Cincom

SUPRA SERVER PDM

RDM Administration Guide
(VMS)

P25-8220-45

SUPRA°® Server PDM RDM Administration Guide

Publication Number P25-8220-45

0 1990, 1995-2002 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage® iD CinDoc™ MANTIS®
C+A-RE™ iD CinDoc Web™ Socrates®
CINCOM® o iD Consulting™ Socrates® XML
Cincom Encompass iD Correspondence™ SPECTRA™
Cincom Smalitalk™ iD Correspondence Express™ SUPRA®
Cincom SupportWeb iD Environment™ SUPRA® Server
CINCOM SYSTEMS iD Solutions™ Visual Smalitalk®

= intelligent Document Solutions™ VisualWorks®
gO0oi™ Intermax™

UniSQL™ is a trademark of UniSQL, Inc.
ObjectStudio™ is a registered trademark of CinMark Systems, Inc.

All other trademarks are trademarks or registered trademarks of their respective companies.

Cincom Systems, Inc.

55 Merchant Street
Cincinnati, Ohio 45246-3732
U.S.A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

www.cincom.com

Release information for this manual

The SUPRA Server PDM RDM Administration Guide (VMS),
P25-8220-45, is dated January 15, 2002. This document supports
Release 2.4 of SUPRA Server.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. Please take the survey provided with the
online documentation at your convenience.

Cincom Technical Support for SUPRA Server PDM

FAX: (513) 612-2000
Attn: SUPRA Server Support

E-mail: helpna@cincom.com

Phone: 1-800-727-3525

Mail: Cincom Systems, Inc.
Attn: SUPRA Server Support
55 Merchant Street
Cincinnati, OH 45246-3732
U.S.A.

mailto:helpna@cincom.com

Contents

About this book IX
USING thiS QOCUMENT......cci it e e e e e e e e e e s e e eeees iX
DOoCUMENTE OFGANIZATIONveiiiiieei it a e e e X

(00] 1)Y= 01 1T o 1S PRSPPI Xi

SUPRA Server documentation SEES Xiii
Introduction to the Relational Data Manager 15
The role of the RDM in the SUPRA Server SYStEM........cuuieeeiiiiiiiiiieeeeseiniinneeeeeesnanns 18

How RDM signs on to the database...........oooiiiiiiiiiiiii e 19

How RDM handles VIEW-0PEN FEQUESESccevuriiiiieeeeiiiciiiiier e e e e e ssiiaeeeee e e s e snnanneeeeees 21
SUPRA Server's three schema arChiteCtureuevvuiviiiiiiiieiiiiiiiiiiiieiie, 23

The internal schema: Physical Data DescCription.........ccccceevevcvivieeeeeeiiciinennn 24

The conceptual schema: base VIEWSooiiiiiiiiiiiiiiiiaeeieee e 25

The external schema: derived VIEWS..........cooiiiiiiiiiiiieeiiiee e 26

How the RDM fits into the three schema architecture................................ 27

RV PR TPPROUPRPTPPIN 28

TWO tYPES OF VIBWS ...ttt 29

HOW VIEWS Gr€ USEA .. .eeiieiiiiie ettt ettt 29

USEBI VIBWS ... 30

LD 1Y = o o T £ PSSPt 31

RDIM SECUITEY ...ttt ettt ettt e e ettt et e e e e e ekttt et e e e e e e e e ennbb e b e e e ee e e s e annnbeneaeas 33
EXample databasecooioiiiiiiiicc e 34

Parts of a view 35
Column defiNItiONS......ccooieeeeeeeee e ——————— 36
ACCESS EFINILIONS .eeeiieiiieiiieie et e e anneeee s 50

View design considerations 73
HOW RDM CONSITUCES TOWSvvtiiiieieeeiieiiiis e e e e ettt s e e e e e e eeaaan s e e e e e e aaaba e e e e e e aestaaaneeeas 74
Database PENELratiONuuviiiiiiieiiieie e e e e e e e e e s s er e e e e e e s reeeeeeann 75

DAatabhase SWEEP ...ceeeiiiiitiiiiie ettt e e e a e e e e 77

RDM Administration Guide \Y

Contents

Navigational constraints and boundary conditionsccccoeecvvieveeereeenee, 78
Processing derived VIEWSuuiiiiiaiiiiiiiiie et 80

KeYEed ACCESS 10 UALA ..vvvvrrieeeisiiiiiiii e e e e et e e e e e s et e e e e e e s et r e e e e e e s s ntnaneaeeeeeeanns 83
UNIQUE KBYS ettt ettt e e e e ettt e e e e e e e s nnaene e 86
NON-UNIQUE KBYS iiiiiiieie e e ieiiitie et e e e s e st ee et e e e s s st an e e e e e s sntaaaneaeaeeeannnsaneees 88
CONSTANT KBYS .t eieettte ettt e e ettt e e e e e e et e e e e e e e e aannnes 90
SECONUANY ACCESS KBYS ..viiriiieiiiiiiiiiiieee e e isiieiteet e e e s s sstaareeeeeesesnnntaneeeeeeesnnnne 92
GENENC rEAUS ... 93
(50101 =1 SRR UPPPRPTPPPR 96
NUIVAIUBS ... 98

DEfaUIt VAIUEScooiiiiie e 101
Validation OPLIONScoiiiiiiiiiiei e 103

JOIN COMPALIDIILY ©.vvveeeeeee i e e 105
Referential integrity With RDIMcoiiiiiiiii et 106
Integrity rules and Checking ... 108

Foreign key value INtegrityueeiiiieeiiiiieie e 109
TaISY=T g o) o I 01 (=T | 13/ PR 110

UPAALE INTEGIITY ...cei ettt e e e e e e e e e e e e annes 112

LT I o] o To =TS [o PSR 115
Deletion INTEGIILYoieieeeee e a e e 116
Referential integrity eXamplesocoeiiiiiiiiiieee e 121

Shared COlUMN VAIUEScoooiiiiiiiiieeeee 126
VieW-t0-USer relatioNShiPSuviiirieee e e e e e e e e 128
Physical and logical database changes 131
OVEIVIBW ... 131
Physical and logical database aCtioNScoiueiiiiiiiiiei e 131
Defining and testing views using DBAID 135
INVOKING DBAID ...ttt ettt e e e ettt e e e e e e e e snnbeaeeaaaeeaeannes 136
SigNING ON 10 DBAIDciiiiiiiiiie ittt et e e 138
USING DBAID COMMANTS ...coiiiiiiiiieitee ettt e et e e e e e e e s aenreeeaaaeeas 139
faleo)1102 =T o T L ORI 146
ZCOMMANG....cciiiii 148

BIND COMMANT ...ttt ettt e s 149

S IV oo 1 1 = 1 o 150

BYE COMMEANT...ciiiiiiiiiiiiiiee ettt e et e et e e 152
CAUTIOUS command ... 153
COLUMN-DEFN COMMANGooiiiiiiiiiieiiiiiee sttt 154
COLUMN-TEXT command..........cccooeiiiiiiiiiii 158
COMMIT COMMEANG ...ttt et e e et e e beeeeeanes 159

COPY cOmMMaNd........coooiiiiiiiii 160
DEFINE COMMANG.....ccoiiiiiiiiiiiie ettt 161

] I I oo .41 1 =V (o 162

DENY COMMANGutiiiiiiiiiieeiiiie ettt et e et e e st e e 164

vi P25-8220-45

Contents

L= I oT0 Y20 1 = (o [165
ERASE COMMANG ...ttt e e e e e e e s 166
FIELD-DEFN COMMANGccoiiiiiiiiei et e e et e e e s e e evaaa e 167
FIELD-TEXT COMMANG.....ccceuniiiiii ittt e et e e e s e e e e e 170
FORGET COMMANG ..uvuniiiiiiieeeii ettt e e e e et e e e e e e s eebaaan e e 172

(€ = oo] 1 1] 10 T=1 21 T 173

(C10 o)1 43 F=1 2T F 179
INSERT COMMANGiiiiieiiiieeeeeee et e e e e e e e st e e e e s 183

KEEP COMMANG.....uiiiiiiiiiiiieteee et e e e et e e e e e e e ee e e s 188
lINe-NUMDBEr COMMANDiieeiiei e e e 189
LINESIZE COMMANG ...uviiiiiieeiie e e e e e e e ee b 190

[N IoT0] 0411 1= 1 Lo TR 191

MARK COMMANGuuiiiiiiiiiiiieiee et e e e e e e e e e e e e e eebaaaeeeeeas 193
MARKS COMMANG.... ittt e e e e e e e e e s e e e e e aaaaas 194

(@] =4 = \N I oTo T 1 411 7= T SR 195
PAGESIZE COMMANGuiiiiii ettt e e et en s 198
PERMIT COMMANG.....uiiiiiiiiiiiiiie e e e e e e e e e e eebaee e e 199
PRINT-STATS COMMAN......uiiiiiiiiiiiie et e e e st eeeaaas 200
RELEASE COMMANG.......coiiiiiiiiiiieeeeeeeee e e e e e s e av e 201
REMOVE COMMANG.....cuniiiiiieiite ettt e e et e e e e s e e e e e aaaa s 202
RENUMBER COMMANG.......ccuutiiiiiiiiiiieiiieee e et e e e ee e s e e e e e e eeaaaa e 203
RESET COMMAN ...ttt e e e e et e e e e st e e e e aaaa s 204

YA\ V4 =i o701 210 1= T T 205
SHOW-NAVIGATION COMMANcevveniiieiiiiiteee et eeeeaeees 207
SIGN-OFF COMMANGcciiiieiiiieie et e e e e e e e e s e e e aaba e e e e e 208
SIGN-ON COMMEANG ..ottt e e e e e s e e e et e e e reaaaaeees 209

N AN S o201 01 ¢ =T Lo 1R 210
STATS-OFF COMMANG .. .cceeiiiiee e e e e 211
STATS-ON COMMANGceviitiiiieeeeeeee e e e e e e e e e e e e s seba e e seeesenes 212

SURE COMMEANTG ...niiii ettt e e e e e e et e e e st e e e st e e e reaaeeeees 213
UNDEFINE COMMANG.....cciiiiiiiiiie e e e e et e e e s e s eeaaaae e e 214
UPDATE COMMANG....ccouniiiiiiei ittt e et e e e e e e s e et e e s abe e e e eaaaans 215
USER-LIST COMMANG ...t e e e e e 218
VIEW-DEFN COMMANGuuiiiiiiiiii et s et e e e e e e e s eaas 219
VIEWS COMMANG.....cuttiniiiiiiiiiiiiee e ee e e e e e s e e s s e e e e e e eeaaae e s e e e s eeaeaaanes 221
VIEWS-FOR-USER COMMANccvviiiiii e 222

RDM status indicators 223
Function Status INdICAtors (FSIS)......uuuiiiieiee it 224
Column Attribute Status INICAtOrs (ASIS).....cceei e 226
Validity Status INAiCAtOrS (VSIS) ..oiiiuiiiiiiii et e e e e ennnaeeee s 230

RDM Administration Guide Vil

Contents

Optimizing view performance using bound and global views 231
Differences between bound and global VIEWScccvveviiiieiiiiiiiiiice e 231
Advantages of using global VIEWS.............uueiiiiiiiiiiiice e 234

Changing view text: a note of CautioN...........cccuvvvveeeei i 235

BOUNG VIBWS......eeeiiee ettt e ettt e e e e e e e et et e e e e e e e s e nnnnbeeeeaaeens 236

BINING @ VIEW...eiiieiiiiiiiieie ettt ettt e e e e e e e e e e e e e e s e eaeeeennnnn 236

Ensuring that you update a bound VIEW............ccccoiiiiiiiiiiiiiiiiieee s 239

GlODAI VIBWS......eieiiie e 241
Creating a Global VIEW file ... 243

Example Global View iNput fileScceoiiiiiiiiiiiee e 257

Example Global View report file......... e 258

Options for RDM access to the SUPRA Server direCtory.........ccccvvvvveveeeiiiciinenneeennn 259
Running without the dir€CtOrNYcoooiiiiiiiiiii e 259

Running with the directory and with Global Views..........ccccccoevvivieveeeiiinnee, 260

Running with the directory alone.............oooueiiiiiiiiiii e 260

Generating RDM reports 261
L1V I €= o o] £ 263

Stage one—specifying the reports to be produced.............ccceeiiiiiiiiiiiieiiiiiiiieeen, 264

Stage two—generating the rEPOISvvveeeii i e e 268
DBAID quick reference 269
DBAID COMMANTAS ...ttt ettt e e e e e e sttt e e e e e e e e s e nnnbeeeeaaeeas 269
DEFINITIONS ..o 275

StALUS INAICALOIS .eeieiiiiee ettt e e e e et e e e e e e e e e b b e eeeeaens 276
ASTVAIUEBS ...t 276

FSIVAIUBS ...t e e e e e e e e e e nees 277

VST VAIUBS ...ttt 278

Example RDM reports 279
DBA report format deSCrIPLIONueiiiiiiiiiiie et 280
Domain usage report format deSCriptioNceveeiiiiiiiiieeee e 285

Logical Data Item report format deSCriptioN.............ociuiiiiiiieiiiiieee e 288
Physical Data Item report format deSCrption..........cooccviiiiieeei e 291
Validation Table Usage report format descriptionoccoeeeeeieiniiiiiiiineeee e, 294
Example user validation exits 295
Example database 305
Relations in the internal SChemMa...........ccoiiiiii e 305

Base views in the conceptual SChema............uuiiiiiiiiiii e 310
Derived views in the external SChemacccoviiiiiiii e 314

Index 319

viii P25-8220-45

About this book

Using this document

To administer the RDM, this manual provides you with information
necessary for:

¢ Understanding the overall purpose of the RDM and its role in the
SUPRA Server system

¢ Understanding the parts of a view
¢ Creating views best suited to your needs by:
- Understanding some important design considerations

- Recognizing modifications you must make as a result of physical
and logical database changes

- Interpreting the status indicators RDM returns to show view
processing results

¢ Designing and testing views
¢ Optimizing view performance

¢ Supplementing your understanding of the concepts explained in this
manual by providing an example database called EXAMPL

RDM Administration Guide [N¢

About this book

Document organization

The information in this manual is organized as follows:

Chapter 1—Introduction to the Relational Data Manager
Introduces you to the Relational Data Manager. Shows you how the
RDM fits in the SUPRA Server system, how RDM signs on to the
SUPRA Server Directory, and describes SUPRA Server's
three-schema architecture.

Chapter 2—Parts of a view
Describes the two parts of a view (column and access definitions),
and provides the syntax for defining them.

Chapter 3—View design considerations
Provides information you should consider before defining your views.

Chapter 4—Physical and logical database changes
Shows you further actions you should take as a result of physical and
logical changes to the database.

Chapter 5—Defining and testing views using DBAID
Shows you how to sign on to DBAID to test and define your views,
and gives syntax for the DBAID commands.

Chapter 6—RDM status indicators
Explains each of the status indicators that RDM provides to show
view processing results.

Chapter 7—Optimizing view performance using bound and global
views
Explains how to use bound and global views to optimize view
performance.

Chapter 8—Generating RDM reports
Shows you how to produce RDM reports. You must have SPECTRA
to run the RDM reports. SPECTRA is not available in the OpenVMS
AXP environment.

Appendix A—DBAID quick reference
Provides a quick reference for DBAID commands.

Appendix B—Example RDM reports
Provides example RDM reports, using the example database
described in Appendix D.

Appendix C—Example user validation exits
Shows example user validation exits.

Appendix D—Example database
Describes the database used in examples throughout this manual.

Index

P25-8220-45

Using this document

Conventions

The following table describes the conventions used in this document

series:
Convention |Description Example
Constant wi dth Represents screen images and PUT * custoner. dat" ,
type GET 'm |l er\custoner. dat
segments of code. PUT ' \ DEV\ RMTO'
Slashed b () Indicates a space (blank). BEGNDDDDSERI AL
The example illustrates that four
spaces appear between the
keywords.
Brackets [] Indicate optional selection of

parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate one
of the following situations.

A single item enclosed by brackets [VHERE sear ch-condi ti on]
indicates that the item is optional
and can be omitted.

The example indicates that you can
optionally enter a WHERE clause.

Stacked items enclosed by brackets QWAIT) O

represent optional alternatives, one %NOWNT)E
of which can be selected.

The example indicates that you can
optionally enter either WAIT or
NOWAIT. (WAIT is underlined to
signify that it is the default.)

Braces { } Indicate selection of parameters.
(Do not attempt to enter braces or to
stack parameters.) Braces
surrounding stacked items
represent alternatives, one of which
you must select.

N
MONITOR = E
%)FFD

In the example you must enter ON
or OFF when using the MONITOR
statement.

RDM Administration Guide Xi

About this book

|C0nvention |Description |Examp|e
Underlining Indicates the default value supplied QWAIT) O
(In syntax) when you omit a parameter. HNOWAIT)

Ellipsis points...

UPPERCASE
lowercase

Italics

Punctuation
marks

SMALL CAPS

The example indicates that if you do
not choose a parameter, the system
defaults to WAIT.

Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.

The example indicates that you can
enter either STAT or STATISTICS.

Indicate that the preceding item can
be repeated.

In the example you can enter
multiple host variables and
associated indicator variables.

In most operating environments,
keywords are not case-sensitive,
and they are represented in
uppercase. You can enter them in
either uppercase or lowercase.

Indicate variables you replace with a
value, a column name, a file name,
and so on.

In the example you must substitute
the name of a table.

Indicate required syntax that you
must code exactly as presented.

() parentheses
period
comma
colon
single quotation marks

Represent a required keystroke.
Multiple keystrokes are hyphenated.

STATI STI CS

I NTO : host-variable [:ind-

variable],...

CCPY MY_DATA. SEQ
HOLD_DATA. SEQ

FROM t abl e- name

(user-id, password,

db- nane)

I NFI LE ' Cust. Menmp' CONTRCL

LEN4

ALT-TAB

Xii

P25-8220-45

SUPRA Server documentation series

SUPRA Server documentation series

SUPRA Server is the advanced relational database management system
for high-volume, update-oriented production processing. A number of
tools are available with SUPRA Server including DBA Functions, DBAID,
precompilers, SPECTRA, and MANTIS. The following list shows the
manuals and tools used to fulfill the data management and retrieval
requirements for various tasks. Some of these tools are optional.
Therefore, you may not have all the manuals listed. For a brief synopsis
of each manual, refer to the SUPRA Server PDM Digest for VMS
Systems, P25-9062.

Overview

¢ SUPRA Server PDM Digest for VMS Systems, P25-9062

Getting started

¢ SUPRA Server PDM VMS Installation Guide, P25-0147

¢ SUPRA Server PDM VMS Tutorial, T25-2263

General use

¢ SUPRA Server PDM Glossary, P26-0675

¢ SUPRA Server PDM Messages and Codes Reference Manual
(PDM/RDM Support for UNIX & VMS), P25-0022

Database administration tasks

¢ SUPRA Server PDM Database Administration Guide (UNIX & VMS),
P25-2260

¢ SUPRA Server PDM System Administration Guide (VMS), P25-0130

¢ SUPRA Server PDM Utilities Reference Manual (UNIX & VMS),
P25-6220

¢ SUPRA Server PDM Directory Views (VMS), P25-1120

¢ SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

¢ SPECTRA Administrator’s Guide, P26-9220**

RDM Administration Guide Xiii

About this book

Xiv

Application programming tasks

¢

¢

¢

SUPRA Server PDM Programming Guide (UNIX & VMS), P25-0240
SUPRA Server PDM System Administration Guide (VMS), P25-0130
SUPRA Server PDM RDM Administration Guide (VMS), P25-8220

SUPRA Server PDM Windows Client Support User’s Guide,
P26-7500*

MANTIS Planning Guide, P25-1315**

Report tasks

¢ SPECTRA User's Guide, P26-9561**
NOTE Manuals marked with an asterisk (*) are listed twice because you use
e them for different tasks.
NOTE Educational material is available from your regional Cincom education

0 o—

department.

P25-8220-45

1

| ntroduction to the Relational Data
M anager

The Relational Data Manager (RDM) processes applications' requests to
access the physical data held in PDM and RMS data sets and presents it
as though it were arranged in two-dimensional tables. These two-
dimensional tables are referred to as logical views or simply, views. The
Database Administrator (DBA) designs views from data stored on the
SUPRA Server directory database SUPRAD. The DBA can create two
kinds of views: base views or derived views. Base views access the
physical data, derived views access only other views; not the physical
data sets themselves.

RDM Administration Guide 15

Chapter 1 Introduction to the Relational Data Manager

16

One of the biggest advantages of the RDM is that it enables application
programmers and end users to use these views to access the database
without concern for the location of the data. RDM also provides:

¢

Relational Data Manipulation Language (RDML). Allows
programmers to retrieve and modify database contents. Refer to the
SUPRA Server PDM Programming Guide (UNIX & VMS), P25-0240,
for details on using RDML.

DBAID. Allows DBAs to define and test views. DBAID also has
commands that programmers can use to test whether a view meets
application requirements. See “Defining and testing views using
DBAID” on page 135 for information on using DBAID.

Binding views. Allows the DBA to place pre-opened copies of
logical views on the SUPRA Server Directory database SUPRAD.
See “Optimizing view performance using bound and global views” on
page 231 for more information on bound views.

Globalizing views. Allows the DBA to place pre-opened copies of
frequently used logical views in global memory. See “Optimizing view
performance using bound and global views” on page 231 for more
information on global views.

Both bound views and global views reduce processing overhead because
the view-open is only performed once (at the initial RDM sign-on);
subsequent RDM sign-ons simply map to the open view. Bound views
are stored on the SUPRA Server Directory, global views are stored in
global memory. See “Optimizing view performance using bound and
global views” on page 231 for more information on how to use bound and
global views and the differences between them.

P25-8220-45

SUPRA Server documentation series

File types supported by the RDM

In OpenVMS environments, the RDM can access both Physical Data
Manager (PDM) data sets and RMS data sets. RDM accesses PDM
data sets through the PDM; however, it accesses RMS data sets directly.

To use RMS data sets, define them to the Directory using the DBA utility
(Create RMS Data Set function). Then define the views and physical
access requirements. RDML programs written in COBOL, FORTRAN,
BASIC, and MANTIS can then access data held on RMS data sets
through RDM as they would data held on PDM data sets.

For information about using PDM data sets, refer to the SUPRA Server
PDM System Administration Guide (VMS), P25-0130.

NOTE

The SUPRA Server Physical Data Manager (PDM) does not access RMS
data sets. Therefore, PDM recovery logging is not available for RMS
data sets. However, VMS Recovery Unit Journaling is available as a
product option.

Application programs that already access RMS data sets directly need
not be changed. However, they are not insulated from change until they
are rewritten using RDM for access.

All views must be stored on the SUPRA Server Directory database
SUPRAD before application programs and users can access them. You
can create views using either the DBA utility or the DBAID utility. The
difference is that DBAID allows you to test your views before putting them
into production; SUPRA DBA does not. Refer to the SUPRA Server PDM
Database Administration Guide (UNIX & VMS), P25-2260, for more
information on using DBA, and/or “Defining and testing views using
DBAID” on page 135 for information on using DBAID.

RDM Administration Guide 17

Chapter 1 Introduction to the Relational Data Manager

The role of the RDM in the SUPRA Server system

The following figure shows the SUPRA Server system, including SUPRA
Server components and other related products. As shown, the RDM
receives application requests and accesses the physical data held on the
Directory through the PDM. Note that the RDM accesses VMS RMS data
sets directly (not through the PDM).

RDML
Applications

SPECTRA*

|_I

MANTIS

RDM

PDML
Applications

,_l

RMS
Data
Files

*SPECTRA is not available in OpenVMS AXP environments

18

PDM _I

PDM

SUPRA
Server
Directory

Data
Files

P25-8220-45

How RDM signs on to the database

How RDM signs on to the database

The following figure shows what happens when RDM signs on to the
database. If you are using global views, the RDM may or may not require
access to the SUPRA Server Directory database.

Global views are opened and placed in global memory by the first RDM
sign-on, remaining available for subsequent view requests. If you use
global views, the RDM accesses the Global View file for run time
information, not the SUPRA Server Directory. Therefore, you could place
all your views in a Global View file and not require access to the SUPRA
Server Directory at all. You also have the option of running your system
using both a Global View file and the SUPRA Server Directory. For more
information on using Global View files, see “Optimizing view performance
using bound and global views” on page 231.

RDM Administration Guide 19

Chapter 1 Introduction to the Relational Data Manager

20

First RDM
Sign-on to the
Database

Is the logical

GVSCHEMA
No defined? Yes

No

Is the logical

CSI_NODIRECTORY
defined as TRUE?

(i.e., the SUPRA
Directory is not
available)

No

Yes
Sign-on fails

Is the
user/password
combination
valid?

Create Global Section, Map to
load file identifiedby — — — — — — = Global View
the logical GVSCHEMA file.

Yes

Is Global Section
for Global View file
in memory?

Is the Global View
file user/password
combination
valid?

Task signed-on
to the database
(if database description
successfully loaded)

P25-8220-45

How RDM handles view-open requests

How RDM handles view-open requests

After successful sign-on to the database, RDM handles the view-open
request. When RDM receives a view-open request, it does the following:

1.

RDM Administration Guide

Checks if global views are being used. If so, RDM uses the global
version of the view (stored in global memory at the first RDM sign-
on).

If global views are not being used, RDM checks for a bound version
of the view (stored on the SUPRA Server Directory database). If
bound views are being used, RDM uses the bound version of the
view.

If there is no global or bound version of the view, RDM uses the view
definition text as stored on the SUPRA Server Directory database.

21

Chapter 1 Introduction to the Relational Data Manager

The following figure shows this process.

Are Global
Views being used?

Is the logical
CSI_NODIRECTORY
defined as TRUE?
(i.e., the SUPRA
Directory is not
available)

Is this view
in the Global
View file?

View-open
Fails

Is this user
authorized to use
this view?

Get view information
from the Directory
database SUPRAD

View-open
Successful

Does view
exist?

View-open
Fails

Is the view bound?

Use
Use
View B\?_und
Text ew

Is this user
authorized to
use the view?

View-open
Fails

22 P25-8220-45

SUPRA Server's three schema architecture

SUPRA Server's three schema architecture

SUPRA Server uses three schema architecture to provide a physical and
logical implementation that is easy to maintain and that can be changed
with minimum impact to applications. Three schema architecture
consists of the internal, conceptual, and external schema.

The internal schema contains physical definitions of data as held on the
SUPRA Server Directory database SUPRAD.

The conceptual schema contains a set of base views that map onto the
logical data items in the internal schema. These base views define the
integrity rules for the entire database.

The external schema is the view of data as accessed by application
programs, MANTIS programs and SPECTRA®* processes. It consists of
a set of derived views that accesses the base views. Derived views
never access the internal schema directly; however, they inherit the
integrity constraints of the conceptual schema.

The RDM acts as insulation between application programs and the
physical structure of data located in the internal schema.

NOTE * SPECTRA is not available in OpenVMS AXP environments.

RDM Administration Guide 23

Chapter 1 Introduction to the Relational Data Manager

24

The internal schema: Physical Data Description

The internal schema is the lowest level of three schema architecture. It
contains the physical description of data: record length, file layout, file
type (PDM or RMS), location on the disk, recovery method, domain
details, validation criteria, and so on. The Physical Data Manager (PDM)
maintains the internal schema as database descriptions. Refer to the
SUPRA Server PDM Database Administration Guide (UNIX & VMS),
P25-2260, for information on defining a database description. You must
create an internal schema before you can build a conceptual schema and
an external schema.

An implementation consisting solely of an internal schema, where
applications need to know the precise physical location and attributes of
every piece of data, represents one schema architecture. The following
figure illustrates this concept.

Internal
Schema
Database REGN BRAN STCK PROD ORDT ORDR
Description Data Set Data Set Data Set Data Set || Data Set Data Set

O D 3y Y L 3
Physical RMS Index PDM PDM PDM PDM PDM
File* File File File File File File

*RMS data sets are only accessed by the RDM, not the PDM

P25-8220-45

SUPRA Server's three schema architecture

The conceptual schema: base views

The conceptual schema is the middle level of three schema architecture
and contains the logical definition of the database. This logical definition
consists of base views of data, which are relational views of data held in
normalized tables.

The conceptual schema (containing normalized tables) is used to
determine the physical implementation (internal schema) of your
database. After you enter your physical database description, you enter
the conceptual schema. To create your conceptual schema, you define
base views using either DBA functions (refer to the SUPRA Server PDM
Database Administration Guide (UNIX & VMS), P25-2260) or DBAID (see
“Defining and testing views using DBAID” on page 135). The DBAID
utility offers additional facilities to prototype and test views before relating
them to users and putting them into production. Base views access the
data sets directly and define referential integrity and data security. You
must create a conceptual schema before you can build an external
schema.

An implementation consisting of a database description (internal schema)
and a set of base views (conceptual schema), with applications
accessing data through the base views, represents two schema
architecture. The following figure illustrates this concept.

Conceptual Schema

REGION | [BRANCH | | PRODUCT | | ORDER
[1
[T I
Database REGN BRAN STCK PROD ORDT ORDR
Description Data Set Data Set Data Set Data Set || Data Set Data Set

Phvsical Y D D D

sica

giles RMS Index PDM PDM PDM PDM PDM
File* File File File File File File

*RMS data sets are only accessed by the RDM, not the PDM.

RDM Administration Guide 25

Chapter 1 Introduction to the Relational Data Manager

The external schema: derived views

The external schema is the top level of three schema architecture and
consists of derived views, which access only other views. The views
accessed by derived views can be either base views or other derived
views, although we recommend that derived views access only base
views to maintain optimum performance.

After defining base views, you create derived views using either DBA
functions (refer to the SUPRA Server PDM Database Administration
Guide (UNIX & VMS), P25-2260) or DBAID (see “Defining and testing
views using DBAID” on page 135). Using DBAID, you can define your
views, then test them prior to releasing them to users. When creating
views using DBAID, you can define and open a base view and then
define and open a derived view to access that base view without first
saving the base view. Therefore, you can create both base and derived
views in the DBAID test environment. Remember that you cannot save a
derived view before you save the base view(s) it accesses.

Derived views inherit the security and integrity constraints associated with
the base views that they access; however, you can also place more
restrictive or higher levels of security on derived views. Application
programmers, MANTIS programmers, and SPECTRA users access data
through the derived views in the external schema. You must first define
an internal schema and a conceptual schema before you can create an
external schema. Both higher level schemas depend on the lower level
schemas.

Therefore, three schema implementation consists of a database
description (internal schema), a set of base views (conceptual schema),
and a set of derived views (external schema). The following figure
illustrates this concept.

External Schema

PRODUCTS
Derived IN
Views BRANCH
| |
Baseviews | REGION | [BRANCH | [PRODUCT | [ORDER |

Database REGN BRAN STCK PROD ORDT ORDR
Description Data Set Data Set Data Set Data Set | | Data Set Data Set

Ph |
g"séza RMS Index PDM PDM PDM PDM PDM
Flle File F\Ie F\Ie F\Ie Flle Flle

P25-8220-45

SUPRA Server's three schema architecture

How the RDM fits into the three schema architecture

The RDM uses the data views in the conceptual and external schemas to
extract the physical data residing in the internal schema. RDM acts as

insulation between the physical data and the application programmer; by
presenting the data in views, the programmer need not be concerned for

the physical structure of the data.

The following figure illustrates the Three Schema Architecture:

Application Programs

MANTIS SPECTRA
RDM
I
PRODUCTS
Derived IN External
Views BRANCH Schema
; Conceptual
Baseviews | REGION | | BRANCH | | PRODUCT | | ORDER |] Zonceptl
REGN BRAN ST‘CK‘ PrROD || ORDT || ORDR Internal
Database Data Set Data Set Data Set Data Set | | Data Set Data Set Schema

Description
ohvsical C O o D Y O £
poa RMS || Index PDM PDM PDM PDM PDM
File File File File File File File

NOTE SPECTRA is not available in OpenVMS AXP environments.

RDM Administration Guide

27

Chapter 1 Introduction to the Relational Data Manager

Views
A view is a logical table of data consisting of logical data items drawn
from one or more physical locations. RDM presents a view in a flat,
two-dimensional, tabular format. Each two-dimensional table consists of
rows and columns (see the following figure) that RDM maps to the
physical database as you specify. Because RDM takes care of the
physical navigation, users can manipulate database information without
knowing its physical location or structure, or the integrity constraints
placed upon it.
CUSTOMER CUSTOMER CUSTOMER
NUMBER NAME CLASS
E40000 DOUG REED Q1
ROW F80081 TOM LANGDON B4 |
H22233 ATHENS INC Ji
COLUMN
28

P25-8220-45

Views

Two types of views

RDM uses two types of views: base and derived. Base views access the
physical files described in the internal schema. Derived views can

access only other views; base or derived. However, we recommend that
derived views access only base views to maintain optimum performance.

Base views represent the conceptual schema, which is the logical
description of the database. They insulate the derived views in the
external schema from the physical data structures in the internal schema
and provide the base level of security and referential integrity.

The main difference between base and derived views is that base views
access only data sets and derived views access only other views. The
DBA is the only one who ever needs to differentiate between the two
types of views. The application programmer and SPECTRA user see no
difference between a base view and a derived view. Both appear as
tables of data and are known simply as views.

As the DBA, you can tailor views for specific uses or design them for
multipurpose applications. You can allow users to perform powerful data
maintenance actions (INSERT, UPDATE, and DELETE) with a view, or
limit them to read-only access with no maintenance capabilities.

How views are used

Application programs use views to retrieve, insert, change or remove
rows of data. By designing your business rules into your views, you have
full control over how the RDML verbs GET, INSERT, UPDATE, and
DELETE perform.

Application programmers use views by incorporating RDML statements
into their programs. Refer to the SUPRA Server PDM Programming
Guide (UNIX & VMS), P25-0240, for details on how to use RDML
statements in application programs.

MANTIS programmers identify views with the VIEW statement. Then
they use the GET, INSERT, DELETE, and UPDATE statements to
access the data. Refer to your MANTIS documentation for additional
details.

End users in OpenVMS VAX environments access views directly through
SPECTRA, a relational query, update, and reporting tool.

RDM Administration Guide 29

Chapter 1 Introduction to the Relational Data Manager

User views

You do not need to define views to suit every possible need;
programmers and SPECTRA users can subset views to suit their
purposes. Such a subset is called a user view and can consist of
columns from a single view or columns from multiple views. The user
view can reorder the columns by specifying the column names in the
order desired. By allowing end users and programmers to create their
own user views, you can reduce the amount of administration and view
design you need to do.

The following figure illustrates how different users could subset and
reorder a view. Each user accesses the BRANCH-STOCK derived view
that contains five columns. The SPECTRA user uses the entire view in
the same sequence as specified in the View Definition. The MANTIS
application uses only part of the available data, and also reorders the
columns. The application program uses all the columns, but reorders
them.

FORTRAN,
BASIC, or
COBOL RDML

SPECTRA MANTIS

Program

Process

Application

STOCK-PRODUCT BRANCH-NUMBER STOCK-YEAR-TO-DATE-SALES
STOCK-YEAR-TO-DATE-SALES BRANCH-NAME STOCK-PRODUCT
STOCK-QUANTITY STOCK-PRODUCT BRANCH-NAME
BRANCH-NUMBER STOCK-QUANTITY STOCK-QUANTITY
BRANCH-NAME BRANCH-NUMBER

%

KEY BRANCH-NUMBER
BRANCH-NAME
STOCK-PRODUCT
STOCK-QUANTITY
STOCK-YEAR-TO-DATE-SALES

BRANCH-STOCK

ACCESS BRANCH

WHERE BRANCH-NUMBER = BRANCH-NUMBER
ACCESS STOCK

WHERE STOCK-BRANCH = BRANCH-NUMBER

30 P25-8220-45

RDM reports

RDM reports

The implementation of three schema architecture can generate long
connections between entities. The following figure illustrates such a
connection. In this illustration, the AREA-CODE column in derived view
REGION-AREA-CODES maps to the REGION-NUMBER column in base
view REGION. The REGION-NUMBER column in turn maps to the
REGION-NUMBER logical data item, which is connected to the physical
data item REGNCTRL in the REGN RMS Data Set. The relationship is
straightforward, but long.

Derived View
REGION-AREA-CODES

KEY AREA-CODE = REGION-NUMBER
REGION-NAME

ACCESS REGION
WHERE REGION-NUMBER = AREA-CODE

contains

RDM Administration Guide

Base View
REGION

KEY REGION-NUMBER=REGION-ID
REGION-NAME

ACCESS REGN
WHERE REGION-ID = REGION-NUMBER
ALLOW ALL

RMS Data Set

REGN

Physical Logical
Data Item Data Item

REGNCTRL = REGION-ID
REGNNAME = REGION-NAME
REGNLKIN (linkpath to ORDT)

contains

contains

Column
AREA-CODE

maps to

Column
REGION-NUMBER

maps to

Logical Data Item
REGION-ID

is connected to

Physical Data Item
REGNCTRL

31

Chapter 1 Introduction to the Relational Data Manager

32

RDM provides a comprehensive suite of reports that clarify these
relationships and warn you of the lower or higher level impact of any
proposed changes. These RDM reports follow the complex relationships
between the physical data items, logical data items and columns, and the
connections and interdependencies between base views and different
levels of derived views. You can choose between the DBA and
Application programmer reports, logical data item and physical data item
cross reference reports, and validation table and domain usage reports.
You can either select the scope of each report to encompass all
databases, views, data sets, domains, and validation tables on the
SUPRA Server Directory, or you can specify which entity or combination
of entities you want to report on. See “Generating RDM reports” on
page 261 and “DBA report format description” on page 280 for further
information on the RDM reports.

P25-8220-45

RDM security

RDM security

RDM controls security in two ways:
¢ View ACCESS Definitions
¢ User-to-view Relationships

The ACCESS definition of a view is described in “Access definitions” on
page 50.

The user-to-view relationship defines which views a SUPRA Server user
name is authorized to access (refer to the SUPRA Server PDM Database
Administration Guide (UNIX & VMS), P25-2260, for details). You relate
both base and derived views to users through DBA, DBAID or by using a
Global View file.

RDM Administration Guide 33

Chapter 1 Introduction to the Relational Data Manager

Example database

34

Appendix C on page 305 provides an example database called EXAMPL,
which includes descriptions of the relations in the internal schema, the
base views in the external schema and the derived views in the
conceptual schema.

All the examples in this manual are based on the EXAMPL database
listed in “Example database” on page 305.

P25-8220-45

2

Parts of aview

Views provide great flexibility for accessing your data. When you create
a view, you must specify:

¢ A column definition to identify the fields that are included in the view.
¢ An access definition to specify how RDM accesses the data.

You use either SUPRA DBA or the DBAID utility to define your views.
The difference is that DBAID allows you to test your views before putting
them into production; SUPRA DBA does not. However, note that views
defined with DBAID that refer to physical data items in the column
definition cannot be saved to the SUPRA Server Directory database
SUPRAD.

Before actually defining your views, it is important to understand what

makes up a view. This chapter describes the column and access
definition requirements and considerations.

RDM Administration Guide 35

Chapter 2 Parts of a view

Column definitions

36

The column definition describes each logical data item in the view and its
characteristics. The column definition must precede the access
definition. You enter the name of each logical data item to be included in
a view and an equivalent column name, if required. If you do not specify
a column name, RDM uses the logical data item name as the column
name.

Each column definition can be associated with one or more logical data
items. Each logical data item has a one-to-one correspondence to a
physical data item.

When you define a view using DBAID (see “Defining and testing views
using DBAID” on page 135), specify the column and access definitions as
lines of text, each preceded by a line number. When you define a view
using DBA Functions (refer to the SUPRA Server PDM Database
Administration Guide (UNIX & VMS), P25-2260, for details on logical data
items), specify the column definition through the screen-based EDIT/EDT
interface. When defining a view through DBA, you do not need to specify
each line number as you do through DBAID. You can open and save
views through DBA as you can through DBAID, however, you cannot test
them through DBA.

Any view defined on the SUPRA Server Directory can be used by DBAID.
However, views defined within DBAID that refer to physical data items in
the column definition, rather than logical data items, cannot be saved on
the SUPRA Server Directory. (DBAID allows definition and testing of
views that refer to physical data items for compatibility with other
platforms.)

P25-8220-45

Column definitions

Column definition requirements for base views:

KEY 0
@E(EQY E[column -name =] logical - data - jtem
%ONUNIQUE KEYE [[:] =logical - data- itemz] [[:] =logical - data - itemn]

[UNIQUE] CONST [column - name =] logical - data - item
[[=] = logical - data- item] [[] = logical - data - itemn|
=constant

The column definition requirements for derived views:

KEY 0
[REQ O[column - name =] source - column - name
HNONUNIQUE KEYH' [[=]=source-column-namez

... [[7] = source - column - namen|

[UNIQUE| CONST [column - name =] source - column - name
[[=] = source - column - name?]
[[:] =source - column - namen]

=constant

RDM Administration Guide 37

Chapter 2 Parts of a view

KEY

Description Optional. Indicates that the column is required in the view, is used as a
logical key, and forms a unigue key in combination with other unique
keys.

Considerations

KEY causes RDM to disregard rows with missing, null, or invalid
occurrences of the KEY columns because a key column is required
(see REQ description).

You can specify a maximum of nine KEY and NON-UNIQUE KEY
columns in a view.

Considerations for base views

¢

38

KEY causes direct reads to occur for a column when a value is given
in GET, and the column maps to a physical key such as GET USING
in DBAID.

KEY causes a sequential search of data sets for a column when a
value is given in GET, and the column is not a physical key such as
GET USING.

If the view is normalized, any one combination of unique key values
will appear only once in a view.

If the logical key is also a secondary key that allows duplicates, there
is no point defining it as a unique key in the view.

P25-8220-45

Column definitions

REQ
Description

Considerations

Optional. Indicates the column is required when processing this view.

¢ Required columns restrict the number of occurrences in the view.
Valid rows in a base view must have an occurrence of the required
column's physical record and, in the case of packed, numeric, or
floating-point columns, must contain a valid non-null value for the
required column.

¢ The REQ option affects the RDML commands in the following ways:

RDM Administration Guide

GET. All required (REQ) columns must be present, valid, and
non-null, or RDM will return NOT FOUND on direct GETs. For a
sequential (sweeping) GET, RDM skips the row.

When subsetting base views (making user views), if the
programmer specifies a column list by using INCLUDE, one or
more required columns can be omitted. However, the row is
retrieved only if all required columns in that row are present.

For more information on the INCLUDE statement, refer to the
SUPRA Server PDM Programming Guide (UNIX & VMS),
P25-0240.

When using a user view based on a derived view, if a required
column is not included in a user view, the required column must
still be present, but is not returned to the program.

INSERT or UPDATE. All required columns must be present,
valid, and non-If a required column is missing from a user view of
a base view, RDM returns an ASI of DATA. If a required column
is not included in a user view of a derived view, RDM returns a
status of FAIL.

DELETE. No effect.

39

Chapter 2 Parts of a view

FKEY
Restriction This parameter is for base views only.

Description Optional. Indicates that this column may contain a null foreign key and is
not required.

Consideration FKEY is used to enforce referential integrity in base views. It allows you
to define a foreign key that may contain a null value. For the foreign key
to support null values, use this syntax:

REQ col um-nane = foreign-key = prinary-key

becomes

FKEY col um-nane = foreign-key = prinary-key

if you want the foreign key to support null values.

NON-UNIQUE KEY

Description Optional. Indicates this column is required in the view and forms a
non-unique logical key in combination with other unique or non-unique
logical keys.

Considerations

¢ It causes direct reads for a column when a value is supplied on the
GET, and the column is a physical key.

¢ It causes a sequential search (sweep) of files (in base views) or base
views (in derived views) for a column when a value is supplied in the
GET and the column is not a physical key.

¢ It causes the RDML processor to disregard rows with null or invalid
occurrences of the KEY columns because a key column is required
(see REQ description).

¢ It enables you to specify a value for the view logical key when
selecting a row without requiring a unique occurrence of the key
column.

¢ You can specify a maximum of nine KEY and NON-UNIQUE KEY
columns.

40 P25-8220-45

Column definitions

[UNIQUE] CONST

Description Optional. Indicates that the column is required in the view, and the value
of the column must be equal to the given constant for the row to qualify.
The value of the constant is specified as part of the column description
(=constant).

Default NON-UNIQUE unless you specify UNIQUE before CONST.
Considerations
¢ CONST must be specified if a constant is supplied.

¢ The value of the column must equal the constant for the row to
qualify.

¢ Al CONST columns are part of the logical key for the view.
¢ CONST columns are not returned in the view.

¢ Because CONST columns are not returned in the view, they cannot
be used as a value when selecting a row (specifying values for a
GET will map those values to KEY and NON-UNIQUE KEY columns,
skipping any CONST columns. See “Keyed access to data” on
page 83 for more information.

RDM Administration Guide 41

Chapter 2 Parts of a view

column-name=
Restriction This parameter is for base views only.

Description Optional. In base views, assigns a column name to the logical data item.
The column name will then be used by derived views, application
programs, and SPECTRA. In derived views, it assigns another name to
the source column, to be later used by application programs and
SPECTRA.

Format 1-26 alphanumeric characters and hyphens. The first character must be
alphabetic. The last character cannot be a hyphen. Hyphens cannot be
consecutive characters.

Considerations

¢ Use this option to assign a column name that will be more descriptive
or meaningful when used in the application.

¢ Column names need only be unique within the view.

¢ If you do not specify a column name, RDM uses the logical data item
name for base views, and the source-column-name in derived views.

¢ You must use a column name when the column name is equal to
multiple logical data item names (base view) or multiple source
column names (derived views). Otherwise, RDM will use the first
name as the column name. For example:
PRODUCT- CODE = STOCK- PRODUCT = PRODUCT- | D
(col um-nane) (I ogical nane (1 ogi cal nane
for STCKPROD) for PRODCTRL)

42 P25-8220-45

Column definitions

logical-data-item
Restriction This parameter is for base views only.

Description Required. Identifies the logical data item that will be associated with the
column being defined.

Format 1-26 alphanumeric characters and hyphens. The first character must be
alphabetic. The last character cannot be a hyphen. Hyphens cannot be
consecutive characters.

Considerations

¢ The logical data item definition must already exist on the SUPRA
Server Directory database SUPRAD.

¢ You can use physical data item names instead of logical data item
names when using DBAID to define a test view.

¢ If you use physical data items in the column definition in DBAID, you
will be unable to save the view on the SUPRA Server Directory
database SUPRAD.

¢ If you do not specify a column name, RDM uses the logical data item
name for base views, and the source-column-name in derived views.

RDM Administration Guide 43

Chapter 2 Parts of a view

[[=]=logical-data-items]...[[=]=logical-data-itemp]

Restriction This parameter is for base views only.

Description Optional. Specifies one or more logical data items that will map to a
single column in the view (see Examples 3 and 4 at the end of this
section).

Format 1-26 alphanumeric characters and hyphens. The first character must be
alphabetic. The last character cannot be a hyphen. Hyphens cannot be
consecutive characters.

Considerations

¢

44

This is a convenient method of mapping the same value to many
logical data items in the physical database.

If you specify multiple logical data items, you must specify a
column-name or RDM uses the first logical data item name as the
overall column name, which may result in unexpected behavior. See
the description of column name.

If the column is designated as a KEY, REQ, CONST, or NON-
UNIQUE KEY, all logical data items specified will have the same
constraint.

RDM will access the logical data items using the order of the data
sets in the ACCESS statements (see “Access definitions” on

page 50), which does not have to be the same order that the logical
data items are specified on this statement.

When using GET to retrieve a row, the values of the columns in the
view will be those of the last column accessed. The only exception is
if the column is a KEY, CONST, or NON-UNIQUE KEY with the key
value given. In this case, RDM compares each redundant column
with the key value before returning the row.

Logical data items must be from the same domain unless a domain
override is specified. To override normal domain checking, include
an additional equal sign as shown below:

col um-nane-a = = | ogical -nane-a = | ogi cal -nane-b

P25-8220-45

Column definitions

source-column-name
Restriction This parameter is for base views only.
Description Required. Indicates the name of the base view column being accessed.
Format 1-26 alphanumeric characters and hyphens. The first character must be
alphabetic. The last character cannot be a hyphen. Hyphens cannot be

consecutive characters.

Consideration The column must already exist in the view being accessed.

RDM Administration Guide 45

Chapter 2 Parts of a view

[[=]=source-column-namesy]...[[=]=source-column-name]

46

Restriction This parameter is for derived views only.

Description Optional. Specifies one or more base view columns that will map to a
single column in the derived view.

Format 1-26 alphanumeric characters and hyphens. The first character must be
alphabetic. The last character cannot be a hyphen. Hyphens cannot be
consecutive characters.

Considerations

¢ This is a convenient method of mapping the same value to many
columns.

¢ If you specify multiple source-column-names, you must specify a
column name. See the description of column name.

¢ If the column is designated as a KEY, REQ, CONST, or NON-
UNIQUE KEY, all column names specified will have the same
constraint.

¢ The columns are accessed according to the order the base views are
specified in the ACCESS statements (see “Access definitions” on
page 50) which does not have to be the same order that the source
column names are specified in this statement.

¢ When using GET to retrieve a row, the values of the columns in the
view will be those of the last column accessed. The only exception is
if the column is a KEY, CONST, or NON-UNIQUE KEY with the key
value given. In this case, RDM compares each redundant column
with the key value before returning the row.

¢ The columns must be from the same domain unless a domain
override is specified. To override normal domain checking, include
an additional equal sign as shown below:

REQ REG ON- NUMBER = = BRANCH REG ON = REG ON- NUMBER
(column name) (source column (source column
name from the name from the
base view base view
BRANCH) REGION)
P25-8220-45

Column definitions

=constant

Description Required with CONST. Specifies the value to be assigned as a constant
for this column.

Format You can specify the value as:

¢+ X followed by hexadecimal digits enclosed in single quotes;
X'nnnnnn'

¢ Numeric characters (binary, packed, numeric, or floating point);
nnnnnnnnnn

¢ Alphabetic characters enclosed in single quotes; ‘cccccc'
Considerations

¢ The length of the value depends on the length of the column being
defined.

¢ If the view is to be saved on the Directory, the length, including
guotes, must not exceed 24 characters.

RDM Administration Guide 47

Chapter 2 Parts of a view

48

General considerations

Examples

¢

Any columns defined as KEY, REQ, CONST, or NON-UNIQUE KEY
are required columns for the view. See the description of REQ on a
column definition.

More than one column in a row can be a logical key; however, the
keys are treated as a compound key for that row.

In a base view, if a related data set contains both a key column and a
non-unique key column, the PDM processes the data set as if both
were non-unique keys. A non-unique key makes the combination of
keys non-unique.

In a derived view, if a view contains two columns and one is declared
a key and the other a non-unique key, the view will be processed as if
both were non-unique keys. This is because a non-unique key
makes the entire combination of keys non-unique.

Column definition statements must precede the access definition
statements.

Column definition statements do not have to be in any particular
order and need not correspond to the access path specified in the
access definitions.

A constant value must pass any validity checking required and
cannot be the same as the null value. See “Null values” on page 98
for a description of null values.

The column definition for this view indicates a stock-product row that
may have multiple product values for each branch.

PRODUCTS- | N- BRANCH

0005 KEY BRANCH- NUMBER = CUSTQOVER- BRANCH
0010 NON- UNI QUE KEY PRODUCT- CODE = STOCK- PRODUCT
0015 DESCRI PTI ON = PRODUCT- DESCRI PTI ON

This view returns data about branches in Region Number 111:

REG ON-111-1 NFO

0005 KEY BRANCH- NUMBER

0010 CONST REG ON- NUMBER=BRANCH- REG ON=111
0020 BRANCH- NAVE

0025 BRNCH-CI TY

0030 BRANCH- STATE

P25-8220-45

Column definitions

The following example uses multiple fields (logical data items for
base views; source column names for derived views) to define the
column.

BRANCH- NUMBER = BRANCH- |1 D = STOCK- BRANCH = CUSTOVER- BRANCH

- With a GET, the value returned in BRANCH-NUMBER depends
on which column (BRANCH-ID, STOCK-BRANCH, or
CUSTOMER-BRANCH) is accessed last. RDM does not
guarantee that these values are equal in this case.

- An INSERT of a value into BRANCH-NUMBER may insert the
same value into BRANCH-ID in BRAN, STOCK-BRANCH in
STOCK, and CUSTOMER-BRANCH in CUSTOMER on the
physical database. See “View design considerations” on
page 73.

- With an UPDATE, a change in BRANCH-ID will update
BRANCH-NUMBER, STOCK-BRANCH, and CUSTOMER-
BRANCH.

The following example uses multiple fields (logical data items or
source column names) to define the column as a logical key.

KEY BRANCH NUMBER = BRANCH- I D = STOCK- BRANCH = CUSTOVER- BRANCH

MNOTE

O e—

This example is for explanation only. Because the fields are physical
keys, an UPDATE actually would not be allowed.

RDM Administration Guide

All three columns will be treated as keys:

- With a GET, you will retrieve only those rows that have
BRANCH-ID, STOCK-BRANCH, and CUSTOMER-BRANCH
equal to the value given for BRANCH-NUMBER in the USING
phrase. If no key value is supplied on the GET command, RDM
does not guarantee that these values are equal as above.

- An INSERT of a value into BRANCH-NUMBER may insert the
same value into all three columns (BRANCH-ID, STOCK-
BRANCH, and CUSTOMER-BRANCH).

49

Chapter 2 Parts of a view

Access definitions

50

Following the column definitions in the view are the ACCESS statements.
These statements describe the navigation RDM uses to find data in the
PDM data sets or through the base views. The rest of this section
describes the format of the ACCESS statements for both base and
derived views.

For a discussion of important considerations in defining the ACCESS
statements, see “View design considerations” on page 73.

In base views the access definition tells RDM how to navigate from one
physical record to the next. Physical records can be in the same data
set, or in a different data set.

In derived views the access definition describes how to navigate from
view to view, how to access base and derived views, and the
relationships between the views accessed. Different relationships
between physical records determine how RDM navigates from one to the
other; an inappropriate navigation technique degrades the overall
efficiency of your applications. See “Navigational constraints and
boundary conditions” on page 78 for an explanation of database
navigation.

The access definition defines the physical navigation of the database and
the maintenance operations allowed through this view. You may enter
the optional clauses in any order. However, the order of the ACCESS
statements as a whole is important because it controls the order in which
the data sets are accessed.

P25-8220-45

Access definitions

You can use the ACCESS statement syntax to specify precisely which
access method RDM should use. Alternatively, you can use a
generalized form of the ACCESS statement, and RDM selects the
optimum access strategy according to data set type. Both forms of the
syntax are presented here:

¢ The first syntax format shows the generalized form of the syntax for
base views that consists of an ACCESS statement and the WHERE
clause.

¢ The second syntax format shows how the specific form of the
ACCESS statement for base views varies depending on the data set
type and access method desired.

¢ The third syntax format shows the generalized ACCESS syntax for
derived views.

¢ The fourth syntax format shows RMS data set ACCESS syntax.

Once RDM opens a view and selects the access strategy, it uses that

strategy until the view is released and re-opened. If the view is bound or
global, RDM uses the selected access strategy until the view is rebound
or reglobalized because RDM cannot switch access methods at run time.

For example, if RDM opens a view to access data using a secondary key
and this key subsequently becomes unavailable because it has been
de-populated, de-activated or corrupted, the view no longer works.

For views that are not bound or global, you can build logic in your
program to release and re-open the view should the access method fail.

When you use the generalized form of the access method (see the first
syntax format below), you need to be careful that RDM is not scanning
the files when you do not want it to. RDM status indicators were
designed to provide information about the operation of your views (see
“RDM status indicators” on page 223). Also, the DBAID
SHOW-NAVIGATION command allows you to check that RDM is using
the correct access methods. See “Defining and testing views using
DBAID” on page 135 for information about the DBAID commands STATS
and SHOW-NAVIGATION.

RDM Administration Guide 51

Chapter 2 Parts of a view

The following shows the generalized ACCESS syntax for base views:

O 0 o
O o
ACCESS data- set - name grecord -code %record - codeag
O gd
O % uo
[ONCEO
FSCANE
[REVERSE]

[WHERE columnj =[=] selection-criteria [... AND columnp,
=[=] selection-criteria]]

[ALLOW [SHARED] [ALL] [INS] [DEL] [REP] [UPD]]

[GIVING column [...columnp]]

52 P25-8220-45

Access definitions

The following shows the specific ACCESS syntax for base views:

O 0 o
O Cl o
ACCESS data- set - name grecord -code %record - codeag

O gd
O % uo

[ONCE[Q

ESCANE

[REVERSE]

VIA inkpath

econdary - key
[USING item1, itemy, ...itemp]

[WHERE columnq =[=] selection-criteria [... AND columnp,
=[=] selection-criteria]]

[ALLOW [SHARED] [ALL] [INS] [DEL] [REP] [UPD]]

[GIVING columnq [...columnp]]

[(FIRST

RDER [column -name [DESCENDING]] %Eng%

AST [H

The following shows the generalized ACCESS syntax for derived views:

D]]I:l%l:ll:l

ACCESS view-name
[USING (itemq, itemo, ...itemp)]

[WHERE columnq =[=] selection-criteria [... AND columnp,
=[=] selection-criteria]]

RDM Administration Guide 53

Chapter 2 Parts of a view

[GIVING column-1 [...column-n]]

[ALLOW [ALL] [INS] [DEL] [REP] [UPD]]

The following shows RMS data set ACCESS syntax:

ACCESS data-set-name
[VIA (rms-key-name)]

[USING (valueq, valuey, ... valuep)]

[ONCE]

[WHERE columnj =[=] selection-criteria [... AND columnp,
=[=] selection-criteria]]

[ALLOW [SHARED] [ALL] [INS] [DEL] [REP] [UPD]]

[GIVING column [...columnp]]

The following are descriptions for the parameters used in the ACCESS
statements.

ACCESS

Description

Required. Identifies the statement as an access definition for the view.

data-set-name
Restriction
Description

Format

This parameter is for base views and RMS data sets only.
Required. Identifies the data set to be accessed.

4 alphanumeric characters. The first character must be alphabetic.

Consideration The data set description must already exist on the Directory.

54

P25-8220-45

Access definitions

view-name

Restriction

Description

Format

Consideration

This parameter is for derived views only.
Required. Identifies the base view to be accessed.

1-26 alphanumeric characters and hyphens. The first character must be
alphabetic. The last character cannot be a hyphen. Hyphens cannot be
consecutive characters.

It must be a valid view defined on the Directory or a virtual view that has
been opened using DBAID.

(record - code %record -code

Restriction

Description

Format

Options

O
0

+

[

This parameter is for base views only.

Optional. Specifies the record-code(s) to be retrieved from the coded
record related data set specified in data-set-name.

Two-character record-code, as previously defined on the SUPRA Server
Directory. The operator has a shorthand method available for specifying
record-code processing. You can use this method either in place of the
FROM clause or in conjunction with it.

The valid operators are:

, Specifies an "or" condition. For example: (HD,CM) reads the data
set until either an HD or a CM record is found.

; Specifies embedded many-to-one relationships. For example
(IT;HD) scans the related data set for a row with the HD record-code,
starting from the row with the IT record code.

Specifies embedded one-to-many relationships. For example
(HD:IT) retrieves many IT coded records for each HD coded record
retrieved.

+ Specifies record-code groups and indicates a one-to-one
relationship. For example: (HD+CM) retrieves only one CM coded
record for each HD coded record retrieved. The specification also
refuses to insert more than one CM coded record for each HD coded
record.

RDM Administration Guide 55

Chapter 2 Parts of a view

Considerations

You can specify combinations of record-codes and operators. For
example, (HD+SH:IM) indicates that for every Header (HD) there is
an associated Shipment (SH) and many Items (IM).

The "or" operator is not recommended because users of the view
need to know which physical data items are active under which
record-codes. You should inform users if you rearrange the physical
data items in the record-codes.

Record-code specification depends on data set and record
relationships. Refer to the SUPRA Server PDM Database
Administration Guide (UNIX & VMS), P25-2260, for more information
on coded records.

The maximum number of record codes accessible from a single view
is nine.

FROM data-set [(record-code)]

Restriction This parameter is for base views only.

Description Optional. Indicates that the named related data set (following ACCESS)
is to be retrieved from a previously obtained occurrence of the data set
specified in this FROM clause. This overrides the default navigation from
primary to related data sets and allows related-to-related data set

navigation.
Format FROM Specified as shown.
data-set Data set name already existing on the Directory.

(record-code) Two character record-code already on the Directory.

The record-code must be enclosed in parentheses.

Consideration This statement is for related data sets only.

56

P25-8220-45

Access definitions

[ONCE[
FSCANH
Restriction This parameter is for base views only.
Description Optional. Specifies how data is to be retrieved from the data set.
Options ONCE. Indicates that only the first related data set row will be retrieved
from the data set. Establishes a one-to-one relationship between the
previous data sets accessed and this one.
SCAN. Indicates that the chain is to be scanned for the indicated data
based on generalized selection logic and/or record code specifications, if
present. Normally the scan indicates that a one-to-many relationship
exists within the logical data.
[ONCE]
Description Optional. Indicates that only the first row will be retrieved.
[REVERSE]
Restriction This parameter is for base views only.
Description Optional. Indicates that the linkpath chain or secondary key is to be read

Consideration

in reverse order.

For secondary keys, this parameter is only available when REVERSE
DIRECTIONAL search is enabled.

RDM Administration Guide 57

Chapter 2 Parts of a view

VIA

58

econdary - key

Restriction
Description

Considerations

This parameter is for base views only.

Optional. Specifies how RDM should access the data set.

The VIA clause is allowed on PDM and RMS data sets.

If you specify a secondary key name (dsetSKnn) on the VIA clause,
you must specify the column that maps onto the physical data item
connected to the secondary key on the USING clause so that RDM
can perform a keyed read.

When you're not using indexing (that is, secondary keys), the VIA
clause applies to related data sets and cannot be used on the first
ACCESS statement in a view.

When you are not using indexing (secondary keys), the VIA clause
applies to related data sets and defaults to a one-to-many
relationship that meets all logical constraints (required columns).

If you are using indexing (secondary keys) RDM will return an OPEN
error if the index is not populated or activated.

The name specified must be a valid linkpath or secondary key
already defined on the Directory database SUPRAD.

P25-8220-45

Access definitions

VIA (rms-key-name)
Restriction This parameter is for RMS data sets only.

Description Optional. Specifies the index field used to access the RMS data set.
Indexes can be either unique or non-unique. The default analysis of an
alternate index will be to create a one-to-many relationship between the
data set and its parent.

Format The name must be a valid eight character name defined on the SUPRA
Server Directory as an RMS key name.

Considerations
¢ You can use the VIA clause with the USING clause.

¢ You can use the VIA (rms-key-name) clause on the first ACCESS
statement in a view.

¢ Excluding the VIA clause implies use of the first primary key defined
by the KEY statement in the column definition.

¢ The RMS key named in this statement must be defined on the
SUPRA Server Directory where it is related to a particular data item
also defined on the SUPRA Server Directory. This relationship
specifies the displacement within the record of the record key.

¢ The length of the RMS key column is defined separately from (and
may or may not equal) its associated column. By specifying a length
greater than that of the associated column, you can use a compound
key (mapping to more than one contiguous column). Use generic
keys by defining an RMS-key-name length less than that of the
associated column length.

¢ RDM does not support non-contiguous key access to RMS data sets.

RDM Administration Guide 59

Chapter 2 Parts of a view

USING (itemq, itemy, ...itemp)

Restriction This parameter is for base views only.

Description Optional. Indicates that the primary data set is to be directly read using
the specified key-column as the control-key.

Format The key-column may be a physical data item, logical data item, column,
constant, or it may be constructed at run time from multiple columns and
constants by using parentheses. For example:

ACCESS PRODUCT USI NG (COLUWNL, '252', COLUM\N2)

Considerations

¢ While not a requirement, it is recommended that you also use these
clauses on base view ACCESS statements.

¢ Compound physical keys are constructed from parts of the physical
key as defined on the SUPRA Server Directory. Each part of the
compound physical key must correspond to the sub-defined part of
the key as specified on the Directory.

¢ If you specified a secondary key name on the VIA clause, the column
you specify on the USING clause must be connected to that
secondary key.

USING (itemq, itemy, ...itemp)

Restriction This parameter is for derived views only.

Description Optional. Indicates that a logical read using specified value(s) is to be
done on the view, mapping values to logical keys.

Format Each value may be a column or constant.

60 P25-8220-45

Considerations

¢

RDM Administration Guide

Access definitions

You must use WHERE and/or USING clauses on derived view
ACCESS statements. While not a requirement, it is recommended
that you also use these clauses on base view ACCESS statements.

Values specified must map to the logical keys of the accessed view.
When specifying several values, you can omit values from the
right-hand side of the group of values. Sub-definitions of logical keys
are not allowed. For example, if you had the following base view,
VIEW-A, defined:

VI EW A

KEY COLUWNL
KEY COLUM\2
KEY COLUMN3

the following derived view, accessing VIEW-A, is valid:
VI EW B

KEY COLUMN-A = COLUWNL
KEY COLUMN-B = COLUMN2
KEY COLUMN-C = COLUMNS
ACCESS VI EW A
USI NG (COLUMN- A, COLUMN- B)

However, the following view, VIEW-C, is not valid because values
were omitted, and they do not map to logical keys, from left to right:

VI EW C

KEY COLUMN-A = COLUWNL
KEY COLUMN-B = COLUMN2
KEY COLUMN-C = COLUMN3
ACCESS VI EW A
USI NG (COLUMN- A, , COLUMN- B)

You could correct VIEW-C using either of the following:
WHERE (COLUMNL = COLUWN-A) AND (COLUMN3 = COLUMN- B)

or
USI NG (COLUMN-A) WHERE (COLUMN3 = COLUMN- B)

If the view that you are accessing has only one logical key, you can
omit the parentheses.

61

Chapter 2 Parts of a view

USING (itemq, itemy, ...itemp)

Restriction This parameter is for RMS data sets only.

Description Required (except on the first ACCESS statement). Directly reads the
RMS indexed sequential data set using the specified RMS key as the

control-key.

Format The key-column can be a logical data item, physical data item, column or
constant, or it can be constructed at run time from multiple columns and

constants by using parentheses. For example:

ACCESS SAMPLE USI NG (CUSTOMER- NUMBER, ' 252" , ORDER- PRODUCT- CCDE)

Considerations

¢ You can use the USING clause with the VIA clause for RMS data
sets. In this case, the key field is the alternate key rather than the

BASE key.

¢ RDM constructs compound physical keys from parts of the physical
key. Each part of the compound physical key must map to the

sub-defined part the key as specified on the Directory.

3 If the Directory definition of the physical key field is

01
02
02
02
03
03

you can specify the following compound key definitions:

SAMPCTRL
SAMPCSTN
SAMPCRI X
SAMPPRI X
SAMPPRD1
SAMPPRD2

USI NG ORDRCTRL

USI NG (SAMPCSTN, SAMPCRI X, SAMPPRI X)
USI NG (SAMPCSTN, SAMPCRI X, (SAMPPRDL, SAMPPRD2))

62

15
05
04
06
02
04

P25-8220-45

Access definitions

¢ You can force a generic read at RDM level by leaving columns out of
the USING clause for a compound key. You can omit columns from
the right only, but those column names you supply must be the same
length as the columns in the sub-definition of the physical key. Using
the previous example, you can specify a compound key as follows:

USI NG (SAMPCSTN, SAMPORI X)

¢ Only the first two parts of the compound key are supplied to force a
generic read. You can use generic reads only from within RDM
based on the logical keys and the USING clauses in the RDM
ACCESS statements. Application programmers cannot specify the
number of characters in any column used for a generic read. You
must supply the partial key used for the generic read in parentheses,
even if you use only one column.

¢ You can use the USING clause to establish a one-to-many

relationship between multiple RMS data sets on RMS data sets and
PDM data sets.

RDM Administration Guide 63

Chapter 2 Parts of a view

WHERE columnq =[=] selection criteria [... AND columnp, =[=] selection-criteria]

64

Description

Format

Optional. The WHERE clause, used with the USING clause, provides
additional selection criteria (specified access). If you use the WHERE
clause without the USING clause, RDM selects the optimum access
strategy (generalized access).

For base views, the optimum access strategy for PDM data sets is
chosen in the following manner:

Primary Related RMS

1st Choice Control key Linkpath Control key
2nd Choice Secondary key Secondary key Alternate key
3rd Choice Sequential scan Sequential scan Sequential scan

For RMS data sets, when you use the WHERE clause without the USING
clause, RDM selects the optimum access strategy as follows:

¢ Initially, RDM tries to map to the full control key value.
¢ If no match, RDM tries to map to an alternate key on the data set.
¢ If there is no match, RDM scans the data set.

WHERE Specified as shown.

columnl., For base views and RMS data sets, column; must map
to a data item in the data set.

For derived views it must be a column in the base view
named in the ACCESS statement.

=[=] Specifies an equal comparison between the column and
the value. You must use the double equals = = (domain
override) if both column; and value are connected to
different domains. If column; and value are connected to
the same domain, or if only one is connected to a
domain, you need only enter the single equals.

selection criteria Specifies the value that column,_, must match. In a base
view it may be a physical data item (only in a virtual
DBAID testing view), logical data item, column, or
constant. In a derived view it can be a column from a
previously accessed view (not necessarily a column in
this view) or a constant.

AND Optional. Allows you to specify additional qualifications
for the ACCESS statement.

P25-8220-45

Considerations

RDM Administration Guide

Access definitions

You must use the WHERE and/or the USING clause when defining
the ACCESS statements. While not a requirement, it is
recommended that you use these clauses on the first ACCESS
statement in a view.

Column; and selection criteria must be the same length.

Use the VIA or USING clause to force alternate index or linkpath
selection in base views.

Use RDM statistics to measure performance of the derived view.
Use of the WHERE clause without the USING clause is called
generalized access. Generalized access allows RDM to select the

most efficient method of retrieving data.

You only specify the domain override (= =) once, between the first
and second columns.

Secondary keys must be listed in the view in the same order as they
are found in the physical file.

65

Chapter 2 Parts of a view

ALLOW [SHARED] [ALL] [INS] [DEL] [REP] [UPD]
Description Optional. Specifies which physical actions are allowed.
Format Any combination of options is valid, for example:

ALLOW INSERT DELETE Allows inserts and deletes but not updates.

ALLOW UPDATE Allows updates but not inserts and deletes.

Options SHARED Allow shared update on data items in a data set. Does
not check "C" ASI status. Not for derived views.

ALL Allow all forms of database modification.

INS Allow row insertions on the database.

DEL Allow row deletions from the database.

REP Allow row replacements on the database.

UPD Same as REP.

Considerations

¢ You can use the ALLOW parameter on as many ACCESS
statements as required.

¢ If you omit this parameter, the data set is restricted to read-only
processing.

¢ These options relate to physical I/0 on the data set. They do not
relate to the application program's Relational Data Manipulation
Language (RDML).

¢ Using SHARED has no impact on the INSERT option. However,
using SHARED causes RDM to skip the column comparison usually
done by the automatic record holding facility before deletion and
replacement of rows.

¢ For derived views the ALLOW clause on this ACCESS statement
may not override any constraints imposed by the base or derived
view that you are accessing, but it may further restrict the allowed
actions.

66 P25-8220-45

Access definitions

GIVING columny [...columnp]

Description

Format

Optional. Overrides normal data movement. The data movement is
physical data item to column in base views, and base column to derived
column in derived views.

The keyword GIVING followed by zero or more column names as defined
on the column definition.

Considerations

¢ All columns that can be filled by a particular ACCESS statement will
be filled unless a GIVING clause restricts this process. Columns not
filled can be filled by later ACCESS statements.

If you omit this clause in a derived view, all columns derived from
columns in the accessed base view that have not been supplied by
some previous ACCESS statement are filled with values using this
ACCESS statement.

¢ If you omit column names on the GIVING parameter, no column
values are obtained by accessing this data set or base view. The
data set or base view will be used for navigation only.

¢ Using this clause lets you access a data set or base view more than
once and retrieve only selected columns each time.

(FIRST O
INEXT O

ORDER [column - name [DESCENDING]] @R,ORD

Restriction

Description

Default

Format

AST

This parameter is for base views only.

Optional. Indicates that a predetermined ordering criterion applies to the
related data set named in the ACCESS statement.

If you specify the ORDER clause, ordering defaults to ascending unless
you specify descending. If you do not specify ordering in the ACCESS
statement, the application program can use the
FIRST/NEXT/PRIOR/LAST option on INSERT RDML to control ordering
of the physical insertion of rows. However, this practice is not
recommended.

The column name must be a logical data item defined in the view.

RDM Administration Guide 67

Chapter 2 Parts of a view

68

Considerations

¢

It is more efficient to use secondary keys to retrieve non-key columns
in order than to use the ORDER clause.

You cannot use the ORDER clause without the VIA clause.

DBA unload/reload may be difficult or impossible for ordered data
sets.

Use the ORDER clause to retrieve rows; you must also use the
ORDER clause to insert rows. If you do not insert rows in order,
RDM will store them in logical sequence according to the INSERT
option.

- If the column type is a unique or non-unique key, and you use
the GET USING command to retrieve a row, RDM will return the
message OCCURRENCE NOT FOUND when it encounters the
first row that is out of sequence. The row you are searching for
may exist.

- If the column is a unique or non-unique key, and you use the
GET command without the USING clause to retrieve a row, RDM
will ignore the ORDER clause and retrieve the rows in the order
in which it inserted them.

- Ifthe column is not a key, RDM will ignore the ORDER clause
and retrieve the rows in the order in which it inserted them.

For record-codes, the linkpath and column used for ordering can be
changed from ACCESS statement to ACCESS statement. Ordering
information is used for the GET USING and INSERT functions.

For INSERT, the specified ordering criterion is always used. The
chain is entered on the basis of the ordering criterion, and the row is
inserted at that position, regardless of any ordering keyword in the
RDML statement. When inserting a row, the column in the ORDER
clause is required (see definition of REQ in “Column definitions” on
page 36).

The ORDER clause makes two levels of positioning available. If a
column is supplied in the ORDER clause, positioning of
FIRST/NEXT/LAST/PRIOR applies only to multiple occurrences of
the value for that column. If no column is supplied in the ORDER
clause, positioning FIRST/NEXT/LAST/PRIOR applies to the entire
chain for that data set. In both cases, the ORDER clause overrides
FIRST/NEXT/LAST/PRIOR used with the RDML INSERT command.

P25-8220-45

Access definitions

¢ If the row is currently not positioned in the sequence of ordered
columns, the NEXT function acts as LAST, and the PRIOR function
acts as FIRST (placing it at the start of the sequence of ordered

columns).

¢ The position on the linkpath is also affected by the REVERSE option

because this accesses the linkpaths of related data sets in the

reverse direction.

Examples The following examples give column and access definitions for the
database shown in the following illustration:

Primary

CUST

CUSTLKCO (HD)

Related oNMLKCO (HD& IT) ALL
-

CORD
S)

Primary

ORNM

INVTLKCO (IT)

INVT

Primary

¢ This view maintains and reports on basic customer information:

CUSTOMER VIEW
KEY CUSTOMER =
NAVE =
ADDRESS =
aTy =
STATE =
zZIP =
PHONE =

CUSTOVER- NUMBER
CUSTOVER- NAMVE
CUSTOVER- ADDRESS
CUSTOMER- CI TY
CUSTOMVER- STATE
CUSTOMVER- ZI P
CUSTOVER- PHONE

ACCESS CUSTOMER
USI NG CUSTOMER

ALLOW ALL

RDM Administration Guide

69

Chapter 2 Parts of a view

¢ This view maintains and reports on basic ITEM information;

ITEMS VIEW

KEY | TEM = | TEM CCDE
| TEM DESCRI PTI ON
| TEM COST
| TEM PRI CE
| TEM ON- HAND

ACCESS | NVT
USI NG | TEM CODE
ALLOW ALL

¢ This view allows the addition, modification and deletion of customer
orders and the items included in the order:

ORDERS VIEW
KEY ORDER- NUMBER ORNM- ORDER- NUMBER
CUSTOVER CORD- CUSTOVER- NUMBER
AMOUNT = CORD- ORDER- TOTAL

ORDER- DATE = CORD- ORDER- DATE

SHI P- DATE = CORD- SHI P- DATE
KEY | TEM NUMBER = CORD-| TEM NUMBER

| TEM QUANTI TY = CORD-| TEM QUANTI TY

| TEM PRI CE = CORD-| TEM PRI CE
ACCESS CRN\M

USI NG ORDER- NUMBER

ALLOW ALL

ACCESS CORD (HD)
ONCE VI A ORNMLKCO
ALLOW ALL

ACCESS CORD (I T)
FROM CORD (HD)
VI A ORNMLKCO
ALLOW ALL
ORDER | TEM NUMBER

70 P25-8220-45

¢

Access definitions

This view provides access to orders on the basis of customers and
would be used for reporting purposes only:

CUSTOMER-ORDERS VIEW

RDM Administration Guide

KEY CUSTOVER = CUSTOMER- NUMBER
NAME = CUSTOMER- NAME
KEY ORDER- NUMBER = CORD- ORDER- NUMBER
AMOUNT = CORD- ORDER- TOTAL
KEY | TEM NUMBER = CORD- | TEM NO
| TEM QUANTI TY = CORD- | TEM QTY
| TEM PRI CE = CORD-| TEM PRI CE

| TEM DESCRI PTI ON

ACCESS CUSTOMER

USI NG CUSTOVER
ACCESS CORD (HD)

VI A CUSTLKCO
ACCESS CORD (I T)

FROM CORD (HD)

VI A ORNMLKCO

ORDER | TEM NUMBER
ACCESS | NVT

USI NG | TEM NUMBER

I NVT- | TEM DESC

71

Chapter 2 Parts of a view

¢ This view is a variation of Example 3. In this example, new
CUSTOMER and INVT rows are automatically added by RDM if they
are not already present when a new order is added:

ORDERS VIEW

KEY ORDER- NUMBER
CUSTOMVER
AMOUNT
ORDER- DATE
SHI P- DATE

KEY | TEM NUMBER
| TEM QUANTI TY
| TEM PRI CE
NAMVE
| TEM DESCRI PTI ON

ACCESS ORNM

ORNM ORDER- NUMBER
CORD- CUSTOVER- NUMBER
CORD- ORDER- TOTAL
CORD- ORDER- DATE
CORD- SHI P- DATE

CORD- | TEM NUMBER
CORD- | TEM QUANTI TY
CORD- | TEM PRI CE
CUSTOVER- NAMVE

I NVT- DESCRI PTI ON

USI NG ORDER- NUMBER

ALLOW ALL
ACCESS CORD (HD)

ONCE VI A ORNMLKCO

ALLOW ALL
ACCESS CORD (I T)
FROM CORD (HD)
VI A ORNMLKCO
ALLOW ALL

ORDER | TEM NUMBER

ACCESS CUSTOMER

USI NG CUSTOMER

ALLOW | NSERT
ACCESS | NVT

USI NG | TEM NUMBER

ALLOW | NSERT

72

P25-8220-45

3

View design considerations

When designing views, it is important that you understand the following:

¢

RDM Administration Guide

Row construction (see “How RDM constructs rows” on page 74)

Knowing how RDM constructs rows will help you define the access
method best suited to your needs.

Keyed access (see “Keyed access to data” on page 83)

Several types of keys are available for you to tell RDM how to access
the data.

Integrity (see “Domains” on page 96 and “Referential integrity with
RDM” on page 106)

It is important to know how SUPRA Server handles domain attributes
because RDM uses them to validate data and maintain data integrity
(see “Domains” on page 96).

Another type of integrity is referential integrity, which ensures that two
pieces of data representing the same fact do not become
inconsistent (see “Referential integrity with RDM” on page 106).
Shared columns (see “Shared column values” on page 126)

For base views, you can allow shared columns for efficient
processing.

Security (see “View-to-user relationships” on page 128)

You can control database security on a user-by-user basis by
defining which users can use which views.

73

Chapter 3 View design considerations

How RDM constructs rows

As discussed in “Views” on page 28, RDM presents data in a two-
dimensional tabular format. RDM constructs the row based on the view
definition by obtaining data from the data sets or base views named in
the ACCESS statements. Rows created by RDM may be drawn from one
or more data sets or base views and do not necessarily exist as a
physical record anywhere on the database. The following illustration
illustrates how RDM constructs rows:

Derived View 1
Column Column Column Column
1 2 3 4 Row
Derived View 2
Column Column Column Column Row
1 3 5 6
Logical Logical Logical Logical Logical Logical
Base View data item | data item | data item | data item | data item | data item] Row
1 2 3 4 5 6

$ Y $ >

Data Set Data Set Data Set Data Set
1 2 3 4

N~ N~

When the RDM processes a GET, INSERT, UPDATE or DELETE
command, it:

¢ Determines whether the view is a base or derived view.
¢ Opens it and all associated base views and data sets.
¢ Sets up the internal data structures for the application.

To the application there is no difference between a base and a derived
view.

74 P25-8220-45

How RDM constructs rows

Database penetration

Database penetration is associated with the one-to-one keyed
relationship. You penetrate (or access) the database by using a key
value. At any time, you are pointing to one particular position in the
database. Database penetration does not rely on anything you have
previously done with the database. An example is retrieving a customer
row using a particular customer number as the key.

You select database penetration by performing GET (with or without a
key value), to establish your position within the database. Whether going
from one or many data sets to another, using a key for retrieval implies a
one-to-one keyed relationship from the source to the target.

Another kind of relationship is positional, implying location with relation to
the position of other records instead of key value. For example, when
retrieving records sequentially, getting the next physical record is a
one-to-one positional relationship because the position of the first
physical record finds the next. You do not use a key to get the next
record. After the position is established based on the logical keys, you
perform a positional GET without keys, or another "penetrating” GET with
keys. A GET FIRST or GET LAST is guaranteed to access the
database, while a GET NEXT or GET PRIOR is positional.

Penetration uses a base data set as the starting point, which simply
retrieves the selected record in the data set specified by the first access
definition in the view. From that record, you travel outward in one or
more directions; each time you take a step, you can use that information
to take additional steps. This would resemble a tree structure. However,
navigation could also be circular. For example, you may want to search
for all customers who have an account at a particular branch, regardless
of any other branches they might patronize. The following illustration
shows this circular navigation using some of the data sets described in
the example database in Appendix D on page 305.

RDM Administration Guide 75

Chapter 3 View design considerations

BRAN
Data Set

BRANCH-NUMBER

STOCK-BRANCH

ORDR
Data Set

STOCK
Data Set

PRODUGT-CODE ORDER-NUMBER

ORDT
Data Set

PROD
Data Set

PRODUCT- CODE

76 P25-8220-45

How RDM constructs rows

Database sweep

A database sweep involves taking a positional step either forward or
backward. A database sweep occurs only on a one-to-many positional
relationship. Examples of a database sweep are a primary-to-related
data set relationship and a related-to-related data set relationship using
record codes.

Sweeping occurs when you have already penetrated the database, that
is, positioned yourself at a particular row or are accessing the database
for the first time without using a key value (or index). You then move
either forward or backward from your position; you can get either the next
or the previous row. For example, in a logical view consisting of
customer and orders, you first penetrate the database using the customer
number. When you ask to read the first and subsequent orders, you rely
on a database sweep based on positional relationships between the
orders and the customer.

NOTE

For performance reasons, we recommend that you use an index on a file
instead of allowing database sweeping. For example, in the EXAMPL
database listed in Appendix D on page 305, the order file contains an
index on the customer number to minimize database sweeping.

When you sweep, there is an incremental movement, either forward or
backward. You can sweep a data set without penetrating the database
by starting at either the first or the last physical record (this is also called
scanning).

RDM Administration Guide 77

Chapter 3 View design considerations

78

Navigational constraints and boundary conditions

RDM enables you to identify points along the navigation path that must
be reached for the navigation to be valid. Once those points are reached,
you can also specify data items as required, causing navigation to be
unsuccessful if the data item is not found.

Logical keys are always required. Therefore, when accessing a data set
based on a logical key value that is not found, navigation stops. If, during
database penetration, any required data items are not found, RDM
returns a not-found status. However, if attempting a sweep through the
database, RDM skips physical records that do not meet the constraints
as if they do not exist. An example is the CUSTOMER-ORDER view that
only returns rows for customers who have at least one order.

A boundary condition exists when you reach the end of a group of
records. Scanning through a primary data set, the end of the data set is
a boundary (see Example 1). If you are sweeping a related data set
chain (based on a primary data set key), the end of the chain is a
boundary (see Example 2). If, however, you scan the related data set
without using a primary data set key, RDM gets the next primary data set
record and navigates its associated related data set chain (see

Example 3).

Examples two and three use these data sets:

BRAN STCK PROD
3345 Cincinnati 3345 1122 1122 Wigits
1526 New England 1526 3500
2221 Atlanta 3345 2500
2221

P25-8220-45

How RDM constructs rows

Example 1: Boundary condition of end of primary data set. Using
the CUSTOMER base view (see “Example database” on page 34 for
view contents) your application just needs to scan the customers; none of
the GET statements will include a key value for customer number.
Instead, each GET will retrieve the next record in the file in physical
order. In this case first customer number 111, then 222, then 333 and so
on. The boundary condition is reached when the end of the file is
reached. Note that you can use a secondary key on the customer data
set if you want the information retrieved in a particular order, as has been
done in the CUSTOMER view.

Example 2: Boundary condition for the end of related data set
linkpath chain. Base View: BRANCH-PRODUCTS
KEY BRANCH NUMBER = BRANCH- I D
KEY PRODUCT- CODE = STOCK- PRODUCT-1D = PRODUCT- I D
PRODUCT- DESCRI PTI ON

ACCESS BRAN

WHERE BRANCH- | D = BRANCH- NUMBER
ACCESS STCK

WHERE STOCK- BRANCH- I D = BRANCH-| D
ACCESS PROD

WHERE PRODUCT-1 D = STOCK- PRODUCT-1 D

This time you need to know all the products stocked in a particular
branch. You do a database penetration by issuing a GET with the branch
number as the key. Each subsequent GET will be a GET NEXT that will
use the STCK related data set linkpath chain (BRANLKST) to get the
order information for each order. The boundary condition is reached
when there are no more products stocked by this branch (the end of the
linkpath chain).

Example 3: Multiple boundary conditions. Using the BRANCH-
PRODUCT view shown in example 2, you now need to get the order
information for all customers. So, your application will scan the BRAN
primary data set sequentially, sweeping the branch number linkpath in
the STCK related data set. When the end of the related chain is reached
for a branch number, the next branch record is read and all related
records for that branch are found, and so on. You reach a boundary
condition when you reach the last related record in the chain and when
you reach the end of the BRAN data set.

RDM Administration Guide 79

Chapter 3 View design considerations

Processing derived views

Before you can use the RDML commands, GET, INSERT, UPDATE, and
DELETE, the derived view must open the base view. Applications do not
explicitly open a base view; it is opened on first use so that the view's
internal data structure is available. Thus, opening a derived view results
in opening one or more base views.

For example, when you open the PRODUCTS-IN-REGION derived view,
the REGION, BRANCH, STOCK, and PRODUCT base views are also
opened. In combination, these views can affect every data set in your
physical database. After all views are opened, you can process the
RDML commands.

Processing the GET command

When you issue a GET for the BRANCHES-IN-REGION base view, RDM
issues a GET for the REGION base view, which causes a request on the
REGN data set. If this operation returns data for the REGION base view,
a GET is issued for the BRANCH base view. The GET results in a
sweep of the BRAN data set searching for rows with the correct
region-number. The following illustration shows the processing

sequence.
T
BRANCHES-IN-REGION "
REGN
1st .| Data Set
CET REGION
u
PDM
T
éTEdT BRANCH "
BRAN
Data Set
u

80 P25-8220-45

How RDM constructs rows

Processing the INSERT command

This example uses the PRODUCTS-IN-REGION derived view to insert a
new product into the stock of a branch in a given region.

Derived View: PRODUCTS-IN-REGION

View Text:

KEY REG ON- NUMBER
REG ON- NAME
KEY BRANCH- NUMBER
BRANCH- NAME
KEY STOCK- PRODUCT
PRODUCT- DESC
ACCESS REG ON
WHERE REG ON- NUMBER = REG ON- NUMBER
ALLOW UPDATE DELETE
ACCESS BRANCH
WHERE BRANCH- REG ON = REG ON- NUMBER
ALLOW ALL
ACCESS STOCK
WHERE STOCK- BRANCH = BRANCH- NUMBER
AND STOCK- PRODUCT = STOCK- PRODUCT
ALLOW ALL
ACCESS PRODUCT
WHERE PRODUCT- CODE = STOCK- PRODUCT

Because ACCESS statements in the REGION and PRODUCT base
views do not allow INSERT, the REGION-NUMBER and
STOCK-PRODUCT values must exist in the database before the
INSERT can succeed. This derived view does not allow for insertion of
new branches and stock into a branch without any restriction. The only
reason to access the PRODUCT base view here is to provide the
PRODUCT-DESC column. The integrity constraint between STOCK and
PRODUCT (no STOCK-PRODUCT number is allowed that is not already
in PRODUCT) is already defined in those base views.

RDM Administration Guide 81

Chapter 3 View design considerations

82

Processing the UPDATE command

This view allows you to update existing branch names in a specified
region, and to insert new branches. You cannot modify the region
through this view.

Derived View: BRANCHES-IN-REGION

View Text:
KEY REG O\N- NUMBER
REG ON- NAME
KEY BRANCH NUVBER
BRANCH- NAMVE
ACCESS REG ON
ONCE

USI NG REG ON- NUMBER

ACCESS BRANCH
WHERE BRANCH- REG ON = REG ON- NUMBER

ALLOW | NSERT UPDATE

Processing the DELETE command

This view keys into the REGN data set using the key REGION-NUMBER
to delete a region. Any branches in the specified region are also deleted;
the ACCESS statement to the BRAN data set has ALLOW DELETE.
However, if any branch in the region contains customers, the entire
delete operation is rejected. Neither the region nor any of its branches
can be deleted if any one branch contains customers. To cascade delete
the customers from the CUST data set, you would need to ALLOW
DELETE on the ACCESS statement for the CUST data set as well.

Derived View: DELETE-REGION-WITH-NO-CUSTOMERS

View Text:

KEY REGQ ON-NUMBER = REGQ ON-1D

REQ BRANCH NUMBER = BRANCH I D

ACCESS REGN
US| NG REG ON- NUMBER
ALLOW DELETE

ACCESS BRAN
VHERE BRANCH REG ON- | D = REG ON-I D
ALLOW DELETE

ACCESS CUST
VHERE CUSTOMER- BRANCH- | D = BRANCH- I D

P25-8220-45

Keyed access to data

Keyed access to data

From the perspective of RDM, each apparently flat record described by a
view has one or more logical keys. Each data set in the database has
one or more physical keys. The logical key or combination of logical keys
in your view may or may not map to a physical key.

NOTE

Although it is possible to create a view that has no logical key, for
performance reasons, it is not recommended.

physical | pEGNCTRL = REGION-ID -

key

You provide keyed access to data through the view definition. Each data
set in the database can be accessed through a physical key, for example,
customer number or part number. Provided you define a logical key that
maps onto the physical key in the data set, RDM performs a physical
keyed access. This is the most efficient way of accessing data.

If you do not provide keyed access (you either omit the key or define a
logical key that does not map onto the physical key), a serial scan of the
data set or view results. Even if a physical keyed read can be performed,
you can still define a view that limits the data set to sequential access.
The following illustration uses two base views to illustrate keyed and
sequential access.

logical key
maps onto N i
RMS Data Set physical key Base-View: REGION-BY-NUMBER
REGN — »= KEY REGION-ID
REGION-NAME
.) ACCESS REGN USING REGION-ID
Physical Logical ALLOW ALL

Data Item Data Item

REGNNAME = REGION-NAME

A

Base View: REGION-BY-NAME

REGION-ID
— ™ KEY REGION-NAME
ACCESS REGN

logical key WHERE REGION-NAME = REGION-NAME
maps onto ALLOW ALL

non-key

physical

data item

RDM Administration Guide 83

Chapter 3 View design considerations

84

Base view REGION-BY-NUMBER has one logical key (KEY
REGION-ID), which it uses as the logical key to the REGN data set
(ACCESS REGN USING REGION-ID). Because this logical key maps
onto the physical key REGNCTRL, RDM performs a keyed-read of the
data set REGN. Physical keyed access provides good performance and
is therefore useful for views that change the database (the RDML
maintenance functions INSERT, UPDATE, and DELETE).

You can also access a data set through a secondary key. This is much
more efficient than a serial scan, but not as efficient as using a physical
control key. Secondary keys are returned in either ascending or
descending order, or both, depending on the direction chosen during
secondary key definition. Refer to the SUPRA Server PDM Database
Administration Guide (UNIX & VMS), P25-2260, for details on how to
define secondary keys.

Base view REGION-BY-NAME has one logical key (KEY
REGION-NAME), which it uses as the logical key to the REGN data set
(ACCESS REGN WHERE REGION-NAME = REGION-NAME). Because
REGION-NAME does not map onto a physical key, RDM performs a
sequential read of the data set REGN, scanning the physical file to locate
the appropriate row. Scanning a data set is the least efficient method of
access.

If, however, you define REGION-NAME as a secondary key in an index,
the ACCESS statement ACCESS REGN WHERE
REGION-NAME=REGION-NAME would cause RDM to use the index to
obtain the data. This is much more efficient than a serial scan. You
define indices and secondary keys during database definition. Refer to
the SUPRA Server PDM Database Administration Guide (UNIX & VMS),
P25-2260.

You can define a logical key two ways: (1) Using the keyword KEY (or
NON-UNIQUE KEY) in the column portion of the view definition, or (2)
Defining logical keys as part of the access portion of the view definition.
The keys in the access portion of the view definition determine the
access method to use.

P25-8220-45

Keyed access to data

In the following example (a derived view of the base view CUSTOMER),
logical keys are placed on both CUSTOMER- NUMBER and
CUSTOMER-NAME by defining the columns with the required KEY.
CUSTOMER-NUMBER is defined as the logical key to the CUST data set
on the ACCESS statement.

KEY CUSTOVER- NUMBER
KEY CUSTOVER- NAMVE
CUSTOVER- ADDRESS
CUSTOMVER- STATE
ACCESS CUSTOMER
WHERE CUSTOMER- NUMBER = CUSTOVER- NUMBER
ALLOW ALL

Each view can have zero to nine logical keys. Logical keys defined with
the keyword KEY or NON-UNIQUE KEY can be used to supply any
number of these key values for the view. A logical key in a view does not,
by itself, cause RDM to perform a keyed access. A logical key enables
the user to provide a value for the specified field if keyed access is
desired. If you define a logical key that maps to a physical key on the
database file (for example, a control key on a PDM primary data set), and
the user program requests a read using that key, the access will work
very quickly. RDM performs a keyed read of the data set and goes
directly to the requested row. If, however, the user does not provide a
value for that key, RDM performs a sequential read and treats the logical
key as a required field.

Required columns are designated by the REQ option of the column
definition and must be present for RDM to return a row. Imagine an
example of customers and orders where each customer may have zero,
one, or more than one order. If the order number is required,
customer-order rows will be returned only if the customer has at least one
order. If the customer number is required, all customer rows will be
returned, regardless of whether the customer has any orders.

All keys, including logical keys, are always required columns. You can
also assign fixed values or constants to impose constraints on the
program and thus limit the application to retrieve or update selected rows.

You can define four different types of logical keys for a row: unique,
non-unigue, constant, and unigue constant. You can define logical keys
as unique or non-unique depending on your application requirements and
record organization. However, if the logical key is also a secondary key
that allows duplicates, there is no point defining it as a unique key in the
view. The following sections give more details on these key types as well
as information on designating columns as required or constant.

RDM Administration Guide 85

Chapter 3 View design considerations

Unique keys

A unique key has one row for each key value. Remember that each row
can ultimately map to one or more data sets. Therefore, using a unique
key with unnormalized views may retrieve more than one row for each
unique key.

When you define a simple or compound unique key (see “Simple unique
keys” on page 86 and “Compound unique keys” on page 87), the
program might not supply all the values. For example, if you define the
customer number and order number as a compound unique key, the
program can retrieve the row using zero, one, or two key values. In this
way, the program can implement a generic read by specifying less than
the total number of logical keys in the view. If the program specifies just
customer number, RDM retrieves all orders for that customer.

If the logical key maps to the physical key of a data set that maintains
uniqueness of the physical key, RDM will let the PDM maintain the
uniqueness. If the column does not map to a unique key, RDM tries to
keep the value unique by rejecting duplicate inserts.

Simple unique keys

Think of a simple unique key as a selection criterion. It provides an equal
comparison between a column and an application-specified value. An
example of a simple unique key is the customer number, as shown in the
following illustration. No two customers for a company should have the
same customer number. Therefore, the key is unique.

CUSTOMER | CUSTOMER | CUSTOMER | CUSTOMER | CUSTOMER
NUMBER NAME ADDRESS CITY STATE
Simple
Unique Key
86 P25-8220-45

Keyed access to data

Compound unique keys

Another type of key is the compound unique key. In this case, more than
one data item can be defined as a key with an "and" connection implied
between the logical keys. An example of the compound unique key is
illustrated in the following illustration.

REGION REGION BRANCH BRANCH
NUMBER NAME NUMBER NAME
AND
Compound
Unique Key

Derived View: BRANCHES-IN-REGION

View Text:
KEY REG ON- NUMBER
REG ON- NAVE
KEY BRANCH NUVBER
BRANCH- NAVE
ACCESS REG ON
ONCE

USI NG REG ON- NUMBER

ACCESS BRANCH
VWHERE BRANCH- REG ON = REGQ ON- NUMBER

ALLOW | NSERT UPDATE

If your application includes both logical key values when issuing the GET,
RDM will try to locate the row based on both values. RDM may do direct
database penetration, scan or sweep navigation of the physical files, or
some combination to find the specified row.

The key value of a compound unique key is the combination or
concatenation of the logical key values. RDM keeps this combination
unique. Using the BRANCHES-IN-REGION example, there may be
several branches in a region, but there will be only a single row for the
region number/branch number combination.

RDM Administration Guide 87

Chapter 3 View design considerations

88

Non-unique keys

Non-unique keys differ from unique keys because RDM does not
maintain the key value as unique. The column is still required, and the
user can specify a value for the column to select rows. However, a single
key value may return multiple rows. Do not confuse this with a generic
search (see “Generic reads” on page 93), which may also return several
rows for a given key value.

You can build views that have only unique keys, but still return several
rows per unique key combination. This occurs when the unique logical
keys do not uniquely specify a single row. Using the BRANCHES-IN-
REGION view as an example, if you designate only region number as a
unique logical key and the user specifies region number on a GET,
multiple branch rows might be retrieved for each region number.

NOTE We recommend that you uniquely identify a single row whenever
e possible. Itis required for INSERT and UPDATE operations.
NOTE With a non-unique key, the rows may be retrieved only sequentially and

not based on a value, which could cause performance problems.

P25-8220-45

Keyed access to data

Simple non-unique keys

A simple non-unique key is a data item with the value in more than one
row. If you can have more than one row with the same logical key, it is
an unnormalized view and has non-unique keys. An example is a
customer data set with comments about each customer. You neither
date the comments nor supply another key, but you want to retrieve the
comments for each customer. This is a non-unique, unnormalized view
because multiple rows contain the same customer number. You define
the customer number as a single key, and define access to the comment
rows without specifying a key. When the program does its first GET
using a customer number, it retrieves the first comment for that
customer. The next GET retrieves the second comment, and so on. At
the last comment for that customer, RDM finds a boundary condition (see
“Navigational constraints and boundary conditions” on page 78) and
returns a "not found" status.

Compound non-unique keys

A compound non-unique key is an extension of the simple non-unique
key because you define more than one column as the logical key, and at
least one of the logical keys is non-unique. All non-unique keys together
still do not completely describe the row occurrence as unique. You can
still retrieve more than one row with that same compound non-unique
key.

You can define a non-unique key either by omitting a key that would
uniquely define the view, or by explicitly defining a data item as a
non-unique key. The difference is that the user can perform searches
based on the value of a column explicitly defined as a non-unique key.

RDM Administration Guide 89

Chapter 3 View design considerations

90

Constant keys

If you do not want the programmer to specify a value for the key in the
application, supply a logical key with a fixed value. Do this either by
entering the keyword CONST in the column definition and assigning it a
literal value or by assigning the value to a logical data item name or
column name in the WHERE clause of the access definition. RDM uses
this value as though the program supplied the value as a key.

A CONST key can be unique or non-unigue, depending on what you
specify in your column definition. You can use a unique constant to
prevent duplication of the constant value on insert. Constant values must
pass data validity checking if specified, and cannot be null. A CONST is
always a required column in the view.

You can use a CONST key for value-based security. For example,
assume you want to define a view that retrieves only the customers from
Texas. You could supply a constant of TX to the state field. Then the
program can retrieve and update only Texas customers.

When you designate a column as a constant, RDM does not return the

column value in the row. For example, the user of the view would never
see the state value ‘TX'.

P25-8220-45

Keyed access to data

Example Derived Views

View Text: CUSTOMERS-IN-TEXAS

KEY

CONST CUSTOMVER- STATE =

ACCESS

or

CUSTOVER- NUMBER

CUSTOVER- NAMVE
CUSTOVER- ADDRESS
CUSTOMER- CI TY

CTX
CUSTOVER- ZI P- CODE
CUSTOVER- CLASS
CUSTOVER- CREDI T- CODE
CUSTOMER- CREDI T-LIM T
CUSTOVER- BRANCH
CUSTOMVER

WHERE CUSTOMER- NUMBER = CUSTOMVER- NUMBER

View Text: CUSTOMERS-IN-TEXAS-2

KEY

ACCESS

STATE =

RDM Administration Guide

CUSTQOVER- NUMBER

CUSTQOVER- NAVE
CUSTQVER- ADDRESS
CUSTOVER-CI TY
CUSTQVER- ZI P- CODE
CUSTQVER- CLASS
CUSTQVER- CREDI T- CODE
CUSTOVER-CREDI T-LIM T
CUSTQVER- BRANCH
CUSTOVER

VWHERE CUSTOMER- NUMBER = CUSTQVER- NUMBER AND CUSTOVER-
CTXC

91

Chapter 3 View design considerations

92

Secondary access keys

As described in “Unique keys” on page 86, a unique key may map onto
values found in more than one data set. In practice, this means that you
can obtain a control key value from data-set-1 and use this value to
access data-set-2. Thus, secondary access keys are copies of control
key values found in other data sets. The data set containing the control
key and the data set containing the secondary access key may be
primary or related. It is the order in which you access the data sets that
determines which data set contains the secondary access key.

You cannot modify secondary access keys because the physical key
value for the secondary access key is held on the data set containing the
control key. The PDM allows you to change this value only through the
control key on the parent data set. If you attempt to open a view in which
you allow updates on a data set accessed through a secondary key, RDM
returns this message:

#nnnn DO NOT MCODI FY SECONDARY ACCESS KEYS

where nnnn is the line in the view that generated the error.

In other words, if you specify the secondary access key in the column
definition, you cannot insert or update rows on the data set accessed
through that secondary key. To insert or update records on a data set
accessed through a secondary key, omit the secondary key from the
column definition. Alternatively, change the order of data set access.

Note that a secondary access key is different from a secondary key. You

create secondary keys as part of the physical database during database
definition to allow access to a data set via an alternate index.

P25-8220-45

Keyed access to data

Generic reads

Generic reads enable you to retrieve data using partial values as keys.
You can omit characters from the right, substituting the wildcard
character * (for equal or next match) or = (for equal only match). These
characters are the default wildcard characters; however, you can specify
your own wildcard characters by defining the logical names
CSI_WILD_EN (for equal or next) and CSI_WILD_EQ (for equal only) as
described in the general considerations at the end of this section. Refer
to the SUPRA Server PDM System Administration Guide (VMS),
P25-0130, for details on defining these logicals.

To illustrate a generic read, assume you are using a view,
CUSTOMER-ORDER, containing the columns ORDER-CUSTOMER-
NUMBER and ORDER-NUMBER where there is a secondary key
associated with CUSTOMER-NUMBER:

Base View: CUSTOMER-ORDER

View Text:
NON- UNI QUE KEY ORDER- CUSTOMER- NUMBER = ORDER- CUST- | D
ORDER- NUMBER = ORDER- | D
ACCESS ORDR
WHERE ORDER- CUST-| D = ORDER- CUSTOMVER- NUMBER

A series of GETs would return data in the following order:

NAME aTy

ADAMS A ABERDEEN
BROAN D READI NG
CARSON C ABERDEEN
COoX D READI NG
LOVE C PORTSMOUTH
SM TH Fred SLOUGH
SMTH P LONDON

SM TH SM MAI DENHEAD
SWTH M SW NDON

RDM Administration Guide 93

Chapter 3 View design considerations

94

In this example, we are using the default wildcard characters. The
wildcard (*) specifies an equal or greater than match instructing RDM to
return a row where a key matches the partial key specified. If there is no
key match, RDM will return the next row. RDM always returns a row for
this option until it reaches the end of file boundary condition. Using the
previous example, if you repeatedly issued the following statement:

GET CUSTOMER- ORDER USI NG C*

you would retrieve rows in the following order:

CARSON C ABERDEEN
COoX D READI NG
LOVE C PORTSMOUTH
SM TH Fred SLOUGH

SM TH P LONDON

SM TH SM MAI DENHEAD
SWTH M SW NDON

OCCURRENCE NOT FOUND.

When RDM cannot find a row to match the partial key supplied, it returns
rows that do not match until it reaches the end of file boundary condition.

P25-8220-45

Keyed access to data

General considerations for generic reads

¢

RDM Administration Guide

You must access the data set containing the partial key via a
secondary key.

The partial key specified must have a character data type. Generic
read does not work on the other data types supported by RDM.

You can specify your own wildcard characters by defining the
following logical names in any logical name table available to your
process:

$ DEFINE CSI_WLD EN @

to use the @ character to specify an equal or next match
$ DEFINE CSI_WLD EQ #

and to use the # character to specify an equal only match. You can
substitute your own wildcard characters for @ and #.

The wildcard character must be the rightmost character in the key.
(You can omit parts of the key from the right only.) RDM ignores any
values entered after the wildcard character. For example, the
following two statements are both valid; however, RDM will process
the second statement exactly like the first, ignoring the characters to
the right of the wildcard.

CET vi ew nane USI NG SWr
GET vi ew nane USI NG SMTH

Both statements retrieve the same rows.

You can use compound generic keys; however, the wildcard
character must still be the rightmost character in the string. For
example, you could access a secondary key with two key parts as
follows:

GET vi ew nanme USI NG 1234 TE=
However, the following statement is invalid because it includes
characters to the right of the wildcard character.

GET vi ew name USI NG 12= TEMP

You can specify values for logical key columns after the generic key,
for example, for an index with one key part and a view with three
logical key columns you could enter:

CET vi ewnane USI NG SMr 1234 999

95

Chapter 3 View design considerations

Domains

96

Every column in a view eventually maps to a physical data item defined
on the SUPRA Server Directory database SUPRAD. When you define a
data item on the SUPRA Server Directory, you also specify its physical
characteristics such as length and format. You specify additional
characteristics such as a validation option, default value, and null value
when you define a domain and connect it to the data item. RDM checks
the Global View file or the SUPRA Server Directory for these
characteristics when processing RDML requests.

Domain attributes of null value, default value, retrieval validation, and
validation type are especially important in processing views because
RDM uses them to validate the data and maintain data integrity. In
addition, domains ensure that relational joins are made only on columns
of the same type. For instance, it makes no sense to create a join where

SALARY = RETAI L- PRI CE

SALARY and RETAIL-PRICE may have the same format and length, so
this join, although meaningless, would be permitted. By assigning each
of these columns to a different domain, you avoid such oversights.

RDM performs some default validation such as checking that packed or
numeric columns contain valid numbers. This check is made after the
check for nulls but before any specified validation is done (see “Null
values” on page 98, “Default values” on page 101, “Validation options” on
page 103, and “Join compatibility” on page 105). RDM returns an ASI of
"V" for columns that fail default validation checks. See “RDM status
indicators” on page 223 for a description of ASIs.

P25-8220-45

Domains

You define domains and connect them to logical data items through DBA
functions. The following screen illustration illustrates the contents of a
sample domain as they appear during domain creation. You can see that
null and default values, validation options, and validation exits are all
specified through domains.

Cl NCOM SYSTEMs

DOVAI N : REG ON

1 : DOVAI N- NAME : REG ON
2 : DOMAI N- FUNCTI ON : STRI NG
3 : DOVAIN-UNIT N A
4 : DOVAI N- FORVAT : CHARACTER
5 : DOVAI N- LENGTH 12
6 : DOMAI N- DECI MALS 10
7 : DOVAI N- SI GNED 1 SI GNED
8 : DOVAI N- NULLS- ALLOWNED :NO
9 : DOVAI N- NULL- VALUE :
10 : DOVAI N- DEFAULT- VALUE :
11 : DOVAI N- RETRI EVAL- VALI DATION : NO
12 : DOVAI N- VALI DATI ON- TYPE : RANGE
13 : DOVAI N-M NI MUM VALUE 101
14 : DOVAI N- MAXI MUM VALUE 199
15 : DOVAI N- VALI DATI ON- EXI T- NAME
16 : DOMVAI N- STATUS 0K

Enter field nunber (or <PFl> to exit) :

You can use the COLUMN-DEFN DBAID command to report on null,
default, and validation information for each column in a view. In addition,
it reports on the physical characteristics of the column, such as length
and format. See “Defining and testing views using DBAID” on page 135

for more information on DBAID commands. Refer to the SUPRA Server
PDM Database Administration Guide (UNIX & VMS), P25-2260, for more
information on creating domains.

When DOMAIN RETRIEVAL validation is enabled, RDM validates the
column for each retrieval (GET). Columns that fail the validation criteria
are flagged with an invalid ASI. Required columns must be valid and
non-null, or a row is not returned. However, data is returned for non-
required columns with an invalid ASI.

The following sections discuss the components of null and domain
support:

¢ Null values

¢ Default validation

<&

Validation options

RDM Administration Guide 97

Chapter 3 View design considerations

98

Null values

The SUPRA Server Directory supports null values for all data types. You
can specify in the domain whether a physical data item can be null and, if
so, which value that data item should contain to represent a null. A null
value represents missing or inapplicable information, and is independent
of data type. Null values are distinct from blanks, zeros, the empty
character string, or any other value, although you can use these values
as the null string if you wish. To allow null values for a given logical data
item, you connect the data item to the appropriate domain through DBA
Functions (refer to the SUPRA Server PDM Database Administration
Guide (UNIX & VMS), P25-2260).

For example, assume that you are organizing delivery routes. You
specify the date, route, vehicle, time of departure, and driver. However,
because you do not know which driver will be available for the dockside
route and the city-south route, you specify the null value for both. The
null value could be "Not yet allocated."

Inserting the null value for driver does not mean that nothing will be
delivered on the dockside and city-south routes. Nor does it mean that
the same driver will deliver on both routes. The null value "Not yet
allocated" indicates that you do not know which driver will deliver. The
necessary information is missing.

Note that the data type of the null value may differ from the data type of
the column (shown in the DOMAIN-FORMAT field of the domain using
the DBA utility). However the length of the null value is limited by the
length of the field, regardless of data type.

Null values are optional; you define them in the domain details, which
may then be connected to a data item through DBA. Refer to the SUPRA
Server PDM Database Administration Guide (UNIX & VMS), P25-2260,
for a description of how to specify a null value for a data item during
domain definition.

For numeric or packed numeric data items without domains (for instance,
those migrated from a previous release or newly created and not yet
connected to a domain), RDM sets the NULL flag to "Y" and sets the null
value to blanks. The NULL flag for data items of any other type (binary,
character, or floating point) is set to "N."

P25-8220-45

Domains

GET Processing with null values

When RDM processes a GET request, each column that is equal to its
null value is given an ASI of missing (-), and is set to zero for numeric

type data or blanks for all other type data. Required columns must be

non-null, as defined in the domain.

INSERT processing with null values

When RDM processes an INSERT command, all columns with a null ASI
(an ASI of N) are set to their corresponding null value, which you
specified in the domain details using the DBA utility.

The application program can insert a null value into a column by
changing the ASI to "N" or by supplying the null value in the column.

(See “RDM status indicators” on page 223 for a description of ASIs.) The
DBAID user can insert a null value by inserting the keyword NULL into
the column or by supplying the null value. Inserting the null value itself is
NOT recommended because if the DBA changes the value of the null,
you may have to change and recompile the application program that
depends on it.

If a column in a view is required, the user cannot input null data. RDM
rejects any attempt to insert a null value into a required column. Null
values for foreign keys are allowed only if the foreign key is not required.
(See “Foreign key value integrity” on page 109 for a description of null
foreign keys.)

UPDATE processing with null values

When RDM processes an UPDATE command, all columns with a null
ASI (an ASI of N) are set to their corresponding null value.

The application program can insert a null value into a column by
changing the ASI to "N" or by supplying the null value in the column. The
DBAID user can insert a null value by inserting the keyword NULL into
the column or by supplying the null value. Inserting the null value itself is
NOT recommended because if the DBA changes the value of the null,
you may have to change and recompile the application program that
depends on it.

If a column in a view is required, the user cannot input null data. RDM
rejects any attempt to insert a null value into a required column. Null
values for foreign keys are allowed only if the foreign key is not required.
(See “Foreign key value integrity” on page 109 for a description of null
foreign keys.)

RDM Administration Guide 929

Chapter 3 View design considerations

DELETE processing with null values

When a view deletes a primary key, the Base View Definition can allow
for foreign keys to be either cascade deleted or nullified, or it can restrict
the delete (see “Deletion integrity” on page 116). To cascade delete,
specify ALLOW DELETE on the data set that contains the foreign key so
that foreign keys can be deleted. Alternatively, you can ensure that the
foreign key restricts the delete by not adding an ALLOW on the relation
with the foreign key (the target relation), forcing read-only access. This is
useful, for example, if you want to delete a region but not all branches.
With nullify delete, you can set each branch's region number to a null
value until the branch can be reassigned to a new region.

The following example is a base view that illustrates this.
Base View: DELETE-REGION-NULLIFY-BRANCH

View Text:

KEY REGQ ON-NUMBER = REGQ ON-1D
REG ON- NAME

ACCESS REGN
VHERE REG ON-| D = REG ON- NUMBER
ALLOW DELETE

ACCESS BRAN
VHERE BRANCH REG ON-I D == REG ON-1D
ALLOW UPDATE

See “Foreign key value integrity” on page 109 for details of how RDM can
delete a primary key and nullify a foreign key.

MANTIS and SPECTRA support for nulls

Because MANTIS programs and SPECTRA processes cannot update
ASI fields, to insert a null you must input the null value.

100 P25-8220-45

Domains

Default values

RDM uses the default value for a logical data item when no column in the
user view maps to that logical data item, either because the user view
subset does not include the mapping column or because the view does
not contain the mapping column. You define default values in the domain
details that can then be connected to a data item through DBA. The
maximum length for a default value is 32 bytes. Any default that is less
than 32 bytes is padded on the right with blanks.

Examples
¢ This example shows how RDM automatically uses the default value

for a data item. The data set CUST contains the following physical
and logical data items and default values, where appropriate:

Physical data Column name/logical data item Default
item name name value
CUSTCTRL CUSTOMER-NUMBER

CUSTNAME CUSTOMER-NAME

CUSTCRCO CUSTOMER-CREDIT-CODE C3
CUSTCRLM CUSTOMER-CREDIT-LIMIT 250

You could then construct the following derived view that would
automatically use the default values for CUSTOMER-CREDIT-CODE
and CUSTOMER-CREDIT-LIMIT:

Derived View: ADD-CUSTOMER-DEFAULT-VALUES

View Text:

KEY CUSTOVER- NUMBER
CUSTQOVER- NAVE
CUSTQVER- BRANCH
ACCESS CUSTOMER
VWHERE CUSTOMER- NUMBER = CUSTOMER- NUMBER
ALLOW ALL

RDM Administration Guide 101

Chapter 3 View design considerations

An insert using the view with the values 1001 and McEwan Plastics
would insert the following row into the database:

CUSTOMER- CUSTOMER- CUSTOMER- CUSTOMER-
NUMBER NAME CREDIT-CODE CREDIT-LIMIT
1001 McEwan C3 250

Plastics

¢ Toinsert a specified CUSTOMER-CREDIT-CODE or
CUSTOMER-CREDIT- LIMIT column, you must include the column
in the column definition of the view. For example, the following view
would automatically use the default value for
CUSTOMER-CREDIT-CODE, but would allow you to enter a value
for CUSTOMER-CREDIT-LIMIT.

Derived View: ADD-CUSTOMER-DEFAULT-VALUES-2

View Text:

KEY CUSTOVER- NUMBER
CUSTQOVER- NAVE
CUSTQVER- BRANCH
CUSTOVER-CREDI T-LIM T

ACCESS CUSTOMER
USI NG CUSTOVER- NUMBER
ALLOW ALL

An insert using the view with the values 1002, Wick Potteries and
500 would insert the following row into the database:

CUSTOMER- CUSTOMER- CUSTOMER- CUSTOMER-
NUMBER NAME CREDIT-CODE CREDIT-LIMIT
1002 Wick Potteries C3 500

102 P25-8220-45

Domains

Validation options

You specify validation options on the SUPRA Server Directory when
defining domains. For details on how to define domains, refer to the
SUPRA Server PDM Database Administration Guide (UNIX & VMS),
P25-2260. The validation type tells RDM how to validate the contents of
a column. The four validation options are:

¢ Range checking. Column values should be within a minimum and
maximum range. A range value can be up to 32 bytes long.

¢ Table checking. Column values must match an entry in the
associated validation table. A table value can be up to 72 bytes long.

¢ Exit. Uses a specified RDM user exit to verify the values of the
column.

¢ No validation. Any validation must be done in your application
programs.

You can specify only one validation option for each physical data item; all
options are mutually exclusive.

RDM performs validation checking before each INSERT or UPDATE
whenever a column in a view maps to a physical data item that uses one
of the validation options. If the retrieval validation flag is set on retrieval,
RDM validates the data immediately after the physical GET (at the base
view level). On INSERT or UPDATE, RDM validates the data at the
highest level (at derived view level if a derived view exists, otherwise at
base view level).

NOTE

If you use global views, validation information will be included in the
Global View file. See “Optimizing view performance using bound and
global views” on page 231 for more information on using global views.

RDM Administration Guide 103

Chapter 3 View design considerations

Range checking

RDM verifies that a value in a column is within a specified range. You
can specify the minimum value and the maximum value that RDM uses
to validate. Range values are limited to 32 bytes in length, which is
normally sufficient for data types other than character. For character
columns that have lengths greater than 32 bytes, the range value is
padded to the right with blanks before the comparison.

Example. Let's say our example company has seven credit codes:
letters A—G. You can specify this range as the customer credit code
domain CUSTOMER-CLASS. When processing an INSERT or UPDATE
request, RDM ensures that a credit code of anything but A—G is rejected.

Table checking

RDM verifies that a value in a column is contained within a table of values
stored on the SUPRA Server Directory database SUPRAD. You can
build a table of values on the Directory and identify the name of the table
for RDM to use. The DBA must create each validation table on the
SUPRA Server Directory database SUPRAD. Each entry in the table can
be a maximum of 72 bytes long.

Note that if a table contains many values, it is better to create another
data set to store the values, and to use a foreign key to access them.

Example. There may be ten suppliers for a particular part. Whenever
you place an order for that part, RDM verifies that the supplier you specify
is one of the ten you are authorized to use. If the supplier is in the table,
your order is processed.

Exits

You can write your own RDM user exits to perform any domain checking
that the DBA has specified. RDM then calls the user exit when validating
a value in a column. Appendix C on page 295 contains example user
exits in C, FORTRAN, and PASCAL.

Note that you cannot use an RDM validation exit to translate a column
value. (The validation exit must not change the value entered.)

104 P25-8220-45

Domains

Join compatibility
RDM ensures that any columns used in a join are from the same domain
unless you explicitly use the domain override (= =) in the access definition
of the view. For example, you cannot join a column connected to a
domain of numbers with a column connected to a domain of
alphanumeric characters. The following ACCESS statement is incorrect
because REGION-ID is from the REGION domain while BRANCH-
REGION-ID is from the BRANCH-REGION domain.

ACCESS REGN
WHERE REG ON-1D = BRANCH REG ON-1 D

However, this next example uses the extra equals sign to indicate that
RDM should not perform normal domain checking. This ACCESS
statement is allowed as long as REGION-NUMBER and BRANCH-
NUMBER are the same length.
ACCESS REGN
WHERE REG ON- NUMBER == BRANCH REG ON- | D
ACCESS REGN
WHERE REG ON- NUMBER == BRANCH REG ON- | D

If one or both of the columns in a join do not have a domain, RDM only
verifies that the length of both is the same.

Note that you only specify the domain override (= =) once, between the
first and second columns.

RDM Administration Guide 105

Chapter 3 View design considerations

Referential integrity with RDM

106

Referential integrity ensures that two pieces of data representing the
same fact do not become inconsistent. You set up your base views to
maintain referential integrity. For the purpose of this discussion, we will
use the following terminology:

¢+ Aforeign key is a data item in one data set that can only contain
values found in the primary key of another data set.

¢ The source relation is the data set containing the foreign key as a
data item; its rows depend on primary key values in another data set.

¢ The target relation is the data set containing the primary key values
that match the foreign key values in the source relation; the rows in
the source relation rely on this primary key.

The terminology is relative and expresses the relationship between only
two data sets at a time: the target and the source. As shown in the
following illustration, the values in foreign-key must first exist in
primary-key-a.

Target relation:

primary-key-a |

Source relation:

primary-key-b . foreign-key

To ensure fast retrieval of the source relation, define a secondary key on
the foreign key. Refer to the SUPRA Server PDM Database
Administration Guide (UNIX & VMS), P25-2260, for a description of how
to include data items in secondary keys.

P25-8220-45

CUST Data Set

Key

CUSTOMER-NUMBER

CUSTOMER-NAME

CUSTOMER-ADDRESS

CUSTOMER-CITY

CUSTOMER-STATE

CUSTOMER-ZIP-CODE

CUSTOMER-CLASS

CUSTOMER-CREDIT-LIMIT

Fkey

CUSTOMER-BRANCH

¢

BRAN Data Set

Key

BRANCH-NUMBER

Fkey

BRANCH-NAME

BRANCH-ADDRESS

BRANCH-CITY

BRANCH-STATE

BRANCH-ZIP-CODE

BRANCH-REGION

BRANCH-DELIVERY ROUTE

BRANCH-SALES-QUOTA

BRANCH-STAFF-QUOTA

This illustration has two foreign keys:

Key

Referential integrity with RDM

The following illustration is an example of how RDM maintains referential
integrity. (The data sets used here are based on the example database
described in Appendix D on page 305.)

REGN Data Set

REGION-NUMBER

REGION-NAME

CUSTOMER-BRANCH is the foreign key from CUST to BRAN.

CUST is the source relation; BRAN is the target relation.

¢ BRANCH-REGION is the foreign key from BRAN to REGN. BRAN is
the source relation; REGN is the target relation.

RDM Administration Guide

107

Chapter 3 View design considerations

108

Integrity rules and checking
RDM supports the following referential integrity rules:

¢

¢

A foreign key value must exist in the target relation as a primary key.
A primary key value must exist for each foreign key value in a source
relation.

Null values are allowed for a foreign key value.

RDM checks for referential integrity in two ways:

¢

Foreign key value integrity. When inserting or updating a row that
contains a foreign key, the foreign key value must point to a valid
primary key in the target relation or be null. This rule also applies if
the foreign key consists of several key parts (subdefined fields).
RDM performs INSERT or UPDATE integrity only if none of the key
parts is null.

Deletion integrity. RDM will not delete a row unless you first delete
or nullify all foreign keys. This means that you cannot delete a
primary key unless you also delete or nullify rows in a source relation
that contain the key value in a foreign key.

You can implement referential integrity in the column definitions,
ACCESS statements, or some combination.

P25-8220-45

Referential integrity with RDM

Foreign key value integrity

To enforce foreign key value integrity, define the foreign key in the view.
You can define a required foreign key or a foreign key that allows nulls.
To define a foreign key, you must:

¢ Make the view column required and associated with both the foreign
key in the source relation and the primary key in the target relation.
For example:

REQ REG ON- NUMBER == BRANCH REG ON-1D = REG ON-1D

Or, identify the foreign key column with the keyword FKEY. For
example:

FKEY REG ON- NUMBER == BRANCH REG ON-1 D = REG ON-1 D

¢ Access the target relation through its primary key by using the foreign
key value from a source relation. For example:

ACCESS BRAN
USI NG BRANCH- | D
ALLOW | NSERT UPDATE
ACCESS REGN
VWHERE REG ON-1 D == BRANCH REG ON-1D
ALLOW | NSERT UPDATE

If you use REQ, BRANCH-REGION (the foreign key) must be valid and
non-null. If you use FKEY, BRANCH-REGION must be valid or null.

The rules for defining a foreign key are:

¢ The foreign key may consist of one or more columns. The parts of
the foreign key do not have to be contiguous in the source relation;
however, they must all come from the same physical data set.

¢ When the primary key in the target relation is subdefined and you are
using the subdefined fields in your view, you m7ust use all the parts
of the foreign key to access the target relation through its primary
key. The foreign key parts must provide the full primary key. In the
view, this will cause a one-to-one access from the source relation to
the target relation. You must not specify additional selection criteria
(using the WHERE clause) on any data fields in the target relation.

¢ Each column that is part of the foreign key must be required and
associated with equivalent parts of the foreign key from the source
relation and the primary key from the target relation.

¢ Express all integrity constraints in base views. You must not use the
FKEY option in derived views.

RDM Administration Guide 109

Chapter 3 View design considerations

110

Insertion integrity

When you attempt an insert on a data set that contains a foreign key,
RDM ensures that after the insert, the foreign key points to a valid
primary key in the target relation or that the foreign key is null. A foreign
key can be null only if you specify FKEY in the column definition. If you
insert a non-null foreign key value and the primary key in the target
relation does not exist, you can have RDM perform one of two actions:

¢

Reject the insert. You do this by not coding ALLOW INSERT or
ALLOW ALL on the target relation. RDM marks the foreign key
attribute with an ASI of "V" and sets the FSI to "D" or "X." (See “RDM
status indicators” on page 223 for information on RDM status
indicators.) For example:

Base View: CUSTOMER-INSERT-INTEGRITY

View Text:

KEY CUSTOMVER- NUMBER = CUSTOVER-I D
REQ BRANCH- NUMBER = CUSTOMER- BRANCH- | D = BRANCH- | D
ACCESS CUST
WHERE CUSTOMER-1 D = CUSTOMER- NUMBER
ALLOW | NSERT
ACCESS BRAN
WHERE BRANCH- | D = CUSTOVER- BRANCH- | D

Automatically insert the primary key in the target relation. You do this
by coding ALLOW INSERT or ALLOW ALL on the target relation.
For example:

Base View: CUSTOMER-INSERT-INTEGRITY-2

View Text:

KEY CUSTOMVER- NUMBER = CUSTOVER-I D
REQ BRANCH- NUMBER = CUSTOMER- BRANCH- | D = BRANCH- | D
ACCESS CUST
WHERE CUSTOMER-1 D = CUSTOMER- NUMBER
ALLOW | NSERT
ACCESS BRAN
WHERE BRANCH- | D = CUSTOVER- BRANCH- | D
ALLOW | NSERT

P25-8220-45

Referential integrity with RDM

If you have automatic insert of a new primary key, you may require
validation of another foreign key in the automatically added row. In this
case, you must also define the second foreign key. For example:

Base View: CUSTOMER-INSERT-INTEGRITY-3

View Text:
KEY CUSTOMER- NUMBER = CUSTOMER- 1D
REQ BRANCH NUMBER = CUSTOMER- BRANCH- | D = BRANCH- | D
REQ REG ON- NUMBER == BRANCH REG ON-1D = REG ON- I D
ACCESS CUST
VHERE CUSTOMER-1D = CUSTOMER- NUMBER
ALLOW | NSERT
ACCESS BRAN
VHERE BRANCH- | D = CUSTOVER- BRANCH- | D
ALLOW | NSERT
ACCESS REGN
VHERE REG ON- | D == BRANCH REGQ ON-1D

MNOTE

O e—

REGION-ID and BRANCH-REGION-ID are in different domains so that
BRANCH-REGION-ID can be NULL. Therefore, domain override is
required.

If a customer row is inserted with a BRANCH-NUMBER that does not
exist, RDM inserts a branch row. However, before the branch is inserted,
RDM checks that REGION-NUMBER points to an existing region row. If
not, the insert fails. By placing ALLOW INSERT on the REGN data set,
you could also make RDM perform automatic inserts on the REGN data
set.

You can insert a null foreign key when the column is defined as FKEY
(instead of REQ) either by placing an "N" into the ASI for the column or
by supplying the actual null value; RDM does not perform INSERT
referential integrity in this case because the primary keys cannot be null.
Remember to use the FKEY syntax if the foreign key is likely to be null.

Note that inserting the actual null value is not recommended because the
application is then dependent on that null value. Instead, let RDM insert
the null value defined in the domain by setting the ASI for the column to
"N." See “Null values” on page 98 for information on null values, and
“RDM status indicators” on page 223 for a description of RDM Status
Indicators.

RDM Administration Guide 111

Chapter 3 View design considerations

Update integrity

When you update a foreign key, RDM ensures that, after the update, the
foreign keys point to a valid primary key in the target relation or that the
foreign key is null (provided the FKEY syntax was used). If you update
the foreign key value and the primary key in the target relation does not
exist, you can have RDM perform one of two actions:

¢+ Reject the update. You do this by not coding ALLOW INSERT or
ALLOW ALL on the target relation. RDM will set the foreign key ASI
to "V" and the FSI to "D" or "X." For example:

Base View: CUSTOMER-UPDATE-INTEGRITY

View Text:

KEY CUSTQOVER- NUMBER = CUSTOMER-1 D
REQ CUSTQOVER- BRANCH = CUSTOMER- BRANCH-| D = BRANCH- | D
ACCESS CUST
WHERE CUSTOMER-| D = CUSTOMER- NUMBER
ALLOW UPDATE
ACCESS BRAN
ONCE
VWHERE BRANCH- | D = CUSTQVER- BRANCH- | D

¢ Automatically insert the primary key in the target relation. You do this
by coding ALLOW INSERT or ALLOW ALL on the target relation.
For example:

Base View: CUSTOMER-UPDATE-INTEGRITY-2

View Text:

KEY CUSTOVER- NUMBER = CUSTOMER-1 D
REQ CUSTQVER- BRANCH = CUSTOMER- BRANCH-| D = BRANCH- | D
BRANCH- NAVE
ACCESS CUST
WHERE CUSTOMER-| D = CUSTOMER- NUMBER
ALLOW UPDATE
ACCESS BRAN
ONCE
VWHERE BRANCH- | D = CUSTQVER- BRANCH- | D
ALLOW | NSERT

112 P25-8220-45

Referential integrity with RDM

If the view defines other foreign keys in the automatically inserted target
relation, insert integrity rules apply on the insertion. For example:

Base View: CUSTOMER-UPDATE-INTEGRITY-3

View Text:
KEY CUSTOVER- NUMBER = CUSTOMER- | D
REQ CUSTOVER- BRANCH = CUSTOVER- BRANCH- | D = BRANCH- | D
REQ BRANCH REG ON == BRANCH REG ON-1D = REG ON-1D
ACCESS CUST
WHERE CUSTOMER- | D = CUSTOMVER- NUMBER
ALLOW UPDATE
ACCESS BRAN
ONCE
WHERE BRANCH- | D = CUSTOVER- BRANCH- | D
ALLOW | NSERT UPDATE

ACCESS REGN ONCE
VWHERE REG ON-1 D == BRANCH REG ON-1D

NOTE

RDM Administration Guide

REGION-ID and BRANCH-REGION-ID are in different domains so that
BRANCH-REGION-ID can be NULL. Therefore, domain override is

required.

You can also specify updating on the target relation. For example, in the
following view you could update both CUSTOMER-NAME and

BRANCH-NAME.
Base View: CUSTOMER-UPDATE-INTEGRITY-4

View Text:
KEY CUSTOMER NUMBER = CUSTOMER- | D
CUSTOVER- NAVE
REQ CUSTOMER BRANCH = CUSTOVER- BRANCH- | D = BRANCH- | D

ACCESS CUST
WHERE CUSTOMER-1 D = CUSTOMER- NUMBER

ALLOW UPDATE

ACCESS BRAN
WHERE BRANCH- | D = CUSTOVER- BRANCH- | D

ALLOW UPDATE

113

Chapter 3 View design considerations

114

In the previous example, if you update the foreign key
BRANCH-NUMBER, the update processing positions the BRAN data set
on the row pointed to by the new foreign key value. This means that any
update to BRANCH-NAME would apply to the branch row pointed to by
the new foreign key value, not the branch row retrieved by the GET
before the update. You must be very careful if you allow updating on
both the source relation and the target relation.

You can allow both updates and inserts on the target relation. This
means RDM can update the target relation if the primary key already
exists, or insert the primary key if it does not exist.

If you define the column as FKEY instead of REQ, you can update a
foreign key to null either by supplying the actual null value for the column
or by placing an "N" into the ASI for the foreign key. RDM does not
perform UPDATE referential integrity in this case because primary keys
cannot be null. You can have a null foreign key only if you specify FKEY
in the column definition portion of the view definition.

We do not recommend updating the foreign key to null by inserting the
actual null value because the application is then dependent on that null
value. Instead, let RDM insert the null value defined in the domain by
setting the ASI for the column to "N." See “Null values” on page 98 for
more information on null values, and “RDM status indicators” on

page 223 for more information on RDM Status Indicators.

P25-8220-45

Referential integrity with RDM

GET processing

Because a foreign key column is defined as required (REQ) and
equivalent to the foreign key from the source relation and the primary key
in the target relation, a GET RDML command must retrieve data from
both the source relation and the target relation. This means that if an
existing foreign key in the database is not valid, a view with the field
defined as a foreign key is unable to retrieve the bad row. RDM will
return an "occurrence not found" message because required data cannot
be retrieved from the target relation—that is, the source foreign key and
the target primary key must have the same value.

In the case of a null foreign key, RDM does not perform a GET on the
target file because a null primary key is not allowed.

The following considerations and examples are for issuing GET
statements. Each example uses DBAID syntax.

¢ When selecting with key values, always issue the first GET command
as follows:

GET FIRST * USI NG val ue-1

¢ Issue any subsequent GETs with the same key value as follows:
GET NEXT * USI NG val ue-1

¢ Whenever the selection value changes, issue the GET command as
follows:

CGET FIRST * USING val ue-2

RDM Administration Guide 115

Chapter 3 View design considerations

Deletion integrity

RDM will not allow a row to be deleted unless all foreign keys are first
deleted or nullified. This means that you cannot delete a primary key if
rows exist that contain foreign keys with the same value. To define
referential integrity, you must access the source relation through its
foreign key using the full primary key. For example:
ACCESS REGN
WHERE REG ON-1 D = REG O\ NUMBER
ALLOW DELETE
ACCESS BRAN
WHERE BRANCH-ID = REG ON-1D

You may define a secondary key on the foreign key to prevent sequential
scans of the data set containing the foreign key. If the foreign key has
multiple parts, include all the parts in the secondary key. For example:
ACCESS SAWP
WHERE SAMPLE- NUMBER- SUBL = SAMPLE- NUMBER- SUB1
AND SAMPLE- NUMBER- SUB2 = SAMPLE- NUMBER- SUB2
AND SAMPLE- NUMBER- SUB3 = SAMPLE- NUMBER- SUB3
ALLOW DELETE
ACCESS TEST
WHERE BRANCH- TEST- SUBL = REG O\ SAMPLE- SUBL
AND BRANCH- TEST- SUB2 = REG O\ SAMPLE- SUB2
AND BRANCH- TEST- SUB3 = REG O\ SAMPLE- SUB3

You must not supply additional selection criteria on the WHERE clause
for data fields in the source relation because RDM will use this additional
criteria when checking the source relation.

If the source relation is an RMS data set, you should index the foreign
key to improve performance. If the foreign key has multiple parts, include
all parts in the alternate key. An alternate index is important because the
source relation is not usually accessed through its primary key.

116 P25-8220-45

Referential integrity with RDM

If you try to delete a primary key, and foreign keys with the same value
still exist in the source relation, you can have RDM perform one of three
actions:

¢

Reject the delete (restrict). You do this by coding ALLOW DELETE
or ALLOW ALL on the target relation, but not on the source relation.

Nullify the dependent foreign keys. You do this by specifying ALLOW
UPDATE on the source relation and ensuring that no columns from
the source relation are included in the column definition.

Delete the dependent foreign keys (cascade). You do this by coding
ALLOW DELETE or ALLOW ALL on the source relation as well as on
the target relation. Provided the column definition does not contain
any columns from the source relation, RDM deletes all occurrences
of the foreign key in the source relation. If the source relation does
provide columns, RDM deletes only one occurrence in the source
relation. RDM deletes the primary key in the target relation when the
last dependent foreign key is deleted.

When multiple relations depend on the source relation, RDM will
"cascade delete" rows in all specified relations only if you specify
ALLOW DELETE or ALLOW ALL on each relation.

To enforce referential integrity during a delete operation, use one of the
following options:

¢

¢

¢

RDM Administration Guide

Restrict delete
Nullify delete

Cascade delete

117

Chapter 3 View design considerations

Restrict delete

A delete operation will fail if any dependent rows (based on the foreign
key) exist. Restrict Delete comes into play when there is a one-to-many
relationship. One example of establishing a one-to-many relationship is
accessing via a secondary key: RDM assumes a secondary key access
is one-to-many. If you need a secondary key access to be one-to-one,
then use the keyword ONCE with the ACCESS statement.

The following example shows a restrict delete:
Base View: DELETE-REGION-RESTRICT-BRANCH

View Text:
KEY REGQ ON-NUMBER = REGQ ON-1D
ACCESS REGN
VHERE REG ON-| D = REG ON- NUMVBER
ALLOW DELETE
ACCESS BRAN
VHERE BRANCH REG ON-I D == REG ON-1D

MNOTE REGION-ID and BRANCH-REGION-ID are in different domains so that
o BRANCH-REGION-ID can be NULL. Therefore, domain override is
= required.

118 P25-8220-45

Referential integrity with RDM

Nullify delete

When RDM performs a delete, it deletes the primary key but nullifies the
foreign key. Follow these rules to nullify a foreign key:

¢+ Allow UPDATE on the source relation; you must not ALLOW
DELETE on the source relation.

¢ Access the source relation joining on the foreign key and the primary
key from the target relation. To do this, specify that the foreign key is
equal to the primary key in the WHERE clause of the ACCESS
statement of the data set containing the foreign key. (See the
second WHERE clause in the example below.)

¢ Ensure that the relation containing the foreign key data set supplies
no columns.

¢ Allow DELETE on the target relation.

¢ Set the nulls allowed flag for the foreign key to Y. Refer to the
SUPRA Server PDM Database Administration Guide (UNIX & VMS),
P25-2260, for details of how to define null values for data items.

The following example shows a base view that can be used to delete the
primary key and nullify the foreign key. In this example, the region is
being deleted and any branches contained in that region will have a null
value assigned to their BRANCH-REGION column. The ALLOW
DELETE clause for the REGN primary data set designates that the
region can be deleted. The ALLOW UPDATE clause on the BRAN data
set designates that the BRANCH-REGION column can be nullified.

Base View: DELETE-REGION-NULLIFY-BRANCH

View Text:

KEY REG ON-NUMBER = REG ON-1D
REG ON- NAVE

ACCESS REGN
WHERE REG ON-1 D = REG ON- NUMBER
ALLOW DELETE

ACCESS BRAN
WHERE BRANCH- REG ON-ID == REG ON-1D
ALLOW UPDATE

RDM Administration Guide 119

Chapter 3 View design considerations

Cascade delete

When you perform a delete operation on a view, you must also delete all
dependent rows (based on the foreign key). The following example
shows a cascade delete:

Base View: DELETE-REGION-CASCADE-BRANCH

View Text:

KEY REG ON-NUMBER = REG ON-| D
REG ON- NAME

ACCESS REGN
WHERE REG ON-1 D = REG ON- NUMBER
ALLOW DELETE

ACCESS BRAN
WHERE BRANCH- REG ON- I D == REG ON-| D
ALLOW DELETE

ACCESS CUST
WHERE CUSTOMER- BRANCH- | D = BRANCH- | D
ALLOW DELETE

MNOTE REGION-ID and BRANCH-REGION-ID are in different domains so that
BRANCH-REGION-ID can be NULL. Therefore, domain override is

required.

DELETE is allowed for all three relations. If you omit the ALLOW
DELETE (or ALLOW ALL) on any one relation, the delete will fail on all
relations, as it becomes a restricted delete.

120 P25-8220-45

Referential integrity with RDM

Referential integrity examples

NOTE

0 o—
—

o_

In the following examples, REGION-ID and BRANCH-REGION-ID are in
different domains so that BRANCH-REGION-ID can be NULL.
Therefore, domain override is required.

¢ This view does not add a branch unless the region already exists. It
does not allow REGION-NUMBER column to be updated unless the
new value points to an existing region.
KEY BRANCH NUMBER = BRANCH- I D
BRANCH- ADDRESS
BRANCH- CI TY
BRANCH- STATE
REQ REG ON- NUMBER = BRANCH- REG ON-I D = REG ON-I D
ACCESS BRAN USI NG BRANCH- NUMBER
ALLOW | NSERT UPDATE

ACCESS REGN
WHERE REG ON- 1 D == BRANCH- REG ON-1 D

Notice that the foreign key in the BRAN data set is the same as the
primary key in the REGN data set, and the REGN data set is
accessed by its primary key with the foreign key value.

¢ This view checks to see if the region exists. If not, it adds a new
region and then adds the branch. This difference between this view
and the previous view is the ALLOW INSERT clause on the
ACCESS statement for the data set REGN:

KEY BRANCH- NUMBER = BRANCH-I D
BRANCH- ADDRESS
BRANCH-CI TY
BRANCH- STATE
REQ REG ON- NUMBER = BRANCH REG ON-1D = REG ON-1D
ACCESS BRAN USI NG BRANCH- NUMBER
ALLOW | NSERT UPDATE
ACCESS REGN
WHERE REG ON-1 D == BRANCH REG ON-1D

ALLOW | NSERT

RDM Administration Guide

121

Chapter 3 View design considerations

¢ This view accesses customer, then branch, then region. It allows
updates and inserts into the CUST data set, and only updates to the
BRAN data set. However, it allows neither updates nor inserts to the
REGN data set, so the region must already exist.
KEY CUSTOMER- NUMBER = CUSTOVER- I D
CUSTOMER- NAMVE
REQ BRANCH NUMBER = CUSTOVER- BRANCH-| D = BRANCH- | D

BRANCH- NAVE

REQ REG ON- NUMBER == BRANCH- REG ON-I1D = REG ON-1D
REG ON- NAVE

ACCESS CUST

ALLOW UPDATE | NSERT
WHERE CUSTOMER-| D = CUSTOMER NUMBER
ACCESS BRAN
VWHERE BRANCH- | D = CUSTQVER- BRANCH- | D
ALLOW UPDATE
ACCESS REGN
VWHERE REG ON-1 D == BRANCH REG ON-1D

Thus, you can insert a new customer as long as the BRANCH-
NUMBER already exists. You can then perform an update on the
CUST and BRAN data set.

To update the column BRANCH-NUMBER, the new foreign key value
must already exist in branch. Also, the update will reposition the
BRAN data set to the new key value before updating
BRANCH-NAME.

122 P25-8220-45

Referential integrity with RDM

¢ This example shows how updating a foreign key can affect the
positioning of the subsequent target relations.

KEY

CUSTOVER- NUMBER = CUSTOMER- 1 D

CUSTQOVER- NAVE

REQ

BRANCH- NAVE

REQ

BRANCH REG ON ==

REG ON- NAVE

ACCESS CUST

CUSTQOVER- BRANCH = CUSTOMER- BRANCH- | D = BRANCH- | D

BRANCH REG ON-1D = REG ON-1D

WHERE CUSTOMER-| D = CUSTOMER- NUMBER
ALLOW UPDATE

ACCESS BRAN

VWHERE BRANCH- | D = CUSTQVER- BRANCH- | D

ACCESS REGN

VWHERE REG ON-1 D

ALLOW UPDATE

BRANCH REG ON-1 D

Let's say a GET on this example returns a row with the following

column values:

CUSTOVER- NUMBER
CUSTOVER- NAMVE
CUSTQOVER- BRANCH
BRANCH- NAME
BRANCH- REG ON
REG ON- NAME

15761

CARCL JONES
1000

BRANCH 1000
100

REG ON 100

Now, let's say the columns are updated by the application as follows:

CUSTOVER- NUMBER
CUSTOVER- NAMVE
CUSTOVER- BRANCH
BRANCH- NAME
BRANCH- REG ON
REG ON- NAME

RDM Administration Guide

15761

CARCL LUCAS
500

BRANCH 1000
100

WESTERN REG ON

123

Chapter 3 View design considerations

124

When the application issues an UPDATE telling RDM to change the
data in the database, updates to CUSTOMER-NAME and
CUSTOMER-BRANCH are applied as indicated. However, the
change to CUSTOMER-BRANCH repositions the BRAN data set to
the key value of 500. The ACCESS statement for the BRAN data set
does not allow changes. So BRANCH-NAME for Branch 500 is not
changed to 'BRANCH 1000." Because REGN is accessed through a
foreign key from BRAN, it is also repositioned (to Western Region,
key value 500). Update processing to BRANCH-NAME and
BRANCH-REGION is not performed due to the absence of ALLOW
UPDATE on BRAN. Region remains positioned on key value 500.
The update to REGION-NAME is now made to Region 500 (Western
Region).

Even though foreign keys are defined as redundancies in the view, it
is the ALLOW phrase on the source relation that controls whether
you can update a foreign key. In the example, you cannot update
BRANCH-REGION because there is no ALLOW UPDATE on the
BRAN data set. Even though there is an ALLOW UPDATE on REGN
and REGION-NUMBER is the same as in BRANCH-REGION, you
cannot update BRANCH-REGION.

This view allows for the region to be deleted if there are no
dependent branches:
KEY REG ON-NUMBER - REG ON-1D
REG ON- NAME
ACCESS REGN
WHERE REG ON-1 D = BRANCH REG ON-1 D
ALLOW DELETE
ACCESS BRAN
WHERE BRANCH REG ON-1D == REG ON-1D

Notice that the source relation BRAN is accessed through its foreign
key (BRANCH-REGION) using the primary key (REGION-ID). For
optimal performance, consider defining a secondary key for
BRANCH-REGION-ID.

P25-8220-45

RDM Administration Guide

Referential integrity with RDM

This view allows you to delete dependent branch rows, thereby
allowing deletion of the region row. If there are no columns in the
user view from the BRAN data set, deleting a region will also delete
all branches dependent on it. If there are columns from BRAN in the
user view, the program must delete each flat row by using a GET
DELETE loop or by using DELETE ALL.
KEY REG ON-NUMBER = REG ON-1D
REG ON- NAME
ACCESS REGN
WHERE REG ON-1'S = REG O\ NUMBER
ALLOW DELETE
ACCESS BRAN
WHERE BRANCH REG ON-1D == REG ON-1D
ALLOW DELETE

125

Chapter 3 View design considerations

Shared column values

126

You can share column values between views by specifying ALLOW
SHARED in the ACCESS statement in the base view. You cannot use
ALLOW SHARED in derived views. The advantages of allowing shared
column values are:

¢+ More efficient processing because automatic column value checking
is bypassed when not needed.

¢ Modification of the same column in multiple views by the same task
or other tasks. For example:
KEY BRANCH NUMBER = BRANCH- I D
KEY BRANCH REG ON = BRANCH REG ON- I D
REG ON- NAME
ACCESS BRAN
WHERE BRANCH- | D = BRANCH NUMBER
ACCESS REGN
WHERE REG ON-1 D == BRANCH REG ON-1D
ALLOW SHARED UPDATE

REGION-ID and BRANCH-REGION-ID are in different domains so that
BRANCH-REGION-ID can be NULL. Therefore, domain override is
required.

Using SHARED tells RDM that column values from a view can be shared
between tasks and may change between a GET and a later UPDATE or
DELETE. When the SHARED phrase is present, RDM does not check to
see whether column values changed. If SHARED is not on the ALLOW
phrase in an ACCESS statement, RDM performs a check on each
column in the view, ensuring that column values have not changed. RDM
does not check read-only columns that cannot be updated or deleted.

P25-8220-45

Shared column values

In the previous example, the only maintenance function that can be
performed is UPDATE, and the only column that can be altered is
REGION-NAME. Because SHARED is part of the ALLOW phrase,
REGION-NAME is automatically altered and the automatic record hold
and replace performed by RDM will not produce an error even if another
view changes the value of the column. If you change the ACCESS
statement to:

ACCESS REGN
WHERE REG ON-1 D = BRANCH REG ON-1 D

and any other task changes the column, UPDATE or DELETE will fail. In
the case of such a failure, RDM sets the FSI to D, the VSI and one or
more ASls to C and returns the following message:

COLUWN VALUE CHANGED BY ANOTHER VI EW
The changed columns are denoted by an ASI of "C." In this case, the "C"
will be in the ASI column for REGION-NAME. The "C" VSI takes higher

priority than other VSIs. (See “RDM status indicators” on page 223 for
details about status indicators.)

RDM Administration Guide 127

Chapter 3 View design considerations

View-to-user relationships

128

You control database security on a user-by-user basis by defining which
users can use which views. This information is then stored on the
SUPRA Server Directory database SUPRAD and optionally in the Global
View file. Initially, the only user who can access a view is the user who
creates it. Other users cannot access views that you have defined until
you identify them as authorized users. You control user-to-view access
through:

¢ Global views
¢ The DBAID commands PERMIT and DENY

¢ The DBA User authorization function from the Logical View Function
menu

Globalizing views is a method of storing pre-opened views in a shared
global section. You can control user-to-view access through the Global
View file. Depending upon how you create your global views
(interactively or in batch), you can relate users to a global version of a
view even if those users have no access to the non-global version of the
view. Furthermore, you can deny users access to the global version of a
view even if those users are related to the non-global version of the view.
See “Optimizing view performance using bound and global views” on
page 231 for details of global view creation.

The DBAID PERMIT command relates a view to one or more users. The
DBAID DENY command removes the relationship between a view and its
users. With both commands, you can specify more than one user by
separating consecutive user names with a space. See “Defining and
testing views using DBAID” on page 135 for information on the syntax of
both the PERMIT and DENY commands.

In the DBA utility, the User authorization option from the Logical View
Function menu first prompts you for the name of the view to which you
want to specify access. After you enter a valid view name, DBA displays
a numbered list of existing authorized users. The last number in the list
is blank to allow you to specify additional users. If you press RETURN
without specifying a new user name, DBA prompts you to:

Specify function (Al low, Disallow), <PF4> to |list or <PFl> to
exit :

P25-8220-45

View-to-user relationships

You can then remove user-to-view relationships (Disallow) or continue
adding new user-to-view relationships (Allow). The DBA User
authorization function is described in detail in the SUPRA Server PDM
Database Administration Guide (UNIX & VMS), P25-2260.

Because the user-to-view relationship is stored in the SUPRA Server
Directory database, SUPRAD, any user-to-view relationship defined
through the DBA User authorization function can be removed using the
DBAID DENY command. Likewise, any user-to-view relationship defined
through the DBAID PERMIT command can be removed through the DBA
User authorization function.

You can relate both base and derived views to users. However, you
should not relate users to derived views without authorizing them to use
the base views accessed by the derived views. While the derived view
accesses the base view, it can impose additional security on the user.

RDM Administration Guide 129

Chapter 3 View design considerations

The following table shows BASE-VIEW-A and DERIVED-VIEW-B.
BASE-VIEW-A allows all maintenance functions to its users, ALICE,
MARY and JIM. User JIM is also related to DERIVED-VIEW-B, which
accesses BASE-VIEW-A allowing read and update. Provided JIM
accesses BASE-VIEW-A from DERIVED-VIEW-B, he is restricted to read
and update access only. Thus, DERIVED-VIEW-B provides additional
security by restricting its user (JIM) to read-only access to

BASE-VIEW-A.

BASE-VIEW-A

| DERIVED-VIEW-B

KEY CUSTOMER-NUMBER
CUSTOMER-NAME
CUSTOMER-ADDRESS
CUSTOMER-CITY
CUSTOMER-STATE
CUSTOMER-ZIP-CODE
CUSTOMER-CLASS
CUSTOMER-CREDIT-LIMIT
CUSTOMER-BRANCH

ACCESS CUST

USING
CUSTOMER-NUMBER

ALLOW ALL

Authorized Users:
ALICE
MARY
JIM

KEY CUSTOMER = CUSTOMER-NUMBER
NAME = CUSTOMER-NAME
STREET = CUSTOMER-ADDRESS
CITY = CUSTOMER-CITY
STATE = CUSTOMER-STATE
ZIPCODE = CUSTOMER-ZIP-CODE

ACCESS BASE-VIEW-A
USING CUSTOMER-NUMBER

ALLOW UPDATE

Authorized Users:
JIM

130

P25-8220-45

A

Physical and logical database changes

Overview

RDM insulates application programs from most changes to the physical
database. However, certain changes require modifications, either to the
application programs or to the views, to maintain the integrity of the
database.

Physical and logical database actions

The following table lists physical and logical changes together with any
necessary actions.

Action
Modify Validate /

Change Recompile |view Reglobalize / |compile

program program definition rebind view DB
Data set
changes
Add a new data O O a
set
RMS data set into 0 O a
PDM data set
PDM data set into 0 O a
RMS data set
Combine two data 0 O a
sets into one
Delete a data set if O O O O a

it contains a
column for a view

RDM Administration Guide

131

Chapter 4 Physical and logical database changes

Action

Change
program

Recompile
program

Modify
view
definition

Reglobalize /
rebind view

Validate /
compile
DB

Rename a data set

Split one data set
into several

Change a PDM
data set type

Change a record
length

Change a
linkpath location

Change the
physical key
length

Change the
length of the base
portion of a
coded record

Change the
position of the
key in a primary
record

Add or remove an
index

Physical
changes

Add new data
items to a record

Change data item
length

Change data item
type

D*

D*

g
g

ad

D**

D**

g
g

ad

* Does not apply to MANTIS programs
** Modify only if a constant column maps to the data item

132

P25-8220-45

Physical and logical database actions

Action

Modify Validate /
Change Recompile |view Reglobalize / |compile
program program definition rebind view DB

No. of Decimal O* 0 O** a
places

Physical data 0 0 0
item's location

Delete data item O O O g g
from physical

record if used by

view and

program

Change null 0
value, or nulls
allowed

Change default 0
value

Change O
validation type

Change 0
validation data

(range, table

name, exit)

Logical
changes

Add columns to 0 0
a view

Change unique O O O O
key to non-
unique

Change 0 0 0 O
relationship and

program

depends upon

relationship

RDM Administration Guide 133

Chapter 4 Physical and logical database changes

Action

Modify Validate /
Change Recompile |view Reglobalize / |compile
program program definition rebind view DB

Define a new No change required

view

Delete data item 0 0 O 0 O
or column and

program uses

field or column

Rename a 0 0 0 0
column and

program uses

column on

include

Reorder 0 0
columns

134 P25-8220-45

5

Defining and testing views using DBAID

Through the DBAID Test Facility, you can define and test views before
actually using them in production. You can also use the DBAID Test
Facility to learn how the Relational Data Manager (RDM) works. A good
way to implement new views is to check them out with DBAID prior to
use.

Using DBAID, you can define a new view, open it, issue Relational Data
Manipulation Language (RDML) commands, and examine the results.
You can then change the view if necessary, reorder it for efficiency, or
experiment with various navigation methods.

DBAID enables you to store the new view on the Directory. You can also
load existing views from the Directory, change them to meet
requirements, and then test them.

DBAID has commands that programmers can use to try out views
defined for them. These commands are the programmers' subset of
DBAID commands. With them, the programmer can learn the command
functions. However, the programmer cannot update the Directory or
define new views.

To edit a view, make sure you list the view text before you open the view.
This makes the text of the view known to DBAID. Such a view is called a
virtual view, and you can list any view in this way. However, if you open a
view first, you must be authorized to use that view. See “View-to-user

relationships” on page 128 for more information on user access authority.

When you define a base view using DBAID (see “Defining and testing
views using DBAID” on page 135), specify the column definition as lines
of text, each preceded by a line number. When you define a view using
DBA Functions (refer to the SUPRA Server PDM Database
Administration Guide (UNIX & VMS), P25-2260), specify the column
definition through the screen-based EDT editor interface. When defining
a view through DBA, you do not need to specify each line number as you
do through DBAID. However, although you can open and save views
through DBA as you can through DBAID, you cannot test them online.

DBAID can use any view defined on the Directory. However, views
defined within DBAID that refer to physical data items in the column
definition, rather than logical data items, cannot be saved on the
Directory.

RDM Administration Guide 135

Description

Chapter 5 Defining and testing views using DBAID

Invoking DBAID

136

If you use the procedure SUPRA_COMS:SUPRA_SYMBOL.COM, you
will have a symbol DBAID that executes SUPRA_EXE:RUNDBAID.COM.
This procedure checks for the existence of the logical CSI_SCHEMA.
This logical is required to use RDM. If the logical is defined, it will be
used. Otherwise, the procedure prompts you for your database name
and uses it to define CSI_SCHEMA. Alternatively, you can select the
DBAID Test Facility from the SUPRA Facilities screen, or set up your own
symbol or command file. During any DBAID session, you can use views
only if they are associated with one database description. This database
description is defined using the logical name CSI_SCHEMA. For
example, the following commands could be used to invoke DBAID:

$DEFI NE CSI _SCHEMA TESTDB
$RUN CSVDBAI D

If you do not define CSI_SCHEMA, you receive the following message:
"ERROR NO LOG CAL NAME FOR USER DBMOD. "

A command file, RUNDBAID, is supplied to invoke DBAID. For example,
to invoke DBAID with database TESTDB, you could enter @RUNDBAID
TESTDB or just @RUNDBAID with no parameters.

P25-8220-45

Invoking DBAID

If the database contains RMS files, you can enable VMS RMS Recovery
Unit Journaling. Refer to the SUPRA Server PDM Database
Administration Guide (UNIX & VMS), P25-2260, for a description of how
to enable Recovery Unit Journaling for physical files. Define the logical
name CSI_RMS_RU_ON to be TRUE before invoking DBAID. This
allows the transactions to the RMS files to be logged in a journal file that
can be used to update or reset the RMS files if required.

You can define the logical CSI_RMS_RU_ON TRUE at the level of your
database so it will be available to all users of that database. This will be
in the group logical name table for a group-wide database, or in the
system logical name table for a system-wide database. If you are using a
multiple system-wide PDM, you can choose to define the logical in the
CSI_PDM_pdmname table. If you choose to define the logical in one of
these shared logical name tables, you do not need to repeat the definition
unless the machine on which you are working goes down. Alternatively,
define CSI_RMS_RU_ON TRUE before invoking DBAID as follows:

$DEFI NE CSI _RM5_RU ON TRUE
$RUN CSVDBAI D

This ensures that records in RMS data sets are rolled back to the last
successful COMMIT point in the event of a system or application failure.
This matches Task Level Recovery for PDM data sets.

NOTE RMS Recovery Unit Journaling will not work across a network. RMS files
5 m— marked for Recovery Unit Journaling are inaccessible from a remote
= node running RDM applications.

RDM Administration Guide 137

Chapter 5 Defining and testing views using DBAID

Signing on to DBAID

You sign on to DBAID by responding to the prompt "PLEASE SIGN ON"
with your 1-30 character user name. You must also supply a password if
one was defined for you on the Directory. The password can be 1-8
alphanumeric or printable characters. You can enter the password on
the same line as your user name, provided you precede the password
with a space. If you enter your password on the same line as your user
name, the password is displayed on the screen as you enter it. If you do
not enter a password after your user name, DBAID displays a password
prompt even if you do not have a password. Press RETURN in response
to this prompt if you have no password; enter the password and press
RETURN if you have a password. The password is not echoed when
entered in response to the "Password:" prompt.

In the following example, INVENTORY-SYSTEM is the user name and
SCALES is the password. When you successfully sign on, you receive
the message "SUCCESSFUL COMPLETION - LEVEL 05." You can then
begin entering commands.

SUPRA RELEASE 2.4

WELCOME TO DBAID - LEVEL -05

PLEASE SI GN ON.

>| NVENTORY- SYSTEM SCALES
FSI: * VSI: = MSG SUCCESSFUL COWPLETION - LEVEL 05

>

138

P25-8220-45

Using DBAID commands

Using DBAID commands

Defining a view using DBAID involves the same syntax and
considerations as when you define a view using the DBA functions
explained in the SUPRA Server PDM Database Administration Guide
(UNIX & VMS), P25-2260. DBAID has four types of commands:

¢ Relational Data Manipulation Language (RDML) commands enable
you to use test data with a defined view to make sure the view is
properly defined.

¢+ Editing commands enable you to change stored view definitions and
to create new views to be tested before storing them on the
Directory. After you have tested a new view with DBAID, you can
store it on the Directory.

¢ System commands enable you to display information about the
currently running DBAID Test Facility. Use these commands to
display current DBAID users and active views.

¢ Built-in view commands enable you to inspect the view after it is
opened.

The following table alphabetically lists all the DBAID commands within
each category and provides a brief description and a section reference
for detailed information. Commands available in the programmer's
subset are indicated by a check mark (v).

DBAID also provides a HELP facility. If you enter HELP in reply to a
DBAID prompt, a list of topics available within the HELP facility displays.
You can then select the topic by entering enough of the topic name for
the selection to be unique. Some topics also have a list of subtopics.

Alternatively, you can directly access a topic by entering the topic name
with the command HELP. For example:

>HELP DELETE

This entry gives information specific to DELETE. Note that to display
information for the * command, you must use HELP ASTERISK. If you
enter HELP *, the * acts as a "wildcard." Wildcard means that all topics
are included in the help description.

RDM Administration Guide 139

Chapter 5 Defining and testing views using DBAID

RDML commands

Programmer's

Command subset Description Section reference

= v Reissues the previous “= command” on
RDML command. page 148

BYE v Exits DBAID. “BYE command” on

page 152

CAUTIOUS v Prohibits an automatic “CAUTIOUS

COMMIT. command” on
page 153

COMMIT v Issues an RDM COMMIT “COMMIT command”
command. on page 159

DELETE v Issues an RDM DELETE “DELETE command”
command. on page 162

ERASE v Causes an RDM RESET “ERASE command” on
to be issued when an "X" page 166
FSl is returned.

FORGET v Removes the specific “FORGET command”
mark from the list of on page 172
marks in use.

GET v Issues an RDM GET “GET command” on
command which retrieves page 173
and displays the
requested row.

GO v Issues multiple RDM “GO command” on
GET commands and page 179
displays the rows in
tabular format.

INSERT v Issues an RDM INSERT “INSERT command”
command. on page 183

KEEP v Prohibits an automatic “KEEP command” on

140

RESET.

page 188

P25-8220-45

Using DBAID commands

Programmer's

Command subset Description Section reference
MARK v Issues an RDM MARK “MARK command” on
command. Marks the page 193
current position of the row
established by the
previous GET.
OPEN v Readies for use either a “OPEN command” on
virtual or stored view. page 195
RELEASE v Issues an RDM RELEASE “RELEASE command”
command. Closes all on page 201
opened views and
releases the occupied
storage.
RESET v Issues an RDM RESET “RESET command” on
command. page 204
SIGN-OFF v Signs off the user from “SIGN-OFF command”
DBAID. on page 208
SIGN-ON v Identifies the user to “SIGN-ON command”
DBAID. on page 209
SURE v Causes a COMMIT after “SURE command” on
each successful insert, page 213
update, or delete.
UPDATE v Issues an RDM UPDATE “UPDATE command”

command.

on page 215

RDM Administration Guide

141

Chapter 5 Defining and testing views using DBAID

Editing commands

Programmer's

Command subset Description Section reference
DEFINE Defines a name for a “DEFINE command” on
virtual view. page 161
EDIT Readies a stored or virtual “EDIT command” on
view for modification. page 165
line-number Deletes, adds, or replaces “line-number
a line in the currently command” on
editable view. page 189
LIST Lists a stored or virtual “LIST command” on
view and readies it for page 191
modification.
RENUMBER Renumbers a virtual view “RENUMBER
so that line numbering command” on
starts at 10 with each line page 203
incremented by 10.
UNDEFINE v Removes a defined virtual “UNDEFINE command”

view.

on page 214

142

P25-8220-45

System commands

Using DBAID commands

Programmer's

Command subset Description Section reference
* v Used with other commands “* command” on
to indicate the last view page 146
name used.
BIND Binds the view. “BIND command” on
page 149
COPY Copies the definition of one “COPY command” on
view to another view. page 160
DENY Removes the relationship “DENY command” on
between a user and a view page 164
on the Directory.
LINESIZE v Specifies the width of lines “LINESIZE command”
for DBAID output. on page 190
MARKS v Lists all open MARKs and “MARKS command”
the views they are marking. on page 194
PAGESIZE v Specifies the number of lines “PAGESIZE
on the page/screen for command” on
DBAID output. page 198
PERMIT Relates a view to a user on “PERMIT command”
the Directory. on page 199
REMOVE Removes the view access “REMOVE command”
definition, its binding, and the on page 202
relationship between it and
the database. This
command is for use only by
the DBA.
SAVE Saves a virtual view “SAVE command” on
definition that has been page 205
opened with the OPEN
command.
USER-LIST v Displays the column “USER-LIST
definition for the view named. command” on
page 218
VIEWS v Displays all views active in “VIEWS command” on

DBAID.

page 221

RDM Administration Guide

143

Chapter 5 Defining and testing views using DBAID

Built-in logical view commands

Programmer's

Command subset Description Section reference

BY-LEVEL v Displays the column “BY-LEVEL command”
names in the view by on page 150
level of occurrence.

COLUMN- v Displays the full “COLUMN-DEFN

DEFN description of a columnin command” on page 154
a view.

COLUMN- v Displays the short and “COLUMN-TEXT

TEXT long text for a column in command” on page 158
a view.

FIELD- DEFN v Displays the full “FIELD-DEFN command”
description of a columnin on page 167
a view.

FIELD- TEXT v Displays the short and “FIELD-TEXT command”
long text for a column in on page 170
a view.

SHOW- v Displays the access “SHOW-NAVIGATION

NAVIGATION strategy used by the command” on page 207
view.

VIEW- DEFN v Displays a condensed “VIEW-DEFN command”
description of the view. on page 219

VIEWS- v Lists the views related to ~ “VIEWS-FOR-USER

FOR-USER the signed-on user, along command” on page 222

with the short text for the
view.

144

P25-8220-45

Statistics commands

Using DBAID commands

Programmer's

Command subset Description Section reference
PRINT- v Displays current statistics ~ “PRINT-STATS
STATS for all views. command” on
page 200
STATS v Displays current statistics “STATS command” on
for all open views or a page 210
particular open view.
STATS-OFF v Displays the current “STATS-OFF
statistics for all views and command” on
then disables the page 211
statistics gathering.
STATS-ON v Initializes statistics to “STATS-ON command”

zero then enables the
gathering of statistics on
user views on both the
logical and physical level.

on page 212

RDM Administration Guide

145

Chapter 5 Defining and testing views using DBAID

* command

You can use the asterisk (*) in DBAID for two functions: as a substitute
for the last view name used or to denote a comment when editing a view.

General consideration

Using * as a substitute for the last view name used is described in the
explanation of each supported command.

Examples

¢ Using * as a substitute for the last view name used:

OPEN VI EW

GET * (Performs GET on VIEW
OPEN VI EM2 = * col uml, col utm5
GET * (Performs GET on VI EW)

146 P25-8220-45

Using DBAID commands

¢ Using * to denote a comment:

* Comment line for colum 1

COLUMN- 1

* Comment line for columm 2

COLUMN- 2

* Comment |ine for ACCESS statenment 1
ACCESS

* Comment |ine denoting end of access definition

Comment lines entered in the access definition of a view are saved
as entered. However, comments entered before the first ACCESS
statement in a view are saved at the top of the view, regardless of
where you originally define them. For example, if you save the
preceding view through DBA or DBAID, comment lines are reordered
so that the next time you list the view, comment lines are reorganized
as follows:

* Comment line for colum 1

* Comment line for colum 2

* Comment |ine for ACCESS statenment 1

COLUWN- 1

COLUMN- 2

ACCESS

* Comment |ine denoting end of access definition

As you can see, comments before the first ACCESS statement in the
view are all saved at the top of the view, whereas comments in the
access definition remain as originally defined.

RDM Administration Guide 147

Chapter 5 Defining and testing views using DBAID

= command

The = command reissues the previous RDML command.

General consideration

The = command repeats the previous command exactly, even if the
command was invalid.

Example

In this example, the = command reissues the GET NEXT command
preceding it.
GET NEXT CUSTOMER- PRODUCT- VI EW

148 P25-8220-45

Using DBAID commands

BIND command
The BIND command saves and binds the specified view.

BIND view-name

view-name
Description Required. Specifies the view to be saved and bound.
Format A valid view name.

Consideration You can enter * instead of a view name, causing DBAID to substitute the
last view name used.

RDM Administration Guide 149

Chapter 5 Defining and testing views using DBAID

BY-LEVEL command

The BY-LEVEL command displays the column names in a view by level
of occurrence, starting with level 0, followed by level 1, and so on. RDM
generates the column number when displaying this data.

BY-LEVEL [view-name [column-number]]

view-name

Description Optional. Specifies the name of the view whose column names are to be
displayed.

Format A valid and opened view hame.
Considerations

¢ If you omit the view name, RDM displays all column names for all
your opened views, including columns from base views opened by
derived views.

¢ You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

column-number

Description Optional. Specifies the number of the column whose name is to be
displayed.

Format An integer value.
Considerations
¢ If you use this parameter, you must specify a view name.

¢ If you omit this parameter, all column names of the specified view
display.

150 P25-8220-45

Example

Using DBAID commands

This example displays the column names in all opened views; in this
case, the base view STOCK and the derived view
PRODUCTS-IN-REGION. Columns are listed by level of occurrence.

>BY- LEVEL PRODUCTS- | N- REG ON

NUMBER ! VI EW NAMVE ! FI ELD NAME LEVEL!
1 I STOCK I STOCK- NO 0!
2 I STOCK I STOCK- PRODUCT 0!
1 ! PRODUCTS- | N- REG ON I REG ON- NO 0!
2 I PRODUCTS- | N- REG ON I REG ON- NAME 0!
3 ! PRODUCTS- | N- REG ON ! BRANCH- NO 1!
4 I PRODUCTS- | N- REG ON I REG ON- NAME 1!
5 ! PRODUCTS- | N- REG ON I STOCK- PRODUCT 2!
6 I PRODUCTS- | N- REG ON ! PRODUCT- DESC 2!
1 ! *]1 NTO0003- PRODUCT ! PRODUCT- CCDE 0!
2 1 *]1 NTO0003- PRODUCT ! PRODUCT- DESC 0!
1 1 *]1 NTO0002- STOCK I STOCK- BRANCH 0!
2 I *] NTO0002- STOCK I STOCK- PRODUCT 0!
1 1 *]1 NTOO001- BRANCH ! BRANCH- NO 0!
2 1 *] NTO0001- BRANCH ! BRANCH- NAME 0!
3 1 *]1 NTOO001- BRANCH ! BRANCH REG ON 0!
1 1 *] NTO0O000- REG ON I REG ON- NO 0!
2 1 *]1 NTOO000- REG ON I REG ON- NAME 0!

View names in the format *INTnnnnn-viewname are base views opened
by the derived view immediately preceding them in the VIEW NAME
column.

*INT Indicates that this is a base view opened by a derived
view.
nnnnn Indicates the order in which the base view was opened

(00000 is the first view opened by the derived view,
00001 the second, 00002 the third, and so on).

-viewname Identifies the name of the base view.

It is important to identify how a base view was opened because each
base view can be opened by more than one derived view, as well as
independently. This is illustrated in the above example by the base view
STOCK. STOCK is opened independently as the base view STOCK; at
the same time, it is opened by the derived view PRODUCTS-IN-REGION.
When STOCK is opened by PRODUCTS-IN-REGION, it is assigned the
internal name *INT00002-STOCK to distinguish it from the base view
STOCK, opened independently, and to indicate that it is the third base
view opened by PRODUCTS-IN-REGION.

RDM Administration Guide 151

Chapter 5 Defining and testing views using DBAID

BYE command
The BYE command exits the DBAID Test Facility.

BYE

General considerations
¢ The BYE command exits the CSVDBAID image.

¢ Anyunsaved virtual views are erased.

152 P25-8220-45

Using DBAID commands

CAUTIOUS command

The CAUTIOUS command disables the DBAID automatic COMMIT
processing. This command is the opposite of the SURE command.
When you use CAUTIOUS, DBAID does not automatically issue a
COMMIT when an RDML INSERT, UPDATE, or DELETE command
returns an "*" FSI. Instead, you must issue the COMMIT explicitly.

CAUTIOUS

General considerations

¢ DBAID normally issues a COMMIT after every successful RDML
modification. The CAUTIOUS command is not required; however, it
gives you more control over COMMIT commands when updating the
database.

¢ CAUTIOUS only affects your database, not the SUPRA Server
Directory (SUPRAD). An implicit COMMIT is issued to the SUPRA
Server Directory by the DBAID system commands BIND, DENY,
PERMIT, REMOVE, and SAVE. These COMMITs must be issued
after the Directory is modified for them to take effect.

RDM Administration Guide 153

Chapter 5 Defining and testing views using DBAID

COLUMN-DEFN command

The COLUMN-DEFN command displays the full description of columns in
a view.

For compatibility purposes, you can use the FIELD-DEFN command in
the same manner as the COLUMN-DEFN command.

COLUMN-DEFN [view-name [column-name]]

view-name
Description Optional. Specifies the view to be used.
Format Must be a valid and opened view.
Considerations

¢ If you omit this parameter, the COLUMN-DEFN command displays
all column descriptions for all your opened views.

¢ You can enter * instead of a view name. This causes DBAID to
substitute the last view name used.

column-name
Description Optional. Identifies the column whose text is to be displayed.
Considerations
¢ The column must already be part of the view.
¢ If you use this parameter, you must have specified a view name.
¢ If you omit this parameter, the COLUMN-DEFN command displays

all column descriptors for each column of the specified view, one at a
time.

154 P25-8220-45

Example

Using DBAID commands

This example displays a description of one of the columns in the STOCK

view. See the following table for an explanation of each column
descriptor.

RDM Administration Guide

VI EW NAMVE
COL- NAVE

oOoL- POS

COL- LEN

COL- ASI - POS
COL- DEC

COL- OUTP- LEN
COL- MASK- LEN
COL- FORMAT
COL- MASK
COL- HEADI NG
COL- DEL- OPT
COL- | NS- OPT
COL- UPD- OPT
COL- REDUND
COL- CONSTANT
OOL- LEVEL
OOL- KEY- NUM
COL- REQUI RED
COL- UNI QUE

COL- EDI T- TRANS

COL- ORDERI NG
COL- SI GNED
COL- NULLS- &K
COL- NULL- LEN
COL- NULL- VAL
COL- DOVAI N
CCOL- VAL- TYP
COL- GET- VAL
COL-M N- LEN
COL- M N- VAL
CCOL- MAX- LEN
COL- MAX- VAL
COL- VAL- TABLE
COL-EXIT

COL- SRC- TYP
COL- SRC- COL
COL- SRC- REL
COL- | NT- REL
COL- RC

(+)
(+)
(+)
(+)
(+)
(+)
(+)
()
(+)
()
()
(+)
(+)
(+)
(+)
(+)
(+)
(+)
(+)
(+)
(+)
()
(+)
(+)
()

+

()
()
()
(+)
()
()
()
()
()
()
(

+)
(+
(+)
(+
(+

STOCK
STOCK- BRANCH

<<PrOoOzZzzz<<

zZz <

F

STOCK- BRANCH- | D

STCKBRAN
STCK

155

Chapter 5 Defining and testing views using DBAID

156

|Keys for the view

VIEW-NAME
COL-NAME

Name of the view
Name of the column

|Data needed to read the column from the row

COL-POS
COL-LEN
COL-ASI-POS

Offset of column value from (0) start of row
Length of column value in bytes

Distance ASI for column is offset from start of
user buffer

Data needed to display the column

COL-DEC
COL-OUTP-LEN
COL-MASK-LEN
COL-FORMAT
COL-MASK
COL-HEADING

Number of decimal places
Edited output length
Length of output mask
Column format

Column mask

Column heading

Logical data about the column

COL-DEL-OPT
COL-INS-OPT
COL-UPD-OPT
COL-REDUND
COL-CONSTANT
COL-LEVEL
COL-KEY-NUM
COL-REQUIRED
COL-UNIQUE
COL-EDIT-TRANS
COL-ORDERING
COL-SIGNED

Y = Column may be deleted
Y = Column may be inserted
Y = Column may be updated
Y = Column is redundant

Y = Column is a constant
Level of occurrence

0 - 9 = Column key number
Y = Column is required

Y = Column is unique
Reserved for future use

A = Ascending order, D = Descending order
Y = Column is signed

P25-8220-45

Using DBAID commands

Data about null value for the column

COL-NULLS-OK Y = Nulls are allowed

COL-NULL-LEN Length of the null value

COL-NULL-VAL Null value in external format

Validation criteria for the column

COL-DOMAIN Domain name, if any

COL-VAL-TYP Validation type, R = Range, T = Table, E = Exit

COL-GET-VAL Y = Validation done after GET

COL-MIN-LEN Length of minimum value

COL-MIN-VAL Minimum value in external format

COL-MAX-LEN Length of maximum value

COL-MAX-VAL Maximum value in external format

COL-VAL-TABLE Validation table name

COL-EXIT Validation exit name

Source column data

COL-SRC-TYP Source type for the column: F = Data set, V =
View.

COL-SRC-COL If COL-SRC-TYP is "F," this field contains the

logical data item name; if COL-SRC-TYP is
"V," this field contains the source column
name.

COL-SRC-REL If COL-SRC-TYP is "F," this field contains the
physical data item name; if COL-SRC-TYP is
"V," this field contains the source view name.

COL-INT-REL If COL-SRC-TYP is "F," this field contains the
data set name; if COL-SRC-TYP is "V," this
field contains the user view name.

COL-RC If COL-SRC-TYP is "F," this field contains the
record code, if any.

RDM Administration Guide 157

Chapter 5 Defining and testing views using DBAID

COLUMN-TEXT command

The COLUMN-TEXT command displays the comments for a column in a
view. For compatibility purposes, you can use the FIELD-TEXT
command in the same manner as the COLUMN-TEXT command.

COLUMN-TEXT [view-name [column-name]]

view-name
Description Optional. Specifies the view to be used.
Format Must be a valid and opened view.
Considerations

¢ If you omit this parameter, the COLUMN-TEXT command displays
the short and long text for all your opened views.

¢ You can enter * instead of a view name. This causes DBAID to
substitute the last view name used.

column-name
Description Optional. Identifies the column whose text is to be displayed.
Considerations
¢ The column must already be part of the view.
¢ If you use this parameter, you must specify a view name.

¢ If you omit this parameter, the COLUMN-TEXT command displays
the comments for all columns.

158 P25-8220-45

Using DBAID commands

COMMIT command

The COMMIT command issues an RDM COMMIT request. All updates
since the last COMMIT are made permanent in the database.

COMMIT

General considerations

¢ DBAID automatically issues a COMMIT after every successful
modification (INSERT, UPDATE, and DELETE). The COMMIT
command is not required in DBAID.

¢ Automatic commit processing is turned off with the CAUTIOUS
command and turned on with the SURE command.

RDM Administration Guide 159

Chapter 5 Defining and testing views using DBAID

COPY command

The COPY command copies the view definition of one view to another
view.,

COPY view-nameq view-nameo

view-nameq

Description

Format

Required. Identifies the name of the view to be copied.

Must be a valid view on the Directory for the database specified or a
virtual view.

view-names

Description

Format

Required. Identifies the new name for the view being copied.

1-30 alphanumeric characters and hyphens. The first character must be
alphabetic.

Considerations

¢ After being copied, the new view is listed (see “LIST command” on
page 191) and is available for editing.

¢ The copied view is virtual; it is not copied onto the Directory.

General consideration

Example

160

DBAID first looks for a virtual view with the name view-name;. If the view
is not found, DBAID searches the Directory for the view. Once DBAID
finds the view text on the Directory, it creates a virtual view view-name;.
DBAID then copies the contents of view-name; to view-name,, and lists
view-name,. In DBAID, both copies result as virtual views.

This example copies CUSTOMER from the Directory and names it
NEW-CUSTOMER. NEW-CUSTOMER is listed and is available for
editing.

COPY CUSTOMER NEW CUSTOMER

P25-8220-45

Using DBAID commands

DEFINE command
The DEFINE command defines a new view to DBAID.

DEFINE view-name

view-name
Description Required. Specifies the name of a new view.

Format 1-30 alphanumeric characters and hyphens. The first character must be
alphabetic.

General considerations

¢ The DEFINE command does not go to the Directory to retrieve a
view. It creates a virtual view that exists only within the DBAID
execution. You can eventually save this view on the Directory (see
“SAVE command” on page 205).

¢ Once you issue the DEFINE command, you can use the line-number
command (see “line-number command” on page 189) to define the
columns in your view.

Example This example defines the view CUSTOMER to DBAID.
DEFI NE CUSTOMVER

RDM Administration Guide 161

Chapter 5 Defining and testing views using DBAID

DELETE command

The DELETE command issues an RDM DELETE request, which
removes one or more row occurrences from the database.

DELETE [ALL] view-name

ALL

Description Optional. Deletes all rows that satisfy the logical key qualification of the
GET command issued before the DELETE.

Consideration If a program specifies a GET without a USING phrase, DELETE ALL
deletes all rows in a view.

view-name

Description Required. Identifies the name of the view that contains the row(s) to be
deleted.

Format Must be a valid and opened view.

Considerations

We recommend that before performing the DELETE, you perform a
successful GET command that contains a FOR UPDATE clause, in
case another task changes the row between the GET and the
DELETE.

You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

General considerations

¢

162

RDM deletes rows only if the ALLOW clause specifies DEL or ALL.
See Example 4.

RMS interfile integrity is maintained only for those RMS data sets

within the view. RDM does not check indexes to other RMS data
sets not included in the access definition.

P25-8220-45

Using DBAID commands

Examples

¢ This example deletes one occurrence of SAMPLE-VIEW obtained by
using the value in KEY1:
GET SAMPLE- VI EW FOR UPDATE USI NG KEY1
DELETE SAMPLE- VI EW

¢ This example deletes all occurrences of rows containing KEY1:

GET SAMPLE- VI EW FOR UPDATE USI NG KEY1
DELETE ALL SAMPLE-VI EW

The above example works as if the following loop were performed:

GET FI RST SAMPLE- VI EW FOR UPDATE USI NG KEY1
NOT FOUND GO TO CONTI NUE.
LOCP.
GET NEXT SAMPLE-VI EW FOR UPDATE USI NG KEY1
NOT FOUND GO TO CONTI NUE.
DELETE SAMPLE- VI EW
GO TO LOCP.
CONTI NUE.

¢ This example deletes all rows in SAMPLE-VIEW:

GET SAMPLE- VI EW
DELETE ALL SAMPLE-VI EW

¢ This RMS example shows the statements used by the GET and
DELETE commands to delete all rows from the CUST and ORDR
data sets:
Name: CUSTOVER- ORDER- VI EW
KEY CUSTOMER- NUMBER = CUSTOMER-| D = ORDER- CUST- 1D
KEY ORDER- NUMBER = ORDER- | D
ACCESS CUST
USI NG CUSTOVER- NUMBER
ALLOW DELETE | NSERT
ACCESS ORDR
USI NG CUSTOVER- NUMBER
ALLOW ALL
GET CUSTOMER- ORDER- VI EW
DELETE ALL CUSTOVER- ORDER- VI EW

RDM Administration Guide 163

Chapter 5 Defining and testing views using DBAID

DENY command

The DENY command revokes a user's privilege to use a view in the
SUPRA Server Directory. The command removes the relationship
between the user and the view entities on the Directory. This command
can provide security because it allows the DBA to define in the Directory
who can use a view. Note that use of global views can be used to
override this security.

DENY view-name user-name [...user-namep, |

view-name

Description

Format

Consideration

Required. Specifies the name of the view to which the user is denied
access.

Must be a valid view.

You can enter an * instead of a view name. DBAID then substitutes the
last view name used.

user-nameq [...user-namep, |

Description

Format

Consideration

Required. Specifies the name of the user who is to be denied access to
a view.

Must be a valid user ID, defined on the Directory.

You can specify more than one user in a single DENY command by
separating each user name with a single space.

General considerations

164

¢ Use of global views may override the user-to-view relationship in the
SUPRA Server Directory.

¢ You can use the DENY command to remove the relationship
between a user and a view, regardless of whether the relationship
was created with Directory maintenance or the PERMIT command.

¢ After successfully removing the relationship for each user, DBAID
issues a COMMIT to the SUPRA Server Directory database
SUPRAD.

¢ If an error occurs while removing the relationship, DBAID issues a

RESET and terminates processing of the command.

P25-8220-45

Using DBAID commands

EDIT command

The EDIT command prepares a view for modification.

EDIT view-name

view-name
Description Required. Identifies the name of the view to be edited.
Format Must be a valid view name.

Consideration You can enter * instead of a view name, causing DBAID to substitute the
last view name used.

General considerations

¢ When you issue the EDIT command, the system first searches for a
virtual view. If it is not found, the system then searches the Directory.

¢ Once you issue the EDIT command, you can use the line-number
command (see “line-number command” on page 189) to modify your
view.

¢ The EDIT mode is automatically entered after a COPY, DEFINE, or
LIST command.

Example This example prepares the view CUSTOMER for modification.
EDI T CUSTOMVER

RDM Administration Guide 165

Chapter 5 Defining and testing views using DBAID

ERASE command

The ERASE command causes DBAID to issue an automatic RDM
RESET whenever an "X" FSl is returned from an RDML command. This
command is the opposite of the KEEP command.

ERASE

166 P25-8220-45

Using DBAID commands

FIELD-DEFN command

The FIELD-DEFN command displays the full description of columns in a
view.,

FIELD-DEFN [view-name [column-name]]

view-name

Description Optional. Specifies the view to be used.
Format Must be a valid and opened view.

Considerations

¢ If you omit this parameter, the FIELD-DEFN command displays all
column descriptions for all your opened views.

¢ You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

column-name
Description Optional. ldentifies the column whose description is to be displayed.
Considerations
¢ The column must already be part of the view.
¢ If you use this parameter, you must have specified a view name.

¢ If you omit this parameter, the FIELD-DEFN command displays all
column descriptors for each column of the specified view or all virtual
views, one at a time.

RDM Administration Guide 167

Chapter 5 Defining and testing views using DBAID

Example This example displays the full description of all columns in all open views.
See the following table for an explanation of each column descriptor.

> FI ELD- DEFN

VI EW NAVE (+) CUSTOMER
FI ELD- NAVE (+) CUSTOMER- NUMBER
FI ELD- PCS (+) 0
FI ELD- LEN (+) 5
ASI - POS (+) 60
FI ELD- DEC (+) 0
OUTPUT- LEN (+) 5
MASK- LEN (+) 15
FORMAT (+) Z
EDI T- MASK (-)
HEADI NG (-)
DELETABLE (+) Y
| NSERTABLE (+) Y
REPLACEABLE (¥) N
FI ELD- LVL (+) 0
KEY- NUVBER (+) 1
REQUI RED (+) Y
UNI QUE (+) Y
EDI T- TRANS (-)
ORDERI NG (-)

SI GNED (+) N

168

P25-8220-45

Using DBAID commands

Column descriptor

Explanation

VIEW-NAME
FIELD-NAME
FIELD-POS

FIELD-LEN
ASI-POS

FIELD-DEC
OUTPUT-LEN
MASK-LEN
FORMAT
EDIT-MASK
HEADING
DELETABLE
INSERTABLE
REPLACEABLE
FIELD-LVL

KEY-NUMBER

REQUIRED

UNIQUE
EDIT-TRANS
ORDERING
SIGNED

The name of the view being described.
The name of the column being described.

The position of the column in the user's buffer, starting
at byte 0.

The length of the column in bytes.

The position of the ASI of this column in the user
buffer.

The number of decimal places in the column.
The length of the output column.

The length of the edit mask.

The format of the column.

Not implemented for this release.

Not implemented for this release.

Indicates whether the row may be deleted.
Indicates whether the row may be inserted.
Indicates whether this column may be updated.

Indicates the level of the row which contains this
column.

Indicates which key column this is; 0 indicates the
column is not a key, 1 is the first key, and so on, up to
9.

Indicates the column must not be null when performing
updates or inserts.

Indicates the column is a unique key.

Not implemented for this release.

Indicates a linkpath is ordered using this column.
Whether or not the column is signed.

RDM Administration Guide

169

Chapter 5 Defining and testing views using DBAID

FIELD-TEXT command

The FIELD-TEXT command displays the comments for a column in a
view.,

FIELD-TEXT [view-name [column-name]]

view-name
Description Optional. Specifies the view to be used.
Format Must be a valid and opened view.
Considerations

¢ If you omit this parameter, the FIELD-TEXT command displays the
short and long text for all of your opened views.

¢ You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

column-name
Description Optional. ldentifies the column whose text is to be displayed.
Considerations
¢ The column must already be part of the view.
¢ If you use this parameter, you must specify a view name.

¢ If you omit this parameter, the FIELD-TEXT command displays the
comments for all columns.

170 P25-8220-45

Using DBAID commands

Example This example displays the comments for all columns in all open views:
>FI ELD- TEXT
' VI EW NAME ! FI ELD NAME !
| e e e e e e | e e e e oo I
! STOCK -1 STOCK- QUANTI TY !
| e e e e e e P I
! COMVENTS !

>

: VI EW NAMVE : FI ELD NAME :

sk | STOOK-BIN-LOCATION |
o cowents |

| The specific bin location in which the product can be found. !
wRRNOREX * %> T TTiTironnrrrrrnmn e

RDM Administration Guide 171

Chapter 5 Defining and testing views using DBAID

FORGET command

The FORGET command removes the specified mark and its resources
from the list of marks in use. It also clears the name and resources
allocated by a previous MARK command.

FORGET mark-name

mark-name
Description Required. Specifies what mark information should be forgotten.
Format 1-30 alphanumeric characters.
Consideration Must be a name you assigned with the MARK command.
General consideration

Once you issue a FORGET command, the indicated mark is released
and cannot be used without issuing a new MARK command.

172 P25-8220-45

Using DBAID commands

GET command

The GET command retrieves and displays a row for the indicated view.

INEXT O
AST O
GET 5AME Uview-name
IRST 0
fPRIORE

[FOR UPDATE]
[AT mark-name]

[USING literalq[literals...literal, 1]

RDM Administration Guide 173

Chapter 5 Defining and testing views using DBAID

INEXT O
WAST U

AMEE
IRST

FPRIORF

Description Optional. Specifies the order of retrieval of rows.
Default NEXT. If no current position exists, NEXT defaults to FIRST.

Considerations
¢ For a unique key:

GET NEXT. Retrieves either the row immediately after the
current row or the first row if no current position exists.

- GET LAST. Retrieves the last row.
- GET SAME. Retrieves the latest row if a current position exists.
- GET FIRST. Retrieves the first row in the view.

- GET PRIOR. Retrieves either the row immediately before the
current row, or the last row if no current position exists. Use GET
PRIOR only in connection with a "USING key-value" phrase for
predictable results.

¢ If you are accessing the data set via a secondary key that supports
REVERSE DIRECTIONAL search, you can use GET PRIOR.

¢ For a non-unique key:

GET NEXT. Retrieves the next occurrence of the row within the
generic group immediately after the current row, or the first row if
no current position exists.

GET LAST. Retrieves the last occurrence of the row.

GET SAME. Retrieves the latest row if a current position exists.

GET FIRST. Retrieves the first occurrence of the row with the
indicated key.

GET PRIOR. Performs a read reverse within the group of
non-unigue keyed rows.

¢ For RMS, GET LAST and GET PRIOR are not supported. To access
base RMS data sets, supply the key.

174 P25-8220-45

Using DBAID commands

view-name
Description Required. Specifies the view to be used.
Format Must be a valid and opened view.

Consideration You can enter * instead of a view name, causing DBAID to substitute the
last view name used.

FOR UPDATE

Description Optional. Allows you to lock out other users' modifications to the row you
are retrieving.

Considerations

¢ The FOR UPDATE phrase allows you to perform modifications
dependent upon the current contents of the row.

¢ If you do not need to be certain of the content of the row, use GET
without the FOR UPDATE phrase. When the UPDATE or DELETE
function is performed, automatic record holding performs the lock
before modifying the row.

¢ FOR UPDATE locks all physical resources until the row(s) are
released by a COMMIT or RESET. Automatic COMMITSs are issued
on GET, INSERT, UPDATE, and DELETE, unless you have disabled
it (see SURE) with a CAUTIOUS command. This practice can lead
to system inefficiency and other tasks receiving a HELD status.

AT mark-name

Description Optional. Repositions a view previously marked with the MARK
command.

Consideration If you use the AT phrase, you cannot also use the USING phrase.

RDM Administration Guide 175

Chapter 5 Defining and testing views using DBAID

USING literalq[literal,.. literalp,]

176

Description

Format

Considerations

Optional. ldentifies a value or set of values to be used for a keyed GET.

The values must be part of a valid view. Use either character,
hexadecimal, or numeric data. Character and hexadecimal data must be
enclosed in quotes, numeric data need not be, for example:

¢

¢

¢

¢

¢

USING 'ABCD' - character data
USING 1234 - numeric data
USING X'A10C' - hexadecimal

USING 123 'ABC'- combination (two keys)

The number of keys specified in the GET statement must be less
than or equal to the number of keys in your specified column
definition. No more than nine keys are allowed in one view.

Any omitted keys are treated as generic keys. Using generic keys is
a convenient feature for allowing both direct access to a view and a
sequential scan of many rows. All occurrences of a particular
unspecified column are returned as long as the other keys are
satisfied.

You can force RDM to perform a generic read at the PDM level by
omitting characters from the right of the key value, and replacing
them with one of the wildcard characters:

* default character for equal or next match
= default character for equal or only match

Generic reads are more efficient at the PDM level than at the RDM
level.

Note that you can specify your own wildcard characters by defining
the logical name CSI_WILD_EQ to point to the equal/next wildcard
character, and CSI_WILD_EN to point to the equal only wildcard
character. Refer to the SUPRA Server PDM System Administration
Guide (VMS), P25-0130.

The order of specified keys in the USING phrase corresponds to the
order of key declarations in your column definition. You can omit
keys only to the right; you cannot skip a key, then give others after it.

If you use the USING phrase, you cannot also use the AT phrase.

P25-8220-45

Examples

Using DBAID commands

This example returns the row whose key starts with the letters JO
from the view LASTNAME. No position is specified, so NEXT is
assumed. However, because this is the first GET, the first row with
this key is returned.

GET LASTNAME USING ' JO*'

This example returns the next row with the key JONES. When you
have read all JONES's records, you get the message
"OCCURRENCE NOT FOUND":

GET * USING ' JONES

This example returns the first JONES with the initials APQ:
GET * USING ' JONES' ' APQ

This example uses the default NEXT. The next row is returned—for
example, the row following JONES APQ. You can use this command
repeatedly to get all rows in a view, such as the rest of the Joneses,
then all Robinsons, and so on:

GET *

In this RMS example, GET retrieves data from the ORDR data set
using the first physical key:
GET FI RST ORDER- VI EW USI NG 225600x100

This RMS example uses the view REGION with the GET command
to retrieve data from the REGN data set:
KEY REG ON-NUMBER = REG ON-1 D
REG ON- NAME

ACCESS REGN
VWHERE REG ON-1 D = REG ON- NUMBER
ALLOW ALL

* To restrict deletions of REQ ONs that contain branches.

ACCESS BRAN
WHERE BRANCH- REG ON-ID == REG ON-1D

NOTE

RDM Administration Guide

REGION-ID and BRANCH-REGION-ID are in different domains so
that BRANCH-REGION-ID can be NULL. Therefore, domain
override is required.

177

Chapter 5 Defining and testing views using DBAID

¢ In this example, the physical key of the data set SAMP consists of
three subparts. RDM performs a generic read when the application
program supplies a value for either or for a combination of SAMPLE-
KEY1 and SAMPLE-KEY2:

GET SAMPLE- VI EW USI NG CUSTO1
GET SAMPLE- VI EW USI NG CUSTO01 ORDR02

¢ All products for the requested order are returned when the values for
SAMPLE-KEYland SAMPLE KEY2 are supplied. The GET
command uses the full physical key if all three logical keys are

supplied:
GET SAMPLE- VI EW USI NG CUSTO1
ORDR02
PART11

¢ This RMS example is similar to the preceding example. However,
SAMPLE-KEY-2 is left out of the USING phrase to force a generic
read of the SAMP data set:

GET SAMPLE- VI EW USI NG CUST02
¢ Fields can be left out of the USING clause only from the right.
Generic reads can be performed from within RDM only if they are

based on the logical key supplied within the USING clause in the
ACCESS statements.

178 P25-8220-45

Using DBAID commands

GO command

The GO command issues a GET request based on a single key, followed
by a series of sweeping GET requests (the rows are displayed in a
tabular format).

INEXT O

GO @JRIORE view-name

INEXT

[LAST
AME
IRST

[PRIOR

O
d
a
[START
O
d
H AT mark - name

HBEEEEEE

[FOR number - of - rows |

OFROM [,) _ 0
@SINGQI'terall [Ilteralz...llteraln]H

INEXT [
FPRIORE

Description Optional. Specifies the positional modifier to be used in subsequent
retrievals after the initial access by the GET command.

Default NEXT

view-name
Description Required. Specifies the view to be accessed.
Format Must be a valid and opened view.

Consideration You can enter * instead of a view name, causing DBAID to substitute the
last view name used.

RDM Administration Guide 179

Chapter 5 Defining and testing views using DBAID

INEXT 0
LAST B
AME
START [F[her B
[PRIOR 0

AT mark - name

Description Optional. Specifies the GET command positional modifier to be used for
the initial access of the database.

Default FIRST if GO NEXT is specified

PRIOR if GO PRIOR is specified

FOR number-of-rows

Description Optional. Indicates the number of rows (or number of GET NEXTs minus
1) to be performed.

Default 16,777,216
Format Integer value in the range 1-16,777,216.

Consideration GET NEXTs will be issued until the count is exhausted, or until the last
row is retrieved, whichever occurs first.

(FROM [J,. . _
@JSINGQ“teraIl [literal2...literaln]

Description Optional. ldentifies the values used for a keyed GET.

Format Either character or numeric data. Character data, if it includes blanks,
must be enclosed in quotes; numeric data need not be.

Options FROM Key values are used only on the initial access; the scan
is unqualified.
USING Key values are used for both the initial access and the

subsequent scan.

180 P25-8220-45

Considerations
¢

Using DBAID commands

The number of keys specified in the GET statement must be less
than or equal to the number of keys in your specified column
definition. You can omit keys only to the right; you cannot skip a key,
then give others after it.

Any omitted keys are treated as generic keys. Using generic keys
allows for both direct access to a view and a sequential scan of many
rows. All occurrences of a particular unspecified key are returned as
long as the other keys are satisfied.

The order of specified keys in the USING phrase corresponds to the
order of key declarations in your column definition.

General considerations

¢

RDM Administration Guide

The output is displayed in columns, where possible. If more data is
to be displayed than fits on a screen, DBAID will determine a different
format.

After the GO command displays a page of rows (see “PAGESIZE
command” on page 198), the prompt **MORE*** is issued. You can
continue the display on the next page after input of a blank line.

At the end of the rows retrieved by GO, the prompt *END*** is
issued.

"FOR number-of-rows" is not recommended for online use because it
does not pause until the last screen.

The GO command always looks ahead one row so it can determine
whether to display the *MORE*** or ***END*** message. It can be
confusing if you issue a GET after the GO, because a row might
appear to be skipped.

181

Chapter 5 Defining and testing views using DBAID

Examples

¢ The command "GO VIEW START AT VIEW-MARK1 USING
(VIEW-KEY-VALUE)" issues the following sequence of RDM GET
commands until a not-found FSI is returned:
GET VI EW AT VI EW MARK1
GET NEXT VI EW USI NG (VI EW KEY- VALUE)
GET NEXT VI EW USI NG (VI EW KEY- VALUE)

¢ The command "GO PRIOR VIEW START LAST FROM
(VIEW-KEY-VALUE)" issues the following sequence of RDM GET
commands until a not-found FSI is returned:
GET LAST VI EW USI NG (VI EW KEY- VALUE)
GET PRIOR VI EW
GET PRIOR VI EW

182 P25-8220-45

Using DBAID commands

INSERT command

The INSERT command issues an RDM INSERT request. The INSERT
places a row in the physical database based on the relative location
specified.

INEXT O
(H
INSERT WAST [view-name [MASS]
IRST =
RIOR[]
INEXT 0O
MAST O
IRSTE
RIOR[
Description Optional. Specifies where the row will be inserted in relation to existing
rows. The view definition may override this specification.
Default NEXT If not positioned in the view, NEXT defaults to LAST, and
PRIOR defaults to FIRST.
Options For non-unique key values:

NEXT Places a row after the current row. If no current position
exists, the row is placed in the last position in the view.

LAST Places a row in the last position of the view.

FIRST Places a row in the first position in the view.

PRIOR Places a row before the current row. If no current
position exists, the row is placed in the first position in
the view.

view-name
Description Required. Specifies the name of the view where you want the rows
inserted.
Format Must be a valid and opened view.

Considerations

RDM Administration Guid

¢ You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

¢ After the column values are entered, the row is displayed. The
message INSERT (Y/N) is displayed and a response is required. Y
inserts the rows. N cancels the insert.

e 183

Chapter 5 Defining and testing views using DBAID

MASS
Description

Considerations

184

Optional. Inserts many rows.

The positioning parameter you specify is used by RDM on every
insert command issued by mass insert.

Rows are input immediately following this command after the
prompts MASS INSERT PROCESSING INITIATED and ENTER
"END." TO EXIT MASS INSERT.

Rows are inserted as flat records. Separate the columns with
commas. To insert rows that are longer than one line, terminate the
list of values with a comma.

If columns have no values, enter two consecutive commas to indicate
their absence. This value is treated as a null value for packed or
numeric columns, as a large number for binary columns, and as
blanks for character columns.

If columns contain single quotes (apostrophes), replace them with
two single quotes (not double quotes) and enclose the entire string in
single quotes. If columns contain spaces, enclose the entire string in
single quotes.

Specify "END." after you input all rows to be inserted into the view.

To place multiple rows on a single line, leave a blank between rows.
Do not specify the view name while doing a mass insert.

Processing stops if ten errors are detected while using MASS insert;
otherwise, enter "END." to terminate inserting.

P25-8220-45

Using DBAID commands
General considerations

¢ If you use INSERT without MASS, DBAID prompts you for values
even if the view does not allow inserts.

¢ Quotes can be used to include blanks in character strings.

Examples The following examples use INSERT in an online environment. The >
indicates user input.

¢ This example inserts a row in the physical database:

>| NSERT *
NUMBER
>9998
PRODUCT
>AAAA

I NSTALLED
>100893

NUVBER () 9998
PRODUCT () AAAA

| NSTALLED () 100893
I NSERT (Y/N)?

>Y

FSI: * VSI: + MG SUCCESSFUL COMPLETI ON

RDM Administration Guide 185

Chapter 5 Defining and testing views using DBAID

¢ These examples use MASS to insert one or more rows without
reference to column names. Use a blank to indicate the end of an
inserted row. You can also enter one or more rows per line, using a
comma to carry part of a row to the next line. Use END. to stop
mass inserting:

>| NSERT * MASS

MASS | NSERT PROCESSI NG | NI TI ATED.

ENTER "END TO EXI T MASS | NSERT.

>9997, BBBB, 100793

FSI: * VSI + MG SUCCESSFUL COWPLETI ON

>9996, CCCC,

>100683

FSI * VSI: + MG SUCCESSFUL COWPLETI ON
>9995, DDDD, 100593 9994, EEEE, 100493 9993, FFFF, 100393
FSI * VSI: + MG SUCCESSFUL COWPLETI ON

FSI * VSI: + MG SUCCESSFUL COWPLETI ON

FSI * VSI: + MG SUCCESSFUL COWPLETI ON

>END.

MASS | NSERT PROCESSI NG COVPLETED.

¢ In this example, the following view is used with the INSERT
command. An insert is attempted on each data set. If at least one
row is inserted, the operation is successful.
BRANCH- STOCK- PRODUCT
KEY BRANCH- NUMBER = BRANCH- | D
KEY PRODUCT- CODE = STOCK- PRODUCT- I D = PRODUCT- | D
PRODUCT- DESCRI PTI ON
ACCESS BRAN
WHERE BRANCH- | D = BRANCH- NUMBER
ALLOW ALL
ACCESS STCK
WHERE STOCK- BRANCH- | D = BRANCH- | D
ALLOW ALL
ACCESS PROD
WHERE PRCDUCT- | D = STOCK- PRCDUCT- | D
ALLOW ALL

186 P25-8220-45

RDM Administration Guide

Using DBAID commands

This example shows how to prohibit an insert on a particular view by
not coding INS or ALL on the ALLOW clause. In this example,
whether or not the PROD row exists, the ORDR row is not inserted.
If the row exists, a message indicating that an invalid value is in a
required column appears, and an ASI of V is returned on the key
columns.
BRANCH- STOCK- PRODUCT
KEY BRANCH NUMBER = BRANCH- I D
KEY PRODUCT- CODE = STOCK- PRODUCT- | D = PRODUCT- | D
PRODUCT- DESCRI PTI ON
ACCESS BRAN
WHERE BRANCH- | D = BRANCH NUMBER
ALLOW ALL
ACCESS STCK
WHERE STOCK- BRANCH- | D = BRANCH- | D
ALLOW ALL
ACCESS PROD
WHERE PRCDUCT- | D = STOCK- PRODUCT- | D
ALLOW DEL

187

Chapter 5 Defining and testing views using DBAID

KEEP command

The KEEP command disables the DBAID automatic RESET feature
specified with the ERASE command. This command is the opposite of
the ERASE command. KEEP prohibits DBAID from issuing a RESET
when it receives an FSI of "X" from the view. Instead, DBAID "keeps" the
database as it is and allows the user to decide whether to RESET or not.

KEEP

General considerations
¢ KEEP is the default.
¢+ KEEP does not affect the RESET that may be issued to the SUPRA
Server Directory database, SUPRAD, by the DBAID systems

commands (REMOVE, SAVE, BIND, PERMIT, and DENY) when an
error occurs.

188 P25-8220-45

Using DBAID commands

line-number command

The line-number command deletes, adds, or replaces a Data Definition
Language (DDL) statement in the currently editable view.

line-number [ddI-statement]

line-number

Description

Format

Consideration

Required. Indicates the number of the line to be deleted, added, or
replaced.

1-4 numeric characters.
If the line number is less than four digits, DBAID adds zeroes to the front

of the number. For example, 10 becomes 0010. If the number is longer
than four digits, it is shortened to the first four digits.

ddl-statement

Description

Format

Consideration

Optional. Specifies the view definition statement to be added or
replaced.

Must be a valid DDL statement.

If the line-number is used without a following ddl-statement line, the line
is deleted from the view definition.

General considerations

Example

¢ Before you can use this command, you must first issue a COPY,
DEFINE, EDIT, or LIST command.

¢ You can enter a maximum of 200 lines in DBAID for a single view.

This example illustrates the use of various line-number commands:

>LI ST VI EW@
10 CUSTOMER- NUMBER
20 CUSTOMER- ADDRESS
30 CUSTQOVER- PHONE- NUMBER
40 ACCESS CUST
>10 KEY CUSTOMER- NUMBER Repl aces line 10

>15 CUSTOVER- NAMVE Inserts line 15
>30 Del etes line 30
>LI ST VI EW

10 KEY CUSTQOVER- NUMBER
15 CUSTOMER- NAME

20 CUSTOMER- ADDRESS
40 ACCESS CUSsT

RDM Administration Guide 189

Chapter 5 Defining and testing views using DBAID

LINESIZE command

The LINESIZE command specifies the number of characters to be
displayed on a line or displays the current line-size setting.

LINESIZE [number-of-characters]

number-of-characters
Description Optional. Indicates the number of characters to be displayed on a line.
Default 77
Options 12-256

Consideration If you omit this parameter, the command displays the current LINESIZE
setting.

190 P25-8220-45

Using DBAID commands

LIST command

The LIST command displays a saved or virtual view and readies it for
modification.

LIST view-name

view-name
Description Required. Identifies the view to be displayed.
Format Must be a valid view.

Considerations

¢ If the view is not a virtual view, DBAID searches the Directory for the
view text, as long as the view is not opened.

¢ You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

RDM Administration Guide 191

Chapter 5 Defining and testing views using DBAID

General considerations

¢ The SUPRA Server Directory database, SUPRAD, is not available
when the logical definition CSI_NODIRECTORY is defined as TRUE.

¢ Once you issue the LIST command, you can use the line-number
command (see “line-number command” on page 189) to modify your
view.

¢ If a LIST command returns the message "NO VIEW TEXT SINCE
VIEW IS NOT VIRTUAL," the view was opened during the current
session without first being listed using either the LIST command or
the DEFINE command (see “DEFINE command” on page 161). To
correct, do a RELEASE, then UNDEFINE, and then LIST. The view
must be opened again to execute it.

¢ LIST automatically issues an EDIT (see “EDIT command” on
page 165).

¢ Using LIST before OPEN reads the text for the view definition from
the Directory without verifying that the DBAID user is related to the
view.

¢+ DBAID can create views when you enter text with COPY, DEFINE,
EDIT, or LIST. If LIST is used on a view in the Directory, the text
becomes a virtual view which DBAID can modify. Virtual views
enable you to open a view without relating it to a user.

¢ This command can be used only by users with a Directory access
authority of PRIVILEGED (PRIV) or DBA/UTILITIES (DA).

Example The following lists the view BRANCHES-IN-REGION:
KEY REGQ O\ NUMBER
REG ON- NAME
KEY BRANCH NUVBER
BRANCH NAMVE
ACCESS REG ON
ONCE

USI NG REG ON- NUMBER

ACCESS BRANCH
WHERE BRANCH- REG ON = REG ON- NUMBER

ALLOW | NSERT UPDATE

192 P25-8220-45

Using DBAID commands

MARK command

The MARK command marks the current position of the row established
by the previous GET command.

MARK view-name AT mark-name

view-name

Description

Format

Required. Identifies the view name established by the previous GET
command.

Must be a valid and opened view.

Consideration You can enter * instead of a view name, causing DBAID to substitute the

last view name used.

AT mark-name

Description

Format

Required. Assigns a name to the location where the position of the
current view will be marked.

1-30 alphanumeric characters.

Consideration The name assigned is the name you use in a later GET AT request to

retrieve this row.

General considerations

Example

¢ The AT clause in the GET command repositions the view at the
position set by the MARK command.

¢ You can create any number of marks for a logical user view, but to
conserve space, reuse marks when possible.

This example marks the current position of the row:
>MARK CUSTOMER AT REMEMBER- CUSTOVER

You can do other GETs on CUSTOMER and return to this mark
immediately.

RDM Administration Guide 193

Chapter 5 Defining and testing views using DBAID

MARKS command

The MARKS command lists all open MARKSs and the views they are
marking.

MARKS

Example This example lists all open marks and the views (CUSTOMER-PROD)
they are marking:

>MARKS
MARK NAME VI EW NAMVE
MARKG CUSTOMER- PROD
MARKS CUSTOVER- PROD
MARK4 CUSTOMER- PROD
MARK3 CUSTOVER- PROD

194 P25-8220-45

Using DBAID commands

OPEN command
The OPEN command readies a saved or virtual view for use by DBAID.

OPEN [user-view-name=]view-name[columny,...,.columnp]

user-view-name=
Description Optional. Gives an existing view a nhame to be used in DBAID.
Format 1-30 alphanumeric characters. The first character must be alphabetic.
Considerations
¢ If you omit this parameter, the view name is used.

¢ Use this command with the column parameter to create many
smaller user views from one common view.

¢ To open a view that is not listed or defined in the same session of

DBAID, the user must be related to the view in the Directory or the
Global View file, if any.

RDM Administration Guide 195

Chapter 5 Defining and testing views using DBAID

view-name

196

Description
Format

Considerations

Required. Identifies the virtual or stored view to be readied for use.

Must be a valid view.

You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

The LIST command makes view text available to DBAID. If you
issue an OPEN command on a view instead of issuing a LIST
command, RDM directly opens the view without making text
available to DBAID. When RDM opens the view, it checks for a
global version first, then checks for a bound version if no global
version exists. If neither a global nor a bound version exists, RDM
opens the copy of the view stored on the Directory. This will affect
you if your view text differs from the global or bound version.

If the logical CSI_NODIRECTORY is defined as TRUE, you will not
be able to access the SUPRA Server Directory database SUPRAD.

If a virtual view was released, you must undefine and reopen the view
with full specification.

P25-8220-45

Using DBAID commands

columny,...,columnp,

Description Optional. Identifies the column(s) to be included in the user view.
Considerations
¢ The columns must already be part of the view being opened.

¢ You can continue the list of column names on successive lines by
ending the current line with a comma. This will be necessary if the
current line size is less than the space required to enter all columns
in the row.

¢ The USER-LIST command displays the list of columns used to open
the view.

General consideration

¢ OPEN returns the following message, containing information about
the storage used:

nnnnn BYTES USED I N OPENI NG VI EW

where nnnnn is the amount of storage used by the view.

Example This example opens the user view CUSTOMER-BRANCH-ONLY. The
view comprises a subset of all columns in the base view CUSTOMER.

>OPEN CUSTQOVER- PRODUCT- ONLY = CUSTOMER CUSTOMER- NUMBER, CUSTOVER-
BRANCH

Only CUSTOMER-NUMBER and CUSTOMER-BRANCH are returned by
GET CUSTOMER-BRANCH-ONLY, even though CUSTOMER has 10
columns defined.

RDM Administration Guide 197

Chapter 5 Defining and testing views using DBAID

PAGESIZE command

The PAGESIZE command specifies the number of lines to be displayed
on a screen/page or displays the current page-size setting.

PAGESIZE [number-of-lines]

number-of-lines
Restriction The value must be greater than 10.

Description Optional. Indicates the number of lines to be displayed on a
screen/page.

Format 2 or more numeric characters.

Consideration If you omit this parameter, the command displays the current page-size
setting.

General consideration

The initial page size is 24 lines.

198 P25-8220-45

Using DBAID commands

PERMIT command

The PERMIT command relates a view to a user(s) on the Directory. This
command provides security since it allows the DBA to define user-to-view
authorization through DBAID.

PERMIT view-name user-name [...user-namep,]

view-name
Description Required. The name of the view that you are relating to a user.
Format Must be a valid view.

Consideration You can enter * instead of a view name, causing DBAID to substitute the
last view name used.

user-nameq [...user-namep, |

Description Required. Specifies the name of the user you are relating to the view on
the Directory.

Format Must be a valid user ID, defined on the Directory.

Consideration You can specify more than one user in a single PERMIT command by
separating each user name with a single space.

General considerations

¢ The DBAID PERMIT command can be used instead of the Logical
View User Authorization screen in the DBA utility.

¢ After successfully relating the view to each user, DBAID issues a
COMMIIT to the Directory database SUPRAD.

¢ If an error occurs while relating a user, DBAID issues a RESET to the

Directory database SUPRAD and terminates processing of the
command.

RDM Administration Guide 199

Chapter 5 Defining and testing views using DBAID

PRINT-STATS command

The PRINT-STATS command causes RDM to display the current
statistics for all opened views. You can issue the command numerous
times during a session after you have first issued a STATS-ON
command.

PRINT-STATS

General considerations

¢ The STATS-ON command must precede the first PRINT-STATS
command. If you do not first issue STATS-ON, PRINT-STATS has
no effect.

¢ Youcanissue a STATS-OFF command to discontinue statistics
gathering. The BYE and SIGN-OFF commands print statistics and
then turn statistics gathering off.

¢ The PRINT-STATS command can be used to keep a statistical
running total.

Example In the following example, PRINT-STATS is used to print statistics after
each RDML operation.

STATS- ON
GET NEXT BRANCH- LOCATI ON

PRI NT- STATS
UPDATE BRANCH- LOCATI ON

PRI NT- STATS

200 P25-8220-45

Using DBAID commands

RELEASE command

The RELEASE command issues an RDM RELEASE, which closes a
specific view or all views that are opened and releases the occupied
storage.

RELEASE [view-name]

view-name
Description Optional. Specifies the view to be released.
Format Must be a valid and opened view.
Considerations

¢ You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

¢ If you omit this parameter, all your opened views are released.
General considerations

¢ The definition of any view is retained, allowing subsequent retrieval
and processing.

¢ This command does not affect virtual view text of the view(s).

RDM Administration Guide 201

Chapter 5 Defining and testing views using DBAID

REMOVE command

The REMOVE command removes the view and the relationship between
it and the database from the Directory.

REMOVE view-name

view-name
Description Required. Specifies the view to be removed.
Format Must be a listed (LIST) or edited (EDIT) view.
Considerations

¢ You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

¢+ DBAID displays the following prompt asking for confirmation:
"REMOVE EXISTING LOGICAL VIEW (Y/N?)."

General consideration

¢ You must list the view before removing it. This protects you from
inadvertently removing views due to spelling errors.

Example This example removes PRODUCT-VIEW from the Directory. The view is
still a virtual view in DBAID.

>REMOVE PRODUCT- VI EW

202 P25-8220-45

Using DBAID commands

RENUMBER command

The RENUMBER command renumbers a virtual view so the line
numbering starts at 10 with each line incremented by 10.

RENUMBER view-name

view-name
Description Required. Specifies the view to be renumbered.
Format Must be a valid and opened view.

Consideration You can enter * instead of a view name, causing DBAID to substitute the
last view name used.

RDM Administration Guide 203

Chapter 5 Defining and testing views using DBAID

RESET command

The RESET command issues an RDM RESET request. A RESET rolls

back any database updates for the current user since the last COMMIT
point.

RESET

General considerations
¢ Only use RESET after unsuccessful updates. DBAID issues a
COMMIIT after every successful update unless you have issued the
CAUTIOUS command.

¢+ DBAID does not automatically issue a RESET command when an "X"
FSl is returned.

204 P25-8220-45

Using DBAID commands

SAVE command

The SAVE command stores on the Directory a virtual view that was
previously opened with an OPEN command.

SAVE view-name [BIND]

view-name
Description Required. Identifies the view to be stored on the Directory.
Format Must be a valid view-name.

Considerations
¢ The view must be created with COPY, DEFINE, EDIT, or LIST.

¢ You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

¢ The view must be a virtual view, and it must be opened.

BIND
Description Optional. Indicates you want to bind the view.

Consideration You can bind a view only if it is in the active database.

RDM Administration Guide 205

Chapter 5 Defining and testing views using DBAID

206

General considerations

Examples

¢

If the view being saved already exists, the system asks if you want to
replace the existing view. If so, the new view replaces the old view
on the Directory. This does not affect who can use the view.

If the view did not exist previously, it must be related to users before
it can be accessed by the application program.

You cannot save a view that contains physical data items in the
column definition. For example, the following view cannot be saved
because CUSTCTRL is a physical data item.

KEY CUSTCTRL
ACCESS CUST USI NG CUSTCTRL

However, the following view can be saved:

KEY CUSTOVER-| D
ACCESS CUST USI NG CUSTQVER- | D

Physical data items can be used in the access definition.

This example stores PRODUCT on the Directory:
>SAVE PRODUCT

This example stores PRODUCT on the Directory and binds the view:
>SAVE PRODUCT Bl ND

P25-8220-45

Using DBAID commands

SHOW-NAVIGATION command

The SHOW-NAVIGATION command allows you to verify the accuracy of
the access paths used by RDM to access the underlying entities during a
view open.

SHOW-NAVIGATION [view-name]

view-name

Description Optional. Specifies the view for which you wish to display details of
access paths used.

Format Must be a valid and opened view.
Considerations

¢ You can enter * instead of a view name. DBAID returns information
on the last view name used.

¢ If you omit this parameter, RDM returns information on all opened
views in turn.

¢ Access methods include:

- INDEXED - via RMS alternate key or PDM secondary key
- KEYED - via control key
- LINKPATH - Vvia a linkpath
- SCAN - via a sequential scan
- RDML GET - via view-to-view access
Example The following example shows the access path used the view

REGION-BY-NAME. REGION-BY-NAME is a base view because it
accesses a data set, REGN, through the secondary index key
REGNSKNM.

>SHOW NAVI GATI ON REG ON- BY- NAME

VI EW NAMVE . REG ON- BY- NAME !

LVL! ACCESSED FI LE/VIEW NAVE | ACCESS METHOD ! ACCESS PATH NAME !
e e e !

10 ! REGN ! | NDEXED I NAMVE !

RDM Administration Guide 207

Chapter 5 Defining and testing views using DBAID

SIGN-OFF command
The SIGN-OFF command signs off the user from DBAID.

SIGN-OFF

General consideration

Use the SIGN-OFF command to remove yourself as a user without
terminating DBAID.

208 P25-8220-45

Using DBAID commands

SIGN-ON command
The SIGN-ON command identifies the user to DBAID.

SIGN-ON user-name [password]

user-name
Description Required. Indicates the name of the user.

Format 1-30 alphanumeric characters. Must be a valid user name already
defined on the Directory.

password
Description Optional. Indicates the user's password.

Format 1-8 alphanumeric characters. Must be a valid password already defined
on the Directory.

Consideration To SIGN-ON as another user during a DBAID session, you must first
issue a SIGN-OFF.

General consideration
When you invoke DBAID, you effectively issue a SIGN-ON.

Example This example identifies Jane Doe to DBAID:
>SI G\- ON JDOE DBAPSVD

RDM Administration Guide 209

Chapter 5 Defining and testing views using DBAID

STATS command

The STATS command causes RDM to display the current statistics for all
open views or for a view that you specify. You can issue the STATS
command numerous times during a session after you issue a STATS-ON
command.

STATS [view-name]

view-name

210

Description Optional. Specifies the view for which you wish to display statistics.

Format Must be a valid and opened view.

Consideration You can enter an * instead of a view name, causing DBAID to substitute
the last view name used.

General considerations

¢ The STATS-ON command must precede the first STATS command.
If you do not first issue STATS-ON, STATS has no effect.

¢ You can issue a STATS-OFF to discontinue statistics gathering.

¢ When you issue STATS, the statistics are displayed on your screen.

¢ You can issue STATS-OFF followed by STATS-ON, or just
STATS-ON to reset the statistical information.

¢ The STATS command can be used to keep a statistical running total.

Example In the following example, STATS is used to display a running total after

each RDML operation.

STATS- ON
GET NEXT STOCK

STATS
UPDATE STOCK

STATS

P25-8220-45

Using DBAID commands

STATS-OFF command

The STATS-OFF command causes RDM to print the current statistics.
After the statistics are printed, they are displayed.

STATS-OFF

General considerations
¢ The STATS-ON command must precede the STATS-OFF command.

¢ Issuing a STATS-OFF command without a preceding STATS-ON
command has no effect.

¢ The BYE or SIGN-OFF commands also perform a STATS-OFF
command.

RDM Administration Guide 211

Chapter 5 Defining and testing views using DBAID

STATS-ON command

The STATS-ON command causes RDM to initialize the statistics to zero
and then begin gathering statistics. The DBA can use this command, in
conjunction with the STATS-OFF or PRINT-STATS commands, to
examine what user views do on both a logical and physical level.

STATS-ON

General considerations
¢ Statistics are gathered on a task basis, not on a system-wide basis.

¢ Use the STATS-OFF command to print statistics and then turn them
off.

¢ Use the PRINT-STATS command to print statistics, but continue
gathering a running total.

¢ You can use the BYE and SIGN-OFF commands to print statistics
and then turn them off.

212 P25-8220-45

SURE ¢

Using DBAID commands

ommand

The SURE command causes a COMMIT after each successful insert,
update or delete. The SURE command is the opposite of the CAUTIOUS
command; SURE causes RDM to automatically issue a COMMIT if an "*"
FSl is returned by a RDML command that alters the database.

SURE

General consideration

This is the default setting.

RDM Administration Guide

213

Chapter 5 Defining and testing views using DBAID

UNDEFINE command

The UNDEFINE command removes the name and definition of a virtual
view.

UNDEFINE [LE H
Iew - name

LL
iew - nameﬁ

Description Required. Specifies which virtual views to remove.

Options ALL Removes all virtual views currently in use and issues an
RDM RELEASE.

view-name Identifies the virtual view to be removed. This must be a
valid view.

Consideration You can enter * instead of view name, causing DBAID to substitute the
last view name used.

General considerations

¢ Storage being used by the view is relinquished, allowing it to be
reclaimed for defining other views.

¢ This command does not remove a saved definition from the
Directory.

Examples

¢ This example removes all views currently in use:
>UNDEFI NE ALL

¢ This example removes the view CUSTOMER:
>UNDEFI NE CUSTOVER

214 P25-8220-45

Using DBAID commands

UPDATE command

The UPDATE command updates data values in the database. For RMS
data sets, it also updates the relationships between files.

UPDATE view-name [columnq:=literalq[,...,columnp:=literal]]

view-name
Description Required. Identifies the view you wish to update.
Format Must be a valid and opened view.

Consideration You can enter * instead of a view name, causing DBAID to substitute the
last view name used.

columnq:=literalq[,...,columnp:=literalp]

Description Optional. Identifies a column in the view which is to have the value of the

literal.
Format column The column must already be part of the view being
updated.
= Must be coded as shown.
literal Character or numeric data. A hexadecimal value is not

allowed.

RDM Administration Guide 215

Chapter 5 Defining and testing views using DBAID

Considerations

¢ Each updateable column is displayed, and replacement values are
accepted. Entering a null line does not change the column. Entering
new data changes the column value in the row. After all updateable
columns are processed, the prompt "UPDATE (Y/N)" displays and
requires a response.

¢ You can use the "column:=literal" syntax when updating columns in
the row. Only the columns you specify are updated; all others remain
the same. To update a row, indicate the column you want to update,
the :=, and the new value for the column.

¢ Single quotes are not required around character or numeric literals
unless the literal contains spaces or commas.

¢ Single quotes are required for you to change the value of a column to
blanks. A literal of spaces (keyed in) must be in single quotes. If you
press RETURN, you do not affect the item's value.

¢ You cannot use the UPDATE function to modify columns designated
as key values. Use the DELETE and INSERT commands to modify
key items. See “DELETE command” on page 162 and “INSERT
command” on page 183.

¢ Inorder to UPDATE a row, you must first retrieve the row using the
GET command.

¢ UPDATE cannot change all the values in a defined column to a
specific value. For example, you could not change all
PROD-CODES to 'T100," even if you wanted to.

¢ If the physical field being updated is an alternate key for RMS data

sets, RDM maintains the secondary index in the same file as the
primary index.

216 P25-8220-45

Using DBAID commands

Example This example updates the columns STOCK-QUANTITY and STOCK-
BIN-LOCATION in the view STOCK:

>UPDATE STOCK STOCK- QUANTI TY: =25, STOCK- BI N- LOCATI ON: =A3

If an alternate index is defined for the above view, RDM performs the
update as follows:

¢+ Before deleting the row from the DATE data set, RDM checks to see
if any rows in the ORDR data set have the old value.

¢ If so, the delete is not performed on the DATE data set. RDM then
attempts to insert the new value into the DATE data set.

¢ If a duplicate occurrence is found, the error is ignored.

RDM Administration Guide 217

Chapter 5 Defining and testing views using DBAID

USER-LIST command

The USER-LIST command displays the column definition for the user
view named.

USER-LIST user-view-name

user-view-name
Description Required. Identifies the user view or view to be displayed.
Format Must be a valid view.

Consideration You can enter * instead of a view name, causing DBAID to substitute the
last view name used.

Example This example displays the list of columns for the B1 user view:

>OPEN B1=BRANCH BRANCH- NUMBER, BRANCH- ADDRESS, BRANCH- CI TY, BRANCH-
STATE

FSI: * VSI: = MG 4600 BYTES USED I N CPENI NG VI EW

>USER- LI ST Bl

USER VI EW NAME : Bl

LOG CAL VI EW NAME @ BRANCH

USER VI EW LI ST :

BRANCH- NUMBER, BRANCH- ADDRESS, BRANCH- CI TY, BRANCH- STATE, END.

218 P25-8220-45

Using DBAID commands

VIEW-DEFN command

The VIEW-DEFN command displays a condensed description of a view.

VIEW-DEFN [view-name]

view-name

Description Optional. Specifies the view whose condensed description is to be
displayed.

Format Must be a valid and opened view.

Considerations

¢ You can enter * instead of a view name, causing DBAID to substitute
the last view name used.

¢ If you omit this parameter, a condensed description of all your
opened views displays.

RDM Administration Guide 219

Chapter 5 Defining and testing views using DBAID

Example This example displays a condensed description of the CUSTOMER view.
The following table explains each displayed descriptor.
>VI EW DEFN
VI EW NAVE (+) CUSTOMER
| NS- ORDER (+) N
TOTAL- SI ZE (+) 63
TOTAL- FI ELDS (+) 3
TOTAL- LEVELS (+) 1
TOTAL- DELETABLE (+) 3
TOTAL- | NSERTABLE (+) 3
TOTAL- REPLACEABLE (+) 3
TOTAL- REQUI RED (+) 1
TOTAL- KEYS (+) 1
TOTAL- NON- UNI QUE (+) 0

View descriptor

Explanation

VIEW-NAME
INS-ORDER

TOTAL-SIZE

TOTAL-FIELDS
TOTAL-LEVELS
TOTAL-DELETABLE
TOTAL-INSERTABLE

TOTAL-REPLACEABLE

TOTAL-REQUIRED
TOTAL-KEYS

TOTAL-NON-UNIQUE

The name of the view being described.

Indicates that inserts will be ordered,
depending on the value of a column.

The total number of bytes in the view,
including ASls.

The number of columns in the view.
The number of levels in the view.
The number of deletable columns.
The number of insertable columns.
The number of updateable columns.
The number of required columns.
The number of keys in the view.

The number of non-unique keys in the
view.

220

P25-8220-45

Using DBAID commands

VIEWS command
The VIEWS command displays all views currently active in DBAID.

VIEWS

General consideration
The information displayed with this command includes:
¢ User View - The name of the user view.
¢ Logical View - The name of the view this user view is part of.

¢ Status - Indicates whether the user view is opened or released.

Example This example displays all views currently active in DBAID:
>VI EVWS

USER VI EW LOG CAL VI EW STATUS
CUSTOMER- PURCHASE- ORDER CUSTOMER- PURCHASE- ORDER OPENED
PO- CODE- ONLY CUSTOMER- PURCHASE- ORDER OPENED

RDM Administration Guide 221

Chapter 5 Defining and testing views using DBAID

VIEWS-FOR-USER command

The VIEWS-FOR-USER command lists the views related to the
signed-on user together with the date and time of the most recent

view-save.

VIEWS-FOR-USER

General consideration

Example

The date and time are displayed in the format mm/ddl/yy.

This example displays the views related to the signed-on user:

VI EW&- FOR- USER

LOG CAL VI EW NAME

! BASE- VI EW

I REG ON

! BRANCH

I CUSTOMER

! PRODUCT

I BRANCH- SUBSET

! BRANCHES- | N- REG ON
I PRODUCTS- I N- REG ON
! REVI EW DETAI LS

I WRI TI NG DETAI LS

! MANUALS

I AUTHOR

! PRODUCTI ON- DETAI LS

08/ 22/ 96
08/ 22/ 96
08/ 22/ 96
08/ 22/ 96
01/ 16/ 96
03/ 24/ 96
03/ 24/ 96
03/ 24/ 96
01/ 16/ 96
03/ 24/ 96
01/ 16/ 96
01/ 16/ 96
01/ 16/ 96

222

P25-8220-45

RDM statusindicators

RDM returns status indicators to the application program and to the
DBAID user to indicate Relational Data Manipulation Language (RDML)
processing results. The indicators are the same, regardless of whether
the view is a base or derived view because base views pass the
indicators to derived views.

The three types of status indicators that are returned after any RDML
function call are as follows:

¢ Function Status Indicators indicate the success or failure of the
function.

¢ Column Attribute Status Indicators indicate the status of each column
in the row.

¢ Validity Status Indicators indicate the most severe column status
within the row.

RDM Administration Guide 223

Chapter 6 RDM status indicators

Function Status Indicators (FSIs)

Function Status Indicators (FSIs) reflect the success or failure of the
RDML function. The FSl is returned to the application to let the program
determine the next appropriate action. For MANTIS programs, refer to
your MANTIS documentation for more information on status indicators.
For FORTRAN, COBOL, or BASIC RDML applications, RDM returns the
FSI to an application program in an area generated as part of the
programmer-supplied ULT-CONTROL statement. The following two
examples are of this generation: one COBOL and one FORTRAN.

Examples

¢ COBOL. Note that the asterisk indicates the statement that the
programmer specifies in the source RDML program; the RDML
preprocessor for COBOL generates all other statements.

* 01 | NCLUDE ULT- CONTROL.

01 ULT- CONTROL.
10 ULT- OBJECT- NAME PI C X(30).
10 ULT- OPERATI ON.
15 ULT- OPCODE PIC X
15 ULT-PGSI TI ON PIC X
15 ULT- MODE PIC X
15 ULT-KEYS PIC X
10 ULT-FSI PIC X
10 ULT-VSI PIC X
10 FILLER PIC X(2).
10 ULT- MESSAGE PI C X(40).
10 ULT- PASSWORD PIC X(8).
10 ULT- OPTI ONS PI C X(4).
10 ULT- CONTEXT PIC X(4).
10 ULT- LVCONTEXT PI C X(4).

224

¢ FORTRAN. Note that the C indicates the statement that the
programmer specifies in the source RDML program; the RDML
preprocessor for FORTRAN generates all other statements.

c | NCLUDE ULT- CONTROL
CHARACTER ULT_OBJECT_NAME* 30, ULT_OPERATI ON*6, ULT_FSI *1, ULT_VSI *1,
+ULT_FI LLER* 2, ULT_MESSAGE* 40, ULT_PASSWORD* 8, ULT_CPTI ONS* 4,
+ULT_CONTEXT*4, ULT_LVCONTEXT* 4

PARANETER(ULT_CONTROL_LEN=100)

CHARACTER* (ULT_CONTROL_LEN) ULT_CONTROL

EQUI VALENCE (ULT_CONTROL(1:30), ULT_OBJECT_NANE(1: 30))

+, (ULT_CONTROL(31: 36), ULT_OPERATI ON(1: 6)) , (ULT_CONTROL(37: 37),
+ULT_FSI(1:1)), (ULT_CONTROL(38: 38), ULT_VSI (1: 1))

+, (ULT_CONTROL(39: 40) , ULT_FI LLER(1: 2)), (ULT_CONTROL(41: 80),
+ULT_MESSAGE(1: 40)), (ULT_CONTROL(81: 88), ULT_PASSWORD(1: 8))

+, (ULT_CONTROL(89: 92) , ULT_OPTI ONS(1: 4)), (ULT_CONTROL(93: 96)
+ULT_CONTEXT(1: 4)), (ULT_CONTROL(97: 100), ULT_LVCONTEXT(1: 4))
CHARACTER* 14 ULT_DATE_STAMWP

DATA ULT_DATE_STAMP/ ' .19831114143849' /

Cc ON ERROR

Cc TYPE *,' RDM control call failed , ULT_FSI
Cc STOP

C END ERROR- HANDLER

*

P25-8220-45

Function Status Indicators (FSIs)

The FSls have the following meanings:

FSlvalue |Meaning

* SUCCESSFUL COMPLETION. The RDML function
completed successfully.

D DATA ERROR. The row contains invalid data. Check
the ASls to see which column contains invalid data.

F FAILURE. The RDML function failed. Usually caused
by a physical database problem returned to RDM.

N NOT FOUND. The RDML processor cannot find an
occurrence of the requested row.

R DYNAMIC RESET. The PDM performed a dynamic

reset on the database because of an earlier PDM
failure. The PDM restarted automatically; however, you
must reapply all modifications made since the last
COMMIT or RESET.

S SECURITY CHECK. The attempted RDML function
violated a security constraint.
U UNAVAILABLE RESOURCE. The resource required to

complete this function was not available; for example,
the data set was not open.

X RESET RECOMMENDED. While processing, RDML
function modifications were made to the database
before the error condition was detected. Issue a
RESET to restore the database. This code overrides
D, F, S, or U indicators.

A message associated with the FSl is accessible in the ULT-MESSAGE
area for all returned indicators (see the preceding example).

RDM Administration Guide 225

Chapter 6 RDM status indicators

Column Attribute Status Indicators (ASIs)

Column Attribute Status Indicators (ASIs) reflect the status of each
column defined in a view. ASIs have a one-to-one mapping to each
column. In FORTRAN, COBOL, or BASIC RDML programs, they are
placed immediately after the last column in your view, for example:

COLUMN 1

COLUMN 2 COLUMN 3 COLUMN 4 ASl; ASI> ASl3 ASl4

226

You can access the ASlIs through names generated by the RDML
preprocessor. During application program coding, the programmer
specifies an INCLUDE statement for the view required. The RDML
preprocessor generates definitions for all columns, followed by definitions
for an ASI for each column. The name of the ASI for a column is the
column name preceded by the four characters ASI-. The following two
examples are of this generation; one for COBOL and one for FORTRAN.

Examples

¢ COBOL. Note that the asterisk indicates the statement that the
programmer specifies in the source program; the RDML
preprocessor for COBOL generates all other statements.
* 01 | NCLUDE CUST- CONTACT.
01 LUV- CUST- CONTACT.
10 CUST- CONTACT.
20 CUST-NO PIC S9(05).

20 CONTACT- NAME Pl C X(040).
20 CONTACT-TITLE Pl C X(040).
20 CONTACT- PHONE PI C X(010).
10 ASI - CUST- CONTACT.

20 ASI - CUST-NO PIC X

20 ASI - CONTACT- NAVE PIC X

20 ASI - CONTACT-TI TLE PIC X

20 ASI - CONTACT- PHONE PIC X

P25-8220-45

Column Attribute Status Indicators (ASIs)

¢ FORTRAN. Note that the C indicates the statement that the
programmer specifies in the source program; the RDML
preprocessor for FORTRAN generates all other statements.
C I NCLUDE PART- COMP=V2(PART=PART- NAVE, COMP=COVPONENT- NANE)

CHARACTER* 6 PART

CHARACTER* 6 COMP

CHARACTER*1 ASI _PART, ASI _COWP

EQUI VALENCE (PART, PART_COMP(1: 6))

EQUI VALENCE (COVP, PART_COMP(7: 12))

EQUI VALENCE (ASI _PART, PART_COMP(13: 13))

EQUI VALENCE (ASI _COWP, PART_COMP(14: 14))

PARAVETER(PART_COWVP_LEN=14)

CHARACTER* (PART_COVP_LEN) PART_COWP

CHARACTER
ULT$PART_COWP* 30, ULT$PART* 16, ULT$COWP* 21, ULT_END_VI EW

+1* 4
DATA ULT$PART_COVP/ ' V2 / ULT$PART

+/ ' 006C00PART- NAME, ' / ULT$COVP/ ' 006 COOCOVPONENT- NAME, / ULT_END_
VI EW

+1/" END. '/

RDM Administration Guide 227

Chapter 6 RDM status indicators

The ASls have the following meanings:

| ASI value

Meaning

C

Returned when the column values are changed by another view.

This check is made only when a GET statement (not GET FOR
UPDATE) is followed by an UPDATE or DELETE statement. You
can override this check by specifying SHARED on the ALLOW clause
of an ACCESS statement.

Returned when the column is invalid (when a numeric column
contains non-numeric data, when a column failed its validation
checks [table, range, or user exit] or when a foreign key value is
incorrect).

Returned when the column contains a null value, or when no physical
record exists to supply the column value. The column in the row is
set to blanks if it is a character, or zero if it is a binary, packed,
numeric, or floating point data item; or, if the field contains the null
value the column contains the null value. This ASI value only has
meaning on GET RDML requests. This value only has meaning on
GET RDML requests.

Returned if the column exists and was filled from a different
accessed entity. (GET processing only.) An ASI of + is given to
those columns generated by new physical records. GET FIRST
returns ASlIs of + to all columns, because it retrieves the first row in a
view and must therefore access all associated physical records as
new.

The ASIs + and = indicate an occurrence of a new physical record
when accessing a row. Whenever a new physical record is read, its
physical data items generate ASls of +, which are assigned to their
corresponding columns in the row.

Returned if the column exists and its value was filled from the same
accessed entity as the last access (those column values generated
by unchanged physical records when a new row is read).

The ASIs + and = indicate an occurrence of a new physical record
when accessing a row. Whenever a new physical record is read, its
physical data items generate ASls of +, which are assigned to their
corresponding columns in the row.

The application programmer can place an N in the ASI during
UPDATES and INSERTS to set a column to its null value. This ASI
value is never returned by RDM.

228

P25-8220-45

Column Attribute Status Indicators (ASIs)

The three ways to use ASls are:

¢

RDM Administration Guide

When you issue a GET command, certain columns returned may not
have a value. Check this status (on columns that were not altered)
with the ASI.

If you receive an FSI indicating a data error, use the ASI to find which
columns have illegal values.

Programmers can use ASls for validation of input. For example,
when a logical view contains packed values, use the ASls to avoid
errors at run time that would be caused if you performed a calculation
or move using an invalid packed decimal value. Do this by
examining each ASI for such columns before performing the
operation.

If the ASI for a column is V, the value is placed in the row even
though it is not in a valid format. When a - ASl is returned, RDM
placed a valid zero in numeric columns and spaces in character
columns. For other ASI values, the column is valid.

229

Chapter 6 RDM status indicators

Validity Status Indicators (VSIs)

Validity Status Indicators (VSIs) reflect the validity of the logical view after
a RDML command causes a read of the physical database. The RDML
processor returns the VSI to the program. In MANTIS, see the VSI
function. For FORTRAN, COBOL, or BASIC RDML programs, the VSl is
returned in an area generated as part of the programmer-supplied
ULT-CONTROL statement (see the example in “Function Status
Indicators (FSIs)” on page 224). You can use these indicators to
determine the most significant ASI returned by RDM according to the
following hierarchy:

VSl value |Meaning

C The column value was changed by another logical
view.
\% At least one invalid ASI was returned.

- No invalid ASls were returned, but at least one missing
ASI was returned.

+ No invalid or missing ASIs were returned, but at least
one new physical occurrence in the database was
returned.

= No invalid, missing, or new physical occurrences were
returned by this RDM function.

The VSI enables the programmer to quickly determine if any additional
processing of ASls is needed to correct invalid data or to fill missing
values.

230 P25-8220-45

v

Optimizing view perfor mance using
bound and global views

Opening a view is resource intensive. To improve performance, SUPRA
Server provides two methods to preopen views—bound and global—to
reduce the time needed to open a view. These methods are discussed in
the following sections.

Differences between bound and global views

A bound view is a preopened copy of a view that is stored in the SUPRA
Server Directory. View binding improves performance on the initial
access to a view, reducing the processing overhead of other requests to
open the view.

RDM Administration Guide 231

Chapter 7 Optimizing view performance using bound and global views

232

First RDM
Sign-on to the
Database

Is the logical
GVSCHEMA

A global view is placed in a Global View file, which is loaded into global
memory during the first RDM sign-on (see the following figure).

No defined? Yes

Is the logical

CSI_NODIRECTORY
defined as TRUE?

(i.e., the SUPRA
Directory is not
available)

No

Yes
Sign-on fails

Is the
user/password
combination
valid?

Yes

Is Global Section
for Global View file

No in memory?
Create Global Section, Map to
load file identifiedby — — — — — — = Global View
the logical GVSCHEMA file.

Is the Global View
file user/password
combination
valid?

Task signed-on
to the database
(if database description
successfully loaded)

P25-8220-45

Differences between bound and global views

Once loaded in memory, all other RDM tasks map to the global file to
access the views. Performance improves because the first task to open
the Global View file is the only one that requires initialization resources.
All subsequent tasks simply map to the global section that contains the

Global View file.

NOTE To reduce global memory usage, only globalize views that are used by
5 m— multiple tasks concurrently.

RDM Administration Guide 233

Chapter 7 Optimizing view performance using bound and global views

234

Advantages of using global views

NOTE

o

Both types of views can optimize system performance. However,
Cincom recommends that you use global views because they are loaded
in memory instead of requiring access to the Directory database
SUPRAD for each view-open request. Because global views are stored
in memory, they have the following advantages over bound views:

¢ Reduce the resources needed for system initialization.

The first user who signs on to RDM initializes the Global View file; all
subsequent view requests map directly to the Global View file.
Therefore, the processing overhead of opening a view occurs only
once (see the figures under “Differences between bound and global
views” on page 231 and “Global views” on page 241).

¢ Isolate production systems from development changes.

When using global views, tasks access the Global View file in
memory; they don't access the SUPRA Server Directory database
SUPRAD. This insulates your production database from changes
that can occur as a result of defining and testing views.

+ Eliminate the need for all sites to have access to the SUPRA Server
Directory database SUPRAD.

Because tasks do not access the SUPRA Server Directory database
SUPRAD, users do not require access to it. This allows you to run
without a SUPRA Server Directory by setting the logical definition
CSI_NODIRECTORY to TRUE (refer to the SUPRA Server PDM
System Administration Guide (VMS), P25-0130).

If you choose to run without a Global View file or only some of your views
globalized, a SUPRA Server Directory database (SUPRAD) must be
available.

The figure under “Differences between bound and global views” on
page 231 shows how the Global View file affects RDM sign-on
processing.

P25-8220-45

Differences between bound and global views

Changing view text: a note of caution

Whether you use bound or global views, the view text is always stored
separately from the bound or global copy. (The bound pre-opened copy
is stored on the SUPRA Server Directory; the globalized pre-opened copy
is stored in the Global View file, which may be in global memory.) If you
change the view text, you must update your bound and global copies of
the view to reflect the changes. If you fail to rebind the view or rebuild the
Global View file with the most current copy of view, your bound and
global views will become out of date. This could cause unpredictable
results.

Changing the text of a view when using bound views only

When you save changes to a view using DBAID, DBAID automatically
prompts you to rebind the view with the most current view text. You must
answer YES to that prompt for DBAID to rebind the view with the most
current view text. See “Binding a view” on page 236 for information on
saving a view using DBAID.

Changing the text of a view when using global views

When a view is included in a Global View file and the view text changes,
you must rebuild the Global View file so that it is updated. For
information on how to rebuild the Global View file, see “Creating a Global
View file” on page 243.

Changing the text of a view when bound views are included
in a global view file

If a bound copy of a view exists and you are using a Global View file, the
bound version is always included in the Global View file. This means that
if the view text changes, you must rebuild both the bound version and the
Global View file to ensure that all copies of the view are current.

NOTE Caution: Cincom recommends that you use global views only. If you

e use both bound views and a Global View file, you must make sure the

% — view is current in three places (view text, bound version and global
version), as opposed to just two (view text and global version) if you use
only global views.

RDM Administration Guide 235

Chapter 7 Optimizing view performance using bound and global views

Bound views

A bound view is a pre-opened copy of a view that is stored in the SUPRA
Server Directory database SUPRAD. View binding improves
performance on the initial access to a view, reducing the processing time
for application program requests that open the view.

Binding a view

You can bind a view using two different utilities: DBA and DBAID.

Using DBA to bind a view

To bind a view using DBA, select option 3, Logical Views, from the
Function Selection for the DBA menu. The Logical View Function menu
displays. Select option 2, Modify, and respond to the prompts.

Cl NCOM SYSTEMS SUPRA DBA - LOG CAL VI EW FUNCTI ON

Functions for |ogical views

Exam ne

Modi fy

Create

Del ete

Connect to database description

Di sconnect from dat abase description
Li st dat abase descriptions using view
List all 1ogical views

User aut hori zation

OCoOo~NOOOrWNE

Enter choice no.: 2

Modi fy | ogical view nane :
(<PF4> will select CUSTOVER) : CUSTOMER- REFERENCE

Dat abase to which logical viewrefers : CUSTDB

236

To bind the view, press function key PF1 followed by B for bind. RDM
attempts to open, save and bind the view you selected for modification.
The view bind occurs only if the view-open and save to the SUPRA
Server Directory were successful. If RDM successfully binds the view, it
displays this message:

VI EW Bl NDI NG SUCCESSFUL

P25-8220-45

Bound views

Binding a view using DBAID

To bind a view using DBAID, use either the DBAID BIND command or
the DBAID SAVE command with the BIND qualifier. Note that a view
must be open before it can be bound. The sample DBAID session in the
following screen illustration shows how to bind a view using the BIND
command. You can also use the SAVE command to bind a view (see the
subsequent screen illustration).

>LI ST CUSTOVER
CUSTQOVER

0005 KEY CUSTOVER- NUMBER = CUSTOMVER- | D

0010 REQ CUSTQOVER- NAVE

0015 CUSTOVER- ADDRESS

0020 CUSTOMER-CITY

0025 CUSTOVER- STATE

0030 CUSTOMER- ZI P- CODE

0035 CUSTOMER- PHONE- NUMBER

0040 CUSTOMER- FAX- NUMBER

0045 CUSTOVER- CLASS

0050 CUSTOMER- CREDI T- CODE

0055 CUSTOVER-CREDIT-LIMT

0060 REQ CUSTOVER- BRANCH = CUSTOVER- BRANCH- | D = BRANCH- | D
0065 ACCESS CUST

0070 WHERE CUSTOMER- | D = CUSTOMER- NUMBER

0075 ALLOW ALL

0080 * To verify that CUSTOVER- BRANCH contains a valid branch on
0085 * | NSERT and UPDATE.

0090 ACCESS BRAN

0095 WHERE BRANCH- | D = CUSTOVER- BRANCH- | D

>OPEN*

FSl: * VSI: = MG 4424 BYTES USED | N OPENI NG VI EW

>BI ND*

REPLACE EXI STI NG VIEW (Y/ N) ?

>Y

SAVED 19 LINES AS CUSTOVER 12:40: 42 04- JAN- 1996

VI EW Bl NDI NG SUCCESSFUL.
>

RDM Administration Guide 237

Chapter 7 Optimizing view performance using bound and global views

Note that you do not need to list the view before you can open it and
make the view text available for saving, if required; however, listing the
text of a view allows you to check that you selected the correct view. The
session in the following screen illustration shows how to bind a view using

the SAVE command.

>LI ST REG ON
REG ON

0005 KEY REG ON- NUMBER = REG ON-1D

0010 REG ON- NAMVE

0015 ACCESS REGN

0020 WHERE REG ON-1 D = REG ON- NUMBER

0025 ALLOW ALL

0030 * To restrict deletions of regions that contain branches.
0035 ACCESS BRAN

0040 WHERE BRANCH REG ON-I1 D == REG ON-1D

>OPEN*

FSI. * VSl. = MG 1656 BYTES USED I N OPENI NG VI EW

>SAVE* Bl ND

REPLACE EXI STING VIEW (Y/ N) ?

>Y

SAVED 8 LINES AS REG ON 12:20:51 04-JAN-1996

VI EW BI NDI NG SUCCESSFUL.
>

238

P25-8220-45

Bound views

Ensuring that you update a bound view

The Directory stores the bound version of a view separately from the text
of a view. Therefore, if you change the text of the view and forget to
update the bound version (rebind it), the bound version becoming
out-of-date. An outdated bound view can produce unpredictable results,
including failures such as access violations in application programs,
MANTIS, or SPECTRA (SPECTRA is not available in OpenVMS AXP
environments).

Deleting the bound view only

To delete the bound version of a view without deleting the unbound view
text, first LIST the view in DBAID, then use the DBAID REMOVE
command to remove both bound and unbound views. Then LIST the
virtual view that remains and use the DBAID SAVE command to save the
view definition on the Directory without binding it.

Deleting both the view definition and the bound view

Use the DBAID REMOVE command to delete both a view definition and
the bound version of the view from the Directory. To guard against
accidental deletions, you can delete only views that are virtual (views that
you displayed using the DBAID LIST command). Even after you remove
a view, the virtual text is still available until you leave DBAID. To remove
the virtual view text, either enter the DBAID UNDEFINE command or
enter BYE to exit DBAID.

In DBA, use the Logical View Functions menu and select the Delete view
option to delete the view definition and the bound view.

Rebinding a view after making changes to view text

If you attempt to SAVE a view definition while a bound version of that
view exists, DBAID asks if you want to rebind the view. If you reply "Y,"
DBAID replaces the current bound version with the new bound version. If
you reply "N," DBAID saves the view on the Directory without re-binding it
and the view text and bound copy become inconsistent.

RDM Administration Guide 239

Chapter 7 Optimizing view performance using bound and global views

240

Testing views: failing to rebind a view

If you change the view definition and do not rebind the view, you will have
a bound version that is different from the unbound version. This is useful
if you are testing views before putting them into production, because
applications will only be able to use the bound version (unless the view is
globalized). Only after you rebind the view is it available to application
programs.

MNOTE

O e—

If the bound view is in a Global View file, you must rebuild the Global
View file before the new version of the view is available to application
programs.

P25-8220-45

Global views

Global views

The Global View facility allows you to place commonly used views into a
file that is loaded into global memory during the first RDM user
initialization. This makes the views available to authorized users (as
shown in the following figure). It also saves much of the processing
overhead of opening views at the first application program access for
each user task. In addition, view-open performance improves because
separate view definitions need not be loaded for each user. Users share

the copy of the view definition held in global memory.

Subsequent
RDM sign-on

RDM driver
CSVIPLVS

|
maps to the

global section
containing the
Global View file

1st User to
sign on to RDM
(that has the logical
GVSCHEMA defined)

RDM driver
CSVIPLVS

causes the Global View file
to be opened
and loaded into memory

/

Global View
File

Global Section =

contains pre-opened
view definitions with
user authorizations

Subsequent
RDM sign-on

RDM driver
CSVIPLVS

|
maps to the

global section
containing the
Global View file

To ensure that RDM applications use the global views, assign the logical

name GVSCHEMA to the Global View file as shown:

$ DEFI NE GVSCHEMA CSI _devi ce: [directory] dbnanme. GBL

RDM Administration Guide

241

Chapter 7 Optimizing view performance using bound and global views

242

The database description associated with the Global View file identified
by the logical GVSCHEMA must be identified by the logical
CSI_SCHEMA. Refer to the SUPRA Server PDM System Administration
Guide (VMS), P25-0130, for a complete description of these logicals.

You can load both base and derived views into global memory by
including their view definitions in the Global View file. However, you
should include a base view in the Global View file before you include any
derived views that access it. Because the global view definitions are held
in a file rather than on the Directory, they:

¢ Reduce the resources needed for system initialization
¢ Isolate production systems from development changes

¢+ Eliminate the need for all sites to have access to the SUPRA Server
Directory database SUPRAD

Available global views are used in preference to view definitions on the
Directory. Therefore, opening a global view does not require SUPRA
Server Directory access. This allows you to run without a SUPRA Server
Directory by setting the logical definition CSI_NODIRECTORY to TRUE
(refer to the SUPRA Server PDM System Administration Guide (VMS),
P25-0130). If you choose not to use a Global View file or not all needed
views are included in the Global View file, a SUPRA Server Directory
must be available.

Once the global view is opened, it remains in the global memory until all
users sign off from the database.

P25-8220-45

Global views

Creating a Global View file

The Global View file contains a list of global views and users authorized
to access those views. Create a Global View file in one of two ways:

¢ Interactively, through the Global View file creation screens

¢ In batch, by creating an input text file containing details of the global
views and authorized users, and making the following logical
assignment:

$ DEFI NE BATCH GLOBAL_I NPUT device:[directory] filenane. ext

When you create a Global View file interactively, you can authorize only
users who are already connected to the views on the Directory. Users
who are not allowed to use a view on the Directory cannot be given
access to the global version of that view.

However, when you use the batch Global View file creation facility, you
can allow global view access to users who are not connected to a view on
the Directory. In addition, batch Global View file creation allows all users
connected to a view on the Directory to access the global version, unless
you use the disallow clause to explicitly exclude them from the Global
View file.

To initiate either method, select the Global View Creation option from the
SUPRA Facilities menu or run the Global View Creation program
CSVGLOBAL directly. CSVGLOBAL searches for a file identified by the
logical name BATCH_GLOBAL_ INPUT, which contains details of the
global views and authorized users. See “Batch Global View file creation”
on page 248 for more information.

NOTE CSVGLOBAL is a logical definition used to identify the Global View
Creation utility. Refer to the SUPRA Server PDM System Administration
2 Guide (VMS), P25-0130, for details of this logical definition.

RDM Administration Guide 243

Chapter 7 Optimizing view performance using bound and global views

If there is no logical translation for BATCH_GLOBAL_INPUT, the Global
View Creation program CSVGLOBAL defaults to interactive mode and
displays a series of screens. These screens prompt you to specify the
following:

¢ Views to be used as global views
¢ Users who can access each global view

Reverse video indicates where you enter data. The arrow and tab keys
position the cursor for entry. Press RETURN to transmit the data.

If you previously created a text file identified by the logical name
BATCH_GLOBAL_INPUT, CSVGLOBAL automatically uses the details
specified in that file. You do not need to enter any further information.
CSVGLOBAL translates the logical name CSI_SCHEMA to identify the
database that the specified global views should access.

244 P25-8220-45

Global views

Interactive Global View file creation

To create a Global View file interactively, select the Global View Creation
option from the SUPRA Facilities menu, or enter the DCL Run command
specifying CSVGLOBAL. Refer to the SUPRA Server PDM System
Administration Guide (VMS), P25-0130. SUPRA Server displays a
sign-on screen similar to that shown in the following screen illustration.

Cl NCOM SYSTEMs

* Kk k

*kkkk k%
khkkkkkkkk*k
*kkkkkkkkkkk*x
khkkkkkkkkkkk*
kkkkkkkkkkkkk*x
khkkkkkkkkkkkk*

kkkkkkkkkkkkk*x
kkkkkkkkkkkkk*x
khkkkkkkkkkkk*
*kkkkkkkkkkk*x
khkkkkkkkkhk
*kkkkk*k

* ok k

Cl NCOM SYSTEMS

GLOBAL VI EW CREATI ON RELEASE 2. 4

* Kk k

*kkkkk*k
khkkkkkkkkh*k
*kkkkkkkkkkk*x
khkkkkkkkkkkk*
kkkkkkkkkkkkk*x
khkkkkkkkkkkkKk*

User namne
Ak kkkhkkkhkkkkkkxk

kkkkkkkkkkkkk*x PaSSV\Drd

kkkkkkkkkkkk*

*kkkkkkkkkkk*x
khkkkkkkkkh*k
*kkkkk*k

* Kk ok

SUPRA GLOBAL

Press TaB to move the cursor between the Username prompt and the
Password prompt. You must enter a valid user name and password as
defined to SUPRA Server. For security, your password is not displayed.
When you press RETURN or ENTER, the first Global View Creation screen
appears.

RDM Administration Guide 245

Chapter 7 Optimizing view performance using bound and global views

Selecting views. You use the first Global View Creation menu (see the
following screen illustration) to select the views you want to include in the
Global View file. SUPRA Server translates the logical name
CSI_SCHEMA to find the name of the database accessed by these views
and displays that name at the top of the screen.

Cl NCOM SYSTEMS

GLOBAL VI EW CREATI ON RELEASE 2. 4
DATABASE NAME: QADBD1

I ncl ude Restrict
View Y/ N User Y/ N Vi ew Nane

TEST6D
Y TEST63
TEST6F
Y TEST6G
TEST7
TEST9
Y Y TEST10
TEST11
TEST12
TEST13
TEST14
TEST15
TEST16
TEST8
END SELECTI ON

246

To select a view, enter Y in the “Include View” column. Any users who
have access to the view on the Directory are allowed to access the global
version of the view unless you enter Y in the “Restrict User” column.
Press TAB to move the cursor between fields.

The last entry on the View Selection menu is END SELECTION. There
may be another screen of views from which to choose. To display
subsequent view selection screens, enter N in the “Include View” column
next to END SELECTION. This displays the next screen (if there is one)
or returns you to the top of the current screen if there is no next screen.
When you are finished, press RETURN or enter Y next to END
SELECTION, and press RETURN.

P25-8220-45

Global views

Restricting user access to global views. If you enter a 'Y in any
Restrict User column, SUPRA Server displays the Restrict Users menu
when you finish selecting views. The name of the view you are restricting
displays at the top of the screen. The name of each user allowed to
access the non-global version of the view is displayed in the Username
column. To set the authority specifications, enter Y or N in the Authorize
column, as shown in the following screen illustration. Press RETURN or
ENTER to display the next restrict users screen.

Cl NCOM SYSTEMs

GLOBAL VI EW CREATI ON RELEASE 2. 4

Vi ew nane: TEST10

Aut horize Y/ N User nane

Y DATABASE- DESCRI PTI ONS
Y SRV
N ALEC

Following the last view selected, the Global View facility then:

¢

RDM Administration Guide

Opens each view in turn, displaying the message OPENING VIEW:
view-name. (The bound version is used, if one exists.)

Creates the Global View file named xxxxxx.GBL (where xxxxxx is the
6-character database name).

Displays a completion message in reverse video at the bottom of the
screen until you press PF1 to exit.

Creates a Global View report by view name in a file named
GVxxxxxx.LIS (where xxxxxx is the database name). This report
shows which views are included and which users have access to
them.

247

Chapter 7 Optimizing view performance using bound and global views

248

Batch Global View file creation

Selecting Global View Creation from the SUPRA Facilities menu invokes
the CSVGLOBAL program. Alternatively, you can run CSVGLOBAL
directly from the command level by entering:

$RUN CSVGLOBAL

Refer to the SUPRA Server PDM System Administration Guide (VMS),
P25-0130, for more information on the CSVGLOBAL logical definition.

The CSVGLOBAL program first searches for the logical name
BATCH_GLOBAL_INPUT, pointing to a text file. If this logical name and
corresponding file exist, CSVGLOBAL processes the file, using the
details it contains about the global views and authorized users, to create
a Global View file (batch Global View file creation). If the logical name
does not exist, CSVGLOBAL defaults to interactive global view creation
described in the preceding section. Use the DCL DEFINE command to
make the logical assignment as follows:

$DEFI NE BATCH GLOBAL_I| NPUT devi ce: [directory]fil enane. ext
where device:[directory]filename.ext is the full directory specification for
the input text file. (The full directory specification is unnecessary if you
run batch global view creation from the directory containing the input file.)

Refer to the SUPRA Server PDM System Administration Guide (VMS),
P25-0130, for complete details on this logical definition.

The input file can contain the following details:

¢ User name and password that you want to use to create global views
¢ Groups of users who should have similar rights to use views

¢ Global views and lists of users and/or groups allowed to access them

¢ The group ALL-VIEWS and lists of users and/or groups of users
allowed to access them

¢ The group OTHER-VIEWS (those views not already specified) and
lists of users and/or groups of users allowed to access them

Running the Global View Creation program in batch identifies the
database to be accessed by the global views by translating the logical
name CSI_SCHEMA. Therefore, before you run batch Global View file
creation, make the following logical assignment:

$DEFI NE CSI _SCHEMA dat abase- nane

where database-name is the 6-character name of your database. Refer
to the SUPRA Server PDM System Administration Guide (VMS),
P25-0130, for complete details on this logical definition.

P25-8220-45

Global views

Creating an input text file. You create a Global View input file using a
standard text editor. Input files are divided into three parts:

¢ User definition
¢ Group definitions
¢+ View definitions

The user definition is required and consists of the USER statement that
specifies the user name that is creating the Global View file. You can
include only one user definition.

Group definitions are optional and specify any number of users who are
to have the same global view access rights. You can include as many
group definitions as you want. You can also include one group within
another group, provided you defined the included group earlier in the
input file. Thus, group definitions provide greater flexibility in restricting
user access to views.

At least one view definition is required. View definitions identify the views
being made global and specify user access to those views by allowing
and disallowing named users and groups of users. You can specify as
many view definitions as you want; however, the view definition
ALL-VIEWS overrides all previous view definitions. At least one user
must be allowed access to at least one view.

An exclamation mark (!) anywhere on a line indicates that the text to the
right of the exclamation mark is a comment.

RDM Administration Guide 249

Chapter 7 Optimizing view performance using bound and global views

User definition

USER username [,PASSWORD password].

Group definition

View definition

Cusername [Jusername O o O
GROUPgroup - name =[] N P
[GROUPgroup - name BGROUPgroup - nameH 0 H
[VIEW[S]view - name][,view - name...]
%\LL - VIEWS
FOTHER - VIEWS
CJALLOW sername [Jusername O O O
EDISALLOW [GROUP group - name FGROUP group - named % g g
P25-8220-45

250

Global views

User definition

USER user-name

Description Required. Identifies the user to access the Global View Creation
program.

Format 1-30 alphanumeric characters and hyphens. The first character must be
alphabetic.

Considerations

¢ The user name must exist on the SUPRA Server Directory
(SUPRAD) and have a privilege of at least DATABASE
ADMINISTRATOR (DA).

¢ The user definition is terminated with a period (.).

,PASSWORD password
Description Optional. Specifies the password associated with the user name.
Format 6 alphanumeric characters.
Considerations

¢ If the specified user name has a password, the password you enter
must match.

¢ If the specified user name has a password, but no password is
entered, the Global View Creation program prompts you to enter the
password at the terminal. The password you type does not display
on the screen.

¢ If running batch global view creation, you must include a password
clause if a password is needed.

¢ If the user definition has a password, you must enter the period (.)
that terminates the user definition after the password.

RDM Administration Guide 251

Chapter 7 Optimizing view performance using bound and global views

Group definition

GROUP group-name =
Description Required for each group definition. Specifies the name of a group of
users, groups, or users and groups to have the same access to particular
global views.
Format 1-30 alphanumeric characters.
Considerations
¢ Terminate the GROUP statement with a period (.).

¢ You can define each group name only once.

¢ If you define a group that contains one or more other groups, these
groups must already be defined in a previous GROUP statement.

¢ You must specify a group name with a GROUP statement before it
can be used in a VIEW[S], ALL-VIEWS, or OTHER-VIEWS
statement.

¢ The group ALL-USERS is predefined. Do not attempt to specify it by
using a GROUP statement.

user-name
Description Optional. Identifies the user(s) to be included in the group.

Format 1-30 alphanumeric characters and hyphens. The first character must be
alphabetic.

Considerations

¢ All specified user names must exist on the SUPRA Server Directory
database SUPRAD.

¢ You can specify combinations of user names and predefined group
names in any GROUP statement. However, specify at least one user
name or one group name.

¢ Separate each user name and GROUP group name specification
with a comma (,).

252 P25-8220-45

Global views

GROUP group-name

Description Optional. ldentifies a previously defined group or groups to be included in
this group.

Format 1-30 alphanumeric characters.

Considerations

¢ All group names you include in one group must already be defined in
a previous GROUP statement.

¢ You can specify combinations of predefined group names and user
names in any GROUP statement. However, specify at least one
group name or_one user name.

¢ Separate each GROUP group name and user hame specification
with a comma (,).

RDM Administration Guide 253

Chapter 7 Optimizing view performance using bound and global views

View definition

VIEWI[S] view-name [,view-name...]

Description

Format

Considerations

Optional. Specifies a view or list of views as global views.

1-30 alphanumeric characters and hyphens. Each specified view must
already exist.

Terminate each view statement with a period (.).

Include at least one of the following view statements in the view
definition:

- VIEWI[S] view-name [, view-name...]

- ALL-VIEWS

- OTHER-VIEWS

Separate each view name in the list by a comma (,).

The VIEW]S] view-name [, view-name...] statements can be used
with the OTHER-VIEWS statement. However, all VIEWS[S]
statements must be defined before the OTHER-VIEWS statement in
the input file.

You can specify a maximum of 1000 global views.

ALL-VIEWS
Description

Consideration

Optional. Specifies all views on the Directory as global views.

The ALL-VIEWS statement overrides any previously specified views. A
warning displays if any view definition precedes the ALL-VIEWS
statement.

OTHER-VIEWS

Description

Optional. Specifies all views other than those already specified in a
VIEWIS] statement.

Consideration Include the OTHER-VIEWS statement after VIEW[S] statements.

254

P25-8220-45

Global views

; ALLOW

Description Optional. Allows specified users or groups of users access to named
global views.

Considerations

You can specify as many ALLOW and DISALLOW clauses as you
want, in any order. However, if you ALLOW and DISALLOW a given
user or group name several times, only the last ALLOW or
DISALLOW applies.

A user can use a global view only if one of the following conditions is
met:

- The user is connected to the view on the Directory and is not
specified in any DISALLOW clause.

- The useris in an ALLOW clause and is not in any subsequent
DISALLOW clause.

; DISALLOW

Description Optional. Prevents specified users or groups of users from accessing
named global views.

Considerations

RDM Administration Guide

You can specify as many DISALLOW and ALLOW clauses as you
want, in any order. However, if you DISALLOW and ALLOW a given
user or group name several times, only the last DISALLOW or
ALLOW applies.

A user can use a global view only if one of the following conditions is
met:

- The user is connected to the view on the Directory and is not
specified in any DISALLOW clause.

- The useris in an ALLOW clause and is not in any subsequent
DISALLOW clause.

Include the statement DISALLOW GROUP ALL-USERS first, after

the VIEW clause, to ensure that only those users explicitly specified
in subsequent ALLOW clauses have access to the global views.

255

Chapter 7 Optimizing view performance using bound and global views

user-name

Description Optional. ldentifies users who are allowed or disallowed access to the
specified global view or views.

Format 1-30 alphanumeric characters and hyphens. The first character must be
alphabetic.

Considerations

¢ All specified user names must exist on the SUPRA Server Directory
(SUPRAD).

¢ User names connected to a view on the Directory automatically have
access to the global version unless specifically excluded through a
disallow statement.

¢ User names included in an ALLOW clause that are not connected to
a view on the SUPRA Server Directory can access only the global
version of the view.

GROUP group-name

Description Optional. Identifies a previously defined group allowed or disallowed
access to the view or views specified.

Format 1-30 alphanumeric characters.
Option GROUP ALL-USERS

Considerations

¢ Specify only those group names that are already defined in a
previous GROUP statement.

¢ The group ALL-USERS is predefined.

256 P25-8220-45

Global views

Example Global View input files

The following examples illustrate user, group, and view definitions as they
appear in a global view input file.

¢

¢

¢

RDM Administration Guide

USERALI CE.
GROUP PRODUCTI ON = USER3, USER19, JIM .
I Goup definition for group PRODUCTION .

ALL- VI EW5; DI SALLOW GROUP ALL- USERS ;
ALLOW GROUP PRODUCTI ON

; ALLOW ALI CE.
! All views on the Directory are defined as gl obal views.
! The DI SALLOW GROUP ALL-USERS restricts access to all
! users, including those connected to the views on the
! Directory. Only the PRODUCTI ON group and user ALICE
! can access the global views.

USER DATABASE- DESCRI PTI ONS.

GROUP PRIV = ANN, DAVI D, MARY .!devel opnment personnel
GROUP ADM N =JIM SARAH . l'adm ni strative personnel
VI EW5 PRODUCT, CUSTOMER;
DI SALLOW GROUP ALL- USERS;
ALLOW GROUP ADM N, GROUP PRIV, SAM

I The views PRODUCT and CUSTOMVER are defined as gl obal
I views. Viewdefinition allows devel opnent personnel,
! admi nistrative personnel, and user SAM access to the gl obal
I views PRODUCT and CUSTOMER
VI EW PRODUCT;

ALLOW GROUP ALL- USERS;

DI SALLON GROUP ADM N ; ALLOWJIM
The vi ew PRODUCT- STRUCTURE-VIEWis defined as a
gl obal view View definition disallow the ADM N group;
however, user JIMwho is also a menber of the ADM N group
is given access through a subsequent ALLOW cl ause.
OTHER- VI EWB.
Al'l other views connected to this database are defined as
gl obal views. Because there is no ALLOWNcl ause, these
views are accessible to all wusers who are connected to
themon the Directory.

USER DATABASE- DESCRI PTI ONS.

VI EWB ORDERS, PRODUCT;
DI SALLOW GROUP ALL- USERS.
OTHER- VI EWV\5; ALLOW GROUP ALL- USERS.
I This input file includes all views in the global
! viewfile and allows all users to access all views
| except ORDERS and PRODUCT.

257

Chapter 7 Optimizing view performance using bound and global views

After Batch Global View Creation processes the input file, it:

¢ Opens each view in turn and displays the message:
OPENI NG VI EW vi ew nane
¢ Creates the Global View file named xxxxxx.GBL (where xxxxxx is the
6-character database name) and displays the message:
FI LE: dat a- base- nane. GBL CREATED
¢ Creates a Global View report by view name in a file named
GVxxxxxx.LIS (where xxxxxx is the database name). This report

shows which views are included and which users have access
authority.

Example Global View report file

The following example shows the contents of a Global View report file for
the database TESTDB. The filename is GVTESTDB.LIS.

CREATION OF GLOBAL VIEWS ON: 1-APR-1996 12:37:24
VIEW NAME USER NAME
PRODUCT JIM
CUSTOMER SARAH

ANN

DAVID

SAM
CUSTOMER-ADDRESS JIM
PRODUCTS-IN-REGION SARAH

ANN

HARRY

JANE

ALICE

RDM ERROR ON VIEW :PRODUCT
#0003 KEY NOT SUPPLIED.

The Global View report file also lists any errors encountered when RDM
attempted to create the global views.

258 P25-8220-45

Options for RDM access to the SUPRA Server directory

Options for RDM access to the SUPRA Server directory

When using RDM bound and global views, you have several options
regarding access to the SUPRA Server Directory by applications.
“Running without the directory” on page 259, “Running with the directory
and with Global Views” on page 260 and “Running with the directory
alone” on page 260 describe these options. The figure under
“Differences between bound and global views” on page 231 shows you
graphically what happens when you try to access the Directory using the
different options.

Running without the directory

If you decide not to use the SUPRA Server Directory (the logical
CSI_NODIRECTORY=TRUE), RDM gets run-time information only from
the Global View file. The PDM gets run-time information from the
database description file identified by the logical CSI_SCHEMA.

To run an application program without the SUPRA Server Directory, the
following logicals must be defined:

$DEFI NE CSI _NODI RECTORY TRUE
$DEFI NE CSI _SCHEMA dbnane
$DEFI NE GVSCHEMA dev: [dir] gl obal -viewfile.GBL

Note that you can map global views to a system-wide global section
(instead of the usual group-wide global section) by defining:

$DEFI NE GVSCHEMA_SYS TRUE

Refer to the SUPRA Server PDM System Administration Guide (VMS),
P25-0130, for complete descriptions of these logicals.

RDM Administration Guide 259

Chapter 7 Optimizing view performance using bound and global views

Running with the directory and with Global Views

If you have access to a SUPRA Server Directory and to a Global View
file, the global view overrides the corresponding view on the SUPRA
Server Directory. Likewise, a bound view takes preference over the
unbound version. In this environment, when a program requests a
specific view, SUPRA Server proceeds as follows:

¢ SUPRA Server uses that view if it is available in the Global View file.

¢ If no global view exists, SUPRA Server seeks a bound view on the
SUPRA Server Directory.

¢ If neither a global view nor a bound view is available, SUPRA Server
tries to use the unbound view text on the SUPRA Server Directory.

When using both global views and the SUPRA Server Directory, you
must have the following logicals defined:

$ DEFI NE CSI _SCHEMA dat abase- nane
$ DEFI NE GVSCHEMA dat abase- nane

Running with the directory alone

If a SUPRA Server Directory is available and global views are not being
used, define logicals as follows:

$ DEFI NE CSI _SCHEMA dat abase- nane
Note that the logical CSI_NODIRECTORY must not be defined as TRUE
(you can eliminate the definition) Also note that the logical GVSCHEMA

should not exist. If it points to an invalid value (non-Global View file), a
warning will be generated and no Global View file will be used.

260 P25-8220-45

8

Generating RDM reports

The RDM reports track the complex relationships between physical data
items, logical data items, and columns, and between base views and
different levels of derived views. You can generate reports for both the
DBA and the programmer. In addition, you can list cross references of
logical and physical data items and report on domain and validation table
usage.

The RDM reports are now available in the OpenVMS Alpha environment
beginning with SUPRA Server PDM release 2.4.

The RDM reports show all views defined on the SUPRA Server Directory,
whether base or derived. Run the reports to find out which columns are
available from your base views, what integrity and security constraints
they impose, and what maintenance actions are allowed for each view.
Until you understand your base views, you cannot efficiently design
derived views that use them. When defining views through both DBAID
and DBA (EDIT/EDT interface), you can list the text of your base views
on the screen, and even use their view definitions as the basis for your
derived views, thereby saving typing. See “Defining and testing views
using DBAID” on page 135 for details on how to use DBAID to define and
test views. Refer to the SUPRA Server PDM Database Administration
Guide (UNIX & VMS), P25-2260, for details on how to define views
through DBA.

Once you have either reported on all the base views or listed them on
your screen, you can begin to define derived views to fulfill the needs of
the users.

RDM Administration Guide 261

Chapter 8 Generating RDM reports

262

The scope of the five RDM reports varies according to the option you
select from the report specification screen (illustrated in “Stage one—
specifying the reports to be produced” on page 264). The reports are:
¢ DBAreport

- Allviews

- Specified databases

- Specified views

- Online report for a specified view
¢+ Domain usage report

- Alldomains

- Specified domains
¢ Logical data item cross reference report

- Allviews

- Specified databases

- Specified views
¢ Physical data item cross reference report

- All data sets

- Specified databases

- Specified data sets

- Online report for indices on a specified database
¢ Validation table usage report

- All validation tables

- Specified validation tables

P25-8220-45

RDM reports

RDM reports

You run the RDM reports in two stages:

1. Execute the command file CSIREQ.COM to sign on to SPECTRA
and specify the reports you want to generate.

2. Produce the reports you specified by executing the command file
CSIREP.COM.

RDM Administration Guide 263

Chapter 8 Generating RDM reports

Stage one—specifying the reports to be produced

Choose your reports by executing the request command file
CSIREQ.COM. CSIREQ.COM initiates SPECTRA, then displays the
reporting request screen for you to specify which reports you want to
produce.

Follow these steps to display the reporting request screen:

1. Enter @CSI_DBA:CSIREQ.COM at the DCL command level to
execute CSIREQ.COM. This command file displays the SPECTRA
sign-on screen, as illustrated below.

Cl NCOM SYSTEMS SUPRA RELEASE n.n
* k% * k%
*kkkk kK *kkkk kK
kkkkkhkkkkk*k kkkkkhkkkkk*k
*kkkkkkkkkk*x *kkkkkkkkkk*x
kkkkkhkkkhkkkkkkk kkkkkhkkkkkkkkk
*kkkkkkkkkkkkk*k *kkkkkkkkkkkkk*k
kkkkkhkkkhkkkkkkk*k kkkkkkkhkkkkkkk*k
User nane =
*kkkkkkkkkkkkk*k *kkkkkkkkkkkkk*k
*kkkkkkkkkkkkk*k *kkkkkkkkkkkkk*k PaSSV\DI’d =
kkkkkhkkkhkkkkkkk kkkkkhkkkkkkkkk
*kkkkkkkkkk*x *kkkkkkkkkk*x

khkkkkkkkkh*k khkkkkkkkk*k
*kkkkk*k *kkkkk*k
* Kk k * Kk ok

Cl NCOM SYSTEMs SPECTRA

264 P25-8220-45

Stage one—specifying the reports to be produced

2. Sign on to SPECTRA with the user name REPORTS and no
password to display the SUPRA Directory Reporting Request menu,
shown below.

Central files not available, User identification changed

==>

SUPRA DI RECTORY REPORTI NG REQUEST MENU

SELECT ONE OF THE TOPICS BELOW TYPE THE NUMBER AND PRESS ENTER.

=

oohwn

N

CANCEL al |

report specifications

DBA reports for views

LOG CAL DATA | TEM CROSS- REFERENCE reports for sets of views
PHYSI CAL DATA | TEM CROSS- REFERENCE reports for data sets
DOVAI N USAGE reports

VALI DATI ON TABLE USAGE reports

EXIT the report request facility

1=TCP 2=HELP 3=END 4=EX 5=SPLT 6=I NP 7=PRI OR 8=NXT 9=MRK 10=GET 11=MOVE 12=PUT

Select one of the RDM reports by typing its number at the command line
and pressing ENTER.

NOTE

You can cancel all preceding report selections by typing 1 at the
command line and pressing ENTER.

RDM Administration Guide 265

Chapter 8 Generating RDM reports

After you select the report, the appropriate RDM report specification
screen displays. The following screen illustration shows an example of
the RDM Report Specification screen displayed by selecting option 2,
DBA reports for views.

Ready
==>2/ ENTER
SUPRA DI RECTORY REPORTI NG REQUEST MENU

SELECT ONE OF THE TOPICS BELOW TYPE THE NUMBER AND PRESS ENTER.

VIEWS for ALL databases defined on the SUPRA Directory
VI EWS for a SPECI FI ED dat abase defined on the Directory
VI EW5 sel ected by NAME only

ONLI NE report for specified views

RETURN to top nenu

EXIT the report request facility

OO WNE

1=TOP 2=HELP 3=END 4=EX 5=SPLT 6=I NP 7=PRI OR 8=NXT 9=MRK 10=GET 11=MOVE 12=PUT

Select the scope of the report you want to produce by typing its number
at the command line, and press ENTER. This displays the process name
and a brief description of the report parameters you need to enter.

266 P25-8220-45

Stage one—specifying the reports to be produced

In this example, option 2, VIEWS for a SPECIFIED database defined on
the Directory, the following screen displays, prompting you to type in the
name of the database you want to report on.

Ready
==>2/ ENTER

JANUARY 4TH, 1996 14:03:00 PAGE 1

REP- DBA- SPEC- DB

This routing specifies the paraneters for part 2 of the DBA report
for SPECI FI ED dat abases on the Directory. This report is view nane
wi t hi n dat abase nane sequence.

Enter the nane of the database required or <CTRL Z> TO EXIT

1=TOP 2=HELP 3=END 4=EX 5=SPLT 6=I NP 7=PRI CR 8=NXT 9=MRK 10=GET 11=MOVE 12=PUT

Enter the database name in uppercase and press RETURN. If you enter
the database name in lowercase, even if the database exists, SPECTRA
rejects the specification with the message:

META002 - DATABASE NOT DEFI NED TO THE DI RECTORY

After you press RETURN, SPECTRA displays a message confirming your
choice and prompts you to press CTRL-Z to return to the initial Directory
Reporting Request menu displayed in the second illustration above.

NOTE

You can exit without specifying a report parameter by pressing CTRL-Z.

267

RDM Administration Guide

Chapter 8 Generating RDM reports

Stage two—qgenerating the reports

268

Execute the command file CSIREP.COM by entering:
@S| _DBA: CSI REP

This command file executes the SPECTRA processes to generate the
reports and output them to your default directory; that is, the VMS
directory to which your process is set when you execute CSIREP.

The reports have these names:

¢+ CSI_DBA_REP.DAT- DBA Report

¢ CSI_DOMN.DAT - Domain Usage Report

¢ CSI_XREF1.DAT - Logical Data Item Cross Reference Report

¢ CSI_XREF2.DAT - Physical Data Item Cross Reference Report
¢ CSI_VALT.DAT - Validation Table Usage Report

Appendix B on page 279 illustrates the format and layout of the reports.

P25-8220-45

A

DBAID quick reference

DBAID commands

An asterisk has two uses:
¢ As a substitute for the last view name used.

¢ To denote a comment line when entered in column one of a view.

Reissues the previous RDML command.

BIND view-name

Saves and binds the specified view.

BY-LEVEL [view-name [column-number]]

Displays the column names in a view by level of occurrence starting with
level O, followed by level 1, etc.

BYE

Exits DBAID.

CAUTIOUS

Prohibits an automatic COMMIT.

RDM Administration Guide 269

Appendix A DBAID quick reference

COLUMN-DEFN [view-name [column-name]]

Displays a full description of the columns in a view. Equivalent to the
FIELD-DEFN command.

COLUMN-TEXT [view-name [column-name]]

Displays the comments for the columns in a view. Equivalent to the
FIELD-TEXT command.

COMMIT

Permanently applies all updates to the database made since the last
COMMIT point.

COPY view-nameq view-namesp

Copies the text of one view to another view.

DEFINE view-name

Defines a new view to DBAID.

DELETE [ALL] view-name

Deletes a row occurrence from the database.

DENY view-name user-name [...user-namep]

Revokes one or more users' privilege to use a view. Separate user
names by one space.

EDIT view-name

Prepares a saved or virtual view for modification.

ERASE

Issues an RDM RESET if an "X" FSl is returned. This command is the
opposite of KEEP.

FIELD-DEFN [view-name [column-name]]

Displays a full description of the columns in a view. Equivalent to the
COLUMN-DEFN command.

270 P25-8220-45

DBAID commands

FIELD-TEXT [view-name [column-name]]

Displays the comments for the columns in a view. Equivalent to the
COLUMN-TEXT command.

FORGET mark-name

Removes the specified mark and frees the storage allocated by a
previously issued MARK command.

INEXT O
WAST O
GET SAME U view-name
IRST 0O
RIOR[

[FOR UPDATE]

[AT mark—-name O
HWUSING literal [literal....literal n]

Retrieves and displays a row for the specified view.

INEXT O, o —
GO @’RIORQV'GW name

O INEXT 0
E LAST %
START PAME 0
0 IRST 0
0 RIOR i
i AT mark-name

[FOR number -of ~rows|

ROM [. . . O

SING@ literal , [literal 5 ...literal n]H
Issues a GET request based on a single key, followed by a series of
sweeping GETs. Displays the rows in tabular format.

HELP [topic]

Invokes the DBAID online Help facility.

RDM Administration Guide

271

Appendix A DBAID quick reference

INEXT [

QAST U
INSERT (g e]
RIORH

view-name [MASS]

Places a row in the physical database at the specified relative location.

KEEP

Prohibits an automatic RESET. The opposite of the ERASE command.

line-number [ddI-statement]

Deletes, adds, or replaces the ASD statement in the current virtual view.

LINESIZE [number-of-characters]

Specifies the number of characters to be displayed on a line.

LIST view-name

Displays a saved or virtual view and readies it for modification.

MARK view-name AT mark-name

Marks the current position of the row, as established by the previous GET
command.

MARKS

Lists all open MARKSs and the views they are marking.

OPEN [user-view-name] view-name [columnq[...,columnp]]

Readies a stored or virtual view for use by DBAID.

PAGESIZE [number-of-lines]

Specifies the number of lines to be displayed on a screen/page.

PERMIT view-name user-name [...user-namep]

Relates a view to a user(s) on the Directory. Separate each user name
with a single space.

272 P25-8220-45

DBAID commands

PRINT-STATS

Causes RDM to display the current statistics without disabling them.

RELEASE [view-name]

Closes a specific view or all views that have been opened and releases
the occupied storage.

REMOVE view-name

Removes the specified view from the Directory, together with any
relationships between the view and the database and the view and any
users.

RENUMBER view-name

Renumbers a virtual view so that the line numbering starts at 10, with
each line numbered in increments of 10.

RESET

Forces a task level abend and rolls back any database updates since the
most recent commit point.

SAVE view-name [BIND]

Stores on the Directory a view that was previously opened with an OPEN
command.

SHOW-NAVIGATION [view-name]

Allows you to verify the accuracy of the access paths used by RDM to
access the underlying entities during a view open.

SIGN-OFF

Signs off the user from DBAID.

SIGN-ON user-name [password]

Identifies the user to DBAID.

RDM Administration Guide 273

Appendix A DBAID quick reference

STATS [view-name]

Displays statistics for one or all open views, provided you previously
entered the STATS-ON command.

STATS-OFF

Prints the current statistics; then terminates statistics gathering.
STATS-ON

Initializes statistics to zero and then begins gathering statistics.
SURE

Issues a COMMIT after each successful insert, update, or delete.
UNDEFINE ile_zbv—name@

Removes the name and definition of a virtual view.

UPDATE VIEW-NAME [column:=literal4[,...columnp:=literal]]

Updates data values in the database.

USER-LIST user-view-name

Displays the column definition for the specified user view.

VIEW-DEFN [view-name]

Displays a condensed description of a view.

VIEWS

Lists all the views currently active in DBAID.

VIEWS-FOR-USER

Lists the names and short text for the views related to the signed-on user.

274 P25-8220-45

Definitions

Definitions
column-name The name of a column (logical data item) in a view.
column-number The number of the column whose name is to be displayed.
ddl-statement A View Definition statement.
line-number The number of a line in the view.
literal A group of characters used to represent a data value.
mark-name The name of the mark with which you are working.

number-of-records The number of records processed or to be processed.

topic Subject for which Help text is requested.

user-name The name of a user as defined on the Directory.
user-view-name The name of the user view with which you are working.
view-name The name of the view with which you are working.
password Password associated with the user-name on the Directory.

RDM Administration Guide 275

Appendix A DBAID quick reference

Status indicators

ASI values

Value

|Meaning

Returned when the column values are changed by another view.

This check is made only when a GET statement (not GET FOR
UPDATE) is followed by an UPDATE or DELETE statement. You
can override this check by specifying SHARED on the ALLOW clause
of an ACCESS statement.

Returned when the column is invalid (when a numeric column
contains non-numeric data, when a column failed its validation
checks [table, range, or user exit] or when a foreign key value is
incorrect).

Returned when the column contains a null value, or when no physical
record exists to supply the column value. The column in the row is
set to blanks if it is a character, or zero if it is a binary, packed,
numeric, or floating point data item; or, if the field contains the null
value, the column contains the null value. This ASI value only has
meaning on GET RDML requests.

Returned if the column exists and was filled from a different
accessed entity. (GET processing only.) An ASI of + is given to
those columns generated by new physical records. GET FIRST
returns ASls of + to all columns, because it retrieves the first row in a
view and must therefore access all associated physical records as
new.

The ASIs + and = indicate an occurrence of a new physical record
when accessing a row. Whenever a new physical record is read, its
physical data items generate ASls of +, which are assigned to their
corresponding columns in the row.

Returned if the column exists and its value was filled from the same
accessed entity as the last access (those column values generated
by unchanged physical records when a new row is read).

The ASIs + and = indicate an occurrence of a new physical record
when accessing a row. Whenever a new physical record is read, its
physical data items generate ASls of +, which are assigned to their
corresponding columns in the row.

The application programmer can place an N in the ASI during
UPDATES and INSERTS to set a column to its null value. This ASI
value is never returned by RDM.

276

P25-8220-45

Status indicators

FSI values

|Value |Meaning

*

D

Successful completion of the RDML function.

Data error: The row contains invalid or changed data (VSI=C). Check
the ASI to find the column(s) containing the invalid value. Check the
associated message in the ULT-MESSAGE area of ULT-CONTROL.

Failure: Indicates a major error. Something may be wrong with the
database, or you may have tried to perform an illegal function on the
user view. Check the associated message in the ULT-MESSAGE
area of ULT-CONTROL.

Not found: Indicates a failure due to an occurrence problem that may
be the result of a GET not found or an INSERT duplicate found.
Check the associated message in the ULT-MESSAGE area of ULT-
CONTROL.

Security check: Verify the RDML function and correct if necessary.

Unavailable resource: The resource required to complete this function
was not available; retry later.

Reset recommended: While processing, RDML modifications were
made to the database before the error condition was detected. Issue a
RESET to restore the database. RESET overrides D, F, S, or U
indicators.

RDM Administration Guide 277

Appendix A DBAID quick reference

VSI values

|Va|ue |Meaning

C At least one column was changed by another view.
\ At least one invalid ASI was returned.

- No invalid ASIs were returned, but at least one
missing ASI was returned.

+ No invalid or missing ASIs were returned, but at least
one column in the row has changed.

= No invalid, missing, or new physical occurrences were
returned by this RDM function.

278 P25-8220-45

B

Example RDM reports

This appendix contains examples of the RDM reports and a description

of their content. Each variable field in the report is given a key so that it
can be identified in the format descriptions. These keys are included for
the purpose of this description only and do not appear on the reports.

RDM Administration Guide 279

Appendix B Example RDM reports

DBA report format description

280

You can generate three DBA reports. The format of all three is the same,
as illustrated in the figure on the following page. The difference is in the
scope of the report: the first report describes all views held on the
Directory; the second describes views for a specified database and the
third describes selected views.

In addition to the three DBA reports, a fourth option allows you to produce
an online report for a specified view. This is the same as the third DBA
report on selected views except that it produces the report file while you
wait.

To produce the online report, select option 4 and enter the view name in
response to the LV: prompt. After a pause when the RDM Reporting
facility creates the report file CSI_.DBA_QCK.DAT in your default directory,
you are prompted to press RETURN for next page or press END to stop:

¢ Press RETURN to redisplay the LV: prompt.

¢ Type END and press RETURN to redisplay the initial Directory
Report Request menu (see the screens illustrated under “Stage
one—specifying the reports to be produced” on page 264).

The DBA report describes in detail each data item used in a view. Where
the reported view is a base view, the report also describes the data
provided for higher level “derived” views. In addition, the DBA report lists
the authorized users, the comments, the access definition, and the
databases to which the view is connected.

P25-8220-45

PHYSI CAL
DATA | TEM

BRANCTRL
BRANNANE
BRANREGN Y
REGNCTRL Y
BRANADDR
BRANCI TY
BRANSTAT
BRANZI PC
BRANSLSQ
BRANSTFQ
BRANDELV

DBA report format description

The following figure shows the DBA report. The table following the DBA
report provides field descriptions.

DECEMBER 8TH, 1996 10:11:11 PAGE 1

LOG CAL VI EW DBA REPORT PART 3 FOR : *

SELECTED VI EWS6 *

LOG CAL VI EW NAME : BRANCH
DATA CONSTANT VALUE LOG CAL
TYPE OR DOVAI N DATA | TEM
Key BRANCH- | D
Dat a BRANCH- NAMVE
Requi red BRANCH REG ON BRANCH- REG ON- | D
Requi r ed REG ON REG ON-1 D
Dat a BRANCH- ADDRESS
Dat a BRANCH-CI TY
Dat a STATES BRANCH- STATE
Dat a Z| P- CODES BRANCH- ZI P- CODE
Dat a BRANCH- SALES- QUCTA
Dat a BRANCH- STAFF- QUOTA
Dat a DELI VERY- ROUTES BRANCH- DEL| VERY- ROUTE

DATA PROVI DED FOR HI GHER LEVEL VI EWS :

BRANCH- LOCATI ON
BRANCH- LOCATI ON
BRANCH- LOCATI ON
BRANCH- LOCATI ON
BRANCH- LOCATI ON
BRANCH- LOCATI ON
BRANCH- LOCATI ON
BRANCH- LOCATI ON
PRODUCTS- | N- REG ON
PRODUCTS- | N- REG ON
BRANCH- STOCK
BRANCH- STOCK
PRODUCTS- | N- BRANCH
REG ON-111- | NFO
REG ON-111-1 NFO
REG ON-111- | NFO
REG ON-111- 1 NFO
REG ON-111- | NFO
BRANCHES- | N- REG ON
BRANCHES- | N- REG ON

BRANCH- NUMBER
BRANCH- NAMVE
BRANCH REG ON
BRANCH- ADDRESS
BRANCH- CI TY
BRANCH- STATE
BRANCH- ZI P- CODE
BRANCH- DELI| VERY- ROUTE
BRANCH- NUMBER
BRANCH- NAME
BRANCH- NUMBER
BRANCH- NAME
BRANCH- NUMBER
BRANCH- NUMBER
REG ON- NUMBER
BRANCH- NAMVE
BRANCH- CI TY
BRANCH- STATE
BRANCH- NUMBER
BRANCH- NAME

RDM Administration Guide

BRANCH- NUMBER
BRANCH- NAME Dat a
BRANCH REG ON
BRANCH- ADDRESS
BRANCH- CI TY Data
BRANCH- STATE Dat a
BRANCH- ZI P- CODE
BRANCH- DELI| VERY- ROUTE
BRANCH- NUMBER
BRANCH- NAME Dat a
BRANCH- NUMBER
BRANCH- NAME Dat a
BRANCH- NUMBER
BRANCH- NUVBER
BRANCH- REG ON
BRANCH- NAME Dat a
BRANCH- CI TY Data
BRANCH- STATE Dat a
BRANCH- NUMBER
BRANCH- NAME Dat a

BRANCH- DEL| VERY- ROUTE

DATA TYPE

Key
Requi red
Dat a

Dat a
Dat a
Key

Key
Key

Key

Const ant 111

Key

281

Appendix B Example RDM reports

USERS :

ACCESS DEFI NI TI ON :

ACCESS BRAN

WHERE BRANCH- | D = BRANCH- NUMBER

ALLOW ALL

* To verify that BRANCH REG ON contains a valid region
* on | NSERT and UPDATE.
ACCESS REGN

ONCE

WHERE REG ON- | D == BRANCH REG ON- | D
* To restrict deletions of branches containing custoners.
ACCESS CUST

WHERE CUSTOMER- BRANCH- | D = BRANCH- | D
* To restrict deletions of branches that have stock.
ACCESS STCK

WHERE STOCK- BRANCH- | D = BRANCH- I D

USED BY DATABASES ':

EXAVPL

282 P25-8220-45

DBA report format description

The first half of the report in preceding figure details each item used in a
view. The following information explains the fields in that half of the
report:

Field Explanation

PHYSICAL Each column in a view eventually maps to a physical data item

DATA ITEM through its logical data item equivalent, possibly via many levels of
logical view. This field shows the physical data item name.

DOMAIN A "Y" in this field indicates that the "DOMAIN OVERRIDE" feature is

OVERRIDE enabled for this physical data item. Note that this field indicates only
those domain overrides enabled through the column definition of the
view. Domain overrides entered in the access definition are not listed
here, they are given in the listing of the access definition (see field
number 15).

DATA TYPE This field shows the type of the physical data item: key, constant,
data, and so on.

CONSTANT This field contains the constant value associated with this data item

VALUE OR in this view, if there is one. If there is no constant value, this field

DOMAIN contains the domain to which the physical data item belongs, if there

LOGICAL DATA
ITEM

COLUMN

is one. If there is neither constant value nor domain associated with
the data item, this field remains blank.

This field contains the logical name associated with the physical data
item on the Directory. This name must appear as a column in the
base view and can be found by following the hierarchy of views to the
lowest level.

If the view being reported accesses a base view, the name of the
base view is given underneath the logical data item name, preceded
by the literal “FROM VIEW:".

If the base view is replaced and the column in the derived view no
longer maps onto a lower level view, the literal “..VIEW HIERARCHY
INCONSISTENT” displays.

If more than five derived views exist between the reported view and
the base view, the literal “.. MORE THAN 6 LEVELS ...” displays.

The name in this view that refers to the logical data item. This
column name is the same as the source column name, unless this
view specifies an alternative name in its column definition.

RDM Administration Guide 283

Appendix B Example RDM reports

Other views can use this reported view. The second half of the report
shown in preceding figure details the fields directly used by other views.
The following information explains those fields:

Field Explanation

FOR VIEW The view name for which data is provided by this
view.

COLUMN The name that the derived view (field 7) uses to
refer to the source column (field 9). This column
name is the same as the source column name,
unless this view specifies an alternative name in
its column definition.

SOURCE Matches the column in the base view, given in

COLUMN field 6.

DATA TYPE The type of field in the higher level view (the view
given in field 7).

CONSTANT Provides the constant value for the column when

VALUE / used in the view given in field 7.

DOMAIN

D/OV Indicates whether the domain override facility is
used in the column definition of the derived view.
Field 4 describes the constant value or domain if
this field has no value.

USERS List of the authorized users of the view.

COMMENTS Any comments on the Directory for the view.

ACCESS The access definition of the view.

DEFINITION

USED BY The databases to which this view is connected.

DATABASES

P25-8220-45

Domain usage report format description

Domain usage report format description

You can generate two Domain Usage reports. The format of both is the
same, as illustrated in the following figure. The difference is in the scope
of the report: the first report describes all domains held on the Directory;
the second report describes selected domains. Note that you can select
more than one domain for the report on selected domains.

The Domain Usage report lists the content of each domain and any
comments. It then describes the physical and logical data items that use
the domain, the base views that directly use the logical data item, and
any alias or constant values associated with the logical data item.

The following figure shows the Domain Usage report. The table following
the figure provides field descriptions.

DECEMBER 8TH, 1996 10:21:22 PAGE 1
DOVAI N USAGE REPORT PART 2 - * SELECTED DOVAI NS *

DOVAI N NAME: STATES

———————————— DATA I TEMS ------------
PHYSI CAL| LOG CAL USED DI RECTLY IN VIEWS COLUWN CONSTANT VALUE
BRANSTAT BRANCH- STATE BRANCH
CADRBSTA CADR- Bl LL- STATE
CADRSSTA CADR- SHI P- STATE
CUSTSTAT CUSTOMER- STATE CUSTOVER
ORDRSTAT ORDER- SHI P- STATE ORDER

VALI DATI ON TABLE:
VALI DATI ON EXI T:
RETRI EVAL VALI DATI ON:
VALI DATI ON TYPE:
NULLS PERM TTED:
FUNCTI ON:

UNI TS:

FORNAT:

SI G\

LENGTH:

DECI MAL PLACES:
M NI MUM VAL UE:
MAXI MUM VAL UE:
NULL VALUE:
DEFAULT VALUE:

STATES

NO

TABLE

YES

STRI NG

N A
CHARACTER
S| GNED

2

0

RDM Administration Guide 285

Appendix B Example RDM reports

DECEMBER 8TH, 1996 10: 21:22 PAGE 2
DOVAI N USAGE REPORT PART 2 - * SELECTED DOVAI NS *

DOMVAI N NAME: ZI P- CODES

———————————— DATA I TEMS ------------
PHYSI CAL| LOG CAL USED DI RECTLY IN VIEWS COLUWN CONSTANT VALUE
BRANZI PC BRANCH- ZI P- CODE BRANCH
CADRBZI P CADR- BI LL- ZI P- CODE
CADRSZI P CADR- SHI P- ZI P- CODE
CUSTZI PC CUSTOMER- ZI P- CCDE CUSTOVER
ORDRZI PC ORDER- SHI P- ZI P- CCDE ORDER

VALI DATI ON TABLE:
VALI DATI ON EXI T:
RETRI EVAL VALI DATI ON:
VALI DATI ON TYPE:
NULLS PERM TTED:
FUNCTI ON:

UNI TS:

FORNAT:

SI G\

LENGTH:

DECI MAL PLACES:
M NI MUM VAL UE:
MAXI MUM VAL UE:
NULL VALUE:
DEFAULT VALUE:

286

Valid range for all ZIP-CODES is between '00000" and '99999'.

YES
STRI NG

CHARACTER
SI GNED

00000
99999

P25-8220-45

Domain usage report format description

The table below explains the fields for the previous figures:

Field Explanation

PHYSICAL Physical data items to which the domain is
connected.

LOGICAL The logical name for each physical data item
given in field 1. This report lists only the logical
data item names used in base views.

USED Names of the base views that use the data items.

DIRECTLY IN

VIEWS

COLUMN Column name for the logical data item. The
column name is the same as the logical data item
name unless the views specify alternative names
in their column definitions. The column name
always takes precedence over the equivalent
logical data item name when the two differ
because the column is referred to by application
programs, SPECTRA, and derived views.

CONSTANT Constant value for the column, if any.

VALUE

COMMENTS Comments held on the Directory for the domain.

RDM Administration Guide

287

Appendix B Example RDM reports

Logical Data Item report format description

288

You can generate three Logical Data Item reports. The format of all three
is the same, as illustrated in the following figure. The difference is the
scope of the report: the first report describes all the logical data items in
all views; the second describes all views connected to specified
databases (note that you can specify more than one database); and the
third describes selected views.

The Logical Data Item Cross Reference report describes logical data
items, the base and derived views in which they are used and any column
names, along with any constant values or domains that are associated
with them. The report is presented in logical data item order.

P25-8220-45

LOG CAL DATA | TEM :

BRANCH
BRANCH- LOCATI ON

LOG CAL DATA | TEM :

BRANCH
BRANCH- LOCATI ON
REG ON-111- 1 NFO

LOG CAL DATA | TEM :

BRANCH
BRANCH- LOCATI ON

LOG CAL DATA | TEM :

ADD- CUSTOVER- DEFAULT:
BRANCH

BRANCH- LOCATI ON
BRANCH- PRODUCTS
BRANCH- STOCK
BRANCHES- | N- REG ON
CUSTOMER

Logical Data Item report format description

The following figure shows the Logical Data Item Cross Reference report.
The table following the figure provides field descriptions.

DECEMBER 8TH, 1996 10:12:11 PAGE 1
LOG CAL DATA | TEM CROSS- REFERENCE REPORT PART 2 FOR : EXAWPL

FROM BASE VI EW

BRANCH- ADDRESS
BRANCH
BRANCH- CI TY
BRANCH
BRANCH

BRANCH- DELI VERY- ROUTE

BRANCH
BRANCH- | D
- VALUES CUSTOVER
BRANCH

BRANCH
BRANCH

CUSTOVER- | NSERT- | NTEGRI TY

CUSTOVER- | NSERT- | NTEGRI TY- 2
CUSTOVER- | NSERT- | NTEGRI TY- 3
CUSTOMVER- UPDATE- | NTEGRI TY

CUSTOVER- UPDATE- | NTEGRI TY- 2
CUSTOVER- UPDATE- | NTEGRI TY- 3
CUSTOVER- UPDATE- | NTEGRI TY- 4

CUSTOMVERS- | N- TEXAS
CUSTOMERS- | N- TEXAS- 2

CUSTOVER
CUSTOMVER

DELETE- REG ON- W TH- NO- CUSTOVER

ORDER

PRODUCTS- | N- BRANCH
PRODUCTS- | N- REG ON
REG ON-111- 1 NFO
STOCK

RDM Administration

BRANCH
BRANCH

Guide

PHYSI CAL DATA | TEM :

CONSTANT VALUE

BRANADDR DOMAI N :

BRANCH- ADDRESS
BRANCH- ADDRESS

PHYSI CAL DATA | TEM :
BRANCH-CI TY
BRANCH-CI TY
BRANCH-CI TY

PHYSI CAL DATA | TEM :

BRANCI TY DOMAIN :

BRANDELV DOMAI N :

BRANCH- DEL| VERY- ROUTE
BRANCH- DEL| VERY- ROUTE

PHYSI CAL DATA | TEM :

BRANCTRL DOMAIN :

CUSTOVER- BRANCH
BRANCH- NUMBER
BRANCH- NUMBER
BRANCH- NUMBER

DELI VERY- ROUTES

289

Appendix B Example RDM reports

The table below explains the fields for the previous figure:

Field

Explanation

LOGICAL DATA
ITEM:

PHYSICAL
DATA ITEM:

DOMAIN:
VIEW

FROM BASE
VIEW

COLUMN

CONSTANT
VALUE

DOMAIN
OVERRIDE

The logical data item name.
The physical data item to which the logical data item maps.

The name of the domain used by the data item.
The views that use the logical data item.

If the views in field 4 use the logical data item via intermediate
access to other views, this field contains the name of the view that
uses the logical data item directly. If the view in field 4 uses the
logical data item directly, this field remains empty.

The column name that refers to this logical data item. This column
name is the same as the logical data item name, unless the views
specify alternative column names in their column definitions.

The constant value displays here if the logical data item has one.

This field contains a “Y” if the domain override feature is enabled.

290

In addition to the three DBA reports, a fourth option allows you to produce
an online report for a specified view. This report is the same as the third
DBA report on selected views except that it produces the report file while
you wait.

To produce the online report, select option 4 and enter the view name in
response to the LV: prompt. After a pause when the RDM Reporting
facility creates the report file CSI_.DBA_QCK.DAT in your default directory,
you are prompted to press RETURN for next page or press END to stop:

¢ Press RETURN to redisplay the LV: prompt.
¢ Type END and press RETURN to redisplay the initial Directory

Report Request menu (see the screens illustrated under “Stage
one—specifying the reports to be produced” on page 264).

P25-8220-45

Physical Data Item report format description

Physical Data Item report format description

You can generate three Physical Data Item reports. The format of all
three is the same, as illustrated in the following figure. The difference
between them lies in the scope of the report: the first report describes all
data sets held on the Directory; the second describes data sets
connected to a specified database and the third describes selected data
sets. Note that you can select more than one database or data set for
the second and third reports. All three reports first display details of any
indices connected to each data set, followed by the physical to logical
data item cross-reference.

The Physical Data Item Cross Reference report describes any connected
indices, the physical data items, the logical data items to which they map,
the columns used to access the logical data items, the base views they
are used in, and any constant values. Physical data items are presented
by data set in the order they are defined. Where a physical data item is
subdefined, the parent data item is followed by its sub-data-items.

In addition to the three Physical Data Item reports, a fourth option allows
you to produce an online report showing details of the indices connected
to the specified database.

To produce the online report, select option 4, and enter the database
name in response to the DBNAME: prompt. After a pause when the
RDM Reporting facility creates the report file CSI_XREF2_QCK.DAT in
your default directory, you are prompted to press RETURN for next page
or press END to stop:

¢ Press RETURN to redisplay the DBNAME: prompt.

¢ Type END and press RETURN to redisplay the initial Directory
Report Request menu (see the screens illustrated under “Stage
one—specifying the reports to be produced” on page 264).

The index details in the report file CSI_XREF2_QCK.DAT are presented in
the same format as the index details shown in the following figure.
However, the physical to logical data item details are omitted.

RDM Administration Guide 291

Appendix B Example RDM reports

The following figure shows the Physical Data Item Cross Reference
report. The table following the figure provides field descriptions.

DECEMBER 8TH, 1996 10:12:11 PAGE 1
PHYSI CAL DATA | TEM CROSS REFERENCE REPORT - PART 2 FOR EXAMPL
PRI MARY DATA SET : BRAN
RECORD PHYSI CAL
CODE DATA | TEM

LOG CAL
DATA | TEM

COLUMN OR CONSTANT VALUE

USED DI RECTLY BY VI EW8

I NDEX NAME: - RN FOR DATABASE: - EXAMPL AND FI LE: - BRAN
CORRUPT- ACTI ON: OPERATOR
NULLS SORTED: HI GH
READ VERI FY: YES
FI LE- SPECI FI CATI ON: RDM_EXAMPLE: BRAN. | DX
SHADOW FI LE- SPECI FI CATI ON:

The secondary key is needed on the foreign key REGN

KEY NANE: - BRANSKRE
UNI QUE = NO
DI RECTI ON = BOTH
ORDERI NG = NO
TYPE = DI RECT
SORT = NO
% DUPLI CATES ALLOAED = 40

Al'l ow key access to the Branch data set using the REG ON- NUMBER
foreign key.

DATA | TEMS I N KEY: -

BRANREGN

DATA | TEM CROSS- REFERENCE : -
BRANRCOT
BRANCTRL BRANCH-1 D STOCK- BRANCH STOCK
BRANCTRL BRANCH-1 D ORDER- BRANCH ORDER
BRANCTRL BRANCH-1 D BRANCH- NUMBER BRANCH- PRODUCTS
BRANCTRL BRANCH-1 D BRANCH- NUMBER DELETE- REG ON- W TH- NO- CUSTOVER
BRANCTRL BRANCH-1 D BRANCH- NUMBER BRANCH
BRANCTRL BRANCH-1 D BRANCH- NUMBER CUSTOMER- | NSERT- | NTEGRI TY
BRANCTRL BRANCH-1 D CUSTOMER- BRANCH CUSTOMER- | NSERT- | NTEGRI TY- 2
BRANCTRL BRANCH-1 D CUSTOVER- BRANCH CUSTOMER- | NSERT- | NTEGRI TY- 3
BRANCTRL BRANCH-1 D CUSTOVMER- BRANCH CUSTOMER- UPDATE- | NTEGRI TY
BRANCTRL BRANCH-1 D CUSTOMER- BRANCH CUSTOMER- UPDATE- | NTEGRI TY- 2
BRANCTRL BRANCH-1 D CUSTOMER- BRANCH CUSTOVER- UPDATE- | NTEGRI TY- 3
BRANCTRL BRANCH-1 D CUSTOVMER- BRANCH CUSTOVER- UPDATE- | NTEGRI TY- 4

DECEMBER 8TH, 1996 10:12:11 PAGE 2
PHYSI CAL DATA | TEM CROSS REFERENCE REPORT - PART 2 FOR EXAMPL

PRI MARY DATA SET : BRAN

RECORD PHYSI CAL LOG CAL

CODE DATA | TEM DATA | TEM COLUWN OR CONSTANT VALUE USED DI RECTLY BY VI EW8
BRANREGN BRANCH- REG ON-1 D BRANCH- REG ON BRANCH
BRANREGN BRANCH- REG ON-1 D REG ON- NUMBER CUSTOMER- | NSERT- | NTEGRI TY- 3
BRANREGN BRANCH- REG ON-1 D BRANCH- REG ON CUSTOVER- UPDATE- | NTEGRI TY- 3
BRANDELV BRANCH- DELI VERY- ROUTE BRANCH- DEL| VERY- ROUTE BRANCH
BRANSLSQ BRANCH- SALES- QUOTA BRANCH- SALES- QUOTA BRANCH
BRANSTFQ BRANCH- STAFF- QUOTA BRANCH- STAFF- QUOTA BRANCH
BRANLKST

292 P25-8220-45

Physical Data Item report format description

The table below explains the fields for the previous figure:

Field

Explanation

INDEX NAME: FOR
DATABASE: AND FILE:

CORRUPT-ACTION:

NULLS SORTED:
READ VERIFY:

FILE SPEC: SHADOW
FILE SPEC:

KEY NAME:
UNIQUE =

DIRECTION=

ORDERING=

TYPE =

The index name, database name and data set name.

The action taken if the index is corrupt.

¢ OPERATOR marks the index as unavailable and
prompts the operator.

¢ CONTINUE marks the index as unavailable and
continues processing without using the corrupt index
file.

¢ POPULATE performs a dynamic populate on the
corrupt index.

Where in the collating sequence nulls are sorted.

Whether the PDM checks if the index is corrupt before
reading it.

Main and shadow file specifications.

The name of the secondary key.

Whether or not the index supports duplicate secondary
keys.

The direction in which the keys are sorted in the file
(forward, reverse or both).

Whether or not the index uses pointers to ensure that
records with identical keys are retrieved in the order they
occur in the data set file.

The pointer type stored with the secondary key in order to
make sure that records with identical keys are retrieved in
the order they occur in the file. Indirect using a control key
or Direct using Relative Record Number (RRN).

RDM Administration Guide

293

Appendix B Example RDM reports

Validation Table Usage report format description

You can generate two Validation Table Usage reports. The format of
both is the same, as illustrated in the following figure. The difference
between them lies in the scope of the report; the first report describes all
validation tables on the Directory; the second report describes selected
validation tables. Note that you can select more than one validation
table.

The Validation Table report lists the values given in each validation table,
any comments, and the domains that use the validation table.

The figure below shows the Validation Table report. The table following
the figure provides field descriptions.

DECEMBER 12TH, 1996 09: 35:33 PAGE 1
VALI DATI ON TABLE REPORT PART 2 - * SELECTED TABLES *

VALI DATI ON TABLE: CUSTOVER- CLASS

001
002
003

USED | N DOVAI NS

CUSTOVER- CLASS
The following table explains the fields in the above figure.

Field Explanation
1 Comments held on the Directory for the validation table.
2 A list of valid values for a data item using a domain to

which this validation table applies.
3 A list of domains that use this validation table.

294 P25-8220-45

C

Example user validation exits

This appendix contains sample validation exists in C, COBOL, and
PASCAL. You can use validation exits to write more complex validation
logic than is available using Range and Validation tables.

You define validation exits in the Directory using the DBA Domains
functions: enter E in the Domain Validation Type field, enter the
8-character Validation Exit name in the Domain Validation Exit Name
field and then connect the Domain to the Physical Field you want the
Domain to apply. Then, using the following examples as guidelines,
code, compile, and link your program.

At run time, when RDM is processing a field that has Validation Exit
defined and you have a logical name called CSI_VAL_EXIT pointing to
the validation image, RDM will dynamically load the image, find the exit
program in the image and pass the parameters for your program to
execute.

The parameter list consists of a list of 11 addresses.

Addrl Address of the return code. The return code is a 4-byte
binary integer. The values the validation exit should set
are:

1 = Valid value or valid exit name
0 = Invalid value

Addr2 Address of the 8-character exit name.

Addr3 Address of the 30-character user name.

RDM Administration Guide 295

Appendix C Example user validation exits

Addr4
Addr5
Addré

Addr7

Addr8

Addr9

Addr10

Addr1l

296

Address of the 30-character view name.
Address of the 30-character column name.

Address of the value to be validated. The length and
format may vary.

Address of the 1-character field type:
C Character

P Packed

Z Zoned

B Binary

F Floating Point

Address of the length of the value. This is a 4-byte
binary integer.

Address of the 1-character sign flag for this field.
Y The value is signed.
N The value is not signed.

Address of the number of decimals in the value. This is
a 4-byte binary integer.

Address of the 1-character operation type. This field
indicates the type of RDML request that caused the call
of the validation exit.
G GET RDML
| INSERT RDML

UPDATE RDML

O Open of the view. Exit should return a GOOD status
for this type.

P25-8220-45

Validation Table Usage report format description

Examples

¢ This example uses COBOL to illustrate how to define a user exit.

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. ROUTEXI T.

R X

*

* This is an exanple of a SUPRA RDM validation exit.
* * It checks that the data passed to it is nuneric.

* |f so, it returns a 'good' status (1), otherw se a 'bad'
* status (0).

*
R R X

*

ENVI RONVENT DI VI S| ONL
DATA DI VI SI ON.
LI NKAGE SECTI ON.

R X

*

* Al paraneters nust be declared in the LI NKAGE SECTI ON.

*

EREE R R R EEEEEEEE RS EEEEEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS EEESEE]
*

01 RETURN- STATUS PI C S9(8) COWP.

* Status code returned to RDMindicating success or failure.

* Success = 1, Failure = 0.

01 EXI T- NAMVE PI C X(8).
* Contains the nane of the exit.

01 USER- NAMVE PI C X(30).
* The RDM user nane.

01 VI EW NAMVE PI C X(30).
* The nane of the current RDM vi ew.

RDM Administration Guide 297

Appendix C Example user validation exits

01 COLUMN- NAVE PI C X(30).
* The RDM col umm nane.

01 DATA- BUFFER PIC X(2).

* The area containing the data to be validated. The PI CTURE cl ause
* must reflect the length of the data area. It is only 2 bytes in

* length in this exanple. It may be |longer than really necessary.

* |ts true length is specified in the DATA- LENGTH paraneter.

01 DATA- FORVAT PIC X
* Single character indicating the type of data in the DATA- BUFFER

01 DATA- LENGTH PI C S9(8) COWP.
* The actual length of the data in the DATA- BUFFER

01 S| GNED PIC X
* Sign indicator. Y if signed, otherw se N

01 DECI MALS PI C S9(8) COWP.
* Nunber of decinmal places allowed.

01 OPERATI ON PIC X
* The RDM operation bei ng perforned.
* G= Get, | =Insert, U= Update, D = Del ete.

298 P25-8220-45

RDM Administration Guide

PROCEDURE Di VI SI ON
USI NG

RETURN- STATUS
EXI T- NAME
USER- NAME

VI EW NAVE
COLUMN- NAMVE
DATA- BUFFER
DATA- FORVAT
DATA- LENGTH
S| GNED

DECI MALS
OPERATI ON.

PARAGRAPH- NAME.

Validation Table Usage report format description

| F DATA- BUFFER IS NUMERI C
MOVE 1 TO RETURN- STATUS

ELSE

MOVE 0 TO RETURN- STATUS.

EXIT PROGRAM

299

Appendix C Example user validation exits

300

¢

This example uses PASCAL to illustrate how to define a user exit.

MODULE sanpl e val exit;

(**)

(* This is a sanple Pascal

Val i dati on Exit Modul e.

*)

(**)

TYPE

char8 = Packed Array [1..8] O Char;

char30 = Packed Array [1..30] O Char;
Packed Array [1..60] O Char;

char 60

[GLOBAL] PROCEDURE NOTBLANK(

VAR st at us

exit nane :
user nane :
vi ew nane :

col name
val ue
f or mat
| engt h
si gned
deci mal s

operation :

I nt eger;
char 8;
char 30;
char 30;
char 30;
char 60;
char;

I nt eger;
Char ;

I nt eger;
Char) ;

P25-8220-45

RDM Administration Guide

Validation Table Usage report format description

(***)

(* Description - This Procedure checks if the data passed via
if so,

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

the variabl e VALUE begins with a Bl ank,
status of 0 is passed back to indicate
invalid value, otherwise, a 1 is return
indicate a valid val ue.

I nput Paraneters :

exit nane :

user nane :
Vi ew nane :

col nane
val ue

f or mat
| ength
si gned

decimal s :

operation:

nane of this procedure.

30 character RDM user nane.
30 character View nane.

30 character Col um nane.

60 character buffer containing the data to be
validated. As this buffer is 60 bytes |ong,
this procedure can be used by any colum with

Il ength of 60 bytes or less. NOTE that

require a longer buffer, you nust chang

8 character validation exit nane, i.e.

an
ed to

, the

if you

e this

paraneter ! The paraneter LENGTH gives the

actual length of the data.

1 character data type.

4 Byte integer containing the data |en

1 character sign indicator, Y if signe
N ot herwi s

4 Byte integer containing the nunber of decinal

pl aces al | owed.
1 Byte character RDM operation type.
G for Get, | for Insert, U for Update,

Qut put Paraneters :

st at us

gt h.
d,
e.

etc.

*)

ax)

*)
*)
*)
*)
*)
*)
*)
*)
*)

*)

4 Byte integer to contain result of validation,?*)

1if data is valid, O otherw se.

*)

(***)

301

Appendix C Example user validation exits

BEG N

If (Operation <> '0") Then Begin

I'f (value[1l] ="' ") Then
status := 0 Return Bad status
El se
status := 1; Return Good status
End
El se Al ways return good
st at us
status := 1; for Open
END;
END.

¢ This example shows how to compile the PASCAL exit module.

$PASCAL SAMPLE VAL_EXIT

!'$ This command will conpile the nodul e which resides in a file

!'$ call ed SAMPLE_VAL_EXI T. PAS and puts the object nmodule in a file
1'$ called SAMPLE_VAL_EXI T. 0BJ which will be used by the LINKER | ater.

¢ This example shows how to link the PASCAL exit module, after it is
compiled.
! This is a sanple option file for linking the sanple validation
I exit nobdule. It is used in the following form
I LI NK/ SHARE=SAMPLE_VAL_EXI T. EXE SAMPLE_VAL_EXI T/ OPT
! where sanple val exit.exe is the nane of the Shareabl e inage
! being created. It is this nanme that you assign the Logical
! nanme CSI _VAL_EXIT to, e.g.
! $Define CSI_VAL_EXIT dev :[directory] SAVPLE_VAL_EXI T. EXE

! Note all validation exit nanes nust be nade UN VERSAL at I|ink

I tine.

SAMPLE VAL_EXI T ! Modul e containing validation exit routines.
UNI VERSAL=NOTBLANK ! Must be UNIVERSAL in order for RDMto pick
[, EXIT2, EXIT3 ...] ! up at Run Tine. TH S IS A REQU REMENT.
GSMATCH=ALWAYS, 0, 0 ! To ensure upward capability.

I All exits can cone fromthe sane nodule or nultiple nodul es

! containing one or nbre exit routines.

302 P25-8220-45

¢

RDM Administration Guide

Validation Table Usage report format description

This example uses C to illustrate how to define a user exit.

AR R AR E R AR ER R E R R R R R R R R

* This is an exanple of an RDM validation exit.
* the data passed to it contains no digits and is not all

It checks that
bl ank.

LEER AR EEE RS EE R R R RS R R R R R Ry

#i ncl ude <ctype. h>
CI TYEXI T(p_status, [/*

p_exit_nane, /*
p_user _nane, /*
p_vi ew_nane, /*
p_col um_nane, /*
p_data_buffer, /*
p_dat a_f ornat, l*
p_dat a_l engt h, l*
p_si gned, l*
p_deci mal s, /*
p_oper ati on) /*

int *p_status;

char *p_exit_nane;
char *p_user_nane;
char *p_vi ew_nane;
char *p_col utm_narne;
char *p_data_buffer;
char *p_data_format;
int *p_data_l ength;
char *p_signed;

int *p_decinals;
char *p_operation;

status to be returned

name
name
name
name
dat a

of validation exit
of RDM user

of RDM vi ew

of colum in view
to be validated

format of data

I ength of data

dat a

signed or not

nunber of decimal places
RDM oper ati on

i nt eger */
8 chars */
30 chars */
30 chars */
30 chars */
any | engt h*/
1 char */
i nt eger */
1 char */
i nt eger */
1 char */
303

Appendix C Example user validation exits

/**

* ensure its all uppercase and does not contain digits *
* and is not all spaces. *
**/
int i; /* loop control variable */
char spaces[]=" "; /* constant */
p status = 1; / indicate success until proven */
/* otherw se */

for (i =0; i <*p data length; i++)

if (isdigit(p data buffer[i]))

p status = 0; / indicate failure */
br eak; /* break | oop */

if (strncnp(p data buffer, spaces, 13) == 0)
p status = 0; / indicate failure */
return; /* return to caller */

304 P25-8220-45

D

Example database

This appendix describes the EXAMPL database provided with SUPRA
Server. The database described here is used throughout this manual for
illustration. All three schemas, internal, conceptual, and external, are
described in detail to illustrate the access paths and maintenance
function constraints imposed at the different levels.

Relations in the internal schema

The internal schema consists of the physical description of the database
and contains a mix of primary, related, and RMS data sets known as
base relations. These data sets are shown in figure below. Note that the
dashed lines represent foreign keys, and the solid lines represent
linkpaths.

RDM Administration Guide 305

Appendix D Example database

The data sets that comprise the internal schema are made up of physical
data items and linkpaths. The following bulleted list shows each physical
data item in a data set, its equivalent logical data item name (used in
base views), any foreign key relationships, and connected domains or
constant values.

¢ RMS data set REGN

Physical data

Logical data

Domain or constant

File item item Format value
REGN REGNCTRL=0002 REGION-ID PIC X(2) REGION
REGN REGNNAME=0030 REGION-NAME PIC X(30)
¢ PDM primary data set BRAN
Physical data Logical data Domain or constant
File item item Format value
BRAN BRANROOT=0008
BRAN BRANCTRL=0004 BRANCH-ID PIC X(4)
BRAN BRANNAME=0030 BRANCH-NAME PIC X(30)
BRAN BRANADDR=0040 BRANCH- PIC X(40)
ADDRESS
BRAN BRANCITY=0040 BRANCH-CITY PIC X(40)
BRAN BRANSTAT=0002 BRANCH-STATE PIC X(2) STATES
BRAN BRANZIPC=0005 BRANCH-ZIP- PIC X(5) ZIP-CODES
CODE
BRAN BRANREGN=0002 BRANCH-REGION- PIC X(2) BRANCH-REGION
ID
BRAN BRANDELV=0002 BRANCH- PIC X(2) DELIVERY-ROUTES
DELIVERY-ROUTE
BRAN BRANSLSQ=0009 BRANCH-SALES- PIC
QUOTA S9(7)VO(2)
COMP
BRAN BRANSTFQ=0009 BRANCH-STAFF- PIC S9(9)
QUOTA COMP
BRAN BRANLKST=0008 Linkpath to STCK

306

P25-8220-45

Notes

Relations in the internal schema

BRANCH-NUMBER is a foreign key in the related data set

STCK as STOCK-BRANCH and in the primary data set CUST as

CUSTOMER-BRANCH.

- REGION-NUMBER is a foreign key in the primary data set

BRAN as BRANCH-REGION.

- BRANCH-REGION has a secondary key (index) associated with

It.

- Two domains are used for REGION and BRANCH-REGION
because BRANCH-REGION may be set to the NULL value

during a nullify delete.

¢ PDM related data set STCK

| Physical data Domain or
File item Logical data item Format constant value
STCK STCKBRAN=0004 STOCK-BRANCH-ID PIC X(4)
STCK BRANLKST=0008 Linkpath to BRAN
STCK STCKPROD=0008 STOCK-PRODUCT-ID PIC X(8)
STCK PRODLKST=0008 Linkpath to PROD
STCK STCKQNTY=0009 STOCK-QUANTITY PIC S9(9)

COMP
STCK STCKBINL=0003 STOCK-BIN-LOCATION PIC X(3)
STCK STCKYTDS=0009 STOCK-YEAR-TO-DATE- PIC

SALES S9(7)V(2)
COMP
¢ PDM primary data set PROD

| |Physica| data Domain or
File item Logical data item Format constant value
PROD PRODROOT=0008
PROD PRODCTRL=0008 PRODUCT-ID PIC X(8)
PROD PRODDESC=0040 PRODUCT-DESCRIPTION PIC X(40)

RDM Administration Guide

307

Appendix D Example database

|Fi|e

Physical data

Domain or

item Logical data item Format constant value
PROD PRODQUAN=0009 PRODUCT-QUANTITY PIC X(9)
PROD PRODPRCE=0009 PRODUCT-PRICE PIC
S9(7)VO(2)
COMP
PROD PRODGRUP=0003 PRODUCT-GROUP PIC X(3)
PROD PRODLKST=0008 Linkpath to STCK
PROD PRODLKOD=0008 Linkpath to ORDT
¢ PDM primary data set CUST
| |Physica| data Domain or
File item Logical data item Format constant value
CUST CUSTROOT=0008
CUST CUSTCTRL=0008 CUSTOMER-ID PIC X(8)
CUST CUSTNAME=0060 CUSTOMER-NAME PIC X(60)
CUST CUSTADDR=0040 CUSTOMER-ADDRESS PIC X(40)
CUST CUSTCITY=0030 CUSTOMER-CITY PIC X(30)
CUST CUSTSTAT=0002 CUSTOMER-STATE PIC X(2) STATES
CUST CUSTZIPC=0005 CUSTOMER-ZIP-CODE PIC X(5) ZIP-CODES
CUST CUSTFONE=0013 CUSTOMER-PHONE- PIC X(13)
NUMBER
CUST CUSTFAXX=0013 CUSTOMER-FAX- PIC X(13)
NUMBER
CUST CUSTCLAS=0003 CUSTOMER-CLASS PIC X(3) CUSTOMER-
CLASS
CUST CUSTCRCO=0002 CUSTOMER-CREDIT- PIC X(2) CREDIT-CODES
CODE
CUST CUSTCRLM=0009 CUSTOMER-CREDIT- PIC S9(9) CREDIT-LIMIT
LIMIT COMP
CUST CUSTBRAN=0004 CUSTOMER-BRANCH-ID PIC X(4)
308 P25-8220-45

¢ PDM primary data set ORDR

Relations in the internal schema

|Fi|e

Physical data

Domain or

item Logical data item Format constant value
ORDR ORDRROOT=0008
ORDR ORDRCTRL=0006 ORDER-ID PIC X(6)
ORDR ORDRDATE=0008 ORDER-DATE PIC X(8)
ORDR ORDRSHDT=0008 ORDER-SHIP-DATE PIC X(8)
ORDR ORDRAMNT=0009 ORDER-AMOUNT PIC
S9(7)VI(2)
COMP
ORDR ORDRBRAN=0004 ORDER-BRANCH-ID PIC X(4)
ORDR ORDRLKOD=0008 Linkpath to ORDT
ORDR ORDRCUST=0008 ORDER-CUST-ID PIC X(8)
ORDR ORDRSHIP=0090 ORDER-SHIP-TO
ORDR ORDRADDR=0040 ORDER-SHIP-ADDRESS PIC X(40)
ORDR ORDRCITY=0030 ORDER-SHIP-CITY PIC X(30)
ORDR ORDRSTAT=0020 ORDER-SHIP-STATE PIC X(02) STATES
ORDR ORDRZIPC=0050 ORDER-SHIP-ZIP-CODE PIC X(05) ZIP-CODES
ORDR ORDRFONE=0013 ORDER-SHIP-PHONE PIC X(13)
¢ PDM related data set ORDT
| |Physica| data Domain or
File item Logical data item Format constant value
ORDT ORDTORDR=0006 DETAIL-ORDER-ID PIC X(6)
ORDT ORDRLKOD=0008 Linkpath to ORDR
ORDT ORDTITEM=0002 DETAIL-ITEM-NUMBER PIC X(2)
ORDT ORDTPROD=0008 DETAIL-PRODUCT-ID PIC X(8)
ORDT PRODLKOD=0008 Linkpath to PROD
ORDT ORDTQNTY=0009 DETAIL-ORDER- PIC S9(9)
QUANTITY COMP

RDM Administration Guide

309

Appendix D Example database

Base views in the conceptual schema

The conceptual schema is described by base views that access the data
sets directly by using the logical data item names. In some cases, the
base view replaces the logical data item name with an alternative column
name (the base view REGION uses the column name
REGION-NUMBER instead of the logical data item name REGION-NO).
In other cases, the base view uses the logical data item name as the
column name.

Base View: REGION

View Text:

KEY REG ON-NUMBER = REG ON-1D
REG ON- NAME

ACCESS REGN
VWHERE REG ON-1 D = REG ON- NUMBER
ALLOW ALL

* To restrict deletions of REQ ONs that contain branches.

ACCESS BRAN
WHERE BRANCH- REG ON-ID == REG ON-1D

Base View: BRANCH

View Text:

KEY BRANCH- NUMBER = BRANCH-I D
BRANCH- NAVE
REQ BRANCH- REG ON == BRANCH- REG ON-1D = REG ON-1D
BRANCH- ADDRESS
BRANCH-CI TY
BRANCH- STATE
BRANCH- ZI P- CODE
BRANCH- SALES- QUCTA
BRANCH- STAFF- QUOTA
BRANCH- DEL| VERY- ROUTE

ACCESS BRAN
WHERE BRANCH- | D = BRANCH- NUMBER
ALLOW ALL

* To verify that BRANCH REG ON contains a valid region on
* | NSERT and UPDATE.

ACCESS REGN

ONCE
VWHERE REG ON-1 D == BRANCH REG ON-1D

* To restrict deletions of branches containing custoners.

ACCESS CUST
WHERE CUSTOMER- BRANCH-| D = BRANCH-| D

* To restrict deletions of branches that have stock.

ACCESS STCK
WHERE STOCK- BRANCH- I D = BRANCH- I D

310 P25-8220-45

Base views in the conceptual schema

Base View: PRODUCT

View Text:

KEY PRODUCT- CODE = PRODUCT- | D
PRODUCT- DESCRI PTI ON
PRODUCT- WAREHOUSE- QUANTI TY
PRODUCT- PRI CE
PRODUCT- GROUP

ACCESS PROD
USI NG PRODUCT- CODE
ALLOW ALL

* To restrict deletions of products that are in stock.

ACCESS STCK
ONCE
VI A PRODLKST

* To restrict deletions of products that are currently ordered.
ACCESS ORDT

ONCE

VI A PRCDLKOD

Base View: STOCK

View Text:

KEY STOCK- BRANCH = STOCK- BRANCH- 1 D = BRANCH-I D
KEY STOCK- PRODUCT = STOCK- PRODUCT-1D = PRODUCT-1D
STOCK- QUANTI TY
STOCK- Bl N- LOCATI ON
STOCK- YEAR- TO- DATE- SALES

ACCESS STCK
WHERE STOCK- BRANCH- | D = STOCK- BRANCH AND
STOCK- PROCDUCT- | D = STOCK- PRODUCT
ALLOW ALL

* To verify that a valid branch exists on | NSERT and UPDATE.

ACCESS BRAN
ONCE
WHERE BRANCH- | D = STOCK- BRANCH- | D

* To verify that STOCK- PRODUCT contains a valid product code on
* | NSERT and UPDATE.

ACCESS PROD
ONCE
WHERE PRODUCT-1 D = STOCK- PRODUCT- 1 D

RDM Administration Guide 311

Appendix D Example database

312

Base View: ORDER

View Text:

KEY ORDER- NUMBER = ORDER-1D
REQ ORDER- CUST- NUMBER = ORDER- CUST-ID = CUSTOVER-ID

ORDER- DATE

ORDER- SHI P- DATE

ORDER- SHI P- STREET = ORDER- SHI P- ADDRESS

ORDER- SH P-CI TY

ORDER- SHI P- STATE

ORDER- SHI P- ZI P- CODE

ORDER- SHI P- PHONE

ORDER- AMOUNT
REQ ORDER- BRANCH = ORDER- BRANCH-| D = BRANCH- | D

ACCESS ORDR

WHERE ORDER- | D = ORDER- NUMBER

ALLOW ALL

* To verify that the customer nunber is valid on | NSERT and

UPDATE.

ACCESS CUST
ONCE

WHERE CUSTOMER- | D = ORDER- CUST-1 D
* To verify that ORDER-BRANCH is a valid branch nunber on
* | NSERT and UPDATE.

ACCESS BRAN
ONCE

VWHERE BRANCH- | D = ORDER- BRANCH- | D

Base View: ORDER-DETAIL

View Text:

KEY DETAI L- ORDER- NUMBER = DETAI L- ORDER-1D = ORDER-ID

KEY DETAI L- PRODUCT- NUMBER = DETAI L- PRODUCT- | D = PRODUCT- | D
DETAI L- | TEM NUMBER
DETAI L- ORDER- QUANTI TY

ACCESS CORDT

VWHERE DETAI L- ORDER- | D = DETAI L- ORDER- NUMBER

ALLOW ALL
* To verify that
ACCESS ORDR
WHERE ORDER- | D
* To verify that
ACCESS PROD

a

a

val id order exists on | NSERT and UPDATE.

DETAI L- ORDER- | D
val i d product exists on | NSERT and UPDATE.

VWHERE PRODUCT-I D = DETAI L- PRCDUCT- 1 D

P25-8220-45

Base views in the conceptual schema

Base View: CUSTOMER

View Text:

KEY CUSTOVER- NUMBER = CUSTOVER-I D
REQ CUSTOVER- NAMVE
CUSTOVER- CLASS
CUSTOVER- ADDRESS
CUSTOMER- CI TY
CUSTOMVER- STATE
CUSTOVER- ZI PCODE
CUSTOVER- CREDI T- CODE
CUSTOMER- CREDI T-LIM T
REQ CUSTOVER- BRANCH = CUSTOVER- BRANCH- | D = BRANCH-| D

ACCESS CUST
WHERE CUSTOMER-| D = CUSTOMER- NUMBER
ALLOW ALL

* To verify that CUSTOMVER- BRANCH contains a valid branch on
| NSERT
* and UPDATE.

ACCESS BRAN
ONCE
WHERE BRANCH- | D = CUSTOVER- BRANCH- | D

RDM Administration Guide 313

Appendix D Example database

Derived views in the external schema

314

Once you define your base views of the database, you can derive other
views from them. The derived views can contain columns from one base
view, or columns from several base views. They can allow the same
update options as the base views they access, or they can restrict the
update options. The following three examples show derived views of
increasing complexity:

¢ This derived view is a subset of the BRANCH base view and
excludes the BRANCH-SALES-QUOTA and
BRANCH-STAFF-QUOTA columns.

Derived View: BRANCH-LOCATION

View Text:
KEY BRANCH NUMBER
BRANCH- NAMVE
REQ BRANCH REG ON
BRANCH- ADDRESS
BRANCH- CI TY

BRANCH- STATE
BRANCH- ZI P- CODE
BRANCH- DEL| VERY- ROUTE

ACCESS BRANCH
USI NG BRANCH- NUMBER
ALLOW UPDATE

The figure below shows the base view and the number of columns it
contains and the derived view and the number of columns it obtains
from the base view. It also shows the update options specified for
the derived view.

Base View Derived View
BRANCH BRANCH-LOCATION
update
10 columns only 8 columns

P25-8220-45

RDM Administration Guide

Derived views in the external schema

The derived view BRANCH-LOCATION could then be used by users
who are not allowed to see the two quota columns. When defining
this view, you do not have to enter all of the ACCESS statements that
provide the integrity constraints, nor do you have to rewrite this view if
the physical data set BRAN is broken apart or held in another
physical file of a different name.

KEY identifies the logical key for the view. BRANCH-REGION does
not have to be required in this view; however, if BRANCH-REGION is
required, the base view will return and access only non-null, valid
data for the column. Also, by specifying that it is required, you
ensure that RDM can validate the required column in the derived
view, thereby avoiding the need for RESETSs to the database.

You can design more complex derived views that access more than
one base view. The derived view BRANCHES-IN-REGION accesses
both the REGION and the BRANCH base views to produce a
composite listing of branches within region.

Derived View: BRANCHES-IN-REGION

View Text:
KEY REG ON- NUMBER
REG ON- NAME
KEY BRANCH NUMBER
BRANCH- NAMVE
ACCESS REG ON
ONCE

USI NG REG ON- NUMBER

ACCESS BRANCH
WHERE BRANCH- REG ON = REGQ ON- NUMBER

ALLOW | NSERT UPDATE

To ensure data integrity, notice that you access BRANCH using a
column, (BRANCH-REGION) that is not being used in BRANCHES-
IN-REGION.

315

Appendix D Example database

316

The figure below shows the names of the two base views accessed
and the number of columns in each and the derived view and the
number of columns it obtains from each base view. It also shows the
update options specified for the derived view.

Base Views Derived View
BRANCH BRANCHES-IN-REGION
read
10 columns only & 2 columns

REGION

read

onl
y & 2 columns

2 columns

In addition to using two views to create a third derived view, the
update options for the BRANCHES-IN-REGION derived views are
changed. Even though REGION and BRANCH can be updated, the
BRANCHES-IN-REGION view restricts access to read-only. When
accessing a base view with a derived view, you can restrict view
update capability but not extend it. For example, if the BRANCH
base view does not have an ALLOW statement in its access
definition (it was read-only), you would be unable to allow any update
functions in any derived view that uses it.

P25-8220-45

RDM Administration Guide

Derived views in the external schema

The PRODUCTS-IN-REGION derived view lists all products in stock
in a specified region. The derived view accesses four base views for
each row, and allows the user to perform different update functions
on different base views. The following figure shows the base views
and the number of columns in each and the number of columns that
the derived view uses from each accessed base view. It also shows
the update options specified for the derived view.

Derived View: PRODUCTS-IN-REGION

View Text:
KEY REG ON- NUMBER
REG ON- NAMVE
KEY BRANCH NUMBER
BRANCH NAMVE

KEY PRODUCT- CODE = STOCK- PRODUCT = PRODUCT- CODE
PRODUCT- DESCRI PTI ON

ACCESS REG ON
USI NG REG ON- NUMBER
ALLOW UPDATE DELETE

ACCESS BRANCH
WHERE BRANCH- REG ON = REG ON- NUMBER

ALLOW ALL
ACCESS STOCK
WHERE STOCK- BRANCH = = BRANCH- NUMBER AND
STOCK- PRODUCT = STOCK- PRODUCT
ALLOW ALL

ACCESS PRODUCT
WHERE PRODUCT- CODE = STOCK- PRODUCT

317

Appendix D Example database

318

Base Views Derived View
REGION BRANCH-IN-REGION
update
and
2 columns delete 2 columns
BRANCH .
insert,
update,
10 columns delete » 2 columns
STOCK .
insert,
update,
5 columns delete » 1 column
PRODUCT
read
4 columns only » 1 column

These views are used throughout this manual to illustrate RDM.

P25-8220-45

| ndex

*

*in binding a view 149

A

access
authority to use DBAID LIST
command 192
keyed and sequential 83
access definitions
base views 50
derived views 50
examples 69
location in view definition 50
order of access statements 50
parameters
ACCESS 54
ALLOW 66
data set name 54
FROM 56
GIVING 67
ONCE 57
ORDER 67
record-code 55
REVERSE 57
SCAN 57
USING 60
VIA 58
view name 55, 56, 57, 58, 59,
60, 62, 67
WHERE 64
syntax
generalized access for base
views 52
specific access for base
views 53
syntax for generalized access
for derived views 53
access methods
defining for views 51
run-time 51

RDM Administration Guide

access named global views 255
preventing 255
access paths used 207
Access portion of the view
definition 84
access statements
order 50
accessing the database See
Database penetration
ALL, using with DELETE 162
allow specified users access to
named global views 255
ALLOW, access definition
parameter
described 66
maximum 66
allowing data set updates 66
ASI| 226
ASI. See Attribute Status
Indicators (ASI)
AT and USING 176
AT with MARK 193
Attribute Status Indicators (ASI)
226
authority for global views 247
authorize other users 128
automatic RDM RESET 166

B

base views
access definitions 50
defining direct reads 60
described 29
enforcing referential integrity 40
specifying logical data items 43
sweeping 40
batch global view creation 248
BATCH_GLOBAL_INPUT 248
bind a view
specified 149
using DBAID 237
blanks in character strings 185
bound views 231, 236
RDM access 51
rebinding 239
boundary condition 78
BYE command 152

319

Index

C

cascade delete 100, 120
CAUTIOUS command 153
opposite of SURE command
213
changes to database 131
changing view text 235
character and hexadecimal data
in USING clause of GET
176
character columns and range
checking 104
character data in GO command
180
circular navigation 75
clause
see parameter 58
close a specific view 201
Column Attribute Status
Indicators (ASI) 226
column definitions
described 36
examples 69
for the user view named 218
order 48
parameters
column name 42
CONST 41
constant value 47
FKEY 40
KEY 38
logical data item name 43
NONUNIQUE KEY 40
REQ 39
source column name 45
position in view definition 48
syntax for 37
column descriptor
FIELD-DEFN 169
column name
COLUMN-TEXT 158
column names
defining for views 42
failing to specify 42
making meaningful 42
omitting on the GIVING
parameter 67
column number
specifying in BY-LEVEL 150
COLUMN-DEFN command 154

320

COLUMN-DEFN DBAID 97
column-name
COLUMN-DEFN 154
columns
causing direct reads for
physical keys 40
displaying description 167
maximum allowed as KEY 38
maximum allowed as
NONUNIQUE KEY 38
modifying consideration 216
COLUMN-TEXT command 158
combining record codes 56
comments
displaying for a column 170
for column in view 158
in Access definitions 147
when editing a view (*) 146
COMMIT 159
after each successful insert,
update or delete 213
and the SUPRA Server
directory 153
disable auto COMMIT 153
compound keys
compound generic keys,
wildcard position in 95
compound non-unique key 89
compound physical keys
and logical keys 48
in the access definition, base
views 60
in the access definition,RMS
data sets 62
compound unique key 87
specifying in the access
definition 59
conceptual schema
described 25
CONST parameter, column
definition 41
constant keys 90
constant values
defining for a column 41
defining for views 47
null values 48
validity checking 48
COPY command 160
copy view definition to another
view 160

P25-8220-45

creating a global view file
described 243
in batch 248
interactively 245
creating an input text file 249
CSVGLOBAL 243, 248
current line-size setting 190
current page-size setting 198
current statistics for open views
210

D

data items not found 78
data movement
overriding 67
data relationships
many-to-one
establishing using coded
records 55
one-to-many
establishing using coded
records 55
establishing using SCAN 57
one-to-one
establishing using coded
records 55
establishing using ONCE 57
data retrieval
added selection criteria with
WHERE 64
defining in the access
statement
allowing physical actions 66
defining a direct read 60
ONCE 57
reverse order 57
SCAN 57
efficient method 68
many-to-one relationship 55
one-to-many relationship 55
one-to-one relationship 55
ordering (ORDER) 67
overriding normal data
movement (GIVING) 67
scanning 57
using a linkpath 58
using a secondary key 58

RDM Administration Guide

Index

data sets 162
defining for views 54
navigation
defining a data set for
navigation only 67
related to related 56
data type
of partial keys 95
database changes, modifications
required as a result of 131
database name, specifying for
batch global view execution
248
database penetration 75
database sweep 77
scanning 77
database sweep 77
database, how RDM signs on 19
DBA report 262
DBA to bind a view 236
DBA unload-reload
and ordered data sets 68
DBA utility
authorizing users 128
DBAID
commands 139
creating the column definition
36
described 135
help facility 139
invoking 136
maximum lines for a single view
189
password 138
signing on 138
sign-off 208
sign-on 209
test view
considerations 43
to bind a view 237
treatment of line numbers 189

321

Index

DBAID commands 139
* 146
=148
BIND 149, 269
BYE 152, 269
BY-LEVEL 150, 269
CAUTIOUS 153, 269
COLUMN TEXT 270
COLUMN-DEFN 154
COLUMN-TEXT 158
COLUNM DEFN 270
COMMIT 159, 270
COPY 160, 270
DEFINE 161, 270
DELETE 162
DELETE [ALL] 270
DENY 164, 270
EASE 270
EDIT 165, 270
ERASE 166
FIELD DEFN 270
FIELD TEXT 271
FIELD-DEFN 167
FIELD-TEXT 170
FORGET 172, 271
GET 173
GO 179, 271
HELP 271
INSERT 183, 272
KEEP 188, 272
line-number 189
LINESIZE 190, 272
LIST 191, 272
MARK 193, 272
MARKS 194, 272
OPEN 195, 272
PAGESIZE 198, 272
PERMIT 199, 272
PRINT STATS 273
PRINT-STATS 200
programmer’s subset 140
RELEASE 201, 273
REMOVE 202, 273
RENUMBER 203, 273
RESET 204, 273
SAVE 205, 273
SHOW NAVIGATION 273
SHOW-NAVIGATION 207
SIGN OFF 273

322

SIGN ON 273
SIGN-OFF 208
SIGN-ON 209
STATS 210, 274
STATS OFF 274
STATS ON 274
STATS-OFF 211
STATS-ON 212
substitute for last view name
used 269
SURE 213, 274
to denote a comment line 269
UNDEFINE 214, 274
UPDATE 215
UPDATE VIEW NAME 274
USER LIST 274
USER-LIST 218
VIEW DEFN 274
VIEW-DEFN 219
VIEWS 274
VIEWS FOR USER 274
default validation 96
default values 101
default wildcard characters 93
DEFINE command 161
define new view to DBAID 161
defining access definitions 50
parameters
ACCESS 54
ALLOW 66
data set name 54
FROM 56
GIVING 67
ONCE 57
ORDER 67
record-code 55
REVERSE 57
SCAN 57
USING 60
VIA 58
view name 55, 56, 57, 58, 59,
60, 62, 67
WHERE 64
syntax for
generalized access for base
views 52
generalized access for
derived views 53
specific access for base
views 53

P25-8220-45

defining column definitions 36
order of statements 48
parameters

column name 42

CONST 41

constant value 47

FKEY 40

KEY 38

logical data item name 43

NONUNIQUE KEY 40

REQ 39

source column name 45
position of in view definition 48
syntax for 37

defining views
access definition 50
access definition parameters

ACCESS 54
ALLOW 66
data set name 54
FROM 56
GIVING 67
ONCE 57
ORDER 67
record-code 55
REVERSE 57
SCAN 57
USING 60
VIA 58
view name 55, 56, 57, 58, 59,
60, 62, 67
WHERE 64
column definition
described 36
position 48
column definition parameters
column name 42
CONST 41
constant value 47
FKEY 40
KEY 38
logical data item name 43
NONUNIQUE KEY 40
REQ 39
source column name 45
examples 69
order of column definition
statements 48

RDM Administration Guide

Index

syntax
access, generalized 52
access, generalized for
derived views 53
access, specific for base
views 53
syntax for
column definitions 37
tools for defining 35
definitions 275
delete
allowing 66
cascade 120
nullify 119
restrict 118
DELETE 82
delete bound version of a view
239
DELETE command 162
DELETE processing with null
values 100
deletion integrity 108, 116
denote a comment when editing
a view (*) 146
DENY command 164
derived views
and the ALLOW parameter 66
defining a logical read 60
described 29
processing 80
purpose of access definitions
50
specifying source column 46
description of columns in view
154
details of access paths used 207
direct read
causing for physical key
columns 40
defining in the access
statement 60
directory alone 260
disable auto COMMIT 153
disable automatic RESET 188

323

Index

display
column names in view by level
of occurrence 150
comments for column in view
158
current statistics for open views
210
full description of columns in
view 154
row for view 173
display
condensed description of a
view 219
domain override 105
specifying 44, 65
domain reports 262
DOMAIN RETRIEVAL validation
enabled 97
domain usage report 262

E

EDIT command 165
EDIT mode 165
edit views 135
efficient data retrieval 68
enabling
DOMAIN RETRIEVAL 97
RU journaling 137
END to stop mass inserting 186
entering comments 147
ERASE command 166
errors during user authorization
199
errors while denying user access
to a view 164
examples
global view report file 258
of view definition 69
exit CSVDBAID image 152
exit DBAID Test Facility 152
exits 104
external schema
described 26

324

F

FIELD-DEFN command 167
FIELD-DEFN output 169
FIELD-TEXT command 170
file access
to PDM files 17
to RMS files 17
file types
supported by Relational Data
Manager 17
files
sweeping 40
fixed value 90
FKEY
column definition parameter 40
restriction 109
forcing a generic read at PDM
level 176
foreign key 106
nullify 119
rules for defining 109
value integrity 108, 109
FORGET command 172
FROM
access definition parameter 56
in GO command 180
FSI values 277
FSI. See Function Status
Indicators (FSI)
function status indicator,values
225
Function Status Indicators (FSI)
224

G

generalized access syntax
base views 52
derived views 53
described 65
generating reports 268
generic keys
in GET 176
specifying in the access 59
generic read 93
forcing 63
forcing at PDM level 176

P25-8220-45

GET 80
considerations for using 115
effect of required columns 39
processing of with null values

wildcard characters 95
GET command 173
GIVING, access definition
parameter 67
global view file 243, 245
global view input file 249
global views 232, 234
and RDM access 51
and the directory 260
in preference to view definitions
242
GO command 179
group
specifying in batch global input
file 253

H

help facility
DBAID 139

identify user to DBAID 209
incremental movement 77
index checking 162
indexes
specifying in the access
definition 58
initialize statistics to zero 212
input text file 249
INSERT 81
effect of required columns 39
INSERT command 183
INSERT processing with null
values 99
insert records accessed through
a secondary key 92
insert rows
longer than one line 184
using the ORDER parameter
68
insert, allowing 66
insertion integrity 110
INT prefix 151

RDM Administration Guide

Index

integrity 108. See also referential
integrity
deletion 116
insertion 110
update 112
internal schema
described 24
invalid values in KEY columns
causing RDM to disregard 40
invoking DBAID 136
issue a GET request based on a
single key 179
issue RDM COMMIT request 159
issue RDM DELETE request 162
issuing a RESET 188

J
join compatibility 105

K

KEEP command 188
KEY columns
disregarding null occurences in
40
key value 87
key values in UPDATE command
216
KEY, column definition parameter
38
keyed access 83
keys 86
partial values 93
keys specified in GET 176
keys. See also logical, Physical

L

length
of constant values 47
LEVEL 05 138
level of occurrence 150
lines to be displayed on a
screen/page 198
LINESIZE command 190
linkpaths
defining in the access
statement 58
list all open MARKSs 194

325

Index

LIST command 191
with OPEN 196
list views 135, 202
lock out other users'
modifications 175
logical data items
cross reference report 262
default for column definitions
43
defining for views 43
how RDM accesses multiple 44
mapping the same value to
many 44
logical keys 78
defining 84
number of 85
specifying more than one
column as 48
logical name GVSCHEMA 241
logical views. See views
logicals, for running
with directory alone 260
with no directory 259
with the directory and global
views 260

M

maintain uniqueness of physical
keys 86
MANTIS and SPECTRA support
for nulls 100
many-to-many relationship
establishing using coded-
records 55
mapping the same value to many
logical data items 44
mapping to a physical key 85
MARK command 193
mark the current position of a row
193
MARKS command 194
mass inserting 186
MASS parameter in INSERT 184
maximum
KEY columns in a view 38
NONUNIQUE KEY columns in
a view 38
maximum keys specified in GET
176

326

maximum length for a default
value 101

maximum lines in DBAID for a
single view 189

meaningful names, assigning to
columns 42

modifying a view 165

more than one user in a single
PERMIT command 199

multiple column names 42

multiple logical data items

how RDM accesses 44

multiple rows on a single line 184

multiple users in a single
PERMIT command 199

N

navigation 75
defining a data set for
navigation only 67
related data set to related data
set 56
network and RU journaling 137
no validation 103
NONUNIQUE KEY parameter,
column definition 40
nonunique keys 88
combined with key columns 48
retrieval options 174
NULL flag 98
null values 98
and constant values 48
and DELETE processing 100
and GET processing 99
and INSERT processing 99
and required column 99
and UPDATE processing 99
defining for foreign keys 40
in KEY columns causing RDM
to disregard 40
inserting 114
warning 114
nullify delete 100, 119
nullify foreign key 119
number of characters to be
displayed on a line 190
number of lines to be displayed
on a screen/page 198

P25-8220-45

O

omit the key 83
ONCE, access definition
parameter 57
one-to-many relationship
establishing using coded-
records 55
establising using SCAN 57
one-to-one keyed relationship 75
one-to-one relationship
establishing 57
establishing using coded-
records 55
OPEN command 195
with LIST 196
or operator
caution about using 56
described 55
order
defining in the access
statement 67
of access statements 50
of column definition statements
48
of keys in USING clause 176
of secondary keys 84
overriding
domain checking 44
normal data movement 67
view access 164

P

PAGESIZE command 198
parameters
access definition

ACCESS 54
ALLOW 66
data retrieval 57
data set name 54
FROM 56
GIVING 67
ONCE 57
ORDER 67
record-code 55
related data sets 56
REVERSE 57
reverse order 57
SCAN 57

RDM Administration Guide

Index

USING 60
VIA 58
view name 55, 56, 57, 58, 59,
60, 62, 67
WHERE 64
column definition
column name 42
CONST 41
constant value 47
FKEY 40
KEY 38
logical data item name 43
NONUNIQUE KEY 40
REQ 39
source column name 45
partial key 95
parts of a view 35
password for DBAID 138
PDM. See Physical Data
Manager
penetrating the database. See
database penetration
performance 84, 116
PERMIT command 199
physical actions, specifying for
data sets 66
physical changes to database
131
physical data item cross
reference report 262
physical data items
using in the column definitions
43
Physical Data Manager
data sets
how RDM accesses 17
physical key columns
causing direct reads for 40
physical keyed access 83, 84
position in the database 75
positional GET 75
positional modifier 179
positional relationship 75
prevent specified users from
accessing named global
views 255
print current statistics 211
PRINT-STATS command 200
programmer’s subset
commands included in 140

327

Index

R

range checking 104
range values limit 104
RDM
access to the SUPRA Server
directory 259
RDM access
strategy when specifying
WHERE without USING 64
RDM COMMIT request 159
RDM DELETE request 162
RDM index checking 162
RDM reports 263
RDM RESET 166
RDM status indicators 230
RDM. See Relational Data
Manager
RDML commands
effect of required columns 39
rebind a view 239, 240
record codes
and ordering 68
combining 56
defining in the access
statement 55
recovery
for RMS data sets 17
recovery unit journaling, enabling
137
referential integrity 106
enforcing in base views 40
example 107
examples 121
RDM checking 108
rules 108
reissue previous RDML
command (=) 148
relate a view to user(s) on the
Directory 199
related data set
defining in the access
statement 56
navigation 56
relating views to users 128
Relational Data Manager
access methods
and run-time 51
defining access method 51
described 15

328

file access to PDM and RDM
data sets 17
file types supported 17
handling of view-open requests
21
reads of database 85
reports available 31
role in SUPRA Server system
18
role in three schema
architecture 27
row construction 74
security 33
sign-on to the database 19
status indicators 226
relationships. See data
relationships
RELEASE command 201
release occupied storage after
closing a view 201
remove a view 202
REMOVE command 202
remove one or more row
occurrences from the
database 162
remove specified mark and
resources from list of marks
172
remove the name and definition
of a virtual view 214
RENUMBER command 203
replacements, allowing for rows
66
reports 97
description of 31
RDM 263
reposition a view 175
REQ parameter, column
definition 39
required columns 85, 99
defining 39
defining a constant value 41
defining a non-unique key 40
defining unique logical key 38
parameters for specifying 48
RESET
automatic 166
disabling automatic 188
RESET command 204
reset statistical information 210

P25-8220-45

restrict delete 118
restricting user access to global
views 247
retrieve row for a view 173
retrieving data
in reverse order 57
reverse order
specifying 57
revoke user’s privilege to use a
view in SUPRA Server
Directory 164
RMS data sets 116, 162
access strategy when WHERE
is not specified 64
defining RMS key for in access
definitions 59
how RDM accesses 17
recovery 17
specifying direct reads 62
RMS files
enabling journaling 137
RMS keys
defining in the access
statement 59
RMS, retrieving 174
roll back database updates 204
row occurrences in database,
removing 162
RU journaling and network 137
run without a SUPRA Server
directory 259
run without a SUPRA Server
Directory 242
run-time
and RDM access methods 51

S

SAVE command 205
save specified view 149
saved views in DBAID 191, 195
saving views 205
maximum length allowed 47
SCAN, access definition
parameter 57
scanning a data set 57
secondary keys 84
and partial keys 95
defined 92
defining in the access
statement 58

RDM Administration Guide

Index

reverse retrieval 57
USING parameter 58
security 33
overriding 164
sequential access 83
sequential search
defining for file or base view
search 40
serial scan 83
shared columns 126
shared updates
allowing 66
consideration 66
SHOW-NAVIGATION command
207
sign user off from DBAID 208
signing on to DBAID 138
SIGN-OFF command 208
sign-on as another user during a
DBAID session 209
SIGN-ON command 209
simple nonunique key 89
simple unique key 86
single quotes in UPDATE
command 216
source columns
defining for views 45
source relation 106
specific access syntax 53
specify all views on the directory
as global views 254
specify number of characters to
be displayed on a line 190
specifying domain override 44
SPECTRA availability 239
START 180
starting DBAID 136
STATS command 210
STATS-OFF command 211
with PRINT-STATS 200
with STATS command 210
with STATS-ON command 212
STATS-ON command 212
with PRINT-STATS 200
with STATS command 210
with STATS-OFF command
211
status indicators 224
FSl values 277
VSl values 278
stop mass inserting 186

329

Index

storage
of global views 234
of views, releasing 201
storage, freeing with the
UNDEFINE command 214
SUCCESSFUL COMPLETION -
LEVEL 05 138
SUPRA DBA
creating the column definition
with 36
difference from DBAID 35
SUPRA Server directory
running without 259
view length allowed 47
SUPRA Server Directory
and COMMIT 153
SUPRA Server system
role of Relational Data Manager
18
three schema architecture 23
SURE command 213
opposite of CAUTIOUS
command 213
syntax
for access statements
generalized access for base
views 52
generalized access for
derived views 53
specific access for base
views 53
for column definitions 37

T

table checking 104

table entries
maximum 104

table of values 104

target relation 106

test a view 240

test view. See DBAID test view

text file, input 249

three schema architecture
conceptual schema 25
described 23
external schema 26
internal schema 24
role of RDM in 27

tools for defining views 35

330

U

UNDEFINE command 214
unique constant 90
unique key 86
retrieval options 174
UPDATE 82
effect of required columns on
39
UPDATE command 215
update data values in the
database 215
update integrity 112
UPDATE processing with null
values 99
update records accessed through
a secondary key 92
user access
restricting 247
user to view on Directory 199
user to view relationship
removing 164
user view column definition 218
user views 30
USER-LIST command 218
users
relating views to 128
USING with DBAID GET 176
USING, access definition
parameter 58
USING, in the GO command 180

V

validation

checking 103

DOMAIN RETRIEVAL 97

exit 104

options 103

table 104

table usage report 262
validity checking

and constant values 48
Validity Status Indicators (VSI)

230

VIA 58
view definitions

examples 69
view text 235
view to user on Directory 199
view, removing 202
VIEW-DEFN command 219

P25-8220-45

VIEW-DEFN output 220
views
access definitions 50
access syntax
generalized syntax for base
views 52
generalized syntax for derived
views 53
specific syntax for base views
53
column definitions 36
creating with DBAID 36
creating with SUPRA DBA 36
defining
order of column definition
statements 48
position of column definition
48
defining access definition
parameters
ACCESS 54
ALLOW 66
data set name 54
FROM 56
GIVING 67
ONCE 57
ORDER 67
record-code 55
REVERSE 57
SCAN 57
USING 60
VIA 58
view name 55, 56, 57, 58, 59,
60, 62, 67
WHERE 64
defining column definition
parameters
column-name 42
CONST 41
constant value 47
FKEY 40
KEY 38
logical data item name 43
NONUNIQUE KEY 40
REQ 39
source column name 45

RDM Administration Guide

Index

defining column definition
syntax 37
defining in the access
statement 55, 56, 57, 58,
59, 60, 62, 67
described 28
maximum number of lines in
DBAID 189
opening
how RDM handles 21
parts 35
relating users 128
repositioning 175
selecting for the global view file
246
sharing columns 126
types 29
user views 30
uses 29
virtual views
displaying in DBAID 191
opening in DBAID 195
renumbering 203
text of 201
VSl values 278
VSI. See Validity Status
Indicators (VSI)

W

warning
null value 114
WHERE, access definition
parameter
defining 64
specifying without USING in
RMS data sets 64
wildcard character
position of in key 95

331

Index

332 P25-8220-45

	Back to DOCUMENTATION MENU
	About this book
	Using this document
	Document organization
	Conventions

	SUPRA Server documentation series

	Chapter 1 - Introduction to the Relational Data Manager
	The role of the RDM in the SUPRA Server system
	How RDM signs on to the database
	How RDM handles view-open requests
	SUPRA Server's three schema architecture
	The internal schema: Physical Data Description
	The conceptual schema: base views
	The external schema: derived views
	How the RDM fits into the three schema architecture

	Views
	Two types of views
	How views are used
	User views

	RDM reports
	RDM security
	Example database

	Chapter 2 - Parts of a view
	Column definitions
	Access definitions

	Chapter 3 - View design considerations
	How RDM constructs rows
	Database penetration
	Database sweep
	Navigational constraints and boundary conditions
	Processing derived views
	Processing the GET command
	Processing the INSERT command
	Processing the UPDATE command
	Processing the DELETE command

	Keyed access to data
	Unique keys
	Simple unique keys
	Compound unique keys

	Non˚unique keys
	Simple non˚unique keys
	Compound non˚unique keys

	Constant keys
	Secondary access keys
	Generic reads

	Domains
	Null values
	GET Processing with null values
	INSERT processing with null values
	UPDATE processing with null values
	DELETE processing with null values
	MANTIS and SPECTRA support for nulls

	Default values
	Validation options
	Range checking
	Table checking
	Exits

	Join compatibility

	Referential integrity with RDM
	Integrity rules and checking
	Foreign key value integrity
	Insertion integrity
	Update integrity
	GET processing
	Deletion integrity
	Restrict delete
	Nullify delete
	Cascade delete

	Referential integrity examples

	Shared column values
	View-to-user relationships

	Chapter 4 - Physical and logical database changes
	Overview
	Physical and logical database actions

	Chapter 5 - Defining and testing views using DBAID
	Invoking DBAID
	Signing on to DBAID
	Using DBAID commands
	* command
	= command
	BIND command
	BY˚LEVEL command
	BYE command
	CAUTIOUS command
	COLUMN˚DEFN command
	COLUMN˚TEXT command
	COMMIT command
	COPY command
	DEFINE command
	DELETE command
	DENY command
	EDIT command
	ERASE command
	FIELD˚DEFN command
	FIELD-TEXT command
	FORGET command
	GET command
	GO command
	INSERT command
	KEEP command
	line˚number command
	LINESIZE command
	LIST command
	MARK command
	MARKS command
	OPEN command
	PAGESIZE command
	PERMIT command
	PRINT˚STATS command
	RELEASE command
	REMOVE command
	RENUMBER command
	RESET command
	SAVE command
	SHOW˚NAVIGATION command
	SIGN-OFF command
	SIGN˚ON command
	STATS command
	STATS˚OFF command
	STATS˚ON command
	SURE command
	UNDEFINE command
	UPDATE command
	USER˚LIST command
	VIEW˚DEFN command
	VIEWS command
	VIEWS˚FOR˚USER command

	Chapter 6 - RDM status indicators
	Function Status Indicators (FSIs)
	Column Attribute Status Indicators (ASIs)
	Validity Status Indicators (VSIs)

	Chapter 7 - Optimizing view performance using bound and global views
	Differences between bound and global views
	Advantages of using global views
	Changing view text: a note of caution
	Changing the text of a view when using bound views only
	Changing the text of a view when using global views
	Changing the text of a view when bound views are included in a global view file

	Bound views
	Binding a view
	Using DBA to bind a view
	Binding a view using DBAID

	Ensuring that you update a bound view
	Deleting the bound view only
	Deleting both the view definition and the bound view
	Rebinding a view after making changes to view text
	Testing views: failing to rebind a view

	Global views
	Creating a Global View file
	Interactive Global View file creation
	Batch Global View file creation

	Example Global View input files
	Example Global View report file

	Options for RDM access to the SUPRA Server directory
	Running without the directory
	Running with the directory and with Global Views
	Running with the directory alone

	Chapter 8 - Generating RDM reports
	RDM reports
	Stage one—specifying the reports to be produced
	Stage two—generating the reports

	Appendix A - DBAID quick reference
	DBAID commands
	Definitions
	Status indicators
	ASI values
	FSI values
	VSI values

	Appendix B - Example RDM reports
	DBA report format description
	Domain usage report format description
	Logical Data Item report format description
	Physical Data Item report format description
	Validation Table Usage report format description

	Appendix C - Example user validation exits
	Appendix D - Example database
	Relations in the internal schema
	Base views in the conceptual schema
	Derived views in the external schema

	Index

