

BrightStor � CA-Compress � Data
Compression

Reference Guide
5.2 SP04

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by the
copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

� 2002 Computer Associates International, Inc. (CA)

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

Chapter 1: Preface
Summary of Changes .. 1-2

Service Pack 04 Enhancements .. 1-2
Release 5.2 New Features ... 1-2
PTF Tape PC9751 Enhancements .. 1-3
PTF Tape PC9738 Enhancements .. 1-3
Release 5.1 New Features ... 1-3
Maintenance Release 5.0.2 Enhancements... 1-4
Release 5.0 New Features ... 1-4
Contacting Technical Support ... 1-4

Chapter 2: Control File Maintenance Utility
How the Utility Works ... 2-1
Control File Statements... 2-2

Syntax Rules... 2-2
ADD Statement (VSAM) .. 2-5
ALTER Statement (VSAM) .. 2-7
ADD Statement (Physical Sequential) .. 2-9
ALTER Statement (Physical Sequential) ... 2-11
COPY Statement .. 2-14
DELETE Statement.. 2-14
FDT Statement.. 2-15
REPORT Statement.. 2-16
SET Statement .. 2-17

Control File Maintenance Utility Reports .. 2-17
CFMU Short Format... 2-18
CFMU Long Format ... 2-19
CFMU Dump Format.. 2-20

FDT Compare Utility DEFXP050 ... 2-20
Executing the FDT Compare Utility ... 2-21

Contents iii

Chapter 3: Record Definition Language
Performance Considerations When Using RDL .. 3-2
How the RDL Operates ... 3-3
RDL Terminology .. 3-3
RDL Syntax Rules .. 3-5
RDL Field Type Descriptions .. 3-7

Field Types C1, C2, and C3—Character Data .. 3-7
Field Type CS—Character Data (SHRVL Compression) 3-8
Field Type GA—Garbage Data (Permanently Unused Fields) 3-8
Field Type L—Insert Tally of Actual Length... 3-8
Field Types MA and MB—Pattern Matching .. 3-9
Field Type N—Fields Exempted From Compression ..3-10
Field Type PD—Packed Decimal Data ...3-11
Field Types S and X—Set of Expected Values...3-12
Field Type UN — Undefined Fields ...3-13
Field Types V, VP, and VZ — Calculate Variable Symbol Value3-13
Field Types ZL and ZR — Zoned Decimal Data...3-16

RDL Repetition Groups ..3-17
RDL Condition Groups ..3-18
RDL Position Function ...3-21
General Restrictions on RDL Use..3-23
Guide to Correct RDL Specifications ..3-24
RDL Defaults ...3-26
Determining the Best Compression..3-28

How to Enter or Change the RDL Using the IUI ..3-29

Chapter 4: CA-Compress/2
Features ... 4-1
Using Subroutines.. 4-2

Accessing the FDT .. 4-4
JCL Implications for Existing Application Programs.. 4-5

Calling the Subroutines ... 4-6
CALL to Subroutine SHRINK.. 4-9
CALL to Subroutine EXPAND ..4-10
CALL to Subroutine CLOSE ..4-12
CALL to Subroutine SHRINKS..4-12
CALL to Subroutine EXPANDS ...4-14
CALL to Subroutine CLOSES ...4-16
CALL to Subroutine SHRKHCS...4-16
CALL to Subroutine SHRKHCX...4-18

iv BrightStor CA-Compress Data Compression Reference Guide

CALL to Subroutine SHRKHCC .. 4-20
CALL to Subroutine SHRINKZ... 4-20
CALL to Subroutine EXPANDZ .. 4-22

Incorporating Subroutine Calls in Existing Application Programs................................ 4-23
Defining Compressed Records in COBOL Application Programs 4-24
Linking Subroutines With Applications ... 4-25
Using CA-Compress/2 Under CICS .. 4-26

Install the Callable SHRINK Subroutines for CICS.. 4-27
CA-Compress/2 Subroutines Under CICS ... 4-29

The CA-Compress/2 Utilities .. 4-30
Prepass .. 4-31
FDTLOADR Utility.. 4-32
Compression Utilities.. 4-33
Expansion Utilities .. 4-34
JCL Defaults.. 4-35

Chapter 5: SUBSYS DD Parameter
How it Works ... 5-1
Coding the SUBSYS JCL Parameter .. 5-2

SUBSYS Syntax for the BrightStor CA-Compress Subsystem.................................. 5-2
MVS SUBSYS Restrictions and Special Processing ... 5-4

Special Considerations When Using SUBSYS ... 5-5
DCB Information When Using SUBSYS... 5-5
Nonlabeled Tapes.. 5-6
Partitioned Data Sets ... 5-6
JCL Restrictions.. 5-6

Chapter 6: Test Compression Facility
How The Program Works... 6-1

Notes on Using The Program.. 6-2
TCF Command Language .. 6-2

Command Language Syntax Rules... 6-3
Command Structures in the Command Language ... 6-5
SET Statement ... 6-7
SCAN Statement .. 6-10
EXCLUDE Statement .. 6-14
SELECT and EXCLUDE Processing Rules ... 6-15
EXAMINE Statement .. 6-15

Contents v

TCF Report ...6-17
Field Description and Contents ...6-17

Chapter 7: VSAM Performance Enhancement
VPE... 7-1

How VPE Enhances VSAM Performance.. 7-2
VPE's Use of VSAM's Local Shared Resources (LSR) ... 7-2
Reports Allow VPE Tuning .. 7-3

Installing VPE.. 7-3
Activating and Deactivating VPE on Your System ... 7-3
VPE Operation ... 7-5

VPE Special Control DD Statements .. 7-5
VPE Rules Table.. 7-8
Usage Notes ..7-14

Advanced Topics..7-15
VPE Implementation Considerations ..7-15
Optimizing VSAM Performance by Adjusting VSAM Parameters7-18

VPE Reports ..7-25
VPE Initialization and Setup Statistics ...7-25
VSAM Recommendation Report ..7-25
Performance Statistics Report ...7-26

Chapter 8: Exclusion Facility
Exclusion for VSAM Backup/Restore Processing .. 8-1
Exclusion for Physical Sequential Transparency Processing 8-2
Exclusion to Prevent Control-Interval (CI) Processing and EXCP 8-2
The Exclude File ... 8-2
Expiration Date of 86060 .. 8-4
Exclusion by Ddname @ZSM@XCL .. 8-4
Invoking Exclusion in Assembler Macros ... 8-4

Chapter 9: Safeguards
How Safeguards Protect Data ... 9-2

Safeguards Detailed Description ... 9-2
Safeguards Utility .. 9-3

vi BrightStor CA-Compress Data Compression Reference Guide

Chapter 10: Physical Sequential Transparency
Full Transparency to Application Programs ... 10-1
Full Interactive User Interface and Control File Maintenance Utility.............................. 10-1
Compatibility with Previous Releases and the SUBSYS JCL Parameter 10-2
Implementation Considerations .. 10-2

Deferred and Immediate Implementation.. 10-2
DCB Attributes ... 10-3
Automated Cleanup of Uncataloged Data Sets ... 10-3

Implementing Uncompressed Data Sets With the IUI... 10-4
Implementing Compressed Data Sets With the IUI ... 10-4
Limitations and Restrictions ... 10-4

Only Sequential Access Using QSAM or BSAM .. 10-5
Concatenation Restrictions ... 10-5
Limited DCB Exit List Support ... 10-5
Relatively High Overhead for Sequential Processing.. 10-5

Chapter 11: User Exits
Transparency User Exit.. 11-1

Enabling the User Exit ... 11-2
Using the User Exit.. 11-2
Coding the User Exit .. 11-3
Return Codes ... 11-4

Control File Maintenance Utility Security Interface ... 11-5
How the User Security Exit Works .. 11-5
Using the Security Exit .. 11-5
Linkage Conventions of the Exit .. 11-6
Return Codes ... 11-6
The Parameter List .. 11-7

Test Compression Facility User Exit .. 11-7
PREEXIT Pre-Processing Exit... 11-7
POSTEXIT Post-Processing Exit... 11-8
Security Interface and Exit .. 11-10

Appendix A: Analysis File Conversion
Procedure...A-1

Contents vii

Chapter

1 Preface

BrightStor� CA-Compress� Data Compression, MVS Edition is a Computer
Associates mainframe software product that transparently compresses and
expands VSAM and Physical Sequential datasets, including those under CICS
control. It fully supports datasets under the control of IBM's Storage
Management Subsystem (SMS). No special procedures are required to compress
SMS-controlled datasets.

BrightStor� CA-Compress� Data Compression (BrightStor CA-Compress)
offers several compression routines. With BrightStor CA-Compress, you can
achieve compression of up to 80 percent. In addition, you can create custom
compression routines for specific datasets to achieve even greater compression.
The product includes a performance enhancement feature which optimizes
VSAM datasets to improve elapsed time for sequential and direct access
operations.

Data compression with BrightStor CA-Compress offers numerous advantages to
IS organizations:

� Significantly reduced DASD requirements.

� Reduced backup and restore times.

� Improved data security.

� Easy to use interactive ISPF interface.

� Choice of maximum compression or minimum CPU overhead.

� Transparency to application programs.

Preface 1–1

Summary of Changes

Summary of Changes
The following information summarizes recent changes that have taken place
within the BrightStor CA-Compress product:

Service Pack 04 Enhancements

Included with Service Pack 04 are the following enhancements:

� Virtual Constraint Relief for QSAM

PTF QO15926 uses the DCBE and changes to GETMAINS for expansion and
compression work areas to place QSAM buffers and work areas above the
line whenever possible. This avoids 80A abends and other problems in batch
jobs and significantly improves the performance of COBOL internal sorts.

� Dynamic Exclusion Tables Update

PTF QO09831 supplies a new MODIFY operator command to update the
exclusion tables in central storage from the SYSIN dataset referenced in the
started task. You no longer need to restart the started task to make exclusion
table updates take effect. After you update the dataset or member containing
the exclusion tables, you may issue the MVS command F
ZSAMT,REFRESH,EXCLUSION to update the tables dynamically.

� Exclusion by DD card Added to Exclusion Facility

PTF LO97620 provides an alternative to exclusion by EXPDT=86060 in order
to avoid conflicts with tape management systems. By coding the
//@ZSM@XCL DD card, you may select certain ddnames for exclusion or
exclude every compressed dataset in the step.

Release 5.2 New Features

Release 5.2 provides the following new features:

� Compression and expansion using IBM Hardware Compression dictionaries,
including full test compression support and new CA-Compress/2
(previously known as SAMS:Compress/2) utilities and callable subroutines.

� More Virtual Storage Constraint Relief, especially in very busy CICS systems
with many compressed datasets. The BrightStor CA-Compress AREWORK,
analogous to the CICS VSWA, is now obtained above the 16M line whenever
the user RPL is above the line.

� Faster and more accurate compression analysis using the Test Compression
Facility, either in batch or through the Interactive User Interface.

� Faster I/O and fewer exclusive control conflicts when using Transparency or
SUBSYS for Super Express or Standard Tables. The same enhancement also
supports the new IBM Hardware Compression algorithm.

1–2 BrightStor CA-Compress Data Compression Reference Guide

Summary of Changes

PTF Tape PC9751 Enhancements

PTF tape PC9751 provides the following enhancement:

New FDT Compare Utility — This utility (enabled by PTF SS03544) compares a
specified FDT load library to the Control File, reporting errors and generating
Control File Maintenance Utility FDT statements for FDTs not in the Control File.
You can supply this dataset to the CFMU to add the missing FDTs. For more
information, see the section "FDT Compare Utility DEFXP050" in the chapter
"Control File Maintenance Utility."

PTF Tape PC9738 Enhancements

PTF tape PC9738 provides the following enhancement:

Transparency User Exit — This User Exit gives the user control before and after
compression and before and after expansion for each record processed using the
transparency or SUBSYS. You can decide whether to compress or expand, or you
can take other action as appropriate in order to avoid or recover from errors
which result in messages SHR014I and SHR015I or other problems. For more
information, see the section "Transparency User Exit" in the chapter "User Exits."

Release 5.1 New Features

Release 5.1 provided the following new features:

� SMP/E installation.

� Transparent compression and expansion of Physical Sequential datasets
using QSAM or BSAM, including SORT and ISPF Browse and Edit.

� Virtual Storage Constraint Relief.

– Nearly all SVC intercept and subsystem interface code is now loaded
into extended CSA (above the line).

– Significantly for CICS, the I/O module ZSURSHRK, which formerly
used 60K below the line, now uses only 15K below the line and calls a
new RMODE=ANY module for all compression and expansion
functions.

– Many GETMAINs have been changed to acquire working storage above
the line.

Preface 1–3

Summary of Changes

Maintenance Release 5.0.2 Enhancements

Maintenance release 5.0.2 provided the following significant enhancements:

� VSAM record lengths can now exceed 32K.

� Standard Table compression can now be invoked using CA-Compress/2.

Release 5.0 New Features

Version 5.0 provided the following new features:

� New interactive and batch compression analysis methods.

� Improved compression analysis performance.

� Improved system reporting and monitoring.

� Improved interactive control file maintenance.

� A simplified, more powerful, and CUA compliant user interface.

� Streamlined and simplified supporting documents.

� Streamlined product install procedures.

Contacting Technical Support

You can contact us with any questions or problems you have. For technical
support, visit the website: http://esupport.ca.com.

1–4 BrightStor CA-Compress Data Compression Reference Guide

Chapter

2 Control File Maintenance Utility

The Control File holds the information used by BrightStor CA-Compress to
determine which data sets are to be compressed and how the compression is to
be done. The Control File Maintenance Utility lets you perform the following
functions:

� Add, modify and delete data set names and name patterns, and their
compression parameters.

� Maintain File Descriptor Tables (FDTs) in the Control File.

� Report on the VSAM data sets and patterns, physical sequential data sets and
patterns, and FDTs in the Control File.

Note: The UEXIT parameter of the ADD and ALTER statements is enabled by co-
requisite PTFs SS03316 and SS03317. The COPY statement is enabled by PTF
LO86626.

Although you may find the Interactive User Interface (IUI) more convenient most
of the time, the Control File Maintenance Utility supports all maintenance
functions. For instance, unlike the IUI, it can maintain the Control File even when
BrightStor CA-Compress is not active. Also, unlike the IUI, it can add paths to
the base cluster.

How the Utility Works
The Control File Maintenance Utility reads statements from an input data set and
performs the specified actions on the Control File. The Control File Maintenance
Utility can update any Control File on your system. This includes the Control File
currently in use by an active BrightStor CA-Compress Subsystem.

Control File Maintenance Utility 2–1

Control File Statements

The following JCL is a sample of the Control File Maintenance Utility and can be
found in member CFUJCL in YOUR.SAMS.INSTALL on the distribution tape.

Figure 2-1. Sample JCL of CFUJCL

Control File Statements
Statements in the Control File are executed as they are read. By default, the
production Control File is updated unless you specify otherwise in a SET
statement (see below).

Syntax Rules
� Any line which starts with an asterisk (*) in column 1 is treated as a comment

line.

� A statement consists of the statement name followed by one or more
parameters. For example:

 ADD DSNAME=MY.DATA.SET,DATA=MY.DATA.SET.D,SUPEREXP

� Parameter names can be abbreviated to just enough characters to make them
unambiguous, but not fewer than 3.

� Parameters can be specified in any order. The first parameter must appear on
the same line as the statement name.

� A statement can span more than one line.

2–2 BrightStor CA-Compress Data Compression Reference Guide

Control File Statements

� A parameter cannot span more than one line unless the statement is
continued through Statement Continuation Method B below.

� A blank following a parameter terminates a statement. Characters following
the blank are treated as comments.

� Statement Continuation Method A: If a parameter is followed immediately
by a comma and a space, then the statement is continued onto the next line.
Characters following the space are considered comments. The parameters
appearing on the next line can start in any column. With this continuation
method, each parameter must be completed on a single line.

� Statement Continuation Method B: If the statement is coded through column
71, and an X is coded in column 72, then the statement is continued onto the
next line. The first nonblank in the next line is appended to the character in
column 71 in order to form the continued statement. With this continuation
method, the line can be split anywhere. In the example below, the
RELEASE=80 parameter is continued onto the next line:

 ----+----1----+----2----+ ..//.. +----7----+----8
 ADD DSNAME=MY.DATA.SE DE,RELEX
 ASE=80

� The following special characters can be used in data set names:

– An asterisk (*) means any characters in a single node.

– A question mark (?) means any one character.

– A slash (/) means any suffix of characters.

– An exclamation point (!) means any characters.

Examples:

Syntax Description

DSN=* Selects all single-level VSAM data set names.

DSN=*.* Selects all two-level VSAM data set names.

DSN=A.*.PROD Selects all three-level VSAM data set names that have an A as
the first node, any character or characters as the second node,
and PROD as the third node.

DSN=A*.PROD Selects all two-level VSAM data set names that have an A
followed by zero to seven other characters as the first node,
and PROD as the second node.

DSN=? Selects all single-character VSAM data set names.

DSN=A.TEST?? Selects all two-level VSAM data set names that have an A as
the first node, and TEST plus two other characters as the
second node.

Control File Maintenance Utility 2–3

Control File Statements

Syntax Description

DSN=A/ Selects all VSAM data sets that begin with the character A. The
data set names can have any number of nodes. The first node
can be the letter A, or be a string which starts with A.

DSN=A.TEST/ Selects all VSAM data sets that begin with the string A.TEST.
Examples:

 A.TEST

A.TEST1

A.TEST1.TEST2

A.TEST.PROD

DSN=A.*.C?./ Selects all VSAM data sets which have a first node of A, any
second node, a third node which is two characters in length
and the first character is the letter C, and any node or nodes
which follow.

DSN=!TEST Selects all VSAM data sets that end with the string TEST.

DSN=!TEST! Selects all VSAM data sets that have the string TEST
somewhere in it. The string TEST can be at the beginning or
the end of the data set name.

DSN=
!TEST!VSAM

Selects all VSAM data sets, which have the string TEST
somewhere in the name and VSAM at the end. Examples:

 A.TEST.VSAM

A.TESTVSAM

A.TEST1.VSAM

A.TEST1.KSDSVSAM

2–4 BrightStor CA-Compress Data Compression Reference Guide

Control File Statements

ADD Statement (VSAM)

The ADD statement for VSAM defines a cluster or pattern to
BrightStor CA-Compress, indicating that the discrete data set(s) matching the
pattern should be compressed using the attributes specified.

ADD {DSNAME=datasetname,DATA=datacomponentname}|
 {PATTERN=patternname}
 [,PATHS=(pathname1[,pathname2...
 {,SUPEREXP|
 FDT=fdtname[,STANDARD]|DICTIONARY=dictionary}
 [,SCHEDULED={SCHED|OPEN|LOAD}]
 [,EXCLUDE]
 [,RELEASE=percent]
 [,NON-COMP=#]
 [,SCOPE=CICS|ALL]
 [,IAM=YES|NO]
 [,UEXIT=YES|NO]

DSNAME=datasetname—Specifies a VSAM cluster which is to be compressed.
The DATA parameter is required when the DSNAME parameter is specified.

DATA=datacomponentname—Specifies the data component of the VSAM
cluster specified by DSNAME. This parameter is required when the DSNAME
parameter is specified.

PATTERN=patternname—Specifies a data set name pattern which selects data
sets for compression. The pattern can contain any character that is valid in a data
set name along with the special characters ?, *, ! and /. These special characters
are defined in the section Syntax Rules in this chapter.

PATHS=(pathname1 [,pathname2 ...—Specifies all path names associated with
the DSNAME. This parameter is required if there are any paths defined for this
cluster. A maximum of 20 path names can be specified.

SUPEREXP|FDT=fdtname[,STANDARD]|DICTIONARY=dictionary—Selects
the type of compression desired for the data set or pattern being defined.

The optional parameter STANDARD can be specified only in conjunction with
the FDT=fdtname parameter. It informs the BrightStor CA-Compress Subsystem
that the FDT specified should be used to provide the compression or expansion
tables only, and that the RDL specified in the FDT should be ignored. The
STANDARD parameter allows one FDT to be used for a number of data sets that
share character distribution characteristics but not key structure. STANDARD is
implied if the FDT parameter specifies a name of the form STDTBLxx (where xx
is a numeric value from 01 to 06).

The DICTIONARY parameter can specify a CA-supplied IBM Hardware
Compression dictionary of the form HC#STDxx (where xx is numeric 01 to 05).

SUPEREXP specifies the low-overhead compression algorithm called Super
Express.

Control File Maintenance Utility 2–5

Control File Statements

SCHEDULED={SCHED|OPEN|LOAD}—The SCHEDULED parameter
provides the capability to compress records in a data set as they are written or
updated. OPEN specifies that the data set be compressed the next time it is
opened for OUTPUT. LOAD specifies that compression should begin the next
time the data set is completely reloaded; the entire data set will be compressed
during the load process. SCHED specifies that the data set is currently
compressed and was compressed as SCHEDULED. Because SCHEDULED data
sets have certain requirements, BrightStor CA-Compress must be made aware
that these data sets were originally SCHEDULED. The compression method for a
data set defined as SCHEDULED can be changed using the ALTER statement
any time before compression begins.

EXCLUDE—Specifies that the data set is excluded from compression.

RELEASE=percent—Specifies that excess space should be released from the
VSAM cluster. It is also used to provide the percentage of the space that is to be
RETAINED. The percentage is applied to the file size (high-used RBA) and the
resulting value is added to the file size; the resulting value is the amount
retained. Space can only be released from the last extent of the data set.

Note: A RELEASE value of 0 causes the default value (10%) to be used.

NON-COMP=#—Specifies a data set's original non-compressible field length for
other than custom Huffman or Tailored RDL methods instead of allowing
BrightStor CA-Compress to calculate it from the data set's attributes. This
parameter is especially helpful for exempting non-key bytes from compression or
for setting aside non-compressible bytes at the beginning of ESDS records. Do not
code a value less than the end of the last key.

SCOPE=CICS|ALL—Specifies whether data set should be considered defined as
compressed only under CICS (SCOPE=CICS) or always (SCOPE=ALL). This
parameter is primarily intended as a conversion aid. The default is SCOPE=ALL.

IAM=YES|NO—Specifies that this Control File entry applies to IAM (Innovation
Access Method) data sets as well as VSAM data sets (YES), or that this entry does
not apply to IAM data sets (NO). The default is YES.

UEXIT=YES|NO—Specifies whether the Transparency User Exit is to be
invoked during compression and expansion of each record. The default is NO.

2–6 BrightStor CA-Compress Data Compression Reference Guide

Control File Statements

ALTER Statement (VSAM)

The ALTER statement changes the compression attributes of a data set or pattern
that is currently defined to BrightStor CA-Compress. There are no defaults.

ALTER {DSNAME=datasetname| PATTERN=patternname}
 [,ADDPATHS=(pathname1[,...,pathname5)]
 [,DELPATHS=(pathname1[,...,pathname5)]
 [,SUPEREXP|
 FDT=fdtname[,STANDARD]DICTIONARY=dictionary]
 [,SCHEDULED={SCHED|OPEN|LOAD}]
 [,EXCLUDE={YES|NO}]
 [,RELEASE={percent|NO}]
 [,NEWNAME=newdatasetname]
 [,NON-COMP=#]
 [,SCOPE=CICS|ALL]
 [,IAM=YES|NO]
 [,UEXIT=YES|NO]

DSNAME=datasetname—Specifies the name of the Control File entry that is
being ALTERed. For a simple rename function (NEWNAME is the only other
parameter specified), this value can be a cluster, data component, or path name.
For all other functions, only the cluster name is valid.

PATTERN=patternname—Specifies the pattern name that is to be ALTERed.
The pattern can contain any character that is valid in a data set name along with
the special characters ?, *, ! and /. These special characters are defined in the
section Syntax Rules in this chapter.

ADDPATHS=(pathname1,...pathname5)—Specifies the path names to be added
to the existing Control File entry.

DELPATHS=(pathname1,...pathname5)—Specifies the path names to be deleted
from the existing Control File entry.

SUPEREXP|FDT=fdtname[,STANDARD]|DICTIONARY=dictionary—
Specifies the type of compression desired for the data set or pattern being
ALTERed.

The optional parameter STANDARD can be specified only in conjunction with
the FDT=fdtname parameter. It informs the BrightStor CA-Compress Subsystem
that the FDT specified should be used to provide the Huffman tables only and
that the RDL specified in the FDT should be ignored. The STANDARD
parameter allows one FDT to be used for a number of data sets that can share
character distribution characteristics but not key structure. The FDT is assumed
to be STANDARD if the FDT parameter specifies a name of the form STDTBLxx
(where xx is a numeric value from 01 to 06). The DICTIONARY parameter can
specify a CA-supplied IBM Hardware Compression dictionary of the form
HC#STDxx (where xx is numeric 01 to 05).

The SUPEREXP parameter requests the low-overhead compression algorithm
called Super Express Compression.

Control File Maintenance Utility 2–7

Control File Statements

SCHEDULED={SCHED|OPEN|LOAD}—The SCHEDULED parameter
provides the capability to compress each record in a data set as it is accessed.
OPEN specifies that the data set should start being compressed the next time it is
opened for OUTPUT. LOAD specifies that compression should begin the next
time the data set is completely reloaded; the entire data set is compressed during
the load process. SCHED specifies that the data set is currently compressed and
was compressed as SCHEDULED. Because SCHEDULED data sets have certain
requirements, BrightStor CA-Compress must be made aware that these data sets
were originally SCHEDULED. The compression type of a SCHEDULED data set
can be changed, by using the ALTER statement, any time before compression
begins.

EXCLUDE={YES|NO}—Specifies that the data set is excluded from compression
(YES), or no longer excluded from compression (NO).

RELEASE={percent | NO}—Specifies that any excess space should be released
from the space that the VSAM cluster occupies. It also provides the percentage of
the space that is to be RETAINED. The percentage is applied to the file size (high-
used RBA) and the resulting value is added to the file size. The resulting value is
the amount retained. If the value NO is coded, the release option is turned off for
this data set.

Note: A value of 0 for the RELEASE parameter causes the default value of 10% to
be used.

NEWNAME=newdata setname—Specifies the new data set name or data set
pattern for a previously-defined entry. This parameter can be specified in
conjunction with any other parameters when renaming a cluster or pattern entry.

Note: For data component and path names, this is the only valid parameter.

NON-COMP=#—Specifies a file's original non-compressible field length for
other than custom Huffman methods instead of allowing
BrightStor CA-Compress to calculate it from the data set's attributes. This
parameter is especially helpful for exempting non-key bytes from compression or
for setting aside non-compressible bytes at the beginning of ESDS records. Do not
code a value less than the end of the last key.

SCOPE=CICS|ALL—Specifies whether data set should be considered defined as
compressed only under CICS (SCOPE=CICS) or always (SCOPE=ALL). This
parameter is primarily intended as a conversion aid. The default is the current
value in the record.

IAM=YES|NO—Changes this Control File entry to apply to IAM (Innovation
Access Method) data sets as well as VSAM data sets (YES), or to not include IAM
data sets (NO).

UEXIT=YES|NO—Specifies whether the Transparency User Exit is to be
invoked during compression and expansion of each record.

2–8 BrightStor CA-Compress Data Compression Reference Guide

Control File Statements

ADD Statement (Physical Sequential)

The ADD statement for Physical Sequential defines a physical sequential data set
or pattern to BrightStor CA-Compress, indicating that the individual data set or
data sets matching the pattern should be compressed using the attributes
specified.

ADD {PSDSN=datasetname}|{PSPATTERN=patternname}
 {,SUPEREXP|FDT=fdtname,[STANDARD]DICTIONARY=dictionary}
 {,DCBMODEL=datasetname}|{,RECFM=recfm,LRECL=lrecl,BLKSIZE=blksize}
 {,RECFM=recfm,LRECL=lrecl,BLKSIZE=blksize}
 {,EFFDATE=yyddd}|{ANYDATE}
 [,GDG=YES|NO|ONLY]
 [,SDB=YES|NO]
 [,ERASEUNCAT=YES|NO]
 [,EXCLUDE]
 [,NON-COMP=#]
 [,SCOPE=CICS|ALL]
 [,DEVTYPE=TAPE|DA|ALL]
 [,UEXIT=YES|NO]

PSDSN=data-setname—Specifies a physical sequential data set which is to be
compressed.

PSPATTERN=patternname—Specifies a data set name pattern which selects
data sets for compression. The pattern can contain any character that is valid in a
data set name along with the special characters ?, !, and /. These special
characters are defined in the section Syntax Rules in this chapter.

SUPEREXP|FDT=fdtname[,STANDARD]|DICTIONARY=dictionary—Selects
the type of compression desired for the data set or pattern being defined.

The optional parameter STANDARD can be specified only in conjunction with
the FDT=fdtname parameter. It informs BrightStor CA-Compress that the FDT
specified should provide the compression or expansion tables only, and that the
RDL specified in the FDT should be ignored. The STANDARD parameter allows
one FDT to be used for a number of data sets that can share character distribution
characteristics but not different non-compressible area. STANDARD is implied if
the FDT parameter specifies a name of the form STDTBLxx where xx is a numeric
value from 01 thru 06. The DICTIONARY parameter can specify a CA-supplied
IBM Hardware Compression dictionary of the form HC#STDxx (where xx is
numeric 01 to 05).

SUPEREXP specifies the low-overhead compression algorithm called Super
Express.

DCBMODEL=data-setname/RECFM=recfm/LRECL=lrecl/BLKSIZE=blksize—
These parameters supply the DCB attributes of the uncompressed data. These
values must be kept in the Control File because they are unavailable elsewhere.

DCBMODEL specifies a cataloged data set from which to extract RECFM,
LRECL, and BLKSIZE attributes. It can be the data set being compressed, or any
other PS or PO disk data set, unless it is compressed but not implemented.

Control File Maintenance Utility 2–9

Control File Statements

RECFM, LRECL, and BLKSIZE supply each individual attribute. They can be
combined with DCBMODEL, in which case any individual attribute coded
overrides the value implied by DCBMODEL.

For PS Patterns, these parameters are optional. DCB attributes in PS Pattern
records serve only to supply defaults to matching PS Dsname records as they are
created.

For PS Dsname records, these parameters are individually optional, but some
combination must provide a valid RECFM, LRECL, and BLKSIZE for the data
set. A consistency check is performed. If any are missing, or if in combination
they are invalid, or if DCBMODEL specifies a data set which is compressed but
not implemented in the Control File, the statement is rejected. For these values to
be correct is vital.

EFFDATE=yyddd/ANYDATE—These parameters are optional and mutually
exclusive.

EFFDATE specifies the Julian date that compression is to be implemented on the
data set. When the date becomes current or past, the data set is compressed the
next time it is created or replaced.

ANYDATE specifies that the data set should be considered compressed already.
If it is opened for output, compressed data is written, and if it is read, each record
is expanded. ANYDATE should be specified when you are implementing a data
set already compressed in an earlier release of BrightStor CA-Compress using the
SUBSYS JCL parameter; otherwise BrightStor CA-Compress assumes that the
data is still uncompressed until the data set is recreated, and applications receive
compressed data.

GDG=YES|NO|ONLY—Specifies whether pattern matches should be
recognized for all data sets including GDGs (GDG=YES), excluding GDGs
(GDG=NO), or only for GDGs (GDG=ONLY). The default is GDG=YES.

SDB=YES|NO – Specifies whether compressed dataset BLKSIZE should be
calculated by the IBM System Determined Blocksize (SDB) facility or set to the
uncompressed dataset BLKSIZE. SDB=YES gives better compression and I/O
performance, but may cause I/O errors if a smaller BLKSIZE is coded on JCL
which reads the compressed dataset without CA-Compress. The input BLKSIZE
should never be coded except when using SUBSYS to invoke CA-Compress, but
until such JCL is corrected, SDB=NO will make it work correctly. The default is
YES unless NOSDB is specified in the CA-Compress started task JCL.

ERASEUNCAT=YES|NO—Specifies whether the entry should be purged from
the Control File when the data set is uncataloged. This is an optional parameter
and interacts with the GDG parameter. The default is YES for GDG=ONLY and
NO for GDG=YES and GDG=NO.

EXCLUDE—Specifies that the data set is excluded from compression.

2–10 BrightStor CA-Compress Data Compression Reference Guide

Control File Statements

NON-COMP=#—Specifies a non-compressible area at the beginning of each
record for other than custom Huffman or Tailored RDL methods. This parameter
is especially helpful for setting aside non-compressible bytes to enable record
selection or other processing on the data set without having to expand and
compress records.

SCOPE=CICS|ALL—Specifies whether data set should be considered defined as
compressed only under CICS (SCOPE=CICS) or always (SCOPE=ALL). This
parameter is primarily intended as a conversion aid. The default is SCOPE=ALL.

DEVTYPE=TAPE|DA|ALL—Specifies whether data set should be considered
defined as compressed only if on tape (DEVTYPE=TAPE), on direct access
(DEVTYPE=DA), or anywhere. The default is DEVTYPE=ALL.

UEXIT=YES|NO—Specifies whether the Transparency User Exit is to be
invoked during compression and expansion of each record. The default is NO.

ALTER Statement (Physical Sequential)

The ALTER statement for Physical Sequential changes the compression attributes
of a data set or pattern that is currently defined to BrightStor CA-Compress.

ALTER {PSDSN=datasetname}|{PSPATTERN=patternname}
 {,SUPEREXP|FDT=fdtname,[STANDARD]|DICTIONARY=dictionary}
 {,DCBMODEL=datasetname}|{,RECFM=recfm,LRECL=lrecl,BLKSIZE=blksize}
 {,RECFM=recfm,LRECL=lrecl,BLKSIZE=blksize}
 {,EFFDATE=yyddd}|{ANYDATE}
 [,GDG=YES|NO|ONLY]
 [,SDB=YES|NO]
 [,ERASEUNCAT=YES|NO]
 [,EXCLUDE=YES|NO]
 [,NEWNAME=newdatasetname]
 [,NON-COMP=#]
 [,UEXIT=YES|NO]

PSDSN=data-setname—Specifies the physical sequential data set entry being
ALTERed.

PSPATTERN=patternname—Specifies the physical sequential data set name
pattern being ALTERed. The pattern can contain any character that is valid in a
data set name along with the special characters ?, !, and /. These special
characters are defined in the section Syntax Rules in this chapter.

SUPEREXP|FDT=fdtname[,STANDARD]|DICTIONARY=dictionary—Selects
the type of compression desired for the data set or pattern being ALTERed.

Control File Maintenance Utility 2–11

Control File Statements

The optional parameter STANDARD can be specified only in conjunction with
the FDT=fdtname parameter. It informs BrightStor CA-Compress that the FDT
specified should provide the compression or expansion tables only, and that the
RDL specified in the FDT should be ignored. The STANDARD parameter allows
one FDT to be used for a number of data sets that can share character distribution
characteristics but not different non-compressible area. STANDARD is implied if
the FDT parameter specifies a name of the form STDTBLxx where xx is a numeric
value from 01 thru 06. The DICTIONARY parameter can specify a CA-supplied
IBM Hardware Compression dictionary of the form HC#STDxx (where xx is
numeric 01 to 05).

SUPEREXP specifies the low-overhead compression algorithm called Super
Express.

DCBMODEL=data-setname—RECFM=recfm; LRECL=lrecl; BLKSIZE=blksize

These parameters change the DCB attributes of the uncompressed data. These
attributes must be kept in the Control File because they are unavailable
elsewhere.

RECFM, LRECL, and BLKSIZE change each individual attribute.

You need not change them all, but the result after your specified changes must be
a valid combination of RECFM, LRECL, and BLKSIZE for the data set. A
consistency check is performed. If in combination they are invalid, the statement
is rejected. For these values to be correct is vital.

DCBMODEL is ignored when an entry already has DCB attributes defined. For
this reason, it has no effect on the ALTER statement except on PS Patterns for
which no DCB attributes were defined when the Pattern was added.

EFFDATE=yyddd/ANYDATE—These parameters are optional and mutually
exclusive.

EFFDATE specifies the Julian date that compression is to be implemented on the
data set. When the date becomes current or past, the data set is compressed the
next time it is created or replaced.

ANYDATE specifies that the data set should be considered compressed already.
If it is opened for output, compressed data is written, and if it is read, each record
will be expanded. ANYDATE should be specified when you are implementing a
data set already compressed in an earlier release of BrightStor CA-Compress
using the SUBSYS JCL parameter; otherwise BrightStor CA-Compress expects to
read uncompressed records until the data set is recreated, and applications
receive compressed data.

GDG=YES|NO|ONLY—Specifies whether pattern matches should be
recognized for all data sets including GDGs (GDG=YES), excluding GDGs
(GDG=NO), or only for GDGs (GDG=ONLY).

2–12 BrightStor CA-Compress Data Compression Reference Guide

Control File Statements

SDB=YES|NO – Specifies whether compressed dataset BLKSIZE should be
calculated by the IBM System Determined Blocksize (SDB) facility or set to the
uncompressed dataset BLKSIZE. SDB=YES gives better compression and I/O
performance, but may cause I/O errors if a smaller BLKSIZE is coded on JCL
which reads the compressed dataset without CA-Compress. The input BLKSIZE
should never be coded except when using SUBSYS to invoke CA-Compress, but
until such JCL is corrected, SDB=NO will make it work correctly. The default is
YES unless NOSDB is specified in the CA-Compress started task JCL.

ERASEUNCAT=YES|NO—Specifies whether the entry should be purged from
the Control File when the data set is uncataloged. This is an optional parameter,
but it interacts with the GDG parameter. For instance, if ERASEUNCAT=NO and
you specify GDG=ONLY, ERASEUNCAT is changed to YES unless you explicitly
say ERASEUNCAT=NO.

EXCLUDE=YES|NO—Specifies that the data set is excluded from compression
(YES), or no longer excluded from compression (NO).

NEWNAME=newdatasetname—Specifies the new data set name or data set
pattern for a previously defined entry. This parameter can be specified in
conjunction with any other parameters when renaming a PS dataset or pattern
entry.

NON-COMP=#—Specifies a non-compressible area at the beginning of each
record for other than custom Huffman or Tailored RDL methods. This parameter
is especially helpful for setting aside non-compressible bytes to enable record
selection or other processing on the data set without having to expand and
compress records. The Utility rejects this parameter if the data set is already
compressed.

SCOPE=CICS|ALL—Specifies whether data set should be considered defined as
compressed only under CICS (SCOPE=CICS) or always (SCOPE=ALL). This
parameter is primarily intended as a conversion aid.

DEVTYPE=TAPE|DA|ALL—Specifies whether data set should be considered
defined as compressed only if on tape (DEVTYPE=TAPE), only if on direct access
(DEVTYPE=DA), or anywhere.

UNINHIBIT—Reactivates compression for this data set if compression has been
inhibited due to an earlier error, usually a DCB parameter mismatch. The most
common reason for BrightStor CA-Compress to inhibit an entry is that a
compressed data set was expected, but the data set was actually uncompressed,
perhaps because an uncompressed data set was renamed to this compressed data
set name. This condition is normally corrected when the data set is recreated.

Control File Maintenance Utility 2–13

Control File Statements

If the data set is correctly compressed, but the entry was inhibited due to a JCL
error, an earlier BrightStor CA-Compress logic error, or some other condition,
UNINHIBIT restores compression and expansion to the data set without having
to recreate it. If the error is due to having used the wrong DCBMODEL data set
or coding one of the other DCB parameters incorrectly in the Control File entry,
you should correct these at the same time.

UEXIT=YES|NO—Specifies whether the Transparency User Exit is to be
invoked during compression and expansion of each record.

COPY Statement

The COPY statement copies an entire VSAM or Physical Sequential entry.

COPY {DSNAME=datasetname,DATA=datacomponentname|PSDSN=datasetname|

DSNAME=datasetname—Specifies the name of a VSAM entry to DELETE from
the Control File. The value should be a valid cluster name, not a data component
name or physical sequential data set name. DSNAME= must be accompanied by
DATA=, which specifies the DATA component name of the new entry.

PSDSNAME=datasetname—Specifies the name of a Physical Sequential dataset
entry to COPY. DATA= should not be coded with PSDSNAME=. If DATA= is
present, the CFMU ignores it and issues a warning message.

DELETE Statement

The DELETE statement is used to remove the following from the Control File:

� A VSAM data set or pattern definition

� A physical sequential data set or pattern definition

� A system entry

DELETE {DSNAME=data setname|PATTERN=patternname|PSDSNAME=data setname|
 PSPATTERN=patternname|SYSTEM=systemname}
 [,ONLY]

DSNAME=data-setname—Specifies the name of a VSAM entry to DELETE from
the Control File. The value should be a valid cluster or path name, not a data
component name or physical sequential data set name. If it is a cluster name and
ONLY is not specified, the cluster entry and all its associations are deleted from
the Control File. If it is a path entry, only the path entry is deleted.

PATTERN=patternname—Specifies the name of a VSAM pattern entry to
DELETE. The entry can contain any character valid in a data set name, together
with special characters ?, *, ! and/or /. These special characters are defined in the
section Syntax Rules in this chapter.

2–14 BrightStor CA-Compress Data Compression Reference Guide

Control File Statements

PSDSNAME=data-setname—Specifies the name of a physical sequential data set
to DELETE from the Control File.

PSPATTERN=patternname—Specifies the name of a physical sequential pattern
to DELETE. The entry can contain any character valid in a data set name,
together with special characters ?, *, ! and /. These special characters are defined
in the section Syntax Rules in this chapter.

SYSTEM=systemname—Specifies the system name of a currently inactive
BrightStor CA-Compress system that is to be deleted from the Control File. The
SMF system id is used to maintain the in-storage list of patterns whenever they
change. You do not need to DELETE the system name regularly because it is
automatically removed when the BrightStor CA-Compress subsystem is brought
down normally.

If a system name on the Control File is identical to the one currently starting and
it has not been used for more than 2 minutes, it is reused automatically. You are
queried at start-up if the system entry has been used in the last 2 minutes to
determine if it should be re-used. You are informed that it is not possible to start
BrightStor CA-Compress if 8 system names are in the Control File and you must
add one. Then you must delete (using the DELETE statement) one of the inactive
entries.

ONLY—Specifies that only the record specified in the DSNAME parameter is to
be removed from the Control File, even when DSNAME is a cluster. ONLY is
intended to remove orphan records in the Control File resulting from hardware
or system failures.

FDT Statement

The FDT statement adds or replaces a File Descriptor Table (FDT) entry in the
Control File.

FDT FDTNAME=fdtname
 [,REPLACE]

FDTNAME=fdtname—Specifies the name of the FDT that is to be added or
replaced in the Control File.

REPLACE—Specifies that the FDT should be replaced if it currently exists on the
Control File. The FDT is added if it does not currently exist.

Control File Maintenance Utility 2–15

Control File Statements

REPORT Statement

The REPORT statement generates reports on one or more definitions of data sets,
patterns, File Descriptor Table (FDT) entries, and Systems in the Control File.

REPORT [DSNAMES={ALL|(data-set-name-1 [, . data-set-name-10])]
 [,PATTERNS={ALL|(pattern-name-1 [, . pattern-name-10])]
 [PSDSNAMES={ALL|(data-set-name-1 [, . data-set-name-10])]
 [PSPATTERNS={ALL|(pattern-name-1 [, . pattern-name-10])]
 [,SYSTEMS]
 [,FDTS={ALL|(fdt-name-1 [, ... fdt-name-10])]
 [,FORMAT={SHORT|LONG|DUMP}]

DSNAME={ALL|data-setname(s)}—Specifies the name(s) of the VSAM
cluster(s) to be reported on. The value should be a valid cluster name, path name
or a data component name. The data set name can be a pattern, in which case all
VSAM data set definitions matching the pattern are reported on. The value ALL
specifies that all VSAM data set definitions in the Control File are to be reported.

PATTERN={ALL|patternname(s)}—Specifies the VSAM pattern name to be the
subject of the report. The pattern can contain any character that is valid in a data
set name, along with the special characters ?, *, ! and /. The value ALL specifies
that all VSAM pattern definitions in the Control File are to be reported.

PSDSNAME={ALL|data-setname(s)}—Specifies the name(s) of the physical
sequential data set(s) to be reported on. The value should be a valid discrete
physical data set name. The data set name can be a pattern, in which case all PS
data set definitions matching the pattern are reported on. The value ALL
specifies that all PS data set definitions in the Control File are to be reported.

PSPATTERN={ALL|patternname(s)}—Specifies the physical sequential pattern
name to be reported on. The pattern can contain any character valid in a data set
name, along with the special characters ?, *, ! and /. The value ALL specifies that
all PS pattern definitions in the Control File are reported.

SYSTEMS—Specifies that all system name records are the subject of the report.

FORMAT={SHORT|LONG|DUMP}—Specifies the format of the report. A
SHORT report contains the basic information about a File Descriptor Table (FDT),
data set, pattern, or system record. A LONG report for a data set or pattern
record contains the size of the non-compressible area for a Scheduled, Super
Express, or Standard data set, and the pattern that matched it for a pattern match
data set. The DUMP format contains a dump of each record that meets the
selection criteria. The default is FORMAT=SHORT.

2–16 BrightStor CA-Compress Data Compression Reference Guide

Control File Maintenance Utility Reports

SET Statement

The SET statement will select a data set or subsystem Control File entry upon
which the subsequent statements are to act. It can also set the abend flag to abend
the job if the step completes with a non-zero return code.

SET [DDNAME=ddname|SUBSYS=subsystem|PRODUCTION]
 [,ABEND={NO|YES}]

DDNAME=ddname—Specifies the DDNAME of a VSAM file that is to be used
as a Control File.

SUBSYS=subsystem—Specifies the name of the BrightStor CA-Compress
subsystem that manages the desired Control File. The subsystem specified must
be active.

PRODUCTION—Specifies that a search is to be made for an active
BrightStor CA-Compress subsystem. The located subsystem is used to access the
Control File.

ABEND={NO|YES}—Specifies if an abend is to be generated when a non-zero
return code occurs. The default is ABEND=NO.

Control File Maintenance Utility Reports
The Control File Maintenance Utility Report, provides a list of processed control
statements, information about the effects of control statement processing, and
output from the REPORT control statement. This statement can be shown in
short, long, or dump formats.

Control File Maintenance Utility 2–17

Control File Maintenance Utility Reports

CFMU Short Format

Figure 2-2. CMFU Short Report

Fields and Contents—The CFMU short report contains the following
information:

� Command Statement report heading, which includes: the date, day, and time
that the report was generated; and the page number, and
BrightStor CA-Compress release used to generate the report.

� REPORT command followed by a statement specifying the subject of the
report: data set name, pattern name, and system.

� Module name, message number, and message text.

� The detail of the item being reported: data set name, pattern name, the
compression routine used or FDT name, implementation type, and exclusion
indicator.

2–18 BrightStor CA-Compress Data Compression Reference Guide

Control File Maintenance Utility Reports

CFMU Long Format

Figure 2-3. CFMU Long Report

Fields and Contents—The CFMU long report contains the following
information:

� Command Statement report heading, which includes: the date, day, and time
that the report was generated; and the page number, and
BrightStor CA-Compress release used to generate the report.

� REPORT command followed by a statement specifying the subject of the
report: data set name, pattern name, and system.

� Module name, message number, and message text.

� The detail of the item being reported: data set name, pattern name, the
compression routine used or FDT name, implementation type, and exclusion
indicator. In addition, it shows the original non-compressible area of the
record for a Scheduled, Super Express, or Standard data set, the pattern
match time and name, and the Release percent.

Control File Maintenance Utility 2–19

FDT Compare Utility DEFXP050

CFMU Dump Format

Figure 2-4. CFMU Dump Report

Fields and Contents—The CFMU dump report contains the following
information:

� Command Statement report heading, which includes: the date, day, and time
that the report was generated; and the page number, and
BrightStor CA-Compress release used to generate the report.

� REPORT command followed by a statement specifying the item to be
reported: data set name, pattern name, system, and FDT.

� Module name, message number, and message text.

� The dump of the FDT in the command statement.

FDT Compare Utility DEFXP050
This facility is enabled by PTF SS03544.

The FDT Compare Utility compares all the FDTs in a specified load library to the
BrightStor CA-Compress Control File being used by the active
BrightStor CA-Compress started task. If BrightStor CA-Compress is not active, an
error message is issued and the system abends.

The utility lists those FDTs in the Control File which are unequal to their
equivalents in the load library, or which are damaged and cannot be fetched
from the Control File. For each FDT not found in the Control file, the utility
produces a Control File Maintenance Utility (CFMU) FDT control statement to
add the FDT to the Control File. You can supply this data set to a subsequent
CFMU step to add the missing FDTs.

2–20 BrightStor CA-Compress Data Compression Reference Guide

FDT Compare Utility DEFXP050

Executing the FDT Compare Utility

To execute the FDT Compare Utility, you can customize the following JCL:

Figure 2-5. Sample JCL for the FDT Compare Utility

Additional notes for Sample JCL for the FDT Compare Utility:

� BADNAMES specifies the list of damaged or unequal FDTs. This is
ordinarily a SYSOUT data set, but it can be a sequential data set which your
program can use to process the problem FDTs. You can specify any BLKSIZE
compatible with the utility's specification of RECFM=FB and LRECL=80.

� ADDFDTS is the sequential data set containing the CFMU FDT control
statements. You can specify any BLKSIZE compatible with the utility's
specification of RECFM=FB and LRECL=80.

Control File Maintenance Utility 2–21

Chapter

3 Record Definition Language

Record Definition Language (RDL) provides you with a formal means of
describing characteristics of the data comprising a file that is compressed (and
expanded) by the BrightStor CA-Compress system, using a user-generated FDT.
The more you know about the data, the more detailed and precise the RDL
specifications can be.

RDL is used only for user-defined FDTs. Because the execution of any RDL
specification must be serialized, user-defined FDTs impose a significant I/O
penalty where multiple I/Os are issued concurrently, as in busy CICS systems.
Super Express, Standard Tables, and Hardware compression do not require this
serialization, so we strongly recommend them where they give acceptable
compression.

Even for user-defined FDTs, BrightStor CA-Compress assumes default record
definitions (described at the end of this chapter) if you choose not to code RDL
specifications. BrightStor CA-Compress effectiveness in achieving impressive
compression ratios using default record definitions (and corresponding low
processing overhead) is considerable. In the absence of other considerations (for
example, the need to exempt specific non-key fields from compression, for which
user-coded RDL specifications are necessary) we recommend that the default
definitions assumed by the BrightStor CA-Compress system be used in the first
attempts to compress any file. Then, if performance is satisfactory, no more user
coding is necessary.

This chapter describes how to create your own RDL, if you need to do it.

Record Definition Language 3–1

Performance Considerations When Using RDL

Performance Considerations When Using RDL
Consider three factors when you evaluate performance:

� I/O—Including the need to serialize concurrent I/Os when using any user
generated FDTs.

� Compression Ratio—The amount of storage space saved by compressing a
data set.

� Processing Overhead—The amount of additional CPU cycles required to
transform record images from the compressed state to the uncompressed
state for processing by an application program, and to retransform records to
the compressed state for storage in the data set.

Whenever RDL is used, non-reentrant code is compiled to execute the
compression and expansion specified by the RDL. When I/Os are performed
sequentially, this consideration is negligible. However, the CICS or other systems
performing concurrent reads and writes to the same ACB, this penalty becomes
severe. For any data set used under CICS or similar systems, we strongly
recommend Super Express, Standard Tables, or Hardware Compression, if at all
possible.

Maximizing the compression ratio represents a cost saving for users, because
more data can be stored per unit of storage available. The accompanying increase
in processing overhead may or may not represent an increased cost to the user,
depending upon the circumstances unique to each user.

Many factors influence whether the increase in processing overhead results in a
cost or a saving to the user. Although it seems that increased processing
overhead to compress and expand records always costs the user more, more
records can be stored per block when compressed, reducing the number of times
that data blocks must be transferred between the application and the storage
device. This reduction represents a decrease in processing overhead and may
result in a net saving. The availability of CPU cycles during a typical job mix is
also important. The total number of CPU cycles available per unit of time is a
fixed cost to the user, directly related to the computing power of the user's
installed hardware. If CPU cycles are available during a typical job mix,
increased processing overhead may result in no increased cost.

In any event, there is a trade-off between compression ratio and processing
overhead. As compression ratio approaches the theoretical maximum (that is,
storing the greatest amount of data in the fewest number of bits), processing
overhead tends to increase. By benchmark testing, you can determine the
optimum trade-off for yourself, based upon your requirements.

3–2 BrightStor CA-Compress Data Compression Reference Guide

How the RDL Operates

How the RDL Operates
The theoretical maximum compression ratio is different for each data set, because
it depends upon the actual data contained in the data set. The
BrightStor CA-Compress system provides multiple algorithms for compressing
data, which you can selectively apply to individual fields within data records to
maximize their compression.

Using RDL specifications, which you code and supply as input to build the File
Descriptor Table (FDT), accomplishes this compression. The more completely
and accurately the RDL describes the records, the closer the compression ratio
approaches the theoretical maximum. However, each RDL specification coded
has an associated cost in processing overhead.

For example, you know that a certain field contains textual data, such as a
customer name and that the customer name field never contains numeric
characters. This characteristic can be used to differentiate this field from a
customer address field, which, while containing textual information, does contain
numeric characters. By using 2 different RDL specifications to define these fields,
you may achieve a higher compression ratio for both fields than if both fields are
defined by the same RDL specification.

While it is often sufficient to know what kind of data is in a field, it is also helpful
to know the distribution of values contained in the field across the file. For
example, one of the most efficient ways to define a field to
BrightStor CA-Compress is as a small set of fixed expected values. A file may
contain a warehouse name field, where there is only a small number of
warehouses represented on the file. An RDL specification can be coded which
provides these names as a set of expected values.

RDL Terminology
To understand how to use BrightStor CA-Compress RDL, understand certain
technical terms used to describe the RDL in the following discussion. You code
RDL specifications to describe the records that comprise the file that is
compressed and expanded. Each RDL specification defines one data field.

Note: Unless otherwise noted, references to the term “field” in this section means
a field as defined to BrightStor CA-Compress, not a record data element.

A field, to BrightStor CA-Compress, is a series of consecutive byte locations, the
contents of which have similar compression/expansion characteristics, as
determined by the user. The boundaries of fields defined to
BrightStor CA-Compress need not correspond with actual field boundaries of
data elements. For example, the entire record can be defined to
BrightStor CA-Compress as a single BrightStor CA-Compress field.

Record Definition Language 3–3

RDL Terminology

Fields are differentiated by the type of data they contain (for example, character
data, packed decimal data, and so on). Thus, each RDL specification partly
consists of a field type code. From the field type code you specify, the
BrightStor CA-Compress system selects a compression/expansion algorithm
appropriate for the field's content.

In addition to the type of data contained in a field, BrightStor CA-Compress must
know the extent of the field; that is, where it begins and ends—the boundaries of
the field. Thus, each RDL specification coded contains an indication of the length
of the field, in bytes.

The location in the record where the field begins is implied by the sum of the
lengths of fields previously defined. BrightStor CA-Compress evaluates user-
coded RDL specifications left-to-right and maintains an internal field pointer
(IFP). The value in the IFP is initially zero, corresponding to the first position of
the record. BrightStor CA-Compress automatically adjusts the IFP value for each
RDL specification, increasing it by the length of the previous field definition.

In a few special cases, you may need to set the value of the IFP explicitly by
coding a special RDL specification, the Position Function. Use of the Position
Function is described later in this chapter.

Field lengths are not always fixed. The field length of a variable-length field must
be determinable from information contained in the record. A separate field
normally contains the length of a variable-length field, or contains a value
indicating the number of times that a variably occurring fixed-length segment
appears. BrightStor CA-Compress allows you to perform arithmetic within a
field definition to calculate a variable field length, using a special symbol, VS, to
represent the calculated value. The VS (Variable Symbol) can be coded in certain
field definitions in lieu of an integer length. Detailed description of calculating a
value for the VS is presented later in this section.

You may need to repeat an RDL specification twice or more in succession. For
example, the record may contain 20 successive packed decimal numbers of
identical length. To reduce coding in such cases, the RDL provides for
specification of a repetition factor for a single RDL specification or a group of
RDL specifications coded consecutively. This RDL specification structure has the
same effect as coding the RDL specification or a group of RDL specifications as
often, in sequence, as indicated by the repetition factor. This RDL specification
structure is referred to as a repetition group. The VS can be coded in cases where
the repetition factor is variable and can be calculated from information within the
record. This process is described later in this section.

Files can contain multiple record formats, where the format of a particular record
can be determined from the contents of 1 or more individual fields.
BrightStor CA-Compress allows alternative record definitions, which are
effective for particular records based upon the contents of a field. Such an RDL
coding structure is referred to as a condition group and is described later in this
section.

3–4 BrightStor CA-Compress Data Compression Reference Guide

RDL Syntax Rules

RDL Syntax Rules
Syntax rules for the Record Definition Language are as follows:

� Definitions appear within Columns 1-72 of each card.

� Definitions can be continued onto any number of cards.

� Each field definition consists of a 1- or 2-character type code followed by a
field length descriptor.

� Definitions are separated by commas and/or blanks.

� Groups of definitions are enclosed within quotes and preceded by a
repetition factor.

� Condition groups (definitions whose pertinence is dependent on record
content) are enclosed in parentheses.

� Numbers appearing in the language, either as field lengths or arithmetic
constants, must be between 1 and 32767 (inclusive), unless otherwise
specified.

� Definitions are terminated with a period or by end-of-file on the RECDEF
data set. Information appearing after the period is treated as a comment.

As the record definitions are processed by the Prepass Utility or the Interactive
User Interface (IUI), they are checked for syntactical validity (but not
applicability to the data) and printed. If syntax errors are encountered, each error
is underscored by an alphanumeric character identifier, which corresponds to the
initial character of an explanatory error message printed directly below the RDL
statement in error.

Each RDL specification consists of a field type code and a field length descriptor.
Valid field type codes are shown in Table 3-1. Table 3-2 shows valid forms for
coding field length descriptors.

Below is an example of the use of field definitions with length specifications
where:

� The first 8-byte field is a right-justified, zoned decimal number.

� The next 100-byte field is character data.

� The next 2 fields are 4-byte packed decimal numbers.

� The remainder of the record is treated as character data.

 ZRF8, C1F100, PDF4, PDF4, C1VER.

Record Definition Language 3–5

RDL Syntax Rules

Field Type Type of Data Defined

C1, C2, C3 Character data using internal frequency table 1, 2, or 3, as
specified

CS Character data using SHRVL algorithm

GA Garbage, filler, padding, alignment bytes, and so on.

L Insert binary length indication (for COBOL users)

MA, MB Pattern matching

N Exempt from compression (keys)

PD Packed decimal data

S, X Set of expected values

UN Undefined field

V, VP, VZ Variable definition

 ZL, ZR Zoned decimal, left- or right-justified, as specified

Table 3-1. Valid Field Code Types

Code Description

Fn Fixed-length field of length n, where 1<n<16384; n may contain
leading zeros but may not exceed eight decimal digits.

FVS Length determined by the previous type-V field. This descriptor is
valid only for types C1, C2, C3, UN, and GA.

VER Variable-length field extending to the end of the record. This
descriptor is valid only for types C1, C2, C3, UN, and GA.

This specification gives the RDL some independence from record
length. In particular, the record length can be increased indefinitely
without having to recreate the FDT and re-implement the data set.
We strongly encourage its use.

Dc Variable-length field delimited by a given EBCDIC character, “c”, or
end of input record, whichever comes first. The length must be less
than 128 bytes. This descriptor is valid only for types C1, C2, C3,
UN, and GA. The following field definition, if any, begins beyond
the delimiter.

Table 3-2. Valid Field Lengths Descriptor Codes

3–6 BrightStor CA-Compress Data Compression Reference Guide

RDL Field Type Descriptions

RDL Field Type Descriptions
The following subsections describe individual RDL field type codes, with
suggestions and restrictions concerning their use.

Field Types C1, C2, and C3—Character Data

These field types are compressed using the Huffman algorithm, coupled with
elimination of successive repetitions of the same byte value. The value in each
byte is assigned a variable-length bit code, with the most-frequently occurring
value assigned the shortest bit code and the least-frequently occurring value
assigned the longest bit code. The frequency of occurrence of each value is
determined during the Prepass and is stored in 1 of 3 character frequency tables.
A separate character frequency table is associated with each of the character-type
RDL field specifications C1, C2 and C3. When coding RDL specifications for type
C fields, you should attempt to group together in the same frequency table those
fields whose byte values are likely to have a similar distribution.

For example, you can define predominantly alphabetic fields as type C1,
predominantly numeric fields as C2, and fields with another kind of distribution
as C3. The compression ratio thus obtained is better, at no increase in processing
overhead, than if all fields are defined as the same type. With the exception that
types C1, C2, and C3 have their own individual frequency table, they are treated
identically by BrightStor CA-Compress.

For example, on a name and address file, suppose the name appears in the first
40 positions, the street address in the next 39, the city and state in the next 28,
and the ZIP code in the final 5 positions. The code could be:

C1F112.

but

C1F40, C2F39, C3F28, C2F5.

gives better results. After the Prepass, the C1 table is heavily skewed toward
alphabetics, with the letters M, R, S, blank and the vowels used most frequently.
The more frequently the character is used, the shorter is its bit code
representation. The second field is preponderantly alphabetics, numerics, and
blank so that its compression may be improved using a separate frequency table,
C2. Because the last field is numeric, it can also be grouped in C2, although it
probably is better for both fields to code it ZRF5. The city and state field may
have the same approximate distribution as the first C1 field, but because there is
one more table to spare (C3), it should be used.

Note: In the improbable event that all 256 byte values are equally represented in
the file, each character translates into an 8-bit code. But even in this case, some
compression may be obtained through the type C automatic elimination of
successive duplicate byte values.

Record Definition Language 3–7

RDL Field Type Descriptions

Field Type CS—Character Data (SHRVL Compression)

This field type is compressed using the SHRVL (pronounced “shrivel”)
algorithm. SHRVL provides better compression than Huffman, especially in
circumstances where the data characteristics vary considerably from record to
record.

Field Type GA—Garbage Data (Permanently Unused Fields)

Field type GA is specified when the content of a field is no longer of value in the
file. This type can be specified for permanently unused fields, fillers, alignment
bytes, and so on. They are deleted in the compressed record, but appear as binary
zeros upon re-expansion. If these fields were not originally zeros, the expanded record
is not an exact replica of the original. Checking used by BrightStor CA-Compress
does not consider type GA fields.

Consider variable-length input records, where the 2 low-order bytes of the IBM
standard Record Descriptor Word (RDW) are always binary zeros. Those 2 bytes
can conveniently be specified as GAF2.

All 4 bytes of the RDW are sometimes superfluous in defining variable-length
records, because the length may be implicit in the record content. The RDW may
then be defined as GAF4. The Expansion Utility fills in the length automatically.
The EXPAND subroutine supplies the length if the output record address (first
parameter) and the record length address (third parameter) are the same.

Field Type L—Insert Tally of Actual Length

This type is used to insert a binary length indicator at the front of each
compressed record. When issued, it must be the first specification of the record
definition statements. In the compressed record it appears as a 2-byte binary
number at the start of the record after the RDW, if any, and before the type N
fields. The type L field contains the number of bytes in the record that follows
this field. It is coded in the record definitions simply as the letter L, with no
length descriptor.

Type L is useful in reading and writing compressed records in COBOL. For
example, the COBOL record definition (or redefinition) for records of maximum
length 1000 can be specified as:

01 CMP-RCD SYNC.
 02 LEN PIC 9(4) COMP.
 02 CHARS PIC X OCCURS 1000 TIMES DEPENDING ON LEN.

3–8 BrightStor CA-Compress Data Compression Reference Guide

RDL Field Type Descriptions

Field Types MA and MB—Pattern Matching

When data field content is similar from record to record, a pattern matching
specification may produce more efficient compression than other field type
specifications.

Fields defined by this field type are compared with a pattern, and matching
characters, as well as character repetitions, are compressed. Type MA fields use
the data in the first record as a pattern. Type MB fields use the data in the
previous record as a pattern. When SHRINK or EXPAND is called from the user's
program, these patterns are set during the initial CALL. Type MB patterns are
reset during each subsequent CALL.

Note: Using MA and MB pattern matching causes an 0C4 abend in both
BrightStor CA-Compress IMS and MVS Editions. For this reason, pattern
matching can only be used with CA-Compress/2 and its use is strongly
discouraged.

Certain unavoidable restrictions apply to the use of these fields:

� They must be fixed-length.

� They cannot be specified within condition groups.

� When they appear within a repetition group or a nest of repetition groups,
none of the enclosing repetition factors can be the variable symbol, VS.

� The pattern used to expand the field must be the same as that used to
compress the field.

The use of type MB requires clarification. In general, the compression obtained
with type MB is better than with type MA, but its usage is more restrictive. MB
can only be conveniently used for sequential processing, for example, old master
updated by transaction file yields new master. The following rules must be
followed for this type of sequential update:

Each old master record must be passed to the EXPAND subroutine in sequence.
This requirement precludes the use of MA or MB field definitions with ISAM
files retrieved randomly.

Each new master record must be passed to the SHRINK subroutine in sequence.

If FDTs are in sequential data set format, the old master file and the new master
file must have separate TABLxx DD statements. If the FDTs are in load module
format, each master file must have its own SCB. However, these can, and usually
do, refer to the same File Descriptor Table. Pattern matching works best when
field values are partially or wholly repeated from record to record, as in a file
containing multiple consecutive records with the same name and address. It is
useful for print files, files that are transmitted, and seldom updated read-only
files where the speed of compression—and especially expansion—is more
important than compression ratios.

Record Definition Language 3–9

RDL Field Type Descriptions

This type involves substantial setup timing overhead per field and should,
therefore, not be used for fields shorter than 10 bytes, unless a considerable
compression payoff is expected. The longer the field, the less processing
overhead for setup is required per byte.

Field Type N—Fields Exempted From Compression

Type N fields are not compressed. They are placed at the front of each record
(after the RDW, if any, and after the type L field, if any) in the same order as they
are defined. Type N fields can be used as control fields for sorting, retrieving or
updating the compressed record, and are required for key fields.

Type N fields are exempted from the check byte calculation. Thus, they can be
modified within the compressed record without a “Check Byte Mismatch”
condition occurring upon re-expansion.

Type N fields cannot appear within conditional or repetition groups. Type N
fields must appear at fixed offsets from the start of the record, and their
definition must apply to all records in the file. If such a field happens to occur in
the record after variable-length fields, variable repetition groups, and/or
condition groups, the type N field must be defined before these other fields
through the use of a Position Function, which is described later in this section.
The total length of all type N fields must not exceed 4095 bytes.

The decision as to whether or not to exempt a field from compression depends
upon several factors. Key fields used to retrieve records from the file must be
exempted from compression to enable record retrieval. Sort key fields, upon
which the file is regularly sorted, and match key fields, for record matching
applications, should also be exempted from compression.

When sort key fields are exempted from compression, users can invoke a sort
utility program to sort the file in its compressed state, avoiding all expansion
overhead. When match key fields are exempted from compression, you can avoid
expansion overhead in application programs until it is determined that
compressed fields from the record require processing.

Finally, any field at a fixed offset from the record origin, which appears in all
records of the file, can be considered for exemption from compression.
Consideration must be given to the trade-off between compression ratio and
processing overhead. If the field is always or frequently operated upon in
application programs, you can exempt the field from compression. Where
compression ratio is critical, the field should be compressed. Where minimum
processing overhead is critical, the field should probably be exempted from
compression. Benchmark testing both ways enables you to determine the optimal
trade-off.

3–10 BrightStor CA-Compress Data Compression Reference Guide

RDL Field Type Descriptions

Field Type PD—Packed Decimal Data

Type PD fields contain packed decimal data (USAGE COMPUTATIONAL-3 for
COBOL users). The field length must be less than nine bytes. Valid fields must
meet the following conditions:

� The number is between -2147483647 and 2147483647.

� The sign is a hexadecimal C, D, E, or F.

� Only decimal digits (0-9) occur. (For efficiency, type PD should not be
specified for fields of lengths 1 or 2. Types C1, C2, C3, UN, X, or S can be
used in these cases.)

Invalid fields are automatically treated as type UN by BrightStor CA-Compress.
Instead of being compressed, a field defined as type PD, which contains invalid
data, is enlarged by one bit. No data is lost, and upon expansion, field content is
the same as it was before compression. If a field often contains invalid data, type
C yields greater compression and lower processing overhead than PD. A
message is printed with the statistics produced by the Compression Utility
indicating the number of times invalid data was encountered in a PD field during
compression.

Packed decimal numbers are converted by BrightStor CA-Compress to binary, bit
aligned, variable-length “floating point”. If the packed decimal numbers are
large in magnitude and fill their fields with significant digits (for example, the
packed date 76 36 5C in a 3-byte field), then defining the field as type PD yields
poor performance in both average time per byte and compression. It is better to
specify a type C dedicated to these packed decimal fields. However, if the
numbers rarely come close to filling the field with significant digits, type PD
yields better performance than other specifications.

Specifically, fields with a value of 0 compress to 6 bits, while fields with value a
between 16n-1 and 16n-1 compress to 6+4n bits, regardless of sign or field width.

Consider a file where each record consists of 20, 4-byte packed fields, either
written as PDF4, PDF4, ..., 20 times, or abbreviated as a repetition group

20'PDF4'

If the average number of significant digits is 5 or greater, then it is better to define
the record as

C1F80

If compression is more important than speed, then specifying

20'C1F3,C2F1'

separately defining the low-order sign bytes gives better results for the same
record.

Record Definition Language 3–11

RDL Field Type Descriptions

Field Types S and X—Set of Expected Values

A table reference compression technique can be used where the set of expected
values contained in a field across the file is small, and these values are known. It
is not necessary to include all values that occur in the field in the table of
expected values. If data is encountered in the field for which no matching table
entry is specified, the data is not compressed; instead, it grows by one bit. No
data is lost in this case, and the expanded field is identical to the field before
compression. A message is printed with the statistics produced by the
Compression Utility, indicating the number of times a value was encountered in
a type S or X field that was not specified in the table of expected values. To
achieve efficient compression, it is important that most values occurring in a field
defined as type S or X are specified in the table of expected values.

Field types S and X are functionally equivalent. The only difference is how to
specify the table of expected values. The table for type S is coded in EBCDIC
characters. Any of the 256 possible byte values can be coded, but non-graphic
data must be multi-punched. The table for type X is coded in hexadecimal
format. Each byte value is coded as 2 hexadecimal digits.

RDL specifications for field types S and X are coded in a special format:

tmnv

where:

Parameter Description

t The field type specification, either S or X.

m A 2-digit number (01<m<99 — code the leading zero for values
between 01 and 09), indicating the field length.

n A 2-digit number (01<n<16 — code the leading zero for values
between 01 and 09), indicating the number of entries in the table of
expected values.

v The table of expected values. In this table, entries are coded
consecutively until n values are specified. For type S, no space can
be left between consecutive entries. The table must occupy exactly
m*n positions in the field definition. If the table specification
continues past column 72 of the current RDL statement, it starts
again in column 1 of the next RDL statement. For type X, spaces
can appear between pairs of hexadecimal digits for readability, but
the table must contain exactly 2*m*n hexadecimal digits.

BrightStor CA-Compress uses a sequential search algorithm to determine if a
field value in the record appears in the table of expected values. For maximum
efficiency in processing overhead, the entries of the table should be coded in
decreasing order of probability of occurrence. Code first the expected value most
likely to occur first; code last the expected value least likely to occur.

3–12 BrightStor CA-Compress Data Compression Reference Guide

RDL Field Type Descriptions

The only limit on the size of an expected value table, other than 99 entries
maximum, is the total space available in the FDT. Where applicable, this is the
most efficient method, both in terms of compression ratio and processing
overhead.

To show correctly coded type S and X field definitions, and to show the
difference in the way expected values are coded between types S and X, consider
the following definitions, which are equivalent:

S0103AB1
X0103C1C2F1

Suppose a file has a 4-byte field containing DOGb/, CATb/, FISH, BIRD, FROG,
or “other”, where “other” occurs infrequently. If this field is specified as:

S0405DOGbCATbFISHBIRDFROG

the 32-bit (that is, 4-byte) field compresses to 4 bits, one bit as an error flag and 3
bits to represent which of the 5 values occur. An “other” field cannot be
compressed, but grows by one bit to 33 bits.

Field Type UN — Undefined Fields

This type is used for fields which fall into none of the other categories. Its chief
use is to define fields which cannot readily be compressed (floating point, binary,
bit switches, and so on), particularly when types C1, C2 and C3 are already in
use.

For example, consider defining a floating point field, and types C1, C2 and C3 are
already in use. Defining the floating point field as one of the C types alters the
distribution of values in the corresponding character frequency table. Defining a
floating point field as a type C has a detrimental effect upon the compression
ratio for all other fields defined by type C. To avoid this effect, define the floating
point field as type UN. Type UN fields are not compressed but do not grow in
length. Processing overhead for type UN fields is minimal.

Field Types V, VP, and VZ — Calculate Variable Symbol Value

Using type V to access the RDW may obtain slightly better compression, because
the RDW is excluded from analysis, but the FDT cannot be used for VSAM or
other than RECFM=V(B) PS data sets, so considerable inconvenience is likely.
Moreover, SUBSYS and the transparency support only V2-4 to access the RDW,
and only as of PTF tape PC9607.

Record Definition Language 3–13

RDL Field Type Descriptions

BrightStor CA-Compress RDL provides the capability for defining variable-
length fields, and fields which occur a variable number of times, if the length of
the variable-length field, or the number of times a variably occurring field is
actually present, is stored within the record or can be calculated from
information stored within the record. This capability is implemented using the
Variable Symbol, which is coded in RDL specifications as VS.

Field types V, VP and VZ provide the means to calculate and store a value in the
VS. VS is then coded in subsequent RDL specifications as a field length, a
position reference or a repetition factor. The value stored in the VS during file
processing is substituted in the RDL specification in which it appears for each
record for which the specification applies. The VS can be referenced multiple
times within the definition of the record. The value stored in the VS is changed
every time a type V, VP or VZ field is processed.

Field types V, VP and VZ are functionally equivalent. The only difference is the
format of the data in the type V, VP or VZ field. Use type V to define fields
containing binary integer data, type VP for fields containing packed decimal
data, and type VZ for fields containing right-justified zoned decimal data.

RDL specifications for field types V, VP and VZ are coded in one of 3 possible
special formats at the user's discretion: tn; tno1i1; tno1i1o2i2 .

Parameter Description

t is the field type specification, either V, VP, or VZ.

n is the length of the V, VP, or VZ field, in bytes.

 For type V: 1<n<4.

For types VP and VZ: 1<n<8.

o1 and o2 + = addition

- = subtraction

* = multiplication

/ = division

i1 and i2 are integers between 0 and 32767.

Any remainder resulting from a division operation is dropped.

3–14 BrightStor CA-Compress Data Compression Reference Guide

RDL Field Type Descriptions

Arithmetic operations are evaluated left to right. The following are examples of
the special formats:

Format Description

V4 The 4-byte field currently defined contains a binary integer whose
value is to be stored in the VS. Using the VS in a subsequent RDL
specification refers to the value of the binary integer.

V4+500 500 is added to the binary integer, as described in the previous
example, and the result is stored in the VS.

VP3-3/20 The 3-byte field currently defined contains a packed decimal
number. Three is subtracted from the number, the result is divided
by 20, and the end result is stored in the VS.

The type V specification is often used in CA-Compress/2 calls to process
variable-length records using the RDW. For example, for a variable-length record
that is treated as a single type C1 field, the record definition is written as

V2-4,GAF2,C1FVS.

The record length is picked up from the first 2 bytes of the RDW, from which the
RDW length, 4, is subtracted. The next 2 unused bytes of the RDW are treated as
a garbage field, while the remainder of the record is character data.

Consider a variable-length record made up of the 4-byte RDW, followed by a
fixed 80-byte field that is followed by a variable number of 40-byte appendages.
The fixed portion is treated as type C1, while each appendage contains 10, 4-byte
packed decimal numbers. The record is defined as

V2-84/40,GAF2,C1F80,VS'10'PDF4''.

One restriction applies to type VP and VZ fields. If invalid packed decimal data
is encountered in a field defined using VP, or invalid right-justified zoned
decimal data is encountered in a field defined using VZ,
BrightStor CA-Compress abends with a user code of 20, and the following
message is written to the system output writer:

VP
INVALID TYPE VZ FIELD

Coding the RC parameter when calling the SHRINK or EXPAND subroutine
suppresses the abend, as shown with the messages:

REC DEFS IMPLY WRONG LENGTH

and

CHECK BYTE MISMATCH

See the chapter "CA-Compress/2" and the BrightStor CA-Compress Data
Compression Messages Guide for more information.

Record Definition Language 3–15

RDL Field Type Descriptions

Field Types ZL and ZR — Zoned Decimal Data

Field types ZL and ZR can be used to define fields which contain zoned decimal
data. Type ZL defines a field containing left-justified zoned numeric data,
possibly followed by 1 or more filler characters. Type ZR defines a field
containing right-justified zoned numeric data, possibly preceded by 1 or more
filler characters.

Valid fields must meet these conditions:

� The numeric portion must contain only digits (0-9). Commas and decimal
points are not permitted.

� The value in the numeric portion must be less than 2147483648. Negative
numbers are not permitted.

� The length of the field must not exceed 128 bytes.

� For ZL fields, the filler character, if any, must be blank. All-blank fields are
valid, as is a field containing a single, left-justified zero, followed by all
blanks.

� For ZR fields, the filler character can be either blank or zero, but not both.
All-blank and all-zero fields are valid. A field containing a single, right-
justified zero preceded by all blanks is valid.

Data contained in fields defined as ZL or ZR is converted to binary, bit aligned,
variable-length “floating point”. Blank or zero fields compress to 5 bits, while
fields with value between 16n-1 and 16n-1 compress to 5+4n bits, regardless of
field length.

If invalid data is encountered in a field defined as ZL or ZR, the field is not
compressed. Instead, it grows by one bit in the compressed record. No data is lost
in this event; the expanded field contains exactly the same data as it did before
compression. A message is printed with the statistics produced by the
Compression Utility indicating the number of times invalid data was
encountered in a ZL or ZR field during compression.

ZL and ZR specifications are most useful in cases where a separate type C
specification cannot be dedicated to zoned numeric fields and/or multiple zoned
numeric fields are not contiguous in the record. Consider an 80-byte record
containing all numeric digits. The most efficient specification is C1F80. However,
if 80 contiguous bytes containing zoned numerics occurred within a record for
which all type C definitions were already in use, the best definition for the
numeric data is 8'ZRF9',ZRF8. For zoned decimal fields of 9 bytes or less, a
definition using type ZR or ZL is better than using a type C specification.

3–16 BrightStor CA-Compress Data Compression Reference Guide

RDL Repetition Groups

RDL Repetition Groups
If a sequence of 1 or more field definitions is repeated n times, it can be coded
once with a repetition factor by enclosing the sequence in single quotes and
preceding it with a 2-digit number, n, where 02<n<99. For example:

02'ZRF2,03'PDF4,C1F25''.

is an abbreviated form of

ZRF2,PDF4,C1F25,PDF4,C1F25,PDF4,C1F25,
ZRF2,PDF4,C1F25,PDF4,C1F25,PDF4,C1F25.

Repetition groups can be completely, but not partially, contained in conditional
groups and conversly. Thus:

...(...03'...)...' and 03'...(...'...)

are syntactical errors.

The symbol VS can be used instead of the 2-digit repetition factor to indicate that
the value used is specified in a previous type V definition. VS is useful when the
actual number of times that a field or a series of fields occurs within the record is
variable and is contained in a separate field. For example, an invoice file
consisting of variable-length records has a variably occurring series of 3 fields:

� Line item description, 20 bytes of character data

� Line item quantity, 4 bytes packed decimal data

� Line item amount, 7 bytes packed decimal data

A separate field in the record contains a value indicating the number of line items
represented in the record. This field is 2 bytes in length and is zoned decimal
format. The following is coded to define these fields:

...,VZ2,...,VS'C1F20,PDF4,PDF7' etc.

where:

Field Description

VZ2 The field containing the actual number of occurrences

VS The Variable Symbol reference used to refer to the value (contained
in the previously defined V-type field) which contains the actual
number of occurrences

and the characters enclosed in single quotes represent the line item fields.

Record Definition Language 3–17

RDL Condition Groups

RDL Condition Groups
BrightStor CA-Compress RDL provides the capability for defining multiple
record formats for a file, where the format of an individual record can be
determined from the contents of a field within the record by coding RDL
specifications in a special structure, the condition group.

The general form of a condition group follows:

(nv,f,...,f)

where:

Parameter Description

n A 2-digit number, indicating the length of the field that is tested.

v A value for comparison, n bytes in length.

f Any RDL specification or repetition group.

If the current n bytes in the input record being processed are equal to the value v,
then the remaining definitions within the parentheses apply to the record;
otherwise, they are skipped.

The value coded for v can consist of any of the 256 possible byte values, but you
have to set the edit screen to hexadecimal to enter non-graphic values.

For readability, you can code the value v in hexadecimal format. To do so, code
an X before the length specification n, and code the value as pairs of hexadecimal
digits. For readability, leave spaces between pairs of hexadecimal digits. For
example, the following 2 condition group specifications are equivalent:

(03XYZ,C1F80)
(X03E7E8E9,C1F80)

A series of consecutively coded condition groups which are not separated by a
comma (that is, separated by 1 or more blanks) indicates that the first condition
group in the series whose condition is met applies to the record being processed,
and the remaining condition groups in the series are skipped. For example,
consider a hypothetical elementary invoicing file. Assume this file consists of sets
of records, where each set of records represents 1 invoice. Each set of records
consists of a header record, 1 or more detail records and a trailer record. The
following table illustrates these records and the fields contained in them.

3–18 BrightStor CA-Compress Data Compression Reference Guide

RDL Condition Groups

Figure 3-1. Invoicing File Record Set

The following RDL specifications define these records and show the use of
condition groups:

 ZRF8,(01H,C1F8,GAF23)b(01D,C2F20,PDF4,PDF7)b(01T,GAF20,PDF4,PDF7).

It is important that alternative condition groups in a series be separated from one
another by 1 or more blanks—not a comma. The comma is used to separate the
last condition group in a series from any RDL specifications (which could be
another condition group) that follow.

To show this point, consider the sample RDL specifications above, describing the
records in Invoicing File Record Set. Suppose a comma separated the first
condition group from the second condition group. Then if a record whose
RECORD TYPE field contained an H was encountered, the first condition group
applies. But after processing the C1F8,GAF23 RDL specifications, the following
condition groups are not skipped. BrightStor CA-Compress expects more data
beyond the “filler” at the end of the record, looking to compare for a “D,”
according to the next condition group. Because the record definitions do not
accurately define the record that is processed, unpredictable results may occur.

If the file contains a record whose record type is not H, D or T,
BrightStor CA-Compress will abend with a user code of 15 and the message
“REC DEFS IMPLY WRONG LENGTH.” This occurs because no record
definitions are specified past the invoice number for any record whose record
type is neither H, D nor T. You can avoid this situation by coding a default
condition group at the end of the condition group series.

Record Definition Language 3–19

RDL Condition Groups

It is permissible (and frequently necessary) to code a default condition group at
the end of a series of condition groups. Such coding supplies a set of record
definitions if none of the preceding condition group tests are met and the actual
content of the byte(s) in the record being tested is not known. The general form of
a default condition group is the following: (00,f,...,f). In this expression:

Parameter Description

00 is coded exactly as shown.

f is any RDL specification or repetition group.

A condition group coded in this form means that the RDL specifications in the
condition group apply, no matter the contents of the current byte in the record
being processed. Any default condition group coded in a series of condition
groups must be coded as the last in the series. To show this procedure, the
following definition can be coded to describe the records in Figure 2-1. Invoicing
File Record Set.

ZRF8,(01H,C1F8,GAF23)b(01D,C2F20,PDF4,PDF7)b(01T,GAF20,PDF4,PDF7)b(00,C3F32).

If you omit coding a default condition group as the last condition group in a
series, BrightStor CA-Compress automatically supplies the default condition
group “(00)”. This procedure indicates that if none of the preceding condition
groups apply for a particular record, any RDL specifications following the
condition group series apply beginning at the current byte location in the record.
This is the same byte location within the record which the preceding series of
condition groups tested. To show this point, note that the following 2 sets of RDL
specifications are equivalent:

ZRF8,(01H,C1F8,GAF23)b(01D,C2F20,PDF4,PDF7)b(01T,GAF20,PDF4,PDF7)b(00,C3F32).ZRF8
,(01H,C1F8,GAF23)b(01D,C2F20,PDF4,PDF7,)b(01T,GAF20,PDF4,PDF7),C3F32.

The maximum number of condition groups that can be coded in a series is 16,
including the final default condition group, whether user-specified or
automatically provided by BrightStor CA-Compress. The maximum number of
condition group series that can be coded is limited only by the amount of space
available in the FDT.

If the condition specified in a condition group is met, the value specified in the
condition group and found in the record is compressed to 4 bits, regardless of the
length of the value. No separate RDL specification is used to compress the value.
The lengths of the values can differ within a condition group series.

3–20 BrightStor CA-Compress Data Compression Reference Guide

RDL Position Function

RDL Position Function
As fields are processed, BrightStor CA-Compress automatically adjusts an
internal field pointer (IFP) to the current displacement within the record. In a few
special cases, you can alter this IFP with the Position Function.

For example, fields exempted from compression (that is, fields defined with the
field type-N RDL specification) must be defined before any variable or condition
group RDL specifications. If a field exempted from compression is located at a
higher displacement from the record origin than variable-length fields or
conditionally present fields, the Position Function must be used to set the IFP at
the field exempted from compression, so it can be defined first. Then the Position
Function must be used again to reset the IFP to the lower displacement so the
variable-length and/or conditionally present fields can be defined.

The Position Function has 4 possible forms, chosen at the user's discretion:

Form Description

Pn Set IFP to n.

P+n Add n to the IFP.

P-n Subtract n from the IFP.

P Reset IFP to prior value.

P is coded as shown; n is either a 1- to 5-digit integer or the Variable Symbol, VS.

Displacements are computed relative to 0, which indicates the start (origin) of the
record. The 4 Position Function forms perform the following functions:

Form Description

Pn repositions to the n+1th byte in the record.

P+n repositions forward n bytes.

P-n repositions backwards n bytes.

P resets the IFP to its value immediately preceding the last Pn, P+n or P-n. If
there were no previous Position Functions executed, the P is ignored. P cannot be
specified as the initial Position Function. You must adhere to the following rules:

� The IFP must remain within the bounds of the record. This error is usually
caught in the Prepass or compression phase, but not always, because
complete checking involves substantial time overhead during compression.

� The IFP must be at the byte following the last byte of the record after all
fields are processed. Otherwise, a wrong length record abend 15 occurs.

Record Definition Language 3–21

RDL Position Function

� If a field is bypassed, a check byte mismatch abend 10 may occur on
reexpansion.

� Redefining through repositioning degrades performance and should be
specified only when absolutely necessary.

For example, a hypothetical name and address file contains 3 types of 80-byte
records as shown below.

Figure 3-2. Name & Address File Record Set

The following RDL specifications define this file:

 P79,(01A,P,C1F79)b(01B,P,C2F79)b(01C,P,C3F74,ZRF5),P+1

RDL Specification Description

P79, sets the IFP at the RECORD TYPE field. (Note that the
IFP is relative to zero, thus IFP of zero is the first record
position, and IFP of 79 is the 80th byte of the record.)

(01A,P,C1F79)b If the RECORD TYPE field contains A, resets the IFP to
the beginning of the record, and defines the NAME
field.

(01B,P,C2F79)b If the RECORD TYPE field contains B, resets the IFP to
the beginning and defines the STREET ADDRESS field.

(01C,P,C3F74,ZRF5), If the RECORD TYPE field contains C, resets the IFP to
the beginning and defines the CITY, STATE and ZIP
CODE fields.

3–22 BrightStor CA-Compress Data Compression Reference Guide

General Restrictions on RDL Use

RDL Specification Description

P79, sets the IFP at the RECORD TYPE field. (Note that the
IFP is relative to zero, thus IFP of zero is the first record
position, and IFP of 79 is the 80th byte of the record.)

P+1 At this point, one of the condition groups has been
applied to the record (provided that all records in the
file contain either A, B or C in the RECORD TYPE field),
and thus the IFP is again pointing at the RECORD TYPE
field. It is necessary to code P+1 to position the IFP at
the byte location following the last byte of the record.
Failure to do so results in an abend with a user code of 4
and the message, “REC DEFS IMPLY WRONG
LENGTH.”

General Restrictions on RDL Use
The RDL is employed to construct the File Descriptor Table (FDT). The FDT has a
maximum size, and there is a corresponding upper limit on the number of RDL
specifications allowed for any one file. In the unlikely event that this maximum is
reached, a user abend 4 occurs and the RDL specifications must be reduced by
combining adjacent field definitions to form group fields. The space in the FDT
required to contain the RDL specifications can be calculated using the table
below.

RDL Specification Space Required (In Bytes)

GA, PD, ZL, ZR 6

C1, C2, C3, CS 18

MA, MB 92 for first occurrence. 54 for each
subsequent occurrence

UN 14

N 20

v 48

VP, VZ 40

S, X 26

First “(“ in a condition group series 72

Each remaining “(“ in a condition group
series

54

Fn, where n < 128 4

Record Definition Language 3–23

Guide to Correct RDL Specifications

RDL Specification Space Required (In Bytes)

Fn, where n > 128 38

FVS 46

VER, Dc 88

P 12

P + n 18

P + VS 8

Fixed repetition group 16

Variable repetition group 30

Table 3-3. FDT Space Requirements

The space required must be summed according to RDL specifications as coded,
and the total cannot exceed 2800. Consider the following example:

V2-4,GAF2,C1FVS.

Using the table, the space required for these RDL specifications is as follows and
well within the 2800 limit:

V2-4 GA F2 C1 FVS total

48 + 6 + 4 + 18 + 46 = 122

Guide to Correct RDL Specifications
The correct RDL specifications are shown below.

Field Type Description

C1, C2, C3 Type C is used to define groups of fields whose byte values
have similar frequency distributions. Up to 3 different
frequency distributions can be accommodated, one each by type
C1, C2 and C3. If no other type code is clearly preferable, choose
a type C.

Compression is variable, depending on skewedness of
distribution. The more greatly skewed the distribution, the
greater the compression ratio. Processing overhead is minimal
(3).a

3–24 BrightStor CA-Compress Data Compression Reference Guide

Guide to Correct RDL Specifications

Field Type Description

CS Type CS is used to define groups of fields where the data varies
considerably. Compression is variable, according to the data
characteristics. Processing overhead is minimal (3).

GA Type GA is used to eliminate unneeded fields from the
compression record.

Compression is 100 percent. Processing overhead is negligible
(1).a

L Type L is used to insert a binary tally of the compressed actual
number of bytes comprising the compressed record as the first 2
bytes of the record following the RDW. Particularly useful for
COBOL users.

This field type actually increases the compressed record length
by 2 bytes. Processing overhead is negligible (1).a

MA, MB Type M is used when data in a field repeats from record to
record. Several restrictions govern use of this field type. For
fields smaller than 10 bytes in length, type C is preferable.

Compression is variable, depending upon the degree of data
repetition. Processing overhead is variable, decreasing as field
length increases (3-5).a

N Type N is used to exempt a field from compression. Use for
retrieval, match and sort keys, and any field which you want to
access without expanding the data. There are several
restrictions governing use of this field type specification.

This field type yields no compression. Processing overhead is
negligible (1).a

PD Use type PD for fields containing packed decimal data,
preferably with many high-order zero digits. If significant digits
frequently fill the field or if invalid data is frequently present in
the field, choosing a type C specification is preferable.

Compression is excellent when the value is zero, and variable,
increasing as the proportion of significant digits to total digits
decreases. Processing overhead is moderate (5-6).a

S, X Use type s or x when the number of values occurring in a field is
small (16 or fewer) and these values are known in advance.

Compression is excellent, and the processing overhead is
minimal (3).a

Record Definition Language 3–25

RDL Defaults

Field Type Description

UN Use Type UN for fields which cannot readily be compressed
(for example, bit switches, floating point numbers), particularly
when all 3 type C specifications are already in use.

This field type yields no compression. Processing overhead is
minimal (2).a

V, VP, VZ Use one of these field type specifications to define a field whose
content is used to calculate the actual length of a variable-length
portion of the record, or a field which contains the actual length
of a variable-length portion of the record.

Type V is not compressed. Type VP is compressed as PD. Type
VZ compressed as ZR. Processing overhead is minimal to
moderate, depending on field type:
V=2 VZ=4 VP=6a

ZL, ZR Type Z is used for fields containing zoned decimal data,
particularly when a type C specification cannot be dedicated to
zoned decimal data. Several restrictions govern the use of this
field type specification.

Compression is excellent when value is zero, variable,
increasing as the magnitude of the value increases. Processing
overhead is moderate (3-4).a

Table 3-4. Correct RDL Specifications

a. Numbers shown are a relative measure of processing efficiency. 1=most
efficient, 6=least efficient.

RDL Defaults
If the RECDEF DD statement is not present in the execution JCL for the File
Prepass Utility or by the IUI, or if it specifies a null data set (that is, one with no
records), default RDL specifications are generated based upon characteristics of
the data set defined by the INFILE DD statement. The defaults are also generated
if the only RDL specification supplied by the user is a single type L field.

Note: If “L.” is specified, all defaults begin with “L,...”.

3–26 BrightStor CA-Compress Data Compression Reference Guide

RDL Defaults

In the default RDL specification formulas shown below, the following variables
are substituted with appropriate values, obtained from the data set label or JCL
specifications:

Variable Description

x The number of bytes before the key, excluding the RDW (if present)

x’ x-1

y The number of bytes following the key; if there is no key, then y is the
record length (LRECL)

k The number of bytes in the key (KEYLEN)

k’ k+1

j k + the relative key position (RKP)

The generated defaults are printed on the PRINT data set by the File Prepass
Utility or the IUI.

 Files

Formulas for Default RDL
Specifications

Sequential Fixed-length C1Fy

 Variable-length V2-4,GAF2,C1FVS

 Undefined C1VER

ISAM Fixed-length, key at
beginning of record

Nk,,C1Fy

Fixed-length, RKP=1a

Nk’,,C2Fy

 Fixed-length, RKP>1a N1,,C1Fx’,,Nk,,C2Fy

 Fixed-length, key at end of
record

N1,,C1Fx’,,Nk

 Variable-length, relative key
position = 4

V2-j,,GAF2,,Nk,,C2FVS

 Variable-length, RKP=5a V2-j,,GAF2,,Nk',,C2FVS

 Variable-length, RKP>5a V2-j,,GAF2,,N1,,C1Fx', Nk,,C2FVS

VSAM Fixed-length, key at
beginning of record

Nk,,C1Fy

 Fixed-length, key somewhere
within the record

N1,,C1Fx',,Nk,,C2Fy

Record Definition Language 3–27

Determining the Best Compression

 Files

Formulas for Default RDL
Specifications

 Fixed-length, key at end of
record

N1,,C1Fx',,Nk

 Variable-length, key at
beginning of record

Nk,,C2VER

 Variable-length, RKP=1a Nk',,C2VER

 Variable-length, RKP>1a N1,,C1Fx',,Nk,,C2VER

a. Default definition permits record deletion when the DCB parameter OPTCD=L
is specified.

Determining the Best Compression
To determine the best possible compression to implement for a file, you can use
the facilities of the IUI. Follow the steps below to determine the best compression
obtainable for the file. These steps comprise a summary procedure.

1. Analyze the characteristics of the file.

2. Use the 'b' subcommand on the data set in the worklist to browse the
statistics.

You now have a basis on which you can judge the effectiveness of the RDL for
each record. Fine-tuning the RDL for a record may increase compression but may
increase the CPU overhead.

Note: While RDL is the acronym for Record Definition Language, the term “the
RDL” is commonly used to mean the set of RDL statements which represent the
record definition (for compression purposes) for a given data set or pattern. The
RDL is located in the Analysis File as an entity within the record for a discrete file
or pattern entry and is in the external character format. The RDL is also a
subsection of an FDT. The RDL portion of an FDT is in the internal format and
describes the record format for the file to be processed under control of this FDT.

You can re-specify the RDL for the record and perform the testing procedure
again. If you change the RDL for a record, the Byte Distribution Analysis (BDA)
for the record is performed again.

3–28 BrightStor CA-Compress Data Compression Reference Guide

Determining the Best Compression

As you fine-tune the RDL for the records in the file, follow the steps below,
which can be repeated as often as needed until you have obtained the
compression that you want to implement for the file.

1. Update the RDL you have devised for the record.

2. Redo the data set analysis.

3. Evaluate the results of the test compression.

When the testing and evaluating have produced the optimum compression
controls, follow the step-by-step procedure outlined earlier in this section to
implement compression for the file.

How to Enter or Change the RDL Using the IUI

Before actually implementing a data set, you can devise different RDL
specifications in order to achieve better compression. To devise these
specifications, you must update the RDL for a data set and then run a trial
compression job. Detailed instructions on how to update the RDL follow.

1. Select Maintenance from the Task menu.

2. Select Analysis File to display the Analysis File Maintenance menu.

3. Select All Records or Limit Search.

� All Records displays a list of all the data set names that are in the
Analysis File.

� Limit Search displays the Data set Name selection window. Type the
data set name for the search, and press [Enter] to see a list of the data set
names you selected.

4. Move the cursor to the Action field next to the data set you want.

5. Type R, and press [Enter] to display the RDL User Parameter Maintenance
screen.

 Initially, each non-compressible field (type “N”) represents 1 or more keys.
The definition for the “N” fields cannot be shortened or eliminated but can
be increased in length to cover more data. Consider doing this if, for
example, there is one byte between 2 type “N” fields. The other fields can be
altered as needed. Any altered definition must not alter the total length of the
definition as this can change the offset of the type “N” fields and thus the key
positions, causing the Dialog to reject the RDL. You can now enter the RDL
for the compressible area.

6. Enter up to 12 lines of 78 characters each for the data set's RDL. When all
changes to the RDL are made, press [Enter] to store the new RDL. If you need
to cancel the changes you made in the RDL, press the [End] PF key, which
returns you to the Analysis File Maintenance screen.

Record Definition Language 3–29

Determining the Best Compression

 If you have made any errors in the RDL, an error message is displayed in the
upper right-hand corner of the screen and the cursor appears at the location
of the error. To obtain more information about the error, press the [Help] PF
key. Correct the error in the RDL and press [Enter].

 When the RDL is correct, it is recorded and you are returned to the Analysis
File Maintenance screen.

3–30 BrightStor CA-Compress Data Compression Reference Guide

Chapter

4 CA-Compress/2

The CA-Compress/2 Data Compression System enables your applications to
invoke subroutines to compress and expand data, reducing the cost of storing
data on disk or tape and supporting compression exits to a wide variety of
products. In addition, utilities can be used to compress or expand the following:

� Entire key-sequenced or entry-sequenced VSAM files.

� Entire sequential files.

� Entire direct access files and members of partitioned data sets when being
processed sequentially.

� CA-Compress/2 is provided to all CA-Compress users.

Features
The CA-Compress/2 system provides a unique combination of capabilities:

High Degree of Data Compression—Data sets compressed by CA-Compress/2
require as little as 10 percent, and commonly 35 percent, of their original space
allocation.

Efficient Implementation—Application programs using the CA-Compress/2
system to process compressed data sets may in some cases complete in less time
than was once required to process uncompressed data sets.

Demonstrated Reliability—CA-Compress/2 uses a check byte technique to
ensure that no data is altered during compression and expansion.

Ease of Use—CA-Compress/2 provides excellent compression without requiring
you to provide information about the structure and content of records to be
compressed. If you want to achieve compression ratios approaching the
theoretical maximum, CA-Compress/2's Record Definition Language (RDL)
provides the opportunity to describe the record structure and content of the data
set to be compressed. In the absence of user-coded RDL specifications,
CA-Compress/2 assumes standard defaults based upon attributes of the input
data set to achieve excellent compression.

CA-Compress/2 4–1

Using Subroutines

Flexibility—The RDL provides a powerful tool for constructing a compressed
data set tailored to your specific requirements. User-specified fields can be
exempted from compression, allowing sorting of compressed data sets without
requiring prior re-expansion. Application programs can expand records
selectively by examining fields exempted from compression, avoiding needless
expansion overhead.

If the fields being sorted on are exempt from compression, sort utility programs
can sort the records without expansion and re-compression.

Similarly, if match key fields are exempted from compression, application
programs containing logic to match records based on match key fields can
perform the matching logic on the compressed records, limiting record expansion
to only those cases which require further processing.

The RDL enables you to exempt fields from compression as well as to optimize
compression. Fields in the record are defined by field type code specifications,
which indicate the method of compression for the defined field. The available
type codes lets you define virtually any combination of field formats. Using the
RDL is optional. If you omit RDL specifications, CA-Compress/2 assumes
default RDL specifications based upon data set attributes provided by JCL or by
the data set label.

Using Subroutines
CA-Compress/2 provides the following subroutines which can be invoked from
your application programs for processing of compressed data:

� Custom Compression

� Standard Tables Compression

� IBM Hardware Compression

� Super Express Compression

Custom Compression

The following lists Custom Compression subroutines:

� SHRINK—Converts an uncompressed record image to compressed form.

� EXPAND—Converts a compressed record image to its original
uncompressed form.

� CLOSE—Frees storage dynamically acquired by calls to SHRINK or
EXPAND when it is no longer required.

4–2 BrightStor CA-Compress Data Compression Reference Guide

Using Subroutines

Standard Tables Compression

The following lists Standard Tables Compression subroutines:

Note: Standard Tables STDTBL0x must be available through STEPLIB, JOBLIB or
the linklist, or you must linkedit any routine you require into your program.

� SHRINKS—Converts an uncompressed record image to compressed form
using a Standard Table.

� EXPANDS—Converts a record image compressed with a Standard Table to
its original uncompressed form.

� CLOSES—Frees the dynamic area acquired by SHRINKS or EXPANDS.

IBM Hardware Compression

The following lists IBM Hardware Compression subroutines:

Note: The needed IBM Hardware Compression dictionary must be available
through STEPLIB, JOBLIB or the linklist. CA strongly recommends that your
dictionaries be kept in the linklist. The CA supplied dictionaries are named
HC#STDnn where nn is numeric 01-99.

� SHRKHCS—Converts an uncompressed record image to compressed form
using an IBM Hardware Compression dictionary.

� SHRKHCX—Converts a record image compressed with an IBM Hardware
Compression dictionary to its original uncompressed form.

� SHRKHCC—Frees the dynamic area acquired by SHRKHCS or SHRKHCX.
Because another application in the address space may be using the
dictionary, SHRKHCC does not issue DELETE to remove it from storage.
You can do so yourself when you no longer need it.

 If you supply your own dictionary, it must be named HC#USRnn where nn is
numeric 00-27. The compression dictionary must be immediately followed by
the expansion dictionary in one load module. Both the compression and
expansion routines expect the whole module and fail if both dictionaries are
not provided in this order.

CA-Compress/2 4–3

Using Subroutines

Super Express Compression

The following lists Super Express Compression subroutines:

Note: SHRINKZ and EXPANDZ do not acquire any dynamic storage, so there is
none to free.

� SHRINKZ—Converts an uncompressed record image to compressed form
using the Super Express string compression algorithm.

� EXPANDZ—Converts a record image compressed using Super Express to its
original uncompressed form. EXPANDZ also expands records compressed
with the old EXPRESS algorithm.

 These subroutines are fully re-entrant, and can reside in the Link Pack Area,
LINKLIB, or a load module PDS defined through STEPLIB or JOBLIB in the
JCL.

Accessing the FDT

The File Descriptor Table (FDT), created by Prepass or the Interactive User
Interface, contains all the information (code tables, edited record definitions, file
characteristics, and so on) needed to compress and expand the data it was built
from. Each file processed by CA-Compress/2 must have an associated FDT
unless Super Express is being used. The FDT associated with a particular file
must be present (through JCL specification) in every job step in which records
from that file are processed by CA-Compress/2.

Note: Unless you have applied PTF SS05300, we strongly encourage you to use
FDTs created by the IUI rather than Prepass, especially for users of the Physical
Sequential Transparency. The IUI and Prepass with SS05300 create FDTs with an
Integrity Check Block (ICB), by which the expansion routines recognize
uncompressed records and avoid a number of problems, including accidental
double expansion.

The Super Express, Standard Tables, and Hardware Compression algorithms do
not refer to user-defined FDTs, but the SHRINK, EXPAND, and CLOSE routines
do refer to the user-defined FDT associated with each compressed data set. The
FDT for each compressed data set that is processed must be defined or made
accessible via the JCL used to invoke the application program which uses
CA-Compress/2 subroutines.

FDTs maintained in sequential data set format require separate definition on a
TABLxx DD statement, where xx, coded as a two-digit number ranging from 00
through 31, corresponds to a file number supplied by the user as a parameter in
the CALL to SHRINK, EXPAND, or CLOSE. CA discourages use of this format.

4–4 BrightStor CA-Compress Data Compression Reference Guide

Using Subroutines

FDTs should preferably be stored as members of a PDS in load module format.
Coding the STEPLIB DD statement to define the PDS containing FDTs in load
module format makes every FDT contained in the PDS accessible to the
application program. In this manner, all FDTs used in an application program
can be accessed through a single DD statement.

Within the application program, each FDT in load module format must have an
associated 48-byte, fullword-aligned Shrink Control Block (SCB). Subroutine calls
pass the SCB as a parameter to identify the FDT, instead of the file number as
with FDTs in sequential data set format. Before the first subroutine CALL using a
particular FDT, its associated SCB must be initialized as follows:

� The first 8 bytes must contain the member name of the FDT load module,
left-justified with trailing blanks as necessary to fill the full 8 bytes.

� The remaining 40 bytes must contain binary zeros.

� The following model definitions demonstrate properly initialized SCBs:

Assembler Language:
SCBNAME DS 0F
DC CL8'fdt-member-name'
DC 10F'0'

COBOL—must be in WORKING-STORAGE SECTION:
01 SCBNAME.
 03 FILLER PICTURE X(8) VALUE 'fdt-member-name'.
 03 FILLER PICTURE X(40) VALUE LOW-VALUES.

PL/I:
DCL 01 SCBNAME,
03 name CHAR(8) INIT ('fdt-member-name'),
03 N(10) FIXED BIN(31) INIT ((10)0);

After initialization, the SCB must not be modified in any way. Re-entrant
programs must place the SCB in dynamically allocated main storage.

JCL Implications for Existing Application Programs

When CA-Compress/2 subroutines are called by an application program to
process compressed data sets, corresponding changes must be made to the JCL
which defines the compressed data sets. The definition of the compressed version
of the data set must be substituted for the definition of each formerly
uncompressed data set.

Information needed to code the JCL for the compressed data set is available from
the data set label or, if the Compression Utility was used, from the Compression
Utility job which compressed the data set. In general, the RECFM is variable and
the LRECL must be increased by 8 bytes (12 if originally fixed length). See the
section "JCL Defaults" in this chapter for detailed information.

CA-Compress/2 4–5

Calling the Subroutines

When How Much

Always +2

Type L defined +2

VER length descriptor defined +2

RDW present (not RECFM=U, F, or VSAM) +4

Each type GA definition -field length

Each non-GA field redefined using the Position function +field length

Table 4-1. LRECL Calculation for Compressed Data Sets

Calling the Subroutines
The application program performs all I/O. The first call to SHRINK or EXPAND
which refers to a particular file number or SCB causes 1K to 8K bytes of dynamic
storage to be acquired, the FDT to be loaded, and code to perform the function to
be custom compiled. Subsequent calls execute only the custom-compiled code.
This provides the fastest possible execution time.

SHRINKZ and EXPANDZ do not require this initial processing.

SHRINKS and EXPANDS build a small dynamic area, and depending on how
they are called, they may need to load the appropriate Standard Table.

SHRKHCS and SHRKHCX also build a small dynamic area, and they need to
load the appropriate hardware compression dictionary load module.

4–6 BrightStor CA-Compress Data Compression Reference Guide

Calling the Subroutines

Read a Compressed
Record

Call {EXPAND,
EXPANDS, SHRKHCX,

or EXPANDZ}
(parameters)

record processing

Call {SHRINK,
SHRINKS, SHRKHCS,

or SHRINKZ}
(parameters)

Write a Compressed
Record

Compressed
Data Set

SAMS:Compress Subroutines
EXPAND
SHRINK
CLOSE

EXPANDZ
SHRINKZ

EXPANDS
SHRINKS
CLOSES

SHRKHCS
SHRKHCX
SHRKHCC

FDT

Figure 4-1. General Flow of Subroutines

The language dependent conventions for parameter passing and subroutine
linkage follow:

Assembler Language

The subroutines should be called using the CALL macro with the VL option or an
equivalent method. Register 13 must point to a valid 18-word save area and
register 1 must point to the parameter list.

CA-Compress/2 4–7

Calling the Subroutines

COBOL

Normal COBOL CALL statements are used. Parameters are data element names
of the areas being passed to the appropriate subroutine. The following
considerations must be carefully observed:

� SHRINK and EXPAND subroutines—COBOL programs calling the
BrightStor CA-Compress subroutines cannot be compiled with the DYNAM
option. DYNAM causes unpredictable results for the SHRINK and EXPAND
subroutines. Calls to SHRINK or EXPAND pass control to the SHRINK or
EXPAND utility, respectively, instead of the SHRINK or EXPAND entry
point in the subroutines, resulting in message SHR005I for SHRINK or
SHR050I for EXPAND.

 This restriction does not apply to the Super Express subroutines, SHRINKZ
and EXPANDZ; to the Standard Tables subroutines, SHRINKS and
EXPANDS; or to the Hardware Compression subroutines, SHRKHCS and
SHRKHCX.

� OCCURS DEPENDING ON clause—Because compressed data sets are
variable length, to write compressed records of the proper length requires
use of the OCCURS DEPENDING ON clause. To avoid data loss and other
problems, carefully adhere to the COBOL rules.

 Any data beyond the length defined by the OCCURS DEPENDING variable
is undefined, so any data placed there by a READ or a call to a
CA-Compress/2 subroutine may be destroyed. Accordingly, before reading,
compressing, or otherwise moving data of an unknown length, always set the
variable to its maximum. Afterwards use the data to set it to the correct
length before writing.

 The variable must be set explicitly by a COBOL statement that names the
variable in order for the new value to be recognized by COBOL. In
particular, reading a record into an area that contains the variable or
changing its value by passing it to a called routine does not cause COBOL to
recognize the new value.

 Failing to observe these precautions can lead to data loss. For instance, you
may successfully compress a record containing more characters than the
OCCURS DEPENDING ON variable provides for. COBOL processing then
may destroy the extra characters and the damaged record is successfully
written. Months later, the record cannot be expanded, and the data is lost.

PL/I Optimizing Compiler

The compiler must be informed that the CA-Compress/2 subroutines are
Assembler subroutines by declaring all entry points, as follows:

DCL (SHRINK,EXPAND,SHRINKZ,EXPANDZ,SHRINKS,EXPANDS,CLOSE)
OPTIONS (ASM INTER);

Any unused subroutines can be omitted. The CA-Compress/2 subroutines can
then be called using the standard PL/I CALL statement.

4–8 BrightStor CA-Compress Data Compression Reference Guide

Calling the Subroutines

As in the case of COBOL, dynamic calls to SHRINK and EXPAND invoke the
utilities, causing unpredictable results.

PL/I F Compiler

When passing strings or structures to the subroutines, the address of the data, not
the dope vector, must be passed. This can be done by overlaying an arithmetic-
based variable on the string or structure and passing the arithmetic variable to
the subroutine. For more information, see “Communication with Other
Languages” in Chapter 15 of the PL/I F Programmer's Guide, published by IBM.

With this consideration, the standard PL/I F CALL statement can be used to call
the subroutines.

CALL to Subroutine SHRINK

Each CALL to SHRINK compresses one record image in main storage. There are
five parameters (four required and one optional) which the user codes in a
SHRINK CALL. The parameters are positional and must be coded in the same
sequence as shown in below. The following are model statements for calling
SHRINK:

Assembler Language
CALL SHRINK,(URA,CRA,URL,FDT[,RC]),VL

COBOL
CALL 'SHRINK' USING URA CRA URL FDT [RC].

PL/I Optimizer
CALL SHRINK(URA CRA URL FDT [RC]);

The following table describes the parameters available to the SHRINK
Subroutine:

Parm Meaning

URA Uncompressed Record Address (Required)

The address of the in-core record to be compressed. The SHRINK
subroutine does not alter this area. If the record is variable length, URA
is the address of the RDW.

CRA Compressed Record Address (Required)

The address of a user-supplied main storage area at least 290 bytes
larger than the uncompressed record. The SHRINK subroutine places
the compressed record in this area in variable length format, including
the standard 4-byte RDW. If the length exceeds 32K, the RDW is x'80'
followed by a 3 byte length.

CA-Compress/2 4–9

Calling the Subroutines

Parm Meaning

URL Uncompressed Record Length (Required)

The address of a halfword or fullword in which the user supplies the
length of the uncompressed record in binary form. The fullword format
is specified by setting the first byte to x'80' and supports data up to 24
megabytes in length. If variable-length records are being compressed,
URL should be the same as the URA parameter, the address of the
RDW.

FDT File Descriptor Table Identifier (Required)

If the FDT is in sequential data set format, FDT is the address of a binary
fullword containing the file number (a value between 0 and 31). This
value must correspond to the value coded for the xx in the TABLxx DD
statement, which defines the FDT. If the FDT is in load module format,
the File Descriptor Table Identifier is the address of the SCB associated
with this file.

RC Return Code (Optional)

The address of a binary fullword in which the SHRINK subroutine can
store a value to indicate whether an error occurred in compressing the
record. If this optional parameter is coded, certain ABEND conditions
are suppressed, and a return code value is stored in the binary fullword
addressed by RC and in register 15. If no error occurs during processing
by the SHRINK subroutine, register 15 is zero upon return to the user's
program, and RC is set to zero.

Table 4-2. Parameters for Subroutine SHRINK

CALL to Subroutine EXPAND

Each call to EXPAND returns one compressed record image in main storage to its
original uncompressed form. There are five parameters (four required and one
optional) which you code in an EXPAND CALL. The parameters are positional
and must be coded in the same sequence as they appear above. The following are
model statements for calling EXPAND:

Assembler Language
CALL EXPAND,(URA,CRA,URL,FDT,[,RC]),VL

COBOL
CALL 'EXPAND' USING URA CRA URL FDT [RC].

PL/I Optimizer
CALL EXPAND(URA CRA URL FDT [RC]);

4–10 BrightStor CA-Compress Data Compression Reference Guide

Calling the Subroutines

The following table describes the parameters available to the EXPAND
Subroutine:

Parm Meaning

URA Uncompressed Record Address (Required)

The address of the main storage area where the EXPAND subroutine
places the uncompressed record image which it constructs. If the record
was a variable-length record before compression, URA should be the
address of the RDW of the expanded record image. The storage area
provided by the user must be large enough to contain the entire
expanded record.

CRA Compressed Record Address (Required)

The address of the compressed record image to be expanded by the
subroutine. CRA must be the address of the data portion of the record,
not the RDW. This storage area, that is, the compressed record, is not
modified by the EXPAND subroutine.

URL Uncompressed Record Length (Required)

The address of a halfword or fullword from which EXPAND receives
the length of the compressed record in binary form and into which the
subroutine returns the length of the expanded record in binary form.
The subroutine does not always require the compressed length, but you
should always provide it. Setting the first byte to x ‘80’ specifies the
fullword format. If the record was a variable-length non-VSAM record
before compression, URL may be identical to the URA parameter.

FDT File Descriptor Table Identifier (Required)

The address of a binary fullword which contains the file number, a
value between zero and 31, if the FDT is in sequential data set format. If
the FDT is in load module format, the File Descriptor Table Identifier is
the address of the SCB associated with this file.

RC Return Code (Optional)

The address of a binary fullword in which the EXPAND subroutine can
store a value to indicate whether or not an error occurred in expanding
the record. If this optional parameter is coded, ABEND 10 (check byte
mismatch) and certain other user abends are suppressed. Instead, the
corresponding completion code is stored in the binary fullword
addressed by the RC parameter and in register 15. If no error occurs
during EXPAND processing, register 15 and RC are set to zero.

Table 4-3. Parameters for Subroutine EXPAND

CA-Compress/2 4–11

Calling the Subroutines

CALL to Subroutine CLOSE

Each call to the CLOSE subroutine frees all main storage obtained to support one
FDT-compressed data set. Application programs normally call CLOSE only if all
processing is complete for the compressed file in question, or if the storage needs
to be released for other processing.

CA-Compress/2 obtains main storage for each data set compressed using an FDT
for the FDT, the compression and expansion tables, and the custom-compiled
code. The amount of storage obtained for a particular file varies, depending upon
the extent and complexity of record definitions. It can vary from about 2K to as
much as 24K per file, though approximately 6K is usual.

Once CLOSE is called for a file, the FDT, compression and expansion tables and
custom-compiled code to perform subroutine functions for the file are no longer
available. Any subsequent call referencing that data set causes the FDT and
compression and expansion tables to be brought into storage again, and custom
code to be recompiled. CLOSE requires one parameter — the File Descriptor
Table Identifier. If the FDT is in sequential data set format, this is the address of a
binary fullword containing the file number. If the FDT is in load module format,
the File Descriptor Table Identifier is the address of the SCB associated with this
data set. See the section "Accessing the FDT" in this chapter for more information.

The following are model statements for calling CLOSE:

Assembler Language

CALL CLOSE,(FDT),VL

COBOL

CALL 'CLOSE' USING FDT.

PL/I Optimizer

CALL CLOSE(FDT);

CALL to Subroutine SHRINKS

Each CALL to SHRINKS compresses one record image in main storage. There are
five parameters (four required and one optional), which you code in a SHRINKS
CALL. The parameters are positional and must be coded in the same sequence as
shown in Table 5-4. The following are model statements for calling SHRINKS:

Assembler Language
CALL SHRINKS,(URA,CRA,URL,WRK[,RC]),VL

COBOL
CALL 'SHRINKS' USING URA CRA URL WRK [RC].

PL/I Optimizer
CALL SHRINKS(URA CRA URL WRK [RC]);

4–12 BrightStor CA-Compress Data Compression Reference Guide

Calling the Subroutines

The following table describes the parameters available to the SHRINKS
Subroutine:

Parm Meaning

URA Uncompressed Record Address (Required)

The address of the in-core record to be compressed. The SHRINKS
subroutine does not alter this area. If the record is variable length, URA
is the address of the actual data, not the RDW.

CRA Compressed Record Address (Required)

The address of a user-supplied main storage area at least 290 bytes
larger than the uncompressed record. The SHRINKS subroutine places
the compressed data in this area.

URL Uncompressed Record Length (Required)

The address of a halfword or fullword in which the user supplies the
length of the uncompressed record in binary form. The fullword format
is specified by setting the first byte to x'80' and supports data up to 24
megabytes in length.

WRK Standard Tables Work Area (Required)

The address of a 64-byte work area.

 Bytes Meaning

 0 - 7 “STDTBL01” through “STDTBL06” as appropriate.

 8 - 11 Address of the selected Standard Table. If the desired
Standard Table is already linkedited or LOADed, insert its
address here before the first call. If the address is zero, routine
will load it and fill in its address for you. An invalid non-zero
value will cause an abend or other unpredictable results, so
you must set it either to zero or to the valid table address.

 12-13 Non-compressible area in binary format. If there is no non-
compressible area, this value must be zero.

 14 - 15 Compressed data length (excluding RDW) if the length is
<32K, or -1 if the length is >32K. The length is also returned in
register 0 in all cases. Add 4 to this length to build an RDW if
required.

CA-Compress/2 4–13

Calling the Subroutines

Parm Meaning

RC Return Code (Optional)

The address of a binary fullword in which the SHRINKS
subroutine can store a value to indicate whether an error
occurred in compressing the record. If this optional parameter
is coded, certain ABEND conditions are suppressed, and a
return code value is stored in the binary fullword addressed
by RC and in register 15. If no error occurs during processing
by the SHRINKS subroutine, register 15 is zero upon return to
the user's program, and RC is set to zero. If the data does not
compress, the return code is -1, and the uncompressed data is
copied to the compressed data location.

Table 4-4. Parameters for Subroutine SHRINKS

CALL to Subroutine EXPANDS

Each call to EXPANDS returns one compressed record image in main storage to
its original uncompressed form. There are five parameters (four required and one
optional) which you code in an EXPANDS CALL. The parameters are positional
and must be coded in the same sequence as they appear in below. The following
are model statements for calling EXPANDS:

Assembler Language
CALL EXPANDS,(URA,CRA,URL,FDT,[,RC]),VL

COBOL
CALL 'EXPANDS' USING URA CRA URL FDT [RC].

PL/I Optimizer
CALL EXPANDS(URA CRA URL FDT [RC]);

The following table describes the parameters available to the EXPANDS
Subroutine:

Parm Meaning

URA Uncompressed Record Address (Required)

The address of the main storage area where the EXPANDS subroutine
places the uncompressed data which it constructs, excluding any RDW.
The storage area provided by the user must be large enough to contain
the entire expanded record.

4–14 BrightStor CA-Compress Data Compression Reference Guide

Calling the Subroutines

Parm Meaning

CRA Compressed Record Address (Required)

The address of the compressed data to be expanded by the subroutine.
CRA must be the address of the data portion of the record, not the
RDW. This storage area, that is, the compressed record, is not modified
by the EXPANDS subroutine.

URL Uncompressed Record Length (Required)

The address of a halfword or fullword from which EXPANDS receives
the length of the compressed record in binary form and into which it
returns the length of the expanded record in binary form. Setting the
first byte to x ‘80’ specifies the fullword format.

WRK Standard Tables Work Area (Required)

The address of a 64-byte work area.

 Bytes Meaning

 0 - 7 “STDTBL01” through “STDTBL06” as appropriate.

 8 - 11 Address of the selected Standard Table. If the desired
Standard Table is already linkedited or LOADed, insert its
address here before the first call. If the address is zero, routine
will load it and fill in its address for you. An invalid non-zero
value will cause an abend or other unpredictable results, so
you must set it either to zero or to the valid table address.

 12 - 13 Non-compressible area in binary format. If there is no non-
compressible area, this value must be zero.

RC Return Code (Optional)

The address of a binary fullword in which the EXPANDS subroutine
can store a value to indicate whether or not an error occurred in
expanding the record. If this optional parameter is coded, ABEND 10
(check byte mismatch) and certain other user abends are suppressed.
Instead, the corresponding completion code is stored in the binary
fullword addressed by the RC parameter and in register 15. If no error
occurs during EXPANDS processing, register 15 and RC are set to zero.
If the “compressed” data is not compressed, RC and register 15 are set
to -1. You can consider the “compressed” data to be the uncompressed
data.

Table 4-5. Parameters for Subroutine EXPANDS

CA-Compress/2 4–15

Calling the Subroutines

CALL to Subroutine CLOSES

CLOSES frees the small dynamic area acquired by the SHRINKS or EXPANDS
subroutines. This call should be used by online applications when they finish
processing. CLOSES accepts one parameter — the work area (WRK) used by
SHRINKS or EXPANDS.

The following are model statements for calling CLOSES:

Assembler Language
CALL CLOSES,(WRK),VL

COBOL
CALL 'CLOSES' USING WRK.

PL/I Optimizer
CALL CLOSES(WRK);

CALL to Subroutine SHRKHCS

Each CALL to SHRKHCS compresses one record image in main storage. There
are five parameters (four required and one optional) which the user codes in a
SHRKHCS CALL. The parameters are positional and must be coded in the same
sequence as shown in below. The following are model statements for calling
SHRKHCS:

Assembler Language
CALL SHRKHCS,(URA,CRA,URL,WRK[,RC]),VL

COBOL
CALL 'SHRKHCS' USING URA CRA URL WRK [RC].

PL/I Optimizer
CALL SHRKHCS(URA CRA URL WRK [RC]);

The following table describes the parameters available to the SHRKHCS
Subroutine:

Parm Meaning

URA Uncompressed Record Address (Required)

The address of the uncompressed data to be compressed by the
subroutine, excluding any RDW. This storage area (that is, the
uncompressed record) is not modified by the SHRKHCS subroutine.

4–16 BrightStor CA-Compress Data Compression Reference Guide

Calling the Subroutines

Parm Meaning

CRA Compressed Record Address (Required)

The address of a user-supplied main storage area where the SHRKHCS
subroutine places the compressed data. The storage area must be large
enough to contain the entire compressed record and does not include
the RDW.

URL Uncompressed Record Length (Required)

The address of a halfword or fullword from which SHRKHCS receives
the length of the uncompressed record in binary form. Setting the first
byte to x ‘80’ specifies the fullword format.

WRK Hardware Compression Work Area (Required)

The address of a 60-byte work area.

 Bytes Meaning

 0 - 7 “HC#STDnn” where nn is 01 thru 99 for a CA supplied
dictionary, or “HC#USRnn where nn is 00 thru 27 for a user
defined dictionary.

 8 - 11 Address of the selected dictionary load module. Although only
the expansion dictionary is used, the compression dictionary
must be the first half of the load module. If the desired
dictionary is already LOADed, insert its address here before
the first call. If the address is zero, the subroutine will load it
and fill in its address for you. An invalid non-zero value will
cause an abend or other unpredictable results, so you must set
it either to zero or to the valid dictionary address.

 12 - 14 ICB. Set this to zero for the first call to permit the subroutine to
calculate it for you.

 15 Dictionary size. Set this to zero for the first call to permit the
subroutine to calculate it for you.

 16 - 17 Non-compressible length if any, or zero.

 18 - 20 Return code from CSRCMPSC macro.

 24 - 27 Dynamic area address. Set to zero for first call.

CA-Compress/2 4–17

Calling the Subroutines

Parm Meaning

RC Return Code (Optional)

The address of a binary fullword in which the SHRKHCS subroutine
can store a value to indicate whether or not an error occurred in
expanding the record. If this optional parameter is coded, certain user
abends are suppressed. Instead, the corresponding completion code is
stored in the binary fullword addressed by the RC parameter and in
register 15. If no error occurs during SHRKHCS processing, register 15
and RC are set to zero. If the data does not compress, the return code is -
1, and the uncompressed data is copied to the compressed data location.

Table 4-6. Parameters for Subroutine SHRKHCS

CALL to Subroutine SHRKHCX

Each CALL to SHRKHCX returns one compressed record image in main storage
to its original uncompressed form. There are five parameters (four required and
one optional) which you code in a SHRKHCX CALL. The parameters are
positional and must be coded in the same sequence as shown in the following
table. The following are model statements for calling SHRKHCX:

Assembler Language
CALL SHRKHCX,(URA,CRA,URL,WRK[,RC]),VL

COBOL
CALL 'SHRKHCX' USING URA CRA URL WRK [RC].

PL/I Optimizer
CALL SHRKHCX(URA CRA URL WRK [RC]);

The following table describes the parameters available to the SHRKHCX
Subroutine:

Parm Meaning This Table

URA Uncompressed Record Address (Required)

The address of the main storage area where the SHRKHCX subroutine
places the uncompressed data which it constructs, excluding any RDW.
The storage area provided by the user must be large enough to contain
the entire expanded record.

4–18 BrightStor CA-Compress Data Compression Reference Guide

Calling the Subroutines

Parm Meaning This Table

CRA Compressed Record Address (Required)

The address of the compressed data to be expanded by the subroutine.
CRA must be the address of the data portion of the record, not the
RDW. This storage area (that is, the compressed record) is not modified
by the SHRKHCX subroutine.

URL Uncompressed Record Length (Required)

The address of a halfword or fullword from which SHRKHCX receives
the length of the compressed record in binary form and into which it
returns the length of the expanded record in binary form. Setting the
first byte to x ‘80’ specifies the fullword format.

WRK Hardware Compression Work Area (Required)

The address of a 60-byte work area.

 Bytes Meaning

 0 - 7 “HC#STDnn” where nn is 01 thru 99 for a CA supplied
dictionary, or “HC#USRnn where nn is 00 thru 27 for a
user defined dictionary.

 8 - 11 Address of the selected dictionary load module. Although
only the expansion dictionary is used, the compression
dictionary must be the first half of the load module. If the
desired dictionary is already LOADed, insert its address
here before the first call. If the address is zero, the
subroutine will load it and fill in its address for you. An
invalid non-zero value will cause an abend or other
unpredictable results, so you must set it either to zero or to
the valid dictionary address.

 12 - 14 ICB. Set this to zero for the first call to permit the
subroutine to calculate it for you.

 15 Dictionary size. Set this to zero for the first call to permit
the subroutine to calculate it for you.

 16 - 17 Non-compressible length if any, or zero.

 18 - 20 Return code from CSRCMPSC macro.

 24 - 27 Dynamic area address. Set to zero for first call.

CA-Compress/2 4–19

Calling the Subroutines

Parm Meaning This Table

RC Return Code (Optional)

The address of a binary fullword in which the SHRKHCX subroutine
can store a value to indicate whether or not an error occurred in
expanding the record. If this optional parameter is coded, ABEND 10
(check byte mismatch) and certain other user abends are suppressed.
Instead, the corresponding completion code is stored in the binary
fullword addressed by the RC parameter and in register 15. If no error
occurs during SHRKHCX processing, register 15 and RC are set to zero.
If the “compressed” data is not compressed, RC and register 15 are set
to -1. You can consider the “compressed” data to be the uncompressed
data.

Table 4-7. Parameters for Subroutine SHRKHCX

CALL to Subroutine SHRKHCC

SHRKHCC frees the small dynamic area acquired by SHRKHCS or SHRKHCS
subroutines. This call should be used by online applications when they finish
processing. SHRKHCC accepts one parameter — the work area (WRK) used by
SHRKHCS or SHRKHCS. The following are model statements for calling
SHRKHCC:

Assembler Language
CALL SHRKHCC,(WRK),VL

COBOL
CALL 'SHRKHCC' USING WRK.

PL/I Optimizer
CALL SHRKHCC(WRK);

CALL to Subroutine SHRINKZ

Each CALL to SHRINKZ compresses one record image in main storage. There
are five parameters (four required and one optional) that the user codes in a
SHRINKZ CALL. The parameters are positional and must be coded in the same
sequence as shown in the following table. The following are model statements for
calling SHRINKZ:

Assembler Language
CALL SHRINKZ,(URA,CRA,URL,WRK[,RC]),VL

COBOL
CALL 'SHRINKZ' USING URA CRA URL WRK [RC].

4–20 BrightStor CA-Compress Data Compression Reference Guide

Calling the Subroutines

PL/I Optimizer
CALL SHRINKZ(URA CRA URL WRK [RC]);

The following table describes the parameters available to the SHRINKZ
Subroutine:

Parm Meaning

URA Uncompressed Record Address (Required)

The address of the in-core record to be compressed. The SHRINKZ
subroutine does not alter this area. If the record is variable length, URA
is the address of the actual data, not the RDW.

CRA Compressed Record Address (Required)

The address of a user-supplied main storage area at least 8 bytes larger
than the uncompressed record. The SHRINKZ subroutine places the
compressed data in this area.

URL Uncompressed Record Length (Required)

The address of a halfword or fullword in which the user supplies the
length of the uncompressed record in binary form. The fullword format
is specified by setting the first byte to x'80' and supports data up to 24
megabytes in length.

WRK Super Express Work Area (Required)

The address of a 40-byte work area. The first 2 bytes must be the length
of the non-compressible area in binary format. If there is no non-
compressible area, this value must be zero. The next 2 bytes are set to
the compressed data length (excluding RDW) if the length is <32K, or -1
if the length is >32K. The length is also returned in register 0 in all cases.
Add 4 to this length to build an RDW if required.

RC Return Code (Optional)

The address of a binary fullword in which the SHRINKZ subroutine can
store a value to indicate whether an error occurred in compressing the
record. If this optional parameter is coded, certain ABEND conditions
are suppressed, and a return code value is stored in the binary fullword
addressed by RC and in register 15. If no error occurs during processing
by the SHRINKZ subroutine, register 15 is zero upon return to the user's
program, and RC is set to zero. If the data does not compress, the return
code is -1, and the uncompressed data is copied to the compressed data
location.

Table 4-8. Parameters for Subroutine SHRINKZ

CA-Compress/2 4–21

Calling the Subroutines

CALL to Subroutine EXPANDZ

Each call to EXPANDZ returns one compressed record image in main storage to
its original uncompressed form. There are five parameters (four required and one
optional) that the user codes in an EXPANDZ CALL. The parameters are
positional; they must be coded in the same sequence as they appear in the
following table. The following are model statements for calling EXPANDZ:

Assembler Language
CALL EXPANDZ,(URA,CRA,URL,WRK,[,RC]),VL

COBOL
CALL 'EXPANDZ' USING URA CRA URL WRK [RC].

PL/I Optimizer
CALL EXPANDZ(URA CRA URL WRK [RC]);

The following table describes the parameters available to the EXPANDZ
Subroutine:

Parm Meaning

URA Uncompressed Record Address (Required)

The address of the main storage area where the EXPANDZ subroutine
places the uncompressed data which it constructs. The storage area
provided by the user must be large enough to contain the entire
expanded record.

CRA Compressed Record Address (Required)

The address of the compressed data to be expanded by the subroutine.
CRA must be the address of the data portion of the record, not the
RDW. This storage area, that is, the compressed record, is not modified
by the EXPANDZ subroutine.

URL Uncompressed Record Length (Required)

The address of a halfword or fullword from which EXPANDZ receives
the length of the compressed record in binary form and into which it
returns the length of the expanded record in binary form. Setting the
first byte to x ‘80’ specifies the fullword format. The subroutine uses the
compressed record length to make sure the compressed record ends
where expected. If it does not, a check byte mismatch condition is
forced.

WRK Super Express Work Area (Required)

The address of a 40-byte work area. The first 2 bytes must be the non-
compressible area in binary format. If there is no non-compressible area,
this value must be zero.

4–22 BrightStor CA-Compress Data Compression Reference Guide

Incorporating Subroutine Calls in Existing Application Programs

Parm Meaning

RC Return Code (Optional)

The address of a binary fullword in which the EXPANDZ subroutine
can store a value to indicate whether or not an error occurred in
expanding the record. If this optional parameter is coded, ABEND 10
(check byte mismatch) and certain other user abends are suppressed.
Instead, the corresponding completion code is stored in the binary
fullword addressed by the RC parameter and in register 15. If no error
occurs during EXPANDZ processing, register 15 and RC are set to zero.
If the “compressed” data is not compressed, RC and register 15 are set
to -1. You can consider the “compressed” data to be the uncompressed
data.

Table 4-9. Parameters for Subroutine EXPANDZ

Incorporating Subroutine Calls in Existing Application
Programs

In most cases, incorporating CA-Compress/2 subroutine calls in an application
program requires only minor changes. DD statements which omit the DCB
subparameters need not be changed, because the data set label supplies the
correct values. Attributes explicitly specified on a DD statement or in a DCB
macro, COBOL FD or PL/I file definition must be changed to conform to the
compressed data set's attributes.

During compression, except by Super Express, the compressed record image may
temporarily grow up to 290 bytes longer than the uncompressed record.
Consequently, the area supplied for the compressed record must be 290 bytes
longer than the uncompressed record. After compression is complete, the
compressed record is almost never greater than eight bytes longer than the
uncompressed record, even in worst-case situations.

If input records are processed in locate mode, further adjustments are necessary.
In Assembler Language, the general register used with the DSECT must be
loaded with the address of the uncompressed record image after calling
EXPAND, EXPANDS, SHRKHCX, or EXPANDZ in order to make the program
consider the uncompressed record to be the record just read. In COBOL, the
entire uncompressed record definition should be moved from the FILE SECTION
to the WORKING-STORAGE SECTION. It is then a simple matter to insert the
proper call to EXPAND or EXPANDZ immediately following the READ (or GET)
for the compressed file. Few if any logic changes should be necessary following
the subroutine CALL. Calls to SHRINK, SHRINKS, SHRKHCS, and SHRINKZ
can be handled in a similar way.

CA-Compress/2 4–23

Defining Compressed Records in COBOL Application Programs

Defining Compressed Records in COBOL Application
Programs

Compressed records are variable-length records. This fact requires special
attention in COBOL application programs, because COBOL does not support
variable length data conveniently. For this reason, it is especially advisable with
COBOL to use the BrightStor CA-Compress Transparency or SUBSYS and not
CA-Compress/2.

Variable-length records are defined by the OCCURS DEPENDING ON data-
name clause, where the element defined by “data-name” contains a value which
indicates the actual number of characters in the variable- length record. The
SHRINK subroutine (but not SHRINKZ or SHRINKS, which do not use RDL)
generates this value and places it in the compressed record in response to a field
type L record definition, but COBOL does not recognize this value until it is
explicitly placed in data-name by a COBOL statement. Field type L does not
support records larger than 32K.

The following procedure is recommended for altering a COBOL application
program to process a compressed file.

1. FOR SHRINK, use the field type L RDL specification as the first, or only, RDL
specification when the file is compressed. This specification causes
CA-Compress/2 to store the actual data length of each variable-length
compressed record as a two-byte binary field at the beginning of each
compressed record. For SHRINKZ, define a field in front of the compressed
data and set it to the length of the compressed data that follows. In both
cases, remember to move it to the OCCURS DEPENDING ON variable—to
itself if necessary—to let COBOL know that the value has changed.

2. Move the definition(s) of the uncompressed data records from the FILE
SECTION to the WORKING-STORAGE SECTION.

3. Change RECORDING MODE from F to V or S, as necessary.

4. Supply the following as the data record in the FILE SECTION for the
compressed file (update the FD to refer to this record definition as DATA
RECORD):

01 SHRUNK-RECORD.
03 LENGTH PICTURE 9(4) USAGE COMPUTATIONAL.
03 SHRUNK-DATA PICTURE X OCCURS n TIMES DEPENDING ON LENGTH.

 Substitute the maximum record length for the value n.

5. Move the maximum value to LENGTH before the READ to ensure that
SHRUNK-RECORD is long enough to hold all the bytes that are read.

4–24 BrightStor CA-Compress Data Compression Reference Guide

Linking Subroutines With Applications

6. Code a call to EXPAND, EXPANDS, SHRKHCX, or EXPANDZ, as
appropriate, and insert it immediately after the READ for the file in question.
Code SHRUNK-RECORD as the CRA parameter in the call to the expansion
routine. Code the data record name of the record definition moved to the
WORKING-STORAGE SECTION as the URA parameter in the call to the
expansion routine.

7. If issuing calls to the SHRINK subroutine, provide the following compressed
record area in the WORKING-STORAGE SECTION (not the FILE SECTION):

01 COMPRESS-AREA.
03 RDW PICTURE 9(5) USAGE COMPUTATIONAL.
03 SHRUNK-RECORD-OUT.
05 LENGTH-OUT PICTURE 9(4) USAGE COMPUTATIONAL.
05 SHRUNK-DATA-OUT PICTURE X OCCURS n TIMES
 DEPENDING ON LENGTH-OUT.

 The user must substitute the value of the OUTFILE LRECL increased by 290
for the value n, and must explicitly move this value to LENGTH-OUT before
the SHRINK call to ensure that COMPRESS-AREA is long enough. Code
COMPRESS-AREA as the second (CRA) parameter of the SHRINK
subroutine call. If the output record definition in the FILE SECTION is coded:

01 UPDATED-SHRUNK-RECORD.
 03 UPDATED-LENGTH PICTURE 9(4) USAGE COMPUTATIONAL.
 03 UPDATED-SHRUNK-DATA PICTURE X OCCURS n TIMES
 DEPENDING ON UPDATED-LENGTH.

 the updated compressed record is written as follows:

MOVE LENGTH-OUT TO UPDATED-LENGTH.
 WRITE UPDATED-SHRUNK-RECORD FROM SHRUNK-RECORD-OUT.

8. Compile using the NOTRUNC option.

Linking Subroutines With Applications
The Super Express subroutines, SHRINKZ and EXPANDZ; the Standard Tables
subroutines, SHRINKS and EXPANDS; and the Hardware Compression
subroutines, SHRKHCS and SHRKHCX, can be included explicitly via the
linkage editor INCLUDE statement or resolved implicitly from SYSLIB.

CA-Compress/2 provides two methods to link-edit the SHRINK, EXPAND and
CLOSE subroutines with application programs. In the first method, SHRINK,
EXPAND, and CLOSE are link-edited with the user's application program by
including the module SHRKEXPD using an explicit INCLUDE linkage editor
control statement. This method results in making a copy of the subroutines a part
of the application program load module.

CA-Compress/2 4–25

Using CA-Compress/2 Under CICS

The second method provides an improved capability for link-editing the
SHRINK, EXPAND and CLOSE subroutines with the user's application program.
The subroutines are link-edited by including the module SHRKSTUB via an
explicit INCLUDE linkage editor control statement. This module contains entry
points for SHRINK, EXPAND and CLOSE and functions as a loader. Because
SHRKSTUB does not support the Super Express entry points, SHRINKZ and
EXPANDZ; the Standard Tables entry points, SHRINKS and EXPANDS; or the
Hardware Compression entry points, SHRKHCS and SHRKHCX, this method is
not available for Super Express, Standard Tables, or Hardware Compression.

The first CALL to a particular subroutine causes SHRKSTUB to load the correct
subroutine from the CA-Compress/2 library. Subsequent calls to that subroutine
result in a direct branch to the previously loaded subroutine with several
important advantages:

� Because copies of CA-Compress/2 modules are not link-edited into multiple
application programs, library space is conserved.

� Application programs do not have to be relink-edited when a new release of
CA-Compress/2 is installed. The subroutine support can reside on a single
shared library.

� Application programs link-edited with the SHRKEXPD module must be
relinked each time a BrightStor CA-Compress subroutine is changed.
Programs link-edited with the SHRKSTUB module require no modification
when a subroutine is changed because the fixed module is loaded from the
CA-Compress/2 library at execution.

� The subroutines can be shared between tasks. Attached modules are link-
edited only with the SHRKSTUB module (approximately 200 bytes).

To use this method, the CA-Compress/2 library must either be in the linklist or
supplied through STEPLIB or JOBLIB.

Using CA-Compress/2 Under CICS
Because the Super Express, Standard Tables, and Hardware Compression
subroutines do not load FDTs or acquire storage, CICS applications can use them
freely, in just the same way that batch programs do. The only additional
consideration is that you MUST pass the return code parameter in order to
prevent the subroutines from issuing the ABEND macro when compression or
expansion is unsuccessful.

Because the use of FDTs involves program and storage management,
CA-Compress/2 provides special facilities to enable CICS to support the
SHRINK and EXPAND subroutines. The CA-Compress/2 for CICS facility
supports any mainframe IBM operating system that supports the CICS
Command Level interface.

4–26 BrightStor CA-Compress Data Compression Reference Guide

Using CA-Compress/2 Under CICS

Install the Callable SHRINK Subroutines for CICS

BrightStor CA-Compress, because it fully supports data sets within a CICS
region, replaced these SHRINK subroutines. In the past, BrightStor CA-Compress
provided compression functions in CICS environments by calling these
subroutines. Now, only the rarest circumstances justify their use. If you must use
them, complete the steps in this section to call the SHRINK subroutines directly
from programs running under CICS. Except as otherwise noted, all members
referenced are in the “YOUR.SAMS.SAMSRC” library.

� Set the CWASHRK value in member SHRKWORD to point to a reserved
fullword in the CWA. Change the member FDTNAMES to list the FDTs to be
used.

� Assemble and link-edit CA-Compress/2 source modules. Modify and use the
JCL MEMBER INSTALL in the CICS CA-Compress/2 source library.

� Modify the CICS tables appropriately. Do both items below:

– Define the SHRNKMOD and SHRKSCBS modules and all FDT modules
to be used in the CICS Processing Program Table (PPT).

– Define SHRNKMOD in the CICS Program List Table (PLT).

� Modify the application programs calling SHRINK/2 CICS subroutines and
link-edit them with the SHRKCICS module.

These steps are described in detail below:

Step 1. Specify the FDT Names and a Fullword in the CWA

In the CICS CA-Compress/2 source library:

� Edit member SHRKWORD to specify the offset from the start of the CWA of
an aligned fullword in the CWA to be used exclusively by CA-Compress/2
for CICS.

� Edit member FDTNAMES to specify the names of the FDTs for the data sets
used with BrightStor CA-Compress.

 If you need to change the offset of the reserved fullword, you must repeat
this and reassemble using INSTALL. If converting from the macro level
interface, you must change SHRKWORD to the offset from the CWA, not the
CSA.

 For seldom used files, you can omit the record in FDTNAMES specifying the
corresponding FDT, because the FDT is loaded dynamically as needed, along
with about 3K of storage for each transaction. This storage, and the
dynamically loaded FDT, is freed when it is no longer needed. Because each
FDT may use between 4 to 8K of storage, save storage in this way or,
whenever appropriate, use a single FDT for several files.

CA-Compress/2 4–27

Using CA-Compress/2 Under CICS

 CICS CA-Compress/2 for CICS can issue the following CICS transaction
abends:

SHR1 - SHRKWORD NOT INITIALIZED OR DOES NOT POINT TO SHRKSCBS

SHR2 - NO RETURN CODE PARAMETER PASSED TO SHRKSTUB

 The CICS interface requires a return code argument which is optional in
batch. This prevents CICS from ABENDing on CA-Compress/2 errors.
Correct the application program so that it passes a return code parameter.

 The names of FDTs prefixed by SCB in the FDTNAMES member are the
FDTs that are loaded into storage at CICS startup. Edit this member as
needed.

Step 2. Assemble and Link the Program Modules

Next, modify and run YOUR.SAMS.SAMSRC(INSTALL) to assemble and link
the program modules. INSTALL contains two in-stream procedures.

� INIT deletes and reallocates the SHRINK CICS load library.

� CMDASM assembles and links the program modules.

Make the changes shown below to assemble and link the SHRNKMOD,
SHRKCICS, and SHRKSCBS modules. If you need to change FDTNAMES, the
member that holds the list of FDT names, you must assemble and link the
SHRKSCBS module and update the PPT to reflect the current list of FDT names.

� The DSN of the Assembler H library.

� The DSN of the standard system macro library.

� The DSN assigned to YOUR.SAMS.SAMSRC. Refer to the LOADPDS step of
the INSTAL13 job.

� The DSN of the CICS macro library.

� The DSN of the CICS source library.

� Link-edit parameters must default or be specified for “AMODE=24” and
“RMODE=24”.

� The DSN assigned to SHRINK.LOAD. Refer to the LOADPDS step of the
INSTALL job.

4–28 BrightStor CA-Compress Data Compression Reference Guide

Using CA-Compress/2 Under CICS

Step 3. Modify the CICS Tables

After you run INSTALL to assemble and linkedit the modules, define
SHRNKMOD, SHRKSCBS, and all FDT modules in the PPT and link the
application programs as follows:

� In the Processing Program Table (PPT), define SHRNKMOD, SHRKSCBS,
and all FDT modules to be used with CA-Compress/2 for CICS. Specify all
PPT entries as PGMLANG=ASSEMBLER, PGMSTAT=ENABLED, and
RELOAD=NO.

� In the Program List Table (PLT) that specifies programs to be executed
during CICS initialization, define SHRNKMOD, or you can run it as a startup
transaction. Make sure that this PLT is identified by the PLTPI operand of the
DFHSIT macro.

Step 4. Modify and Linkedit the Application Programs

You must convert your application programs to call the SHRINK and EXPAND
subroutines correctly and linkedit them with the SHRKCICS module. If you are
converting from the Macro Level facility, which is not supported under CICS
Version 3, you must not mix this Command Level facility with any modules,
including SHRKCICS, from the Macro Level facility. Convert the application
modules as follows:

� If you are converting existing application programs from the macro-level
product that was supplied with releases of BrightStor CA-Compress before
version 4.6.3, you must change the programs as described in the comments in
member INSTALL. In particular, the call to SHRKCICS must conform to
command level specifications:

– Register 13 must point to a valid save area

– The 5 arguments required by BrightStor CA-Compress must be preceded
by the EIB and a dummy DFHCOMMAREA.

� Link-edit the application programs with the SHRKCICS module for CICS. Do
not use SHRKSTUB, SHRKEXPD or the Macro Level version of SHRKCICS.

� Define the application programs in the PPT as usual.

CA-Compress/2 Subroutines Under CICS

CA-Compress/2 for CICS provides two subroutines for processing compressed
data in CICS application programs. Each application program must be link-
edited with the module SHRKCICS (rather than with SHRKSTUB or SHRKEXPD,
as specified earlier in this chapter for CA-Compress/2). The subroutines are as
follows:

� SHRINK — Converts an uncompressed record image to compressed form.

� EXPAND — Converts a record image to its original uncompressed form.

CA-Compress/2 4–29

The CA-Compress/2 Utilities

Note: The called subroutines from the application modify storage obtained by
the start-up module, SHRNKMOD. Unless disabled, Interest will issue a
breakpoint on these instructions. Proceed and disregard the breakpoint. One such
instruction that will cause a breakpoint is located at label SE in the CSECT
SHRKCICS.

These differ slightly from the subroutines with these names in CA-Compress/2:

� The 5 arguments passed to the SHRINK or EXPAND subroutines must be
preceded by the EIB and a dummy DFHCOMMAREA, as required by
command level CICS.

� The fourth parameter must be an SCB.

Because the CA-Compress/2 subroutines modify the SCB, it must be in
transaction-related dynamic storage. The SCB should be specified as documented
in the section “Accessing the FDT” in this chapter.

The CA-Compress/2 Utilities
Unlike the subroutines, the utilities offer no capabilities beyond those supplied
through the BrightStor CA-Compress Transparency or SUBSYS implementations.
All utility functions are supported more effectively by the subsystem and the
Interactive User Interface, and so the utilities are seldom called for. The utilities
supply the following functions:

� Prepass performs test compression, like the Interactive User Interface, and
creates a sequential FDT. Until PTF SS05300, the FDT produced by the
Interactive User Interface offers greater integrity.

� The FDTLOADR utility converts a sequential FDT to load module format.
The Interactive User Interface executes this utility automatically because the
Transparency and SUBSYS implementations do not support sequential FDTs.

� Two compression utilities are supplied to support Hardware Compression
and custom compression using FDTs generated either by the Prepass
function or by the Interactive User Interface. No utility support is provided
for compression using Standard Tables and Super Express.

� Three expansion utilities are provided to support both custom and non-
custom methods, including Hardware Compression — EXPAND and
EXPANDX, and SHRHCXPD. These enable disaster recovery in the event
that no subsystem is available. Minor differences between the utilities and
the subsystem require care when expanding data compressed by the
subsystem.

The CA-Compress/2 utilities are not re-entrant and cannot reside in the Link
Pack Area. JCL to execute these utilities is provided in the distribution JCL, file
number 1 on the release tape.

4–30 BrightStor CA-Compress Data Compression Reference Guide

The CA-Compress/2 Utilities

Prepass

Prepass test compresses a data set and creates a File Descriptor Table (FDT) for
CA-Compress/2 to use to compress and expand the data. The Interactive User
Interface also performs this function, and the FDT it creates contains an Integrity
Check Block (ICB) for additional safety.

Note: As of PTF SS05300, Prepass FDTs are created with an ICB, as they always
have been by the IUI.

All or a portion of the file can be Prepassed. Prepass collects statistical
information relating to compression of the Prepassed file and builds a sequential
FDT to contain this information. The FDT must be present (through JCL
specification) in every job step that expands or compresses the data set.

Prepass is invoked by executing the program named SHRINK and supplying a
PARM value in the form “P=xxx,” where xxx is either the word ALL or a three-
digit number. If ALL is coded, the entire data set defined by the INFILE DD
statement is Prepassed (read). Coding a three-digit number indicates, in
thousands, the number of logical records to Prepass. The first xxx thousand
records in the data set are read, the FDT is constructed and written, and the
utility goes immediately to end-of-job without reading the remaining records in
the data set.

Member SHR2PASS in the distribution JCL executes the Prepass function. The
PARM specification “P=015” indicates that the first 15,000 records of the INFILE
data set are Prepassed (or the entire data set if it contains fewer than 15,000
records). In most cases, it is unnecessary to Prepass more than five to ten percent
of a data set in order to collect accurate compression statistics for the FDT.

The optional RECDEF DD statement defines the data set containing user-
specified RDL for the data set. As shown, user-specified record definitions are
optional. If omitted, Prepass assumes defaults based on the data set's attributes.
The default assumed by Prepass Utility produce good compression and often
execute faster than more precise user specifications. Seethe chapter "Record
Definition" for more information.

COBOL users should specify record definitions in all cases. To direct Prepass to
supply default definitions for COBOL users, use the following minimum record
definition:

//RECDEF DD *
L.
/*

Compressed records are variable-length, and the L. specification prefixes the
compressed data with a binary halfword containing its length, including the
length field. This gives the COBOL program access to the length of the
compressed data.

CA-Compress/2 4–31

The CA-Compress/2 Utilities

Prepass Statistics

The printed output from the File Prepass Utility comprises the following:

� The input file's DCB information (RECFM, LRECL, BLKSIZE, and if
applicable, RKP and KEYLEN).

� Record definitions (RDL statements) either specified by the user or assumed
by default.

� Error messages about incorrect usage of the RDL. Each message is prefixed
by an alphanumeric character, which also underscores the error in the RDL
statement to which the message applies.

� The number of records Prepassed.

� The shortest, longest, and average record lengths on the Prepassed file. For
fixed-length records, all three numbers are identical.

� As of PTF SS05300, the generated ICB.

If field types C1, C2 and/or C3 are defined in the RDL for the file Prepassed
(either by user specification or by default), a table is printed for each such field
type defined showing the compression bit code for each of the 256 possible
values containable in one byte, plus the bit code used to represent the repetition
indicator. The bit codes are assigned based on the relative frequency of each byte;
most frequently encountered values are assigned the shortest bit codes, and least
frequently encountered values are assigned the longest bit codes.

FDTLOADR Utility

The FDT can be converted from a sequential data set to a load module by using
the FDTLOADR Utility. Because sequential FDTs are not supported by
BrightStor CA-Compress Transparency or SUBSYS, the Interactive User Interface
performs this function automatically.

Note: FDT member names must be unique within a PDS library containing FDTs
and unique across the installation. It is extremely dangerous to have more than
one FDT with the same name.

Because FDTs in load module format must be accessed in a slightly different way
from sequential FDTs, converting existing FDTs to load module format requires
minor modifications to the application programs. These differences are discussed
in “Accessing the FDT” in this chapter, and in the descriptions of the FDT
parameter in the detailed discussions of the SHRINK and EXPAND subroutine
calls.

4–32 BrightStor CA-Compress Data Compression Reference Guide

The CA-Compress/2 Utilities

Conversion to load module format offers the following benefits:

� Compatibility with BrightStor CA-Compress, which does not support
sequential FDTs.

� Access to all FDTs through STEPLIB instead of having to code a separate
TABLxx DD statement for each FDT.

Member SHR2FLDR in the distribution JCL executes the FDTLOADR utility. The
TABL00 DD statement defines the FDT in sequential data set format. The
SYSLMOD DD statement defines the PDS library and the member name in which
the FDT is to be stored in load module format.

Compression Utilities

After a file is Prepassed, all or part of the file can be compressed by the SHRINK
Compression Utility, which also prints compression statistics. The utility
supports only custom compression using an FDT, not Standard Tables,
Hardware Compression, or Super Express.

The SHRINK Compression Utility is invoked by executing the program named
SHRINK and supplying a PARM value in the form C=xxx (xxx is either the word
ALL or a three-digit number). ALL causes the entire data set defined by the
INFILE DD statement to be compressed. A three-digit number indicates, in
thousands, the number of logical records to compress from the data set defined
by the INFILE DD statement.

Member SHR2CMP1 in the distribution JCL uses a sequential FDT, and TABL00
defines the FDT. Member SHR2CMP2 uses a load module FDT, which is defined
by allocating its load module library in STEPLIB and specifying its name using
the FN= keyword in the PARM. In both cases, INFILE is the data set to be
compressed and OUTFILE is the compressed data set.

The SHRHCCMP Compression Utility is invoked by executing the program
named SHRHCCMP and supplying a PARM value in the form:

DICT=dictname,C=xxx,N=nnn

where xxx is a three digit count in thousands of records to compress or ALL and
nnn is a three digit non-compressible length. The defaults are C=ALL and N=000.
You can omit either one or both of these defaults. DICT= is always required.

For both Compression Utilities, the OUTFILE LRECL should be at least eight
bytes greater than the INFILE LRECL, 12 bytes greater if the uncompressed file is
non-VSAM fixed length in order to provide for the RDW in the compressed
records. In most cases, DCB parameters in the output data set can be defaulted.

CA-Compress/2 4–33

The CA-Compress/2 Utilities

Compression Statistics

The Compression Utilities direct a printed report to the data set defined by the
PRINT DD statement. This report contains the following information:

� The DCB information (RECFM, LRECL, and BLKSIZE) of a sequential data
set, or the VSAM information (LRECL, cluster type, and, if applicable, the
RKP and KEYLEN) for both the INFILE and OUTFILE data sets.

� The data set names of both the INFILE and OUTFILE data sets. These are not
printed for dummy data sets.

� The number of records compressed and the number of bytes compressed and
produced.

� The shortest, longest and average record lengths, both before and after
compression, including the four-byte RDW, if present.

� The average compression percentage (0 = no compression and 100 = total
compression), defined as:

Y 100 x X –
X

Where:

X = average record length before compression.
Y = average record length after compression.

� For the SHRINK Utility, the number of type PD, ZL, ZR, S, and X fields
which contained information incompatible with the field definition. See the
chapter "Record Definition" for more information on these field types.

Expansion Utilities

A compressed file can be returned to its original uncompressed form by one of
the Expansion Utilities. The entire data set is expanded. The expanded data set is
identical to the one that existed before compression. Data integrity is ensured by
comparing the check byte appended to each compressed record to a check byte
calculated as each record is expanded.

The EXPAND Utility can only expand data sets compressed using a custom FDT.
The EXPANDX Utility can only expand data sets compressed using Standard
Tables or the string compression methods, Super Express or Express. The
SHRHCXPD Utility can only expand data sets compressed using a Hardware
Compression dictionary.

The OUTFILE DD statement defines the uncompressed data set written by the
Expansion Utilities. RECFM and LRECL must be the same as in the original
uncompressed data set, but BLKSIZE may differ.

4–34 BrightStor CA-Compress Data Compression Reference Guide

The CA-Compress/2 Utilities

The Expansion Utilities assume default values for certain DCB parameters if they
are not specified by the user. RECFM, LRECL, and BLKSIZE may be omitted in
most cases. The Expansion Utilities report the same INFILE and OUTFILE
information, as does the Compression Utility.

Note on Disaster Recovery: If the BrightStor CA-Compress Subsystem is
unavailable the Expansion Utilities can be used to expand compressed data sets,
thus making them accessible. Minor differences between subsystem and utility
logic require caution. In particular, to expand physical sequential data sets
compressed by the subsystem whose uncompressed format is variable-length,
you must include an INSUBSYS DD DUMMY statement in the utility expansion
step to process them correctly.

JCL Defaults

Defaults are calculated to make sense, based on the attributes of the original
uncompressed data set. The FDT contains the original attributes, so they are
available to the SHRINK and EXPAND Utilities, but not to the EXPANDX or
Hardware Compression Utilities, which do not use custom FDTs.

Extensive error checking is performed to ensure that the combination of user
specifications and defaults assumed by the utilities (for both JCL and RDL) are
compatible. When a JCL/RDL conflict is not serious, it is permitted, often with a
warning message. Only if it makes no sense at all does the utility end with an
error message. It is prudent to perform a trial compression and re-expansion of a
few records to do the following:

� Check the defaults (JCL and RDL).

� Analyze possible warning messages.

� Check the RDL for “Record Definitions Imply Wrong Length.”

DSORG DSORG is not required for the OUTFILE data set. If the data set
has partitioned organization, a member name must be specified on
the DSN parameter.

RECFM For the Compression Utilities, the default value for the
compressed data set is RECFM=VB. For the EXPAND Utility, the
default value for the expanded data set is the same as the original
uncompressed data set's RECFM. Except for blocking and
spanning, the RECFM (F, V, U) cannot be changed.

LRECL LRECL of the compressed output from the Compression Utilities
defaults to LRECL+8 of the original uncompressed data set. For
output from the EXPAND Utility, the LRECL value assumed is
that of the original uncompressed data set.

CA-Compress/2 4–35

The CA-Compress/2 Utilities

BLKSIZE The Compression Utilities default to the maximum of BLKSIZE of
the original uncompressed data set or LRECL+4 of the compressed
data set. The EXPAND Utility defaults to the maximum of
BLKSIZE or LRECL+4 of a variable-length uncompressed data set.
For RECFM=F, FS or U, BLKSIZE defaults to LRECL. For
RECFM=FB or FBS, BLKSIZE defaults to the highest multiple of
LRECL which does not exceed the original uncompressed
BLKSIZE. If the default exceeds the track capacity, you must
explicitly code the BLKSIZE.

AMP The IBM defaults are assumed.

4–36 BrightStor CA-Compress Data Compression Reference Guide

Chapter

5 SUBSYS DD Parameter

BrightStor CA-Compress provides the following two ways to invoke data set
compression using the BrightStor CA-Compress subsystem:

� Automatic (transparent) compression of VSAM or physical sequential data
sets using the BrightStor CA-Compress Transparency. This is the preferred
method.

� Manually invoked compression of non-VSAM data sets by coding the
SUBSYS parameter on DD statements in your JCL (or using dynamic
allocation). Do not use the SUBSYS parameter with VSAM data sets. Doing
so may cause OPEN to fail with an 0C4 (IBM APAR OW10331) due to a
missing DEB extension.

How it Works
Coding the SUBSYS parameter directs MVS to use the specified subsystem to
process the data set. When you specify the BrightStor CA-Compress subsystem, it
compresses and expands the data using I/O module ZSURSHRK, just as the
Transparency does, so the results are completely compatible.

After the data is compressed, the SUBSYS parameter must be coded in order to
access expanded data. If the data need not be expanded, for instance if it is
simply being copied or sorted on an uncompressed field, there is no need to code
the SUBSYS DD parameter to process the compressed data set.

Here is an simple example of the SUBSYS DD statement parameter:

//MYDDNAME DD DSN=MY.DATA.SET,DISP=OLD,
// SUBSYS=(ZSAM,SHRK,SUPEREXP)

The string 'ZSAM' is the subsystem name given to the BrightStor CA-Compress
subsystem by the systems programmer at your installation. The string 'SHRK' is a
constant which must always be coded. The string 'SUPEREXP' is the name of the
BrightStor CA-Compress compression algorithm that you want to use for this
data set. When expanding a compressed data set you must specify the
compression algorithm name used when the data set was originally compressed.

SUBSYS DD Parameter 5–1

Coding the SUBSYS JCL Parameter

Coding the SUBSYS JCL Parameter
Be careful when you code the SUBSYS parameter to invoke BrightStor CA-
Compress data compression. This section guides you through the process.

SUBSYS Syntax for the BrightStor CA-Compress Subsystem

As documented in the MVS JCL Reference, the general syntax for coding the
SUBSYS on a DD statement for any subsystem is:

SUBSYS=(subsystemname,parameters)

The 'parameters' for the BrightStor CA-Compress subsystem are broken into four
pieces: subtype, fdtname, addname, and other-parameters. So, for the BrightStor
CA-Compress subsystem, the syntax can be redefined as:

SUBSYS=(subsystemname,subtype,fdtname,addname,
 other-parameters)

subsystemname Specifies the name given to your BrightStor CA-Compress
subsystem when it was installed on your system. The usual
name is 'ZSAM'.

subtype This parameter must be the constant 'SHRK'.

fdtname Specifies the BrightStor CA-Compress compression
algorithm or File Descriptor Table (FDT) which is to be
used for the data set. The following values are valid:

� SUPEREXP — Specifies the Super Express
compression algorithm.

� STDTBLxx — Specifies that BrightStor CA-Compress
is to use one of the provided standard File Descriptor
Tables (FDT). The 'xx' can be a number from 01 to 06.

� fdtname — Specifies the name of the compression
algorithm or File Descriptor Table (FDT) created for
your data set. The first character of this name must be
alphabetic or the job fails with a JCL error.

5–2 BrightStor CA-Compress Data Compression Reference Guide

Coding the SUBSYS JCL Parameter

addname Specifies the “associated DDNAME” which is to be used
by BrightStor CA-Compress instead of dynamically
allocating the data set. The “associated DDNAME”
specifies the DDNAME of another DD statement coded in
the step, which must allocate the data set to be processed.
The DD statement where SUBSYS= is coded should
normally contain only the SUBSYS parameter. All other
DD statement parameters for the file should be coded on
the associated DD statement. However, DSN and DCB
must sometimes be coded on both DD cards because
certain products like CICS may validate them during the
OPEN process.

Using an “associated DDNAME” is the only way to specify
certain DD statement parameters which are incompatible
on a DD statement where SUBSYS= is specified (that is,
DISP=PASS or for SMS-managed data sets). The addname
parameter is positional, so a comma must be coded when it
is omitted if other parameters follow it.

 The DD statement referenced by the associated DDNAME
is looked for when the data set is opened. If it is not found,
BrightStor CA-Compress issues message ZSUR002I to
inform you of the missing DD. The data set allocated by
the associated DDNAME's DD statement can be of any
type that is supported by QSAM.

Note: The associated ddname may also be needed to avoid
I/O errors on concatenated SUBSYS data sets after the
first. For an example on how to avoid this problem, see the
BrightStor CA-Compress User Guide.

SUBSYS DD Parameter 5–3

Coding the SUBSYS JCL Parameter

other parameters Specifies other parameters which control the operation of
BrightStor CA-Compress. If an error is made in coding
these parameters, a JCL error results. Each of the following
parameters may be coded one time each in any order:

� STD or STANDARD—Specifies that BrightStor CA-
Compress is to use the “standard” File Descriptor
Table (FDT). This parameter can be omitted if a File
Descriptor Table of the name STDTBLxx is specified
for the “fdtname” parameter (described above). See
“ADD Statement” in the chapter "Control File
Maintenance Utility” for more information about the
STANDARD parameter.

� SDB=YES or SDB=NO – Specifies whether the actual
compressed data set should be written with BLKSIZE
calculated using System Determined Blocksize (SDB).
SDB=NO directs the compress not to optimize but to
use the uncompressed BLKSIZE coded in the JCL or
set in the Control File entry. If this is a PS data set,
SDB= defaults to whatever was specified or defaulted
for the Control File entry. If not, the default is YES
unless NOSDB was specified on the started task. SDB=
does not affect the BLKSIZE parameter of the SUBSYS
dataset, which must be non-zero to avoid SDB, and the
BLKSIZE will continue to look to user programs like
the JCL specification. Unless the compressed data is
read as compressed with DCB specified, SDB=YES is
best.

Table 5-1. Subsystem parameters

MVS SUBSYS Restrictions and Special Processing

MVS imposes some restrictions and special processing rules for the use of the
SUBSYS DD parameter. These restrictions and special processing rules are
documented in the IBM JCL Reference Manual and are listed below for your
convenience:

� The SUBSYS DD statement parameter cannot be coded for an SMS-managed
data set. However, with the BrightStor CA-Compress subsystem's
“associated DDNAME” feature, you can circumvent this IBM restriction. The
“associated DD statement” referenced using the 'addname' subparameter on
the SUBSYS parameter can specify an SMS-managed data set.

� The SUBSYS DD statement parameter cannot be coded with SYSOUT=, *,
DATA, DDNAME DLM, DYNAM, OUTPUT or QNAME.

� When the SUBSYS DD statement parameter is coded, the parameters
COPIES, DEST, FCB and OUTLIM are ignored.

5–4 BrightStor CA-Compress Data Compression Reference Guide

Special Considerations When Using SUBSYS

� If DUMMY is specified, the SUBSYS parameters are checked for syntax, and
if they are acceptable the data set is treated as a dummy data set.

� If SUBSYS= is specified on an overriding DD statement, a DUMMY
parameter on an overridden DD statement is nullified, and a UNIT
parameter is ignored.

� SUBSYS does not work correctly with System Determined Blocksize (SDB).
SDB is an IBM facility which chooses the optimum BLKSIZE for a data set
based on its device type when the user codes BLKSIZE=0 in JCL. Because a
SUBSYS data set looks to the system like a SYSIN/SYSOUT data set, SDB
computes the BLKSIZE by adding 4 to the LRECL instead of choosing the
BLKSIZE appropriate to the actual device. This results in very poor blocking
factors and defeats the purpose of compression.

Special Considerations When Using SUBSYS
You must take several factors into account when determining which data sets to
place under control of BrightStor CA-Compress using the SUBSYS parameter.

DCB Information When Using SUBSYS

When you code the SUBSYS parameter for the BrightStor CA-Compress
subsystem, you can code the other parameters just as you normally would.
However, you must always code the DCB parameters for non-VSAM data sets
(BLKSIZE, LRECL, and RECFM), even if they already exist (DISP=SHR or
DISP=OLD).

There are three restrictions on BLKSIZE and LRECL which you must observe
when using BrightStor CA-Compress:

� The BLKSIZE must be at least 12 bytes greater than the LRECL.

� The LRECL cannot be larger than 32,744 bytes.

� Do not code BLKSIZE=0 in order to invoke System Determined Blocksize.

Compression can cause a record to grow by up to 8 bytes, 12 if it was originally
fixed length. In order to prevent the logical record length from exceeding the
block size, and to prevent the block size from exceeding the maximum value, the
BLKSIZE and LRECL restrictions must be adhered to.

SUBSYS DD Parameter 5–5

Special Considerations When Using SUBSYS

Nonlabeled Tapes

When compressing with the SUBSYS parameter on an output file which is a non-
labeled tape, you must use the “addname” subparameter and specify the DCB
information on the associated DD statement. Failure to do it this way will result
in an S013-34 abend.

Partitioned Data Sets

Invoking BrightStor CA-Compress using the SUBSYS DD statement parameter
supports compression of individual members in a PDS, but not of a PDS as a
whole. Below are the correct and incorrect ways to compress data in a PDS. The
correct way accesses individual members which are compressed and
decompressed by BrightStor CA-Compress as if they were sequential data sets.

Correct JCL
//GOODPDS DD DSN=MY.PDS(MYMEMBER),
// DISP=SHR,
// DCB=(RECFM=FB,BLKSIZE=4080,
// LRECL=80),
// SUBSYS=(ZSAM,SHRK,SUPEREXP)

Incorrect JCL
//BADPDS DD DSN=MY.PDS,
// DISP=SHR,
// DCB=(RECFM=FB,BLKSIZE=4080,
// LRECL=80),
// SUBSYS=(ZSAM,SHRK,SUPEREXP)

JCL Restrictions

When the “addname” subparameter is not used, BrightStor CA-Compress
dynamically allocates the data set, but when “addname” is used, the data set is
allocated to the associated ddname before BrightStor CA-Compress begins to
process it. Minor differences arise, for instance, in processing the DISP parameter
and in when the data set is cataloged. A number of incompatibilities exist
between the SUBSYS parameter and other JCL parameters. SMS-controlled data
sets must be allocated through an associated DDNAME. In general, many
problems can be solved by using the associated ddname facility. Some specific
considerations follow:

� Depending on your IBM maintenance level, if you use the SUBSYS parameter
with a VSAM cluster, an 0C4 abend is likely when clearing a field in a
missing DEB extension (APAR OW10331). IBM is unwilling to fix this
problem, and there is no work around.

5–6 BrightStor CA-Compress Data Compression Reference Guide

Special Considerations When Using SUBSYS

� AMP=(...)—This is a VSAM-only parameter. If this parameter is specified on
a subsystem DD statement, the subsystem routines do not execute properly
and abends result.

� DISP=(...,PASS)—Because BrightStor CA-Compress dynamically allocates the
data set, PASS is not allowed on the DD statement where SUBSYS is coded.
However, PASS can be coded on an associated DD statement which is
specified using the BrightStor CA-Compress subsystem 'addname'
parameter.

� LABEL=(...,NL,...)—When compressing with SUBSYS with output to a non-
labeled (NL) tape, an associated DD statement must be supplied in order to
specify the DCB attributes of the compressed file. An associated DD
statement is specified using the BrightStor CA-Compress subsystem
'addname' parameter. Failure to do this results in a S013-34 abend.

� VOL=REF=*.ddname (where ddname is a subsystem DD statement)— The
BrightStor CA-Compress subsystem is not able to update the volume list in
the subsystem DD entry, so the volume serials remains the same throughout
the life of the job.

� SPACE=(...,...,RLSE)—When an application program closes multiple data sets
in a single CLOSE macro call where one or more of the data sets is
compressed by BrightStor CA-Compress RLSE may cause an S50D abend.
BrightStor CA-Compress issues messages ZSUR007I and ZSUR050I.

� BLKSIZE=0—System Determined Blocksize does not work correctly with
SUBSYS, because the proper device type is not recognized for SUBSYS data
sets. If you use the associated ddname and code BLKSIZE=0 on both
ddnames, the BLKSIZE is computed differently in each case, and an abend is
likely.

SUBSYS DD Parameter 5–7

Chapter

6 Test Compression Facility

The Test Compression Facility (TCF) is a batch program that allows you to
determine the best data compression algorithm to use for each file you want
compress. Under the control of SYSIN control statements, TCF analyzes data sets
and provides statistical projections of the savings (in kilobytes and DASD tracks)
to be realized through Huffman and Super Express compression. TCF enables
users of BrightStor CA-Compress to determine which individual data sets are the
best candidates for processing, and to project the storage savings.

The TCF is an alternative to the Interactive User Interface (IUI), but the IUI is
usually more convenient.

How The Program Works
The TCF reads SYSIN control statements that control the operation of TCF and
specify the data sets and/or data set name patterns you want to analyze.

The sample JCL below runs the TCF. This JCL can be found in member TCFRPT
in YOUR.SAMS.INSTALL on the distribution tape.

//*TCFRPT JOB
//*
//TCF EXEC PGM=GDAXP001,REGION=1000K
//STEPLIB DD DSN=YOUR.SAMS.LOADLIB,DISP=SHR
//CMDPRINT DD SYSOUT=*
//MSGPRINT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
 --- ENTER ANALYZER COMMANDS HERE ---

Test Compression Facility 6–1

TCF Command Language

Notes on Using The Program

TCF produces a report showing the data sets included in the scan and the
compression percentages achieved for both the Huffman and Super Express (run
length code) compression techniques.

Note: Because it can take a long time to scan every catalog and analyze every
VSAM and physical sequential data set in your installation, limit the scope of
your TCF job before submitting it for processing. See the SCAN, SELECT and
EXCLUDE statement sections later in this chapter for more information.

You can instruct TCF to pass control to a user-coded exit program, which
receives the statistical results from the test compression for each data set. The exit
program can take customized actions using this information.

TCF can be run in simulate mode that shows you the data sets that are selected
by TCF without actually reading and test-compressing the data. This allows you
to see how many data sets are being selected before spending the system
resources required to test compress them all.

TCF Command Language
The TCF command language operates on both sequential and VSAM data sets.
TCF processing consists of a catalog scan, data set selection, and compression
analysis. Within a single execution of the program, you can run multiple sets of
TCF processing. In order to remove redundant data set selections, TCF
preprocesses the scans and combines them so that no data set is selected twice for
a single analysis operation (EXAMINE statement—see below).

There are three types of operations done in the command language:

TCF Statements Operation

SCAN Search catalog(s) and gather a list of data sets using criteria
you specify

SELECT and
EXCLUDE

Narrow the list of data set names using criteria you specify.

EXAMINE Test compress the data sets in the final list and produce a
report.

Table 6-1. Command Language Operations

TCF requires at least one SCAN statement and one EXAMINE statement.

6–2 BrightStor CA-Compress Data Compression Reference Guide

TCF Command Language

Command Language Syntax Rules
� Any line which starts with an asterisk (“*”) in column 1 is a comment line

and is ignored.

� A statement consists of the statement name followed by one or more
parameters. For example:

 SCAN CATALOG=MY.CATALOG,PREEXIT=MYPREXIT

� Parameter names can be abbreviated by truncating them to the first three
characters, if that makes the parameter unambiguous. If three characters are
not enough, then additional characters are required until the abbreviation is
unambiguous.

� Parameters can be specified in any order. The first parameter must appear on
the same line as the statement name.

� A statement can span more than one line.

� A parameter cannot span more than one line unless the statement is
continued using Statement Continuation Method B below.

� A blank following a parameter terminates a statement. Characters following
the blank are considered comments.

� Statement Continuation Method A: If a comma and a space follow a
parameter immediately, then the statement is continued onto the next line.
Characters following the space are considered comments. The parameters
appearing on the next line can start in any column. With this continuation
method, each parameter must be completed on a single line.

� Statement Continuation Method B: If the statement is coded through column
71, and an 'X' is coded in column 72, then the statement is continued onto the
next line. The first nonblank in the next line is appended to the character in
column 71 in order to form the continued statement. With this continuation
method, the line can be split anywhere. In the example below, the
PREEXIT=MYPREXIT parameter is continued onto the next line:

 ----+----1----+----2----+ ..//.. +----7----+----8
 SCAN CATALOG=MY.CATAL DE,PREEX
 XIT=MYPREXIT

� The following special characters can be used in data set names, volume
names, and catalog names:

– An asterisk (“*”) means “any characters in a single node.”

– A question mark (“?”) means “any one character.”

– A slash (“/”) means “any suffix of characters.”

– An exclamation point (“!”) means “any characters.”

Test Compression Facility 6–3

TCF Command Language

Examples:

Syntax Description

DSN=* Selects all single-level data set names.

DSN=*.* Selects all two-level data set names.

DSN=A.*.PROD Selects all three-level data set names which have an “A” as the
first node, any character or characters as the second node, and
“PROD” as the third node.

DSN=A*.PROD Selects all two-level data set names which have an “A”
followed by zero to seven other characters as the first node,
and “PROD” as the second node.

DSN=? Selects all single-character data set names.

DSN=A.TEST?? Selects all two-level data set names that have an “A” as the
first node, and “TEST” plus two other characters as the second
node.

DSN=A/ Selects all data sets that begin with the character “A”. The
data set names can have any number of nodes. The first node
can be the letter “A”, or be a string that starts with “A”.

DSN=A.TEST/ Selects all data sets that begin with the string “A.TEST”.
Examples:

 “A.TEST”
“A.TEST1”
“A.TEST1.TEST2”
“A.TEST.PROD”

DSN=A.*.C?./ Selects all data sets which have a first node of “A”, any second
node, a third node which is exactly two characters in length
and the first character is the letter “C”, and any node or nodes
which follow.

DSN=!TEST Selects all data sets that end with the string “TEST”

DSN=!TEST! Selects all data sets that have the string “TEST” somewhere in
it. The string “TEST” can be at the beginning or the end of the
data set name.

DSN=
!TEST!VSAM

Selects all data sets that have the string “TEST” somewhere in
the name and “VSAM” at the end. Examples:

 “A.TEST.VSAM”
“A.TESTVSAM”
“A.TEST1.VSAM”
“A.TEST1.KSDSVSAM”

Table 6-2. Examples

6–4 BrightStor CA-Compress Data Compression Reference Guide

TCF Command Language

Command Structures in the Command Language

The command language processor groups the TCF statements into logical blocks
called command structures. There can be many command structures in a single
TCF run. A command structure consists of the following sequence of statements:

1. One or more SCAN statements.

2. One or more occurrences of the following sequence:

� Optional SELECT and/or EXCLUDE statements.

� One or more EXAMINE statements.

At least one EXAMINE statement must appear in each command
structure.

The SCAN statements apply to all SELECT, EXCLUDE, and EXAMINE
statements in the command structure.

Unlike the SCAN statements, which are global in scope, the optional SELECT
and/or EXCLUDE statements apply only to the EXAMINE statement(s) which
immediately follow them.

The following examples show how the command structures work:

Example 1—The command structure below causes TCF to scan catalog
ICF.TESTCAT, extract all VSAM ESDS data sets, all VSAM KSDS clusters, and all
physical sequential data sets, and test compress them based on a sampling of 30
percent of the logical records found in each data set.

SCAN CATALOG=ICF.TESTCAT
EXAMINE PERCENT=30

Example 2—The command structure below causes TCF to select all data sets in
all catalogs that begin with the prefix 'LABS.TJP' and run complete test
compresses on them.

SCAN DSN=LABS.TJP./
EXAMINE

Example 3—The command structure below extracts all data set names from three
catalogs and then analyzes them:

SCAN CATALOG=VOL050.USERCAT
SCAN CATALOG=VOL001.USERCAT
SCAN CATALOG=VOL050.TESTCAT

EXAMINE

Example 4—The command structure below extracts data set names matching
two different data set name criteria from all catalogs and then analyzes them:

SCAN DSN=LABS.TJP.VSAMFIL
SCAN DSN=LABS.*.TESTVSAM/

EXAMINE SKIP=20,BYPASS=100,EXTRACT=500

Test Compression Facility 6–5

TCF Command Language

Example 5—The command structure below extracts data set names from two
catalogs. Then the list is narrowed by selecting data sets which match either of
the two SELECT statements and the selected data sets are test compressed using
the first EXAMINE statement. Finally, the entire list of data sets is test
compressed using the second EXAMINE statement.

SCAN CATALOG=VOL050.USERCAT
SCAN CATALOG=VOL001.USERCAT

SELECT DSNAMES=(!TJP,!MJA)
SELECT DSORG=PS,MBYTESRANGE=(300,2000)

EXAMINE SKIP=5,EXTRACT=10000
EXAMINE PERCENT=40

Example 6—The command structure below extracts data set names from two
catalogs. This list of data sets is used twice. In the first use, the list is narrowed by
selecting data sets that are between 50 and 200 megabytes in size (first SELECT
statement). Then, a test compression run is done using 50% of the records in each
data set (first EXAMINE statement). In the second use, the original list is
narrowed in a different way. Data sets are selected only if they are 201 megabytes
or larger (second SELECT statement). Then a test compress is done using 20% of
the records in each data set (second EXAMINE statement).

SCAN CATALOG=VOL050.USERCAT
SCAN CATALOG=VOL001.USERCAT

SELECT MBYTES=(50,200)
EXAMINE PERCENT=50

SELECT MBYTES=201
EXAMINE PERCENT=20

Example 7—The command structure below extracts data set names matching
two different data set name criteria from all catalogs. Then the list is narrowed by
selecting VSAM data sets up to 300 MB in size (SELECT statement) and which do
not end in “DB2” or “TEST” (EXCLUDE statement). The resulting list of data sets
is test compressed using 20% of the records in each data set (EXAMINE
statement).

SCAN DSN=LABS.TJP.VSAMFIL
SCAN DSN=LABS.TCF.VSAM/

SELECT DSORG=VSAM,MBYTESRANGE=(0,300)
EXCLUDE DSN=(!DB2,!TEST)

EXAMINE PERCENT=20

6–6 BrightStor CA-Compress Data Compression Reference Guide

TCF Command Language

SET Statement
SET [MODE=LIVE|SIMULATE]

[,PREEXIT=exitname]
[,POSTEXIT=exitname]
[,PERCENT=100|n]
[,BYPASS=0|n]
[,SKIP=0|n]R [,EXTRACT=0|n]
[,DSNFILL=.|x]
[,SECURITY=NONE|RACF|TOPSEC|ACF2]

The SET statement specifies options for the execution of the command structures
that follow it. However, parameters on an EXAMINE statement will override
those specified on a SET statement. Any SET statement which specifies
MODE=SIMULATE causes the entire run to be in simulate mode even if
MODE=LIVE is specified on another SET statement.

You can use the SET statement to establish default values for the compression
run which are different from normal TCF default values. The following example
shows how the SET statement works with EXAMINE statements:

1: SCAN CAT=ICF.PAYROLL All of the records

2: EXAMINE
3: SET PERCENT=30 Estab new default
4: SCAN CAT=!IMS
5: EXAMINE 30% of the records
6: SCAN CAT=!CICS7:
 EXAMINE PERCENT=20 20% of the records
8: SCAN CAT=ICF.PROD019:
 EXAMINE 30% of the records

The EXAMINE statement in line 2 runs a test compression on all of the records in
all of the data sets cataloged in ICF.PAYROLL because TCF processes all records
by default. The SET statement in line 3 establishes a new default of running test
compression on 30% of the records. The EXAMINE statement in line 5 runs a test
compression on a 30% sample of the records in all of the data sets cataloged in
catalogs which have a name ending in 'IMS'. The EXAMINE statement in line 7
runs a test compression on a 20% sample of the records in all of the data sets
cataloged in catalogs which have a name ending in 'CICS' because PERCENT=20
is specified on it. The EXAMINE statement in line 9 runs a test compression on a
sample of 30% of the records in all of the data sets cataloged in ICF.PROD01.

The SET statement is required if you want to use TCF's security interfaces. When
used in this way, the SET statement should precede the first EXAMINE statement
in the input stream, as in the following example:

SET SECURITY=ACF2, ...
SCAN CAT=ICF.TESTCAT

EXAMINE PERCENT=20

Test Compression Facility 6–7

TCF Command Language

MODE=LIVE|SIMULATE

Specifies whether the test compression is a simulated execution. When
MODE=SIMULATE (or MODE=SIM) is specified, a list of data sets is developed
by executing the SCAN, SELECT, and EXCLUDE statements, but the test
compression is not executed. Messages and reports are produced as if normal
processing were occurring, without the compression percentages and resulting
data savings being printed. This is useful in determining how big a TCF run you
have without going through the work of doing the test compressions.

PREEXIT=modname

Specifies the name of your user-coded preprocessing exit. The purpose of this
exit is to allow you to write custom code to select data sets for compression. This
is only necessary when TCF's selection process (SCAN, SELECT, and EXCLUDE
statements) does not give you enough power to select just the data sets you want
to select. Your exit receives control before catalog and format 1 DSCB
information is obtained for the data set. You can set a return code to force TCF to
bypass the data set. See the section "PREEXIT Pre-Processing Exit" in the chapter
"User Exits" for more information.

POSTEXIT=modname

Specifies the name of your user-coded postprocessing exit. The purpose of this
exit is to allow you to perform customized processing on the compression
statistical data that is available after the test compression is complete. Your exit
receives control after each data set is successfully test compressed. If you run
TCF in simulate mode, your exit will also receive control, but no compression
statistics will be available. See the section "PREEXIT Pre-Processing Exit" in the
chapter "User Exits" for more information.

PERCENT=100|n

Specifies the percent of records to be sampled during the test compression. Use
this parameter to reduce processing resource requirements for the TCF run. The
sampling occurs uniformly throughout the data set. For example, PERCENT=20
samples one in every five records.

Note: Whenever a value other than 100 is coded, the BYPASS, SKIP and
EXTRACT parameters are ignored.

BYPASS=0|n

Specifies the number of records to bypass at the start of a data set before test
compression is to begin.

6–8 BrightStor CA-Compress Data Compression Reference Guide

TCF Command Language

Note: It is possible to prevent any records from being selected for test
compression through values you specify on BYPASS and SKIP. If no records are
selected for test compression, message DCA0074 is issued and the data set is
flagged on the report with an error indication.

SKIP=0|n

Specifies that TCF is to process every nth record when selecting records for test
compression. For example, if SKIP=4 is specified, records 1, 2 and 3 are skipped
and the 4th record is test compressed. Then records 5, 6 and 7 are skipped and
the 8th record is test compressed.

This parameter works in concert with the BYPASS parameter. When BYPASS is
specified, the number of records specified on BYPASS= is bypassed before the
SKIP processing begins.

Note: It is possible to prevent any records from being selected for test
compression through values you specify on BYPASS and SKIP. If no records are
selected for test compression, message DCA0074 is issued and the data set is
flagged on the report with an error indication.

EXTRACT=0|n

Specifies the maximum number of records that are to be test compressed for each
data set. Once this number of records has been test compressed, TCF stops
processing records for that data set. EXTRACT=0 specifies that there is no limit.

The EXTRACT parameter only counts the records selected for test compression.
Records which are bypassed due to BYPASS= and skipped due to SKIP= are not
counted toward this total.

DSNFILL=.|x

Specifies the “fill character” to use on the TCF Report which helps you to visually
align the data set name with its compression results. The default value is a
period. See the TCF Report in this chapter for more information about this report.

SECURITY=NONE|RACF|TOPSEC|ACF2

Specifies the security system that you want TCF to receive authorization from in
order to obtain access to each data set.

Test Compression Facility 6–9

TCF Command Language

SCAN Statement
SCAN {CATALOG=catalogname|DSNAME={dsname|pattern}}

[,EXCCATS=(catnamelist)]
[,BEGINDSN=dsname]
[,PREEXIT=exitname]
[,POSTEXIT=exitname]

The SCAN statement is used to indicate the VSAM/ICF catalog or data set name
pattern to be scanned. One or more SET statements can be coded at the top of a
command structure. See the Command Structures in the Command Language in
this chapter for more information.

Either CATALOG or DSNAME must be specified for the SCAN statement to be
valid. It is not valid to specify both on the same SCAN statement.

Narrowing the list of data sets to be processed using the DSNAME parameter on
the SCAN statement usually requires less CPU time and less elapsed time than
using the CATALOG parameter on the SCAN statement in conjunction with a
SELECT statement. This is especially true if your VSAM or ICF catalogs are large.
For example, the following two command structures produce the same result, but
the second one is generally more efficient.

SCAN CATALOG=ICF.TESTCAT
SELECT DSNNAMES=(LABS.TJP./)

EXAMINE

produces the same result as...

SCAN DSNAME=LABS.TJP./
EXAMINE

Note: The assumption here is that all data sets named LABS.TJP./ are cataloged
to ICF.TESTCAT. For the second command structure to work properly, an alias
must exist in the master catalog for the high-level qualifier of the data set name.

6–10 BrightStor CA-Compress Data Compression Reference Guide

TCF Command Language

CATALOG=catalogname

Specifies the catalog(s) to be searched. If pattern characters are specified, then
more than one catalog can be selected on a single SCAN statement. See the
section “Command Language Syntax Rules” in this chapter for a complete
description of the use of the special characters. The CATALOG parameter and
the DSNAME parameter cannot be used together.

Note: If the value you specify for CATALOG= does not match any of the catalog
names in your installation, TCF will issue an error message and terminates all
commands in the command stream.

Note: AB/ is not the same as AB./ even if AB is a complete node. The former
requires much more memory and processing time than the latter because the end
of the node is not indicated, so that possibilities like ABX or ABY have to be
checked for, even if they turn out not to exist. AB./ permits TCF to limit the
catalog locate function to just that node.

DSNAME=dsname|pattern

Specifies the data set(s) to be processed. If pattern characters are specified, then
more than one data set can be selected on a single SCAN statement. For a
complete description of the use of the special characters, see the
BrightStor CA-Compress User Guide. The first qualifier of the name must not
contain any special characters.

The DSNAME parameter and the CATALOG parameter cannot be used together.

Generally, using DSNAME is more efficient than using CATALOG. The
CATALOG parameter searches an entire catalog. The DSNAME parameter
causes TCF to issue a superlocate to find just those data sets that match the
DSNAME parameter.

EXCCATS=catalogname

Specifies up to ten catalog names and/or catalog name patterns that are to be
excluded from processing. This parameter is only valid when CATALOG= is
specified. For example, the following SCAN statement scans all catalogs which
have IMS at the end of their name, but excludes those with TEST or TEMP
anywhere in their name.

SCAN CATALOG=!IMS,EXCCATS=(!TEST,!TEMP)

Test Compression Facility 6–11

TCF Command Language

BEGINDSN=dsname

Specifies the starting point in the collating (sorting) sequence of data set names
where you want TCF to begin processing data sets. This is useful when you want
to resume processing at the place where the TCF job was prematurely
terminated.

PREEXIT=modname

Specifies the name of your user-coded preprocessing exit. The purpose of this
exit is to allow you to write custom code to select data sets for compression. This
is only necessary when TCF's selection process (SCAN, SELECT, and EXCLUDE
statements) does not give you enough power to select just the data sets you want
to select. Your exit receives control before catalog and format 1 DSCB
information is obtained for the data set. You can set a return code to force TCF to
bypass the data set. See the section "PREEXIT Pre-Processing Exit" in the chapter
"User Exits" for more information.

The PREEXIT parameter coded on the SCAN statement overrides any PREEXIT
parameter coded on a previous SET statement.

POSTEXIT=modname

Specifies the name of your user-coded postprocessing exit. The purpose of this
exit is to allow you to perform customized processing on the compression
statistical data, which is available after the test compression, is complete. Your
exit receives control after each data set is successfully test compressed. If you run
TCF in simulate mode, your exit also receives control, but no compression
statistics are available. See the section “PREEXIT Pre-Processing Exit” in the
chapter "User Exits" for more information.

The POSTEXIT parameter coded on the SCAN statement overrides any
POSTEXIT parameter coded on a previous SET statement.

6–12 BrightStor CA-Compress Data Compression Reference Guide

TCF Command Language

SELECT Statement
SELECT [DSNAMES=(dsnamelist)]

[,VOLUMES=(volumelist)]
[,MBYTESRANGE=(0|n[,n])]
[,DSORG=ALL|VSAM|PS]

The SELECT statement is used to narrow the list of data sets to be processed by a
subsequent EXAMINE statement. For a data set to be selected for processing, all
tests specified on the SELECT statement must be met. If more than one SELECT
statement is coded before an EXAMINE statement, a data set can be selected by
any one of the SELECT statements to be processed by the EXAMINE statement.
Multiple SELECT statements are ORed together.

Note: If an EXCLUDE statement immediately precedes or follows any SELECT
statement, special rules apply. See the SELECT and EXCLUDE Processing Rules
in this chapter for a more information.

DSNAMES=dsname

Specifies the data set name(s) to be processed. Up to ten names or name patterns
can be specified on a single SELECT statement.

VOLUMES=volume

Specifies the volume(s) on which the data set(s) must reside in order to be
processed. Up to thirty (30) volumes or volume name patterns can be specified
on a single SELECT statement. For multi-volume data sets, the first (primary)
volume is used for this comparison.

MBYTESRANGE=(0|n[,n])

Specifies the size which the data set(s) must be in order to be processed. The data
set's size is the number of allocated tracks and cylinders converted into
megabytes, not the actual space usage. The first number of MBYTESRANGE
specifies the minimum size, which the data set must be in order to be included in
TCF processing. The second number specifies the maximum size.

MBYTESRANGE=(0,600)
MBYTESRANGE=(300,1200)
MBYTESRANGE=(,500) <--- Invalid

Note: If you code a maximum size, you must also code a minimum size, even if
the minimum is zero. Examples:

Test Compression Facility 6–13

TCF Command Language

DSORG=ALL|VSAM|PS

Specifies the data set organization which the data set(s) must have to be
processed.

EXCLUDE Statement
EXCLUDE [DSNAMES=(dsname list)]

[,VOLUMES=(volume list)]
[,MBYTESRANGE=(0|n[,n])]
[,DSORG=ALL|VSAM|PS]

The EXCLUDE statement is used to narrow the list of data sets, which are to be
processed by a subsequent, EXAMINE statement. In order for a data set to be
excluded from processing, all tests specified on the EXCLUDE statement must be
met. If more than one EXCLUDE statement is coded prior to an EXAMINE
statement, then a data set can be excluded from processing by any one of the
EXCLUDE statements. That is, multiple EXCLUDE statements are ORed
together.

Note: If an EXCLUDE statement immediately precedes or follows any SELECT
statement, special rules apply. See the SELECT and EXCLUDE Processing Rules
in this chapter for more information about these rules.

DSNAMES=dsname

Specifies the data set name(s) to be excluded from processing. Up to ten names or
name patterns can be specified on a single EXCLUDE statement.

VOLUMES=volume

Specifies the volume(s) on which the data set(s) must reside in order to be
excluded from processing. Up to thirty (30) volumes or volume name patterns
can be specified on a single EXCLUDE statement. For multi-volume data sets, the
first (primary) volume is used for this comparison.

MBYTESRANGE=(0|n[,n])

Specifies the size which the data set(s) must be in order to be excluded from
processing. The data set's size is the number of allocated tracks and cylinders
converted into megabytes, not the actual space usage. The first number of
MBYTESRANGE specifies the minimum size which the data set must be in order
to be excluded from TCF processing. The second number specifies the maximum
size.

MBYTESRANGE=(0,600)
MBYTESRANGE=(300,1200)
MBYTESRANGE=(,500) <--- Invalid

6–14 BrightStor CA-Compress Data Compression Reference Guide

TCF Command Language

Note: If you code a maximum size, you must also code a minimum size, even if
the minimum is zero. Examples:

DSORG=ALL|VSAM|PS

Specifies the data set organization which the data set(s) must have to be excluded
from processing.

SELECT and EXCLUDE Processing Rules

The SELECT and EXCLUDE statements can be coded any number of times for a
single EXAMINE statement. The following rules govern TCF's processing of
multiple SELECT and/or EXCLUDE statements for a single EXAMINE
statement:

� For each SELECT or EXCLUDE statement, all criteria must be met for the
statement to select or exclude the data set.

� If only SELECT statements are coded for a given EXAMINE statement, at
least one SELECT statement must be true for the data set to be selected for
TCF processing.

� If only EXCLUDE statements are coded for a given EXAMINE statement, at
least one EXCLUDE statement must be true for the data set to be excluded
from TCF processing.

� If both SELECT and EXCLUDE statements are coded for a given EXAMINE
statement, the following rules apply:

– If an EXCLUDE statement tests true, the data set is excluded whether a
SELECT statement tests true or not.

– If no EXCLUDE statements test true, at least one SELECT statement must
still test true for the data set to be processed.

EXAMINE Statement
EXAMINE [PERCENT=100|n]

[,BYPASS=0|n]
[,SKIP=0|n]
[,EXTRACT=0|n]

The EXAMINE statement initiates test compressions for the list of data sets
selected by the SCAN, SELECT, and EXCLUDE statements which precede it. All
records in all data sets are test compressed unless record sampling is specified by
the BYPASS, SKIP, and/or EXTRACT parameters on the EXAMINE statement
itself, or on any SET statement coded in the command stream.

Test Compression Facility 6–15

TCF Command Language

PERCENT=100|n

Specifies the percent of records to be sampled during the test compression. The
reason you would want to use this parameter is to reduce processing resource
requirements for the TCF run. The sampling occurs uniformly throughout the
data set. For example, PERCENT=20 samples one in every five records.

Note: Whenever a value other than 100 is coded, the BYPASS, SKIP and
EXTRACT parameters are ignored.

BYPASS=0|n

Specifies the number of records to bypass at the start of a data set before test
compression is to begin.

Note: It is possible to prevent any records from being selected for test
compression through values you specify on BYPASS and SKIP. If no records are
selected for test compression, message DCA0074 is issued and the data set is
flagged on the report with an error indication.

SKIP=0|n

Specifies that TCF is to process every nth record when selecting records for test
compression. For example, if SKIP=4 is specified, records 1, 2 and 3 are skipped
and the 4th record is test compressed. Then records 5, 6 and 7 are skipped and
the 8th record is test compressed.

This parameter works in concert with the BYPASS parameter. When BYPASS is
specified, the number of records specified on BYPASS= is bypassed before the
SKIP processing begins.

Note: It is possible to prevent any records from being selected for test
compression through values you specify on BYPASS and SKIP. If no records are
selected for test compression, message DCA0074 is issued and the data set is
flagged on the report with an error indication.

EXTRACT=0|n

Specifies the maximum number of records, which are to be test compressed for
each data set. After this number of records has been test compressed, TCF stops
processing records for that data set. EXTRACT=0 specifies that there is no limit.

The EXTRACT parameter only counts the records selected for test compression.
Records which are bypassed due to BYPASS= and skipped due to SKIP= are not
counted toward this total.

6–16 BrightStor CA-Compress Data Compression Reference Guide

TCF Report

TCF Report
The following figure shows the format of the TCF report.

Figure 6-1. TCF Report

Field Description and Contents

The following definitions apply to the fields found on the Test Compression
Facility Report:

DATA SET NAME—The name of the data set being analyzed.

NAME OF CATALOG—The name of the catalog for the data set.

VOLUME—The name of the volume for the data set.

ORGANIZATION—The Data Set Organization: KSDS, ESDS, or Physical
Sequential.

SAMPLED K-BYTES—The estimated number of kilobytes of data sampled.

AVERAGE REC LNTH—The estimated average record length of the records
sampled.

ALLOCATED TRACKS—The total number of tracks allocated to the data set
(not the number of tracks which contain data).

NUMBER OF RECORDS SAMPLED—The total number of records sampled.

Test Compression Facility 6–17

TCF Report

NUMBER OF RECORDS IN FILE—The estimated number of records in the file
sampled for VSAM. This field is not applicable for Physical Sequential data sets.

NON-COMPRS BYTES—The total number of non-compressible bytes.

KEYS—The number keys in the record.

KEYS OFFSET—The offset of the keys in the record.

KEYS LENGTH—The length of the keys in the record.

PATTERN—The SCAN or SELECT criteria used to find the record.

TYPE/TABLE COMPRESSION—The name of the compression technique that
was used.

PERCENT COMPRESSION—The estimated percentage of the file to be
compressed.

KBYTES OF DATA—The estimated number of kilobytes of data after
compression.

AVERAGE REC LNTH—The estimated average record length after
compression.

ALLOCATION TRACKS—The estimated number of allocated tracks after
compression.

SAVINGS TRACKS—The estimated number of tracks saved after compression.

CURRENT RDL STATEMENT—The current record description language.

6–18 BrightStor CA-Compress Data Compression Reference Guide

Chapter

7 VSAM Performance Enhancement

VPE, the VSAM Performance Enhancement, is a general performance enhancer
for VSAM, which operates independently from and compatibly with the other
components of BrightStor CA-Compress. In most situations, implementing VPE
dramatically reduces the wall clock run time of both batch jobs and online
transactions, which use VSAM data sets.

VPE
VPE does the following:

� Eliminates redundant I/Os through buffering.

� Uses memory above the 16 Mb line for any program. It is possible to have
files completely loaded into ESA's large virtual storage areas.

� Allows multiple files to share a single buffer pool (Local Shared Resources
(LSR)).

� Optimizes sequential buffers using Read Look-Aside and Deferred Write
(DFW) techniques for batch jobs.

� Uses Sequential Insert Strategy (SIS) and Deferred Write (DFW) techniques
for VSAM files used by CICS.

� Gives batch programs the advantage of VSAM Local Shared Resources (LSR)
using a proprietary technique.

It is not necessary to modify your application programs to use VPE. VPE
invocation is controlled in 2 ways, both external to the application:

� Control statements in the VPE Rules Table, and/or

� Special DD statements added to the application JCL.

VPE transparently gains control each time a VSAM data set is opened through an
interface program, which is installed and removed by a batch job. An IPL is not
required.

VPE provides reporting to give visibility to its benefits and to aid in tuning.

VSAM Performance Enhancement 7–1

VPE

How VPE Enhances VSAM Performance

The VPE installation program installs intercepts at OPEN and CLOSE. During
OPEN, VPE modifies the VSAM ACB in order to invoke the following techniques
to improve VSAM performance:

� Optimized I/O Buffering

� Deferred Write (DFW)

� Sequential Insert Strategy (SIS)

� Read Look-Aside

During CLOSE, VPE performs statistics acquisition and reporting.

Optimized I/O Buffering—VPE utilizes a proprietary technique for optimizing
VSAM I/O buffers. VPE creates large numbers of VSAM I/O buffers in virtual
storage above the 16 Mb line (when available) in order to dramatically reduce
I/O operations.

Deferred Write (DFW)—The performance of many applications suffers from the
result of accessing VSAM work files, which cannot be tuned to avoid CI and CA
splits. Deferred Write (DFW) allows splits to occur in virtual storage resulting in
decreased CPU and DASD utilization when splits occur.

Sequential Insert Strategy (SIS)—VPE invokes VSAM's Sequential Insert
Strategy (SIS) automatically and when appropriate when records are added to a
VSAM data set in order to improve performance. SIS reduces the number of CA
and CI splits when adding multiple records at one point because it splits the CI
or CA at the insertion point rather than in the middle of the CI or CA. Because
half empty CIs and CAs no longer proliferate, FREESPACE can be reduced
without increasing splits.

Read Look-Aside—VPE invokes VSAM's Read Look-Aside feature automatically
and when applicable. VSAM's Read Look-Aside feature reduces I/Os by looking
first in the existing I/O buffers for the CI being read before reading from disk.

VPE's Use of VSAM's Local Shared Resources (LSR)

VSAM Local Shared Resources (LSR) is inappropriate for some types of VSAM
file processing. VPE analyzes the files and processing modes specified by you
and modifies the environment accordingly. In certain cases, sequential
optimization is done. Algorithms determine the optimum number of buffers to
assign to gain the most read-ahead without wasting storage.

7–2 BrightStor CA-Compress Data Compression Reference Guide

Installing VPE

Reports Allow VPE Tuning

Statistics and performance reports are produced showing how files were
optimized and the percent of I/Os eliminated. These reports allow you to
customize the buffer specifications for a particular job to meet schedules and
balance resource consumption with run time improvements.

Installing VPE
When VPE is installed using the configuration, which comes on the install tape,
by default it does not operate on any of your VSAM files. You can safely install
VPE and have confidence that it does not operate on any files until you tell it to
do so.

All of the components of VPE are copied from the distribution tape and installed
on your machine when you perform the installation procedure described in the
BrightStor CA-Compress User Guide. There are no other installation steps necessary
for VPE.

Note: The installation procedure installs the VPE load modules in one of the
libraries in your LINKLIST. If you repeat the installation procedure (for example.
upgrade, reinstall, and so on), be sure that you do not end up with more than one
copy of VPE in your LINKLIST. If different releases are mixed, or if the VPE
modules are not all properly installed in a LINKLIST library, abends and other
problems can occur.

There are several steps required to implement VPE:

1. Copy the VPE data sets from the distribution tape to the appropriate places
on disk. This is the Installation step previously discussed.

2. Modify the parameters, which control the operation of VPE. These are the
VPE Rules Table and the VPE Control DD Statements (discussed below).

3. Activate the VPE OPEN interface program by running program VPEHINST.

4. Repeat steps 2 and 3 as required to refine your VPE implementation.

Activating and Deactivating VPE on Your System
The VPE Operating System interfaces are installed and removed by running the
VPEHINST program. The interface programs can be installed in an activated or
deactivated state. When deactivated, the programs are still installed in the
operating system but are nonfunctional.

VSAM Performance Enhancement 7–3

Activating and Deactivating VPE on Your System

The VPEHINST program typically runs as part of your IPL sequence to install the
VPE Operating System interfaces. The JCL required to run this program is as
follows:

//VPEJOB JOB ...
//STEP1 EXEC PGM=VPEHINST,
// PARM='ACTION=actionname[,RESTRICT=jobname']
//

The valid values for actionname are:

ACTION=STATUS—Directs VPEHINST to display the status of the VPE
Operating System interfaces on the system console.

ACTION=INSTALL—Directs VPEHINST to install the VPE Operating System
interfaces.

ACTION=INSTALLD—Directs VPEHINST to install the VPE Operating System
interfaces in deactivated state.

ACTION=ACTIVATE—Directs VPEHINST to activate the VPE Operating
System interfaces which are currently installed and deactivated.

ACTION=DEACTV—Directs VPEHINST to deactivate the VPE Operating
System interfaces which are currently installed and activated.

ACTION=DELETE—Directs VPEHINST to remove the VPE OPEN interface, but
to leave the VPE CLOSE interface installed and active. This is desirable when
there are jobs currently running with open VSAM data sets and you want the
VPE CLOSE interface to gather statistics on them when the CLOSE occurs.

ACTION=FORCDEL—Directs VPEHINST to immediately remove both the VPE
OPEN and CLOSE interfaces, even if statistics are lost on any currently open
VSAM data sets.

RESTRICT= jobname—Directs VPE to only operate on the job specified. This
restriction always takes precedence over the scope of operation specified in the
VPE Rules Table and/or the VPE Control DD statements. This parameter is
useful when you want to test VPE prior to implementing it for production use.
The following VPEHINST example installs the VPE Operating System interfaces
such that they only operate when the job name is 'TESTJOB1':

//VPEINST JOB ...
//STEP1 EXEC PGM=VPEHINST,
// PARM='ACTION=INSTALL,RESTRICT=TESTJOB1'
//

7–4 BrightStor CA-Compress Data Compression Reference Guide

VPE Operation

VPE Operation
The operation of VPE is controlled using two methods: Special DD statements in
your application JCL, and the VPE Rules Table. You can use either method or
both at the same time.

VPE Special Control DD Statements

VPE Control DD statements control the operation of VPE by their presence
within a jobstep. With one exception, these special DD statements do not specify
data sets. Rather, special DUMMY DD statements in the jobstep and artificial
“data set names” invoke VPE and control its operation. VPE does not open the
artificial “data set names” you specify on these DD statements. However, be
careful in coding the VPE Control DD statements which include the artificial
“data set names” because the data sets are allocated and deleted by job control.
These DD statements must be completely valid to job control even though they
are not opened and used to create a data set. You need to code them like the
following:

//ddname DD DSN=ddname1.ddname2.ddname3...ddnamen,
// UNIT=DISK,SPACE=(TRK,0)

Where:

Parameter Description

ddname The special VPE DDNAME

ddname1 The 1st application DDNAME you are referencing

ddname2 The 2nd application DDNAME you are referencing

ddnamen The nth application DDNAME you are referencing

Unlike the VPE Rules Table, Control DD statements can be coded by anyone who
wants VPE operation, without refreshing the VPE Operating System interfaces,
and without the involvement of the storage administrator. They are also much
more easily and quickly processed by VPE, allowing early exit from the SVC
intercept code.

In order for the Special Control DD statements to invoke and control VPE, the
ALLOW=YES parameter must be specified (or allowed to default) on the
SYSOPT statement in the VPE Rules Table. Conversely, the Special Control DD
statement functionality can be completely disabled by coding ALLOW=NO on
the SYSOPT statement in the VPE Rules Table.

Note: The VPEIGNR Control DD Statement always disables VPE in that step
even if ALLOW=NO is coded in the VPE Rules Table.

VSAM Performance Enhancement 7–5

VPE Operation

DD=VPEONALV—The VPEONALV DD statement activates VPE for all
appropriate VSAM files in the jobstep. In most cases, VPE can correctly select
those VSAM files to optimize completely automatically. You can see which files
were selected and how they were optimized by VPE on the Run Statistics Report.
The syntax of the VPEONALV DD statement is:

//VPEONALV DD DUMMY

DD=VPEBUFnn—The VPEBUF DD statement specifies the target buffer pool
size for the jobstep. The default is 4 Mb. The size of the buffer pool requested is
specified in Mb as the last two characters of the DDNAME. The syntax of the
VPEBUFnn DD statement is:

//VPEBUFnn DD DUMMY

For example, VPEBUF99 sets the target buffer pool size to 99 Mb. A value this
large eliminates most I/O.

DD=VPEIGNR—The VPEIGNR DD statement deactivates VPE for the jobstep.
This DD statement always functions and take precedence, even if ALLOW=NO
or PRECEDENCE=VPEDD is coded on the SYSOPT statement in the VPE Rules
Table. The syntax of the VPEIGNR DD statement is:

//VPEIGNR DD DUMMY

DD=VPEONnn—The VPEONnn DD statement directs VPE to optimize the files
referenced by the DDNAMEs specified as nodes of the DSNAME portion of the
DD statement. The “nn” portion of the DD statement is a number from “00”
through “09”, allowing up to 10 VPEONnn DD statements per jobstep. The
syntax of the VPEONnn DD statement is:

//VPEONnn DD DSN=ddname1.ddname2.ddname3...ddnamen,
// UNIT=DISK,SPACE=(TRK,0)

If your security system requires a specific value as the first qualifier of the data
set name, VPE allows you to code any value there without it matching a DD
statement coded in the job. As usual for a real DD statement, the artificial “data
set name” coded on this special DD statement must not exceed 44 characters in
length. The following example activates VPE for the data sets specified by DD
cards VSAM1 and VSAM2:

//VSAM1 DD DSN=MY.VSAM.FILE.ONE,DISP=SHR
//VSAM2 DD DSN=MY.VSAM.FILE.TWO,DISP=SHR
//VPEON00 DD DSN=VSAM1.VSAM2,
// UNIT=DISK,SPACE=(TRK,0)

DD=VPEONGnn—The VPEONG DD statement works the same as the
VPEONnn DD statement except that the DDNAMEs coded as nodes of the
artificial “data set name” can be DDNAME prefixes or wild cards. The syntax of
the VPEONGnn DD statements is:

//VPEONGnn DD DSN=ddname1.ddname2.ddname3...ddnamen,
// UNIT=DISK,SPACE=(TRK,0)

7–6 BrightStor CA-Compress Data Compression Reference Guide

VPE Operation

The following example activates VPE for the data sets specified by DD cards
VSAM1 and VSAM2 using the DDNAME prefix “VSAM”:

//VSAM1 DD DSN=MY.VSAM.FILE.ONE,DISP=SHR
//VSAM2 DD DSN=MY.VSAM.FILE.TWO,DISP=SHR
//VPEONG00 DD DSN=VSAM,
// UNIT=DISK,SPACE=(TRK,0)

DD=VPELSRPB—The VPELSRPB DD statement directs VPE to acquire LSR pool
space below the 16 Mb line. This is necessary in applications which are not
MVS/XA-ready and use LOCATE mode I/O. This DD statement always
functions and take precedence, even if ALLOW=NO or PRECEDENCE=RULES
is specified. The syntax of the VPELSRPB DD statement is:

//VPELSRPB DD DUMMY

DD=VPEVSTS—The VPEVSTS DD statement is a real SYSOUT DD statement
which VPE uses to print error messages and statistics. If it is not included in the
jobstep, then VPE dynamically allocates it. The syntax of the VPEVSTS DD
statement is as follows, where “n” is a valid SYSOUT class for your JES system:

//VPEVSTS DD SYSOUT=n

DD=VPEVRPT—The VPEVRPT DD statement directs VPE to produce the
VSAM Recommendations Report. SeeVPE Reports in this chapter for information
about the report. In addition, this statement generates warning messages that
reflect conditions relating to the IDCAMS definition of clusters or their current
status as observed in the catalog. The syntax of the VPEVRPT DD statement is:

//VPEVRPT DD DUMMY

DD=VPEWRKnn (CICS processing only)—The VPEWRKnn DD statement
directs VPE to turn on Deferred Write and Sequential Insert Strategy
performance enhancement techniques for the files referenced by the DDNAMEs
specified as nodes of the DSNAME portion of the DD statement. The “nn”
portion of the DD statement is a number from “00” through “09”, allowing up to
10 VPEWRKnn DD statements per jobstep. The syntax of the VPEWRKnn DD
statement is:

//VPEWRKnn DD DSN=ddname1.ddname2.ddname3...ddnamen,
// UNIT=DISK,SPACE=(TRK,0)

If your security system requires specific value as the first qualifier of the data set
name, VPE allows you to code any value there without it matching with a DD
statement coded in the job. As usual for a real DD statement, the artificial “data
set name” coded on this special DD statement must not exceed 44 characters in
length.

VSAM Performance Enhancement 7–7

VPE Operation

VPE Rules Table

Typically, the Storage Administrator maintains the VPE Rules Table. The rules
table statements are keyed into a simple text file using any text editor, such as the
SPF Editor (Option 2). The statements in this text file are converted to the internal
form VPE uses by running the VPERULB program. When VPE is activated
during system startup, the internal form of the VPE Rules Table is loaded into
Common System Area (CSA) memory, always above the 16 Mb line when it is
available.

The VPE Rules Table is deleted from CSA when VPE is uninstalled, so you must
run the VPERULB program each time you install VPE. The best way to
accomplish this is to include the VPERULB step in your startup PROC for VPE
and BrightStor CA-Compress.

Note: Running the VPERULB is necessary only when you use the VPE Rules
Table. If you only use the VPE Control DD Statements, it is not necessary to run
this program.

VPE Rules Table Syntax Rules
� Any line which starts with an asterisk (*) in column 1 is a comment line and

is ignored by the VPERULB program.

� A statement consists of the statement name followed by one or more
parameters. For example:

SYSOPT ALLOW=NO,PRECEDENCE=VPEDD

� The first non-comment line must be a SYSOPT or VSAM statement. The
SYSOPT and VSAM statements must appear before all RULE statements.

� A statement may span more than one line.

� A parameter may not span more than one line.

� A parameter followed by a blank terminates a statement. Characters
following the blank are considered comments.

� A parameter followed by a comma and a blank continues a statement onto
the next line. Characters following the blank are considered comments. The
parameters appearing on the next line can start in any column.

� Data set names can be enclosed in quotes or not. An asterisk (“*”) in a data
set name is a wild card character. It is not node-specific. For example, “A*T”
matches DSN=ABCTEST as well as DSN=ABC.NODE.TEST.

Note: A “node” is one portion of the data set name delimited by a period. The
nodes of ABC.NODE.TEST are “ABC”, “NODE”, and “TEST”.

7–8 BrightStor CA-Compress Data Compression Reference Guide

VPE Operation

VPE Rules Table Source Statements

There are three rule statements. Each statement can have one or more
parameters.

� SYSOPT—Sets global system options.

� VSAM—Sets default VSAM processing options.

� RULE—Sets processing options for individual files, jobs, and jobsteps.

The SYSOPT and VSAM statements specify the global and default processing
options for your system. The RULE statement specifies exceptions to these global
and default options. The flexibility to define your own custom global and default
processing options and then override them for specific files, jobs, and jobsteps
allows you to minimize the number of statements you need to compose in order
to implement VPE just the way you want.

SYSOPT Statement
SYSOPT [ALLOW=YES|NO]
 [,PRECEDENCE=VPEDD|RULES]

The SYSOPT statement sets global system options. There can be at most one
SYSOPT statement. It can be omitted if desired. These options set the default
values for your system. They are global in nature and apply to all jobs, steps, and
VSAM files unless overridden by more specific rules or special VPE DD cards.

ALLOW=YES|NO—Specifies whether the special VPE DD cards are active or
not. If ALLOW=YES is specified (the default), then the special VPE DD cards will
affect the operation of VPE. If ALLOW=NO is specified, then any special VPE
DD cards will not affect the operation of VPE. Exceptions: The VPEIGNR and
VPEVIGNR Control DD cards always disable VPE in that jobstep.

PRECEDENCE=VPEDD|RULES—Specifies which of the two VPE controlling
mechanisms takes precedence when there is a conflict between them. If
PRECEDENCE=VPEDD is specified (the default), then the special VPE DD
statements present in the application JCL takes precedence over any conflicting
rules in the VPE Rules Table. If PRECEDENCE=RULES is specified, then the
opposite is true. This parameter only makes sense if ALLOW=YES is specified.

VSAM Statement
 VSAM [POOL=n]
 [,BUFFRLOC=ABOVE|BELOW]
 [,SIS=NO|YES]
 [,VSAMREC=NO|YES]
 [,TGTBUF=nnM]
 [,MINBUF=nnM]
 [,MINRESV=nnnK]

VSAM Performance Enhancement 7–9

VPE Operation

The VSAM statement sets global system options. There can be at most one VSAM
statement. It can be omitted if you want. These options are used to tune VPE.
Like the SYSOPT statement, these options set the default values for your system.
They are global in nature and apply to all jobs, steps, and VSAM files unless
overridden by more specific rules or special VPE DD cards.

POOL=n—Specifies the LSR pool number which VPE is to use for I/O buffers.
The default value is 3.

This is the pool number and not the number of pools. VSAM supports 16 LSR
pools for data components and 16 for index components. Both sets of pools are
numbered 0 through 15. POOL= specifies which of these pairs of pools are to be
used.

BUFFRLOC=ABOVE|BELOW—Specifies from where the LSR buffer space is to
be obtained, above or below the 16 Mb line.

Note: In either case, a VPE RULE statement or special VPE DD statement can
override this global value for the data set(s) affected by them.

SIS=NO|YES—SIS=YES directs VPE to globally turn on VSAM's Sequential
Insert Strategy (SIS) for all applicable ACBs. SIS=NO (the default) directs VPE to
not do so.

VSAMREC=NO|YES—VSAMREC=YES directs VPE to globally produce the
VSAM Recommendations Report for every VSAM data set open. VSAMREC=NO
(the default) directs VPE to not do so.

Note: A VPE RULE statement or special VPE DD statement can override this
global value for the data set(s) affected by them.

TGTBUF=nnM—TGTBUF=nnM directs VPE to attempt to obtain the specified
number of megabytes for the VSAM I/O buffer. If VPE cannot obtain this much
space, it reduces the request until the space request succeeds, or until the
minimum buffer size is reached (see the MINBUF=nnM parameter below). The
default target buffer size is 9 Mb if the LSR buffers are above the 16 Mb line, and
4 Mb if they are below it.

MINBUF=nnM—MINBUF=nnM works in conjunction with the
ABENDNOMIN=YES parameter of a RULE statement. MINBUF=nnM specifies
the minimum VSAM I/O buffer size which is acceptable. The default is zero. If a
non-zero value is specified for MINBUF=nnM and ABENDNOMIN=YES is
specified, VPE abends the job step if the minimum buffer space cannot be
obtained.

7–10 BrightStor CA-Compress Data Compression Reference Guide

VPE Operation

MINRESV=nnnnK—MINRESV=nnnnK specifies the minimum amount of
memory to reserve below the 16 Mb line for the application to use. The default
setting is 300K. VPE does not enhance sequential file buffering if this amount of
memory is not available. When LSR buffers are being acquired below the 16 Mb
line, this value reduces the size of the VSAM I/O buffers if this amount of space
is not available.

RULE Statement
RULE (Scope of the rule)
 [INCLUDE|XCLUDE]
 [,JOB=cccccccc|STEP=cccccccc|DDNAME=cccccccc|DSN=cccccccc]
 (Job/Step specified parameters)
 [,POOL=n]
 [,TGTBUF=nnM]
 [,MINBUF=nnM]
 [,ABENDNOMIN=NO|YES]
 [,MINRESV=nnnK]
 (DDNAME/DSN specific parameters)
 [,POWERFACT=nn]
 [,SIS=NO|YES]
 [,DFW=NO|YES]
 [,FORCEMODE=SEQ|LSR]
 [,BUFND=nn]
 [,BUFNI=nn]
 [,BUFSP=nn]
 [,VSAMREC=NO|YES]

The RULE statement specifies VPE processing options for jobs, steps, and data
sets. The values specified on a RULE statement overrides the corresponding
values specified in the SYSOPT and VSAM statements.

INCLUDE|XCLUDE—Specifies whether this RULE statement is including jobs,
jobsteps, or data sets, or excluding them.

JOB=cccccccc|STEP=cccccccc|DDNAME=cccccccc| DSNAME=cccccccc—
Specifies the job name, step name, DDNAME, or DSNAME of the job, step, or
data set being included in or excluded from VPE processing using this RULE
statement. The values specified may contain one or more asterisks, which
represent wild card indicators. Note that for data set names that wild card
characters are not node-specific. For example: “A*T” matches DSN=ABCTEST
and DSN=ABC.NODE.TEST.

Note: A “node” is one portion of the data set name delimited by a period. The
nodes of ABC.NODE.TEST are “ABC”, “NODE”, and “TEST”.

JOB/STEP Specific Parameters—These parameters are valid only when the
RULE statement specifies JOB= or STEP=.

POOL=n—Specifies the LSR pool number which VPE is to use for I/O buffers for
the job(s), step(s), or data set(s) affected by this RULE statement. The default
value is 3.

VSAM Performance Enhancement 7–11

VPE Operation

This is the pool number and not the number of pools. VSAM supports 16 LSR
pools for data components and 16 for index components. Both sets of pools are
numbered 0 through 15. POOL= specifies which of these pairs of pools is to be
used. This value need not match the value specified on the POOL parameter of
the VSAM statement.

TGTBUF=nnM—TGTBUF=nnM directs VPE to attempt to obtain the specified
number of megabytes for the VSAM I/O buffer for the job(s), step(s), or data
set(s) affected by this RULE statement. If VPE cannot obtain this much space, it
reduces the request until the space request succeeds, or until the minimum buffer
size is reached (see the MINBUF=nnM parameter below). The default target
buffer size is 4 Mb.

Note: This parameter overrides the TGTBUF parameter on the VSAM statement.

MINBUF=nnM—MINBUF=nnM works in conjunction with the
ABENDNOMIN=YES parameter. MINBUF=nnM specifies the minimum VSAM
I/O buffer size which is acceptable for the job(s), step(s), or data set(s) affected by
this RULE statement. The default is zero. If a non-zero value is specified for
MINBUF=nnM and ABENDNOMIN=YES is specified, VPE abends the job step if
the minimum buffer space cannot be obtained.

ABENDNOMIN=NO|YES—ABENDNOMIN=YES directs VPE to abend the
jobstep when the minimum buffer space specified by MINBUF= cannot be
obtained. Use this parameter whenever it is unacceptable for a jobstep to run
without buffering. This parameter is especially useful in pre-MVS/XA
environments where region space is at a premium.

MINRESV=nnnnK—MINRESV=nnnnK specifies the minimum amount of
memory to reserve below the 16 Mb line for the application to use for the job(s),
step(s), or data set(s) affected by this RULE statement. The default setting is
300K. VPE does not enhance sequential file buffering if this amount of memory is
not available. When LSR buffers are being acquired below the 16 Mb line, this
value reduces the size of the VSAM I/O buffers if this amount of space is not
available.

VPE Tuning Tip: If you find that TGTBUF= (or even MINBUF=) requirements
cannot be met, reduce MINRESV=.

7–12 BrightStor CA-Compress Data Compression Reference Guide

VPE Operation

Data Set Specific Parameters

These parameters are valid only when the RULE statement specifies DDNAME=
or DSNAME=:

POWERFACT=nn—POWERFACT= directs VPE to obtain additional buffers for
the data set(s) specified on the RULE statement. This parameter provides a
means of “distributing” the available buffer space on a file-by-file basis.
POWERFACT= does not affect the size of the buffer pool (see TGTBUF=). The
default value is 1.

SIS=NO|YES—SIS= directs VPE to activate VSAM's Sequential Insert Strategy
for the data set(s) specified on the RULE statement. The default value is SIS=NO.

DFW=NO|YES—DFW= directs VPE to activate Deferred Write for the data
set(s) specified on the RULE statement. The default is DFW=NO.

Note: Setting SIS=YES and DFW=YES is equivalent to the CICSWRK control DD.

FORCEMODE=SEQ|LSR—FORCEMODE= directs VPE to force either
sequential performance enhancements or LSR optimization, if possible, for the
data set(s) specified on the RULE statement. There is no default for this
parameter. When FORCEMODE= is omitted, VPE uses an algorithm to
automatically select one type of optimization or the other.

BUFND=nn—BUFND= specifies the number of buffers VPE is to acquire for the
VSAM data component. This parameter overrides VPE's automatic
computations.

BUFNI=nn—BUFNI= specifies the number of buffers VPE is to acquire for the
VSAM index component. This parameter overrides VPE's automatic
computations.

BUFSP=nn—BUFSP= specifies the size of the VSAM buffer space. This
parameter overrides VPE's automatic computations.

VSAMREC=NO|YES—VSAMREC= directs VPE to produce the VSAM
Recommendations Report.

VSAM Performance Enhancement 7–13

VPE Operation

Usage Notes

VPE's Operating System interfaces receive control during VSAM OPEN and
CLOSE. During each VSAM file OPEN, VPE will process each RULE statement
looking for a match on job, step, or data set. The first RULE statement which
matches is the one, which is used for the VSAM file being opened. The sequence
of the RULE statements determines how your implementation of VPE performs.
Code the most specific RULE statements prior to the more general ones. For
example, data set specific RULE statements should appear before step specific
ones.

There is no limit placed on the number of RULE statements you can use.
However, the more RULE statements you code, the more processing is done by
VPE during VSAM file open time. For best results, keep the number of RULE
statements below 500.

Because the RULE statements can be coded to only affect certain jobs, steps, or
data sets, you can use them to safely experiment with different combinations of
parameter values. Then, when you have determined good parameter values,
which should apply to all data sets by default, you can move the parameter
settings to the SYSOPT and VSAM statements.

If the ACB for the VSAM file being opened specifies DIR processing and the file
has more than one record in it, VPE normally attempts to implement LSR
processing for the file. If you know that the file is actually processed sequentially,
FORCEMODE=SEQ forces VPE to implement sequential processing
enhancements for the file.

If the VSAM file being opened is empty or has only one record, or if the file's
ACB specifies SEQ processing, VPE normally attempts to implement sequential
processing enhancements for the file. If you know that the file is loaded by the
program and then updated in DIR mode, and if the update is quite large, specify
FORCEMODE=LSR to get the greater benefit of LSR enhancements for the file.

7–14 BrightStor CA-Compress Data Compression Reference Guide

Advanced Topics

Advanced Topics
The following topics are some special considerations you should make in certain
situations.

VPE Implementation Considerations

There are some VPE implementation considerations:

� Region Size

� Sequentially Accessed VSAM Files

� SHAREOPTION=4 Files

� MACRF=RLS files

� Checkpoint/Restart

� Job Swaps

Region Size

In most cases, VPE functions without region size changes. However, a larger
region enhances sequential access and may be required if LSR below the line is
used. VPE writes messages, which indicate if a larger region would enhance
buffering. If VPE does not ask for a larger region size, increasing the region does
not improve performance.

Note: In order to avoid making changes to each job's region size, you can set
IEALIMIT using an SMF exit.

LSR above the line can be used. The additional storage used below the line by
VPE for code and tables is minimal.

Region Computations

VPE's region computations involve the amount of space available below the line
at the time of first OPEN plus the following VPE parameters. These parameters
are set in the VPE Rules Table and/or by VPE Control DD statements:

� MINRESV—Specifies the minimum amount of memory to reserve below the
16 Mb line for the application to use. The default setting is 300K.

� TGTBUF— Directs VPE to attempt to obtain the specified number of
megabytes for the VSAM I/O buffers. This defaults to 9 Mb if the LSR
buffers are above the 16 Mb line, and to 4 Mb if they are below it.

VSAM Performance Enhancement 7–15

Advanced Topics

� MINBUF—Specifies the minimum VSAM I/O buffer size, which is
acceptable. The default value for MINBUF is zero bytes. MINBUF can be
used to generate error messages or to prevent jobs from running when
sufficient buffer space is not available.

VPE optimizes buffer space on files opened for load or sequential only access
(high RBA = 0 or 1 or ACB specifies sequential only access) using space from
below the line. VPE uses the following calculation to obtain a value for the upper
limit of size of sequential buffers to assign:

Case 1: LSR below the line:

LIMIT = (AVAIL REGION BELOW 16MB - LSR POOL SIZE / 2).

Case 2: LSR above the line:

LIMIT = (AVAIL REGION BELOW 16MB - MINRESRV)/2.

In Case 1, the LSR pool size is set to the smaller of TGTBUF or the available
region minus MINRESRV. In Case 2, the entire MINRESRV is available for the
application. In Case 1, a minimum of half of the region specified by MINRESRV
is available.

Note: This amount of region is not actually taken, but is merely a calculated
upper limit. A message is written if the minimum calculated LSR pool is not
available or if the sequential limit is reached prior to fully optimizing all files.

Sequentially Accessed VSAM Files

If a VSAM file has a high RBA of 0 (that is, the file is empty), has only one record
in it, or if the ACB opened for the file has sequential processing specified, VPE
assumes the file is in a load state. A buffer space target is created such that full
track read/write operations are performed for the data portion of the file and
each index level has an index buffer. It is possible some applications load these
files and then update them. If the update is large, use the VPE rule statement
FORCEMODE=LSR to speed these jobs up more than the default sequential
buffering.

SHAREOPTION=4 Files

This VSAM processing option allows multiple CPUs or address spaces to have
concurrent write access to a data set. Unless your environment requires this type
of access, it is generally inadvisable. Specifying SHAREOPTION=4 requires
VSAM to perform a physical I/O to refresh the buffer contents each time the
record is read or written, so buffering these files is useless and VSAM does not
permit LSR for such data sets. Review your cluster definitions to ensure that
SHAREOPTION=4 is still appropriate.

7–16 BrightStor CA-Compress Data Compression Reference Guide

Advanced Topics

MACRF=RLS (Record Level Sharing)

Record Level Sharing is incompatible with LSR and with BUFND, so VPE cannot
optimize such OPENs. VPE excludes these data sets from optimization.

Checkpoint/Restart

Checkpoint/Restart can be used with data sets when VPE is being used, but
processing restarts at the data set's high-used RBA, rather than the point where
the checkpoint was taken. This occurs because VPE uses LSR and this is how LSR
affects Checkpoint/Restart. If your application currently depends on
Checkpoint/Restart, become familiar with the difference in restart processing for
files using LSR before using VPE with that application. See IBM's Checkpoint /
Restart Guide, which contains information about restart processing for VSAM
files.

Job Swaps

VPE increases the amount of virtual storage used by your application. The
amount of virtual storage used in a job step is one of the criteria that the MVS
System Resource Manager uses to determine which job to swap out when there is
too much contention for memory resources. This function is a very important
part of MVS's ability to ensure optimum response for time-critical systems such
as CICS, as it provides the means to ensure that priority systems obtain the
memory resources they require for good response times.

Unfortunately, this same evaluation criteria works against optimum performance
during the off-prime hours when on-line systems are largely idle and the CPU is
doing more batch than interactive work. Under these circumstances, the bias in
favor of online systems and lower multiprogramming levels can lead to
bottlenecks and poor memory utilization. This typically results in high overall
CPU utilization, long elapsed run times, high swap counts for large batch jobs,
and relatively light I/O contention (because jobs spend a great deal of time
swapped out). Should you find that VPE has relieved your I/O bottleneck only to
create a memory problem, ask your MVS tuner about raising domain minimums
for your performance group. This can be done by command to test the effect and
made permanent using changes to IEAICSxx parameters. If you are still not
satisfied, contact Customer Support.

VSAM Performance Enhancement 7–17

Advanced Topics

Optimizing VSAM Performance by Adjusting VSAM Parameters

Although VPE automatically alleviates many of the performance problems,
which occur with poorly defined files, you need to correct flagrant violations and
problems. This is especially true for large or heavily accessed files. Poorly
defined files always have a negative effect on processing, even when VPE
reduces the effect through intelligent buffering. For example, a file with excessive
index levels requires excessive reads to access a record without VPE. With VPE,
the excessive reads are exchanged for excessive accesses to the core buffers. This
results in wasted CPU processing time accessing the buffers. Storage is still
wasted containing the buffers. In a memory constrained system, the I/O
overhead of paging and swapping may equal the cost of saved index reads.
There is no substitute for properly tuned systems.

The options specified when a VSAM data set is created have a great effect on
both its space usage and overall performance. For some options the defaults are
adequate, but for others they are a poor choice. VPE generates warning messages
for poorly defined files to aid in optimizing VPE performance. The discussion
which follows describes situations which cause VPE to produce these messages
and how you can correct the problems by adjusting parameters on the IDCAMS
Define Cluster statement. CISZ (Data Component CI Size)

VPE flags all data component CI sizes of less than 2048 bytes. On 3380s for all
releases of DFP, these small CI sizes result in space utilization of only 49 to 77
percent. Larger data component CI sizes result in space utilization of at least 80
percent. In addition, small data component CI sizes increase the number of
physical reads required to process a file sequentially. These small sizes are
generally a holdover from 3330 disk devices and channels with speeds of 1.5 Mb-
per-second.

CISZ (Data Component CI Size)

VPE flags all data component CI sizes of less than 2048 bytes. On 3380s for all
releases of DFP, these small CI sizes result in space utilization of only 49 to 77
percent. Larger data component CI sizes result in space utilization of at least 80
percent. In addition, small data component CI sizes increase the number of
physical reads required to process a file sequentially. These small sizes are
generally a holdover from 3330 disk devices and channels with speeds of 1.5 Mb-
per-second.

7–18 BrightStor CA-Compress Data Compression Reference Guide

Advanced Topics

SPACE (Data Component CA Size)

Data component CA size is controlled by the space allocation specified for the
data component. Generally, it is one cylinder, but it can be as small as one track.
VSAM sets the data component CA size to the lesser of the primary allocation,
the secondary allocation, and one cylinder. VSAM creates sequence sets such that
they hold one compressed key per data component CI in a data component CA.
This means that the data component CA size controls the number of index
records VSAM retrieves on one read (one index component CI) as well as the
number of index levels that are required to point to the sequence sets. Because
obtaining more index records per read benefits both random and sequentially
accessed files, it is generally best to use cylinder CAs. This means all but very
small files should be allocated in cylinders.

An exception to the above guideline is files that have high browse update activity
in CICS. In this case, a small data component CA size may reduce the number of
browse enqueue locks because the number of index entries in the sequence set is
smaller. Therefore, fewer entries are enqueued by browse. However, to achieve
optimal performance, replace the browse operations with “Get Key Greater than
or Equal.” This replacement eliminates the sequence set enqueue.

CISZ (Index Component CI Size)

The lowest level of the index is called the sequence set. It contains one pointer
(compressed key) for each data component CI in a data component CA. This
means the index component CI size must be at a minimum equal to the
compressed key size times the number of data component CIs in a data
component CA plus the overhead.

The index set is all levels of the index above the sequence set. The highest level of
the index set must fit in a index component CI. So, if the total number of data
component CAs is greater than the number of keys which can be held in one
index component CI, the index has more than one index level. When the indexes
are not in buffers, a physical read must be performed for each index level to
access a data record. Without an explicit definition for the index component CI
size, VSAM automatically selects a CI size based on assumptions it makes about
key compression. Frequently, these assumptions over-estimate the amount of
compression present. Therefore, VSAM creates an index component CI that is too
small to address all data component CIs within one CA. Because the remaining
data component CIs cannot be used, space is wasted. You can correct this
problem by increasing the index component CI size to reduce the amount of
space used by the file.

VSAM Performance Enhancement 7–19

Advanced Topics

In addition to wasting space, small index component CI sizes may cause VSAM
to add additional levels to the index set. The additional levels increase the
number of I/Os required to locate data. LSR reduces the impact of this problem
by keeping index component CIs in storage. However, LSR processing is not
appropriate for certain applications, specifically SHAREOPTIONS=4 and
sequential processing. In these cases, the number of physical I/Os required to
locate your data can have a great impact on performance. As a rule of thumb,
files should have no more than one index level per 500 cylinders of data, plus one
each for the base index and sequence set. VPE issues a message informing you
how many index levels the file has when this is exceeded.

When in doubt, it is better to have an index component CI that is too large than
one that is too small. For most files, index space is a small fraction of data space.
If the index component CI is too large, little space is wasted. If it is too small,
major overhead is added to the file access and a significant amount of data space
may be wasted.

The factors to be considered when selecting an index component CI size are:

� The key size and compression.

� The data component CI size (index and data component CI sizes should be
different to avoid buffer contention).

� The number of data component CIs per CA.

� The data component CA size.

� The overall file size (total number of CAs).

Because an assessment of actual key compression is not possible without
scanning the full sequence set and the penalty for undersized index component
CIs is large, VPE issues a warning when the index component CI size specified is
less than a factor of the number of CIs per CA multiplied by the full key length.
VPE uses factors similar to those internal to VSAM, but more conservative. If you
receive this message, go to the next higher CI size or use IDCAMS to examine the
indexes to determine if any are actually full. If the index change has a positive
effect, increase it again until no further change takes place. If it has no effect,
ignore any further occurrences of this message. Remember there are NO
circumstances under which having an index component CI one size too large
causes any performance degradation.

7–20 BrightStor CA-Compress Data Compression Reference Guide

Advanced Topics

SHAREOPTIONS

Specifying SHAREOPTIONS=4 (SHAREOPTIONS=(n,4) or
SHAREOPTIONS=(4,n)) informs VSAM that the file is being used by multiple
systems. This forces a physical READ or WRITE every time a record is accessed,
so no benefit is achieved by using LSR or extra buffers. VSAM fails the OPEN if
SHAREOPTIONS=4 and LSR are both specified. So, if VPE encounters this
option, it excludes this file in the buffer pool and issues a warning. Do not use
SHAREOPTIONS=4 unless you need it.

Note: If a cluster has SHAREOPTIONS=(n,4) specified, any of its alternate
indexes that were created with the option of UPGRADE are assumed to be
SHAREOPTIONS=(n,4) even if they were not defined that way. The same is true
for a cluster that is not SHAREOPTIONS=(n,4), if any one of its upgrade AIXs
were created with SHAREOPTIONS=(n,4).

IMBED

IMBED causes VSAM to place the sequence set in the first track of each CA and
to replicate the sequence set around the track until it is full. This option normally
allows one seek to satisfy the read for both the sequence set and the data it
references, but it increases the amount of space required to contain the file by a
minimum of about seven percent and reduces the file integrity. It can be up to 50
percent, if the sub-cylinder allocations are used. The latter occurs because VSAM
must now update the indexes multiple times.

A typical problem with IMBED is records that are sometimes not found. This
occurs because not all of the sequence sets on the track are updated. This only
happens when the file is updated from two regions at once without the use of
SHAREOPTIONS=4; but this is not uncommon, as few shops can live with the
poor performance of SHAREOPTIONS=4. The use of IMBED is not
recommended. If performance dictates, place the index and data portions of the
cluster on separate packs. VPE warns you if IMBED is specified for a file that is
larger than 200 cylinders.

WRITECHECK

This option causes VSAM to read each record written. It is of no use with modern
DASD. VPE warns you if your file is defined with WRITECHECK.

VSAM Performance Enhancement 7–21

Advanced Topics

REPLICATE

This option causes index records to be replicated around the track using IMBED
for sequence sets. If sufficient buffers exist to hold the entire index set in memory
(which is generally the case), no performance benefit is gained from REPLICATE.
This option wastes DASD and invites problems. VPE warns you if your file is
defined with REPLICATE.

SPEED

SPEED is a performance option that helps reduce the amount of time it takes to
load a VSAM file. It has no hidden cost, so it is a good idea to use it. If you do not
specify SPEED, RECOVERY is automatically used. RECOVERY preformats the
entire data set allowing load jobs to restart. VPE issues a message if the cluster
was defined without SPEED.

FREESPACE

This parameter reserves space in either the CI or CA at load time so that new
records or new CIs are usually written without splits taking place. FREESPACE
works when file updates are non-clustered in a key range. It can work with
clustered updates, but the space is allocated to the entire file to help one CI or CA
and thus it is wasted. If many updates/additions take place with similar keys,
large amounts of free space are needed to prevent splits. In fact, the maximum
value (100,100), which puts one record in a CI and one CI in a CA, cannot be
enough.

CI splits occur when not enough free space is available to contain a record, which
is being inserted. Without Sequential Insert Strategy (SIS), VSAM must move half
the data in the CI to a new CI before continuing with the insert operation. These
splits result in CPU and I/O overhead and should be avoided. In addition,
logically ascending data is no longer physically adjacent so any sequential access
to the file is slowed down.

If CI splits occur over the period of several days, the file needs to be reorganized.
If they occur in a period of a day or less, increase the CI FREESPACE parameter
and reorganize the file. CI free space is a percentage of the CI size and must be
large enough to insert a whole record.

7–22 BrightStor CA-Compress Data Compression Reference Guide

Advanced Topics

Whereas CI splits represent minimal to moderate overhead, the amount of
processing incurred by a CA split is much greater. A CA split occurs when there
is not enough room to contain the new CI created during a CI split. When this
happens, VSAM must create a new control area, move 50 percent of the data
from the old CA to the new one, update the sequence set, update part of the
index set, and then continue with the original CI split. With Sequential Insert
Strategy (SIS), this process is similar except the old CA is split at the CI being
split instead of in the middle. With cylinder CAs (no SIS), both half a cylinder of
data is moved and a minimum of one level of index is located and updated
before the original CI split can occur. Like CI splits, CA splits call for
reorganizations and FREESPACE.

As mentioned above, CA splits are of greater concern than CI splits. Generally it
is a matter of how much free space you can afford to allocate to a file. Putting free
space in a file increases the number of data CIs and CAs, thereby increasing
index CI size requirements and levels as well as the file's space allocation. Splits
are probably the number one cause of poor CICS response time. All the queuing
that takes place while CICS is non-dispatchable uses a lot of CPU time, requires
additional I/O, and makes CICS less responsive. Although CICS puts a file in
LSR, it does not activate Deferred Write (DFR), meaning CICS waits on physical
I/Os during splits. VPE can help by turning on Sequential Insert Strategy (SIS)
and Deferred Write (DFW) for files that CICS has put into LSR as well as to
identify which files contain splits.

A split in an index component CI or CA indicates the index component CI is
undersized. In addition to increasing the index CI size, you can give the index
component its own FREESPACE.

Multiple Extents

Multiple extents occur either when the file needs more space than is available in
the primary allocation or when the pack your file is on is so fragmented that
multiple extents are required to obtain the space you ask for in the primary
allocation. Both of these conditions may increase seek time. Correct this problem
by increasing the size of the primary allocation, or if fragmentation is the
problem reorganize the pack. VPE issues a warning when a file contains multiple
extents.

VSAM Performance Enhancement 7–23

Advanced Topics

Tuning VPE's Buffer Size

When you first run VPE on a file, start with the default buffer size and review the
performance statistics generated in the VSAM Recommendation Report to
determine how effective that size is for your application. Run the job several
times, with different buffer sizes. While you are incrementally decreasing the
buffer size, you will eventually reach the point where a continued decrease of the
buffer pool size for a particular job will cause the percent of I/O requests, which
are being satisfied from the buffer pool to decrease dramatically. For optimum
performance, don't go below this value. While you are incrementally increasing
the buffer size, a point will be reached where adding more buffer space does very
little for the look-aside ratio. For most applications, a look-aside ratio as high as
90 percent can be obtained on all files. Some applications will get even higher
ratios with the addition of more buffers, but beyond the 90 percent point the
decrease in run-time will usually be small. In a memory-constrained
environment, the use of too large a value may cause a performance decrease, due
to additional paging in the system.

Buffer size changes affect the number of times your job is swapped out. When it
is out, it is not doing anything. If swapping is not going up and run times are still
out of proportion with CPU consumption, check the following:

� Excessive Program Loads—Correct excessive loads from STEPLIB or JOBLIB
by canceling the JOB after it has run a while and inspecting the use count in
the CDEs.

� Excessive OPENS or CLOSES—Correct this problem by performing a GTF
trace. This trace identifies both OPEN/CLOSE and LOAD problems.

� Enqueue Conflicts—Examine your dumps or use a third party program to
identify enqueue problems.

Assembly Programming Limitations

VPE looks out for the use of certain assembly programming techniques which are
not supported by VSAM when LSR pools are in use. VPE excludes such files
from VPE's optimizations because VPE uses LSR pools. The affected assembly
programming techniques are:

� CBIC—Control Blocks In Common (specified on the ACB macro).

� ICI—Improved Control Interval access (specified on the ACB macro).

� UBF—User Buffering (specified on the ACB macro).

7–24 BrightStor CA-Compress Data Compression Reference Guide

VPE Reports

VPE Reports
Examples of VPE reports are displayed for the following:

� VPE Initialization and Setup Statistics

� VSAM Recommendation Report

� Performance Statistics Report

VPE Initialization and Setup Statistics

Figure 7-1. VPE Initialization Report

VSAM Recommendation Report

Figure 7-2. VSAM Recommendation Report

VSAM Performance Enhancement 7–25

VPE Reports

Performance Statistics Report

Figure 7-3. Performance Statistics Report

7–26 BrightStor CA-Compress Data Compression Reference Guide

Chapter

8 Exclusion Facility

Excluding certain jobs, modules, and programs from BrightStor CA-Compress
processing improves performance by reducing both I/O and CPU time. More
importantly, exclusion can prevent programs from compressing already
compressed data.

The BrightStor CA-Compress Exclusion Facility is controlled by a sequential data
set or a member of a PDS that is pointed to by the SYSIN DD of the
BrightStor CA-Compress started task. The DCB attributes of the file are
LRECL=80, RECFM=FB, and any BLKSIZE equal to a multiple of 80. It contains
definition statements for the BrightStor CA-Compress address space. The
statements include eight table names and their associated record entries.

The tables include the names of jobs, programs, and modules for which
BrightStor CA-Compress processing should not take place. If a job, program, or
module name is in these tables, GET for a Compress data set retrieves
compressed data, and a PUT stores the record as is, without compression.

Exclusion for VSAM Backup/Restore Processing
You can use the EXCLUDE-JOB, -PGM, and -MOD tables to prevent
BACKUP/RESTORE facilities from doing compression or expansion. The backup
functions of FAVER/MVS, DFDSS and SAMS:Disk retrieve data from a
compressed cluster without expansion and store data compressed. However,
their restore functions use VSAM record management to store the compressed
backup data back into the cluster at restore time. BrightStor CA-Compress is
invoked when the VSAM cluster is opened for output. Unless the restore
functions of such products are excluded, compressed data from backups is
compressed again.

Exclusion Facility 8–1

Exclusion for Physical Sequential Transparency Processing

Exclusion for Physical Sequential Transparency Processing
For similar reasons, the EXCLUDE-JOB-PST, EXCLUDE-PGM-PST, and
EXCLUDE-MOD-PST tables prevent compression and expansion of PST data
sets. For instance, it is not uncommon to sort or select certain compressed records
based on uncompressed fields, without actually expanding them. In such cases,
processing uncompressed not only adds overhead, but forces SORT control cards
to change.

Because the exclusion facility causes compressed data sets to be processed
without BrightStor CA-Compress, be sure when coding DCB parameters that you
specify the compressed attributes. Otherwise, BrightStor CA-Compress does not
realize that the data set is compressed, and other errors may occur.

Exclusion to Prevent Control-Interval (CI) Processing and
EXCP

BrightStor CA-Compress does not expand or compress data when invoked by a
program using EXCP or Control-Interval (CI) processing. The tables *EXCLUDE-
PGM-SORT and *EXCLUDE-MOD-SORT force programs performing CI access,
such as SYNCSORT, to use record management access so that the data is
compressed and expanded correctly. The Physical Sequential Transparency
reallocates PST data sets before giving control to SORT and other programs, in
order to make them use BSAM instead of EXCP. This enables
BrightStor CA-Compress to compress and expand logical records.

The Exclude File
The BrightStor CA-Compress Exclude File contains three types of information:
table statements, record entries, and comment statements.

Table Statements—A table statement is specified by the prefix character “*” in
the column 1, followed by a table name. The table names can be specified only
once and must be syntactically correct, but can be in any order. The names and
functions of the statements are:

� EXCLUDE-JOB — excludes jobnames from VSAM compression and
expansion.

� EXCLUDE-MOD — excludes VSAM compression and expansion for
subroutine modules called from a processing program.

� EXCLUDE-PGM — excludes VSAM compression and expansion for
programs invoked by an EXEC statement within a job or proc step.

8–2 BrightStor CA-Compress Data Compression Reference Guide

The Exclude File

� EXCLUDE-MOD-SORT — force programs performing CI access to use
record management access.

� EXCLUDE-PGM-SORT — force programs performing CI access to use record
management access.

� EXCLUDE-JOB-PST — excludes jobnames from transparent physical
sequential compression and expansion.

� EXCLUDE-MOD-PST — excludes transparent physical sequential
compression and expansion for subroutine modules called from a processing
program.

� EXCLUDE-PGM-PST — excludes transparent physical sequential
compression and expansion for programs invoked by an EXEC statement
within a job or proc step.

Records—A record entry follows a table statement, and must begin in column 1.

Comment—A comment statement is the character “*” in the first column,
followed by a blank.

The following is a sample of the default BrightStor CA-Compress Exclude File:

Figure 8-1. Exclude File

Exclusion Facility 8–3

Expiration Date of 86060

Expiration Date of 86060
Another way to use the Exclusion Feature is by specifying the EXPDT parameter
(or the EXPDT subparameter of LABEL) on the DD statement with a value of
86060. When EXPDT=86060 is specified, BrightStor CA-Compress excludes the
data set from compression or expansion because BrightStor CA-Compress is not
invoked. An example is shown below:

// DDNAME DD DSN=compressed.data set.name,DISP=SHR,
// LABEL=EXPDT=86060

Exclusion by Ddname @ZSM@XCL
Note: Ddname exclusion requires PTF LO97620.

Because EXPDT=86060 may conflict with your tape management system, or
because EXPDT=86060 may be inconvenient for other reasons, CA-Compress
now supports exclusion by user-specified ddname, in one of two formats.

To invoke exclusion for all compressed datasets in the step, specify:

//@ZSM@XCL DD DUMMY

To specify exclusion of specific ddnames, specify them in the nodes of the DSN
as follows. You may exclude as many ddnames as you can fit in the 44-byte DSN:

//@ZSM@XCL DD UNIT=SYSALLDA,SPACE=(TRK,0),DSN=hlq.ddn1.ddn2

For example, to exclude ddnames SYSUT1 and SYSUT2, where MYTSOID is a
valid high level qualifier:

//@ZSM@XCL DD UNIT=SYSALLDA,SPACE=(TRK,0),
// DSN=MYTSOID.SYSUT1.SYSUT2

Invoking Exclusion in Assembler Macros
It may be necessary to force exclusion regardless of user JCL or because you need
the compressed data set attributes or the compressed data. You can disable
BrightStor CA-Compress processing at OPEN, CLOSE, OBTAIN, RDJFCB, or
catalog management by loading X’DEDFADE1’ into Register 15 before issuing
the macro.

It is your responsibility to use this facility consistently. Be careful to exclude both
OPEN and CLOSE or neither, and be sure to treat RDJFCB and OPEN TYPE=J
consistently. Failure to observe this restriction leads to abends and other
unpredictable results.

8–4 BrightStor CA-Compress Data Compression Reference Guide

mailto://@ZSM@XCL

Chapter

9 Safeguards

Compressed data should not be accessed by application programs when
BrightStor CA-Compress is not active, because user programs will experience
abends or other problems due to unexpected data. FDTs created by Prepass
before PTF SS05300, because they do not use the ICB, may corrupt a data set on
output. Due to IBM changes to SMS, Safeguards cannot be supported for SMS
datasets, so VSAM data sets should not be defined to SMS if they use a FDT
created by Prepass before PTF SS05300.

This exposure is not great for sequential data sets, principally because update in
place is not supported, and so access for update while BrightStor CA-Compress
is not up simply results in a valid uncompressed data set. Support for sequential
data sets using the SUBSYS parameter offers no protection, but customers seldom
experience this problem, especially if they use FDTs created by the IUI or by
Prepass with PTF SS05300, which enable BrightStor CA-Compress to distinguish
between compressed and uncompressed records if both are present.

For VSAM, however, update in place is commonplace. In contrast to the physical
sequential case, keys exist and may not be in the same physical location on the
record in compressed and uncompressed records. For these reasons,
BrightStor CA-Compress includes the Safeguards facility to protect non-SMS
VSAM data sets defined under the BrightStor CA-Compress Transparency.

BrightStor CA-Compress Safeguards protect compressed VSAM data sets from
inadvertent access under two conditions:

� When the BrightStor CA-Compress subsystem is not active.

� When the BrightStor CA-Compress subsystem is being abnormally
terminated or shut down by request. If any compressed data sets are being
accessed at shutdown time of the BrightStor CA-Compress subsystem, a
warning message is issued.

Safeguards 9–1

How Safeguards Protect Data

How Safeguards Protect Data
Safeguards tells the started task to add a candidate volume to a
BrightStor CA-Compress VSAM data set the first time that the data set is
accessed when BrightStor CA-Compress is running. If it is a non-SMS data set,
the started task adds the candidate volume if it is not present. This candidate
volume prevents the allocation of the compressed data set when the
BrightStor CA-Compress subsystem is not active. When BrightStor CA-Compress
is active, it monitors all VSAM Catalog Management requests (SVC 26 calls) and
removes the candidate volume so the job can allocate, open and access the data
set. Because this is not done if the started task is not running, allocation fails at
data set allocation time with the following messages to the operator:

Figure 9-1. ICF Request Failed

The message states that the BrightStor CA-Compress volume (volume serial
“@ZSAM@”) is not available to the system. The operator must respond to this
message by canceling the job and rerunning it after the BrightStor CA-Compress
subsystem is activated.

Safeguards Detailed Description

To add safeguards to non-SMS VSAM data sets, BrightStor CA-Compress adds a
special candidate volume to the catalog record for the data component of the
data set. This volume has a serial number of “@ZSAM@”. This serial number in
the catalog is not apparent to users as long as the BrightStor CA-Compress
subsystem is active. For example, an IDCAMS LISTCAT of the cluster does NOT
show this volume in the listing when BrightStor CA-Compress is active. Nor do
allocations of multiple volumes attempt to use this volume when
BrightStor CA-Compress is active.

9–2 BrightStor CA-Compress Data Compression Reference Guide

How Safeguards Protect Data

The implications of BrightStor CA-Compress adding Safeguards in this manner
are as follows:

� After a data set is defined to BrightStor CA-Compress, the Safeguards are
added to the data set the next time that it is accessed. The Safeguards are
added without user involvement. When Safeguards are added,
BrightStor CA-Compress writes a message to the operator, and it writes a
message to SYSPRINT unless the started task specifies NOSGPRT to
PGM=ZSUR through the PARM parameter.

� After the Safeguards are added, the data set can only be accessed when
BrightStor CA-Compress is active on the CPU that is attempting the access.
Special care must be taken when sharing an ICF catalog that contains
BrightStor CA-Compress data sets across CPUs. BrightStor CA-Compress
must be active on the CPU attempting access to the data set or the access
fails.

Safeguards Utility

The Safeguards Utility is designed to provide a simple, easy way of adding or
removing the BrightStor CA-Compress Safeguards. The Utility allows you to
specify the BrightStor CA-Compress Control File that contains the names of the
VSAM data sets under BrightStor CA-Compress's control and provides control
statements that contain either a specific data set name or a pattern data set name
to be used. The utility is useful when converting from an earlier release because it
adds whatever Safeguards are missing from a data set. It can also be used to
remove the Safeguards if it is necessary to run an earlier version of
BrightStor CA-Compress that does not support them.

When the Safeguards Utility is invoked, it reads the SYSIN data set. The input
can be either a pattern name or a specific data set name. If a specific data set is
named, the Utility attempts to add or remove the Safeguards information from
that data set without regard for its existence within the BrightStor CA-Compress
Control File allocated to the VSAMFILE DD statement. If a pattern is named, it is
stored for later processing. When the end of input on SYSIN occurs, the utility
reads the VSAMFILE data set if there were any pattern data set names, trying to
match each name from VSAMFILE with any of the patterns. If the match is
successful, the Utility attempts to add or remove the Safeguards.

The JCL for the Safeguards Utility is in YOUR.SAMS.INSTALL(SGUJCL).

� The PARM can be either ON to add Safeguards to the selected data sets or
OFF to remove them from the selected data sets.

� STEPLIB defines the library that contains the BrightStor CA-Compress load
modules.

� VSAMFILE defines the BrightStor CA-Compress Control File that contains
the names of the data sets you wish to process.

Safeguards 9–3

How Safeguards Protect Data

� The control statements are fixed format, with the data set or pattern name
starting in column 1. A pattern name contains one or more special characters
(“/”, “?”, “*” or “!”). For more information about these characters, see the
BrightStor CA-Compress User Guide. A discrete data set name does not contain
any special characters. To process all of the data sets in the VSAMFILE data
set, use a pattern of / in column 1.

9–4 BrightStor CA-Compress Data Compression Reference Guide

Chapter

10 Physical Sequential Transparency

The Physical Sequential Transparency (PST) supports compression and
expansion of Physical Sequential data sets without application program or JCL
changes. As in the case of VSAM data sets, the user defines selected PS data sets
or patterns in the BrightStor CA-Compress Control File using the Interactive User
Interface or Control File Maintenance Utility. BrightStor CA-Compress
automatically intercepts activity against appropriate data sets in order to write
compressed data to the compressed data sets and return uncompressed data
from them to application programs.

Full Transparency to Application Programs
Support for application programs is fully transparent to the user. No special
exits, parameters or interfaces are required for SORT and other utilities. Unlike
the SUBSYS implementation, PST does not require you to code DCB parameters
in the JCL unless the application requires it without BrightStor CA-Compress.
GDGs, tape processing, and concatenation of PST and uncompressed data sets
are fully supported as long as the processing is sequential using QSAM or BSAM.
BrightStor CA-Compress causes SORT, which ordinarily uses EXCP, to consider
PST data sets to be SYSIN/SYSOUT or SUBSYS data sets and to process them
using BSAM.

Full Interactive User Interface and Control File Maintenance
Utility

The Interactive User Interface (IUI) now analyzes and implements Physical
Sequential data sets transparently through the Control File, as it has always done
for VSAM. The IUI is able to recognize data sets compressed using SUBSYS and
in most cases can return the compression algorithm to the user, skipping analysis
and compression and implementing the data set as already compressed.

The Control File Maintenance Utility (CFMU) supports the PST by means of two
new Control File record types, PSDSNAME and PSPATTERN, with a number of
new keyword parameters on the ADD and ALTER control statements to supply
DCB and other information needed to process sequential data sets.

Physical Sequential Transparency 10–1

Compatibility with Previous Releases and the SUBSYS JCL Parameter

Compatibility with Previous Releases and the SUBSYS JCL
Parameter

Data sets compressed with the transparency are completely compatible with data
sets previously compressed using the SUBSYS parameter - byte for byte the
compressed format is identical. Data sets already compressed with the SUBSYS
parameter can be defined as already compressed and can be read and written
immediately with no change.

Control File records and cross memory services to support the PST are similar to
but completely distinct from those which support the VSAM Transparency.
Older releases of BrightStor CA-Compress running on different systems can even
share the same Control File compatibly with Release 5.1, except that the earlier
release cannot recognize the PST data sets as compressed. Data sets defined to
the PST can be uncompressed by the previous release using the SUBSYS
parameter, which provides backward compatibility.

Implementation Considerations
Implementing a Physical Sequential data set commonly involves analyzing the
data set, choosing a compression method and defining it to the Control File, just
as in the case of the VSAM Transparency, with certain minor differences. You can
run the CFMU yourself to define the data set, but the IUI analyzes the data set
and can normally tell whether it is already compressed or not, and with which
algorithm, which helps you to insure that the data set is defined correctly.

Deferred and Immediate Implementation

BrightStor CA-Compress cannot support update in place for Physical Sequential
data sets, and it does not support adding compressed records to a data set
containing uncompressed data. For these reasons, Scheduled Implementation is
inappropriate for PST data sets, but immediate and deferred compression are still
supported by specifying the date compression is to take effect
(EFFDATE=yyddd), or ANYDATE to specify that the data set should be
immediately treated as compressed.

10–2 BrightStor CA-Compress Data Compression Reference Guide

Implementation Considerations

DCB Attributes

VSAM KSDS and ESDS record formats are essentially the same, whether the user
considers the data set fixed or variable length. However, in the case of non-
VSAM data sets there is a sharp distinction among fixed, variable, and undefined
record formats. Compression changes these attributes, but applications expect to
handle the data in its original uncompressed format, and so the uncompressed
attributes must be preserved in the Control File for BrightStor CA-Compress
OPEN processing.

Note: If the data set was compressed using an FDT created by Prepass before
PTF SS05300, compression cannot be recognized, and the data set can be defined
with incorrect attributes. Most of the time, BrightStor CA-Compress deals
successfully with this condition, but under certain circumstances OPEN or I/O
errors occur.

Four parameters enable you to specify DCB attributes for the data set using the
IUI or the CFMU: DCBMODEL, RECFM, LRECL, and BLKSIZE. DCBMODEL
specifies a cataloged data set from which to take DCB parameters, and the other
three, if coded, supply or override individual values.

The DCBMODEL data set can be any PS or PO data set except a compressed data
set not defined as PST, because for such a data set no uncompressed attributes
are available. If a compressed non-PST data set is specified for DCBMODEL,
BrightStor CA-Compress issues a diagnostic message and rejects the statement.

Automated Cleanup of Uncataloged Data Sets

Unlike VSAM data sets, Physical Sequential data sets are often defined by GDGs
or similar schemes - instead of remaining constant, the data set name for a given
application keeps changing as new generations are created and old ones fall
away. This can easily lead to uncontrolled growth of the Control File, so the
CFMU provides the ERASEUNCAT keyword to specify that a PS dsname entry
should be automatically deleted from the Control File after it is uncataloged. To
avoid performance problems and to prevent entries from being lost due to
inadvertent deletion of the data set, the Control File is not purged until at least
the day after the data set is uncataloged.

For your convenience, BrightStor CA-Compress tries to pick an intelligent
default. If you define a PS pattern with GDG=ONLY, BrightStor CA-Compress
realizes that only GDG data sets are permitted and selects ERASEUNCAT=YES.
For GDG=NO or GDG=YES, which permit non-GDG data sets,
BrightStor CA-Compress defaults to ERASEUNCAT=NO for safety. In many
cases, however, such as IMS log data sets, you probably want to override this
choice with ERASEUNCAT=YES.

Physical Sequential Transparency 10–3

Implementing Uncompressed Data Sets With the IUI

Implementing Uncompressed Data Sets With the IUI
While the IUI is building the Work List, it determines whether each PS data set is
already compressed. If it is uncompressed, you implement it much like a VSAM
data set. You can explicitly analyze it or you can pick a compression method and
go directly to implementation.

If the IUI is running in Scheduled mode, it implements the data set online by
adding a Control File entry with an effective date of today with the DCB
attributes of the uncompressed data set. The data set is compressed the next time
it is loaded.

If the IUI is running in Choice mode, you can specify all the values supported by
the CFMU, including GDG, ERASEUNCAT, and NON-COMP. If you specify a
non-zero effective date, the IUI implements the data set online with the values
you specify, and the data set is compressed the next time it is loaded. If you
specify ANYDATE, the IUI generates JCL to reload and compress the data set
immediately, in the same way that it supports VSAM immediate compression.

Implementing Compressed Data Sets With the IUI
If the data set is already compressed, the IUI marks it COMPRESD on the Work
List and analysis is not permitted. If the IUI is able to determine the FDT name or
compression algorithm, implementation can be done only with that name. If the
IUI cannot determine the FDT, you can enter the correct FDT.

Remember that if a data set is already compressed, you cannot really select a
compression method. The compression selection has already been made, so you
can only tell BrightStor CA-Compress what it is if the IUI is unable to determine
it. To select a different Compression method, you must uncompress and
reimplement the data set.

Limitations and Restrictions
The following are limitations and restrictions of physical sequential transparency:

� Only Sequential Access Using QSAM or BSAM

� Concatenation Restrictions

� Limited DCB Exit List Support

� Relatively High Overhead for Sequential Processing

10–4 BrightStor CA-Compress Data Compression Reference Guide

Limitations and Restrictions

Only Sequential Access Using QSAM or BSAM

PST data sets can only be processed sequentially, using QSAM or BSAM, and
update in place is not allowed. However, even though the IBM subsystem
interface is used, BSAM NOTE and POINT macros are supported, so ISPF
BROWSE and EDIT, ISPF option 3.3 and similar functions are supported.

Access methods such as BDAM and EXCP are not supported for PST data sets.
By adding SORT and other common utilities which use EXCP to the EXCLUDE-
SORT exclusion tables, you can tell BrightStor CA-Compress to force these
programs to think a PST data set is a subsystem data set and to use BSAM. For
this to work, however, the program must be able to handle subsystem data sets.
Any program which works correctly with the SUBSYS JCL parameter should
support PST data sets.

Concatenation Restrictions

PST data sets cannot be concatenated with SYSIN (//ddname DD *) or other
subsystem data sets. In this case, message ZSUR407I is issued and the entire
concatenation is processed without compression or expansion, which will
probably lead to errors. Likewise, if you specify LABEL=EXPDT=86060 on any
data set in a concatenation, the exclusion is applied to the entire concatenation.

Limited DCB Exit List Support

RDJFCB exits x'07' and x'13' are fully supported. User label exits are supported at
OPEN and CLOSE, but not at EODAD or EOV. Because BrightStor CA-Compress
must control the DCB attributes, it replaces the user's DCB Open exit. It does not
support EOV exits, user totaling exits, or other exits which might be affected
unpredictably by Compress.

Relatively High Overhead for Sequential Processing

Compression is relatively inexpensive and easy to justify with random access,
which is typical in the case of VSAM, because savings due to compression occur
for each record, whether you ever read it or not, and overhead is exacted only for
the relatively few records actually processed. However, sequential processing
incurs overhead for every record because in most cases all are read whenever the
data set is processed.

Moreover, programs like SORT, which normally can optimize I/O, are forced to
use the subsystem interface so that BrightStor CA-Compress can compress or
expand each logical record, and this adds substantially to I/O overhead.

Physical Sequential Transparency 10–5

Limitations and Restrictions

For these reasons, not all sequential data sets should be compressed. Good
examples are multivolume tapes written once and seldom read, or DASD data
sets created at night and seldom accessed during the day.

10–6 BrightStor CA-Compress Data Compression Reference Guide

Chapter

11 User Exits

To enhance its power and flexibility, BrightStor CA-Compress enables you to
direct its processing at certain points by means of user exits, as described below.

BrightStor CA-Compress offers the following user exits:

� Transparency User Exit

� Control File Maintenance Utility Security Interface

� Test Compression Facility Pre-Processing, Post-Processing, and Security Exits

These user exits are discussed in detail below.

Transparency User Exit
This facility is enabled by co-requisite PTFs SS03316 and SS03317.

The Transparency User Exit enables you to gain control during compression and
expansion in order to avoid or recover from errors. You can receive control from
BrightStor CA-Compress for each record before and after compression and
before and after expansion. Through the CA-Compress/2 parameter list,
described in the chapter "CA-Compress/2," you have access to the record in both
its compressed and uncompressed state, as well as to its length and other
information. By setting the return code at PRECMP and PREXPD, you can
prevent compression and expansion where appropriate. After taking corrective
action, you can recover at POSTCMP and POSTXPD from compression and
expansion errors resulting in I/O errors and messages such as SHR014I,
SHR015I, and SHR010I.

The exit is powerful, and you should have a good understanding of the material
in the chapter "CA-Compress/2," and of the parameters you receive in the exit
before you manipulate them in any way. Errors in the user exit may lead to I/O
errors or even data loss, so always test any changes carefully before enabling the
exit for any production data set. You receive addressability to the ddname, the
data set name, and the TCB, which gives you ready access to the jobname, so you
can use these values to control your processing. You can use RACF or an
equivalent product to control access to the module name, ZUXITMOD.

User Exits 11–1

Transparency User Exit

Enabling the User Exit

The user exit is enabled by the UEXIT parameter of the Control File Maintenance
Utility ADD and ALTER statements. UEXIT is coded just like the EXCLUDE
parameter, whose syntax is found in the descriptions of the ADD and ALTER
statements in the chapter "Control File Maintenance."

If UEXIT is not specified, or if the exit is unavailable when
BrightStor CA-Compress tries to load it, compression and expansion are
performed without it. If the exit is specified but is unavailable,
BrightStor CA-Compress issues message ZSUR296I, described below.

The expansion phases can only receive control if the preceding GET was
successful, because BrightStor CA-Compress attempts expansion only when the
record has been successfully read. Because compression is performed before
writing the record, the PUT has not yet been done when the compression phases
receive control, so errors in the exit may cause I/O errors when
BrightStor CA-Compress tries to write the record.

Using the User Exit

The Transparency User Exit must be called ZUXITMOD and reside in STEPLIB,
JOBLIB, or the linklist. If you place the exit in linklist, it can be accessed to
process any data set for which UEXIT has been specified, perhaps in cases you do
not intend. For this reason, avoid the linklist and use STEPLIB or JOBLIB until
you confirm that the exit works as you intend in every case

The exit must be reentrant, because I/O can take place concurrently on several
data sets and RPLs. It can have any RMODE but is always given control in
AMODE 31 to insure that it can gain access to all the parameters it receives from
BrightStor CA-Compress.

BrightStor CA-Compress calls the User Exit using standard linkage conventions.
At entry:

Register Description

Register 1 points to the parameter list

Register 13 points to a 72 byte save area. It is immediately followed by
another, which you can use instead of GETMAINing one
yourself

Register 14 contains the return address and caller's AMODE

Register 15 contains the address of the entry point receiving control

11–2 BrightStor CA-Compress Data Compression Reference Guide

Transparency User Exit

BrightStor CA-Compress saves and restores Registers 0 thru 9 and ignores
Register 15, so the exit can freely use them as work registers without preserving
their contents. The exit must restore Registers 10 through 14 when it returns to
the caller. BrightStor CA-Compress ignores Register 15 on return and takes the
return code from the first word of the parameter list, as documented below.

Coding the User Exit

The first 4 words of the user exit define the routines that are to get control at each
of the 4 phases of the user exit - PRECMP, POSTCMP, PREXPD, and POSTXPD.
If any of these addresses is zero, that phase does not get control. The routines
follow the 4 word prolog.

To simplify coding, BrightStor CA-Compress supplies a prolog macro,
ZXITPLOG, in the installation library. ZXITPLOG builds the following prolog
logic:

1. The 4 word entry point list, addressing the routines you specify for each
phase, or zero for those you do not specify.

2. Register equates, with comments.

3. A dsect and a USING statement for the parameter list.

4. Dsects for the RPL and ACB to permit you to address their fields
symbolically.

5. The module name, date, time, and user-specified identification field.

The Parameter List

The parameter list passed to all 4 phases of the user is addressed by Register 1
and has the following format:

Name Offset Description

ZUXRC 0 Zero on entry to PRECMP and PREXPD.
CA-Compress/2 Return Code on entry to POSTCMP
and POSTXPD. Set this field to set the return code, as
documented in Return Codes in this chapter.

ZUXCLIST 4 Address of CA-Compress/2 Parameter List as
described in the chapter "CA-Compress/2," except that
the RDW is never included unless the RDL begins with
V2-4.

ZUXDDNAM 8 Address of User DDNAME.

ZUXDSN 12 Address of DSNAME.

ZUXURPL 16 Address of User RPL - refers to uncompressed record

User Exits 11–3

Transparency User Exit

Name Offset Description

ZUXCRPL 20 Address of Compress RPL - refers to compressed record

ZUXTCB 24 Address of TCB

ZUXDEBUG 28 Address of Debug Byte. If the byte is non-zero, PST
tracing is active, and if zero, it is not. Use this byte to
determine whether you want to issue diagnostic
messages, and you can change this byte in order to
control tracing in module ZSURSHRK for this data set.

ZUXSPA 32 User Exit Scratch Pad Area. This area is 96 bytes long,
and the exit can use it for any purpose. Because
BrightStor CA-Compress does not use this area after
I/O is complete, its contents are valid from one phase to
the next.

Return Codes

All phases receive the return code in ZUXRC, the first word of the parameter list,
and they can change it there as appropriate. The incoming and outgoing return
codes and their meanings for each phase are as follows:

PRECMP On entry, ZUXRC is always zero. The exit can determine that the record cannot
be successful compressed, perhaps because it is shorter than the non-
compressible area defined by the RDL. To avoid the failure in compression in
this case and message SHR015I, you can set ZUXRC to -1 (x'FFFFFFFF') to stop
compression and write the uncompressed record to the compressed output data
set. If you stop compression at PRECMP, POSTCMP is never entered, because
compression is never called.

POSTCMP On entry, ZUXRC contains the return code from compression, either zero or a
positive return code indicating that compression failed. You can recover from
the error, after making any needed corrections, but any failing message from
CA-Compress/2, such as SHR015I, has already been issued. Set ZUXRC to zero
in order to write the compressed record or to -1 (x'FFFFFFFF') to copy the
uncompressed record without compression. If ZUXRC is zero and you set a
positive return code, BrightStor CA-Compress forces an I/O error, just as if
compression had failed.

PREXPD On entry, ZUXRC is always zero. The exit may determine that the record is
already uncompressed and want to avoid expanding it again and causing
errors. To stop expansion and write the compressed record to the output data
set, set ZUXRC to -1 (x'FFFFFFFF'). If you stop expansion at PREXPD,
POSTXPD is never entered, because expansion is never called.

11–4 BrightStor CA-Compress Data Compression Reference Guide

Control File Maintenance Utility Security Interface

POSTXPD On entry, ZUXRC contains the return code from expansion, either zero or a
positive return code indicating that expansion failed. You can recover from the
error, after making any needed corrections, but any failing message from
CA-Compress/2, such as SHR010I, has already been issued. Set ZUXRC to zero
in order to write the uncompressed record or to -1 (x'FFFFFFFF') to copy the
compressed record without expansion. If ZUXRC is zero and you set a positive
return code, BrightStor CA-Compress forces an I/O error, just as if expansion
had failed.

Control File Maintenance Utility Security Interface
The Control File Maintenance Utility interfaces with your installation's security
system: RACF, Top Secret, or ACF2. You need specific types of authority in order
to create or access compression control records in the Control File. You can also
write a user exit to modify that processing.

How the User Security Exit Works

The User Security Exit is invoked for each access the Utility makes on any
compression profile contained in the Control File. The exit can allow, disallow, or
make no access determination. In addition, the exit change the data set name and
the requested access level, to be used by the BrightStor CA-Compress Security
Interface for access determination. If the exit makes no access determination, or if
the exit does not exist, the installation's access control facility is invoked through
the System Authorization Facility (SAF) interface. If your installation's access
control facility does not support SAF, then the exit must make a determination or
the access is allowed.

The access already defined within your access control facility automatically
determines a user's level of access. If you are attempting to ADD or DELETE a
Control File entry, you need authority that corresponds to RACF's ALTER access.
To issue an ALTER for a Control File entry, you need UPDATE access. To report
on an entry, you need at least READ access. These levels of access can be
modified by the user exit.

Using the Security Exit

The Security Exit must be named ZSUSEC00 and reside in a load module library
that is accessible by the Control File Maintenance Utility. The exit module may
reside in a library in the LINKLIST or in the JOBLIB or STEPLIB concatenation.
The exit may be link-edited with any valid combination of AMODE and RMODE
and should be at least serially reusable.

User Exits 11–5

Control File Maintenance Utility Security Interface

Two default exits are supplied on the install tape. One allows all accesses. The
other allows all accesses for the REPORT statement but invokes the SAF interface
for ADD, DELETE and ALTER. The assembler source for these exits is contained
in the SHRINK.JCL data set, file number 1 on the install tape. The exit names are
ZSUSEC01 (allow all accesses) and ZSUSEC02 (check SAF).

Linkage Conventions of the Exit

BrightStor CA-Compress employs standard MVS linkage conventions when
invoking the Security Exit. At entry to the exit:

Register Description

Register 1 contains the address of the parameter list

Register 13 contains the address of a 72 byte save area

Register 14 contains the return address and caller's AMODE

Register 15 contains the Exit's entry point address

All registers (except 15) must be saved at entry and restored when the exit
returns to the Control File Maintenance Utility. Register 15 must contain a return
code indicating the security exit's determination.

The exit is called in problem state, user protect key, and the AMODE defined by
the link-edit attributes.

Return Codes

The following return codes in register 15 cause BrightStor CA-Compress to take
the indicated action:

RC Meaning

0 The exit has allowed the access. BrightStor CA-Compress does not
invoke SAF for access determination. The access is allowed.

4 The exit has made no determination about access.
BrightStor CA-Compress invokes SAF for access determination. Access
is determined by SAF.

8 The exit has disallowed access. BrightStor CA-Compress does not
invoke SAF for access determination. The access is disallowed.

11–6 BrightStor CA-Compress Data Compression Reference Guide

Test Compression Facility User Exit

The Parameter List

The Parameter list passed to the security exit follows standard MVS conventions.
Register 1 contains the address of a list of addresses to parameter values:

Offset Contents

x’00’ The count of the parameters that follow.

x’04’ The access level requested. The field is 2 bytes in length and
contains a binary value: a 1 for READ access, a 2 for UPDATE
access, and a 3 for ALTER access. This field may be changed by the
exit to reflect a different level.

x’08’ The statement for which the processing is requested. The field is 8
bytes long.

x’0C’ The entry type of the following parameter. The field is 8 bytes long.
This can be either DATA SET or PATTERN.

x’10’ The entry name. This field is 44 bytes long and contains the data set
name or the pattern name to be accessed.

x’14’ The JOBNAME. This field is 8 bytes long.

Test Compression Facility User Exit
TCF supports the use of optional user exits at various phases in its processing.
These are provided so that each installation can tailor the use of TCF beyond
what can be accomplished based on parameter specifications.

Assembler language conventions are followed in passing parameters to the exit
modules. Register 1 points to a list of addresses, each of which points to a specific
parameter as defined for the exit. In some cases, the exit module returns a half-
word code through the designated parameter to indicate to TCF what further
actions are to be taken.

PREEXIT Pre-Processing Exit

The PREEXIT gets control after TCF obtains the next sequential data set name
from catalog management, but before it obtains the detailed catalog information
and format 1 DSCB. Its function is to decide whether or not to allow TCF to
compress the data set. PREEXIT gets control before any selection/exclusion
testing, which would be performed based on SELECT or EXCLUDE statements in
the job stream, so SELECT and EXCLUDE statements can override the PREEXIT's
decision to process the data set. The parameter list that is passed to the exit is
shown in the following table.

User Exits 11–7

Test Compression Facility User Exit

Type Size Description

OUTPUT Halfword Result
Code

0 Allow the data set to be processed.

 8 Bypass the data set.

INPUT CL44 Data set Name-The name of the data set currently
being considered for inclusion in TCF processing.

INPUT CL44 Catalog Name-Where the data set is cataloged.

POSTEXIT Post-Processing Exit

The POSTEXIT gets control after TCF test compresses the data set and computes
statistics.

The parameter list that is passed to the exit is shown below.

Note: The statistical fields contain binary zeroes when TCF is run in simulation
mode.

Type Size Description

INPUT CL44 Data set Name-The name of the data set currently being
processed.

INPUT Halfword Volume Count-The total number of volumes to which the
data set is cataloged. This is also the number of volumes
that is presented below in the Volume List parameter.

INPUT nCL6 Volume List-A list of the volumes to which the data set is
cataloged. The number of volumes appearing in this list
can be determined by examining the Volume Count
parameter above.

INPUT CL3 Data set Organization-This is a literal value indicating the
data set organization. The valid values are 'VS' for VSAM
data sets and 'PS' for physical sequential data sets.

INPUT XL80 Statistical Information - The statistical information that
TCF generated for the data set is passed as a block of
information. It begins on a fullword boundary and
contains the following information:

 FW Total number of data records in the data set.

 FW Total number of compressed records.

 FW Total number of data bytes in the data set.

11–8 BrightStor CA-Compress Data Compression Reference Guide

Test Compression Facility User Exit

Type Size Description

 FW Total number of data bytes in the compression
sample.

 FW Total number of bytes after Super Express
compression sample.

 FW Total number of bytes after Huffman
compression sample.

 FW Estimated total number of bytes saved using
Huffman.

 FW Estimated total number of bytes saved using
Huffman.

 FW Estimated total number of bytes saved using
Super Express.

 FW Estimated number of tracks saved using
Huffman.

 FW Estimated number of tracks saved using Super
Express.

 FW Minimum data record size encountered.

 FW Maximum data record size encountered.

 FW Average data record size encountered.

 FW Minimum record size after Super Express
compression.

 FW Maximum record size after Super Express
compression.

 FW Average record size after Super Express
compression.

 FW Average record size after Super Express
compression.

 FW Maximum record size after Huffman
compression.

 FW Average record size after Huffman compression.

 HW Percent of compression using Super Express (that
is, 534 = 53.4%).

 HW Percent of compression using Huffman (that is,
534 = 53.4%).

User Exits 11–9

Test Compression Facility User Exit

Security Interface and Exit

The TCF comes with interface routines to the ACF2, RACF and Top Secret
security systems. If you use one of these, you can invoke the appropriate
interface by coding the SECURITY parameter on the SET statement. TCF calls the
security system you specified on the SET statement before obtaining the catalog
information for the current data set. If you do not have read authority for the
data set, message DCA0040 is issued and the data set bypassed.

Important Note for ACF2 Users: TCF's ACF2 interface dynamically attempts to
obtain access to ACF2's CVT. If this cannot be accomplished, message DCA0071
is issued indicating the CVT could not be dynamically obtained. When this error
occurs, you must link-edit the ACF2 CVT with the TCF ACF2 security interface
module (GDAXP014) in order for TCF to gain access to ACF2's “user call”
interface. Without this special link edit, TCF issues message DCA0070 and TCF's
security checking is deactivated for the duration of the job. Below is some sample
JCL to perform this special link edit:

//LKED EXEC PGM=HEWL,PARM=(LIST,MAP),REGION=320K

//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(50,20))
//SYSLIB DD DISP=SHR,DSN=TCF.Rnn.LOADLIB
//ACF2 DD DISP=SHR,DSN=ACF2.LOADLIB
//SYSLMOD DD DISP=SHR,DSN=DCA.Rnn.LOADLIB
//SYSLIN DD *
SETCODE AC(0)
INCLUDE ACF2($ACFGCVT)
INCLUDE SYSLIB (GDAXP014)
ENTRY GDAXP014
NAME GDAXP014

Note: The JCL above shows the module name for the ACF2 CVT as $ACFGCVT.
Your release of ACF2 may use ACF$GCVT instead. Attempt the link-edit with
the JCL shown. If you get an unresolved reference for $ACFGCVT, resubmit the
job with the alternate module name.

11–10 BrightStor CA-Compress Data Compression Reference Guide

Appendix

A Analysis File Conversion

This procedure only needs to be done if you are upgrading from a very old
release of SHRINK for MVS, 3.5 or earlier. Follow this procedure to keep the
previously existing Analysis File, formerly called the Dialog Control File.

Procedure
1. Thoroughly purge the Analysis File of all obsolete, duplicate or other

unwanted entries from the existing Analysis File. Doing so makes conversion
a much smoother and quicker process, so this effort saves a lot of time in the
end.

2 Edit JCL member $CONVERT.

� Change the data set name fields to conform to your installation's data set
naming conventions.

� Three programs have been provided in the interactive user interface's
ISPF load library to help with the conversion process. Select the proper
one to convert your Analysis File (not your BrightStor CA-Compress
Control File)

SUIP1020 Converts a version 1.0 Analysis File (SHRINK 2.0)

SUIP1220 Converts a version 1.2 Analysis File (SHRINK 2.2)

SUIP1320 Converts a version 1.3 Analysis File (SHRINK 3.0)

� Update the volume serial number.

3 Specify the default DASD device (DFLTDASD), the logical DASD unit type
that is to be used to allocate work files. This data is not present in the release
1.0 control file, and it must be specified when you convert from a release 1.0
control file. If the default DASD device is specified for a release 1.2 or 1.3
control file, it replaces the current default DASD device value. The default
DASD device can be SYSDA, WORK, TSO or any other logical DASD unit
that is valid for your installation.

Analysis File Conversion A–1

Procedure

4 Specify the CTLGNODE. In all previous versions of the interactive user
interface, all work data sets whose names were generated by the interactive
user interface consisted of the following two or three elements:

� TSO Prefix, if present.

� TSO User ID.

� Data set name.

 Some installations, however, do not allow a data set to be cataloged with the
TSO Prefix or User ID as the high-level node of the data set name. With the
current version of the interactive user interface, you can specify a high-level
node for the interactive user interface to use in the construction of work data
set names. If desired, the high-level node for data set name construction must
be provided in the execute parameter for the REFORMAT step.

5 Run the $CONVERT job to convert the Analysis File. The new format uses
the data set name as the key, but the old format uses FILECODE, so the same
data set may be in the existing Control File more than once. In this case, the
conversion process detects the condition, reports it to the user, and ABENDs
with an 0599 user ABEND code instead of building a new Analysis File. The
SEQCHECK step generates a report that lists in alphanumeric order each
data set found to have multiple FILECODEs. The first FILECODE
encountered is shown as the primary FILECODE. Subsequent file codes are
shown as duplicates.

 Use the interactive user interface to review all of the duplicate entries shown
on the report generated by the sequence checking program and repeat step 1.
Then run the $CONVERT job again.

A–2 BrightStor CA-Compress Data Compression Reference Guide

 Glossary

algorithm
A finite set of well-defined rules for the solution of a
problem in a finite number of steps, for example, a
specific set of steps used to compress or expand a
record.

analysis file
The data set used by the BrightStor CA-Compress
Interactive User Interface to record the results of
compression analysis and implementation performed
by the IUI.

BDA
Byte Distribution Analysis. The process of analyzing
the distribution of characters in a data set in order to
construct the Huffman tables used to compress and
expand the data set.

buffer
Storage allocated to temporarily hold input or output
data.

CA-Compress/2 utilities
Utilities that can be used to perform compression and
expansion when the BrightStor CA-Compress
subsystem is unavailable.

CA-Compress/2 subroutines
Compression and expansion subroutines, used by
BrightStor CA-Compress, which can also be called by
users. These subroutines are especially useful for
supporting compression in products with data that
BrightStor CA-Compress cannot support
transparently.

CA-Compress started task
Running in its own address space, the started task
supports the SVC intercepts, cross-memory services,
and other facilities required to support compression
transparently for application programs.

checkbyte
An extra byte calculated and added to the
compressed data. If it does not exactly match the
expected result at expansion, the compressed data has
been damaged, perhaps through overlay or
truncation when written.

control file
The data set used by BrightStor CA-Compress to
record the data sets controlled by
BrightStor CA-Compress and how
BrightStor CA-Compress should handle them.

CFMU
Control File Maintenance Utility. A batch utility
provided with BrightStor CA-Compress for
maintaining the Control File.

compression algorithm
A finite set of rules used to collect and assign values
to the characters found in a string of data so that the
data takes less space.

compression overhead
The processing required to compress data as it is
transferred from the application to the data set.

discrete data set
A single data set, as opposed to a pattern defining a
number of data sets.

dynamic allocation
1. Assignment of system resources to a program at
the time the program is executed rather than at the
time it is loaded into main storage.
2. The IBM facility provided through SVC 99 to
accomplish this purpose.

 Glossary–1

exclusion feature
A facility enabling the user to supply tables of jobs
and programs for which compression and expansion
should not take place in order to prevent unnecessary
compression and expansion or double compression.

expansion overhead
The processing required to expand data as it is
transferred from the data set to the application.

express
The BrightStor CA-Compress string compression
algorithm that was replaced by the Super Express
algorithm.

FDT
File Descriptor Table. A load module that also exists
as records on the Analysis and Control Files. It
contains information required to compress and
expand the data set, including its Huffman
compression and expansion tables.

FDTLIB
The load library in which the Interactive User
Interface stores FDTs, and from which it and the
CFMU copy FDTs to the Control File.

file analysis
The process by which BrightStor CA-Compress
presents the various compression choices and the
compression percentages possible.

huffman
A compression algorithm that uses tables to replace
each character by a variable-length bit string. The
characters expected to occur most often are assigned
the shortest bit lengths.

ICB
Integrity Check Block. A 3-byte field preceding the
compressed data by which BrightStor CA-Compress
recognizes the algorithm used to compress the data.

implementation
Placing a data set under BrightStor CA-Compress
control.

interactive user interface (IUI)
The ISPF interface of BrightStor CA-Compress.

linklist
The list of load module libraries chosen by the
installation to be searched by default after any
STEPLIB or JOBLIB libraries.

LSR
Local Shared Resources. The IBM facility for
permitting buffers to be shared by VSAM data sets in
a job step. Because I/O to DASD is greatly reduced
for random processing in most cases, performance is
much improved even for a single data set.

PASSTHRU
A facility to enable BrightStor CA-Compress
processing without actually performing compression
or expansion.

pattern
A name with variable characters used to implement a
particular compression algorithm for all data sets
matching the pattern.

pattern analysis
The process by which BrightStor CA-Compress will
search for data sets to analyze based on name.

pattern matching
The process of implementing a data set when it
matches a pattern in the Control File, rather than
explicitly by name.

RDL
Record Definition Language. The language supplied
with BrightStor CA-Compress to define compression
on each record. RDL is usually generated by default,
but can be modified by the user.

RDW
Record Descriptor Word. The first 4 bytes of a
variable length non-VSAM record or segment, which
defines its length.

SAM-SI
Sequential Access Method-Subsystem Interface. The
IBM access method used to support the SUBSYS JCL
keyword. It is also invoked by Physical Sequential
Transparency. Its limitations require certain special
considerations when implementing compression
using the SUBSYS JCL parameter.

Glossary–2 BrightStor CA-Compress Data Compression Reference Guide

VPE rules table

safeguards
A BrightStor CA-Compress facility for preventing
inadvertent access to compressed VSAM data sets
when the BrightStor CA-Compress subsystem is not
active.

scheduled
A method of implementing compression at a
specified future eventÅ either when the VSAM data
set is next loaded or when it is opened for output.

SDB
System Determined Blocksize, in which the user
codes BLKSIZE=0 to cause the system to select an
optimal block size for the device.

SHRVL
A BrightStor CA-Compress compression algorithm
that achieves high compression for relatively high
CPU overhead on certain types of data.

space release
The facility for freeing unused space from
compressed VSAM data sets.

standard tables
Six compression tables distributed with
BrightStor CA-Compress.

SUBSYS
An IBM JCL DD parameter for non-VSAM data sets
that invokes a subsystem to process the ddname on
which it is coded.

subsystem
A facility running under MVS that performs a certain
function. JES2 and JES3, for example, handle job entry
and throughput, and SMS does storage management.

super express
The BrightStor CA-Compress string compression
algorithm. It compresses repetitive characters without
using tables.

TCF
Test Compression Facility.

VPE
VSAM Performance Enhancement.

VPE rules
Rules supplied to VPE to direct its optimization of
data sets.

VPE rules table
The table of rules built by VPE in extended CSA and
addressed through the entry for VPE in the
subsystem control table (SSCT). VPE does not run as a
true subsystem or started task, but in this way VPE
can recognize rules built before it is activated.

 Glossary–3

 Index

$

$CONVERT, A-1, A-2

8

86060 expiration date, 8-4

A

abend codes
013-34, 5-6, 5-7
0599, A-2
0C4, 3-9
50D, 5-7

ABEND parameter, 2-17

ABENDNOMIN parameter, 7-12

accessing the FDT, 4-4

ACF2 and the TCF security interface and exit, 11-10

ADD statement (PS)
DCBMODEL parameter, 2-9
DEVTYPE parameter, 2-11
EFFDATE parameter, 2-10
ERASEUNCAT parameter, 2-10
EXCLUDE parameter, 2-10
FDT parameter, 2-9
GDG parameter, 2-10
NON-COMP parameter, 2-11
PSDSN parameter, 2-9
PSPATTERN parameter, 2-9
SCOPE parameter, 2-11
SDB parameter, 2-10
SUPEREXP parameter, 2-9

UEXIT parameter, 2-11

ADD statement (VSAM)
DATA parameter, 2-5
DSNAME parameter, 2-5
EXCLUDE parameter, 2-6
FDT parameter, 2-5
IAM parameter, 2-6
NON-COMP parameter, 2-6
PATHS parameter, 2-5
PATTERN parameter, 2-5
RELEASE parameter, 2-6
SCHEDULED parameter, 2-6
SCOPE parameter, 2-6
SUPEREXP parameter, 2-5
UEXIT parameter, 2-6

alignment bytes, 3-8

ALLOW parameter, 7-9

ALTER statement (PS)
DCBMODEL parameter, 2-12
DEVTYPE parameter, 2-13
EFFDATE parameter, 2-12
ERASEUNCAT parameter, 2-13
EXCLUDE parameter, 2-13
FDT parameter, 2-11
GDG parameter, 2-12
NEWNAME parameter, 2-13
NON-COMP parameter, 2-13
PSDSN parameter, 2-11
PSPATTERN parameter, 2-11
SCOPE parameter, 2-13
SDB parameter, 2-13
SUPEREXP parameter, 2-11
UEXIT parameter, 2-14
UNINHIBIT parameter, 2-13

ALTER statement (VSAM)
ADDPATHS parameter, 2-7
DELPATHS parameter, 2-7
DSNAME parameter, 2-7
EXCLUDE parameter, 2-8
FDT parameter, 2-7
IAM parameter, 2-8

 Index–1

NEWNAME parameter, 2-8
NON-COMP parameter, 2-8
PATTERN parameter, 2-7
RELEASE parameter, 2-8
SCHEDULED parameter, 2-8
SCOPE parameter, 2-8
SUPEREXP parameter, 2-7
UEXIT parameter, 2-8

AMP JCL default for CA-Compress/2, 4-36

analysis file (AF)
convert from old release, A-1

assembler language
accessing the FDT, 4-4
assembler H Library DSN, 4-28
CALL to subroutine CLOSE, 4-12
CALL to subroutine CLOSES, 4-16
CALL to subroutine EXPAND, 4-10
CALL to subroutine EXPANDS, 4-14
CALL to subroutine EXPANDZ, 4-22
CALL to subroutine SHRINK, 4-9
CALL to subroutine SHRINKS, 4-12
CALL to subroutine SHRINKZ, 4-20
CALL to subroutine SHRKHCC, 4-20
CALL to subroutine SHRKHCS, 4-16
CALL to subroutine SHRKHCX, 4-18

assembly programming limitations and VPE, 7-24

asterisk (*)
use in CFMU, 2-2
use in exclude file, 8-2
use in TCF, 6-3
use in VPE, 7-8

B

backup/restore processing
exclusioin of, 8-1

BEGINDSN parameter, 6-12

binary
integer data, 3-14
length indicator, 3-6, 3-8
zeros, 3-8

bit
aligned, 3-16
switches, 3-13

BLKSIZE JCL default for CA-Compress/2, 4-36

BrightStor CA-Compress

transparency, 4-24

BUFFRLOC parameter, 7-10

BUFND parameter, 7-13

BUFNI parameter, 7-13

BUFSP parameter, 7-13

BYPASS parameter, 6-8, 6-16

byte distribution analysis, 3-28

C

C1
C2

and C3 field type, 3-24

C1 field type, 3-7, 3-24

C2 field type, 3-7, 3-24

C3 field type, 3-7, 3-24

CA-Compress/2
accessing the FDT, 4-4
assemble and link the program modules, 4-28
calling subroutines, 4-6
linking subroutines with applications, 4-25
subroutines, 4-2
subroutines under CICS, 4-26
utilities, 4-30

calculate variable symbol value
RDL field types V

VP
and VZ, 3-13

calling subroutines, 4-6
CLOSE, 4-12
CLOSES, 4-16
EXPAND, 4-10
EXPANDS, 4-14
EXPANDZ, 4-22
SHRINK, 4-9
SHRINKS, 4-12
SHRINKZ, 4-20
SHRKHCC, 4-20
SHRKHCS, 4-16
SHRKHCX, 4-18

CATALOG parameter, 6-11

CFMU
ADD statement (physical sequential), 2-9
ADD statement (VSAM), 2-5

Index–2 BrightStor CA-Compress Data Compression Reference Guide

ALTER statement (physical sequential), 2-11
ALTER statement (VSAM), 2-7
control file statements, 2-2
COPY statement, 2-14
DELETE statement, 2-14
FDT statement, 2-15
how the utility works, 2-1
report, 2-18
REPORT statement, 2-16
security interface, 11-5
security user exit

how it works, 11-5
linkage conventions, 11-6
parameter list, 11-7
return codes, 11-6
using, 11-5

SET statement, 2-17
syntax rules, 2-2

changes
summary of, 1-2

character data
RDL field type CS, 3-8
RDL field types C1

C2
and C3, 3-7

character frequency tables, 3-7

check byte, 4-34
calculation, 3-10
mismatch, 3-10

checkpoint/restart parameter, 7-17

CICS
CA-Compress/2 subroutines under, 4-29
macro library, 4-28
processing program table, 4-27
program list table, 4-27
source library, 4-27
tables, 4-26
using CA-Compress/2 Under, 4-26
VPEWRKnn DD statement, 7-7

CLOSE subroutine, 4-2, 4-12

CLOSES subroutine, 4-3, 4-16

COBOL, 3-6, 3-8, 3-11, 3-25, 4-5, 4-8, 4-9, 4-10, 4-12, 4-
14, 4-16, 4-18, 4-20, 4-22, 4-23, 4-24, 4-31

accessing the FDT, 4-4
BrightStor CA-Compress utilities RECDEF DD
requirement, 4-31
CALL to subroutine CLOSE, 4-12
CALL to subroutine CLOSES, 4-16
CALL to subroutine EXPAND, 4-10

CALL to subroutine EXPANDS, 4-14
CALL to subroutine EXPANDZ, 4-22
CALL to subroutine SHRINK, 4-9
CALL to subroutine SHRINKS, 4-12
CALL to subroutine SHRINKZ, 4-20
CALL to subroutine SHRKHCC, 4-20
CALL to subroutine SHRKHCS, 4-16
CALL to subroutine SHRKHCX, 4-18
defining compressed records in, 4-24
DYNAM problems, 4-8
OCCURS DEPENDING ON clause, 4-8

coding the SUBSYS parameter, 5-1

command language
command structures in TCF, 6-5
TCF, 6-2
TCF syntax rules, 6-3

comment in the exclude file, 8-3

compression
ratio, 3-1, 3-2, 3-7, 3-9, 3-13, 3-24
statistics, 4-34
utilities, 4-33

condition group, 3-4, 3-5, 3-9, 3-10, 3-17, 3-18, 3-19

considerations
implementation of transparency support, 10-2

control fields, 3-10

control-interval (CI) processing and EXCP
exclusion of, 8-2

COPY statement
DSNAME, 2-14
PDSNAME, 2-14

CPU
cycles, 3-2
overhead, 3-28

CRA parameter
of EXPAND subroutine, 4-11
of EXPANDS subroutine, 4-15
of EXPANDZ subroutine, 4-22
of SHRINK subroutine, 4-9
of SHRINKS subroutine, 4-13
of SHRINKZ subroutine, 4-21
of SHRKHCS subroutine, 4-17
of SHRKHCX subroutine, 4-19

CS field type, 3-8, 3-25

CWA, 4-27

 Index–3

D

data
data integrity, 4-34
DATA parameter, 2-5

dataset specific parameters, 7-13

DCB information when using SUBSYS, 5-5

DD statements
ACTION=ACTIVATE, 7-4
ACTION=DEACTV, 7-4
ACTION=DELETE, 7-4
ACTION=FORCDEL, 7-4
ACTION=INSTALL, 7-4
ACTION=INSTALLD, 7-4
ACTION=STATUS, 7-4
LABEL=EXPDT=86060 to exclude a data set, 8-4
RESTRICT= jobname, 7-4
VPEBUFnn, 7-6
VPEIGNR, 7-6
VPELSRPB, 7-7
VPEONALV, 7-6
VPEONGnn, 7-6
VPEONnn, 7-6
VPEVRPT, 7-7
VPEVSTS, 7-7
VPEWRKnn, 7-7

DDNAME parameter, 2-17

default
condition group, 3-19
JCL values for the CA-Compress/2 utilities, 4-35
RDL specifications, 3-26, 4-2

Deferred Write (DFW) and VPE, 7-1

defining compressed records in COBOL application,
4-24

DELETE statement
DSNAME, 2-14
PATTERN, 2-14
PSDSNAME, 2-15
PSPATTERN, 2-15
SYSTEM, 2-15

DELPATHS parameter, 2-7

DEVTYPE parameter, 2-11, 2-13

DFDSS
exclusion from processing, 8-1

DFW, 7-1, 7-2, 7-13, 7-23

DFW parameter, 7-13

disaster recovery, 4-30, 4-35

DSNAME parameter, 2-5, 2-14, 2-16, 6-11

DSNAMES parameter, 6-13, 6-14

DSNFILL parameter, 6-9

DSORG
JCL default for CA-Compress/2, 4-35

DSORG parameter, 6-14, 6-15

duplicate byte values, 3-7

E

EBCDIC, 3-6, 3-12

EXAMINE statement
BYPASS parameter, 6-16
EXTRACT parameter, 6-16
PERCENT parameter, 6-16
SKIP parameter, 6-16

EXCCATS parameter, 6-11

exclude file
comment in, 8-3
records, 8-3
table statements, 8-2

Exclude file
EXCLUDE-JOB, 8-2
EXCLUDE-JOB-PST, 8-3
EXCLUDE-MOD, 8-2
EXCLUDE-MOD-PST, 8-3
EXCLUDE-MOD-SORT, 8-3
EXCLUDE-PGM, 8-2
EXCLUDE-PGM-PST, 8-3
EXCLUDE-PGM-SORT, 8-3

EXCLUDE parameter, 2-6, 2-8, 2-10, 2-13

EXCLUDE statement
DSNAMES parameter, 6-14
DSORG parameter, 6-15
MBYTESRANGE parameter, 6-14
processing rules, 6-15
VOLUMES parameter, 6-14

exclusion
backup/restore processing, 8-1
control-interval (CI) processing and EXCP, 8-2
dfdss processing, 8-1
expiration date of 86060, 8-4
FAVER/MVS processing, 8-1
physical sequential transparency processing, 8-2

Index–4 BrightStor CA-Compress Data Compression Reference Guide

SAMS:Disk processing, 8-1
using expiration date, 8-4
using the exclude file, 8-2

exempt a field from compression, 3-10

EXPAND subroutine, 4-2, 4-4, 4-6, 4-9, 4-10, 4-23, 4-
25, 4-26, 4-29, 4-30, 4-32, 4-35

COBOL, 4-8, 4-10
parameters for the subroutine, 4-11

EXPAND utility, 4-34, 4-35

EXPANDS subroutine, 4-3, 4-6, 4-8, 4-14, 4-16, 4-23, 4-
25

COBOL, 4-14
parameter for subroutine, 4-14

EXPANDX utility, 4-30, 4-34, 4-35

EXPANDZ subroutine, 4-4, 4-6, 4-8, 4-22, 4-23, 4-25
COBOL, 4-22
parameters for subroutine, 4-22

expansion utilities, 4-34

expected values, 3-12

EXTRACT parameter, 6-9, 6-16

F

FAVER/MVS
exclusion from processing, 8-1

FDT
and RDL specifications, 3-3
FDTLOADR utility, 4-30, 4-32
FDTNAMES, 4-27, 4-28
identifier, 4-11, 4-12
Identifier, 4-10
in load module format, 4-5
in sequential dataset format, 4-5, 4-10
modules, 4-29
names and a fullword in the CWA, 4-27
prepass, 4-4, 4-30, 4-31, 4-33

FDT parameter, 2-5, 2-7, 2-9, 2-11
EXPAND subroutine, 4-11
SHRINK subroutine, 4-10

FDT statement, 2-15
FDTNAME parameter, 2-15
REPLACE parameter, 2-15

FDTLOADR utility, 4-30, 4-32

FDTNAME parameter, 2-15

features
exclusion, 8-1
physical sequential transparency, 10-1
safeguards, 9-1

field length
codes, 3-6
descriptors, 3-6
fixed, 3-4

field type
C1

C2
and C3, 3-6, 3-7

CS, 3-6, 3-8
GA, 3-6, 3-8
L, 3-6, 3-8
MA and MB, 3-6, 3-9
N, 3-6, 3-10
PD, 3-6, 3-11
S and X, 3-6, 3-12
UN, 3-6, 3-13
V

VP
and VZ, 3-6, 3-13

ZL and ZR, 3-6, 3-16

fields exempted for compression
RDL field type N, 3-10

FILE SECTION, 4-23, 4-24, 4-25

filler characters, 3-16

fillers, 3-8

fixed expected values, 3-3

fixed length
variable, 3-4

fixed length field, 3-4

fixed offset, 3-10

floating point, 3-11, 3-13, 3-16, 3-26

FORCEMODE parameter, 7-13

FORMAT parameter, 2-16

G

GA field type, 3-6, 3-8, 3-25

garbage data
RDL field type GA, 3-8

 Index–5

H

hexadecimal format, 3-11, 3-12, 3-18

how it works
CFMU, 2-1
RDL, 3-3
SUBSYS DD parameter, 5-1
TCF, 6-1

how to
determine the best compression

RDL, 3-28
enter or change the RDL, 3-29

Huffman algorithm, 3-7, 3-8

I

IFP, 3-4, 3-21, 3-22

implementation considerations, 7-15
transparency support, 10-2

INCLUDE parameter, 7-11

Insert Tally of Actual length
RDL field type L, 3-8

install
callable SHRINK subroutines for CICS, 4-27
VPE, 7-3

invalid data, 3-11, 3-25

invalid fields, 3-11

ISAM
files, 3-9, 3-27

IUI
how to enter or change the RDL, 3-29

J

JCL
$CONVERT, A-1
defaults for the CA-Compress/2 utilities, 4-35
for existing application programs, 4-5

JOB parameter
parameters

JOB, 7-11

job swaps and VPE, 7-17

JOB/STEP parameter, 7-11

K

Key fields, 3-10

L

L field type, 3-8, 3-25

left-justified zoned numeric data, 3-16

length indicator
binary, 3-6, 3-8

limitations
transparency support, 10-5

linking subroutines with applications, 4-25

local shared resources (LSR) and VPE, 7-1

look-aside read, 7-2

look-aside read and VPE, 7-1

LRECL JCL default for CA-Compress/2, 4-35

M

MA and MB field type, 3-6, 3-9, 3-25

match key fields, 3-10

MB field type, 3-6, 3-9, 3-25

MBYTESRANGE parameter, 6-13, 6-14

MINBUF parameter, 7-10, 7-12, 7-16

MINRESV parameter, 7-11, 7-12, 7-15

MODE parameter, 6-8

multiple record formats, 3-18

multipunched, 3-12, 3-18

N

N field type, 3-10, 3-25

Index–6 BrightStor CA-Compress Data Compression Reference Guide

NEWNAME parameter, 2-8, 2-13

NON-COMP parameter, 2-6, 2-8, 2-11, 2-13

non-graphic
data, 3-12
values, 3-18

nonlabeled tapes, 5-6

NOTRUNC, 4-25

numeric characters, 3-3

O

OCCURS DEPENDING ON clause, 4-8

optimized I/O Buffering with VPE, 7-2

optimizing VSAM performance, 7-18

P

packed decimal data, 3-4
RDL field type PD, 3-25

parameters
ABEND, 2-17
ABENDNOMIN, 7-12
Addname, 5-3
ADDPATHS, 2-7
ALLOW, 7-9
BEGINDSN, 6-12
BUFFRLOC, 7-10
BUFND, 7-13
BUFNI, 7-13
BUFSP, 7-13
BYPASS, 6-8, 6-16
CATALOG, 6-11
DATA, 2-5
DCBMODEL, 2-9, 2-12
DDNAME, 2-17
DELPATHS, 2-7
DEVTYPE, 2-11, 2-13
DFW, 7-13
DSNAME, 2-5, 2-7, 2-14, 2-16, 6-11
DSNAMES, 6-13, 6-14
DSNFILL, 6-9
DSORG, 6-14, 6-15
EFFDATE, 2-10, 2-12
ERASEUNCAT, 2-10, 2-13
EXCCATS, 6-11

EXCLUDE, 2-6, 2-8, 2-10, 2-13
EXTRACT, 6-9, 6-16
FDT, 2-5, 2-7, 2-9, 2-11
FDTNAME, 2-15, 5-2
FORCEMODE, 7-13
FORMAT, 2-16
GDG, 2-10, 2-12
IAM, 2-6, 2-8
INCLUDE, 7-11
JOB/STEP, 7-11
MBYTESRANGE, 6-13, 6-14
MINBUF, 7-10, 7-12
MINRESV, 7-11, 7-12
MODE, 6-8
NEWNAME, 2-8, 2-13
NON-COMP, 2-6, 2-8, 2-11, 2-13
PATHS, 2-5
PATTERN, 2-5, 2-7, 2-14, 2-16
PDSNAME, 2-14
PERCENT, 6-8, 6-16
POSTEXIT, 6-8, 6-12
PREEXIT, 6-8, 6-12
PRODUCTION, 2-17
PSDSN, 2-9, 2-11
PSDSNAME, 2-15, 2-16
PSPATTERN, 2-9, 2-11, 2-15, 2-16
RELEASE, 2-6, 2-8
REPLACE, 2-15
SCHEDULED, 2-6, 2-8
SCOPE, 2-6, 2-8, 2-11, 2-13
SDB, 2-10, 2-13
SECURITY, 6-9
SKIP, 6-9, 6-16
STANDARD (STD), 5-4
SUBSYS, 2-17
Subsystemname, 5-2
Subtype, 5-2
SUPEREXP, 2-5, 2-7, 2-9, 2-11
SYSTEM, 2-15
SYSTEMS, 2-16
UEXIT, 2-6, 2-8, 2-11, 2-14
UNINHIBIT, 2-13
VOLUMES, 6-13, 6-14
XCLUDE, 7-11

Partitioned datasets
compressing with the SUBSYS DD parameter, 5-6

PATHS parameter, 2-5

pattern matching
RDL field types MA and MB, 3-9

PATTERN parameter, 2-5, 2-7, 2-14, 2-16

PD field type, 3-11, 3-25

 Index–7

PDSNAME parameter, 2-14

PERCENT parameter, 6-8, 6-16

performance, 3-1, 3-2, 3-11, 3-22

permanently unused fields
RDL field type GA, 3-8

PL/I, 4-5, 4-8, 4-9, 4-10, 4-12, 4-14, 4-16, 4-18, 4-20, 4-
22, 4-23

accessing the FDT, 4-4

PL/I optimizer
CLOSE subroutine, 4-12
CLOSES subroutine, 4-16
EXPAND subroutine, 4-10
EXPANDS subroutine, 4-14
EXPANDZ subroutine, 4-22
SHRINK subroutine, 4-9
SHRINKS subroutine, 4-12
SHRINKZ subroutine, 4-20
SHRKHCC subroutine, 4-20
SHRKHCS subroutine, 4-16
SHRKHCX subroutine, 4-18

PLT, 4-27, 4-29

POOL parameter
parameters

POOL, 7-10, 7-11

POSTEXIT
parameter, 6-8, 6-12
user exit, 11-8

POSTEXIT parameter, 6-8, 6-12

POWERFACT parameter
parameters

POWERFACT, 7-13

PPT, 4-27, 4-28, 4-29

PRECEDENCE parameter
parameters

PRECENDENCE, 7-9

PREEXIT
parameter, 6-8, 6-12
user exit, 11-7

PREEXIT parameter, 6-8, 6-12

prepass
statistics, 4-31, 4-32
utility, 4-30, 4-33

processing
backup/restore

exclusion of, 8-1

control-interval (CI) and EXCP,exclusion of, 8-2
DFDSS

exclusion of, 8-1
FAVER/MVS

exclusion of, 8-1
overhead, 3-1, 3-2, 3-7, 3-10, 3-11, 3-12, 3-13, 3-21,
3-24, 3-26, 3-28
physical sequential transparency

exclusion of, 8-2
processing program table

CICS, 4-27
SAMS:Disk

exclusion of, 8-1

processing rules for SELECT and EXCLUDE, 6-15

PRODUCTION parameter, 2-17

program list table, 4-27

PSDSNAME parameter, 2-15

PSPATTERN parameter, 2-15

R

RC parameter
EXPAND subroutine, 4-11
EXPANDS subroutine, 4-15
EXPANDZ subroutine, 4-23
SHRINK subroutine, 4-10
SHRINKS subroutine, 4-14
SHRINKZ subroutine, 4-21
SHRKHCS subroutine, 4-18
SHRKHCX subroutine, 4-20

RDL
C1

C2
and C3 field types, 3-6

changing a record, 3-29
character data, 3-5, 3-7
condition groups, 3-9
CS field type, 3-8
defaults, 3-26
determine the best compression, 3-28
enter or change

using the IUI, 3-29
field type descriptions, 3-7
Fine-tuning, 3-28
GA field type, 3-8
Guide to correct RDL specifications, 3-24
How it works, 3-3
L field type, 3-8

Index–8 BrightStor CA-Compress Data Compression Reference Guide

MA and MB field types, 3-9
N field type, 3-10
PD field type, 3-11
performance, 3-1, 3-2, 3-11, 3-22
position function, 3-4, 3-10, 3-21
repetition factor, 3-4, 3-5, 3-9, 3-14, 3-17
repetition groups, 3-4, 3-9, 3-10, 3-11, 3-17, 3-18,
3-20, 3-24
S field type, 3-12
syntax rules, 3-5
terminology, 3-3
UN field type, 3-13
V

VP
and VZ field types, 3-13

X field type, 3-12
ZL and ZR field types, 3-16

RDL field type
GA, 3-8
L, 3-8
MA and MB, 3-9
PD, 3-11

RDW, 3-8, 3-10, 3-13, 3-15, 3-25, 3-27

read look-aside, 7-2

RECDEF
dataset, 3-5
DD statement, 3-26, 4-31

RECFM JCL default for CA-Compress/2, 4-35

record descriptor word, 3-8, 3-10, 3-13, 3-15, 3-25, 3-27

record entry in the exclude file, 8-3

re-entrant, 4-4, 4-30

RELEASE parameter, 2-6, 2-8

REPLACE parameter, 2-15

REPORT statement
DSNAME parameter, 2-16
FORMAT parameter, 2-16
PATTERN parameter, 2-16
PSDSNAME, 2-16
PSPATTERN, 2-16
SYSTEMS parameter, 2-16

reports
TCF, 6-17
VPE, 7-25

REPORTS
CFMU, 2-18

restrictions

JCL
for SUBSYS DD parameter, 5-6

SUBSYS DD parameter, 5-4
transparency support, 10-5

right-justified zoned numeric data, 3-6, 3-16

RULE, 7-11

RULE statement
ABENDNOMIN parameter, 7-12
BUFND parameter, 7-13
BUFNI parameter, 7-13
BUFSP parameter, 7-13
DFW parameter, 7-13
FORCEMODE parameter, 7-13
INCLUDE parameter, 7-11
JOB parameter, 7-11
JOB/STEP parameter, 7-11
MINBUF parameter, 7-12
MINRESV parameter, 7-12
POOL parameter, 7-11
POWERFACT parameter, 7-13
SIS parameter, 7-13
TGTBUF parameter, 7-12
VSAMREC parameter, 7-13
XCLUDE parameter, 7-11

S

S and X field type, 3-25

S field type, 3-6, 3-12

safeguards, 9-1

SAMS:Disk
exclusion from processing, 8-1

SCAN statement
BEGINDSN parameter, 6-12
CATALOG parameter, 6-11
DSNAME parameter, 6-11
EXCCATS parameter, 6-11
POSTEXIT parameter, 6-12
PREEXIT parameter, 6-12

SCB (Shrink control block), 4-5

SCHDULED parameter, 2-6

SCHEDULED parameter, 2-8

SCOPE parameter, 2-6, 2-8, 2-11, 2-13

security
CFMU, 11-5

 Index–9

Index–10 BrightStor CA-Compress Data Compression Reference Guide

SHRKHCS subroutine, 4-3, 4-6, 4-8, 4-16, 4-18
COBOL, 4-16
parameters, 4-16

SHRINKZ, 4-4, 4-20
SHRKHCC, 4-3, 4-20
SHRKHCS, 4-3, 4-16

Security
TCF interface to commercial packages, 11-10

SECURITY parameter, 6-9

SELECT statement
DSNAMES parameter, 6-13
DSORG parameter, 6-14
MBYTESRANGE parameter, 6-13
processing rules, 6-15
VOLUMES parameter, 6-13

sequential files, 3-27

sequential insert strategy (SIS) and VPE, 7-2

SET statement
ABEND parameter, 2-17
DDNAME parameter, 2-17
DSNFILL parameter, 6-9
EXTRACT parameter, 6-9
MODE parameter, 6-8
PERCENT parameter, 6-8
POSTEXIT parameter, 6-8
PREEXIT parameter, 6-8
PRODUCTION parameter, 2-17
SECURITY parameter, 6-9
SKIP parameter, 6-9
SUBSYS parameter, 2-17

SHAREOPTION and VPE, 7-16

SHRHCXPD utility, 4-30, 4-34

Shrink control block (SCB), 4-5

SHRINK subroutine, 4-2, 4-6, 4-8, 4-9, 4-24, 4-25, 4-26,
4-27, 4-29, 4-32

COBOL, 4-8, 4-9
parameters, 4-9

SHRINK.LOAD, 4-28

SHRINKS subroutine, 4-3, 4-6, 4-8, 4-12
COBOL, 4-12
parameters, 4-13

SHRINKZ subroutine, 4-4, 4-6, 4-8, 4-20
COBOL, 4-20
parameters, 4-21

SHRKCICS, 4-27, 4-28, 4-29

SHRKEXPD, 4-25, 4-26, 4-29

SHRKHCC subroutine, 4-3, 4-20
COBOL, 4-20

SHRKHCX subroutine, 4-3, 4-6, 4-8
COBOL, 4-18
parameters, 4-18

SHRKSCBS, 4-27, 4-28

SHRKSTUB, 4-26, 4-28, 4-29

SHRNKMOD, 4-27, 4-28, 4-30

SIS, 7-2, 7-22, 7-23

SIS parameter
parameters

SIS, 7-10, 7-13

SKIP parameter, 6-9, 6-16

sort key fields, 3-10, 3-25

special characters
asterisk (*), 2-2, 6-3
exclamation point (!), 2-3, 6-3
question mark (?), 2-3, 6-3
slash (/), 2-3, 6-3

STANDARD parameter, 2-5, 2-7, 2-9

statements
ADD physical sequential, 2-9
ADD VSAM, 2-5
alter physical sequential, 2-11
ALTER VSAM, 2-7
COPY, 2-14
DELETE, 2-14
EXAMINE, 6-2, 6-15
EXCLUDE, 6-2, 6-14
FDT, 2-15
REPORT, 2-16
SCAN, 6-2, 6-10
SELECT, 6-2, 6-13
SET, 2-17, 6-7
SYSOPT, 7-9
table statement in the exclude file, 8-2
VSAM, 7-10

subroutines
CLOSE, 4-2, 4-12
CLOSES, 4-3, 4-16
EXPAND, 4-2, 4-10
EXPANDS, 4-3, 4-14
EXPANDZ, 4-4, 4-22
Incorporating calls in an application, 4-23
linking with applications, 4-25
SHRINK, 4-2, 4-9
SHRINKS, 4-3, 4-12

 Index–11

command structures, 6-5
EXAMINE statement, 6-15
EXCLUDE statement, 6-14
how it works, 6-1

USAGE COMPUTATIONAL-3, 3-11

user abend codes

SHRKHCX, 4-3, 4-18

SUBSYS DD parameter
coding the, 5-2
DCB information when using, 5-5
how it works, 5-1
JCL restrictions, 5-6
nonlabeled tapes, 5-6
parameters, 5-2
Partitioned datasets, 5-6
restrictions and special processing, 5-4

SUBSYS parameter, 2-17

summary of changes, 1-2

SUPEREXP parameter, 2-5, 2-7, 2-9, 2-11

syntax errors, 3-5, 3-17

syntax rules
CFMU, 2-2
RDL, 3-5
SUBSYS DD parameter, 5-2
TCF, 6-3
VPE, 7-8

SYSLMOD DD statement, 4-33

SYSOPT statement
ALLOW parameter, 7-9
PRECEDENCE parameter, 7-9

system abend codes
013-34, 5-6, 5-7
0C4, 3-9
50D, 5-7

SYSTEM parameter, 2-15

SYSTEMS parameter, 2-16

T

TABL
TABL00 DD statement, 4-33
TABLxx DD statement, 4-4, 4-10, 4-33

table
table statement in the exclude file, 8-2

TCF
asterisk (*), 6-3
command language, 6-3

Interface to commercial security packages, 11-10
notes on using, 6-2
POSTEXIT parameter, 6-8, 6-12
PREEXIT parameter, 6-8, 6-12
reports, 6-17
SCAN statement, 6-10
SELECT statement, 6-13
SET statement, 6-7
user exits, 11-7

textual data, 3-3

TGTBUF parameter
parameters

TGTBUF, 7-10, 7-12

transparency support
accessing the FDT, 4-4
COBOL applications, 4-24
exclusion for PS processing, 8-2
features, 10-1
implementation considerations, 10-2
limitations and restrictions, 10-5

U

UN field type, 3-6, 3-26

Undefined fields
RDL field type UN, 3-13

UNINHIBIT parameter, 2-13

URA parameter
EXPAND subroutine, 4-11
EXPANDS subroutine, 4-14
EXPANDZ subroutine, 4-22
SHRINK subroutine, 4-9
SHRINKS subroutine, 4-13
SHRINKZ subroutine, 4-21
SHRKHCS subroutine, 4-16
SHRKHCX subroutine, 4-18

URL parameter
EXPAND subroutine, 4-11
EXPANDS subroutine, 4-15
EXPANDZ subroutine, 4-22
SHRINK subroutine, 4-10
SHRINKS subroutine, 4-13
SHRINKZ subroutine, 4-21
SHRKHCS subroutine, 4-17
SHRKHCX subroutine, 4-19

0599, A-2

user exits
POSTEXIT, 6-8
PREEXIT, 6-8, 6-12
security for CFMU, 11-5
TCF, 11-7

user Exits
POSTEXIT, 6-12

utilities, 4-30, 4-33, 4-34, 4-35

V

V
VP

and VZ field type, 3-13, 3-26

variable symbol, 3-4, 3-9, 3-13, 3-17, 3-21

variable-length
converted from data, 3-16
converted from packed decimal numbers, 3-11
field, 3-4, 3-6
input records, 3-8

variably occurring field, 3-13

VOLUMES parameter, 6-13, 6-14

VPE, 7-15
ACTION=ACTIVATE, 7-4
ACTION=DEACTV, 7-4
ACTION=DELETE, 7-4
ACTION=FORCDEL, 7-4
ACTION=INSTALL, 7-4
ACTION=INSTALLD, 7-4
ACTION=STATUS, 7-4
advanced topics, 7-15
checkpoint/restart, 7-17
DFW, 7-1, 7-2, 7-23
DFW parameter, 7-13
install, 7-3
job swaps, 7-17
look-aside read, 7-1
LSR, 7-1, 7-2
multiple extents, 7-23
optimized I/O Buffering, 7-2
reports, 7-25
RESTRICT parameter, 7-4
RESTRICT=jobname, 7-4

SIS, 7-2, 7-22, 7-23
special control DD statements, 7-5
syntax rules, 7-8
SYSOPT statement, 7-9
tuning tip, 7-12
tuning VPE’s buffer size, 7-24
usage notes, 7-14
VPEBUFnn DD statement, 7-6
VPEIGNR DD statement, 7-6
VPELSRPB DD statement, 7-7
VPEONALV DD statement, 7-6
VPEONGnn DD statement, 7-6
VPEONnn DD statement, 7-6
VPEVRPT DD statement, 7-7
VPEVSTS DD statement, 7-7
VPEWRKnn DD statement, 7-7
VSAM statement, 7-10

VPE assembly programming limitations, 7-24

VPE dataset specific parameters, 7-13

VS, 3-4, 3-9, 3-14, 3-15, 3-17, 3-21, 3-24

VSAM backup/restore processing
exclusion of, 8-1

VSAM files, 3-13, 3-27

VSAM parameter
CISZ, 7-19
FREESPACE, 7-22
IMBED, 7-21
REPLICATE, 7-22
SHAREOPTIONS, 7-21
SPACE, 7-19
SPEED, 7-22
WRITECHECK, 7-21

VSAM statement
BUFFRLOC parameter, 7-10
MINBUF parameter, 7-10
MINRESV parameter, 7-11
POOL parameter, 7-10
SIS parameter, 7-10
TGTBUF parameter, 7-10
VSAMREC parameter, 7-10

VSAMREC parameter
parameters

VSAMREC, 7-10, 7-13

VZ field type, 3-6, 3-13

Index–12 BrightStor CA-Compress Data Compression Reference Guide

RULE statement, 7-11
rules table, 7-8
SHAREOPTION, 7-16

W

WORKING-STORAGE SECTION, 4-5, 4-23, 4-24, 4-25

WRK parameter
EXPANDS subroutine, 4-15
EXPANDZ subroutine, 4-22
SHRINKS subroutine, 4-13
SHRINKZ subroutine, 4-21
SHRKHCS subroutine, 4-17
SHRKHCX subroutine, 4-19

X

X field type, 3-6, 3-12, 3-25

XCLUDE parameter, 7-11

Y

YOUR.SAMS.SAMSRC, 4-27, 4-28

Z

ZL and ZR field type, 3-26

ZL field type, 3-6, 3-16

zoned decimal data, 3-14

ZR field type, 3-6, 3-16

 Index–13

	Reference Guide
	Contents
	Chapter 1: Preface
	Summary of Changes
	Service Pack 04 Enhancements
	Release 5.2 New Features
	PTF Tape PC9751 Enhancements
	PTF Tape PC9738 Enhancements
	Release 5.1 New Features
	Maintenance Release 5.0.2 Enhancements
	Release 5.0 New Features
	Contacting Technical Support

	Chapter 2: Control File Maintenance Utility
	How the Utility Works
	Control File Statements
	Syntax Rules
	ADD Statement (VSAM)
	ALTER Statement (VSAM)
	ADD Statement (Physical Sequential)
	ALTER Statement (Physical Sequential)
	COPY Statement
	DELETE Statement
	FDT Statement
	REPORT Statement
	SET Statement

	Control File Maintenance Utility Reports
	CFMU Short Format
	CFMU Long Format
	CFMU Dump Format

	FDT Compare Utility DEFXP050
	Executing the FDT Compare Utility

	Chapter 3: Record Definition Language
	Performance Considerations When Using RDL
	How the RDL Operates
	RDL Terminology
	RDL Syntax Rules
	RDL Field Type Descriptions
	Field Types C1, C2, and C3—Character Data
	Field Type CS—Character Data \(SHRVL Compression
	Field Type GA—Garbage Data \(Permanently Unused
	Field Type L—Insert Tally of Actual Length
	Field Types MA and MB—Pattern Matching
	Field Type N—Fields Exempted From Compression
	Field Type PD—Packed Decimal Data
	Field Types S and X—Set of Expected Values
	Field Type UN — Undefined Fields
	Field Types V, VP, and VZ — Calculate Variable Sy
	Field Types ZL and ZR — Zoned Decimal Data

	RDL Repetition Groups
	RDL Condition Groups
	RDL Position Function
	General Restrictions on RDL Use
	Guide to Correct RDL Specifications
	RDL Defaults
	Determining the Best Compression
	How to Enter or Change the RDL Using the IUI

	Chapter 4: CA-Compress/2
	Features
	Using Subroutines
	Accessing the FDT
	JCL Implications for Existing Application Programs

	Calling the Subroutines
	CALL to Subroutine SHRINK
	CALL to Subroutine EXPAND
	CALL to Subroutine CLOSE
	CALL to Subroutine SHRINKS
	CALL to Subroutine EXPANDS
	CALL to Subroutine CLOSES
	CALL to Subroutine SHRKHCS
	CALL to Subroutine SHRKHCX
	CALL to Subroutine SHRKHCC
	CALL to Subroutine SHRINKZ
	CALL to Subroutine EXPANDZ

	Incorporating Subroutine Calls in Existing Application Programs
	Defining Compressed Records in COBOL Application Programs
	Linking Subroutines With Applications
	Using CA-Compress/2 Under CICS
	Install the Callable SHRINK Subroutines for CICS
	Step 1. Specify the FDT Names and a Fullword in the CWA
	Step 2. Assemble and Link the Program Modules
	Step 3. Modify the CICS Tables
	Step 4. Modify and Linkedit the Application Programs

	CA-Compress/2 Subroutines Under CICS

	The CA-Compress/2 Utilities
	Prepass
	Prepass Statistics

	FDTLOADR Utility
	Compression Utilities
	Compression Statistics

	Expansion Utilities
	JCL Defaults

	Chapter 5: SUBSYS DD Parameter
	How it Works
	Coding the SUBSYS JCL Parameter
	SUBSYS Syntax for the BrightStor CA-Compress Subsystem
	MVS SUBSYS Restrictions and Special Processing

	Special Considerations When Using SUBSYS
	DCB Information When Using SUBSYS
	Nonlabeled Tapes
	Partitioned Data Sets
	Correct JCL
	Incorrect JCL

	JCL Restrictions

	Chapter 6: Test Compression Facility
	How The Program Works
	Notes on Using The Program

	TCF Command Language
	Command Language Syntax Rules
	Examples:

	Command Structures in the Command Language
	SET Statement
	MODE=LIVE|SIMULATE
	PREEXIT=modname
	POSTEXIT=modname
	PERCENT=100|n
	BYPASS=0|n
	SKIP=0|n
	EXTRACT=0|n
	DSNFILL=.|x
	SECURITY=NONE|RACF|TOPSEC|ACF2

	SCAN Statement
	CATALOG=catalogname
	DSNAME=dsname|pattern
	EXCCATS=catalogname
	BEGINDSN=dsname
	PREEXIT=modname
	POSTEXIT=modname
	SELECT Statement
	DSNAMES=dsname
	VOLUMES=volume
	MBYTESRANGE=(0|n[,n])
	DSORG=ALL|VSAM|PS

	EXCLUDE Statement
	DSNAMES=dsname
	VOLUMES=volume
	MBYTESRANGE=(0|n[,n])
	DSORG=ALL|VSAM|PS

	SELECT and EXCLUDE Processing Rules
	EXAMINE Statement
	PERCENT=100|n
	BYPASS=0|n
	SKIP=0|n
	EXTRACT=0|n

	TCF Report
	Field Description and Contents

	Chapter 7: VSAM Performance Enhancement
	VPE
	How VPE Enhances VSAM Performance
	VPE's Use of VSAM's Local Shared Resources (LSR)
	Reports Allow VPE Tuning

	Installing VPE
	Activating and Deactivating VPE on Your System
	VPE Operation
	VPE Special Control DD Statements
	VPE Rules Table
	VPE Rules Table Syntax Rules
	VPE Rules Table Source Statements
	SYSOPT Statement
	VSAM Statement
	RULE Statement
	Data Set Specific Parameters

	Usage Notes

	Advanced Topics
	VPE Implementation Considerations
	Region Size
	Region Computations
	Sequentially Accessed VSAM Files
	SHAREOPTION=4 Files
	MACRF=RLS (Record Level Sharing)
	Checkpoint/Restart
	Job Swaps

	Optimizing VSAM Performance by Adjusting VSAM Parameters
	CISZ (Data Component CI Size)
	SPACE (Data Component CA Size)
	CISZ (Index Component CI Size)
	SHAREOPTIONS
	IMBED
	WRITECHECK
	REPLICATE
	SPEED
	FREESPACE
	Multiple Extents
	Tuning VPE's Buffer Size
	Assembly Programming Limitations

	VPE Reports
	VPE Initialization and Setup Statistics
	VSAM Recommendation Report
	Performance Statistics Report

	Chapter 8: Exclusion Facility
	Exclusion for VSAM Backup/Restore Processing
	Exclusion for Physical Sequential Transparency Processing
	Exclusion to Prevent Control-Interval (CI) Processing and EXCP
	The Exclude File
	Expiration Date of 86060
	Exclusion by Ddname @ZSM@XCL
	Invoking Exclusion in Assembler Macros

	Chapter 9: Safeguards
	How Safeguards Protect Data
	Safeguards Detailed Description
	Safeguards Utility

	Chapter 10: Physical Sequential Transparency
	Full Transparency to Application Programs
	Full Interactive User Interface and Control File Maintenance Utility
	Compatibility with Previous Releases and the SUBSYS JCL Parameter
	Implementation Considerations
	Deferred and Immediate Implementation
	DCB Attributes
	Automated Cleanup of Uncataloged Data Sets

	Implementing Uncompressed Data Sets With the IUI
	Implementing Compressed Data Sets With the IUI
	Limitations and Restrictions
	Only Sequential Access Using QSAM or BSAM
	Concatenation Restrictions
	Limited DCB Exit List Support
	Relatively High Overhead for Sequential Processing

	Chapter 11: User Exits
	Transparency User Exit
	Enabling the User Exit
	Using the User Exit
	Coding the User Exit
	The Parameter List

	Return Codes

	Control File Maintenance Utility Security Interface
	How the User Security Exit Works
	Using the Security Exit
	Linkage Conventions of the Exit
	Return Codes
	The Parameter List

	Test Compression Facility User Exit
	PREEXIT Pre-Processing Exit
	POSTEXIT Post-Processing Exit
	Security Interface and Exit

	Appendix A: Analysis File Conversion
	Procedure

	Glossary
	Index

