AllIFusion™ Endevor®
Change Manager

Extended Processors Guide
4.0

a)

Computer Associates™

ENPRO400

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation ““as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,

goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

First Edition, December 2002

© 2002 Computer Associates International, Inc.
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Contents

Chapter 1. Introduction 1-1
1.1 Processor Overview 1-2
1.2 Processor Group Overview 1-3
1.3 Processors and Element Types 1-4
1.4 Processors Invoked by Endevor Actions 1-5
1.5 Documentation Overview 1-6
1.6 Name Masking 1-7
1.6.1 Usage 1-7
1.7 Syntax Conventions 1-9
1.7.1 Sample Syntax Diagram 1-12
1.7.2 Syntax Diagram Explanation 1-12
1.7.3 General Coding Information 1-14
1.7.3.1 Valid Characters 1-14
1.7.3.2 Incompatible Commands and Clauses 1-15
1.7.3.3 Ending A Statement 1-15
1.7.3.4 SCL Parsing Information 1-15
Chapter 2. Writing Processors 2-1
2.1 Overview 2-2
2.2 Suggested Processor Naming Conventions 2-3
2.3 Processor Features 2-4
2.3.1 Reserved Words and Labels 2-4
2.4 Processor Keywords 2-5
24.1 FOOTPRNT 2-5
242 MAXRC 2-6
MAXRC Scenario 2-7
MAXRC Example 2-7

243 EXECIF 2-7
244 BACKOUT 2-9
245 MONITOR 2-9
2.5 Symbolic Parameters 2-10
2.5.1 Using the Ampersand (&) 2-10
2.5.2 General Guidelines 2-11
2.5.3 User Symbolics 2-11
2.5.4 Site Symbolics 2-12
2.5.5 Using Site Symbolics in Processors 2-12
2.5.6 Defining Site Symbolics oL 2-13
2.5.7 Endevor Symbolics 2-14
2.5.7.1 Substringing 2-19

Contents iii

2.5.8 In-Stream Data

2.6 Controlling Processor Flow

2.6.1 IF-THEN-ELSE statement

2.6.1.1 RC

2.6.1.2 ABENDCC

2.6.1.3 ABEND

2.6.1.4 -ABEND
2.6.1.5 RUN

2.6.1.6 -RUN

2.6.2 The ENDEVOR IF-THEN-ELSE Trace Facility

Sample output

2.7 Authorizing a Non-Endevor Program

Chapter 3. Processor Utilities
3.1 Overview
3.1.1 Utilities Available
3.2 BCIPDSIN Utility

3.2.1 Sample JCL
3.3 BCIPTMPO Utility

3.3.1 Sample JCL
3.3.1.1 Parameters

3.3.2 Return Codes
3.3.2.1 Other Return Codes
3.4 BCIPXFPI Utility
3.5 BSTCOPY Utility
3.5.1 Supported Copy Functions
3.5.1.1 BSTCOPY Syntax - Literal Interpretation

3.5.1.2 BSTCOPY Syntax - Alternate Interpretation

3.5.2 Unsupported Functions
3.5.3 BSTCOPY and OVERLAY Modules
3.5.4 SYSPRINT DCB Information
3.6 C1BM3000 Utility
3.6.1 Do Not Use...
3.6.2 Sample JCL
3.7 CIPRMGEN Utility
3.7.1 Sample JCL
3.7.1.1 Parameters
3.8 CONAPI Utility
3.8.1 Sample JCL
3.9 CONDELE Utility
3.9.1 Sample JCL
3.9.1.1 Parameters
3.10 CONLIST Utility
3.10.1 Banner Pages
3.10.2 STORE Option
3.10.3 PRINT Option
3.10.4 PRTMBR (Print Member) Option
3.10.5 COPY Option
3.10.6 DELETE Option
3.10.7 Guidelines When Creating Listings
3.11 CONRELE Utility

iv Extended Processors Guide

3.11.1 CONRELE Utility Commands 3-26

3.11.2 RELATE ELEMENT Command Syntax 3-26
3.11.2.1 RELate ELEment Syntax 3-27
Parameters 3-27

3.11.3 RELATE MEMBER Command syntax 3-28
3.11.3.1 RELate MEMber Syntax 3-28
Parameters 3-28

3.11.4 RELATE OBJECT Command Syntax 3-28
3.11.4.1 RELate OBJect Syntax 3-28
Parameters 3-29

3.11.5 RELATE COMMENT Command Syntax 3-29
3.11.5.1 RELate COMment Syntax 3-29
Parameters 3-29

3.11.6 SET ERROR RETURN CODE Command Syntax 3-29
3.11.6.1 SET ERRor RETurn CODe Syntax 3-29
Parameters 3-29

3.11.7 Example of CONRELE Syntax 3-29
3.12 CONSCAN Utility 3-32
3.12.1 CONSCAN Parameter Data Set 3-32
3.12.2 PARMSCAN Parameter Statements 3-32
3.12.3 Excluding Source Data 3-33
Exclusion Group Syntax 3-33
Exclusion Group Examples 3-34

3.12.4 Selecting Source Data L. 3-34
Selection Group Syntax 3-35

3.12.4.1 Generated CONRELE Control Statements 3-38
Selection Group Examples 3-38

3.12.5 Scan Rule Processing, 3-40
3.12.5.1 Sample CONSCAN Utility Processor 3-41
3.12.6 Error Messages 3-42
3.13 CONWRITE Utility 3-43
3.13.1 Writing Component List Data to an External Location 3-43
3.13.1.1 Component List Data 3-43
3.13.1.2 Output Format 3-44
3.13.2 Writing Elements to an External Location 3-44
3.13.3 Standard Form of CONWRITE 3-44
3.13.4 Extended Form of CONWRITE 3-45
3.13.5 Command Syntax for the CONWRITE Utility 3-45
3.13.5.1 CONWRITE Syntax 3-45
Parameters 3-46

3.13.6 Using CONWRITE to Expand INCLUDEs 3-47
3.13.6.1 The PARM=EXPINCL() Clause 3-48
3.13.7 Writing Exit Programs to Use CONWRITE Input 3-49
Chapter 4. Classifying and Managing Processors 4-1
4.1 OVervIeW o oo 4-2
4.2 Classifying Processors 4-3
4.3 Managing Processors 4-5
4.3.1 Procedure: Implementing Processors 4-5
4.3.2 Procedure: Maintaining Processors 4-6

Contents v

4.3.3 Where Endevor Looks for Processors 4-7

Chapter 5. Processor Groups 5-1
5.1 Processor Group Overview 5-2
5.1.1 Three Types e 5-2
5.1.2 Suggested Naming Conventions for Processor Groups 5-2
5.1.2.1 Example 5-3

5.1.3 User-Defined Symbolics 5-4
5.2 Working with Processor Group Information 5-5
5.2.1 From the Environment Options Menu 5-5
5.2.2 From the Type Definition Panel 5-6
5.3 Working with Processor Group Symbolics 5-7
5.3.1.1 Example 5-8

5.3.2 Displaying Processors 5-10
5.4 Processor Group Selection List 5-11
5.5 Processor Group Definition Panel 5-12
5.5.1 Identification Fields 5-13
5.5.2 Output Management Information Fields 5-14
5.5.2.1 Move/Transfer Processor Selection 5-14
5.5.22 Option Fields 5-15
5.5.2.3 Processor Identification Fields 5-15
5.5.2.4 Foreground Execution Fields 5-16

5.6 Processor Group Symbolics Panel 5-17
5.6.1 Identification Fields 5-17
5.6.2 Symbolic Identification Fields 5-17
5.7 Processor Display Panel 5-19
Appendix A. Sample Processors A-1
A.1 Sample Processor Overview A-2
A.2 Converting PROCs to Processors A-3
A.3 Generate Processors A-5
A3.1 GCIIDBL A-6
A3.2 GCIINBL A-11
A33 GLNKNBL A-14
A3.4 GASMNBL A-16
A.3.5 LOADONLY A-19
A4 Delete Processors A-21
A4.1 DLODDNL A-22
A.42 DLODNNL A-23
A5 Move Processors A-24
A5.1 MLODDNL A-25
A52 MLODNNL A-28
A.6 Other Processors A-30
Appendix B. Unsupported Parameters B-1
B.1 General Restrictions B-2
B.2 EXEC Statement Parameters B-3
B.3 DD Statement Parameters L. B-4
B.4 DCB Subparameters B-5
B.5 DDNAME Subparameters B-6

vi Extended Processors Guide

Contents vii

viii Extended Processors Guide

Chapter 1. Introduction

Chapter 1. Introduction 1-1

1.1 Processor Overview

1.1 Processor Overview

Endevor allows you to create and maintain processors. Coded using standard JCL,
processors instruct Endevor to modify, move, verify, delete, or create executable forms
of elements. There are three types of processors:

B Generate processors create listings, object modules, and/or load modules.
® Delete processors delete generate processor outputs.
& Move processors move elements from one map location to another.

The term extended processor refers to a user-written processor that is defined to
Endevor. It supplies functionality beyond writing or deleting a member in an output
library.

1-2 Extended Processors Guide

1.2 Processor Group Overview

1.2 Processor Group Overview

Processors may be specified in processor groups. A processor group consists of:

B One generate, one delete, and one move processor, or any combination thereof.
(For example, a non-executable element may require only a move processor in its
processor group. You cannot, however, have multiple processors of the same type
in a processor group.)

® The default symbolic overrides for the processors' JCL.

Processor groups allow you to handle common variations among the members of a
particular type quickly and easily. If you create a single set of processors using
symbolic parameters, you can create different processor groups using the same set of
processors but containing different default symbolic overrides. For example, your site
has applications coded in COBOL and COBOL/370. You could define a single type,
COBOL, and have two processor groups, one for COBOL II and another processor
group for COBOL/370. (For more information, see 2.5, “Symbolic Parameters” on
page 2-10.)

Chapter 1. Introduction 1-3

1.3 Processors and Element Types

1.3 Processors and Element Types

Each element type can have multiple processor groups associated with it, but each
element within that type must be associated with only one group. When you define
the element type, you define one processor group as the default. When you add an
element of that type, Endevor automatically assigns the default processor group to the
element. You can override this assignment on the Add/Update Elements panel. (For
more information about defining types, see the Administration Guide. For more
information about adding elements, see the User Guide.)

You add processors to Endevor in the same manner as other elements. They must be
added to type Process, or they are not executable.

Note: Since Endevor processors get translated into load modules, they should not be
named the same as any programs you may be executing within a processor. For
example, do not name a processor CONWRITE or IEWL.

1-4 Extended Processors Guide

1.4 Processors Invoked by Endevor Actions

1.4 Processors Invoked by Endevor Actions

Endevor actions invoke processors as indicated in the following table.

This action

Invokes this processor

And provides these options

Add Generate Processor group
Bypass generate processor
Archive Delete Bypass element delete
Delete Delete Bypass element delete
Generate Generate (and delete if Processor group
processor group changes)
Move Move (default) or Bypass element delete
generate, and delete
Restore Generate Processor group
Bypass generate processor
Transfer Generate (default) or Processor group
move, and delete
Bypass generate processor
Bypass delete processor
Bypass element delete
Update Generate Processor group

Bypass generate processor

The COPY, DISPLAY, LIST, PRINT, RETRIEVE, and SIGNIN actions do not invoke

processors.

For information about processor groups, see Chapter 5, “Processor Groups” in this
manual. For information about how Endevor determines which processor group to use
for an action, see the section “Action Processing,” in the User Guide.

Chapter 1. Introduction 1-5

1.5 Documentation Overview

1.5 Documentation Overview

This manual is part of a comprehensive documentation set that fully describes the
features and functions of Endevor and explains how to perform everyday tasks. For a
complete list of Endevor manuals, see the PDF Table of Contents file in the PDF
directory, or the Bookmanager Bookshelf file in the Books directory.

The following section describes product conventions.

1-6 Extended Processors Guide

1.6 Name Masking

1.6 Name Masking

1.6.1 Usage

A name mask allows you to specify all names, or all names beginning with a
particular string, to be considered when performing an action.
Name masks are valid on:

® Element names

® System, subsystem, and type names within FROM clauses

B Report syntax

® ISPF panels

® API requests

Name masks are not valid on:
® Environment names
8 Element names in the following situations:
— When entering a LEVel in a statement
— When using the MEMber clause with a particular action

— When building a package

There are three ways to mask names: by using the wildcard character (¥), by using the
placeholder character (%), and by using both together.

The wildcard (*) can be used in one of two ways to specify external file names:

B When coded as the only character of a search string, Endevor returns all members
of the search field. For example, if you coded the statement ADD ELEMENT *,
all elements would be added.

B When coded as the last character of a search string, Endevor returns all members
of the search field beginning with the characters in the search string preceding the
wildcard. For example, the statement ADD ELEMENT UPD* would add all
elements beginning with "UPD", such as UPDATED or UPDATE.

Note: You cannot use more than one wildcard in a string. The statement ADD
ELEMENT U*PD* would result in an error.

The placeholder (%) can also be used in one of two ways:

& When coded as the last character in a string, Endevor returns all members of the
search field, beginning with the characters in the search string preceding the
placeholder, but which have no more characters than were coded in the search
string. If you coded the statement ADD ELEMENT UPD%, only those elements

Chapter 1. Introduction 1-7

1.6 Name Masking

with four-character-long names beginning with "UPD" (UPD1 or UPDA, for
example) would be added.

® [t is also possible to use the placeholder multiple times in a single search string.
The statement ADD ELEMENT U%PD% would return all elements with
five-character-long names that have U as the first character, and PD third and
fourth.

The wildcard and the placeholder can be used together, provided that the wildcard
appears only at the end of the search string and is used only once. An example of a
statement using both the wildcard and the placeholder is ADD ELEMENT U%D*.
This statement would add elements with names of any length that have U as the first
character and D as the third.

1-8 Extended Processors Guide

1.7 Syntax Conventions

1.7 Syntax Conventions

Endevor uses the IBM standard for representing syntax. The following table explains

the syntax conventions:

Syntax

Explanation

»>
>

Represents the beginning of a syntax
statement.

\
A

Represents the end of a syntax
statement.

\ 4

Represents the continuation of a
syntax statement to the following line.

\ 4

Represents the continuation of a
syntax statement from the preceding
line.

»»—KEYword

\4
A

Represents a required keyword. Only
the uppercase letters are necessary.

»»—variable

\4
A

Represents a required user-defined
variable.

A\
\ 4

|—KEonrdJ

\ 4
A

Represents an optional keyword.
Optional keywords appear below the
syntax line. If coded, only the
uppercase letters are necessary.

A4
A\ 4

|—var‘iab l eJ

\4
A

Represents an optional user-defined
variable. Optional variables appear
below the syntax line.

KEYword ONE
EKEonrd TWO—
KEYword THRee—

\ 4
A

Represents a choice of required,
mutually exclusive keywords. You
must choose one and only one
keyword.

variable one—
Evar‘iable two—
variable three—

EE— |

Represents a choice of required,
mutually exclusive, user-defined
variables. You must choose one and
only one variable.

KEYword TWO—

EKEonrd ONE—
KEYword THRee—

\4
A

Represents a choice of optional,
mutually exclusive keywords.
Optional keywords appear below the
syntax line.

Chapter 1. Introduction 1-9

1.7 Syntax Conventions

Explanation

A

variable one—
variable two—
variable three—

11
A\

Represents a choice of optional,
mutually exclusive, user-defined
variables. Optional variables appear
below the syntax line.

. .

EKEonrd ONE—

A\ 4
\ 4
\ 4
A

KEYword TWO—
KEYword THRee—

Represents a choice of optional
keywords. The stars (<) indicate that
the keywords are not mutually
exclusive. Only code the keyword
once.

. .

variable one—
variable two—

variable three—

A\
\ 4
\ 4
A

Represents a choice of optional
user-defined variables. The stars (¥)
indicate that the variables are not
mutually exclusive. Only code the
variable once.

\4
A

KEYword ONE—|
»—EKEonr‘d TWO

KEYword THReeJ

Represents a choice of required,
mutually exclusive keywords, one of
which is the default. In this example,
KEYword ONE is the default keyword
because it appears above the syntax
line.

\4
A

variable one—
»—Evur‘iable two
variable three—

Represents a choice of required,
mutually exclusive, user-defined
variables, one of which is the default.
In this example, variable one is the
default variable because it appears
above the syntax line.

|—KEonrd ONE—

\ 4
\
\ 4
A

KEYword TWO——
KEYword THRee—

Represents a choice of optional,
mutually exclusive keywords, one of
which is the default. In this example,
KEYword ONE is the default keyword
because it appears above the syntax
line.

|—variable one—

A\
A\

A\
A

i:variable two—
variable three—

Represents a choice of optional,
mutually exclusive, user-defined
variables, one of which is the default.
In this example, variable one is the
default variable because it appears
above the syntax line.

>>—(—E|,/ariable]—)—><

Represents a required variable that can
be repeated. Separate each occurrence
with a comma and enclose any and all
variables in a single set of parenthesis.

1-10 Extended Processors Guide

1.7 Syntax Conventions

Explanation

Represents an optional variable that
can be repeated. Separate each
occurrence with a comma and enclose
any and all variables in a single set of
parenthesis.

\ 4
A

»—(variable)

Represents a variable which must be
enclosed by parenthesis.

\4
A

»—'variable'’

Represents a variable which must be
enclosed by single quotes.

\ 4
A

»—"variable"

Represents a variable which must be
enclosed by double quotes.

»>—| FRAGMENT REFERENCE |———»«

Represents a reference to a syntax
fragment. Fragments are listed on the
lines immediately following the
required period at the end of each
syntax statement.

FRAGMENT:
F—KEYword—variable |

Represents a syntax fragment.

»
»

Represents the period required at the
end of all syntax statements.

Chapter 1. Introduction 1-11

1.7 Syntax Conventions

1.7.1 Sample Syntax Diagram

»»—ARChive ELEment—element-name N

»—FROm—ENVironment—env-name—SYStem—sys-name

»—SUBsystem—subsys-name—TYPe—type-name

>—‘:STAge—s tage- id—_l—TO—EFI Le dd-name
STAge NUMber—stage-no DDNaLmeJ

THRough element-name
THRu——I—

v

v

v

\ 4

»>
| 2

v

|—WHEre = ”J
l: CCID
PRO
l—0PT1'ons = m]
—CCId—ccid
—COMment—comment
—OVErride SIGNOut
—BYPass ELEment DELete—
CCID:

ccid

—ccid

CURrent
OF |—/-\LL |

,—EQua]— (r,—I)

|—RETr‘ieve

PRO:

i

F—PROcessor GROup LE ual (

1.7.2 Syntax Diagram Explanation

ré/roup namej—)

Syntax

Explanation

ARChive ELEment
element-name

The keyword ARChive ELEment appears on the main
line, indicating that it is required. The variable
element-name, also on the main line, must be coded.

THRough / THRu
element-name

The keywords THRough and THRu appear below the
main line, indicating that they are optional. They are
also mutually exclusive.

FROm ENVironment ...
TYPe type-name

Each keyword and variable in this segment appear on
the main line, indicating that they are required.

STAge stage-id /| STAge
NUMber stage-no

The keywords STAge and STAge NUMber appear on
and below the main line, indicating that they are
required, mutually exclusive keywords.

1-12 Extended Processors Guide

1.7 Syntax Conventions

Syntax

Explanation

TO ... dd-name

The keyword TO appears on the main line, indicating
that it is required. The keywords FILe and DDName
appear on and below the main line, indicating that they
are required, mutually exclusive keywords. The variable
dd-name also appears on the main line, indicating that it
is required.

WHEre clause

This clause appears below the main line, indicating that
it is optional. The keyword WHEre appears on the main
line of the clause, indicating that it is required. CCID
and PRO are syntax fragments that appear below the
main line, indicating that they are optional. The stars
(®) indicate that they are not mutually exclusive. For
details on the CCID and PRO fragments, see the bottom
of this table.

OPTion clause

This clause appears below the main line, indicating that
it is optional. The keyword OPTion appears on the
main line of the clause, indicating that it is required.
The keywords CCId, COMment, OVErride SIGNOut,
and BYPass ELEment DELete all appear below the
main line, indicating that they are optional. The stars
(®) indicate that they are not mutually exclusive.

CCID fragment

The keyword CCId appears on the main line, indicating
that it is required. The OF clause appears below the
main line, indicating that it is optional. If you code this
clause, you must code the keyword OF, as it appears on
the main line of the clause. CURrent, ALL, and
RETrieve appear above, on, and below the main line of
the clause, indicating that they are required, mutually
exclusive keywords. CURrent appears above the main
line, indicating that it is the default. If you code the
keyword OF, you must choose one and only one of the
keywords.

The keywords EQual and = appear above and below the
main line, indicating that they are optional, mutually
exclusive keywords. EQual appears above the main
line, indicating that it is the default. You can include
only one. The variable ccid appears on the main line,
indicating that it is required. The arrow indicates that
you can repeat this variable, separating each instance
with a comma. Enclose any and all variables in a single
set of parenthesis.

Chapter 1. Introduction 1-13

1.7 Syntax Conventions

Syntax Explanation

PRO fragment The keyword PROcessor GROup appears on the main

line, indicating that it is required. The keywords EQual
and = appear on and below the main line, indicating that
they are required, mutually exclusive keywords. You
must include one. The variable group name appears on
the main line, indicating that it is required. The arrow
indicates that you can repeat this variable, separating
each instance with a comma. Enclose any and all
variables in a single set of parenthesis.

1.7.3 General Coding Information

In coding syntax, you must adhere to certain rules and guidelines regarding valid
characters, incompatible commands and clauses, and ending statements. In addition,
knowing how the SCL parser processes syntax will help you resolve errors and
undesired results. The following sections outline these rules and guidelines.

1.7.3.1 Valid Characters

The following characters are allowed when coding syntax:

Uppercase letters
Lowercase letters
Numbers

National characters
Hyphen (-)

Underscore (_)

The following characters are allowed when coding syntax, but must be enclosed in
either single (') or double (") quotation marks:

Space

Tab

New line

Carriage return
Comma (,)

Period (.)

Equal sign (=)
Greater than sign (>)

Less then sign (<)

1-14 Extended Processors Guide

1.7 Syntax Conventions

Parenthesis ()
Single quotation marks

Double quotation marks

A string containing single quotation marks must be enclosed in double quotation
marks. A string containing double quotation marks must be enclosed in single
quotation marks.

To remove information from an existing field in the database, enclose a blank space in
single or double quotation marks. For example, the following statement removes the
default CCID for user TCS:

DEFINE USER TCS
DEFAULT CCID " ".

The characters "*" and "%" are reserved for name masking. See section 1.6, “Name
Masking” on page 1-7 for more information.

1.7.3.2 Incompatible Commands and Clauses

The following commands and clauses are mutually exclusive:

THRough and MEMber clauses within any action except LIST

Endevor location information (environment, system, subsystem, type, and stage)
and data set names (DSName)

File names (DDName) and data set names (DSName)
The stage id (STAge / STAge ID) and the stage number (STAge NUMber)
The SET TO Endevor location information and the SET TO MEMber clause

1.7.3.3 Ending A Statement

You must enter a period at the end of each statement. If no period is found, you
receive an error message and the job terminates.

1.7.3.4 SCL Parsing Information

The SCL parser does not look for information in columns 73-80 of the input.
Therefore, be sure that all relevant information is coded in columns 1-72.

The SCL parser does not catch duplicate clauses coded for an SCL request. If
you code the same clause twice, SCL uses the Boolean "AND" to combine the
clauses. If the result is invalid, you receive an error message.

If you enter an asterisk (*) in column 1, the remainder of the line is considered a
comment by the SCL parser and is ignored during processing.

Any value found to the right of the period terminating the SCL statement is
considered a comment by the SCL parser and is ignored during processing.

Chapter 1. Introduction 1-15

1-16 Extended Processors Guide

Chapter 2. Writing Processors

Chapter 2. Writing Processors 2-1

2.1 Overview

2.1 Overview

Processors are coded using standard JCL syntax and are converted to an Endevor
executable form. Processor statements specify which programs/utilities are run, the
order in which they are run, and any special conditions required. (They are similar to
JCL statements.)

Endevor provides several keywords, symbolic parameters, and utilities for use in
coding processors. While Endevor supplies many of its own utilities, user-coded or
third-party utilities or programs can be used within a processor as well.

All DD statements allocated for an Endevor processor step are deallocated at processor
step termination. This means if a processor step uses a previously allocated DD
statement such as SYSPROC, it is allocated for the processor step and subsequently
deallocated at processor step termination.

For an explanation and illustration of the various types and uses of processors, see
Appendix A, “Sample Processors.”

2-2 Extended Processors Guide

2.2 Suggested Processor Naming Conventions

2.2 Suggested Processor Naming Conventions

Processor names can have up to eight characters. The abbreviations below do not
represent a complete list, and are offered as guidelines only.

Character Description

Position

1 Processor type; for example:

G =
D =
M =

generate processor
delete processor
move processor

2-4 Language type or utility; for example:

ASM
CLI
CII
DAT

ASSEMBLER
CLIST
COBOL
DATA

(documentation)

EAS =

FOR
JCL
LEC
LOD
0BJ
PLI
RPG
TEL
TRA

EASYTRIEVE

FORTRAN

JCL

Link edit control cards
Load modules

Object modules

PLI

RPG

TELON

TRANSFORM

5 Data base environment; for example:

DB2/DL1
IDMS
IMS
None

D
S
I
N

6 Operating environment; for example:

Batch
CICS
IDMS-DC
IMS-DC
None

2 Wno W
nm uw uw nn

7 Output type:

ZX0UOXRC>
R T T R T TR 1

Impact Analysis SCL
Load Module

NCAL Load Module
Object

PDS

Report(s)

None

8 Stage ID

Chapter 2. Writing Processors 2-3

2.3 Processor Features

2.3 Processor Features

For the most part, Endevor processors are written using standard OS JCL syntax.
Endevor supports most JCL parameters, for a complete list of unsupported JCL
parameters, see Appendix B, “Unsupported Parameters.”
Endevor provides additional features and capabilities within processors:

® Keywords to tailor your processors

8 Endevor, User- and Site-defined symbolics

8 Component monitoring (for Endevor ACM clients)

® Endevor utilities (described in Chapter 3, “Processor Ultilities™)

® Support for in-stream data

Each of these features is discussed in detail in this section.

2.3.1 Reserved Words and Labels

When writing a processor avoid using these reserved names:
CcC
DDA
DDB
DDB
JCL
PGM
SYM
SIN
PRITE
FLD

Otherwise, your processor will abend with this message:

ASMAQ43E *** ERROR *** Previously defined symbol xxxx

2-4 Extended Processors Guide

2.4 Processor Keywords

2.4 Processor Keywords

There are five keywords that are specific to Endevor processor statements:

2.4.1 FOOTPRNT

FOOTPRNT — Causes Endevor footprints to be created or verified.
MAXRC — Specifies the maximum acceptable return code for a job step.

EXECIF — Permits execution of a specific step only if the specified conditions
are met.

BACKOUT — Allows you to maintain backout information on a library by
library basis, if you are using package processing.

MONITOR — Allows monitoring of input and output components as a part of
Configuration Management.

FOOTPRNT can be used in DD statements, to create or verify a Endevor footprint, or
to bypass footprint creation:

FOOTPRNT=CREATE footprints a member in an output data set, to associate
that member with the element being processed.

If the output is written by an Endevor action, such as RETRIEVE, to a specific
PDS (or Endevor LIB) member, or if you are using the CONWRITE or CONLIST
utilities, the member is footprinted automatically, regardless of whether you use
the FOOTPRNT keyword.

If you are using BSTCOPY, the output is directed to a PDS by a non-Endevor
utility (such as a user program), or the output is a sequential object module, you
must specify FOOTPRNT=CREATE for the member to be footprinted.

To footprint a load module, you must specifty FOOTPRNT=CREATE on the
SYSLMOD DD statement for the load module, as shown below.

//LKED EXEC PGM=IEWL,COND=((0,NE,CONWRITE), (4,LT,COMPILE)),
// PARM="'PARMLNK" ,MAXRC=4

//SYSLIN DD DSN=&&SYSLIN,DISP=(OLD,DELETE)

//SYSLMOD DD DSN=&LOADLIB(&MEMBER),FOOTPRNT=CREATE,

// MONITOR=&MONITOR,DISP=SHR
//SYSLIB DD DSN=&LSYSLIBI1,

// MONITOR=&MONITOR,

/] DISP=SHR

// DD DSN=&LSYSLIBZ,

/] MONITOR=&MONITOR,

// DISP=SHR

// DD DSN=&COBLIB,

/] DISP=SHR

//SYSUT1 DD UNIT=&WRKUNIT,SPACE=(CYL,(1,1))
//SYSPRINT DD DSN=&&LNKLIST,DISP=(0LD,PASS)

When footprinting, keep in mind that:

Chapter 2. Writing Processors 2-5

2.4 Processor Keywords

— In order to footprint an object deck, Endevor locates the first, named CSECT
within the object deck, and uses that name to build a linkage-editor identify
control card. If there is no named CSECT in the object deck, the footprinting
action fails.

— All CSECTs within a load module should be footprinted.
— You cannot footprint object modules that do not contain CSECT names.

— The library member name must match the name of the element to which it
corresponds.

8 FOOTPRNT=VERIFY verifies the footprint in an existing library member
corresponds to the current level of the element being processed. This statement is
generally used in the move processor to verify the element against the Endevor
Master Control File before the element is moved or transferred.

An error during the footprint verification step causes the job to fail because it is
an Endevor error. To override this default, the VFY_FT_FAILURES feature must
be activated in the Endevor Options table (ENCOPTBL). With this option, the
footprint verification return code becomes a step return code instead of an
Endevor return code. Refer to the Installation Guide, Appendix F, "Endevor
Optional Feature Table" for more information.

//STEPNAME EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=x

//IN DD DSN=STAGE1.COPYLIB,DISP=SHR,FOOTPRNT=VERIFY
//0UT DD DSN=STAGE2.COPYLIB,DISP=SHR

1 FOOTPRNT=NONE tells Endevor to bypass footprint creation.

2.4.2 MAXRC

MAXRC defines the highest acceptable step return code for a processor. It is coded
on the EXEC statement for the corresponding job step and affects only the current
element action. The syntax for the MAXRC parameter follows:

MAXRC=nn

nn
The highest acceptable OS return code for the step

If the return code exceeds the value specified:
® The Endevor return code is set to 12.
B A processor-failed flag is set for the element within Endevor.
® All remaining actions are executed.
8 The processor's remaining steps are executed.

Use the Element Master Info display to confirm the processor-failed flag is set for an
element. The literal “FAILED” appears next to the processor return code when the
flag is set. If the processor-failed flag is set for an element in either stage, Endevor
does not allow a MOVE or TRANSFER action against the element.

2-6 Extended Processors Guide

2.4 Processor Keywords

2.4.3 EXECIF

You can bypass executing one or more steps, by coding the COND or EXECIF
parameters on the steps or using IF/THEN/ELSE processor logic.

Note: To terminate all action processing, specify a value for STOPRC; see the SCL
Reference Guide for more information.

MAXRC Scenario: There is a processor containing three steps:

1. Compile
2. Link-edit
3. CONLIST

You would code the:

8 MAXRC parameter on the compile and link-edit steps
& COND parameter on the link-edit step

Regardless of the return codes in the first two steps, you always want the CONLIST
step to execute and store the listings.

MAXRC Example: A COBOL compile with warnings has a return code of 04. To
allow warnings but prohibit serious problems, specify MAXRC=04 on the compile
EXEC statement. Return codes greater than 04 set the Endevor processor-failed flag
for the element.

//STEPNAME EXEC PGM=IKFCBLOO,MAXRC=04,COND=(0,NE)

All remaining steps are executed unless the COND, EXECIF or IF/THEN/ELSE logic
specifies otherwise.

EXECIF allows you to define conditions under which a processor step is executed.
Using the EXECIF keyword, you can create a single processor containing the steps
that are conditionally required. You can, therefore, write one processor instead of
executing multiple processors.

EXECIF is a truth statement, and in its simplest format its syntax is:

EXECIF=(valuel,operator,value2)

valuel
The user specified value for the truth statement. It can be a literal, an Endevor,
user, or site symbolic.

operator
The required condition between valuel and value2. Valid values are:

EQ — equal to

GT — greater than

NE — not equal to

LE — less than or equal to
LT — less than

GE — greater than or equal to

Chapter 2. Writing Processors 2-7

2.4 Processor Keywords

value2
The user specified value for the truth statement. It can be a literal, an Endevor
symbolic, or a user symbolic.

The EXECIF statement can contain as many value clauses as required, if you have the
appropriate number of parentheses (that is, nested parentheses); for example:

EXECIF=((valuel,EQ,valuelA), (value2,EQ,value2A), (value3,EQ,value3A))

Note: When you use multiple clauses in the EXECIF statement, all clauses must be
true in order for the step to be executed.

The following example illustrates the use of the EXECIF keyword to allow a single
generate processor to be used for both DLI COBOL and IDMS COBOL. The generate
data coded is the same for each type of COBOL, but different TRANSLATE steps are
required by each in order to execute.

//DLI EXEC PGM=DFHECP1$,COND=(0,NE),
/l EXECIF=(&C1PRGRP,EQ,DLI),
/l PARM="'&PRM1"

//SYSPRINT DD DSN=&&TRNLIST,DISP=(0LD,PASS)
//SYSPUNCH DD DSN=&&TRN,DISP=(NEW,PASS,DELETE),

// UNIT=SYSDA,SPACE=(CYL,(2,1),RLSE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=4000),
/l MONITOR=COMPONENTS

//SYSIN DD DSN=&&SRC,DISP=(0LD,PASS)
//**
//1DMS EXEC PGM=IDMSDMLC,COND=(0,NE) ,MAXRC=04,

// EXECIF=(&C1PRGRP,EQ, IDMS),

/1l PARM="'SDMLC-IDMS-STEP',DBNAME="MINI '
//DBRUNLOG DD DSN=CA.DBRUNLOG,DISP=SHR

//STEPLIB DD DSN=CA.LOAD.TEST,DISP=SHR

// DD DSN=CA.LOAD.CV1,DISP=SHR

//SYSDDL DD DSN=CA.NQ.DDAO1.CV1,DISP=SHR
//SYSIPT ~ DD DSN=CA.READONLY.DMLC,DISP=SHR

// DD DSN=&&SRC,DISP=(0LD,PASS)

//SYSIJRNL DD DUMMY

//SYSLST DD DSN=8&&TRNLIST,DISP=(OLD,PASS)
//SYSPCH DD DSN=8&TRN,DISP=(NEW,PASS,DELETE),

/! UNIT=SYSDA,SPACE=(CYL, (2,1),RLSE),

// DCB=(RECFM=FB, LRECL=80,BLKSIZE=4000) ,

You can also use the EXECIF statement in generate processors for use with load
modules, to make sure that a GENERATE action against the load module does not
execute the generate processor. For more information, see the chapter “Load Module
Support,” in the Utilities Guide.

2-8 Extended Processors Guide

2.4 Processor Keywords

2.4.4 BACKOUT

2.4.5 MONITOR

If you are using package processing, BACKOUT allows you to maintain backout
information on a library by library basis.

When you use packages, Endevor, by default, maintains backout information for PDS
members that are created, changed, or deleted during processor execution. If you do
not want this information maintained for a library, code BACKOUT=N in the DD
statement for the library.

//LKED EXEC PGM=IEWL,COND=((0,NE,CONWRITE), (4,LT,COMPILE)),

/1
//SYSLIN DD
//SYSLMOD DD
/!
//SYSLIB DD

/1 DD

/] DD

//SYSUT1 DD
//SYSPRINT DD

PARM="'PARMLNK" ,MAXRC=4
DSN=8&&SYSLIN,DISP=(0OLD,DELETE)
DSN=&LOADLIB(&MEMBER) ,FOOTPRNT=CREATE ,BACKOUT=N,
MONITOR=&MONITOR,DISP=SHR
DSN=&LSYSLIBI1,
MONITOR=&MONITOR,

DISP=SHR

DSN=&LSYSLIB2,
MONITOR=&MONITOR,

DISP=SHR

DSN=&COBLIB,

DISP=SHR
UNIT=&WRKUNIT,SPACE=(CYL,(1,1))
DSN=&&LNKLIST,DISP=(OLD,PASS)

Component monitoring is a feature of Endevor's Automated Configuration Manager
(ACM). You can use the keyword:

. MONITOR — monitors selected library data sets for component relationships.

For more information, see the Automated Configuration Option Guide.

Chapter 2. Writing Processors 2-9

2.5 Symbolic Parameters

2.5 Symbolic Parameters

Symbolic parameters provide a powerful means of writing processors for your
environment. The processors treat the symbolic parameters in the same manner as OS
JCL treats parameters. A specific value is substituted for a variable embedded in the
JCL. This allows you to write one processor for multiple environments, systems,
subsystem, or stage. And you can write one processor to perform many functions.
There are three types of symbolics within Endevor:

= User Symbolics

= Site Symbolics

® Endevor Symbolics
In addition, Endevor provides capabilities not available with standard JCL. For

example:

B You can use a symbolic as the numeric operand (portion) in the COND parameter
of an execution statement.

® Endevor supports symbolic substitution, using Endevor, site, or user symbolics,
within in-stream data.

® Either operand in an EXECIF statement can be a symbolic.

These are described in the following sections.

2.5.1 Using the Ampersand (&)

Symbolic parameters can be used to tailor processors. Symbolics are recognized by an
ampersand (&) as the first character of the value. Symbolics can be used for any value
that appears on the right side of a keyword parameter, for example:

A data set name, as DSN=&dsname..LOADLIB
To use the symbolic &dsname to define a library:
DSN = &dsname..LOADLIB
If CA is the value substituted for &dsname, the statement reads:

DSN = CA.LOADLIB

Note: When using a symbolic for a dataset, do not include the member name as
part of the symbolic or you will get an allocation error. Use two symbolics; for
example:

//SYSLIB DD DSN=&LIB1(&C1ELEMENT)
B An execution parameter, as PARM='&execparm'

When a statement containing a symbolic requires a period after the symbolic, the
symbolic itself must end with one of the following:

, /') * & + - or-=

2-10 Extended Processors Guide

2.5 Symbolic Parameters

2.5.2 General Guidelines

When using symbolics in Endevor processors, remember that:

The first character of a site symbolic must begin with an &.

When referencing a site symbolic, the ampersand (&) is appended to the beginning
of the site symbolic name.

User-defined symbolic parameters (see 2.5.3, “User Symbolics”) must be defined
in PROC statements at the beginning of the processor.

You can specify symbolics only on the right side of keyword parameters.

One symbolic must replace only one subparameter. For example, to use symbolic
substitution in the statement SPACE=(TRK,(1,1),RLSE), you might code
SPACE=(&UNITS,(&PRIM,,&SECD),RLSE). It would be incorrect to code
SPACE=(&TRAK,RLSE), because this statement merges three subparameters
(TRK, 1 and 1) into the single symbolic &TRAK.

Note: In this case, (1,1) is considered to be two subparameters. Thus, defining a
single symbolic to be '1,1' and substituting that symbolic in the SPACE
statement results in an allocation error.

Most symbolics are not validated until execution time. Therefore, ensure
symbolics specified as defaults and overrides are defined in the processor group
definition.

2.5.3 User Symbolics

User symbolics are specific to your site and requirements. As mentioned above,
these symbolics must be defined in PROC statements that may be specified in the
processor.

Processors treat user symbolics in the same manner as does standard JCL —as a
specific value is substituted for a variable embedded in the JCL code. You can
override the symbolic default values initially established in the PROC statement.
The user symbolic override function is part of the processor group definition
procedure. For more information, see 5.5, “Processor Group Definition Panel” on
page 5-12 (in the discussion of processor groups).

A sample PROC statement is provided below.

/[**

//GCIIDBL PROC PRM1='(XOPTS(DLI,COBOL2,NOSOURCE))",

// PRM2="' (DYN,DATA(24))"',

// PRM3="'XREF,AMODE=31,RMODE=ANY,RENT,SIZE=(256K,128K) "',
// PRM4=STORE,

// STG1="'CA.STG1.DEMO',

// STG2="CA.STG2.DEMO'

/[**

Chapter 2. Writing Processors 2-11

2.5 Symbolic Parameters

By changing the parameters established for a particular processor, you can use that
processor to perform different functions. The above values are used whenever the
processor GCIIDBL is used.

2.5.4 Site Symbolics

Site symbolics can be used wherever Endevor symbolics are used. At execution
time, site symbolics referenced by a processor are stored with the processor
symbolics in the component data. If a site symbolic is also specified as a
processor symbolic, the processor symbolic (and the processor symbolic override)
take precedence.

When Endevor is initialized, the site symbolics are placed into memory and when
Endevor is terminated, the site symbolic storage is released.

To implement site symbolics, the symbolic and its data value are defined in a
table that is assembled and linked into an authorized load library. Once this is
complete, the table is associated with the appropriate environment by updating
SYMBOLTBL parameter in the CIDEFLTS table with the name of the site
symbolics table. These actions are described in the following sections.

Note: Site symbolics are required if you are using USS HFS path name
specifications for element type base or source output file definitions.

2.5.5 Using Site Symbolics in Processors

Site symbolic names are always preceded by an ampersand (&) before the name.
The site symbolic #VENDORLIB looks like this in a processor:

&#VENDORLIB

Example: 1In your site, these site symbolics are used:

Symbol Value

#ENDPRE CA

#MIDDLE 'QA&&CISY..ST'
#SITESYM 'QA&&HENDPRE..S1'

This is how they are coded in your processor:

//IN DD DISP=SHR,DSN=&#ENDPRE..R40.SRCLIB
//0UT DD DISP=SHR,DSN=CA.&#MIDDLE..OBJLIB
//DUMMY DD DISP=SHR,DSN=&#ENDPRE..&#MIDDLE. .&&C1TYPE

These are the values at runtime:

2-12 Extended Processors Guide

2.5 Symbolic Parameters

//IN DD DISP=SHR,DSN=CA.R40.SRCLIB
//0UT DD DISP=SHR,DSN=CA.QAclsy..S1.0BJLIB

//DUMMY DD DISP=SHR,DSN=CA.QAclsy..S1l.cltype

2.5.6 Defining Site Symbolics

Before defining the site symbolics, remember:
® Site symbolic names must begin with a "#".
® Site symbolic names can contain up to twelve characters, including the "#".
® The symbolic value may be up to seventy characters long.
m Site symbolics are referenced with an ampersand preceding the symbolic
name. For example, site symbolic #VENDORLB is referenced as:
&#VENDORLB

Steps for defining a site symbolics table:

1. Define the symbolic and its data value — This is the syntax for the site
symbolics table:

$ESYMBOL SYMNAME=#symbolname,SYMDATA=symbolvalue

symbolname
The symbol name must begin with the # character and is 1 to 11
characters in length. The # indicates that the symbol is defined in the
site-defined symbolics table.

symbolvalue
The data value associated with the site symbolic is 1 to 70 characters in
length, with no restrictions on the content of the data. If you do not
specify a data value for a symbolic, Endevor treats it as a null variable.

2. Assemble and link-edit the symbols table — The BC1JSYMT JCL member
located in iprfx.iqual. creates the symbolics table.

3. Update C1DEFLTS to associate the site symbolics to the Endevor
environment.

By using the Site Information panel, you can determine if site symbolics are
defined in your Endevor Environment.

The Site Information from CIDEFLTS panel indicates if site symbolics are
installed. The name of the site symbolics file is displayed in the SYMBOL Tbl
field when symbolics are used.

Chapter 2. Writing Processors 2-13

2.5 Symbolic Parameters

—————————————————————— Site Information from CIDEFLTS -------=--——cmcmmmmmn
Command ===>

Customer Name..... SUPPORT 4.0 BETA/2

—————————————————— Function Controls ------=-ccmemmmmuaan - Options -
Site ID..ovveunnn. 0 Access Table...... BC1TNEQU ACM...... Y
Release........... B4000C SMF Record Number. 000 DB2...... N
Environments...... 2 Library System.... PV QuickEdit Y
Userid Start...... 1 Library Program... ELINK.... N
Userid Length..... 7 VIO Unit.......... SYSDA ESI...... Y
Batch ID.......... 0 Work Unit......... SYSDA INFO..... N
SPFEDIT QNAME..... SPFEDIT Work Volser....... LIBENV... Y
SYSIEWL QNAME..... SYSIEWLP Lines per Page.... 60 NETMAN... N
Authorized Tables. REQUIRED MODHLI............ PDM...... Y
Gen in place/SO... N Signout on fetch.. Y PROC..... Y
CA-LSERV JRNL SBS. ELINK XLTE TBL....

PITR Journal Grp.. Mixed Format...... CCID COMMENT DESCRIPTION
SYMBOLICS Table. ESYMBOL

(Press Enter for Next Panel)

To display your site symbolics and the associated values, from the AllFusion
Endevor Primary Options Menu select the option for Display.

Select S to di

splay the site symbolics and values defined in your Endevor

environment.
DISPLAY =--c-mmmmmemeeee SYMBOL TABLE: ESYMBOLS ------------ Row 1 to 6 of 6
COMMAND ===> SCROLL ===> CSR
SYMBOL VALUE
#ENDPRE CA
#MIDDLE 'QA&&C1SY..S1'
#PERMBASE1 /u/endevor/sampltest/admin/base
#SITESYM 'QAR&#ENDPRE. .S1"'
Bottom of data

2.5.7 Endevor Symbolics

Endevor symbolic names are reserved, and represent values specific to Endevor,
such as environment and element name. Endevor determines the value to be

substituted at

execution time. For example, if you code the Endevor symbolic

&CI1ISTGID1 in a processor and add an element, Endevor substitutes the
appropriate Stage 1 ID when the processor executes. For compatibility with

previous releases, Endevor symbolics can begin with one or two ampersands: & or

&& When Endevor encounters an Endevor symbolic immediately followed by a
period, it takes one of the following actions:

® If the symbolic begins with a single ampersand (&), Endevor does not include

the period in the resolved statement.

® If the symbolic begins with a double ampersand (&&), Endevor retains the

period in

the resolved statement.

2-14 Extended Processors Guide

2.5 Symbolic Parameters

For example, assume the symbolic &CISYSTEM is set to TEST, and the
following DD statements are encountered in the processor:

//DD1 DD DSN=&CI1SYSTEM..TEST.DATASET,DISP=0LD
//DD2 DD DSN=&&C1SYSTEM. .PROD.DATASET,DISP=0LD

Endevor resolves these statements as:

//DD1 DD DSN=TEST.TEST.DATASET,DISP=0LD
//DD2 DD DSN=TEST..PROD.DATASET,DISP=0LD

As this example shows, if you want a period to follow an Endevor symbolic, you
must specify two consecutive periods if your symbolic uses a single ampersand,
and only one period if your symbolic uses double ampersands.

Endevor symbolic parameters are listed and explained below.

Note: The symbolics in italics in the table below should be used only for the
source location of MOVE or TRANSFER actions made using the move processor.
For all actions that execute a generate or a delete processor, Endevor assigns these
symbolics the same values as those assigned to the corresponding symbolic

beginning with &CI1.

Symbolic (alias) Length Replaced in processor by the

&C1ACTION 8 Action currently being executed.
Note: If action is ADD with update option
turned on and element exists on store, the
C1ACTION resolves to UPDATE.

&C1ADDMMMYY 7 Date in the format DDMMMYY. For
example: 15JUNO1

&CIADDMMYY 6 Date in the format DDMMYY. For
example: 150601

&CIADDMMYYYY 8 Date in the format DDMMYYYY. For
example: 15062001

&C1ADD 2 Date in the format DD. For example: 15

&C1AMM 2 Date in the format MM. For example: 06

&C1AMMM 3 Date in the format MMM. For example:
JUN

&CIAYY 2 Date in the format YY. For example: 01

&CIAYYYY 4 Date in the format YYYY. For example:
2001

&C1AHHMMSS 6 Time in the format HHMMSS. For example:

125930

Chapter 2. Writing Processors 2-15

2.5 Symbolic Parameters

Symbolic (alias) Length Replaced in processor by the

&C1AHHMM 4 Time in the format HHMM. For example:
1259

&C1AHH 2 Time in the format HH. For example: 12

&C1ATMM 2 Time in the format MM. For example: 59

&C1ASS 2 Time in the format SS. For example: 30

&C1BASELIB 44 Base/image library for the type specified in
the action.

&CI1CCID 12 Last-specified CCID for the element.

&CICOMMENT 40 Comment associated with the action being

(&C1COM) executed.

&C1ELEMENT 8 1-8 character name of the element being
processed. Names longer than eight
characters are truncated.

&CIELMCHG 1 1 character used to indicate whether the
source manager detected changes to this
element; Y-Yes, N-No.

&C1ELMNTI10 10 1-10 character name of the element being
processed. Generally used to assign a name
to an AllFusion™ CA-Panvalet member.

&C1ELMNT?255 255 1-255 character name for element names
greater than 10 characters and mixed/lower
case names less than 10 characters.

&CIELTYPE (&CI1TY) 8 Type associated with the element being
processed.

&CI1ENVMNT (&CI1EN) 8 Name of the current environment.

&C1FOOTPRT 64 Footprint of the element being processed.

&CILEV 2 Level number for the element being
processed.

&C1PKGID 16 Name of the package being executed. Blank
if no package is being executed.

&C1PRGRP 8 Name of the current processor group. This

symbolic can be used as part of the source
output library or include library data set
name specifications.

Note: &C1PRGRP cannot be used as part
of the base or delta library data set
specification.

2-16 Extended Processors Guide

2.5 Symbolic Parameters

Symbolic (alias) Length Replaced in processor by the

&CI1PRTYPE 8 Function of the current processor (generate,
move, or delete).

&CISITE 1 Current site ID.

&CI1STAGE (&CI1ST) 8 Name of the current stage.

&CISTAGE!1 (&C1ST1) 8 Stage 1 name. This symbolic must be used
for the target stage name for a MOVE action.

&CI1STAGE2 (&C1ST2) 8 Stage 2 name. This symbolic must be used
for the target stage name for a MOVE action.

&CI1STGID (&C1SI) 1 ID of the current stage.

&CISTGID1 (&C1SI1) 1 Stage 1 ID. This symbolic must be used for
the target stage ID for a MOVE action.

&CISTGID2 (&C1SI12) 1 Stage 2 ID. This symbolic must be used for
the target stage ID for a MOVE action.

&CISTGNUM (&C1S#) 1 Number of the current stage.

&C1SUBSYS (&C1SU) 8 Name of the current subsystem.

&CISYSTEM (&C1SY) 8 Name of the current system.

&CISELEMENT 8 Element name at the source of MOVE or
TRANSFER actions that execute a move
processor.

&CISELMNTIO 10 AllFusion™ CA-Panvalet element name at
the source of MOVE or TRANSFER actions
that execute a move processor.

&CISELMNT255 255 1-255 character name for elements at the
source location of actions such as move and
transfer.

&CISELTYPE 8 Element type at the source of MOVE or
TRANSFER actions that execute a move
processor.

&CISENVMNT 8 Environment name at the source of MOVE
or TRANSFER actions that execute a move
processor.

&CISLEV 2 Element level at the source of MOVE or
TRANSFER actions that execute a move
processor.

&CISPRGRP 8 Processor group name at the source of

MOVE or TRANSFER actions that execute a
move processor.

Chapter 2. Writing Processors 2-17

2.5 Symbolic Parameters

Symbolic (alias)

Length

Replaced in processor by the

&CISSTAGE

Stage name at the source of MOVE or
TRANSFER actions that execute a move
processor.

&CISSTAGE]

Stage 1 name at the source of MOVE or
TRANSFER actions that execute a move
processor.

&CISSTAGE2

Stage 2 name at the source of MOVE or
TRANSFER actions that execute a move
processor.

&CISSTGID

Stage ID at the source of MOVE or
TRANSFER actions that execute a move
processor.

&CISSTGIDI

Stage 1 ID at the source of MOVE or
TRANSFER actions that execute a move
processor.

&CISSTGID?2

Stage 2 ID at the source of MOVE or
TRANSFER actions that execute a move
processor.

&CISSTGNUM

Stage number at the source of MOVE or
TRANSFER actions that execute a move
processor.

&CISSUBSYS

Subsystem name at the source of MOVE or
TRANSFER actions that execute a move
processor.

&CISSYSTEM

System name at the source of MOVE or
TRANSFER actions that execute a move
processor.

&CISVER

Element version at the source of MOVE or
TRANSFER actions that execute a move
processor.

&C1USERID

User ID associated with the current action.

&C1USRDSN

44

Data set name of the source for ADD or
UPDATE requests.

&C1USRFILE

255

Source HFS file names for the ADD or
UPDATE requests.

&CI1USRMBR

10

Source member name for the ADD or
UPDATE requests.

&C1USRPTH

768

HFS path name of the source for the ADD or
UPDATE requests.

2-18 Extended Processors Guide

2.5 Symbolic Parameters

Symbolic (alias) Length Replaced in processor by the

&C1VER 2 Version number of the element being
processed.

&C1XLANG 8 External language for the element type.

Note: [- To utilize these symbolics within a processor, you must use the Endevor
processor symbolic substringning feature. For example, &C1USRPTH(720,48).

2.5.7.1 Substringing

Endevor allows you to substring symbolic variables. Substringing allows you to
use portions of the symbolic value in the processor. A substring expression is
identified as follows:

8 &SYMBOLIC(start,length,pad)

In this expression:

start
The position within the symbolic where substringing is to begin. Default is 1.

length
The number of characters in the substring. Default is the length of the
symbolic.

pad
A single character used to add trailing blanks. Default is blank.

If the start length is greater than the symbolic length (as defined in the table
provided in 2.5.7, “Endevor Symbolics” on page 2-14), Endevor does not perform
the substring substitution. If the length of the substring exceeds the length of the
symbolic, Endevor substitutes the specified characters and the remainder of the
substring is filled with the pad character.

For example, your data set names are prefixed with a special two-character code
denoting your department. When you use the data set name in a processor,
however, you want to exclude the department identification. Therefore, you might
code a statement similar to the following:

8 DSN=&dsname(3,3).LOADLIB

where (3,3) indicates that you want to begin with the third character of the
substitution value and you want the substituted entry to consist of the third, fourth,
and fifth characters of the substituted value.

In this example, the data set name to be used for &dsname is APNDVRTO1.
Using the above substring statement, the characters AP are ignored and the
substituted value begins with the third character (N). Because you have indicated a
length of 3, Endevor substitutes only three characters, N, D, and V. The result of
the substitution is:

Chapter 2. Writing Processors 2-19

2.5 Symbolic Parameters

= DSN=NDV.LOADLIB

® If you indicate a substring specification of (3,5) in this example, NDVRO is
substituted.

® If you indicate a length of more characters than exist in the substitution value,
the resulting field is blank-filled to meet the indicated number of spaces. For
example, if you specify (3,7), the substituted value is NDVRO1_ (where "_"
indicates a blank).

® If you want to designate a specific character, rather than blanks, to pad the
substituted value, simply include that character in the substring. In the above
example, assume you want to use dollar signs ($) to pad the &dsname value.
This particular substring is coded as (3,7,$), and the substituted value is
NDVRO1$.

You can indicate the substring start position, length, and pad character as symbolic
parameters. For example, you may assign:

® &S to indicate the starting position of the substituted value.

® &L to indicate the length of the substituted value.

= &P to indicate the character to be used for padding.

In this situation, the statement in our example would be coded as:
8 DSN = &dsname(&S,&L,&P).LOADLIB
When you use several symbolic parameters (nested symbolics), Endevor begins

substitution with the innermost parentheses. The following example illustrates the
principles discussed in this section.

8 DSN = &LIB(&CIELEMENT(&S, &L, &P))

where:
. &LIB=CA.LIB
8 &CIELEMENT = ABC

&S =1
B &L=28
| &P=$

Endevor resolves this statement by substituting the values for:
® the starting position (&S), length (&L), and padding character (&P):
DSN = &LIB(&CIELEMENT(1,8,%))
8 &CIELEMENT:
DSN = &LIB(ABC(1,8,9))
" &LIB:

2-20 Extended Processors Guide

2.5 Symbolic Parameters

DSN = CA.LIB(ABC(1,8.,%))
When Endevor finishes resolving the statement, the result is:

DSN = CA.LIB(ABC$$$$$)

2.5.8 In-Stream Data

Endevor supports in-stream data (DD*/DD DATA), which are coded according to
JCL syntax.

Note: Columns 73 through 80 are unpredictable within processor data. If any
symbolic parameters are present, substitution occurs only between columns 1 and
72 of the input statement, with each line truncated or padded to 72 characters.

Chapter 2. Writing Processors 2-21

2.6 Controlling Processor Flow

2.6 Controlling Processor Flow

2.6.1

IF-THEN-ELSE statement

The Endevor IF-THEN-ELSE JCL statement provides control of the order SCL
statements are processed. The IF-THEN-ELSE statement is derived from the IBM
OS JCL statement and provides the following functionality:

= Control over the execution of job steps.

® Use of symbolic variables and IF-THEN-ELSE statements to control the
inclusion (or exclusion) of complete DD statements and input in-stream data.

At run time the IF-THEN-ELSE statement is evaluated and then the appropriate
statements are selected for inclusion. Consequently, the processor JCL can be
customized at each run without causing intervening modifications to the processor.

The Endevor IF-THEN-ELSE statement is similar to the COND and EXECIF
keywords function. However, the IF-THEN-ELSE statement can provide the
following advantages over the COND and EXECIF keywords:

® Control for multiple processor steps.
= Control data set inclusion
® One-time coding.

® A larger selection of conditional choices

COND and EXECIF keywords must be coded on each applicable EXEC
statement.

Endevor allows selection of steps and DD statements using not only condition
codes from prior steps but also values of Endevor symbolics and processor
symbolics. This allows the customer more control of the processor execution.

The basic syntax of IF-THEN-ELSE follows the syntax of most JCL statements,
but also has some idiosyncrasies. Columns 1 and 2 must contain slashes "//". An
optional name may be placed in Column 3, can be up to eight characters long, and
must be followed by a blank.

Note: It is highly recommended you specify a name. This helps in the
debugging process if unexpected results occur.

The IF statement must be present followed by a conditional statement and is
concluded with the THEN statement. The conditional statement may be enclosed
in parentheses to indicate nesting. An ELSE statement is coded similarly to the IF
statement excluding the conditional statement. The IF block is completed by the
ENDIF. For example:

2-22 Extended Processors Guide

2.6 Controlling Processor Flow

//TEST1 IF keyword operator value THEN

statements
//ELSE1 ELSE
//

statements
//ENDIF1 ENDIF

Where:

keyword
Valid keywords are:

® Endevor symbolics (see 2.5.7, “Endevor Symbolics” on page 2-14)
8 IBM defined expressions

— RC (see 2.6.1.1, “RC” on page 2-28)

— ABENDCC (see 2.6.1.2, “ABENDCC” on page 2-28)

— ABEND (see 2.6.1.3, “ABEND” on page 2-28)

— = ABEND (see 2.6.1.4, “~ABEND” on page 2-29)

— RUN (see 2.6.1.5, “RUN” on page 2-29)

— —RUN (see 2.6.1.6, “~RUN” on page 2-29)

operator
Valid operators are:

EQ or =
GT or >
NE or -=
LE

LT or <
GE

Note: See 2.4.3, “EXECIF” on page 2-7 for additional information regarding
the operators.

value
Values are:

B 1- to 16-characters in length

® Alphanumeric

® Numerics. Numeric values must always be enclosed in quotes. There is
one exception to this rule, if the numeric value is compared to the RC
keyword, quotes are not required.

statements
Represents any valid JCL statements inserted between the IF-THEN-ELSE
statements.

These statements can be EXEC or DD statements.

Chapter 2. Writing Processors 2-23

2.6 Controlling Processor Flow

The entire statement must be coded within the IFF-THEN-ELSE structure. If a
JCL statement is continued on multiple lines, it must be completed before an
intervening IF-THEN-ELSE is encountered.

The first example is valid while the second example is invalid.

//* Valid example

//1F IF (&STAGE=PRD) THEN

//DD1 DD DISP=(,CATLG),UNIT=SYSDA,
// VOL=SER=VOLUME,DSN=ABC.DEF

// ENDIF

Valid Example

//* Invalid example

//1F IF (&STAGE=PRD) THEN

//DD1 DD DISP=(,CATLG),UNIT=SYSDA,
// ENDIF

// VOL=SER=VOLUME,DSN=ABC.DEF

Invalid Example

An IF clause may be coded at three points in the processor JCL:
1. Prior to EXEC statements and all of their associated DD statements.

The IF clause is coded here when a test is to be made to determine if one or
more complete steps within an IF-THEN-ELSE block are to be either included
or excluded from the processor execution.

//STEP1 EXEC PGM=COBOL1

// IF (RC.STEP1=0)

// THEN

//STEP2 EXEC PGM=LINK

//DD1 DD DISP=SHR,DSN=INPUT
//DD2 DD DISP=SHR,DSN=OUTPUT
//STEP3 EXEC PGM=PRINT

//DD1 DD DISP=SHR,DSN=INPUT
//DD2 DD DISP=SHR,DSN=OUTPUT
// ELSE

//STEP4 EXEC PGM=PRINT

//DD1
//DD2
// E
//STEP5

DD DISP=SHR,DSN=INPUT
DD DISP=SHR,DSN=0UTPUT
NDIF

EXEC PGM=COPY

If the return code of STEPI is equal to 0, STEP2 and STEP3 are executed. STEP4 is not

executed.

2.

Prior to DD statements and any DD statements that are concatenated to them.

The IF clause is coded here when a test is to be made to determine if one or
more complete DD statements within an IF-THEN-ELSE block are to be
either included or excluded from the processor step definition.

2-24 Extended Processors Guide

2.6 Controlling Processor Flow

//STEP1 EXEC PGM=COBOL1

//STEP2 EXEC PGM=LINK

//0D1 DD DISP=SHR,DSN=INPUT1
// IF (&STAGE=PRD)

// THEN

//DD2 DD DISP=SHR,DSN=INPUT2
//DD3 DD DISP=SHR,DSN=INPUT3
// ELSE

//DD4 DD DISP=SHR,DSN=INPUT4
// ENDIF

//STEP3 EXEC PGM=PRINT

If &STAGE is equal to PRD when STEP2 is executed, then DD1, DD2, and DD3 are included
in the step definition. DD4 is not included in the step definition.

3. Prior to a DD statement that is part of a DD concatenation.

The IF clause is coded here when a test is to be made to determine if one or
more statements that are part of a DD concatenation and within an ITE
(IF-THEN-ELSE) block are to be either included or excluded from the
processor step definition.

//STEP1 EXEC PGM=COBOL1

//STEP2 EXEC PGM=LINK

//0D1 DD DISP=SHR,DSN=INPUT1
// IF (&STAGE=PRD)

// THEN

// DD DISP=SHR,DSN=INPUT2
// DD DISP=SHR,DSN=INPUT3
// ELSE

// DD DISP=SHR,DSN=INPUT4
// ENDIF

//DD2 DD DISP=SHR,DSN=INPUT5
//0D3 DD DISP=SHR,DSN=INPUT6
//STEP3 EXEC PGM=PRINT

If &STAGE is equal to PRD when STEP2 is executed, datasets INPUT1, INPUT2, INPUT3 are
included in the dataset concatenation defined by DD1. The INPUT4 dataset is not included.

An IF-THEN-ELSE IF specification may extend over multiple statements. The
specification must be within columns 1 - 71 of each statement. Column 72 may
contain an X to indicate a continuation of the line, but it is not mandatory.

cc cc
1 72
//TESTIF IF ((8STG EQ PRD1) OR (&STG EQ PRD2)

// OR (&STG EQ PRD3) OR (&STG EQ PRD4)

// OR (&STG EQ PRD5)) THEN

An [F statement extending over multiple statements, without an 'X' in column 72.

Chapter 2. Writing Processors 2-25

2.6 Controlling Processor Flow

cc
1
//TESTIF

cC

72

IF ((&STG EQ PRD1) X
OR (&STG EQ PRD2) X
OR (&STG EQ PRD3) X
OR (&STG EQ PRD4) X

OR (&STG EQ PRD5)) THEN

An IF statement extending over multiple statements, with an X' in column 72.

The THEN clause may be on the same statement as the preceding IF definition or
it can be specified on a subsequent statement. All text to the right of the THEN
clause is treates as comments.

//TESTIF

//TESTIF IF (&STG EQ PRD) THEN COMMENTS
//STEP1 EXEC PGM=COBOL1

//TESTIF ELSE

//STEP2 EXEC PGM=COBOL2

ENDIF

'"THEN' clause on the same line as the 'IF' statement.

//TESTIF
/

//STEP1
//TESTIF
//STEP2
//TESTIF

IF (&STG EQ PRD)
THEN ~ COMMENTS
EXEC PGM=COBOL1

ELSE
EXEC PGM=COBOLZ

ENDIF

'THEN' clause on a separate line from the 'IF' statement.

Stacking IF-THEN-ELSE specifications on the same statement is not acceptable.

//T1 IF(&SYS EQ ACC)THEN IF(&SUB EQ REC)THEN
//STEP EXEC PGM=COBOL1

// ELSE
//STEP EXEC PGM=COBOL2

// ENDIF

// ELSE

//STEP EXEC PGM=COBOL3

// ENDIF

The syntax in this IFF-THEN-ELSE definition is rejected at translation time because anything on
the first statement following the THEN clause is treated as a comment.

IF-THEN-ELSE specifications can be nested, however. The above could have
been coded in the following manner.

2-26 Extended Processors Guide

2.6 Controlling Processor Flow

//T1 IF(&SYS EQ ACC)

/ THEN

/172 IF(&SUB EQ REC)
// THEN
//STEP EXEC PGM=COBOL1
/172 ELSE
//STEP EXEC PGM=COBOL2
/172 ENDIF

//TL ELSE

//STEP EXEC PGM=COBOL3
//T1 ENDIF

Example of a nested IF-THEN-ELSE statement.

DD statements related to an EXEC must be included within the IF-THEN-ELSE
block for that step. Endevor has no way of knowing that DD statements following
an EXEC statement belong to a prior statement. In short, the step must be
complete as if I[F-THEN-ELSE were not coded. As an example, this processor is
invalid:

//1F IF (&COBOL="1") THEN
//STEP1 EXEC PGM=COBOL1

// ELSE
//STEP1 EXEC PGM=COBOL2
// ENDIF

//SYSIN DD DISP=SHR,DSN=INPUT.SOURCE
//SYSLIN DD DISP=SHR,DSN=0BJECT.OUTPUT
/...

It is desirable to associate the DD statements with program COBOLI or program
COBOL2. However, in this case the DD statements are only associated with
program COBOL2. If the IF-THEN-ELSE statements are removed, the DDs are
allocated to the COBOL?2 program. Internally, DD statements are associated with
the prior exec statement. To associate the DD statements with the first exec
statement, they must be duplicated in that step. This example is valid:

// IF (&COBOL="1") THEN

//STEP1 EXEC PGM=COBOL1

//SYSIN DD DISP=SHR,DSN=INPUT.SOURCE

//SYSLIN DD DISP=SHR,DSN=0BJECT.OUTPUT
/...

// ELSE

//STEP1 EXEC PGM=COBOL2

//SYSIN DD DISP=SHR,DSN=INPUT.SOURCE

//SYSLIN DD DISP=SHR,DSN=0BJECT.OUTPUT
/...

// ENDIF

The relational expression of the IF statement tests six IBM-defined possible
expressions and the Endevor symbolic variables and literals. The six IBM
expressions are:

§ RC
= ABENDCC

Chapter 2. Writing Processors 2-27

2.6 Controlling Processor Flow

= ABEND

= -ABEND
= RUN

= -RUN

2.6.1.1 RC

Indicates thhe relational expression tests a return code. Evaluate a return code by
coding RC, a comparison operator, and a numeric value.

Example Results
IF(RC=8) Tests for a return code equal to 8
IF(stepname.RC>=10) Tests for a return code greater than or equal to 10

2.6.1.2 ABENDCC

Indicates the relational expression tests for a system abend completion code or a
user-defined completion code.

Example Results

IF(ABENDCC=Sxx) Tests true when most recent system abend is
equal to Sxx.

IF(ABENDCC=Uxxxx) Tests true when most recent user abend is
equal to Uxxxx.

IF(stepname. ABENDCC=Sxxx) Indicates the relational expression tests the
abend code for a specific step.

2.6.1.3 ABEND

Indicates the relational expression tests for an abend condition that occurred
during processing of a prior job step.

Example Results
IF(ABEND) Tests true if an abend occurs on any previous step.
IF(stepname.ABEND) Tests true if an abend occurred on a specific step.

2-28 Extended Processors Guide

2.6 Controlling Processor Flow

2.6.14

2.6.1.5

2.6.1.6

-ABEND

RUN

-RUN

Indicates the relational expression verifies an abend condition did not occur during
the execution of a prior job step.

Example Results
IF(-=ABEND) Tests true when no abend occurred on any previous step.
IF(-stepname.ABEND) Tests true when no abend occurred on a specific step.

Indicates the relational expression tests for execution of a specific job step.

IF(stepname.RUN)

IF (stepname.RUN=TRUE)

Indicates the relational expression verifies a specific step did not execute.

IF(-stepname.RUN)

IF(stepname.RUN=FALSE)

The Endevor symbolic variables are any variables currently supported by
processors. A list of symbolic variables is given with an explanation of the
EXECIF statement. See 2.4.3, “EXECIF” on page 2-7.

2.6.2 The ENDEVOR IF-THEN-ELSE Trace Facility

The Endevor IF-THEN-ELSE Trace Facility helps you to determine if the IF
THEN/ELSE logic is functioning correctly. When the Trace Facility is activated,
trace records are written that indicate the result of IF-THEN-ELSE condition
testing.

Include the following ddname in your Endevor JCL to activate the trace.

//ENSTRITE DD DUMMY

Sample output: The following is extracted from an output listing of an action
with tracing activated.

C1G02491 //TO1 IF ((&C1SY EQ 'SYSTEM')AND(&CISU NE 'SUB1'))
C1602491 // OR((&CLSY EQ 'SYSTEM2')AND(&CISU EQ 'SUB1'))
C1602491 // OR((&C1SY NE 'SYSTEM2')AND(&CISU EQ 'SUB3')))
C1G02491 //TO1 THEN

C1G02491 //T02 TF(('&C1ELEMENT(1,3)'="ACC"))

C1602491 //T02 THEN

C1G02491 //STEPL EXEC PGM=COBOL1

Chapter 2. Writing Processors 2-29

2.6 Controlling Processor Flow

1602491
C1602491
1602491
C1602491
(1602491
1602491
1602491
1602491
C1602491
1602491
€1602491
1602491
C1Ge0111I
C16G00091
1600091
C1600091
1600091

C1G0009I
C1Go009I
C1600091
1600091
C1600091
C1G0009I
C1Go009I
C16G00091
1600091
C1600091
C1Go009I
C1Go009I

C1X00001
C1X00001
C1X00001
C1X00001
C1X00001
C1X00001
C1X00001
C1X00001
C1X00001
C1X00001
C1X00001
C1X00001
C1X00001
C1X00001
C1X00001
C1X00001
C1X00121I
C1X00101
C1X00001
C1X00001
C1X00001
C1X00001

//702
//STEP2
//702
//T01
//STEP3
//703
//703
//DD1
//DD2
//703
//703
//701

ELSE

EXEC PGM=COBOLZ2

ENDIF
ELSE

EXEC PGM=COBOL3

THEN

IF (&C1TY='JCL")

DD DSN=SYS2.PROCLIB,DISP=SHR
DD DSN=SYS2.LINKLIB,DISP=SHR

ELSE

ENDIF

ENDIF

PROCESSOR SYMBOLIC SUBSTITUTION OCCURRED-
ORIGINAL :&C1SY
SUBSTITUTED:GIKSYS
ORIGINAL :&C1SU
SUBSTITUTED:GIKSUB

ORIGINAL :&CI1SY
SUBSTITUTED:GIKSYS
ORIGINAL :&C1SU
SUBSTITUTED:GIKSUB
ORIGINAL :&C1SY
SUBSTITUTED:GIKSYS
ORIGINAL :&CI1SU
SUBSTITUTED:GIKSUB

ORIGINAL

SUBSTITUTED:TO1
ORIGINAL :&CITY
SUBSTITUED:JCL

ITE(TOL
ITE(TOL
ITE(TOL
ITE(TOL
ITE(TOL
ITE(TOL
ITE(TOL
ITE(TOL
ITE(TOL
ITE(TO1
ITE(TOL
ITE(TOL
ITE(TO2
ITE(TO2
ITE(TO2

ITE(TOL

)Expression:
)Expression:
)Connecting:
)Expression:
)Expression:
)Connecting:
)Expression:
)Expression:
)Connecting:
)Connecting:
)Connecting:

:&C1ELEMENT(1,3)

GIKSYS EQ SYSTEMI Result: FALSE
GIKSUB NE SUB1 Result: TRUE
FALSE AND TRUE, Result: FALSE
GIKSYS EQ SYSTEM2 Result: FALSE
GIKSUB EQ SUBI1 Result: FALSE
FALSE AND FALSE, Result: FALSE
GIKSYS NE SYSTEM2 Result: TRUE
GIKSUB EQ SUB3 Result: FALSE
TRUE AND FALSE, Result: FALSE
FALSE OR FALSE, Result: FALSE
FALSE OR FALSE, Result: FALSE

ITE IF encountered, truth set to FALSE

)
)Expression:
)

TO1 EQ ACC Result: FALSE

ITE IF encountered, truth set to FALSE
)ITE ELSE encountered, truth set to TRUE
C1GP2000: Step STEP2
STEP STEP2 INVOKING PROGRAM COBOL2
STEP STEP2 PROGRAM COBOLZ2 COMPLETED, RC=0000
C1GP2000: Step STEP2 has completed, RC(0000)
ITE(TO2) ITE ENDIF encountered, truth set to FALSE
) ITE ELSE encountered, truth set to TRUE
C1GP2000: step STEP3

selected for execution by ITE

selected for execution by ITE

2-30 Extended Processors Guide

2.6 Controlling Processor Flow

C1Xo00001I
C1X00001
C1X00001I
C1X00001
C1Xe0121I
C1X00101
C1X00001I

ITE(TO3) Expression: JCL EQ JCL Result: TRUE
ITE(TO3) ITE IF encountered, truth set to TRUE
DD DD1 included by ITE

DD DD2 included by ITE

STEP STEP3 INVOKING PROGRAM COBOL3

STEP STEP3 PROGRAM COBOL3 COMPLETED, RC=0000
C1GP2000: Step STEP3 has completed, RC(0000)

Chapter 2. Writing Processors 2-31

2.7 Authorizing a Non-Endevor Program

2.7 Authorizing a Non-Endevor Program

Programs that require authorization outside of Endevor may lose their
authorization when used within Endevor. In order to maintain authorization in
Endevor, those non-Endevor programs must be added to a specific Endevor table.
Endevor currently hardcodes the following programs in this table: IEBCOPY,
IEHMOVE, and IKJEFTO1.

If you are using another program that requires authorization, you must add it to
the Endevor table using a ZAP. Please refer to your optional PTF index to locate
this ZAP and follow the instructions provided. If you have any questions on this
procedure, call Endevor Technical Support.

2-32 Extended Processors Guide

Chapter 3. Processor Utilities

Chapter 3. Processor Utilities 3-1

3.1 Overview

3.1 Overview

3.1.1 Utilities Available

The following utilities are distributed with Endevor. You can include these
utilities anywhere in your processor logic, to perform the functions described.

This Utility

Is used to:

BC1PDSIN

Initialize any number of allocated data sets that begin with
ddname C1INIT. This utility is generally used to allocate list
data sets.

BC1PTMPO

Execute TSO commands, once a TSO environment has been
created. This program accepts as input a parameter defining
the data set containing the TSO commands to be called.
BCIPTMPO acts as a terminal monitor program and command
processor, calling one program (EXEC) to place the
commands in a TSO stack, then issuing GETLINE requests to
extract the commands from the TSO stack.

BC1PXFPI

Install “transportable” footprints in object modules generated
under OS/MVS or 0S/390, DOS/VSE, or VM/CMS. For
details, see the “Footprints” chapter in the Administration
Guide.

BSTCOPY

Copy members from one partitioned data set to another.
BSTCOPY allows for the use of MONITOR=COMPONENTS
and backout.

C1BM3000

Execute Endevor from within a processor.

C1PRMGEN

Create 80-column (card-image) statements from a parameter
passed to the utility. These statements, once expanded, are
passed as input control statements to subsequent job steps.
C1PRMGEN expands any Endevor symbolic parameters
contained in the statements, allowing you to vary the input
control specifications based on the values of Endevor symbolic
parameters.

CONAPI

Used to invoke a program which issues ENDEVOR API calls
through a processor.

CONDELE

Remove a member from a user library or HFS directory, after
verifying
the footprint for the member.

3-2 Extended Processors Guide

3.1 Overview

This Utility

Is used to:

CONLIST

Manage output listings generated by the processors: store (and
footprint) new members in listing libraries, print listings stored
as sequential files or as members in listing libraries, or copy a
member from one listing library to another (optionally after
appending one or more listings at the end of the member).

CONRELE

Include entities related to an element in a component list when
generating component list reports and when using the LIST
action.

CONSCAN

Create ACM relationships between an Endevor ELEMENT
and scanned values from the content of the ELEMENT. It
then applies parsing rules to the ELEMENT content, and
passes these as standard CONRELE syntax to the CONRELE
step as exemplified in the CONSCAN prototype.

CONWRITE

Combine all levels of an element, optionally expanding
INCLUDE statements, write the merged source to a
user-specified data set or HFS directory. Can be used as as
input to a specified program.

Writes a component list to an external data set for further
processing.

ENBX1000

See the “Expand Includes” section of the Utilities Guide for
more information.

CAUTION:

ELIB utilities BC1PNLIB, NCPY, and NLST cannot be used within a

processor.

Chapter 3. Processor Utilities 3-3

3.2 BC1PDSIN Utility

3.2 BC1PDSIN Utility

BCIPDSIN can be used to initialize sequential data sets. For example, in a
processor with COMPILE, LINK, and CONLIST steps (where CONLIST uses
temporary listing data sets created by the COMPILE and LINK steps), an
allocation error would occur in the CONLIST step if the COMPILE or LINK did
not run thereby not creating the needed temporary data sets. If you use
BCI1PDSIN, however, it allocates temporary data sets, so CONLIST has the files it
needs to execute.

Notes:
To initialize a PDS within BC1PDSIN, specify:
1. The member name in the dataset name
2. DSORG=PS

3. The number of directory blocks to allocate in the SPACE parameter

3.2.1 Sample JCL

//STEPNAME EXEC PGM=BC1PDSIN
//CLINITxx DD DSN=&&COBLST,DISP=(,PASS,DELETE),

/1l UNIT=SYSDA,SPACE=(TRK, (1,2) ,RLSE),
/! DCB= (RECFM=FBA, LRECL=121,BLKSIZE=3630,DSORG=PS)
//CLINITxx DD DSN=&&LNKLST,DISP=(,PASS,DELETE),
/1 UNIT=SYSDA, SPACE=(TRK, (1,2) ,RLSE),
/! DCB= (RECFM=FBA, LRECL=121,BLKSIZE=3630,DSORG=PS)

3-4 Extended Processors Guide

3.3 BC1PTMPO Utility

3.3 BC1PTMPO Utility

BCIPTMPO allows TSO commands to be executed once a TSO environment has
been created. The program accepts as input a parameter that defines the data set
containing the TSO commands to be called. This program is usually used for
processors that are executed under the Endevor ISPF dialog.

Notes:

1. BCIPTMPO issues TSO command processor STACK services using the
BARRIER option. Only releases of TSO that support the BARRIER option
can use this utility.

2. If using a REXX EXEC instead of a TSO CLIST, a PUSH END statement
must be coded at the end of the EXEC.

BCIPTMPO first checks whether a TSO environment is present.

8 If no TSO environment is present, BCIPTMPO ends with a return code of 5.
See 3.3.2, “Return Codes” on page 3-6, for more details.

® If a TSO environment is present, BCIPTMPO acts as a terminal monitor
program and command processor. BC1PTMPO calls the program EXEC,
which then places the commands (specified in the data set coded on the
PARM= parameter) in the TSO stack. BCIPTMPO will issue GETLINE
requests to extract those commands from the TSO stack.

TSO does not allow the program IKJEFTO01, a TSO program, to be executed once
TSO processing has started. (That is, TSO does not allow TSO to run under it.)
Executing BCIPTMPO in a processor rather than executing IKJEFTO1 allows TSO
commands to be executed within an Endevor processor.

Both the Endevor Information/Management Interface and the Endevor for DB2
product require the use of BCIPTMPO.

Warning: ISPF services cannot be invoked in a TMP. Endevor is using ISPF
services to invoke the processor and an attached TMP (BCIPTMPO) can not start
another ISPF service in the same TSO address space. ISPF services (ISPEXEC,
ISPSTART, etc.) cannot be invoked via BC1PTMPO.

3.3.1 Sample JCL

The following JCL is specified in the processor:

//STEPNAME EXEC PGM=BC1PTMPO,
// PARM="uprfx.uqual.CLISTLIB(clist)"
//STEPLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

Chapter 3. Processor Utilities 3-5

3.3 BC1PTMPO Utility

3.3.1.1 Parameters

Parameter Description

PARM=

The name of the data set containing the commands to
be executed by BC1PTMPO.

uprfx.uqual. CLISTLIB The name of the list library containing the commands

that you want to execute.

clist

The name of the CLIST that you want to execute.

iprfx.iqual. CONLIB The Endevor installation load library containing the

program BC1PTMPO. (For DB2 processors, you may
need to add your DB2 load library.)

3.3.2 Return Codes

BCI1PTMPO can return any of the following return codes:

Code

Meaning

0

All commands were successfully processed.

5

TSO (that is, program IKJEFTO1) currently is not active. This step within
the processor was executed, however.

No parameter was specified in the PARM= statement within the JCL, or a
data set name greater than 56 characters was specified.

A command specified in the CLIST was not found. BCIPTMPO attempts
to load all programs prior to issuing an ATTACH. If the load fails, this
return code is passed back to Endevor.

A GETMAIN failed for the command buffer required by attached programs.
BCI1PTMPO attempted to acquire a command buffer in subpool 78 and the
GETMAIN failed.

3.3.2.1 Other Return Codes

Other return codes may be returned as a result of one of the commands processed
by BC1IPTMPO. For example, a program check that occurs in a program attached
by BC1PTMPO can result in a return code of SOC4.

3-6 Extended Processors Guide

3.4 BC1PXFPI Utility

3.4 BC1PXFPI Utility

The BC1PXFPI utility installs “transportable” footprints in object modules
generated under OS/390, DOS/VSE, or VM/CMS. Transportable footprints
provide footprint audit trails for software that executes in a non-OS/390
environments (DOS/VSE and VM/CMS).

For more information, see the “Transportable Footprints” chapter in the Footprints
Guide. (This facility is for non-OS/390 environments only.)

Chapter 3. Processor Utilities 3-7

3.5 BSTCOPY Utility

3.5 BSTCOPY Utility

The BSTCOPY utility offers a limited subset of the functionality provided by
IEBCOPY.

You must use BSTCOPY instead of IEBCOPY if you use the Endevor Automated
Configuration Manager (ACM), or if package backout has been enabled for the
output library. This is because Endevor cannot detect the method used by
IEBCOPY to update output library members.

3.5.1 Supported Copy Functions

BSTCOPY can be used to copy between PDS load libraries and PDSE load
libraries, from PDSE to PDSE, and from PDSE back to PDS. It cannot copy
between a PDSE load library and any other Endevor access method (AllFusion™
CA-Librarian, AllFusion™ CA-Panvalet, Endevor/Lib).

BSTCOPY can copy aliases, but the alias must be explicitly requested. To copy
an alias, the original loadlib member must be copied first.

Copying from a PDSE load library to a PDS may result in errors, depending on
whether the PDSE contains any program object members which cannot be
converted back to load modules. This includes program objects which are greater
than 16 megabytes in size, or which included mixed-case, extended names, or
contain more than 32K of external symbols. (For more information on the
conversion restrictions, refer to the program management manuals for
DFSMS/MVS 1.1 or higher.)

BSTCOPY is not intended to replace IEBCOPY. Rather, it is provided to support
simple member copy operations from one library to another.

3.5.1.1 BSTCOPY Syntax - Literal Interpretation

»»—COPy—I ndd—=—|:ddname1—_I‘,—Outdd—=—ddname2—>
((ddnamel,R))

»—Select—Member—=—-ymemberl —>
—memberl, member2
—((memberl,newnamel,R))

—(—E’(memberl ,hewnamel, R)J—)—

3-8 Extended Processors Guide

3.5 BSTCOPY Utility

3.5.1.2 BSTCOPY Syntax - Alternate Interpretation

»»—COPy—I NDd—=Tddname1—_l—,—OUTdd—=—ddname24>

((ddnamel,R))

»—SELect—MEMber

CAUTION:

= memberl —>
emberl, member2

(—E’(memberl ,nhewnamel,R) J—)—

Spaces before or after the comma between COPY INDD and OUTDD results

in a syntax error.

3.5.2 Unsupported Functions

BSTCOPY does not:

& Copy members of a partitioned data set to a sequential data set.

B Compress partitioned data sets.

8 Copy load modules that have the linkage editor OVERLAY attribute.

® Reblock load modules when the BLKSIZE of the input library is greater than
that of the output library.

8 Support multiple DD definitions on the INDD statement.

® Support splitting a SELECT statement on multiple lines. A SELECT
statement must be specified on one physical input record.

8 Support FREE-CLOSE on any input or output DD names.
//BSTCOPY PGM=BSTCOPY,MAXRC=0

//SYSPRINT DD
//IN1 DD
//IN2 DD
//0UT1 DD
//SYSIN DD

SYSOUT=+

DISP=SHR,DSN=DSNAME1
DISP=SHR,DSN=DSNAME2
DISP=0LD,DSN=DSNAME3

*

COPY INDD=((IN1,R)),0UTDD=0UT1

SELECT MEMBER=MEMBER1

COPY INDD=INZ2,0UTDD=0UT1

SELECT MEMBER=((MEMBER2, ,R), (MEMBER3, ,R))
SELECT MEMBER=((MEMBER4,NEWNAME4,R))

Chapter 3. Processor Utilities 3-9

3.5 BSTCOPY Utility

3.5.3 BSTCOPY and OVERLAY Modules

BSTCOPY does not support the copy of a load module that is linked as
OVERLAY. When BSTCOPY cannot be used, backout processing is effectively
disabled for packages.

One solution is to relink the load modules. If the load modules are
vendor-supplied, however, and relinking may jeopardize ongoing vendor support,
another solution is to write a two-step processor. Follow these steps to create the
New processor:

1. Create a dummy module and execute a BSTCOPY step that copies it and
renames it to the name of the OVERLAY module. This bypasses the system's
security and renames the target module, creating a backout.

2. Code an IEBCOPY step that copies the real module in, overlaying the dummy

module. Because IEBCOPY cannot be screened, backouts are not affected.

The processor below executes these two steps.

//STEP1 EXEC PGM=BSTCOPY
//SYSPRINT DD SYSOUT=+

//IN DD DSN=source.data.set,DISP=SHR
//0UT DD DSN=target.data.set,DISP=SHR
//SYSIN DD =

C I=IN,0=0UT

S M=((dumymbr,&C1ELEMENT,R)) <===DUMMY MEMBER COPIED TO CREATE BACKOUT
//STEP2 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK, (5,5))
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK, (5,5))

//IN DD DSN=source.data.set,DISP=SHR
//0UT DD DSN=target.data.set,DISP=0LD
//SYSIN DD =

C I=IN,0=0UT

S M=((&C1ELEMENT,,R)) <===COPY REAL MEMBER

For PDSMAN users:

1. Using the PDSMAN $IEBCOPY statement, BSTCOPY can be replaced with
the PDSMAN utility FASTCOPY. Specify NAME=BSTCOPY on the
$IEBCOPY statement to enable this support. Package shipment jobs and
processors coded to run BSTCOPY in this situation will execute FASTCOPY
instead.

2. To disable substitution of FASTCOPY for BSTCOPY in this environment,
code a DD statement in the processor JCL for the ddname 'FCOPYOFF,'
allocated to DD DUMMY.

3. For Endevor/ACM users, when executing FASTCOPY, input components will
not be collected. Output components will be collected and package backout
members and data are collected.

3-10 Extended Processors Guide

3.5 BSTCOPY Utility

4. OVERLAY and SCTRLOAD modules are supported when using
FASTCOPY.

5. Set the SIEBCOPY operand STORFAIL= to the value TERMINATE when
using FASTCOPY substitution for BSTCOPY.

3.5.4 SYSPRINT DCB Information
When directing SYSPRINT output to a data set, the DCB information specified
should be:
= RECFM=VBA
» LRECL=121
» BLKSIZE=125

Chapter 3. Processor Utilities 3-11

3.6 C1BM3000 Utility

3.6 C1BM3000 Utility

The C1BM3000 utility allows you to execute Endevor actions from within a

processor.

You must pass the SCLIN (SCL input) and MSGOUT1 (output messages)
parameters to the CIBM3000 utility. Optionally, if you want:

® A package ID associated with this execution, you must pass the PACKAGE

parameter.

8 Endevor to write the Action Summary report to a separate file, you must pass
the MSGOUT?2 parameter.

Warning: Backout information is not created for elements processed by the

C1BM3000 utility.

3.6.1 Do Not Use...

Do not use the following:

& BSTIPTO1 for SCLIN, the name is reserved by Endevor for input SCL.

B CIMSGS1 for MSGOUT1, the name is reserved by Endevor for batch
execution report messages.

B CIMSGS2 for MSGOUT?2, the name is reserved by Endevor for the Action

Summary report.

CAUTION:

You cannot act against an element that is currently being acted upon. Except
for the LIST and PRINT actions, the SCL executing in a processor cannot
execute an action for the same element. Nor can this SCL perform any
source changes to the element being processed. This creates a “deadly
embrace,” loop by waiting for an element that is currently in use.

3.6.2 Sample JCL

Sample JCL for the C1BM3000 utility is illustrated below. This JCL specifies a
SCL input file, and the messages and Action Summary report are written to
SYSOUT. A package ID is not specified, as indicated by the two commas
between MSGOUT1 and MSGOUT?2. The two commas are required.

//C1BM3000 EXEC
//STEPLIB DD
//

//MSGOUT1 DD
//MSGOUT2 DD
//SYSABEND DD
//SCLIN DD
//

//

PGM=C1BM3000,PARM="SCLIN,MSGOUT1, ,MSGOUT2"'
DSN=iprfx.iqual.AUTHLIB,

DISP=SHR

SYSOUT=+

SYSOUT=+

SYSOUT=+

DSN=uprfx.uqual.SCL,DISP=SHR
DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160,DSORG=PS)

3-12 Extended Processors Guide

3.6 C1BM3000 Utility

Note: You need not specify the CONLIB DD statement, because the library has
already been specified by the batch job or by the logon procedure in foreground.

Chapter 3. Processor Utilities 3-13

3.7 C1PRMGEN Utility

3.7 C1PRMGEN Utility

The C1PRMGEN utility creates 80-column (card-image) statements from a
parameter passed to it. These statements are passed as input control statements to
subsequent job steps.

To create in-stream data, you can include Endevor symbolics in the parameter
passed to CIPRMGEN. If you do this, the utility expands the symbolics as it
creates the output statements, allowing you to vary the input control statements
passed to subsequent job steps based on the values of Endevor symbolic
parameters. This is illustrated next, where CIPRMGEN creates two control
statements for use by the IBM IEBCOPY utility.

3.7.1 Sample JCL

To use CIPRMGEN, pass the data to be expanded in the PARM= parameter of
the EXEC statement. To create more than one card-image statement, separate the
statements using a vertical bar (I) in the PARM= value, as illustrated in the
following sample JCL:

//STEPNAME EXEC PGM=C1PRMGEN,

// PARM=' C I=I,0=0| S M=((&&CLELEMENT,,R))"
//PARMOUT DD DSN=&&CPYPARM,DISP=(,PASS,DELETE)
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=80)

3-14 Extended Processors Guide

3.7 C1PRMGEN Utility

3.7.1.1 Parameters

Parameter

Description

PARM=

The statement to be expanded, enclosed either in single quotes or
parentheses. This statement can be 1-100 characters in length.
Once expanded, it is output in card-image format starting in column
1. To output more than one card-image statement, use the separator
character (I) in the PARM statement, as shown above.

If the statement contains more than 72 characters (up to 100
characters are allowed), you can add a second line to the parameter
by coding the statement as follows:

& Enter the first 71 characters of the line.

= In position 72, type any non-blank character (except a single
quote), and continue entering your data on the next line.

1 Type a (single) quote only at the end of the entire statement.
Note the example below:

Col

1

PARM="aDCd. s ettt itiii ittt iiiieieneenenresaoancasesaannnns
// A0S a'

® To include a quotation mark within the card-image data, specify
two contiguous quotes: ' .

® You can include an unbalanced parentheses, with the restriction
that you must use single quotes as the surrounding delimiters in
this case. You cannot include unbalanced parentheses when the
enclosing characters are parentheses, however.

PARMOUT

The data set to which the expanded statement is written.

In the previous example, the output written to PARMOUT, assuming
that the current element is NDVR, is as follows:

Chapter 3. Processor Utilities 3-15

3.8 CONAPI Utility

3.8 CONAPI Utility

The CONAPI utility allows you to execute a program that issues ENDEVOR API
calls through a processor.

A program which issues ENDEVOR API calls CANNOT be executed from a
processor directly. You must use this utility passing it the name of your program
through the PARM= parameter on the EXEC statement. If your program requires
parameter data, you may append it to the parameter string using a comma to
separate the program name from your parameter data.

For more information on the API interface, refer to the API Guide.

3.8.1 Sample JCL

//STEPNAME ~ EXEC PGM=CONAPI,PARM='APIPROG1,1,22,333'

CONAPI invokes program APIPROG1. On entry to APIPROGI, register 1
contains an address which points to an address for the parameter data. The first
two bytes of parameter data contains the length after which follows the data.

In the above example storage (in hex) would appear as follows:

0008F16BF2F26BF3F3F3

3-16 Extended Processors Guide

3.9 CONDELE Utility

3.9 CONDELE Utility

The CONDELE utility removes a member (load module, listing, etc.) from an
output library. The output library can be any of the following:

Source output library

Processor listing library

Processor load library

User output library

HES directory
This utility is generally used in delete processors.
Before it removes the member, CONDELE checks the member for a footprint that
matches the element being processed. If the footprint is missing or invalid,

CONDELE deletes the member, but passes back a Endevor informational message
stating that a footprint compromise has occurred.

3.9.1 Sample JCL

Sample JCL for this utility is shown below:
//STEPNAME ~ EXEC PGM=CONDELE,PARM="'mbr-name'

//C1LIB DD DSN=CA.STAGE1.LOADLIB,DISP=SHR
3.9.1.1 Parameters
Parameter Description
PARM= Indicates an alternate member name (mbr-name) for the

element. You have the option of overriding the default
member name. To specify all output components
(including object modules, load modules, and listings)
instead of an individual member name, specify
'PARM=*COMPONENTS'. CONDELE accesses the
component list at the current location and deletes all
output components from that list.

CAUTION:

CONDELE does not verify the component list was
generated at the current location. You need to
verify this independently before using the
PARM=*COMPONENTS parameter.

CILIB Specifies the library or HFS directory containing the
member targeted for deletion. The member name is the
name of the element being processed (generally moved,
deleted, or archived).

Chapter 3. Processor Utilities 3-17

3.10 CONLIST Utility

3.10 CONLIST Utility

The CONLIST utility is a multi-purpose utility used to manage output listings.
Five options are available with this utility: STORE, PRINT (the default),
PRTMBR, COPY, and DELETE. Use the PARM= statement on the EXEC card
to specify the option you want.

Note: All of these options, except for the MBR parameter, are mutually
exclusive; that is, you can use only one option in the PARM= statement.

PARM

Description

STORE

Consolidates and compresses one or more temporary
list data sets into a member in the output library
defined by the DD statement CILLIBO. CONLIST
converts the data sets to the record format of the output
library, and uses the member name as the element
name. The output library can be a PDS with record
size and record format appropriate for listings
(RECFM=VBA is recommended), or a Endevor LIB
data set which is stored as if RECFM=VBA. You can
optionally generate a banner page (as described below)
and store it at the front of the member.

If more than one file is input, CONLIST concatenates
the files before storing them.

The listing files must be sequential; they cannot be
PDS members. If you use a PDS, you receive an error
message stating the member cannot be found in the
directory.

PRINT

Default. Prints a temporary list data set, optionally
generating a banner page before the listing.

If more than one file is input, CONLIST concatenates
the files before printing them.

PRTMBR

Decompresses then prints a member from a listing
library.

COPY

Copies a member from an input listing library to an
output listing library (generally from Stage 1 to Stage
2), after optionally appending one or more temporary
list data sets at the end of the member. You can
optionally store a banner at the front of the member in
the output library.

DELETE

Deletes a member from the output library.

3-18 Extended Processors Guide

3.10 CONLIST Utility

PARM

Description

MBR (mbr-name)

Overrides the default member name (that is, the
element name) used by CONLIST. This option can be
used with the STORE, PRTMBR, COPY, and DELETE
options.

3.10.1 Banner Pages

You can request a banner when using the STORE, PRINT, and COPY options.
Banner pages are defined with a CIBANNER DD statement. This statement must

specify LRECL=121.

* *
#« IIIIIIIIIT ~ PPPPPPPPPPP PPPPPPPPPPP SSSSSSSSSS 2222222222 11 00000000 6666666666 *
#« IIIIIIIIIT ~ PPPPPPPPPPPP PPPPPPPPPPPP SSSSSSSSSSSS 222222222222 111 0000000000 666666666666 *
* 11 PP PP PP PP SS SS 22 22 1111 00 00 66 66 *
* 11 PP PP PP PP SS 22 11 00 00 66 *
* 11 PP PP PP PP SSS 22 11 00 00 66 *
* 11 PPPPPPPPPPPP PPPPPPPPPPPP SSSSSSSSS 22 11 00 00 66666666666 *
* II PPPPPPPPPPP PPPPPPPPPPP SSSSSSSSS 22 11 00 00 666666666666 *
* 11 PP PP SSS 22 11 00 00 66 66 =
* 11 PP PP sS 22 11 00 00 66 66
* 11 PP PP ssS ss 22 11 00 00 66 66
« IIIIIIIIIL PP PP SSSSSSSSSSSS 222222222222 1111111111 0000000000 666666666666 *
» IITIIIIIII PP PP SSSSSSSSSS 222222222222 1111111111 00000000 6666666666 *

*k *k

*% KhKkhRIKK UPDATE *hkhRIRK *%

** *k

*k USER ID......... JSMITH1 **

*% DATE............ 15JUNOGO 15:36 *%

*% Endevor RC...... 0000 **

Kk *%

*x ENVIRONMENT..... CA *%

*x STAGE........... QA *%

*x SYSTEM.......... FINANCE *%

*k SUBSYSTEM....... ACCTPAY *%

*k ELEMENT......... IPPS2106 *%

wk W.LlLeooooaaann 01.01 *%

L TYPE........utt COBPROG wk

L PROC GRP........ COBOLSTD *%

*% PROCESSOR....... GENCOBO1 *%

*% INITCOB....... RC=0000 *%

*% INITLNK....... RC=0000 *k

** WRITE......... RC=0000 *%

*x COMPILE....... RC=0000 *%

*x [0 RN RC=0000 *%

*k *k

The banner is useful for scanning listings and browsing stored members. The
banner includes:

B The element name across the top (IPPS2106 in the example above).

" A summary of the processor being run (user ID, date, Endevor return code,
stage, etc.).

Chapter 3. Processor Utilities 3-19

3.10 CONLIST Utility

B An itemization of each processor step, up to but not including the CONLIST
step, with the Endevor return code from each.

Error conditions are reflected in the banner; for example, an error may have
occurred within a processor step, or steps were not executed because of

condition-code testing.

In the example shown next, the COMPILE step ended with an 0004 return code,
which exceeded the specified MAXRC:

*% WRITE......... RC=0000 *%
*% **COMPILE....... RC=0004 > MAXRC #x
*% LKED..vvvunnnn NOT EXEC (CC) *%

3.10.2 STORE Option

The STORE option consolidates and compresses one or more temporary list data
sets into a member in the output library defined by the DD statement C1LLIBO.

//STEPNAME
//C1BANNER

/1
//

//C1LLIBO
//L1STO1
//LIST02

EXEC PGM=CONLIST,PARM='STORE'

DD DISP=(,PASS,DELETE),
UNIT=SYSDA,SPACE=(TRK,(1,1)),
DCB=(RECFM=FBA,LRECL=121,BLKSIZE=6171,DSORG=PS)

DD DSN=&C1STAGE.LISTINGS,DISP=SHR

DD DSN=&&COBLST,DISP=(0OLD,DELETE)

DD DSN=&&LNKLST,DISP=(0OLD,DELETE)

Parameter

Description

CI1BANNER

Requests a banner (as illustrated above) be included at
the front of the stored member. Omit this statement if
you do not want the banner included.

CI1LLIBO

Identifies the output listing library to which the new
member is written. The output member name is the
name of the element being processed. If a member by
this name currently exists, it is replaced.

LISTnn

Identifies a listing data set to be stored in CILLIBO. If
you specify more than one LISTnn library, assign the
ddnames sequentially (LISTO1, LIST02, and so forth).
LISTnn data sets are concatenated before they are
stored, in order by the nn suffix.

Note: You can override the default member (element) name for the STORE option,
using the MBR (mbr-name) option.

3-20 Extended Processors Guide

3.10 CONLIST Utility

3.10.3 PRINT Option

The PRINT option prints a temporary list data set, optionally generating a banner
page before the listing.

//STEPNAME
//C1BANNER
/1

/1
//C1PRINT
/1
//L1STO1
//LISTO2

EXEC PGM=CONLIST,PARM="'PRINT'
DD DSN=&&BANNER,DISP=(,PASS,DELETE),
UNIT=SYSDA,SPACE=(TRK, (1,1)),
DCB=(RECFM=FBA, LRECL=121,BLKSIZE=6171,DSORG=PS)
DD SYSOUT=+,
DCB=(RECFM=FBA, LRECL=133,BLKSIZE=0,DSORG=PS)
DD DSN=&&COBLST,DISP=(OLD,DELETE)
DD DSN=8&LNKLST,DISP=(OLD,DELETE)

Parameter

Description

C1BANNER

Requests a banner page (as illustrated above). Omit
this statement if you do not want the banner to print.

CIPRINT

The output print file.

LISTnn

Identifies a listing data set to be printed. If you specify
more than one LISTnn data set, assign the ddnames
sequentially (LISTO1, LISTO2, and so forth). LISTnn
data sets are concatenated before they are printed, in
order by the nn suffix.

3.10.4 PRTMBR (Print Member) Option

The PRTMBR option decompresses then prints a member from a listing library.

//STEPNAME
//C1LLIBI
//C1PRINT
/!

EXEC PGM=CONLIST,PARM="'PRTMBR'

DD DSN=STAGE1.LISTINGS,DISP=SHR

DD SYSOUT=x*,
DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0,DSORG=PS)

Parameter

Description

CILLIBI

Identifies the input listing library from which a member
is being printed. The name of the member to be
printed is the name of the element being processed.

CI1PRINT

The output print file.

Note: You can override the default member (element) name for the PRTMBR option,
using the MBR (mbr-name) option. For example, to specify member mbrname in data
set prtmbr.mbr, you would code:

//STEPNAME EXEC PGM=CONLIST,PARM="'PRTMBR.MBR (mbr-name)'

Chapter 3. Processor Utilities 3-21

3.10 CONLIST Utility

3.10.5 COPY Option

The COPY option copies a member from an input listing library to an output
listing library (generally from Stage 1 to Stage 2), after optionally appending one
or more temporary list data sets at the end of the member.

//STEPNAME
//C1BANNER

/1

/1
//CILLIBI
//C1LLIBO
//LISTO1
//LIST02

EXEC PGM=CONLIST,PARM="'COPY'

DD DSN=&&BANNER,DISP=(,PASS,DELETE),

UNIT=SYSDA,SPACE=(TRK, (1,1)),
DCB=(RECFM=FBA,LRECL=121,BLKSIZE=6171,DSORG=PS)

DD DSN=STAGE1.LISTINGS,DISP=SHR
DD DSN=STAGE2.LISTINGS,DISP=SHR
DD DSN=&&COBLST,DISP=(0OLD,DELETE)
DD DSN=&&LNKLST,DISP=(0LD,DELETE)

Parameter

Description

CI1BANNER

Requests a banner page. Omit this statement if you do
not want the banner included in the output member.

C1LLIBI

Identifies the input listing library from which a member
is being copied. The member being copied has the
name of the element being processed.

CILLIBO

Identifies the output listing library to which the copied
member is being written (after appending any LISTnn
files at the end of the member). The member name is
the element name.

LISTnn

Identifies a listing data set to be concatenated at the
end of the C1LLIBI member before it is written to
CILLIBO. If you specify more than one LISTnn data
set, assign the ddnames sequentially (LISTO1, LIST02,
and so forth). LISTnn data sets are concatenated (in
order by the nn suffix) before they are appended to the
member.

Note: You can override the default member (element) name for the COPY option,
using the MBR (mbr-name) option.

3.10.6 DELETE Option

The DELETE option deletes a member from the output library.

//STEPNAME

//CILLIBI

EXEC PGM=CONLIST,PARM='DELETE'
DD DSN=STAGE1.LISTINGS,DISP=SHR

3-22 Extended Processors Guide

3.10 CONLIST Utility

Parameter Description

CI1LLIBI Identifies the input listing library from which a member
is to be deleted. The name of the member to be
deleted is the name of the element being processed.

Note: You can override the default member (element) name for the DELETE option,
using the MBR (mbr-name) option. For example, to specify member mbrname in data
set delete.mbr, you would code:

//STEPNAME EXEC PGM=CONLIST,PARM='delete.mbr(mbrname)'

3.10.7 Guidelines When Creating Listings

There are several ways you can approach the creation and handling of listings
within Endevor processors.

Recommended Approach: The recommended approach involves:

1. Writing the listings to a data set other than SYSOUT during the processor
step

2. Running the Endevor CONLIST utility at the end of the job to combine all
the listings into a single member of a listing library.

To do this:

1. Initialize each listing data set before you write to it, to ensure that there will
be a listing to open in the final (CONLIST) step. You need one such data set
for each utility that outputs listings. For information about a utility that
initializes data sets, see 3.2, “BCIPDSIN Utility” on page 3-4.

2. In the JCL for the processor utilities, write to the appropriate listing data
set--not to SYSOUT.

3. Use the Endevor CONLIST utility to condense and combine the listings from
all the job steps, and either store them in a designated listing library or print
them.

This approach is illustrated by the following compile and link-edit processor.

Note: userinfo, in the examples which follow, represents information you must
supply.

//INITLST EXEC PGM=BC1PDSIN,COND=EVEN
//CLINITO1 DD DSN=&&COBLST,DISP=(,PASS,DELETE),UNIT=SYSDA,

/] SPACE=(TRK, (1,2) ,RLSE)
//CLINITO2 DD DSN=R&LNKLST,DISP=(,PASS,DELETE),UNIT=SYSDA,
/] SPACE=(TRK, (1,2) ,RLSE)

//WRITE EXEC PGM=CONWRITE,PARM="EXPINCL(N)"

//ELMOUT DD DSN=&&SYSIN,DISP=(,PASS,DELETE),userinfo
/1*

//*

//COMPILE EXEC PGM=IGYCRCTL,COND=(0,NE),PARM=mmm,MAXRC=04
//SYSLIB DD DSN=userinfo

Chapter 3. Processor Utilities 3-23

3.10 CONLIST Utility

//SYSIN DD DSN=userinfo

//SYSLIN DD DSN=&&SYSLIN,DISP=(,PASS,DELETE),userinfo
//SYSUT1 DD UNIT=SYSDA,userinfo

/1*

//SYSUT6 DD UNIT=SYSDA,userinfo

//SYSPRINT DD DSN=&&COBLST,DISP=(0OLD,PASS,DELETE),

// UNIT=SYSDA,SPACE=(TRK, (5,10),RLSE),

// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0,DSORG=PS)
//*

//LINK EXEC PGM=IEWL,PARM='userinfo,COND=userinfo,MAXRC=0

//SYSLIN DD DSN=&&SYSLIN,DISP=(0OLD,PASS)
//SYSLMOD DD DSN=userinfo

//SYSUT1 DD UNIT=SYSDA,userinfo

//SYSPRINT DD DSN=&&LNKLST,DISP=(0OLD,PASS,DELETE),

// UNIT=SYSDA,SPACE=(TRK, (5,3) ,RLSE),
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0)
/1%

//CONLIST EXEC PGM=CONLIST,PARM=STORE,COND=EVEN,MAXRC=0
//C1LLIBO DD DSN=STAGEL.LISTINGS,DISP=SHR

//C1BANNER DD DSN=&&BANNER,userinfo

//LISTO1 DD DSN=&&COBLST,DISP=(0OLD,DELETE)

//LISTO2 DD DSN=&&LNKLST,DISP=(0LD,DELETE)

/1%

® BCIPDSIN initializes a listing library for use in the COMPILE and LINK
steps.

8 Endevor CONWRITE utility creates a source file by merging all levels of the
element.

® COBOL compile writes listings to the file initialized in the INITCOB step.
® Link-edit writes listings to the file initialized in the INITLNK step.

® Endevor CONLIST utility creates a Endevor banner page and combines the
compile and link-edit listings and stores them as a single member in the Stage
1 listings library.

One Alternative: As an alternative, you can write the listings to SYSOUT. If
you are running the processor in batch, SYSOUT=* data sets are attached to the
message class (MSGCLASS) assigned in the jobcard for the corresponding batch
job.

Note: If you are running in foreground, SYSOUT=* data sets are attached to the
default SYSOUT class assigned for your user ID (as described in the User Guide).
TSO allocates the SYSOUT file when it is first opened, and does not free it until
you log off from TSO or issue an explicit TSO FREE command for the file.

This approach is illustrated by the compile and link-edit processor shown below.

/1%

//WRITE EXEC PGM=CONWRITE,PARM="'EXPINCL(N)"
//ELMOUT DD DSN=8&SYSIN,DISP=(,PASS,DELETE),userinfo
/1%

//COMPILE EXEC PGM=IGYCRCTL,COND=(0,NE),PARM=mmm

3-24 Extended Processors Guide

3.10 CONLIST Utility

//SYSLIB DD DSN=userinfo

//SYSIN DD DSN=userinfo

//SYSLIN DD DSN=&&SYSLIN,DISP=(,PASS,DELETE),userinfo
//SYSUT1 DD UNIT=SYSDA,userinfo

//*

//SYSUT6 DD UNIT=SYSDA,userinfo

//SYSPRINT DD SYSOUT=*

//*

//*

//LINK EXEC PGM=IEWL,PARM='userinfo,COND=userinfo,
//SYSLIN DD DSN=&&SYSLIN,DISP=(0LD,PASS)

//SYSLMOD DD DSN=userinfo

//SYSUT1 DD UNIT=SYSDA,userinfo

//SYSPRINT DD SYSOUT=*

/1*

® Endevor CONWRITE utility creates a source file by merging all levels of the
element.

® COBOL compile writes listings to SYSOUT.
® Link-edit writes listings to SYSOUT.

Another Alternative: This approach is similar to the recommended approach but
uses the PRINT option of the CONLIST utility, so the listings are printed instead
of stored. The JCL for this approach is the same as that for the recommended
approach with the exception of the CONLIST step, which is shown below.

//*

/1*

//CONLIST EXEC PGM=CONLIST,PARM=PRINT,COND=EVEN,MAXRC=0
//C1PRINT DD SYSOUT=x,

// DCB=(RECFM=FBA, LRECL=133,BLKSIZE=0,DSORG=PS)
//C1BANNER DD DSN=&&BANNER,userinfo

//LISTO1 DD DSN=&&COBLST,DISP=(0LD,DELETE)

//LIST02 DD DSN=&&LNKLST,DISP=(0LD,DELETE)

*

Chapter 3. Processor Utilities 3-25

3.11 CONRELE Utility

3.11 CONRELE Utility

The CONRELE utility allows you to include entities related to an element in a

component list. The entities can be data sets, CASE entities, JCL, parameter list
members, documentation members, etc. The entities do not have to be Endevor

elements.

The CONRELE utility parses and processes input data. CONRELE accepts user
syntax from the NDVRIPT DD statement. After the parsing process is complete
the data is formatted as special component record types and processed with the
rest of the component list. The related data portion is appended to the end of the
component list. You are not required to store the input in Endevor.

Note: You must use the CONRELE utility with an active component list (the
component list for the element being processed).

You must include the CONRELE utility as a processor step and you must provide
the input. Use the following sample processor JCL to execute CONRELE:

//STEPxx EXEC PGM=CONRELE
//NDVRIPT DD DSN=&user.data.set,DISP=SHR

3.11.1 CONRELE Utility Commands

The CONRELE utility accepts the following commands from the NDVRIPT file:
1 RELATE ELEMENT--Relates an element to another element.
8 RELATE MEMBER--Relates a data set member to an element.

» RELATE OBJECT--Relates an object such as a pathname or a filename for an
object on another platform to an element.

8 RELATE COMMENT--Adds comments to a component list.
1 SET ERROR RETURN CODE--Returns an error code when the CONRELE

utility finds errors in the input syntax (default 8).

The syntax for these commands follows.

3.11.2 RELATE ELEMENT Command Syntax

The RELATE ELEMENT command syntax is shown below. For details about
building SCL commands, see the SCL Reference Guide.

3-26 Extended Processors Guide

3.11 CONRELE Utility

3.11.2.1 RELate ELEment Syntax

»—RELate ELEment—element-name

v

Xt X >
—LOCation
—ENVironment "environment-name '—
—SYStem 'system-name’
—SUBsystem 'subsystem-name '——
—TYPe "type-name’
—STAge 'stage-id'’

A\
A

>—|:INPut
OUTputJ |—VAL1'da‘ceJ

Parameters

element-name
The name of the element. The maximum element-name length is 10.

LOCATION
Location of the member-name This is optional. If you do not include the
location in your syntax the location defaults to the target location of the
current Endevor element.

INPut
Input component

OUTput
Output component

VALIDATE
Verifies the elements' presence at the specified location in Endevor. This is
optional.

If the element doesn't exist, the RELATEd element is rejected.

If you specify the VALIDATE option and the validation fails, the return code
is set according to the SET ERROR RETURN CODE syntax.

& When the VALIDATE option is specified, the location names
(environment, system, etc.) cannot be wildcarded. If they are omitted,
the location names associated with the target element are used.

8 When the VALIDATE option is NOT specified, CONRELE stores the
location information "as specified". Omitted location information is taken
from the target element's location.

Chapter 3. Processor Utilities 3-27

3.11 CONRELE Utility

Note: Package component validation only validates RELATED ELEMENTS,
(not members, objects or comments) which were related using the CONRELE
VALIDATE option.

3.11.3 RELATE MEMBER Command syntax

The RELATE MEMBER command syntax is shown below.

3.11.3.1 RELate MEMber Syntax

»»—RELate MEMber—member-name—DATaset data set-name——»

\4
A

INPut
OUTputJ |—VAL1'd&1teJ

Parameters

member-name

The name of the member in a data set. The maximum member-name length is
10. A blank member is valid.

data set-name
The name of the data set that contains the member-name.

INPut
Input component

OUTput
Output component

VALIDATE
Endevor determines whether the specified data set exists. This is optional.

If you specify the VALIDATE option, Endevor determines whether or not the
data set exists.

If the validation fails the default SET ERROR RETURN CODE is displayed.
If you do not specify the VALIDATE option no validation occurs.

3.11.4 RELATE OBJECT Command Syntax

The RELATE OBJECT command syntax is shown below.

3.11.4.1 RELate OBJect Syntax

v
A

»—RELate OBJect—object-data—.

3-28 Extended Processors Guide

3.11 CONRELE Utility

Parameters

object-data
The name of object-data. The object-data name is a maximum length of 70
bytes. The object-data is not verified. Related objects are stored in a
first-in-first-out (FIFO) sequence.

3.11.5 RELATE COMMENT Command Syntax

The RELATE COMMENT command syntax is shown below.

3.11.5.1 RELate COMment Syntax

»—RELate COMment—comment-data—.

A\
A

Parameters

Comment-data
The comments should be enclosed in quotations marks and are stored in a
first-in-first-out (FIFO) sequence. You can include an unlimited number of
comments. The comments are not verified but you can search on the text.

3.11.6 SET ERROR RETURN CODE Command Syntax

The SET ERROR RETURN CODE command syntax is shown below.

3.11.6.1 SET ERRor RETurn CODe Syntax

»—SET ERRor RETurn CODe error-return-code—.———— >«

Parameters

error-return-code
Specifies the error return code when the Validate option fails. The default
error return code is 8.

3.11.7 Example of CONRELE Syntax

This is an example of the CONRELE syntax.

SET ERROR RETURN CODE 0000.
RELATE ELEMENT BGSQL600

LOCATION
ENVIRONMENT = TEST
SYSTEM = FINANCE
SUBSYSTEM = AP
TYPE = BGLOADZ

Chapter 3. Processor Utilities 3-29

3.11 CONRELE Utility

STAGE =1
INPUT.
RELATE ELEMENT BGSQL723
LOCATION
ENVIRONMENT = TEST
SYSTEM = FINANCE
SUBSYSTEM = AP
TYPE = BGLOAD3
STAGE =1
INPUT.
RELATE ELEMENT BGSQL601
LOCATION
ENVIRONMENT = TEST
SYSTEM = FINANCE
SUBSYSTEM = AP
TYPE = BGLOADZ
STAGE =1
OUTPUT.
RELATE ELEMENT BGSQL64
LOCATION
ENVIRONMENT = TEST
SYSTEM = FINANCE
SUBSYSTEM = AP
TYPE = DB2COB3
STAGE =1
OUTPUT.
RELATE ELEMENT BGSQL65
LOCATION
ENVIRONMENT = TEST
SYSTEM = FINANCE
SUBSYSTEM = AP
TYPE = DB2COB
STAGE =1
OUTPUT
VALIDATE.

RELATE MEMBER BC1PSQL1
dataset = 'JSMITH.SRCLIB'
INPUT.

RELATE MEMBER BGSQL60
dataset = 'JSMITH.DBRMLIB'
INPUT
VALIDATE.

RELATE MEMBER BC1PSQL3
dataset = 'JSMITH.SRCLIB'
OUTPUT.

RELATE MEMBER BGSQL70
dataset = 'JSMITH.DBRMLIB'
INPUT
VALIDATE.
RELATE OBJECT 'D;\ENDEVOR\TEMP.DOC'.
RELATE OBJECT 'D;\ENDEVOR\TEMP.DOC2'.
RELATE OBJECT 'D;\ENDEVOR\TEMP.DOC3'.

3-30 Extended Processors Guide

3.11 CONRELE Utility

RELATE OBJECT 'D;\ENDEVOR\TEMP.DOC4'.
RELATE OBJECT 'D;\ENDEVOR\TEMP.DOC5'.
RELATE OBJECT 'D;\ENDEVOR\TEMP.DOC6'.
RELATE OBJECT 'D;\ENDEVOR\TEMP.DOC7'.
RELATE OBJECT 'D;\ENDEVOR\TEMP.DOC8'.
RELATE OBJECT

e e e e e e e !
RELATE COMMENT 'THIS IS A FREE FORM TEST'.
RELATE COMMENT 'THIS IS A FREE FORM TEST2'.
RELATE COMMENT 'THIS IS A FREE FORM TEST3'.
RELATE COMMENT 'THIS IS A FREE FORM TEST4'.
RELATE COMMENT 'THIS IS A FREE FORM TEST5'.
RELATE COMMENT 'THIS IS A FREE FORM TEST6'.
RELATE COMMENT 'THIS IS A FREE FORM TEST7'.
RELATE COMMENT 'THIS IS A FREE FORM TEST8'.
RELATE COMMENT 'THIS IS A FREE FORM TEST9'.
RELATE COMMENT 'THIS IS A FREE FORM TEST10'.
RELATE COMMENT 'THIS IS A FREE FORM TESTI11'.

Chapter 3. Processor Utilities 3-31

3.12 CONSCAN Utility

3.12 CONSCAN Utility

The CONSCAN utility allows you to identify additional Automated Configuration
Management (ACM) relationships between Endevor Elements and objects
contained within the element, such as data set or program names contained within
a JCL jobstream or dynamic program call statements within a COBOL program.

User-defined selection criteria and scan rules are applied against the element
source and CONRELE control statements are produced by the CONSCAN utility.
These statements can be passed to the CONRELE utility, which updates the ACM
component data for an element. Refer to 3.11, “CONRELE Utility” on page 3-26
for more information regarding CONRELE utility.

Once these relationships are established, the element display component options or
the ACMQ facility can be used to view this information in addition to standard
ACM input and output component data.

Although CONSCAN can be executed as a stand-alone utility, it is intended to be
executed as a step in a Endevor processor, followed by a CONRELE step. If used
as a stand-alone utility, none of the Endevor processor symbolic parameters
(&C1ELEM, etc.) are available and the processor IF, THEN, ELSE logic cannot
be utilized.

3.12.1 CONSCAN Parameter Data Set

A user-defined data set must be created to hold the input control parameters
necessary to execute this utility. This data set must be a card image file defined
as a fixed blocked file with a record length of 80. It is recommended this file be
a partitioned data set (PDS).

This parameter data set contains selection criteria and scan rules. It is
recommended you create one PARMSCAN member in this library for each
Endevor TYPE that utilizes the CONSCAN utility.

3.12.2 PARMSCAN Parameter Statements

When coding PARMSCAN statements, keep these conditions in mind:

® All lines with an asterisk in column 1 are considered comments and are
ignored.

® Positions 2-72 are used for control statement syntax in free format.

® Lines that end with a comma are continued.

® Literals that contain special characters must be enclosed within single quotes.
® Quotes within literals must be doubled.

® Only one statement is allowed per line.

3-32 Extended Processors Guide

3.12 CONSCAN Utility

CONSCAN validates all the PARMSCAN input for proper syntax. If a syntax
error is detected, a return code of 8 is returned and error messages are written to
the report file.

CONSCAN will not scan any source until all the statements in the PARMSCAN
input pass the syntax checking rules.

The contents of the PARMSCAN input consists of three logical parts:
® Excluding source data.
® Selecting source data.

® Scan rule processing.

3.12.3 Excluding Source Data

Exclusion groups define conditions that cause source data to be ignored. An
unlimited number of exclusion groups are allowed per PARMSCAN member, but
none are required. A COMMENT statement is used to identify the beginning of
an exclusion group. A FIND statement, which defines element source exclusion
criteria follows. If a match is found, the input source data is ignored. This may
be the entire record or selected data within a record. An END must follow the
FIND statement to identify the end of the data to be excluded and to terminate the
exclusion group.

Exclusion Group Syntax:

COMMENT
FIND1 STRING='string',POS=ANY/'nn'
END1 CARD/STRING='string',P0OS=ANY/'nn'

COMMENT
Indicates the beginning of an exclusion group.

FIND1
Indicates the beginning of the FIND statement.

STRING=

Indicates to scan this record for a string.
'string’,

Specified string. 1-8 characters can be specified.

POS
Identifies the position to search for the delimiter string.

ANY
The specified string may occur anywhere in the source.

nn
The specified string must occur after this position in the source.

END1
END1 Indicates the end of an exclusion group.

Chapter 3. Processor Utilities 3-33

3.12 CONSCAN Utility

CARD
Ignore from the FIND POS to the end of the source record.

STRING
Delimiter for the data to be ignored.

'string’,
Indicates to include any characters following this string. 1-8 characters
can be specified.

POS
Identifies the position to search for the delimiter string.

ANY
The specified string may occur anywhere in the source.

nn
The specified string must occur after this position in the source.

Exclusion Group Examples:

Example 1: 1In this assembler example, CONSCAN searches for source records
containing an asterisk "*' in position 1. If found, the remainder of this record is
ignored.

COMMENT
FIND1 STRING="'=*"',P0S=1
END1 CARD

Example 2: 1In this JCL example, CONSCAN searches for source records
containing '//*' starting in position 1. If found, the remainder of the record is
ignored.

COMMENT
FIND1 STRING="//*",P0S=1
END1 CARD

Example 3: 1In this example, CONSCAN searches for source records containing
a '/*' followed by a "*/' in any position of the record. If found, these characters
and any characters in between are ignored.

COMMENT
FIND1 STRING="/*"',P0OS=ANY
END1 STRING="=/",POS=ANY

3.12.4 Selecting Source Data

Selection groups specify the conditions that are used to select source data. An
unlimited number of selection groups are allowed per PARMSCAN member. A
minimum of one group is required.

These are the required statements, and they must be in order:

1. SCANTYPE — Identifies the beginning of a selection group.

3-34 Extended Processors Guide

3.12 CONSCAN Utility

2. FIND — Defines the element source selection criteria. One FIND statement
(FIND1) is required and an optional second FIND statement (FIND2) can be
specified per group. If FIND1 and FIND2 are present, both conditions must
be true (treated as an AND condition) for the source data to be selected.

3. START — Follows the last FIND statement and identifies the location of the
data to extract and is placed on the generated CONRELE control statement.
Only one START statement is allowed.

4. END — Must follow the START statement to terminate the extracted string
and to terminate the selection group. One END statement is required (END1)
and an optional second END statement (END2) can be specified per group. If
ENDI1 and END2 are present, either condition can be true (treated as an OR
condition) for the termination to take place.

If a match is found against the FIND criteria, the data specified by the START
criteria is extracted. There can be more than one match per input record.
CONRELE control statements are generated for each match found. These control
parameters are written to the data set specified on the ACMRELE DD statement
and to the report file, SCANPRT.

Selection Group Syntax:

SCANTYPE type

FINDn keyword,

STRING="'string'P0S=nn/ANY
START TYPE=type,PARM=parm
ENDn TYPE=type,PARM=parm

SCANTYPE
Indicates the beginning of a selection group.

Iype
Identifies the type of relationship and is used to generate the CONRELE
RELATE control statements. Valid values are:

= MEMBER

= ELEMENT
® OBIJECT

= COMMENT

CONSCAN attempts to determine the type of relationship existing in the data.
You may have specified a type of OBJECT, but the control statements are
generated with a type of COMMENT. If you specify the type MEMBER and the
FIND string is 'DSN=' several checks are performed. If no member exists in the
extracted string, CONSCAN determines the length of the data set name and the
CONRELE control statements are generated with a type of OBJECT.

FIND
Indicates the beginning of a FIND statement.

Chapter 3. Processor Utilities 3-35

3.12 CONSCAN Utility

n
The valid values for n are 1 or 2. FIND2 cannot exist unless FIND1
exists.

keyword

Optional keywords used to identify additional information related to the

string. Only one keyword is allowed:

AFTER
Used in conjunction with the POS parameter. Directs CONSCAN to
begin the search for the string after POS=nn.

WORD
The string must be a word surrounded by spaces, parentheses () or
greater than/less than symbols >< or preceded or followed by one of
the following symbols: .,;+-/*.

REJECT
Specified on a FIND2 statement. Allows the user to code a FINDI
and not FIND2 condition. If FINDI and FIND2 match and REJECT
is present on the FIND2 statement, the source data is ignored. For
REJECT to work properly, two selection groups are required and the
FIND1 statement must be identical.
See “Example 3” on page 3-39 for an example of the REJECT
parameter.

STRING=

Indicates to start scanning this record for a string.

'string',

Specified string. 1-8 characters can be specified.

POS

Identifies the position to search for the delimiter string.

ANY
The specified string may occur anywhere in the source.

nn
The specified string must occur after this position in the source.

START

Defines where to start the collection of data when the FIND criteria is true.
If two FIND statements are specified and both match, the start criteria are
relative to the FIND2 statement.

TYPE=

Identifies the direction of the start collection. Valid values are:

= FORW
= BACK
. STRG
. DFLT

3-36 Extended Processors Guide

3.12 CONSCAN Utility

PARM=
Works in conjunction with the TYPE keyword.

parm

8 If TYPE is FORW or BACK, PARM defines the number of characters
after or before the last character found by the FIND statement(s).

m If TYPE is STRG, specifies the number of characters after the FIND
string.

m If TYPE is DFLT, starts the collection at the first not blank character
after the FIND string.

END
Indicates the START collection string delimiter. When this condition is met,
the string collection is terminated.

n
The valid values are 1 and 2. END2 cannot be specified unless ENDI is
specified. Code all END statements after the START statement. If ENDI
and END2 are present, they are treated as an OR condition.

TYPE=
Identifies the type of delimiter.

type
Works in conjunction with the PARM keyword. Valid values are:

= CHAR
» LENG
= SPAC
® STRG

PARM-=
Works in conjunction with the TYPE keyword.

parm

Specifies:

If TYPE is CHAR, which character(s) ends the collection string

If TYPE is LENG, the length of the collection string.

If TYPE is SPAC, PARM is ignored.

If TYPE is STRG, specifies the number of additional strings to collect
after the initial string before termination of the collection. Each string
must be separated by a space.

For example, if a START string is detected and PARM=3 is specified,
the initial string plus three additional strings are collected. CONRELE
control statements are generated for each of the four strings.

Chapter 3. Processor Utilities 3-37

3.12 CONSCAN Utility

3.12.4.1 Generated CONRELE Control Statements

CONRELE control card statements are generated as output from CONSCAN.

This file can be fed into the CONRELE utility and added as additional component
information. As described above, four types of components can be created;
MEMBER, ELEMENT, OBJECT, and COMMENT. Listed below is a sample

CONRELE control statement output.

RELATE COMMENT
'"WS-ABEND-PGM'

RELATE ELEMENT DTESUB
LOCATION
ENVIRONMENT = ' '
SYSTEM = ' !
SUBSYSTEM = ' '
TYPE = " !

STAGE = ' !
INPUT

RELATE MEMBER SCANCBL
data set='uprfx.uqual.SOURCE'
INPUT

RELATE OBJECT
"iprfx.iqual.LOADLIB'

Selection Group Examples:

Example 1: 1In this JCL example, CONSCAN searches for source records
containing data set or member names. The data set name begins in the first
position after the FIND string (DSN=) and is terminated by either a space or a

comma.

Source Statements

CONSCAN Statements

CONRELE Statements

//DD DSN=SYS1.PROCS (ABC)
//DD DSN=SYS1.PROC2II

SCANTYPE MEMBER
FIND1 STRING='DSN=',
POS=ANY

START TYPE=DFLT
END1 TYPE=SPAC
END2 TYPE=CHAR,

PARM=","

RELATE MEMBER ABC
DSN="'SYS1.PROCS'

INPUT.

RELATE OBJECT
DSN="SYS1.PROC2II'

INPUT.

3-38 Extended Processors Guide

3.12 CONSCAN Utility

Example 2: In this COBOL example, CONSCAN searches for source records
containing dynamically called programs. The program name is the next word
following the search string of CALL and terminated by a space or a comma.

Source Statements

CONSCAN Statements

CONRELE Statements

CALL DTESUB.

SCANTYPE ELEMENT

FIND1 STRING='CALL',

POS=ANY
START TYPE=DFLT
END1 TYPE=SPAC
ENDZ TYPE=CHAR,

PARM="."

RELATE ELEMENT DTESUB
LOCATION
ENVIRONMENT = ' '
SYSTEM = ' !

TYPE = ' !
STAGE = ' !
INPUT.

Example 3: In this JCL example, CONSCAN searches for source records
containing PROC names. This requires two selection groups. The first selection
group ensures program names are not selected. The second selection group selects
the procs. In both cases, the search is terminated by a space.

Note: The FINDI statement is identical in both selection groups.

Source Statements

CONSCAN Statements

CONRELE Statements

//PROC EXEC NDVR
//EXEC PGM=ABC

SCANTYPE ELEMENT

FIND1 STRING='EXEC',

POS=ANY
FINDZ REJECT,

STRING="'PGM',

POS=ANY
START TYPE=DFLT
END1 TYPE=SPAC

SCANTYPE ELEMENT

RELATE ELEMENT NDVR
LOCATION
ENVIRONMENT = ' '
SYSTEM = ' !
SUBSYSTEM = ' '
TYPE = ' !

STAGE = ' !
INPUT.

FIND1 STRING='EXEC',

POS=ANY
START TYPE=DFLT
END1 TYPE=SPAC

Chapter 3. Processor Utilities 3-39

3.12 CONSCAN Utility

Example 4: In this assembler example, CONSCAN searches for source records
containing links to other programs. Two FIND statements are required to identify
these programs. Both conditions must be true to be selected. The search is
terminated when a blank space or a comma is detected.

Source Statements

CONSCAN Statements CONRELE Statements

LINK EP=CSECT1

SCANTYPE ELEMENT RELATE ELEMENT CSECT1

FIND1 STRING='LINK', LOCATION
POS=ANY ENVIRONMENT = ' '
FIND2 STRING='EP=', SYSTEM = ' !
POS=ANY SUBSYSTEM = ' !
START TYPE=DFLT TYPE = ' !
END1 TYPE=SPAC STAGE = ' !
END2 TYPE=CHAR, INPUT
PARM=","

Example 5: In this COBOL example, CONSCAN searches for source records
containing calls to program XYZ. This program requires three parameters. The
goal is to capture the data associated with each parameter and generate a RELATE
control statement for each. The extract is terminated after the third parameter or
when the closing ')' is detected.

Source Statements

CONSCAN Statements CONRELE Statements

CALL XYZ, (PARM1 PARM2)

SCANTYPE COMMENT RELATE COMMENT 'PARML PARM2'.

FINDL STRING='XYZ, (',
POS=ANY

START TYPE=DFLT

END1 TYPE=STRG,
PARM=1

END2 TYPE=CHAR,
PARM=")"

Additional examples can be found in the iprfx.iqual. SOURCE installation library.
Assembler examples are provided in member SCANASM, COBOL examples are
in SCANCBL, and JCL examples in SCANJCL.

3.12.5 Scan Rule Processing

The element source is read one line at a time. Each selection group defined, from
top to bottom, is applied against this source line. If a match is found against a
group, the FIND criteria of this group is applied to the remainder of this record in
order to check for any additional matches. If a record contains data that matches
the FIND criteria of a group, this record is not processed against any of the
subsequent selection groups. By default, CONRELE control statements are only
generated by one selection group.

If you want your input records to be applied against all the selection groups,
regardless of the outcome of previous selection groups, code APPLY ALL as the
first line of your PARMSCAN control statements. This causes the input record to

3-40 Extended Processors Guide

3.12 CONSCAN Utility

be applied against each selection group within the PARMSCAN library.
Therefore, CONRELE control statements may be generated for one input record
by more than one selection group.

3.12.5.1 Sample CONSCAN Utility Processor

The following figure shows sample processor CONSCAN JCL. This sample can
be found in the iprfx.iqual.JCL library.

[] K mm e e e e e e e e *
/1%

//* COPYRIGHT (C) COMPUTER ASSOCIATES 2000

/1%

//* NAME: CONSCAN

/1%

//* FUNCTION: SCAN THE ELEMENT BASED ON THE PARMSCAN PARAMETERS TO
//* CREATE ADDITIONAL RELATIONSHIPS. THE SCAN RULES VARY
//* DEPENDING ON THE ENDEVOR TYPE.

/1*

//* ADD THE RELATIONSHIP TO THE ELEMENT COMPONENT LIST
//* USING THE CONRELE UTILITY.

/1%

//* THE SRCIN DD IS ONE OF THE FOLLOWING:

//* 1) FOR FORWARD DELTAS, THIS IS CONWRITE OUTPUT OF THE ELEMENT

//* 2) FOR REVERSE DELTAS, THIS IS BASE OUTPUT LIBRARY
g *
/1%

[[*Hxkdrhhrhhrhhkhhhhkhhhhhrhhrhhhhhhkhhkhhkhhrhkrhhrkkhhkhkkhhrhhrhhrrkr
[/ ** SCAN CONTENTS OF ELEMENT USING THE CONSCAN UTILITY

R T R R AR i i 22 T T T e T P Y
//CONSCAN EXEC PGM=CONSCAN,REGION=4096K

F R R R R i 2 2 T S St ST LT
//* INPUT FILES

VR R R R R E R R R R B A R A R R AR S R R ST
//SRCIN DD DISP=(OLD,DELETE) ,DSN=&&ELMOUT

//PARMSCAN DD DISP=SHR,DSN=uprfx.uqual.SOURCE(&CI1ELTYPE)

R R R R R A A a2 T T T P T T
//* OUTPUT FILES

F R R R R St 2 R a B A S R 2 R L ST
//ACMRELE DD DISP=(NEW,PASS),DSN=&&RELEIN,SPACE=(TRK, (10,5))
//SCANPRT DD DISP=(0LD,PASS) ,DSN=&&SCOUT2

//SYSPRINT DD DISP=(0LD,PASS),DSN=&&SCOUT1

/1*

N R R R R R d e A A R e 2 T T T
//* ADD RELATIONSHIPS TO ELEMENT COMPONENT LIST

N R R R R Rt R S A R R E T S A s LA s T A
//CONRELE EXEC PGM=CONRELE

//NDVRIPT DD DISP=(OLD,DELETE) ,DSN=&&RELEIN

/1%

Chapter 3. Processor Utilities 3-41

3.12 CONSCAN Utility

3.12.6 Error Messages

Following is a sample of messages issued by the CONSCAN utility, additional
messages are documented in the Error Codes and Messages Guide.

C2FM0010 C2FSCANC C2FSCANC SCANCE COMMENT CARD IN
ERROR

Explanation: A syntax error was detected in one of the COMMENT control
cards. Correct the syntax error and rerun the job.

C2FM0011 C2FSCANR C2FSCANR SCANCR CARD RULE IN ERROR

Explanation: A syntax error was detected in one of the SCANTYPE control
cards. Correct the syntax error and rerun the job.

C2FMO000F CONSCAN C2FREADP PARMSCAN PARAMETER IN ERROR

Explanation: Warning, no records were selected.

3-42 Extended Processors Guide

3.13 CONWRITE Utility

3.13

CONWRITE Utility

You can use the CONWRITE utility to write component list data or the current
level of any element to an external location such as a data set or a database.

8 The standard form of CONWRITE writes the current element to a user
specified data set.

® The extended form of CONWRITE:
— Writes component list data to an external file.

— Processes WRITE ELEMENT control statements to write user specified
elements to an external data set or HDFS directory.

— Passes individual element data to a user exit program.

Both forms of CONWRITE can expand INCLUDE statements embedded in the
element.

3.13.1 Writing Component List Data to an External Location

The CONWRITE utility provides you with the ability to take component list data
and store it in an external data set or use the component list data as input to other
processes. The component list can either be an active component list or an existing
component list. (An active component list is actively being built in memory by a
processor, and may be incomplete depending on when and where you request it.

If this is a delete processor, the list is taken from disk.)

You can code a CONWRITE step anywhere in any processor. For example, you
can code a CONWRITE step within a move processor. The default location of the
component list is the target location of the MOVE action, but you can override
this default.

Note: You should be aware when retrieving an active component list that the
entire component list is not available until all steps are complete.

3.13.1.1 Component List Data

CONWRITE allows you to extract and use the following component list data:
® Input components
8 Qutput components
& Symbolics
® Related input and related output data
® Related objects

® Related comments

Chapter 3. Processor Utilities 3-43

3.13 CONWRITE Utility

Note: Use the CONRELE utility to create related input components, related
output components, related objects, and related comments before using the
CONWRITE utility.

3.13.1.2 Output Format

The output format of the extracted component list data does not contain binary
data. Assembler DSECTS and COBOL copy statements are provided in the
output source file of the install process. In addition, COBOL layouts for the data
are provided in &uprfx.SOURCE(COBCOMP), and an example of a COBOL
program displaying records field by field is provided in
&uprfx.SOURCE(COBCOMPX). Refer to the following elements for the layout
of external component list records:

= $COMPDS ASMMAC - Assembler layouts for component list data
= COMPRECS EXAMPLE - COBOL copy statements for component list data

= CONCOMP EXAMPLE - COBOL program which displays fields within
component list data.

3.13.2 Writing Elements to an External Location

When CONWRITE writes to an external data set or HES directory, it validates the
external data set record length against the maximum record length defined in the
element type record. If the external data set record length is less than the element
type record length, CONWRITE truncates the element data records. If the
external data set record length is greater than the element type record length,
CONWRITE pads the element records with spaces. In both cases CONWRITE
issues a warning message and sets the step return code to four. If either of these
circumstances is not desired then code the MAXRC or COND statement on the
processor JCL to terminate the processor.

3.13.3 Standard Form of CONWRITE

The standard form of CONWRITE writes to the first DD statement after the
EXEC statement that does not begin with CIINCL and is not the CONWLIB or
CONWIN statement. The CONWRITE output can be passed to a subsequent
processor step such as a compiler or assembler.

Note: The standard form of CONWRITE does not support the extraction of a
component list.

The JCL below is an example of the standard form of the CONWRITE utility.

//WRITE ~ EXEC PGM=CONWRITE,PARM='EXPINCL(N)'
//ELMOUT DD DSN=&&SYSIN,DISP=(NEW,PASS,DELETE)

3-44 Extended Processors Guide

3.13 CONWRITE Utility

3.13.4 Extended Form of CONWRITE

You can use the extended form of CONWRITE to extract elements or component
list records for any Endevor element. CONWRITE reads WRITE ELEMENT
control statements from the CONWIN DD statement to determine which elements
to be extracted. You can write the output element or component list records to
either an external data set or you can pass it to a user specified exit program.

The JCL below is an example of the extended form of CONWRITE

//WRITE EXEC PGM=CONWRITE,MAXRC=4
//CONWLIB DD DSN=user.loadlib,DISP=SHR
//CONWIN DD =

You create copies of more than one element or component list record using the
CONWIN DD statement. You can also use this statement to pass the individual
element or component list records to a user exit program.

Sample JCL for using the CONWIN DD statement to extract a component list
with the extended form of CONWRITE is shown below:

//WRITE EXEC PGM=CONWRITE
//COMPOUT DD DSN=&user.data.set,DISP=(NEW,PASS) ,UNIT=SYSDA,

// SPACE=(TRK, (3,5) ,RLSE),
// DCB=(RECFM=VB,LRECL=256,BLKSIZE=0,DSORG=PS)
//CONWIN DD *

WRITE ELEMENT &clelement
FROM ENV &clenvmnt SYSTEM &clsystem SUBSYSTEM &clsubsys
TYPE &clwltype STAGE &clstgid
TO DDN COMPOUT
OPTION COMPONENT.
/*

3.13.5 Command Syntax for the CONWRITE Utility

3.13.5.1 CONWRITE Syntax

»»—WRIte ELEment—element-name
»—FROM—ENV1 ronment—env-name—SYStem—sys-name—SUBsystem—subsys-name—TYPe—type-name————»

>—|:STAge—stage— id u >
STAge NUMber—stage-no

»—T0—* i PGM program-name >
FILe -dd-name |—PROgramJ
M

DDNameJ

EMber—imember-name————
PATH—hfs-path—HFSFILE—filename—

A\
A

I—0PT1'on> X o]
EXPand

LINC]udesJ
SEArch I
COMponent .

PGM PAR parameter
PROgram——| EEQ}

Chapter 3. Processor Utilities 3-45

3.13 CONWRITE Utility

Parameters

user.loadlib
The load library where a user exit program resides.

program-name
The name of a user exit program invoked for each element record. If the
CONWLIB DD statement is specified the program is loaded from the library
specified in the DD statement.

On entry to the user program, R1 points to this parameter list:

+0
Address of a 256 byte work area. The area is initialized to zeroes for the
first invocation of the exit.

+4
Address of a half word containing the record length.

+8
Address of the data record.

+12
Address of a 100 byte message area. The message area is set to blanks
before each user program call.

+16
Address of the parameter specified on the 'program parm ="' statement.
The parameter is a halfword length field followed by the parameter string.
If a 'program parm =' statement was not specified, the halfword length is
set to zero.

parameter
A 1- to 70-character parameter passed to the user program.

Note: When you include a CONWIN DD statement in a CONWRITE step,
CONWRITE ignores PARM information in the EXEC statement for that step.

There is no limit to the number of WRITE ELEMENT statements that can be
included in the CONWIN DD statement.

If a syntax error is detected in the CONWIN DD input stream, CONWRITE issues
an error message. All remaining WRITE ELEMENT statements are
syntax-checked, but they are not executed.

For example, if link-edit control cards are separate from programs, and you want
to use these control cards in a processor, you can fetch the control cards using the
extended form of CONWRITE. The example below shows how the control cards
can be processed.

Note: This example uses OPTION SEARCH to fetch the current version of
LINKCARD's source.

3-46 Extended Processors Guide

3.13 CONWRITE Utility

//***

/%% EXAMPLE OF CONWRITE EXECUTION JCL WITH CONWIN DD STMT INPUT =

//***

//CONWRITE EXEC PGM=CONWRITE

/1*

//* ELMSRC IS A TEMPORARY DATA SET USED TO CONTAIN ELM SOURCE CODE
/1%

//ELMSRC DD DSN=8&ELMSRC,DISP=(,PASS),

// UNIT=VIO,SPACE=(TRK,5,1),

/] DCB=(RECFM=FB,LRECL=80,BLKSIZE=0,DSORG=PS)

/1%

//* LNKSRC IS A TEMPORARY DATA SET USED TO CONTAIN ELM LINK-EDIT STMTS
/1*

//LNKSRC DD DSN=&&LNKSRC,DISP=(,PASS),

/] UNIT=VIO,SPACE=(TRK,1,1),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0,DSORG=PS)

*

//CONWIN DD
WRITE ELEMENT &CIELEMENT
FROM ENV &CIENVMNT SYSTEM &C1SYSTEM SUBSYSTEM &C1SUBSYS
TYPE &CIELTYPE STAGE &C1STGID
TO DDN ELMSRC
OPTION EXPAND INCLUDES .
WRITE ELEMENT &CIELEMENT
FROM ENV &CIENVMNT SYSTEM &C1SYSTEM SUBSYSTEM &C1SUBSYS
TYPE LINKCARD STAGE &CISTGID
TO DDN LNKSRC
OPTION SEARCH .

/1%
//***
/1% PERFORM COMPILE *%

//***

//COMPILE EXEC...
//SYSIN DD DSN=&&ELMSRC,DISP=(0LD,DELETE)

/]*
[[ks ek ek ok ok ke ok ok ok ko ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ek ok ok ok ek ok ok ok ok ok ok
[/ ** PERFORM LINK-EDIT *%

//***

//LINKEDIT EXEC PGM=IEWL
//SYSLIN DD DSN=&&LNKSRC,DISP=(0LD,DELETE)

3.13.6 Using CONWRITE to Expand INCLUDEs

If the element source references one or more INCLUDE members, you can either
expand or not expand those members within CONWRITE using either of the
following clauses.

Chapter 3. Processor Utilities 3-47

3.13 CONWRITE Utility

3.13.6.1 The PARM=EXPINCL() Clause

Specify PARM=EXPINCL(Y) to expand INCLUDE members; specify
PARM=EXPINCL(N) if you do not want to expand the INCLUDE members. The
default is PARM=EXPINCL(N).

//STEPNAME EXEC PGM=CONWRITE,PARM=EXPINCL(Y)

//DDNAME DD DSN=8&WRITEOUT,DISP=PASS,UNIT=SYSDA,

/] SPACE=(TRK, (3,5) ,RLSE),

/! DCB= (RECFM=FB, LRECL=80,BLKSIZE=0,DSORG=PS)

The EXPAND INCLUDES Option within a WRITE ELEMENT Statement

//CONWIN DD =
WRITE ELEMENT &CIELEMENT
FROM ENV &CIENVMNT SYSTEM &C1SYSTEM SUBSYSTEM &C1SUBSYS
TYPE &CLELTYPE STAGE &CISTGID
TO DDN ELMSRC
OPTION EXPAND INCLUDES .

Note: CONWIN DD statements and PARM clauses are mutually exclusive. If
you code a CONWIN DD statement, CONWRITE ignores any PARM clauses in
the EXEC statement for the step.

By default, CONWRITE searches the environment map for INCLUDE members in
the default INCLUDE libraries for specified types. This means that when
expanding INCLUDE:s for a Stage 1 element, CONWRITE looks first in the Stage
1 INCLUDE library for the member, then in INCLUDE libraries in successive
stages on the map. When processing a Stage 2 element, CONWRITE looks for
the INCLUDE member first in the Stage 2 library, then in successive stages on the
map.

Alternatively, you can use CIINCL DD statements to specify up to 99 INCLUDE
libraries within the CONWRITE step of a processor. When you do this, Endevor
accesses these statements in ascending order based on their DD names. The
example below shows how to write CIINCL DD statements.

//STEPNAME EXEC PGM=CONWRITE,PARM=EXPINCL(Y)
//CLINCLO1 DD DSN=include.libraryl,DISP=SHR
//CL1INCLO2 DD DSN=include.library2,DISP=SHR

/ /DDNAME DD DSN=&&WRITEOUT,DISP=(NEW,PASS),
// UNIT=SYSDA,SPACE=(TRK, (3,5),RLSE),

Note: These search rules are mutually exclusive. If you use CIINCL DD
statements, CONWRITE does not search in the default INCLUDE libraries for the
specified types. Also, all CIINCL DD statements must precede the CONWRITE
output data set statement.

3-48 Extended Processors Guide

3.13 CONWRITE Utility

3.13.7 Writing Exit Programs to Use CONWRITE Input

The WRITE ELEMENT control statement allows CONWRITE to pass the output
element, record by record, to a user-specified exit program. The program could,
for example, process the data before the exit writes the record to an external data

set.

Specify the user program on the TO PROGRAM statement of the WRITE

ELEMENT action. You can use the OPTION PROGRAM PARM EQ statement
to pass a parameter string to the user program.

CONWRITE passes the user exit a five-word parameter list for each data record.
Register 1 points to the parameter list. The parameter list and all parameters are
in 24-bit addressable storage. The parameter list points to these fields:

A 256-byte program work area. The work area is double word aligned and is
initialized to binary zeroes for the first exit call. The work area is not
reinitialized between exit calls or between WRITE ELEMENT statements
within a step.

A halfword field that contains the length of the record.
The element data record.

A 100-byte area in which the user program can place a message. The area is
initialized to blanks prior to each invocation of the exit. The message will be
printed if the exit sets a return code of four or eight and the message area
contains non-blank data.

The program parameter specified in the OPTION PROGRAM PARM EQ
statement. The parameter is a halfword length field followed by the
parameter specified. If the PROGRAM PARM EQ statement was not
specified, CONWRITE sets the halfword length field to zero.

After CONWRITE processes all of the element data records, it calls the exit a
final time with both the record length field and the record address parameter set to
Zero.

CONWRITE expects one of the following return codes from the user program.
The return code is passed back in Register 15.

Return
Code

Meaning

0

Normal completion. CONWRITE continues processing the element.

4

Terminate the current WRITE ELEMENT operation. CONWRITE
continues with the next WRITE ELEMENT statement.

Terminate CONWRITE processing. CONWRITE immediately
terminates with a return code of 12.

If an invalid return code is received, CONWRITE immediately terminates the
current step with a return code of 12.

Chapter 3. Processor Utilities 3-49

3.13 CONWRITE Utility

The exit program should be link-edited with the REUS attribute.

3-50 Extended Processors Guide

Chapter 4. Classifying and Managing Processors

Chapter 4. Classifying and Managing Processors 4-1

4.1 Overview

4.1 Overview

Processors are identified by the same logical structure used for other elements:
they are located in a particular environment and stage, and are classified by
system, subsystem, and type. This chapter discusses the classification scheme.

4-2 Extended Processors Guide

4.2 Classifying Processors

4.2 Classifying Processors

You must classify processors as type PROCESS. The Type Definition panel is
shown below:

CREATE ----mmmmmmmmmmm e TYPE DEFINITION =-----mmmmmmmmmmmmmm oo
COMMAND ===>
CURRENT ENV: DEMO STAGE ID: D SYSTEM: ADMIN TYPE: PROCESS
DESCRIPTION ===> ENDEVOR PROCESSOR DEFINITIONS
----------------- ELEMENT OPTIONS -----------mmmmmmeo
FWD/REV/IMG DELTA: R (F/R/I) COMPRESS BASE/ENCRYPT NAME: Y (Y/N)
DFLT PROC GRP: PROCESS REGRESSION PCT ===> 50 REGR SEV ===> W (I/W/C/E)
SOURCE LENGTH: 80 COMPARE FROM: 1 COMPARE TO: 72
AUTO CONSOL: N LANGUAGE : CNTLPROC PV/LB LANG: DATA
REMOVE/CONSOL AT LVL: 96 HFS RECFM: (COMP/CR/CRLF/F/LF/NL/V)
LVLS TO REMOVE/CONSOL: 50 WS HOME OPSYS: WS FILE EXT:
————————————— COMPONENT LIST OPTIONS ----------mmmmm-
FWD/REV DELTA: F (F/R) AUTO CONSOL: Y (Y/N) CONSOL AT LVL: 99
LVLS TO CONSOL: 49
————————————————————— LIBRARIES ------mmmmmmmm e
BASE/IMAGE LIBRARY ===> ENDEVOR.DEMO.STG1.BASE
DELTA LIBRARY: ===> ENDEVOR.DEMO.STG1.DELTA
INCLUDE LIBRARY: — ===>
SOURCE 0/P LIBRARY:
EXPAND INCLUDES: N (Y/N)

For elements of type PROCESS, Endevor reserves a processor group, also called
PROCESS. Type PROCESS has a predefined set of processors --GPPROCSS and
DPPROCSS-- which are defined automatically in this processor group:

8 GPPROCSS is the generate and move processor in Stage 1 and Stage 2. It
checks the processor syntax and creates an executable form of the processor
in the processor load library. If a processor contains syntax errors,
GPPROCSS does not create the executable form. In this situation, refer to the
listing created by GPPROCSS in the processor listing library, to check your
errors.

® DPPROCSS is the delete processor in Stage 1 and Stage 2. It deletes the
executable form of the processor, should you delete the processor source from
Endevor.
You can change only two items in processor group PROCESS:

8 The description of the processor group.

B Whether the processor is executable in foreground as well as batch.

The Processor Group Definition panel for group PROCESS is shown below:

Chapter 4. Classifying and Managing Processors 4-3

4.2 Classifying Processors

CREATE ==-mmmmmommmemee PROCESSOR GROUP DEFINITION ==-==---commoommmmee
COMMAND ===>
CURRENT ENV: DEMO STAGE ID: D SYSTEM: ADMIN TYPE: PROCESS

PROCESSOR GROUP ===> PROCESS
DESCRIPTION ===> AUTOMATIC CONVERSION OF TYPE PROCESSOR INFORMATION
----------------------- OUTPUT MANAGEMENT INFORMATION =------=ooemmoem-

FOREGROUND EXECUTION

GENERATE PROCESSOR: GPPROCSS ===>Y (Y/N)
DELETE PROCESSOR : DPPROCSS ===>Y (Y/N)
MOVE PROCESSOR : GPPROCSS ===>Y (Y/N)

After defining the type 'process', you can perform any Endevor action against the
type 'process’. For more information about action processing, see the User Guide.

4-4 Extended Processors Guide

4.3 Managing Processors

4.3 Managing Processors

4.3.1 Procedure: Implementing Processors

Follow this procedure to implement processors:

1. Define a system, for example ADMIN, in your production environment,
specifying ENDEVOR.EMER.PRCSLOAD as the Stage 1 processor load
library and ENDEVOR.PROD.PRCSLOAD as the Stage 2 processor load
library for system. Remember to define the required processor type,
PROCESS, to this system. Allocating listing libraries is optional.

2. Define a subsystem, for example PROCESS, within system ADMIN. Use
subsystem PROCESS to store and maintain all your processors. The diagram
below shows the resulting configuration:

EMER PROD

ADMIN

GASMNBL

GCIINBL

EMER.PRCSLOAD PROD.PRCSLOAD

3. Have all systems in all environments reference
ENDEVOR.EMER.PRCSLOAD as their Stage 1 processor load library, and

Chapter 4. Classifying and Managing Processors 4-5

4.3 Managing Processors

ENDEVOR.PROD.PRCSLOAD as their Stage 2 processor load library.
However, keep in mind that you maintain processors only in system ADMIN
in environment PROD.

TEST PROD

r—— = — r—— " r—— 1

| unTTEST | | oA | | ever | | pProD |

| | | | | | | |

- - ——— — - 1
EMER.PRCSLOAD PROD.PRCSLOAD

Note: Process types cannot be mapped.

4.3.2 Procedure: Maintaining Processors

To maintain processors managed according to the previous example:
1. Copy your current administration system to create a test system.
2. Modify the PRCSLOAD and LIST entries in the test system definitions.
3. Modify the Base/Delta entries for types.
4. Add the processor to the test system and run your test programs.
5

. After the tests have completed successfully, transfer the processor to your
administration system.

4-6 Extended Processors Guide

4.3 Managing Processors

4.3.3 Where Endevor Looks for Processors

After determining the processor group for an action, Endevor looks for the
requisite processor first in Stage 1, then in Stage 2.

Chapter 4. Classifying and Managing Processors 4-7

4-8 Extended Processors Guide

Chapter 5. Processor Groups

Chapter 5. Processor Groups 5-1

5.1 Processor Group Overview

5.1 Processor Group Overview

5.1.1 Three Types

As described in 1.1, “Processor Overview” on page 1-2, there are three main
processor types, namely delete, generate, and move. Instead of associating one of
each type of processor with each element type, Endevor allows you to combine
the processors into processor groups, and to associate one or more of these groups
with each element type. A processor group:

® Identifies the delete, generate, and move processor that Endevor should use to
process a particular element type. (A processor group can identify less than
three processors if a particular element type does not require all of them. For
example, a non-executable element type may only require a move processor,
S0 its processor group can omit a generate and delete processor.)

= Contains the symbolic overrides for the processors' JCL (for more information
on symbolics, see 2.5, “Symbolic Parameters” on page 2-10.)

You can associate any number of processor groups with a given element type.
This is useful when elements of one type may require slightly different processing.
For example, a site may have COBOL programs coded in batch COBOL and
CICS COBOL. In this case, the processor group capability of Endevor allows you
to create a single COBOL type with two processor groups, one to handle each
variation of COBOL code. Furthermore, symbolics allow you to use the same
processor for both types, changing only the symbolic overrides in the two
processor groups.

You can set up processor groups in Stage 1 and Stage 2. (If processor groups
exist for Stage 1, they must also exist for Stage 2.).

5.1.2 Suggested Naming Conventions for Processor Groups

Processor group names can have up to eight characters. The abbreviations below
do not represent a complete list, and are offered as guidelines only

5-2 Extended Processors Guide

5.1 Processor Group Overview

5.1.2.1 Example

Position Description

1-3 Language Type.
1 ASM = Assembler
1 COB = COBOL
§ CII = COBOL 2
8 EAS = Easytrieve
® FOR = Fortran
n PLI=PL-1
= RPG = RPG
® TRA = Transform
® UTL = Utility

4 Database environment.

= D =DB2/DLI

1 S =IDMS
[=IMS
1 N = None
5 Operating environment.
§ B = Batch
8 C=CICS
1 S = IDMS-DC
1 [=IMS-DC
8 N = None
6 Output type.
A = Impact analysis SCL
§ L = Load module
1 K = NCAL load module
8 O = Object module
1 N = None
n P =PDS
® R = Reports
® S = Listing
7,8 User-defined. Can be used for sequence number, stage identifier,
option, etc.

The example later in this section discusses two processor groups: COBNBL and
COBNBLO1. The identifier COBNBL indicates that the processor group processes
COBOL elements (COB), that the elements do not have a database type (N), that
the processor is for batch execution (B), and that the output of processor will be a
load module (L). The identifier O1 in processor group COBNBLOI is a sequence
number indicating that COBNBL is a default processor group, with processor
COBNBLOL1 as a derivative processor group.

Chapter 5. Processor Groups 5-3

5.1 Processor Group Overview

5.1.3 User-Defined Symbolics

Endevor supports user-defined symbolics in processors. The symbolics defined for
each processor in a processor group appear on the Processor Group Symbolics
panel. You can use this panel to view and/or override user-defined symbolics for
this processor group. (For details about symbolics, see 2.5, “Symbolic
Parameters” on page 2-10.)

To specify a default processor group for an element type, enter the group's name
in the DFLT PROC GRP field on the Type Definition panel. After that, each
element of that type that you create is automatically associated with the type's
symbolic overrides. If the element requires special processing, however, you can
override the default symbolics at execution time (see 5.3, “Working with
Processor Group Symbolics” on page 5-7).

5-4 Extended Processors Guide

5.2 Working with Processor Group Information

5.2 Working with Processor Group Information

You create, update, and display processor group information using the Processor
Group Definition panel. You can:

® Change the definition of a processor group by selecting option 6 from the
Environment Options Menu.

® Change the default processor group for a given type, or assign a new
processor group to a new type, by changing the value in the DFLT PROC
GRP field on a Type Definition panel.

5.2.1 From the Environment Options Menu
To create, update, or display processor group information from the Environment
Options Menu:

1. Select option 6 and press ENTER. Endevor displays the Processor Group
Request panel.

----------------------- PROCESSOR GROUP REQUEST = =----- =----mmmmmmmmmmemm -
OPTION ===>

blank - Display processor group definition

- Delete processor group definition

C - Create processor group definition

U - Update processor group definition
ENVIRONMENT ===> TEST

SYSTEM ===> FINANCE

TYPE ===> PROCESS

STAGE ===>1 1 - UNITTEST 2 - QA
GROUP ===>

2. On the Processor Group request panel, type:
B An option (Blank, #, C, or U).
B An environment name, if different from the displayed name.
B A system name or mask (not used for CREATE).
® A type name or mask (not used for CREATE).
® A stage ID.
® A processor group name or mask (not used for CREATE).
Press ENTER.
3. If Endevor displays a:
® System Selection List, select a system and press ENTER.
B Type Selection List, select a type and press ENTER.

B Processor Group Selection List, select a processor group and press
ENTER. You can:

— Display information about the group by typing an S to the left of the
group's name.

Chapter 5. Processor Groups 5-5

5.2 Working with Processor Group Information

— Update information about the group by typing a U to the left of the
group's name.

— Delete the group by typing a # to the left of the group's name.

B Processor Group Definition panel, type or change information as
necessary on the Processor Group Definition panel and press ENTER to
save the changes. For details about this panel, see 5.5, “Processor Group
Definition Panel” on page 5-12.

5.2.2 From the Type Definition Panel

To create, update, or display processor group information from the Type
Definition panel:

1. Access the Type Definition panel in update or create mode by selecting option
C or U from the Type Request panel. For details, see the chapter, “Defining
Inventory Structure,” in the Administration Guide.

2. Change the DFLT PROC GRP value and press ENTER. Endevor displays the
Processor Group Definition panel, in either create or update mode.

3. Type or change information as necessary on the Processor Group Definition
panel and press ENTER. Endevor displays the message GROUP CREATED
in the upper right corner. For details about this panel, see 5.5, “Processor
Group Definition Panel” on page 5-12.

4. To return to the Type Definition panel, press END.

5-6 Extended Processors Guide

5.3 Working with Processor Group Symbolics

5.3 Working with Processor Group Symbolics

To change or display the symbolics for a processor, access the Processor Group
Definition panel, type either S (browse) or U (Update) in the SELECTION field
next to the processor, and press ENTER. Endevor displays the processing option
you have selected in the upper left corner of this panel.

UPDATE:---------------- PROCESSOR GROUP SYMBOLICS =------------- Row 1 of 20
COMMAND ===> SCROLL ===> PAGE
CURRENT ENV: TEST STAGE ID: 1 SYSTEM: FINANCE TYPE: ASMPGM
PROCESSOR GROUP: ASMIRUAL PROCESSOR: GASM

DESCRIPTION:
LOAD LIBRARY:

ASSEMBLER - REUSEABLE, AUTHORIZED
ENDEVOR.PROD. LOADLIB

DEFAULT VALUES ARE INDICATED BY

OVERRIDE VALUES ARE INDICATED BY 0

SYMBOLIC -/0 VALUE

AUTH 01

DENV - D40
IENV - 140

LET - NOLET
LINK - YES
LOADLIB 0 AUTHLIB
MACLIB - SYS1.MACLIB
MVSLVL 0 B40
PENV - P40
QENV - Q40
RENT 0 NORENT
REUS - REUS

You can change the value in the -/O (Default/Override) and VALUE fields when
the processing mode of this panel is Update.

8 If the value in the -/O field is -- (dash), you can change the default value of
the symbolic by typing O in the --/O field, and typing new information in the
VALUE field, and pressing ENTER.

® If the value in the -/O field is O, you can:

— Enter a new override value by typing it in the VALUE field and pressing
ENTER.

— Restore the default value for the symbolic by typing -- (dash) in the -/O
field and pressing ENTER.

Once you have established a default value and an override value for a symbolic

you can toggle back and forth between them by typing -- (dash) or O in the D/O

field and pressing ENTER.

Note:
end your Endevor session.

If the dash is specified the symbolic's original value is restored when you

Chapter 5. Processor Groups 5-7

5.3 Working with Processor Group Symbolics

5.3.1.1 Example

Assume that you usually store the listings from compile/link-edits of your COBOL
programs, but that periodically you print the listings rather than store them. You
decide to set up a type COBOL in Stage 1 and Stage 2 that references a default
processor group, COBNBL, to compile, link-edit, and store COBOL listings. You
write these processors using symbolics. You then use the same processors as the
base for a second processor group (COBNBLO1) that, by changing the symbolics,

can be invoked when necessary to print the listings. To set up these two
processor groups:

1. Add the processors for the processor groups to Endevor.

2. When you create type COBOL, override the default value *NOPROC#* in the
DFLT PROC GREP field of the Type Definition panel with the name you have
selected for the processor group that stores listings, in this case COBNBL.

\

DISPLAY -----cmcmccmcccceen TYPE DEFINITION ---------mommmmmmaan
COMMAND ===>
CURRENT ENV: TEST STAGE ID: Q SYSTEM: FINANCE TYPE: COBPROG
NEXT ENV: PROD STAGE ID: P SYSTEM: FINANCE TYPE: COBPROG
DESCRIPTION: COBOL PROGRAMS
UPDATED: 15JUNO1 01:04 BY JSMITH
----------------- ELEMENT OPTIONS -------------mmmmn
FWD/REV/IMG DELTA: R (F/R/I) COMPRESS BASE/ENCRYPT NAME: Y (Y/N)
DFLT PROC GRP: COBNBL REGRESSION PCT: 50 REGR SEV: W (I/W/C/E)
SOURCE LENGTH: 80 COMPARE FROM: 7 COMPARE TO: 72
AUTO CONSOL: N LANGUAGE : COBOL PV/LB LANG: COBOL
REMOVE/CONSOL AT LVL: 96 HFS RECFM: (COMP/CR/CRLF/F/LF/NL/V)
LVLS TO REMOVE/CONSOL: 50 WS HOME OPSYS: WS FILE EXT:

FWD/REV DELTA: F(F/R)

BASE/IMAGE LIBRARY:
DELTA LIBRARY:
INCLUDE LIBRARY:
SOURCE 0/P LIBRARY:
EXPAND INCLUDES: Y

COMPONENT LIST OPTIONS
AUTO CONSOL: N (Y/N) CONSOL AT LVL:
LVLS TO CONSOL:

99
49

LIBRARIES

ENDEVOR.NDVR.BASE
ENDEVOR.NDVR.DELTA

(Y/N)

When you press ENTER, Endevor displays a Processor Group Definition

panel.

3. Create the default processor group by typing the following information on the

Processor Group Definition panel:

® A description of the processor group in the DESCRIPTION field.

8 The element names for the generate, move, and/or delete processors that

will make up the processor group.

One of the following values for each processor:

Y-- if you want to allow the processor to run in foreground.

N-- if you do not want the processor to run in foreground.

Press ENTER to create the default processor group. A completed
Processor Group Definition panel is shown below.

5-8 Extended Processors Guide

5.3 Working with Processor Group Symbolics

PROCESSOR TO USE FOR MOVE ACTION: M (M/G)
PROCESSOR TO USE FOR TRANSFER ACTION: G (M/G)
S - Browse Symbolics L - List Processor

U - Update Symbolics

FOREGROUND EXECUTION
> GCIINBL ===> Y (Y/N)
==>Y (Y/N)
==>Y (Y/N)

GENERATE PROCESSOR ===
DELETE PROCESSOR ===> DLODNNN
MOVE PROCESSOR ===> MLODNNL

----------------------- OUTPUT MANAGEMENT INFORMATION =-------nmmno

UPDATE -------cccmcnenna- PROCESSOR GROUP DEFINITION ===-==-----mmmmmmmmmmmmeem
COMMAND ===>

CURRENT ENV: TEST STAGE ID: Q SYSTEM: FINANCE TYPE: COBPROG
NEXT ENV: PROD STAGE ID: P SYSTEM: FINANCE TYPE: COBPROG
PROCESSOR GROUP ===> COBNBL PROCESSOR 0/P TYPE ===>

DESCRIPTION ===> COBOL COMPILE AND LINK, LISTING IS STORED

NEXT PRCS GROUP ===> COBNBL

UPDATED: 15JUNO1 01:04 BY JSMITH

J

4. To view a list of the symbolics for any of these processors, type S next to a
processor and press ENTER. The Processor Group Symbolics panel for the

GCIINBL processor is shown below.

DISPLAY ————— PROCESSOR GROUP Symbolics ————— — —ROW 1
COMMAND ===> SCROLL ===
CURRENT ENV: TEST STAGE ID: QA SYSTEM: FINANCE TYPE: COBOL
PROCESSOR GROUP: COBNBL

DESCRIPTION: COBOL COMPILE AND LINK, LISTING IS STORED

PROCESSOR: GCIINBL

LOAD LIBRARY: ENDEVOR.NDVR.PRCSLOAD
DEFAULT Values are indicated by "--"
OVERRIDE Values are indicated by "0"
SYMBOLIC -/0 VALUE

COBLIB — SYS1.VSCLLIB

COBSTPLB — SYS1.VSCOLIB

CSYSLIBI — ENDEVOR.STG1.NDVR.COPYLIB
CSYSLIB2 — ENDEVOR.STG2.NDVR.COPYLIB
EXPINC — N

LISTLIB — ENDEVOR.STG1.NDVR.LISTING
LOADLIB ~— ENDEVOR.STG1.NDVR.LOADLIB
LSYSLIB1 — ENDEVOR.STG1.NDVR.LOADLIB
LSYSLIB2 — ENDEVOR.STG2.NDVR.LOADLIB
MEMBER — &CI1ELEMENT

MONITOR ~— COMPONENTS

OF 14
> PAGE

5. Exit to the Environment Options Menu by pressing END.

6. To create the second processor group that you need for your COBOL
inventory, access a Processor Group Definition panel through option 6 of the
Environment Options Menu. Specify the name of the second processor group

(COBNBLO1) on the Processor Group Request panel.

Type the information for the new processor group on the Processor Group

Definition panel. The completed Processor Group Definition panel is shown

below.

Chapter 5. Processor Groups 5-9

5.3 Working with Processor Group Symbolics

UPDATED:

NEXT PRCS GROUP

PROCESSOR TO USE FOR MOVE
PROCESSOR TO USE FOR TRANSFER ACTION:

S - Browse Symbolics
U - Update Symbolics

GENERATE PROCESSOR
DELETE PROCESSOR
MOVE PROCESSOR

UPDATE =--mmmmmmmmmmmeem PROCESSOR GROUP DEFINITION =-----cmmmmcmmmmccmmmmaae
COMMAND ===>

CURRENT ENV: TEST STAGE ID: Q SYSTEM: FINANCE TYPE: COBPROG
NEXT ENV: PROD STAGE ID: P SYSTEM: FINANCE TYPE: COBPROG
PROCESSOR GROUP ===> COBNBLO1 PROCESSOR 0/P TYPE ===>

DESCRIPTION ===> COBOL COMPILE AND LINK, LISTING IS STORED

> COBNBLO1
15JUNO1 01:04 BY JSMITH
OUTPUT MANAGEMENT INFORMATION

ACTION: M (M/G)

G (M/G)

L - List Processor

FOREGROUND EXECUTION
===> Y (Y/N)

Note:

We have used the

processor groups.

1. Type U (update symbolics) next to the generate processor (GCIINBL) on the
Processor Group Definition panel and press ENTER. On the Processor Group
Symbolics panel, type O in the -/O field next to the symbolic LISTLIB, then

type new information in the VALUE field for this symbolic.

-

UPDATE
COMMAND

DESCRIPT
PROCESSO

SYMBOLIC
COBLIB
COBSTPLB
CSYSLIB1
CSYSLIB2
EXPINC
LISTLIB
LOADLIB

===>

CURRENT ENV: TEST
PROCESSOR GROUP: COBNBL

ION:
R:

LOAD LIBRARY:
To override symbolics
To reset to Default value:
To exit without saving

-/0

0

PROCESSOR GROUP SYMBOLICS ROW 1 OF 14
SCROLL ===> PAGE
STAGE ID: Q SYSTEM: FINANCE TYPE: COBOL

COBOL COMPILE AND LINK, LISTING IS STORED
GCIINBL

ENDEVOR.STG1.NDVR.PRCSLOAD
: Enter "0" and supply new value
Enter "--"
: Enter CANCEL on the command Tine
VALUE

SYS1.VSCLLIB

SYS1.VSCOLIB

ENDEVOR.STG1.NDVR.COPYLIB
ENDEVOR.STG2.NDVR.COPYLIB

N
NO

ENDEVOR.STG1.NDVR.LOADLIB

2. Press ENTER. You have created a second processor group to print compile

listings by simply changing the symbolics referenced by the GCIINBL
processor.

5.3.2 Displaying Processors

You can access the Processor Display panel from the Processor Group Definition
panel by typing L (List) in the selection field next to the processor in which you

are interested, then pressing ENTER. For details about this panel, see 5.7,
“Processor Display Panel” on page 5-19.

5-10 Extended Processors Guide

same generate, move, and delete processors for both

5.4 Processor Group Selection List

5.4 Processor Group Selection List

Endevor displays the Processor Group Selection List when you specify a name
mask or an incomplete group name on the Processor Group Request panel. It lists
the processor groups currently defined for the specified system, stage, and type.

————————————————————— PROCESSOR GROUP SELECTION LIST ------------ ROW 1 OF 4
COMMAND ===> SCROLL ===> PAGE
CURRENT ENV: TEST STAGE ID: Q SYSTEM: FINANCE TYPE: COBOL
NEXT ENV: PROD STAGE ID: P SYSTEM: FINANCE TYPE: COBOL

PROCESSOR
GROUP PROCESSOR GROUP DESCRIPTION

COBDBL DB2 COBOL COMPILE AND LINK EDIT LISTING IS STORED
COBNBL COBOL COMPILE AND LINK, LISTING IS STORED

COBNBLO1 COBOL COMPILE AND LINK, LISTING IS PRINTED

COBNBO COBOL COMPILE ONLY, LISTING IS PRINTED

BOTTOM OF DATA

The panel fields are described below. Except for SELECTION, they are
display-only.

Field Description

Current Env Name of the current environment.

Stage ID Name of the current stage.

System Name of the current system.

Type Name of the type to which the processor group(s) apply.
Next Env Name of the environment in the next map location.
Stage ID Name of the stage at the next map location.

System Name of the system at the next map location.

Type Name of the type at the next map location.

Selection (no title) Used to select a processor group for display, deletion, or

update. Place an S (display), # (delete), or U (update) next to
the processor group you want to process.

Processor Group Name of the processor group.
Processor Group Description of the processor group.
Description

Chapter 5. Processor Groups 5-11

5.5 Processor Group Definition Panel

5.5 Processor Group Definition Panel

When you update and/or create processor groups for all types other than type
PROCESS, Endevor displays the following Processor Group Definition panel.

UPDATE -----mmmmmmmmmm oo PROCESSOR GROUP DEFINITION -=------oommmmmmmmmmmmm oo
COMMAND ===>

CURRENT ENV: TEST STAGE ID: Q SYSTEM: FINANCE TYPE: COBPROG

NEXT ENV: PROD STAGE ID: P SYSTEM: FINANCE TYPE: COBPROG
PROCESSOR GROUP ===> COBNBL PROCESSOR 0/P TYPE ===>

DESCRIPTION ===> COBOL COMPILE AND LINK, LISTING IS STORED

NEXT PRCS GROUP ===> NEWGRP

UPDATED: 15JUNO1 01:04 BY JSMITH

----------------------- OUTPUT MANAGEMENT INFORMATION =-----mmcmmmmmee,

PROCESSOR TO USE FOR MOVE ACTION: M (M/G)
PROCESSOR TO USE FOR TRANSFER ACTION: G (M/G)
S - Browse Symbolics L - List Processor

U - Update Symbolics

FOREGROUND EXECUTION
GENERATE PROCESSOR ===> GCIINBL ===>Y (Y/N)
DELETE PROCESSOR ===> DLODNNN =
MOVE PROCESSOR ===> MLODNNL =

The fields that appear on a Processor Group Definition panel depend on the type
to which the processor group applies and the processing option that you have
selected.

® Processor Group Definition panels for CREATE and UPDATE provide three
output management information options (S--browse symbolics, U--update
symbolics, L--list processor) and allow you to enter information in the
DESCRIPTION, PROCESSOR, and FOREGROUND EXECUTION fields.

8 Processor Group Definition panels for DISPLAY and DELETE provide two
output management information options (S--browse symbolics, L--list
processor), and do not allow you to enter information in any fields.

8 Processor Group Definition panels for type PROCESS and for the default
processor group *NOPROC* provide no output management information
options and allow you to enter information only in the DESCRIPTION and
FOREGROUND EXECUTION fields.

Note: In effect, there is only one processor group for type PROCESS. These
“processors that process processors” (GPPROCSS and DPPROCSS) are
hardcoded in Endevor. The only allowed update actions against this processor
group are changing the description of the processor group and/or allowing the
processors to run in foreground.

5-12 Extended Processors Guide

5.5 Processor Group Definition Panel

If you run an action in foreground that normally would result in a processor being
executed, but that processor cannot be run in foreground, you receive a message
stating that fact. In this situation, you must submit the job in batch.

The remaining information in this section relates to the Processor Group
Definition panel shown.

The use of the Processor Group Definition panel varies by processing option:

With This
Option

Use This Panel to

Display

Display a processor group definition.

Delete

View a processor group definition and verify that you want to delete
it. To cancel the request, press END.

Create

Define a new processor group. To cancel the request, press END.

Update

Modify a processor group definition. To cancel the request, press

Once you have entered the necessary information on the panel, press ENTER to
perform the requested processing.

5.5.1 Identification Fields

The first six fields on this panel identify the processor group. If you have
accessed this panel to display, delete, or update this processor group, information
appears in all six fields. If you have accessed this panel to create a processor
group, you must type information in the DESCRIPTION field.

Field

Description

Current Env

Display-only. Name of the current environment.

Stage ID

Display-only. Name of the stage in which the processor
groups on the list are defined.

System

Display-only. Name of the system in which the processor
groups on the list are defined.

Type

Display-only. Name of the type to which the processor group
applies.

Next Env

Display-only. Name of the environment at the next map
location.

Stage ID

Display-only. Name of the stage at the next map location.

System

Display-only. Name of the system at the next map location.

Chapter 5. Processor Groups 5-13

5.5 Processor Group Definition Panel

Field

Description

Type

Name of the type at the next map location. You can change
the type name when you access this panel in create or update
mode.

Processor Group

Name of the processor group.

Processor O/P Type

This 16 character field's initial default value is a concatenation
of the element's type and processor group. The processor
"output type" works in conjunction with element registration to
enable duplicate element names across systems, subsystems, or
element types. This feature prevents like-named modules from
overlaying each other in output libraries because the addition
of the output type makes each like-named element unique.
You can change the output type.

This feature is turned on at the system definition level. For
more information regarding element registration, refer to the
Administration Guide.

Description

Description of the processor group.

Next Prcs Group

Name of the processor group at the next map location. If this
processor group was defined to Endevor:

® Before release 3.6 was installed, *DEFAULT appears in
this field.

® After release 3.6 was installed, the processor group name
appears in this field.

You can override these default values in update mode.

Updated

Identifies the date, time, and user ID of the last user to update
the processor group definition. When creating a new
processor group definition this field is blank.

5.5.2 Output Management Information Fields

There are four groups of OUTPUT MANAGEMENT INFORMATION fields:
Move/Transfer processor selection fields, option fields, processor identification
fields, and foreground execution fields.

5.5.2.1 Move/Transfer Processor Selection

The MOVE action executes a move processor, which copies the inventory from
the source to the target location. If you want to recompile inventory as part of the
MOVE action, specify G in the PROCESSOR TO USE FOR MOVE ACTION
field, to tell Endevor to execute the generate, not the move processor.

The TRANSFER action executes a generate processor at the target location. If
you want to transfer component lists as part of the TRANSFER action, specify M

5-14 Extended Processors Guide

5.5 Processor Group Definition Panel

in the PROCESSOR TO USE FOR TRANSFER ACTION field, to tell Endevor to
execute the move, not the generate, processor.

Note: You can select either a move or a generate processor only when
transferring from one Endevor location to another. When transferring from an
archive data set to Endevor, or when using a move processor with a TRANSFER
action, Endevor does not allow you to rename elements at the target location.

5.5.2.2 Option Fields

The options that appear on Processor Group Definition panels may be used as
indicated below. These options are not available for type Process or for processor
groups named *NOPROC*.

Option

Description

S--Browse Symbolics

Appears on Processor Group Definition panels for
display, delete, create, and update processing. Used to
access a Processor Group Symbolics panel (described in
the following section).

L--List Processor

Appears on Processor Definition panels for display,
delete, create, and update processing. Used to access a
Processor Display panel (described in “Processor
Display Panel.”)

U--Update Symbolics

Appears on Processor Definition panels for create and
update processing only. Used to access a Processor
Group Symbolics panel (described in the following
section).

5.5.2.3 Processor Identification Fields

The GENERATE PROCESSOR, DELETE PROCESSOR, and MOVE
PROCESSOR fields on this panel identify the generate, delete, and move
processors that make up this processor group.

® If you have accessed this panel to display, delete, or update a processor
group, information displays in these fields.

® If you have accessed this panel to create a new processor group, you must
type the names of the processors that you want to include in this new group

in these fields.

If these fields contain processor names when you access the Processor Group
Definition panel in create mode, you can override these names with new
values. If you want to use one or more of the processors that appear on this
panel, first make sure that they are defined for the system and stage for which
you are creating the processor group.

Chapter 5. Processor Groups 5-15

5.5 Processor Group Definition Panel

Note: These are required fields. If you do not want to identify one or more
processors in this processor group, you must enter the value *NOPROC#* in those
fields. (Endevor converts one or more blanks in these fields to *NOPROC#*.)

5.5.2.4 Foreground Execution Fields

The foreground execution fields on this panel indicate whether the generate,
delete, or move processors identified in the respective PROCESSOR fields can be
executed in foreground. The acceptable values are:

B Y--the processor can be executed in foreground.

® N--the processor cannot be executed in foreground.

When a processor runs as part of a package, the package foreground execution
flag (PKGTSO= in the CIDEFLTS Table) overrides the foreground execution flag
in the processor group. This means that if a package can be executed in
foreground, all processors in that package will execute, regardless of the value in
the foreground execution field for the processor group.

5-16 Extended Processors Guide

5.6 Processor Group Symbolics Panel

5.6 Processor Group Symbolics Panel

Symbolics panel allows you to change the default and override values for the
processor's symbolic parameters.

UPDATE ————— — PROCESSOR GROUP SYMBOLICS ———— — ROW 1 OF 14
COMMAND ===> SCROLL ===> PAGE
CURRENT ENV: TEST STAGE ID: Q SYSTEM: FINANCE TYPE: COBOL
PROCESSOR GROUP: COBNBL
DESCRIPTION: COBOL COMPILE AND LINK, LISTING IS STORED
PROCESSOR: GCIINBL
LOAD LIBRARY: ENDEVOR.STG1.NDVR.PRCSLOAD
To override symbolics : Enter "0" and supply new value
To reset to Default value: Enter "--"
To exit without saving : Enter CANCEL on the command line
SYMBOLIC -/0 VALUE
COBLIB — SYS1.VSCLLIB
COBSTPLB — SYS1.VSCOLIB
CSYSLIB1 — ENDEVOR.STG1.NDVR.COPYLIB
CSYSLIB2 — ENDEVOR.STG2.NDVR.COPYLIB
EXPINC — N
LISTLIB — ENDEVOR.STG1.NDVR.LISTING

5.6.1 Identification Fields

The first eight fields on this panel identify the inventory area to which the
processor group is defined (CURRENT ENV, STAGE ID, SYSTEM, and TYPE),
the processor group (PROCESSOR GROUP and DESCRIPTION), a processor
within the group (PROCESSOR), and where it is stored (LOAD LIBRARY).

Immediately below the identification fields there are three lines of instructions for
working with this panel.

5.6.2 Symbolic Identification Fields

The three remaining fields on this panel provide information about the symbolics
defined for this processor.

Field Description

Symbolic Name of the symbolic in the PROC statement of the
processor.

-- (dash)/O Indicates the status of the value of the symbolic.

-- (dash)--Default value for the symbolic. This is the value
assigned to the symbolic in the PROC statement contained in
the processor.

O--Override value for the symbolic.

Chapter 5. Processor Groups 5-17

5.6 Processor Group Symbolics Panel

Field Description

Value Value to be assigned to the symbolic during the next run of
the processor.

5-18 Extended Processors Guide

5.7 Processor Display Panel

5.7 Processor Display Panel

The Processor Display panel allows you to view the JCL for the processors in a
processor group. You can access Processor Display panels from Processor Group
Definition panels. To access a Processor Display panel, type L (List) in the
SELECTION field next to the processor in which you are interested and press
ENTER. Endevor displays a Processor Display panel.

Note that the ISPF browse facility is used to display processors, so you can use
ISPF browse commands on the COMMAND line.

DISPLAY - LOAD LIBRARY: ENDEVOR.DEVCLS2.LOADLIB ---------- CHARS 'MACLIB' FOUND
COMMAND ===> SCROLL ===>
ENVIRONMENT SYSTEM SUBSYS ELEMENT TYPE STG VV.LL DATE TIME
ENDEVOR FINANCE ACCTREC GASM PROCESS 1 01.12 15JUNG1 20:48
TOP OF DATA

[/ m e e e e e e e *

//* GASM: Endevor processor for assemblies *

//* see type definition for ASMPGM and related processor groups *

//* every symbolic is more or less self explanatory except for =*

//* MACLIB, SMACLIB1, and SMACLIB2. Processor Groups should *

//* override these symbols for other macro libraries which can =*

//* be substituted (for example, INFO compiler product *

//* macro libraries. *

27 T *

//GASM PROC RENT=RENT, whether to check rent code

//GASM PROC RENT=RENT, whether to check rent code

// REUS=REUS, load reusability (1ink step)

// AUTH=0, currently ignored

// LOADLIB=LOADLIB, loadlib last qualifier (1ink)

// VIO=VIO, unit= for temp dsns

// LINK=YES, whether to Tink or not

// LET=NOLET, for Tink step

This panel displays:

® PROCESSOR FOOTPRINT fields, that provide footprint information about
the processor.

B A processor listing.

All fields are display-only.

Chapter 5. Processor Groups 5-19

5.7 Processor Display Panel

5-20 Extended Processors Guide

Appendix A. Sample Processors

Appendix A. Sample Processors A-1

A.1 Sample Processor Overview

A.1 Sample Processor Overview

The processor examples in this appendix demonstrate the use of Endevor utilities,
keywords, and user-defined symbolics within the processors. These capabilities allow
you to more easily convert your own JCL and PROCs into Endevor processors.
User-defined symbolics can then be overridden by the administrator during processor
group definition.

A-2 Extended Processors Guide

A.2 Converting PROCs to Processors

A.2 Converting PROCs to Processors

To convert an existing JCL PROC into a processor, use the following guidelines.

1. Start with the current JCL or PROC.

2. Copy the current PROC and make the following changes:

a.

Add the BC1PDSIN utility as the first step.

The BC1PDSIN utility is used to initialize temporary data sets. These
temporary data sets are then written to by subsequent compile, assemble, or
link-edit steps, instead of SYSOUT=* (for example, SYSPRINT). The
CONLIST step will then bundle these temporary data sets together and either
store them in a listings data set or print them.

There is a sample BC1PDSIN step in the iprfx.iqual.JCL library as member
BCI1PDSIN. It can be copied into your PROCs and modified to include or
exclude data sets as appropriate. For more information, see 3.2, “BC1PDSIN
Utility” on page 3-4

. Add the CONWRITE utility as the second step.

The CONWRITE utility is used to get a copy of the current level of the
controlled base/delta source and write it to a temporary data set. The
temporary data set can then be passed as input to a subsequent compile,
assemble or link-edit step. For users of the AllFusion™ Endevor Change
Manager for CA-Panvalet Interface or the AllFusion™ Endevor Change
Manager for CA-Librarian interface, the CONWRITE utility will expand
++INCLUDE or -INC statements in the source. For more information, see
3.13, “CONWRITE Utility” on page 3-43.

There is a sample CONWRITE step in the iprfx.iqual.JCL library as member
CONWRITE. This sample CONWRITE step uses the &EXPINC and
&MONITOR symbolics. You can define the following values for these
symbolics in your PROC statements:

EXPINC=N If you do not want to expand ++INCLUDE or -INC

statements.

EXPINC=Y If you want to expand ++INCLUDE and -INC

statements.

MONITOR= If you want to monitor selected data sets in order to
COMPONENTS build component lists.

MONITOR=NONE If you do not have ACM or do not want the data set

monitored.

C.

Add MAXRC=nn to each step.

The MAXRC keyword is added to each step on the EXEC statement. It tells
Endevor of the highest acceptable OS return code (RC) for the step. If the

Appendix A. Sample Processors A-3

A.2 Converting PROCs to Processors

utility returns an OS return code higher than the value coded, Endevor will set
a failed flag on for the element and issue an Endevor return code of 12.

Add MONITOR=COMPONENTS on appropriate DSN= parameters.

The MONITOR keyword is added to each data set name in a DD statement.
This keyword is for ACM users. It instructs ACM to monitor the specific data
set for input or output components and to build a component list with the
information captured. Add this keyword to copylibs, loadlibs and listing data
sets. Non-ACM users can code the MONITOR=NONE keyword in
anticipation of adding ACM at a later point in time.

Add the CONLIST utility as the last step.

The CONLIST utility is used to concatenate the output listings from several
temporary data sets written to by the compile, assemble, and link-edit steps.
It then places a banner page on the front of the combined listing and either
prints or stores the listing. For more information, see 3.10, “CONLIST
Utility” on page 3-18.

There is a sample CONLIST step in the iprfx.iqual.JCL library as member
CONLIST. It can be copied into your PROCs and modified to include or
exclude data sets as appropriate. This sample CONLIST step uses the
&LISTLIB symbolic. If you add LISTLIB=listing library name to your
PROC statement, Endevor stores the listing in the listing library name as
coded. If you add LISTLIB=NO to your PROC statement Endevor prints the
listing.

f. Ensure that all user symbolics are defined on the PROC statement.

A-4 Extended Processors Guide

A.3 Generate Processors

A.3 Generate Processors

This section contains sample generate processors. Samples are provided in
iprfx.iqual. JCLLIB. These processors are:

Processor Description
Name

GASMNBL An Assembler compile and link-edit processor.

GCIIDBL A processor that performs a DB2 pre-compile, compiles, link-edits a
COBOL II program, and binds the DB2 plan.

GCIINBL A COBOL II and COBOL/370 compile and link-edit processor.

GLNKNBL A link-edit-only processor (composite link).

LOADONLY This processor handles "sourceless" load modules or binary files that
you want Endevor to manange It is used as a genreate process for
ADD and UPDATE, and a move process for MOVE and
TRANSFER. For more information on load module support, see the
Utilities Guide.

These processors are designed to execute at Stage 1. To use a processor at Stage 2,
override during processor group definition the &CSYSLIB1, &LSYSLIB1, &LISTLIB
and &LOADLIB symbolics with the appropriate Stage 2 data set names.

For ACM users, each processor is coded to monitor the appropriate data sets. This
option has been coded using the MONITOR=&MONITOR syntax. The MONITOR
symbolic defaults to COMPONENTS as defined on each PROC statement. If you do
not have or use ACM, you can override the value for the MONITOR symbolic to read
NONE.

These processors also offer two alternatives for handling listings. If you override the
value of the LISTLIB parameter to read no, the listings will be printed rather than
stored.

The names of the sample processors in this appendix reflect the conventions discussed
in 2.2, “Suggested Processor Naming Conventions” on page 2-3. Each sample is
introduced with an expansion of its identifier. For example, GCIINBL is introduced as
Generate COBOL II, No database, for Batch, and create a Load module.

Appendix A. Sample Processors A-5

A.3 Generate Processors

A.3.1 GCIIDBL

Generate Cobol II, for DB2, for Batch, and create a Load module.

//***

[/ *x *k
//** PERFORMS A DB2 PRECOMPILE, COBOL2 COMPILE AND LINK EDIT *k
//** BINDS THE DB2 APPL PLAN *%k
/[** *k

//***

//GCIIDBL PROC LISTLIB='&PROJECT..&GROUP.&C1ST..LISTLIB',

// CLECOMP="SYSCLECOMP', *SIGYCOMP
// CLERUN="SYSCLERUN', *SCEERUN
/1 CLELKED="SYSCLELKED', *SCEELKED
/! CIILIB='SYSCIILIB',

/1 CIICOMP="'SYSCIICOMP',

// DB2SYS="'DB2SYSTEM',

/] DB2LOADL="'SYSDB2LIB',

/] DBRMLIB="'&PROJECT. .&GROUP.&C1ST. .DBRMLIB',

/1l PROJECT="IPRFX.IQUAL',

// GROUP="SMPL",

/1l STG1='&CIST.', CURRENT ENV STAGE 2 NAME

/1l STG2='&C1ST2. ", CURRENT ENV STAGE 2 NAME

// STG3='EMER', EMER STAGE

// STG4="'PROD', PROD STAGE

/1 CSYSLIB1='&PROJECT..&GROUP.&STG1..COPYLIB',

/! CSYSLIB2='&PROJECT. .8GROUP.&STG2..COPYLIB',

/1 CSYSLIB3='&PROJECT. .&GROUP.&STG3..COPYLIB',

// CSYSLIB4='&PROJECT. .&GROUP.&STG4. .COPYLIB',

/1l EXPINC=N,

/] LOADLIB="'&PROJECT. .&GROUP.&C1ST. .LOADLIB',

/! LSYSLIB1="&LOADLIB',

// LSYSLIB2="'&PROJECT. .8GROUP. .&STG2. . LOADLIB",

// LSYSLIB3="'&PROJECT. .&GROUP. .&STG3. .LOADLIB",

/] LSYSLIB4="'&PROJECT. .8GROUP. .&STG4. . LOADLIB',

/! MEMBER=&CLELEMENT,

/! MONITOR=COMPONENTS,

/] PARMLIB="'&PROJECT. .&GROUP.&C1ST. .PARMLIB',

/1l PARMPC="HOST (COB2) ,APOST,APOSTSQL ',

/! PARMCOB="'LIB,NOSEQ,OBJECT,APOST, ',

/! PARMLNK="'LIST,MAP,XREF',

// PLAN=MEMBER,

/! SYSOUT=A,

/1l WRKUNIT=TDISK
//**
//* ALLOCATE TEMPORARY LISTING DATASETS %

//**

//INIT EXEC PGM=BC1PDSIN,MAXRC=0
//C1INITO1 DD DISP=(,PASS),DSN=&&DB2PLIST,

// UNIT=&WRKUNIT,SPACE=(TRK, (10,10)),
/l DCB=(RECFM=FBA, LRECL=133,BLKSIZE=0)
//C1INITO2 DD DISP=(,PASS),DSN=&&COBLIST,

// UNIT=&WRKUNIT,SPACE=(TRK, (10,10)),

A-6 Extended Processors Guide

A.3 Generate Processors

/] DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0)
//CLINITO3 DD DISP=(,PASS),DSN=&&LNKLIST,

/] UNIT=&WRKUNIT,SPACE=(TRK, (10,10)),
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0)
//C1INITO4 DD DISP=(,PASS),DSN=&&PARMLIST,

// UNIT=&WRKUNIT,SPACE=(TRK, (10,10)),
// DCB=(RECFM=FBA, LRECL=133,BLKSIZE=0)

//***
//+ READ SOURCE AND EXPAND INCLUDES
//***
//CONWRITE EXEC PGM=CONWRITE,COND=(0,LT),MAXRC=0,

// PARM='EXPINCL(&EXPINC)"

//CLINCLOL DD DSN=&CSYSLIB1,DISP=SHR,

// MONITOR=&MONITOR

//C1INCLO2 DD DSN=&CSYSLIB2,DISP=SHR,

// MONITOR=&MONITOR

//C1INCLO3 DD DSN=&CSYSLIB3,DISP=SHR,

// MONITOR=&MONITOR

//CLINCLO4 DD DSN=&CSYSLIB4,DISP=SHR,

/] MONITOR=&MONITOR

//ELMOUT ~ DD DSN=&&ELMOUT,DISP=(,PASS),

/] UNIT=&WRKUNIT,SPACE=(TRK, (10,10),RLSE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0),
// MONITOR=&MONITOR

//***

//* DB2 PRECOMPILIER PROCESSING
//***
//PRECOMP EXEC PGM=DSNHPC,COND=(0,NE) ,MAXRC=4,

// PARM="'&PARMPC'

//STEPLIB DD DSN=8DB2LOADL,DISP=SHR

//DBRMLIB DD DSN=8DBRMLIB(&MEMBER),DISP=SHR,

/] MONITOR=&MONITOR,

/1l FOOTPRNT=CREATE

//SYSIN DD DSN=&&ELMOUT,DISP=0LD

//SYSCIN DD DSN=8&PREOUT,DISP=(,PASS),

// UNIT=&WRKUNIT,SPACE=(TRK, (10,10),RLSE),
/] DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)
//SYSLIB DD DSN=&CSYSLIBI,

/] MONITOR=&MONITOR,

// DISP=SHR

// DD DSN=&CSYSLIB2,

// MONITOR=&MONITOR,

// DISP=SHR

// DD DSN=&CSYSLIB3,

// MONITOR=&MONITOR,

/] DISP=SHR

// DD DSN=&CSYSLIB4,

// MONITOR=&MONITOR,

/] DISP=SHR

//SYSTERM DD SYSOUT=&SYSOUT

//SYSPRINT DD DSN=8&DB2PLIST,DISP=(OLD,PASS)
//SYSUTL DD UNIT=8WRKUNIT,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=8WRKUNIT,SPACE=(CYL,(1,1))

Appendix A. Sample Processors A-7

A.3 Generate Processors

//***

//*% COMPILE THE ELEMENT o
//***
//COMPILE EXEC PGM=IGYCRCTL,COND=(0,LT),MAXRC=4,

// PARM="'&PARMCOB'

//* TEST PROCESSOR GROUP IF CIINBL THEN ALLOCATE COBOL2 LIBRARIES

/1% IF CLENBL ALLOCATE COBOL/MVS RUNTIME LIBS

// I1F &C1PRGRP=CIINBL THEN

//STEPLIB DD DSN=&CIICOMP,DISP=SHR

// DD DSN=&CIILIB,DISP=SHR

// ELSE

//* PROCESSOR GROUP IS COBOL/LE

//STEPLIB DD DSN=&CLECOMP,DISP=SHR

// DD DSN=&CLERUN,DISP=SHR

// ENDIF
//***
/1% COPYLIB CONCATENATIONS *

//***

//SYSLIB DD DSN=&CSYSLIBI,

// MONITOR=&MONITOR,
/l DISP=SHR

// DD DSN=&CSYSLIBZ,

/l MONITOR=&MONITOR,
/l DISP=SHR

// DD DSN=&CSYSLIB3,

// MONITOR=&MONITOR,
/l DISP=SHR

// DD DSN=&CSYSLIB4,

// MONITOR=&MONITOR,
// DISP=SHR

//SYSIN DD DSN=&&PREOUT,DISP=(0OLD,DELETE)
//SYSLIN DD DSN=&&SYSLIN,DISP=(,PASS,DELETE),

/l UNIT=8WRKUNIT,SPACE=(TRK, (10,10),RLSE),
/l DCB=(RECFM=FB,LRECL=80,BLKSIZE=0),
/l FOOTPRNT=CREATE

//SYSUT1 DD UNIT=&WRKUNIT,SPACE=(CYL,(5,3))
//SYSUT2 ~ DD UNIT=&WRKUNIT,SPACE=(CYL,(5,3))
//SYSUT3 DD UNIT=&WRKUNIT,SPACE=(CYL, (5,3))
//SYSUT4 DD UNIT=&WRKUNIT,SPACE=(CYL,(5,3))
//SYSUT5 DD UNIT=@WRKUNIT,SPACE=(CYL, (5,3))
//SYSUT6 ~ DD UNIT=&WRKUNIT,SPACE=(CYL,(5,3))
//SYSUT7 ~ DD UNIT=&WRKUNIT,SPACE=(CYL,(5,3))
//SYSPRINT DD DSN=&&COBLIST,DISP=(0OLD,PASS)

//***

//*x LINK EDIT THE ELEMENT o
//***
//LKED EXEC PGM=IEWL,COND=(4,LT),MAXRC=4,

// PARM="'&PARMLNK'

//SYSLIN DD DSN=8&SYSLIN,DISP=(OLD,DELETE)

//SYSLMOD DD DSN=&LOADLIB(&MEMBER),

/l MONITOR=&MONITOR,
/1l FOOTPRNT=CREATE,
/l DISP=SHR

A-8 Extended Processors

Guide

A.3 Generate Processors

//SYSLIB DD DSN=&LSYSLIBI,

// MONITOR=&MONITOR,
/] DISP=SHR

// DD DSN=&LSYSLIBZ,

// MONITOR=&MONITOR,
// DISP=SHR

// DD DSN=&LSYSLIB3,

/] MONITOR=&MONITOR,
// DISP=SHR

// DD DSN=&LSYSLIB4,

// MONITOR=&MONITOR,
// DISP=SHR

// DD DSN=&DB2LOADL,

// DISP=SHR

//* IF PROCESSOR GROUP IS CIINBL THEN ALLOC COB2 CALL LIBRARY COB2LIB
// IF &C1PRGRP=CIINBL THEN

/] DD DSN=&CIILIB,

// DISP=SHR

// ELSE

//* IF PROCESSOR GROUP IS COBOL/LE THEN ALLOC LE CALL LIBRARY SCEELKED
// DD DSN=&CLELKED,

/] DISP=SHR

// ENDIF

//SYSUT1 DD UNIT=&WRKUNIT,SPACE=(CYL,(1,1))

//SYSPRINT DD DSN=&&LNKLIST,DISP=(OLD,PASS)
//***
//* BIND APPLICATION PLAN IF EXECUTING IN FOREGROUND

//* NOTE: ATTEMPTING TO RUN THIS STEP IN BG WILL RESULT IN RC=5
//***
//BINDFG EXEC PGM=BC1PTMPO,MAXRC=5,COND=(4,LT),

// PARM="'&PARMLIB(&C1ELEMENT)"

//STEPLIB DD DSN=&DB2LOADL,DISP=SHR

//DBRMLIB DD DSN=&DBRMLIB,DISP=SHR

//SYSUDUMP DD SYSOUT=&SYSOUT

//***

//+ BIND APPLICATION PLAN IF EXECUTING IN BACKGROUND *
//***
//BINDBG EXEC PGM=IKJEFTOL,COND=((5,NE,BINDFG), (5,LT)),MAXRC=7
//STEPLIB DD DSN=&DB2LOADL,DISP=SHR

//DBRMLIB DD DSN=8DBRMLIB,DISP=SHR

//SYSTSPRT DD DSN=&&PARMLIST,DISP=(OLD,PASS)

//SYSTSIN DD DSN=&PARMLIB(&C1ELEMENT),DISP=(OLD,PASS)
//***
/1% STORE THE LISTINGS IF: &LISTLIB=LISTING LIBRARY NAME *
//***
//STORLIST EXEC PGM=CONLIST,MAXRC=0,PARM=STORE,COND=EVEN,

// EXECIF=(&LISTLIB,NE,NO)

//CILLIBO DD DSN=&LISTLIB,DISP=SHR,

/] MONITOR=&MONITOR

//C1BANNER DD UNIT=8WRKUNIT,SPACE=(TRK,(1,1)),

// DCB=(RECFM=FBA, LRECL=121,BLKSIZE=6171)

//LISTOl DD DSN=&&DB2PLIST,DISP=(OLD,DELETE)

//LISTO2 DD DSN=&&COBLIST,DISP=(OLD,DELETE)

Appendix A. Sample Processors A-9

A.3 Generate Processors

//LISTO3 DD DSN=&&LNKLIST,DISP=(0LD,DELETE)
//LISTO4 DD DSN=&&PARMLIST,DISP=(0LD,DELETE)

//***

/1% PRINT THE LISTINGS IF: &LISTLIB=NO *
F R R R R R R R R R R D R R LR S 2
//PRNTLIST EXEC PGM=CONLIST,MAXRC=0,PARM=PRINT,COND=EVEN,

// EXECIF=(&LISTLIB,EQ,NO)

//C1BANNER DD UNIT=&WRKUNIT,SPACE=(TRK,(1,1)),

// DCB=(RECFM=FBA, LRECL=121,BLKSIZE=6171,DSORG=PS)
//C1PRINT DD SYSOUT=&SYSOUT,

// DCB=(RECFM=FBA, LRECL=133,BLKSIZE=1330,DSORG=PS)
//LISTO1 DD DSN=&&DB2PLIST,DISP=(0OLD,DELETE)

//LISTO2 DD DSN=&&COBLIST,DISP=(OLD,DELETE)

//LISTO3 DD DSN=&&LNKLIST,DISP=(OLD,DELETE)

//LISTO4 DD DSN=&&PARMLIST,DISP=(0OLD,DELETE)

[/ **

A-10 Extended Processors Guide

A.3 Generate Processors

A.3.2 GCIINBL

Generate Cobol II, No database, for Batch, and create a Load module. This processor
uses If-Then-Else logic to specify the proper system libraries using the COBOL
version selected during installation. Values are:

 CII —COBOLII
8 CLE — COBOL/LE
= COBOL — COBOL for OS/390

//***

/[*x *k
[/ ** COBOL2 AND COBOL/MVS COMPILE AND LINK-EDIT PROCESSOR
IEL] *k

//***

//GCIINBL PROC LISTLIB='&PROJECT..&GROUP.&C1ST..LISTLIB',

/] CLECOMP="SYSCLECOMP', *SIGYCOMP
/1l CLERUN="SYSCLERUN', *SCEERUN
// CLELKED="'SYSCLELKED', *SCEELKED
/] CIILIB='SYSCIILIB', «COB2LIB
/1l CIICOMP='SYSCIICOMP', *COB2COMP
/] PROJECT="IPRFX.IQUAL',

/1l GROUP="SMPL",

// STG3='"EMER', SMPLPROD/EMER STAGE
/1l STGA4="PROD', SMPLPROD/PROD STAGE
// CSYSLIB1='&PROJECT. .&GROUP.&C1ST..COPYLIB',

/] CSYSLIB2="'&PROJECT. .&GROUP.&C1ST2..COPYLIB',

/1l CSYSLIB3='&PROJECT..&GROUP.&STG3..COPYLIB',

/] CSYSLIB4="'&PROJECT. .&GROUP.&STG4. .COPYLIB',

/] EXPINC=N,

/] LOADLIB="'&PROJECT. .&GROUP.&C1ST. .LOADLIB',

/] LSYSLIB1="'&LOADLIB',

// LSYSLIB2="'&PROJECT. .&GROUP.&C1ST2..LOADLIB',

// LSYSLIB3="'&PROJECT. .&GROUP.&STG3. .LOADLIB',

// LSYSLIB4="&PROJECT. .&GROUP.&STG4. . LOADLIB',

/] MEMBER=&C1ELEMENT,

/1l MONITOR=COMPONENTS,

// PARMCOB="'LIB,NOSEQ,0BJECT,APOST, ',

/] PARMLNK="LIST,MAP,XREF',

/! SYSOUT=+,

/] WRKUNIT=TDISK
//**
//* ALLOCATE TEMPORARY LISTING DATASETS *

//**

//INIT EXEC PGM=BC1PDSIN,MAXRC=0
//CLINITO1 DD DSN=&&COBLIST,DISP=(,PASS),

// UNIT=&WRKUNIT,SPACE=(TRK, (10,10)),

/] DCB=(RECFM=FBA, LRECL=133,BLKSIZE=0,DSORG=PS)
//C1INITO2 DD DSN=&&LNKLIST,DISP=(,PASS),

// UNIT=&WRKUNIT,SPACE=(TRK, (10,10)),

// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0,DSORG=PS)

//***

//* READ SOURCE AND EXPAND INCLUDES

Appendix A. Sample Processors A-11

A.3 Generate Processors

[[KKk ek ke ok ok ke ok ok ke ok ok ko ok ok ok ok ko ok ok ok ok ok ok ko ok ok ok ok ke ok ok ko
//CONWRITE EXEC PGM=CONWRITE,COND=(0,LT),MAXRC=0,

// PARM="EXPINCL(&EXPINC)'

//ELMOUT DD DSN=&&ELMOUT,DISP=(,PASS),

/1l UNIT=8WRKUNIT,SPACE=(TRK, (100,100) ,RLSE),

/1 DCB= (RECFM=FB, LRECL=80,BLKSIZE=0),

// MONITOR=&MONITOR
//***
//*% COMPILE THE ELEMENT wk

//***
//COMPILE EXEC PGM=IGYCRCTL,COND=(0,LT),MAXRC=4,

// PARM="'&PARMCOB'

//* TEST PROCESSOR GROUP IF CIINBL THEN ALLOCATE COBOL2 LIBRARIES
/1* IF CLENBL ALLOCATE COBOL/MVS RUNTIME LIBS
// 1F &C1PRGRP=CIINBL THEN

//STEPLIB DD DSN=&CIICOMP,DISP=SHR

// DD DSN=&CIILIB,DISP=SHR

// ELSE

//* PROCESSOR GROUP IS COBOL/LE

//STEPLIB DD DSN=&CLECOMP,DISP=SHR

// DD DSN=&CLERUN,DISP=SHR

// ENDIF
//***
/1% COPYLIB CONCATENATIONS *k

//***

//SYSLIB DD DSN=&CSYSLIBI,

// MONITOR=&MONITOR,
/l DISP=SHR

// DD DSN=&CSYSLIBZ,

// MONITOR=&MONITOR,
/l DISP=SHR

// DD DSN=&CSYSLIB3,

/l MONITOR=&MONITOR,
/l DISP=SHR

// DD DSN=&CSYSLIB4,

// MONITOR=&MONITOR,
/l DISP=SHR

//SYSIN DD DSN=&&ELMOUT,DISP=(0LD,PASS)
//SYSLIN DD DSN=&&SYSLIN,DISP=(,PASS,DELETE),

/1l UNIT=8WRKUNIT,SPACE=(TRK, (100,100),RLSE),
/l DCB=(RECFM=FB,LRECL=80,BLKSIZE=0),
/l FOOTPRNT=CREATE

//SYSUT1 DD UNIT=&WRKUNIT,SPACE=(CYL, (5,
//SYSUT2 DD UNIT=&WRKUNIT,SPACE=(CYL, (5,
//SYSUT3 DD UNIT=&WRKUNIT,SPACE=(CYL, (5,
//SYSUT4 DD UNIT=&WRKUNIT,SPACE=(CYL, (5,
//SYSUT5 DD UNIT=@WRKUNIT,SPACE=(CYL, (5,3
//SYSUT6 DD UNIT=&WRKUNIT,SPACE=(CYL, (5,3
//SYSUT7 DD UNIT=&WRKUNIT,SPACE=(CYL,(5,3)
//SYSPRINT DD DSN=&&COBLIST,DISP=(0LD,PASS)

//***

[[** LINK EDIT THE ELEMENT *k

//***

3))
3))
3))
3))
))
))

)

A-12 Extended Processors Guide

A.3 Generate Processors

//LKED EXEC PGM=IEWL,COND=(4,LT),MAXRC=4,
// PARM="'&PARMLNK'

//SYSLIN DD DSN=&&SYSLIN,DISP=(OLD,DELETE)
//SYSLMOD DD DSN=&LOADLIB(&MEMBER),

// MONITOR=&MONITOR,
// FOOTPRNT=CREATE,
// DISP=SHR

//SYSLIB DD DSN=&LSYSLIBI,

// MONITOR=&MONITOR,
/] DISP=SHR

// DD DSN=&LSYSLIBZ,

// MONITOR=&MONITOR,
/] DISP=SHR

// DD DSN=&LSYSLIB3,

/] MONITOR=&MONITOR,
// DISP=SHR

// DD DSN=&LSYSLIB4,

// MONITOR=&MONITOR,
// DISP=SHR

//* IF PROCESSOR GROUP IS CIINBL THEN ALLOC COB2 CALL LIBRARY COB2LIB
// IF &C1PRGRP=CIINBL THEN

/] DD DSN=&CIILIB,

// DISP=SHR

// ELSE

//* IF PROCESSOR GROUP IS COBOL/LE THEN ALLOC LE CALL LIBRARY SCEELKED
// DD DSN=&CLELKED,

/] DISP=SHR

// ENDIF

//SYSUT1 DD UNIT=8WRKUNIT,SPACE=(CYL,(1,1))

//SYSPRINT DD DSN=&&LNKLIST,DISP=(0LD,PASS)

[[Fkk gk ok ok ok ok ke ok ok ok ok ok ok ok k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ko ko ok ke k ko ok ok ok k ok
/1* STORE THE LISTINGS IF: &LISTLIB=LISTING LIBRARY NAME *
[[ke s ek ek ok ok ke ok ok ok ko ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ek ok ook ke ok ok ok ko ke ok
//STORLIST EXEC PGM=CONLIST,MAXRC=0,PARM=STORE,COND=EVEN,

// EXECIF=(&LISTLIB,NE,NO)

//C1LLIBO DD DSN=&LISTLIB,DISP=SHR,

// MONITOR=&MONITOR

//C1BANNER DD UNIT=&WRKUNIT,SPACE=(TRK,(1,1)),

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=0)

//LISTO1 DD DSN=&&COBLIST,DISP=(OLD,DELETE)

//LIST02 DD DSN=8&LNKLIST,DISP=(OLD,DELETE)

//***

//* PRINT THE LISTINGS IF: &LISTLIB=NO *
R T R R T T R A A e s S T LT T
//PRNTLIST EXEC PGM=CONLIST,MAXRC=0,PARM=PRINT,COND=EVEN,

/! EXECIF=(&LISTLIB,EQ,NO)

//C1BANNER DD UNIT=&WRKUNIT,SPACE=(TRK, (1,1)),

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=0,DSORG=PS)

//CIPRINT DD SYSOUT=&SYSOUT,

// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0,DSORG=PS)

//LIST@1 DD DSN=&&COBLIST,DISP=(OLD,DELETE)

//LISTO2 DD DSN=&&LNKLIST,DISP=(0LD,DELETE)

/[**

Appendix A. Sample Processors A-13

A.3 Generate Processors

A.3.3 GLNKNBL

Generate Link-edit only No database for Batch and create a Load module.

//***

[/ ** *%
//*% LINK-EDIT ONLY PROCESSOR (COMPOSITE LINK) FOR TYPE LINKCARD ==

[** (USING ASSEMBLER OR COBOL OBJECT MODULES) *%
[/ ** *%

[] FxkFrhhkkhkkhhkhhrkhrkhhrkhhhhhhkhkkhhkhhrhhrhhrhhbrhhkhhkhhkhhrhkrkk
/1%

//GLNKNBL PROC LISTLIB='&PROJECT..&GROUP.&STG1..LISTLIB',

// LOADLIB="'&PROJECT. .&GROUP.&STG1..LOADLIB",

// CII="C??',

// CIILIB='SYSCIILIB', *xCOB2LIB
// CLELIB='SYSCLELIB', **SCEELKED
// EXPINC=N,

// PROJECT="IPRFX.IQUAL',

// GROUP="SMPL',

// LSYSLIB1="&PROJECT..&GROUP.&C1ST..LOADLIB',

// LSYSLIB2="'&PROJECT. .&GROUP.&C1ST2..LOADLIB',

// LSYSLIB3="'&PROJECT. .&GROUP.&STG3..LOADLIB',

// LSYSLIB4="'&PROJECT. .&GROUP.&STG4..LOADLIB',

// STG3="EMER',

// STG4="'PROD',

// MEMBER=&C1ELEMENT,

// MONITOR=COMPONENTS,

// O0BJLIB1="'&PROJECT..&GROUP.&C1ST..0BJLIB"',

// 0BJLIB2="'&PROJECT..&GROUP.&C1ST2..0BJLIB',

// OBJLIB3="'&PROJECT..&GROUP.&STG3..0BJLIB"',

// 0BJLIB4="'&PROJECT..&GROUP.&STG4..0BJLIB"',

// PARMLNK="'LIST,MAP,XREF"',

// WRKUNIT=TDISK

[] FxxFrhhrkhhkhhrhhrhhrkhhhhhhkhhkhhrhhrhhrhhbkhhkhhkhhkhhrkhrhhrrhrrkhrrk
//* ALLOCATE TEMPORARY LISTING DATASETS *
R R 2 A A ST T P
//INIT EXEC PGM=BC1PDSIN,MAXRC=0

//CLINITO1 DD DSN=&&LNKLIST,DISP=(,PASS),

// UNIT=&8WRKUNIT,SPACE=(CYL, (1,2),RLSE),

// DCB=(RECFM=FBA, LRECL=133,BLKSIZE=0,DSORG=PS)

[] FHFrrkk ok kkkk ok kkkkokhkkkkkkkkkkh kR kkhhkkkhhkkkkhhkkkhhkkhhhkkkkhhkkhk
/[** LINK EDIT THE ELEMENT *%

[[sk ek ok ek ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko
//LKED EXEC PGM=IEWL,COND=(0,LT),MAXRC=0,

// PARM='&PARMLNK'

//SYSPRINT DD DSN=&&LNKLIST,DISP=(OLD,PASS)

//SYSUT1 DD UNIT=TDISK,SPACE=(CYL,(1,1))

//SYSLIB DD DSN=&LSYSLIB1,DISP=SHR,

/l MONITOR=COMPONENTS
// DD DSN=&LSYSLIB2,DISP=SHR,
/l MONITOR=COMPONENTS
// DD DSN=&LSYSLIB3,DISP=SHR,
/l MONITOR=COMPONENTS

A-14 Extended Processors Guide

A.3 Generate Processors

// DD DSN=&LSYSLIB4,DISP=SHR,
// MONITOR=COMPONENTS

// IF &CII=CII THEN

// DD DSN=&CIILIB,DISP=SHR
// ELSE

// DD DSN=&CLELIB,DISP=SHR
// ENDIF

//OBJLIB DD DSN=&0BJLIB1,DISP=SHR,
// MONITOR=COMPONENTS

// DD DSN=&0BJLIB2,DISP=SHR,
// MONITOR=COMPONENTS

// DD DSN=&0BJLIB3,DISP=SHR,
// MONITOR=COMPONENTS

// DD DSN=8&0BJLIB4,DISP=SHR,
// MONITOR=COMPONENTS

//SYSLIN DD DSN=&C1BASELIB(&C1ELEMENT),DISP=SHR
//SYSLMOD DD DSN=&LOADLIB,DISP=SHR,

// FOOTPRNT=CREATE,

// MONITOR=COMPONENTS
//***
/1* STORE THE LISTINGS IF: &LISTING=LISTING LIBRARY NAME *

//***

//STORLIST EXEC PGM=CONLIST,MAXRC=0,PARM=STORE,COND=EVEN,
// EXECIF=(&LISTLIB,NE,NO)

//C1LLIBO DD DSN=&LISTLIB,DISP=SHR,

// MONITOR=&MONITOR

//C1BANNER DD UNIT=&WRKUNIT,SPACE=(TRK,(1,1)),

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=6171)
//LISTO1 DD DSN=&&LNKLIST,DISP=(OLD,DELETE)

//***

//* PRINT THE LISTINGS IF: &LISTING=NO *

//***

//PRNTLIST EXEC PGM=CONLIST,MAXRC=0,PARM=PRINT,COND=EVEN,

/] EXECIF=(&LISTLIB,EQ,NO)

//C1BANNER DD UNIT=&WRKUNIT,SPACE=(TRK,(1,1)),

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=6171,DSORG=PS)
//C1PRINT DD SYSOUT=*,

// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0,DSORG=PS)
//LISTO1 DD DSN=&&LNKLIST,DISP=(OLD,DELETE)

/1%

Appendix A. Sample Processors A-15

A.3 Generate Processors

A.3.4 GASMNBL

Generate Assembler, No database, for Batch, and create a Load module.

//***

[/ *x *k
[[** ASSEMBLE AND LINK-EDIT PROCESSOR *%
/[*x *%k

//***

/1%
//GASMNBL PROC LISTLIB='&PROJECT..&GROUP.&C1ST..LISTLIB',

// LOADLIB="'&PROJECT. .&GROUP.&C1ST. .LOADLIB',
/! MACLIB="'SYSMACLIB',

/] PROJECT="IPRFX.IQUAL',

/! GROUP="SMPL",

/1 STG3='EMER',

// STG4="'PROD',

/1l EXPINC=N,

/! LSYSLIB1="'&PROJECT..&GROUP.&C1ST. .LOADLIB',
/! LSYSLIB2="&PROJECT. .&GROUP.&C1ST2..LOADLIB",
/! LSYSLIB3="'&PROJECT. .&GROUP.&STG3. .LOADLIB',
/! LSYSLIB4="'&PROJECT. .&GROUP.&STG4. . LOADLIB',
/] MACLIB1='&PROJECT..&GROUP.&C1ST..MACLIB',

// MACLIB2='&PROJECT..&GROUP.&C1ST2. .MACLIB',
/! MACLIB3='&PROJECT. .&GROUP.&STG3..MACLIB',

/] MACLIB4='&PROJECT. .&GROUP.&STG4. .MACLIB',

/! MEMBER=&C1ELEMENT,

/1 MONITOR=COMPONENTS,

/! PARMASM="'NODECK, OBJECT,NOTERM, XREF,NOUSING' ,
// PARMLNK="LIST,MAP,RENT,XREF",

// SYSOUT=+,

// WRKUNIT=TDISK
//**
//* ALLOCATE TEMPORARY LISTING DATASETS %

//**

//INIT EXEC PGM=BC1PDSIN,MAXRC=0
//C1INITO1 DD DSN=&&ASMLIST,DISP=(,PASS),

// UNIT=&WRKUNIT,SPACE=(TRK, (100,100),RLSE),

/l DCB=(RECFM=FBA, LRECL=133,BLKSIZE=0,DSORG=PS)
//CLINITO2 DD DSN=&&LNKLIST,DISP=(,PASS),

// UNIT=&WRKUNIT,SPACE=(TRK, (10,10),RLSE),

// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0,DSORG=PS)

//***
//* READ SOURCE AND EXPAND INCLUDES
//***
//CONWRITE EXEC PGM=CONWRITE,COND=(0,LT),MAXRC=0,

// PARM='EXPINCL(8EXPINC)"

//ELMOUT ~ DD DSN=&&ELMOUT,DISP=(,PASS),

// UNIT=&WRKUNIT,SPACE=(TRK, (100,100),RLSE),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=0),

// MONITOR=&MONITOR

[[kK ek ek ok ok ok ek ok ok ke ok ok ok ko ok ok ok ok ok ok ok ok ok ek ok ok ok ok ok ok ok ok ek ok ok
//* ASSEMBLE THE ELEMENT *%

A-16 Extended Processors Guide

A.3 Generate Processors

[[F %Kk ok ok ke ok ok ke ok ok ok ok ok ok ok ok ko ok ok ko ok ok ko ok ok ok ok ek ok ok ko
//ASM EXEC PGM=ASMA90,COND=(0,LT) ,MAXRC=4,

// PARM='&PARMASM'

//SYSLIB DD DSN=&MACLIBI,

// MONITOR=&MONITOR,
// DISP=SHR

// DD DSN=&VMACLIBZ,

/] MONITOR=&MONITOR,
// DISP=SHR

// DD DSN=&MACLIB3,

// MONITOR=&MONITOR,
// DISP=SHR

/] DD DSN=&MACLIB4,

// MONITOR=&MONITOR,
/] DISP=SHR

// DD DSN=&MACLIB,

// DISP=SHR

//SYSIN DD DSN=&&ELMOUT,DISP=(0LD,DELETE)
//SYSLIN DD DSN=&&SYSLIN,DISP=(,PASS,DELETE),

/] UNIT=8WRKUNIT,SPACE=(TRK, (100,100) ,RLSE),
/1l DCB=(RECFM=FB, LRECL=80,BLKSIZE=0),
/] FOOTPRNT=CREATE

//SYSPUNCH DD DUMMY

//SYSUT1 DD UNIT=&WRKUNIT,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=8WRKUNIT,SPACE=(CYL,(1,1))
//SYSUT3 DD UNIT=&WRKUNIT,SPACE=(CYL,(1,1))
//SYSPRINT DD DSN=8&ASMLIST,DISP=(OLD,PASS)

//***

/1% LINK EDIT THE ELEMENT wk
//***
//LKED EXEC PGM=IEWL,COND=(4,LT),MAXRC=4,

// PARM="'&PARMLNK'

//SYSLIN DD DSN=&&SYSLIN,DISP=(OLD,DELETE)

//SYSLMOD DD DSN=&LOADLIB(&MEMBER),

// MONITOR=&MONITOR,
// FOOTPRNT=CREATE,
/] DISP=SHR
//SYSLIB DD DSN=&LSYSLIBI,

/] MONITOR=&MONITOR,
// DISP=SHR

// DD DSN=&LSYSLIBZ,

// MONITOR=&MONITOR,
// DISP=SHR

// DD DSN=&LSYSLIB3,

// MONITOR=&MONITOR,
/] DISP=SHR

// DD DSN=&LSYSLIB4,

// MONITOR=&MONITOR,
/] DISP=SHR

//SYSUT1 DD UNIT=&WRKUNIT,SPACE=(CYL,(1,1))
//SYSPRINT DD DSN=&&LNKLIST,DISP=(0LD,PASS)

//***

/1% STORE THE LISTINGS IF: &LISTLIB=LISTING LIBRARY NAME *

Appendix A. Sample Processors A-17

A.3 Generate Processors

//***

//STORLIST EXEC PGM=CONLIST,MAXRC=0,PARM=STORE,COND=EVEN,
/l EXECIF=(&LISTLIB,NE,NO)

//C1LLIBO DD DSN=&LISTLIB,DISP=SHR,

/l MONITOR=&MONITOR

//C1BANNER DD UNIT=&WRKUNIT,SPACE=(TRK,(1,1)),

/l DCB=(RECFM=FBA,LRECL=121,BLKSIZE=0)
//LISTOL DD DSN=&&ASMLIST,DISP=(0LD,DELETE)

//LISTO2 DD DSN=&&LNKLIST,DISP=(0LD,DELETE)

//***

/1% PRINT THE LISTINGS IF: &LISTLIB=NO *
//***
//PRNTLIST EXEC PGM=CONLIST,MAXRC=0,PARM=PRINT,COND=EVEN,

/l EXECIF=(&LISTLIB,EQ,NO)

//C1BANNER DD UNIT=&WRKUNIT,SPACE=(TRK,(1,1)),

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=0,DSORG=PS)

//C1PRINT DD SYSOUT=&SYSOUT,

// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0,DSORG=PS)

//LISTO1 DD DSN=&&ASMLIST,DISP=(0LD,DELETE)

//LISTO2 DD DSN=8&LNKLIST,DISP=(0LD,DELETE)

A-18 Extended Processors Guide

A.3 Generate Processors

A.3.5 LOADONLY

The LOADONLY processor can be used as a generate or a move processor. The
processing varies depending on the type of processor requested.

® Generate — Copies the requested element, file, or member from the user's file
into and Endevor managed library.

B Move — Copies the member from one stage's output library to the next stage's
output library.

//**

//* *
//* COPY SOURCELES LOAD MODULES FROM USER DATA SETS TO STAGE1 *
//* *
R R R A 2 R R A 2 2 T T T T
/1*

//LOADONLY PROC LISTLIB='&PROJECT..&GROUP.SMPL&CIST..LISTLIB',

// LOADLIB1="'&PROJECT. .&GROUP.SMPL&CIST..LOADLIB',

// LOADLIB2="'&PROJECT. .&GROUP.SMPL&STG2..LOADLIB',

// PROJECT="IPRFX',

// GROUP="IQUAL"',

// STG2="'&C1SSTAGE.', FROM STAGE FOR TRANSFER/MOVE

// MONITOR=COMPONENTS,

// SYSOUT=x,

// WRKUNIT=TDISK

R e T e
/1* ALLOCATE TEMPORARY LISTING DATASETS *

//**

//INIT EXEC PGM=BC1PDSIN
//CLINITO1 DD DSN=&©LIST,

// DISP=(NEW,PASS,DELETE),

// UNIT=&WRKUNIT,

// SPACE=(CYL,(1,2),RLSE),

// DCB=(RECFM=FBA, LRECL=133,BLKSIZE=0,DSORG=PS)

VR R R R R R R Rk R A T T R A S A T2
/] "
//* ONLY PERFORM COPY FROM USER LOADLIB WHEN ADD OR UPDATE IS REQUESTED=
//* *

//**

//IF1 IF ((&1ACTION=ADD) OR (&C1ACTION=UPDATE)) THEN
//ADD EXEC PGM=BSTCOPY,MAXRC=04
//SYSPRINT DD DSN=8©LIST,DISP=(OLD,PASS)
//SYSUT3 DD UNIT=&WRKUNIT,SPACE=(TRK,(1,1))
//SYSUT4 DD UNIT=8WRKUNIT,SPACE=(TRK,(1,1))
//INDD DD DSN=&C1USRDSN,DISP=SHR
//0UTDD DD DSN=&LOADLIB1,DISP=SHR,FOOTPRNT=CREATE
//SYSIN DD *

COPY I=INDD,0=0UTDD

SELECT MEMBER=((&C1USRMBR,&C1ELEMENT,R))
//END1 ENDIF

//**

//* *

Appendix A. Sample Processors A-19

A.3 Generate Processors

//* IF TRANSFER,COPY FROM SOURCE LOADLIB TO CURRENT LOADLIB %
/] .
//**
//IF2 IF (&CLACTION=TRANSFER) OR (&1ACTION=MOVE) THEN
//TRANSFER EXEC PGM=BSTCOPY,MAXRC=04
//SYSPRINT DD DSN=8©LIST,DISP=(OLD,PASS)
//SYSUT3 DD UNIT=&WRKUNIT,SPACE=(TRK,(1,1))
//SYSUT4 DD UNIT=8WRKUNIT,SPACE=(TRK,(1,1))
//0UTDD DD DSN=&LOADLIBI1,DISP=SHR,FOOTPRNT=VERIFY
//INDD DD DSN=&LOADLIB2,DISP=SHR,FOOTPRNT=CREATE
//SYSIN DD =
COPY I=INDD,0=0UTDD
SELECT MEMBER=((8C1ELEMENT, ,R))
//END2 ENDIF

//***

/1% STORE THE LISTINGS IF: &LISTLIB=LISTING LIBRARY *
//***
//STORLIST EXEC PGM=CONLIST,PARM="'STORE',COND=EVEN,

// EXECIF=(&LISTLIB,NE,NO)

//CLLLIBO DD DSN=&LISTLIB,DISP=SHR

//C1BANNER DD DSN=&&BANNER,DISP=(,PASS,DELETE),

/1l UNIT=8WRKUNIT,SPACE=(TRK, (1,1)),

/] DCB= (RECFM=FBA, LRECL=121,BLKSIZE=0,DSORG=PS)

//LISTOL DD DSN=&©LIST,DISP=(OLD,DELETE)

//***

/1% PRINT THE LISTINGS IF: &LISTLIB=NO *

//***

//PRNTLIST EXEC PGM=CONLIST,MAXRC=0,PARM=PRINT,COND=EVEN,

// EXECIF=(&LISTLIB,EQ,NO)

//C1BANNER DD UNIT=&WRKUNIT,SPACE=(TRK,(1,1)),

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=0,DSORG=PS)
//CIPRINT DD SYSOUT=&SYSOUT,

// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=0,DSORG=PS)
//LISTO1 DD DSN=8©LIST,DISP=(0LD,DELETE)

/1%

]/ **

A-20 Extended Processors Guide

A.4 Delete Processors

A.4 Delete Processors

Delete processors clean up (delete) what generate processors create. Since most
generate processors create a load module and possibly a listing, delete processors can
be generic. A single delete processor can be used to clean up the work created by
several generate processors.

This section contains two sample delete processors. Samples are provided in the
iprfx.iqual. JCLLIB. These processors are:

Member Which Stands For...
Name
DLODDNL Delete Load modules, for DB2, No (All) operating environments,

No (All) output types.

DLODNNL Delete Load modules, No (All) databases, No (All) operating
environments, No (All) output types.

These processors can be used as Stage 1 or Stage 2 delete processors. To change the
PROC statement symbolic values, override the data set names during processor group
definition.

If you do not want to store listings, change the &LISTLIB symbolic to NO.

Appendix A. Sample Processors A-21

A.4 Delete Processors

A.4.1 DLODDNL

Delete LOad modules, for DB2, No (All) operating environments, No (All) output

types.

F R R R R T R R R R AR A 2 A T T oY
//* *
//* DELETE COBOL LOAD AND LISTING MODULES & DBRM *
//* *
N R R R R R R R R R R R R R a e S i s a2y
/1%

//DLODDNL PROC DBRMLIB='&PROJECT..&GROUP.&STG1..DBRMLIB',

// LISTLIB="'&PROJECT. .&GROUP.&STG1..LISTLIB',

// LOADLIB="'&PROJECT. .&GROUP.&STG1..LOADLIB',

// PROJECT="IPRFX.IQUAL',

// GROUP="SMPL',

// STG1="&C1STAGE.' CURRENT STAGE

/1%

//DELLOD EXEC PGM=CONDELE,MAXRC=12
//C1LIB DD DSN=&LOADLIB,DISP=SHR
/1%

//DELDBRM EXEC PGM=CONDELE,MAXRC=12
//C1LIB DD DSN=&DBRMLIB,DISP=SHR

/1%
//DELLIST EXEC PGM=CONLIST,PARM='DELETE',MAXRC=12,COND=EVEN,
/l EXECIF=(&LISTLIB,NE,NO)

//CILLIBI DD DSN=&LISTLIB,DISP=SHR

A-22 Extended Processors Guide

A.4 Delete Processors

A.4.2 DLODNNL

Delete LOad modules, No (All) databases, No (All) operating environments and

Listings

F R R R R R a2 a2 T R S ST T LY
//* *
//* DELETE LOAD/OBJECT AND LISTING MODULES *
//* *
R R E R R R R R d R T R A s R S AR TR F TR
/1%

//DLODNNL PROC LISTLIB='&PROJECT..&GROUP.&STG1..LISTLIB',

// LOADLIB="'&PROJECT. .&GROUP.&STG1..LOADLIB',

// PROJECT="IPRFX.IQUAL",

// GROUP="SMPL',

// STG1="'&C1STAGE.' CURRENT STAGE

/1*

//DELMOD EXEC PGM=CONDELE,MAXRC=12
//C1LIB DD DSN=&LOADLIB,DISP=SHR

//**

//* DELETE THE LISTING IF: &LISTLIB=LISTING LIBRARY NAME *
[[F %Kk ke ok ok ke ok ok ke ko ko ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ke ok ok
//CONLIST EXEC PGM=CONLIST,PARM='DELETE',MAXRC=12,COND=EVEN,

// EXECIF=(&LISTLIB,NE,NO)

//C1LLIBI DD DSN=&LISTLIB,DISP=SHR

Appendix A. Sample Processors A-23

A.5 Move Processors

A.5 Move Processors

Move processors are used during a MOVE action to create the appropriate outputs at
the target stage. This can be accomplished by:

® Copying the outputs (load modules and listings) from the source to the target
stage. This section includes two sample move processors that accomplish this.

B Recreating the load module at the target stage. This occurs when a generate
processor is used as a move processor. For more information, see A.3, “Generate
Processors” on page A-5.

= If you want to use a generate processor as a move processor, make sure to specify
G in the PROCESSOR TO USE FOR THE MOVE ACTION field on the
definition panel for the APPROPRIATE PROCESSOR GROUP.

Note: Do not re-create load modules at the target stage by coding a compile and link
step in a move processor, this causes the load module footprint to become out of sync
with Master Control File information for the element.

This section contains two sample move processors These samples are provided in
iprfx.iqual. JCLLIB. These processors are: These processors copy load modules, and
their associated component lists and listings, from a source to a target stage. By using
symbolic overrides for LOADLIB1 and LOADLIB2, these processors can be used for
almost every type in your inventory structure. If the &LISTLIB2 symbolic is
overridden during processor group definition to read NO, Endevor copies the load
modules and component lists, but prints the listings, instead of copying them to the
target stage.

If ACM is not installed, or if you do not wish to copy component lists to the target
stage, you can override the MONITOR symbolic with any value except components.

A-24 Extended Processors Guide

A.5 Move Processors

A.5.1 MLODDNL

Move Load Modules, for DB2, No (All) operating environments, to Load modules.

//**

//* *
//* COPY LOAD MODULES FROM STAGE 1 TO STAGE 2 AND THEIR ASSOCIATED *
//* COMPONENT LIST AND LISTINGS. ALSO COPY DBRM MEMBERS AND BIND *
//* APPLICATION PLAN. *
//* *
R R R R ks 2 2T T PO
/1%

//MLODDNL PROC DBRMLIB1='&PROJECT..&GROUP.&STG1..DBRMLIB',

// DBRMLIB2="'&PROJECT. .&GROUP.&STG2..DBRMLIB',

// DB2SYS="'DB2SYSTEM',

// DB2LOADL="'SYSDB2LIB"',

// EDB2AUTH="'1PRFX.IQUAL.EDB2.AUTHLIB',

// EDB2CONL="IPRFX.IQUAL.EDB2.CONLIB',

// LISTLIB="'&PROJECT..&GROUP.&STG1..LISTLIB',

// LISTLIB1="'&PROJECT..&GROUP.&STG1..LISTLIB',

// LISTLIB2="'&PROJECT..&GROUP.&STG2..LISTLIB',

// LOADLIB1="'&PROJECT. .&GROUP.&STG1..LOADLIB',

// LOADLIB2="'&PROJECT. .&GROUP.&STG2..LOADLIB',

// PARMLIB="'&PROJECT. .&GROUP.&STG2..PARMLIB',

// PROJECT="'IPRFX.IQUAL',

// GROUP="SMPL",

/! STG1="&C1SSTAGE. "', CURRENT STAGE

// STG2="&C1STAGE. "', TO STAGE

// PLAN=&C1ELEMENT,

// SYSOUT=A,

// WRKUNIT=PDISK

R R R R a2 2 R 2 a2 2 2T T T T T
//* ALLOCATE TEMPORARY LISTING DATASET *
[] *FFrkk ok kkk ko kkkh kR kkhkkkkhhkkhhh kR kkhhkkhhhkkhhhhkhkhkkkhhkkkhhhkxhk
//INIT EXEC PGM=BC1PDSIN,MAXRC=0

//C1INITO1 DD DISP=(,PASS),DSN=&©1LST,

// UNIT=&8WRKUNIT,SPACE=(TRK, (5,2) ,RLSE),

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=6171)

//C1INITO2 DD DISP=(,PASS),DSN=8©2LST,

// UNIT=&WRKUNIT,SPACE=(TRK, (5,2),RLSE),

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=6171)

//CLINITO3 DD DISP=(,PASS),DSN=&&PARMLIST,

// UNIT=8WRKUNIT,SPACE=(TRK, (5,2),RLSE),

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=6171)

R R T T T T
//* COPY THE LOAD MODULE *

[[%%k ok ok ek ok ok ke ok ok ok ok ek ok ok ok ok ok ok ok ko ok ok ok ek ok ok ok ok ok ok ke ok ok ok
//BSTCOPY EXEC PGM=BSTCOPY,MAXRC=04,COND=(0,LT)

//SYSPRINT DD DSN=&©1LST,DISP=0LD

//SYSUT3 DD UNIT=&WRKUNIT,SPACE=(TRK,(1,1))

//SYSUT4 DD UNIT=&WRKUNIT,SPACE=(TRK,(1,1))

//INDD DD DSN=&LOADLIB1,DISP=SHR

Appendix A. Sample Processors A-25

A.5 Move Processors

//0UTDD DD DSN=&LOADLIB2,DISP=SHR
//SYSIN DD =

COPY 0=0UTDD, I=INDD

SELECT MEMBER=((&C1ELEMENT, ,R))
//**
//* COPY THE DBRM MODULE %
//**
//BSTCOPY EXEC PGM=BSTCOPY,MAXRC=04,COND=(4,LT)
//SYSPRINT DD DSN=8©2LST,DISP=0LD
//SYSUT3 DD UNIT=8WRKUNIT,SPACE=(TRK,(1,1))
//SYSUT4 DD UNIT=8WRKUNIT,SPACE=(TRK,(1,1))
//INDD DD DSN=&DBRMLIBI1,DISP=SHR
//0UTDD DD DSN=&DBRMLIB2,DISP=SHR
//SYSIN DD =

COPY 0=0UTDD, I=INDD

SELECT MEMBER=((&C1ELEMENT,,R))

//**

//* MOVE THE COMPONENT LIST *
[[3% ek e e ok ok ek ek ok ok ok ok e ko ko ok ok e ok ok ko ok ok ek ok ok ko ok ok o ko ok ok ek ko ok ok ok
/1%

//MOVECL EXEC PGM=BC1PMVCL,MAXRC=04,COND=(4,LT)

A

//**

//* BIND APPLICATION PLAN IF EXECUTING IN FOREGROUND

//* NOTE: ATTEMPTING TO RUN THIS STEP IN BG WILL RESULT IN RC=5

[[sk ek ok ek ko ok ok ok ko ok ke ok ok ok ko
//BINDFG EXEC PGM=BC1PTMPO,MAXRC=5,COND=(4,LT),

// PARM='&PARMLIB(&C1ELEMENT)'

//STEPLIB DD DSN=&DB2LOADL,DISP=SHR

//DBRMLIB DD DSN=&DBRMLIB2,DISP=SHR

//SYSUDUMP DD SYSOUT=&SYSOUT

//***

//% BIND APPLICATION PLAN IF EXECUTING IN BACKGROUND *
//***
//BINDBG EXEC PGM=IKJEFTO1,COND=((5,NE,BINDFG), (5,LT)),MAXRC=7
//STEPLIB DD DSN=&DB2LOADL,DISP=SHR

//DBRMLIB DD DSN=&DBRMLIB2,DISP=SHR

//SYSTSPRT DD DSN=&&PARMLIST,DISP=(OLD,PASS)

//SYSTSIN DD DSN=&PARMLIB(&CIELEMENT),DISP=(OLD,PASS)

//**

//* FOOTPRINT DB2 PLAN

[[KKk ek ok ok ok ok ek ok ok ke ok ok ok ko ok ok ok ok ok ek ok ok ke ok ok ok ok ok ok ek ok ok ke ok ok ok ko
//FO0TDB2 EXEC PGM=BC1PCAF,COND=(8,LE),MAXRC=0,

// PARM='&DB2SYS,BC1PSQL1,BC1PDBFP'

//STEPLIB DD DSN=&EDB2AUTH,DISP=SHR

// DD DSN=&EDB2CONL,DISP=SHR

//DBRMLIB DD DSN=&DBRMLIB2,DISP=SHR

//BSTIPT DD DSN=&PARMLIB(&C1ELEMENT),DISP=(0LD,PASS)

//***

/1% COPY THE LISTINGS IF: &LISTING=LISTING LIBRARY NAME *

//***
//CONLIST EXEC PGM=CONLIST,MAXRC=0,PARM=COPY,COND=EVEN,
/l EXECIF=(&LISTLIB,NE,NO)

A-26 Extended Processors Guide

A.5 Move Processors

//CILLIBI DD
//CILLIBO DD
//C1BANNER DD
//

//LISTO1 DD
//LISTO2 DD
//LISTO3 DD

DSN=&LISTLIB1,DISP=SHR
DSN=&LISTLIB2,DISP=SHR
UNIT=&WRKUNIT,SPACE=(TRK,(1,1)),
DCB=(RECFM=FBA,LRECL=121,BLKSIZE=6171)
DSN=&©1LST,DISP=(0LD,DELETE)
DSN=&©2LST,DISP=(0LD,DELETE)
DSN=&&PARMLIST,DISP=(0LD,DELETE)

//***

//* PRINT THE LISTINGS IF: &LISTING=NO *

//***
//PRNTLIST EXEC PGM=CONLIST,MAXRC=0,PARM=PRINT,COND=EVEN,
// EXECIF=(&LISTLIB,EQ,NO)

//C1BANNER DD
//

//C1PRINT DD
//

//LISTO1 DD
//LISTO2 DD
//LISTO3 DD
//*

UNIT=8WRKUNIT,SPACE=(TRK, (1,1)),
DCB=(RECFM=FBA, LRECL=121,BLKSIZE=6171)
SYSOUT=&SYSOUT,

DCB=(RECFM=FBA, LRECL=133,BLKSIZE=1330,DSORG=PS)
DSN=&©1LST,DISP=(0OLD,DELETE)
DSN=8©2LST,DISP=(0LD,DELETE)
DSN=&&PARMLIST,DISP=(0OLD,DELETE)

Appendix A. Sample Processors A-27

A.5 Move Processors

A.5.2 MLODNNL

Move Load Modules, No (All) databases, No (All) operating environments, with
associated component lists and Listings.

//**

//* *
//* COPY LOAD MODULES FROM STAGE 1 TO STAGE 2 AND THEIR ASSOCIATED *
//* COMPONENT LIST AND LISTINGS. *
//* *
R R R R aa R a2 R ST T T
/1%

//MLODNNL PROC LISTLIB='YES',

// LISTLIB1="'&PROJECT. .&GROUP.&STG1..LISTLIB',

// LISTLIB2="'&PROJECT. .&GROUP.&STG2..LISTLIB',

// LOADLIB1="'&PROJECT. .&GROUP.&STG1..LOADLIB',

// LOADLIB2="&PROJECT..&GROUP.&STG2..LOADLIB",

// PROJECT="IPRFX.IQUAL',

// GROUP="SMPL',

// STG1="&C1SSTAGE.", CURRENT STAGE

// STG2="'&C1STAGE. ', TO STAGE

!/ SYSOUT=+,

// WRKUNIT=TDISK

[[FxxFrhhkkhhkhhrhhrkhhkhhkkhkkhkkhkrkkhrkhhxhhkkhkkhkkhkkhhrkhrkhrrhrkhkrk
//* ALLOCATE TEMPORARY LISTING DATASETS *

//**

//INIT EXEC PGM=BC1PDSIN
//C1INITO1 DD DSN=&©LIST,DISP=(,PASS,DELETE),

/l UNIT=8WRKUNIT,SPACE=(CYL, (1,2),RLSE),

// DCB=(RECFM=V,LRECL=121,BLKSIZE=125,DSORG=PS)
//**
//* COPY THE LOAD MODULE *

//**

//BSTCOPY EXEC PGM=BSTCOPY,MAXRC=04
//SYSPRINT DD DSN=&©LIST,DISP=(OLD,PASS)
//SYSUT3 DD UNIT=8WRKUNIT,SPACE=(TRK,(1,1))
//SYSUT4 DD UNIT=8WRKUNIT,SPACE=(TRK,(1,1))
//INDD DD DSN=&LOADLIBI,DISP=SHR
//0UTDD DD DSN=&LOADLIB2,DISP=SHR
//SYSIN DD =

COPY 0=0UTDD, I=INDD

SELECT MEMBER=((&C1ELEMENT, ,R))

//**

//* MOVE THE COMPONENT LIST *
[[3% ek e e ok ok ek ek o ok ok ok e ko ko ok ok ok e ok ok ko ok ok ek o ok ok ko ok ek o ko ok ok ok ek ko ok ok ok
//MOVECL EXEC PGM=BC1PMVCL,COND=(0,NE)

[[ek ek ok ek ok ok ok ok ko ok ko
/1* COPY & STORE THE LISTINGS IF: &LISTING=LISTING LIBRARY *

[[e ek ek ok ok ok ek ok ok ok ok ok ok ok ok ok ok ok ok ok ek ok ok ok ok ok ok ok ok ok ok ok ok ok ek ok ko
//COPYLIST EXEC PGM=CONLIST,MAXRC=0,PARM=COPY,COND=EVEN,

!/ EXECIF=(&LISTLIB,EQ,YES)

//CILLIBI DD DSN=&LISTLIB1,DISP=SHR

//C1LLIBO DD DSN=&LISTLIB2,DISP=SHR

A-28 Extended Processors Guide

A.5 Move Processors

//C1BANNER DD DSN=&&BANNER,DISP=(,PASS,DELETE),

// UNIT=8WRKUNIT,SPACE=(TRK, (1,1)),

/1 DCB=(RECFM=FBA,LRECL=121,BLKSIZE=6171,DSORG=PS)
//LISTO1 DD DSN=&©LIST,DISP=(OLD,DELETE)
//***
//* PRINT THE LISTINGS IF: &LISTING=NO *

//***

//PRNTLIST EXEC PGM=CONLIST,MAXRC=0,PARM=PRINT,COND=EVEN,

// EXECIF=(&LISTLIB,EQ,NO)

//C1BANNER DD UNIT=&WRKUNIT,SPACE=(TRK,(1,1)),

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=6171,DSORG=PS)
//C1PRINT DD SYSOUT=&SYSOUT,

// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330,DSORG=PS)
//LISTO1 DD DSN=&©LIST,DISP=(OLD,DELETE)

//*

Appendix A. Sample Processors A-29

A.6 Other Processors

A.6 Other Processors

These processes are provided as an example of how to manage other types of source.
Use these processors as a guide

Member
name

Processor Description

ALIASDEL

Deletes alias load modules associated with the current element

ALIASMOV

Moves alias load modules associated with the current element

BINDPLAN

Stand-alone Generate processor for bind cards

CICSMAP

Generate processor for CICS maps and copybooks

EASYTRIE

Generate processor for Advantage CA-Easytrieve

GCPYIMP

Ascertains a copybook's impact by executing a list action (using
ACMQ) and providing a list of elements using the copybook

IDEALO1

Sample processor for Advantage CA-IDEAL

IMSDBD

Sample IMS processor

JCLCHK

Sample processor for Unicenter CA-JCLCheck

JOBSCAN

Sample JOBSCAN Processor

SDFIIMAP

Generate Processor for SDF II maps

A-30 Extended Processors Guide

Appendix B. Unsupported Parameters

Appendix B. Unsupported Parameters B-1

B.1 General Restrictions

B.1 General Restrictions

As discussed previously, Endevor processors are written using standard OS JCL
syntax--with a few restrictions. Most JCL parameters are supported in Endevor
processor statements.

Selected JCL parameters are unsupported by Endevor and, if used, are ignored by the
system or cause an error. A message is returned when Endevor encounters one of
these parameters:

B If the parameter is ignored, the message reads:

C1X02431 STMT statement-no IGNORED VALUE parm-value

® If the parameter causes an error, the message reads:

C1X0244E STMT statement-no INVALID--VALUE
STARTING WITH parm-value IS CURRENTLY
UNSUPPORTED BY ENDEVOR FOR 0S/390

The following JCL keyword parameters are not supported by Endevor processors.
This list was compiled as of MVS/SP version 2. If you use a parameter from this list,
the appropriate message is returned.

The parameters are listed by statement type (EXEC= or DD=) in which they are
normally used.

B-2 Extended Processors Guide

B.2 EXEC Statement Parameters

B.2 EXEC Statement Parameters

Endevor processors support the EXEC statement, but they do not support backward
reference (REFERBACK), or these EXEC statement parameters:

ACCT
ADDRSPC
DYNAMNBR
PERFORM
PROC

RD
REGION
TIME

Appendix B. Unsupported Parameters B-3

B.3 DD Statement Parameters

B.3 DD Statement Parameters

Endevor processors support the DD statement, but they do not support backward
reference (REFERBACK), or these DD statement parameters:

ACCODE

AMP

BURST

CHARS

CHKPT

CNTL

DYNAM

SPIN
SUBSYS=PANV

B-4 Extended Processors Guide

B.4 DCB Subparameters

B.4 DCB Subparameters

Endevor processors support the DCB parameter, but not these DCB subparameters:

BUFIN INTVL
BUFMAX IPLTXID
BUFOFF MODE
BUFOUT NTM
BUFSIZE PCI
CODE PRTSP
CPRI RESERVE
CYLOFL RKP
FRID STACK
FUNC THRESH
GNCP TRTCH

Appendix B. Unsupported Parameters B-5

B.5 DDNAME Subparameters

B.5 DDNAME Subparameters

Endevor processors support the DDNAME parameter, but not these DDNAME

subparameters:

DSID QNAME
FLASH REFDD
MODIFY SPLIT
MSVGP SUBALLOC
OUTPUT DDNAME

B-6 Extended Processors Guide

Index

Special Characters
& (ampersand) 2-10
&& (double ampersand) 2-14

A

Abend conditions, testing for 2-28, 2-29
ABENDCC control statement 2-28
ACM
BSTCOPY 3-8
FASTCOPY 3-10
identifying additional relationships 3-32
Action Summary Report 3-12
Actions invoking processors 1-5
Audit trails 3-7
Automatic footprinting 2-5

B

BACKOUT utility 2-9
BCI1PDSIN utility 3-4
BCIPTMPO utility 3-5—3-6
BCI1PXFPI utility 3-7
BSTCOPY utility 2-5, 3-8—3-11
Bypassing footprint creation 2-6

C

CI1BM3000 utility 3-12—3-13
CIDEFLTS 2-12
CIPRMGEN utility 3-14—3-15
Classifying Processors 4-1
CLIST 3-5
Component list

active 3-43

element type 3-44

existing 3-43

format 3-44

including related elements 3-26

Component list (continued)
input to processes 3-43
write data 3-43
write data to external location 3-43
Component monitoring 2-9
Compressing temporary data sets 3-20
CONAPT utility 3-16
CONDELE utility 3-17
Conditional execution 2-7
CONLIST utility 3-18—3-25
COPY 3-22
DELETE 3-22
footprints 2-5
listing guidelines 3-23
PRINT 3-21
PRNTMBR 3-21
PRTMBR 3-21
STORE 3-20
CONRELE utility 3-26—3-31
commands 3-26—3-29
SET ERROR RETURN CODE 3-29
example 3-29
footprints 2-5
overview 3-26
producing control statements 3-32
RELATE COMMENT 3-29
RELATE ELEMENT 3-26
RELATE MEMBER 3-28
RELATE OBJECT 3-28
SET ERROR RETURN CODE 3-29
CONSCAN utility 3-32—3-42
ACM 3-32
CONRELE control statements 3-38
error message 3-32, 3-42
examples 3-34, 3-38
exclusion group 3-34
Selection Group 3-38
excluding source 3-33
exclusion group 3-33

Index X-1

CONSCAN utility (continued)
format 3-32
input control statements 3-32
output 3-38
PARMSCAN data set 3-32
PARMSCAN statements 3-32
producing CONRELE control statements 3-32
return code 3-32
sample processor 3-41
scan rule processing 3-40
scan rules 3-32
selecting data 3-34
selecting data syntax 3-35—3-37
selection criteria 3-32
selection groups 3-34, 3-35
Consolidating temporary data sets 3-20
CONWRITE utility 3-43—3-50
expanding INCLUDEs 3-47
extended form 3-43
extended form JCL 3-45
extended form processing 3-45
INCLUDE statements 3-43
parameter list 3-49
PARM=EXPLINCL 3-48
return code 3-49
specifying additional INCLUDE libraries 3-48
standard form 3-43
standard form JCL 3-44
standard form processing 3-44
syntax 3-45
truncating element records 3-44
types of component list data 3-43
user exit 3-49
validating record length 3-44
WRITE ELEMENT statement 3-48
COPY option for CONLIST 3-22
Copying aliases 3-8
Copying from input libraries 3-22
Creating footprints 2-5

D

Debugging IF-THEN-ELSE logic 2-29
Decompresses and prints a member 3-21
Default processor group 1-4

Delete processors 3-17

Deleting a member 3-22

Disabling FASTCOPY for BSTCOPY 3-10
Double ampersand (&&) 2-14

DPPROCSS processor 4-3, 5-12, 5-17

E

Element processing 3-17
Element types
default processor group 1-4
PROCESS 4-3
Elements 2-6
Endevor
errors 2-6
ISPF dialog 3-5
return code 2-6
symbolics 2-10—2-21
&& (double ampersand) 2-14
periods 2-14
reserved names 2-14
substringing 2-19—2-21
Error messages
CONLIST 3-18
CONSCAN 3-32, 3-42
CONWRITE 3-46
EXECIF keyword 2-7
Endevor symbolics 2-7
operators 2-7
site symbolics 2-7
symbolic substitutions 2-10
user symbolics 2-7
values 2-7
Executing
actions in a processor 3-12
processors from an Endevor ISPF dialog 3-5
TSO commands in a processor 3-5
Expanding symbolics 3-14

F

Feature 2-9
Footprints
See also FOOTPRNT keyword
bypassing creation 2-6
CONLIST 2-5
CONRELE 2-5
CONWRITE 2-5
creating 2-5
errors 2-6
NONE 2-6
object modules 2-5
verification return code 2-6
VERIFY 2-6
FOOTPRNT keyword
See also Footprints
CREATE 2-5

X-2 Extended Processors Guide

FOOTPRNT keyword (continued)
display processor 5-19
load modules 2-5

G

GPPROCSS processor 4-3, 5-12, 5-17

IBM utilities
$IEBCOPY 3-10
IEBCOPY 2-32
IEHMOVE 2-32
IKJEFTO1 2-32, 3-5

IBM-defined expressions
ABEND 2-28
ABENDCC 2-28
- ABEND 2-29
-RUN 2-29
RC 2-28
RUN 2-29

IF-THEN-ELSE processor flow control statement

control order of SCL statements 2-22
debugging 2-22, 2-29
IBM-defined expressions 2-27
IF statement location 2-24
keywords 2-23
multiple statements 2-25
naming 2-22
nesting 2-26
run time 2-22
stacking on the same statement 2-26
syntax 2-22
trace facility 2-29
IKJEFTO1 2-32, 3-5
In-stream data 2-21, 3-14
INCLUDE statement expansion
CONWRITE 3-47
PARM=EXPLINCL 3-48
PARM=EXPLINCL JCL 3-48
using WRITE ELEMENT statement 3-48
Including entities in a component list 3-26
Initializing sequential data sets 3-4
Installing footprints in object modules 3-7
Invoking actions and processors 1-5

J

Job failures 2-6

K

Keywords 2-5—2-9
BACKOUT 2-9
EXECIF 2-7
FOOTPRNT 2-5
list 2-5
MAXRC 2-6
MONITOR 2-9

L

Load
libraries 3-8
modules 2-8, 3-9

Manage output listings 3-18
Managing Processors 4-1
MAXRC keyword 2-6—2-7

overview 2-6
MONITOR 2-9

N

Naming conventions for processors 2-3
Non-Endevor programs 2-32

(0

Object modules 2-5, 3-7
Operators 2-7
Output libraries 3-17, 3-20

P

Packages
backout 3-8
backout information 2-9
ID 3-12

Panels
creating processor groups 5-5
displaying processor groups 5-5
Processor Display Panel 5-19
Processor Group Definition 5-12
Processor Group Definition Panel 4-4
Processor Group Symbolics 5-17
Type Definition 4-3

predefined processors 4-3

updating processor groups 5-5

Index X-3

PARMSCAN parameter data set 3-32—3-34 Processors (continued)

PDSMAN 3-10 GPPROCSS 4-3
Periods in ENDEVOR-specific symbolic 2-14 highest acceptable return code 2-6
PRINT implementing 4-5
member 3-21 in-stream data 2-21
temporary data sets 3-21 invoking actions 1-5
Processor group 5-17 issuing API calls 3-16
change 4-3 keywords 2-5
defining element types 1-4 listing 5-19
Definition Panels maintain processors 4-6
creating 5-5 move 2-6, 4-3
types other than PROCESSOR 5-12 naming conventions 2-3
updating 5-5 overview 1-2
delete 5-2 predefined processors 4-3
description 5-17 processor-failed flag 2-6
DPPROCSS 5-12, 5-17 relationship to processor groups 1-3
generate 5-2 return code 2-6
GPPROCSS 5-12, 5-17 symbolics 2-11
inventory area 5-17 tailoring using symbolics 2-10
load library 5-17 terminate 2-6
move 5-2 writing 2-3
naming conventions 5-2
overview 1-3, 5-2 R
PROCESS 4-3
Processor Group Definition Panel 4-4 RC processor flow control statement 2-28
processor type 5-12, 5-17 RELATE COMMENT command 3-29
processor within a group 5-17 RELATE ELEMENT command 3-26
relationship to processors 1-3 RELATE MEMBER command 3-28
symbolics 5-17 RELATE OBJECT command 3-28
identification fields 5-17 Removing members from output libraries 3-17
Panel 5-17 Reports
types 5-2 Action Summary Report 3-12
user-defined symbolics 5-4 SCANPRT 3-35
Processors Return codes
capabilities 2-4 BCIPTMPO 3-6
classifying and managing 4-1 CONSCAN 3-32
CONRELE 3-26 CONWRITE 3-44, 3-49
control at execution 2-22 Endevor 2-6
customizing JCL at run time 2-22 highest acceptable 2-6
defining 1-4 MAXRC 2-6
delete 3-17, 4-3 REXX EXEC 3-5
display panel 5-19
DPPROCSS 4-3 S

executing actions 3-12

executing TSO commands 3-5

executing under Endevor ISPF dialog 3-5
features 2-4

flags 2-6

footprint creation 2-5

generate 4-3

generate load modules 2-8

Sample JCL
BACKOUT 2-9
BCIPDSIN 3-4
BCIPTMPO 3-5
CIBM3000 3-12
CIPRMGEN 3-14
CONAPI 3-16

X-4 Extended Processors Guide

Sample JCL (continued)
CONDELE 3-17
CONLIST 3-23
CONRELE 3-26
CONSCAN 3-41
CONWRITE extended form 3-45
CONWRITE standard form 3-44
CONWRITE with INCLUDE expansion 3-48
EXECIF 2-8
footprinting load modules 2-5
FOOTPRNT=VERIFY 2-6
MAXRC 2-7
Sequential data sets, initializing 3-4
SET ERROR RETURN CODE 3-29
Site requirements 2-11, 2-12
Site symbolics
symbolics 2-12—2-14
STOPRC keyword 2-6
STORE option for CONLIST 3-20
Symbolics
Endevor 2-7, 2-14
EXECIF 2-10
guidelines 2-11
in-stream data 2-10
numeric operands 2-10
overriding default values 2-11, 2-12
site symbolics 2-7, 2-12—2-14
substringing 2-19—2-21
errors 2-19
length 2-19
pad 2-19
start 2-19
user symbolics 2-7
user-defined 2-11—2-12, 2-14
validated 2-11
values for 2-15
Syntax
CONRELE EXAMPLE 3-29
CONSCAN exclusion group 3-33—3-34
CONSCAN select data 3-35—3-37
CONWRITE 3-45
EXECIF 2-7
RELATE COMMENT 3-29
RELATE ELEMENT 3-26
RELATE MEMBER 3-28
RELATE OBJECT 3-28
SET ERROR RETURN CODE 3-29
SYSPRINT 3-11
System abend testing and conditions 2-28

T

Terminate processing 2-6
Testing conditions and system abends
Transportable footprints

TSO
BCIPTMPO 3-5
inactive 3-6

U

User exit program 3-49—3-50

User-defined

3-7

completion code 2-28

data set 3-32

symbolics 2-11—2-12

symbolics in processor groups

Utilities
BCIPDSIN 3-4

BCIPTMPO 3-5—3-6

BCIPXFPI 3-7

BSTCOPY 2-5, 3-8—3-11

CIBM3000 3-12—3-13

CIPRMGEN 3-14—3-15

CONAPI 3-16

CONDELE 3-17

CONLIST 2-5, 3-18—3-25
CONRELE 2-5, 3-26—3-31

CONSCAN 3-32—3-42

CONWRITE 3-43—3-50

overview 3-2

W

Writing processors

2-3

5-4

2-28—2-29

Index X-5

	Bookshelf
	Extended Processors Guide
	Contents
	Chapter 1. Introduction
	1.1 Processor Overview
	1.2 Processor Group Overview
	1.3 Processors and Element Types
	1.4 Processors Invoked by Endevor Actions
	1.5 Documentation Overview
	1.6 Name Masking
	1.6.1 Usage

	1.7 Syntax Conventions
	1.7.1 Sample Syntax Diagram
	1.7.2 Syntax Diagram Explanation
	1.7.3 General Coding Information
	1.7.3.1 Valid Characters
	1.7.3.2 Incompatible Commands and Clauses
	1.7.3.3 Ending A Statement
	1.7.3.4 SCL Parsing Information

	Chapter 2. Writing Processors
	2.1 Overview
	2.2 Suggested Processor Naming Conventions
	2.3 Processor Features
	2.3.1 Reserved Words and Labels

	2.4 Processor Keywords
	2.4.1 FOOTPRNT
	2.4.2 MAXRC
	2.4.3 EXECIF
	2.4.4 BACKOUT
	2.4.5 MONITOR

	2.5 Symbolic Parameters
	2.5.1 Using the Ampersand (&)
	2.5.2 General Guidelines
	2.5.3 User Symbolics
	2.5.4 Site Symbolics
	2.5.5 Using Site Symbolics in Processors
	2.5.6 Defining Site Symbolics
	2.5.7 Endevor Symbolics
	2.5.7.1 Substringing

	2.5.8 In- Stream Data

	2.6 Controlling Processor Flow
	2.6.1 IF- THEN- ELSE statement
	2.6.1.1 RC
	2.6.1.2 ABENDCC
	2.6.1.3 ABEND
	2.6.1.4
	ABEND
	2.6.1.5 RUN
	2.6.1.6
	RUN

	2.6.2 The ENDEVOR IF- THEN- ELSE Trace Facility

	2.7 Authorizing a Non- Endevor Program

	Chapter 3. Processor Utilities
	3.1 Overview
	3.1.1 Utilities Available

	3.2 BC1PDSIN Utility
	3.2.1 Sample JCL

	3.3 BC1PTMP0 Utility
	3.3.1 Sample JCL
	3.3.1.1 Parameters

	3.3.2 Return Codes
	3.3.2.1 Other Return Codes

	3.4 BC1PXFPI Utility
	3.5 BSTCOPY Utility
	3.5.1 Supported Copy Functions
	3.5.1.1 BSTCOPY Syntax - Literal Interpretation
	3.5.1.2 BSTCOPY Syntax - Alternate Interpretation

	3.5.2 Unsupported Functions
	3.5.3 BSTCOPY and OVERLAY Modules
	3.5.4 SYSPRINT DCB Information

	3.6 C1BM3000 Utility
	3.6.1 Do Not Use...
	3.6.2 Sample JCL

	3.7 C1PRMGEN Utility
	3.7.1 Sample JCL
	3.7.1.1 Parameters

	3.8 CONAPI Utility
	3.8.1 Sample JCL

	3.9 CONDELE Utility
	3.9.1 Sample JCL
	3.9.1.1 Parameters

	3.10 CONLIST Utility
	3.10.1 Banner Pages
	3.10.2 STORE Option
	3.10.3 PRINT Option
	3.10.4 PRTMBR (Print Member) Option
	3.10.5 COPY Option
	3.10.6 DELETE Option
	3.10.7 Guidelines When Creating Listings

	3.11 CONRELE Utility
	3.11.1 CONRELE Utility Commands
	3.11.2 RELATE ELEMENT Command Syntax
	3.11.2.1 RELate ELEment Syntax

	3.11.3 RELATE MEMBER Command syntax
	3.11.3.1 RELate MEMber Syntax

	3.11.4 RELATE OBJECT Command Syntax
	3.11.4.1 RELate OBJect Syntax

	3.11.5 RELATE COMMENT Command Syntax
	3.11.5.1 RELate COMment Syntax

	3.11.6 SET ERROR RETURN CODE Command Syntax
	3.11.6.1 SET ERRor RETurn CODe Syntax

	3.11.7 Example of CONRELE Syntax

	3.12 CONSCAN Utility
	3.12.1 CONSCAN Parameter Data Set
	3.12.2 PARMSCAN Parameter Statements
	3.12.3 Excluding Source Data
	3.12.4 Selecting Source Data
	3.12.4.1 Generated CONRELE Control Statements

	3.12.5 Scan Rule Processing
	3.12.5.1 Sample CONSCAN Utility Processor

	3.12.6 Error Messages

	3.13 CONWRITE Utility
	3.13.1 Writing Component List Data to an External Location
	3.13.1.1 Component List Data
	3.13.1.2 Output Format

	3.13.2 Writing Elements to an External Location
	3.13.3 Standard Form of CONWRITE
	3.13.4 Extended Form of CONWRITE
	3.13.5 Command Syntax for the CONWRITE Utility
	3.13.5.1 CONWRITE Syntax

	3.13.6 Using CONWRITE to Expand INCLUDEs
	3.13.6.1 The PARM= EXPINCL() Clause

	3.13.7 Writing Exit Programs to Use CONWRITE Input

	Chapter 4. Classifying and Managing Processors
	4.1 Overview
	4.2 Classifying Processors
	4.3 Managing Processors
	4.3.1 Procedure: Implementing Processors
	4.3.2 Procedure: Maintaining Processors
	4.3.3 Where Endevor Looks for Processors

	Chapter 5. Processor Groups
	5.1 Processor Group Overview
	5.1.1 Three Types
	5.1.2 Suggested Naming Conventions for Processor Groups
	5.1.2.1 Example

	5.1.3 User- Defined Symbolics

	5.2 Working with Processor Group Information
	5.2.1 From the Environment Options Menu
	5.2.2 From the Type Definition Panel

	5.3 Working with Processor Group Symbolics
	5.3.1.1 Example
	5.3.2 Displaying Processors

	5.4 Processor Group Selection List
	5.5 Processor Group Definition Panel
	5.5.1 Identification Fields
	5.5.2 Output Management Information Fields
	5.5.2.1 Move/ Transfer Processor Selection
	5.5.2.2 Option Fields
	5.5.2.3 Processor Identification Fields
	5.5.2.4 Foreground Execution Fields

	5.6 Processor Group Symbolics Panel
	5.6.1 Identification Fields
	5.6.2 Symbolic Identification Fields

	5.7 Processor Display Panel

	Appendix A. Sample Processors
	A. 1 Sample Processor Overview
	A. 2 Converting PROCs to Processors
	A. 3 Generate Processors
	A. 3.1 GCIIDBL
	A. 3.2 GCIINBL
	A. 3.3 GLNKNBL
	A. 3.4 GASMNBL
	A. 3.5 LOADONLY

	A. 4 Delete Processors
	A. 4.1 DLODDNL
	A. 4.2 DLODNNL

	A. 5 Move Processors
	A. 5.1 MLODDNL
	A. 5.2 MLODNNL

	A. 6 Other Processors

	Appendix B. Unsupported Parameters
	B. 1 General Restrictions
	B. 2 EXEC Statement Parameters
	B. 3 DD Statement Parameters
	B. 4 DCB Subparameters
	B. 5 DDNAME Subparameters

	Index
	Special Characters
	A
	B
	C
	E
	F
	D
	K
	G
	I
	L
	M
	N
	O
	P
	J
	R
	S
	T
	U
	W

