

Reference Guide

Advantage EDBC


 OpenSQL

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by the
copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

 2001 Computer Associates International, Inc.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Contents iii

 Contents

Chapter 1: Introduction
Conventions... 1-2

Chapter 2: Overview of OpenSQL
What is OpenSQL?... 2-1

EDBC Products .. 2-1
Embedded OpenSQL ... 2-2
Building Embedded OpenSQL Programs ... 2-2
Retrieving Status Information ... 2-2
Specifying Parameters at Run Time .. 2-2
Differences between Embedded and Interactive OpenSQL 2-3

Features .. 2-3
Object Names.. 2-4
Regular and Delimited Identifiers.. 2-5
Restrictions on Identifiers ... 2-5

Case Sensitivity of Identifiers .. 2-7
Comment Delimiters ... 2-7
Statement Terminators.. 2-7
Correlation Names ... 2-8

OpenSQL Limits.. 2-10

Chapter 3: OpenSQL Data Types
Character Data Types .. 3-1

The Character Data Type ... 3-2
The Varchar Data Type ... 3-2

Numeric Data Types ... 3-3
Integer Data Types ... 3-3
The Decimal Data Type ... 3-4
The Floating Point Data Types... 3-4

iv Reference Guide

Abstract Data Type ... 3-5
The Date Data Type... 3-5

Absolute Date Input Formats .. 3-6
Absolute Time Input Formats .. 3-8
Combined Date and Time Input .. 3-8
Date and Time Display Formats .. 3-9

Storage Formats of Data Types .. 3-9
Literals ...3-10

String Literals ...3-10
Numeric Literals ..3-10
Floating Point Literals..3-11

OpenSQL Constants ...3-12
Nulls...3-12

Nulls and Comparisons ..3-12
Nulls and Aggregate Functions ...3-13

Chapter 4: Elements of OpenSQL Statements
Operators.. 4-1

Arithmetic Operators ... 4-1
Comparison Operators .. 4-2
Logical Operators... 4-2

Operations... 4-3
Assignment Operations ... 4-3

Character String Assignments.. 4-4
Numeric Assignments... 4-5
Date Assignments... 4-5
Null Assignments... 4-5

Arithmetic Operations .. 4-6
Default Type Conversion .. 4-6
Arithmetic Operations on Decimal Data Types... 4-7

Aggregate Functions.. 4-8
The Count Function and Nulls ... 4-9
The Group by Clause with Aggregate Functions ... 4-9
Restrictions on the Use of Aggregate Functions ...4-10
Aggregate Functions and Decimal Data..4-10

Expressions...4-10
Predicates ..4-11

The Like Predicate ...4-11
The Between Predicate ...4-13
The In Predicate ...4-13

Contents v

The Any-or-All Predicate .. 4-14
The Exists Predicate ... 4-15
The Is null Predicate... 4-16

Search Conditions .. 4-16
Subqueries ... 4-17

Chapter 5: Embedded OpenSQL
Syntax of an Embedded OpenSQL Statement ... 5-2
Structure of Embedded OpenSQL Programs.. 5-2
Host Language Variables ... 5-4

Declaring Variables .. 5-5
The Include Statement .. 5-5
Variable Usage... 5-6
Variable Structures... 5-6
The Dclgen Utility.. 5-7
Indicator Variables ... 5-8
Null Indicators and Data Retrieval... 5-8
Using Null Indicators to Assign Nulls.. 5-9
Indicator Variables and Character Data Retrieval... 5-10
Null Indicator Arrays and Host Structures... 5-10

Data Manipulation with Cursors ... 5-11
Declaring a Cursor .. 5-12
Opening Cursors.. 5-12
Open Cursors and Transaction Processing ... 5-13
Fetching the Data ... 5-13
Fetching Rows Inserted by Other Queries.. 5-14
Using Cursors to Update Data.. 5-14
Using Cursors to Delete Data... 5-15
Closing Cursors... 5-16
Summary of Cursor Positioning .. 5-17

Chapter 6: Dynamic OpenSQL
The SQLDA ... 6-2

Structure of the SQLDA .. 6-2
Including the SQLDA in a Program .. 6-3
Describe Statement and the SQLDA.. 6-4
Data Type Codes... 6-4
The Using Clause .. 6-5

vi Reference Guide

Dynamic OpenSQL Statements .. 6-5
Execute Immediate Statement.. 6-6
Prepare and Execute Statements ... 6-6
Describe Statement ... 6-7

Executing a Dynamic Non-select Statement ... 6-8
Using Execute Immediate to Execute a Non-select Statement.................................. 6-8
Preparing and Executing a Non-select Statement .. 6-9

Executing a Dynamic Select Statement...6-10
When the Result Column Data Types are Known ...6-11
When the Result Column Data Types are Unknown...6-12
Preparing and Describing the Select Statement ...6-13
Analyzing the Sqlvar Elements..6-14
Executing the Select with Execute Immediate...6-16
Using a Cursor to Retrieve the Results ...6-17

Chapter 7: OpenSQL Features
Transactions ... 7-1

Controlling Transactions .. 7-2
Committing Transactions.. 7-2
Aborting Statements and Transactions.. 7-3
Effects of Aborting Transactions ... 7-3
Interrupting Transactions ... 7-3

Retrieving Status Information ... 7-3
The Dbmsinfo Function ... 7-4
The Inquire_sql Statement ... 7-5
The SQL Communications Area (SQLCA)... 7-5

Error Handling... 7-7
The SQLSTATE Variable .. 7-7
Local and Generic Errors .. 7-8
Reading an OpenSQL Error Message ... 7-9
Displaying an Error Message .. 7-9
Handling Errors in Embedded Applications..7-10
Obtaining Error Information from the SQLCA..7-10
Trapping Errors Using the Whenever Statement ..7-11
Defining an Error Handler..7-12
Obtaining Error Information Using Inquire Statements7-13
Suppressing Error Messages ..7-14
Specifying Program Termination on Errors...7-14
Handling Deadlock ..7-15
Non-cursor Template ..7-15

Contents vii

Single Cursor Template.. 7-15
Master/Detail Template ... 7-16

Multiple Session Connections .. 7-17
Connecting to Multiple Sessions .. 7-17
Switching Sessions .. 7-18
Terminating a Session ... 7-18
Multiple Sessions and the SQLCA .. 7-19
Multiple Sessions and the DBMS ... 7-19
Multiple Session Examples... 7-20

Database Procedures .. 7-21
Creating Database Procedures.. 7-21
Registering Database Procedures ... 7-21
Executing Database Procedures... 7-22

DBMS Extensions ... 7-23
The With Clause .. 7-23
Syntax of the With Clause.. 7-24

Examples... 7-25

Chapter 8: OpenSQL Statements
SQL Version... 8-1
SQL Statements Context .. 8-1

Extended Statements ... 8-2
Begin Declare Section .. 8-2

Syntax .. 8-2
Description .. 8-3
Example .. 8-3

Close ... 8-3
Syntax .. 8-3
Description .. 8-4
Permissions ... 8-4
Example .. 8-4

Commit... 8-4
Syntax .. 8-4
Description .. 8-5
Embedded Usage .. 8-5
Permissions ... 8-5
Example .. 8-5

Connect... 8-6
Syntax .. 8-6
Description .. 8-6

viii Reference Guide

Permissions .. 8-8
Examples .. 8-8

Create Index ... 8-8
Syntax... 8-9
Description .. 8-9
Embedded Usage..8-10
Example ..8-10

Create Table ..8-10
Syntax..8-10
Description ...8-11
Embedded Usage..8-11
Specifying the Column Names, Data Types, and Lengths8-11
Using the Create table...as Syntax ...8-12
Examples ...8-12

Create View ..8-13
Syntax..8-13
Description ...8-13
Embedded Usage..8-15
Example ..8-15

Declare Cursor ..8-15
Syntax..8-15
Description ...8-16
Examples ...8-19

Declare Statement ...8-22
Syntax..8-22
Description ...8-22
Example ..8-22

Declare Table ...8-23
Syntax..8-23
Description ...8-23
Example ..8-23

Delete ..8-24
Syntax..8-24
Description ...8-24
Embedded Usage..8-24
Non-cursor Delete ...8-25
Cursor Delete ...8-25
Example ..8-26

Describe..8-26
Syntax..8-26
Description ...8-26

Contents ix

Direct Execute Immediate ... 8-27
Syntax ... 8-28
Description ... 8-28

Disconnect ... 8-28
Syntax ... 8-28
Description ... 8-28
Examples... 8-29

Drop .. 8-29
Syntax ... 8-29
Description ... 8-30
Embedded Usage ... 8-30
Examples... 8-30

End Declare Section ... 8-30
Syntax ... 8-30
Description ... 8-31

Endselect .. 8-31
Syntax ... 8-31
Description ... 8-31
Example ... 8-32

Execute .. 8-32
Syntax ... 8-32
Description ... 8-32
Examples... 8-34

Execute Immediate.. 8-35
Syntax ... 8-35
Description ... 8-35
Example ... 8-37

Execute Procedure .. 8-38
Syntax ... 8-38
Description ... 8-38
Passing Parameters - Non-Dynamic Version ... 8-39
Passing Parameters - Dynamic Version .. 8-39
Permissions .. 8-41
Locking .. 8-41
Performance.. 8-41
Examples... 8-41

Fetch .. 8-42
Syntax ... 8-43
Description ... 8-43
Examples... 8-44

Help... 8-45
Syntax ... 8-45

x Reference Guide

Description ...8-45
Examples ...8-46

Include ...8-47
Syntax..8-47
Description ...8-47
Examples ...8-48

Inquire_sql ...8-48
Syntax..8-48
Description ...8-48
Types of Inquiries ...8-49
Example ..8-52

Insert ..8-52
Syntax..8-52
Description ...8-53
Embedded Usage..8-53
Examples ...8-54

Open...8-55
Syntax..8-55
Description ...8-55
Examples ...8-56

Prepare...8-57
Syntax..8-57
Description ...8-57
Example ..8-60

Rollback..8-61
Syntax..8-61
Description ...8-61
Embedded Usage..8-61
Performance ..8-61

Select (interactive) ...8-62
Syntax..8-62
Description ...8-62
Select Statement Clauses ...8-63
Query Evaluation..8-63
The Select Clause ..8-64
The From Clause ..8-66

Specifying Tables and Views ..8-66
The Where Clause ...8-67

Simple Where Clauses..8-67
Joins..8-68
Join Relationships ...8-69
Subqueries..8-69

Contents xi

The Order by Clause .. 8-69
The Group by Clause .. 8-71
The Having Clause .. 8-72
The Union Clause ... 8-72
Examples... 8-73

Select (embedded) .. 8-74
Syntax ... 8-74
Description ... 8-75
Non-Cursor Select... 8-75
Select Loops .. 8-75
Retrieving Values into Host Language Variables ... 8-76
Host Language Variables in the Union Clause.. 8-77
Repeated Queries ... 8-77
Cursor Select ... 8-77
Error Handling ... 8-78
Embedded Usage ... 8-78
Examples... 8-78

Set .. 8-81
Syntax ... 8-81
Description ... 8-81
The Set Autocommit Option.. 8-81

Set_sql... 8-82
Syntax ... 8-82
Description ... 8-82

Update .. 8-85
Syntax ... 8-85
Description ... 8-85
Embedded Usage ... 8-86
Cursor Updates ... 8-86
Examples... 8-87

Whenever.. 8-88
Syntax ... 8-88
Description ... 8-88
Examples... 8-90

Chapter 9: Extended Statements
Create Schema... 9-1

Syntax .. 9-1
Description .. 9-2
Restrictions.. 9-3

xii Reference Guide

Embedded Usage... 9-3
Permissions .. 9-3
Example ... 9-3

Create Table (extended)... 9-4
Syntax... 9-4
Description .. 9-5
Column Specifications .. 9-5
Column Defaults and Nullability... 9-6

Default Values.. 9-6
Nullability ... 9-7

Constraints .. 9-8
Using...9-12
Embedded Usage..9-13
Permissions ...9-13
Examples ...9-13

Grant ..9-15
Syntax..9-15
Description ...9-15
The Grant All Privileges Option...9-16
The Grant Option..9-17
Embedded Usage..9-18
Permissions ...9-18
Examples ...9-18

Revoke ...9-18
Syntax..9-19
Description ...9-19
Revoking the Grant Option ...9-19
Restrict versus Cascade ..9-20
Embedded Usage..9-21
Permissions ...9-21
Example ..9-21

Select ..9-21
Syntax..9-22

Chapter 10: OpenSQL Standard Catalogs
Standard Catalog Interface ...10-2

The iidbcapabilities Catalog ..10-2
The iidbconstants Catalog ..10-5
The iitables Catalog..10-5
The iicolumns Catalog ..10-11

Contents xiii

The iiphysical_tables Catalog.. 10-13
The iiviews Catalog .. 10-15
The iiindexes Catalog... 10-15
The iiindex_columns Catalog.. 10-16
The iialt_columns Catalog .. 10-17
The iistats Catalog.. 10-17
The iihistograms Catalog ... 10-18
The iiprocedures Catalog ... 10-18
The iiregistrations Catalog .. 10-19
The iisynonyms Catalog .. 10-20

Standard Catalogs ... 10-20
Mandatory Catalogs with Entries Required ... 10-20
Mandatory Catalogs without Entries Required .. 10-21

Appendix A: Keywords
Keyword List..A-1
ISO SQL Keywords ...A-18

Appendix B: Terminal Monitor
Accessing the Terminal Monitor... B-1
The Query Buffer .. B-2
The Terminal Monitor Commands... B-3
Messages and Prompts ... B-5
Character Input and Output .. B-6
Help.. B-7
Aborting the Editor (VMS only) ... B-7

Appendix C: Generic Error Codes
SQLSTATE Values ... C-1
Generic Error Codes ... C-7
Generic Error Data Exception Subcodes ...C-10
SQLSTATE and Equivalent Generic Errors ..C-11

Index

Introduction 1–1

Chapter

1 Introduction

The Advantage EDBC OpenSQL Reference Guide describes OpenSQL, and provides
detailed descriptions of all OpenSQL statements, examples of the correct use of
OpenSQL statements and features, and details to help you use OpenSQL
effectively. This guide is designed for programmers who write applications that
are portable across all database servers, and is intended as a reference guide for
the database system administrator. This guide is divided into the following
chapters:

Chapter 1, Introduction, details the conventions and symbols used in presenting
the information in this guide. Since they enhance your understanding of this
guide, it is highly recommended that you familiarize yourself with them.

Chapter 2, Overview of OpenSQL, introduces the basics of OpenSQL including
an overview of interactive and embedded OpenSQL statements. This chapter
also describes the features and limits of OpenSQL and the database management
system.

Chapter 3, OpenSQL Data Types, describes the various OpenSQL data types
along with data type storage formats, literals, and OpenSQL constants.

Chapter 4, Elements of OpenSQL Statements, details elements of OpenSQL
statements including operators, functions, operations, and queries.

Chapter 5, Embedded OpenSQL, describes embedded OpenSQL statements.

Chapter 6, Dynamic OpenSQL, discusses dynamic programming including
SQLDA and dynamic OpenSQL statements.

Chapter 7, OpenSQL Features, describes the features of OpenSQL including
database procedures, rules, multiple session connections, database events, and
large objects.

Chapter 8, OpenSQL Statements, describes the purpose, syntax, and use of
individual OpenSQL statements.

Chapter 9, Extended Statements, lists statements and extensions that may be
available in OpenSQL.

Chapter 10, OpenSQL Standard Catalogs, describes the Standard Interface
catalogs.

Conventions

1–2 Reference Guide

Appendix A, Keywords, lists keywords and the context in which they are
reserved.

Appendix B, Terminal Monitor, describes invoking the line-based version of the
Terminal Monitor and issuing queries interactively.

Appendix C, Generic Error Codes, lists generic error codes, SQLSTATE values,
and generic error data exception subcodes.

Conventions
This guide employs several conventions, described in this section, to make
locating and identifying information easier.

Cross References The following conventions are used to refer you to other relevant parts of the
documentation set:

■ Guide name in italic:

See the System Administrator’s Guide.

■ Chapter name in double quotes:

See “Creating Databases” in this guide.

■ Section name as it appears within this guide:

See the Rules for Naming Databases section.

Operating
Environment
Differences

This guide documents OpenSQL for all platforms on which it is available. The
following symbols indicate differences that depend on the operating
environment:

Win32

Information is specific to Microsoft Windows NT or Windows 95/98.

UNIX

This text is specific to UNIX.

VMS

This text is specific to the VMS operating system.

In each case, the symbol indicates the end of the operating environment-
specific text.

Key Names The names of keys, such Enter, Ctrl, and Del, appear in the document as they do
on most keyboards. When referring to the four arrow keys as a group, they are
referred to as Direction keys; however, the name of each Direction key (for
example, Up arrow and Left arrow) is used when referring to them
individually.

Conventions

Introduction 1–3

Key Combinations Whenever two keys are joined together with a plus sign (+), such as Ctrl+R,
hold down the first key while pressing the second key to complete the
command. Release the second key first.

Key Sequences When keys are separated by a comma, press them in the sequence indicated.
For example, the Alt+E, C keystroke sequence indicates that you should hold
down the Alt key while pressing the E key, release them both, then press and
release the C key.

Keyboard Function This guide refers to a keyboard function (for example, Menu key) rather than to
an actual key (for example, F1). Your terminal model determines the actual key
that you use to perform a specific function.

Terminology This guide observes the following distinction in terminology:

■ A command is an operation that is executed at the operating system level. An
extended operation invoked by a command is often referred to as a utility.

■ A statement is an operation that is embedded within a program or execute
interactively from the Terminal Monitor.

 A statement can be written in a host programming language (such as C), or a
database query language (SQL).

Syntax and User Input When representing syntax and user input, the following conventions are used:

Convention Usage

Boldface Indicates any text that must be typed as shown.

Italics Represent a variable name or placeholder for which you
must supply an actual value—this convention is used in
explanatory text, as well as syntax.

Courier Typeface Indicates text that is displayed on your screen, such as
prompts and messages. For example, the following
statement is a prompt:
Enter database name:

Case Sensitivity System command and environment variable names may
be case-sensitive, depending on the requirements of your
operating system.

[] (square brackets) Used to enclose an optional item.

{ } (curly braces) Used to enclose an optional item that you can repeat as
many times as appropriate.

 | (vertical bar) Used between items in a list to indicate that you should
choose one of the items.

Conventions

1–4 Reference Guide

Convention Usage

UNIX

% (percent sign) At the beginning of a command line, indicates
commands that are entered at the C-shell command line
prompt. It should not be entered by the user.

 $ (dollar sign) At the beginning of a command line, indicates commands
that are entered at the Bourne-shell command line
prompt. It should not be entered by the user.

Note: This symbol is also used as a literal part of syntax
when referring to environment variable names. When it
appears anywhere except at the beginning of a
command line, it must entered exactly as shown.

Example The following example illustrates some of these conventions:

create table tablename (columnname format
 {,columnname format})
 [with_clause]

Embedded OpenSQL
Examples

Examples of embedded OpenSQL code provided in this guide use the following
conventions:

Convention Usage

Margins None are used.

; (semicolon) Represents the statement terminator.

Labels Appear on a line of their own and are followed by a colon
(:). Control passes to the statement following the label.

Host language
comments

Indicated by the OpenSQL comment indicator; for
example:
 /* This is a comment. */

' ' (single quotes) Surround character strings.

pseudocode Represents host language statements within embedded
OpenSQL. For example:
exec sql begin declaration;
 variable declarations
exec sql end declaration;

To determine the correct syntax for your programming language, refer to the
appropriate embedded SQL companion guide.

Overview of OpenSQL 2–1

Chapter

2 Overview of OpenSQL

This chapter introduces the basics of OpenSQL including an overview of various
EDBC products and available OpenSQL features.

What is OpenSQL?
SQL (Structured Query Language) is a language that allows you to manipulate
and maintain data in a relational database. OpenSQL allows you to create
applications that run on EDBC servers.

EDBC OpenSQL statements can be used in the following contexts:

■ Terminal Monitor

■ Embedded OpenSQL programs

■ Applications built with ODBC, OLEDB, or ADO

■ Applications built with API

Use OpenSQL statements in the interactive Terminal Monitor or in embedded
OpenSQL programs. OpenSQL statement syntax and results are consistent
across supported host programming languages. This guide does not include
specific information about host languages. For details, refer to the companion
guide for your specific host language.

EDBC Products

EDBC products are interfaces between applications and database management
systems. The EDBC products provide a variety of services, including:

■ Translating between OpenSQL and host query interfaces, such as CA-IDMS,
CA-Datacom/DB, or Oracle (for Windows NT, UNIX, or VMS).

■ Emulating SQL functions for non-relational databases such as VSAM and
CICS/VSAM.

What is OpenSQL?

2–2 Reference Guide

■ Converting between OpenSQL data types and data types that are native to
other host database management systems.

■ Translating host DBMS error messages to generic errors.

EDBC products are transparent, meaning that host databases are presented to the
client as a consistent interface regardless of the underlying DBMS structure.

Embedded OpenSQL

Using embedded OpenSQL, OpenSQL statements can be mixed with host
language statements. Use host language variables to specify values required by
embedded OpenSQL statements. For information about the requirements of a
specific host language, refer to your host language embedded SQL companion
guide.

Building Embedded OpenSQL Programs

The Embedded SQL preprocessor converts embedded OpenSQL statements in
your program into host language source code statements. Non-SQL host
language statements are passed through the preprocessor without being altered.
After the program has been preprocessed, it must be compiled and linked as
appropriate for the host language. Refer to your host language embedded SQL
companion guide for the details on preprocessing an embedded OpenSQL
program.

Retrieving Status Information

Status information is available to an embedded program from the SQL
Communications Area (SQLCA). The SQLCA is a data structure that can be
included in the program. The SQLCA contains information concerning the
results of the last executed OpenSQL statement. Statements in embedded
OpenSQL programs can refer to data in the SQLCA for execution of conditional
actions. The language-specific data structure of the SQLCA is described in your
host language embedded SQL companion guide.

Specifying Parameters at Run Time

OpenSQL enables you to execute queries that are formulated at run-time (rather
than before preprocessing). This is known as dynamic OpenSQL. For further
information about dynamic OpenSQL, refer to the “Dynamic OpenSQL” chapter.

Features

Overview of OpenSQL 2–3

Differences between Embedded and Interactive OpenSQL

Embedded OpenSQL builds on the features and statements available in
interactive OpenSQL. However, embedded OpenSQL differs from interactive
OpenSQL in the following areas:

■ Host language variables - Embedded OpenSQL allows host variables to be
used in place of many syntactic elements. (There are no variables in
interactive OpenSQL.)

■ Error and status information - In interactive OpenSQL, error and status
messages are sent directly to the terminal screen. In embedded OpenSQL,
the SQL Communications Area (SQLCA) structure receives error and status
information.

■ Data manipulation statements - There are two embedded versions of the
select statement. The first version is similar to the interactive select
statement. The second version allows the retrieval and updating of an
indeterminate number of rows, using cursors. The update and delete
statements also have cursor versions. For more information about cursors,
refer to Data Manipulation with Cursors in the “Embedded OpenSQL”
chapter.

■ Dynamic OpenSQL statements - Embedded OpenSQL creates statements
dynamically from individual components specified in program variables.
These statements can be executed repeatedly with different values.

■ Additional database access statements - Embedded OpenSQL includes
several statements not required in interactive OpenSQL. These additional
statements enable your embedded application to connect to a database and to
control cursors.

■ Repeated queries - A repeated query executes more quickly than other
queries, because the server retains the query execution plan. Embedded
OpenSQL allows you to specify a select, insert, update, or delete statement as
repeated.

Features
The availability of some OpenSQL features depend on the version of OpenSQL
supported by the host DBMS to which your application connects. To determine
which version of OpenSQL the host DBMS supports, select the row containing
the OPEN/SQL_LEVEL capability from the iidbcapabilities system catalog. For
details about system catalogs, refer to the “OpenSQL Standard Catalogs”
chapter.

Features

2–4 Reference Guide

The following OpenSQL features are only available when the
OPEN/SQL_LEVEL value in the iidbcapabilities system catalog is 00605 or
higher:

■ Create schema statement

■ Grant and revoke statements

■ Create table statement: column constraints and defaults

■ Schema.table syntax

■ Delimited identifiers

■ The escape clause in the like predicate

■ Database procedures

Object Names

The rules for naming OpenSQL objects (such as tables, columns, and views) are
as follows:

■ All keywords are reserved and cannot be used as variable or object names in
OpenSQL. In addition, embedded OpenSQL reserves all words beginning
with “ii”. Enforcement of keywords may vary by EDBC product. For a list
of keywords, refer to the “Keywords” appendix.

■ Names can contain only alphanumeric characters and must begin with an
alphabetic character (A-Z).

■ Names can contain (though not begin with) the special characters 0 through 9
and underscore (_).

■ All names are converted as necessary to the proper case for the host DBMS.
The host DBMS stores names in the system catalogs in one of three formats:
uppercase, lowercase, or mixed case. For more information, refer to the
iidbcapabilities catalog description in the “OpenSQL Standard Catalogs”
chapter.

■ The maximum length of an OpenSQL object name is 32 characters. To insure
application portability, limit names to a maximum of 18 characters.
Examples of objects managed by the user interfaces are:

– Forms

– JoinDefs

– QBFnames

– Graphs

– Reports

Features

Overview of OpenSQL 2–5

Regular and Delimited Identifiers

Identifiers in OpenSQL statements specify names for the following objects:

■ User

■ Column

■ Correlation name

■ Cursor

■ Database procedure

■ Database procedure parameter

■ Index

■ Prepared query

■ Schema

■ Table

■ View

Specify these names using regular (unquoted) identifiers or delimited
(double-quoted) identifiers. For example:

■ Table name in a select statement specified using a regular identifier:
 select * from employees

■ Table name in a select statement specified using a delimited identifier:
 select * from "my table"

Delimited identifiers allow special characters to be embedded in object names.
OpenSQL restricts the use of special characters in regular identifiers.

Restrictions on Identifiers

For ANSI/ISO Entry SQL-92 standards compliance, identifiers should be no
longer than 18 characters. The following table lists restrictions for each type of
identifier:

Restriction Regular Identifiers Delimited Identifiers

Quotes Specified without quotes Specified in double quotes

Keywords Cannot be a keyword Can be a keyword

Case Depends on host DBMS Is significant

Features

2–6 Reference Guide

Restriction Regular Identifiers Delimited Identifiers

Valid Special
Characters

“At” sign (@)

Crosshatch (#)

Dollar sign($)

Underscore (_)

Ampersand (&)

Asterisk (*)

“At” sign (@)

Colon (;)

Comma (,)

Crosshatch (#)

Dollar sign ($)

Double quotes (")

Equal sign (=)

Forward slash (/)

Left and right caret (< >)

Left and right parentheses

Minus sign (-)

Percent sign (%)

Period (.)

Plus sign (+)

Question mark (?)

Semicolon (;)

Single quote (')

Space

Underscore (_)

Vertical bar (|)

The following characters cannot be embedded in object names using either
regular or delimited identifiers:

■ Backslash (\)

■ Caret (^)

■ Curly braces ({ })

■ DEL (ASCII 127 or X'7F')

■ Exclamation point (!)

■ Left quote (ASCII 96 or X'60')

■ Tilde (~)

Features

Overview of OpenSQL 2–7

To specify double quotes in a delimited identifier, the quotes must be repeated.
For example:
"""Identifier""Name"""

is interpreted by OpenSQL as:
"Identifier"Name"

Case Sensitivity of Identifiers

 Case sensitivity for regular and delimited identifiers depends on the underlying
DBMS. For compliance with ANSI/ISO Entry SQL-92 standards, delimited
identifiers must be case sensitive.

OpenSQL treats database and user names without regard to case.

Comment Delimiters

To indicate comments in interactive OpenSQL, use the following delimiters:

■ /* and */ (left and right delimiters, respectively). For example:
 /* This is a comment */

 When using “/*...*/” to delimit a comment, the comment can continue over
more than one line. For example,

 /* Everything from here...
 ...to here is a comment */

■ -- (left side only). For example,
 --This is a comment.

 The “--” delimiter indicates that the rest of the line is a comment. A comment
delimited by “--” cannot be continued to another line.

To indicate comments in embedded OpenSQL, use the following delimiters:

■ --, with the same usage rules as interactive OpenSQL.

■ Host language comment delimiters. Refer to your host language companion
guide for information about comment delimiters.

Statement Terminators

Statement terminators separate one OpenSQL statement from another. In
interactive OpenSQL, the statement terminator is the semicolon (;). Statements
must be terminated with a semicolon when entering two or more OpenSQL
statements before issuing the go command (\g), selecting the Go menu item, or
issuing some other Terminal Monitor command.

Features

2–8 Reference Guide

In the following example, the first and second statements are terminated by
semicolons. The third statement need not be terminated with a semicolon,
because it is the final statement.
select * from addrlst;
select * from emp
where fname = 'john';
select * from emp
where mgrname = 'dempsey'\g

If only one statement is entered, the statement terminator is not required. For
example, the following single statement does not require a semicolon:
select * from addrlst\g

In embedded OpenSQL applications, the use of a statement terminator is
determined by the rules of the host language. For details, refer to your host
language companion guide.

Correlation Names

Correlation names are used in queries to clarify the table (or view) to which a
column belongs. For example, the following query uses correlation names to join
a table with itself:
select a.empname from emp a, emp b
 where a.mgrname = b.empname
 and a.salary > b.salary;

Correlation names can also be used to abbreviate long table names.

Specify correlation names in select statements. A single query can reference a
maximum of 30 correlation and table names (including all base tables referenced
by views specified in a query).

If a correlation name is not specified, the table name implicitly becomes the
correlation name. For example, in the following query:
select * from employee
 where salary > 100000;

OpenSQL assumes the correlation name, employee, for the salary column and
interprets the preceding query as:
select * from employee
 where employee.salary > 100000;

If a correlation name is specified for a table, the correlation name (and not the
actual table name) must be used within the query. For example, the following
query generates a syntax error:
/*incorrect*/
select * from employee e
where employee.salary > 35000;

Features

Overview of OpenSQL 2–9

A correlation name must be unique. For example, the following statement is
illegal because the same correlation name is specified for different tables:
/*incorrect*/
select e.ename from employee e, manager e
 where e.dept = e.dept;

A correlation name that is the same as a table that you own cannot be specified.
If you own a table called mytable, the following query is illegal:
select * from othertable mytable...;

In nested queries, OpenSQL resolves unqualified column names by checking the
tables specified in the nearest from clause, then the from clause at the next higher
level, and so on, until all table references are resolved.

For example, in the following query, the dno column belongs to the deptsal table,
and the dept column to the employee table:
select ename from employee
 where salary >
 (select avg(salary) from deptsal
 where dno = dept);

Because the columns are specified without correlation names, OpenSQL
performs the following steps to determine to which table the columns belong:

Column Action

dno 1. OpenSQL checks the table specified in the nearest from
clause (the deptsal table). The dno column does belong to
the deptsal table. OpenSQL interprets the column
specification as deptsal.dno.

dept 2. OpenSQL checks the table specified in the nearest from
clause (deptsal). The dept column does not belong to the
deptsal table.

3. OpenSQL checks the table specified in the from clause at the
next higher level (the employee table). The dept column
does belong to the employee table. OpenSQL interprets the
column specification as employee.dept.

OpenSQL does not search across subqueries at the same level to resolve
unqualified column names. For example, given the query:
select * from employee
where
 dept = (select dept from sales_departments
 where mgrno=manager)
 or
 dept = (select dept from mktg_departments
 where mgrno=manager_id);

OpenSQL Limits

2–10 Reference Guide

OpenSQL checks the description of the sales_departments table for the mgrno
and manager columns. If they are not found, OpenSQL checks the employee
table next, but will not check the mktg_departments table. Similarly, OpenSQL
first checks the mktg_departments table for the mgrno and manager_id columns.
If they are not found, OpenSQL will check the employee table, but will never
check the sales_departments table.

OpenSQL Limits
To maintain application portability, your OpenSQL application should observe
the limits listed in the following table. An individual host DBMS may permit
values in excess of those listed here.

Item Min/Max Limit

Char length Max 240 characters

Columns in index Max 16 columns

Columns in order by clause Max 16 columns

Columns in table Max 127 columns

Columns in view Max 127 columns

Columns: total length in group by clause Max 2000 bytes

Columns: total length in order by clause Max 2000 bytes

Elements in select list Max 127 elements

Negative float value Min Processor-dependent

Negative float value Max Processor-dependent

Positive float value Min Processor-dependent

Positive float value Max Processor-dependent

Host variables in OpenSQL statement Max 256 variables

Integer value Min -2,147,483,648

Integer value Max +2,147,483,647

Predicates in having clause Max 50 predicates

Predicates in where clause Max 50 predicates

Row length (including overhead) Max 2000 bytes

Scalar functions in select list Max 127 functions

Smallint value Min -32,768

OpenSQL Limits

Overview of OpenSQL 2–11

Item Min/Max Limit

Smallint value Max 32,767

SQL identifier Max 18 characters

Tables in SQL statement Max 15 tables

User ID Max 18 characters

Varchar length Max 2000 characters

OpenSQL Data Types 3–1

Chapter

3 OpenSQL Data Types

This chapter describes the character, numeric, and abstract OpenSQL data types,
along with data type storage formats, literals, and OpenSQL constants.

The following table lists the OpenSQL data types:

Class Category Data Type (Synonyms)

Character Fixed length character (char)

 Varying length varchar

Numeric Exact numeric integer (integer4, int)

 smallint (integer2)

 decimal (dec, numeric)

 Approximate
numeric

float (float8, double precision)

 real (float4)

Abstract (none) date

Character Data Types
Character data types are strings of ASCII characters. Upper and lower case
alphabetic characters are accepted literally. OpenSQL supports one fixed-length
character data type, character, and one variable-length character data types,
varchar.

The maximum row length in an OpenSQL table is 2008 bytes. Therefore, the
maximum length of a character column is 2008 minus any additional space
requirements. Additional space requirements for character columns are as
follows:

■ Varchar columns require two additional bytes to store a length specifier.

■ Nullable columns require one additional byte to store a null indicator.

Character Data Types

3–2 Reference Guide

The Character Data Type

Character strings are fixed-length strings that can contain any printing or
non-printing character, and the null character ('\0'). For example, if you enter
ABC into a character(5) column, five bytes will be stored, as follows:
'ABC '

Leading and embedded blanks are significant when comparing character strings.
For example, OpenSQL considers the following character strings to be different:
'A B C'
'ABC'

When selecting character strings using the underscore (_) wildcard character,
any trailing blanks you want to match must be included. For example, to select
the following character string:
'ABC '

the wildcard specification must also contain trailing blanks:
'___ '

Length is not significant when comparing character strings. The shorter string is
(logically) padded to the length of the longer. For example, OpenSQL considers
the following character strings equal:
'ABC'
'ABC '

Char is a synonym for character.

The Varchar Data Type

Varchar strings are variable-length strings, returned to applications as a 2-byte
length specifier followed by character data. The varchar data type can contain
any character, including non-printing characters and the ASCII null character
('\0').

Blanks are significant in the varchar data type. For example, OpenSQL does not
consider the following two varchar strings equal:
'the store is closed'

and
'thestoreisclosed'

Numeric Data Types

OpenSQL Data Types 3–3

If the strings being compared are unequal in length, the shorter string is padded
with trailing blanks until it equals the length of the longer string.

For example, the following two varchar strings:
'abcde' and 'abcd'

are compared as
'abcde' and 'abcd '

Numeric Data Types
OpenSQL has two categories of numeric data types: exact and approximate. The
exact numeric data types are the integer data types and the decimal data type.
The approximate numeric data types are the floating point data types.

Integer Data Types

There are two integer data types:

■ smallint (two-byte)

■ integer (four-byte)

Note: Integer2 is a synonym for smallint and integer4 is a synonym for integer.

The following table lists the ranges of values for each integer data type:

Integer
Data Type

Lowest
Possible Value

Highest
Possible Value

integer (integer4) -2,147,483,648 +2,147,483,647

smallint (integer2) -32,768 +32,767

Numeric Data Types

3–4 Reference Guide

The Decimal Data Type

The decimal data type is an exact numeric data type defined in terms of its
precision (total number of digits) and scale (number of digits to the right of the
decimal point). The following figure illustrates precision and scale in decimal
values:

Precision=10

Scale=5

12345.67890

The minimum precision for a decimal value is 1 and the maximum is 31. The
scale of a decimal value cannot exceed its precision. Scale can be 0 (no digits to
the right of the decimal point).

Specify the declaration using the following syntax:

decimal(p,s)

where

p=precision
s=scale

Valid synonyms for the decimal data type are dec and numeric.

Note: The decimal data type is suitable for storing currency data. Note that, for
display purposes, a currency sign cannot be specified for decimal values.

The Floating Point Data Types

A floating point value is represented either as whole plus fractional digits (like
decimal values) or as a mantissa plus an exponent. The following figure
illustrates the mantissa and exponent parts of floating point values:

Mantissa=123

Exponent=4

123E4

Abstract Data Type

OpenSQL Data Types 3–5

There are two floating point data types:

■ real (4-byte)

■ float (8-byte)

Note: Float4 is a synonym for real, and float8 and double precision are
synonyms for float.

Floating point numbers are double-precision quantities stored in four or eight
bytes. The range of float values is processor-dependent, and the precision is
approximately 16 significant digits.

Specify the precision (number of significant bits) for a floating point value using
the following (optional) syntax:

float(n)

where n is a value from 0 to 53.

OpenSQL allocates storage according to the precision you specify, depending on
the host DBMS and hardware. For information about the correct notation for a
floating point numeric literal, refer to Numeric Literals in this chapter.

Abstract Data Type
The abstract data type includes the date data type, which is described below.

The Date Data Type

OpenSQL supports date data types for sessions connected to:

■ Any EDBC product to a host DBMS (such as DB2) that supports date data
types.

■ The relational DBMS supplied with the IMS and VSAM EDBC products.

If the host DBMS supports date data types, the iidbcapabilities standard catalog
table includes a row where cap_capability is set to OPEN_SQL_DATES and
cap_value is set to LEVEL 1. For details about EDBC product catalogs, refer to
the “OpenSQL Standard Catalogs” chapter.

Tables created in OpenSQL with date columns are mapped to the date format of
the host DBMS. For example, OpenSQL date could map to a DB2 date, time, or
timestamp data type.

Abstract Data Type

3–6 Reference Guide

On input, date constants in queries must be specified using the OpenSQL date()
function.

OpenSQL supports the following operations on date data:

■ Ordering on date columns

■ Comparing two date columns

■ Comparing a date column to a date constant

Absolute Date Input Formats

Dates are specified as quoted character strings. A date can be entered by itself or
together with a time value. For more information about date and time display,
refer to Date and Time Display Formats in this chapter.

The legal formats for absolute date values are determined by the
II_DATE_FORMAT setting, summarized in the following table. If
II_DATE_FORMAT is not set, the US formats are the default input formats.
II_DATE_FORMAT can be set on a session basis.

II_DATE_FORMAT Setting Valid Input Formats Output

US (default format) mm/dd/yyyy
dd-mmm-yyyy
mm-dd-yyyy
yyyy.mm.dd
yyyy_mm_dd
mmddyy
mm-dd
mm/dd

dd-mmm-yyyy

MULTINATIONAL dd/mm/yy
and all US formats except
mm/dd/yyyy

dd/mm/yy

ISO yymmdd
ymmdd
yyyymmdd
mmdd
mdd
and all US input formats
except mmddyy

yymmdd

SWEDEN/FINLAND yyyy-mm-dd

all US input formats except
mm-dd-yyyy

yyyy-mm-dd

Abstract Data Type

OpenSQL Data Types 3–7

II_DATE_FORMAT Setting Valid Input Formats Output

GERMAN dd.mm.yyyy
ddmmyy
dmmyy
dmmyyyy
ddmmyyyy
and all US input formats
except yyyy.mm.dd and
mmddyy

dd.mm.yyyy

YMD mm/dd
yyyy-mm-dd
mmdd
yymdd
yymmdd
yyyymdd
yyyymmdd
yyyy-mmm-dd

yyyy-mmm-dd

DMY dd/mm
dd-mm-yyyy
ddmm
ddmyy
ddmmyy
ddmyyyy
ddmmyyyy
dd-mmm-yyyy

dd-mmm-yyyy

MDY mm/dd
dd-mm-yyyy
mmdd
mddyy
mmddyy
mddyyyy
mmddyyyy
mmm-dd-yyyy

mmm-dd-yyyy

Year defaults to the current year. In formats that include delimiters (such as
forward slashes or dashes), specify the last two digits of the year. The first two
digits default to the current century (1900). For example, if you enter the
following date:
'03/21/98'

using the format mm/dd/yyyy, OpenSQL assumes that you are referring to March
21, 1998.

In three-character month formats, for example, dd-mmm-yy, OpenSQL requires
three-letter abbreviations (for example, mar, apr, may).

Abstract Data Type

3–8 Reference Guide

To specify the current system date, use the constant today. For example:
select date('today');

To specify the current system time, use the constant now.

Absolute Time Input Formats

The legal format for inputting an absolute time is

'hh:mm[:ss] [am|pm] [timezone]'

Input formats for absolute times are assumed to be on a 24-hour clock. If a time
is entered with an am or pm designation, then OpenSQL automatically converts
the time to a 24-hour internal representation.

If timezone is omitted, OpenSQL assumes the local time zone designation. Times
are displayed using the time zone adjustment specified by
II_TIMEZONE_NAME. For details about time zone settings and valid time
zones, refer to your installation guide.

If an absolute time is entered without a date, OpenSQL assumes the current
system date.

Combined Date and Time Input

Any valid absolute date input format can be paired with a valid absolute time
input format to form a valid date and time entry. The following table shows
some examples of valid date and time entries using the US absolute date input
formats:

Format Example

mm/dd/yy hh:mm:ss 11/15/98 10:30:00

dd-mmm-yy hh:mm:ss 15-nov-98 10:30:00

mm/dd/yy hh:mm:ss 11/15/98 10:30:00

dd-mmm-yy hh:mm:ss gmt 15-nov-98 10:30:00 gmt

dd-mmm-yy hh:mm:ss [am|pm] 15-nov-98 10:30:00 am

mm/dd/yy hh:mm 11/15/98 10:30

dd-mmm-yy hh:mm 15-nov-98 10:30

mm/dd/yy hh:mm 11/15/98 10:30

dd-mmm-yy hh:mm 15-nov-98 10:30

Storage Formats of Data Types

OpenSQL Data Types 3–9

Date and Time Display Formats

OpenSQL outputs date values as strings of 25 characters with trailing blanks
inserted.

To specify the output format of an absolute date and time, II_DATE_FORMAT
must be set. For a list of II_DATE_FORMAT settings and associated formats,
refer to Absolute Date Input Formats in this chapter. The display format for
absolute time is:

hh:mm:ss

OpenSQL displays 24-hour times for the current time zone, which is determined
when OpenSQL is installed. Dates are stored in Greenwich Mean Time (GMT)
and adjusted for your time zone when they are displayed.

If seconds are omitted when entering a time, OpenSQL displays zeros in the
seconds’ place.

Storage Formats of Data Types
The following table lists storage formats for OpenSQL data type:

Notation Type Range

character(1) -
character(2000)

character A string of 1 to 2000 characters.

varchar(1) -
varchar(2000)

character A string of 1 to 2000 characters.

smallint 2-byte integer -32,768 to +32,767.

integer 4-byte integer -2,147,483,648 to +2,147,483,647.

decimal(p, s) fixed-point
exact numeric

Depends on precision and scale; default
is (5,0): -99999 to +99999. Maximum
number of digits is 31.

real 4-byte floating -1.0e+38 to +1.0e+38
(7 digit precision).

float 8-byte floating -1.0e+38 to +1.0e+38
(16 digit precision).

date date (12 bytes) 1-jan-0001 to 30-dec-9999.

Note: If your hardware supports the IEEE standard for floating point numbers,
then the float type is accurate to 14 decimal precision ($-dddddddddddd.dd to
$+dddddddddddd.dd) and ranges from -10**308 to +10**308.

Literals

3–10 Reference Guide

Literals
A literal is an explicit representation of a value. OpenSQL supports two types of
literals:

■ String

■ Numeric

String Literals

String literals are specified by one or more characters enclosed in single quotes.
The default data type for string literals is varchar, but a string literal can be
assigned to any character data type or to the date data type without using a data
type conversion function.

Quotes within Strings To include a single quote inside a string literal, it must be
doubled. For example:
'The following letter is quoted: ''A''.'

which evaluates to
The following letter is quoted: 'A'.

Numeric Literals

Numeric literals specify numeric values. There are three types of numeric
literals:

■ Integer

■ Decimal

■ Floating point

A numeric literal can be assigned to any of the numeric data types without using
an explicit conversion function. OpenSQL automatically converts the literal to
the appropriate data type, if necessary.

By default, OpenSQL uses the period (.) to indicate the decimal when needed.
This default can be changed by setting II_DECIMAL.

Note: If II_DECIMAL is set to comma, be sure that when OpenSQL syntax
requires a comma (such as a list of table columns or OpenSQL functions with
several parameters), that the comma is followed by a space. For example:
select col1, ifnull(col2, 0), left(col4, 22) from t1:

Literals

OpenSQL Data Types 3–11

Integer Literals Integer literals are specified by a sequence of up to 10 digits and an optional
sign, in the following format:

[+|-] digit {digit} [e digit]

Integer literals are represented internally as either an integer or a smallint,
depending on the value of the literal. If the literal is within the range -32,768 to
+32,767, it is represented as a smallint. If its value is within the range
-2,147,483,648 to +2,147,483,647 but outside the range of a smallint, then it is
represented as an integer. Values that exceed the range of integers are
represented as decimals.

Integers can be specified using a simplified scientific notation, similar to the way
floating point values are specified. To specify an exponent, follow the integer
value with the letter “e” and the value of the exponent. This notation is useful
for specifying large values. For example, to specify 100,000 use exponential
notation as follows:
1e5

Decimal Literals Decimal literals are specified as signed or unsigned numbers of 1 to 31 digits
that include a decimal point. The precision of a decimal number is the total
number of digits, including leading and trailing zeros. The scale of a decimal
literal is the total number of digits to the right of the decimal point, including
trailing zeros. Decimal literals that exceed 31 digits are treated as floating point
values.

Examples of decimal literals are:
3.
-10.
1234567890.12345
001.100

Floating Point Literals

A floating point literal must be specified using scientific notation. The format is:

[+|-] {digit} [.{digit}] e|E [+|-] {digit}

For example:
2.3e-02

At least one digit must be specified, either before or after the decimal point.

OpenSQL Constants

3–12 Reference Guide

OpenSQL Constants
OpenSQL provides the following constants:

Special Constant Meaning

now Current date and time. Specify this constant in quotes.
Valid only for EDBC products that support the date
data type.

null Indicates a missing or unknown value in a table.

today Current date. Specify this constant in quotes. Valid
only for EDBC products that support the date data
type.

user Effective user for the current session (the host DBMS
user identifier, not the operating system user
identifier).

These constants can be used in queries and expressions. For example:
select date('now');
insert into sales_order
(item_number, clerk, billing_date)
values ('123', user, date('today')+date('7 days'));

Nulls
A null represents an undefined or unknown value and is specified by the
keyword null. A null is not the same as a zero, a blank, or an empty string. A
null can be assigned to any nullable column when no other value is specifically
assigned. More information about defining nullable columns is provided in the
Create Table section in the “OpenSQL Statements” chapter.

The is null predicate allows nulls to be handled in queries. For details, refer to
The Exists Predicate in the “OpenSQL Statements” chapter.

Nulls and Comparisons

Because a null is not a value, it cannot be compared to any other value (including
another null value). For example, the following where clause evaluates to false if
one or both of the columns is null:
where columna = columnb

Nulls

OpenSQL Data Types 3–13

Similarly, the where clause
where columna < 10 or columna >= 10

is true for all numeric values of columna, but false if columna is null. The one
exception, count(), is described in the following Nulls and Aggregate Functions
section.

Nulls and Aggregate Functions

When executing an aggregate function against a column that contains nulls, the
function ignores the nulls. This prevents unknown or inapplicable values from
affecting the result of the aggregate.

For example, if you apply the aggregate function, avg(), to a column that holds
the ages of your employees, you want to be sure that any ages that have not been
entered in the table are not treated as zeros by the function. This would distort
the true average age. If a null is assigned to any missing ages, then the aggregate
returns a correct result: the average of all known employee ages.

Aggregate functions, except count(), return null for an aggregate over an empty
set, even when the aggregate includes columns that are not nullable (in this case,
count() returns 0). In the following example, the select returns null, since there
are no rows in test:
create table test (col1 integer not null);
select max(col1) as x from test;

When specifying a column that contains nulls as a grouping column (that is, in
the group by clause) for an aggregate function, OpenSQL considers all nulls in
the column as equal for the purposes of grouping. This is the one exception to
the rule that nulls are not equal to other nulls. For information about the group
by clause, refer to The Group by Clause in the “OpenSQL Statements” chapter.

Elements of OpenSQL Statements 4–1

Chapter

4 Elements of OpenSQL Statements

This chapter describes the following elements of OpenSQL statements:

■ Functions, operators, and predicates

■ Arithmetic operations, assignments, and other basic operations

■ Expressions and search conditions in queries

This chapter identifies the differences in syntax between embedded and
interactive OpenSQL. If the embedded syntax is dependent on the host
language, you are referred to your host language companion guide.

Operators
OpenSQL supports three types of operators:

■ Arithmetic

■ Comparison

■ Logical

Each of these is described in the following sections.

Arithmetic Operators

Arithmetic operators are used to combine numeric expressions arithmetically to
form other numeric expressions. Valid OpenSQL arithmetic operators are (in
descending order of precedence):

Arithmetic Operator Description

+ and - plus, minus (unary)

* and / multiplication, division (binary)

+ and - addition, subtraction (binary)

Operators

4–2 Reference Guide

Unary operators group from right to left and binary operators group from left to
right. The unary minus (-) can be used to reverse the algebraic sign of a value.

Use parentheses to force the desired order of precedence. For example:
(job.lowsal + 1000) * 12

is an expression in which the parentheses force the addition operator (+) to take
precedence over the multiplication operator (*).

Comparison Operators

Comparison operators allow you to compare two expressions. OpenSQL
includes the following comparison operators:

Operator Description

= equal to

<> not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to

All comparison operators are of equal precedence.

The equal sign (=) also serves as the assignment operator in assignment
operations. For details, refer to Assignment Operations in this chapter.

Logical Operators

OpenSQL has three logical operators:

■ Not (highest precedence)

■ And (next precedence)

■ Or (lowest precedence)

Operations

Elements of OpenSQL Statements 4–3

Parentheses can be used to change the precedence. For example, assume that the
following appears in a query:

exprA or exprB and exprC

OpenSQL evaluates the above as if it were:

exprA or (exprB and exprC)

However, by using parentheses, the order in which OpenSQL evaluates the
expressions can be changed. For example:

(exprA or exprB) and exprC

When parenthesized as shown, (exprA or exprB) is evaluated first, then the and
operator is used for that result with exprC.

Operations
This section describes the following basic operations that can be performed:

■ Assignments

■ Arithmetic operations

Assignment Operations

An assignment operation is an operation that places a value in a column or
variable. Assignment operations occur during the execution of insert, update,
fetch, create table as...select, and embedded select statements.

When an assignment operation occurs, the data types of the assigned value and
the receiving column or variable must be either the same or compatible. If the
data types are compatible but not the same, OpenSQL performs a default type
conversion.

The character and varchar data types are compatible with one another. A value
from a string can be assigned to a date data item if the value in the string is
formatted in a valid OpenSQL date input format. For information about valid
input formats, refer to Absolute Date Input Formats in the “OpenSQL Data
Types” chapter.

Operations

4–4 Reference Guide

All numeric types are compatible with one another. For example, assuming that
the following table is created:
create table emp
(name character(20),
salary float not null,
hiredate date not null);

then this insert statement:
insert into emp (name, salary, hiredate)
values ('John Smith', 40000, date('10/12/98'));

assigns the varchar string literal, ’John Smith’, to the character name column, the
integer literal 40000 to the float salary column, and the varchar string literal
’10/12/98’ to the date column, hiredate.

Other examples of assignments are:
update emp set name = 'Mary Smith'
where name = 'Mary Jones';
create table emp2 (name2, hiredate2) as
select name, hiredate from emp;

In the following embedded OpenSQL example, the value in the name column is
assigned to the variable, name_var, for each row that fulfills the where clause:
exec sql select name into :name_var from emp
where empno = 125;

The following sections present some specific guidelines for assignments into each
of the general data types, as well as null assignments. In addition, refer to your
host language companion guide for information about which host language data
types are compatible with which OpenSQL data types if you are assigning to a
host language variable.

Character String Assignments

The character and varchar character types are compatible. Any character string
can be assigned to any column or variable of character data type. (If an
assignment results in truncation, OpenSQL returns a warning.) The result of the
assignment depends on the types of the assignment string and the receiving
column or variable:

■ If a character string is assigned to a varchar column or variable, trailing
blanks are trimmed from the character string before it is assigned.

 If the length of the receiving string is shorter than the fixed length string,
OpenSQL truncates the fixed length string (from the right end) and, if the
assignment was to a variable, a warning condition is indicated. For a
discussion of the SQLWARN indicators, refer to the SQL Communications
Area (SQLCA) in the “OpenSQL Features” chapter.

Operations

Elements of OpenSQL Statements 4–5

■ If a string is assigned to a column or variable that is shorter than the
fixed-length string, OpenSQL truncates the fixed-length string from the right
end. If a fixed-length string is assigned to a fixed-length column or variable
that is longer than the fixed-length string, OpenSQL pads it with blanks. If
the assignment is to a variable and the string is truncated, a warning is
indicated in the SQLCA.

Numeric Assignments

Any numeric data type can be assigned to any other numeric data type.
OpenSQL may truncate leading zeros, or all or part of the fractional part of a
number if necessary. If it is necessary to truncate the non-fractional part of a
value (other than leading zeros), an overflow error results. When a float or
decimal value is assigned to an integer column or variable, the fractional part is
truncated.

Date Assignments

Date values can be assigned to a date column. In addition, a string literal, a
string host variable, or a string column value can be assigned to a date column if
its value conforms to the valid OpenSQL input formats for dates.

When assigning character strings to date columns in OpenSQL, specify the string
using the date() function. For example:
insert into transaction_log (employee, trxtime,
 trxid) values (user, date('now'), 42);

When assigning a date value to a character string, OpenSQL converts the date to
the standard OpenSQL output date format. For more information about date
output formats, refer to Date and Time Display Formats in the “OpenSQL Data
Types” chapter.

Null Assignments

A null can be assigned to a column of any data type if the column was defined as
a nullable column. A null can also be assigned to a host language variable if
there is an indicator variable associated with the host variable. For more
information about indicator variables, refer to Indicator Variables in the
“Embedded OpenSQL” chapter.

Operations

4–6 Reference Guide

Arithmetic Operations

An arithmetic operation combines two or more expressions using the arithmetic
operators to form a resulting numeric expression.

Before performing any arithmetic operation, OpenSQL converts the participating
expressions to identical data types. The result is returned as the selected data
type. The following sections describe this data type conversion.

Default Type Conversion

When two numeric expressions are combined, the EDBC product converts as
necessary to make the data types of the expressions identical and assigns that
same data type to the resulting expression. If it is necessary to convert the data
type of an expression, the DBMS converts the expression having the data type of
lower precedence to that of the higher.

The order of precedence among the numeric data types is, in highest-to-lowest
order:

■ Float

■ Real

■ Decimal

■ Integer

■ Smallint

For example, when OpenSQL operates on an integer and a floating point
number, the integer is converted to a floating point number. If OpenSQL
operates on two integers of different sizes, the smaller is converted to the size of
the larger. All conversions are done before the operation is performed.

The following table summarizes the possible results of numeric combinations:

 smallint integer decimal real float

smallint integer integer decimal real float

integer integer integer decimal real float

decimal decimal decimal decimal real float

real real real real real float

For example, for this expression:
(job.lowsal + 1000) * 12

Operations

Elements of OpenSQL Statements 4–7

the first operator (+) combines a float expression (job.lowsal) with a smallint
constant (1000). The result is float. The second operator (*) combines the float
expression with a smallint constant (12), resulting in a float expression.

Arithmetic Operations on Decimal Data Types

In expressions that combine decimal values and return decimal results, the
precision (total number of digits) and scale (number of digits to the right of the
decimal point) of the result can be determined, as shown in the following table:

 Precision Scale

Addition and
subtraction

Larger number of fractional
digits plus largest number of
non-fractional digits + 1 (to a
maximum of 31)

Scale of operand having the
largest scale

Multiplication Total of precisions to a
maximum of 31

Total of scales to a
maximum of 31

Division 31 (31 precision of first
operand) + (scale of first
operand) (scale of second
operand)

 For example, in the following decimal addition operation:
1.234 + 567.89

the scale and precision of the result is calculated as follows:

 Precision = 7

 Calculated as 3 (larger number of fractional digits) +
3 (larger number of non-fractional digits) + 1 = 7

 Scale = 3

 The first operand has the larger number of digits to the right of the
decimal point

 Result:

 0569.124

Note: If the result of arithmetic using decimal data exceeds the declared
precision or scale of the column to which it is assigned, OpenSQL truncates the
result and does not issue an error.

Aggregate Functions

4–8 Reference Guide

Aggregate Functions
This section describes OpenSQL aggregate functions. An aggregate function
returns a single value based on the contents of a column. Aggregate functions
are also called “set” functions. The following example uses the sum aggregate
function to calculate the total of salaries for employees in department 23:
select sum (employee.salary)
 from employee
 where employee.dept = 23;

The following table lists OpenSQL aggregate functions:

Name Result Data Type Description

count integer Count of occurrences.

sum integer, float Column total.

avg float Average (sum/count). The sum of the
values must be within the range of the
result data type.

max same as argument Maximum value.

min same as argument Minimum value.

Aggregate functions are specified using the following format:

function_name ([distinct | all] expr)

where function_name denotes an aggregate function and expr denotes any
expression. The expression cannot include an aggregate function reference at
any level of nesting.

The optional keyword distinct tells OpenSQL to eliminate duplicate values from
the argument before performing the function. The optional keyword all directs
OpenSQL to retain duplicate values. By default OpenSQL retains duplicates.
(The min and max functions are not used in conjunction with distinct.)

Nulls are ignored by the aggregate functions, except for count().

Aggregate Functions

Elements of OpenSQL Statements 4–9

The Count Function and Nulls

The count function has the following unique characteristics:

■ Count() accepts the wild card character, *, as an argument. When specifying
count(*), OpenSQL returns the number of rows in a result table. For
example, the statement:

 select count(*)
 from employee
 where dept = 23;

 counts the number of employees in department 23. The asterisk (*) argument
cannot be qualified with all or distinct.

■ Because count(*) counts rows rather than columns, count(*) does not ignore
nulls. Consider the following table:

Name Exemptions

Smith 0

Jones 2

Tanghetti 4

Fong null

 The following expression:
 count(exemptions)

 returns the value 3, (omitting nulls) whereas
 count(*)

 returns 4.

If the argument to an aggregate function (except count) evaluates to an empty
set, the function returns a null. For empty sets, the count function returns a zero.

The Group by Clause with Aggregate Functions

The group by clause allows aggregate functions to be performed on subsets of the
rows in the table. The subsets are defined by the group by clause. For example,
the following query scans a table of candidates and returns the average level of
funding for each political party:
select party, avg(funding)
 from candidates
 group by party;

Expressions

4–10 Reference Guide

Restrictions on the Use of Aggregate Functions

The following restrictions apply to the use of aggregate functions:

■ Aggregate functions cannot be nested.

■ Aggregate functions can only be used in a select or having clause.

■ If a select or having clause contains an aggregate function, columns not
specified in the aggregate must be specified in the group by clause. For
example:

 select dept, avg(emp_age)
 from employee
 group by dept;

 The above select statement refers to two columns, dept and emp_age, but
only emp_age is referenced by the aggregate function, avg. The dept column
is specified in the group by clause

Aggregate Functions and Decimal Data

Given decimal arguments, aggregate functions (with the exception of count)
return decimal results. The following table explains how to determine the scale
and precision of results returned for aggregates with decimal arguments:

Name Precision of Result Scale of Result

count Not applicable Not applicable

sum 31 Same as argument

avg 31 Scale of argument + 1
(to a maximum of 31)

max Same as argument Same as argument

min Same as argument Same as argument

Expressions
Expressions are composed of various operators and operands that evaluate to
either a single value or a set of values. Some expressions do not use operators.
For example, a column name, is an expression. Constants are expressions also.
Expressions are used in many contexts, such as specifying values to be retrieved
(in a select clause) or compared (in a where clause). For example:
select empname, empage from employee
where salary <String `75000'> >

Predicates

Elements of OpenSQL Statements 4–11

In this example, empname and empage are expressions representing the column
values to be retrieved, salary is an expression representing a column value to be
compared, and 75000 is an integer literal expression.

An expression can be enclosed in parentheses, such as ('J. J. Jones'), without
affecting its meaning.

Predicates
Predicates are keywords that specify a relationship between two expressions:

expression_1 predicate expression_2

OpenSQL supports the following types of predicates:

■ [not] like

■ [not] between

■ [not] in

■ all | any | some

■ exists

■ is [not] null

The second expression can be a subquery. If the subquery does not return any
rows, then the comparison evaluates to false. For details about subqueries, refer
to the Subqueries section in this chapter.

The Like Predicate

The like predicate performs pattern matching for the character data types
(character and varchar). The like predicate has the following syntax:

expression [not] like pattern [escape escape_character]

The expression can be a column name or an expression involving string
functions.

The pattern parameter must be a string literal. The pattern- matching (wild card)
characters are the percent sign (%) to denote 0 or more arbitrary characters, and
the underscore (_) to denote exactly one arbitrary character.

Predicates

4–12 Reference Guide

The like predicate does not handle trailing blanks. If matching a character data
type or if the value has user-inserted trailing blanks, these trailing blanks must be
included in your pattern. For example, if you are searching a character(10)
column for any rows that have the name harold, use the following syntax for the
like predicate:
name like 'harold '

Four blanks are added to the pattern after the name in order to include the
trailing blanks.

Because blanks are not significant when performing comparisons of c data types,
the like predicate will return a correct result regardless of whether trailing blanks
are included in the pattern.

If the escape clause is specified, the escape character suppresses any special
meaning for the following character, allowing the character to be entered
literally. The following characters can be escaped:

■ The pattern matching characters % and _.

■ The escape character itself. To enter the escape character literally, type it
twice.

■ Square brackets []. Within escaped square brackets ([and]), specify a
series of individual characters or a range of characters separated by a dash
(-).

The following examples illustrate some uses of the pattern matching capabilities
of the like predicate:

To match any string starting with 'a':
name like 'a%'

To match any string starting with A through Z:
name like '\[A-Z\]%' escape '\'

To match any two characters followed by '25%':
name like '__25\%' escape '\'

To match a string starting with a backslash:
name like '\%'

Because there is no escape clause, the backslash is taken literally.

To match a string starting with a backslash and ending with a percent:
name like '\\%\%' escape '\'

Predicates

Elements of OpenSQL Statements 4–13

To match any string starting with 0 through 4, followed by an uppercase letter,
then a [, any two characters and a final]:
name like '\[01234\]\[A-Z\][__]' escape '\'

To detect names starting with 'S' and ending with 'h', disregarding any leading or
trailing spaces:
trim(name) like 'S%h'

To detect a single quote, the quote must be repeated:
name like ''''

The Between Predicate

The following table explains the operators between and not between:

Operator Meaning

y between x and z x < = y and y < = z

y not between x and z not (y between x and z)

x, y, and z are expressions and cannot be subqueries.

The In Predicate

The following table explains the operators, in and not in:

Operator Meaning

y in (x, ..., z) y = x or ... or y = z

(x, ..., z) represents a list of expressions, each of which
evaluates to a single value. None of the expressions (y,
x, or z) can be subqueries. The in predicate returns true
if y is equal to one of the values in the list represented
by
(x, ..., z).

y not in (x, ..., z) not (y in (x, ..., z))

(x, ..., z) represents a list of expressions, each of which
evaluates to a single value. The not in predicate
returns true if y is not equal to any value in the list
represented by (x, ..., z). None of the expressions (y, x,
or z) can be subqueries.

Predicates

4–14 Reference Guide

Operator Meaning

y in (subquery) The subquery must be specified in parentheses and can
refer to only one column in its select clause. The
predicate returns true if y is equal to one of the values
returned by the subquery.

y not in (subquery) The subquery must be specified in parentheses and can
refer to only one column in its select clause. The
predicate returns true if y is not equal to any of the
values returned by the subquery.

The Any-or-All Predicate

An any-or-all predicate takes the form

any-or-all-operator (subquery)

The subquery must have exactly one element in the target list of its outermost
subselect (so that it evaluates to a set of single values rather than a set of rows).
The any-or-all operator must be one of the following:

=any =all

<>any <>all

<any <all

<=any <=all

>any >all

>=any >=all

Let $ denote any one of the comparison operators =, <>, <, <=, >, >=. Then the
predicate:

x $any (subquery)

evaluates to true if the comparison predicate:

x $ y

is true for at least one value y in the set of values represented by subquery. If the
subquery is empty, the $any comparison fails (evaluates to false). Likewise, the
predicate:

x $all (subquery)

Predicates

Elements of OpenSQL Statements 4–15

is true if the comparison predicate:

x $ y

is true for all values y in the set of values represented by subquery. If the
subquery is empty, the $all comparison evaluates to true.

The operator =any is equivalent to the operator in. For example:
select ename
from employee
where dept = any
 (select dno
 from dept
 where floor = 3);

can be rewritten as:
select ename
from employee
where dept in
 (select dno
 from dept
 where floor = 3);

The operator some is a synonym for operator any. For example:
select ename
from employee
where dept = some
 (select dno from dept where floor = 3);

The Exists Predicate

An exists predicate takes the form:

exists (subquery)

An exists predicate expression evaluates to true if the set represented by
subquery is non-empty. For example:
select ename
from employee
where exists
 (select *
 from dept
 where dno = employee.dept
 and floor = 3);

It is typical, but not required, for the subquery argument to exists to be of the
form select *.

Search Conditions

4–16 Reference Guide

The Is null Predicate

The is null predicate takes the form:

is [not] null

For example:

x is null

is true if x is a null. Because you cannot test for null using the “=” comparison
operator, the is null predicate must be used to determine whether an expression
is null.

Search Conditions
Search conditions are used in where and having clauses to qualify the selection of
data. Search conditions are composed of one or more predicates. Multiple
predicates can be combined using parentheses and the logical operators (and, or,
and not). The following examples illustrate possible combinations of search
conditions:

Description Example

Simple predicate salary between 10000 and 20000

Predicate with not operator edept not like 'eng_%'

Predicates combined using
or operator

edept like 'eng_%' or edept like 'admin_%'

Predicates combined using
or operator

salary between 10000 and 20000 and edept
like 'eng_%'

Predicates combined using
parentheses to specify
evaluation

(salary between 10000 and 20000 and edept
like 'eng_%') or edept like 'admin_%'

Predicates evaluate to true, false, or unknown. They evaluate to unknown if one
or both operands are null (the is null predicate is the exception). When
predicates are combined using logical operators (not, and, and or) to form a
search condition, the search condition evaluates to true, false, or unknown as
shown in the following tables:

Subqueries

Elements of OpenSQL Statements 4–17

and true false unknown

true true false unknown

false false false false

unknown unknown false unknown

or true false unknown

true true true true

false true false unknown

unknown true unknown unknown

Not(true) is false, not(false) is true, not(unknown) is unknown.

After all search conditions are evaluated, the value of the where or having clause
is determined. The where or having clause can be true or false only. Unknown
values are considered false. For more information about predicates and logical
operators, refer to Predicates and Logical Operators in this chapter.

Subqueries
Subqueries are select statements nested within other select statements. For
example:
select ename
from employee
where dept in
 (select dno
 from dept
 where floor = 3);

Use subqueries in a where clause to qualify a specified column against a set of
rows. In the previous example, the subquery returns the department numbers
for departments on the third floor. The outer query then retrieves the names of
employees who work in those departments.

Subqueries often take the place of expressions in predicates. Subqueries can be
used in place of expressions only in the specific instances outlined in the
descriptions of predicates earlier in this chapter. The select clause of a subquery
must contain only one element.

Subqueries

4–18 Reference Guide

A subquery can refer to correlation names defined (explicitly or implicitly)
outside the subquery. For example:
select ename
from employee empx
where salary
 > (select avg(salary)
 from employee empy
 where empy.dept = empx.dept);

The preceding subquery uses a correlation name (empx) defined in the outer
query. The reference, empx.dept, must be explicitly qualified here, or it would be
implicitly qualified by empy. The query is evaluated by assigning empx each of
its values (that is, letting it range over the employee table), and evaluating the
subquery for each value of empx. At least one of the correlation names must be
specified in this example–either empx or empy, but not both, can be allowed to
default to employee.

For more information about using correlation names in nested subqueries, refer
to Correlation Names in the “OpenSQL Data Types” chapter.

Embedded OpenSQL 5–1

Chapter

5 Embedded OpenSQL

This chapter explains how to use host language variables and cursors in
embedded OpenSQL, and describes the syntax of embedded OpenSQL
statements and the typical structure of an embedded OpenSQL program.

The term embedded OpenSQL refers to OpenSQL statements embedded in a host
language such as C or FORTRAN. Embedded OpenSQL statements include most
interactive OpenSQL statements, plus a number of statements that serve the
specific needs of an embedded program. (In addition, forms statements can be
used to develop forms-based applications.)

Embedded OpenSQL programs must be processed by the embedded SQL
preprocessor, which converts the statements into host language source code
statements. The host language statements are primarily calls to a run-time
library that provides the interface to the EDBC product or server. (Non-SQL host
language statements are not processed by the preprocessor.)

After the program has been preprocessed, compile and link it according to the
requirements of the host language. For details about compiling and linking an
embedded OpenSQL program, refer to your host language companion guide.

The examples in this chapter use italics to indicate pseudocode, which specifies
the program statements that must be provided in the host language. All of the
examples use the semicolon (;) as the statement terminator. However, in an
actual program, the statement terminator is determined by the host language.

Syntax of an Embedded OpenSQL Statement

5–2 Reference Guide

Syntax of an Embedded OpenSQL Statement
The syntax of an embedded OpenSQL statement is as follows:

[margin] exec sql OpenSQL_statement [terminator]

When writing embedded OpenSQL statements, keep the following points in
mind:

■ The margin, consisting of spaces or tabs, is the margin that the host language
compiler requires before the regular host code. Not all languages require
margins. To determine if a margin is required, refer to your host language
companion guide.

■ The keywords, exec sql, must precede the OpenSQL statement itself. These
words must appear together on a single line. They signal the preprocessor
that the statement is an embedded OpenSQL statement. The preprocessor
ignores statements that are not preceded by exec sql.

■ The statement terminator depends on the requirements of the host language.
Different host languages require different terminators. Some host languages,
such as FORTRAN, do not require a statement terminator.

■ Embedded OpenSQL statements can be continued across multiple lines,
according to the host language’s rules for line continuation.

■ Labels can precede the embedded statement if a host language statement in
the same place can be preceded by a label. The label must be at the correct
margin for labels and no syntactic element (including comments) can appear
between it and the exec keyword.

■ Host language comments must follow the rules for the host language.

■ Some host languages allow you to place a line number in the margin.

For information about language-dependent syntax, refer to your host language
companion guide.

Structure of Embedded OpenSQL Programs
In general, OpenSQL statements can be embedded anywhere in a program that
host language statements are allowed. The following example shows a simple
embedded OpenSQL program that retrieves an employee’s name and salary
from the database and prints them on a standard output device. The statements
that begin with the words, exec sql, are embedded OpenSQL statements.

Structure of Embedded OpenSQL Programs

Embedded OpenSQL 5–3

begin program

exec sql include sqlca;

exec sql begin declare section;
 name character_string(15);
 salary float;
exec sql end declare section;

exec sql whenever sqlerror stop;

exec sql connect 'personnel/db2';

exec sql select ename, sal
into :name, :salary
from employee
where eno = 23;

print name, salary;

exec sql disconnect;

end program

The sequence of statements in the above example illustrates the typical structure
of embedded OpenSQL programs. The first OpenSQL statement to appear is:
exec sql include sqlca;

This statement incorporates the OpenSQL error and status handling
mechanism—the SQL Communications Area (SQLCA)—into the program. The
SQLCA is required by the whenever statement appearing later in the example.

Next is an OpenSQL declaration section. Host language variables to OpenSQL
must be declared before using the variables in embedded OpenSQL statements.

The whenever statement that follows uses information from the SQLCA to
control program execution under error or exception conditions. An error
handling mechanism should precede all executable embedded OpenSQL
statements in a program. For details about error handling, refer to the Error
Handling topic in the “OpenSQL Features” chapter.

Following the whenever statement is a series of OpenSQL and host language
statements.

The first statement:
exec sql connect 'personnel/db2';

initiates access to the DB2 personnel database through an EDBC product. Your
application must connect to a database before attempting to access the database.
The slash (/) separates the database name from the server class. (The default
server class is INGRES.) For details about server class, refer to your Enterprise
Access product guide.

Host Language Variables

5–4 Reference Guide

After connecting to the personnel database, the application issues the select
statement. The into clause specifies the host language variables into which the
select statement retrieves values from the database. In the example, the variables
are name and salary.

Following the select statement is a host language statement that prints the values
contained in the variables. Host language and embedded OpenSQL statements
can be mixed in an application.

Finally, the application program disconnects from the database.

Host Language Variables
Embedded OpenSQL allows host language variables to be used for many
elements of embedded OpenSQL statements. Host language variables can be
used to transfer data from the database into the program and vice versa. Host
language variables can also replace the search condition in a where clause.

Host language variables can be used to specify:

■ Database expressions - Variables can generally be used wherever expressions
are allowed in embedded OpenSQL statements, such as in target lists and
predicates. Variables must contain constant values and cannot represent
names of database columns or include any operators.

■ Search conditions - A where clause can be specified in a variable. The entire
where clause must be contained in the variable. For example, to retrieve all
columns for employees who earn more than the average salary:

 wherevar = 'salary>(select avg(salary)
 from employee)'
 exec sql select ename
 into :name
 from employee
 where :wherevar

■ Receiving variables - A host variable can be used to specify the objects of the
into clause of the select and fetch statements. The into clause is the means by
which values retrieved from the database are transferred to host language
variables.

■ Other statement arguments - The statement descriptions in this guide note
which arguments can be specified using host language variables.

A host language variable can be a single variable or a structure.

All host language variables must be declared to embedded OpenSQL before you
can use them in embedded OpenSQL statements. The names of these variables
cannot be reserved keywords. For a list of keywords, refer to the “Keywords”
appendix.

Host Language Variables

Embedded OpenSQL 5–5

The following sections describe how to use host language variables. For
language-specific details, refer to the host language companion guide.

Declaring Variables

Host language variables must be declared to OpenSQL before using them in any
embedded OpenSQL statements. Host language variables are declared to
OpenSQL in a declaration section that has the following syntax:

exec sql begin declare section;
 host variable declarations
exec sql end declare section;

A program can contain multiple declaration sections. The preprocessor treats
variables that are declared in each declaration section as global to the embedded
OpenSQL program from the point of declaration forward.

The variable declarations are identical to any variable declarations in the host
language. The data types of the declared variables must belong to a subset of
host language data types that are compatible with embedded OpenSQL data
types. OpenSQL converts between host language data types and OpenSQL data
types.

For a list of valid embedded OpenSQL data types and a discussion of data type
conversion, refer to your host language companion guide.

The embedded OpenSQL preprocessor is concerned only with host language
variables that are declared to OpenSQL. Host language variables that are not
declared to OpenSQL are invisible to the preprocessor and therefore can include
data types that the preprocessor does not understand.

The Include Statement

The embedded OpenSQL include statement lets you include external files in your
source code. The syntax of the include file is as follows:

exec sql include filename;

This statement is commonly used to include an external file containing variable
declarations. For example, assuming you have a file, myvars.dec, that contains a
group of variable declarations, you can use the include statement in the following
manner:
exec sql begin declare section;
exec sql include 'myvars.dec';
exec sql end declare section;

Host Language Variables

5–6 Reference Guide

This is the functional equivalent of listing all the declarations in the myvars.dec
file in the declaration section itself.

For details about the include statement, refer to the Include topic in the
“OpenSQL Statements” chapter.

Variable Usage

After host language variables are declared, they can be used in embedded
statements. Host language variables must be preceded by a colon. For example:
exec sql select ename, sal
into :name, :salary
from employee
where eno = :empnum;

The into clause contains two host language variables, name and salary and the
where clause contains one, empnum.

A host variable can have the same name as a database object, such as a column.
The preceding colon distinguishes the variable from a database object of the same
name.

If the application issues a query intended to retrieve values from a table into a
host variable and the query returns no value (for example, no row in the table
fulfilled the query), the contents of the variable are not modified.

Variable Structures

To simplify the transfer of data between database tables and embedded
programs, variable structures can be used in the select, fetch, and insert
statements. Variable structures are specified, like single variables, according to
the rules of the host language and must be declared in an embedded OpenSQL
declare section. The number, data type, and ordering of the structure’s elements
must correspond to the number, data type, and ordering of the result columns
associated with a select, fetch, or insert statement.

For example, for a database table, employee, with the columns ename (data type
character(20)) and eno (integer), declare the variable structure:
emprec
 ename character_string(20),
 eno integer;

and issue the select statement
exec sql select *
 into :emprec.ename, :emprec.eno
 from employee
 where eno = 23;

Host Language Variables

Embedded OpenSQL 5–7

Rather than specifying individual variables, you can specify the structure name
in the select statement. To specify the preceding example using a structure name,
use the following select statement:
exec sql select *
 into :emprec
 from employee
 where eno = 23;

The embedded OpenSQL preprocessor expands the structure name into the
names of the individual members. Therefore, placing a structure name in the
into clause is equivalent to enumerating all members of the structure in the order
in which they were declared.

You can also use a structure to insert values in the database table. For example:
exec sql insert into employee (ename, eno)
 values (:emprec);

For details on the declaration and use of variable structures, refer to the host
language companion guide.

The Dclgen Utility

Dclgen (Declaration Generator) is a structure-generating utility that maps the
columns of a database table into a structure that can be included in a variable
declaration. Invoke dclgen from the operating system level with the following
command:

dclgen language dbname tablename filename structurename

where:

language is the host language (for example, “C”).

dbname is the name of the database containing the table.

tablename is the name of the database table.

filename is the output file generated by dclgen containing the structure
declaration.

structurename is the name of the generated host language structure.

Dclgen creates the declaration file, filename, containing a structure corresponding
to the database table. The file also includes a declare table statement that
identifies the database table and columns from which the structure was
generated. After the file has been generated, an embedded OpenSQL include
statement can be used to incorporate the file into the variable declaration section.

For details on the dclgen utility, refer to the host language companion guide.

Host Language Variables

5–8 Reference Guide

Indicator Variables

An indicator variable is a two-byte integer variable associated with a host language
variable in an embedded OpenSQL statement. Indicator variables enable the
application to:

■ Detect when a null has been retrieved into a host variable. (When used to
detect or assign a null, indicator variables are referred to as null indicator
variables.)

■ Assign a null to a table column.

■ Detect character string truncation (when retrieving from a table into a host
variable).

Indicator variable must be declared to embedded OpenSQL in a declare section.

In an embedded OpenSQL statement, the indicator variable is specified
immediately after the host variable, with a colon separating the two:

host_variable:indicator_variable

The optional keyword indicator can be used in the syntax:

host_variable indicator:indicator_variable

Indicator variables can be associated with host language variables that contain
the value of a database column or a constant database expression. For example,
the following statement associates null indicators with variables that contain
values retrieved from table columns:
exec sql select ename, esal
into :name:name_null, :salary:sal_null
from employee;

Null Indicators and Data Retrieval

When OpenSQL retrieves a null for a host variable that has an associated
indicator variable, it sets the indicator variable to -1 and does not change the
value of the host variable. If the value retrieved is not a null, then the indicator
variable is set to 0 and the value is assigned to the host variable.

If the value retrieved is null and the program does not supply a null indicator, an
error results.

Null indicator variables can be associated with the following variables:

■ select into result variables

■ fetch into result variables

Host Language Variables

Embedded OpenSQL 5–9

The following example illustrates the use of a null indicator when retrieving data
from a database. This program retrieves employee information, then updates a
roster. If a null phone number is detected (using the indicator, variable
phone_null), the program places the string, N/A, in the roster’s phone column.
exec sql fetch emp_cursor into :name,
 :phone:phone_null, :id;
if (phone_null = -1) then
 update_roster(name, ’N/A’, id);
else
 update_roster(name, phone, id);
end if;

Using Null Indicators to Assign Nulls

An indicator variable can be used with a host variable to assign a null value to a
table column. When OpenSQL performs the assignment, it checks the value of
the host variable’s associated indicator variable. If the indicator variable’s value
is -1, then OpenSQL assigns a null to the column and ignores the value of the
host variable. If the indicator variable does not contain -1, OpenSQL assigns the
value of the host variable to the column. If the indicator value is -1 and the
column is not nullable, then OpenSQL returns an error.

The following example demonstrates the use of an indicator variable and the null
constant with the insert statement:
read name, phone number, and id from terminal;
if (phone = ’ ’) then
 phone_null = -1;
else
 phone_null = 0;
end if;
exec sql insert into newemp (name, phone, id,
 comment) values (:name, :phone:phone_null,
 :id, null);

This second example retrieves data from a form and updates the data in the
database:
exec frs getform empform (:name:name_null = name, :id:id_null = id);
exec sql update employee
set name = :name:name_null, id = :id:id_null
where current of emp_cursor;

Use null indicators to assign nulls in:

■ The insert values list

■ The update set list

■ Constant expressions in select target lists used in embedded select statements
or subselect clauses

All constant expressions in the above list can include the keyword null.
Specifying the word null is equivalent to specifying a null indicator with the
value -1.

Host Language Variables

5–10 Reference Guide

Indicator Variables and Character Data Retrieval

If OpenSQL retrieves a character string into a host variable that is too small to
hold the string, the data is truncated to fit. (If the data was retrieved from the
database, OpenSQL sets the sqlwarn1 field to “W”.) If the host variable has an
associated indicator variable, the indicator is set to the original length of the data.
For example, the following statement sets the variable, char_ind, to 6 because it is
attempting to retrieve a 6-character string into a 3-byte host variable, char_3:
exec sql select 'abcdef' into :char_3:char_ind;

Null Indicator Arrays and Host Structures

Use host structures to hold the data to be retrieved or written by select, fetch, and
insert statements. In combination with host structures, an indicator array can be
used to detect whether a particular member of the host structure contains a null.

An indicator array is an array of 2-byte integers that is associated with a host
variable structure. Generally, indicator arrays are declared in the same declare
section as their associated host variable structure. For example, the following
code declares a host variable structure, emprec, and its associated indicator
array, empind:
emprec
 ename character(20),
 eid integer,
 esal float;
empind array(3) of short_integer;

The preceding structure and indicator array might be used as follows:
exec sql select name, id, sal
into :emprec:empind
from employee
where number = 12;

A particular element of the indicator array is associated with the corresponding
ordered member of the host structure: you do not need to specify each array
element separately. The embedded OpenSQL preprocessor enumerates the
elements in the array when expanding the structure into its members.

Data Manipulation with Cursors

Embedded OpenSQL 5–11

Data Manipulation with Cursors
Cursors enable embedded OpenSQL programs to process the result rows
returned by a select statement, one at a time. After a cursor has been opened, it
can be advanced through the result rows. When the cursor is positioned to a
row, the data in the row can be transferred to host language variables and
processed according to the requirements of the application. The row to which the
cursor is positioned is referred to as the current row.

A typical cursor application uses OpenSQL statements to perform the following
steps:

1. Declare a cursor that will select a set of rows for processing.

2. Open the cursor, thereby selecting the data.

3. Fetch each row from the result table and move the data from the row into
host language variables.

4. Optionally update or delete the current row.

5. Close the cursor and terminate processing.

An Example of Cursor
Processing

This simple example of cursor processing prints the names and salaries of all
the employees in the employee table and updates the salary of employees
earning less than $10,000. For detailed information about the statements used
in this example, refer to the “OpenSQL Statements” chapter.
exec sql include sqlca;

exec sql begin declare section;
name character_string(15);
salary float;
exec sql end declare section;

exec sql whenever sqlerror stop;

exec sql connect personnel/rdb;

exec sql declare c1 cursor for
select ename, sal
from employee
for update of sal;

exec sql open c1;

exec sql whenever not found goto closec1;

loop while more rows

/* The WHENEVER NOT FOUND statement causes the loop
** to be broken as soon as a row is not fetched.
*/

exec sql fetch c1 into :name, :salary;

print name, salary;

if salary < 10000 then
 exec sql update employee

Data Manipulation with Cursors

5–12 Reference Guide

 set salary = 10000
 where current of c1;

end if;
end loop;

closec1:

exec sql close c1;

exec sql disconnect;

Declaring a Cursor

Before a cursor can be used in an application, it must be declared. The syntax for
declaring a cursor is:
exec sql declare cursor_name cursor for
 select_statement;

The declare cursor statement assigns a name to the cursor and associates the
cursor with a select statement to use to retrieve data. A cursor is always
associated with a particular select statement. The select is executed when the
cursor is opened.

Updates can be performed only if the cursor’s select statement does not include
any of the following elements:

■ Aggregates

■ Union clause

■ Group by clause

■ Having clause

■ Distinct

These elements can be present in subselects within the select statement, but must
not occur in the outermost select statement.

The cursor_name can be specified using a string literal or a host language string
variable. Cursor names can be assigned dynamically. For details, refer to An
Example of Dynamically Specified Cursor Names in this chapter.

Opening Cursors

Opening a cursor executes the associated select statement and positions the
cursor before the first row in the result table. To open a cursor, use the open
statement:
exec sql open cursor_name [for readonly];

Data Manipulation with Cursors

Embedded OpenSQL 5–13

To specify that you intend to read the table without updating it, include the for
readonly clause. This clause may improve the performance of the cursor
retrieval. If for readonly is specified, updates cannot be performed on the data.
For readonly can be specified even if the cursor was declared for update.

Open Cursors and Transaction Processing

OpenSQL treats a multi-query transaction as a single statement (logically).
Cursors cannot remain open across transactions. The commit statement closes all
open cursors, even if a close cursor statement was not issued.

If an error occurs while a cursor is open, the EDBC product or DBMS may roll
back the entire transaction and close the cursor.

Fetching the Data

The fetch statement advances the position of the cursor through the result rows
returned by the select. Using the fetch statement, your application can process
the rows one at a time.

The syntax of the fetch statement is:
exec sql fetch cursor_name
 into variable {, variable};

The fetch statement advances the cursor to the first or next row in the result table
and loads the values into host language variables.

To illustrate, the example of cursor processing shown previously contains the
following declare cursor statement:
exec sql declare c1 cursor for
select ename, sal
from employee
for update of sal;

open c1;

Later in the program, the following fetch statement appears:
exec sql fetch c1 into :name, :salary;

This fetch statement puts the values from the ename and sal columns of the
current row into the host language variables name and salary.

Since the fetch statement operates on a single row at a time, it is ordinarily placed
inside a host language loop.

Data Manipulation with Cursors

5–14 Reference Guide

There are two ways to detect when the last row in the result table has been
fetched:

■ The sqlcode variable in the SQLCA is set to 100 if an attempt to fetch past the
last row of the result table is made. (The SQLCA, or SQL Communications
Area, is a group of variables used by OpenSQL to provide error and status
information to applications. The SQLCA is described in detail in the
“OpenSQL Features” chapter.) After the last row is retrieved, succeeding
fetches do not affect the contents of the host language variables specified in
the fetch statement’s into clause.

■ The whenever not found statement specifies an action to be performed when
the cursor moves past the last row. For details about the whenever
statement, refer to Trapping Errors Using the Whenever Statement in the
“OpenSQL Features” chapter.

Cursors can only move forward through a set of rows. To fetch a row again, a
cursor must be closed and reopened.

Fetching Rows Inserted by Other Queries

While a cursor is open, the application can append rows using non-cursor insert
statements. If rows are inserted after the current cursor position, the rows may
or may not be visible to the cursor, depending on the following criteria:

■ Updatable cursors - The newly inserted rows are visible to the cursor.
Updatable cursors reference a single base table or updatable view.

■ Non-updatable cursors - If the cursor select statement retrieves rows directly
from the base table, the newly inserted rows are visible to the cursor. If the
select statement manipulates the retrieved rows (for example, includes an
order by clause), the cursor retrieves rows from an intermediate buffer, and
cannot detect the newly inserted rows.

Using Cursors to Update Data

To use a cursor to update data, specify the for update clause in the cursor’s
declaration:
exec sql declare cursor_name cursor for
 select_statement
 for update of column {, column};

The for update clause must list any columns in the selected database table that
may require updating. Columns that have not been declared cannot be updated.
If you are deleting rows, you do not need to declare the cursor for update.

Data Manipulation with Cursors

Embedded OpenSQL 5–15

The syntax for the close and fetch statements is no different for cursors opened
for update. However, the update statement has an extended version for cursors:
exec sql update tablename
 set column = expression {, column = expression}
 where current of cursor_name;

The where clause of the cursor version specifies the row to which the cursor
currently points, and the update affects only data in that row. Each column
specified in the set clause must have been declared for updating in the declare
cursor statement.

Be sure that the cursor is pointing to a row (a fetch has been executed) before
performing a cursor update. The update statement does not advance the cursor.
A fetch is still required to move the cursor forward one row. Two cursor updates
not separated by a fetch will cause the same row to be updated twice or generate
an error on the second update, depending on the underlying DBMS.

Using Cursors to Delete Data

The cursor version of the delete statement has the following syntax:
exec sql delete from tablename
 where current of cursor_name;

The delete statement deletes the current row. The cursor must be positioned on a
row (as the result of a fetch statement) before a cursor delete can be performed.
After the row is deleted, the cursor points to the position after the row (and
before the next row) in the set. To advance the cursor to the next row, issue the
fetch statement.

You do not have to declare a cursor for update to perform a cursor delete.

An Example of
Updating and
Deleting with Cursors

This example illustrates updating and deleting with a cursor:

exec sql include sqlca;

exec sql begin declare section;
name character_string(15);
salary float;
exec sql end declare section;

exec sql whenever sqlerror stop;

exec sql connect personnel/rdb;

exec sql declare c1 cursor for
select ename, sal
from employee
for update of sal;

exec sql open c1;

exec sql whenever not found goto closec1;

Data Manipulation with Cursors

5–16 Reference Guide

loop while more rows

exec sql fetch c1 into :name, :salary;
 print name, salary;

/* Increase salaries of all employees earning less
 than 60,000. */

if salary < 60,000 then

print ’Updating ’, name;
 exec sql update employee
 set sal = sal * 1.1
 where current of c1;

/* Fire all employees earning more than 300,000. */

else if salary > 300,000 then

print ’Terminating ’, name;
 exec sql delete from employee
 where current of c1;

end if;

end loop;

closec1:

exec sql close c1;

exec sql disconnect;

Closing Cursors

The final action in cursor processing is to close the cursor. Once the cursor is
closed, no more processing can be performed with it unless another open
statement is issued. The syntax for closing the cursor is as follows:
exec sql close cursor_name;

The same cursor can be opened and closed any number of times in a single
program, but it must be closed before reopening it. If a cursor is closed and
reopened, the associated select statement is executed again, and the cursor is
positioned before the start of the result rows.

Data Manipulation with Cursors

Embedded OpenSQL 5–17

Summary of Cursor Positioning

The following table summarizes the effects of cursor statements on cursor
positioning:

Statement Effect on Cursor Position

open Cursor positioned before first row in set.

fetch Cursor moves to next row in set. If it is already on the last
row, the cursor moves beyond the set and its position
becomes undefined.

update(cursor) Cursor remains on current row.

delete(cursor) Cursor moves to a position after the deleted row (but
before the following row).

close Cursor and set of rows become undefined.

For extended examples of the use of cursors in embedded OpenSQL, refer to
your host language companion guide.

An Example of
Dynamically
Specified Cursor
Names

A dynamically specified cursor name (a cursor name specified using a host
string variable) can be used to scan a table that contains rows that are related
hierarchically, such as a table of employees and managers. In a relational
database, this structure must be represented as a relationship between two
columns. In an employee table, typically employees are assigned an ID
number. One of the columns in the employee table contains the ID number of
each employee’s manager. This column establishes the relationships between
employees and managers.

To use dynamically specified cursor names to scan this kind of table:

■ Write a routine that uses a cursor to retrieve all the employees that work for a
manager.

■ Create a loop that calls this routine for each row that is retrieved and
dynamically specifies the name of the cursor to be used by the routine.

The following example retrieves rows from the employee table that has the
following format:
exec sql declare employee table
(ename varchar(32),
 title varchar(20),
 manager varchar(20));

This program scans the employee table and prints out all employees and the
employees that they manage:
/* This program will print out, starting with
** the top manager,
** each manager and who they manage for the entire

Data Manipulation with Cursors

5–18 Reference Guide

** company. */

exec sql include sqlca;

/* main program */
exec sql begin declare section;
 topmanager character string(21)
exec sql end declare section;

exec sql connect db2/db2;

exec sql whenever not found goto closedb;
exec sql whenever sqlerror call sqlprint;

/* Retrieve top manager */
exec sql select ename into :topmanager from employeewhere title = 'President';

print ’President’, topmanager
call printorg(1, topmanager);
/* start with top manager */

/* closedb */
closedb:
exec sql disconnect;

/* This subroutine retrieves and displays employees
** who report to a given manager. This subroutine is
** called recursively to determine if a given
** employee is also a manager and if so,
** it will display who reports to them.
*/

subroutine printorg(level, manager)
level integer

exec sql begin declare section;
 manager character string(21)
 ename character string(33)
 title character string(21);
 cname character string(4);
exec sql end declare section;

/* set cursor name to 'c1', 'c2', ... */
cname = ’c’ + level

exec sql declare :cname cursor for
select ename, title, manager from employee
 where manager = :manager
 order by ename;

exec sql whenever not found goto closec;

exec sql open :cname;

loop
 exec sql fetch :cname into :ename, :title,
 :manager;

/* Print employee's name and title */
 print title, ename
/* Find out who (if anyone) reports to this employee*/
 printorg(level+1, ename);

end loop

closec:
exec sql close :cname;
return;

Dynamic OpenSQL 6–1

Chapter

6 Dynamic OpenSQL

This chapter discusses the functionality of dynamic programming including the
SQL Descriptor Area (SQLDA) and dynamic OpenSQL statements, and describes
how to execute a dynamic non-select statement and a dynamic select statement.

Dynamic programming enables embedded OpenSQL programs to specify a
variety of program elements (such as queries and OpenSQL statements) at run
time. In applications where table names or column names are not known until
run time, or where complete queries must be built based on the application’s
run-time environment, the hard-coded OpenSQL statement is not sufficient. For
example, an application might include an expert mode in which the run-time
user can type in select queries and browse the results at the terminal. To support
applications such as these, OpenSQL provides dynamic OpenSQL.

Dynamic OpenSQL provides the ability to specify table and column names and
build queries at run time. Using dynamic OpenSQL, you can:

■ Execute a statement that is stored in a buffer (execute immediate)

■ Encode a statement stored in a buffer and execute it many times (prepare and
execute)

Obtain information about a table at run time (prepare and describe)

For details about the execute immediate, prepare, execute, and describe
statements, refer to Dynamic OpenSQL Statements in this chapter.

To support dynamic select statements, the cursor statements (for example,
declare and open) have dynamic versions. For details, refer to Executing a
Dynamic Select Statement and Using a Cursor to Retrieve the Results in this
chapter.

The OpenSQL Descriptor Area (SQLDA) is an integral part of dynamic
programming. The SQLDA is a host language structure used by dynamic
OpenSQL as a storage space for information. When used with the describe
statement, this information includes the name, data type, and length of the result
columns, the form’s fields, or the table field’s columns. When the SQLDA is used
with other dynamic forms statements, the information includes the data type,
length, and addresses of the variables that either store values from the table or
form or contain values to be placed in the table or form.

The SQLDA

6–2 Reference Guide

Depending on your host language, some of the statements discussed in this
chapter may vary in syntax or may not be supported. Refer to your host
language companion guide for information about dynamic programming that is
specific to your host language.

The SQLDA
The descriptor area, called the SQLDA (SQL Descriptor Area), is a host language
structure used by both dynamic OpenSQL and dynamic FRS (Forms Run-Time
System). Dynamic OpenSQL uses the SQLDA to store information about each
result column of the select statement. Dynamic FRS uses the SQLDA to hold
descriptive information about the fields of a described form or columns of a
described table field. Both dynamic OpenSQL and dynamic FRS use the SQLDA
to store descriptive information about program variables. The SQLDA must be
used when executing a describe statement (refer to the Describe Statement and
the SQLDA topic in this chapter). The SQLDA can optionally be used when
executing a fetch, open, prepare, execute, or execute immediate statement. (For
details about these statements, refer to Dynamic OpenSQL Statements in this
chapter.)

Structure of the SQLDA

Storage for the SQLDA structure is normally allocated at run time. If a program
allows several dynamically defined cursors to be opened at one time, the
program can allocate several SQLDA structures, one for each select statement,
and assign each structure a different name.

Each host language has different considerations for the SQLDA structure. Refer
to your host language companion guide on dynamic OpenSQL statements before
writing a program that uses the SQLDA. The layout of the SQLDA is:

sqldabc 8-byte character array assigned the blank-padded value

“SQLDA ”.

sqldabc 4-byte integer assigned the size of the SQLDA.

sqln 2-byte integer indicating the number of allocated sqlvar elements.
This value must be set by the program before describing a
statement. The value must be greater than or equal to zero.

sqld 2-byte integer indicating the number of result columns associated
with the describe statement. This number specifies how many of
the allocated sqlvar elements were used to describe the statement.
If sqld is greater than sqln, then the program must reallocate the
SQLDA to provide more storage buffers and reissue the describe
statement.

The SQLDA

Dynamic OpenSQL 6–3

To use the SQLDA to place values in a table or form, the program
must set sqld to the proper number before the SQLDA is used in
a statement.

 When describing a dynamic OpenSQL statement, if the value in
sqld is zero, the described statement is not a select statement.

sqlvar An sqln-size array of:

sqltype 2-byte integer containing a code number indicating
the data type of the column or variable. For a list of
the codes and corresponding types, refer to Data
Type Codes in this chapter.

sqllen 2-byte integer indicating the length of the column,
variable, or field.

sqldata Pointer to the variable described by the type and
length.

sqlind Pointer to indicator variable associated with the host
variable.

sqlname String containing the result column name (if a select
statement is being described). Maximum length is 32
characters.

Including the SQLDA in a Program

To define the SQLDA, your application must issue the following include
statement:
exec sql include sqlda;

Do not place this statement in a declaration section.

In most languages, this statement incorporates a set of type definitions that can
be used to define the SQLDA structure. In some languages, it actually declares
the structure. If the structure is declared directly (instead of using the include
statement), you can specify any name for the structure. Refer to your host
language companion guide for information about how your language handles
this statement.

A program can have more than one SQLDA-type structure. A dynamic FRS
describe statement and a dynamic OpenSQL statement can use the same SQLDA
structure if the described fields or table field columns have the same names,
lengths, and data types as the columns of the database table specified in the
dynamic OpenSQL statement.

The SQLDA

6–4 Reference Guide

Describe Statement and the SQLDA

Dynamic OpenSQL uses the describe statement to return information about the
result columns of a select statement. Describing a select tells the program the
data types, lengths, and names of the columns retrieved by the select. If you
describe a statement other than select, the only information returned is a 0 in the
sqld field. For a complete discussion of how to use describe in a dynamic
OpenSQL application, refer to Preparing and Describing the Select Statement in
this chapter.

Data Type Codes

The describe statement returns a code indicating the data type of a field or
column. This code is returned in sqltype, one of the fields in a sqlvar element.
The following table lists the type codes:

Data Type Name Data Type Code Nullable

integer 30

-30

No

Yes

float 31

-31

No

Yes

decimal 10

-10

No

Yes

character 20

-20

No

Yes

varchar 21

-21

No

Yes

date 3

-3

No

Yes

If the column, variable, or field described by the sqlvar element is nullable, the
type code is returned as a negative value.

Dynamic OpenSQL Statements

Dynamic OpenSQL 6–5

The Using Clause

The using clause is an optional clause that provides certain OpenSQL statements
with dynamic capabilities. The using clause directs OpenSQL to use the
variables pointed to by the sqlvar elements of the SQLDA (or other host
variables) when executing the statement.

The syntax of the using clause is shown below:
using descriptor descriptor_name

Note: The keyword descriptor is optional in some statements that accept the
using clause.

The following statements accept the using clause:

■ Describe

■ Execute

■ Execute immediate

■ Fetch

■ Open

■ Prepare

For details about the execute statement, refer to Executing a Dynamic Non-select
Statement in this chapter. For details about the execute immediate statement,
refer to Executing a Dynamic Select Statement in this chapter.

Dynamic OpenSQL Statements
This section describes the (non-cursor) dynamic OpenSQL statements. Dynamic
OpenSQL has four statements that are exclusively used in a dynamic program:

■ Execute immediate

■ Prepare

■ Execute

■ Describe

In addition, all statements that support cursors (declare, open, fetch, update,
delete) have dynamic versions to support dynamically executed select
statements.

Dynamic OpenSQL Statements

6–6 Reference Guide

Execute Immediate Statement

The execute immediate statement executes an OpenSQL statement specified as a
string literal or using a host variable. The execute immediate is most useful when
the program intends to execute a statement only once, or when using a select
loop with a dynamic select statement.

The execute immediate statement can be used to execute all OpenSQL statements
except for the following statements:

call fetch

close include

connect inquire_sql

declare open

describe prepare

disconnect set_sql

execute whenever

The syntax of execute immediate is as follows:
exec sql execute immediate statement_string
 [into variable {, variable} | using [descriptor]
 descriptor_name
 [exec sql begin;
 program_code
 exec sql end;]];

The contents of the statement_string must not include the keywords, exec sql, or a
statement terminator. The optional into/using clause and begin/end statement
block can only be used when you are executing a dynamic select statement.

Prepare and Execute Statements

The prepare statement tells OpenSQL to encode the dynamically built statement
and assign it the specified name. After a statement is prepared, the program can
execute the statement one or more times within a transaction by issuing the
execute statement and specifying the statement name.

If your program executes the same statement many times in a transaction, the
prepare and execute method can improve the performance of the statement.
Committing a transaction discards any statements that were prepared during the
transaction.

Dynamic OpenSQL Statements

Dynamic OpenSQL 6–7

The following OpenSQL statements cannot be prepared:

call execute
close fetch
connect include
declare inquire_sql
describe open
disconnect set
execute immediate whenever

The syntax of the prepare statement is as follows:
exec sql prepare statement_name
 [into descriptor_name|using descriptor descriptor_name]
 from host_string_variable | string_literal;

The statement_name can be a string literal or variable. The contents of the host
string variable or the string literal cannot include exec sql or the statement
terminator.

If the into clause is included in the prepare statement, the prepare statement also
describes the statement string into the specified descriptor area and it is not
necessary to describe the statement string separately.

The syntax of the execute statement is as follows:
exec sql execute statement_name
 [using host_variable {, host_variable}
 | using descriptor descriptor_name];

A prepared statement can be fully specified, or some portions can be specified by
question marks (?). The portions specified using question marks must be filled in
by the using clause when the statement is executed.

Describe Statement

The describe statement describes a prepared OpenSQL statement into a program
descriptor (SQLDA) to allow the program to interact with the dynamic statement
as though it was hard coded in the program. This statement is used primarily
with dynamic select statements.

The syntax for the describe statement is as follows:
exec sql describe statement_name into|using descriptor_name;

For more information about the describe statement, refer to the Describe
Statement and the SQLDA and to the Preparing and Describing the Select
Statement topics in this chapter.

Executing a Dynamic Non-select Statement

6–8 Reference Guide

Executing a Dynamic Non-select Statement
Use either the execute immediate statement or the combination of prepare and
execute to execute a dynamic non-select statement. Execute immediate is most
useful if the program executes the statement only once within a transaction. If
the program executes the statement many times within a transaction, for
example, within a program loop, use the prepare and execute combination:
prepare the statement once, then execute as many times as necessary.

If the program does not know whether the statement is a select statement, the
program can prepare and describe the statement. The results returned by the
describe statement will indicate whether the statement was a select. For more
information and a sample of the conditional coding to handle such situations,
refer to Executing the Select with Execute Immediate topic in this chapter.

Using Execute Immediate to Execute a Non-select Statement

Execute immediate executes an OpenSQL statement specified using a string
literal or host variable. The execute immediate statement can be used to execute
all but a few of the OpenSQL statements. For a list of statements that you cannot
execute with the execute immediate statement, refer to The Execute Immediate
Statement in this chapter.

When the execute immediate statement is used to execute a statement that is not
a select, its syntax is as follows:
exec sql execute immediate statement_string;

For example, the following statement executes a drop statement specified as a
string literal:
/*
** Statement specification included
** in string literal. The string literal does
** NOT include 'exec sql' or ';'
*/
exec sql execute immediate 'drop employee';

As another example, the following example reads OpenSQL statements from a
file into a host string variable named, buffer, and executes the contents of the
variable. If the variable includes a statement that cannot be executed by execute
immediate, or if another error occurs, the loop is broken.
exec sql begin declare section;
 character buffer(100);
exec sql end declare section;
open file;
loop while not end of file and not error

read statement from file into buffer;
exec sql execute immediate :buffer;

Executing a Dynamic Non-select Statement

Dynamic OpenSQL 6–9

end loop;
close file;

If only a statement’s parameters, such as an employee name or number, change
at run time, then you do not need to use execute immediate; you can replace a
value with a host variable. For example, the following fragment increases the
salaries of all employees with a specific employee number (read out of a file into
variable, number):
loop while not end of file and not error

read number from file;
exec sql update employee
 set sal = sal * 1.1
 where eno = :number;

end loop;

Preparing and Executing a Non-select Statement

The prepare and execute statements can also be used to execute dynamic
non-select statements. These two statements, working together, allow your
program to save a statement string and execute it as many times as necessary.
However, a prepared statement is discarded when the transaction in which it
was prepared is rolled back or committed. In addition, if a statement is prepared
with the same name as an existing statement, the new statement supersedes the
old statement.

The following example demonstrates how a run-time user can prepare (save) a
dynamically specified OpenSQL statement and execute it a specific number of
times:
read OpenSQL statement from terminal into buffer;
exec sql prepare s1 from :buffer;
read number in N
loop N times
 exec sql execute s1;
end loop;

The next example illustrates a dynamically prepared query. This example creates
a table whose name is the same as the user’s name, and inserts into the table a set
of rows with fixed-typed parameters (the user’s children):
get user name from terminal;
buffer = ’create table ’ + user_name + ’(child
character(15), age integer)’;
exec sql execute immediate :buffer;

buffer = ’insert into ’ + user_name + ’(child, age)
values (?, ?)’;
exec sql prepare s1 from :buffer;

read child’s name and age from terminal;
loop until no more children
exec sql execute s1 using :child, :age;

Executing a Dynamic Select Statement

6–10 Reference Guide

read child’s name and age from terminal;
end loop;

There are some statements that cannot be executed using prepare and execute.
For a list of these statements, refer to Dynamic OpenSQL Statements in this
chapter. For more information about the syntax and use of these statements,
refer to the “OpenSQL Statements” chapter.

Executing a Dynamic Select Statement
If you know the data types of the result columns, use the execute immediate
statement with the into clause. For details, refer to When the Result Column
Data Types are Known topic in this chapter.

If you do not know the data types of the result columns, the select statement
must be prepared and described first, then the program can either:

■ Use the execute immediate statement with the using clause to execute the
select.

■ Declare a cursor for the prepared select statement and use the cursor to
retrieve the results.

Refer to the When the Result Column Data Types are Unknown topic in this
chapter for more information.

The execute immediate option defines a select loop to process the results of the
select. Select loops minimize disk and communications I/O but do not allow the
program to issue any other OpenSQL statements within the loop. If the program
must access the database while processing rows, use the cursor option.

If the program does not know whether the statement is a select, the prepare and
describe statements can be used to determine whether the statement is a select.
The following example demonstrates the program logic required to accept
OpenSQL statements from a user, execute the statements, and print the results. If
the statement is a select, the program uses a cursor to execute the query.
statement_buffer = ’ ’;
loop while reading statement_buffer from terminal

exec sql prepare s1 from :statement_buffer;
exec sql describe s1 into :result_descriptor;

if (sqlda.sqld = 0) then

exec sql execute s1;

else

/* This is a SELECT */
 exec sql declare c1 cursor for s1;
 exec sql open c1;

Executing a Dynamic Select Statement

Dynamic OpenSQL 6–11

allocate result variables using result_descriptor;

loop while there are more rows in the cursor

exec sql fetch c1 using descriptor
 :result_descriptor;
 if (sqlca.sqlcode not equal 100) then
 print the row using result_descriptor;
 end if;

end loop;

free result variables from result_descriptor;

exec sql close c1;

end if;

process sqlca for status;

end loop;

When the Result Column Data Types are Known

If the program knows the data types of the resulting columns and of the result
variables used to store the column values, the program can execute the select
statement using the execute immediate statement with the into clause.

In the following example, a database contains several password tables, each
having one column and one row and containing a password value. An
application connected to this database requires a user to correctly enter two
passwords before continuing. The first password entered is actually the name of
a password table and the second is the password value in that table.

The following code uses the execute immediate statement to execute the
dynamically defined select built by the application to check these passwords:
...
exec frs prompt noecho ('First Password: ',
 :table_password);
exec frs prompt noecho ('Second Password: ',
 :value_password);

select_stmt = ’select column1 from ’ +
 table_password;
exec sql execute immediate :select_stmt
 into :result_password;
if (sqlcode < 0) or (value_password <>
 result_password)
then
 exec frs message 'Password authorization failure';
endif
...

Because the application’s developer knows the data type of the column in the
password table (although not which password table will be selected), the
developer can execute the dynamic select with the execute immediate statement
and the into clause.

Executing a Dynamic Select Statement

6–12 Reference Guide

The syntax of execute immediate in this context is shown below:
exec sql execute immediate select_statement
 into variable {, variable};
[exec sql begin;
 host_code
 exec sql end;]

This syntax retrieves the results of the select into the specified host variables. The
begin and end statements define a select loop that processes each row returned
by the select statement and terminates when there are no more rows to process.
If a select loop is used, your program cannot issue any other OpenSQL
statements for the duration of the loop.

If the select loop is not included in the statement, OpenSQL assumes that the
select statement is a singleton select returning only one row and, if more than one
row is returned, issues an error.

When the Result Column Data Types are Unknown

In most instances, when executing a dynamically defined select statement, the
program does not know the number or types of result columns. To provide this
information to the program, first prepare and then describe the select statement.
The describe statement returns to the program the type description of the result
columns of a prepared select statement. After the select is described, the
program must dynamically allocate (or reference) the correct number of result
storage areas of the correct size and type to receive the results of the select.

If the statement is not a select statement, describe returns a zero to the sqld and
no sqlvar elements are used.

After the statement has been prepared and described and the result variables
allocated, the program has two choices regarding the execution of the select
statement:

■ The program can associate the statement name with a cursor name, open the
cursor, fetch the results into the allocated result storage area (one row at a
time), and close the cursor.

■ The program can use execute immediate, which allows you to define a select
loop to process the returned rows. If the select will return only one row, then
it is not necessary to define the select loop.

Executing a Dynamic Select Statement

Dynamic OpenSQL 6–13

Preparing and Describing the Select Statement

If the program has no advance knowledge of the resulting columns, the first step
in executing a dynamic select statement is to prepare and describe the statement.
Preparing the statement encodes and saves the statement and assigns it a name.
For information about the syntax and use of prepare, refer to the Prepare and
Execute Statements in this chapter.

The describe statement returns descriptive information about a prepared
statement into a program descriptor, that is, an SQLDA structure. This statement
is primarily used to return information about the result columns of a select
statement to the program, but other statements can be described. When
describing a non-select statement, the only information returned to the program
is that the statement was not a select statement.

The syntax of the describe statement is shown below:
exec sql describe statement_name into|using descriptor_name;

When a select statement is described, OpenSQL returns the information about
each result column to a sqlvar element. (For information about sqlvar elements,
refer to the Structure of the SQLDA in this chapter.) This is a one-to-one
correspondence: the information in one sqlvar element corresponds to one result
column. Before issuing the describe statement, the program must allocate
sufficient sqlvar elements and set the SQLDA sqln field to the number of
allocated sqlvars. The program must set sqln before the describe statement is
issued.

After issuing the describe statement, the program must check the value of sqld,
which contains the number of sqlvar elements actually used to describe the
statement. If sqld is zero, the prepared statement was not a select statement. If
sqld is greater than sqln, the SQLDA does not have enough sqlvar elements:
more storage must be allocated and the statement must be redescribed.

The following fragment shows a typical describe statement and the surrounding
host program code. The program assumes that 20 sqlvar elements will be
sufficient:
sqlda.sqln = 20;
exec sql describe s1 into sqlda;

if (sqlda.sqld = 0) then

 statement is not a select statement;

else if (sqlda.sqld > sqlda.sqln) then

 save sqld;
 free current sqlda;
 allocate new sqlda using sqld as the size;
 sqlda.sqln = sqld;
 exec sql describe s1 into sqlda;

end if;

Executing a Dynamic Select Statement

6–14 Reference Guide

Analyzing the Sqlvar Elements

After describing a statement, the program must analyze the contents of the sqlvar
array. Each element of the sqlvar array describes one result column of the select
statement. Together, all the sqlvar elements describe one complete row of the
result table.

The describe statement sets the data type, length, and name of the result column
(sqltype, sqllen and sqlname), and the program must use that information to
supply the address of the result variable and result indicator variable (sqldata
and sqlind).

For example, assuming the table, object, was created as follows:
exec sq create table object
(o_id integer not null,
 o_desc character(100) not null,
 o_price float not null,
 o_sold date);

and the following dynamic query was described as follows:
exec sql prepare s1 from 'select * from object';
exec sql describe s1 into sqlda;

The SQLDA descriptor results would be:

sqld 4 (columns)

sqlvar(1) sqltype = 30 (integer)

 sqllen = 4

 sqlname = ’o_id’

sqlvar(2) sqltype = 20 (character)

 sqllen = 100

 sqlname = ’o_desc’

sqlvar(3) sqltype = 31 (float)

 sqllen = 8

 sqlname = ’o_price’

sqlvar(4) sqltype = -3 (date)

 sqllen = 0

 sqlname = ’o_sold’

Executing a Dynamic Select Statement

Dynamic OpenSQL 6–15

The describe statement sets the value of sqllen to the length of the result column.
For character data types, sqllen is set to the maximum length of the character
string. For numeric data types, sqllen is set to the size of the numeric field as
declared when created. For the date data type, sqllen is set to 0, but the program
should use a 25-byte character string to retrieve or set date data. Note that, for
nullable columns, a negative value is returned.

After the statement is described, your program must analyze the values of
sqltype and sqllen in each sqlvar element. If sqltype and sqllen do not
correspond exactly with the types of variables used by the program to process
the select statement, then sqltype and sqllen must be modified to be consistent
with the program variables. After describing a select statement, there will be one
sqlvar element for each expression in the select target list.

After processing the values of sqltype and sqllen, allocate storage for the
variables that will contain the values in the result columns of the select statement,
by pointing sqldata at a host language variable that will contain the result data.
If the value of sqltype is negative, which indicates a nullable result column data
type, allocate an indicator variable for the particular result column and set sqlind
to point to the indicator variable. If sqltype is positive, indicating that the result
column data type is not nullable, an indicator variable is not required. In this
case, set sqlind to zero.

To omit the null indicator for a nullable result column (sqltype is negative), set
sqltype to its positive value and sqlind to zero. If sqltype is positive and an
indicator variable is allocated, set sqltype to its negative value, and set sqlind to
point to the indicator variable.

In the above example, after the program analyzes the results as described, the
date type is changed to character and sqlind and sqldata are set to appropriate
values. The values in the resulting sqlvar elements are:

sqlvar(1) sqltype = 30 (integer),

 sqllen = 4,

 sqldata = Address of 4-byte integer,

 sqlind = 0,

 sqlname = ’o_id’

sqlvar(2) sqltype = 20 (character),

 sqllen = 100,

 sqldata = Address of 100-byte character string,

 sqlind = 0,

 sqlname = ’o_desc’

Executing a Dynamic Select Statement

6–16 Reference Guide

sqlvar(3) sqltype = 31 (float),

 sqllen = 8

 sqldata = Address of 8-byte floating point,

 sqlind = 0,

 sqlname = ’o_price’

sqlvar(4) sqltype = -30 (Nullable character, was date),

 sqllen = 25, (was 0)

 sqldata = Address of 25-byte character string,

 sqlind = Address of 2-byte indicator variable,

 sqlname = ’o_sold’

Executing the Select with Execute Immediate

You can execute a dynamic select statement that has been prepared and
described with an execute immediate statement that includes the using clause.
The using clause tells OpenSQL to place the values returned by the select into the
variables pointed to by the elements of the SQLDA sqlvar array. If the select will
return more than one row, you can also define a select loop to process each row
before another is returned.

The syntax of execute immediate in this context is shown below:
exec sql execute immediate select_statement
 using [descriptor] descriptor_name;
[exec sql begin;
 host_code
 exec sql end;]

Within a select loop, no OpenSQL statements other than an endselect can be
issued. For selects without select loops, OpenSQL issues an error if more than
one row is returned.

To illustrate this option, the following example contains a dynamic select. The
results of the select statement are used to generate a report.
...
allocate an sqlda
read the dynamic select from the terminal into a
stmt_buffer

exec sql prepare s1 from :stmt_buffer;
exec sql describe s1 into :sqlda;
if (sqlca.sqlcode < 0) or (sqlda.sqld = 0) then
 print (’Error or statement is not a select’);
 return;
else if (sqlda.sqld > sqlda.sqln) then
 allocate a new sqlda;
 exec sql describe s1 into :sqlda;
endif;

Executing a Dynamic Select Statement

Dynamic OpenSQL 6–17

analyze the results and allocate variables

exec sql execute immediate :stmt_buffer
 using descriptor :sqlda;
exec sql begin;
process results, generating report
if error occurs, then
 exec sql endselect;
endif
exec sql end;
...

Using a Cursor to Retrieve the Results

To give your program the ability to access the database or issue other database
statements while processing rows retrieved as the result of the select, use a cursor
to retrieve those rows.

To use cursors, after the SQLDA has been analyzed and result variables have
been allocated and pointed at, the program must declare and open a cursor in
order to fetch the result rows. The syntax of the cursor declaration for a
dynamically defined select statement is as follows:
exec sql declare cursor_name cursor for statement_name;

This statement associates the select statement represented by statement_name with
the specified cursor. Statement_name is the name assigned to the statement when
the statement was prepared. As with non-dynamic cursor declarations, the select
statement is not evaluated until the cursor is actually opened. After opening the
cursor, the program retrieves the result rows using the fetch statement with the
SQLDA instead of the list of output variables. The syntax for a cursor fetch
statement is as follows:
exec sql fetch cursor_name using descriptor descriptor_name;

Before the fetch statement, the program has filled the result descriptor with the
addresses of the result storage areas. When executing the fetch statement,
OpenSQL copies the result columns into the result areas referenced by the
descriptor.

The following program fragment elaborates on an earlier example in this section.
The program reads a statement from the terminal. If the statement is quit, the
program ends. Otherwise, the program prepares the statement. If the statement
is not a select, then it is executed. If the statement is a select statement, then it is
described, a cursor is opened, and the result rows are fetched. Error handling is
not shown.
exec sql include sqlca;
exec sql include sqlda;

allocate an sqlda with 300 sqlvar elements;
sqlda.sqln = 300;

read statement_buffer from terminal;

Executing a Dynamic Select Statement

6–18 Reference Guide

loop while (statement_buffer <> ’quit’)

exec sql prepare s1 from :statement_buffer;
exec sql describe s1 into sqlda;

if (sqlda.sqld = 0) then /* This is not a select */
 exec sql execute s1;
else /* This is a select */
 exec sql declare c1 cursor for s1;
 exec sql open c1;

 print column headers from the sqlname fields;
 analyze the SQLDA, inspecting types and lengths;
 allocate result variables for a cursor result row;
 set sqlvar fields sqldata and sqlind;

 loop while (sqlca.sqlcode = 0)
 exec sql fetch c1 using descriptor sqlda;
 if (sqlca.sqlcode = 0) then
 print the row using sqldata and sqlind
 pointed at by the sqlvar array;
 end if;
 end loop;

 free result variables from the sqlvar elements;

 exec sql close c1;

end if;

process sqlca and print the status;
read statement_buffer from terminal;

end loop;

OpenSQL Features 7–1

Chapter

7 OpenSQL Features

This chapter discusses the following features of OpenSQL:

■ Transactions

■ Status information and error handling

■ Multiple session connections

■ Database procedures

■ DBMS-specific extensions (using the with clause and the direct execute
immediate statement)

Transactions
A transaction is one or more OpenSQL statements processed as a single,
indivisible database action. A transaction that consists of a single OpenSQL
statement is sometimes called a single query transaction (SQT). If the transaction
contains multiple statements, it is often called a multiple query transaction
(MQT).

By default, all transactions are multiple query transactions. The transaction
begins with the first OpenSQL statement following a connect, commit, or rollback
statement, which can be issued by you, the program, or in some instances, by the
DBMS. The transaction continues until there is an explicit commit or rollback
statement or until the session terminates. (Terminating the session or
disconnecting from the database normally issues an implicit commit statement.
If the session or connection terminates abnormally, the results depend on the host
DBMS.)

In EDBC products, transactions are managed by the underlying DBMS.
Transaction handling may vary depending on the DBMS to which your session is
connected. For example, some DBMSs begin a transaction immediately following
the connect or rollback statements, rather than awaiting the next OpenSQL
statement. For details, refer to the documentation for the host DBMS.

Transactions

7–2 Reference Guide

None of the database changes made by a transaction are visible to other sessions
until the transaction is committed. In a multi-user environment, where many
transactions may be executing simultaneously, this behavior maintains database
consistency. For example, if two transactions are updating the same information
in a table, the DBMS must ensure that one transaction’s updates are complete
before allowing the other to proceed.

Controlling Transactions

The commit and rollback statements allow control of the effects of a transaction
on the database:

■ The commit statement makes the changes permanent.

■ The rollback statement undoes the changes made by the transaction.

When a commit statement is issued, the DBMS makes all changes resulting from
the transaction permanent, terminates the transaction, and drops any locks held
during the transaction. When a rollback statement is issued, the DBMS undoes
any database changes made by the transaction, terminates the transaction, and
releases any locks held during the transaction.

Committing Transactions

Transactions are composed of one or more OpenSQL statements. In general, a
transaction begins with the first statement after connection to the database or the
first statement following a commit or rollback. The precise starting point of a
transaction depends on the DBMS to which you are connected. Subsequent
statements are part of the transaction until a commit or rollback is executed. By
default, an explicit commit or rollback must be issued to close a transaction.

To direct the DBMS to commit each database statement individually, use the set
autocommit on statement. (This statement cannot be issued in an open
transaction.) When autocommit is set on, a commit occurs automatically after
every statement, except prepare and describe. If autocommit is on and a cursor is
opened, the server or EDBC product does not issue a commit until the close
cursor statement is executed, because cursors are logically a single statement. A
rollback statement can be issued when a cursor is open. To restore the default
behavior (and enable multiquery transactions), issue the set autocommit off
statement.

To determine whether you are in a transaction, use the inquire_sql statement.
For information about inquire_sql, refer to Retrieving Status Information in this
chapter and the Inquire_sql topic in the “OpenSQL Statements” chapter. To find
out if autocommit is on or off, use dbmsinfo. For information about dbmsinfo,
refer to the Dbmsinfo Function in this chapter.

Retrieving Status Information

OpenSQL Features 7–3

Aborting Statements and Transactions

Transactions and statements can be aborted by an application or by the DBMS.
Applications can abort transactions or statements as a result of:

■ Rollback statement

■ Timeout (if available and set)

The DBMS aborts statements and transactions as a result of the following
conditions:

■ Deadlock

■ Error while executing a database statement

Effects of Aborting Transactions

When a statement or transaction is aborted:

■ Rolling back a single statement does not cause the DBMS to release any locks
held by the transaction. Locks are released when the transaction ends.

■ If cursors are open, the entire transaction is always aborted.

■ When an entire transaction is aborted, all open cursors are closed, and all
prepared statements are invalidated.

Interrupting Transactions

The effect of a keyboard interrupt (Ctrl+C or Ctrl+Y) on a transaction depends on
the EDBC product and underlying DBMS. Refer to the DBMS documentation for
details.

Retrieving Status Information
The following features enable your application program to obtain status
information:

■ Dbmsinfo - Returns information about the current session.

■ Inquire_sql - Returns information about the last database statement that was
executed.

■ Inquire_frs - Returns information about the forms system.

■ SQLCA (SQL Communications Area) - Returns status and error information
about the last OpenSQL statement that was executed.

These statements are described in the following sections.

Retrieving Status Information

7–4 Reference Guide

The Dbmsinfo Function

Dbmsinfo is a function that returns a string containing information about the
current session. This statement can be used in the Terminal Monitor or in an
embedded OpenSQL application. The dbmsinfo statement has the following
syntax:

select dbmsinfo ('request_name') [as result_column]

For example, to determine which version of the EDBC product or server you are
using, enter:
select dbmsinfo('_version');

In OpenSQL, only one dbmsinfo request is allowed per select statement. In
addition, when issuing a select dbmsinfo statement, you cannot specify other
select statement clauses (such as from or where).

The following table lists valid request_names:

Request Name Response Description

autocommit_state Returns 1 if autocommit is on; 0 if autocommit is off.

_bintim Returns the current time and date in an internal
format, represented as the number of seconds since
January 1, 1970 00:00:00 GMT.

database Returns the name of the database to which the session
is connected.

dba Returns the DBMS username of the database owner.

_et_sec Returns the elapsed time for session, in seconds.

query_language Returns query language in use (“SQL”).

server_class Returns the class of DBMS server, for example “db2”.

terminal Returns the terminal address for local connections.

transaction_state Returns 1 if presently in a transaction, 0 if not.

username Returns the DBMS user name of the current session’s
user (like user).

_version Returns the DBMS version number.

Retrieving Status Information

OpenSQL Features 7–5

The Inquire_sql Statement

The inquire_sql statement returns information about the results of the last
OpenSQL database statement issued by a session. Using inquire_sql you can
obtain a variety of information, including:

■ Error number and text (if the last statement resulted in an error)

■ Type of error being returned (for details, see the Local and Generic Errors
topic in this chapter)

■ Whether a transaction is open

■ Session identifier (in multiple-session applications)

For details about inquire_sql, refer to the “OpenSQL Statements“ chapter.

Note: The inquire_sql statement does not return status information about forms
statements. Use the inquire_frs statement to obtain information about forms
statements.

The SQL Communications Area (SQLCA)

The SQL Communications Area (SQLCA) consists of a number of variables that
contain error and status information accessible by the program. This information
reflects only the status of executed embedded OpenSQL database statements.
Forms statements do not affect these variables. Because each embedded
OpenSQL statement has the potential to change values in the SQLCA, the
application must perform any checking and consequent processing required to
deal with a status condition immediately after the statement in question.
Otherwise, the next executed OpenSQL statement might change the status
information in the variables.

Each host language implements the SQLCA structure differently. Refer to your
host language companion guide for instructions on how to include the SQLCA in
your applications.

The following list describes the variables that compose the SQLCA (not all of the
variables are currently used):

sqlcaid An 8-byte character string variable initialized to “SQLCA ”

This value does not change.

sqlcabc A 4-byte integer variable initialized to the length in bytes of the
SQLCA, 136. This value also does not change.

Retrieving Status Information

7–6 Reference Guide

sqlcode A 4-byte integer variable indicating the OpenSQL return code.
Its value falls into one of three categories:

 = 0 The statement executed successfully (though there
may have been warning messages - refer to
sqlwarn0).

 < 0 An error occurred. The value of sqlcode is the
negative value of the error number returned to
errorno. (For a discussion of errorno, refer to Error
Handling in this chapter.) A negative value sets the
sqlerror condition of the whenever statement.

 >0 The statement executed successfully but an
exceptional condition occurred. The value +100
indicates that no rows were processed by a delete,
fetch, insert, select, update, modify, copy, create
index, or create...as select statement. This value
(+100) sets the not found condition of the whenever
statement.

sqlerrm A varying-length character string variable composed of an
initial 2-byte count and a 70-byte long buffer. This variable is
used for error messages. When an error occurs for a database
statement, the leading 70 characters of the error message are
assigned to this variable. If the message contained within the
variable is less than 70 characters, the variable contains the
complete error message. Otherwise, the variable contains a
truncated error message.

To retrieve the full error message, use the inquire_sql statement
with the errortext object. If no errors occur, sqlerrm will
contain blanks. For some languages this variable is divided
into two other variables: sqlerrml, a 2-byte integer count
indicating how many characters are in the buffer, and sqlerrmc,
a 70-byte fixed-length character string buffer.

sqlerrp 8-byte character string variable, currently unused.

sqlerrd An array of six 4-byte integers. Currently only sqlerrd(1) and
sqlerrd(3) are in use. sqlerrd(1) is used to store error numbers
returned by the server. For more information about sqlerrd(1),
refer to Local and Generic Errors in this chapter.

 sqlerrd (3) indicates the number of rows processed by a delete,
fetch, insert, select, update, copy, modify, create index, or
create...as select statement. All other database statements reset
this variable to zero. Some host languages start array
subscripts at 0. In these languages (C, BASIC), use the
subscript 2 to select the third array variable.

Error Handling

OpenSQL Features 7–7

sqlwarn0
through
sqlwarn7

A set of eight 1-byte character variables that denote warnings
when set to “W.” The default values are blanks.

 sqlwarn0 If set to “W,” at least one other sqlwarn contains a
“W.” When “W” is set, the sqlwarning condition
of the whenever statement is set.

 sqlwarn1 Set to “W” on truncation of a character string
assignment from the database into a host variable.
If an indicator variable is associated with the host
variable, the indicator variable is set to the original
length of the character string.

 sqlwarn2 Set to “W” on elimination of nulls from aggregates.

 sqlwarn3 Set to “W” when mismatching number of result
columns and result host variables in a fetch or
select statement.

 sqlwarn4 Set to “W” when preparing (prepare) an update or
delete statement without a where clause.

 sqlwarn5 Currently unused.

 sqlwarn6 Set to “W” when the error returned in sqlcode
caused the abnormal termination of an open
transaction.

 sqlwarn7 Currently unused.

sqlext An 8-byte character string variable not currently in use.

Error Handling
The following section describes the types of errors returned to OpenSQL sessions,
and the methods used to handle errors.

The SQLSTATE Variable

The SQLSTATE variable is a 5-character string in which OpenSQL returns the
status of the last SQL statement executed. The values returned in SQLSTATE are
specified in the ANSI/ISO Entry SQL-92 standard. For details about the
requirements for declaring the SQLSTATE variable in embedded programs, refer
to your host language companion guide.

Error Handling

7–8 Reference Guide

If queries are executed while connected to a DBMS that does not support
SQLSTATE, SQLSTATE is set to '5000K' (meaning “SQLSTATE not available”).
This result does not necessarily mean that an error occurred. To check the results
of the query, one of the other error-checking methods must be used. SQLSTATE
is not available within database procedures. However, a routine that directly
executes a database procedure can check SQLSTATE to determine the result of
the procedure call.

The following is a brief example illustrating the use of SQLSTATE in an
embedded program:
exec sql begin declare section;

 character SQLSTATE(5)

exec sql end declare section;

exec sql connect mydatabase;

if SQLSTATE <> "00000" print 'Error on connection!'

For a list mapping generic errors to SQLSTATE values, refer to the “Generic
Error Codes” appendix.

Local and Generic Errors

A local error is a specific error issued by a specific server, such as the EDBC for
DB2 product. All server-specific local errors are also mapped into generic errors,
enabling applications to handle errors returned from a variety of servers in a
consistent way.

To handle errors consistently, OpenSQL maps the different local timeout error
numbers to the same generic error number.

By default, EDBC products and servers return errors as follows:

■ Generic errors

– Returned to sqlcode (an SQLCA variable) as a negative value.

– Returned when your application issues the inquire_sql(errorno)
statement.

■ Local errors

– Returned in sqlerrd(1), the first element of the SQLCA sqlerrd array.

– Returned when your application issues the inquire_sql(dbmserror)
statement.

Error Handling

OpenSQL Features 7–9

To reverse this arrangement (so that local error numbers are returned to errorno
and sqlcode and generic errors to dbmserror and sqlerrd(1)), use the
set_sql(errortype) statement. To obtain the text of error messages, use the
inquire_sql(errortext) statement or check the SQLCA variable sqlerrm.

Reading an OpenSQL Error Message

Every generic error message consists of an error code and the accompanying
error message text.

All generic error codes begin with E_, followed by one or two letters plus a
4-digit hexadecimal number, and, optionally, descriptive text or the decimal
equivalent of the hex error code. For example:
E_GEC2EC_SERIALIZATION

indicates a serialization failure (deadlock).

The content and format of local error messages are determined by the local
DBMS. For details, refer to the EDBC product or host DBMS installation guide.

Displaying an Error Message

If you are working in one of the forms-based user interfaces, such as the Terminal
Monitor, error messages display on a single line across the bottom of the terminal
screen. The text appears first, followed by the error code. If the text is longer
than one line, press the Help key to display the rest of the message. To clear the
error message from the screen, press the Return key.

If you are not working in a forms-based user interface, OpenSQL displays the
error code followed by the entire message text.

If you have included an SQLCA, embedded OpenSQL applications do not
automatically display error messages. You must provide program code that does
this.

Error Handling

7–10 Reference Guide

Handling Errors in Embedded Applications

OpenSQL provides a variety of tools for trapping and handling errors in
embedded applications, including:

■ The SQLCA

■ The whenever statement

■ Handler routines

■ Inquire statements

■ The IIseterr function

Obtaining Error Information from the SQLCA

The SQL Communications Area (SQLCA) is a collection of host language
variables whose values provide status and error information about embedded
OpenSQL database statements. (The status of forms statements is not reflected in
SQLCA variables.) If your application does not have an SQLCA, the default is to
display errors and continue with the next statement if possible.

Two variables in the SQLCA contain error information: sqlcode and sqlerrm. The
value in sqlcode indicates one of three conditions:

■ Success - Sqlcode contains zero.

■ Error - Sqlcode contains the error number as a negative value.

■ Warning - (Set when the statement executed successfully but an exceptional
condition occurred.) Sqlcode contains +100, indicating that no rows were
processed by a delete, fetch, insert, update, modify, copy, or create table...as
statement.

The sqlerrm variable is a varying length character string variable that contains
the text of the error message. The maximum length of sqlerrm is 70 bytes. If the
error message exceeds that length, OpenSQL truncates the message when it
assigns it to sqlerrm. To retrieve the full message, use the inquire_sql statement
(refer to The Inquire_sql Statement in this chapter). In some host languages, this
variable has two parts: sqlerrml, a 2-byte integer indicating how many characters
are in the buffer, and sqlerrmc, a 70-byte fixed length character string buffer.

The SQLCA also contains eight 1-byte character variables, sqlwarn0 - sqlwarn7,
that are used to indicate warnings. For a complete listing of these, refer to The
SQL Communications Area (SQLCA) in this chapter.

Error Handling

OpenSQL Features 7–11

The SQLCA is often used in conjunction with the whenever statement, which
defines a condition and an action to take whenever that condition is true. The
conditions are set to true by values in the sqlcode variable. For example, if
sqlcode contains a negative error number, then the sqlerror condition of the
whenever statement is true, and any action specified for that condition is
performed.

You can also access the SQLCA variables directly. Refer to your host language
companion guide for information about implementing the SQLCA in an
application and using its variables.

Trapping Errors Using the Whenever Statement

The whenever statement specifies a particular action to be performed whenever a
particular condition is true. Since conditions are set to true by values in the
SQLCA sqlcode, the whenever statement responds only to errors generated by
embedded OpenSQL database statements. Forms statements do not set sqlcode.

The conditions that indicate errors or warnings are listed in the following table:

Condition Description

sqlwarning Indicates that the executed OpenSQL database statement
produced a warning condition. Sqlwarning becomes true
when the SQLCA sqlwarn0 variable is set to “W.”

sqlerror Indicates that an error occurred in the execution of the
database statement. Sqlerror becomes true when the SQLCA
sqlcode variable contains a negative number.

There are two other conditions that are more closely related to status conditions
rather than error conditions. For a complete list of the conditions, refer to the
Whenever topic in the “OpenSQL Statements” chapter. The actions that can be
specified for these conditions are listed in the following table:

Action Description

continue Execution continues with the next statement.

stop Prints an error message and terminates the program’s
execution. Pending updates are not committed.

goto label Performs a host language “go to.”

call procedure Calls the specified host language procedure. If call sqlprint
is specified, the sqlprint procedure prints the error or
warning message and continues with the next statement.

Error Handling

7–12 Reference Guide

In an application program, a whenever statement is in effect until the next
whenever statement (or the end of the program). For example, if you put the
following statement in your program:
exec sql whenever sqlerror call myhandler;

OpenSQL traps errors for all database statements in your program that
physically follow the whenever statement to the procedure, myhandler. A
whenever statement does not affect the statements that physically precede it.

The following diagram illustrates the scope of the whenever statement.

If your program includes an SQLCA, OpenSQL will not display error messages
unless your application issues a whenever ... sqlprint statement, or you set
II_EMBED_SET to sqlprint.

Defining an Error Handler

An error handling function can be defined to be called when OpenSQL errors
occur. To do this, you must:

■ Write the error handling routine and link it into your embedded OpenSQL
application.

Error Handling

OpenSQL Features 7–13

■ In the application, issue the following set statement:
 exec sql set_sql(errorhandler = error_routine)

where error_routine is the name of the error-handling routine you created. Do not
declare error_routine in an OpenSQL declare section, and do not precede
error_routine with a colon (:). The error_routine argument must be a function
pointer.

When this form of error-trapping is enabled, all OpenSQL errors are trapped to
your routine until you disable error-trapping (or until the application
terminates). Forms errors are not trapped.

To disable the trapping of errors to your routine, your application must issue the
following set statement:
exec sql set_sql(errorhandler = 0 | :error_var)

where error_var is a host integer variable having a value of 0.

Your error-handling routine must not issue any database statements in the same
session in which the error occurred. If it is necessary to issue database statements
in an error handler, open a session or switch to another session.

To obtain error information, your error-handling routine should issue the
inquire_sql statement.

Obtaining Error Information Using Inquire Statements

There are two inquire statements that can perform error checking: inquire_sql
and inquire_frs. Both statements return error numbers and the associated error
text using the constants errorno and errortext. Inquire_sql returns the error
number and text for the last executed OpenSQL database statement. Inquire_frs
returns information about the last executed forms statement.

Unlike the whenever statement, must execute an inquire statement must be
executed immediately after the database or forms statement in question. The
inquire_sql returns a generic error number in errorno by default. OpenSQL can
be directed to return a local error number in errorno. For more information, refer
to Local and Generic Errors in this chapter.

Neither of the inquire statements suppress the display of error messages. Both of
the inquire statements return a wide variety of information in addition to error
numbers and text. For a complete list of the information returned by inquire_sql,
refer to the “OpenSQL Statements” chapter.

Error Handling

7–14 Reference Guide

Suppressing Error Messages

The IIseterr function is a feature that allows the display of error messages to be
suppressed. If IIseterr is used in an embedded OpenSQL program that makes
use of the SQLCA, errors returned by embedded OpenSQL database statements
do not interact with IIseterr. If your program does not use the SQLCA, errors
resulting from both forms statements and embedded OpenSQL database
statements are passed through IIseterr, if it is present. For ease of use and
implementation, it is recommended that you use the SQLCA and whenever
statements to handle embedded OpenSQL database statement errors.

Specifying Program Termination on Errors

The set_sql(programquit) statement specifies how an embedded OpenSQL
application handles the following types of errors:

■ Attempting to execute a query when not connected to a database

■ EDBC product or DBMS server failure

■ Communications service failure

By default, when these types of errors occur, OpenSQL issues an error but lets
the program continue. To force an application to abort when one of these errors
occur, issue the following set_sql statement:
exec sql set_sql (programquit = 1);

If an application aborts as the result of one of the previously listed errors,
OpenSQL issues an error, then rolls back open transactions and disconnects all
open sessions. (To disable aborting and restore the OpenSQL default behavior,
specify programquit = 0.)

Errors affected by the programquit setting belong to the generic error class
GE_COMM_ERROR, which is returned to errorno as 37000, and to sqlcode (in
the SQLCA) as -37000. An application can check for these errors and, when
detected, must disconnect from the current session. After disconnecting from the
current session, the application can attempt another connection, switch to another
session (if using multiple sessions), or perform clean-up operations and quit.

You can also specify programquit using II_EMBED_SET.

To determine the current setting for this behavior, use the inquire_sql statement:
exec sql inquire_sql (int_variable = programquit);

This returns a 0 if programquit is not set (OpenSQL continues on any of the
errors) or 1 if programquit is set (OpenSQL exits the application on these errors).

Error Handling

OpenSQL Features 7–15

Handling Deadlock

Deadlock occurs when two transactions are each waiting for the other to release a
part of the database to enable it to complete its update. Transactions that handle
deadlocks in conjunction with other errors can be difficult to code and test,
especially if cursors are involved.

To facilitate the proper coding and testing for these situations, we have included
three template programs that can be used as guides in your resolution of similar
error situations. Deadlock conditions are identified by the generic error code
value of E_GEC2EC_SERIALIZATION.

The following templates assume the default OpenSQL transaction behavior (set
autocommit is off).

Non-cursor Template

This template assumes your transactions do not contain a cursor.
exec sql whenever not found continue;
exec sql whenever sqlwarning continue;
exec sql whenever sqlerror goto err;
/* branch on error */

start:
exec sql insert into ...
exec sql update ...
exec sql select ...

exec sql commit;
goto end;
err:
exec sql whenever sqlerror call sqlprint;
 if (sqlca.sqlcode = E_GEC2EC_SERIALIZATION) then
 goto start;
 else if (sqlca.sqlcode < 0) then
 exec sql inquire_sql (:err_msg = errortext);
 exec sql rollback;
 print ’Error’, err_msg;
 end if;

end:

Single Cursor Template

This template is similar to the first, but with a single cursor added.
exec sql whenever not found continue;
exec sql whenever sqlwarning continue;
exec sql whenever sqlerror goto err;
/* branch on error */

exec sql declare c1 cursor for ...

Error Handling

7–16 Reference Guide

start:
exec sql open c1;
while more rows loop
 exec sql fetch c1 into ...
 if (sqlca.sqlcode = E_GE0064_NO_MORE_DATA) then
 exec sql close c1;
 exec sql commit;
 goto end;
 end if;

 exec sql insert into ...
 exec sql update ...
 exec sql select ...

end loop;
goto end

err:
exec sql whenever sqlerror call sqlprint;
if (sqlca.sqlcode = E_GEC2EC_SERIALIZATION) then
 goto start;
else if (sqlca.sqlcode \ 0) then
 exec sql inquire_sql (:err_msg = errortext);
 exec sql rollback;
 print ’Error’, err_msg;
end if;

end:

Master/Detail Template

This template is like the previous, but with two cursors (two cursors with a
master/detail relationship).
exec sql whenever not found continue;
exec sql whenever sqlwarning continue;
exec sql whenever sqlerror goto err;
/* branch on error */

exec sql declare master cursor for ...
exec sql declare detail cursor for ...

start:
exec sql open master;
while more master rows loop
 exec sql fetch master into ...
 if (sqlca.sqlcode = E_GE0064_NO_MORE_DATA) then
 exec sql close master;
 exec sql commit;
 goto end;
 end if;

/* ...queries using master data... */
 exec sql insert into ...
 exec sql update ...
 exec sql select ...

Multiple Session Connections

OpenSQL Features 7–17

 exec sql open detail;
 while more detail rows loop
 exec sql fetch detail into ...
 if (sqlca.sqlcode = E_GE0064_NO_MORE_DATA) then
 exec sql close detail;
 end loop; /* drops out of detail fetch loop */
 end if;

/* ...queries using detail & master data... */
 exec sql insert into ...
 exec sql update ...
 exec sql select ...

 end loop; /* end of detail fetch loop */

/* ...more queries using master data... */
 exec sql insert into ...
 exec sql update ...
 exec sql select ...

end loop; /* end of master fetch loop */
goto end

err:
exec sql whenever sqlerror call sqlprint;
if (sqlca.sqlcode = E_GEC2EC_SERIALIZATION) then
 goto start;
else if (sqlca.sqlcode < 0) then
 exec sql inquire_sql (:err_msg = errortext);
 exec sql rollback;
 print ’Error’, err_msg;
end if;
end:

Multiple Session Connections
OpenSQL provides embedded applications with the ability to maintain multiple
sessions. An application can open an initial session and, with subsequent connect
statements, open additional sessions with the same or different types of servers
or EDBC products.

Connecting to Multiple Sessions

Individual sessions in a multiple session application are identified by a session
identifier that is specified when the connect statement for each session is issued.
Each connect statement in a multiple session application, including the first
connect statement, must specify a session identifier.

It is possible to open new sessions with previously unconnected databases or
with databases already associated with an open session. New sessions can be
opened under different user names (for EDBC products that support the connect
statement’s identified by clause) and can be entered using different option flags.
Refer to the Connect statement for a description of connect syntax and optional
flags.

Multiple Session Connections

7–18 Reference Guide

Once an application issues a connect statement, the session initiated by the
statement is the current session and all subsequent embedded OpenSQL
statements apply to the database associated with that statement until another
connect statement or a set_sql statement (to switch sessions) is issued.

If an error occurs during a connection attempt, the program is no longer
connected to any session after the failure, whether or not it was connected before
the attempted connection. After the failure of an attempt to connect, the program
must either attempt to connect again or switch to a previously established session
before continuing.

Switching Sessions

To switch from one open session to another, use the set_sql statement. To open a
new session, issue the connect statement. To determine the session identifier for
the current session, use the inquire_sql statement.

Applications can switch sessions freely. Note that session switching is supported
under the following circumstances:

■ Within a transaction

■ While cursors are open

■ Within OpenSQL statement blocks (such as select loops)

 The code for the nested session must be inside a host language subroutine. If
it is not, the SQL preprocessor will issue an error.

■ Within subroutines called by a whenever statement

After an application switches sessions, the error information obtained from the
SQLCA or the inquire_sql statement is not updated until an OpenSQL statement
has completed in the new session.

Terminating a Session

To terminate the current session, the application issues the disconnect statement.
An optional session identifier parameter exists to identify the current session
specifically if desired.

When an application terminates one of many open sessions, it is not
automatically placed in another session. The application must issue either a
connect or set_sql statement to establish the current session. If the application
fails to do this, OpenSQL returns an error when the next OpenSQL statement is
issued.

Multiple Session Connections

OpenSQL Features 7–19

To terminate a specific session, specify the session identifier. To obtain the
session identifier for the current session, issue the inquire_sql(:session_id=session)
statement. To disconnect all sessions, issue the disconnect all statement.

Multiple Sessions and the SQLCA

The SQL Communications Area (SQLCA) is a data area in which OpenSQL
passes query status information to your application program. Although an
application can sustain multiple sessions, there is only one SQLCA per
application. By contrast, the values returned by inquire_sql(errorcode) and
inquire_sql(errortext) are specific to a session.

If you switch sessions in a select loop (for example, by calling a routine that
switches sessions) and execute database statements in the alternate session, the
values in the SQLCA will be reset. When you return to the original session, the
SQLCA will not reflect the results of the select loop.

When switching between sessions, the values in the SQLCA fields are not
updated until after the first OpenSQL statement in the current session has
completed. If you switch sessions, the values in the SQLCA will apply to the
previous session until an OpenSQL statement in the current session resets them.
In contrast, the error information returned by inquire_sql (errortext and errorno)
always apply to the current session.

When an application switches sessions within a select loop or other block
statement, the SQLCA field values are updated to reflect the status of the
statements executed inside the nested session. After the application switches
back to the session with the loop, the SQLCA field values reflect the status of the
last statement in the nested session. Sqlcode and sqlwarn are not updated until
the statement immediately following the loop completes. (The information
obtained by inquire_sql is not valid until the statement following a loop
completes.) For this reason, the application should reset the sqlcode and sqlwarn
fields before continuing the loop.

Multiple Sessions and the DBMS

Each session in a multiple-session application requires an independent
connection to the EDBC products or DBMS server. When creating multiple-
session applications, keep the following points in mind:

■ In a multi-session application, an application can encounter deadlock against
itself. For example, one session may attempt to update a table that was
locked by another session.

Multiple Session Connections

7–20 Reference Guide

■ An application can also lock itself out in an undetectable manner. For
example, if a table is updated in a transaction in one session and then
selected from in another transaction in a second session, the second session
waits indefinitely.

Multiple Session Examples

This section presents an example of multiple sessions.

This example illustrates session switching inside a select loop and the resetting of
status fields. The main program processes sales orders and calls the subroutine,
new_customer, for every new customer.

The main program:
...
exec sql include sqlca;
exec sql begin declare section;

/* Include output of DCLGEN for declaration
** of record order_rec
*/
exec sql include 'decls';
exec sql end declare section;
exec sql connect 'customers/ims' session 1;
exec sql connect 'sales/vsam' session 2;
...

exec sql select * into :order_rec from orders;
exec sql begin;
if (order_rec.new_customer = 1) then
 call new_customer(order_rec);
endif
process order;
exec sql end;
...

exec sql disconnect;

exec sql set_sql(session = 1);
exec sql disconnect;

The subroutine, new_customer, from the select loop, containing the session
switch:
subroutine new_customer(record order_rec)
begin;

exec sql set_sql(session = 1);
exec sql insert into accounts values (:order_rec);

process any errors;
exec sql set_sql(session = 2);

sqlca.sqlcode = 0;
sqlca.sqlwarn.sqlwarn0 = ’ ’;

end subroutine;

Database Procedures

OpenSQL Features 7–21

Database Procedures
A database procedure is a named routine that is stored in the host DBMS or linked
to an EDBC product. The following sections describe how to create, declare, and
execute database procedures.

Creating Database Procedures

Database procedures can be created using the following methods:

■ Database Procedures – The EDBC server allows you to create database
procedures using the create procedure statement.

■ Host DBMS Procedures – EDBC products provide access to procedures
located in the host DBMS. (These procedures are created and maintained in
the host DBMS.) The procedure must be declared to the EDBC product by
issuing the register procedure statement. For details regarding support of
host DBMS procedures, refer to your EDBC product guide. For details about
creating and managing the host DBMS procedures, refer to your host DBMS
documentation.

■ EDBC Product Procedures – EDBC products to host DBMSs that do not
support database procedures provide an alternate mechanism for database
procedures: object code modules for the routine are linked into the EDBC
product executable program. These routines must be declared to the EDBC
product by issuing the register procedure statement. For details on the
creating and registering this kind of procedure, refer to your EDBC product
guide.

Note: OpenSQL does not control the transaction behavior that occurs when
executing a database procedure. Transaction behavior is determined by the host
DBMS.

Registering Database Procedures

The register procedure statement defines the interface between an application
and a database procedure when support for the create procedure statement is not
available. Creation and maintenance of the database procedure is dependent on
the host DBMS or EDBC product. The register procedure statement defines the
procedure name, its parameters and their types, and the host DBMS or EDBC
product information required to access the procedure.

The register procedure syntax is:
register procedure procedure_name
 [(parameter_definition {,parameter_definition})]
 as import
 [from from_source]
 [with with_clause]

Database Procedures

7–22 Reference Guide

The procedure_name specifies the procedure name to be used in the OpenSQL
execute procedure or remove procedure statements. The from clause specifies
host DBMS or EDBC product information required to identify the procedure
being registered. Additional information may be required by an individual
EDBC product and is specified using the optional with clause.

The parameter_definition is specified as:
parameter_name datatype [not|with null]
 [not default | [with] default [default_value]]
 [byref]
 [is host_info]

Parameters are nullable unless you specify not null. The default_value can be a
numeric or character literal or one of the following constants: null, user,
current_date, or current_time. If the default value is omitted, a system-generated
default is assigned. If the default clause is omitted, default null is assumed.

The byref keyword specifies that the parameter is passed by reference, enabling
the procedure to return a value in the parameter. The byref keyword must also
be used in the execute procedure statement to obtain the returned value. The is
clause specifies additional information about the parameter, as required by the
host DBMS or EDBC product. The host information must be enclosed in single
quotes.

To delete a procedure registration, use the remove procedure statement. After
deleting the registration, the procedure cannot be executed (unless you register
the procedure again).

The remove procedure syntax is:
remove procedure procedure_name

For details about using the register procedure or remove procedure statements,
refer to your EDBC product guide.

Executing Database Procedures

To execute a database procedure, issue the execute procedure statement. For
details, refer to the “OpenSQL Statements” chapter.

To ensure portability of your application code and consistency of the transactions
in your application, observe the following guidelines for executing database
procedures:

■ Do not issue commit or rollback statements within a database procedure,
because these statements or their equivalents may not be supported in all
host database management systems.

■ Issue a commit or rollback statement before and after executing a database
procedure.

DBMS Extensions

OpenSQL Features 7–23

■ If an error occurs while a database procedure is being executed, the current
transaction may be rolled back by the host DBMS. While this is permitted by
OpenSQL, it is not required. After executing a database procedure, your
application should check for errors and, if necessary, roll back the
transaction.

DBMS Extensions
OpenSQL statements work with all EDBC products and DBMS servers.
However, the underlying DBMS typically supports additional SQL statements
and extensions.

OpenSQL provides the following methods for issuing DBMS-specific statements
from an OpenSQL application:

■ Direct execute immediate - The direct execute immediate statement passes a
statement to the underlying DBMS. OpenSQL does not attempt to process or
translate the statement. The direct execute immediate statement can be used
with any SQL statement that can be executed dynamically (statements that
can be issued with a DBMS execute immediate). Statements that return rows
(for example, select or fetch) cannot be issued. For details, refer to the
“OpenSQL Statements” chapter.

■ EDBC product with clause - Many EDBC products support with clauses,
which provide the ability to access DBMS extensions to database connection
and Data Definition Language (DDL) SQL statements. The EDBC product
with clause is described in detail in the following section.

The With Clause

The EDBC product with clause enables DBMS-specific options to be specified in
an OpenSQL statement. EDBC products and servers process only the options
directed at them, and ignore the rest. Valid options depend on the specific EDBC
product and DBMS. For information on valid with clause parameters, refer to
your EDBC product guide. The DBMS or EDBC product is responsible for
performing the specified action or translating the with clause to the syntax
required by the underlying DBMS.

DBMS Extensions

7–24 Reference Guide

The following OpenSQL statements support the EDBC product with clause:

■ Connect

■ Create index

■ Create table

■ Create view

■ Drop index

■ Drop table

■ Drop view

Syntax of the With Clause

The with clause must be specified using the following syntax:
with [db_id_]option_name [= option_value]
 {, [db_id_]option_name [= option_value]}

The with clause can contain options intended for different EDBC products. The
following table describes the parameters of the with clause:

Parameter Description

db_id_ Specifies the server class of the EDBC product for which the
option is specified. The trailing underscore is required, and
the option_name parameter must be appended with no
intervening space.

If this parameter is specified, only the specified EDBC product
will process the option. If this parameter is omitted, all EDBC
products or database management systems will attempt to
process the option. EDBC products will ignore options they
cannot process.

 Valid values for EDBC products are:

DB2_ DB2

IMS_ IMS

VSAM_ VSAM or CICS/VSAM

DCOM_ CA-Datacom

IDMS_ CA_IDMS

option_name Name of the option. If this is an EDBC product-specific
option, option_name must be preceded by the db_id. For
details about product-specific options, refer to your EDBC
product guide.

DBMS Extensions

OpenSQL Features 7–25

Parameter Description

option_value Value (if required by the option). This value can be specified
using a quoted or unquoted character string, numeric literal,
or variable.

All values must be specified using simple data formats, such
as integers, numerics, names, or strings. If a complex value is
required, it must be encoded in a quoted string.

To specify a list of values, use a comma-separated list
enclosed in parentheses. For example:

with myoption=(value1, value2, value3)

If an option is specified using a string variable, (for example with :stringvar,) and
no value is to be provided, the variable must contain the string, “NULL”. The
EDBC product will ignore the option.

Examples

1. Connect to a DB2 subsystem DB2T and set the default database for table
creation to mydb.
connect 'mvs1::db2t/db2' with db2_ct_option = 'mydb';

 An EDBC product for DB2 receiving the preceding connect request will issue
the DB2 statements required to connect to the DB2T DB2 subsystem with the
indicated default database.

2. Create a database table and specify DBMS-specific extensions for both DB2
and ALLBASE/SQL.
create table newtab (col1 integer, col2 integer not null)
with db2_ct_option = 'audit all', alb_type = private;

OpenSQL Statements 8–1

Chapter

8 OpenSQL Statements

This chapter presents OpenSQL statements individually, describing the purpose,
syntax, and use of each statement.

SQL Version
This chapter describes the version of OpenSQL indicated by the following values
in the iidbcapabilities catalog:

CAP_CAPABILITIES CAP_VALUE

OPEN/SQL_LEVEL 8050

For more information about OpenSQL standard catalogs, refer to the “OpenSQL
Standard Catalogs” chapter.

SQL Statements Context
At the beginning of each statement description, you will see the following table:

SQL ESQL

* *

The columns in this table have the following meanings:

■ An asterisk (*) under SQL indicates you can use the statement in an
interactive session.

■ An asterisk (*) under ESQL indicates that you can use the statement in
embedded programs.

Begin Declare Section

8–2 Reference Guide

Extended Statements

If the iidbcapabilities catalog contains the following row:

CAP_CAPABILITIES CAP_VALUE

SQL92_COMPLIANCE ENTRY

These additional statements and features can be used:

■ Grant

■ Revoke

■ Create schema

■ Create table constraints and defaults enhancements

If these statements and extensions are not supported, the iidbcapabilities catalog
contains the following row:

CAP_CAPABILITIES CAP_VALUE

SQL92_COMPLIANCE NONE

Begin Declare Section

SQL ESQL

 *

Begins a program section that declares host language variables to embedded
OpenSQL.

Syntax

exec sql begin declare section;

Close

OpenSQL Statements 8–3

Description

The begin declare section statement signals the start of a declaration section that
declares host language variables for use in embedded OpenSQL. (All variables
used in embedded OpenSQL or forms statements must be declared.) A single
program can have multiple declaration sections.

The statements that can appear inside a declaration section are:

■ Legal host language variable declarations.

■ An include statement that includes a file that contains host language variable
declarations. (This must be an SQL include statement, not a host language
include statement.)

■ A declare table statement (normally generated by dclgen in an included file).

The end declare section statement marks the end of the declaration section.

For more information about declaring and using host language variables, refer to
the Host Language Variables topic in your host language companion guide.

Example

The example below shows the typical structure of a declaration section.
 exec sql begin declare section;
 buffer character_string(2000);
 number integer;
 precision float;
 exec sql end declare section;

Close

SQL ESQL

 *

Closes an open cursor.

Syntax

exec sql close cursor_name

Commit

8–4 Reference Guide

Description

The close statement closes an open cursor. The cursor_name must have been
previously defined in your source file by a declare cursor statement. Once
closed, the cursor cannot be used for further processing unless reopened with a
second open statement. A commit, rollback, or disconnect statement closes all
open cursors.

A string constant or host language variable can be used to specify the cursor
name.

Permissions

This statement is available to all users.

Example

This example illustrates cursor processing from cursor declaration to closing.
 exec sql declare c1 cursor for
 select ename, jobid
 from employee
 where jobid = 1000;
 ...
 exec sql open c1;
 loop until no more rows;
 exec sql fetch c1
 into :name, :jobid;
 print name, jobid;
 end loop;
 exec sql close c1;

Commit

SQL ESQL

* *

Commits the current transaction.

Syntax

[exec sql] commit [work]

Commit

OpenSQL Statements 8–5

Description

This statement terminates the current transaction. Once committed, the
transaction cannot be aborted, and all changes it made become visible to all users
through any statement that manipulates that data.

The optional key word work is included for compatibility with other versions of
SQL.

Embedded Usage

In addition to committing the current transaction, an embedded commit
statement also:

■ Closes all open cursors

■ Discards all statements prepared (with the prepare statement) during the
current transaction

When a program issues the disconnect statement, an implicit commit is also
issued. Any pending updates are submitted. To roll back pending updates
before terminating the program, a rollback statement must be issued.

Permissions

This statement is available to all users.

Example

This embedded example issues two updates, each in its own transaction.
exec sql connect 'mvs1::personnel/db2';

exec sql update employee set salary = salary * 1.1
 where rating = 'Good';

exec sql commit;

exec sql update employee set salary = salary * 0.9
where rating = 'Bad';

exec sql disconnect;
/* Implicit commit issued on disconnect */

Connect

8–6 Reference Guide

Connect

SQL ESQL

 *

Connects the application to a database and, optionally, to a specified transaction.

Syntax

exec sql connect dbname
 [session session_identifier]
 [identified by username]
 [options = flag {, flag}]
 [with_clause]

The with_clause parameter consists of the word with followed by a
comma-separated list of valid options. Refer to the With Clause topic for an
overview of this parameter. For a list of the valid with clause options for a
specific EDBC product, refer to your product guide.

Description

The embedded SQL connect statement connects an application to a database,
similar to the operating-system-level sql command. The connect statement must
precede all statements that access the database. The connect statement cannot be
issued in a dynamic OpenSQL statement.

Use the session clause if your application includes multiple open sessions. The
session clause uniquely identifies each session, by associating each session with
the specified session_identifier. The session identifier must be a positive integer.

Multiple-session applications require the session clause on each connect
statement including the first. If this clause is not present on the first connect in
the application, OpenSQL assumes that the application does not use multiple
open sessions, and subsequent attempts to open other sessions generate an error.

To switch from one existing session to another existing session, use the set_sql
statement. The connect statement with the session clause is used only to establish
new sessions. You can, however, open more than one session with the same
database.

For a discussion of multiple sessions and examples of their use, refer to the
Multiple Session Connections topic in the “OpenSQL Features” chapter.

Connect

OpenSQL Statements 8–7

The identified by clause allows the session to run as the specified user, like the -u
flag of the sql command. To determine whether your EDBC product supports
the -u flag (and, therefore, the identified by clause), refer to your product guide.

The options clause allows up to 12 flags to be specified that control session
behavior. Not all options are supported by all EDBC products.

The with clause EDBC product-specific connection parameters to be specified.
For an overview of the with clause, refer to the With Clause topic in the
“OpenSQL Features” chapter. To determine the options supported by a specific
EDBC product, refer to your product guide.

The following table lists valid parameters for this command:

Parameters Description

dbname Specifies the database to which the session will connect.
Dbname can be a quoted or unquoted string literal or a host
string variable. If the name includes any name extensions,
such as a virtual node name or server class, string literals
must be quoted.

server_class Specifies the product or type of server to which the session is
connecting. Examples of EDBC server classes include:

Server class codes (product)

DB2: DB2
DCOM: CA-Datacom/DB
IDMS: CA-IDMS
IMS: IMS
VSAM: VSAM or CICS/VSAM

session_identifier A positive integer literal or variable whose value must be
unique among existing session identifiers in the application.
A value of 0 is equivalent to omitting the session clause.

username Specifies the user identifier under which this session will
run. Username can be a quoted or unquoted character string
literal or string variable. Valid only if the EDBC product
supports the identified by clause.

Create Index

8–8 Reference Guide

Parameters Description

flags Any flag that is accepted by the sql command and is not
specific to the Terminal Monitor can be specified in the
options clause. The flags can be expressed as quoted or
unquoted character string literals or as string variables.
Refer to your product guide for valid options.

with_clause Specifies EDBC product-specific connection parameters. The
command line +c flag provides access to the connect
statement’s with clause. For a discussion of the with clause,
refer to DBMS Extensions in the “OpenSQL Feature”
chapter.

Permissions

This statement is available to any user. Some EDBC products do not support the
identified by clause. For details, refer to your product guide.

Examples
1. Connect to the DB2 DSNA subsystem on virtual node MVS2.

exec sql connect 'mvs2::dsna/db2'
with db2_ct_option = 'audit all';

2. Connect to two databases: the Datacom/DBA default database, which is
located in London, and the local IMS database called, sales, located in Paris.
Set the current session to the personnel database.
exec sql connect 'london::dcom/dcom' session 1;

exec sql connect 'paris::sales/ims' session 2;

exec sql set_sql (session = 1);

Create Index

SQL ESQL

* *

Creates an index on an existing base table.

Create Index

OpenSQL Statements 8–9

Syntax

[exec sql] create [unique] index indexname on tablename
 (columnname {, columnname})
 [with with_clause]

The with_clause parameter consists of a comma-separated list of valid EDBC
product with clause options. For an overview of the with clause, refer to the
“OpenSQL Features” chapter. For a list of the valid with clause options for a
specific EDBC product, refer to your product guide.

Description

The create index statement creates an index on an existing base table. The index
contains the columns specified and is keyed on those columns, in the order they
are specified.

Indexes can improve query processing. If data is retreived from a table based on
an indexed column, the DBMS uses indexes, if available, to accelerate query
processing. To obtain the greatest benefit, create indexes that contain all of the
columns that are generally queried and keyed on some subset of those columns.

Any number of indexes can be created for a table, but, for portability, each index
can contain no more than 16 columns.

To prevent the index from accepting duplicate values in key fields, specify the
unique option. If the base table on which the index is being created has duplicate
values for the index’s key fields, then the create index statement will fail.
Similarly, if you attempt an insert or update that violates the uniqueness
constraint of an index created on the table, then the insert or update will fail.
This is true for an update statement that updates multiple rows: the update
statement will fail as soon as it attempts to write a row that update violates the
uniqueness constraint.

Particular EDBC products may support extensions to the create index statement
(using the with clause). For a discussion of the with clause, refer to the
“OpenSQL Features” chapter.

To ensure application portability, follow each create index statement with a
commit statement.

An index cannot be updated directly. When a table is changed, the DBMS
updates indexes as required. To destroy an index, use the drop statement. All
indexes on a table are destroyed when the table is dropped.

Create Table

8–10 Reference Guide

The following table lists valid parameters for this statement.

Parameter Description

indexname Specifies the name of the index. This must be a
valid object name.

tablename Specifies the table on which the index is to be
created.

columnname {, columnname} A list of columns from the specified table to be
included in the index.

with_clause Specifies EDBC product-specific options. For
details, refer to your product guide.

Embedded Usage

The preprocessor does not validate the syntax of the with clause.

Example

Create an index called, x, for the columns, ename and age, on employee table.
 create index x on employee (ename, age);

Create Table

SQL ESQL

* *

Creates a new base table.

Syntax

[exec sql] create table tablename
 (columnname format {, columnname format})
 [with_clause]

Create Table

OpenSQL Statements 8–11

To create a table and load from another table:

[exec sql] create table tablename
 [(columnname {, columnname})] as subselect {union [all] subselect}
 [with with_clause]

The with_clause parameter consists of a comma-separated list of valid EDBC
product with clause options. For an overview of the with clause, refer to the
“OpenSQL Features” chapter. For a list of the valid with clause options for a
specific EDBC product, refer to the documentation for that product.

For the syntax of subselect, refer to Select (interactive) in this chapter. For details
about ISO Entry SQL92 extensions to this statement, refer to the Create Table
(extended) topic in the “Extended Statements” chapter.

Description

The create table statement creates a new base table owned by the user who issues
the statement. If you use the create table...as syntax, then the table that you
create is some subset of the columns and values in an existing table(s) defined by
the subselect.

Tablename specifies the name of the new table. This must be a valid OpenSQL
name. For the rules for naming database objects, refer to the Object Names topic
in the “Overview of OpenSQL” chapter.

The as clause causes the table that you create to be defined and populated by the
subselect specified in the statement.

To ensure application portability, follow every create table statement with a
commit statement.

Embedded Usage
■ Host variables can be used to specify constant expressions in the subselect of

a create table...as statement.

■ The preprocessor does not validate the syntax of the with_clause.

Specifying the Column Names, Data Types, and Lengths

The name and data type of each column in the new table are specified by the
columnname and format arguments. If you specify create table...as select, the new
table takes its column names and formats from the results of the select clause of
the subselect in the as clause (unless you specify column names following the table
name). For more information, refer to the Create Table topic in this chapter.

Create Table

8–12 Reference Guide

Columnname can be any valid OpenSQL name. Format specifies the data type and
length of the column using the following syntax:

datatype [not null | with null]

Datatype can be any valid OpenSQL data type and length. For a discussion of
valid data types and lengths, refer to the “OpenSQL Data Types” chapter.

The with|not null clause determines whether or not a column will accept null or
default values, or neither, during an insert, update, or copy operation. The
options for the with|not null clause are:

■ with null - The columns accepts nulls. The DBMS inserts null as the default
value if no value is supplied by the user.

■ not null - The column does not accept nulls, and the DBMS does not supply a
default value. The user must supply a non-null value. (The column is
mandatory.)

If the with|not null clause is omitted, with null is assumed.

Using the Create table...as Syntax

The create table...as syntax allows a table to be created from another table or
tables. The new table is populated with the set of rows resulting from execution
of the specified subselect.

When the create table statement includes an as clause, specifying column names
is optional unless two or more columns of the table would otherwise have the
same name. If that is the case, specify the column names.

The column format cannot be specified when using create table ...as; the formats
are copied from the source table columns specified in the subselect clause. The
nullability attribute of a column in the new table is the same as the corresponding
column in the source table.

Examples
1. Create the employee table with columns eno, ename, age, job, salary, and

dept.
 create table employee
 (eno smallint,
 ename varchar(20) not null,
 age integer,
 job smallint,
 salary float,
 dept smallint
 started date);

Create View

OpenSQL Statements 8–13

2. Create a table listing employee numbers for employees who make more than
the average salary.
 create table highincome as
 select eno
 from employee
 where salary
 (select avg (salary)
 from employee);

Create View

SQL ESQL

* *

Defines a virtual table.

Syntax

[exec sql] create view view_name [(columnname {, columnname})]
 as subselect {
 union [all] subselect}
 [with_clause]

The syntax of the subselect is described in the select statement description in this
chapter.

The with_clause parameter consists of the word with followed by a
comma-separated list of valid EDBC product with clause options (including, for
this statement, check option). For an overview of the with clause, refer to the
“OpenSQL Features” chapter. For a list of the valid with clause options for a
specific EDBC product, refer to the product guide. The check option is not
supported by all EDBC products. Products that do not support check option will
ignore it when creating the specified view.

Description

The syntax of the create view statement is very similar to that of the as form of
create table. However, data is not retrieved when a view is created. Instead, the
view definition is stored and, when the view_name is later used in an SQL
statement, the statement operates on the tables that are used to define the view.
(The tables or views used to define a view are called its base tables.)

Create View

8–14 Reference Guide

All selects on views are fully supported. Simply use a view_name in place of a
tablename in any SQL retrieval. However, updates, inserts, and deletes on views
are subject to several rules:

■ Updates, inserts, and deletes are not allowed if:

– The view was created from more than one table

– The view was created from a non-updateable view

– Any columns in the view are derived from an expression or aggregate
(set) function

■ Additionally, inserts are not allowed if:

– The view definition contains a where clause and specifies the with check
option (if supported by the EDBC product)

– If any column in the underlying table that was declared as not null not
default is not present in the view

■ The ability to update a view depends in part on whether the with check
option is specified.

 When a view is created with check option, columns that are part of the view’s
qualification cannot be updated.

 If the with check option is not specified, any row in the view can be updated,
even if the update results in a row that is no longer a part of the view.

 For example, consider the following two statements:
 create view v
 as select *
 from t
 where c = 10;
 update v
 set c = 5;

 Because the with check option is not specified in the view’s definition, you
are allowed to update column c. If the view had been created with check
option, the update would not be allowed.

 By default, with check option is not set.

When a table used in the definition of a view is dropped, the view is also
dropped.

Note: Particular EDBC products may support extensions to the create view
statement, using the with clause.

To ensure application portability, follow every create view statement with a
commit statement.

Declare Cursor

OpenSQL Statements 8–15

Embedded Usage

When used in an embedded program, constant expressions can be specified in
the select_stmt with host language string variables. If the select_stmt includes a
where clause, a host language string variable can be used to represent the entire
where clause qualification.

Example

Define a view of employee data including names, salaries, and managers’ names.
 create view empdpt (ename, sal, dname)
 as select employee.name, employee.salary,
 dept.name
 from employee, dept
 where employee.mgr = dept.mgr;

Declare Cursor

SQL ESQL

 *

Declares a cursor for use in data manipulation.

Syntax

exec sql declare cursor_name cursor
 for select [all | distinct]
 result_expression {, result_expression}
 from table {, table}
 [where search_condition]
 [group by column {, column}]
 [having search_condition]
 [union [all] full_select]
 [order by result_column [asc | desc]
 {, result_column [asc | desc]}]
 [for update of column {, column}]

Dynamic SQL form:

exec sql declare cursor_name cursor
 for statement_name;

Declare Cursor

8–16 Reference Guide

Description

The declare cursor statement associates a specified cursor with a select statement.
For information about using the select statement with cursors, refer to Cursor
Select in this chapter.

Declare cursor is a compile-time statement and must appear before the first
statement that references the cursor. Despite its declarative nature, a declare
cursor statement must not be located in a host language variable declaration
section.

Cursor_name can be specified using a quoted or unquoted string literal or a host
language string variable. If cursor_name is a reserved word, it must be specified
in quotes. Cursor_name can contain a maximum of 24 alphanumeric characters.

The typical order of events in cursor processing is:

1. Issue a declare cursor statement to associate a cursor with a select statement.

2. Open the cursor. When the cursor is opened, the DBMS executes the select
statement that was specified in the declare cursor statement.

3. Process rows one at a time. The fetch statement returns one row from the
results of the select statement that was executed when the cursor was
opened.

4. Close the cursor by issuing the close statement.

A source file can have multiple cursors, but the same cursor cannot be declared
twice. If you want to declare several cursors using the same host language
variable to represent cursor_name, it is only necessary to declare the cursor once,
since declare cursor is a compile-time statement. Multiple declarations of the
same cursor_name will cause a preprocessor error, even if its actual value is to be
changed between declarations. For example, the following statements cause a
preprocessor error:
exec sql declare :cname[i] cursor for s1;
i = i + 1
/* The following statement causes preprocessor error */
exec sql declare :cname[i] cursor for s2;

Instead, declare the cursor once. The value assigned to the host language
variable cursor_name is not determined until the open cursor statement is
executed. For example:
exec sql declare :cname[i] cursor for :sname[i];
loop incrementing i
exec sql open :cname[i];
end loop;

Declare Cursor

OpenSQL Statements 8–17

If a cursor is declared using a host language variable, all subsequent references to
that cursor must use the same host language variable. At run-time, a
dynamically specified cursor name, that is, a cursor declared using a variable,
must be unique among all dynamically specified cursor names in an application.
In a similar manner, any cursors referenced in a dynamic statement, for example
a dynamic update or delete cursor statement, must be unique among all open
cursors within the current transaction.

A cursor name declared in one source file cannot be referred to in another file,
since the scope of a cursor declaration is the source file. If the cursor is
redeclared in another file with the same associated query, it will still not identify
the same cursor, not even at run time. For example, if a cursor c1 is declared in
source file, file1, then all references to c1 must be made within file1. Failure to
follow this rule results in run-time errors. For example, if you declare cursor c1
in an include file, open it in one file and fetch from it in another file, at run time
the DBMS returns an error indicating that the cursor c1 is not open on the fetch.

This rule applies equally to dynamically specified cursor names. If a dynamic
update or delete cursor statement is executed, the cursor referenced in the
statement must be declared in the same file in which the update or delete
statement appears.

The embedded SQL preprocessor does not generate any code for the declare
cursor statement. Therefore, in a language that does not allow empty control
blocks, (for example, COBOL, which does not allow empty IF blocks), the declare
cursor statement should not be the only statement in the block.

The for update clause must be included if there is any possibility that the cursor
will be used to update rows. List any column that might be updated. If you only
intend to delete rows, then the for update clause is not required. The actual
updating or deleting takes place with the cursor version of the update or delete
statement, respectively (refer to the sections on Update and Delete below).

A cursor cannot be declared for updating if its select statement:

■ Refers to more than one table.

 For example, the following cursor declaration causes a compile-time error:
 exec sql declare c1 cursor for
 select employee.id, accounts.sal
 from employee, accounts
 where employee.salno = accounts.accno
 for update of sal;
 /* illegal join on different tables for
 update */

 This declaration is illegal because two tables were used in the select
statement.

Declare Cursor

8–18 Reference Guide

■ Refers to a non-updateable view.

 For example, assume that empdept is a read-only view, not a table, then the
following example generates a run-time error at the time the open statement
is executed. No preprocessor error is generated, because the preprocessor
does not know that empdept is a view.
exec sql declare c2 cursor for
 select name, deptinfo
 from empdept /* empdept is a read-only view */
 for update of deptinfo;

...

exec sql open c2;

■ Includes a distinct, group by, having, order by, or union clause.

It is also illegal to update a column that is a constant or is based on a calculation.
For example, the following cursor declaration generates an error when you
attempt to update the column named constant:
exec sql declare c3 cursor for
select 123 as constant, ename
from employee
for update of constant;
 /* "constant" cannot be declared for update */

If an updateable column has been given a result column name by using the
syntax:

columnname as resultname

then the column referred to in the for update list must name the table column
name, and not the result column name.

Updates associated with a cursor take effect on the underlying table when the
statement is executed. The effects of the updates can be seen by the program
before the cursor is closed. The actual committal of the changes does not
override or interfere with commit or rollback statements that may be executed
subsequently in the program. Because changes take effect immediately, avoid
updating keys that cause the current row to move “forward” with respect to the
current position of the cursor, because this may result in fetching the same row
more than once.

If the for update clause is specified, the cursor can still be opened for reading
only. The open statement accepts the optional for readonly clause, which
specifies that, though the cursor may have been declared for update, the cursor is
not being opened for update. By including this clause in the open statement, the
performance of the cursor retrieval can be improved.

Not all database management systems allow the use of a cursor to update a row
more than once. For details, refer to your EDBC product and DBMS-specific
documentation.

Declare Cursor

OpenSQL Statements 8–19

The union form of the select statement can be used in a cursor declaration. To
select all columns, use select *. Each column does not need to be listed
individually.

When the order by clause is specified, the ordering is performed according to
SQL comparison rules. Each column specified in the ordering must specify either
a column name, which identifies a column of the result table, or an integer, which
identifies a numbered column of the result table. A named result column can be
identified by an ordering name or a number. An unnamed result column must
be identified by an ordering number.

Host language variables can be used in the select statement of a declare cursor to
substitute for expressions in the select clause or in the search condition (refer to
the section on Select). When the search condition is specified within a single
string variable (as when the query is constructed using the form system query
mode) then all the following clauses, such as the order by or update clause, can
be included within the variable. These variables must be valid at the time of the
cursor’s open statement, because that is when the select is actually evaluated—
they need not have defined values at the time of the declare cursor statement.
Host language variables cannot substitute for any table or column names.

You can also use the dynamic OpenSQL syntax and specify a prepared statement
name instead of a select statement. The statement name must identify a select
statement that has been prepared previously. The statement name must not be
the same as another prepared statement name that is associated with a currently
open cursor.

Examples
1. Declare a cursor for a retrieval of employees from the shoe department,

ordered by name (ascending) and salary (descending). (This could also be
specified as a select loop.)
 exec sql declare cursor1 cursor for
 select ename, sal
 from employee
 where dept = 'shoes'
 order by 1 asc, 2 desc;

2. Declare a cursor for updating the salaries and departments of employees
currently in the shoe department.
 exec sql declare cursor2 cursor for
 select ename, sal
 from employee
 where dept = 'shoes'
 for update of sal, dept;

Declare Cursor

8–20 Reference Guide

3. Declare a cursor for updating the salaries of employees whose last names are
alphabetically like a given pattern.
 searchpattern = 'a%';
 exec sql declare cursor3 cursor for
 select ename, sal
 from employee
 where ename like :searchpattern
 for update of sal;

 ...

 exec sql open cursor3;

 In the above example, the variable, searchpattern, must be a valid declaration
in the host language at the time the statement, open cursor3, is executed. It
also must be a valid embedded OpenSQL declaration at the point where the
cursor is declared.

4. Declare a cursor in order to print the results of a retrieval for run-time
viewing and salary changes.
 exec sql declare cursor4 cursor for
 select ename, age, eno, sal
 from employee
 for update of sal;

 exec sql whenever sqlerror stop;
 exec sql whenever not found goto close_cursor;
 exec sql open cursor4;

 loop /* loop is broken when NOT FOUND becomes
 true. */
 exec sql fetch cursor4
 into :name, :age, :idno, :salary;
 print name, age, idno, salary;
 print ’New salary’;
 read newsal;
 if (newsal > 0 and newsal <> salary) then
 exec sql update employee
 set sal = :newsal
 where current of cursor4;
 end if;
 end loop;

 close_cursor:
 exec sql close cursor4;

5. Declare a cursor for retrieval of specific data. The for update clause refers to
column name sal and not res.
 exec sql declare cursor5 cursor for
 select ename, sal as res
 from employee
 where eno between :eno_low and :eno_high
 for update of sal;

 . . .

 loop while more input
 read eno_low, eno_high;
 exec sql open cursor5;
 print and process rows;
 end loop;

Declare Cursor

OpenSQL Statements 8–21

6. Declare two cursors for the department and employee tables and open them
in a master-detail fashion.
 exec sql declare master_cursor cursor for
 select * from dept
 order by dno;

 exec sql declare detail_cursor cursor for
 select * from employee
 where edept = :dno
 order by ename;

 exec sql open master_cursor;

 loop while more departments

 exec sql fetch master_cursor
 into :dname, :dno, :dfloor, :dsales;

 if not found break loop;

 /*
 ** For each department retrieve all the employees
 ** and display the department and employee data.
 */

 exec sql open detail_cursor;

 loop while more employees

 exec sql fetch detail_cursor
 into :name, :age, :idno, :salary, :edept;

 /*
 ** For each department retrieve all the employees
 ** and display the department and employee data.
 */

 process and display data;

 end loop;
 exec sql close detail_cursor;
 end loop;

 exec sql close master_cursor;

7. Declare a cursor that is a union of three tables with identical typed columns
(the columns have different names). As each row returns, record the
information and add it to a new table. Ignore all errors.
 exec sql declare shapes cursor for
 select boxname, boxnum from boxes
 where boxid > 100
 union
 select toolname, toolnum from tools
 union
 select nailname, nailnum from nails
 where nailweight > 4;

 exec sql open shapes;
 exec sql whenever not found goto done;

 loop while more shapes

 exec sql fetch shapes into :name, :number;
 record name and number;
 exec sql insert into hardware (:name, :number);
 end loop;

 done:

 exec sql close shapes;

Declare Statement

8–22 Reference Guide

Declare Statement

SQL ESQL

 *

Declares names to identify one or more dynamic OpenSQL prepared statement
names.

Syntax

exec sql declare statement_name {, statement_name} statement

Description

Declare statement lists one or more names that are used in a program to identify
prepared OpenSQL statements. Declare statement is provided for purposes of
program documentation. The declaration of prepared statement names is not
required. No syntactic elements can be specified using host language variables.

The embedded SQL preprocessor does not generate any code for declare
statement. Therefore, in a language that does not allow empty control blocks (for
example, COBOL, which does not allow empty IF blocks), this statement must
not be the only statement in the block.

Example

This example declares one statement name for a dynamic statement that will be
executed 10 times.
exec sql declare ten_times statement;

loop while more input
 print ’Type in statement to be executed 10 times?’;
 read statement_buffer;

 exec sql prepare ten_times from :statement_buffer;
 loop 10 times
 exec sql execute ten_times;
 end loop;
end loop;

Declare Table

OpenSQL Statements 8–23

Declare Table

SQL ESQL

 *

Describes the structure of a database table.

Syntax

exec sql declare tablename table
 (columnname type [with null | not null]
 {, columnname type})

Description

The declare table statement is a comment statement inside a variable declaration
section that lists the columns and data types of a table, for the purpose of
program documentation. The dclgen utility includes this statement in the file it
generates. Dclgen creates a structure corresponding to a database table. For
details, refer to your host language companion guide.

Any elements of the syntax cannot be replaced with host language variables.

The embedded SQL preprocessor does not generate any code for the declare
table statement. Therefore, in a language that does not allow empty control
blocks (for example, COBOL, which does not allow empty IF blocks), the declare
table statement must not be the only statement in the block.

Example

Declare a database table.
 exec sql declare employee table
 (eno integer2 not null,
 ename character(20) not null,
 age integer,
 job integer2,
 sal float,
 dept integer2 not null);

Delete

8–24 Reference Guide

Delete
SQL ESQL

* *

Deletes rows from a table.

Syntax

Interactive version:

delete from tablename [where search_condition]

Embedded versions:

 Non-cursor version:

exec sql [repeated] delete from tablename
[where search_condition]

 Cursor version:

exec sql delete from tablename
where current of cursor_name;

Description

The delete statement removes rows from the specified table that satisfy the
search_condition in the where clause. If the where clause is omitted, the statement
deletes all rows in the table. The result is a valid but empty table.

If the where clause includes a subselect, the tables specified in the subselect
cannot include the table from which you are deleting rows.

Embedded Usage

There are two embedded versions of the delete statement: one deletes rows
according to the search criteria specified in its where clause, and the second
deletes the row to which the specified cursor is positioned.

Delete

OpenSQL Statements 8–25

Non-cursor Delete

The non-cursor version of the embedded OpenSQL delete statement is virtually
identical to the interactive delete. Host language variables can be used to
represent constant expressions in the search_condition but they cannot represent
names of database columns or include any operators. A host string variable can
also replace the complete search condition.

The non-cursor delete can be formulated as a repeated query by using the key
word repeated. Doing so reduces the overhead required to run the same delete
repeatedly within your program. The repeated key word directs the OpenSQL to
encode the delete and save its execution plan when it is first executed. This
encoding can account for significant performance improvements on subsequent
executions of the same delete. The repeated key word is valid only for
non-cursor deletes, and it is ignored if used with the cursor version. The
repeated delete cannot be specified using a dynamic OpenSQL statement.

If the search_condition is dynamically constructed, that is, if the complete clause is
specified in a host string variable, do not use the repeated option if you intend to
change the search_condition after the statement’s initial execution. The saved
execution plan is based on the initial values in the search_condition and any
changes would be ignored. This rule does not apply to simple variables used in
search_conditions.

Cursor Delete

The cursor version immediately deletes the row to which the specified cursor is
pointing. If the cursor is not currently pointing at a row when the delete is
executed, then the DBMS generates an error indicating the need to issue a fetch
statement to position the cursor on a row. (After a deletion, the cursor points to a
position after the deleted row, but before the next row, if any.)

The commit and rollback statements close all open cursors. A common
programming error is to delete the current row of a cursor, commit the change,
then loop to repeat the process. This process fails because the first commit closes
the cursor.

In performing a cursor delete, certain conditions must be met:

■ A cursor must be declared in the same file in which any delete statements
referencing that cursor appear. This applies also to any cursors referenced in
dynamic delete statement strings.

■ A cursor name in a dynamic delete statement must be unique among all open
cursors in the current transaction.

■ The cursor stipulated in the delete must be open before the statement is
executed.

Describe

8–26 Reference Guide

■ The cursor’s select statement must not contain a distinct, group by, having,
order by, or union clause.

■ The from clause of the delete and the from clause in the cursor’s declaration
must refer to the same database table.

The cursor name can be specified with a string constant or a host language
variable.

If the statement does not delete any rows, the sqlcode variable in the SQLCA
structure is set to 100.

The sqlerrd(3) variable in the SQLCA structure contains the number of rows
deleted.

Example

Remove all employees who make over $35,000.
 delete from employee where salary >35000;

Describe

SQL ESQL

 *
Retrieves information about a prepared dynamic OpenSQL statement.

Syntax

exec sql describe statement_name
 into|using descriptor_name [using names]

Description

The describe statement returns information about a prepared dynamic OpenSQL
statement. Describe is intended primarily for use with dynamic select
statements. Describe returns the data type, length, and name of the select’s result
columns. If the prepared statement is not a select, describe returns a zero to the
SQLDA sqld field. For a complete discussion of the SQLDA (SQL Descriptor
Area), refer to the “Dynamic OpenSQL” chapter.

Direct Execute Immediate

OpenSQL Statements 8–27

The statement_name can be specified as either a string literal or using a host
language string variable. In either case, statement_name must identify a valid
prepared statement. (An invalid prepared statement results whenever an error
occurs when the specified statement is prepared or if a commit or rollback
statement is executed after the statement is prepared and before it is executed.)

Descriptor_name identifies an SQLDA (SQL Descriptor Area). The actual name
can be “SQLDA” or any other valid OpenSQL name defined by the program
when the structure is allocated. Because the SQLDA is not declared in a
declaration section, the preprocessor does not verify that descriptor_name
represents an SQLDA structure. If descriptor_name does not represent an SQLDA
structure, undefined errors will occur at run time. Descriptor_name can be
preceded by a colon (:).

The optional using names clause directs the OpenSQL EDBC product or server to
return the names of result columns in the descriptor if the described statement is
a select statement.

The describe statement cannot be issued until after the program allocates the
SQLDA and sets the value of the SQLDA sqln field to the number of elements in
the SQLDA sqlvar array. The results of the describe statement are complete and
valid only if the number of the result columns (from the select) is less than or
equal to the number of allocated sqlvar elements. For more information about
describing a select statement and analyzing the results, refer to the “Dynamic
OpenSQL” chapter.

The prepare statement can also be used with the into clause to retrieve the same
descriptive information provided by describe.

Direct Execute Immediate

SQL ESQL

 *

Sends DBMS-specific commands to the DBMS without translation.

Disconnect

8–28 Reference Guide

Syntax

exec sql direct execute immediate string | string_variable

Description

The direct execute immediate statement allows statements to be sent to the EDBC
product or DBMS to which a session is connected. The EDBC product does not
translate the statement. If the statement is not supported by the DBMS or EDBC
product, an error is returned. The direct execute immediate statement cannot be
used to return rows to a session.

A host language variable or string literal can be used to specify the statement. If
you use a string literal, avoid embedding quotes in the literal. If you specify the
statement using a host language variable, the OpenSQL string-delimiting
conventions must be observed.

Disconnect

SQL ESQL

 *

Terminates access to the database.

Syntax

exec sql disconnect [session session_identifier | all]

Description

The disconnect statement terminates access to the database, closes any open
cursors, and commits any open transactions.

To disconnect the current session, issue the disconnect statement, omitting the
session identifier. Other sessions (if any) will remain connected. To switch
sessions, use the set_sql statement. To disconnect all open sessions, specify
disconnect all.

Drop

OpenSQL Statements 8–29

To disconnect a specific session in a multi-session application, use the session
session_identifier clause to identify the session you want to disconnect. The
session_identifier must be a positive integer constant or variable containing the
session identifier. To determine the session_identifier for the current session, use
the inquire_sql(:session_id = session) statement. If an invalid session is specified,
OpenSQL issues an error and does not disconnect the session.

Examples
1. Disconnect from the current database.

 exec sql disconnect;

2. On an error, roll back pending updates, then disconnect the database session.
 exec sql whenever sqlerror goto err;

 ...

 err:
 exec sql rollback;
 exec sql disconnect;

Drop

SQL ESQL

* *

Destroys one or more tables, indexes, or views.

Syntax
[exec sql] drop table tablename [with with_clause]
[exec sql] drop index indexname [with with_clause]
[exec sql] drop view viewname [with with_clause]

The with_clause parameter consists of a comma-separated list of valid EDBC
product with clause options. For an overview of the with clause, refer to the
“OpenSQL Features” chapter. For a list of the valid with clause options for a
specific EDBC product, refer to the product guide.

End Declare Section

8–30 Reference Guide

Description
The drop statement removes the specified tables, indexes, and views from the
database. When a table is dropped, any indexes, views, or privileges defined on
that table are automatically dropped also. When a view is dropped, all
associated privileges and dependent views are dropped.

To ensure application portability, follow every drop statement with a commit
statement.

Embedded Usage

You cannot replace any portions of the statement with host language variables.

Examples
1. Drop an index named, tindex.

 drop index tindex;
 commit;

2. Drop a base table and all related views, indexes, and permissions.
 drop table employee;
 commit;

3. In an embedded program, drop a view.
 exec sql drop view tempview;
 exec sql commit;

End Declare Section

SQL ESQL

 *

Ends declaration of host language variables.

Syntax

exec sql end declare section

Endselect

OpenSQL Statements 8–31

Description

The end declare section statement marks the end of a host language variable
declaration section.

A host language variable declaration section contains declarations of host
language variables for use in an embedded OpenSQL program. The begin
declare section statement starts each variable declaration section. For more
information about declaration sections and host language variables, refer to the
Begin Declare Section statement description and to the “Embedded OpenSQL”
chapter.

Endselect

SQL ESQL

 *

Terminates a select loop.

Syntax

exec sql endselect;

Description

The endselect statement terminates embedded OpenSQL select loops. A select
loop is a block of code delimited by begin and end statements and associated
with a select statement. As the select statement retrieves rows from the database,
each row is processed by the code in the select loop. (For more information about
select loops, refer to the Select statement description.) When the endselect
statement is executed, the program stops retrieving rows from the database and
program control is transferred to the first statement following the select loop.

The endselect statement must be inside the select loop that it is intended to
terminate. If an endselect statement is placed inside a forms statement code
block that is syntactically nested within a select loop, the statement ends the
nested construct as well as the select loop.

The statement must be terminated according to the rules of the host language.

Execute

8–32 Reference Guide

To find out how many rows were retrieved before the endselect statement was
issued, check the sqlerrd(3) variable of the SQLCA.

Example

Break out of a select loop on a data loading error.
 exec sql select ename, eno into :ename, :eno
 from employee;
 exec sql begin;
 load ename, eno into data set;
 if error then
 print ’Error loading ’, ename, eno;
 exec sql endselect;
 end if
 exec sql end;
 /* endselect transfers control to here */

Execute

SQL ESQL

 *

Executes a previously prepared dynamic OpenSQL statement.

Syntax

exec sql execute statement_name
 [using variable {, variable} |
 using descriptor descriptor_name]

Description

The execute statement executes the prepared OpenSQL statement specified by
statement_name. Execute can be used to execute any statement that can be
prepared, with the exception of the select statement. (The execute statement
cannot be used to execute a prepared select statement. For more information,
refer to the Prepare and Execute Statements topic in the “Dynamic OpenSQL”
chapter, and to the Execute Immediate statement description in this chapter.)

Execute

OpenSQL Statements 8–33

The statement_name can be specified using a string literal or a host language
variable. Statement_name must identify a valid prepared statement. If the
statement identified by statement_name is invalid, the EDBC product or server
issues an error and aborts the execute statement. (A prepared statement is
invalid if a transaction was committed or rolled back after the statement was
prepared or if an error occurred while preparing the statement.)

If the prepared statement refers to a cursor update or delete and the associated
cursor is not open, the EDBC product or server issues an error. For more
information, refer to the Update and Delete statement descriptions.

 If the prepared statement uses a question mark (?) to specify one or more
constant expressions, the using clause must be specified in the statement. If you
know the number and data types of the expressions specified by question marks
in the prepared statement, use the using variable {, variable} option. The number
of the variables listed must correspond to the number of question marks in the
prepared statement, and each variable’s data type must be compatible with its
usage in the prepared statement.

The following example prepares a statement containing one question mark from
a buffer and executes it using a host language variable:
statement_buffer =
’delete from ’ + table_name + ’ where code = ?’;
exec sql prepare del_stmt from :statement_buffer;
...

exec sql execute del_stmt using :code;

The value in the variable, code, replaces the ? in the where clause of the prepared
delete statement.

If the number and data types of the prepared statement parameters are not
known until run time, use the using descriptor option. In this alternative, the
descriptor_name identifies an SQLDA, a host language structure that must be
allocated prior to its use. The SQLDA includes the sqlvar array. Each element of
sqlvar is used to describe and point to a host language variable. The execute
statement uses the values placed in the variables pointed to by the sqlvar
elements to execute the prepared statement.

When the SQLDA is used for input, the program must set the sqlvar array
element type, length, and data area for each portion of the prepared statement
specified by question marks, prior to executing the statement.

Here are some of the ways the program can supply that information:

■ When preparing the statement, the program can request all type and length
information from the interactive user.

Execute

8–34 Reference Guide

■ Before preparing the statement, the program can scan the statement string,
and build a select statement out of the clauses that include parameters. The
program can then prepare and describe this select statement in order to
collect data type information to be used on input.

■ If another application development tool is being used to build the dynamic
statements (such as a Vision frame or a VIFRED form), the data type
information included in those objects can be used to build the descriptor. An
example of this method is shown in the Examples section.

In addition, the program must also correctly set the sqld field in the SQLDA
structure. For a complete description of the structure of the SQLDA and how to
use it, refer to the “Dynamic OpenSQL” chapter.

The variables used by the using clause can be associated with indicator variables
if indicator variables are permitted with the same statement in the non-dynamic
case. For example, because indicator variables are permitted in the insert
statement values clause, then the following dynamically defined insert statement
can include indicator variables (name_ind and age_ind) in the execute statement:
statement_buffer = 'insert into employee (name, age) values (?, ?)';
exec sql prepare s1 from :statement_buffer;
exec sql execute s1 using :name:name_ind,
 :age:age_ind;

However, a host structure variable cannot be used in the using clause, even if the
named statement refers to a statement which allows a host structure variable
when issued non-dynamically.

This statement must be terminated according to the rules of the host language.

Examples
1. Although the commit statement can be prepared, once the statement is

executed, the prepared statement becomes invalid. For example, the
following code will cause an error on the second execute statement:
 statement_buffer = 'commit';

 exec sql prepare s1 from :statement_buffer;

 process and update data;
 exec sql execute s1; /* Once committed, 's1' is
 lost */

 process and update more data;
 exec sql execute s1;
 /* 's1' is NOT a valid statement name */

Execute Immediate

OpenSQL Statements 8–35

2. When leaving an application, each user deletes all their rows from a working
table. User rows are identified by their different access codes. One user may
have more than one access code.
 read group id from terminal;
 statement_buffer = 'delete from ' + group_id + '
 where access_code = ?';

 exec sql prepare s2 from :statement_buffer;

 read access_code from terminal;
 loop while (access_code <> 0)

 exec sql execute s2 using :access_code;
 read access_code from terminal;

 end loop;
 exec sql commit;

Execute Immediate

SQL ESQL

 *

Executes an SQL statement specified as a string literal or in a host language
variable.

Syntax

exec sql execute immediate statement_string
 [into variable {, variable} | using [descriptor]
 descriptor_name
 [exec sql begin;
 program_code
 exec sql end;]]

Description

The execute immediate statement executes a dynamically built statement string.
Unlike the prepare and execute sequence, this statement does not name or
encode the statement and cannot supply parameters. The execute immediate
statement is equivalent to:
exec sql prepare statement_name from
 :statement_buffer;
exec sql execute statement_name;
’Forget’ the statement_name;

Execute Immediate

8–36 Reference Guide

Execute immediate can be used:

■ To execute a dynamic statement once in your program

■ To execute a dynamic select statement and process the result rows with a
select loop

If you intend to execute the statement string repeatedly and it is not a select
statement, use the prepare and execute statements instead. For more information
about the alternatives available for executing dynamic statements, refer to the
“Dynamic OpenSQL” chapter. If the statement string is blank or empty,
OpenSQL returns a run-time syntax error.

The execute immediate statement must be terminated according to the rules of
the host language.

The following OpenSQL statements cannot be executed using execute immediate:

call fetch

close help

connect include

declare inquire_sql

describe open

direct execute immediate prepare

disconnect set

endselect set_sql

execute whenever

The statement string must not include exec sql, any host language terminators, or
references to variable names. If your statement string includes embedded
quotes, it is easiest to specify the string in a host language variable. If you choose
to specify a string that includes quotes as a string constant, remember that quoted
characters within the statement string must follow the OpenSQL string delimiting
rules. Even if your host language delimits strings with double quotes, the quoted
characters within the statement string must be delimited by single quotes. For
complete information about embedding quotes within a string literal, refer to
your host language companion guide.

If the statement string is a cursor update or cursor delete, the declaration of the
named cursor must appear in the same file as the execute immediate statement
executing the statement string.

The into or using clause can only be used when the statement string is a select
statement.

Execute Immediate

OpenSQL Statements 8–37

The into clause specifies variables to store the values returned by a select. This
option can be used if the program knows the data types and lengths of the result
columns before the select executes. The variables must be type compatible with
the associated result columns. For information about the compatibility of host
language variables and OpenSQL data types, refer to your host language
companion guide.

Include the using clause if the program does not know the types and lengths of
the result columns until run time. The using clause specifies an SQL Descriptor
Area (SQLDA), a host language structure having, among other fields, an array of
sqlvar elements. Each sqlvar element describes and points to a host language
variable. When the using clause is specified, OpenSQL places the result column
values in the variables pointed at by the sqlvar elements.

If you intend to use the using clause, the program can first prepare and describe
the select statement. This process returns data type, name, and length
information about the result columns to the SQLDA. Your program can then use
that information to allocate the necessary variables before executing the select.
For more information and about executing dynamic select statements and some
examples of executing a dynamic select, refer to the “Dynamic OpenSQL”
chapter.

If the select statement will return more than one row, include the begin/end
statement block. This block defines a select loop. OpenSQL processes each row
that the select returns using the program code that you supply in the select loop.
The program code inside the loop must not include any other database
statements, except the endselect statement. If the select returns multiple rows
and you do not supply a select loop, the application receives only the first row
and an error to indicate that others were returned but unseen.

Example

This example reads an SQL statement from the terminal into a host string
variable, statement_buffer. If the user enters quit, the program ends. If an error
occurs, the program informs the user.
 exec sql include sqlca;

 read statement_buffer from terminal;
 loop while (statement_buffer <> ’QUIT’)

Execute Procedure

8–38 Reference Guide

 exec sql execute immediate :statement_buffer;
 if (sqlcode = 0) then
 exec sql commit;
 else if (sqlcode = 100) then
 print ’No qualifying rows for statement:’;
 print statement_buffer;
 else
 print ’Error :’, sqlcode;
 print ’Statement :’, statement_buffer;
 end if;

 read statement_buffer from terminal;
 end loop;

Execute Procedure

SQL ESQL

* *

Invokes a database procedure.

Syntax

Non-dynamic version:

[exec sql] execute procedure [schema.]proc_name
 [(param_name=param_spec {, param_name=param_spec})]
 [into return_status]

where param_spec is a literal value, a host variable containing the value to be
passed (:hostvar), or a host variable passed by reference (byref(:host_variable)).

Dynamic version:

[exec sql] execute procedure [schema.]proc_name
 [using [descriptor] descriptor_name]
 [into return_status]

Description

The execute procedure statement executes the database procedure identified by
proc_name. Proc_name can be specified using a literal or a host string variable.
Database procedures can be executed from interactive SQL (the Terminal
Monitor), an embedded OpenSQL program, or from another database procedure.
For details about database procedures, refer to the “OpenSQL Features” chapter.

Execute Procedure

OpenSQL Statements 8–39

This statement can be executed dynamically or non-dynamically. When
executing a database procedure, you generally provide values for the formal
parameters specified in the procedure’s definition.

Passing Parameters - Non-Dynamic Version

In the non-dynamic version, parameters can be passed by value or by reference.
Each param_name must match one of the parameter names in the parameter list of
the procedure’s definition. Param_name must be a valid identifier specified using
a quoted or unquoted string or a host variable.

Data can be passed to a database procedure by:

■ Value - To pass a parameter by value, specify param_name =value. When
passing parameters by value, the database procedure receives a copy of the
value.

Values can be specified using:

– Numeric or string literals

– OpenSQL constants (such as today or user)

– Host variables

– Arithmetic expressions

 The value assigned to a param_name must be compatible in type with the
formal parameter represented by param_name. You can specify date data
using quoted character string values. If the data types are not compatible,
OpenSQL issues an error and does not execute the procedure.

■ Reference - To pass a parameter by reference, specify the parameter as
param_name = byref(:host_variable). When passing parameters by reference,
the database procedure can change the contents of the variable. Any changes
made by the database procedure are visible to the calling program. You
cannot pass parameters by reference in interactive SQL.

Passing Parameters - Dynamic Version

In the dynamic version, the descriptor_name specified in the using clause identifies
an SQL Descriptor Area (SQLDA), a host language structure allocated at run
time. Prior to issuing the execute procedure statement, the program must place
the parameter names in the sqlname fields of the SQLDA’s sqlvar elements and
the values assigned to the parameters must be placed in the host variables
pointed to by the sqldata fields. When the statement is executed, the using clause
directs OpenSQL to use those parameter names and values.

Execute Procedure

8–40 Reference Guide

Parameter names and values follow the same rules for use and behavior when
specified dynamically as those specified non-dynamically. For example, because
positional referencing is not allowed when you issue the statement
non-dynamically, when you use the dynamic version, any sqlvar element
representing a parameter must have entries for both its sqlname and sqldata
fields. The names must match those in the procedure’s definition and the data
types of the values must be compatible with the parameter to which they are
assigned.

OpenSQL assigns a null or a default value to any parameter in the procedure’s
definition that is not assigned an explicit value when the procedure is executed.
If the parameter is not nullable and does not have a default, an error is issued.

For example, for the create statement:
create procedure p (i integer not null,
d date, c varchar(100)) as ...

the following associated execute statement implicitly assigns a null to parameter
d.
exec sql execute procedure p (i = 123,
c = 'String');

When executing a procedure dynamically, set the SQLDA sqld field to the
number of parameters that you are passing to the procedure. The sqld value tells
OpenSQL how many sqlvar elements the statement is using, indicating the
number of parameters specified. If the sqld element of the SQLDA is set to 0
when you dynamically execute a procedure, it indicates that no parameters are
being specified, and if there are parameters in the formal definition of the
procedure, these are assigned null or default values when the procedure
executes. If the procedure parameter is not nullable and does not have a default,
an error is issued.

A parameter cannot be specified in the execute procedure statement that was not
specified in the create procedure or register procedure statement.

Return_status is an integer variable that receives the return status from the
procedure. If a return_status is not specified in the database procedure, or the
return statement is not executed in the procedure, then 0 is returned to the calling
application.

Note: The into clause cannot be used in interactive SQL.

The statement must be terminated according to the rules of the host language.

Execute Procedure

OpenSQL Statements 8–41

Permissions

You must have permission to execute the specified procedure.

Locking

The locks taken by the procedure depend on the statements that are executed
inside the procedure. All locks are taken immediately when the procedure is
executed.

Performance

The first execution of the database procedure may take slightly longer than
subsequent executions. For the first execution, the host DBMS may need to create
a query execution plan.

Examples

These examples assume the following create procedure statement has been
successfully executed:
exec sql create procedure p
(i integer not null,
d date,
c varchar(100)) as ...

1. This example uses a host variable, a null constant, and an empty string.
 exec sql execute procedure p
 (i=:ivar, d=null, c='')
 into :retstat;

2. This example assumes parameter “c” is null and uses a null indicator for
parameter “d”.
 exec sql execute procedure p
 (i=:ivar, d=:dvar:ind)
 into :retstat;

3. This example demonstrates the use of the whenever statement for
intercepting errors and messages from a database procedure.
 exec sql whenever sqlerror goto err_exit;
 exec sql whenever sqlmessage call sqlprint;

 exec sql execute procedure p into :retstat;
 ...

 err_exit:
 exec sql inquire_sql (:errbug = errortext);

Fetch

8–42 Reference Guide

4. This example demonstrates a dynamically executed execute procedure
statement. The example creates and executes the dynamic equivalent of the
following statement:
 exec sql execute procedure enter_person
 (age = :i4_var, comment = :c100_var:indicator);

 Dynamic version:
 exec sql include sqlda;
 allocate an SQLDA with 10 elements;
 sqlda.sqln = 10;
 sqlda.sqld = 2;

 /* 20-byte character for procedure name */
 proc_name = 'enter_person';

 /* 4-byte integer to put into parameter 'age' */
 sqlda.sqlvar(1).sqltype = int;
 sqlda.sqlvar(1).sqllen = 4;
 sqlda.sqlvar(1).sqldata = address(i4_var)
 sqlda.sqlvar(1).sqlind = null;
 sqlda.sqlvar(1).sqlname ='age';

 /* 100-byte nullable character to put into the
 ** parameter "comment" */
 sqlda.sqlvar(2).sqltype = char;
 sqlda.sqlvar(2).sqllen = 100;
 sqlda.sqlvar(2).sqldata = address(c100_var);
 sqlda.sqlvar(2).sqlind = address(indicator);
 sqlda.sqlvar(2).sqlname = 'comment';

exec sql execute procedure :proc_name
 using descriptor sqlda;

5. Call a database procedure, passing parameters by reference. This enables the
procedure to return the number of employees that received bonuses and the
total amount of bonuses conferred.
 exec sql execute procedure grant_bonuses
 (ecount = byref(:number_processed),
 btotal = byref (:bonus_total));

Fetch

SQL ESQL

 *

Fetches data from a database cursor into host language variables.

Fetch

OpenSQL Statements 8–43

Syntax

Non-dynamic version:

exec sql fetch cursor_name
 into variable[:indicator_var] {, variable[:indicator_var]}

Dynamic version:

exec sql fetch cursor_name using descriptor descriptor_name

Description

The fetch statement retrieves the results of the select statement that is executed
when a cursor is opened. When a cursor is opened, the cursor is positioned
immediately before the first result row. The fetch statement advances the cursor
to the first (or next) row and loads the values in that row into the specified
variables. Each fetch statement advances the cursor one row.

There must be a one-to-one correspondence between variables specified in the
into or using clause of fetch and expressions in the select clause of the declare
cursor statement. If the number of variables does not match the number of
expressions, the preprocessor will generate a warning and, at run time, the
SQLCA variable sqlwarn3 will be set to “W”.

The variables listed in the into clause can include structures that substitute for
some or all of the variables. The structure is expanded by the preprocessor into
the names of its individual variables. Therefore, placing a structure name in the
into clause is equivalent to enumerating all members of the structure in the order
in which they were declared.

The descriptor associated with the using descriptor clause must identify an
SQLDA that contains type descriptions of one or more host language variables.
Each element of the SQLDA is assigned the corresponding value in the current
row of the cursor. For more details, refer to the “Dynamic OpenSQL” chapter,
and to the Describe statement topic in this chapter.

The variables listed in the into clause or within the descriptor must be
type-compatible with the values being retrieved. If a result expression is
nullable, then the host language variable that will receive that value must have
an associated null indicator.

Fetch

8–44 Reference Guide

If the statement does not fetch a row—a condition that occurs after all rows in the
set have been processed—the sqlcode of the SQLCA is set to 100 (condition not
found) and no values are assigned to the variables.

The cursor identified by cursor_name must be an open cursor. Cursor_name can be
either a string constant or a host language variable.

The statement must be terminated according to the rules of the host language.

Examples
1. Typical fetch, with associated cursor statements.

 exec sql begin declare section;
 name character_string(20);
 age integer;
 exec sql end declare section;

 exec sql declare cursor1 cursor for
 select ename, age
 from employee
 order by ename;

 ...

 exec sql open cursor1;

 loop until no more rows
 exec sql fetch cursor1
 into :name, :age;
 print name, age;
 end loop;

 exec sql close cursor1;

 Assuming the structure:
 emprec
 name character_string(20),
 age integer;

the fetch in the above example could have been written
 exec sql fetch cursor1
 into :emprec;

 The preprocessor would then interpret that statement as though it had been
written
 exec sql fetch cursor1
 into :emprec.name, :emprec.age;

2. Fetch using an indicator variable.
 exec sql fetch cursor2 into :name,
 :salary:indicator_var;

Help

OpenSQL Statements 8–45

Help

SQL ESQL

*

Gets information about SQL and a variety of database objects.

Syntax
help [*]
help tablename | viewname | indexname
 {, tablename | viewname | indexname}
help table tablename {, tablename}
help view viewname {, viewname}
help index indexname {, indexname}
help help
help sql
help sql_statement

Description

The help statement displays information about the contents of the database or
specific tables. In addition, help can be used at the terminal monitor to obtain
information regarding OpenSQL, including such features as the syntax of
OpenSQL statements and valid data types. The following table lists help
parameters:

Parameter Description

* Provides information about the makeup of all user-defined
(not system) tables, views, and indexes in the database.

tablename Provides the name, owner, creation date and time, and the
DBMS version under which the table was created.
Displays the name, data type, length, nullability, default,
and key sequence for each column in the table.

viewname Displays information similar to that displayed by help
tablename.

indexname Displays information similar to that displayed by help
tablename.

table tablename

Displays the same information as help tablename plus
additional table information, depending on the particular
EDBC product or server.

Help

8–46 Reference Guide

Parameter Description

view viewname

Displays the text of the view, the view name, owner and
the state of the check option.

index indexname

Displays the name, owner, creation date and time, DBMS
version under which it was created, and, for each column,
its name, data type, length, nullability, default attribute,
and key sequence.

help help Displays a list of OpenSQL features for which help is
available.

sql Displays general information about OpenSQL.

sql_statement Displays information on the specified sql_statement.

The asterisk (*) can be used as a pattern matching character when specifying an
object name. For example, if you type help table emp*, you receive help on all
tables in the database whose names begin with emp. If you type, help table
*emp, you receive help on all the tables whose names end with emp.

When the asterisk is used by itself with help, as in help *, OpenSQL provides
information about all tables, views, and indexes in the database.

Examples
1. Retrieve a list of all tables, views, and indexes in the database.

 help;

2. Retrieve help about the employee table.
 help employee;

3. Retrieve help about the employee and dept tables.
 help employee, dept;

4. Retrieve the definition of the view highpay.
 help view highpay;

5. List information on the select statement.
 help select;

Include

OpenSQL Statements 8–47

Include

SQL ESQL

 *

Includes an external file in source code.

Syntax

exec sql include filename | sqlca | sqlda

Description

The include statement provides a way to include external files in your program
source code. This statement is normally used to include variable declarations,
although it is not restricted to such use. When used to include variable
declarations, it must be inside an embedded OpenSQL declaration section. The
file generated by dclgen should be specified by means of the include statement.

Unlike the “include” facilities of most programming languages, the file specified
by the OpenSQL include statement must comprise complete, not partial,
statements or declarations. For example, it is illegal to use include in the
following manner, where the file, predicate, contains a common predicate for
select statements.

Incorrect:
exec sql select ename
from employee
where
exec sql include 'predicate';

Filename must be a quoted string constant specifying a file name or a logical
system symbol that contains a file name. If the specified file has no extension,
OpenSQL assumes the default extension of your host language.

The specified file can contain declarations, host language statements, embedded
OpenSQL statements and nested includes. When the original source file is
preprocessed, the include statement is replaced by a host language include
directive, and the included file is also preprocessed.

Inquire_sql

8–48 Reference Guide

There are two special instances of the include statement:

■ include sqlca - Include the SQL Communications Area.

■ include sqlda - Include the definitions associated with the SQL Descriptor
Area.

Both these statements must be placed outside all declaration sections, preferably
at the start of the program.

The statement must be terminated as required by the rules of your host language.

Examples
1. Include the SQLCA in the program.

 exec sql include sqlca;

2. Include global variables.
 exec sql begin declare section;
 exec sql include 'global.var';
 exec sql end declare section;

3. Include a file that contains header files that list variable declarations.
 exec sql begin declare section;
 exec sql include 'mypath:global.var';
 exec sql end declare section;

Inquire_sql

SQL ESQL

 *

Provides an application program with a variety of run-time information.

Syntax

exec sql inquire_sql (variable = object {, variable = object})

Description

The inquire_sql statement enables an embedded OpenSQL program to retrieve a
variety of run-time information, such as:

■ Information about the last executed database statement.

Inquire_sql

OpenSQL Statements 8–49

■ Status information, such as the current session ID, the type of error (local or
generic) being returned to the application, and whether a transaction is
currently open.

The inquire_sql statement does not execute queries. The information inquire_sql
returns to the program reflects the results of the last query that was executed.
For this reason, the inquire_sql statement must be issued after the database
statement about which you want information, and before another database
statement is executed (and resets the values returned by inquire_sql).

Some of the information returned by inquire_sql is also available in the SQLCA.
For example, the error number returned by the object errorno is also available in
the SQLCA sqlcode field.

Similarly, when an error occurs, you can retrieve the error text using inquire_sql
with the errortext object or you can retrieve it from the SQLCA sqlerrm variable.
Errortext provides the complete text of the error message, which is often
truncated in sqlerrm.

This statement must be terminated according to the rules of your host language.

Types of Inquiries

The following table lists the valid inquiries that can be performed using the
inquire_sql statement:

Object Data Type Comment

dbmserror integer The number of the error caused by the last query.
This number corresponds to the value of sqlerrd(1),
the first element of the sqlerrd array in the SQLCA.
You can specify whether a local or generic error is
returned using set_sql(errortype).

endquery integer If the previous fetch statement was issued after the
last row of the cursor, endquery returns the value
“1”. If the last fetch statement returns a valid row,
the value returned is “0”. This is identical to the
NOT FOUND condition (value 100) of the SQLCA
variable sqlcode, which can be checked after a
fetch statement is issued. Like the NOT FOUND
condition, when endquery returns “1”, the
variables assigned values from the fetch remain
unchanged.

Inquire_sql

8–50 Reference Guide

Object Data Type Comment

errorno integer A positive integer, representing the error number
of the last query. The error number is cleared
before each embedded OpenSQL statement, so that
this object is only valid immediately after the
statement in question.

This error number is the same as the positive value
of the SQLCA variable sqlcode, except in two
cases:

■ A single query generates multiple different
errors, in which case the sqlcode identifies the
first error number, and the errorno object
identifies the last error.

■ After switching sessions. In this case, sqlcode
reflects the results of the last statement
executed before switching sessions, while
errorno will reflect the results of the last
statement executed in the current session.

If a statement executes with no errors or sqlcode is
set to a positive number (for example, +100 to
indicate no rows affected), then the error number
is set to 0.

errortext character The error text of the last query. The error text is
only valid immediately after the database
statement in question. The text that is returned is
the complete error message of the last error. This
message may have been truncated when it was
deposited into the SQLCA variable sqlerm. A
character string result variable of size 512 should
be sufficient to retrieve all OpenSQL error
messages. If the result variable is shorter than the
error message, the message is truncated. If there is
no error message, a blank message is returned.

errortype character Returns genericerror if OpenSQL returns generic
error numbers to errorno and sqlcode, or
dbmserror if OpenSQL returns local DBMS error
numbers to errorno and sqlcode. For information
about generic and local errors, refer to the
“OpenSQL Feature” chapter.

Inquire_sql

OpenSQL Statements 8–51

Object Data Type Comment

programquit integer Returns 1 if applications quit:

■ After issuing a query when not connected to a
database.

■ If the EDBC product or server fails.

■ If communications services fail.

Returns 0 if applications continue after
encountering such errors.

querytext character Returns the text of the last query issued. Valid
only if this feature is enabled. To enable or disable
the saving of query text, use set_sql(savequery). A
maximum of 1024 characters is returned. If the
query is longer, it is truncated to 1024 characters.
If the receiving variable is smaller than the query
text being returned, the text is truncated to fit.

If a null indicator variable is specified together
with the receiving host language variable, the
indicator variable is set to -1 if query text cannot be
returned, 0 if query text is returned successfully.
Query text cannot be returned if (1) savequery is
disabled, (2) no query has been issued in the
current session, or (3) the inquire_sql statement is
issued outside of a connected session.

rowcount integer The number of rows affected by the last query.
“Affected” means subject to any of the following
statements: insert, delete, update, select, fetch,
create index, or create table as select. If any of
these statements run successfully, the value of
rowcount is the same as the value of the SQLCA
variable sqlerrd(3). If these statements generate
errors, or if statements other than these are run,
then the value of rowcount is negative and the
value of sqlerrd(3) is 0.

savequery integer Returns 1 if query text saving is enabled, 0 if
disabled.

session integer Returns the session identifier of the current
database session. If the application is not using
multiple sessions or there is no current session, 0 is
returned.

transaction integer Returns a value of 1 if there is a transaction open.
Returns 0 if no transaction is open.

Insert

8–52 Reference Guide

Example

Execute some database statements, and handle errors by displaying the message
and aborting the transaction.
 exec sql whenever sqlerror goto err_handle;

 exec sql select name, sal
 into :name, :sal
 from employee
 where eno = :eno;

 if name = ’Badman’ then
 exec sql delete from employee where eno = :eno;
 else if name = ’Goodman’ then
 exec sql update employee set sal = sal + 3000
 where eno = :eno;
 end if;

 exec sql commit;

 ...

 err_handle:

 exec sql whenever sqlerror continue;
 exec sql inquire_sql (:err_msg = errortext);
 print ’EDBC product error: ’,
sqlca.sqlcode;
 print err_msg;
 exec sql rollback;

 end if;

Insert

SQL ESQL

* *

Inserts rows into a table.

Syntax
[exec sql [repeated]] insert into tablename [(column {, column})]
 [values (value{, value})] | [subselect]

Insert

OpenSQL Statements 8–53

Description

The insert statement inserts new rows into the specified table. Use either the
values list or specify a subselect. When using the values list, only a single row can
be inserted with each execution of the statement. If you specify a subselect, then
the statement inserts all the rows that result from the evaluation of the subselect.
The subselect must not select rows from the table into which you are inserting
rows; specifically, you cannot specify the same table in the into clause of the
insert statement and the from clause of the subselect.

The column list identifies the columns of the specified table into which the values
are placed. When the column list is included, OpenSQL places the first value in
the values list or subselect into the first column named, the second value into the
second column named, and so on. The data types of the values must be
compatible with the data types of the columns in which they are placed.

The list of column names can be omitted only if:

■ You specify a subselect that retrieves a value for each column in tablename.
The values must be of an appropriate data type for each column and must be
retrieved in an order corresponding to the order of the columns in tablename.

■ There is a one-to-one correspondence between the values in the values list
and the columns in the table. That is, the values list must have a value of the
appropriate data type for each column and the values must be listed in an
order corresponding to the order of the columns in the table.

Values in the values list must be string or numeric literals or one of the OpenSQL
constants. (For details about constants, refer to the table in the “OpenSQL Data
Types” chapter.) When the column list is included, any columns in the table that
are not specified in the column list are assigned their default value. A value must
be specified for mandatory columns. (Mandatory columns are columns defined
as not default or not null with no default specified.)

Embedded Usage

Host language variables can be used within expressions in the values clause or in
the search condition of the subselect. Variables used in search conditions must
denote constant values, and cannot represent names of database columns or
include any operators. A host string variable can also replace the complete
search condition of the subselect, as when it is used in the forms system query
mode. Host language variables that correspond to column expressions can
include null indicator variables.

The keyword, repeated, directs the EDBC product or server to encode the insert
and save its execution plan when it is first executed. This encoding can improve
the performance of subsequent executions of the same insert.

Insert

8–54 Reference Guide

Do not specify the repeated option for insert statement that is constructed using
dynamic OpenSQL. A dynamic where clause cannot be used in a repeated insert:
the query plan is saved when the query is first executed, and subsequent changes
to the where clause will be ignored.

The values clause can include structure variables that substitute for some or all of
the expressions. The structure is expanded by the preprocessor into the names of
its individual members. Therefore, placing a structure name in the values clause
is equivalent to enumerating all members of the structure in the order in which
they were declared.

The sqlerrd(3) of the SQLCA indicates the number of rows inserted by the
statement. If no rows are inserted, for example, if no rows satisfied the subselect
search condition, then the sqlcode variable of the SQLCA is set to 100.

Examples
1. Add a row to an existing table.

 insert into emp (name, sal, bdate)
 values ('Jones, Bill', 10000, 1944);

2. Insert into the jobtable all rows from the newjob table where the job title is
not Janitor.
 insert into job (jid, jtitle, lowsal, highsal)
 select job_no, title, lowsal, highsal
 from newjob
 where title <> 'Janitor';

3. Add a row to an existing table, using the default columns.
 insert into emp
 values ('Jones, Bill', 10000, 1944);

4. Use a structure to insert a row.
 /* Description of table employees from
 database deptdb */

 exec sql declare employees table
 (eno smallint not null,
 ename character(20) not null,
 age smallint,
 jobcode smallint,
 sal float not null,
 deptno smallint);

 exec sql begin declare section;

 emprec
 int eno;
 char ename[21];
 int age;
 int job;
 float sal;
 int deptno;

 exec sql end declare section;

Open

OpenSQL Statements 8–55

 /* Assign values to fields in structure */

 eno = 99;
 ename = "Arnold K. Arol”;
 age = 42;
 jobcode = 100;
 sal = 100000;
 deptno=47;

exec sql connect deptdb;

exec sql insert into employees values (:emprec);

exec sql disconnect;

Open

SQL ESQL

 *

Opens a cursor for processing.

Syntax

Non-dynamic version:

exec sql open cursor_name [for readonly]

Dynamic version:

exec sql open cursor_name [for readonly]
 [using variable {, variable} |
 using descriptor descriptor_name]

Description

The open statement executes the select statement specified when the cursor was
declared and positions the cursor immediately before the first row returned. (To
actually retrieve the rows, the fetch statement must be used.) A cursor must be
opened before it can be used in any data manipulation statements such as fetch,
update, or delete and you must declare a cursor before it can be opened.

The for readonly clause indicates that, though the cursor may have been declared
for update, the cursor is being opened for reading only. The for readonly clause
may improve the performance of data retrieval, and should be used whenever
appropriate.

Open

8–56 Reference Guide

When a cursor that was declared for a dynamically prepared select statement is
opened, the using clause must be used if the prepared select statement contains
constants specified with question marks. For information about using question
marks to specify constants in prepared statements, refer to the Prepare topic in
this chapter.

The using clause provides the values for these “unspecified” constants in the
prepared select so that the open statement can execute the select. For example,
assume that your application contains the following dynamically prepared select
statement:
statement_buffer =
‘select * from’ + tablename + ‘where low < ? and
 high > ?’;
exec sql prepare sel_stmt from :statement_buffer;

When the cursor is opened for this prepared select statement, values must be
provided for the question marks in the where clause. The using clause performs
this task.
Declare the cursor for sel_stmt;
assign values to variables named “low” and “high”;
exec sql open cursor1
using :low, :high;

The values represented by low and high replace the question marks in the where
clause and the DBMS can evaluate the select. If Descriptor Area (SQLDA) is
used, then the values that replace the question marks are taken from variables
pointed to by the sqlvar elements of the descriptor. Allocate the SQLDA and the
variables to which the sqlvar elements point and place values in the variables
before using the descriptor in an open cursor statement. For more information
about the SQLDA and its sqlvar elements, refer to the “Dynamic OpenSQL”
chapter.

The same cursor can be opened and closed (with the close statement) any number
of times in a single program. It must be closed, however, before it can be
reopened.

A string constant or a host language variable can be used to represent
cursor_name. This statement must be terminated according to the rules of your
host language.

Examples
1. Declare and open a cursor.

 Exec sql declare cursor1 cursor for
 select :one + 1, ename, age
 from employee
 where age >= :minage;

 …

 exec sql open cursor1;

Prepare

OpenSQL Statements 8–57

 When the open statement is encountered the variables, one and minage, are
evaluated. The first statement that follows the opening of a cursor should be
a fetch statement to define the cursor position and retrieve data into the
indicated variables:
 exec sql fetch cursor1
 into :two, :name, :age;

 The value of the expression, :one + 1, is assigned to the variable, two, by the
fetch.

2. The following example demonstrates the dynamic OpenSQL syntax. In a
typical application, the prepared statement and its parameters would be
constructed dynamically.
 Select_buffer = ‘select * from employee
 where eno = ?’;
 exec sql prepare select1 from :select_buffer;
 exec sql declare cursor2 cursor for select1;
 eno = 1234;
 exec sql open cursor2 using :eno;

Prepare

SQL ESQL

 *

Prepares and names a dynamically constructed OpenSQL statement for
execution.

Syntax

exec sql prepare statement_name
 [into descriptor_name [using names]]
 from string_constant | string_variable

Description

The prepare statement encodes the dynamically constructed OpenSQL statement
string in the from clause and assigns it the specified statement_name. When the
program subsequently executes the prepared statement, it uses the name to
identify the statement, rather than the full statement string. Both the name and
statement string can be represented by either a string constant or a host language
variable.

Prepare

8–58 Reference Guide

Within the statement string, replace constant expressions in where clauses, insert
values clauses, and update set clauses with question marks. When the statement
executes, these question marks are replaced with specified values. Question
marks cannot be used in place of table or column names or reserved words.

To illustrate, the following example prepares and executes a delete statement on
a dynamically defined table:
statement_buffer =
’delete from ’ + table_name + ’ where code = ?’;
exec sql prepare del_stmt from :statement_buffer;

…

exec sql execute del_stmt using :code;

The value in the variable, code, replaces the ? in the where clause of the prepared
delete statement.

Illustrating incorrect usage, the following example is wrong because it includes a
parameter specification in place of the table name:
exec sql prepare bad_stmt
from ‘delete from ? where code = ?’;

Whenever an application executes a prepared statement that contains parameters
specified with questions marks, the program must supply values for each
question mark. If the statement string is blank or empty, OpenSQL returns a
run-time syntax error.

If the statement name identifies an existing prepared statement, the existing
statement is destroyed and the new statement takes effect. This rule holds across
the dynamic scope of the application. The statement name must not identify an
existing statement name that is associated with an open cursor. The cursor must
be closed before its statement name can be destroyed. Once prepared, the
statement can be executed any number of times.

However, if a transaction is rolled back or committed, the prepared statement
becomes invalid. If the prepared statement is to be executed only once, execute
immediate should be used on the statement string. If the prepared statement is
to be executed repeatedly, the prepare and execute sequence should be used.

Prepare

OpenSQL Statements 8–59

The following statements cannot be prepared and executed dynamically:

call execute immediate

close fetch help

connect include

declare inquire_sql

describe open

direct set

disconnect set_sql

endselect whenever

execute

In addition, you cannot prepare and dynamically execute OpenSQL statements
that include the key word repeated.

If the statement string is a select statement, the select must not include an into
clause. The select statement string can include the different clauses of the cursor
select statement, such as the for update and order by clauses.

As with execute immediate, the statement string must not include exec sql, any
host language terminators, or references to variable names. If your statement
string includes embedded quotes, it is easiest to specify the string in a host
language variable. If you specify a string that includes quotes as a string
constant, remember that quoted characters within the statement string must
follow the OpenSQL string delimiting rules. Consequently, even if your host
language delimits strings with double quotes, the quoted characters within the
statement string must be delimited by single quotes. For complete information
about embedding quotes within a string literal, refer to your host language
companion guide.

The into descriptor_name clause is equivalent to issuing the describe statement
after the statement is successfully prepared. For example, the prepare statement
exec sql prepare prep_stmt
 into sqlda from :statement_buffer;

is equivalent to
exec sql prepare prep_stmt from :statement_buffer;
exec sql describe prep_stmt into sqlda;

Prepare

8–60 Reference Guide

The into clause returns the same information as does the describe statement. If
the prepared statement is a select, the descriptor will contain the data types,
lengths, and names of the result columns. If the statement was not a select, the
descriptor’s sqld field will contain a zero. For more information about the results
of describing a statement, refer to the “Dynamic OpenSQL” chapter, and to the
Describe statement description in this chapter.

This statement must be terminated according to the rules of your host language.

Example

A two-column table, whose name is defined dynamically but whose columns are
called, high and low, is manipulated within an application, and statements to
delete, update and select the values are prepared.
 get tablename from a set of names;

 statement_buffer =
 'delete from ' + tablename + '
 where high = ? and low = ?';
 exec sql prepare del_stmt from :statement_buffer;

 statement_buffer =
 ’insert into ’ + tablename + ’ values (?, ?)’;
 exec sql prepare ins_stmt from :statement_buffer;

 statement_buffer =
 ’select * from ’ + tablename + ’ where low ?’;
 exec sql prepare sel_stmt from :statement_buffer;

 ...

 exec sql execute del_stmt using :high, :low;

 ...

 exec sql execute ins_stmt using :high, :low;

 ...

 exec sql declare sel_csr for sel_stmt;
 exec sql open sel_csr using :high, :low;
 loop while more rows
 exec sql fetch sel_csr into :high1, :low1;
 ...
 end loop;

Rollback

OpenSQL Statements 8–61

Rollback

SQL ESQL

* *

Rolls back the current transaction.

Syntax

[exec sql] rollback [work]

Description

The rollback statement backs out the changes made during the current
transaction. The optional key word work has no effect. It is included for
compatibility with other versions of SQL.

Embedded Usage

In addition to aborting the current transaction, an embedded rollback:

■ Closes all open cursors

■ Discards all statements that were prepared in the current transaction

Performance

Executing a rollback undoes the work done by a transaction. The time required
to do this is generally the same amount of time as it took to perform the work
originally.

Select (interactive)

8–62 Reference Guide

Select (interactive)

SQL ESQL

*

Retrieves values from one or more tables or views.

Syntax

select [all|distinct] * | result_expression {, result_expression}
 from from_source {, from_source}
 [where search_condition]
 [group by column {, column}]
 [having search_condition]
 {union [all] (select)}
 [order by result_column [asc | desc]
 {, result_column [asc | desc]}];

where result_expression is one of the following:

■ [schema.]tablename.* (to select all columns)

■ [[schema.]tablename.]columnname [[as] result_column]
(to select one column)

■ expression [as] result_column

Description

The select statement returns values from one or more tables or views in the form
of a single result table. Using the various clauses of the select statement, you can
specify:

■ Qualifications for the values in the result table

■ Sorting and grouping of the values in the result table

This statement description presents details of the select statement in interactive
OpenSQL (ISQL). In ISQL the results of a query are displayed on your terminal.
In embedded OpenSQL (ESQL), results are returned in host language variables.
For details about using the select statement in ESQL, refer to Select (embedded)
in this chapter.

The following sections describe the clauses of the select statement, explain how to
create simple queries, and explain how the results of a query are obtained.

Select (interactive)

OpenSQL Statements 8–63

Select Statement Clauses

The select statement has the following clauses:

■ select

■ from

■ where

■ group by

■ having

■ order by

The following sections describe how the clauses are processed and explain each
clause in detail.

Query Evaluation

This section describes the logic applied to the evaluation of select statements.
This logic does not precisely reflect how OpenSQL evaluates your query to figure
out the fastest and most efficient way to return results. However, by applying
the logic presented here to your queries and data, you can anticipate the results
of your query.

1. Evaluate the from clause. Combine all the sources specified in the from
clause to create a Cartesian product (a table composed of all the rows and
columns of the sources). If joins are specified, evaluate each join to obtain its
results table, then combine it with the other sources in the from clause. If
select distinct is specified, discard duplicate rows.

2. Apply the where clause. Discard rows in the result table that do not fulfill
the restrictions specified in the where clause.

3. Apply the group by clause. Group results according to the columns
specified in the group by clause.

4. Apply the having clause. Discard rows in the result table that do not fulfill
the restrictions specified in the having clause.

5. Evaluate the select clause. Discard columns that are not specified in the
select clause.

6. Perform any unions. Combine result tables as specified in the union clause.

7. Apply the order by clause. Sort the result rows as specified.

Select (interactive)

8–64 Reference Guide

The Select Clause

The select clause specifies which values are to be returned. To display all the
columns of a table, use the asterisk wildcard character (*). For example, the
following query displays all rows and columns from the employees table:
select * from employees;

To select specific columns, specify the column names. For example, the following
query displays all rows, but only two columns from the employees table:
select ename, enumber from employees;

To specify the table from which the column is to be selected, use the
[schema.]table.columnname syntax. For example:
select personnel.managers.name,
 personnel.employees.name

In the preceding example, both source tables contain a column called, name. The
column names are preceded by the name of the source table. The first column of
the result table contains the values from the name column of the managers table,
and the second column contains the values from the name column of the
employees table. If a column name is used in more than one of the source tables,
you must qualify the column name with the table to which it belongs, or with a
correlation name. For details, refer to the From Clause in this chapter.

To eliminate duplicate rows from the result table, specify the key word distinct.
To preserve duplicate rows, specify the key word all. By default, duplicate rows
are preserved.

For example, the following table contains order information. The partno column
contains duplicate values, because different customers have placed orders for the
same part.

partno customerno qty unit_price

123-45 101 10 10.00

123-45 202 100 10.00

543-21 987 2 99.99

543-21 654 33 99.99

987-65 321 20 29.99

The following query displays the part numbers for which there are orders on file:
select distinct partno from orders

Select (interactive)

OpenSQL Statements 8–65

The result table looks like this:

partno

123-45

543-21

987-65

A constant value can be included in the result table. For example:
select 'Name:', ename, date('today'),
 edept from employees;

The preceding query selects all rows from the employees table. The result table is
composed of the string constant 'Name:', the employee’s name, today’s date
(specified using the constant today), and the employee’s department, or if there is
no department assigned, the string constant 'Unassigned'.

The result table looks like this (depending, of course, on the data in the
employees table):

COL1 ename COL3 COL4

Name: Mike Sannicandro Aug 8, 1993 Micrography

Name: Dave Murtagh Aug 8, 1993 Percussive arts

Name: Benny Barth Aug 8, 1993 Unassigned

Name: Dean Reilly Aug 8, 1993 Lumber

Name: Al Obidinski Aug 8, 1993 Unassigned

The select clause can be used to obtain values calculated from the contents of a
table. For example:
select ename, annual_salary/52 from employees;

The preceding query calculates each employee’s weekly salary based on their
annual salary. Aggregate functions can be used to calculate values based on the
contents of column. For example:
select max(salary), min(salary), avg(salary)
 from employees;

The preceding query returns the highest, lowest, and average salary from the
employees table. These values are based on the amounts stored in the salary
column. For details about aggregate functions, refer to the “Elements of
OpenSQL Statements” chapter.

Select (interactive)

8–66 Reference Guide

To specify a name for a column in the result table, use the
as result_column clause. For example:
select ename, annual_salary/52 as weekly_salary
from employees;

In the preceding example, the name, weekly_salary, is assigned to the second
result column. If you omit a result column name for columns that are not drawn
directly from a table (for example, calculated values or constants), the result
columns are assigned the default name COLn, where n is the column number.
Result columns are numbered from left to right. Column names cannot be
assigned in select clauses that use the asterisk wildcard (*) to select all the
columns in a table.

The From Clause

The from clause specifies the source tables and views from which data is to be
read. The specified tables and views must exist at the time the query is issued.
The tables or views must be specified using the following syntax:

[schema.]table [corr_name]

where table is the name of a table or view. To ensure program portability, specify
no more than 15 tables in a query, including the tables in the from list and tables
in subqueries. (Individual host database management systems may allow more
than 15 tables.)

The following sections explain these sources in detail.

Specifying Tables and Views

This section describes how to specify table names in queries. The same rules
apply to views.

To select data from a table you own, specify the name of the table. To select data
from a table you do not own, specify schema.table, where schema is the name of the
user that owns the table. However, if the table is owned by the database DBA,
the schema qualifier is not required. You must have the appropriate permissions
to access the table (or view) granted by the owner.

A correlation name can be specified for any table in the from clause. A correlation
name is an alias (or alternate name) for the table. For example:
select... from employees e, managers m...

The preceding example assigns the correlation name “e” to the employees table
and “m” to the managers table. Correlation names are useful for abbreviating
long table names and for joining a table to itself.

Select (interactive)

OpenSQL Statements 8–67

If you assign a correlation name to a table, you must refer to the table using the
correlation name. For example:

Correct:
select e.name, m.name
from employees e, managers m...

Incorrect:
select employees.name, managers.name
from employees e, managers m...

The Where Clause

The where clause specifies criteria that restrict the contents of the results table.
You can test for simple relationships or, using subqueries, relationships between
a column and a set of columns.

Simple Where Clauses

Using a simple where clause, you can restrict the contents of the results table as
follows:

■ Comparisons
 select ename from employees
 where manager = 'Jones';

 select ename from employees
 where salary > 50000;

■ Ranges
 select ordnum from orders
 where odate between date('jan-01-1993') and
 date('today');

■ Set membership
 select * from orders
 where partno in ('123-45', '678-90');

■ Pattern matching
 select * from employees
 where ename like 'A%';

■ Nulls
 select ename from employees
 where edept is null;

■ Combined restrictions using logical operators
 select ename from employees
 where edept is null and
 hiredate = date('today');

Select (interactive)

8–68 Reference Guide

For details about query restriction operators, refer to Predicates in the “Elements
of OpenSQL Statements” chapter.

Joins

Joins combine information from multiple tables and views into a single result
table, according to column relationships specified in the where clause.

For example, given the following two tables:

Employee Table

ename edeptno

Benny Barth 10

Dean Reilly 11

Rudy Salvini 99

Tom Hart 123

Departments Table

ddeptno dname

10 Lumber

11 Sales

99 Accounting

123 Finance

The following query joins the two tables on the relationship of equality between
values in the edeptno and ddeptno columns. The result is a list of employees and
the names of the departments in which they work:
select ename, dname from employees, departments
where edeptno = ddeptno;

A table can be joined to itself using correlation names—this is useful when listing
hierarchical information. For example, the following query displays each
employee’s name and the name of the employee’s manager.
select e.ename, m.ename
 from employees e, employees m
 where e.eno = m.eno

Tables can be joined on any number of related columns. The data types of the
join columns must be comparable.

Select (interactive)

OpenSQL Statements 8–69

Join Relationships

The simple joins illustrated in the two preceding examples depend on equal
values in the join columns. This type of join is called an equijoin. Other types of
relationships can be specified in a join. For example, the following query lists
salespersons that have met or exceeded their sales quota:
select s.name, s.sales_ytd
 from sales s, quotas q
 where s.empnum = d.empnum and
 s.sales_ytd >= d.quota;

Subqueries

Subqueries are select statements placed in a where or having clause. The results
returned by the subquery are used to evaluate the conditions specified in the
where or having clause. Subqueries are also referred to as subselects.

Subqueries must return a single column, and cannot include an order by or union
clause.

The following example uses a subquery to display all employees whose salary is
above the average salary:
select * from employees where salary >
 (select avg(salary) from employees);

In the preceding example, the subquery returns a single value: the average
salary. Subqueries can also return sets of values. For example, the following
query returns all employees in all departments managed by Barth.
select ename from employees where edept in
 (select ddept from departments
 where dmgr = 'Barth');

For details about the operators used in conjunction with subqueries, refer to
Predicates in the “Elements of OpenSQL Statements” chapter.

The Order by Clause

The order by clause specifies the columns on which the results table is to be
sorted. Columns in the order by clause can be specified using either the column
name or a number corresponding to the position of the column in the from
clause. (You must specify unnamed result columns using a number.) In a union
select, use numbers to specify the columns in the order by clause; column names
cannot be used.

Select (interactive)

8–70 Reference Guide

For example, if the employees table contains the following data:

ename edept emanager

Murtagh shipping Myron

Obidinski lumber Myron

Reilly finance Costello

Barth lumber Myron

Karol editorial Costello

Smith shipping Myron

Loram editorial Costello

Delore finance Costello

Kugel food prep Snowden

then this query:
select emanager, ename, edept from employees
order by emanager, edept, ename

produces this list of managers, the departments they manage, and the employees
in each department:

 Costello editorial Karol

 Costello editorial Loram

 Costello finance Delore

 Costello finance Reilly

 Myron lumber Barth

 Myron lumber Obidinski

 Myron shipping Murtagh

 Myron shipping Smith

 Snowden food prep Kugel

Select (interactive)

OpenSQL Statements 8–71

and this query:
select ename, edept, emanager from employees
order by ename

produces this alphabetized employee list:

Barth lumber Myron

Delore finance Costello

Karol editorial Costello

Kugel food prep Snowden

Loram editorial Costello

Murtagh shipping Myron

Obidinski lumber Myron

Reilly finance Costello

Smith shipping Myron

To display result columns sorted in descending order (numeric or alphabetic),
specify order by columnname desc. For example, to display the employees in each
department from oldest to youngest:
select edept, ename, eage from employees
order by edept, eage desc;

If a nullable column is specified in the order by clause, nulls are sorted to the
beginning or end of the results table, depending on the host DBMS.

Note: If the order by clause is omitted, the order of the rows in the results table
is not guaranteed by the DBMS. In particular, the order of the rows in the results
table is not guaranteed to have any relationship to the source tables’ storage
structure or key structure.

The Group by Clause

The group by clause combines results for identical values in a column. This
clause is typically used in conjunction with aggregate functions to generate a
single figure for each unique value in a column. For example, to obtain the
number of orders for each part number in the orders table:
select partno, count(*) from orders
group by partno;

Select (interactive)

8–72 Reference Guide

The preceding query returns one row for each part number in the orders table,
even though there may be many orders for the same part number.

Nulls are used to represent unknown data, and two nulls are typically not
considered equal in OpenSQL comparisons. However, the group by clause treats
nulls as equal and returns a single row for nulls in a grouped column.

Grouping can be performed on multiple columns. For example, to display the
number of orders for each part placed each day:
select odate, partno, count(*) from orders
group by odate, partno;

If the group by clause is specified, all columns in the select clause must be
specified in the group by clause or be aggregate functions.

The Having Clause

The having clause filters the results of the group by clause, in the same way the
where clause filters the results of the select...from clauses. The having clause uses
the same restriction operators as the where clause.

For example, to return the number of orders placed today for each part:
select odate, partno, count(*) from orders
group by odate, partno
having odate = date('today');

The Union Clause

The union clause enables the results of select statements to be combined into a
single result table. For example, to list all employees in the table of active
employees plus those in the table of retired employees:
select ename from active_emps
union
select ename from retired_emps;

By default, the union clause eliminates any duplicate rows in the result table. To
retain duplicates, specify union all. You can combine any number of select
statements using the union clause, and you can use both union and union all
when combining multiple tables.

Unions are subject to the following restrictions:

■ The select statements must return the same number of columns.

■ The columns returned by the select statements must correspond in order and
data type. The column names do not have to be identical.

■ The select statements cannot include individual order by clauses.

Select (interactive)

OpenSQL Statements 8–73

To sort the result table, specify the order by clause following the last select
statement. The result columns returned by a union are named according to the
first select statement.

By default, unions are evaluated from left to right. To specify a different order of
evaluation, use parentheses.

Any number of select statements can be combined using the union clause. There
is a maximum of 30 tables allowed in any query.

Examples
1. Find all employees who make more than their managers. This example

illustrates the use of correlation names.
 select e.ename
 from employee e, dept, employee m
 where e.dept = dept.dno and dept.mgr = m.eno
 and e.salary > m.salary;

2. Select all information for employees that have salaries above the average
salary.
 select * from employee
 where salary > (select avg(salary) from employee);

3. Select employee information sorted by department and, within department,
by name.
 select e.ename, d.dname from employee e, dept d
 where e.dept = d.dno
 order by dname, ename;

4. Select lab samples analyzed by lab #12 from both production and archive
tables.
 select * from samples s
 where s.lab = 12
 union
 select * from archived_samples s
 where s.lab = 12

Select (embedded)

8–74 Reference Guide

Select (embedded)

SQL ESQL

 *

Retrieves values from the database.

Syntax

Non-cursor version:

exec sql [repeated] select [all|distinct]
 * | result_expression {, result_expression}
 into variable[:indicator_var] {, variable[:indicator_var]}
 from from_source {, from_source}
 [where search_condition]
 [group by column {, column}]
 [having search_condition]
 [union [all] full_select]
 [order by result_column [asc | desc]
 {, result_column [asc | desc]}]
[exec sql begin;
 program code;
exec sql end;]

where result_expression is one of the following:

■ [schema.]tablename.* (to select all columns)

■ [[schema.]tablename.]columnname as result_column
(to select one column)

■ expression as result_column

Cursor version (embedded within a declare cursor statement):

select [all|distinct]
 * | result_expression {, result_expression}
 from from_source {, from_source}
 [where search_condition]
 [group by column {, column}]
 [having search_condition]
 [union [all] full_select]
 [order by result_column [asc|desc]
 {, result_column [asc|desc]}];

Select (embedded)

OpenSQL Statements 8–75

Description

The embedded select statement returns values from tables to host language
variables in an embedded OpenSQL program. For details about the various
clauses of the select statement, refer to the statement description of the
Interactive Select statement. The following sections discuss details of interest to
the embedded OpenSQL programmer.

Non-Cursor Select

The non-cursor version of the embedded OpenSQL select statement can be used
to retrieve a single row or a set of rows from the database.

If the optional begin-end block syntax is not used, then the embedded select
statement can retrieve only one row from the database. This kind of select
statement is called the singleton select and is compatible with the ISO standard. If
the singleton select does try to retrieve more than one row, an error occurs and
the result variables hold information from the first row. For example, the
following example retrieves a single row from the database:
exec sql select ename, sal
into :ename, :sal
from employee
where eno = :eno;

Select Loops

A select loop can be used to read a table and process its rows individually. When
a program needs to read a table without issuing any other database statements
during the retrieval (such as for report generation), use a select loop. In other
cases, such as when database updates are required, or when other tables need to
be browsed while the current retrieval is in progress, use a cursor.

The begin-end statements delimit the statements in the select loop. The code is
executed once for each row as it is returned from the database. Statements
cannot be placed between the select statement and the begin statement.

Within the select loop, no other statements that access the database can be issued.
This will cause a run-time error. To see how to manipulate and update rows and
tables within the database while data is being retrieved, refer to Data
Manipulation with Cursors in the “Embedded OpenSQL” chapter.

Select (embedded)

8–76 Reference Guide

However, if your program is connected to multiple database sessions, queries can
be issued from within the select loop by switching to another session. To return
to the outer select loop, switch back to the session in which the select statement
was issued. To avoid preprocessor errors, the nested queries cannot be within
the syntactic scope of the loop but must be referenced by a subroutine call or
some form of a goto statement. For more information about multiple sessions,
refer to the “OpenSQL Features” chapter.

There are two ways to terminate the select loop: run it to completion or issue the
endselect statement. A host language goto statement cannot be used to exit or
return to the select loop.

To terminate a select loop before all rows are retrieved the application must issue
the endselect statement. The endselect statement must be syntactically within the
begin-end block that delimits the select loop. For more information, refer to the
Endselect statement description in this chapter.

The following example retrieves a set of rows from the database:
exec sql select ename, sal, eno
into :ename, :sal, :eno
from employee
order by eno;
exec sql begin;
browse data;
if error condition then
 exec sql endselect;
end if;
exec sql end;

Retrieving Values into Host Language Variables

The into clause specifies the host program variables into which the values
retrieved by the select are loaded. There must be a one-to-one correspondence
between expressions in the select clause and the variables in the into clause. If
the statement does not retrieve any rows, the variables are not modified. If the
number of values retrieved from the database is different from the number of
columns, an error is issued and the sqlwarn3 variable of the SQLCA is assigned
the value 'W'. Each result variable may have an indicator variable for null data.

Host language variables can be used as expressions in the select clause and the
search_condition, in addition to their use in the into clause. Variables used in
search_conditions must denote constant values and cannot represent names of
database columns or include any operators. Host string variables can also
substitute for the complete search condition.

Select (embedded)

OpenSQL Statements 8–77

Host Language Variables in the Union Clause

When select statements are combined using the union clause, the into clause
must appear only after the first list of select result expressions, because all result
rows of the select statements that are combined by the union clause must be
identical. The following example shows the correct use of host language
variables in a union. Result variables are specified only for the first select
statement.
exec sql select ename, enumber
 into :name, :number
 from employee
union
select dname, dnumber
 from directors
 where dnumber < 100;

Repeated Queries

To reduce the overhead required to repeatedly execute a select query statement,
specify the query as a repeated query. For repeated queries, OpenSQL saves the
query execution plan after the first time the query is executed. This can account
for significant performance improvements on subsequent executions of the same
select.

If your application needs to be able to change the search conditions, dynamically
constructed search conditions cannot be used with repeated queries. The saved
execution plan is based on the initial value of the search condition and
subsequent changes are ignored.

Cursor Select

The cursor select statement is specified as part of a declare cursor statement.
Within the declare cursor statement, the select statement is not preceded by exec
sql. The cursor select statement specifies the data to be retrieved by the cursor.
When executed, the declare cursor statement does not perform the retrieval–the
retrieval occurs when the cursor is opened. If the cursor is declared for update,
the select cannot refer to more than one table, cannot refer to a view and cannot
include a group by, having, order by, or union clause.

The cursor select can return multiple rows, because the cursor provides the
means to process and update retrieved rows one at a time. The correlation of
expressions to host language variables takes place with the fetch statement, so the
cursor select does not include an into clause. The rules for the remaining clauses
are the same as in the non-cursor select.

Select (embedded)

8–78 Reference Guide

Error Handling

If the select statement retrieves no rows, the SQLCA variable sqlcode is set to 100.
The number of rows returned from the database is in the SQLCA variable
sqlerrd(3). In a select loop, if the endselect statement was issued, sqlerrd(3)
contains the number of rows retrieved before endselect was issued.

Embedded Usage

Host language variables can be used as expressions in the select clause and the
search_conditions. Variables used in search_conditions must specify constant values
and cannot represent names of database columns or include any operators. Host
string variables can also substitute for the complete search condition.

Examples
1. The following examples illustrate the non-cursor select. For examples of the

cursor select statement, refer to the Declare Cursor statement description in
this chapter.

 Retrieve the name and salary of an employee. Drop locks by committing the
transaction.
 exec sql select ename, sal
 into :namevar, :salvar
 from employee
 where eno = :numvar;
 exec sql commit;

2. Select all columns in a row into a host language variable structure. (The
emprec structure has members that correspond in name and type to columns
of the employee table.)
 exec sql select *
 into :emprec
 from employee
 where eno = 23;

3. Select a constant into a variable.
 exec sql select 'Name: ', ename
 into :title, :ename
 from employee
 where eno >= 148 and age = :age;

Select (embedded)

OpenSQL Statements 8–79

4. Select the row in the employee table whose number and name correspond to
the variables, numvar and namevar. The columns are selected into a host
structure called, emprec. Because this statement is issued many times (in a
subprogram, perhaps), it is formulated as a repeat query.
 exec sql repeated select *
 into :emprec
 from employee
 where eno = :numvar and ename = :namevar;

5. Example of a select loop: insert new employees, and then select all employees
and generate a report. If an error occurs during the process, end the retrieval
and back out the changes. No database statements are allowed inside the
select loop (begin-end block).
 error = 0;
 exec sql insert into employee
 select * from newhires; exec sql select eno, ename, eage, esal, dname
 into :eno, :ename, :eage, :esal, :dname
 from employee e, dept d
 where e.edept = d.deptno
 group by ename, dname
 exec sql begin;
 generate report of information;
 if error condition then
 error = 1;
 exec sql endselect;
 end if;
 exec sql end;
 /*
 ** Control transferred here by completing the
 ** retrieval or because the endselect statement
 ** was issued.
 */
 if error = 1
 print 'Error encountered after row',
 sqlca.sqlerrd(3);
 exec sql rollback;
 else
 print 'Successful addition and reporting';
 exec sql commit;
 end if;

6. The following select statement uses a string variable to substitute for the
complete search condition. The variable search_condition is constructed from
an interactive forms application in query mode, and during the select loop
the employees who satisfy the qualification are displayed.
 run forms in query mode;
 construct search_condition of employees;

 exec sql select *
 into :emprec
 from employee
 where :search_condition;
 exec sql begin;
 load emprec into a table field;
 exec sql end;
 display table field for browsing;

Select (embedded)

8–80 Reference Guide

7. This example illustrates session switching inside a select loop. The main
program processes sales orders and calls the subroutine, new_customer, for
every new customer. For a full discussion of multiple sessions, refer to the
“OpenSQL Features” chapter.

 The main program:
 ...
 exec sql include sqlca;
 exec sql begin declare section;

 /* Include output of dclgen for declaration of
 ** record order_rec */
 exec sql include 'decls';
 exec sql end declare section;

 exec sql connect customers session 1;
 exec sql connect sales session 2;
 ...

 exec sql select * into :order_rec from orders;
 exec sql begin;
 if (order_rec.new_customer = 1) then
 call new_customer(order_rec);
 endif
 process order;
 exec sql end;
 ...

 exec sql disconnect;

The subroutine, new_customer, which is called from the select loop, contains
the session switch:
 subroutine new_customer(record order_rec)

 begin;

 exec sql set_sql(session = 1);
 exec sql insert into accounts
 values (:order_rec);

 process any errors;

 exec sql set_sql(session = 2);

 /* Reset status information before resuming
 ** select loop */

 sqlca.sqlcode = 0;
 sqlca.sqlwarn.sqlwarn0 = ' ';

 end subroutine;

Set

OpenSQL Statements 8–81

Set

SQL ESQL

* *

Sets a session option.

Syntax

[exec sql] set autocommit on |off

Description

The set statement specifies a run-time option for the current session. The selected
run-time option remains in effect until the end of the session or another set
statement changes its value within the session.

The Set Autocommit Option

The set autocommit on statement causes an implicit commit to occur after every
successfully executed query. Set autocommit off means an explicit commit
statement is required to commit a transaction. By default, autocommit is off.

This statement cannot be issued within a transaction. For a description of
OpenSQL transaction behavior, refer to the “OpenSQL Features” chapter.

Set_sql

8–82 Reference Guide

Set_sql

SQL ESQL

 *

Sets a variety of session options.

Syntax

exec sql set_sql (object = value {, object = value})

Description

The set_sql statement can switch sessions in a multiple session application,
specify the type of DBMS error to be returned to an application, change the
default behavior when a connection error is experienced, set trace functions, and
set other session characteristics.

Set_sql can be used to override II_EMBED_SET. Refer to your installation guide
for more information about II_EMBED_SET.

The following table provides a summary of the valid objects and values for the
set_sql statement.

Object Data Type Description

dbmserror integer Sets the value returned by the
inquire_sql(dbmserror) statement. For details
about the values returned by the
inquire_sql(dbmserror) statement, refer to
Local and Generic Errors in the “OpenSQL
Features” chapter.

errorhandler function
pointer

Specifies a user-defined routine to be called
when an OpenSQL error occurs in an
embedded application. The error handler
must be specified as a function pointer.

errorno integer Sets the value returned by the
inquire_sql(errorno) statement. For details
about the values returned by the
inquire_sql(errorno) statement, refer to Local
and Generic Errors in the “OpenSQL
Features” chapter.

Set_sql

OpenSQL Statements 8–83

Object Data Type Description

errortype character
string

Specifies the type of error number returned to
errorno and sqlcode. Value can be either
genericerror, specifying generic error
numbers or dbmserror, specifying local
DBMS error numbers. Generic error numbers
are returned by default. For information
about local and generic errors, refer to Local
and Generic Errors in the “OpenSQL
Features” chapter.

gcafile character
string

Specifies an alternate text file to which
OpenSQL writes GCA information. The
default file name is “iiprtgca.log”. To enable
this feature, use the set_sql printgca option.

If a directory or path specification is omitted,
the file is created in the current default
directory.

printgca integer Turns the printgca debugging feature on or
off. Printgca prints all communications
(GCA) messages from the application as it
executes (by default, to the file “iiprtgca.log”
in the current directory). Value can be either
1, to turn the feature on, or 0, to turn the
feature off.

printqry integer Turns the printqry debugging feature on or
off. Printqry prints all query text and timing
information from the application as it
executes (by default to the file “iiprtqry.log”
in the current directory). Value can be either
1, to turn the feature on, or 0, to turn the
feature off.

printtrace integer Enable/disable trapping of DBMS trace
messages to a text file (by default,
“iiprttrc.log”). Specify 1 to enable trapping of
trace output, 0 to disable trapping.

Set_sql

8–84 Reference Guide

Object Data Type Description

programquit integer Specifies whether OpenSQL aborts on one of
the following errors:

■ An application issues a query, but is not
connected to a database.

■ The EDBC product or DBMS fails.

■ Communications services fail.

Specify 1 to abort on these conditions, 0 to
continue.

qryfile character
string

Specifies an alternate text file to which
OpenSQL writes query information. The
default file name is “iiprtqry.log”. To enable
this feature, use the set_sql printqry option.

If a directory or path specification is omitted,
the file is created in the current default
directory.

savequery integer Enables/disables saving of the text of the last
query issued. Specify 1 to enable, 0 to
disable. To obtain the text of the last query,
issue the inquire_sql(querytext) statement.
To determine whether saving is enabled, use
the inquire_sql(savequery) statement.

session integer Sets the current session. Value can be any
session identifier associated with an open session
in the application.

tracefile character
string

Specifies an alternate text file to which
OpenSQL writes tracepoint information. The
default file name is “iiprttrc.log”. To enable
this feature, use the set_sql printtrace option.

If a directory or path specification is omitted,
the file is created in the current default
directory.

Update

OpenSQL Statements 8–85

Update

SQL ESQL

* *

Updates column values in a table.

Syntax

Interactive version:

update tablename
 set columnname = expression {, columnname = expression}
 [where search_condition]

Embedded versions:

 Non-cursor version:

 exec sql [repeated] update tablename
 set column = expression {, column = expression}
 [where search_condition]

 Cursor version:

 exec sql update tablename
 set column = expression {, column = expression}
 where current of cursor_name

Description

The update statement replaces the values of the specified columns by the values
of the specified expressions for all rows of the table that satisfy the
search_condition. For a discussion of search conditions, refer to the “Elements of
OpenSQL Statements” chapter.

The expressions in the set clause can use constants or expressions involving
column values from the table being updated. The data type of the column must
agree with the data type of the value being assigned to it. To place a null in a
nullable column, use the null constant.

If an update to a row would violate an integrity constraint defined on the table,
that row remains unchanged.

If a subselect is specified, the subselect must not select rows from the table in
which you are updating rows.

Update

8–86 Reference Guide

Embedded Usage

Host language variables can only be used within expressions in the set clause and
the search_condition. (Variables used in search_conditions must denote constant
values and cannot represent names of database columns or include any
operators.) A host string variable can be used to specify the complete search
condition.

If the update did not update any rows, the sqlcode of the SQLCA is set to 100. If
the update succeeded, the sqlerrd(3) of the SQLCA contains the number of rows
updated by the statement.

To formulate the non-cursor update as a repeated query, specify the key word
repeated. The repeated key word directs OpenSQL to encode the update and
save its execution plan when the update is first executed. This encoding can
improve the performance of subsequent executions of the same update. The
repeated key word is available only for non-cursor updates, and is ignored if
used with the cursor or dynamic versions.

If your statement includes a dynamically constructed search_condition, that is, if
the complete search_condition is specified by a host string variable, do not use the
repeated option if you intend to change the search_condition after the statement’s
initial execution. The saved execution plan is based on the initial value of the
search_condition and any changes to search_condition would be ignored. This rule
does not apply to simple variables used in search_conditions.

Cursor Updates

The cursor version of update is similar to the interactive update, except for the
where clause. The where clause, required in the cursor update, specifies that the
update occur to the row the cursor currently points to. If the cursor is not
pointing to a row, as would be the case immediately after an open or delete
statement, a run-time error message is generated indicating that a fetch must first
be performed. If the row the cursor is pointing to has been deleted from the
underlying database table (as the result, for example, of a non-cursor delete), no
row is updated and the sqlcode is set to 100. Following a cursor update, the
cursor continues to point to the same row.

Two cursor updates not separated by a fetch may cause the same row to be
updated twice, or may cause an error, depending on the host DBMS.

In performing a cursor update, make sure that certain conditions are met:

■ A cursor must be declared in the same file in which any update statement
referencing that cursor appears. This applies also to any cursor referenced in
a dynamic update statement string.

Update

OpenSQL Statements 8–87

■ A cursor name in a dynamic update statement must be unique among all
open cursors in the current transaction.

■ The cursor stipulated in the update must be open before the statement is
executed.

■ The update statement and the from clause in the cursor’s declaration must
refer to the same database table.

■ The columns in the set clause must have been declared for update at the time
the cursor was declared (refer to the declare cursor statement).

■ Host language variables can be used only for the cursor names or for
expressions in the set clause.

The commit and rollback statements close all open cursors. A common
programming error is to update the current row of a cursor, commit the change,
and then attempt to loop and repeat the process—the commit closes the cursor,
and subsequent fetches will fail.

Examples
1. Give all employees who work for Smith a 10% raise.

 update emp
 set salary = 1.1 * salary
 where dept in
 (select dno
 from dept
 where mgr in
 (select eno
 from emp
 where ename like '%Smith'));

2. Set all salaried people who work for Smith to null.
 update emp
 set salary = null
 where dept in
 (select dno
 from dept
 where mgr in
 (select eno
 from emp
 where ename like '%Smith'));

Whenever

8–88 Reference Guide

Whenever

SQL ESQL

 *

Performs an action when a specified condition becomes true.

Syntax
exec sql whenever condition action

Description
The whenever statement provides a convenient method for handling error and
exception conditions arising from embedded OpenSQL database statements. It
stipulates that some action occur when the program attains a specified condition.
Variables in the SQLCA determine whether a condition is true. For this reason,
an SQLCA must be included in your program before you issue the whenever
statement.

Once a whenever has been declared, it remains in effect until another whenever
is specified for the same condition. Since whenever is a declarative and not an
executable statement, its physical location in the program’s source code, rather
than its sequence in the program’s execution, determines its scope.

Whenever statements can be repeated for the same condition and can appear
anywhere after the include sqlca statement.

The condition can be any of the following:

■ sqlwarning - True when the sqlwarn0 variable of the SQLCA is set to “W,”
indicating that the last embedded OpenSQL database statement produced a
warning condition.

■ sqlerror - True when the sqlcode of the SQLCA is set to a negative value,
indicating that an error occurred in the last embedded OpenSQL database
statement.

■ not found - True when the sqlcode is set to a value of 100, indicating that a
select, fetch, update, delete, insert, copy, create index, or create as subselect
statement affected no rows.

Action may be any of the following:

■ Continue - No action will be taken when the condition occurs. The program
proceeds with the next executable statement. If a fatal error occurs, an error
message is printed and the program aborts.

Whenever

OpenSQL Statements 8–89

■ Stop - The program will display an error message and terminate when the
condition occurs. If the program is connected to a database when the
condition occurs, the program disconnects from the database without
committing pending updates. The stop action cannot be specified for the not
found condition.

■ Goto label - Specifies a label in the program to which control is transferred
when the condition occurs (same as a host language “go to” statement). The
label (or paragraph name, in COBOL) must be specified using the rules of
your host language. The key word goto can also be specified as go to.

■ Call procedure - Specifies a host language procedure to be called (in COBOL,
a paragraph to be performed) when the condition occurs. The procedure must
be specified according to the conventions of the host language. No
arguments can be passed to the procedure. To direct the program to print
any error or warning message and continues with the next statement, specify
call sqlprint. (The sqlprint routine is a procedure provided by OpenSQL, not
a user-written procedure.)

If your program does not include an SQLCA (and therefore no whenever
statements), OpenSQL displays all errors. If your program includes an SQLCA,
OpenSQL continues execution (and does not display errors) for all conditions for
which you do not issue a whenever statement. To override the continue default
and direct OpenSQL to display errors and messages, set II_EMBED_SET to
sqlprint.

The program’s condition is automatically checked after each embedded
OpenSQL database statement. If one of the conditions has become true, the action
specified for that condition is taken. If the action is goto, then the label must be
within the scope of the statements affected by the whenever statement at compile
time.

An action specified for a condition affects all subsequent embedded OpenSQL
source statements until another whenever is encountered for that condition.

The embedded SQL preprocessor does not generate any code for the whenever
statement. Therefore, in a language that does not allow empty control blocks,
(for example, COBOL, which does not allow empty IF blocks), the whenever
statement should not be the only statement in the block.

Be careful to avoid coding potentially infinite loops with whenever statements.
Within a sequence of statements functioning as an error handling block for a
particular condition, the first statement should be a whenever continue that turns
off the action.

For example, consider the following program fragment:
exec sql whenever sqlerror goto error_label;
exec sql create table worktable
(workid integer2, workstats varchar(15));
 ...

Whenever

8–90 Reference Guide

process data;
 ...
error_label:
exec sql whenever sqlerror continue;
exec sql drop worktable;
exec sql disconnect;
 ...

If the error handling block did not specify continue for condition sqlerror and the
drop statement caused an error, at run time the program would infinitely loop
between the drop statement and the label, error_label.

Host language variables cannot be used in a whenever statement. This statement
must be terminated according to the rules of your host language.

Examples
1. During program development, print all errors and continue with next

statement.
 exec sql whenever sqlerror call sqlprint;

2. During database cursor manipulation, close the cursor when
no more rows are retrieved.
 exec sql open cursor1;
 exec sql whenever not found goto close_cursor;

 loop until whenever not found is true
 exec sql fetch cursor1
 into :var1, :var2;
 print and process the results;
 end loop;

 close_cursor:
 exec sql whenever not found continue;
 exec sql close cursor1;

3. Stop program upon detecting an error or warning condition.
 exec sql whenever sqlerror stop;
 exec sql whenever sqlwarning stop;

4. Reset whenever actions to default within an error handling block.
 error_handle:
 exec sql whenever sqlerror continue;
 exec sql whenever sqlwarning continue;
 exec sql whenever not found continue;
 ...
 handle cleanup
 ...

5. Always confirm that the connect statement succeeded before continuing.
 exec sql whenever sqlerror stop;
 exec sql connect :dbname;
 exec sql whenever sqlerror continue;

Extended Statements 9–1

Chapter

9 Extended Statements

This chapter lists statements and extensions that may be available in OpenSQL.
To determine whether these statements and extensions are supported, check for
the following row in the iidbcapabilities catalog:

CAP_CAPABILITIES CAP_VALUE

SQL92_COMPLIANCE ENTRY

If the statements and extensions are not supported, the cap_value column
contains NONE. For more information about the iidbcapabilities catalog, refer to
the “OpenSQL Standard Catalogs” chapter.

Create Schema

SQL ESQL

* *

Creates a named collection of database objects.

Syntax
[exec sql] create schema authorization schema_name
 [object_definition {object_definition}];

where object_definition is a create table, create view, or grant statement.

Create Schema

9–2 Reference Guide

Description

The create schema statement creates a named collection of database objects
(tables, views and privileges). The schema_name parameter must be the same as
the effective user for the session issuing the create schema statement. All objects
specified in the create schema statement are owned by that user. You cannot
create a schema for another user. Each user has one schema per database.

The statements within the create schema statement must not be separated by
semicolon delimiters. However, the create schema statement must be terminated
with a semicolon following the last object definition statement (create table,
create view, or grant).

If object definitions are omitted, an empty schema is created. For details about
the statements used to create tables, views, and privileges, refer to the Create
Table, Create View, and Grant statement descriptions in this chapter. If an error
occurs within the create schema statement, the entire statement is rolled back. If
you issue a create schema specifying an existing schema (schema_name),
OpenSQL issues an error.

To add objects to your schema, issue the required create statements outside of a
create schema statement. If no schema exists for your user identifier, one is
implicitly created when you create any database object. Thereafter, if you issue a
create schema statement, OpenSQL issues an error.

If, within a create schema statement, you create tables that have referential
constraints, the order of create table statements is not significant. This is unlike
the requirements for creating tables with referential constraints outside of a
Create Schema statement, where the referenced table must exist before a
constraint that references it can be created. For details about referential
constraints, refer to the Create Table statement description.

Other users can reference objects in your schema if you have granted them the
required permissions. To reference an object in a schema other than your own,
specify the object name as follows:

schema.object

For example, user harry can select data from user joe’s employees table (if joe has
granted harry select permission). Harry can issue the following select statement:
select lname, fname from joe.employees
 where dname = 'accounting';

Create Schema

Extended Statements 9–3

Restrictions

The following restrictions apply to create table statements within a create schema
statement:

■ Create table...as select cannot be used.

■ A with clause cannot be specified.

■ The following data types cannot be used:

integer2 float8

integer4 date

float4

The only valid with clause option for create view statements within a create
schema statement is with check option.

Embedded Usage

Syntax elements cannot be replaced with host language variables.

Permissions

Any user can issue the create schema statement.

Example

Create a schema authorization containing tables, views, and privileges.
create schema authorization joe
create table employees(lname character(30) not null,
 fname character(30) not null,
 salary decimal,
 dname character(10)
 references dept(deptname),
 primary key (lname, fname)

create table dept(deptname character(10)
 not null unique,
 budget decimal,
 expenses decimal default 0)

create view mgr (mlname, mfname, mdname) as
 select lname, fname, deptname from employees,dept
 where dname = deptname

grant references(lname, fname)
on table employees to harry;

Create Table (extended)

9–4 Reference Guide

Create Table (extended)

SQL ESQL

* *

Creates a new base table.

Syntax
[exec sql] create table tablename
 [(column_specification {, column_specification}
 (column_specification {, column_specification }
 [, [constraint constraint_name] table_constraint
 {, [constraint constraint_name] table_constraint}])
 [with with_clause]

To create a table and load rows from another table:

[exec sql] create table tablename
 (column_name {, column_name}) as
 subselect
 {union [all]
 subselect}
 [with with_clause]

For the syntax of subselect, refer to the Select Statement description in this
chapter.

The with_clause parameter consists of the word with followed by a comma-
separated list of with clause options. For an overview of the with clause, refer to
DBMS Extensions in the “OpenSQL Features” chapter.

The column_specification has the following syntax:

column_name datatype
[[with] default default_spec | with default | not default]
[with null | not null]
[[constraint constraint_name] column_constraint
{ [constraint constraint_name] column_constraint}]

where column_constraint is one or more of the following:

unique [with constraint_with_ clause]

primary key [with constraint_with_clause]

Create Table (extended)

Extended Statements 9–5

references [schema.]table_name[(column_name)]
 [with constraint_with_clause]

Table constraints must be specified as one or more of the following:

unique (column_name {, column_name}) [with constraint_with_
clause]

primary key (column_name {, column_name}) [with constraint_with_clause]

foreign key (column_name {, column_name})
references [schema.]table_name [(column_name
{, column_name})] [with constraint_with_clause]

Constraints are described in detail later in this statement description.

Description

The create table statement creates a new base table owned by the user who issues
the statement. If you use the create table...as select syntax, the table that you
create will contain a subset of the columns and values in existing tables specified
by the subselect.

Tablename specifies the name of the new table, and must be a valid object name.
For the rules for naming database objects, refer to Object Names in the
“Overview of OpenSQL” chapter.

Column Specifications

The following characteristics of the new column can be specified:

■ Name - A valid name must be assigned to each column.

■ Data type - A valid data type must be assigned to each column. For details
about valid data types, refer to Data Types in the “Overview of OpenSQL”
chapter.

If create table...as select is specified, the new table takes its column names
and formats from the results of the select clause of the subselect specified in
the as clause (unless different column names are specified).

■ Nullability and defaults - Specify:

– whether a column will accept nulls

– whether the column is mandatory

– the value to be assigned if no value is specified by the user (the default
value)

Create Table (extended)

9–6 Reference Guide

■ Constraints - Specify checks to be performed on the contents of a column.
When the table is updated, if the column fails the checks, OpenSQL issues an
error and aborts the statement that attempted to insert the invalid value.

The following sections describe these characteristics in detail.

Column Defaults and Nullability

The following sections explain how to specify whether columns accept nulls and
how default values are assigned to columns.

Default Values

To specify whether a column requires an entry (is mandatory), use the not
default clause. If the column does not require an entry, specify a value to be
inserted if none is provided by the user (a default value).

Valid options are:

■ Not default - The column is mandatory.

■ Default default_spec | user | null - OpenSQL inserts the specified value if the
user or program does not specify a value for the column. The default value
must be compatible with the data type of the column.

If the default clause is omitted, the column default depends on whether the
column is nullable. Nullable columns default to nulls, and non-nullable columns
are mandatory.

The following is an example of the default option:
create table dept(dname character(10),
 budget decimal default 100000.00,
 creation date default date('01/01/94'));

The following considerations and restrictions apply when specifying a default
value for a column:

■ The data type and length of the default value must not conflict with the data
type and length of the column.

■ The maximum length for a default value is 1500 characters or the declared
length of the column, whichever is shorter.

■ For fixed length string columns, if the column is wider than the default value,
the default value is padded with blanks to the full width of the column.

■ For numeric columns that accept fractional values (floating point and
decimal), the decimal point character specified for the default value must
match the decimal point character in effect when the value is inserted. To
specify the decimal point character, set II_DECIMAL.

Create Table (extended)

Extended Statements 9–7

■ For date columns, the default value must be a valid date specified using the
date() function. If the time zone is omitted, the time zone defaults to the time
zone of the user inserting the row.

■ User (meaning the session’s current user ID) can be specified as the default
value or, for nullable columns, null.

Nullability

To specify whether a column accepts null values, specify the with|not null
clause:

■ With null - The column accepts nulls. OpenSQL inserts null as the default
value if no value is supplied by the user. If the with | not null clause is
omitted, the column is created with null.

■ Not null - The column does not accept nulls. If the default clause is omitted
or not default is specified, the column is mandatory.

The with | not null clause works in combination with the with | not default
clause, as shown in the following table:

Nullability and
Default
Specification

Result

with null The column accepts nulls. If no value is provided, a
null is inserted.

not null The column is mandatory and does not accept nulls.
Typical for primary key columns.

with null default The column accepts null values. If no value is
provided, the default value is inserted.

with null not default The column accepts null values. The user must
provide a value (mandatory column).

not null default The column does not accept nulls. If no value is
provided, the default value is inserted. (The specified
default value cannot be null.)

not null not default The column is mandatory and does not accept nulls.
Typical for primary key columns.

Create Table (extended)

9–8 Reference Guide

Constraints

To ensure that the contents of columns fulfills your database requirements,
specify constraints. The types of constraints are:

■ Unique constraints - Ensures that a value appears in a column only once.
Unique constraints are specified using the unique option.

■ Check constraints - Ensures that the contents of a column fulfills user-
specified criteria (for example, “salary >0”). Check constraints are specified
using the check option.

■ Referential constraints - Ensures that a value assigned to a column appears
in a corresponding column in another table. Referential constraints are
specified using the references option.

■ Primary key constraints - Declares one or more columns for use in
referential constraints in other tables.

Constraints are checked at the end of every statement that modifies the table. If
the constraint is violated, OpenSQL returns an error and aborts the statement. If
the statement is within a multi-statement transaction, the transaction is not
aborted.

Note: Constraints are not checked when adding rows to a table using the copy
statement.

Each type of constraint is described in detail in the following sections.
Constraints can be specified for individual columns or for the entire table. For
details, refer to Column-Level Constraints versus Table-Level Constraints in this
chapter.

The Unique Constraint To ensure that no two rows have the same value in a particular column or set of
columns, specify not null unique. (If you specify a column as unique, you must
also specify not null.) The following is an example of a column-level unique
constraint:
create table dept (dname character(10)
 not null unique, ...);

In the preceding example, the unique constraint ensures that no two departments
have the same name.

To ensure that the data in a group of columns is unique, the unique constraint
must be specified at the table level (rather than specifying unique constraints for
individual columns). A maximum of 32 columns can be specified in a table-level
unique constraint.

The following is an example of a table-level unique constraint:
create table depts (dname character(10) not null,
 dlocation character(10) not null,
unique (dname, dlocation));

Create Table (extended)

Extended Statements 9–9

In the preceding example, the unique constraint ensures that no two departments
in the same location have the same name. Note that the columns are declared not
null, as required by the unique constraint.

Any column or set of columns that is designated as the primary key is implicitly
unique and not null. A table can have only one primary key, but can have any
number of unique constraints.

Note: Unique constraints may create system indexes that cannot be explicitly
dropped by the table owner. These indexes are used to enforce the unique
constraint.

The Check Constraint To create conditions that a particular column or set of columns must fulfill,
specify a check constraint using the check option. For example, to ensure that
salaries are positive numbers:
create table emps (name character(25), sal decimal
check (sal > 0));

The expression specified in the check constraint must be a Boolean expression.
For details about expressions, refer to Expressions in the “Elements of OpenSQL
Statements” chapter.

To specify a check constraint for a group of columns, the check constraint must
be specified at the table level (rather than specifying check constraints for
individual columns). The following is an example of a table-level check
constraint:
create table dept (dname character(10),
 location character(10),
 budget decimal,
 expenses decimal,
check (budget > 0 and expenses <= budget));

The preceding example ensures that each department has a budget and that
expenses do not exceed the budget.

Check constraints cannot include the following:

■ Subqueries

■ Set functions (aggregate functions)

■ Dynamic parameters

■ Host language variables

Column-level check constraints cannot refer to other columns.

The Referential
Constraint

To validate an entry against the contents of a column in another table (or
another column in the same table), specify a referential constraint using the
references option. The references option maintains the referential integrity of
your tables.

Create Table (extended)

9–10 Reference Guide

The column-level referential constraint uses the following syntax:

references [schema.] table_name (column_name)[referential actions]
[constraint_with_clause]

The following is an example of a column-level referential constraint:
create table emp (ename char(10),
 edept char(10) references dept(dname));

In the preceding example, the referential constraint ensures that no employee is
assigned to a department that is not present in the dept table.

The table-level referential constraint uses the following syntax, including the
foreign key… references option:

foreign key (column_i{,column_name})
references [schema.] table_name [(i_name{,column_name}][referential actions]
[constraint_with_clause]

The following is an example of a table-level referential constraint:
create table mgr (name char(10),
 empno char(5),
 ...
foreign key (name, empno) references emp);

The preceding example verifies the contents of the name and empno columns
against the corresponding columns in the emp table to ensure that anyone
entered into the table of managers is on file as an employee. This example omits
the names of the referenced column. The emp table must have a primary key
constraint that specifies the corresponding name and employee number columns.

Referential actions allow the definition of alternate processing options in the event
a referenced row is deleted, or referenced columns are updated when there are
existing matching rows. A referential action specifies either an update rule or a
delete rule, or both, in either sequence.

The on update and on delete rules, use the following syntax:

on update {cascade | set null | restrict | no action}

or

on delete {cascade | set null | restrict | no action}

The “on update cascade” causes the values of the updated referenced column(s)
to be propagated to the referencing columns of the matching rows of the
referencing table.

Create Table (extended)

Extended Statements 9–11

The “on delete cascade” specifies that if a delete is attempted on a referenced row
that has matching referencing rows, the delete is “cascaded” to the referencing
table as well. That is, the matching referencing rows are also deleted. If the
referencing table is itself a referenced table in some other referential relationship,
the delete rule for that relationship is applied, and so forth. (Since rule types can
be mixed in a referential relationship hierarchy, the second delete rule may be
different from the first delete rule.) If an error occurs somewhere down the line
in a cascaded operation, the original delete fails, and no update is performed.

In addition to cascade, the no action, set null, and restrict actions are also
supported for both delete and update.

■ No action is the default behavior of returning an error upon any attempt to
delete or update a referenced row with matching referencing rows.

■ Restrict is a similar to no action, with a minor variation; it behaves identically,
but returns a different error code. Both options are supported for ANSI SQL
compliance.

■ Set null causes the referencing column(s) of the matching rows to be set to the
null value (signifying that they do not currently participate in the referential
relationship). The column(s) can be updated later to a non-null value(s), at
which time the resulting row must find a match somewhere in the referenced
table.

The following is example of the delete and update rules:
create table employee (empl_no int not nul),
 emp_name char(20) not null,
 dept_id char(6) references department (dept_id)
 on delete cascade on update cascade,
 mgrno int references employee (empl_no) on update
 cascade
 on delete set null);

If a department row is deleted, all employees in that department are also deleted.
If a department ID is changed in the department table, it is also changed in all
referencing employee rows.

If a manager's ID is changed, his employees are changed to match. If the
manager is fired, all his employees have mgr_id set to null.

The following considerations apply to the table and column being referenced (the
column specified following the keyword, references):

■ The referenced table must be an existing base table (it cannot be a view).

■ The data types of the columns must be comparable.

■ You must have references privilege for the referenced columns. For details,
refer to the Grant statement description in this chapter.

■ If the table and column names are specified, the referenced columns must
compose a unique or primary key constraint for the referenced table.

Create Table (extended)

9–12 Reference Guide

■ If multiple columns in a table-level referential constraint are specified, the
columns specified for the referencing table must correspond in number, data
type, and position to the columns specified for the referenced table, and they
must compose a unique or primary key constraint for the referenced table.

■ If the referenced table is specified and the column name is omitted, the
referenced table must have a primary key constraint. The referencing
columns are verified against the referenced table’s primary key.

The Primary Key
Constraint

The primary key constraint is used to denote one or more columns to which
other tables will refer in referential constraints. A table can have only one
primary key; the primary key for a table is implicitly unique and must be
declared not null.

The following is an example of a primary key constraint and a related referential
constraint:

Referenced table:
create table partnumbers(partno int primary key...);

Referencing table:
create table inventory(ipartno int...
 foreign key (ipartno) references (partnumbers));

In this case, the part numbers in the inventory table are checked against those in
the partnumbers table; the referential constraint for the inventory table is a table-
level constraint and therefore must specify the foreign key clause. The referential
constraint for the inventory does not specify the column that is referenced in the
partnumbers table. By default, the DBMS checks the column declared as the
primary key. For related details, refer to the References Constraint section.

Using "Create table...as Select"

The create table...as select syntax allows you to create a table from another table
or tables. (The create table...as select syntax is an OpenSQL extension, and is not
part of the ANSI/ISO Entry SQL-92 standard.) The new table is populated with
the set of rows resulting from execution of the specified select statement.

By default, the columns of the new table have the same names as the
corresponding columns of the base table from which you are selecting data.
Different names can be specified for the new columns.

The data types of the new columns are the same as the data types of the source
columns. The nullability of the new columns is determined as follows:

■ If a source table column is nullable, then the column in the new table is
nullable.

Create Table (extended)

Extended Statements 9–13

■ If a source table column is not nullable, then the column in the new table is
defined as not null.

If the source column has a default value defined, the column in the new table
retains the default definition. However, if the default value in the source column
is defined using an expression, the default value for the result column is
unknown and its nullability depends on the source columns used in the
expression. If all the source columns in the expression are not nullable, the result
column is not nullable. If any of the source columns are nullable, the result
column is nullable.

A system-maintained logical key column cannot be created using the create
table...as select syntax. When creating a table using create table...as select, any
logical key columns in the source table that are reproduced in the new table are
assigned the format of not system_maintained.

Embedded Usage
■ Host language variables can be used to specify constant expressions in the

subselect of a create table...as statement.

■ Locationname can be specified using a host language string variable.

■ The preprocessor does not validate the syntax of the with_clause.

Permissions

This statement is available to all users.

Examples
1. Create the employee table with columns eno, ename, age, job, salary, and

dept.
 create table employee
 (eno smallint,
 ename varchar(20) not null,
 age smallint,
 job smallint,
 salary float4,
 dept smallint);

2. Create a table listing employee numbers for employees who make more than
the average salary.

 create table highincome as
 select eno
 from employee
 where salary >
 (select avg (salary)
 from employee);

Create Table (extended)

9–14 Reference Guide

3. Create a table specifying defaults.
 create table dept
 (dname char(10)
 location char(10) default 'LA'
 creation_date date default date('1/1/93'));

4. Create a table specifying referential constraints. When a department number
is assigned to an employee, it will be checked against the entries in the dept
table.

 create table emps (
 empno char(5),
 deptno char(5) references dept),
 ...);

5. Create a table specifying check constraints. In this example, department
budgets default to $100,000, expenses to $0. The check constraint insures that
expenses do not exceed the budget.

 create table dept (
 dname char(10),
 budget decimal default 100000,
 expenses decimal default 0,
 check (budget >= expenses));

6. Create a table specifying unique constraints and keys.
create table dept (
 deptno char(5) primary key,
 dname char(10) not null,
 dlocation char(10) not null,
unique (dname, dlocation));

7. Create a table specifying null constraints.
create table emp (
 salary decimal not default with null ,
 hiredate date not default with null,
 sickdays float default 5.0 with null);

8. Unique constraint uses base table structure, not a generated index:
alter table department add primary key (dept_id)
 with index = base table structure;

9. Unique constraint generates index in non-default location. First referential
constraint generates no index at all:
create table employee (empl_no int not null
 unique with location = (ixloc1),
 emp_name char(20) not null,
 dept_id char(6) references department (dept_id) with no index,
 mgrno int references employee (empl_no));

Grant

Extended Statements 9–15

10. Referential and primary key constraints share the same named index:
create table assignment (empl_no int not null
 references employee (empl_no) with (index = assnpkix,
 location = (ixloc2)),
 proj_id int not null references project (proj_id),
 task char(20),
 primary key (empl_no, proj_id) with index =
 assnpkix);

11. Referential action:
create table employee (empl_no int not null
 unique with location = (ixloc1),
 emp_name char(20) not null,
 dept_id char(6) references department (dept_id)
 on delete cascade on update cascade with no index,
 mgrno int references employee (empl_no) on update cascade
 on delete set null);

Grant

SQL ESQL

* *

Grants privileges on the database as a whole or on individual tables, views, or
procedures.

Syntax

[exec sql] grant all [privileges] | privilege {, privilege}
 on [table] [schema.]table_name
 to public | auth_id {, auth_id}
 [with grant option];

Description

The grant statement enables a DBA or user to control access to tables. To remove
privileges, use the revoke statement. The following table describes the grant
statement parameters.

Parameter Description

table_name Name of the table for which the privilege is being defined.

auth_id The name of the users to which you are granting privileges.

Grant

9–16 Reference Guide

By default, neither the public nor any user has any table privileges. Table
privileges must be granted explicitly. Valid table privileges are:

■ Select

■ Insert

■ Update

For update, a list of columns can optionally be specified; if the column list is
omitted, update privilege is granted to all updatable columns of the table or
view.

■ Delete

■ References - The references privilege enables specified users to create
referential constraints that reference the specified tables and columns. For
details about referential constraints, refer to the Create Table statement
description in this chapter.

 A list of columns can optionally be specified. If the column list is omitted,
references privilege is granted to all updateable columns of the table. You
cannot grant the references privilege on a view.

■ All [privileges] - All grants select, insert, update, delete, and references on
the specified objects to the specified users.

The Grant All Privileges Option

To grant a privilege on an object you do not own, you must have been granted
the privilege with grant option–only the privileges for which you have grant
option are granted.

The results of granting all privileges on a view you do not own are determined as
follows:

■ Select - Granted if you can grant select privilege on all tables and views in
the view definition.

■ Update - Granted for all columns for which you can grant update privilege; if
you were granted update...with grant option on a subset of the columns of a
table, update is granted only for those columns.

■ Insert - Granted if you can grant insert privilege on all tables and views in
the view definition.

■ Delete - Granted if you can grant delete privilege on all tables and views in
the view definition.

■ References - The references privilege is not valid for views.

Grant

Extended Statements 9–17

The following example illustrates the results of the grant all privileges option.
The accounting_mgr user creates the following employee table:
create table employee (name character(25),
 department character(5), salary decimal)...

and, using the following grant statement, grants the accounting_supervisor user
the ability to select all columns but only allows accounting_supervisor to update
the department column (to prevent unauthorized changes of the salary column):
grant select, update (department) on table employees
 to accounting_supervisor with grant option;

If the accounting_supervisor user issues the following grant statement:
grant all privileges on table employees to
accounting_clerk;

the accounting_clerk user receives select and update(department) privileges.

The Grant Option

To enable a user to grant a privilege to another user, specify the with grant
option clause.

For example, if user, tony, creates a table called, mytable, and issues the
following statement:
grant select on tony.mytable to laura
 with grant option;

user laura, can select data from tony.mytable, and can authorize user, evan, to
select data from tony.mytable by issuing the following statement:
grant select on tony.mytable to evan;

Because laura did not specify the with grant option clause, evan cannot authorize
another user to select data from tony.mytable.

The owner of an object can grant any privilege to any user (or to public). The
user to whom the privilege is granted with grant option can grant only the
specified privilege. In the preceding example, laura can grant select privilege,
but cannot grant, for example, insert privilege.

In the previous example, the second grant (to evan) depends upon the first grant
(to laura). If tony revokes select permission from laura (using the revoke
statement), tony must specify how OpenSQL should handle dependent grants
that laura has issued. The choices are:

■ Revoke with cascade - Revokes all dependent grants; in the preceding
example, select permission will be revoked from user, evan.

Revoke

9–18 Reference Guide

■ Revoke with restrict - Do not revoke specified grant if there are dependent
grants. In the preceding example, select permission will not be revoked from
laura because her grant to evan depends on the grant she received from tony.

Embedded Usage

Specify the with clause using a host string variable
(with :hostvar).

Permissions

To grant privileges on an object, you must own the object or have the grant
option for the privilege you are granting.

Examples
1. Grant update privileges on the columns, empname and empaddress, in the

employee table to the users, joank and gerryr.
 grant update(empname, empaddress)
 on table employee
 to joank, gerryr;

2. Enable any user to select data from the employee roster.
 grant select on emp_roster to public;

3. Enable the accounting manager, rickr, complete access to salary information
and to grant permissions to other user.
 grant all on employee to rickr with grant option;

4. Enable any user to create a table constraint that references the employee
roster.
 grant references on emp_roster to public;

Revoke

SQL ESQL

* *

Revokes database privileges.

Revoke

Extended Statements 9–19

Syntax

[exec sql] revoke [grant option for]
 all [privileges] | privilege {, privilege}
 on [table] [schema.]table_name
 from public | auth_id{, auth_id}
 [cascade | restrict];

Description

The revoke statement removes database privileges granted to the specified users
or public. (To confer privileges, use the grant statement.) You cannot revoke
privileges granted by other users.

The following table lists the valid parameters for this statement.

Parameter Description

privilege Specifies the privilege you want to revoke. (To revoke all
privileges for the object, specify all.) The privilege must be one
of the following:

■ Select

■ Update

■ Insert

■ Delete

■ References

table_name The name of the table on which the privileges were granted.

auth_id Specifies the authorization identifier from which privileges are
being revoked.

For more information about privileges, refer to the Grant statement description in
this chapter.

Revoking the Grant Option

The grant statement grant option enables users other than the owner of an object
to grant privileges on that object. For example:
grant select on employee_roster to mike with grant
 option;

Revoke

9–20 Reference Guide

enables mike to grant the select privilege (with or without grant option) to other
users.

The grant option can be revoked without revoking the privilege with which it
was granted. For example:
revoke grant option for select on employees to
 mike...

means that mike can still select data from the employees table, but cannot grant
the select privilege to other users.

Restrict versus Cascade

The restrict and cascade options specify how OpenSQL handles dependent
privileges. The cascade option (default) directs OpenSQL to revoke the specified
privileges plus all privileges that depend on the privileges being revoked. The
restrict option directs OpenSQL not to revoke the specified privilege if there are
any dependent privileges.

The owner of an object can grant privileges on that object to any user. Privileges
granted by users who do not own the object are dependent on the privileges
granted with grant option by the owner. For example, if user, jerry, owns the
employees table, he can grant tom the ability to select data from the table and to
enable other users to select data from the table:
grant select on employees to tom with grant option;

User tom can now enable another user to select data from the employees table:
grant select on employees to sylvester with grant
 option;

The grant tom conferred on sylvester is dependent on the grant the table’s owner
jerry conferred on tom. In addition, sylvester can enable other users to select
data from the employees table.

■ To remove his grant to tom and all grants tom may have issued, jerry must
specify revoke...cascade:
revoke select on employees from tom cascade;

 As a result of this statement, the select privilege granted by tom to sylvester
is revoked, as are any select grants issued by sylvester to other users
conferring select privilege for the employees table.

■ To prevent dependent privileges from being revoked, jerry must specify
revoke... restrict:
revoke select on employees from tom restrict;

 Because there are dependent privileges (tom has granted select privilege on
the employees table to sylvester), this revoke statement will fail, and no
privileges will be revoked.

Select

Extended Statements 9–21

The restrict and cascade parameters have the same effect whether you are
revoking a specific privilege or the grant option for a specific privilege. In either
case, restrict prevents the operation from occurring if there are dependent
privileges, and cascade causes dependent privileges to be deleted. When you
revoke a grant option with cascade, all dependent privileges are revoked, not just
the grant option portion of the dependent privileges.

Embedded Usage

Any portion of the syntax cannot be replaced with host language variables.

Permissions

Any user can issue the revoke statement.

Example

Prevent any user from granting any form of access to the payroll table. Delete all
dependent grants.
 revoke grant option for all on payroll
 from public cascade;

Select

SQL ESQL

*

Retrieves values from one or more tables or views.

Select

9–22 Reference Guide

Syntax

select [all|distinct] * | result_expression {, result_expression}
 from from_source {, from_source}
 [where search_condition]
 [group by column {, column}]
 [having search_condition]
 {union [all] (select)}
 [order by result_column [asc | desc]
 {, result_column [asc | desc]}];

where result_expression is one of the following:

■ [schema.]tablename.* (to select all columns)

■ [[schema.]tablename.]columnname [as result_column]
(to select one column)

■ expression [as] result_column

For SQL-92 compliant installations, the as keyword in the result expression is
optional. All other select syntax and semantics are documented in the “OpenSQL
Statements” chapter.

OpenSQL Standard Catalogs 10–1

Chapter

10 OpenSQL Standard Catalogs

This chapter describes the Standard Catalog Interface catalogs. The Standard
Catalog Interface described here corresponds to the formats you will find when
the iidbcapabilities catalog contains the following values:

CAP_CAPABILITY CAP_VALUE

STANDARD_CATALOG_LEVEL 805

The Standard Catalog Interface is a group of tables and views defined on the
system catalogs of the underlying DBMS. Users who need to query the system
catalogs must use the Standard Catalog Interface.

Unless otherwise noted, values in system catalogs are left-justified, and columns
are non-nullable.

The length of char fields, as listed in the Data Type column, is a maximum
length. The actual length of the field is installation-dependent. When
developing applications that access these catalogs, allocate storage based on the
length as shown in the Data Type column.

All dates stored in system catalogs have the following format (underscores and
colons are required):

yyyy_mm_dd hh:mm:ss GMT (Greenwich Mean Time)

Standard Catalog Interface

10–2 Reference Guide

Standard Catalog Interface
The Standard Catalog Interface catalogs are read-only views built on system
catalogs of the underlying DBMS. The Standard Catalog Interface provides a
portable representation for information about OpenSQL.

The iidbcapabilities Catalog

The iidbcapabilities catalog contains information about the capabilities provided
by the EDBC product or DBMS. The following table describes the columns in the
iidbcapabilities catalog:

Column Name Data Type Description

cap_capability char(32) Contains one of the values listed in the
capability column of the following table.

cap_value char(32) The contents of this field depend on the
capability. Refer to the Values column in
the following table.

The CAP_CAPABILITY
Column

The cap_capability column in the iidbcapabilities catalog contains one or more
of the following values:

Capability Value

CAP_SLAVE2PC Indicates if the DBMS supports Ingres 2-phase
commit slave protocol:

Version 6.3 and above: Y

STAR: Y

EDBC product: usually N

OPEN/SQL_LEVEL Version of OpenSQL supported by the DBMS.
Examples:

00600 Version 6.0
00601 Version 6.1
00602 Version 6.2
00603 Version 6.3
00604 Version 6.4
00605 Version OpenIngres 1.x
00800 Version OpenIngres 2.0 and Ingres II 2.0
00850 Version Ingres II 2.5
Default is 00600.

Standard Catalog Interface

OpenSQL Standard Catalogs 10–3

Capability Value

DB_NAME_CASE Case sensitivity of the database with respect to
database object names: LOWER, UPPER, MIXED.
Defaults to LOWER. If the value is MIXED, case
must be carefully preserved when specifying
database objects. This field applies to names of
database objects (tables, views, columns, and
owners.) Names of user interface objects (such as
forms or reports) are always lower case.

DB_DELIMITED_CASE Case conversion performed by the DBMS for object
names specified using delimited identifiers (that is,
in double quotes). LOWER if delimited identifiers
are translated to lower case, UPPER if delimited
identifiers are translated to upper case, or MIXED if
no case translation is performed.

DBMS_TYPE The type of DBMS with which the application is
communicating. Valid values are the same as those
accepted by the with dbms clause used in queries.
Examples: VSAM, DB2, or IMS.

DISTRIBUTED Y if the DBMS is distributed, N if not.

ESCAPE Contains Y if DBMS supports the ESCAPE clause of
the LIKE predicate in the WHERE clause of search
statements. Contains N if ESCAPE is not
supported.

INGRES Set to Y if the DBMS supports all versions of Ingres
Release 6 and Ingres Release 1; otherwise N.
Default is Y.

SQL92_COMPLIANCE Contains ENTRY if the DBMS is SQL-92 Entry-level
compliant, or NONE if the DBMS is not SQL-92
Entry-level compliant.

Standard Catalog Interface

10–4 Reference Guide

Capability Value

INGRES/SQL_LEVEL Version of Ingres/SQL supported by the DBMS.
Examples:

00600 Version 6.0
00601 Version 6.1
00602 Version 6.2
00603 Version 6.3
00604 Version 6.4
00605 Version OpenIngres 1.x
00800 Version OpenIngres 2.0 and Ingres II 2.0
00850 Version Ingres II 2.5
00000 DBMS does not support Ingres/SQL
Default is 00000.

INGRES_AUTH_GROUP Y if the DBMS supports group identifiers.

INGRES_AUTH_ROLE Y if the DBMS supports role identifiers.

INGRES_LOGICAL_KEY Y if the DBMS supports Ingres logical keys.

INGRES_RULES Y if the DBMS supports Ingres rules; N if it does
not.

INGRES_UDT Y if the DBMS supports Ingres user-defined data
types, N if the DBMS does not support user-defined
data types.

MAX_COLUMNS Maximum number of columns allowed in a table.
Default is 127.

OPEN_SQL_DATES Contains LEVEL 1 if the EDBC product supports
the OpenSQL date data type.

OWNER_NAME Contains N if owner.table table name format not
supported. Contains Y if owner.table format
supported. Contains QUOTED if owner.table
supported with optional quotes (“owner”.table).

PHYSICAL_SOURCE T indicates that both iitables and iiphysical_tables
contain physical table information.

P indicates that only iiphysical_tables contains the
physical table information.

SAVEPOINTS Y if savepoints behave exactly as in Ingres, else N.
Default is Y.

Standard Catalog Interface

OpenSQL Standard Catalogs 10–5

Capability Value

STANDARD_CATALOG_
LEVEL

Version of the standard catalog interface supported
by this database. Valid values:

00602
00604
00605
00800
00850 (default)

UNIQUE_KEY_REQ Set to Y if the database service requires that some or
all tables have a unique key. Set to N or not present
if the database service allows tables without unique
keys.

The iidbconstants Catalog

The iidbconstants catalog contains values required by the ODBC-compliant
application development tools. The following table describes the columns in the
iidbconstants catalog:

Column Name Data Type Description

user_name char(32) Name of the current user.

dba_name char(32) Name of the owner of the database.

system_owner char(32) The name of the system catalog owner.

The iitables Catalog

The iitables catalog contains an entry for each queryable object in the database
(table, view, or index). To find out what tables, views, and indexes are owned by
you or the DBA, you can query this catalog. For example:
select * from iitables where (table_owner = user or
table_owner = (select dba_name from iidbconstants))

Column Name Data Type Description

table_name char(32) The object’s name. Must be a valid object
name.

table_owner char(32) The owner’s user name. Generally, the
creator of the object is the owner.

Standard Catalog Interface

10–6 Reference Guide

Column Name Data Type Description

create_date char(25) The object’s creation date. Blank if
unknown.

alter_date char(25) The last time this table was altered. This
date is updated whenever the logical
structure of the table changes, either
through changes to the columns in the
table or changes to the primary key.
Physical changes to the table, such as
changes to data, secondary indexes, or
physical keys, do not change this date.
Blank if unknown.

table_type char(8) Type of query object:

T = Table
V = View
I = Index

Further information about tables can be
found in iiphysical_tables. Further
information about views can be found in
iiviews.

table_subtype char(8) Specifies the type of table or view.
Possible values are:

N (native) – For standard Ingres databases.
L (links) – For STAR.
I (imported tables) – For EDBC products.
(blank) - If unknown

table_version char(8) Version of the object. Enables the user
interfaces to determine where additional
information about this particular object is
stored. This reflects the database type, as
well as the version of an object within a
given database.

Standard Catalog Interface

OpenSQL Standard Catalogs 10–7

Column Name Data Type Description

system_use char(8) Contains S if the object is a system object,
U if user object, or blank if unknown.

Used by utilities to determine which tables
need reloading.

If the value is unknown, the utilities use
the naming convention of “ii” for tables to
distinguish between system and user
catalogs. In addition, any table beginning
with ii_ is assumed to be a user interface
object, rather than a DBMS system object.
The standard system catalogs themselves
must be included in the iitables catalog
and are considered system tables.

table_size integer Stores the page size of a table.

The following columns in iitables have values only if table_type is T or I. EDBC
products that do not supply this information set these columns to -1 for numeric
data types, blank for character data types.

Column Name Data Type Description

table_stats char(8) Contains Y if this object has entries in the
iistats table, N if this object does not have
entries. If this field is blank, then query
iistats to determine if statistics exist.

table_indexes char(8) Contains Y if this object has entries in the
iiindexes table that refer to this as a base
table, or N if this object does not have
entries. If the field is blank, then query
iiindexes on the base_table column.

is_compressed char(8) Contains Y if the table is stored in
compressed format, N if the table is
uncompressed, blank if unknown.

key_is_compressed char(8) Contains Y if the table uses key
compression, N if no key compression, or
blank if unknown.

Standard Catalog Interface

10–8 Reference Guide

Column Name Data Type Description

is_readonly char(8) Contains one of these values:

■ N – If updates are physically allowed

■ Y – If no updates are allowed

■ Blank - If unknown

Used for tables that are defined to the
EDBC product only for retrieval, such as
tables in hierarchical database systems.

If this field is set to Y, then no updates will
work, independent of what permissions
might be set. If it is set to N, updates may
be allowed, depending on whether the
permissions allow it.

concurrent_access char(1) Y if concurrent access is allowed.

num_rows integer The estimated number of rows in the table.
Set to -1 if unknown.

storage_structure char(16) The storage structure for the table: heap,
hash, btree, or isam. Blank if unknown.

duplicate_rows char(8) Contains one of these values:

■ D – If the table allows duplicate rows.
■ U - If the table does not allow duplicate

rows.
■ Blank - If unknown.

The table storage structure (unique or non-
unique keys) can override this setting.

unique_rule char(8) Contains one of the following values:

■ D - Indicates that duplicate physical
storage structure keys are allowed. (A
unique alternate key may exist in
iialt_columns and any storage structure
keys may be listed in iicolumns.)

■ U - If the object is an ISM or VSAM
object, indicates that the object has
unique storage structure key. If the
object is not an ISM or VSAM object,
then it indicates that the object has a
unique key, described in either
iicolumns or iialt_columns.

■ Blank - If uniqueness is unknown or
does not apply.

Standard Catalog Interface

OpenSQL Standard Catalogs 10–9

Column Name Data Type Description

number_pages integer The estimated number of physical pages in
the table. Set to -1 if unknown.

overflow_pages integer The estimated number of overflow pages
in the table. Set to -1 if unknown.

row_width integer The size, in bytes, of the uncompressed
binary value for a row of this query object.

unique_scope char(8) R if this object is row-level,
S if statement-level
blank if not applicable.

allocation_size integer The allocation size, in pages. Set to –1 if
unknown.

extend_size integer The extend size, in pages. Set to –1 if
unknown.

allocated_pages integer The total number of pages allocated to the
table.

If an EDBC product does not supply the following information, the EDBC
product will set these columns to the default values: -1 for numeric columns and
a blank for character columns. The information in the following section is not
duplicated in iiphysical_tables.

Column Name Data Type Description

expire_date integer Expiration date of table.

modify_date char(25) The date on which the last physical
modification to the storage structure of the
table occurred. Blank if unknown or
inapplicable.

location_name char(24) The first location of the table. If there are
additional locations for a table, they are
shown in the iimulti_locations table and
multi_locations is set to Y.

table_integrities char(8) Contains Y if this object has Ingres style
integrities. If the value is blank, query the
iiintegrities table to determine if integrities
exist.

table_permits char(8) Contains Y if this object has Ingres style
permissions.

all_to_all char(8) Contains Y if this object has Ingres permit all
to all, N if not.

Standard Catalog Interface

10–10 Reference Guide

Column Name Data Type Description

ret_to_all char(8) Contains Y if this object has Ingres permit
retrieve to all, N if not.

is_journalled char(8) Contains Y if Ingres journaling is enabled on
this object, N if not.

view_base char(8) Contains Y if object is a base for a view
definition, N if not, or blank if unknown.

multi_locations char(8) Contains Y if the table is in multiple
locations, N if not.

table_ifillpct smallint Fill factor for the index pages used on the
last modify command in the nonleaffill
clause, expressed as a percentage (0 to 100).

table_dfillpct smallint Fill factor for the data pages used on the last
modify command in the fillfactor clause,
expressed as a percentage (0 to 100).

table_lfillpct smallint Fill factor for the leaf pages used on the last
modify command in the leaffill clause,
expressed as a percentage (0 to 100).

table_minpages integer Minpages parameter from the last execution
of the modify command.

table_maxpages integer Maxpages parameter from the last execution
of the modify command.

table_relstamp1 integer High part of last create or modify timestamp
for the table.

table_relstamp2 integer Low part of last create or modify timestamp
for the table.

table_reltid integer The first part of the internal relation ID.

table_reltidx integer The second part of the internal relation ID.

table_relversion integer Stores the version of table.

table_reltotwidth integer This width includes all deleted columns.

table_reltcpri integer Indicates a table's priority in the buffer
cache. Values can be between 0 and 9. Zero
is the default, and 1–9 can be specified using
the priority clause in create table or modify
table.

Standard Catalog Interface

OpenSQL Standard Catalogs 10–11

The iicolumns Catalog

For each queryable object in the iitables catalog, there are one or more entries in
the iicolumns catalog. Each row in iicolumns contains the logical information on
a column of the object. User interfaces and user programs use the iicolumns
catalog to perform dictionary operations and dynamic queries.

Column Name Data Type Description

table_name char(32) The name of the table.

table_owner char(32) The owner of the table.

column_name char(32) The column name.

column_length integer The length of the column returned to
users and applications. If a data type
contains two length specifiers, this
column uses the first length. Set to zero
for the data types that are specified
without length (date). This length is not
the actual length of the column’s
internal storage. For decimal columns,
contains the precision.

column_datatype char(32) The column data type name returned to
users and applications:

■ Decimal

■ Integer

■ Smallint

■ Int

■ Float

■ Real

■ Double precision

■ Char

■ Character

■ Varchar

■ Date

column_scale integer The second number in a two-part user
length specification. For typename
(len1, len2) it will be len2.

Standard Catalog Interface

10–12 Reference Guide

Column Name Data Type Description

column_nulls char(8) Contains Y if the column can contain
null values, N if the column cannot
contain null values.

column_defaults char(8) Contains Y if the column is given a
default value when a row is inserted, or
N if the column is not given a default
value.

column_sequence integer The number of this column in the
corresponding table’s create statement,
numbered from 1.

key_sequence integer The order of this column in the primary
key, numbered from 1. If 0, then this
column is not part of the primary key.

sort_direction char(8) Defaults to A (for ascending) when
key_sequence is greater than 0;
otherwise, this value is a blank.

column_ingdatatype smallint Contains the numeric Ingres
representation of the column’s external
data type (the data type returned to
users and applications).

If the installation has user-defined
datatypes (UDTs), this column contains
the data type that the UDT is converted
to when returned to an Ingres user
interface product.

 If the value is positive then the column
is not nullable. If the value is negative,
then the column is nullable. The data
types and their corresponding values
are:

Decimal -10/10
integer -30/30
float -31/31
date* -3/3
char -20/20
varchar -21/21

* Returned as a string

Standard Catalog Interface

OpenSQL Standard Catalogs 10–13

Column Name Data Type Description

column_internal_
datatype

char(32) The internal data type of the column:
char, c, varchar, text, integer, float, date,
money, table_key, object_key. If the
installation has user-defined data types,
this column contains the user-specified
name.

column_internal_
length

smallint The internal length of the column. For
example, for data type smallint, this
column contains 2. Contains 0 if the
data type is fixed-length. The length
does not include the null indicator byte
for nullable columns, or the length
specifier byte for varchar and text
columns.

column_internal_
ingtype

smallint Contains the numeric representation of
the internal datatype. See
column_ingdatatype for a list of valid
values. If the installation has user-
defined data types, this column contains
the user-specified data type number.

column_system_
maintained

char(8) Contains Y if the column is system-
maintained, or N if not system-
maintained.

column_updatable char(8) Contains Y if the column can be
updated, N if not, or blank if unknown.

column_has_
default

char(8) Contains Y if the column has a default
value, N if not, or blank if unknown.

column_default_
value

varchar(1501) The default value defined for the
column.

The iiphysical_tables Catalog

The information in the iiphysical_tables catalog overlaps with some of the
information in iitables. This information is provided as a separate catalog
primarily for use by EDBC products. Query the physical_source column, in
iidbcapabilities, to determine whether you must query iiphysical_tables. If you
do not want to query iidbcapabilities, then you must always query
iiphysical_tables to be sure of getting the correct information.

If a queryable object is type T or I (for index, in an Ingres installation only), then
it is a physical table and may have an entry in iiphysical_tables as well as iitables.
In most EDBC products, this table is keyed on table_name plus table_owner:

Standard Catalog Interface

10–14 Reference Guide

Column Name Data Type Description

table_name char(32) The table name. This is an object name.

table_owner char(32) The table owner’s user name.

table_stats char(8) Y if this object has entries in the iistats table.

table_indexes char(8) Y if this object has entries in the iiindexes
table that refer to this as a base table.

is_readonly char(8) Y if updates are physically allowed on this
object.

concurrent_access char(8) Y if concurrent access is allowed.

num_rows integer The estimated number of rows in the table.
Set to -1 if unknown.

storage_structure char(16) The storage structure of the table. Possible
values are: heap, btree, isam, or hash.

is_compressed char(8) Indicates if the table is stored in compressed
format. Y if it is compressed, N if not
compressed, or blank if unknown.

key_is_compressed char(8) Indicates if the table uses compression. Y if
the table uses compression, N if no
compression, or blank if unknown.

duplicate_rows char(8) Contains U if rows must be unique, D if
duplicates are allowed, or blank if unknown.

unique_rule char(8) Contains U if the storage structure is unique,
D if duplicates are allowed, or blank if
unknown or inapplicable.

number_pages integer The estimated number of physical pages in
the table. Set to -1 if unknown.

overflow_pages integer The estimated number of overflow pages in
the table. Set to -1 if unknown.

row_width integer The size (in bytes) of the uncompressed
binary value for a row in the object for
Ingres. Set to -1 if this is unknown.

allocation_size integer The table allocation size, in pages. Set to -1 if
unknown.

extend_size integer The extend size, in pages. Set to -1 if
unknown.

allocated_pages integer The total number of pages allocated to the
table.

Standard Catalog Interface

OpenSQL Standard Catalogs 10–15

Column Name Data Type Description

table_pagesize integer Stores the pages of a table

The iiviews Catalog

The iiviews catalog contains one or more entries for each view in the database
(views are indicated in iitables by table type = “V”). Because the text_segment
column is limited to 240 characters per row, a single view can require more than
one row to contain all its text. In this case, the text will be broken in mid-word
across the sequenced rows. The text column is pure text, and can contain
newline characters.

Column Name Data Type Description

table_name char(32) The view name. Must be a valid object
name.

table_owner char(32) The view owner’s user name.

view_dml char(8) The language in which the view was created:
S (for SQL) or Q (for QUEL).

check_option char(8) Contains Y if the check option was specified
in the create view statement, N if not, or
blank if unknown.

text_sequence integer The sequence number for the text field,
starting with 1.

text_segment varchar(256) The text of the view definition.

The iiindexes Catalog

Each table with a table_type of I in the iitables table has an entry in iiindexes. In
Ingres, all indexes also have an entry in iiphysical_tables.

Column Name Data Type Description

index_name char(32) The index name. Must be a valid object
name.

index_owner char(32) The index owner’s user name.

create_date char(25) Creation date of index.

base_name char(32) The base table name. Must be a valid object
name.

Standard Catalog Interface

10–16 Reference Guide

Column Name Data Type Description

base_owner char(32) The base table owner. Must be a valid user
name.

storage_structure char(16) The storage structure for the index: heap,
hash, isam, or btree.

is_compressed char(8) Contains Y if the table is stored in
compressed format, N if the table is
uncompressed, or blank if unknown.

unique_rule char(8) Contains U if the index is unique, D if
duplicate key values are allowed, or blank if
unknown.

unique_scope char(8) Contains S if uniqueness is checked after
completion of queries or R if uniqueness is
checked after each row is modified or
inserted.

system_use char(8) Contains S if the index was created by the
DBMS, U if created by a user, or blank if
unknown. (The Ingres DBMS creates unique
indexes to enforce unique constraints on
tables.)

persistent char(8) Contains Y if the index is retained when its
base table is modified, or N if the index is
dropped when the table is modified.

The iiindex_columns Catalog

For indexes, any Ingres columns that are defined as part of the primary index key
will have an entry in iiindex_columns. For a full list of all columns in the index,
use the iicolumns catalog.

Column Name Data Type Description

index_name char(32) The index containing column_name. This is an
object name.

index_owner char(32) The index owner. Must be a valid user name.

column_name char(32) The name of the column. Must be a valid
object name.

key_sequence integer Sequence of column within the key, numbered
from 1.

sort_direction char(8) Defaults to A (ascending).

Standard Catalog Interface

OpenSQL Standard Catalogs 10–17

The iialt_columns Catalog

All columns defined as part of an alternate key have an entry in iialt_columns.

Column Name Data Type Description

table_name char(32) The table to which column_name belongs.

table_owner char(32) The table owner.

key_id integer The number of the alternate key for this table.

column_name char(32) The name of the column.

key_sequence smallint Sequence of column within the key, numbered
from 1.

The iistats Catalog

This catalog contains entries for columns that have statistics.

Column Name Data Type Description

table_name char(32) The name of the table.

table_owner char(32) The table owner’s user name.

column_name char(32) The column name to which the statistics
apply.

create_date char(25) The date on which statistics were gathered.

num_unique float8 The number of unique values in the column.

rept_factor float8 The repetition factor.

has_unique char(8) Contains Y if the column has unique values;
otherwise, N.

pct_nulls float8 The percentage (fraction of 1.0) of the table
which contains NULL for the column.

num_cells integer The number of cells in the histogram.

column_domain integer Identifies the domain from which the column
draws its values.

is_complete char(8) Contains Y if the column contains all possible
values in its domain, N if the column does not
contain all possible values in its domain, or
blank if unknown.

Standard Catalog Interface

10–18 Reference Guide

Column Name Data Type Description

stat_version char(8) Version of statistics (for example, ING6.5).

histogram_data_
length

integer Length of the histogram boundary values.

The iihistograms Catalog

The iihistograms table contains histogram information used by the optimizer.

Column Name Data Type Description

table_name char(32) The table for the histogram. Must be a valid
object name.

table_owner char(32) The table owner’s user name.

column_name char(32) The name of the column.

text_sequence integer The sequence number for the histogram,
numbered from 1. There may be several rows
in this table, used to order the “text_segment”
data when histogram is read into memory.

text_segment char(228) The encoded histogram data, created by
optimizedb.

The iiprocedures Catalog

The iiprocedures catalog contains one or more entries for each database
procedure defined on a database. Because the text of the procedure definition
can contain more than 240 characters, iiprocedures may contain more than one
entry for a single procedure. The text may contain newlines and may be broken
mid-word across rows.

This table is keyed on procedure_name and procedure_owner:

Column Name Data Type Description

procedure_name char(32) The database procedure name, as specified
in the create procedure statement.

procedure_owner char(32) The procedure owner’s username.

create_date char(25) The procedure’s creation date.

proc_subtype char(8) The subtype of this procedure. For standard
d h ll b ()

Standard Catalog Interface

OpenSQL Standard Catalogs 10–19

Column Name Data Type Description
EDBC procedures, this will be N(native).

text_sequence smallint The sequence number for the test_segment.

text_segment varchar
(240)

The text of the procedure definition.

system_use char(8) Contains S if the procedure is system-
generated, U if created by a user, or blank if
unknown. EDBC generates procedures to
enforce table constraints.

The iiregistrations Catalog

The iiregistrations catalog contains the text of register statements and is used by
EDBC products.

Column Name Data Type Description

object_name char(32) The name of the registered table, view, or
index.

object_owner char(32) The name of the owner of the table, view,
or index.

object_dml char(8) The language used in the registration
statement. S for SQL or Q for QUEL.

object_type char(8) Describes the object type of object_name.
The values are T if the object is a table, V if
it is a view, or I if the object is an index.

object_subtype char(8) Describes the type of table or view created
by the register statement. For an EDBC
product, this will be I (imported object).

text_sequence smallint The sequence number of the text field,
numbered from 1.

text_segment varchar
(240)

The text of the register statement.

Standard Catalogs

10–20 Reference Guide

The iisynonyms Catalog

The iisynonyms catalog contains information about the synonyms that have been
defined for the database. Entries appear in iisynonyms when a create synonym
statement is issued. Entries are removed when a drop synonym statement is
issued for an existing synonym, or when a drop table|view|index statement
drops the table on which the synonym is defined.

Column Name Data Type Description

synonym_name char(32) The name of the synonym.

synonym_owner char(32) The owner of the synonym.

table_name char(32) The name of the table, view or index for
which the synonym was created.

table_owner char(32) The owner of the table.

Standard Catalogs
Mandatory catalogs are required to be present on all installations. This section
lists the catalogs in each category.

Mandatory Catalogs with Entries Required

The following catalogs must be present on EDBC installations. These catalogs
must contain entries:

■ iidbcapabilities

■ iidbconstants

■ iitables

■ iicolumns

Standard Catalogs

OpenSQL Standard Catalogs 10–21

Mandatory Catalogs without Entries Required

The following catalogs must be present on EDBC installations. However, these
catalogs are not required to contain entries:

■ iiphysical_tables

■ iiviews

■ iiindexes

■ iiindex_columns

■ iialt_columns

■ iistats

■ iihistograms

■ iiaudittables

■ iiconstraint_indexes

■ iiconstraints

■ iikeys

■ iiref_constraints

■ iisecurity_alarms

Keywords A–1

Appendix

A Keywords

This appendix lists OpenSQL keywords and indicates the contexts in which they
are reserved. This list allows you to avoid assigning object names that conflict
with reserved words.

Note: The keywords in this list do not necessarily correspond to supported
EDBC features. Some words are reserved for future or internal use, and some
words are reserved to provide backward compatibility with older features.

Keyword List
In the following table, the column headings have the following meanings:

■ ISQL (Interactive SQL) - These keywords are reserved by the DBMS.

■ ESQL (Embedded SQL) - These keywords are reserved by the SQL
preprocessors.

Note: The ESQL preprocessor also reserves forms statements.

The following table displays OpenSQL keywords:

Keyword: SQL

Reserved in: ISQL ESQL

abort * *

activate * *

add * *

addform * *

after * *

all * *

alter * *

and * *

Keyword List

A–2 Reference Guide

Keyword: SQL

Reserved in: ISQL ESQL

any * *

append * *

array * *

as * *

asc * *

at * *

authorization * *

avg * *

avgu * *

before * *

begin * *

between * *

breakdisplay * *

by * *

byref * *

call * *

callframe * *

callproc * *

cascade * *

check * *

clear * *

clearrow * *

close * *

column * *

command * *

commit * *

committed * *

connect * *

constraint * *

Keyword List

Keywords A–3

Keyword: SQL

Reserved in: ISQL ESQL

continue * *

copy * *

count * *

countu * *

create * *

current * *

current_user * *

cursor * *

datahandler * *

declare * *

default * *

define * *

delete * *

deleterow * *

desc * *

describe * *

descriptor * *

destroy * *

direct * *

disable * *

disconnect * *

display * *

distinct * *

distribute * *

do * *

down * *

drop * *

else * *

elseif * *

Keyword List

A–4 Reference Guide

Keyword: SQL

Reserved in: ISQL ESQL

enable * *

end * *

end-exec * *

enddata * *

enddisplay * *

endforms * *

endif * *

endloop * *

endretrieve * *

endselect * *

endwhile * *

escape * *

exclude * *

excluding * *

execute * *

exists * *

exit * *

fetch * *

field * *

finalize * *

for * *

foreign * *

formdata * *

forminit * *

forms * *

from * *

full * *

get * *

getform * *

Keyword List

Keywords A–5

Keyword: SQL

Reserved in: ISQL ESQL

getoper * *

getrow * *

global * *

goto * *

grant * *

group * *

having * *

help * *

help_forms * *

help_frs * *

helpfile * *

identified * *

if * *

iimessage * *

iiprintf * *

iiprompt * *

iistatement * *

immediate * *

import * *

in * *

include * *

index * *

indicator * *

ingres * *

initial_user * *

initialize * *

inittable * *

inner * *

inquire_equel * *

Keyword List

A–6 Reference Guide

Keyword: SQL

Reserved in: ISQL ESQL

inquire_forms * *

inquire_frs * *

inquire_ingres * *

inquire_sql * *

insert * *

insertrow * *

integrity * *

into * *

is * *

isolation * *

join * *

key * *

left * *

level * *

like * *

loadtable * *

local * *

max * *

menuitem * *

message * *

min * *

mode * *

modify * *

module * *

move * *

natural * *

next * *

noecho * *

not * *

Keyword List

Keywords A–7

Keyword: SQL

Reserved in: ISQL ESQL

notrim * *

null * *

of * *

off * *

on * *

only * *

open * *

option * *

or * *

order * *

out * *

outer * *

param * *

permit * *

prepare * *

preserve * *

primary * *

print * *

printscreen * *

privileges * *

procedure * *

prompt * *

public * *

putform * *

putoper * *

putrow * *

qualification * *

raise * *

range * *

Keyword List

A–8 Reference Guide

Keyword: SQL

Reserved in: ISQL ESQL

read * *

redisplay * *

references * *

referencing * *

register * *

relocate * *

remove * *

rename * *

repeat * *

repeatable * *

repeated * *

replace * *

replicate * *

restrict * *

resume * *

retrieve * *

return * *

revoke * *

right * *

rollback * *

rows * *

run * *

save * *

savepoint * *

schema * *

screen * *

scroll * *

scrolldown * *

scrollup * *

Keyword List

Keywords A–9

Keyword: SQL

Reserved in: ISQL ESQL

section * *

select * *

serializable * *

session * *

session_user * *

set * *

set_4gl * *

set_equel * *

set_forms * *

set_frs * *

set_ingres * *

set_sql * *

sleep * *

some * *

sort * *

sql * *

stop * *

submenu * *

sum * *

sumu * *

system * *

system_
maintained

 * *

system_user * *

table * *

tabledata * *

temporary * *

then * *

to * *

Keyword List

A–10 Reference Guide

Keyword: SQL

Reserved in: ISQL ESQL

type * *

union * *

unique * *

unloadtable * *

until * *

up * *

update * *

user * *

using * *

validate * *

validrow * *

values * *

view * *

when * *

whenever * *

where * *

while * *

with * *

work * *

Keyword List

Keywords A–11

The following table lists OpenSQL double keywords:

Double Keyword: SQL

Reserved in: ISQL ESQL

after field * *

alter group * *

alter location * *

alter role * *

alter security_audit * *

alter table * *

alter user * *

array of * *

before field * *

begin transaction * *

by user * *

call on * *

call procedure * *

class of * *

close cursor * *

comment on * *

connect to * *

copy table * *

create dbevent * *

create group * *

create integrity * *

create link * *

create location * *

create permit * *

create procedure * *

create role * *

create rule * *

create security_alarm * *

Keyword List

A–12 Reference Guide

Double Keyword: SQL

Reserved in: ISQL ESQL

create synonym * *

create user * *

create view * *

current installation * *

define cursor * *

declare cursor * *

define integrity * *

define link * *

define location * *

define permit * *

define qry * *

define query * *

define view * *

delete cursor * *

destroy integrity * *

destroy link * *

destroy permit * *

destroy table * *

destroy view * *

direct connect * *

direct disconnect * *

direct execute * *

disable security_audit * *

disconnect current * *

display submenu * *

drop dbevent * *

drop group * *

drop integrity * *

drop link * *

Keyword List

Keywords A–13

Double Keyword: SQL

Reserved in: ISQL ESQL

drop location * *

drop permit * *

drop procedure * *

drop role * *

drop rule * *

drop security_alarm * *

drop synonym * *

drop user * *

drop view * *

enable security_audit * *

end transaction * *

exec sql * *

execute immediate * *

execute on * *

execute procedure * *

foreign key * *

for deferred * *

for direct * *

for readonly * *

for retrieve * *

for update * *

from group * *

from role * *

from user * *

full join * *

get data * *

get dbevent * *

global temporary * *

help comment * *

Keyword List

A–14 Reference Guide

Double Keyword: SQL

Reserved in: ISQL ESQL

help integrity * *

help permit * *

help table * *

help view * *

identified by * *

inner join * *

is null * *

left join * *

modify table * *

not like * *

not null * *

on commit * *

on current * *

on database * *

on dbevent * *

on location * *

on procedure * *

only where * *

open cursor * *

order by * *

primary key * *

procedure returning * *

put data * *

raise dbevent * *

raise error * *

register dbevent * *

register table * *

register view * *

remove dbevent * *

Keyword List

Keywords A–15

Double Keyword: SQL

Reserved in: ISQL ESQL

remove table * *

remove view * *

replace cursor * *

resume entry * *

resume menu * *

resume next * *

retrieve cursor * *

right join * *

run submenu * *

session group * *

session role * *

session user * *

set aggregate * *

set autocommit * *

set cache * *

set cpufactor * *

set date_format * *

set ddl_concurrency * *

set deadlock * *

set decimal * *

set io_trace * *

set j_freesz1 * *

set j_freesz2 * *

set j_freesz3 * *

set j_freesz4 * *

set j_sortbufsz * *

set jcpufactor * *

set joinop * *

set journaling * *

Keyword List

A–16 Reference Guide

Double Keyword: SQL

Reserved in: ISQL ESQL

set lock_trace * *

set lockmode * *

set logdbevents * *

set log_trace * *

set logging * *

set maxcost * *

set maxcpu * *

set maxio * *

set maxpage * *

set maxquery * *

set maxrow * *

set money_format * *

set money_prec * *

set nodeadlock * *

set noio_trace * *

set nojoinop * *

set nojournaling * *

set nolock_trace * *

set nologdbevents * *

set nolog_trace * *

set nologging * *

set nomaxcost * *

set nomaxcpu * *

set nomaxio * *

set nomaxpage * *

set nomaxquery * *

set nomaxrow * *

set nooptimizeonly * *

set noprintdbevents * *

Keyword List

Keywords A–17

Double Keyword: SQL

Reserved in: ISQL ESQL

set noprintqry * *

set noprintrules * *

set noqep * *

set norules * *

set nosql * *

set nostatistics * *

set notrace * *

set optimizeonly * *

set printdbevents * *

set printqry * *

set qbufsize * *

set qep * *

set query_size * *

set result_structure * *

set ret_into * *

set rules * *

set session * *

set sortbufsize * *

set sql * *

set statistics * *

set trace * *

set work * *

system user * *

to group * *

to role * *

to user * *

user authorization * *

with null * *

with short_remark * *

ISO SQL Keywords

A–18 Reference Guide

ISO SQL Keywords
The following keywords are ISO standard keywords that are not currently
reserved in SQL or embedded SQL. You may want to treat these as reserved
words to ensure compatibility with other implementations of SQL.

absolute cross get

action current_date go

allocate current_time hour

alter current_timestamp identity

are date initially

asc day input

assertion deallocate insensitive

bit dec int

bit_length decimal integer

both deferrable intersects

cascaded deferred interval

case desc isolation

cast diagnostics language

catalog domain last

char double leading

character else level

char_length except lower

character_length exception match

coalesce exec minute

collate external module

collation extract month

connection false names

constraints first national

convert float nchar

corresponding found no

ISO SQL Keywords

Keywords A–19

nullif relative translate

numeric second translation

octet_length size trim

only smallint true

option space unknown

outer sql upper

output sqlcode usage

overlaps sqlerror value

pad substring varchar

partial then varying

position time work

precision timestamp write

prior timezone_hour year

privileges timezone_minute zone

read trailing

real transaction

Terminal Monitor B–1

Appendix

B Terminal Monitor

The Terminal Monitor allows you to interactively enter, edit, and execute
individual queries or files containing queries. The Terminal Monitor also allows
you to execute operating system level commands.

There are two versions of the Terminal Monitor:

■ Forms-based

■ Line-based

This appendix describes the line-based version, and includes instructions on
invoking the Terminal Monitor and issuing queries interactively.

Accessing the Terminal Monitor
To invoke the line-based Terminal Monitor, type this command at the operating
system prompt:

sql [flags]

The sql command accepts a variety of flags that define how the Terminal Monitor
and the DBMS behave during your session. The following table lists some useful
flags:

Flag Description

-a Disables the autoclear function. This means that the query buffer is
never automatically cleared. It is as if you inserted the \append
command after every \go. This flag requires you to explicitly clear
the query buffer using \reset after every query.

The Query Buffer

B–2 Reference Guide

Flag Description

-d Turns off display of the dayfile (the text file that is displayed when
the Terminal Monitor is invoked).

-s Suppresses status messages. All messages except error messages are
turned off, including login and logout messages, the dayfile, and
prompts. This flag is useful for executing queries redirected from
files.

The Query Buffer
In the Terminal Monitor, each query that you type is placed in a query buffer,
rather than executed immediately. The queries are executed when you type the
execution command (\go or \g). The results, by default, appear on your
terminal. For example, assume that you have a table called, employee, which
lists all employees in your company. To view a list of those employees who live
in a particular city (cityA), you could enter the following statement:
select name from employee where city='cityA'
\g

The query is placed in the query buffer and executed when you enter \g. The
returned rows display on your terminal.

Several other operations can also be performed on the query buffer. You can:

■ Edit the contents

■ Print the contents

■ Write the contents to another file

After a \go command the query buffer is cleared if another query is typed, unless
a command that affects the query buffer is typed first. Commands that retain the
query buffer contents are:

\append or \a
\edit or \e
\print or \p
\bell
\nobell

The Terminal Monitor Commands

Terminal Monitor B–3

For example, typing:
help parts
\go
select * from parts

results in the query buffer containing:
select * from parts

whereas, typing:
help parts
\go
\print
select * from parts

results in the query buffer containing:
help parts
select * from parts

This feature can be overridden by executing the \append command before
executing the \go command or by specifying the -a flag when issuing the sql
command to begin your session.

The Terminal Monitor Commands
The Terminal Monitor commands allow you to manipulate the contents of the
query buffer or your environment. Unlike the OpenSQL statements that you
type into the Terminal Monitor, Terminal Monitor commands are executed as
soon as the Return key is pressed.

All of the Terminal Monitor commands must be preceded with a backslash (\).
To enter a backslash literally, you must enclose it in quotes. For example, the
following statement inserts a backslash into the Test table:
insert into test values('\')\g

Some Terminal Monitor commands accept a file name as an argument. These
commands must appear alone on a single line. The Terminal Monitor interprets
all characters appearing on the line after such commands as a file name. Those
Terminal Monitor commands that do not accept arguments can be stacked on a
single line. For example:
\date\go\date

returns the date and time before and after execution of the current query buffer.

The Terminal Monitor Commands

B–4 Reference Guide

The Terminal Monitor commands are shown in the following table:

 Command Description

 \r or \reset Erase the entire query (reset the query buffer). The
former contents of the buffer are lost and cannot be
retrieved.

 \p or \print Print the current query. The contents of the buffer are
printed on the user terminal.

Win32

UNIX

VMS

\e or \ed or \edit or
\editor [filename]

Enter the text editor of the operating system (designated
by the startup file). Use the appropriate editor exit
command to return to the Terminal Monitor. If no file
name is given, the current contents of the query buffer
are sent to the editor, and upon return, the query buffer
is replaced with the edited query. If a file name is given,
the query buffer is written to that file. On exit from the
editor, the file contains the edited query, but the query
buffer remains unchanged.

Enter the text editor (see the VAX EDT Editor Manual).
Use the EDT command exit or the sequence of
commands, write followed by quit, to return to the
Terminal Monitor. If no file name is given, the current
contents of the query buffer are sent to the editor, and
upon return, the query buffer is replaced with the edited
query. If a file name is given, the query buffer is written
to that file, and on exit from the editor, the file contains
the edited query, but the workspace remains unchanged.

 \g or \go Process the current query. The contents of the buffer are

transmitted to the DBMS and run.

 \time or \date Print the current time and date.

 \a or \append Append to the query buffer. Typing \append after
completion of a query overrides the auto-clear feature
and guarantees that the query buffer will not be reset
until executed again.

UNIX

VMS

\s or \sh or \shell Escape to the UNIX shell (command line interpreter).
Pressing Ctrl+D exits the shell and returns you to the
Terminal Monitor.

Escape to the command line interpreter to execute VMS
commands. The VAX command line interpreter (DCL) is
initiated. Subsequently, typing the logout command
exits DCL and returns you to the Terminal Monitor.

Messages and Prompts

Terminal Monitor B–5

 Command Description

 \q or \quit Exit the Terminal Monitor.

 \cd or \chdir
dir_name

Change the working directory of the monitor to the
named directory.

 \i or \include or
\read filename

Read the named file into the query buffer. Backslash
characters in the file are processed as they are read.

 \w or \write filename Write the contents of the query buffer to the named file.

 \script [filename] Write/stop writing the subsequent SQL statements and
their results to the specified file. If no file name is
supplied with the \script command, output is logged to
a file called script.ing in the current directory. The
\script command toggles between logging and not
logging your session to a file. If you supply a file name
on the \script command that terminates logging to a file,
the file name is ignored.

Use this command to save result tables from SQL
statements for output. The \script command in no way
impedes the terminal output of your session.

 \bell and \nobell Tell the Terminal Monitor to include (\bell) or not to
include (\nobell) a bell (that is, Ctrl+G) with the
continue or go prompt. The default is \nobell.

 \[no]continue Tell the Terminal Monitor to continue statement
processing on error or not to continue (nocontinue). In
either case, the error message displays. The command
can be abbreviated to \co (\continue) or \noco
(\nocontinue). The default action is to continue. This
command can be used to change that behavior. You can
also change the default by setting II_TM_ON_ERROR.

Messages and Prompts
The Terminal Monitor has a variety of messages to keep you informed of its
status and that of the query buffer.

When you log in, the Terminal Monitor prints a login message that tells the
version number and the login time. Following that message, the dayfile appears.

Character Input and Output

B–6 Reference Guide

When the Terminal Monitor is ready to accept input and the query buffer is
empty, the message go appears. The message, continue, appears instead, if there
is something in the query buffer.

The prompt, >>editor, indicates that you are in the text editor.

Character Input and Output
When you input non-printable ASCII characters through the Terminal Monitor,
the Terminal Monitor maps these characters to blanks. Whenever this occurs, the
Terminal Monitor displays the message:
Non-printing character nnn converted to blank

where nnn is replaced with the actual character.

For example, if you enter the statement:
insert into test values('^La')

the Terminal Monitor converts the ^L to a blank before sending it to the DBMS
and displays the message described above.

To insert non-printing data into a char or varchar field, specify the data as a
hexadecimal value. For example:
insert into test values (x’07’);

This feature can be used to insert a newline character into a column:
insert into test values (’Hello world’+x’0a’);

This statement inserts ’Hello world\n’ into the test table.

On output, if the data type is char or varchar, any binary data are shown as octal
numbers (\000, \035, and so on.). To avoid ambiguity, any backslashes present
in data of the char or varchar type are displayed as double backslashes. For
example, if you insert the following into the “test” table:
insert into test values('\aa')

when you retrieve that value, you will see:
\\aa

Help

Terminal Monitor B–7

Help
When working in the Terminal Monitor, you can obtain on-line help using the
help statement. This statement provides information about a variety of OpenSQL
statements and features. For a complete list of help options, refer to Help in the
“OpenSQL Statements” chapter.

Aborting the Editor (VMS only)

VMS

Do not type Ctrl+Y and Ctrl+C while you are escaped to an
editor (unless the editor assigns its own meaning to Ctrl+C) or
VMS. VMS does not properly signal these events to the
initiating process.

Generic Error Codes C–1

Appendix

C Generic Error Codes

This appendix lists EDBC generic error codes and maps generic errors to
SQLSTATE values. Error code mapping works as follows:

■ Proprietary error codes - Each host DBMS returns a set of proprietary error
codes. These error codes are unique to the host DBMS and therefore not
useful for developing portable applications. EDBC products map
proprietary error codes to generic error codes. This is a many-to-one
mapping: many proprietary error codes may map to a single generic error
code. For details about proprietary error codes, refer to your host DBMS
documentation.

■ Generic error codes - EDBC products return a consistent set of errors. To
enable your application to interact with different host DBMS (through EDBC
products), your applications should check generic error codes.

■ SQLSTATE - SQLSTATE is the ANSI standard error variable. If you are
developing ANSI-compliant applications, your application should check
SQLSTATE. The mapping of generic errors to the SQLSTATE is many-to-
one: many generic errors may map to a single SQLSTATE value.

SQLSTATE Values
The following table lists the values returned in SQLSTATE. An asterisk in the
“OpenSQL Only?” column indicates that the value is not part of the basic set of
values prescribed by ANSI, but rather a value that ANSI permits the host DBMS
vendor to define.

SQLSTATE OpenSQL Only? Description

00000 Successful completion

01000 Warning

01001 Cursor operation conflict

01002 Disconnect error

01003 Null value eliminated in set function

SQLSTATE Values

C–2 Reference Guide

SQLSTATE OpenSQL Only? Description

01004 String data, right truncation

01005 Insufficient item descriptor areas

01006 Privilege not revoked

01007 Privilege not granted

01008 Implicit zero-bit padding

01009 Search condition too long for information
schema

0100A Query expression too long for information
schema

01500 * LDB table not dropped

01501 * DSQL UPDATE or DELETE will affect
entire table

02000 No data

07000 Dynamic SQL error

07001 Using clause does not match dynamic
parameter specification

07002 Using clause does not match target
specification

07003 Cursor specification cannot be executed

07004 Using clause required for dynamic
parameters

07005 Prepared statement not a cursor
specification

07006 Restricted data type attribute violation

07007 Using clause required for result fields

07008 Invalid descriptor count

07009 Invalid descriptor index

07500 * Context mismatch

08000 Connection exception

08001 SQL-client unable to establish
SQL-connection

SQLSTATE Values

Generic Error Codes C–3

SQLSTATE OpenSQL Only? Description

08002 Connection name in use

08003 Connection does not exist

08004 SQL-server rejected establishment of
SQL-connection

08006 Connection failure

08007 Transaction resolution unknown

08500 * LDB is unavailable

0A000 Feature not supported

0A001 Multiple host DBMS transactions

0A500 * Valid query language

21000 Cardinality violation

22001 String data, right truncation

22002 Null value, no indicator parameter

22003 Numeric value out of range

22005 Error in assignment

22007 Invalid datetime format

22008 Datetime field overflow

22009 Invalid time zone displacement value

22011 Substring error

22012 Division by zero

22015 Interval field overflow

22018 Invalid character value for cast

22019 Invalid escape character

22021 Character not in repertoire

22022 Indicator overflow

22023 Invalid parameter value

22024 Unterminated C string

SQLSTATE Values

C–4 Reference Guide

SQLSTATE OpenSQL Only? Description

22025 Invalid escape sequence

22026 String data, length mismatch

22027 Trim error

22500 * Invalid data type

23000 Integrity constraint violation

24000 Invalid cursor state

25000 Invalid transaction state

26000 Invalid SQL statement name

27000 Triggered data change violation

28000 Invalid authorization specification

2A000 Syntax error or access rule violation in
direct SQL statement

2A500 * Table not found

2A501 * Column not found

2A502 * Duplicate object name

2A503 * Insufficient privilege

2A504 * Cursor not found

2A505 * Object not found

2A506 * Invalid identifier

2A507 * Reserved identifier

2B000 Dependent privilege descriptors still exist

2C000 Invalid character set name

2D000 Invalid transaction termination

2E000 Invalid connection name

33000 Invalid SQL descriptor name

34000 Invalid cursor name

35000 Invalid condition number

SQLSTATE Values

Generic Error Codes C–5

SQLSTATE OpenSQL Only? Description

37000 Syntax error or access rule violation in SQL
dynamic statement

37500 * Table not found

37501 * Column not found

37502 * Duplicate object name

37503 * Insufficient privilege

37504 * Cursor not found

37505 * Object not found

37506 * Invalid identifier

37507 * Reserved identifier

3C000 Ambiguous cursor name

3D000 Invalid catalog name

3F000 Invalid schema name

40000 Transaction rollback

40001 Serialization failure

40002 Integrity constraint violation

40003 Statement completion unknown

42000 Syntax error or access rule violation

42500 * Table not found

42501 * Column not found

42502 * Duplicate object name

42503 * Insufficient privilege

42504 * Cursor not found

42505 * Object not found

42506 * Invalid identifier

42507 * Reserved identifier

44000 With check option violation

SQLSTATE Values

C–6 Reference Guide

SQLSTATE OpenSQL Only? Description

50000 * Miscellaneous EDBC-specific errors

50001 * Invalid duplicate row

50002 * Limit has been exceeded

50003 * Resource exhausted

50004 * System configuration error

50005 * EDBC product-related error

50006 * Fatal error

50007 * Invalid SQL statement ID

50008 * Unsupported statement

50009 * Database procedure error raised

5000A * Query error

5000B * Internal error

5000D * Invalid cursor name

5000E * Duplicate SQL statement ID

5000F * Textual information

5000G * Database procedure message

5000H * Unknown/unavailable resource

5000I * Unexpected LDB schema change

5000J * Inconsistent host DBMS catalog

5000K * SQLSTATE status code unavailable

5000L * Protocol error

5000M * IPC error

HZ000 Remote Database Access 2

Generic Error Codes

Generic Error Codes C–7

Generic Error Codes
Generic error codes are error codes that map to DBMS-specific errors returned by
the host DBMS that you access through EDBC products. If your application
interacts with more than one type of DBMS, it should check generic errors in
order to remain portable. The following table lists generic error codes:

Generic Error
Code

Message Explanation

+00050 Warning message The request was successfully completed,
but a warning was issued.

+00100 No more data A request for data was processed, but
either no data or no more data fitting the
requested characteristics was found.

00000 Successful
completion

The request completed normally with no
errors or unexpected conditions
occurring.

-00001 to
 -29999

Reserved These values are reserved for warning
messages.

-30100 Table not found A table referenced in a statement does
not exist or is owned by another user.
This error may also be returned
concerning an index or a view.

-30110 Column not
known or not in
table

A column referenced in a statement could
not be found.

-30120 Unknown cursor An invalid or unopened cursor name or
identifier was specified or referenced in a
statement.

-30130 Other database
object not found

A database object other than a table,
view, index, column or cursor was
specified or referenced in a statement, but
could not be identified or located. This
might apply to a database procedure, a
grant or permission, a rule, or other
object.

-30140 Other unknown or
unavailable
resource

A resource, of a type other than one
mentioned above, is either not known or
unavailable for the request.

-30200 Duplicate
resource
definition

An attempt to define a database object
(such as a table) was made, but the object
already exists.

Generic Error Codes

C–8 Reference Guide

Generic Error
Code

Message Explanation

-30210 Invalid attempt to
insert duplicate
row

A request to insert a row was refused; the
table will not accept duplicates, or there
is a unique index defined on the table.

-31000 Statement syntax
error

The statement just processed had a
syntax error.

-31100 Invalid identifier An identifier, such as a table name,
cursor name or identifier, procedure
name, was invalid. It may have
contained incorrect characters or been too
long.

-31200 Unsupported
query language

A request to use an unrecognized or
unsupported query language was made.

-32000 Inconsistent or
incorrect query
specification

A query, while syntactically correct, was
logically inconsistent, conflicting or
otherwise incorrect.

-33000 Run-time logical
error

An error occurred at run-time. An
incorrect specification was made, an
incorrect host variable value or type was
specified or some other error not detected
until run-time was found.

-34000 Not privileged/
restricted peration

An operation was rejected because the
user did not have appropriate permission
or privileges to perform the operation, or
the operation was restricted (for example,
to a certain time of day) and the
operation was requested at the wrong
time or in the wrong mode.

-36000 System limit
exceeded

A system limit was exceeded during
query processing, for example, number of
columns, size of a table, row length, or
number of tables in a query.

-36100 Out of needed
resource

The system exhausted, or did not have
enough of, a resource such as memory or
temporary disk space required to
complete the query.

-36200 System
configuration
error

An error in the configuration of the
system was detected.

-37000 Communication/
transmission error

The connection between the host DBMS
and the client failed.

Generic Error Codes

Generic Error Codes C–9

Generic Error
Code

Message Explanation

-38000 Error within the
EDBC product

An error occurred in an EDBC or host
DBMS interface.

-38100 Host system
error

An error occurred in the host system.

-39000 Fatal error -
session
terminated

A severe error occurred which has
terminated the session with the host
DBMS or the client.

-39100 Unmappable
error

An error occurred which is not mapped
to a generic error.

-40100 Cardinality
violation

A request tried to return more or fewer
rows than allowed. This usually occurs
when a singleton select request returns
more than one row, or when a nested
subquery returns an incorrect number of
rows.

-402dd Data exception A data handling error occurred. The
subcode dd defines the type of error.

-40300 Constraint
violation

A host DBMS constraint, such as a
referential integrity or the CHECK option
on a view was violated. The request was
rejected.

-40400 Invalid cursor
state

An invalid cursor operation was
requested; for example, an update
request was issued for a read-only cursor.

-40500 Invalid
transaction
state

A request was made which was invalid in
the current transaction state; for example,
an update request was issued in a read-
only transaction, or a request was issued
improperly in or out of a transaction.

-40600 Invalid SQL
statement
identifier

An identifier for an SQL statement, such
as a repeat query name, was invalid.

-40700 Triggered data
change violation

A change requested by a cascaded
referential integrity change was invalid.

-41000 Invalid user
authorization
identifier

An authorization identifier, usually a
user name, was invalid.

Generic Error Data Exception Subcodes

C–10 Reference Guide

Generic Error
Code

Message Explanation

-41200 Invalid SQL
statement

Unlike generic error -31000 (statement
syntax error), this was a recognized
statement that is either currently invalid
or unsupported.

-41500 Duplicate SQL
statement
identifier

An identifier for an SQL statement, such
as a repeat query name, was already
active or known.

-49900 Serialization
failure (Deadlock)

An error occurred which caused the
query to be rejected. The transaction may
have been rolled back (check
SQLWARN6 in the SQLCA structure).
The query or transaction can be
resubmitted; the error was a timeout,
deadlock, forced abort, log file full, or
other error that the host DBMS resolved
by aborting the query or transaction.

Generic Error Data Exception Subcodes
The following table lists subcodes returned with generic error -402 (generic errors
-40200 through -40299).

Subcode Description

00 No subcode

01 Character data truncated from right

02 Null value, no indicator variable specified

03 Exact numeric data, loss of significance (decimal overflow)

04 Error in assignment

05 Fetch orientation has value of zero

06 Invalid date or time format

07 Date/time field overflow

08 Reserved

09 Invalid indicator variable value

10 Invalid cursor name

SQLSTATE and Equivalent Generic Errors

Generic Error Codes C–11

Subcode Description

15 Invalid data type

20 Fixed-point overflow

21 Exponent overflow

22 Fixed-point divide

23 Floating point divide

24 Decimal divide

25 Fixed-point underflow

26 Floating point underflow

27 Decimal underflow

28 Other unspecified math exception

99 Maximum legal subcode

SQLSTATE and Equivalent Generic Errors
SQLSTATE is the ANSI/ISO Entry SQL-92-compliant method for returning
errors to applications. The following table lists the correspondence between
SQLSTATE values and generic errors.

SQLSTATE Generic Error

00000 E_GE0000_OK

01000 E_GE0032_WARNING

01001 E_GE0032_WARNING

01002 E_GE0032_WARNING

01003 E_GE0032_WARNING

01004 E_GE0032_WARNING

01005 E_GE0032_WARNING

01006 E_GE0032_WARNING

01007 E_GE0032_WARNING

01008 E_GE0032_WARNING

01009 E_GE0032_WARNING

SQLSTATE and Equivalent Generic Errors

C–12 Reference Guide

SQLSTATE Generic Error

0100A E_GE0032_WARNING

01500 E_GE0032_WARNING

01501 E_GE0032_WARNING

02000 E_GE0064_NO_MORE_DATA

07000 E_GE7D00_QUERY_ERROR

07001 E_GE7D00_QUERY_ERROR

07002 E_GE7D00_QUERY_ERROR

07003 E_GE7D00_QUERY_ERROR

07004 E_GE7D00_QUERY_ERROR

07005 E_GE7D00_QUERY_ERROR

07006 E_GE7D00_QUERY_ERROR

07007 E_GE7D00_QUERY_ERROR

07008 E_GE7D00_QUERY_ERROR

07009 E_GE7D00_QUERY_ERROR

07500 E_GE98BC_OTHER_ERROR

08000 E_GE98BC_OTHER_ERROR

08001 E_GE98BC_OTHER_ERROR

08002 E_GE80E8_LOGICAL_ERROR

08003 E_GE80E8_LOGICAL_ERROR

08004 E_GE94D4_HOST_ERROR

08006 E_GE9088_COMM_ERROR

08007 E_GE9088_COMM_ERROR

08500 E_GE75BC_UNKNOWN_OBJECT

0A000 E_GE98BC_OTHER_ERROR

0A001 E_GE98BC_OTHER_ERROR

0A500 E_GE79E0_UNSUP_LANGUAGE

21000 E_GE9CA4_CARDINALITY

22000 E_GE9D08_DATAEX_NOSUB

22001 E_GE9D09_DATAEX_TRUNC

22002 E_GE9D0A_DATAEX_NEED_IND

SQLSTATE and Equivalent Generic Errors

Generic Error Codes C–13

SQLSTATE Generic Error

22003 E_GE9D0B_DATAEX_NUMOVR

22003 E_GE9D1C_DATAEX_FIXOVR

22003 E_GE9D1D_DATAEX_EXPOVR

22003 E_GE9D21_DATAEX_FXPUNF

22003 E_GE9D22_DATAEX_EPUNF

22003 E_GE9D23_DATAEX_DECUNF

22003 E_GE9D24_DATAEX_OTHER

22005 E_GE9D0C_DATAEX_AGN

22007 E_GE9D0F_DATAEX_DATEOVR

22008 E_GE9D0E_DATAEX_DTINV

22009 E_GE9D0F_DATAEX_DATEOVR

22011 E_GE80E8_LOGICAL_ERROR

22012 E_GE9D1E_DATAEX_FPDIV

22012 E_GE9D1F_DATAEX_FLTDIV

22012 E_GE9D20_DATAEX_DCDIV

22012 E_GE9D24_DATAEX_OTHER

22015 E_GE9D0F_DATAEX_DATEOVR

22018 E_GE7918_SYNTAX_ERROR

22019 E_GE7918_SYNTAX_ERROR

22021 E_GE9D08_DATAEX_NOSUB

22022 E_GE9D11_DATAEX_INVIND

22023 E_GE9D08_DATAEX_NOSUB

22024 E_GE98BC_OTHER_ERROR

22025 E_GE7918_SYNTAX_ERROR

22026 E_GE9D08_DATAEX_NOSUB

22027 E_GE7918_SYNTAX_ERROR

22500 E_GE9D17_DATAEX_TYPEINV

23000 E_GE9D6C_CONSTR_VIO

24000 E_GE9DD0_CUR_STATE_INV

25000 E_GE9E34_TRAN_STATE_INV

SQLSTATE and Equivalent Generic Errors

C–14 Reference Guide

SQLSTATE Generic Error

26000 E_GE75B2_NOT_FOUND

27000 E_GE9EFC_TRIGGER_DATA

28000 E_GEA028_USER_ID_INV

2A000 E_GE7918_SYNTAX_ERROR

2A500 E_GE7594_TABLE_NOT_FOUND

2A501 E_GE759E_COLUMN_UNKNOWN

2A502 E_GE75F8_DEF_RESOURCE

2A503 E_GE84D0_NO_PRIVILEGE

2A504 E_GE75A8_CURSOR_UNKNOWN

2A505 E_GE75B2_NOT_FOUND

2A506 E_GE797C_INVALID_IDENT

2A507 E_GE797C_INVALID_IDENT

2B000 E_GE7D00_QUERY_ERROR

2C000 E_GE7918_SYNTAX_ERROR

2D000 E_GE9E34_TRAN_STATE_INV

2E000 E_GE797C_INVALID_IDENT

33000 E_GE75BC_UNKNOWN_OBJECT

34000 E_GE75A8_CURSOR_UNKNOWN

35000 E_GE7D00_QUERY_ERROR

37000 E_GE7918_SYNTAX_ERROR

37500 E_GE7594_TABLE_NOT_FOUND

37501 E_GE759E_COLUMN_UNKNOWN

37502 E_GE75F8_DEF_RESOURCE

37503 E_GE84D0_NO_PRIVILEGE

37504 E_GE75A8_CURSOR_UNKNOWN

37505 E_GE75B2_NOT_FOUND

37506 E_GE797C_INVALID_IDENT

37507 E_GE797C_INVALID_IDENT

3C000 E_GE9DD0_CUR_STATE_INV

3D000 E_GE98BC_OTHER_ERROR

SQLSTATE and Equivalent Generic Errors

Generic Error Codes C–15

SQLSTATE Generic Error

3F000 E_GE797C_INVALID_IDENT

40000 E_GE98BC_OTHER_ERROR

40001 E_GEC2EC_SERIALIZATION

40002 E_GE9D6C_CONSTR_VIO

40003 E_GE9088_COMM_ERROR

42000 E_GE7918_SYNTAX_ERROR

42500 E_GE7594_TABLE_NOT_FOUND

42501 E_GE759E_COLUMN_UNKNOWN

42502 E_GE75F8_DEF_RESOURCE

42503 E_GE84D0_NO_PRIVILEGE

42504 E_GE75A8_CURSOR_UNKNOWN

42505 E_GE75B2_NOT_FOUND

42506 E_GE797C_INVALID_IDENT

42507 E_GE797C_INVALID_IDENT

44000 E_GE7D00_QUERY_ERROR

50000 E_GE98BC_OTHER_ERROR

50001 E_GE7602_INS_DUP_ROW

50002 E_GE8CA0_SYSTEM_LIMIT

50003 E_GE8D04_NO_RESOURCE

50004 E_GE8D68_CONFIG_ERROR

50005 E_GE9470_GATEWAY_ERROR

50006 E_GE9858_FATAL_ERROR

50007 E_GE9E98_INV_SQL_STMT_ID

50008 E_GEA0F0_SQL_STMT_INV

50009 E_GEA154_RAISE_ERROR

5000A E_GE7D00_QUERY_ERROR

5000B E_GE98BC_OTHER_ERROR

5000C E_GE9D0D_DATAEX_FETCH0

5000D E_GE9D12_DATAEX_CURSINV

5000E E_GEA21C_DUP_SQL_STMT_ID

SQLSTATE and Equivalent Generic Errors

C–16 Reference Guide

SQLSTATE Generic Error

5000F E_GE98BC_OTHER_ERROR

5000H E_GE75BC_UNKNOWN_OBJECT

5000I E_GE98BC_OTHER_ERROR

5000J E_GE98BC_OTHER_ERROR

5000K E_GE98BC_OTHER_ERROR

5000L E_GE9088_COMM_ERROR

5000M E_GE9088_COMM_ERROR

HZ000 E_GE9088_COMM_ERROR

 Index–1

 Index

-- (double hyphen)
comment delimiter, 2-7

- (minus sign)
subtraction, 4-1

'

' (single quotation mark)
pattern matching, 4-13

"

" (double quotation marks)
delimited identifiers, 2-5

%

% (percent sign)
pattern match character, 4-11, 4-12

(

() (parentheses)
expressions, 4-11
logical operator grouping, 4-3
precedence of arithmetic operations, 4-2

*

* (asterisk)
count (function), 4-9

.

. (period)
decimal indicator, 3-10

/

/ (slash)
comment indicator (with asterisk), 2-7
division, 4-1

?

? (question mark)
parameter indicator, 8-33, 8-58

[

[\] (square brackets)
pattern matching, 4-12

\

\ (backslash)

Index–2 Reference Guide

pattern matching, 4-12

\go (Terminal Monitor command)[go], B-2

_

_ (underscore)
pattern matching, 4-11, 4-12

+

+ (plus sign)
addition, 4-1

=

= (equals sign)
assignment operator, 4-2
comparison operator, 4-2

>

>\< (greater/less than symbol), 4-2

A

a (terminal monitor command), B-4

Aborting
transactions, 8-4, 8-33, 8-61

Aggregate functions, 4-8
data selection, 8-65
nulls, 3-13

And (logical operator), 4-16

Any-or-All (predicate), 4-14

Append
\append (terminal monitor command), B-4

Arithmetic
expressions, 4-1
operations, 4-6
operators, 4-1

As (clause), 8-12, 9-12

Assignment operations, 4-3
character string, 4-4
date, 4-5
null, 4-5
numeric, 4-5

Autocommit, 8-81

Average (aggregate function), 4-8

B

Base tables, 8-13

Begin declare section (statement), 8-2

bell (terminal monitor command), B-5

Binary operators, 4-2

Blanks
char data type, 3-2
trailing, 4-12

C

Case
character strings, 2-7
names, 2-5

Catalogs (system)
dates, 10-1
iialt_columns, 10-17
iicolumns, 10-11
iidbcapabilities, 10-2
iidbconstants, 10-5
iihistograms, 10-18
iiindex_columns, 10-16
iiprocedures, 10-18
iirules, 10-20
iistats, 10-17
iitables, 10-5
iiviews, 10-15
updating, 10-2

cd (terminal monitor command), B-5

Char (data type), 3-2

Character data
assignment, 4-4
comparing, 3-2

 Index–3

OpenSQL, 4-4

chdir (terminal monitor command), B-5

Check constraints, 9-9

Clauses, 4-16
escape, 4-12

Close (statement), 8-3

Columns
expressions, 4-10
naming, 8-12

Columns (in tables)
aggregate functions, 4-8
defaults, 9-6
nullability, 9-7
updating, 8-85

Comments
OpenSQL, 2-7
program, 8-23
variable declaration section, 8-23

Commit (statement), 8-4

Comparison (predicate), 4-11

Comparisons
nulls, 3-12

Connect (statement), 8-6

Constants
list of OpenSQL constants, 3-12
now, 3-8
null, 3-12
today, 3-8

Constraints
adding/removing, 9-4
check, 9-9
described, 9-8
Primary Key Option, 9-12
referential, 9-9
unique, 9-8

Conventions
operating environments, 1-2
syntax, 1-3
system-level commands, 1-3
used in this guide, 1-2

Conversion
numeric data, 4-6
string/character data, 4-4

Copy (statement)
constraints, 9-8

Correlation names, 2-8

Count (aggregate function), 4-8, 4-9

Create index (statement), 8-8

Create schema authorization (statement), 9-1

Create table (statement), 8-10, 9-4

Create view (statement), 8-13

Creating
schemas, 9-1
tables, 9-4

Cursor
close (statement), 8-3
declare cursor (statement), 5-12, 8-15
deleting rows, 5-15
fetch (statement), 5-13
open (statement), 8-55
open cursor (statement), 5-12
positioning, 5-17
select (statement) and, 2-3
select loops vs, 8-77
updating rows, 5-14

D

Data types
char, 3-2
date, 3-5
decimal, 3-4, 4-7
floating point, 3-5
host languages, 5-5
integer, 3-3
storage formats, 3-9
varchar, 3-2

Databases
accessing/terminating access, 2-3, 7-17, 8-28
connecting to programs, 7-17, 8-6
revoking privileges, 9-18
transactions, 7-1

Date (data type)
assignment, 4-5
display formats, 3-9
formats, 3-5
input formats, 3-6

Dates
catalogs (system), 10-1
\date (terminal monitor command), B-4
selecting current/system, 7-4

Index–4 Reference Guide

Dbmsinfo (function), 7-4

Dclgen declaration generator (utility), 5-7

Deadlock
defined, 7-15
handling, 7-15

Decimal
literals, 3-11

Decimal (data type), 3-4, 4-7

Declarations
begin declare section (statement), 8-2
declare cursor (statement), 5-12, 8-15
declare statement (statement), 8-22
declare table (statement), 8-23
Dynamic SQL statements, 8-22
end declare (statement), 8-30
host variable, 8-2

Defaults
table columns, 9-6

Delete (statement), 8-24

Deleting
delete (statement), 8-24
rows, 5-15, 8-24

Delimited identifiers, 2-5

Describe (statement), 6-7, 6-13, 8-26

Destroying
drop (statement), 8-29

Direct execute immediate (statement), 8-27

Disconnect (statement), 8-28

DMY format (dates), 3-7

Drop (statement), 8-29

E

e (terminal monitor command), B-4

ed (terminal monitor command), B-4

EDBC Products
overview, 2-1

edit (terminal monitor command), B-4

editor (terminal monitor command), B-4

Embedded OpenSQL
database access, 2-3

include (statement), 5-5
interactive vs, 2-3
keywords, 2-4
overview, 2-2
preprocessor, 2-2, 5-1
preprocessor errors, 5-5
sample program, 5-2
SQLCA, 5-3
variables, 5-4

Embedded SQL
database access, 7-17
obtaining run-time information, 8-48

End declare section (statement), 8-30

Endquery (statement), 8-49

Endselect (statement), 8-31

Error handling
generic errors, C-7
SQLSTATE, C-11

Errors
errorno flag, 8-50
generic, 7-8
handling, 7-15, 8-88
local, 7-8

Escape (clause)
like (predicate), 4-12

Exec sql (keyword), 5-2

Execute (statement), 6-6, 6-9, 8-32

Execute immediate (statement), 6-6, 6-8, 8-35

Exists (predicate), 4-15

Exponential notation, 3-11

F

Fetch (statement), 8-42

Files
external, 8-47

Floating point
conversion, 4-6
data type, 3-5
literals, 3-11
range, 3-5

Functions
aggregate, 4-8

 Index–5

avg, 4-8
max, 4-8
min, 4-8
sum, 4-8

G

g (terminal monitor command), B-4

Generic errors, 7-8
list, C-7

German format (dates), 3-7

go (terminal monitor command), B-4

Grant (statement)
described, 9-15

Grant option, 9-17

Group by (clause), 4-9, 8-62, 9-22

H

Having (clause), 4-16, 8-62, 9-22

Help (statement), 8-45

I

i (terminal monitor command), B-5

II_DECIMAL, 3-10

II_EMBED_SET, 7-12, 7-14

II_TIMEZONE_NAME, 3-8

iialt_columns catalog, 10-17

iicolumns catalog, 10-11

iidbcapabilities catalog, 10-2

iidbconstants catalog, 10-5

iihistograms catalog, 10-18

iiindex_columns catalog, 10-16

iiprocedures catalog, 10-18

iiregistrations catalog, 10-19

iiseterr, 7-14

iistats catalog, 10-17

iisynonyms catalog, 10-20

iitables catalog, 10-5

iiviews catalog, 10-15

In (predicate), 4-13

Include (statement), 6-3, 8-47
Embedded OpenSQL, 5-5

include (terminal monitor command), B-5

Indexes
create index (statement), 8-8
destroying, 8-10, 8-29
sorting, 8-10

Indicator variables
character data retrieval, 5-10
ESQL, 5-8

Inquire_sql (statement), 7-5, 8-48, 8-51

Insert (statement), 8-52

Integers
data type, 3-3
literals, 3-11
range, 3-3

Interactive OpenSQL
Embedded OpenSQL vs, 2-3

ISO format (dates), 3-6

ISO standard
delimited identifiers, 2-7
SQL keywords, A-18

K

Keyboard keys
control, B-7

Keywords
ISO, A-18

L

Labels
Embedded SQL, 5-2

Like (predicate), 4-11
escape clauses, 4-12

Index–6 Reference Guide

Limits
float data type, 3-9
integer data, 3-3
number of columns in unique constraint, 9-8
OpenSQL, 2-10

Literals
decimal, 3-11
floating point, 3-11
integer, 3-11
numeric, 3-10
string, 3-10

Local errors, 7-8

Logical operators
OpenSQL, 4-16

Loops
endselect (statement), 8-31
retrieve, 5-13, 8-31
terminating, 8-31

M

Maximum (aggregate function), 4-8

MDY format (dates), 3-7

Minimum (aggregate function), 4-8

Multinational format (dates), 3-6

Multiple sessions, 8-51
described, 7-17

Multi-statement transactions (MST), 9-8

N

Naming
case, 2-5
conventions, 2-4
correlation names, 2-8

Nesting
queries, 4-17

nobell (terminal monitor command), B-5

Not (logical operator), 4-16

Not null column format, 9-7

Now date constant, 3-8, 3-12

Null constant, 3-12

Null indicators, 5-8

Nullability
table columns, 3-12, 9-7

Nulls
aggregate functions, 3-13
assignment, 4-5
is null (predicate), 4-16
null constant, 3-12
OpenSQL, 3-12
set functions, 4-8

Numeric
literals, 3-10

Numeric data type
assignment, 4-5
range and precision, 3-3

O

Open (statement), 8-55

Open cursor (statement), 5-12

OpenSQL
advanced techniques, 6-1
dynamic, 6-1, 8-22, 8-26, 8-35, 8-57
names, 2-4

Operating environment conventions, 1-2

Operations
arithmetic, 4-6
assignment, 4-3

Operators
arithmetic, 4-1
logical, 4-16

Or (logical operator), 4-16

Ownership
tables, 8-11, 9-5

P

p (terminal monitor command), B-4

Patterns
matching, 4-11

Precision

 Index–7

decimal (data type), 3-4, 4-7
floating point (data type), 3-5

Predicates, 4-11
any-or-all, 4-14
exists, 4-15
in, 4-13
is null, 4-16
like, 4-11

Prepare (statement), 6-6, 6-9, 8-57

Preprocessor, 5-1

Primary Key Option Constraints, 9-12

Printing
print (terminal monitor command), B-4

Privileges
database, 9-18
granting, 9-15

Programquit
described, 7-14
program quit (constant), 8-51, 8-84

Programs
connecting to databases, 8-6
source code, 8-47
suspending execution, 7-14, 8-88

Q

Queries
nested, 4-17
repeat, 8-77
subqueries, 4-17

R

r (terminal monitor command), B-4

read (terminal monitor command), B-5

Referential integrity, 9-9

Repeat queries
select (statement), 8-77

reset (terminal monitor command), B-4

Restrictions
characters in delimited identifiers, 2-6
check constraints, 9-9

column default values, 9-6
database procedure parameters, 8-39
into clause in ISQL, 8-40
logical key (data type), 9-13
OpenSQL, 2-10
referential constraints, 9-11
SQLSTATE and database procedures, 7-8
unions, 8-72

retrieving, 8-49

Retrieving
endselect (statement), 8-31
select (statement), 8-62, 9-21
status information, 2-2
values, 8-62, 9-21
values into variables, 8-42

Revoke (statement), 9-18

Rollback, 7-2, 8-61

Rows (in tables), 8-49
counting, 4-9
deleting, 5-15, 8-24
inserting, 8-52
rowcount constant, 8-51
updating, 5-14

S

s (terminal monitor command), B-4

Scale
decimal (data type), 3-4

Schemas
creating, 9-1

Screen
printing messages, 8-55

script (terminal monitor command), B-5

Search conditions
OpenSQL, 4-16

Select (statement)
embedded, 2-3, 8-74
interactive, 8-62, 9-21
query evaluation, 8-63
select loop, 8-75

Set (statement), 8-81

Set autocommit (statement), 8-81

Set_sql (statement), 8-82

Index–8 Reference Guide

sh (terminal monitor command), B-4

shell (terminal monitor command), B-4

Sorting
indexes, 8-10

Source code
external files, 8-47

SQL
descriptor area (SQLDA), 8-27

SQLCA (SQL Communications Area)
described, 7-5
error handling, 8-76, 8-78
multiple sessions, 7-19

SQLDA (SQL Descriptor Area), 8-27
execute procedure (statement), 8-39

Sqlprint, 8-89

SQLSTATE, 7-7, C-11

SQLVAR, 6-14

Standard Catalogs
supported level, 10-1

Statement
defined, 1-3

Status information
obtaining, 7-5

Storage formats
of data type, 3-9

Strings
literals, 3-10
varying length, 3-2

Structure
variables, 5-6

Sum (aggregate function), 4-8

Sweden/Finland format (dates), 3-6

Syntax conventions, 1-3

T

Tables
base, 8-13
creating, 8-10, 9-4
destroying, 8-29
inserting rows, 8-52
obtaining information about, 8-45

ownership, 8-11, 9-5
retrieving into/from, 8-62, 9-21
virtual, 8-13

Terminal Monitor, B-1

Time
display format, 3-9
selecting current/system, 7-4
\time (terminal monitor command), B-4

Today date constant, 3-8, 3-12

Transactions
commit (statement), 7-2, 8-4
control statements, 7-2
management, 7-1
rolling back, 7-2, 8-61
transaction (constants), 8-51

Truth functions, 4-17

Two phase commit
connect (statement), 8-6

U

Unary operators, 4-2

Unique
constraints, 9-8

Unique (clause), 8-9

Updating
update (statement), 8-85

US format (dates), 3-6

User constant, 3-12

Utility, defined, 1-3

V

Values
retrieving, 8-42, 8-62, 9-21

Varchar (data type), 3-2

Variable declarations
begin declare section (statement), 8-2
host languages, 5-5
host variables, 8-2

Variables

 Index–9

host language, 5-4, 8-2, 8-30, 8-42
null indicator, 5-8
structure, 5-6

Version
standard catalogs, 10-1

Views
creating, 8-13
destroying, 8-29
printing, 8-46
updating, 8-14

W

w (terminal monitor command), B-5

Whenever (statement), 7-11, 8-88

Where (clause), 4-16, 8-62, 9-22

Wild card characters
select (statement), 8-64

With (clause)
EDBC product, 7-23

With null column format, 9-7

write (terminal monitor command), B-5

Y

YMD format (dates), 3-7

	Advantage EDBC OpenSQL Reference Guide
	Contents
	Chapter 1: Introduction
	Conventions

	Chapter 2: Overview of OpenSQL
	What is OpenSQL?
	EDBC Products
	Embedded OpenSQL
	Building Embedded OpenSQL Programs
	Retrieving Status Information
	Specifying Parameters at Run Time
	Differences between Embedded and Interactive OpenSQL

	Features
	Object Names
	Regular and Delimited Identifiers
	Restrictions on Identifiers
	Case Sensitivity of Identifiers

	Comment Delimiters
	Statement Terminators
	Correlation Names

	OpenSQL Limits

	Chapter 3: OpenSQL Data Types
	Character Data Types
	The Character Data Type
	The Varchar Data Type

	Numeric Data Types
	Integer Data Types
	The Decimal Data Type
	The Floating Point Data Types

	Abstract Data Type
	The Date Data Type
	Absolute Date Input Formats
	Absolute Time Input Formats
	Combined Date and Time Input
	Date and Time Display Formats

	Storage Formats of Data Types
	Literals
	String Literals
	Numeric Literals
	Floating Point Literals

	OpenSQL Constants
	Nulls
	Nulls and Comparisons
	Nulls and Aggregate Functions

	Chapter 4: Elements of OpenSQL Statements
	Operators
	Arithmetic Operators
	Comparison Operators
	Logical Operators

	Operations
	Assignment Operations
	Character String Assignments
	Numeric Assignments
	Date Assignments
	Null Assignments

	Arithmetic Operations
	Default Type Conversion
	Arithmetic Operations on Decimal Data Types

	Aggregate Functions
	The Count Function and Nulls
	The Group by Clause with Aggregate Functions
	Restrictions on the Use of Aggregate Functions
	Aggregate Functions and Decimal Data

	Expressions
	Predicates
	The Like Predicate
	The Between Predicate
	The In Predicate
	The Any-or-All Predicate
	The Exists Predicate
	The Is null Predicate

	Search Conditions
	Subqueries

	Chapter 5: Embedded OpenSQL
	Syntax of an Embedded OpenSQL Statement
	Structure of Embedded OpenSQL Programs
	Host Language Variables
	Declaring Variables
	The Include Statement
	Variable Usage
	Variable Structures
	The Dclgen Utility
	Indicator Variables
	Null Indicators and Data Retrieval
	Using Null Indicators to Assign Nulls
	Indicator Variables and Character Data Retrieval
	Null Indicator Arrays and Host Structures

	Data Manipulation with Cursors
	Declaring a Cursor
	Opening Cursors
	Open Cursors and Transaction Processing
	Fetching the Data
	Fetching Rows Inserted by Other Queries
	Using Cursors to Update Data
	Using Cursors to Delete Data
	Closing Cursors
	Summary of Cursor Positioning

	Chapter 6: Dynamic OpenSQL
	The SQLDA
	Structure of the SQLDA
	Including the SQLDA in a Program
	Describe Statement and the SQLDA
	Data Type Codes
	The Using Clause

	Dynamic OpenSQL Statements
	Execute Immediate Statement
	Prepare and Execute Statements
	Describe Statement

	Executing a Dynamic Non-select Statement
	Using Execute Immediate to Execute a Non-select Statement
	Preparing and Executing a Non-select Statement

	Executing a Dynamic Select Statement
	When the Result Column Data Types are Known
	When the Result Column Data Types are Unknown
	Preparing and Describing the Select Statement
	Analyzing the Sqlvar Elements
	Executing the Select with Execute Immediate
	Using a Cursor to Retrieve the Results

	Chapter 7: OpenSQL Features
	Transactions
	Controlling Transactions
	Committing Transactions
	Aborting Statements and Transactions
	Effects of Aborting Transactions
	Interrupting Transactions

	Retrieving Status Information
	The Dbmsinfo Function
	The Inquire_sql Statement
	The SQL Communications Area (SQLCA)

	Error Handling
	The SQLSTATE Variable
	Local and Generic Errors
	Reading an OpenSQL Error Message
	Displaying an Error Message
	Handling Errors in Embedded Applications
	Obtaining Error Information from the SQLCA
	Trapping Errors Using the Whenever Statement
	Defining an Error Handler
	Obtaining Error Information Using Inquire Statements
	Suppressing Error Messages
	Specifying Program Termination on Errors
	Handling Deadlock
	Non-cursor Template
	Single Cursor Template
	Master/Detail Template

	Multiple Session Connections
	Connecting to Multiple Sessions
	Switching Sessions
	Terminating a Session
	Multiple Sessions and the SQLCA
	Multiple Sessions and the DBMS
	Multiple Session Examples

	Database Procedures
	Creating Database Procedures
	Registering Database Procedures
	Executing Database Procedures

	DBMS Extensions
	The With Clause
	Syntax of the With Clause
	Examples

	Chapter 8: OpenSQL Statements
	SQL Version
	SQL Statements Context
	Extended Statements

	Begin Declare Section
	Syntax
	Description
	Example

	Close
	Syntax
	Description
	Permissions
	Example

	Commit
	Syntax
	Description
	Embedded Usage
	Permissions
	Example

	Connect
	Syntax
	Description
	Permissions
	Examples

	Create Index
	Syntax
	Description
	Embedded Usage
	Example

	Create Table
	Syntax
	Description
	Embedded Usage
	Specifying the Column Names, Data Types, and Lengths
	Using the Create table...as Syntax
	Examples

	Create View
	Syntax
	Description
	Embedded Usage
	Example

	Declare Cursor
	Syntax
	Description
	Examples

	Declare Statement
	Syntax
	Description
	Example

	Declare Table
	Syntax
	Description
	Example

	Delete
	Syntax
	Description
	Embedded Usage
	Non-cursor Delete
	Cursor Delete
	Example

	Describe
	Syntax
	Description

	Direct Execute Immediate
	Syntax
	Description

	Disconnect
	Syntax
	Description
	Examples

	Drop
	Syntax
	Description
	Embedded Usage
	Examples

	End Declare Section
	Syntax
	Description

	Endselect
	Syntax
	Description
	Example

	Execute
	Syntax
	Description
	Examples

	Execute Immediate
	Syntax
	Description
	Example

	Execute Procedure
	Syntax
	Description
	Passing Parameters - Non-Dynamic Version
	Passing Parameters - Dynamic Version
	Permissions
	Locking
	Performance
	Examples

	Fetch
	Syntax
	Description
	Examples

	Help
	Syntax
	Description
	Examples

	Include
	Syntax
	Description
	Examples

	Inquire_sql
	Syntax
	Description
	Types of Inquiries
	Example

	Insert
	Syntax
	Description
	Embedded Usage
	Examples

	Open
	Syntax
	Description
	Examples

	Prepare
	Syntax
	Description
	Example

	Rollback
	Syntax
	Description
	Embedded Usage
	Performance

	Select (interactive)
	Syntax
	Description
	Select Statement Clauses
	Query Evaluation
	The Select Clause
	The From Clause
	Specifying Tables and Views

	The Where Clause
	Simple Where Clauses

	Joins
	Join Relationships
	Subqueries
	The Order by Clause
	The Group by Clause
	The Having Clause
	The Union Clause
	Examples

	Select (embedded)
	Syntax
	Description
	Non-Cursor Select
	Select Loops
	Retrieving Values into Host Language Variables
	Host Language Variables in the Union Clause
	Repeated Queries
	Cursor Select
	Error Handling
	Embedded Usage
	Examples

	Set
	Syntax
	Description
	The Set Autocommit Option

	Set_sql
	Syntax
	Description

	Update
	Syntax
	Description
	Embedded Usage
	Cursor Updates
	Examples

	Whenever
	Syntax
	Description
	Examples

	Chapter 9: Extended Statements
	Create Schema
	Syntax
	Description
	Restrictions
	Embedded Usage
	Permissions
	Example

	Create Table (extended)
	Syntax
	Description
	Column Specifications
	Column Defaults and Nullability
	Default Values
	Nullability

	Constraints
	Using "Create table...as Select"
	Embedded Usage
	Permissions
	Examples

	Grant
	Syntax
	Description
	The Grant All Privileges Option
	The Grant Option
	Embedded Usage
	Permissions
	Examples

	Revoke
	Syntax
	Description
	Revoking the Grant Option
	Restrict versus Cascade
	Embedded Usage
	Permissions
	Example

	Select
	Syntax

	Chapter 10: OpenSQL Standard Catalogs
	Standard Catalog Interface
	The iidbcapabilities Catalog
	The iidbconstants Catalog
	The iitables Catalog
	The iicolumns Catalog
	The iiphysical_tables Catalog
	The iiviews Catalog
	The iiindexes Catalog
	The iiindex_columns Catalog
	The iialt_columns Catalog
	The iistats Catalog
	The iihistograms Catalog
	The iiprocedures Catalog
	The iiregistrations Catalog
	The iisynonyms Catalog

	Standard Catalogs
	Mandatory Catalogs with Entries Required
	Mandatory Catalogs without Entries Required

	Appendix A: Keywords
	Keyword List
	ISO SQL Keywords

	Appendix B: Terminal Monitor
	Accessing the Terminal Monitor
	The Query Buffer
	The Terminal Monitor Commands
	Messages and Prompts
	Character Input and Output
	Help
	Aborting the Editor (VMS only)

	Appendix C: Generic Error Codes
	SQLSTATE Values
	Generic Error Codes
	Generic Error Data Exception Subcodes
	SQLSTATE and Equivalent Generic Errors

	Index

