
CA-ADS®
Reference

15.0

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

Second Edition, October 2001

 2001 Computer Associates International, Inc.
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

How to Use This Manual . xiii

Volume 1. CA-ADS Reference

Chapter 1. Introduction to CA-ADS . 1-1
1.1 What is CA-ADS? . 1-3
1.2 What CA-ADS does . 1-4
1.3 Creating a CA-ADS application . 1-5
1.4 Tools used to develop an application . 1-7

1.4.1 The CA-ADS application compiler (ADSA) 1-7
1.4.2 Mapping facilities (MAPC and the Batch Compiler/Utility) 1-9
1.4.3 CA-ADS dialog compilers (ADSC and ADSOBCOM) 1-10
1.4.4 IDD menu facility and online IDD 1-12
1.4.5 The CA-ADS runtime system . 1-13

1.5 CA-ADS screens . 1-14
1.5.1 Action bar . 1-15
1.5.2 Action bar actions . 1-17

1.6 Checkout and release procedures . 1-28
1.6.1 How to check out or release an entity 1-28
1.6.2 Listing checkouts (ADSL) . 1-30
1.6.3 Modifying checkouts (ADSM) . 1-31

1.7 CA-ADS help facility . 1-32

Chapter 2. CA-ADS Application Compiler (ADSA) 2-1
2.1 Overview . 2-3
2.2 Application compiler session . 2-4

2.2.1 Invoking the application compiler . 2-4
2.2.2 Sequencing through application compiler screens 2-7
2.2.3 Suspending a session . 2-10
2.2.4 Terminating a session . 2-10

2.3 Application compiler screens . 2-11
2.3.1 Main menu . 2-11
2.3.2 General Options screen—Page 1 . 2-14
2.3.3 General Options screen—Page 2 . 2-16
2.3.4 Response/Function List screen . 2-19
2.3.5 Response Definition screen . 2-23
2.3.6 Function Definition (Dialog) screen 2-27
2.3.7 Function Definition (Program) screen 2-30
2.3.8 Function Definition (Menu) screen 2-32
2.3.9 Global Records screen . 2-37
2.3.10 Task Codes screen . 2-39

Chapter 3. CA-ADS Dialog Compiler (ADSC) 3-1
3.1 Overview . 3-3
3.2 Dialog compiler session . 3-4

3.2.1 Invoking the dialog compiler . 3-4

Contents iii

3.2.2 Sequencing through dialog compiler screens 3-5
3.2.3 Suspending a session . 3-8
3.2.4 Terminating a session . 3-9

3.3 Dialog compiler screens . 3-10
3.3.1 Main menu . 3-10
3.3.2 Options and Directives screen . 3-13
3.3.3 Map Specifications screen . 3-17
3.3.4 Database Specifications screen . 3-20
3.3.5 Records and Tables screen . 3-23
3.3.6 Process Modules screen . 3-25

Chapter 4. CA-ADS Runtime System . 4-1
4.1 Initiating the CA-ADS runtime system . 4-3

4.1.1 How to define runtime tasks . 4-3
4.1.2 How to start a CA-ADS application . 4-4

4.2 Runtime menu and help screens . 4-8
4.2.1 Menu screens . 4-8
4.2.2 Site-defined menu maps . 4-9
4.2.3 System-defined menu maps . 4-10
4.2.4 Application help screen . 4-16

4.3 Runtime flow of control . 4-19
4.3.1 Effects of automatic editing on flow of control 4-22

4.4 Message prefixes . 4-23
4.5 CA-ADS tasks, run units, and transactions 4-24

4.5.1 Run units and database access . 4-25
4.5.2 Extended run units . 4-25

4.6 Dialog Abort Information screen . 4-28
4.7 Debugging a dialog . 4-32
4.8 Linking From CA-ADS to CA-OLQ . 4-33

4.8.1 Linking to CA-OLQ . 4-33
4.8.2 Passing syntax to CA-OLQ . 4-33

4.9 Linking built-in functions with the runtime system 4-34
4.9.1 Linking system-supplied built-in functions 4-34
4.9.2 Linking user-written built-in functions 4-39

4.10 Managing storage . 4-40
4.10.1 Adjusting record compression . 4-40
4.10.2 Calculating RBB storage . 4-40
4.10.3 Writing resources to scratch records 4-41
4.10.4 Using XA storage . 4-42

Chapter 5. Introduction to Process Language 5-1
5.1 Overview . 5-3
5.2 Process modules . 5-5

5.2.1 Creating process modules . 5-5
5.2.2 Adding process modules to dialogs . 5-5
5.2.3 Executing process modules . 5-5

5.3 Process commands . 5-7
5.3.1 Constructing commands . 5-7
5.3.2 Coding considerations . 5-8

5.4 Data types . 5-10
5.4.1 Conversion between data types . 5-16

iv CA-ADS Reference

Chapter 6. Arithmetic Expressions . 6-1
6.1 Overview . 6-3
6.2 Syntax . 6-4
6.3 Evaluation of arithmetic expressions . 6-5
6.4 Coding considerations . 6-6

Chapter 7. Built-in Functions . 7-1
7.1 Overview . 7-3

7.1.1 Invocation names . 7-3
7.1.2 Built-in function values . 7-4
7.1.3 Coding parameters . 7-4

7.2 User-defined built-in functions . 7-5
7.3 System-supplied functions . 7-6

7.3.1 Arithmetic functions . 7-6
7.3.2 Date functions . 7-6
7.3.3 String functions . 7-7
7.3.4 Trailing-sign functions . 7-8
7.3.5 Trigonometric functions . 7-9

7.4 ABSOLUTE-VALUE . 7-11
7.5 ARC COSINE . 7-12
7.6 ARC SINE . 7-13
7.7 ARC TANGENT . 7-14
7.8 CONCATENATE . 7-15
7.9 COSINE . 7-16
7.10 DATECHG . 7-17
7.11 DATEDIF . 7-20
7.12 DATEOFF . 7-21
7.13 EXTRACT . 7-23
7.14 FIX . 7-24
7.15 GOODDATE . 7-25
7.16 GOODTRAILING . 7-26
7.17 INITCAP . 7-27
7.18 INSERT . 7-28
7.19 INVERT-SIGN . 7-30
7.20 LEFT-JUSTIFY . 7-31
7.21 LIKE . 7-32
7.22 LOGARITHM . 7-34
7.23 MODULO . 7-35
7.24 NEXT-INT-EQHI . 7-36
7.25 NEXT-INT-EQLO . 7-37
7.26 NUMERIC . 7-38
7.27 RANDOM-NUMBER . 7-40
7.28 REPLACE . 7-42
7.29 RIGHT-JUSTIFY . 7-44
7.30 SIGN-VALUE . 7-45
7.31 SINE . 7-46
7.32 SQUARE-ROOT . 7-47
7.33 STRING-INDEX . 7-48
7.34 STRING-LENGTH . 7-49
7.35 STRING-REPEAT . 7-50

Contents v

7.36 SUBSTRING . 7-51
7.37 TANGENT . 7-53
7.38 TODAY . 7-54
7.39 TOLOWER . 7-55
7.40 TOMORROW . 7-56
7.41 TOUPPER . 7-57
7.42 TRAILING-TO-ZONED . 7-58
7.43 TRANSLATE . 7-59
7.44 VERIFY . 7-61
7.45 WEEKDAY . 7-62
7.46 WORDCAP . 7-65
7.47 YESTERDAY . 7-66
7.48 ZONED-TO-TRAILING . 7-67

Chapter 8. Conditional Expressions . 8-1
8.1 Overview . 8-3
8.2 General considerations . 8-4

8.2.1 Syntax for conditional expressions . 8-4
8.3 Batch-control event condition . 8-6
8.4 Command status condition . 8-7
8.5 Comparison condition . 8-10
8.6 Cursor position condition . 8-12
8.7 Dialog execution status condition . 8-14
8.8 Environment status condition . 8-16
8.9 Level-88 condition . 8-17
8.10 Map field status condition . 8-18
8.11 Map paging status conditions . 8-22
8.12 Set status condition . 8-25
8.13 Arithmetic and assignment command status condition 8-27

Chapter 9. Constants . 9-1
9.1 Overview . 9-3
9.2 Figurative constants . 9-4
9.3 Graphic literals . 9-6
9.4 Multibit binary constants . 9-7
9.5 Nonnumeric literals . 9-8
9.6 Numeric literals . 9-9

Chapter 10. Error Handling . 10-1
10.1 Overview . 10-3
10.2 The autostatus facility . 10-4
10.3 Error expressions . 10-6
10.4 The ALLOWING clause . 10-7
10.5 Status definition records . 10-9

Chapter 11. Variable Data Fields . 11-1
11.1 Overview . 11-3
11.2 User-defined data field names . 11-4
11.3 System-supplied data field names . 11-6
11.4 Entity names . 11-12

vi CA-ADS Reference

Chapter 12. Introduction to Process Commands 12-1
12.1 Overview . 12-3
12.2 Summary of process commands . 12-4
12.3 INCLUDE . 12-8

Chapter 13. Arithmetic and Assignment Commands 13-1
13.1 Overview . 13-3
13.2 General considerations . 13-4

13.2.1 Numeric fields . 13-4
13.2.2 EBCDIC and DBCS fields . 13-4
13.2.3 Arithmetic and assignment command status condition 13-5

13.3 Arithmetic commands . 13-6
13.3.1 ADD . 13-6
13.3.2 COMPUTE . 13-7
13.3.3 DIVIDE . 13-8
13.3.4 MULTIPLY . 13-10
13.3.5 SUBTRACT . 13-11

13.4 Assignment command . 13-13
13.4.1 MOVE . 13-14

Chapter 14. Conditional Commands . 14-1
14.1 Overview . 14-3
14.2 EXIT . 14-4
14.3 IF . 14-5
14.4 NEXT . 14-8
14.5 WHILE . 14-10

Volume 2. CA-ADS Reference

Chapter 15. Control Commands . 15-1
15.1 Overview . 15-3
15.2 General considerations . 15-5

15.2.1 Application thread . 15-5
15.2.2 Operative and nonoperative dialogs 15-6
15.2.3 Application levels . 15-6
15.2.4 Mainline dialog . 15-6
15.2.5 The menu stack . 15-7
15.2.6 Database currencies . 15-7

15.3 CONTINUE . 15-10
15.4 DISPLAY . 15-12
15.5 EXECUTE NEXT FUNCTION . 15-17
15.6 INVOKE . 15-19
15.7 LEAVE . 15-22
15.8 LINK . 15-24
15.9 READ TRANSACTION . 15-30
15.10 RETURN . 15-31
15.11 TRANSFER . 15-34
15.12 WRITE TRANSACTION . 15-36

Contents vii

Chapter 16. Database Access Commands 16-1
16.1 Overview . 16-3
16.2 Navigational DML . 16-5

16.2.1 Overview of navigational database access 16-5
16.2.2 Use of native VSAM data sets . 16-7
16.2.3 Record locking . 16-9
16.2.4 Suppression of record retrieval locks 16-10
16.2.5 Overview of ACCEPT . 16-12
16.2.6 ACCEPT DB-KEY FROM CURRENCY 16-12
16.2.7 ACCEPT DB-KEY RELATIVE TO CURRENCY 16-14
16.2.8 ACCEPT PAGE-INFO . 16-16
16.2.9 ACCEPT STATISTICS . 16-17
16.2.10 BIND PROCEDURE . 16-19
16.2.11 COMMIT . 16-20
16.2.12 CONNECT . 16-22
16.2.13 DISCONNECT . 16-25
16.2.14 ERASE . 16-27
16.2.15 Overview of FIND/OBTAIN . 16-30
16.2.16 FIND/OBTAIN CALC . 16-31
16.2.17 FIND/OBTAIN CURRENT . 16-33
16.2.18 FIND/OBTAIN DB-KEY . 16-34
16.2.19 FIND/OBTAIN OWNER . 16-37
16.2.20 FIND/OBTAIN WITHIN SET/AREA 16-38
16.2.21 FIND/OBTAIN WITHIN SET USING SORT KEY 16-42
16.2.22 GET . 16-44
16.2.23 KEEP . 16-46
16.2.24 KEEP LONGTERM . 16-47
16.2.25 MODIFY . 16-53
16.2.26 READY . 16-55
16.2.27 RETURN DB-KEY . 16-57
16.2.28 ROLLBACK . 16-59
16.2.29 STORE . 16-60

16.3 Logical Record Facility commands . 16-64
16.3.1 Overview of LRF database access 16-64
16.3.2 WHERE clause . 16-65
16.3.3 Conditional expression . 16-65
16.3.4 Comparison expression . 16-66
16.3.5 ERASE . 16-68
16.3.6 MODIFY . 16-69
16.3.7 OBTAIN . 16-70
16.3.8 ON command . 16-71
16.3.9 STORE . 16-75

Chapter 17. Map Commands . 17-1
17.1 Overview . 17-3
17.2 Map modification commands . 17-4
17.3 Attributes Command . 17-5
17.4 CLOSE . 17-10
17.5 MODIFY MAP . 17-12
17.6 Pageable maps . 17-21

17.6.1 Areas of a pageable map . 17-21

viii CA-ADS Reference

17.6.2 Map paging session . 17-22
17.6.3 Map paging dialog options . 17-27
17.6.4 GET DETAIL . 17-28
17.6.5 PUT DETAIL . 17-30
17.6.6 Creating or modifying a detail occurrence of a pageable map 17-32
17.6.7 Specifying a numeric value associated with an occurrence 17-32
17.6.8 Specifying a message to appear in the message field of an

occurrence . 17-32

Chapter 18. Queue and Scratch Management Commands 18-1
18.1 Overview . 18-3
18.2 Queue records . 18-5
18.3 DELETE QUEUE . 18-7
18.4 GET QUEUE . 18-9
18.5 PUT QUEUE . 18-12
18.6 Scratch records . 18-15

18.6.1 CA-ADS usage . 18-15
18.6.2 CA-ADS/Batch considerations . 18-16

18.7 DELETE SCRATCH . 18-17
18.8 GET SCRATCH . 18-19
18.9 PUT SCRATCH . 18-22

Chapter 19. Subroutine Control Commands 19-1
19.1 Overview . 19-3
19.2 CALL . 19-4
19.3 DEFINE . 19-5
19.4 GOBACK . 19-6

Chapter 20. Utility Commands . 20-1
20.1 Overview . 20-3
20.2 ABORT . 20-4
20.3 ACCEPT . 20-8
20.4 INITIALIZE RECORDS . 20-10
20.5 SNAP . 20-11
20.6 TRACE . 20-13
20.7 WRITE PRINTER . 20-14
20.8 WRITE TO LOG/OPERATOR . 20-18

Chapter 21. Cooperative Processing Commands 21-1
21.1 Using SEND/RECEIVE commands . 21-3

21.1.1 How cooperative processing works 21-3
21.2 Sample cooperative application . 21-4

21.2.1 Program A: Client listing (PC) . 21-5
21.2.2 Dialog B: Server listing (Mainframe) 21-7

21.3 SEND/RECEIVE commands . 21-9
21.4 ALLOCATE . 21-10
21.5 CONFIRM . 21-13
21.6 CONFIRMED . 21-14
21.7 CONTROL SESSION . 21-15
21.8 DEALLOCATE . 21-17

Contents ix

21.9 PREPARE-TO-RECEIVE . 21-19
21.10 RECEIVE-AND-WAIT . 21-20
21.11 REQUEST-TO-SEND . 21-21
21.12 SEND-DATA . 21-22
21.13 SEND-ERROR . 21-24
21.14 Design guidelines . 21-25
21.15 Understanding conversation states . 21-26

21.15.1 Conversation states in a successful data transfer 21-28
21.16 Testing APPC status codes and system fields 21-30

21.16.1 Status codes . 21-30
21.16.2 System fields . 21-30
21.16.3 When APPC status codes and system field values are returned . . 21-30
21.16.4 APPCCODE and APPCERC . 21-31
21.16.5 System fields . 21-34

Chapter 22. OSCaR Commands . 22-1
22.1 OSCaR command syntax . 22-4

22.1.1 OPEN . 22-4
22.1.2 SEND . 22-5
22.1.3 CLOSE . 22-6
22.1.4 RECEIVE . 22-6

22.2 Sample OSCaR application . 22-7
22.3 OSCaR to APPC Mapping . 22-9

Appendix A. System Records . A-1
A.1 Overview . A-3
A.2 ADSO-APPLICATION-GLOBAL-RECORD A-4
A.3 ADSO-APPLICATION-MENU-RECORD A-15

Appendix B. CA-ADS Dialog and Application Reporter B-1
B.1 Overview . B-3
B.2 Dialog reports . B-4
B.3 Application reports . B-15
B.4 Control statements . B-16

B.4.1 APPLICATIONS . B-16
B.4.2 DIALOGS . B-18
B.4.3 LIST . B-21
B.4.4 SEARCH . B-22

B.5 SYSIDMS parameter file . B-24
B.6 JCL and commands to run reports . B-25

Appendix C. Dialog Statistics . C-1
C.1 Overview . C-3
C.2 Collecting selected statistics . C-4
C.3 Enabling dialog statistics . C-8
C.4 Selecting dialogs . C-9
C.5 Setting a checkpoint interval . C-10
C.6 Collecting and writing statistics . C-11
C.7 Statistics reporting . C-12

Appendix D. Application and Dialog Utilities D-1

x CA-ADS Reference

D.1 Overview . D-3
D.2 ADSOBCOM . D-4

D.2.1 Standard control statements . D-4
D.2.2 Special control statements . D-5
D.2.3 SIGNON . D-5
D.2.4 COMPILE . D-6
D.2.5 DECOMPILE . D-8
D.2.6 Dialog-expression . D-10
D.2.7 JCL and commands . D-30

D.2.7.1 OS/390 JCL . D-30
D.2.7.2 VSE/ESA JCL . D-31
D.2.7.3 VM/ESA commands . D-33
D.2.7.4 BS2000/OSD JCL . D-35

D.3 ADSOBSYS . D-37
D.3.1 Control statements . D-37
D.3.2 SYSTEM statement . D-38
D.3.3 JCL and commands . D-39

D.3.3.1 OS/390 JCL . D-39
D.3.3.2 VSE/ESA JCL . D-42
D.3.3.3 VM/ESA commands . D-44
D.3.3.4 BS2000/OSD JCL . D-46

D.4 ADSOBTAT . D-48
D.4.1 Control statements . D-49
D.4.2 JCL and commands . D-51

D.4.2.1 OS/390 JCL . D-51
D.4.2.2 VSE/ESA JCL . D-52
D.4.2.3 VM/ESA commands . D-54
D.4.2.4 BS2000/OSD JCL . D-55

D.5 ADSOTATU . D-57
D.5.1 TAT update utility screen . D-58

Appendix E. Activity Logging for a CA-ADS Dialog E-1
E.1 Overview . E-3
E.2 Data dictionary organization . E-4
E.3 Activity logging record formats . E-5

Appendix F. Built-in Function Support . F-1
F.1 Overview . F-3
F.2 Internal structure of built-in functions . F-4

F.2.1 Master function table . F-5
F.2.2 Model XDE module . F-6
F.2.3 XDEs and VXDEs . F-8
F.2.4 Processing program modules . F-17
F.2.5 Runtime processing of built-in functions F-24

F.3 Assembler macros . F-27
F.3.1 #EFUNMST . F-27
F.3.2 RHDCEVBF . F-28
F.3.3 #EFUNMOD . F-31

F.4 Changing invocation names . F-40
F.5 Creating user-defined built-in functions F-41

Contents xi

F.5.1 Steps for generating a user-defined built-in function F-41
F.5.2 LRF considerations for user-defined built-in functions F-42
F.5.3 Calling a user-defined built-in function F-42

Appendix G. Security Features . G-1
G.1 Overview . G-3
G.2 CA-ADS compiler security . G-4
G.3 CA-ADS application security . G-5

G.3.1 Response security . G-5
G.3.2 Signon security . G-6

Appendix H. Debugging a CA-ADS Dialog H-1
H.1 Creating a symbol table . H-4
H.2 Trace facility . H-5
H.3 Online debugger . H-7

Index . X-1

xii CA-ADS Reference

How to Use This Manual

How to Use This Manual xiii

What this manual is about

This manual is a reference for Application Development System (CA-ADS)
development tools and facilities. It provides reference information appropriate for
application developers defining online and batch applications.

The manual is divided into two volumes.

Volume 1:

■ Introduces CA-ADS and provides information about tools used to develop
applications

■ Introduces the process language and error-handling facility used in developing
CA-ADS applications

Volume 2:

■ Presents syntax and examples of process language command statements used to
construct processing routines

■ Presents detailed information about facilities and utilities available to the CA-ADS
application developer

New users may find it helpful to familiarize themselves with the CA-ADS User Guide
before relying solely on this reference manual. Experienced users can use this
reference as needed. Developers using CA-ADS/Batch extensions to CA-ADS to
define batch applications should refer to CA-ADS Batch User Guide. Syntax for
developing batch applications is included in this reference manual.

xiv CA-ADS Reference

 Related documentation

■ CA-ADS Quick Reference

■ CA-ADS User Guide

■ CA-IDMS Mapping Facility

■ CA-IDMS Mapping Facility quick Reference

■ IDD DDDL Reference

■ CA-ADS DSECT Reference

■ CA-IDMS SQL Programming

■ CA-ADS Batch User Guide

■ CA-IDMS Security Administration

■ CA-IDMS System Generation

How to Use This Manual xv

Understanding Syntax Diagrams

Look at the list of notation conventions below to see how syntax is presented in this
manual. The example following the list shows how the conventions are used.

UPPERCASE

OR

SPECIAL CHARACTERS

Represents a required keyword, partial keyword,
character, or symbol that must be entered
completely as shown.

lowercase Represents an optional keyword or partial keyword
that, if used, must be entered completely as
shown.

underlined lowercase Represents a value that you supply.

← Points to the default in a list of choices.

lowercase bold

Represents a portion of the syntax shown in
greater detail at the end of the syntax or elsewhere
in the document.

��────────────────────── Shows the beginning of a complete piece of
syntax.

──────────────────────�� Shows the end of a complete piece of syntax.

──────────────────────� Shows that the syntax continues on the next line.

�────────────────────── Shows that the syntax continues on this line.

──────────────────────�─ Shows that the parameter continues on the next
line.

─�────────────────────── Shows that a parameter continues on this line.

�── parameter ─────────� Shows a required parameter.

 �─┬─ parameter ─┬─────�

└─ parameter ─┘
Shows a choice of required parameters. You must
select one.

 �─┬─────────────┬─────�

└─ parameter ─┘
Shows an optional parameter.

 �─┬─────────────┬─────�

├─ parameter ─┤

└─ parameter ─┘

Shows a choice of optional parameters. Select
one or none.

 ┌─────────────┐

 �─(─ parameter ─┴─────�
Shows that you can repeat the parameter or
specify more than one parameter.

┌───── , ─────┐

 �─(─ parameter ─┴─────�
Shows that you must enter a comma between
repetitions of the parameter.

xvi CA-ADS Reference

Sample Syntax Diagram

How to Use This Manual xvii

xviii CA-ADS Reference

 Volume 1. CA-ADS Reference

 CA-ADS Reference

Chapter 1. Introduction to CA-ADS

1.1 What is CA-ADS? . 1-3
1.2 What CA-ADS does . 1-4
1.3 Creating a CA-ADS application . 1-5
1.4 Tools used to develop an application . 1-7

1.4.1 The CA-ADS application compiler (ADSA) 1-7
1.4.2 Mapping facilities (MAPC and the Batch Compiler/Utility) 1-9
1.4.3 CA-ADS dialog compilers (ADSC and ADSOBCOM) 1-10
1.4.4 IDD menu facility and online IDD 1-12
1.4.5 The CA-ADS runtime system . 1-13

1.5 CA-ADS screens . 1-14
1.5.1 Action bar . 1-15
1.5.2 Action bar actions . 1-17

1.6 Checkout and release procedures . 1-28
1.6.1 How to check out or release an entity 1-28
1.6.2 Listing checkouts (ADSL) . 1-30
1.6.3 Modifying checkouts (ADSM) . 1-31

1.7 CA-ADS help facility . 1-32

Chapter 1. Introduction to CA-ADS 1-1

1-2 CA-ADS Reference

1.1 What is CA-ADS?

1.1 What is CA-ADS?

The Application Development System (CA-ADS) is a tool used to expedite the writing
and testing of modular applications. Activities such as flow-of-control processing, data
storage definition, data verification, editing, error handling, terminal input and output,
menu creation, and menu display are specified by using a series of screens instead of
conventional detailed code.

CA-ADS can be used to develop online or batch applications. The following overview
provides general information about each environment. Detailed information about
CA-ADS facilities is contained in the subsequent sections of this manual.

Chapter 1. Introduction to CA-ADS 1-3

1.2 What CA-ADS does

1.2 What CA-ADS does

Develop a prototype Using a series of CA-ADS online development tools, you can
create an early version of an application without writing any code.: In this way, the
structure of the online interactions and screen displays are available for review and
modification before coding occurs.

Process logic and other enhancements can be added to the application prototype at any
time. Process logic includes:

■ Modules written in traditional programming languages

■ Modules developed by using the Automatic System Facility (ASF)

■ Modules already created with CA-ADS

Process and retrieve data: You can manipulate data from:

■ A CA-IDMS/DB database

 ■ Online entries

■ VSAM data sets defined to the subschema

■ External sequential files (for ADS/Batch only)

Edit input records: Input records can be automatically edited and verified using
the editing and error-handling facilities available to CA-ADS applications.

Batch applications also use suspense files to store erroneous input records found at
runtime. Suspense file records can be corrected and resubmitted at a later time.

Define and update multiple application components: Using the batch
facilities of CA-ADS, updates to multiple application components, such as record
definitions, can be accomplished at one time.

System utilities and facilities: System utilities and facilities allow application
developers to:

■ Transfer between CA-ADS development tools

 ■ Debug applications

■ Monitor runtime performance and resource usage

Options include:

■ Archiving or printing log file information

■ Obtaining reports that document CA-ADS applications and their components

1-4 CA-ADS Reference

1.3 Creating a CA-ADS application

1.3 Creating a CA-ADS application

A CA-ADS application is based on an analysis of data and user requirements. This
analysis forms the basis for determining the processing and the flow of control
between processing activities required by the application. Once the blueprint, or
design, of the application is created, the components of the application are defined and
created using screen-driven development tools.

Procedure: Online application components can be developed in any order.
However, the following sequence is typically used:

1. Develop an application structure diagram based on user responses and the paths
between those responses.

2. Develop an application prototype by:

■ Defining the flow of control between processing activities

■ Defining the screens that the application uses to communicate with the end
user

■ Defining the dialogs that represent application transactions and relate the
screens to the application structure

3. Execute the application prototype.

4. Modify the application prototype, as needed.

5. Add process logic that performs the custom processing required by each dialog in
the application.

6. Execute and test the application.

7. Put the approved application into production use.

The diagram below shows the steps and the online tools used for creating an online
application. The application can be executed throughout the application development
cycle. The online tools are discussed later in this section.

Typical steps when creating a CA-ADS application

Chapter 1. Introduction to CA-ADS 1-5

1.3 Creating a CA-ADS application

 ┌─ ┌───────────────────────────────────┐

Analyze │ │ - Data analysis │

the │ │ - User requirements │

system │ │ - System requirements │

 └─ └───────────────┬───────────────────┘

 │

 ┌─ ┌───────────────↓───────────────────┐

│ │ Define the application structure │

 │ │ (Online tool: ADSA) │

 │ └───────────────┬───────────────────┘

 │ │

 Develop an │ ┌───────────────↓──────────────────┐

executable │ │ Define the prototype maps │

 prototype │ │ (Online tool: MAPC) │

 │ └───────────────┬──────────────────┘

 │ │

 │ ┌───────────────↓──────────────────┐

│ │ Define the prototype dialogs │

 │ │ (Online tool: ADSC) │

 └─ └───────────────┬──────────────────┘

 │

 ┌─ ┌───────────────↓──────────────────┐

│ │ Create the process module │

 │ │ (Online tool: IDD) │

Develop │ └───────────────┬──────────────────┘

 the test │ │

 application │ ┌───────────────↓──────────────────┐

│ │ Enhance maps and dialogs │

 │ │ (Online tools: MAPC, IDD) │

 └─ └───────────────┬──────────────────┘

 │

 ┌───────────────↓──────────────────┐

│ Implement production application │

 │ │

 └──────────────────────────────────┘

1-6 CA-ADS Reference

1.4 Tools used to develop an application

1.4 Tools used to develop an application

The following online tools are used to develop CA-ADS applications:

■ The CA-ADS application compiler (ADSA) — Defines the executable
application structure

■ The CA-IDMS mapping facility (MAPC) — Defines maps that establish
preformatted screens for online processing

■ The CA-ADS dialog compiler (ADSC) — Defines dialogs that consist of map,
subschema, and process-module definitions

■ The Integrated Data Dictionary (IDD) — Creates data definitions, edit and code
tables, modules of process code, and declaration modules

■ The runtime system — Executes CA-ADS applications at any stage in the
applications' life cycle

■ The transfer control facility (TCF) — Allows the application developer to
transfer control between the online tools at definition time

Each development tool, except for the transfer control facility, is briefly discussed
below. Detailed information about the development tools is presented later in this
manual.

�� Details about the transfer control facility are contained in CA-IDMS Transfer
Control Facility.

1.4.1 The CA-ADS application compiler (ADSA)

ADSA screens prompt for information that defines the application structure and
runtime flow of control. When the definition is completed and compiled, CA-ADS
stores the resulting load module in the data dictionary for use at runtime.

Functions: Runtime flow of control is based on the analysis of the interactions
(functions) necessary to conduct the work of the application. In a CA-ADS
application, a function can be any one of the function types listed in the table below.
Functions are the structural units of an application. They are defined by using ADSA
screens.

Typically, an online application contains menu functions, menu/dialog functions, dialog
functions, and many of the system functions. Program functions are less often used.

Chapter 1. Introduction to CA-ADS 1-7

1.4 Tools used to develop an application

Functions in a CA-ADS application

Function Type What it Does

Dialog Performs a variety of processing activities, such
as data retrieval and update

Program Performs processing specified in user-written
COBOL, PL/I, or Assembler programs

Menu Displays a system-defined menu screen

Performs standard menu processing activities at
runtime

Menu/dialog Displays either a system-defined or a
site-defined menu screen

Performs standard processing and any additional
site-defined processing supplied by an
associated dialog

System Functions Perform predefined activities

 ESCAPE Bypasses a function even though the current
screen contains errors

 FORWARD/BACKWARD Pages forward or backward on menu maps

 HELP Displays the runtime Application Help screen

 POP Returns to the last menu or menu/dialog
function

 POPTOP Returns to the first menu or the menu/dialog
function

 QUIT Terminates application processing

 RETURN Returns to the next higher level function in the
sequence of operative functions

 SIGNON/SIGNOFF Signs on to or off from CA-IDMS/DC or
CA-IDMS/UCF from within the application

 TOP Returns to the highest level function in the
sequence of operative functions

1-8 CA-ADS Reference

1.4 Tools used to develop an application

Responses: The path between two functions is called a response. Responses
define all possible flow of control in the application. The following diagram shows
the functions and responses of a sample employee information application that stores
and displays employee information.

Functions and responses in a sample CA-ADS application

1.4.2 Mapping facilities (MAPC and the Batch Compiler/Utility)

Online: CA-IDMS mapping facility (MAPC) screens prompt for specifications that
define the screen format (map) for a CA-ADS application. Data editing, data
conversion, and error-handling criteria can also be specified. The specified criteria are
automatically applied to data processed by the map at runtime.

Batch: Alternatively, the batch compiler and utility allow the developer to define
and compile maps in batch definition mode. These batch tools are particularly useful
when several maps require modification and recompilation.

�� More information about the online mapping facility and the batch compiler and
utility can be found in CA-IDMS Mapping Facility.

Chapter 1. Introduction to CA-ADS 1-9

1.4 Tools used to develop an application

Defining the screen format: A map in an online application defines the screen
format displayed to an end user at runtime. The fields displayed on the screen allow
the end user to enter or modify data. The data is then processed according to the
instructions contained in the processing logic of the dialog.

The diagram below shows the sequence followed when a map is displayed at runtime.
The DISPLAY statement in the processing logic accesses the map load module that is
stored in the data dictionary, causing the map to be displayed on the screen. Data
entered on the screen is then processed according to the instructions contained in the
dialog processing code.

Runtime display screen defined by online map

1.4.3 CA-ADS dialog compilers (ADSC and ADSOBCOM)

Dialog: ADSC brings various application components together into a modular entity
(dialog) that is executed at runtime. The table below lists the components of a dialog
and describes what each component does. ADSC screens prompt for names of dialog
components and other information needed to define the dialog for an online or batch
application.

ADSOBCOM is a utility that can be used to define and recompile several dialogs in
batch mode. This capability is particularly useful when dialogs need to be recompiled
because maps, processes, subschemas, or records associated with several dialogs are
modified.

1-10 CA-ADS Reference

1.4 Tools used to develop an application

Components of a dialog

In an online application, a dialog interacts with the end user by displaying a screen
and allowing the user to view and input information.

Interaction between dialog and end user at runtime: The diagram below
shows the interaction between the dialog and the end user at runtime. In the
EMPLIST dialog, the premap process generates a list of employee names. The screen
defined by the EMPLISTM map displays a page of names. The user can respond by
paging backward or forward by pressing PF7 or PF8. Pressing PF5 accesses the
MODIFY EMPLOYEE function.

Dialog component What it does

Map Provides the means of communication between
one data source and the application

Subschema Provides the dialog's view of the database

Access module Provides optimized access to an SQL-defined
database

Records Describe the data used by the dialog and map

 Subschema records Allow the dialog to read and write information
to the database

Dialog work records Provide temporary storage to be used by dialogs
and maps

Process modules Define the processing the dialog performs at
runtime

 Premap process
(optional, maximum of one

 per dialog)

Defines processing that prepares the screen for
display

 Response process
(optional, any number per

 dialog)

Defines processing that occurs after the end user
presses a control key (such as Enter or PF1) in
response to the dialog's map

 Declaration module
(optional, maximum of one

 per dialog)

Specifies SQL cursor and WHENEVER
declarations (for SQL error processing)

�� See CA-IDMS SQL Programming.

Chapter 1. Introduction to CA-ADS 1-11

1.4 Tools used to develop an application

CA-ADS dialog at run time

1.4.4 IDD menu facility and online IDD

The CA Integrated Data Dictionary (IDD) consists of two related online tools, the IDD
menu facility and online IDD. These tools are used to define data and various
CA-ADS application components to the data dictionary.

IDD menu facility screens prompt for all required specifications. Online IDD allows
developers to use Data Dictionary Definition Language (DDDL) statements to define
and modify data dictionary entities.

�� For information about how to use the IDD menu facility and online IDD screens,
see CA-IDMS Online Compiler Text Editor.

�� For details about online IDD and DDDL statements, see the IDD DDDL Reference.

1-12 CA-ADS Reference

1.4 Tools used to develop an application

1.4.5 The CA-ADS runtime system

CA-IDMS/DC and CA-IDMS/UCF: The CA-ADS runtime system is a
CA-IDMS/DC or CA-IDMS/UCF (DC/UCF) task that establishes the application
environment and executes the application components as a series of tasks. Operations
such as building and displaying menus, allocating buffers, initializing data, editing
data, and validating data are automatically performed by the runtime system.

Chapter 1. Introduction to CA-ADS 1-13

1.5 CA-ADS screens

 1.5 CA-ADS screens

CUA-style screens: The dialog (ADSC), map (MAPC), and application (ADSA)
compilers provide Common User Access (CUA) style screens. These screens provide
space for the developer to enter data particular to the dialog, map, or application.
There are key assignments at the bottom of each screen and CUA-style selection by
means of numbers or the "/" character. Screens are consistent across tools with
standard:

 ■ Screen layout

 ■ Terminology

 ■ Commands

 ■ Functions

 ■ Key assignments

The initial screen of each compiler is made up of six areas. These areas are shown on
the screen below and described in the following table.

< =
Add Modify Compile Delete Display Switch

 .___.

CA-ADS Online Dialog Compiler

Computer Associates International, Inc.

 ─

 Dialog name ________

 Dialog version ____

 Dictionary name ________

 Dictionary node ________

 ─

 ─ Screen 1 1. General options

 2. Assign maps

 3. Assign database

 4. Assign records and tables

 5. Assign process modules

 ─

Copyright (C) 1972,2HHH Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1H=Action

L M

Areas of the screen

1-14 CA-ADS Reference

1.5 CA-ADS screens

Area Description

Activity selection
area

Contains an action bar that identifies the actions that can be
taken on the entity and provides pull-down windows to
implement these actions.

Identification area Allows entry of information that uniquely identifies the entity
being worked on: name, version, dictionary name, and
dictionary node.

The dictionary name and node information default to the
values established for the current terminal session.

Screen specification
area

Presents entity definition steps and provides space for the user
to request a specific step.

Message area Presents informational, warning, or error messages.

Command area Allows entry of action bar commands to pull down a window.
The action bar command can be abbreviated to three
characters.

In the case of the SWITCH command, both the command and
the desired task can be entered on the command line, thereby
bypassing the window (for example, SWI OLQ).

Key assignment
area

Presents the valid key choices and the action taken.

 1.5.1 Action bar

The activity selection area of each Main Menu screen is composed of an action bar
containing six actions. Each action on the action bar is associated with a pulldown
window.

Accessing the action bar: You access an item on the action bar in the activity
selection area in one of three ways:

■ Tab to the item and press [Enter]

■ Press [PF10] to move to the action bar and then tab to the item and press [Enter]

■ Type the name of the action on the command line and press [Enter]

Any of these actions results in a pulldown window being opened.

Chapter 1. Introduction to CA-ADS 1-15

1.5 CA-ADS screens

< =
Add Modify Compile Delete Display Switch

 .___.

 Copy from dialog A-ADS Online Dialog Compiler

 Name ________
 Version 1 ter Associates International, Inc.

 F3=Exit

Dialog name JPKD1

Dialog version 1

Dictionary name TSTDICT

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Command ===>

 Enter F1=Help F3=Exit F1H=Action

L M

Pulldown windows: There are six pulldown windows available from the action bar
on the Main Menu screen.

Each of the actions on the action bar is described below.

Use this
window...

To...

Add Check the entity out to the current developer and (optionally) copy
the definition of a currently existing entity.

Modify Check the entity out to the current developer or release the entity.

List the checked-out entities.

Delete Delete either the current changes (since the last compilation) or the
entire entity.

A confirmation window is opened if the option is to delete the entire
entity.

Compile Store the definition in the data dictionary, create a load module, and
present errors.

Display Display summary information (entity size, when built, user-id, etc.).

Browse the entity.

View the runtime image of the entity (for maps only).

Switch Use the transfer control facility (TCF) to transfer control to another
CA-IDMS/DC task (such as IDD, OLQ, etc.).

1-16 CA-ADS Reference

1.5 CA-ADS screens

Leaving the window: Most actions listed in the pulldown windows require that the
developer enter a menu choice or data, and press [Enter].

To leave a pulldown window without entering a number or data, the developer presses
[PF3]

1.5.2 Action bar actions

A description of each of the action items identified in the above table follows.

Add: Specifies that a new entity is being added.

Using the Add action, the developer can copy an existing entity into the current work
file and give it a new name.

When the application developer specifies an entity name, the compiler ensures that no
entity exists with the specified name and version number and returns the message:

 DC4981H4 DIALOG1 was not found, use the Add action to create or copy the dialog

To request the add operation, the developer must either open the Add window by
moving the cursor to the action bar, or type the word ADD on the command line.

Note: The compiler does not assume that the add operation is requested when it does
not find the entity in the dictionary.

If an entity with the specified name and version number exists, the compiler assumes a
modify operation and returns the following message:

DC4981H2 Currency set for dialog empdemo version 1

When you add an entity, you have explicitly checked it out, and no one else can
access it until you check it in.

�� For more information about checkouts and checkins, see 1.6, “Checkout and release
procedures” later in this chapter.

If another developer owns the entity, or if another entity type has already used the
name, the following error message is issued:

DC4981H3 Currency not established. Dialog is currently checked out

DC4981H7 to user MET on dictionary TESTDCT.

The screen below shows the Add window on the dialog compiler Main Menu.

Chapter 1. Introduction to CA-ADS 1-17

1.5 CA-ADS screens

< =
 Add Modify Compile Delete Display Switch

 .___.

 Copy from dialog A-ADS Online Dialog Compiler

 Name JPKD5___
 Version 1 ter Associates International, Inc.

 F3=Exit

Dialog name JPKD1

Dialog version 1

Dictionary name TSTDICT

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Dialog added using copy request.

 Command ===>

 Enter F1=Help F3=Exit F1H=Action

L M

Modify: Specifies that an existing entity is being modified or, if the specified entity
belongs to a suspended session, that the suspended session is being resumed.

You can resume a session by filling out the entity name. MODIFY CHECKOUT is
the name CA-ADS gives to entities not yet checked out.

�� For more information about checkouts and checkins, see 1.6, “Checkout and release
procedures” later in this chapter.

When the application developer specifies the Modify action, the compiler ensures that
an entity exists with the specified name and version number and returns the message:

DC4981H2 Currency set for dialog empdemo version 1

If the specified entity exists, the compiler retrieves and displays the definition. When
the Compile action is selected, a new load module is created for the entity.

If an entity with the specified name and version number does not exist, Modify is
invalid.

If an entity is currently in use, the name of the owner is displayed. The owner can
release the entity, if desired, without having to compile it and without deleting the
current changes in the work file. To release an entity, the developer chooses item 2,
Release, from the Modify pulldown window. Another developer can then assume
control of the entity by issuing a reserve request.

To see a list of the entities checked out, the developer chooses item 3, List
Checkouts.

1-18 CA-ADS Reference

1.5 CA-ADS screens

Modify is the default for an existing dialog.

The screen below shows the Modify window on the dialog compiler Main Menu.

< =
Add Modify Compile Delete Display Switch

 .___.

 1 1. Checkout Online Dialog Compiler

 2. Release
3. List Checkouts ssociates International, Inc.

 F3=Exit

Dialog name JPKD1

Dialog version 1

Dictionary name TSTDICT

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Command ===>

 Enter F1=Help F3=Exit F1H=Action

L M

Compile: Specifies that the current entity is being compiled.

When the application developer specifies the Compile action, the compiler ensures that
an entity exists with the specified name and version number.

If the specified entity exists, the compiler compiles the entity (including all process
modules in the case of a dialog) and, if the compilation is successful, creates a load
module. The load module is stored in the data dictionary.

Upon compilation, the compiler deletes any queue records saved for a suspended
session of the entity definition.

If an entity with the specified name and version number does not exist, the Compile
action is invalid and an error message is displayed.

If errors are encountered during the compilation process, they are written to a log file
that allows scrolling access and is chosen from the Compile window.

Chapter 1. Introduction to CA-ADS 1-19

1.5 CA-ADS screens

The screen below shows the Compile action on the dialog compiler Main Menu.

< =
Add Modify Compile Delete Display Switch

 .___.

 1 1. Compile log Compiler

2. Display messages
------------------------- nternational, Inc.

 F3=Exit

Dialog name METDLG1

Dialog version 1

Dictionary name TSTDICT

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Command ===>

 Enter F1=Help F3=Exit F1H=Action

L M

When errors are encountered in the compilation process, the application developer
chooses item 2, Display messages, from the Compile action on the action bar.
Messages on the Messages screen indicate where there are errors.

1-20 CA-ADS Reference

1.5 CA-ADS screens

The screen below shows the Messages screen resulting from dialog compilation:

Sample Messages screen

< =
Compiled Process Modules Page 1 of 1

 Dialog METDLGH1 Ver 1

 Name MET-ERROR 1 Commands

 Version HHH1 Type 2 1 Errors

Key _____ Value _ 1. Display

 2. Print

 Name ________________________________ Commands

 Version ____ Type _ Errors

Key _____ Value _ 1. Display

 2. Print

 Name ________________________________ Commands

 Version ____ Type _ Errors

Key _____ Value _ 1. Display

 2. Print

 Name ________________________________ Commands

 Version ____ Type _ Errors

Key _____ Value _ 1. Display

 2. Print

 Type: 1=Declaration 2=Premap 3=Response 4=Default Response

Select a process for Display or Print.

 F1=Help F3=Exit F7=Bkwd F8=Fwd F11=Dialog-level messages

4B7 A IBM H7/62

L M

The Messages screen displays the source statements for a premap or response process
that contains errors in its process code. It also contains other messages encountered
during the compilation of the dialog.

Enter 1, Display, to display a copy of the dialog process source errors.

Chapter 1. Introduction to CA-ADS 1-21

1.5 CA-ADS screens

Sample Dialog Process Source screen

< =
Dialog Process Source Page 1 of 1

 .___.

 <PROCESS> MET-ERROR HHH1

1HH MOBE ZNTRAIL(MYNUMBER) TO WK-PART-CODE

 $

 <E> DC157HH1 INVALID INITIATING KEYWORD FOR COMMAND. STMT FLUSHED.

 2HH DISPLAY.

 .__.

 Module currently displayed: MET-ERROR VERSION: 1

 F3=Exit F5=IDD F7=Bkwd F8=Fwd F11=Next.error

L M

Data dictionary sequence numbers appear to the left of the source statements. If the
listed code includes another process module, the source statements from the included
module are listed after the INCLUDE statement.

�� The INCLUDE command is described in Chapter 12, “Introduction to Process
Commands.”

Process statements that are in error are flagged with a dollar sign ($), followed by a
CA-ADS error code and message. One erroneous process source statement can cause
subsequent statements to be found in error, even if they are coded correctly.

�� For a complete listing of the error messages used by CA-ADS, refer to CA-IDMS
Messages and Codes.

The Messages screen cannot be used to correct errors in the process source code. To
correct stored process code, the application developer must use IDD. To toggle to
IDD press [PF5].

Note: In order to toggle to IDD, you must be running ADSC under the CA-IDMS
Command Facility.

�� For more information about the CA-IDMS Command Facility, refer to the
CA-IDMS Command Facility.

�� For more information on correcting errors in process code, refer to the CA-ADS
User Guide.

1-22 CA-ADS Reference

1.5 CA-ADS screens

Delete: Specifies that an existing entity or changes to an existing entity be deleted.

When the application developer specifies the Delete dialog action from this window,
the compiler ensures that an entity exists with the specified name and version number.

If the specified entity exists and the action is Delete dialog, a confirmation window is
presented to the user, allowing the request to be confirmed or rescinded. If the
deletion is confirmed, the compiler deletes the load module from the data dictionary,
any dictionary definitions, and any queue records saved for a suspended session of the
definition.

If an entity with the specified name and version number does not exist, the Delete
dialog action is invalid and an error message is displayed.

The entity must not be reserved to another user if it is to be deleted.

If Delete changes has been chosen from this window, the working file is reconstructed
from the most recently stored (compiled) definition.

If Delete changes is chosen, the entity remains checked out to the current developer.

Chapter 1. Introduction to CA-ADS 1-23

1.5 CA-ADS screens

The screen below shows the Delete window on the dialog compiler Main Menu. A
confirmation window is displayed so that the request to delete the dialog can be
confirmed or rescinded.

< =
Add Modify Compile Delete Display Switch

 .___.

2 1. Delete changes piler

2. Delete dialog
----------------------- io .__________________.

 F3=Exit
 _______________________ . 2 1. Confirm

 2. Reject
Dialog name SOME1 __________________
Dialog version 1

Dictionary name TSTDICT

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Enter 1 to confirm the delete request.

 Command ===>

 Enter F1=Help F3=Exit F1H=Action

L M

1-24 CA-ADS Reference

1.5 CA-ADS screens

Display: Specifies that summary information for the named entity be displayed.

The screen below shows the Display window on the dialog compiler Main Menu.

< =
Add Modify Compile Delete Display Switch

 .___.

 CA-AD _ 1. Browse er

 2. Summary
Computer 3. Map image al, Inc.

4. Print Sum

 F3=Exit

Dialog name __________________
Dialog version 1

Dictionary name TSTDICT

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Command ===>

 Enter F1=Help F3=Exit F1H=Action

L M

From the Display window, the developer can choose Browse or Summary. Other
options available from this window depend on the compiler being used.

Browse: The Browse option allows the developer to walk through the entity
definition process without changing any information about the entity. All fields on the
compiler screens are protected.

If the entity is currently checked out to another developer and changes have been made
but not saved, the Browse option returns the entity definition as it exists in the
dictionary.

Summary: The Summary option gives an overview of the entity definition.

Chapter 1. Introduction to CA-ADS 1-25

1.5 CA-ADS screens

The screen below shows the Summary option taken from the dialog compiler Main
Menu.

< =
Dialog Summary Display Page 1 of 1

 .___.

 DIALOG: PROCEMP VERSION: 1

Entry Point......: PREMAP Mainline.........: YES

Symbol Table.....: YES Diagnostic Tables: NO

Cobol Moves......: NO Retrieval Lock...: NO

Autostatus.......: YES Message Prefix...: DC

Status Rec: ADSO-STAT-DEF-REC Version: 1

Access Module: JMASQLD ANSI-flag: Date Format: Time Format:

Online Map: MAP1 Version: 1

 Record: SQLCA Version: 1 NC

 Process: USER2-PM Version: 1 Premap

 Process: USER1-CONTINUE Version: 1 Response

Execute on error: NO Key: ENTER Value:

 .__.

 F3=Exit F7=Bkwd F8=Fwd

L M

Map image: The Map Image screen displays the dialog map as it appears to the user
at runtime. The application developer can position the cursor at map data fields and
enter information.

Map modifications defined in process code associated with the dialog are not in effect
when the screen is displayed. Map data fields do not contain any values on the Map
Image screen.

Hit any key to return to the menu screen.

Print Sum: The Print Sum option prints a copy of the Print Summary screen.

Switch: Specifies that control is to be passed to another CA-IDMS/DC or
CA-IDMS/UCF task. Switch suspends the current dialog compilation session and
transfers control to another DC/UCF task, to the transfer control facility Selection
screen, or to a new or suspended session of another task.

A task code must be entered into the Task code field.

1-26 CA-ADS Reference

1.5 CA-ADS screens

The screen below shows the Switch window on the dialog compiler Main Menu.

< =
Add Modify Compile Delete Display Switch

 .___.

CA-ADS Online Task code ________

Computer Associate F3=Exit

Dialog name JPKD1

Dialog version 1

Dictionary name TSTDICT

Dictionary node ________

Screen 1 1. General options

2. Assign maps

3. Assign database

4. Assign records and tables

5. Assign process modules

 Command ===>

 Enter F1=Help F3=Exit F1H=Action

L M

Chapter 1. Introduction to CA-ADS 1-27

1.5 CA-ADS screens

1.6 Checkout and release procedures

The checkout and release procedures allow a developer to own an application, dialog,
or map while working on it.

The developer checks out an entity to work on it. Until the entity is released attempts
by another developer to work on that entity result in the following message:

If ADSC:

DC4981H3 Currency not established. Dialog is currently checked out

DC4981H7 to user MET on dictionary TESTDCT.

If ADSOBCOM:

DC497H42 Dialog is checked out to ADSC and cannot be compiled in batch

1.6.1 How to check out or release an entity

Types of checkouts and releases: An application developer checks out and
releases entities explicitly or implicitly.

Explicit checkouts: Explicit checkouts allow the developer to control and retain
scope of an entity across repeated definition sessions and entry compilations.

An explicit checkout begins with either:

■ An ADD action from the pulldown menu.

■ A CHECKOUT action from the MODIFY pulldown menu. The named entity
must exist in the dictionary.

When an entity has been explicitly checked out, no other developer can work on an
existing entity until Release is specified. If Release is not specified, all other
developers are limited to the Display and Switch actions.

Explicit checkouts end with either:

■ A RELEASE action from the MODIFY pulldown menu

■ A successful DELETE action

Explicit releases: This action checks the named entity in and releases it for use by
another developer.

An explicit release occurs when:

■ The user selects the RELEASE option from the MODIFY sub menu

■ The user selects the DELETE DIALOG option from the DELETE sub menu

1-28 CA-ADS Reference

1.6 Checkout and release procedures

Implicit checkout: Implicit checkout is intended to facilitate a developer's work
when a long scope of retention is not required. You use implicit checkout instead of
explicit checkout when rapid deletion, compilation, or simple modification of one or
many entities is required.

An implicit checkout begins with any of the following:

■ A COMPILE action

■ A DELETE action

■ Entering the number of a screen in the Screen field and pressing [Enter] from the
main menu screen

Note: If COMPILE or DELETE is successful, the dialog or application is
automatically released. If unsuccessful, the application or dialog remains checked out
to the developer.

When the entity has been implicitly checked out, checkin occurs automatically after the
entity successfully compiles.

Implicit releases: Implicit releases end an implicit checkout and occur when the
application developer does one of the following:

■ Successfully compiles the entity

■ Selects Modify from the action bar and chooses the Checkout option from the
pulldown window

■ Selects Delete from the action bar and chooses either the Delete changes or
Delete dialog option from the pulldown window

This action checks the named entity in and releases it for use by another developer.

Releasing an entity: The application developer releases an entity by selecting
Modify from the action bar and choosing the Release option from the pulldown
window. The named entity must be checked out to the developer before that
developer can release it.

The release action suspends the current session and allows another developer to check
out the entity.

If the developer has made no changes to the entity definition, the queue records for the
current session are deleted and the developer checking out the released entity receives
the following message:

DC4981H2 Currency set for dialog empdemo version 1

If the developer has made changes to the entity definition and the entity has been
released, the queue records are retained. Another developer can check the entity out
and receive the following message:

DC4981H6 Dialog empdemo version 1 is recovered from a suspended session

Chapter 1. Introduction to CA-ADS 1-29

1.6 Checkout and release procedures

1.6.2 Listing checkouts (ADSL)

Within each compiler, the entitities checked out to the executing user can be viewed.

The ADSL transaction allows a user to view the entities of any type checked out by
any user. To invoke ADSL, enter the task code ADSL and enter the desired tool and
user information. In this example, 'ADSC' and 'ALL USERS' have been selected:

< =
 RELEASE 15.H CAGJFH

CA-ADS AND MAPPING CHECKOUT LISTS

 TOOL . . 1 1. ADSC

 2. ADSA

 3. MAPC

 4. ALL

 USER . . __________________

 ALL USERS / (/)

ENTER F1=HELP F3=EXIT

L M

The checkout listing information you request is then displayed:

< =
 Dialog compiler Checkout Listing Page 1 of 1

 Dialog: Dictionary:

 --Name-- -Version- ------------User Id------------- --Name-- --Node--

 NEWDIAL2 1 PAGTOH1 APPLDICT

 NEWDIAL3 1 PAGTOH1 APPLDICT

 NEWDIAL1 1 PAGTOH1

 ADDSH1D 1 PAGTOH1

 F3=Exit F7=Bwd F8=Fwd

L M

The user can modify checkouts using ADSM.

1-30 CA-ADS Reference

1.6 Checkout and release procedures

1.6.3 Modifying checkouts (ADSM)

What you can do: The ADSM transaction can be used to delete or modify the
assignment of suspended compiler sessions. For example, a project leader can use
ADSM to reassign ongoing work:

< =
 Release 15.H CAGJFH

CA-ADS and MAPPING Checkout Modification

Action 2 1. Delete

 2. Reassign

Tool 1 1. ADSC

 2. ADSA

 3. MAPC

Entity name ADDSH1D

 Entity version . . 1

Current user . . . PAGTOH1

Reassign to user . EMMWIH2

Copyright (C) 1972,2HHH Computer Associates International, Inc.

Enter F1=Help F3=Exit

L M

How it works: When a checkout is reassigned, the queue for the tool session
remains in place, including uncompiled changes, but the user assignment is modified.

When a checkout is deleted, uncompiled changes are deleted.

Releasing the entity: You can release an entity through ADSM by leaving blank
the field for the new user. The queue for the entity is maintained, and the entity is
available for checkout by another user.

Chapter 1. Introduction to CA-ADS 1-31

1.6 Checkout and release procedures

1.7 CA-ADS help facility

CA-ADS provides context-sensitive online help when working with CA-ADS
compilers and the mapping compiler. Help is available at both the map level and the
field level.

Map-level help: Map-level help provides information on the purpose of the specific
map and the general type of information required for the map.

Field-level help: Field-level help provides information on data required for a
specific field on the map.

 Using help

Accessing help: Depending on the cursor position, either map or field help is
accessed as follows:

Use... To...

PF1 Request help from any screen, depending on cursor position

PF3 Return from the help screen

PF7/PF8 Page backward and forward while on the help screen

If the cursor is positioned on... The following will be displayed...

A map field associated with help text The map field help text

A map field not associated with help
text

The map help text

Anywhere else on the screen The map help text

1-32 CA-ADS Reference

1.7 CA-ADS help facility

Help text for the map is displayed as full screen.

Help text for the map field is displayed as half screen covering either the top or
bottom half of the screen as appropriate.

Sample help screen: The screen below shows map field help for the Mainline
map field on the Dialog and Options screen of the dialog compiler.

< =

 : :

 : Specify MAINLINE if the dialog will be invoked from the :

 : CA-IDMS/DC prompt or by an APPC (send-receive option) request. :

 : :

 : Mainline dialogs are potentially eligible to appear on the ADS :

 : MENU screen. :

 : :

 : :

 : :

 : :

 _______ Return F3 _______________ Page F7/F8 _________ Scroll: H1H _____

Options and directives _ Mainline dialog

_ Symbol table is enabled

/ Diagnostic table is enabled

/ Entry point is premap

_ COBOL moves are enabled

/ Activity logging

/ Retrieval locks are kept

/ Autostatus is enabled

— --

 Enter F1=Help F3=Exit F4=PrevStep F5=NextStep

L M

Chapter 1. Introduction to CA-ADS 1-33

1-34 CA-ADS Reference

Chapter 2. CA-ADS Application Compiler (ADSA)

2.1 Overview . 2-3
2.2 Application compiler session . 2-4

2.2.1 Invoking the application compiler . 2-4
2.2.2 Sequencing through application compiler screens 2-7
2.2.3 Suspending a session . 2-10
2.2.4 Terminating a session . 2-10

2.3 Application compiler screens . 2-11
2.3.1 Main menu . 2-11
2.3.2 General Options screen—Page 1 . 2-14
2.3.3 General Options screen—Page 2 . 2-16
2.3.4 Response/Function List screen . 2-19
2.3.5 Response Definition screen . 2-23
2.3.6 Function Definition (Dialog) screen 2-27
2.3.7 Function Definition (Program) screen 2-30
2.3.8 Function Definition (Menu) screen 2-32
2.3.9 Global Records screen . 2-37
2.3.10 Task Codes screen . 2-39

Chapter 2. CA-ADS Application Compiler (ADSA) 2-1

2-2 CA-ADS Reference

 2.1 Overview

The CA-ADS application compiler is an application design and prototyping tool.
During an application compiler session, the application developer defines the
components and structure of an application. When the definition is complete, the
application developer compiles the application. The resulting load module is stored in
the data dictionary for use at runtime. When the load module for an application is
compiled, the only definitions that must exist in the data dictionary are those global
records specifically associated with the application. All other entities associated with
the application can be created and added to the dictionary at any time before the
application is executed. This feature allows the application developer to upgrade
application components without having to recompile the application.

�� For more information on application compiling features, refer to CA-ADS
Application Design Guide.

�� For examples of using the application compiler, refer to CA-ADS User Guide.

Chapter 2. CA-ADS Application Compiler (ADSA) 2-3

2.2 Application compiler session

2.2 Application compiler session

In an application compiler session, screens are displayed that prompt the application
developer for information about an application and the responses and functions
associated with the application. The information supplied by the application developer
is used by the CA-ADS runtime system to control the execution of the application.

2.2.1 Invoking the application compiler

The application developer can invoke the application compiler from any of the three
ways described below.

From CA-IDMS/DC or CA-IDMS/UCF: By specifying the appropriate
CA-IDMS/DC or CA-IDMS/UCF task code, the application developer can invoke the
application compiler. Task codes are defined at system generation and can vary from
site to site. The default task code for the application compiler is ADSA.

TCF: To use the application compiler under the transfer control facility (TCF),
specify ADSAT, the TCF version of the application compiler task code. The
TCF task code for the dialog compiler is ADSCT and for the mapping facility
is MAPCT.

When invoked, the application compiler displays a blank Main Menu screen on which
the application developer can begin a new session or resume a suspended session.

From another TCF task: By specifying the appropriate CA-IDMS/DC or
CA-IDMS/UCF task code in conjunction with the SWITCH command from another
task executing under the transfer control facility, the application developer can invoke
the application compiler.

If a new session is requested, the application compiler displays a blank Main Menu
screen on which the application developer can begin a new session or resume a
suspended session.

If an old session is requested, the application compiler resumes its most recently
suspended session under the transfer control facility.

From the TCF Selection screen: The application compiler can be invoked by
keying any nonblank character, except the underscore (_), next to the appropriate task
code or descriptor, as follows:

■ Keying a nonblank character next to the appropriate task code invokes the
application compiler. A blank Main Menu screen on which the application
developer can begin a new session or resume a suspended session is displayed.

■ Keying a nonblank character next to the descriptor of a suspended application
compiler session invokes the application compiler and resumes the suspended
session at the Main Menu screen. The descriptor consists of the appropriate task
code, the application name, and the application version number.

2-4 CA-ADS Reference

2.2 Application compiler session

The transfer control facility enables the application developer to transfer from one
CA-IDMS/DC or CA-IDMS/UCF task to another. For example, the application
developer can transfer between the application compiler, IDD, MAPC, and the dialog
compiler. When control is transferred from a task, the current session of that task is
suspended, if necessary. A task can have several suspended sessions.

�� For a detailed description of the transfer control facility, see CA-IDMS Transfer
Control Facility.

Note:

In a multiple dictionary environment, be sure to begin the application compiler
session in the correct dictionary. The dictionary name can be specified in the
Dictionary name field on the Main Menu screen.

Chapter 2. CA-ADS Application Compiler (ADSA) 2-5

2.2 Application compiler session

TCF Selection screen: Sample selections on the transfer control facility Selection
screen are shown below:

< =
COMPUTER ASSOCIATES INTERNATIONAL, INC.

TRANSFER CONTROL FACILITY ___ SELECTION SCREEN ___

 _ SUSPEND TCF SESSION (PF9) DBNAME..: DBNODE..:

 _ TERMINATE TCF SESSION (PF3) DICTNAME: TSTDICT DICTNODE:

 TCF TASKCODES _SUSPENDED SESSIONS_

 SELECT ONE TO START A NEW SESSION SELECT ONE TO RESUME AN OLD SESSION

 TASKCODE DESCRIPTOR

 _ TCF _ADSCT MPKDIA1 HHH1

 _ SYSGENT SYSGEN COMPILER _ADSAT MPKAPP1 HH1

 _ MAPCT MAP DEFINITION _ADSAT MPKAPP1 HH2

 _ ADSCT DIALOG GENERATOR _ADSCT MPKDIA2 HHH1

 X ADSAT APPLICATION GENERATOR

 _ ASF

 _ ASFT

 _ IDDT IDD COMMAND MODE

 _ SSCT SUBSCHEMA COMPILER

 _ SCHEMAT SCHEMA COMPILER

 _ IDDMT IDD MENU MODE

 _ OLQ OLQ COMMAND MODE

 _ OLQT OLQ COMMAND MODE

L M

2-6 CA-ADS Reference

2.2 Application compiler session

2.2.2 Sequencing through application compiler screens

Application compiler screens prompt the application developer for information about
an application. The developer can sequence through the application definition steps or
request a step in the process explicitly.

The primary steps involved in creating an application are shown below. The developer
can either choose the next step from the Main Menu screen or move through the steps
from screen to screen using [PF5].

Steps in creating an application

 ┌───────────┐

 │ Appl. │

 │ specifi- │

 │ cation │

 └─────↑─────┘

 │

 ┌───────────────┬────────┴──────┬───────────────┐

│ │ │ │

│ │ │ │

│ │ │ │

┌─────↓─────┐ ┌─────↓─────┐ ┌─────↓─────┐ ┌─────↓─────┐

│ General │ _ │ Responses/│ _ │ Global │ _ │ Task │

│ options ←───→ functions ←───→ records ←───→ codes │

│ │ │ │ │ │ │ │

└───────────┘ └───────────┘ └───────────┘ └───────────┘

_ Previous/next step (F4/F5)

Summary of application compiler process: Each step in the process of creating
an application is associated with one or more screens as shown below.

Chapter 2. CA-ADS Application Compiler (ADSA) 2-7

2.2 Application compiler session

Control keys: While creating an application, the applications developer can use the
control keys shown below to:

■ Move from one step in the process to another step

■ Move from one screen to another screen while remaining on one step in the
process

 ■ Obtain help

■ Leave the ADSA compiler

Step in process Screen Purpose

Application
specification

Main Menu Identifies the name and
characteristics of an application
and specifies the action to be
taken

General options General Options Specifies application options for
date format, print options,
security, and maximum number
of responses

Response/function
definition

Response/Function
List

Specifies the relationship
between functions and responses

Response Definition Specifies the name and
characteristics of a response.

Function Definition
(Dialog)

Allows specification of a
function and associated dialog
and valid responses for the
dialog or menu/dialog function
currently being defined.

Function Definition
(Program)

Specifies the name and
description of the associated
program and records to be passed
to a user program function.

Function Definition
(Menu)

Specifies characteristics for a
function defined as a menu;
allows alteration of the sequence
or suppression of the display of
responses on a menu screen.

Global records Global Records Specifies records available to all
functions in an application

Task codes Task Codes Specifies DC/UCF task codes
that initiate an application at
runtime.

2-8 CA-ADS Reference

2.2 Application compiler session

■ Move between the action command line and the specification area (Main Menu
only)

Default control keys

Activity Control
key

Description

HELP [PF1] Displays a map or field help screen, depending
on cursor position

If the cursor is on a map field associated with
help text, a half screen of map field help text is
displayed.

If the cursor is set on a map field not
associated with help text or anywhere else on
the map, a full screen of map help text is
displayed.

RETURN [PF3] From a pulldown window, returns to
specification area.

From the Main Menu screen, returns control to
DC/UCF

From a screen other than the Main Menu
screen, applies updates to the current screen
and returns to the Main Menu screen

BACKWARD [PF4] Applies updates to the current screen and
displays the previous step in the process, as
outlined on the Main Menu screen.

FORWARD [PF5] Applies updates to the current screen and
displays the next step in the process, as
outlined on the Main Menu screen.

BACKPAGE [PF7] Displays the previous screen of any step
containing multiple screens.

FORWARD PAGE [PF8] Displays the next screen of any step containing
multiple screens.

ACTION [PF10] Toggles the cursor position between the activity
selection area action bar and the specification
area on the Main Menu screen

Chapter 2. CA-ADS Application Compiler (ADSA) 2-9

2.2 Application compiler session

2.2.3 Suspending a session

An application compiler session is automatically suspended in the event of a system
crash. Additionally, the current work is saved whenever an update is made.
Application definition sessions are entirely recoverable.

The developer can also suspend a session by selecting the Release option from the
Modify window on the action bar. This allows any other developer to check the
application out.

When a session is suspended, the application compiler saves the application definition,
including all specifications made during the session, on queue records. A suspended
session can be resumed at any time, as described in 2.2.1, “Invoking the application
compiler” earlier in this section.

2.2.4 Terminating a session

When a session is terminated by compiling or deleting an application, the application
compiler displays a blank Main Menu screen. The application developer can begin
another session or can leave the application compiler by selecting an appropriate
activity, such as Switch, from the action bar or by pressing [PF3].

When the application definition is complete, the application developer specifies
Compile as the next activity on the action bar in the activity selection area of the
Main Menu.

The application is compiled, and the resulting load module is stored in the data
dictionary load area where it is available for execution.

�� For an example of an application compiler session, refer to the CA-ADS User
Guide.

2-10 CA-ADS Reference

2.3 Application compiler screens

2.3 Application compiler screens

Screens are available for use during an application compiler session. All adding,
modifying, deleting, compiling, displaying and switching is initiated from the Main
Menu screen.

 2.3.1 Main menu

The Main Menu screen is displayed when the application developer initiates an
application compiler session. This screen is used to specify the action taken regarding
the application, name an application and a dictionary, and specify the next step to be
taken in the application definition.

Areas: The screen is composed of six areas:

■ Activity selection area

■ Dialog identification area

■ Screen specification area

 ■ Message area

 ■ Command area

■ Key assignment area

Activity selection area: Displays the application compiler activities available.

The application developer selects an activity to be performed one of two ways:

■ By typing the name of the activity on the Command line in the lower left hand
corner of the screen.

■ By pressing PF10 to reach the Activity Selection Area, and, with the Tab key,
positioning the cursor on the activity name and pressing the [Enter].

�� See Chapter 1, “Introduction to CA-ADS” for a discussion of the activities
available from the dialog compiler Main Menu screen.

Application identification area: Specifies the application name, application
number, dictionary name, and the dictionary node. The fields contained in this section
are described below.

Screen specification area: Allows the application developer to specify the next
step in the definition process. The application developer can either:

■ Press Enter to go to the default next step

■ Specify a step

�� See Chapter 1, “Introduction to CA-ADS” for a discussion of the activities
available from the application compiler Main Menu screen.

Chapter 2. CA-ADS Application Compiler (ADSA) 2-11

2.3 Application compiler screens

Message area: Displays informational and error messages returned from the
application compiler.

Note that the control keys as described earlier in this section, (in addition to [Enter])
are identified at the bottom of this screen.

Command area: Provides a command line for entering the name of the desired
action as specified in the activity selection area above. Action names can be
abbreviated to the first three letters, ADD, MOD, DEL, COM, DIS or SWI. The
system recognizes more than, but not less than, the first three letters of each
identification.

If more than one activity is specified on the command line, an error message is
displayed. If an activity is specified on the command line, and a control key is
pressed, the activity associated with the control key is executed.

If an error is detected after the application developer selects an activity, the application
compiler redisplays the current screen. The activity selection is retained and executed
when the error is corrected. The application developer can override the initial
selection by specifying another activity on the command line, selecting the activity
directly from the selection area or by using [PF10].

Key assignment area: Presents the valid key choices and the action taken.

Control keys are described earlier in this section.

Main Menu screen

< =
─ Add Modify Compile Delete Display Switch

 .___.

 ─ CA-ADS Application Compiler

Computer Associates International, Inc.

 ─

 Application name ________

 Application version . . ____

 Dictionary name ________

 Dictionary node ________

 ─

 ─ Screen _ 1. General options

 2. Responses and Functions

 3. Global records

 4. Task codes

 ─

Copyright (C) 1972, 2HHH Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1H=Action

L M

 Field descriptions:

2-12 CA-ADS Reference

2.3 Application compiler screens

Application name: Specifies the 1- to 8- character name of the current application.
The application name must begin with an alphabetic character and cannot contain
embedded blanks. An application name must be specified before any other application
compiler activity can be executed.

Application version: Specifies the version number, in the range 1 through 9999, of
the current application. If no version number is specified, version defaults to 1.

Dictionary name: Specifies the 1- to 8- character name of the data dictionary in
which the application load module is stored. If no dictionary name is specified,
dictionary name is set to the name of the dictionary identified in the user's profile or
set through a DCUF SET DICTNAME statement. The dictionary name cannot change
once it is validated.

Dictionary node: (DDS only) Specifies the node that controls the data dictionary
specified by Dictionary name. Dictionary node defaults to the system currently in
use.

Specifying a node name is equivalent to issuing a DCUF SET DICTNODE command
under CA-IDMS/DC or CA-IDMS/UCF.

Chapter 2. CA-ADS Application Compiler (ADSA) 2-13

2.3 Application compiler screens

Screen: Provides the application developer with a quick form of navigation through
the application definition process. By specifying the number which precedes the step
name, the user avoids any unnecessary scrolling through the screens.

�� For a description of the screens involved in each step, see 2.2.2, “Sequencing
through application compiler screens” earlier in this section.

2.3.2 General Options screen—Page 1

The first page of the General Options screen is used to specify options for an
application:

 ■ Description

 ■ Maximum responses

 ■ Date format

■ Application compiler execution mode

■ Application execution environment

■ Default print destination and class

The first page of the General Options screen is accessed from the Main Menu by
choosing option 1 at the Screen prompt.

The current settings for the application options are displayed on the screen. Each
option can be changed by overwriting the displayed setting.

 Sample screen

< =
 General Options Page 1 of 2

 Application name: TESTAPPL Version: 1

Description . . . TEST APPLICATION

Maximum responses 5HH

Date format 1 1. mm/dd/yy 2. dd/mm/yy

 3. yy/mm/dd 4. yy/ddd

Execution environment 1 1. Online 2. Batch

Default execution mode. 1 1. Step 2. Fast

Default print destination

Default print class 1

 Enter F1=Help F3=Exit F4=Prev F5=Next F8=Fwd

L M

2-14 CA-ADS Reference

2.3 Application compiler screens

 Field descriptions:

Application name: Specifies the name of the current application, as specified on
the Main Menu screen. This field is protected.

Version: Specifies the version number, in the range 1 through 9999, of the current
application.

Description: Specifies a 1- to 32-byte description of the current application. This
field is a documentation aid. The application description is included in the load
module created for the application.

Maximum responses: Specifies the maximum number of responses, in the range 0
through 9999, that can be defined for the application. The default maximum number
of responses is 500.

The application compiler creates a table of responses for each application; 19 bytes are
allocated in the table for each response that can be defined. Therefore, the value
specified for Maximum responses determines the amount of space that is allocated for
the response table.

To optimize processing efficiency, the space allocated for the response table should be
kept as small as possible. If the application developer attempts to add more responses
than the maximum number specified, the application compiler returns a message
indicating that the attempt to add a response was unsuccessful because of insufficient
space. The developer can return to the General Options screen at any time during an
application compiler session and increase the Maximum responses specification.

The value does limit the number of responses that can be added, but the size of the
load module is exactly tailored to the actual number of responses, not set at this limit.

Date format: Specifies the format in which the current date appears on runtime
menu and help screens. At runtime, the current date is retrieved from DC/UCF and is
stored in the specified format in ADSO- APPLICATION-GLOBAL-RECORD and
ADSO-APPLICATION- MENU-RECORD, if applicable. When a runtime menu or
help screen is displayed, the runtime system retrieves the date from the applicable
record.

�� For descriptions of ADSO-APPLICATION-GLOBAL-RECORD and
ADSO-APPLICATION-MENU-RECORD, see Appendix A, “System Records.”

The date format is selected by entering the appropriate number in the response field
following Date format. Available formats are as follows:

■ MM/DD/YY (for example, 07/25/91). MM/DD/YY is the default.

■ DD/MM/YY (for example, 25/07/91)

■ YY/MM/DD (for example, 91/07/25)

Chapter 2. CA-ADS Application Compiler (ADSA) 2-15

2.3 Application compiler screens

■ DDD/YY (for example, 207/91)

Execution environment: Specifies whether the application will execute online or
under CA-ADS/Batch.

Default execution mode: Sets the default execution mode for the application.

If STEP mode is specified, the runtime system responds to a user signon with the
message that the signon is accepted. The user then must press [Enter] to initiate the
first function of the application. STEP mode is the default.

If FAST mode is specified, the system responds to an acceptable signon by directly
initiating the first function automatically.

Default print destination: Specifies a DC/UCF print destination. If not specified,
the print destination defaults at runtime to the system default.

At runtime, the specified print destination is stored in the
AGR-PRINT-DESTINATION field of the
ADSO-APPLICATION-GLOBAL-RECORD. WRITE PRINTER commands can use
the default by specifying a print destination of AGR-PRINT-DESTINATION.

�� For a description of ADSO-APPLICATION-GLOBAL-RECORD, see Appendix A,
“System Records.”

Default print class: Specifies a DC/UCF print class number in the range 1 through
64. If not specified, the print class defaults at runtime to the physical terminal default.

At runtime, the specified print class is stored in the AGR-PRINT-CLASS field of the
ADSO-APPLICATION- GLOBAL-RECORD. WRITE PRINTER process commands
can use the default by specifying a print class of AGR-PRINT-CLASS.

�� For a description of ADSO-APPLICATION-GLOBAL-RECORD, see Appendix A,
“System Records.”

2.3.3 General Options screen—Page 2

The second page of the General Options screen is used to specify runtime security
restrictions for a CA-ADS application.

How to access: The application developer accesses this screen from the first
General Options screen in one of two ways:

 ■ Pressing [PF8]

■ Entering a 2 in the Page field and pressing [Enter]

2-16 CA-ADS Reference

2.3 Application compiler screens

Security classes: This screen allows the application developer to specify a
DC/UCF security class for the current application. Application security class is no
longer used by the CA-ADS runtime system and is not used by CA-IDMS internal
security. It is provided for downward compatibility with applications compiled under
previous releases of DC/UCF and for installations that use privately designed security
sytems that rely on the application security class being stored in the
ADSO-APPLICATION-GLOBAL-RECORD during runtime.

Note: Security classes assigned to responses are checked by CA-IDMS central
security if activity security has been enabled.

For more information, see Appendix G, “Security Features.”

Signon functions: The second page of the General Options screen also allows the
application developer to specify a signon function to be executed before any other
application function. A signon function, if specified, is the first function initiated by
the runtime system. If signon is required, the application cannot be executed until an
acceptable signon is entered. If signon is optional, the application can be executed
whether or not a signon is entered.

�� For more information on signon menu maps, see 4.2.3, “System-defined menu
maps.”

Security for runtime menus: The application developer can also specify whether
runtime menus are to be security tailored. Only those responses for which the user has
execution authority are displayed on security-tailored menus.

The second page of the ADSA General Options screen itself can be the object of user
security restrictions imposed by the security administrator, through restricting
execution authority for program ADAPGOP2. Only application developers having
execution authority for ADAPGOP2 would have access to the second page of the
General Options screen.

�� For information on CA-IDMS central security, refer to CA-IDMS Security
Administration.

Chapter 2. CA-ADS Application Compiler (ADSA) 2-17

2.3 Application compiler screens

 Sample screen

< =
 General Options Page 2 of 2

 Application name: TESTAPPL Version: 1

Security class. 42

Menus are 1 1. Not used 2. Security tailored

 3. Untailored

Signon is 1 1. Not used 2. Optional

Signon function is.

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd

L M

 Field descriptions:

Application name: Specifies the name of the current application, as specified on
the Main Menu screen. This field is protected.

Security class: Applicable to online applications only, specifies the DC/UCF
security class, in the range 1 to 256, assigned to the application.

File specification allows compatibility with Release 14.0 for applications compiled
under previous releases of CA-IDMS and maintains the functionality of
installation-designed security systems that rely on application security classes being
stored in the ADSO-APPLICATION-GLOBAL-RECORD during runtime.

Menus are: Specifies whether runtime menus are security tailored. The application
developer can select one of the following specifications by entering the appropriate
number in the data field following this specification. The options are:

1. Not used — specifies that the application does not use menus.

2. Security tailored — specifies that only those responses that the user has authority
to execute are displayed on the runtime menus.

3. Untailored — (default) specifies that all responses defined as valid for application
functions are displayed on menus, regardless whether the user has the authority to
execute them.

The CA-ADS runtime system tests to determine whether the user has authority to
execute each menu reponse if menus are security tailored. Only those responses for
which the user has execution authority are then displayed on the menus. If the user
attempts to execute a response for which execution authority is not granted, the current
function screen is redisplayed with the following message:

UNACCEPTABLE RESPONSE. PLEASE TRY AGAIN

2-18 CA-ADS Reference

2.3 Application compiler screens

Signon is: Specifies whether a signon function is executed for the application. The
application developer can select a signon specification by entering the applicable
number in the field following this specification. A signon function can be specified as
follows:

1. Not used — (default) specifies that no signon function is executed for the
application.

2. Optional — specifies that a signon function will be executed only when the user
is not signed on to DC/UCF. When the user is already signed on to DC/UCF, the
task top function is executed instead of the signon function (if it is a different
function). Also, the user is not required to sign on to the application to execute
unsecured functions.

3. Required — specifies that the application signon function is always executed
regardless of whether the user has signed on to DC/UCF, and regardless of which
function is the task top function. The user can only execute other functions after
successfully signing on to the application.

Signon function is: Specifies the name of a signon menu function to be defined by
using the Function Definition (Menu) screen. If Signon is specified as Optional or
Required, a signon function must be supplied. If Signon is specified as Not used, a
signon function name cannot be specified.

To identify system functions, enter the system function name. System functions are
reserved and cannot be edited.

ADSA warns the application developer if a function type code (1,2, or 3), a program
name, or a dialog name are reserved for a system function.

�� For information on defining signon menu functions, refer to 4.2.3, “System-defined
menu maps.”

2.3.4 Response/Function List screen

The Response/Function List screen is accessed from the Main Menu by choosing
option 2 at the Screen prompt. This screen is used to:

■ Identify each response name for the application

■ Identify the associated control key

■ Identify the function associated with the response

■ Specify the function type

■ Name the program or dialog

For each response defined, the combination of response name, associated assigned key,
and function initiated must be unique within the application.

Chapter 2. CA-ADS Application Compiler (ADSA) 2-19

2.3 Application compiler screens

Up to 12 responses and functions can be entered on one page of the
Response/Function List screen.

The application developer can scroll between pages using the control keys associated
with paging forward and paging backward. See earlier in this section for a listing of
the default control key assignments for the application compiler.

From the Response/Function List screen, the application developer can further define
both responses and functions by accessing the following screens:

■ Response Definition screen

■ Function Definition (Dialog) screen

■ Function Definition (Program) screen

■ Function Definition (Menu) screen

To access one of these screens, a nonblank character is placed in the appropriate
Select field.

 Sample screen

< =
 Response/Function List Page 1 of 1

 Application name: TESTAPP1 Version: 1

Select Response Assigned Select Function Program/

 (/) name key (/) name/type(1,2,3)_ Dialog name

_ ________ _____ _ ________ / _ ________

_ ________ _____ _ ________ / _ ________

_ ________ _____ _ ________ / _ ________

_ ________ _____ _ ________ / _ ________

_ Type: 1. Dialog 2. Program 3. Menu

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

L M

 Field descriptions:

Application name: Specifies the name of the current application, as specified on
the Main Menu screen. This field is protected.

Version: Specifies the version number, in the range 1 through 9999, of the current
application.

Select: Placing a nonblank character in this field allows the developer to select a
particular response or function for further definition.

2-20 CA-ADS Reference

2.3 Application compiler screens

�� See 2.3.5, “Response Definition screen,” 2.3.6, “Function Definition (Dialog)
screen” on page 2-27 , 2.3.7, “Function Definition (Program) screen,” and 2.3.8,
“Function Definition (Menu) screen” on page 2-32 for further information.

Response name: Displays the name of the application response.

The following considerations apply:

■ For CA-ADS, the response name cannot contain embedded blanks. At runtime,
the response name can be used in a $RESPONSE map field to select the response.
The response name is also stored by the runtime system in the
AMR-RESPONSE-FIELD of ADSO- APPLICATION-MENU-RECORD for use in
runtime menus.

■ For CA-ADS/Batch, if the response field for an input record is the concatenation
of several fields, the response name specified on the Response Definition screen
must include any embedded blanks that occur in a concatenation. For example,
the entry 'ADD ''E' is made for a response field that is the concatenation of two
fields, the first being six bytes long and the second being one byte long. The first
field contains the field value of ADD and the second field contains E.

Assigned key: Specifies the control key or control event associated with the current
application response. specifies an online control key or a batch control event that
selects the response at runtime.

The following considerations apply:

■ Valid online assigned key specifications are ENTER, CLEAR, PA1 through PA3,
PF1 through PF24. LPEN can be specified as a control key if the use of light
pens is supported by the installation. The following consideration applies:

– CLEAR, PA1, PA2, and PA3 do not transmit data.

■ Valid batch control events are EOF and IOERR. The following considerations
apply:

– EOF indicates that the most recent input-file read operation resulted in an
end-of-file condition.

– IOERR indicates that the most recent input file read operation resulted in a
physical input-error condition. In CA-ADS/Batch, an output error causes the
runtime system to terminate the application.

Function name/type: Displays the name and type of the application function
associated with the response.

The function name cannot contain embedded blanks.

The application compiler supplies a function type by crosschecking the defined
functions and responses.

Function types are as follows:

Chapter 2. CA-ADS Application Compiler (ADSA) 2-21

2.3 Application compiler screens

1. Dialog — The response is associated with a dialog function.

2. Program — The response is associated with a user program function.

3. Menu — The response is associated with a menu function.

For example, if the application developer specifies Menu and also provides a dialog
name in the Associated dialog field, of a Function Definition screen, the function is
associated with a menu.

When the application developer associates the response process with the dialog, using
the dialog compiler Process Modules screen, the Value and Key specified should
match the Response name and Assigned key entered on the Response/Function List
screen.

�� For a description of the Process Modules screen, see Chapter 3, “CA-ADS Dialog
Compiler (ADSC).”

Associating a response with an internal function causes the dialog's response process to
be displayed as a valid response on runtime menu and help screens.

Program/dialog name: Specifies the name of the program or dialog associated
with the function.

Response/Function Search: The ADSA compiler:

■ Supports up to 999 pages of responses and function relationships

■ Returns to the current Response/Function screen when the selection list of
responses and functions has been exhausted

■ Provides a search function that allows partial keys and both next (forward) and
previous (backward) searches.

An example of the search function follows.

Invoking the search function: Pressing [PF6] brings up the search window. In this
example, a partial key — 'IUA' — has been entered. The search will attempt to match
any response name beginning with those letters:

2-22 CA-ADS Reference

2.3 Application compiler screens

< =
 RELEASE 15.H CAGJFH

 Response/Function List Page 1 of 2

 Application name: METAPPL1 Version: 1

 Select Response Assigned Select Function Program/

 (/) name key (/) name/type(1,2,3)_ Dialog name

_ R1 ENTER _ F1 / 1 JPKSQLD1

 _ R3 ────────────────────────────────┐ STEVEDLG

 Search for. . .
 _ R2 Response Assigned Function ________

 name key name
 _ R4 DIAL4

 IUA _____ ________
 _ R5 -------------------------------- DIAL5

 F3=Exit F7=Prev F8=Next
 _ LINKOLQR ────────────────────────────────┘ IDMSOLQS

_ Type: 1. Dialog 2. Program 3. Menu

 Enter F1=Help F3=Exit F4=Prev F5=Next F6=Search F7=Bkwd F8=Fwd

L M

Search result: Pressing [PF8] initiates a forward search. In this example, response
IUADOLQR is found:

< =
 RELEASE 15.H CAGJFH

 Response/Function List Page 2 of 2

 Application name: METAPPL1 Version: 1

 Select Response Assigned Select Function Program/

 (/) name key (/) name/type(1,2,3)_ Dialog name

_ IUADOLQR PFH7 _ IUADOLQF / 1 IUADOLQ1

 _ ________ ────────────────────────────────┐ ________

 Search for. . .
 _ ________ Response Assigned Function ________

 name key name
 _ ________ ________

 IUA _____ ________
 _ ________ -------------------------------- ________

 F3=Exit F7=Prev F8=Next
 _ ________ ────────────────────────────────┘ ________

_ Type: 1. Dialog 2. Program 3. Menu

 DC451536 Matching entry found on page 2

 Enter F1=Help F3=Exit F4=Prev F5=Next F6=Search F7=Bkwd F8=Fwd

L M

2.3.5 Response Definition screen

The Response Definition screen enables the application developer to provide extended
specifications when defining responses. These specifications include:

 ■ Description

 ■ Security class

Chapter 2. CA-ADS Application Compiler (ADSA) 2-23

2.3 Application compiler screens

 ■ Response type

 ■ Response execution

 ■ Assigned key

 ■ Control command

The Response Definition screen is accessed by entering a nonblank character in the
appropriate Select field on the Response/Function List screen and pressing [PF5].

 Sample screen

< =
 Response Definition

 Application name: TEST1 Version: 1

 Response name: QUIT Drop response (/) _

 Function invoked: QUIT

 Description ____________________________ Security class: 1

 Response type. 2 1. Global 2. Local

 Response execution 2 1. Immediate 2. Deferred

 Assigned key PFH1

 Control command. 1 1. Transfer 2. Invoke

 3. Link 4. Return

5. Return continue 6. Return clear

7. Return continue clear 8. Transfer nofinish

9. Invoke nosave 1H. Link nosave

 Enter F1=Help F3=Exit F4=Prev F5=Next

L M

 Field descriptions:

Application name: Specifies the name of the current application, as specified on
the Main Menu screen. This field is protected.

Version: Specifies the version number, in the range 1 through 9999, of the current
application.

Response name: Displays the name of the application response selected on the
Response/Function List screen.

This field can be modified by the user. The first character of the response name cannot
be blank. If modified, the user should insure that the combination of response name,
assigned key, and associated function must be unique within the application.

Drop response: Removes the response definition from the application. CA-ADS
does not drop the function associated with the dropped response.

2-24 CA-ADS Reference

2.3 Application compiler screens

Function invoked: Displays the function invoked by the current application
response, as specified on the Response/Function List screen.

This field is protected.

Description: Specifies a 1- to 28-byte description of the current response. The
response description is displayed with the associated response name on runtime menu
and help screens. Note that the specified description is truncated to 12 characters on
the short description menu screen.

�� For a discussion of the runtime menu and help screens, see Chapter 4, “CA-ADS
Runtime System.”

Security class: Specifies the security class for the response. Valid security class
values are 1 to 256. See your Security Administrator about the security class
conventions being used at your site.

�� For more information about security classes, see G.3.1, “Response security.”

Response type: Specifies whether the response is global or local, as follows:

1. Global — The response is valid for all functions in the application. Global
responses can be deselected from the list of valid responses for a specific function.

2. Local (default) — The response is valid only for those functions with which it is
explicitly associated on the Function Definition screen.

A response is specified as global (that is, valid for all functions in the application) or
local (that is, valid only if explicitly associated with a function). For each response
defined, the combination of response name, associated control key, and function
initiated must be unique within the application.

Response execution: Specifies whether the invoked function is immediately
executable or deferred. The following considerations apply:

■ In online applications, the default for all functions except the HELP, SIGNON,
SIGNOFF, FORWARD, and BACKWARD system functions is deferred.

■ In the batch environment, the default for all functions is immediately executable.

Defaults can be overridden by entering the appropriate number in the data field
immediately following the Response execution prompt.

Assigned key: Specifies the control key or control event associated with the current
application response. specifies an online control key or a batch control event that
selects the response at runtime.

The following considerations apply:

Chapter 2. CA-ADS Application Compiler (ADSA) 2-25

2.3 Application compiler screens

■ Valid online assigned key specifications are ENTER, CLEAR, PA1 through PA3,
PF1 through PF24, FWD, BWD, and HDR. LPEN can be specified as a control
key if the use of light pens is supported by the installation. The following
considerations apply:

– CLEAR, PA1, PA2, and PA3 do not transmit data.

– The FWD, BWD, and HDR control keys are associated with pageable maps.

FWD and BWD are synonymous with the keyboard control keys defined for
paging forward and backward respectively. If FWD or BWD is specified and
the keys defined for paging forward and backward are changed, the response
definition does not have to be updated or the application recompiled.

HDR is not associated with any keyboard control key. Conditions
encountered during a map paging session cause the response associated with
this control key value to be selected.

�� For more information on the effect of HDR on the runtime flow of control,
see Chapter 4, “CA-ADS Runtime System.”

■ Valid batch control events are EOF and IOERR. The following considerations
apply:

– EOF indicates that the most recent input-file read operation resulted in an
end-of-file condition.

– IOERR indicates that the most recent input file read operation resulted in a
physical input-error condition. In CA-ADS/Batch, an output error causes the
runtime system to terminate the application.

Control command: Specifies the CA-ADS control command used to pass
processing control to the function associated with the response, as follows:

1. Transfer (default) — Control is passed by means of a TRANSFER command.

2. Invoke — Control is passed by means of an INVOKE command.

3. Link — Control is passed by means of a LINK command.

4. Return — Control is passed by means of a RETURN command.

5. Return Continue — Control is passed by means of a RETURN command to the
premap process.

6. Return Clear — Control is passed by means of a RETURN command and
buffers are initialized.

7. Return Continue Clear — Control is passed by means of a RETURN command
to the premap process and buffers are initialized.

In process code for dialogs associated with functions, the only control command
needed is EXECUTE NEXT FUNCTION. When a valid response is made, EXECUTE
NEXT FUNCTION causes the runtime system to execute the control command
associated with the response. The control commands perform the same record buffer
and currency maintenance as they do when they are coded in processes.

2-26 CA-ADS Reference

2.3 Application compiler screens

�� For more information on control commands, see Chapter 15, “Control Commands.”

2.3.6 Function Definition (Dialog) screen

The Function Definition (Dialog) screen is accessed by entering a nonblank character
in the appropriate Select field on the Response/Function List screen and pressing
[PF5]. The function chosen must be associated with a type of dialog.

This screen is used to:

■ Provide a description of the dialog function

■ Identify the associated dialog name

■ Identify a user exit dialog

■ Name the default response

■ Specify valid responses for the current dialog function

The screen provides an alphabetical listing of all responses valid for the application.
Responses that are valid are indicated by an X.

The application developer can select additional valid responses by typing a nonblank
character in the 1-byte field immediately preceding the applicable response. The
application developer can deselect any valid response by overwriting the 1-byte field
immediately preceding the response with a blank or by using the ERASE EOF key.

Up to 6 responses can be displayed on one page of the Function Definition screen.

The application developer can scroll between pages using the control keys associated
with paging forward and paging backward. See earlier in this section for a listing of
the default control key assignments for the application compiler.

 Sample screen

Chapter 2. CA-ADS Application Compiler (ADSA) 2-27

2.3 Application compiler screens

< =
Function Definition (Dialog) Page 1 of 2

 Application name: GWGAPPH1 Version: 1

 Function name: F1 Drop function (/) _

 Description . . . DEFINED

 Associated dialog D1 User exit dialog ________

 Default response ________

 Valid Valid

 response(/) Response Key Function response(/) Response Key Function

 _ R1 PFH1 F1 _ R15 _____ ________

 _ R1H _____ ________ _ R2 PFH2 F2

 _ R11 _____ ________ _ R3 PFH8 FWD

 _ R12 _____ ________ _ R4 _____ FORWARD

 _ R13 _____ ________ _ R6 _____ HELP

 _ R14 _____ ________ _ R7 _____ ________

 more ...

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

L M

 Field descriptions:

Page: Specifies the page number of the Function Definition (Dialog) screen to be
displayed. If more than one page exists for the screen, this field displays the current
page of the total number of pages, as shown on the sample screen above.

This field is modifiable so that you can access the valid responses for the displayed
dialog function quickly. To request the next map page to be displayed:

■ Press the control key associated with paging forward or paging backward one page
(the system generation defaults are [PF8] and [PF7], respectively)

■ Enter a numeral for the page that you want to access, and press any control key
other than keys assigned for paging forward or backward

Application name: Specifies the name of the current application, as specified on
the Main Menu screen.

This field is protected.

Version: Specifies the version number, in the range 1 through 9999, of the current
application.

This field is protected.

Function name: Displays the name of the current function, as specified on the
Response/Function List screen.

This field can be modified by the user. The first character of the Function name cannot
be blank. If modified, the user should insure that the combination of response name,
assigned key, and associated function name must be unique within the application.

2-28 CA-ADS Reference

2.3 Application compiler screens

Drop function: Removes the function definition from the application.

Description: Specifies a 1- to 28-byte description of the current response. The
response description is displayed with the associated response name on runtime menu
and help screens. Note that the specified description is truncated to 12 characters on
the short description menu screen.

You must change the literal, UNDEFINED, to something else, or CA-ADS displays
the following error message:

DC462226 FUNCTION FUNC4 IS UNDEFINED

�� For a discussion of the runtime menu and help screens, see Chapter 4, “CA-ADS
Runtime System.”

Only the first 12 bytes of each description are displayed.

Associated dialog: Specifies the name of the dialog or user program associated
with the function. If this field is left blank, the function is associated with a
system-defined menu.

If the application developer provides a dialog name and also specifies Menu as the
Function type on the Response/Function List screen, the function is associated with a
menu.

Menu cannot be specified for CA-ADS/Batch applications.

User exit dialog: Specifies the name of a dialog to which a dialog function can
LINK internally.

When the dialog function is initiated at runtime, the name of the dialog supplied as the
user exit dialog is stored in the AGR-EXIT-DIALOG field of
ADSO-APPLICATION-GLOBAL-RECORD. When the runtime system encounters a
LINK TO AGR-EXIT-DIALOG command, the dialog named in the
AGR-EXIT-DIALOG field becomes the object of the LINK command.

�� For more information on ADSO-APPLICATION-GLOBAL-RECORD, see
Appendix A, “System Records.”

Default response: Specifies the name of the response initiated by the runtime
system when the user presses [Enter] without entering a specific response. The default
response is displayed in bright intensity on the Function Definition screen for each
function.

Valid response: A nonblank character in this field indicates that this response is
valid for this function.

Chapter 2. CA-ADS Application Compiler (ADSA) 2-29

2.3 Application compiler screens

Response: Displays the name of a response from the Response/Function List
screen.

Key: Displays the assigned key that initiates the response.

Function: Displays the name of the function initiated by the response.

2.3.7 Function Definition (Program) screen

The Function Definition (Program) screen is accessed by entering a nonblank character
in the appropriate Select field on the Response/Function List screen and pressing
[PF5]. The function chosen must be associated with a type of program.

The Function Definition (Program) screen is used to:

■ Provide a description of the program function

■ Identify the associated program name

■ Specify record buffers and control blocks passed to a program at runtime.

Information provided on this screen applies only to a current function associated with a
user program.

Up to eight records can be specified on one page of the Function Definition (Program)
screen.

The application developer can scroll between pages using the control keys associated
with paging forward and paging backward. Refer to the table earlier in this section for
a listing of the default control key assignments for the application compiler.

When a function associated with a user program is initiated at runtime, CA-ADS
passes control to the program. Additionally, the runtime system passes the data in the
record buffers and control blocks specified on the Function Definition (Program)
screen. CA-ADS maintains all application record buffers at the level at which control
was relinquished.

�� For a discussion of application levels, see Chapter 15, “Control Commands.”

When a user program finishes execution, control returns to the mapout operation of the
function from which the program was initiated or, if the program was initiated by an
EXECUTE NEXT FUNCTION command, to the command that follows EXECUTE
NEXT FUNCTION. Note that a user program must process its own responses. Valid
responses cannot be specified for the function associated with the program.

The Function Definition (Program) screen is similar to the USING clause of the LINK
TO PROGRAM control command.

�� For more information on the LINK TO PROGRAM control command, see
Chapter 15, “Control Commands.”

2-30 CA-ADS Reference

2.3 Application compiler screens

 Sample screen

< =
Function Definition (Program)

 Application name: TEST1 Version: 1

 Function name: PROGH1 Drop function (/) _

 Associated program PROGH1

 Description UNDEFINED

Records passed Drop record (/)

 1. ________________________________ _

 2. ________________________________ _

 3. ________________________________ _

 4. ________________________________ _

 5. ________________________________ _

 6. ________________________________ _

 7. ________________________________ _

 8. ________________________________ _

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

L M

 Field descriptions:

Application name: Specifies the name of the current application, as specified on
the Main Menu screen. This field is protected.

Version: Specifies the version number, in the range 1 through 9999, of the current
application.

This field is protected.

Function name: Displays the name of the current function, as specified on the
Response/Function List screen. The function must be associated with a user program.

This field can be modified by the user. The first character of the Function name cannot
be blank. If modified, the user should insure that the combination of response name,
assigned key, and associated function name must be unique within the application.

Drop function: Removes the function definition from the application.

Associated program: Displays the name of the user program with which the
current function is associated, as specified on the Response/Function List screen.

This field is protected.

Chapter 2. CA-ADS Application Compiler (ADSA) 2-31

2.3 Application compiler screens

Description: Specifies a 1- to 28-byte description of the current function. The
function description is displayed with the associated response name on runtime menu
and help screens. Note that the specified description is truncated to 12 characters on
the short description menu screen.

�� For a discussion of the runtime menu and help screens, see Chapter 4, “CA-ADS
Runtime System.”

Records passed: Specifies the data passed to the user program. The application
developer specifies record names and/or control block names as follows:

■ Record name passes the buffer for the specified record to the user program. The
specified record must be known to the issuing function.
ADSO-APPLICATION-MENU-RECORD is the only record that can be passed to
a user program from a system-defined menu function.

■ MAP-CONTROL/MAP_CONTROL passes the map request block (MRB) of the
issuing function to the user program.

■ SUBSCHEMA-CONTROL/SUBSCHEMA_CONTROL passes the subschema
control block of the issuing function to the user program.

The record and control block names must be entered from left to right, top to bottom,
in the same order in which they are defined in the program.

Drop record: Removes the record from its association with the program function,
but does not delete the record definition from the dictionary.

2.3.8 Function Definition (Menu) screen

The Function Definition (Menu) screen is accessed by entering a nonblank character in
the appropriate Select field on the Response/Function List screen and pressing [PF5].
The function chosen must be associated with a type of menu.

The Function Definition (Menu) screen is made up of two screens used to specify the
characteristics of runtime menu screens and the responses to be listed on that menu.

Page 1 of the Function Definition (Menu) screen allows the application developer to
specify:

■ A description of the menu

■ The name of the associated dialog if this is a menu/dialog

■ The default response, if any

■ The name of the user exit dialog, if any

■ Whether the menu is defined by the site or the system

■ The description length

■ The number of responses per page

2-32 CA-ADS Reference

2.3 Application compiler screens

■ The number of heading lines and their content

Page 2 of the Function Definition (Menu) screen allows the application developer to
specify:

■ The responses to be displayed on the menu

■ The order in which the responses will be displayed at runtime

To specify the number of responses per page, the application developer specifies that
the menu is user-defined and specifies the number of responses, from 0 to 50. If the
application developer specifies that the menu is system-defined, the number of
responses is set by CA-ADS: 12 for a signon menu, 15 for a nonsignon menu that
uses long descriptions, and 30 for a nonsignon menu that uses short descriptions.

�� For further information on signon menus, see 4.2.3, “System-defined menu maps.”

�� For a discussion of the runtime menu screens, see Chapter 4, “CA-ADS Runtime
System.”

The Function Definition (Menu) screen also allows the application developer to specify
up to three lines of heading text for display at the top of each menu page. The
heading text can use any or all of the three lines available.

Information provided on the Function Definition (Menu) screens applies only to a
current function associated with a menu or a menu/dialog. The Function Definition
(Menu) screen is not available when defining CA-ADS/Batch.

Page 1 of Function Definition (Menu)

< =
Function Definition (Menu) Page 1 of 2

 Application name: TEST Version: 1

 Function name: MENU1 Drop function (/) _

 Description . . . UNDEFINED

 Associated dialog ________

 Default response ________ User exit dialog ________

 Use signon menu (/). _

 Menu defined by: 2 1. User 2. System

 Description length 1 1. Long (28) 2. Short (12)

 Responses per page 15

 Number of heading lines (H-3). H

 Heading line text

....+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....

 Enter F1=Help F3=Exit F4=Prev F5=Next F8=Fwd

L M

Chapter 2. CA-ADS Application Compiler (ADSA) 2-33

2.3 Application compiler screens

Field descriptions for page 1:

Application name: Specifies the name of the current application, as specified on
the Main Menu screen. This field is protected.

Version: Specifies the version number, in the range 1 through 9999, of the current
application.

This field is protected.

Function name: Displays the name of the current function, as specified on the
Response/Function List screen. The function must be associated with a user program.

This field can be modified by the user. The first character of the Function name cannot
be blank. If modified, the user should insure that the combination of response name,
assigned key, and associated function name must be unique within the application.

Drop function: Removes the function definition from the application.

Description: Specifies a 1- to 28-byte description of the current function. The
function description is displayed with the associated response name on runtime menu
and help screens. Note that the specified description is truncated to 12 characters on
the short description menu screen.

�� For a discussion of the runtime menu and help screens, see Chapter 4, “CA-ADS
Runtime System.”

Associated dialog: Specifies the name of the dialog or user program associated
with the function. If this field is left blank, the function is associated with a
system-defined menu.

If the application developer provides a dialog name and also specifies Menu as the
Function type on the Response/Function List screen, the function is associated with a
menu.

Menu cannot be specified for CA-ADS/Batch applications.

Default response: Specifies the name of the response initiated by the runtime
system when the user presses [Enter] without entering a specific response. The default
response is displayed in bright intensity on the Function Definition screen for each
function.

User exit dialog: Specifies the name of a dialog to which a dialog function can
LINK internally.

When the dialog function is initiated at runtime, the name of the dialog supplied as the
user exit dialog is stored in the AGR-EXIT-DIALOG field of
ADSO-APPLICATION-GLOBAL-RECORD. When the runtime system encounters a

2-34 CA-ADS Reference

2.3 Application compiler screens

LINK TO AGR-EXIT-DIALOG command, the dialog named in the
AGR-EXIT-DIALOG field becomes the object of the LINK command.

�� For more information on ADSO-APPLICATION-GLOBAL-RECORD, see
Appendix A, “System Records.”

Use signon menu: Specifies whether the menu is a signon menu. At runtime, the
menu uses the AMR-USER-ID and AMR-PASSWORD fields of
ADSO-APPLICATION-MENU-RECORD.

�� For more information on ADSO-APPLICATION-MENU-RECORD, see
Appendix A, “System Records.”

If the signon menu is system-defined, up to 12 responses are displayed on each page at
runtime.

Menu defined by: Specifies whether the menu is system-defined or user-defined, as
follows:

1. specifies that the menu is user-defined, meaning that the user can specify the
number of responses per page, from 0 to 50.

2. (default) specifies that the menu is system-defined, meaning that CA-ADS
determines the number of responses per menu page: 12 for a signon menu, 15 for
a nonsignon menu that uses long descriptions, and 30 for a nonsignon menu that
uses short descriptions.

Description length: Specifies the description length for nonsignon menus, as
follows:

1. (default) specifies that each function description displayed on the menu screen
contains the complete 28-byte description text. The long description allows up to
15 responses to be displayed on each page of a system-defined menu.

2. specifies that each description displayed on the menu screen is truncated to the
first 12 bytes of the description text. The short description allows up to 30
responses to be displayed on each page of a system-defined menu.

At runtime, the description displayed is the description specified on the Response
Definition screen. If the response definition has no description, the runtime system
displays the description of the associated function for the response.

Responses per page: Specifies the maximum number of responses, in the range 0
through 50, that can be displayed on one page of a user-defined menu at runtime.

The maximum number of responses per page for a system-defined menu is determined
by the menu format. A system-defined signon menu has 12 responses per page. Other
system-defined menus have either 15 or 30 responses per page, depending on the
length of the description (see Description length).

The default is 15.

Chapter 2. CA-ADS Application Compiler (ADSA) 2-35

2.3 Application compiler screens

Number of heading lines: Specifies the number of heading lines displayed at the
top of each page of the runtime menu screen.

The default is 0 (that is, no heading lines).

Heading line text: Specifies the heading text displayed at the top of each page of
the runtime menu screen. The application developer can enter free-form text in the
three 79-byte fields provided.

Page 2 of Function Definition (Menu)

< =
Function Definition (Menu) Page 2 of 2

 Application name: TEST1 Version: 1

 Function name: MENU1

Valid Seq. Response Key Function Valid Seq. Response Key Function

 resp. # Resp. #

_ ______ ADD PFH2 F2 _ ______ ________ _____ ________

_ ______ QUIT PFH1 QUIT _ ______ ________ _____ ________

_ ______ ________ _____ ________ _ ______ ________ _____ ________

_ ______ ________ _____ ________ _ ______ ________ _____ ________

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd F9=Update Seq

L M

Field descriptions for page 2:

Note: Page 2 of the Function Definition (Menu) only appears when you have
previously defined responses.

Application name: Specifies the name of the current application, as specified on
the Main Menu screen. This field is protected.

Version: Specifies the version number, in the range 1 through 9999, of the current
application. This field is protected.

Function name: Displays the name of the current function, as specified on the
Response/Function List screen. The function must be associated with a user program.
This field is protected.

2-36 CA-ADS Reference

2.3 Application compiler screens

Valid response: A nonblank character in this field indicates that this response is
valid for this function.

Seq.#: Specifies the sequence number of each response. The application developer
can modify the position or suppress the display of a response by overwriting the
sequence number in this field.

Response: Specifies the name of each response selected as valid for the current
function.

This field is protected.

Key: Specifies the control key or control event associated with the current
application response, as specified on the Response/Function List screen.

This field is protected.

Function: Specifies the name of the current function, as specified on the
Response/Function List screen. The function must be associated with a menu or a
menu/dialog.

This field is protected.

�� For information on how to specify signon menus, see 4.2.3, “System-defined menu
maps.”

2.3.9 Global Records screen

The Global Records screen is used to specify records that are available to all functions
in an application at runtime.

The Global Records screen is accessed from the Main Menu by choosing option 3 at
the Screen prompt.

The application developer can scroll between pages of the Global Records screen by
using the control keys associated with paging forward and paging backward. Refer to
the table earlier in this section for a listing of the default control key assignments for
the application compiler.

Global records must be defined in the data dictionary before the application is
compiled. The records can be work records or map records. If a subschema record is
specified, the application compiler uses the IDD description of the record. Individual
subschema views are not used.

Once specified, global records are available to all dialogs, maps, and user programs
defined for the application.

There is no limit to the number of records which can be specified.

Chapter 2. CA-ADS Application Compiler (ADSA) 2-37

2.3 Application compiler screens

Record buffers for global records are maintained across application functions,
regardless of the means of transfer of control. Thus, values in the records are
preserved for the duration of the application execution.

A global record used by a dialog must be associated with the dialog. The record can
be defined as a work record on the dialog compiler Records and Tables screen or it
can be associated with the dialog map or subschema. The Records and Tables screen
is discussed in Chapter 3, “CA-ADS Dialog Compiler (ADSC).”

�� For information on associating records with maps, refer to the CA-IDMS Mapping
Facility manual.

Application global records are optional. Note, however, that
ADSO-APPLICATION-GLOBAL-RECORD is automatically included in the list of
global records. The application developer can delete this record, but should be aware
that deleting ADSO- APPLICATION-GLOBAL-RECORD disables many of the
runtime capabilities provided by CA-ADS.

�� For a description of ADSO-APPLICATION-GLOBAL-RECORD, see Appendix A,
“System Records.”

 Sample screen

< =
 Global Records Page 1 of 1

 Application name: TESTAPP1 Version: 1

Record name Version Drop record (/)

 1. ADSO-APPLICATION-GLOBAL-RECORD 1 _

 2. ________________________________ ____ _

 3. ________________________________ ____ _

 4. ________________________________ ____ _

 5. ________________________________ ____ _

 6. ________________________________ ____ _

 7. ________________________________ ____ _

 8. ________________________________ ____ _

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

L M

 Field descriptions:

Application name: Specifies the name of the current application, as specified on
the Main Menu screen. This field is protected.

Version: Specifies the version number, in the range 1 through 9999, of the current
application.

2-38 CA-ADS Reference

2.3 Application compiler screens

Record name: Specifies the 1- to 32-character name of each global record for the
application. The named record must be defined in the data dictionary before the
application is compiled.

The application developer can delete records already specified by overwriting the
record name with blanks or by using the ERASE EOF key.

Version Specifies the version number, in the range 1 through 9999, of the current
application. If no version number is specified, version defaults to 1.

Drop record (/): Removes the record from its association with the application, but
does not delete the record definition from the dictionary.

2.3.10 Task Codes screen

The Task Codes screen is used to specify DC/UCF task codes that initiate an
application at runtime. Each task code is associated with an application function.

The application compiler updates the table of task codes and associated functions (task
application table) that is referenced by the CA-ADS runtime system.

The Task Code screen is accessed from the Main Menu by choosing option 4 at the
Screen prompt.

At runtime, the user can enter one of the specified task codes. If a signon is not
required, the associated function is executed as the first function in the application. If
a signon is required, the associated function is executed as the first function after an
acceptable signon is entered.

�� For more information on the use of application task codes, see Chapter 4,
“CA-ADS Runtime System.”

At least one task code must be specified for each application. Up to eight task codes
and corresponding functions can be specified on one page of the Task Codes screen.
The application developer can specify additional task codes by pressing [Enter] to
enter the specified task codes and then pressing the applicable control key to display a
blank Task Codes screen.

The application developer can scroll between pages of the Task Codes screen by using
the control keys associated with paging forward and paging backward. See earlier in
this section for a listing of the default control key assignments.

Chapter 2. CA-ADS Application Compiler (ADSA) 2-39

2.3 Application compiler screens

 Sample screen

< =
 Task Codes Page 1 of 1

 Application name: TEST1 Version: 1

 Task Code Function Drop (/)

 1. ________ ________ _

 2. ________ ________ _

 3. ________ ________ _

 4. ________ ________ _

 5. ________ ________ _

 6. ________ ________ _

 7. ________ ________ _

 8. ________ ________ _

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

L M

 Field descriptions:

Application name: Specifies the name of the current application, as specified on
the Main Menu screen. This field is protected.

Version: Specifies the version number, in the range 1 through 9999, of the current
application.

This field is protected.

Task code: Specifies the 1- to 8-character name of each DC/UCF task code for the
application. Task code names cannot contain embedded blanks. The application
developer can delete task codes already specified by entering a nonblank character in
the Drop ID column opposite the task code to be dropped.

Note: Task codes must be defined to DC/UCF at system generation by means of the
TASK statement before they can be used to initiate an application directly from
DC/UCF without also having to specify the task code for the runtime system.
Task codes defined at system generation must invoke ADSORUN1.

�� For more information on the TASK statement, refer to CA-IDMS System
Generation.

�� For more information on initiating an application, see Chapter 4, “CA-ADS
Runtime System.”

2-40 CA-ADS Reference

2.3 Application compiler screens

Function name: Displays the name of the current function, as specified on the
Response/Function List screen. The function must be associated with a user program.

This field is protected.

Drop code: Removes the task code from its association with the application.

Chapter 2. CA-ADS Application Compiler (ADSA) 2-41

2-42 CA-ADS Reference

Chapter 3. CA-ADS Dialog Compiler (ADSC)

3.1 Overview . 3-3
3.2 Dialog compiler session . 3-4

3.2.1 Invoking the dialog compiler . 3-4
3.2.2 Sequencing through dialog compiler screens 3-5
3.2.3 Suspending a session . 3-8
3.2.4 Terminating a session . 3-9

3.3 Dialog compiler screens . 3-10
3.3.1 Main menu . 3-10
3.3.2 Options and Directives screen . 3-13
3.3.3 Map Specifications screen . 3-17
3.3.4 Database Specifications screen . 3-20
3.3.5 Records and Tables screen . 3-23
3.3.6 Process Modules screen . 3-25

Chapter 3. CA-ADS Dialog Compiler (ADSC) 3-1

3-2 CA-ADS Reference

3.1 Overview

 3.1 Overview

The CA-ADS dialog compiler is used to define dialogs for online and batch
applications. Dialogs perform database retrieval and update, and any required
processing within an application. Additionally, batch dialogs perform file input and
output, and application processing.

When the definition is complete, the dialog is compiled and the resulting load module
stored in the data dictionary. When using SQL, access modules are stored in the
catalog component of the dictionary by the CA-IDMS access module compiler.

Modification or deletion of dialog components do not change the existing dialog until
the dialog is explicitly recompiled to create a new load module.

�� For more information on modifying dialogs, see CA-ADS User Guide.

A dialog created by the dialog compiler can be associated with an application function
or can stand alone as a structural unit in an application that consists only of dialogs.
A dialog is associated with an application function by specifying the dialog name on
the Response/Function List screen during an application compiler (ADSA) session.
(See Chapter 2, “CA-ADS Application Compiler (ADSA)”)

Batch and online definition and execution modes: It is important not to
confuse batch and online definition modes with batch and online execution modes.
Batch dialogs and online dialogs can be defined using the dialog compiler in online or
batch mode. The dialog compiler, ADSC, is the online dialog definition tool.
ADSOBCOM, discussed in Appendix D, “Application and Dialog Utilities,” defines
dialogs in batch mode. Once defined, dialogs can be executed in a batch environment
or an online environment.

Process commands for online and batch: Process modules contained in
dialogs can include process commands appropriate for online execution as well as
commands designed exclusively for batch execution. The dialog compiler, when
compiling a process module, accepts both types of commands, regardless of the
environment of the dialog. This allows a process module to be used for both online
and batch applications. If, however, the runtime system encounters a disallowed
command or command parameter, the application abends.

Execution mode: The environment in which a dialog can be executed depends on
the map associated with it, as follows:

■ A dialog with an online map executes only in the online environment.

■ A dialog with a file map executes only in the batch environment.

■ A mapless dialog executes in either environment.

Chapter 3. CA-ADS Dialog Compiler (ADSC) 3-3

3.2 Dialog compiler session

3.2 Dialog compiler session

In a dialog compiler session, screens are displayed that prompt the application
developer for information about a dialog and the components with which the dialog is
to be associated. The information supplied by the application developer is used by the
CA-ADS runtime system to execute the dialog.

3.2.1 Invoking the dialog compiler

The application developer can invoke the dialog compiler from any of the three ways
described below.

From CA-IDMS/DC or CA-IDMS/UCF: By specifying the appropriate
CA-IDMS/DC or CA-IDMS/UCF (DC/UCF) task code, the application developer can
invoke the dialog compiler. Task codes are defined at system generation and can vary
from site to site. The default task code for the dialog compiler is ADSC. To use the
dialog compiler under the transfer control facility, specify the transfer control facility
version of the dialog compiler task code, ADSCT.

When invoked, the dialog compiler displays a blank Main Menu screen on which a
new session can begin or a suspended session can be resumed.

�� For more information on using the Main Menu screen, see 3.3, “Dialog compiler
screens” later in this section.

From another TCF task: By specifying the appropriate DC/UCF task code in
conjunction with the SWITCH command from another task executing under the
transfer control facility, the application developer can invoke the dialog compiler.

If a new session is requested, the dialog compiler displays a blank Main Menu screen
on which a new session can begin or a suspended session resumed.

If an old session is requested, the dialog compiler resumes its most recently suspended
session under the transfer control facility.

From the TCF Selection screen: By keying any nonblank character, except the
underscore (_), next to the appropriate task code or descriptor, the application
developer can invoke the dialog compiler as follows:

■ Keying a nonblank character next to the appropriate task code invokes the dialog
compiler, which displays a blank Main Menu screen on which a session can begin
or be resumed.

■ Keying a nonblank character next to the descriptor of a suspended dialog compiler
session invokes the dialog compiler and resumes the suspended session at the
Main Menu screen. The descriptor consists of the appropriate task code, the
dialog name, and the dialog version number.

3-4 CA-ADS Reference

3.2 Dialog compiler session

The transfer control facility enables the application developer to transfer from one
DC/UCF task to another. For example, transfers between the dialog compiler, IDD,
MAPC, and the application compiler can be made. When control is transferred from a
task, the current session of that task is suspended, if necessary. A task can have
several suspended sessions.

�� For a detailed description of the transfer control facility, see CA-IDMS Transfer
Control Facility.

Note: Be sure to begin the dialog compiler session in the correct dictionary. The
dictionary name can be specified in the Dictionary name field of the Main
Menu screen.

Sample selections on the transfer control facility Selection screen are shown below:

< =
COMPUTER ASSOCIATES INTERNATIONAL, INC.

TRANSFER CONTROL FACILITY ___ SELECTION SCREEN ___

 _ SUSPEND TCF SESSION (PF9) DBNAME..: DBNODE..:

 _ TERMINATE TCF SESSION (PF3) DICTNAME: TSTDICT DICTNODE:

 TCF TASKCODES _SUSPENDED SESSIONS_

 SELECT ONE TO START A NEW SESSION SELECT ONE TO RESUME AN OLD SESSION

 TASKCODE DESCRIPTOR

 _ TCF _ADSCT MPKDIA1 HHH1

 _ SYSGENT SYSGEN COMPILER _ADSAT MPKAPP1 HH1

 _ MAPCT MAP DEFINITION _ADSAT MPKAPP1 HH2

 X ADSCT DIALOG GENERATOR _ADSCT MPKDIA2 HHH1

 _ ADSAT APPLICATION GENERATOR _OLMT CEXME222HHH1

 _ ASF

 _ ASFT

 _ IDDT IDD COMMAND MODE

 _ SSCT SUBSCHEMA COMPILER

 _ SCHEMAT SCHEMA COMPILER

 _ IDDMT IDD MENU MODE

 _ OLQ OLQ COMMAND MODE

 _ OLQT OLQ COMMAND MODE

L M

3.2.2 Sequencing through dialog compiler screens

Dialog compiler screens prompt the application developer for information about a
dialog. The developer can sequence through the dialog definition steps or request a
step in the process explicitly. A step in the definition process can contain more than
one screen.

The primary steps involved in creating a dialog are shown below. The developer can
either choose the next step from the Main Menu screen or move through the steps
from screen to screen using [PF5].

Steps in creating a dialog

Chapter 3. CA-ADS Dialog Compiler (ADSC) 3-5

3.2 Dialog compiler session

 ┌───────────┐

 │ Dialog │

 │ specifi- │

 │ cation │

 └─────↑────┘

 │

 ┌───────────────┬───────────────┼───────────────┬───────────────┐

│ │ │ │ │

│ │ │ │ │

│ │ │ │ │

┌─────↓─────┐ ┌─────↓─────┐ ┌─────↓─────┐ ┌─────↓─────┐ ┌─────↓─────┐

│ General │ _ │ Assign a │ _ │ Assign a │ _ │ Assign │ _ │ Assign │

│ options ←───→ map ←───→ database ←───→ records ←───→ Process │

│ │ │ │ │ │ │ │ │ Modules │

└───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘

_ Previous/next step (F4/F5)

Summary of dialog compiler process: Each step in the process of creating a
dialog is associated with one or more screens as shown below.

Step in process Screens Purpose

Dialog specification Main Menu Identifies the name of a dialog
and specifies the action to be
taken

General options Options and Directives Specifies dialog options for
activity logging, symbol and
diagnostic table building, entry
point, COBOL moves,
retrieval locks, and autostatus
capability

Assign maps Map Specifications Associates a map with the
dialog, specifies paging
options

Assign database Database Specifications Associates a schema and
subschema or an access
module with the dialog;
identifies SQL options

Assign records and
tables

Records and Tables Associates work records with
the dialog; specifies records
for which new buffers are
allocated when the dialog
executes at runtime

Assign process
modules

Process Modules Associates a premap process,
one or more response
processes, and a declaration
module with the dialog

3-6 CA-ADS Reference

3.2 Dialog compiler session

Additional screens: The table below lists additional screens accessed through the
Display and Compile windows on the action bar on the dialog compiler Main Menu.

Control keys: While creating a dialog, the applications developer can use the
control keys shown in the table below to:

■ Move from one step in the process to another step

■ Move from one screen to another screen while remaining on one step in the
process

 ■ Obtain help

■ Leave the ADSC compiler

■ Move between the action command line and the specification area (Main Menu
only)

Screen Purpose

Map image Displays a dialog's map as it appears to the
terminal operator at runtime

Summary Displays a summary listing of a dialog's
components

Messages Displays messages and errors encountered
during the compilation process including errors
in the source code for a premap or response
process associated with a dialog

General options Displays screens (when errors occur) listing
modules, error browsing, and connections to
IDD and DME

Chapter 3. CA-ADS Dialog Compiler (ADSC) 3-7

3.2 Dialog compiler session

Default control keys

Activity Control
key

Description

HELP [PF1] Displays a map or field help screen, depending
on cursor position

If the cursor is on a map field associated with
help text, a half screen of map field help text is
displayed.

If the cursor is set on a map field not
associated with help text or anywhere else on
the map, a full screen of map help text is
displayed.

RETURN [PF3] From a pulldown window, returns to
specification area.

From the Main Menu screen, returns control to
DC/UCF

From a screen other than the Main Menu
screen, applies updates to the current screen
and returns to the Main Menu screen

BACKWARD [PF4] Applies updates to the current screen and
displays the previous step in the process, as
outlined on the Main Menu screen.

FORWARD [PF5] Applies updates to the current screen and
displays the next step in the process, as
outlined on the Main Menu screen.

BACKPAGE [PF7] Displays the previous screen of any step
containing multiple screens.

FORWARD PAGE [PF8] Displays the next screen of any step containing
multiple screens.

ACTION [PF10] Toggles the cursor position between the activity
selection area action bar and the specification
area on the Main Menu screen

3.2.3 Suspending a session

A dialog compiler session is automatically suspended in the event of a system crash.

Leaving ADSC automatically suspends the session. The developer can also suspend a
session by selecting the Release option from the Modify window on the action bar.
This allows any other developer to check the dialog out.

3-8 CA-ADS Reference

3.2 Dialog compiler session

When a session is suspended, the application compiler saves the dialog definition,
including all specifications made during the session, on queue records. A suspended
session can be resumed at any time, as described in 3.2.1, “Invoking the dialog
compiler” earlier in this section.

3.2.4 Terminating a session

When a session is terminated by compiling or deleting a dialog, the dialog compiler
displays a blank Main Menu screen. The application developer can begin another
session or can leave the dialog compiler by selecting an appropriate activity, such as
Switch, from the action bar or by pressing [PF3].

Chapter 3. CA-ADS Dialog Compiler (ADSC) 3-9

3.3 Dialog compiler screens

3.3 Dialog compiler screens

 3.3.1 Main menu

The Main Menu screen is displayed when the application developer initiates a dialog
compiler session. This screen is used to specify the action taken regarding the dialog,
name a dialog and dictionary, specify the next step to be taken in the dialog definition.

Areas: The screen is composed of six areas:

■ Activity selection area

■ Dialog identification area

■ Screen specification area

 ■ Message area

 ■ Command area

■ Key assignment area

Activity selection area: Displays the dialog compiler activities available.

The application developer selects an activity to be performed one of these ways:

■ By typing the name of the activity on the Command line in the lower left-hand
corner of the screen.

■ By pressing [PF10] to reach the Activity Selection Area, and, with the tab key,
positioning the cursor on the activity name and pressing [Enter].

�� See Chapter 1, “Introduction to CA-ADS” for a discussion of the activities
available from the dialog compiler Main Menu screen.

Dialog identification area: Specifies the dialog name, dialog version number, the
dictionary name, and the dictionary node. The fields contained in this section are
described below.

Screen specification area: Allows the application developer to specify the next
step in the definition process. The application developer can either:

■ Press [Enter] to go to the default next step

Note: See the table earlier in this chapter for information on the default dialog
definition sequence.

■ Specify a step

See Chapter 1, “Introduction to CA-ADS” for a discussion of the activities available
from the application compiler Main Menu screen.

3-10 CA-ADS Reference

3.3 Dialog compiler screens

Message area: Displays informational and error messages returned from the dialog
compiler.

Note that the control keys as described earlier in this section, (in addition to [Enter])
are identified at the bottom of this screen.

Command area: Provides a command line for entering the name of the desired
action as specified in the activity selection area above. Action names can be
abbreviated to the first three letters, ADD, MOD, DEL, COM, DIS or SWI. The
system recognizes more than, but not less than, the first three letters of each
identification.

If more than one activity is specified on the command line, an error message is
displayed. If an activity is specified on the command line, and a control key is
pressed, the activity associated with the control key is executed.

If an error is detected after the application developer selects an activity, the dialog
compiler redisplays the current screen. The activity selection is retained and executed
when the error is corrected. The application developer can override the initial
selection by specifying another activity on the command line, selecting the activity
directly from the selection area or by using [PF10].

Key assignment area: Presents the valid key choices and the action taken.

Control keys are described earlier in this section.

Chapter 3. CA-ADS Dialog Compiler (ADSC) 3-11

3.3 Dialog compiler screens

Main Menu screen

< =
 ─

 Add Modify Compile Delete Display Switch

 ─ .___.

CA-ADS Online Dialog Compiler

Computer Associates International, Inc.

 ─

 Dialog name ________

 Dialog version ____

 Dictionary name ________

 Dictionary node ________

 ─

 ─ Screen 1 1. General options

 2. Assign maps

 3. Assign database

 4. Assign records and tables

 5. Assign process modules

 ─

Copyright (C) 1972,2HHH Computer Associates International, Inc.

 Command ===>

 Enter F1=Help F3=Exit F1H=Action

L M

 Field descriptions:

Dialog name: Specifies the 1- to 8- character name of the current dialog. The
dialog must begin with an alphabetic or national (@, #, and $) character and cannot
contain embedded blanks. A dialog name must be specified before any other dialog
compilation activity can be executed. Once specified, the dialog name cannot be
changed.

Dialog version: Specifies the version number, in the range 1 through 9999, of the
current dialog. The default version is 1.

Dictionary name: Specifies the 1- to 8-character name of the data dictionary that
contains the source modules and the map, access modules and subschema, and record
definitions used by the specified dialog.

The dialog compiler stores the dialog load module in the specified dictionary when the
dialog is compiled. If no dictionary name is specified, dictionary name is set to the
name of the dictionary identified in the user's profile or set through a DCUF SET
DICTNAME statement.

The dictionary name cannot change once it is validated.

Dictionary node: (DDS only) Specifies the node that controls the data dictionary
specified by Dictionary name. Dictionary node defaults to the system currently in
use.

3-12 CA-ADS Reference

3.3 Dialog compiler screens

Specifying a node name is equivalent to issuing a DCUF SET DICTNODE command
under DC/UCF. The node name cannot change once it is validated.

Screen: Provides the application developer with a quick form of navigation between
steps in the dialog definition process. By specifying the number which precedes the
screen name, the user avoids unnecessary scrolling through the screens.

�� For a description of each screen, see 3.2.2, “Sequencing through dialog compiler
screens” earlier in this section.

3.3.2 Options and Directives screen

The Options and Directives screen is used to specify options for a dialog, such as:

■ Alternative message prefixes

 ■ Autostatus

■ Specifying the mainline dialog

■ Including a symbol table

■ Including a diagnostic table

■ Specifying the premap as the entry point

■ Using COBOL or CA-ADS rules in handling data types and arithmetic and
assignment commands

 ■ Activity logging

■ Selectively disabling retrieval locks

The current settings for the dialog options are displayed on the screen. Each option
can be changed by overwriting the displayed setting or by placing a slash (/) or other
nonblank character in the space to the left of the option.

Chapter 3. CA-ADS Dialog Compiler (ADSC) 3-13

3.3 Dialog compiler screens

 Sample screen

< =
Options and Directives

 Dialog JPKTD1H Version 1

 Message prefix DC

 Autostatus record ADSO-STAT-DEF-REC

 Version 1

 Description ADS DIALOG

 Options and directives _ Mainline dialog

_ Symbol table is enabled

/ Diagnostic table is enabled

/ Entry point is premap

_ COBOL moves are enabled

/ Activity logging

/ Retrieval locks are kept

/ Autostatus is enabled

 Enter F1=Help F3=Exit F4=Prev F5=Next

L M

 Field descriptions:

Dialog: Displays the name of the current dialog, as specified on the Main Menu
screen. This field is protected.

Version: Displays the version number, in the range 1 through 9999, of the current
dialog. This field is protected.

Message prefix: Specifies a 2-character prefix for a message at the dialog level.
DC is the default prefix.

�� For more information on message prefixes, see Chapter 4, “CA-ADS Runtime
System”

Autostatus record: Specifies the 1- to 32-character name of the status definition
record used when the current dialog executes at runtime. The specified status
definition record must be defined in the data dictionary. If no record name is
specified, Autostatus record defaults to the name of the status definition record
defined at DC/UCF system generation.

�� For more information on status definition records, see Chapter 10, “Error
Handling.”

An autostatus record is required if the Autostatus is enabled option is chosen.

3-14 CA-ADS Reference

3.3 Dialog compiler screens

Version: Specifies a 1- to 4-digit version number, in the range of 1 through 9999, of
the named status definition record. If a version number is not specified, Version
defaults to the system default version number specified at system generation. If no
system default version number is specified, Version defaults to 1.

Mainline dialog: Inserting a nonblank character in the accompanying data field
specifies that the current dialog is a mainline dialog.

At runtime, the dialog that executes first in a series of dialogs that make up an
application must be a mainline dialog. If a dialog function is initiated by an
application task code, the dialog associated with the function must be a mainline
dialog.

�� For more information on mainline dialogs, see Chapter 15, “Control Commands.”

Symbol table is enabled: Inserting a nonblank character in the accompanying data
field specifies that a symbol table is created for a dialog.

A symbol table facilitates the use of element names and process line numbers by the
online debugger.

�� For more information on online debugging, see Appendix H, “Debugging a
CA-ADS Dialog.”

Diagnostic table is enabled: Inserting a nonblank character in the accompanying
data field specifies that the dialog load module contains diagnostic tables (line number
tables and offset tables).

During the testing of a dialog, the Diagnostic table is enabled option should be
selected.

Diagnostic tables facilitate the testing and debugging of a dialog. If a dialog aborts,
diagnostic tables are used to display the process command in error on the Dialog Abort
Information screen. The ADSORPTS utility uses diagnostic tables to format the dialog
report for easy reference.

Once a dialog has been tested thoroughly, the Diagnostic table is enabled option
should be deselected and the dialog recompiled if dialog load module size is a
consideration. The size of a large dialog load module can be reduced significantly by
compiling the dialog without diagnostic tables.

The Diagnostic table is enabled option is deselected by spacing over the slash.

Note: The Diagnostic table is enabled option must be selected if the Symbol table
is enabled option is selected.

Chapter 3. CA-ADS Dialog Compiler (ADSC) 3-15

3.3 Dialog compiler screens

Entry point is premap: The entry point of a dialog specifies the point at which the
dialog becomes operative in the application thread.

Inserting a nonblank character in the accompanying data field specifies that the dialog
begins with its premap process.

Regardless of the specification, a dialog without an online map or a batch input file
map begins with its premap process. A dialog without a premap process begins with
its first mapping operation.

COBOL moves are enabled: Inserting a nonblank character in the accompanying
data field specifies that the rules of COBOL are used in the conversion between data
types and in the rounding or truncation of the results of arithmetic and assignment
commands.

�� A comparison of a CA-ADS MOVE and a COBOL MOVE is provided 13.4,
“Assignment command.”

If COBOL moves are enabled, certain types of invalid expression may be allowed by
the CA-ADS compiler. When a MOVE, COMPUTE, ADD, SUBTRACT,
MULTIPLY, or DIVIDE statement has a numeric source expression and an EBCDIC
target expression, the source expression must be a literal or a simple dataname with an
optional subscript.

The default setting for COBOL MOVE is defined in the DC/UCF system generation
ADSO statement. NO is the system generation default status.

The COBOL moves are enabled option can be modified only if the DC/UCF system
generation COBOL MOVE subclause has been defined as OPTIONAL. OPTIONAL
is the system default.

�� For more information on the COBOL MOVE subclause of the system generation
ADSO statement, see CA-IDMS System Generation.

Activity logging: Inserting a nonblank character in the accompanying data field
specifies that the dialog uses the activity logging facility. This facility documents all
potential database activity by a dialog, based on the database commands issued
explicitly or implicitly by the dialog's processes.

�� For more information on activity logging, see Appendix E, “Activity Logging for a
CA-ADS Dialog.”

The default setting for the Activity logging option is defined at DC/UCF system
generation.

3-16 CA-ADS Reference

3.3 Dialog compiler screens

�� For more information on the system generation ADSO statement, see CA-IDMS
System Generation.

Retrieval locks are kept: Inserting a nonblank character in the accompanying data
field specifies that database record retrieval locks will be held on behalf of run units
started by the dialog.

Retrieval locks should be disabled only for retrieval dialogs that do not update the
database or pass currencies to update dialogs. When retrieval locks are disabled for
dialogs that do update the database or pass currencies, CA-ADS displays the following
message:

DC173H15 DIALOG ABORTED DUE TO VIOLATION OF NO RETRIEVAL LOCKING RULES

In addition, the update dialog abends when a higher dialog in the application thread
does not have retrieval locks kept and system-wide RETRIEVAL NOLOCKS are
specified.

The update dialog or program is allowed to update the retrieval dialog's database
records when the dialog with retrieval locks turned off readies the area in UPDATE
mode or when the update dialog or program does not receive currencies when control
passes to it.

�� To avoid passing currency, see the TRANSFER command or the NOSAVE clause
of the DISPLAY, INVOKE, or LINK commands in Chapter 15, “Control Commands.”

Autostatus is enabled: Inserting a nonblank character in the accompanying data
field specifies that the autostatus facility is to be used when the current dialog
executes at runtime.

The initial setting corresponds to the autostatus specification defined at DC/UCF
system generation. If autostatus is defined as optional, the application developer can
override the initial setting. If autostatus is defined as mandatory, this field is protected
and the initial setting cannot be changed.

�� For a discussion of the autostatus facility, see Chapter 10, “Error Handling.”

3.3.3 Map Specifications screen

The Map Specifications screen is used to specify a map and map options for a dialog,
such as the:

 ■ Map name

■ Method of map paging, including overriding automatic display of the first page of
a pageable map

Chapter 3. CA-ADS Dialog Compiler (ADSC) 3-17

3.3 Dialog compiler screens

 Sample screen

< =
 Map Specifications

 Dialog JPKTDH1 Version 1

Map name ________ Input map ________

Version ____ Version ____

Label ________

Paging options _ 1. Wait

2. No Wait Output map ________

3. Return Version ____

Label ________

Paging mode . . . _ Update

_ Backpage Suspense file label ________

_ Auto display

 Enter F1=Help F3=Exit F4=Prev F5=Next F6=Switch Protection

L M

 Field descriptions:

Dialog: Displays the 1- to 8- character name of the current dialog, as specified on
the Main Menu screen. This field is protected.

Version: Displays the version number, in the range 1 through 9999, of the current
dialog, as specified on the Main Menu screen. This field is protected.

Map name: Specifies the 1- to 8-character name of the map associated with the
current dialog.

The specified map must be defined in the data dictionary. The map load module does
not have to exist. If no map name is specified, only a premap process (not a response
process) can be associated with the dialog.

Version: Specifies a 1- to 4-digit version number, in the range 1 through 9999, of
the corresponding map.

If no version number is specified, version defaults to 1.

Paging options: Specifies the method used to determine the runtime flow of
control when the user presses a control key during a map paging session.

�� For more information, see 17.6, “Pageable maps.”

Nowait is the default for pageable maps.

Note: The map paging dialog options Nowait and Update cannot be specified
together.

3-18 CA-ADS Reference

3.3 Dialog compiler screens

Paging mode: Specifies parameters for a map paging session.

 ■ Update

Specifies that the user can modify map data fields in a map paging session,
subject to restrictions specified in the mapping facility and by the map
modification process commands, as described in 17.6, “Pageable maps.” Update is
the default for pageable maps.

Note: The map paging dialog options Nowait and Update cannot be specified
together.

Note: When Update is not selected, all map data fields except $RESPONSE and
$PAGE will be protected.

 ■ Backpage

Specifies that a previous map pages can be displayed during a map paging session,
as described in 17.6, “Pageable maps.” Backpage is the default for a pageable
map.

 ■ Auto display

Specifies an override of the automatic mapout of the first page of a pageable map.

When the Auto display option is not chosen, process logic must detect when the
first page of the map is built and map out the first page when it is ready for
display, even if the page is not full.

The $PAGE-READY pageable map condition should be used to detect completion
of the first page. The $PAGE-READY condition should be tested while building
the map page to determine when the page is ready for display.

�� For more information, see Chapter 8, “Conditional Expressions.”

Auto display is the default for pageable maps.

Input map: (CA-ADS/Batch only) Specifies that the named map is an input file
map.

Note: Select Switch Protection [PF6] to unprotect the CA-ADS/Batch input fields.

Version: Specifies the version number, in the range 1 through 9999, of the current
map. If no version number is specified, version defaults to 1.

Label: (CA-ADS/Batch only) Specifies the OS/390 ddname (VSE/ESA filename,
BS2000/OSD linkname, VM/ESA ddname) of a batch dialog input file map.
Specifications made in these fields can be overridden at runtime.

The runtime label for an input map can be specified only if the dialog is associated
with an input file map.

Output map: (CA-ADS/Batch only) Specifies that the named map is an output file
map.

Chapter 3. CA-ADS Dialog Compiler (ADSC) 3-19

3.3 Dialog compiler screens

Version: Specifies the version number, in the range 1 through 9999, of the current
map. If no version number is specified, version defaults to 1.

Label: (CA-ADS/Batch only) Specifies the OS/390 ddname (VSE/ESA filename,
BS2000/OSD linkname, VM/ESA ddname) of a batch dialog output file map.
Specifications made in these fields can be overridden at runtime.

A runtime label for an output map can be specified only if the dialog is associated
with an output file map.

Suspense file label: (CA-ADS/Batch only) Specifies the OS/390 ddname
(VSE/ESA filename, BS2000/OSD linkname, VM/ESA ddname) of a batch dialog
suspense file. Specifications made in these fields can be overridden at runtime.

The runtime label for a suspense file can be specified only if the dialog is associated
with an input file map. A runtime label for a suspense file implicitly specifies that a
suspense file is required for the dialog.

Map considerations: The specified map must be defined in the data dictionary.
However, the map load module does not have to exist. If no map name is specified,
only a premap process (not a response process) can be associated with the dialog.

The following rules apply to the environments in which a map can be executed.

■ A dialog associated with an online map cannot be associated with an input or
output file map.

■ A dialog associated with an input or output map cannot be run in the online
environment.

■ A dialog can be associated with both an input and an output file map.

■ If a dialog is not associated with any map, it is a mapless dialog and can be
executed in both batch and online environments.

3.3.4 Database Specifications screen

The Database Specifications screen is used to specify database options for a dialog,
such as the:

 ■ Subschema name

■ Access module name

3-20 CA-ADS Reference

3.3 Dialog compiler screens

 Sample screen

< =
 Database Specifications

Dialog NAME1 Version 1

Subschema ________

Schema ________

Version ____

Access Module NAME1

SQL Compliance _ 1. ANSI-standard SQL

 2. FIPS

Date Default Format _ 1. ISO 2. USA 3. EUR 4. JIS

Time Default Format _ 1. ISO 2. USA 3. EUR 4. JIS

 Enter F1=Help F3=Exit F4=Prev F5=Next

L M

 Field descriptions:

Dialog name: Displays the name of the current dialog, as specified on the Main
Menu screen. This field is protected.

Version: Specifies the version number, in the range 1 through 9999, of the current
dialog. This field is protected.

Subschema: Specifies the 1- to 8-character name of the subschema associated with
the current dialog.

The specified subschema must be defined in the data dictionary. If no subschema is
specified, the dialog cannot perform database access.

Schema: Specifies the 1- to 8-character name of the schema with which the named
subschema is associated.

If the named subschema is associated with more than one schema or version of a
schema, a schema name must be specified. If the named subschema is associated with
exactly one schema and version, Schema defaults to the name of that schema.

Version: Specifies the version number, in the range 1 through 9999, of the named
schema. If no version number is specified, version defaults to the version of the
named schema that was most recently defined.

Access module: Specifies the 1- to 8-character name of the access module
associated with the current dialog. The access module need not exist when the dialog
is compiled, but it must exist at runtime if the dialog accesses a database with SQL
DML (other than dynamic SQL). If the dialog will not require an access module to be
loaded at runtime, clear this field.

Chapter 3. CA-ADS Dialog Compiler (ADSC) 3-21

3.3 Dialog compiler screens

The dialog process logic can override the specification on this screen at runtime by
issuing a SET ACCESS MODULE statement.

If you do not change the value in this field, the default value assigned by CA-ADS is
the dialog name. If the dialog was copied from another dialog, the default value is:

■ The name of the target dialog if the name of the access module name associated
with the source dialog matches the name of the target dialog

■ The name of the access module associated with the source dialog if the access
module name does not match the name of the source dialog

About access modules: An access module is the executable form of the SQL
statement that a program issues. When an access module is created, CA-IDMS/DB
automatically determines the most effective access to the data requested by the SQL
statements. The CA-IDMS access module compiler incorporates the access strategy in
the access module, which is stored in the catalog component of the dictionary.

An access module is defined with a CREATE ACCESS MODULE statement in an
SQL session, and it is associated with an SQL schema. It is built at runtime for the
dialog if it is specified for the dialog on this screen and it has been created. Under
CA-IDMS internal security, ownership of the schema qualifying the access module
affects authority to use the access module.

�� For more complete information on creating and executing access modules, refer to:

■ CA-IDMS SQL Programming

■ CA-IDMS SQL Reference

■ CA-IDMS Security Administration

SQL Compliance: Specifies the SQL standard you are enforcing. If you select
neither ANSI-standard SQL nor FIPS, the default is CA-IDMS extended SQL.

�� For more information on SQL standards, refer to CA-IDMS SQL Reference.

Date Default Format: Specifies the external date representation format. The date
format can be one of the following:

■ ISO specifies the International Standards Organization standard

■ USA specifies the IBM USA standard

■ EUR specifies the IBM European standard

■ JIS specifies the Japanese Industrial Standard Christian Era standard

Time Default Format: Specifies the external time representation format. The time
format can be one of the following:

■ ISO specifies the International Standards Organization standard

3-22 CA-ADS Reference

3.3 Dialog compiler screens

■ USA specifies the IBM USA standard

■ EUR specifies the IBM European standard

■ JIS specifies the Japanese Industrial Standard Christian Era standard

�� For more information on date/time representations, refer to the CA-IDMS SQL
Reference.

3.3.5 Records and Tables screen

The Records and Tables screen is used to associate a record with a dialog definition
and to assign the New and Work record attributes.

New attribute: The New attribute identifies records for which new buffers are
allocated and initialized when the dialog executes at runtime. Previously established
buffers for records assigned the New attribute are retained but are not available to the
dialog. A record that is assigned the New attribute must be known to the dialog as a
subschema, map, or work record.

Work attribute: The Work attribute associates a record with a dialog as a work
record. The CA-ADS runtime system allocates buffers for work records; in this way,
records with the Work attribute establish working storage for a dialog. A record must
be defined in the data dictionary before it can be associated with a dialog as a work
record.

Records are dissociated from a dialog definition by:

■ Placing a non-blank character in the Drop column opposite the record to be
dissociated

■ Overtyping the name of the record to be dissociated with the name of a new
record

Up to 7 records can be specified on one page of the Records and Tables screen.
Using the [PF8], additional pages are displayed.

Chapter 3. CA-ADS Dialog Compiler (ADSC) 3-23

3.3 Dialog compiler screens

 Sample screen

< =
Records and Tables Page 1 of 1

 Dialog NAME1 Version 1

 Name Version Work New copy Drop

1. AA 1 / _ _

2. AA 1 / _ _

3. _____________________________________ ____ _ _ _

4. _____________________________________ ____ _ _ _

5. _____________________________________ ____ _ _ _

6. _____________________________________ ____ _ _ _

7. _____________________________________ ____ _ _ _

DC49824H Record 2 is defined twice as a work record.

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

L M

 Field Descriptions:

Dialog: Displays the name of the current dialog, as specified on the Main Menu
screen. This field is protected.

Version: Specifies the version number, in the range 1 through 9999, of the current
dialog. This field is protected.

Name: The 1- to 32-charcter name of each record assigned the WORK and/or NEW
COPY attribute. Records associated with the dialog's map or subschema will be
automatically associated with the dialog and need not be listed. If the dialog is to use
its own copy of a record or if the dialog must distinguish between logical records or
between a logical record and a database record, the required record or logical record
can be named.

The value of the Name field can also be the 1- to 18-character schema name, followed
by a period (.), followed by the 1- to 18-character table name of every table to be
assigned as a host variable of an SQL command.

Version: Specifies the version number, in the range 1 through 9999, of the named
record. The default version number is the system version default version number, as
specified at system generation. If no system number is specified, the default version
number is 1.

Work: Associates the Work attribute with the corresponding record. Records with
the Work attribute are available to the dialog as working storage at runtime.

3-24 CA-ADS Reference

3.3 Dialog compiler screens

The application developer associates the Work attribute with a record by entering a
nonblank character in the Work field corresponding to the applicable record.

If no attribute is specified when a record name is entered, Work is assigned as the
default. If New is specified for a record, Work is automatically unassigned.

To remove the Work attribute from a record, the application developer places a
nonblank character in the Drop column opposite the record to be dissociated.

New copy: Associates the New attribute with the corresponding record. Records
with the New attribute are allocated new record buffers when the dialog executes at
runtime.

The application developer associates the New attribute with a record by entering a
nonblank character in the New field corresponding to the applicable record. To
remove the New attribute from a record, the application developer places a nonblank
character in the Drop column opposite the record to be dissociated.

Drop: Removes the record from its association with the dialog, but does not delete
the record definition from the dictionary.

3.3.6 Process Modules screen

The Process Modules screen is used to associate a declaration, premap, response
process, or default response process with a dialog.

Premap process: The Process Modules screen is used to associate or dissociate a
premap process with a dialog. A premap process must exist in the data dictionary as a
process module before it can be associated with a dialog.

Response process: A response process must exist in the data dictionary as a
process module before it can be associated with a dialog. For a response process, the
screen prompts the application developer for a control key and/or a response field
value used to initiate the response process when the dialog executes at runtime.

If a batch dialog response field for an input record is the concatenation of several
fields, the response field value specified on this screen must include any embedded
blanks that occur in a concatenation.

The Process Modules screen allows the application developer to specify whether the
response process is to be executed even if the map contains input errors. If map input
errors are allowed, automatic editing is performed as usual for the dialog's map. The
user is not required to correct errors before the response process begins execution.
The response process is executed, but the erroneous data is not mapped in. The
response process can test for map fields in error with an IF statement.

�� For a description of the IF command, see Chapter 14, “Conditional Commands.”

Chapter 3. CA-ADS Dialog Compiler (ADSC) 3-25

3.3 Dialog compiler screens

�� For more information on automatic editing, refer to the CA-IDMS Mapping Facility
manual. More than one control key or response field value can be associated with a
response process. The application developer defines the response process repeatedly as
a new response, each time specifying a different control key and/or response field
value until all control keys and response field values to be associated with the response
process have been specified. Note that the response process is compiled and stored in
the dialog load module only once.

Declaration module: A declaration module is used under the SQL Option to
declare cursors and to issue global WHENEVER statements. The statements in a
declaration module are not executed. They are compiler directives used by the
CA-ADS dialog compiler at dialog compilation.

Declaration modules allow you to store declarations you have specified as global to
your application.

Unlike the premap and response process modules, the declaration module cannot
contain executable CA-ADS commands. This module can contain only DECLARE
CURSOR statements and WHENEVER directives.

A WHENEVER directive or DECLARE CURSOR statement is also valid in a premap
or response process, but the scope of such a statement is not global.

�� Further explanation of usage for WHENEVER and DECLARE CURSOR can be
found in the CA-IDMS SQL Reference.

�� For further considerations regarding the declaration module, see the CA-IDMS SQL
Programming.

Default response: Specifies that the named process module is the optional default
response process of the dialog. At runtime, after a mapin operation, the runtime
system executes the default response process if no response process can be selected
based on control event or response field value.

Dissociating a process: The Process Modules screen is also used to dissociate a
response process from a dialog. The developer places a nonblank character next to
Drop opposite the process to be deleted.

Multiple processes: Up to 4 processes can be specified on one page of the Process
Modules screen. Using [PF8], you can display additional pages.

Compiling the process: When the application developer chooses Compile from
the action bar in the activity selection area of the Main Menu screen, the dialog
compiler compiles all processes associated with the dialog. ADSC returns the
following message after a successful compile:

DC49814H Dialog TESTDIAL version 1 has been successfully compiled.

If a process does not compile successfully, the application compiler indicates the
number of errors encountered.

3-26 CA-ADS Reference

3.3 Dialog compiler screens

The application developer can view the source code and error messages for the process
by selecting item 2, Display messages, from the Compile window on the action bar in
the activity selection area of the Main Menu screen.

�� For more information see Chapter 1, “Introduction to CA-ADS.”

The application developer cannot enter changes on the Messages screen.

�� For a description of the Messages screen see 1.5, “CA-ADS screens.”

To modify the process source code, the application developer must suspend the dialog
compiler session.

�� For more information, see 3.2.3, “Suspending a session” earlier in this chapter.

 Sample screen

< =
 Process Modules Page 1 of 1

Dialog NAME1 Version 1

 Name ________________________________ _ Type

Version ____ _ Execute on errors

 Key _____ Value ________________________________ _ Drop

 Name ________________________________ _ Type

Version ____ _ Execute on errors

 Key _____ Value ________________________________ _ Drop

 Name ________________________________ _ Type

Version ____ _ Execute on errors

 Key _____ Value ________________________________ _ Drop

 Name ________________________________ _ Type

Version ____ _ Execute on errors

 Key _____ Value ________________________________ _ Drop

_ Type : 1=Declaration 2=Premap 3=Response 4=Default Response

DC498166 Neither a map nor premap are defined

 Enter F1=Help F3=Exit F4=Prev F5=Next F7=Bkwd F8=Fwd

L M

 Field descriptions:

Name: Specifies the 1- to 32-character name of the module associated with the
current dialog as a premap process, a response process, or a declaration module. The
specified source module must exist in the data dictionary.

Version: Specifies the version number in the range 1 through 9999, of the named
process source module. The default version number is the system version default
version number, as specified at system generation. If no system number is specified at
system generation, the default version number is 1.

Chapter 3. CA-ADS Dialog Compiler (ADSC) 3-27

3.3 Dialog compiler screens

Key: Specifies the online control key or batch control event that initiates the runtime
response process. Valid control key specifications are:

 ■ ENTER

 ■ CLEAR

■ PA1, PA2, PA3

■ PF1 through PF24,

 ■ FWD

 ■ BWD

 ■ HDR

 Considerations

■ FWD, BWD, and HDR can be specified only if the dialog is associated with a
pageable map.

■ LPEN can be specified as a control key if the use of light pens is supported by the
installation.

■ CLEAR, PA1, PA2, and PA3 do not transmit data; that is, input is not mapped in
when these keys are pressed at runtime.

■ The FWD, BWD, and HDR control keys are associated with pageable maps.
FWD and BWD are synonymous with the keyboard control keys defined for
paging forward and backward, respectively.

If FWD or BWD are specified and the keys defined for paging forward and
backward are changed, the dialog does not have to be recompiled.

■ HDR is not associated with any keyboard control key; rather, conditions
encountered during a map paging session cause a response process associated with
this control key value to be initiated.

�� For more information on the effect of HDR on the runtime flow of control, see
Chapter 4, “CA-ADS Runtime System.”

Valid batch control events are as follows:

■ EOF indicates the most recent input file read operation resulting in an end-of-file
condition.

■ IOERR indicates the most recent input file read operation resulting in a physical
input-error condition. In CA-ADS/Batch, output errors cause the runtime system
to terminate the application.

Value: Specifies a 1- to 32-character response name that can be entered in a
$RESPONSE map field to initiate the response process at runtime. The response field
value can contain embedded blanks.

3-28 CA-ADS Reference

3.3 Dialog compiler screens

If the current dialog is associated with an application function, the application
developer can associate a response process in the dialog with an application response.
This is done by entering in the Value field the specification entered in the Response
Name field of the Response Definition screen during application definition.
Additionally, the same control key must be specified in the Key field on both the
dialog compiler Process Modules screen and the application compiler
Response/Function List screen.

By associating a dialog's response process with an application response, the application
developer can place security restrictions on the response process. Additionally, the
response process can be displayed as a valid response on runtime menus.

Type: Specifies the type of module named module is.

Execute on errors: Specifies that the response process executes even if the map
contains input errors. Map fields in error are not mapped in. The map field status
condition test can be used to test for fields in error, as described in Chapter 8,
“Conditional Expressions.”

When this option is not selected, the user must correct all map fields in error before
processing continues.

Drop: Specifies that an existing process module is being dropped from the dialog
definition.

If Drop is specified. the dialog compiler dissociates the process module from the
dialog but does not delete the source from the data dictionary.

Chapter 3. CA-ADS Dialog Compiler (ADSC) 3-29

3-30 CA-ADS Reference

Chapter 4. CA-ADS Runtime System

4.1 Initiating the CA-ADS runtime system . 4-3
4.1.1 How to define runtime tasks . 4-3
4.1.2 How to start a CA-ADS application . 4-4

4.2 Runtime menu and help screens . 4-8
4.2.1 Menu screens . 4-8
4.2.2 Site-defined menu maps . 4-9
4.2.3 System-defined menu maps . 4-10
4.2.4 Application help screen . 4-16

4.3 Runtime flow of control . 4-19
4.3.1 Effects of automatic editing on flow of control 4-22

4.4 Message prefixes . 4-23
4.5 CA-ADS tasks, run units, and transactions 4-24

4.5.1 Run units and database access . 4-25
4.5.2 Extended run units . 4-25

4.6 Dialog Abort Information screen . 4-28
4.7 Debugging a dialog . 4-32
4.8 Linking From CA-ADS to CA-OLQ . 4-33

4.8.1 Linking to CA-OLQ . 4-33
4.8.2 Passing syntax to CA-OLQ . 4-33

4.9 Linking built-in functions with the runtime system 4-34
4.9.1 Linking system-supplied built-in functions 4-34
4.9.2 Linking user-written built-in functions 4-39

4.10 Managing storage . 4-40
4.10.1 Adjusting record compression . 4-40
4.10.2 Calculating RBB storage . 4-40
4.10.3 Writing resources to scratch records 4-41
4.10.4 Using XA storage . 4-42

Chapter 4. CA-ADS Runtime System 4-1

4-2 CA-ADS Reference

4.1 Initiating the CA-ADS runtime system

4.1 Initiating the CA-ADS runtime system

CA-ADS applications are executed using the CA-ADS runtime system.

To execute a CA-ADS/Batch application, use the CA-ADS/Batch runtime system.

�� For more information about the CA-ADS/Batch runtime system, refer to CA-ADS
Batch User Guide.

4.1.1 How to define runtime tasks

Tasks that initiate the CA-ADS runtime system are defined at CA-IDMS/DC or
CA-IDMS/UCF (DC/UCF) system generation to activate program ADSORUN1. The
task codes are specified by means of the system generation TASK statement and are
associated with CA-ADS in one of the following ways:

■ By means of the ADSTASK clause of the system generation ADSO statement.

■ By means of the application compiler Task Codes screen (described in Chapter 2,
“CA-ADS Application Compiler (ADSA)”). At runtime, a task code defined on
the Task Codes screen directly initiates the application for which it is defined.

A task code specified on the Task Codes screen can be used to initiate the runtime
system only if one of the following conditions is met:

– If the task code specified on the Task Codes screen is also defined in the
system generation TASK statement

– If the default ADSTASK task code (ADS) is entered in conjunction with the
task code specification on the Task Codes screen

■ By means of a task code invoking a mainline dialog provided the task code
invokes ADSORUN1.

At runtime, the named dialog is directly initiated as the first dialog in an
application consisting of a series of dialogs.

�� For more information on the system generation TASK statement, refer to CA-IDMS
System Generation.

When the user initiates a CA-ADS application, the runtime system loads the required
load modules into storage and sets up control blocks and record buffers for the
application.

Chapter 4. CA-ADS Runtime System 4-3

4.1 Initiating the CA-ADS runtime system

4.1.2 How to start a CA-ADS application

After signing on to DC/UCF, the user can initiate the CA-ADS runtime system by
responding to the ENTER NEXT TASK CODE prompt, as follows:

■ By entering the task code that directly initiates an application

■ By entering the task code specified in the ADSTASK clause of the system
generation ADSO statement, followed either by a task code defined for an
application or by the name of a mainline dialog

■ By entering only the task code specified in the ADSTASK clause of the system
generation ADSO statement

Task Application Table: In either of the first two cases, the CA-ADS runtime
system responds by checking the Task Application Table (TAT) for the specified task
code. If the specified task code is in the TAT, the runtime system begins execution of
the application with the function associated with the task code or with a signon
function if one is specified for the application. The TAT is updated by the application
compiler by using information entered on the Task Codes screen.

�� For a description of the Task Codes screen, see Chapter 2, “CA-ADS Application
Compiler (ADSA).”

The TAT table can also be updated online using ADSOTATU, or in batch using
ADSOBTAT.

�� For more information on ADSOTATU and ADSOBTAT, see Appendix D,
“Application and Dialog Utilities.”

If the specified task code is not in the TAT, the runtime system checks for a mainline
dialog whose name matches the task code. If the dialog exists, the runtime system
begins execution of the dialog. If the dialog does not exist, the runtime system
terminates abnormally.

If the user enters only the task code specified in the ADSTASK clause of the system
generation ADSO statement, the runtime system responds by displaying the Dialog
Selection screen.

The Dialog Selection screen displays a menu of the mainline dialogs available to the
user. The user selects a dialog, and the runtime system begins execution of the dialog.

4-4 CA-ADS Reference

4.1 Initiating the CA-ADS runtime system

Dialog Selection screen

< =
CA-ADS RELEASE 15.H PAGE: 1

DIALOG SELECTION FOR USER:

ENTER DIALOG NAME: OR SELECT ONE BELOW

_ ADSA _ ADSOTATU _ ASFADSGD _ ASFOOAKD

- OLQ _ RQERDQ

PA1 - PAGE FORWARD

PA2 - PAGE BACK

CLEAR - EXIT CA-ADS

L M

The user initiates a dialog from the Dialog Selection screen by entering a nonblank
character in the response field corresponding to the applicable dialog, or by entering
the name of the dialog in response to the ENTER DIALOG NAME prompt.

Initiating the CA-ADS runtime system: Syntax and syntax rules for the
statement used to initiate the CA-ADS runtime system are shown below.

Use these statements in response to the DC/UCF prompt:

ENTER NEXT TASK CODE

 Syntax

��─┬─ ads-task-code ───�─

 │

├─ ads-task-code ─┬┬────────────────────────────┬─┬──────────────────┬──────

│ │└─┬───────────┬─dialog-name ─┤ └─ NODe=node-name ─┘

│ │ └─ DIAlog= ─┘ │

│ └─ application-task-code ─────┘

 │

└─ idms-dc/ucf-task-code ─┬──────────────────┬──────────────────────────────

└─ NODe=node-name ─┘

─�──┬───────��

 ────┬────────────────────────┬───────┬─────────────────────┬────────┤

└─ DBName=database-name ─┘ └─ TRACE= ──┬──ALL ─┬─┘ │

 └──CTL ─┘ │

 │

 ────┬────────────────────────┬──────────────────────────────────────┘

└─ DBName=database-name ─┘

Chapter 4. CA-ADS Runtime System 4-5

4.1 Initiating the CA-ADS runtime system

 Parameters

ads-task-code
Specifies the task code defined in the ADSTASK clause of the system generation
ADSO statement.

Ads-task-code must be defined in a system generation TASK statement to invoke
program ADSORUN1. The default task code is ADS.

DIAlog=dialog-name
Specifies the name of a mainline dialog to begin execution as the first dialog in an
application.

Note: There is no space between the keyword DIAlog and = or between = and
dialog-name.

application-task-code
Specifies a task code defined for an application by means of the Task Codes
screen.

If no signon function is specified, the function associated with the task code
begins execution as the first function in the application. If a signon function is
specified, the function associated with the task code begins execution after an
acceptable signon is entered.

idms-dc/ucf-task-code
Specifies either a task code defined for an application by means of the Task Codes
screen or the name of a mainline dialog.

Idms-dc/ucf-task-code must be defined in a system generation TASK statement to
invoke program ADSORUN1.

NODe=node-name
Specifies the node that controls the data dictionary in which the definitions and
load modules for the requested application are stored.

Node-name must be defined at DC/UCF system generation.

Note: There is no space between the keyword NODe and = or between = and
node-name.

DBName=database-name
Specifies the database accessed by the application.

Database-name must be defined at system generation.

Note: There is no space between the keyword DBName and = or between = and
database-name.

TRACE=
Specifies that the CA-ADS trace facility is to be used for the application.

Note: There is no space between the keyword TRACE and = or between = and
ALL or CTL.

4-6 CA-ADS Reference

4.1 Initiating the CA-ADS runtime system

ALL
Writes trace records to the system log for each of the following:

 ■ Dialog entry

■ Process module entry

 ■ Subroutine entry

■ Process command execution for dialogs having symbol tables

■ Database status information

■ Currency save and restore operations

CTL
Writes the same trace records as ALL only for the following subset of process
commands:

 ■ Control commands

 ■ Database commands

 Examples

Example 1: Specifying a task code that directly initiates an application: The
following statement initiates the run-time system with the system-generated task code
REPORTS. Because REPORTS is defined in the TAT and no signon function is
specified for the application that REPORTS initiates, the runtime system begins
execution of the function associated with REPORTS.

REPORTS

Example 2: Specifying the run-time system task code without an application
task code: The following statement initiates the run-time system with the default
task code ADS. The system displays the Dialog Selection screen.

ADS

Example 3: Specifying the run-time system task code with an application task
code: The following statement initiates the run-time system with the default task
code ADS and specifies the application task code TESTAPPL:

ADS TESTAPPL DBNAME=TESTDB

The DBNAME clause is included to specify that the database to be accessed by the
application is TESTDB. If the clause were not included in this statement, the
application would access the system's current database or the dbname set by a DCUF
SET DBNAME command.

Chapter 4. CA-ADS Runtime System 4-7

4.2 Runtime menu and help screens

4.2 Runtime menu and help screens

The CA-ADS runtime system builds and displays menu and help screens for
application functions. These screens display valid responses for a function and allow
the user to select a response.

Note: Online help does not support terminal access methods that do not provide the
READ BUFFER functions (for example, VTAM does provide this function;
TCAM does not). Terminals running under a method that does not support
READ BUFFER are detected, and invocation of HELP at runtime is ignored.

Menu screens and the application help screen are discussed separately below.

 4.2.1 Menu screens

Specifying a menu function: Functions are defined as menu functions or
menu/dialog functions on the Response/Function List screen during application
definition. The menu associated with a function can be further described by using the
Function Definition (Menu) screen. The application developer can indicate on this
series of screens whether the menu map is system-defined or site-defined and provide
a heading for the menu map.

�� For descriptions of the screens used during application definition, see Chapter 2,
“CA-ADS Application Compiler (ADSA).”

System-defined menu maps can be associated with menu functions or with
menu/dialog functions. A site-defined menu map must be associated with a
menu/dialog function.

ADSO- APPLICATION- MENU-RECORD: The CA-ADS runtime system uses
ADSO-APPLICATION-MENU- RECORD to create menus. All menu maps must
include ADSO- APPLICATION-MENU-RECORD as a map record.

�� For a description of ADSO-APPLICATION-MENU-RECORD, see Appendix A,
“System Records.”

When the map of a menu function or menu/dialog function is mapped out, the runtime
system initializes ADSO-APPLICATION-MENU- RECORD and moves as many
responses and descriptions as possible into the fields provided by the menu map. If
the menu is defined on the Function Definition (Menu) screen as a site-defined menu,
the runtime system moves as many responses and descriptions as specified on the
Function Definition (Menu) screen. If a response has no description, the runtime
system displays the description for the function associated with the response.
AMR-RESPONSE-FIELD is initialized with the default response specified for the
function.

4-8 CA-ADS Reference

4.2 Runtime menu and help screens

Selecting a response: When the menu is displayed on the screen, the user can
select a response in one of the following ways:

■ By pressing the control key associated with the applicable response

■ By entering a nonblank character in the field immediately preceding the applicable
response

■ By entering a response name in the field that maps to AMR-RESPONSE-FIELD

The runtime system passes the selected response to the AMR- RESPONSE-FIELD of
ADSO-APPLICATION-MENU-RECORD. If the user uses more than one type of
response selection, the response selected by using a control key has precedence over a
response selected by a nonblank character, which has precedence over a response name
entered in a RESPONSE field. If the user presses the ENTER key without selecting a
response, the default response remains in AMR-RESPONSE-FIELD and is considered
in the determination of the runtime flow of control.

The value in AMR-RESPONSE-FIELD determines the next function to be executed
from a menu function.

�� For more information on how the CA-ADS runtime system processes responses, see
"Runtime Flow of Control" later in this section.

The CA-ADS runtime system processes system-defined and site-defined menu maps in
the same way, as described below.

4.2.2 Site-defined menu maps

In order for the runtime system to perform this processing automatically, a site-defined
menu map must have the following characteristics:

■ The menu must map to ADSO-APPLICATION-MENU- RECORD. Fields in
ADSO-APPLICATION-MENU-RECORD are described in Appendix A, “System
Records.”

■ The number of responses specified per menu page must not exceed the number of
occurrences defined for the AMR-SELECT-SECTION of
ADSO-APPLICATION-MENU-RECORD (that is, 50). The application developer
specifies the number of responses per page on the Function Definition (Menu)
screen during application definition.

�� For a description of the Function Definition (Menu) screen, see Chapter 2,
“CA-ADS Application Compiler (ADSA).”

Considerations: The following considerations apply:

■ AMR-RESPONSE-FIELD can be used to display default responses and to accept a
response from the user.

Chapter 4. CA-ADS Runtime System 4-9

4.2 Runtime menu and help screens

■ Unless specifically specified, unused occurrences of the AMR-SELECT-SECTION
are not protected on a site-defined menu map.

■ The menu record always appears initialized to a site-defined menu dialog.

�� For more information on site-defined menu maps, see the CA-ADS Application
Design Guide.

4.2.3 System-defined menu maps

CA-ADS provides three system-defined menu maps, as follows:

■ ADSOMUR1 — The short description menu map

■ ADSOMUR2 — The long description menu map

■ ADSOMSON — The signon menu map

The format for a system-defined nonsignon menu map is specified on the Function
Definition (Menu) screen during application definition. The application developer can
select a short description format (ADSOMUR1) or a long description format
(ADSOMUR2) for nonsignon menus.

Short description format: The short description format displays 30 responses per
menu page; the long description format displays 15 responses per menu page. The
number of responses that are displayed can be modified on the Function Definition
(Menu) screen by specifying that the menu is site-defined and by entering the number
of responses per page.

�� For more information on specifying the format for a menu map, see Chapter 2,
“CA-ADS Application Compiler (ADSA).”

Runtime display: When a menu screen is displayed at runtime, ADS builds the
menu by storing the appropriate information in ADSO-APPLICATION-
MENU-RECORD. System-defined nonsignon menus map to all but two of the fields
in ADSO-APPLICATION-MENU-RECORD.

�� For descriptions of the fields in ADSO-APPLICATION-MENU- RECORD, see
Appendix A, “System Records.”

4-10 CA-ADS Reference

4.2 Runtime menu and help screens

Sample short description menu screen (ADSOMUR1)

< =
 DIALOG: PAGE: 1 OF: 1

 DATE: NEXT PAGE:

 TEST APPLICATION

 _ PAGETEST (PF22) TEST DIALOG _ FORWARD (PF8) FORWARD

 _ BACKWARD (PF7) BACKWARD _ POPTOP (PF3) POP TO TOP

 _ HELP (PF1) HELP _ QUIT (PF24) QUIT

 _ POP (PF2) POP 1 LEVEL _ LINKMENU (PF13) LINKTO SUBMENU

 _ LINKPAGE (PF14) LINK TO DIALOG _ START START OF LIST

 _ EDIT (PF17) TESTING BUG FIX

 RESPONSE: SEND DATA--> MODE: STEP

L M

Sample long description menu screen (ADSOMUR2)

< =
 DIALOG: PAGE: 1 OF: 1

 DATE: 11/27/99 NEXT PAGE:

 TEST APPLICATION

 _ PAGETEST (PF22) TEST DIALOG

 _ FORWARD (PF8) FORWARD

 _ BACKWARD (PF7) BACKWARD

_ POPTOP (PF3) POP TO TOP

 _ HELP (PF1) HELP

 _ QUIT (PF24) QUIT

_ POP (PF2) POP 1 LEVEL

 _ LINKMENU (PF13) LINKTO SUBMENU

_ LINKPAGE (PF14) LINK TO DIALOG

_ START START OF LIST

_ EDIT (PF17) TESTING BUG FIX

 RESPONSE: SEND DATA--> MODE: STEP

L M

 Field descriptions:

DIALOG: Specifies the name of the dialog associated with the current menu/dialog
function. The field is blank if no dialog is associated with the current function.

This field is protected.

DATE: Specifies the current date in the format selected on the Main Menu screen
during application definition.

This field is protected.

Chapter 4. CA-ADS Runtime System 4-11

4.2 Runtime menu and help screens

PAGE: Specifies the current page of the menu screen.

This field is protected.

OF: Specifies the total number of pages for the current menu.

This field is protected.

NEXT PAGE: Specifies the next page of the menu screen to be displayed. To page
forward or backward, the user enters the applicable page number and presses the
ENTER key. The FORWARD and BACKWARD system functions can also be used if
they are valid for the current function.

HEADING TEXT: Displays the heading for the current menu, as specified on the
Function Definition (Menu) screen during application definition.

RESPONSE LISTING: Displays the available valid responses for the current
function and, for each response, provides a 1-byte field that the user can use to select
the response. A short description menu displays 30 responses per page; a long
description menu displays 15 responses per page.

The responses are listed in the order specified on the Function Definition (Menu)
screen during application definition. For each response listed, the following
information, which is supplied on the Response/Function List screen during application
definition, is displayed:

■ The response name.

■ The control key associated with the response.

■ The response description.

If the menu has a short description format, the description text is truncated to 12
bytes. If the menu has a long description format, the entire 28-byte description is
displayed. If the response has no description, the description for the function
associated with the response is displayed.

SYSTEM MESSAGE AREA: Displays informational and error messages returned
by the CA-ADS runtime system.

This area is protected.

RESPONSE: Specifies the default response (if any) for the current function.

The user can select the default response by pressing the ENTER key without
modifying the screen.

The user can select a different response than the default response by overwriting the
default response with a nonblank character in the 1-byte field preceding the applicable
response, or by pressing the control key associated with the response. If an invalid
response name is entered, the value is replaced by the default next response.

4-12 CA-ADS Reference

4.2 Runtime menu and help screens

SEND DATA: Specifies a 32-byte field that is mapped to the AMR-PASSING field
of ADSO-APPLICATION-MENU-RECORD and then moved to the
AGR-PASSED-DATA field of ADSO-APPLICATION-GLOBAL- RECORD. The
AGR-PASSED-DATA field can be accessed in the process code of a dialog function
or user program. AMR-PASSING is initialized to spaces before the menu is mapped
out. If AMR- PASSING contains all spaces, nothing is moved to AGR-PASSED-
DATA.

MODE: Specifies an execution mode of STEP or FAST for the function. This
specification is valid only if the application developer coded procedures for controlling
the execution mode of the current dialog function.

Signon menu maps: The application developer defines a menu as a signon menu
on the application compiler Function Definition (Menu) screen.

Signon menus are similar to nonsignon menus, except that signon menus map to two
additional fields (AMR-USER-ID and AMR- PASSWORD) in
ADSO-APPLICATION-MENU-RECORD. If the system function SIGNON is
associated with a valid response for the signon menu function, the runtime system
submits the values entered in the AMR-USER-ID and AMR-PASSWORD fields to
DC/UCF for security clearance when SIGNON is initiated.

If the return code from DC/UCF indicates a successful signon, CA-ADS moves the
value in AMR-USER-ID to the AGR-USER-ID field of
ADSO-APPLICATION-GLOBAL-RECORD. The AMR-PASSWORD field is
overwritten with blanks after being passed to DC/UCF.

If a signon is required, the runtime system does not allow any other application
activity to occur until a successful signon is processed.

�� For information about ADSO-APPLICATION-MENU-RECORD and ADSO-
APPLICATION-GLOBAL-RECORD, see Appendix A, “System Records.”

For more information on implementing a signon procedure, see Appendix G, “Security
Features.”

Signon menu maps can be site-defined or system-defined.

Chapter 4. CA-ADS Runtime System 4-13

4.2 Runtime menu and help screens

Sample signon menu screen (ADSOMSON)

< =
 DIALOG: PAGE: 1 OF: 1

 DATE: 11/27/99 NEXT PAGE:

 TEST APPLICATION

ENTER USER ID--->

 PASSWORD-------->

 _ PAGETEST (PF22) TEST DIALOG

 _ FORWARD (PF8) FORWARD

 _ BACKWARD (PF7) BACKWARD

_ POPTOP (PF3) POP TO TOP

 _ HELP (PF1) HELP

 _ QUIT (PF24) QUIT

_ POP (PF2) POP 1 LEVEL

 _ LINKMENU (PF13) LINKTO SUBMENU

_ LINKPAGE (PF14) LINK TO DIALOG

_ START START OF LIST

_ EDIT (PF17) TESTING BUG FIX

 RESPONSE: SEND DATA--> MODE: STEP

L M

 Field descriptions:

DIALOG: Specifies the name of the dialog associated with the current menu/dialog
function. The field is blank if no dialog is associated with the current function.

This field is protected.

DATE: Specifies the current date in the format selected on the Main Menu screen
during application definition.

This field is protected.

PAGE: Specifies the current page of the menu screen.

This field is protected.

OF: Specifies the total number of pages for the current menu.

This field is protected.

NEXT PAGE: Specifies the next page of the menu screen to be displayed. To page
forward or backward, the user enters the applicable page number and presses the
ENTER key. The FORWARD and BACKWARD system functions can also be used if
they are valid for the current function.

HEADING TEXT: Displays the heading for the current menu, as specified on the
Function Definition (Menu) screen during application definition.

4-14 CA-ADS Reference

4.2 Runtime menu and help screens

ENTER USER ID: Prompts for the user's user id.

This 32-byte field is mapped to the AMR-USER-ID field of ADSO-
APPLICATION-MENU-RECORD.

PASSWORD: Prompts for the user's password.

This 8-byte field is mapped to the AMR-PASSWORD field of ADSO-
APPLICATION-MENU-RECORD. This is a darkened field; characters entered in this
field do not appear on the screen.

RESPONSE LISTING: Displays the available valid responses for the current
function and, for each response, provides a 1-byte field that the user can use to select
the response.

The signon menu screen displays 12 responses per page. The responses are listed in
the order specified on the Function Definition (Menu) screen during application
definition.

For each response listed, the following information, which is supplied on the
Response/Function List screen during application definition, is displayed:

■ The response name.

■ The control key associated with the response.

■ The 28-byte response description.

If a response has no description, the description for the function associated with
the response is displayed.

Note: If a signon is required for the application, at least one valid response must be
associated with the system function SIGNON.

SYSTEM MESSAGE AREA: Displays informational and error messages returned
by the CA-ADS runtime system.

This area is protected.

RESPONSE: Specifies the default response (if any) for the current function.

The user can select the default response by pressing the ENTER key without
modifying the screen.

The user can select a different response than the default response by overwriting the
default response, by entering a nonblank character in the 1-byte field preceding the
applicable response, or by pressing the control key associated with the response.

SEND DATA: Specifies a 32-byte field that is mapped to the AMR-PASSING field
of ADSO-APPLICATION-MENU-RECORD and then moved to the
AGR-PASSED-DATA field of ADSO-APPLICATION-GLOBAL- RECORD. The
AGR-PASSED-DATA field can be accessed in the process code of a dialog function

Chapter 4. CA-ADS Runtime System 4-15

4.2 Runtime menu and help screens

or user program. AMR-PASSING is initialized to spaces before the menu is mapped
out. If AMR- PASSING contains all spaces, nothing is moved to AGR-PASSED-
DATA.

MODE: Specified an execution mode of STEP or FAST for the function. If the user
specifies an acceptable signon and the execution mode is STEP, the runtime system
redisplays the signon menu. The user must press the ENTER key to proceed to the
first application function.

If the execution mode is FAST, the runtime system immediately proceeds to the first
function. Except for its use in signon menus, the execution mode specification is valid
only if the application developer coded procedures for controlling the execution mode
of the current dialog function.

4.2.4 Application help screen

The runtime application help screen lists all the valid responses for the current
function. The screen is displayed when the user selects a response that initiates the
system function HELP.

The user can perform any of the following actions from the application help screen:

■ Select another page for display by entering the applicable page number in the
NEXT PAGE field

■ Select a response, as follows:

– By pressing the control key associated with the applicable response

– By entering a nonblank character in the 1-byte field immediately preceding
the applicable response name

– By entering the applicable response name in the RESPONSE field

■ Return to the current function by pressing the ENTER key without modifying the
screen

4-16 CA-ADS Reference

4.2 Runtime menu and help screens

Sample application help screen

< =
 CURRENT FUNCTION: DUDMENU PAGE: 1 OF: 1

 DATE: 11/27/99 NEXT PAGE:

APPLICATION CONTROL FACILITY HELP SCREEN

 _ PAGETEST (PF22) TEST DIALOG

 _ QUIT (PF24) QUIT

_ HELP (PF1) HELP

 _ FORWARD (PF8) FORWARD

 _ BACKWARD (PF7) BACKWARD

_ POPTOP (PF3) POP TO TOP

_ POP (PF2) POP 1 LEVEL

 _ LINKMENU (PF13) LINKTO SUBMENU

 _ LINKPAGE (PF14) LINK TO DIALOG

_ START START OF LIST

_ EDIT (PF17) TESTING BUG FIX

 RESPONSE:

L M

 Field descriptions:

CURRENT FUNCTION: Specifies the name of the function for which the listed
responses are valid.

This field is protected.

DATE: Specifies the current date in the format selected on the General Options
screen during application definition.

This field is protected.

PAGE: Specifies the current page of the help screen.

This field is protected.

OF: Specifies the total number of pages for the current help screen. This field is
protected.

NEXT PAGE: Specifies the next page of the help screen to be displayed. To page
forward or backward, the user enters the applicable page number and presses the
ENTER key. The FORWARD and BACKWARD system functions cannot be used to
page through this screen.

RESPONSE LISTING: Displays the valid responses for the current function and,
for each response, provides a 1-byte field that the user can use to select the response.
The application help screen displays 15 responses per page.

Chapter 4. CA-ADS Runtime System 4-17

4.2 Runtime menu and help screens

For each response listed, the following information, which is supplied on the Response
Definition screen during application definition, is displayed:

■ The response name.

■ The control key associated with the response.

■ The 28-byte response description.

If a response has no description, the description for the function associated with
the response is displayed.

SYSTEM MESSAGE AREA: Displays informational and error messages returned
by the CA-ADS runtime system.

This area is protected.

RESPONSE: Specifies a response name entered by the user.

4-18 CA-ADS Reference

4.3 Runtime flow of control

4.3 Runtime flow of control

Flow of control is the way control is passed from one application function or dialog to
another at runtime. In CA-ADS, the runtime flow of control is determined by user
requests or runtime events, based on specifications made at definition time.

AGR-CURRENT- RESPONSE: The CA-ADS runtime system uses the
AGR-CURRENT-RESPONSE field of ADSO-APPLICATION-GLOBAL-RECORD to
direct the flow of control in applications defined by using the application compiler.

When the user presses a control key, the value of AGR-CURRENT-RESPONSE is
established by means of the following steps:

1. The runtime system moves spaces to AGR-CURRENT- RESPONSE.

2. The runtime system checks the AGR-MAP-RESPONSE field of
ADSO-APPLICATION-GLOBAL-RECORD (AMR- RESPONSE-FIELD of
ADSO-APPLICATION-MENU- RECORD for menu functions) for a response
entered by the user. If the user entered a response and pressed the ENTER key,
the runtime system moves the response to AGR-CURRENT-RESPONSE. If the
user pressed a control key other than the ENTER key, the runtime system
proceeds to Step 4 below.

3. If the user did not enter a response, the runtime system checks the
AGR-DEFAULT-RESPONSE field of ADSO-
APPLICATION-GLOBAL-RECORD for a default response for the current
function. If a default response exists and the user pressed the ENTER key, the
runtime system moves the default response to AGR-CURRENT-RESPONSE. If a
default response does not exist or if the terminal operator did not press the
ENTER key, the runtime system proceeds to Step 4 below.

4. If a default response does not exist or if the user did not press the ENTER key,
the runtime system checks the AGR-AID-BYTE field for the control key pressed
by the user. If the control key pressed is associated with a response, the runtime
system moves the associated response to AGR- CURRENT-RESPONSE. If the
control key pressed is not associated with a response, spaces remain in
AGR-CURRENT- RESPONSE.

The following diagram shows how the runtime system establishes the value of
AGR-CURRENT-RESPONSE.

�� For more information on the fields in ADSO-APPLICATION-GLOBAL-RECORD,
see Appendix A, “System Records.”

Note: When a series of dialogs that are not associated with application functions is
executed as an application, the flow of control is directed by the control
commands coded in the premap and response processes. The control
commands specify either explicitly or implicitly the next component to be
executed.

Chapter 4. CA-ADS Runtime System 4-19

4.3 Runtime flow of control

For more information on the CA-ADS control commands, see Chapter 15,
“Control Commands.”

Establishing the value of AGR-CURRENT-RESPONSE

Valid response: If the response established in AGR-CURRENT-RESPONSE is
valid for the current function, the runtime system moves the name of the function
associated with the response to the AGR-NEXT-FUNCTION field of
ADSO-APPLICATION-GLOBAL-RECORD.

For responses with a security class higher than zero, the runtime system also checks
whether the terminal operator has an acceptable security class. If the user does not
have an acceptable security class, the current screen is redisplayed with a message
indicating that a different response must be selected.

Note: Process code can move values to the AGR-CURRENT-RESPONSE field,
overwriting the response selected by the user. The runtime system does not
check security for a response moved to the AGR-CURRENT- RESPONSE
field in process code. A process code value is executed if it is valid for the
current function.

The response moved to AGR-CURRENT-RESPONSE establishes the next function to
be executed. The function is not executed, however, until the runtime system satisfies

4-20 CA-ADS Reference

4.3 Runtime flow of control

certain criteria. The following diagram shows how the flow of control is directed
within an application at runtime.

Application flow of control

Notes:

1. Immediately executable functions are HELP, SIGNON, SIGNOFF.

2. Message displayed on user's screen:

UNACCEPTABLE RESPONSE. PLEASE TRY AGAIN.

3. Inter-dialog control commands are DISPLAY, INVOKE, LEAVE, LINK,
RETURN, and TRANSFER.

4. Message displayed on user's screen:

INVALID RESPONSE SPECIFIED BY DIALOG PROCESS CODE

5. HDR can be specified only in a dialog associated with a pageable map.

Default control key assignments: At system generation, default control key
assignments can be specified for certain formats of the LEAVE and RETURN process
commands. By default, PA1 is assigned to LEAVE APPLICATION; CLEAR is
assigned to RETURN CLEAR. At runtime, the user can press these keys to perform
their associated commands.

Chapter 4. CA-ADS Runtime System 4-21

4.3 Runtime flow of control

�� For more information on defining default control key assignments, see the
discussion of the KEYS statement in CA-IDMS System Generation.

Default control key assignments are overridden by control key assignments specified
for application responses and dialog response processes.

4.3.1 Effects of automatic editing on flow of control

Runtime flow of control is altered when the automatic editing capability of the
DC/UCF mapping facility encounters input edit errors on mapin:

Response process selected: If a response process is selected, the outcome
depends on whether the Execute on edit errors option for the response is selected:

■ When it is selected, the response process is executed.

■ When it is not selected, the response process is not executed. The next event
depends on the control key pressed by the user:

– If the user presses [Clear] or [PA1], the CA-ADS runtime system passes
control using the sysgen-defined assignment for the key. This means that it
overrides the application-defined assignment (if any) for the key.

Note: Required fields are always marked in error when the user presses
[Clear] or any PA key.

– If the user presses any other control key, the runtime system redisplays the
map, with edit errors.

�� For more information on execute on edit errors, see Chapter 3, “CA-ADS Dialog
Compiler (ADSC).”

System function selected: If a system function, except RETURN or TOP, is
selected, the function is executed.

Any other application function: If any other application function, including
RETURN or TOP is selected, the map is redisplayed with edit errors.

Considerations: Under certain circumstances, a dialog response process is selected
even though the user has selected an application function, as indicated in diagram
above. In these cases, the Execute on edit errors option of the selected response
process determines whether the map with errors is redisplayed. Circumstances under
which a response process is selected are as follows:

■ The dialog has a response process associated with the ENTER key and the user
selects a nonimmediately executable function (POP, POPTOP, RETURN, TOP, or
QUIT). The ENTER response process is selected.

■ The user selects a nonimmediately executable function and the control key pressed
or response name specified by the user is the same as a control key or a response
field value associated with a response process. The response process is selected.

4-22 CA-ADS Reference

4.4 Message prefixes

 4.4 Message prefixes

In CA-ADS, messages can be sent to a terminal in either of two ways:

■ The dialog process code can issue a DISPLAY MESSAGE command

■ Automatic editing can display a message for every field marked IN ERROR

Specific prefixes can be designated for each message.

Messages issued through DISPLAY MESSAGE command: A prefix can be
specified through ADSC in either of two ways:

■ In dialog process code in the DISPLAY command

■ At the dialog level on the Options and Directives screen

If the message prefixes defined at the dialog level and at the message level conflict,
the prefix set at the message level is used. If no prefix is set, 'DC' is used.

Messages issued through automatic editing: A message prefix can be
specified through the mapping compiler in either of two ways:

■ At the map level on the General Options screen

■ At the map field level on the Additional Edit Criteria screen

The map message prefix is set only at the field level. The map level value entered on
the screen is just a default carried to each field during a computation.

If the message prefixes defined at the map level and at the map field level conflict, the
prefix set at the map level is used. If no prefix is set, 'DC' is used.

Chapter 4. CA-ADS Runtime System 4-23

4.5 CA-ADS tasks, run units, and transactions

4.5 CA-ADS tasks, run units, and transactions

Tasks and run units opened when accessing a non-SQL defined database are handled
automatically during the execution of a CA-ADS application. Tasks and run units for
CA-ADS are discussed separately below.

Tasks: A task is a logical unit of work performed by the DC/UCF system that
consists of one or more programs.

The CA-ADS runtime system executes as a series of tasks within the DC/UCF
environment. The first task begins when the user initiates the runtime system, as
discussed in 4.1, “Initiating the CA-ADS runtime system” earlier in this section.
Subsequent tasks begin on mapin from the terminal.

A task terminates when the runtime system performs a mapout operation to the
terminal with no errors or when the application terminates. When a task terminates,
CA-ADS returns control to DC/UCF automatically; the application developer does not
code a DC RETURN command.

After a mapin operation, CA-ADS determines whether the response entered by the user
is valid. If the response is valid, the task continues and the runtime system resumes
processing as directed by the response. If the response is not valid, the task terminates
and the runtime system performs a new mapout operation with an error message.

Run units: Communication with the database is established by means of run units.
A run unit begins when an application signals its intent to perform database operations
and ends when the program releases all database resources from its control. A run
unit can consist of any number of CA-IDMS/DB database requests.

CA-ADS can have 0 to 2 run units open at a time. With SQL access, run units are a
physical aspect of data access that is hidden, as the SQL model requires. CA-ADS
can have a network run unit open and access the database using SQL at the same time.

If a dialog issues non-SQL DML and SQL DML against the same non-SQL defined
database at one time, deadlock of the run units is possible.

Establishing a run unit to access the database and extending run units using CA-ADS
is discussed below.

Transactions: A database transaction is a unit of recovery within an SQL session.

CA-IDMS/DB begins a database transaction when the dialog submits an SQL
statement that results in access to either user data or the dictionary, and ends a
transaction when a COMMIT or ROLLBACK is executed or when the SQL session is
terminated.

�� For information on transactions within an SQL session, see CA-IDMS SQL
Programming.

4-24 CA-ADS Reference

4.5 CA-ADS tasks, run units, and transactions

For a list of SQL statements that start and end a database transaction, see CA-IDMS
SQL Reference.

4.5.1 Run units and database access

During the execution of a CA-ADS application, the following sequence occurs when
accessing the database:

1. The run unit begins and READY commands are automatically issued when the
CA-ADS runtime system encounters the first database or logical record command
that accesses database records.

2. When READY commands are physically coded in process modules, the following
considerations apply:

■ The parameters from the last physically coded READY command for an area
are used by the runtime system.

■ If no READY command appears in the process code, the default parameters,
as defined in the subschema, are used by the runtime system.

3. The run unit that is not extended ends when the CA-ADS runtime system
encounters any control command except RETURN in a nested structure.

Before executing the control command, CA-ADS does the following:

■ Saves currencies unless additional specifications (NOSAVE, NOFINISH)
indicate otherwise

■ Issues a FINISH command to release the database areas and write a
checkpoint to the CA-IDMS/DB journal

Finishing SQL transactions: An SQL transaction is finished only when the user
explicitly terminates it (using the appropriate SQL commands), or when CA-ADS is
terminating the task (such as DISPLAY or LEAVE ADS). A network run unit can be
closed and re-opened because of a change of subschema causing CA-ADS not to
extend a run unit. If CA-ADS has to finish such a run unit, it does not finish the SQL
transaction.

4.5.2 Extended run units

A run unit is kept open (extended) when a dialog passes control to another dialog, user
program, or application function by using an INVOKE, LINK, TRANSFER, or
EXECUTE NEXT FUNCTION command.

�� These commands are documented in Chapter 15, “Control Commands.”

A run unit is extended when control passes to any one of the following:

■ A user program.

Chapter 4. CA-ADS Runtime System 4-25

4.5 CA-ADS tasks, run units, and transactions

If a run unit is not already open and the LINK command's USING RECORDS list
includes SUBSCHEMA-CONTROL, CA-ADS opens and extends a run unit. If
the run unit is already open, the run unit is extended.

■ A dialog with a premap process and no associated subschema.

■ A dialog with a premap process whose schema and subschema are the same as
those of the issuing dialog and whose usage modes are equally or less restrictive
than those of the linking dialog.

A usage mode is considered more restrictive than another usage mode if either of
its two components is more restrictive.

The following table shows the relative restrictiveness of usage modes.

■ Any lower-level dialog, provided that the USING SUBSCHEMA-CONTROL
clause of the LINK command is used.

Considerations: The following considerations apply to extended run units:

■ Rollback when a run unit is extended with the LINK command

The LINK command does not automatically write a checkpoint to the
CA-IDMS/DB journal file. This allows a lower level dialog to check for errors
and issue a ROLLBACK command if necessary. In this case, the entire extended
run unit is rolled back.

If a COMMIT command is included in either dialog, the dialog is rolled back only
to the COMMIT checkpoint. In this case, the entire extended run unit is not
rolled back.

 ■ Runtime deadlocks

– If a user program issues a subschema BIND followed by any database
activity, the program can deadlock at runtime. To avoid this situation, a
COMMIT command should be coded before a LINK to a user program that
issues a BIND or FINISH command.

It may be more efficient to remove subschema BIND and FINISH activities
from the user program and allow the extended run unit to handle these
functions. In this case, the issuing dialog must pass
SUBSCHEMA-CONTROL to the program. Subschema records passed to the
program must be bound only if the user program provides its own subschema
record buffers. When control returns to CA-ADS, the runtime system
automatically rebinds the record buffers.

Restrictiveness Usage mode Qualifier

Most restrictive Update Exclusive

Protected

Retrieval Shared

Least restrictive Noready

4-26 CA-ADS Reference

4.5 CA-ADS tasks, run units, and transactions

– If a dialog issues non-SQL DML and SQL DML against the same non-SQL
defined database at one time, deadlock of the run units is possible.

■ Extending SQL transactions

If a dialog links to a lower level dialog after beginning an SQL transaction (where
the lower level dialog also issues SQL commands), the developer must either:

1. Issue an SQL COMMIT WORK command before linking to the lower level
dialog, or

2. Compile the RCMs for the two dialogs into a single access module (AM).

Choice one results in two units of recoverable work; choice two results in a single
recoverable unit of work. When neither one or two are done, the SQL request of
the lower level dialog fails, because its RCM information is not found in the
active AM.

Chapter 4. CA-ADS Runtime System 4-27

4.6 Dialog Abort Information screen

4.6 Dialog Abort Information screen

When a dialog abends at runtime, the CA-ADS runtime system can display a
diagnostic screen. The display of the diagnostic screen is enabled and disabled by
using the DIAGNOSTIC SCREEN clause of the DC/UCF system generation ADSO
statement.

�� For more information on the ADSO statement, refer to CA-IDMS System
Generation.

If the diagnostic screen is enabled when an abend occurs at runtime, error messages
are sent to the system log and the Dialog Abort Information screen is displayed. If the
diagnostic screen is not enabled when an abend occurs, error messages are sent to the
system log and the DC/UCF prompt ENTER NEXT TASK CODE is displayed with
the following message:

ERROR OCCURRED DURING PROCESSING. CA-ADS DIALOG ABORTED.

The id of the above message is DC466019; the application developer can change the
message text by using IDD.

4-28 CA-ADS Reference

4.6 Dialog Abort Information screen

Sample Dialog Abort Information screen

< =
CA-ADS RELEASE 15.H ___ DIALOG ABORT INFORMATION ___ ABRT

DC173HH8 APPLICATION ABORTED. BAD IDMS STATUS RETURNED; STATUS=H3H6

 DATE....: 99.241 TIME....: 15:12:29.H8 TERMINAL....: LV81HH4

 ERROR OCCURRED IN DIALOG......: DIALOG1

AT OFFSET......: 31H

IN PROCESS.....: DIALOG1-PREMAP VERSION: 1

AT IDD SEQ NO. : HHHHH2HH

SEQUENCE

NUMBER: SOURCE :

HHHHH1HH IF FIRST-TIME

HHHHH2HH FIND CURRENT EMPLOYEE.

HHHHH3HH DISPLAY.

 HIT ENTER TO RETURN TO DC OR ENTER NEXT TASK CODE:

L M

 Field descriptions:

DATE: Specifies the date on which the dialog abended.

TIME: Specifies the time at which the dialog abended.

The date and time aid in locating the snap dump, if any, for the abend in the print log
file.

TERMINAL: Specifies the logical terminal at which the abend occurred.

DIALOG: Specifies the name of the aborted dialog.

OFFSET: Specifies the hexadecimal offset for the command that was executing
when the abend occurred. The offset is taken from the dialog's fixed dialog block
(FDB).

�� For more information on the FDB, see Appendix B, “CA-ADS Dialog and
Application Reporter.”

PROCESS: Specifies the name of the premap or response process containing the
command that caused the abend.

VERSION: Specifies the version number of the process containing the command that
caused the abend.

IDD SEQ NUMBER: Specifies the data dictionary sequence number of the source
line containing the command that caused the abend. The IDD sequence number is not
displayed if the dialog was compiled without diagnostic tables.

Chapter 4. CA-ADS Runtime System 4-29

4.6 Dialog Abort Information screen

�� Diagnostic tables are described in Chapter 3, “CA-ADS Dialog Compiler (ADSC).”

SEQUENCE NUMBER: Specifies the internal command numbers of the source line
containing the command that caused the abend and of the source lines immediately
preceding and following it.

Internal command numbers are not displayed if the dialog was compiled without
diagnostic tables.

�� Diagnostic tables are described in Chapter 3, “CA-ADS Dialog Compiler (ADSC).”

Internal commands for CA-ADS process statements: Internal command numbers
are assigned to all CA-ADS process statements in addition to the IDD sequence
numbers. IDD numbers may overlap or repeat when code is included from another
data dictionary module.

Internal command numbers are assigned sequentially, regardless of the source of the
process code. When the abending process command is from an included module, IDD
sequence numbers should be used in conjunction with internal command numbers to
pinpoint the position of the command.

Internal commands for SQL statements: Internal commands are created by
CA-ADS to implement SQL statements. These commands always have the sequence
number of the line on which END-EXEC was coded.

SOURCE: Displays the first 70 characters of text of the source line containing the
command that caused the abend and of the source lines immediately preceding and
following the command. Source lines are not displayed if the dialog was compiled
without diagnostic tables.

�� Diagnostic tables are described in Chapter 3, “CA-ADS Dialog Compiler (ADSC).”

The three command lines are displayed only if the date on which the dialog was
compiled agrees with the date on which the process was last revised. This prevents
the display of source code that has been revised since the dialog was last compiled.
Note, however, that the display of process text other than that from which the dialog
was compiled could occur under the following circumstances:

■ During a single day, the following actions occur:

1. The process is revised.

2. The dialog is recompiled.

3. The process is revised again, but the dialog is not recompiled again.

In this case, the process source does not match the compiled process in the dialog
load module.

4-30 CA-ADS Reference

4.6 Dialog Abort Information screen

■ During a single run of the DC/UCF system, the following actions occur:

1. The dialog is recompiled by using the batch dialog compiler.

2. The dialog's program definition element (PDE) in the system program pool is
not updated. (The PDE can be updated by using the NEW COPY option of
the DCMT VARY PROGRAM command.)

3. The dialog is executed.

In this case, the process source matches the compiled process in the dialog load
module, but an old version of the dialog that remains in the DC/UCF program
pool is being executed.

SYSTEM MESSAGE AREA: Displays the informational and error messages
returned by the CA-ADS runtime system.

HIT ENTER TO RETURN TO DC OR ENTER NEXT TASK CODE: Prompts the
user for a DC/UCF task code.

If a dialog aborts during an online debugging session, a special version of the
diagnostic information screen is displayed.

Chapter 4. CA-ADS Runtime System 4-31

4.7 Debugging a dialog

4.7 Debugging a dialog

To debug a dialog, you can use the CA-ADS trace facility or the CA-IDMS online
debugger. Before using either facility, you must compile the dialog with a symbol
table.

�� For instructions about using the trace facility and the online debugger, see
Appendix H, “Debugging a CA-ADS Dialog.”

4-32 CA-ADS Reference

4.8 Linking From CA-ADS to CA-OLQ

4.8 Linking From CA-ADS to CA-OLQ

A user-written CA-ADS application compiled using the application compiler can link
to CA-OLQ, pass syntax, and return to the application at the point where it was left.
Linking to CA-OLQ and passing syntax is discussed below.

4.8.1 Linking to CA-OLQ

To link to CA-OLQ, perform the following steps:

1. Initialize the UNIVERSAL-COMMUNICATIONS-ELEMENT (UCE) version 2
record.

2. Issue an EXECUTE NEXT FUNCTION control command to initiate an ADSA
program function that links to program IDMSOLQS, passing the UCE in the
program parameter list.

 Example

INITIALIZE(UNIVERSAL-COMMUNICATIONS-ELEMENT).

EXECUTE NEXT FUNCTION.

RETURN.

4.8.2 Passing syntax to CA-OLQ

To pass syntax to CA-OLQ, perform the following steps:

1. Initialize the UNIVERSAL-COMMUNICATIONS-ELEMENT version 2 record.

2. Initialize an additional record to hold the CA-OLQ syntax. The record must
contain only syntax and must not contain counters or any other values.

3. Move the syntax to the additional record.

4. Issue an EXECUTE NEXT FUNCTION control command to initiate an ADSA
program function that links to program IDMSOLQS, passing both the UCE and
the syntax record in the program parameter list.

 Example

INITIALIZE(UNIVERSAL-COMMUNICATIONS-ELEMENT,SYNTAX-RECORD).

MOVE 'SIGNON SS=EMPSSH1 ! SEL _ FROM EMPLOYEE ! MEN DISPLAY;'

 TO SYNTAX-FIELD.

EXECUTE NEXT FUNCTION.

RETURN.

Note: The exclamation point (!) is the CA-OLQ separator for stacked commands.
The semi-colon (;) is the required CA-OLQ command terminator.

The command separator and terminator may differ from site to site, depending
on the character set during system generation.

Chapter 4. CA-ADS Runtime System 4-33

4.9 Linking built-in functions with the runtime system

4.9 Linking built-in functions with the runtime system

RHDCEVnn built-in functions can be linked with the CA-ADS or CA-ADS/Batch
runtime system. Linking built-in functions with the runtime system reduces the
number of times built-in functions are loaded and deleted at runtime.

4.9.1 Linking system-supplied built-in functions

To link system-supplied built-in functions with the runtime system, link edit the
function's module with the runtime system module at installation time. The runtime
system modules are:

■ Module ADSOMAIN for CA-ADS

■ Module ADSOBAT2 for CA-ADS/Batch

System-supplied built-in functions are defined in one of four modules. The modules
and the built-in functions contained in each module are listed below. To add the
component functions to the runtime system, link edit any or all of these modules to the
runtime system.

Built-in function modules

Model XDE
Module

Logic Module Built-in functions

JSSEV51 JSSEV01 ■ FIX20

 ■ FIX40

 ■ FIX60

 ■ FIX80

 ■ INITCAP

 ■ TOLOWER

 ■ TOUPPER

 ■ WORDCAP

JSSEV59 JSSEV09 ■ TODAY

 ■ TOMORROW

 ■ YESTERDAY

4-34 CA-ADS Reference

4.9 Linking built-in functions with the runtime system

Model XDE
Module

Logic Module Built-in functions

RHDCEV51 RHDCEV01 ■ CONCATENATE

 ■ EXTRACT

 ■ GOODTRAILING

 ■ INDEX

 ■ INSERT

 ■ LEFT-JUSTIFY

 ■ LIKE

 ■ REPLACE

 ■ RIGHT-JUSTIFY

 ■ STRING-INDEX

 ■ STRING-LENGTH

 ■ STRING-REPEAT

 ■ SUBSTRING

 ■ TRAILING-TO-ZONED

 ■ TRANSLATE

 ■ VERIFY

 ■ ZONED-TO-TRAILING

RHDCEV52 RHDCEV02 ■ ABSOLUTE-VALUE

 ■ INVERT-SIGN

 ■ MODULO

 ■ NEXT-INT-EQHI

 ■ NEXT-INT-EQLO

 ■ NUMERIC

 ■ RANDOM-NUMBER

 ■ SIGN-VALUE

Chapter 4. CA-ADS Runtime System 4-35

4.9 Linking built-in functions with the runtime system

Model XDE
Module

Logic Module Built-in functions

RHDCEV53 RHDCEV03 ■ ARCCOSINE-DEGREES

 ■ ARCCOSINE-RADIANS

 ■ ARCSINE-DEGREES

 ■ ARCSINE-RADIANS

 ■ ARCTAN-DEGREES

 ■ ARCTAN-RADIANS

 ■ COSINE-DEGREES

 ■ COSINE-RADIANS

 ■ LOG-BASE-10

 ■ LOG-BASE-E

 ■ SINE-DEGREES

 ■ SINE-RADIANS

 ■ SQUARE-ROOT

 ■ TANGENT-DEGREES

 ■ TANGENT-RADIANS

4-36 CA-ADS Reference

4.9 Linking built-in functions with the runtime system

Model XDE
Module

Logic Module Built-in functions

RHDCEV59 RHDCEV09 ■ CEDATE

 ■ CGDATE

 ■ CJDATE

 ■ CWEEKDAY

 ■ DATECHG

 ■ DATEDIF

 ■ DATEOFF

 ■ ECDATE

 ■ EGDATE

 ■ EJDATE

 ■ EWEEKDAY

 ■ GCDATE

 ■ GEDATE

 ■ GJDATE

 ■ GWEEKDAY

 ■ JCDATE

 ■ JEDATE

 ■ JGDATE

 ■ JWEEKDAY

 ■ WEEKDAY

Chapter 4. CA-ADS Runtime System 4-37

4.9 Linking built-in functions with the runtime system

Model XDE
Module

Logic Module Built-in functions

RHDCEV60 RHDCEV10 ■ CEDATEX

 ■ CGDATEX

 ■ CJDATEX

 ■ CWEEKDAYX

 ■ DATECHGX

 ■ DATEDIFX

 ■ DATEOFFX

 ■ ECDATEX

 ■ EGDATEX

 ■ EJDATEX

 ■ EWEEKDAYX

 ■ GCDATEX

 ■ GEDATEX

 ■ GJDATEX

 ■ GOODDATE

 ■ GOODDATEX

 ■ GWEEKDAYX

 ■ JCDATEX

 ■ JEDATEX

 ■ JGDATEX

 ■ JWEEKDAYX

 ■ TODAYX

 ■ TOMORROWX

 ■ WEEKDAYX

 ■ YESTERDAYX

4-38 CA-ADS Reference

4.9 Linking built-in functions with the runtime system

4.9.2 Linking user-written built-in functions

ADSOMAIN and ADSOBAT2 can be linked with any site-specific built-in function
modules by using the required module names and entry points shown below.

Module names and entry points

Module name Entry point

USERBIF1 BIF1EP1

USERBIF2 BIF2EP1

USERBIF3 BIF3EP1

USERBIF4 BIF4EP1

USERBIF5 BIF5EP1

Chapter 4. CA-ADS Runtime System 4-39

4.10 Managing storage

 4.10 Managing storage

Various storage management techniques are available to system administrators at
DC/UCF sites. The following pages discuss techniques that specifically affect
CA-ADS storage usage.

�� For more information about storage management, see CA-IDMS System Generation.

4.10.1 Adjusting record compression

Record buffer blocks (RBBs) held for a dialog can be compressed during a
pseudo-converse. Record compression increases storage efficiency but causes
increased CPU utilization. This option is appropriate only at sites that need to
maximize storage usage.

Record compression is only in effect when resources are fixed and the fast mode
threshold has not been exceeded.

Record compression can be enabled by using the system generation ADSO statement.

�� For more information, refer to CA-IDMS System Generation.

At runtime, the current record compression setting can be changed by using the DCMT
VARY ADSO command.

�� For information about this DCMT command, refer to CA-IDMS System Tasks and
Operator Commands.

4.10.2 Calculating RBB storage

Site administrators can direct the CA-ADS runtime system to calculate the amount of
storage required for record buffer blocks (RBBs) instead of using the size specified in
the system generation ADSO statement. Calculated storage reduces the amount of
wasted space in the storage pool but slightly increases CPU usage. This option is a
good choice for storage-constrained systems.

Calculation of runtime RBB storage is enabled in the system generation ADSO
statement.

4-40 CA-ADS Reference

4.10 Managing storage

4.10.3 Writing resources to scratch records

Writing resources to scratch records during a pseudo-converse removes the resources
from storage pools while the resources are not in use. This strategy is appropriate
when storage pool resources are tight.

The following strategies are available to site administrators:

■ Define a fast mode threshold. The fast mode threshold is the point at which the
CA-ADS runtime system writes CA-ADS record buffer blocks (RBBs) and
statistics control blocks to the scratch area (DDLDCSCR) across a
pseudo-converse. If the total size of the RBBs and statistics control blocks in all
storage pools exceed the fast mode threshold, the system writes the RBBs and
statistics control blocks to scratch. To define fast mode threshold, specify the
threshold and also that resources are relocatable in the system generation ADSO
statement.

Resources must be fixed in order for the fast mode threshold to have any effect.
When resources are relocatable then RBBs always go to the scratch area.

■ Define a relocatable threshold for one or more storage pools. The relocatable
threshold is the point at which the DC/UCF system writes relocatable storage to
the scratch area (DDLDCSCR) across a pseudo-converse.

When this option is in effect, CA-ADS storage is always written to scratch across
a pseudo-converse.

Relocatable resources: The following are relocatable resources:

■ CA-ADS terminal block (OTB)

■ CA-ADS terminal block extension (OTB ext)

 ■ HELP maps

 ■ Menu stack

■ Variable dialog blocks (VDBs)

Relocating storage makes more efficient use of the storage pool but increases I/O to
the scratch area. You should define a threshold so that the system relocates storage
only when the storage pool is heavily used.

System generation statement: Use the system generation ADSO statement to
indicate whether resources are relocatable. Use the RELOCATABLE THRESHOLD
parameter of the system generation SYSTEM statement to specify the relocatable
threshold for storage pool zero. For secondary storage pools, use the
RELOCATABLE THRESHOLD parameter of the corresponding system generation
STORAGE POOL or XA STORAGE POOL statement.

�� For more information about the ADSO and SYSTEM statements, refer to CA-IDMS
System Generation.

Chapter 4. CA-ADS Runtime System 4-41

4.10 Managing storage

4.10.4 Using XA storage

Application development tools and CA-ADS applications can be executed in XA
storage on any operating system that supports XA functionality. Record buffer blocks
(RBBs) and variable dialog blocks (VDBs) can be acquired from XA storage pools.
The invoking task for the application determines whether the runtime system can
allocate RBBs and VDBs for the entire application from XA storage pools.

Considerations: If XA storage pools are used, the following rules apply:

■ If an application links to a 24-bit mode user program, the invoking task must have
a location of BELOW to insure that storage for the program is allocated from
24-bit storage pools. For example:

TASK APPL1 INVOKES ADSORUN1 LOCATION BELOW.

■ If an application links to 31-bit mode programs exclusively, the invoking task
must have a location of ANY to take advantage of XA storage. For example:

TASK APPL2 INVOKES ADSORUN1 LOCATION ANY.

■ Tasks invoked after the initial invoking task or after the return from a user
program must be defined with a location of ANY. For example:

A task invoked after the initial invoking task:

TASK ADS2 INVOKES ADSOMAIN LOCATION ANY.

A task invoked after the return from a user program:

TASK ADS2R INVOKES ADSOMAIN LOCATION ANY.

4-42 CA-ADS Reference

4.10 Managing storage

Sample task definitions: The diagram below shows the task definitions for two
sample applications.

 APPL1 APPL2
 Location Location

 ┌──────────┐ mode: ┌──────────┐ mode:

 │ │ │ │

 │ Dialog │ 31-bit │ Dialog │ 31-bit

 │ │ │ │

 └──────────┘ └──────────┘

 ┌──────────┐ ┌──────────┐

 │ │ │ VS2 │

 │ COBOL │ 24-bit │ COBOL │ 31-bit

 │ program │ │ program │

 └──────────┘ └──────────┘

Task definitions for these applications are:

1. TASK APPL1 INVOKES ADSORUN1 LOCATION BELOW.

2. TASK APPL2 INVOKES ADSORUN1 LOCATION ANY.

Chapter 4. CA-ADS Runtime System 4-43

4-44 CA-ADS Reference

Chapter 5. Introduction to Process Language

5.1 Overview . 5-3
5.2 Process modules . 5-5

5.2.1 Creating process modules . 5-5
5.2.2 Adding process modules to dialogs . 5-5
5.2.3 Executing process modules . 5-5

5.3 Process commands . 5-7
5.3.1 Constructing commands . 5-7
5.3.2 Coding considerations . 5-8

5.4 Data types . 5-10
5.4.1 Conversion between data types . 5-16

Chapter 5. Introduction to Process Language 5-1

5-2 CA-ADS Reference

5.1 Overview

 5.1 Overview

There are two types of modules that can be associated with a dialog using the
CA-ADS dialog compiler:

 ■ Declaration module

 ■ Process module

Declaration module: A declaration module is used under the SQL Option to
declare cursors and to issue global WHENEVER statements. The statements in a
declaration module are not executed. They are compiler directives used by the
CA-ADS dialog compiler at dialog compilation.

Declaration modules allow you to store declarations you have specified as global to
your application.

Unlike the premap and response process modules, the declaration module cannot
contain executable CA-ADS commands. This module can contain only DECLARE
CURSOR statements and WHENEVER directives.

A WHENEVER directive or DECLARE CURSOR statement is also valid in a premap
or response process, but the scope of such a statement is not global.

�� Further explanation of usage for WHENEVER and DECLARE CURSOR can be
found in the CA-IDMS SQL Reference.

For further considerations regarding the declaration module, see the CA-IDMS SQL
Programming.

Since declaration modules do not contain executable code, they are not discussed in
this chapter.

Process modules: In CA-ADS, process modules are defined to handle
dialog-specific processing, such as data retrieval, data modifications, and data storage.
Each process module consists of one or more process commands and parameters that
qualify the commands.

Data referenced by CA-ADS process commands must be predefined in the data
dictionary.

�� Instructions for defining data can be found in IDD DDDL Reference.

Instructions for defining data in subschemas can be found in CA-IDMS Database
Administration.

Data types supported by CA-ADS are presented in 5.4, “Data types” later in this
chapter.

Chapter 5. Introduction to Process Language 5-3

5.1 Overview

5-4 CA-ADS Reference

5.2 Process modules

 5.2 Process modules

A process module is a discrete dialog unit that performs the processing operations
required by a given dialog.

5.2.1 Creating process modules

CA-ADS process modules are created and stored in the data dictionary by using IDD.
The IDD menu facility provides a series of menus used to define process modules to
the data dictionary.

�� For instructions on using the IDD menu facility in the CA-ADS environment, refer
to CA-ADS User Guide.

The online IDD PROCESS statement can also be used.

�� For IDD PROCESS statement syntax, refer to IDD DDDL Reference.

5.2.2 Adding process modules to dialogs

A process module is added to a dialog as either a premap, a response process or a
declaration module. The process module is associated with a dialog by using the
CA-ADS dialog compiler (ADSC) or the batch dialog compiler (ADSOBCOM). The
module is compiled when the dialog is compiled.

�� Instructions for using ADSC to associate process modules with dialogs are provided
in CA-ADS User Guide.

For information about ADSOBCOM, see Appendix D, “Application and Dialog
Utilities.”

5.2.3 Executing process modules

Process modules are executed before or after a dialog's map is displayed on the
terminal screen (online applications) or are used to transfer input or output data
(CA-ADS/Batch):

■ A premap process module, which is executed before a map is used to transfer
data between variable storage and an online terminal (CA-ADS) or files
(CA-ADS/Batch).

A dialog can have a maximum of one premap process.

■ A response process module, which is performed after a map is displayed, based
on the user's selection of a response.

A dialog can have any number of response processes.

Chapter 5. Introduction to Process Language 5-5

5.2 Process modules

CA-ADS premap and response processes: The diagram below shows the
execution sequence of CA-ADS premap and response process modules.

A premap process is executed before the dialog's map is displayed to the end user. A
response process, based on the user's selection, is executed.

CA-ADS/Batch premap and response processes: The diagram below shows
the execution sequence of CA-ADS/Batch premap and response process modules. A
premap process is executed at the beginning of the dialog unless the dialog's entry
point is its mapin operation. The process executes until it issues a READ/WRITE
TRANSACTION command. The response process executes after the mapin operation
and continues until it issues a READ/WRITE TRANSACTION command.

5-6 CA-ADS Reference

5.3 Process commands

 5.3 Process commands

CA-ADS premap and response process modules are written using process commands.
Process commands are COBOL-like statements.

The way that process commands are constructed and general coding considerations for
CA-ADS process commands are discussed below.

�� For coding a declaration module, see CA-IDMS SQL Programming.

 5.3.1 Constructing commands

Command statements consist of commands and qualifying parameters.

Verbs Specify the operation to perform.: For example, RETURN, COMPUTE, IF,
DISPLAY, OBTAIN, and WRITE PRINTER are commands.

Parameters: Qualify commands and specify additional operations to perform.
Parameters can be:

■ Keywords, which are system-defined values. Each keyword must be specified as
shown in the documentation. (The required portion of each keyword is shown in
capital letters.)

For example, in the RETURN CLEAR statement, CLEAR is a keyword that
qualifies the operation of RETURN.

■ Variable terms, which show where user-defined values can be coded in process
command syntax.

For example, in the following command statement, dialog-name is a variable term:

RETURN TO dialog-name

Chapter 5. Introduction to Process Language 5-7

5.3 Process commands

Syntax and examples of variable terms are presented in the remaining chapters of
this volume. The following table summarizes the types of variable terms that can
be used.

■ A combination of keywords and/or variable terms.

Type of variable Purpose

Arithmetic expression Specifies a simple or compound arithmetic operation

Built-in function Specifies evaluation of a value according to a predefined
operation

Conditional expression Specifies test conditions

Constant Specifies a value to be used in command processing

Error expression Permits the return of error status codes to a dialog

Variable data field Supplies the name of a user- or system-supplied data
field for use in command processing

 5.3.2 Coding considerations

Process commands are coded by using syntax specific to each command. The
following general coding considerations apply to command statements:

■ A command statement can be coded in any column and continue through column
72.

■ A statement can be coded on one or more lines. The following considerations
apply:

– No continuation character is required.

– More than one command can be coded on a single line, with the exception of
the INCLUDE command.

– Extend strings to the next line by coding up to and including column 72 of
one line, and continuing in column 1 of the next line.

■ The command must always appear first, followed by command parameters, if any.

■ Parameters must be separated from each other and from the command by one or
more blanks or commas.

■ Each statement must be terminated with a period.

■ Blank lines can be used to improve readability.

5-8 CA-ADS Reference

5.3 Process commands

■ Commas and blanks can be inserted anywhere between command parameters to
improve readability, but cannot be used as a null place holder in a list in a
command, such as:

wrong � LINK TO PROGRAM XYZ USING (REC1,,REC2)

wrong � INITIALIZE RECORDS (REC1,,REC2).

Commas and blanks cannot be used in a built-in function.

■ Comments in CA-ADS statements are specified by using an exclamation point
followed by the comment text. The following considerations apply:

– All characters between the exclamation point and the end of the line are
considered part of the comment.

– A comment can be terminated before the end of the line by using a second
exclamation point. All characters following a second exclamation point are
considered to be part of a command.

■ Comments within SQL statements are specified by using two hyphens (--) at the
beginning of the comment.

All characters between the hyphens and the end of the line are considered part of
the comment.

EXEC SQL.

SELECT _ FROM PROD.EMPLOYEE WHERE EMP_ID > 5555;

--Selecting employees having consultant ids

END-EXEC.

■ A statement can include a quoted string of up to 255 characters.

■ Quotation marks appearing within a quoted string must be coded as two
consecutive single quotation marks.

Chapter 5. Introduction to Process Language 5-9

5.4 Data types

 5.4 Data types

A data type is the internal representation of data. Data referenced by CA-ADS process
statements must be predefined in the data dictionary using IDD alone or IDD and the
DDL compiler. The data types supported by CA-ADS are described below. Examples
of each data type are outlined later in this chapter.

�� See CA-IDMS SQL Reference for a discussion of the correlation between CA-ADS
data types and SQL data types.

�� See the CA-IDMS SQL Programming manual for a discussion of the correlation
between CA-ADS data types and SQL data types.

5-10 CA-ADS Reference

5.4 Data types

Binary: Binary data fields are 1- to 18-digit signed integer data fields. The left-most
bit in a binary field is zero for a positive integer and one for a negative integer. The
remainder of the binary field contains the numeric value. A negative value is stored in
twos complement form.

The following table describes the characteristics of binary data fields and shows how
each type of binary field is defined in the data dictionary.

EBCDIC: EBCDIC data fields are data fields containing any value in the EBCDIC
collating sequence (hexadecimal '00' through 'FF').

The following table describes the characteristics of EBCDIC data field and shows how
it is defined in the data dictionary.

Binary
field

Size Range Data dictionary definition

Halfword 2 bytes -215 to 215-1 PICTURE S9(n) USAGE IS
COMPUTATIONAL

(n is an integer ranging from 1 to 4)

Fullword 4 bytes -231 to 231-1 PICTURE S9(n) USAGE IS
COMPUTATIONAL

(n is an integer ranging from 5 to 9)

Doubleword 8 bytes -263 to 263-1 PICTURE S9(n) USAGE IS
COMPUTATIONAL

(n is an integer ranging from 10 to
18)

Size Maximum length Data dictionary definition

1 byte per
character

32,767 bytes PICTURE X USAGE IS
DISPLAY

Chapter 5. Introduction to Process Language 5-11

5.4 Data types

Floating point: A floating point data field is a numeric data field whose value is
expressed as a mantissa, which represents the number, and an exponent (characteristic),
which determines the actual decimal position of the number. The value of a floating
point data field is the product of the mantissa, and ten raised to the power of the
characteristic. A 1- to 16-digit mantissa can be used.

The following table describes the characteristics of floating point data fields and shows
how each field is defined in the data dictionary.

Notes:

i To display data field values on a map, assign them to a floating point display
data field, or, if small enough, to a decimal or binary field.

j The left-most byte contains the sign of the mantissa and the characteristic. The
last 3 or 7 bytes contain the binary representation of the mantissa. Either 7 or 17
decimal digits are allowed.

k Display floating point data fields are in a displayable format. When used in
calculations, display floating point fields are converted to equivalent internal
floating point values.

Group: Group data fields, including record names, contain subordinate data fields.
A group data field references the storage of all subordinate data fields without
consideration of their data types. A group data field has no PICTURE or USAGE
clauses.

Data Field Size Exponent
range

Data dictionary definition

Internal shorti 4 bytesj -64 to +63 USAGE IS
COMPUTATIONAL-1

(No picture clause)

Internal longi 8 bytesj -64 to +63 USAGE IS
COMPUTATIONAL-2

(No picture clause)

Displayk 1 byte for
each
character

-64 to +63 PICTURE ±9V99E±99
USAGE IS DISPLAY

5-12 CA-ADS Reference

5.4 Data types

Multibit binary: Multibit data fields are binary data fields. At runtime, the data
fields contain either a 0 or 1 for each character.

The following table describes the characteristics of a multibit binary field and shows
how the field is defined in the data dictionary.

Packed decimal: Packed decimal numeric data fields occupy a half byte of storage
per digit. The sign of the number (hexadecimal C, for positive, D for negative, and F
for no sign) is stored in the four low-order bits of the rightmost byte. S is used only
when the field is signed.

If a packed decimal field is defined with an even number of digits, the field is
considered to have one extra digit to the left of the decimal point. For example, a
packed decimal field with a picture of 9(4)V99 is considered to have a picture of
9(5)V99.

A packed decimal field with a picture of 9(4)V99 or S9(4)V99 occupies a half byte for
the sign and a half byte for each digit, totaling 3.5 bytes. Four bytes are reserved for
this field, adding an extra digit to the left of the decimal point.

The following table describes the characteristics of a packed decimal data field and
shows how the field is defined in the data dictionary.

Zoned decimal: Zoned decimal numeric data fields occupy one byte of storage per
digit. The sign of the number (hexadecimal C for positive, D for negative, F for
unsigned positive) is stored in the four high-order bits of the rightmost digit. S is used
only when the field is signed.

The following table describes the characteristics of a zoned decimal data field and how
the field is defined in the data dictionary.

Data field Size Exponent
range

Data dictionary definition

Multibit
binary

1 bit per
character

1- to 32-
characters

PICTURE X
USAGE IS BIT

Data field Size Range Data dictionary definition

Packed
decimal

1/2 byte
per digit

1 to 18
digits

PICTURE S9V99
USAGE IS COMPUTATIONAL-3

Data field Size Range Data dictionary definition

Zoned
decimal

1 byte
per digit

1 to 18
digits

PICTURE S9V99
USAGE IS DISPLAY

Chapter 5. Introduction to Process Language 5-13

5.4 Data types

Examples of data types: The following table illustrates the definition, use, and
internal representation of the different data types.

Type Description8 Command

Group EMPLOYEE ← Group item
 EMP-ID 9(4).
 EMP-NAME
 PIC X(10).

Internal
representation:j

MOVE 'abcde' TO EMPLOYEE.

│a│b│c│d│e│ │ │ │ │ │ │ │ │ │

└─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘

└─┘

byte

EBCDIC FIELD-1
PIC X(10).

Internal
representation:

MOVE 'abcde' TO EMPLOYEE.

│a │b │c │d │e │ │ │ │ │ │

└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

└──┘

byte

Zoned
decimal

AMT-1
PIC 9(4).

Internal
representation:

AMT-1
PIC S9(4).

Internal
representation:

MOVE 4505 TO AMT-1.

│F4│F5│FH│F5│

└──┴──┴──┴──┘

└──┘

byte

MOVE 4505 TO AMT-1.

│F4│F5│FH│D5│

└──┴──┴──┴──┘

└──┘

byte

Packed
decimal

AMT-1 PIC 9(4)
 USAGE COMP-3.

Internal
representation:

AMT-1 PIC S9(4)
 USAGE COMP-3.

Internal
representation:

MOVE 4505 TO AMT-1.

│H4│5H│5F│

└──┴──┴──┘

└──┘

byte

MOVE 4505 TO AMT-1.

│H4│5H│5D│

└──┴──┴──┘

└──┘

byte

5-14 CA-ADS Reference

5.4 Data types

Type Description8 Command

Binary AMT-1 PIC S9(8)
 USAGE COMP.

Internal
representation:

AMT-1 PIC S9(8)
 USAGE COMP.

Internal
representation:

MOVE 4505 TO AMT-1.

│HHHH│HHHH│HHHH│HHHH│HHH1│HHH1│1HH1│1HH1│

└────┴────┴────┴────┴────┴────┴────┴────┘

└────┘

byte

MOVE -4505 TO AMT-1.

│1111│1111│1111│1111│111H│111H│H11H│H11H│

└────┴────┴────┴────┴────┴────┴────┴────┘

└────┘

byte

Multibit
binary

FIELD-1
 PIC X(10)
 USAGE BIT.

Internal
representation:

MOVE B'10011100' TO FIELD-1.

│1│H│H│1│1│1│H│H│H│H│

└─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘

└─┘

bit

Floating
point

AMT-1
 USAGE COMP-1.
 (Internal
 short)

Internal
representation:

AMT-1
PIC S9.9999 E-99.

Internal
representation:

MOVE -45.05E02 TO AMT-1.
(Value will be stored as -4505E04)

│C4│11│99│HH│

└──┴──┴──┴──┘

└──┘

byte

MOVE -45.05 E 02 TO AMT-1.

│-│4│.│5│H│5│H│E│ │H│3│

└─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘

└─┘

byte

Notes:

i If no USAGE clause is provided, the default usage is DISPLAY.

j A blank space = a blank (X'40') in internal representations.

Chapter 5. Introduction to Process Language 5-15

5.4 Data types

5.4.1 Conversion between data types

CA-ADS automatically performs data type conversion in the following cases:

■ In an assignment command, conversion is performed if the target field is a
different data type than the source field.

■ In an arithmetic command, conversion is performed if the target field is a
different data type than the result of the command.

■ In an arithmetic expression, all operands are converted to signed packed decimal
fields or, if required, to internal floating point fields before the arithmetic
operation is performed.

■ In any command in which numeric literals are used, fixed point numeric literals
are stored internally as packed decimal fields, and floating point numeric literals
are stored internally as internal short or long floating point fields.

Data type conversions: The following table shows the permissible data type
conversions in arithmetic and assignment commands and in arithmetic expressions.
Source data types are presented down the left-hand side. Target data types are
presented across the top. Permissible conversions are indicated by a YES in the box
formed by the intersection of the applicable source and target data types.

SOURCE TARGET

Group EBCDIC Binary* Deci-
mal**

Multi-
bit
binary

Internal
float pt.

Display float pt.

Group YESi YESi YESj YESj YESk YESj NO

EBCDIC YESi YESi YESj YESj YESk YESj NO

Binary* YESi YESl YES YES YESm YES NO

Deci-
mal**

YESi YESl YES YES YESm YES YES

Multibit
binary

YESn YESn YESo YESo YES10 YESo NO

Internal
float
pt.***

YESi YESp YES YES YESm YES YESq

Display
float
pt.***

YESi YESi YES YES NO YES YES

Notes:

* Binary includes halfword, fullword, and doubleword binary.

** Decimal includes zoned and packed decimal.

5-16 CA-ADS Reference

5.4 Data types

*** Internal floating point includes internal short and long floating point.

i Source moved to target without conversion. Target is blank-filled or truncated
on right, if necessary.

j Number begins at leftmost numeric digit and includes all numeric digits up to
the first nonnumeric character (or end of data field). A negative sign can
immediately precede the number. A decimal point can immediately precede or be
embedded in the number. Embedded commas are ignored.

k Bits in source moved to bits in target without conversion. Target is binary zero
filled or truncated on right, if necessary.

l If CA-ADS moves are in effect, decimal portion and leading zeros are dropped,
a negative sign, if any, is placed in front of the number, and the result is left
justified in the target field, with leading blanks.

m If COBOL moves are in effect, the decimal portion (without the decimal point)
and leading zeros are maintained, the negative sign if any, is dropped, and the
result is left justified in the target, with blank filling or truncation on right, if
necessary.

�� For information on requesting CA-ADS or COBOL moves, see 3.3.2, “Options
and Directives screen.”

n Decimal component of the number is dropped, forced positive, and converted to
a binary fullword. Bits are moved left to right. Target is binary, zero filled, or
truncated on right, if necessary.

o Each bit value 0 or 1 is converted to the character 0 or 1, as appropriate. Target
is blank filled or truncated on right, if necessary.

q Source bits are right justified in a fullword. The resulting fullword value is
forced positive by moving 0 to the leftmost bit, and is moved to the target with
any required data conversion.

p The maximum output length is 23 bytes (mantissa sign, 17-digit mantissa,
decimal point, character E, characteristic sign, and 2-digit characteristic). The
minimum output length is 6 bytes (mantissa sign, 1-digit mantissa, character E,
characteristic sign, and 2-digit characteristic).

10 The mantissa is converted to zoned decimal format and moved to the target.
The negative sign and decimal point, if any, are dropped. The characteristic is not
moved. Target is blank filled or truncated on right, if necessary.

11 Target is binary zero filled or truncated on right, if necessary.

Chapter 5. Introduction to Process Language 5-17

5-18 CA-ADS Reference

 Chapter 6. Arithmetic Expressions

6.1 Overview . 6-3
6.2 Syntax . 6-4
6.3 Evaluation of arithmetic expressions . 6-5
6.4 Coding considerations . 6-6

Chapter 6. Arithmetic Expressions 6-1

6-2 CA-ADS Reference

6.1 Overview

 6.1 Overview

An arithmetic expression is a variable term that can be a simple or compound
arithmetic operation. An arithmetic expression can be used as a variable wherever the
command syntax specifies arithmetic-expression

The elements allowed in an arithmetic expression are summarized in the table below.
Arithmetic expressions are composed of operands, binary operations, and unary
operations. The elements of each entity are listed below.

Arithmetic expression elements

 Considerations

■ Any number of parentheses can be included in the expression to indicate order of
evaluation.

■ Parentheses can be nested.

Operands Binary operators Unary operators

Variable data fields Addition [+] Plus [+]

Numeric constants Subtraction [-] Minus [-]

Built-in functions Multiplication [*]

Division [/]

Chapter 6. Arithmetic Expressions 6-3

6.2 Syntax

 6.2 Syntax

┌─ + ─┐

├─ - ─┤

├─ _ ─┤

┌────────────────────┴─ / ─┴───────────────────────┐

��───↓──┬─────┬───┬─ arithmetic-function ─────────────┬─┴─────────────────────��

└─ - ─┘ ├─ variable-name ───────────────────┤

├─ numeric-constant ────────────────┤

├─ system-supplied-data-field-name ─┤
└─ arithmetic-expression ───────────┘

 Parameters

–
The unary minus operator. It reverses the sign of the operand that follows it.

arithmetic-function
�� For a list of arithmetic built-in functions, see Chapter 7, “Built-in Functions.”

variable
A user-defined variable data field.

The named variable must contain a number and can be any of the following:

■ A field on a map

■ A numeric variable

■ An element in a group

■ An element in an array

numeric-constant
A number.

system-supplied-data-field-name
See "System-supplied data field names" in Chapter 11, “Variable Data Fields”

arithmetic-expression
An arithmetic expression. Use parentheses to control the order in which
operations are to be performed.

+ – * /
The arithmetic operators:

Operator What it does

+ Addition

– Subtraction

* Multiplication

/ Division

6-4 CA-ADS Reference

6.2 Syntax

6.3 Evaluation of arithmetic expressions

Arithmetic expressions are evaluated according to the following rules:

■ Expressions within parentheses are evaluated first. Within nested parentheses,
evaluation proceeds from the innermost to the outermost set of parentheses.

■ If the order of evaluation of an expression or of an embedded expression is not
specified explicitly by parentheses, the following order of evaluation is implied:

1. Unary plus, unary minus, and built-in functions, from left to right

2. Multiplication and division, from left to right

3. Addition and subtraction, from left to right

Variable data fields specified in an arithmetic expression are not changed during the
evaluation of the expression. All intermediate results in an expression are stored in
separate internal data fields.

Example: The following example illustrates the order of evaluation of arithmetic
expressions in process commands:

MOVE -(4 - VALUE1 / (ABS(VALUE2) + -5 / VALUE3) + VALUE4)

 TO RESULT.

The expression is evaluated in the following order:

1. The absolute value of VALUE2 is calculated.

2. Unary minus is applied to 5.

3. The result of step 2 is divided by VALUE3.

4. The result of step 3 is added to the result of step 1.

5. VALUE1 is divided by the result of step 4.

6. The result of step 5 is subtracted from 4.

7. The result of step 6 is added to VALUE4.

8. Unary minus is applied to the result of step 7.

The result of the expression is moved to RESULT.

Chapter 6. Arithmetic Expressions 6-5

6.3 Evaluation of arithmetic expressions

 6.4 Coding considerations

The following considerations apply to coding arithmetic expressions:

■ An arithmetic expression must begin with a left parenthesis, a unary operator, or
an operand.

■ An arithmetic expression must end with a right parenthesis or an operand.

■ An arithmetic expression does not require a binary operation.

■ Each left parenthesis must be followed later in the expression by a corresponding
right parenthesis.

■ Operands and binary operators must be separated by at least one space from the
operand or operator that follows. Parentheses do not require surrounding spaces.

■ Operands can be followed by a right parenthesis, any binary operator, or can be
the end of the expression.

■ Any binary operator can be followed by an operand, a unary operator, or a left
parenthesis.

■ A unary operator can be followed by an operand or a left parenthesis.

■ A left parenthesis can be followed by an operand, a unary operator, or another left
parenthesis.

■ A right parenthesis can be followed by any binary operator, another right
parenthesis, or can be the end of the expression.

6-6 CA-ADS Reference

 Chapter 7. Built-in Functions

7.1 Overview . 7-3
7.1.1 Invocation names . 7-3
7.1.2 Built-in function values . 7-4
7.1.3 Coding parameters . 7-4

7.2 User-defined built-in functions . 7-5
7.3 System-supplied functions . 7-6

7.3.1 Arithmetic functions . 7-6
7.3.2 Date functions . 7-6
7.3.3 String functions . 7-7
7.3.4 Trailing-sign functions . 7-8
7.3.5 Trigonometric functions . 7-9

7.4 ABSOLUTE-VALUE . 7-11
7.5 ARC COSINE . 7-12
7.6 ARC SINE . 7-13
7.7 ARC TANGENT . 7-14
7.8 CONCATENATE . 7-15
7.9 COSINE . 7-16
7.10 DATECHG . 7-17
7.11 DATEDIF . 7-20
7.12 DATEOFF . 7-21
7.13 EXTRACT . 7-23
7.14 FIX . 7-24
7.15 GOODDATE . 7-25
7.16 GOODTRAILING . 7-26
7.17 INITCAP . 7-27
7.18 INSERT . 7-28
7.19 INVERT-SIGN . 7-30
7.20 LEFT-JUSTIFY . 7-31
7.21 LIKE . 7-32
7.22 LOGARITHM . 7-34
7.23 MODULO . 7-35
7.24 NEXT-INT-EQHI . 7-36
7.25 NEXT-INT-EQLO . 7-37
7.26 NUMERIC . 7-38
7.27 RANDOM-NUMBER . 7-40
7.28 REPLACE . 7-42
7.29 RIGHT-JUSTIFY . 7-44
7.30 SIGN-VALUE . 7-45
7.31 SINE . 7-46
7.32 SQUARE-ROOT . 7-47
7.33 STRING-INDEX . 7-48
7.34 STRING-LENGTH . 7-49
7.35 STRING-REPEAT . 7-50
7.36 SUBSTRING . 7-51
7.37 TANGENT . 7-53
7.38 TODAY . 7-54
7.39 TOLOWER . 7-55

Chapter 7. Built-in Functions 7-1

7.40 TOMORROW . 7-56
7.41 TOUPPER . 7-57
7.42 TRAILING-TO-ZONED . 7-58
7.43 TRANSLATE . 7-59
7.44 VERIFY . 7-61
7.45 WEEKDAY . 7-62
7.46 WORDCAP . 7-65
7.47 YESTERDAY . 7-66
7.48 ZONED-TO-TRAILING . 7-67

7-2 CA-ADS Reference

7.1 Overview

 7.1 Overview

Built-in functions evaluate expressions according to predefined operations and return
results that can be used in command processing. Built-in functions use a specified list
of parameters, which are not changed by the execution of the function.

A built-in function can be used wherever the syntax for a variable expression specifies
an arithmetic expression, the name of a user-defined data field, a user supplied
numeric constant, a literal in quotes, or a string-variable.

Built-in functions supported: CA-ADS supports the following types of built-in
functions:

■ System-supplied functions that perform predefined arithmetic, date, string, and
trigonometric operations. The built-in function names given in this manual are
default invocation names that can be changed.

�� For more information, see F.4, “Changing invocation names.”

■ User-defined functions that perform site-specific functions defined by the
installation.

�� For a description of how to create a user-defined function, see F.5, “Creating
user-defined built-in functions.”

User-defined and system-defined functions are described below, after a discussion of
general considerations that apply to both types of built-in functions.

 7.1.1 Invocation names

A built-in function is invoked by means of a unique invocation name, such as
CONCATENATE, CONCAT, or CON for the concatenate function.

Note: Built-in function names are keywords. If an invocation name is the same name
as a data field known to a dialog, an error occurs because CA-ADS interprets
the function invocation name as a subscripted reference to the data field.

An invocation name can be changed by modifying the internal table of invocation
names (the master function table).

�� For more information, see F.4, “Changing invocation names.”

Chapter 7. Built-in Functions 7-3

7.1 Overview

7.1.2 Built-in function values

Values are supplied to a built-in function according to parameters that are coded
along with the function's invocation name. Parameters can be either string values or
numeric values, as follows:

■ A string value should be coded as an EBCDIC variable data field, a nonnumeric
literal, or a built-in function that returns a string value. A value in a string
built-in function cannot be zero in length and cannot be filled with only spaces.

■ A numeric value should be coded as an arithmetic expression, a numeric variable
data field, a numeric literal, or a built-in function that returns a numeric value.

Some built-in function parameters have restrictions on the values they can contain. If
an invalid value is specified at runtime, the dialog aborts. For example, the value
specified in a square root function must be positive.

If a parameter is specified with a different data type than expected, CA-ADS attempts
to make the appropriate conversion at runtime. The dialog aborts if the conversion
cannot be made.

�� For permissible conversions, see the datatype conversion table under "Conversion
between data types" in Chapter 5, “Introduction to Process Language.”

 7.1.3 Coding parameters

Parameters are coded within parentheses and separated by commas.

Each parameter must be coded in a specific position relative to the other parameters.
When an optional parameter is not included in a parameter list, it must be replaced by
the @ character unless no further parameters follow the optional parameter.

7-4 CA-ADS Reference

7.2 User-defined built-in functions

7.2 User-defined built-in functions

User-defined built-in functions perform functions that are defined by individual sites.

�� For a description of how to create user-defined functions, see Appendix F,
“Built-in Function Support.”

Chapter 7. Built-in Functions 7-5

7.3 System-supplied functions

 7.3 System-supplied functions

CA-ADS system-supplied functions perform predefined arithmetic, date, string, and
trigonometric functions. System-supplied functions are summarized in the tables that
follow. Detailed discussions for each particular function appear later in this chapter,
arranged alphabetically by function name.

 7.3.1 Arithmetic functions

Arithmetic built-in functions (with the exception of NUMERIC) perform arithmetic
operations on numeric values and return numeric values as results.

Function Keyword What it does

Absolute value ABSOLUTE-VALUE Returns the absolute value of a numeric value

Logarithm (base 10) LOG-BASE-10 Returns the common logarithm of a numeric value

Logarithm (base E) LOG-BASE-E Returns the natural logarithm of a numeric value

Modulo MODULO Returns the modulus (remainder) of one specified
numeric value divided by another

Next integer equal or higher NEXT-INT-EQHI Returns the smallest integer that is equal to or
greater than a specified numeric value

Next integer equal or lower NEXT-INT-EQLO Returns the largest integer that is equal to or lower
than a specified numeric value

Numeric NUMERIC Returns TRUE or FALSE to indicate whether a
field is numeric

Random number RANDOM-NUMBER Returns a pseudo-random number based on a seed
numeric value

Sign inversion INVERT-SIGN Returns the value of a numeric value multiplied by
-1

Sign value SIGN-VALUE Returns a +1, 0, or -1, depending on whether a
numeric value is positive, zero, or negative

Square root SQUARE-ROOT Returns the square root of a numeric value

 7.3.2 Date functions

Date built-in functions perform date processing in eight formats:

■ Gregorian— The first format is yymmdd, where yy represents a year, mm a
month, and dd a day.

The second Gregorian format is yyyymmdd, where yyyy represents a year in any
century, mm a month, and dd a day.

7-6 CA-ADS Reference

7.3 System-supplied functions

■ Calendar— The first format is mmddyy, where yy represents a year, mm a month,
and dd a day.

The second Calendar format is mmddyyyy, where yyyy represents a year in any
century, mm a month, and dd a day.

■ European— The first format is ddmmyy, where yy represents a year, mm a month,
and dd a day.

The second European format is ddmmyyyy, where yyyy represents a year in any
century, mm a month, and dd a day.

■ Julian— The first format is yyddd, where ddd is a day in the year from 1 to 365
(366 for leap years).

The second Julian format is yyyyddd, where yyyy represents a year in any century,
and ddd is a day in the year from 1 to 365 (366 for leap years).

Function Keyword What it does

Date change DATECHG Returns Gregorian, calendar, European, or Julian date
conversions

Date difference DATEDIF Returns the number of days between two specified
dates

Date offset DATEOFF Returns the date resulting from adding a specified
number of days to a date

Good date GOODDATE Returns TRUE or FALSE to indicate whether a date is
valid for the date type

Today's date TODAY Returns today's date in the specified format

Tomorrow's date TOMORROW Returns tomorrow's date in the specified format

Weekday WEEKDAY Returns the weekday of a specified date

Yesterday's date YESTERDAY Returns yesterday's date in the specified format

 7.3.3 String functions

String built-in functions perform operations on string values and return either string or
numeric values.

Function Keyword What it does

Concatenate CONCATENATE Returns the concatenation of a specified list of string
values

Extract EXTRACT Returns the string that results from removing leading
and trailing spaces from a string value

Fixed-length string FIX Converts a string to a fixed-length character variable

Chapter 7. Built-in Functions 7-7

7.3 System-supplied functions

Function Keyword What it does

Index STRING-INDEX Returns the starting position of a specified string
within a string value

Initial cap INITCAP Capitalizes the first letter of a string

Insert INSERT Returns the string that results from inserting a
specified string into a string value starting at a
specified position

Left justify LEFT-JUSTIFY Returns the string that results from left justifying a
string value

Length STRING-LENGTH Returns the length of a string value

Like LIKE Returns TRUE or FALSE to indicate whether a source
string matches a given pattern string

Lowercase TOLOWER Converts a string to lowercase characters

Repeat STRING-REPEAT Returns the string that results from repeating a string
value a specified number of times

Replace REPLACE Returns a string that results from replacing, in a string
value, each occurrence of a specified string by another
specified string

Right justify RIGHT-JUSTIFY Returns the string that results from right justifying a
string value

Substring SUBSTRING Returns the substring of a string value, starting from a
specified position, and continuing for a specified
length

Uppercase TOUPPER Converts a string to uppercase characters

Translate TRANSLATE Returns the string that results from translating
characters in a string value that also occur in a
selection string, to corresponding characters in a
substitution string

Verify VERIFY Returns the position of the first character in a string
value that does not occur in a second specified string

Word cap WORDCAP Capitalizes the first character in each word in a string

 7.3.4 Trailing-sign functions

Trailing-sign built-in functions support conversion between trailing sign and zoned
decimal representations.

7-8 CA-ADS Reference

7.3 System-supplied functions

Function Keyword What it does

Good trailing sign GOODTRAILING Returns TRUE or FALSE to indicate whether a
target field is a valid trailing sign numeric field

Trailing to zoned TRAILING-TO-ZONED Returns a zoned numeric from a COBOL
trailing sign numeric

Zoned to trailing ZONED-TO-TRAILING Returns a COBOL trailing sign numeric from a
zoned numeric

 7.3.5 Trigonometric functions

Trigonometric built-in functions perform trigonometric operations on numeric values
that represent angles in either degrees or radians, and return numeric values that are
the results of the operations.

Function Keyword What it does

Arc cosine (degrees) ARCCOSDEG Returns the arc cosine of a numeric value that
represents an angle in degrees

Arc cosine (radians) ARCCOSRAD Returns the arc cosine of a numeric value that
represents an angle in radians

Arc sine (degrees) ARCSINDEG Returns the arc sine of a numeric value that
represents an angle in degrees

Arc sine (radians) ARCSINRAD Returns the arc sine of a numeric value that
represents an angle in radians

Arc tangent (degrees) ARCTANDEG Returns the arc tangent of a numeric value that
represents an angle in degrees

Arc tangent (radians) ARCTANRAD Returns the arc tangent of a numeric value that
represents an angle in radians

Cosine (degrees) COSINE-DEGREES Returns the cosine of a numeric value that represents
an angle in degrees

Cosine (radians) COSINE-RADIANS Returns the cosine of a numeric value that represents
an angle in radians

Sine (degrees) SINE-DEGREES Returns the sine of a numeric value that represents
an angle in degrees

Sine (radians) SINE-RADIANS Returns the sine of a numeric value that represents
an angle in radians

Tangent (degrees) TANGENT-DEGREES Returns the tangent of a numeric value that
represents an angle in degrees

Chapter 7. Built-in Functions 7-9

7.3 System-supplied functions

Function Keyword What it does

Tangent (radians) TANGENT-RADIANS Returns the tangent of a numeric value that
represents an angle in radians

7-10 CA-ADS Reference

7.4 ABSOLUTE-VALUE

 7.4 ABSOLUTE-VALUE

Purpose: Returns the absolute value of a numeric value.

 Syntax

��─┬─ ABSOLUTE-VALUE ─┬─ (value) ───��

└─ ABS-val ────────┘

 Parameters

value
Specifies the numeric value whose absolute value is calculated.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

Example: In the example below, the absolute value function is used to specify the
absolute value of a calculated length in a substring function:

Initial values:

EMP-NAME: 'JOE SMITH'

 WK-LENGTH: -3

Statement:

MOVE SUB(EMP-NAME,1,ABS(WK-LENGTH)) TO WK-FNAME.

Returned value from ABS function: 3

Returned string from SUB function: 'JOE'

Chapter 7. Built-in Functions 7-11

7.5 ARC COSINE

 7.5 ARC COSINE

Purpose: Returns the arc cosine of a numeric value that represents an angle in
either degrees or radians.

Syntax: Arc cosine (degrees):

��─┬─ ARCCOSINE-DEGREES ─┬─ (value) ──��

├─ ARCCOSDEG ─────────┤

└─ ACOSD ─────────────┘

Arc cosine (radians):

��─┬─ ARCCOSINE-RADIANS ─┬─ (value) ──��

├─ ARCCOSRAD ─────────┤

└─ ACOSR ─────────────┘

 Parameters

ARCCOSINE-DEGREES
Returns an arc cosine value in degrees.

ARCCOSINE-RADIANS
Returns an arc cosine value in radians.

value
Specifies the numeric value representing the angle, in degrees or radians, whose
arc cosine is calculated.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

Value must be a value ranging from -1 to +1.

Example: In the following example, the arc cosine (degrees) of -0.5 is calculated
and moved to WK-RESULT (PIC S999V9999):

MOVE ACOSD(-H.5) TO WK-RESULT.

Returned value: 12H.

7-12 CA-ADS Reference

7.6 ARC SINE

 7.6 ARC SINE

Purpose: Returns the arc sine of a numeric value that represents an angle in either
degrees or radians.

Syntax: Arc sine (degrees):

��─┬─ ARCSINE-DEGREES ─┬─ (value) ──��

├─ ARCSINDEG ───────┤

└─ ASIND ───────────┘

Arc sine (radians):

��─┬─ ARCSINE-RADIANS ─┬─ (value) ──��

├─ ARCSINRAD ───────┤

└─ ASINR ───────────┘

 Parameters

ARCSINE-DEGREES
Returns an arc sine value in degrees.

ARCSINE-RADIANS
Returns an arc sine value in radians.

value
Specifies the numeric value representing the angle, in degrees or radians, whose
arc sine is calculated.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

Value must be a value ranging from -1 to +1.

Example: In the following example, the arc sine (degrees) of 0.8660 is calculated
and moved to WK-RESULT (PIC S999V9999):

MOVE ASIND(H.866H) TO WK-RESULT.

Return value: 59.9971

Chapter 7. Built-in Functions 7-13

7.7 ARC TANGENT

 7.7 ARC TANGENT

Purpose: Returns the arc tangent of a numeric value that represents an angle in
either degrees or radians.

Syntax: Arc tangent (degrees):

��─┬─ ARCTAN-DEGREES ─┬─ (value) ───��

├─ ARCTANDEG ──────┤

└─ ATAND ──────────┘

Arc tangent (radians):

��─┬─ ARCTAN-RADIANS ─┬─ (value) ───��

├─ ARCTANRAD ──────┤

└─ ATANR ──────────┘

 Parameters

ARCTAN-DEGREES
Returns an arc tangent value in degrees.

ARCTAN-RADIANS
Returns an arc tangent value in radians.

value
Specifies the numeric value representing the angle, in degrees or radians, whose
arc tangent is calculated.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

Example: In the following example, the arc tangent (degrees) of 1.7321 is calculated
and moved to WK-RESULT (PIC S999V9999):

MOVE ATAND(1.7321) TO WK-RESULT.

Return value: 6H.HHH7

7-14 CA-ADS Reference

7.8 CONCATENATE

 7.8 CONCATENATE

Purpose: Returns the concatenation of a specified list of string values.

 Syntax

┌─── , ────┐

��─┬─ CONCATENATE ─┬─ (─↓─ string ─┴─) ─────────────────────────────────────��

├─ CONCAT ──────┤

└─ CON ─────────┘

 Parameters

string
Specifies one or more string values that are concatenated to form a single string
value.

String can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Examples: Example 1: Using the concatenate function only

In the example below, the concatenate function is used to concatenate EMP-FNAME
(PIC X(15)) and EMP-LNAME (PIC X(15)) so that the first name precedes the last
name:

Initial values:

 EMP-FNAME: 'JOE '

 EMP-LNAME: 'SMITH '

Statement:

MOVE CONCATENATE(EMP-FNAME,EMP-LNAME) TO WK-NAME.

Returned string:

 'JOE SMITH '

 Example 2: Using the concatenate function with the extract function

In this example, the concatenate function is used in conjunction with the extract
function to concatenate EMP-FNAME (PIC X(15)), up to but not including the first
blank, with a blank and then with EMP-LNAME (PIC X(15)):

Initial values:

 EMP-FNAME: 'JOE '

 EMP-LNAME: 'SMITH '

Statements:

MOVE CON(EXTRACT(EMP-FNAME),' ',EMP-LNAME) TO WK-NAME.

Returned string:

 'JOE SMITH '

Another example of the concatenate function is provided in "SUBSTRING" later in
this chapter.

Chapter 7. Built-in Functions 7-15

7.9 COSINE

 7.9 COSINE

Purpose: Returns the cosine of a numeric value that represents an angle in either
degrees or radians.

Syntax: Cosine (degrees):

��─┬─ COSINE-DEGREES ─┬─ (value) ───��

└─ COSDeg ─────────┘

Cosine (radians):

��─┬─ COSINE-RADIANS ─┬─ (value) ───��

└─ COSRad ─────────┘

 Parameters

COSINE-DEGREES
Returns a cosine value in degrees.

COSINE-RADIANS
Returns a cosine value in radians.

value
Specifies the numeric value representing the angle, in degrees or radians, whose
cosine is calculated.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

Example: In the following example, the cosine (degrees) of 60 is calculated and
moved to WK-RESULT (PIC S999V9999):

MOVE COSD(6H) TO WK-RESULT.

Return value: H.5

7-16 CA-ADS Reference

7.10 DATECHG

 7.10 DATECHG

Purpose: Returns the conversion of a specified date from one format (Gregorian,
calendar, European, or Julian) to another.

Date change functions can be coded two ways, as shown in the following syntax
diagrams.

Syntax: Format 1:

��───┬─ DATECHG ──┬─ (date, input-date-format, output-date-format) ─────────��

└─ DATECHGX ─┘

Format 2:

��───┬─ GCDATE ───┬─ (date) ──��

├─ GCDATEX ──┤

├─ GEDATE ───┤

├─ GEDATEX ──┤

├─ GJDATE ───┤

├─ GJDATEX ──┤

├─ CGDATE ───┤

├─ CGDATEX ──┤

├─ CEDATE ───┤

├─ CEDATEX ──┤

├─ CJDATE ───┤

├─ CJDATEX ──┤

├─ EGDATE ───┤

├─ EGDATEX ──┤

├─ ECDATE ───┤

├─ ECDATEX ──┤

├─ EJDATE ───┤

├─ EJDATEX ──┤

├─ JGDATE ───┤

├─ JGDATEX ──┤

├─ JCDATE ───┤

├─ JCDATEX ──┤

├─ JEDATE ───┤

└─ JEDATEX ──┘

Parameters: Format 1:

DATECHG/DATECHGX
Converts the input date value to the specified output date format. DATECHGX
operates on dates that contain the century portion of the year.

date
A numeric value that specifies the input date.

Date can be:

■ The name of a user-defined numeric variable data field

■ A user-supplied numeric literal

input-date-format
Specifies the format of date.

Input-date-format can be:

Chapter 7. Built-in Functions 7-17

7.10 DATECHG

■ The date format, enclosed in quotation marks

■ The name of a user-defined variable data field containing the date format

output-date-format
Specifies the format to which the input date date is converted.

Output-date-format can be:

■ The output date format, enclosed in quotation marks

■ The name of a user-defined variable data field containing the output date
format

Input-date-format and output-date-format can be:

■ C for calendar

■ E for European

■ G for Gregorian

■ J for Julian

Format 2:

Using format 2, the first character of each function name identifies the format of the
input date. The second character identifies the format to which the date is converted,
as follows:

■ C specifies calendar

■ E specifies European

■ G specifies Gregorian

■ J specifies Julian

For example, the GCDATE function converts from Gregorian to Calendar format.

Function names ending with X operate on values that contain the century portion of
the year.

date
A numeric value that specifies the input date.

Examples: Using format 1 (DATECHG)

In this example, the DATECHG format of the date change function is used to convert
January 28, 1958 from Gregorian to calendar format:

Statement:

MOVE DATECHG(58H128,'G','C') TO WK-RESULT.

Returned value: H12858

7-18 CA-ADS Reference

7.10 DATECHG

Similarly, the DATECHGX function converts a date containing the century. Here,
WK-RESULT must contain an 8 character result:

Statement:

MOVE DATECHGX(1958H128,'G','C') TO WK-RESULT.

Returned value: H1281958

Using format 2 (GCDATE ...)

In this example, the GCDATE format is used to convert January 28, 1958 from
Gregorian to calendar format:

Statement:

MOVE GCDATE (58H128) TO WK-RESULT.

Returned value: H12858

In this example, GCDATEX is used to convert September 12, 1929 from Gregorian to
calendar format. The result contains the century portion of the year:

Statement:

MOVE GCDATEX(1929H912) TO WK-RESULT.

Returned value: H9121929

Chapter 7. Built-in Functions 7-19

7.11 DATEDIF

 7.11 DATEDIF

Purpose: Returns the number of days between two specified dates.

 Syntax

��─┬─ DATEDIF ──┬─ (gregorian-date-1, gregorian-date-2) ────────────────────��

└─ DATEDIFX ─┘

 Parameters

DATEDIF/DATEDIFX
Invokes the date difference function. DATEDIFX operates on values containing
the century portion of the date.

gregorian-date1
Specifies the date, in Gregorian format, from which the second date is subtracted.

gregorian-date2
Specifies the date, also in Gregorian format, that is subtracted from the first date.

Gregorian-date1 and gregorian-date2 can be:

■ Names of user-defined variable data fields

■ User-supplied numeric literals

■ For two-digit years, the twentieth century is assumed unless year is 68 or less, in
which case, the twenty-first century is assumed

Examples: Example 1

In the example below, the date difference function is used to find the number of days
between January 28, 1978 and August 11, 1975:

Statement:

MOVE DATEDIF(78H128,75H811) TO WK-RESULT.

Returned value: 9H1

Note that if the dates were supplied in reverse order, the value -901 would have been
returned. Example 2

In this example, the date difference function is used to find the number of days
between January 6, 2000 and December 25, 1999, specifying the century portion of the
year:

Statement:

MOVE DATEDIFX(2HHHH1H6,19991225) TO WK-RESULT.

Returned value: 12

Again, if the dates were supplied in reverse order, the value -901 would have been
returned.

7-20 CA-ADS Reference

7.12 DATEOFF

 7.12 DATEOFF

Purpose: Returns the date resulting from adding a specified number of days to a
specified date.

 Syntax

��─┬─ DATEOFF ──┬─ (gregorian-date, offset) ────────────────────────────────��

└─ DATEOFFX ─┘

 Parameters

DATEOFF/DATEOFFX
Invokes the date offset function. DATEOFFX operates on values that contain the
century portion of the year.

gregorian-date
Specifies the date, in Gregorian format, to which the offset is added.

Gregorian-date can be:

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

offset
Specifies the offset, in days, that is added to the specified date. Offset can be:

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

■ A built-in function that returns a numeric value

Offset can be negative.

Usage: DATEOFF assumes the twentieth century if the year is greater than 68, and
assumes the twenty-first century if between 0 and 68. DATEOFFX allows a
computation to be made in any century.

DATEOFFX assumes a continuous algorithm using the modern Gregorian calendar. It
does not contain tables for historical aberrations.

Anytime a signed literal is used with DATEOFF, it should be enclosed within single
quotes like this:

MOVE DATEOFF(911119,'-1') TO EXP-DATE

Examples: Example 1

In the example below, the date offset function is used to find the date that results from
adding four days to January 28, 1978:

Chapter 7. Built-in Functions 7-21

7.12 DATEOFF

Statement:

MOVE DATEOFF(78H128,4) TO WK-RESULT.

Returned value: 78H2H1

Example 2

In this example, the date offset function is used to find the date that results from
adding five days to December 28, 1999. Gregorian-date contains the century portion
of the year, as does the returned date.

Statement:

MOVE DATEOFFX(19991228,5) TO WK-RESULT.

Returned value: 2HHHH1H2

7-22 CA-ADS Reference

7.13 EXTRACT

 7.13 EXTRACT

Purpose: Returns the string that results from removing leading and trailing spaces
from a string value.

 Syntax

��─── EXTract (string) ───��

 Parameters

string
Specifies the string value on which the extract function is performed.

String can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Usage: When a field contains only spaces, EXTRACT returns one space. In this
example:

FNAME="JANA "

MID=" "

LNAME="SEDLAKOVA "

CONCAT(EXT(FNAME),' ',EXT(MID),' ',EXT(LNAME))

Extract returns the following value:

"JANA SEDLAKOVA"

Example: In the example below, the extract function is used to remove leading and
trailing spaces from the string contained in EMP-LNAME:

Initial value:

 EMP-LNAME: ' GAR FIELD '

Statement:

MOVE EXTRACT(EMP-LNAME) TO WK-EXTRACTED-NAME.

Returned string:

 'GAR FIELD'

Other examples of the extract function are provided in "CONCATENATE" and in
"STRING-LENGTH" elsewhere in this chapter.

Chapter 7. Built-in Functions 7-23

7.14 FIX

 7.14 FIX

Purpose: Returns a fixed-length string of 20, 40, 60, or 80 characters.

Multiple detail lines can be produced using this string function.

 Syntax

��─┬─ FIX2H ─┬─ (string) ───��

├─ FIX4H ─┤

├─ FIX6H ─┤

└─ FIX8H ─┘

 Parameters

string
Specifies the string value on which the fix function is performed.

String can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Example: In the example below, the fix function is used to produce a formatted
address list:

Statement:

MOVE FIX4H(CONCAT(EXT(EMP-FIRST-NAME), ' ', EXT(EMP-LAST-NAME)))

 TO WK-FIX-NAME.

MOVE FIX4H(EMP-STREET) TO WK-FIX-ADDR1.

MOVE FIX4H(CONCAT(EXT(EMP-CITY), ', ', EXT(EMP-STATE), ' ', EXT(EMP-ZIP)))

 TO WK-FIX-ADDR2.

Returned string:

 'JOHN RUPEE '

'114 WEST INDIA ST '

'METHUEN, MA H2312 '

7-24 CA-ADS Reference

7.15 GOODDATE

 7.15 GOODDATE

Purpose: Returns TRUE or FALSE to indicate whether a date is valid for the date
type.

 Syntax

��──┬─ GOODDATE ──┬─ (date, date-format) ───────────────────────────────────��

└─ GOODDATEX ─┘

 Parameters

GOODDATE/GOODDATEX
Invokes the good date function. Use GOODDATEX to test dates that contain the
century portion of the year.

date
A numeric value that specifies the input date.

Date can be:

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

Note: If you are specifying a Julian date, you must specify a leading zero in the
string that the process passes for Julian dates. The leading zero does not
apply to non-Julian dates.

date-format
Specifies the date format for which GOODDATE or GOODDATEX tests date.

Date-format can be a string enclosed in quotation marks or a user-defined variable
data field containing one of the following:

■ C for calendar

■ E for European

■ G for Gregorian

■ J for Julian

Example: In this example, GOODDATE tests whether the date type in the
user-defined variable, MYDATE, is of date format calendar:

IF (GOODDATE(MYDATE,'C')) THEN

 CALL DATECONV.

ELSE

 CALL DATERROR.

Chapter 7. Built-in Functions 7-25

7.16 GOODTRAILING

 7.16 GOODTRAILING

Purpose: Returns TRUE or FALSE to indicate whether the value passed is a valid
trailing sign field.

 Syntax:

��──┬─ GOODTRAILING ─┬─ (value) ──��

└─ GOODTRL ──────┘

 Parameters

value
Specifies the numeric value whose type is tested.

Value can be:

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

Below are values of type trailing sign:

1HHH76+

2-

Example: In this example, the good trailing function is used to test MYNUMBER
before attempting to convert it from trailing sign representation to zoned numeric.

IF (GOODTRL(MYNUMBER)) THEN

 TRAILING-TO-ZONED(MYNUMBER).

ELSE

 CALL NUMERROR.

7-26 CA-ADS Reference

7.16 GOODTRAILING

 7.17 INITCAP

Purpose: Returns the string that results when the first letter in the specified source
string is capitalized and all other characters in the string are converted to lowercase.

 Syntax:

��─── INITCAP (string) ───��

 Parameters

string
Specifies the string whose first letter is to be capitalized.

String can be:

■ A string literal enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Example: In the example below, the initial cap function is used on the employee's
last name:

Initial value:

 EMP-LNAME: 'O'HEARN '

Statement:

MOVE INITCAP(EMP-LNAME) TO WK-STRING.

Returned string:

 'O'hearn '

Chapter 7. Built-in Functions 7-27

7.18 INSERT

 7.18 INSERT

Purpose: Returns the string that results from a specified string being inserted into a
string value starting at a specified position.

 Syntax:

��─── INSert (string, insertion-string, starting-position) ─────────────────��

 Parameters

string
Specifies the string into which insertion-string is inserted.

String can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

insertion-string
Specifies the string that is inserted into string.

Insertion-string can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

starting-position
Specifies the numeric position at which insertion will begin.

Starting-position can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

Starting-position is in a range from 1 to the length of string plus 1.

 Usage:

 Considerations

■ If starting-position is 1 or less, insertion starts at the beginning of the string value.

■ If starting-position is greater than the length of string, insertion starts at the end of
the string value.

Example: In the example below, the INSERT function is used with the
SUBSTRING function to insert the first six letters of the string contained in
EMP-LNAME (PIC X(20)) into the string '**', starting at position 2:

7-28 CA-ADS Reference

7.18 INSERT

Initial value:

 EMP-LNAME: 'PARKINSON '

Statement:

MOVE INSERT('__',SUBS(EMP-LNAME,1,6),2) TO WK-STRING.

Returned string:

 '_PARKIN_'

Chapter 7. Built-in Functions 7-29

7.19 INVERT-SIGN

 7.19 INVERT-SIGN

Purpose: Returns the specified numeric value with the opposite sign:

■ A positive numeric value becomes negative.

■ A negative numeric value becomes positive.

 Syntax:

��─┬─ INVERT-SIGN ─┬─ (value) ──��

└─ INVert ──────┘

 Parameters

value
Specifies the numeric value whose sign inversion value is calculated.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

Example: In the example below, the sign inversion function is used to form the
negative of a value if the transaction code is 'DB':

Initial values:

 TRANS-CODE: 'DB'

 WK-AMT: 453.29

Statements:

IF TRANS-CODE EQ 'DB'

 THEN

MOVE INVERT-SIGN(WK-AMT) TO WK-AMT.

Returned value: -453.29

7-30 CA-ADS Reference

7.20 LEFT-JUSTIFY

 7.20 LEFT-JUSTIFY

Purpose: Returns the string that results from removing leading blanks from the left
side of a string value, shifting the remainder of the string value to the left side, then
filling the right side with as many blanks as were removed from the left side.

 Syntax:

��─┬─ LEFT-JUSTIFY ─┬─ (string) ──��

├─ LEFT-just ────┤

└─ LEFJUS ───────┘

 Parameters

string
Specifies the string value on which the left justify function is performed.

String can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Example: In the example below, the left justify function is used to left justify
EMP-LNAME (PIC X(20)):

Initial value:

 EMP-LNAME: ' SMITH '

Statement:

MOVE LEFT-JUSTIFY(EMP-LNAME) TO EMP-LNAME.

Returned string:

 'SMITH '

Chapter 7. Built-in Functions 7-31

7.21 LIKE

 7.21 LIKE

Purpose: Returns TRUE or FALSE when comparing a source string value with a
supplied string.

 Syntax:

��─── LIKE (string, search-string ──┬──────────────────────┬─) ─────────────��

└─ ,escape-character ──┘

 Parameters

string
Specifies the source string value being tested.

String can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

search-string
Specifies the string used for testing string.

Search-string can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Search-string is compared with string, one character at a time, starting with the
leftmost character in each string.

All characters in the search string, except the mask characters listed below, must
match the contents of string exactly. The mask characters are:

■ _ (underscore)— Matches any single, non-blank character in the source
string.

■ % (percent sign)— Matches by any number of consecutive characters (zero
or greater) in the source string

escape-character
Specifies a 1-character escape character that allows the current LIKE expression to
search for the underscore, percent sign, and the escape character itself as an actual
character.

Escape-character can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Examples: Example 1: Testing for an embedded string

In the example below, the string contained in the field ADDRESS is evaluated for an
occurrence of BOSTON within the string:

7-32 CA-ADS Reference

7.21 LIKE

IF LIKE (ADDRESS,'%BOSTON%')

 THEN

 DISPLAY.

Example 2: Testing for an embedded 4-character string starting with 'C'

In the example below, the string contained in the field PNAME is evaluated for an
occurrence of a 4-character string starting with 'C':

IF LIKE (PNAME,'%C___')

 THEN

 DISPLAY.

Example 3: Examples using an escape character

■ Does AGR-NEXT-FUNCTION = '% '?

IF LIKE (AGR-NEXT-FUNCTION, '_%', '_')

This gives the same result as

IF AGR-NEXT-FUNCTION = '% '

■ Does AGR-NEXT-FUNCTION = contain a '%'?

IF LIKE (AGR-NEXT-FUNCTION, '%_%%', '_')

This gives the same result as

IF AGR-NEXT-FUNCTION CONTAINS '%'

■ Does AGR-NEXT-FUNCTION end with a '%'?

IF LIKE (AGR-NEXT-FUNCTION, '%_%', '_')

■ Does AGR-NEXT-FUNCTION contain a '%A*'?

IF LIKE (AGR-NEXT-FUNCTION, '%_%A__%', '_')

Chapter 7. Built-in Functions 7-33

7.22 LOGARITHM

 7.22 LOGARITHM

Purpose: Returns the common (base 10) or natural (base E) logarithm of a numeric
value.

Syntax: Logarithm (base 10)

��─┬─ LOG-BASE-1H ─┬─ (value) ──��

├─ COMLOG ──────┤

├─ LOGCOM ──────┤

└─ LOG1H ───────┘

Logarithm (base E)

��─┬─ LOG-BASE-E ─┬─ (value) ───��

├─ NATLOG ─────┤

├─ LOGNAT ─────┤

└─ LOGE ───────┘

 Parameters

value
Specifies the numeric value whose logarithm is calculated. Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

Value must be greater than zero.

Example: In the example below, the logarithm function is used to calculate the
base-10 logarithm of a numeric value:

Initial value:

 WK-VALUE: 1HH

Statement:

MOVE LOG-BASE-1H(WK-VALUE) TO WK-LOG-EQUIVALENT.

Returned value: 2

7-34 CA-ADS Reference

7.23 MODULO

 7.23 MODULO

Purpose: Returns the modulus (remainder) of one numeric value divided by another.

 Syntax:

��─── MODulo (dividend, divisor) ───��

 Parameters

dividend
Specifies the numeric value that is divided by divisor.

divisor
Specifies the numeric value that is divided into dividend.

Dividend and divisor can be:

 ■ Arithmetic expressions

■ Names of user-defined variable data fields

■ User-supplied numeric literals

Example: In the example below, the modulo function is used to find the remainder
resulting from the division of two numeric values:

Initial values:

 WK-VALUE1: 43

 WK-VALUE2: 1H

Statement:

MOVE MODULO(WK-VALUE1,WK-VALUE2) TO WK-REMAINDER.

Returned value: 3

Chapter 7. Built-in Functions 7-35

7.23 MODULO

 7.24 NEXT-INT-EQHI

Purpose: Returns the smallest integer that is equal to or greater than a numeric
value.

 Syntax:

��─┬─ NEXT-INT-EQHI ─┬─ (value) ──��

├─ NEXTINTEH ──┬──┤

└─ NEXIH ──────┴──┘

 Parameters

value
Specifies the numeric value whose next integer equal or higher is calculated.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

Example: In the example below, the next integer equal or higher function is used to
raise a balance due amount to the next higher dollar value:

Initial value:

 WK-BAL-DUE: 453.29

Statement:

MOVE NEXT-INT-EQHI(WK-BAL-DUE) TO WK-NEW-BAL.

Returned value: 454

7-36 CA-ADS Reference

7.24 NEXT-INT-EQHI

 7.25 NEXT-INT-EQLO

Purpose: Returns the largest integer that is equal to or less than a numeric value.

 Syntax:

��─┬─ NEXT-INT-EQLO ─┬─ (value) ──��

├─ NEXTINEL ──────┤

└─ NEXIL ─────────┘

 Parameters

value
Specifies the numeric value whose next integer equal or lower is calculated.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

Example: In the example below, the next integer equal or lower function is used
with the square root function to determine whether a number is the exact square of an
integer value:

Initial value:

 WK-VALUE: 65

Statements:

IF NEXIL(SQRT(WK-VALUE)) NE SQRT(WK-VALUE)

 THEN

DISPLAY TEXT 'VALUE IS NOT AN EXACT SQUARE'.

Returned value from square root functions: 8.H632

Returned value from next integer function: 8

Chapter 7. Built-in Functions 7-37

7.26 NUMERIC

 7.26 NUMERIC

Purpose: Returns TRUE or FALSE to indicate whether an alphanumeric field is a
valid candidate for a MOVE to a numeric field or can be used in a computation
without a data exception occurring.

 Syntax:

��──── NUMERIC (value) ───��

 Parameters

value
An alphanumeric value tested by the function.

Value can be:

■ A user-supplied string literal

■ The name of a user-defined variable data field containing the string

■ A user-supplied string literal

Usage: For EBCDIC or group values, NUMERIC checks the field in isolation,
without regard to possible target fields of a move or computation. For example,
'999999' will test as a numeric field (TRUE), but an error would occur if this were
moved to a field with the picture of 9(4) COMP-3.

NUMERIC does not support validation of floating point numbers.

Because CA-ADS and EVAL do not check the DECIMAL POINT IS clause of the
OLM SYSGEN statement, NUMERIC does not either. Therefore, a period (.) and a
comma (,) will always be the decimal point and the thousands separator respectively.

The types of fields tested for numeric and the tests applied to those fields are:

Field data type Test NUMERIC applies

Binary Always returns a TRUE value.

Packed decimal Follows the IBM standard for what a packed field should
contain; and additionally checks for a maximum field length of
16 bytes.

Zoned decimal Follows the IBM standard for what a zoned decimal field
should contain; and additionally checks for a maximum field
length of 31 bytes.

7-38 CA-ADS Reference

7.26 NUMERIC

In general, a single number embedded in an EBCDIC field that may contain a leading
sign is considered NUMERIC.

The table below shows valid and invalid examples of NUMERIC values:

Example: In the example below, NUMERIC tests whether MYALPHANUM
contains a valid number:

IF (NUMERIC(MYALPHANUM)) THEN

 CALL NUMCALC.

ELSE

 CALL NUMERROR.

Initial value of MYALPHANUM: 123

Statement evaluates TRUE.

Initial value of MYALPHANUM: M123

Statement evaluates FALSE.

Field data type Test NUMERIC applies

EBCDIC or group
values

One of the following must be true:

There are 0 or more leading spaces

The number starts with a plus or minus sign, or a decimal
point, or a number from 0 to 9

A decimal point or number immediately follows a plus or
minus sign

There must be at least one digit in the number

There may be no characters other than a decimal point
embedded in the number

There are 0 or more trailing spaces

After a digit is encountered, commas are ignored

All other types Returns a FALSE value.

Valid examples Invalid examples

3 .

4.4 -+4

+6 .5.

.5 - . 6

-9

Chapter 7. Built-in Functions 7-39

7.27 RANDOM-NUMBER

 7.27 RANDOM-NUMBER

Purpose: Returns a pseudo-random number based on a seed numeric value. The
returned random number is greater than zero and less than 1, and has a length of 9
decimal places.

 Syntax:

��─┬─ RANDOM-NUMBER ─┬─ (random-number-seed) ───────────────────────────────��

└─ RANdom ────────┘

 Parameters

random-number-seed
Specifies the numeric variable data field containing the seed value from which the
pseudo-random number is calculated.

Random-number-seed cannot be zero.

Usage: To obtain random numbers:

1. Set the initial random number seed value at execution time to some varying
value, such as TIME. The random seed value must not be zero.

If the result is set to a fixed value, each execution of the dialog will result in the
generation of the same series of pseudo-random numbers.

2. Move the pseudo-random number returned by the random number function to
the seed variable data field. The number returned becomes the next seed value.
In this way, the random number function can generate a nonrepeating sequence of
536,870,912 numbers.

3. Define the seed value with a picture of 9(9) and move the result of the function
to a variable with a picture of V9(9).

The result can be moved back to the seed variable by using the result as a
redefinition of the seed value, as follows:

H3 SEED-VALUE PICTURE 9(9).

H3 RESULT-VALUE REDEFINES SEED-VALUE PICTURE V9(9).

Example: In the example below, the random number function is used to generate a
sequence of ten pseudo-random numbers:

7-40 CA-ADS Reference

7.27 RANDOM-NUMBER

Field descriptions:

H3 SEED-VALUE PICTURE 9(9).

H3 RESULT-VALUE REDEFINES SEED-VALUE PICTURE V9(9).

H3 RANDOM-TABLE PICTURE V9(9) OCCURS 1H TIMES.

Statements:

MOVE TIME TO SEED-VALUE.

MOVE 1 TO WK-COUNT.

WHILE WK-COUNT LE 1H

 REPEAT.

MOVE RANDOM(SEED-VALUE) TO RESULT-VALUE.

MOVE RESULT-VALUE TO RANDOM-TABLE(WK-COUNT).

ADD 1 TO WK-COUNT.

 END.

Chapter 7. Built-in Functions 7-41

7.28 REPLACE

 7.28 REPLACE

Purpose: Returns a string that results from replacing, in a string value, each
occurrence of a specified search string with a specified replacement string.

 Syntax:

��─── REPlace ───── (string, search-string ──┬───────────────────────┬─) ───��

└─ ,replacement-string ─┘

 Parameters

string
Specifies the string value on which the replace function is performed.

String can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

search-string
Specifies the string that the replace function searches for within the string value.

Search-string can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

replacement-string
Specifies the string that replaces each occurrence of search-string in the string
value.

Replacement-string can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

If replacement-string is not specified, each occurrence of search-string in the
string value is deleted.

Usage: The replacement string can be a different length than the search string; if
this is the case, the target string value is adjusted appropriately for each replacement.

The resulting string value cannot be greater than 1,024 characters. Excess characters
are truncated.

Example: In the example below, the replace function is used to replace all
occurrences of BB with XXX in the string 'AABBCCBBBDD':

Statement:

MOVE REPLACE('AABBCCBBBDD','BB','XXX') TO WK-STRING.

Returned string:

 'AAXXXCCXXXBDD'

7-42 CA-ADS Reference

7.28 REPLACE

A further example of the replace function is provided in "SUBSTRING" later in this
chapter.

Chapter 7. Built-in Functions 7-43

7.29 RIGHT-JUSTIFY

 7.29 RIGHT-JUSTIFY

Purpose: Returns the string that results from removing blanks on the right side of a
string value, shifting the remainder of the string value to the right side, then filling the
left side with as many blanks as were removed from the right side.

 Syntax:

��─┬─ RIGHT-JUSTify ─┬─ (string) ───��

└─ RIGHTjus ──────┘

 Parameters

string
Specifies the string value that is right justified.

String can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Example: In the example below, the right justify function is used to right justify
EMP-LNAME (PIC X(20)):

Initial value:

 EMP-LNAME: ' SMITH '

Statement:

MOVE RIGHT-JUSTIFY(EMP-LNAME) TO EMP-LNAME.

Returned string:

 ' SMITH'

7-44 CA-ADS Reference

7.30 SIGN-VALUE

 7.30 SIGN-VALUE

Purpose: Returns a +1, 0, or -1, depending on whether the specified numeric value
is positive, zero, or negative, respectively.

 Syntax:

��─┬─ SIGN-VALue ─┬─ (value) ───��

└─ SIGV ───────┘

 Parameters

value
Specifies the numeric value whose sign is determined.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

Example: In the example below, the sign value function is used to move a zero to a
transaction code field if an amount is negative, and a 1 to the field if the amount is
zero or positive. On mapout, the transaction code field can be decoded to CR or DB:

Initial value:

 WK-AMT: -453.29

Statements:

MOVE SIGN-VALUE(WK-AMT) + 1 TO TRANS-CODE.

IF TRANS-CODE EQ 2

 THEN

MOVE 1 TO TRANS-CODE.

Returned value from function: -1

Result of MOVE expression: H

Chapter 7. Built-in Functions 7-45

7.31 SINE

 7.31 SINE

Purpose: Returns the sine of a numeric value that represents an angle in either
degrees or radians.

Syntax: Sine (degrees):

��─┬─ SINE-DEGREES ─┬─ (value) ───��

├─ SINEDEG ──────┤

└─ SIND ─────────┘

Sine (radians):

��─┬─ SINE-RADIANS ─┬─ (value) ───��

├─ SINERAD ──────┤

└─ SINR ─────────┘

 Parameters

SINE-DEGREES
Returns the sine value in degrees.

SINE-RADIANS
Returns the sine value in radians.

value
Specifies the numeric value representing the angle, in degrees or radians, whose
sine is calculated.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

Example: In the following example, the sine (degrees) of -60 is calculated and
moved to WK-RESULT (PIC S999V9999):

MOVE SIND(-6H) TO WK-RESULT.

Return value: -H.866H

7-46 CA-ADS Reference

7.32 SQUARE-ROOT

 7.32 SQUARE-ROOT

Purpose: Returns the square root of a numeric value.

 Syntax:

��─┬─ SQUARE-ROOT ─┬─ (value) ──��

└─ SQRT ────────┘

 Parameters

value
Specifies the numeric value whose square root is calculated. Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

Value cannot be a negative number.

Example: In the example below, the square root function is used to calculate the
square root of a number:

Initial value:

 WK-VALUE: 256

Statement:

MOVE SQUARE-ROOT(WK-VALUE) TO WK-RESULT.

Returned value: 16

Another example of the square root function is provided in "NEXT-INT-EQLO" earlier
in this chapter.

Chapter 7. Built-in Functions 7-47

7.33 STRING-INDEX

 7.33 STRING-INDEX

Purpose: Returns the starting position of a specified string within a string value.

If the specified string is not found, a zero is returned.

 Syntax:

��─┬─ STRING-INDEX ─┬─ (string, search-string) ─────────────────────────────��

├─ INDEX ────────┤

└─ INDX ─────────┘

 Parameters

string
Specifies the string that is searched.

String can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

search-string
Specifies the string that the index function searches for within string.

Search-string can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Search-string cannot be longer than string.

Example: In the example below, the index function is used to test whether a product
code contains the string 'ABC':

Initial value:

PROD-CODE: '12AB43 ABC3254'

Statements:

IF INDX(PROD-CODE,'ABC') EQ H

 THEN

DISPLAY TEXT 'INVALID PRODUCT CODE'.

Returned value from function: 8

Since the string 'ABC' appears in the product code (starting at character position 8),
the condition is false.

7-48 CA-ADS Reference

7.34 STRING-LENGTH

 7.34 STRING-LENGTH

Purpose: Returns the length of a string value.

 Syntax

��─┬─ STRING-LENGTH ─┬─ (string) ───��

└─ SLENgth ───────┘

 Parameters

string
Specifies the string value whose length is determined.

String can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Example: In the example below, the length of a name contained in EMP-LNAME
(PIC X(20)) is determined. To calculate the length of a string value, excluding leading
and trailing spaces, the length function is used in conjunction with the extract function,
as follows:

Initial value:

 EMP-LNAME: 'SMITH '

Statement:

MOVE SLENGTH(EXTRACT(EMP-LNAME)) TO WK-NAME-LENGTH.

Returned string from extract function:

 'SMITH'

Returned value from length function: 5

Chapter 7. Built-in Functions 7-49

7.35 STRING-REPEAT

 7.35 STRING-REPEAT

Purpose: Returns the string that results from repeating a string value a specified
number of times.

 Syntax

��─┬─ STRING-REPEAT ─┬─ (string, repetitions) ──────────────────────────────��

└─ SREPeat ───────┘

 Parameters

string
Specifies the string value that is repeated.

String can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

repetitions
Specifies the numeric value representing the number of times that the string value
is to be repeated.

Repetitions can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

Example: In the example below, the repeat function is used to repeat the constant
'NAME' two times:

Statement:

MOVE SREPEAT('NAME',2) TO WK-TARGET.

Returned string:

 'NAMENAME'

7-50 CA-ADS Reference

7.36 SUBSTRING

 7.36 SUBSTRING

Purpose: Returns the substring of a string value, starting from a specified position
and continuing for a specified length.

 Syntax:

��─┬─ SUBSTRING ─┬─ (string, starting-position ─┬───────────┬─) ────────────��

└─ SUBStr ────┘ └─ ,length ─┘

 Parameters

string
Specifies the string value from which the substring is taken.

String can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

starting-position
Specifies the numeric starting position of the substring within the string value.

Starting-position can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

Starting-position must be positive and not greater than the length of string.

length
Specifies the numeric length of the substring within the string value.

Length can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

The sum of starting-position and length, minus 1, cannot be greater than the
length of string.

If length is not specified, the substring is taken from the specified starting position
to the end of the string value.

Examples: Example 1: Extracting a substring

In the example below, the substring function is used to extract a substring of
EMP-LNAME (PIC X(20)), starting at position 4 and continuing for a length of 3:

Chapter 7. Built-in Functions 7-51

7.36 SUBSTRING

Initial value:

 EMP-LNAME: 'SMITH '

Statement:

MOVE SUBSTR(EMP-LNAME,4,3) TO WK-NAME.

Returned string:

 'TH '

Example 2: Replacing a leading zero

In the next example, the substring function is used in conjunction with the verify and
concatenate functions to replace each leading zero in a number stored in WK-AMT
(PIC X(10)) with an asterisk (*):

Initial value:

WK-AMT: 'HHH5HH.43 '

Statements:

MOVE VERIFY(WK-AMT,'H') TO WK-START-POSITION.

IF WK-START-POSITION GT 1

 THEN

MOVE CON(REP(SUBS(WK-AMT,1,WK-START-POSITION - 1),'H','_'),

SUBS(WK-AMT,WK-START-POSITION)) TO WK-EDITED.

Returned value from verify function: 4

Returned string from first substring function: 'HHH'

Returned string from replace function: '___'

Returned string from second substring function: '5HH.43 '

Returned string from concatenate function: '___5HH.43 '

The string '***500.43 ', with a length of ten characters, is moved to the field
WK-EDITED. Note that the MOVE VERIFY command in the above example locates
the position of the first nonzero character in WK-AMT.

Another example of the substring function is provided in "INSERT" earlier in this
chapter.

7-52 CA-ADS Reference

7.37 TANGENT

 7.37 TANGENT

Purpose: Returns the tangent of a numeric value that represents an angle in either
degrees or radians.

Syntax: Tangent (degrees):

��─┬─ TANGENT-DEGREES ─┬─ (value) ──��

└─ TANDeg ──────────┘

Tangent (radians):

��─┬─ TANGENT-RADIANS ─┬─ (value) ──��

└─ TANRad ──────────┘

 Parameters

TANGENT-DEGREES
Returns the tangent value in degrees.

TANGENT-RADIANS
Returns the tangent value in radians.

value
Specifies the numeric value representing the angle, in degrees or radians, whose
tangent is calculated.

Value can be:

■ An arithmetic expression

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

Value cannot equal values such as -270, +270, -90, or +90 in the tangent (degrees)
function, and cannot equal values such as
 -π/2 or +π/2 in the tangent (radians) function.

 Usage

■ For the tangent (degrees) function, value cannot be a value equal to the
following expression, where n is any integer:

(n _ 18H) + 9H

■ For the tangent (radians) function, value cannot be a value equal to the
following expression:

(n _ π) + π/2

Example: In the following example, the tangent (degrees) of 60 is calculated and
moved to WK-RESULT (PIC S999V9999):

MOVE TAND(6H) TO WK-RESULT.

Returned value: 1.7321

Chapter 7. Built-in Functions 7-53

7.38 TODAY

 7.38 TODAY

Purpose: Returns today's date in the format requested.

 Syntax

��─┬─ TODAY ──┬─ (date-format) ───��

└─ TODAYX ─┘

 Parameters

TODAY/TODAYX
Invokes the today function. TODAYX returns a date that contains the century
portion of the year.

date-format
Specifies the output date format. Date-format can be:

■ The date format, enclosed in quotation marks

■ The name of a user-defined variable data field containing the date format

Date-format can be:

■ C for calendar

■ E for European

■ G for Gregorian

■ J for Julian

Examples: Example 1

In the example below, the today function is used to display today's date in the calendar
format (where today is March 17, 1989):

Statement:

MOVE TODAY('C') TO WK-RESULT.

Returned value: H31789

Example 2

In this example, the today function is used to return today's date in the calendar format
(where today is October 30, 1990). The returned date contains the century portion of
the year:

Statement:

MOVE TODAYX('C') TO WK-RESULT.

Returned value: 1H3H199H

7-54 CA-ADS Reference

7.39 TOLOWER

 7.39 TOLOWER

Purpose: Returns the string that results from converting all characters to lowercase.

 Syntax:

��─── TOLOWER (string) ───��

 Parameters

string
Specifies the string value on which the lowercase function is performed.

String can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Example: In the example below, the lowercase function is used to convert all
characters in the last name to lowercase:

Initial value:

 EMP-LNAME: 'LANCHESTER '

Statement:

MOVE TOLOWER(EMP-LNAME) TO WK-EMP-LNAME.

Returned string:

 'lanchester '

Chapter 7. Built-in Functions 7-55

7.40 TOMORROW

 7.40 TOMORROW

Purpose: Returns tomorrow's date in the format requested.

 Syntax

��─┬─ TOMORROW ──┬── (date-format) ───��

└─ TOMORROWX ─┘

 Parameters

TOMORROW/TOMORROWX
Invokes the tomorrow function. TOMORROWX returns a value that contains the
century portion of the year.

date-format
Specifies the output date format. Date-format can be:

■ A date format, enclosed in quotation marks

■ The name of a user-defined variable data field containing the date format

Date-format can be:

■ C for calendar

■ E for European

■ G for Gregorian

■ J for Julian

Examples: Example 1

In the example below, the tomorrow function is used to display tomorrow's date in the
calendar format (where today is March 17, 1989):

Statement:

MOVE TOMORROW('C') TO WK-RESULT.

Returned value: H31889

Example 2

In this example, the tomorrow function is used to return tomorrow's date in the
calendar format (where today is October 30, 1990). The returned date contains the
century portion of the year:

Statement:

MOVE TOMORROWX('C') TO WK-RESULT.

Returned value: 1H31199H

7-56 CA-ADS Reference

7.41 TOUPPER

 7.41 TOUPPER

Purpose: Returns the string that results from converting all characters to uppercase.

 Syntax

��─── TOUPPER (string) ───��

 Parameters

string
Specifies the string value on which the uppercase function is performed.

String can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Example: In the example below, the uppercase function is used to convert all
characters in the last name to uppercase:

Initial value:

 EMP-LNAME: 'Lanchester '

Statement:

MOVE TOUPPER(EMP-LNAME) TO WK-EMP-LNAME.

Returned string:

 'LANCHESTER '

Chapter 7. Built-in Functions 7-57

7.42 TRAILING-TO-ZONED

 7.42 TRAILING-TO-ZONED

Purpose: Returns a zoned numeric from a COBOL trailing sign numeric.

 Syntax:

��──┬─ TRAILING-TO-ZONED ─┬── (value) ──────────────────────────────────────��

└─ TRAILZN ───────────┘

 Parameters

value
Specifies the COBOL trailing sign numeric value on which the trailing to zoned
function is performed.

Value can be:

■ The name of a user-defined variable data field in trailing sign format

■ A user-supplied numeric literal

Example: In the example below, the trailing to zoned function is used to convert the
value of MYNUMBER to a zoned numeric:

Initial value:

 MYNUMBER: 123-

Statement:

MOVE TRAILZN(MYNUMBER) TO WK-PART-CODE.

Returned value:

 WK-PART-CODE: 123 negative (hex 'F1F2D3')

7-58 CA-ADS Reference

7.43 TRANSLATE

 7.43 TRANSLATE

Purpose: Returns the string that results from translating characters in a string value.

The characters are translated to corresponding characters that are specified in a
substitution string:

■ Characters in a selection string correspond by position to characters in a
substitution string.

■ Each character in the string value specified in the selection string is translated to
the corresponding character contained in the substitution string.

 Syntax:

��─── TRANSlate (string, substitution-string ───┬─────────────────────┬─) ──��

└─ ,selection-string ─┘

 Parameters

string
Specifies the string value on which the translate function is performed.

String can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

substitution-string
Specifies the substitution string.

Substitution-string can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the substitution
string

selection-string
Specifies the selection string. Characters in selection-string will be replaced by
corresponding characters in substitution-string.

Selection-string can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the selection string

 Usage:

 Considerations

■ If selection-string is longer than substitution-string, the excess characters in
selection-string correspond to blanks.

Chapter 7. Built-in Functions 7-59

7.43 TRANSLATE

■ If selection-string specifies the same character more than once, the translate
function uses the first occurrence of the character.

■ If selection-string is not specified, the 256-character EBCDIC table is used,
consisting of hexadecimals 00 through FF.

Example: In the example below, the translate function is used to translate all
occurrences in PART-CODE (PIC X(20)) of the characters A, B, C, and D
(selection-string), to W, blank, Y, and Z (substitution-string), respectively:

Initial value:

 PART-CODE: 'B53A22B1E5HD4HC94 '

Statement:

MOVE TRANS(PART-CODE,'W YZ','ABCD') TO WK-PART-CODE.

Returned string:

' 53W22 1E5HZ4HY94 '

7-60 CA-ADS Reference

7.44 VERIFY

 7.44 VERIFY

Purpose: Returns the position of the first character in a string value that does not
occur in a verification string.

If every character in the input string value occurs in the verification string, a zero is
returned.

 Syntax:

��─── VERify (string, verification-string) ─────────────────────────────────��

 Parameters

string
Specifies the string value on which the verify function is performed.

String can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

verification-string
Specifies the string value against whose characters the string value's characters are
verified.

Verification-string can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

Example: In the example below, the verify function is used to verify that
WK-NUMBER (PIC X(10)) contains only numeric values or blanks:

Statement:

IF VER(WK-NUMBER,'H123456789 ') NE H

 THEN

DISPLAY TEXT 'INVALID SPECIFICATION FOR NUMERIC FIELD'.

Another example of the verify function is provided in "SUBSTRING" earlier in this
chapter.

Chapter 7. Built-in Functions 7-61

7.45 WEEKDAY

 7.45 WEEKDAY

Purpose: Returns the weekday (Monday, Tuesday, etc.) of a specified date.

Weekday functions can be coded in two ways, as shown in the syntax diagrams below.

 Syntax

Format 1::

��───┬─ WEEKDAY ──┬─ (date, date-format) ───────────────────────────────────��

└─ WEEKDAYX ─┘

Format 2:

��───┬─ GWEEKDAY ──┬─ (date) ───��

├─ GWEEKDAYX ─┤

├─ CWEEKDAY ──┤

├─ CWEEKDAYX ─┤

├─ EWEEKDAY ──┤

├─ EWEEKDAYX ─┤

├─ JWEEKDAY ──┤

└─ JWEEKDAYX ─┘

 Parameters

Format 1:

WEEKDAY/WEEKDAYX
Invokes the weekday function. WEEKDAYX operates on dates that contain the
century portion of the year.

date
A numeric value that specifies the input date. Date can be:

■ The date, enclosed in quotation marks

■ The name of a user-defined variable data field containing the date

date-format
Specifies the format of the date specified by date. Date-format can be:

■ The date format, enclosed in quotation marks

■ The name of a user-defined variable data field containing the date format

Date-format can be:

■ C for calendar

■ E for European

■ G for Gregorian

■ J for Julian

Format 2:

7-62 CA-ADS Reference

7.45 WEEKDAY

GWEEKDAY/GWEEKDAYX
CWEEKDAY/CWEEKDAYX
EWEEKDAY/EWEEKDAYX
JWEEKDAY/JWEEKDAYX

The invocation names of the alternate formats of the weekday function. The
prefix C, E, G, or J of an invocation name identifies the format of the date
specified by date (calendar, European, Gregorian, or Julian.)

Invocation names ending in X operate on dates that contain the century portion of
the year.

date
A numeric value that specifies the input date. Date can be:

■ The name of a user-defined variable data field

■ A user-supplied numeric literal

Chapter 7. Built-in Functions 7-63

7.45 WEEKDAY

 Examples

Example 1 (Format 1): In the example below, the weekday function is used to
determine on which weekday January 28, 1958 fell. The date is provided in calendar
format:

Statement:

MOVE WEEKDAY(H12858,'C') TO WK-RESULT.

Returned value: 'TUESDAY'

Example 2 (Format 1)

This example returns the weekday for a date that contains the century portion of the
year:

Statement:

MOVE WEEKDAYX(H1281958,'C') TO WK-RESULT.

Returned value: 'TUESDAY'

Example 3 (Format 2)

This is equivalent to Example 2:

Statement:

MOVE CWEEKDAY(H1281958) TO WK-RESULT.

Returned value: 'TUESDAY'

7-64 CA-ADS Reference

7.45 WEEKDAY

 7.46 WORDCAP

Purpose: Returns the string that results when the first letter of each word in the
specified source string is capitalized and all other characters in the string are converted
to lowercase.

 Syntax

��─── WORDCAP (string) ───��

 Syntax Rule

string
Specifies the string to be converted.

String can be:

■ A string literal, enclosed in single quotation marks

■ The name of a user-defined variable data field containing the string

The first letter in each word is capitalized and all other characters are converted to
lowercase.

Example: In the example below, the word cap function is used on the employee's
name:

Initial value:

 EMP-LNAME: 'O'HEARN '

Statement:

MOVE WORDCAP(EMP-LNAME) TO WK-STRING.

Returned string:

 'O'Hearn '

Chapter 7. Built-in Functions 7-65

7.46 WORDCAP

 7.47 YESTERDAY

Purpose: Returns yesterday's date in the format requested.

 Syntax

��─┬─ YESTERDAY ──┬─ (date-format) ───��

└─ YESTERDAYX ─┘

 Parameters

YESTERDAY/YESTERDAYX
Invokes the yesterday function. YESTERDAYX returns a date that contains the
century portion of the year.

date-format
Specifies the output date format. Date-format can be expressed using:

■ The date format, enclosed in single quotation marks

■ The name of a user-defined variable data field that contains the date format

Date-format can be:

■ C for calendar

■ E for European

■ G for Gregorian

■ J for Julian

Examples: Example 1

In the example below, the yesterday function is used to display yesterday's date in the
calendar format (where today is March 17, 1997).

Statement:

MOVE YESTERDAY('C') TO WK-RESULT.

Returned value: H31697

Example 2

This example uses YESTERDAYX to return a date containing the century:

Statement:

MOVE YESTERDAYX('C') TO WK-RESULT.

Returned value: H3161997

7-66 CA-ADS Reference

7.47 YESTERDAY

 7.48 ZONED-TO-TRAILING

Purpose: Returns a COBOL trailing sign numeric from a zoned numeric.

 Syntax:

��──┬─ ZONED-TO-TRAILING ─┬── (value) ──────────────────────────────────────��

└─ ZNTRAIL ───────────┘

 Parameters

value
Specifies the zoned numeric value on which the zoned to trailing function is
performed.

Value is the name of a user-defined variable data field in zoned numeric format.

Example: In the example below, the zoned to trailing function is used to convert the
value of MYNUMBER to a COBOL trailing sign numeric:

Initial value:

MYNUMBER: 123 negative (hex 'F1F2D3')

Statement:

MOVE ZNTRAIL(MYNUMBER) TO WK-PART-CODE.

Returned value:

 WK-PART-CODE: 123-

Chapter 7. Built-in Functions 7-67

7-68 CA-ADS Reference

 Chapter 8. Conditional Expressions

8.1 Overview . 8-3
8.2 General considerations . 8-4

8.2.1 Syntax for conditional expressions . 8-4
8.3 Batch-control event condition . 8-6
8.4 Command status condition . 8-7
8.5 Comparison condition . 8-10
8.6 Cursor position condition . 8-12
8.7 Dialog execution status condition . 8-14
8.8 Environment status condition . 8-16
8.9 Level-88 condition . 8-17
8.10 Map field status condition . 8-18
8.11 Map paging status conditions . 8-22
8.12 Set status condition . 8-25
8.13 Arithmetic and assignment command status condition 8-27

Chapter 8. Conditional Expressions 8-1

8-2 CA-ADS Reference

8.1 Overview

 8.1 Overview

A conditional expression specifies test conditions in an IF or WHILE command. The
outcome of a conditional test determines the processing that occurs.

A conditional expression can be used as a variable wherever the command syntax
specifies conditional-expression.

The table below summarizes the test conditions that can be used in conditional
expressions. Each condition is described separately in this section.

Summary of test conditions

Condition Purpose

Batch control event Determines the occurrence of runtime events (batch
input only)

Command status Tests for the presence of a status code in a dialog's
error-status field

Comparison Compares two values

Cursor position Determines if the cursor is located in a specified field
after a mapin operation

Dialog execution status Determines if a dialog is executing for the first time

Environment status Determines the environment in which the application is
executed

Level-88 condition name Determines if a variable data field value is equal to the
value of the associated level-88 condition name

Map field status Determines if a map's data field are changed or in error

Map paging status Determines the runtime events of a map paging session

Set status Determines member record occurrences or if a record is
a member of a specific set

Assignment condition Tests for an arithmetic or assignment exception

Chapter 8. Conditional Expressions 8-3

8.2 General considerations

 8.2 General considerations

Contents: Conditional expressions can contain:

■ A single test condition

■ Two or more test conditions combined with the logical operators AND and OR

■ The logical operator NOT to specify the opposite of the condition

NOT can precede a single condition or a compound condition enclosed in
parentheses.

Evaluation of operators: Operators in a conditional expression are evaluated one
at a time, from left to right, in the following order of precedence:

■ Unary plus or minus

■ Multiplication or division

■ Addition or subtraction

■ MATCHES or CONTAINS keywords

■ EQ, NE, GT, LT, GE, LE operators

 ■ NOT

 ■ AND

 ■ OR

The default order of precedence can be overridden by using parentheses. The
expression in the innermost parentheses is evaluated first.

Significant tests in conditional expressions should be coded to the left for greater
runtime efficiency.

8.2.1 Syntax for conditional expressions

The conditional expression syntax shown below applies when the command syntax
specifies conditional-expression.

 Syntax

┌─ AND ─┐

┌──────────┴─ OR ──┴──────────┐

��───┬─────────┬─────↓─┬───────┬─ test-condition ──┴───┬─────┬────────────────��

└─ NOT (─┘ └─ NOT ─┘ └─) ─┘

 Parameters

8-4 CA-ADS Reference

8.2 General considerations

NOT
Specifies that the opposite of a condition fulfills the test requirements.

The opposite of the entire conditional expression can be specified by enclosing the
expression in parentheses and preceding it with NOT.

test-condition
Specifies the condition being tested and can include parentheses

AND
Specifies the expression is true only if the outcome of both test conditions is true.

OR
Specifies the expression is true if the outcome of either one or both test conditions
is true.

Chapter 8. Conditional Expressions 8-5

8.3 Batch-control event condition

8.3 Batch-control event condition

Purpose: (CA-ADS/Batch only) Tests the occurrence of runtime events, such as
end-of-file or physical input errors, specific to batch input.

The event status is initialized at the beginning of application execution and the
outcome of each test is false.

 Syntax

��────┬─┬─ $END-OF-FILE ─┬─┬──��

│ └─ $EOF ────────┘ │

└─── $IOERRor ───────┘

 Parameters

$END-OF-FILE
Tests whether the most recent input file read operation results in an end-of-file
condition.

$IOERRor
Tests whether the most recent input file read operation results in a physical input
error.

A physical error on a write operation causes the application to abort.

Example: In the example below, execution of a group of commands continues until
an end-of-file condition occurs:

WHILE NOT $EOF

 REPEAT.

 .

 .

 .

 WRITE TRANSACTION.

 END.

LEAVE APPLICATION.

8-6 CA-ADS Reference

8.4 Command status condition

8.4 Command status condition

Purpose: Tests a dialog's error-status field for the presence of a specified status
code, following the execution of a process command that involves database, queue, or
scratch activity, or a WRITE PRINTER utility command.

The command status is checked by testing the error-status field for a specified status
code or by testing a level-88 condition name. Level-88 condition names and status
field names other than ERROR-STATUS must be defined in the dialog's status
definition record.

�� For a discussion of status definition records, see Chapter 10, “Error Handling.”

 Syntax

��───┬── error-status-code-name ────┬───────────────────┬──────────────────┬──��

│ └─ FOR record-name ─┘ │

 │ │

└┬─ ERROR-STATUS ──────────┬─ comparison-operator error-status-code ─┘

└─ status-field-variable ─┘

 Parameters

error-status-code-name:
The name of a level-88 condition defined in the dialog's status definition record.

FOR record-name:
Specifies that the test applies to the last database command involving the named
record.

Record-name must be known to the dialog's subschema.

ERROR-STATUS
Represents the value contained in the internal error-status field for the dialog.

status-field-variable
Specifies the name of a user-supplied data field that contains the error-status field
for the dialog.

Status-field-variable must be defined in the dialog's status definition record.

comparison-operator:
The comparison operators are:

Chapter 8. Conditional Expressions 8-7

8.4 Command status condition

error-status-code:
Specifies the status code to which the value in status-field-variable is compared.

Error-status-code is:

■ the name of a variable data field that contains the status code

■ the code itself (optionally enclosed in single quotation marks)

■ an expression, including a built-in function, that returns the status code

Examples: Example 1: Testing for a database record status

The command status condition in the following IF statement is true when the dialog's
error-status field contains the status code 0326:

IF DB-REC-NOT-FOUND THEN ...

DB-REC-NOT-FOUND must be defined in the dialog's status definition record.

Example 2: Testing for the end-of-set

The command status condition in the following IF statement is true when the dialog's
error-status field does not contain the status code 0307:

IF NOT DB-END-OF-SET THEN ...

DB-END-OF-SET must be defined in the dialog's status definition record.

Example 3: Testing for the status of a database record

The command status condition in the following IF statement is true when the dialog's
error-status field contains the status code 0000 following execution of the most recent
command involving a CUSTOMER record:

IF DB-STATUS-OK FOR CUSTOMER THEN ...

DB-STATUS-OK must be defined in the dialog's status definition record.

Example 4: Testing for a dialog's error status

Operator Synonym Meaning

EQ = Equal

NE Not equal to

GT > Greater than

LT < Less than

GE Greater than or equal to

LE Less than or equal to

8-8 CA-ADS Reference

8.4 Command status condition

The command status condition in the following IF statement is true when the dialog's
error-status field contains the status code 0307:

IF ERROR-STATUS IS 'H3H7'...

Chapter 8. Conditional Expressions 8-9

8.5 Comparison condition

 8.5 Comparison condition

Purpose: Compares two values.

Each value can be a variable data field, an arithmetic expression, a built-in function, or
a numeric, nonnumeric, multi-bit binary, or figurative constant.

A comparison condition also compares two EBCDIC, DBCS, or unsigned zoned
decimal character strings to determine if the first string matches or contains the second
string.

 Syntax

��──┬─ value comparison-operator value ────────────┬────────────────────────��

 │ │

└─ string-value ──┬─ MATCHES ─┬── mask-value ───┘

└─ CONTAINS ─┘

 Parameters

value:
Identifies the operands being compared. Value is specified according to the rules
presented in Chapter 5, “Introduction to Process Language.”

comparison-operator:
The comparison operators are:

string-value:
Either the name of an elementary DBCDIC, DBCS, or unsigned zoned decimal
data field that contains the character string being compared, or the string itself
enclosed in single quotation marks.

MATCHES
Compares the left operand to the right operand, one character at a time, beginning
with the leftmost character in each operand.

The length of the string that is compared is set to the length of the shorter of the
two operands. If a character in the left operand does not match the corresponding
character in the right operand, the outcome of the comparison is false.

Operator Synonym Meaning

EQ = Equal

NE Not equal to

GT > Greater than

LT < Less than

GE Greater than or equal to

LE Less than or equal to

8-10 CA-ADS Reference

8.5 Comparison condition

CONTAINS
Searches the left operand for an occurrence of the right operand.

The length of the right operand must be less than or equal to the length of the left
operand. If the right operand is not entirely contained in the left operand, the
outcome of the comparison is false.

mask-value:
Either the name of a variable data field that contains the mask value or the value
itself enclosed in single quotation marks.

 Usage:

Considerations: Special mask characters in mask-value match characters in value
according to the following conventions:

■ @ -- Matches any alphabetic character

■ # -- Matches any numeric character

■ * -- Matches any character

Any other character in mask-value matches only itself in value.

Examples: Example 1: Using a simple comparison

The comparison condition in the following IF statement is true when the value in the
SALES field is greater than or equal to 5000:

IF SALES GE 5HHH ...

Example 2: Using a compound comparison

The comparison condition in the following IF statement is true when the value in the
CODE field is not equal to X3 and the value in the QTY field is less than 15:

IF CODE NE 'X3' AND QTY LT 15 ...

Example 3: Searching for a given string occurrence

The comparison condition in the following IF statement is true when the character
string TOM occurs in the character string contained in the NAME field:

IF NAME CONTAINS 'TOM' ...

Example 4: Using a comparison to a given string value

The comparison condition in the following IF statement is true when the character
string contained in the PART-ID field matches the mask value **@398:

IF PART-ID MATCHES '__@398' ...

Chapter 8. Conditional Expressions 8-11

8.5 Comparison condition

8.6 Cursor position condition

Purpose: Determines whether the cursor is located in a specified field following a
mapin operation.

The named map field can be tested for the presence of the cursor, or a comparison of
the cursor column or row position to a specified value can be made following mapin.

 Syntax:

��──┬─ CURSOR ─────┬───────┬─────── at ───── map-field-name ───────┬──────────��

│ └─ NOT ─┘ │

 │ │

└┬─ CURSOR-COLUMN ─┬── comparison-operator cursor-position ───┘

 └─ CURSOR-ROW ─┘

 Parameters

NOT
Specifies the condition is true only when the cursor is not located in the named
map field.

map-field-name:
Tests the named map field for the presence of the cursor.

CURSOR-COLUMN
Specifies that the comparison with curson-position is made using the value in the
CURSOR-COLUMN.

CURSOR-ROW
Specifies that the comparison with curson-position is made using the value in the
CURSOR-ROW field.

8-12 CA-ADS Reference

8.6 Cursor position condition

comparison-operator:
The comparison operators are:

cursor-position:
Specifies the value being compared to the value in the CURSOR-COLUMN or
CURSOR-ROW field. The specified value should correspond to a possible cursor
column or row position on the terminal in use.

Cursor-position is a value variable, arithmetic expression, or numeric constant that
is specified according to the rules presented in this manual.

Operator Synonym Meaning

EQ = Equal

NE Not equal to

GT > Greater than

LT < Less than

GE Greater than or equal to

LE Less than or equal to

Chapter 8. Conditional Expressions 8-13

8.6 Cursor position condition

8.7 Dialog execution status condition

Purpose: Determines whether a dialog is executing for the first time in an
application thread.

 Syntax:

��────── FIRST-TIME ──��

 Usage

Dialog execution status test outcomes: When a dialog executes for the first time,
the CA-ADS runtime system sets the execution status to FIRST-TIME and the
outcome of the execution status test is true. The outcome of a subsequent test depends
on the control command that precedes the test, as shown in the table below.

Control command Status test outcome

DISPLAY False.

EXECUTE NEXT
FUNCTION

Depends on the control command (TRANSFER,
INVOKE, LINK, or RETURN) associated with the
selected application response.

INVOKE False for the dialog issuing the INVOKE command.

LEAVE Not applicable. The application is no longer operative.

LINK Unchanged for the dialog issuing the LINK command.

RETURN Not applicable. The dialog is no longer operative in
the application thread.

If the dialog issuing the RETURN command is invoked
or linked to again, the dialog execution status is reset
to FIRST-TIME.

TRANSFER Not applicable. The dialog is no longer operative in
the application thread.

If a dialog transfers to itself, the dialog execution status
is reset to FIRST-TIME.

READ False.

WRITE False.

CONTINUE False.

8-14 CA-ADS Reference

8.7 Dialog execution status condition

�� For detailed descriptions of the control commands, see Chapter 15, “Control
Commands.”

Example: The example below shows the use of the dialog execution status
condition:

IF FIRST-TIME

THEN

MOVE 1 TO COUNTER.

ELSE

ADD 1 TO COUNTER.

Chapter 8. Conditional Expressions 8-15

8.8 Environment status condition

8.8 Environment status condition

Purpose: Determines the application's environment.

Status conditions can be tested in both online and batch environments.

 Syntax:

��──────┬─ $BATCH ─┬───��

└─ $ONLINE ─┘

 Parameters

$BATCH
Is true when the dialog is executing in the batch environment.

$ONLINE
Is true when the dialog is executing in the online environment.

Example: In the following example, different types of processing are performed,
depending on the runtime environment.

IF $ONLINE

 THEN

 DISPLAY.

 ELSE

 WRITE TRANSACTION.

8-16 CA-ADS Reference

8.9 Level-88 condition

 8.9 Level-88 condition

Purpose: Determines whether the value contained in a variable data field is equal to
a value associated with a level-88 condition name defined for that field. CA-ADS
checks for:

■ Single or multiple values

■ Single or multiple ranges of values

■ Any combination of values and ranges of values

 Syntax:

��────── condition-name ──��

 Parameters

condition-name:
Specifies the condition being tested.

Condition-name must be defined as a level-88 condition name in a data dictionary
or subschema record used by the dialog.

Chapter 8. Conditional Expressions 8-17

8.10 Map field status condition

8.10 Map field status condition

Purpose: Determines if one or more of a map's data fields are changed, identical,
truncated, erased, or in error.

A map field status condition applies to the status of the tested map data fields at the
time of the most recent mapin operation. The IN ERROR status condition also applies
to the status of the map fields following a map modification command that specifies
EDIT IS ERROR/CORRECT.

Map field status tests cannot be used to test the condition of system-supplied
$MESSAGE, $RESPONSE, and $PAGE fields.

 Syntax:

┌─────── , ────────┐

��─────┬─┬── ALL ───┬───┬─ OF (─↓─ map-field-name ─┴─) ─┬──────┬─────────────�

│ ├── ANY ───┤ └─ FIELDS ───────────────────────┘ │

│ ├── SOME ──┤ │

│ └┬─ NONE ─┬┘ │

│ └─ NO ───┘ │

├─ ALL ─┬─ BUT ────┬── (map-field-name) ───────────────┤

 │ └─ EXCEPT ─┘ │

└──┬─ FIELD ───┬── map-field-name ───────────────────────┘

└─ DFLD ────┘

 �─────┬───────┬────┬───────┬───┬─ IDENtical ─┬───────────────────────────────��

├─ IS ─┤ └─ NOT ─┘ ├─ CHANged ───┤

└─ ARE ─┘ ├─ TRUNcated ─┤

├─ ERASed ────┤

└─ in ERRor ──┘

 Parameters

ALL
The outcome of the test must be true for every specified field.

ANY
The outcome of the test must be true for one or more of the specified fields.

NONE
The outcome of the test must be true for none of the specified fields.

NO can be used in place of NONE.

SOME
The outcome of the test must be true for at least one but not all of the specified
fields.

OF (map-field-name)
Specifies a data field in the dialog's map.

One or more fields, up to the number of fields defined for the map, can be
specified inside the parentheses.

8-18 CA-ADS Reference

8.10 Map field status condition

FIELDS
Specifies all data fields in the dialog's map.

ALL BUT map-field-name:
Specifies that all map fields are to be tested, except for the fields specified by
map-field-name

EXCept can be used instead of ALL BUT.

Map-field-name specifies a data field in the dialog's map.

One or more fields can be specified, up to the number of fields defined for the
map, inside the parentheses.

FIELD map-field-name:
Explicitly names one map field for which the outcome of the test must be true.

Map-field-name must be a data field known to the dialog's map.

DFLD can be used in place of FIELD.

NOT
Specifies that a test is for the opposite of the specified status.

IDENtical
At the time of the most recent mapin from the terminal, the contents of the
mapped-in field are compared with the original contents of the dialog's record
buffer.

The condition is true if:

■ The field's modified data tag (MDT) is off. On mapin, the MDT is off if the
user did not type any characters in the field.

Note: The MDT can also be set at mapout, depending on the map's
definition and any MODIFY MAP commands issued before mapout.

■ The field's MDT is on, but each character in the input data is exactly the
same (including capitalization) as data that was originally mapped out for the
field.

CHANged
At the time of the most recent mapin from the terminal, the field's modified data
tag (MDT) is checked to determine if the end user has changed the field.

When erase EOF is pressed at the beginning of a field, the MDT is set; however,
the changed condition is only true if you have specified a pad character.

The condition is true if:

■ The MDT is on for the field. The MDT is on if any characters are typed in
the field during mapin. This is true even if the characters are the same as
those that are mapped out.

Note: The MDT can also be set at mapout, depending on the map's
definition and any MODIFY MAP commands issued before mapout.

Chapter 8. Conditional Expressions 8-19

8.10 Map field status condition

TRUNcated
At the time of the most recent mapin from the terminal, CA-ADS truncates excess
data entered in the specified map fields.

ERASed
At the time of the most recent mapin from the terminal, the terminal operator
erased all data in specified map fields.

in ERRor
At the time of the most recent mapin from the terminal, specified map fields
contain erroneous data or were given the EDIT IS ERROR attribute in a map
modification command.

Note: You do not have to wait for mapin. You can set fields and immediately
test them.

Automatic editing affects the use of the IN ERROR status condition as follows:

■ If automatic editing is enabled and EXECUTE ON EDIT ERRORS is YES,
fields that contain erroneous data are set in error and control is returned to the
response process. Error tests can be made by using the IN ERROR status
condition.

Note: The above does not apply for pageable map detail areas.

■ If automatic editing is enabled and EXECUTE ON EDIT ERRORS is NO,
CA-ADS returns control to the mapout operation, displays specified error
messages, and waits for the user to enter valid data.

Note: The above does not apply for pageable map detail areas.

■ If automatic editing is not enabled for the map, fields that contain erroneous
data are not automatically set in error. To make use of the IN ERROR status
condition, the fields in error must be flagged by using the MODIFY MAP
command.

EXECUTE ON EDIT ERRORS is specified on the Process Modules screen.

�� For information about this screen, see Chapter 3, “CA-ADS Dialog Compiler
(ADSC).”

For a description of the MODIFY MAP command, see Chapter 17, “Map
Commands.”

Note: Map fields in error are not mapped in. Variable storage contains the
values of the fields prior to the last mapout operation.

 Usage:

Pageable map considerations

■ Conditions set for a data field are cumulative. If a map field is changed, identical,
truncated, erased, and/or in error at any time during a pseudo-converse, the field is
considered changed, identical, truncated, erased, or in error when control transfers
to a response process.

8-20 CA-ADS Reference

8.10 Map field status condition

■ A test on a detail area map field applies to the detail occurrence referenced by the
most recent pageable map command following the last pseudo-converse.

■ After a PUT DETAIL command, the outcome of all tests on detail area map fields
is false.

Examples: Example 1: Testing for field changes

The map field status condition in the following IF statement is true when the user
modifies any map field:

IF ANY FIELD IS CHANGED ...

Example 2: Testing for modified data

The map field status condition in the following IF statement is true if the input data is
identical to data initially displayed on the map. In this example, the user is asked to
specify another department if no change is made to the department id or name:

IF FIELD DEPT-ID-H41H IS IDENTICAL

AND FIELD DEPT-NAME-H41H IS IDENTICAL

 THEN

DISPLAY MSG TEXT

'PLEASE SPECIFY NEXT DEPARTMENT'.

Example 3: Testing for field truncation

The map field status condition in the following IF statement is true when excess data
entered in the CUST-CITY field has been truncated during the mapin operation:

IF FIELD CUST-CITY IS TRUNCATED ...

Example 4: Testing for erased data

The map field status condition in the following IF statement is true when the user
erases all data in the CUST-NAME, CUST-ADDR1, and CUST-CITY fields:

IF ALL OF (CUST-NAME, CUST-ADDR1, CUST-CITY) ARE ERASED ...

Chapter 8. Conditional Expressions 8-21

8.10 Map field status condition

8.11 Map paging status conditions

Purpose: Determines the occurrence of runtime events associated with a pageable
map.

 Syntax:

��───┬─┬──────── $PAGE-READY ──────────┬─┬────────────────────────────────────��

│ └──────── $PRDY ─────────────┘ │

├─┬──────── $FULLPAGE ────────────┬─┤

│ └──────── $FPG ──────────────┘ │

├─┬──────── $FORWARD ─────────────┬─┤

│ └──────── $FWD ──────────────┘ │

├─┬──────── $BACKWARD ────────────┬─┤

│ └──────── $BWD ──────────────┘ │

├─┬──────── $HEADER ──────────────┬─┤

│ └──────── $HDR ──────────────┘ │

├─┬──────── $DETAIL ──────────────┬─┤

│ └──────── $DTL ──────────────┘ │

├─┬──────── $END-OF-DATA ─────────┬─┤

│ └──────── $EOD ──────────────┘ │

├─┬──────── $DETAIL-NOT-FOUND ────┬─┤

│ └──────── $DNF ──────────────┘ │

└─┬──────── $MAXIMUM-DETAILS-PUT ─┬─┘

 └──────── $MDP ──────────────┘

 Parameters

$PAGE-READY
Tests whether the runtime system has written a full map page to scratch.

$PAGE-READY is set to true for each map page built in a given map paging
session before the page is displayed.

$PAGE-READY is reset and the outcome of the test is false as soon as the next
detail occurrence is written to a scratch record.

If $PAGE-READY is used, the Auto display option must be chosen for the
dialog. This setting is made using the Map Specification screen.

�� For information about this screen, see Chapter 3, “CA-ADS Dialog Compiler
(ADSC).”

$PRDY can be used in place of $PAGE-READY.

$FULLPAGE
Tests whether the runtime system has displayed the first map page to the user as a
result of a PUT DETAIL command.

$FULLPAGE is reset and the outcome of the test is false when a DISPLAY
command without the CONTINUE keyword is issued.

$FPG can be used in place of $FULLPAGE.

8-22 CA-ADS Reference

8.11 Map paging status conditions

$FORWARD
Tests whether the user has pressed the control key associated with paging forward.

$FORWARD is reset and the outcome of the test is false when a new page is
displayed at the user's screen.

$FWD can be used in place of $FORWARD.

$BACKWARD
Tests whether the terminal operator has pressed the control key associated with
paging backward.

$BACKWARD is reset and the outcome of the test is false when a new page is
displayed at the user's screen.

$BWD can be used in place of $BACKWARD.

$HEADER
Tests whether a modified data tag (MDT) was set for any header or footer area
map fields following the most recent mapin operation from the terminal.

$HEADER is reset and the outcome of the test is false when a DISPLAY
command without the CONTINUE keyword is issued.

$HDR can be used in place of $HEADER.

$DETAIL
Tests whether the most recent GET DETAIL command with the FIRST or NEXT
keyword has retrieved a modified detail occurrence.

$DETAIL is reset and the outcome of the test is false when a DISPLAY
command without the CONTINUE keyword is issued.

$DTL can be used in place of $DETAIL.

$END-OF-DATA
Tests whether the most recent GET DETAIL command with the FIRST or NEXT
keyword has encountered an end-of-data condition while attempting to retrieve a
modified detail occurrence.

An end-of-data condition results when the runtime system reaches the physical end
of detail occurrences without finding a modified detail occurrence.

$END-OF-DATA is reset and the outcome of the test is false when a DISPLAY
command without the CONTINUE keyword is issued.

$EOD can be used in place of $END-OF-DATA.

$DETAIL-NOT-FOUND
Tests whether the most recent GET DETAIL command with the KEY IS
specification has encountered a detail-not-found condition while attempting to
retrieve a modified detail occurrence.

A detail-not-found condition results if no detail occurrence with the specified key
exists or if the existing detail occurrence is not a modified detail occurrence.

$DETAIL-NOT-FOUND is reset and the outcome of the test is false when a
DISPLAY command without the CONTINUE keyword is issued.

Chapter 8. Conditional Expressions 8-23

8.11 Map paging status conditions

$DNF can be used in place of $DETAIL-NOT-FOUND.

$MAXIMUM-DETAILS-PUT
Tests whether storage is unavailable to hold new detail occurrences.

$MAXIMUM-DETAILS-PUT (MDP) is set when a PUT DETAIL command fails
to create a detail occurrence due to lack of storage.

The runtime system allocates storage for detail occurrences based on the system
generation OLM statement.

$MAXIMUM-DETAILS-PUT is reset across a pseudoconverse even though the
condition still exists.

You can use $MDP in place of $MAXIMUM-DETAILS-PUT.

Usage: Map paging status conditions can be used in one or more dialogs associated
with the same pageable map.

At the beginning of a map paging session, the map paging status conditions are
initialized and the outcome of each test is false.

�� For information about map paging sessions and the syntax for the map paging
commands mentioned below, see Chapter 17, “Map Commands.”

Example: The example below defines a premap process that builds the first page of
a pageable map. The page is displayed with a message as soon as the page is built.
The $PAGE-READY condition is used to determine when the page is built:

OBTAIN FIRST EMPLOYEE WITHIN DEPT-EMPLOYEE.

WHILE NOT $PAGE-READY

AND NOT DB-END-OF-SET

 REPEAT.

MOVE EMP-ID TO WK-EMP-ID.

MOVE EMP-LNAME TO WK-EMP-LNAME.

MOVE EMP-START-DATE TO WK-EMP-START-DATE.

ACCEPT DB-KEY INTO WK-KEY FROM CURRENCY.

PUT NEW DETAIL KEY WK-KEY.

OBTAIN NEXT EMPLOYEE WITHIN DEPT-EMPLOYEE.

 END.

DISPLAY MSG TEXT

'FOR MORE INFORMATION, ENTER AN EMPLOYEE''S ID'.

Subsequent pages for this pageable map are built, as needed, by the map's response
process (not shown).

8-24 CA-ADS Reference

8.11 Map paging status conditions

8.12 Set status condition

Purpose: Tests a set for the presence of member record occurrences or determine
whether a record is a member of a specified set.

Note: The set status condition is not allowed for sets whose members are stored in
native VSAM data sets.

For a discussion of native VSAM data sets in the CA-ADS environment, see
Chapter 15, “Control Commands.”

 Syntax:

��────┬─ SET set-name is ──────┬───────┬───── EMPTY ─────┬────────────────────��

│ └─ NOT ─┘ │

└─ SET set-name MEMBER ────────────────────────────┘

 Parameters

set-name is EMPTY
Tests the current occurrence of the named set for the presence of member records.
The outcome of the test is true only when the specified set has no members.

Set-name must be known to the dialog's subschema.

NOT
Specifies that the set has one or more members for the test to be true.

set-name MEMBER
Tests the current record of run unit to determine whether it participates as a
member in any occurrence of the named set.

Set-name must be known to the dialog's subschema.

Examples: Example 1: Testing for set member records

The following statements establish a current occurrence of the CUSTOMER-ORDER
set and then test to determine whether the set has any member records:

FIND CALC CUSTOMER.

IF SET CUSTOMER-ORDER EMPTY

THEN

 .

 .

 .

Chapter 8. Conditional Expressions 8-25

8.12 Set status condition

Example 2: Testing for a specific member of a set

The following statements establish a POLICY record as current of run unit and then
test to determine whether the record is a member of any occurrence of the
AGENCY-POLICY set:

OBTAIN CALC POLICY.

IF SET AGENCY-POLICY MEMBER

THEN

 .

 .

 .

8-26 CA-ADS Reference

8.13 Arithmetic and assignment command status condition

8.13 Arithmetic and assignment command status condition

Purpose: Tests the results of the previous assignment command.

 Syntax

��─┬─ ANY-DATA-ERROR - . ──────────────────┬──────────────────────────────────��

├─ BAD-DATA-TYPE ───────────────────────┤

├─ UNSUPPORTED-DATA-CONVERSION ─────────┤

├─ NO-NUMBER-EBCDIC/NUMERIC-CONVERSION ─┤

├─ INCORRECT-FIELD-LENGTH ──────────────┤

├─ INVALID-SUBSCRIPT-VALUE ─────────────┤

├─ DATE-FORMAT-ERROR ───────────────────┤

├─ SPECIFICATION-EXCEPTION ─────────────┤

├─ DATA-EXCEPTION ──────────────────────┤

├─ FIXED-POINT-OVERFLOW-EXCEPTION ──────┤

├─ FIXED-POINT-DIVIDE-EXCEPTION ────────┤

├─ DECIMAL-OVERFLOW-EXCEPTION ──────────┤

├─ DECIMAL-DIVIDE-EXCEPTION ────────────┤

├─ FLOATING-POINT-DIVIDE-EXCEPTION ─────┤

├─ EXPONENT-OVERFLOW-EXCEPTION ─────────┤

├─ EXPONENT-UNDERFLOW-EXCEPTION ────────┤

└─ SIGNIFICANCE-EXCEPTION ──────────────┘

Example: The following example shows how the ALLOWING clause can be used
to prevent application abends. The specified MOVE command moves a numeric field
from an eight-byte field to a four-byte field. The application must be prepared to
handle any error condition that might arise.

MOVE big-num TO little-num ALLOWING-ANY-DATA-ERROR.

IF DECIMAL-OVERFLOW-EXCEPTION

DISPLAY ERROR MESSAGE TEXT 'SOURCE DATA TOO LARGE'.

IF ANY-DATA-ERROR

DISPLAY ERROR MESSAGE TEXT 'INVALID DATA VALUE'.

Chapter 8. Conditional Expressions 8-27

8-28 CA-ADS Reference

 Chapter 9. Constants

9.1 Overview . 9-3
9.2 Figurative constants . 9-4
9.3 Graphic literals . 9-6
9.4 Multibit binary constants . 9-7
9.5 Nonnumeric literals . 9-8
9.6 Numeric literals . 9-9

Chapter 9. Constants 9-1

9-2 CA-ADS Reference

9.1 Overview

 9.1 Overview

Constants are data items that are not subject to change during the execution of a
dialog. Constants include the following:

 ■ Figurative constants

 ■ Graphic literals

■ Multibit binary constants

 ■ Nonnumeric literals

 ■ Numeric literals

Chapter 9. Constants 9-3

9.2 Figurative constants

 9.2 Figurative constants

Purpose: A figurative constant is a reserved CA-ADS word that represents a
numeric value, a character, or a string of characters.

A figurative constant can be used as the source field in a MOVE operation or as an
operand in a comparison expression.

 Syntax:

��──┬───────┬──┬─ 'literal' ───┬──��

└─ ALL ─┘ ├─ SPACEs ──────┤

├─ ZEROs ───────┤

├─ ZEROES ──────┤

├─ HIGH-VALUEs ─┤

├─ LOW-VALUEs ──┤

└─ QUOTEs ──────┘

 Parameters

ALL
Specifies that the figurative constant is repeated to fill the target field in a MOVE
statement.

ALL can precede 'literal'. Other figurative constants do not need to be preceded
by ALL, since they always repeat to fill the target field.

'literal'
A nonnumeric literal of up to 255 characters, enclosed in single quotation marks.

If ALL is specified, the literal value is repeated as many times as required to fill
the field. If ALL is not specified, any remaining positions in the target field are
filled with blanks.

SPACEs
Represents a field that contains all blanks.

ZEROs/ZEROES
Represents a field that contains all zeros.

Note: PIC X fields are treated as unsigned zoned decimal fields. ZEROS or
ZEROES is the only figurative constant that can be specified in arithmetic
expressions.

HIGH-VALUEs
Represents a field filled with the character that has the highest value in the
computer collating sequence (that is, X'FF').

LOW-VALUEs
Represents a field filled with binary zeros (that is, X'00').

QUOTEs
Represents a field filled with single quotation marks.

9-4 CA-ADS Reference

9.2 Figurative constants

Usage: The VALUE IS clause for fields in records used by a CA-ADS dialog can
be defined using any of the figurative constants listed in the syntax diagram. Note that
the only allowable figurative constants in the VALUE IS clause for fields defined as
numeric constants are ZEROS and ZEROES.

Restriction HIGH-VALUEs, LOW-VALUEs, and QUOTEs cannot be used as a
source field in a MOVE statement, or as an operand in a comparison expression if the
corresponding target field is a data type other than group, EBCDIC, or UNSIGNED
ZONE DECIMAL.

Examples: Example 1: Moving zero to a numeric field

MOVE ZERO TO COUNTER.

Example 2: Filling a field with binary zeros

MOVE ALL 'XO' TO HUGS-AND-KISSES.

Example 3: Comparing the contents of a field

IF EMP-NAME EQ SPACES

 THEN

DISPLAY TEXT 'ENTER EMPLOYEE NAME'.

Chapter 9. Constants 9-5

9.3 Graphic literals

 9.3 Graphic literals

Purpose: A graphic literal, also known as a G-literal, is a special type of
double-byte character set (DBCS) string used when working with non-EBCDIC
alphabets, such as the Japanese Kanji alphabet, the Korean Han-gul alphabet, or
Chinese characters.

Usage: The graphic literal allows DBCS characters to be moved or compared to
database or map record elements when shift codes are not part of the actual data.

This type of constant starts with the EBCDIC character G, followed by a single
quotation character, a shiftout [SO], one or more DBCS characters, a shiftin [SI], and a
closing single quotation character:

G'[SO]DBCS-characters[SI]'

The number of characters expressed depends on the hardware supporting DBCS.
Maximum size is 255 bytes.

�� For information about defining data to handle DBCS characters in the data
dictionary, refer to IDD DDDL Reference.

For information about defining maps that handle DBCS characters, see CA-IDMS
Mapping Facility.

Example: An example of a graphic literal used in a process command is shown
below:

IF MAP-REC-DBCS EQ G'[SO]DBCS-characters[SI]'

 THEN

 RETURN.

9-6 CA-ADS Reference

9.4 Multibit binary constants

9.4 Multibit binary constants

Purpose: A multibit binary constant is a 1- to 32-character string that can contain
only the values 1 and 0. The string is enclosed in single quotation marks with the first
quotation mark immediately preceded by the character B.

B'11H1H1'

Usage: A multibit binary constant can be used as a comparison for a data field and
can be used to store a value in a data field.

The data field must be an elementary data field defined with the USAGE IS BIT
clause. If the data field is an occurring field within a group, all other data fields in the
group must be defined with USAGE IS BIT.

In general, groups in record structures are of type EBCDIC. Multibit binary is an
exception. Even at the group level, multibit binary (MBB) fields should be reference
for MOVEs or comparisons with B'...' fields. Specifically, a MBB group field would
be initialized to all zeroes by moving B'000...' to the MBB field, or by redefining the
MBB field with an EBCDIC field and moving LOW-VALUES to the redefined
EBCDIC field.

Examples: Example 1: Data field definition

H2 MASK-VALUE PIC X(7) USAGE IS BIT.

H2 MASK-VALUE-OCCURRENCE REDEFINES MASK-VALUE

PIC X USAGE IS BIT OCCURS 7 TIMES.

Example 2: Process command

MOVE B'1HH1HHH' TO MASK-VALUE

WHILE MASK-VALUE EQ B'1HH1HHH'

 REPEAT.

 .

 .

 .

 IF DB-END-OF-SET

 THEN

MOVE B'H' TO MASK-VALUE-OCCURRENCE (4).

 END.

Chapter 9. Constants 9-7

9.5 Nonnumeric literals

 9.5 Nonnumeric literals

Purpose: A nonnumeric literal is a string of any allowable EBCDIC or DBCS
characters. The nonnumeric literal must be enclosed in single quotation marks.

Nonnumeric literals can be used whenever the process command syntax specifies that
the literal be in quotes.

Usage: A single quotation mark in the string is coded as two single quotation marks
(' ').

Examples: Example 1: Digits and characters used as nonnumeric literals

The digits 0307 and the characters END OF SET CONDITION in the following
example are nonnumeric literals:

IF ERROR-STATUS EQ 'H3H7'

 THEN

DISPLAY TEXT 'END OF SET CONDITION'.

Example 2: Single quotation marks within a string

The apostrophe contained in the following nonnumeric literal is coded with two single
quotation marks:

MOVE 'JOHN KERR''S BROTHER' TO EMP-RELATIONSHIP.

9-8 CA-ADS Reference

9.5 Nonnumeric literals

 9.6 Numeric literals

Purpose: A numeric literal is a numeric value that can be expressed as a fixed-point
or floating-point constant.

 First Usage:

Fixed-point numeric literals: A fixed-point numeric literal is a 1- to 16-digit number
with an optional decimal point. The decimal point cannot be in the first or last
position of the constant. If the constant does not contain a decimal point, it is an
integer.

Fixed-point numeric literals are treated internally as packed decimal numbers and can
be used whenever the process command syntax specifies a user-supplied numeric
literal.

A fixed-point numeric literal can be signed or unsigned. A unary plus (+) or unary
minus (-) can immediately precede the first digit or can be separated from the digit by
one or more spaces. The numeric literal is positive if no sign is provided.

Examples: Example 1: Fixed-point numeric literal as a value for comparison

The following example compares the value in the field VALUE-2 to the fixed-point
numeric literal -13.65:

IF VALUE-2 EQ -13.65

 THEN

 .

 .

 .

Example 2: An integer as a fixed-point numeric literal

The following example moves the integer 31456 to the field VALUE-1:

MOVE 31456 TO VALUE-1.

 Second Usage:

Floating-point numeric literals: A floating-point numeric literal is a numeric literal
whose value is expressed as a mantissa, which represents the number, followed by an
exponent (characteristic), which determines the actual decimal position of the number.

All floating-point numeric literals are treated internally as internal short or long
floating-point numbers, depending on the size of the mantissa. Floating-point numeric
literals can be used whenever the process command syntax specifies an arithmetic
expression, the name of a user-defined data field, or a user-supplied numeric constant.

Chapter 9. Constants 9-9

9.6 Numeric literals

Format of a floating-point numeric literal:

■ The mantissa, coded first, is a 1- to 16-digit number with an optional decimal
point. The decimal point can be placed anywhere in the number, including in the
first or last position. If no decimal point is included, it is considered to be in the
last position. For example:

1.2564E3

In this example, 1.2564 is the mantissa.

■ The character E immediately follows the mantissa. For example:

1.2564E3

■ The characteristic, a 1- or 2-digit integer preceded by an optional plus (+) or
minus (-) sign immediately follows the character E. If no sign is included, it is
assumed to be a plus sign. For example:

1.2564E3

In this example, 3 is the characteristic.

The value of the floating-point constant is the product of the mantissa, and ten raised
to the power of the characteristic.

A floating-point numeric literal can be signed or unsigned. A unary plus (+) or unary
minus (-) can immediately precede the first digit or can be separated from the digit by
one or more spaces. If no sign is provided, the numeric literal is positive.

Examples: The following examples show the floating-point numeric literals and
their fixed point equivalents.

Floating-point numeric literal Fixed-point equivalent

1.2574E3 1257.4

1.2574E-3 0.0012574

-1.2574E20 -125740000000000000000

9-10 CA-ADS Reference

 Chapter 10. Error Handling

10.1 Overview . 10-3
10.2 The autostatus facility . 10-4
10.3 Error expressions . 10-6
10.4 The ALLOWING clause . 10-7
10.5 Status definition records . 10-9

Chapter 10. Error Handling 10-1

10-2 CA-ADS Reference

10.1 Overview

 10.1 Overview

Errors encountered while accessing the database, or involving queue or scratch activity
are handled differently depending on whether or not SQL commands are used.

SQL commands: When CA-IDMS/DB executes an SQL statement, it returns
information about the status of statement execution to a data structure called the
SQLCA. The dialog contains logical to handle exceptional conditions resulting from
statement execution. This logic takes the form of checking SQLCA information
through the use of a conditional statement or through the use of the WHENEVER
SQLERROR or WHENEVER SQLWARNING statement. In either situation, control
is always returned to the dialog.

�� For more information on conditional statements and the WHENEVER SQLERROR
statement processed during an SQL session, refer to CA-IDMS SQL Programming.

Non-SQL commands: When CA-IDMS/DB executes a non-SQL process command
that involves database, queue, or scratch activity, or a WRITE PRINTER utility
command, CA-ADS returns a 4-byte status code to an internal error-status field for the
issuing dialog. A subsequent process command statement can test for the presence of
a specified status code. Based on the outcome of the test, further processing can be
done.

Handling errors in the non-SQL environment involves the use of the following:

■ The autostatus facility, which handles errors generated by command processing

■ Error expressions, which specify allowable status codes that can be returned

■ The status definition record, which allows level-88 condition names to be
associated with status codes

The autostatus facility, error expresssions, and the status definition record are discussed
separately in this section.

�� For information about using automatic editing and error-handling facilities to
evaluate input data, see CA-IDMS Mapping Facility.

Chapter 10. Error Handling 10-3

10.2 The autostatus facility

10.2 The autostatus facility

Autostatus is a runtime facility that enables CA-ADS to return specific status codes to
an issuing dialog. When autostatus is in use, CA-ADS returns only certain status
codes to the issuing dialog. The autostatus facility is not appropriate for use when
data is defined in logical records and accessed using logical record commands.

�� For information about database access strategies, see Chapter 16, “Database Access
Commands.”

Status codes returned by the autostatus facility: If command processing
results in a status code not allowed by autostatus, dialog execution terminates
abnormally. To allow the dialog to receive other status codes, specify all allowable
status codes in an error expression. Error expressions are described later in this
section.

Status codes allowed by autostatus are listed below.

Enabling autostatus: Autostatus is enabled on a dialog-by-dialog basis during
dialog compilation by specifying the Autostatus option on the Options and Directives
screen.

�� For more information about the Options and Directives screen, see Chapter 3,
“CA-ADS Dialog Compiler (ADSC).”

Status code Meaning

0000 The request was executed successfully.

0307 An end-of-set condition was encountered.

0326 The requested record cannot be found.

1707 An end-of-index condition was encountered.

1726 The requested index record cannot be found.

4303 The requested scratch area cannot be found.

4305 The requested scratch record cannot be found.

4317 A request to replace a scratch record was executed successfully.

4404 The requested queue id cannot be found.

4405 The requested queue record cannot be found.

5149 NOWAIT was specified in a KEEP LONGTERM request, and a
wait is required.

10-4 CA-ADS Reference

10.2 The autostatus facility

The availability of autostatus is controlled by the autostatus clause of the system
generation ADSO statement. The ADSO AUTOSTATUS clause specifies:

■ Whether the Autostatus option is selected, by default, on the Options and
Directives screen

■ Whether this default setting can be overridden during dialog compilation

�� For information about the AUTOSTATUS clause of the system generation ADSO
statement, refer to CA-IDMS System Generation.

Chapter 10. Error Handling 10-5

10.3 Error expressions

 10.3 Error expressions

An error expression is a clause that consists of one or more allowable status codes, a
range of status codes, or one or more level-88 status definition record condition names
that can be returned to a dialog. In command syntax, error expressions are indicated
as error-expression.

An error expression is allowed only if a dialog is compiled with the Autostatus option
selected. If a dialog is compiled without the Autostatus option, the expression is
flagged as an error during process compilation.

10-6 CA-ADS Reference

10.4 The ALLOWING clause

10.4 The ALLOWING clause

Purpose: The ALLOWING clause is used to allow the dialog to receive status
codes not allowed by the autostatus facility.

 Syntax:

��─── ALLOWing error codes ───�

┌─────────────────────────────── , ───────────────────────────────────┐

 �─(─↓─┬─ error-status-code-name ──┬─┴)─��

 └─ 'error─status─code'───┬──────────────────────────────────────┬─┘

└─┬─ THROUGH ─┬── 'error-status-code' ─┘

└─ THRU ────┘

 Parameters

error-status-code-name
Specifies a level-88 condition name defined in the dialog's status definition record.

Multiple status code and condition name specifications must be separated by
commas or blanks.

'error-status-code'
A 4-digit number enclosed in single quotation marks that identifies a status code
applicable to the process command.

THROUGH 'error-status-code'
Specifies a status code or range of status codes.

THRU can be used in place of THROUGH.

Usage: An error expression is coded in the form of an ALLOWING clause in any of
the following commands:

■ All database record commands except for ACCEPT STATISTICS, COMMIT,
READY, and ROLLBACK

■ All logical record commands except for ON

■ All queue and scratch management commands

■ The WRITE PRINTER utility command

An ALLOWING clause overrides the autostatus facility. The values normally allowed
by autostatus, with the exception of 0000, are returned only if explicitly named.

Nonzero status codes returned to a dialog are checked against the specified values. If
the status code matches any of the specified values, processing continues. If the status
code does not match any of the specified values, the CA-ADS runtime system
terminates the application thread.

The ALLOWING clause is useful to check for deadlock conditions.

Chapter 10. Error Handling 10-7

10.4 The ALLOWING clause

Examples: The examples below illustrate the ALLOWING clause in two database
access commands.

Example 1: Specification of a range of allowable error codes

MODIFY ORDOR ALLOWING ERROR CODES ('H8H1' THRU 'H85H').

Example 2: Specification of a site-defined level-88 status code

FIND CUST-NUM ALLOWING (ANY-ERROR).

ANY-ERROR is a level-88 condition name in a site-defined status definition record.
See the discussion of status definition records that follows this example.

10-8 CA-ADS Reference

10.5 Status definition records

10.5 Status definition records

Overview: Status codes can be tested using a system-supplied status definition
record or by using a site-defined definition record. A status definition record
associates status codes with level-88 condition names. The condition names can be
coded in error expressions in place of 4-character status codes.

The status definition record is specified by the STATUS clause of the system
generation ADSO statement. The STATUS clause specifies:

■ The name of the default status definition record available to dialogs at dialog
compilation time

■ Whether this default status definition record can be overridden during dialog
compilation

�� For further information on the system generation ADSO statement, refer to
CA-IDMS System Generation.

A status definition record is associated with a dialog during dialog compilation.
However, a buffer for this record is not allocated at runtime.

�� For further information on associating a status definition record with a dialog, see
"Options and Directives screen" in Chapter 3, “CA-ADS Dialog Compiler (ADSC).”

System-supplied status definition record: CA-ADS supplies the
ADSO-STAT-DEF-REC status definition record. ADSO-STAT-DEF-REC defines
level-88 record elements for the status codes most commonly tested.

 Record definition

 ADSO-STAT-DEF-REC.

 H2 ERROR-STATUS PIC 9(4).

 88 DB-STATUS-OK VALUE 'HHHH'.

 88 DB-END-OF-SET VALUE 'H3H7'.

 88 DB-REC-NOT-FOUND VALUE 'H326'.

 88 DB-END-OF-INDEX VALUE '17H7'.

 88 DB-INDEX-NOT-FOUND VALUE '1726'.

 88 SCRATCH-AREA-NOT-FOUND VALUE '43H3'.

 88 SCRATCH-REC-NOT-FOUND VALUE '43H5'.

 88 SCRATCH-REC-REPLACED VALUE '4317'.

 88 QUEUE-ID-NOT-FOUND VALUE '44H4'.

 88 QUEUE-REC-NOT-FOUND VALUE '44H5'.

 88 DB-ANY-ERROR VALUE 'HHH1'

 THRU '9999'.

Tests that specify error-status code names can include only those condition names that
are defined in the status definition record associated with the dialog.

Chapter 10. Error Handling 10-9

10.5 Status definition records

Examples: Example 1: Testing with the 4-byte status code

The following example tests for an error using the 4-byte status code 0307:

IF ERROR-STATUS IS 'H3H7'

THEN

 CALL SUBA.

ELSE

 CALL SUBZ.

Example 2: Testing with a status definition record

The following example uses a status definition record level-88 element to test for the
same error as in example 1 above:

IF DB-END-OF-SET

THEN

 CALL SUBA.

ELSE

 CALL SUBZ.

OBTAIN CALC DEPARTMENT.

OBTAIN CALC OFFICE.

IF DB-REC-NOT-FOUND FOR DEPARTMENT

THEN CALL SUBA.

IF DB-REC-NOT-FOUND FOR OFFICE

THEN CALL SUBB.

Site-defined status definition record: The system-defined status definition
record ADSO-STAT-DEF-REC can be modified or replaced with one or more
site-specific status definition records by using the IDD DDDL compiler.

 Considerations

■ The record definition must include a 1- to 32-character level-01 record name and
one or more level-88 condition names that refer to status codes returned by
database record, logical record, or queue and scratch management commands, or
by the WRITE PRINTER utility command. Tests that specify error-status code
names can include only those condition names that are defined in the status
definition record.

■ The record definition can include no more than one level-02 elementary field
description that represents the value of the most recent status code returned to the
dialog. Such a field is not referenced directly. CA-ADS uses the internal 4-byte
unsigned zoned decimal error-status field that contains the most recently returned
status code.

Examples: Example 1: Defining a site-specific status definition record

In this example, the first record defines the field CODE-FIELD, which contains two
level-88 condition names. The second record contains only level-88 record elements.
Record definitions are shown below:

10-10 CA-ADS Reference

10.5 Status definition records

H1 ADSO-ONE-STAT-REC

 H2 CODE-FIELD PIC X(4).

 88 OKAY VALUE 'HHHH'.

88 NOT-SO-GOOD VALUE 'HHH1' THRU '9999'.

H1 ADSO-TWO-STAT-DEF

 88 DB-STATUS-OKAY VALUE 'HHHH'.

 88 DB-END-OF-SET VALUE 'H3H7'.

 88 NO-RECORD VALUE 'H326'.

88 MODIFY-PROBLEM VALUE 'H8HH' THRU 'H899'.

Example 2: Testing for the return of specific error codes

In this example, ADSO-TWO-STAT-DEF (defined in example 1) is used to test for
the return of error-status codes 0800 through 0899:

MODIFY CUST

IF MODIFY-PROBLEM

THEN

 .

 .

 .

Example 3: Testing for subschema record error status

In this example, ADSO-ONE-STAT-REC (defined in example 1) is used to test the
latest error status returned for subschema records DEPARTMENT and OFFICE:

OBTAIN CALC DEPARTMENT.

OBTAIN CALC OFFICE.

IF NOT-SO-GOOD FOR DEPARTMENT

THEN CALL SUBA.

IF NOT-SO-GOOD FOR OFFICE

THEN CALL SUBB.

�� For instructions on using the RECORD statement to add, modify, or delete status
definition records, refer to IDD DDDL Reference.

Chapter 10. Error Handling 10-11

10-12 CA-ADS Reference

Chapter 11. Variable Data Fields

11.1 Overview . 11-3
11.2 User-defined data field names . 11-4
11.3 System-supplied data field names . 11-6
11.4 Entity names . 11-12

Chapter 11. Variable Data Fields 11-1

11-2 CA-ADS Reference

11.1 Overview

 11.1 Overview

Variable data fields are data items whose values can change during the execution of a
dialog.

Types of variable data fields: Variable data fields can be user-defined or
system-defined. Each of these types of variable data fields is discussed separately
below.

Syntax references: The appearance of variable in CA-ADS process language
syntax denotes the validity of either a user-defined or a system-defined data field.

Chapter 11. Variable Data Fields 11-3

11.2 User-defined data field names

11.2 User-defined data field names

Purpose: User-defined data field names specify variable data fields in subschema
records, map work records, or dialog work records.

User-defined data fields can be used as both source and target fields in process
commands.

 Syntax:

��──────┬─ + ← ┬─── data-field-name ──�

└─ - ──┘

 �─┬──┬───────────────────�

└┬─ OF ─┬───┬─ sql-table-name ───────────────────────┬─┘

└─ IN ─┘ ├─ lr-name ────────────────────────────┬─┘

└┬─ record-name ─┬─┬───────────────────┤

└─ role-name ───┘ └┬─ OF ─┬─ lr-name ─┘

└─ IN ─┘

 �──────┬────────────────────────────┬──��

│ ┌────── , ───────┐ │

└── (-─↓─── subscript ──┴─)-─┘

 Parameters

+/–
Specifies the unary operator to precede a numeric data field.

A plus sign (+) does not change the sign of the data field.

A minus sign (-) multiplies the data field by -1.

+ is the default when neither + or - is specified.

A unary operator can be used when the data field is specified as part of an
arithmetic expression.

data-field-name
Specifies the 1- to 32-character name of a variable data field.

Data-field-name must begin with an alphabetic, national (@, #, and $), or numeric
character. This field can specify a record or role name where logically
appropriate. The named record or role is treated as a group field.

OF
Introduces record-name, role-name, or lr-name.

IN can be used in place of OF.

sql-table-name
Specifies the name of the SQL table that contains the fields referenced by
data-field-name, when the SQL schema name has been entered in the ADSC
Records and Tables screen.

11-4 CA-ADS Reference

11.2 User-defined data field names

�� For information about the Records and Tables screen, see 3.3.5, “Records and
Tables screen.”

record-name
Specifies the name of the record that contains the fields referenced by
data-field-name.

role-name
Specifies the name of the role that contains the fields referenced by
data-field-name.

lr-name
Specifies the name of the logical record that contains the fields referenced by
data-field-name.

Record-name, role-name, or lr-name is required if the named field is not unique
among the records and roles known to the dialog. The reference to the data field
must be unambiguous. For example, if the named field participates in a role, then
reference to the field always requires qualification by record or role name.
Further qualification of record-name or role-name with lr-name may also be
necessary.

subscript
Specifies an arithmetic expression, variable data field, or numeric literal that
indicates the value of each subscript required to reference a specific occurrence of
the field that is referenced by data-field-name.

Subscript applies only if the named field is defined as a multiply-occurring field.

Example: The following example illustrates a data field name used with a MOVE
command to specify a nonunique subscripted field:

MOVE CUSTOMER-NUMBER OF CUST-ACC-REC (3) TO CUSTORDR.

Chapter 11. Variable Data Fields 11-5

11.3 System-supplied data field names

11.3 System-supplied data field names

Purpose: System-supplied data field names specify variable data fields supplied by
the CA-ADS runtime system.

 Syntax:

��───────┬─ + ←┬────┬─ DIRECT-DBKEY ────────────┬────────────────────────────��

└─ - ──┘ ├─ DB-NAME ─────────────────┤

├─ NODE-NAME ───────────────┤

├─ agr-data-field ──────────┤

├─ amr-data-field ──────────┤

├─ $RESPONSE ───────────────┤

├─ $PAGE ───────────────────┤

├─ LENGTH (map-field-name) ─┤

├─ CURSOR-ROW ──────────────┤

├─ CURSOR-COLUMN ───────────┤

├─ ERROR-STATUS ────────────┤

├─ JULIAN ──────────────────┤

├─ JULIANX ─────────────────┤

├─ DATE ────────────────────┤

├─ DATEX ───────────────────┤

├─ TIME ────────────────────┤

├─┬─ $ERROR-COUNT ─┬────────┤

│ └─ $ERRCNT ──────┘ │

├─┬─ $INPUT-COUNT ─┬────────┤

│ └─ $INCNT ───────┘ │

└─┬─ $OUTPUT-COUNT ─┬───────┘

└─ $OUTCNT ───────┘

 Parameters

+/-
Specifies the unary operator to precede a numeric data field.

A plus sign (+) does not change the sign of the data field.

A minus sign (-) multiplies the data field by -1.

+ is the default when neither + or - is specified.

A unary operator can be used when the data field is specified as part of an
arithmetic expression

DIRECT-DBKEY
References a binary fullword field that contains the database key of the record
being stored.

DIRECT-DBKEY is used in conjunction with a STORE operation when the
location mode of the record being stored is DIRECT.

�� For more information, see Chapter 15, “Control Commands.”

11-6 CA-ADS Reference

11.3 System-supplied data field names

DB-NAME/NODE-NAME
Establish the database name and Distributed Database System (DDS) node name
used for database commands at runtime. DB-NAME and NODE-NAME allow
access to multiple databases under a DC/UCF system. When used, DB-NAME
and NODE-NAME must be set before the first database command is issued for the
run unit.

When dialog execution begins, DB-NAME and NODE-NAME are initialized to
spaces. Database names and DDS node names that are moved to these fields
within a process are propagated downward to all lower level dialogs. In this way,
a dialog can access a database other than the subschema default.

DB-NAME and NODE-NAME can also be specified when the runtime system is
initiated,

�� For more information, see 4.1, “Initiating the CA-ADS runtime system.”

agr-data-field
Represents a data field provided in the ADSO-APPLICATION-
GLOBAL-RECORD.

This record supplies runtime information in applications created by the CA-ADS
application compiler (ADSA).

�� For the names and definitions of these fields, see Appendix A, “System
Records.”

amr-data-field
Represents a data field provided in the ADSO-APPLICATION- MENU-RECORD.

The ADSO-APPLICATION-MENU-RECORD contains information used to build
menus in applications created by the CA-ADS application compiler.

�� For the names and definitions of these fields, see Appendix A, “System
Records.”

$RESPONSE
References the 32-character $RESPONSE field of a map.

Any value moved to $RESPONSE appears in the map's $RESPONSE field when
the map is displayed. On mapin, the value in the $RESPONSE field is considered
by the runtime system in its selection of a dialog response process or an
application function.

�� For more information, see Chapter 4, “CA-ADS Runtime System.”

Once a response is selected, the $RESPONSE field is cleared.

�� For more information on the $RESPONSE map field, refer to CA-IDMS
Mapping Facility.

Chapter 11. Variable Data Fields 11-7

11.3 System-supplied data field names

$PAGE
References the $PAGE field of a map.

$PAGE determines the page displayed when a pageable map is mapped out to the
terminal. Values are assigned to $PAGE, as follows:

■ At the beginning of a map paging session, $PAGE is initialized to zero.

■ Arithmetic and assignment process commands can modify $PAGE.

■ When a map is displayed, if $PAGE is greater than the map's highest page
number or less than its lowest page number, $PAGE is set to the highest or
lowest page number.

Note: The lowest page number can be greater than zero when backpaging is
not allowed, as described in Chapter 17, “Map Commands.”

■ If the user presses a control key associated with paging forward or backward,
$PAGE is incremented or decremented by 1, unless it is already equal to the
highest or lowest page number.

■ If the user modifies the $PAGE field displayed on the screen and presses a
control key other than the paging forward key or paging backward key, and
other than [Clear], [PA1], [PA2], or [PA3] (which do not transmit data),
$PAGE is assigned the modified value. If the new value is higher than the
highest page number or lower than the lowest page number, $PAGE is set to
the highest or lowest page number.

■ A GET DETAIL process command assigns $PAGE the page number of the
retrieved detail occurrence. If no detail occurrence is retrieved, $PAGE is not
changed.

�� For more information on the $PAGE map field, refer to CA-IDMS Mapping
Facility.

For more information on map paging sessions, see Chapter 17, “Map Commands.”

LENGTH
Represents the halfword binary value equal to the number of characters entered
into the named map field.

map-field-name
The name of a data field used by the dialog's map, enclosed in parentheses.

CURSOR-ROW
Represents the halfword binary value equal to the cursor row position on the
dialog's map following the mapin operation.

CURSOR-COLUMN
Represents the halfword binary value equal to the cursor column position on the
dialog's map following the mapin operation.

ERROR-STATUS
Represents the 4-byte EBCDIC value equal to the most recent status code returned
to the dialog.

11-8 CA-ADS Reference

11.3 System-supplied data field names

JULIAN
References a signed packed decimal field that contains the current date in the
format yyddd.

JULIAN is updated before the execution of each premap and response process.

JULIANX
References a signed packed decimal field that contains the current date in the
format yyyyddd.

JULIANX is updated before the execution of each premap and response process.

DATE
References an unsigned zoned decimal field that contains the current date in the
format yymmdd.

DATE is updated before the execution of each premap and response process.

DATEX
References an unsigned zoned decimal field that contains the current date in the
format yyyymmdd.

DATEX is updated before the execution of each premap and response process.

TIME
References an unsigned zoned decimal field that contains the time in the format
hhmmss.

TIME is updated before the execution of each premap and response process.

$ERROR-COUNT
(CA-ADS/Batch only) Contains the number of input records that have been
written to the suspense file for the current dialog.

$ERRCNT can be used in place of $ERROR-COUNT.

Note: Data cannot be moved into $ERROR-COUNT.

If a record is written to the suspense file but a suspense file was not allocated for
the dialog, nothing is written, but $ERROR-COUNT is still incremented.

$INPUT-COUNT
(CA-ADS/Batch only) Contains the number of input records read for the current
dialog.

$INCNT can be used in place of $INPUT-COUNT.

Note: Data cannot be moved into $INPUT-COUNT.

$OUTPUT-COUNT
(CA-ADS/Batch only) Contains the number of output records written for the
current dialog.

$OUTCNT can be used in place of $OUTPUT-COUNT.

Note: Data cannot be moved into $OUTPUT-COUNT.

Chapter 11. Variable Data Fields 11-9

11.3 System-supplied data field names

Usage: System-supplied data fields are provided automatically for use by a dialog,
except for fields in the ADSO-APPLICATION-GLOBAL- RECORD and the
ADSO-APPLICATION-MENU-RECORD. To use these system record fields in a
dialog, the records must be associated with the dialog.

�� For more information, see Appendix A, “System Records.”

All system-supplied data fields can be used as source fields in process commands.
The following fields can also be used as target fields:

 ■ DIRECT-DBKEY

 ■ DB-NAME

 ■ NODE-NAME

■ Fields in ADSO-APPLICATION-GLOBAL-RECORD

■ Fields in ADSO-APPLICATION-MENU-RECORD

 ■ $RESPONSE

 ■ $PAGE

System-supplied data fields for batch processing ($ERROR-COUNT,
$INPUT-COUNT, $OUTPUT-COUNT) count the suspense, input, and output file
records read or written by each dialog. A field is set to zero when the file it describes
is opened. If an input file is opened, closed, then reopened, the field is reset to zero
when the file is reopened. Data from these fields can be moved to other data fields,
but data cannot be moved into the system-supplied fields.

Examples: Example 1: Using the DB-NAME and NODE-NAME fields

This example uses the DB-NAME and NODE-NAME fields to establish IDMSNWKZ
as an alternative database for a dialog. SYSTEM99 is named as the DDS node that
controls IDMSNWKZ. All lower level dialogs access IDMSNWKZ and SYSTEM99
unless another database is established in a lower level dialog:

MOVE 'IDMSNWKZ' TO DB-NAME.

MOVE 'SYSTEM99' TO NODE-NAME.

Note: The database and DDS node cannot be changed at a lower level if the
processing is part of an extended run unit.

For more information, see Chapter 4, “CA-ADS Runtime System.”

Example 2: Displaying a value in the $RESPONSE field

This example causes ADD to appear in the $RESPONSE field of a displayed map:

MOVE 'ADD' TO $RESPONSE.

DISPLAY.

Example 3: Using $PAGE to display a specified map page

11-10 CA-ADS Reference

11.3 System-supplied data field names

This example displays page 10 of a pageable map:

MOVE 1H TO $PAGE.

DISPLAY.

Chapter 11. Variable Data Fields 11-11

11.4 Entity names

 11.4 Entity names

Purpose: Identifies the names of entities.

Usage: The names of entities, such as database records, logical records, sets, areas,
queue ids, scratch ids, subroutines, dialogs, user programs, or message identifiers are
user supplied.

Entity names are used whenever the command syntax specifies the type of entity
followed by -name or -id, such as record-name, set-name, and message-id.

Specific entity names are described where they occur in the syntax for individual
commands.

11-12 CA-ADS Reference

Chapter 12. Introduction to Process Commands

12.1 Overview . 12-3
12.2 Summary of process commands . 12-4
12.3 INCLUDE . 12-8

Chapter 12. Introduction to Process Commands 12-1

12-2 CA-ADS Reference

12.1 Overview

 12.1 Overview

CA-ADS process commands are COBOL-like statements used to construct processing
routines for dialogs. These processing routines are stored in the dictionary as process
modules. Process commands can perform activities such as:

■ Calculate values and move data

■ Define and call subroutines

■ Access and update database values

■ Modify maps and handle pageable maps

■ Manage queue and scratch records

A summary of CA-ADS process commands is presented below. Details of commands
in each command category are given in the remaining chapters of this volume and the
next volume.

Information about the INCLUDE directive, which inserts one process module into
another at compile time, is discussed in "Including common routines in process
modules" later in this section.

Note: For information on how to interpret syntax diagrams, refer to "Understanding
syntax diagrams" in the preface of this manual.

Chapter 12. Introduction to Process Commands 12-3

12.2 Summary of process commands

12.2 Summary of process commands

The table below summarizes the purpose of each process command. The commands
are categorized according to the activities they perform.

Category Keywords Purpose

Arithmetic and
assignment commands

ADD Calculates the sum of two
values

COMPUTE Evaluates an arithmetic
expression

DIVIDE Calculates the quotient of two
values

MOVE Moves a value to a target field

MULTIPLY Calculates the product of two
values

SUBTRACT Calculates the difference
between two values

Conditional commands EXIT Terminates a WHILE command

IF Performs conditional execution

NEXT Terminates an IF command

WHILE Iterates a loop based on a
condition

Control commands CONTINUE Terminates a current process
and executes a dialog's premap
process

DISPLAY Displays a dialog's map or
reexecutes a dialog's premap
process

EXECUTE
 NEXT
 FUNCTION

Directs the flow of control in an
application defined by the
application compiler

INVOKE Passes control to a lower level
dialog

LEAVE Terminates a CA-ADS
application

LINK Passes control to a lower level
dialog or to a user program
with inline return expected

12-4 CA-ADS Reference

12.2 Summary of process commands

Category Keywords Purpose

READ
TRANSACTION

Terminates a current process,
performs a mapin operation,
and selects the next function or
response process to be executed

RETURN Returns control to a higher level
dialog

TRANSER Passes control to a dialog at the
same level

WRITE
TRANSACTION

Terminates a current process,
performs a mapout operation,
and passes control within an
application (batch only)

Database commands ACCEPT Retrieves database keys page
group information and database
access statistics for
navigationally accessed records

BIND
PROCEDURE

Establishes communication
between a dialog and a
DBA-written procedure

COMMIT Writes checkpoints to the
journal file and releases record
locks for navigationally
accessed records

CONNECT Connects records in
navigationally accessed sets

DISCONNECT Disconnects records from
navigationally accessed sets

ERASE Erases database records

FIND Locates navigationally accessed
records in the database

GET Retrieves navigationally
accessed records from the
database

KEEP Places locks on navigationally
accessed records

MODIFY Modifies database records

OBTAIN Locates and retrieves database
records

Chapter 12. Introduction to Process Commands 12-5

12.2 Summary of process commands

Category Keywords Purpose

ON Performs conditional execution
based on the outcome of LRF
command execution

READY Specifies an area usage mode
for navigational database access

RETURN DB-KEY Retrieves index entries
associated with navigationally
accessed database records

ROLLBACK Requests recovery operations
for navigationally accessed
records

STORE Stores database records

Map commands ATTRIBUTES Alters map field attributes (an
alternative format to MODIFY
MAP)

CLOSE Closes a dialog's input or output
file maps (batch only)

GET DETAIL Retrieves a modified detail
occurrence of a pageable map

MODIFY MAP Alters the options specified for
the dialog's map

PUT DETAIL Creates or modifies a detail
occurrence of a pageable map

Queue and scratch
management commands

DELETE QUEUE Deletes queue records

GET QUEUE Retrieves queue records

PUT QUEUE Stores queue records

DELETE
SCRATCH

Deletes scratch records

GET SCRATCH Retrieves scratch records

PUT SCRATCH Stores scratch records

Subroutine commands CALL Passes control to a predefined
subroutine

DEFINE Defines a subroutine

GOBACK Returns control from a
subroutine

12-6 CA-ADS Reference

12.2 Summary of process commands

SQL statements: In addition to the database commands listed above, CA-ADS also
supports embedded SQL statements.

�� See CA-IDMS SQL Reference for syntax for conditional statements (WHENEVER)
and database commands.

�� See CA-IDMS SQL Programming for more information on using SQL with
CA-ADS.

Category Keywords Purpose

Utility commands ABORT Causes the runtime system to
abort the application

ACCEPT Retrieves runtime status
information associated with the
current dialog

INITIALIZE
RECORDS

Reinitializes a dialog's record
buffers

SNAP Requests a snapshot dump of
the areas in memory associated
with CA-ADS

WRITE PRINTER Transmits data from a dialog to
a CA-IDMS/DC or
CA-IDMS/UCF queue for
subsequent printing

WRITE TO
 LOG/OPERATOR

Sends a message to the log file
or to the operator's console
(batch only)

Chapter 12. Introduction to Process Commands 12-7

12.3 INCLUDE

 12.3 INCLUDE

Purpose: Inserts stored process source code into another process at compile time.

 Syntax

��────── INClude ───┬────────────┬───┬──────┬── process-name ─────────────────�

└┬─ MODule ─┬┘ ├─ IS ─┤

 └─ PROCESS─┘ └─ = ─┘

 �────┬──┬── . ───────────────────────��

└─┬────────────────────┬── version-number ─┘

└─ VERsion ─┬──────┬─┘

├─ IS ─┤

└─ = ──┘

 Parameters

MODule is process-name
Causes the source code of the named process module to be inserted logically in
the current process source code at compile time. The process module itself is not
changed. At runtime, CA-ADS executes the process as if the included code were
coded in the process itself.

Process-name must name a module occurrence in the data dictionary. The module
is defined with an IDD DDDL ADD PROCESS statement or an ADD MODULE
statement with the attribute LANGUAGE IS PROCESS.

VERsion is version-number
Indicates the version number associated with the included process module. If not
specified, version-number defaults to the default version number set in the
dictionary.

 Usage

 Considerations

■ The included source code must be stored in the data dictionary as a process
module.

■ INCLUDE commands can be nested.

■ INCLUDE cannot be used recursively. An INCLUDE statement cannot reference
a process that is already in the nested INCLUDE structure.

■ A process cannot include itself. For example, if process A includes process B and
process B includes process C, then process C cannot include process A, B, or C.

■ The INCLUDE statement must be contained entirely on one process code line.

■ Any other process commands entered on the same line as the INCLUDE statement
must precede INCLUDE.

■ An INCLUDE statement can be followed by comments on the same line.

12-8 CA-ADS Reference

12.3 INCLUDE

Example: The example below illustrates the use of the INCLUDE command:

Process: CUST-NUM-CHECK

MOVE CUST-NUM TO A.

INCLUDE MODULE VALUE-CHECK.

RETURN.

Process: VALUE-CHECK

IF A = 1

THEN

 DISPLAY.

ELSE

LINK TO 'LINKDIAL'.

If the application developer specifies CUST-NUM-CHECK as a premap or response
process using the CA-ADS dialog compiler (ADSC), on the Process Modules screen,
the following process source code will logically be compiled:

MOVE CUST-NUM TO A.

IF A = 1

THEN

 DISPLAY.

ELSE

LINK TO 'LINKDIAL'.

RETURN.

Chapter 12. Introduction to Process Commands 12-9

12-10 CA-ADS Reference

Chapter 13. Arithmetic and Assignment Commands

13.1 Overview . 13-3
13.2 General considerations . 13-4

13.2.1 Numeric fields . 13-4
13.2.2 EBCDIC and DBCS fields . 13-4
13.2.3 Arithmetic and assignment command status condition 13-5

13.3 Arithmetic commands . 13-6
13.3.1 ADD . 13-6
13.3.2 COMPUTE . 13-7
13.3.3 DIVIDE . 13-8
13.3.4 MULTIPLY . 13-10
13.3.5 SUBTRACT . 13-11

13.4 Assignment command . 13-13
13.4.1 MOVE . 13-14

Chapter 13. Arithmetic and Assignment Commands 13-1

13-2 CA-ADS Reference

13.1 Overview

 13.1 Overview

CA-ADS arithmetic and assignment commands are used to perform calculations and
move data. Values used in arithmetic or assignment commands can include built-in
functions.

�� See Chapter 7, “Built-in Functions” for more information.

Arithmetic and assignment commands: The arithmetic and assignment
commands are listed in the table below. Each command is presented in alphabetical
order after the general considerations that follow the table.

Command Purpose

ADD Calculates the sum of two values and places the result in a
variable data field

COMPUTE Evaluates an arithmetic expression and places the result in a
variable data field

DIVIDE Calculates the quotient of two values, places the result in a
variable data field, and optionally places the remainder in another
variable data field

MOVE Moves a value to a variable data field

MULTIPLY Calculates the product of two values and places the result in a
variable data field

SUBTRACT Calculates the difference between two values and places the result
in a variable data field

Chapter 13. Arithmetic and Assignment Commands 13-3

13.2 General considerations

 13.2 General considerations

General considerations are given below for arithmetic and assignment operations that
involve source and target fields of different lengths. Considerations for numeric fields
are presented first, followed by considerations for EBCDIC and DBCS fields.

 13.2.1 Numeric fields

A value moved between numeric source and target fields is decimal-point aligned in
the target field. Differences between the source-field value and the target field are
handled as follows:

■ Differences to the left of the decimal point:

– If the portion of the source-field value to the left of the decimal point is
shorter than the corresponding portion of the target field, the leftmost
positions in the target field are filled with zeros.

– If the portion of the source-field value to the left of the decimal point is
longer than the corresponding portion of the target field, the operation cannot
be executed and CA-ADS terminates the application thread abnormally.

■ Differences to the right of the decimal point:

– If the portion of the source-field value to the right of the decimal point is
shorter than the corresponding portion of the target field, the rightmost
positions in the target field are filled with zeros.

– If the portion of the source-field value to the right of the decimal point is
longer than the corresponding portion of the target field, the value is either
rounded to or truncated at the rightmost decimal position in the target field,
depending on whether the ROUNDED or TRUNCATED specification applies.

13.2.2 EBCDIC and DBCS fields

A nonnumeric value moved between EBCDIC fields or DBCS fields is left justified in
the target field. The following considerations apply:

■ If the source-field value is shorter than the target field, the remaining positions in
the target field are filled with blanks.

■ If the source-field value is longer than the target field, the rightmost characters are
truncated.

�� For special information about the MOVE command and EBCDIC fields, see 13.4,
“Assignment command” later in this section.

13-4 CA-ADS Reference

13.2 General considerations

13.2.3 Arithmetic and assignment command status condition

ADS supports error handling for assignment and arithmetic commands. This allows an
application to handle errors such as data exception or decimal overflow rather than
forcing ADS to abort the dialog execution. An ALLOWING clause specifies which
error condition a dialog is prepared to handle.

Assignment command status condition: The following condition names can be
specified as assignment command status conditions in ALLOWING clauses:

 ■ ANY-DATA-ERROR

 ■ BAD-DATA-TYPE

 ■ UNSUPPORTED-DATA-CONVERSION

 ■ NO-NUMBER-EBCDIC/NUMERIC CONVERSION

 ■ INCORRECT-FIELD-LENGTH

 ■ INVALID-SUBSCRIPT-VALUE

 ■ DATE-FORMAT-ERROR

 ■ SPECIFICATION-EXCEPTION

 ■ DATA-EXCEPTION

 ■ FIXED-POINT-OVERFLOW-EXCEPTION

 ■ FIXED-POINT-DIVIDE-EXCEPTION

 ■ DECIMAL-OVERFLOW-EXCEPTION

 ■ DECIMAL-DIVIDE-EXCEPTION

 ■ FLOATING-POINT-DIVIDE-EXCEPTION

 ■ EXPONENT-OVERFLOW-EXCEPTION

 ■ EXPONENT-UNDERFLOW-EXCEPTION

 ■ SIGNIFICANCE-EXCEPTION

Specifying ANY-DATA-ERROR allows a dialog to retain control following any error
condition. The data after an exception condition is encountered will be returned as if
the command had never been attempted. The meaning of the exception conditions are
defined in the IBM Principles of Operations Manual.

Example: The following example shows how the ALLOWING clause can be used
to prevent application abends. The specified MOVE command moves a numeric field
from an eight-byte field to a four-byte field. The application must be prepared to
handle any error condition that might arise.

MOVE big-num TO little-num ALLOWING ANY-DATA-ERROR.

IF DECIMAL-OVERFLOW-EXCEPTION

DISPLAY ERROR MESSAGE TEXT 'SOURCE DATA TOO LARGE'.

IF ANY-DATA-ERROR

DISPLAY ERROR MESSAGE TEXT 'INVALID DATA VALUE'.

Chapter 13. Arithmetic and Assignment Commands 13-5

13.3 Arithmetic commands

 13.3 Arithmetic commands

Arithmetic commands assign values to variable data fields based on the results of a
simple addition, subtraction, multiplication, or division operation or a compound
operation involving multiple arithmetic functions.

 13.3.1 ADD

Purpose: Calculates the sum of two values.

 Syntax

��─── ADD arithmetic-expression to variable ─── options ── . ─────────────────��

Expansion of options

 �───┬─────────────────────────────────┬──────────────────────────────────────��

├─ ROUNDED ───────────────────────┤

├─ TRUNCATED ─────────────────────┤

└─ ALLOWING assignment-condition ─┘

 Parameters

arithmetic-expression
Specifies the value being added to the value in variable.

�� For information on arithmetic-expression, see Chapter 6, “Arithmetic
Expressions.”

to variable
Specifies the field that contains the value to which arithmetic-expression is added.
Following execution of the command, variable contains the result of the ADD
operation.

ROUNDED
Rounds the result of the addition to the number of decimal positions found in
variable.

TRUNCATED
Truncates the result of the addition to the number of decimal positions found in
variable.

The default specification is ROUNDED if COBOL moves are enabled is not
selected and TRUNCATED if the option is selected.

�� For more information, see 13.4, “Assignment command” later in this chapter.

ALLOWING
Specifies which error conditions that would normally abend should cause control
to be returned to the dialog for error handling. The list of allowable
assignment-condition names can be found in the section entitled "Arithmetic and
Assignment Command Status Condition."

13-6 CA-ADS Reference

13.3 Arithmetic commands

Usage: The ADD command is used to perform addition. A variable data field
value, a numeric literal, or the result of an arithmetic expression is added to a data
field value. The result is placed in the data field that contains the right operand.

Example: The example below uses the ADD command to add the value 1 to the
contents of the variable data field COUNTER.

ADD 1 TO COUNTER.

 13.3.2 COMPUTE

Purpose: Evaluates an arithmetic expression. The result of the evaluation is placed
in a variable data field.

 Syntax:

��─── COMPUTE variable ── options ── ─ = ─ arithmetic-expression ── . ────────��

Expansion of options

 �───┬─────────────────────────────────┬──────────────────────────────────────��

├─ ROUNDED ───────────────────────┤

├─ TRUNCATED ─────────────────────┤

└─ ALLOWING assignment-condition ─┘

 Parameters

variable
Specifies the name of a variable data field that contains the result of the
COMPUTE operation.

ROUNDED
Rounds the result of the computation to the number of decimal positions found in
variable.

TRUNCATED
Truncates the result of the computation to the number of decimal positions found
in variable.

The default specification is ROUNDED if COBOL moves are enabled is not
selected and TRUNCATED if the option is selected.

�� For more information, see 13.4, “Assignment command” later in this chapter.

ALLOWING
Specifies which error conditions that would normally abend should cause control
to be returned to the dialog for error handling. The list of allowable
assignment-condition names can be found in the section entitled "Arithmetic and
Assignment Command Status Condition."

arithmetic-expression
Specifies the arithmetic expression being evaluated for the value contained in
variable.

�� For information on arithmetic-expression, see Chapter 6, “Arithmetic
Expressions”

Chapter 13. Arithmetic and Assignment Commands 13-7

13.3 Arithmetic commands

Example: The example below uses the COMPUTE command to calculate
commission as a percentage of sales plus a percentage of sales above quota. The
result is truncated.

COMPUTE COMMISSION TRUNCATED =

H.1H _ SALES + H.H3 _ (SALES - QUOTA).

 13.3.3 DIVIDE

Purpose: Calculates the quotient of two values.

 Syntax:

��─── DIVIDE divisor into dividend ───�

 �──┬┬─────────────────────────────────┬──────────────────────────┬─ . ───────��

│├─ ROUNDED ───────────────────────┤ │

│├─ TRUNCATED ─────────────────────┤ │

│└─ ALLOWING assignment-condition ─┘ │

└── GIVING quotient ─┬─────────────┬─┬───────────────────────┬┘

├─ ROUNDED ───┤ └─ REMAINDER remainder ─┘

└─ TRUNCATED ─┘

 Parameters

divisor
Specifies the divisor in the divide operation. Divisor cannot be longer than eight
bytes. Divisor can be an arithmetic expression, a numeric literal, or a user-defined
variable.

into dividend
Specifies the dividend in the divide operation. Dividend can be a user-defined
variable.

ROUNDED
(Coded immediately after dividend) Rounds the result of the division to the
number of decimal positions found in dividend.

TRUNCATED
(Coded immediately after dividend) Truncates the result of the division to the
number of decimal positions found in dividend.

The default specification is ROUNDED if COBOL moves are enabled is not
selected and TRUNCATED if the option is selected.

�� For more information, see 13.4, “Assignment command” later in this section.

ALLOWING
Specifies which error conditions that would normally abend should cause control
to be returned to the dialog for error handling. The list of allowable
assignment-condition names can be found in the section entitled "Arithmetic and
Assignment Command Status Condition."

GIVING quotient
Specifies the user-defined variable that receives the quotient of the DIVIDE
operation.

13-8 CA-ADS Reference

13.3 Arithmetic commands

ROUNDED
(Coded after the GIVING parameter) Rounds the result of the division to the
number of decimal positions found in quotient.

TRUNCATED
(Coded after the GIVING parameter) Truncates the result of the division to the
number of decimal positions found in quotient.

The default specification is TRUNCATED if the REMAINDER parameter is
specified.

If the REMAINDER parameter is not specified and if COBOL moves are
enabled is not selected, the default specification is ROUNDED. If COBOL
moves are enabled is selected, the default specification is TRUNCATED.

�� The effect of the COBOL moves are enabled option is described under 13.4,
“Assignment command” later in this section.

REMAINDER remainder
Specifies the field that receives the remainder of a DIVIDE operation. The
remainder is calculated by subtracting the product of the truncated quotient and
the divisor from the dividend.

If quotient and remainder refer to the same data field, the data field at the end of
the DIVIDE command contains the quotient. The remainder is ignored.

 Usage:

Definition: The DIVIDE command is used to perform division. A variable data field
value, a numeric literal, or the result of an arithmetic expression, which represents the
divisor, is divided into a variable data field value, which represents the dividend.

The result of the division (the quotient) can be stored in the dividend data field or in a
designated quotient data field. If the result is stored in a quotient data field, a data
field to hold the remainder can also be specified.

 Considerations

■ If the GIVING parameter is not specified, dividend contains the result of the
DIVIDE operation.

If dividend is to contain the result of the divide operation, ROUNDED or
TRUNCATED can be specified immediately after dividend. The GIVING and
REMAINDER parameters, however, cannot be specified.

If dividend is not to contain the result, ROUNDED or TRUNCATED cannot be
specified immediately after dividend. The GIVING parameter must be specified.
The GIVING parameter can be followed optionally by ROUNDED or
TRUNCATED and the REMAINDER parameter.

■ The truncated quotient contains as many positions to the right of the decimal point
as does quotient. If the ROUNDED keyword is used, the quotient is rounded after
the remainder is calculated.

Chapter 13. Arithmetic and Assignment Commands 13-9

13.3 Arithmetic commands

Examples: The examples below illustrate the use of the DIVIDE command to
divide the value in the TOT-SALES field by the value in the NUM-ORDERS field.

Example 1: Simple division

In this example, the quotient is placed in TOT-SALES:

DIVIDE NUM-ORDERS INTO TOT-SALES.

Example 2: Obtaining a truncated quotient with a remainder

In this example, the quotient is truncated and placed in TOT-SALES-Q. The
remainder is placed in TOT-SALES-R:

DIVIDE NUM-ORDERS INTO TOT-SALES

GIVING TOT-SALES-Q TRUNCATED REMAINDER TOT-SALES-R.

 13.3.4 MULTIPLY

Purpose: Calculates the product of two variables.

 Syntax:

��─── MULTIPLY arithmetic-expression by variable ── options ── . ─────────────��

Expansion of options

 �───┬─────────────────────────────────┬──────────────────────────────────────��

├─ ROUNDED ───────────────────────┤

├─ TRUNCATED ─────────────────────┤

└─ ALLOWING assignment-condition ─┘

 Parameters

arithmetic-expression
Specifies the arithmetic expression being added to the value contained in variable.

�� For information on arithmetic-expression, see Chapter 6, “Arithmetic
Expressions.”

by variable
Specifies the data field that contains the value by which arithmetic-expression is
multiplied. Following execution of the command, variable contains the result of
the MULTIPLY operation.

ROUNDED
Rounds the result of the multiplication to the number of decimal positions found
in variable.

TRUNCATED
Truncates the result of the multiplication to the number of decimal positions found
in variable.

13-10 CA-ADS Reference

13.3 Arithmetic commands

The default specification is ROUNDED if COBOL moves are enabled is not
selected and TRUNCATED if the option is selected,

�� For more information, see 13.4, “Assignment command” later in this section.

ALLOWING
Specifies which error conditions that would normally abend should cause control
to be returned to the dialog for error handling. The list of allowable
assignment-condition names can be found in the section entitled "Arithmetic and
Assignment Command Status Condition."

 Usage:

Definition: The MULTIPLY command is used to perform multiplication. A variable
data field value, a numeric literal, or the result of an arithmetic expression is
multiplied by a variable data field value. The result is placed in the variable data field
that contains the right operand.

Example: The example below illustrates the use of the MULTIPLY command to
multiply the value in the FICA-PCT field by the value in the second occurrence of the
DEDUCT field:

MULTIPLY FICA-PCT BY DEDUCT(2).

 13.3.5 SUBTRACT

Purpose: Calculates the difference between two variables.

 Syntax:

��─── SUBTRACT arithmetic-expression from variable ── options ── . ───────────��

Expansion of options

 �───┬─────────────────────────────────┬──────────────────────────────────────��

├─ ROUNDED ───────────────────────┤

├─ TRUNCATED ─────────────────────┤

└─ ALLOWING assignment-condition ─┘

 Parameters

arithmetic-expression
Specifies the arithmetic expression being subtracted from the value contained in
variable.

�� For information on arithmetic-expression, see Chapter 6, “Arithmetic
Expressions.”

from variable
Specifies the data field that contains the value from which arithmetic-expression is
subtracted. Following execution of the command, variable contains the result of
the SUBTRACT operation.

Chapter 13. Arithmetic and Assignment Commands 13-11

13.3 Arithmetic commands

ROUNDED
Rounds the result of the multiplication to the number of decimal positions found
in variable.

TRUNCATED
Truncates the result of the multiplication to the number of decimal positions found
in variable.

The default specification is ROUNDED if COBOL moves are enabled is not
selected and TRUNCATED if the option is selected.

�� For more information, see 13.4, “Assignment command” later in this section.

ALLOWING
Specifies which error conditions that would normally abend should cause control
to be returned to the dialog for error handling. The list of allowable
assignment-condition names can be found in the section entitled "Arithmetic and
Assignment Command Status Condition."

 Usage:

Definition: The SUBTRACT command is used to perform subtraction. A variable
data field value, a numeric literal, or the result of an arithmetic expression is
subtracted from a variable data field value. The result is placed in the variable data
field that contains the right operand.

Example: The example below illustrates the use of the SUBTRACT command to
subtract the value in the QTY-SHIPPED field from the value in the BAL-ON-HAND
field:

SUBTRACT QTY-SHIPPED FROM BAL-ON-HAND.

13-12 CA-ADS Reference

13.4 Assignment command

 13.4 Assignment command

MOVE command: The MOVE command is used to move a variable data field
value, a numeric, nonnumeric, multi-bit binary, or figurative constant, or the result of
an arithmetic expression into a variable data field.

Comparison of CA-ADS and COBOL rules for move operations: COBOL
and CA-ADS differ slightly when moving the results of an arithmetic or assignment
command into the target field of the command. The table below compares the
COBOL and CA-ADS rules.

The application developer determines the set of rules to be used on a dialog-by-dialog
basis. The default set of rules is specified in the ADSO statement issued during
system generation. The default specification can be overridden for a dialog on the
Options and Directives screen of the CA-ADS dialog compiler.

�� For more information, see as described in Chapter 3, “CA-ADS Dialog Compiler
(ADSC).”

i Arithmetic and assignment commands allow the application developer to override the
default rounding or truncating rule by means of the ROUNDED/TRUNCATED
specification.

Operation CA-ADS rules COBOL rules

Move a numeric result
to an EBCDIC target
field

1. Drop the decimal
portion

2. Place a negative sign
(if any) to the left of
the result

3. Right justify the
result in the target
field

1. Retain the decimal
portion without the
decimal point

2. Drop any negative sign

3. Left justify the result in
the target field

Round or truncate the
valuei

Round the value

(By default the value is
truncated for a DIVIDE
command with the
REMAINDER parameter)

Truncate the value

Chapter 13. Arithmetic and Assignment Commands 13-13

13.4 Assignment command

 13.4.1 MOVE

Purpose: Moves a value to a target field.

 Syntax:

��─── MOVE value to variable ── options ── . ─────────────────────────────────��

Expansion of options

 �───┬─────────────────────────────────┬──────────────────────────────────────��

├─ ROUNDED ───────────────────────┤

├─ TRUNCATED ─────────────────────┤

└─ ALLOWING assignment-condition ─┘

 Parameters

value
Specifies the value being moved to variable. Value can contain an arithmetic
expression, a numeric literal, a user-defined variable, or a literal enclosed in single
quotation marks.

to variable
Specifies a variable data field that contains the result of the MOVE operation.

ROUNDED
Rounds the result of the move to the number of decimal positions found in
variable.

TRUNCATED
Truncates the result of the move to the number of decimal positions found in
variable.

The default specification is ROUNDED if the COBOL moves are enabled option
on the Options and Directives screen has not been chosen and TRUNCATED if
the option has been chosen.

ALLOWING
Specifies which error conditions that would normally abend should cause control
to be returned to the dialog for error handling. The list of allowable
assignment-condition names can be found in the section entitled "Arithmetic and
Assignment Command Status Condition."

 Usage

Consideration: ROUNDED/TRUNCATED is ignored if value is nonnumeric.

Example: The example below illustrates the use of the MOVE command to move
the value from the ACCT-BAL field to the TOT-BAL field:

MOVE ACCT-BAL TO TOT-BAL.

13-14 CA-ADS Reference

 Chapter 14. Conditional Commands

14.1 Overview . 14-3
14.2 EXIT . 14-4
14.3 IF . 14-5
14.4 NEXT . 14-8
14.5 WHILE . 14-10

Chapter 14. Conditional Commands 14-1

14-2 CA-ADS Reference

14.1 Overview

 14.1 Overview

CA-ADS conditional commands are used to specify processing based on the outcome
of a conditional test. The conditions to be tested are specified by coding conditional
expressions.

�� For information, see Chapter 8, “Conditional Expressions.”

Summary of conditional commands: Conditional commands are listed below.
Each command is presented in alphabetical order after the table.

i See Chapter 16, “Database Access Commands.”

Command Purpose

EXIT Terminates WHILE and ONi command processing and passes
control to the next command in the process

IF Performs a conditional test and specifies actions to be taken based
on the outcome of the test

NEXT Terminates IF or ONi command processing and passes control to
the next command in the process

WHILE Performs a conditional test and specifies actions to be taken as long
as the outcome of the test is true

Chapter 14. Conditional Commands 14-3

14.2 EXIT

 14.2 EXIT

Purpose: Exits a processing loop created by a WHILE or ON command regardless
of the outcome of the command condition.

The WHILE command is described later in this chapter.

�� For information about the ON command, see Chapter 16, “Database Access
Commands.”

Terminates WHILE and ON command processing.

 Syntax

��─── EXIT ──── . ──��

 Usage

 Considerations

■ EXIT can be used in conjunction with the REPEAT parameter in an ON
command.

■ Control passes to the next command outside the WHILE or ON structure
following an EXIT command.

■ EXIT is typically used following an IF statement that tests for a secondary
condition.

Example: The statements below illustrate the use of an EXIT command. The
DISPLAY command is executed when A is greater than B or when Z becomes greater
than 100, whichever occurs first:

WHILE A LE B

 REPEAT.

ADD 1 TO Z.

IF Z GT 1HH

 THEN EXIT.

ADD 1 TO A.

 END.

DISPLAY.

14-4 CA-ADS Reference

14.3 IF

 14.3 IF

Purpose: Evaluates one or more conditional expressions and specifies actions based
on the outcome of the evaluation.

 Syntax:

��─── IF conditional-expression ──�

 �─── then ──────┬─ command-statement. ────────────────────┬──────────────────�

 │ ┌───────────────────────┐ │

└─ DO. ─↓─ command-statement. ──┴─ END. ──┘

 �─┬───┬────────────────��

└─ ELSE ──────┬─ command-statement. ────────────────────┬─┘

 │ ┌───────────────────────┐ │

└─ DO. ─↓─ command-statement. ──┴─ END. ──┘

 Parameters

conditional-expression
Specifies the conditional expression to be evaluated. The outcome of the
evaluation determines the processing that occurs.

Conditional-expression contains one or more conditions to be evaluated and is
specified according to the rules presented in Chapter 8, “Conditional
Expressions.”

then command-statement
Specifies the commands to be executed if the condition is true.

Multiple command statements must be preceded by DO and followed by END.

Command-statement can be any valid CA-ADS process command, including
another conditional command.

ELSE command-statement
Specifies the commands to be executed if the condition is false.

Multiple command statements must be preceded by DO and followed by END.

 Usage

 Considerations

■ An entire conditional expression is evaluated before a result is returned.

– If the outcome is true, CA-ADS executes the commands following the
conditional expression.

– If the outcome is false, CA-ADS bypasses commands following the
conditional expression and executes commands that specify alternative
processing.

■ If no alternative processing commands exist for a false outcome, CA-ADS
proceeds to the next executable command outside the IF statement.

Chapter 14. Conditional Commands 14-5

14.3 IF

■ IF commands can be nested to any level.

Indentation should be used wherever possible to make statements more readable
and to ensure that the required clauses are properly matched.

■ A given IF statement can include only one ELSE clause, and that ELSE clause
must match the most recent IF command not associated with an ELSE clause.

Examples: Example 1: Using a simple IF command

In this example, a simple IF command tests the status of a map field and executes a
DISPLAY command if the condition is true:

IF FIELD PROD-NUM IS NOT CHANGED

THEN

DISPLAY MSG TEXT IS 'ENTER PRODUCT NUMBER'.

Example 2: Using an IF command with an ELSE clause

This example includes an ELSE clause to display an alternative message if the field
ERROR-FIELD contains 0:

IF ERROR-FIELD NE 'H'

THEN

DISPLAY MSG CODE IS 171H75 PARM=(MSG-NUM).

ELSE

DISPLAY MSG TEXT IS 'ENTER NEXT PRODUCT NUMBER'.

14-6 CA-ADS Reference

14.3 IF

Example 3: Using a nested IF command

This example illustrates a nested IF command that tests for CA-INDX if
DB-END-OF-SET is reached:

IF DB-END-OF-SET

THEN

IF CA-INDX EQ 1

 THEN

 DO.

MOVE 'NO CUSTOMERS QUALIFY' TO MSG-FIELD.

MOVE '1' TO ERROR-FIELD.

 RETURN.

 END.

 ELSE

DISPLAY MSG TEXT IS 'CUSTOMER NUMBER LIST COMPLETE'.

ELSE

DISPLAY MSG TEXT IS 'ADDITIONAL CUSTOMERS MAY QUALIFY'.

Chapter 14. Conditional Commands 14-7

14.4 NEXT

 14.4 NEXT

Purpose Exits IF and ON command processing.

 Syntax:

��─── NEXT command ─── . ───��

 Usage

Definition: The NEXT command is used to exit IF and ON command processing.
When a NEXT command is used, control passes to the command following the IF or
ON statement.

�� For information about the ON command, see Chapter 16, “Database Access
Commands.”

For information about the IF command, see 14.3, “IF” earlier in this chapter.

 Considerations

■ When used with an ON command, NEXT can be used in conjunction with the
THEN/ELSE parameters.

■ When used in a nested IF structure, NEXT exits only the current IF statement.

NEXT is typically used in a nested IF structure as a means of associating an
ELSE clause with the correct IF command.

14-8 CA-ADS Reference

14.4 NEXT

Example: The statements below illustrate the use of the NEXT command to match
the second ELSE clause with the second IF command:

IF A = B

THEN

 DO.

IF X = Y

 THEN

IF Y = Z

 THEN

MOVE A TO B.

 ELSE

 NEXT.

ELSE MOVE B TO A.

 SNAP ALL.

 DISPLAY.

 END.

If A equals B and X equals Y, but Y does not equal Z, control exits from the
innermost IF command and passes to the SNAP ALL command. If the ELSE NEXT
statement is not included, the ELSE MOVE B TO A statement is matched incorrectly
with the third rather than with the second IF.

Chapter 14. Conditional Commands 14-9

14.5 WHILE

 14.5 WHILE

Purpose: Creates a processing loop based on conditions in a specified expression.

 Syntax:

��─── WHILE conditional-expression ───�

 ┌──────────────────────┐

 �─── repeat. ──────↓─ command-statement. ─┴── END. ──────────────────────────��

 Parameters

conditional-expression
Evaluates the specified expression and returns a true or false value to the dialog.

Conditional-expression contains one or more conditions to be evaluated and is
specified according to the rules presented in Chapter 8, “Conditional
Expressions.”

repeat. command-statement
Specifies the commands to be executed as long as the WHILE condition is true.
REPEAT begins the WHILE command loop. END terminates the loop. Each
command is executed sequentially before the conditional expression is evaluated
again.

Command-statement can be any valid CA-ADS process command, including
another conditional command.

14-10 CA-ADS Reference

14.5 WHILE

 Usage

Definition: The WHILE command is used to create a processing loop. One or more
process commands are executed repeatedly as long as the conditions in a specified
expression are true.

 Considerations

■ The conditional expression is evaluated prior to execution of the first process
command.

■ Processing continues to loop until the conditional expression is false or as soon as
an EXIT or control command is encountered.

■ WHILE commands can be nested to any level.

Indentation should be used in coding wherever possible to make the statement
more readable and to ensure that the required clauses are properly matched.

Example: The example below illustrates the use of the WHILE command with a
nested IF command:

MOVE 1 TO CA-INDX.

OBTAIN NEXT SALES WITHIN PRODUCT-SALES.

WHILE NOT DB-END-OF-SET AND CA-INDX LE 45

 REPEAT.

IF SALES-AMT GE FULL-AMT

 DO.

MOVE SLS-CUST-NUMBER TO CA-CUST(CA-INDX).

ADD 1 TO CA-INDX.

 END.

OBTAIN NEXT SALES WITHIN PRODUCT-SALES.

 END.

IF DB-END-OF-SET

THEN

 INVOKE 'EOS'.

ELSE

 RETURN.

Chapter 14. Conditional Commands 14-11

14.5 WHILE

14-12 CA-ADS Reference

 Index

Special Characters
$BACKWARD condition 8-23
$BATCH condition 8-16
$DETAIL condition 8-23
$DETAIL-NOT-FOUND condition 8-23
$END-OF-DATA condition 8-23
$END-OF-FILE condition 8-6
$ERROR-COUNT field 11-9
$FORWARD condition 8-22
$HEADER condition 8-23
$INPUT-COUNT field 11-9
$IOERROR condition 8-6
$MAXIMUM-DETAILS-PUT condition 8-24, 17-32
$MESSAGE field 8-18, 17-33
$ONLINE condition 8-16
$OUTPUT-COUNT field 11-9
$PAGE field 8-18, 17-24
$PAGE-READY condition 8-22
$RESPONSE field 8-18
#EFMBIFS macro F-28
#EFUNMOD macro F-31
#EFUNMST macro F-27

A
ABORT command 20-4
ABSOLUTE-VALUE 7-11
ACCEPT command 16-12, 20-8
access module 3-21
activity logging E-3—E-8

activity logging records E-3—E-6
function commands E-6
function numbers E-6

ADB
See application definition block (ADB)

ADD command 13-6
ADSA

See application compiler (ADSA)
ADSC

See dialog compiler (ADSC)
ADSL 1-30
ADSM 1-31
ADSO-APPLICATION-GLOBAL-RECORD A-4—A-14

AGR-CURRENT-RESPONSE 4-19, 15-17
definition of A-4
usage A-4

ADSO-APPLICATION-MENU-RECORD
at runtime 4-8
definition of A-15
usage A-15

ADSO-STAT-DEF-REC record 10-9
ADSOBCOM D-4—D-36

control statements D-5—D-29
JCL and command statements D-30

ADSOBSYS D-37—D-48
ADSOOPTI load module D-37
JCL and command statements D-39

ADSOBTAT D-48—D-56
JCL and command statements D-51
task application table (TAT) D-48

ADSOMSON menu map 4-9
ADSOMUR1 menu map 4-9
ADSOMUR2 menu map 4-9
ADSOOPTI load module

See ADSOBSYS
ADSORPTS

application reports B-15
control statements B-16—B-23
dialog debugging B-13
dialog reports B-4—B-5

ADSOTATU D-57—D-59
AFACT-057 record E-4—E-6
AGR-CURRENT-RESPONSE

See ADSO-APPLICATION-GLOBAL-RECORD
ALLOCATE command 21-10
ALLOWING clause 10-7
AMR-RESPONSE-FIELD

See ADSO-APPLICATION-MENU-RECORD
APPC (Advanced Program to Program

Communication) 21-3
APPC status codes 21-30
APPCCODE status code 21-30, 21-31
APPCERC status code 21-30, 21-31
application compiler (ADSA) 2-19, 2-27

control key assignments 2-10
Function Definition (Menu) screen 2-32—2-37
Function Definition (Program) 2-30
Function Definition (Program) screen 2-32
Function Definition screen 2-27
General Options 2-14—2-19
General Options screen—Page 2 2-16—2-19
General Options—Page 1 2-14—2-16
Global Records screen 2-37
Response Definition screen 2-23

Index X-1

application compiler (ADSA) (continued)
Response/Function List screen 2-19—2-23
secondary screens 2-32
Task Codes screen 2-39

application compiler sequence
screen sequence 2-7

application compiler session
invoking 2-4
screen sequence 2-10
suspending 2-10

application definition block (ADB) 20-12
application reporter

See ADSORPTS
application response

See response
application security G-5—G-7
application structure

levels of 15-6
mainline dialogs 15-7

application thread
definition of 15-5
menu stack 15-7
nonoperative dialogs 15-6
operative dialogs 15-6

applications
compiling of 2-10
defining global records 2-37
defining responses and functions 2-19
defining task codes 2-39
specifying control blocks 2-30
specifying menus 2-32
specifying record buffers 2-30

APPLICATIONS statement B-16—B-18
arc cosine values 7-12
arc sine values 7-13
arc tangent values 7-14
AREPORTs B-3
arithmetic built-in functions

ABSOLUTE-VALUE 7-11
INVERT-SIGN 7-30
LOG-BASE-10 7-34
LOG-BASE-E 7-34
MODULO 7-35
next integer equal or higher 7-36
next integer equal or lower 7-37
NUMERIC 7-38
RANDOM-NUMBER 7-40
sign inversion 7-30
SIGN-VALUE 7-45
SQUARE-ROOT 7-47

arithmetic commands
See also arithmetic expression
ADD 13-6
COMPUTE 13-7
DIVIDE 13-8
MULTIPLY 13-10
SUBTRACT 13-11
summary of 13-3

arithmetic expressions
binary operations 6-3
coding rules 6-6
operands 6-3
order of evaluation 6-5
unary operations 6-3
variable data fields 6-5
WHERE clause 16-66

Assembler
See user program

assigned key 2-21
assignment command

MOVE 13-12
automatic editing 4-22, 8-20
autostatus facility 10-4—10-5

status codes 10-4

B
BACKWARD function 1-9

See also system functions
batch control event conditions

$END-OF-FILE ($EOF) 8-6
$IOERROR ($IOERR) 8-6

batch dialog compiler
See ADSOBCOM

batch processing
$ERROR-COUNT 11-9
$INPUT-COUNT 11-9
$OUTPUT-COUNT 11-9

binary data 5-11
BIND PROCEDURE command 16-19
BS2000/OSD JCL

ADSOBCOM D-35
ADSOBSYS D-46
ADSOBTAT D-55
ADSORPTS B-29

built-in functions 4-34—4-39
See also functions
calling user-defined functions F-42
changing invocation names F-3
coding user-defined functions F-42
creating user-defined functions F-41

X-2 CA-ADS Reference

built-in functions (continued)
data type conversion 7-4
date formats 7-6
error processing 7-4
internal structure F-4
invocation name 7-3, F-40
omitted optional parameter 7-4
parameters 7-4
runtime processing F-24
user-defined 7-5, F-41
with LRF F-42

C
CA-ADS

conversion rules 13-12
CA-ADS comment character 5-9
CA-ADS dialog and application reporter

See ADSORPTS
CA-ADS statistics block

See dialog statistics
CA-IDMS statistics block 16-18
CA-OLQ 4-33
CALL command 19-4
CHANGED condition 8-19
characteristic 9-10
checkouts

explicit 1-28
implicit 1-29
listing 1-30
modifying with ADSM 1-31
releasing with ADSM 1-31

checkpoint 4-26, 16-59
database 16-59
queue 16-59
scratch 16-59

CLOSE command 17-10
COBOL

See also user program
conversion rules 13-12

COBOL moves 3-16, 5-17, 13-6, 13-7, 13-8, 13-9,
13-10, 13-12, 13-13, 13-14

coding
arithmetic expressions 6-6
CA-ADS comment character 5-9
general rules 5-8
SQL comment character 5-9

command status condition
ERROR-STATUS 8-7

command-statements
DO 14-5

command-statements (continued)
ELSE 14-5
END 14-5, 14-10
REPEAT 14-10
THEN 14-5

commands 12-4, 14-3
See also Logical Record Facility database access
See also navigational database access
See also process commands
See also VM/ESA commands
ABORT 20-4
ACCEPT 16-12, 20-8
ADD 13-6
arithmetic 13-3
assignment 13-12
BIND PROCEDURE 16-19
CALL 19-4
CLOSE 17-10
COMMIT 16-20
COMPUTE 13-7
conditional 14-3
CONNECT 16-22
CONTINUE 15-10
control 15-3—15-38
DEFINE 19-5
DELETE QUEUE 18-7
DELETE SCRATCH 18-17
DISCONNECT 16-25
DISPLAY 15-12
DIVIDE 13-8
ERASE 16-27, 16-68
EXECUTE NEXT FUNCTION 15-17
EXIT 14-4
FIND/OBTAIN 16-30
GET 16-44
GET DETAIL 17-28
GET QUEUE 18-9
GET SCRATCH 18-19
GOBACK 19-6
IF 14-4
INCLUDE 12-8
INITIALIZE RECORDS
INVOKE 15-19
KEEP 16-46
KEEP LONGTERM 16-47
LEAVE 15-22
LINK 15-24
LRF 16-64—16-76
map modification 17-3
MODIFY 16-53, 16-69
MULTIPLY 13-10

Index X-3

commands (continued)
navigational database access 16-5—16-63
NEXT 14-8
OBTAIN 16-70
pageable map 17-3
PUT DETAIL 17-30
PUT QUEUE 18-12
PUT SCRATCH 18-22
queue management 18-3
READ TRANSACTION 15-30
RETRUN 15-31
RETURN DB-KEY 16-57
ROLLBACK 16-59
scratch management 18-3
SNAP 20-11
STORE 16-60, 16-75
subroutine control 19-3
SUBTRACT 13-11
summary of 12-4
TRACE 20-13
TRANSFER 15-34
utility 20-3
WHILE 14-10
WRITE PRINTER 20-14
WRITE TO LOG/OPERATOR 20-18
WRITE TRANSACTION 15-36

COMMIT command 16-20
comparison conditions

CONTAINS 8-10
mask characters 8-11
MATCHES 8-10
operators 8-10

compiler (ADSA)
security G-4

compiler (ADSC)
security G-4

COMPUTE command 13-7
CONCATENATE built-in function 7-15
conditional commands

EXIT 14-4
IF 14-4
NEXT 14-8
WHILE 14-10

conditional expressions
$MESSAGE field 8-18
$PAGE field 8-18
$RESPONSE field 8-18
batch control event condition 8-6
command status condition 8-7
comparison condition 8-10
cursor position condition 8-12

conditional expressions (continued)
dialog execution status condition 8-14
environment status condition 8-16
for maps 17-4
level-88 condition 8-17
map field status condition 8-18
map paging status conditions 8-22
operators in 8-4
order of precedence 8-4
set status condition 8-25
summary 8-5

CONFIRM command 21-13
CONFIRMED command 21-14
CONNECT command 16-22
constants 9-3

figurative constants 9-4
fixed-point numeric literals 9-9
floating-point numeric literals 9-9
graphic literals 9-6
multibit binary 9-7
nonnumeric literals 9-8
numeric literals 9-9

CONTAINS condition 8-10
CONTINUE command 15-10
control commands

BIND PROCEDURE 16-19
CLOSE 17-10
CONTINUE 15-10
DISPLAY 15-12
EXECUTE NEXT FUNCTION 15-17
INVOKE 15-19
LEAVE 15-22
LEAVE APPLICATION 15-22
LINK 15-24
READ TRANSACTION 15-30
RETURN 15-31
TRANSFER 15-34
WRITE TO LOG/OPERATOR 20-18
WRITE TRANSACTION 15-36

control event 2-21, 8-6
See also assigned key

control keys
See also application compiler
See also dialog compiler (ADSA)
default assignments 4-21

CONTROL SESSION command 21-15
control statements

See also ADSORPTS
ADSOBSYS D-37
ADSOBTAT D-49
COMPILE D-6

X-4 CA-ADS Reference

control statements (continued)
DECOMPILE D-8

conversation, ending 21-25
conversion

CA-ADS rules 13-12
COBOL rules 13-12

cosine values 7-16
currency

See also NOSAVE
database 15-7, 16-5
index 16-58
of area 16-5
of record type 16-5
of run unit 16-5, 16-33
of set type 16-5
queue 18-5
scratch requests 18-15

cursor position condition
CURSOR-COLUMN 8-12
CURSOR-ROW 8-12

cursor position data field
CURSOR-COLUMN 11-8
CURSOR-ROW 11-8

CURSOR-COLUMN condition 8-12
CURSOR-ROW condition 8-12

D
data dictionary

AFACT-057 E-4—E-6
LR-190 E-4
LRACT-193 E-4—E-6, E-8
organization E-4
RCDACT-059 E-4—E-6, E-8
SETACT-061 E-4—E-6
SSA-024 E-4
SSOR-034 E-4
SSR-032 E-4

Data Dictionary Reporter
See AREPORTs

data types
available to CA-ADS 5-10
binary 5-11
conversion of 5-16
conversion rules 13-12
definition of 5-10
doubleword binary 5-11
EBCDIC 5-11
examples of 5-14
floating point 5-12
fullword binary 5-11

data types (continued)
group 5-12
halfword binary 5-11
multibit binary 5-13
packed decimal 5-13
zoned decimal 5-13

database
access of 4-25
CA-IDMS statistics block 16-18
CALC key 16-31
checkpoint 16-20
currency 16-5
db-key 16-12, 16-14, 16-34, 16-58
location modes 16-62
modification of CALC elements 16-54
modification of sort-control elements 16-54
monitoring activity 16-47—16-51
set membership options 16-22
statistics 16-17
usage modes 16-55

database access 4-24
Logical Record Facility (LRF) 16-64

database activity
See activity logging

database commands
See also Logical Record Facility database access
See also navigational database access
implicit E-3

database currency
See currency
See NOSAVE

date built-in functions
DATECHG 7-17
DATEDIF 7-20
DATEOFF 7-21
GOODDATE 7-25
TODAY 7-54
TOMORROW 7-56
WEEKDAY 7-62
YESTERDAY 7-66

date formats
calendar 7-6
European 7-6
Gregorian 7-6
Julian 7-6, 11-8

date offset 7-21
DATECHG built-in function 7-17
DBCS data

as a graphic literal 9-6
as a nonnumeric literal 9-8
storage of 13-4

Index X-5

deadlock 4-26
DEALLOCATE command 21-17
debugging 4-32

See also ADSORPTS
See also online debugger
See also trace facility

DEFINE command 19-5
DELETE QUEUE command 18-7
DELETE SCRATCH command 18-17
Design guidelines 21-25
detail area 17-21
diagnostic screen

See Dialog Abort Information screen
diagnostic table 3-15
dialog

See also ADSOBCOM
FDB B-5—B-11

Dialog Abort Information screen 4-28, B-14, H-7
enabling of 20-6

dialog compiler
See ADSOBCOM

dialog compiler (ADSC)
control keys 3-7
Dialog Summary Report screen 1-26
Dialog Summary screen 1-26
Map Image screen 1-26
Options and Directives 3-13
screens 3-10
session 3-4

dialog compiler session
invoking 3-4
suspending 3-8

dialog execution status
FIRST-TIME 8-14

dialog expression (ADSOBCOM) D-10—D-29
dialog function 1-9

See also function
dialog reporter

See ADSORPTS
Dialog Selection screen 4-4
dialog statistics

CA-ADS statistics block C-5
checkpoint interval C-10
enabling of C-8
runtime collection and writing C-11
selecting C-9
statistics block identifiers C-11
statistics reporting C-12
transaction statistics block C-4

Dialog Summary screen 1-26
Map Image screen 1-26

dialog, location of allocated 21-25
dialogs

mainline 4-3
DIALOGS statement B-19—B-21
DISCONNECT command 16-25
DISPLAY command 15-12

mapout rules 15-14
status test outcome 8-14

DIVIDE command 13-8
DO command-statement 14-5
double-byte character set

See DBCS
doubleword binary data type 5-11
dumps

snap dumps 20-6

E
EBCDIC data type 5-11, 13-4
EDIT IS ERROR/CORRECT condition 8-18
ELSE command-statement 14-5
END command-statement 14-5, 14-10
environment status condition

$BATCH 8-16
$ONLINE 8-16

ERASE command 16-27, 16-68
ERASED condition 8-20
error expressions 10-6
error handling

ADSO-STAT-DEF-REC 10-9
ALLOWING clause 10-7
autostatus 10-4—10-5
built-in functions F-25
error expressions 10-6
level-88 condition names 10-9
site defined status definition record 10-10
STATUS clause 10-9
status definition record 10-9
system-defined status definition record 10-9

error messages
suppression of 17-17

ERROR-STATUS condition 8-7
exclusive usage mode 16-55
EXECUTE NEXT FUNCTION command 8-14

mapless dialog 15-17
EXECUTE ON EDIT ERRORS command 8-20
execution modes 2-16, 3-3
EXIT command 14-4
explicit checkouts 1-28
explicit releases 1-28

X-6 CA-ADS Reference

expression description element
See XDE module

extended run units 4-25—4-27
See also run unit
checkpoint 4-26
deadlock 4-26

EXTRACT built-in function 7-23

F
fast mode 2-16
FDB

See fixed dialog block
See fixed dialog block (FDB)

figurative constants 9-4
FIND/OBTAIN

FIND 16-31
FIND/OBTAIN command
FIRST-TIME condition 8-14, 15-34
FIX built-in function 7-24
fixed dialog block (FDB) 20-11

contents of B-5—B-11
fixed-point numeric literals 9-9
floating point data types

display 5-12
internal long 5-12
internal short 5-12

floating-point numeric literals 9-9
flow of control 4-19—4-22

automatic editing 4-22
default control key assignments 4-21

footer area 17-21
FORWARD function 1-9

See also system functions
fullword binary data type 5-11
function

See dialog function
See menu function
See menu/dialog function
See program function

Function Definition (Dialog) screen 2-27
Function Definition (Menu) screen 2-32
Function Definition (Program) screen 2-30
functions

See built-in functions

G
G-literals

See graphic literals

General Options screen—Page 2 2-16—2-19
General Options—Page 1 2-14—2-16
GET command 16-44
GET DETAIL command 8-23, 17-28
GET QUEUE command 18-9
GET SCRATCH command 18-19
Global Records screen (ADSA) 2-37
GOBACK command 19-6
GOODDATE built-in function 7-25
GOODTRAILING built-in function 7-26
graphic literals 9-6
group data type 5-12

H
halfword binary data type 5-11
header area 17-21
HELP function 1-9

See also system functions
help screen 4-16

I
ICTL statement

ADSOBCOM D-4
ADSOBSYS D-37

IDENTICAL condition 8-19
IF command 14-4
implicit checkouts 1-29
implicit releases 1-29
IN ERROR condition 8-18, 8-20
INCLUDE command 12-8
INDEX built-in function 7-48
INITCAP built-in function 7-27
INITIALIZE RECORDS command 20-10
INSERT built-in function 7-28
INSERT directive 12-8
intermediate result area (IRA) F-24
INVERT-SIGN built-in function 7-30
INVOKE command 15-19

status test outcome 8-14
ISEQ statement

ADSOBCOM D-4
ADSOBSYS D-37

J
JCL

See BS2000/OSD JCL
See OS/390 JCL
See VM/ESA commands
See VSE/ESA JCL

Index X-7

K
KEEP commands 16-46
KEEP LONGTERM command

L
LEAVE APPLICATION command 15-22
LEAVE command 15-22

status test outcome 8-14
LEFT-JUSTIFY built-in function 7-31
length

See STRING-LENGTH built-in function
level-88 condition 8-7, 8-17
LIKE built-in function 7-32
LINK command

linking to OLQ 4-33
nesting 15-26
status test outcome 8-14
with a user program 15-26

LIST statement B-21
literal

See constants
local mode processing

SYSIDMS parameter file B-24
location mode

CALC 16-62
DIRECT 16-62
VIA 16-62

log
See activity logging

LOG-BASE-10 built-in function 7-34
LOG-BASE-E built-in function 7-34
logarithms

See arithmetic built-in functions
Logical Record Facility

linking to dialog with LRF subschema 15-27
logical records

See also Logical Record Facility database access
in database access 16-64
path 16-64

LR-190 record E-4
LRACT-193 record E-4—E-8
LRF

path status 16-72
LRF commands

ERASE 16-68
MODIFY 16-69
OBTAIN 16-70
ON command 16-71
STORE 16-75

LRF commands (continued)
WHERE clause 16-65

LU 6.2 21-3

M
mainline dialogs 15-7
mantissa values 9-10
map field status conditions

ALL BUT 8-19
CHANGED 8-19
ERASED 8-20
EXCEPT 8-19
IDENTICAL 8-19
IN ERROR 8-18, 8-20
pageable map considerations 8-20
TRUNCATED 8-20

Map Image screen 1-26
map modification commands

ATTRIBUTES 17-5—17-9
MODIFY MAP 17-12—17-20

map paging session 17-23
map paging status condition 8-22

See also pageable maps
maps

See also Map Image screen
See also map modification commands
See also menu map
See also pageable maps
See also screens
conditional expressions 17-4
output data options 17-16
permanent modifications 17-7, 17-13
suppressing error message 17-17
temporary modifications 17-7, 17-13

mask character 7-32, 8-11, 16-67
master function table F-4, F-5
MATCHES condition 8-10
matching string 7-32
menu definition 4-8
menu function 1-9

See also function
menu maps

ADSOMSON 4-9
ADSOMUR1 4-9
ADSOMUR2 4-9
signon 4-13—4-16
site-defined 4-9
system-defined 4-10—4-13

menu stack 15-7

X-8 CA-ADS Reference

menu/dialog function 1-9
See also function

message codes 15-15
messages 15-15
modified data tags (MDTs)

resetting 17-14
setting for map fields 17-19

MODIFY command 16-53, 16-69
MODIFY MAP
MODIFY MAP command 8-20, 17-12
modules

See process modules
MODULO built-in function 7-35
MOVE command 13-12
multibit binary constants 9-7
multibit binary data type 5-13
multiple databases

accessing 11-6
MULTIPLY command 13-10

N
native VSAM data sets 16-7—16-9

currency requests 16-15
set status condition 16-8
with CONNECT 16-23
with DISCONNECT 16-26
with ERASE 16-27
with FIND/OBTAIN OWNER 16-38
with MODIFY 16-55

natural logarithm 7-34
navigational DML commands

ACCEPT 16-12
COMMIT 16-20
CONNECT 16-22
DISCONNECT 16-25
ERASE 16-27
FIND/OBTAIN 16-30
GET 16-44
KEEP 16-46
MODIFY 16-53
READY 16-55
RETURN DB-KEY 16-57
ROLLBACK 16-59
STORE 16-60

nesting 15-26
NEXT command 14-8
NEXT-INTEGER-EQUAL-HIGHER built-in

function 7-36
NEXT-INTEGER-EQUAL-OR-LOWER built-in

function 7-37

nonnumeric literals 9-8
NUMERIC built-in function 7-38
numeric fields 13-4
numeric literals 9-9

O
OBTAIN command 16-70
OCB

See online control block (OCB)
OCTL statement

ADSOBCOM D-4
ADSOBSYS D-37

OLQ
See CA-OLQ

ON command 16-71
online control block (OCB) 20-11
online debugger H-7—H-10
online help

in CA-ADS applications 4-8
in CA-ADS compilers 1-32

online terminal block (OTB) 20-11
online terminal block extension (OTBX) 20-11
online work area (OWA) 20-11
Options and Directives 3-13
OS/390 JCL

ADSOBCOM D-30
ADSOBSYS D-39
ADSOBTAT D-51
ADSORPTS B-25

OTB
See online terminal block (OTB)

OTBX
See online terminal block extension (OTBX)

OWA
See online work area (OWA)

P
packed decimal data type 5-13
pageable map commands

GET DETAIL 17-28
PUT DETAIL 17-30

pageable maps
$PAGE field 17-24
areas of 17-21
Auto display specification 3-19
Backpage specification 3-19
flow of control 17-25
map paging dialog options 3-18, 17-27—17-28
map paging session 17-22

Index X-9

pageable maps (continued)
severity codes 17-33
UPDATE specification 3-19

parameters for process commands
keywords 5-7
variable terms 5-7

path status (LRF) 16-72
PF keys

See application compiler
PL/I

See user program
POP function 1-9

See also system functions
POPTOP function 1-9

See also system functions
PREPARE-TO-RECEIVE command 21-19
printer output 17-15
process commands

See also commands
coding of 5-8
comment character 5-9
quoted strings 5-9

process modules
premap 5-5
response 5-5

processing
cooperative 21-3

program
See user program

program function 1-9
See also function
See also user program

protected usage mode 16-55
PUT DETAIL command 8-20, 17-30
PUT QUEUE command 18-12
PUT SCRATCH command 18-22

Q
queue management commands

DELETE QUEUE 18-7
GET QUEUE 18-9
PUT QUEUE 18-12

queue records 18-5
QUIT function 1-9

See also system functions
quoted strings

See process commands

R
RANDOM-NUMBER built-in function 7-40
RBB

See record buffer block (RBB)
RCDACT-059 record E-4—E-8
READ TRANSACTION command 15-30
READY command 16-55
RECEIVE-AND-WAIT command 21-20
record buffer block (RBB) 20-12
record locking

queue 18-5
record locks

deadlock conditions 16-10
exclusive 16-9
explicit 16-9
implicit 16-9
long-term explicit 16-9
release of 16-20
retrieval locks 16-10—16-12
shared 16-9

records
queue 18-5
scratch 18-15

recovery 16-59
releases

explicit 1-28
implicit 1-29

releasing entities 1-29
remainder values 7-35
REPEAT command-statement 14-10
repeat string 7-50
REPLACE built-in function 7-42
replace string 7-42
reports

See ADSORPTS
See AREPORTs

REQUEST-TO-SEND command 21-21
REQUEST-TO-SEND-RECEIVED system field 21-30,

21-34
reset keyboard 17-14
response 1-9

runtime selection 4-9
Response Definition screen (ADSA) 2-23
response process

security 3-29
Response/Function List screen 2-19
Response/Function List screen (ADSA) 2-19
Response/Function search 2-22
responses

runtime selection 4-16

X-10 CA-ADS Reference

responses (continued)
security 4-20

RETURN command 15-31
status test outcome 8-14

RETURN DB-KEY command 16-57
RETURN function 1-9

See also system functions
RHDCEVBF source module F-28
RIGHT-JUSTIFY built-in function 7-44
ROLLBACK command 16-59
run units 4-25

extended 4-25—4-27
usage modes 4-26

runtime system
ADSOMAIN 4-3
ADSORUN1 4-3
initiation of 4-3—4-7

S
scratch area 18-15
scratch management commands

DELETE SCRATCH 18-17
GET SCRATCH 18-19
PUT SCRATCH 18-22

scratch records 18-15
screens

See also application compiler
See also dialog compiler
See also maps
application compiler 2-11
Dialog Abort Information screen 4-28—4-31
Dialog Selection screen 4-4
Dialog Summary Report screen 1-26
Dialog Summary screen 1-26
Function Definition (Dialog) screen 2-27
Function Definition (Menu) screen 2-32
Function Definition (Program) 2-30
General Options—Page 1 (ADSA) 2-14—2-16
General Options—Page 2 (ADSA) 2-16—2-19
Global Records 2-37
help 4-16—4-18
Map Image screen 1-26
Menu definition 4-8
Options and Directives (ADSC) 3-13
Response Definition 2-23
Response/Function List 2-19
Response/Function List screen 2-19
screens 3-10
task codes 2-39
TAT Update Utility D-58

SEARCH statement B-22
search, Response/Function 2-22
security

See also application security
ADAPGOP2 2-17
ADSOBCOM D-4
General Options screen—Page 2 2-16—2-19
response G-5
response process 3-29
security-tailored menus G-6
signon G-6—G-7

SEND-DATA command 21-22
SEND-ERROR command 21-24
SEND/RECEIVE commands 21-3

summary 21-9
SET condition 8-25
set membership options 16-22
SETACT-061 record E-4—E-6
sign inversion 7-30
SIGN-VALUE built-in function 7-45
SIGNOFF function 1-9, G-7

See also system functions
SIGNON function 1-9, G-6

See also system functions
SIGNON statement (ADSOBCOM) D-5
sine values 7-46
SNA (Systems Network Architecture) 21-3
SNAP command 20-11
sort key 16-42
sorted set 16-42
source code

See process modules
source module

See process modules
SQL

access module 3-21
compliance 3-22

SQL comment character 5-9
SQUARE-ROOT 7-47
SREPORTs C-12
SSA-024 area E-4
SSOR-034 set E-4
SSR-032 record E-4
statistics

See dialog statistics
status codes 21-31
status definition record

ADSO-STAT-DEF-REC 10-9
level-88 condition names 10-9
site defined 10-10
STATUS clause 10-9

Index X-11

status definition record (continued)
system defined 10-9

step mode 2-16
storage

management 4-40
XA 4-40

STORE command 16-60, 16-75
string built-in functions

CONCATENATE 7-15
EXTRACT 7-23
FIX 7-24
INDEX 7-48
INITCAP 7-27
INSERT 7-28
LEFT-JUSTIFY 7-31
LIKE 7-32
REPLACE 7-42
RIGHT-JUSTIFY 7-44
STRING-INDEX 7-48
STRING-LENGTH 7-49
STRING-REPEAT 7-50
SUBSTRING 7-51
TOLOWER 7-55
TOUPPER 7-57
TRANSLATE 7-59
VERIFY 7-61
WORDCAP 7-65

string verification 7-61
STRING-LENGTH built-in function 7-49
STRING-REPEAT built-in function 7-50
subroutine control commands

CALL 19-4
DEFINE 19-5
GOBACK 19-6

Subschema Control Block 16-20
SUBSCHEMA-CONTROL 15-25
SUBSTRING built-in function 7-51
SUBTRACT command 13-11
suspense file 15-37
symbol table 3-15
SYSIDMS parameters

for physical requirements B-24
system fields 21-30, 21-34
system functions 1-9

See also function
BACKWARD 1-9, A-13
FORWARD 1-9, A-13
HELP 1-9, 4-16
POP 1-9
POPTOP 1-9
QUIT 1-9

system functions (continued)
RETURN 1-9
SIGNOFF 1-9, G-7
SIGNON 1-9, G-6
TOP 1-9

system records
See ADSO-APPLICATION-GLOBAL-RECORD
See ADSO-APPLICATION-MENU-RECORD
See ADSO-STAT-DEF-REC

SYSTEM statement (ADSOBSYS) D-38
system-supplied data fields 11-6

$ERROR-COUNT 11-9
$INPUT-COUNT 11-9
$OUTPUT-COUNT 11-9
CURSOR-COLUMN 11-8
CURSOR-ROW 11-8
DATE 11-8
DB-NAME 11-6
DIRECT-DBKEY 11-6
ERROR-STATUS 11-8
LENGTH 11-8
NODE-NAME 11-6
TIME 11-9

T
tables

diagnostic 3-15
symbol 3-15

task 4-24
task application table (TAT) 2-39, 4-4, 20-12

See also ADSOBTAT
See also ADSOTATU

task code, for TCF 2-4
Task Codes screen (ADSA) 2-39
TAT

See task application table (TAT)
TAT Update Utility D-58
TCF

See transfer control facility
test condition

See conditional expressions
test conditions

WHERE clause 16-65
THEN command-statement 14-5
TODAY built-in function 7-54
TOLOWER built-in function 7-55
TOMORROW built-in function 7-56
TOP function 1-9

See also system functions

X-12 CA-ADS Reference

TOUPPER built-in function 7-57
TRACE 20-13, H-6
trace facility H-5—H-6
trailing sign built-in functions

GOODTRAILING 7-26
TRAILING-TO-ZONED 7-58
ZONED-TO-TRAILING 7-67

TRAILING-TO-ZONED built-in function 7-58
transaction statistics

See dialog statistics
TRANSFER command 15-34

status test outcome 8-14
transfer control facility 2-4, 3-4—3-5
TRANSLATE built-in function 7-59
trigonometric built-in functions

ARCCOSINE-DEGREES 7-12
ARCCOSINE-RADIANS 7-12
ARCSINE-DEGREES 7-13
ARCSINE-RADIANS 7-13
ARCTAN-DEGREES 7-14
ARCTAN-RADIANS 7-14
COSINE-DEGREES 7-16
COSINE-RADIANS 7-16
SINE-DEGREES 7-46
SINE-RADIANS 7-46

TRUNCATED condition 8-20

U
usage modes 4-26

exclusive 16-56
protected 16-56
retrieval 16-55
shared 16-56
update 16-55

user program
DC RETURN statement 15-27
linking 15-26

user program function
See program function

utilities
ADSOBCOM D-4—D-29, D-36
ADSOBSYS D-37—D-48
ADSOBTAT D-48—D-56
ADSORPTS B-3—B-30
ADSOTATU D-57—D-59

utility commands
ABORT 20-4
ACCEPT 20-8
INITIALIZE RECORDS 20-10
SNAP 20-11

utility commands (continued)
TRACE 20-13
WRITE PRINTER command 20-14

V
variable dialog block (VDB) 20-12
variable expression description element

See VXDE module
variable terms

types of 5-8
variables

arithmetic expressions 6-3—6-6
conditional expressions 8-3
constants 9-3
data fields 11-3
entity names 11-12
error expressions 10-6
system-supplied 11-6
target fields 11-10
 user-defined 11-4
variable target fields 11-10

VDB
See variable dialog block (VDB)

VDE module
processing of F-17

vector call codes B-11
VERIFY built-in function 7-61
VM/ESA commands

ADSOBCOM D-33
ADSOBSYS D-44
ADSOBTAT D-54
ADSORPTS B-27

VM/ESA systems
See VM/ESA commands

VSAM data sets
See native VSAM data sets

VSE/ESA JCL
ADSOBCOM D-31
ADSOBSYS D-42
ADSOBTAT D-52
ADSORPTS B-26

VXDE module F-4, F-8—F-17
processing of F-17

W
WEEKDAY built-in function 7-62
WHAT-RECEIVED system field 21-30, 21-34
WHERE clause 16-65

comparison expression 16-66

Index X-13

WHERE clause (continued)
conditional expression 16-65
test condition 16-66

WHILE command 14-10
with FIND/OBTAIN DB-KEY 16-36
WORDCAP built-in function 7-65
WRITE PRINTER command
WRITE TO LOG/OPERATOR
WRITE TO LOG/OPERATOR command 20-18
WRITE TRANSACTION command 15-36

X
XDE module F-4, F-6, F-8—F-17

Y
YESTERDAY built-in function 7-66

Z
zoned decimal data type 5-13
ZONED-TO-TRAILING built-in function 7-67

X-14 CA-ADS Reference

	CA-ADS Reference
	Contents
	How to Use This Manual
	What this manual is about
	Related documentation
	Understanding Syntax Diagrams
	Sample Syntax Diagram

	Volume 1. CA- ADS Reference
	Chapter 1. Introduction to CA- ADS
	1.1 What is CA- ADS?
	1.2 What CA- ADS does
	1.3 Creating a CA- ADS application
	1.4 Tools used to develop an application
	1.4.1 The CA- ADS application compiler (ADSA)
	1.4.2 Mapping facilities (MAPC and the Batch Compiler/ Utility)
	1.4.3 CA- ADS dialog compilers (ADSC and ADSOBCOM)
	1.4.4 IDD menu facility and online IDD
	1.4.5 The CA- ADS runtime system

	1.5 CA- ADS screens
	1.5.1 Action bar
	1.5.2 Action bar actions

	1.6 Checkout and release procedures
	1.6.1 How to check out or release an entity
	1.6.2 Listing checkouts (ADSL)
	1.6.3 Modifying checkouts (ADSM)

	1.7 CA- ADS help facility

	Chapter 2. CA- ADS Application Compiler (ADSA)
	2.1 Overview
	2.2 Application compiler session
	2.2.1 Invoking the application compiler
	2.2.2 Sequencing through application compiler screens
	2.2.3 Suspending a session
	2.2.4 Terminating a session

	2.3 Application compiler screens
	2.3.1 Main menu
	2.3.2 General Options screen Š Page 1
	2.3.3 General Options screen Š Page 2
	2.3.4 Response/ Function List screen
	2.3.5 Response Definition screen
	2.3.6 Function Definition (Dialog) screen
	2.3.7 Function Definition (Program) screen
	2.3.8 Function Definition (Menu) screen
	2.3.9 Global Records screen
	2.3.10 Task Codes screen

	Chapter 3. CA- ADS Dialog Compiler (ADSC)
	3.1 Overview
	3.2 Dialog compiler session
	3.2.1 Invoking the dialog compiler
	3.2.2 Sequencing through dialog compiler screens
	3.2.3 Suspending a session
	3.2.4 Terminating a session

	3.3 Dialog compiler screens
	3.3.1 Main menu
	3.3.2 Options and Directives screen
	3.3.3 Map Specifications screen
	3.3.4 Database Specifications screen
	3.3.5 Records and Tables screen
	3.3.6 Process Modules screen

	Chapter 4. CA- ADS Runtime System
	4.1 Initiating the CA- ADS runtime system
	4.1.1 How to define runtime tasks
	4.1.2 How to start a CA- ADS application

	4.2 Runtime menu and help screens
	4.2.1 Menu screens
	4.2.2 Site- defined menu maps
	4.2.3 System- defined menu maps
	4.2.4 Application help screen

	4.3 Runtime flow of control
	4.3.1 Effects of automatic editing on flow of control

	4.4 Message prefixes
	4.5 CA- ADS tasks, run units, and transactions
	4.5.1 Run units and database access
	4.5.2 Extended run units

	4.6 Dialog Abort Information screen
	4.7 Debugging a dialog
	4.8 Linking From CA- ADS to CA- OLQ
	4.8.1 Linking to CA- OLQ
	4.8.2 Passing syntax to CA- OLQ

	4.9 Linking built- in functions with the runtime system
	4.9.1 Linking system- supplied built- in functions
	4.9.2 Linking user- written built- in functions

	4.10 Managing storage
	4.10.1 Adjusting record compression
	4.10.2 Calculating RBB storage
	4.10.3 Writing resources to scratch records
	4.10.4 Using XA storage

	Chapter 5. Introduction to Process Language
	5.1 Overview
	5.2 Process modules
	5.2.1 Creating process modules
	5.2.2 Adding process modules to dialogs
	5.2.3 Executing process modules

	5.3 Process commands
	5.3.1 Constructing commands
	5.3.2 Coding considerations

	5.4 Data types
	5.4.1 Conversion between data types

	Chapter 6. Arithmetic Expressions
	6.1 Overview
	6.2 Syntax
	6.3 Evaluation of arithmetic expressions
	6.4 Coding considerations

	Chapter 7. Built- in Functions
	7.1 Overview
	7.1.1 Invocation names
	7.1.2 Built- in function values
	7.1.3 Coding parameters

	7.2 User- defined built- in functions
	7.3 System- supplied functions
	7.3.1 Arithmetic functions
	7.3.2 Date functions
	7.3.3 String functions
	7.3.4 Trailing- sign functions
	7.3.5 Trigonometric functions

	7.4 ABSOLUTE- VALUE
	7.5 ARC COSINE
	7.6 ARC SINE
	7.7 ARC TANGENT
	7.8 CONCATENATE
	7.9 COSINE
	7.10 DATECHG
	7.11 DATEDIF
	7.12 DATEOFF
	7.13 EXTRACT
	7.14 FIX
	7.15 GOODDATE
	7.16 GOODTRAILING
	7.17 INITCAP
	7.18 INSERT
	7.19 INVERT- SIGN
	7.20 LEFT- JUSTIFY
	7.21 LIKE
	7.22 LOGARITHM
	7.23 MODULO
	7.24 NEXT- INT- EQHI
	7.25 NEXT- INT- EQLO
	7.26 NUMERIC
	7.27 RANDOM- NUMBER
	7.28 REPLACE
	7.29 RIGHT- JUSTIFY
	7.30 SIGN- VALUE
	7.31 SINE
	7.32 SQUARE- ROOT
	7.33 STRING- INDEX
	7.34 STRING- LENGTH
	7.35 STRING- REPEAT
	7.36 SUBSTRING
	7.37 TANGENT
	7.38 TODAY
	7.39 TOLOWER
	7.40 TOMORROW
	7.41 TOUPPER
	7.42 TRAILING- TO- ZONED
	7.43 TRANSLATE
	7.44 VERIFY
	7.45 WEEKDAY
	7.46 WORDCAP
	7.47 YESTERDAY
	7.48 ZONED- TO- TRAILING

	Chapter 8. Conditional Expressions
	8.1 Overview
	8.2 General considerations
	8.2.1 Syntax for conditional expressions

	8.3 Batch- control event condition
	8.4 Command status condition
	8.5 Comparison condition
	8.6 Cursor position condition
	8.7 Dialog execution status condition
	8.8 Environment status condition
	8.9 Level- 88 condition
	8.10 Map field status condition
	8.11 Map paging status conditions
	8.12 Set status condition
	8.13 Arithmetic and assignment command status condition

	Chapter 9. Constants
	9.1 Overview
	9.2 Figurative constants
	9.3 Graphic literals
	9.4 Multibit binary constants
	9.5 Nonnumeric literals
	9.6 Numeric literals

	Chapter 10. Error Handling
	10.1 Overview
	10.2 The autostatus facility
	10.3 Error expressions
	10.4 The ALLOWING clause
	10.5 Status definition records

	Chapter 11. Variable Data Fields
	11.1 Overview
	11.2 User- defined data field names
	11.3 System- supplied data field names
	11.4 Entity names

	Chapter 12. Introduction to Process Commands
	12.1 Overview
	12.2 Summary of process commands
	12.3 INCLUDE

	Chapter 13. Arithmetic and Assignment Commands
	13.1 Overview
	13.2 General considerations
	13.2.1 Numeric fields
	13.2.2 EBCDIC and DBCS fields
	13.2.3 Arithmetic and assignment command status condition

	13.3 Arithmetic commands
	13.3.1 ADD
	13.3.2 COMPUTE
	13.3.3 DIVIDE
	13.3.4 MULTIPLY
	13.3.5 SUBTRACT

	13.4 Assignment command
	13.4.1 MOVE

	Chapter 14. Conditional Commands
	14.1 Overview
	14.2 EXIT
	14.3 IF
	14.4 NEXT
	14.5 WHILE

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

