
AllFusion Endevor®
Change Manager

Utilities Guide
4.0

ENUTL400

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

First Edition August 2002

 2002 Computer Associates International, Inc. (CA)
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

Chapter 1. File Definition and Maintenance 1-1
1.1 Endevor Data Sets . 1-2
1.2 Defining the Endevor Files . 1-4

1.2.1 Overview . 1-4
1.2.2 Advantages of Endevor LIB Data Sets 1-4
1.2.3 Defining Base and Delta Libraries . 1-4

1.2.3.1 Space Requirements for Base and Delta Libraries 1-5
1.2.3.2 To Allocate a New PDS or PDS/E 1-5
1.2.3.3 To Allocate a New CA-Panvalet or CA-Librarian Data Set 1-5
1.2.3.4 To Allocate and Initialize a New Endevor LIB Data Set 1-5

1.2.4 Defining an Endevor Listing Library 1-6
1.2.5 Defining a Processor Load Library . 1-6
1.2.6 Defining a Source Output Library or HFS Directory 1-7

1.3 Maintaining the Files . 1-8
1.3.1 Overview . 1-8
1.3.2 Monitoring Space Utilization . 1-8

1.3.2.1 Monitoring Libraries . 1-8
1.3.3 Expanding or Compressing a File . 1-8

1.3.3.1 Expanding/Compressing the Master Control File 1-9
1.3.3.2 Expanding/Compressing Package Data Sets 1-12
1.3.3.3 Expanding/Compressing PDS or PDS/E Libraries 1-15
1.3.3.4 Expanding/Compressing CA-Librarian or CA-Panvalet Libraries 1-15
1.3.3.5 Expanding/Compressing Endevor LIB Data Sets 1-15

1.4 Backup . 1-16
1.4.1 Backing Up Endevor LIB Data Sets 1-16
1.4.2 Backing Up VSAM Endevor LIB Data Sets 1-16
1.4.3 Backing Up BDAM Endevor LIB Data Sets 1-17
1.4.4 Backup Using the Unload/Reload/Validate Utilities 1-17

1.5 Recovery . 1-18
1.5.1 Recovery Using the Unload/Reload/Validate Utilities 1-18

1.6 Documentation Overview . 1-19
1.6.1 Name Masking . 1-19

1.6.1.1 Usage . 1-19
1.6.2 Syntax Conventions . 1-20

1.6.2.1 Sample Syntax Diagram . 1-24
1.6.3 Syntax Diagram Explanation . 1-24
1.6.4 General Coding Information . 1-26

1.6.4.1 Valid Characters . 1-26
1.6.4.2 Incompatible Commands and Clauses 1-27

Contents iii

1.6.4.3 Ending A Statement . 1-27
1.6.4.4 SCL Parsing Information . 1-27

1.6.5 Syntax for Long File and Path Names 1-28
1.6.5.1 HFSFile Syntax Rules . 1-28
1.6.5.2 Path Name Syntax Rules . 1-29
1.6.5.3 Element Name Syntax Rules . 1-29
1.6.5.4 SCL Continuation Syntax Rules 1-29

Chapter 2. Endevor LIB Data Sets . 2-1
2.1 Endevor LIB . 2-2

2.1.1 Basics . 2-2
2.2 BC1PNLIB Utility . 2-3

2.2.1 Overview . 2-3
2.2.2 BC1PNLIB Syntax . 2-3

2.2.2.1 Initialize Function Keywords . 2-3
2.2.2.2 Expand Function Keywords . 2-6
2.2.2.3 Adjust Function Keywords . 2-7
2.2.2.4 Reorganize Function Keywords . 2-8
2.2.2.5 Inquire Function Keywords . 2-9

2.3 BC1PNLST Utility . 2-10
2.3.1 BC1PNLST Syntax . 2-10

2.3.1.1 BC1PNLST Syntax Elements . 2-10
2.4 BC1PNCPY Utility . 2-11

2.4.1 BC1PNCPY Syntax . 2-11
2.4.1.1 BC1PNCPY Syntax Elements 2-11

2.5 Allocating and Initializing an ELIB Data Set 2-13
2.5.1 Overview . 2-13
2.5.2 Step 1: Select an Access Method . 2-13
2.5.3 Step 2: Estimate Space Requirements 2-13
2.5.4 Step 3: Allocate and Initialize the Data Set 2-14

2.5.4.1 Allocating and Initializing a BDAM ELIB Data Set 2-14
2.5.4.2 Allocating and Initializing a VSAM ELIB Data Set 2-15
2.5.4.3 Reinitializing a Endevor LIB Data Set 2-17

2.6 Expanding Endevor LIB Data Sets . 2-18
2.6.1 Overview . 2-18

2.7 Adjusting Endevor LIB Data Sets . 2-19
2.7.1 Using the ADJUST Function . 2-19

2.8 Reorganizing Endevor LIB Directory Pages 2-21
2.8.1 BC1PNLIB and Directory Pages . 2-21

2.9 Printing Endevor LIB Data Set Information 2-22
2.9.1 Overview . 2-22
2.9.2 Printing Data Set Header Information 2-22

2.9.2.1 Endevor LIB Allocation Bitmap 2-25
2.9.3 Printing Member Information . 2-25

2.10 Printing Target Directory Page Information 2-27
2.10.1 Overview . 2-27
2.10.2 Printing Data Set Analysis Information 2-28

2.11 Converting To or From Endevor LIB Format 2-30
2.11.1 Using BC1PNCPY for “Conversion” 2-30

Chapter 3. Load Module Support . 3-1

iv Utilities Guide

3.1 Module Capabilities . 3-2
3.2 How Endevor Controls Load Modules . 3-3
3.3 Viewing Load Module Information . 3-4

3.3.1 Overview . 3-4
3.3.2 Browse Panel for Load Module Summary Elements 3-4
3.3.3 Changes Panel for Load Module Summary 3-6
3.3.4 History Panel for Load Module Summary Elements 3-7

3.4 Getting Ready to Support Load Modules . 3-9
3.4.1 Sample Processors . 3-9

3.4.1.1 Sample Delete Processor for Load Modules 3-10

Chapter 4. BSTPCOMP Utility . 4-1
4.1 How Does BSTPCOMP Utility Work? . 4-2
4.2 Controlling Compare Output . 4-3

4.2.1 Overview . 4-3
4.2.2 No Overrides . 4-3

4.2.2.1 Sample JCL . 4-3
4.2.3 Control Card Execution . 4-4

4.2.3.1 Syntax . 4-4
4.2.3.2 Sample JCL . 4-5

4.2.4 PARM-Controlled Execution . 4-6
4.3 Sample Output . 4-8
4.4 Return Codes . 4-10
4.5 The IEBUPDTE Request Card Generator 4-11

4.5.1 Overview . 4-11
4.5.2 Generating Control Cards from a Endevor Element 4-11
4.5.3 Generating Control Cards When Two Members Differ 4-13

Chapter 5. CONCALL—User Invocation Utility 5-1
5.1 CONCALL . 5-2

5.1.1 The Benefits of CONCALL . 5-2

Chapter 6. Expand Includes Utility . 6-1
6.1 The Purose of the Expand Includes Utility 6-2

6.1.1 Why Use the Expand Includes Utility? 6-2
6.1.2 How Does the Expand Includes Utility Work? 6-3
6.1.3 COPY Statement Examples . 6-3
6.1.4 Processing Modes . 6-5
6.1.5 About the Input and Output Data Sets 6-5

6.2 Operating Considerations . 6-6
6.2.1 Overview . 6-6
6.2.2 Checking the Endevor Defaults Table 6-6
6.2.3 Embedded and Looping INCLUDE Statements 6-6
6.2.4 Superset Support . 6-6
6.2.5 Security . 6-7
6.2.6 Monitoring Components in the Expand Includes Utility 6-7

6.3 Identifying the INCLUDE Member . 6-8
6.3.1 Overview . 6-8
6.3.2 Source File Format . 6-8
6.3.3 Working with CA-Panvalet Files . 6-8

Contents v

6.3.4 Working with CA-Librarian Files . 6-8
6.3.5 Working with COBOL COPY Statements 6-9

6.4 Specifying INCLUDE Libraries . 6-10
6.4.1 Overview . 6-10
6.4.2 The ENXINC . 6-10
6.4.3 Library Sequence Numbers . 6-10
6.4.4 Partitioned Data Sets . 6-10

6.5 Default Location Processing Mode . 6-11
6.5.1 Overview . 6-11
6.5.2 Execution JCL . 6-11
6.5.3 Providing a Member Name . 6-12
6.5.4 The ENXIN and ENXOUT DD Statements 6-12

6.6 Control Statement Processing Mode . 6-14
6.6.1 Overview . 6-14
6.6.2 Processing Members . 6-14
6.6.3 Validating Input SCL . 6-14
6.6.4 Execution JCL . 6-14

6.7 The JCL Parameter . 6-16
6.7.1 Overview . 6-16
6.7.2 The PARM= Parameter . 6-16
6.7.3 The Member Name . 6-16

6.8 Expand Includes SCL . 6-18
6.8.1 Overview . 6-18
6.8.2 Syntax . 6-18
6.8.3 The EXPAND INCLUDES Clause 6-18
6.8.4 The FROM Clause . 6-19
6.8.5 The TO Clause . 6-19
6.8.6 The OPTIONS Clauses . 6-20

6.9 Reports . 6-22
6.9.1 Overview . 6-22
6.9.2 Expand Includes Control Statement Summary Report 6-22
6.9.3 Expand Includes Execution Report 6-23
6.9.4 Expand Includes Summary Report . 6-23

Chapter 7. Library Conversion Utilities . 7-1
7.1 The Purpose of the Library Conversion Utilities 7-2
7.2 The Library Management Conversion Process 7-3

7.2.1 How Does the Conversion Process Work? 7-3
7.2.2 Before You Begin: Run the Inventory Analyzer 7-3
7.2.3 CA-Panvalet Libraries . 7-3
7.2.4 Handling Supersets . 7-3
7.2.5 Example . 7-4

7.3 Phase 1: Analyze . 7-5
7.3.1 Overview . 7-5
7.3.2 About the Conversion Job Stream . 7-5
7.3.3 Important Information . 7-6
7.3.4 Element Classification . 7-6

7.4 PROC Definition . 7-7
7.4.1 JCL . 7-7
7.4.2 What You Do . 7-8

7.5 Step 1: Delete Output Data Sets . 7-9

vi Utilities Guide

7.5.1 JCL . 7-9
7.5.2 About This Step . 7-9
7.5.3 What You Do . 7-9

7.6 Step 2: Build Reference Data Set . 7-10
7.6.1 JCL . 7-10
7.6.2 About This Step . 7-11
7.6.3 What You Do . 7-11
7.6.4 What Happens . 7-11
7.6.5 Example . 7-12

7.7 Step 3: Build Load SCL . 7-13
7.7.1 JCL . 7-13
7.7.2 About This Step . 7-14
7.7.3 What You Do . 7-14
7.7.4 What Happens . 7-15
7.7.5 Load Syntax Variables . 7-15

7.8 Step 4: Identify Superset Members . 7-16
7.8.1 JCL . 7-16
7.8.2 About This Step . 7-16
7.8.3 What You Do . 7-16
7.8.4 What Happens . 7-16

7.9 Phase 2: Load . 7-18
7.9.1 Overview . 7-18
7.9.2 About the Load Utility . 7-18
7.9.3 JCL . 7-18
7.9.4 What You Do . 7-18
7.9.5 Review the Load Utility Output . 7-19

7.10 Phase 3: Validate . 7-20
7.10.1 Overview . 7-20
7.10.2 How Does the Member Validation Program Work? 7-20
7.10.3 Return Codes . 7-20
7.10.4 JCL . 7-20
7.10.5 About the JCL . 7-21

7.11 The Member Validation Report . 7-22
7.11.1 Overview . 7-22
7.11.2 Multiple Occurrences of the Member 7-22
7.11.3 Sample Report . 7-22
7.11.4 Report Fields . 7-23

Chapter 8. Load Utility . 8-1
8.1 Putting the Load Utility to Work . 8-2
8.2 How Does the Load Utility Work? . 8-3

8.2.1 Creating Requests . 8-3
8.2.2 Reviewing Reports . 8-4

8.3 Endevor Load Utility Requests . 8-5
8.3.1 Overview . 8-5
8.3.2 Statements . 8-5
8.3.3 Load Request Syntax . 8-5
8.3.4 LOAD Request Rules . 8-6

8.3.4.1 Required Clauses . 8-6
8.3.4.2 Optional Clauses . 8-7

Contents vii

8.3.5 Set Statements . 8-8
8.3.5.1 SET FROM Statements . 8-9
8.3.5.2 SET TO Statements . 8-9
8.3.5.3 SET OPTIONS statements . 8-10

8.3.6 Clear Statements . 8-11
8.4 Load Utility Reports . 8-12

8.4.1 Overview . 8-12
8.4.2 Endevor Load Execution Log . 8-12
8.4.3 Endevor Data Validation Report . 8-12
8.4.4 Endevor Load Execution Report . 8-13
8.4.5 Endevor Load Execution Summary 8-13
8.4.6 For Your Information . 8-14

8.5 A Working Example--the Load Utility Process 8-15
8.5.1 Overview . 8-15
8.5.2 Step 1: Load the Request . 8-15
8.5.3 Step 2: Execute the JCL . 8-15
8.5.4 Step 3: Review the Reports . 8-16

8.5.4.1 Load Request Numbers . 8-16
8.5.4.2 The Endevor Load Execution Log (DDname = C1BMLLOG) . . 8-16
8.5.4.3 The Endevor Data Validation Report (DDname = C1BMLSYN) 8-18
8.5.4.4 Endevor Load Execution Report (DDname = C1BMLDET) . . . 8-18
8.5.4.5 Endevor Load Execution Summary (DDname = C1BMLSUM) . 8-19

8.5.5 In Summary . 8-20
8.6 The Load Utility Footprint Override Exit 8-22

8.6.1 Exit Operation . 8-22
8.6.1.1 Load Exit Control Block (@LOADDS) 8-23

8.6.2 Sample Exit (C1BMLXIT) . 8-23

Chapter 9. Notify Utility . 9-1
9.1 The Notification Utility . 9-2
9.2 Configuring the Notification Utility . 9-3

9.2.1 Universal Parameters . 9-3
9.2.2 Protocol-specific Parameters . 9-4

9.2.2.1 SMTP-specific Parameters . 9-4
9.2.2.2 TSO-specific Parameters . 9-6
9.2.2.3 TPX-specific Parameters . 9-7
9.2.2.4 XMIT-specific Parameters . 9-8

Chapter 10. Point in Time Recovery . 10-1
10.1 What is Point in Time Recovery (PITR)? 10-2

10.1.1 Endevor without PITR Journaling 10-3
10.1.2 Endevor with PITR Journaling . 10-3
10.1.3 PITR Requirements . 10-3
10.1.4 Managing PITR Journal Files . 10-4
10.1.5 Activating Journaling . 10-4

10.2 Journaling . 10-5
10.2.1 How it Works . 10-5
10.2.2 Example . 10-5
10.2.3 Off-loading Journal Data Sets . 10-6

10.3 The Recovery Utility . 10-7
10.3.1 How it Works . 10-7

viii Utilities Guide

10.4 Enabling Journaling . 10-8
10.4.1 Steps . 10-8
10.4.2 Step 1. Determine Naming Conventions 10-8
10.4.3 Step 2. Write Archive JCL . 10-9
10.4.4 Step 3. Allocate Journal and Archive Data Sets 10-10

10.4.4.1 Sizing Considerations . 10-10
10.4.4.2 How Many Journal Data Sets? 10-11

10.4.5 Step 4. Define the Journaling Components to CA-L-Serv 10-12
10.4.5.1 The CA-L-Serv PROC . 10-13
10.4.5.2 LDMPARM . 10-13
10.4.5.3 NDVRPARM . 10-13

10.4.6 Step 5. Modify the C1DEFLTS Table 10-14
10.4.6.1 Example . 10-15
10.4.6.2 Sample TYPE=MAIN Section of C1DEFLTS 10-15
10.4.6.3 Sample TYPE=ENVIRONMENT Section of C1DEFLTS 10-16

10.4.7 Reassemble the C1DEFLTS Table 10-16
10.5 Implementation Scenarios . 10-17

10.5.1 Single CPU Implementation . 10-17
10.5.1.1 How to Implement . 10-17

10.5.2 Multiple CPU Implementation, Remote Journaling 10-18
10.5.2.1 How to Implement . 10-18
10.5.2.2 Performance Considerations . 10-19

10.5.3 Multiple CPU Implementation, Local Journaling 10-19
10.5.3.1 How to Implement . 10-19
10.5.3.2 Performance Considerations . 10-20

10.6 Performing Periodic Backups of Endevor 10-21
10.7 Performing Point in Time Recovery . 10-22

10.7.1 Step 1. Execute the CA-L-Serv LDMAMS Utility 10-22
10.7.2 Step 2. Disable PITR Journaling 10-23
10.7.3 Step 3. Restore the Data Sets to Be Recovered 10-23
10.7.4 Step 4. Execute the Recovery Utility 10-23

10.7.4.1 Recovery Utility Syntax . 10-23
10.7.4.2 Examples . 10-24

10.8 The Journal Recovery Execution Report 10-27
10.8.1 Overview . 10-27
10.8.2 Journal Recovery Execution Report — Transaction Detail 10-27
10.8.3 Journal Recovery Execution Report — Journal Input Record

Summary . 10-28
10.8.4 Journal Recovery Execution Report — Data Set Activity Summary . 10-29
10.8.5 Journal Recovery Execution Report — SCL Statement Summary . . 10-30
10.8.6 Journal Recovery Execution Report — Processor Execution

Summary . 10-30

Chapter 11. Search And Replace Utility . 11-1
11.1 Using the Search And Replace Utility . 11-2
11.2 How the Search & Replace Utility works 11-3

11.2.1 The Search . 11-3
11.2.2 The Search String . 11-3
11.2.3 Processing Modes . 11-3

11.3 Operating Considerations . 11-5

Contents ix

11.3.1 Overview . 11-5
11.3.2 Miscellaneous Operating Considerations 11-5
11.3.3 Security . 11-5
11.3.4 Serializing the Element . 11-6
11.3.5 Exits . 11-6

11.4 Compare vs. In Columns vs. Bounds Are 11-7
11.4.1 Definitions . 11-7
11.4.2 Additional Information . 11-8

11.5 Validate Mode . 11-9
11.5.1 Overview . 11-9
11.5.2 The VALIDATE Parameter . 11-9

11.6 Search-Only Mode . 11-10
11.6.1 Overview . 11-10
11.6.2 Search-Only Mode Processing . 11-10
11.6.3 Generating Search Elements SCL 11-11
11.6.4 The ENSSCLOT File . 11-11

11.7 Replacement Mode . 11-12
11.7.1 Overview . 11-12
11.7.2 Replacement Mode Processing . 11-12
11.7.3 Processing Checkpoints . 11-13

11.8 Execution JCL . 11-15
11.8.1 Overview . 11-15
11.8.2 JCL . 11-15
11.8.3 ENSSCLIN DD Statement . 11-15
11.8.4 PARM= Statement . 11-16

11.9 Search Elements SCL . 11-17
11.9.1 Overview . 11-17
11.9.2 Syntax . 11-17
11.9.3 Search Elements Clauses . 11-18
11.9.4 From Clause . 11-19
11.9.5 For Clause . 11-20
11.9.6 Where Clauses . 11-23
11.9.7 Options Clauses . 11-24

11.10 Text Replacement . 11-27
11.10.1 Overview . 11-27
11.10.2 Compare Column Ranges . 11-27
11.10.3 IN COLUMNS Rules . 11-28
11.10.4 BOUNDS ARE Rules . 11-28
11.10.5 Shorter Replacement String . 11-29
11.10.6 Example . 11-29
11.10.7 Longer Replacement String . 11-29
11.10.8 Examples . 11-30
11.10.9 Multiple Occurrences of the Search String 11-31

11.11 Reports . 11-32
11.11.1 Overview . 11-32

11.12 Search and Replace Control Statement Summary Report 11-33
11.13 Search and Replace Utility Execution Report 11-34
11.14 Search and Replace Utility Summary Report 11-35
11.15 Usage Scenarios . 11-37

11.15.1 Overview . 11-37
11.15.2 Setting the Scene . 11-37

x Utilities Guide

11.15.3 The Test Elements . 11-37
11.15.4 HELLO.C . 11-38
11.15.5 HELLO.COB . 11-38
11.15.6 HELLO.TXT . 11-38

11.16 Scenario 1: Simple Search in Search-Only Mode 11-40
11.16.1 Overview . 11-40
11.16.2 SCL . 11-40
11.16.3 Output . 11-40

11.16.3.1 The Search and Replace Control Statement Summary Report . 11-40
11.16.3.2 The Search and Replace Utility Execution Report 11-41

11.17 Scenario 2: Simple Search with Replace in Search-Only Mode 11-42
11.17.1 Overview . 11-42
11.17.2 SCL . 11-42
11.17.3 Output . 11-42

11.18 Scenario 3: Search Environment Map, Replace, and Update 11-45
11.18.1 Overview . 11-45
11.18.2 SCL . 11-45
11.18.3 Output . 11-46

Chapter 12. Unload/Reload/Validate . 12-1
12.1 The Purpose of the Unload/Reload/Validate Utility 12-2
12.2 Unload Function . 12-3

12.2.1 Overview . 12-3
12.2.2 Unload Control Card . 12-3

12.2.2.1 Description of Parameters . 12-3
12.2.3 What Purpose Does Unload Serve? 12-5

12.2.3.1 Full Unloads . 12-5
12.2.3.2 Package Unloads . 12-5
12.2.3.3 Validation During Unload . 12-6
12.2.3.4 Package Unloads . 12-6

12.2.4 Recommendations for Using Unload 12-7
12.2.4.1 Locking During Unload Processing 12-7
12.2.4.2 Example 1 . 12-7
12.2.4.3 Example 2 . 12-7

12.2.5 Sample Unload Control Cards . 12-8
12.2.6 Sample Unload JCL . 12-8

12.2.6.1 Notes on Sample Unload JCL 12-9
12.3 Reload Function . 12-11

12.3.1 Overview . 12-11
12.3.2 Reload Control Card . 12-11

12.3.2.1 Description of Parameters . 12-11
12.3.3 What Reload Does . 12-12

12.3.3.1 Reloading Master Control File Information 12-12
12.3.3.2 Reloading Element Information 12-13
12.3.3.3 Reload and Packages . 12-14

12.3.4 Using Reload . 12-14
12.3.4.1 Locking During Reload Processing 12-15

12.3.5 Example 1. Base/Delta Recovery 12-15
12.3.6 Example 2: VSAM Master Control File Recovery 12-16
12.3.7 Example 3: Package Data Set Recovery 12-17

Contents xi

12.3.8 Sample Reload Control Cards . 12-17
12.3.9 Sample Reload JCL . 12-17

12.3.9.1 Notes on Sample RELOAD JCL 12-18
12.4 Validate Function . 12-19

12.4.1 Overview . 12-19
12.4.2 Validate Control Card . 12-19

12.4.2.1 Description of Parameters . 12-19
12.4.3 What Validate Does . 12-20
12.4.4 Using Validate . 12-21
12.4.5 Sample Validate Control Card . 12-21
12.4.6 Sample Validate JCL . 12-21

Chapter 13. Using the Endevor Synchronize Facility 13-1
13.1 How to Use the Synchronize Facility . 13-2
13.2 Typical Uses of Synchronize . 13-3

13.2.1 How Synchronize Works . 13-3
13.2.1.1 Input to Synchronize . 13-3
13.2.1.2 Output from Synchronize . 13-4
13.2.1.3 Synchronize Return Codes . 13-4

13.3 Using the Synchronize Facility . 13-6
13.3.1 Overview . 13-6
13.3.2 JCL for the Synchronize Facility . 13-6
13.3.3 Syntax for the Synchronize Facility 13-8

13.4 The Synchronize Output Files . 13-11
13.4.1 Overview . 13-11
13.4.2 Synchronize Output Entity List . 13-11

13.4.2.1 Endevor Generate Element SCL File 13-12
13.5 The Synchronize Reports . 13-13

13.5.1 Overview . 13-13
13.5.2 Related Entity Report (CONRPT94) 13-13

13.5.2.1 Related Entity Report Field Descriptions 13-14
13.5.3 Element Component Reports (CONRPT97 and CONRPT98) 13-15

13.5.3.1 Element Component Use by Report Fields 13-16
13.5.3.2 Element Component Where Used by Report Fields 13-18

13.5.4 Synchronize Log Report . 13-18

Index . X-1

xii Utilities Guide

Chapter 1. File Definition and Maintenance

Throughout this book:

References to Will be referred to as

AllFusion: Endevor Change
Manager

Endevor

eTrust: CA-ACF2 CA-ACF2

eTrust: CA-Top Secret CA-Top Secret

AllFusion: CA-Librarian CA-Librarian

AllFusion: CA-Panvalet CA-Panvalet

Chapter 1. File Definition and Maintenance 1-1

1.1 Endevor Data Sets

1.1 Endevor Data Sets

The Endevor data sets are also discussed in the Administration Guide. They are
described in further detail below.

This file Contains

Master Control File Definitions of stages, systems, subsystems, element
types, and elements. This file is accessed and updated
by Endevor to perform source and output management,
and to handle other miscellaneous services.

There is one Master Control File (MCF) for each stage
at a site. The Master Control Files are defined as a
function of installation. Refer to the Installation Guide
for related instructions.

Package data set Package information for all environments defined for the
site. Refer to the Installation Guide for more
information.

Base and delta libraries Source statements for elements, including processors.
The base library contains the source as originally added
to Endevor. The delta library contains the changes
made to the elements.

These libraries are specified separately to each element
type definition, but can be shared by multiple element
types. The libraries can be shared across systems and
stages, but make sure that the defined record length for
each library is adequate to store the element source from
all systems/stages that share the library. At a minimum,
you must have one library to store base and delta
members in each environment.

If you are or will be using Endevor ACM, the
component base and delta are also stored in these same
libraries and require a logical record length of at least
259.

Each base or delta library can be an OS partitioned data
set (PDS or PDS/E), a CA-Panvalet data set, a
CA-Librarian data set, or a self-reorganizing Endevor
LIB data set.

1-2 Utilities Guide

1.1 Endevor Data Sets

In addition to the libraries referenced above, you may also have INCLUDE libraries
and user libraries (copy libraries, macro libraries, JCL libraries, and so forth) defined
to processors. These libraries are not specific to Endevor, and therefore are not
covered in this chapter.

This file Contains

Source output library Latest full source form of each element, created during
output management. This is an optional library defined
to each element type (although the same library can be
shared across element types).

This library is designed for use with COBOL
copybooks, assembler macros, or JCL procedures that
are copied elsewhere (and therefore have to be available
in full source form). It can be used for any type
element however.

The source output library can be an OS PDS, or a
CA-Panvalet or CA-Librarian data set.

Endevor listing library Listings output by the Endevor CONLIST utility or by
the type PROCESS generate processor (GPPROCSS).
For both listing purposes, this library must be specific to
a particular stage, but can be shared across systems.

This library can be an OS PDS or PDS/E or Endevor
LIB data set.

Processor load library Load module form of each processor defined to
Endevor, as output by the type PROCESS generate
processor, GPPROCSS. This library is specific to a
particular stage, but can be shared across systems. This
library must be an OS load library (RECFM=U).

Chapter 1. File Definition and Maintenance 1-3

1.2 Defining the Endevor Files

1.2 Defining the Endevor Files

 1.2.1 Overview

You establish your Endevor files during installation (described in the Installation
Guide). The instructions below explain how to set up additional base and delta
libraries, processor listing libraries, processor load libraries, and source output libraries,
as well as how to monitor and maintain the existing libraries.

If you are currently using OS PDS or PDS/Es for base, delta, and/or listing libraries,
consider converting these PDS or PDS/Es to Endevor LIB self-reorganizing data sets.

1.2.2 Advantages of Endevor LIB Data Sets

Endevor LIB (ELIB) data sets offer several performance advantages over OS PDS. In
particular, ELIB data sets:

■ Automatically reorganize member space as members are rewritten or deleted,
thereby eliminating the need to compress the data set.

■ Exploit 31-bit storage for VSAM-organized data sets, thereby reducing 24-bit
storage contention.

■ Expand directories and data sets automatically.

■ Provide improved directory processing.

■ Maintain additional statistical information about the member size.

These features eliminate most of the growth and compress problems involved with
managing PDS or PDS/Es. Endevor LIB provides faster support for add, update, and
delete activities due to its advanced directory processing techniques.

See “Endevor LIB Data Sets” for more information on Endevor LIB data sets.

1.2.3 Defining Base and Delta Libraries

Base and delta libraries can be Endevor LIB (ELIB) data sets, partitioned data sets
(PDS or PDS/E), or CA-Panvalet or CA-Librarian data sets. Depending upon the delta
format chosen, each base/delta library set can be any combination of these file types.
For example, if you use reverse deltas, a regular PDS or PDS/E to be used to store
element base, and a Endevor LIB dataset to store deltas. Base libraries can be HFS
directories.

1-4 Utilities Guide

1.2 Defining the Endevor Files

1.2.3.1 Space Requirements for Base and Delta Libraries

Space requirements for base libraries are a function of the number of elements
(members) to be stored, the number of source lines per element (for base libraries), the
volatility of the elements (for delta libraries that is, the number and extent of expected
changes), and the library management facility in use.

To compute the disk space required by a base or delta library please refer to the
Installation Guide, Appendix C, “Disk Space Requirements Worksheet.”

1.2.3.2 To Allocate a New PDS or PDS/E

To allocate a new PDS or PDS/E, use ISPF/PDF option 3 (Utilities), option 2 (Data
sets), or any suitable IBM utility (such as IEFBR14). Specify the DCB below,
assigning a block size appropriate to your disk device:

DCB=(RECFM=VB,LRECL=record length,BLKSIZE=block-size)

Where record length is the maximum record length you anticipate storing in the PDS
or PDS/E plus the constant 4, and block-size is a number at least 4 greater than the
LRECL length.

When specifying the number of directory blocks in each library, keep in mind that
there is one directory block for every four elements. For efficiency, directory blocks
should be allocated in increments of 45 for a 3390-type device (whatever number can
fit on a single track, if you are using another type of device).

To calculate this number, then, divide the estimated number of elements (members) to
be stored in the library by 4. Then round up to an even multiple of 45 (assuming a
3390-type device). The number should be the same for the base and delta libraries.

Note: If the Automated Configuration Manager facility (Endevor ACM) is installed at
your site, increase the file size by 20% and double the number of directory blocks.

1.2.3.3 To Allocate a New CA-Panvalet or CA-Librarian Data Set

To allocate a new CA-Panvalet or CA-Librarian data set, refer to the appropriate
Computer Associates documentation.

1.2.3.4 To Allocate and Initialize a New Endevor LIB Data Set

To allocate and initialize a new Endevor LIB data set, see “Endevor LIB Data Sets”
for information.

Chapter 1. File Definition and Maintenance 1-5

1.2 Defining the Endevor Files

1.2.4 Defining an Endevor Listing Library

Space requirements for a Endevor listing library are a function of the number of
elements added to the system(s) with which the library is associated (by CONLIST or
type PROCESS), and the number of lines in each listing.

To compute the disk space required for a Endevor listing data set, please refer to the
Installation Guide, Appendix C, “Disk Space Requirements Worksheet.”

To allocate a new PDS or PDS/E, use ISPF/PDF option 3 (Utilities), option 2 (Data
sets), or any suitable IBM utility (such as IEFBR14). Specify the DCB below,
assigning a block size appropriate to your disk device:

DCB=(RECFM=VBA,LRECL=259,BLKSIZE=block-size)

You must specify the number of directory blocks needed. There is one directory block
for every four listing members. For efficiency, directory blocks are allocated in
increments of 45 (or whatever number can fit on a single track, if you are using a
device other than a 3390-type device).

To calculate this number, divide the expected number of listings by 4 and round up to
an even multiple of 45 (for a 3390-type device).

To allocate a new Endevor LIB data set, see “Endevor LIB Data Sets.”

1.2.5 Defining a Processor Load Library

Space requirements for this library are a function of the number of processors added to
the system(s) with which the library is associated, and the number of lines in each
processor.

To compute the disk space required for a Endevor processor load library, please refer
to the Installation Guide, Appendix C, “Disk Space Requirements Worksheet.”

To allocate the library, use ISPF/PDF option 3 (Utilities), option 2 (Data sets), or any
suitable IBM utility (for example, IEFBR14). Specify the DCB below, assigning a
block size appropriate to your disk device:

DCB=(RECFM=U,BLKSIZE=block-size)

You must specify the number of directory blocks needed. There is one directory block
for every four processors. For efficiency, directory blocks are allocated in increments
of 45 (or whatever number can fit on a single track, if you are using a device other
than a 3390-type device).

To calculate this number, divide the expected number of processors by 4, then round
up to an even multiple of 45 (for a 3390-type device).

1-6 Utilities Guide

1.2 Defining the Endevor Files

1.2.6 Defining a Source Output Library or HFS Directory

Each source output library can be a partitioned data set (PDS or PDS/E), or a
CA-Panvalet or CA-Librarian library. If it is a PDS or PDS/E, it can have either fixed
or variable-length records.

To compute the disk space required for a Endevor source output library, please refer to
the Installation Guide, Appendix C, “Disk Space Requirements Worksheet.”

To allocate a new PDS or PDS/E, use ISPF/PDF option 3 (Utilities), option 2 (Data
sets), or any suitable IBM utility (such as IEFBR14). Specify the DCB below,
assigning a block size appropriate to your disk device:

DCB=(RECFM=FB,LRECL=80,BLKSIZE=block-size) (fixed records)

or

DCB=(RECFM=VB,LRECL=rec-len,BLKSIZE=block-size)(variable records)

Above, rec-len is the maximum record length (as specified when defining the element
type(s) that use this library), plus 4.

You must specify the number of directory blocks needed. There is one directory block
for every four source modules. For efficiency, directory blocks are allocated in
increments of 45 (or whatever number can fit on a single track, if you are using a
device other than a 3390-type device).

To calculate this number, divide the expected number of source modules by 4, then
round up to an even multiple of 45 (for a 3390-type device).

Chapter 1. File Definition and Maintenance 1-7

1.3 Maintaining the Files

1.3 Maintaining the Files

 1.3.1 Overview

The Endevor administrator must monitor the Endevor files regularly, to ensure that
they have adequate space. This section describes some of the standard tools you, as
the Endevor administrator can use to monitor and maintain the files.

1.3.2 Monitoring Space Utilization

The Master Control File and Package data sets are VSAM files, and should be
maintained using the standard IBM VSAM maintenance utility IDCAMS. To obtain
file utilization statistics, run the utility with the LISTCAT command. Refer to the
appropriate IBM documentation for details about the use of IDCAMS.

 1.3.2.1 Monitoring Libraries

You should monitor your Endevor libraries regularly.

To monitor Do the following

OS PDS or PDS/E
libraries

Use ISPF/PDF, option 3 (Utilities), option 2 (Data sets)
to display space utilization statistics. Refer to the ISPF
documentation for specifics related to this. OS PDS or
PDS/E libraries include the Endevor listing libraries and
processor load library, and may include the base and
delta libraries and the source output library.

CA-Librarian or
CA-Panvalet libraries

Refer to the appropriate CA-Librarian or CA-Panvalet
documentation for instructions. The base library, delta
library, and source output library may be CA-Librarian
or CA-Panvalet files.

Endevor LIB data sets Run the BC1PNLST utility program. See “Endevor LIB
Data Sets” for more information. Endevor LIB data sets
can be used for the base, delta, and/or listing libraries.

1.3.3 Expanding or Compressing a File

If a file becomes full, either compress or expand the file, as appropriate. This section
explains how to do this for the Master Control File, Package data sets, PDS or PDS/E
libraries, CA-Librarian and CA-Panvalet libraries and Endevor LIB data sets.

1-8 Utilities Guide

1.3 Maintaining the Files

1.3.3.1 Expanding/Compressing the Master Control File

For the Master Control File (MCF), run the job shown below. This job is supplied as
member BC1JRMCF in your installation JCL library. Use this job to expand the files
and/or periodically clean up control interval splits. This job processes both the Stage 1
and Stage 2 files. When expanding an MCF, you can modify the procedure as
necessary.

//� (COPY JOBCARD)

//���

//� �

//� (C) 2��2 COMPUTER ASSOCIATES INTERNATIONAL, INC. �

//� �

//� �

//� BC1JRMCF - THIS JOB WILL REBUILD THE VSAM MASTER CONTROL FILES �

//� (MCF) USING THE IBM IDCAMS UTILITY. �

//� �

//� STEP1 WILL DELETE THE SEQUENCIAL FILES IN CASE OLD �

//� COPIES EXIST. �

//� STEP2 WILL REPRO THE EXISTING VSAM MASTER CONTROL FILES �

//� TO THE SEQUENCIAL FILES. �

//� STEP3A WILL DELETE AND REDEFINE THE STAGE 1 VSAM CLUSTER. �

//� STEP3B WILL DELETE AND REDEFINE THE STAGE 1 VSAM CLUSTER FOR �

//� CA-L-SERV USERS ONLY. �

//� STEP4A WILL DELETE AND REDEFINE THE STAGE 2 VSAM CLUSTER. �

//� STEP4B WILL DELETE AND REDEFINE THE STAGE 2 VSAM CLUSTER FOR �

//� CA-L-SERV USERS ONLY. �

//� STEP5 WILL REPRO THE SEQUENCIAL FILES INTO THE NEW VSAM �

//� MASTER CONTROL FILES. �

//� �

//� ������������ NOTE TO NON CA-L-SERV USERS ���������������� �

//� �

//� IF ARE NOT USING CA-L-SERV TO MANAGE THE E/MVS MASTER CONTROL �

//� FILES AT THIS TIME, PLEASE INSURE THE FOLLOWING ADJUSTMENTS �

//� TO THIS JCL ARE MADE: �

//� �

//� - DELETE STEPS 3B AND 4B. �

//� - ADJUST THE CONDION CODES IN STEP 5 TO ONLY CHECK FOR STEPS �

//� 3A AND 4A. �

//� - EXECUTE STEPS 3A AND 4A TO ALLOCATE THE VSAM CLUSER WITH THE �

//� PROPER ATTRIBUTES FOR NON CA-L-SERV USERS. �

//� �

//� ������������ NOTE TO CA-L-SERV USERS ���������������� �

//� �

//� IF YOU PLAN TO USE CA-L-SERV TO MANAGE THE E/MVS MASTER �

//� CONTROL FILES, PLEASE INSURE THE FOLLOWING ADJUSTMENTS �

//� TO THIS JCL ARE MADE: �

//� �

//� - PLEASE INSURE CA-L-SERV IS PROPERLY INSTALLED �

//� - DELETE STEPS 3A AND 4A. �

//� - ADJUST THE CONDION CODES IN STEP 5 TO ONLY CHECK FOR STEPS �

//� 3B AND 4B. �

//� - EXECUTE STEPS 3B AND 4B TO ALLOCATE THE VSAM CLUSER WITH THE �

//� PROPER ATTRIBUTES FOR CA-L-SERV USERS ENABLING THE COMPRESS �

//� UTILITY TO BE USED. �

//� �

//� NO OTHER ATTRIBUTES OF THESE FILES MAY BE ALTERED WITHOUT �

//� FIRST CONSULTING ENDEVOR TECHNICAL SUPPORT. �

Chapter 1. File Definition and Maintenance 1-9

1.3 Maintaining the Files

//� �

//���

//� �

//� STEP1 - DELETE THE SEQUENCIAL FILES IN CASE OLD �

//� COPIES EXIST. �

//� �

//���

//STEP1 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

DELETE 'uprfx.uqual.V1SEQ' PURGE

DELETE 'uprfx.uqual.V2SEQ' PURGE

//���

//� �

//� STEP2 - REPRO THE EXISTING VSAM MASTER CONTROL FILES �

//� TO THE SEQUENCIAL FILES. �

//� �

//���

//STEP2 EXEC PGM=IDCAMS

//TEMPSEQ1 DD DSN=uprfx.uqual.V1SEQ,DISP=(NEW,CATLG,DELETE),

// UNIT=SYSDA,VOL=SER=dvolser,SPACE=(CYL,(1�,5),RLSE),

// DCB=(RECFM=VB,LRECL=1�21,BLKSIZE=616�)

//TEMPSEQ2 DD DSN=uprfx.uqual.V2SEQ,DISP=(NEW,CATLG,DELETE),

// UNIT=SYSDA,VOL=SER=dvolser,SPACE=(CYL,(1�,5),RLSE),

// DCB=(RECFM=VB,LRECL=1�21,BLKSIZE=616�)

//CURSTG1 DD DSN=uprfx.uqual.STAGE1,DISP=OLD,

// AMP='BUFNI=1�,BUFND=1�'

//CURSTG2 DD DSN=uprfx.uqual.STAGE2,DISP=OLD,

// AMP='BUFNI=1�,BUFND=1�'

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

REPRO IFILE(CURSTG1) OFILE(TEMPSEQ1)

REPRO IFILE(CURSTG2) OFILE(TEMPSEQ2)

//���

//� �

//� STEP3A - DELETE AND REDEFINE THE STAGE 1 VSAM CLUSTER. �

//� �

//���

//STEP3A EXEC PGM=IDCAMS,COND=(�,LT,STEP2)

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

 DELETE 'uprfx.uqual.STAGE1' PURGE

 DEFINE CLUSTER (NAME('uprfx.uqual.STAGE1') -

 SPEED -

 UNIQUE -

FREESPACE(3� 3�) -

CYLINDERS(NN NN) -

 VOLUMES(VVOLSER) -

RECORDSIZE(64� 1�17) KEYS(28 �) SHR(3 3)) -

 DATA (NAME('uprfx.uqual.STAGE1.DATA') CISZ(8192)) -

INDEX (NAME('uprfx.uqual.STAGE1.INDEX') CISZ(2�48))

//���

//� �

//� �������������� FOR CA-L-SERV USERS ONLY ���������������� �

//� �

//� STEP3B - DELETE AND REDEFINE THE STAGE 1 VSAM CLUSTER �

//� �

//���

//STEP3B EXEC PGM=IDCAMS,COND=(�,LT,STEP2)

1-10 Utilities Guide

1.3 Maintaining the Files

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

 DELETE 'uprfx.uqual.STAGE1' PURGE

 DEFINE CLUSTER (NAME('uprfx.uqual.STAGE1') -

 SPEED -

 SUBALLOCATION -

 REUSE -

FREESPACE(3� 3�) -

CYLINDERS(NN NN) -

 VOLUMES(VVOLSER) -

RECORDSIZE(64� 1�17) KEYS(28 �) SHR(1 3)) -

 DATA (NAME('uprfx.uqual.STAGE1.DATA') CISZ(8192)) -

INDEX (NAME('uprfx.uqual.STAGE1.INDEX') CISZ(2�48))

//���

//� �

//� ������������ FOR NON CA-L-SERV USERS ONLY �������������� �

//� �

//� STEP4A - DELETE AND REDEFINE THE STAGE 2 VSAM CLUSTER. �

//� �

//���

//STEP4A EXEC PGM=IDCAMS,COND=(�,LT,STEP2)

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

 DELETE 'uprfx.uqual.STAGE2' PURGE

 DEFINE CLUSTER (NAME('uprfx.uqual.STAGE2') -

 SPEED -

 UNIQUE -

FREESPACE(3� 3�) -

CYLINDERS(NN NN) -

 VOLUMES(VVOLSER) -

RECORDSIZE(64� 1�17) KEYS(28 �) SHR(3 3)) -

 DATA (NAME('uprfx.uqual.STAGE2.DATA') CISZ(8192)) -

INDEX (NAME('uprfx.uqual.STAGE2.INDEX') CISZ(2�48))

//���

//� �

//� �������������� FOR CA-L-SERV USERS ONLY ���������������� �

//� �

//� STEP4B - DELETE AND REDEFINE THE STAGE 2 VSAM CLUSTER. �

//� �

//���

//STEP4B EXEC PGM=IDCAMS,COND=(�,LT,STEP2)

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

 DELETE 'uprfx.uqual.STAGE2' PURGE

 DEFINE CLUSTER (NAME('uprfx.uqual.STAGE2') -

 SPEED -

 SUBALLOCATION -

 REUSE -

FREESPACE(3� 3�) -

CYLINDERS(NN NN) -

 VOLUMES(VVOLSER) -

RECORDSIZE(64� 1�17) KEYS(28 �) SHR(1 3)) -

 DATA (NAME('uprfx.uqual.STAGE2.DATA') CISZ(8192)) -

INDEX (NAME('uprfx.uqual.STAGE2.INDEX') CISZ(2�48))

//���

//� �

//� STEP5 - REPRO THE SEQUENCIAL FILES INTO THE NEW VSAM �

//� MASTER CONTROL FILES. �

//� �

Chapter 1. File Definition and Maintenance 1-11

1.3 Maintaining the Files

//���

//STEP5 EXEC PGM=IDCAMS,

// COND=((�,LT,STEP3A),(�,LT,STEP3B),(�,LT,STEP4A),(�,LT,STEP4B))

//CURSEQ1 DD DSN=uprfx.uqual.V1SEQ,DISP=OLD

//CURSEQ2 DD DSN=uprfx.uqual.V2SEQ,DISP=OLD

//NEWSTG1 DD DSN=uprfx.uqual.STAGE1,DISP=OLD,

// AMP='BUFNI=1�,BUFND=1�'

//NEWSTG2 DD DSN=uprfx.uqual.STAGE2,DISP=OLD,

// AMP='BUFNI=1�,BUFND=1�'

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

REPRO IFILE(CURSEQ1) OFILE(NEWSTG1)

REPRO IFILE(CURSEQ2) OFILE(NEWSTG2)

//�

1.3.3.2 Expanding/Compressing Package Data Sets

For package data sets, run the job that follows. This job is supplied as member
BC1JRPKG in your installation JCL library. Use this job to expand the data set
and/or periodically clean up control interval splits. When expanding the data set, you
can modify the job as necessary.

BROWSE BST.P4�B4�S2.JCLLIB(BC1JRPKG) Line �������� Col ��1 �8�

 Command ===> Scroll ===> CSR

��������������������������������� Top of Data ����������������������������������

//� (COPY JOBCARD)

//���

//� �

//� (C) 2��2 COMPUTER ASSOCIATES INTERNATIONAL, INC. �

//� �

//� THIS IS THE RELEASE 3.6 OR GREATER JCL FOR BC1JPCKG �

//� �

//� BC1JRPKG - THIS JOB WILL REBUILD THE VSAM PACKAGE DATASET �

//� USING THE IBM IDCAMS UTILITY. �

//� �

//� STEP1 WILL DELETE THE SEQUENTIAL FILE IN CASE AN OLD �

//� COPY EXISTS. �

//� STEP2 WILL REPRO THE EXISTING VSAM PACKAGE DATASET �

//� TO THE SEQUENTIAL FILES. �

//� STEP3A WILL DELETE AND REDEFINE THE VSAM PACKAGE DATASET. �

//� STEP3B WILL DELETE AND REDEFINE THE VSAM PACKAGE DATASET. �

//� FOR L-SERV USERS ONLY. �

//� STEP4 WILL RUN A PACKAGE ANALYSIS PROGRAM. IT IS POSSIBLE �

//� THAT THIS PROGRAM REMOVES ORPHANED RECORDS FROM THE �

//� PACKAGE FILE. �

//� STEP5 WILL REPRO THE SEQUENTIAL FILE INTO THE NEW VSAM �

//� PACKAGE DATASET. �

//� THIS STEP WILL BY DEFAULT USE THE OUTPUT FILE OF �

//� STEP4 (YOUR ORIGINAL FILE WITHOUT THE ORPHANED �

//� RECORDS). YOU CAN ELECT TO RERUN THIS STEP WITH �

//� THE INPUT FILE OF STEP4. �

//� �

//� ������������ NOTE TO NON L-SERV USERS ���������������� �

//� �

//� IF ARE NOT USING L-SERV TO MANAGE THE E/MVS PACKAGE DATASET �

//� AT THIS TIME, PLEASE INSURE THE FOLLOWING ADJUSTMENTS TO �

//� THIS JCL ARE MADE: �

1-12 Utilities Guide

1.3 Maintaining the Files

//� �

//� - DELETE STEP 3B. �

//� - ADJUST THE CONDION CODES IN STEP4 TO ONLY CHECK FOR STEP3A �

//� - EXECUTE STEP3A TO ALLOCATE THE VSAM CLUSER WITH THE �

//� PROPER ATTRIBUTES FOR NON L-SERV USERS. �

//� �

//� ������������ NOTE TO L-SERV USERS ���������������� �

//� �

//� IF YOU PLAN TO USE L-SERV TO MANAGE THE E/MVS PACKAGE �

//� DATASET, PLEASE INSURE THE FOLLOWING ADJUSTMENTS �

//� TO THIS JCL ARE MADE: �

//� �

//� - PLEASE INSURE L-SERV IS PROPERLY INSTALLED �

//� - DELETE STEP 3A. �

//� - ADJUST THE CONDION CODES IN STEP4 TO ONLY CHECK FOR STEP3B �

//� - EXECUTE STEP 3B TO ALLOCATE THE VSAM CLUSER WITH THE �

//� PROPER ATTRIBUTES FOR L-SERV USERS ENABLING THE COMPRESS �

//� UTILITY TO BE USED. �

//� �

//� NO OTHER ATTRIBUTES OF THESE FILES MAY BE ALTERED WITHOUT �

//� FIRST CONSULTING ENDEVOR TECHNICAL SUPPORT. �

//� �

//���

//���

//� �

//� STEP1 - DELETE THE SEQUENTIAL FILE IN CASE AN OLD �

//� COPY EXISTS. �

//� �

//���

//STEP1 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

DELETE 'UPRFX.UQUAL.V1PKG' PURGE

DELETE 'UPRFX.UQUAL.V2PKG' PURGE

SET MAXCC = �

//���

//� �

//� STEP2 - REPRO THE EXISTING VSAM PACKAGE DATASET �

//� TO THE SEQUENTIAL FILES. �

//� �

//���

//STEP2 EXEC PGM=IDCAMS

//TEMPPKG DD DSN=UPRFX.UQUAL.V1PKG,DISP=(NEW,CATLG,DELETE),

// UNIT=SYSDA,VOL=SER=DVOLSER,SPACE=(CYL,(3�,2�),RLSE),

// DCB=(RECFM=VB,LRECL=3�74,BLKSIZE=�)

//CURPKG DD DSN=UPRFX.UQUAL.PACKAGE,DISP=OLD,

// AMP='BUFNI=1�,BUFND=1�'

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

REPRO IFILE(CURPKG) OFILE(TEMPPKG)

//���

//� �

//� STEP3A - DELETE AND REDEFINE THE VSAM PACKAGE DATASET. �

//� �

//���

//STEP3A EXEC PGM=IDCAMS,COND=(�,LT,STEP2)

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

 DELETE 'UPRFX.UQUAL.PACKAGE' PURGE

Chapter 1. File Definition and Maintenance 1-13

1.3 Maintaining the Files

 DEFINE CLUSTER (NAME('UPRFX.UQUAL.PACKAGE') -

 SPEED -

 UNIQUE -

FREESPACE(3� 3�) -

CYLINDERS(NN NN) -

 VOLUMES(VVOLSER) -

RECORDSIZE(64� 3�7�) KEYS(64 8) SHR(3 3)) -

 DATA (NAME('UPRFX.UQUAL.PACKAGE.DATA') CISZ(8192)) -

INDEX (NAME('UPRFX.UQUAL.PACKAGE.INDEX') CISZ(2�48))

//���

//� �

//� ������������� FOR L-SERV USERS ONLY ���������������� �

//� �

//� STEP3B - DELETE AND REDEFINE THE VSAM PACKAGE DATASET. �

//� �

//���

//STEP3B EXEC PGM=IDCAMS,COND=(�,LT,STEP2)

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

 DELETE 'UPRFX.UQUAL.PACKAGE' PURGE

 DEFINE CLUSTER (NAME('UPRFX.UQUAL.PACKAGE') -

 NOIMBED -

 SPEED -

 SUBALLOCATION -

 REUSE -

FREESPACE(3� 3�) -

CYLINDERS(NN NN) -

 VOLUMES(VVOLSER) -

RECORDSIZE(64� 3�7�) KEYS(64 8) SHR(1 3)) -

 DATA (NAME('UPRFX.UQUAL.PACKAGE.DATA') CISZ(8192)) -

INDEX (NAME('UPRFX.UQUAL.PACKAGE.INDEX') CISZ(2�48))

//���

//� �

//� STEP4 - EXECUTE THE PACKAGE ANALYSIS PROGRAM : �

//� THIS PROGRAM VALIDATES THAT THE RECORDS IN THE �

//� PACKAGE FILE STILL HAVE A PACKAGE HEADER TO WHICH �

//� THEY RELATE. �

//� DURING THE VERY 1ST RUN OF THIS PROGRAM, YOU MAY �

//� FIND THAT SOME PACKAGE RECORDS ARE OBSOLETE AND �

//� GET DROPPED, DURING SUBSEQUENT EXECUTIONS THE �

//� NUMBER OF DROPPED RECORDS SHOULD BE ZERO UNLESS �

//� SOME FAILURE HAS OCCURRED DURING PKG PROCESSING. �

//� �

//���

//STEP4 EXEC PGM=NDVRC1,PARM='BC1PPKGC',REGION=4M,

// COND=((�,LT,STEP3A),(�,LT,STEP3B))

//STEPLIB DD DISP=SHR,DSN=UPRFX.UQUAL.AUTHLIB

// DD DISP=SHR,DSN=IPRFX.IQUAL.AUTHLIB

//CONLIB DD DISP=SHR,DSN=IPRFX.IQUAL.CONLIB

//ISEQPKG DD DSN=UPRFX.UQUAL.V1PKG,DISP=OLD

//OSEQPKG DD DSN=UPRFX.UQUAL.V2PKG,DISP=(NEW,CATLG,DELETE),

// UNIT=SYSDA,VOL=SER=DVOLSER,SPACE=(CYL,(3�,2�),RLSE),

// DCB=(RECFM=VB,LRECL=3�74,BLKSIZE=�)

//BSTERR DD SYSOUT=�

//���

//� �

//� STEP5 - REPRO THE SEQUENTIAL FILE INTO THE NEW VSAM �

//� PACKAGE DATASET. �

//� �

1-14 Utilities Guide

1.3 Maintaining the Files

//���

//STEP5 EXEC PGM=IDCAMS,COND=(�,LT,STEP4)

//CURPKG DD DSN=UPRFX.UQUAL.V2PKG,DISP=OLD (CLEANED FILE)

//�URPKG DD DSN=UPRFX.UQUAL.V1PKG,DISP=OLD (UNMODIFIED FILE)

//NEWPKG DD DSN=UPRFX.UQUAL.PACKAGE,DISP=OLD,

// AMP='BUFNI=1�,BUFND=1�'

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

REPRO IFILE(CURPKG) OFILE(NEWPKG)

//�

�������������������������������� Bottom of Data ��������������������������������

1.3.3.3 Expanding/Compressing PDS or PDS/E Libraries

For partitioned data set libraries run a batch job using the IBM IEBCOPY utility, such
as that shown below, to perform the compression. The first step of the job should
backup the data set in the event of a subsequent problem.

//BACKUP EXEC PGM=IEBCOPY

//SYSPRINT DDSYSOUT=�

//DFILE DDDSN=library-dsn,DISP=OLD

//TFILE DDDSN=seq-backup-dsn,DISP=(NEW,CATLG),UNIT=TAPE

//SYSIN DD�

 COPY INDD=DFILE,OUTDD=TFILE

/�

//COMPRESS EXEC PGM=IEBCOPY,COND=(�,NE,BACKUP)

//SYSPRINT DDSYSOUT=�

//DFILE DDDSN=library-dsn,DISP=OLD

//SYSIN DD�

 COPY INDD=DFILE,OUTDD=DFILE

/�

1.3.3.4 Expanding/Compressing CA-Librarian or CA-Panvalet Libraries

CA-Librarian or CA-Panvalet data sets are automatically compressed each time a
member is stored or updated and therefore, compression is unnecessary. Should a
library become full, follow the appropriate CA-Librarian or CA-Panvalet procedures to
expand the file.

1.3.3.5 Expanding/Compressing Endevor LIB Data Sets

Endevor LIB data sets are automatically maintained each time a member is stored or
updated and therefore, compression is unnecessary. In addition, Endevor LIB data sets
can automatically expand into secondary extents. To change the secondary expansion
quantity or the directory size, see “Endevor LIB Data Sets” in this manual.

Chapter 1. File Definition and Maintenance 1-15

1.4 Backup

 1.4 Backup

You should backup the Endevor files regularly. Backup all files associated with a
particular stage together, at a time when no update processing is occurring against the
stage. Make sure to define each data set being backed up with DISP=OLD, to ensure
that no update processing can occur against the data set during backup.

Each Endevor file is classified as either critical or non-critical. Critical files, if lost,
can only be rebuilt from a backup. Critical files are the Master Control File, base
library, and delta library. Non-critical files include the source output library, processor
listing library, and processor load library. Non-critical files can be rebuilt by
processing the elements. If the source output library is lost, for example, the source
can be recreated from the base and delta libraries.

To backup Do the following

The Master Control File Use the IDCAMS utility with the REPRO command
(illustrated in the previous section of this chapter).

A PDS or PDS/E Use a standard IBM utility (for example, IEBCOPY), or
any other appropriate utility in use at your site.

A CA-Panvalet or
CA-Librarian file

Refer to the appropriate documentation.

1.4.1 Backing Up Endevor LIB Data Sets

To backup Endevor LIB data sets, you must use one of the two following procedures,
depending on whether the data sets are VSAM or BDAM data sets. You can also use
any other appropriate utility in use at your site.

1.4.2 Backing Up VSAM Endevor LIB Data Sets

To backup Endevor LIB VSAM data sets use the IDCAMS utility as illustrated below,
supplying the appropriate space and DCB information. Member BC1JELIB is supplied
in your iprfx.iqual.JCL library for this purpose.

//� (COPY JOBCARD)

//�

//� DELETE OLD VSAM E-LIB SEQUENTIAL FILE

//�

//STEP1 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

DELETE 'uprfx.uqual.VLIBSEQ' PURGE

//�

//� BACKUP ENDEVOR-LIB LIBRARY

//�

//� NOTE: INSURE THE SEQUENTIAL FILE LRECL IS AT LEAST

//� 4 BYTES GREATER THAN THE SIZE OF THE VSAM

//� E-LIB DATASET.

1-16 Utilities Guide

1.4 Backup

//�

//STEP2 EXEC PGM=IDCAMS

//LIBRARY DD DSN=uprfx.uqual.LIBRARY,DISP=OLD,

// AMP='BUFNI=1�,BUFND=1�'

//VLIBSEQ DD DSN=uprfx.uqual.VLIBSEQ,DISP=(NEW,CATLG,DELETE),

// UNIT=pdisk,vol=ser=dvolser,SPACE=(CYL,(NN,NN),RLSE),

// DCB=(RECFM=VB,LRECL=5���,BLKSIZE=232��)

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

REPRO IFILE(LIBRARY) OFILE(VLIBSEQ)

1.4.3 Backing Up BDAM Endevor LIB Data Sets

To backup a Endevor LIB BDAM data set, use the standard IBM IEBGENER utility
or any other appropriate utility in use at your site.

1.4.4 Backup Using the Unload/Reload/Validate Utilities

If you do not want to use the standard IBM backup utility, you can use the Endevor
Unload/Reload/Validate utilities. These utilities provide a backup, reload, and
validation mechanism for Endevor VSAM files (Master Control File and package data
set) and base/delta libraries. For more information on using these utilities see
“Unload/Reload/Validate” in this manual.

Chapter 1. File Definition and Maintenance 1-17

1.5 Recovery

 1.5 Recovery

If a critical file is lost or its integrity compromised you must restore all the critical
files, including the Master Control File, base library, and delta library. First restore
the files using the latest backup. Then reapply any updates made since the last
backup. It is important to keep the source version of all changes made to critical
files until a backup can be made. Otherwise, you won't be able to reapply these
updates.

The Footprint Exception Report (CONRPT83, described in the Administration Guide)
identifies those members of an output library that are out of sync with the MCF, and
can be used to identify the members that must be added/updated in the Master Control
File. If allocated, the source output library can be used to assist in the recovery. In
the event that source code is lost prior to taking a backup of the critical files, the
source output library still contains a current copy of the source.

If a non-critical file is lost or its integrity compromised:

Rebuild the file by reprocessing the lost element(s). Again, non-critical files include
the source output library, Endevor listing libraries, and processor load library. If you
have a backup copy of the file that is in sync with the critical files, you can recover
directly from the backup. If you do this, however, first ensure that the restored file
matches the information contained in the current MCF, base library, and delta library
exactly.

1.5.1 Recovery Using the Unload/Reload/Validate Utilities

You can use the Endevor Unload/Reload/Validate utilities for recovery. These utilities
provide a backup, reload, and validation mechanism for Endevor VSAM files (Master
Control File and package data set) and base/delta libraries. For more information on
the use of these utilities for recovery, see “Unload/Reload/Validate” in this manual.

1-18 Utilities Guide

1.6 Documentation Overview

 1.6 Documentation Overview

This manual is part of a comprehensive documentation set that fully describes the
features and functions of Endevor and explains how to perform everyday tasks. For a
complete list of Endevor manuals, see the PDF Table of Contents file in the PDF
directory, or the Bookmanager Bookshelf file in the Books directory.

The following section describes product conventions.

 1.6.1 Name Masking

A name mask allows you to specify all names, or all names beginning with a
particular string, to be considered when performing an action.

Name masks are valid on:

 ■ Element names

■ System, subsystem, and type names within FROM clauses

 ■ Report syntax

 ■ ISPF panels

 ■ API requests

Name masks are not valid on:

 ■ Environment names

■ Element names in the following situations:

– When entering a LEVel in a statement

– When using the MEMber clause with a particular action

– When building a package

 1.6.1.1 Usage

There are three ways to mask names: by using the wildcard character (*), by using the
placeholder character (%), and by using both together.

The wildcard (*) can be used in one of two ways to specify external file names:

■ When coded as the only character of a search string, Endevor returns all members
of the search field. For example, if you coded the statement ADD ELEMENT *,
all elements would be added.

■ When coded as the last character of a search string, Endevor returns all members
of the search field beginning with the characters in the search string preceding the
wildcard. For example, the statement ADD ELEMENT UPD* would add all
elements beginning with "UPD", such as UPDATED or UPDATE.

Chapter 1. File Definition and Maintenance 1-19

1.6 Documentation Overview

Note: You cannot use more than one wildcard in a string. The statement ADD
ELEMENT U*PD* would result in an error.

The placeholder (%) can also be used in one of two ways:

■ When coded as the last character in a string, Endevor returns all members of the
search field, beginning with the characters in the search string preceding the
placeholder, but which have no more characters than were coded in the search
string. If you coded the statement ADD ELEMENT UPD%, only those elements
with four-character-long names beginning with "UPD" (UPD1 or UPDA, for
example) would be added.

■ It is also possible to use the placeholder multiple times in a single search string.
The statement ADD ELEMENT U%PD% would return all elements with
five-character-long names that have U as the first character, and PD third and
fourth.

The wildcard and the placeholder can be used together, provided that the wildcard
appears only at the end of the search string and is used only once. An example of a
statement using both the wildcard and the placeholder is ADD ELEMENT U%D*.
This statement would add elements with names of any length that have U as the first
character and D as the third.

 1.6.2 Syntax Conventions

Endevor uses the IBM standard for representing syntax. The following table explains
the syntax conventions:

Syntax Explanation
��──────────────────────────────────

Represents the beginning of a syntax
statement.

──────────────────────────────────��

Represents the end of a syntax
statement.

───────────────────────────────────�

Represents the continuation of a
syntax statement to the following line.

�───────────────────────────────────

Represents the continuation of a
syntax statement from the preceding
line.

��──KEYword───────────────────────�� Represents a required keyword. Only
the uppercase letters are necessary.

��──variable──────────────────────�� Represents a required user-defined
variable.

1-20 Utilities Guide

1.6 Documentation Overview

Syntax Explanation

��─ ──┬ ┬───────── ──────────────────��
 └ ┘─KEYword─

Represents an optional keyword.
Optional keywords appear below the
syntax line. If coded, only the
uppercase letters are necessary.

��─ ──┬ ┬────────── ─────────────────��
 └ ┘─variable─

Represents an optional user-defined
variable. Optional variables appear
below the syntax line.

��─ ──┬ ┬─KEYword ONE─── ────────────��
 ├ ┤─KEYword TWO───
 └ ┘─KEYword THRee─

Represents a choice of required,
mutually exclusive keywords. You
must choose one and only one
keyword.

��─ ──┬ ┬─variable one─── ───────────��
 ├ ┤─variable two───
 └ ┘─variable three─

Represents a choice of required,
mutually exclusive, user-defined
variables. You must choose one and
only one variable.

��─ ──┬ ┬─────────────── ────────────��
 ├ ┤─KEYword ONE───
 ├ ┤─KEYword TWO───
 └ ┘─KEYword THRee─

Represents a choice of optional,
mutually exclusive keywords.
Optional keywords appear below the
syntax line.

��─ ──┬ ┬──────────────── ───────────��
 ├ ┤─variable one───
 ├ ┤─variable two───
 └ ┘─variable three─

Represents a choice of optional,
mutually exclusive, user-defined
variables. Optional variables appear
below the syntax line.

��──¤─ ──┬ ┬─────────────── ─¤───────��
 ├ ┤─KEYword ONE───
 ├ ┤─KEYword TWO───
 └ ┘─KEYword THRee─

Represents a choice of optional
keywords. The stars (¤) indicate that
the keywords are not mutually
exclusive. Code no keyword more
than once.

��──¤─ ──┬ ┬──────────────── ─¤──────��
 ├ ┤─variable one───
 ├ ┤─variable two───
 └ ┘─variable three─

Represents a choice of optional
user-defined variables. The stars (¤)
indicate that the variables are not
mutually exclusive. Code no variable
more than once.

 ┌ ┐─KEYword ONE───
��─ ──┼ ┼─KEYword TWO─── ────────────��
 └ ┘─KEYword THRee─

Represents a choice of required,
mutually exclusive keywords, one of
which is the default. In this example,
KEYword ONE is the default keyword
because it appears above the syntax
line.

Chapter 1. File Definition and Maintenance 1-21

1.6 Documentation Overview

Syntax Explanation

 ┌ ┐─variable one───
��─ ──┼ ┼─variable two─── ───────────��
 └ ┘─variable three─

Represents a choice of required,
mutually exclusive, user-defined
variables, one of which is the default.
In this example, variable one is the
default variable because it appears
above the syntax line.

 ┌ ┐─KEYword ONE───
��─ ──┼ ┼─────────────── ────────────��
 ├ ┤─KEYword TWO───
 └ ┘─KEYword THRee─

Represents a choice of optional,
mutually exclusive keywords, one of
which is the default. In this example,
KEYword ONE is the default keyword
because it appears above the syntax
line.

 ┌ ┐─variable one───
��─ ──┼ ┼──────────────── ───────────��
 ├ ┤─variable two───
 └ ┘─variable three─

Represents a choice of optional,
mutually exclusive, user-defined
variables, one of which is the default.
In this example, variable one is the
default variable because it appears
above the syntax line.

 ┌ ┐─,────────
��──(─ ───

�
┴─variable─ ─)────────────��

Represents a required variable that can
be repeated. Separate each occurrence
with a comma and enclose any and all
variables in a single set of parenthesis.

��─ ──┬ ┬──────────────────── ───────��
 │ │┌ ┐─,────────
 └ ┘ ─(─ ───

�
┴─variable─ ─)─

Represents an optional variable that
can be repeated. Separate each
occurrence with a comma and enclose
any and all variables in a single set of
parenthesis.

��──(variable)────────────────────�� Represents a variable which must be
enclosed by parenthesis.

��──'variable'────────────────────�� Represents a variable which must be
enclosed by single quotes.

��──"variable"────────────────────�� Represents a variable which must be
enclosed by double quotes.

��──┤ FRAGMENT REFERENCE ├────────�� Represents a reference to a syntax
fragment. Fragments are listed on the
lines immediately following the
required period at the end of each
syntax statement.

FRAGMENT:
├──KEYword──variable───────────────┤

Represents a syntax fragment.

1-22 Utilities Guide

1.6 Documentation Overview

Syntax Explanation
�────────────────────────.────────��

Represents the period required at the
end of all syntax statements.

Chapter 1. File Definition and Maintenance 1-23

1.6 Documentation Overview

1.6.2.1 Sample Syntax Diagram

��──ARChive ELEment──element-name─ ──┬ ┬─────────────────────────── ──────�
 └ ┘ ──┬ ┬─THRough─ ─element-name─
 └ ┘─THRu────

�──FROm─ ─ENVironment──env-name──SYStem──sys-name───────────────────────�

�─ ─SUBsystem──subsys-name──TYPe──type-name─────────────────────────────�

�─ ──┬ ┬─STAge──stage-id──────── ─TO─ ──┬ ┬─FILe─── ─dd-name─────────────────�
 └ ┘ ─STAge NUMber──stage-no─ └ ┘─DDName─

�─ ──┬ ┬─────────────────────────── ──────────────────────────────────────�
 └ ┘ ─WHEre──¤─ ──┬ ┬────────── ─¤─

├ ┤─┤ CCID ├─
└ ┘─┤ PRO ├──

�─ ──┬ ┬─── ─.─────────────────────��
 └ ┘ ─OPTion──¤─ ──┬ ┬─────────────────────── ─¤─
 ├ ┤─CCId──ccid────────────
 ├ ┤─COMment──comment──────
 ├ ┤─OVErride SIGNOut──────

└ ┘─BYPass ELEment DELete─

CCID:
┌ ┐─EQual─ ┌ ┐─,────

├──CCId─ ──┬ ┬────────────────── ──┼ ┼─────── ─(─ ───
�

┴─ccid─ ─)───────────────┤
 │ │┌ ┐─CURrent── └ ┘─=─────
 └ ┘ ─OF─ ──┼ ┼─ALL──────
 └ ┘─RETrieve─

PRO:
 ┌ ┐─,──────────
├──PROcessor GROup─ ──┬ ┬─EQual─ ─(─ ───

�
┴─group name─ ─)────────────────────┤

 └ ┘─=─────

1.6.3 Syntax Diagram Explanation

Syntax Explanation

ARChive ELEment
element-name

The keyword ARChive ELEment appears on the main
line, indicating that it is required. The variable
element-name, also on the main line, must be coded.

THRough / THRu
element-name

The keywords THRough and THRu appear below the
main line, indicating that they are optional. They are
also mutually exclusive.

FROm ENVironment ...
TYPe type-name

Each keyword and variable in this segment appear on
the main line, indicating that they are required.

STAge stage-id / STAge
NUMber stage-no

The keywords STAge and STAge NUMber appear on
and below the main line, indicating that they are
required, mutually exclusive keywords.

1-24 Utilities Guide

1.6 Documentation Overview

Syntax Explanation

TO ... dd-name The keyword TO appears on the main line, indicating
that it is required. The keywords FILe and DDName
appear on and below the main line, indicating that they
are required, mutually exclusive keywords. The variable
dd-name also appears on the main line, indicating that it
is required.

WHEre clause This clause appears below the main line, indicating that
it is optional. The keyword WHEre appears on the main
line of the clause, indicating that it is required. CCID
and PRO are syntax fragments that appear below the
main line, indicating that they are optional. The stars
(¤) indicate that they are not mutually exclusive. For
details on the CCID and PRO fragments, see the bottom
of this table.

OPTion clause This clause appears below the main line, indicating that
it is optional. The keyword OPTion appears on the
main line of the clause, indicating that it is required.
The keywords CCId, COMment, OVErride SIGNOut,
and BYPass ELEment DELete all appear below the
main line, indicating that they are optional. The stars
(¤) indicate that they are not mutually exclusive.

CCID fragment The keyword CCId appears on the main line, indicating
that it is required. The OF clause appears below the
main line, indicating that it is optional. If you code this
clause, you must code the keyword OF, as it appears on
the main line of the clause. CURrent, ALL, and
RETrieve appear above, on, and below the main line of
the clause, indicating that they are required, mutually
exclusive keywords. CURrent appears above the main
line, indicating that it is the default. If you code the
keyword OF, you must choose one and only one of the
keywords.

The keywords EQual and = appear above and below the
main line, indicating that they are optional, mutually
exclusive keywords. EQual appears above the main
line, indicating that it is the default. You can include
only one. The variable ccid appears on the main line,
indicating that it is required. The arrow indicates that
you can repeat this variable, separating each instance
with a comma. Enclose any and all variables in a single
set of parenthesis.

Chapter 1. File Definition and Maintenance 1-25

1.6 Documentation Overview

Syntax Explanation

PRO fragment The keyword PROcessor GROup appears on the main
line, indicating that it is required. The keywords EQual
and = appear on and below the main line, indicating that
they are required, mutually exclusive keywords. You
must include one. The variable group name appears on
the main line, indicating that it is required. The arrow
indicates that you can repeat this variable, separating
each instance with a comma. Enclose any and all
variables in a single set of parenthesis.

1.6.4 General Coding Information

In coding syntax, you must adhere to certain rules and guidelines regarding valid
characters, incompatible commands and clauses, and ending statements. In addition,
knowing how the SCL parser processes syntax will help you resolve errors and
undesired results. The following sections outline these rules and guidelines.

 1.6.4.1 Valid Characters

The following characters are allowed when coding syntax:

■ Upper case letters

■ Lower case letters

 ■ Numbers

 ■ Hyphen (-)

■ National characters ($, #, @)

 ■ Underscore (_)

The following characters are allowed when coding syntax, but must be enclosed in
either single (') or double (") quotation marks:

 ■ Space

 ■ Tab

 ■ New line

 ■ Carriage return

 ■ Comma (,)

 ■ Period (.)

■ Equal sign (=)

■ Greater than sign (>)

■ Less then sign (<)

1-26 Utilities Guide

1.6 Documentation Overview

■ Parenthesis ()

■ Single quotation marks

■ Double quotation marks

A string containing single quotation marks must be enclosed in double quotation
marks. A string containing double quotation marks must be enclosed in single
quotation marks.

To remove information from an existing field in the database, enclose a blank space in
single or double quotation marks. For example, the following statement removes the
default CCID for user TCS:

DEFINE USER TCS

DEFAULT CCID " ".

The characters "*" and "%" are reserved for name masking. See the section “Name
Masking” earlier in this chapter for more information.

1.6.4.2 Incompatible Commands and Clauses

The following commands and clauses are mutually exclusive:

■ THRough and MEMber clauses within any action except LIST

■ Endevor location information (environment, system, subsystem, type, and stage)
and data set names (DSName)

■ File names (DDName), data set names (DSName) and the PATH clause which is
mutually exclusive with the FILE or Data set clauses.

■ The stage id (STAge / STAge ID) and the stage number (STAge NUMber)

■ The SET TO Endevor location information and the SET TO MEMber clause

■ The HFSFile clause is mutually exclusive with a Member clause.

1.6.4.3 Ending A Statement

You must enter a period at the end of each statement. If no period is found, you
receive an error message and the job terminates.

1.6.4.4 SCL Parsing Information

■ The SCL parser does not look for information in columns 73-80 of the input.
Therefore, be sure that all relevant information is coded in columns 1-72.

■ The SCL parser does not catch duplicate clauses coded for an SCL request. If
you code the same clause twice, SCL uses the Boolean "AND" to combine the
clauses. If the result is invalid, you receive an error message.

■ If you enter an asterisk (*) in column 1, the remainder of the line is considered a
comment by the SCL parser and is ignored during processing.

Chapter 1. File Definition and Maintenance 1-27

1.6 Documentation Overview

■ Any value found to the right of the period terminating the SCL statement is
considered a comment by the SCL parser and is ignored during processing.

1.6.5 Syntax for Long File and Path Names

The following considerations apply to the Path clause for ADD, UPDATE, COPY and
RETRIEVE statements:

■ The PATH clause is mutually exclusive with the FILE or Data Set clauses.

■ The HFSFile clause is mutually exclusive with a Member clause.

■ The path name must begin with a “/” and be terminated with a “/” and cannot be
followed by the file name.

■ The HFS file name can be up to 255 bytes in length.

■ The path name can be up to 768 bytes in length.

1.6.5.1 HFSFile Syntax Rules

A filename can be up to 255 characters long. Endevor supports only the "true" POSIX
sets and the additional characters $, #, @. To be portable, the filename should only
contain characters in the POSIX portable filename character set. These characters are
as follows:

■ Upper case letters

■ Lower case letters

 ■ Numbers

 ■ Period (.)

 ■ Hyphen (-)

■ National characters ($, #, @)

 ■ Underscore (_)

Do not include any nulls or slash characters in a filename.

Doublebyte characters are not supported in a filename and are treated as singlebyte
data. Using doublebyte characters in a filename may cause problems. For instance, if
you use a doublebyte character in which one of the bytes is a . (dot) or / (slash), the
file system treats this as a special delimiter in the pathname.

The shells are case-sensitive, and distinguish characters as either uppercase or
lowercase. Therefore, FILE1 is not the same as file1.

A filename can include a suffix, or extension, that indicates its file type. An extension
consists of a period (.) and several characters. For example, files that are C code

1-28 Utilities Guide

1.6 Documentation Overview

could have the extension .c, as in the filename dbmod3.c. Having groups of files with
identical suffixes makes it easier to run commands against many files at once.

1.6.5.2 Path Name Syntax Rules

The path name value can be up to 768 characters long. It can contain only the
following characters:

■ Upper case letters

■ Lower case letters

 ■ Numbers

 ■ Period (.)

 ■ Hyphen (-)

■ National characters ($, #, @)

 ■ Slash (/)

 ■ Plus (+)

1.6.5.3 Element Name Syntax Rules

The Element name can be up to 255 characters long. It can contain only the following
characters:

■ Upper case letters

■ Lower case letters

 ■ Numbers

 ■ Period (.)

 ■ Hyphen (-)

■ National characters ($, #, @)

 ■ Underscore (_)

Element names name include a percent sign (%) in any column as a placeholder
character in most SCL. The final one or more characters may be replaced in SCL and
some panels with an asterisk (*) as a wild character for selection purposes.

1.6.5.4 SCL Continuation Syntax Rules

All SCL parameters that span multiple lines must be enclosed in single quotes. SCL
keyword parameters cannot span multiple lines—only the parameter values. The
syntax required to span a paramter value should lead with an apostrophe or quotation
mark at the beginning of the specification and a trailing apostrophe or quotation mark
of the value. Spaces that are not surrounded by non-blank characters will not be
included in the text string. Example:

Chapter 1. File Definition and Maintenance 1-29

1.6 Documentation Overview

ADD ELEMENT 'Spanned

ElementName' CCID 'This is the chan

ge control number'

This would result in an element value of "SpannedElementName" and a CCID value of
"This is the change control number".

1-30 Utilities Guide

Chapter 2. Endevor LIB Data Sets

Chapter 2. Endevor LIB Data Sets 2-1

2.1 Endevor LIB

 2.1 Endevor LIB

 2.1.1 Basics

Endevor LIB (ELIB) is a high performance alternative to OS partitioned data sets
under Endevor. You can organize Endevor base, delta, and listing libraries as ELIB
data sets.

Three concepts are important when working with ELIB. These concepts are page size,
record format, and target directory page.

Endevor provides three utilities for use when setting up and maintaining ELIB data
sets.

These utilities are described in the following sections.

Note: The Endevor LIB utilities BC1PNLIB, BC1PNCPY and BC1PNLST cannot be
executed within an Endevor processor.

Page size The size of the control interval used by ELIB for storage. All
blocking is internal to ELIB and not available to operating system
utilities. You cannot reblock an ELIB data set. If reblocking is
necessary you must reallocate the data set and copy members into
it.

Record format ELIB data sets store members in compressed format with the
record length stored at the front of each record. This allows
members of different record lengths to be stored in one ELIB data
set.

Target directory
pages

ELIB locates members by going directly to one of its directory
pages. If enough directory pages are allocated to avoid overflow,
performance is enhanced.

ELIB data sets allow you to allocate additional directory pages
spontaneously, using the BC1PNLIB utility.

Use this utility To

BC1PNLIB Set up, maintain, and print information about ELIB data sets.

BC1PNLST Print information about ELIB data sets.

BC1PNCPY Copy library members from and to ELIB data sets, and to copy
members from and to any Endevor library format.

2-2 Utilities Guide

2.2 BC1PNLIB Utility

 2.2 BC1PNLIB Utility

 2.2.1 Overview

The BC1PNLIB utility allows you to perform five actions against ELIB data sets:

■ Initialize the space allocated to ELIB data sets.

■ Expand existing ELIB data sets.

■ Adjust space allocation in existing ELIB data sets.

■ Reorganize ELIB directories.

■ Print information about an ELIB data set, including:

– Data set header information

– Target directory page information

– Data set member information

– Data set analysis information

 2.2.2 BC1PNLIB Syntax

BC1PNLIB syntax is shown next:

2.2.2.1 Initialize Function Keywords

The INITIALIZE function of the BC1PNLIB utility initializes an ELIB data set.
Space must already have been allocated for the library.

��──INItialize──DDName─ ──┬ ┬─── ─ddname──────────────────────────────────�
 └ ┘─=─

�──¤─ ──┬ ┬───────────────────────────── ─¤───────────────────────────────�
 ├ ┤ ─DSName─ ──┬ ┬─── ─dsname───────
 │ │└ ┘─=─
 ├ ┤ ─TYPe──=─ ──┬ ┬─VSAM─ ──────────
 │ │└ ┘─BDAM─
 └ ┘ ─PAGe SIZe─ ──┬ ┬─── ─page-size─
 └ ┘─=─

�──ALLocate PAGe─ ──┬ ┬─── ─(#-primary-page,#-secondary-page)─────────────�
 └ ┘─=─

�──¤─ ──┬ ┬─── ─¤──.───────────────��
 ├ ┤ ─REServe PAGe─ ──┬ ┬─── ─#-reserve-page─────
 │ │└ ┘─=─
 ├ ┤ ─DIRectory PAGe─ ──┬ ┬─── ─#-directory-page─
 │ │└ ┘─=─

└ ┘─DEStroy TO REUse────────────────────────

Chapter 2. Endevor LIB Data Sets 2-3

2.2 BC1PNLIB Utility

Keyword Description

INITIALIZE Required. Indicates that you want the BC1PNLIB utility to
initialize a ELIB data set. You must have already allocated space
for this data set.

DDNAME Required. The DDname of the data set you want to initialize.

DSNAME Optional. Data set name for this ELIB data set. If you code the
DSNAME statement, the system validates the DSname in this
statement against the DSname in the JCL.

TYPE Optional. Indicates whether this ELIB is a VSAM cluster or a
BDAM data set. If you do not code a TYPE statement, the
BC1PNLIB utility reads this information from the JCL.

PAGE SIZE Optional. If you are using VSAM clusters, page size is
system-defined by the IDCAMS utility as eight bytes less than the
control interval size.

If you are using BDAM data sets, page size will equal block size.
Block size is specified in the JCL. If you also code a PAGE
SIZE statement, the system will validate it against the block size
you have specified in the JCL.

If you code a PAGE SIZE statement, the entry can have up to
five numeric characters.

ALLOCATE
PAGES

Required. Determines number of pages in this ELIB data set.
You can specify two numbers:

■ #-primary-pages--Indicates the number of pages initialized as
primary storage for this ELIB data set.

■ #-secondary-pages--Indicates number of pages initialized as
secondary storage during each automatic expansion of the
ELIB data set.

If you do not want to assign a secondary allocation quantity, do
not specify secondary pages.

Both the primary and the secondary entries can be up to five
numeric characters.

Note: See the example of initializing an ELIB data set later in
this chapter for guidelines on estimating space requirements.

2-4 Utilities Guide

2.2 BC1PNLIB Utility

Keyword Description

RESERVE
PAGES

Optional. Determines when the system allocates a secondary
storage block to this ELIB data set. Expressed as a number of
pages (up to 4 numeric characters). When this number of pages
remain unused within the current storage allocation, Endevor
automatically attempts to allocate a secondary storage block.

■ If you assign a RESERVE PAGES value, you should assign a
value that is greater than the number of pages you expect the
largest data set member to take up. Very often, assigning a
value equal to one cylinder of storage is adequate.

■ If you omit this clause, the reserve threshold defaults to 1/16
of the number of pages allocated to primary storage. For
example, if the primary allocation is 400, the reserve
threshold will default to 25 (400/16).

■ If you assign a value of 0, Endevor LIB will not
automatically expand. In this situation, once the primary
allocation is filled any attempts to store a new member will
fail until you manually expand the library.

Note: If ELIB tries to expand the library and runs out of space, it
automatically sets the reserve threshold value to zero. Refer to
the “Expanding Endevor LIB Data Sets” section later in this
chapter for details about resolving this problem.

Chapter 2. Endevor LIB Data Sets 2-5

2.2 BC1PNLIB Utility

Keyword Description

DIRECTORY
PAGES

Optional. Number of target directory pages. The default
allocation is 7 pages.

If you want to allocate a different number of target directory
pages, enter that number (must be greater than 7) in this
statement. Can be up to five numeric characters.

When estimating the number of target directory pages bear in
mind that:

■ Each directory member requires 84 bytes.

■ Each directory page has 32 bytes reserved.

This means that if your page size is 4096 bytes, a target directory
page could hold [(4096-32)/84] = 48 members.

Note: If a member is added and the directory page is full, the
page overflows, eventually degrading performance. To avoid
overflow, allocate target directory pages so that member directory
information fills less than 50 percent of the available target
directory page space.

Example: Your target directory page size is 4096 bytes, and you
want to store directory information for approximately 24 members
per page (half of the maximum of 48 members). If you estimate
that 1,000 members will reside in the data set, you should allocate
the data set with 1,000/24 = 42 target directory pages.

If you omit this clause, the BC1PNLIB utility automatically
calculates the number of pages within the ELIB data set needed
for its directory. It does this by allocating enough target directory
pages to support one member per each 4 pages of the primary
allocation.

DESTROY TO
REUSE

Optional. Code this statement only if you are re-initializing an
ELIB data set.

Note: If you code this statement, all data in the existing data set
will be lost.

2.2.2.2 Expand Function Keywords

Normally, Endevor LIB expands automatically according to your secondary allocation
value. The EXPAND function of the BC1PNLIB utility allows you to expand ELIB
data sets manually.

2-6 Utilities Guide

2.2 BC1PNLIB Utility

��──EXPand──DDName─ ──┬ ┬─── ─ddname──────────────────────────────────────�
 └ ┘─=─

�──¤─ ──┬ ┬── ─¤──.────────────────��
 ├ ┤ ─DSName─ ──┬ ┬─── ─dsname──────────────────
 │ │└ ┘─=─
 ├ ┤ ─ALLocate PAGe─ ──┬ ┬─── ─#-secondary-page─
 │ │└ ┘─=─
 └ ┘ ─REServe PAGe─ ──┬ ┬─── ─#-reserve-page────
 └ ┘─=─

Keyword Description

EXPAND Required. Indicates that you want the BC1PNLIB utility to
acquire secondary storage for an ELIB data set.

DDNAME Required. The DDname of the data set you want to expand.

DSNAME Optional. Data set name for this ELIB data set. If you code the
DSname statement, the system validates the DSname in this
statement against the DSname in the JCL.

ALLOCATE
PAGES

Optional. Determines number of additional pages in the expanded
ELIB data set. If you do not code this statement the secondary
allocation originally specified during the INITIALIZE function
will be used.

RESERVE
PAGES

Optional. Allows you to respecify the RESERVE threshold
established in the INITIALIZE function for this library. If you
want to keep the existing RESERVE threshold, do not code this
statement.

2.2.2.3 Adjust Function Keywords

The ADJUST function allows you to modify the specifications for secondary storage
and the reserve threshold for an ELIB data set.

��──ADJust──DDname─ ──┬ ┬─── ─ddname──────────────────────────────────────�
 └ ┘─=─

�──¤─ ──┬ ┬── ─¤──.────────────────��
 ├ ┤ ─DSName─ ──┬ ┬─── ─dsname──────────────────
 │ │└ ┘─=─
 ├ ┤ ─ALLocate PAGe─ ──┬ ┬─── ─#-secondary-page─
 │ │└ ┘─=─
 └ ┘ ─REServe PAGe─ ──┬ ┬─── ─#-reserve-page────
 └ ┘─=─

Keyword Description

ADJUST Indicates that you want the ADJUST function of the BC1PNLIB
utility to adjust the reserve threshold and/or the secondary storage
allocation.

Chapter 2. Endevor LIB Data Sets 2-7

2.2 BC1PNLIB Utility

Note: When using the ADJUST function, you may code either the ALLOCATE
PAGES statement or the RESERVE PAGES statement, or both statements.

Keyword Description

DDNAME Required. The DDname of the data set you want to adjust.

DSNAME Optional. Data set name for this ELIB data set. If you code the
DSname statement, the system validates the DSname in this
statement against the DSname in the JCL.

ALLOCATE
PAGES

Optional. Determines number of pages to be allocated in
subsequent secondary allocations.

RESERVE
PAGES

Optional. Allows you to respecify the RESERVE threshold
established in the INITIALIZE function for this library. If you
want to keep the existing RESERVE threshold, do not code this
statement.

2.2.2.4 Reorganize Function Keywords

The reorganize (REORG) function of the BC1PNLIB utility allows you to reorganize
ELIB data sets. During this process, you can respecify the number of pages allocated
to the data set directory. The system will re-allocate storage for the directory
according to this specification, and will rewrite the directory entries.

��──REOrg──DDName─ ──┬ ┬─── ─ddname───────────────────────────────────────�
 └ ┘─=─

�──¤─ ──┬ ┬─── ─¤──.───────────────��
 ├ ┤ ─DSName─ ──┬ ┬─── ─dsname───────────────────
 │ │└ ┘─=─
 └ ┘ ─DIRectory PAGe─ ──┬ ┬─── ─#-directory-page─
 └ ┘─=─

Keyword Description

REORG Required. Indicates that you want the REORG function of the
BC1PNLIB utility to respecify the number of pages allocated to
the directory of an ELIB data set.

DDNAME Required. The DDname of the data set you want to reorganize.

DSNAME Optional. Data set name for this ELIB data set. If you code the
DSname statement, the system validates the DSname in this
statement against the DSname in the JCL.

DIRECTORY
PAGES

Required. Indicates the number of pages you want to allocate for
the directory of the ELIB data set specified by the DDname.

2-8 Utilities Guide

2.2 BC1PNLIB Utility

2.2.2.5 Inquire Function Keywords

The INQUIRE function of the BC1PNLIB utility allows you to print summary
statistics about the library directory and/or individual members, and also allows you to
check the integrity of the library.

��──INQuire─ ─DDName─ ──┬ ┬─── ─ddname─ ──┬ ┬───────────────────────────── ───�
 └ ┘─=─ └ ┘ ─OPTion──¤─ ──┬ ┬─────────── ─¤─
 ├ ┤─DIRectory─
 ├ ┤─ANAlyze───
 └ ┘─MEMber────

�──.──��

Keyword Description

INQUIRE Required. Indicates that you want to use the INQUIRE function
of the BC1PNLIB utility.

DDNAME Required. The DDname of the data set(s) for which you want to
print information.

OPTION Optional. Allows you to specify additional reporting options.
You can use any or all of these options whenever you run the
INQUIRE function of the BC1PNLIB utility.

If you omit this clause, Endevor prints only data set header
information. There are three options:

■ DIRECTORY--Tells Endevor to print information about target
directory page utilization.

■ MEMBERS--Tells Endevor to print footprint information plus
member size in pages, records, and bytes.

■ ANALYZE--Tells Endevor to print an analysis of data set
integrity.

Chapter 2. Endevor LIB Data Sets 2-9

2.3 BC1PNLST Utility

 2.3 BC1PNLST Utility

The BC1PNLST utility allows you to inquire against directories and/or members of an
ELIB data set. This utility provides read-only access to ELIB data sets.

 2.3.1 BC1PNLST Syntax

��──INQuire─ ─DDName─ ──┬ ┬─── ─ddname─ ──┬ ┬───────────────────────────── ───�
 └ ┘─=─ └ ┘ ─OPTion──¤─ ──┬ ┬─────────── ─¤─
 ├ ┤─DIRectory─
 └ ┘─MEMber────

�──.──��

2.3.1.1 BC1PNLST Syntax Elements

The following keywords in the INQUIRE request allow you to specify options that
provide more detailed output. Code any or all of the options that you want to use.

Keyword Description

INQUIRE Required. Indicates that you want to use the INQUIRE function
of the BC1PNLST utility to retrieve information about an ELIB
data set.

DDNAME Required. The DDname of the data set(s) you want to inquire
against.

OPTION Optional. Allows you to specify additional reporting options.
You can use any or all of these options whenever you run the
INQUIRE function of the BC1PNLST utility.

If you do not want additional detail, you can omit this clause
entirely; only summary library information will be printed. There
are two options:

■ DIRECTORY--The DIRECTORY option displays the number
of members for each directory page, as well as summary
directory usage statistics.

■ MEMBERS--The MEMBERS option lists each member of the
library, with full Endevor footprint information plus member
size in pages, records, and bytes.

2-10 Utilities Guide

2.4 BC1PNCPY Utility

 2.4 BC1PNCPY Utility

The BC1PNCPY utility allows you to copy between any Endevor supported library
types, while preserving the original Endevor footprint of copied members. You can
use this utility to copy all or selected members of an existing base, delta, or listing
library from a PDS or PDS/E to a Endevor LIB or vice versa.

Note: When dealing with large libraries, BC1PNCPY takes a great deal of time to
run. In addition, it requires exclusive control of the input and output libraries, for
integrity.

 2.4.1 BC1PNCPY Syntax

��──COPy─ ─INPut─ ──┬ ┬─FILe─ ──┬ ┬─── ─filename─ ────────────────────────────�
 │ │└ ┘─=─
 └ ┘ ─DDName─ ──┬ ┬─── ─ddname─
 └ ┘─=─

�──¤─ ──┬ ┬─────────────────────── ─¤─────────────────────────────────────�
 ├ ┤─UNPacked──────────────
 └ ┘ ─DSName─ ──┬ ┬─── ─dsname─
 └ ┘─=─

�─ ─OUTput─ ──┬ ┬─FILe─ ──┬ ┬─── ─filename─ ──────────────────────────────────�
 │ │└ ┘─=─
 └ ┘ ─DDName─ ──┬ ┬─── ─ddname─
 └ ┘─=─

�──¤─ ──┬ ┬───────────────────────────── ─¤───────────────────────────────�
 ├ ┤─UNPacked────────────────────
 ├ ┤ ─DSName─ ──┬ ┬─── ─dsname───────
 │ │└ ┘─=─
 └ ┘ ─UPDate─ ──┬ ┬──── ──┬ ┬─────────
 └ ┘─IF─ └ ┘─PREsent─

�─ ──┬ ┬─── ─.─────��
 │ │┌ ┐─,───
 └ ┘ ───

�
┴─MEMber─ ──┬ ┬─── ─membername-1─ ──┬ ┬────────────────────

 └ ┘─=─ └ ┘ ─THRu──membername-x─

2.4.1.1 BC1PNCPY Syntax Elements

The following keywords in the COPY request allow you to specify options that
provide more detailed output. Code any or all of the options that you want to use.

Keyword Description

COPY Required. Indicates that you want to use the
BC1PNCPY utility.

INPUT FILE \ DDNAME Required. Identifies the source file or DDname.

Chapter 2. Endevor LIB Data Sets 2-11

2.4 BC1PNCPY Utility

Keyword Description

UNPACKED Optional. The UNPACKED option is used with PDS or
PDS/Es only, and only if a PDS or PDS/E is not a
Endevor compressed library. When you use this option
with the INPUT statement BC1PNCPY will not attempt
to decompress the members being read from the input
data set.

DSNAME Optional. If you use the DSNAME option, the data set
name of the input library will be validated against the
DDNAME in the JCL. If the DSN contains periods, it
must be enclosed in single quotes.

OUTPUT FILE \
DDNAME

Required. Identifies the target file or DDname.

UNPACKED Optional. The UNPACKED option is used with PDS or
PDS/Es only, and only if a PDS or PDS/E is not a
Endevor compressed library. When you use this option
with the OUTPUT statement BC1PNCPY will not
attempt to compress the members being written to the
output data set.

DSNAME Optional. If you use the DSNAME option, the data set
name of the target library will be validated against the
DDNAME in the JCL. If the DSN contains periods, it
must be enclosed in single quotes.

UPDATE IF PRESENT Optional. Use this option to update (replace) members
with the same name within the target library. If you do
not use this option, the utility will not replace members
of the same name.

MEMBER ...[THRU ...] The MEMBER clause(s) limits the COPY request to
specific members only. You can specify either a single
member or a range of members (using the THRU
clause). Note that when entering MEMBER and THRU
clauses, you can use the standard Endevor wildcard
capability.

Note: A period must be coded at the end of each
complete statement. If you specify any MEMBER
[THRU] clauses, you must enter the period after the last
of those clauses.

2-12 Utilities Guide

2.5 Allocating and Initializing an ELIB Data Set

2.5 Allocating and Initializing an ELIB Data Set

 2.5.1 Overview

You need to allocate and initialize an ELIB set before it can be used. To allocate and
initialize a data set, proceed as follows:

1. Select an access method: BDAM or VSAM.

2. Estimate space requirements for the data set.

3. Allocate the appropriate data set (BDAM data set or VSAM cluster), then
initialize the data set with the ELIB utility program BC1PNLIB.

These steps are explained below.

2.5.2 Step 1: Select an Access Method

You must decide what physical format you want to use for the ELIB data sets; you
can use either VSAM or BDAM.

Your choice of access method depends on your site's preferences. Use the table below
as a guide for selecting an access method.

VSAM provides BDAM provides

Better performance by exploiting 31-bit
storage and better data set protection
mechanisms.

Simpler installation and de-installation.

Better data set protection mechanisms. Slightly better performance and simpler
installation and de-installation.

Spanned volumes supported Spanned volumes are not supported

2.5.3 Step 2: Estimate Space Requirements

Space requirements are a function of the number of members in your libraries, their
size and volatility. Listed below are suggestions for estimating the size of base, delta
and listings libraries. These suggestions assume an established collection of code. If
you are expecting a great deal of growth within your systems, you may want to
consider larger growth factors.

■ For an ELIB base library, figure out how many members are in the library, and
how much space they take up in the data set after the data set has been
compressed. Then add 20% to this figure, for expansion.

■ For an ELIB delta library, estimate approximately half the size of the
corresponding base library. If you are an existing Endevor user, you may want to

Chapter 2. Endevor LIB Data Sets 2-13

2.5 Allocating and Initializing an ELIB Data Set

use a larger percentage, to accommodate for the growth of your delta libraries
over time.

■ For an ELIB listing library, estimate 80% of the space required for the
corresponding members in a PDS or PDS/E (measured after the PDS has been
compressed).

You can use the ISPF “3.2” utility to examine space used by a PDS or PDS/E.

Note: If you estimate space requirements that are too low, ELIB allows you to
increase the library size without reorganizing.

2.5.4 Step 3: Allocate and Initialize the Data Set

Once you select an access method and estimate space requirements, you must allocate
either a BDAM data set or a VSAM cluster. Refer to the JCL examples below when
you are ready to allocate data sets.

2.5.4.1 Allocating and Initializing a BDAM ELIB Data Set

To allocate a BDAM ELIB data set, use a JCL stream similar to that illustrated below.

//ALLOCBDAM EXEC PGM=IEFBR14

//LIBRARY DD DSN=ELIB.DATASET,DISP=(NEW,CATLG),
// UNIT=PDASD,SPACE=(CYL,(5,2)),
// DCB=(DSORG=DA,BLKSIZE=4�96,LRECL=4�96,RECFM=FBS)

In this example the IEFBR14 utility allocates 5 cylinders to primary storage and 2
cylinders to secondary storage. Both the LRECL and BLKSIZE for this BDAM ELIB
data set are 4096 bytes.

To initialize this data set as an ELIB data set, you must convert your estimated space
requirements to their page equivalents. This is necessary because the BC1PNLIB
utility needs all its specifications in pages.

In BDAM data sets the BLKSIZE is the same as the page size. The number of
4096-byte pages per track and per cylinder will vary by DASD device.

The BDAM data set in this example would therefore have a capacity of 750 pages in
primary storage and 300 pages in secondary storage when using a 3380 device, and
900 pages in primary storage and 360 pages in secondary storage when using a 3390
device.

Use the BC1PNLIB utility to initialize the data set. The JCL below assumes that you
are using a 3380 device.

Device Page size Pages per track Pages per cylinder

3380 4096 10 150

3390 4096 12 180

2-14 Utilities Guide

2.5 Allocating and Initializing an ELIB Data Set

//ELIBINIT EXEC PGM=NDVRC1,PARM='BC1PNLIB'

//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//�

//� OMIT THE FOLLOWING DCB INFORMATION IF VSAM

//�

//BDAMINIT DD DSN=BDAM.DATASET,
// DCB=(DSORG=DA,BLKSIZE=4�96,LRECL=4�96,RECFM=FBS),
// DISP=(OLD,KEEP)

//SYSPRINT DD SYSOUT=�

//BSTERR DD SYSOUT=�

//SYSUDUMP DD SYSOUT=�

//SYSIN DD �

INIT DDNAME = BDAMINIT
PAGE SIZE = 4�96
ALLOCATE = (75�,3��)
RESERVE PAGES = 15�
DIRECTORY PAGES = 14

.
INQUIRE DDNAME = BDAMINIT
 .
/�

In the above example, you have allocated and initialized a BDAM data set as an ELIB
data set with 750 pages initialized as primary storage. When 150 pages remain in this
primary storage area, Endevor automatically attempts to allocate and initialize
secondary storage with a capacity of 300 pages. In addition, you have requested the
BC1PNLIB utility to list statistical information about this data set after initialization.

2.5.4.2 Allocating and Initializing a VSAM ELIB Data Set

To allocate a VSAM cluster, use the IBM IDCAMS utility in a JCL stream similar to
the one illustrated below.

//ALOCVSAM EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

 DEFINE CLUSTER -

 (NAME(VSAM.DATASET) -

 MASTERPW(plant) -

 CONTROLPW(ENDEVOR) -

 UPDATEPW(ENDEVOR) -

 RECORDSIZE(4�88 4�88) -

 CONTROLINTERVALSIZE(4�96) -

 SHAREOPTIONS(3,3) -

 VOLUMES(BST��1) -

 CYLINDERS(5,2) -

 NONINDEXED -

) -

 DATA (NAME(VSAM.DATASET.DATA) -

 MASTERPW(plant) -

 CONTROLPW(ENDEVOR) -

 UPDATEPW(ENDEVOR) -

)

Chapter 2. Endevor LIB Data Sets 2-15

2.5 Allocating and Initializing an ELIB Data Set

In this example the IDCAMS utility will define a VSAM cluster named
VSAM.DATASET. The control interval for this data set will be 4096 bytes, and the
record size will be 4088 bytes. In VSAM data sets the record size is the same as the
page size. IDCAMS will allocate 5 cylinders of primary storage, and 2 cylinders to
secondary storage for the data set. The data set will reside in a DASD volume with a
serial number of BST001. The master password to the data set will be plant.

Note: Choose a master password to protect your data. This password is required
whenever you want to delete or rename the cluster. Endevor processing uses the
built-in password Endevor for all update processing. If you omit the master password,
this library will be unprotected.

Before initializing this data set as an ELIB data set you need to convert your estimated
space requirements to their page equivalents. This is necessary because the
BC1PNLIB utility needs all its specifications in pages.

In VSAM data sets the page size is eight bytes smaller than the control interval size,
in this case 4088 bytes. The number of 4088 byte pages per track and per cylinder
will vary by DASD device.

The VSAM data set in this example would therefore have a capacity of 750 pages in
primary storage and 300 pages in secondary storage when using a 3380 device, and
900 pages in primary storage and 360 pages in secondary storage when using a 3390
device.

Note: If you are using VSAM, specify one less page than will fit in the primary space
allocation. VSAM uses one control interval for an end-of-file mark. For example, on
a 3380 device with one cylinder of primary space allocation you should specify 149
pages per cylinder.

Use the BC1PNLIB utility to initialize the data set. The JCL below assumes that you
are using a 3380 device.

//ELIBINIT EXEC PGM=NDVRC1,PARM='BC1PNLIB'

//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//�

//�

//�

//INITVSAM DD

// DSN=VSAM.DATASET,DISP=(OLD,KEEP)
//SYSPRINT DD SYSOUT=�

//BSTERR DD SYSOUT=�

//SYSUDUMP DD SYSOUT=�

//SYSIN DD �

Device Page size Pages per track Pages per cylinder

3380 4088 10 150

3390 4088 12 180

2-16 Utilities Guide

2.5 Allocating and Initializing an ELIB Data Set

INIT DDNAME = INITVSAM
PAGE SIZE = 4�88
ALLOCATE = (749,3��)
RESERVE PAGES = 15�
DIRECTORY PAGES = 14

.
INQUIRE DDNAME = INITVSAM
 .
/�

In the above example you have allocated and initialized a VSAM data set as an ELIB
data set with 749 pages initialized as primary storage. When 150 pages remain in this
primary storage area, Endevor automatically attempts to allocate and initialize
secondary storage with a capacity of 300 pages. In addition you have requested the
BC1PNLIB utility to list statistical information about this data set after it has been
initialized.

2.5.4.3 Reinitializing a Endevor LIB Data Set

To reinitialize an ELIB data set, you can:

■ Delete and reallocate the library, or

■ Rerun the initialization procedure, with the following additional clause:
DESTROY TO REUSE. If you use this clause, any data currently in the library
will be destroyed. Use this option with caution.

Chapter 2. Endevor LIB Data Sets 2-17

2.6 Expanding Endevor LIB Data Sets

2.6 Expanding Endevor LIB Data Sets

 2.6.1 Overview

Normally, ELIB data sets expand automatically according to your secondary allocation
value. However, if you specify a reserve threshold of 0 (reserve pages=0) when you
initialize the ELIB data set automatic expansion will not be able to occur. In this case
it is necessary to run the BC1PNLIB utility to force expansion of the data set into a
secondary allocation.

The example below shows sample JCL and control statements that you can use to
accomplish this.

//EXPAND EXEC PGM=NDVRC1,PARM='BC1PNLIB'

//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//INITVSAM DD DSN=VSAM.DATASET,
// DISP=(SHR,KEEP)

//SYSPRINT DD SYSOUT=�

//BSTERR DD SYSOUT=�

//SYSUDUMP DD SYSOUT=�

//SYSIN DD �

EXPAND DDNAME = INITVSAM
ALLOCATE PAGES = 3��

 .
INQUIRE DDNAME = INITVSAM

 .
/�

In this example you have specified a secondary storage allocation of 300 pages. This
causes 2 cylinders of secondary storage to be allocated and initialized for this data set.
You have also requested a listing of statistical information about this expanded data
set, using the INQUIRE facility.

2-18 Utilities Guide

2.7 Adjusting Endevor LIB Data Sets

2.7 Adjusting Endevor LIB Data Sets

2.7.1 Using the ADJUST Function

The ADJUST function of the BC1PNLIB utility allows you to respecify the primary,
secondary, and reserve threshold space allocations for an ELIB data set. You can use
the ADJUST function to:

■ Adjust the secondary storage allocation after expanding an ELIB data set, so that
subsequent expansions will allocate a different amount of space.

■ Adjust the reserve threshold so that additional space will be allocated and
initialized based on a different threshold of unused space.

■ Reset the reserve threshold after Endevor resets the reserve threshold value to
zero. It does this after attempting to expand a data set and, failing to do so, in
order to prevent repeated failures. If this situation occurs, follow these
procedures:

– Copy the data set to a larger DASD allocation.

– Adjust the reserve threshold value (that is, the threshold at which Endevor
LIB will expand to a new extent) for future expansions.

– You might also want to adjust the secondary allocation quantity assigned
during initialization.

The example below shows sample JCL and control statements that you can use to
adjust an ELIB data set.

//ADJUST EXEC PGM=NDVRC1,PARM='BC1PNLIB'

//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//INITVSAM DD DSN=VSAM.DATASET,
// DISP=(SHR,KEEP)

//SYSPRINT DD SYSOUT=�

//BSTERR DD SYSOUT=�

//SYSUDUMP DD SYSOUT=�

//SYSIN DD �

 ADJUST DDNAME=INITVSAM
ALLOCATE PAGES = 6��
RESERVE PAGES = 3��

 .
 INQUIRE DDNAME=INITVSAM
 .
/�

In this example a secondary storage allocation of 600 pages was specified, and a
reserve threshold of 300 pages. This changes the original specifications for the ELIB
data set INITVSAM. After this is run, subsequent secondary allocations will be 600
pages rather than 300 pages, and the threshold of unused space that will trigger
automatic expansion will be 300 pages rather than 150.

Chapter 2. Endevor LIB Data Sets 2-19

2.7 Adjusting Endevor LIB Data Sets

You have also requested a listing of statistical information about this expanded data
set, using the INQUIRE facility.

2-20 Utilities Guide

2.8 Reorganizing Endevor LIB Directory Pages

2.8 Reorganizing Endevor LIB Directory Pages

2.8.1 BC1PNLIB and Directory Pages

If your library has too few directory pages, ELIB data sets will allocate new pages as
needed, but in discontinuous storage. This can slightly degrade performance. To
alleviate this problem, use the ELIB utility BC1PNLIB to reorganize the directory
with a larger number of pages. BC1PNLIB can also be used to reduce the number of
directory pages in the library to prevent wasting space.

Note: Endevor LIB locks the library for the duration of the reorganization procedure,
but this process is usually quite brief.

Note: The reorganization process is memory-intensive. Therefore you should give the
utility a region large enough to avoid multiple passes against the directory.

To reorganize a directory, use JCL and control statements similar to those provided
below.

//REORG EXEC PGM=NDVRC1,REGION=15��K,PARM='BC1PNLIB'

//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//INITVSAM DD DSN=VSAM.DATASET,
// DISP=(SHR,KEEP)

//SYSPRINT DD SYSOUT=�

//BSTERR DD SYSOUT=�

//SYSUDUMP DD SYSOUT=�

//SYSIN DD �

 REORG DDNAME=INITVSAM
DIRECTORY PAGES = 2�

 .
 INQUIRE DDNAME=INITVSAM
 .
/�

In this example the number of target directory pages allocated to the ELIB data set
was reset to 20.

Chapter 2. Endevor LIB Data Sets 2-21

2.9 Printing Endevor LIB Data Set Information

2.9 Printing Endevor LIB Data Set Information

 2.9.1 Overview

The ELIB utilities include an INQUIRY function that allows you to retrieve statistical
information about ELIB data sets. This function is included in two utilities,
BC1PNLIB and BC1PNLST.

■ The BC1PNLIB utility allows you to print header information for ELIB data sets,
information about members and/or target directory pages, and to analyze the
integrity of the data set.

■ The BC1PNLST utility allows you to perform all the above functions with the
exception of data set integrity analysis.

2.9.2 Printing Data Set Header Information

You can code the INQUIRY statement with no further specification in both the
BC1PNLIB and the BC1PNLST utilities. In both instances the system prints header
information for the ELIB data sets that you specify, and a bit map of space utilization
for the data set.

To use the INQUIRY function to print header information, use JCL similar to the
following example.

//INQUIRE EXEC PGM=NDVRC1,PARM='BC1PNLST'

//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//ELIB DD DSN=ELIB.DATASET,
// DISP=(SHR,KEEP)

//SYSPRINT DD SYSOUT=�

//BSTERR DD SYSOUT=�

//SYSUDUMP DD SYSOUT=�

//SYSIN DD �

 INQUIRE DDNAME=ELIB
 .
/�

An example of the printed information is shown below.

2-22 Utilities Guide

2.9 Printing Endevor LIB Data Set Information

ENDEVOR-LIB INQUIRY: DDNAME=ELIB

 DDNAME: ELIB

 DSNAME: BST.RELTEST.ELIB

 LIBRARY TYPE: VLB

 PAGE SIZE: 4�88

 LAST PAGE: 198�

FILE PAGE SIZE: 4�88

 INITIALIZED: �3/�5/2��1 16:�8:15.57

 (RE)ALLOC STAMP: 51

 LAST REORG/EXPAND: �3/�5/2��1 16:24:2�.75

FILE SIZE (PAGES) 1649

 FIRST ALLOCATION: 149

 EXPAND ALLOCATION: 3��

 RESERVE LIMIT: 1��

BIT MAP PAGES: 1 STARTING AT 61

DIRECTORY TARGET PAGES: 7 STARTING AT 3

ALLOC MAP BYTES: 211

 PAGES USED: 1552

 PAGES FREE: 97

LAST UPDATE STAMP: 148

 LAST UPDATE: �3/�5/2��1 16:27:52.98

 LATEST MEMBER: $OWTOR

 AVG ALLOC/MEMBER: 3

DATA PAGES: 1543

 # REPLACES: �

 # ADDS: 143

 # DELETES: �

 # MEMBERS: 143

DIRECTORY PAGES: 7

DIR OVERFLOWS: �

LONGEST DIR OVFL: �

LIBRARY EXTENDS: 5

DIRECTORY REORG: �

��� ENDEVOR LIB ALLOCATION BIT MAP: BIT=� FOR FREE PAGE. ���

�3A19F2C (+����) FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF � �

�3A19F4C (+��2�) FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF � �

�3A19F6C (+��4�) FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF � �

�3A19F8C (+��6�) FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF � �

�3A19FAC (+��8�) FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF � �

�3A19FCC (+��A�) FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF � �

�3A19FEC (+��C�) FFFF8��� �������� �������� ����3FFF FFFFFF�� � �

The information in this listing is described below.

Field Description

DDNAME DDname of the data set covered by this listing.

DSNAME DSname of the data set covered by this listing.

Library type Library type. Always VLB for Endevor LIB data sets.

Page size Page size for the data set.

Last page Last addressable page for the data set.

File page size Usable page size, after allowing for VSAM control
characters.

Initialized Date and time when the data set was initialized.

(Re)alloc stamp Number of times this data set has been expanded,
reorganized, or initialized.

Last reorg (expand) Date and time when the data set was last reorganized,
expanded, or initialized.

File size (pages) Number of pages currently in the data set.

Chapter 2. Endevor LIB Data Sets 2-23

2.9 Printing Endevor LIB Data Set Information

Field Description

First allocation Number of pages initialized as primary storage for this
data set.

Expand allocation Number of pages initialized as secondary storage during
each automatic expansion of the data set.

Reserve limit Number of pages of remaining primary allocation that
triggers automatic expansion.

Bit map pages Number of pages taken up by the data set allocation bit
map. The number of the first bit map allocation page is
in the STARTING AT field.

Directory target pages Number of directory target pages in the data set. The
number of the first directory target page is in the
STARTING AT field.

Alloc map bytes Number of bytes in the allocation bit map.

Pages used Number of pages currently used in the data set.

Pages free Number of available pages remaining in the data set.

Last update stamp Number of times the data set has been updated.

Last update Date and time of the last update.

Latest member Name of the member most recently added or updated in
the data set.

Avg alloc/member Average number of pages taken up by one member.

data pages Number of pages containing data.

replaces Number of replaces executed against the data set.

adds Number of adds executed against the data set.

deletes Number of deletes executed against the data set.

members Number of members in the data set.

directory pages Number of directory pages currently in the data set. If
this number is greater than the number in the
DIRECTORY TARGET PAGES field, consider
increasing the number of target directory pages.

Longest dir overflow Highest number of overflow pages for a directory page.
If this number is greater than 0 (zero), consider
increasing the number of target directory pages.

library extends Number of times the data set has expanded.

directory reorg Number of times the number of directory pages has been
changed.

2-24 Utilities Guide

2.9 Printing Endevor LIB Data Set Information

2.9.2.1 Endevor LIB Allocation Bitmap

The allocation bitmap provides a visual depiction of space utilization in the data set
covered by the report. Each character of the bit map describes four pages in the data
set. Possible values are 0-9 and A-F, where:

0--All four pages are available.

F--All four pages are full.

2.9.3 Printing Member Information

You can code the INQUIRY statement with the MEMBER option in either the
BC1PNLIB or the BC1PNLST utility. In both instances the system will generate
reports listing information about the members in the ELIB data sets that you specify.

To print member information, use JCL similar to the following example.

//INQUIRE EXEC PGM=NDVRC1,PARM='BC1PNLST'

//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//ELIB DD DSN=ELIB.DATASET,
// DISP=(SHR,KEEP)

//SYSPRINT DD SYSOUT=�

//BSTERR DD SYSOUT=�

//SYSUDUMP DD SYSOUT=�

//SYSIN DD �

 INQUIRE DDNAME=ELIB
 OPTION
 MEMBERS
 .
/�

Member information appears as follows.

MEMBER=$BWHOAMI START PAGE # 14�8 END PAGE 14�8 STAMP # 1�� # RECS 17 # BYTES 726 # PAGES 1 C

/ BST NDVR25� NDVRXP $BWHOAMI ASMXMAC 2 ���1.���� 9�/�39 2�:�4 �

MEMBER=$BWTL START PAGE # 14�9 END PAGE 14�9 STAMP # 1�1 # RECS 24 # BYTES 1��8 # PAGES 1 C

/ BST NDVR25� NDVRXP $BWTL ASMXMAC 2 ���1.���� 9�/�39 2�:�4 �

MEMBER=$BWTOR START PAGE # 141� END PAGE 141� STAMP # 1�2 # RECS 3� # BYTES 1328 # PAGES 1 C

/ BST NDVR25� NDVRXP $BWTOR ASMXMAC 2 ���1.���� 9�/�39 2�:�4 �

MEMBER=$OABEND START PAGE # 1411 END PAGE 1413 STAMP # 1�3 # RECS 2�5 # BYTES 8537 # PAGES 3 C

/ BST NDVR25� NDVRXP $OABEND ASMXMAC 2 ���1.���� 9�/�39 2�:�7 �

MEMBER=$OACCEPT START PAGE # 1414 END PAGE 1415 STAMP # 1�4 # RECS 21� # BYTES 7273 # PAGES 2 C

/ BST NDVR25� NDVRXP $OACCEPT ASMXMAC 2 ���1.���� 9�/�39 2�:�7 �

MEMBER=$OADJUST START PAGE # 1416 END PAGE 1417 STAMP # 1�5 # RECS 84 # BYTES 4293 # PAGES 2 C

/ BST NDVR25� NDVRXP $OADJUST ASMXMAC 2 ���1.���� 9�/�39 2�:�7 �

MEMBER=$OAMODE START PAGE # 1418 END PAGE 1419 STAMP # 1�6 # RECS 118 # BYTES 5283 # PAGES 2 C

/ BST NDVR25� NDVRXP $OAMODE ASMXMAC 2 ���1.���1 9�/�39 2�:�7 �

MEMBER=$OATTACH START PAGE # 142� END PAGE 1428 STAMP # 1�7 # RECS 793 # BYTES 33388 # PAGES 9 C

/ BST NDVR25� NDVRXP $OATTACH ASMXMAC 2 ���1.���2 9�/�39 2�:�7 �

The information in this listing is described below.

Chapter 2. Endevor LIB Data Sets 2-25

2.9 Printing Endevor LIB Data Set Information

Field Description

Member = Member name.

Start page # Number of first page where member is stored.

End page # Number of last page where the member is stored.

Stamp # Number of the action that last modified the member
relative to the total number of actions executed against
the data set.

recs Number of lines in the member.

bytes Size of the member, in bytes.

pages Number of pages on which the member is stored.

Contiguity indicator Indicates whether member data is stored contiguously.
Possible values are C (stored contiguously) or F (data is
fragmented).

Footprint The second line of each member entry contains the
footprint of the member.

2-26 Utilities Guide

2.10 Printing Target Directory Page Information

2.10 Printing Target Directory Page Information

 2.10.1 Overview

You can code the INQUIRY statement with the DIRECTORY option in either the
BC1PNLIB or the BC1PNLST utility. In both instances, the system will generate
reports listing information about the directories in the ELIB data sets that you specify.

To use the INQUIRY function to retrieve directory information, use JCL and control
statements similar to the following example.

//INQUIRE EXEC PGM=NDVRC1,PARM='BC1PNLST'

//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//ELIB DD DSN=ELIB.DATASET,
// DISP=(SHR,KEEP)

//SYSPRINT DD SYSOUT=�

//BSTERR DD SYSOUT=�

//SYSUDUMP DD SYSOUT=�

//SYSIN DD �

 INQUIRE DDNAME=ELIB
 OPTION
 DIRECTORY
 .

/�

Directory page information appears as follows.

 DIRECTORY # DIR����� PAGE # 3 STAMP # 137 BYTES FREE 2827

MEMBERS THIS DIRECTORY PAGE 15

 DIRECTORY # DIR����1 PAGE # 4 STAMP # 142 BYTES FREE 1483

MEMBERS THIS DIRECTORY PAGE 31

 DIRECTORY # DIR����2 PAGE # 5 STAMP # 143 BYTES FREE 2645

MEMBERS THIS DIRECTORY PAGE 17

 DIRECTORY # DIR����3 PAGE # 6 STAMP # 148 BYTES FREE 2728

MEMBERS THIS DIRECTORY PAGE 16

 DIRECTORY # DIR����4 PAGE # 7 STAMP # 147 BYTES FREE 2479

MEMBERS THIS DIRECTORY PAGE 19

 DIRECTORY # DIR����5 PAGE # 8 STAMP # 145 BYTES FREE 2163

MEMBERS THIS DIRECTORY PAGE 23

 DIRECTORY # DIR����6 PAGE # 9 STAMP # 146 BYTES FREE 223�

MEMBERS THIS DIRECTORY PAGE 22

TOTAL MEMBERS FOUND = 143 FRAGMENTED = � UNFRAGMENTED = 143 MEMBER PAGES = 1543

AVERAGE PER MEMBER: PAGES = 11 RECORDS = 844 CHARACTERS = 41295

AVERAGE PER DIRECTORY PAGE: MEMBERS = 2� FREE BYTES = 2365

The information in this listing is described below:

Field Description

Directory # Identifier of the directory page.

Page # Location of the directory page in the data set.

Chapter 2. Endevor LIB Data Sets 2-27

2.10 Printing Target Directory Page Information

Field Description

Stamp # The number of the last update of this directory relative
to total updates to the data set. For example, STAMP #
137 means that the last update to the directory was the
137th update to the data set.

Bytes free Number of unused bytes on the directory page.

Members this directory
page

Number of members on this directory page.

Total members found Total members found on all directory pages.

Fragmented Number of fragmented members.

Unfragmented Number of unfragmented members.

Member pages Number of pages taken up by members.

Average per member:
pages

Average pages taken up by data set members.

Average per member:
records

Average number of lines in data set members.

Average per member:
characters

Average number of characters in data set members.

Average per directory
page: members

Average number of members per directory page.

Average per directory
page: free bytes

Average number of available bytes per directory page.

2.10.2 Printing Data Set Analysis Information

You can code the INQUIRY statement with the ANALYZE option only in the
BC1PNLIB utility. Use the ANALYZE option to validate the integrity of specified
ELIB data sets. The analysis verifies the integrity of each member in the directories
and ensures that the allocation bit map is valid. Damaged members, if any, are
identified, as are misallocated pages. The ANALYZE function must run in dedicated
mode, and locks the library while sweeping it.

To verify the integrity of a Endevor LIB library, use JCL and control statements
similar to the following example.

//ANALYZE EXEC PGM=NDVRC1,PARM=(BC1PNLIB)

//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//ELIB DD DSN=ELIB.DATASET,
// DISP=(SHR,KEEP)

//SYSPRINT DD SYSOUT=�

//BSTERR DD SYSOUT=�

2-28 Utilities Guide

2.10 Printing Target Directory Page Information

//SYSUDUMP DD SYSOUT=�

//SYSIN DD �

 INQUIRE DDNAME=ELIB
 OPTION
 ANALYZE
 .

/�

The report produced by the analyze function can contain the following messages:

■ *** ORPHAN: MEMBER= PAGE= NEXT= PREV= STAMP= BYTES
USED=

The page or range of pages in the message are marked as occupied in the
allocation bit map, but are not associated with any members in the data set header,
allocation map, or directory pages.

■ *** MEMBER= STAMP= PAGE= FOUND MEMBER= STAMP=

Part of the member identified in the MEMBER=, STAMP=, and PAGE= fields
has been overlaid by the member identified in the FOUND MEMBER= and
following STAMP= fields.

■ *** MEMBER= STAMP= LIDPAGES= ACTUAL PAGES=

The member identified in the MEMBER= and STAMP= fields is listed in the
directory as occupying the number of pages in the LIDPAGE= field, but the
analysis utility has determined that it actually occupies the number of pages in the
ACTUAL PAGES= field.

■ *** PAGE= OF MEMBER= IS FREE. NEXT= PREV= STAMP=
BYTES USED=

The allocation map shows the named page to be free, but the directory associates
the same page with the member identified in the MEMBER= and STAMP= fields,
and shows that the page contains the number of bytes in the BYTES USED= field.
The immediately preceding and subsequent pages in the directory are shown in the
PREV= and NEXT= fields. The location of the directory entry with this
information is shown in a message like this:

*** E-LIB DIR CHUNK= 1ST PAGE

Chapter 2. Endevor LIB Data Sets 2-29

2.11 Converting To or From Endevor LIB Format

2.11 Converting To or From Endevor LIB Format

2.11.1 Using BC1PNCPY for “Conversion”

The Endevor LIB copy utility, BC1PNCPY, allows you to copy members between any
Endevor supported library types, while preserving the original Endevor footprint of
copied members. You can use this utility to copy all or selected members of an
existing base, delta, or listing library from a PDS or PDS/E to a Endevor LIB data set
or vice versa. BC1PNCPY is limited to record sizes of 255 bytes or less.

Note: When dealing with large libraries, BC1PNCPY takes a great deal of time to
run. In addition, it requires exclusive control of the input and output libraries, for
integrity.

To copy between Endevor libraries or from/to an external library, use JCL and control
statements similar to the following example.

//CONVERT EXEC PGM=NDVRC1,PARM='BC1PNCPY'

//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//OLDBASE DD DSN=BST.OLD.BASE,
// DISP=(OLD,KEEP)

//NEWELIB DD DSN=BST.NEW.BASE,
// DISP=(OLD,KEEP)

//SYSPRINT DD SYSOUT=�

//BSTERR DD SYSOUT=�

//SYSUDUMP DD SYSOUT=�

//SYSIN DD �

COPY INPUT DDNAME = OLDBASE
OUTPUT DDNAME = NEWELIB

 .
/�

In this example, the system copies all members from the OLDBASE data set to the
NEWELIB data set.

2-30 Utilities Guide

Chapter 3. Load Module Support

Chapter 3. Load Module Support 3-1

3.1 Module Capabilities

 3.1 Module Capabilities

You can place the following modules under the control of Endevor:

■ Source data with a record length of up to 32,000 bytes. Endevor controls the
actual source in base, delta, and source output libraries.

■ Load modules. When you add a member defined as RECFM=U, Endevor checks
for the presence of linkage editor information. If this information is present,
Endevor recognizes the member as a load module. Endevor creates a summary of
the information contained in the load module, allowing you to track changes to the
load module. This summary, not the actual load module, is placed in
Endevor-controlled libraries.

This ability to track load modules allows you to put, for example, vendor code, which
is often distributed in load module format only, under Endevor's control.

3-2 Utilities Guide

3.2 How Endevor Controls Load Modules

3.2 How Endevor Controls Load Modules

Step 1. Endevor allows you to add a load module directly from a load module library.
When you add a load module, Endevor actually adds a summary of information
contained in the load module. This information summary is in the form of a text file
with LRECL=80.

Step 2. The load module generate processor may copy the load module from the
external library to a load library for the target stage.

Note: See “Getting Ready to Support Load Modules” for information on generate
processors for load modules.

Chapter 3. Load Module Support 3-3

3.3 Viewing Load Module Information

3.3 Viewing Load Module Information

 3.3.1 Overview

You can view load module summary information using option 1 (Elements) on the
Display Options menu. See the User Guide for instructions on using the Display
Options menu.

The Summary of Levels and Element Master panels for load module summary
elements are the same as those for other elements. The Browse, Changes, and History
panels differ somewhat and are shown below.

3.3.2 Browse Panel for Load Module Summary Elements

��������������������������������� TOP OF DATA ���������������������������������

�� ��

�� ELEMENT BROWSE 17JUL�1 1�:�6 ��

�� ��

�� ENVIRONMENT: IMRENV1 SYSTEM: PERF SUBSYSTEM: PERF ��

�� ELEMENT: XXXXAL1� TYPE: BAP STAGE: MVSTEST1 ��

�� ��

���

-------------------------- SOURCE LEVEL INFORMATION ───────────────────────────

 VV.LL SYNC USER DATE TIME STMTS CCID COMMENT

 ───── ──── ──────── ─────── ───── ───── ──────────── ──────────────────────────

 �1.�� DA1BP12 17JUL�1 �9:14 32 TEST TESTING

 �1.�1 DA1BP12 17JUL�1 �9:15 37 TEST TESTING

 �1.�2 DA1BP12 17JUL�1 �9:15 32 TEST TESTING

GENERATED DA1BP12 17JUL�1 �9:15 TEST TESTING

 +�� ��

 +��

 +�� LOAD MODULE INFORMATION SUMMARY

 +��

%+�2 BST.XDVRC1S2.CONLIB(BC1PAL1�)

 +��

%+�2 LINK DATE: 15JUL�1, LINKAGE EDITOR: 5665284�8 �3�1

%+�2 ENTRY POINT OFFSET: �������� SIZE: ���1828�

 +��

%+�2 EP CSECT: BC1PAL1� (15JUL�1) SIZE: ���18152 TRANSLATOR: 5668962�1

%+�2 CSECT: BNVPEINT (17JUN�1) SIZE: �����126 TRANSLATOR: 5668962�1

 +��

 +�� CSECT ENVIRON. SYSTEM SUBSYSTEM ELEMENT TYPE S VV.LL DATE

%+�2 BC1PAL1� BST NDVR25� INTERNAL BC1PAL1� ASMIPGMR 2 �1.49 15JUL

%+�2 BNVPEINT BST NDVR25� NDVRXP BNVPEINT ASMXPMVS 2 �1.�1 17JUN

 +��

 +�2 �� NO ZAP DATA PRESENT

 +��

 +�� ATTRIBUTES:

 +�� AMODE31

 +�� EXEC

 +�� NOT-ALIAS

 +�� NOT-ONLYLD

 +�� NOT-OVLY

3-4 Utilities Guide

3.3 Viewing Load Module Information

 +�� NOT-REFR

 +�� NOT-SCTR

 +�� NOT-TEST

 +�� RENT

 +�� REUS

 +�� RMODEANY

 +��

�������������������������������� BOTTOM OF DATA �������������������������������

The header and source level information fields on this panel contain the same
information as the standard browse panel. The remaining fields are explained below.

Field Description

Link date Date when the load module was last link edited.

Linkage editor Identifier for the linkage editor used to link edit
the load module.

Entry point offset Position of entry point.

Size Size of the load module, in decimal bytes.

EP Identifies the entry point CSECT.

CSECT CSECT name and date when it was last
generated.

Size Size of the CSECT, in decimal bytes.

Translator Identifier for the compiler that performed the
translation.

CSECT CSECT name.

Environ Footprint environment.

System Footprint system.

Subsystem Footprint subsystem.

Element Footprint element name.

Type Footprint type.

S Footprint stage.

VV.LL Footprint version and level for the element.

Date Footprint date.

No ZAP Data Present Indicates that no ZAPs have been applied to the
current load module. See the Changes and
History panels in the following sections to see
how ZAP information is displayed.

Attributes Load module attributes assigned by the linkage
editor. See the linkage editor documentation for
descriptions of individual attributes.

Chapter 3. Load Module Support 3-5

3.3 Viewing Load Module Information

3.3.3 Changes Panel for Load Module Summary

��������������������������������� TOP OF DATA ���������������������������������

�� ��

�� ELEMENT CHANGES 17JUL�1 1�:�8 ��

�� ��

�� ENVIRONMENT: IMRENV1 SYSTEM: PERF SUBSYSTEM: PERF ��

�� ELEMENT: XXXXAL1� TYPE: BAP STAGE: MVSTEST1 ��

�� ��

���

-------------------------- SOURCE LEVEL INFORMATION ───────────────────────────

 VV.LL SYNC USER DATE TIME STMTS CCID COMMENT

 ───── ──── ──────── ─────── ───── ───── ──────────── ──────────────────────────

 �1.�� DA1BP12 17JUL�1 �9:14 32 TEST TESTING

 �1.�1 DA1BP12 17JUL�1 �9:15 37 TEST TESTING

 �1.�2 DA1BP12 17JUL�1 �9:15 32 TEST TESTING

GENERATED DA1BP12 17JUL�1 �9:15 TEST TESTING

 +�2 BST.XDVRC1S2.CONLIB(BC1PAL1�)

 +�1-�2 BST.B9�24C.CONLIB(BC1PAL1�)

 +�2 LINK DATE: 15JUL�1, LINKAGE EDITOR: 5665284�8 �3�1

 +�2 ENTRY POINT OFFSET: �������� SIZE: ���1828�

 +�1-�2 LINK DATE: 16MAY�1, LINKAGE EDITOR: 5665284�8 �2�3

 +��-�2 ENTRY POINT OFFSET: �������� SIZE: ���17536

 +�2 EP CSECT: BC1PAL1� (15JUL�1) SIZE: ���18152 TRANSLATOR: 5668962�1

 +�2 CSECT: BNVPEINT (17JUN�1) SIZE: �����126 TRANSLATOR: 5668962�1

 +�1-�2 EP CSECT: BC1PAL1� (15MAY�1) SIZE: ���174�8 TRANSLATOR: 5668962�1

 +��-�2 CSECT: BNVPEINT (16APR�1) SIZE: �����126 TRANSLATOR: 5668962�1

+�2 BC1PAL1� BST NDVR25� INTERNAL BC1PAL1� ASMIPGMR 2 �1.49 15JUL

 +�2 BNVPEINT BST NDVR25� NDVRXP BNVPEINT ASMXPMVS 2 �1.�1 17JUN

+�1-�2 BC1PAL1� QAPROD MVSPROD INTERNAL BC1PAL1� ASMIPGMR 2 �1.39 15MAY

 +��-�2 BNVPEINT QAPROD MVSPROD NDVRXP BNVPEINT ASMXPMVS 2 �1.�1 16APR

 +�2 �� NO ZAP DATA PRESENT

 +�1-�2 ZAP TO CSECT: BC1PAL1� DATE: �6JUN�1 ID: C9�4�34�

 +�1-�2 ZAP TO CSECT: BC1PAL1� DATE: 3�JUL�1 ID: C9�4�341

 +�1-�2 ZAP TO CSECT: BC1PAL1� DATE: 3�JUL�1 ID: C9�4�4��

 +�1-�2 ZAP TO CSECT: BC1PAL1� DATE: 3�JUL�1 ID: C9�4�81�

 +�1-�2 ZAP TO CSECT: BC1PAL1� DATE: 2�DEC�1 ID: C9�41�8�

 +�1-�2 ZAP TO CSECT: BC1PAL1� DATE: 2�DEC�1 ID: C9�4135�

�������������������������������� BOTTOM OF DATA��������������������������������

This change panel tells you that:

■ The load module now resides in a different library.

■ The load module has been re-linked, using a more recent version of the same
linkage editor.

■ New footprints have been created for each CSECT.

ZAP information fields are described below.

Field Description

ZAP to CSECT Name of CSECT to which a ZAP was applied.

Date Date the ZAP was applied to the CSECT.

3-6 Utilities Guide

3.3 Viewing Load Module Information

Field Description

ID User-defined ZAP ID.

3.3.4 History Panel for Load Module Summary Elements

��������������������������������� TOP OF DATA ���������������������������������

�� ��

�� ELEMENT HISTORY 17JUL97 1�:1� ��

�� ��

�� ENVIRONMENT: IMRENV1 SYSTEM: PERF SUBSYSTEM: PERF ��

�� ELEMENT: XXXXAL1� TYPE: BAP STAGE: MVSTEST1 ��

�� ��

���

-------------------------- SOURCE LEVEL INFORMATION ───────────────────────────

 VV.LL SYNC USER DATE TIME STMTS CCID COMMENT

 ───── ──── ──────── ─────── ───── ───── ──────────── ──────────────────────────

 �1.�� DA1BP12 17JUL�1 �9:14 32 TEST TESTING

 �1.�1 DA1BP12 17JUL�1 �9:15 37 TEST TESTING

 �1.�2 DA1BP12 17JUL�1 �9:15 32 TEST TESTING

GENERATED DA1BP12 17JUL�1 �9:15 TEST TESTING

 +�� ��

 +��

 +�� LOAD MODULE INFORMATION SUMMARY

 +��

%+�2 BST.XDVRC1S2.CONLIB(BC1PAL1�)

%+�1-�2 BST.B9�24C.CONLIB(BC1PAL1�)

%+��-�1 BST.NQAPROD2.CONLIB(BC1PAL1�)

 +��

%+�2 LINK DATE: 15JUL�1, LINKAGE EDITOR: 5665284�8 �3�1

%+�2 ENTRY POINT OFFSET: �������� SIZE: ���1828�

%+�1-�2 LINK DATE: 16MAY�1, LINKAGE EDITOR: 5665284�8 �2�3

%+��-�1 LINK DATE: 15MAY�1, LINKAGE EDITOR: 5665284�8 �2�4

%+��-�2 ENTRY POINT OFFSET: �������� SIZE: ���17536

 +��

%+�2 EP CSECT: BC1PAL1� (15JUL�1) SIZE: ���18152 TRANSLATOR: 5668962�1

%+�2 CSECT: BNVPEINT (17JUN�1) SIZE: �����126 TRANSLATOR: 5668962�1

%+�1-�2 EP CSECT: BC1PAL1� (15MAY�1) SIZE: ���174�8 TRANSLATOR: 5668962�1

%+��-�2 CSECT: BNVPEINT (16APR�1) SIZE: �����126 TRANSLATOR: 5668962�1

%+��-�1 EP CSECT: BC1PAL1� (15MAY�1) SIZE: ���174�8 TRANSLATOR: 5668962�1

 +��

 +�� CSECT ENVIRON. SYSTEM SUBSYSTEM ELEMENT TYPE S VV.LL DATE

%+�2 BC1PAL1� BST NDVR25� INTERNAL BC1PAL1� ASMIPGMR 2 �1.49 15JUL

%+�2 BNVPEINT BST NDVR25� NDVRXP BNVPEINT ASMXPMVS 2 �1.�1 17JUN

%+�1-�2 BC1PAL1� QAPROD MVSPROD INTERNAL BC1PAL1� ASMIPGMR 2 �1.39 15MAY

%+��-�2 BNVPEINT QAPROD MVSPROD NDVRXP BNVPEINT ASMXPMVS 2 �1.�1 16APR

%+��-�1 BC1PAL1� QAPROD MVSPROD INTERNAL BC1PAL1� ASMIPGMR 2 �1.39 15MAY

 +��

%+�2 �� NO ZAP DATA PRESENT

%+�1-�2 ZAP TO CSECT: BC1PAL1� DATE: �6JUN�1 ID: C9�4�34�

%+�1-�2 ZAP TO CSECT: BC1PAL1� DATE: 3�JUL�1 ID: C9�4�341

%+�1-�2 ZAP TO CSECT: BC1PAL1� DATE: 3�JUL�1 ID: C9�4�4��

%+�1-�2 ZAP TO CSECT: BC1PAL1� DATE: 3�JUL�1 ID: C9�4�81�

%+�1-�2 ZAP TO CSECT: BC1PAL1� DATE: 2�DEC�1 ID: C9�41�8�

%+�1-�2 ZAP TO CSECT: BC1PAL1� DATE: 2�DEC�1 ID: C9�4135�

%+��-�1 �� NO ZAP DATA PRESENT

 +��

Chapter 3. Load Module Support 3-7

3.3 Viewing Load Module Information

 +�� ATTRIBUTES:

 +�� AMODE31

 +�� EXEC

 +�� NOT-ALIAS

 +�� NOT-ONLYLD

 +�� NOT-OVLY

 +�� NOT-REFR

 +�� NOT-SCTR

 +�� NOT-TEST

 +�� RENT

 +�� REUS

 +�� RMODEANY

 +��

�������������������������������� BOTTOM OF DATA��������������������������������

3-8 Utilities Guide

3.4 Getting Ready to Support Load Modules

3.4 Getting Ready to Support Load Modules

To track changes to load modules using Endevor, you must:

■ Define a type to associate with load module summaries. This type can have a
maximum LRECL=80, and should specify a compare range of 1-80. A source
output library need not be specified.

■ Write a generate processor for ADD, UPDATE, and TRANSFER actions, and a
move processor that copies the load module from one load library to another
without using the summary of information element.

Note: When writing a generate processor for load modules make sure that none of the
job steps executes for the GENERATE action. Because the generate processor only
copies the load module from one external load library to another, changes made to an
original load module could be copied into a target load module by the generate
processor, causing the target load module to become out of sync with the summary of
information element stored in Endevor.

When coding generate processors for use with load modules, include an EXECIF
clause to prevent the use of that generate processor for the GENERATE action.

 3.4.1 Sample Processors

This section contains sample generate processors for ADD, UPDATE, and
TRANSFER actions related to load modules.

Sample Generate Processor for Load Modules

//ADDCOPY EXEC PGM=BSTCOPY

// EXECIF=(&C1ACTION,EQ,ADD)

//SYSPRINT DD SYSOUT=�

//ILIB DD DSN=&C1USRDSN,DISP=SHR

//OLIB DD DSN=user.stg1.loadlib,DISP=SHR,FOOTPRNT=CREATE

//SYSIN DD �

 C I=ILIB,�=OLIB

 S M=((&C1USRMBR,&C1ELEMENT,R))

//UPDCOPY EXEC PGM=BSTCOPY

// EXECIF=(&C1ACTION,EQ,UPDATE)

//SYSPRINT DD SYSOUT=�

//ILIB DD DSN=&C1USRDSN,DISP=SHR

//OLIB DD DSN=user.stg1.loadlib,DISP=SHR,FOOTPRNT=CREATE

//SYSIN DD �

 C I=ILIB,�=OLIB

 S M=((&C1USRMBR,&C1ELEMENT,R))

//XFRCOPY EXEC PGM=BSTCOPY

// EXECIF=(&C1ACTION,EQ,TRANSFER)

//SYSPRINT DD SYSOUT=�

//ILIB DD DSN=ndvr.input.loadlib,DISP=SHR,

//OLIB DD DSN=ndvr.output.loadlib,DISP=SHR,FOOTPRNT=CREATE

//SYSIN DD �

 C I=ILIB,�=OLIB

 S M=((&C1USRMBR,&C1ELEMENT,R))

Chapter 3. Load Module Support 3-9

3.4 Getting Ready to Support Load Modules

Where:

Sample Move Processor for Load Modules

//MOVCOPY EXEC PGM=BSTCOPY

// EXECIF=(&C1ACTION,EQ,MOVE)

//SYSPRINT DD SYSOUT=�

//ILIB DD DSN=ndvr.inputlib,DISP=SHR,FOOTPRNT=VERIFY

//OLIB DD DSN=ndvr.outlib,DISP=SHR,FOOTPRNT=CREATE

//SYSIN DD �

 C I=ILIB,�=OLIB

 S M=((&C1USRMBR,&C1ELEMENT,R))

//TRANCOPY EXEC PGM=BSTCOPY

// EXECIF=(&C1ACTION,EQ,TRANSFER)

//SYSPRINT DD SYSOUT=�

//ILIB DD DSN=ndvr.inputlib,DISP=SHR,FOOTPRNT=VERIFY

//OLIB DD DSN=ndvr.outlib,DISP=SHR,FOOTPRNT=CREATE

//SYSIN DD �

 C I=ILIB,�=OLIB

 S M=((&C1USRMBR,&C1ELEMENT,R))

Variable Definition

user.stg1.loadlib User-defined Stage 1 load library

ndvr.input.loadlib Load library associated with the from location
of the transfer.

ndvr.output.loadlib Load library associated with the to location of
the transfer.

3.4.1.1 Sample Delete Processor for Load Modules

You can use standard delete processors for load module management. See the
Extended Processors Guide for a sample delete processor.

3-10 Utilities Guide

 Chapter 4. BSTPCOMP Utility

Chapter 4. BSTPCOMP Utility 4-1

4.1 How Does BSTPCOMP Utility Work?

4.1 How Does BSTPCOMP Utility Work?

Endevor provides a utility, BSTPCOMP, which compares the contents of two PDS or
PDS/E members and/or sequential files, and reports the differences between them. The
members/files being compared can be--but need not necessarily be--previously
retrieved Endevor elements.

BSTPCOMP accepts two files as input; these files can be either PDS or PDS/E
members or sequential files. The files can be fixed or variable length, but cannot
exceed an LRECL of 256 (260 for variable-length files).

BSTPCOMP reports the differences between the two files. The first file, NDVRIN1,
is assumed to be the base file. The second file, NDVRIN2, is assumed to be the
changed file. BSTPCOMP reports the differences in file 2 as compared to file 1.

The files are compared line-by-line, based on the contents of particular (contiguous)
characters. The range of characters included in the compare is defined in terms of a
from and thru column, but cannot exceed 256. For example, you might want to
compare two files based on the contents of positions 1-5 only.

If the files compare identically, no output will be produced other than the syntax
listing (if applicable). Data is only listed when differences are detected.

The output from BSTPCOMP can be formatted either for browse (without ASA
characters and headings) or for hardcopy printout (including ASA characters and
headers).

Note: Beware of problems when comparing fixed records to variable records. Spaces
are not equal to nulls.

4-2 Utilities Guide

4.2 Controlling Compare Output

4.2 Controlling Compare Output

 4.2.1 Overview

There are three methods for executing BSTPCOMP: no overrides, PARM-driven, and
control card-driven. These methods specify which records display (if any), which
columns are compared, and the format of the output data set (BROWSE or PRINT).
A description of each method follows with accompanying sample syntax (as
applicable).

 4.2.2 No Overrides

By default, BSTPCOMP compares columns 1 through 72, lists changes only, and
formats for printing if the NDVRLST DDname is available. If NDVRLST is
unavailable, the output is formatted for BROWSE and written to file NDVRPCH.

If the input files are variable length, the comparison considers short records to be
padded with blanks up to the thru column.

 4.2.2.1 Sample JCL

In the following example, BSTPCOMP has been instructed to compare the data in
DDname NDVRIN1 with data in DDname NDVRIN2 and report changes (if any)
within columns 1 through 72. If there are changes, the output would be written to
DDname NDVRLST with page headings.

Note: NDVRIN1 and NDVRIN2 must be sequential datasets or a partitioned dataset
with a member name specified.

//�

//� RESTRICTION:

//� LRECL FOR INPUT FILES (NDVRIN1, NDVRIN2) MAY NOT EXCEED 256

//�

//STEP1 EXEC PGM=BSTPCOMP,REGION=2���K,

//STEPLIB DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//�

//� ONE OF THE FOLLOWING WILL RECEIVE YOUR OUTPUT

//NDVRLST DD SYSOUT=�,DCB=(RECFM=FBA,LRECL=133)

//�

//� YOU MAY HAVE SOME OTHER WAY OF ALLOCATING SORT WORK FILES.

//SORTWK�1 DD UNIT=tdisk,SPACE=(CYL,(2,1))

//SORTWK�2 DD UNIT=tdisk,SPACE=(CYL,(2,1))

//�

//� THE NEXT TWO DESCRIBE THE FILES YOU WANT TO COMPARE

//NDVRIN1 DD DISP=SHR,DSN=uprfx.uqual.FILE1(MEMBER)

//NDVRIN2 DD DISP=SHR,DSN=uprfx.uqual.FILE2(MEMBER)

/�

Chapter 4. BSTPCOMP Utility 4-3

4.2 Controlling Compare Output

4.2.3 Control Card Execution

Control cards are supplied in file NDVRIPT and are freeform. The control cards
consist of the word COMPARE followed by optional clauses, and ending with a
period. This execution method provides the greatest degree of flexibility and control.

 4.2.3.1 Syntax

��──COMpare──�

�──¤─ ──┬ ┬─── ─¤──.─────��
 ├ ┤ ─COLumn─ ──┬ ┬─── ─n─ ──┬ ┬──── ─n───────────────────────────────
 │ │└ ┘─=─ └ ┘─TO─
 │ │┌ ┐─CHAnge──
 ├ ┤ ─OUTput─ ──┬ ┬─── ──┼ ┼─HIStory─ ───────────────────────────────
 │ │└ ┘─=─ └ ┘─NEW─────
 │ │┌ ┐─DISplay──
 ├ ┤ ─FORmat─ ──┬ ┬─── ──┼ ┼─FILe───── ──────────────────────────────
 │ │└ ┘─=─ └ ┘─IEBupdte─
 │ │┌ ┐─BLAnk─
 ├ ┤ ─PAD─ ──┬ ┬─── ──┼ ┼─NULl── ────────────────────────────────────
 │ │└ ┘─=─ └ ┘─'x'───
 ├ ┤ ─SIZe─ ──┬ ┬─── ─nnnnnn───────────────────────────────────────
 │ │└ ┘─=─
 ├ ┤ ─TITle─ ──┬ ┬─── ─'______'────────────────────────────────────
 │ │└ ┘─=─
 └ ┘ ─RECord─ ──┬ ┬───
 │ │┌ ┐─FIXed────
 └ ┘ ─TYPe─ ──┬ ┬─── ──┴ ┴─VARiable─ ─LENgth─ ──┬ ┬─── ─nnn─
 └ ┘─=─ └ ┘─=─

Note: For more information about the IEBUPDTE option, see “The IEBUPDTE
Request Card Generator” section in this chapter.

A description of the syntax clauses follows:

Clause Description

COLUMN Specifies the range of columns to compare. If omitted, columns
1-72 are used.

OUTPUT Specifies which records are to be output. The default is CHANGES
only. The other options are: HISTORY (shows the existing member
together with both inserts and deletes), and NEW (shows the new
member, highlighting inserts only).

FORMAT Specifies the output format. The default is DISPLAY which writes
the output to file NDVRLST. The syntax listing is produced first,
followed by the original output file in report format--with carriage
control and page headings. The FILE option (that is, BROWSE)
writes the data to DDname NDVRPCH without page headings.

4-4 Utilities Guide

4.2 Controlling Compare Output

Clause Description

PAD PAD is applicable to variable length records only. The default is
BLANK (which pads short records with blanks up to the compare
length). The options are NULL (which pads with binary zeros) or
“x” (which pads with the specified single character).

SIZE Specifies a file-size estimate for the sort. By default, this option is
ignored.

TITLE Appears before the first data line as a line of asterisks, followed by
the title string and another line of asterisks. Useful if
FORMAT=FILE.

RECORD This clause is provided for DOS-compatibility only.

 4.2.3.2 Sample JCL

The sample JCL which follows would produce a report:

Note: NDVRIN1 and NDVRIN2 must be sequential datasets or a partitioned dataset
with a member name specified.

//COMPARE EXEC PGM=BSTPCOMP,REGION=2���K

//STEPLIB DD DSN=iprfx.iqual.CONLIB,DISP-SHR

//�

//NDVRIN1 DD DSN=OLD.FILE.LIBRARY(MEMBER),DISP=SHR

//NDVRIN2 DD DSN=NEW.FILE.LIBRARY(MEMBER),DISP=SHR

//�

//NDVRLST DD SYSOUT=� ��SYNTAX LISTING + COMPARE OUTPUT��

//�SORTWORK FILES USED ONLY IF FILES TOO LARGE FOR IN-MEMORY COMPARE

//SORTWK�1 DD UNIT=DASD,SPACE=(TRK,(1,3�)

//SORTWK�2 DD UNIT=DASD,SPACE=(TRK,(1,3�)

//�

//NDVRIPT DD �

COMPARE COLUMN=1 TO 8� OUTPUT=HISTORY.

/�

The sample JCL which follows would produce a file for browsing:

//COMPARE EXEC PGM=BSTPCOMP,REGION=2���K

//STEPLIB DD DSN=iprfx.iqual.CONLIB,DISP-SHR

//�

//NDVRIN1 DD DSN=OLD.FILE.LIBRARY(MEMBER),DISP=SHR

//NDVRIN2 DD DSN=NEW.FILE.LIBRARY(MEMBER),DISP=SHR

//�

//NDVRLST DD SYSOUT=� ��SYNTAX LISTING + COMPARE OUTPUT��

//�SORTWORK FILES USED ONLY IF FILES TOO LARGE FOR IN-MEMORY COMPARE

//SORTWK�1 DD UNIT=DASD,SPACE=(TRK,(1,3�)

//SORTWK�2 DD UNIT=DASD,SPACE=(TRK,(1,3�)

//�

//NDVRIPT DD �

COMPARE COLUMN=1 TO 8� OUTPUT=HISTORY.

//�OUTPUT OF COMPARE: NOTE: RECORD LENGTH=#COMPARE COLUMNS + 16

//NDVRPCH DD DSN=OUTPUT.FILE.NAME,DISP=(,CATLG),

// UNIT=DASD,SPACE=(TRK,(5,5),RLSE),

Chapter 4. BSTPCOMP Utility 4-5

4.2 Controlling Compare Output

// DCB=(LRECL=88,BLKSIZE=6�72,RECFM=FB)

//�

 4.2.4 PARM-Controlled Execution

This method may be more convenient for CLIST operation than the Control Card
method above.

The full syntax for the EXEC statement PARM values is shown below:

PARM='output-format,from,thru,rec-count,pad-char'

Specify the PARM values as described below. Separate the values using a single
comma, leaving no spaces between the values.

PARM Option Description

output-format The 2-character code that indicates the type of comparison
information you want reported (character 1) and the format of
the output file (character 2). The default is CD.

Specify the first character (type of information you want) as
follows:

■ C-- Print only the changes between the two files: that is,
those lines that are in file 2 but not in file 1, or those lines
that are deleted from file 2.

■ B-- Print (browse) the contents of file 2, highlighting those
lines that are not in file 1 by printing “%INSERT” to the
left of those lines: “%” allows you to scan for changes
easily; “INSERT” indicates that the line was new in file 2.

■ H-- Print a history of both files, including:

- The entire contents of file 2, highlighting those lines that
are not in file 1 by printing “%INSERT” to the far left.

- Lines that were in file 1 but not in file 2, highlighting
these lines with “%DELETE” to the far left.

Specify the second character (output format) as follows:

■ F-- The output file is in browse format and does not have
any ASA characters or headers. The output is written to
DDname NDVRPCH

■ D-- The output file is formatted for print, and includes
ASA characters and headers. The output is written to
DDname NDVRLST.

from Starting character for the compare. BSTPCOMP begins its
search at this position in both files. The default is 1.

4-6 Utilities Guide

4.2 Controlling Compare Output

Note: The formula for NDVRPCH DCB attributes is as follows:

DCB = (RECFM=FB,LRECL=LENGTH OF RECORD + 16, BLKSIZE=LRECL)

Note the coding convention for each variable:

■ RECFM must be fixed block.

■ LRECL must equal the length of the RECORD plus 16.

■ Blocksize must be an even multiple of LRECL.

PARM Option Description

thru Ending character for the compare. BSTPCOMP ends its search
with this position, within both files. For variable-length
records, if the record in one file is longer than that in the other,
and the thru character extends beyond the end of the record,
BSTPCOMP pads according to the pad-char specification
before performing the compare.

The default thru specification is 72.

rec-count Largest number of records in either file. The default is 10000.
Estimate high when specifying this value.

pad-char Pad character used for variable-length records, as described for
the thru parameter above. Specify this as follows. The default is
BLANK.

 ■ BLANK--Blanks

■ NULL--Null values (binary zeroes)

nnn The hexadecimal equivalent of nnn, where nnn is a 1-3
character decimal value. Specify 64 to pad with X'40', 255 to
pad with X'FF', and so forth.

Chapter 4. BSTPCOMP Utility 4-7

4.3 Sample Output

 4.3 Sample Output

The report below is returned when you run the defaults, or specify
OUTPUT=CHANGES or output format code CD (Changes Report). It shows only
the changes between the two files: that is, those lines that are in file 2 but not in file
1 (marked with “INSERT”), or those lines that are missing from file 2 that were in file
1 (marked with “DELETE”).

COPYRIGHT (C) Computer Associates, INC., 2��2 E N D E V O R mm/dd/yy 11:58:23 PAGE 1

 RELEASE X.XX SERIAL XXXXXX

BSTPCOMP - FILE COMPARE UTILITY

COMPARE OUTPUT=CHANGES . ��35���2

 INSERT MAIN $FUNCSTG PLSIZE=4 �����6

 DELETE MAIN $FUNCSTG �����6

 INSERT WORD3 DS F ����1�

 INSERT SPACE 3 ����12

 INSERT MAIN999 $FEND ����14

 DELETE $FEND ����12

%������ RECORDS: FILE 1 = ���14 FILE 2 = ���16 INSERTS = ����4 DELETES = ����2 ������

The report below is returned when you specify OUTPUT=NEW or output-format
code BD (New Browse Report). It lists the contents of file 2, highlighting any lines
that are not in file 1 with “%INSERT.”

COPYRIGHT (C) Computer Associates, INC., 2��2 E N D E V O R mm/dd/yy 11:58:27 PAGE 1

 RELEASE X.XX SERIAL XXXXXX

BSTPCOMP - FILE COMPARE UTILITY

COMPARE OUTPUT = NEW . ��49���2

COMPTEST TITLE 'PROGRAM TO DEMONSTRATE COMPARE UTILITY' �����1

 COMPT $MODNTRY LINKAGE=SUB �����2

TITLE 'DSECTS: DCB ' �����3

 DCBD DSORG=PS �����4

TITLE MAIN: ENTRY FROM CALLER' �����5

%INSERT MAIN $FUNCSTG PLSIZE=4 �����6

GLOBALS DS �D �����7

WORD1 DS F �����8

WORD2 DS F �����9

%INSERT WORD3 DS F ����1�

 $FUNC ����11

%INSERT SPACE 3 ����12

SR R15,R15 RETURN CODE = SUCCESS ����13

%INSERT MAIN999 $FEND ����14

 $MODEND ����15

 END ����16

%������ RECORDS: FILE 1 = ���14 FILE 2 = ���16 INSERTS = ����4 DELETES = ����2 ������

The report below is returned when you specify OUTPUT=HISTORY or
output-format code HD (History Report). It lists the contents of file 2, highlighting
inserts from file 2 and deletes from file 1.

4-8 Utilities Guide

4.3 Sample Output

COPYRIGHT (C) Computer Associates, INC., 2��2 E N D E V O R mm/dd/yy 11:58:23 PAGE 1

 RELEASE X.XX SERIAL XXXXXX

BSTPCOMP - FILE COMPARE UTILITY

COMPARE OUTPUT = HISTORY . ��63���2

COMPTEST TITLE 'PROGRAM TO DEMONSTRATE COMPARE UTILITY' �����1

 COMPT $MODNTRY LINKAGE=SUB �����2

TITLE 'DSECTS: DCB ' �����3

 DCBD DSORG=PS �����4

TITLE MAIN: ENTRY FROM CALLER' �����5

%INSERT MAIN $FUNCSTG PLSIZE=4 �����6

%DELETE MAIN $FUNCSTG �����6

GLOBALS DS �D �����7

WORD1 DS F �����8

WORD2 DS F �����9

%INSERT WORD3 DS F ����1�

 $FUNC ����11

%INSERT SPACE 3 ����12

SR R15,R15 RETURN CODE = SUCCESS ����13

%INSERT MAIN999 $FEND ����14

%DELETE $FEND ����12

 $MODEND ����15

 END ����16

%������ RECORDS: FILE 1 = ���14 FILE 2 = ���16 INSERTS = ����4 DELETES = ����2 ������

Chapter 4. BSTPCOMP Utility 4-9

4.4 Return Codes

 4.4 Return Codes

The COND CODE values below can be returned by BSTPCOMP. Code 3007 is the
expected result. Other values might be returned, indicating a problem with the sort. If
this happens, rerun the job to obtain the sort messages, specifying //SYSOUT DD
SYSOUT=* .

Return Code Meaning

3000 The input files are identical for the columns compared. No reports
were produced.

3001 An input or output file could not be opened. Ensure that the DD
statements are correct for all files and try again.

3002 The number of records in one or both of the input files exceeds the
maximum count specified by the rec-count parameter. Increase the
count and try again. It is better to estimate high rather than low.

3003 The LRECL for an input file exceeded 256 (260 for variable-length).
You cannot use this file as input.

3005 The record format for an input file is Undefined. The record must
specify either Fixed or Variable.

3006 An input parameter is missing or invalid (for example, thru >from).
Check your syntax against the parameter descriptions above, correct
the problem, and resubmit the job.

3007 BSTPCOMP completed its compare successfully and found
differences between the files. This is the standard return code.

4-10 Utilities Guide

4.5 The IEBUPDTE Request Card Generator

4.5 The IEBUPDTE Request Card Generator

 4.5.1 Overview

The IEBUPDTE Request Card Generator allows you to generate control cards from
either a Endevor element or differences between two members. This utility enables
concurrent programming on the same module. Additionally, it allows program updates
to be generated and distributed. The output created by this utility is standard
IEBUPDTE control cards.

Note: When editing programs using ISPF, make sure the option NUMBER ON is in
effect. The element type should define columns 1-80 as the compare columns.

4.5.2 Generating Control Cards from a Endevor Element

This is a two-step process. The JCL in iprfx.iqual.jcllib(BC1JFUP1) allows you to
generate the following:

1. In the first step, a Endevor element is printed to a temporary file using the PRINT
action in SCL, Endevor's Software Control Language. When specifying the
PRINT action, name masking can be used to select more than one element.
Additionally, multiple PRINT requests can be included in this first step.

2. In the second step, the IEBUPDTE Request Card Generator reads the file created
by the first step and creates IEBUPDTE control cards. If option CHANGES was
specified in Step 1 on the SCL request, then ./ UPDATE IEBUPDTE control cards
will be generated. If option BROWSE was specified in Step 1, then ./ ADD
IEBUPDTE control cards will be generated.

Please see the sample JCL for BC1JFUP1 below.

//� (COPY JOBCARD)

//���

//� �

//� BC1JFUP1 JCL TO GENERATE IEBUPDTE CARDS FROM Endevor FOR �

//� ELEMENTS. �

//� �

//� STEP1: READ ELEMENT FROM Endevor AND CREATE PRINT �

//� OUTPUT THAT WILL BE READ BY STEP 2. YOU CAN �

//� SPECIFY AS MANY ELEMENTS AS ARE REQUIRED. �

//� �

//� IF "OPTION CHANGES" IS SPECIFIED, �

//� STEP 2 WILL GENERATE ./ UPDATE CARDS. �

//� IF "OPTION BROWSE" IS SPECIFIED, �

//� STEP 2 WILL GENERATE ./ ADD CARDS. �

//� �

//� STEP2: READ INPUT CREATED FROM STEP 1 AND CREATE IEBUPDTE �

//� REQUEST CARDS. �

//� �

//� STEP3: RUN IEBUPDTE STEP TO MERGE CHANGES. �

//� �

Chapter 4. BSTPCOMP Utility 4-11

4.5 The IEBUPDTE Request Card Generator

//� PLEASE CONSULT YOUR Endevor FOR UTILITIES MANUAL FOR A �

//� DESCRIPTION OF SELECTION CRITERIA. �

//� �

//���

//STEP1 EXEC PGM=NDVRC1,DYNAMNBR=15��,PARM='C1BM3���',REGION=4�96K

//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//BSTIPT�1 DD �

PRINT ELEMENT '????????'

� VERSION NN

� LEVEL NN

 FROM ENVIRONMENT '????????'

 SYSTEM '????????'

 SUBSYSTEM '????????'

 TYPE '????????'

STAGE NUMBER N

 OPTION

 CHANGES.

//C1MSGS1 DD SYSOUT=�

//C1PRINT DD DSN=&&TEMP,DISP=(NEW,PASS),

// UNIT=tdisk,SPACE=(CYL,(5,5)),

// DCB=(RECFM=FB,LRECL=133,BLKSIZE=133��)

//SYSPRINT DD SYSOUT=�

//����

//STEP2 EXEC PGM=BC1PFUPD,COND=(�,NE),

// PARM='SEQBEG=73,SEQLNG=8' (DEFAULT)

//� PARM='SEQBEG=1,SEQLNG=6' COBOL

//STEPLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//C1UPMSGS DD SYSOUT=�

//C1CHGSI DD DSN=&&TEMP,DISP=(OLD,DELETE)

//C1UPDTO DD DSN=uprfx.uqual.OUTPUT, <== IEBUPDTE CARDS

// DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(2,1)),UNIT=TDISK,

// DCB=(RECFM=FB,LRECL=8�,BLKSIZE=312�)

//C1WK�1 DD UNIT=tdisk,SPACE=(CYL,(2,1))

//C1WK�2 DD UNIT=tdisk,SPACE=(CYL,(2,1))

//STEP3 EXEC PGM=IEBUPDTE,PARM=MOD

//SYSPRINT DD SYSOUT=�

//SYSIN DD DSN=uprfx.uqual.OUTPUT,DISP=SHR

//SYSUT1 DD DSN=uprfx.uqual.SRCLIB1,DISP=SHR <== INPUT PDS or PDS/E

//SYSUT2 DD DSN=uprfx.uqual.SRCLIB2,DISP=SHR <== OUTPUT PDS or PDS/E

//���

Certain statements within the sample JCL control the generation of IEBUPDTE control
cards:

■ The DDname BSTIPT01 is where the SCL is specified.

■ The DDname C1PRINT specifies the output file created by Step 1. If a level is
not specified, then the current level will be printed. The DCB attributes for this
file are LRECL=133, RECFM=FB.

■ The DDname C1CHGSI specifies the temporary file created by Step 1 as shown
on the DDname C1PRINT.

4-12 Utilities Guide

4.5 The IEBUPDTE Request Card Generator

■ Output created by the IEBUPDTE Request Card Generator is written to the
DDname C1UPDTO. The DCB attributes associated with this file are
LRECL=80, RECFM=FB.

■ The PARM accepted as input by the program BC1PFUDP specifies the position of
the sequence number within the element. Two parameters can specify the
beginning position and length of the sequence numbers. PARM rules are as
follows:

– The first parameter, as shown in the JCL, is SEQBEG=. The default for
SEQBEG is 73.

– The second parameter is SEQLNG=. The default for SEQLNG is 7. Valid
range for SEQLNG is 1-8.

– If SEQBEG is coded, than SEQLNG must be specified.

– The NAME= parameter must not be specified.

4.5.3 Generating Control Cards When Two Members Differ

This utility operates independently of Endevor.

This is also a two-step process. The JCL in iprfx.iqual.jcllib(BC1JFUP2) allows you to
generate the following:

1. In the first step, two files, NDVRIN1 and NDVRIN2 are compared and the
differences are written to a temporary file. Both NDVRIN1 and NDVRIN2 must
be sequential files or partitioned datasets with a member name provided.

2. In the second step, the IEBUPDTE Request Card Generator reads the file created
by the first step and creates ./ UPDATE IEBUPDTE control cards.

Please see the sample JCL for BC1JFUP2 below.

//� (COPY JOBCARD)

//���

//� �

//� BC1JFUP2 JCL TO GENERATE IEBUPDTE CARDS FROM TWO MEMBERS. �

//� �

//� STEP1: READ TWO FILES AND CREATE OUTPUT THAT WILL BE �

//� READ BY STEP 2. �

//� �

//� SPECIFY THE TWO FILES AND/OR MEMBERS THAT WILL BE �

//� USED TO CREATE INPUT TO STEP 2 IN THE DDNAMES �

//� NDVRIN1 AND NDVRIN2. �

//� �

//� STEP2: READ INPUT CREATED FROM STEP 1 AND CREATE IEBUPDTE �

//� REQUEST CARDS. �

//� �

//� NAME= MUST BE SPECIFIED. THIS IS THE NAME OF THE �

//� ./ UPDATE NAME CARD TO BE GENERATED. �

//� �

//� STEP3: RUN IEBUPDTE STEP TO MERGE CHANGES. �

//� �

//� PLEASE CONSULT YOUR Endevor UTILITIES MANUAL FOR A �

//� DESCRIPTION OF SELECTION CRITERIA. �

Chapter 4. BSTPCOMP Utility 4-13

4.5 The IEBUPDTE Request Card Generator

//� �

//���

//STEP1 EXEC PGM=BSTPCOMP,REGION=2�48K

//STEPLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//NDVRIPT DD �

COMPARE COL = 1 TO 72

 OUTPUT CHANGES

 FORMAT IEBUPDTE

 .

 //SYSLST DD SYSOUT=�

/ /SYSOUT DD SYSOUT=�

//SORTWK�1 DD DSN=&&SORTWK1,UNIT=tdisk,SPACE=(CYL,(5,5))

//SORTWK�2 DD DSN=&&SORTWK2,UNIT=tdisk,SPACE=(CYL,(5,5))

//NDVRIN1 DD DSN=uprfx.uqual.FILE1(MEMBER1),DISP=SHR

//NDVRIN2 DD DSN=uprfx.uqual.FILE2(MEMBER2),DISP=SHR

//NDVRLST DD SYSOUT=�

//NDVRPCH DD DSN=&&TEMP,DISP=(NEW,PASS),

// UNIT=tdisk,SPACE=(CYL,(5,5)),

// DCB=(RECFM=FB,LRECL=88,BLKSIZE=88,DSORG=PS)

//����

//STEP2 EXEC PGM=BC1PFUPD,COND=(�,NE),REGION=2�48K,

// PARM='SEQBEG=73,SEQLNG=8,NAME=MEMBER' (NAME= REQUIRED)

//� PARM='SEQBEG=1,SEQLNG=6,NAME=MEMBER' COBOL

//STEPLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//C1UPMSGS DD SYSOUT=�

//C1CHGSI DD DSN=&&TEMP,DISP=(OLD,DELETE)

//C1UPDTO DD DSN=uprfx.uqual.OUTPUT, <== IEBUPDTE CARDS

// DISP=(NEW,CATLG,DELETE),

// SPACE=(TRK,(2,1)),UNIT=TDISK,

// DCB=(RECFM=FB,LRECL=8�,BLKSIZE=312�)

//C1WK�1 DD UNIT=tdisk,SPACE=(CYL,(2,1))

//C1WK�2 DD UNIT=tdisk,SPACE=(CYL,(2,1))

//STEP3 EXEC PGM=IEBUPDTE,PARM=MOD

//SYSPRINT DD SYSOUT=�

//SYSIN DD DSN=uprfx.uqual.OUTPUT,DISP=SHR

//SYSUT1 DD DSN=uprfx.uqual.SRCLIB1,DISP=SHR <== INPUT PDS or PDS/E

//SYSUT2 DD DSN=uprfx.uqual.SRCLIB2,DISP=SHR <== OUTPUT PDS or PDS/E

//���

Certain statements within the sample JCL control the generation of IEBUPDTE control
cards:

■ The DDname NDVRIPT is where the compare columns are specified. The
parameters OUTPUT CHANGES and FORMAT IEBUPDTE must be specified as
shown in the example.

■ The DDnames NDVRIN1 and NDVRIN2 specify the two files to be compared.
(Refer to the utility BSTPCOMP for more information.)

■ The DDname NDVRPCH specifies the output file created by Step 1. The DCB
attributes for this file are LRECL=88, RECFM=FB.

■ The DDname C1CHGSI specifies the temporary file created by Step 1 as shown
on the DDname C1PRINT.

■ DDname C1UPDTO. The DCB attributes associated with this file are
LRECL=80, RECFM=FB.

4-14 Utilities Guide

4.5 The IEBUPDTE Request Card Generator

■ The PARM accepted as input by the program BC1PFUDP specifies the position of
the sequence number within the element, and the member name associated with
the ./ UPDATE card. Three parameters can be specified. PARM rules are as
follows:

– The first parameter, as shown in the JCL, is SEQBEG=. The default for
SEQBEG is 73 .

– The second parameter is SEQLNG=. The default for SEQLNG is 7. Valid
range for SEQLNG is 1-8.

– If SEQBEG is coded, than SEQLNG must be specified.

– The third parameter is NAME=. This parameter controls the member name
generated on the ./ UPDATE control card. This parameter is required.

Note: The return codes for NDVRIPT differ from BSTPCOMP as follows:

NDVRIPT BSTPCOMP

4 3000

9 3001

10 3002

11 3003

12 3005

13 3006

0 3007

Chapter 4. BSTPCOMP Utility 4-15

4-16 Utilities Guide

Chapter 5. CONCALL—User Invocation Utility

Chapter 5. CONCALL—User Invocation Utility 5-1

5.1 CONCALL

 5.1 CONCALL

CONCALL serves as a pass-through program which can be invoked by NDVRC1 and
then call a user-designated program in which the program name is specified by the
EXEC PARM. In addition, CONCALL has the ability to invoke any program from a
specific library.

5.1.1 The Benefits of CONCALL

In using CONCALL you can invoke user programs from non-authorized libraries.
Programs that are invoked directly from NDVRC1 must reside in an authorized library.

Example This enhancement enables you to bypass the STEPLIB (or LINKLST)
residency requirement for the program specified in the execution parameter. As a result
of this enhancement, this program can be used to invoke any program from a specified
library.: CONCALL can also be used be used in conjunction with the NDVRC1
server program to invoke batch programs from a non-authorized library:

//STEP1 EXEC PGM=NDVRC1,PARM='CONCALL,DDN:MYLOAD,APIPGM, parameter data'

5-2 Utilities Guide

Chapter 6. Expand Includes Utility

Chapter 6. Expand Includes Utility 6-1

6.1 The Purose of the Expand Includes Utility

6.1 The Purose of the Expand Includes Utility

The Expand Includes utility is a batch function that expands CA-Panvalet
++INCLUDE or CA-Librarian -INC statements and, optionally, COBOL COPY
statements.

■ If you are a CA-Panvalet user and have converted your source management
functions to Endevor, use this utility to expand ++INCLUDE statements that are
embedded in existing application source code.

■ If you are a CA-Librarian user and have converted your source management
functions to Endevor, use this utility to expand -INC statements that are embedded
in existing application source code.

■ If you use COBOL and have COPY statements embedded in the application
source code, use this utility to expand those statements.

The Expand Includes utility writes the expanded code to either a sequential data set or
a partitioned data set member.

If you use CA-Librarian to expand your COBOL COPY statements, you may use the
Expand Includes utility to expand the COPY statements. The Expand Includes utility
also supports the REPLACING/BY keyword.

If the SUPPRESS keyword is found, then processing of the COPY statement is
bypassed, and the COPY statement is written to the destination file as-is.

Important! The Expand Includes utility does not support the CA-Librarian SEQ1,SEQ2
option on the -INC statement. The SEQ1,SEQ2 option provides a range of sequence
numbers from the INCLUDE member to be included in the output file. The Expand
Includes utility always includes the entire member.

6.1.1 Why Use the Expand Includes Utility?

The following scenario is typical of why you use the Expand Includes utility:

You have a COBOL program with source that contains CA-Panvalet ++INCLUDE
statements or CA-Librarian -INC statements. You want to use the source as is, and you
do not want to go into the source file to change the ++INCLUDE or -INC statements
to COPY statements.

In this situation, you would place the utility in the COBOL compile procedure, before
the compile step, to expand references to the CA-Panvalet or CA-Librarian members in
the source code.

6-2 Utilities Guide

6.1 The Purose of the Expand Includes Utility

6.1.2 How Does the Expand Includes Utility Work?

The Expand Includes utility works as follows:

Step The Utility Does This

1 Reads the source file.

For each source record:

2 Searches for ++INCLUDE, -INC, or COPY statements.

3 Searches the ENXINCnn libraries for a member name if an
++INCLUDE, -INC, or COPY statement is found.

4 Incorporates the source file into the output file if a member name is
found. See the section “COPY Statement Examples” that follows
for more detail.

After reading all source records:

5 Stops processing when the end of the file is reached.

6.1.3 COPY Statement Examples

While expanding a COPY member, the Expand Includes utility replaces complete
strings as requested in the COPY statement. Take, for example, the statement:

COPY DEF REPLACING DOG-HAS-FLEAS BY

 CAT-WITH-HAT.

If the original text contains:

88 DOG-HAS-FLEAS VALUE 'Y'.

the output would contain:

88 CAT-WITH-HAT VALUE 'Y'.

In order for the Expand Includes utility to replace a portion of a string, the replacing
string in the COPY statement must contain, at minimum, the first word of the string
followed by a hyphen (-) as a delimiter. Suppose you wanted to replace the original
text above with this string:

COPY DEF REPLACING DOG-

BY CAT-

If the original text contains:

88 DOG-HAS-FLEAS VALUE 'Y'.

the output would contain:

88 CAT-HAS-FLEAS VALUE 'Y'.

Similarly, say you were to replace the original text with this string:

Chapter 6. Expand Includes Utility 6-3

6.1 The Purose of the Expand Includes Utility

COPY DEF REPLACING DOG-HAS-

BY CAT-WITH-

If the original text contains:

88 DOG-HAS-FLEAS VALUE 'Y'.

the output would contain:

88 CAT-WITH-FLEAS VALUE 'Y'.

If the replacing clause contains quotes around strings, the search will be for the
presence of quotes around a string. For example:

�1 HEADER-RECORD3 COPY PAPHDR3 REPLACING '�2' by '�3'

If the input contains:

�2 LITERAL-A PIC X(5) VALUE 'GREEN'.

�2 LITERAL-B PIC X(5) VALUE '�2'.

The output would contain:

�2 LITERAL-A PIC X(5) VALUE 'GREEN'.

�2 LITERAL-B PIC X(5) VALUE '�3'.

If the COPY statement contains a level number and group name, the following rules
are observed:

Rule 1-- If the format of the COPY statement line is:

�x DATA-NAME-1 COPY ABC ...

AND the format of the first non-comment line in the copied member is:

�x DATA-NAME-2 ...

THEN the DATA-NAME-2 would be replaced with DATA-NAME-1 in the output:

�x DATA-NAME-1 ...

Rule 2-- If the format of the COPY statement line is:

�x DATA-NAME-1 COPY ABC ...

AND the format of the first non-comment line in the copied member is:

�y DATA-NAME-2 ... (�x is different from �y)

THEN a new line will be written to the output containing just DATA-NAME-1,
followed by the line from the copy member:

�x DATA-NAME-1.

�y DATA-NAME-2 ...

Rule 3-- If the COPY statement contains a procedure label, AND the format of the
COPY statement is:

6-4 Utilities Guide

6.1 The Purose of the Expand Includes Utility

PROCEDURE-LABEL. COPY MNO.

THEN a line will first be written to the output containing just procedure label:

PROCEDURE-LABEL.

 6.1.4 Processing Modes

The Expand Includes utility executes in one of two modes:

■ Default Location mode, which is the default processing mode. In this mode, the
source data set, or input file, is identified by the ENXIN DD statement and the
destination data set, or output file, is identified by the ENXOUT DD statement.
See “Default Location Processing Mode” for complete information.

■ Control Statement mode. In this mode, the utility is controlled by a set of
EXPAND INCLUDES requests that are specified in the ENXSCLIN DD
statement. See “Control Statement Processing Mode” for complete information.

The utility determines the processing mode by the presence of the ENXSCLIN DD
statement in the JCL. If the ENXSCLIN DD statement is allocated in the JCL, the
utility executes using Control Statement mode. Otherwise, the utility executes in
Default Location mode.

6.1.5 About the Input and Output Data Sets

Below are the attributes of the source and destination data sets used in the Expand
Includes utility:

■ The data sets can be either sequential or partitioned.

■ The record format can be either fixed or variable.

■ The record length of the destination data set should be at least as large as the
record length of the source data set and at least as large as the largest record
length of the INCLUDE data sets. If either of these conditions is not met, a
caution message is issued and the output records may be truncated.

Note: The ENXIN and ENXOUT DD data sets can be only sequential, partitioned, or
CONWRITE resultant members within processors. You cannot use CA-Librarian or
CA-Panvalet data sets as input to the Expand Includes utility.

Chapter 6. Expand Includes Utility 6-5

6.2 Operating Considerations

 6.2 Operating Considerations

 6.2.1 Overview

This section details operational considerations that pertain to the Expand Includes
utility.

6.2.2 Checking the Endevor Defaults Table

During initialization, the Expand Includes utility checks the Endevor Defaults Table to
determine whether CA-Librarian or CA-Panvalet support is active. The LIBENV=
parameter indicates whether support is active and, if so, for which application. If
neither CA-Librarian nor CA-Panvalet is active, the utility issues an error message and
terminates immediately.

6.2.3 Embedded and Looping INCLUDE Statements

The Expand Includes utility expands embedded INCLUDE statements. An embedded
INCLUDE statement occurs when a member expanded by an ++INCLUDE, -INC, or
COPY statement contains another ++INCLUDE, -INC, or COPY statement.

The utility also detects looping INCLUDE statements. A looping INCLUDE statement
occurs when one member includes another member which, in turn, includes the first
member. In this situation, the utility issues an error message and immediately stops
processing.

 6.2.4 Superset Support

The Expand Includes utility provides support for CA-Panvalet Supersets as follows:

If . . . Then . . .

The INCLUDE Library is a
CA-Panvalet data set

The utility provides full superset support

The INCLUDE library is a
partitioned data set

The utility provides limited support for ++INCLUDE
statements that refer to a superset. The utility ignores
the superset name and expands only the member
name.

For example, assume the source program contains
the following statement:
++INCLUDE superset.member1

The Expand Includes utility expands the statement
only by looking for member1 in the INCLUDE
libraries.

6-6 Utilities Guide

6.2 Operating Considerations

 6.2.5 Security

The Expand Includes utility does not perform any security checking. The utility relies
on your site's system (RACF, Top Secret, ACF2) to enforce data set access.

6.2.6 Monitoring Components in the Expand Includes Utility

When using the Expand Includes utility in a processor, both CA-Librarian and
CA-Panvalet components have the ability to collect component data for expand include
utility or CONWRITE. Component monitoring is also available using CONWRITE
with PARM='EXPINCL(y)'.

Chapter 6. Expand Includes Utility 6-7

6.3 Identifying the INCLUDE Member

6.3 Identifying the INCLUDE Member

 6.3.1 Overview

As the Expand Includes utility reads each record, it looks for the appropriate
INCLUDE indicator. The INCLUDE indicator is the character string that indicates that
a member should be included in the output file.

■ For CA-Panvalet, the indicator is ++INCLUDE.

■ For CA-Librarian, the indicator is -INC.

The utility checks the LIBENV= parameter in the Endevor Defaults Table to determine
which indicator to look for.

The Expand Includes utility also looks for COBOL COPY statements if the
EXPANDCOPY parameter was specified in the JCL PARM= statement (see “The JCL
Parameter”) or if the OPTIONS EXPAND COPY STATEMENTS clause was specified
in the EXPAND INCLUDES request.

6.3.2 Source File Format

The format of the source file for INCLUDE statements follows the standard format for
CA-Panvalet and CA-Librarian files: the member name is on the same line as the
++INCLUDE statement or the -INC statement.

The format for COBOL COPY statements is similar: the member name must be on the
same line as the word COPY.

6.3.3 Working with CA-Panvalet Files

If the Expand Includes utility is working with CA-Panvalet, the utility searches for the
++INCLUDE statement in column 8. The entire ++INCLUDE statement must be
specified on one line.

If the member name specified on the ++INCLUDE or COPY statement is invalid or
cannot be found in any of the INCLUDE libraries, the utility writes the invalid record
to the destination file. The utility then issues a caution message and continues to
process the source file.

6.3.4 Working with CA-Librarian Files

If the Expand Includes utility is working with CA-Librarian, the utility searches for the
-INC statement in column 1. The entire -INC statement must be specified on one line.

If the member name specified on the -INC or COPY statement is invalid or cannot be
found in any of the INCLUDE libraries, the utility issues an error message and
terminates processing.

6-8 Utilities Guide

6.3 Identifying the INCLUDE Member

Remember that the Expand Includes utility does not support the CA-Librarian
SEQ1,SEQ2 option on the -INC statement. The utility always includes the entire
member.

6.3.5 Working with COBOL COPY Statements

If the Expand Includes utility is to expand COBOL COPY statements, the COPY
statement must be located in columns 8 through 72, inclusive. Commented COPY
statements will not be expanded.

If the member name specified for the COPY statement is invalid or cannot be found in
the INCLUDE libraries, the Expand Includes utility ignores the error. The COPY
statement is written as is to the destination file. The error will most likely be detected
by the compiler program.

See “COPY Statement Examples” earlier in this chapter for examples of rules and
formats.

Chapter 6. Expand Includes Utility 6-9

6.4 Specifying INCLUDE Libraries

6.4 Specifying INCLUDE Libraries

 6.4.1 Overview

The Expand Includes utility resolves ++INCLUDE, -INC, and, optionally, COPY
statements by searching for the specified member in a set of libraries. These libraries,
referred to as INCLUDE libraries, can be partitioned, CA-Panvalet, or CA-Librarian
data sets. The libraries are identified by the following JCL statement:

ENXINCnn DD

nn is a two digit number between 00-99, inclusive.

To resolve ++INCLUDE, -INC, or COPY statements, the utility searches up to 100
INCLUDE libraries in numerical sequence.

 6.4.2 The ENXINC

nn DD Statement

Note the following in regard to the ENXINCnn DD statement:

■ The execution JCL must include at least one valid ENXINCnn DD statement.

■ The ENXINCnn DD statement cannot specify a concatenated data set.

■ The ENXINCnn DD statements can contain a combination of partitioned and
CA-Panvalet or CA-Librarian data sets.

6.4.3 Library Sequence Numbers

The INCLUDE libraries are searched in numeric sequence, no matter in which order
they are specified in the JCL. That is, the library named in statement ENXINC00 is
always searched before the library named in statement ENXINC01, even if the
ENXINC01 statement appears first in the JCL.

You do not need to begin the sequence numbers with 00 nor must you have a
complete sequence. For example, you can specify only the DD statements ENXINC01
and ENXINC04 in the JCL. The Expand Includes utility searches the library named in
statement ENXINC01 first, then the library named in ENXINC04.

6.4.4 Partitioned Data Sets

Use the guidelines below when an INCLUDE library is a partitioned data set:

■ The data set members must be uncompressed and unencrypted.

■ The member name specified on the ++INCLUDE and -INC statements can be no
longer than eight characters. If the INCLUDE member name is greater than eight
characters, the Expand Includes utility truncates the name and issues a warning.

6-10 Utilities Guide

6.5 Default Location Processing Mode

6.5 Default Location Processing Mode

 6.5.1 Overview

The Expand Includes utility executes in Default Location mode when the ENXSCLIN
DD statement has not been allocated in the JCL. The input and output files are
identified by fixed DD names as follows:

■ ENXIN DD specifies the source data set.

■ ENXOUT DD specifies the destination data set.

Both DD statements can refer to a sequential data set, a partitioned data set, or a
partitioned data set with an explicit member name.

Default Location mode is the default processing mode.

 6.5.2 Execution JCL

The example below illustrates JCL that executes the Expand Includes utility in Default
Location mode. This JCL can be found in member ENBXDLM1, in the JCL library
iprfx.iqual.JCLLIB.

In this example, the member to be expanded is provided on the PARM= statement (see
“The JCL Parameter”). As an alternative, the member name can be specified in the
ENXIN DD statement.

// (JOBCARD)

//ENBX1��� EXEC PGM=NDVRC1,PARM='ENBX1���member'

//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//�---�

//� The ENXIN DD statement identifies the input data set. The ──�

//� ENXOUT DD statements refers to the output data set. ──�

//�---�

//ENXIN DD DSN=uprfx.uqual.INPUT,DISP=SHR

//ENXOUT DD DSN=uprfx.uqual.OUTPUT,DISP=SHR

//�---�

//� The ENXINCnn DD statements refer to the include libraries that ──�

//� the utility will search when expanding includes. The utility ──�

//� will search up to 1�� include data sets identified by the ──�

//� DD statements ENXINC��-ENXINC99. ──�

//�---�

//ENXINC�� DD DSN=uprfx.uqual.INCLUD��,DISP=SHR

//ENXINC99 DD DSN=uprfx.uqual.INCLUD99,DISP=SHR

//�---�

//� The utility will write reports to ENXMSGS1 and ENXMSGS2. ──�

//�---�

//ENXMSGS1 DD SYSOUT=� Execution Report

//ENXMSGS2 DD SYSOUT=� Summary Report

//�---�

//� Panvalet Support ──�

Chapter 6. Expand Includes Utility 6-11

6.5 Default Location Processing Mode

//�---�

//C1TPDD�1 DD UNIT=VIO,SPACE=(CYL,3),

// DCB=(RECFM=VB,LRECL=26�,BLKSIZE=616�)

//C1TPDD�2 DD UNIT=VIO,SPACE=(CYL,5),

// DCB=(RECFM=VB,LRECL=26�,BLKSIZE=616�)

//C1TPLSIN DD UNIT=VIO,SPACE=(CYL,3),

// DCB=(RECFM=FB,LRECL=8�,BLKSIZE=616�)

//C1TPLSOU DD SYSOUT=� UNIT=VIO,SPACE=(CYL,5)

//C1PLMSGS DD SYSOUT=�

//�

//SYSABEND DD SYSOUT=�

6.5.3 Providing a Member Name

You must specify a member name if you are using a partitioned data set--and that
member name must be explicit (that is, no wildcard). If the input file is a partitioned
data set but an explicit member has not been provided in the ENXIN DD statement,
the utility checks the PARM= statement for a member name.

If the execution JCL contains a PARM= statement that specifies a member name and a
member name is also included in the ENXIN DD statement, the utility ignores the
member specified on the PARM= statement.

If a member name is not specified anywhere, you receive an error message.

6.5.4 The ENXIN and ENXOUT DD Statements

The Expand Includes utility uses the following rules when processing the ENXIN and
ENXOUT DD statements:

If . . . Then . . .

ENXIN DD is a sequential data set ENXOUT DD must be sequential or
partitioned data set with an explicit
member name.

ENXIN DD is a sequential data set and
ENXOUT DD is a partitioned data set
without an explicit member name

You receive an error message.

ENXIN DD is a partitioned data set and
the member is identified in the PARM=
statement or in the ENXIN DD statement

ENXOUT DD can be either a sequential
or partitioned data set.

ENXOUT DD is a partitioned data set
and an explicit member name is not
provided on that DD statement

The utility creates a member with the
same name as the input member. The
utility always replaces the destination
member.

ENXIN DD is a partitioned data set with
no member specified, and no member is
named in the PARM= statement

You receive an error message.

6-12 Utilities Guide

6.5 Default Location Processing Mode

If . . . Then . . .

ENXIN DD is a partitioned data set with
an explicit member name and the
PARM= statement contains a member
name

The PARM= member name is ignored.

Chapter 6. Expand Includes Utility 6-13

6.6 Control Statement Processing Mode

6.6 Control Statement Processing Mode

 6.6.1 Overview

Control Statement mode is activated only if the ENXSCLIN DD statement is allocated
in the execution JCL. The Expand Includes SCL statement identifies the source and
destination files that will be processed. See the discussion of the Expand Includes SCL
on “Expand Includes SCL.”

 6.6.2 Processing Members

Control statement mode allows you to process multiple members, or files, in a single
execution. You can do this in one of three ways:

■ Specify multiple EXPAND INCLUDES actions in the ENXSCLIN DD statement.

■ Specify a wildcarded member name in the FROM DSNAME MEMBER clause in
the EXPAND INCLUDES action.

■ Use a combination of the above two methods.

If the execution JCL contains a PARM= statement (see “The JCL Parameter”) that
specifies a member name in addition to the control statements in the ENXSCLIN DD
statement, the utility ignores the member specified on the PARM= statement and
issues a warning message.

6.6.3 Validating Input SCL

Endevor validates the input SCL (EXPAND INCLUDES actions). If no errors are
detected, all statements are processed and the Expand Includes Execution Report and
Expand Includes Summary Report are produced.

If errors are found in the SCL, Endevor continues parsing the statements, but does not
process them. Results of the validation process are presented on the Expand Includes
Control Statement Summary Report.

 6.6.4 Execution JCL

The example below illustrates JCL that executes the Expand Includes utility in Control
Statement mode. This JCL can be found in member ENBXCSM1, in the JCL library
iprfx.iqual.JCLLIB.

// (JOBCARD)

//ENBX1��� EXEC PGM=NDVRC1,PARM='ENBX1���'

//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//�---�

//� The ENXINCnn DD statements refer to the include libraries that �

//� the utility will search when expanding includes. The utility �

6-14 Utilities Guide

6.6 Control Statement Processing Mode

//� will search up to 1�� include data sets identified by the �

//� DD statements ENXINC��-ENXINC99. �

//�---�

//ENXINC�� DD DSN=uprfx.uqual.INCLUD��,DISP=SHR

//ENXINC99 DD DSN=uprfx.uqual.INCLUD99,DISP=SHR

//�---�

//� The utility will write reports to ENXMSGS1 and ENXMSGS2. �

//�---�

//ENXMSGS1 DD SYSOUT=� Execution Report

//ENXMSGS2 DD SYSOUT=� Summary Report

//�---�

//� The ENXSCLIN DD statement contains the input control statements �

//� (SCL) used to identify multiple expand requests. �

//�---�

//ENXSCLIN DD �

SCL control statements

/�

//�---�

//� Panvalet Support ──�

//�---�

//C1TPDD�1 DD UNIT=VIO,SPACE=(CYL,3),

// DCB=(RECFM=VB,LRECL=26�,BLKSIZE=616�)

//C1TPDD�2 DD UNIT=VIO,SPACE=(CYL,5),

// DCB=(RECFM=VB,LRECL=26�,BLKSIZE=616�)

//C1TPLSIN DD UNIT=VIO,SPACE=(CYL,3),

// DCB=(RECFM=FB,LRECL=8�,BLKSIZE=616�)

//C1TPLSOU DD SYSOUT=� UNIT=VIO,SPACE=(CYL,5)

//C1PLMSGS DD SYSOUT=�

//�

//SYSABEND DD SYSOUT=�

Chapter 6. Expand Includes Utility 6-15

6.7 The JCL Parameter

6.7 The JCL Parameter

 6.7.1 Overview

The JCL PARM= statement is used for two purposes;

■ To identify the member to be processed by the Expand Includes utility

■ To tell the Expand Includes utility to expand COBOL COPY statements

You are required to code this parameter.

6.7.2 The PARM= Parameter

The PARM= parameter appears as follows in the JCL:

PARM='ENBX1���member'

If you want to expand COBOL COPY statements, type the parameter as follows:

PARM='ENBX1���member,EXPANDCOPY'

The EXPANDCOPY portion of the parameter tells the Expand Includes utility to
expand any COBOL COPY statements found in the specified member.

Specifying a member in the PARM= parameter is optional. In the example above, the
member to be processed is included. If you want to expand COPY statements but do
not want to specify a member, type the parameter as shown below:

PARM='ENBX1���,EXPANDCOPY'

Note that you must type the leading comma in the parameter even if you do not
specify a member name.

6.7.3 The Member Name

The variable member in the PARM= parameter specifies the name of the member to
be processed. The member name can be no longer than eight characters in length and
must be explicit--you cannot wildcard this value. Use only the following characters in
the member name:

A-Z, �-9, $, @, #

If the PARM= parameter is coded and the ENXSCLIN DD statement is present in the
JCL, the member name in the PARM= parameter is ignored.

If you are working with a partitioned data set in Default Location mode, you can
specify a member name in one of two places: the PARM= parameter or the ENXIN
DD statement. If you do not enter a member name in the PARM= statement, you must
specify the name in the ENXIN DD statement. If you do not specify a member name
in either place, you receive an error message.

6-16 Utilities Guide

6.7 The JCL Parameter

If you are working with a sequential data set in Default Location mode, you do not
need to enter a member name.

Chapter 6. Expand Includes Utility 6-17

6.8 Expand Includes SCL

6.8 Expand Includes SCL

 6.8.1 Overview

You can enter as many EXPAND INCLUDES statements as necessary (see “Syntax”
below). These statements are specified in the ENXSCLIN DD statement.

The Expand Includes utility parses and validates all requests before it begins executing
them. If there is a syntax error in any request or an error is found validating a request,
none of the statements are executed. The utility attempts to parse all of the control
statements before terminating, however.

When the requests have been successfully parsed, the utility executes them. Requests
are executed as long as the highest return code is less than or equal to 12.

Note: If a member name is specified on the PARM= parameter and you have
allocated the ENXSCLIN DD statement, the Expand Includes utility ignores the
member name in the PARM= statement.

 6.8.2 Syntax

The Expand Includes syntax is shown below. (See the SCL Reference Guide for a
discussion of syntax conventions, if necessary.)

��──EXPand INClude─ ─FROm─ ──┬ ┬─DDName──ddname─────────────────── ────────�
 └ ┘ ─DSName──dsname─ ──┬ ┬──────────────
 └ ┘ ─MEMber──name─

�─ ─TO─ ──┬ ┬─DDName──ddname─────────────────── ───────────────────────────�
 └ ┘ ─DSName──dsname─ ──┬ ┬──────────────
 └ ┘ ─MEMber──name─

�─ ──┬ ┬─── ─.───────────────��
 └ ┘ ─OPTions──¤─ ──┬ ┬──────────────────────────── ─¤─
 ├ ┤ ─EXPand COPy─ ──┬ ┬───────────
 │ │└ ┘─STAtement─
 └ ┘ ─REPlace MEMber─────────────

Each clause in the syntax is described in the following sections.

6.8.3 The EXPAND INCLUDES Clause

The EXPAND INCLUDES clause is the first clause in the statement.

Clause Description

EXPAND INCLUDES The name of the action. You must code this
clause.

6-18 Utilities Guide

6.8 Expand Includes SCL

6.8.4 The FROM Clause

The FROM clause identifies the input, or source, data set. This clause is required.
Specify either a DDNAME or a DSNAME, but not both.

Clause Description

FROM DDNAME
ddname

Identifies the source data set by DD name. Specify the
name of a preallocated DD statement.

FROM DSNAME dsname Identifies the source data set by data set name. Specify
the name of an existing data set, using standard Endevor
naming conventions. If the data set name contains
embedded periods, enclose the name in quotation marks.

The data set referred to must be either sequential or
partitioned. The data set record format can be either
fixed or variable.

MEMBER name Identifies the member(s) to be processed from a
partitioned data set. This clause is required.

The member name must meet the following
specifications:

■ The member name can be no longer than eight
characters. You can use a wildcard.

■ The MEMBER clause applies only if the input data
set specified in the FROM DSNAME clause is a
partitioned data set. If the data set specified is
sequential, the MEMBER clause is ignored and a
warning message issued.

■ If the member name is fully specified, the member
must exist in the input data set. If the member name
is wildcarded, at least one member matching the
wildcard criteria must exist in the input data set. If
the explicit member does not exist, or no matches
can be found, you will receive an error message.

6.8.5 The TO Clause

The TO clause identifies the output, or destination, data set. This clause is required.
Specify either a DDNAME or a DSNAME, but not both.

Clause Description

TO DDNAME ddname Identifies the destination data set by DD name. Specify
the name of a preallocated DD statement.

Chapter 6. Expand Includes Utility 6-19

6.8 Expand Includes SCL

Clause Description

TO DSNAME dsname Identifies the destination data set by data set name.
Specify the name of an existing data set, using standard
Endevor naming conventions. If the data set name
contains embedded periods, enclose the name in
quotation marks.

The data set referred to must be either sequential or
partitioned. The data set record format can be either
fixed or variable. The record length must be at least as
long as the record length of the input data set and at
least as large as the INCLUDE libraries associated with
the ENXINCnn DD statements. If the data set record
length is not large enough for either condition, the
Expand Includes utility truncates the output records and
issues a caution message.

MEMBER name Identifies the name of the output member. This clause is
optional.

The member name must meet the following
specifications:

■ The member name can be no longer than eight
characters and cannot be wildcarded.

■ The MEMBER clause applies only if the output
data set specified in the TO DSNAME clause is a
partitioned data set and if the input data set is either
a sequential data set or a partitioned data set with
an explicit member name (that is, not wildcarded).
If the input data set is a partitioned data set and the
MEMBER clause contains a wildcarded member
name, you will receive an error message.

■ If the FROM DSNAME MEMBER clause contains
a wildcarded member name or if the FROM
DSNAME is a partitioned data set and the FROM
MEMBER clause is not specified, the TO
MEMBER clause cannot be specified. You cannot
rename multiple output members. In this situation,
you will receive an error message.

6.8.6 The OPTIONS Clauses

The Expand Includes syntax contains two optional clauses:

6-20 Utilities Guide

6.8 Expand Includes SCL

Clause Description

EXPAND COPY [STATEMENTS] Tells the Expand Includes utility to expand
COBOL COPY statements. This clause is
an alternative to coding the EXPANDCOPY
parameter in the JCL (see “The JCL
Parameter”).

If you do not code this clause but do include
the EXPANDCOPY parameter on the JCL
PARM= statement, the utility will expand
the COBOL COPY statements.

REPLACE MEMBER Tells the Expand Includes utility to replace
an existing member in the output data set.
This clause applies only to partitioned data
sets. If the destination data set is a
sequential data set, this clause is ignored.

If this clause is not specified and the
member being created currently exists in the
output data set, the EXPAND INCLUDES
action fails for that member. Processing
continues for other members associated with
the request.

Chapter 6. Expand Includes Utility 6-21

6.9 Reports

 6.9 Reports

 6.9.1 Overview

The Expand Includes utility generates three reports as part of its normal processing:

These reports are written to the ENXMSGS1 DD statement. If the execution JCL
includes an ENXMSGS2 DD statement, the utility writes the Expand Includes
Summary Report to that file.

Report Description

Control Statement Summary Shows the control statements that were
provided in the ENXSCLIN DD statement
and identifies any parser or statement
validation errors.

Execution Report Contains information about the execution of
each request.

■ If the utility is executing in Default
Location mode, the report contains
information about the single request.

■ If the utility is executing in Control
Statement mode, the utility generates
detailed information about each
EXPAND INCLUDES request.

Expand Includes Summary Report Summarizes each request processed. The
summary indicates the member name, the
return code, the number of INCLUDE
members, and the number of lines expanded.

6.9.2 Expand Includes Control Statement Summary Report

COPYRIGHT (C) Computer Associates, INC., 2��2 ddmmmyy 13:15:41 PAGE 1

Expand Includes Control Statement Summary Report RELEASE X.XX SERIAL XXXXXX

ENBX9��I Control statement parsing is beginning

 EXPAND INCLUDES

FROM DSN 'uprfx.uqual.INPUT' MEMBER 'MEMBER1'

TO DSN 'uprfx.uqual.OUTPUT' MEMBER 'MEMBER1'

 OPTIONS

EXPAND COPY STATEMENTS

 REPLACE MEMBER

 .

ENBX9�1I Control statement parsing has completed with no errors

The Expand Includes Control Statement Summary shows the control statements
provided in the ENXSCLIN DD statement, and whether there are any parser or

6-22 Utilities Guide

6.9 Reports

validation errors. This report is generated only if the program is executing in Control
Statement mode.

6.9.3 Expand Includes Execution Report

The Expand Includes Execution Report contains execution information for each
request. The example below shows the Execution Report generated in Control
Statement mode:

COPYRIGHT (C) Computer Associates, INC., 2��2 ddmmmyy 13:15:41 PAGE 1

Expand Includes Execution Report RELEASE X.XX SERIAL XXXXXX

ENBX��1I Statement Number 1

 EXPAND INCLUDES

FROM DSNAME 'uprfx.uqual.INPUT' MEMBER 'MEMBER1'

TO DSNAME 'uprfx.uqual.OUTPUT' MEMBER 'MEMBER1'

 OPTION(S)

EXPAND COPY STATEMENTS

 REPLACE MEMBER

 .

ENBX�3�I Member MEMBER1 has been selected. 4 Include members totaling 12 lines were expanded

ENBX�33I 1 member(s) were successfully expanded. � member(s) had an error

ENBX�35I EXPAND INCLUDE Processing is complete. Return code �

ENBX��2I Processing is complete. Highest return code is �

The example below shows the Expand Includes Execution Report generated in Default
Location Mode:

COPYRIGHT (C) Computer Associates, INC., 2��2 ddmmmyy 16:19:33 PAGE 1

Expand Includes Execution Report RELEASE X.XX SERIAL XXXXXX

ENBX��1I Statement Number 1

 EXPAND INCLUDES

 FROM DDNAME 'ENXIN'

 TO DDNAME 'ENXOUT'

 .

ENBX�31I Input data set is uprfx.uqual.SEQIN

ENBX�32I Output data set is uprfx.uqual.SEQOUT

ENBX�36I Sequential input has been processed. 3 Include members totaling 9 lines were expanded

ENBX�33I 1 member(s) were successfully expanded. � member(s) had an error

ENBX�35I EXPAND INCLUDE Processing is complete. Return code �

ENBX��2I Processing is complete. Highest return code is �

6.9.4 Expand Includes Summary Report

The example below shows the Expand Includes Summary Report for a request in
Control Statement mode:

COPYRIGHT (C) Computer Associates, INC., 2��2 ddmmmyy 13:15:46 PAGE 1

Expand Includes Summary Report RELEASE X.XX SERIAL XXXXXX

Statement Return Number of Include Number of Lines

Number Data set name Member Code Members Expanded

───────── ── ──────── ────── ───────────────── ───────────────

 1 uprfx.uqual.INPUT MEMBER1 � 4 12

The example below shows the Expand Includes Summary Report for a request in
Default Location mode:

Chapter 6. Expand Includes Utility 6-23

6.9 Reports

COPYRIGHT (C) Computer Associates, INC., 2��2 ddmmmyy 16:19:34 PAGE 1

Expand Includes Summary Report RELEASE X.XX SERIAL XXXXXX

Statement Return Number of Include Number of Lines

Number Data set name Member Code Members Expanded

───────── ── ──────── ────── ───────────────── ───────────────

 1 uprfx.uqual.SEQIN �SEQ� � 3 9

The Expand Includes Summary Report provides the following information for each
request (in either mode):

Field Description

Statement Number The statement number associated with the
EXPAND INCLUDES action. If the utility is
running in Default Location mode, the statement
number is always 1.

Data Set Name The name of the input data set.

Member Name The name of the input member. This field is blank
if the input file is a sequential data set.

Return Code The return code associated with the EXPAND
INCLUDES request for the data set or member.

Number of Include Members The number of ++INCLUDE, -INC, or COPY
members that were expanded.

Number of Lines Expanded The number of lines added to the output file from
the expanded ++INCLUDE, -INC, or COPY
members.

6-24 Utilities Guide

Chapter 7. Library Conversion Utilities

Chapter 7. Library Conversion Utilities 7-1

7.1 The Purpose of the Library Conversion Utilities

7.1 The Purpose of the Library Conversion Utilities

This chapter describes the conversion process that enables you to convert CA-Panvalet
and CA-Librarian files to Endevor elements and then load them directly into Endevor.

7-2 Utilities Guide

7.2 The Library Management Conversion Process

7.2 The Library Management Conversion Process

The library management conversion process encompasses a combination of Endevor
utilities and programs that allow you to load CA-Panvalet or CA-Librarian files into
Endevor. The loaded elements adopt the language attribute and comment or description
associated with the source entity as the Endevor type and comment.

7.2.1 How Does the Conversion Process Work?

There are three phases to the library management conversion process:

Phase Utility/Program
Used

What Happens

Analyze Endevor Inventory
Analyzer

Analyzes the members in your CA-Panvalet
or CA-Librarian files, creating load SCL for
input into Endevor.

Load Endevor Load utility Loads appropriate members into Endevor.

Validate Member Validation
Program

Validates that all members in a single data
set exist in a specified Endevor
environment.

7.2.2 Before You Begin: Run the Inventory Analyzer

It is assumed that you have already run the Endevor Inventory Analyzer against your
inventory, and that you have identified the Endevor inventory structure--that is,
environments, systems, subsystems, and, optionally, processor groups--that will be
assigned to each element.

See the Inventory Analyzer Guide for detailed information about the analysis process.

 7.2.3 CA-Panvalet Libraries

The maximum number of CA-Panvalet libraries that Endevor can open at one time is
16. Therefore, the number of open data sets in one ANALYZE statement is restricted
to 16. There is no limit to the number of ANALYZE statements you can use, however.
If you have more than 16 CA-Panvalet libraries, use a second ANALYZE statement to
scan the additional libraries.

 7.2.4 Handling Supersets

Supersets apply to CA-Panvalet only.

The analysis phase of the conversion process produces a reference data set that
contains a list of members. These members have been analyzed for specific
information; analysis is done alphabetically. During this phase, the conversion process

Chapter 7. Library Conversion Utilities 7-3

7.2 The Library Management Conversion Process

identifies members that are supersets as well as members that reference supersets.
Appropriate messages are returned as the list is generated.

If the member . . . The conversion process . . .

Is a superset Issues the following message:
CAE$���3 MEMBER member name IS A SUPERSET

Is not a superset Does not issue a message

References a member that has
already been analyzed and is
a superset

Issues the following message:
CAE$���4 MEMBER member name REFERENCES

SUPERSET superset name

References a member that is
a superset but has not yet
been analyzed

Does not issue a message

 7.2.5 Example

To illustrate how the conversion process handles supersets, assume you have a file
with 26 members, A-Z. The members are analyzed and messages are issued as follows
(see the table above to match the message with the message number):

Note that when Member Z is analyzed, the only message issued indicates that the
member is a superset. No message is issued indicating that Member D references
Member Z. Endevor does not “backtrack” to issue a message when a previously
referenced superset is analyzed.

Member Is a
superset?

References a
superset?

Issues this message

A Yes No CAE$0003

B No No No message

C No Yes--Member A CAE$0004

D No Yes--Member Z No message

E No No No message

. . . .

. . . .

. . . .

Z Yes No CAE$0003

7-4 Utilities Guide

7.3 Phase 1: Analyze

7.3 Phase 1: Analyze

 7.3.1 Overview

The first phase of the conversion process analyzes the members in your inventory to
identify the following:

 ■ INCLUDE members

 ■ COPY members

■ Members that are supersets

■ Members that reference supersets

This analysis is performed by the Endevor Inventory Analyzer, which is invoked by
the conversion job stream. The conversion job stream consists of four steps, briefly
described below:

Submit the job stream for execution when all information has been entered for all four
steps.

The job stream JCL is shown on the following pages, broken down and presented by
step.

Step Action The conversion job stream . . .

1 Delete SCL output
data sets

Deletes existing output data sets so new ones
can be created.

2 Build reference data
set

Creates a list of analyzed members that will be
used as input in the next step.

3 Identify INCLUDE
and COPY members,
and build SCL

Identifies INCLUDE and COPY members using
the information generated in the previous step.
Creates Load SCL for input into Endevor.

4 Identify superset
members

Identifies superset members and unresolved
members (members referenced but not found).

7.3.2 About the Conversion Job Stream

The conversion job stream is provided with your installation materials. Execution of
the job stream does not change any information or processes. Because the job stream
only creates input for the Load utility, you can rerun it as often as necessary should
you encounter any problems.

The conversion job stream is contained in member ENJSUCNV in the JCLLIB
provided on the installation tape.

Chapter 7. Library Conversion Utilities 7-5

7.3 Phase 1: Analyze

 7.3.3 Important Information

Throughout the conversion job stream, there are several statements that begin with the
words ESTABLISH TYPE. These statements are the rules used by the Endevor
Inventory Analyzer to identify members that contain INCLUDE or COPY statements
and to classify the members with a Endevor type.

These rules are the only rules needed for the conversion process. Do not change these
rules.

 7.3.4 Element Classification

In Step 3 of the conversion job stream, Endevor location and inventory information is
designated for the members in the reference data set.

■ You identify the Endevor environment, system, subsystem, and, optionally,
processor group to be assigned to each member. The inventory locations must be
defined to Endevor. You must know how you will classify the members before
you begin the conversion process.

If CCIDs are required, you must also specify a CCID to be associated with the
element.

■ The element name is the same as the library member name.

■ Endevor elements require a type. The conversion job stream identifies the element
type to be assigned to the member.

The job stream takes the language attribute associated with the CA-Panvalet or
CA-Librarian member. That attribute is prefixed with I, if it is an INCLUDE
statement or C, if it is a COPY statement. The entire value becomes the Endevor
element type.

For example, if the CA-Panvalet language is COBOL and the member is an
INCLUDE, the type assigned is ICOBOL.

Note: If you are a CA-Librarian user, there may be members in your library that
do not have a language associated with them. Check the SCL that is generated by
the conversion job stream. If no language is assigned, one of two TYPE values
appears:

– If the member is an INCLUDE member, the TYPE appears as blanks
preceded by an I:

"I "

– If the member is not an INCLUDE member, the TYPE appears as blanks
only:

" "

Replace the blanks with the type name you want to use.

■ The conversion job stream uses the CA-Panvalet comment or CA-Librarian
description as the Endevor comment.

7-6 Utilities Guide

7.4 PROC Definition

 7.4 PROC Definition

 7.4.1 JCL

The JCL below shows the PROC definition portion of the conversion job stream:

// (JOBCARD)

//�

//���

//� THIS JCL MUST BE TAILORED PRIOR TO SUBMITTING THIS JOB �

//� �

//� 1. CHANGE TDISK TO A UNIT NAME FOR WORK DASD ── �

//� FOR BEST PERFORMANCE, SPECIFY A VIO DEVICE �

//� �

//� CHANGE iprfx.iqual TO YOUR Endevor INSTALL PREFIX �

//� �

//� �

//� 2. CHANGE PDISK TO A UNIT NAME FOR DATA SETS WHICH �

//� WILL CONTAIN Endevor LOAD SCL STATEMENTS USED FOR �

//� INPUT INTO THE Endevor LOAD UTILITY JOB �

//� �

//� CHANGE PVOLSER (OR REMOVE VOL=SER=PVOLSER) TO A VALID �

//� VOLUME SERIAL NUMBER �

//� �

//� CHANGE UPRFX.UQUAL TO THE APPROPRIATE INDEX LEVELS �

//� AT YOUR SITE �

//� �

//� 3. TAILOR THE THREE LINES THAT CONTAIN THE TEXT �

//� 'DSN1' 'DSN2' 'DSN3' TO REFLECT THE ACTUAL LIBRARY �

//� NAMES FROM WHICH YOU ARE CONVERTING. �

//� �

//� �

//� 4. ON THE ASSIGN STATEMENT USED IN STEP TWO, SPECIFY �

//� THE ACTUAL ENVIRONMENT, SYSTEM, SUBSYSTEM, STAGE ID �

//� AND CCID VALUES THAT ARE TO BE USED TO CONSTRUCT THE �

//� LOAD UTILITY SCL. �

//� �

//���

//ANALYZE PROC

//�

//C1BM7��� EXEC PGM=NBURC1,PARM=C1BM7���

// DYNAMNBR=15��,REGION=4�96K

//�

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//�

//C1TPDD�1 DD UNIT=tdisk,SPACE=(CYL,3),

// DCB=(RECFM=VB,LRECL=26�,BLKSIZE=616�)

//C1TPDD�2 DD UNIT=tdisk,SPACE=(CYL,5),

// DCB=(RECFM=VB,LRECL=26�,BLKSIZE=616�)

//C1TPLSIN DD UNIT=tdisk,SPACE=(CYL,3),

// DCB=(RECFM=FB,LRECL=8�,BLKSIZE=616�)

//C1TPLSOU DD UNIT=tdisk,SPACE=(CYL,5)
//C1PLMSGS DD SYSOUT=�

//���

//� OUTPUT DATA SETS �

//���

Chapter 7. Library Conversion Utilities 7-7

7.4 PROC Definition

//C1MSGS1 DD SYSOUT=�

//C1SUMARY DD SYSOUT=�

//C1PRINT DD SYSOUT=�,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=6171)

//SYSABEND DD SYSOUT=�

//SYSOUT DD SYSOUT=�

//BSTERR DD SYSOUT=�

// PEND

7.4.2 What You Do

Tailor this JCL by providing values for all occurrences of the following variables:

Variable Definition

iprfx Highest-level qualifier used to assign data set names for
installation files at your site.

iqual Second-level qualifier used to assign data set names for
installation files at your site.

tdisk Unit name for temporary disk data sets.

7-8 Utilities Guide

7.5 Step 1: Delete Output Data Sets

7.5 Step 1: Delete Output Data Sets

 7.5.1 JCL

The JCL below shows Step 1 of the conversion job stream:

//STEP1 EXEC PGM=IDCAMS

//���

//� DELETE SCL OUTPUT DATA SETS �

//���

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

 DELETE uprfx.uqual.INCL.SCLSTMTS

 DELETE uprfx.uqual.NONINCL.SCLSTMTS

SET MAXCC = �

7.5.2 About This Step

The Load SCL created in Step 3 of the conversion job stream is written to one of the
following data sets:

uprfx.uqual.INCL.SCLSTMTS

uprfx.uqual.NONINCL.SCLSTMTS

Each time you run this job stream, new data sets are created. Step 1 deletes the
existing data sets so the new data sets can be created without a problem.

7.5.3 What You Do

Tailor the JCL by providing values for the following variables:

Variable Definition

uprfx Highest-level qualifier used to assign data set names for Endevor
user files at your site.

uqual Second-level qualifier used to assign data set names for Endevor
user files at your site.

Chapter 7. Library Conversion Utilities 7-9

7.6 Step 2: Build Reference Data Set

7.6 Step 2: Build Reference Data Set

 7.6.1 JCL

The JCL below shows Step 2 of the conversion job stream:

//STEP2 EXEC ANALYZE

//���

//� BUILD REFERENCE DATASET �

//���

//BSTPUNCH DD DSN=&&BSTPUNCH,DISP=(NEW,PASS,DELETE),

// UNIT=tdisk,SPACE=(TRK,(2�,1�),RLSE),

// DCB=(RECFM=FB,LRECL=2��,BLKSIZE=22���)

//BSTIPT�1 DD �

ANALYZE MEMBER �

FROM DSNAME 'DSN1' 'DSN2' 'DSN3'
 .

//BSTRULES DD �

ESTABLISH TYPE INCLUDE GROUP INCLUDE WHEN

 LIB = INCLUDE OR PAN = INCLUDE.

ESTABLISH TYPE INCLUDE GROUP COPY WHEN

 LIB = COPY.

ESTABLISH TYPE REMAINDR GROUP THATSALL WHEN

 PAN = '' AND LIB = ''.

DEFINE PAN INCLUDE WHEN

 '&C1FDSN$IO' = 'PAN'

AND

 SOURCE TEXT CONTAINS

'++INCLUDE' IN COLUMN 8 INVOKE EXIT=C1BM7CAE

 .

DEFINE LIB INCLUDE WHEN

 '&C1FDSN$IO' = 'LIB'

AND

 SOURCE TEXT CONTAINS

'-INC' IN COLUMN 1 INVOKE EXIT=C1BM7CAE

 .

DEFINE LIB COPY WHEN

 '&C1FDSN$IO' = 'LIB'

AND

 '&C1FDSN$LANG' = 'CBL'

AND

 SOURCE TEXT CONTAINS

' COPY ' IN COLUMNS 7 THROUGH 68

 INVOKE EXIT=C1BM7CAE WITHOUT

'�' IN COLUMN 7 LINE CURRENT

 .

//�

//�

7-10 Utilities Guide

7.6 Step 2: Build Reference Data Set

7.6.2 About This Step

Step 2 creates a list of members that have been analyzed to determine whether they are
INCLUDE members, COPY members, supersets, or members that reference supersets.
You indicate the names of the data sets to be analyzed.

If more than one FROM data set is specified and if the same member exists in more
than one data set, the program takes the first occurrence of the member. The analyzed
members are listed alphabetically, as detail records in a reference data set. The
reference data set is used as input for the next step in the conversion process.

7.6.3 What You Do

Tailor the JCL by providing values for the following variables:

Variable Definition

tdisk Unit name for temporary disk data sets.

DSN1, DSN2,...DSNn The name(s) of the data sets you want scanned. You can
code up to 16 names per ANALYZE statement.

 7.6.4 What Happens

Two types of records are created in this step: a header record and detail records. The
header record assigns symbolic names to the data in the detail records. Each detail
record contains the information listed below, in the order shown, for each unique
occurrence of the member:

 ■ Member name

■ Library data set name

■ Yes and no (Y/N) indicators for the following:

Was the member selected for processing?

Was the member referenced by another member?

Was the member referenced as an INCLUDE statement?

Was the member referenced as a COPY statement?

Is the member a superset?

Does the member reference a known superset?

 ■ Language

 ■ Comment

Chapter 7. Library Conversion Utilities 7-11

7.6 Step 2: Build Reference Data Set

 7.6.5 Example

The example below illustrates a typical record in the reference data set:

Note: For more information see the Inventory Analyzer Guide

7-12 Utilities Guide

7.7 Step 3: Build Load SCL

7.7 Step 3: Build Load SCL

 7.7.1 JCL

The JCL below shows Step 3 of the conversion job stream:

//STEP3 EXEC ANALYZE

//���

//� IDENTIFY INCLUDE AND COPY MEMBERS, BUILD LOAD SCL �

//���

//BSTPUNCH DD DSN=&&BSTPUNCH,DISP=(OLD,PASS)

//INCLMBRS DD DSN=uprfx.uqual.INCL.SCLSTMTS,DISP=(,CATLG),

// UNIT=pdisk,vol=ser=pvolser,SPACE=(TRK,(3,2),RLSE),

// DCB=(RECFM=FB,LRECL=8�,BLKSIZE=616�,DSORG=PS)

//PGMMBRS DD DSN=uprfx.uqual.NONINCL.SCLSTMTS,DISP=(,CATLG),

// UNIT=pdisk,vol=ser=pvolser,SPACE=(TRK,(3,2),RLSE),

// DCB=(RECFM=FB,LRECL=8�,BLKSIZE=616�,DSORG=PS)

//BSTIPT�1 DD �

�

 SET ASSIGN
ENV = 'ENVNAME'

SYS = 'SYSNAME'

SBS = 'SBSNAME'

CCID = 'CCID' .

�

 SET REFERENCE DDNAME BSTPUNCH.

�

ANALYZE MEMBER �

FROM DSNAME 'DSN1' 'DSN2' 'DSN3'

 .

�

//BSTRULES DD �

DEFINE INCLUDE SUPERSET WHEN

'&CAESUPER' EQ 'Y'

 .

ESTABLISH TYPE COPY GROUP NOPROC WHEN

'&CAECOPY' = 'Y' AND INCLUDE NOT = SUPERSET

 .

ESTABLISH TYPE INCLUDE GROUP NOPROC WHEN

'&CAEINC' = 'Y' AND INCLUDE NOT = SUPERSET

 .

//BSTMODEL DD �

%DDNAME=INCLMBRS,COND=SUCCESS

LOAD MEMBER &C1MEMBER

FROM DSNAME '&C1FDSN'

TO ENVIRONMENT &ENV

 SYSTEM &SYS

 SUBSYSTEM &SBS

 TYPE &C1TYPE(1,1)&CAELANG(1,7)

OPTIONS CCID '&CCID'

 COMMENT '&CAEDESC'

 .

%DDNAME=PGMMBRS,COND=FAILURE

LOAD MEMBER &C1MEMBER

FROM DSNAME '&C1FDSN'

TO ENVIRONMENT &ENV

Chapter 7. Library Conversion Utilities 7-13

7.7 Step 3: Build Load SCL

 SYSTEM &SYS

 SUBSYSTEM &SBS

 TYPE &CAELANG(1,8)

OPTIONS CCID '&CCID'

 COMMENT '&CAEDESC'

 .

7.7.2 About This Step

Step 3 identifies the INCLUDE members and COPY members within the data sets
indicated. This step also assigns Endevor location and inventory information to the
members and creates the SCL used to load members into Endevor.

Each SCL statement is written to one of two data sets, depending on whether the
member is an INCLUDE or COPY member or neither:

■ If the member is an INCLUDE or COPY member, it is written to the data set
uprfx.uqual.INCL.SCLSTMTS.

■ If the member is not an INCLUDE or COPY member, it is written to the data set
uprfx.uqual.NONINCL.SCLSTMTS.

7.7.3 What You Do

Tailor the JCL by providing values for the following variables:

Variable Definition

uprfx Highest-level qualifier used to assign data set names for
Endevor user file at your site.

uqual Second-level qualifier used to assign data set names for
Endevor user files at your site.

pdisk Unit name for permanent disk data sets. These data sets
will contain Endevor Load SCL statements.

pvolser Volume serial number of the disk. Either enter a valid
volume serial number or delete the parameter
VOL=SER=PVOLSER.

ENVNAME Environment name.

SYSNAME System name.

SBSNAME Subsystem name.

CCID CCID to be associated with the element.

DSN1, DSN2,...DSNn The name(s) of the data sets you want scanned. Use the
same data set names you coded in Step 2.

Note: You must enter the data set names in the same
sequence as they were entered in Step 2.

7-14 Utilities Guide

7.7 Step 3: Build Load SCL

 7.7.4 What Happens

Endevor creates SCL for the Endevor Load utility. The SCL is formatted according to
one of the two output model definitions that are included in this step of the conversion
job stream. An output model definition is simply a template that defines the format of
the load commands.

The first output model definition is used for members that are INCLUDE or COPY
members. The second output model definition is used for members that are not
INCLUDE or COPY members.

7.7.5 Load Syntax Variables

The output model definitions appear after the line //BSTMODEL DD *. Note the values
that begin with an ampersand (&); information is provided for these values as follows:

Variable Definition Where the Information
Comes From

&C1MEMBER Member name Reference data set

&C1FDSN FROM data set name Reference data set

&ENV Environment name SET ASSIGN parameter

&SYS System name SET ASSIGN parameter

&SBS Subsystem name SET ASSIGN parameter

&C1TYPE (1,1) Indicates whether the
member is an
INCLUDE (I) or COPY
(C) statement.

Reference data set.

&CAELANG (1,7) Endevor type CA-Panvalet or
CA-Librarian language
directory

&CCID CCID associated with
the member

SET ASSIGN parameter

&CAEDESC Comment associated
with the member

CA-Panvalet comment or
CA-Librarian description

&CAELANG (1,8) Endevor type Reference data set (if not an
INCLUDE or COPY
member)

Chapter 7. Library Conversion Utilities 7-15

7.8 Step 4: Identify Superset Members

7.8 Step 4: Identify Superset Members

 7.8.1 JCL

The JCL below shows Step 4 of the conversion job stream:

//STEP4 EXEC ANALYZE

//���

//� IDENTIFY SUPERSET MEMBERS �

//���

//BSTIPT�1 DD �

 SET REFERENCE DDNAME BSTPUNCH.

ANALYZE MEMBER �

FROM DSNAME 'DSN1' 'DSN2' 'DSN3'
 .

//BSTRULES DD �

ESTABLISH TYPE SUPERSET GROUP NOPROC WHEN

'&CAESUPER' EQ 'Y'

 .

//BSTMODEL DD �

%DDNAME=SUPERSET,COND=SUCCESS

MEMBER &C1MEMBER IN DATASET '&C1FDSN' IS A SUPERSET MEMBER.

%DDNAME=NOTSUPER,COND=FAILURE

MEMBER &C1MEMBER IN DATASET '&C1FDSN' IS NOT A SUPERSET MEMBER.

//BSTPUNCH DD DSN=&&BSTPUNCH,DISP=(OLD,DELETE)

//SUPERSET DD SYSOUT=�,DCB=(RECFM=FB,LRECL=8�,BLKSIZE=616�,DSORG=PS)

//NOTSUPER DD SYSOUT=�,DCB=(RECFM=FB,LRECL=8�,BLKSIZE=616�,DSORG=PS)

7.8.2 About This Step

Step 4 identifies those members that are supersets and any members that are
unresolved. A member is considered unresolved when it has been referenced as part of
an INCLUDE statement but cannot be found.

7.8.3 What You Do

For this step, you need only code the data set names you used in Step 2 and Step 3.
You must enter the data set names in the same sequence as entered in the previous
steps.

 7.8.4 What Happens

For unresolved members, Endevor writes messages to the Execution Log, identifying
the member by member name.

For superset identification, Endevor writes messages to one of two DDnames,
depending upon whether a member is a superset.

■ If the member is a superset, the following message is written to DDname
SUPERSET:

7-16 Utilities Guide

7.8 Step 4: Identify Superset Members

MEMBER member-name IN DATASET dataset-name IS A SUPERSET
MEMBER.

■ If the member is not a superset, the following message is written to DDname
NOTSUPER:

MEMBER member-name IN DATASET dataset-name IS NOT A SUPERSET
MEMBER.

Chapter 7. Library Conversion Utilities 7-17

7.9 Phase 2: Load

7.9 Phase 2: Load

 7.9.1 Overview

The first phase of the conversion process classified members according to whether the
member was an INCLUDE or COPY statement and created Load SCL. The Load SCL
was then written to one of two data sets, depending on whether the members were
INCLUDE or COPY members, or neither. The next step in the conversion process is
to load these members directly into Endevor, which is done using the Endevor Load
utility.

7.9.2 About the Load Utility

The Endevor Load utility allows you to load one or more members, from data sets
external to Endevor, directly into any stage that is defined within a Endevor
environment. You do not need to reassemble or recompile your programs. And, you
can date/time stamp--or footprint--all corresponding library members in your source,
object, and load libraries as the members are loaded.

 7.9.3 JCL

The Load utility JCL is provided on the installation tape, in member BC1JLOAD of
the JCLLIB. Sample JCL is shown below.

//�(JOBCARD)

//���

//� �

//� SAMPLE JCL THAT WILL RUN THE LOAD UTILITY �

//� �

//���

//LOAD EXEC PGM=NDVRC1,PARM='C1BML���'

//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//C1BMLIN DD DSN=uprfx.uqual.INCL.SCLSTMTS,DISP=SHR
//C1BMLLOG DD SYSOUT=�

//C1BMLSYN DD SYSOUT=�

//C1BMLDET DD SYSOUT=�

//C1BMLSUM DD SYSOUT=�

//SYSOUT DD SYSOUT=�

//SYSPRINT DD SYSOUT=�

7.9.4 What You Do

The actual load requests have already been generated, using the formats provided in
Step 3 of the conversion job stream, and written to a data set. You need only to tailor
the JCL and submit the job for execution.

Provide values for the following variables:

7-18 Utilities Guide

7.9 Phase 2: Load

Variable Definition

iprfx Highest-level qualifier used to assign data set
names for installation files at your site.

iqual Second-level qualifier used to assign data set
names for installation files at your site.

uprfx.uqual.INCL.SCLSTMTS The name of the data set that contains the load
statements (output from phase 1 of the conversion
process).

7.9.5 Review the Load Utility Output

There are up to four reports produced as the Load utility executes. The reports you
see depend on whether any Load requests contain syntax errors, data errors, or both.
Reviewing these reports allows you to find problems and errors before the data set
members are loaded into Endevor.

The reports include the following:

Note: For additional information about the Endevor Load utility, see the Utilities
Guide.

Report Name When the Report is Produced

Endevor LOAD Execution Log Always

Endevor Data Validation Report Only when the requests contain invalid
data

Endevor LOAD Execution Report Only when the requests contain no
syntax errors or invalid data

Endevor LOAD Execution Summary Only when the requests contain no
syntax errors or invalid data

Chapter 7. Library Conversion Utilities 7-19

7.10 Phase 3: Validate

7.10 Phase 3: Validate

 7.10.1 Overview

After you have run the Load utility, you should check to be sure that all members
were loaded into Endevor correctly. Use the Member Validation Program to validate
that all of the members in a single data set have been loaded and exist in a specific
Endevor environment.

To achieve the best results, the Member Validation Program must be run immediately
after you have loaded a data set's members into Endevor. The program produces a
report that provides specific information about each member in the data set. The
accuracy of the report can be affected by subsequent actions against the elements.

7.10.2 How Does the Member Validation Program Work?

The Member Validation Program processes only one data set at a time. If you want to
validate more than one data set, you need to execute the program once for each data
set. The data set to be validated is known as the source data set, and is identified by
the ENVDSN00 DD statement in the Member Validation Program execution JCL. This
DD statement can refer to a partitioned data set, a CA-Panvalet data set, or a
CA-Librarian data set. These are the only types of data sets supported by the program.

The Member Validation Program assumes that the Endevor element name is the same
as the data set member name. The program does not support members that were
renamed when placed into Endevor.

 7.10.3 Return Codes

The Member Validation Program passes the following return codes:

Code What It Means

0 All members in the source data set were found in the Endevor
environment specified.

4 One or more members were not found in the environment specified.

12 The Member Validation Program encountered an error.

 7.10.4 JCL

The Member Validation Program execution JCL is provided on the install tape in
member ENBRVDSN in the JCLLIB.

7-20 Utilities Guide

7.10 Phase 3: Validate

//ENBRVDSN EXEC PGM=NDVRC1,PARM='ENBRVDSNenvironment_name'
//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

// DISP=SHR

//ENVMSG1 DD SYSOUT=�

//SYSABEND DD SYSOUT=�

//ENVDSN�� DD DSN=source.dataset.name,DISP=SHR

7.10.5 About the JCL

The Member Validation Program requires that the following parameters and DD
statements be coded:

Parameter/
Statement

Description Tailor as follows . . .

'ENBRVDSN
environment_name'

The Endevor environment
that will be searched for
members. If you do not
code this parameter, or the
value is invalid, you
receive an error message.

Specify a 1-8 character, valid
Endevor environment name.

Note: There are no
characters between
ENBRVDSN and
environment_name.

CONLIB DD Standard JCL statement. Change IPRFX and IQUAL
to the qualifiers you are using
for your site.

ENVMSGS1 The destination of the
Member Validation
Report. The DD statement
usually allocates a
SYSOUT data set.

No tailoring required.

ENVDSN00 The data set that is to be
validated.

Specify the name of a data
set (source.dataset.name)
generated by the conversion
job stream. The data set must
be partitioned, CA-Panvalet,
or CA-Librarian.

Chapter 7. Library Conversion Utilities 7-21

7.11 The Member Validation Report

7.11 The Member Validation Report

 7.11.1 Overview

The Member Validation Report classifies each member in the data set into one of three
categories:

■ The member was not found in the Endevor environment.

■ The member was found as an element and the element was loaded into Endevor
from the source data set.

■ The member was found as an element but the element was not loaded from the
source data set.

The report is written to the ENVMSGS1 DD statement.

7.11.2 Multiple Occurrences of the Member

The Member Validation Program searches the entire inventory structure in both stages
of the specified environment. Therefore, it is possible that multiple occurrences of the
member will be found. For example, the same element may be a member of different
systems or may be associated with different types.

The report displays every occurrence of the element. In most situations, only one of
the elements is valid. The other elements will be marked with the following message:

Found . . . but not loaded from the source data set

 7.11.3 Sample Report

A sample Member Validation Report, executed for the data set
BST.INTMVS.SRCLIB, is shown below.

7-22 Utilities Guide

7.11 The Member Validation Report

COPYRIGHT (C) Computer Associates, INC., 2��2 ddmmmyy 1�:57:18 PAGE 1

Member Validation Report RELEASE X.XX SERIAL XXXXXX

Data Set: BST.INTMVS.SRCLIB

Member Environment Stage System Subsystem Type Message

- ────────── ─────────── ───── ──────── ───────── ──────── ──────────────────────────────────────

 � APPXTCBT

 � ASML

 � ATTACHER

 � BAPJAUTH

 BC1PACTN PRD 2 NDVR37� BASE ASMPGM

� BC1PACTN PRD 2 NDVR37� BASE LNK Not loaded from the source data set

 BC1PAL1� PRD 2 NDVR37� BASE ASMPGM

� BC1PAL1� PRD 2 NDVR37� BASE LNK Not loaded from the source data set

� BC1PSCRN PRD 2 NDVR37� BASE ASMPGM Not loaded from the source data set

� BC1PSM1� PRD 2 NDVR37� BASE ASMPGM Not loaded from the source data set

� BC1RPSUB PRD 2 NDVR37� DB2 ASMPGM Not loaded from the source data set

� BSTXMPL PRD 2 NDVR37� XP ASMPGM Not loaded from the source data set

 � BUILDFP

 CFXAPALC PRD 2 NDVR37� ELINK ASMMAC

� C1BIOINQ PRD 2 NDVR37� BASE ASMPGM Not loaded from the source data set

 C1BIOVSM PRD 2 NDVR37� BASE ASMPGM

� C1BM7��� PRD 2 NDVR37� BASE ASMPGM Not loaded from the source data set

� C1BM7��� PRD 2 NDVR37� BASE LNK Not loaded from the source data set

� C1DEFLTS PRD 2 NDVR37� BASE ASMMAC Not loaded from the source data set

� C1DEFLTS PRD 2 NDVR37� BASE ASMPGM Not loaded from the source data set

� C1DEFLTS PRD 2 NDVR37� BASE LNK Not loaded from the source data set

� C1GIOORE PRD 2 NDVR37� BASE ASMPGM Not loaded from the source data set

� C1PDSSEQ PRD 2 NDVR37� BASE ASMPGM Not loaded from the source data set

 � DAMPOPEN

 � DA1ME1�

 � DEFI�1��

 � ENDIARDS

 � TESTATTA

 � XIT7PN

 � XIT7XMIT

 Summary:

25 members were identified in the data set

13 members were not found in environment PRD

7 elements were found in environment PRD and were loaded from this data set

15 elements were found in environment PRD but were not loaded from this data set

11:��:4� ENBV�19I Processing is complete. Highest return code is 4

 7.11.4 Report Fields

The fields in the Member Validation Report are described below:

Field Definition

Member The member name. If the member name is preceded by an asterisk, one of two
situations occurred:

■ The member was not found in the specified Endevor environment.

■ The member was found but it was not loaded from the source data set.

Environment The name of the Endevor environment in which the element was found.

Stage The ID of the stage in which the element was found.

System The name of the Endevor system in which the element was found.

Subsystem The name of the Endevor subsystem in which the element was found.

Type The name of the Endevor type associated with the element.

Message Displays any additional information or error messages about the element.

Chapter 7. Library Conversion Utilities 7-23

7.11 The Member Validation Report

Field Definition

Summary Displays the following information:

■ The number of members in the data set.

■ The number of members that were not found in the specified Endevor
environment.

■ The number of members that were found in the specified environment and were
loaded from the source data set.

■ The number of members that were found in the specified environment but were
not loaded from the source data set.

Note: The sum of the last three items above may not equal the value shown for the
first item (see the sample report). This situation might occur if there are multiple
occurrences of the member. Pay particular attention to the second item--the number
of members not found in the environment. If this value is other than zero, a return
code of 4 is generated.

7-24 Utilities Guide

 Chapter 8. Load Utility

Chapter 8. Load Utility 8-1

8.1 Putting the Load Utility to Work

8.1 Putting the Load Utility to Work

The Endevor Load Utility enables you to load one or more members (elements), from
data sets external to Endevor, directly to any stage that is defined within a Endevor
environment. Using this utility, you can quickly populate Endevor environments
without the need to reassemble or recompile your programs. And, you can date/time
stamp--or footprint--all corresponding library members in your source, object, and load
libraries as the members are loaded.

Security is invoked when the Load Utility is executed. If using ESI, a format 1 call
and format 2 call is issued. For the format 2 call, the menu item is equal to “LOAD”.

Before using the Endevor Load Utility, the inventory structures that you want to
populate within Endevor must be defined. Refer to the Administration Guide for
complete information.

This section describes the Endevor Load Utility request syntax, detailing the structure
of and rules concerning the LOAD MEMBER command. The final section provides a
working example of the Load process, on a step-by-step basis.

8-2 Utilities Guide

8.2 How Does the Load Utility Work?

8.2 How Does the Load Utility Work?

LOAD requests can be created manually, using the LOAD request syntax, or can be
generated by the Endevor Inventory Analyzer as part of the analysis process. The
method used is at your discretion; the results of the load processing are the same.

The Endevor Load Utility is simple to operate and involves two basic steps:

■ Creating your requests. The Load Utility automatically validates each request
before it is executed.

■ Reviewing the reports produced. Reports are produced during and after
execution to inform you about what has occurred.

 8.2.1 Creating Requests

LOAD requests indicate those members, from designated data sets, that are to be
loaded to specific Endevor locations. Look at the example below:

LOAD MEMBER FINARP�� THRU FINARP99

 FROM DSNAME 'PROD.SRCLIB'

TO ENVIRONMENT 'DEMO' SYSTEM 'FINANCE' SUBSYSTEM 'ACCTREC'

 TYPE 'COBOL' STAGE 'P'

 OPTIONS CCID 'LOAD'

COMMENT 'AUTOMATED ENDEVOR IMPLEMENTATION

PROCESSOR GROUP 'COBNBL�1'

 FOOTPRINT 'PROD.LOADLIB' .

This request tells the Load Utility to:

■ Load a range of members, beginning with FINARP00 up to and including
FINARP99.

■ Load only the members from data set PROD.SRCLIB.

■ Load the members to the Endevor location specified by the TO information.

■ Create version 1.0 of an element in Endevor, for each member that matches the
criteria specified.

■ Associate with each element the indicated CCID, comment, and processor group.

■ Footprint each applicable member (that is, member for which a match is found in
the footprint library) in the library specified by the FOOTPRINT clause.

After all LOAD requests are coded, and before they are executed, Endevor validates
both the syntax and the content of each request. Syntax validation ensures that the
request syntax is correct. Content validation ensures that the data sets specified do
exist and that the Endevor location specified is valid.

Chapter 8. Load Utility 8-3

8.2 How Does the Load Utility Work?

 8.2.2 Reviewing Reports

As request execution progresses, several reports are produced:

■ The Endevor Load Execution Log

■ The Endevor Data Validation Report

■ The Endevor Load Execution Report

■ The Endevor Load Summary Report

The first two reports indicate syntax and data errors, respectively. The last two reports
provide detail and summary information for each request in the input data set.

If a member specified in the LOAD request is found in the Endevor TO location
indicated, creating duplicate members, the LOAD request for that member is bypassed.
The occurrence of duplicate members can be caused by overlapping Load requests;
that is, when two requests involve one or more of the same members. Occasionally,
duplicate members may be the result of repeated execution of the same Load syntax.
Duplicate member warning messages are issued when either situation occurs.

8-4 Utilities Guide

8.3 Endevor Load Utility Requests

8.3 Endevor Load Utility Requests

 8.3.1 Overview

This section describes the syntax you use to load elements into environments
predefined in Endevor. The Load process is described in the next section of this
chapter. That discussion includes syntax examples as well as explanations and
illustrations of the reports you can use to review what you have coded. For more
information see 1.6.2, “Syntax Conventions” on page 1-20 earlier in this book. For
more information on SCL structure and requirements, refer to the SCL Reference
Guide, which is part of your Endevor documentation set.

 8.3.2 Statements

The Load Utility uses three types of statements:

■ The ACTION statement--which is always LOAD MEMBER. This is the only
statement that the Load Utility executes.

■ SET statements--which establish default values for subsequent action statements.
These statements are never executed by the Load Utility.

■ CLEAR statements--which clear the information designated by a related SET
statement. These statements are never executed by the Load Utility.

The remainder of this section illustrates the LOAD statement syntax and explains all
required and optional clauses within the statement. A brief overview of the reports
produced by the Load Utility is provided also. Read this section carefully to gain a
full understanding of the syntax. Learning and using this syntax can be an invaluable
and powerful tool.

8.3.3 Load Request Syntax

��──LOAD MEMber──member─ ──┬ ┬───────────────────── ──────────────────────�
 └ ┘ ──┬ ┬─THRough─ ─member─
 └ ┘─THRu────

�──FROm──DSName──dsname──TO──ENVironment──env-name─────────────────────�

�─ ─SYStem──sys-name─ ─SUBsystem──subsys-name──TYPe──type-name───────────�

�──STAge──stage-id───�

�─ ──┬ ┬─── ──────────────────�
 └ ┘ ─OPTion──¤─ ──┬ ┬───────────────────────────── ─¤─
 ├ ┤─CCId──ccid──────────────────
 ├ ┤─COMment──comment────────────
 └ ┘ ─PROcessor GROup──group-name─

�─ ──┬ ┬───────────────────────────── ─.─────────────────────────────────��
 │ │┌ ┐─,──────
 └ ┘ ─FOOtprint──(─ ───

�
┴─dsname─ ─)─

Chapter 8. Load Utility 8-5

8.3 Endevor Load Utility Requests

8.3.4 LOAD Request Rules

The rules pertaining to each clause in the syntax are listed below. Required and
optional clauses are noted, as well as any other requirements specific to this action.

 8.3.4.1 Required Clauses

LOAD MEMBER member

Indicates the member(s) you want to load. The member name can be up to 10
characters in length. You must code this clause first, immediately followed by the
THROUGH clause if you decide to use it. Otherwise, you receive an error message.

You can code an explicit member name to load just one member, or you can use a
name mask (an * alone or at the end of the partial member name) and/or a place
holder (a ? within the member name) to load several members.

FROM DSNAME dsname

Indicates the location of the member(s) being loaded. If you do not specify FROM
information here, a SET FROM clause with the required information must have been
previously coded. (The SET FROM clause is discussed in more detail later in this
chapter.)

The FROM data set can be a partitioned data set (PDS or PDS/E), or a CA-Librarian
or CA-Panvalet library. It cannot be a load library, however; load library members are
never loaded to a Endevor environment. You receive a validation error message if you
attempt to do this.

You must code an explicit data set name. If the data set name contains a period, be
sure to enclose the name in single or double quotes, as follows:

'TEST.LIB' or "TEST.LIB"

Note: If you want the member(s) in this FROM data set to be footprinted, you must
code this data set name in the FOOTPRINT clause.

TO ENVIRONMENT env-name
 SYSTEM sys-name
 SUBSYSTEM subsys-name
 TYPE type-name
 STAGE stage-id

Indicates the Endevor location to which the member(s) will be loaded. If you do not
provide (all) TO information here, a SET TO clause with the required data must have
been previously coded. (The SET TO clause is discussed in more detail later in this
chapter.)

You must specify full environment, system, subsystem, type, and/or processor group
names, up to 8 characters each; you cannot use a name mask or a place holder when
defining any portion of the Endevor location.

8-6 Utilities Guide

8.3 Endevor Load Utility Requests

STAGE is optional in the TO field. If you do not specify a stage ID in this clause or
in the SET TO statement, the ID for Stage 2 is used.

 8.3.4.2 Optional Clauses

THROUGH (THRU) member

Indicates that a range of members should be loaded, beginning with the member(s)
specified in the LOAD MEMBER clause, up to and including the member(s) specified
in this clause.

You can specify an explicit THROUGH member name, or you can use a name mask
(an * alone or at the end of the partial member name) or a place holder (a ? within the
member name) in the name. You can also combine the ? and the * in the THROUGH
member name.

If you use the THROUGH clause, it must immediately follow the LOAD MEMBER
clause. Otherwise, you receive an error message.

OPTIONS

CCID ccid-- You can specify a CCID to group related modules that are being loaded,
for reporting purposes. CCIDs can be up to 12 characters in length.

COMMENT comment-- You can specify a comment to further define the member(s)
being loaded. Comments can be up to 40 characters in length, and must always be
enclosed in quotes.

PROCESSOR GROUP group-name-- You can designate a specific processor group,
up to 8 characters, to be used to generate the element once it is loaded. The value
specified here overrides the default processor group currently found on the element's
type record.

Be sure the processor group you code is a valid processor group within the element
type record being loaded. Otherwise, you receive an error message.

If you leave this field blank, the system defaults to the processor group defined on the
element's type record.

FOOTPRINT ('dsname', 'dsname') Indicates the source, object, or load libraries in
which the Load Utility looks for the member(s) specified. When a match is found,
that member is footprinted in that data set.

CAUTION:
The footprint DSN clause should not be either a base or delta library.

■ When the Load Utility footprints an object deck, the content and directory of the
library are both footprinted. Any existing footprints are replaced.

Chapter 8. Load Utility 8-7

8.3 Endevor Load Utility Requests

■ When the Load Utility footprints a load module, a composite footprint is created.
That is, the entire load module as opposed to just individual parts is footprinted.
Footprints currently existing in the load module are not affected by the Load
Utility's footprint. The composite footprint is placed in the ZAP IDR record for
the load module.

■ The FOOTPRINT data set(s) can be partitioned data sets (PDS or PDS/E) , or
CA-Librarian or CA-Panvalet libraries. If the data set name(s) includes periods,
be sure to enclose the name in single or double quotes.

■ You can also specify multiple data sets. When you do so, you must enclose all
the data set names in a single set of parentheses, separating them with blanks or
commas. Parentheses are not required if you code only one data set name.

■ If you use the FOOTPRINT clause, at least one entry must be included. You can
code one or more data set names, as described above, or you can code a clause
similar to the following:

FOOTPRINT ' ' .

■ This entry is simply a blank(s) enclosed by quotes. Endevor interprets this clause
as having no data sets designated, which in turn means that no footprinting will
occur.

■ If you do not code any footprint information in this clause, the Load Utility
checks to see whether a SET FOOTPRINT clause has already been specified, and
applies that data accordingly. (The SET FOOTPRINT clause is discussed in more
detail later in this chapter.)

■ If you want to footprint members in the FROM data set, you must include that
data set name in the FOOTPRINT clause.

 8.3.5 Set Statements

SET statements are global default statements that establish values for subsequent
request statements. SET statements are never executed.

A SET statement establishes default values for keyword parameters, such as FROM or
TO. If information is required and not specifically coded within a LOAD request, a
corresponding SET statement must precede that request. If you code the LOAD
statement first, without required information, you receive an error message.

References are made throughout this section to the “actual LOAD statement.” An
actual LOAD statement begins with the word LOAD and ends with a period, and
includes all data between these two items. If you code a SET statement within the
actual LOAD statement, you receive an error message.

Each SET statement remains in effect until:

■ You code specific values in the actual LOAD statement, which override the
corresponding values in the SET statement.

■ Endevor encounters another, like SET statement, which overrides the existing SET
statement.

8-8 Utilities Guide

8.3 Endevor Load Utility Requests

■ Endevor encounters a CLEAR statement for that particular SET statement. See
the section “Clear Statements.”

■ Processing for the job ends.

The following SET statements can be used with the LOAD action:

8.3.5.1 SET FROM Statements

SET FROM DSNAME

SET TO

SET OPTIONS

SET FOOTPRINT

SET FROM DSNAME dsname .

The data set name specified in the SET FROM DSNAME statement indicates the
location of all members to be loaded, for all subsequent LOAD requests. This data set
applies until another SET FROM DSNAME statement, a CLEAR ALL statement, or a
CLEAR FROM statement is encountered, or until processing ends. Or, you can
override the SET value for a particular member(s) by coding a FROM data set in the
actual LOAD statement.

The name specified must be a full data set name. If the data set name contains an
embedded period, the name must be enclosed in single or double quotes.

8.3.5.2 SET TO Statements

SET TO ENVIRONMENT env-name
 SYSTEM sys-name
 SUBSYSTEM subsys-name
 TYPE type-name
 [STAGE stage-id] .

The information specified in the SET TO statement indicates the Endevor location to
which all members in the subsequent LOAD requests will be loaded. This location
applies until another SET TO statement, a CLEAR ALL statement, or a CLEAR TO
statement is encountered, or until processing ends. Or, you can override any portion
(or all) of the Endevor location within the actual LOAD statement.

You must specify full environment, system, subsystem, type, and/or processor group
names; you cannot use a name mask or a place holder when defining any portion of
the Endevor location. If you do not specify a stage ID in the SET TO clause or in the
actual LOAD statement, the system uses the ID for Stage 2.

With the exception of the stage ID, any location information you do not specify in a
SET TO clause must be coded in the LOAD request.

Chapter 8. Load Utility 8-9

8.3 Endevor Load Utility Requests

8.3.5.3 SET OPTIONS statements

SET OPTIONS CCID ccid
 COMMENT comment

PROCESSOR GROUP group-name .

The SET OPTIONS statement allows you to specify that a particular CCID, comment
(enclosed in quotes), and/or processor group be applied to all members to be loaded,
for all subsequent LOAD requests. These options are in effect until another SET
OPTIONS statement, a CLEAR ALL statement, or a CLEAR OPTIONS statement is
encountered, or until processing ends. Or, you can override any of the SET options by
coding a different, corresponding value(s) in the actual LOAD statement.

OPTIONS are not required in LOAD actions. Therefore, you are not required to have
previously coded a SET OPTIONS statement if you did not specify OPTIONS
information in the LOAD request.

SET FOOTPRINT ('dsname', 'dsname', 'dsname')... .

The SET FOOTPRINT statement provides the name(s) of the library(ies) in which
corresponding member(s) in the subsequent LOAD statements will be footprinted. A
corresponding member is one for which a match is found in the libraries designated in
the SET FOOTPRINT statement.

If you use this statement, you must specify at least one data set (library) name. This
data set(s) is used until another SET FOOTPRINT statement, a CLEAR ALL
statement, or a CLEAR FOOTPRINT statement is encountered, or until processing
ends. Or, you can override the information in the SET FOOTPRINT clause by coding
a data set name(s) in the actual LOAD statement. If you code multiple data set names,
they must be enclosed in a single set of parentheses, and separated by either blanks or
commas.

Note that if you do override the SET FOOTPRINT clause, corresponding members are
footprinted only in the library(ies) indicated in the actual LOAD statement. For
example, if your SET FOOTPRINT statement lists three libraries and you specify a
FOOTPRINT clause in the actual LOAD statement with only one library indicated,
corresponding members are footprinted only in that one library. If you want to change
just one library name out of the three listed, you must specify the new library name
along with the other two library names in either a different SET FOOTPRINT
statement or in the FOOTPRINT clause of the actual LOAD statement.

Note: If you decide to override the SET FOOTPRINT statement and code the
following clause, footprinting will not occur:

FOOTPRINT ' ' .

Endevor interprets the clause as having no library indicated. If no library is
designated, footprinting cannot take place. And, the SET FOOTPRINT statement
cannot be in effect because the FOOTPRINT clause is specified in the LOAD
command, thereby overriding that statement.

8-10 Utilities Guide

8.3 Endevor Load Utility Requests

Footprint information is not required in Load actions. Therefore, you are not required
to have a SET FOOTPRINT statement if you did not specify footprint information in
the LOAD request.

 8.3.6 Clear Statements

A CLEAR statement clears the information that is designated by a SET statement.
When you are working with a series of requests and need to remove the data
established in a SET statement, simply code a parallel CLEAR statement. The
CLEAR statement remains in effect until a new, related SET statement is encountered
or until processing ends.

CLEAR statements apply only to SET statements. Similar information entered in a
LOAD request is not affected by a CLEAR statement.

The following CLEAR statements can be used with the LOAD action:

CLEAR ALL

CLEAR FROM

CLEAR TO

CLEAR OPTIONS

CLEAR FOOTPRINT

Each of these is discussed briefly below. Refer to the previous section, “Set
Statements,” for details about the information involved with each type of statement.

CLEAR ALL .

CLEAR ALL clears all information established by all previous SET statements. Be
sure that you either specify all required information in all subsequent LOAD
statements or code new SET statements for all required information.

CLEAR FROM .

CLEAR FROM clears all SET FROM information previously coded.

CLEAR TO .

CLEAR TO clears all SET TO information previously coded.

CLEAR OPTIONS .

CLEAR OPTIONS clears all SET OPTIONS information previously coded.

CLEAR FOOTPRINT .

CLEAR FOOTPRINT clears all SET FOOTPRINT information previously coded.

Chapter 8. Load Utility 8-11

8.4 Load Utility Reports

8.4 Load Utility Reports

 8.4.1 Overview

Four reports are produced by the Endevor Load Utility, after the JCL is executed.
These reports include the:

■ Endevor Load Execution Log

■ Endevor Data Validation Report

■ Endevor Load Execution Report

■ Endevor Load Execution Summary

Each of these reports is explained below. The next section of this chapter provides a
working example of the Load Utility process from start to finish. The four reports and
their use are illustrated in that section.

8.4.2 Endevor Load Execution Log

The Endevor Load Execution Log displays each LOAD request in the input data set
exactly as you coded it. An input data set can contain one request with several
members or several requests of one member each, or any combination of the two.

The log lists all requests coded, including requests containing invalid data. In
addition, any syntax errors found by the parser are flagged. A brief explanation of the
error appears on the line immediately following the error, denoted by the prefix
BSTPPARS.

8.4.3 Endevor Data Validation Report

The system automatically checks the content of each LOAD request to ensure that both
the input data sets and Endevor locations specified are valid. The Endevor Data
Validation Report is produced only when invalid information is found in one or more
requests. If there are no data errors at all, throughout all the LOAD requests, you do
not receive this report.

For each invalid request, the report lists the LOAD request number (automatically
assigned by the system), the invalid data, and the total number of data errors found in
that request. A final line at the end of the report indicates the total number of requests
that contained errors.

8-12 Utilities Guide

8.4 Load Utility Reports

8.4.4 Endevor Load Execution Report

The Endevor Load Execution Report is produced when LOAD execution begins.
LOAD execution takes place after syntax validation and content validation have
determined that there are no syntax and data errors in any of the requests.

This report expands the LOAD request, reformatting the clauses into a standard
structure--which is the structure shown in the “Load Request Syntax” section at the
beginning of the chapter. All relevant SET information is applied to the LOAD
statement, and appears in the printed syntax.

The remainder of the report, for each request, lists informational messages that relate
what happens as each step of the load process occurs. Be sure to read these messages,
as error and problem conditions are noted here also.

Note: Especially when processing large quantities of LOAD requests and/or
members, you should use this report in conjunction with the Endevor Load
Execution Summary (explained next). Using this combination of reports
facilitates looking for, and finding, those requests that may contain processing
errors.

8.4.5 Endevor Load Execution Summary

The Endevor Load Execution Summary, like the Endevor Load Execution Report, is
produced when LOAD execution begins. This report summarizes the results of
processing the input data set and lists the following information for each LOAD
request:

■ The return code for the request.

■ The total number of members requested.

■ The total number of members in the request that were successfully loaded.

■ The total number of members in the request that failed the loading process.

■ The number of members in the request that were footprinted. (Note that only
members that are successfully loaded can be footprinted.)

■ The number of successfully loaded members that failed the footprinting process.

As mentioned above, it is beneficial to use this report in combination with the Endevor
Load Execution Report. You can use the Execution Summary to quickly find any
requests with errors, then refer back to the more detailed Execution Report to
determine where and when the error occurred.

Chapter 8. Load Utility 8-13

8.4 Load Utility Reports

8.4.6 For Your Information

Several Endevor panels and reports, mostly related to footprints, reflect the use of the
Endevor Load Utility to populate environments. A load indicator the field LD
which appears as part of the footprint indicates whether a particular element/member
was loaded into Endevor (Y, yes) or generated within Endevor (blank, no).

The panels affected include the Endevor-Footprint Display, as well as any other panels
that show footprint information.

The reports affected include (in both assembler and SAS):

■ CONRPT80--the Library Member Footprint Report

■ CONRPT81--the Library CSECT Listing

■ CONRPT82--the Library ZAPped CSECT Profile

■ CONRPT83--the Footprint Exception Report

8-14 Utilities Guide

8.5 A Working Example--the Load Utility Process

8.5 A Working Example--the Load Utility Process

 8.5.1 Overview

This section provides a working example of the Endevor Load Utility process. This
example begins with a LOAD request being entered into Endevor, and proceeds
through a review of the JCL generated and the reports produced by the utility.

8.5.2 Step 1: Load the Request

Code the LOAD requests into Endevor. Remember that you can code one request to
load several members, several requests to load one member each, or any combination
in between.

In this example, you enter a LOAD request using the THROUGH clause, to load a
range of members (FINARP00 through FINARP99) into Endevor:

LOAD MEMBER FINARP�� THROUGH FINARP99

FROM DSNAME 'PROD.SRCLIB'

TO ENVIRONMENT 'DEMO' SYSTEM 'FINANCE' SUBSYSTEM 'ACCTREC'

 TYPE 'COBOL' STAGE 'P'

 OPTIONS CCID 'LOAD '

COMMENT 'AUTOMATED ENDEVOR IMPLEMENTATION '

PROCESSOR GROUP 'COBNBL�1 '

 FOOTPRINT 'PROD.LOADLIB'

 .

These members are being loaded into the DEMO environment, Stage P, Finance
system, ACCTREC subsystem, and are assigned a type of COBOL. Each member has
both a CCID and a comment, and is associated with the processor group COBNBL01.
The members are being loaded from data set PROD.SRCLIB and will be footprinted in
the load library PROD.LOADLIB.

■ Quotes are optional for data sets unless you have embedded blanks or periods
within the literal. The data set names in this example contain embedded periods;
therefore, these values are enclosed in quotes.

■ If no processor group is specified, the member(s) is associated with the default
processor group for the type specified.

■ Members can be footprinted in source and object libraries as well as load libraries.
Simply enter the appropriate library names in the FOOTPRINT clause.

8.5.3 Step 2: Execute the JCL

When your requests are ready to be loaded into Endevor, submit them for execution,
using JCL similar to that illustrated below.

Chapter 8. Load Utility 8-15

8.5 A Working Example--the Load Utility Process

//� (JOBCARD)

//

//���

//� SAMPLE JCL THAT WILL RUN LOAD UTILITY �

//���

//LOAD EXEC PGM=NDVRC1,PARM='C1BML���'

//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//C1BMLIN DD �

(PLACE INPUT DATA HERE)
//C1BMLLOG DD SYSOUT=�

//C1BMLSYN DD SYSOUT=�

//C1BMLDET DD SYSOUT=�

//C1BMLSUM DD SYSOUT=�

//SYSOUT DD SYSOUT=�

//SYSPRINT DD SYSOUT=�

//

//� BC1JLOAD

8.5.4 Step 3: Review the Reports

Endevor Load Utility execution produces a series of reports for your review. The
reports you see depend on whether your input requests contained syntax and/or data
errors. If errors exist in the input LOAD requests, the Endevor Load Execution Log
and the Endevor Data Validation Report are produced. If no syntax or data errors
exist in the input requests, you see the Endevor Load Execution Log, the Endevor
Load Execution Report, and the Endevor Load Execution Summary. Each of these
reports is illustrated below, and contains information pertaining to the example, as
appropriate.

8.5.4.1 Load Request Numbers

During execution, the system automatically assigns LOAD request numbers, beginning
sequentially with the first LOAD request. All requests within the input data set are
numbered. The LOAD request number appears on the Endevor Data Validation
Report, Endevor Load Execution Report, and Endevor Load Execution Summary.

These request numbers are particularly useful when looking for requests containing
incorrect data. You can use the Endevor Load Execution Log in conjunction with the
Endevor Data Validation Report to pinpoint those requests causing problems.

8.5.4.2 The Endevor Load Execution Log (DDname = C1BMLLOG)

The Endevor Load Execution Log contains each LOAD request as you coded it,
including those requests with syntax errors or incorrect data. When a syntax error is
found by the parser, it is noted in the request by the prefix BSTPPARS: in the
log--immediately following the line in which the error appears.

In the report below, the LOAD request was loaded successfully. The LOAD syntax
appears first, in the order in which it was coded. Several informational messages
follow, one for each member to be added in the LOAD request. Each message

8-16 Utilities Guide

8.5 A Working Example--the Load Utility Process

indicates that the member requested has been created, and lists the version number and
stage associated with the member. The final message, which is the last line of the
report, indicates that the load processing for the request was completed successfully.

ddmmmyy 12:21 PAGE 1

E N D E V O R L O A D E X E C U T I O N L O G RELEASE X.XX SERIAL XXXXXX

12:22:11 C1BML5�I LOAD REQUEST NUMBER 1 :

LOAD MEMBER FINARP�� THROUGH FINARP99

FROM DSNAME 'PROD.SRCLIB'

TO ENVIRONMENT 'DEMO' SYSTEM 'FINANCE' SUBSYSTEM 'ACCTREC'

 TYPE 'COBOL' STAGE 'P'

OPTIONS CCID 'LOAD '

COMMENT 'AUTOMATED ENDEVOR IMPLEMENTATION '

PROCESSOR GROUP 'COBNBL�1 '

 FOOTPRINT 'PROD.LOADLIB'

 .

12:22:19 C1G�1�7I ELEMENT FINARP�� �1.�� CREATED AT PROD

12:22:22 C1G�1�7I ELEMENT FINARP�5 �1.�� CREATED AT PROD

12:22:25 C1G�1�7I ELEMENT FINARP1� �1.�� CREATED AT PROD

12:22:27 C1G�1�7I ELEMENT FINARP2� �1.�� CREATED AT PROD

12:22:29 C1G�1�7I ELEMENT FINARP25 �1.�� CREATED AT PROD

12:22:29 C1BML�1I LOAD PROCESSING SUCCESSFULLY COMPLETED

If there had been an error in the syntax, however, a report similar to the one illustrated
next would have been produced.

In the example below, the LOAD request contains a syntax error in the FROM
DSNAME clause. The next line indicates the error; note the line beginning with
BSTPPARS.

In this case, no comment was specified although the keyword COMMENT was coded.
The system looked for a comment and applied the next word it found in the
syntax--the word FROM, based on the FROM DSNAME entry immediately following
the OPTION COMMENT clause. The FROM DSNAME command then is misread.
Because the from DSNAME command requires both words (FROM and DSNAME) in
the clause, the system considers this an error in command wording and therefore an
error in syntax.

Note, in the last line of the report, that the processing for this request failed and
execution of the job terminated. Even if several other LOAD requests with no errors
had been included in the input data set, this one error still would prevent execution of
the job.

ddmmmyy 12:21 PAGE 1

E N D E V O R L O A D E X E C U T I O N L O G RELEASE X.XX SERIAL XXXXXX

LOAD MEMBER FINARP3�

TO ENVIRONMENT 'DEMO' SYSTEM 'FINANCE' SUBSYSTEM 'ACCTREC'

TYPE 'COBOL' STAGE 'P'

OPTION CCID 'LOAD '

 OPTION COMMENT

FROM DSNAME 'PROD.SLIB'

BSTPPARS: E��4 INVALID COMMAND WORDING, FOUND: DSNAME FOOTPRINT 'PROD.LOADLIB'

12:19:28 C1BML�1E LOAD PROCESSING FAILED, EXECUTION TERMINATED

Chapter 8. Load Utility 8-17

8.5 A Working Example--the Load Utility Process

8.5.4.3 The Endevor Data Validation Report (DDname = C1BMLSYN)

The Endevor Data Validation Report lists the data errors, if any, found in each LOAD
request. Only those requests with errors are listed, with the appropriate request
number. If there are no errors in any of the LOAD requests, this report is not produced
for the job. If data errors do exist, processing is terminated for the request and for the
entire job.

Assume that an incorrect system name (“BADSYS”) was specified. A Endevor Data
Validation Report, as shown below, would be produced.

ddmmmyy 12:18 PAGE 1

E N D E V O R D A T A V A L I D A T I O N R E P O R T RELEASE X.XX SERIAL XXXXXX

12:18:37 C1BML1�I DATA ERRORS FOUND REQUEST = 1

12:18:37 C1BML21E SYSTEM BADSYS DOES NOT EXIST

12:18:37 C1BML4�I REQUEST ERROR TOTAL = 1

12:19:28 C1BML41I DATA REPORT FINAL TOTAL = 1

The first line indicates the number assigned to the LOAD request. Use this number to
go back to the Endevor Load Execution Log to find the request and check your data.
In this example, only one LOAD request has been entered; therefore the request
number is 1.

The second line notes the error. In the example, this message indicates that the system
specified in the request does not exist. If there were additional data errors in this
request, they too would be listed here.

The third line indicates the total number of errors in this request only. Only one error
exists in the example, as is reflected by the message. If two data errors existed in the
request, the request total would reflect that fact.

The final line of the report lists the total number of requests that contained errors.
Again, because the example contains only one request, the DATA REPORT FINAL
TOTAL is 1.

8.5.4.4 Endevor Load Execution Report (DDname = C1BMLDET)

The Endevor Load Execution Report is not produced unless every request in the input
data set (DDname C1BMLIN) is correct syntactically and contains no invalid data.
Remember that the input data set can contain one request with several members,
multiple requests of one member each or any combination of the two.

A word of advice: If you are loading several (2 or more) members, whether in a
single request or using several requests, you may want to review the Endevor Load
Execution Summary before the Endevor Load Execution Report. The Endevor Load
Summary alerts you to the number of members that failed load processing in a single
request, for every request coded. You can then refer back to the Endevor Load
Execution Report to locate the specific members, in each request, that contain the
errors.

8-18 Utilities Guide

8.5 A Working Example--the Load Utility Process

ddmmmyy 12:22 PAGE 1

E N D E V O R L O A D E X E C U T I O N R E P O R T RELEASE X.XX SERIAL XXXXXX

12:22:11 C1BML5�I LOAD REQUEST NUMBER 1 :

 12:22:11 C1BML51I LOAD MEMBER FINARP�� THROUGH FINARP99

 12:22:11 C1BML51I FROM DSNAME PROD.SRCLIB

 12:22:11 C1BML51I TO ENVIRONMENT DEMO

 12:22:11 C1BML51I SYSTEM FINANCE

 12:22:11 C1BML51I SUBSYSTEM ACCTREC

 12:22:11 C1BML51I TYPE COBOL

 12:22:11 C1BML51I STAGE P

 12:22:11 C1BML51I FOOTPRINT PROD.LOADLIB

 12:22:11 C1BML51I OPTION(S)

 12:22:11 C1BML51I CCID LOAD

 12:22:11 C1BML51I COMMENT AUTOMATED ENDEVOR IMPLEMENTATION

 12:22:11 C1BML51I PROCESSOR GROUP COBNBL�1 .

12:22:11 C1BML52I STARTING LOAD

12:22:19 C1BML53I FINARP�� LOADED

12:22:19 C1BML57I FOOTPRINTING MEMBER FINARP�� IN DATASET PROD.LOADLIB

12:22:19 C1BML58I MEMBER FINARP�� FOOTPRINTED

12:22:22 C1BML53I FINARP�5 LOADED

12:22:22 C1BML57I FOOTPRINTING MEMBER FINARP�5 IN DATASET PROD.LOADLIB

12:22:22 C1BML58I MEMBER FINARP�5 FOOTPRINTED

12:22:25 C1BML53I FINARP1� LOADED

12:22:25 C1BML57I FOOTPRINTING MEMBER FINARP1� IN DATASET PROD.LOADLIB

12:22:25 C1BML58I MEMBER FINARP1� FOOTPRINTED

12:22:27 C1BML53I FINARP2� LOADED

12:22:27 C1BML57I FOOTPRINTING MEMBER FINARP2� IN DATASET PROD.LOADLIB

12:22:27 C1BML58I MEMBER FINARP2� FOOTPRINTED

12:22:29 C1BML53I FINARP25 LOADED

12:22:29 C1BML57I FOOTPRINTING MEMBER FINARP25 IN DATASET PROD.LOADLIB

12:22:29 C1BML58I MEMBER FINARP25 FOOTPRINTED

12:22:29 C1BML55I LOAD ENDED FOR REQUEST NUMBER 1

The LOAD request has been expanded and reformatted to fit the standard structure
(shown in the “Load Request Syntax” section at the beginning of the chapter). No
SET information was coded for this request. If SET information had been coded, it
would appear in the appropriate clauses in the syntax.

Note the informational messages following the request. Details about processing for
each member are listed; in the example, each step of the process for every member
was successful. Be sure to read these messages carefully, as error and problem
conditions are noted here as well as informational messages.

8.5.4.5 Endevor Load Execution Summary (DDname = C1BMLSUM)

As with the Endevor Load Execution Report, the Endevor Load Execution Summary is
not produced unless every request in the input data set is correct syntactically and
contains no invalid data. The Endevor Load Execution Summary for this example is
illustrated below.

ddmmmyy 12:22 PAGE 1

E N D E V O R L O A D E X E C U T I O N S U M M A R Y RELEASE X.XX SERIAL XXXXXX

12:22:29 C1BML64I LOAD REQUEST NUMBER 1 COMPLETE - RC=����

12:22:29 C1BML66I TOTAL MEMBERS REQUESTED = 5

12:22:29 C1BML67I MEMBERS LOADED = 5 MEMBERS NOT LOADED = �

12:22:29 C1BML68I FOOTPRINTS ATTEMPTED = 5 FOOTPRINTS FAILED = �

This report summarizes the results of processing the requests in the input data set, and
provides the following information for every request (by request number):

■ The return code for the request. In this example, the return code is 0000, which
indicates that processing was successful.

Chapter 8. Load Utility 8-19

8.5 A Working Example--the Load Utility Process

■ The total number of members requested in the LOAD request. In this
example, a range of members was requested, resulting in a total of 5 members to
be loaded.

■ The total number of members successfully loaded. In this example, all 5
members requested were successfully loaded.

■ The total number of members not loaded, due to an error. In this example, no
members failed processing.

■ The number of members for which footprinting was attempted. Footprinting
is attempted only for those members that were loaded successfully and for which a
FOOTPRINT clause (or SET FOOTPRINT statement) was coded. In this
example, footprinting was attempted for all 5 members, as the above criteria was
met for each member. Therefore, footprints attempted reflects a total of 5.

■ The number of members for which footprinting failed. Again, this total is
based on the number of members eligible for footprinting. In our example, no
members failed the footprinting process.

 8.5.5 In Summary

The Load Utility Reports help you review the processing of your LOAD requests.
With these reports, you can pinpoint problems and errors before you begin working
with Endevor. Interpreted and used properly, the load reports enable you to load
accurate and valid data.

The table below summarizes which reports are produced under which circumstances,
where B indicates that the report is produced.

Report/
Condition

Syntax
Errors Only

Invalid Data
Only

Syntax
Errors and
Invalid Data

Syntax and
Data Correct

Endevor
Load
Execution
Log

B B B B

Endevor
Data
Validation
Report

not produced B not produced not produced

Endevor
Load
Execution
Report

not produced not produced not produced B

8-20 Utilities Guide

8.5 A Working Example--the Load Utility Process

Report/
Condition

Syntax
Errors Only

Invalid Data
Only

Syntax
Errors and
Invalid Data

Syntax and
Data Correct

Endevor
Load
Execution
Summary

not produced not produced not produced B

Chapter 8. Load Utility 8-21

8.6 The Load Utility Footprint Override Exit

8.6 The Load Utility Footprint Override Exit

The Endevor Load Utility provides an external exit routine that can be used to override
the member name that the Load Utility footprints during load processing. The default
member name that is footprinted is the same as the member name that is specified in
the LOAD MEMBER statement. In certain circumstances, though, the default member
name may not be appropriate.

For example, assume that the Load Utility is loading a data set that contains linkage
editor control statements and the FOOTPRINT statement is pointing to the associated
load module library. In this case the Load Utility attempts to footprint the member in
the load module library that has the same name as the input element name. However,
if the linkage editor control statements contain a NAME statement that created a load
module that was different than the control statement member name, the Load Utility
may not find the correct load module to footprint. The Footprint Override Exit could
be used to supply the correct member name to be footprinted by the Load Utility.

 8.6.1 Exit Operation

The name of the Load Utility Footprint Override exit must be C1EXITL1. The exit, if
used, must reside in the Endevor CONLIB library. If the Load Utility cannot locate
the exit routine, it does not perform any exit processing. The normal Load Utility
functions continue, however.

The exit must be reentrant and reusable. It is called in 31-bit addressing mode.

On entry to the exit, register 1 points to a two-word parameter list. The parameter list
and all parameters are in 24-bit addressable storage. The parameter list is defined
below.

If the exit decides that the default footprint element name is to be overridden, it must
update field EXMBRNM in the Load Exit Control Block with the appropriate member
name and set the return code to four. The maximum allowable member name length
is eight characters. The EXMBRNM field, however, is 10 bytes long and should be
right-padded with blanks.

The exit should set one of the following return codes in register 15 before returning to
the Load Utility. If the exit wants to override the default element name, it must set a
return code of four.

■ 0: The exit does not want to override the member name.

Word 1 Contains the address of the Load Exit Control Block. The
control block is mapped by the @LOADDS macro.

Word 2 Contains the address of a 400 byte work area that is available
for the exit. The area is on a double-word boundary and is
initialized to binary zeroes for each invocation of the exit.

8-22 Utilities Guide

8.6 The Load Utility Footprint Override Exit

■ 4: The exit wants to override the member name to be footprinted.

■ 8: The exit encountered an unrecoverable error. The Load Utility will footprint
the default member.

8.6.1.1 Load Exit Control Block (@LOADDS)

The following DSECT maps the Load Exit Control Block.

LOADDS DSECT

EXFUNC DS H FUNCTION CODE

EXVER EQU 1 VERFIY REQUEST

EXFOOT EQU 2 FOOTPRINT REQUEST

EX$MAXF EQU 2 FUNCTION MAX VALUE

EXSEVI DS CL1 MESSAGE SEVERITY SELECTION IND

EXMSGI EQU C'I' INFORMATIONAL MESSAGE SELECTED

EXMSGW EQU C'W' WARNING MESSAGE SELECTED

EXMSGC EQU C'C' CAUTION MESSAGE SELECTED

EXMSGE EQU C'E' SEVERE ERROR MESSAGE SELECTED

EXDDNM DS CL8 DDNAME

EXDSNM DS CL44 DSNAME

EXDATA DS CL65 FOOTPRINT REQUIRED DATA

EXMBRNM DS CL1� MEMBER NAME

 ORG EXDATA

EXENV DS CL8 ENVIRONMENT

EXSYS DS CL8 SYSTEM

EXSBS DS CL8 SUBSYSTEM

EXELENM DS CL1� ELEMENT NAME

EXTYPE DS CL8 TYPE

EXSTGN DS CL8 STAGE NAME

EXSTG# DS CL1 STAGE

EXGRP DS CL8 PROCESSOR GRP

EXLVV DS CL2 VERSION CHARACTER

EXLVVX DS XL1 VERSION (BINARY)

EXLLL DS CL2 LEVEL CHARACTER

EXLLLX DS XL1 LEVEL (BINARY)

 ORG

EXPRB@ DS F ADDRESS OF PRB FOR MESSAGES

EXRESVD DS 4F �� RESERVED ��

EXRQ#LN EQU �-LOADDS

8.6.2 Sample Exit (C1BMLXIT)

The following sample exit program can be used to address the issue described in the
overview section. The exit reads link-edit control cards and extracts the module name
specified in the NAME control statement. If found, the exit sets a return code of four
to indicate to the Load Utility that an override member name is to be footprinted. The
program uses an internal table to determine the element types that are associated with
linkage editor control statements. Refer to the program code for information on how
to update the table and about the method of operation and program limitations.

The sample exit source is distributed in the uprfx.uqual.SOURCE library.

The exit can be assembled and link-edited using standard procedures. The load
module name that is created must be named C1EXITL1 and it must be placed in the

Chapter 8. Load Utility 8-23

8.6 The Load Utility Footprint Override Exit

Endevor CONLIB library. The program must be link-edited with the RENT, REUS,
AMODE(31), and RMODE(24) attributes.

C1BMLXIT TITLE 'SAMPLE USER EXIT FOR THE IMPLEMENTATION LOAD UTILITY'

C1BMLXIT CSECT

C1BMLXIT AMODE 31

C1BMLXIT RMODE 24

���

� �

� PROGRAM NAME: C1BMLXIT �

� �

� DESCRIPTION: THIS IS A SAMPLE LOAD UTILITY FOOTPRINT OVERRIDE �

� EXIT. THE PROGRAM IS INTENDED TO DEMONSTRATE HOW �

� THE EXIT COULD BE USED. �

� �

� THE EXIT IS INTENDED TO DETERMINE THE NAME OF THE �

� LOAD MEMBER THAT WAS CREATED BY LINK EDIT CONTROL �

� CARDS WHEN THE CONTROL CARD MEMBER NAME IS DIFF- �

� ERENT FROM THE LOAD MODULE NAME. THIS SITUATION �

� COULD OCCUR IF THE CONTROL CARDS CONTAINED A �

� "NAME" STATEMENT. FOR EXAMPLE, ASSUME THAT THE �

� FOLLOWING LINK EDIT CONTROL CARDS RESIDE IN �

� DATASET 'PAYROLL.LINKCARD(PAYPROG1)': �

� INCLUDE PAYPROG1 �

� NAME PAYPROG2(R) �

� FURTHERMORE, ASSUME THAT THE LOAD LIBRARY IS NAMED �

� 'PAYROLL.LOADLIB' AND THAT IT IS SPECIFIED ON THE �

� LOAD UTILITY "FOOTPRINT" STATEMENT. WHEN THE LOAD �

� UTILITY ATTEMPTS TO FOOTPRINT THE LOAD MODULE �

� ASSOCIATED WITH THE LINK EDIT CONTROL CARDS, IT �

� WILL FAIL BECAUSE THE LOAD MODULE IS NAMED �

� PAYPROG2, NOT PAYPROG1. �

� �

� THIS EXIT ASSUMES THAT THE DATASET THAT IS BEING �

� LOADED CONTAINS LINK EDIT CONTROL CARDS. THE �

� ROUTINE WILL READ THE CURRENT MEMBER THAT IS BEING �

� PROCESSED AND ATTEMPT TO DETERMINE THE NAME OF �

� THE LOAD MODULE THAT WAS CREATED. THE ROUTINE �

� SEARCHES FOR THE "NAME" STATEMENT. IF FOUND, IT �

� WILL EXTRACT THE MEMBER NAME CREATED AND RETURN �

� A RETURN CODE OF FOUR TO INDICATE THAT AN ALTER- �

� NATE MEMBER IS TO BE FOOTPRINTED. IF THE "NAME" �

� STATEMENT CANNOT BE FOUND, A RETURN CODE OF ZERO �

� IS PASSED. �

� �

� TO FURTHER DIFFERENTIATE LINK EDIT CONTROL CARDS �

� FROM OTHER TYPES OF DATA, THE EXIT USES THE �

� ELEMENT TYPE NAME THAT WAS PASSED TO SEARCH A TABLE�

� OF PREDEFINED LINK EDIT CONTROL CARD ELEMENT TYPES �

� (SEE LABEL LINKTABL). THE ROUTINE WILL ONLY PROC- �

� ESS ELEMENTS THAT MATCH ELEMENT TYPES DEFINED IN �

� THE TABLE. �

� �

� THE PROGRAM ASSUMES THAT THE INPUT DATASET IS A �

� PARTITIONED DATASET WITH FIXED LENGTH RECORDS. THE �

� PROGRAM DOES NOT VALIDATE THESE ASSUMPTIONS. CODE �

� CAN BE ADDED AFTER THE 'OPEN' TO VALIDATE THE DATA-�

� SET CHARACTERISTICS, IF DESIRED. �

� �

8-24 Utilities Guide

8.6 The Load Utility Footprint Override Exit

� ON ENTRY: �

� THE REGISTERS WILL CONTAIN THE FOLLOWING INFORMATION �

� R�: UNDEFINED �

� R1: THE ADDRESS OF A TWO WORD PARAMETER LIST: �

� WORD 1: ADDRESS OF THE EXIT REQUEST DSECT �

� WORD 2: ADDRESS OF A 4�� BYTE, DOUBLE WORD ALIGNED WORK �

� AREA. THE WORK AREA IS SET TO BINARY ZEROES BEFORE�

� THE EXIT IS CALLED. �

� R2-R12: UNDEFINED �

� R13: CALLERS SAVE AREA. THE FIRST WORK OF THE SAVE AREA MUST �

� NOT BE MODIFIED. �

� R14: RETURN ADDRESS �

� R15: ENTRY POINT ADDRESS �

� �

� ON EXIT: �

� THE REGISTERS MUST CONTAIN THE FOLLOWING INFORMATION: �

� �

� R�: UNDEFINED �

� R1: UNDEFINED �

� R2-R12: MUST BE RESTORED TO THEIR ORIGINAL VALUES �

� R14: UNDEFINED �

� R15: EXIT RETURN CODE: �

� RC = �, CONTINUE EXECUTION, USE THE SOURCE �

� MEMBER NAME TO LOCATE THE OUTPUT, �

� RC = 4, CONTINUE EXECUTION, AN OUTPUT MEMBER �

� NAME HAS BEEN SUPPLIED IN THE �

� EXMBRNM FIELD IN THE EXIT DSECT. �

� RC = 8, AN ERROR OCCURRED. �

� �

� ATTRIBUTES: REENTRANT, REUSABLE �

� AMODE(31), RMODE(24) �

� �

� LANGUAGE �

� PROCESSOR: ASSEMBLER H, VERSION 2 �

� �

���

 EJECT

���

� SAVE THE CALLERS REGISTERS, ESTABLISH PROGRAM ADDRESSABILITY AND �

� CHAIN THE SAVE AREAS. THE EXIT USES THE FIRST 18 WORDS OF THE �

� PROVIDED WORK AREA AS ITS SAVE AREA. �

���

 SAVE (14,12),,'C1BMLXIT-&SYSDATE-&SYSTIME'

LR R12,R15 USE R12 AS THE CSECT

 USING C1BMLXIT,R12 BASE REGISTER

USING PARMAREA,R1 USE R1 AS THE PARAMTER LIST BASE

L R2,PARM2 R2 HAS THE ADDRESS OF THE PROV- X

IDED WORK AREA

 ST R13,4(R2) CHAIN THE

 ST R2,8(R13) SAVE AREAS

LR R13,R2 R13 HAS THE EXIT SAVE AREA X

 ADDRESS

USING WORKDSCT,R13 USE R13 AS THE WORKAREA DSECT X

 BASE REGISTER

 SPACE 1

���

� OBTAIN ADDRESSABILITY VIA R1� TO THE LOAD EXIT CONTROL BLOCK. �

���

MAIN1��� DS �H

Chapter 8. Load Utility 8-25

8.6 The Load Utility Footprint Override Exit

L R1�,PARM1 USE R1� AS THE EXIT CONTROL

USING LOADDS,R1� BLOCK BASE REGISTER

 DROP R1 (PARMAREA)

 SPACE ,

���

� USE THE 'LINKTABL' TABLE TO VALIDATE THAT THE ELEMENT TYPE REPRES- �

� ENTS A LINK EDIT CONTROL DECK. IF THE ELEMENT TYPE IS NOT FOR LINK �

� EDIT CONTROL CARDS THEN THE EXIT WILL IMMEDIATELY STOP PROCESSING �

� AND PASS A RETURN CODE OF ZERO. �

���

MAIN11�� DS �H

XC WRETCODE,WRETCODE SET THE RETURN CODE TO ZERO

MVC WMODNAME,BLANKS SET THE MODULE NAME TO SPACES

LA R3,LINKTABL USE R3 AS THE LOOKUP TABLE X

 ADDRESS

LA R4,LINKTABC R4 HAS THE NUMBER OF TABLE X

 ENTRIES

MAIN111� DS �H

CLC EXTYPE,�(R3) IF AN ELEMENT TYPE NAME MATCH

BE MAIN112� WAS FOUND THEN CONTINUE

LA R3,LINKTAB#(,R3) ELSE, POINT TO THE NEXT

BCT R4,MAIN111� ENTRY AND LOOP

B MAIN9��� IF NOT FOUND, STOP PROCESSING

MAIN112� DS �H

 SPACE 1

���

� READ THE LINK EDIT CONTROL STATEMENTS SEARCHING FOR THE 'NAME' �

� STATEMENT. �

���

MAIN12�� DS �H

MVC WDCB(WDCBL),MDCB COPY THE MODEL DCB

LA R4,WDCB USE R4 AS THE

USING IHADCB,R4 DCB BASE REGISTER

MVC DCBDDNAM,EXDDNM COPY THE INPUT DATASET DDNAME

MVC WOPEN(WOPENL),MOPEN COPY THE MODEL OPEN PARAMETER

SETAMODE 24 ENTER 24 BIT MODE

OPEN (WDCB,INPUT),MF=(E,WOPEN) OPEN THE INPUT DATASET

SETAMODE 31 REENTER 31 BIT MODE

TM DCBOFLGS,DCBOFOPN IF THE OPEN FAILED

 BZ MAIN8��� THEN EXIT

XR R1,R1 R7 HAS THE

 ICM R1,B'��11',DCBBLKSI INPUT DATASET

 ST R1,WBUFLEN BLOCK SIZE

GETMAIN RC,LV=(1) GETMAIN AN I/O BUFFER

ST R1,WBUFADDR SAVE THE BUFFER ADDRESS

MVC WMEMBER,EXELENM SET THE INPUT MEMBER NAME EQUAL X

TO THE ELEMENT NAME

SETAMODE 24 ENTER 24 BIT MODE

FIND WDCB,WMEMBER,D FIND THE MEMBER

LR R2,R15 SAVE THE RETURN CODE

SETAMODE 31 REENTER 31 BIT MODE

OC DCBRELAD,DCBRELAD IF THE MEMBER WAS NOT

BZ MAIN15�� FOUND THEN STOP

MVC WREAD(WREADL),MREAD COPY THE MODEL READ DECB

�---�

� READ THE NEXT RECORD FROM THE INPUT FILE. CALCULATE THE INPUT RECORD�

� LENGTH AND SAVE IT IN R7. �

�---�

MAIN13�� DS �H

8-26 Utilities Guide

8.6 The Load Utility Footprint Override Exit

L R11,WBUFADDR R11 HAS THE I/O BUFFER ADDRESS

SETAMODE 24 ENTER 24 BIT MODE

READ WREAD,SF,WDCB,(R11),MF=E READ A RECORD AND WAIT

CHECK WREAD FOR THE READ TO COMPLETE

SETAMODE 31 WHEN DONE, RETURN TO 31 BIT MODE

L R15,WREAD+16 R15 HAS THE IOB ADDRESS ASSOC- X

IATED WITH THE READ

XR R1,R1 R1 HAS THE RESIDUAL

ICM R1,B'��11',14(R15) BYTE COUNT FROM THE READ

L R7,WBUFLEN R7 HAS THE FILE BLOCKSIZE

SR R7,R1 SUBTRACT THE RESIDUAL COUNT X

FROM THE BLOCK SIZE TO OBTAIN X

THE INPUT RECORD LENGTH

�---�

� SCAN THE BLOCK JUST READ LOOKING FOR THE 'NAME ' STATEMENT. IF THE �

� STATEMENT IS NOT FOUND IN THE BLOCK THEN READ THE NEXT BLOCK IN THE �

� FILE. �

�---�

MAIN14�� DS �H

SH R7,=Y(L'LNAME) DECREMENT THE RECORD LENGTH TO X

ACCOUNT FOR THE LENGTH OF THE X

 NAME STATEMENT. THIS WILL X

PREVENT THE ROUTINE FROM X

OVERFLOWING THE I/O BUFFER

SR R5,R5 R5 CONTAINS WMODNAME LENGTH

MAIN141� DS �H

CLC LNAME,�(R11) IF THE 'NAME ' STATEMENT WAS

BE MAIN142� FOUND THEN CONTINUE

LA R11,1(,R11) ELSE, POINT TO THE NEXT INPUT

BCT R7,MAIN141� CHARACTER AND LOOP UNTIL THE X

END OF THE RECORD HAS BEEN X

 REACHED

B MAIN13�� IF THE END IS REACHED, READ THE X

 NEXT RECORD

�---�

� THE 'NAME ' STATEMENT HAS BEEN FOUND. SKIP OVER ANY BLANKS BETWEEN �

� THE 'NAME' STATEMENT AND THE MODULE NAME. IF A MODULE NAME IS NOT �

� FOUND THEN READ THE NEXT BLOCK IN THE FILE. �

�---�

MAIN142� DS �H

LA R11,L'LNAME(,R11) POINT PAST THE 'NAME ' STATEMENT

SH R7,=Y(L'LNAME) DECREMENT THE INPUT RECORD X

 LENGTH

LTR R7,R7 IF THERE ARE NO MORE CHARACTERS

BNP MAIN13�� IN THE BLOCK, READ THE NEXT ONE

MAIN143� DS �H

 CLI �(R11),C' ' SKIP OVER

BNE MAIN144� ANY BLANKS BEFORE

 LA R11,1(,R11) THE MODULE

 BCT R7,MAIN143� NAME

B MAIN13�� IF ALL BLANKS WERE FOUND THEN X

READ THE NEXT RECORD

�---�

� THE START OF THE MODULE NAME HAS BEEN FOUND. COPY UP TO EIGHT CHAR-�

� ACTERS, STOPPING WHEN AN OPEN PARENTHESIS OF A SPACE IS FOUND. �

�---�

MAIN144� DS �H

LA R6,8 SET THE MAXIMUM LENGTH OF THE X

 MODULE NAME

Chapter 8. Load Utility 8-27

8.6 The Load Utility Footprint Override Exit

LA R8,WMODNAME USE R8 TO POINT TO THE MODULE X

 NAME FIELD

MAIN145� DS �H

CLI �(R11),C'(' IF THE END OF THE

BE MAIN146� MODULE NAME HAS BEEN

CLI �(R11),C' ' FOUND THEN STOP

 BE MAIN146� PROCESSING

MVC �(1,R8),�(R11) ELSE, COPY THE CURRENT CHARACTER

LA R11,1(,R11) POINT TO THE NEXT INPUT AND

 LA R8,1(,R8) OUTPUT CHARACTERS

LA R5,1(,R5) INCREMENT THE MODULE NAME LENGTH

BCT R6,MAIN145� LOOP OVER THE MODULE NAME

MAIN146� DS �H

 SPACE 1

�---�

� THE 'NAME' STATEMENT HAS BEEN FOUND AND THE MODULE NAME EXTRACTED �

� OR THE END OF THE INPUT MEMBER HAS BEEN REACHED. CLOSE THE INPUT �

� DATASET, FREE THE I/O BUFFER AND BEGIN TERMINATION PROCESSING. �

�---�

MAIN15�� DS �H

MVC WCLOSE(WCLOSEL),MCLOSE COPY THE CLOSE PARAMETER LIST

 SETAMODE 24

CLOSE (WDCB),MF=(E,WCLOSE) CLOSE THE INPUT FILE

 SETAMODE 31

L R�,WBUFLEN R� HAS THE BUFFER LENGTH

L R1,WBUFADDR R1 HAS THE BUFFER ADDRESS

FREEMAIN RC,LV=(�),A=(1) FREE THE BUFFER STORAGE

CLC WMODNAME,BLANKS IF A MODULE NAME WAS NOT

BE MAIN8��� FOUND THEN EXIT WITH AN ERROR

�---�

� THE ROUTINE FOUND AND EXTRACTED THE MODULE NAME. COPY THE MODULE �

� NAME TO THE EXIT CONTROL BLOCK AND SET THE RETURN CODE TO FOUR. �

�---�

MAIN151� DS �H

MVC EXMBRNM,WMODNAME COPY THE LOAD MODULE NAME

LA R15,4 SET THE RETURN CODE

 ST R15,WRETCODE TO FOUR

 B MAINEXIT AND EXIT

 SPACE 1

�---�

� AN ERROR OCCURRED DURING PROCESSING. SET THE RETURN CODE TO EIGHT �

� AND EXIT. �

�---�

MAIN8��� DS �H

LA R15,8 SET THE RETURN CODE

 ST R15,WRETCODE TO EIGHT

 B MAINEXIT AND EXIT

�---�

� THE ELEMENT TYPE IS NOT A LINK EDIT CONTROL DECK. RETURN WITH THE �

� DEFAULT CODE OF ZERO. �

�---�

MAIN9��� DS �H

 B MAINEXIT

 SPACE 1

�---�

� PROCESSING IS COMPLETE. RETURN TO THE CALLER WITH THE RETURN CODE. �

�---�

MAINEXIT DS �H

L R15,WRETCODE R15 HAS THE RETURN CODE

8-28 Utilities Guide

8.6 The Load Utility Footprint Override Exit

L R13,4(,R13) R13 HAS THE CALLERS SAVEAREA

RETURN (14,12),,RC=(15) RETURN TO THE LOAD UTILITY

 DROP R13 (WORKDSCT)

TITLE 'PROGRAM LITERALS AND CONSTANTS'

�---�

� PROGRAM LITERALS, CONTANTS AND MODEL PARAMETER LISTS �

�---�

 LTORG

 SPACE 2

LNAME DC CL5'NAME ' LINKAGE EDITOR 'NAME' STATEMENT

 SPACE 2

MOPEN OPEN (�,(INPUT)),MF=L

MOPENL EQU �-MOPEN

MCLOSE CLOSE (�),MF=L

MCLOSEL EQU �-MCLOSE

MDCB DCB DDNAME=�, X

 DSORG=PO, X

 MACRF=(R), X

 EODAD=MAIN15��

MDCBL EQU �-MDCB

MREAD READ DECB1,SF,�,�,8�,MF=L

MREADL EQU �-MREAD

BLANKS DC CL8�' '

TITLE 'LINKTABL - LINK EDIT ELEMENT TYPE NAME TABLE'

���

� THE FOLLOWING TABLE IS USED TO IDENTIFY ELEMENT TYPES THAT REPRES- �

� ENT LINK EDIT CONTROL STATEMENTS. THE TABLE CAN BE AS LONG AS �

� NECESSARY. SIMPLY ADD NEW ENTRIES AS NEEDED OR REPLACE THE DEFAULT �

� ENTRIES PROVIDED. NEW ENTRIES MUST BE ADDED BETWEEN THE LINKTAB# �

� AND LINKTABC LABELS. EACH ENTRY IS EXACTLY EIGHT BYTES LONG AND �

� PADDED WITH SPACES, IF NEEDED. �

���

LINKTABL DS �CL8

LINKTAB# EQU 8 LENGTH OF A TABLE ENTRY

 DC CL8'LINKSET '

 DC CL8'LINKCARD'

 DC CL8' ' SPACE ENTRY

 DC CL8' ' SPACE ENTRY

 DC CL8' ' SPACE ENTRY

 DC CL8' ' SPACE ENTRY

 DC CL8' ' SPACE ENTRY

 DC CL8' ' SPACE ENTRY

LINKTABC EQU ((�-LINKTABL)/8) NUMBER OF ENTRIES IN THE TABLE

TITLE '@LOADDS - LOAD EXIT PARAMETER LIST'

���

� EXIT PARAMETER LIST �

���

PARMAREA DSECT

PARM1 DS A ADDRESS OF EXIT CONTROL BLOCK

PARM2 DS A ADDRESS OF SUPPLIED WORK AREA

TITLE '@LOADDS - LOAD EXIT CONTROL BLOCK'

���

� EXIT CONTROL BLOCK DSECT �

���

 @LOADDS DSCT=YES

TITLE 'LOAD EXIT WORK AREA'

���

� SAVE AREA AND WORK AREA DEFINITION �

���

Chapter 8. Load Utility 8-29

8.6 The Load Utility Footprint Override Exit

WORKDSCT DSECT

WSAVE DS 18F REGISTER SAVE AREA

WRETCODE DS F PROGRAM RETURN CODE

WDCB DS XL(MDCBL) DCB AREA

WDCBL EQU �-WDCB

WOPEN OPEN (�,(INPUT)),MF=L OPEN PARAMETER LIST

WOPENL EQU �-WOPEN

WCLOSE CLOSE (�),MF=L CLOSE PARAMETER LIST

WCLOSEL EQU �-WCLOSE

WREAD READ Z,SF,�,�,8�,MF=L READ DECB

WREADL EQU �-WREAD

WBUFLEN DS F I/O BUFFER LENGTH

WBUFADDR DS F I/O BUFFER ADDRESS

WMODNAME DS CL1� EXTRACTED MODULE NAME

WMEMBER DS CL8 'FIND' MEMBER NAME

TITLE 'REGISTER EQUATE DEFINITIONS'

���

� REGISTER EQUATE DEFINITIONS �

���

R� EQU �

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R1� EQU 1�

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

TITLE 'DCBD - DCB MAPPING MACRO'

���

� DCBD: DCB MAPPING MACRO �

���

 DCBD DSORG=PO,DEVD=DA

 END

8-30 Utilities Guide

 Chapter 9. Notify Utility

Chapter 9. Notify Utility 9-1

9.1 The Notification Utility

9.1 The Notification Utility

The Notification utility allows you to alert people, such as Endevor users and package
approvers, of the occurrence of various Endevor events. It can be called by user exit
programs, as well as by Endevor itself. Messages can be sent using the following four
protocols:

 ■ SMTP (email)

 ■ TSO

 ■ TPX

 ■ XMIT

Several sample user exit programs are provided with Endevor. The source for these
exit programs is located in the iprfx.iqual.source library. For more information on
these exit programs, refer to the Exits Guide.

9-2 Utilities Guide

9.2 Configuring the Notification Utility

9.2 Configuring the Notification Utility

Configuring the Notification utility to send messages to your Endevor users and
package approvers consists of two basic steps:

1. Modify the exit program to pass the values for the universal parameters to the
control block.

2. Modify the exit program to pass the values for the protocol-specific parameters to
the control block.

The following sections explain these parameters and their values.

 9.2.1 Universal Parameters

Regardless of which protocol you use to send the notification, the exit program always
needs to pass certain parameters to the control block. The table below describes these
parameters. Information is given for both assembler and COBOL.

Parameter Description

 ■ NOTFTYPE (assembler)

 ■ NOTI-NOTIFY-TYPE (COBOL)

Specifies the protocol you want to use to
send the message. The possible values are:

 ■ SMTP

 ■ TSO

 ■ TPX

 ■ XMIT

■ Blank (uses default protocol)

 ■ NOTMSGTX (assembler)

 ■ NOTI-MESSAGE-TEXT
(COBOL)

80-character text field used to specify the
message.

Note: If you select a value of V for the
NOTMSGVF parameter, this field is not
used.

 ■ NOTFUSER (assembler)

 ■ NOTI-USER (COBOL)

The ID of the user or users that will receive
the notification. The type of ID depends on
the protocol used to send the message.

Chapter 9. Notify Utility 9-3

9.2 Configuring the Notification Utility

 9.2.2 Protocol-specific Parameters

Depending on which protocol you want to use to send the notification to your users
and package approvers, the exit program must pass certain protocol-specific parameters
to the control block, in addition to the universal parameters discussed in the previous
section.

The following sections describe these protocol-specific parameters.

 9.2.2.1 SMTP-specific Parameters

If you are using the SMTP protocol to inform your users and package approvers of an
Endevor event, refer to the table below for the SMTP-specific parameters that the exit
program must pass to the control block. Information is provided for assembler.

Parameter Description

NOTMSGVF Indicates whether the message text format is
fixed or variable length. The possible
values are:

■ F—Fixed length. This is the default
setting.

 ■ V—Variable length.

Note: If you select F, or do not select a
value, use the NOTMSGTX parameter to
specify the message text. Do not use the
NOTSMTPM parameter.

NOTSIZE Indicates the size field in the $NOTIFY
control block.

NOTMSGMX Indicates the maximum message length.
Required only if the value of NOTMSGVF
is V.

NOTSMTPM The address of the email text. The text
must be in the following format:

LLLLmessage-text

Where:

■ LLLL—The length (in binary) of the
message text.

■ message-text—The message text.

NOTSMTPS 50-character text field used for the email's
subject field.

9-4 Utilities Guide

9.2 Configuring the Notification Utility

See the following sample exit program for an example of how to use these
SMTP-specific parameters:

MESSAGE DC H'3�'

MSGTXT DC CL3�'This is an email text example'

 MVC NOTFTYPE,=CL4"SMTP" Set SMTP as the transmission

 method

 MVI NOTMSGVF,C"V" Indicate variable-length message

 text format

 MVC NOTFUSER,mainframe_userid Set receiver's mainframe userid

 MVC NOTSMTPS,=CL5�'Subj_txt' Set email subject field

LA R1,NOTSIZE Set size field in the $NOTFY

 control block

 STH R1,NOTLEN

LA R1,133 Set maximum email text record

size (necessary for variable-

 blocked)

 STH R1,NOTMSGMX

LA R1,MESSAGE Set address of email text record

 ST R1,NOTSMTPM

 CALL BC1PNTFY,($NOTFY),VL

Chapter 9. Notify Utility 9-5

9.2 Configuring the Notification Utility

 9.2.2.2 TSO-specific Parameters

If you are using the TSO protocol to inform your users and package approvers of an
Endevor event, refer to the table below for the TSO-specific parameters that the exit
program must pass to the control block. Information is provided for both assembler
and COBOL.

Parameter Description

 ■ NTSOALLU (assembler)

 ■ NOTI-SET-ALL-USER-OPT
(COBOL)

Specifies whether you want to send the
message to all TSO users. The possible
values are:

■ N—Do not send the message to all
TSO users. This is the default setting.

■ Y—Send the message to all TSO users.

Note: If you select Y, the NOTFUSER
(assembler) or NOTI-USER (COBOL) field
must be left blank.

 ■ NTSOLOGN (assembler)

 ■ NOTI-SET-LOGON-OPT
(COBOL)

Specifies when users receive the message.
The possible values are:

■ Y—Users receive the message when
they log on to TSO. This is the default
setting.

■ N—Users do not receive the message
when they log on to TSO.

 ■ NTSOSAVE (assembler)

 ■ NOTI-SET-SAVE-OPT
(COBOL)

Specifies whether you want to save the
message in a broadcast set. The possible
values are:

■ N—Do not save the message in a
broadcast set. This is the default
setting.

■ Y—Save the message in a broadcast
set.

9-6 Utilities Guide

9.2 Configuring the Notification Utility

 9.2.2.3 TPX-specific Parameters

If you are using the TPX protocol to inform your users and package approvers of an
Endevor event, refer to the table below for the TPX-specific parameters that the exit
program must pass to the control block. Information is provided for both assembler
and COBOL.

Parameter Description

 ■ NTPXJOBN (assembler)

 ■ NOTI-TPX-JOB-NAME
(COBOL)

The site-specific name of the TPX started
task. This is a required entry.

 ■ NTPXTYPE (assembler)

 ■ NOTI-USERID-OPTION
(COBOL)

Specifies the type of TPX call to issue.
The possible values are:

■ U—USERID. This is the default
setting.

 ■ L—LISTID

 ■ T—TERMID

 ■ A—APPLID

 ■ S—SESSION ID

Note: If you want to send the message to
all TPX users, this field must be left blank.

 ■ NTPXALL (assembler)

 ■ NOTI-ALL-OPTION (COBOL)

Specifies whether you want to send the
message to all TPX users. The possible
values are:

■ N—Do not send the message to all
TPX users. This is the default setting.

■ Y—Send the message to all TPX users.

Note: If you select Y, the NTPXTYPE
(assembler) or NOTI-USERID-OPTION
(COBOL) field must be left blank.

 ■ NTPXSAVE (assembler)

 ■ NOTI-SAVE-OPTION (COBOL)

Specifies whether the message will be saved
for the user. The possible values are:

■ Y—Save the message for the user.
This is the default setting.

■ N—Do not save the message for the
user.

Chapter 9. Notify Utility 9-7

9.2 Configuring the Notification Utility

Parameter Description

 ■ NTPXBREK (assembler)

 ■ NOTI-BREAK-IN-OPTION
(COBOL)

Specifies whether you want users in an
active TPX session to receive messages
immediately. The possible values are:

■ N—The Notification utility will not
interrupt active TPX sessions. This is
the default setting.

■ Y—The Notification utility will
interrupt active TPX sessions and
display the message. The user can then
decide to save or delete the message
before returning to the session.

 9.2.2.4 XMIT-specific Parameters

If you are using the XMIT protocol to inform your users and package approvers of an
Endevor event, refer to the table below for the XMIT-specific parameters that the exit
program must pass to the control block. Information is provided for both assembler
and COBOL.

Parameter Description

 ■ NXMTNODE (assembler)

 ■ NOTI-NJE-NODE (COBOL)

The site-specific NJE target node name.
This is a required entry.

 ■ NOTERMSG (assembler)

 ■ NOTI-XMIT-MESSAGE
(COBOL)

The Notification utility fills in this field if
there has been an error. This field should
be moved to the exit block error message
field.

NXMTUNON (assembler only) Specifies whether you want the Notification
utility to append the NONOTIFY operand
to the XMIT command. The possible
values are:

■ N—Do not append the NONOTIFY
operand to the XMIT command. This
is the default setting.

■ Y—Append the NONOTIFY operand
to the XMIT command.

9-8 Utilities Guide

Chapter 10. Point in Time Recovery

Chapter 10. Point in Time Recovery 10-1

10.1 What is Point in Time Recovery (PITR)?

10.1 What is Point in Time Recovery (PITR)?

The Endevor Unload/Reload/Validate utility provides a point of backup recovery
mechanism. The Point in Time Recovery feature (PITR) extends this capability to the
recovery of Endevor activity that has taken place since the last backup.

PITR allows you to recover changes made since the last backup to the Endevor
Package Control File (PCF), Master Control File (MCF), and base and delta libraries.

Note: PITR does not include a mechanism to back-up and recover source output
libraries or processor outputs (for example object modules, load modules, listings,
etc.). Source output libraries and processor outputs may be backed-up during normal
processor execution and recovered through manual procedures, or regenerated after the
PITR process has been completed.

PITR is based on change journaling. This means that each change created by a
Endevor request is logged to a journal data set before the change is actually executed
by Endevor. Once the change has been made, a confirmation record is written to the
journal, indicating whether the change was successful or unsuccessful.

A recovery utility performs the actual data recovery.

The diagrams shown next illustrate Endevor with and without PITR.

10-2 Utilities Guide

10.1 What is Point in Time Recovery (PITR)?

10.1.1 Endevor without PITR Journaling

10.1.2 Endevor with PITR Journaling

 10.1.3 PITR Requirements

CA-L-Serv, the Computer Associates file server, scheduler, and SQL server product,
must be enabled in order to utilize the PITR feature. It is recommended that when
implementing the PITR feature you have available the CA-L-Serv System Guide and/or
someone familiar with how CA-L-Serv is set up at your site.

Chapter 10. Point in Time Recovery 10-3

10.1 What is Point in Time Recovery (PITR)?

10.1.4 Managing PITR Journal Files

CA-L-Serv manages the journal data sets as file groups. When you define files to
CA-L-Serv as members of a group, you can instruct CA-L-Serv to:

■ Select specific files in a group for recording data.

■ Switch to other files in the group when one file becomes full.

■ Submit a batch job automatically to off-load the information from files that are
full.

See the CA-L-Serv System Guide for more information about file groups.

 10.1.5 Activating Journaling

After defining journal data sets to CA-L-Serv, you activate journaling for:

■ Package changes (the Package Control File) by specifying a CA-L-Serv Group ID
in the JRNLGRP parameter in the TYPE=MAIN section of the C1DEFLTS table.

■ Element and environment definition changes (Master Control File, base and delta
libraries) by specifying an CA-L-Serv Group ID in the JRNLGRP parameter in the
appropriate TYPE=ENVIRONMENT section of the C1DEFLTS table. See “Step
5. Modify the C1DEFLTS Table” for more information.

10-4 Utilities Guide

10.2 Journaling

 10.2 Journaling

10.2.1 How it Works

Journaling applies to any Endevor processing that changes the information in the data
sets (PCF, MCF, base and delta libraries) that are under the protection of journaling.

There are three steps in the journaling process:

1. Before executing a request that will change information, Endevor records the
change in the current journal data set.

2. Endevor makes the change.

3. Upon completion of the update, Endevor writes a confirmation record to the
journal data set indicating whether the update was successful or failed.

If any of these three steps is not completed, the requested action fails.

If CA-L-Serv is not available, or none of the specified journal data sets are available,
or all journal data sets are full, the requested action fails.

 10.2.2 Example

Assume that element PROGX, version 1.0, is located at Stage 2 in the development
environment, and that a modified version of PROGX is being added to Stage 1. The
journaling activity that takes place at each step of the ADD action is shown below.

In general, all components associated with a change to an element are written to the
journal data set. This means that, for example, if a source change is made, the MCF
record, element base and element delta are written to the journal. If an element

Step Add action processing Journaling activity

1 PROGX (1.0) copied
back to Stage 1.

The MCF record, element base and element
delta for PROGX (1.0) are written to the
journal.

2 PROGX (1.0) compared
with modified version
being added, and a delta
is created.

The MCF record, element base and element
delta for PROGX (1.1) are written to the
journal.

3 The generate processor is
executed.

The PROGX (1.1) MCF record is written to
the journal.

4 The component list is
updated.

The PROGX (1.1) MCF record, component
base and component delta are written to the
journal.

Chapter 10. Point in Time Recovery 10-5

10.2 Journaling

component list is modified, the MCF record, component base and component delta are
written to the journal.

10.2.3 Off-loading Journal Data Sets

When the current journal data set in a group becomes full, you can instruct CA-L-Serv
to submit a batch job automatically that off-loads the information in that data set to an
archive file, reinitializes the data set, and begins writing to the next data set in the
group.

“Step 4. Define the Journaling Components to CA-L-Serv” contains instructions on
how to set up CA-L-Serv to submit this job automatically.

Setting up the archive files as generation data groups (GDGs) assures that each
off-loaded journal is fully accessible.

Note: When CA-L-Serv starts up, if it detects either a full or partially full journal
data set it invokes the archive JCL for that data set.

10-6 Utilities Guide

10.3 The Recovery Utility

10.3 The Recovery Utility

10.3.1 How it Works

The Recovery utility uses the journal archive files as input. The utility allows you to:

■ List the transactions in the archive files.

■ Recover these transactions from the archive files.

The Recovery utility uses the recovery utility control statements to determine which
transactions to recover. See “Recovery Utility Syntax” for a description of the
Recovery utility syntax.

Note: The off-loaded journal data sets can be concatenated in any order since all
journal log entries are sorted prior to processing.

The recovery utility processes the journal information in the following order:

1. It discards records that do not meet the selection criteria.

2. It discards records that meet the selection criteria but do not meet the from/to date
and time criteria.

3. It sorts the remaining entries by the journal date and time stamp.

4. It discards any journal entries that have a negative confirmation record.

5. It compares the journal file footprint dates and times with the footprint dates and
times in the current MCF, PCF, and ELIB VSAM base and delta libraries,
replacing files as necessary from the journal in the backup files.

6. It schedules SCL to be written whenever an element master record is created or
updated by a journal file transaction.

7. It deletes the scheduled SCL command whenever the element master record is
deleted by a subsequent journal file transaction

8. After all the journal transactions have been processed the utility writes all
remaining scheduled SCL statements to the C1SCL1 data set. If the recovery
syntax specifies option GENERATE, the utility generates each element as it is
recovered.

Note: This means that if more than one set of changes to an element have been
journaled, the element is generated after each set of changes has been recovered.

Chapter 10. Point in Time Recovery 10-7

10.4 Enabling Journaling

 10.4 Enabling Journaling

 10.4.1 Steps

The steps required to enable journaling are listed below and described in detail in the
pages that follow.

■ Step 1. Determine Naming Conventions

■ Step 2. Write Archive JCL

■ Step 3. Allocate Journal and Archive Data Sets

■ Step 4. Define the Journaling Components to CA-L-Serv

■ Step 5. Modify the C1DEFLTS Table

10.4.2 Step 1. Determine Naming Conventions

The first step in enabling journaling is to decide on a naming convention for:

■ PITR journal data sets.

■ Journal group IDs used to reference groups of journal data sets.

■ Generation data groups (GDGs) to be used as archive files.

Note: The naming conventions presented below are only suggestions.

Consider including the group ID in the names of both the journal and the archive files.
For example, four journal files in a group named GRP1 might be named:

NDVR.GRP1.JOURNAL1

NDVR.GRP1.JOURNAL2

NDVR.GRP1.JOURNAL3

NDVR.GRP1.JOURNAL4

The corresponding GDG might be named:

NDVR.GRP1.ARCHDATA

CA-L-Serv accesses the journal data sets using a journal group ID. Each journal
group ID can reference one or more journal data sets. The data sets associated with a
particular group ID can be the journal data sets for a Package Control File, the data
sets for a particular environment, or a combination.

Tip: The PITR process can be streamlined somewhat by using a single group ID for
all the journal data sets at a site.

Refer to the information on file groups in the CA-L-Serv System Guide for more
details. For suggestions on setting up groups for journal data sets, see
“Implementation Scenarios.”

10-8 Utilities Guide

10.4 Enabling Journaling

10.4.3 Step 2. Write Archive JCL

When CA-L-Serv tries to write to a journal data set that is full, it marks the data set as
unavailable and issues a console message.

When a data set becomes full, CA-L-Serv automatically selects the next available
journal data set for recording subsequent change activity. Optionally, you can instruct
CA-L-Serv to submit automatically a batch job to off-load the journal information to a
sequential file (for example, to a tape), switch to the next available data set, and
reinitialize the journal data set.

The automatic off-loading of journal data set information is implemented using the
ARCHIVE command of the CA-L-Serv LDMAMS utility. For information about
archive statements, see “Archiving a File Group or One of Its Files” in the CA-L-Serv
System Guide.

The JCL for archiving full journal data sets is shown below. This sample JCL is in
member BC1JJARC in iprfx.iqual.JCLLIB. To use this JCL, modify it as necessary
and include it in the data set referenced in the JCLLIB DD statement of the
CA-L-Serv start-up member in your site PROCLIB. The symbolics in this sample are
explained in the CA-L-Serv System Guide.

//� (COPY JOBCARD)

//���

//� �

//� BC1JJARC - THIS JOB WILL ARCHIVE ANY DATA CONTAINED �

//� IN THE JOURNAL DATA SET SPECIFIED BY THE �

//� INPUT PARAMETER CONTROL STATEMENT PARAMETERS. �

//� �

//� THE INPUT CONTROL STATEMENT PARAMETERS ARE �

//� DEFINED WITH THE SYMBOLIC VARIABLE %FILE% �

//� WHICH CA-L-SERV WILL DYNAMICALLY SUBSTITUTE �

//� WHEN IT SUBMITS THIS JOB. �

//� �

//� IF THIS JOB WILL BE SUBMITTED MANUALLY, IT �

//� WILL BE NECESSARY TO EXPLICITY SPECIFY THE �

//� DDNAME OR DATA SET NAME ASSOCIATED WITH THE �

//� JOURNAL DATA SET. REFER TO THE CA-L-SERV LDMAMS �

//� UTILITY DOCUMENTATION FOR MORE DETAILED IN- �

//� FORMATION. �

//� �

//� THE FOLLOWING CHANGES MUST BE MADE BEFORE THIS JOB CAN �

//� BE RUN: �

//� �

//� 1. SPECIFY THE ENDEVOR JOURNAL GROUP ID. THIS �

//� JOB IS SET UP WITH THE FOLLOWING DEFAULT JOURNAL �

//� GROUP ID: UGRPID �

//� �

//� 2. CHANGE "SSNM" IN THE DDNAME SSN$SSNM TO THE APPROPRIATE �

//� LSERV SUBSYSTEM NAME. �

//� �

//� 3. SPECIFY THE ARCHIVE GENERATION DATA GROUP NAME. �

//� THIS JOB IS SET UP WITH THE FOLLOWING DEFAULT �

//� GENERATION DATA GROUP NAME: �

//� �

Chapter 10. Point in Time Recovery 10-9

10.4 Enabling Journaling

//� GDG NAME - UPRFX.UQUAL.UGRPID.JRNLDATA �

//� �

//� 4. IF THE CA-L-SERV LOAD LIBRARY HAS NOT BEEN INCLUDED �

//� IN LINKLST, SPECIFY THE L-SERV LOAD LIBRARY DATA �

//� DATA SET NAME ON THE STEPLIB DD STATEMENT. OTHERWISE �

//� REMOVE THE STEPLIB DD STATEMENT. �

//� �

//� 5. SPECIFY THE UNIT, VOLSER, AND SPACE PARAMETERS FOR �

//� THE JOURNAL ARCHIVE DATA SET. �

//� �

//� �

//���

//LDMAMS EXEC PGM=LDMAMS

//STEPLIB DD DSN=LSERV.LOADLIB,DISP=SHR

//SSN$SSNM DD DUMMY

//SYSPRINT DD SYSOUT=�

//OUTGDG DD DSN=uprfx.uqual.UGRPID.JRNLDATA(+1),

// DISP=(NEW,CATLG,DELETE),

// UNIT=disk,SPACE=(TRK,(NNN,NN),RLSE),

// DCB=(RECFM=VB,LRECL=32756,BLKSIZE=3276�)

//SYSIN DD �

 ARCHIVE INFILE(%FILE%) OUTFILE(OUTGDG)

/�

//DELETE EXEC PGM=IEFBR14,COND=(�,EQ)

//DELARCH DD DSN=uprfx.uqual.UGRPID.JRNLDATA(+1),DISP=(OLD,DELETE)

10.4.4 Step 3. Allocate Journal and Archive Data Sets

Journal files are VSAM ESDS data sets. Create these data sets with the utility
IDCAMS. The sample JCL for doing this is shown on the following page.

Journal files should be allocated with a maximum record size of 32,760. Journal
archive files should have an LRECL of 32,756, and a maximum length of 32,760.

The files to be used to archive full journal data sets are best set up as generation data
groups (GDG).

Note: Separate journal data sets and journal archive GDGs should be defined for each
Endevor journal group ID.

 10.4.4.1 Sizing Considerations

The size of the journal data sets depends on the amount of Endevor activity at your
site and the size of your elements. Here are some general guidelines to follow:

■ Environment and package records take up a relatively small percentage of the total
space.

■ When a journal data set is full, it is archived. The next journal data set must be at
least large enough to accept the journal records created during the time while the
preceding data set is being archived.

■ We recommend using three or four journal data sets. Remember that smaller
journal data sets require less time to archive, making them available again for
journaling more promptly.

10-10 Utilities Guide

10.4 Enabling Journaling

For example, consider a site with an average element size of 1,000 lines, with 500
updates per day to these elements. Since most actions involve one write of an element
base, element delta, component list base, and component list delta, and two writes of
the MCF, a size calculation would appear as follows:

■ Element base and delta, 1,000 lines @ 80 characters 80,000

 ■ MCF update1, 100

■ Component list base and delta, 100 lines @ 100 characters 10,000

 ■ MCF update1, 100

■ Total bytes, allowing for approximation 100,000

Assuming 45,000 bytes per track, this means that an average Endevor action requires
2.5 tracks of journal data set space.

Assuming 500 transactions per day, there needs to be 1,250 tracks of journal data set
space to handle one day's activity.

Allocating this space amongst three journal data sets means that each journal data set
would be approximately 420 tracks. In this scenario, you might consider allocating a
fourth journal data set to handle the package and environment definition updates.

10.4.4.2 How Many Journal Data Sets?

It is recommended that at least two journal data sets, and preferably four, be allocated
for each group. This allows CA-L-Serv to switch to the second journal data set when
the first data set becomes full and, optionally, to submit a batch job to off-load and
reinitialize the first journal data set.

Following is the JCL for defining a generation data group and journal data sets. This
JCL is in member BC1JJDEF in the iprfx.iqual.JCLLIB data set. Before submitting
this job:

■ Specify the name for the GDG. Consider including the group ID of the related
journal group in the GDG name.

■ Change as necessary the maximum number of data sets to be retained in the GDG.
The default in this example is 100.

■ Change the names of the journal data sets in the job according to your naming
standards.

■ Specify values for cylinders (CYL) and volume (VOLSER).

Note: Do not specify a secondary extent for the cylinder allocation. Doing so
prevents the journal files from filling up, defeating the purpose of journaling.

//STEP1 EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

 /��/

 /� Endevor / CA-L-SERV JOURNAL ARCHIVE GDG DEFINITION �/

Chapter 10. Point in Time Recovery 10-11

10.4 Enabling Journaling

 /��/

 /� �/

 DELETE 'uprfx.uqual.UGRPID.JRNLDATA'

 SET MAXCC = �

 /� �/

 DEFINE GDG (NAME ('uprfx.uqual.UGRPID.JRNLDATA') -

NOEMPTY SCRATCH LIMIT(1��))

 /� �/

 /��/

 /� Endevor / CA-L-SERV JOURNAL DATA SET DEFINITION �/

 /��/

 /� �/

 DELETE 'uprfx.uqual.UGRPID.JOURNAL1'

 DELETE 'uprfx.uqual.UGRPID.JOURNAL2'

 DELETE 'uprfx.uqual.UGRPID.JOURNAL3'

 DELETE 'uprfx.uqual.UGRPID.JOURNAL4'

 SET MAXCC = �

 /� �/

 DEFINE CLUSTER (NAME ('uprfx.uqual.ugrpid.JOURNAL1') -

RECORDSIZE(4�86 3276�) BUFFERSPACE(65536) REUSE -

CYL(NN) VOLUME(VVOLSER) SHAREOPTIONS(1 3) NONINDEXED)

 /� �/

 DEFINE CLUSTER (NAME ('uprfx.uqual.ugrpid.JOURNAL2') -

RECORDSIZE(4�86 3276�) BUFFERSPACE(65536) REUSE -

CYL(NN) VOLUME(VVOLSER) SHAREOPTIONS(1 3) NONINDEXED)

 /� �/

 DEFINE CLUSTER (NAME ('uprfx.uqual.ugrpid.JOURNAL3') -

RECORDSIZE(4�86 3276�) BUFFERSPACE(65536) REUSE -

CYL(NN) VOLUME(VVOLSER) SHAREOPTIONS(1 3) NONINDEXED)

 /� �/

 DEFINE CLUSTER (NAME ('uprfx.uqual.ugrpid.JOURNAL4') -

RECORDSIZE(4�86 3276�) BUFFERSPACE(65536) REUSE -

CYL(NN) VOLUME(VVOLSER) SHAREOPTIONS(1 3) NONINDEXED)

 /� �/

10.4.5 Step 4. Define the Journaling Components to CA-L-Serv

After allocating the journal files and defining a generation data group (GDG) for the
archive files, you must define the journaling mechanism to CA-L-Serv. Three
members are involved in this process:

■ The CA-L-Serv PROC

 ■ LDMPARM

 ■ NDVRPARM

See the CA-L-Serv System Guide for details about setting up these members. For
examples of how to set up journaling, see “Implementation Scenarios.”

10-12 Utilities Guide

10.4 Enabling Journaling

10.4.5.1 The CA-L-Serv PROC

If you are using an existing CA-L-Serv, you need to modify the PROC for that
CA-L-Serv. If you are creating a new L-Serv, you need to write a PROC for that
CA-L-Serv.

You need to identify the parameter data set member LDMPARM that points to the
command members that should be read at start-up time. In addition, your start-up
procedure must include an //LDMCMND DD statement, which points to the
CA-L-Serv parameter data set.

 10.4.5.2 LDMPARM

The LDMPARM is a member in CA-L-Serv's parameter data set that contains the
parameters for the CA-L-Serv to which you want to identify the PITR components. If
you are using an existing CA-L-Serv, you need to modify the existing LDMPARM
member for the CA-L-Serv you want to use by specifying the CA-L-Serv type (local,
remote, or host) and adding an INCLUDE statement referencing the member
NDVRPARM. If you are using a new CA-L-Serv you need to create this member.

An example of the syntax for the statements to be included in the LDMPARM is
shown below:

ATTACH

FILESERVER,SERVERTYPE=HOST,COMMSERVER(operands)

INCLUDE NDVRPARM

When included in a new or existing LDMPARM member, this syntax specifies a Host
CA-L-Serv, with L-Serv's communication server enabled, and specifies NDVRPARM
as the member identifying the data sets to be managed by this CA-L-Serv.

See the CA-L-Serv System Guide for information about other statements that must be in
the LDMPARM member.

 10.4.5.3 NDVRPARM

The NDVRPARM is a member in CA-L-Serv's parameter data set that contains an
ADDFILE command for each PITR journal data set. A sample NDVRPARM member
in an instance where CA-L-Serv is being used to manage journal data sets is shown
below.

���

��� JOURNAL FILES

���

ADDPOOL 13 (32768,1��)

 ADDFILE JRNL1 uprfx.uqual.ugrpid.JOURNAL1 GROUP=ugrpid,

 OPTION=(SUBMIT,DEFER) POOL=13,

 JCLMEMBER=BC1JJARC

 ADDFILE JRNL2 uprfx.uqual.ugrpid.JOURNAL2 GROUP=ugrpid,

 OPTION=(SUBMIT,DEFER) POOL=13,

 JCLMEMBER=BC1JJARC

 ADDFILE JRNL3 uprfx.uqual.ugrpid.JOURNAL3 GROUP=ugrpid,

 OPTION=(SUBMIT,DEFER) POOL=13,

Chapter 10. Point in Time Recovery 10-13

10.4 Enabling Journaling

 JCLMEMBER=BC1JJARC

 ADDFILE JRNL4 uprfx.uqual.ugrpid.JOURNAL4 GROUP=ugrpid,

 OPTION=(SUBMIT,DEFER) POOL=13,

 JCLMEMBER=BC1JJARC

The ADDFILE and GROUP= clauses are required for journal files. The ADDPOOL,
OPTION=SUBMIT, OPTION=DEFER, POOL=, and JCLMEMBER= clauses are
optional but recommended.

Note: Do not use the APPEND parameter of the ADDFILE statement when
identifying journal files or Endevor files to CA-L-Serv.

For complete syntax for the ADDFILE and ADDPOOL commands, see the CA-L-Serv
System Guide.

10.4.6 Step 5. Modify the C1DEFLTS Table

In addition to identifying the journaling components to CA-L-Serv, you also must
modify the C1DEFLTS table to include the journal group IDs for the journal files, and
to identify the subsystem name associated with the CA-L-Serv address space being
used to implement journaling.

Note: Refer to the section “Running Multiple File Servers on a Single System” in the
CA-L-Serv System Guide for information about managing multiple CA-L-Serv address
spaces.

The syntax for including this information in the C1DEFLTS table is:

JRNLGRP=(group id,nnnn)

This syntax is described below.

You must include JRNLGRP= statements in:

■ The TYPE=MAIN section of the C1DEFLTS table to enable journaling in the
Package Control File.

■ Each TYPE=ENVIRONMENT section of the MCF base and delta libraries
(VSAM as well as non-VSAM) for which you want to enable journaling.

Note: If you want to use the same journal group ID for more than one environment,
you must include the journal group ID in each environment section of the C1DEFLTS
table.

This variable Stands for

group id The journal group ID associated with the journal files.

nnnn The subsystem name for CA-L-Serv being used to implement
journaling. The default CA-L-Serv subsystem ID is LSRV.

10-14 Utilities Guide

10.4 Enabling Journaling

 10.4.6.1 Example

Assume that the CA-L-Serv subsystem ID is LSRV (the default) and that you have
three environments, Test, QA, and Prod. You want to journal the Package Control
File and the Master Control file, and the base and delta files associated with Prod,
using journal group JGRP1. You want to journal just the MCF, base, and delta files
associated with QA, using journal group JGRP2. You do not want to enable
journaling for environment Test. To do this, you would add the following lines to the
C1DEFLTS table:

JRNLGRP=JGRP1 to the TYPE=MAIN section and TYPE=ENVIRONMENT section for environment PROD.

JRNLGRP=JGRP2 to the TYPE=ENVIRONMENT section for environment QA.

There would be no JRNLGRP= entry in the TYPE=ENVIRONMENT section for
environment TEST.

10.4.6.2 Sample TYPE=MAIN Section of C1DEFLTS

A TYPE=MAIN section of the C1DEFLTS Table showing the JRNLGRP= parameter
is shown below.

 C1DEFLTS TYPE=MAIN, X

ACCSTBL=, ACCESS SECURITY TABLE X

ACMIDXUP=N, CROSS-REFERENCE DATA UPDATE X

 ACMROOT=, ROOT DATABASE X

 ACMXREF=, XREF DATABASE X

APRVFLG=N, APPROVAL PROCESSING (Y/N) X

ASCM=N, ASCM CONTROL OPTION X

BATCHID=�, BATCH UID FROM JOBNAME/USER= X

CIPODSN=, CCID VALIDATION DSN X

CUNAME='��� PUT YOUR COMPANY NAME HERE ���', (5� CHAR) X

DB2=N, DB2 CONTROL OPTION X

ELINK=N, Endevor/LINK CONTROL OPTION X

ESSI=N, ESSI CONTROL OPTION X

INFO=N, INFOMAN CONTROL OPTION X

LIBENV=, LIBRARIAN (LB), PANVALET (PV) X

 LIBENVP=N, LIBRARIAN/PANVALET OPTION X

LIBRPGM=, LIBRARIAN BATCH PROGRAM NAME X

LINESPP=6�, LINES PER PAGE X

MACDSN='iprfx.iqual.SOURCE', ENDEVOR SOURCE LIBRARY X

PKGDSN='uprfx.uqual.PACKAGE', PACKAGE DATASET NAME X

PKGTSO=N, FOREGROUND PACKAGE EXEC (Y//N) X

PDM=N, PDM CONTROL OPTION X

 PKGSEC=, PACKAGE SECURITY X

PKGCSEC=N, PACKAGE CAST SECURITY (Y/N) X

PKGCVAL=�, PKG COMPONENT VALIDATION (Y/O) X

 PROC=N, PROCESSOR OPTION X

RACFGRP=, ENDEVOR RACF GROUP NAME X

RACFPWD=, ENDEVOR RACF OPTION X

RACFUID=, ENDEVOR RACF USERID X

SITEID=�, ENDEVOR SITE ID X

SMFREC#=�, SMF RECORD NUMBER X

SPFEDIT=SPFEDIT, DEFAULT PDS RESERVE X

 SYSIEWL=SYSIEWLP, DEFAULT PDS/LINK EDIT RESERVE X

UIDLOC=(1,7), UID/JOBNAME START/LENGTH POS X

VIOUNIT=TDISK, UNIT FOR VIO-ELIGIBLE ALLOC X

Chapter 10. Point in Time Recovery 10-15

10.4 Enabling Journaling

WRKUNIT=TDISK, UNIT NAME FOR WORK SPACE X

WORKVOL= VOL SER NUMBER FOR WRKUNIT

10.4.6.3 Sample TYPE=ENVIRONMENT Section of C1DEFLTS

A TYPE=ENVIRONMENT section of the C1DEFLTS Table showing the JRNLGRP=
parameter is shown below.

C1DEFLTS TYPE=ENVRNMNT, X

ENDBACT=N, ENDEVOR DB BRIDGE OPTION (Y/N) X

ENDBAVL=N, ENDEVOR DB BRIDGE OPTION (Y/N) X

ENVNAME='ENV NAME', ENVIRONMENT NAME (8 CHAR) X

ENVTITL='ENV TITLE', ENVIRONMENT TITLE (4� CHAR) X

JRNLGRP=(group id,nnnn) GRP ID/SUBSYS NAME FOR PITR X
NEXTENV=(NEXTENV,S), NEXT ENV/STG ID IN MAP (8,1) X

RSCETBL=, RESOURCE SECURITY TABLE NAME X

SMFACT=N, SMF ACTIVITY OPTION (Y/N) X

SMFSEC=N, SMF SECURITY OPTION (Y/N) X

STG1ID='1', STAGE 1 IDENTIFIER (1 CHAR) X

STG1NME='ST1 NAME', STAGE 1 NAME (8 CHAR) X

STG1TTL='ST1 TITLE', STAGE 1 TITLE (2� CHAR) X

STG1VSM='uprfx.uqual.STAGE1', STAGE 1 MCF (VSAM) X

STG2ID='2', STAGE 2 IDENTIFIER (1 CHAR) X

STG2NME='ST2 NAME', STAGE 2 NAME (8 CHAR) X

STG2TTL='ST2 TITLE', STAGE 2 TITLE (2� CHAR) X

STG2VSM='uprfx.uqual.STAGE2', STAGE 2 MCF (VSAM) X

USERTBL= USER SECURITY TABLE NAME

10.4.7 Reassemble the C1DEFLTS Table

After including the group IDs and CA-L-Serv subsystem names for the journal data
sets, you must reassemble the C1DEFLTS table in order to enable journaling.

10-16 Utilities Guide

10.5 Implementation Scenarios

 10.5 Implementation Scenarios

The number of CA-L-Servs required to implement PITR depends on the site
configuration. This section presents common single and multiple CPU implementation
scenarios, and provides guidelines for each.

10.5.1 Single CPU Implementation

An example of a single CPU implementation is shown below. This configuration is
suitable for sites where Endevor is running on a single CPU.

10.5.1.1 How to Implement

To implement this configuration:

1. Define CA-L-Serv as Local, using the default subsystem name LSRV.

2. Create or modify member NDVRPARM, LDMPARM, and the CA-L-Serv PROC,
following instructions earlier in this section, and referring to the CA-L-Serv System
Guide as necessary.

3. Modify the C1DEFLTS table as described in “Step 5. Modify the C1DEFLTS
Table.”

Chapter 10. Point in Time Recovery 10-17

10.5 Implementation Scenarios

10.5.2 Multiple CPU Implementation, Remote Journaling

A multiple CPU implementation with all journaling taking place on CPU 1 is shown
below. This is referred to as remote journaling. Use this configuration at sites where
there is relatively heavy Endevor usage on the CPU where CA-L-Serv is managing the
journal files, and relatively light usage on the remote CPU (CPU 2).

10.5.2.1 How to Implement

To implement this configuration, do the following:

1. Set up CA-L-Serv 1 by:

■ Defining it as Host, using the subsystem name LSRV.

■ Creating or modifying members NDVRPARM, LDMPARM, and the
CA-L-Serv PROC, as described earlier in this section.

2. Set up CA-L-Serv 2 by:

■ Defining it as Remote, using the subsystem name LSRV.

■ Creating or modifying member LDMPARM, and the CA-L-Serv PROC, as
described earlier in this section. CA-L-Serv 2, as a remote CA-L-Serv, does
not manage any files and therefore does not need a NDVRPARM member.

3. Set up communication between CA-L-Serv 1 and CA-L-Serv 2, referring to the
CA-L-Serv System Guide. as necessary.

4. Modify the C1DEFLTS table, as described in “Step 5. Modify the C1DEFLTS
Table.”

10-18 Utilities Guide

10.5 Implementation Scenarios

 10.5.2.2 Performance Considerations

Because it requires only one set of journal data sets, this scenario represents the easiest
way to set up PITR in a multiple CPU operating environment.

There is a trade-off to this scenario, namely that handling journaling remotely is
somewhat slower than local journaling. See the next section for a scenario that
handles journaling locally.

10.5.3 Multiple CPU Implementation, Local Journaling

A Multiple CPU implementation with CA-L-Serv controlling both the journal files and
the Endevor libraries, with journaling taking place on each CPU is shown below. Use
this configuration at sites where there is relatively heavy Endevor usage on both CPU
1 and CPU 2.

10.5.3.1 How to Implement

To implement this scenario, do the following:

1. Set up CA-L-Serv 1 and CA-L-Serv 2 by:

■ Defining both as Local, using the same subsystem name for each.

■ Creating or modifying members NDVRPARM, LDMPARM, and the
CA-L-Serv PROC, as described earlier in this section.

2. Modify the C1DEFLTS Table to include entries for CA-L-Serv 1 and CA-L-Serv
2, as described in “Step 5. Modify the C1DEFLTS Table.”

Chapter 10. Point in Time Recovery 10-19

10.5 Implementation Scenarios

 10.5.3.2 Performance Considerations

Because this scenario requires two groups of journal data sets, performing periodic
backups as described in the section “Performing Periodic Backups of Endevor” is
somewhat more complicated.

The trade-off is that journaling executes somewhat more quickly when it is performed
locally.

10-20 Utilities Guide

10.6 Performing Periodic Backups of Endevor

10.6 Performing Periodic Backups of Endevor

When journaling is enabled, it is important to manage the archive files carefully.
Perform periodic backups before the GDG becomes full. This is best accomplished by
following this procedure.

1. Clean out journal data sets that may contain information, by executing the JCL
found in member BC1JJARG in the data set iprfx.iqual.JCLLIB.

2. Disable journaling by either issuing the CA-L-SERV REMOVEFILE command or
stop CA-L-Serv using one of the following console commands:

F task,SHUTDOWN

P task

These commands deactivate all functions running in the CA-L-Serv address space.
For information on CA-L-Serv system commands refer to the CA-L-Serv System
Guide.

3. Back up Endevor, using either the Unload utility or your regular backup utility.
See “Unload/Reload/Validate” for information on the unload utility.

4. Delete all the archive files.

5. Restart CA-L-Serv by either using the following START command:

S task parms

or by using the CA-L-SERV ADDFILE command to issue journaling again.

Chapter 10. Point in Time Recovery 10-21

10.7 Performing Point in Time Recovery

10.7 Performing Point in Time Recovery

Before performing Point in Time Recovery, make sure that there are no empty GDGs.

If a Endevor Package Control File, Master Control File, base library or delta library is
lost, take the following steps to perform Point in Time Recovery:

1. Execute the CA-L-Serv LDMAMS utility to off-load all used journal data sets.

2. Disable PITR journaling to keep any new journaling from being issued.

3. Restore all Endevor data sets to be recovered from the most current back-up
(either Endevor UNLOAD or similar back-ups).

4. Execute the Endevor Recovery utility.

The following sections discuss these steps in detail.

10.7.1 Step 1. Execute the CA-L-Serv LDMAMS Utility

The next step is to off-load all used journal data sets to sequential data sets. The
sample JCL for doing this is shown on the following page. Before using this sample
JCL, do the following:

■ Replace UGRPID with the CA-L-Serv group ID for the journal data sets.

■ Replace uprfx.uqual.ugrpid.JRNLDATA with the GDG name used at your site for
the archive data sets.

■ If the CA-L-Serv load library has not been included in LINKLST, specify the load
library data set name in the STEPLIB DD statement. Otherwise remove the
STEPLIB DD statement.

■ Specify the unit, volser, and space parameters for the journal archive data set.

Note: The ARCHIVE statement in this sample differs from the statement used to
archive data sets that are full. The difference is the SWITCH parameter. When a data
set in an CA-L-Serv group is not full, this parameter tells CA-L-Serv to switch to the
next data set in the group after archiving whatever data is in the data set.

This sample JCL for off-loading journal data sets can be found in member BC1JJARG
in iprfx.iqual.JCLLIB.

//��

//LDMAMS EXEC PGM=LDMAMS

//STEPLIB DD DSN=LSERV.LOADLIB,DISP=SHR

//SYSPRINT DD SYSOUT=�

//OUTGDG DD DSN=uprfx.uqual.ugrpid.JRNLDATA(+1),

// DISP=(NEW,CATLG,DELETE),

// UNIT=SYSDA,SPACE=(TRK,(25�,5�),RLSE),

// DCB=(RECFM=VB,LRECL=32756,BLKSIZE=3276�)

//SYSIN DD �

 ARCHIVE GROUP(UGRPID) OUTFILE(OUTGDG) SWITCH

/�

10-22 Utilities Guide

10.7 Performing Point in Time Recovery

//DELETE EXEC PGM=IEFBR14,COND=(�,EQ)

//DELARCH DD DSN=uprfx.uqual.ugrpid.JRNLDATA(+1),DISP=(OLD,DELETE)

10.7.2 Step 2. Disable PITR Journaling

Disable journaling by either issuing the CA-L-SERV REMOVEFILE command or by
using one of the following console commands:

F task,SHUTDOWN

P task

These commands deactivate all functions running in the CA-L-Serv address space. For
information on CA-L-Serv system commands refer to the CA-L-Serv System Guide.

10.7.3 Step 3. Restore the Data Sets to Be Recovered

The first step in the PITR process is to restore the data sets that have been lost to the
point of their most recent backup. This makes them available to the Recovery utility.

The utility uses the restored data sets as a baseline, recovering any transactions that
have taken place since the most recent backup.

Do this using the recovery procedure at your site.

10.7.4 Step 4. Execute the Recovery Utility

The Recovery utility (program BC1PJRCV) uses the off-loaded journal information to
recover transactions that have occurred since the last backup.

10.7.4.1 Recovery Utility Syntax

The syntax for the recovery utility is shown below.

 ┌ ┐─ALL───────────────────────────
��─ ──┬ ┬─RECOVER─ ─¤─ ──┼ ┼─────────────────────────────── ─¤───────────────�
 └ ┘─LIST──── ├ ┤─PKGDS─────────────────────────
 ├ ┤ ─ENVironment──environment-name─
 └ ┘─SYStem──system-name───────────

�──¤─ ──┬ ┬───────────────────────────────── ─¤───────────────────────────�
 ├ ┤ ─FROM DATE──date─ ──┬ ┬────────────
 │ │└ ┘ ─TIME──time─
 └ ┘ ─TO DATE──date─ ──┬ ┬──────────── ──
 └ ┘ ─TIME──time─

�─ ──┬ ┬────────────────────── ─.──��
 │ │┌ ┐─GENerate─
 └ ┘ ─OPTion─ ──┴ ┴──────────

This syntax is described below.

Chapter 10. Point in Time Recovery 10-23

10.7 Performing Point in Time Recovery

Syntax Description

RECOVER /LIST Required. The RECOVER or LIST keyword must be
the first word in the syntax. Use LIST if you want to
list the contents of a journal file before recovering it.

PKGDS Optional. Indicates that you want to recover the
package data set for the site.

ENVIRONMENT Optional. Indicates that you want to recover the named
environment.

SYSTEM Optional. Indicates that you want to recover the named
system.

ALL Default. Indicates that you want to recover the package
data set, MCF, base and delta library information.

FROM DATE, TIME Optional. Allows you to specify a date and time from
which you want to start recovering information.

TO DATE, TIME Optional. Allows you to specify a date and time
through which you want to recover information.

OPTIONS GENERATE may be specified to cause elements to be
generated as they are recovered.

Note: When GENERATE is specified, elements are
processed sequentially, not in type sequence order.

Note: If more than one set of changes to an element
have been journaled, the element is generated after each
set of changes have been recovered.

If more than one RECOVER request selects a journaled
transaction, the OPTIONS clause associated with the
first request is executed. Remaining OPTIONS clauses
are ignored.

 10.7.4.2 Examples

To recover the package data set for a site, submit this syntax:

RECOVER PKGDS.

To recover MCF, base and delta information for environment PROD, submit this
syntax:

RECOVER ENV PROD.

To recover MCF, base and delta information for environment PROD, system Finance,
submit this syntax:

10-24 Utilities Guide

10.7 Performing Point in Time Recovery

RECOVER ENV PROD SYS FINANCE.

 If, for some reason, the PROD environment should be restored as it was on July 19th
(as opposed to all logged changes) the following clause would be specified:

RECOVER ENV PROD

TO DATE 19JUL92 TO TIME 08:00.

The following statement would recover all logged changes (contained in the input
sequential journal files) for the Package Control File and for all environments:

RECOVER ALL.

The JCL needed to run the recovery utility is shown below. The JCL can be found in
member BC1JJRCV in iprfx.iqual.JCLLIB.

// (COPY JOBCARD)

//�

//EXEC PGM=NDVRC1,PARM='BC1PJRCV',REGION=4�96,DYNAMNBR=1635

//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//�

//C1MSGS1 DD SYSOUT=� RECOVER EXECUTION REPORT
//C1SUMMRY DD SYSOUT=� RECOVER SUMMARY REPORT
//BSTERR DD SYSOUT=� UNUSUAL ERROR DETAIL RPT

//SYSOUT DD SYSOUT=� SORT OUTPUT

//SYSABEND DD SYSOUT=� ABEND STORAGE DUMP

//�

//SORTWK�1 DD UNIT=SYSDA,SPACE=(CYL,5�) SORT WORK

//SORTWK�2 DD UNIT=SYSDA,SPACE=(CYL,5�) SORT WORK

//SORTWK�3 DD UNIT=SYSDA,SPACE=(CYL,5�) SORT WORK

//SORTWK�4 DD UNIT=SYSDA,SPACE=(CYL,5�) SORT WORK

//SORTWK�5 DD UNIT=SYSDA,SPACE=(CYL,5�) SORT WORK

//SORTWK�6 DD UNIT=SYSDA,SPACE=(CYL,5�) SORT WORK

//�

//JOURNAL DD DSN=uprfx.uqual.UGROUP.ARCHIVE, ARCHIVED JOURNAL DATA
// DISP=SHR

//C1SCL1 DD DSN=uprfx.uqual.RECOVER.SCL, GENERATE SCL OUTPUT FILE
// UNIT=SYSDA,SPACE=(TRK,(1,1)),

// DCB=(RECFM=FB,LRECL=8�,BLKSIZE=616�)

//�

//BSTIPT�1 DD � BC1PJRCV REQUEST INPUT
 RECOVER ALL.

The indicated statements in the above JCL are described below.

Statement Description

C1MSGS1 The C1MSGS1 DD statement specifies the destination for the
Journal Recovery Execution Report.

Chapter 10. Point in Time Recovery 10-25

10.7 Performing Point in Time Recovery

Statement Description

C1SUMMRY The C1SUMMRY DD statement specifies the destination for the
Journal Recovery Execution Summary Report.

JOURNAL The JOURNAL DD statement identifies the data set containing
the journal data to be recovered.

C1SCL1 The C1SCL1 DD statement identifies the data set containing the
SCL statements written by the Recovery utility.

BSTIPT01 The BSTIPT01 DD statement contains syntax for this run of the
Recovery utility.

10-26 Utilities Guide

10.8 The Journal Recovery Execution Report

10.8 The Journal Recovery Execution Report

 10.8.1 Overview

The Recovery utility automatically produces a two-part Journal Recovery Execution
report. The Journal Recovery Execution Log contains these sections:

 ■ Transaction detail

 ■ Transaction summary

The Journal Recovery Execution Summary contains these sections:

■ Data set activity summary

■ SCL statement summary

■ Processor execution summary

10.8.2 Journal Recovery Execution Report — Transaction Detail

The transaction detail portion of the Journal Recovery Execution Log reports on each
journal transaction that is recovered. The example on the following page shows a
representative page from this report.

This message Provides this information

JRCV032I The transaction number, the journal date and time stamps, and the
number of records in the transaction.

JRCV015I The kind of action, and the data set and member acted upon.

JRCV016I The Endevor location associated with the member in the previous
message.

JRCV031I The date and time of the most recent update to the Endevor entity
described in this entry. If no information is available, a NOT
FOUND message is returned.

JRCV023I Indicates that generate SCL has been built for the entity.

JRCV025I Indicates that the recover utility has issued a generate processor
request for the element.

JRCV026I The Endevor location associated with the element to be generated.

JRCV020I Indicates that the journal entry has been recovered, and provides
the return code for the recovery process.

Chapter 10. Point in Time Recovery 10-27

10.8 The Journal Recovery Execution Report

1 COPYRIGHT (C) Computer Associates, INC., 2��2 ddmmmyy 19:53:29 PAGE

JOURNAL RECOVERY EXECUTION LOG RELEASE X.XX SERIAL XXXXXX

 � RECOVER ALL.

 � LIST ALL.

RECOVER ALL OPTION GENERATE.

2�:�7:�2 JRCV�32I #1 JOURNAL TIMESTAMP: 24SEP�1 18:43:46.38 RECORD COUNT: 4351

2�:�7:�2 JRCV�15I CREATE EBASE MBR=EB5NWBQE DSN=BST.PERF.ELBV8�.BASE1

2�:�7:�2 JRCV�16I ENV=PERF1 STG=PRFSTG1 SYS=EBV8� SBS=PERF TYPE=FLREC8� ELM=BC1P$SMR

2�:�7:�4 JRCV�31I EBASE MEMBER LAST UPDT DATE: MEMBER NOT FOUND

2�:�7:�7 JRCV�2�I JOURNAL TRANSACTION RECOVERY COMPLETED, RETURN CODE=����

2�:�7:�7 JRCV�32I #2 JOURNAL TIMESTAMP: 24SEP�1 18:43:52.�7 RECORD COUNT: 4

2�:�7:�7 JRCV�15I CREATE EDELTA MBR=EB5NWCD5 DSN=BST.PERF.ELBV8�.DELTA

2�:�7:�7 JRCV�16I ENV=PERF1 STG=PRFSTG1 SYS=EBV8� SBS=PERF TYPE=FLREC8� ELM=BC1P$SMR

2�:�7:�7 JRCV�31I EDELTA MEMBER LAST UPDT DATE: MEMBER NOT FOUND

2�:�7:�7 JRCV�2�I JOURNAL TRANSACTION RECOVERY COMPLETED, RETURN CODE=����

2�:�7:�7 JRCV�32I #3 JOURNAL TIMESTAMP: 24SEP�1 18:43:54.�1 RECORD COUNT: 1

2�:�7:�7 JRCV�21I CREATE MCF DSN=BST.PERFTEST.STAGE1

2�:�7:�7 JRCV�22I ELM RECORD: ENV=PERF1 STG=PRFSTG1 SYS=EBV8� SBS=PERF TYPE#=�� ELEMENT=BC1P$SMR

2�:�7:�7 JRCV�31I MCF RECORD LAST UPDT DATE: RECORD NOT FOUND

2�:�7:�7 JRCV�2�I JOURNAL TRANSACTION RECOVERY COMPLETED, RETURN CODE=����

2�:�7:�7 JRCV�32I #4 JOURNAL TIMESTAMP: 24SEP�1 18:43:54.15 RECORD COUNT: 1

2�:�7:�7 JRCV�21I UPDATE MCF DSN=BST.PERFTEST.STAGE1

2�:�7:�7 JRCV�22I ELM RECORD: ENV=PERF1 STG=PRFSTG1 SYS=EBV8� SBS=PERF TYPE#=�� ELEMENT=BC1P$SMR

2�:�7:�7 JRCV�31I MCF RECORD LAST UPDT DATE: 24SEP�1 18:43:54.�1

2�:�7:�7 JRCV�23I CONSTRUCTION OF GENERATE SCL SCHEDULED FOR THIS ELEMENT

2�:�7:�7 JRCV�25I ISSUING GENERATE PROCESSOR REQUEST FOR ELEMENT BC1P$SMR

2�:�7:�7 JRCV�26I ENV=PERF1 STGID=D SYS=EBV8� SBS=PERF TYPE=FLREC8� PRGRP=�NOPROC�

2�:�7:�7 JRCV�2�I JOURNAL TRANSACTION RECOVERY COMPLETED, RETURN CODE=����

2�:�7:�7 JRCV�32I #5 JOURNAL TIMESTAMP: 24SEP�1 18:43:54.71 RECORD COUNT: 3262

2�:�7:�7 JRCV�15I CREATE EBASE MBR=EB5NWCLR DSN=BST.PERF.ELBV8�.BASE1

2�:�7:�7 JRCV�16I ENV=PERF1 STG=PRFSTG1 SYS=EBV8� SBS=PERF TYPE=FLREC8� ELM=BC1PACTN

2�:�7:�7 JRCV�31I EBASE MEMBER LAST UPDT DATE: MEMBER NOT FOUND

10.8.3 Journal Recovery Execution Report — Journal Input Record
Summary

The Journal Input Record Summary lists the number of records of each record type
handled by the recovery utility. The abbreviations used in this report are explained
below.

Abbreviation Record type

PCF Package Control File.

MCF Master Control File.

EBASE Element base.

EDELTA Element delta.

CBASE Component list base.

CDELTA Component list delta.

10-28 Utilities Guide

10.8 The Journal Recovery Execution Report

1 COPYRIGHT (C) Computer Associates, INC., 2��2 ddmmmyy 2�:25:5� PAGE 55�

JOURNAL RECOVERY EXECUTION LOG RELEASE X.XX SERIAL XXXXXX

2�:25:5� JRCV112I NBR OF PCF ADD/UPD RECORDS CONTAINED IN JOURNAL INPUT....�

2�:25:5� JRCV112I NBR OF PCF RECORD DELETES CONTAINED IN JOURNAL INPUT....�

2�:25:5� JRCV112I NBR OF MCF ADD/UPD RECORDS CONTAINED IN JOURNAL INPUT....224�

2�:25:5� JRCV112I NBR OF MCF RECORD DELETES CONTAINED IN JOURNAL INPUT....2��

2�:25:5� JRCV112I NBR OF EBASE ADD/UPD RECORDS CONTAINED IN JOURNAL INPUT....168�2�6

2�:25:5� JRCV112I NBR OF EBASE MEMBER DELETES CONTAINED IN JOURNAL INPUT....2��

2�:25:5� JRCV112I NBR OF EDELTA ADD/UPD RECORDS CONTAINED IN JOURNAL INPUT....17686

2�:25:5� JRCV112I NBR OF EDELTA MEMBER DELETES CONTAINED IN JOURNAL INPUT....2��

2�:25:5� JRCV112I NBR OF CBASE ADD/UPD RECORDS CONTAINED IN JOURNAL INPUT....�

2�:25:5� JRCV112I NBR OF CBASE MEMBER DELETES CONTAINED IN JOURNAL INPUT....�

2�:25:5� JRCV112I NBR OF CDELTA ADD/UPD RECORDS CONTAINED IN JOURNAL INPUT....�

2�:25:5� JRCV112I NBR OF CDELTA MEMBER DELETES CONTAINED IN JOURNAL INPUT....�

2�:25:5� JRCV�27I JOURNAL RECOVERY PROCESSING COMPLETED, HIGHEST RETURN CODE=����

10.8.4 Journal Recovery Execution Report — Data Set Activity
Summary

The data set portion of the Journal Recovery Execution Summary Report describes the
activity recorded in the journal file for each data set in the journal file.

This message Provides this information

JRCV100I The data set name, and its usage by Endevor. Usage may be any
of the following:

■ CBASE Component list base.

■ CDELTA Component list delta.

■ EBASE Element base.

■ EDELTA Element delta.

■ MCF Master Control File.

■ PCF Package Control File.

JRCV113I The Endevor location associated with the file. For example, a file
used to store element base records might be used for base records
associated with a particular environment, stage, system, and type.
A Master Control file on the other hand is associated with only an
environment and stage.

JRCV101I Indicates the number of members created in this data set for the
period covered by the journal file.

JRCV102I Indicates the number of members updated in this data set for the
period covered by the journal file.

JRCV103I Indicates the number of members deleted in this data set for the
period covered by the journal file.

Chapter 10. Point in Time Recovery 10-29

10.8 The Journal Recovery Execution Report

1 COPYRIGHT (C) Computer Associates, INC., 2��2 ddmmmyy 2�:25:5� PAGE 1

JOURNAL RECOVERY EXECUTION SUMMARY RELEASE X.XX SERIAL XXXXXX

2�:25:5� JRCV1��I DATA SET USAGE: EBASE DATA SET NAME: BST.PERF.ELBV8�.BASE1

2�:25:5� JRCV113I ENV=PERF1 STG=PRFSTG1 SYS=EBV8� TYPE=FLREC8�

2�:25:5� JRCV1�1I MEMBERS CREATED................................5�

2�:25:5� JRCV1�2I MEMBERS UPDATED................................8�

2�:25:5� JRCV1�3I MEMBERS DELETED................................25

2�:25:5� JRCV1��I DATA SET USAGE: EDELTA DATA SET NAME: BST.PERF.ELBV8�.DELTA

2�:25:5� JRCV113I ENV=PERF1 STG=PRFSTG1 SYS=EBV8� TYPE=FLREC8�

2�:25:5� JRCV1�1I MEMBERS CREATED................................5�

2�:25:5� JRCV1�2I MEMBERS UPDATED................................8�

2�:25:5� JRCV1�3I MEMBERS DELETED................................25

2�:25:5� JRCV1��I DATA SET USAGE: MCF DATA SET NAME: BST.PERFTEST.STAGE1

2�:25:5� JRCV113I ENV=PERF1 STG=PRFSTG1 SYS=N/A TYPE=N/A

2�:25:5� JRCV1�1I RECORDS CREATED................................2��

2�:25:5� JRCV1�2I RECORDS UPDATED................................114�

2�:25:5� JRCV1�3I RECORDS DELETED................................1��

10.8.5 Journal Recovery Execution Report — SCL Statement
Summary

The SCL statement summary portion of the Journal Recovery Execution Report shows
the number of GENERATE statements written by Endevor location (environment,
stage) and inventory classification (system, subsystem, and type).

2�:25:5� JRCV1�5I NBR OF GENERATE SCL STMTS WRITTEN:

2�:25:5� JRCV1�6I ENV=PERF1 STG=PRFSTG1 SYS=EBV8� SBS=PERF TYPE=FLREC8�....25

2�:25:5� JRCV1�6I ENV=PERF1 STG=PRFSTG1 SYS=EBV8� SBS=PERF TYPE=RLREC8�....25

2�:25:5� JRCV1�6I ENV=PERF1 STG=PRFSTG1 SYS=PDS8� SBS=PERF TYPE=RLREC8�....25

2�:25:5� JRCV1�6I ENV=PERF1 STG=PRFSTG1 SYS=PDS8� SBS=PERF TYPE=FLREC8�....25

2�:25:5� JRCV1�6I ENV=PERF2 STG=PRFSTG4 SYS=EBV8� SBS=PERF TYPE=FLREC8�....25

2�:25:5� JRCV1�6I ENV=PERF2 STG=PRFSTG4 SYS=PDS8� SBS=PERF TYPE=FLREC8�....25

2�:25:5� JRCV1�6I ENV=PERF2 STG=PRFSTG4 SYS=PDS8� SBS=PERF TYPE=RLREC8�....25

2�:25:5� JRCV1�6I ENV=PERF2 STG=PRFSTG4 SYS=EBV8� SBS=PERF TYPE=RLREC8�....25

10.8.6 Journal Recovery Execution Report — Processor Execution
Summary

The processor execution summary section of the Journal Recovery Execution Report
lists the number of generate and delete processors executed for each Endevor location
(environment, stage) and inventory classification (system, subsystem, type).

10-30 Utilities Guide

10.8 The Journal Recovery Execution Report

2�:25:5� JRCV1�7I NBR OF GENERATE PROCESSORS EXECUTED:

2�:25:5� JRCV111I ENV=PERF1 STG=PRFSTG1 SYS=EBV8� SBS=PERF TYPE=FLREC8�....155

2�:25:5� JRCV111I ENV=PERF1 STG=PRFSTG1 SYS=EBV8� SBS=PERF TYPE=RLREC8�....155

2�:25:5� JRCV111I ENV=PERF1 STG=PRFSTG1 SYS=PDS8� SBS=PERF TYPE=RLREC8�....155

2�:25:5� JRCV111I ENV=PERF1 STG=PRFSTG1 SYS=PDS8� SBS=PERF TYPE=FLREC8�....155

2�:25:5� JRCV111I ENV=PERF2 STG=PRFSTG3 SYS=EBV8� SBS=PERF TYPE=FLREC8�....25

2�:25:5� JRCV111I ENV=PERF2 STG=PRFSTG3 SYS=PDS8� SBS=PERF TYPE=FLREC8�....23

2�:25:5� JRCV111I ENV=PERF2 STG=PRFSTG3 SYS=PDS8� SBS=PERF TYPE=RLREC8�....25

2�:25:5� JRCV111I ENV=PERF2 STG=PRFSTG4 SYS=EBV8� SBS=PERF TYPE=FLREC8�....5�

2�:25:5� JRCV111I ENV=PERF2 STG=PRFSTG4 SYS=PDS8� SBS=PERF TYPE=FLREC8�....5�

2�:25:5� JRCV111I ENV=PERF2 STG=PRFSTG4 SYS=PDS8� SBS=PERF TYPE=RLREC8�....5�

2�:25:5� JRCV111I ENV=PERF2 STG=PRFSTG3 SYS=EBV8� SBS=PERF TYPE=RLREC8�....25

2�:25:5� JRCV111I ENV=PERF2 STG=PRFSTG4 SYS=EBV8� SBS=PERF TYPE=RLREC8�....5�

2�:25:5� JRCV1�7I NBR OF DELETE PROCESSORS EXECUTED:

2�:25:5� JRCV111I ENV=PERF1 STG=PRFSTG1 SYS=EBV8� SBS=PERF TYPE=FLREC8�....25

2�:25:5� JRCV111I ENV=PERF1 STG=PRFSTG1 SYS=EBV8� SBS=PERF TYPE=RLREC8�....25

2�:25:5� JRCV111I ENV=PERF1 STG=PRFSTG1 SYS=PDS8� SBS=PERF TYPE=RLREC8�....25

2�:25:5� JRCV111I ENV=PERF1 STG=PRFSTG1 SYS=PDS8� SBS=PERF TYPE=FLREC8�....25

2�:25:5� JRCV111I ENV=PERF2 STG=PRFSTG3 SYS=EBV8� SBS=PERF TYPE=FLREC8�....25

2�:25:5� JRCV111I ENV=PERF2 STG=PRFSTG3 SYS=PDS8� SBS=PERF TYPE=FLREC8�....25

2�:25:5� JRCV111I ENV=PERF2 STG=PRFSTG3 SYS=PDS8� SBS=PERF TYPE=RLREC8�....25

2�:25:5� JRCV111I ENV=PERF2 STG=PRFSTG3 SYS=EBV8� SBS=PERF TYPE=RLREC8�....25

Chapter 10. Point in Time Recovery 10-31

10-32 Utilities Guide

Chapter 11. Search And Replace Utility

Chapter 11. Search And Replace Utility 11-1

11.1 Using the Search And Replace Utility

11.1 Using the Search And Replace Utility

The Endevor Search & Replace utility allows you to search for a user-supplied
character string in elements that are under Endevor control. If you want to, you can
replace the character string with a different, user-supplied character string. Once
updated, the element is added back into Endevor.

11-2 Utilities Guide

11.2 How the Search & Replace Utility works

11.2 How the Search & Replace Utility works

The Search & Replace utility is controlled by the SEARCH ELEMENTS request
(available in batch only). You specify the inventory location to be searched as well as
any additional selection criteria, such as CCID or processor group. You also provide
the character string for which you are looking and, optionally, a character string with
which you want to replace the original string.

If you include a replacement string in your request, the utility replaces the original
character string with the second string. The utility then adds the element back into the
entry stage at the environment specified on the request. If you do not specify a
replacement string, the element is not updated.

 11.2.1 The Search

The Search & Replace utility begins its search at the inventory location indicated in
the SEARCH ELEMENTS request. If the element is not found at that location and if
you requested that all environments in the map be searched, the utility checks
subsequent environments for the element. Once found, the utility processes only the
first occurrence of the element. Remaining stages are neither searched nor processed.

The search is always done against the current level of the element, and always begins
at Stage 1 of the environment indicated. You cannot specify a beginning stage
location.

11.2.2 The Search String

The search string can be from 1-72 characters in length. You cannot use a string that
contains both single quotation marks and double quotation marks.

By default, the Search & Replace utility looks for the character string in the column
range associated with the element type entered in the request. You can override the
type values by coding an explicit search column range.

 11.2.3 Processing Modes

The Search & Replace utility executes in one of three modes:

Mode When Executed What Happens in this Mode

Validate When you code VALIDATE
in the PARM= field in the
execution JCL.

See the section entitled
“Execution JCL” for more
information.

The utility parses and verifies the
SCL statements in the SEARCH
ELEMENTS request.

See the section entitled “Validate
Mode” for more information about
validate mode.

Chapter 11. Search And Replace Utility 11-3

11.2 How the Search & Replace Utility works

Mode When Executed What Happens in this Mode

Search-Only By default The utility searches for the search
string specified and produces a
report indicating the element in
which the string is found.
Optionally (depending on what is
coded in the execution JCL), the
utility generates SCL for each
element that contains the search
string.

See “Search-Only Mode” for more
information about search-only
mode.

Replacement When a replacement text
string is included in the
request and the OPTIONS
UPDATE ELEMENT clause
is coded. Both conditions
must exist in order for the
utility to replace one string
with another.

The utility replaces the original
string with the replacement string,
and adds the element back into
Stage 1 of the environment
specified on the SEARCH
ELEMENTS request.

See “Replacement Mode” for
more information about
replacement mode.

11-4 Utilities Guide

11.3 Operating Considerations

 11.3 Operating Considerations

 11.3.1 Overview

This section details operating considerations that pertain to the Search & Replace
utility.

11.3.2 Miscellaneous Operating Considerations

Miscellaneous operating considerations include the following:

■ All updates to elements are performed at the entry stage of the element; that is, at
Stage 1 of the environment specified in the SEARCH ELEMENTS request.

■ Variable length records are never shortened. A record's length may increase, but it
will not decrease.

■ In replacement mode, the Search & Replace utility does not search elements that
are signed out to users other than the current user, unless the OVERRIDE
SIGNOUT option is specified in the SEARCH ELEMENTS request. Nor does the
utility search elements in an in-between stage (that is, a stage not on the map but
between two stages that are on the map).

 11.3.3 Security

The Search & Replace utility uses the Endevor security system to verify that a user is
authorized to perform the requested actions against the element. The following security
checks are performed:

■ Does the user have RETRIEVE authority for the element at the inventory location
at which it is found?

This check is performed before searching an element.

■ Does the user have OVERRIDE SIGNOUT authority at the inventory location at
which the element is found?

This check is performed when the OVERRIDE SIGNOUT clause is specified and
the element is not signed out to the current user. (Applies to replacement mode
only.)

■ Does the user have ADD or UPDATE authority for the element at Stage 1 (the
entry stage) of the specified environment?

This check occurs when the updated element is added back into Endevor. If the
element exists at the entry stage, the user must have UPDATE authority for the
element at that stage. If the element does not exist at the entry stage, the user
must have ADD authority for the element at that stage.

Chapter 11. Search And Replace Utility 11-5

11.3 Operating Considerations

11.3.4 Serializing the Element

The Search & Replace utility puts a “lock” on an element when it is being processed.
The lock is placed at the environment indicated in the SEARCH ELEMENTS request
and at the source environment, if the element was found up the map. Therefore, other
Endevor actions against the element, such as SIGNOUT or RETRIEVE, may be
prohibited while you are processing the element.

Serializing the element applies to replacement mode only.

 11.3.5 Exits

The Search & Replace utility invokes three Endevor exits:

 ■ Exit 1--Security

■ Exit 2--Before Action

■ Exit 3--After Action

Exits are handled as follows:

Exit Invoked for Actions . . . When Invoked

1 ■ Retrieve

 ■ Add, Update

■ Before any element processing
begins.

■ Before ADD or UPDATE processing,
only if it has been determined that
the element will need to be added
back into Endevor.

2 Add or Update Before action processing begins.

3 Add or Update, based on exit
2

After a corresponding (and successful)
invocation of exit 2:

■ If exit 2 is invoked and allows an
action, exit 3 is invoked after the
action has been performed.

■ If exit 2 is invoked but does not
allow an action, exit 3 is not
invoked.

■ If exit 2 is not invoked for an action
or element, exit 3 is not invoked for
that action or element.

11-6 Utilities Guide

11.4 Compare vs. In Columns vs. Bounds Are

11.4 Compare vs. In Columns vs. Bounds Are

 11.4.1 Definitions

The premise of the Search & Replace Utility is that one or more text strings can be
found and, optionally, replaced by one or more different text strings. Information is
compared on a line-by-line basis, within specific columns. Information is replaced
within specific columns of specific lines.

There are several terms used to describe the search columns and replace columns. It is
important that you understand each term as you work with the Search & Replace
Utility. These terms are described below:

Term Description

Compare columns (or
type compare columns)

The compare columns associated with the element type
definition. Each type (for example, COBOL, Assembler,
or JCL) has specific columns within which Endevor
looks to identify changes. For example, the compare
column range for COBOL is 7-72.

BOUNDS ARE
parameters (or bounds or
boundaries)

The columns within which Endevor can place the new
text string. BOUNDS ARE parameters begin with
left-column and end with right-column. If omitted, the
type definition compare columns are used.

The BOUNDS ARE parameters usually define the
modifiable range.

IN COLUMNS
parameters (or search
columns)

The columns within which Endevor searches for a
particular text string. IN COLUMNS parameters begin
with from-column and end with to-column. If omitted,
the BOUNDS ARE values are used.

Modifiable range The union of the BOUNDS ARE parameters and IN
COLUMNS parameters.

■ The left or first position of the modifiable range is
the IN COLUMNS from-column.

■ The right or end position of the modifiable range is
BOUNDS ARE right-column, with one exception:

- If the IN COLUMNS to-column is greater than the
BOUNDS ARE right-column, the IN COLUMNS
to-column value is used as the end of the modifiable
range.

The default modifiable range is the compare column
range of the element type.

Chapter 11. Search And Replace Utility 11-7

11.4 Compare vs. In Columns vs. Bounds Are

 11.4.2 Additional Information

The following concepts are also important to your understanding of the search and
replace process. The pages listed indicate where you can find the full discussion of
each concept.

Concept Where and What Discussed

IN-COLUMNS and BOUNDS ARE
parameters are used in conjunction with
each other to set the limits for the search
and replace operations.

Beginning in the section “Text
Replacement” Discussions of compare
column ranges, IN COLUMNS rules, and
BOUNDS ARE rules.

Data is manipulated only within the
modifiable range. Data in columns
outside this range is neither modified nor
affected by data shifting.

Beginning in the section “Shorter
Replacement String” Discussions and
examples regarding replacement string
length.

You can override the type compare
columns by assigning IN-COLUMNS
and BOUNDS ARE values in the
SEARCH ELEMENTS statement. You
cannot assign a value that exceeds the
type definition compare column value,
however.

For example, you are using element type
COBOL, whose compare columns are
7-72. If you assign a right boundary of
80, you will receive an error message.
The right boundary can be any value up
to and including 72.

Similarly, assigning a left boundary of 6
results in an error. The left boundary
value cannot be less than 7.

Beginning in the section “Search
Elements SCL” Discussion of the
SEARCH ELEMENTS SCL.

Beginning in the section “Text
Replacement” Discussion about IN
COLUMNS and BOUNDS ARE rules.

11-8 Utilities Guide

11.5 Validate Mode

 11.5 Validate Mode

 11.5.1 Overview

The Search & Replace utility operates in validate mode when you code VALIDATE as
part of the PARM= parameter in the execution JCL (see “Execution JCL”). In this
mode, the utility parses and verifies the generated SCL statements for proper syntax. If
no errors are found, the SCL statements are formatted.

Processing stops after validation. The actions implied by the SCL statements are not
performed. Errors other than syntax errors are not noted at this time.

11.5.2 The VALIDATE Parameter

To invoke validate mode, you need to code the following in the execution JCL:

PARM='ENBS1���VALIDATE'

You can abbreviate the word validate, using any of the following entries:

V, VA, VAL, VALI, VALID, VALIDA, or VALIDAT

Chapter 11. Search And Replace Utility 11-9

11.6 Search-Only Mode

 11.6 Search-Only Mode

 11.6.1 Overview

The Search & Replace utility executes in search-only mode by default. In this mode,
the utility searches for a particular search string in the elements specified in your
SEARCH ELEMENTS request. At a minimum, the utility generates a list of the
elements that contain the search string. Depending on what you code in the request or
in the execution JCL, the utility also does the following:

Note that in search-only mode, the OPTIONS UPDATE clause is not specified.

If you . . . The utility . . .

Code OPTIONS LIST DETAIL in
the request

Displays the line of the element that contains
the search strings.

Code a replacement string and
OPTIONS LIST DETAIL in the
request

Displays the line of the element that contains
the search string followed by the same line
containing the replacement string.

Code a replacement string in the
request and allocate the ENSSCLOT
file in the JCL

Generates SCL for all the elements that
would be affected by replacement of the
search string. SCL statements are generated
only when a replacement string is specified in
the original search request.

11.6.2 Search-Only Mode Processing

The Search & Replace utility determines the elements to be searched based on
inventory location and additional selection criteria provided in the SEARCH
ELEMENTS request. For each element identified, the utility reads--on a
record-by-record basis--the current level of the element, and searches for the search
string. The utility produces a series of reports listing each element that was searched
and the result of the search (for example, number of search string matches found in the
element).

The Search & Replace utility verifies RETRIEVE authority before processing the
element.

The Search & Replace utility does not do the following when in search-only mode:

■ The utility does not update the element.

■ The utility does not perform signout processing.

■ The utility does not check whether an element is at an in-between stage (a stage
not on the map, but between two stages that are on the map).

11-10 Utilities Guide

11.6 Search-Only Mode

Important! The search string is case-sensitive. If the search string contains only
uppercase characters, the utility looks only for text in uppercase characters. If a line in
an element matches the text of the search string but is in lowercase or a combination of
lowercase and uppercase characters, the utility does not record a match.

11.6.3 Generating Search Elements SCL

The Search & Replace utility provides the option of generating SCL statements for
each element that contains the search string. These SCL statements can then be
executed to perform actual replacement of the search strings.

This capability is useful when a large number of elements are searched before search
strings are replaced. You can review the output to see how elements will be affected
by the text replacement. If the output is acceptable, execute the Search & Replace
utility again, using the generated SCL as the input file. Because the SCL statements
have been created, the utility only needs to execute them; a second search of the entire
inventory is not necessary. Using this option not only allows you to review the results
of replacing text before you actually do so--it also saves you time.

The Search & Replace utility generates SCL statements if you enter a replacement
string in the SEARCH ELEMENTS request and you allocate the ENSSCLOT DD
statement in the execution JCL. The SCL statements written to the ENSSCLOT file
contain all the information entered in the original SEARCH ELEMENT request as well
as an OPTIONS UPDATE ELEMENT clause. When you invoke the utility a second
time, using the generated SCL as the input file, only the specified elements are
searched and updated.

If the source SCL contains multiple SEARCH ELEMENTS requests, the output data
set may contain multiple SCL statements for the same element.

Note: Each FROM statement in the generated SCL will contain explicit system,
subsystem, and type values, even if you used a wildcard for that value in the original
SEARCH ELEMENTS request. These values represent the location where the updates
will be applied.

11.6.4 The ENSSCLOT File

The ENSSCLOT DD statement should refer to a sequential data set or a partitioned
data set with an explicit member. Allocate the data set with the following attributes:

■ DSORG=PS (or PO if a member name is specified)

■ RECFM=F or FB

 ■ LRECL=80

Chapter 11. Search And Replace Utility 11-11

11.7 Replacement Mode

 11.7 Replacement Mode

 11.7.1 Overview

The Search & Replace utility operates in replacement mode when you include both the
REPLACE WITH clause and the OPTIONS UPDATE ELEMENT clause in your
SEARCH ELEMENTS request. In this mode, the utility searches the element for the
search string, replaces each occurrence of the string with the replacement string, and
adds the element back into Endevor at Stage 1 of the specified environment.

11.7.2 Replacement Mode Processing

The Search & Replace utility determines the elements to be searched based on
inventory location and additional selection criteria provided in the SEARCH
ELEMENTS request. For each element identified, the utility reads--on a
record-by-record basis--the current level of the element, and searches for the search
string. If the search string is found, the utility replaces that string with the replacement
string specified in the SEARCH ELEMENTS request. When the entire element has
been searched and all relevant search strings replaced, the utility adds or updates the
element to Stage 1 of the environment indicated in your request.

In this mode, the utility verifies RETRIEVE, SIGNOUT, and ADD/UPDATE
authorization. In addition, the utility checks whether any of the elements specified exist
at an in-between stage (stage not on the map but between two stages that are on the
map). See “Processing Checkpoints” for more information.

Be aware of the following:

■ SIGNOUT authorization and in-between stage checking are not performed in
search-only mode. Consequently, elements that are signed out to another user or
exist at an in-between stage may be searched, and may have SCL statements
written to the ENSSCLOT file. Because the utility does perform these two checks
in replacement mode, some of the SCL statements may terminate with an error if
you use this ENSSCLOT file as input to a subsequent Search & Replace job.

■ The search string and the replacement string are case-sensitive. If the search string
contains only uppercase characters, the utility looks only for text in uppercase
characters. If a line in an element matches the text of the search string but is in
lowercase or a combination of lowercase and uppercase characters, the utility does
not record a match.

Similarly, the utility places the replacement string in the element exactly as it has
been coded in the SEARCH ELEMENTS request. The utility does not convert
lowercase characters to uppercase characters (or vice versa).

■ When fetch processing occurs, if the value of Signout Fetch (SOFETCH), a
Endevor Defaults Table parameter, is Y, the element that is fetched will be signed
out to you at the location from which it was fetched, unless it is already signed

11-12 Utilities Guide

11.7 Replacement Mode

out to someone else. If the value of SOFETCH is N, the element that is fetched
will not be signed out.

The element that is put in the entry stage will be signed out to you.

 11.7.3 Processing Checkpoints

Before and during processing, the utility checks for the following authorizations and
conditions:

What's Checked When Is It
Checked?

If . . . Then . . .

RETRIEVE
authority

Before processing
an element

The user does not
have RETRIEVE
authority

Processing stops
for that element
and begins for the
next element.

RETRIEVE
authority

Before processing
an element

The user has
RETRIEVE
authority

Processing for the
element continues.

SIGNOUT
authority

After RETRIEVE
authority is
determined but
before processing
for the element

The user does not
have SIGNOUT
authority

Processing stops
for that element
and begins for the
next element.

SIGNOUT
authority

After RETRIEVE
authority is
determined but
before processing
for the element

The user does
have SIGNOUT
authority

Processing for the
element continues.

Whether the
element exists at an
in-between stage

After RETRIEVE
and SIGNOUT
authority are
determined but
before the
element is
searched

The element
exists at an
in-between stage

Processing stops
for that element
and begins for the
next element.

Whether the
element exists at an
in-between stage

After RETRIEVE
and SIGNOUT
authority are
determined but
before the
element is
searched

The element does
not exist at an
in-between stage

Processing for the
element continues.

Chapter 11. Search And Replace Utility 11-13

11.7 Replacement Mode

What's Checked When Is It
Checked?

If . . . Then . . .

ADD/UPDATE
authority

After the element
is searched and
the search string
is replaced, but
before the
element is added
or updated into
Endevor

The user does not
have
ADD/UPDATE
authority

Processing stops
for that element
and begins for the
next element.

ADD/UPDATE
authority

After the element
is searched and
the search string
is replaced, but
before the
element is added
or updated into
Endevor

The user does
have
ADD/UPDATE
authority

The utility
performs the
appropriate action
at Stage 1 of the
environment
specified:

 ■ UPDATE if
the element
exists at Stage
1

■ ADD if the
element does
not exist at
Stage 1

11-14 Utilities Guide

11.8 Execution JCL

 11.8 Execution JCL

 11.8.1 Overview

The Search & Replace control statements (SCL) are coded in the execution JCL used
to activate the utility. The control statements are specified in the ENSSCLIN DD
statement.

 11.8.2 JCL

The example below illustrates the JCL used to execute the Search & Replace utility.
This JCL can be found in member ENBSRPL1, in the JCL library iprfx.iqual.JCLLIB.

// (JOBCARD)

//ENBS1��� EXEC PGM=NDVRC1,PARM='ENBS1���'

//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//ENSMSGS1 DD SYSOUT=�

//SYSABEND DD SYSOUT=�

//�---�

//� ENSSCLOT is used in Search-Only mode. It contains Replace �

//� SCL for the elements that contained the search string. �

//�---�

//ENSSCLOT DD DSN=uprfx.uqual.SCL,DISP=OLD

//ENSSCLIN DD �

User control statements

/�

//�---�

//� The ENSSPILL DD statement is used as a spill file. It will �

//� be used to temporarily hold data in the unlikely event that �

//� all available memory has been used. �

//�---�

//ENSSPILL DD UNIT=tdisk,SPACE=(CYL,1�)

// DCB=(DSORG=PS,RECFM=VB,LRECL=32��4,BLKSIZE=32��8)

//

11.8.3 ENSSCLIN DD Statement

The user control statements specified in the ENSSCLIN DD statement are SEARCH
ELEMENTS requests, which specify element search criteria, the search string, and,
optionally, a replacement text string. You can code as many SEARCH ELEMENTS
requests as you need; there is no defined limit on the number of statements allowed.

The SEARCH ELEMENTS SCL is explained in detail, in the section entitled “Search
Elements SCL.”

Chapter 11. Search And Replace Utility 11-15

11.8 Execution JCL

 11.8.4 PARM= Statement

You must specify the ENBS1000 parameter to invoke the Search & Replace utility.
You can optionally code the VALIDATE parameter (immediately after ENBS1000) to
request validate mode processing.

The utility performs as follows:

If you code . . . The Utility Does This

PARM=ENBS1000 Parses and validates all the requests before
processing them.

If the parser or validation routine detects an
error, the utility will not execute any of the
statements. The parsing routine attempts to
parse all of the control statements before
terminating.

PARM=ENBS1000VALIDATE Parses and validates all the requests, but does
not execute the requests even if no syntax or
validation errors are found.

This parameter must follow the ENBS1000
parameter, as shown below:

PARM=ENBS1000VALIDATE

11-16 Utilities Guide

11.9 Search Elements SCL

11.9 Search Elements SCL

 11.9.1 Overview

You can enter as many SEARCH ELEMENTS requests as necessary in the control
statement data set. There is no defined limit to the number of actions allowed in a
single execution of the program.

The utility parses and validates all requests before it begins executing them. If there is
a syntax error in any request or an error is found validating a request, none of the
statements are executed. The utility tries to parse all statements before terminating.

When the requests have been successfully parsed, the utility executes them. Requests
are executed as long as the highest return code is less than or equal to 12.

Note: If you code PARM=VALIDATE, the utility will not execute the requests when
parsing is complete.

The SEARCH ELEMENTS syntax is shown on the next page, followed by a
description of each clause in the syntax.

 11.9.2 Syntax

Chapter 11. Search And Replace Utility 11-17

11.9 Search Elements SCL

��──SEArch ELEment──element-name─ ──┬ ┬─────────────────────────── ─────────────────────────�
 └ ┘ ──┬ ┬─THRough─ ─element-name─
 └ ┘─THRu────

�─ ─FROm─ ─ENVironment──env-name─ ─SYStem──sys-name──SUBsystem──subsys-name─────────────────�

�─ ─TYPe──type-name──FOR─ ──┬ ┬────── ─search-string───�
 └ ┘─TEXt─

�─ ─¤─ ──┬ ┬── ─¤──�
 ├ ┤ ──┬ ┬──── ─COLumns─ ──┬ ┬─from-column─ ──┬ ┬─────────────────────── ───────────────
 │ │└ ┘─IN─ └ ┘─FIRst─────── └ ┘ ──┬ ┬──── ──┬ ┬─to-column─
 │ │└ ┘─TO─ └ ┘─LASt──────
 ├ ┤ ─REPlace WITh─ ──┬ ┬────── ─repl-string──
 │ │└ ┘─TEXt─
 │ │┌ ┐─FIRst───────
 └ ┘ ─BOUnds─ ──┬ ┬───── ──┬ ┬──────── ──┴ ┴─left-column─ ──┬ ┬──────────────────────────
 └ ┘─ARE─ └ ┘─COLumn─ │ │┌ ┐─LASt─────────
 └ ┘ ──┬ ┬──── ──┴ ┴─right-column─
 └ ┘─TO─

�─ ──┬ ┬─────────────────────────── ──�
 └ ┘ ─WHEre──¤─ ──┬ ┬────────── ─¤─

├ ┤─┤ CCID ├─
└ ┘─┤ PRO ├──

�─ ──┬ ┬── ─.────────────────��
 └ ┘ ─OPTion──¤─ ──┬ ┬── ─¤─
 ├ ┤ ─CCId─ ──┬ ┬──── ─ccid───────────────────────────
 │ │├ ┤─EQ─
 │ │└ ┘─=──
 ├ ┤ ─COMment─ ──┬ ┬──── ─comment─────────────────────
 │ │├ ┤─EQ─
 │ │└ ┘─=──

├ ┤─BYPass GENerate PROCessor────────────────────
 ├ ┤ ─PROCessor GROup─ ──┬ ┬─EQ─ ─group-name──────────
 │ │└ ┘─=──
 ├ ┤─OVErride SIGNOut─────────────────────────────
 ├ ┤ ─SEArch ENVironment─ ──┬ ┬─MAP── ────────────────
 │ │└ ┘─ONLy─
 │ │┌ ┐─PROHibited─
 ├ ┤ ──┬ ┬────── ─TRUncation─ ──┬ ┬──── ──┴ ┴─PERmitted──
 │ │└ ┘─DATa─ └ ┘─IS─
 ├ ┤─LISt DETail──────────────────────────────────
 └ ┘ ─UPDate─ ──┬ ┬───────── ─────────────────────────
 └ ┘─ELEment─

CCID:
 ┌ ┐─,────
├──CCId─ ──┬ ┬───────────────────── ──┬ ┬─EQ─ ─(─ ───

�
┴─ccid─ ─)─────────────────────────────────┤

 │ │┌ ┐─ANY───────── └ ┘─=──
 └ ┘ ─OF─ ──┼ ┼─BASe────────
 ├ ┤─GENerate────
 ├ ┤─LASt ACTion─
 └ ┘─RETrieve────

PRO:
 ┌ ┐─,──────────
├──PROcessor GROup─ ──┬ ┬─EQ─ ─(─ ───

�
┴─group name─ ─)───┤

 ├ ┤─EQ─
 └ ┘─=──

11.9.3 Search Elements Clauses

The SEARCH ELEMENTS clause allows you to specify one or more elements to be
searched. You can specify that a range of elements be searched by coding the
THROUGH clause also.

11-18 Utilities Guide

11.9 Search Elements SCL

Clause Description

SEARCH ELEMENTS
element-name

The name of the action followed by the name(s) of the
element(s) you want to search. You must code this
clause.

The element name can be explicit, partially wildcarded,
or fully wildcarded. If you enter a partially wildcarded
element name, only those elements matching the criteria
are searched.

If you use the THROUGH clause, the element indicated
here is the first element in the range to be searched.

THROUGH (THRU)
element-name

Indicates that a range of elements are to be searched, up
to and including the element named in this clause. You
can use a wildcard with the element name. This clause
is optional.

 11.9.4 From Clause

The FROM clause identifies the Endevor inventory location at which the element
search begins. You must enter all FROM information. You need to code the word
FROM only once.

Note that you cannot indicate a stage. The search always begins at Stage 1 of the
environment you specify.

If you specify OPTIONS SEARCH ENVIRONMENT MAP, the utility searches this
inventory location first, then continues the search for the element up the map. If you
specify OPTIONS SEARCH ENVIRONMENT ONLY, the utility searches only the
environment defined in this clause.

If an element changes as a result of the search, the utility either adds it or updates it at
Stage 1 of the environment specified in this FROM clause. The element is always
added (or updated) at Stage 1 of this environment, no matter where the element was
retrieved.

Clause Description

FROM ENVIRONMENT
env-name

Name of the environment. You must fully specify the
environment name; you cannot use a wildcard.

FROM SYSTEM
sys-name

Name of the system. You can enter a fully specified
system name or use a wildcard.

FROM SUBSYSTEM
subsys-name

Name of the subsystem. You can enter a fully specified
subsystem name or use a wildcard.

FROM TYPE type-name Type associated with the element. You can enter a fully
specified type or use a wildcard.

Chapter 11. Search And Replace Utility 11-19

11.9 Search Elements SCL

 11.9.5 For Clause

The FOR [TEXT] clause identifies the text strings the utility searches for and,
optionally, provide the compare ranges to be searched and replacement text for the
search strings. If you do not enter column compare range values, the utility uses the
COMPARE FROM and COMPARE TO columns associated with the element type.

The IN COLUMNS, BOUNDS ARE, and REPLACE WITH clauses can be entered in
any order, as long as they all follow the FOR [TEXT] search-string clause.

Clause Description

FOR [TEXT]
search-string

Identifies the character string for which the utility will
search. This clause is required.

The attributes of the search string are listed below:

■ The minimum length of the search string is 1
character. Null (empty) search strings are prohibited.

■ The maximum length of the string is 72 characters.
The length of the string must be less than or equal
to the number of columns searched (see the
description of IN COLUMNS later in this table).

■ If the string contains imbedded spaces or any other
parser delimiter, it must be enclosed by either
apostrophes or quotation marks.

– If the string contains apostrophes, enclose it in
quotation marks.

– If the string contains quotation marks, enclose it
in apostrophes.

FOR [TEXT]
search-string (continued)

■ The string itself cannot contain both apostrophes
and quotation marks.

■ Trailing blanks are significant during the search
operation if the search-string is quoted.

■ The comparison of text strings is case-sensitive; that
is, lowercase characters remain lowercase.

11-20 Utilities Guide

11.9 Search Elements SCL

Clause Description

[IN] COLUMNS . . .[TO]
. . .

Identifies the columns in which the utility looks for the
search string (the compare range). This clause is
optional.

The values entered here override the compare column
values implied by the element type (defined in the
FROM clause). The from-column and to-column values
must fall within the compare range values (inclusive),
however. Otherwise, you receive an error message.

If you do not use this clause, the utility uses the values
provided in the BOUNDS ARE clause.

[IN] COLUMNS . . .[TO]
. . .(continued)

You can enter the following in this clause:

■ from-column or FIRST, to indicate the first column
(inclusive) of the compare range. You can enter any
value as the from-column value as long as that value
is less than or equal to the to-column value (see
below). If you do not enter a from-column but you
do enter a to-column, the utility uses the left-column
value of the BOUNDS clause as the first column.
FIRST reflects the COMPARE FROM value of the
type associated with the element.

■ to-column or LAST, to indicate the ending column
(inclusive) of the compare range. The to-column
value must be greater than the from-column value,
and cannot exceed 32,000. LAST reflects the
COMPARE TO value of the type associated with
the element.

See the sections entitled “Definitions” and “Compare vs.
In Columns vs. Bounds Are” for additional information
about IN COLUMNS. See also “IN COLUMNS Rules.”

Chapter 11. Search And Replace Utility 11-21

11.9 Search Elements SCL

Clause Description

REPLACE WITH
[TEXT] repl-string

Identifies the string that will replace the search string in
the element. The replacement string has the same
attributes as the search string (see the first entry in the
FOR clauses table) with the following exception: null
(empty) replacement strings are allowed.

This clause is optional. If you use this clause, you need
to code the OPTIONS UPDATE ELEMENTS clause
(see “Options Clauses”) in order to have the search
string replaced and the element(s) updated. Otherwise,
the utility runs in search-only mode (and may,
depending on what is coded in the execution JCL,
generate SCL statements).

If the replacement string is identical to the search string,
no elements are searched and an error message is issued.

See the discussion of text replacement, in the section
entitled “Text Replacement”, for additional information.

BOUNDS [ARE]
[COLUMNS] . . . [TO] . .
.

Identifies--in conjunction with the IN COLUMNS
values, if coded--the columns in which the utility looks
for the search string. This clause is optional.

If you use this clause, the left-column and right-column
values must be within the range of the element type
COMPARE FROM and COMPARE TO columns
(inclusive). Otherwise, you receive an error message.

If you do not enter column values, the utility defaults to
FIRST and LAST, which reflect the COMPARE FROM
and COMPARE TO values of the type associated with
the element.

You can enter the following in this clause:

■ left-column or FIRST, to indicate the first column
(inclusive) of the compare range. The utility uses
this value if you do not specify an explicit IN
COLUMNS from-column value. If you do not enter
a left-column value, the utility defaults to FIRST.

■ right-column or LAST, to indicate the last column
that can be modified in the range. If you do not
enter a right-column value, the utility defaults to
LAST.

See the sections entitled “Definitions” and “Compare vs.
In Columns vs. Bounds Are” for additional information
about BOUNDS ARE. See also “IN COLUMNS Rules”.

11-22 Utilities Guide

11.9 Search Elements SCL

 11.9.6 Where Clauses

WHERE clauses provide additional element selection criteria. The search is limited to
only those elements whose CCID or processor group match the entry in the SEARCH
ELEMENTS request. WHERE clauses are optional.

Clause Description

WHERE CCID OF . . .
EQ . . .

Specifies the CCID that must be associated with the
element in order for the utility to search the element.
The CCID can be from 1-12 characters in length, and
can be explicit, partially wildcarded, or fully wildcarded.
Note that coding a fully wildcarded CCID produces the
same result as not coding this clause or coding WHERE
CCID OF ANY--all elements are selected no matter
what the CCID is.

You can provide a list of CCIDs; enclose the list in
parentheses. The CCID associated with the element must
match at least one CCID in the list to be selected for
processing. The utility checks only the current MCF for
the CCID.

You can limit the search to only those elements whose
base, generate, last action, or retrieve CCID match the
CCID specified in the request. Again, the utility checks
only the current MCF record.

If you use WHERE CCID OF ANY, all of the above
CCID fields in the current MCF record are examined.

WHERE PROCESSOR
GROUP EQ . . .

Specifies the processor group that must be associated
with the element in order for the utility to search the
element. The processor group name can be from 1-8
characters in length, and can be explicit, partially
wildcarded, or fully wildcarded. Note that coding a fully
wildcarded processor group name produces the same
result as not coding this clause--all elements are selected
no matter what the processor group is.

You can provide a list of processor groups; enclose the
list in parentheses. The processor group associated with
the element must match at least one of the processor
groups in the list to be selected for processing.

Chapter 11. Search And Replace Utility 11-23

11.9 Search Elements SCL

 11.9.7 Options Clauses

OPTIONS clauses allow you to further qualify your request. You can specify none,
one, or more than one option. You need to code the word OPTIONS only once.

Clause Description

CCID [EQ] ccid Specifies the CCID to be associated with the element
when the element is added (or updated) back into
Endevor. This CCID is assigned to the last action CCID
and the generate CCID.

The CCID can be from 1-12 characters in length, and
must be explicit.

This clause is optional except under the following
condition: the element's system record requires that a
CCID be coded and you code the REPLACE WITH
clause in the request.

COMMENT [EQ]
comment

Specifies the comment to be associated with the element
when the element is added (or updated) back into
Endevor.

The comment can be from 1-40 characters in length. If
the comment contains imbedded spaces or punctuation
marks, the text must be enclosed by string delimiters.

This clause is optional except under the following
condition: the element's system record requires that a
comment be coded and you code the REPLACE WITH
clause in the request.

BYPASS GENERATE
PROCESSOR

Indicates that the generate processor is not to be
executed when the element is added back into Endevor.
By default, the generate processor is invoked whenever
an element is added back into Endevor.

This clause applies only if you code the REPLACE
WITH clause.

PROCESSOR GROUP
EQ group-name

Assigns a processor group to the element when the
element is added back into Endevor. The processor
group named must exist at Stage 1 of the environment.

The processor group can be from 1-8 characters in
length, and must be explicit. This clause applies only if
you code the REPLACE WITH clause.

11-24 Utilities Guide

11.9 Search Elements SCL

Clause Description

OVERRIDE SIGNOUT If the element is signed out to someone else, override
signout must be used and the corresponding authority
granted.

You will not get the signout of the element that is
fetched. However, the element that is put in the entry
stage will be signed out to you.

This clause applies only if you code the REPLACE
WITH clause.

SEARCH
ENVIRONMENT {MAP
| ONLY}

Specifies whether the utility will search beyond Stage 1
of the designated environment:

■ SEARCH ENVIRONMENT MAP indicates that the
utility is to search the environment map for the
element if the element is not found at Stage 1 of the
environment specified.

■ SEARCH ENVIRONMENT ONLY indicates that
the utility is to search only the environment
specified in the SEARCH ELEMENTS request. The
utility can search both stages of the environment,
but not the other environments in the map.

If this clause is not coded, the utility searches only
Stage 1 of the specified environment. This is the default.

[DATA] TRUNCATION
[IS] {PROHIBITED |
PERMITTED}

Indicates whether data truncation will take place during
string substitution:

■ Code DATA TRUNCATION IS PROHIBITED to
prevent data in an element record from being
truncated. This is the default. An error message is
returned if text replacement would have resulted in
data truncation.

■ Code DATA TRUNCATION IS PERMITTED to
allow data in an element record to be truncated.
Caution messages are issued in this situation.

Chapter 11. Search And Replace Utility 11-25

11.9 Search Elements SCL

Clause Description

LIST DETAILS Indicates that you want to list, on the Search and
Replace Utility Execution Report, each line (or a portion
of the line, up to 90 bytes of data) of text containing the
search string. The lines are printed as they are
encountered during execution of the request. If the
request contains a replacement string, the updated line is
also printed.

If this clause is not coded, the text of each line
containing the text string is not printed in the execution
report. Each element searched, along with the number
of matches found in that element (0 to 99999), is printed
to the execution and summary report, regardless of the
LIST DETAILS option setting.

UPDATE [ELEMENTS] Indicates that the utility is operating in replacement
mode. That is, as appropriate, the utility replaces the
search string with the replacement string and updates the
element. (See “Replacement Mode” for more
information.)

If this clause is coded, you need to code the REPLACE
WITH clause if you want to replace the search string
and update the element(s). Otherwise, the utility runs in
search-only mode.

If this clause is not coded, the utility operates in
search-only mode. (See the discussion in “Search-Only
Mode” for more information.)

11-26 Utilities Guide

11.10 Text Replacement

 11.10 Text Replacement

 11.10.1 Overview

The replacement text string may be equal to, longer, or shorter than the search string.
A longer or shorter search string causes data to be shifted to the right or left and blank
spaces to be consumed or inserted. The size of the replacement string does not affect
the record length, however, except under the following conditions:

■ The record has a variable length.

■ Extending the record length is required to insert the replacement string.

■ The extended length will not exceed the maximum length permitted for the
element.

The data record is always padded to its original length.

Note: The search string and the replacement string are case-sensitive.

11.10.2 Compare Column Ranges

By default, the Search & Replace utility searches for the search string in the compare
column range associated with the element type definition. You can override the type
definition values, however, by specifying values in the IN COLUMNS clause or the
BOUNDS ARE clause (or in both) in the SEARCH ELEMENTS request.

The BOUNDS ARE clause, used in conjunction with the IN COLUMNS clause,
restricts the range of data that is searched and the range of data that may be affected
by a change.

■ When both the IN COLUMNS and BOUNDS ARE clauses are specified, the
utility uses the higher of the IN COLUMNS to-column and the BOUNDS ARE
right-column to set the rightmost column that may be affected by data shifting.

■ When the IN COLUMNS clause is specified, the search for the search string is
limited to the columns indicated.

■ When the IN COLUMNS clause is not specified, the utility uses the values
specified or implied by the BOUNDS ARE values.

■ When the BOUNDS ARE right-column is greater than the IN COLUMNS
to-column, data between the to-column and the right-column is usually not
changed. The data may be shifted either left or right, depending upon the length of
the replacement string. If shifted to the left, the data might be moved into the
compare column range. The data then becomes subject to change, as all or part of
it could be searched and, possibly, replaced.

If the replacement string is larger than the search string and data truncation is
allowed, some of the “in-between” data may be truncated.

Chapter 11. Search And Replace Utility 11-27

11.10 Text Replacement

See “Definitions” for additional information.

11.10.3 IN COLUMNS Rules

If you use the IN COLUMNS clause, you must follow the rules listed below:

■ The IN COLUMNS values must be in the range 1 through 32,000, inclusive.

■ The IN COLUMNS from-column value must be less than or equal to the
to-column value.

■ The IN COLUMNS to-column value must be less than or equal to the source
element length associated with the element type record.

■ The IN COLUMNS from-column and to-column values must be included in the
range of FIRST to LAST, respectively. That is, the values must be within the
element type COMPARE FROM and COMPARE TO values, inclusively.

■ If only a single column number is specified, the utility assumes it represents the
from-column value. The to-column is calculated as the from-column plus the size
of the search string less 1.

■ If only the to-column is specified, the from-column value is assumed to be the
left-column value specified or implied in the BOUNDS ARE clause.

■ If both from-column and to-column are omitted, they adopt the values specified or
implied by the BOUNDS ARE clause (see below).

See “Definitions” for additional information.

11.10.4 BOUNDS ARE Rules

The rules for IN COLUMNS also apply to the BOUNDS ARE clause, with the
following exceptions:

■ If only a single column number is specified in the BOUNDS ARE clause, the
utility assumes it represents the left-column of the range.

■ If the left-column value is omitted from the BOUNDS ARE clause, the utility
defaults to FIRST. FIRST reflects the COMPARE FROM value of the element
type.

■ If the right-column value is omitted from the BOUNDS ARE clause, the utility
defaults to LAST. LAST reflects the COMPARE TO value of the element type.

■ If the BOUNDS ARE left-column does not fall within the IN COLUMNS
from-column--to-column range, the IN COLUMNS from-column (or the first
column of the element type's compare column range) is used as the beginning
column for the search and replace operation.

See “Definitions” for additional information.

11-28 Utilities Guide

11.10 Text Replacement

11.10.5 Shorter Replacement String

When the replacement text string is smaller than the original search string, the original
string is replaced and blanks are inserted into the record as follows:

■ If no blanks appear between the search string and the rightmost column of the
modifiable range, data up to and including that rightmost column is shifted left.
Blanks are inserted at the rightmost column of the modifiable range.

■ If at least one blank occurs between the text and the rightmost column of the
modifiable range but there are no repeating blanks within this range of data,
blanks are inserted at the last blank within the range. The data preceding that
blank is shifted to the left.

■ If the data between the search string and the rightmost column of the modifiable
range contains at least two consecutive blanks, additional blanks are inserted at the
first occurrence of the repeating blank characters.

 11.10.6 Example

The example below illustrates replacement with a text string shorter than the original
search string. The x represents a blank space.

BOUNDS ARE; 1 and 12

IN COLUMNS: 3 and 1�

 ────+----1----+----2

Original text: AABBBCCCCDDDDDEEExxx

Search string: BBB

Compare range: 3-1�

Replacement string: EE

Updated text: AAEECCCCDDDxDDEEExxx

The modifiable range in this example is 3 through 12. A blank is inserted at column
12 to accommodate for the shorter replacement string. The remaining portion of the
original text is not modified at all, as it is outside the range defined.

11.10.7 Longer Replacement String

When the replacement text string is larger than the original string, the search string is
replaced and blanks are consumed as follows:

■ Data from the original string to the rightmost column of the modifiable range is
searched from left to right. All repeating blank characters are consumed as
required to perform the substitution. When the appropriate number of blanks have
been consumed, the data between the end of the text string and the rightmost
column of the modifiable range is shifted to the right and the replacement string is
inserted into the record.

■ If there are not enough extra blank characters and data truncation is permitted
(specified in the request), the utility performs data truncation. The data at the
rightmost column of the modifiable range is deleted, as necessary, to provide
space for the replacement string. The utility issues a cautionary message and
continues processing the element.

Chapter 11. Search And Replace Utility 11-29

11.10 Text Replacement

If there are not enough blank spaces for the replacement string and data truncation
is prohibited, the utility does the following:

– Generates an error message.

– Displays the data for the element on the Search & Replace Utility Execution
Report.

– Continues to search the element for other search and replace operations.

– Does not update the element.

 11.10.8 Examples

The following examples illustrate text replacement with a string longer than the
original search string. x represents a blank space.

Example 1

BOUNDS ARE: 1 and 26

IN COLUMNS: 3 and 1�

 ────+----1----+----2...

Original text: AABBBCCCCDDDDDxxx

Search string: BBB

Compare range: 3-1�

Replacement string: EEEEEE

Updated text: AAEEEEEECCCCDDDDD

The modifiable range in this example is 3 through 26. The replacement string fits
within the compare columns and is only three characters longer than the search text.
Consequently, the three blanks at the end of the original text are consumed by the
replacement string as the data shifts to the right.

Example 2

BOUNDS ARE: 1 and 1�

IN COLUMNS: 3 and 1�

 ────+----1----+----2...

Original text: AABBBCCCCDDDDDxxx

Search string: BBB

Compare range: 3-1�

Replacement string: EEEEEE

Truncation permitted: AAEEEEEECDDDDDxxx

Truncation prohibited: Error

The modifiable range in this example is 3 through 10. The replacement string is too
long to replace only the search string within the modifiable range. If truncation is
permitted, the utility replaces the search string, and the characters following the search
string up through column 10, with the replacement string. The remainder of the
original text, starting in column 11, is not modified.

If truncation is not permitted, you receive an error message and processing stops for
this element.

Example 3

11-30 Utilities Guide

11.10 Text Replacement

BOUNDS ARE: 1 and 23

IN COLUMNS: 3 and 1�

 ────+----1----+----2...

Original text: AABBBxxCCxxDDDDxxxGGG

Search string: BBB

Compare range: 3-1�

Replacement string: EEEEEEE

Updated text: AAEEEEEEExCCxDDDDxGGG

The modifiable range in this example is 3 through 23. The replacement string can
replace the search string and shift data to the right, within the modifiable range.
Repeating blanks are consumed in such a way as to shift the remainder of the original
string to the right--the replacement string is four characters longer than the search
string so four blanks were consumed.

11.10.9 Multiple Occurrences of the Search String

The data record may contain multiple occurrences of the search string. The scan for
subsequent appearances of the string begins immediately after the last character of the
replacement string in the modified record. Note the example below:

Original text: ABCBE

Search string: B

Replacement string: QQ

Updated text: AQQCBE

Final result: AQQCQQE

The first occurrence of B is replaced by QQ. The utility begins its search for the next
appearance of B after the second Q in the text string.

Note: The results of search and replace with multiple occurrences of the search string
may not be what you expect, due to data being shifted into and out of the compare
column range by replacement strings.

If you had a compare column range of 1-4 in the example above, the utility would not
replace the second occurrence of B, because the search string is now outside the
specified column range. Similarly, if a replacement string is shorter than the search
string, data may move into the compare column range that would not otherwise be
included in the search.

Chapter 11. Search And Replace Utility 11-31

11.11 Reports

 11.11 Reports

 11.11.1 Overview

The Search & Replace utility generates three reports as part of its normal processing:

These reports are written to the ENSMSGS1 DD statement.

Report Description

Control Statement
Summary

Shows the control statements that were provided in the
ENSSCLIN DD statement and identifies any parser or
statement validation errors.

Execution Report Contains information about the execution of each
request.

Summary Report Summarizes each request processed. The summary
indicates the element name, the return code, the number
of matches found, the location where the match was
found, and the location where the element was added
(updated) back into Endevor.

11-32 Utilities Guide

11.12 Search and Replace Control Statement Summary Report

11.12 Search and Replace Control Statement Summary
Report

 COPYRIGHT (C) Computer Associates, INC., 2��2 mmdddyy 23:58:12 PAGE 1

Search and Replace Control Statement Summary Report RELEASE X.XX SERIAL XXXXXX

23:58:12 ENBS9��I Control statement parsing is beginning

23:58:12 ENBS9�1I Statement Number 1

SEARCH ELEMENT HELLO

FROM ENVIRONMENT BATCHEN2

 SYSTEM SYS2

 SUBSYSTEM BASE

 TYPE �

FOR TEXT 'i'

REPLACE WITH '<i>'

OPTIONS CCID = "CCID-99"

COMMENT = "Test scenario number 2"

SEARCH ENVIRONMENT ONLY

 LIST DETAILS

 .

23:58:13 ENBS9�1I Statement Number 2

23:58:13 ENBS999I EOF control statement generated

23:58:13 ENBS9�2I Control statement parsing has completed with no errors

The Search and Replace Control Statement Summary Report shows the control
statements coded in the ENSSCLIN DD statement, and whether there are any parser
and validation errors.

Chapter 11. Search And Replace Utility 11-33

11.13 Search and Replace Utility Execution Report

11.13 Search and Replace Utility Execution Report

COPYRIGHT (C) Computer Associates, INC., 2��2 mmdddyy 23:58:13 PAGE 1

Search and Replace Utility Execution Report RELEASE X.XX SERIAL XXXXXX

23:58:13 ENBS��1I Statement Number 1

SEARCH ELEMENT 'HELLO'

FROM ENVIRONMENT 'BATCHEN2'

 SYSTEM 'SYS2'

 SUBSYSTEM 'BASE'

 TYPE '�'

FOR TEXT 'i'

REPLACE WITH TEXT '<i>'

OPTIONS CCID = 'CCID-99'

COMMENT = 'Test scenario number 2'

SEARCH ENVIRONMENT ONLY

DATA TRUNCATION IS PROHIBITED

 LIST DETAILS

 .

23:58:14 ENBS�21I 2 elements will be processed

23:58:14 ENBS�23I Element HELLO was found at location BATCHEN2/A/SYS2/BASE/C

 23:58:15 ENBS�15I COL ����� ────+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+---9

 23:58:15 ENBS�16I LINE ����1 #include <stdio.h>

 23:58:15 ENBS�17I �UPDT� #<i>nclude <std<i>o.h>

 23:58:15 ENBS�16I LINE ����3 void main()

 23:58:15 ENBS�17I �UPDT� vo<i>d ma<i>n()

 23:58:15 ENBS�16I LINE ����5 printf("Hello, world!\n"); /� print 'Hello' message �/

 23:58:15 ENBS�17I �UPDT� pr<i>ntf("Hello, world!\n"); /� pr<i>nt 'Hello' message �/

23:58:15 ENBS�25I Element HELLO searched, 6 text matches found, 3 will be replaced

23:58:15 ENBS�3�I Element HELLO will be added to location BATCHEN2/A/SYS2/BASE/C

23:58:15 ENBS�23I Element HELLO was found at location BATCHEN2/B/SYS2/BASE/COB

23:58:15 ENBS�26I Element HELLO searched, No text matches found

23:58:15 ENBS��3I SEARCH ELEMENT processing searched 2 element(s), updated � element(s), and had � error(s)

23:58:15 ENBS�29I SEARCH ELEMENT processing is complete, Return code is �

23:58:15 ENBS��2I Processing is complete. Highest return code is �

The column ruler is printed once for each element containing a search string. The ruler
may be reprinted if a subsequent search string is found in the element but cannot be
displayed using the column ruler shown; for example, the starting column number is
not valid for the second search string. In this situation, a new ruler, with the
appropriate starting column number, is printed for the element.

11-34 Utilities Guide

11.14 Search and Replace Utility Summary Report

11.14 Search and Replace Utility Summary Report

COPYRIGHT (C) Computer Associates, INC., 2��2 mmdddyy 23:58:15 PAGE 1

Search and Replace Utility Summary Report RELEASE X.XX SERIAL XXXXXX

Statement Page Return Lines Matches

Number Number Element Code Searched Found Location Where Found Location of Add/Update Operation

───────── ────── ────────── ────── ──────── ─────── ───────────────────────────────────── ────────────────────────────────────

1 1 HELLO � 6 6 BATCHEN2/A/SYS2/BASE/C BATCHEN2/A/SYS2/BASE/C

1 1 HELLO � 33 � BATCHEN2/B/SYS2/BASE/COB

��� End of the Search and Replace Utility Summary Report ���

The Search and Replace Utility Summary Report provides the following information
for each request processed:

Field Description

Statement Number The statement number associated with a SEARCH
ELEMENTS request.

If the SEARCH ELEMENTS request contains multiple
FOR TEXT clauses and at least one search string was
found in the element, multiple report lines are generated
for the element. The first line provides the element
information, and lists the total number of matches
found. Each additional line for the element (numbered
nn.1, nn.2...nn.x, for x number of FOR TEXT clauses)
lists the number of matches found for a specific FOR
TEXT clause. (See “The Search and Replace Utility
Summary Report:” for an example of multiple FOR
TEXT clauses.)

Page Number The page number on the Search and Replace Utility
Execution Report at which processing for the element
began.

Element The name of the Endevor element that was processed.

Return Code The return code associated with the element's SEARCH
ELEMENTS request.

Lines Searched The number of lines in the element that were searched
for the FOR TEXT string.

Matches Found The number of times the FOR TEXT strings were
found. This value represents the actual number of
occurrences, not the number of lines that contain the
search string.

Location Where Found The inventory location from which the element was
retrieved.

Chapter 11. Search And Replace Utility 11-35

11.14 Search and Replace Utility Summary Report

Field Description

Location of Add/Update
Operation

The inventory location to which the element was added
or updated. This field is blank if the element did not
contain the search string or if the utility is running in
search-only mode.

11-36 Utilities Guide

11.15 Usage Scenarios

 11.15 Usage Scenarios

 11.15.1 Overview

This section of the document contains usage scenarios to show you how the Search &
Replace utility performs in various situations. Three scenarios are presented:

■ Scenario 1--A simple search without any options.

■ Scenario 2--A simple search with replacement text, in search-only mode.

■ Scenario 3--A search in replacement mode, using the SEARCH ENVIRONMENT
MAP feature, multiple FOR TEXT clauses, and the BOUNDS ARE parameter.

11.15.2 Setting the Scene

Three elements constitute the sample elements for demonstrating the effects of the
SEARCH ELEMENTS SCL statement and its optional parameters. The sample
elements each represent a different type: C source code (type C), COBOL source code
(type COB), and text (type TXT). To highlight the SEARCH ENVIRONMENT option,
the type C and type COBOL elements are stored in Stages A and B, respectively, in
the first environment. The type TXT element is stored at Stage D of the second
environment.

When the OPTIONS SEARCH ENVIRONMENT clause is not coded, the utility
searches only Stage A of the first environment. This happens in Scenario 1.

When the OPTIONS SEARCH ENVIRONMENT ONLY clause is specified, the utility
searches both Stages A and B of the first environment. This happens in Scenario 2.

When the OPTIONS SEARCH ENVIRONMENT MAP clause is specified, the entire
map is searched. This happens in Scenario 3.

11.15.3 The Test Elements

The utility is executed against three elements:

■ HELLO.C, which is a C program

■ HELLO.COB, which is a COBOL program

■ HELLO.TXT, which is a text file that further explains (sets) the scene

The elements are shown on the following pages.

The results of the search depend upon the attributes of each element as well as the
information provided in the SEARCH ELEMENTS request.

Chapter 11. Search And Replace Utility 11-37

11.15 Usage Scenarios

 11.15.4 HELLO.C

Element HELLO.C is shown below:

#include <stdio.h>

void main()

{

printf("Hello, world!\n"); /� print 'Hello' message �/

}

 11.15.5 HELLO.COB

Element HELLO.COB is shown below:

���1�� ID DIVISION.

���2�� PROGRAM-ID. HELLO.

���3�� AUTHOR. ENDEVOR DEVELOPMENT.

���4�� INSTALLATION. COMPUTER ASSOCIATES.

���5�� DATE-WRITTEN. FEBRUARY 14, 1994.

���6�� DATE-COMPILED.

���7���

���8��� TRIVIAL PROGRAM TO DISPLAY 'HELLO' MESSAGE �

���9���

��1��� SKIP3

��11�� ENVIRONMENT DIVISION.

��12�� CONFIGURATION SECTION.

��13�� SOURCE-COMPUTER. IBM.

��14�� OBJECT-COMPUTER. IBM.

��15�� INPUT-OUTPUT SECTION.

��16�� FILE-CONTROL.

��17����������������

��18�� DATA DIVISION.

��19����������������

��2���

��21�� FILE SECTION.

��22��

��23��

��24�� WORKING-STORAGE SECTION.

��25��������������������������

��3���

��31��

��32���������������������

��33�� PROCEDURE DIVISION.

��34���������������������

��35�� SKIP1

��39�� DISPLAY 'HELLO, WORLD!'

��45�� GOBACK.

 11.15.6 HELLO.TXT

Element HELLO.TXT is shown below:

11-38 Utilities Guide

11.15 Usage Scenarios

Three elements, all named HELLO, comprise the sample elements for

demonstrating the effects of the SEARCH ELEMENTS SCL statement and

its optional parameters. The sample elements are of type C, COB and

TXT representing C source code, COBOL source code and this text

document. To further highlight the SEARCH ENVIRONMENT option, the

type C and COBOL elements will be stored in stages A and B,

respectively, in the first environment and the type TXT element

will be stored at stage D of the second environment; the environment

mapping and the element location established for the sample reports

is as follows:

 +-----+ +---------------------------------+

 | | | |

 | V | V

 +------------+------------+ +-------------------------+

| STAGE A | STAGE B | | STAGE C | STAGE D |

 +------------+------------+ +------------+----------+

| SYS: SYS2 | | | | |

| SBS: BASE | | | | |

| TYP: C | | | | |

| ELM: HELLO | | | | |

| | SYS: SYS2 | | | |

| | SBS: BASE | | | |

| | TYP: COB | | | |

| | ELM: HELLO | | | |

| | | | |SYS:SYS2 |

| | | | |SBS:BASE |

| | | | |TYP:TXT |

| | | | |ELM:HELLO |

 +------------+------------+ +------------+----------+

 Environment: BATCHEN2 Environment: BATCHEN3

When OPTIONS SEARCH ENVIRONMENT is omitted, only stage A of the entry

environment is searched. When OPTIONS SEARCH ENVIRONMENT ONLY is

specified, both stages A and B of the entry environment are searched.

Finally, when OPTIONS SEARCH ENVIRONMENT MAP is specified, the entire

map is searched. In all cases, the first occurrence of an element is

processed.

Chapter 11. Search And Replace Utility 11-39

11.16 Scenario 1: Simple Search in Search-Only Mode

11.16 Scenario 1: Simple Search in Search-Only Mode

 11.16.1 Overview

Scenario 1 is a simple search and demonstrates what happens when the SEARCH
ELEMENTS request contains no options, including the SEARCH ENVIRONMENT
option. When the SEARCH ENVIRONMENT option is omitted, the utility searches
only the first stage of the specified environment. In this scenario, then, the utility
searches only Stage A of environment BATCHEN2.

 11.16.2 SCL

The SCL for this request is shown below:

SEARCH ELEMENT HELLO

FROM ENVIRONMENT BATCHEN2

 SYSTEM SYS2

 SUBSYSTEM BASE

 TYPE �

FOR TEXT 'i'

.

 11.16.3 Output

The output from processing this request appears on the following pages.

11.16.3.1 The Search and Replace Control Statement Summary Report

No syntax or validation errors occurred. Processing continues for this request.

COPYRIGHT (C) Computer Associates, INC., 2��2 mmdddyy 23:48:33 PAGE 1

Search and Replace Control Statement Summary Report RELEASE X.XX SERIAL XXXXXX

23:48:33 ENBS9��I Control statement parsing is beginning

23:48:33 ENBS9�1I Statement Number 1

SEARCH ELEMENT HELLO

FROM ENVIRONMENT BATCHEN2

 SYSTEM SYS2

 SUBSYSTEM BASE

 TYPE �

FOR TEXT 'i'

 .

23:48:33 ENBS9�1I Statement Number 2

23:48:33 ENBS999I EOF control statement generated

23:48:33 ENBS9�2I Control statement parsing has completed with no errors

11-40 Utilities Guide

11.16 Scenario 1: Simple Search in Search-Only Mode

11.16.3.2 The Search and Replace Utility Execution Report

Only one element--HELLO.C--is searched for matches. The utility finds six matches
for the FOR TEXT string in this element.

COPYRIGHT (C) Computer Associates, INC., 2��2 mmdddyy 23:48:33 PAGE 1

Search and Replace Utility Execution Report RELEASE X.XX SERIAL XXXXXX

23:48:33 ENBS��1I Statement Number 1

SEARCH ELEMENT 'HELLO'

FROM ENVIRONMENT 'BATCHEN2'

 SYSTEM 'SYS2'

 SUBSYSTEM 'BASE'

 TYPE '�'

FOR TEXT 'i'

OPTIONS DATA TRUNCATION IS PROHIBITED

 .

23:48:35 ENBS�21I 1 elements will be processed

23:48:35 ENBS�23I Element HELLO was found at location BATCHEN2/A/SYS2/BASE/C

23:48:36 ENBS�24I Element HELLO searched, 6 text matches found

23:48:36 ENBS��3I SEARCH ELEMENT processing searched 1 element(s), updated � element(s), and had � error(s)

23:48:36 ENBS�29I SEARCH ELEMENT processing is complete, Return code is �

23:48:36 ENBS��2I Processing is complete. Highest return code is �

The Search and Replace Utility Summary Report:

COPYRIGHT (C) Computer Associates, INC., 2��2 mmdddyy 23:48:36 PAGE 1

Search and Replace Utility Summary Report RELEASE X.XX SERIAL XXXXXX

 Statement Page Return Lines Matches

Number Number Element Code Searched Found Location Where Found Location of Add/Update Operation

───────── ────── ────────── ────── ──────── ─────── ───────────────────────────────────── ────────────────────────────────────

1 1 HELLO � 6 6 BATCHEN2/A/SYS2/BASE/C

��� End of the Search and Replace Utility Summary Report ���

As mentioned above, the Search & Replace utility found 6 matches of the FOR TEXT
string. The location in which the matches were found is listed.

Note that there is no entry in the LOCATION OF ADD/UPDATE OPERATION field.
This is because the utility is operating in search-only mode. The element is not
changed and not updated.

Chapter 11. Search And Replace Utility 11-41

11.17 Scenario 2: Simple Search with Replace in Search-Only Mode

11.17 Scenario 2: Simple Search with Replace in
Search-Only Mode

 11.17.1 Overview

Scenario 2 is a simple search with replacement in search-only mode, demonstrating
what happens in two situations:

■ You do not code the OPTIONS UPDATE ELEMENTS clause, but you do include
a replacement string in the SCL.

In this scenario, assume the ENSSCLOT DD statement has been allocated in the
execution JCL. SEARCH ELEMENTS SCL is generated for the element
containing the search string.

■ You code OPTIONS SEARCH ENVIRONMENT ONLY.

In this scenario, the utility searches both Stage A and Stage B of environment
BATCHEN2.

 11.17.2 SCL

The SCL for this request is shown below:

SEARCH ELEMENT HELLO

FROM ENVIRONMENT BATCHEN2

 SYSTEM SYS2

 SUBSYSTEM BASE

 TYPE �

FOR TEXT 'i'

REPLACE WITH '<i>'

OPTIONS CCID = "CCID-99"

COMMENT = "Test scenario number 2"

SEARCH ENVIRONMENT ONLY

 LIST DETAILS

.

 11.17.3 Output

The utility generates SCL for any elements containing the search string, because a
replacement string was provided in the SEARCH ELEMENTS request and the
ENSSCLOT DD statement was allocated. This SCL can be used as input when you
run the utility again.

The utility also produces syntax, execution, and summary reports.

The following pages contain the output produced from processing this request.

The Search and Replace Control Statement Summary Report:

11-42 Utilities Guide

11.17 Scenario 2: Simple Search with Replace in Search-Only Mode

 COPYRIGHT (C) Computer Associates, INC., 2��2 mmdddyy 23:58:12 PAGE 1

Search and Replace Control Statement Summary Report RELEASE X.XX SERIAL XXXXXX

23:58:12 ENBS9��I Control statement parsing is beginning

23:58:12 ENBS9�1I Statement Number 1

SEARCH ELEMENT HELLO

FROM ENVIRONMENT BATCHEN2

 SYSTEM SYS2

 SUBSYSTEM BASE

 TYPE �

FOR TEXT 'i'

REPLACE WITH '<i>'

OPTIONS CCID = "CCID-99"

COMMENT = "Test scenario number 2"

SEARCH ENVIRONMENT ONLY

 LIST DETAILS

 .

23:58:13 ENBS9�1I Statement Number 2

23:58:13 ENBS999I EOF control statement generated

23:58:13 ENBS9�2I Control statement parsing has completed with no errors

No syntax or validation errors occurred. Processing continues for this request.

The Search and Replace Utility Execution Report:

 COPYRIGHT (C) Computer Associates, INC., 2��2 mmdddyy 23:58:13 PAGE 1

Search and Replace Utility Execution Report RELEASE X.XX SERIAL XXXXXX

23:58:13 ENBS��1I Statement Number 1

SEARCH ELEMENT 'HELLO'

FROM ENVIRONMENT 'BATCHEN2'

 SYSTEM 'SYS2'

 SUBSYSTEM 'BASE'

 TYPE '�'

FOR TEXT 'i'

REPLACE WITH TEXT '<i>'

OPTIONS CCID = 'CCID-99'

COMMENT = 'Test scenario number 2'

SEARCH ENVIRONMENT ONLY

DATA TRUNCATION IS PROHIBITED

 LIST DETAILS

 .

23:58:14 ENBS�21I 2 elements will be processed

23:58:14 ENBS�23I Element HELLO was found at location BATCHEN2/A/SYS2/BASE/C

 23:58:15 ENBS�15I COL ����� ────+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9

 23:58:15 ENBS�16I LINE ����1 #include <stdio.h>

 23:58:15 ENBS�17I �UPDT� #<i>nclude <std<i>o.h>

 23:58:15 ENBS�16I LINE ����3 void main()

 23:58:15 ENBS�17I �UPDT� vo<i>d ma<i>n()

 23:58:15 ENBS�16I LINE ����5 printf("Hello, world!\n"); /� print 'Hello' message �/

 23:58:15 ENBS�17I �UPDT� pr<i>ntf("Hello, world!\n"); /� pr<i>nt 'Hello' message �/

23:58:15 ENBS�25I Element HELLO searched, 6 text matches found, 3 will be replaced

23:58:15 ENBS�3�I Element HELLO will be added to location BATCHEN2/A/SYS2/BASE/C

23:58:15 ENBS�23I Element HELLO was found at location BATCHEN2/B/SYS2/BASE/COB

23:58:15 ENBS�26I Element HELLO searched, No text matches found

23:58:15 ENBS��3I SEARCH ELEMENT processing searched 2 element(s), updated � element(s), and had � error(s)

23:58:15 ENBS�29I SEARCH ELEMENT processing is complete, Return code is �

23:58:15 ENBS��2I Processing is complete. Highest return code is �

The utility searched two elements HELLO.C and HELLO.COB--but only element
HELLO.C contains a match for the search string. Element HELLO.COB does contain
the letter I, but not in lowercase format. Because the search string is case-sensitive,
the utility does not consider the text a match.

The Search and Replace Utility Summary Report:

Chapter 11. Search And Replace Utility 11-43

11.17 Scenario 2: Simple Search with Replace in Search-Only Mode

COPYRIGHT (C) Computer Associates, INC., 2��2 mmdddyy 23:58:15 PAGE 1

Search and Replace Utility Summary Report RELEASE X.XX SERIAL XXXXXX

 Statement Page Return Lines Matches

Number Number Element Code Searched Found Location Where Found Location of Add/Update Operation

───────── ────── ────────── ────── ──────── ─────── ───────────────────────────────────── ────────────────────────────────────

1 1 HELLO � 6 6 BATCHEN2/A/SYS2/BASE/C BATCHEN2/A/SYS2/BASE/C

1 1 HELLO � 33 � BATCHEN2/B/SYS2/BASE/COB

��� End of the Search and Replace Utility Summary Report ���

The Search & Replace utility found three matches in element HELLO.C and no
matches in HELLO.COB. The report lists the location where both elements were
found. Note that the utility searched both Stage A and Stage B of environment
BATCHEN2.

There is an entry in the LOCATION OF ADD/UPDATE OPERATION field, for
element HELLO.C. This entry is for reference purposes only. The element is not
modified and added or updated back into Endevor because the OPTIONS UPDATE
ELEMENTS clause was not coded in the SEARCH ELEMENTS request. The entry is
provided to let you know what location will be affected should you decide to update
the element with the replacement string.

The generated SCL statement:

SEARCH ELEMENT 'HELLO'

FROM ENVIRONMENT 'BATCHEN2'

 SYSTEM 'SYS2'

 SUBSYSTEM 'BASE'

 TYPE 'C'

FOR TEXT 'i'

REPLACE WITH TEXT '<i>'

OPTIONS CCID = 'CCID-99'

COMMENT = 'Test scenario number 2'

SEARCH ENVIRONMENT ONLY

DATA TRUNCATION IS PROHIBITED

 LIST DETAILS

 UPDATE ELEMENTS

.

11-44 Utilities Guide

11.18 Scenario 3: Search Environment Map, Replace, and Update

11.18 Scenario 3: Search Environment Map, Replace, and
Update

 11.18.1 Overview

Scenario 3 is a search and replace operation, with several options coded to limit the
search. This scenario demonstrates processing with the following:

■ The SEARCH ENVIRONMENT MAP feature

■ Multiple FOR TEXT clauses

■ The BOUNDS ARE clause (for one FOR TEXT clause)

■ The WHERE CCID clause

■ The LIST DETAILS clause

 11.18.2 SCL

The SCL for this request is shown below:

SEARCH ELEMENT HELLO

FROM ENVIRONMENT BATCHEN2

 SYSTEM SYS2

 SUBSYSTEM BASE

 TYPE �

FOR TEXT 'i' REPLACE WITH '�'

FOR TEXT 'T' REPLACE WITH TEXT '$' BOUNDS ARE 1 TO LAST

WHERE CCID = 'CCID-�2'

OPTIONS CCID = "CCID-99"

COMMENT = "Test scenario number 3"

SEARCH ENVIRONMENT MAP

 LIST DETAILS

 UPDATE ELEMENTS

.

BOUNDS ARE is set to BOUNDS ARE 1 TO LAST to demonstrate type compare
column checking in relation to the SCL statements.

WHERE CCID limits the search to those elements whose CCID is CCID-02.

The CCID and comment provided in the OPTIONS clause are assigned to the element
when it is added (updated) back into Endevor.

LIST DETAILS tells the utility to print the original line of text where the search string
is found and the line of text after the string is replaced.

UPDATE ELEMENTS indicates that the element is to be added or updated into
Endevor after the text string is replaced.

Chapter 11. Search And Replace Utility 11-45

11.18 Scenario 3: Search Environment Map, Replace, and Update

 11.18.3 Output

The output from processing this request appears on the following pages. Along with
the syntax, execution, and summary reports is a copy of the updated element.

The Search and Replace Control Statement Summary Report:

COPYRIGHT (C) Computer Associates, INC., 2��2 mmdddyy ��:�7:36 PAGE 1

Search and Replace Control Statement Summary Report RELEASE X.XX SERIAL XXXXXX

��:�7:36 ENBS9��I Control statement parsing is beginning

��:�7:36 ENBS9�1I Statement Number 1

SEARCH ELEMENT HELLO

FROM ENVIRONMENT BATCHEN2

 SYSTEM SYS2

 SUBSYSTEM BASE

 TYPE �

FOR TEXT 'i' REPLACE WITH '�'

FOR TEXT 'T' REPLACE WITH TEXT '$' BOUNDS ARE 1 TO LAST

WHERE CCID = 'CCID-�2'

OPTIONS CCID = "CCID-99"

COMMENT = "Test scenario number 3"

SEARCH ENVIRONMENT MAP

 LIST DETAILS

 UPDATE ELEMENTS

 .

��:�7:36 ENBS9�1I Statement Number 2

��:�7:36 ENBS999I EOF control statement generated

��:�7:36 ENBS9�2I Control statement parsing has completed with no errors

No syntax or validation errors occurred. Processing continues for this request.

The Search and Replace Utility Execution Report:

COPYRIGHT (C) Computer Associates, INC., 2��2 mmdddyy ��:�7:36 PAGE 1

Search and Replace Utility Execution Report RELEASE X.XX SERIAL XXXXXX

��:�7:36 ENBS��1I Statement Number 1

SEARCH ELEMENT 'HELLO'

FROM ENVIRONMENT 'BATCHEN2'

 SYSTEM 'SYS2'

 SUBSYSTEM 'BASE'

 TYPE '�'

WHERE CCID OF ANY = ('CCID-�2')

FOR TEXT 'i'

REPLACE WITH TEXT '�'

FOR TEXT 'T'

REPLACE WITH TEXT '$'

BOUNDS ARE COLUMNS 1 TO LAST

IN COLUMNS 1 TO LAST

OPTIONS CCID = 'CCID-99'

COMMENT = 'Test scenario number 3'

SEARCH ENVIRONMENT MAP

DATA TRUNCATION IS PROHIBITED

 LIST DETAILS

 UPDATE ELEMENTS

 .

��:�7:38 ENBS�48E Column values outside the compare-column range for BATCHEN2/A/SYS2/�/COB/�

��:�7:38 ENBS�21I 1 elements will be processed

��:�7:38 ENBS�23I Element HELLO was found at location BATCHEN3/D/SYS2/BASE/TXT

 ��:�7:39 ENBS�15I COL ����� ────+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9

 ��:�7:39 ENBS�16I LINE ����2 Three elements, all named HELLO, comprise the sample elements for

 ��:�7:39 ENBS�17I �UPDT� $hree elements, all named HELLO, compr�se the sample elements for

 ��:�7:39 ENBS�16I LINE ����3 demonstrating the effects of the SEARCH ELEMENTS SCL statement and its

 ��:�7:39 ENBS�17I �UPDT� demonstrat�ng the effects of the SEARCH ELEMEN$S SCL statement and �ts

 ��:�7:39 ENBS�16I LINE ����4 optional parameters. The sample elements are of type C, COB and TXT

11-46 Utilities Guide

11.18 Scenario 3: Search Environment Map, Replace, and Update

 ��:�7:39 ENBS�17I �UPDT� opt�onal parameters. $he sample elements are of type C, COB and X

 ��:�7:39 ENBS�16I LINE ����5 representing C source code, COBOL source code and this text document.

 ��:�7:39 ENBS�17I �UPDT� represent�ng C source code, COBOL source code and th�s text document.

 ��:�7:39 ENBS�16I LINE ����6 To further highlight the SEARCH ENVIRONMENT option, the type C and COBOL

 ��:�7:39 ENBS�17I �UPDT� $o further h�ghl�ght the SEARCH ENVIRONMEN$ opt�on, the type C and COBOL

 ��:�7:39 ENBS�16I LINE ����7 elements will be stored in stages A and B, respectively, in the first

 ��:�7:39 ENBS�17I �UPDT� elements w�ll be stored �n stages A and B, respect�vely, �n the f�rst

 ��:�7:39 ENBS�16I LINE ����8 environment and the type TXT element will be stored at stage D of the

 ��:�7:39 ENBS�17I �UPDT� env�ronment and the type X element w�ll be stored at stage D of the

 ��:�7:39 ENBS�16I LINE ����9 second environment; the environment mapping and the element location

 ��:�7:39 ENBS�17I �UPDT� second env�ronment; the env�ronment mapp�ng and the element locat�on

 ��:�7:39 ENBS�16I LINE ���1� established for the sample reports is as follows:

 ��:�7:39 ENBS�17I �UPDT� establ�shed for the sample reports �s as follows:

��:�7:39 ENBS�16I LINE ���16 | STAGE A | STAGE B | | STAGE C | STAGE D |

��:�7:39 ENBS�17I �UPDT� | S$AGE A | S$AGE B | | S$AGE C | S$AGE D |

 ��:�7:39 ENBS�16I LINE ���2� | TYP: C | | | | |

 ��:�7:39 ENBS�17I �UPDT� | $YP: C | | | | |

 ��:�7:39 ENBS�16I LINE ���24 | | TYP: COB | | | |

 ��:�7:39 ENBS�17I �UPDT� | | $YP: COB | | | |

��:�7:39 ENBS�16I LINE ���28 | | | | | TYP: TXT |

��:�7:39 ENBS�17I �UPDT� | | | | | $YP: X |

 ��:�7:39 ENBS�16I LINE ���32 Environment: BATCHEN2 Environment: BATCHEN3

 ��:�7:39 ENBS�17I �UPDT� Env�ronment: BA$CHEN2 Env�ronment: BA$CHEN3

 ��:�7:39 ENBS�16I LINE ���34 When OPTIONS SEARCH ENVIRONMENT is omitted, only stage A of the entry

 ��:�7:39 ENBS�17I �UPDT� When OP$IONS SEARCH ENVIRONMEN$ �s om�tted, only stage A of the entry

 ��:�7:39 ENBS�16I LINE ���35 environment is searched. When OPTIONS SEARCH ENVIRONMENT ONLY is specified,

 ��:�7:39 ENBS�17I �UPDT� env�ronment �s searched. When OP$IONS SEARCH ENVIRONMEN$ ONLY �s spec�f�ed,

 ��:�7:39 ENBS�16I LINE ���36 both stages A and B of the entry environment are searched. Finally, when

 ��:�7:39 ENBS�17I �UPDT� both stages A and B of the entry env�ronment are searched. F�nally, when

 ��:�7:39 ENBS�16I LINE ���37 OPTIONS SEARCH ENVIRONMENT MAP is specified, the entire map is searched. In all

 ��:�7:39 ENBS�17I �UPDT� OP$IONS SEARCH ENVIRONMEN$ MAP �s spec�f�ed, the ent�re map �s searched. In all

 ��:�7:39 ENBS�16I LINE ���38 cases, the first occurrence of an element is processed.

 ��:�7:39 ENBS�17I �UPDT� cases, the f�rst occurrence of an element �s processed.

��:�7:39 ENBS�25I Element HELLO searched, 66 text matches found, 66 will be replaced

��:�7:39 ENBS�3�I Element HELLO will be added to location BATCHEN2/A/SYS2/BASE/TXT

��:�7:39 ENBS�45I �==UPDATE==> Beginning update phase for BATCHEN2/A/SYS2/BASE/TXT/HELLO

��:�7:39 SMGR139I ELEMENT HELLO AT LOCATION BATCHEN3/D/SYS2/BASE/TXT SELECTED FOR FETCH PROCESSING

��:�7:41 SMGR12�I ELEMENT HELLO �1.�� FETCHED FOR PROCESSING AT STAGE STAGE1

��:�7:42 SMGR136I ELEMENT HELLO �1.�1 CHANGES INCLUDE 19 LINES INSERTED AND 19 LINES DELETED

��:�7:42 SMGR13�I ELEMENT HELLO �1.�1 CREATED AT LOCATION BATCHEN2/A/SYS2/BASE/TXT

��:�7:42 SMGR127I ELEMENT HELLO �1.�1 WRITTEN TO BST.BATCHEN2.TXT1(HELLO)

��:�7:42 ENBS�64I �==UPDATE==> Update processing ended for BATCHEN2/A/SYS2/BASE/TXT/HELLO, Return Code = �

��:�7:42 ENBS��3I SEARCH ELEMENT processing searched 1 element(s), updated 1 element(s), and had 1 error(s)

��:�7:42 ENBS�29I SEARCH ELEMENT processing is complete, Return code is 12

��:�7:42 ENBS��2I Processing is complete. Highest return code is 12

The utility searched only one element--HELLO.TXT. The element was found up the
map, in Stage D of BATCHEN3. Substitution was performed, as appropriate, for each
FOR TEXT clause.

Note message ENBS048E (immediately after the SCL request). A matching element
was found in Stage A of environment BATCHEN2, but the column values specified in
the SEARCH ELEMENTS request are outside the compare column values for the
element. This is why only one element was searched.

Note the information message lines ENBS016I and ENBS017I. ENBS016I lines
present the original line of text containing the search string. ENBS017I lines show the
line of text after the search string has been replaced.

A processing code of 12 was returned for the request. The utility processes a request
as long as the return code does not exceed 12.

The Search and Replace Utility Summary Report:

Chapter 11. Search And Replace Utility 11-47

11.18 Scenario 3: Search Environment Map, Replace, and Update

COPYRIGHT (C) Computer Associates, INC., 2��2 mmdddyy ��:�7:42 PAGE 1

Search and Replace Utility Summary Report RELEASE X.XX SERIAL XXXXXX

 Statement Page Return Lines Matches

Number Number Element Code Searched Found Location Where Found Location of Add/Update Operation

───────── ────── ────────── ────── ──────── ─────── ───────────────────────────────────── ───────────────────────────────────

 1 1 HELLO � 39 66 BATCHEN3/D/SYS2/BASE/TXT BATCHEN2/A/SYS2/BASE/TXT

 1.1 4�

 1.2 26

��� End of the Search and Replace Utility Summary Report ���

The Search & Replace utility found a total of 66 matches for the search strings in the
SEARCH ELEMENTS request. All information for the element is presented on the
first line for Statement 1. Statement line 1.1 indicates the number of matches found for
the first FOR TEXT clause. Statement line 1.2 indicates the number of matches found
for the second FOR TEXT clause.

Although the element was found in Stage D of environment BATCHEN3, it is added
into Endevor at the first stage (Stage A) of the base environment (BATCHEN2).

The result of the replace operation on element HELLO.TXT:

Three elements, all named HELLO, compr�se the sample elements for

demonstrat�ng the effects of the SEARCH ELEMEN$S SCL statement and

�ts opt�onal parameters. $he sample elements are of type C, COB and

X represent�ng C source code, COBOL source code and th�s text

document. $o further h�ghl�ght the SEARCH ENVIRONMEN$ opt�on, the

type C and COBOL elements w�ll be stored �n stages A and B,

respect�vely, �n the f�rst env�ronment and the type X element w�ll

be stored at stage D of the second env�ronment; the env�ronment

mapp�ng and the element locat�on establ�shed for the

sample reports �s as follows:

 +-----+ +---------------------------------+

 | | | |

 | V | V

 +------------+------------+ +-----------------------+

| S$AGE A | S$AGE B | | S$AGE C | S$AGE D |

 +------------+------------+ +------------+----------+

| SYS: SYS2 | | | | |

| SBS: BASE | | | | |

| $YP: C | | | | |

| ELM: HELLO | | | | |

| | SYS: SYS2 | | | |

| | SBS: BASE | | | |

| | $YP: COB | | | |

| | ELM: HELLO | | | |

| | | | |SYS: SYS2 |

| | | | |SBS: BASE |

| | | | |$YP: X |

| | | | |ELM: HELLO|

 +------------+------------+ +------------+----------+

 Env�ronment: BA$CHEN2 Env�ronment: BA$CHEN3

When OP$IONS SEARCH ENVIRONMEN$ �s om�tted, only stage A of the entry

env�ronment �s searched. When OP$IONS SEARCH ENVIRONMEN$ ONLY �s

spec�f�ed, both stages A and B of the entry env�ronment are searched.

F�nally, when OP$IONS SEARCH ENVIRONMEN$ MAP �s spec�f�ed, the ent�re

map �s searched. In all cases, the f�rst occurrence of an element

�s processed.

11-48 Utilities Guide

11.18 Scenario 3: Search Environment Map, Replace, and Update

Chapter 11. Search And Replace Utility 11-49

11-50 Utilities Guide

 Chapter 12. Unload/Reload/Validate

Chapter 12. Unload/Reload/Validate 12-1

12.1 The Purpose of the Unload/Reload/Validate Utility

12.1 The Purpose of the Unload/Reload/Validate Utility

The Unload/Reload/Validate utility (program C1BM5000) is a backup, recovery, and
file validation mechanism for Endevor VSAM control files (Master Control File,
package data sets) and their related base and delta libraries. It allows users to backup
(Unload), restore (Reload), and/or validate (Validate) the integrity of one or more
Endevor environments in the event of a physical device failure or site disaster.

The Unload/Reload/Validate utility provides a point-in-time physical recovery
mechanism. The utility can be used to:

■ Unload all or specific environments and/or systems and their related
elements/components.

■ Reload all or specific environments and/or systems and their related
elements/components.

■ Validate the integrity of all or specific environments and/or systems and their
related elements/components.

This chapter discusses the Unload, Reload, and Validate functions performed by
program C1BM5000. For each, there is a brief description of the function, a syntax
diagram, and a discussion of the rules that each will follow.

12-2 Utilities Guide

12.2 Unload Function

 12.2 Unload Function

 12.2.1 Overview

The Unload function unloads and validates the contents of the VSAM Master Control
Files (MCFs), base and delta files associated with the environments and systems
specified on the job request. The file created by the Unload function contains a
backup of all internal MCF definitions (system, subsystem, type, type sequence, data
set, element master record) and base/delta data (element base, element delta,
component base, component delta). Packages contained within a package data set can
also be unloaded.

Unload may be run for an entire environment, or for selected systems within an
environment. Unload may also be directed to backup an entire package data set or
individual packages.

Note: The LRECL of the unload data set must be at least 84 bytes larger than the
largest type record length in the unloaded environment/system.

12.2.2 Unload Control Card

The syntax below provides the parameters for using Unload against an environment
and/or system.

 ┌ ┐─FULL────────
��──UNLoad─ ──┴ ┴─INCremental─ ─TO──DDName──ddname──FROm──────────────────�

�─ ─ENVironment──env-name──SYStem──sys-name─ ──┬ ┬───────────────── ─.────��
 └ ┘─CHEckpoint ONLy─

The syntax below provides the parameters for using Unload against one or more
package data sets:

��──UNLoad PACkage─ ──┬ ┬───────────────────── ─TO──DDName──ddname──.────��
 └ ┘─ID──=──package-name─

12.2.2.1 Description of Parameters

The parameters for the Unload control card are described below.

Chapter 12. Unload/Reload/Validate 12-3

12.2 Unload Function

Parameter Description

UNLOAD Specifies the UNLOAD function. You must further qualify
the UNLOAD request with one of the following:

■ FULL--Unloads Master Control File environment and
related base/delta information for all elements in the
environment(s) and system(s) specified in the FROM
statement.

■ INCREMENTAL--Unloads Master Control File
information for all elements in the environment(s) and
system(s) specified in the FROM statement. Base and
delta information will only be unloaded for elements that
have changed since the last unload, based on the
date/time stamp for each system. Any number of
UNLOAD statements may be coded for a single run.

TO DDNAME Identifies the DDname to which the unload data set will be
assigned for both environment and package processing.

Note: If you specify a DDname, you cannot use the
CHECKPOINT ONLY clause.

FROM Allows you to specify the FROM location for a combination
of environments and systems to be unloaded. The qualifying
statements are:

■ ENVIRONMENT--Identifies the environment from
which information is to be unloaded. A name mask may
be used.

■ SYSTEM--Identifies the system from which information
is to be unloaded. A name mask may be used.

CHECKPOINT
ONLY

Causes a FULL UNLOAD request to simply update the
system backup time stamp so you can use something other
than the Unload utility to do the full backup and use the
Unload utility for incremental backups. You must specify
both the FULL and the FROM clauses when using this
option.

Note: If you specify CHECKPOINT ONLY, you cannot
specify a DDname.

PACKAGE Required when unloading one or more packages. You may
also select a package identifier (ID) to identify the name of a
specific package to be unloaded. You can use a name mask.

If you do not specify a package ID, all packages in the
package data will be unloaded.

12-4 Utilities Guide

12.2 Unload Function

12.2.3 What Purpose Does Unload Serve?

Regardless of whether you specify a full or incremental unload, all Master Control File
environment information (system, subsystem, type, type sequence, data set, and
element master record) will be unloaded to the data set you specify. This is done so
that the environment definitions can be restored from any unload point.

After unloading the environment information, Unload then unloads elements in either a
full or incremental mode.

This unloading of environment information and elements occurs in the following order:

1. Stage 1 internal environment definitions.

2. Stage 2 internal environment definitions.

3. Stage 1 elements.

4. Stage 2 elements.

 12.2.3.1 Full Unloads

All base and delta members and related component list base and delta members are
unloaded for each element associated with the environments and systems specified in
the UNLOAD request.

Incremental Unloads

Only elements associated with the environments and systems specified in the Unload
request that have changed since the last unload will be unloaded.

When Unload is successfully run against a system, the Master Control Record for that
system is updated with the date/time of the unload. During an incremental unload, the
date/time stamp on each element is compared with the date/time stamp on the Master
Control Record for the system to which the element belongs. Only those elements
with a date/time stamp that is more recent than the date/time stamp in the Master
Control File system record will be selected during incremental unload processing.

 12.2.3.2 Package Unloads

All packages contained in the package data set defined in the C1DEFLTS table will be
unloaded. Optionally, individual packages may be selected for unloading using the ID
parameter.

Chapter 12. Unload/Reload/Validate 12-5

12.2 Unload Function

12.2.3.3 Validation During Unload

Minimal validation automatically occurs during Unload processing. This ensures that
any element which is to be unloaded meets certain integrity criteria prior to being
unloaded. No element found to be corrupt will be unloaded. Rather, an appropriate
error message is issued indicating the exact nature of the problem. The same
processing will occur if the Validate function is run independently.

If an error is detected during Unload processing, it is important to determine the cause
of the error and to correct the problem. In most cases (a physical problem) the Reload
facility should allow you to accomplish this task by going back to the last good unload
point.

Please refer to the Error Codes and Messages Guide for all corrective action. For
certain logical problems it may be necessary to contact Endevor Technical Support.

If a validation error occurs during Unload processing the following occurs.

■ If the validation problem affects the element itself, Unload will:

– Not unload the element.

– Write an error message indicating the nature of the problem.

– Write an SCL DELETE statement to the C1SCL1 data set. The SCL
contained in the C1SCL1 data set can then be used in a subsequent recovery
operation to delete the element prior to performing Reload processing.

■ If the element itself is intact, but there is a problem in the associated ACM
component list, Unload will:

– Unload the element.

– Write an error message indicating the nature of the problem.

– Not unload the component list for the element.

– Write an SCL DELETE statement with the ONLY COMPONENT clause to
the C1SCL1 data set. The SCL contained in the C1SCL1 data set can then be
used in a subsequent recovery operation to delete only the element's
component list prior to a GENERATE action or Reload processing.

 12.2.3.4 Package Unloads

No validation takes place during a package unload. The package data set is considered
to be intact if each package ID can be read successfully.

12-6 Utilities Guide

12.2 Unload Function

12.2.4 Recommendations for Using Unload

Unload is designed to easily capture all related parts of the Endevor structure in a
unified manner. This allows for timely physical recovery in the event of a device
failure or site disaster.

Performing a needs analysis for your site is the first step in making optimal use of this
utility. The criteria you should consider include:

■ Number of environments/systems and related base and delta libraries at your site.

■ Location of files in relation to DASD layout.

■ Current schedule of in-house DASD backup and recovery procedures.

■ Volatility and number of changes.

Use this information to determine how best to utilize and/or schedule Unload
processing.

12.2.4.1 Locking During Unload Processing

Unload processing maintains a share lock (enqueue) at the environment level. Unload
processing will not begin until the lock can be set (after all activity against the
environment has ceased). No Endevor activity can resume until the unload for that
environment has been completed and is exclusive

 12.2.4.2 Example 1

A site has only one environment, with all systems pointing to one set of base and delta
libraries. A low number of changes are made and there is little concern if a physical
problem causes an outage during recovery.

In this situation it may be simpler to back-up all files on a daily basis using the
appropriate in-house methods. In the event of a physical problem, Endevor can be
completely restored using the previous evening's backup files.

 12.2.4.3 Example 2

A site has a large number of environments/systems, each with their own base/delta
libraries. Any outage will affect a large number of people in many areas of the
company.

In this situation both full (FULL) and incremental (INC) unloads should be run. In
most cases a full unload job should be scheduled on a weekly basis, and an
incremental unload run each night. In the event of a physical failure it will be
important to recognize which unload file(s) pertain to each system. Therefore
appropriate naming conventions for the unload files should be adopted.

Note: It is important to align scheduling of Unload processing with in-house backup
utilities, to determine what unload files need to be applied when a DASD

Chapter 12. Unload/Reload/Validate 12-7

12.2 Unload Function

volume is restored. In general, Unload processing should be run immediately
following each backup utility run. This minimizes the number of “orphan”
members that occur during a reload.

12.2.5 Sample Unload Control Cards

To specify a full unload from environment Test, code the following statement:

UNLOAD FULL FROM ENV TEST SYS � TO DDN UNLOD�1.

In this example, Endevor unloads all systems within this environment to an output data
set with DDname UNLOD01. This data set must be coded in the Unload JCL.

UNLOAD PACKAGE TO DDN UNLODPKG.

In this example, Endevor unloads the entire package data set for this site to an output
data set with ddname UNLODPKG. This data set must be coded in the Unload JCL.

12.2.6 Sample Unload JCL

Sample Unload JCL is shown below.

//�(JOBCARD)

//��

//�

//� BC1JUNLD - JCL TO PERFORM Endevor UNLOAD

//� FUNCTIONS

//�

//��

//RPTS EXEC PGM=NDVRC1,REGION=2�48K,PARM='C1BM5���'
//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//BSTIPT�1 DD � REPORT SELECTION CRITERIA
UNLOAD FULL FROM ENV � SYS � TO DDN UNLODNN.

UNLOAD PACKAGE TO DDN UNLODNN.

/�

//UNLODNN DD DSN=uprfx.uqual.UNLOAD,DISP=(,CATLG,DELETE),

// DCB=(LRECL=12��,BLKSIZE=616�,RECFM=VB),

// UNIT=pdisk,SPACE=(TRK,(NN,NN)),VOL=SER=dvolser
//C1SCL1 DD DSN=uprfx.uqual.SCL,DISP=(,CATLG,DELETE),

// DCB=(LRECL=8�,BLKSIZE=312�,RECFM=FB),

// UNIT=pdisk,SPACE=(TRK,(5,1)),VOL=SER=dvolser

//C1MSGS1 DD SYSOUT=� DETAIL REPORT

//C1MSGS2 DD SYSOUT=� SUMMARY REPORT

Note: You have the option of using generation data sets for the
Unload/Reload/Validate utility. For example:

//UNLODNN DD DSN=uprfx.uqual.UNLOAD(+1),
DISP=(,CATLG,DELETE),

12-8 Utilities Guide

12.2 Unload Function

12.2.6.1 Notes on Sample Unload JCL

The following notes contain information pertinent to the above sample JCL. Member
BC1JUNLD, supplied in your iprfx.iqual.JCLLIB library, contains a sample Unload
job.

JCL Component Description

C1BM5000 The Unload/Reload/Validate Utility program.

CONLIB Data set name of the installation Endevor CONLIB
load library.

BSTIPT01 Required DDname for Unload/Reload/Validate
statements.

UNLODNN This is the DDname for the data set to which the
Unload information will be written. It must be
allocated with a minimum LRECL=1200, a block
size 4 bytes greater than 1200, and a RECFM=VB.

Note: The LRECL should be large enough to
handle the largest LRECL you are unloading.

This data set should be set up as a Generation Data
Group (GDG) with the proper number of levels
based on unload frequency.

Note: We recommend that you adopt a naming
convention based on the type of Unload being
performed (FULL or INC) and the environment
system to which it applies. For example:

FULL BST.TEST.FINANCE.WEEKLY

INC BST.TEST.FINANCE.DAILY

SPACE=(TRK, (NN,NN)) Required disk space for the unload data set (omit if
tape). To estimate an approximate space allocation
for this data set, add the following:

■ 1105 bytes for each environment definition
record on the Master File (1021-byte record
length plus 84-byte prefix; the system unloads
one environment record for each system,
subsystem, type, type sequence, data set, and
element master record), plus

■ The current space taken up by your base and
delta libraries (these libraries will continue to be
written in compressed format), plus

■ An 84-byte prefix for each base and delta
element to be unloaded.

Chapter 12. Unload/Reload/Validate 12-9

12.2 Unload Function

JCL Component Description

C1SCL1 Required DDname for the data set to which SCL
DELETE statements will be written.

12-10 Utilities Guide

12.3 Reload Function

 12.3 Reload Function

 12.3.1 Overview

The Reload function allows you to recover a Endevor VSAM control file (Master
Control File, package data set) or a base/delta data set that was lost as the result of a
physical device failure or site disaster. Reload restores data from data sets created by
the Unload process. The TRANSFER action may be used transfer elements from an
Unload file. For more information regarding the TRANSFER action please refer to the
SCL Reference Guide.

12.3.2 Reload Control Card

The parameters for using Reload are as follows:

��──RELoad──FROm──DDName──ddname──TO──ENVironment──env-name────────────�

�──SYStem──sys-name──.──��

The parameters for using Reload for a package data set or one or more specific IDs
are as follows:

��──RELoad PACkage─ ──┬ ┬───────────────────── ─FROm──DDName──ddname──.──��
 └ ┘─ID──=──package-name─

12.3.2.1 Description of Parameters

The parameters for the Reload control card are described below

Parameter Description

RELOAD Specifies the Reload function of program C1BM5000.

FROM DDNAME Identifies the DDname to which the input Reload data set
name will be assigned. Both environment and package
processing require a DDname.

Chapter 12. Unload/Reload/Validate 12-11

12.3 Reload Function

Parameter Description

TO Allows you to specify the to location for a combination of
environment(s) and system(s) to be reloaded. The qualifying
statements are:

■ ENVIRONMENT--Identifies the environment(s) into
which information is to be reloaded. A name mask may
be used.

■ SYSTEM--Identifies the system(s) into which
information is to be reloaded. A name mask may be
used.

PACKAGE Required when reloading a package data set or one or more
packages. You may also select a package ID to identify the
name of a specific package to be reloaded. You can use a
name mask. If you do not specify a package ID, all
packages found in the unload data set will be reloaded to the
package data set defined in the C1DEFLTS table.

12.3.3 What Reload Does

Reload processing occurs in two phases. Phase one reloads Master Control File
environmental definitions (system, subsystem, type, type sequence, data set, etc.) in
order to re-establish this information. Phase two reloads elements (element master
record, base/delta/component list). Each phase is described below.

12.3.3.1 Reloading Master Control File Information

Reload determines the status of the VSAM Master Control File (MCF) and performs
either a partial or complete reload by comparing each environmental record (excluding
element records) on the unload file with the existing MCF.

If the VSAM Master Control File for the environment being reloaded is empty (new
file allocated), Reload processing rebuilds the file using the contents of the unload data
set(s).

If the Master Control File contains the environmental record, Reload processing does
the following:

■ If the system information on the unload file is more recent than the existing
system information, the existing information is replaced.

■ If the subsystem information on the unload file is more recent than the existing
subsystem information, the existing information is replaced.

■ If the type information on the unload file is more recent than the existing type
information, the existing information is replaced. This is done as follows:

– Information for existing types is not changed.

12-12 Utilities Guide

12.3 Reload Function

– Type sequence types added from the unload file are sequenced after the
existing types.

■ If the approver group/relation information on the unload file is more recent than
the existing approver group/relation information, the existing information is
replaced.

■ No existing data set information is replaced. Rather, Reload adds any data set
information that is not found in the current Master Control File.

12.3.3.2 Reloading Element Information

After updating and/or rebuilding the Master Control File, elements and component lists
will be reloaded based on the date/time stamps of existing elements and component
lists.

■ If the element or component list in the unload file is more recent than the existing
MCF element or component list, Reload processing will:

– Replace the existing element master record with the contents of the unload
file.

– Replace the existing base and delta members for the element and/or
component list with the contents of the unload file.

– Write an SCL GENERATE action request for that element to the C1SCL1
data set.

■ If the element or component list in the unload file is not more recent than the
existing MCF element or component list, Reload will perform validation
processing on the element/component list (see the section on Unload for a
description of this validation process).

■ If the element fails validation, Reload will:

– Replace the existing element master record with the contents of the unload
file.

– Replace the existing base and delta members for the element and/or
component list with the contents of the unload file.

– Write an SCL GENERATE action request for that element to the C1SCL1
data set.

■ If the element passes validation the element is not reloaded.

■ If a Stage 2 element is reloaded and the element exists at Stage 1, reload
processing will delete the Stage 1 element if the last action date for the Stage 2
element is more recent than the last action date for the Stage 1 element.

Chapter 12. Unload/Reload/Validate 12-13

12.3 Reload Function

12.3.3.3 Reload and Packages

Reload will compare the date/time stamps of packages from the unload file with the
date/time stamps of existing packages in the package data set.

■ If the date/time stamp of the package from the unload file is the more recent than
the one contained in the package data set, Reload will replace the existing
package.

■ If the date/time stamp of the existing package is more recent than the one
contained in the unload file, Reload will not replace the package.

 12.3.4 Using Reload

The Reload function is designed to recover Endevor VSAM control files (MCF,
package data sets) and base/delta libraries in the event of a physical device failure or
site disaster. In addition, when used in combination with the batch Restore (SCL)
action it can also be a powerful tool for recovering most logical and physical
problems.

To make the best use of the Reload utility, keep in mind the following:

■ Because no active journaling takes place, Reload processing cannot perform
“point-of-failure” recoveries. It is intended to be used in conjunction with proper
file/DASD layouts to reduce the impact, across all systems, of a base/delta failure,
and to insure proper inventory synchronization if other outages occur.

■ Reload processing replaces Endevor data set or library contents with unload file
contents when:

– The date/time stamp of a record on the unload file is more recent than the one
currently in Endevor.

– An element currently in Endevor does not meet the Validation criteria (the
record in Endevor has a more recent date/time stamp but the Validation
process finds a missing base member).

■ This utility is not designed to be used to simply back off or back out a member in
a data set (see the section on Backin/Backout in the Packages Guide).

■ Reload can accept a concatenated input stream of unload files. Because of the
date/time checking that occurs, only the latest data is reloaded. However, it is
highly recommended that files be ordered from the oldest to the newest. This
ensures that the logical cleanup of elements occurs. Failure to do this may result
in elements ending up at both stages, out of logical order.

■ The Endevor RESTORE action can use an unload file as input. This can be used
to perform logical recovery by first deleting the element, then restoring from the
unload file.

■ The Unload/Reload reports (CONRPT50-55) should be used to determine the
status of an unload file. Use the reporting facility whenever you need to itemize
the activity contained on one of these files.

12-14 Utilities Guide

12.3 Reload Function

12.3.4.1 Locking During Reload Processing

Reload processing will maintain a share lock (enqueue) exclusively at system level.
Reload processing will not begin until the lock can be set (after all activity against the
system has ceased). No Endevor activity can resume until the reload for that system
has been completed.

 12.3.5 Example 1. Base/Delta Recovery

Problem: A DASD volume has a hardware failure Tuesday at 10:00 a.m. This pack
contained the only base and/or delta libraries defined for all systems in this
environment. The volume was backed-up using an in-house backup utility, and
unloaded using an incremental unload the evening before. The previous Sunday a full
unload was performed.

Solution: Restore the DASD volume from the latest in-house backup file. Once this
has been done, determine to what point the volume was restored (date/time) in relation
to the unload files that you have available.

■ If no changes have been made to Endevor data since the last backup, the files
should be considered recovered (in sync), and Endevor processing may be
continued.

■ If only environmental changes have been made to Endevor since the last backup
(no element updates were made), the files should be considered recovered (in
sync), and Endevor processing may be continued.

■ If element modifications have been made since the last backup, an out-of-sync
condition will exist between the base and/or delta libraries and the Master Control
File (MCF), requiring the system(s) to be reloaded. To do this:

– Itemize the system(s) affected by the element modifications.

– Set up a Reload job using as input the last full unload file, and all incremental
files that are available up to the point of the failure.

– Run Reload processing for all the affected system(s) using the concatenated
input of unload files.

– Use the SCL file (C1SCL1) produced during Reload to run the GENERATE
action against the reloaded elements. This will synchronize the outputs.

Once the reload has been completed, Validate processing must be run for each system
that was reloaded. This is necessary to identify “orphan” members (members that had
been added since the recovery point). To do this:

■ Run Validate processing for all the affected system(s).

■ Use the SCL file (C1SCL1) produced by the Validate process to delete each
element that failed validation and complete the synchronization process.

Note: The deleted elements can be manually recovered from a source output library
member or an external copy of the source. If a source output library exists, ensure

Chapter 12. Unload/Reload/Validate 12-15

12.3 Reload Function

that the members to be recovered are first saved from this library before delete
processing is performed. All other changes that have been made since that time will
have been effectively “rolled back.”

12.3.6 Example 2: VSAM Master Control File Recovery

Problem: A DASD volume has a hardware failure Tuesday at 10:00 a.m. This pack
contained the VSAM Master Control file for one Endevor environment. The volume
was backed-up using an in-house backup utility, and unloaded using an incremental
unload the evening before. The previous Sunday a full unload was performed.

Solution: Restore the DASD volume from the latest in-house backup file. Once this
has been done, determine to what point the volume was restored (date/time) in relation
to the unload files that you have available.

■ If no changes have been made to Endevor since the last backup, the files should
be considered recovered (in sync), and Endevor processing may be continued.

■ If only environmental changes have been made to Endevor since this last backup
(no element updates were made) the files should be considered recovered (in
sync). Any environmental changes made since the recovery point will have been
lost and must be manually recovered. Once this has been done Endevor
processing may be continued.

■ If element modifications have been made since the last backup, an out-of-sync
condition will exist between the Master Control File (MCF) and the base and/or
delta library, requiring the system(s) to be reloaded. To do this:

– Itemize the system(s) affected by the element modifications.

– Set up a Reload job using as input the last full unload file, and all incremental
files that are available up to the point of the failure.

– Run Reload processing for all the affected system(s) using the concatenated
input of unload files.

– Use the SCL file (C1SCL1) produced during Reload to run the Generate
action against the reloaded elements. This will synchronize the associated
outputs.

Note: Elements added since the recovery point can be manually recovered from the
contents of a source output library member or an external copy of the source. All
other changes that have been made since that time will have been effectively “rolled
back.”

Note: If the reloaded SYSTEM requires CCID and/or COMMENT to be specified for
actions against its elements, you must insert a SET OPTIONS statement in the
generated SCL file (C1SCL1).

12-16 Utilities Guide

12.3 Reload Function

12.3.7 Example 3: Package Data Set Recovery

Problem: A DASD volume has a hardware failure on Tuesday at 10:00 a.m. This
pack contained the package data set for one Endevor environment. The volume was
backed-up using an in-house backup utility, and unloaded using an incremental unload
the evening before. The previous Sunday a full unload was performed.

Solution: Restore the DASD volume from the latest in-house backup files. Once this
has been done, determine to what point the volume was restored (date/time) in relation
to the unload files that you have available.

■ If no changes have been made to the package data set since the last backup, the
data set should be considered recovered (in sync), and Endevor processing may be
continued.

■ If any package modifications have been made since the last backup, they will be
lost. If there is an unload file available that is more recent than the backup from
which the data set was restored you may elect to reload the package data set. To
do this:

– Set up a Reload job, using as input any unload file that is more recent than
the backup file used to restore the data set.

– Run Reload processing for all the affected package(s) or selected package
IDs.

12.3.8 Sample Reload Control Cards

The following request specifies that environment TEST and all systems in this
environment are to be reloaded. UNLOD01 is the DDname assigned to the input data
set that contains the data to be reloaded. This data set must be coded in the Reload
JCL.

RELOAD FROM DDN UNLOD�1 TO ENV TEST SYS �.

The following request specifies that the entire package data set for this site is to be
reloaded (all packages). UNLODPKG is the DDname assigned to the input data set
that contains the data to be reloaded. This data set must be coded in the Reload JCL.

RELOAD PACKAGE FROM DDN UNLODPKG.

12.3.9 Sample Reload JCL

//�(JOBCARD)

//��

//�

//� BC1JRELD - JCL TO PERFORM Endevor RELOAD

//� FUNCTIONS

//�

//��

//RPTS EXEC PGM=NDVRC1,REGION=2�48K,PARM='C1BM5���'
//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

Chapter 12. Unload/Reload/Validate 12-17

12.3 Reload Function

//BSTIPT�1 DD �
RELOAD FROM DDN UNLODNN TO ENV � SYS �.

RELOAD PACKAGE FROM DDN UNLODNN.

/�

//UNLODNN DD DSN=uprfx.uqual.UNLOAD,DISP=(OLD,KEEP)

//C1SCL1 DD DSN=uprfx.uqual.SCL,DISP=(,CATLG,DELETE),

// DCB=(LRECL=8�,BLKSIZE=312�,RECFM=FB),

// UNIT=pdisk,SPACE=(TRK,(5,1)),VOL=SER=dvolser

//C1MSGS1 DD SYSOUT=� DETAIL REPORT

//C1MSGS2 DD SYSOUT=� SUMMARY REPORT

Note: You have the option of using generation data sets for the
Unload/Reload/Validate utility. For example:

//UNLODNN DD DSN=uprfx.uqual.UNLOAD(-1),DISP=(OLD,KEEP),

12.3.9.1 Notes on Sample RELOAD JCL

The following notes contain information pertinent to the above sample JCL. Member
BC1JRELD, supplied in your iprfx.iqual.JCLLIB library, contains a sample Reload
job.

JCL Component Description

C1BM5000 The Unload/Reload/Validate Utility program.

CONLIB Data set name of the installation Endevor CONLIB load
library.

BSTIPT01 Required DDname for Unload/Reload/Validate statements.

UNLODNN The target DDname of the unload data set name specified for
this Reload operation.

C1SCL1 Required DDname for the data set to which the SCL
GENERATE statements produced by the Reload operation
will be written.

12-18 Utilities Guide

12.4 Validate Function

 12.4 Validate Function

 12.4.1 Overview

The Validate function allows you to ensure the integrity of one or more existing
Endevor environments and/or systems and their related elements and components.

The Validate function performs a series of checks against the contents of the VSAM
Master Control File(s), and the related base and delta libraries associated with the
environments and systems specified on the job request. These are the same checks
performed as part of Unload processing, allowing this function to operate in a
standalone mode.

Validate may be run for an entire environment, or for selected systems within an
environment. There is no validation processing currently available for the package
data set.

12.4.2 Validate Control Card

The parameters for the Validate control card are as follows:

��──VALidate─ ─ENVironment──environment-name──SYStem──system-name──.───��

12.4.2.1 Description of Parameters

The parameters for the Validate control card are described below.

Parameter Description

VALIDATE Specifies the Validate function of program C1BM5000. You
must further qualify the Validate request with one of the
following:

■ ENVIRONMENT--Identifies the environment(s) for
which information is to be validated. A name mask may
be used.

■ SYSTEM--Identifies the system(s) from which
information is to be validated. A name mask may be
used.

Any number of Validate statements may be coded for a
single run.

Chapter 12. Unload/Reload/Validate 12-19

12.4 Validate Function

12.4.3 What Validate Does

Validate processing performs a series of checks against the contents of the VSAM
Master Control File(s), and the related base and delta libraries. These checks include:

■ MCF to base to delta relationship verification.

 ■ Footprint correlation.

■ Physical base/delta member counts.

 ■ Insert/delete counts.

■ Delta level verification.

If an error is detected it is important to determine the cause and to correct the
problem. In most cases (a physical problem) the Reload facility should allow you to
accomplish this task by going back to the last good unload point.

Please refer to your Error Codes and Messages Guide for all corrective actions. For
certain problems it may be necessary to contact Endevor Technical Support.

Validate checks Master Control File and element information in the following order:

1. Stage 1 internal environmental definitions.

2. Stage 2 internal environmental definitions.

3. Stage 1 elements.

4. Stage 2 elements.

If an error is encountered during Validate processing the following will occur:

■ If the validation problem affects the element itself, Validate will write:

– An error message indicating the nature of the problem.

– An SCL DELETE statement to the C1SCL1 data set. The SCL contained in
the C1SCL1 data set can then be used in a subsequent recovery operation to
delete the element prior to performing Reload processing.

■ If the element itself is intact, but there is a problem in the associated ACM
component list, Validate will write:

– An error message indicating the nature of the problem.

– An SCL DELETE statement with the ONLY COMPONENT clause to the
C1SCL1 data set.

The SCL contained in the C1SCL1 data set can then be used in a subsequent recovery
operation to delete only the element's component list prior to a GENERATE action or
Reload processing.

12-20 Utilities Guide

12.4 Validate Function

 12.4.4 Using Validate

The Validate function should be run any time there is a question about the integrity of
an environment/system, and in conjunction with a reload operation. Note that an
unload does not do the same checking against the files that a validate does.

Validate processing maintains an exclusive lock (enqueue) at the environment/system
level. Validate processing will not begin until the lock can be set (after all activity
against the system has ceased). No Endevor activity can resume until validation for
that system has been completed.

12.4.5 Sample Validate Control Card

This request specifies that environment Test and all systems in this environment are to
be validated.

VALIDATE ENV TEST SYS �.

12.4.6 Sample Validate JCL

//�(JOBCARD)

//��

//� BC1JVALD - JCL TO PERFORM Endevor

//� VALIDATE FUNCTIONS

//��

//RPTS EXEC PGM=NDVRC1,REGION=2�48K,PARM='C1BM5���'
//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//BSTIPT�1 DD � REPORT SELECTION CRITERIA
VALIDATE ENV � SYS �.

/�

//C1SCL1 DD DSN=uprfx.uqual.SCL,DISP=(,CATLG,DELETE),

// DCB=(LRECL=8�,BLKSIZE=312�,RECFM=FB),

// UNIT=pdisk,SPACE=(TRK,(5,1)),VOL=SER=dvolser

//C1MSGS1 DD SYSOUT=� DETAIL REPORT

//C1MSGS2 DD SYSOUT=� SUMMARY REPORT

The following table contains information about the above sample JCL. Member
BC1JVALD, supplied in your iprfx.iqual.JCLLIB library, contains a sample Validate
job.

JCL Component Description

C1BM5000 The Unload/Reload/Validate Utility program.

CONLIB Data set name of the installation Endevor CONLIB load
library.

BSTIPT01 Required DDname for Unload/Reload/Validate statements.

Chapter 12. Unload/Reload/Validate 12-21

12.4 Validate Function

JCL Component Description

C1SCL1 Required DDname for the data set to which the SCL
DELETE statements produced during Validate processing
will be written.

12-22 Utilities Guide

Chapter 13. Using the Endevor Synchronize Facility

Chapter 13. Using the Endevor Synchronize Facility 13-1

13.1 How to Use the Synchronize Facility

13.1 How to Use the Synchronize Facility

Although the Synchronize facility can be used outside of a DB2 environment, it is
considered a DB2 utility. The sections in this chapter provide a general overview of
the facility; see the Endevor for DB2 manual for detailed information.

The Endevor Synchronize facility identifies all Endevor elements that constitute an
application, and informs the programmer of the effects that changes (or potential
changes) will have on the application. For example, if a programmer intends to
remove an element, (s)he can run the Synchronize facility to determine which
programs and/or copybooks will be affected before actually removing the element.

13-2 Utilities Guide

13.2 Typical Uses of Synchronize

13.2 Typical Uses of Synchronize

You can use this facility:

■ To help you identify and verify all elements that make up an application.

■ Before modifying an application, to determine the magnitude of the change. As a
project leader, you can use this information when assigning resources.

■ During standard application maintenance, to perform basic validations and report
on the interrelationships between application elements.

The Endevor Synchronize facility can greatly improve the control you have over
application management. The total impact analysis, however, requires human
intervention at critical junctures.

For example, you must decide whether or not you really want to recompile a group of
500 programs that use a changed element. Just because the element has changed, you
may not need to recompile all programs. This type of decision cannot be made by
your software management or synchronization management software tools. These
tools enable you to identify the issues so that you can make informed decisions. Any
impact analysis process identifies what may be affected by a change so that you can
decide the appropriate action to take.

13.2.1 How Synchronize Works

The Synchronization facility identifies all Endevor elements for an application.
Several other options can also be used as input to the Synchronize process. These
options are discussed in the following sections.

Synchronization processing is executed in batch under NDVRC1 and is driven by the
program ENNSYNC. ENNSYNC accesses Endevor to identify relationships among
elements and writes the resultant Entity List of relationships between elements to the
DDname NDVRENO.

The inputs and outputs are described briefly below.

13.2.1.1 Input to Synchronize

Endevor Synchronize processing uses the following inputs to analyze the potential
effects of a change:

■ The SYNCHRONIZE command, in the DDname NDVRIPT (for the command's
syntax, see “Syntax for the Synchronize Facility”).

■ The optional footprint file NDVRFOOT, produced by program BC1PFOOT. It
contains footprints from a load library that are to be used for relationship
processing by Synchronize.

Chapter 13. Using the Endevor Synchronize Facility 13-3

13.2 Typical Uses of Synchronize

■ The optional file NDVRENI, which contains the Endevor elements that
Synchronize should ignore during the validation process. This file should contain
80-byte records in a fixed format, as shown below.

������������������������������� TOP OF DATA ������������������������������

ELEMENT DEV NDVR361 BASE CIMDPARM ASMMAC 2

ELEMENT PRD NDVR36� BASE C1SUBOFF ASMMAC 2

������������������������������ BOTTOM OF DATA �����������������������������

13.2.1.2 Output from Synchronize

When you specify a base set of Endevor elements and select your processing options,
the Synchronize facility returns:

■ A list of all other elements that contain relationships to the base set, in
DDname NDVRENO. (For more information, see “Synchronize Output Entity
List.”)

■ An SCL file containing one GENERATE command for each element that either
failed footprint validation or was built with one or more components that failed
footprint validation, in DDname NDVRGSCL. (For more information, see
“Endevor Generate Element SCL File.”)

■ The output log reports showing any errors that the Synchronization facility
encountered, in DDnames NDVRLOG and NDVRLOG2. (For more information,
see “Synchronize Log Report.”)

■ Three Synchronize reports showing the relationships between elements (for
complete report descriptions,
 “The Synchronize Reports”):

– The Related Entity Report (CONRPT94) displays all elements of an
application.

– The Element Component Used by Report (CONRPT97) displays the
hierarchical relationships and dependencies for a group of elements. It
includes elements which are built using input element components (such as
copy statements and programs), but which are not used as the input for other
components.

– The Element Component Where Used Report (CONRPT98) displays the
hierarchical relationships and dependencies for a group of elements. It
includes elements which are not built using input element components, but
which are used as the input for other components. For example, this report
displays all the elements that use a particular copy statement, including
programs and “link” elements.

13.2.1.3 Synchronize Return Codes

The Synchronize facility return codes are:

Return Code Meaning

0 No errors were detected.

13-4 Utilities Guide

13.2 Typical Uses of Synchronize

Return Code Meaning

8 Data errors were detected, but Synchronize processing continued.
This return code could mean that one or more elements failed
footprint validation.

12 Serious errors were detected, and Synchronize stopped processing
prematurely. This could be caused by invalid input syntax.

Chapter 13. Using the Endevor Synchronize Facility 13-5

13.3 Using the Synchronize Facility

13.3 Using the Synchronize Facility

 13.3.1 Overview

To run the Synchronize facility and produce the reports:

■ Modify the JCL in member BC1JSYNC to call the BC1PFOOT facility and then
the Synchronize facility. A copy of this member appears below, along with the
syntax for the SYNCHRONIZE command. (For a description of the syntax for
BC1PFOOT, see member BC1JSYNC.)

■ Enter a jobcard and submit the JCL.

13.3.2 JCL for the Synchronize Facility

Member BC1JSYNC looks like this:

//� (COPY JOBCARD) ����43�4

//� ����44�4

//�� ����45�4

//� BC1JSYNC - JOB TO EXECUTE THE ENNSYNC UTILITY PROGRAM. � ����46�4

//� � ����47�4

//� THIS JOB CONSISTS OF 2 STEPS: � ����48�4

//� � ����49�4

//� - GETFOOT: THIS IS AN OPTIONAL STEP TO EXTRACT � ����5��4

//� FOOTPRINTS FROM A DATASET. � ����51�4

//� � ����52�4

//� - SYNCH: THIS STEP EXECUTES THE SYNCHRONIZATION � ����53�4

//� UTILITY. THIS UTILITY EXPLODES THRU � ����54�4

//� ELEMENT COMPONENT LISTS, PERFORMING � ����55�4

//� FOOTPRINT VALIDATION ON INPUT COMPONENTS, � ����56�4

//� CREATING GENERATE SYNTAX FOR EXCEPTIONS, � ����57�4

//� AND OPTIONALLY REPORTING ON THE ELEMENTS' � ����58�4

//� INTRA-RELATIONSHIPS WITHIN MULTI-LEVEL � ����59�4

//� EXPLOSION AND IMPLOSION REPORTS. � ����6��4

//� � ����7��4

//� REPLACEMENT VARIABLES FOR THIS JOB ARE AS FOLLOWS: � ����71�5

//� � ����72�5

//� iprfx ENDEVOR PREFIX � ����73�5

//� iqual ENDEVOR QUALIFIER � ����74�5

//� pdisk UNIT TYPE FOR PERMANENT FILES � ����76�5

//� tdisk UNIT TYPE FOR TEMP FILES � ����79�5

//� uprfx USER DATASET PREFIX � ����81�5

//� uqual USER DATASET QUALIFIER � ����82�5

//� � ����85�5

//� THIS FILE SHOULD BE SUBMITTED AFTER THE FOLLOWING � ����86�5

//� CHANGES HAVE BEEN MADE: � ����87�5

//� � ����88�5

//� - ALL GLOBAL CHANGES ABOVE HAVE BEEN MADE � ����89�5

//� - A JOBCARD HAS BEEN ADDED TO THE TOP OF THIS FILE � ����9��5

//� � ����91�5

//�� ���113�4

//� ���114�4

//� EXTRACT FOOTPRINTS ���115�4

//� ���116�4

13-6 Utilities Guide

13.3 Using the Synchronize Facility

//GETFOOT EXEC PGM=NDVRC1,DYNAMNBR=15��,PARM='BC1PFOOT' ���117�4

//� ���118��

//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//C1MSGS1 DD SYSOUT=� ���121��

//SYSOUT DD SYSOUT=� ���122��

//SYSPRINT DD SYSOUT=� ���123��

//BSTPDS DD DSN=uprfx.uqual.LOADLIB,DISP=SHR ���124�4

//BSTPCH DD DSN=uprfx.uqual.FOOTFILE,DISP=OLD, ���125�4

// DCB=(LRECL=6��,RECFM=VB,BLKSIZE=32��4) ���126�2

//BSTLST DD SYSOUT=� ���127��

//BSTIPT DD � ���128��

 bc1pfoot input syntax. See below for a description. ���129�4

//� < ANALYZE > ���13��4

//� ���131�4

//� < INCLUDE | EXCLUDE > < MEMBERS | CSECT > NAME < THRU NAME > > ���132�4

//� < . > ���133�4

/� ���134�4

//� ���135�4

//� SYNCHRONIZE UTILITY FOLLOWS ���14��4

//� ���15��4

//SYNCH EXEC PGM=NDVRC1,DYNAMNBR=15��,PARM='ENNSYNC', ���31��4

// REGION=4�96K ���32��4

//STEPLIB DD DSN=uprfx.uqual.AUTHLIB,DISP=SHR

// DD DSN=iprfx.iqual.AUTHLIB,DISP=SHR

//CONLIB DD DSN=iprfx.iqual.CONLIB,DISP=SHR

//NDVRIPT DD � ���4�3��

Synchronize command syntax is put here. ���4�4�4

/� ���4�5�4

//NDVRGSCL DD uprfx.uqual.SCLOUT,DISP=(NEW,CATLG,DELETE), ���411�4

// UNIT=pdisk,SPACE=(CYL,(1�,1�)), ���412�5

// DCB=(LRECL=6��,RECFM=VB,BLKSIZE=32��4) ���413�4

//NDVRFOOT DD DSN=uprfx.uqual.FOOTFILE,DISP=(OLD,KEEP) ���414�5

//NDVRLOG DD SYSOUT=� ���417��

//NDVRLOG2 DD SYSOUT=� ���418�4

//NDVRLST DD SYSOUT=� ���42���

//NDVRRPT DD SYSOUT=� ���43���

//C1MSGS1 DD SYSOUT=� ���44���

//SYSOUT DD SYSOUT=� ���45���

//SYSUDUMP DD SYSOUT=� ���46���

//SYSPRINT DD SYSOUT=� ���47���

//NDVRENI DD DUMMY ���48��5

//NDVRENO DD DUMMY ���49��5

//NDVRBPLA DD DUMMY ���5���5

//NDVRBPAC DD DUMMY ���6���5

The Synchronize JCL uses the following DDnames:

DDname Contains

NDVRIPT The SYNCHRONIZE command. A description of the
SYNCHRONIZE command syntax follows.

NDVRGSCL GENERATE SCL syntax for the Endevor elements that
failed footprint validation. A sample is provided in the
section entitled “Endevor Generate Element SCL File.”

Chapter 13. Using the Endevor Synchronize Facility 13-7

13.3 Using the Synchronize Facility

DDname Contains

NDVRFOOT Footprint information extracted by the BC1PFOOT
program.

NDVRLOG Processing messages from ENNSYNC (the Synchronize
program). A sample is provided in the section entitled
“Synchronize Log Report.”

NDVRLOG2 Processing messages from ENNSYNC (the Synchronize
program).

NDVRLST The Synchronize Command Syntax listing.

NDVRRPT The selected reports. Sample reports are provided
beginning in the section entitled “The Synchronize
Reports.”

C1MSGS1 Error messages from Endevor.

NDVRENI The elements whose footprints are not to be validated.

NDVRENO The output Entity List. A sample is provided in the
section entitled “Synchronize Output Entity List.”

13.3.3 Syntax for the Synchronize Facility

To use the Synchronize facility, submit a batch job using the JCL statements contained
in member BC1JSYNC, adding the appropriate SYNCHRONIZE syntax. A
description of the SYNCHRONIZE clauses and an example of member BC1JSYNC
follows the syntax diagram.

��──SYNchronize──�

�─ ──┬ ┬── ───────────�
 └ ┘ ──┬ ┬──────────── ─ENVironment─ ──┬ ┬──── ─env-name──STAge─ ──┬ ┬──── ─stage-no─
 └ ┘─CORrelated─ ├ ┤─EQ─ ├ ┤─EQ─
 └ ┘─=── └ ┘─=──

�─ ──┬ ┬── ──┬ ┬────────────────────────────── ───────�
 └ ┘ ─EXPAnd─ ──┬ ┬───── ─COMPonent RELATIONSHIPS─ └ ┘ ─EXPLode─ ──┬ ┬───── ─FOOTPRINTS─
 └ ┘─ALL─ └ ┘─ALL─

�─ ──┬ ┬─── ──�
 └ ┘ ─ENDEvor ENVironment─ ──┬ ┬──── ─env-name─ ─¤─ ──┬ ┬──────────────────────────────── ─¤─
 ├ ┤─EQ─ ├ ┤ ─SYStem─ ──┬ ┬──── ─sys-name───────
 └ ┘─=── │ │├ ┤─EQ─
 │ │└ ┘─=──
 ├ ┤ ─SUBsystem─ ──┬ ┬──── ─subsys-name─
 │ │├ ┤─EQ─
 │ │└ ┘─=──
 ├ ┤ ─ELEMENt─ ──┬ ┬──── ─element-name──
 │ │├ ┤─EQ─
 │ │└ ┘─=──
 ├ ┤ ─TYPe─ ──┬ ┬──── ─type-name────────
 │ │├ ┤─EQ─
 │ │└ ┘─=──
 └ ┘ ─STAge─ ──┬ ┬──── ─stage-name──────
 ├ ┤─EQ─
 └ ┘─=──

13-8 Utilities Guide

13.3 Using the Synchronize Facility

�─ ─GENerate──¤─ ──┬ ┬────────────────────────── ─¤──�
 ├ ┤ ─CCId─ ──┬ ┬──── ─ccid───────
 │ │├ ┤─EQ─
 │ │└ ┘─=──
 ├ ┤ ─COMment─ ──┬ ┬──── ─comment─
 │ │├ ┤─EQ─
 │ │└ ┘─=──
 └ ┘─OVErride SIGNout─────────

�─ ─REPort──¤─ ──┬ ┬───────────────────────── ─¤───�
 ├ ┤─ENTity RELATIONSHIPS────
 └ ┘─COMPonent RELATIONSHIPS─

�─ ──┬ ┬─── ─.─────────────────────────────��
 └ ┘ ─MAXimum─ ──┬ ┬────────── ──┬ ┬──── ─max-element-number─
 └ ┘─ELEMENTS─ ├ ┤─EQ─
 └ ┘─=──

The clauses in the SYNCHRONIZE command are described below:

Clause(s) Description

Correlated Environment
and Stage

Specifies the Endevor inventory location to be associated
with the application. If specified, ENNSYNC reports
footprint errors for all elements which have been built
from an environment or stage previous to the correlated
environment/stage in the environment map. For example,
if the environment map specified ENV DEV to ENV QA
to ENV PROD, and the correlated environment was QA,
then ENNSYNC would report any elements from the DEV
environment as invalid.

Expand All Component
Relationships

Indicates whether Synchronize should include all levels of
Endevor elements that went into creating the base element
list.

When EXPAND ALL COMPONENTS is specified,
Synchronize processes each successive level of input
components for each element within the related Entity List.
It then adds each element found within the input
component structure and explodes its input component
structure.

For this expansion process to operate successfully for load
modules, the output load module component must have
had a “FOOTPRNT=CREATE” specification in the
SYSLMOD DD of the link step (thus creating the
“*LOADMOD” footprint) when the element that produces
the load module is generated. For more information about
storing footprints in load libraries, see the Administration
Guide.

With the Synchronize facility, you can follow a complete
chain of related application elements, resulting in an Entity
List of ALL related elements.

Chapter 13. Using the Endevor Synchronize Facility 13-9

13.3 Using the Synchronize Facility

Clause(s) Description

Explode All Footprints Indicates whether Synchronize should include all the
footprints from the input file NDVRFOOT into the element
list upon which it bases the application.

Endevor Environment,
System, Subsystem,
Element, Type, and
Stage

Identifies a list of Endevor elements upon which to base
the application.

Generate Specifies the Endevor options for the GENERATE SCL
action. Options include:

■ CCID-- The Endevor Change Control Identifier. This
code is used for various purposes within Endevor. It
may or may not be a required field at your site. If
you do not specify a CCID, and it is required at your
site, the syntax created for the GENERATE action
fails when you try to execute it.

■ Comment-- A comment is used for various purposes
within Endevor. It may or may not be a required field
at your site. If you do not specify a comment, and it
is required at your site, the syntax created for the
GENERATE action will fail when you try to execute
it.

■ Override Signout-- Indicates whether or not you want
to build syntax that generates elements that have
already been signed out by another person. This
option updates the current SIGNOUT ID at the
appropriate stage with your user ID. Enter Y in this
field to perform the OVERRIDE SIGNOUT action, or
N to prevent the OVERRIDE SIGNOUT action.

You must have the proper authorization in order to use this
option. Refer to the Security Guide for more information
about using this option.

Report Identifies the reports to be created from Synchronize
processing: Entity or Element Component Relationships.
These reports are described later in this chapter starting in
the section “The Synchronize Reports.”

Maximum Elements Specifies the default value of 5000 elements, which
correlates to a region size of 4096K. If more than 5000
elements are being retrieved for this execution, you can
increase the maximum number of elements, but you must
also increase the region size.

13-10 Utilities Guide

13.4 The Synchronize Output Files

13.4 The Synchronize Output Files

 13.4.1 Overview

Synchronize processing produces two types of output files:

■ The Synchronize Entity List

■ The Synchronize Exception Syntax

Each is described below.

13.4.2 Synchronize Output Entity List

The Synchronize facility creates an Entity List of all Endevor elements it processed
(DDname NDVRENO). This Entity List contains one record for each element that
Synchronize found to be related to the application. If the application has changed, the
Synchronize Entity List indicates the Endevor-affected elements.

Note: If you want to exclude the members that are known to have problems while
synchronizing the rest, run the facility twice, using the Entity List from the first run as
the basis for the second run's NDVRENI file (described in the section entitled “Input
to Synchronize”).

The Entity List file contains the following record type:

Element: Each Endevor element within an application.

The element information is divided into two major areas:

■ Columns 1-12 describe the element type.

■ Columns 14-61 provide element-specific information, as follows:

A sample Entity List (DDname NDVRENO) is shown below.

Column Contains the elements...

14-21 Environment name

23-30 System name

32-39 Subsystem name

41-50 Name

52-59 Type

61 Stage number

Chapter 13. Using the Endevor Synchronize Facility 13-11

13.4 The Synchronize Output Files

ELEMENT INT NDVRMVS BASE $$$PRMCK ASMMAC 2

ELEMENT INT NDVRMVS BASE $$$PRMDS ASMMAC 2

ELEMENT PRD NDVR36� BASE $ALMSGDS ASMMAC 2

ELEMENT INT NDVRMVS BASE $ARBDS ASMMAC 2

ELEMENT PRD NDVR36� BASE $AREDS ASMMAC 2

ELEMENT PRD NDVR36� BASE $ARHDS ASMMAC 2

ELEMENT PRD NDVR36� BASE $ARIDS ASMMAC 2

ELEMENT PRD NDVR36� BASE $ARKDS ASMMAC 2

ELEMENT INT NDVRMVS BASE $ARLDS ASMMAC 2

ELEMENT QAS NDVRMVS BASE $ARPDS ASMMAC 2

ELEMENT PRD NDVR36� BASE $ARQDS ASMMAC 2

ELEMENT PRD NDVR36� BASE $ARSDS ASMMAC 2

ELEMENT INT NDVRMVS BASE $ARTDS ASMMAC 2

ELEMENT INT NDVRMVS BASE $AR1DS ASMMAC 2

ELEMENT PRD NDVR36� BASE $ATMSGDS ASMMAC 2

ELEMENT PRD NDVR36� BASE $AUTHC1 ASMMAC 2

ELEMENT INT NDVRMVS BASE $AUTHDS ASMMAC 2

ELEMENT INT NDVRMVS BASE $BC1EQ ASMMAC 2

ELEMENT PRD NDVR36� BASE $BLDC1MS ASMMAC 2

ELEMENT PRD NDVR36� BASE $BOPNCLS ASMMAC 2

ELEMENT INT NDVRMVS BASE $BXPABLK ASMMAC 2

ELEMENT PRD NDVR36� BASE $CBLDS ASMMAC 2

ELEMENT PRD NDVR36� BASE $CBMACS ASMMAC 2

ELEMENT INT NDVRMVS BASE $CHKPOPT ASMMAC 2

ELEMENT PRD NDVR36� BASE $CIPOREC ASMMAC 2

ELEMENT PRD NDVR36� BASE $COMP3 ASMMAC 2

ELEMENT PRD NDVR36� BASE $CONFDS ASMMAC 2

ELEMENT PRD NDVR36� BASE $COPYIOB ASMMAC 2

ELEMENT PRD NDVR36� BASE $CPYPARM ASMMAC 2

ELEMENT PRD NDVR36� BASE $CP1PARM ASMMAC 2

ELEMENT PRD NDVR36� BASE $C1FEDIT ASMMAC 2

ELEMENT PRD NDVR36� BASE $C1FNCTS ASMMAC 2

ELEMENT INT NDVRMVS BASE $C1FUNC ASMMAC 2

ELEMENT PRD NDVR36� BASE $C1MSG ASMMAC 2

ELEMENT PRD NDVR36� BASE $C1PRPDS ASMMAC 2

ELEMENT PRD NDVR36� BASE $C1SETDT ASMMAC 2

ELEMENT PRD NDVR36� BASE $C1TBDS ASMMAC 2

ELEMENT PRD NDVR36� BASE $C1VECTR ASMMAC 2

ELEMENT PRD NDVR36� BASE $DALPARM ASMMAC 2

13.4.2.1 Endevor Generate Element SCL File

The Endevor Generate Element SCL file (DDname NDVRGSCL) contains one
GENERATE SCL command for each Endevor element that either failed footprint
validation, or was built with one or more input components that had failed footprint
validation.

A sample Generate Element SCL file is shown below.

GENERATE ELEMENT '$DEC'

 FROM ENVIRONMENT 'INT'

 SYSTEM 'NDVRMVS'

 SUBSYSTEM 'BASE'

 TYPE 'ASMMAC'

 STAGE 2 .

GENERATE ELEMENT '$PKMREX'

 FROM ENVIRONMENT 'INT'

 SYSTEM 'NDVRMVS'

 SUBSYSTEM 'BASE'

 TYPE 'ASMMAC'

 STAGE 2 .

13-12 Utilities Guide

13.5 The Synchronize Reports

13.5 The Synchronize Reports

 13.5.1 Overview

The Synchronize facility produces five reports:

■ The Related Entity report (CONRPT94)

■ The Element Component Used By report (CONRPT97)

■ The Element Component Where Used report (CONRPT98)

■ Two Synchronize log reports (DDnames NDVRLOG and NDVRLOG2)

The first three reports list the interdependencies of the elements processed by the
Endevor Synchronize facility. These reports are generated when you execute the
Synchronize process and select one or more reports with the REPORT clause in the
SYNCHRONIZE command (for the command's syntax, see “Syntax for the
Synchronize Facility”).

The Element Component Where Used report (CONRPT98) contains a “Depth” column
that identifies the hierarchical relationships between elements. For each report line on
which the level number increases, the depth number is indented one character. The
Element Component Used By report (CONRPT97) is in the same format, except in
reverse order.

The Synchronize log reports contain any errors that the Synchronize facility
encountered. Synchronize places errors whose message codes begin with “ENNSYEL”
in DDname NDVRLOG2. These errors are generally element-related. You should
check this log to ensure that Synchronize processing completed successfully for every
element. (For a sample of this log, see “Synchronize Log Report”.)

Synchronize places errors whose message codes begin with “ENNSYNC” in the
Endevor Synchronization Log report (DDname NDVRLOG). These errors are
generally DB2-related (if you have Endevor for DB2 installed), or they document fatal
errors that caused the Synchronize facility to terminate processing early. For more
information about Endevor error messages, see the Error Codes and Messages Guide.

13.5.2 Related Entity Report (CONRPT94)

The Related Entity report, shown on the following page, displays all elements of an
application. This report is produced when ENTITY RELATIONSHIPS is specified in
the REPORT clause of the SYNCHRONIZE command (for the command's syntax, see
“Syntax for the Synchronize Facility”).

Chapter 13. Using the Endevor Synchronize Facility 13-13

13.5 The Synchronize Reports

COPYRIGHT (C) Computer Associates, INC., 2��2 Endevor PAGE: 1

 RELEASE X.XX SERIAL XXXXXX

CONRPT 94: RELATED ENTITY REPORT

==================== ELEMENT =========================== ==================== FOOTPRINT ========================= ERROR ==

ENVIRONMENT SYSTEM SUBSYSTEM NAME TYPE STAGE ENVIRONMENT SYSTEM SUBSYSTEM NAME TYPE STAGE

�DEV NDVR361 BASE $$$PRMCK ASMMAC 2 DEV NDVR361 BASE $$$PRMCK ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $$$PRMDS ASMMAC 2 DEV ND VR361 BASE $$$PRMDS ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $ARBDS ASMMAC 2 DEV NDVR361 BASE $ARBDS ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $ARLDS ASMMAC 2 DEV NDVR361 BASE $ARLDS ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $AUTHDS ASMMAC 2 DEV NDVR361 BASE $AUTHDS ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $BC1EQ ASMMAC 2 DEV NDVR361 BASE $BC1EQ ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $BXPABLK ASMMAC 2 DEV NDVR361 BASE $BXPABLK ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $CHKPOPT ASMMAC 2 DEV NDVR361 BASE $CHKPOPT ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $COMPDS ASMMAC 2 DEV NDVR361 BASE $COMPDS ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $C1FUNC ASMMAC 2 DEV NDVR361 BASE $C1FUNC ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $DDINFO ASMMAC 2 DEV ND VR361 BASE $DDINFO ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $DEC ASMMAC 2 DEV NDVR361 BASE $DEC ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $DROP ASMMAC 2 DEV NDVR361 BASE $DROP ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $EDITQT ASMMAC 2 DEV NDVR361 BASE $EDITQT ASMMAC 2 SYELE��4

�DEV NDVR361 BASE $ENRTCDS ASMMAC 2 DEV NDVR361 BASE $ENRTCDS ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $ESABDS ASMMAC 2 DEV NDVR361 BASE $ESABDS ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $ESIDFLT ASMMAC 2 DEV NDVR361 BASE $ESIDFLT ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $ESISMF ASMMAC 2 DEV NDVR361 BASE $ESISMF ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $ESITFMT ASMMAC 2 DEV NDVR361 BASE $ESITFMT ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $ESTAE ASMMAC 2 DEV ND VR361 BASE $ESTAE ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $FLOW ASMMAC 2 DEV NDVR361 BASE $FLOW ASMMAC 2 SYELE��4

�DEV NDVR361 BASE $GENDFLT ASMMAC 2 DEV NDVR361 BASE $GENDFLT ASMMAC 2 SYELE��4

�DEV NDVR361 BASE $IMR ASMMAC 2 DEV NDVR361 BASE $IMR ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $NEQUDS ASMMAC 2 DEV NDVR361 BASE $NEQUDS ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $PECBDS ASMMAC 2 DEV NDVR361 BASE $PECBDS ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $PHDRDS ASMMAC 2 DEV NDVR361 BASE $PHDRDS ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $PKMR ASMMAC 2 DEV NDVR361 BASE $PKMR ASMMAC 2 SYELE��4

�DEV NDVR361 BASE $PKMREX ASMMAC 2 DEV NDVR361 BASE $PKMREX ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $PREQPDS ASMMAC 2 DEV ND VR361 BASE $PREQPDS ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $PUMSGDS ASMMAC 2 DEV NDVR361 BASE $PUMSGDS ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $RELDS ASMMAC 2 DEV NDVR361 BASE $RELDS ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $SCRNDS ASMMAC 2 DEV NDVR361 BASE $SCRNDS ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $SETCASE ASMMAC 2 DEV NDVR361 BASE $SETCASE ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $SETDFLT ASMMAC 2 DEV NDVR361 BASE $SETDFLT ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $SLATDS ASMMAC 2 DEV NDVR361 BASE $SLATDS ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $SMFHDDS ASMMAC 2 DEV NDVR361 BASE $SMFHDDS ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $TDBDS ASMMAC 2 DEV NDVR361 BASE $TDBDS ASMMAC 2 FPVL��3E

�DEV NDVR361 BASE $TSTAUTH ASMMAC 2 DEV ND VR361 BASE $TSTAUTH ASMMAC 2 FPVL��3E

13.5.2.1 Related Entity Report Field Descriptions

The following fields appear on the Synchronize Related Entity report.

Field Name Description

Element Endevor element information as follows:

Environment The name of the Endevor environment in which the
element is located.

System The name of the Endevor system in which the element is
located.

Subsystem The name of the Endevor subsystem in which the element
is located.

Name The name of the Endevor element.

Type The element type.

Stage The element's stage.

13-14 Utilities Guide

13.5 The Synchronize Reports

Field Name Description

Footprint The breakdown of the information stored in the Endevor
footprint.

Environment The name of the Endevor environment in which the
element was located when the footprint was created.

System The name of the Endevor system in which the element was
located when the footprint was created.

Subsystem The name of the Endevor subsystem in which the element
was located when the footprint was created.

Name The name of the Endevor element.

Type The element type when the footprint was created.

Stage The element's stage number when the footprint was
created.

Error This column contains message numbers indicating
processing errors or some form of error condition. To
determine the error condition, look up the number in this
column in the Error Codes and Messages Guide.

13.5.3 Element Component Reports (CONRPT97 and CONRPT98)

When you specify COMPONENT RELATIONSHIPS in the report clause of the
SYNCHRONIZE command, Endevor generates the following two reports:

■ Element Component Used By report (CONRPT97)

■ Element Component Where Used report (CONRPT98)

The Element Component Used By report, shown on the following page, displays each
Endevor element that is dependent upon the element(s) specified for the report, along
with its relative dependency level in the hierarchy.

The Element Component Where Used report, shown following the Element Component
Used By report, displays each Endevor element that is dependent upon the element(s)
specified for the report, along with its relative dependency level in the hierarchy.

Chapter 13. Using the Endevor Synchronize Facility 13-15

13.5 The Synchronize Reports

COPYRIGHT (C) Computer Associates, INC., 2��2 Endevor PAGE: 1

 RELEASE X.XX SERIAL XXXXXX

CONRPT 97: ENDEVOR ELEMENT COMPONENT USED BY REPORT

DEPTH ENVIRONMENT SYSTEM SUBSYS NAME TYPE STAGE FP ENV FP SYS FP SUBSYS FP NAME FP TYPE STG ERROR

===== =========== ======= =================== ======== ===== =========== ======= ========= ========== ======== === ========

��� DEV NDVR361 BASE BC1P$SMR LNK 2 DEV NDVR361 BASE BC1P$SMR LNK 2 SYVA��1E

�.�1 DEV NDVR361 BASE BC1P$SMR ASMPGM 2 DEV NDVR361 BASE BC1P$SMR ASMPGM 2 SYVA��1E

�..�2 DEV NDVR361 XP $$REGVAL ASMMAC 2 DEV NDVR361 XP $$REGVAL ASMMAC 2 FPVL��3E

�..�2 DEV NDVR361 XP $BSTEQ ASMMAC 2 DEV NDVR361 XP $BSTEQ ASMMAC 2 FPVL��3E

�..�2 DEV NDVR361 XP $BTRACE ASMMAC 2 DEV NDVR361 XP $BTRACE ASMMAC 2 FPVL��3E

�..�2 DEV NDVR361 BASE $ESTAE ASMMAC 2 DEV NDVR361 BASE $ESTAE ASMMAC 2 FPVL��3E

�..�2 DEV NDVR361 XP $FUNC ASMMAC 2 DEV NDVR361 XP $FUNC ASMMAC 2 FPVL��3E

�..�2 DEV NDVR361 BASE $IMR ASMMAC 2 DEV NDVR361 BASE $IMR ASMMAC 2 FPVL��3E

�..�2 DEV NDVR361 XP $MLBHDR ASMMAC 2 DEV NDVR361 XP $MLBHDR ASMMAC 2 FPVL��3E

�..�2 DEV NDVR361 XP $MODEND ASMMAC 2 DEV NDVR361 XP $MODEND ASMMAC 2 FPVL��3E

�..�2 DEV NDVR361 XP $MODNTRY ASMMAC 2 DEV NDVR361 XP $MODNTRY ASMMAC 2 FPVL��3E

�..�2 DEV NDVR361 BASE @IMRDS ASMMAC 2 DEV NDVR361 BASE @IMRDS ASMMAC 2 FPVL��3E

�..�2 DEV NDVR361 BASE CIMDPARM ASMMAC 2 DEV NDVR361 BASE CIMDPARM ASMMAC 2 SYELE��4

�..�2 DEV NDVR361 BASE CIO1DSCT ASMMAC 2 DEV NDVR361 BASE CIO1DSCT ASMMAC 2 FPVL��3E

�..�2 DEV NDVR361 BASE C1BMDSCT ASMMAC 2 DEV NDVR361 BASE C1BMDSCT ASMMAC 2 FPVL��3E

�..�2 DEV NDVR361 BASE C1ESTAE ASMMAC 2 DEV NDVR361 BASE C1ESTAE ASMMAC 2 FPVL��3E

�..�2 DEV NDVR361 BASE C1MSGGEN ASMMAC 2 DEV NDVR361 BASE C1MSGGEN ASMMAC 2 FPVL��3E

�..�2 DEV NDVR361 BASE C1SETHRC ASMMAC 2 DEV NDVR361 BASE C1SETHRC ASMMAC 2 FPVL��3E

�..�2 DEV NDVR361 BASE C1TTDSCT ASMMAC 2 DEV NDVR361 BASE C1TTDSCT ASMMAC 2 FPVL��3E

�..�2 DEV NDVR361 BASE PRBDSECT ASMMAC 2 DEV NDVR361 BASE PRBDSECT ASMMAC 2 FPVL��3E

..�2 INT NDVRMVS BASE @SMRSYNC ASMMAC 2 INT NDVRMVS BASE @SMRSYNC ASMMAC 2

..�2 PRD NDVR36� XP $$ABCD ASMMAC 2 PRD NDVR36� XP $$ABCD ASMMAC 2

..�2 PRD NDVR36� XP $$ABSEXP ASMMAC 2 PRD NDVR36� XP $$ABSEXP ASMMAC 2

..�2 PRD NDVR36� XP $$ENDUP ASMMAC 2 PRD NDVR36� XP $$ENDUP ASMMAC 2

..�2 PRD NDVR36� XP $$MSG ASMMAC 2 PRD NDVR36� XP $$MSG ASMMAC 2

..�2 PRD NDVR36� XP $$NUM ASMMAC 2 PRD NDVR36� XP $$NUM ASMMAC 2

..�2 PRD NDVR36� XP $$OPLIST ASMMAC 2 PRD NDVR36� XP $$OPLIST ASMMAC 2

..�2 PRD NDVR36� XP $$QPL ASMMAC 2 PRD NDVR36� XP $$QPL ASMMAC 2

..�2 PRD NDVR36� XP $$REGPTR ASMMAC 2 PRD NDVR36� XP $$REGPTR ASMMAC 2

..�2 PRD NDVR36� XP $$RES ASMMAC 2 PRD NDVR36� XP $$RES ASMMAC 2

..�2 PRD NDVR36� XP $$VECFNC ASMMAC 2 PRD NDVR36� XP $$VECFNC ASMMAC 2

..�2 PRD NDVR36� XP $$YN ASMMAC 2 PRD NDVR36� XP $$YN ASMMAC 2

..�2 PRD NDVR36� XP $BABEND ASMMAC 2 PRD NDVR36� XP $BABEND ASMMAC 2

..�2 PRD NDVR36� XP $BREGEQU ASMMAC 2 PRD NDVR36� XP $BREGEQU ASMMAC 2

..�2 PRD NDVR36� XP $BSBDS ASMMAC 2 PRD NDVR36� XP $BSBDS ASMMAC 2

..�2 PRD NDVR36� XP $BSTGLST ASMMAC 2 PRD NDVR36� XP $BSTGLST ASMMAC 2

..�2 PRD NDVR36� XP $BTIME ASMMAC 2 PRD NDVR36� XP $BTIME ASMMAC 2

�..�2 PRD NDVR36� BASE $CBLDS ASMMAC 2 PRD NDVR36� BASE $CBLDS ASMMAC 2 SYELE��4

..�2 PRD NDVR36� XP $CLCL ASMMAC 2 PRD NDVR36� XP $CLCL ASMMAC 2

..�2 PRD NDVR36� XP $CLRSTG ASMMAC 2 PRD NDVR36� XP $CLRSTG ASMMAC 2

..�2 PRD NDVR36� BASE $CONFDS ASMMAC 2 PRD NDVR36� BASE $CONFDS ASMMAC 2

13.5.3.1 Element Component Use by Report Fields

The Element Component Used By report fields are described below.

Report Field Description

Depth The Endevor identifier for a specific depth of an element
relationship.

Environment The Endevor environment name for the element.

System The Endevor system name for the element.

Subsystem The Endevor subsystem for the element.

Name The element name.

Type The element's type.

Stage The stage in the software life cycle of this element.

13-16 Utilities Guide

13.5 The Synchronize Reports

Report Field Description

Fp Env The Endevor footprint environment name for the element
when the footprint was created.

Fp Sys The Endevor footprint system name for the element when
the footprint was created.

Fp Subsys The Endevor footprint subsystem for the element when the
footprint was created.

Fp Name The element name.

Fp Type The element's type when the footprint was created.

Stg The stage number when the footprint was created.

Error This column contains message numbers indicating
processing errors or some form of error condition. To
determine the error condition, look up the number in this
column in the Error Codes and Messages Guide.

COPYRIGHT (C) Computer Associates, INC., 2��2 Endevor PAGE: 1

 RELEASE X.XX SERIAL XXXXXX

CONRPT 98: ENDEVOR ELEMENT COMPONENT WHERE USED REPORT

DEPTH ENVIRONMENT SYSTEM SUBSYSTEM NAME TYPE STAGE FP ENV FP SYS FP SUBSYS FP NAME FP TYPE STG ERROR

====== =========== ======= ========= ========== ======== ===== =========== ======= ========= ========== ======== === ========

��� DEV NDVR361 BASE $$$PRMCK ASMMAC 2 DEV NDVR361 BASE $$$PRMCK ASMMAC 2 FPVL��3E

�.�1 DEV NDVR361 BASE BC1PPKEX ASMPGM 2 DEV NDVR361 BASE BC1PPKEX ASMPGM 2 SYVA��1E

�..�2 DEV NDVR361 BASE BC1PPKEX LNK 2 DEV NDVR361 BASE BC1PPKEX LNK 2 SYVA��1E

�.�1 DEV NDVR361 BASE C1GSEXTI ASMPGM 2 DEV NDVR361 BASE C1GSEXTI ASMPGM 2 SYVA��1E

�..�2 DEV NDVR361 BASE C1GSEXTI LNK 2 DEV NDVR361 BASE C1GSEXTI LNK 2 SYVA��1E

��� DEV NDVR361 BASE $$$PRMDS ASMMAC 2 DEV NDVR361 BASE $$$PRMDS ASMMAC 2 FPVL��3E

�.�1 DEV NDVR361 BASE BC1PESSI ASMPGM 2 DEV NDVR361 BASE BC1PESSI ASMPGM 2 SYVA��1E

�..�2 DEV NDVR361 BASE C1GSEXTI LNK 2 DEV NDVR361 BASE C1GSEXTI LNK 2 SYVA��1E

�.�1 DEV NDVR361 BASE BC1PPKEX ASMPGM 2 DEV NDVR361 BASE BC1PPKEX ASMPGM 2 SYVA��1E

�..�2 DEV NDVR361 BASE BC1PPKEX LNK 2 DEV NDVR361 BASE BC1PPKEX LNK 2 SYVA��1E

�.�1 DEV NDVR361 BASE C1GSEXTI ASMPGM 2 DEV NDVR361 BASE C1GSEXTI ASMPGM 2 SYVA��1E

�..�2 DEV NDVR361 BASE C1GSEXTI LNK 2 DEV NDVR361 BASE C1GSEXTI LNK 2 SYVA��1E

�.�1 DEV NDVR361 BASE ENCSAUTH ASMPGM 2 DEV NDVR361 BASE ENCSAUTH ASMPGM 2 SYVA��1E

�.�1 DEV NDVR361 BASE ENCSTFMT ASMPGM 2 DEV NDVR361 BASE ENCSTFMT ASMPGM 2 SYVA��1E

�.�1 DEV NDVR361 BASE ENCSXSMF ASMPGM 2 DEV NDVR361 BASE ENCSXSMF ASMPGM 2 SYVA��1E

�..�2 DEV NDVR361 BASE ENCSXSMF LNK 2 DEV NDVR361 BASE ENCSXSMF LNK 2 SYVA��1E

�.�1 DEV NDVR361 BASE ENRASW�� ASMPGM 2 DEV NDVR361 BASE ENRASW�� ASMPGM 2 SYVA��1E

��� DEV NDVR361 BASE $ARBDS ASMMAC 2 DEV NDVR361 BASE $ARBDS ASMMAC 2 FPVL��3E

�.�1 DEV NDVR361 BASE C1BM41�� ASMPGM 2 DEV NDVR361 BASE C1BM41�� ASMPGM 2 SYVA��1E

�..�2 DEV NDVR361 BASE C1BM41�� LNK 2 DEV NDVR361 BASE C1BM41�� LNK 2 SYVA��1E

�.�1 DEV NDVR361 BASE C1BM411� ASMPGM 2 DEV NDVR361 BASE C1BM411� ASMPGM 2 SYVA��1E

�..�2 DEV NDVR361 BASE C1BM41�� LNK 2 DEV NDVR361 BASE C1BM41�� LNK 2 SYVA��1E

��� DEV NDVR361 BASE $ARLDS ASMMAC 2 DEV NDVR361 BASE $ARLDS ASMMAC 2 FPVL��3E

�.�1 DEV NDVR361 BASE C1BM41�� ASMPGM 2 DEV NDVR361 BASE C1BM41�� ASMPGM 2 SYVA��1E

�..�2 DEV NDVR361 BASE C1BM41�� LNK 2 DEV NDVR361 BASE C1BM41�� LNK 2 SYVA��1E

�.�1 DEV NDVR361 BASE C1GS���� ASMPGM 2 DEV NDVR361 BASE C1GS���� ASMPGM 2 SYVA��1E

�.�1 DEV NDVR361 BASE C1SSACTN ASMPGM 2 DEV NDVR361 BASE C1SSACTN ASMPGM 2 SYVA��1E

�.�1 DEV NDVR361 BASE C1SSBARQ ASMPGM 2 DEV NDVR361 BASE C1SSBARQ ASMPGM 2 SYVA��1E

�.�1 DEV NDVR361 BASE C1SSFFUN ASMPGM 2 DEV NDVR361 BASE C1SSFFUN ASMPGM 2 SYVA��1E

�..�2 DEV NDVR361 BASE C1SSFFUN LNK 2 DEV NDVR361 BASE C1SSFFUN LNK 2 SYVA��1E

��� DEV NDVR361 BASE $AUTHDS ASMMAC 2 DEV NDVR361 BASE $AUTHDS ASMMAC 2 FPVL��3E

�.�1 DEV NDVR361 BASE BC1PPKEX ASMPGM 2 DEV NDVR361 BASE BC1PPKEX ASMPGM 2 SYVA��1E

�..�2 DEV NDVR361 BASE BC1PPKEX LNK 2 DEV NDVR361 BASE BC1PPKEX LNK 2 SYVA��1E

�.�1 DEV NDVR361 BASE C1GSEXTI ASMPGM 2 DEV NDVR361 BASE C1GSEXTI ASMPGM 2 SYVA��1E

�..�2 DEV NDVR361 BASE C1GSEXTI LNK 2 DEV NDVR361 BASE C1GSEXTI LNK 2 SYVA��1E

�.�1 DEV NDVR361 BASE ENCSAUTH ASMPGM 2 DEV NDVR361 BASE ENCSAUTH ASMPGM 2 SYVA��1E

��� DEV NDVR361 BASE $BC1EQ ASMMAC 2 DEV NDVR361 BASE $BC1EQ ASMMAC 2 FPVL��3E

Chapter 13. Using the Endevor Synchronize Facility 13-17

13.5 The Synchronize Reports

13.5.3.2 Element Component Where Used by Report Fields

The Element Component Where Used report fields are described below.

Report Field Description

Depth The Endevor identifier for a specific depth of an element
relationship.

Environment The Endevor environment name for the element.

System The Endevor system name for the element.

Subsystem The Endevor subsystem for the element.

Name The element name.

Type The element's type.

 Stage The stage in the software life cycle of this element.

Fp Env The environment name for the element when the footprint
was created.

Fp sys The system name for the element when the footprint was
created.

Fp Subsys The subsystem for the element when the footprint was
created.

Fp Name The element name.

Fp Type The element's type when the footprint was created.

Stg The stage number when the footprint was created.

Error Message This column contains message numbers indicating
processing errors or some form of error condition. To
determine the error condition, look up the number in this
column in the Error Codes and Messages Guide.

13.5.4 Synchronize Log Report

Synchronize places errors whose message code begin with “ENNSYNC” in the
Endevor Synchronization Log Report (DDname NDVRLOG). These errors are
generally DB2-related (if you have Endevor for DB2 installed), or they document fatal
errors that caused the Synchronize Facility to terminate processing. For more
information about the error messages, refer to the Error Codes and Messages Guide.

The Synchronize log report (DDname NDVRLOG2) is generated whenever the
Synchronize facility is executed. It contains messages describing each error that the
Synchronize facility encountered during processing, whether or not processing
terminates. For example, a data error due to a failed footprint validation does not
terminate Synchronize processing, but rather appears and is described in the Log
report.

13-18 Utilities Guide

13.5 The Synchronize Reports

A sample Synchronization log report follows.

ENNSYEL E��3: ERROR OCCURRED ON ELEMENT. ENV: INT SYSTEM: NDVRMVS SUBSYSTEM: BASE NAME: BC1PAL1� TYPE: ASMPGM STAGE: 2

FPVL��3E: NO FOOTPRINT MATCH ANYWHERE.

ENNSYEL E��3: ERROR OCCURRED ON ELEMENT. ENV: INT SYSTEM: NDVRMVS SUBSYSTEM: BASE NAME: BC1PC1PR TYPE: LNK STAGE: 2

FPVL��3E: NO FOOTPRINT MATCH ANYWHERE.

ENNSYEL E��3: ERROR OCCURRED ON ELEMENT. ENV: INT SYSTEM: NDVRMVS SUBSYSTEM: BASE NAME: CONWRITE TYPE: ASMPGM STAGE: 2

FPVL��3E: NO FOOTPRINT MATCH ANYWHERE.

ENNSYEL E��3: ERROR OCCURRED ON ELEMENT. ENV: INT SYSTEM: NDVRMVS SUBSYSTEM: BASE NAME: BC1PIMGR TYPE: LNK STAGE: 2

FPVL��3E: NO FOOTPRINT MATCH ANYWHERE.

ENNSYEL E��3: ERROR OCCURRED ON ELEMENT. ENV: INT SYSTEM: NDVRMVS SUBSYSTEM: BASE NAME: BC1PIMGR TYPE: ASMPGM STAGE: 2

FPVL��3E: NO FOOTPRINT MATCH ANYWHERE.

ENNSYEL E��3: ERROR OCCURRED ON ELEMENT. ENV: INT SYSTEM: NDVRMVS SUBSYSTEM: BASE NAME: BC1PIMBC TYPE: ASMPGM STAGE: 2

FPVL��3E: NO FOOTPRINT MATCH ANYWHERE.

ENNSYEL E��3: ERROR OCCURRED ON ELEMENT. ENV: INT SYSTEM: NDVRMVS SUBSYSTEM: BASE NAME: BC1PSRVA TYPE: ASMPGM STAGE: 2

FPVL��3E: NO FOOTPRINT MATCH ANYWHERE.

ENNSYEL E��3: ERROR OCCURRED ON ELEMENT. ENV: INT SYSTEM: NDVRMVS SUBSYSTEM: BASE NAME: BC1PVSIO TYPE: LNK STAGE: 2

FPVL��3E: NO FOOTPRINT MATCH ANYWHERE.

ENNSYEL E��3: ERROR OCCURRED ON ELEMENT. ENV: INT SYSTEM: NDVRMVS SUBSYSTEM: BASE NAME: BC1PVSIO TYPE: ASMPGM STAGE: 2

FPVL��3E: NO FOOTPRINT MATCH ANYWHERE.

ENNSYEL E��8: ERROR OCCURRED ON FOOTPRINT FOR MEMBER: BSTPCOMP DATASET: BST.INTMVSS2.LOADLIB

ENNSYEL E��9: MULTIPLE INSTANCE OF ELE. ENV: INT SYSTEM: NDVRMVS SUBSYSTEM: BASE NAME: BC1TTAPE TYPE: ASMPGM STAGE: 2

ENNSYEL E��3: ERROR OCCURRED ON ELEMENT. ENV: INT SYSTEM: NDVRMVS SUBSYSTEM: XP NAME: BSTPDOPS TYPE: LNK STAGE: 2

FPVL��3E: NO FOOTPRINT MATCH ANYWHERE.

ENNSYEL E��3: ERROR OCCURRED ON ELEMENT. ENV: INT SYSTEM: NDVRMVS SUBSYSTEM: XP NAME: BSTPDSTG TYPE: ASMPGM STAGE: 2

FPVL��3E: NO FOOTPRINT MATCH ANYWHERE.

ENNSYEL E��3: ERROR OCCURRED ON ELEMENT. ENV: INT SYSTEM: NDVRMVS SUBSYSTEM: XP NAME: BSTPOPGM TYPE: ASMPGM STAGE: 2

FPVL��3E: NO FOOTPRINT MATCH ANYWHERE.

Chapter 13. Using the Endevor Synchronize Facility 13-19

13.5 The Synchronize Reports

13-20 Utilities Guide

 Index

A
Activating PITR journaling 10-4
ADJUST statement 2-3, 2-19
Adjusting ELIB data sets 2-19
Allocating

a new PDS or PDS/E 1-5
BDAM ELIB data set 2-14
ELIB data set 2-13
Endevor LIB data set 1-5
new CA-Panvalet or CA-Librarian data set 1-5
VSAM ELIB data set 2-15

B
Backing up

Endevor LIB BDAM data sets 1-17
Endevor LIB data sets 1-16
Endevor LIB VSAM data sets 1-16
using Unload/Reload/Validate utilities 1-17

Base and delta libraries 1-2
defining 1-4
space requirements 1-5

BC1JFUP1 JCL sample 4-11
BC1JFUP2 JCL sample 4-13
BC1JJARC JCL sample 10-9
BC1JRELD JCL sample 12-17
BC1JRMCF JCL sample 1-9
BC1JRPKG JCL sample 1-12
BC1JUNLD JCL sample 12-8
BC1JVALD JCL sample 12-21
BC1JYNC JCL sample 13-6
BC1PFOOT 13-6
BC1PNCPY utility 2-2, 2-11, 2-30
BC1PNLIB utility 2-2, 2-3, 2-18, 2-19, 2-21, 2-22
BC1PNLST utility 2-2, 2-10, 2-22
BSTPCOMP JCL sample 4-3, 4-5
BSTPCOMP utility

controlling compare output 4-3
IEBUPDTE request card generator 4-11

BSTPCOMP utility (continued)
JCL sample 4-3, 4-5
return codes 4-10
sample output 4-8

C
CA-Librarian

allocating a new data set 1-5
compressing libraries 1-15
expanding -INC statements 6-1
expanding libraries 1-15

CA-Panvalet
allocating a new data set 1-5
compressing libraries 1-15
expanding ++INCLUDE statements 6-1
expanding libraries 1-15

Changes Panel for Load Module Summary 3-6
CLEAR statement 8-11
COMPARE statement 4-4
Comparing 4-1

contents of two PDS or PDS/E members and/or
sequential files 4-1

Compressing
CA-Librarian or CA-Panvalet libraries 1-15
Endevor LIB data sets 1-15
files 1-8
master control file 1-9
package data sets 1-12
PDS or PDS/E libraries 1-15

CONCALL utility 5-2
CONRPT94 (Related Entity Report) 13-13
CONRPT97 and CONRPT98 (Element Component

Reports) 13-15
Converting to or from ELIB format 2-30
COPY statement 2-11

Index X-1

D
Defining

base and delta libraries 1-4
Endevor files 1-4
Endevor listing library 1-6
processor load library 1-6
source output library 1-7

E
Element Component Reports (CONRPT97 and

CONRPT98) 13-15
ELIB data sets

adjusting 2-19
adjusting space allocation in existing 2-3
allocating and initializing 2-13
allocation bitmap 2-25
basics 2-2
converting to or from ELIB format 2-30
copying between Endevor supported library

types 2-11
expanding 2-18
expanding existing 2-3
initializing space allocated to 2-3
inquiring against directories and/or members 2-10
printing data set analysis information 2-28
printing data set header information 2-22
printing information about 2-3, 2-22
printing member information 2-25
printing target directory page information 2-27
reinitializing 2-17
reorganizing directory pages 2-21
reorganizing ELIB directories 2-3

Endevor data sets
base and delta libraries 1-2
Endevor listing library 1-2
master control file 1-2
package data set 1-2
processor load library 1-2
source output library 1-2

Endevor Data Validation Report 8-12, 8-18
Endevor files defining 1-4
Endevor LIB data sets

advantages of 1-4
allocating and initializing 1-5
backing up 1-16
BDAM, backing up 1-17
compressing 1-15
expanding 1-15
VSAM, backing up 1-16

Endevor LIB. See ELIB data sets
Endevor listing library 1-2

defining 1-6
Endevor Load Execution Log 8-12, 8-16
Endevor Load Execution Report 8-13, 8-18
Endevor Load Execution Summary 8-13, 8-19
Expand Includes Control Statement Summary

Report 6-22
Expand Includes Execution Report 6-23
Expand Includes Summary Report 6-23
Expand Includes utility

control statement processing mode 6-14
default location processing mode 6-11
description 6-1
ENXIN and ENXOUT DD statements 6-12
how it works 6-3
idnetifying the INCLUDE member 6-8
input and output data sets 6-5
JCL parameter 6-16
library sequence numbers 6-10
monitoring components 6-7
operating considerations 6-6
partitioned data sets 6-10
processing modes 6-5
SCL 6-18
security 6-7
specifying INCLUDE libraries 6-10
working with CA-Librarian files 6-8
working with CA-Panvalet files 6-8
working with COBOL COPY statements 6-9

EXPAND statement 2-3
Expanding

CA-Librarian or CA-Panvalet libraries 1-15
ELIB data sets 2-18
Endevor LIB data sets 1-15
existing ELIB data sets 2-3
files 1-8
master control file 1-9
package data sets 1-12
PDS or PDS/E libraries 1-15

F
Files

backing up 1-16
expanding or compressing 1-8
maintaining 1-8
recovery 1-18

X-2 Utilities Guide

G
Generating control cards from an Endevor element 4-11

H
History Panel for Load Module Summary Elements 3-7

I
IDCAMS utility 1-16, 2-15
IEBGENER utility 1-17
IEBUPDTE request card generator 4-11
INITIALIZE statement 2-3
Initializing

BDAM ELIB data set 2-14
ELIB data set 2-13
Endevor LIB data set 1-5
space allocated to ELIB data sets 2-3
VSAM ELIB data set 2-15

INQUIRE statement 2-3, 2-10
INQUIRY statement 2-22, 2-27
Invocation utility 5-2

J
JCL samples

BC1JFUP1 4-11
BC1JFUP2 4-13
BC1JJARC 10-9
BC1JRELD 12-17
BC1JRMCF 1-9
BC1JRPKG 1-12
BC1JSYNC 13-6
BC1JUNLD 12-8
BC1JVALD 12-21
BSTPCOMP 4-3, 4-5

Journal Recovery Execution Report 10-27
Journal Recovery Execution Report - Data Set Activity

Summary 10-29
Journal Recovery Execution Report - Journal Input

Record Summary 10-28
Journal Recovery Execution Report - Processor Execution

Summary 10-30
Journal Recovery Execution Report - SCL Statement

Summary 10-30
Journal Recovery Execution Report - Transaction

Detail 10-27

L
LDMAMS CA-L-Serv utility 10-22
LDMPARM member 10-13
Libraries monitoring 1-8
Library conversion utilities

about the conversion job stream 7-5
building load SCL 7-13
building reference data set 7-10
CA-Panvalet libraries 7-3
deleting output data sets 7-9
element classification 7-6
how the conversion process works 7-3
identifying superset members 7-16
library management conversion process 7-3
phase 1 - analyze 7-5
phase 2 - load 7-18
phase 3 - validate 7-20
PROC definition 7-7

LOAD MEMBER statement 8-5
Load modules

getting ready to support 3-9
how Endevor controls 3-3
viewing information 3-4

Load utility
creating requests 8-3
footprint override exit 8-22
how it works 8-3
LOAD request rules 8-6
Load request syntax 8-5
process 8-15
requests 8-5
reviewing reports 8-4
sample exit (C1BMLXIT) 8-23

M
Maintaining files 1-8
Master control file 1-2

compressing 1-9
expanding 1-9

Member Validation Report 7-22
Monitoring

libraries 1-8
space utilization 1-8

N
NDVRC1 5-2
NDVRPARM member 10-13

Index X-3

P
Package data set 1-2
Package data sets

compressing 1-12
expanding 1-12

Panels
Changes for Load Module Summary 3-6
History for Load Module Summary Elements 3-7
Summary of Levels and Element Master 3-4

PDS or PDS/E allocating a new 1-5
PDS or PDS/E libraries

compressing 1-15
expanding 1-15

Performing
periodic backups of Endevor 10-21

PITR
activating journaling 10-4
disable PITR journaling 10-23
enabling journaling 10-8
implementation scenarios 10-17
journaling 10-5
LDMPARM member 10-13
managing PITR journal files 10-4
multiple CPU implementation, local journaling 10-19
multiple CPU implementation, remote

journaling 10-18
NDVRPARM member 10-13
off-loading journal data sets 10-6
performing 10-22
performing periodic backups of Endevor 10-21
requirements 10-3
single CPU implementation 10-17

Point in Time Recovery. See PITR
Printing

data set analysis information 2-28
ELIB data set header information 2-22
ELIB data set information 2-22
ELIB member information 2-25
ELIB target directory page information 2-27
information about an ELIB data set 2-3

Processor load library 1-2
defining 1-6

Processor samples
delete for load modules 3-10
generate for load modules 3-9

R
Recovery 1-18

Recovery utility 10-23
Reinitializing ELIB data sets 2-17
Related Entity Report (CONRPT94) 13-13
Reload function

control card 12-11
locking during reload processing 12-15
reload and packages 12-14
reloading element information 12-13
reloading master control file information 12-12
sample control cards 12-17
sample JCL 12-17
using 12-14
what Reload does 12-12

REORG statement 2-3
Reorganizing

ELIB directories 2-3
ELIB directory pages 2-21

Reports
Element Component Reports (CONRPT97 and

CONRPT98) 13-15
Endevor Data Validation Report 8-12, 8-18
Endevor Load Execution Log 8-12, 8-16
Endevor Load Execution Report 8-13, 8-18
Endevor Load Execution Summary 8-13, 8-19
Expand Includes Control Statement Summary

Report 6-22
Expand Includes Execution Report 6-23
Expand Includes Summary Report 6-23
Journal Recovery Execution Report 10-27
Journal Recovery Execution Report - Data Set Activity

Summary 10-29
Journal Recovery Execution Report - Journal Input

Record Summary 10-28
Journal Recovery Execution Report - Processor

Execution Summary 10-30
Journal Recovery Execution Report - SCL Statement

Summary 10-30
Journal Recovery Execution Report - Transaction

Detail 10-27
Member Validation Report 7-22
Related Entity Report (CONRPT94) 13-13
Search and Replace Control Statement Summary

Report 11-33, 11-40, 11-42, 11-46
Search and Replace Utility Execution Report 11-34,

11-41, 11-43, 11-46
Search and Replace Utility Summary Report 11-35,

11-43, 11-47
Synchronize Log Report 13-18

X-4 Utilities Guide

S
Search and Replace Control Statement Summary

Report 11-33, 11-40, 11-42, 11-46
Search and Replace utility

compare column ranges 11-27
description 11-1
execution JCL 11-15
exits 11-6
how it works 11-3
operating considerations 11-5
processing modes 11-3
replacement mode 11-12
search 11-3
SEARCH ELEMENTS SCL 11-17
search string 11-3
search-only mode 11-10
security 11-5
serializing the element 11-6
text replacement 11-27
usage scenarios 11-37
validate mode 11-9

Search and Replace Utility Execution Report 11-34,
11-41, 11-43, 11-46

Search and Replace Utility Summary Report 11-35,
11-43, 11-47

SEARCH ELEMENTS statement 11-17
SET statement 8-8
Source output library 1-2

defining 1-7
Space requirements base and delta libraries 1-5
Space utilization monitoring 1-8
Statements

ADJUST 2-3, 2-19
CLEAR 8-11
COMPARE 4-4
COPY 2-11
EXPAND 2-3
EXPAND INCLUDES 6-18
INITIALIZE 2-3
INQUIRE 2-3, 2-10
INQUIRY 2-22, 2-27
LOAD MEMBER 8-5
REORG 2-3
SEARCH ELEMENTS 11-17
SET 8-8
SYNCHRONIZE 13-8

Summary of Levels and Element Master panel 3-4
Synchronize

how it works 13-3
input to 13-3

Synchronize (continued)
output entity list 13-11
output files 13-11
output from 13-4
return codes 13-4
typical uses 13-3
using 13-6

Synchronize Log Report 13-18
SYNCHRONIZE statement 13-8

U
Unload function

control card 12-3
full unloads 12-5
locking during unload processing 12-7
package unloads 12-5
recommendations for using 12-7
sample control cards 12-8
sample JCL 12-8
validation during unload 12-6
what Unload does 12-5

Unload/Reload/Validate utilities
backing up using 1-17
recovery using 1-18

user invocation utility 5-2
Utilities

BC1PNCPY 2-2, 2-11, 2-30
BC1PNLIB 2-2, 2-3, 2-18, 2-19, 2-21, 2-22
BC1PNLST 2-2, 2-10, 2-22
BSTPCOMP 4-1
CA-L-Serv LDMAMS 10-22
Expand Includes 6-1
IDCAMS 1-16, 2-15
IEBGENER 1-17
Load 8-1
Recovery 10-7, 10-23
Search and Replace 11-1
Unload/Reload/Validate 1-17, 1-18, 12-1
utilities 5-2

V
Validate function

control card 12-19
sample control card 12-21
sample JCL 12-21
using 12-21
what Validate does 12-20

Index X-5

	Bookshelf
	Utilities Guide
	Contents
	Chapter 1. File Definition and Maintenance
	1.1 Endevor Data Sets
	1.2 Defining the Endevor Files
	1.2.1 Overview
	1.2.2 Advantages of Endevor LIB Data Sets
	1.2.3 Defining Base and Delta Libraries
	1.2.3.1 Space Requirements for Base and Delta Libraries
	1.2.3.2 To Allocate a New PDS or PDS/ E
	1.2.3.3 To Allocate a New CA- Panvalet or CA- Librarian Data Set
	1.2.3.4 To Allocate and Initialize a New Endevor LIB Data Set

	1.2.4 Defining an Endevor Listing Library
	1.2.5 Defining a Processor Load Library
	1.2.6 Defining a Source Output Library or HFS Directory

	1.3 Maintaining the Files
	1.3.1 Overview
	1.3.2 Monitoring Space Utilization
	1.3.2.1 Monitoring Libraries

	1.3.3 Expanding or Compressing a File
	1.3.3.1 Expanding/ Compressing the Master Control File
	1.3.3.2 Expanding/ Compressing Package Data Sets
	1.3.3.3 Expanding/ Compressing PDS or PDS/ E Libraries
	1.3.3.4 Expanding/ Compressing CA- Librarian or CA- Panvalet Libraries
	1.3.3.5 Expanding/ Compressing Endevor LIB Data Sets

	1.4 Backup
	1.4.1 Backing Up Endevor LIB Data Sets
	1.4.2 Backing Up VSAM Endevor LIB Data Sets
	1.4.3 Backing Up BDAM Endevor LIB Data Sets
	1.4.4 Backup Using the Unload/ Reload/ Validate Utilities

	1.5 Recovery
	1.5.1 Recovery Using the Unload/ Reload/ Validate Utilities

	1.6 Documentation Overview
	1.6.1 Name Masking
	1.6.1.1 Usage

	1.6.2 Syntax Conventions
	1.6.2.1 Sample Syntax Diagram

	1.6.3 Syntax Diagram Explanation
	1.6.4 General Coding Information
	1.6.4.1 Valid Characters
	1.6.4.2 Incompatible Commands and Clauses
	1.6.4.3 Ending A Statement
	1.6.4.4 SCL Parsing Information

	1.6.5 Syntax for Long File and Path Names
	1.6.5.1 HFSFile Syntax Rules
	1.6.5.2 Path Name Syntax Rules
	1.6.5.3 Element Name Syntax Rules
	1.6.5.4 SCL Continuation Syntax Rules

	Chapter 2. Endevor LIB Data Sets
	2.1 Endevor LIB
	2.1.1 Basics

	2.2 BC1PNLIB Utility
	2.2.1 Overview
	2.2.2 BC1PNLIB Syntax
	2.2.2.1 Initialize Function Keywords
	2.2.2.2 Expand Function Keywords
	2.2.2.3 Adjust Function Keywords
	2.2.2.4 Reorganize Function Keywords
	2.2.2.5 Inquire Function Keywords

	2.3 BC1PNLST Utility
	2.3.1 BC1PNLST Syntax
	2.3.1.1 BC1PNLST Syntax Elements

	2.4 BC1PNCPY Utility
	2.4.1 BC1PNCPY Syntax
	2.4.1.1 BC1PNCPY Syntax Elements

	2.5 Allocating and Initializing an ELIB Data Set
	2.5.1 Overview
	2.5.2 Step 1: Select an Access Method
	2.5.3 Step 2: Estimate Space Requirements
	2.5.4 Step 3: Allocate and Initialize the Data Set
	2.5.4.1 Allocating and Initializing a BDAM ELIB Data Set
	2.5.4.2 Allocating and Initializing a VSAM ELIB Data Set
	2.5.4.3 Reinitializing a Endevor LIB Data Set

	2.6 Expanding Endevor LIB Data Sets
	2.6.1 Overview

	2.7 Adjusting Endevor LIB Data Sets
	2.7.1 Using the ADJUST Function

	2.8 Reorganizing Endevor LIB Directory Pages
	2.8.1 BC1PNLIB and Directory Pages

	2.9 Printing Endevor LIB Data Set Information
	2.9.1 Overview
	2.9.2 Printing Data Set Header Information
	2.9.2.1 Endevor LIB Allocation Bitmap

	2.9.3 Printing Member Information

	2.10 Printing Target Directory Page Information
	2.10.1 Overview
	2.10.2 Printing Data Set Analysis Information

	2.11 Converting To or From Endevor LIB Format
	2.11.1 Using BC1PNCPY for ﬁ Conversionﬂ

	Chapter 3. Load Module Support
	3.1 Module Capabilities
	3.2 How Endevor Controls Load Modules
	3.3 Viewing Load Module Information
	3.3.1 Overview
	3.3.2 Browse Panel for Load Module Summary Elements
	3.3.3 Changes Panel for Load Module Summary
	3.3.4 History Panel for Load Module Summary Elements

	3.4 Getting Ready to Support Load Modules
	3.4.1 Sample Processors
	3.4.1.1 Sample Delete Processor for Load Modules

	Chapter 4. BSTPCOMP Utility
	4.1 How Does BSTPCOMP Utility Work?
	4.2 Controlling Compare Output
	4.2.1 Overview
	4.2.2 No Overrides
	4.2.2.1 Sample JCL

	4.2.3 Control Card Execution
	4.2.3.1 Syntax
	4.2.3.2 Sample JCL

	4.2.4 PARM- Controlled Execution

	4.3 Sample Output
	4.4 Return Codes
	4.5 The IEBUPDTE Request Card Generator
	4.5.1 Overview
	4.5.2 Generating Control Cards from a Endevor Element
	4.5.3 Generating Control Cards When Two Members Differ

	Chapter 5. CONCALL-User Invocation Utility
	5.1 CONCALL
	5.1.1 The Benefits of CONCALL

	Chapter 6. Expand Includes Utility
	6.1 The Purose of the Expand Includes Utility
	6.1.1 Why Use the Expand Includes Utility?
	6.1.2 How Does the Expand Includes Utility Work?
	6.1.3 COPY Statement Examples
	6.1.4 Processing Modes
	6.1.5 About the Input and Output Data Sets

	6.2 Operating Considerations
	6.2.1 Overview
	6.2.2 Checking the Endevor Defaults Table
	6.2.3 Embedded and Looping INCLUDE Statements
	6.2.4 Superset Support
	6.2.5 Security
	6.2.6 Monitoring Components in the Expand Includes Utility

	6.3 Identifying the INCLUDE Member
	6.3.1 Overview
	6.3.2 Source File Format
	6.3.3 Working with CA- Panvalet Files
	6.3.4 Working with CA- Librarian Files
	6.3.5 Working with COBOL COPY Statements

	6.4 Specifying INCLUDE Libraries
	6.4.1 Overview
	6.4.2 The ENXINC
	6.4.3 Library Sequence Numbers
	6.4.4 Partitioned Data Sets

	6.5 Default Location Processing Mode
	6.5.1 Overview
	6.5.2 Execution JCL
	6.5.3 Providing a Member Name
	6.5.4 The ENXIN and ENXOUT DD Statements

	6.6 Control Statement Processing Mode
	6.6.1 Overview
	6.6.2 Processing Members
	6.6.3 Validating Input SCL
	6.6.4 Execution JCL

	6.7 The JCL Parameter
	6.7.1 Overview
	6.7.2 The PARM= Parameter
	6.7.3 The Member Name

	6.8 Expand Includes SCL
	6.8.1 Overview
	6.8.2 Syntax
	6.8.3 The EXPAND INCLUDES Clause
	6.8.4 The FROM Clause
	6.8.5 The TO Clause
	6.8.6 The OPTIONS Clauses

	6.9 Reports
	6.9.1 Overview
	6.9.2 Expand Includes Control Statement Summary Report
	6.9.3 Expand Includes Execution Report
	6.9.4 Expand Includes Summary Report

	Chapter 7. Library Conversion Utilities
	7.1 The Purpose of the Library Conversion Utilities
	7.2 The Library Management Conversion Process
	7.2.1 How Does the Conversion Process Work?
	7.2.2 Before You Begin: Run the Inventory Analyzer
	7.2.3 CA- Panvalet Libraries
	7.2.4 Handling Supersets
	7.2.5 Example

	7.3 Phase 1: Analyze
	7.3.1 Overview
	7.3.2 About the Conversion Job Stream
	7.3.3 Important Information
	7.3.4 Element Classification

	7.4 PROC Definition
	7.4.1 JCL
	7.4.2 What You Do

	7.5 Step 1: Delete Output Data Sets
	7.5.1 JCL
	7.5.2 About This Step
	7.5.3 What You Do

	7.6 Step 2: Build Reference Data Set
	7.6.1 JCL
	7.6.2 About This Step
	7.6.3 What You Do
	7.6.4 What Happens
	7.6.5 Example

	7.7 Step 3: Build Load SCL
	7.7.1 JCL
	7.7.2 About This Step
	7.7.3 What You Do
	7.7.4 What Happens
	7.7.5 Load Syntax Variables

	7.8 Step 4: Identify Superset Members
	7.8.1 JCL
	7.8.2 About This Step
	7.8.3 What You Do
	7.8.4 What Happens

	7.9 Phase 2: Load
	7.9.1 Overview
	7.9.2 About the Load Utility
	7.9.3 JCL
	7.9.4 What You Do
	7.9.5 Review the Load Utility Output

	7.10 Phase 3: Validate
	7.10.1 Overview
	7.10.2 How Does the Member Validation Program Work?
	7.10.3 Return Codes
	7.10.4 JCL
	7.10.5 About the JCL

	7.11 The Member Validation Report
	7.11.1 Overview
	7.11.2 Multiple Occurrences of the Member
	7.11.3 Sample Report
	7.11.4 Report Fields

	Chapter 8. Load Utility
	8.1 Putting the Load Utility to Work
	8.2 How Does the Load Utility Work?
	8.2.1 Creating Requests
	8.2.2 Reviewing Reports

	8.3 Endevor Load Utility Requests
	8.3.1 Overview
	8.3.2 Statements
	8.3.3 Load Request Syntax
	8.3.4 LOAD Request Rules
	8.3.4.1 Required Clauses
	8.3.4.2 Optional Clauses

	8.3.5 Set Statements
	8.3.5.1 SET FROM Statements
	8.3.5.2 SET TO Statements
	8.3.5.3 SET OPTIONS statements

	8.3.6 Clear Statements

	8.4 Load Utility Reports
	8.4.1 Overview
	8.4.2 Endevor Load Execution Log
	8.4.3 Endevor Data Validation Report
	8.4.4 Endevor Load Execution Report
	8.4.5 Endevor Load Execution Summary
	8.4.6 For Your Information

	8.5 A Working Example-- the Load Utility Process
	8.5.1 Overview
	8.5.2 Step 1: Load the Request
	8.5.3 Step 2: Execute the JCL
	8.5.4 Step 3: Review the Reports
	8.5.4.1 Load Request Numbers
	8.5.4.2 The Endevor Load Execution Log (DDname = C1BMLLOG)
	8.5.4.3 The Endevor Data Validation Report (DDname = C1BMLSYN)
	8.5.4.4 Endevor Load Execution Report (DDname = C1BMLDET)
	8.5.4.5 Endevor Load Execution Summary (DDname = C1BMLSUM)

	8.5.5 In Summary

	8.6 The Load Utility Footprint Override Exit
	8.6.1 Exit Operation
	8.6.1.1 Load Exit Control Block (@ LOADDS)

	8.6.2 Sample Exit (C1BMLXIT)

	Chapter 9. Notify Utility
	9.1 The Notification Utility
	9.2 Configuring the Notification Utility
	9.2.1 Universal Parameters
	9.2.2 Protocol- specific Parameters
	9.2.2.1 SMTP- specific Parameters
	9.2.2.2 TSO- specific Parameters
	9.2.2.3 TPX- specific Parameters
	9.2.2.4 XMIT- specific Parameters

	Chapter 10. Point in Time Recovery
	10.1 What is Point in Time Recovery (PITR)?
	10.1.1 Endevor without PITR Journaling 10.1.2 Endevor with PITR Journaling 10.1.3 PITR Requirements
	10.1.4 Managing PITR Journal Files
	10.1.5 Activating Journaling

	10.2 Journaling
	10.2.1 How it Works
	10.2.2 Example
	10.2.3 Off- loading Journal Data Sets

	10.3 The Recovery Utility
	10.3.1 How it Works

	10.4 Enabling Journaling
	10.4.1 Steps
	10.4.2 Step 1. Determine Naming Conventions
	10.4.3 Step 2. Write Archive JCL
	10.4.4 Step 3. Allocate Journal and Archive Data Sets
	10.4.4.1 Sizing Considerations
	10.4.4.2 How Many Journal Data Sets?

	10.4.5 Step 4. Define the Journaling Components to CA- L- Serv
	10.4.5.1 The CA- L- Serv PROC
	10.4.5.2 LDMPARM
	10.4.5.3 NDVRPARM

	10.4.6 Step 5. Modify the C1DEFLTS Table
	10.4.6.1 Example
	10.4.6.2 Sample TYPE= MAIN Section of C1DEFLTS
	10.4.6.3 Sample TYPE= ENVIRONMENT Section of C1DEFLTS

	10.4.7 Reassemble the C1DEFLTS Table

	10.5 Implementation Scenarios
	10.5.1 Single CPU Implementation
	10.5.1.1 How to Implement

	10.5.2 Multiple CPU Implementation, Remote Journaling
	10.5.2.1 How to Implement
	10.5.2.2 Performance Considerations

	10.5.3 Multiple CPU Implementation, Local Journaling
	10.5.3.1 How to Implement
	10.5.3.2 Performance Considerations

	10.6 Performing Periodic Backups of Endevor
	10.7 Performing Point in Time Recovery
	10.7.1 Step 1. Execute the CA- L- Serv LDMAMS Utility
	10.7.2 Step 2. Disable PITR Journaling
	10.7.3 Step 3. Restore the Data Sets to Be Recovered
	10.7.4 Step 4. Execute the Recovery Utility
	10.7.4.1 Recovery Utility Syntax
	10.7.4.2 Examples

	10.8 The Journal Recovery Execution Report
	10.8.1 Overview
	10.8.2 Journal Recovery Execution Report Š Transaction Detail
	10.8.3 Journal Recovery Execution Report Š Journal Input Record Summary
	10.8.4 Journal Recovery Execution Report Š Data Set Activity Summary
	10.8.5 Journal Recovery Execution Report Š SCL Statement Summary
	10.8.6 Journal Recovery Execution Report Š Processor Execution Summary

	Chapter 11. Search And Replace Utility
	11.1 Using the Search And Replace Utility
	11.2 How the Search & Replace Utility works
	11.2.1 The Search
	11.2.2 The Search String
	11.2.3 Processing Modes

	11.3 Operating Considerations
	11.3.1 Overview
	11.3.2 Miscellaneous Operating Considerations
	11.3.3 Security
	11.3.4 Serializing the Element
	11.3.5 Exits

	11.4 Compare vs. In Columns vs. Bounds Are
	11.4.1 Definitions
	11.4.2 Additional Information

	11.5 Validate Mode
	11.5.1 Overview
	11.5.2 The VALIDATE Parameter

	11.6 Search- Only Mode
	11.6.1 Overview
	11.6.2 Search- Only Mode Processing
	11.6.3 Generating Search Elements SCL
	11.6.4 The ENSSCLOT File

	11.7 Replacement Mode
	11.7.1 Overview
	11.7.2 Replacement Mode Processing
	11.7.3 Processing Checkpoints

	11.8 Execution JCL
	11.8.1 Overview
	11.8.2 JCL
	11.8.3 ENSSCLIN DD Statement
	11.8.4 PARM= Statement

	11.9 Search Elements SCL
	11.9.1 Overview
	11.9.2 Syntax
	11.9.3 Search Elements Clauses
	11.9.4 From Clause
	11.9.5 For Clause
	11.9.6 Where Clauses
	11.9.7 Options Clauses

	11.10 Text Replacement
	11.10.1 Overview
	11.10.2 Compare Column Ranges
	11.10.3 IN COLUMNS Rules
	11.10.4 BOUNDS ARE Rules
	11.10.5 Shorter Replacement String
	11.10.6 Example
	11.10.7 Longer Replacement String
	11.10.8 Examples
	11.10.9 Multiple Occurrences of the Search String

	11.11 Reports
	11.11.1 Overview

	11.12 Search and Replace Control Statement Summary Report
	11.13 Search and Replace Utility Execution Report
	11.14 Search and Replace Utility Summary Report
	11.15 Usage Scenarios
	11.15.1 Overview
	11.15.2 Setting the Scene
	11.15.3 The Test Elements
	11.15.4 HELLO. C
	11.15.5 HELLO. COB
	11.15.6 HELLO. TXT

	11.16 Scenario 1: Simple Search in Search- Only Mode
	11.16.1 Overview
	11.16.2 SCL
	11.16.3 Output
	11.16.3.1 The Search and Replace Control Statement Summary Report
	11.16.3.2 The Search and Replace Utility Execution Report

	11.17 Scenario 2: Simple Search with Replace in Search- Only Mode
	11.17.1 Overview
	11.17.2 SCL
	11.17.3 Output

	11.18 Scenario 3: Search Environment Map, Replace, and Update
	11.18.1 Overview
	11.18.2 SCL
	11.18.3 Output

	Chapter 12. Unload/ Reload/ Validate
	12.1 The Purpose of the Unload/ Reload/ Validate Utility
	12.2 Unload Function
	12.2.1 Overview
	12.2.2 Unload Control Card
	12.2.2.1 Description of Parameters

	12.2.3 What Purpose Does Unload Serve?
	12.2.3.1 Full Unloads
	12.2.3.2 Package Unloads
	12.2.3.3 Validation During Unload
	12.2.3.4 Package Unloads

	12.2.4 Recommendations for Using Unload
	12.2.4.1 Locking During Unload Processing
	12.2.4.2 Example 1
	12.2.4.3 Example 2

	12.2.5 Sample Unload Control Cards
	12.2.6 Sample Unload JCL
	12.2.6.1 Notes on Sample Unload JCL

	12.3 Reload Function
	12.3.1 Overview
	12.3.2 Reload Control Card
	12.3.2.1 Description of Parameters

	12.3.3 What Reload Does
	12.3.3.1 Reloading Master Control File Information
	12.3.3.2 Reloading Element Information
	12.3.3.3 Reload and Packages

	12.3.4 Using Reload
	12.3.4.1 Locking During Reload Processing

	12.3.5 Example 1. Base/ Delta Recovery
	12.3.6 Example 2: VSAM Master Control File Recovery
	12.3.7 Example 3: Package Data Set Recovery
	12.3.8 Sample Reload Control Cards
	12.3.9 Sample Reload JCL
	12.3.9.1 Notes on Sample RELOAD JCL

	12.4 Validate Function
	12.4.1 Overview
	12.4.2 Validate Control Card
	12.4.2.1 Description of Parameters

	12.4.3 What Validate Does
	12.4.4 Using Validate
	12.4.5 Sample Validate Control Card
	12.4.6 Sample Validate JCL

	Chapter 13. Using the Endevor Synchronize Facility
	13.1 How to Use the Synchronize Facility
	13.2 Typical Uses of Synchronize
	13.2.1 How Synchronize Works
	13.2.1.1 Input to Synchronize
	13.2.1.2 Output from Synchronize
	13.2.1.3 Synchronize Return Codes

	13.3 Using the Synchronize Facility
	13.3.1 Overview
	13.3.2 JCL for the Synchronize Facility
	13.3.3 Syntax for the Synchronize Facility

	13.4 The Synchronize Output Files
	13.4.1 Overview
	13.4.2 Synchronize Output Entity List
	13.4.2.1 Endevor Generate Element SCL File

	13.5 The Synchronize Reports
	13.5.1 Overview
	13.5.2 Related Entity Report (CONRPT94)
	13.5.2.1 Related Entity Report Field Descriptions

	13.5.3 Element Component Reports (CONRPT97 and CONRPT98)
	13.5.3.1 Element Component Use by Report Fields
	13.5.3.2 Element Component Where Used by Report Fields

	13.5.4 Synchronize Log Report

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	P
	R
	S
	U
	V

