AllFusion™ Endevor®
Change Manager

Quick Reference Guide for Administrators
4.0

a)

Computer Associates™

ENQRA400

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is’ without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights’ as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

First Edition, August 2002

© 2002 Computer Associates International, Inc. (CA)
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Contents

Chapter 1. Using the Quick Reference Guide for Administrators 1-1
1.1 Documentation Overview 1-2
1.2 Documentation Overview 1-3
1.3 NameMasking 1-4
131 USage 1-4
14 Syntax Conventions 1-6
141 Sample Syntax Diagram 1-9
1.4.2 Syntax Diagram Explanation 1-9
143 General Coding Information 1-11
1431 Vadid Characters 1-11
1.4.3.2 Incompatible Commands and Clauses 1-12
1433 Ending A Statement 1-12
1434 SCL Parsing Information 1-12

15 Syntax for Long Fileand Path Names 1-14
151 HFSFileSyntax Rules 1-14
152 Path Name Syntax Rules 1-15
153 Element Name Syntax Rules 1-15
154 SCL Continuation Syntax Rules 1-15
Chapter 2. Implementation 2-1
2.1 Levelsof Functionality 2-2
2.2 Programs to Defineto Your Security Package 2-3
2.3 Preparing for Endevor 2-4
2.4 Defining Endevor Files 2-5
24.1 Defining Base and Delta Libraries 2-5
242 AllocatingaNew PDS 2-5
2.4.3 Allocating a New CA-Panvalet or CA-Librarian DataSet 2-5
2.4.4 Allocating a New Endevor LIB(ELIB) DataSet 2-5
245 Allocating a New Endevor Listing Library 2-5
2.4.6 Allocating a New Endevor Load Library 2-6
2.4.7 Allocating a New Endevor Source Output Library 2-6
Chapter 3. Processors i 31
3.1 Endevor Actionsand Processorso 3-2
3.2 Processor Keywords 3-3
3.3 Processor Symbolics 3-4
3.3.1 Site-Defined Symbolics 3-7
3.3.1.1 Defining Site Symbolics oL 3-7

3.4 Processor Utilities 39

Contents iii

35 Supported JCL Keywords 3-10

3.6 Unsupported JCL Keywords for Processors 311
Chapter 4. Tracing Facilities 4-1
Chapter 5. EXits 51
51 Endevor Exit Points 5-2
5.2 User Exit Control Blocks 5-3
5.3 Package Exit Control Blocks 5-4
Chapter 6. Endevor LIB Utilities 6-1
6.1 BCIPNLIB Utility 6-2
6.1.1 Syntax 6-2
6.2 BCIPNCPY Utility 6-4
6.21 Syntax 6-4
6.3 BCIPNLST Utility 6-5
6.3.1 Syntax 6-5
6.4 The Inquire Option for BC1IPNLIB and BC1PNLST Utility 6-6
6.5 The Member Option in the BC1IPNLIB or BC1IPNLST Utility 6-8
6.6 The Directory Option in BC1IPNLIB or BCIPNLST Utility 6-9
6.7 The Analyze Option inthe BCIPNLIB Utility 6-10
Chapter 7. Endevor Reports 7-1
7.1 Endevor Assembler Reports 7-2
Chapter 8. Batch Environment Administration 81
8.1 Batch Environment Administration Edit Commands 82
811 Command Names 8-2
812 Object TYPES 8-2
8.2 Build SCL Syntax 8-3
8.2.1 Build SCL for Approver Group Syntax 8-3
8.2.2 Build SCL for Approver Relation Syntax 8-3
8.2.3 Build SCL for Environment Syntax 83
8.2.4 Build SCL for Processor Group Syntax 8-3
8.2.5 Build SCL for Processor Symbol Syntax, 8-4
8.2.6 Build SCL for Shipment Destination Syntax 8-4
8.2.7 Build SCL for Subsystem Syntax 8-4
8.2.8 Build SCL for System Syntax 8-4
8.29 Build SCL for Type Syntax 8-5
8.2.10 Build SCL for Type Sequence Syntax 85
83 Define SCL Syntax 8-6
8.3.1 Define Approver Group Syntax 8-6
8.3.2 Define Approver Relation Syntax 8-6
8.3.3 Define Processor Group Syntax 8-7
8.3.4 Define Processor Symbol Syntax 8-7
8.3.5 Define Shipment Destination Syntax 8-8
8.3.6 Define Shipment Mapping Rule Syntax 8-8
8.3.7 Define Subsystem Syntax 89
8.3.8 Define System Syntax 8-10
839 DefineTypeSyntax 8-11
8.3.10 Define Type Sequence Syntax 8-12

iv Quick Reference Guide for Administrators

84 Deete SCL Syntax 8-13

84.1
8.4.2
843
84.4
845
8.4.6
8.4.7
8.4.8
8.4.9

Delete Approver Group Syntax 8-13
Delete Approver Relation Syntax 8-13
Delete Processor Group Syntax 8-13
Delete Processor Symbol Syntax 8-14
Delete Shipment Destination Syntax 8-14
Delete Shipment Mapping Rule Syntax 8-14
Delete Subsystem Syntax 8-14
Delete System Syntax 8-15
Delete Type Syntax 8-15

Contents v

vi Quick Reference Guide for Administrators

Chapter 1. Using the Quick Reference Guide for
Administrators

Endevor is an integrated set of management tools that is used to automate, control and
monitor your software development life cycle. Endevor is implemented and runs
under OS/390 and above, within the TSO ISPF environment, and in batch. Use this
guide as a quick reference for Endevor administrative functions.

Note: Throughout this book any references to:
m AllFusion™: Endevor Change Manager
B eTrust™: CA-ACF2
m elrust™: CA-Top Secret
® AllFusion™: CA-Librarian
. AllFusion™: CA-Panvalet

will simply be referred to as:
= Endevor

CA-ACF2

CA-Top Secret

m CA-Librarian

n CA-Panvdet

Chapter 1. Using the Quick Reference Guide for Administrators 1-1

1.1 Documentation Overview

1.1 Documentation Overview

1-2 Quick Reference Guide for Administrators

1.2 Documentation Overview

1.2 Documentation Overview

This manual is part of a comprehensive documentation set that fully describes the
features and functions of Endevor and explains how to perform everyday tasks. For a
complete list of Endevor manuals, see the PDF Table of Contents file in the PDF
directory, or the Bookmanager Bookshelf file in the Books directory.

The following section describes product conventions.

Chapter 1. Using the Quick Reference Guide for Administrators 1-3

1.3 Name Masking

1.3 Name Masking

A name mask allows you to specify all names, or al names beginning with a
particular string, to be considered when performing an action.
Name masks are valid on:

= Element names

m System, subsystem, and type names within FROM clauses

® Report syntax

® |SPF panels

® APl requests

Name masks are not valid on:
® Environment names
» Element names in the following situations:
— When entering a LEVéd in a statement
— When using the MEMber clause with a particular action

— When building a package
1.3.1 Usage

There are three ways to mask names: by using the wildcard character (*), by using the
placeholder character (%), and by using both together.

The wildcard (*) can be used in one of two ways to specify externa file names:

. When coded as the only character of a search string, Endevor returns all members
of the search field. For example, if you coded the statement ADD ELEMENT *,
all elements would be added.

» When coded as the last character of a search string, Endevor returns all members
of the search field beginning with the characters in the search string preceding the
wildcard. For example, the statement ADD ELEMENT UPD* would add all
elements beginning with "UPD", such as UPDATED or UPDATE.

Note: You cannot use more than one wildcard in a string. The statement ADD
ELEMENT U*PD* would result in an error.

The placeholder (%) can also be used in one of two ways:

= When coded as the last character in a string, Endevor returns all members of the
search field, beginning with the characters in the search string preceding the
placeholder, but which have no more characters than were coded in the search
string. If you coded the statement ADD ELEMENT UPD%, only those elements

1-4 Quick Reference Guide for Administrators

1.3 Name Masking

with four-character-long names beginning with "UPD" (UPD1 or UPDA, for
example) would be added.

m |t isalso possible to use the placeholder multiple times in a single search string.
The statement ADD ELEMENT U%PD% would return all elements with
five-character-long names that have U as the first character, and PD third and
fourth.

The wildcard and the placeholder can be used together, provided that the wildcard
appears only at the end of the search string and is used only once. An example of a
statement using both the wildcard and the placeholder is ADD ELEMENT U%D*.
This statement would add elements with names of any length that have U as the first
character and D as the third.

Chapter 1. Using the Quick Reference Guide for Administrators 1-5

1.4 Syntax Conventions

1.4 Syntax Conventions

Endevor uses the IBM standard for representing syntax. The following table explains
the syntax conventions:

Syntax Explanation

»h
>

Represents the beginning of a syntax
Statement.

\4
A

Represents the end of a syntax
statement.

v

Represents the continuation of a
syntax statement to the following line.

A\ 4

Represents the continuation of a
syntax statement from the preceding

line.
»»—KEYword > Represents a required keyword. Only
the uppercase |etters are necessary.
»»—variable > Represents a required user-defined

variable.

Represents an optiona keyword.
LKEonrdJ Optiona keywords appear below the
syntax line. If coded, only the
uppercase |etters are necessary.

\ 4
\ 4
\ 4
A

Represents an optional user-defined
Lvariable—l variable. Optional variables appear

»h
>

\ 4
A

Represents a choice of required,
mutually exclusive keywords. You
must choose one and only one
keyword.

\
A

below the syntax line.
> KEYword ONE
EKEonr‘d TWO—
KEYword THRee—

Represents a choice of required,
mutually exclusive, user-defined
variables. You must choose one and
only one variable.

\ 4
A

> variable one
Evar‘iable two—
variable three—

Represents a choice of optional,
KEYword ONE— mutually exclusive keywords.

KEYword TWO—
KEYword THRee—

[T1T]
A\
A

Optiona keywords appear below the
syntax line.

1-6 Quick Reference Guide for Administrators

1.4 Syntax Conventions

Syntax

Explanation

variable one—
variable two—

variable three—

\ 4
A

Represents a choice of optional,
mutually exclusive, user-defined
variables. Optional variables appear
below the syntax line.

.

A\

KEYword ONE
KEYword TWO—
KEYword THRee—

\ 4
A

Represents a choice of optional
keywords. The stars (®) indicate that
the keywords are not mutually
exclusive. Code no keyword more
than once.

.

A\

\ 4
A

variable one—
variable two—

variable three—

Represents a choice of optional
user-defined variables. The stars (%)
indicate that the variables are not
mutually exclusive. Code no variable
more than once.

KEYword ONE—
»—EKEonrd TWO
KEYword THRee—

\4
A

Represents a choice of required,
mutually exclusive keywords, one of
which is the default. In this example,
KEYword ONE is the default keyword
because it appears above the syntax
line.

variable one—
»—Evariable two
variable three—

\4
A

Represents a choice of required,
mutually exclusive, user-defined
variables, one of which is the default.
In this example, variable one is the
default variable because it appears
above the syntax line.

A4

|—KEonrd ONE—

\

KEYword TWO—
KEYword THRee—

v
A

Represents a choice of optional,
mutually exclusive keywords, one of
which is the default. In this example,
KEYword ONE is the default keyword
because it appears above the syntax
line.

|—variable one—

A4
\ 4

i:variable two—
variable three—

\4
A

Represents a choice of optional,
mutually exclusive, user-defined
variables, one of which is the defaullt.
In this example, variable one is the
default variable because it appears
above the syntax line.

> (—¥ g)

riable

A

Represents a required variable that can
be repeated. Separate each occurrence
with a comma and enclose any and all
variables in a single set of parenthesis.

Chapter 1. Using the Quick Reference Guide for Administrators 1-7

1.4 Syntax Conventions

Explanation

Represents an optional variable that
can be repeated. Separate each
occurrence with a comma and enclose
any and all variables in a single set of
parenthesis.

»—(variable)

\
A

Represents a variable which must be
enclosed by parenthesis.

»—'variable'

A\
A

Represents a variable which must be
enclosed by single quotes.

»—"variable"

A\
A

Represents a variable which must be
enclosed by double quotes.

»—| FRAGMENT REFERENCE |——><

Represents a reference to a syntax
fragment. Fragments are listed on the
lines immediately following the
required period at the end of each
syntax statement.

FRAGMENT:
F—KEYword—variable

Represents a syntax fragment.

[
| 2

Represents the period required at the
end of all syntax statements.

1-8 Quick Reference Guide for Administrators

1.4 Syntax Conventions

1.4.1 Sample Syntax Diagram

\4

»—ARChive ELEment—element-name N

THRough element-name
THRu——I—

»—FROm—ENV1ironment—env-name—SYStem—sys-name

v

v

»—SUBsystem—subsys-name—TYPe—type-name

>—|:STAge—stage-id 7 TO I_FILe N dd-name
STAge NUMber—stage-no DDName

|—WHEr‘e it ”—l
CCID
PRO

|—OPTion =t m]

CCId—ccid

COMment—comment
OVErride SIGNOut
BYPass ELEment DELete—

v

v

»
| 2

\ 4
A

»
>

CCID:
—EQual— s
—cc1d (* leid) |
L CURrent =
oLt
RETrieve
PRO:
F—PROcessor GROup LEQua] (réroup name) I
1.4.2 Syntax Diagram Explanation
Syntax Explanation
ARChive ELEment The keyword ARChive ELEment appears on the main
element-name ling, indicating that it is required. The variable
element-name, also on the main line, must be coded.
THRough / THRu The keywords THRough and THRu appear below the
element-name main line, indicating that they are optional. They are
also mutually exclusive.
FROmM ENVironment ... Each keyword and variable in this segment appear on
TY Pe type-name the main line, indicating that they are required.

STAge stage-id / STAge The keywords STAge and STAge NUMber appear on
NUMber stage-no and below the main line, indicating that they are
required, mutually exclusive keywords.

Chapter 1. Using the Quick Reference Guide for Administrators 1-9

1.4 Syntax Conventions

Syntax

Explanation

TO ... dd-name

The keyword TO appears on the main line, indicating
that it is required. The keywords FILe and DDName
appear on and below the main line, indicating that they
are required, mutually exclusive keywords. The variable
dd-name also appears on the main line, indicating that it
is required.

WHEre clause

This clause appears below the main line, indicating that
it is optional. The keyword WHEre appears on the main
line of the clause, indicating that it is required. CCID
and PRO are syntax fragments that appear below the
main ling, indicating that they are optional. The stars
() indicate that they are not mutually exclusive. For
details on the CCID and PRO fragments, see the bottom
of this table.

OPTion clause

This clause appears below the main line, indicating that
it isoptional. The keyword OPTion appears on the
main line of the clause, indicating that it is required.
The keywords CCld, COMment, OVErride SIGNOut,
and BY Pass ELEment DEL ete all appear below the
main ling, indicating that they are optional. The stars
(®) indicate that they are not mutually exclusive.

CCID fragment

The keyword CCld appears on the main line, indicating
that it is required. The OF clause appears below the
main line, indicating that it is optional. If you code this
clause, you must code the keyword OF, as it appears on
the main line of the clause. CURrent, ALL, and
RETrieve appear above, on, and below the main line of
the clause, indicating that they are required, mutually
exclusive keywords. CURrent appears above the main
line, indicating that it is the default. If you code the
keyword OF, you must choose one and only one of the
keywords.

The keywords EQual and = appear above and below the
main line, indicating that they are optional, mutually
exclusive keywords. EQual appears above the main

line, indicating that it is the default. Y ou can include
only one. The variable ccid appears on the main line,
indicating that it is required. The arrow indicates that
you can repeat this variable, separating each instance
with a comma. Enclose any and all variables in a single
set of parenthesis.

1-10 Quick Reference Guide for Administrators

1.4 Syntax Conventions

Syntax

Explanation

PRO fragment

The keyword PROcessor GROup appears on the main
ling, indicating that it is required. The keywords EQual
and = appear on and below the main line, indicating that
they are required, mutually exclusive keywords. You
must include one. The variable group name appears on
the main line, indicating that it is required. The arrow
indicates that you can repeat this variable, separating
each instance with a comma. Enclose any and all
variables in a single set of parenthesis.

1.4.3 General Coding Information

In coding syntax, you must adhere to certain rules and guidelines regarding valid
characters, incompatible commands and clauses, and ending statements. In addition,
knowing how the SCL parser processes syntax will help you resolve errors and
undesired results. The following sections outline these rules and guidelines.

1.4.3.1 Valid Characters

The following characters are allowed when coding syntax:
» Upper case letters
® Lower case letters
B Numbers
= Hyphen (-)
® National characters ($, #, @)

® Underscore ()

The following characters are allowed when coding syntax, but must be enclosed in

either single (") or double (") quotation marks:
® Space
" Tab
= New line
m Carriage return
» Comma (,)
® Period (.)
. Equal sign (=)
m Greater than sign (>)

® Lessthen sign (<)

Chapter 1. Using the Quick Reference Guide for Administrators 1-11

1.4 Syntax Conventions

» Parenthesis ()
» Single quotation marks
= Double quotation marks
A string containing single quotation marks must be enclosed in double quotation

marks. A string containing double quotation marks must be enclosed in single
guotation marks.

To remove information from an existing field in the database, enclose a blank space in
single or double quotation marks. For example, the following statement removes the
default CCID for user TCS:

DEFINE USER TCS
DEFAULT CCID " ".

The characters "*" and "%" are reserved for name masking. See the section “Name
Masking” earlier in this chapter for more information.

1.4.3.2 Incompatible Commands and Clauses

The following commands and clauses are mutually exclusive:
® THRough and MEMber clauses within any action except LIST

» Endevor location information (environment, system, subsystem, type, and stage)
and data set names (DSName)

® File names (DDName), data set names (DSName) and the PATH clause which is
mutually exclusive with the FILE or Data set clauses.

® The stage id (STAge / STAge ID) and the stage humber (STAge NUMber)
® The SET TO Endevor location information and the SET TO MEMber clause

® The HFSFile clause is mutually exclusive with a Member clause.
1.4.3.3 Ending A Statement

You must enter a period at the end of each statement. If no period is found, you
receive an error message and the job terminates.

1.4.3.4 SCL Parsing Information
® The SCL parser does not look for information in columns 73-80 of the input.

Therefore, be sure that all relevant information is coded in columns 1-72.

m The SCL parser does not catch duplicate clauses coded for an SCL request. If
you code the same clause twice, SCL uses the Boolean "AND" to combine the
clauses. If the result is invalid, you receive an error message.

» |f you enter an asterisk (*) in column 1, the remainder of the line is considered a
comment by the SCL parser and is ignored during processing.

1-12 Quick Reference Guide for Administrators

1.4 Syntax Conventions

= Any value found to the right of the period terminating the SCL statement is
considered a comment by the SCL parser and is ignored during processing.

Chapter 1. Using the Quick Reference Guide for Administrators 1-13

1.5 Syntax for Long File and Path Names

1.5 Syntax for Long File and Path Names

The following considerations apply to the Path clause for ADD, UPDATE, COPY and
RETRIEVE statements:

®» The PATH clause is mutualy exclusive with the FILE or Data Set clauses.
8 The HFSFILE clause is mutually exclusive with a Member clause.

® The path name must begin with a “/” and be terminated with a “/” and cannot be
followed by the file name.

» The HFS file name can be up to 255 bytes in length.
® The path name can be up to 768 bytes in length.

1.5.1 HFSFile Syntax Rules

A file name can be up to 255 characters long. Endevor supports only the "true"
POSIX sets and the additiona characters $, #, @. To be portable, the file name
should only contain characters in the POSIX portable file name character set. These
characters are as follows:

= Upper case letters

= Lower case letters

® Numbers

n Period (.)

» Hyphen (-)

» Nationa characters ($, #, @)

» Underscore ()
Do not include any nulls or slash characters in a file name.

Doublebyte characters are not supported in a file name and are treated as singlebyte
data. Using doublebyte characters in a file name may cause problems. For instance, if
you use a doublebyte character in which one of the bytesis a . (dot) or / (sash), the
file system treats this as a specia delimiter in the pathname.

The shells are case-sensitive, and distinguish characters as either uppercase or
lowercase. Therefore, FILE1L is not the same as filel.

A file name can include a suffix, or extension, that indicates its file type. An
extension consists of a period (.) and several characters. For example, files that are C
code could have the extension .c, as in the file name dbmod3.c. Having groups of
files with identical suffixes makes it easier to run commands against many files at
once.

1-14 Quick Reference Guide for Administrators

1.5 Syntax for Long File and Path Names

1.5.2 Path Name Syntax Rules
The path name value can be up to 768 characters long. It can contain only the
following characters:
m Upper case letters
B Lower case letters
= Numbers
® Period (.)
®* Hyphen ()
» National characters ($, #, @)
m Slash ()
B Plus (+)
1.5.3 Element Name Syntax Rules
The Element name can be up to 255 characters long. It can contain only the following
characters:
» Upper case letters
® Lower case letters
& Numbers
® Period (.)
= Hyphen (-)
= National characters ($, #, @)
» Underscore ()
Element names include a percent sign (%) in any column as a placeholder character in

most SCL. The final one or more characters may be replaced in SCL and some panels
with an asterisk (*) as a wild character for selection purposes.

1.5.4 SCL Continuation Syntax Rules

All SCL parameters that span multiple lines must be enclosed in single quotes. SCL
keyword parameters cannot span multiple lines—only the parameter values. The
syntax required to span a paramter value should lead with an apostrophe or quotation
mark at the beginning of the specification and a trailing apostrophe or quotation mark
of the value. Spaces that are not surrounded by non-blank characters will not be
included in the text string. Example:

ADD ELEMENT 'Spanned
ElementName' CCID 'This is the chan
ge control number'

Chapter 1. Using the Quick Reference Guide for Administrators 1-15

1.5 Syntax for Long File and Path Names

This would result in an element value of "SpannedElementName" and a CCID value of
"This is the change control number".

1-16 Quick Reference Guide for Administrators

Chapter 2. Implementation

Endevor is implemented and run under OS/390 and above, within the TSO |SPF
environment, and in batch. Read this section for information about:

» Levels of Functionality

® Programs to Define to Your Security Package
= Preparing for Endevor

» Defining Endevor Files

Chapter 2. Implementation 2-1

2.1 Levels of Functionality

2.1 Levels of Functionality

Endevor provides several levels of functionality. The functionality you enable depends
on how you plan to use Endevor at your site.

Level of Functionality Description

Inventory management This function creates and maintains
the Master Control File definitions.

Source management This function manages the element
source in base and delta libraries.

Output management This function manages the outputs
created by Endevor processors in
source output, output, listing, load,
and object libraries.

Configuration management This function assures that executables
include the current versions of al
input components, and tracks changes
in input components over time.

2-2 Quick Reference Guide for Administrators

2.2 Programs to Define to Your Security Package

2.2 Programs to Define to Your Security Package

Program pathing currently is available through both the CA-ACF2 and CA-Top Secret
security packages. Data set security is implemented through a special Endevor
dternate ID interface, using an assigned RACF user ID and optional password for
Endevor.

When using either CA-ACF2 or CA-Top Secret with program pathing, you must
define the top level programs that recognize Endevor as the program in control for
both foreground and batch processing. Resource rules must be written for the

following top level programs:

NDVRC1
C1BMS5000
BC1PNLST
IEFIIC
BC1PSRVL
BC1PNCPY
IEBCOPY
C1SM1000
C1BR1000
ENBE1000
C1BM3000
BC1PNLIB
ENBP1000

Chapter 2. Implementation 2-3

2.3 Preparing for Endevor

2.3 Preparing for Endevor

Complete the following steps to prepare for the Endevor implementation.

1. Establish system authorization. Some Endevor programs must reside in an
authorized load library. Y ou can make the authorized load library available in
either of the following ways:

» Create a new authorized load library specifically for Endevor and add it to
your system link list. The system linklist is defined in SYS1.PARMLIB
(LNKLSTnNn).

® Use an existing authorized library that is defined in your system link list.

2. ldentify the Endevor load module name NDVRCL1 to the authorized TSO program,
command, and service facility list. This process varies depending on the TSO
environment in which you are operating.

3. Activate the changes.

When you have added NDVRCL to the appropriate lists, and have made the
necessary changes to LNKLSTnn and IEAAPFnn, you can use the PARMLIB and
SETPROG commands to dynamically activate the changes or re-IPL the system.

Note: For more information see the Installation Guide.

2-4 Quick Reference Guide for Administrators

2.4 Defining Endevor Files

2.4 Defining Endevor Files

You establish your Endevor files during installation (see the Installation Guide). The
instructions below explain how to set up additional base and delta libraries, processor
listing libraries, processor load libraries, and source output libraries,

2.4.1 Defining Base and Delta Libraries

Base and delta libraries can be Endevor LIBS(ELIBS), PDS, PDS/E, CA-Panvalet, or
CA-Librarian. In Delta libraries the minimum LRECL is 255. A base library should
be the same type as its delta, except when defining an HFS base library. A base
library can also be an HFS directory, defined to OS/390 Open Edition.

2.4.2 Allocating a New PDS

To alocate a new PDS, use |SPF/PDF option 3 (Utilities), option 2 (Data sets), or any
suitable IBM utility (such as IEFBR14). Specify the DCB below, assigning a block
size appropriate to your disk device:

DCB=(RECFM=VB,LRECL=record length,BLK SIZE=Dblock size)

Note: Source output libraries can also be HFS directories defined to OS/390 Open
Edition.

2.4.3 Allocating a New CA-Panvalet or CA-Librarian Data Set

To alocate a new CA-Panvalet or CA-Librarian data set, refer to the appropriate
product documentation.

2.4.4 Allocating a New Endevor LIB(ELIB) Data Set

To allocate a new ELIB data set use the Endevor LIB utilities BC1PNLIB,
BC1PNLST, and BC1PNCPY. For more information see the Utilities Guide.

2.4.5 Allocating a New Endevor Listing Library

To alocate a new Endevor listing library, use ISPF/PDF option 3 (Utilities), option 2
(Data sets), or any suitable IBM utility (such as IEFBR14). Specify the DCB below,
assigning a block size appropriate to your disk device:

DCB=(RECFM=VBA LRECL=137,BLKSIZE=block size)
Note: You must specify the number of directory blocks needed. One directory block

for every four listing members. For 33nn type devices, directory blocks are allocated
in increments of 45.

Chapter 2. Implementation 2-5

2.4 Defining Endevor Files

2.4.6 Allocating a New Endevor Load Library
To alocate a new Endevor load library, use |SPF/PDF option 3 (Utilities), option 2
(Data sets), or any suitable IBM utility (such as IEFBR14). Specify the DCB below,
assigning a block size appropriate to your disk device:

DCB=(RECFM=U,BLKSIZE=block size)

2.4.7 Allocating a New Endevor Source Output Library
To dlocate a new PDS, use | SPF/PDF option 3 (Utilities), option 2 (Data sets), or any
suitable IBM utility (such as IEFBR14). Specify the DCB below, assigning a block
size appropriate to your disk device:
DCB=(RECFM=FB,LRECL=80,BLKSIZE=block size) (fixed records)
or

DCB=(RECFM=VB,LRECL=rec-len,BLKSIZE=block size) (variable records)

Above, rec-len is the maximum record length (as specified when defining the element
type(s) that use this library), plus 4.

A base library can also be an HFS directory, defined to OS/390 open edition.

2-6 Quick Reference Guide for Administrators

Chapter 3. Processors

Endevor allows you to create and maintain processors. Coded using standard OS JCL,
processors instruct Endevor to modify, move, verify, delete, or create executable forms
of elements. Processors are specified in processor groups, which are in turn associated
with type definitions. The processor that executes for a given action depends on the
type and processor group involved in that action. Read this section for information
about:

Endevor Actions and Processors
Processor Keywords

Processor Symbolics

Processor Utilities

Unsupported JCL Keywords for Processors

For more information please refer to the Extended Processors Guide.

Chapter 3. Processors 3-1

3.1 Endevor Actions and Processors

3.1 Endevor Actions and Processors

The following table indicates the processors that Endevor actions invoke and the

options they provide.

This action Invokes this And provides these options
pr ocessor
Add Generate Processor group
Bypass generate processor
Archive Delete Bypass element delete
Delete Delete Bypass element delete
Generate Generate (and delete Processor group
if processor group
changes)
Move Move (default) or Bypass element delete
generate, and delete
Restore Generate Processor group
Bypass generate processor
Transfer Generate (default) or Processor group
move, and delete
Bypass generate processor
Bypass delete processor
Bypass element delete
Update Generate Processor group

Bypass generate processor

3-2 Quick Reference Guide for Administrators

3.2 Processor Keywords

3.2 Processor Keywords

The following table provides a listing and description of the keywords that are
specific to Endevor processor statements.

Keyword

Description and Format in Processors

FOOTPRNT

Causes Endevor footprints to be created or
verified.

FOOTPRNT=CREATE/VERIFY

MAXRC

Specifies the maximum acceptable return code for
ajob step.

MAXRC=nn

EXECIF

Permits execution of a specific step only if the
specified conditions are met.

EXECIF=value,op,value

BACKOUT

Allows you to maintain backout information on a
library by library basis, if you are using package
processing.

BACKOUT=nly

MONITOR

Monitors selected library data sets for component
relationships.

MONITOR=components/none

Chapter 3. Processors 3-3

3.3 Processor Symbolics

3.3 Processor Symbolics

Endevor symbolics can begin with either one or two ampersands—& or &&. A single
ampersand tells Endevor not to include the period in a resolved statement. A double
ampersand tells Endevor to retain the period in the resolved statement. The following
table describes Endevor symbolic parameters. Use the symbolics in italics for the
source location of MOVE or TRANSFER actions using the move processor. For al
actions that execute a generate or a delete processor, Endevor assigns these symbolics
the same values as those assigned to the corresponding symbolic beginning with & C1.

Symbolic (alias) Length Replaced in processor by the
&CI1ACTION 8 Action currently being executed.
&C1BASELIB 44 Base/image library for the type

specified in the action.
&CI1CCID 12 CCID specified for the action.
& CICOMMENT 40 Comment associated with the

action being executed.

&ClELEMENT 8 1-8 character name of the element
being processed. Names longer
than eight characters are truncated.

&C1ELMNT10 10 1-10 character name of the
element being processed.
Generally used to assign a name
to a CA-Panvalet member.

& C1ELMNT255 255 1-255 character name for element
names greater than 10 characters
and mixed/lower case names less
than 10 characters.

&CLELTYPE (&C1TY) 8 Type associated with the element
being processed.

& CLENVMNT (&C1EN) 8 Name of the current environment.

& C1FOOTPRT 64 Footprint of the element being
processed.

&CILEV 2 Level number for the element
being processed.

&C1PKGID 16 Name of the package being
executed. Blank if no package is
being executed.

& C1PRGRP 8 Name of the current processor

group.

3-4 Quick Reference Guide for Administrators

3.3 Processor Symbolics

Symbolic (alias) Length Replaced in processor by the

& C1SELMNT255 255 1-255 character name for elements
at the source location of actions
such as move and transfer.

&CI1SITE 1 Current site ID.

& C1STAGE (&C1ST) 8 Name of the current stage.

& C1STAGE1 (&C1ST1) 8 Stage 1 name. This symbolic
must be used for the target stage
name for a MOVE action.

&CLISTAGE?2 (&C1ST2) 8 Stage 2 name. This symbolic
must be used for the target stage
name for a MOVE action.

&CI1STGID (&C1Sl) 1 ID of the current stage.

&CI1STGID1 (&C1S11) 1 Stage 1 ID. This symbolic must
be used for the target stage ID for
a MOVE action.

&CI1STGID2 (&C1S12) 1 Stage 2 ID. This symbolic must
be used for the target stage ID for
aMOVE action.

& C1STGNUM (& C1SH) 1 Number of the current stage.

&C1SUBSYS (&C1SU) 8 Name of the current subsystem.

&CLSYSTEM (&C1SY) 8 Name of the current system.

& C1SELEMENT 8 Element name at the source of
MOVE or TRANSFER actions
that execute a move processor.

& C1SELMNT10 10 CA-Panvdet element name at the
source of MOVE or TRANSFER
actions that execute a move
processor.

&ClSELTYPE 8 Element type at the source of
MOVE or TRANSFER actions
that execute a move processor.

& C1SENVMNT 8 Environment name at the source
of MOVE or TRANSFER actions
that execute a move processor.

&C19.EV 2 Element level at the source of

MOVE or TRANSFER actions
that execute a move processor.

Chapter 3. Processors 3-5

3.3 Processor Symbolics

Symbolic (alias)

Length

Replaced in processor by the

& C1SPRGRP

Processor group name at the
source of MOVE or TRANSFER
actions that execute a move
processor.

& C1SSTAGE

Stage name at the source of
MOVE or TRANSFER actions
that execute a move processor.

& C1SSTAGE1L

Stage 1 name at the source of
MOVE or TRANSFER actions
that execute a move processor.

& C1SSTAGE2

Stage 2 name at the source of
MOVE or TRANSFER actions
that execute a move processor.

&CI1SSTGID

Stage ID at the source of MOVE
or TRANSFER actions that
execute a move processor.

&C1SSTGID1

Stage 1 ID at the source of
MOVE or TRANSFER actions
that execute a move processor.

&C1SSTGID2

Stage 2 ID at the source of
MOVE or TRANSFER actions
that execute a move processor.

& C1SSTGNUM

Stage number at the source of
MOVE or TRANSFER actions
that execute a move processor.

& C1SSUBSYS

Subsystem name at the source of
MOVE or TRANSFER actions
that execute a move processor.

& C1SSYSTEM

System name at the source of
MOVE or TRANSFER actions
that execute a move processor.

&C1SVER

Element version at the source of
MOVE or TRANSFER actions
that execute a move processor.

& C1USERID

User ID associated with the
current action.

& C1USRDSN

Data set name of the source for
Add or Update requests.

&ClUSRFILE

255

Source HFS file names for the
ADD or UPDATE requests.

3-6 Quick Reference Guide for Administrators

3.3 Processor Symbolics

Symbolic (alias) Length Replaced in processor by the

& C1USRMBR 10 Source member name for the Add
or Update requests.

& C1lUSRPTH 768 HFS path name of the source for
the ADD or UPDATE requests.

&C1VER 2 Version number of the element
being processed.

& CIXLANG 8 External language for the element
type.

3.3.1 Site-Defined Symbolics

Site-defined symbolics are user-defined symbolic values that you reference within
dataset name specifications for base, delta, source output, include libraries, and
processors (that is, you can use them wherever you can use Endevor symbolics). At
execution time, any site-defined symbolics referenced by a processor are stored with
the processor symboalics in the component data. If a site-level symboalic is also
specified as a processor symbolic, the processor symbolic (and processor symbolic
override) take precedence.

When Endevor is initialized, the site-defined symbolics are placed into memory.
When Endevor is terminated, the site symbolic storage is released. 1f more than one
Endevor task is executing, each task has its own discrete site symbolic storage.

To implement the use of site-defined symbolics, you must define the symbolic and its
data value in a table that is assembled and linked into an authorized load library.
Once this is done, you need to update the SYMBOLTBL parameter in the CIDEFLTS
table with the name of the site-defined symbolics table. These actions are described
below.

3.3.1.1 Defining Site Symbolics

Use the following format to define a symbolic and its data value in the site-defined
symbolics table:

$ESYMBOL SYMNAME=&#symbolname,SYMDATA=&symbolvalue

Chapter 3. Processors 3-7

3.3 Processor Symbolics

Item

Description

symbolname

The symbol name must begin with the # character and is 1 to 11
characters in length. The # indicates that the symbol is defined in
the site-defined symbolics table.

symbolvalue

The data value associated with the site symbolic is 1 to 70
characters in length, with no restrictions on the content of the data
If you do not specify a data value for a symbolic, Endevor treats it
as anull variable.

3-8 Quick Reference Guide for Administrators

3.4 Processor Ultilities

3.4 Processor Utilities

The following utilities are distributed with Endevor. You can include these utilities
anywhere in your processor logic, to perform the following functions.

Utility Function

BC1PDSIN Initialize/allocate data sets.

BC1PTMPO Execute TSO commands in a TSO environment. Acts
as aterminal monitoring program.

BC1PXFPI Install transportable footprints.

BSTCOPY Copy members from one PDS to another PDS which
allows the use of MONITOR=COMPONENTS and can
also be uses for PDS/ELIB.

C1BM3000 Execute Endevor from within a processor.

C1PRMGEN Creates 80-byte card images to pass as input control
statements.

CONDELE Delete member from a user library after verifying
footprint for the member.

CONLIST Manage output listings that are generated by processors.

CONRELE Include entities related to an element in a component list
when generating component list reports and when using
the LIST action.

CONWRITE Writes out current level of an element, optionally

expanding INCLUDE statements.

Chapter 3. Processors 3-9

3.5 Supported JCL Keywords

3.5 Supported JCL Keywords

For the most part, Endevor processors are written using standard OS JCL syntax.
Endevor supports most JCL parameters, including HFS (Hierarchical File System) JCL
parameters:

= DSNTYPE
" PATH
. PATHDISP
= PATHMODE
= PATHOPT
These parameters are fully documented in the IBM publications OS390 MVS JCL

Reference. For a complete list of unsupported JCL parameters see Appendix B in the
Extended Processors Guide.

For more information please see the Extended Processors Guide.

3-10 Quick Reference Guide for Administrators

3.6 Unsupported JCL Keywords for Processors

3.6 Unsupported JCL Keywords for Processors

Endevor supports most JCL parameters in Endevor processor statements. Endevor
processors do not support the following JCL keyword parameters.

Exec DD DCB Subparameters DDname
Statement Statement Subparameters
ACCT ACCODE BUFIN INTVL DSID
ADDRSPC AMP BUFMAX IPLTXID FLASH
DYNAMNBR BURST BUFOFF MODE MODIFY
PERFORM CHARS BUFOUT NTM MSVGP
PROC CHKPT OUTPUT

BUFSIZE PCI
RD CNTL QNAME

CODE PRTSP
REGION DYNAM REFDD
TIME CPRI RESERVE SPLIT

CYLOFL RKP SUBALLOC

FRID STACK

FUNC THRESH

GNCP TRTCH
Exec DD DCB Subparameters DDname
Statement Statement Subparameters
ACCT ACCODE BUFIN INTVL DSID
ADDRSPC AMP BUFMAX IPLTXID FLASH
DYNAMNBR BURST BUFOFF MODE MODIFY
PERFORM CHARS BUFOUT NTM MV SGP
PROC CHKPT BUFSIZE PCI OUTPUT
RD CNTL CODE PRTSP QONAME
REGION DYNAM CPRI RESERVE REFDD
TIME CYLOFL RKP SPLIT

FRID STACK SUBALLOC

FUNC THRESH

GNCP TRTCH

Chapter 3. Processors 3-11

3-12 Quick Reference Guide for Administrators

Chapter 4. Tracing Facilities

There are several tracing facilities available to you as an administrator of Endevor.
How you enable them depends on whether you are debugging a batch or foreground
problem.

» For foreground problems use:
aloc f(DDname) sysout(*)
» For batch problems use:

//DDname DD SY SOUT=*

At anytime you can route the output of the trace to a data set by replacing sysout.
» |n foreground:
dloc f(DDname) da(dsname)
= |n batch:
//ddname DD DSN=dsname,DISP=SHR

The DSN attributes for trace DSN should be:
LRECL=133,BLKSIZE=1330,RECFM=FB,DSORG=PS

The following table provides a list of available trace DDnames aong with their

descriptions.

DDname Description

EN$DBENV Traces calls to the Object Oriented 1/0O service made by the
Batch Environment Administration Facility.

EN$SDBPKG Traces calls to the Object Oriented 1/O service made by the
Batch Package Facility.

EN$SMES] ESlI SMF records trace.

ENSTRALC Allocation service trace.

ENSTRAPI API Trace

ENSTRAUI The alternate ID trace

Chapter 4. Tracing Facilities 4-1

DDname

Description

EN$TRCCI CCI for Webstation and the API
EN$TRCMP Delta compare trace

ENS$TRES ESl trace

ENS$TRFPV Prints details of component validation
ENS$TRGI1 General 10 trace—short

EN$TRGI2 General 10 trace—long

ENSTRITE If then else statement

EN$TRMOD Detailed module trace

ENSTRNMI Netman trace

EN$TROPT Optional feature table trace
ENSTRPAR Parser trace

EN$TRPKA Package Approval trace

ENS$TRPKG Package trace

EN$TRPRQ Print request block trace
ENS$TRPRS Processor symbolic substitution trace
EN$TRSRV Endevor server trace

ENSTRTMP Monitor trace

ENSTRVSF VSAM function trace

ENS$TRVSI VSAM 1/0O trace

ENSTRXIT Exit trace

4-2 Quick Reference Guide for Administrators

Chapter 5. Exits

Read this section for information about:
» Endevor Exit Points
m User Exit Control Blocks

m Package Exit Control Blocks

Chapter 5. Exits 5-1

5.1 Endevor Exit Points

5.1 Endevor Exit Points

Endevor provides seven exit points. The list below summarizes the exit point

functions.

Exit point

Occurs

1

After each Endevor security check.

2

Before an action is executed—in either foreground or
batch—after al input has been validated.

After an action has been completed and the MCF, base library,
and/or delta library have been updated for the action. If SMF
recording is in effect, this exit is called after the SMF record
is prepared, but before it is written out.

Called before exit 2 for add, update, retrieve processing, and
dataset validation.

At job initialization, either before the first action is executed
(batch), or before the first Endevor panel is displayed
(foreground).

Immediately before Endevor terminates processing.

Before and after each package function.

5-2 Quick Reference Guide for Administrators

5.2 User Exit Control Blocks

5.2 User Exit Control Blocks

When you invoke a user exit, Endevor formats a series of control blocks with
information relevant to the exit. Register 1 points to an address list, which in turn
points to the control blocks. The table below provides a list of the user control blocks
along with descriptions.

Control Block Description

$ECBDS This is the first and primary information block passed to
exit programs. It describes the current user exit interface.

$ENVDS Endevor passes this control block to programs written for
exits 2-4. It describes the environment used by the current
action request.

$REQDS Endevor passes this control block to programs written for

exits 1-4. It describes information associated with the
current request.

$ELMDS Endevor passes this block to programs written for exits 2-4.
It describes the element specified by the current action
request.

$FILDS Endevor passes this block to programs written for exits 2-4.

It describes the externa file used by the current action
request: either the source file for an ADD, UPDATE, or
RESTORE request, or the target file for an ARCHIVE or
RETRIEVE request.

Chapter 5. Exits 5-3

5.3 Package Exit Control Blocks

5.3 Package Exit Control Blocks

When you invoke a package exit, Endevor formats a series of control blocks with
information relevant to the exit function. Register 1 points to an address list, which in
turn points to the control blocks. The table below provides a list on the package exit
control blocks along with descriptions.

Control block

Description

$PECBDS

Contains information related to the current package
function, including the exit function, subfunction, cal type
literals and codes, return code and message fields. This is
the first and primary information block passed to the
package exit.

$PREQPDS

Contains information specific to the current package
function; specia flags, comment, package options, and so
forth.

$PHDRDS

Contains general historic package data. It exists and is
passed if the package exists. It includes data such as date
and time stamps for execution, cast, approval, and execution
history, etc.

$PFILDS

Contains data set information for external data sets. This
block is relevant to the package exit functions that have
external data sets.

$PACTREQ

Contains a source or target ID record extracted from the
package file on request from the user exit. After the record
is extracted, data such as environment, system, subsystem
and action is placed in this block and the parameter list.
This block is available to all exit functions on request only.

$PAPPREQ

Contains approver data extracted from the package file on
reguest from the user exit. Each block contains one group
per call. This block is also used to gather approver groups
from the user exit on the before-cast call, should the user
choose to send such a request. This block is available to all
exit functions on request only.

$PBODREQ

Contains backout data extracted from the package file on
request from the user exit. Each block contains one record
per call. This block is available to all exit functions on
reguest only.

$PSHPREQ

Contains ship data extracted from the package file on
request from the user exit. Each block contains one record
per call. This block is available to certain exit functions on
request only.

5-4 Quick Reference Guide for Administrators

5.3 Package Exit Control Blocks

Control block Description

$PSCLREQ Contains SCL statements extracted from the package file on
request from the user exit. Each block contains 1 to 10
SCL statements. This block is available to certain exit
functions on request only.

Chapter 5. Exits 5-5

5-6 Quick Reference Guide for Administrators

Chapter 6. Endevor LIB Utilities

Endevor LIB (ELIB) is a high performance alternative to OS partitioned data sets
under Endevor. You can organize Endevor base, delta, and listing libraries as ELIB
data sets. Read this section for information aboult:

» BCIPNLIB Utility

m BCIPNLST Utility

» BCIPNCPY Utility

® Data Set Header Information

= The Member Option in the BC1IPNLIB or BC1IPNLST Utility
® The Directory Option in BC1IPNLIB or BC1PNLST Utility

® The Analyze Option in the BC1PNLIB Utility

Chapter 6. Endevor LIB Utilities 6-1

6.1 BC1PNLIB Utility

6.1 BC1PNLIB Utility

Use the BC1PNLIB utility to set up, maintain, and print information about ELIB data

sets.

6.1.1 Syntax

»—INItial 1'ze—DDName—|_—_|—ddname
= l—DSName—I_—_I—dsname—l

v

" Lrvpe— — T 7o]
TYPe———[VSAM PAGe SIZe—L—_|—page-szze
BDAM =

v

»—ALLocate PAGe—L—_I—(#-primary-page,#-secondary-page)—>

»
| 2

|—RESer‘ve PAGe—l_—_I—#-r‘eser‘ve-pageJ

»
|

\ 4

l—DIRectory PAGej_—_l—#-directory page—l

v

\ 4

|—DEStr‘oy TO REUseJ

\ 4
A

»»—EXPand—DDName |_J ddname

|—DS.Name—|_—_|—dsnameJ

\ 4

v

|—ALL il
ocate PAGe #-secondary page
—D—z Y pag

»
»

v

|—REServe PAGe—I_—_I—#-r‘eser've pageJ

\
A

»»—ADJust—DDName |_J ddname

|—DS.Name—|_—_|—dsnameJ

p—X X

v

|:ALLocate PAGe—[j—#-secondary page—
REServe PAGe—L—_I—#-reserve page

\ 4
A

6-2 Quick Reference Guide for Administrators

6.1 BC1PNLIB Utility

v

»»—REOrg—DDName] ddname

L—DSName——E—j——dsname—J

il

»>
>

\ 4
A

|—DI Rectory PAGe—L—_l—#-dir‘ector‘y page

v

»»—INQuire—DDName] ddname B]
= OPTion—x X
DIRectory—
ANAlyze—
MEMber
»—, >«

Chapter 6. Endevor LIB Utilities 6-3

6.2 BC1PNCPY Utility

6.2 BC1PNCPY Utility

Use the BC1IPNCPY utility to copy library members from and to ELIB data sets, and
to copy members from and to any Endevor library format.

6.2.1 Syntax
»»—COPy—INPut FILe -filename >
L l—=J J l—UNPackedJ
DDName—D——ddname
> OUTput FILe i 1
|—DSName—L—_I—dsname—l P L |—=J Jttenane
= DDName—L—_l—ddname

\ 4
v

|—UN Pac kedJ |—DSNaLmej_—_[—dsnameJ

\ 4
v

. - |
UPDate l—I FJ |_PREsentJ

\ 4
A

v l
L [
MEMber‘—L—_'—membername-l
= l—TH RU—member‘name-x—J

6-4 Quick Reference Guide for Administrators

6.3 BC1PNLST Utility

6.3 BC1PNLST Utility

Use the BCIPNLST utility to print information about ELIB data sets.
6.3.1 Syntax

»»>—INQuire—DDName

v

ddname
L.]

»
>

\4
A

|—OPT1‘ !
on
|—DIRectory—l |—MEMbelr*—l

Chapter 6. Endevor LIB Utilities 6-5

6.4 The Inquire Option for BC1PNLIB and BC1PNLST Utility

6.4 The Inquire Option for BC1PNLIB and BC1PNLST Utility

You can code the INQUIRY statement with no further specification in both the
BC1PNLIB and the BCIPNLST utilities. In both instances the system prints header
information for the ELIB data sets that you specify, and a bit map of space utilization
for the data set. The table below describes the information in this listing.

For more detailed information please see the Utilities Guide.

Field

Description

DDNAME

DDname of the data set covered by this listing.

DSNAME

DSname of the data set covered by this listing.

Library type

Library type. Always VLB for Endevor LIB
data sets.

Page size

Page size for the data set.

Last page

Last addressable page for the data set.

File page size

Usable page size, after allowing for VSAM
control characters.

Initialized

Date and time when the data set was initialized.

(Re)aloc stamp

Number of times this data set has been
expanded, reorganized, or initialized.

Last reorg (expand)

Date and time when the data set was last
reorganized, expanded, or initialized.

File size (pages)

Number of pages currently in the data set.

First allocation

Number of pages initialized as primary storage
for this data set.

Expand allocation

Number of pages initialized as secondary
storage during each automatic expansion of the
data set.

Reserve limit

Number of pages of remaining primary
alocation that triggers automatic expansion.

Bit map pages

Number of pages taken up by the data set
alocation bit map. The number of the first bit
map allocation page is in the STARTING AT
field.

Directory target pages

Number of directory target pages in the data set.
The number of the first directory target page is
in the STARTING AT field.

Alloc map bytes

Number of bytes in the allocation bit map.

6-6 Quick Reference Guide for Administrators

6.4 The Inquire Option for BC1PNLIB and BC1PNLST Utility

Field Description
Pages used Number of pages currently used in the data set.
Pages free Number of available pages remaining in the

data set.

Last update stamp

Number of times the data set has been updated.

Last update

Date and time of the last update.

Latest member

Name of the member most recently added or
updated in the data set.

Avg aloc/member

Average number of pages taken up by one
member.

data pages Number of pages containing data.

replaces Number of replaces executed against the data
Set.

adds Number of adds executed against the data set.

deletes Number of deletes executed against the data set.

members Number of members in the data set.

directory pages

Number of directory pages currently in the data
set. If this number is greater than the number
in the DIRECTORY TARGET PAGES field,
consider increasing the number of target
directory pages.

Longest dir overflow

Highest number of overflow pages for a
directory page. If this number is greater than O
(zero), consider increasing the number of target
directory pages.

library extends

Number of times the data set has expanded.

directory reorg

Number of times the number of directory pages
has been changed.

Chapter 6. Endevor LIB Utilities 6-7

6.5 The Member Option in the BC1PNLIB or BC1PNLST Utility

6.5 The Member Option in the BC1PNLIB or BC1PNLST
Utility

You can code the INQUIRY statement with the MEMBER option in either the
BC1PNLIB or the BCIPNLST utility. In both instances the system will generate
reports listing information about the members in the ELIB data sets that you specify.
The following table provides a description of the information in this listing.

Field Description

Member = Member name.

Start page # Number of first page where member is stored.

End page # Number of last page where the member is
stored.

Stamp # Number of the action that last modified the

member relative to the total number of actions
executed against the data set.

recs Number of lines in the member.

bytes Size of the member, in bytes.

pages Number of pages on which the member is
stored.

Contiguity indicator Indicates whether member data is stored

contiguously. Possible values are C (stored
contiguously) or F (data is fragmented).

Footprint The second line of each member entry contains
the footprint of the member.

6-8 Quick Reference Guide for Administrators

6.6 The Directory Option in BC1PNLIB or BC1PNLST Utility

6.6 The Directory Option in BC1PNLIB or BC1PNLST Utility

You can code the INQUIRY statement with the DIRECTORY option in either the
BC1PNLIB or the BC1IPNLST utility. In both instances, the system will generate
reports listing information about the directories in the ELIB data sets that you specify.
The following table provides a description of the information in this listing.

Field Description

Directory # Identifier of the directory page.

Page # Location of the directory page in the data set.

Stamp # The number of the last update of this directory
relative to total updates to the data set. For
example, STAMP # 137 means that the last
update to the directory was the 137th update to
the data set.

Bytes free Number of unused bytes on the directory page.

Members this directory page

Number of members on this directory page.

Total members found

Total members found on all directory pages.

Fragmented Number of fragmented members.
Unfragmented Number of unfragmented members.
Member pages Number of pages taken up by members.

Average per member: pages

Average pages taken up by data set members.

Average per member: records

Average number of lines in data set members.

Average per member: characters

Average number of characters in data set
members.

Average per directory page:
members

Average number of members per directory page.

Average per directory page: free
bytes

Average number of available bytes per directory
page.

Chapter 6. Endevor LIB Utilities 6-9

6.7 The Analyze Option in the BC1PNLIB Utility

6.7 The Analyze Option in the BC1PNLIB Utility

You can code the INQUIRY statement with the ANALY ZE option only in the
BC1PNLIB utility. Use the ANALY ZE option to validate the integrity of specified
ELIB data sets. The analysis verifies the integrity of each member in the directories
and ensures that the allocation bit map is valid. Damaged members, if any, are
identified, as are misallocated pages. The ANALY ZE function must run in dedicated
mode, and locks the library while sweeping it. The following is a description of the
information in this listing.

The report produced by the analyze function can contain the following messages:

*** ORPHAN: MEMBER= PAGE= NEXT= PREV= STAMP=
BYTES USED=

The page or range of pages in the message are marked as occupied in the
allocation bit map, but are not associated with any members in the data set header,
allocation map, or directory pages.

*** MEMBER= STAMP= PAGE= FOUND MEMBER= STAMP=

Part of the member identified in the MEMBER=, STAMP=, and PAGE= fields
has been overlaid by the member identified in the FOUND MEMBER= and
following STAMP-= fields.

*** MEMBER= STAMP= LIDPAGES= ACTUAL PAGES=

The member identified in the MEMBER= AND STAMP-= fields is listed in the
directory as occupying the number of pages in the LIDPAGE= field, but the
analysis utility has determined that it actually occupies the number of pages in the
ACTUAL PAGES= field.

*** PAGE= OF MEMBER= |ISFREE. NEXT= PREV= STAMP=
BYTES USED=

The alocation map shows the named page to be free, but the directory associates
the same page with the member identified in the MEMBER= and STAMP= fields,
and shows that the page contains the number of bytes in the BY TES USED= field.
The immediately preceding and subsequent pages in the directory are shown in the
PREV= AND NEXT= fields. The location of the directory entry with this
information is shown in a message like this:

*%% E-LIB DIR CHUNK= 1ST PAGE

6-10 Quick Reference Guide for Administrators

Chapter 7. Endevor Reports

This section contains a listing of Endevor assembler and SAS report 1Ds and titles.
The Reports Guide provides examples of each report.

Chapter 7. Endevor Reports 7-1

7.1 Endevor Assembler Reports

7.1 Endevor Assembler Reports

The table below provides a list of available Endevor Assembler reports. The Reports
Guide provides examples of each assembler report.

Report ID Title

Master Control File Reports

CONRPTO1 System Inventory Profile
CONRPTO02 System Inventory Summary
CONRPTO03 Element Catalog

CONRPTO04 Element Activity Profile

CONRPTO05 Element Activity Summary
CONRPTO06 Element Catalog by CCID
CONRPTO7 System Definition Profile
CONRPTO08 Element Signed Out Profile - by System
CONRPTO09 Element Signed Out Profile - by User
CONRPT10 Approver Group Definition
CONRPT11 Approver Group Usage

CONRPT12 Element Catalog by Retrieve CCID

Historical Reports

CONRPT40 Security Violation Summary
CONRPT41 Security Violation Profile
CONRPT42 Element Activity Profile
CONRPT43 Element Activity Summary

Unload/Reload Reports

CONRPT50 System Inventory Profile
CONRPT51 Unload System Definition Profile
CONRPT52 Unload Approver Group Definition
CONRPT53 Unload Approver Group Usage
CONRPT54 Element Catalog

CONRPT55 Unload Package Summary Report
Package Reports

CONRPT70 Package Summary Report

7-2 Quick Reference Guide for Administrators

7.1 Endevor Assembler Reports

Report ID Title

CONRPT71 Package Approver Report

CONRPT72 Package Detail Report

CONRPT73 Destination Detail Report

CONRPT74 Package Shipment Report by Package ID
CONRPT75 Package Shipment Report by Destination
Footprint Reports

CONRPT80 Library Member Footprint Report
CONRPT81 Library CSECT Listing

CONRPT82 Library ZAPped CSECT Profile
CONRPT83 Footprint Exception Report

Chapter 7. Endevor Reports 7-3

7-4 Quick Reference Guide for Administrators

Chapter 8. Batch Environment Administration

Endevor's Batch Environment Administration Facility allows you to manage
environment definitions in batch mode by executing SCL statements. The following
table lists the types of environment SCL statements and the functions they provide.

Statement Function

Build Creates DEFINE SCL statements from an
existing environment structure.

Define Creates a new or updates an existing environment
definition.

Delete Deletes an existing environment definition.

Read this section for information about:
® Batch Environment Administration Edit Commands
® Build SCL Syntax
» Define Group Syntax
» Delete Group Syntax

The Build, Define, and Delete syntax is arranged alphabetically by environment
definition.

Chapter 8. Batch Environment Administration 8-1

8.1 Batch Environment Administration Edit Commands

8.1 Batch Environment Administration Edit Commands

The Batch Environment Administration Facility provides commands, implemented as
| SPF/PDF edit macros, that assist you in creating SCL by providing model SCL
statements. The syntax for invoking the edit command is:
COMMAND NAME object_type [object_name]

8.1.1 Command Names

The following table identifies the command names and their functions.

Command Name Function

ENDEFINE Generates model SCL statements for the DEFINE
action.

ENDELETE Generates model SCL statements for the DELETE
action.

ENBUILD Generates model SCL statements for the BUILD action.

8.1.2 Object Types

The following table provides a list of object_types, valid abbreviations, and the
corresponding environment definition created.

Object_types Object_type Abbreviations Environment Definition
Created

System Sys System

Subsystem Sub Subsystem

Type Typ Element Type

Approver App Approver Group

Relation Rel Approver Group Relation

Group Gro Processor Group

Symbol Sym Processor Symbol

Destination Des Package Shipment Destination

8-2 Quick Reference Guide for Administrators

8.2 Build SCL Syntax

8.2 Build SCL Syntax

8.2.1

8.2.2

8.2.3

8.2.4

Build SCL for Approver Group Syntax

»—BUId SCL—L—_]—APProver GROup—group-name—FROm ENVironment——
FOR

»—environment-name >

>—TO—EDDName—ddnamc | B — |

DSNname—dsname B
MEMber—member-name—L—J—‘
REPTace

Build SCL for Approver Relation Syntax

»—BUId SCL—m—APProver RELation—group-name—FROm ENVironment———»
FOR

v

»—environment-name

\4
A

>—TO—EDDName—ddname I

DSNname—dsname [
MEMber‘—member-name—L—J——|
REPlace

Build SCL for Environment Syntax

v

»—BUITd SCL—m—ENVi ronment—environment-name
FOR:

\ 4
A

>—TO—EDDName—ddname I

DSNname—dsname [
MEMber—member—nameﬁ
REPlace

Build SCL for Processor Group Syntax

\4

»—BUId SCL—L—_]—PR0cessor GROup—group-name
FOR

»—FROm ENVironment—environment-name—SYStem—system-name—TYPe—type-name—»

>—ESTAge ID—stage-id- T]
STAge NUMber—stage-no INCLUDE SUBOrdinate

>—TO—EDDName—ddname I

DSNname—dsname B
MEMber—member-name—L—"——|
REPlace

v

\4
A

Chapter 8. Batch Environment Administration 8-3

8.2 Build SCL Syntax

8.2.5 Build SCL for Processor Symbol Syntax

»»—BUITd SCL—L—_'—PROcessor‘ SYMbo1—FROm ENVironment—environment-name—»
FOR

>—SYStem—system-name—TYPe—type-name—[STAge ID—stage-id T >
STAge NUMber—stage-no

v

»—PR0Ocessor GROup—group-name

\ 4
A

>—T0—|:DDN ame—ddname I

DSNname—dsname B
MEMber—member-name—L—J—‘
REPTace

8.2.6 Build SCL for Shipment Destination Syntax

v

»—BUITd SCL—L—_'—SHIPMent DESTination—destination-name
FOR

v
A

—T O—EDDN ame—ddname I

DSNname—dsname B
MEMber—member—nameﬁ
REPTace

8.2.7 Build SCL for Subsystem Syntax

»»—BUITd SC L—L—_'—SUBSystem—subsys tem-name—FROm ENVironment——
FOR

\4

»—environment-name—SYStem—system-name

\ 4
A

>—T0—|:DDN ame—ddname T

DSNname—dsname B
MEMber—member—nameﬁ
REPlace

8.2.8 Build SCL for System Syntax

A\

»—BUITd SC L—L—_I—SYStem—sys tem-name—FROm ENVironment
FOR

v

»—environment-name
|—IN(Z] ude SUBor‘dinateJ

—T O—EDDN ame—ddname T

DSNname—dsname B
MEMber—member‘—nameﬁ
REPTace

v
A

8-4 Quick Reference Guide for Administrators

8.2 Build SCL Syntax

8.2.9 Build SCL for Type Syntax

»»—BUI1d SCL—L—_I—TYPe—type—name—FROm ENVironment—environment-name—SYStem——»
FOR

>—system-name—[STAge ID—stage-id
STAge NUMbelr‘—stage—noJ LINCLUDE SUBOr‘dinate—J

»—T0 DDName—ddname
|

DSNname—dsname N
MEMber—member-nameﬁ
REP1ace

v

\4
A

8.2.10 Build SCL for Type Sequence Syntax

»»—BUITd SCL—m—TYPe SEQuence—FROm ENVironment—environment-name——
FOR:

v

»—SYStem—sys tem-name—[STAge ID—stage-id
STAge NUMber—stage-no—I

A\
A

>—TO—EDDName—ddname I

DSNname—dsname B
MEMber—member—nameﬁ
REP1ace

Chapter 8. Batch Environment Administration 8-5

8.3 Define SCL Syntax

8.3 Define SCL Syntax

8.3.1 Define Approver Group Syntax

»»—DEFine APProver GROup—group-name—TQ0 ENVironment—environment-name——»

»—TITle—title-text >
0
t [,

value

UOrum SIZe—stage-id
Q g LISJ

v
A

EQual
»—APProver [] (v (—id, R REQuired]) |)—.
NOT REQuired

8.3.2 Define Approver Relation Syntax

»»—DEFine APProver RELation—FOR APProver GROup—group-name—————— >

»—T0 ENVironment—environment-name—SYStem—system-name——— >

»—SUBSystem—subsystem-name—TYPe—type-name >
>—|:STAge ID—stage-id

STAge NUMbe\r*—stage-no——| L ST/-\Ndard
TYPeﬁ—EEMErgenc

<

8-6 Quick Reference Guide for Administrators

8.3 Define SCL Syntax

8.3.3 Define Processor Group Syntax

»»—DEFine PROcessor GROup—group-name

»—T0 ENVironment—environment-name—SYStem—system-name

v

v

»—TY Pe—type-name—ESTAge ID—stage-id
STAge NUMber—s t‘age-no—J

»—DESCription—description

v

> oS
>

v

—NEXt PROcessor GROup—group-name | -
—PROcessor OUTput TYPe | Option
|—NAMe——| l—ISJ

—GENerate PROcessor | Option ——
Coe] Cisd '
—DELete PROcessor i Option
Cowe] Lis T]
—MOVe PROcessor | Option ——
l—NAMe—l |—ISJ

MOVe—|
—MOVe ACTion USE—[GENerate |_ J
PROcessor

GENerate
[_M()Ve —l

—TRANSFer ACTion USE
I—PROcessor——|
Option:

I—ALLow FOREground EXEcution

H—, —>«

F—processor-name B
DO NOT ALLow FOREground EXEcution—

8.3.4 Define Processor Symbol Syntax

»—DEFine PROcessor SYMbol—TO ENVironment—environment-name——

»—SYStem—sys tem-name—TYPe—type-name—ESTAge ID—stage- id—_|—>
STAge NUMber—stage-no

»—PROcessor GROup—group-name

>
>

»—PROcessor TYPe—EEQ;I—EGENerate
= MOVe

DELete——

|

»
|

>—[§YMbo1 —symbol -name—EEQ_—l—override- value

\ 4
A

Chapter 8. Batch Environment Administration 8-7

8.3 Define SCL Syntax

8.3.5 Define Shipment Destination Syntax

»»—DEFine SHIPMent DESTination—destination-name

>
|

»—DESCription—description—TRANSMission METhod—method-name——— >

»
>

»—REMote NODename—node-name

»
| 2

DO NOT SHIp J
SHIp;I—COMPLementary DATaset

»—HOSt DATaset PREfix—value

>
|

v

DELete
|~HOSt DISposition——EKEEp—j—

»
>

L [SYSDA]_ |—HOSt VOLume SER1’a1—vaZue—l
HOSt UNIt value

v

v

»—REMote DATaset PREfix—value

DELete
|~REMo’ce DISposition—EKEEp——L

»
| 2

L [SYSDA]_ l—REMo‘ce VOLume SER1‘a1—vaZueJ
REMote UNIt value

v
A

»—REMote JOBcard—EEQ_—I—(—| Jobcard |—)—.

Jobcard:

—'jobcard 1'

»
>

l_ 13 1
, 'jobcard 2
J L

, 'jobcard 3'
|—, 'jobcard 4’—J

8.3.6 Define Shipment Mapping Rule Syntax

—_ v

»>—DEFine SHIpment MAPping RULe—TO DESTination—destination-name

»—DESCription—description

»—HOSt DATaset—dataset-name

|—MAPS TO T n |
REMote DATaset—dataset-name

l—EXC] udeJ

\4
A

8-8 Quick Reference Guide for Administrators

8.3 Define SCL Syntax

8.3.7 Define Subsystem Syntax

»—DEFine SUBSystem—subsystem-name

v

»—T0 ENVironment—environment-name—SYStem—system-name
»—DESCription—description

v

|—NEXt SUBSystem—subsystem-nc/me——|

Chapter 8. Batch Environment Administration 8-9

8.3 Define SCL Syntax

8.3.8 Define System Syntax

»»—DEFine SYStem—system-name—T0 ENVironment—environment-name

»—DESCription—description

p—x

»

—NEXt SYStem—system-name
NOT REQuired
—COMMent—[REQui red 1

NOT REQuired
—CCId |_REQu1'r‘ed]

DUPlicate ELEment |
DUP1icate PROcessor

IS NOT ACTIVe
—SIGnout—[IS ACTIVe]

REQuired
—ELEment JUMp ACKnow]edgement—ENOT REQum

IS NOT ACTIVe
—SIGnout DATaset VALidation—EIS ACTIVe——l—

»—STAge ONE LOAd LIBRARY—L—_|—dataset—namc
IS

»

>

L]
STAge ONE LISt LIBRARY—L—_'—dataset—name
IS

»—STAge TWO LOAd LIBRARY—L—_l—dataset-namc
IS

»

»

DUPIlicate EL Ement:

S]
TAge TWO LISt LIBRARY—L—_'—dataset—name
IS

“—DUP1icate ELEment—name—CHEck IS NOT ACTIVe
DUPIlicate PROcessor OUT put:

——DUPlicate PROcessor OUTput—type—CHEck IS ACTIVe

error:
|

——DUPlicate ELEment—name—CHEck IS ACTIVe
|—{ error }J

L—{ error }—J

—DUPTicate PROcessor OUTput—type—CHEck IS NOT ACTIVe

I
|—er‘r'or—SEVeri ty LEVe]—isﬁJ
W|E|C

8-10 Quick Reference Guide for Administrators

v

\4

\4
A

8.3 Define SCL Syntax

8.3.9

Define Type Syntax

»»—DEFine TYPe—type-name—T0 ENVironment—environment-name—SYStem—system-name >

>—|:STAge ID—stage-id—_l—DESCription—descriptio”
STAge NUMber—stage-no |—NEXt TYPe—i.‘ype-nameJ

»—BASe LIBRARY dataset-name—DELta LI BRARY—m—dataset—nG,,,c
Lis] IS

|—INCLUDE LIBRARY—L—_|—(1¢7I.‘aset’-nameJ L[DO NOT EXPand INCLUDES:’
IN EXPand INCLUDES:

Lso l
Urce OUTput LIBRARY—L—_|—dataset-name
IS

|—*NOPROC*
»—DEFAult PROcessor GROup T -group-name
IS

L FORWard
ELEment DELta FORMatﬁ—EREVeY‘se
IS

COMPRess BASeﬁ_J L |—50
DO NOT COMPRess BASe REGression PERcentage: T T T value
THReshold IS

J SOUrce ELEment LENgth—-rj—vaZue—>
IS

L CAUtion——
REGression SEVerity INFormational—
IS WARning———

ERROP———

»—COMPAre COLumn—value] value >

|:FROm_—| TO CONsolidate ELEment
_[[LEVELS:|
DO NOT CONsolidate ELEment LEVELS

o |
LCONsoh‘date ELEment AT LEVe]—Evalue

> LANguage] language-name———— >
L [50 IS
NUMber OF ELEment LEVELS TO CONsolidate value

>—EPANva1 et LANguage language-name
LIBRARianJ |—ISJ

|—HOMe OPErating SYStem—L—_|—|:w0Rkstat1' oan
IS MVS

[. . . .
WORkstation FILe EXTens1on—L—_|—fl le-extension
IS

CONsolidate COMPOnent L FORWard
LEVELS COMPOnent DELTa FORMat—ﬁ—EREVerse
DO NOT CONsolidate COMPOnent LEVELS IS
o |
LCONsoh’date COMPOnent AT LEVe]—[value

SOTJ l—HFS RECFM—L—J——COMP—J

|~NUMber OF COMPOnent LEVELS TO CONsoHdateJ:value IS F

—CRLF—
U
7v—

. >

Chapter 8. Batch Environment Administration 8-11

8.3 Define SCL Syntax

8.3.10 Define Type Sequence Syntax

»»—DEFine TYPe SEQuence—TO0 ENVironment—environment-name——— >

»
>

»—SYStem—sys tem-name—ESTAge ID—stage-id
STAge NUMber—s tage-no—J

>—SEQuence—EEQ_—,—(—E,(type-name, sequence number) J—)—.—N

8-12 Quick Reference Guide for Administrators

8.4 Delete SCL Syntax

8.4 Delete SCL Syntax

8.4.1 Delete Approver Group Syntax

»»—DELete APProver GROup—group-name

v

»—FROm ENVironment—environment-name

v

»
>

tAPPr‘over LEQ_I (ruser id J

8.4.2 Delete Approver Relation Syntax

»»—DELete APProver RELation—FOR APProver GROup—group-name———»

»—FROm ENVironment—environment-name—SYStem—system-name >
»—SUBSystem—subsystem-name—TYPe—type-name >

—>d

>—|:ST/-\ge ID—stage-id

STAge NUMber—stage-noJ L STANdard
TYPeﬁ—EEMErgenc

8.4.3 Delete Processor Group Syntax

»»—DELete PROcessor GROup—group-name

v

»—FROm ENVironment—environment-name—SYStem—system-name———

>—TYPe—type-name—|:STAge ID—stage-id . ><
STAge NUMber—s t‘age-no—J

Chapter 8. Batch Environment Administration 8-13

8.4 Delete SCL Syntax

8.4.4 Delete Processor Symbol Syntax

»»—DELete PROcessor SYMbol—FROm ENVironment—environment-name——»

>—SYStem—system-name—TYPe—type-name—ESTAge ID—stage-id—4|—>
STAge NUMber—stage-no
»—PROcessor GROup—group-name >

>

»—PROcessor TYPe—EEQ;,—EGENerate
= MOVe

DELete—
|—SYMbo1

LEJ (r;ymbol-namej—)J

8.4.5 Delete Shipment Destination Syntax

\ 4
A

»»—DELete SHIPMent DESTination—destination-name—.
8.4.6 Delete Shipment Mapping Rule Syntax

»»>—DELete SHIPMent MAPping RULe—FROm DESTination—destination-name—»

»—HOSt DATaset—dsname—. >«

8.4.7 Delete Subsystem Syntax

»»—DELete SUBSystem—subsystem-name >

»—FROm ENVironment—environment-name—SYStem—system-name— .———— >«

8-14 Quick Reference Guide for Administrators

8.4 Delete SCL Syntax

8.4.8 Delete System Syntax

»»>—DELete SYStem—system-name—FROm ENVironment—environment-name——»

» . >«

8.4.9 Delete Type Syntax

»»—DELete TYPe—type-name—FROm ENVironment—environment-name————»

»—SYStem—s, stem-name—ESTA e ID—stage-id . >«
g STAge NUMber‘—gstage-no—l

Chapter 8. Batch Environment Administration 8-15

8.4 Delete SCL Syntax

8-16 Quick Reference Guide for Administrators

	Bookshelf
	Quick Reference Guide for Administrators
	Contents
	Chapter 1. Using the Quick Reference Guide for Administrators
	1.1 Documentation Overview
	1.2 Documentation Overview
	1.3 Name Masking
	1.3.1 Usage

	1.4 Syntax Conventions
	1.4.1 Sample Syntax Diagram
	1.4.2 Syntax Diagram Explanation
	1.4.3 General Coding Information
	1.4.3.1 Valid Characters
	1.4.3.2 Incompatible Commands and Clauses
	1.4.3.3 Ending A Statement
	1.4.3.4 SCL Parsing Information

	1.5 Syntax for Long File and Path Names
	1.5.1 HFSFile Syntax Rules
	1.5.2 Path Name Syntax Rules
	1.5.3 Element Name Syntax Rules
	1.5.4 SCL Continuation Syntax Rules

	Chapter 2. Implementation
	2.1 Levels of Functionality
	2.2 Programs to Define to Your Security Package
	2.3 Preparing for Endevor
	2.4 Defining Endevor Files
	2.4.1 Defining Base and Delta Libraries
	2.4.2 Allocating a New PDS
	2.4.3 Allocating a New CA- Panvalet or CA- Librarian Data Set
	2.4.4 Allocating a New Endevor LIB(ELIB) Data Set
	2.4.5 Allocating a New Endevor Listing Library
	2.4.6 Allocating a New Endevor Load Library
	2.4.7 Allocating a New Endevor Source Output Library

	Chapter 3. Processors
	3.1 Endevor Actions and Processors
	3.2 Processor Keywords
	3.3 Processor Symbolics
	3.3.1 Site- Defined Symbolics
	3.3.1.1 Defining Site Symbolics

	3.4 Processor Utilities
	3.5 Supported JCL Keywords
	3.6 Unsupported JCL Keywords for Processors

	Chapter 4. Tracing Facilities
	Chapter 5. Exits
	5.1 Endevor Exit Points
	5.2 User Exit Control Blocks
	5.3 Package Exit Control Blocks

	Chapter 6. Endevor LIB Utilities
	6.1 BC1PNLIB Utility
	6.1.1 Syntax

	6.2 BC1PNCPY Utility
	6.2.1 Syntax

	6.3 BC1PNLST Utility
	6.3.1 Syntax

	6.4 The Inquire Option for BC1PNLIB and BC1PNLST Utility
	6.5 The Member Option in the BC1PNLIB or BC1PNLST Utility
	6.6 The Directory Option in BC1PNLIB or BC1PNLST Utility
	6.7 The Analyze Option in the BC1PNLIB Utility

	Chapter 7. Endevor Reports
	7.1 Endevor Assembler Reports

	Chapter 8. Batch Environment Administration
	8.1 Batch Environment Administration Edit Commands
	8.1.1 Command Names
	8.1.2 Object Types

	8.2 Build SCL Syntax
	8.2.1 Build SCL for Approver Group Syntax
	8.2.2 Build SCL for Approver Relation Syntax
	8.2.3 Build SCL for Environment Syntax
	8.2.4 Build SCL for Processor Group Syntax
	8.2.5 Build SCL for Processor Symbol Syntax
	8.2.6 Build SCL for Shipment Destination Syntax
	8.2.7 Build SCL for Subsystem Syntax
	8.2.8 Build SCL for System Syntax
	8.2.9 Build SCL for Type Syntax
	8.2.10 Build SCL for Type Sequence Syntax

	8.3 Define SCL Syntax
	8.3.1 Define Approver Group Syntax
	8.3.2 Define Approver Relation Syntax
	8.3.3 Define Processor Group Syntax
	8.3.4 Define Processor Symbol Syntax
	8.3.5 Define Shipment Destination Syntax
	8.3.6 Define Shipment Mapping Rule Syntax
	8.3.7 Define Subsystem Syntax
	8.3.8 Define System Syntax
	8.3.9 Define Type Syntax
	8.3.10 Define Type Sequence Syntax

	8.4 Delete SCL Syntax
	8.4.1 Delete Approver Group Syntax
	8.4.2 Delete Approver Relation Syntax
	8.4.3 Delete Processor Group Syntax
	8.4.4 Delete Processor Symbol Syntax
	8.4.5 Delete Shipment Destination Syntax
	8.4.6 Delete Shipment Mapping Rule Syntax
	8.4.7 Delete Subsystem Syntax
	8.4.8 Delete System Syntax
	8.4.9 Delete Type Syntax

