUPRAD).

CSI_DMPANL G/S/MSW dev:[dir]CSI_DMP.ANL Location of PDM
crash dump file.

CSIDMPANL Any SUPRA_EXE:
CSIDMPANL_svclvl.EXE

Provides a PDM
dump analysis.

CSI_EXEC_
DISPATCH

G/S SUPRA_EXE:CSI_EXEC_
DISPATCH_svclvl.EXE

Executive mode
dispatcher.

CSI_EXEC_
DISPATCH_DEB

Any SUPRA_EXE:CSI_EXEC_
DISPATCH_DEB_svclvl.
EXE

Used for testing by
Cincom Support.

CSI_FINDPDM G/S dev:[dir]CSI_FINDPDM.
COM

Command file to
enable automatic
CSI_ FINDPDM
start-up.

CSIGIM G/S SUPRA_EXE:
CSIGIM_svclvl.EXE

General Interface
Module.

SUPRA Server logical names

System Administration Guide 283

Logical name Table Equivalence name Function
CSIGIM_DEB Any SUPRA_EXE:

CSIGIM_DEB_svclvl.EXE
Used for testing by
Cincom Support.

CSIINDEX Any SUPRA_COMS:CSIINDEX
.CLD

Command
definition file for
index utilities.

CSI_KERNEL_
DISPATCH

G/S SUPRA_EXE:CSI_
KERNEL_DISPATCH_
svclvl.EXE

Kernel mode
dispatcher.

CSI_KERNEL_
DISPATCH_DEB

Any SUPRA_EXE:CSI_
KERNEL_DISPATCH_
DEB_svclvl.EXE

Used for testing by
Cincom Support.

CSILOCKS Any SUPRA_AUXIL:
CSILOCKS_svclvl.EXE

Reports on VMS
locks granted to a
process.

CSI_MRELAY Any TRUE or FALSE Send CSIDAP to a
mailbox to be read
by a user-written
program.

CSI_NODIRECTORY Any TRUE or FALSE Prevents RDM
from signing on to
the SUPRA Server
Directory.

CSIOAUTH Any SUPRA_EXE:
CSIOAUTH_svclvl.EXE

CSIOPCOM
command
authorization
program.

CSIOPCOM Any SUPRA_EXE:
CSIOPCOM_svclvl.EXE

Alternative to VMS
OPCOM utility.

CSIOPCOM_AUTH Any dev:[dir]CSIOPCOM_
AUTH.LIS

CSIOPCOM
command
authorization file.

CSIOPCOM_SNAPS Any dev:[dir]CSIOPCOM_
SNAPS.LIS

File for dumped
CSIOPCOM
screens.

CSIPDM G/S SUPRA_EXE:
CSIPDM_svclvl.EXE

PDM image
executed by the
detached PDM
process.

Appendix E SUPRA Server logical names

284 P25-0130-47

Logical name Table Equivalence name Function
CSIPDM_DEB Any SUPRA_EXE:

CSIPDM_DEB_svclvl.EXE
Used for testing by
Cincom Support.

CSI_PDMID G/S 1–8 character name Identifies the name
of the PDM for
group or
systemwide PDMs.

CSIPDMINP G/S/MSW dev:[dir]PDM_OPTIONS_
*.INP

PDM input
parameter file.

CSIPDMLOG G/S/MSW dev:[dir]CSIPDM.LOG Log file for PDM
messages.

CSIPDM_PATCH G/S/MSW (security patch contents) Security patch
logical for the
PDM.

CSI_PREFIX Any 1–3 character prefix Specifies the prefix
used to distinguish
databases of the
same name used
in the same group
or system.

CSI_READAHEAD Any YES (or TRUE) or NO (or
FALSE)

Use readahead
buffering.
Default = YES

CSI_READAHEAD_
STATISTICS

Any YES (or TRUE) or NO (or
FALSE)

Print read-ahead
statistics at sign
off. Statistics are
printed to
CSI_CONSOLE.
Default = NO

CSI_RMS_RU_ON Any TRUE or FALSE Enable RMS
Journaling.

CSI_SCHEMA Any 6-character database
name

Database name
used by all RDM
applications
including DBAID
and Global View
creation.

* Refers to the 6-digit group number for a groupwide PDM, 000000 for a systemwide PDM, or the
translation of CSI_SYSPDMID for a multiple systemwide PDM.

SUPRA Server logical names

System Administration Guide 285

Logical name Table Equivalence name Function
CSI_SMENU Any SUPRA_EXE:

CSI_SMENU_svclvl.EXE
Menu for SUPRA
Server
components.

CSISTR G/S SUPRA_EXE:
CSISTR_svclvl.EXE

Starts up the
detached PDM
process.

CSISTRINP G/S/MSW dev:[dir]CSISTR.INP PDM start-up
resource file.

CSISTRLOG G/S/MSW dev:[dir]CSISTR.LOG Output file for
PDM start-up
program.

CSI_SYSPDMID Any 1–8 character name Name of multiple
systemwide PDM.

CSI_USEREX Any filename.EXE PDM user exit.
CSI_VAL_EXIT Any dev:[dir]image-name.EXE RDM Domain

Validation Exit.
CSI_WILD_EN Any (any valid character) Equal or next wild

card character.
CSI_WILD_EQ Any (any valid character) Equal only wild

card character.
CSMCHANGEDB Any SUPRA_EXE:

CSMCHANGEDB_svclvl.
EXE

Fast Utilities
program.

CSMCOMBAT Any SUPRA_EXE:
CSMCOMBAT_svclvl.EXE

Batch validate,
compile, and print
program.

CSTUDSLF G/S/MSW SUPRA_EXE:
CSTUDSLF_svclvl.EXE

System log dump
program.

CSTUFMT Any SUPRA_EXE:
CSTUFMT_svclvl.EXE

Stand-alone
format program.

CSTUFMTSHR Any SUPRA_EXE:
CSTUFMTSHR_svclvl.EX
E

Shareable format
image.

CSTUIDX Any SUPRA_EXE:
CSTUIDX_svclvl.EXE

Stand-alone index
maintenance
utility.

Appendix E SUPRA Server logical names

286 P25-0130-47

Logical name Table Equivalence name Function
CSTUIDXSHR Any SUPRA_EXE

CSTUIDXSHR_svclvl.EXE
Shareable index
maintenance
image.

CSTURCV Any SUPRA_EXE:
CSTURCV_svclvl.EXE

Stand-alone
recovery program.

CSTURCVSHR Any SUPRA_EXE:
CSTURCVSHR_svclvl.
EXE

Shareable
recovery image.

CSVBASIC Any SUPRA_EXE:
CSVBASIC_svclvl.EXE

BASIC RDML
preprocessor.

CSVCOBOL Any SUPRA_EXE:
CSVCOBOL_svclvl.EXE

COBOL RDML
preprocessor.

CSVDBAID Any SUPRA_EXE:
CSVDBAID_svclvl.EXE

DBAID utility.

CSVFORTRA Any SUPRA_EXE:
CSVFORTRA_svclvl.EXE

FORTRAN RDML
preprocessor.

CSVGLOBAL Any SUPRA_EXE:
CSVGLOBAL_svclvl.EXE

Global view
creation utility.

CSVIPLVS G/S SUPRA_EXE:
CSVIPLVS_svclvl.EXE

SUPRA Server
Relational Data
Manager (RDM).

CSVIPLVS_DEB G/S SUPRA_EXE:CSVIPLVS_
DEB_svclvl.EXE

Used for testing by
Cincom Support.

CSVLINK Any CSVLINK SUPRA_COMS:
CSVLINK.COM

Command file to
link RDM
application
programs.

CSXSCREEN Any SUPRA_EXE:
CSXSCREEN_svclvl.EXE

Screen handler.

[xxx_]dbname G/S/MSW dev:[dir]filename.MOD Points to compiled
database
description file.

[xxx_]dbname_CSI_
PDM_MACS

Any list of machines Preferred machine
list for a database.

DBAEDT Any SUPRA_EXE:
DBAEDT.EDT

Customized DBA
EDT environment
for Logical View
Maintenance.

SUPRA Server logical names

System Administration Guide 287

Logical name Table Equivalence name Function
DBVER Any SUPRA_COMS:

CSIDBVER.CLD
Command verb for
CSIDBVER utility.

DUMPSLF_[xxx_]
dbname

G/S dev:[dir]filename.ext Location of the
system log dump
input file.

GETLOCKS Any SUPRA_AUXIL:
GETLOCKS.CLD

Command verb for
CSILOCKS utility.

GVSCHEMA Any dev:[dir]filename.GBL Specifies the
global view file.

GVSCHEMA_SYS Any TRUE or FALSE Indicates that the
global view file is
to be loaded
systemwide.

RUNBASIC Any SUPRA_COMS:
RUNBASIC.COM

Command file to
run the BASIC
RDML
preprocessor.

RUNCOBOL Any SUPRA_COMS:
RUNCOBOL.COM

Command file to
run COBOL RDML
preprocessor.

RUNCSV Any RUNCSV SUPRA_COMS:
RUNCSV.COM

Command file to
run an RDM
application.

RUNDBAID Any SUPRA_COMS:
RUNDBAID.COM

Command file to
run DBAID.

RUNDIRM Any SUPRA_COMS:RUNDIRM
.COM

Command file to
run DIRM.

RUNFORTRA Any SUPRA_COMS:
RUNFORTRA.COM

Command file to
run FORTRAN
RDML
preprocessor.

SUPRA Any SUPRA_EXE:
CSI_SMENU_svclvl.EXE

SUPRA Server
main menu.

SUPRA_AUXIL Any dev:[dir.SUPRA.PDM_24:
AUXIL]

Directory
containing SUPRA
Server utilities.

SUPRA_BASE Any dev:[dir.SUPRA.PDM_24] Base SUPRA
Server directory.

Appendix E SUPRA Server logical names

288 P25-0130-47

Logical name Table Equivalence name Function
SUPRA_BURRYS Any dev:[dir.SUPRA.PDM_24.

BURRYS]
Directory
containing the
BURRYS
database.

SUPRA_CLEAN_
DICT

Any dev:[dir.SUPRA.PDM_24.
CLEAN_DICT]

Directory
containing an
unused Directory
database
SUPRAD.

SUPRA_CLEAN_ EXE Any dev:[dir.SUPRA.PDM_24.
CLEAN_EXE]

Directory not
currently used.

SUPRA_COMS Any dev:[dir.SUPRA.PDM_24.
COMS]

Directory
containing SUPRA
Server command
procedures.

[xxx_]SUPRAD G/S/MSW CSI_DIRDB:
SUPRAD.MOD

Directory compiled
database
description.

[xxx_]SUPRAD_CSI_
PDM_MACS

G/S/MSW list of machines Preferred machine
list for Directory
compiled database
description.

SUPRA_DICT Any dev:[dir.SUPRA.PDM_24.
DICT]

Directory available
for your use to
hold a Directory
database
(SUPRAD).

SUPRA_EXAMPLES Any dev:[dir.SUPRA.PDM_24.
EXAMPLES]

Directory
containing
example
command
procedures and
information.

SUPRA_EXE G/S dev:[dir.SUPRA.PDM_24.
EXE]

Directory
containing SUPRA
Server images.

SUPRA-HELP Any SUPRA_HELP:
SUPRA-HELP.HLB

Help library for
SUPRA Server.

SUPRA_HELP Any dev:[dir.SUPRA.PDM_24.
HELP]

Directory for the
SUPRA Server
help library.

SUPRA Server logical names

System Administration Guide 289

Logical name Table Equivalence name Function
SUPRA_LIBRARY Any dev:[dir.SUPRA.PDM_24.

LIBRARY]
Directory for the
SUPRA Server
database Class
configuration files.

SUPRA_PATCH_
WORK

Any dev:[dir.SUPRA.
PATCH_WORK]

Area provided for
applying
maintenance.

SUPRAPDM G/S CSIGIM Used to link the
SUPRA Server
shareable image
with applications.

SUPRA_PDM_
PATCHES

Any dev:[dir.SUPRA.PDM_24.
PATCHES]

Area containing
patches for
SUPRA Server
images (VAX) and
security codes
(VAX and Alpha).

SUPRA_REPORT Any dev:[dir.SUPRA.PDM_24.
REPORT]

Directory
containing Batch
Directory
Maintenance and
Directory Views.

SUPRA_TEST_EXE G/S dev:[dir.SUPRA.PDM_24.
TEST_EXE]

Directory for test
versions of the
SUPRA Server
images.

SUPRA_UPGRADE G/S dev:[dir.SUPRA.PDM_24.
UPGRADE]

Directory
containing SUPRA
Server upgrade
procedures.

SYS$ULTRA G/S/MSW CSI_DIRDB For users who
upgraded from
ULTRA.

ULTRADBMS G/S SUPRAPDM For users who
upgraded from
ULTRA 1.4.

ULTRAPDM G/S SUPRAPDM For users who
upgraded from
ULTRA 1.5.

Appendix E SUPRA Server logical names

290 P25-0130-47

Index

[
[xxx_]CSI_DIRDB logical 90
[xxx_]dbname logical 94
[xxx_]dbname_CSI_PDM_MACS

logical 95
[xxx_]SUPRAD logical 96, 97

A

access control lists (ACL) 141
bypassing 143
defining 144

access method
choosing 228
defining 208

ACLCHECK, PDM input
parameter 126

using with UICCHECK 139
ACTIVATE, an index 147
administration utilities 25

LOGICALS.COM 26, 63
PDM_LOGICALS_*.COM 26,

87
SUPRA_SYMBOL.COM 26, 57
SUPRA_SYSTEM.COM 26, 58

application programs, designing
232

AST_LIMIT, setting 118
AUTOGEN, using 111
automatic PDM initiation 42

creating an input file for 125
automatic restart 21

B

BASIC preprocessor, logical
name for 78

BATCH, interface to CSIOPCOM
182

BATCH_GLOBAL_INPUT logical
99

BGRN logical 70

binding
data items 242
views 229

binding views 24
block size, calculating to optimize

performance 211
bound views 229
BUFFER_LIMIT 119
buffers

managing 217
search algorithms 220

C

call-by-reference 56
chains

avoiding fragmentation 208
linkpath 214
synonym 210

change files 204
CHANGEDB command, using on

UDD files 204
CHANGEDB logical 86
checking indices 194
clustered PDM access 22
COBOL preprocessor, logical

name for 78
coded records, using 215
COMBAT logical 86
COMMITS, optimizing frequency

of 237
communicating with the PDM

through CSIOPCOM 174
through the REPLY command

189
components, SUPRA 20
console, displaying PDM

messages at 40, 90
CONSOLE, PDM input

parameters 126
contiguous disk files 208
control interval, defining 213
CSDUSSERV logical 70
CSI_* logical 89
CSI_ALLOW_DUP_RECORD_C

ODE logical 279
CSI_AUTOSTART

logical 89
PDM initiation parameter 39

CSI_CONSOLE logical 90
CSI_DBA logical 71
CSI_DMPANL logical 90
CSI_EXEC_DISPATCH logical

73

System Administration Guide 291

CSI_EXEC_DISPATCH_DEB
logical 73

CSI_FINDPDM
logical 100
to locate active PDM 48

CSI_KERNEL_DISPATCH logical
74

CSI_KERNEL_DISPATCH_DEB
logical 74

CSI_MRELAY logical 91, 100
CSI_NODIRECTORY logical 101
CSI_PDMID logical 92
CSI_PREFIX logical 102
CSI_REINIT_ON_SINON logical

279
CSI_RMS_RU_ON logical 103
CSI_SCHEMA, specifying a

database 50
CSI_SYSPDMID logical 109
CSI_USEREX logical 104
CSI_VAL_EXIT logical 104
CSI_WILD_EN logical 104
CSI_WILD_EQ logical 105
CSIDAP logical 42, 70
CSIDAP_DEB logical 71
CSIDBA logical 71
CSIDBAUTL logical 71
CSIDBLLOAD logical 72
CSIDBPDM logical 71
CSIDBVER logical 72
CSIDMPANL logical 72
CSIGIM logical 73
CSIGIM_DEB logical 74
CSIINDEX logical 74
CSILOCKS logical 75
CSIOAUTH logical 75
CSIOCOM_AUTH logical, to give

access to PDM commands
91

CSIOPCOM
batch interface 182
displaying pop-up menus 178
dumping screens 179
function key support 176
initiating 174
LIST command 180
SETcommand 180

CSIOPCOM logical 75
CSIOPCOM_SNAPS logical 91
CSIPDM logical 75
CSIPDM_DEB logical 75
CSIPDM_PATCH logical 76

CSIPDMINP logical 92
CSIPDMLOG logical 93
CSISMENU logical 76
CSISTR logical 76
CSISTRINP logical 103
CSISTRLOG logical 93
CSMCHANGEDB logical 76
CSMCOMBAT logical 77
CSTFMTSHR logical 77
CSTUDSLF logical 77
CSTUFMT logical 77
CSTUIDX logical 78
CSTUIDXSHR logical 78
CSTURCV logical 78
CSTURCVSHR logical 78
CSUBGRN_CONTINUE_ON_ER

ROR logical 279
CSVBASIC logical 78
CSVCOBOL logical 78
CSVDBAID logical 79
CSVFORTRA logical 79
CSVGLOBAL logical 79
CSVIPLVS logical 79
CSVIPLVS_DEB logical 79
CSVLINK logical 86
CSXSCREEN logical 80

D

data items
binding 242

data sets
accessing 227
controlling lists of 242
formatting 258
general information about 207
modifying 204
primary data sets 209
redundant 209
related data sets 212
sizes, estimating 196

database
compiling 194
disabling 151
displaying status of 154
dumping log of 158
enabling 160
migrating 243
prefix 51
printing 194
protection 141
shutting down 167

Index

292 P25-0130-47

database (cont.)
specifying read-only access for

164
unloading 169
updating 171
validating 194

DATABASE-DESCRIPTIONS,
user name 197

DATA-DICTIONARY, user name
197

DBA
invoking 27

DBA utilities, to modify UDD files
206

DBAEDT logical 80
DBAID 24

invoking 27
DBAID_HELP_NOSPAWN

logical 279
DBVER logical 80
DEACTIVATE, an index 149
directory 17

buffers 202
changes and corresponding

action 202
changing database definition

198
modifying 200
structure 18
SUPRAD structure 195

DISABLE, an database 151
DISPLAY, a database 154
dump system log 158
DUMPSLF, PDM operator

command 158
DUMPSLF_[xxx_] dbname

logical 107
DYNSLOCK, PDM input

parameters 127

E

ENABLING, a database 160
ENQUEUE_LIMIT, setting 120
enrolling programs into the

directory 197
EXTENT, setting 121

F

fast utilities
description 194
using to alter directory data

sets 204
file density 211
FILE_LIMIT, setting 121
format,functions 194
formatting, using CSTUIDX 194

G

global views, using 24, 229
groupwide PDM 34, 37, 38
GVSCHEMA logical 107
GVSCHEMA_SYS logical 108

H

heterogeneous cluster and
network support 22

home address for a primary
record 210

I
IDXCNVERR, PDM input

parameters 128
IDXDUPERR, PDM input

parameters 128
IDXTIMEOUT, PDM input

parameters 128
index

activating 147
deactivating 149
file protection 144
populating 162
usage guidelines 230

initiating
SUPRA 27
the PDM 39, 48

INTERVAL, PDM input
parameters 129

IO_BUFFERED, setting 122
IO_DIRECT, setting 122

Index

System Administration Guide 293

L

LOGFLUSH, PDM input
parameters 129

logical view binding 24

M

manual PDM initiation 40
MAXDATA, PDM input

parameters 130
MAXIMUM_WORKING_SET,

setting 122
MAXTASKS, PDM input

parameters 131
MAXTHREADS, PDM input

parameters 132
modifying

data sets 204
SUPRA directory database 200
SUPRAD files

using DBA utilities 206
using fast utilities 204

MRELAY, PDM input parameters
133

MULTIHOLD, PDM input
parameters 133

multiple sytemwide PDM 36, 38

N

network
checking machines for active

PDM 48
initiating the PDM on 48
PDM access 22

O

OPERATOR, PDM input
parameters 134

P

PAGE_FILE, setting 123
PDM input parameters

ACLCHECK 126
CONSOLE 126
DYNSLOCK 127
entering 125
IDXCNVERR 128

IDXDUPERR 128
IDXTIMEOUT 128
INTERVAL 129
LOGFLUSH 129
MAXDATA 130
MAXTASKS 131
MAXTHREADS 132
MRELAY 133
MULTIHOLD 133
OPERATOR 134
PDMNAME 134
PRIORITY 135
RETRY 136
SINGLEUNLOAD 136
STATISTICS 137
SYSOPCOM 138
TIMEOUT 138
UICCHECK 139

PDM operator commands
ACTIVATE 147
DEACTIVATE 149
DISABLE 151
DISPLAY 154
DUMPSLF 158
ENABLE 160
POPULATE 162
READONLY 164
SHUTDOWN 167
UNLOAD 169
UPDATE 171

PDMNAME, PDM input
parameters 134

Physical Data Manager (PDM)
automatic initiation 42
check for active PDM 48
configuring 33
CSI_AUTOSTART 42
CSI_FINDPDM 48
CSI_PDMID 92
CSIPDMINP 92
CSIPDMLOG 93
CSISTRINP 103
CSISTRLOG 93
groupwide 34, 37, 38
initializing 39
manual initiation 40
multiple systemwide 36, 38
statistics 269
systemwide 35, 37
user exits 259

POPULATE, an index 162
populating 194

Index

294 P25-0130-47

prefix, using 51
printing read-ahead buffer

statistics 240
PRIORITY, PDM input

parameters 135
PUBLIC user name, for enrolling

programs 197

Q

QUEUE_LIMIT, setting 123

R

read-ahead buffering
context position considerations

239
program considerations 239
program exceptions 239
remote application

considerations 241
tuning 241
turning off 240
turning on 240

read-ahead buffering,
understanding 238

READONLY, PDM operator
command 164

recovery point, creating for
database 199

Relational Data Manipulation
Launguage (RDML) 21

RETRY, PDM input parameters
136

RUNBASIC logical 80
RUNCOBOL logical 81
RUNCSV logical 86
RUNDBAID logical 81
RUNDIRM logical 81
RUNFORTRA logical 81

S

shadow recovery 22
SHUTDOWN, PDM operator

command 167
SINGLEUNLOAD, PDM input

parameters 136
SPECTRA 29
statistics, for the PDM 269

STATISTICS, PDM input
parameters 137

SUBPROCESS_LIMIT, setting
123

SUPRA
administration utilities 25
cluster support 22
components 20
facilities menu 27
images, privileges required for

60
logical 81
network support 22
related products 29

SUPRA directory database
(SUPRAD)

data set sizes, etsimating 196
definiton of, changing 198
general information about 195
modifying 200
modifying data sets 204
recovery point, creating 199
structure of 195
user names, setting up 197

SUPRA_AUXIL logical 82
SUPRA_BASE logical 82
SUPRA_BURRYS logical 82
SUPRA_CLEAN_DICT logical 82
SUPRA_CLEAN_EXE logical 82
SUPRA_COMS logical 83
SUPRA_DICT logical 83
SUPRA_EXAMPLES logical 83
SUPRA_EXE logical 83
SUPRA_PATCH_WORK logical

84
SUPRA_PDM_PATCHES logical

84
SUPRA_REPORT logical 85
SUPRA_TEST_EXE logical 85
SUPRA-HELP logical 84
SUPRAPDM logical 84
SYS$ULTRA logical 85
SYSOPCOM, PDM input

parameters 138
system level recovery 22
systemwide PDM 35, 37

T

task level recovery 22
TIMEOUT, PDM input

parameters 138

Index

System Administration Guide 295

U

UDD files 195
modifying 204

UICCHECK, PDM input
parameters 139

ULTRADBMS logical 86
ULTRAPDM logical 85
UNLOAD, PDM operator

command 169
UPDATE, PDM operator

command 171
user exits

COBOL examples 259
FORTRAN example 267
writing 55

user names
DATABASE-DESCRIPTIONS

197
DATA-DICTIONARY 197
PUBLIC 197
setting up 197
UTILITIES 197, 201

UTILITIES user name 197, 201

V

view binding 24
views

global 24

W

WORKING_SET, setting 124

Index

296 P25-0130-47

	Back to DOCUMENTATION MENU
	About this book
	Using this document
	Document organization
	Revisions to this manual
	Conventions

	SUPRA Server documentation series

	Chapter 1 - SUPRA Server overview
	SUPRA Server components
	The Physical Data Manager
	The Directory
	The Relational Data Manager

	SUPRA Server administration utilities
	Selecting a SUPRA Server facility
	Related products
	SPECTRA
	MANTIS

	Chapter 2 - Understanding the Physical Data Manager (PDM)
	Configuring the PDM
	Groupwide PDM
	Systemwide PDM
	Multiple systemwide PDM
	Systemwide and groupwide PDM
	Multiple systemwide and groupwide PDM

	Initializing the PDM
	Manual PDM initiation
	Automatic PDM initiation
	Initiating the PDM on a network

	Specifying a database
	Using a database prefix
	Writing SUPRA Server PDM user exits

	Chapter 3 - Defining your operating environment
	Creating a PDM environment
	Defining logicals for your PDM environment
	LOGICALS.COM
	PDM_LOGICALS_*.COM
	pdmname_USER_INIT.COM
	SUPRA_SYMBOL.COM

	Modifying VMS system parameters

	Chapter 4 - Entering input parameters
	Creating a PDM start-up resource file
	Assigning a UIC name to the PDM
	Specifying PDM quotas

	Entering parameters for the PDM input file
	Setting up and using PDM file protection checking

	Chapter 5 - Communicating with the SUPRA Server PDM
	Using the PDM operator commands
	Activating an index (ACTIVATE)
	Deactivating an index (DEACTIVATE)
	Disabling a database (DISABLE)
	Displaying a database (DISPLAY)
	Dumping the contents of the System Log for a database (DUMPSLF)
	Enabling a database (ENABLE)
	Populating an index (POPULATE)
	Specifying read˚only access for a database (READONLY)
	Shutting down a database (SHUTDOWN)
	Unloading a database (UNLOAD)
	Specifying update access for a database (UPDATE)

	Communicating with the SUPRA Server PDM through CSIOPCOM
	Using CSIOPCOM commands
	Running CSIOPCOM in batch

	Automating operator communication
	Restricting use of PDM commands
	Communicating with the PDM through the VMS REPLY command

	Chapter 6 - Setting up the SUPRA Server Directory database
	The SUPRA Server Directory database
	Estimating the SUPRA Server Directory data set sizes
	Setting up the SUPRA Server Directory user names

	Changing the definition of the SUPRA Server Directory database
	Creating a recovery point
	Modifying the SUPRA Server Directory database
	Modifying the SUPRA Server Directory data sets
	Using Fast utilities on UDD files
	Using DBA utilities on UDD files

	Chapter 7 - Tuning your database
	Tuning your physical database
	Defining the file access method
	Avoiding fragmented files
	Using data sets
	Evaluating redundant data items
	Using primary data sets
	Optimizing primary record retrieval
	Using related data sets
	Avoiding fragmented chains
	Defining the control interval and load limit
	Establishing the primary linkpath
	Using coded records

	Defining logical units of work
	Managing buffers
	Improving database performance with PDM cache
	Understanding buffer search algorithms
	Tuning for PDM Cache use
	Minimizing dbmod load time
	Optimizing data set buffering
	Tuning PDM process memory
	CONTROL:Manufacturing tuning considerations

	Optimizing Relational Data Manager performance
	Accessing data sets
	Choosing an RDM access method
	Using bound views
	Using Global Views

	Using indexes
	Designing application programs
	Record holding
	Managing record holding
	Preventing a deadly embrace
	Optimizing the frequency of commits
	Understanding client read-ahead buffering
	Context position considerations
	Application programming considerations
	Turning off read-ahead buffering
	Turning on read-ahead buffering
	Printing read-ahead buffer statistics
	Remote application considerations
	Performance tuning using the MAXDATA PDM input parameter

	PDM application guidelines

	Chapter 8 - Migrating a database
	Migrating into SUPRA Server
	Migrating from SUPRA Server
	Generating a DDL file
	Using the DDL Load Facility
	Signing on to CSIDDLLOAD
	Loading the DDL file
	Checking CSIDDLLOAD error conditions
	Status codes
	SUPRA Server error messages
	Listing output file messages

	Compiling the database description
	Formatting data sets
	Adding records

	Appendix A - Example user exits
	COBOL user exits
	COBOL user exit 1
	COBOL user exit 2
	COBOL command file to compile and link the exits

	FORTRAN user exit
	FORTRAN user exit
	FORTRAN command file to compile and link the exit

	Appendix B - PDM statistics output
	Appendix C - Example mailbox-reading program
	Appendix D - Optional SUPRA Server logicals
	Appendix E - SUPRA Server logical names
	Index

