CA-IDMS®

Database Administration
15.0

a)

Computer Associates™

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is’ without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights’ as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

Second edition, October 2001

© 2001 Computer Associates International, Inc.
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Contents

How tousethismanual XVii

Volume 1. Database Definition

Chapter 1. The CA-IDMS Environment 1-1
1.1 Theenvironment 1-3
1.1.1 Multiuser environment 1-3
1.1.2 Single-user environment 1-4
1.1.3 Datasharing environment L 1-5
1.2 CA-IDMSDC and CA-IDMSUCF 1-6
1.3 CA-IDMSDB components 1-7
1.3.1 The database management system 1-7
1.3.2 Dictionaries 1-7
1.3.3 Physical database definition L. 1-8
1.3.4 Logical database definition 1-8
14 Security 1-9
15 Getingstarted 1-10
15.1 Towards a production environment 1-10
1.6 Tools for database definition and maintenance 1-13
Chapter 2. Defining Physical Databases 2-1
2.1 About physical databases 2-3
211 Segments 2-4
212 DMCLS 2-4
213 Database nametables 2-5
2.2 Separating logical and physical database definitions 2-7
2.3 Beforeyou begin 2-8
Chapter 3. Defining Segments, Files, and Areas 31
3.1 About segments, files,andareas L. 33
311 Files . . 3-3
312 Ar€as 34
32 Planning 35
321 Segment boundaries 35
322 Mappingareastofiles 3-6
323 Pageranges 3-6
324 Pagegroups 3-6
325 Recordsperpage 3-7
326 Pageresarve 3-8
3.2.7 Resolving symbolic parameters 3-8
3.28 Synchronizationstampso 39
3.2.9 Specifying data set name information 3-10
3.3 Procedure for defining segments 312
34 Reated information 3-15
Chapter 4. Defining, Generating, and PunchingaDMCL 4-1

Contents iii

41 About DMCLS 4-3

4.2 Datasharing attributes 4-6
4.3 Database buffers 4-8
4.4 Journd buffersand journal files 4-9
44.1 Sizing thejournd buffer o 4-10
442 Sizingjournal files 4-11
45 Adding segmentstotheDMCL L. 4-13
451 Required segments 4-13
45.2 Filelimitations 4-14
453 Areastatus 4-14
45.4 Sharing update accesstodata 4-15
455 Areaoverides 4-16
45.6 Fileoverrides 4-17
4.6 Procedure for definingaDMCL 4-19
4.7 Making the DMCL accessible to the runtime environment 4-22
4.8 Related information 4-23
Chapter 5. Defining a Database Name Table 51
5.1 About database nametables L 53
52 Planning 5-5
521 SQL considerations 55
5.2.2 Non-SQL considerations 5-6
5.2.3 Redtricting subschemanames 5-8
5.2.4 Application dictionaries o 5-8
5.2.5 Defining the default dictionaryo 59
526 Conflictingnames 5-10
5.2.7 Mixed page groups and maximum records per page 5-10
5.2.8 Sharing database nametables 5-12
5.3 Defining and generating the database nametable 5-13
54 Related information 5-15
Chapter 6. Physical Database DDL Statements 6-1
6.1 Statement summary L. 6-3
6.2 Components of a physical DDL statement 6-6
6.3 Naming conventions 6-7
6.3.1 Using lowercase letters in identifiers L. 6-8
6.3.2 Keywords asidentifiers L. 6-8
6.3.3 Entity currency 6-8
6.4 Generic DISPLAY/PUNCH statement 6-10
6.41 Usage 6-11
6.42 Examples 6-11
6.5 DISPLAY/PUNCH ALL statement 6-12
6.51 Usage 6-15
6.5.2 Date selection criteria 6-20
653 Example 6-21
6.6 ARCHIVE JOURNAL statements 6-22
6.6.1 Usage 6-24
6.6.2 Examples 6-25
6.6.3 For more information 6-25
6.7 AREA statements 6-26
6.71 Usage 6-36

iv CA-IDMS Database Administration

6.7.2 Examples 6-41

6.7.3 For moreinformation 6-42
6.8 BUFFER statements 6-43
6.81 Usage 6-47
6.82 Examples 6-48
6.8.3 For more information 6-48
6.9 DBGROUP statements 6-49
6.9.1 Usage 6-51
6.9.2 Examples 6-51
6.9.3 For moreinformation 6-51
6.10 DBNAME statements 6-52
6.10.1 Usage 6-55
6.10.2 Examples 6-56
6.10.3 For more information 6-57
6.11 DBTABLE statements 6-58
6.11.1 USagE 6-60
6.11.2 Examples 6-62
6.11.3 For more information 6-62
6.12 DISK JOURNAL statements 6-63
6.121 Usage e 6-65
6.12.2 Examples 6-66
6.12.3 For more information 6-66
6.13 DMCL statements 6-67
6.13.1 Usage 6-80
6.13.2 Examples 6-81
6.13.3 For more information 6-81
6.14 FILE statements 6-82
6.141 Usage 6-87
6.14.2 Examples 6-88
6.14.3 For more information 6-88
6.15 JOURNAL BUFFER statements 6-89
6.15.1 Usage 6-91
6.15.2 Examples 6-91
6.15.3 For more information 6-92
6.16 SEGMENT statements 6-93
6.16.1 Usage e 6-96
6.16.2 Examples 6-98
6.16.3 For more information 6-98
6.17 TAPE JOURNAL statements 6-99
6.17.1 Usage 6-101
6.17.2 Examples 6-101
6.17.3 For more information 6-102
6.18 Summary of physical database limits 6-103
Chapter 7. Defining a Database UsingSQL 7-1
7.1 Executing SQL data description statements 7-4
7.2 Creatingaschema 7-5
7.3 Cregtingatable 7-6
7.4 DefiningaCALCkey 7-8
75 Defininganindex 7-9

Contents v

7.6 Defining areferential constraint 7-10

7.7 Dropping adefault index 7-12
7.8 Creatingaview 7-13
7.9 For further information 7-15
Chapter 8. Defining a Database UsingNon-SQL 81
8.1 About schemasand subschemas 8-4
8.2 About the schema and subschema compilers 8-6
83 Definingaschema 8-7
83.1 SCHEMA statement 8-7
832 AREA statements 8-8
8.3.3 RECORD statements 8-9
834 SET statements 8-15
835 VALIDATE 8-16
84 Definingasubschema 8-18
8.4.1 Subschemastatement, 8-18
84.2 AREA statements 8-19
84.3 RECORD statements 8-19
8.4.4 SET statements 8-20
8.45 LOGICAL RECORD statements 8-21
84.6 PATH-GROUP statements 8-22
8.4.7 Subschemavalidation and generation 8-23
85 Security checking 8-25
85.1 Checking compiler security 8-25
8.5.2 Checking registration override security 8-26
8.5.3 Checking verb security, . 8-27
8.5.4 Checking component security 8-28
8.6 Establishing schema and subschema currency 8-30
8.7 Reporting on schema and subschema definitions 8-32
8.8 Related information 8-33
Chapter 9. Using the Schema and Subschema Compilers 9-1
9.1 Onlinecompiling 9-4
9.2 Batchcompiling 9-6
9.3 Coding DDL schema and subschema statements 9-7
9.3.1 Statement components 9-7
9.3.2 Ddimiting statements 9-8
9.3.3 Compilercomments 9-8
934 Input format 9-9
935 Errorhandling 9-10
9.4 Coding keywords, variables, and comment text 9-12
94.1 Codingkeywords 9-12
9.4.2 Coding entity-occurrence names 9-12
9.4.3 Coding user-supplied values 9-13
944 Codingcommenttext 9-14
9.5 About compiler-directive statements L. 9-16
9.6 Output from the compilers 9-17
9.6.1 Sourcecode andload modules 9-17
9.6.2 Schema and subschemalistings 9-18
Chapter 10. Compiler-Directive Statements 10-1

vi CA-IDMS Database Administration

10.1 Overview 10-3

10.2 DISPLAY/PUNCH ALL statement 10-4
1021 Usage 10-7
1022 Example 10-10

10.3 DISPLAY/PUNCH IDD statement 10-11
10.3.1 Example 10-12
10.3.2 For more information 10-13

104 INCLUDE statement 10-14
1041 USB0e 10-14
1042 Example 10-15
10.4.3 For more informationo 10-15

105 SET OPTIONS statement 10-16
1051 Usage 10-27
1052 Examples 10-32
10.5.3 For more information 10-32

10.6 SIGNOFF statement 10-33
10.6.1 Usage 10-33

10.7 SIGNON statement 10-34
1071 USBge o 10-35
10.7.2 For more information 10-37

Chapter 11. Operationson Entities 11-1

11.1 ADD operations 11-4

11.2 MODIFY operations 11-5

11.3 DELETE operations 11-6

114 VALIDATE operations 11-7

115 DISPLAY/PUNCH operations 11-8
1151 Usage o 11-10
1152 Examples 11-11
11.5.3 For more informationo 11-11

Chapter 12. Parameter Expansions 12-1

12.1 Expansion of boolean-expression 12-4
1211 USage . . . o o 12-6

12.2 Expansion of db-record-field 12-8
1221 USage 12-8

12.3 Expansion of Ir-field 12-9
1231 Usage 12-9

12.4 Expansion of module-specification 12-10
1241 Usage 12-11
12.42 For moreinformation, 12-11

125 Expansion of user-specification 12-12
1251 USage 12-12

12.6 Expansion of user-options-specification 12-13
12.6.1 For moreinformation 12-14

12.7 Expansion of version-specification 12-15
1271 Examples, 12-15

Chapter 13. Schema Statements 131

13.1 SCHEMA statement 13-4

Contents vii

1301 USADE . o o oo 13-12

1312 Examples 13-13
13.1.3 Reated information 13-14
13.2 AREA statement 13-15
1321 Usage 13-19
1322 Examples 13-20
13.2.3 Reated information 13-20
13.3 RECORD statement 13-21
1331 Usage 13-35
1332 Examples 13-41
13.3.3 Rdated information 13-43
13.4 Element substatement 13-44
1341 USBOE 13-54
1342 Examples 13-64
13.4.3 Reated information 13-68
135 COPY ELEMENTS substatement 13-69
1351 USBE 13-70
1352 Examples 13-70
13.6 SET statement 13-72
136.1 Usage 13-85
13.6.2 Examples 13-88
13.6.3 Related information 13-91
13.7 VALIDATE statement 13-92
1371 Usage 13-92
13.8 REGENERATE statement 13-93
1381 Usage 13-93
Chapter 14. Subschema Statements 14-1
14.1 SUBSCHEMA statement 14-4
1411 Usage 14-12
1412 Examples 14-15
14.1.3 Related information 14-16
14.2 AREA statement 14-17
1421 Usage 14-19
1422 Example 14-20
14.2.3 Related information 14-20
14.3 RECORD statement 14-21
1431 Usage 14-24
1432 Example 14-27
144 SET statement 14-28
14471 Usage e 14-30
1442 Example 14-30
145 LOGICAL RECORD statement 14-32
1451 Usage 14-35
1452 Examples 14-36
1453 Reated information 14-37
14.6 PATH-GROUP statement 14-38
146.1 Usage 14-57
146.2 Example 14-59
14.6.3 Related information 14-60
147 VALIDATE statement 14-61

viii CA-IDMS Database Administration

1471 Usage 14-61

148 GENERATE statement 14-62
149 LOAD MODULE statement 14-63
1491 Usage 14-65
1492 Examples 14-66
14.9.3 Related information 14-66
1410 DISPLAY/PUNCH SCHEMA statement 14-67
14.10.1 Example 14-68
Chapter 15. Writing Database Procedures 151
15.1 About database procedures 15-3
15.2 Specifyingaprocedure 154
15.3 Common uses of database procedures 155
154 Coding database procedures 15-7
1541 AreaprocedureS 15-8
1542 Record procedures 15-8
15.4.3 Database procedure blocks 15-8
15.4.4 Establishing communication between programs and procedures . . . 15-15
1545 Invoking database procedures 15-16
15.4.6 Link editing database procedures 15-16
15.4.7 Calling non-reentrant or non-assembler database procedures 15-17
15.4.8 Executing database procedures 15-20
15.4.9 Resetting the error-status indicator 15-20
155 Database procedure example 15-22

Volume 2. Database Maintenance

Chapter 16. Allocating and Formatting Files 16-1
16.1 Making files accessibleto CA-IDMSDB 16-3
16.2 Typesof files 16-4
16.3 Fileaccessmethods 16-5
16.4 Creating disk files 16-7

16.4.1 Filecharacteristics 16-8
16,5 Formatting files 16-10
16.6 Considerations for native VSAM files 16-11
16.7 Related information 16-12
Chapter 17. Buffer Management 17-1
17.1 Planning database buffers Lo 17-3

17.1.1 How many buffersdoyouneed? 17-3

17.1.2 How many pages should a buffer contain? 17-3

17.1.3 How large should a buffer pagebe? 17-5

17.1.4 Choosing a method for storage acquisition 17-5
17.2 Managing buffers dynamicaly 17-7
17.3 Tuning buffers for performance oL 17-8
174 Using chainedreads 17-9
175 Using read and writedrivers Lo 17-11
17.6 Related information 17-12

Contents ix

Chapter 18. Journaling Procedures 18-1

18.1 About journaling 18-3
18.1.1 Journaling under the central version 18-3
18.1.2 Journdlinginlocal mode 18-4

18.2 About journa files 18-5
18.21 Journa record entries 18-5
18.2.2 Checkpoints 18-6

18.3 Offloading disk journal files 18-9
18.3.1 When CA-IDMS/DB switches journal files 18-9
18.3.2 How to offload the disk journal 18-10
18.3.3 After system shutdown 18-11

18.4 User exits and reports for journal management 18-12

185 Influencing journaling performance 18-13
185.1 Reducing journd filel/O 18-13
18.5.2 Improving warmstart performance 18-14

18.6 Related information 18-16

Chapter 19. Backup and Recovery 19-1

19.1 About database backup and recovery 19-3

19.2 Backup procedures 19-4
19.2.1 Back up after anormal system shutdown 19-5
19.2.2 Backup while the DC/UCF systemisactive 19-5
19.2.3 Back up before and after local modejobs 19-10
19.2.4 Automating the backup process 19-11

19.3 AUtOMALiC reCoVErY 19-14
1931 Warmstart 19-14
19.3.2 Automaticrollbacko 19-16

19.4 Manual recovery 19-18
19.4.1 Recovery fromaquiesced backup L. 19-19
19.4.2 Recovery fromahotbackup 19-21
19.4.3 Reducing recovery time 19-28
19.4.4 Recovering alarge number of files 19-30

19.5 Recovery procedures after a warmstart failure 19-31

19.6 Recovery procedures from database file /O errors 19-33

19.7 Recovery procedures from journa filel/Oerrors 19-37

19.8 Recovery procedures for local mode operations 19-40
1981 Nojournaling 19-40
19.8.2 Journaling to atapedevice 19-40
19.8.3 Journaling to adisk device 19-40
19.8.4 Using an incomplete journal file 19-40

19.9 Recovery procedures for mixed-mode operations 19-42

19.10 Data sharing recovery considerations 19-44

19.11 Considerations for recovery of native VSAM files 19-47

Chapter 20. Loading a Non-SQL Defined Database 20-1

20.1 About database loading 20-3

20.2 Loading database records using FASTLOAD 20-4
20.2.1 Genera considerations 20-4

20.3 FASTLOAD procedure 20-6

20.4 Loading database records using a user-written program 20-7
20.4.1 Organizing input data for a user-written program 20-7

x CA-IDMS Database Administration

20.4.2 Loadingthedatabase 20-9

20.5 Related information 20-11
Chapter 21. Loading an SQL-Defined Database 21-1
21.1 About databaseloading 21-3
21.2 Loading considerations 21-7
21.3 Contents of theinput file 21-10
214 Loading procedures 21-12
21.4.1 Stepsthat apply to all load procedures 21-12
21.4.2 Full load procedure 21-13
2143 Phased load procedure 21-13
2144 Segmented load procedure 21-15
21.45 Stepped load procedure 21-16
215 Related information 21-20
Chapter 22. Monitoring and Tuning Database Performance 22-1
22.1 Monitoring guidelines 22-3
22.2 Monitoring facilities 22-4
22.3 Itemsto monitor andtune 22-5
2231 Journa Use 22-5
22.3.2 Buffer utilization 22-6
22.3.3 Space management and database design 22-7
2234 Indexing efficiency 22-8
2235 Databaselocks 22-9
22.3.6 Longtermlocks 22-13
2237 SQL processing 22-14
224 Reducing /O L 22-15
22.4.1 Through database reorganization 22-15
22.4.2 Through applicationdesign 22-16
22.4.3 Through database design 22-16
22.4.4 By using UPDATE STATISTICS (SQL-accessed databases) 22-16
Chapter 23. Dictionaries and Runtime Environments 23-1
23.1 About dictionaries 23-3
23.1.1 Physical components of adictionary 23-3
23.1.2 Logical components of adictionary 23-4
23.1.3 Assigning dictionary areasto segments L. 23-5
23.1.4 Sharing dictionary areas 23-6
23.2 CA-supplied dictionary definitions 23-8
23.2.1 Logical database definitions oL 23-9
23.2.2 Protocols, nondatabase structures, and modules 23-11
23.3 Defining new dictionaries 23-13
23.3.1 Defining new catalog components 23-13
23.3.2 Defining new application dictionaries 23-14
23.3.3 Defining new system dictionaries 23-16
23.4 Edtablishing a default dictionary 23-19
23.5 About runtime environments 23-20
2351 SYSIDMS parameter file 23-22
23.5.2 Establishing sessionoptions 23-23
23.6 Related information 23-25

Contents xi

Chapter 24. Migrating from Test to Production 24-1

24.1 About migration 24-3
24.2 Establishing migration procedures L 24-4
24.3 Implementing migration procedures L 24-5
24.3.1 Step 1: Determine the types of components to migrate 24-5
24.3.2 Step 2: Determine the sequence of migration 24-9
24.3.3 Step 3: Identify the individual components 24-11
2434 Step 4: Migrate the components L. 24-11
244 ldentificationaids 24-12
245 Migrationtools 24-15
246 General methods 24-17
24.6.1 Using the DISPLAY statement 24-17
24.6.2 Usingthe PUNCH statement 24-18
24.6.3 Using the mapping compiler and mapping utility 24-22
24.6.4 For SQL-defined entities 24-23
24.7 Additional considerations 24-25
2471 Additional tasks 24-25
Chapter 25. Moaodifying Physical Database Definitions 25-1
25.1 Maodificationsyoucanmake L 25-3
25.2 Making the changes available under the central version 25-7
25.3 Dynamic DMCL management 25-8
254 Changing afilesaccessmethod 25-10
254.1 Step 1: Expand the pagesize 25-10
25.4.2 Step 4: Copy the datatothenew file 25-10
255 Increasingthesizeof anarea 25-12
2551 Increasing an areaspage Size 25-12
2552 Extending an arealspagerange 25-13
25.6 Adding or dropping files associated withanarea 25-14
25.7 Changing thesize of adiskjourna 25-15
25.8 Changing the access method of adisk journal 25-16
259 Related information 25-17
Chapter 26. Modifying Database Name Tables 26-1
26.1 Changesyoucanmake, 26-3
26.2 Procedure for modifying database nametables 26-4
26.3 Related information 26-5
Chapter 27. About Modifying SQL-Defined Databases 27-1
27.1 What you can modify 27-3
27.2 Methods for modifying 27-4
Chapter 28. Moaodifying Schema, View, and Table Definitions 28-1
28.1 Maintaining schemas 28-4
28.1.1 Dropping an existingschema 28-4
28.1.2 Maodifyingaschema 28-4
282 Maintaining Views 28-5
2821 Dropping aVview 28-5
28.22 Modifyingaview 28-5
28.3 Maintainingtables 28-7
2831 Creatingatable 28-7

xii CA-IDMS Database Administration

28.3.2 Droppingatable 28-7

28.3.3 Addingacolumntoatable 28-8
28.3.4 Dropping acolumn fromatable 28-9
28.3.5 Changing the characteristics of acolumn 28-10
28.3.6 Adding or removing data compression 28-10
28.3.7 Adding anew check constraint 28-10
28.3.8 Dropping a check constraint 28-11
28.3.9 Modifying acheck constraint, ... 28-11
28.3.10 Revising the estimated row count for atable 28-11
28.3.11 Changing atablesarea 28-12
28.3.12 Dropping the default index associated with atable 28-12
28.4 Dropping and recreating atable L. 28-14
28.4.1 Method 1 — Using DDL and DML statements 28-14
28.4.2 Method 2 — Using DDL and utility statements 28-16

Chapter 29. Modifying Indexes, CALC Keys, and Referential Constraints 29-1

29.1 Maintaining indexes 29-4
29.11 Creatinganindex 29-4
29.1.2 Droppinganindex 29-4
29.1.3 Changing index characteristics moving anindex 29-5

29.2 Maintaining CALC keys 29-6
29.21 CreatingaCALCkey 29-6
29.2.2 Droppinga CALCkey 29-6

29.3 Maintaining referential constraints L. 29-7
29.3.1 Creating a referential constraint 29-7
29.3.2 Dropping a referential constraint 29-7
29.3.3 Modifying referential constraint tuning characteristics 29-8

Chapter 30. About Modifying Non-SQL Defined Databases 30-1

30.1 Typesof modifications 30-3

30.2 Overview 30-4
30.2.1 Methods for modifying 30-4
30.2.2 Procedure for modifying the non-SQL definitions 30-5
30.2.3 RESTRUCTURE SEGMENT utility statement 30-7
30.24 UNLOAD/RELOAD utility statements 30-7
30.25 MAINTAIN INDEX utility statement 30-8

Chapter 31. Modifying Schema Entities 31-1

31.1 Modifications to an unloaded database L. 31-4

31.2 Schema modifications 31-5
31.2.1 Deletingaschema 31-5
31.2.2 Changing schema characteristics 31-5

31.3 Areamaodifications 31-6
31.3.1 Adding or deletinganarea 31-6
31.3.2 Changing area characteristics 31-7

31.4 Record modifications 31-8
31.4.1 Adding schemarecords 31-8
31.4.2 Deeting schemarecords L 31-8
3143 Changing arecords CALCkey 31-9
31.4.4 Changing the DUPLICATES option on a CALC or SORT key ... 31-11

Contents xiii

31.4.5 Changing the location mode of arecord 31-12

31.4.6 Changing arecordsarea 31-13
31.4.7 Maodifying record elements L 31-14
31.4.8 Changing other record characteristics 31-15
31.4.9 Adding and dropping database procedures 31-16
315 Set modifications 31-17
3151 Addingordeletingaset 31-17
3152 Changingset mode, 31-18
31.5.3 Adding and dropping set pointers 31-19
3154 Changing setorder 31-20
31.5.,5 Changing set membership options 31-21
31.6 Index modifications 31-23
31.6.1 Adding or deleting system-owned indexes 31-23
31.6.2 Changing the location of anindex 31-24
31.6.3 Changing index characteristics 31-24
31.6.4 Adding or deleting index pointers 31-25
Chapter 32. Modifying Subschema Entities 32-1
32.1 Maodifying or deleting a subschema 32-4
32.1.1 Modifyingasubschema 32-4
32.1.2 Deletingasubschema 32-4
32.2 Adding, modifying, or deleting arecord 32-6
32.3 Adding, modifying, or deletingaset 32-7
324 Adding, modifying, or deletinganarea 32-8
32.5 Adding, modifying, or deleting a logical record or path group 32-9
Chapter 33. Space Management 33-1
33.1 About space management 333
332 Databasepages 334
333 Database keys 33-7
33.4 Areaspace management 33-10
3341 SRIrecords 33-11
33.4.2 Space management Pages 33-12
Chapter 34. Record Storage and Deletion 34-1
341 Record storage 34-3
34.1.1 Storing CALCrecords 34-4
34.1.2 Clusteringrecords 34-7
34.1.2.1 Clustering records around achainedset 34-7
34.1.2.2 Storing recordsviaanindexedset 34-9
34.1.3 Storing variable-lengthrecords L. 34-11
3414 Relocated records 34-14
34.2 Record deletion 34-16
34.2.1 Physical deletion 34-16
34.22 Logicd deletion 34-18
Chapter 35. Chained Set Management 35-1
35.1 About chainedsets 353
352 Chainedsets 35-4
35.2.1 Connecting recordstochainedsets 355
35.2.2 Disconnectingrecords 35-6

xiv CA-IDMS Database Administration

35.2.3 Retrievingrecords 35-7

Chapter 36. Index Management 36-1
36.1 Aboutindexed sets 36-3
36.1.1 Structureof indexes 36-5
36.1.2 Connecting recordstoindexedsets 36-11
36.1.2.1 Connecting members to unsorted indexed sets 36-11
36.1.2.2 Connecting members to sorted indexed sets 36-14
36.1.3 Disconnecting records from indexed sets 36-15
36.1.4 Retrievingindexedrecords 36-16
Chapter 37. Lock Management 37-1
37.1 Controlling accessto CA-IDMSdatabases 37-3
372 Readyingareas 37-4
37.21 Areaready modes 37-4
37.22 Centrad versionareastatus 37-7
37.2.3 Default ready mode using navigational DML 37-8
3724 Ready modesand SQL access 37-8
37.3 Physical arealocks 37-11
37.3.1 About physical arealocks 37-11
37.3.2 Controlling update access 37-11
37.4 Locking within central version L 37-13
3741 Logical locks 37-13
3742 Typesof locks 37-14
37.4.3 Logical arealocks 37-15
37.4.4 Arealocking for SQL transactions 37-16
3745 Recordlocks 37-18
37.4.6 System generation options affecting record locking 37-19
37.5 Locking within adatasharinggroup 37-21
375.1 Inter-CV-interest 37-21
37.5.2 Global transactionlocks L 37-21
3753 Proxy locks 37-22
3754 Pagelocks 37-23
37.6 Contralling access to native VSAM files 37-24
37.7 Deadlocks 37-25
37.7.1 How the system detectsadeadlock 37-25
37.7.2 Global deadlock detection 37-26
Appendixes

Appendix A. Sample Physical Database Definition A-1
Appendix B. Sample SQL Database Definition B-1
Appendix C. Sample Non-SQL Database Definition C-1
Appendix D. Native VSAM Considerations D-1
D.1 Native VSAM dataset structures L D-4
D.2 CA-IDMS/DB native VSAM definitions, D-5

Contents xv

D.2.1 Schemadefinition D-5

D.2.2 DMCL definition D-6
D.3 DML functions with native VSAM D-8
Appendix E. Batch Compiler Execution JCL E-1
E.1 Overview of batch compilation E-4
E2 OS/B90JCL e E-7

E.2.1 Schemacompiler E-7

E.2.2 Subschemacompiler E-8
E3 VSE/ESAJCL e E-10

E.3.1 =COPY facility E-10

E.3.2 Schemacompiler E-10

E.3.3 Subschemacompiler E-12

E.3.4 IDMSLBLSprocedure E-14
E4 CMScommands E-20

E.41 Schemacompiler E-20

E.42 Subschemacompiler E-21
E.5 BS2000/0SD JCL E-23

E.5.1 =COPY facility E-23

E.5.2 Schemacompiler E-23

E.5.3 Subschemacompiler E-25
Appendix F. System Record Types F-1

Appendix G. User-Exit Program for Schema and/or Subschema Compiler . G-1

G.1 Whenauser exitiscaled G4
G.2 Rules for writing the user-exit program G5
G.3 Control blocks and sample user-exit programs G-7
G.3.1 User-exit control block G-7
G.3.2 SIGNON Element Block G-7
G.33 SIGNON Block G-8
G.34 Entity control blocko G-8
G.35 Card-image control block G-9
G.4 Sample user-exit program for Schema and/or Subschema Compilers . . . G-10
Appendix H. SYSIDMS Parameter File H-1
H.1 Parameter Summary H-3
H.2 Parameter Descriptions H-6
Index X-1

xvi CA-IDMS Database Administration

How to use this manual

How to use this manual xvii

What this manual is about

This manual contains al information necessary to define, load, and administer a
CA-IDMS/DB database.

xviii CA-IDMS Database Administration

Who should use this manual

This manua is intended for anyone who is responsible for administering one or more
CA-IDMS/DB databases as well as for those whose responsibility lies in administering
a portion of the database, such as database definition.

How to use this manual xix

How this manual is organized

This manual is divided into two volumes as follows:

® Volume 1 — CA-IDMS/DB Database Definition

Chapter 1 — describes the CA-IDMS environment

Chapter 2 — describes defining physical databases

Chapter 3 — describes defining segments, files, and areas
Chapter 4 — describes defining, generating, and punching a DMCL
Chapter 5 — discusses defining a database name table

Chapter 6 — discusses physical database DDL statements
Chapter 7 — describes defining a database using SQL

Chapter 8 — describes defining a database using non-SQL
Chapter 9 — describes using the schema and subschema compilers
Chapter 10 — discusses compiler-directive statements

Chapter 11 — discusses operations on entities

Chapter 12 — discusses parameter expansions

Chapter 13 — discusses schema statements

Chapter 14 — discusses subschema statements

Chapter 15 — discusses writing database procedures

® Volume 2 — Database Maintenance

Chapter 16 — discusses allocating and formatting files

Chapter 17 — discusses buffer management

Chapter 18 — discusses journaling procedures

Chapter 19 — discusses backup and recovery

Chapter 20 — describes loading a non-SQL defined database
Chapter 21 — describes loading an SQL-defined database

Chapter 22 — discusses monitoring and tuning database performance
Chapter 23 — describes dictionaries and runtime environments
Chapter 24 — discusses migrating from test to production

Chapter 25 — discusses modifying physical database definitions
Chapter 26 — discusses modifying database name tables

Chapter 27 — discusses modifying SQL-defined databases

Chapter 28 — describes modifying schema, view, and table definitions

Chapter 29 — discusses modifying indexes, CALC keys, and referential
constraints

xx CA-IDMS Database Administration

Chapter 30 — discusses modifying non-SQL defined databases
Chapter 31 — describes modifying schema entities

Chapter 32 — describes modifying subschema entities
Chapter 33 — describes space management

Chapter 34 — describes record storage and deletion

Chapter 35 — discusses chained set management

Chapter 36 — discusses index management

Chapter 37 — describes lock management

Appendix A — presents a sample physical database definition
Appendix B — presents a sample SQL database definition
Appendix C — presents a sample non-SQL database definition
Appendix D — discusses native VSAM considerations
Appendix E — discusses batch compiler execution JCL
Appendix F — discusses system record types

Appendix G — discusses procedures for coding a user-exit program

Appendix H — presents SYSIDMS parameters

How to use this manual xxi

Related documentation

. CA-IDMS Utilities

1 CA-IDMS QL Reference

. CA-IDMS Database Design

1 CA-IDMS Database Administration Quick Reference
» CA-IDMS QL Programming

. CA-IDMS Navigational DML Programming

xxii CA-IDMS Database Administration

Understanding Syntax Diagrams

Look at the list of notation conventions below to see how syntax is presented in this
manual. The example following the list shows how the conventions are used.

UPPERCASE
OR
SPECIAL CHARACTERS

Represents a required keyword, partial keyword,
character, or symbol that must be entered
completely as shown.

lowercase

Represents an optional keyword or partial keyword
that, if used, must be entered completely as
shown.

underlined lowercase

Represents a value that you supply.

<«

Points to the default in a list of choices.

Towercase bold

Represents a portion of the syntax shown in
greater detail at the end of the syntax or elsewhere
in the document.

\ 4
v

Shows the beginning of a complete piece of
syntax.

\4
A

Shows the end of a complete piece of syntax.

v

Shows that the syntax continues on the next line.

\ 4

Shows that the syntax continues on this line.

\ 4

Shows that the parameter continues on the next
line.

»
>

Shows that a parameter continues on this line.

»— parameter —»

Shows a required parameter.

>—T: parameter :]—————>
parameter

Shows a choice of required parameters. You must
select one.

v

|— parameter J

Shows an optiona parameter.

»

i: parameter :‘
parameter

v

Shows a choice of optional parameters. Select
one or none.

»—v— parameter

Shows that you can repeat the parameter or
specify more than one parameter.

reter L&
»—vY— parameter

Shows that you must enter a comma between
repetitions of the parameter.

How to use this manual xxiii

Sample Syntax Diagram

Required portion of parameter
Optional portion of parameter
User-supplied vaiue

Beginning of Required
the syntax parameter

Syntax continues
on another line

variable

Syntax continues oh this line Comma regqulred between repstition

Required parameter Repetition alfowed

Select one

v KEYWORD variable |

5

v

variable
i: variable ﬂ
variable

Optional keyword

Select one or none Portion of syntax

Default expanded elsewhere

»

End of the syntax

KEYWOH%
— KEYWORD

A 4
A

xxiv CA-IDMS Database Administration

Volume 2. Database Maintenance

CA-IDMS Database Administration

Chapter 16. Allocating and Formatting Files

16.1 Making files accessibleto CA-IDMSDB 16-3
16.2 Typesof files 16-4
16.3 Fileaccessmethods 16-5
16.4 Creating disk files 16-7

16.4.1 File characteristics 16-8
16,5 Formatting files 16-10
16.6 Considerations for native VSAM files 16-11
16.7 Related information 16-12

Chapter 16. Allocating and Formatting Files 16-1

16-2 CA-IDMS Database Administration

16.1 Making files accessible to CA-IDMS/DB

16.1 Making files accessible to CA-IDMS/DB

Steps: To make afile accessible to CA-IDMS/DB, follow these steps:

1. Use physical DDL statements to: define the file within a new or existing segment
and associate it with one or more new or existing areas; include the segment
definition, with any file and/or area overrides, in a DMCL

2. Make available the DMCL in which the file's segment is included
3. Create the file using facilities provided by your operating system
4. Format the file

This chapter describes steps 3 and 4.

Chapter 16. Allocating and Formatting Files 16-3

16.2 Types of files

16.2 Types of files

Available options: CA-IDMS/DB can access data stored in the following types of

files:
File type Access method File structure
Direct access EXCP A file block corresponds to a
(OS/390,VSE/ESA) database page
Physical sequential EXCP (0S/390) A file block corresponds to a
SAM (VSE/ESA) database page
CMS format DASD block 1/0 A file block corresponds to a
minidisk (VM/ESA) database page
PAM UPAM One or more file blocks contain a
(BS2000/0SD) single database page
CA-IDMS/DB VSAM (0S/390, An ESDS VSAM file in which each
VSAM VSE/ESA) Control Interval contains a single
database page plus 8 bytes of control
information used by VSAM
Native VSAM VSAM (0S/390, An ESDS, KSDS, or RRDS VSAM
VSE/ESA) file or PATH in which each VSAM
record corresponds to an IDMS
record

Specifying the file's type in the FILE statement: When you define a file using
aphysical DDL FILE statement, you specify the file's type using these parameters:

FILE statement Corresponding file type

parameter

NONVSAM or Direct access (0S/390, VSE/ESA)
BDAM Physical sequential (0S/390)

CMS format minidisk (VM/ESA)
PAM (BS2000/0SD)

VSAM VSAM (0S/390, VSE/ESA)

ESDS Native VSAM (0S/390, VSE/ESA)
KSDS

RRDS

PATH

16-4 CA-IDMS Database Administration

16.3 File access methods

16.3 File access methods

Determines how CA-IDMS/DB gains access to files: When an application
program issues a call to CA-IDMS/DB for retrieval or storage of a record or row of
data, CA-IDMS/DB maps the database page that contains the record or row to the
corresponding block or blocks in the file. The means by which this mapping occurs
varies according to the access method in use:

" EXCP (OS/390,VSE/ESA)

" SAM (VSE/ESA)

» DASD Block /0 (VM/ESA)
PAM (BS2000/0SD)
VSAM (0OS/390, VSE/ESA)

EXCP access method: The EXCP access method is used in OS/390 and
VSE/ESA in order to take advantage of extended addressing. Using EXCP as an
access method, CA-IDMS/DB maps the database page number to a relative track and
record number. The database page size must equal the block size of the file.

SAM access method: Using SAM as an access method, CA-IDMS/DB maps the
first database page number to a relative block number (RBN) within the sequential
access file. It then reads forward sequentially from that RBN. The database page size
must equal the block size of the file.

DASD block I/0: In VM/ESA, al CA-IDMS/DB files are allocated as separate
minidisks and are accessed using DASD Block 1/0.

» For more information, refer to CA-IDMS Installation and Maintenance Guide —
VM/ESA.

UPAM access method: Using UPAM as an access method, CA-IDMS/DB maps
the database page number to a relative block number and requests one or more blocks
using the UPAM access method.

Using the UPAM access method, CA-IDMS/DB can take advantage of extended
addressing. All PAM file access macros are compiled with the PARMOD=31
parameter.

VSAM access method: CA-IDMS/DB can take advantage of extended addressing
when accessing data by means of the VSAM access method. All VSAM macros use
the AMODE=31 and RMODE=31 parameters. Therefore, all VSAM control blocks
are alocated above the 16-megabyte line.

Accessing VSAM database files: Using VSAM as an access method to VSAM
database files, CA-IDMS/DB maps the database page number to a VSAM control
interval and issues a request to VSAM for that control interval.

Chapter 16. Allocating and Formatting Files 16-5

16.3 File access methods

Accessing native VSAM files: Existing VSAM files to be accessed by
CA-IDMS/DB are referred to as native VSAM files because they are not formatted
into pages as is the case with all other file types. CA-IDMS/DB accesses native
VSAM files using VSAM record-level services. A native VSAM file can have one of
the following structures:

. Key-sequenced (KSDS)
® Entry-sequenced (ESDS)
» Relative record (RRDS)

Regardless of the type of file being accessed, each is represented by a single record
type described to CA-IDMS/DB in a hon-SQL schema definition.

»» For more information, see 16.6, “Considerations for native VSAM files” on
page 16-11 later in this chapter.

Choosing between VSAM and non-VSAM file types: In OS390 and
VSE/ESA, you may define database files as either VSAM or non-VSAM.

VSE/ESA: To define non-VSAM files on FBA disk devices (type 3310 or type
3370), use a sequential label (that is, an SD attribute on the DLBL statement).

16-6 CA-IDMS Database Administration

16.4 Creating disk files

16.4 Creating disk files

Use operating system facilities: Use facilities provided by your operating system
to create and catalog the files.

File placement on disk: You can reduce 1/O response time by planning where you
place files on adisk. In general, spread high activity files across disk devices and
channels. Particularly, consider the placement of disk journa files used by systems
engaged in high-volume update activity.

Valid disk devices for archive and tape journal files: The table below
summarizes the disk device types CA-IDMS/DB supports for archive and tape journal

files:

System Device types

0S/390 Any supported by QSAM
VSE/ESA Any supported by SAM
BS2000/0SD Any supported by DMS
VM/ESA Any supported by QSAM

Valid device types for disk journal files and database files: The table below
summarizes the device types CA-IDMS/DB supports for disk journal files and database

files:

System Device types

0S/390 Any supported by BDAM or VSAM
VSE/ESA Any supported by SAM
BS2000/0OSD Any supported by UPAM

VM/ESA Any supported by DASD Block I/0

Maximum area page sizes: When alocating non-VSAM filesin OS/390 and
VSE/ESA operating systems, the page size of an area is restricted by the track size of
the disk device being used. The table below identifies the maximum page size for
non-VSAM files in OS/390 and VVSE/ESA operating systems:

Chapter 16. Allocating and Formatting Files 16-7

16.4 Creating disk files

Disk device Maximum page size Bytes per track
2311 3624 3625

2314 7292 7294

2321 2000 2092
3330/3330B 13028 13030

3340 8368 8535

3350 19068 19254

3375 32764 36000

3380 32764 47476

3390 32764 56664

16.4.1 File characteristics

Non-VSAM files in OS/390: To create a non-VSAM file in OS/390, use a JCL
statement or a facility such as TSO. The DCB characteristics of the file must be:

Parameter Value

DSORG PS or DA

BLKSIZE Page size of the area(s) mapped to the file
RECFM F

PAM files: To create a PAM file, you use the BS2000/OSD /FILE command. All
PAM files have a block size of 2048 and a database page is mapped to one or more
blocks. In choosing a page size for an area that will be mapped to a PAM file, the
page size should be a multiple of 2048 to optimize the use of disk space.

VSAM files: To create a VSAM database or journa file, you use the IDCAMS
utility from IBM. The following IDCAMS statements are used:

» DEFINE SPACE — Allocates disk space for one or more VSAM files;
alternatively, the database file can be defined in its own data space

8 DEFINE CLUSTER — Creates the database file as an ESDS VSAM cluster
specifying the following attributes:

16-8 CA-IDMS Database Administration

16.4 Creating disk files

RECORDS Assign:

. PRIMARY SPACE as the number of pages mapped
to the file

. SECONDARY SPACE as the value 2
RECORDSIZE Assign:

» AVERAGE as the page size of the area mapped to
the file

. MAXIMUM as the page size of the area mapped to
the file

CONTROL » For database files, assign a value at least 8 bytes

INTERVALSIZE larger than the page size of the area mapped to the
file, but less than twice the page size minus 8 ((2 *
page size)- 8)

m For disk journal files, assign a value that is the
same as the page size of the journal buffer

SHAREOPTIONS Assign (3 3)

REUSE SUBALLOCATE
or UNIQUE

NONSPANNED
NONINDEXED

For more information

® About creating CM S-format minidisks to be used by CA-IDMS/DB, refer to
CA-IDMS Ingtallation and Maintenance — VM/ESA

® About defining and accessing native VSAM files, see 16.6, “Considerations for
native VSAM files’ on page 16-11 later in this chapter.

Chapter 16. Allocating and Formatting Files 16-9

16.5 Formatting files

16.5 Formatting files

What formatting means: Formatting means initializing database or disk journa
files into database pages or blocks according to information provided by the DMCL.

CAUTION:
NEVER format native VSAM files

Formatting database files: When you issue a FORMAT command against a
database file, CA-IDMS/DB:
» Establishes space management pages (SMPs) for the area(s) that map to the file
® |nitializes the space management entry for each database page
» Establishes a header and footer on each database page
m Sets all data portions of database pages to binary zeros
Formatting journal files: When you issue a FORMAT command against a disk

journa file, CA-IDMS/DB formats the file into blocks according to the journal file
specification in the DMCL module. The disk journal file contains:

» Journal header records at the beginning
= Binary zeros in the remainder
Before you begin: Before you format a file, the DMCL that contains the file

definition must be available. The DMCL provides the information CA-IDMS/DB
needs to format the file into database pages or journal file blocks.

Formatting options: You can specify four options on the FORMAT utility
statement. The table below identifies when to use these options:

Action FORMAT option

Format newly-created database file(s) FILE or SEGMENT

Re-format non-empty database file(s) AREA or SEGMENT*

1

Format a disk journal file JOURNAL

1 IDMS VSAM files must use the AREA option

Note: *IDMS VSAM files can only use the AREA option.

Example: The following example instructs CA-IDMS/DB to format all the database
files contained in segment EMPSEG:

format segment empseg;

16-10 CA-IDMS Database Administration

16.6 Considerations for native VSAM files

16.6 Considerations for native VSAM files

About native VSAM files: A native VSAM file is afile that is aready defined to
VSAM and contains VSAM records. Even though a native VSAM file is not
structured as a CA-IDMS/DB database file, users can gain access to it using
CA-IDMS/DB DML. To access data in native VSAM data sets, CA-IDMS/DB
converts DML statements issued by an application program into record-level (not
control-interval) VSAM requests and passes control to VSAM. A CA-IDMS/DB loca
run unit or the central version appears to VSAM as a single application that:

1. Opens VSAM data clusters

2. Activates VSAM paths using local-shared resources (LSR) or non-shared resources
(NSR)
3. Accesses data records

4. Closes the clusters and paths

Native VSAM files contain data: CA-IDMS/DB can access native VSAM files
only if they contain at least one record; that is, the files cannot be empty. This also
implies that empty native VSAM files cannot be loaded using CA-IDMS/DB services.

Defining native VSAM to IDMS: Before an existing VSAM file can be accessed
using CA-IDMS/DB DML statements, both a logical and physical description must be
provided using non-SQL schema and physical DDL statements.

»»> For more information about defining native VSAM files, see Appendix D, “Native
VSAM Considerations’ on page D-1.

Chapter 16. Allocating and Formatting Files 16-11

16.7 Related information

16.7 Related information

About creating and formatting VM/ESA files, CA-IDMS Installation and
Maintenance — VM/ESA

About database file definition and modification, see Chapter 3, “Defining
Segments, Files, and Areas’ on page 3-1 and Chapter 25, “Madifying Physical
Database Definitions’ on page 25-1

About disk journal file definition and modification, see Chapter 4, “Defining,
Generating, and Punching a DMCL” on page 4-1 and Chapter 25, “Modifying
Physical Database Definitions’ on page 25-1

About syntax for the FILE and DISK JOURNAL statements, see Chapter 6,
“Physical Database DDL Statements’ on page 6-1

About loading files, see Chapter 20, “Loading a Non-SQL Defined Database” on
page 20-1 and Chapter 21, “Loading an SQL-Defined Database” on page 21-1

About IDCAMS, see the appropriate IBM publication.
About using native VSAM files, CA-IDMS Database Design Guide

16-12 CA-IDMS Database Administration

Chapter 17. Buffer Management

17.1 Planning database buffers
17.1.1 How many buffers do you need?

17.1.2 How many pages should a buffer contain?

17.1.3 How large should a buffer page be? . . .

17.1.4 Choosing a method for storage acquisition

17.2 Managing buffers dynamically
17.3 Tuning buffers for performance
17.4 Using chainedreads
175 Using read and write drivers
17.6 Related information

Chapter 17. Buffer Management 17-1

17-2 CA-IDMS Database Administration

17.1 Planning database buffers

17.1 Planning database buffers

Tradeoffs to consider: Buffers use space in main memory, but reduce the amount
of 1/0 performed on behalf of your applications. You want to choose the optimal
buffer attributes to achieve a balance between storage resources and 1/O.

What follows: Considerations for assigning values to these attributes appear below,
beginning with a discussion on how many database buffers to define.

17.1.1 How many buffers do you need?

Multiple buffers allowed: As agenera rule, one large buffer is often adequate for
most processing situations. However, you may need to define more buffers to:

» Enhance database performance

m Optimize storage use

Separate buffers to enhance performance: To enhance run-time performance,
you can associate individual files with separate buffers. This reduces contention for
buffer pages.

For example, you can assign a frequently-used index to a separate file and then assign
the file to a separate buffer. Applications can access this index in its own buffer,
while CA-IDMS/DB uses other buffers to hold database pages.

Separate buffers to optimize storage use: The size of a buffer page must be as
large as the largest database page that uses the buffer. Therefore, you can optimize
storage use by assigning files that contain the same or similar block sizes to the same
buffer.

17.1.2 How many pages should a buffer contain?

Minimum number of pages: The minimum number of pages in a buffer is three.
However, a value of at least five is recommended to avoid excessive database I/O
operations and to reduce contention among transactions for space in the buffer.

Maximum number of pages: The maximum number of pages is constrained only
by available memory resources. However, if you alocate too many pages, you may
degrade performance by increasing the amount of virtual paging performed by the
operating system.

Choosing an optimum: Choosing an optimum number of pages comes with
experience gained from tuning your database. However, if most files in the DMCL
use a common buffer, a rule of thumb indicates that the number of buffer pages should
be at least three times the maximum number of anticipated concurrent database
transactions.

Chapter 17. Buffer Management 17-3

17.1 Planning database buffers

Manage the size of the buffer dynamically in response to need: Once a
database is in operation under the central version, you can dynamically change the
number of pages in the central version buffer with a DCMT VARY BUFFER
statement. By changing the size dynamically, you can determine the optimum size for
the buffer by monitoring the buffer utilization ratio, which is described in 17.3,
“Tuning buffers for performance” on page 17-8 below.

Local mode vs. central version specifications: You can size a buffer
differently for local mode and central version use. This feature allows you to optimize
use of memory resources. For example, you could specify that a particular buffer will
hold 100 pages when used in local mode and 500 pages when used under the central
version. Under local mode, the buffer is smaller because it supports only a single
application; under the central version, the buffer is larger because it supports multiple,
concurrent applications.

Initial and maximum allocations under the central version: Buffers defined
to run under the central version can be assigned an initial number of pages and a
maximum number of pages. Depending on the amount of system activity, you can use
the DCMT VARY BUFFER command to change the number of pages in the buffer;
for example, use the DCMT VARY BUFFER command to increase the number of
buffer pages during peak system usage or to reduce the number of buffer pages at
other times.

You can use JCL to increment size of local mode buffer: At OS/390 sites,
you may want to increase the size of the buffer for a specific application, such as
loading a database. You can do this without modifying the buffer definition by
specifying additional buffer pages in the BUFNO parameter of the JCL statement
identifying a file associated with the buffer. At runtime, CA-IDMS/DB acquires
storage for the buffer equal to the number of pages specified in the DMCL's buffer
definition plus the value assigned to BUFNO for each file associated with the buffer.

Associating buffers with files cached externally: In certain operating systems,
you can cache database files in an external cache.

® In OS/390 you can cache files in a dataspace or in a shared cache residing in a
coupling facility

= |n VSE/ESA you can cache files in a dataspace

If afileis cached externally, CA-IDMS reads database pages from the cache into the
database buffer. If it modifies the database page, CA-IDMS writes the modified page
back to disk and to the cache. One advantage of a cache is a reduction in the number
of 1/Os to the file. Another advantage is that you may be able to reduce the number
of pages in your buffer pool, relying on the cache to hold pages while not in use.

Dataspaces provide larger caching capabilities than database buffers (even those
allocated above the 16-megabyte ling). However, you must have sufficient expanded
storage on your machine to support the use of dataspaces. Without adequate storage,
the paging overhead associated with the system can increase significantly.

17-4 CA-IDMS Database Administration

17.1 Planning database buffers

If using a coupling facility cache, you must have enough coupling facility space to
hold the most frequently accessed pages, in order to make its use worthwhile. An
additional advantage of a coupling facility cache is that it can be shared by more than
one central version.

External caching in a dataspace or coupling facility is not available for native VSAM
files.

»»> For more information about using a shared cache, refer to CA-IDMS System
Operations.

Using Batch LSR for VSAM files: At OS/390 sites, VSAM database files can
make use of IBM's Batch Shared Resources Subsystem (Batch LSR) by specifying the
SUBSY S JCL parameter. At runtime, CA-IDMS/DB opens the VSAM database file
and the VSAM Batch LSR subsystem converts the buffer management technique to

L SR processing and alows the buffer pool to be created in hiperspace. Batch LSR is
also supported for native VSAM files.

Batch LSR improves performance for actively used files: By using Batch
LSR, you can reduce the number of pages in the buffer associated with the file in your
DMCL because VSAM and the Batch LSR subsystem can create a large buffer pool in
hiperspace which will minimize the number of 1/Os. This feature offers performance
improvements for files that are actively used.

SUBSYS subparameters: Use of the Batch LSR subsystem and the number and
location of the buffers is controlled by use of the SUBSY S JCL parameter and its
subparameters. Use the MSG=I subparameter to display the batch LSR subsystem
messages on the job log. Do not use DEFERW=Y ES because it could affect the
integrity of your database in the event of a system failure.

17.1.3 How large should a buffer page be?

Pages as large as largest database page: The page size for a buffer must be
able to hold the largest database page that will be read into that buffer. Therefore, to
conserve system resources, try to assign files to the buffer with roughly equivalent
block sizes (a block equals a database page). At BS2000/0OSD sites using PAM files,
the size of a buffer page should be a multiple of 2048 bytes.

17.1.4 Choosing a method for storage acquisition

Choosing IDMS or OPSYS: The IDMS and OPSY S options on the BUFFER
statements determine how CA-IDMS/DB acquires storage for the buffer and the source
of this storage:

® |f you specify OPSY S storage, CA-IDMS/DB issues one or more requests to the
operating system for a contiguous block of storage. If the operating system
supports extended addressing, the storage will be acquired above the 16-megabyte
line.

Chapter 17. Buffer Management 17-5

17.1 Planning database buffers

n |f you specify IDMS storage, CA-IDMS/DB issues separate storage requests for
each page in the buffer. The storage is acquired from IDMS-managed storage and
will reside above the 16-megabyte line under the following conditions:

— Inloca mode, if the operating system supports extended addressing

— Under the centra version, if an XA storage pool exists which supports
system-type storage.

Advantages of using OPSYS storage: The OPSY S storage option offers an
advantage to sites that define large buffers because of the way storage is acquired. For
example, a buffer defined with an initial number of pages of 1000 will result in a
single storage request for the entire 1000 pages if OPSY S is specified or 1000 storage
requests if IDMS is specified. Another advantage is that the OPSY S storage is
acquired outside the IDMS storage pool while IDMS storage is acquired from the
IDMS storage pool. Therefore, the storage pool must be large enough to hold the
buffer.

Insufficient storage under the central version: When initialy alocating a
buffer or when increasing the size of a buffer in response to a DCMT command,
CA-IDMS/DB may be unable to acquire all the necessary storage. If this occurs and
the storage acquisition mode is OPSY'S, CA-IDMS/DB will attempt to acquire the
storage from the IDMS storage pool. Whenever acquiring storage from the IDMS
storage pool, if the necessary storage cannot be acquired or if the DC/UCF system is
placed in a short-on-storage condition, the number of pages in the buffer is reduced by
half until the necessary storage can be acquired without a short-on-storage condition.

17-6 CA-IDMS Database Administration

17.2 Managing buffers dynamically

17.2 Managing buffers dynamically

Changing buffer characteristics: Once a database is in operation, you can vary
the characteristics of buffers dynamically by issuing the DCMT VARY BUFFER
statement.

By making a temporary change to a buffer setting online, you can evaluate the
potential impact this change might have on overall system performance. This alows
you to identify the optimal settings for your buffers. When you have identified the
optimal settings, you can make permanent changes to the buffer definitions by using
the ALTER BUFFER statement.

Types of changes: The following buffer characteristics can be changed using
DCMT commands:
= The number of pages in the buffer pool

» The number of pages to be acquired in each storage request (this value defaults to
the initial number of pages in the buffer pool)

= The maximum number of pages in the buffer pool
® The storage acquisition mode (OPSY S or IDMS)

. Whether or not the chained read facility is activated and the number of pages that
must be in the buffer to invoke chained reads as described under 17.4, “Using
chained reads’ on page 17-9 later in this chapter

®» Whether or not afile is associated with a shared cache using a DCMT VARY
FILE/AREA/SEGMENT command

If the number of pages in the buffer pool is changed to any value between the initial
and maximum number of pages, the change is effective immediately. Changing the
number of pages in the buffer pool beyond this range or changing other buffer
characteristics takes effect only after the buffer is closed and re-opened. The buffer
can be closed using a DCMT VARY BUFFER command and it will be re-opened
automatically when the next read occurs for a file associated with the buffer.

Varying a DMCL: The following buffer changes can be made dynamically by
varying a new copy of the DMCL.:

® The page size of a buffer can be changed

» New buffers can be added to the system

» Existing buffers can be removed from the system

® Files can be associated with a different buffer
Other characteristics, such as the number of pages in the buffer or the storage

acquisition mode, are not affected by varying a new copy of the DMCL. To
dynamically make such changes, use the DCMT VARY BUFFER command.

Chapter 17. Buffer Management 17-7

17.3 Tuning buffers for performance

17.3 Tuning buffers for performance

When to add more database buffers: If your monitoring operations reveal

contention among applications for use of your buffers, you may need to add more
buffers. For example, you may create a new buffer and assign it to a file that is

accessed frequently; files that are accessed infrequently can share buffers without
incurring contention among applications.

To determine which files within a buffer are accessed most frequently, issue the
DCMT DISPLAY STATISTICS BUFFER command with the FILE option. This will
show the number of pages requested as well as the number of reads and writes issued
for each file associated with a specific buffer.

When to change the database buffer page size: You may have to change the
buffer's page size if you associate different files with the buffer. The buffer's page
size must be as large as the largest database page in any file associated with the
buffer. Therefore, if new files assigned to the buffer contain larger database pages, the
buffer page must be increased accordingly; likewise, if the files are removed from the
buffer, you may be able to decrease the buffer page size to conserve memory
resources.

When to change the number of database buffer pages: You can use the
buffer utilization ratio to determine if a buffer has the optimal number of pages.
This ratio is the number of database pages requested to the number of database pages
CA-IDMS/DB reads from disk. A high ratio (above 2) indicates an effective buffer
size. A lower ratio indicates that the buffer has too few pages.

You can use the DCMT DISPLAY STATISTICS BUFFER command to determine
these values. You can aso obtain them from the Performance Monitor, JREPORTS,
and SREPORTSs.

17-8 CA-IDMS Database Administration

17.4 Using chained reads

17.4 Using chained reads

What chained reads do:

Chained reads allows IDMS/DB to read multiple blocks

from disk with a single I/O request. It can significantly reduce both elapsed and CPU
times for applications that process multiple contiguous pages within an area.

CA-IDMS/DB automatically uses chained reads under OS/390 and VSE/ESA both in
local and central version processing under these conditions:

» The file being accessed is non-VSAM

m The file is not associated with a dataspace or a shared cache

» The buffer pool for the file contains a page count of at least 255 pages

= And, one or more of the following applies:

— An area sweep is being performed

— An SQL request is processed in such a way that multiple contiguous pages
will likely be accessed (walking a clustered set or index, performing an index
scan) — then need a buffer pool with at least 500 pages (or the prefetch_buf
SYSIDMS value)

— One of the following utility functions is executing:

ARCHIVE LOG

BACKUP

BUILD INDEX

CLEANUP

MAINTAIN INDEX

PRINT LOG

PRINT SPACE
RESTRUCTURE SEGMENT
RESTRUCTURE CONNECT
UNLOAD

UPDATE STATISTICS
VALIDATE

Note: Several other utilities such as ARCHIVE JOURNAL use QSAM

processing for their sequential processing.

How chained reads work: When chained reads is active, a single start 1/O reads
up to an entire track at one time. If some of the pages are already in core, those pages
are skipped (that is, they are not read).

Chapter 17. Buffer Management 17-9

17.4 Using chained reads

When IDMS/DB processes an entire areg, it issues multiple start [/0Os. Under the
central version, without read drivers, two start 1/0s will be issued; in local mode, as
many as ten start 1/0s will be issued (subject to buffer pool size). IDMS/DB overlaps
multiple start 1/Os to reduce elapsed time.

Controlling the use of chained reads: Under the central version, use the
PREFETCH option of the DCMT VARY DMCL, AREA, FILE, or BUFFER
commands to control when to use chained reads. ON is the default. OFF takes
precedence over ON at a lower level. For example, varying PREFETCH OFF for an
area will disable it for all files associated with that area. The default prefetch limit of
500 pages under the central version can be overridden by using the following
command:

DCMT VARY BUFFER <buffer-name> PREFETCH <limit>

For example, if the limit for a buffer pool is set to 100, then (provided that there are at
least 100 buffer pages) chained reads will be used for all files associated with the
buffer.

Monitoring effectiveness: To determine the effectiveness of chained reads in your
system, use the OPER WATCH DB |0 command, which displays the number of start
I/Os and number or page I/Os using chained /O for a given task. It aso reports, for a
given area, the ratio of pages read to start 1/Os.

It is possible that certain applications or processing loads may either experience no
improvement or incur increased overhead because chained reads may cause pages to be
prematurely flushed from the buffer. If such a situation occurs, you can disable
chained reads for local mode or central version by specifying PREFETCH=0OFF as a
SYSIDMS parameter.

17-10 CA-IDMS Database Administration

17.5 Using read and write drivers

17.5 Using read and write drivers

Read drivers: A read driver performs "look-ahead" reads when IDMS/DB is
instructed to sweep an area. When it is activated, it uses chained reads to read a track
of pages beginning with the third or fourth tracks from the start of the area sweep and
attempts to "stay ahead” of processing the pages. Use the DCMT VARY DB READ
ON/OFF command to activate or de-activate the read driver for an area.

Write drivers: A write driver facilitates writing pages from the buffer to disk.
IDMS/DB invokes a write driver under these conditions:

® When atransaction is committed and the buffer contains at least five updated
pages. The driver writes all the pages in the buffer updated by the transaction.

® When more than 75% of the pages in the buffer are updated pages.

Use the DCMT VARY DB WRITE DRIVER ON/OFF command to activate or
de-activate the write driver.

Chapter 17. Buffer Management 17-11

17.6 Related information

17.6 Related information

» About defining database buffers, see Chapter 4, “Defining, Generating, and
Punching a DMCL” on page 4-1

. About DCMT commands, refer to CA-IDMS System Tasks and Operator
Commands

» About shared cache, refer to CA-IDMS System Operations

17-12 CA-IDMS Database Administration

Chapter 18. Journaling Procedures

18.1 About journaling 18-3
18.1.1 Journding under the central version L. 18-3
18.1.2 Journdinginloca mode, 18-4

18.2 About journal files 18-5
18.2.1 Journal record entries 18-5
18.2.2 Checkpoints 18-6

18.3 Offloading disk journa files 18-9
18.3.1 When CA-IDMS/DB switches journal files 18-9
18.3.2 How to offload the disk journal 18-10
18.3.3 After system shutdown 18-11

18.4 User exits and reports for journal management 18-12

185 Influencing journaling performance 18-13
185.1 Reducing journal filel/O 18-13
18.5.2 Improving warmstart performance 18-14

18.6 Related information 18-16

Chapter 18. Journaling Procedures 18-1

18-2 CA-IDMS Database Administration

18.1 About journaling

18.1 About journaling

Journals log database activity: Journals log database activity. Specifically,
journas log:

» The before and after images of modified records and rows
® The status of transactions accessing the database

Note: Throughout the remainder of this chapter, the term record is used to mean both
record and row.

What follows: A brief description of journaling under the central version and in
local mode follows. The remainder of the chapter describes:

® The contents of ajourna file
» Offloading disk journa files
m User exits and reports CA supplies to assist journal management

® Managing journal files dynamically

18.1.1 Journaling under the central version

Update and retrieval transactions: Under the central version, several
transactions can update the database concurrently. CA-IDMS/DB writes information
about all update transactions to the journa files. CA-IDMSDB also writes status
information about retrieval-only non-SQL transactions if JOURNAL RETRIEVAL is
specified in the system generation SY STEM statement. No information is recorded on
the journal file for retrieval-only SQL transactions.

Use disk journals under the central version: You must use disk journals for
automatic recovery under the central version. Automatic recovery occurs during
warmstart, following the abnormal termination of a transaction, and under the
command facility due to a statement error.

»»> For more information about automatic recovery, see Chapter 19, “Backup and
Recovery” on page 19-1.

Need at least two disk journals: Under central version, you need at least two
disk journals. As one file becomes full, CA-IDMS/DB automatically switches to an
aternate file. While CA-IDMS/DB writes to the alternate file, the full disk journal file
must be offloaded using the ARCHIVE JOURNAL utility statement. This procedure
is described in more detail later in this chapter.

Chapter 18. Journaling Procedures 18-3

18.1 About journaling

18.1.2 Journaling in local mode

Journaling may not be necessary: When you execute an application in local
mode, that application is the only one that has access to any areas it updates.
Therefore, journaling may not be necessary in local mode, provided you backup the
database files before and after executing an application that updates the database.
Typically, you journal in local mode when your database is too large to backup in a
reasonable amount of time.

Must use tape journals in local mode: To journa in local mode, you must use
a DMCL that defines a tape journal file. You can assign the tape journal file to either
a disk or tape device. However, if you journal to a disk device, you must copy the
file to a tape device before performing a manual recovery operation.

18-4 CA-IDMS Database Administration

18.2 About journal files

18.2 About journal files

Journal record types: Database activity is recorded on ajournal file (tape or
disk). CA-IDMS/DB writes the following information to the journal:

m Journal record entries that contain the image of database records

® Checkpoints that describe the status of transactions accessing the database

Writing journal blocks: CA-IDMS/DB accumulates journal records in the journal
buffer. It writes the journa buffer to a journa file when one of the following
conditions occurs:

® The buffer is full.

® A page containing an updated record occurrence whose before image is in the
journal buffer, is to be written back to the database.

m A recovery unit (that is, that part of a transaction that falls between two
checkpoints) terminates. A recovery unit terminates when the application issues a
COMMIT (WORK), ROLLBACK (WORK), or FINISH command, or when the
application aborts.

Note: All journal file blocks are the same length, whether or not the buffer is full
when the buffer is written to a journal file.

18.2.1 Journal record entries

Log changes in records: CA-IDMS/DB uses journal record entries to log changes
to the records in a database. A journal record entry is an image of a database record.
As a database record is added, deleted, or modified, CA-IDMS/DB writes a before
image that contains the image of the record before update and an after image that
contains the image of the record after update.

Journal images for modified records: On a change to an existing record, the
contents of before and after images are dependent on how the processing of the DML
statement affects the database record:

Affect on database Contents of journal record entry

record

Data in the record » Database key of the record occurrence
changes

» Prefix portion of the record occurrence

» Data portion of the record occurrence

Record's relationships in a » Database key of the record occurrence

set changes m Prefix portion of the record occurrence

Chapter 18. Journaling Procedures 18-5

18.2 About journal files

Journal images for new or deleted records: If a DML statement adds a hew
record occurrence into the database, the before image of the record is null. Similarly,
if a DML statement removes a record occurrence, the after image of the record is null.

18.2.2 Checkpoints

Describe transaction status: Checkpoints describe the status of transactions
accessing the database. CA-IDMS/DB writes these checkpoints to the journal buffer:

18-6 CA-IDMS Database Administration

18.2 About journal files

Checkpoint

Description

BGIN

Written automatically to the journal file when an application initiates
a non-SQL database transaction if JOURNAL RETRIEVAL is
specified, or when the first update occurs, if NOJOURNAL
RETRIEVAL is specified.

ENDJ

Written automatically to the journal file when an application
executes a FINISH or COMMIT WORK statement, marking the
normal termination of a transaction.

COMT

Written to the journal file when an application executes a COMMIT
or COMMIT WORK CONTINUE statement, marking the end of a
recovery unit within the transaction.

ABRT

Written to the journal file when an application executes a
ROLLBACK or ROLLBACK WORK statement or, if running under
the central version, when the CV automatically recovers a failing
transaction. An ABRT checkpoint marks the abnormal completion
of a transaction.

AREA

Written for each area readied by an explicit DML READY
command or readied automatically by the DBMS.

RTSV

Written automatically to the journal file each time CA-IDMS/DB
encounters an error while executing an SQL or physical DDL
statement that updated the database. During recovery,
CA-IDMS/DB rolls back to the journal record designated by the
RTSV checkpoint record.

TIME

Written to a journal each time the journal's buffer is initialized.
However, the time and date fields contain binary zeros until the
journal buffer is written to the journal file.

BFOR

Written to a journal each time a record is updated and carries the
image of that record before the change was made

AFTR

Written to a journal each time a record is updated and carries the
image of that record after the change was made

CKPT

Written to a journa each time one or more transactions are
committed. This record is used to coordinate the commit of several
transactions at the same time.

USER

Written to a journal via the WRITE JOURNAL command issued by
auser program

JSEG

Written to a journal at the beginning of each disk journal segment.
This record identifies the transactions that were active when that
journal segment was started.

DSEG

Written periodically to the journal to identify the transactions that
are active at a given point in time.

Chapter 18. Journaling Procedures 18-7

18.2 About journal files

Note: ENDJ, COMT, and ABRT checkpoints are written to the journal file only by
transactions for which a BGIN checkpoaint is also written.

18-8 CA-IDMS Database Administration

18.3 Offloading disk journal files

18.3 Offloading disk journal files

What happens when you offload a disk journal file: The ARCHIVE
JOURNAL utility statement offloads the contents of a disk journal file to an archive
journa file. It also rebuilds the disk journal file, condensing all before images for
each active transaction into new journal blocks at the beginning of the file. This
process creates a journa file that contains only those before images that are needed if
an active transaction aborts or regquests rollback.

Creating multiple archive files: CA-IDMS/DB will offload the disk journal files
to multiple archive files if more than one is defined in the DMCL used when
executing the ARCHIVE JOURNAL utility statement. By creating multiple archive
files, you increase the likelihood that a readable archive file is available in the event it
is needed for manual recovery. If an I/O error is encountered while writing to one of
the archive files, a warning message is issued and offloading continues without further
writes to the damaged file. If all archive files incur write errors, execution is aborted.

When to offload: You normally offload disk journa files only when:
» CA-IDMS/DB switches to another disk journa file
» The DC/UCF system is shut down and the database is backed up

The procedure for each scenario is provided below followed by a description of how to
restart an offload operation.

18.3.1 When CA-IDMS/DB switches journal files

When switch occurs: CA-IDMS/DB switches to another disk journa file when:
® The active disk journal becomes full
B Youissue a DCMT VARY JOURNAL command under the central version
B An /O eror is detected on the active disk journal file

What happens when the switch occurs: When CA-IDMS/DB switches to
another disk journal file, it writes a message to the operator, indicating that a swap has
occurred and that the previously active journa file needs offloading. The operator
should respond to this message by offloading the full file.

Eliminating operator intervention: You can eliminate the need for operator
intervention by using a write-to-operator exit routine that intercepts and reviews the
message to the operator and responds by automatically submitting a job to offload the
full journd file.

»» For information about the WTOEXIT user exit and sample routines for each
operating system, refer to CA-IDMS System Operations.

Chapter 18. Journaling Procedures 18-9

18.3 Offloading disk journal files

18.3.2 How to offload the disk journal

ARCHIVE JOURNAL utility statement: To offload the journal, you execute the
ARCHIVE JOURNAL utility statement using the batch command facility. Y ou should
use the default option of AUTO so that the oldest non-archived journa file is selected
for processing.

System failure during offload: If the operating system fails while an ARCHIVE
JOURNAL statement is executing, resubmit the ARCHIVE JOURNAL job using the
RESTART parameter and identifying the journal file that was being processed at the
time of failure.

Potential problems while offloading: You may encounter two types of problems
when you offload journal filesin an active system:

1. The offloaded journal fileis still full following the offload because it contains
before images for uncommitted transactions active at the time of the offload. The
ARCHIVE JOURNAL utility statement issues messages indicating how full the
disk journal file is after being offloaded. If it is full, it is usually because a
long-running batch job is updating the database without issuing intermediate
COMMIT statements. In this case, consider cancelling the offending job. If you
allow the job to continue, it may cause al disk journal files to fill (even after
being offloaded), at which point the DC/UCF system must be cancelled alowing
warmstart to recover the database.

2. The remaining disk journa files fill before ARCHIVE JOURNAL completes
offloading a single file. When this occurs, CA-IDMS/DB temporarily halts further
database activity until the offload job is complete.

Prevention for problem 1: To prevent afull disk journal following an offload,
take one or more of the following steps:

» Ensure that batch update programs issue frequent COMMITS to reduce the number
of before images that must be retained on the journal file

n Allocate larger disk journa files

» Execute long-running update programs in local mode
Prevention for problem 2: To prevent future disk journd file overloading, take
one or more of the following steps:

® Allocate larger disk journal files

® Increase the number of disk journa files

» Execute long-running update programs in local mode.

18-10 CA-IDMS Database Administration

18.3 Offloading disk journal files

18.3.3 After system shutdown

Offload all files: After a normal system shutdown, you may offload all non-empty
journa files, by executing an ARCHIVE JOURNAL utility statement with the ALL
option:

archive journal all;
Usually done in conjunction with backup: Offloading all journa files

following a system shutdown is usually performed in conjunction with backing up the
database.

» For more information about backup, see Chapter 19, “Backup and Recovery” on
page 19-1.

Chapter 18. Journaling Procedures 18-11

18.4 User exits and reports for journal management

18.4 User exits and reports for journal management

User exits: The table below describes user exits that you can use in managing your

journals:

IDMSAJINX

Can be used to collect statistics on database activities;
CA-IDMS/DB invokes this exit as it offloads a journal record
page to the archive file

IDMSDPLX

Can be used to maintain duplicate journal files, CA-IDMS/DB
invokes this exit each time it writes to the disk journa or a
database file;

IDMSINL2

Can be used for duplicating journal information and statistics
collection; CA-IDMS/DB invokes this exit each time it writes
ajournal buffer to the journa file

WTOEXIT

Can be used to automatically initiate a journal offload
following a switch to a new journa file. CA-IDMS/DB
invokes the exit each time a message is written to the
operator.

»» For more information about these user exits and how to invoke them, refer to
CA-IDMS System Operations.

Reports: The table below summarizes reports you can use to manage your journals:

JREPORTSs

Report on the content of the journa file as follows:
® Transaction summary
® Program termination statistics
® Program 1/O statistics
= Program summary
® Transactions within an area
® Programs within an area
® Area summary

You can also request a formatted dump of the journal file

PRINT JOURNAL
utility

Reports on checkpoint information for transactions
recorded on the archive file; this information is useful for
rollback and rollforward operations

18-12 CA-IDMS Database Administration

18.5 Influencing journaling performance

18.5 Influencing journaling performance

CA-IDMS/DB provides facilities to:
® Reduce the amount of /O activity for journal files under the central version

® Reduce the time needed to warmstart a central version following abnormal
termination

18.5.1 Reducing journal file I/0O

Increasing journal buffer size:: If your system encounters frequent or sizable
rollback operations, it may be possible to reduce the /O to the journal file by
increasing the number of pages in the journal buffer. Minimally, the journal buffer
should hold at least 5 pages. Increasing the number of pages may significantly improve
performance.

Deferring journal writes: You can reduce the amount of journa 1/0O by instructing
CA-IDMS/DB to defer the writing of journal buffers. Normally CA-IDMS/DB forces
the writing of a journal buffer to the journal file whenever a COMT, ENDJ, or ABRT
record is written to the journal buffer. You can request that CA-IDMS/DB defer the
write by specifying a non-zero JOURNAL TRANSACTION LEVEL either in the
system generation SY STEM statement or in a DCMT VARY JOURNAL command.

How transaction levels work: When the number of active transactions in the
central version is greater than the journal transaction level, CA-IDMS/DB defers the
writing of a journal buffer when a recovery unit terminates. If the journal writeis
deferred, the task associated with a terminating recovery unit is placed in a wait state
until the journal block is written. The journal block is written when:

® The number of active transactions falls below the journal transaction level
® Thejournal buffer is full

® Thejournal buffer contains the before image of an updated record occurrence (or
row) that exists on a page to be written to the database

Note: An 'active transaction' is one for which journal records are being created.

By deferring the journal write, CA-IDMS/DB is able to place more information on a
journal block, thus reducing the need to write as many blocks.

Considerations: The establishment of ajournal transaction level is most effective
in an active system; that is, one in which many update transactions are active at one
time. If used, you should set the journal transaction level to be at least 4. The lower
the number, the more likely journal writes will be deferred.

Chapter 18. Journaling Procedures 18-13

18.5 Influencing journaling performance

18.5.2 Improving warmstart performance

Reducing warmstart time: You can reduce the time it takes to warmstart a central
version following an abnormal termination by specifying a non-zero value for a
JOURNAL FRAGMENT INTERVAL in the system generation SYSTEM statement or
ina DCMT VARY JOURNAL command.

How the journal fragment works: The journal fragment interval designates an
interval for writing dummy segment (DSEG) records to the journal file. DC/UCF uses
the DSEG records in the event of a system crash to determine the appropriate starting
place for warmstart processing, as shown in the steps below:

1. The new journd file is activated. It begins with header records. These records
contain:

® Information on currently open transactions

® The relative block number (RBN) of the DSEG record. The RBN signifies
which DSEG record is used to start forward processing in the event of a
warmstart.

Journal Segment
l—Record (JSEG)

Journal
header

DSEG RBN
4]

2. If the journal fragment interval is 500, the DC/UCF system will do the following
before it writes the 509th journal block:

® Creates and writes the DSEG record
» Updates the DSEG RBN in the journal header

Dummy Segment
Record (DSEG)

Journal

header
DSEG RBN

509

0 8 509

18-14 CA-IDMS Database Administration

18.5 Influencing journaling performance

3. In the event of a system crash, the warmstart forward processing starts at the
DSEG record at RBN 509 instead of at the JSEG record. This saves the time it
would have taken for processing to read the first 500 journal blocks.

l— Warmstart begins here

Journal

header
DSEG RBN System crash
509

0 8 509

Considerations: If your journal files are large (in terms of the number of pages), a
journal fragment interval can significantly reduce the amount of time it takes to
warmstart a DC/UCF system. The warmstart logic goes to the most recently accessed
journal fragment and starts its recovery processing from that point. However, because
there is overhead required to write dummy segment headers, your journal fragment
interval should be at least 100. Choose an interval that is between 100 and half the

number of blocks in your journd file.

Chapter 18. Journaling Procedures 18-15

18.6 Related information

18.6 Related information

® About defining and modifying journal files, see Chapter 4, “Defining, Generating,
and Punching a DMCL"” on page 4-1 and Chapter 25, “Modifying Physical
Database Definitions’ on page 25-1

® On database backup and recovery, see Chapter 19, “Backup and Recovery” on
page 19-1

» About allocating and formatting disk journal files, see Chapter 16, “Allocating
and Formatting Files’ on page 16-1

® About user exits, refer to CA-IDMS System Operations

» For the complete syntax and syntax rules for the ARCHIVE JOURNAL utility
statement, refer to CA-IDMS Utilities

. About DCMT VARY JOURNAL and DCMT VARY FILE commands, refer to
CA-IDMS System Tasks and Operator Commands

= About journal system generation parameters, refer to the SYSTEM statement in
CA-IDMS System Generation

18-16 CA-IDMS Database Administration

Chapter 19. Backup and Recovery

19.1 About database backup and recovery 19-3
19.2 Backup procedures 19-4
19.2.1 Back up after anormal system shutdown 19-5
19.2.2 Backup while the DC/UCF system isactive 19-5
19.2.3 Back up before and after local mode jobs L. 19-10
19.2.4 Automating the backup process 19-11
19.3 Automatic reCovery 19-14
1931 Warmstart 19-14
19.3.2 Automatic rollback 19-16
19.4 Manual recovery 19-18
19.4.1 Recovery fromaquiesced backup L 19-19
19.4.2 Recovery fromahotbackup 19-21
19.4.3 Reducing recovery time 19-28
19.4.4 Recovering alarge number of files 19-30
19.5 Recovery procedures after a warmstart failure 19-31
19.6 Recovery procedures from database file /O errors 19-33
19.7 Recovery procedures from journa filel/O errors 19-37
19.8 Recovery procedures for local mode operations L. 19-40
1981 Nojournaing 19-40
19.8.2 Journaling to atapedevice 19-40
19.8.3 Journaling to adisk device L. 19-40
19.8.4 Using an incomplete journal file 19-40
19.9 Recovery procedures for mixed-mode operations 19-42
19.10 Data sharing recovery considerations 19-44
19.11 Considerations for recovery of native VSAM files 19-47

Chapter 19. Backup and Recovery 19-1

19-2 CA-IDMS Database Administration

19.1 About database backup and recovery

19.1 About database backup and recovery

Protects your data: Database backup and recovery are maintenance tasks that
protect the changes made to your database:

® Backup is a routine database maintenance task that produces a copy of the
database. If necessary, this backup copy can be used to restore lost data.

® Recovery restores the contents of the database when an error occurs that corrupts
the database or disk journal file. Recovery procedures restore altered areas to
their original state.

Types of recovery: Under the central version, recovery occurs automatically with
no intervention from the DBA. |f automatic recovery fails you must recover the
database manually. You must also recover the database manually for local mode
update jobs that terminate abnormally.
What follows: The remainder of this chapter describes:

® Procedures to back up database files

» How CA-IDMS/DB recovers data automatically

® Procedures for recovering data manually under different circumstances

Chapter 19. Backup and Recovery 19-3

19.2 Backup procedures

19.2 Backup procedures

Perform backups often: Backup procedures are an essentia part of database
administration. To help protect the integrity of your database, you should perform
backups as often as possible. As a general rule, always back up the database:

® At regular, scheduled intervals, such as daily or weekly
n Before and after structural changes to the database
. Whenever you initialize journal files

® Since automatic recovery is not available in local mode, before and after executing
an application run in local mode.

Design a backup plan: To ensure that your backup procedures meet the data
processing needs of your company, you need to decide how often to take backups and
how long to retain them. Develop a schedule and procedures for performing backups
and stick to it.

General guidelines: The following list identifies some guidelines to follow in
designing a backup plan:

» Define the backup and recovery requirements for an application while the
application is being designed. Test all backup and recovery procedures before the
application is put into production.

» Make sure you backup the database after making changes to its physical definition
(such as changing the page size, page range, and so on).

m |dentify al archive files created since the last backup.

» |f you need to concatenate archive tapes for historical records, make sure that the
tapes included in the concatenation are not required for recovering the database.
For example, you might concatenate the archive tapes from the previous week at
the end of the current week.

® Bear in mind that restoring a database from a date several weeks in the past can
be a very time-consuming process because of the volume of journal data that
needs to be processed.

BACKUP utility statement: The examples outlined in this chapter use the
BACKUP utility statement provided with CA-IDMS/DB to backup the database. You
can use other utilities (such as IEBGENER in 0S/390) to perform the backup and
recovery operation provided they restore disk files to the state they were in when
copied.

If you use the CA-provided BACKUP utility statement for regularly scheduled
backups, specify the FILE option rather than the AREA option. FILE lets you recover
an individual file in the event it is damaged rather than having to recover the entire
area. Use the AREA option only if multiple areas are stored in a single file.

19-4 CA-IDMS Database Administration

19.2 Backup procedures

19.2.1 Back up

What follows: The following topics tell you how to back up the database under the
following conditions:

m After a norma system shutdown
= While the system remains active

» Before and after running a local mode update job

after a normal system shutdown

Steps: While the system is inactive, back up the database using the following
procedure:

Action Statement

Offload the active journa (that is, the ARCHIVE JOURNAL utility statement with
journal in use at the time you shut the AUTO or AUTOALL option
down the system)

Copy all files associated with the BACKUP utility statement or any
database comparable backup utility

19.2.2 Backup while the DC/UCF system is active

Types of backup while system is active: There are two types of backup that can
be done while DC/UCF remains active:

m A quiesced backup during which no updates are made to the areas being copied

® A hot backup during which the areas that are copied are updated by transactions
executing within the central version

While it is preferable to back up a database when it is quiesced, a site with
high-availability requirements may not be able to disable updates long enough to
complete the backup.

Considerations: If you decide to use a hot backup strategy, consider the following:

® The time to recover using a hot backup may be longer than with a backup
produced while the area was quiesced due to additional steps in the recovery
process.

® |n order to recover using a file produced during a hot backup, al archive journal
files created while the backup was taking place must also be available; without
these files, the backup file cannot be used. Although the EXTRACT JOURNAL
utility statement can be used to preprocess the journal images generated during
this time period, the original archive files must also be available in order to
perform a successful recovery.

® To ensure the availability of the archive journal files you should treat them in the
same way as the backup file; for example, if a copy of the backup file is sent
offsite, a copy of all corresponding archive files should also be sent offsite.

Chapter 19. Backup and Recovery 19-5

19.2 Backup procedures

»» For more information on the impact of a hot backup on recovering a database, see
19.4, “Manual recovery” on page 19-18 later in this chapter.

Quiesced backup procedure: The procedure outlined below describes how to

perform a quiesced backup.

Action

Steps

Quiesce update activity in the target

areas. (See considerations below)

Issue one or more of the following
commands:

DCMT VARY AREA ... RETRIEVAL
DCMT VARY AREA ... OFFLINE
DCMT QUIESCE AREA ...

DCMT VARY SEGMENT ...
RETRIEVAL

DCMT VARY SEGMENT ... OFFLINE
DCMT QUIESCE SEGMENT ...
DCMT QUIESCE DBNAME ...

DCMT VARY RUN UNIT ...
OFFLINE

Note the quiesce point

Record the date and time that the areas were
quiesced.

Optionaly force a new archive journal file
to be created:

Issue a DCMT VARY JOURNAL
command

Execute the ARCHIVE JOURNAL
utility statement

Copy al files containing the target
areas.

Execute the BACKUP utility statement
using the FILE option or any comparable
backup utility.

Restart update activity in the target
aress.

Issue one or more of the following
commands:

DCMT VARY AREA ... ONLINE
DCMT VARY SEGMENT ... ONLINE
DCMT VARY ID ... TERMINATE
DCMT VARY RUN UNIT ... ONLINE

19-6 CA-IDMS Database Administration

19.2 Backup procedures

Hot backup procedure: The procedure for a hot backup is similar to that for a
quiesced backup, except that updates are re-enabled before the backup is complete.
The procedure described below includes establishing a second quiesce point. This is
not necessary if the appropriate recovery procedure is followed.

»» For more information on the impact of a hot backup and a second quiesce point on
recovery, see 19.4, “Manual recovery” on page 19-18 later in this chapter.

Action Steps
Quiesce update activity in the target Issue one or more of the following
areas. (See considerations below) commands:

= DCMT VARY AREA ... RETRIEVAL
= DCMT VARY AREA ... OFFLINE
= DCMT QUIESCE AREA ...

= DCMT VARY SEGMENT ...
RETRIEVAL

= DCMT VARY SEGMENT ... OFFLINE
= DCMT QUIESCE SEGMENT ...
= DCMT QUIESCE DBNAME ...

= DCMT VARY RUN UNIT ...
OFFLINE

Note the quiesce point Record the date and time that the areas were
quiesced.

Optionally force a new archive journa file
to be created:

® |ssue a DCMT VARY JOURNAL
command

» Execute the ARCHIVE JOURNAL
utility statement

Restart update activity in the target Issue one or more of the following
areas. commands:

= DCMT VARY AREA ... ONLINE
= DCMT VARY SEGMENT ... ONLINE
= DCMT VARY ID ... TERMINATE
= DCMT VARY RUN UNIT ... ONLINE

Copy all files containing the target Execute the BACKUP utility statement
aress. using the FILE option or any comparable
backup utility.

Chapter 19. Backup and Recovery 19-7

19.2 Backup procedures

Action

Steps

Optionally, establish a second quiesce
point for the target areas.

Issue one or more of the following
commands:

DCMT VARY AREA ... RETRIEVAL
DCMT VARY AREA ... OFFLINE
DCMT QUIESCE AREA ...

DCMT VARY SEGMENT ...
RETRIEVAL

DCMT VARY SEGMENT ... OFFLINE
DCMT QUIESCE SEGMENT ...
DCMT QUIESCE DBNAME ...

DCMT VARY RUN UNIT ...
OFFLINE

Mark the end of the backup process.

Force a new archive journa file to be
created:

Issue a DCMT VARY JOURNAL
command

Execute the ARCHIVE JOURNAL
utility statement

If a second quiesce point was established,
record its date and time.

If a second quiesce point was
established, restart update activity in

the target areas.

Issue one or more of the following
commands:

DCMT VARY AREA ... ONLINE
DCMT VARY SEGMENT ... ONLINE
DCMT VARY ID ... TERMINATE
DCMT VARY RUN UNIT ... ONLINE

Quiescing update activity: Both DCMT VARY AREA (and SEGMENT) and
DCMT QUIESCE can be used to quiesce update activity in one or more areas of the
database. Consider the following when choosing which of these to use:

n |f DCMT VARY is used, tasks which subsequently attempt to access a target area
in an update mode (or any mode if the area is varied offline) will receive an 0966
error status. Unless the application program handles this condition, the associated
task will fail. If DCMT QUIESCE is used, such tasks will wait until update
activity is restarted, unless their quiesce wait time is exceeded.

» DCMT QUIESCE provides more control over the quiesce operation. For example,
it is possible to specify how long the quiesce operation should wait for conflicting

19-8 CA-IDMS Database Administration

19.2 Backup procedures

tasks to finish and what action should be taken in the event that the quiesce point
has not been reached in the specified time interval.

® In a data sharing environment, DCMT QUIESCE will quiesce update activity
across al members of the data sharing group. DCMT VARY will quiesce update
activity only within the DC/UCF system in which it is executed.

. DCMT QUIESCE can be used to automate much of the backup process.

» For more information on backup automation, see 19.2.4, “Automating the backup
process’ on page 19-11 later in this chapter.

»»> For more information on the DCMT system task, refer to CA-IDMS System Tasks
and Operator Commands.

Quiescing update activity for system areas: When backing up a system area, such
as aload area, it may be necessary to terminate predefined system run units by issuing
aDCMT VARY RUN UNIT ... OFFLINE command. This will be necessary if
predefined run units for the target area have been defined in the system definition and
such run units access the area in update mode. You can determine this by issuing a
DCMT DISPLAY RUN UNIT command.

Varying a system run unit offline does not prevent overflow run units from being
started to service requests for the area. 1t simply terminates predefined run units of the
specified type. Since varying an area offline will impact the system's ability to service
requests for the areg, it is advisable to quiesce update activity to system areas either by
varying their status to retrieval or by using the DCMT QUIESCE command.

Depending on the options specified when issuing a DCMT VARY AREA, DCMT
VARY SEGMENT, or DCMT QUIESCE command, the system may automatically
terminate conflicting predefined system run units.

»» For more information on when predefined system run units are automatically
terminated, refer to the individual commands in CA-IDMS System Tasks and Operator
Commands.

Data sharing considerations: In a data sharing environment, whenever update
activity is quiesced, it must be quiesced in al DC/UCF systems that are members of
the data sharing group. If a DCMT QUIESCE command is used, then update activity
will automatically be quiesced on all members within the group. If a DCMT VARY
AREA or DCMT VARY SEGMENT command is used, it must be executed on each
system that is a member of the group. This can be accomplished by broadcasting the
DCMT command.

»»> For more information on broadcasting DCMT commands, refer to CA-IDMS System
Tasks and Operator Commands.

Chapter 19. Backup and Recovery 19-9

19.2 Backup procedures

Two options:
mode, you can either:

19.2.3 Back up before and after local mode jobs

To protect data to be accessed by an update job running in local

» Use loca mode journaling. This option is best for large databases that would

require a long time to backup and restore.

» Back up the database before and after you run the job. This option is best for
small databases that can be backed up within a reasonable time frame.

»» For information about local mode journaling, see Chapter 18, “Journaling

Procedures’ on page 18-1.

Steps to back up the database:

Follow the steps below to back up a database

before and after running an update application in local mode:

Action

Steps

Make the areas to be accessed by the
application unavailable under the
central version

DCMT VARY AREA or SEGMENT with
the OFFLINE, RETRIEVAL, or
TRANSIENT RETRIEVAL option

Before running an application, back
up each file of the database

BACKUP or any comparable backup utility

Dummy the journal file DD
statements in the execution JCL of the
application if the DMCL being used
has a tape journal file defined

After running the application, back up
each file of the database

BACKUP or any comparable backup utility

Swap to another disk journa file in
order to coordinate journa files with
the backup

DCMT VARY JOURNAL

Re-activate the areas for use under the
central version

If the areas are OFFLINE or in
RETRIEVAL mode, issue DCMT
VARY AREA or SEGMENT ONLINE

If the areas are in TRANSIENT
RETRIEVAL mode, first vary them
OFFLINE and then ONLINE

CA-ADS: When you vary an area in preparation for a local mode update, CA-ADS
users should vary the area to either OFFLINE or TRANSIENT RETRIEVAL

mode; do not use RETRIEVAL mode.

19-10 CA-IDMS Database Administration

19.2 Backup procedures

19.2.4 Automating the backup process

Exploiting DCMT QUIESCE: Backing up a database while the DC/UCF system is
active can be automated through the use of the DCMT QUIESCE command. To assist
in this effort, the following can be specified as options:

® A unique identifier for use in subsequent DCMT DISPLAY ID and DCMT VARY
ID commands to query or terminate an outstanding quiesce operation.

m The action that should be taken in the event that a quiesce point cannot be reached
within a specified time interval. The available choices are to abandon the quiesce
operation or force the quiesce by canceling conflicting tasks.

® Anindication of whether a new archive journal file should be created when the
quiesce point is reached.

® Anindication of whether update activity in the target areas should be restarted
automatically once the areas are quiesced.

Quiesce user exit: When a quiesce point is achieved, numbered exit, Exit 38 is
invoked. This exit can be used to initiate the next step in the backup process. For
example, it can submit a job to the interna reader, thus enabling the QUIESCE task to
automatically initiate a copy operation. Once the files are copied, a subsequent UCF
batch job step can invoke further system tasks to complete the backup process.

Rather than submitting a batch job, exit 38 might instead use an API to directly
interface to a "zero-time copy" facility if the database resides on a storage device that
provides such a capability.

»» For details on how to code an Exit 38 routine, refer to CA-IDMS System
Operations.

»» For more information on the DCMT QUIESCE command, refer to CA-IDMS
System Tasks and Operator Commands.

Automating a quiesced backup: The following illustrates how the DCMT
QUIESCE command can be used to automate a quiesced backup operation.

Activity Description
demt quiesce dbname CUST hold This command initiates a quiesce operation
swap CUSTBKP identified as CUSTBKP. All areas in all

segments included in the database name
CUST will be quiesced. When the quiesce
point is reached, a new archive journa file
will be created and exit 38 will be invoked.
The quiesce point will be held until the
quiesce operation is explicitly terminated.

Chapter 19. Backup and Recovery 19-11

19.2 Backup procedures

Activity

Description

Exit 38 is invoked

Exit 38 submits a batch job through the
internal reader (or an equivalent mechanism)
to initiate the copy operation.

Batch job is executed

The batch job first copies al files containing
areas of the CUST database and then
invokes a UCF batch job step that
terminates the quiesce operation by issuing a
DCMT VARY ID command.

demt vary id CUSTBKP terminate

This command terminates the quiesce
operation and makes the CUST areas
available for update.

Automating a hot backup: The following illustrates how the DCMT QUIESCE
command can be used to automate a hot backup operation.

Activity

Description

dcmt quiesce dbname CUST nohold
swap CUSTBKP1

This command initiates a quiesce operation
identified as CUSTBKPL. All areasin all
segments included in the database name
CUST will be quiesced. When the quiesce
point is reached, a new archive journal file
will be created and exit 38 will be invoked.
The quiesce operation will then terminate
and make the areas available for update.

Exit 38 is invoked

Exit 38 submits a batch job through the
internal reader (or an equivaent facility
depending on the operating system) to
initiate the copy operation.

Batch job is executed

The batch job first copies al files containing
areas of the CUST database and then
invokes a UCF batch job step.

The UCF batch job step either initiates a
second quiesce operation by issuing a
DCMT QUIESCE command or forces a new
archive journal file to be created by issuing
aDCMT VARY JOURNAL command.

19-12 CA-IDMS Database Administration

19.2 Backup procedures

Activity

Description

dcmt quiesce dbname CUST nohold
swap CUSTBKP2

This command initiates a quiesce operation
identified as CUSTBKP2. All areas in al
segments included in the database name
CUST will be quiesced. When the quiesce
point is reached, a new archive journa file
will be created and exit 38 will be invoked.
The quiesce operation will then terminate
and make the areas available for update.

Exit 38 examines the quiesce identifier and
determines that no further action is needed.

dcmt vary journal

This command forces the use of another
disk journa file which in turn causes a
batch execution of the ARCHIVE
JOURNAL utility statement.

Note: Automatic submission of the
ARCHIVE JOURNAL job is dependent on
the implementation of a site-specific means
(such as WTOEXIT) to examine console
messages and use operating system facilities
to submit a batch job.

Chapter 19. Backup and Recovery 19-13

19.3 Automatic recovery

19.3 Automatic recovery

Available only under the central version: Automatic recovery is available only
under the central version. Automatic recovery occurs when CA-IDMS/DB:

» Warmstarts, following a system failure

. Automatically rolls back afailing transaction

Each is described below.

19.3.1 Warmstart

Due to system failure: Warmstart occurs when CA-IDMS/DB starts up and by
examining the journal files it detects that the previous execution of the DC/UCF
system was not shutdown normally. CA-IDMS uses the journal files to rollback all
transactions that were active when the system failed.

How you respond to a system failure: In response to a DC/UCF system failure,
you should immediately restart the system. In a data sharing environment, it is
particularly important to restart failing systems as soon as possible, since data that was
being updated at the time of failure remains inaccessible to other group members until
the failing system has completed its warmstart.

Note: Do not offload any journal files between the time of system failure and your
first attempt to warmstart the system. If you must offload, use the READ
option of the ARCHIVE JOURNAL utility statement.

Data sharing considerations: In general, you respond to a DC/UCF system
failure in the same way regardless of whether or not the system is a member of a data
sharing group. However, certain types of failures, such as aloss in connectivity to a
coupling facility, require specia action. Additionally, if a member is unable to
warmstart and manual recovery becomes necessary, then data sharing introduces
additional considerations.

»»> For more information on recovery considerations in a data sharing environment,
refer to CA-IDMS System Operations.

»»> For more information on the impact of data sharing to manual recovery, see 19.4,
“Manual recovery” on page 19-18 later in this chapter.

Incomplete warmstart: Certain errors, such as 1/0O errors or open failures, may
prevent warmstart from rolling out the changes in one or more database files. If this
occurs, warmstart will continue, the system will start up and the transactions affected
by the error will be restarted. Once restarted, automatic rollback will be invoked to
again attempt to remove the effect of the unrecovered transactions. If automatic
rollback is successful, no further action is necessary athough the reason for the
original failure should be investigated and corrective action taken if necessary. If
automatic rollback is not successful, the unrecovered transactions will be suspended
just as if they had encountered an 1/O error. To correct the situation, You respond as if

19-14 CA-IDMS Database Administration

19.3 Automatic recovery

a database file 1/0O error occurred. First take whatever action is necessary to make the
file available, such as restoring a damaged file or using DCMT commands to correct a
data set name. Then restart the suspended transactions by issuing a DCMT VARY
FILE ACTIVE command.

» For more information on responding to 1/0O errors, see 19.6, “Recovery procedures
from database file I/O errors’ on page 19-33 later in this chapter.

How warmstart works: To restore all transactions active at the time of a system
failure, CA-IDMS/DB does the following:

1. Establishes which disk journa file was active at the time of the failure

2. Locates the last journal record written before the system failed

3. Roalls back and writes ABRT checkpoints for all incomplete transactions.
All transactions can then be restarted with no further interruption in processing.
» For information about journal checkpoints, see Chapter 18, “Journaling Procedures”

on page 18-1.

Example: The example below shows how a warmstart operation is performed. In
this example, two transactions are active at the time of the system crash. Both are
recovered automatically when the system is restarted.

i
S =
i

Database

STORE RECCRD 1 ERASE RECORD 9 STORE RECORD 3/

Transaction A
CRASH!!

@ Yl

MODIFY RECORD 15 MODIFY RECORD 2

Transaction B

-

Chapter 19. Backup and Recovery 19-15

19.3 Automatic recovery

BEFORE

No
record 1

A

AFTER

record 1
A

BEFORE | AFTER | BEGIN | BEFORE | AFTER |BEFORE | AFTER | BEFORE | AFTER

No trans- No
record 9 |record 9 | action record 15 r((ar(r:]%rdd) 15 record 3 |racord 3 |record 2 ’e‘(;r?{gd)z
A A B B B A A B B

Disk journal
records

T | -,
Record

S=

)

Restart
system

Warmstart recovery

LN R P

19.3.2 Automatic rollback

Due to transaction failure: Automatic rollback occurs when a transaction fails or
an application requests recovery by means of the ROLLBACK command.
CA-IDMS/DB writes an ABRT checkpoint for the transaction and automatically rolls
out the changes made to the database by the transaction. The recovery occurs while
the system continues to process requests by other concurrently active transactions.

Example: The example below shows how an automatic rollback occurs. In this
example, transaction B aborts. CA-IDMS/DB then performs an automatic rollback for
transaction B while other transactions continue to process.

19-16 CA-IDMS Database Administration

19.3 Automatic recovery

Record Record

Record
1 1

Fle(1:ord Reﬁ:ord

i
.=
i

Database

ik
ik
Bt
ik

-l

& & &

STORE RECCRD 1 ERASE RECORD 9 STORE RECORD 3

Transaction A

CRASH!!

@

MODIFY RECORD 15 MODIFY RECORD 2

Transaction B

"

BEFORE| AFTER |BEFORE | AFTER | BEGIN | BEFORE | AFTER |BEFORE | AFTER | BEFORE | AFTER
No No trans- No
recard 1 recard 1 [record 9 [record 9 | acfion fyecord 15 r?r(r:]%rdd) i record 3 |record 3 |record 2 re‘f,?,’gd)z
A A A A B B B A A B B
Digk journal
r r
ecords Restart
system
Automatic rollback

Database

Chapter 19. Backup and Recovery 19-17

19.4 Manual recovery

19.4 Manual recovery

Before you begin: Before you attempt to manually recover the areas or files of the
database, gather the available facts, such as:

1. The time of the system or transaction failure

2. Whether the failure occurred under the central version or in local mode

3. What applications were running at the time the system failed

4. Which areas of the database were in use and whether these were in update mode
5

. The time of the preceding quiesce point

You can use the PRINT JOURNAL or MERGE ARCHIVE utility statements to
determine the information in items 3, 4, and 5.

Locate backup and archive files: After you've determined the nature of the
failure, locate the most recent backup of the database and all archive journal files
created since the backup.

Note: To successfully recover the database, all of the archive files must be readable,
To increase the likelihood of this, you can define multiple archive files in the
DMCL used to execute the ARCHIVE JOURNAL utility statement. This
directs CA-IDMS/DB to create multiple archive files during offload.

Minimize scope of recovery: You can limit the recovery process by recovering
only the areas or files that were impacted by the failure. Areas that were available for
retrieval do not have to be recovered. Depending on the nature of the failure, recovery
may be restricted to an individud file. If the recovery is due to an application error, al
areas updated by the application may need to be recovered to insure the logical
integrity of the database. This may in turn necessitate the recovery of other areas, if
another application has updated both the original and additional areas.

After you're done: After you recover an area or file, check the validity of the
recovery by:

» Following procedures you designed to check the validity of the data; for example,
by executing a report you run regularly and comparing the output to output
produced before the recovery

® Veifying the structure of the database by executing the IDMSDBAN utility
»» For more information on IDMSDBAN, refer to CA-IDMS Utilities.

What follows: The remainder of this section describes the general recovery
procedure to be followed when using a quiesced backup or a hot backup procedure.

The remainder of this chapter describes manual recovery procedures under the
following circumstances:

n After awarmstart fails

19-18 CA-IDMS Database Administration

19.4 Manual recovery

® |/O errors in a database file

m |/O errorsin ajourna file

= When journaling in local mode

®» When using the database in both local mode and under the central version

(mixed-mode recovery)

It also provides special considerations for data sharing environments and native VSAM
files.

19.4.1 Recovery from a quiesced backup

Quiesced backup: A quiesced backup is a backup that is performed while no
updates are being made to the data that is being copied. The following types of backup
are quiesced backups:

® A backup performed after the DC/UCF system is shutdown

= A backup performed while the DC/UCF system is active, provided that the
affected areas are quiesced at the time of the backup

m A backup performed before and after alocal mode job

»» For information on how to backup a database, see 19.2, “Backup procedures’ on
page 19-4 earlier in this chapter.

Recovery procedure: The procedure outlined below describes the general approach
to recovery from a quiesced backup. See the later sections in this chapter for additional
considerations specific to certain types of failures.

Action Steps
Copy the files that need to be Execute the RESTORE utility statement
recovered from the backup using the FILE option or another

When required: Always. comparable utility.

Chapter 19. Backup and Recovery 19-19

19.4 Manual recovery

Action

Steps

Consolidate, in the sequence in which
they were created, the archive journal
files created since the quiesce point
established at the start of the backup
procedure.

When required: This step is
necessary only under the following
conditions:

= |In OS/390 and MSP/EX
environments, if the subsequent
ROLLFORWARD utility
statement will be executed with
the SEQUENTIAL option and
more than one archive journal file
must be processed.

® |n a data sharing environment, if
more than one member has
updated the affected areas and the
subsequent ROLLFORWARD
utility statement will be executed
with either the SEQUENTIAL or
the ALL and STOP TIME
options.

Execute one of the following and use as
input the properly concatenated set of
archive files:

n FIX ARCHIVE utility statement

» MERGE ARCHIVE utility statement

. EXTRACT JOURNAL utility statement
® another comparable utility

Note: If consolidating archive files from
multiple members and the subsequent
rollforward will be executed with either the
SEQUENTIAL or the ALL and STOP
TIME options, use the MERGE ARCHIVE
utility statement.

»> For more information, see 19.10, “Data
sharing recovery considerations’ on
page 19-44 later in this chapter.

Note: If recovery involves local mode
journa files, the MERGE ARCHIVE utility
statement can be used to consolidate both
local mode journa files and archive files.

»> For more information, see 19.9,
“Recovery procedures for mixed-mode
operations’ on page 19-42 later in this
chapter.

19-20 CA-IDMS Database Administration

19.4 Manual recovery

Action Steps
Reapply to the restored files all Execute the ROLLFORWARD utility
updates made since the backup was statement using either the consolidated
taken journa file or individual archive files

N concatenated in the sequence in which they
When required: Always. were created.

If the journal files were consolidated using
the EXTRACT JOURNAL utility, specify
the FROM EXTRACT option.

If FROM EXTRACT is not specified, then
the following considerations apply:

® Specify the SORTED option unless
there is insufficient disk space available.
SORTED must be specified if:

— A consolidated journal file is not
used as input in OS/390 and
MSP/EX environments and more
than one archive file must be
processed.

— Theinput journa fileison a
device, such as a disk or a 3490
that does not support reading
backwards.

— Running ROLLFORWARD in a
VM/ESA environment.

n |f the SEQUENTIAL option is used and
the quiesce point for the affected areas
does not coincide with the start of the
first input file, use the START TIME
parameter to identify the quiesce point.

19.4.2 Recovery from a hot backup

Hot backup: A hot backup is a backup that is performed while the database is being
updated. The steps that must be taken to create a usable hot backup are described
under 19.2, “Backup procedures’ on page 19-4 earlier in this chapter.

Recovery procedures: Following are two approaches to recovery from a hot
backup. The first involves the use of both the ROLLBACK and ROLLFORWARD
utility statements; the second involves two executions of the ROLLFORWARD utility
statement. Either approach can be used to successfully recover from a hot backup;
however certain conditions must be satisfied in order to use the second approach.

Chapter 19. Backup and Recovery 19-21

19.4 Manual recovery

For additional considerations associated with specific types of falure, refer to later

sections in this chapter.

Restore procedure 1: This approach can always be used to recover from a hot
backup provided that the correct procedures were followed when the backup was taken
and the necessary journal and backup files are available.

Action

Steps

Copy the files that need to be
recovered from the backup

When required: Always.

Execute the RESTORE utility statement
using the FILE option or another
comparable utility.

| dentify:

® The quiesce point that was taken
at the beginning of the backup
procedure.

» The archive journal files created
since this quiesce point up to and
including the one created at the
end of the backup procedure.

» All archive journal files created
since the quiesce point up to the
point of failure.

When required: Always.

Use the PRINT JOURNAL utility statement,
or if the quiesce point was established using
the DCMT QUIESCE command, examine
the operating system log for the DC/UCF
system on which the DCMT command was
issued.

Consolidate, in the sequence in which
they were created, the archive journal
files created between the quiesce
point and the end of the backup
procedure.

When required: This step is
necessary only under the following
conditions:

= |n OS/390 and MSP/EX
environments if more than one
input journa file must be
processed.

® |n adata sharing environment, if
the SEQUENTIAL option will be
specified on the subsequent
ROLLBACK utility statement
and more than one member's
journa images must be
processed.

Execute one of the following and use as
input the properly concatenated set of
archive files:

. FIX ARCHIVE utility statement
= MERGE ARCHIVE utility statement
» Another comparable utility

Note: If consolidating archive files from
multiple members and the subsequent
rollback will be executed with the
SEQUENTIAL option, use the MERGE
ARCHIVE utility statement.

»» For more information, see 19.10, “Data
sharing recovery considerations’ on
page 19-44 |ater in this chapter.

Note: This and the subsequent step can be
combined by using a sort utility to do the
consolidation unless the use of MERGE
ARCHIVE is required.

19-22 CA-IDMS Database Administration

19.4 Manual recovery

Action

Steps

If backward read is not supported,
presort the journal blocks created
between the quiesce point and the end
of the backup procedure in reverse
sequence.

Multiple archive files may be
consolidated into a single sorted
output file.

When required: This step is
necessary in a VM/ESA environment
or if the journa files reside on
devices such as disk or 3490s that do
not support backward read.

Execute the sort utility and use as input
either a set of archive journal files or the
consolidated journal file produced in the
preceding step.

»» For the sort parameters to use, refer to
the ROLLBACK utility statement in
CA-IDMS Utilities.

Remove from the restored files the
effects of all updates made between
the quiesce point and the end of the
backup process.

When required: Always

Execute the ROLLBACK utility statement
specifying the HOTBACKUP option and
using either the consolidated journal file or
individual archive files concatenated in the
sequence in which they were created.

If the quiesce point for the affected areas
does not coincide with the start of the input
(or the end of the input if it was sorted in
reverse sequence), use the STOP TIME
parameter to identify the quiesce point.

If STOP TIME is specified, also specify
ACTIVE; otherwise specify ALL.

If backward read is not supported for the
device on which the input journa file
resides, specify ROLLBACK3490 in the
SYSIDMS parameter file associated with the
ROLLBACK job step. This parameter is not
necessary in a VM/ESA environment.

If a consolidated journal file is not used as
input in OS/390 or MSP/EX environments,
specify the SORTED option.

Chapter 19. Backup and Recovery 19-23

19.4 Manual recovery

Action

Steps

Consolidate, in the sequence in which
they were created, the archive journal
files created since the quiesce point
established at the start of the backup
procedure.

When required: This step is
necessary only under the following
conditions:

= |In OS/390 and MSP/EX
environments, if the subsequent
ROLLFORWARD utility
statement will be executed with
the SEQUENTIAL option and
more than one archive journal file
must be processed.

® |n a data sharing environment, if
more than one member has
updated the affected areas and the
subsequent ROLLFORWARD
utility statement will be executed
with either the SEQUENTIAL or
the ALL and STOP TIME
options.

Execute one of the following and use as
input the properly concatenated set of
archive files:

n FIX ARCHIVE utility statement

» MERGE ARCHIVE utility statement

. EXTRACT JOURNAL utility statement
» Another comparable utility

Note: If consolidating archive files from
multiple members and the subsequent
rollforward will be executed with either the
SEQUENTIAL or the ALL and STOP
TIME parameters, use the MERGE
ARCHIVE utility statement.

»> For more information, see 19.10, “Data
sharing recovery considerations’ on
page 19-44 later in this chapter.

Note: If recovery aso involves local mode
journa files, the MERGE ARCHIVE utility
statement can be used to consolidate local
mode journal files and archive files.

»> For more information, see 19.9,
“Recovery procedures for mixed-mode
operations’ on page 19-42 later in this
chapter.

19-24 CA-IDMS Database Administration

19.4 Manual recovery

Action

Steps

Reapply to the restored files all
updates made since the quiesce point
established at the beginning of the
backup procedure.

When required: Always.

Execute the ROLLFORWARD utility
statement using either the consolidated
journa file or individual archive files
concatenated in the sequence in which they
were created.

If the journal files were consolidated using
the EXTRACT JOURNAL utility, specify
the FROM EXTRACT option.

If FROM EXTRACT is not specified, then
the following considerations apply:

® Specify the SORTED option unless
there is insufficient disk space available.
SORTED must be specified if:

— A consolidated journal file is not
used as input in OS/390 and
MSP/EX environments and more
than one archive file must be
processed.

— Theinput journa fileison a
device, such as a disk or a 3490
that does not support reading
backwards.

— Running ROLLFORWARD in a
VM/ESA environment.

n |f the SEQUENTIAL option is used and
the quiesce point for the affected areas
does not coincide with the start of the
first input file, use the START TIME
parameter to identify the quiesce point.

Restore procedure 2: The use of this approach requires that:

®» Two quiesce points were established during the hot backup procedure

» Backward read is supported for the input journal files. Backward read is not
available in VM/ESA environments nor when the journal files reside on disk or a

device such as a 3490

If either of these conditions are not satisfied, the first recovery approach must be

followed.

Chapter 19. Backup and Recovery 19-25

19.4 Manual recovery

Action

Steps

Copy the files that need to be
recovered from the backup.

When required: Always.

Execute the RESTORE utility statement
using the FILE option or another
comparable utility.

Identify the two quiesce points that
were taken during the backup process.
Also identify the archive journal files
that were created between those
quiesce points and after the second
quiesce point.

When required: Always.

Use the PRINT JOURNAL utility statement,
or if the quiesce point was established using
the DCMT QUIESCE command, examine
the operating system log for the DC/UCF
system on which the DCMT command was
issued.

Consolidate, in the sequence in which
they were created, the archive journal
files created between the two quiesce
points established during the backup
procedure.

When required: This step is
necessary only in OS/390, MSP/EX,
and data sharing environments if more
than one archive journal file must be
processed.

Execute one of the following and use as
input the properly concatenated set of
archive files:

. FIX ARCHIVE utility statement
= MERGE ARCHIVE utility statement
» Another comparable utility

Note: If consolidating archive files from
multiple data sharing members, use the
MERGE ARCHIVE tility statement. For
more information, see 19.10, “Data sharing
recovery considerations’ on page 19-44
later in this chapter.

Reapply to the restored files all
updates made between the two
quiesce points.

When required:

Execute the ROLLFORWARD utility
statement specifying the SEQUENTIAL
option and using either the consolidated
journa file or individual archive files
concatenated in the sequence in which they
were created.

If the first quiesce point for the affected
areas does not coincide with the start of the
first input file, use the START TIME
parameter to identify the quiesce point.

If the second quiesce point does not
coincide with the end of the last input file,
use the STOP TIME parameter to identify
the second quiesce point.

Note: Output from the EXTRACT utility
statement cannot be used to apply the
images during this step.

19-26 CA-IDMS Database Administration

19.4 Manual recovery

Action

Steps

Consolidate, in the sequence in which
they were created, the archive journal
files created after the second quiesce
point established during the backup
procedure.

When required: This step is
necessary only under the following
conditions:

= |In OS/390 and MSP/EX
environments, if the subsequent
ROLLFORWARD utility
statement will be executed with
the SEQUENTIAL option and
more than one archive journal file
must be processed.

® |n adata sharing environment, if
more than one member has
updated the affected areas and the
subsequent ROLLFORWARD
utility statement will be executed
with either the SEQUENTIAL or
the ALL and STOP TIME
options.

Execute one of the following and use as
input the properly concatenated set of
archive files:

n FIX ARCHIVE utility statement

» MERGE ARCHIVE utility statement

. EXTRACT JOURNAL utility statement
» Another comparable utility

Note: If consolidating archive files from
multiple members and the subsequent
rollforward will be executed with either the
SEQUENTIAL or the ALL and STOP
TIME parameters, use the MERGE
ARCHIVE dtility statement.

»> For more information, see 19.10, “Data
sharing recovery considerations’ on
page 19-44 later in this chapter.

Note: If recovery also involves loca mode
journa files, the MERGE ARCHIVE utility
statement can be used to consolidate local
mode journal files and archive files.

»> For more information, see 19.9,
“Recovery procedures for mixed-mode
operations’ on page 19-42 later in this
chapter.

Chapter 19. Backup and Recovery 19-27

19.4 Manual recovery

Action

Steps

Reapply to the restored files, all
updates made since the second

quiesce point

Note: Updates made prior to the
second quiesce point may also be
reapplied during this step; however
there is no need to do so.

When required: Always.

Execute the ROLLFORWARD utility
statement using either the consolidated
journa file or individual archive files
concatenated in the sequence in which they
were created.

If the journal files were consolidated using
the EXTRACT JOURNAL utility, specify
the FROM EXTRACT option.

If FROM EXTRACT is not specified, then
the following considerations apply:

® Specify the SORTED option unless
there is insufficient disk space available
to preform the sort. SORTED must be
specified if a consolidated journal file is
not used as input in OS/390 and
MSP/EX environments and more than
one archive file must be processed.

n |f the SEQUENTIAL option is used and
the quiesce point for the affected areas
does not coincide with the start of the
first input file, use the START TIME
parameter to identify the quiesce point.

19.4.3 Reducing recovery time

Ways to reduce recovery time:

It is often critical to recover a database as quickly

as possible in order to meet availability demands. The length of time it takes to

recover can be reduced by:
» Limiting the scope of the recovery
® Reducing the time between backups
® Sorting journal images

® Pre-processing archive files

Limiting scope of recovery: One of the most significant factors affecting recovery
time is the number of files being recovered. If recovering due to an I/O error, only a
single file may need to be recovered. If recovering due to a journa 1/O error, it may
be necessary to recover al files in the database. To reduce time, recover only those

files or areas impacted by the failure.

19-28 CA-IDMS Database Administration

19.4 Manual recovery

Reducing time between backups: Another factor that affects recovery time is the
number of journal images that must be applied to a restored file. One way to reduce
the volume of journal images is to backup more frequently. Backups should be taken
frequently enough that recovery times meet your operational requirements.

Sorting journal images: Another way to reduce the number of journal images
applied to a restored file is to use the SORTED option of the ROLLFORWARD or
ROLLBACK utility statement. By specifying this option, only the last AFTR image (in
the case of ROLLFORWARD) or the first BFOR image (in the case of ROLLBACK)
is applied to the database. While time and resources are required to sort the journal
images, the number of 1/Os to the database (and therefore the length of time needed to
recover) may be significantly reduced using this option.

Note: There are restrictions on the use of the SORTED option when recovering from
a hot backup. For more information, see 19.4.2, “Recovery from a hot backup” on
page 19-21 earlier in this section.

Preprocessing archive files: Another way to reduce the time needed to recover is to
preprocess journa images using the EXTRACT JOURNAL utility statement. This
utility eliminates redundant journal images by retaining only the last AFTR image for
a dbkey. It creates an output file (called an extract file) that subsequently can be used
as input to the ROLLFORWARD utility statement.

A backup plan may include the regular use of EXTRACT JOURNAL to pre-process
archive journd files. If a recovery then becomes necessary, the extract files already
exist and can be used in place of the original archive files to reduce the volume of
journal images that must be applied to the database, thereby reducing the length of
time it takes to recover.

To illustrate how this may be done, the EXTRACT JOURNAL utility might be
executed each night. Its input would consist of all archive files produced since the
previous night's extract or since the previous backup, whichever occurred most
recently. If a recovery becomes necessary, the EXTRACT JOURNAL utility must be
executed one more time to process the remaining archive files. After the database files
are restored from the backup, the ROLLFORWARD tility is used to reapply updates.
Its input is the concatenated set of extract files produced since the backup.

Note: There are restrictions on the use of extract files when recovering from a hot
backup.

»»> For more information, see 19.4.2, “Recovery from a hot backup” on page 19-21
earlier in this section.

»» For considerations in the use of the EXTRACT JOURNAL utility statement in a
data sharing environment, see 19.10, “Data sharing recovery considerations’ on
page 19-44 later in this chapter.

Chapter 19. Backup and Recovery 19-29

19.4 Manual recovery

19.4.4 Recovering a large number of files

Operating system file limitations: Some operating systems impose a limit on the
number of files that can be accessed within a single job step. Except when exploiting
extended file support in OS/390, the limit for a central version is the same as that for a
batch job and so there are no specia considerations involved in recovery.

Extended file support: CA-IDMS has extended the number of files that can be
accessed by a central version in an OS/390 operating system to exceed that which can
be accessed by a batch job step. While useful, this capability may impact manual
recovery.

Extended file support and manual recovery: Under rare circumstances, it may be
necessary to recover more files than can be accessed by a single batch job step. If this
occurs, it will be necessary to split the recovery operation into multiple job steps each
of which recovers a subset of the areas, files or segments within the DMCL. Each job
step can access up to 3273 files.

19-30 CA-IDMS Database Administration

19.5 Recovery procedures after a warmstart failure

19.5 Recovery procedures after a warmstart failure

Before you begin: Before you begin the recovery process, determine why the
warmstart failed. Start by checking any shutdown or warmstart messages. The failure
could be due to:

® Changes made to the DMCL or startup JCL
» Hardware problems

» Software maintenance

Corrective action: If the failure is due to:

Change Action

Changes in the DMCL and a Warmstart the system using the prior version

timestamp mismatch is detected of the DMCL load module

Changes in the startup JCL Correct the JCL and restart the system

Software maintenance Backup the maintenance and restart the
system

Steps: In the unlikely event that hardware or software problems prevent the
warmstart process from recovering the database, follow these steps:

Action Statement

Offload all journal files ARCHIVE JOURNAL with the FULL
option to offload all full journa files. This
should be followed by an ARCHIVE
JOURNAL with the READ option to offload
the journal that was active when the
abnormal system failure occurred.

Recover the transactions that were ROLLBACK with the ACTIVE option
active at the time of the system
failure (that is, abended transactions)

Unlock the areas that were not UNLOCK
accessed during the rollback process.

The ROLLBACK statement identifies

what areas it unlocked.

Reinitialize the journal files FORMAT with the JOURNAL option

Data sharing considerations: If a member of a data sharing group is unable to
warmstart and manual recovery must be undertaken, any shared area that was being
updated by the failing member must be quiesced in all other members of the data
sharing group before the ROLLBACK utility is executed. To quiesce the area, change

Chapter 19. Backup and Recovery 19-31

19.5 Recovery procedures after a warmstart failure

its status to OFFLINE or TRANSIENT RETRIEVAL. Do not use the DCMT
QUIESCE command to quiesce the area.

»» For additional data sharing considerations, see 19.10, “Data sharing recovery
considerations’ on page 19-44 later in this chapter.

19-32 CA-IDMS Database Administration

19.6 Recovery procedures from database file 1/0O errors

19.6 Recovery procedures from database file 1/0O errors

What an 1/O error means: An 1/O error occurring on a database file indicates that
the file either cannot be read or cannot be written to. This may be caused by
hardware malfunctions such as a channel problem, which if corrected, means that no
recovery operation is needed. An I/O error can also be caused by a physically
damaged file or disk device; this type of error requires recovery of the file.

Identifying a database file 1/0O error: When CA-IDMS/DB encounters an |/O
error in a database file, the following events occur:
1. CA-IDMS/DB issues one of the following messages:
= DC205007, which indicates a read error
. DC205008, which indicates a write error
2. The transaction abends with a code of 3010 or 3011.
3. CA-IDMS/DB performs automatic recovery processing.

If recovery is successful: If the recovery process is successful, CA-IDMS/DB
continues processing. To fix the 1/O error, you must follow these steps:

Action Statement

Take the area(s) associated with the DCMT VARY AREA with the OFFLINE
bad database file offline option

Identify the problem and fix it. If the
problem is not associated with the
database file itself (for example, the
problem is due to a bad channel),
perform step 3 after the problem is
corrected; if the problem is due to a
damaged file, perform the steps
outlined for an unsuccessful recovery.

Bring the area(s) associated with the DCMT VARY AREA with the ONLINE
database file online option

If the recovery is unsuccessful: If the recovery process is unsuccessful,
CA-IDMS/DB suspends the transaction and issues the following message:

DC205009 TRANSACTION SUSPENDED. TRANSACTION ID: transaction-id

When CA-IDMS/DB issues this message, quiesce the area in which the problem
occurred as quickly as possible to prevent additional transactions from readying the
area. The table below identifies all the steps:

Chapter 19. Backup and Recovery 19-33

19.6 Recovery procedures from database file I/O errors

Action Statement

Quiesce the affected area (see DCMT VARY AREA with the

considerations below) TRANSIENT RETRIEVAL or OFFLINE
options

Switch to a new journal file DCMT VARY JOURNAL

De-dlocate the file DCMT VARY FILE with the

DEALLOCATE option; use the FORCE
option if the file cannot be closed (for
example, because of a channel problem)

Restore a copy of the damaged file RESTORE with the FILE option
using the last backup tape as input. If

the FORCE option was used in step

3, recreate the file with a new name

Rollforward the restored copy of the ROLLFOWARD FILE with the ALL option
file using the archive journal filesin
the order they were created

If the file was restored to a new Operating system facilities
location:
® Recatalog it in 0S/390 and
BS2000/0SD
» Update the standard labels in
VSE/ESA
If the file was renamed in OS/390, DCMT VARY FILE with the DSNAME
BS2000/0SD, or VM/ESA, change its option
dataset name
Make the new file available to the DCMT VARY FILE with the ALLOCATE
central version option
Re-activate the suspended transactions DCMT VARY FILE with the ACTIVE
so they complete automatic recovery option
Re-activate the area for update n |f the area was varied OFFLINE, issue
processing DCMT VARY AREA with the

ONLINE option

n |f the area was varied to TRANSIENT
RETRIEVAL mode, first vary it
OFFLINE and then ONLINE

19-34 CA-IDMS Database Administration

19.6 Recovery procedures from database file 1/0O errors

Considerations

Quiescing the area: Quiesce the area by varying it offline or retrieval. The
differences are:

n |f the areais varied offline, no new transactions will be able to access the area
until the recovery is complete and the area is varied onling; existing transactions
will complete if possible.

® |f the areais varied to transient retrieval, transactions can continue to read data
from the area but cannot update until the recovery is complete and the area is
varied offline and back online. This may be useful if the area is mapped to many
files (only one of which is damaged) or if only a small portion of the file is
damaged. It can aso be beneficia if most of the file blocks are in a buffer or a
dataspace.

If the area to be recovered is a system area, it may be necessary to terminate
predefined system run units by issuing a DCMT VARY RUN UNIT ... OFFLINE
command in order to quiesce activity to the area. It is advisable to vary the status of a
system area to transient retrieval rather than offline.

In a data sharing environment, it is important to quiesce a shared area in al members
of the data sharing group. The broadcast capability of DCMT commands can be used
to do this easily.

Renaming the file: If you restored the file under a new name, you must do one of
the following:

® Rename (and recatalog) the restored file to its original name before restarting the
DC/UCF system.

n Alter the system startup JCL to reference the new dataset name.

m After recovery is complete, modify the dataset name in the definition of the file,
regenerate all DMCLs which include the file's segment and make the new DMCL
available to the DC/UCF system.

»»> For more information on making a DMCL available to a runtime system, see
Chapter 4, “Defining, Generating, and Punching a DMCL” on page 4-1.

If you fail to do one of the above, CA-IDMS/DB will attempt to access the wrong file
the next time the system is started. This may have serious consequences if the original
file till exists.

Use of deallocate force: If the damaged file was de-allocated using the FORCE
option, the DC/UCF system marks the file as closed and de-allocated but does not
actually issue the corresponding operating system requests. For this reason, you must
restore the file under a different dataset name. When the DC/UCF system is
eventually shutdown, it will not shutdown successfully because the operating system
will attempt to close the original file. This will either cause an abend or the DC/UCF
system will hang. In either case, examine the messages produced on the log. If the

Chapter 19. Backup and Recovery 19-35

19.6 Recovery procedures from database file I/O errors

following message appears, the database system has completed processing and no
additional action is required:

DC200010 CA-IDMS/DB Inactive

If this message does not appear, you should restart the system (after taking appropriate
steps such as renaming the file) and then shut it down.

Correcting the lock option of an area and file: If the area associated with a
damaged database file is in retrieval mode or offline and the file was restored with the
area lock on, then the area status is incompatible with the file status. If you try to
vary the area online, IDMS responds with an error. To correct this situation, issue a
DCMT VARY AREA command with the UPDATE LOCKED option. This command
allows IDMS to vary the area to an update mode even though the file is locked.

19-36 CA-IDMS Database Administration

19.7 Recovery procedures from journal file /0O errors

19.7 Recovery procedures from journal file I/O errors

What happens: If an 1/O error is encountered when accessing a journal file, the
system responds differently depending on whether a read or write error is encountered:

m |f awrite error occurs, CA-IDMS/DB swaps to a new journal file, re-issues the
journal write and disables the use of the file on which the error occurred.

n |f aread error occurs, CA-IDMS/DB writes message DC205007 to the system log,
indicating a read error, and it disables the journal file from further use.

The DC/UCF system will continue to operate without the use of the damaged journal
file, although processing may be slower due to the availability of fewer journal files.

Automatic recovery failure: If atransaction abends (or issues a rollback) and, in
order to recover, CA-IDMS/DB must access a disabled journa file, it places the failing
transaction in a suspended state and issues the following message to the log:

DC205009 Transaction suspended. Transaction id Xxxxxxx

Recovery procedure steps: To recover from an I/O error on a journal file, follow
these steps:

Chapter 19. Backup and Recovery 19-37

19.7 Recovery procedures from journal file 1/O errors

Action

Statement

1. Quiesce all activity within the
system

For every area in update mode within the
system (except load, scratch, queue and log
areas), issue DCMT VARY AREA or
SEGMENT with the TRANSIENT
RETRIEVAL option

2. Monitor the transactions within the
system

DCMT DISPLAY TRANSACTIONS

3. If dl the areas quiesce and the only
transactions that remain are internal
rununits:

3.1. Backup the areas that were in
update mode at the time of the error

BACKUP using the FILE option

3.2. Initialize the damaged journal file

FORMAT JOURNAL

3.3. Re-activate the areas within the
system

DCMT VARY AREA or SEGMENT

4 |If the areas will not quiesce and the
only transactions left are suspended,
cancel the system

Operating system facilities

5. Restore al areas that were open at
the time of the I/O error (including
load and queue areas)

RESTORE

6. Roll forward all restored areas
using the archive journal files created
since each backup was taken

ROLLFORWARD with the COMPLETE
and AREA options

7. Initialize al journa files

FORMAT JOURNAL with the ALL option

8. Backup all recovered database
areas

BACKUP with the FILE option

9. Re-start the system

10. Re-run al transactions that were
not recovered

Considerations

Quiescing system activity: The approach outlined above quiesces activity within the
system by varying the areas to a transient retrieval mode. This allows the system to
remain active and capable of processing retrieval transactions until it is determined
whether or not manual recovery is necessary. Varying the areas offline or attempting
to shut the system down would also be valid alternatives.

19-38 CA-IDMS Database Administration

19.7 Recovery procedures from journal file /0O errors

In a data sharing environment, it is important to quiesce a shared area in al members
of the data sharing group. The broadcast capability of DCMT commands can be used
to do this easily.

Do not cancel tasks: Under no circumstances should you cancel atask or batch job
executing under the central version if ajourna 1/O error is encountered. By cancelling
the task, there is more chance that automatic recovery will fail because of the damaged
journal file, thus necessitating manual recovery.

Conservative approach: The steps outlined above take a conservative approach to
the recovery process in two ways:

= No attempt is made to try and offload the damaged journal file. If the file can be
offloaded, then the areas can be recovered using ROLLBACK (with the ACTIVE
option) rather than using RESTORE and ROLLFORWARD.

m All areas being updated by the system are recovered. If you identify the areas that
were being updated by the suspended transactions, then recovery can be limited to
those areas and other areas which are logically-associated. To identify the areas
that were being updated, you can use the DCMT DISPLAY TRANSACTION
command for the suspended transactions or the DCMT DISPLAY AREA
command which will identify the areas that have not quiesced.

Chapter 19. Backup and Recovery 19-39

19.8 Recovery procedures for local mode operations

19.8 Recovery procedures for local mode operations

What follows: Recovery procedures for local mode operations differ depending on
whether or not you are journaling and if so, whether you are journaling to a disk
device or tape device. The topics below provide the recovery procedures for each
situation.

19.8.1 No journaling
Use the backup file: If you are not maintaining journal files during execution of a

local mode job and the job terminates abnormally, you must restore al areas updated
by the local mode application.

19.8.2 Journaling to a tape device

Steps: To recover alocal mode database when journaling to a tape device, follow

these steps:

Action Statement

Rollback the database or areas of the n |f the job can be re-started from the last
database using as input the tape COMMIT point, use ROLLBACK with
journa file created by the local mode the ACTIVE option

job

n |f the job has to be re-run from the
beginning, use ROLLBACK with the
ALL option

Re-run the application

19.8.3 Journaling to a disk device

Steps: If you are journaling a local mode job to a disk device, follow these steps:

Action Statement

Copy the journa file to a tape device Operating system utility

Follow the steps outlined above for
journaling to a tape device above

19.8.4 Using an incomplete journal file

What is an incomplete journal file?: An incomplete journa file is a journal file
that does not contain a final ABRT checkpoint for the active transaction or even an
end-of-file mark. This occurs when the journal file has been unexpectedly interrupted,
for example, when the operating system crashes. An incomplete journa file is not

19-40 CA-IDMS Database Administration

19.8 Recovery procedures for local mode operations

suitable for recovering your database. To make a suitable journa file for recovery, use
the FIX JOURNAL utility statement, which:;

® Reads the damaged file and creates a new one
= Writes an ABRT checkpoint at the end of the new file

Steps: To recover a database in local mode, using an incomplete journal file, follow
these steps:

Action Statement

Fix the journd file FIX JOURNAL

Recover the database using the output
from the FIX JOURNAL utility
statement as described for journaling
to a tape device above.

Chapter 19. Backup and Recovery 19-41

19.9 Recovery procedures for mixed-mode operations

19.9 Recovery procedures for mixed-mode operations

What is a mixed-mode operation?: When database areas have been updated both
in loca mode and under the central version (for example, when an area has been
varied offline, subsequently updated by a local transaction that used journaling, and
then varied back online), the database must be restored by using both the local and the
central version journals.

Mixed mode recovery: The following scenario is an example of synchronizing the
recovery operations by explicitly using both the central version and local journals to
ensure proper recovery of all database areas:

6 a.m. Nightly backups taken

8 a.m. System startup: AREAl, AREA2,
AREA3 are readied in update
mode under the central version.

10:30 a.m. AREAL is varied offline.
While offline, a local mode program
(using a tape journal) updates
AREAL while the central version
continues to update AREAZ and
AREA3.

11:30 a.m. A VARY JOURNAL command is issued
for the central version journal.
AREA1 is varied back online and
the central version continues to
update AREAl, AREA2, and AREA3.

12:00 p.m. Database file I/0 error occurs
on AREAL.

When the database file 1/O error occurs, the affected file associated with AREA1 must
be restored by using both the local and central version journals.

Steps to recover the database: The following steps illustrate one approach to
recovery, given the situation outlined above. Note that with this approach two separate
rollforward operations are used. In order to process journal images from both central
version and local mode operations in a single execution of the ROLLFORWARD
utility, you must use the alternate recovery approach described below.

19-42 CA-IDMS Database Administration

19.9 Recovery procedures for mixed-mode operations

Action

Statement

Restore the damaged file using the
backup tapes produced at 6 am.

RESTORE with the FILE option

Rollforward all archive files produced
before 11:30

ROLLFORWARD FILE specifying ALL

Rollforward the local journal file,
restoring the file up to 11:30 am.

ROLLFORWARD FILE specifying ALL

Rollforward the second archive
journal file

ROLLFORWARD FILE with the
COMPLETE option

Complete the recovery process by following the steps outlined in 19.6, “Recovery
procedures from database file I/O errors’ on page 19-33 earlier in this chapter.

An alternate approach: The following steps illustrate an aternate approach to
recovery in a mixed-mode environment. With this approach, the local mode journal file
is first merged with the archive files produced by the central version and the merged
output file is used to recover the database in a single rollforward operation.

Action

Statement

Restore the damaged file using the
backup tapes produced at 6 am.

RESTORE with the FILE option.

Merge the local mode journa file
with the archive files produced since
8 am.

MERGE ARCHIVE specifying the
COMPLETE option

Rollforward al updates made since
the backup was taken

ROLLFORWARD FILE specifying the
COMPLETE option.

Complete the recovery process by following the steps outlined in 19.6, “Recovery
procedures from database file I/O errors’ on page 19-33 earlier in this chapter.

Chapter 19. Backup and Recovery 19-43

19.10 Data sharing recovery considerations

19.10 Data sharing recovery considerations

Quiescing update activity: Whenever it becomes necessary to quiesce access to an
area during a recovery operation, the quiesce must apply to all members of a data
sharing group. For recovery purposes, the quiesce will usually be done by varying the
area status to OFFLINE or TRANSIENT RETRIEVAL using a DCMT VARY
command. This command must be executed in every member to establish a group-wide
quiesce for a shared area. To do this easily, the command may be broadcast to other
members of the group.

Occasionaly, it will be sufficient to quiesce update access to an area through the use
of aDCMT QUIESCE command. This command will automatically propagate the
quiesce for a shared area to all group members, so there is no need to execute it on
more than one member of the group.

»» For more information on DCMT commands and how to broadcast them, refer to
CA-IDMS System Tasks and Operator Commands.

Recovery from a warmstart failure: If warmstart fails for a single member of a data
sharing group, recovery can proceed just as if the DC/UCF system were not a data
sharing member provided that all shared areas being updated by the member at the
time of failure are quiesced in other members of the group. The quiesce should be
done by varying the status of the affected areas to OFFLINE using a DCMT VARY
command.

If warmstart fails for more than one member, each member can be recovered
independently provided that:

= Only the ROLLBACK recovery utility is used
» The ACTIVE option is specified when executing ROLLBACK, and
» Executions of the ROLLBACK utility are serialized

Failure to comply with these conditions, may result in database corruption.

Recovery from other types of failures: Except when following the above procedure
to recover from a warmstart failure, the archive files from all members that have
updated a shared area since the backup was taken must be included in any manual
recovery. Furthermore, the journal images from all members must be processed
together in the same execution of the ROLLFORWARD or ROLLBACK utility. It is
not valid to process the images from one member in one execution followed by the
images from another member in another execution, since journa images must be
processed in chronological sequence.

Recovery from a warmstart failure is an exception to this rule only because records
updated by one member cannot be accessed by another member until the changes are
committed or rolled out. If warmstart fails, the unrecovered records remain locked, so
no other member can update them. This means that there will never be more than a

19-44 CA-IDMS Database Administration

19.10 Data sharing recovery considerations

single member with a before image for an unrecovered record and so inter-member
sequencing is not important.

Using MERGE ARCHIVE: The MERGE ARCHIVE utility is used to merge the
journal images from multiple members so that they are in chronological sequence. As
noted above, most recovery utilities require that journal images be processed
chronologically. In a data sharing environment, the journal images produced by each
member are in chronological sequence, but the images for areas concurrently updated
by multiple members are contained in each member's archive files. The MERGE
ARCHIVE tility interleaves the journal images from multiple members so that they
occur in date/time sequence. The resulting output file may then be used as input to a
ROLLFORWARD, ROLLBACK, or EXTRACT JOURNAL utility statement.

When executing the MERGE ARCHIVE utility statement, the input consists of a
concatenated set of archive files and optionally a merge archive file produced from a
previous execution of the MERGE ARCHIVE utility. Archive files produced by a
single member must be processed in the order in which they were created. Archive
files from different members may be processed in any order relative to those of other
members.

When to use MERGE ARCHIVE: The output of the MERGE ARCHIVE utility can
aways be used as input to the ROLLFORWARD, ROLLBACK, and EXTRACT
JOURNAL utility statements in place of the original archive files. It can also be used
to combine local mode journa files and archive files when mixed-mode updates must
be recovered.

However, while optional in most cases, MERGE ARCHIVE must be used to merge
the journal images of multiple data sharing group members before those images are
processed by:

» ROLLFORWARD or ROLLBACK utility statements that specify the
SEQUENTIAL option.

® ROLLFORWARD, ROLLBACK, or EXTRACT JOURNAL utility statements that
specify both the ALL and STOP TIME options.

Using EXTRACT JOURNAL: The EXTRACT JOURNAL utility is used to
preprocess journal images in order to reduce recovery time. This utility can also be
used in a data sharing environment. Any of the following are valid approaches to its
use:

m Separately preprocess the archive files of each member
® Preprocess the archive files of multiple members together
® Merge the archive files of multiple members using the MERGE ARCHIVE utility

and then preprocess the merge file

You must use the third approach if the ALL and STOP TIME parameters are specified
on the EXTRACT JOURNAL utility statement; otherwise, any of the above
approaches can be used to preprocess journal files in a data sharing environment.

Chapter 19. Backup and Recovery 19-45

19.10 Data sharing recovery considerations

If using either of the first two approaches, the EXTRACT JOURNAL utility statement
can be executed on a periodic basis to preprocess the archive files created since its
previous execution, or since a backup was taken. If recovery becomes necessary, all
extract files produced since the backup must be concatenated as input to a single
execution of the ROLLFORWARD utility. The order in which the extract files are
concatenated must be such that the journal images for each member are in
chronological sequence. It makes no difference in which order the images of one
member occur in relation to those of another member.

If using the third approach, the entire set of archive files produced by group members
that have updated the affected areas must be merged prior to executing the EXTRACT
JOURNAL utility. The MERGE ARCHIVE utility can be executed on a periodic basis
to merge the archive files created since its previous execution with the previously
created merge file. The EXTRACT JOURNAL utility can then be used to preprocess
the final merge file.

»> For more information on executing both the MERGE ARCHIVE and the
EXTRACT JOURNAL utility statements, refer to CA-IDMS Utilities.

Coupling facility failures: Certain types of failures are unique to a data sharing
environment, such as the loss of a coupling facility or a structure within the coupling
facility. In some cases, all members of a group will fail and recovery must be
coordinated across the group, a process called "group restart.”

»»> For more information on recovering from coupling facility failures and group
restart, refer to CA-IDMS System Operations.

19-46 CA-IDMS Database Administration

19.11 Considerations for recovery of native VSAM files

19.11 Considerations for recovery of native VSAM files

About recovery for native VSAM files: CA-IDMS/DB performs journaling for
native VSAM files just like it does for other types of files it supports. The recovery
procedures described in this chapter apply to native VSAM files also. The processing
difference is that the BACKUP and RESTORE utility statements cannot be used with
native VSAM files. Instead, use IDCAMS or some other utility for backing up and
restoring the file.

Potential problems: Since VSAM controls the actual updating of the data sets,
recovery problems may occur. If atotal system failure occurs after CA-IDMS/DB
passes control to VSAM, automatic recovery is not guaranteed. Therefore, you should
back up native VSAM data sets frequently, as described in the appropriate VSAM
documentation. Recovery can then be accomplished by restoring your file Using
IDCAMS (or some other utility) and ROLLFORWARD utility statements.

File verification after failure: If a DC/UCF system fails or a local mode
application terminates abnormally, you must issue the IDCAMS VERIFY command
for native VSAM files that were open for update at the time of the failure.

Limitations for ESDS areas: You cannot use the ROLLBACK utility statement
for an ESDS area to which a record has been added, because VSAM does not allow
the necessary erase.

Limitations for KSDS areas: Due to limitations within the VSAM access method,
ROLLFORWARD and ROLLBACK cannot be run with the SORTED option to
recover native VSAM KSDS areas. If you need to use the SORTED option, because
of the volume of data, and a database that contains a mixture of KSDS, ESDS, and/or
RRDS native VSAM files, follow these steps:

Action Statement

Restore the native VSAM files Operating system facility

Rollforward or rollback the area that ROLLFORWARD or ROLLBACK with the
maps to the KSDS file; the utility SEQUENTIAL option

statement recovers the KSDS file and
any associated alternate indexes.

Rollforward or rollback al the ROLLFORWARD or ROLLBACK with the
remaining areas or files. SORTED option

Chapter 19. Backup and Recovery 19-47

19-48 CA-IDMS Database Administration

Chapter 20. Loading a Non-SQL Defined Database

20.1 About database loading 20-3
20.2 Loading database records using FASTLOAD 20-4
20.2.1 Generd considerations 20-4
20.3 FASTLOAD procedure, 20-6
20.4 Loading database records using a user-written program 20-7
20.4.1 Organizing input data for a user-written program 20-7
204.2 Loading thedatabase 20-9
20.5 Related information 20-11

Chapter 20. Loading a Non-SQL Defined Database 20-1

20-2 CA-IDMS Database Administration

20.1 About database loading

20.1 About database loading

Loading options: To load a database defined with non-SQL DDL statements, you
can use either:

m The FASTLOAD utility statement

m A user-written load program

FASTLOAD utility statement: To use FASTLOAD, you must write and compile a
format program that specifies how to load the data. After executing the format
program, you invoke the FASTLOAD utility statement, which loads record occurrences
into the database and makes set connections using the output from the format program.
It also builds indexes during the load process.

User-written program: You can aso load a database by using DML commands in
a user-written application. The application can be written in any of the languages
CA-IDMS/DB supports.

If you use a user-written program to load the database, you should organize the record
occurrences in the input file so that they mimic the structure of the database. For
example, you should sort the records so that a CALC record is followed by its VIA
member record occurrences. Steps for organizing the input file appear in more detail
later in this chapter.

Advantages of FASTLOAD: FASTLOAD is often more efficient than a
user-written program for loading a database with complicated structures (for example,
multiple-member sets or multi-level record relationships). In addition, FASTLOAD
does not require pre-sorted data. As part of its internal processing, FASTLOAD sorts
the data at certain points during the load process.

Chapter 20. Loading a Non-SQL Defined Database 20-3

20.2 Loading database records using FASTLOAD

20.2 Loading database records using FASTLOAD

Requires a user-written format program: To use FASTLOAD, you must write
a format program that uses subroutines provided by CA to prepare data for input to the
FASTLOAD utility statement.

»» For a description of the format program, refer to the FASTLOAD statement in
CA-IDMS Utilities.

20.2.1 General considerations
Always load in local mode: You must load a database in local mode. Journaling
is not required, and is not recommended when loading a database for these reasons:
® The load utility does not maintain checkpoints
® |t's easier to re-run afailed job step than to recover the database

® Journaling can impact performance

Cross-area sets

® |f the owner and member records of an automatic set exist in different database
areas, load the areas together.

® |f the owner and member records of a manual set exist in different database areas,
either:
— Load the areas together

— Run a user-written program to connect the records after loading the entire
database

CALC records: The target page for CALC records to be loaded into a database can
be determined in one of two ways:

» By the standard CA-IDMS/DB CALC routine (IDMSCALC).

» By auser-written CALC exit routine (IDMSCLCX) that was compiled and
link-edited with IDMSUTIL.

Important: If you determine the target page using IDMSCALC, you must use it
whenever the database is accessed; likewise, if you use the IDMSCLCX user
exit, you must link-edit it with IDMSDBMS.

Compressed data: If the schema definition specifies compression for a record
type, CA-IDMS/DB compresses the record before it stores it during a load operation.
Therefore, before you begin the load procedure, be sure the schema definition includes
the information it requires to compress the record occurrences.

20-4 CA-IDMS Database Administration

20.2 Loading database records using FASTLOAD

Reserving space on the page: To reserve space for the storage of additional
records on a page or for increases in the length of records stored on a page, add an
area override to the DMCL that specifies a page reserve. When the load is complete,
you can remove the area override.

Buffers: The DMCL that you use to load the database should contain a local mode
buffer that contains at least 10 pages. One large buffer should be sufficient.

However, you may obtain performance improvements by assigning the files associated
with each area to a separate buffer. If you don't have enough resources, then try to
assign the files associated with the following areas to separate buffers:

® |ndex area
® Areas for which the owner record exists in one area and the member record exists
in another area

Considerations for large databases: A large database should be loaded in
portions. The FASTLOAD statement assumes that all record occurrences that are
connected by automatic sets will be loaded at the same time. For a large database, this
assumption can be limiting. To load a large database:

1. Group the record types so that there are not automatic sets between the groups
2. Load each group of record types
3. If manual set connections exist between records in different groups, connect the
records by executing a user-written program
Subschema requirements: The subschema that you use in the load process must:

® |nclude all records being loaded and all set relationships in which the records
participate

. Allow al affected areas to be readied in exclusive update mode

Chapter 20. Loading a Non-SQL Defined Database 20-5

20.3 FASTLOAD procedure

20.3 FASTLOAD procedure

Steps: To load a database for the first time, follow these steps:

1

Write and compile a format program that specifies how to load the data. Refer to
CA-IDMS Utilities for information about the format program.

Link-edit the format program with IDMSDBLU
Define the segments, areas, and files that represent the physical database

Add the segment definition to the DMCL and make the DMCL available to the
runtime environment

Format the database files to be loaded using the FORMAT utility statement with
the FILE option

Execute the format program

Load the database using the output from the format program as the input to
FASTLOAD

Back up the database areas using the BACKUP utility statement or any
comparable backup utility

Verify the validity of the loaded database using:
= IDMSDBAN, to verify the physical integrity of the database

n CA-OLQ, CA-CULPRIT, or some other retrieval job to verify the data in the
database

20-6 CA-IDMS Database Administration

20.4 Loading database records using a user-written program

20.4 Loading database records using a user-written
program

What follows: Before you load a database using a user-written program, you must
first organize the data in the input file. What follows is a discussion of how to
organize the record occurrences followed by the procedure to load the database.

20.4.1 Organizing input data for a user-written program

Organize record occurrences to match schema: To make the database load as
efficient as possible, you need to organize the record occurrences to match the
structure of the database. For example, you want a CALC owner record to be
followed by its VIA member records. The discussion below identifies how to organize
the data.

Step 1: Identify the record types: The first step in organizing input data is to
identify the type of each record. To identify the type of record, add the record's ID to
the beginning of each record occurrence. For example, the ID of the DEPARTMENT
record is 410; the ID of the EMPLOY EE record is 415.

Step 2: Identify CALC clusters: A CALC cluster is an occurrence of a CALC
record, al of its VIA member records, and al VIA member records of a VIA member
record occurrence. For efficient database processing, al the records within a CALC
cluster should fit on one page (and thereby, can be processed with one 1/0). If the
records do not fit on one page, then store the most frequently accessed record types
immediately following the CALC record occurrence so that they have a better chance
of being stored on the same page as the owner.

Step 3: Form CALC cluster hierarchies: A hierarchy is a collection of CALC
clusters. For example, if a CALC record occurrence in one cluster is owned by a
record in another cluster, you have a hierarchy of CALC clusters. In the
Commonweather database, both the OFFICE and DEPARTMENT records own
occurrences of the EMPLOY EE record, which in turn owns VIA member record
occurrences. In deciding what records to include in the CALC cluster hierarchy,
consider the number of CALC record occurrences. For example, if the
DEPARTMENT record has many more occurrences then the OFFICE record, then
store the EMPLOY EE records immediately after the owning DEPARTMENT record.
This potentially saves an 1/0 because you won't need to reestablish currency on the
DEPARTMENT record occurrence later on.

Hierarchies are loaded from top-to-bottom, left-to-right order. When you store the
owner of a CALC cluster, you establish currency to store the member of a CALC
cluster.

Step 4: Sort the records in a hierarchy: To sort records within a hierarchy, add
a prefix to the beginning of the record occurrence. The prefix contains the record id
and sequence number for each level of the hierarchy. For example, the

Chapter 20. Loading a Non-SQL Defined Database 20-7

20.4 Loading database records using a user-written program

DEPARTMENT, EMPLOY EE, EMPOSITION record hierarchy might have a prefix
that looks like this:

ID and sequence number Record Record
EMPLOYEE | EMPOSITION

4101 0/0 0/0 410 Department
record 1

410/1 415/1 0/0 415 Employee record
1

410/1 415/1 420/1 420 Emposition record
1

4101 415/1 420/2 420 Emposition record
2

Step 5: Order the occurrences of each hierarchy: A database page will
typically hold more than one database cluster. Therefore, you can load multiple
clusters with one I/O if you load al the hierarchies that target to the same database
page. To sort the hierarchy occurrences, add the CALC target page number of the top
cluster in the hierarchy to the beginning of the input record.

Tip: To determine the CALC target page, use IDMSCALC in the program that
creates the input file; for more information on IDMSCALC, refer to CA-IDMS
Utilities.

Step 6: Include records excluded from the hierarchies: Some records do not
fall within a hierarchy. For example, suppose you did not include the OFFICE record,
which owns EMPLOY EE record occurrences in a CALC cluster hierarchy. To load
owner records that fall outside of a hierarchy:

1. Position the non-VIA owner records at the beginning of the input file, before any
records that form part of a hierarchy, by adding an identifier to the beginning of
each input record. For example, the identifier of the OFFICE record type might
be 4 and the identifier of the DEPARTMENT, EMPLOY EE, EMPOSITION
hierarchy might be 5.

2. Add the key of the non-VIA owner record to the end of the hierarchy record
occurrence; at load time, use the key to find the owner before storing the member.
For example, add the OFFICE-CODE-0450 field to the end of each EMPLOY EE
record occurrence.

Step 7: Order sorted and indexed sets: Sorted sets should always be loaded in
the same order as the sort sequence. To sort the input data:

» For a set within a hierarchy, replace the sequence number field at the record's
level in the hierarchy with the sort key of the set; for example, if the
EMP-EMPOSITION set is a sorted set, replace the sequence number for
occurrences of the EMPOSITION record with the record's sort key in the prefix
portion of the input record.

20-8 CA-IDMS Database Administration

20.4 Loading database records using a user-written program

® For a set outside of a hierarchy, follow these steps:
1. Re-define the set as manual

2. Create a file containing records with these fields: the owner's page, the set
name, the owner's CALC key, the set's sort key, the dbkey of the member
record

3. Sort the file in:
Descending order by page
Ascending order by set name and owner key
Either ascending or descending order by sort key
4. After loading the database, connect the set members using a user-written
program
Step 8: Sort the input records: Sort the input records in:
m Ascending order by identifier
» Descending order by target page number

® Ascending order by the concatenation of all ID and sequence fields that represent
a hierarchy

Note: If records are to be stored VIA a system-level index, they should be sorted in
the reverse order of their VIA index so records at the end of the index will be
processed first by the user-written format program. This will insure that the
physical sequence of the records on the database will match the sequence of
the index.

20.4.2 Loading the database

To load a database for the first time using a user-written program, follow these steps:

Chapter 20. Loading a Non-SQL Defined Database 20-9

20.4 Loading database records using a user-written program

Action Statement
Write and compile a load program

that specifies how to load the data.

Optionaly, tailor the DMCL to be ALTER DMCL

used for the load operation

If altered, make the DMCL available
to the local mode runtime
environment

See Chapter 4, “Defining, Generating, and
Punching a DMCL" on page 4-1

Format the database files to be loaded

FORMAT with the FILE option

Load the database using as input the
sorted input file

Execute the user-written program

If necessary, connect members to sets
treated as manual during the load

Execute the user-written program

Back up the database areas

BACKUP or any comparable backup utility

Verify the validity of the loaded
database

CA-OLQ, CA-CULPRIT, or some other
retrieval job to verify the data in the
database

Example: The following example shows code to load the DEPARTMENT hierarchy:

read an input record
repeat until end-of-file
if record-id = 410
move DEPARTMENT record
store DEPARTMENT
else if record-id = 415
move OFFICE key
find calc OFFICE
move EMPLOYEE record
store EMPLOYEE
else if record-id = 420
move JOB key
find calc job
move EMPOSITION record
store EMPOSITION
else if record-id = 425
move SKILL key
find calc SKILL
move EXPERTISE record
store EXPERTISE
end-if
read next input record
end-repeat

20-10 CA-IDMS Database Administration

20.5 Related information

20.5 Related information

= About utility statements mentioned in this chapter, refer to CA-IDMS Utilities

® About loading an SQL-defined database, see Chapter 21, “Loading an
SQL-Defined Database” on page 21-1

= About the IDMSCLCX user exit, refer to CA-IDMS System Operations

Chapter 20. Loading a Non-SQL Defined Database 20-11

20-12 CA-IDMS Database Administration

Chapter 21. Loading an SQL-Defined Database

21.1 About database loading 21-3
21.2 Loading considerations 21-7
21.3 Contents of theinput file 21-10
21.4 Loading procedures 21-12
21.4.1 Stepsthat apply to all load procedures 21-12
2142 Full load procedure 21-13
2143 Phased load procedure 21-13
21.4.4 Segmented load procedure 21-15
2145 Stepped load procedureo 21-16
215 Related information L 21-20

Chapter 21. Loading an SQL-Defined Database 21-1

21-2 CA-IDMS Database Administration

21.1 About database loading

21.1 About database loading

Loading phases: The table below summarizes the phases involved with loading an
SQL -defined database. The load process was designed to accommodate both small
databases and very large databases as well as alow flexibility in tailoring the load
process to the characteristics of the data being loaded:

Phase What it does
Load Loads the specified tables
Build Builds indexes and linked index constraints for the specified

tables; this phase can be bypassed if neither linked index
constraints or non-clustering indexes are defined on the
specified tables

Validate Validates referential constraints in which the specified tables
participate

Steps within phases: Each of these phases, in turn, is composed of sub-phases
called steps. The table below summarizes the function of each step:

Chapter 21. Loading an SQL-Defined Database 21-3

21.1 About database loading

Phase

Step

What it does

Load

Step 1

Processes data in preparation for sorting;
this step can be bypassed if datais
already sorted

Step 2

| oads the table rows

®» Connects linked, clustered
constraints

® Builds clustering indexes

Build

Step 1

Performs an area sweep in the absence
of an intermediate extract file

Step 2

Finds the db-keys of rows that
participate in the referenced table of a
linked index referential constraint

Step 3

Builds non-clustering indexes and linked
indexes

Step 4

Updates the prefixes of rows that
participate as the referencing table of a
linked index referential constraint

Validate

Step 1

Vadidates only those constraints that can
be processed efficiently in a single pass
and extracts information about other
referential constraints

Step 2

Validates any referential constraints
bypassed in Step 1

Load flow diagram: The diagram below illustrates the load and build phases of the
process described above:

21-4 CA-IDMS Database Administration

21.1 About database loading

LOAD PHASE .
with presort

LOAD STEP 1

without presort
LOAD STEP 2

BUILD PHASE

]
BUILD STEP 1

BUILD STEP 2

@

BUILD STEP 3

%

BUILD STEP 4

Loading options: CA-IDMS/DB offers you the following loading options:

Chapter 21. Loading an SQL-Defined Database 21-5

21.1 About database loading

Option

Description

When to use it

Full load

Loads, builds and
validates the specified
tables

Always, unless special
considerations apply

Phased load

Executes each phase
(load, build, and
validate) separately

When loading a number of tables
one at atime or in groups; defer

build and/or validate phases until

all the tables have been loaded

Segmented load

Loads portions of input
in separate operations

When loading extremely large
tables; defer the build and validate
steps until all the input records
have been processed

Stepped load

Executes each step of a
phase (load, build, and
validate) separately

When loading extremely large
tables for which external sort
packages may be more efficient or
when space for intermediate work
files or tape drivesis at a
premium

CA-IDMS/DB enforces all constraints during the load: CA-IDMS/DB
enforces al constraints during the load process. That is, it enforces:

» Referential constraints

» Data type constraints

m Check constraints

® Unique constraints

For example, if atable alows only specified values to be stored in a column,
CA-IDMS/DB stores only valid values. CA-IDMS/DB also assigns default values for
columns for which no input values are supplied, provided the column was defined to
alow null or default values.

21-6 CA-IDMS Database Administration

21.2 Loading considerations

21.2 Loading considerations

Using pre-sorted data: Before CA-IDMS/DB loads data, it sorts the data using a
sort sequence best suited to the table's characteristics. |f you have already sorted the
input data, you can tell CA-IDMS/DB to skip the sort phase.

Providing sorted data: To sort the data yourself, follow these recommendations to
achieve the most efficient load for your tables:

Table characteristic Recommended sort sequence

Table has a clustered index Sort on index key

Table has a clustered referential Sort on foreign key of the referencing table
constraint

Table has a CALC key Sort on CALC-key target page; to do this,

use the IDMSCALC utility program to
determine the target page and append the
target page to the input record

Database buffers used during load: You must load a database in local mode.
The DMCL that you use for the load should specify buffers for the areas being loaded
that contain at least 10 pages. The larger the buffer, the more efficient the load.

Reserving space on the page: If you want to leave free space on the database
pages following the load, add an area override in the DMCL that specifies a page
reserve. After the load is complete, remove the area override so that new rows and
index entries can use the free space. This technique is especialy useful for areas that
contain only indexes or that contain tables clustered on an index.

Error handling: CA-IDMS/DB may encounter errors during each phase of the load
process. You can instruct CA-IDMS/DB what to do in response to these errors, for
example, to continue processing or to quit following a specified number of errors. The
table below summarizes the types of errors that can occur within each phase:

Chapter 21. Loading an SQL-Defined Database 21-7

21.2 Loading considerations

Phase Type of error Corrective action

All phases ® Table not defined in the Define the table in the
catalog catalog

Load m Check constraint No corrective action needed;
violation however, row is not inserted

. and subsequent build and
® [nvalid data values validate phases may fal
» Unique constraint

violation on a CALC key,

clustering index, or

linked clustered

constraint

n Referential constraint
violation on a linked
clustered constraint

Build ® Unique constraint FIX PAGE utility statement
violation on or reload data
non-clustering index or
linked index constraint

» Referential constraint
violation on a linked
index constraint

Validate Invalid referential constraint 1 |[NSERT to store
missing owner

n UPDATE to change
invalid foreign key

8 DELETE to remove
invalid referencing rows

Input data used in the build phase: You can enter the BUILD phase of the load
process using data stored in intermediate work files created by the LOAD phase or by
instructing CA-IDMS/DB to extract the necessary information as the first step in the
build process. Intermediate work files are generally used when you intend to enter the
BUILD phase immediately following the LOAD phase; typically, you instruct
CA-IDMS/DB to extract the information if some time elapses between the two phases.

The table below summarizes how to specify these options:

21-8 CA-IDMS Database Administration

21.2 Loading considerations

BUILD phase Load and build LOAD statement BUILD statement
input option
Intermediate work Phased load and LOAD NO None
file build VALIDATE
Stepped load LOAD STEP1 Start with BUILD
EXTRACT STEP2
Extracted work file Phased load LOAD NO BUILD
BUILD
Stepped load LOAD STEP1 Start with BUILD
NOEXTRACT STEP1

Enhancing load performance: The list below identifies some ways to enhance

the performance of your load operations:

m |f possible, load several tables at the same time

®m Validate several tables at once

® Always load using sorted data; either letting CA-IDMS/DB sort the data or by
supplying pre-sorted data

® Increase the number of pages in the buffer(s)

Chapter 21. Loading an SQL-Defined Database 21-9

21.3 Contents of the input file

21.3 Contents of the input file

Mixed input records: The input file to the load process can contain different types
of input records. For example, the input file might contain an EMPLOY EE record,
followed by a DEPARTMENT record, followed by an OFFICE record and so on; to
distinguish the different types of records, you must include a record identifier (in this
example, at the end of the record):

0574SMITH JOHN 254 WILLOW ST NEEDHAM MA 4035 415

4001PERSONNEL MASON PAULA 5538 0020 410
0020CHICAGO 3 CORPORATE PLACE 450

Tip: By including record identifiers at the end of the input records, you may be able
to avoid listing individual column definitions in the LOAD statement.

Loading multiple tables: You can load more than one table in the same load
operation by using one of the following techniques:

» By specifying selection criteria applied against records in the input file. For
example, to load the EMPLOY EE table, using the example above, you could
select all input records with value '415' as a record identifier.

» By selecting specific fields from one input record that contains data pertinent to
multiple tables. For example, the input record may contain values to be stored in
table EMPLOYEE and values to be stored in table DEPARTMENT.

Identifying columns implicitly: If, in the LOAD statement, you do not explicitly
list the columns in the table to be loaded, CA-IDMS/DB assumes that values are
supplied for all columns in the table. It starts with position 1 of the input record and
extracts input values for each column of the table. To be successful, the input data
must match the order, data type, length, and null criteria specified in the table
definition. Columns that alow null values must be represented by a data field and an
indicator field, which is described below under "Null values'.

Identifying columns explicitly: If you supply values for only some of the
columns within the table or if the order or data types of the values in the input file do
not match that of the columns in the table, you must tell CA-IDMS/DB:

. Where to find the column values in the input record by specifying their start
position relative to the beginning of the input record

® The data type of the input record value

» The null value criteria for input values, if applicable

If you omit a column name, the column must either:
= Allow null values

» Allow a default value

21-10 CA-IDMS Database Administration

21.3 Contents of the input file

Data types: If you explicitly list the columns to be loaded, the data type of the
value to be stored can be different from the data type defined for the column provided
the data types are compatible. For example, a column defined as CHARACTER is
compatible with data types VARCHAR, DATE, TIME, and TIMESTAMP.

» For more information about compatible data types, refer to the CA-IDMS SQL
Reference.

Null values: Null valuesin an input file can be represented as either:

m A specific data value, designated by you in the NULL IF clause of the LOAD
statement.

® Anindicator field, immediately following the data field. This field is either a 1,
2, or 4 byte binary field and must contain a value of:

— 0, to indicate a non-null data value
— -1, to indicate a null value
If you do not explicitly list the columns to be loaded, then all columns that permit

null values must be followed by a 4-byte indicator field.

Sequence for loading tables: If you are loading multiple tables, you may have to
use separate load operations. If so, use these rules to load the tables in the correct
sequence:

m Tables clustered through a linked or unlinked constraint cannot be loaded until the
referenced table is loaded and, if necessary, the index on the primary key of the
referenced table is built.

® Linked index constraints cannot be built until the referenced table is loaded and, if
necessary, its primary key index is built.

Chapter 21. Loading an SQL-Defined Database 21-11

21.4 Loading procedures

21.4 Loading procedures

What follows: The remainder of this chapter provides procedures and examples for:

m Steps that apply to al load procedures

n A full load procedure

= A phased load procedure

» A segmented load procedure
» A stepped load procedure

Note: Only one LOAD, BUILD, or VALIDATE statement may be performed during
one execution of the batch command facility; for example, you cannot submit
two LOAD statements at one time.

21.4.1 Steps that apply to all load procedures

Steps before the load: Regardless of what load procedure you use, perform the

following actions before loading the data:

Action

Statement

Define the tables to be loaded

CREATE TABLE

Create the input file or files of data to
be loaded using CA-CULPRIT,
CA-OLQ (batch), or a user-written
program

Vary the areas in which the tables
reside offline to DC/UCF

DCMT VARY AREA with the OFFLINE
option

Back up the areas, if they aren't
empty

BACKUP or a comparable backup utility

Steps after the load: After loading the data, perform these steps:

Action

Statement

Optionally, verify the result by
retrieving data from the loaded tables

SELECT statements

Back up the areas in which the tables
reside

BACKUP or a comparable backup utility

Vary the areas online

DCMT VARY AREA with the ONLINE
option

21-12 CA-IDMS Database Administration

21.4 Loading procedures

21.4.2 Full load procedure

Steps: Follow these steps to perform a full load of an SQL-defined database:

Action Statement

In local mode, load, build, and LOAD
validate one or more database tables

Example: This example loads, builds, and validates tables ASSIGNMENT,
CONSULTANT, EXPERTISE, SKILL, and PROJECT. Each of these tables is
independent of those in other areas of the EMPLOY EE database. By defaullt,
CA-IDMS/DB sorts the input data before it loads the tables. Also by default, if it
finds any errors during any phase of the load procedure, it stops.

To load each table, CA-IDMS/DB applies selection criteria against each input record it
reads. For example, the ASSIGNMENT table receives al input records where the
value in position 210 of the input record equals '512'. Similarly, the EXPERTISE
table receives all input records where the value in position 210 equals '320'.

load
into demoproj.assignment
where position 210 = '512'
(emp_id position 1 smallint,
proj_id position 3 char(4),
start_date position 13 date,
end_date position 23 char(8) null if '01-01-01"')

into demoproj.consultant
where position 210 = '222'

into demoproj.expertise
where position 210 = '320'
(emp_id position 1 smallint,
skill_id position 3 smallint,
skill_level position 5 char(2) null if '99',
exp_date position 7 date)

into demoproj.project
where position 210 = '416'

into demoproj.skill
where position 210 = '445';

21.4.3 Phased load procedure

Steps: Follow the steps below to perform a phased |oad:

Tip: Optionally, back up the database areas between the load and build steps if you
want to recover the data in the event of afailed job step.

Chapter 21. Loading an SQL-Defined Database 21-13

21.4 Loading procedures

Action

Statement

Identify the following tables:

All tables clustered through
referential constraints; if multiple
levels of clustering exist, the
tables in each level must be
loaded in a separate operation
before those at a lower level

All referencing tables in linked
index constraints where the
primary key is an index; if
multiple levels of such a structure
exist, the tables in the higher
levels must be loaded before
those at a lower level

In local mode, load and build all
tables not identified in Step 1 above.

LOAD with the NO VALIDATE option

For each clustering level, load
and build al tables clustered
through referential constraints

For each linked index level, load
and build all tables that
participate in linked index
constraints

LOAD with the NO VALIDATE option

Validate the referential constraints of
al the loaded tables

VALIDATE SEGMENT

Example: In this example, the tables BENEFITS, COVERAGE, EMPLOYEE, and
POSITION are loaded in a phased load procedure. The tables have the following
characteristics:

Table Characteristics

BENEFITS References EMPLOYEE in a linked, clustered constraint
COVERAGE References EMPLOYEE in a linked, clustered constraint
EMPLOY EE References DEPARTMENT in an unlinked constraint
POSITION References EMPLOYEE in a linked, clustered constraint

To load the tables, load and build the EMPLOY EE table first, followed by the
remaining tables. After all 4 tables are loaded, validate the referential constraints that
exist between them:

21-14 CA-IDMS Database Administration

21.4 Loading procedures

load no validate
into demoempl.employee
where position 150 = '415';
load no validate
into demoempl.benefits
where position 150 = '478'

into demoempl.coverage
where position 150 = '488'

into demoempl.position
where position 150 = '492';

validate segment demoempl;

21.4.4 Segmented load procedure

Steps: Follow the steps below to perform a segmented |oad:

Action Statement

Load the input records in groups; for LOAD NO BUILD using the FROM and
example, the first 1,000,000, the FOR clauses for each group of input records
second 1,000,000 and so on

Build the table indexes BUILD INDEXES NO VALIDATE

Build the indexed constraints BUILD CONSTRAINTS NO VALIDATE

Validate the referential constraints of VALIDATE
the tables within the segment

Example: This example uses a segmented load to load table EMPLOY EE, which
contains more than 2,000,000 rows. By default, each input record is to be stored in
the EMPLOY EE table, with each field in the input record corresponding in length and
data type to each column defined for the EMPLOY EE table.

The first LOAD statement loads 1,000,000 rows in the table, starting with the first
input record. CA-IDMS/DB will notify the user for each 100,000 input records
processed. The second LOAD statement processes the next 999,999 input records
beginning with input record 1,000,001. The third LOAD statement processes the
remaining input records.

Because the table is so large, indexes and indexed constraints are built in separate
steps using the BUILD statements. Finally, the referential constraints for the table are
validated.

Chapter 21. Loading an SQL-Defined Database 21-15

21.4 Loading procedures

21.4.5 Stepped

load no build
into demoempl.employee
for 1000000
notify 100000;

load no build
into demoempl.employee
from 1000001
for 999999
notify 100000;

load no build
into demoempl.employee
from 2000000
notify 100000;

build indexes
no validate
for demoempl.employee
notify 100000;

build constraints
no validate
for demoempl.employee
notify 100000;

validate table demoempl.employee
notify 100000;

load procedure

Steps:
Tip:

Follow the steps below to perform a stepped load:

If you want to be able to recover the database in the event of a failed job step,

back up the database areas between each job step.

Action

Statement

1. In local mode, load one or more
database tables choosing one of the
options below. If you intend to build
indexes and/or relationships for the
tables immediately following the load
step, choose one of the options that
creates an intermediate work file:

1.1 Load, creating intermediate extract
files for the build phase

LOAD STEP1 EXTRACT BOTH (the
default)

1.2 Load, creating an intermediate
extract file for building indexes

LOAD STEP1 EXTRACT INDEXES

1.3 Load, creating an intermediate
extract file for building relationships

LOAD STEP1 EXTRACT
RELATIONSHIPS

21-16 CA-IDMS Database Administration

21.4 Loading procedures

Action

Statement

1.4 Load, creating no intermediate
extract file

LOAD STEP1 NO EXTRACT

2. If you specified WITHOUT
PRESORT, skip this step. Otherwise,
sort the data using an external sort
program and the sort cards supplied
by CA-IDMS/DB. Then continue the
load phase of the stepped load
procedure.

LOAD STEP2

3. If you specified LOAD STEP1 NO
EXTRACT, perform this step to

collect the data necessary to build the
table indexes and indexed constraints

BUILD STEP1

4. Sort the data using an external sort
program and the sort cards supplied
by CA-IDMS/DB

5. After all of the tables have been
loaded or after completing the
previous step, determine the db-keys
of rows in any tables that participate
as the referenced table in a linked
index referential constraint

BUILD STEP2

6. Sort the data using an external sort
program and the sort cards supplied
by CA-IDMS/DB

7. Build unclustered indexes and
linked index referential constraints

BUILD STEP3

8. Sort the database using an external
sort program and the sort cards
supplied by CA-IDMS/DB

9. Update the prefixes of any tables
that participate as the referencing
table in alinked index referential
constraint

BUILD STEP4

10. Perform the first pass at validating
the relationships between tables that
participate in referential constraints

VALIDATE STEP1

11. Sort the database using an
external sort program and the sort
cards supplied by CA-IDMS/DB

Chapter 21. Loading an SQL-Defined Database 21-17

21.4 Loading procedures

Action Statement

12. Perform the second pass of VALIDATE STEP2
validating referential constraints;

generaly, a second pass is required

for unlinked relationships if either the

referenced table or referencing table

contains a CALC key.

Example: In the example below, the DBA loads an SQL-defined database in the
following steps:

® L oads tables CUSTOMER and INVENTORY using pre-sorted data
» L oads tables ORDERS and PARTS using pre-sorted data

® Using an area sweep, extracts information for building indexes and indexed
constraints

® Builds the indexes and constraints for the table using separate steps and external
sorts

n Validates referential constraints

load stepl
without presort
no extract
into custschm.customer
where position 300 = '435'
into custschm.inventory
where position 300 = '457';

load stepl
without presort
no extract
into custschm.orders

where position 200 = '335'
into custschm.parts
where position 200 = '345';

build stepl
for custschm.customer
custschm.inventory
custschm.orders
custschm.parts;
Sort the data

build step2;

Sort the data:
build step3;

Sort the data:

21-18 CA-IDMS Database Administration

21.4 Loading procedures

build stepé4;

validate stepl;

Sort the data:
validate step2;

Chapter 21. Loading an SQL-Defined Database 21-19

21.5 Related information

21.5 Related information

» About the BACKUP, LOAD, BUILD, VALIDATE utility statements and the
IDMSCALC utility program, see CA-IDMS Utilities

» About SQL data types, refer to the CA-IDMS SQL Reference

= About loading a non-SQL defined database, see Chapter 20, “Loading a Non-SQL
Defined Database” on page 20-1

. About DCMT commands, refer to CA-IDMS System Tasks and Operator
Commands

. About CA-CULPRIT and CA-OLQ, see the document set for each product

21-20 CA-IDMS Database Administration

Chapter 22. Monitoring and Tuning Database

Performance

22.1 Monitoring guidelines 22-3

22.2 Monitoring facilities 22-4

223 Itemsto monitor andtune 22-5
2231 Journa USe 22-5
22.3.2 Buffer utilization 22-6
22.3.3 Space management and database design 22-7
2234 Indexing efficiency 22-8
2235 Databaselocks 22-9
2236 Longtermlocks 22-13
2237 SQL processing 22-14

224 Reducing /O 22-15
22.4.1 Through database reorganization 22-15
22.4.2 Through applicationdesign 22-16
22.4.3 Through databasedesign 22-16

22.4.4 By using UPDATE STATISTICS (SQL-accessed databases) 22-16

Chapter 22. Monitoring and Tuning Database Performance 22-1

22-2 CA-IDMS Database Administration

22.1 Monitoring guidelines

22.1 Monitoring guidelines

Why you need to monitor: Eventualy, a database may begin to outgrow its initial
alocation of space, with resulting increased 1/0 and poor response time. If you don't
monitor your databases on a regular basis, these conditions can become critical, forcing
you to take emergency actions at an inconvenient time.

Suggested monitoring schedule: Consider using the schedule below as the basis
for monitoring database performance:

Monitoring tool Monitoring Information provided
frequency
JREPORT 004 Daily Summary information on the database

processing activities for each program
recorded in the journal file

IDMSDBAN report 2 Weekly Area detail statistics, such as number
of logically full pages and number of
relocated records

IDMSDBAN report 5 Monthly Set detail statistics, such as the number
of pages needed to store a chained set

PRINT SPACE Daily Area space utilization statistics

IDMSDBAN (@l reports) Monthly or Set statistics, including broken chains,
as needed record data, and area data

Keep a history of meaningful statistics: Keep a history of meaningful statistics
so that you can identify abnormal conditions when they arise.

SQL considerations: Most of the information in this chapter applies to both SQL
and non-SQL defined databases. Text that applies to only one or the other will be
noted. In addition, much of the chapter applies to the physical structures that underlie
the database definition. Therefore, one set of terms will be used for these physical
entities. For example, chain sets are the physical structure used to implement both
SQL linked constraints and non-SQL sets defined with the MODE IS CHAIN clause.

Chapter 22. Monitoring and Tuning Database Performance 22-3

22.2 Monitoring facilities

22.2 Monitoring facilities

Online and batch components:

CA-IDMS/DB offers the following online and

batch tools for you to use to monitor the performance of your databases:

Facility

Uses

CA-IDMS Performance
Monitor

To monitor:
® Real-time database and system statistics
m System-wide, wait-time statistics for a unit of time

m Statistics about resource usage by individual
programs

DCMT commands

To display definitions and run-time statistics for entities
associated with a DC/UCF system

IDMSDBAN utility
program

To check for broken chains and to display statistics and
data for sets, records, and areas

OPER WATCH
commands

To display dynamic system run-time statistics associated
with DC/UCF systems

PRINT INDEX utility
statement

To monitor the structure of user-owned and
system-owned indexes

PRINT SPACE utility
statement

To monitor space utilization in segments or areas

PRINT JOURNAL utility
statement

To display checkpoint information about transactions
recorded on an archive or tape journa file

PRINT utility statement

To display the contents of requested database pages

JREPORTS

To monitor journa and database usage statistics

SREPORTS

To monitor system and database usage statistics

Online print log (PLOG)

To display system messages, system trace information,
and snap dumps from the DDLDCLOG area

UPDATE STATISTICS
utility statement

To refresh statistical information about SQL defined
databases, and non-SQL defined databases that are
accessed by SQL commands.

»> For more information about CA-IDMS Performance Monitor, refer to CA-IDMS
Performance Monitor User Guide For more information about utility programs and
statements, refer to CA-IDMS Utilities For more information about DCMT and OPER
commands, refer to CA-IDMS System Tasks and Operator Commands For more
information about JREPORTSs and SREPORTS, refer to CA-IDMS Reports

22-4 CA-IDMS Database Administration

22.3 ltems to monitor and tune

22.3 Items to monitor and tune

Monitoring the database:

Monitoring transactions:
are.

Pages over 70% full
CALC and VIA (clustered) record overflow
Fragmented records

Inefficient index structures

For your database, the mgjor areas of degradation are:

An increase in logically-deleted or relocated records

For each transaction, the major performance indicators

® The number of 1/Os and/or the number of cals to CA-IDMSDB

What follows:

The number of waits and deadlocks

the following areas:

Journal use

Buffer utilization

Space management and database design
Indexing efficiency

Database locks

Longterm locks

Access modules

22.3.1 Journal use

Useful statistics to monitor

The remainder of this section identifies useful statistics to monitor in

Statistic Meaning Action
Journal read Indicates CA-IDMS/DB must Increase the number of pagesin
walits wait to read a page from a the journal buffer

journa file into the journal
buffer during a rollback
operation.

Chapter 22. Monitoring and Tuning Database Performance 22-5

22.3 ltems to monitor and tune

Action

Statistic M eaning
Journal page Indicates the fullness of
utilization journal pages written from the

journa buffer.

Create fuller journa buffers by:

® Adjusting the journal buffer
page size in the definition
of the journal buffer

® Increasing the journal
TRANSACTION LEVEL
option at system generation
or using a DCMT VARY
JOURNAL command

Where the statistics are reported
» ARCHIVE JOURNAL utility statement report
= JREPORT 004
8 CA-IDMS Performance Monitor
= DCMT DISPLAY JOURNAL

22.3.2 Buffer utilization

Useful statistics to monitor

Statistic Meaning

Possible action

Buffer Indicates the ratio of the

utilization ratio number of pages requested to
the number read; values less
than 2 indicate a problem
with the buffer size or with
the design of the database

® |ncrease the number of
buffer pages

» Reassign files to buffers

Forced writes Indicates the number of times
CA-IDMS/DB had to write a
buffer page to storage in
order to read a database page

® |ncrease the number of
buffer pages

® Reassign files to buffers

® |ssue COMMITs more
frequently in update jobs

Buffer waits Indicates the number of times
the buffer was requested but
was not available

® |ncrease the number of
buffer pages

® Reassign files to buffers

Where the statistics are reported

1 CA-IDMS Performance Monitor

22-6 CA-IDMS Database Administration

22.3 ltems to monitor and tune

= SREPORT 003

= DCMT DISPLAY/VARY BUFFER

22.3.3 Space management and database design

Useful statistics to monitor

Statistic

M eaning

Possible action

Clustering ratio

Indicates the ratio of the
number of records requested
to the number of pages
requested; ratios less than 4
indicate poor database design
or space availability problems

® Redesign the database
using clustering more
effectively

® Increase the ared's page
size or page range and
unload and reload the
database

® Reassign files to buffers

Page space
availability

Indicates how full database
pages are

® |ncrease the database page
size

® |ncrease the number of
pages

Fragments
stored

Indicates the number of
fragments stored for a
variable-length record.

® Increase the page size and
read each record in an
update mode

B |ncrease the page reserve
size

® Reassign fragmentation
specifications

Records
relocated

Indicates the number of
expanded records moved to a
new page due to lack of space

® Unload/reload the database

® |ncrease the page size and
read each record in an
update mode

CALC cluster
ratio

Indicates the ratio of CALC
records stored on the target
page to the total number (that
is, hits plus overflow) stored;
values less than 1 indicate
space availability problems

Increase the area's page size or
number of pages and unload
and reload the database

Chapter 22. Monitoring and Tuning Database Performance 22-7

22.3 ltems to monitor and tune

Statistic M eaning Possible action
VIA cluster Indicates the ratio of VIA (or Increase the area's page size or
ratio clustered) records stored on number of pages and unload
the target page to the total and reload the database
number (that is, hits plus
overflow) stored; values less
than 1 indicate large clusters,
space availability problems,
or small page size
Effectiveness Indicates the ratio of number Review application/database
ratio of records CA-IDMS/DB design. Consider use of PRIOR
requests to the number that or OWNER pointers and
are current-of-run-unit. possible elimination of some
Values much higher than 1 sorted sets. (Note that linked
indicate poor program logic congtraints in SQL-defined
or set options databases always include
PRIOR and OWNER pointers.)
Logicaly Indicates the number of Physically delete the logically

deleted records

logically deleted records

deleted records using the
CLEANUP utility statement

Where statistics are reported

JREPORT 004

SREPORTSs 003, 007, and 009
CA-IDMS Performance Monitor
IDMSDBAN utility report 5

PRINT SPACE utility statement report
PRINT JOURNAL utility statement

UPDATE STATISTICS utility statement report for the SQL catalog

22.3.4 Indexing efficiency

Useful statistics to monitor

Statistic

M eaning

Possible action

Orphan count

Indicates the number of
orphaned SR8 records.

Rebuild the index if more than
25% of the member records are
orphaned.

Index levels

Indicates the number of levels
in the index.

Rebuild the index if the number
of levels exceeds the number
originaly calculated

22-8 CA-IDMS Database Administration

22.3 ltems to monitor and tune

Possible action

Statistic Meaning
SR8 split Indicates the number of SR8
splits.

If the number of SR8 splitsis
high, determine if applications
frequently insert a large group
of index entries in one spot;
rebuild the index to balance it
and cleanup orphan index
records.

Where the statistics are reported

» CA-IDMS Performance Monitor (Realtime monitor) Run Unit Detail screen

® PRINT INDEX utility statement
» |IDMSDBAN utility report 5

22.3.5 Database locks

Useful statistics to monitor

Statistic Meaning Possible action

Number of Indicates the number of ® |ssue COMMITs more
non-share locks non-share locks (primarily frequently in update jobs
held update locks) held. The

larger the number of update
locks held, the greater the
probability of contention
between the tasks holding the
locks and other tasks
accessing the same database.

If overall throughput is
constrained, identify the
source; for example, CPU
or DASD usage

If overall throughput is not
constrained, identify
potential deficiencies in
database or application
design or implementation;
for example, look at the
number of locks held by
individual programs;
determine if tasks contend
for OOAK and FOAK
records in which case
lowering the DEADLOCK
DETECTION INTERVAL
will temporarily solve the
problem

Chapter 22. Monitoring and Tuning Database Performance 22-9

22.3 ltems to monitor and tune

Statistic

M eaning

Possible action

Task wait status

Indicates whether atask is
waiting for access to an area
or record

Tasks that are waiting on locks
have an ECB type of 'LMGR
Lock'. If you notice a task
waiting a long time on one or
more locks, review ready modes
and database design, especially
for contention for OOAK and
FOAK records, by examining
al tasks exhibiting this behavior
for common programs,
functions, and database
references.

ECB type

Denotes the type of resource
being waited on. In the case
of area locks and dbkey
locks, this statistic will
contain the literal 'LMGR to
ECB'. (Note: inthe
Performance Monitor this
information is listed under the
column headings 'First ECB',
'Second ECB', and 'Third
ECB)).

Number of
shared locks
held

Indicates the number of share
locks held. Share locks allow
transactions other than the
owning transaction to read the
row, but not to update it.
Thus, higher levels of share
locks can impede concurrency
(and throughput) if they are
placed on rows in areas that
are heavily accessed.

The number of locks held can
be reduced by increasing the
COMMIT frequency within the
application.

SO (SQL only)

Indicates the isolation level of
the transaction. The isolation
level of atransaction defines
how long retrieval locks are
held.

Ensure that the transaction is
running in the appropriate
isolation level for the level of
data integrity required by the
application.

22-10 CA-IDMS Database Administration

22.3 ltems to monitor and tune

Statistic Meaning Possible action
State (SQL Indicates the state of the Ensure that the transaction state
only) transaction which defines how is appropriate for the type of
the transaction is affecting the processing being performed.
data it is processing: Transactions that only read data
s Read only (RO) specifies should have a state of RO.
that the transaction is
reading data but not
adding or updating.
. Read write (RW)
specifies that the
transaction intends to add
and update data.
Ratio of global Indicates the number of times ® |ssue COMMITs more
resource lock that CA-IDMS had to acquire frequently in update
reguests to local or ater a global lock on an transactions
lock requests area, page, or record in order .
to service the indicated . ([j);tsgisri;eg;?gﬂga;smed
number of local Icok requests. within the area
The larger this ratio, the
greater the inter-member ® Increase the size of the
contention for resources, since area, especidly if
CA-IDMS acquires global frequently inserting or
record and page locks only if deleting data in an area that
contention exists and global is more than 70 percent full
area locks, once acquired, will
usually be retained in an
active system.
Ratio of the Indicates the number of times ® Use operating system tools
number of that CA-IDMS had to wait for to determine the nature of
global lock a global lock request to the contention
waits to the complete. Thisratio is a » Take the actions outlined
number of measure of one or more of
. above to reduce
global lock the following types of . .
. inter-member contention for
requests. contention:

® [nter-member contention
for transaction resources

® False contention caused
by synonyms when
hashing to the global lock
table

m Contention for operating
system resources such as
channels

transaction resources

® |ncrease the number of lock
table entries to reduce fase
contention

Chapter 22. Monitoring and Tuning Database Performance 22-11

22.3 ltems to monitor and tune

Statistic

M eaning

Possible action

Number of
times lock
storage
overflowed

Indicates the number of times
that CA-IDMS had to acquire
lock storage dynamically in

order to satisfy alock request.

The larger this number the
more CPU cycles that were
expended to satisfy lock
requests. Additionally the
storage pool may become
fragmented since dynamically
acquired storage may not
always be releasable.

Examine the overflow
details to determine the
type of storage overflows
that occurred

Determine the applicable
base factor for the type of
overflowing storage:

— Session and class
storage is based on the
number of logical
terminal elements
(LTERMS) defined for
the system.

— Resource and proxy
storage is based on the
SYSLOCKS system
definition parameter

— XES Request storage is
based on the maximum
number of tasks
specified in the system
definition.

Increase the appropriate
base factor (the number of
LTERMSs, SYSLOCKS, or
maximum number of tasks)
to increase the size of the
initial storage alocation,
and thus reduce the number
of overflows.

Where the statistics are reported

® For area contention:
— SREPORTSs
— JREPORT 006

— CA-IDMS Performance Monitor (Realtime monitor): Active User Task
Detail, Active System Task Detail screen, Transaction Detail screen, and SQL
Detail screen

— DCMT DISPLAY ACTIVE TASKS
— Area status codes from DCMT DISPLAY TRANSACTION transaction id

22-12 CA-IDMS Database Administration

22.3 ltems to monitor and tune

— Area status codes from OPER WATCH DB
— OPER WATCH TIME
= For record contention:
— Status codes from OPER WATCH DB
— Status codes from DCMT DISPLAY TRANSACTION transaction id

— DCMT DISPLAY LOCK (shows longterm and notify locks held by logical
terminals)

» For lock storage overflows:
— DCMT DISPLAY LOCK STATS

» For inter-member contention in a data sharing environment:
— DCMT DISPLAY LOCK STATS
— DCMT DISPLAY DATA SHARING XES LOCKS

Reducing area contention
= Ready online program areas in shared ready modes

m Create a window for batch jobs

Reducing record contention
» Have the application issue more COMMITs
® Run applications that contend for a record serialy, rather than concurrently

» Have some applications use a different access route that avoids the record under
contention

® Change the database design so that access can be less serialized

22.3.6 Longterm locks

Useful statistics to monitor

Statistic Meaning Possible action
Tasks having Shows which tasks have areas Use this information to identify
areas locked locked tasks that ready an areain

protected or exclusive mode,
which increase the potential for
throughput degradation

Longterm/ Displays longterm or notify Use this information to identity
notify locks lock statistics by logical tasks that hold a large number
terminal of longterm and/or notify locks

Chapter 22. Monitoring and Tuning Database Performance 22-13

22.3 ltems to monitor and tune

Where the statistics are reported
= DCMT DISPLAY AREA
» DCMT DISPLAY LOCK AREA/LTERM

22.3.7 SQL processing

Useful statistics to monitor

Statistic

M eaning

Possible action

Sorts performed

The number of sorts
performed as the result of an
SQL statement (the result of
processing the ORDER BY
clause)

Add additional indexes or
sorted constraints to reduce the
number of sorts

Maximum rows
sorted

The largest number of rows
sorted as the result of an
ORDER BY clause

Add additional indexes to
eliminate the sort

AM recompiles

The number of times access
modules were automatically
recompiled at runtime because
of a recompilation of the
corresponding program or
dialog, or because of a
change in the underlying
database definition.

Examine the cause of
compilations. If necessary,
move frequently altered tables
to areas with table level stamp
synchronization.

Where the statistics are reported

® SREPORTS

1 CA-IDMS Performance Monitor

» |IDMSDBAN utility reports (database structure)

22-14 CA-IDMS Database Administration

22.4 Reducing 110

22.4 Reducing I/O

1/0O can be reduced through:

Database reorganization

® Application design

Database design
The UPDATE STATISTICS utility command (for SQL-accessed databases)

Each of these is discussed below.

22.4.1 Through database reorganization

Database reorganization includes:

Reducing full pages by changing the size of a database page or increasing the
number of pages

Reducing overflow by changing the size of a database page or increasing the
number of pages

Decreasing fragmentation for non-SQL defined databases by:
— Specifying page reserve

— Changing page size

— Reassigning records

— Redefining fragmentation specifications

— Increasing the number of pages

Increasing the efficiency of an index's structure by decreasing the number of levels
in the index and/or assigning SR8 records to a separate page range

Reducing logically deleted and/or relocated records by physically deleting
logically deleted occurrences using the CLEANUP utility statement and/or
unloading and reloading the data

Reducing the number of fragments and/or relocated records by increasing the page
size and reading all records in an update mode

For more information

About changing page size, see Chapter 25, “Modifying Physical Database
Definitions’ on page 25-1

About modifying indexes, see Chapter 29, “Modifying Indexes, CALC Keys, and
Referential Constraints’ on page 29-1 and Chapter 31, “Modifying Schema
Entities” on page 31-1

About reassigning records and redefining fragmentation specifications, see
Chapter 31, “Modifying Schema Entities’” on page 31-1

Chapter 22. Monitoring and Tuning Database Performance 22-15

22.4 Reducing I/0

® About utility statements, refer to CA-IDMS Utilities

22.4.2 Through application design

Selecting the optimal path: The first step to determine if the application is
optimally designed is to determine if it is accessing the data it needs, using the access
path that will create the fewest number of I/0s. To determine if thisis true:

1. Wak through the application and identify the actual transaction path

2. Review the existing database design and determine if there is a more efficient way
to:

® Access the needed records

® Process the necessary relationships

22.4.3 Through database design

Take into account the following database design considerations for reducing 1/O:
® Adding sets, indexes, pointers, redundancy
® Changing set type, set (index) order for non-SQL defined databases

® Changing location (area) of record or index, index and/or set stored VIA (or
clustered)

= Changing UNLINKED constraints to LINKED (SQL-defined databases) to
repeating item, index and/or set stored VIA, location of record or index

® Splitting a record

22.4.4 By using UPDATE STATISTICS (SQL-accessed databases)

When to use UPDATE STATISTICS: Execute the UPDATE STATISTICS utility
statement at the following times:

» Periodically (according to the needs of the application) to reflect shifts in the
distribution of data in the database (for example, changes in owner/member ratios,
area space utilization, index layout)

n After individual applications that ater the distribution of data; for example,
monthly or year-end summary and offload processing

Use UPDATE STATISTICS on SQL-defined tables or areas: Run UPDATE
STATISTICS on individual tables or whole areas. The resulting statistics are stored in
the SQL catalog and are used by the Access Module Compiler to generate optimal
access strategies for SQL processing. Access modules that reference the tables whose
statistics have been updated can then be recompiled to take advantage of the updated
information. Table/access module cross-reference information on the catalog can be
used to determine which access modules to recompile.

22-16 CA-IDMS Database Administration

22.4 Reducing 110

Use UPDATE STATISTICS on NON-SQL Schemas if they are accessed by
SQL: Run UPDATE STATISTICS on some or all areas defined in a non-SQL
Schema. The resulting statistics are kept in the non-SQL dictionary that defines the
schema. If the database is accessed by SQL the statistics will be used by the Access
Module Compiler to generate optimal access strategies for SQL processing.

Restrictions on statistics and non-SQL schemas: Non-SQL statistics are kept
with the schema definition in the dictionary. This means statistics may be kept for
only one physical database per schema. When processing an SQL command, only the
current set of statistics will be used for that command regardless of the physical
database being accessed by that command. The user must decide which physical
database will provide the statistics that best meets their needs and run UPDATE
STATISTICS against that database.

Chapter 22. Monitoring and Tuning Database Performance 22-17

22-18 CA-IDMS Database Administration

Chapter 23. Dictionaries and Runtime Environments

23.1 About dictionaries 23-3
23.1.1 Physical components of adictionary 23-3
23.1.2 Logical components of adictionary 23-4
23.1.3 Assigning dictionary areasto segments L. 23-5
23.1.4 Sharing dictionary areas 23-6

23.2 CA-supplied dictionary definitions 23-8
23.2.1 Logical database definitionso 23-9
23.2.2 Protocols, nondatabase structures, and modules 23-11

23.3 Defining new dictionaries 23-13
23.3.1 Defining new catalog components L. L 23-13
23.3.2 Defining new application dictionaries 23-14
23.3.3 Defining new system dictionaries 23-16

23.4 Edtablishing a default dictionary L. 23-19

23.5 About runtime environments 23-20
2351 SYSIDMS parameter file 23-22
23.5.2 Establishing sessionoptions 23-23

23.6 Related information L 23-25

Chapter 23. Dictionaries and Runtime Environments 23-1

23-2 CA-IDMS Database Administration

23.1 About dictionaries

23.1 About dictionaries

What is a dictionary?: A dictionary is a special CA-IDMS/DB database that
contains definitions of other databases, DC/UCF systems, and applications.
Information in the dictionary is organized into entity types that correspond to major
data processing components (for example, tables, records, programs). The dictionary
becomes populated with information about the data processing environment as various
CA-IDMS/DB software components are executed.

System and application dictionaries: Each DC/UCF system must contain a
system dictionary. Any number of application dictionaries can also exist in a
CA-IDMS/DB runtime environment. The table below describes both types of
dictionaries:

Dictionary Description

System Includes all information required to establish, maintain, and
control the processing environment:

®» The DC/UCF system definition
® The physical database definitions

Each runtime environment must have a system dictionary
named SY STEM.

Application Optional dictionaries that contain information specific to a
particular application, group of applications, or development
groups:

® The logical database definitions
. Maps, dialogs, records, programs, elements

A runtime environment may contain zero or more application
dictionaries the names of which are user-defined.

23.1.1 Physical components of a dictionary

Dictionary areas: Dictionaries are composed of the areas listed below:

Chapter 23. Dictionaries and Runtime Environments 23-3

23.1 About dictionaries

Area name

Description

DDLDML

Contains the following types of information:
DC/UCF system definitions
Non-SQL schema and subschema definitions
Maps
Dialogs
Source modules
Record and element descriptions
IDD users

Classes and attributes

DDLDCLOD

Contains load modules associated with entities contained
in the DDLDML area; for example:

Map load modules
Diaog load modules

Subschema load modules

DDLCAT

Contains definitions of physical databases (segments,
DMCLs, database name tables); at sites with the SQL
option, contains definitions of SQL entities (tables,
constraints, indexes, and so on)

DDLCATX

Contains indexes defined on entities stored in the
DDLCAT area

DDLCATLOD

Contains:
DMCL load modules
Database name table load modules

Access modules at sites with the SQL option

DDLDCMSG

Contains system and user-defined messages

23.1.2 Logical components of a dictionary

Dictionary components:

You can group the six areas of the dictionary into logical

components based on the inherent relationships that exist between the dictionary areas:

Logical component

Dictionary areas

Base definition component DDLDML
DDLDCLOD
Message component DDLDCMSG

23-4 CA-IDMS Database Administration

23.1 About dictionaries

Logical component Dictionary areas
Catalog component DDLCAT
DDLCATX
DDLCATLOD

Components of a system dictionary: A system dictionary always contains all 3
components:

® A base definition component
® A catalog component

B A message component

Components of an application dictionary: An application dictionary may
contain all or a subset of the components. At sites without the SQL option, an
application dictionary usually contains only a base definition component and a shared
message component.

Sharing the message area: In most cases, an application dictionary will not have
its own message area. Since the runtime system uses only the system message area
(SYSMSG.DDLDCMSG) to display messages, most application dictionaries will share
the system message area, rather than having a separate message area.

23.1.3 Assigning dictionary areas to segments

Segment by component: The six areas that make up a dictionary should be
segmented by logical component. That is, a segment should be defined for each of the
base definition, catalog, and message components of a dictionary.

In most cases, a dictionary will not have its own message component, but will share
the system message area SYSMSG.DDLDCMSG. Sites without the SQL option do
not need to define a catalog segment for their application dictionary.

Define a database name: If adictionary is made up of more than one segment,
you must define a database name to represent the dictionary. The database name
identifies all of the segments that together make up the dictionary.

The one exception to this is a dictionary comprised of only two segments, one of
which is the SYSMSG segment. A database name is unnecessary because
CA-IDMS/DB automatically uses the system message area (in the SY SMSG segment)
if no message area is associated with the dictionary.

Chapter 23. Dictionaries and Runtime Environments 23-5

23.1 About dictionaries

23.1.4 Sharing dictionary areas

Sharing components: By separating dictionary components into segments, you
can share those components between dictionaries, as illustrated below:

Shared component
Dictionary A

SEG1 SEG2

Catalog Base definition
compaonent component

Dictionary B

SEG3

Base definition
component

To share SEGL1 between dictionary A and dictionary B, define a database name for
each that includes the SEG1 segment.

System dictionary components: You should not share the base definition
component and the catalog component of the system dictionary with application
dictionaries. Since the system dictionary contains critical information needed to
control and execute your CA-IDMS/DB environment, it should be accessed only by
authorized personnel and should be reserved for the following information:

» DC/UCF system definitions
» Physical database definitions

Sharing individual areas: It is possible to separate a component into multiple
segments so that individual areas (such as a load area) can be shared across
dictionaries. While this is supported, it is not recommended because of the potential
for naming conflicts between the dictionaries. For example, a dialog in one dictionary
could have the same name as a map in ancther dictionary, both of which have an
associated load module.

Important: Under no circumstances should the DDLCAT and DDLCATX aress be
placed in different segments.

23-6 CA-IDMS Database Administration

23.1 About dictionaries

Page groups: All segments associated with a dictionary must have the same page
group (and maximum number of records per page). If you have different page groups,
you will receive errors when you attempt to access the dictionary through IDD or other
dictionary tools.

This rule also applies to the system message area (SYSMSG.DDLDCMSG). It can
only be included in dictionaries whose other segments have the same page group as
the SYSMSG segment. When processing a dictionary with a difference page group,
IDD cannot be used to display or update messages. Maintenance of the system
message area can only be done from a dictionary that has the same page group as the
SYSMSG segment.

Page groups and SQL: When defining an application dictionary that contains a
catalog component, the page groups of the base and catalog components may be
different. The page group of the catalog component has no impact on the page group
of data that may be accessed while connected to the dictionary.

Chapter 23. Dictionaries and Runtime Environments 23-7

23.2 CA-supplied dictionary definitions

23.2 CA-supplied dictionary definitions

Provided on install tape: As part of installation, you receive definitions for
entities required to operate your CA-IDMS/DB environment. These definitions are

described below:

Definitions

Description

Non-SQL descriptions of the
dictionary

A schema and subschemas describing the base
definition and message components and that part
of the catalog component used for physical
database definitions

At sites with the SQL option,
an SQL description of the
catalog component

Table definitions of the catalog component of the
SYSTEM schema and views based on those tables
in the SYSCA schema

Runtime messages

Messages used by CA-written software

Entity, class, and attribute
definitions

Definitions of base entity, class, and attributes
used by CA-IDMS tools

Protocols and standard error
routines

Generalized source modules that the DML
processors use to convert DML statements into
calls for DBMS services

DC/UCF device types, task, and
program definitions

Definitions used to generate DC/UCF systems

CA-CULPRIT report modules

CA-CULPRIT source modules used to produce
standard reports; for example, JREPORTS,
SREPORTS, and DREPORTS

Nondatabase structures

Records that are not associated with a
CA-IDMS/DB database. CA-IDMS/DB stores the
definitions of nondatabase structures as records in
the dictionary; applications can copy the
definitions of the records at compile time by
means of COPY IDMS or INCLUDE IDMS
compiler-directive commands.

How the dictionary gets populated: Dictionaries are populated with CA-supplied

definitions in one of three ways:

IDMSDIRL

Loads the non-SQL schema and subschemas that define the

base definition and message components of the dictionary

IDD, IDMSCHEM,
IDMSUBSC

Populates the base definition and message components of the
dictionary using source members provided at installation

23-8 CA-IDMS Database Administration

23.2 CA-supplied dictionary definitions

Command facility Populates the catalog component of the dictionary with system
table and view definitions (SQL-option only)

Where information should reside: The information listed above can reside in
either a system dictionary or an application dictionary, or both:

Information Where it should reside

Non-SQL schema and subschema In one dictionary associated with each

definitions system; the definitions may be shared
across systems

SQL definitions In all dictionaries having a catalog
component (SQL-option only)

Messages In all system message areas

Entity, class, and attribute definitions In al system and application
dictionaries

Protocols and standard error routines In all application dictionaries

DC/UCF device types, task, and program In al system dictionaries

definitions

CA-CULPRIT report modules In the same dictionary that contains

the non-SQL schema and subschema
definitions of the dictionary

23.2.1 Logical database definitions

CA-supplied schema: The table below describes the non-SQL schema supplied by
CA that describes a dictionary. Its definitions are stored in a dictionary by the
IDMSDIRL utility.

Schema Areas

IDMSNTWK DDLDML
DDLDCLOD

DDLCAT
DDLCATX
DDLDCMSG

CA-supplied subschemas: The following table describes subschemas supplied by
CA and the CA-IDMS products or facilities that make use of them. Most of these
subschemas are distributed as object modules only. The source definitions of
IDMSNWKA and IDMSNWKG are aso stored in a dictionary by IDMSDIRL for
user-reporting purposes.

Chapter 23. Dictionaries and Runtime Environments 23-9

23.2 CA-supplied dictionary definitions

Subschema Areas

Used by

IDMSCATL DDLCATLOD

Loader processing
CLOD DC/UCF system task
PUNCH utility statement

Database administrators when executing
utilities such as UNLOAD/RELOAD
against the DDLCATLOD area

IDMSCATZ DDLCAT
DDLCATX

DDLCATLOD

The command facility for SQL
processing and physical database
definition

User applications issuing dynamic SQL
requiring automatic recompilation of an

access module or issuing SQL DDL
Statements

Database administrators when executing
utilities such as UNLOAD/RELOAD
against SQL-defined DDLCAT and
DDLCATX areas

IDMSNWKA DDLDML
DDLDCLOD

DDLDCMSG

IDD DDDL compiler (IDMSDDDL)

DC/UCF system generation compiler
(RHDCSGEN)

DC/UCF startup

Schema and subschema compilers
(IDMSCHEM and IDMSUBSC)

CA-IDMS-DC mapping compilers
(MAPC and batch)

CA-ADS compilers

CA-OLQ

CA-CULPRIT

The Automatic System Facility (ASF)

IDMSNWKL DDLDCLOD

Loader processing and the CLOD DC/UCF
system task

IDMSNWKT DDLDML

SQL processing to access non-SQL defined
database descriptions

23-10 CA-IDMS Database Administration

23.2 CA-supplied dictionary definitions

Subschema Areas Used by
IDMSNWKU DDLDML Database administrators when executing
Bgtgghgg utilities such as UNLOAD/RELOAD against
DDLCAT dictionary areas DDLDML, DDLDCLOD,
DDLCATX DDLDCMSG and DDLDCAT and
DDLCATX for non-SQL defined segments
only
IDMSNWKG DDLDML = |IDMSRPTS
DDLDCLOD
DDLDCMSG
DDLCAT
DDLCATX
IDMSNWK6 DDLDCMSG System message processing
IDMSNWK?7 DDLDCRUN QUED and QUEM DC/UCF system tasks
and queue processing
IDMSNWKS8 DDLDML CLIST and send-message processing
IDMSNWK9 DDLDCLOG Online print log (OLP) and PRINT and

ARCHIVE LOG utility statements

Note: Additional non-SQL schemas and subschemas are supplied at installation time.
For more information, refer to CA-IDMS Security Administration.

SQL table definitions:

At sites with the SQL option, CA-IDMS/DB also provides

the table and view definitions that describe the catalog component of the dictionary.
These definitions are distributed under two schema names:

SYSTEM Contains the catalog table definitions; no changes can be
made to any of the entities in the SYSTEM schema
SYSCA Contains the CA-supplied views of the SYSTEM tables

and records in the IDMSNWK schema; these views
restrict access to table definition information based on a
user's SELECT authority on the table.

»» For a description of the table definitions, refer to the CA-ADS Reference.

23.2.2 Protocols, nondatabase structures, and modules

The following table summarizes the protocols, nondatabase structures, and modules
placed in the dictionary at installation time:

Chapter 23. Dictionaries and Runtime Environments 23-11

23.2 CA-supplied dictionary definitions

Language Protocol Non-database Module
structure
COBOL BATCH DB-STATISTICS IDMS-STATUS for
BATCH-AUTOSTATUS SUBSCHEMA-CTRL for BATCH-AUTOSTATUS
CICS 1DMS-DC IDMS-DC
CICS-AUTOSTATUS IDMS-DC-NONAUTO DC-BATCH
CICS-EXEC DC-BATCH all others
CICS-EXEC-AUTO CICS
CICS-STANDARD CICS-AUTOSTATUS
CICS-STD-AUTO CICS-EXEC
DC-BATCH CICS-EXEC-AUTO
I1DMS-DC CICS-STANDARD
UTM CICS-STD-AUTO
UTM-AUTOSTATUS UTM
IDMS-DC-NONAUTO UTM-AUTOSTATUS
IDMSDML-PROTOCOL-SQL SUBSCHEMA-LR-CTRL
PL/1 BATCH DB-STATISTICS IDMS_STATUS
CICS SUBSCHEMA_CTRL for IDMS_STATUS
CICS_EXEC CICS (IDMS_DC)
DC_BATCH CICS_EXEC
IDMS DC IDMS DC
IDMSDML_PROTOCOL_SQL DC_BATCH
SUBSCHEMA_LR_CTRL
FORTRAN BATCH SSCTRL
FOR77 SSLRCT
Assembler BATCH SSCTRL for DBSTATS
CICS CICS
CICS-AUTOSTATUS CICS-AUTOSTATUS
CICS-EXEC CICS-EXEC
CICS-EXEC-AUTO CICS-EXEC-AUTO
IDMSDC SSLRCTL
RPG |1 BATCH SSCT
SSLRCT

23-12 CA-IDMS Database Administration

23.3 Defining new dictionaries

23.3 Defining new dictionaries

23.3.1 Defining new catalog components

Physical characteristics: The segment definition for all catalog components must
have the following characteristics:

® The names of the areas must be DDLCAT, DDLCATX, and DDLCATLOD
® The page size of the areas should be at least 4856 plus page reserve

All other physical characteristics can be chosen based on processing requirements,
hardware configuration, and standard database design techniques. For example, choose
an access method and page size appropriate for your disk devices and consider using
a page reserve on the DDLCATX area.

Catalog components for non-SQL use: Without the SQL option, only a system
dictionary requires a catalog component. When defining the corresponding segment,
specify FOR NONSQL (or take the default).

Catalog components for SQL use: If the SQL option has been installed at your
site, one or more of your application dictionaries will have an associated catalog
component in order to define tables and views. The corresponding segment must have
the following attributes:

B FOR SQL specification on the segment
® STAMP BY AREA for the DDLCAT and DDLCATLOD areas
» STAMP BY TABLE for the DDLCATX area
The catalog associated with the system dictionary can aso be defined with these

attributes. If it is, SQL can be used to examine the physical database definitions
stored in the system dictionary.

When a new SQL catalog component is defined, take the following steps after the new
segment has been formatted:

1. Define the system tables and views in the new catalog using the TABLEDDL and
VIEWDDL members in the installation source library

2. Issue the UPDATE STATISTICS utility statement against the new DDLCAT area

3. Grant appropriate authorities to permit authorized users to create schemas in the
new dictionary

Chapter 23. Dictionaries and Runtime Environments 23-13

23.3 Defining new dictionaries

Steps:

23.3.2 Defining new application dictionaries

To create a new application dictionary, follow these steps:

Action

Steps

Start a session in the command
facility

CONNECT TO SYSTEM

Define segments for the base
definition and the catalog components
of the dictionary

Note that you need the catalog
component only if the SQL option is
instaled at your site.

CREATE SEGMENT

Add the new segment(s) to the
DMCL used at runtime

ALTER DMCL with the ADD SEGMENT
clause

If you created two segments, define a
new database name in the database
name table

CREATE DBNAME

Generate, punch, and linkedit the new
DMCL

See Chapter 25, “Modifying Physical
Database Definitions” on page 25-1

If you created a new database name,
generate, punch, and linkedit the new
database name table

See Chapter 26, “Modifying Database Name
Tables’ on page 26-1

Create and format new dictionary files

See Chapter 16, “Allocating and Formatting
Files’ on page 16-1

Make the DMCL available to the
runtime system

See Chapter 25, “Modifying Physical
Database Definitions” on page 25-1

Populate the dictionary with
CA-supplied definitions

Use IDD DDDL statements to add entity,
class, and attribute definitions, protocols,
and standard error routines

If you created a new catalog
component:

» Populate it with the system table
and view definitions

» Execute UPDATE STATISTICS
for the DDLCAT area of the new
dictionary

» Grant appropriate authorities to
define schemas in the new
dictionary

23-14 CA-IDMS Database Administration

23.3 Defining new dictionaries

Example: The following example illustrates how to define a new application
dictionary. It consists of a new definition component in segment TESTDICT, a new
catalog component in segment TESTCAT, and the system message component.

The database name for the dictionary is TESTDICT.

1. Define a new segment containing the necessary areas:

create segment testdict
for nonsql
page group 0

maximum records per page 255;

create segment testcat

for sql

page group 0

maximum records per page 255

stamp by area;

add file
assign
dsname

add file
assign
dsname

add file
assign
dsname

add file
assign
dsname

add file
assign
dsname

add area

testcat
to testcat
'test.testcat';

testcatx
to testcats
'test.testcatx';

testcatl
to testcatl
'test.testcatl';

testdml
to testdml
"test.ddldml';

testlod
to testlod
"test.ddldclod';

dd1dml

primary space 10000 pages

from

page 5000001

maximum space 20000 pages

page si
within
from

add area

ze 4276
file testdml
1 for all blocks;

ddldclod

primary space 1000 pages

from

page 5020001

maximum space 5000

page si
within
from

ze 8196
file testlod
1 for all blocks;

Chapter 23.

Dictionaries and Runtime Environments 23-15

23.3 Defining new dictionaries

9

add area ddlcat
primary space 5000 pages
from page 5030001
maximum space 10000 pages
page size 8196
within file testcat;

add area ddlcatx
primary space 1000 pages
from page 5040001
maximum space 3000 pages
page size 8196
within file testcatx;

add area ddlcatlod
primary space 500 pages
from page 5045001
maximum space 5000 pages
page size 8196
within file testcatl;

Modify the DMCL
Generate, punch, and linkedit the new DMCL.:
generate dmcl idmsdmcl;

Define a new database name for the dictionary

add dbname alldbs.testdict
segment testdict
segment testcat
segment sysmsg;

Generate, punch, and link the database name table:
generate table dbtable alldbs;

Create and format new dictionary files:

format segment testdict;
format segment testcat;

Populate the dictionary using the appropriate source from the installation source
library.

Execute UPDATE STATISTICS for the new DDLCAT area:
update statistics for area testcat.ddlcat;

Assign appropriate authorities within the new dictionary.

23.3.3 Defining new system dictionaries

Steps: To create a system dictionary for a new system, follow these steps:

23-16 CA-IDMS Database Administration

23.3 Defining new dictionaries

Action

Steps

Start a session in the command
facility

CONNECT TO SYSTEM

Create new segments that contain
these dictionary areas

DDLDML
DDLDCLOD
DDLCAT
DDLCATX
DDLCATLOD
DDLDCMSG

Note: Use segment name that are
different than existing segment
names.

CREATE SEGMENT

If you created more than one
segment, create a database name table
entry that contains all the segments
you created

CREATE DBNAME

Add the segment(s) to the DMCL

ALTER DMCL with the ADD SEGMENT
clause

Generate, punch, and link the DMCL

See Chapter 25, “Modifying Physical
Database Definitions’ on page 25-1

If you created more than one
segment, generate, punch, and link the
database name table

See Chapter 26, “Modifying Database Name
Tables’ on page 26-1

Format the new dictionary files

FORMAT FILE/SEGMENT

Grant appropriate administrative
privileges to authorized individuals on
and within the new dictionary

Refer to CA-IDMS Security Administration

Chapter 23. Dictionaries and Runtime Environments 23-17

23.3 Defining new dictionaries

Action

Steps

Re-define the dictionary segment(s) in
the new dictionary by either:

® Creating new dictionary
segment(s)

® Punching the segment definitions
from the current SY STEM
dictionary and re-adding them to
the new dictionary

Make sure the segment name of the
message area in the new dictionary is
SYSMSG. Define additional
segments necessary for a complete
runtime environment.

8 CREATE SEGMENT
® PUNCH SEGMENT

Define a database name table that
includes the database name SY STEM,;
SYSTEM must identify the new
dictionary segments. Add additional
entries as necessary.

» CREATE DBTABLE
. CREATE DBNAME

Create a new DMCL with associated
database buffers, a journal buffer, and
journd files

See Chapter 4, “Defining, Generating, and
Punching a DMCL" on page 4-1

Add the new segments and associate
the database name table with the new
DMCL

ALTER DMCL

Generate, punch, and link the new
DMCL

See Chapter 4, “Defining, Generating, and
Punching a DMCL" on page 4-1

Generate, punch and link the new
database name table

See Chapter 5, “Defining a Database Name
Table” on page 5-1

Populate the system dictionary with
the following CA-supplied definitions:

Entity, class, and attribute
definitions

DC/UCF device types, tasks, and
programs

If the new catalog segment was
defined as FOR SQL, complete its
definition.

See 23.3.1, “Defining new catalog
components’ on page 23-13 earlier in this
chapter.

23-18 CA-IDMS Database Administration

23.4 Establishing a default dictionary

23.4 Establishing a default dictionary

What is a default dictionary: A default dictionary is the dictionary that will be
accessed by CA-IDMS tools if you don't specify a dictionary by other means such as
using a DCUF SET DICTNAME command or a CONNECT statement.

Defining a default dictionary: To define a default dictionary for your runtime
environment, include a subschema mapping in the database name table associated with
the runtime DMCL for the IDMSNWK subschemas. For example, the statement
below establishes TESTDICT as the default dictionary for the runtime environment
using the ALLDBS database name table:

create dbtable alldbs
add subschema idmsnwk? maps to idmsnwk? dbname testdict;

Chapter 23. Dictionaries and Runtime Environments 23-19

23.5 About runtime environments

23.5 About runtime environments

Central version or local mode: CA-IDMS/DB can run within a DC/UCF system
as a central version or in loca mode;

m Central version operations provide database services to batch or online
applications. Multiple users can gain access to a database concurrently.

® | ocal mode operations are batch operations that do not run under a central
version. In local mode, only one user at a time has access to a database area in
update mode.

Data sharing environment: Data sharing is an environment in which two or more
central versions operate cooperatively through the use of a coupling facility. In this
environment, multiple central versions may concurrently access a database area in
update mode.

Central version runtime components: The table below lists the components
needed for a central version runtime environment:

Component Description

System dictionary Defines the DC/UCF system and physical database
entities

DDLDCLOG Contains central version log records when the log file

for the central version is assigned to the database

DDLDCRUN Contains runtime queue information used by
CA-supplied tools and online user programs

DDLDCSCR Contains runtime scratch information used by
CA-supplied tools and online user programs

SYSMSG.DDLDCMSG Contains CA-supplied and user-defined messages

DDLSEC Contains user and group information

Application dictionaries

User databases

Considerations
® The segment name of the system message area must be SY SMSG.

= The segment(s) associated with DDLDCLOG, DDLDCRUN, and DDLDCSCR
must be included in the SYSTEM database name

® Each centra version must have its own DDLDCLOG and DDLDCSCR. In a
non-data sharing environment, each central version must also have its own
DDLDCRUN area. In a data sharing environment, the DDLDCRUN area may be
shared among members of a data sharing group.

23-20 CA-IDMS Database Administration

23.5 About runtime environments

n The DDLSEC area may not be necessary depending on your security
implementation.

»» For more information about sharing the DDLDCRUN area, refer to CA-IDMS
System Operations.

»»> For more information about security, refer to CA-IDMS Security Administration.

Local mode runtime components: The table below lists the components needed
for alocal mode runtime environment:

Component Description
System dictionary Defines the DC/UCF system and physical database
entities

SYSMSG.DDLDCMSG Contains CA-supplied and user-defined messages

DDLSEC Contains user and group information

DDLOCSCR Contains runtime scratch information used by local
mode CA-supplied tools and user programs issuing SQL
requests

Application dictionaries

User databases

Considerations
® The segment name of the system message area must be SY SMSG.

® The system dictionary and DDLSEC area may not be necessary depending on
your security implementation.

» For more information on security, refer to CA-IDMS Security Administration.

m At least the default dictionary should be available in local mode. Additional
application dictionaries may be needed for loading subschemas and processing
SQL requests.

What follows: What follows is a description of:

. The SYSIDMS parameter file, which describes the runtime parameters in a batch
environment

® How to establish a default dictionary for your session

Chapter 23. Dictionaries and Runtime Environments 23-21

23.5 About runtime environments

23.5.1 SYSIDMS parameter file

About SYSIDMS parameters A SYSIDMS parameter is a parameter that can be
added to the JCL stream of a batch job running in local mode or under the central
version. You can use SYSIDMS parameters to specify:

® Physical requirements of the environment, such as the DMCL and database to use
at runtime

® Runtime directives that assist in application execution

» QOperating system-dependent file information

For a complete list of the parameters that can be specified, see Appendix H,
“SYSIDMS Parameter File” on page H-1.

Establishing site defaults: Site-specific defaults can be established for all
SYSIDMS parameters by assembling a SY SIDMS defaults load module. If it exists,
this load module is used at runtime to determine the default values for al SYSIDMS
parameters. Defaults may then be overridden in an individual job step by including a
SYSIDMS parameter file in the execution JCL.

Creating a SYSIDMS defaults load module: The following example illustrates
how to code a SY SIDMS defaults load module. It is a table of 80-character constants,
each of which may contain one or more SY SIDMS parameters, as described in
Appendix H. A parameter and its value must be contained within a single
80-character constant, but more than one parameter may appear within a constant. The
last constant must have a value of "END SYSIDMS DEFAULTS."

TITLE 'SYSIDMS - Build load module for SYSIDMS defaults'
SYSIDMS START 0
Khhkkhkhkkhhkhkhhkhhhkhkhkhhhkhhkhhhhkhkhhkhhkhhkhhhkhkhkhhkhhhkhkhhkhkkhkhkhkdkkkx*
* Code any SYSIDMS parms that you want to be part of this SYSIDMS
* defaults load module. This SYSIDMS defaults Toad module will be
* processed first before trying to process any SYSIDMS parms defined
* in the JCL for any IDMS batch job.
Khkhkhkhkkhhkhkhdhdhdhhhhhhhhhhhdddhdhdddhhhhhhhddhdhdhdhhhhhhhhhhdddhdhdhhhrrxxkx
SPACE
DC CL80'ECHO=ON DMCL=GLBLDMCL'
DC CL80'JOURNAL=0OFF'
SPACE
* The following statement is mandatory and must be the last statement
* in the SYSIDMS defaults Toad module.
DC CL8O'END SYSIDMS DEFAULTS'
END

Linking a SYSIDMS defaults load module: The load module must have both a
name and an entry point of SYSIDMS. For operating systems that support XA
storage, the load module can be linked as AMODE 31, RMODE ANY.

Overridding SYSIDMS parameter defaults: SYSIDMS default values can be
overridden for an individua job step by including a SYSIDMS parameter file in the
execution JCL.

23-22 CA-IDMS Database Administration

23.5 About runtime environments

In the following example, the SYSIDMS parameters included in the job stream instruct
CA-IDMS/DB to use the DMCL LOCLDMCL to execute a job. DBNAME identifies
EMPDB as the database to access at runtime, and the QSAM parameters instruct
CA-IDMS/DB to use the IDMSQSAM look-ahead read facility when accessing
EMPSEG.EMPAREA:

//SYSIDMS DD *

DMCL=LOCLDMCL DBNAME=EMPDB
IDMSQSAM=0ON QSAMAREA=EMPSEG.EMPAREA

In the following example, the SYSIDMS parameters used are typical for a batch job
running under the central version:

//SYSIDMS DD =
DBNAME=EMPDB NODENAME=SYSTEM90

23.5.2 Establishing session options

Established at signon: CA-IDMS establishes options for your runtime session
when you signon on to a DC/UCF system or when CA-IDMS/DB issues its first
database request from a batch application (in local mode or under the central version)
or externa teleprocessing monitor. The manner in which CA-IDMS implements the
options and how they affect your session depends on the runtime environment.

Specifying a default database or dictionary: CA-IDMS/DB provides several
ways to specify a session default dictionary or database. The methods available
depend on the runtime environment.

Online processing: To specify a session default in an online environment, you
can:

» Specify DICTNAME/DICTNODE or DBNAME/DBNODE attributes in a system
or user profile

® |ssue a DCUF command

® |ssue a compiler SIGNON or CONNECT statement naming the dictionary and/or
database from within an online CA-IDMS/DB compiler or tool (this will update
the default dictionary for the runtime session)

Batch processing: To specify a session default dictionary for a batch central
version or external teleprocessing monitor application, you can use:

= An IDMSOPTI module (for non-SQL applications only)

B A SYSCTL file

n A SYSIDMS parameter file
»> For more information about how CA-IDMS/DB determines which database or

dictionary to access when provided with information by the program, IDMSOPTI
module, SYSCTL file, and SYSIDMS file, refer to CA-IDMS System Operations

Chapter 23. Dictionaries and Runtime Environments 23-23

23.5 About runtime environments

Local mode processing: To specify a session default for local mode, you can use;
= An IDMSOPTI module (for non-SQL applications only)
B A SYSIDMS parameter file

23-24 CA-IDMS Database Administration

23.6 Related information

23.6 Related information

® About database name tables, see Chapter 5, “Defining a Database Name Table”
on page 5-1

m About the SYSCTL file and IDMSOPTI module, refer to CA-IDMS System
Operations

= About dictionary entities, refer to the IDD DDDL Reference

® About system table definitions and system record definitions, refer to the CA-ADS
Reference

® About SYSIDMS parameter syntax, see Appendix H, “SYSIDMS Parameter File”
on page H-1

Chapter 23. Dictionaries and Runtime Environments 23-25

23-26 CA-IDMS Database Administration

Chapter 24. Migrating from Test to Production

24.1 About migration 24-3
24.2 Establishing migration procedures 24-4
24.3 Implementing migration procedures 24-5
24.3.1 Step 1: Determine the types of components to migrate 24-5
24.3.2 Step 2: Determine the sequence of migration 24-9
24.3.3 Step 3: ldentify the individual components 24-11
2434 Step 4: Migratethecomponents 24-11
24.4 |dentificationaids 24-12
245 Migrationtools 24-15
246 General methods 24-17
24.6.1 Using the DISPLAY statement 24-17
24.6.2 Using the PUNCH statement 24-18
24.6.3 Using the mapping compiler and mapping utility 24-22
24.6.4 For SQL-defined entities 24-23
24.7 Additional considerations 24-25
2471 Additional tasks 24-25

Chapter 24. Migrating from Test to Production 24-1

24-2 CA-IDMS Database Administration

24.1 About migration

24.1 About migration

Migrate definitions from one dictionary to another: Whether you have
multiple dictionaries under a single CA-IDMS/DC system or several dictionaries under
separate CA-IDMS/DC systems, you probably need to migrate definitions from one
dictionary to another. Typically, migration occurs when testing is complete and an
application is ready for production. At that time, the database and application
definitions must be moved from the test into the production environment.

Considerations for non-SQL and SQL defined data: The need to migrate
database and applications applies to both SQL-defined and non-SQL defined databases
and applications using SQL or navigational DML. Most of this chapter applies to both
SQL and non-SQL equally. Text that applies specifically to one or the other will be
noted.

Chapter 24. Migrating from Test to Production 24-3

24.2 Establishing migration procedures

24.2 Establishing migration procedures

Considerations: Because many of the pieces of an application, such as
subschemas, maps, and dialogs, exist in both source and load module format, you must
consider the following questions when you migrate from one dictionary to another:

® Should you copy or move the components?
» Should you migrate and recompile source code to produce load modules?

® Should you migrate just the load modules?

Accessibility of the source code: The major benefit of a complete, fully
documented application is that the proper source code is accessible when needed for
debugging. If a problem arises and the source code resides in a properly controlled
production environment, the source code can easily be found and it will correspond
exactly to the load module(s) where the problem was encountered.

Availability of disk space: A trade-off to migrating a fully documented
application is the amount of disk space required. The space may be in one
environment, such as production, or may be spread out over a number of
environments, such as development, test, and production. Determining exactly how
much disk space is necessary depends on whether you decide to copy the application
into the production environment or simply move it.

Redundancy: If you choose to maintain separate copies of the application, you
must contend with the trade-offs of redundancy. Often, updates to one copy must also
be made to the other, and they both must be made within a short period of time in
order to maintain consistency.

Accessibility of information: If you maintain only one copy of the application,
you use a minimum amount of disk space and do not have to contend with
redundancy. However, accessibility of information becomes a consideration. If the
information is secured so that only one person is able to access it, procedures must be
developed that allow maintenance programmers and all members of the staff to obtain
reports of component definitions. At the same time, you must ensure that there is
ample security so that no one can make accidental or malicious updates that would
invalidate production applications.

24-4 CA-IDMS Database Administration

24.3 Implementing migration procedures

24.3 Implementing migration procedures

24.3.1 Step 1:

Steps: There are essentially four steps involved in migration:
1. Determine the types of components to migrate

Carefully examine the circumstances for dependencies and other relationships
among the components involved.

2. Determine the sequence of migration

Components that do not depend on the definitions of other components should be
first on the list.

3. ldentify the components

Identify the names, version numbers, and, as appropriate, languages of the
individual components that you need to migrate.

4. Migrate the components using the batch and online compilers and utilities
These steps are discussed on the following pages.

Before you begin: Before you begin a migration, you may want to back up all
involved files. These files can include:

® Source and target DDLDML, DDLDCLOD, DDLCAT, DDLCATX, and
DDLCATLOD areas

® Source and target source libraries
® Source and target load libraries

m Source and target JCL procedure libraries

These backups provide coverage during the migration as well as after the migration is
complete. If problems arise at any time, you can restore individual components or
entire files from the backups.

Determine the types of components to migrate

The components to be migrated should include not only what needs to be migrated but
also what is affected by the migration. The descriptions that follow identify
components typically involved in migration and how these affect other components.

Application structure: The application structure is saved as a load module in the
DDLDCLOD area of the data dictionary; no source definitions for the application are
stored in the DDLDML area. The application structure is relatively autonomous. |f
you make changes to the application structure, you do not need to recompile any other
application components.

Changes to the application structure, however, can logically affect other components,
specificaly dialogs. For example, if you change a response name, you will want to
change the response field value of any response processes you expect to execute before

Chapter 24. Migrating from Test to Production 24-5

24.3 Implementing migration procedures

control is passed to the response. The application will execute without modifying the
diaog, but it will not produce the expected results.

Maps: Changes to maps fall into two categories:
m Critical changes

® Noncritical changes

Critical changes update the date/time stamp. Any dialogs that use the map must be
recompiled before they can be executed. Critical changes to maps include;

® Adding a data field to the map
» Deleting a data field from the map

Noncritical changes to maps do not cause the map date/time stamp to be updated and,
therefore, do not affect any other application components.

Dialogs: Diaogs associate subschemas or access modules, maps, and process code.
The dialog load module contains executable process source code. Recompiling a
dialog creates a new relational command module (RCM). Any access modules that
include that RCM must then be recompiled also. Recompiling a dialog does not affect
any other application component.

Process source code: Process source code is stored in the data dictionary.
Process code is compiled by the dialog compiler and becomes executable when the
dialog is compiled. To have changes to process source code reflected in the dialog
load module, you must recompile the dialog.

RCMs (SQL DML applications only): If a program/dialog containing SQL
statements is recompiled, a RCM is automatically created for it and stored as a load
module in the DDLDCLOD area. If the program/dialog load module is copied intact
to the production system, the RCM load module must also be copied.

Subschemas (navigational DML applications only): If you change a
subschema associated with a dialog, map, or program, you do not need to recompile
the dialog, map or program. If the subschema changes cause you to change the logic
of a process module, you will need to recompile the dialog(s) in which the module is
used. If the subschema changes affect the lengths of data elements or records or the
procedural code in a program, you will need to recompile and relink the program.

Access modules (SQL DML applications only): Access modules must be
compiled from scratch using the catalog that defines the physical database being
accessed. They cannot be copied in load module form like other application
components. A typical migration would copy the RCM load modules, apply any
needed database definition changes and then create all access modules used by the
application, using the CREATE ACCESS MODULE command.

24-6 CA-IDMS Database Administration

24.3 Implementing migration procedures

Non-SQL data definitions: Non-SQL data is defined in records that consist of
record elements. Records are either database records, which are included in a schema,
or work records, which are defined through the DDDL compiler.

Changes to database records require that all subschemas that use those records be
recompiled. All SQL access modules that reference those records must also be
recompiled for SQL applications that access non-SQL defined databases. Changes to
either database records or work records may require map and/or dialog recompilation.

Some changes to database records require some form of restructuring to incorporate
those changes into the existing database.

»»> For more information about modifying the schema definition of a non-SQL defined
database, see Chapter 31, “Modifying Schema Entities’ on page 31-1.

SQL data definitions: Datais defined in tables that consist of columns. Changes
to these tables require that all access modules that use those tables be recreated.
Depending on the definition of a particular access module, this recreation may occur
automatically or may have to be initiated manualy. These changes may require map
and/or dialog recompilation.

Some changes to table definitions requires some form of restructuring to incorporate
those changes into the existing database.

»» For more information about modifying the schema definition of an SQL defined
database, see Chapter 28, “Modifying Schema, View, and Table Definitions’ on
page 28-1.

Adaptive query management: Adaptive query management is a feature of the
IDMS SQL option that automatically recompiles access modules in response to certain
kinds of changes in a database application. For example, if a dialog/program has been
recompiled, the runtime SQL engine detects whether corresponding access modules
have been recompiled to include the new RCM. If not, it automatically recompiles the
access module at runtime (if the AUTO RECREATE ON option was specified when
the access module was created or last altered). Adaptive query management applies to
SQL DML applications that access either non-SQL or SQL-defined databases.

Adaptive query management also automatically recompiles existing access modules
that access SQL-defined databases when the definitions of those databases change.
Note that this does not happen for non-SQL defined databases. It is the responsibility
of the applications administrator to manually recompile any access modules affected by
changes to a non-SQL defined database.

Edit and code tables: Changes to stand-alone edit and code tables that are
associated with a map require that the map be recompiled only if the tables are linked
to the map. Changes to unlinked tables do not affect the map load module.

Chapter 24. Migrating from Test to Production 24-7

24.3 Implementing migration procedures

Examples

Example 1 Adding a data item to a screen: Suppose users of an application
request an additional data item on a screen. To determine what is affected, consider
the relationship between the map and the new data item:

» For an application using navigation DML, you need to do the following if the data
item is from a database record already being used by the map:

1. Change the map to display the data item
2. Recompile the map
3. Recompile any dialogs that use the map
To take these actions, you need to migrate the map and the dialogs.

» For an application using navigation DML, you need to do the following if the
database record is part of the subschema used by the map, but the record is not
already in use by the map:

1. Add the record to the map definition
2. Change the map to display the data item
3. Recompile the map
4. Recompile any dialogs that use the map
To take these actions, you need to migrate the map and the dialogs.

» For an application using navigation DML, you need to do the following if the
database record is not aready part of the subschema:

1. Add the record to the subschema
2. Recompile the subschema
3. Add the record to the map definition
4. Change the map to display the data item
5. Recompile the map
6. Recompile any dialogs that use the map
To take these actions, you need to migrate the subschema, map, and dialogs.

» |f the data item can be derived (for example, calculated) from data already
available to the application, you need to:

1. Create a work record for the map and add it to the map definition or modify
the existing work record

Change the map to display the data item
Recompile the map

Change any processes that must derive the data item

a M~ w DN

Recompile any dialogs that use the map

24-8 CA-IDMS Database Administration

24.3 Implementing migration procedures

24.3.2 Step 2:

To take these actions, you need to migrate the record, subschema, map, affected
processes, and dialogs.

m |f the application uses SQL DML, a work record will already have been defined to
move data between the map and the SQL statements in the dialog. To add
another database item to the screen, you need to:

1. Add the item to the work record already defined for the host variables
referenced in the SQL DML statements.

2. Change the map to display the data item.
3. Recompile the map.

4. Make necessary changes to the SQL statements to retrieve the data item from
the database.

5. Recompile any dialogs that contain altered SQL statements and any dialogs
that use the map.

6. Recompile (using the ALTER ACCESS MODULE statement) any access
modules that contain the recompiled dialogs.

Example 2 Implementing a new application: Suppose you implement an entirely
new application based on an existing database. When the new application has been
adequately tested, all of the application components need to be migrated from the test
system to the production system. In addition, you must also consider what database
components to migrate:

» |f you have not made any changes to the structure of the database, then the
existing schema and physical definitions are not affected

® Depending on the volume and type of activity involved in the new application,
you may need to adjust the buffers and review the adequacy of the journals in the
global DMCL

= |f the application uses navigational DML and you used existing subschemas, they,
too, are unaffected by the migration. However, if you created new subschemas for
the application, you must migrate them.

» |f the application uses SQL DML, you must migrate any RCMs and access
modules that were created as part of the application.

Determine the sequence of migration

Can migrate load module at any time: If you choose to migrate only load
modules, the sequence in which you migrate them does not matter.

Sequence matters for source code migration: |f you migrate any source code,
the sequence is very important because there are dependencies among the components.

In some migrations, certain components will already be in place; in others, you will
need to migrate all components. The list below shows the sequence reguired if all
components were to be migrated.

Chapter 24. Migrating from Test to Production 24-9

24.3 Implementing migration procedures

Non-SQL database
definitions

Elementary data items
Group level data items
Database records
Schemas

Subschemas

SQL database definitions

Schemas
Tables
CALC keys
Indexes

Constraints

Physical database
definitions

Segments

Areas

Files

DMCL modules
Database name tables

Application components
definitions

Ea

N PO O PO M O®DN PO M DR

Edit and code tables

Work records for elementary data items, group level
data, maps, and dialogs

CA-ADS process modules

Modules called by CA-ADS processes or other
programs

Maps

CA-ADS application structures

CA-ADS diadogs

RCMs (for SQL DML applications only)

Access modules (for SQL DML applications only)

Components that can be
migrated in any sequence

A W N PO O N O O

Load modules

Source code for batch and online programs
CA-CULPRIT source code

JCL

24-10 CA-IDMS Database Administration

24.3 Implementing migration procedures

24.3.3 Step 3:

24.3.4 Step 4.

Identify the individual components

Having determined the types of components you need to migrate, you can begin to
identify the individual occurrences. To identify them uniquely, you need both their
names and version numbers. For modules, programs, and edit/code tables, you also
need the name of the language in which they are programmed.

Migrate the components

Depending on the volume of information and the configuration of your dictionaries,
you can use batch or online facilities to move or copy the component definitions to
their target dictionary.

Using online compilers for migration: If the volume of information is small and
both dictionaries are under the control of the same CA-IDMSDC or CA-IDMSUCF
system, you can use the online compilers for most of the migration.

Using batch compilers for migration: If the volume is large or if the
dictionaries are under the control of separate CA-IDMS/DC or CA-IDMSUCF
systems, you need to use the batch compilers and utilities.

Migrating only load modules: If you only want to create an executable
application in the production environment, you migrate just the essential load modules.
Note that for SQL DML applications, the access modules must still be compiled from
scratch on the production system.

Migrating the complete application: If you want a complete, fully documented
application in the production environment, you need to:

® Migrate the source for al components

= Recompile the components

» Recompile the corresponding load modules

Chapter 24. Migrating from Test to Production 24-11

24.4 I|dentification aids

24.4 ldentification aids

The descriptions below identify facilities or techniques you can use to identify the
individual application components you need to migrate. To extract information on
components stored in libraries or other data sets, use an appropriate operating system
utility.

IDD DISPLAY statement: Using either the online or batch dictionary compiler,
you can list the names and version numbers of entity occurrences with a simple form
of the DISPLAY ALL statement. Any of the IDD entity types can be displayed.

Using an optional WHERE clause on the DISPLAY ALL statement, you can more
closely select the occurrences you want displayed. With any entity types, you can
qualify the occurrence name. For some entity types, there are additional selection
criteria that you can specify, such as the user ID of the person who created the entity.

»> For more information on the DISPLAY ALL statement and its WHERE clause,
refer to the discussion on entity-occurrence display in IDD DDDL Reference

Command facility: With either the online or batch command facility, you can:
» Display physical database definitions

. Use a SELECT statement to list, but not display the syntax of, SQL entity
definitions

IDMSRPTS: IDMSRPTS s a utility that produces reports on information stored in
the dictionary. One of its options, the Program Cross-Reference Listing, is particularly
useful for migration operations if you are using program registration. The report lists
all subschemas for a specified schema and all of the programs registered against those
subschemas.

»»> For a sample of this report and instructions on how to run the IDMSRPTS tility,
refer to CA-IDMS Utilities.

DREPORTs: DREPORTS aso report on information stored in the dictionary. There
are some DREPORTS that summarize information for dictionary entities and some that
present detailed information on these entities.

From the summary reports, you can obtain the names and version numbers of the
components that need to be migrated. If you need to know whether other related
components will be affected, you can run one or more of the reports that present
detailed information.

»» For further information on DREPORTS, refer to CA-IDMS Reports.

24-12 CA-IDMS Database Administration

24.4 |dentification aids

AREPORTs: AREPORTS report on CA-ADS dialogs, application structures, and
their associated components (such as subschemas, RCMs, maps, and processes) from
the information stored in the DDLDML area of the dictionary.

The complete detail report is most useful when you are planning the migration of an
entire application. When planning the migration of more than one diaog, run the
report that keys in on only the dialogs you need.

»» For further information on AREPORTS, refer to CA-IDMS Reports.

SQL catalog: The SQL catalog contains the definitions of all SQL-defined database
entities. It aso contains information on all access modules compiled using the catalog,
and the tables that they reference (or records, for SQL DML applications that access
non-SQL defined databases). Since the catalog is itself an SQL-defined database, SQL
SELECT statements may be used to query its contents.

Dictionary classes and attributes: Classes and their attributes are primarily a
means of extending the documentation capabilities in the dictionary. When migrating,
documentation by class and attribute provides a powerful mechanism to analyze and
identify the components involved. Using classes and attributes provides you with the
capability to display a simple list of names or to report on the details of all
components having the same attribute. For example, using the DDDL compiler, you
can display all modules associated with attribute TEST within class STATUS:

display attribute test within class status with modules.

»»> For more information on creating classes and attributes and display entities based
on class and attribute, refer to IDD DDDL Reference. For more information on
reporting by class and attribute, refer to CA-IDMS Reports.

Naming conventions: Naming conventions help in identifying and migrating
components.

Although there are no hard-and-fast rules for designing naming conventions, there are
a few factors that you should keep in mind:

m Collating sequence

Many of the DREPORTSs display the components sorted in ascending order by
name. If the names of all components of an application begin with the same few
characters, it is easy to distinguish one application from another, but more difficult
to distinguish components within an application. Likewise, if the names of all
elements within a record begin with the same few characters, it is easy to
distinguish one record from another in a list, but more difficult to distinguish
elements within a record.

» Acceptable name lengths

The software permits names of different lengths for different components. If you
want several characters of every name to identify the application, select a small

Chapter 24. Migrating from Test to Production 24-13

24.4 I|dentification aids

number (for example, 2 or 3) of characters for this purpose, in order to leave
enough characters for other purposes.

® Consistent number of characters

Consider selecting a consistent number of characters to identify the record in
which an element is placed or components within a particular application. If you
choose a standard number of characters and place them in a standard position, it
will be easy to sort information or to scan lists or reports for a particular item.

As an alternative to embedding an application identifier in component names, you may
choose to use a class/attribute pair. This arrangement allows more characters per name
for other purposes, while still providing a connection between components of the same
application.

24-14 CA-IDMS Database Administration

24.5 Migration tools

24.5 Migration tools

Most of the compilers and utilities you use to creste database and application
components also have options that support migration. The table below summarizes

these tools:
Component Tool Task code Batch program
Non-SQL defined schema Schema compiler SCHEMA IDMSCHEM
source
SQL -defined schema Command facility =~ OCF IDMSBCF
source
Physical database Command facility =~ OCF IDMSBCF
definitions
® Segments, aress, files
» Database name tables
» DMCL source and
load modules
Subschema source Subschema SSC IDMSUBSC
compiler
Subschema load module DDDL compiler IDD; SSC IDMSDDDL;
1; subschema IDMSSUBC
compiler
Definitions of: DDDL compiler 1 IDD IDMSDDDL
. Elements
® Messages
® Modules
= Programs
® Records
Edit/code table source DDDL compiler 1 IDD IDMSDDDL
Map source Mapping utility RHDCMPUT
Mapping compiler RHDCMAP1
Module source DDDL compiler 1 IDD IDMSDDDL

Copybook-style
modules

CA-ADS process
code

Chapter 24. Migrating from Test to Production 24-15

24.5 Migration tools

Component Tool Task code Batch program

Load modules for: DDDL compiler 1 IDD IDMSDDDL
» Applications

® Diaogs

. Maps

» Edit/code tables

& RCMs

Access modules Command fecility = OCF IDMSBCF

1 All definitions that can be migrated using the DDDL compiler can also be migrated
from the command facility.

24-16 CA-IDMS Database Administration

24.6 General methods

24.6 General methods

Tasks: Migration generally consists of two or three tasks:

® Punching or decompiling components from a dictionary to a temporary work file
or externa file

. Compiling the components from the temporary work file or external file into the
target dictionary

» Recompiling load modules, as necessary, in the target dictionary

The options of the schema, subschema, DDDL compilers, and command facility that
you use for these tasks function identically. Different options exist in the mapping
compilers and the mapping utility, and CA-ADS compilers.

The following discussions explore the methods of migration using the DISPLAY and
PUNCH statement options of the schema, subschema, and DDDL compilers and the
command facility, and the various parameters of the mapping compilers and the

mapping utility.

Techniques for SQL definitions and access modules: The methods described
below apply to non-SQL database definitions, physical database definitions, and RCM
load modules. To migrate SQL database definitions, you need to copy stored source
from the test to the production system. To do this you can store the definitions in:

® |n afile that serves as input to the IDMSBCF compiler
» OCF-language modules, as described in 24.6.4, “For SQL-defined entities” on
page 24-23 later in this section

Exception for views: You can use the DISPLAY or PUNCH techniques described
below for view definitions. To obtain the view definition, select the SYNTAX column
from the SYSCA.SYNTAX table.

24.6.1 Using the DISPLAY statement

Use for small volumes of data: The DISPLAY statement of the schema,
subschema, and DDDL compilers, and command facility is useful for moving small
volumes of information between dictionaries under the control of the same DC/UCF
system. Because this technique occurs online, system resources, such as response time
and storage pool space, will limit the volume you are able to migrate.

Note: This technique does not work for SQL database definitions and access modules
unless you stored the source DDL in a module; if so, then follow the steps
below by displaying the module.

Steps: There are four steps in the technique:

1. Sign on to the dictionary containing the components (the source dictionary)

2. Display the individual components using the AS SYNTAX clause.

Chapter 24. Migrating from Test to Production 24-17

24.6 General methods

This step accomplishes the task of decompiling the components to a temporary
work file. If you need to modify existing components in the target dictionary, use
the VERB MODIFY option of the DISPLAY statement (DISPLAY ADD is the
default action):

display subschema empss0l as syntax verb mod.

3. While the components are in the compiler's work file, insert a SIGNON statement
for the target dictionary into the work file as the first statement.

This step prepares for the task of compiling the components from the temporary
work file into the target dictionary. At the conclusion of this step, the work file
contains a SIGNON statement for the target dictionary, followed by ADD or
MODIFY statements for those components you want to migrate.

Note: Typicaly the output of the previous step includes an echo of the input, so
the first statement in the output is the DISPLAY statement. The
DISPLAY statement is not necessary, so you can replace it with the
SIGNON statement.

4. Invoke the compiler

The compiler signs you off the source dictionary, signs you on to the target
dictionary, and adds or modifies the components in the work file.

Final tasks for schemas and load modules: This technique will copy the
source to the target dictionary, but it does not automatically validate schemas or
recompile load modules for subschemas and edit and code tables. You can perform
these additional functions in one of two ways:

» After you compile the source into the target dictionary, establish currency on the
appropriate component and issue the VALIDATE or GENERATE statement. To
establish currency, issue a simple MODIFY statement for the component. For
example:

modify subschema empss01.
generate.

» Before you compile the source into the target dictionary, edit the work file by
inserting the VALIDATE or GENERATE statement after the source for the
component.

24.6.2 Using the PUNCH statement

Used for batch migration: The PUNCH statement of the schema, subschema, and
DDDL compilers and command facility is useful for batch migrations. If you perform
the migration in batch mode, the PUNCH statement allows you to migrate larger
volumes of information. It also allows you to migrate between dictionaries under the
control of different DC/UCF systems.

Writes information to file or module: The PUNCH statement has the same
options as the DISPLAY statement. However, it writes the requested information to
one of two destinations: an external file or an IDD module.

24-18 CA-IDMS Database Administration

24.6 General methods

Note: This technique does not work for SQL database definitions or access modules
unless you stored the source DDL in an IDD module; if you did, then follow
the steps below by punching the module.

Use files or modules to accumulate large numbers of components: The
file or module provides an intermediate place to store the information you want to
migrate. As aresult, you can:

= Accumulate components in one or more modules over the course of severa
terminal sessions

® Accumulate several files of components over the course of separate executions of
the batch compiler

» Edit the content of the modules or files; For example, to change the STATUS of
components from TEST to PRODUCTION

Technique 1. Thistechnique is very similar to the technique for the DISPLAY
statement described above. Because it occurs in batch, however, you can migrate
larger volumes of information.

Steps: The steps in this technique follow:

1. In the first execution of the compiler, sign on to the source dictionary in batch
mode and punch the individual components to an externa file.

In the PUNCH statement, use the AS SYNTAX clause. In addition, specify
VERB MOD if you are migrating existing components. Define the file as
SYSPCH in the JCL.

To avoid having to specify these clauses in every PUNCH statement, you can
issue a SET OPTIONS statement before the PUNCH statements:

set options display as syntax verb mod.
2. When the job ends, edit the externa file as follows:
® [nsert a SIGNON statement for the target dictionary as the first statement.
® [nsert the following statement after the SIGNON statement:
set options input 1 thru 80.

This step prepares for the task of compiling the components from the
temporary file into the target dictionary. Be sure the SSIGNON and SET
OPTIONS statements start between columns 1 and 72.

® Execute the compiler a second time, using the edited file as input.

The compiler signs on the target dictionary and adds or modifies the
components in the file.

Technique 2: With this technique, you create a dictionary module in the source
dictionary to hold the components you want to migrate. Y ou migrate the module to
the target dictionary, extract the ADD or MODIFY statements for the individual
components, and store or modify each of the components in the target dictionary.

Chapter 24. Migrating from Test to Production 24-19

24.6 General methods

Steps: The steps in this technique follow:

1. In batch or online mode, sign on to the source dictionary and create a module

occurrence to hold the components to be moved. For example:
add module holdit.

. While signed on to the source dictionary, punch the components to be moved into

the module using the TO MODULE and AS SYNTAX clauses:

punch element emp-last-name
to module holdit
as syntax.

The module source for HOLDIT now consists of the ADD ELEMENT
EMP-LAST _NAME statement.

You can perform this step in batch or online mode, and you can punch more than
one component to the module. If you use the SET OPTIONS statement following
signon, your input appears as follows:

set options input 1 thru 80
default is on
punch to module holdit
as syntax.

punch element emp-last-name.

This statement automatically changes an ADD to MODIFY if the entity already
exists in the dictionary and punches the entity as syntax.

. In batch mode, sign on to the source dictionary and punch the module to an

externa file.

The input to the compiler consists of only two statements: a SIGNON statement
for the source dictionary and a PUNCH statement for the module. In the PUNCH
statement, use the AS SYNTAX and TO SYSPCH clauses. Also, be sure to
define the file as SYSPCH in the JCL.

At the end of this step, the external file contains only one statement: an
ADD/MODIFY MODULE statement. Within the MODULE statement, however,
the module source consists of the ADD or MODIFY statement for the individua
components that you want to migrate.

. Edit the externadl file as follows:

® |nsert a SIGNON statement for the target dictionary as the first statement

® |nsert the following statement after the SIGNON statement:
set options input 1 thru 80.

® Insert an INCLUDE MODULE statement as the last statement.
As aresult of the editing, the externa file contains four statements:

= A SIGNON statement

B A SET OPTIONS statement

24-20 CA-IDMS Database Administration

24.6 General methods

® An ADD MODULE or MODIFY MODULE statement
= An INCLUDE MODULE statement.

For example:

signon user dba password pass dictname target.
set option input 1 thru 80.
add module holdit

module source follows

add element emp-last-name
version is 1
pic is x(20)

msend.
include module holdit.

5. Execute the compiler in batch mode, using the edited file as input.

The compiler signs on to the target dictionary and adds or modifies the module.
The INCLUDE statement brings the module source into the compiler's work file.
The content adds or modifies the individual components to the target dictionary.

Final tasks for schemas and load modules: As with the DISPLAY statement, the
PUNCH statement does not automatically validate the schemas or generate the load
modules for subschemas and edit/code tables. To perform these function, use one of
the methods described earlier in 24.6.1, “Using the DISPLAY statement” on

page 24-17.

Technique 3: This technique combines parts of the Technique 2 presented above
and parts of the online DISPLAY technique described earlier in 24.6.1, “Using the
DISPLAY statement” on page 24-17. Because this technique entails an online
migration, you need to moderate the volume of information you punch.

Steps: The steps in this technique follow:

1. In online mode, sign on to the source dictionary and create a module occurrence
to hold the components to be moved.

2. While signed on to the source dictionary, punch the components to be moved to
the module.

As above, direct the output of the punch to the module by including the TO
MODULE clause in each PUNCH statement or in a SET OPTIONS statement.
Also, specify the AS SYNTAX clause and the VERB ADD or VERB MODIFY
clause, as appropriate.

3. Clear the compiler's work file.

4. Display the module.

Chapter 24. Migrating from Test to Production 24-21

24.6 General methods

This step brings the module (with al of its source) into the compiler's work file.
In the DISPLAY statement, use the AS SYNTAX clause.

. Edit the work file as follows:

® Insert a SIGNON statement for the target dictionary as the first statement.
® |nsert an INCLUDE MODULE statement as the last statement.

This step prepares the work file for the task of compiling the module and then the
components into the target dictionary. As aresult of the editing, the work file
contains three statements:

& A SIGNON statement
= An ADD MODULE or MODIFY MODULE statement
. An INCLUDE MODULE statement

. Invoke the compiler

The compiler signs on to the target dictionary and adds or modifies the module.
The INCLUDE statement brings the module source into the compiler's work file
and executes the content of the work file. The content adds or modifies the
individual components to the target dictionary.

Final steps for schemas and load modules: As with the other techniques, this
technique does not automatically validate schemas or generate load modules for
subschemas and edit/code tables. To perform these functions, use one of the methods
described earlier in 24.6.1, “Using the DISPLAY statement” on page 24-17.

24.6.3 Using the mapping compiler and mapping utility

Steps: There are three steps to migrate maps between dictionaries (whether under
the same CA-IDMS/DC or CA-IDMS/UCF system or not):

1. Decompile the maps from the source dictionary.

For this step, use the decompile function of the mapping utility (RHDCMPUT).
You can decompile one or several maps in a single execution:

PROCESS=DECOMPILE

MAP=mapl-name
MAP=map2-name

The output of the decompilation consists of the source form of the maps, typically
stored in a temporary file.

. Compile the maps into the target dictionary.

For this step, use the file of decompiled maps from the previous step as input to
the mapping compiler (RHDCMAP1). The mapping compiler places a source
description of the map in the DDLDML area of the target dictionary.

3. Generate the load modules for the maps in the target dictionary.

24-22 CA-IDMS Database Administration

24.6 General methods

For this step, use either the online mapping facility or the load function of the
mapping utility (RHDCMPUT). If you use the load function of the mapping
utility, you can generate multiple load modules in a single execution:

PROCESS=LOAD
MAP=mapl-name
MAP=map2-name

Specify source and target dictionary: The source and target dictionaries are
typically part of multiple dictionary environments. Consequently, you must indicate
which of the dictionaries the mapping compiler and mapping utility should run against.
There are several techniques for specifying a particular dictionary in a multiple
dictionary environment.

»»> For more information on this, see Chapter 23, “Dictionaries and Runtime
Environments’ on page 23-1.

24.6.4 For SQL-defined entities

SQL source cannot be displayed or punched: The source definitions for
SQL -defined data cannot be displayed or punched. Therefore, you must save the
source DDL when you create the SQL definition by either:

® Submitting the statements in batch using IDMSBCF
® Including the statements in an OCF-language module
Steps using a batch job stream: To migrate SQL definitions using a batch job,

you must have first created the definitions in the source dictionary using IDMSBCF.
If you did, then:

1. Edit the batch file to connect to the target dictionary

2. Use the batch file as input to IDMSBCF
Steps using an OCF-language module: To migrate SQL definitions using an
OCF-language module, you must have first saved the SQL DDL statements in an

OCF-language module when you created the definitions in the source dictionary. If
you did, then:

1. Retrieve the contents of the OCF-language module using the EDIT command.

2. Insert a CONNECT command at the top of the resulting work file that connects to
the target dictionary.

3. Invoke the OCF compiler.
The compiler signs on the target dictionary and creates the SQL definitions.

Chapter 24. Migrating from Test to Production 24-23

24.6 General methods

»»> For more information about OCF-language modules, refer to CA-IDMS Command
Facility.

24-24 CA-IDMS Database Administration

24.7 Additional considerations

24.7 Additional considerations

When to migrate: You can perform most migration activities during regular
working hours. Obviously, identifying, punching or decompiling components, and
adding or modifying source definitions of components will not disturb programs or
systems that are currently executing.

Perform some tasks after system shutdown: Depending on the specifics of
the migration, you may not have to do any of it after regular working hours. To be on
the safe side, however, you should plan to migrate or recompile load modules after the
system has been shut down. You should also perform any restructuring operations on
the production database after the system has been shut down. Note that if it is an

SQL -defined database, the restructuring occurs immediately as part of the execution of
the DDL statement that define the change. Therefore, you may want to delay
execution of the DDL statements until system shut down.

Making load modules available: If you migrate or recompile new copies of
existing load modules while the system is down, they automatically come into use
when you bring the system back up. If you migrate or recompile existing load
modules while the system is up, you can control the time at which the new load
modules take effect through the NEW COPY option of the SYSTEM system
generation statement or DCMT VARY PROGRAM command.

NEW COPY options: Using the NEW COPY option of the SYSTEM system
generation statement, you can designate whether new load modules should be loaded
automatically by the system or manually through explicit commands. If you choose to
control loading manually, issue the DCMT VARY PROGRAM command with the
NEW COPY option.

If you are migrating a new system whose tasks and programs are not enabled in the
system generation, then you can migrate or recompile al of its load modules at any
time. Access to the load modules will not be possible until the tasks and programs are
enabled.

Check your work: When you have completed the mechanical migration of
components, run a series of reports or issue a series of DISPLAY statements to check
your work. However, to verify that the migration is complete and successful, you
must test the new components in their new environment.

24.7.1 Additional tasks

Updating system generation: A new application may have an impact on system
generation. Minimally, it may require a new task definition. Other system resources,
such as program pool and storage pool space, may also need to be adjusted.

Updating users: New user IDs may have to be defined and existing user
definitions reviewed.

Chapter 24. Migrating from Test to Production 24-25

24.7 Additional considerations

Updating the task application table: If you choose to recreate and recompile an
application structure in a target dictionary, the recompilation automatically updates the
task application table (TAT) for that dictionary. If you choose simply to migrate the
load module of an application structure, you must manually update the TAT for the
target dictionary.

There are two utilities for updating the TAT:

8 ADSOTATU works in online mode
. ADSOBTAT works in batch mode

»» For information on how to execute these utilities, refer to CA-ADS Reference.

Backup the new files: After you have migrated and tested the components, back
up the files in the new environments.

Cleanup: The migration methods described throughout this chapter create copies of
components. They do not physically move the components or automatically delete
them from the source dictionary after the migration is complete.

If you decide to maintain a single copy of all components, you need to delete the
unwanted copies. Be sure to delete all versions of both source definitions and load
modules. Also be sure to delete copies of load modules from both the dictionary load
areas and load libraries.

24-26 CA-IDMS Database Administration

Chapter 25. Modifying Physical Database Definitions

25.1 Modificationsyoucanmake L 25-3
25.2 Making the changes available under the central version 25-7
25.3 Dynamic DMCL management 25-8
254 Changing afileésaccessmethod 25-10
254.1 Step 1: Expand the pagesize 25-10
25.4.2 Step 4: Copy the datato the new file 25-10
255 Increasingthesizeof anarea 25-12
255.1 Increasinganareaspagesize 25-12
25.5.2 Extending an areaspagerange 25-13
25.6 Adding or dropping files associated withanarea 25-14
25.7 Changing the size of adisk journal 25-15
25.8 Changing the access method of adisk journal 25-16
25.9 Related information 25-17

Chapter 25. Modifying Physical Database Definitions 25-1

25-2 CA-IDMS Database Administration

25.1 Modifications you can make

25.1 Modifications you can make

Changes you can make and what to do: The tables below summarize the
changes you can make to physical database definitions and how to make the change.
In most cases, all you need to do is:

Alter the entity's definition

® Generate, punch, and link all DMCLs associated with the entity definition

Note, however, that if the entity is defined to the runtime DMCL, some changes affect
how CA-IDMS/DB processes a request to make the modified DMCL available
dynamically. The tables below identify those changes:

Segment definition

Change you can make

How to make it

The schema reserved for defining
tables and indexes within areas
associated with the segment

The segment's page group

The maximum number of records
or rows per page if the segment's
areais empty

Alter the segment’s definition and generate,
punch, and link all DMCLSs to which the
segment is defined

The maximum number of records
or rows per page if the segment's
area is not empty

Unload and reload the segment, as described
in CA-IDMS Utilities

File definition

Change you can make

How to make it

The external file name

The fil€e's allocation information,
such as the data set name and
disposition

Alter the file's definition and generate,
punch, and link all DMCLSs in which the
segment that contains the file is defined

The file's access method (VSAM
or non-VSAM)

See 25.4, “Changing a file's access method”
on page 25-10 below

Area definition

Chapter 25. Modifying Physical Database Definitions 25-3

25.1 Modifications you can make

Change you can make

How to make it

To increase the size of an area, the
options are:

Increase the area's page size

See 25.5.1, “Increasing an area's page size”
on page 25-12 below

Extend the area's page range

See 25.5.2, “Extending an area’s page range”
on page 25-13 below

Change the primary number of
pages assigned to the area's page
range

If the area is not empty, unload and reload
the area as described in CA-IDMS Utilities

Decrease the size of the area's
pages

If the area is not empty, unload and reload
the area as described in CA-IDMS Utilities

Increase or decrease the page
reserve

®» Use an area override in the DMCL
definition for special operations, such as
loading a database; then remove the
area override

= For permanent page reserve, alter the
area definition; if the area is not empty,
changing the page reserve affects only
subsequent store and insert operations

® Generate, punch and link the DMCL(s)
that contain the area override or the
segment that contains the defined area

Add, modify, or drop a symbolic
definition 1

Alter the ared’s definition and generate,
punch, and link all DMCLs in which the
segment that contains the area is defined

Re-assign the area to new or
different files

See 25.6, “Adding or dropping files
associated with an area’ on page 25-14

1 If changing the page range of a subarea associated with a record in a non-empty
area, unload and reload the area as described in CA-IDMS Utilities.

If changing the page range of a subarea associated with an index in a non-empty area,
use the MAINTAIN INDEX utility statement to rebuild the index in the new page

range as described in CA-IDMS Utilities.

DMCL definition

25-4 CA-IDMS Database Administration

25.1 Modifications you can make

Change you can make How to make it
® Reassign the buffer associated Alter the DMCL definition and generate,
with afile punch, and link the DMCL

® Associate or disassociate a
database name table

® Add or remove a segment

= Change an areds startup or
warmstart status

® Change an area's page reserve

® Change the externa file name for
afile

® Change the disposition for afile

» Change the dataspace usage for a
file

® Change the shared cache assigned
to afile

Database buffer definitions

Change you can make How to make it

» Change the buffer page size Alter the buffer definition and generate,
punch, and link the DMCL with which the

» Change the buffer page count buffer is associated

» Change how the CA-IDMS/DB
acquires storage for the buffer

® Add or remove buffers

Journal buffer definition

Change you can make How to make it
® Change the size of the journd See 25.7, “Changing the size of a disk
buffer pages journa” on page 25-15
® Change the number of journal Alter the definition of the journal buffer and
buffer pages generate, punch, and link the DMCL with

which the journal buffer is associated

Chapter 25. Modifying Physical Database Definitions 25-5

25.1 Modifications you can make

Disk journal definition

Change you can make How to make it

» Change the externa file name Alter the definition of the disk journal and
generate, punch, and link the DMCL with

" Change the file's dataspace UsBge | i the disk journal file is associated

= Change the number of pagesin See 25.7, “Changing the size of a disk
the disk journa file journa” on page 25-15 below

® Change the file's access method See 25.8, “Changing the access method of a
disk journal” on page 25-16 below

Archive journal definition

Change you can make How to make it

® Change the file's block size Alter the archive file's definition and
generate, punch, and link the DMCL with

" Change the file's extenal file which the archive file is associated

name

® Add or remove archive journa
files

Tape journal definition

Change you can make How to make it
® Change the file's externa file Alter the tape file's definition and generate,
name punch, and link the DMCL with which the

tape journal file is associated

Changes you can't make:
® The synchronization stamp level associated with an area
® The segment's type (that is, SQL or NONSQL)

» The name of a segment containing SQL tables

25-6 CA-IDMS Database Administration

25.2 Making the changes available under the central version

25.2 Making the changes available under the central
version

Journal modifications require system to be recycled: If you change the page
size of the journal buffer or any disk journal attribute, you have to recycle the system
in order to make the changes available under the central version. CA-IDMS/DB
cannot implement the changes if you make the DMCL available dynamically by
issuing a DCMT VARY DMCL command. Note that you can make changes to the
definition of the archive journa without recycling the system.

Other changes can be accessed dynamically: Other changes made to the
DMCL definition can be made effective by issuing a DCMT VARY DMCL NEW
COPY command, provided that files can be deallocated and reallocated if necessary.
The ability to deallocate and reallocate files dynamically depends on the operating
system and the information provided in the file definition.

»» For more information, see Chapter 3, “Defining Segments, Files, and Areas’ on
page 3-1.

Backup old DMCL: If using VARY DMCL to implement your changes, be sure to
make a copy of the old DMCL load module before issuing the VARY DMCL

command. This ensures that if an abnormal termination occurs before the operation is
complete, you will be able to warmstart the system using the old DMCL if necessary.

Data sharing considerations: In a data sharing environment, most changes to an
area or its associated files will not take effect until the area is varied offline in all
group members in which it is shared since most area (and associated file)
characteristics must be identical across all sharing members. For alist of these
characteristics, see 4.5.4, “ Sharing update access to data’ on page 4-15.
The recommended procedure for making shared area or file changes in the following:

» Modify and generate a new DMCL for al affected members

& Vary the area offline in all sharing members

®» Vary a new copy of the altered DMCL in al affected members

® Vary the area online in all affected members

» For more information on data sharing, refer to CA-IDMS System Operations.

Chapter 25. Modifying Physical Database Definitions 25-7

25.3 Dynamic DMCL management

25.3 Dynamic DMCL management

Impact of changes: When a DMCL is being varied, certain changes cause:
m Areas to be quiesced

1 Files to be dedlocated and reallocated

Change Quiesce area? Reallocate file?

Segment changes

® Dropping and recreating the Yes Yes
segment
= Page group Yes Yes
® Maximum number of records per Yes Yes
page

® Segment's schema No No
Area changes

®» Adding an area Allocate

» Dropping an area Yes Deallocate

® Primary page range Yes Yes

» Extending page range Yes Yes

m Page size Yes Yes

» Origina page size Yes Yes

» Symbolic parameters Yes Yes

n Areato-file mapping Yes Yes

® Page reserve No No

® Maximum space No No
File changes

» Dataset name Yes Yes

» VM/ESA user id/virtual address Yes Yes

® Access method Yes Yes

» Disposition No Yes

» External name (DDNAME) No Yes
DMCL changes

® Adding a segment Allocate

25-8 CA-IDMS Database Administration

25.3 Dynamic DMCL management

Change Quiesce area? Reallocate file?
» Dropping a segment Yes Deallocate
» Buffer associated with afile No 1 No
» Dataspace usage for afile No Yes
® File's externa name (DDNAME) No Yes
» File's disposition No Yes
® Area status No No
m Shared cache for afile No Yes

1 If afileis associated with a new buffer, the area's pages are first purged from the
buffer pool.

Considerations

® Changing the page size of a buffer causes the buffer to be closed and re-opened
with the new size. All other buffer changes (such as the number of pages) are
ignored. To change these parameters while the system is active, issue a DCMT

VARY BUFFER command.

Changes to a journa buffer or disk, tape, or archive journal files either have no
impact on the runtime system or are not allowing when varying a new copy of a

DMCL.

In a data sharing environment, if an area is shared, most changes to the area and
its associated files will not take effect until the area is varied offline in all group

members in which it is shared.

Chapter 25. Modifying Physical Database Definitions 25-9

25.4 Changing a file's access method

25.4 Changing a file's access method

Procedure: You can change the format of database files from non-VSAM to VSAM
and vice versa. To complete this process, you need to:

1. Expand the page size of the file€'s area, if necessary

2. Alter the file definition to change its access method (and optionally to specify a
new database name or other location information) and generate, punch, and link
all DMCLs in which the file's segment is included.

3. Allocate a new VSAM or non-VSAM data set, as described in Chapter 16,
“Allocating and Formatting Files’ on page 16-1.

4. Make the area to be processed unavailable for update under the central version.
5. Copy the old VSAM or non-VSAM file to the new data set.

6. Make the new DMCLs and file available to the runtime environment.

Steps 1 and 4 are discussed below.

25.4.1 Step 1: Expand the page size

Converting from non-VSAM to VSAM: When you convert a non-VSAM file to
VSAM, expand the areas page size first if the page size of the area is significantly
smaller than the size of the VSAM control interval. The optimal page size is 8 bytes
less than the VSAM control interval.

Converting from VSAM to non-VSAM: When you convert a VSAM file to
non-VSAM, consider expanding the area's page size either before or after the
conversion if the page size of the area is inefficient for the device type.

»> For optimal page sizes based on device type, refer to CA-IDMS Database Design.
For the steps involved in expanding the page size of an area, see 25.5.1, “Increasing an
area's page size” on page 25-12 later in this chapter.

25.4.2 Step 4: Copy the data to the new file

Options: To copy the data, use one of the following options:

1. Use the BACKUP and RESTORE utility statements

2. Use the IDCAMS utility
Option 1: Backup and restore: To use BACKUP and RESTORE to copy the
database files, take the following steps:

1. Offload the data in the old file(s) using the BACKUP tility statement and the old
DMCL. If al files within a multi-file area are being converted, use the AREA
option on the BACKUP statement; otherwise, use the FILE option.

25-10 CA-IDMS Database Administration

25.4 Changing a file's access method

2. If the backup was performed with the AREA option, format the new files before
executing Step 3.

3. Reload the data into the new file(s) using the RESTORE utility statement and the
new DMCL. If the data was offloaded with the AREA option, restore with the
AREA option; otherwise, restore with the FILE option.

Option 2: Using IDCAMS: The REPRO command of the IDCAMS utility can be
used to copy the data between a VSAM and non-VSAM file and vice versa. If you
use this approach, be sure to copy al pages (blocks) in the file in their entirety without
reblocking.

» For more information about IDCAMS, refer to the appropriate IBM documentation.

Chapter 25. Modifying Physical Database Definitions 25-11

25.5 Increasing the size of an area

25.5 Increasing the size of an area

Available options: To increase the size of an area, you can:
1. Increase the page size of the area by using the EXPAND PAGE utility statement

2. Extend the number of pages in the area by using the EXTEND SPACE clause of
the AREA statement

3. Increase the current number of pages assigned to the area by unloading and
reloading the area

Which option to use: Both options 1 and 3 distribute free space throughout an
area. While option 1 is faster (and therefore less disruptive) than option 3, it does not
reorganize indexes or improve the placement of existing data which may have
overflowed due to lack of space on a page. Option 1 is most effective if used before
the area approaches a full condition.

Option 2 adds free space only at the end of an area. This can be useful where records
or tables have a location mode of direct or are clustered around a dbkey index or an
OOAK record. It can also be used as a temporary means of increasing space in an
area whose page size cannot be increased (due to device or VSAM restrictions).

If the area to be extended contains CALC records, these records will continue to only
target to pages in the original page range. If no space is available to hold the new
occurrences, they will overflow into the extended page range. The area must continue
to be defined as being extended until an UNLOAD/RELOAD is performed where the
new database defines the entire extended page range as the original page range.
Failure to do this will result in 0326 errors when CALC retrieval is attempted.

Procedures: Procedures for the first two options follow.

»> For information about unloading and reloading an area, refer to CA-IDMS Utilities.

25.5.1 Increasing an area's page size

Steps: To increase the page size for an area, follow these steps:

1. Change the definition of the area by specifying the new page size and, if thisis
the first time the pages have been expanded, specify the current page size as the
original page size. (The origina page size must be the size of the page at the
time the area was formatted.)

2. If desired, dter the definitions of the ared's files to specify new dataset names
and/or other location information.

3. Generate, punch, and link all DMCLs that contain the segment with which the
area is associated.

4. Allocate new database files to accommodate the increased page size.

25-12 CA-IDMS Database Administration

25.5 Increasing the size of an area

25.5.2

5. Make the area to be processed unavailable for update under the central version.

6. Copy and expand the files associated with the area by using the EXPAND PAGE
utility statement and the old DMCL. Each file must be expanded individually.

7. Backup the expanded area.

8. Make the DMCLs and the new files available to the runtime environment.

Extending an area's page range

Steps: To extend the number of pagesin an area, follow these steps:

1. If the additional pages being added to the area will reside in a new file, define the
file. If the additional pages are being added to the last file associated with the
area, alter the definition of the file to specify a new dataset name and/or other
location information, if appropriate.

2. Change the definition of the area specifying the number of additional pages to add
to the area by using the EXTEND SPACE clause. On the EXTEND SPACE
clause, specify to which file the additional pages will be mapped by using the
WITHIN FILE clause.

If the additional pages would cause the number of pages in the area to exceed the
maximum space allowed, you can use the MAXIMUM SPACE clause to increase
the maximum provided the page numbers are not assigned to another area that will
be used in the same DMCL as the area being expanded. (If the pages have been
assigned, you must use UNLOAD and RELOAD to increase the ared's page
range.)

3. Generate, punch, and link all DMCLs that contain the segment with which the
area is associated.

4. Allocate a new database file to contain the additional pages and initialize the file
using the new DMCL.

5. If the new pages are being added to the last file of the area:

a. Make the area to be processed unavailable for update under the central
version.

b. Backup the area using the old DMCL.

c. Restore the area using the old DMCL, but referencing the new file through
JCL statements.

Note: [If the area maps to its file on a one-to-one basis it is necessary to
include IDMSQSAM=0ON in the RESTORE utility's SYSIDMS file.

6. Backup the expanded area.

7. Make the DMCLs and the new file available to the runtime environment.

Chapter 25. Modifying Physical Database Definitions 25-13

25.6 Adding or dropping files associated with an area

25.6 Adding or dropping files associated with an area

Types of changes: The pages of an area can be mapped to different files provided
that al the pages are accounted for. For example, two files can be combined into one
file or one file can be separated into multiple files.

Steps: To add or remove files from an area, follow these steps:

1
2.

Define the new files.

Change the definition of the area by excluding all files associated with the area
and re-assigning the pages of the area to file blocks.

Drop al unused files.

Generate, punch and link all DMCLs that contain the segment with which the area
is associated.

Allocate and format new database files.

Make the area to be processed unavailable for update under the central version.
(If re-using some of the existing files, take the area offline to the central version.)

Backup the area using the AREA option of the BACKUP utility statement and the
old DMCL.

Restore the area using the AREA option of the RESTORE utility statement and
the new DMCL.

Make the DMCLs and the new files available to the runtime environment.

25-14 CA-IDMS Database Administration

25.7 Changing the size of a disk journal

25.7 Changing the size of a disk journal

Steps: To change the size of a disk journal, follow these steps:

1

Change the size of the disk journa by either changing the size of the journal
buffer page or the number of pages in the disk journa file.

Generate, punch, and link the DMCL.
Shut down the system.

Offload al currently used journals using the ARCHIVE JOURNAL utility
statement with the ALL option and the old DMCL.

Allocate and format new disk journal files.

Restart the system with the new DMCL and the new journa files.

Chapter 25. Modifying Physical Database Definitions 25-15

25.8 Changing the access method of a disk journal

25.8 Changing the access method of a disk journal

Steps: You can change the access method used for a disk journal file from
non-VSAM to VSAM or vice versa. To do this you must:

1. Change the definition of the disk journal file specifying the desired access method.
Alter the page size of the journal buffer:

n |f changing from non-VSAM to VSAM, the page size should be 8 bytes less
than the control interval size

» |f changing from VSAM to non-VSAM, choose an optional page size for the
device type

2. Generate, punch, and link the DMCL.
3. Shut down the system.

4. Offload al currently used journals using the ARCHIVE JOURNAL utility
statement with the ALL option and the old DMCL.

5. Allocate and format new disk journal files.
6. Restart the system with the new DMCL and the new journd files.

25-16 CA-IDMS Database Administration

25.9 Related information

25.9 Related information

® About segment, area, and file definition, see Chapter 3, “Defining Segments,
Files, and Areas’ on page 3-1

. About DMCL, database buffer, journal buffer, and journa file definition, see
Chapter 4, “Defining, Generating, and Punching a DMCL” on page 4-1

» About the syntax for physical database entities, see Chapter 6, “Physical Database
DDL Statements’ on page 6-1

. About DCMT commands, refer to CA-IDMS System Tasks and Operator
Commands

m About utility statement syntax, refer to CA-IDMS Utilities
® About data sharing, refer to CA-IDMS System Operations

Chapter 25. Modifying Physical Database Definitions 25-17

25-18 CA-IDMS Database Administration

Chapter 26. Modifying Database Name Tables

26.1 Changesyoucanmake 26-3
26.2 Procedure for modifying database nametables 26-4
26.3 Related information 26-5

Chapter 26. Modifying Database Name Tables 26-1

26-2 CA-IDMS Database Administration

26.1 Changes you can make

26.1 Changes you can make

What you can change: You can modify the following characteristics of a database
name table definition:

What databases are associated with the database name table (through the
DBNAME statement)

What segments and/or subschema mappings are associated with a database name
Generic subschema mappings defined to the database name table
The MIXED PAGE GROUP BINDS option setting

What database groups are associated with the database name table (through the
DBGROUP statement)

Chapter 26. Modifying Database Name Tables 26-3

26.2 Procedure for modifying database name tables

26.2 Procedure for modifying database name tables

Steps: To modify a database name table, follow these steps:

Action Statement

Modify the database name, » CREATE, ALTER, or DROP DBNAME
database group, and/or database | ~peATE ALTER or DROP DBGROUP
name table

» ALTER DBTABLE

Regenerate the database name GENERATE DBTABLE
table

Punch and link the database PUNCH DBTABLE LOAD MODULE
name table to a load library

Make the database name table DCMT VARY DBTABLE NEW COPY
available under the central
version

Example: In the example below, the DBA adds a new database name to an existing
database name table. After generating and punching the database name table load
module, the DBA instructs CA-IDMS/DB to load the updated database name table:

create dbname alldbs.benefits
add segment empseg
add segment projseg
add segment beneseg;

generate dbtable alldbs;

punch dbtable load module alldbs;

After link-editing the modified database name table to a load library, make it available
under the central version:

dcmt vary dbtable alldbs new copy

26-4 CA-IDMS Database Administration

26.3 Related information

26.3 Related information

» About defining database name tables and database names, see Chapter 5,
“Defining a Database Name Table” on page 5-1

® For syntax and syntax rules for the DBTABLE, DBGROUP, and DBNAME
statements, see Chapter 6, “Physical Database DDL Statements’ on page 6-1

. About DCMT commands, refer to CA-IDMS System Tasks and Operator
Commands

® About the PUNCH utility statement, refer to CA-IDMS Utilities
» About database groups and dynamic routing, refer to CA-IDMS System Operations

Chapter 26. Modifying Database Name Tables 26-5

26-6 CA-IDMS Database Administration

Chapter 27. About Modifying SQL-Defined Databases

27.1 What you can modify 27-3
27.2 Methods for modifying 27-4

Chapter 27. About Modifying SQL-Defined Databases 27-1

27-2 CA-IDMS Database Administration

27.1 What you can modify

27.1 What you can modify

You can modify an SQL-defined database by:
» Adding or dropping tables
. Modifying table components
= Adding or dropping indexes and referential constraints
» Adding, modifying, or dropping schemas
® Adding or dropping views

»»> See Chapter 25, “Modifying Physical Database Definitions’ on page 25-1 for
maintaining physical definitions.

Chapter 27. About Modifying SQL-Defined Databases 27-3

27.2 Methods for modifying

27.2 Methods for modifying

You can use the following methods to change an SQL-defined database:
® Single DDL statement

You use a single DDL statement to make the change. The change takes effect
immediately. For example, you use a single DDL statement when adding a check
constraint.

. Multiple DDL statements

You use multiple DDL statements to make the change. The particular SQL DDL
statements you use depend on the type of change being made. For example, to
change index characteristics (such as the area in which an index resides) requires
the following SQL statements:

— DROP INDEX

— CREATE INDEX

The change takes effect upon completion of these statements.
= Combination of DML and DDL statements

You use a combination of DML and DDL statements to modify a definition. This
method often involves dropping, redefining, and reloading a table to make the
change.

Once the data has been reloaded, the change takes effect. For example, to drop a
column from a table, you use DML or utility statements to:

1. Create a new table with the appropriate columns (DDL CREATE)
2. Copy the rows of data to the new table (DML INSERT)
3. Delete the existing table (DDL DROP)
Choosing a modification method: In some cases, you may choose the method to

use. In other cases, the method is dictated by database factors such as whether the
table contains data or whether it participates in a referential constraint.

Each modification is discussed in detail in the following chapters.

Inform your users: Some changes you make to the database will have a direct
impact on your users. For example, if you drop a table or a view, users will no longer
have access to the data

Before you make a change such as dropping a table, you can use SELECT statements
to determine where the entity to be changed is used. Specifically, look for:

= Views that reference the table

» Referential constraints in which the table participates

® Access modules that access the table

27-4 CA-IDMS Database Administration

27.2 Methods for modifying

This indicates the potential impact the change may have and provides information on
determining the best method to use to make the change.

Chapter 27. About Modifying SQL-Defined Databases 27-5

27-6 CA-IDMS Database Administration

Chapter 28. Modifying Schema, View, and Table

Definitions

28.1 Maintaining schemas 28-4
28.1.1 Dropping an existingschema 28-4
28.1.2 Modifyingaschema 284

28.2 Mantaining VIeWwS 28-5
2821 DroppingaVview 28-5
28.2.2 Modifyingaview 28-5

28.3 Maintainingtables 28-7
28.3.1 Cregtingatable 28-7
2832 Droppingatable 28-7
28.3.3 Addingacolumntoatable 28-8
28.3.4 Dropping acolumn fromatable 28-9
28.3.5 Changing the characteristics of acolumn 28-10
28.3.6 Adding or removing data compression 28-10
28.3.7 Adding anew check constraint 28-10
28.3.8 Dropping a check constraint 28-11
28.3.9 Modifying a check constraint 28-11
28.3.10 Revising the estimated row count for atable 28-11
28.3.11 Changing atablesarea 28-12
28.3.12 Dropping the default index associated with atable 28-12

28.4 Dropping and recreating atable 0L 28-14
28.4.1 Method 1 — Using DDL and DML statements 28-14
28.4.2 Method 2 — Using DDL and utility statements 28-16

Chapter 28. Modifying Schema, View, and Table Definitions 28-1

28-2 CA-IDMS Database Administration

This chapter describes methods for creating, dropping, and changing schemas, views,
and tables.

»» For more information on the SQL DDL statements used in the procedures in this
chapter, refer to the CA-IDMS SQL Reference.

Chapter 28. Modifying Schema, View, and Table Definitions 28-3

28.1 Maintaining schemas

28.1 Maintaining schemas

This section describes how to:
» Drop a schema

® Change a component of a schema

28.1.1 Dropping an existing schema

DROP SCHEMA statement: To drop a schema, use an SQL DDL DROP
SCHEMA statement. This removes the named schema only if no tables or views are
associated with it.
CASCADE option: If you specify the CASCADE option, you also delete:

® The definition of each table and view associated with the named schema

® The data stored in each table associated with the schema

» The definition of each referential constraint, index, and CALC key defined on the
tables associated with the named schema

® The view definition of each view derived from one or more of the tables
associated with the named schema

n All privileges granted on tables dropped as a result of cascade processing
Considerations: If al tables and indexes on those tables are in a segment in which
no other table or index from another schema resides, then you can use the FORMAT

utility to erase rows and indexes before using DROP SCHEMA. This will enable
more efficient execution.

Example: In the following example, a schema and its associated tables are dropped.

drop schema demoempl cascade;

28.1.2 Modifying a schema
To modify a schema, use the SQL DDL ALTER SCHEMA statement.

Considerations: Changing the default area associated with the schema does not
affect existing tables.

Example: In the following example, the schema's default area is changed.

alter schema demoempl
default area demoempl.emplarea;

28-4 CA-IDMS Database Administration

28.2 Maintaining views

28.2 Maintaining views

This section describes how to:
» Drop aview

® Change a view definition by dropping and recreating it
28.2.1 Dropping a view

DROP VIEW statement: To drop aview, use the SQL DDL DROP VIEW
statement.

CASCADE option: Use the CASCADE option if the view being dropped
participates in any other view definitions. CASCADE directs CA-IDMS/DB to drop
the named view and all views derived from the named view.

When you drop a view (without CASCADE), the following definitions are removed
from the dictionary:

® The view

m All privileges granted on the view

If you specify CASCADE, these additional definitions are removed from the
dictionary:

® All views in which the view is referenced and all views referencing those views
m All privileges granted on views dropped as a result of cascade processing

Considerations: You must specify CASCADE if there are views defined on the
view you are dropping.

Example: In the following example, the view EMP_HOME_INFO is dropped. This

also drops any views derived from this view.

drop view emp_home_info cascade;

28.2.2 Modifying a view

To modify a view, use the SQL DDL DROP VIEW statement to drop the view and
then use the SQL DDL CREATE VIEW statement to re-add the view.

Before modifying a view, you can use the SELECT SYNTAX FROM
SYSCA.SYNTAX statement to display the syntax used to create a view.

select syntax from sysca.syntax
where schema=HR
and table=EMP-SALARY;

» For more information on SELECT SYNTAX, refer to the CA-IDMS SQL Reference.

Chapter 28. Modifying Schema, View, and Table Definitions 28-5

28.2 Maintaining views

Example: In the following example, the syntax for the view EMP_HOME_INFO is
displayed using the SELECT SYNTAX statement. The view is then dropped (DROP)
and re-added (CREATE) with an additional column (CITY).

This SELECT SYNTAX statement:

select syntax from sysca.syntax
where schema=demoemp]
and table=emp_home_info;

Displays this view syntax:

create view emp_home_info
as select emp_id, emp_Iname, emp_fname, phone
from employee;

DROP VIEW AND CREATE VIEW are used to modify the view.

drop view emp_home_info;
create view emp_home_info
as select emp_id, emp_lname, emp_fname, phone, city
from employee;

28-6 CA-IDMS Database Administration

28.3 Maintaining tables

28.3 Maintaining tables

This section describes how to:
m Create or drop a table
» Create or drop a column
= Change column characteristics
® Add or remove data compression
» Create, drop, or modify check constraints
® Revise the table's estimated row count
® Change the table's area

® Drop the default index associated with the table

28.3.1 Creating a table

CREATE TABLE statement: To create atable, use the SQL DDL CREATE
TABLE statement.

Considerations: The areain which the tabl€e's rows are to reside must be defined in
the application dictionary and be accessible to the runtime environment in which the
CREATE TABLE statement is issued.

28.3.2 Dropping a table

DROP TABLE statement: To drop atable, use the SQL DDL DROP TABLE
statement. Use the CASCADE option if the table participates in a referentia
constraint or is referenced in one or more view definitions.

No CASCADE: When you drop atable (without CASCADE), the following
definitions are removed from the dictionary:

® The table

m [ts CALC key (if any)

= All indexes defined on the table

m All privileges granted on the table
Table rows and indexes are removed from the database.
With CASCADE: If you specify CASCADE, these additional definitions are
removed from the dictionary:

m All referential constraints in which the table participates

m All views in which the table is referenced and all views referencing those views

m All privileges granted on views dropped as a result of cascade processing

Chapter 28. Modifying Schema, View, and Table Definitions 28-7

28.3 Maintaining tables

Considerations

Using FORMAT to erase table rows: If the table you want to drop is the only
table in an area and its indexes (if any) also reside in areas in which no other table or
index resides, you can use the FORMAT utility to drop the table more efficiently:

1. Format the area(s) containing the table and indexes

2. Drop the table

»» For information on FORMAT, refer to the CA-IDMS Utilities document.

Dropping all tables in a schema: If you want to drop al tablesin a schema, use
the DROP SCHEMA statement with the CASCADE option rather than dropping each
table individually.

Example: In the following example, these entities are dropped: the BENEFITS table,
its CALC key, all indexes defined on it, all privileges on it, all referential constraints
in which BENEFITS participates, al views in which this table is referenced and al
views referencing that view, and all privileges granted on all those views. In addition,
all data will be deleted.

drop table demoempl.benefits cascade;

28.3.3 Adding a column to a table

ALTER TABLE statement: To add a column to a table, use the SQL DDL
ALTER TABLE statement with the ADD COLUMN option.

The definition of the table is updated to include the new column definition, and the
new column becomes the last column in the table. Table rows are not updated as part
of the ALTER TABLE processing; instead, the column is added to an existing row
only when that row is next updated.

Considerations
If the table is not empty: If the table is not empty, you must supply a default value

for the added column. You do this one of the following ways:

» By specifying that the column is to have a default value, in which case all existing
rows are considered to have the default value for the new column

= By alowing the column to have a null value, in which case al existing rows are
considered to have a null value for the column

»»> For more information about choosing a value, refer to the CA-IDMS SQL
Reference.

28-8 CA-IDMS Database Administration

28.3 Maintaining tables

Maximum row length: Adding a column to a table might increase the length of the
table row beyond the maximum allowed.

For compressed tables, the maximum is 32760. If the new column would cause this to
be exceeded, the column cannot be added to the table; instead, consider creating a
second table to hold the additional information.

For uncompressed tables, the maximum depends on the page size of the area in which
the table resides. If the new column would cause the length of the row to be greater
than (page size - 40), then do one of the following:

1. Use the EXPAND PAGE dtility statement to increase the page size of the areas
» For information on EXPAND PAGE, refer to the CA-IDMS Utilities document.

2. Compress the table
3. Create a second table to hold the new information

Note: The maximum length of an uncompressed row can be as much as (page size -
40); however, it is recommended that row lengths be no more than 30% of the
size of the page.

Expanding space in an area: If an areais becoming full, consider expanding its
space before adding the column. Chapter 25, “Madifying Physical Database
Definitions’ on page 25-1 describes methods you can use to expand an area

Compressed records: |If anew column in a compressed table will be used as an
index key or as a referencing column, consider placing the column near the front of
the table. Otherwise, the compression potentia of the table will be greatly reduced.

To do this, the table must be dropped and re-added with a new column order. When
you put the rows back into the table, make sure the data is in the new column order.

Effect on programs and view definitions: Adding a column to a table does not
impact existing programs or view definitions except under the following circumstances:

» |f your host language programs include SELECT * from the table, they will
receive runtime errors because of the added column

® |f aview definition includes a SELECT * from the affected table, it becomes
invalid and must be dropped and recreated.

28.3.4 Dropping a column from a table

Drop/add table: In order to delete a column from atable, you must drop the table
and redefine it without the column.

»» See 28.4, “Dropping and recreating a table” on page 28-14 later in this chapter for
the steps and considerations involved with this process.

Chapter 28. Modifying Schema, View, and Table Definitions 28-9

28.3 Maintaining tables

Considerations: All programs referencing the column must be recompiled and all
views referencing the column must be recreated.

28.3.5 Changing the characteristics of a column

Drop/add table: Characteristics of a column include data type, null option, and
default value. Changing any of these characteristics requires that the table be dropped
and redefined, as described in 28.4, “Dropping and recreating a table” on page 28-14
later in this chapter. When redefining the table, make the necessary changes to the
column definition.

Considerations

= You cannot remove the NOT NULL attribute if the column participates in a
unique CALC key, index, or ORDER BY clause of areferential constraint

» |f you change the data type or length of a column that participates in a referential
constraint, the change must be reflected in both the referenced and referencing
columns.

28.3.6 Adding or removing data compression

Drop/add table: To add or remove compression, you must drop and redefine the
table, as described in 28.4, “Dropping and recreating a table” on page 28-14 later in
this chapter. When redefining the table, add or remove the COMPRESS clause as
desired.

Considerations

= By removing compression, the table will occupy more space in the database and
may overflow a database that is already near capacity

» By adding compression, you may incur a modest increase in CPU time during
subsequent DML processing of the table

»> For more information about data compression, refer to the CA-IDMS Presspack
User Guide.

28.3.7 Adding a new check constraint

ALTER TABLE statement: To add a new check constraint, use the SQL DDL
ALTER TABLE statement with the ADD CHECK option.
Considerations

® Adding a check constraint will append the new check constraint to any check
constraints currently on the table

» |f current data does not conform to the new check constraint, you will receive an
error when CA-IDMS/DB processes the ALTER TABLE command

28-10 CA-IDMS Database Administration

28.3 Maintaining tables

Example: In the following example, a new check constraint is added to the
BENEFITS table.

alter table emp.benefits
add check (fiscal year > 1920);

28.3.8 Dropping a check constraint

ALTER TABLE statement: To drop a check constraint, use the SQL DDL ALTER
TABLE statement with the DROP CHECK option. DROP CHECK deletes all check
constraints associated with the table.

Example: In the following example, all check constraints associated with the
BENEFITS table are dropped.

alter table emp.benefits
drop check;

28.3.9 Modifying a check constraint

To modify a check constraint, follow these steps:
1. Drop the existing check constraint, as described above
2. Add the new check constraint, as described above

Tip: Use SELECT SYNTAX from SYSCA.SYNTAX to display the existing check
constraints before dropping it:

select syntax from sysca.syntax
where schema='EMP' and
table = 'BENEFITS';

Example:

alter table emp.benefits
drop check;

alter table emp.benefits
add check (fiscal year > 1930);

28.3.10 Revising the estimated row count for a table

ALTER TABLE statement: To change the estimated row count on the table
definition, use the SQL DDL ALTER TABLE statement with the ESTIMATED
NUMBER OF ROWS option.

Considerations

® Changing the estimated number of rows for a table will not affect default index
sizing unless you drop and re-add the index or referential constraint. The
estimated number of rows is used for index calculations only if it is greater than
the NUMROWS column in SYSCA.TABLE. NUMROWS is updated whenever
an UPDATE STATISTICS utility statement is issued for the table or the table's
area

Chapter 28. Modifying Schema, View, and Table Definitions 28-11

28.3 Maintaining tables

»»> For more information about index calculations, refer to the CA-IDMS SQL
Reference

» Changing the estimated row count may affect the access paths chosen by the
access module compiler for SQL DML statements that reference the table. Unlike
other table modifications, though, changing the estimated row count will not cause
existing access modules that reference the table to be automatically recompiled. If
recompilation of selected access modules is desired, you must use the ALTER
ACCESS MODULE statement to force reoptimization.

Note: Estimated number of rows is used for optimized purposes only if the
NUMROWS column of SYSCA.TABLE is 0.

Example: In the following example, the estimated row count for the EMPLOY EE
table is revised.

alter table emp_employee
estimated row count 750000;

28.3.11 Changing a table's area

Drop/add table: To change the area in which the rows of atable are stored, you
must drop the table and redefine it specifying the new area.

»> See 28.4, “Dropping and recreating a table” on page 28-14 later in this chapter for
the steps and considerations involved in this process.

28.3.12 Dropping the default index associated with a table

ALTER TABLE statement: To drop the default index associated with a table, use
the SQL DDL ALTER TABLE statement with the DROP DEFAULT INDEX option.

Considerations

= Do not drop the default index on a table until the CALC key, indexes, and
referential constraints in which the table participates have been defined. If no
other index exists on the table, an area sweep will be initiated each time one of
the above components is defined.

» Dropping the default index could change the location mode of a record.

» Default indexes can be useful whenever it is anticipated that a table will be
accessed without WHERE clauses specifying index or CALC keys and without
joins that might use referential relationships with other tables. In short, they are
useful whenever it is anticipated that the optimizer would otherwise choose area
sweeps to satisfy access requests on the table. This is particularly true when it is
a sparse table, since a sweep of the default index will only access data pages that
contain rows of the table; whereas, an area sweep will access every page of the
area.

28-12 CA-IDMS Database Administration

28.3 Maintaining tables

»» For complete information on when you would choose to drop the default index,
refer to the CA-IDMS Database Design document.

Example: In the following example, the default index for the EMPLOY EE table is
dropped.

alter table emp.employee
drop default index;

Chapter 28. Modifying Schema, View, and Table Definitions 28-13

28.4 Dropping and recreating a table

28.4 Dropping and recreating a table

Considerations for dropping/adding a table: Many types of changes can only
be implemented by dropping and redefining a table. There are two major
considerations involved with this process:

® Preserving the table's data
= Re-establishing the table's relationships with other tables and views

What follows: This section outlines two approaches that can be used to drop and
recreate a table:

» Method 1 — Uses a combination of DDL and DML statements to perform the
operation

» Method 2 — Uses DDL and utility statements

Considerations: Select the approach based on the size of the table and the
importance of minimizing the time during which the table cannot be accessed.
Consider the following:

» Method 1 requires there be enough space in the database to hold two copies of the
data simultaneously. It also builds indexes and validates relationships as the data
is being inserted into a new table, potentially requiring a large number of row
locks and journal images.

» Method 2 reloads the data in local mode using the LOAD utility statement.
Therefore the table and all other tables in the same area cannot be accessed while
the load is taking place.

For these reasons, Method 1 is more appropriate for small tables, while Method 2 is
more suited for large tables.

28.4.1 Method 1 — Using DDL and DML statements

Steps: To use a combination of DDL and DML statements to recreate a table,
follow these steps:

1. Define a new table that has the same definition as the original table except for the
desired changes.

2. Define the same indexes and CALC keys for the new table as for the old (unless
changes in these are desired).

3. For each referential constraint in which the original table is the referencing table,
define a similar constraint on the new table. The new constraint must be defined
with a different name and if the referenced table is not empty, it must be defined
as unlinked. (The unlinked constraint may also require that an index be defined
on the foreign key of the new table).

4. For each referential constraint in which the original table is the referenced table,
determine if the referencing table is empty. If it is, define a similar constraint

28-14 CA-IDMS Database Administration

28.4 Dropping and recreating a table

with a different name in which the new table is the referenced table. If the
referencing table is not empty, determine if additional indexes are needed on the
foreign key of the referencing table to support a similar constraint defined as
unlinked. If additional indexes are required, create them now.

5. For each view in which the original table is referenced (or views of those views),
display the definition syntax by selecting from SYSCA.SYNTAX. Save the
resulting output so the views can be recreated later.

6. Copy the data from the origina table to the new table using an INSERT statement
with the SELECT option.

7. For each referential constraint in which the original table is the referenced table
and the referencing table is not empty, define a constraint in which the new table
is the referenced table. The new constraint must have a different name and be
defined as unlinked.

8. Drop the original table using the CASCADE option of DROP table.

9. For each self-referencing constraint defined on the original table, define a similar
constraint on the new table. (A sdlf-referencing constraint is a referential
constraint in which the referenced and referencing table are the same.)

10. Complete the transition to the new table as follows:

» Define a view on the new table with the same name as the original table and
including al of its columns.

® Recreate the views whose syntax was previously saved; examine those view
definitions to see if changes are required.

» Re-gpecify privilege definitions on the individual table and views if access is
controlled through CA-IDMS internal security.

Guaranteeing integrity of the data: Steps 6 through 8 should be performed
within a single transaction to minimize the potential of changes to the data in the
original table and any of its related tables until the entire operation is completed. To
ensure that no changes are made between the time the data is copied and the time the
table is dropped, take one of the following actions just prior to issuing the SELECT
Statement:

» Prohibit access to the table by explicitly dropping al views that reference it. This
is effective only if all update access to the table is done through a view.

. Revoke al INSERT, UPDATE, and DELETE privileges from the table (and any
matching wildcarded table names) if access is controlled through CA-IDMS
internal security.

m Alter the original table and add a dummy column. This has the effect of
prohibiting access to the table until the transaction has terminated.

Recreating empty tables: [f the table to be recreated is empty, you need not
define a new table. Instead, simply drop and redefine the table making the desired
changes to its definition. However, be sure to take appropriate steps to preserve
referential constraints, views derived from the table, and privilege definitions.

Chapter 28. Modifying Schema, View, and Table Definitions 28-15

28.4 Dropping and recreating a table

28.4.2 Method 2 — Using DDL and utility statements

Steps: To use a combination of DDL and utility statements to drop and recreate a
table, take the following steps:

1

Identify all tables related through a linked constraint to the target table (the table
whose definition is to be changed). Either the related tables must be unloaded and
reloaded together with the target table or the constraints will become unlinked
when they are redefined.

For each view in which the target table is referenced (or views of those views),
display the definition syntax by selecting from SYSCA.SYNTAX. Save the
resulting output so the views can be recreated later.

For each table to be unloaded, extract the data to a sequential file using either:
® A user-written program
® A CA-CULPRIT report

Use separate extract files for each table or place an indicator in each output record
to identify the table from which the data was extracted. Be sure the data was
extracted successfully before proceeding to the next step.

Drop the target table (specifying the CASCADE option) and delete the rows from
the related tables that were unloaded by using a DELETE statement. If no other
tables or indexes exist within the affected areas and all relationships are within
those areas (and were unloaded), format the area before issuing the DROP and
DELETE statements. Be sure to vary the areas offline to the DC/UCF system
before formatting them.

Redefine the table making any necessary changes.
Redefine the indexes and CALC key on the target table.

Redefine the referential constraints in which the target table participates. If any of
the constraints involve non-empty tables, those constraints must be defined as
unlinked.

Reload the tables using the LOAD utility statement and the sequentia file as
input.

»> See Chapter 21, “Loading an SQL-Defined Database” on page 21-1 for
information about how to perform the load operation.

Complete the process as follows:

» Recreate the views whose syntax was previously saved; examine those view
definitions to see if changes are required

» Respecify privilege definitions on the target table and its referencing views if
access is controlled through CA-IDMS internal security

28-16 CA-IDMS Database Administration

28.4 Dropping and recreating a table

Guaranteeing the integrity of the data: You must ensure that no updates are
made to any of the unloaded tables once their data has been extracted. To ensure that
no changes are made between the time the data is extracted and the time the tables
have been reloaded:

» Prohibit access to the tables by explicitly dropping al views that reference it.
This is effective only if all update access to the table is done through a view.

» Revoke al INSERT, UPDATE, and DELETE privileges from the tables (and any
matching wildcarded table names) if access is controlled though CA-IDMS
internal security.

Chapter 28. Modifying Schema, View, and Table Definitions 28-17

28-18 CA-IDMS Database Administration

Chapter 29. Modifying Indexes, CALC Keys, and
Referential Constraints

29.1 Maintaining indexes 29-4
29.1.1 Creatinganindex 29-4
29.1.2 Droppinganindex 29-4
29.1.3 Changing index characteristics moving anindex 29-5

29.2 Maintaining CALC keys 29-6
29.21 CreatingaCALCkey 29-6
29.2.2 Droppinga CALC key 29-6

29.3 Maintaining referential constraints 29-7
29.3.1 Creating a referential constraint 29-7
29.3.2 Dropping a referential constraint 29-7
29.3.3 Modifying referential constraint tuning characteristics 29-8

Chapter 29. Modifying Indexes, CALC Keys, and Referential Constraints 29-1

29-2 CA-IDMS Database Administration

This chapter describes methods for creating, dropping, and changing indexes, CALC
keys, and referential constraints.

»» For more information on the SQL DDL statements used in the procedures in this
chapter, refer to the CA-IDMS SQL Reference.

Chapter 29. Modifying Indexes, CALC Keys, and Referential Constraints 29-3

29.1 Maintaining indexes

29.1 Maintaining indexes

This section describes how to:
» Create or drop an index
® Change index characteristics

® Move an index from one area to another

29.1.1 Creating an index

To create a new index on a column or columns in a table, use the SQL DDL CREATE
INDEX statement. If the index is going to map to a new area, see Chapter 3,
“Defining Segments, Files, and Areas’ on page 3-1 for information about defining an
area

Considerations

® |f you specify that the index is unique, and data in the key columns is not unique,
you will receive an error and the index will not be created.

® Each index implies additional runtime processing to handle INSERT, UPDATE,
and DELETE statements for the index itself.

»> For more information about designing indexes, refer to CA-IDMS Database Design.

Example: In the following example, an index is built on the LAST_NAME column
in the BENEFITS table.

create index be 1name (last _name) on emp.benefits;

29.1.2 Dropping an index

To drop an index from an existing table, use the SQL DDL DROP INDEX statement.

Considerations: A unique index or CALC key is required on all referenced
columns in a constraint and an index or CALC key must exist on all referencing
(foreign key) columns in unlinked constraints. If dropping an index would violate
either of these rules, the DROP will not be allowed.

Example: In the following example, an optional index is dropped from a table:

drop index xyz;

29-4 CA-IDMS Database Administration

29.1 Maintaining indexes

29.1.3 Changing index characteristics/ moving an index

To change index characteristics or to move an index from one area to another:
1. Create a new index with a new name using CREATE INDEX
2. Drop the old index using DROP INDEX

Note: Creating the new index before dropping the old one lets you modify an index
involved in a referential constraint.

Considerations
= |f changing index tuning options, remember to observe referential constraint rules.

® Adding an index with a new name, then dropping an old index does not impact
program logic. Affected access modules will be automatically recompiled and,
where relevant, use the new index for accessing the table.

Example: In the following example, a new index is created on the BENEFITS table,
and the existing index, EM_LNAME, is dropped.
create index emp _Tname (last_name) on emp.benefits

in area emp.empl;
drop index em Iname;

Chapter 29. Modifying Indexes, CALC Keys, and Referential Constraints 29-5

29.2 Maintaining CALC keys

29.2 Maintaining CALC keys

This section describes how to:
n Create a CALC key
. Drop a CALC key

29.2.1 Creating a CALC key

To create a CALC key for an empty table, use the SQL DDL CREATE CALC
statement.

If the table is not empty, you must drop and recreate the table, adding the CALC key
before reloading the table's data.

»» For the steps involved in this process, see Chapter 28, “Maodifying Schema, View,
and Table Definitions’ on page 28-1.

Considerations: Only one location mode is permitted for atable. If the table is
stored clustered on an index or constraint, you must drop the clustering index or
constraint and re-add it as non-clustered before you can create a CALC key.

Example: In the following example, a unique CALC key is created for the
EMPLOYEE table.

create unique calc key on emp.employee (emp_id);

29.2.2 Dropping a CALC key
To drop a CALC key from an empty table, use the SQL DDL DROP CALC statement.
If the table is not empty, you must drop and recreate it.
»» For the steps involved in this process, see Chapter 28, “Maodifying Schema, View,

and Table Definitions’ on page 28-1.

Considerations: You can't drop a CALC key that is required for implementation of
areferential constraint if no index exists to support it. If necessary, either drop the
constraint or create an index to support it before dropping the CALC key.

Example: In the following example, the CALC key is dropped from the
EMPLOYEE table.

drop calc key from emp.employee;

29-6 CA-IDMS Database Administration

29.3 Maintaining referential constraints

29.3 Maintaining referential constraints

This section describes how to:
m Create or drop linked or unlinked referential constraints

® Modify the tuning characteristics of referential constraints

29.3.1 Creating a referential constraint

To create an unlinked or linked referential constraint, use the SQL DDL CREATE
CONSTRAINT statement. CA-IDMS/DB checks and rejects any invalid CREATE
CONSTRAINT statements.

Considerations

m To create a linked constraint if both tables are not empty, you must drop and
recreate the tables, defining the linked constraint before reloading the data.

»» For steps and considerations involved with this process, see Chapter 28,
“Modifying Schema, View, and Table Definitions’ on page 28-1.

®» When adding an unlinked constraint on a non-empty table, CA-IDMS/DB ensures
that all rows of the table satisfy the constraint. If one or more rows do not satisfy
the congtraint, the create will not be allowed.

Example: In the following example, a linked referential constraint has been created
to make sure that the employee ID in the benefits table is a valid ID by checking it
against the employee IDs in the employee table. The referential constraint is indexed
and ordered by the fiscal year.
create constraint emp_benefits

benefits (emp_id)

references employee (emp_id)

Tinked index
order by (fiscal year desc);

29.3.2 Dropping a referential constraint

To drop an unlinked referential constraint, or a linked referential constraint, use the
SQL DDL DROP CONSTRAINT statement.

Considerations: If you drop a clustered constraint, the location mode will change
as follows:

n |f adefault index exists, CA-IDMS/DB will use it as the clustering index.
® Otherwise, it uses a direct location mode which means that al new rows will be
stored in the first page containing enough space to hold the row.

Example: In the following example, the EMP_BENEFITS constraint is removed
from the BENEFITS table:

Chapter 29. Modifying Indexes, CALC Keys, and Referential Constraints 29-7

29.3 Maintaining referential constraints

drop constraint emp_benefits from benefits;

29.3.3 Modifying referential constraint tuning characteristics

To modify referential constraint tuning characteristics (for example, changing from
unlinked to linked or adding an ORDER BY option) use the SQL DDL DROP
CONSTRAINT statement, then re-add the constraint using the SQL DDL CREATE
CONSTRAINT statement.

Considerations: All considerations for dropping and creating a referential
constraint apply.

Example: In the following example, a linked referential constraint has been changed
to unlinked:

drop constraint emp_benefits from benefits;
create constraint emp_benefits

benefits (emp_id)

references employee (emp_id);

29-8 CA-IDMS Database Administration

Chapter 30. About Modifying Non-SQL Defined

Databases

30.1 Typesof modifications 30-3

30.2 OVErVIEW . . . L 30-4
30.2.1 Methods for modifying 30-4
30.2.2 Procedure for modifying the non-SQL definitions 30-5
30.2.3 RESTRUCTURE SEGMENT utility statement 30-7
30.24 UNLOAD/RELOAD uitility statements 30-7
30.25 MAINTAIN INDEX utility statement 30-8

Chapter 30. About Modifying Non-SQL Defined Databases 30-1

30-2 CA-IDMS Database Administration

30.1 Types of modifications

30.1 Types of modifications

Modification of a non SQL-defined database involves modifying any of the
components you defined earlier for the schema or subschema. This includes:

Adding or deleting schemas

Adding, modifying, or deleting schema areas
Adding, modifying, or deleting schema records
Adding, modifying, or dropping indexes and sets

»» For information about modifying physical definitions, see Chapter 25, “Modifying
Physical Database Definitions’ on page 25-1.

Chapter 30. About Modifying Non-SQL Defined Databases 30-3

30.2 Overview

30.2 Overview

Changes to schemas: In general, when you change a database, you must modify
the schema code and revalidate the schema. However, changing the schema has an
impact on other components of the CA-IDMS/DB environment. If you add or delete
an area from a schema, you may have to add or delete that area in one or more
segments and regenerate DMCLs. You will aso have to modify and recompile some
or al subschema definitions compiled under the original schema to reflect changes
made to the schema.

If you access the non-SQL defined data through SQL, you may also need to recompile
access modules and drop and recreate SQL view definitions.

The primary tool for changing a schema is the schema compiler.
Steps to modify the schema: The steps to make any schema modification are as
follows:

1. Change and re-validate the necessary schema and subschema definitions

2. Change the actual data (if it exists) to fit the new database specifications using the
RESTRUCTURE SEGMENT, MAINTAIN INDEX, or UNLOAD/RELOAD
utility statements

3. Revise and recompile any application programs that may have been affected by
the above changes

4. Test to ensure that the change has been made correctly.
Changes to subschemas: Subschemas identify selected areas, records, elements,
and sets of the database. They also define logical records and establish security by
restricting runtime access to the database.

Any time you make a change to any of the above components in your CA-IDMS/DB
environment, you will have to change one or more of your subschemas.

The primary tool for changing subschemas is the subschema compiler.

30.2.1 Methods for modifying

Depending on the type of change you want to make to a non-SQL defined database,
you would do one of the following:

® Change the definition

» Change the definition and additionally use one or more utility statements
Basic definition change: To change alogical database definition when there is no
impact on data, you can use the schema compiler (or another compiler). This type of

change takes affect without requiring a utility statement (UNLOAD/RELOAD,
RESTRUCTURE SEGMENT, or MAINTAIN INDEX).

30-4 CA-IDMS Database Administration

30.2 Overview

An example of a change in which there is no data impact is adding a new areato a
schema.

Definition change using utility statements: For database changes that have an
impact on data, you must change the database definition and additionally use an
appropriate utility statement:

8 RESTRUCTURE SEGMENT — Modifies record occurrences to fit new schema
specifications. RESTRUCTURE SEGMENT dlows you to:

— Insert new data items anywhere in a record

Delete existing data items
— Change the length and position of data items

— Change the format of a record from fixed length to variable length or from
variable length to fixed length

— Add or remove record compression
— Deélete chained sets and add or delete set pointers

= UNLOAD and RELOAD — Reorganizes data when changes are made to the
placement of records within the database (for example, moving a record from one
area to another).

= MAINTAIN INDEX — Builds, rebuilds, or deletes indexes in the database. You
use this utility whenever you need to make a structural change to the database
involving indexes (for example, adding a new index to the database).

30.2.2 Procedure for modifying the non-SQL definitions

Step 1: Copy the original schema and global subschema

1. Create a new schema which is identical to the original schema.

2. Create a global subschema for the new schema with a name which is different
from that of any other subschema in the dictionary. Include in the subschema all
areas, records, and sets associated with the schema.

Step 2: Modify the new schema and subschema

1. Make the necessary changes to the new schema definition.

2. Vadlidate the schema.

3. Regenerate the global subschema, modifying it if necessary.

Step 3: Modify the segment and DMCL, if necessary

Note: You need to modify segments and DMCLSs only if you add or remove an area
or make other changes to the physical definition in addition to changing the
schema

1. Make the appropriate changes in the segment definition. Make sure that subareas
and other symbolics are defined appropriately.

Chapter 30. About Modifying Non-SQL Defined Databases 30-5

30.2 Overview

2. Generate, punch, and link all DMCLs containing the altered segment.

Step 4: Make changes to the data

Note: Not all schema changes require data changes. See Chapter 31, “Modifying
Schema Entities” on page 31-1 for the steps needed in each case.

1. Backup the area or files.
2. Use the appropriate utility or user-written program to change the data.

3. Verify the change using IDMSDBAN and/or a retrieval program, CA-OLQ, or
CA-CULPRIT.

4. Backup the dltered areas or files.

Step 5: Complete the change
1. Update the original schema in the same way that the copy was changed.

2. Regenerate all subschemas associated with the original schema that are affected by
the change, modifying them if necessary to add new areas, records, or sets.

3. Recompile all access modules affected by the change, using the ALTER ACCESS
MODULE statement with the REPLACE ALL option.

4. Drop and recreate al SQL views affected by the change.

5. Make the new subschemas, DMCLSs, and file available to your runtime
environment.

Considerations: The procedure outlined above requires that changes first be made
to a copy of the original schema and only after all other steps have been completed are
the changes made to the original schema. This approach ensures that the original
schema continues to describe the data until the altered areas are made available to
runtime environment. You should use this (or a similar approach) if during the
process:

® CA-OLQ, CA-CULPRIT, or dynamic SQL users will be accessing the original
schema definition

® Application programs will be compiled against the original schema and must
access the data before it has been changed.

If the above is not a concern or if no data changes are necessary, then the initial
modifications can be made to the original schema rather than a copy, avoiding the
necessity of replicating those changes later. (The copy of the schemais still useful if
the REGENERATE SCHEMA utility statement will be used to alter data.)

30-6 CA-IDMS Database Administration

30.2 Overview

30.2.3 RESTRUCTURE SEGMENT utility statement

What RESTRUCTURE SEGMENT does: The RESTRUCTURE SEGMENT
utility statement modifies record occurrences to fit new schema specifications. You
run RESTRUCTURE SEGMENT in local mode using a subschema associated with a
schema that describes the database before restructuring.

RESTRUCTURE SEGMENT does not require that the database be unloaded and
reloaded. Database keys remain unchanged. This means that database procedures can
be executed during restructuring. For example, IDMSCOMP can be executed to
compress records being changed from fixed length to variable length format.

Steps for RESTRUCTURE SEGMENT: To make changes using RESTRUCTURE
SEGMENT, follow the procedure described in 30.2.2, “Procedure for modifying the
non-SQL definitions’ on page 30-5, except add the steps listed in the following table.

After ... Do this
Modifying the schema and Execute the schema compare utility (IDMSRSTC)
subschemas to generate IDMSRSTT macro statements for use

in the database restructure

Executing IDMSRSTC Assemble the IDMSRSTT statements into a base
restructuring table and use the table with the
RESTRUCTURE SEGMENT utility statement;
use a subschema that describes the database before
restructuring

Executing RESTRUCTURE Connect any new pointers to existing sets using

SEGMENT the RESTRUCTURE CONNECT utility statement;
use a subschema that describes the database after
restructuring

Executing RESTRUCTURE Write a program to connect pointers in new sets to
SEGMENT existing records

»» For detailed information on IDMSRSTC, RESTRUCTURE SEGMENT, and
RESTRUCTURE CONNECT, refer to CA-IDMS Utilities.

30.2.4 UNLOAD/RELOAD utility statements

What UNLOAD and RELOAD do: The UNLOAD and RELOAD utility statements
unload existing database records and reload them into the database. UNLOADING
and RELOADING involves:

1. Using the UNLOAD utility statement to offload data to an intermediate file in
preparation for reloading it.

2. Using the RELOAD utility statement to store the record data into the database,
build index structures, and connect related records together in set structures.

Chapter 30. About Modifying Non-SQL Defined Databases 30-7

30.2 Overview

Steps for UNLOAD/RELOAD: To make changes using UNLOAD/RELOAD,
follow the procedure described in 30.2.2, “Procedure for modifying the non-SQL
definitions’ on page 30-5, adding the steps listed in the following table.

After ... Do this

Modifying the schema and UNLOAD using subschemas that reflect both the
subschemas old and new schema definitions.

Unloading the data Use the FORMAT utility statement to initialize

the files into which the data will be reloaded.

»» For detailed information about UNLOAD and RELOAD, refer to CA-IDMS
Utilities.

30.2.5 MAINTAIN INDEX utility statement

What MAINTAIN INDEX does: The MAINTAIN INDEX utility statement allows
you to build, rebuild, and delete both system-owned and user-owned indexes (indexed
sets). You can aso change the characteristics of an index, such as changing an index
key from a compressed to an uncompressed format.

Steps to modify indexes: To make changes to an index, follow the procedure
described in 30.2.2, “Procedure for modifying the non-SQL definitions’ on page 30-5,
adding the steps listed in the following table.

After ... Do this

Modifying the schema and For system-owned indexes:

global subschema Use MAINTAIN INDEX to build, rebuild, or
delete an index.

For user-owned indexes (indexed sets):

Write a program that calls IDMSTBLU and passes
descriptor information

Note: Depending on the operation, you will need either a subschema reflecting the
old schema, the new schema, or both.

»» For detailed information about MAINTAIN INDEX and IDMSTBLU, refer to
CA-IDMS Utilities.

30-8 CA-IDMS Database Administration

Chapter 31. Modifying Schema Entities

31.1 Maodifications to an unloaded database 31-4
31.2 Schema modifications 31-5
31.21 Deetiingaschema 31-5
31.2.2 Changing schema characteristics 31-5
31.3 Areamodifications 31-6
31.3.1 Adding or deletinganarea 31-6
31.3.2 Changing area characteristics 31-7
314 Record modifications 31-8
31.4.1 Adding schemarecords 31-8
31.4.2 Deeting schemarecords 31-8
31.4.3 Changing arecords CALCkey 31-9
31.4.4 Changing the DUPLICATES option on a CALC or SORT key ... 31-11
31.45 Changing the location mode of arecord 31-12
31.4.6 Changing arecordsarea 31-13
31.4.7 Modifying record elements 31-14
31.4.8 Changing other record characteristics 31-15
31.4.9 Adding and dropping database procedures 31-16
315 Set modifications 31-17
315.1 Addingordeletingaset 31-17
3152 Changingsetmode 31-18
31.5.3 Adding and dropping set pointers 31-19
3154 Changing setorder 31-20
3155 Changing set membership options 31-21
31.6 Index modifications 31-23
31.6.1 Adding or deleting system-owned indexes 31-23
31.6.2 Changing the location of anindex 31-24
31.6.3 Changing index characteristics 31-24
31.6.4 Adding or deleting index pointers 31-25

Chapter 31. Modifying Schema Entities 31-1

31-2 CA-IDMS Database Administration

What this chapter contains: This chapter describes:
® The procedure to modify a schema or schema entities when the database is empty.

m Specific procedures to add, delete, or modify schema or schema entity definitions
when the database is not empty. These procedures include only those that require
a utility to affect the change.

Chapter 31. Modifying Schema Entities 31-3

31.1 Modifications to an unloaded database

31.1 Modifications to an unloaded database

What components are affected: Changes to a schema or schema entity in an
unloaded database affects:

» The schema
® The subschemas that reference the schema
®» The access modules that reference the schema

® SQL views that reference the schema

Steps
1. Modify the schema and any schema entities, as desired
2. Vadlidate the schema
3. Regenerate any affected subschemas
4. Alter affected access modules using the REPLACE ALL option
5

. Drop and recreate SQL views that reference the schema, as necessary

31-4 CA-IDMS Database Administration

31.2 Schema modifications

31.2 Schema modifications

This section describes how to:
» Delete a schema

» Change schema characteristics

31.2.1 Deleting a schema

What components are affected: When you delete a schema, the definitions of
the schema and all subschemas associated with the schema are removed from the
dictionary.
Steps to delete a schema: To delete a schema from the dictionary:
1. Delete the schema
. Delete load modules associated with the deleted subschemas

. Delete files that contain the data

2
3
4. Delete the segment(s) corresponding to the schema
5. Regenerate all affected DMCLSs

6. Remove the segment(s) from the database name table
7

. Delete SQL schema(s) referencing the non-SQL schema

Considerations: When you delete a schema, subschemas associated with that
schema are also deleted. The subschema load modules are not deleted.

In addition, the physical database definition(s) that apply to the schema's areas are not
automatically deleted. You must modify the physical database definitions to delete the
areas and regenerate all affected DMCLs.

31.2.2 Changing schema characteristics

Schema characteristics include:

® Description

= Memo date

m Assignment rules for record 1Ds

m Security specifications

m User-defined information (clas/attribute and user-defined comments)
What components are affected: When you modify characteristics of a schema,
only the schema definition is affected. These characteristics do not impact critical

definitions within the schema or its subschemas, so a VALIDATE statement is not
required.

Chapter 31. Modifying Schema Entities 31-5

31.3 Area modifications

31.3 Area modifications

Types of changes: This section describes how to make the following area-related
changes:

® Add or delete an area in an existing schema definition

® Add, remove, or change procedures associated with the area

31.3.1 Adding or deleting an area

What components are affected: Adding or deleting an area in the schema affects
the schema and subschemas referencing an area to be deleted, segments describing
related physical databases, and DMCLs in which those segments are included.

Steps to add an area

1

o o &~ W D

Modify the schema

Add the new area

Define one or more records or system-owned indexes associated with the area
Validate the schema

Add the new area to one or more subschemas

Format the new area using the FILE option of the FORMAT utility statement

Steps to delete an area

1
2.

Modify the schema

Modify existing records mapping to the area to be deleted so that they map to a
different area

Delete the area
Validate the schema

Regenerate any affected subschemas

Considerations

If existing records are to reside in a new area, see 31.4.6, “Changing a record's
aread’ on page 31-13 later in this chapter.

If an existing index isto reside in a new area, see 31.6.2, “Changing the location
of an index” on page 31-24 later in this chapter.

After you have added an area to a schema or deleted an area from a schema, make
sure you update the DMCL module appropriately.

31-6 CA-IDMS Database Administration

31.3 Area modifications

31.3.2 Changing area characteristics

What components are affected: When you add or delete area procedures, the
area and schema definitions are affected. All subschemas which include the area must
be regenerated and all access modules accessing a record in the area must be altered.

Steps to change area characteristics: »» See 31.1, “Modifications to an
unloaded database” on page 31-4 at the beginning of this chapter for the steps to
modify an empty database.

Considerations: Remember to respecify all database procedures in the order that
they are to be called when you add, remove, or change the procedures associated with
an area.

Chapter 31. Modifying Schema Entities 31-7

31.4 Record modifications

31.4 Record modifications

Types of changes: This section describes the following record-related changes:

Adding or deleting a record in your schema
Changing a record's CALC key

Changing a record's location mode
Changing a record's area

Changing a record element

Changing record procedures

31.4.1 Adding schema records

31.4.2 Deleting

What components are affected: Adding schema records affects the schema.

Steps to add a record

1

2.
3
4.
5
6
7

Add the record using DDDL statements
Modify the schema

. Add the record to the schema using SHARE STRUCTURE

Validate the schema

. Modify any subschemas that should contain the new record
. Add the new record to each subschema

. Regenerate the subschemas

Considerations: If the record participates in a set with existing records, you must
use the RESTRUCTURE SEGMENT utility statement to add pointer positions to the
existing records. You must also write a program that connects the records into proper
Set occurrences.

»»> For more information on adding a set to a schema, see 31.5.1, “Adding or deleting
a set” on page 31-17 later in this chapter.

schema records

What components are affected: Deleting schema records affects the schema and
the data. It also affects subschemas and access modules that reference the record and
any other records connected to the record through sets. SQL views referencing the
record become invalid.

31-8 CA-IDMS Database Administration

31.4 Record modifications

Steps to delete a record: To delete a record from the schema where data has
been loaded:

1. Write and execute a program to erase all occurrences of the record

2. Create a new schema based on the original schema omitting the record and
omitting any affected sets

3. Validate the schema

4. Use the schema compare utility (IDMSRSTC) to generate the IDMSRSTT macro
statements

5. Restructure the database using the RESTRUCTURE SEGMENT utility statement

Note: If the record does not participate in any set relationships, there is no need
to restructure the database.

6. Complete the process by updating the original schema definition, regenerating
subschemas, altering affected access modules, and dropping affected views
Considerations

» |f you created the record using DDDL statements, the record definition will
remain in the dictionary after it has been deleted from the schema

» |f you created the record using schema DDL and the record has not been copied
into any other schema, its definition will be deleted from the dictionary after it has
been deleted from the schema definition.

m |f the record participates in a set relationship, you have to remove the set from the
schema definition or modify the definition before validation

® Regenerating affected subschemas will remove the record from the subschema
definition

®» When you erase occurrences of the record, you may have to use a subschema
derived from a schema where the sets in which the record is an owner have been

changed to optional. This permits the member record to be disconnected from the
owner record rather than being erased.

31.4.3 Changing a record's CALC key

Types of changes: You can make the following changes to a record's CALC key:
® Replace one or more elements in the CALC key
® Add or remove elements in the CALC key
® Change the picture or usage of an element in the CALC key

What components are affected: Both the schema record definition and the data

are affected. Subschemas and access modules that reference the record are aso
affected.

Chapter 31. Modifying Schema Entities 31-9

31.4 Record modifications

Steps to change the CALC key: To change the CALC key of a schema record
where data has been loaded:

1

o o &~ W D

Add a new schema based on the original schema

Modify the record in the new schema specifying the new CALC key

Validate the schema

Create a new global subschema

Unload and reload the database using the UNLOAD/RELOAD utility statements

Complete the process by updating the original schema definition, regenerating
subschemas, and altering affected access modules

Considerations

UNLOAD/RELOAD clusters VIA records based on the CALC key defined in the
subschema used to unload the data. Therefore, you need to do a second
UNLOAD/RELOAD to properly cluster VIA records if the subschema used to
unload the data describes the old CALC key.

As an dternative, you can use the new subschema for unloading. This ensures
that the new CALC key is used to determine target pages for both the CALC
record and its associated VIA records. However, the new subschema can be used
to unload data only if no other changes have been made to the record (such as the
record's area, set pointers, etc.).

In some cases multiple changes can be accommodated by using an intermediate
schema/subschema to unload the data. For example, to change the CALC key of
arecord and also move it to a new area, unload the data using a subschema that
describes the record's new CALC key but old area. Reload the data using a
subschema describing the new CALC key and the new area.

If the control length of the record is changing as a result of the change to the
CALC key and the record is compressed or variable length, you must do one of
the following:

— Use RESTRUCTURE SEGMENT to alter the control length before unloading
and reloading the data.

— Unload and reload the data twice (using the old subschema on the first unload
and the new subschema on the second)

If afield to be added to the CALC key does not exist in the record, add the field
using RESTRUCTURE SEGMENT and initialize it before unloading and
reloading the data. Initialize the field using restructure or a user-written program.

»> See 31.4.7, “Modifying record elements’ on page 31-14 later in this chapter for
information on adding a new record element.

31-10 CA-IDMS Database Administration

31.4 Record modifications

31.4.4 Changing the DUPLICATES option on a CALC or SORT key
Types of changes: You can make the following changes to the DUPLICATES
option on a record's CALC or sort key:

» Duplicates first to duplicates last
» Duplicates last to duplicates first
= Duplicates not allowed to duplicates first/last
» Duplicates first/last to duplicates not allowed
What components are affected: The entire schema definition is affected.

Depending on the change, the data may also be affected. All subschemas and access
modules referencing the record are also affected.

Steps to change the duplicates option: See 31.1, “Modifications to an
unloaded database” on page 31-4 at the beginning of this chapter for the steps to
change the duplicates option from:

® Duplicates first/last to duplicates not allowed
® Duplicates not allowed to duplicates first/last

To change the duplicates option from first to last or from last to first:

1. Write a program using a subschema that specifies duplicates first for the CALC or
sort key. The program must

. Modify the CALC or sort key value to a dummy value
. Modify the CALC or sort key value to its origina vaue

» Read each record that has duplicate values, using either OBTAIN CALC
DUPLICATE or OBTAIN NEXT IN SET to retrieve duplicate records in the
current order

This has the effect of reversing the order of the duplicate records.
Modify the schema

Modify the record changing the duplicates option

Validate the schema

Regenerate any affected subschemas

o o > w D

Alter affected access modules using the REPLACE ALL option

Considerations

= When you change from duplicates first or last to duplicates not allowed, make
sure that no duplicate key values exist in the database.

®» When changing from duplicates first to last or last to first, write a conversion
program to logically reorder the record occurrences in the database.

Chapter 31. Modifying Schema Entities 31-11

31.4 Record modifications

Using the approach described above, the program must execute using a subschema
specifying duplicates first. Therefore, it should use a subschema created either
before or after the schema has been changed depending on whether the duplicates
option is being changed from or to duplicates first.

31.4.5 Changing the location mode of a record

Types of changes: These are the possible location mode changes for a record in
the database:

CALC to VIA

CALC to DIRECT

DIRECT to CALC

DIRECT to VIA

VIA to CALC

VIA to DIRECT

VIA one set in the schemato VIA another set

What components are affected: The record definition and the data are affected.
Subschemas and access modules referencing the record are also affected.

Steps to change the location mode: To change the location mode of a schema
record where data has been loaded:

1

o o A W N

Add a new schema based on the origina schema

Modify the record in the new schema to specify the new location mode
Validate the schema

Create a new global subschema

Unload and reload the database using the UNLOAD/RELOAD tility statements

Complete the process by updating the original schema, regenerating affected
subschemas, and altering affected access modules.

Considerations

If the storage mode is being changed to VIA, add the set if it does not exist

If you change a location mode from CALC or DIRECT to VIA, or if you change
the VIA location mode from VIA one set to VIA another set, you must run the
UNLOAD and RELOAD utilities a second time to ensure proper clustering

If you change a location mode from DIRECT to VIA or VIA one set to VIA
another set, you can sometimes avoid a second UNLOAD/RELOAD by using the
new subschema in the UNLOAD step. This technique can be used only if no set
pointers or data lengths have changed. If used, the unload process may require
more 1/Os because UNLOAD walks the VIA set to locate the member record
occurrences.

31-12 CA-IDMS Database Administration

31.4 Record modifications

If you change a location mode from CALC to DIRECT you will need to run an
UNLOAD/RELOAD to disconnect the record from the CALC set.
UNLOAD/RELOAD stores DIRECT records near their original locations. If you
are not satisfied with this location, write a program to delete and store the records
exactly where you want them.

If you change a location mode from VIA to DIRECT, an UNLOAD/RELOAD is
not necessary. If you are not satisfied with the locations of the records, write a
program to delete and store the records where you want them.

If you add a new set, UNLOAD/RELOAD will not connect it. However, after the
RELOAD the pointer positions will exist and you can write a program to connect
the members to the sets.

If you need to add a set to the schema, make sure you add the set to the
subschemas as required

31.4.6 Changing a record's area

Types of changes: You can move a record from one area to another or change the
portion of an area in which a record is stored.

Note: If a subarea symboalic is associated with the record, you change the portion of

the area in which the record is stored by changing the physical area definition
and regenerating DMCLs. See Chapter 25, “Modifying Physical Database
Definitions’ on page 25-1 for more information.

What components are affected: The schema record definition and data area
affected. Subschemas and access module that reference the record are also affected.

Steps to change the record's area: To change the area (or portion of an area) in
which record occurrences are stored when data has been |oaded:

1

Create a new schema based on the original schema

. Add the area, if necessary, to the new schema
. Modify the record in the new schema to specify the new area or subarea/offset

2
3
4,
5
6
7

Vadlidate the schema

. Create a new global subschema
. Unload and reload the database using the UNLOAD/RELOAD utility statements
. Complete the process by updating the original schema, regenerating affected

subschemas, and altering affected access modules.

Considerations

If you had to add the area to the schema, you must explicitly add it to subschemas
associated with the record. You must also explicitly add the area to al applicable
physical database definitions and regenerate affected DMCLSs.

Chapter 31. Modifying Schema Entities 31-13

31.4 Record modifications

® |f you increase the page range of a record whose location mode is other than
CALC, you do not need to unload and reload the data provided the new page
range includes all pages of the origina range.

31.4.7 Modifying record elements
Types of changes: These are changes you can make to an element within a
schema record:
® Adding or removing a record element
® Changing the picture or usage mode of an element
What components are affected: The record definition is affected. If data has
been loaded, the data may also be affected. Subschemas in which the record is

included are affected as are programs compiled from those subschemas. Access
modules and SQL views that reference the record are also affected.

Steps to change the record element: To make any of the above changes when
data has been loadeqd:

1. Using DDDL statements, create a record with a new version number and same
name having the revised structure

2. Create a new schema based on the original schema with the new record
3. Validate the schema

4. Use the schema compare utility (IDMSRSTC) to generate the IDMSRSTT macro
statements

5. Restructure the database

6. Complete the process by updating the original schema, regenerating affected
subschemas, altering access modules, and dropping and recreating affected SQL
views

Considerations

® You can replace filler elements with record elements whose total length equals
that of the filler element without creating a new version of the record. The new
elements are immediately reflected in the schema. The next time any programs
that use that schema record are compiled, the new elements appear. Affected
subschemas are flagged for regeneration.

® You should initialize any *filler' fields or fields whose picture or usage has been
changed using either RESTRUCTURE SEGMENT or a user-written program.

m A record element in a schema-owned record can be replaced with elements of the
same name

® |f you want to maintain consistency among the record version numbers in your
schema:

1. Complete al of the steps above

31-14 CA-IDMS Database Administration

31.4 Record modifications

2. Delete the original version of the record
3. Madify the record using DDDL statements to change its version number
You do not have to modify the schema.

® Non-structural changes can be made directly to schema-owned records using
DDDL. For example, you can change the external picture of a record element
even if it is associated with a schema.

»»> For more information on the types of changes that can be made to
schema-owned records, refer to IDD DDDL Reference

» |f you change the format (picture or usage) of an element used in a CALC or sort
key, additional steps may be needed to convert the data.

31.4.8 Changing other record characteristics
Types of changes: You can make the following changes to the characteristics of a
record (changes other than those described previously in this chapter):
® Record ID
® Record synonyms
. VSAM type
= Minimum root and minimum fragment length
. Whether the record is compressed or uncompressed

Note: For information on dropping or adding a database procedure associated with a
record, see 31.4.9, “Adding and dropping database procedures’ on page 31-16,
later in this chapter.

What components are affected: The record definition is affected and the data is
affected if changing the record ID or compression. All subschemas and access
modules that reference the record are affected. SQL views are affected only if the
SQL synonym for an element is changed.

Steps to make the change: To modify the VSAM type, record synonyms, or
minimum root and fragment lengths, follow the procedure described in 31.1,
“Modifications to an unloaded database” on page 31-4 at the beginning of this chapter.

Considerations

® To change the record 1D when data exists, write a program that offloads and
reloads that data

m Optionally, UNLOAD/RELOAD can be used to reorganize existing data after
changing the minimum root or minimum fragment.

® To change a record from compressed to uncompressed, you must use either
UNLOAD/RELOAD or RESTRUCTURE SEGMENT

Chapter 31. Modifying Schema Entities 31-15

31.4 Record modifications

® |f changes to the record elements do not affect control fields, all you need to do is
issue an DDDL MODIFY RECORD statement

»»> For more information about modifying non-IDD owned records, refer to IDD
DDDL Reference

® If you change the SQL synonym for one or more elements then you must drop
and recreate all SQL views that reference the record. You must also change all
programs that refer to those elements in an SQL statement.

» |f you change the VSAM type, be sure that appropriate changes, if necessary, are
made to the VSAM definition using the IDCAMS utility.

31.4.9 Adding and dropping database procedures

What components are affected: If you implement a new database procedure, or
change the name of an existing procedure, it will affect the schema and one or more
subschemas. It may also require that you restructure the database, if the purpose of the
procedure is to ater the physical data (for example, record compression). All
subschemas and access modules that reference the record are also affected by
procedure changes.

Steps to make the change: To add, modify, or delete database procedures that
have no effect on the data, follow the procedure described in 31.1, “Modifications to
an unloaded database” on page 31-4 at the beginning of this chapter.

Considerations

» |f a new database procedure does affect the data, write and compile the new
procedure and then use the RESTRUCTURE SEGMENT utility statement to
change the existing data by specifying the new procedure in a NUPROCS macro.

If database procedures are already associated with the record, they may need to be
removed from the schema and subschema before executing RESTRUCTURE
SEGMENT. The existing procedures, if invoked, will be called after all
NUPROCS procedures have been caled. If, for example, the new procedure
compresses the data in the record, the existing procedures may not work properly.
To overcome this problem, either execute RESTRUCTURE SEGMENT using a
subschema derived from an intermediate schema in which all procedures normally
called before the new procedure have been removed from the record or use
UNLOAD/RELOAD to add the new procedure.

= UNLOAD/RELOAD can be used to add or remove procedures that affect the data.
To use UNLOAD/RELOAD, create a new schema and subschema containing the
revised procedure calls. Unload the data using the old subschema and reload it
using the new subschema.

® To change a database procedure for an area, al calls must be respecified.

31-16 CA-IDMS Database Administration

31.5 Set modifications

31.5 Set modifications

Types of changes: The following set-related changes can be made:

Add or remove a set

Change the mode (index or chain)
Add or remove set pointers
Change set order

Change membership options

31.5.1 Adding or deleting a set

What components are affected: The schema set definition and data are affected.
Segments and DMCLs may also be affected if a set is indexes and a symbolic index
specification needs to be added, removed, or replaced in the physical definition.
Subschemas and access modules that reference either the owner or member of the set
are aso affected.

Steps to add or delete a set: To add or delete a set when data has been loaded:

1

Create a new schema based on the origina schema but containing the new set or
omitting the deleted set

Validate the schema
Create a global subschema for the new schema

Use the schema compare utility (IDMSRSTC) to generate the IDMSRSTT macro
statements

Restructure the database using the RESTRUCTURE SEGMENT utility statement

If adding a set, write a program to connect member record occurrences to the
appropriate owner occurrences.

Complete the change by updating the original schema, regenerating affected
subschemas, and altering affected access modules.

Considerations

Both records participating in a new set must be defined to the schema

If you replace an existing set with a new set, do not use the AUTO parameter;
specify the actual pointer positions. This eliminates the possibility that the schema
compiler will identify different pointer positions than exist in the loaded database.

When deleting an existing set from a schema and a participating record contains
pointer positions for sets beyond the deleted set's pointer positions, you must
renumber the remaining positions. Y ou cannot leave unused pointer positions.

If you delete a set, the set is also deleted from all subschema descriptions.

Chapter 31. Modifying Schema Entities 31-17

31.5 Set modifications

® |f you delete the owner record within a set, the set is automatically deleted and
both the set and deleted record are removed from all subschema descriptions.

» If you delete the member record within a set, the set remains. Y ou receive an
error on validation if there are no remaining members in the set (asin a
multimember set)

® |f you want a new set to be included in a subschema, you must modify the
subschema and add the set to the subschema.

» Regenerating affected subschemas will remove a deleted set from all subschemas.

® When you delete a set, alter and recompile all programs that use the set

31.5.2 Changing set mode

Types of changes: You can change the mode of a set from chain to index or vice
versa,

What components are affected: The schema set definition and data are affected.
All subschemas and access modules that reference either the owner or member records
are aso affected.

Steps to change from chained to indexed: To change a chained set to an
indexed set when data has been |oaded:

1. Create a new schema based on the original schema

2. Modify the set in the new schema to change the set mode

3. Vadlidate the schema

4. Create a globa subschema

5

. Write a program that sweeps the area, walks each set, and calls IDMSTBLU to
perform a BUILD function.

6. Restructure the database if needed to remove old pointer positions and add new
ones.

7. Execute MAINTAIN INDEX from SORT3 using the output from step 5 as input
8. Complete the change by updating the original schema, regenerating affected
subschemas, and altering affected access modules.
Steps to change from indexed to chained: To change an indexed set to a
chained set when data has been loaded:
1. Create a new schema based on the origina schema
. Modify the set in the new schema to change the set mode

2

3. Validate the schema

4. Create a globa subschema
5

. Write a program that sweeps the area and calls IDMSTBLU to perform a
DELETE function and also produces a work file for input to step 8.

31-18 CA-IDMS Database Administration

31.5 Set modifications

6. Use the output generated by IDMSTBLU as input to MAINTAIN INDEX and run
it from SORTS3 to delete each index occurrence

7. Restructure the database as needed to remove old pointers positions and add new
ones

8. Sort the workfile produced by IDMSTBLU by owner key, member symbolic key,
or set position.

9. Write a program to:

a. Read the sorted output
b. Obtain owner by db-key
c. Obtain member by db-key
d. Connect the member to the set

10. Complete the change by updating the original schema, regenerating affected

subschemas, and altering affected access modules.
Considerations for the change from indexed to chained

= When you submit the RESTRUCTURE SEGMENT utility statement to initialize
pointers (and possibly to delete pointers), you must initialize all existing pointer
positions in the owner and member records that will be re-used for the chained
set. If thisis not done, you will be unable to connect the members to their
owners in Step 9.

m The work file produced in Step 5 should contain the following information:;
— The dbkey of each owner record occurrence
— The dbkey of each member record occurrence

— The position of each member record with the set (if its necessary to maintain
the same set order)

— The sort key of the member record within the set (if the set order is changing
or the order of duplicates does not have to be maintained)

31.5.3 Adding and dropping set pointers

Types of changes: You can make the following changes to set pointers:
= Add or remove prior or owner pointers from a chain set
® Add or remove owner pointers from an indexed set
What components are affected: When you change the prior or owner pointers

defined to a set, the schema set definition and data are affected. Subschemas and
access modules that reference either the owner or member records are also affected.

Chapter 31. Modifying Schema Entities 31-19

31.5 Set modifications

Steps to add or drop set pointers: To add or drop set pointers when data has
been loaded:

1

Create a new schema based on the original schema but containing the modified set
pointers

Validate the schema
Create a globa subschema

Use the schema compare utility (IDMSRSTC) to generate the IDMSRSTT macro
statements

Restructure the database using RESTRUCTURE SEGMENT

If you add a prior or owner pointer to an existing set, fill in the pointer values
using RESTRUCTURE CONNECT

Complete the process by modifying the original schema, regenerating affected
subschemas, and altering affected access modules.

Considerations

When adding or deleting pointers, do not use the AUTO parameter; specify the
actual pointer positions. This eliminates the possibility the schema compiler will
identify different pointer positions than exist in the loaded database.

When deleting a pointer from a set in a schema and a participating record contains
pointer positions beyond the deleted pointer, you must renumber the remaining
positions. You cannot leave unused pointer positions.

31.5.4 Changing set order

Types of changes: You can make the following order-related changes:

Change from SORTED to unsorted (NEXT, PRIOR, FIRST, LAST) order
Change from unsorted to sorted
Change one of the unsorted orders to another

Change the sort key or collating sequence of a sorted set

What components are affected: When you change NEXT, PRIOR, FIRST,
LAST, or SORTED specifications, the schema set definition and data are affected.
Subschemas and access modules that reference either the owner or member records
area are also affected.

Steps to change set order: Follow the steps listed in 31.1, “Modifications to an
unloaded database” on page 31-4 at the beginning of this chapter if both of the
following statements are true:

® You are changing a chained or an unsorted indexed set to NEXT, PRIOR, FIRST,

or LAST

It is not important to re-order existing data

31-20 CA-IDMS Database Administration

31.5 Set modifications

Steps to re-order chain and unsorted indexed sets: To change the set order
of a chained or unsorted indexed set, member records must be re-ordered:

1. Create a new schema based on the origina
2. Modify the set to change the set order

3. Validate the schema

4. Create a globa subschema

5

. Write a conversion program that disconnects and re-orders (in the desired
sequence) each member record occurrence

6. Complete the process by updating the original schema, regenerating affected
subschemas and altering affected access modules

Steps to re-order sorted indexed sets: To change the sort key of a sorted
indexed set or to change an indexed set from unsorted to sorted and vice versa, follow
the procedure for re-ordering chain sets except replace Step 5 with the following:

1. Write a program that sweeps the area and call IDMSTBLU with a REBUILD
function

2. Use the output from the step above as input to MAINTAIN INDEX and run
MAINTAIN INDEX from SORT3

Considerations: When you change the set order from or to SORTED or when you
change the sort key of a sorted set, the control length of the member record may
change. If it does, and the member record is compressed or variable in length, you
must use RESTRUCTURE SEGMENT to change the control length of existing record
occurrences.

31.5.5 Changing set membership options

Types of changes: You can change a MANDATORY set to OPTIONAL and vice
versa. You can also change an AUTOMATIC set to MANUAL.

What components are affected: When you change membership options, the
schema set definition is affected. Subschemas and access modules that reference either
owner or member record are also affected.

Steps to change membership options: To change membership options,
regardless of whether or not data is loaded, follow the steps outlined in 31.1,
“Madifications to an unloaded database” on page 31-4 earlier in this chapter.

Considerations: Changing membership options may impact existing application
programs. Consider the following:
® |f you change from AUTOMATIC to MANUAL or vice versa, programs that

STORE member records may need to connect records into the set using a
CONNECT statement or no longer issue such a CONNECT.

Chapter 31. Modifying Schema Entities 31-21

31.5 Set modifications

® |f you change from OPTIONAL to MANDATORY, programs that DISCONNECT
members from the set must be changed and programs that ERASE owner records
may need to be changed.

n |f you change from MANDATORY AUTOMATIC to any other option, programs
that obtain the owner of the set may be affected (because a given member
occurrence may not have an owner).

31-22 CA-IDMS Database Administration

31.6 Index modifications

31.6 Index modifications

Types of changes: You can make the following types of changes to system-owned
indexes:

31.6.1 Adding or

Add or remove an index
Change the area in which an index resides
Change index characteristics

Change from linked to unlinked or vice versa

deleting system-owned indexes

What components are affected: When you add or remove a system-owned
index, the schema set definition and the data are affected. All subschemas and access
modules that reference the member record are also affected.

St
1

2
3.
4

eps to add an index: To add an index when data has been |loaded:

. Add a new schema based on the original schema adding the new index
. Validate the schema

Create a global subschema for the new schema

. If the index is linked, add the index pointer position to the member record using
the schema compare utility (IDMSRSTC) and RESTRUCTURE SEGMENT

Build the index structure using the new subschema using the MAINTAIN INDEX
utility statement

Complete the process by updating the original schema, regenerating affected
subschemas, and altering affected access modules

Steps to remove an index: To remove an index when data has been loaded:

1

2
3.
4

. Add a new schema based on the original schema removing the index
. Validate the schema
Create a global subschema for the new schema

. Delete the index structure using an old subschema and the MAINTAIN INDEX
utility statement

If the index is linked, remove the index pointed from the member record using the
schema compare utility (IDMSRSTC) and the RESTRUCTURE SEGMENT utility
statement

Complete the process by updating the original schema, regenerating affected
subschemas, and altering affected access modules

Chapter 31. Modifying Schema Entities 31-23

31.6 Index modifications

Considerations

The index you delete from the schema will automatically be deleted from any
affected subschemas when you request that affected subschemas be regenerated.

If an index is added or removed, it may change the control length of the record.
If it does and the record is compressed or variable in length, you must change the
control length of existing data using RESTRUCTURE SEGMENT.

31.6.2 Changing the location of an index

Types of changes:

You can change the area (or portion of an area) in which the

index structure resides.

What components are affected: The schema set definition and data are affected.
Subschemas and access modules that reference the member record are aso affected.

Note: If a subarea symbalic is associated with the index, you change the portion of

the area in which the index is stored by changing the physical area definition
and regenerating DMCLs. See Chapter 25, “Modifying Physical Database
Definitions’ on page 25-1 for more information.

Steps to change the area: To change the area (or portion of an ared) in which an
index resides when data has been loaded:

1

o o A WD

Add a new schema based on the original schema

Add the area, if necessary

Modify the indexed set to map to the new area or subarea/page range
Validate the schema

Create a new global subschema

Rebuild the index using both an old and new subschema using the MAINTAIN
INDEX utility statement

Considerations

If the area does not exist in the subschema, you will receive an error when you
issue REGENERATE AFFECTED SUBSCHEMAS.

31.6.3 Changing index characteristics

Types of changes: You can change the following index-related characteristics:

Key compression
Number of entries in an SR8 record
Index displacement

Index key or collating sequence

31-24 CA-IDMS Database Administration

31.6 Index modifications

What components are affected: The schema set definitions and data are affected.
Subschema and access modules that reference the member record are also affected.

Steps to change index characteristics: To change index characteristics when
data has been loaded:
1. Add a new schema based on the original schema modifying the set characteristics
2. Vadlidate the schema
3. Create a global subschema
4. Rebuild the index using the MAINTAIN INDEX utility and the REBUILD option
5. Complete the process by updating the original schema, regenerating affected
subschemas, and altering affected access modules
Considerations

» |f you change the index key, the control Iength of the member record may change.
If it does, and the member record is compressed or variable in length, you must
use RESTRUCTURE SEGMENT to change the control length of existing record
occurrences.

» When you execute the MAINTAIN INDEX utility statement, use the REBUILD
option:;

— If you change key compression, you must specify the name of an old
subschema in the USING parameter and the name of a new subschema in the
NEW SUBSCHEMA parameter.

— If you change the symbolic key or the collating sequence, you must specify
the new subschema in the USING parameter.

If both types of change are being made at once, you will need to run MAINTAIN
INDEX twice, once to delete the existing index (using the old subschema) and
once to build the new index (using the new subschema).

31.6.4 Adding or deleting index pointers

Types of changes: You can delete or add index pointers. The index pointer in a
member record is optional for system-owned indexes.
Adding or deleting index pointers: To add or delete an index pointer:

1. Modify the schema specifying INDEX POSITION IS NONE

2. Add or delete the pointer position using the RESTRUCTURE SEGMENT utility
statement

3. Rebuild the index using the MAINTAIN INDEX utility statement

Chapter 31. Modifying Schema Entities 31-25

31-26 CA-IDMS Database Administration

Chapter 32. Modifying Subschema Entities

32.1 Modifying or deleting asubschema 32-4
3211 Maodifyingasubschema 32-4
3212 Deeingasubschema 32-4

32.2 Adding, modifying, or deletingarecord 32-6

32.3 Adding, modifying, or deletingaset 32-7

32.4 Adding, modifying, or deletinganarea 32-8

32,5 Adding, modifying, or deleting a logical record or path group 32-9

Chapter 32. Modifying Subschema Entities 32-1

32-2 CA-IDMS Database Administration

Affect on applications associated with the subschema: Changes you make
to a subschema impact application programs associated with that subschema. In
general, when you add, modify, or delete a subschema entity and regenerate the
subschema, follow the appropriate procedure in the following table:

If a program... You should...

I's associated with the subschema but Not have to recompile the
does not need to access the new entity ~ program
(area, record, or set)

I's associated with the subschema and m Alter the program as
needs access to a new entity or has needed

access to a modified entity s Recompile the program

Regenerating the subschema: Before you can use the subschema, you must
regenerate it as described in Chapter 14, “ Subschema Statements’ on page 14-1.

If you want to use the subschema before the system is recycled, you must issue a
DCMT VARY PROGRAM .. NEW COPY command. This statement causes the
regenerated subschema to be loaded into the program pool the next time it is
requested.

Identifying programs associated with a subschema: If your site updates the
dictionary every time a program is compiled, the dictionary will contain the necessary
information to identify the programs associated with a modified subschema.

If this information is stored in the dictionary, you can run IDMSRPTS Program
Cross-Reference Listing report. For each program associated with a subschema, the
report lists:

® Name

= Version number

» Date last compiled

. Number of times compiled

® Language
»»> Refer to CA-IDMS Utilities for complete information on IDMSRPTS.

If your site does not update the dictionary when a program is compiled, such
information must be maintained manually.

Chapter 32. Modifying Subschema Entities 32-3

32.1 Modifying or deleting a subschema

32.1 Modifying or deleting a subschema

32.1.1 Modifying a subschema

When you might want to make this change: There are several modifications
you may want to make to the subschema definition itself (other than modifications to
set, area, and record definitions). These modifications include:

® Description

® Program registration

= Authorization

» Usage

» Information on transferring statistics

® Logical record currency

® Security

» User-defined information (class/attribute and user-defined comments)

What components are affected: The definition of the subschema as it resides in
the dictionary is affected by such modifications.

Example: In the following example, program registration has been turned on. This
requires that all programs using this subschema be registered with the named
subschema in order to be compiled against it.

modify subschema empss01
program registration required is on.
generate.

32.1.2 Deleting a subschema

When you might want to make this change: If thereis no longer a need for a
subschema, you may want to delete it.

What components are affected: The subschema source is affected by the
deletion of a subschema. The subschema load module is not affected.

Considerations

= When you delete a subschema, programs associated with that subschema can no
longer be compiled. You must associate each program with a new subschema.

® |f you have not specified DELETE IS ON in the SET OPTIONS statement, the
subschema load module is not automatically deleted when you delete the
subschema definition. You must explicitly delete the associated load module.

32-4 CA-IDMS Database Administration

32.1 Modifying or deleting a subschema

Example: In the following example, the subschema EMPSS01 is deleted.

delete subschema empssOl.

Chapter 32. Modifying Subschema Entities 32-5

32.2 Adding, modifying, or deleting a record

32.2 Adding, modifying, or deleting a record

What components are affected: The record definition portion of the subschema
is affected by such a modification.

Considerations

» |f you include a new record in the subschema and that record participates in a
mandatory automatic set, you have to include the owner of that set in the
subschema (or the set itself) so that application programs using the subschema can
store occurrences of the new record.

When you regenerate the subschema, you will receive a notice of an access
restriction.

» |f you modify a record so that some elements are omitted, you may have to
modify and regenerate maps for online programs as well as the programs or
diaogs themselves.

® |f you add arecord that is stored in an area not currently participating in this
subschema, you must add that area to the subschema if a program is to access the
new record. You will receive an error on generation if the area is not added.

32-6 CA-IDMS Database Administration

32.3 Adding, modifying, or deleting a set

32.3 Adding, modifying, or deleting a set

What components are affected: The set definition portion of the subschema is
affected by such a modification.

Considerations

» |f you do not add the set owner and member record types to the subschema, your
program cannot access the new set.

® |f you add the set and the set member record type but not the owner record type,
the application program will not be able to obtain the owner of the set.

» |f you add the set and the set owner record type but not the member record type,
the application program will not be able to walk the set.

» |f you delete a set but not its owner or member record type, currency will not be
maintained for that set and, although an application program can access the owner,
it cannot walk a set to obtain all members. In addition, the application program
cannot connect a member into the set, and, if the set is mandatory automatic, the
application program cannot store a new record occurrence.

Chapter 32. Modifying Subschema Entities 32-7

32.4 Adding, modifying, or deleting an area

32.4 Adding, modifying, or deleting an area

When you might want to make this change: You can add areas to or delete
areas from a subschema or make a modification to an existing area. Normally thisis
done in conjunction with adding or deleting a record or index structure stored in that
area or to move records into a new area for performance reasons.

What components are affected: The area definition portion of the subschemais
affected by such a modification.
Considerations

n |f you modify the usage mode so that a mode is no longer allowed, you may have
to modify the READY mode of your program to match.

n If you modify the default usage mode, you should check programs using the
subschema to see that there is no conflict.

» |f you delete an area, make sure that there are no records or indexes mapping to
that area still in the subschema.

n |f an areais renamed or deleted, all ADS dialogs that use the subschema must be
recompiled if they use neither READY ALL nor DBMS autoready.

32-8 CA-IDMS Database Administration

32.5 Adding, modifying, or deleting a logical record or path group

32.5 Adding, modifying, or deleting a logical record or path
group

What components are affected: Only the definition of either the logical record
or a path group is affected.

Considerations

» |f you modify alogical record so that some elements are omitted, you may have
to modify and regenerate maps for online programs as well as the programs
themselves.

® |f you remove a path group from the subschema, you must modify and recompile
any program or dialog associated with that subschema using the deleted path
group.

» |f you have changed the selection criteria in a path, you need to modify the
program requests in programs or dialogs associated with that subschema.

»»> For complete information on Logical Record Facility, refer to the CA-IDMS Logical
Record Facility.

Chapter 32. Modifying Subschema Entities 32-9

32-10 CA-IDMS Database Administration

Chapter 33. Space Management

33.1 About space management
33.2 Database pages
333 Database keys 33-7

334 Areaspace management 33-10
3341 SRlrecords 33-11
33.4.2 Space management Pages 33-12

Chapter 33. Space Management 33-1

33-2 CA-IDMS Database Administration

33.1 About space management

33.1 About space management

Definitions of areas and pages: A CA-IDMS database contains one or more
areas. Each database area is a named subdivision of addressable storage in the
database. A CA-IDMS areais subdivided into database pages. Most database pages
are used to hold actual record occurrences (or rows). Some pages are reserved by
CA-IDMS for space management.

Note: Record occurrences and rows of an SQL-defined table are stored in the same
way in a CA-IDMS database. For simplification, the term record occurrence
will be used to indicate both row and record occurrence, and record type to
indicate both table and record type.

Definition of database key: Each record occurrence in a CA-IDMS database is
uniquely identified by a database key (db-key) that specifies the physical location of
the occurrence. Database keys are used as pointers to related record occurrences or
index records.

The format of a database key can vary from database to database. The variable format
of the db-key alows you to tailor space management factors to different processing
regquirements.

Chapter 33. Space Management 33-3

33.2 Database pages

33.2 Database pages

Size of database: A database can have from 2 to 1,073,741,822 pages. Each area
contains pages of equal size. Each page can contain up to 32,756 bytes of data. For
details, see 33.3, “Database keys’ on page 33-7 later in this chapter. Database pages
are mapped to BDAM, DAM, or PAM blocks, or VSAM control intervals (for details,
see Chapter 16, “Allocating and Formatting Files” on page 16-1). Each database page
isidentified by a unique page number and data transfers are accomplished one page
at atime.

Page format: All database pages, regardless of size, have a header and footer with
the same general format as shown in the diagram below. A database page aways has
a header at the beginning of the page and a footer at the end; free space is in the
middle.

Header
Free space
Footer
Space available count
Header r P
i * -1- Reserved
Page number System pointers
4 bytes 8 bytes 2 bytes 2 bytes
L
SR1 recaord
Footer (16 byles) | Line space count Reserved
Record id - 4 8 ; Page number
I2 bytes 2 bytes 2 bytes 2 bytes | 2 bytes 2 bytes 4 bytes

Line index 0 (for SR1 record)

Header: The header occupies the first 16 bytes of each page and is formatted as
follows:

® Page number (4 bytes) — A unique, system-assigned number of the page.

33-4 CA-IDMS Database Administration

33.2 Database pages

. SR1 system record (12 bytes) — An SR1 record is stored on each page during
initialization by the FORMAT utility. Each SR1 record contains the space
available count (that is, the number of bytes of free space on the page).

Footer: The footer occupies the last 16 bytes of each page and is formatted as
follows:

® Lineindex O (8 bytes) — Identifies the location and length of the SR1 system
record

® Line space count (2 bytes) — Number of bytes used for line indexes and the
footer

n Filler (2 bytes) — Reserved space
m Page number (4 bytes) — The unique system-assigned number of the page

Note: Numeric fields maintained by CA-IDMS are in binary format, although this
manual represents them as decimal numbers.

To simplify the illustrations, the page size (800 bytes) in the figures of this
manual is unusually small.

Database page layout: Except for the header and the footer, pages are filled with
the following entries:

® Record occurrences — The actual record occurrences are positioned on the page
from top to bottom immediately following the header. Each occurrence consists
of a prefix (containing pointers) and a data portion. A page can hold from 3 to
2,727 record occurrences depending on user specification (for details, see 33.3,
“Database keys’ on page 33-7 later in this chapter).

® Lineindexes — The line indexes identify the locations of record occurrences on
the page and are positioned on the page from bottom to top, immediately
preceding the footer. A page contains one line index per record occurrence on the
page. Each line index has the following format:

— Record id (2 bytes) — Identification of the record type

— Displacement (2 bytes) — Location of the record occurrence relative to the
beginning of the page, where the first byte on the page is position O

— Record length (2 bytes) — Length of the entire record occurrence stored on
this page (data plus prefix) in bytes

— Prefix length (2 bytes) — Length of the prefix portion of the record in bytes

Record occurrences are added from the top down; line indexes from the bottom up.
Free space is always in the middle.

Chapter 33. Space Management 33-5

33.2 Database pages

Record occurrences
Header

Free space

Line indexes Footer
Record occurrences
Prefix Data
4 bytes per pointer Size accerding to user specifications

Line index (8 bytes)

Record |Displace-| Record Prefix
id ment length length

2 bytes 2 bytes 2 bytes 2 byles

33-6 CA-IDMS Database Administration

33.3 Database keys

33.3 Database keys

Identify each record occurrence: Each record occurrence in a CA-IDMS
database is uniquely identified by a database key (db-key), which indicates the
occurrence's physical location in the database. A db-key is assigned when a record
occurrence is stored in the database. The db-key never changes as long as the record
remains in the database (that is, until the record is erased or until the database is
unloaded and subsequently reloaded).

Used as pointers: Database keys are used as pointers to related record occurrences
or index records. As such, database keys are found in the system-maintained prefixes
that precede the data portion of the record occurrence. For example, a record
occurrence's prefix may contain the database keys of the next, prior, and owner records
of the chained set in which that occurrence is a member.

A db-key is a 4-byte (32 bit) binary number. The Database Management System
(DBMS) creates a db-key for a record occurrence by concatenating the following
numbers:

» Page number — The page on which the record occurrence is stored

® Line number — The position of the record occurrence's line index on the page
relative to the other line indexes, where the line index for the SR1 record is line
index O

Db-key format: The db-key format is variable. The number of bits reserved in the
db-key for the page number and line number, respectively, can vary from one physical
database to another, as long as the total number of bits used is 32. You identify the
db-key format to be used by specifying the maximum number of record occurrences to
be stored on one database page in the CREATE SEGMENT statement.

Default db-key format: In the default db-key format, 24 bits are alocated for the
page number and eight bits for the line number. This format allows a maximum of
16,777,214 pages in the database, with each page containing up to 255 record
occurrences.

Variable format: The variable format of the db-key allows you to tailor space
management factors to different processing requirements. For storage of small records,
specify a database with many record occurrences per page and a smaller number of
pages. For storage of large records, specify a database with few record occurrences
per page but a large number of pages. For these different requirements, adjust the
db-key format as follows:

® To allow more record occurrences per page, increase the number of bits for the
line index. (The line number must be from 2 to 12 hits in length.)

m To allow more pages per database, increase the number of hits for the page
number.

Chapter 33. Space Management 33-7

33.3 Database keys

Note that as the number of record occurrences alowed on a page increases, the
number of pages allowed in the database decreases. Conversely, the more pages in the
database, the fewer occurrences each page can hold.

Note: The MIXED PAGE GROUP BINDS ALLOWED option for a DBNAME may
be used to increase the number of records accessible in a database from a
single database transaction.

The following diagram shows the db-key formats for a CA-IDMS database with three
possible formats. 255 record occurrences per page (the default size); the greatest
possible number of occurrences per page; and the greatest possible number of pages.

Page number (24 bits) Line number (8 bits)

[
0 8 16 24 32

Default db-key format:
255 records per page 16,777,214 pages
Page number (20 bits) Line number (12 bits)
I I I

0 8 16 24 32

Most records per page:
2727 records per page 1,048,574 pages

Line number {2 bits)
32

Most pages:
3 records per page 1,073,741,822 pages

Page number (30 bits)

Determining the db-key format: Using the decimal value that you specify in the
MAXIMUM RECORDS PER PAGE clause on the CREATE SEGMENT statement,
CA-IDMS/DB determines the db-key format, as follows:

® To determine the total possible number of line indexes for a page,
CA-IDMS/DB adds 1 to the maximum number of record occurrences per page.
(This number represents line index O, reserved for the SR1 record.)

® To determine the size of the line number portion of the db-key, CA-IDMS/DB
identifies the number of bits required to store the largest possible line index.

33-8 CA-IDMS Database Administration

33.3 Database keys

® To determine the size of the page number portion of the db-key,
CA-IDMS/DB subtracts the number of bits for the line number from 32 (the total
number of bits in a db-key).

For example, the default number of record occurrences per page is 255. In this case,
the total number of line indexes is 256 (that is, line index O through 255). Since the
decimal number 255 takes eight bits of storage in binary format, the line number
portion of the db-key for this database is eight bits, and the page number portion is 24
bits.

Note: CA-IDMS uses al 32 hits of the db-key for the page number and the line
number. If you want to reserve a bit in the db-key as a sign bit (that is, if you
will write routines that perform arithmetic operations using the db-key sign
bit), make sure that the db-keys created for your occurrences can be stored in
only 31 hits.

Conversion algorithms: Use the following algorithms to convert a db-key into
individual page and line numbers:

dbkey-page = dbkey/2**bits-for-line

dbkey-1ine = dbkey - (dbkey-page * (2**bits-for-line))

where:
dbkey = the 4-byte binary database key
dbkey-page = the binary database page number
dbkey-line = the binary database line number

bits-for-line = the number of bits for the line number in the database key

Chapter 33. Space Management 33-9

33.4 Area space management

33.4 Area space management

What is an area?: A CA-IDMS database is divided into one or more areas. Each
database area is a named subdivision of addressable database storage. Each area can
contain one or more record types, according to varying processing requirements, but all
occurrences of a particular record type must be in the same area.

Managing space in an area: To manage space in an area, CA-IDMS/DB keeps
track of available space on each page. CA-IDMS reserves selected pages called space
management pages (SMPs) for this purpose. The first page in each area is an SMP.
Depending on the number and size of pages in the area, CA-IDMS may reserve
additional SMPs throughout the area.

Since you frequently assign several record types to an area, data pages in these areas
are typically filled with record occurrences of different record types and the
occurrences corresponding line indexes. For example, in the sample employee
database, the DEPARTMENT, JOB, OFFICE, and SKILL records are all assigned to
the ORG-DEMO-REGION area. Thus, occurrences of all of these record types can be
stored on the same page.

Sample page: The drawing below shows a sample page in the
ORG-DEMO-REGION. Typicaly, except for the header and footer, a page in an area
is filled with occurrences of different record types. Page 7130 in the
ORG-DEMO-REGION area contains occurrences of the OFFICE, JOB, and
DEPARTMENT record types.

Header

OFFICE 5

QFFICE 8

JOB 5023

DEPT 4000

Line index 4 Line index 3 Line index 2

Line index 1 Footer

33-10 CA-IDMS Database Administration

33.4 Area space management

Space available: To manage space, CA-IDMS/DB keeps track of the available
space on each page. The space available is maintained in the following locations:

®m SR1 records — System records in each page's header which contain the space
available count for the page

® Space management pages (SMPs) — One or more system-reserved pages which
contain entries that indicate whether each page (in a range of pages) is empty or
full

SR1 records and space management pages are discussed separately below.

33.4.1 SR1 records

Each database page in an area contains an SR1 record in the page header. Each
occurrence of the SR1 record contains the space available count for that page. The
SR1 record type is the owner of a set used by CA-IDMS/DB to keep track of CALC
records (for details, see "Storing CALC records" in Chapter 35).

SR1 record format: The SR1 record is formatted as follows:

m Next pointer for CALC set (4 bytes) — Database key (next pointer) of the
CALC record, targeted to that page, with the lowest CALC key

® Prior pointer for CALC set (4 bytes) — Database key (prior pointer) of the
CALC record, targeted to that page, with the highest CALC key

m Space available count (2 bytes) — Number of bytes of free space remaining on
the page

n Filler (2 bytes) — Reserved space
Line index: Every lineindex 0 in an area identifies the location of an SR1 record
and always contains the following values:
record identification = 1
displacement = 4
record length = 12
prefix length = 8

The following diagram shows an empty page in an area. This is what a page would
look like after initialization by the FORMAT utility.

Note that the space available count for an empty page is aways the page size minus
32 (in this case, 800 - 32 = 768) and the line space count for an empty page is aways
16. The CALC set pointers in the SR1 record on an empty page point back to the
SR1 record itself since it is the only record in the set.

Chapter 33. Space Management 33-11

33.4 Area space management

7120

712010

712010

768

Page Pointers for CALG set gpace available
number count

SR1 record

Ling space Page
Line index O count number
| 1 l 1
| [I I I
1 4 12 8 16 7120
1 1]]]

33.4.2 Space management pages

What is a space management page?: CA-IDMS reserves selected pages, called
space management pages (SMPs), to keep track of the available space on each page.
These pages are filled with 2-byte items called space management entries. Each
space management entry, depending on the entry's relative position on the page,
corresponds to a page in the area. The first entry corresponds to the space
management page itself, the second entry to the first page following the space
management page, and so on.

Number of pages managed by SMP: The number of pages managed by one
space management page is the page size minus 32 (header and footer) divided by 2
(two bytes per space management entry).

For example, a space management page for an area whose page size is 800 bytes holds
384 entries. The first entry is for the space management page itself. If the area
contained 900 pages, the area would require three space management pages. The first
space management page would be the first page in the area, the second would be the
385th page, and the third would be the 769th page.

FORMAT utility initializes SMP entries: For pages that will contain record
occurrences, the FORMAT utility initializes space management entries to a value
equal to the page size of the area minus the number of bytes used by the header and
footer (that is, the amount of usable space on each page). The first space management
entry is for the space management page and is initialized to zero. In the above

33-12 CA-IDMS Database Administration

33.4 Area space management

example, the space management entries for data pages would be initialized to a value
of 768.

Accessing space management pages: After initialization, space management
pages are accessed only in the following situations:

® STORE command — If CA-IDMS/DB cannot store a record occurrence on the
target page because insufficient space exists on that page, the space management
page is consulted for the next page that has sufficient space. Further, if the space
available count field on the target page shows that more than 70 percent of the
usable space is used, the space management page is accessed and the space
management entry is changed to the actual space available. Also, if
CA-IDMS/DB uses the last available line index on a page to store arecord, a
halfword of 2 is entered in the space management entry, indicating that the page is
logically full.

. ERASE command — When the actual space available for a page is shown in the
space management entry (that is, when the page is more than 70 percent full) and
a record occurrence is deleted from the page, CA-IDMS/DB accesses the space
management page and does one of the following:

— If the page is still more than 70 percent full, CA-IDMS/DB moves the new
space available count from the page to the space management entry.

— If the page is now less than 70 percent full, CA-IDMS/DB reinitializes the
space management entry to the value of the page size minus the length of the
header and the footer (that is, the decimal value 32).

Actual space available: The actual space available for each page is not maintained
constantly to avoid accessing the space management page each time a record is stored
or erased. Instead, a page is considered empty (for space management purposes) until
either of the following conditions occurs:

m A store operation for a record occurrence puts the space used over the 70 percent
threshold.

m All line indexes on that page have been used (that is, the page is logically full).

A page returns to the empty status when an erase operation puts the space used back
below the 70 percent threshold.

Consequently, unless a large enough page size is specified, CA-IDMS/DB might
attempt to store records that will not physically fit on a page.

Suppose, for example, that a page is 60 percent full and marked as empty in the space
management page, and that a record occurrence being stored is 45 percent of the page
size. Using information maintained in the space management page, CA-IDMS/DB
would determine that the record occurrence could fit on the page, when it could not.

To ensure that CA-IDMS/DB can successfully store al records, specify a page size
that allows CA-IDM S/DB to store the largest fixed-length record on 30 percent of
the page.

Chapter 33. Space Management 33-13

33.4 Area space management

Determining minimum page size: Use the following algorithm to determine
minimum page size:

min-page-size = ((record-length + 8) / 0.30) + head-foot-length

where:
min-page-size = the decimal value of the minimum page size
record-length = the length of the largest fixed-length record type (data plus prefix)
8 = the length of the line index
head-foot-length = the maximum length of a header and footer on a page; the
decimal value 32
Reporting on area space utilization: The PRINT SPACE utility statement
reports on:
® Space utilization based on the contents of the SMPs
» With the FULL option, space utilization based on the actual contents of each
database page (using the space available count)

Use of the space management page: The following diagram shows the use of
the space management page.

CA-IDMS/DB changes the space management entry for page 7120 from 768 (the page
size minus 32) to 36 (the actual number of bytes left on page 7120) after storing the
JOB 3027 record. Thus, after consulting the space management page, CA-IDMS/DB
knows that it cannot store the DEPT 2000 record (72 bytes long) on page 7120
because of insufficient space, and stores it on the next page.

When the OFFICE 1 record is deleted from page 7120, the page is still more than 70
percent full, so CA-IDMS/DB moves the value 124 (the actual amount of space
available) to the space management entry.

When the JOB 3027 record is deleted, however, page 7120 is less than 70 percent full
and the space management entry is reinitialized to 768 bytes.

33-14 CA-IDMS Database Administration

33.4 Area space management

STORE DEPT 2000

Space available count

|

Space management 38 J 688 J
entry for page 7120
QFFICE 1 DEPT 2000 |
36 768
1 JOB 3025
Space management
entry for page 7121 JOB 3027
Page 7100 Page 7120 Page 7121
ERASE (OFFICE)
Space management 124 J 688 J
entry for page 7120
JOB 3025 DEPT 2000 |_
124 | 768
JOB 3027
Space management
entry for page 7121 Ii
Page 710G Page 7120 Page 7121

ERASE JOB 3027

Space management 688
entry for page 7120 444 J J
JOB 3025 DEPT 2000 |
768 | 768
Space management
entry for page 7121
Page 710C Page 7120 Page 7121

Chapter 33. Space Management 33-15

33-16 CA-IDMS Database Administration

Chapter 34. Record Storage and Deletion

341 Record storage 34-3
3411 Storing CALCrecords 34-4
34.1.2 Clustering records 34-7

34.1.2.1 Clustering records around achained set 34-7
34.1.2.2 Storing recordsviaanindexedset 34-9
34.1.3 Storing variable-lengthrecords L. 34-11
3414 Relocatedrecords 34-14

342 Record deletion 34-16
3421 Physical deletion 34-16
34.22 Logica deletion 34-18

Chapter 34. Record Storage and Deletion 34-1

34-2 CA-IDMS Database Administration

34.1 Record storage

34.1 Record storage

Determining the target page: To store arecord in the database, CA-IDMS/DB
first determines atarget page. Storage mode specifications govern the selection of the
target page, as follows:

® In CALC storage mode, CA-IDMS/DB calculates the number of the target page
by executing a randomizing routine against the CALC key.

® InVIA or CLUSTERED storage mode, which is used to store related record
occurrences (or rows) on the same page or on as few pages as possible,
CA-IDMS/DB determines the number of the target page from:

— For non-SQL, the number of the page that contains the current record of the
VIA set

— For SQL, the referenced row of a clustered constraint

® In DIRECT storage mode, the user explicitly specifies the target page. (Note that
if you specify the value -1, the target page is the first page assigned to the record

type.)

Storing the record occurrence: If the target page has sufficient space to store the
entire record occurrence (fixed-length uncompressed records) or the record's minimum
root, CA-IDMS/DB then stores the record occurrence on the target page. If the target
page does not have sufficient free space to store the record occurrence, CA-IDMS/DB
stores the record occurrence on the next page that has sufficient space. The search for
free space always proceeds in a forward (higher database key) direction. If the end of
the area (or the page range assigned to the record type) is reached before space is
located, the search wraps around to the beginning of the area (or the page range
assigned to the record type).

After identifying the first available free page, CA-IDMS/DB performs the following
operations to store a record occurrence:

m Creates a line index and positions it at the end of the free space or an unused
line index.

» Positions the prefix and data (as retrieved from the program variable storage) at
the beginning of the free space.

When storing a fixed-length uncompressed record, CA-IDMS/DB places the entire
record occurrence on the target page. When storing a variable-length record
occurrence, CA-IDMS/DB places as much of the record occurrence as possible on
the target page. (For details, see 34.1.3, “Storing variable-length records’ on
page 34-11, later in this chapter.)

» Updates the space available count in the header and the line space count in the
footer.

® Updates the record's pointers as follows:

— Updates the pointers for al user sets in which the record is an automatic
member

Chapter 34. Record Storage and Deletion 34-3

34.1 Record storage

— Sets the pointers to null (-1) for al sets in which the record is a manual
member

— Sets the pointers to the database key of the object record itself for all owner
records (indicating an empty set)

— For SQL, sets the pointers to null (-1) for linked constraints in which the table
is the referencing table if one or more columns of the foreign key are null;
otherwise, sets the pointers to the db-keys of related rows

— For SQL, sets the pointers to the database key of the object row itself for
linked constraints in which the table's the referenced table

» Updates the record's CALC set pointers (if any).

» Updates the pointersin all other records affected by the stored record's
automatic (and CALC, if applicable) set connections.

For example, if record B2 is being stored between records B1 and B3 in set A-B,
B2's next pointer is set to B3's database key, while B2's prior pointer is set to B1's
database key. Additionally, B1's next pointer is changed from B3's database key
to B2's, and B3's prior pointer is changed from B1's database key to B2's.

34.1.1 Storing CALC records

Stored on or near calculated page: CA-IDMS/DB stores records that have a
storage mode of CALC on or near the page calculated from the record's CALC key (a
schema-specified symbolic key). CA-IDMS/DB uses the system-owned CALC set to
keep track of al CALC records that randomize to a specific page. The CALC set's
owner is the system-owned SR1 record type. The CALC set's members are al of the
user records with a storage mode of CALC. The set is sorted in ascending sequence
on the CALC key of each member record occurrence.

Example of a system-owned CALC set: The following diagram shows the
system-owned CALC set for the sample employee database.

Note: The system-owned CALC set is an internal set. It should not be included in
the user's schema or in structural diagrams.

SR1

CALC
NP MA
SORTED

o/

DEPT EMPLOYEE INSURANCE- JOB OFFIGE SKILL
PLAN

34-4 CA-IDMS Database Administration

34.1 Record storage

One system-owned CALC set per database: Thereis one system-owned
CALC st type per database; there is one CALC set occurrence for each page in the
area. The CALC set is sorted in ascending sequence based on the CALC key of each
member occurrence.

SR1 system record: On a page that contains record occurrences, the SR1 record
on a data page owns all CALC records that randomize to that page at store time,
including records that end up on another page due to overflow conditions.

The diagram below shows the format and occurrences of the CALC set on page 7120
of the sample database. The CALC set for page 7120 includes all CALC records
randomized to that page. Note that DEPT 2000 belongs to the CALC set for page
7120 even though DEPT 2000 was actually stored on page 7121 (due to lack of space
on its target page).

SR1
for

page 7121

DEPT
2000

Page 7120 Page 7121

Retrieving a CALC record: To retrieve a record occurrence stored CALC,
CA-IDMS/DB accepts from the user the value of the record's CALC key and
calculates a page number from the key. CA-IDMS/DB then enters this database page
on the SR1 record and follows the page's CALC chain until either the requested record
is located or a record of the same type with a higher key vaue is located; in the latter
case, CA-IDMS/DB returns an error status of 0326 (record not found) to the user.

Storing a CALC record: In adding the DEPT 3100 record to page 7126,
CA-IDMS/DB creates a record prefix (shaded portion) that consists of pointers for the
CALC set and for the DEPT-EMPLOYEE set. The prefix and data (as found in
program variable storage) are positioned at the beginning of the free space. A line
index is created at the end of the free space. The space available count is
decremented, and the line space count is incremented.

Chapter 34. Record Storage and Deletion 34-5

34.1 Record storage

Note that the CALC pointers in the SR1 record are updated to point to the DEPT 3100
record, while the CALC pointers in the DEPT 3100 record are set to point to the SR1
record. All other pointers in the DEPT 3100 record point back to the record itself
because its DEPT-EMPLOY EE set occurrence is empty.

Space available

SR1 calc set pointer
count

7126 7126/1

712611 688

Data for DEPT 3100 occurrence
of DEPT record type

DEPT-EMPLOYEE pointers Calc set pointers

Identification of DEPT 3100 record

Displacement of DEPT 3100 record
Length of DEPT 3100 record
Length of DEPT 310C prefix .
1_ r Line space count
I I I I
410 16

|72 16 1 4 12 8 24 7126
| |

Line index 1

Storing another CALC record: The EMPLOYEE 23 record randomizes to and is
stored on page 7026. The prefix of the EMPLOY EE 23 record supplies the following
information: EMPLOQOY EE 23 (the only member of the CALC set on page 7008) and
EMPLOYEE 19 are the only members of the DEPT-EMPLOY EE set for OFFICE
3100; EMPLOYEE 19 is next of set in the DEPT-EMPLOY EE set for DEPT 3100; all
of the set occurrences that EMPLOY EE 23 owns are empty.

34-6 CA-IDMS Database Administration

34.1 Record storage

SR1 calc set pointers

Calc set pointers

- ¥ L A |

7026 7026/1 7026/1 572 I 7026/0 7026/0

712611 7126/1 702.61 1 7026/0 7026/
B %261_1 7026/1 70_26/1_ :02(; _70;510_ N 7;2611_ |
[7026 | 702601 o2 | 702t |
| B

DEPT-EMPLQOYEE pointers
Data for EMPLOYEE record occurrence page 7126

line 1

page 7026

page 7023 line 1
line 4
| | | | | | | 7026
415 16 188 72 1 4 12 8 24
Line index 1

34.1.2 Clustering records

In the VIA or CLUSTERED storage mode, CA-IDMS/DB stores related records
together on the same page or on as few pages as possible. A record can be clustered
through a chained set (a linked clustered constraint), an indexed set (a clustering
index), or an unlinked constraint (SQL only).

Storage strategy:

34.1.2.1 Clustering records around a chained set

If arecord has a storage mode of VIA a chained set (or

CLUSTERED around a referential constraint), CA-IDMS/DB uses the location of the
current record of set (always the referenced row of referential constraints) to determine

where to store the new record, as follows:

® |f the current record of set is a member of the set, the DBMS stores the new
record as close as possible to the current record of set.

m | the current record of set is an owner of the set, CA-IDMS/DB determines where
to store the member record, as follows:

Chapter 34. Record Storage and Deletion 34-7

34.1 Record storage

If the members and CA-IDMS/DB stores the member record occurrence as
owners in the specified close as possible to the owner

set are assigned to the

same page range, and if

you have not specified

displacement in the

non-SQL schema...

If the members and CA-IDMS/DB stores the member record occurrence as
owners in the specified close as possible to the owner, allowing for

set are assigned to the displacement

same page range, and you

have specified

displacement in the
non-SQL schema...

If the members and CA-IDMS/DB stores the member record occurrence as
owners in the specified close as possible to the page (within the member

set are assigned to record's page range) that is proportional to the location
different page ranges... of the owner (within the owner's page range)

The following diagram shows how CA-IDMS/DB stores a record via a chained set.
For a discussion of how CA-IDMS/DB stores a record via an indexed set, see 34.1.2.2,
“Storing records via an indexed set” on page 34-9, later in this chapter.

Example: In this example, EMPLOY EE 23 has randomized to page 7026.
EMPLOYEE 23's EMPOSITION record is stored VIA EMPLOY EE 23 on page 7026.
To locate the EMPOSITION record, CA-IDMS/DB applies the randomizing routine to
EMPLOQOY EE 23 (giving page number 7026), enters page 7026 on the SR1 record, and
follows the CALC set until the EMPLOYEE 23 record is located. CA-IDMS/DB then
obtains the EMPOSITION record through the EMP-EMPOSITION chain.

34-8 CA-IDMS Database Administration

34.1 Record storage

7026 7026/1 702611 524I 7026/0 7026/0
- — - 4 —— —l-——%+ - =9 = = —|= = —
L 4 — — — = — — L - — ___|____

7026/2 7026/2
- _ _ 41 - _ |- -_ L - _ _ . _ _ _

EMP-EMPOSITION pointers

Data for EMPLOYEE 23 record occurrence
| |

70261 7026/1 I 7026/1

EMP-EMPOSITION pointers

Data for EMPOSITION for EMPLOYEE 23

420 204 40 12

415 16

188 72 1 4 8 24 I 7026

34.1.2.2 Storing records via an indexed set

Storage order: Indexed sets can be used to store member records in a physical
order that reflects the order of the member's db-key or symbolic key in the index, by
defining the member record's storage mode as via (or clustered) an indexed set that is
sorted on db-key or symbolic key.

Determining the target page: CA-IDMS/DB determines the target page on which
to store a member occurrence via an indexed set, as follows:

Chapter 34. Record Storage and Deletion 34-9

34.1 Record storage

If thisis the first record
occurrence stored via a
user-owned index set or a
system-owned index with
the same page range as
the member record...

CA-IDMS/DB determines the target page as follows:

If the member or owner in the set are assigned to
the same page range, CA-IDMS/DB stores the
member record occurrence as close as possible to
the owner record (allowing for record displacement
if specified).

If the member and owner in the set are assigned to
different page ranges, CA-IDMS/DB stores the
member record as close as possible to the page
(within the member's page range) that is
proportional to the location of the owner (within the
owner's page range).

If thisis the first record
occurrence stored via a
system-owned index with
a separate page range
from that of the
member...

The target page is the low page of the member's page
range

If other record
occurrences have already
been stored (that is, if the
index is not empty)...

CA-IDMS/DB determines the target page, as follows:;

If the set is sorted by db-key, CA-IDMS/DB finds
the highest db-key of a record that is already a
member of the indexed set, and uses the page
specified in this db-key as the target page.

If the set is sorted by symbolic key, CA-IDMS/DB
determines the target page for the new record as
follows:

— ldentifies the SR8 record that will hold the
symbolic key for the new record

— Finds the db-key of the record with the
preceding or following symbolic key in the
index and uses the page specified in this db-key
as the target page

Example: For example, the EMP-EXPERTISE set in the sample order entry
database is an indexed set, and EXPERTISE records are stored in physical-sequential
order based on the value of the SKILL-LEVEL field. The non-SQL schema DDL
statements necessary to specify physical-sequential placement of the EXPERTISE

record are as follows:

34-10 CA-IDMS Database Administration

34.1 Record storage

RECORD NAME EXPERTISE
LOCATION MODE VIA EMP-EXPERTISE SET ...

SET NAME EMP-EXPERTISE
ORDER SORTED
MODE INDEX ...
OWNER EMPLOYEE
MEMBER EXPERTISE ...
DESCENDING KEY SKILL-LEVEL ...

In this case, CA-IDMS/DB stores each EXPERTISE record as close as possible to the
record with the next lower SKILL-LEVEL.

34.1.3 Storing variable-length records

Types of variable-length records: Internally, CA-IDMS/DB treats the following
types of records as variable-length:

Fixed-length compressed Records with a fixed length that are compressed through
records a specified compression routine. Although the length of

these record types is fixed from the point of view of
user programs, compression makes them internally
variable.

Variable-length records Records (either compressed or uncompressed) the length

of which depends on a variable field (that is, records
that contain an OCCURS DEPENDING ON clause).

Since you cannot anticipate the total length of either of these types of records, specify,
in the schema, the following information:

The record's minimum root — The smallest amount of the data to be stored on
the record's home page

The record's minimum fragment — The smallest amount of data to be stored on
any additional page

Steps to store a variable-length record: Using the values specified for
minimum root and minimum fragment, CA-IDMS/DB performs the following steps to
store a variable-length record:

1. CA-IDMS/DB stores either the entire record or as much of the record as possible

on the target page (provided that the space available is sufficient for the minimum
root specification in the schema). This page, the first page on which
CA-IDMS/DB stores either the entire record or a portion of the record, is referred
to as the record's home page; the portion of the record placed on the home page
is called the root.

CA-IDMS/DB stores the remainder of the record on subsequent pages, by working
in a forward direction and wrapping around to the beginning of the area (or the
page range assigned to the record), if necessary. Each subsequent portion of the

Chapter 34. Record Storage and Deletion 34-11

34.1 Record storage

record that exists on a separate page is caled a fragment. No fragment except
the last one will be less than the schema minimum fragment specification.

Variable-length indicator: In the root, CA-IDMS/DB places an extra pointer at the
end of the prefix to point to the first fragment. At the beginning of the data portion of
the root, CA-IDMS/DB adds a 4-byte variable-length indicator (VLI) The VLI
contains a 2-byte counter used to keep track of the size of the data portion of the
entire record (including four-bytes for the VVLI). The record-length field in the line
index for a root segment contains the length of the portion of the record (prefix and
data) that is stored on the home page.

SR4 system record: Each fragment contains a one-pointer prefix that points to the
next fragment; the last fragment points back to the root. Fragments are placed on a
page in the same manner as any record. A fragment is considered an SR4 system
record; the record-id field in the line index of a fragment is always set to a value of 4.

Storing a variable-length record: In the example below, the JOB 5023 record
fits entirely on page 7130; because the JOB record is a compressed record, it is a
variable-length record and CA-IDMS/DB includes a 4-byte variable-length indicator
(VL) in it, bringing the total data length of the record to 300 bytes. CA-IDMS/DB
cannot store the entire JOB 5025 record on page 7130; however, the page does have
sufficient space for aroot. CA-IDMS/DB stores the root portion of JOB 5025 on page
7130 and includes a VLI, bringing the data portion of the entire record to 280 bytes.
CA-IDMS/DB stores the remainder of the record on page 7131 as a fragment. Note
that the record-id field for the last line index on page 7131 is 4, indicating that the
record is a fragment.

34-12 CA-IDMS Database Administration

34.1 Record storage

Header I 182 I I Header I?Gs I I
OFFICE 5
OFFICE 8
|Prefix_ I_ Iﬂ) !

Data counter

JOB 5023

DEPT 4000

Line index 4 a0 boa b2a |24 I Line index 2

Line index 1 Footer I Faoter
Page 7130 Page 7131
Header I a I I Header I 152 I |713015 I
JOB 5025 (f 1§
OFFICE 5 (fragment) Raot pointer
JOB 5023
Fragmenl pointer |
DEPT 4000
T T
Prefix |713“1 |230 -«+——— Data counter
JOB 5025 (raot) haaboahaa l24
Line index 4 Line index 3 Line index 2
Line index 1 Footer 4 I 8 l64 I 4 I Footer
Page 7130 Page 7131

Returning fragments to the home page: On future accesses (GET, OBTAIN, or
SELECT) of a fragmented variable-length record, CA-IDMS/DB may reduce the
number of fragments. If the area is readied in update mode and the home page has
sufficient space to hold the entire record, CA-IDMS/DB returns the fragments to the
page. The fragments (minus fragment pointers) are concatenated to the root and
physically deleted from the pages on which the fragments were located; the fragment
pointer in the root is set to point to itself. Adjustments are made to the space
available count in the page header and to the record length in the record's line index.

Page reserve: When the size of a variable-length record is increased by a DML
MODIFY command, CA-IDMS/DB may create additional fragments for the record. |If
you anticipate a general increase in the size of variable-length records in an area,
specify a page reserve for the area to decrease the possibility that CA-IDMS/DB will
create fragments.

A page reserve sets aside a specified number of bytes on each database page in an area
for modification of variable-length records. CA-IDMS/DB cannot use this reserved
space to store any kind of record.

Specify an area's page reserve in the physical database definition(s) for the area using
either a CREATE AREA statement or in an area override statement within the
DMCL(s) that include the area's segment. An adequate page reserve is typicaly 30

Chapter 34. Record Storage and Deletion 34-13

34.1 Record storage

percent of the area's size. Use the following criteria to estimate the size of the page
reserve;

» The likelihood that variable-length records will be modified
® The anticipated increase in the number of variable-length records
When you specify a page reserve, you do not affect the physical structure of the

database. In fact, you can vary the page reserve for an area by using (at different
times) severa DMCL modules with different page reserves.

34.1.4 Relocated records

Records relocated because of increased size: When increasing record sizes in
areas, the RESTRUCTURE SEGMENT utility statement may occasionally relocate a
record if the record no longer fits on its home page. Similarly, if a table has been
altered to add one or more columns, CA-IDMS/DB may relocate a row when it is next
updated because it will no longer fit on its original page. The dictionary migration
utility (RHDCMIG1 and RHDCMIG2) may aso relocate records. When a record is
stored on a new page, the relocated record is considered an SR3 system record and
the line index created for the record on the new page contains a record id of 3.

Record identified by SR2 system record: To preserve the integrity of the
record's database key, CA-IDMS/DB leaves an 8-byte control record (an SR2 system
record) on the home page in place of the relocated record. The SR2 system record
has a record id of 2 and contains the following information about the relocated record:

» Database key (4 bytes) — The pointer (db-key) to the new location of the
relocated record

m Record id (2 bytes) — The original record id of the relocated record

® Length (2 bytes) — The total length (fixed-length records) or root length
(variable-length records) of the relocated record

Returning relocated record to its home page: On future accesses (GET,
OBTAIN, or SELECT) of arelocated record, CA-IDMS/DB may return the relocated
record to its home page. If the areais readied in update mode and the home page has
sufficient space to hold the relocated record, CA-IDMS/DB returns it to the page.

In the example below, the OFFICE 1 record, increased in size by RESTRUCTURE
SEGMENT, is moved from page 7120 to 7121.

34-14 CA-IDMS Database Administration

34.1 Record storage

After restructuring

Control record

QOriginal configuration
Header Header [r121i2 l4so | a4
OFFICE 1 JOB 3025
JOB 3025
JOB 3027 JOB 3027
Line index 3 I Line index 2 Line index 3 I Line index 2
Line index 1 Footer 2 |16 I 8 I Q Footer
Page 7120 Page 7120
Header I Header I
DEPT 2000 DEPT 2000
OFFICE 1
|3 Iﬂﬂ I 94| 16
Line index 1 I Footer Line index 1 Footer
Page 7121 Page 7121

Chapter 34. Reco

rd Storage and Deletion 34-15

34.2 Record deletion

34.2 Record deletion

Operations performed: To erase arecord (or delete a row), CA-IDMS/DB
performs the following operations:

» Disconnects and/or erases all records owned by the object record, depending
on the nature of the ERASE DML command issued by the program (that is,
ERASE, ERASE ALL, ERASE PERMANENT, or ERASE SELECTIVE).

Note: When using SQL, the row must not be referenced by any other row.

» Disconnects the object record from all indexed sets in which it participates as
a member.

» Disconnects the object record from all chained sets (with prior pointers) in
which it participates as a member.

» Deletes the record either physically or logicaly, as follows:

— If all chained sets in which the record participates as a member have prior
pointers, CA-IDMS/DB physically deletes the record.

— If any of the chained sets in which the record participates as a member do not
have prior pointers, CA-IDMS/DB logically deletes the record.

Note: If CA-IDMSDB has identified the prior record in each chained set
(without prior pointers) in which the record participates (for example,
walking the set), CA-IDMS/DB physically deletes the record.

Note: All linked clustered constraints have prior pointers.

34.2.1 Physical deletion

Operations performed: CA-IDMSDB performs the following operations to
physicaly delete a record:

1. Removes the record's data and prefix from the database.

2. Moves dl records following the deleted record on the page, so that al free space
remains in the middle of the page.

3. Performs the following operations, depending on the location of the record's line
index on the page:

n |f the line index is contiguous with the free space on the page (that is, if the
record's line index is the last index on the page), CA-IDMS/DB removes the
line index and updates the line space count in the footer.

n |f the record's line index is not contiguous with the free space on the page,
CA-IDMS/DB sets the record's line index to zeros.

4. Updates the space available count in the header.
Example: In this example, the first EMPOSITION record for EMPLOY EE 23 has

prior pointers. In erasing the record, CA-IDMS/DB removes the record completely
(data and prefix), shifts the remaining EMPOSITION record up on the page, and sets

34-16 CA-IDMS Database Administration

34.2 Record deletion

Original configuration

the line index for the deleted record to zeros. The remaining EMPOSITION record,
athough now physically the second record on the page, remains as line number 3.
Line index 2 is reused when a new record is added to the page.

Space available count
J- EMPLOYEE 23 prefix

7026

[4e8] |

EMPLOYEE 23 data

EMPQOSITION #1 preliﬂ

EMPOSITION #1 data

EMPOSITION #2 prefiu

EMPOSITION #2 data

o0 bas | 40 |12

120 h04 |4(] |12

415' 18 |188|72 Line index 0

| 32 | 70286

Erase EMPOSITION
{(EMPOSITION #1 for EMPLOYEE 23)

L Line space count

Store EMPLOYEE (EMPLOYEE 24)

Space available count

Space available count

EMPLOYEE 23 EMPLOYEE 23

7026

|508|

N

7026

J— prefix

r prefix

[aze| | _

EMPLOYEE 23 data

EMPLOYEE 23 dala

EMPOSITION #2 prefiﬂ

EMPQSITION #2 data

EMPOSITION #2 prefi)u

EMPQSITION #2 data

EMPLOYEE 24 prefix J

EMPLOYEE 24 data

120 b04|40 |12

alololo 120 boa T 40 T12 Ji1s baal1gsl 72

15| 16 l1ssl 72

Line index @

|32| 7026 | pisl1eliaslz2 | Line index 0 |40| 7026

L Line space

count

L Line space

count

Use of record's line index: Line indexes cannot be shifted down because the
position of the line index relative to other line indexes determines the line number, and
changing a record's line number would invalidate the record's database key. Existing
line indexes for physically deleted records are either reused as new records are added
to the page (as shown in the diagram above or removed as further deletions make them
contiguous to the free space.

Chapter 34. Record Storage and Deletion 34-17

34.2 Record deletion

34.2.2 Logical deletion

Pointers deleted: To avoid consuming unnecessary time and /O disconnecting
records from sets without prior pointers, CA-IDMS/DB does not physically delete the
record when an ERASE command is issued. Instead, the next time CA-IDMS/DB
encounters a logically deleted record while walking a chained set of which the record
is a member, CA-IDMS/DB disconnects the record from the set, provided that the
record's area was readied in update mode. Since the record prior to the logically
deleted record is still current of run unit, CA-IDMS/DB can update the record's next
pointer and disconnect the logically deleted record. In order to be physically deleted,
the record must have been disconnected from all sets in which the record was a
member.

Operations performed: CA-IDMS/DB performs the following operations to
logically delete a record:

= Removes the record's data from the database, but leaves the prefix

. Moves all records following the deleted record on the page, so that all free space
remains in the middle of the page

m Setsthe logical delete flag (the first bit) in the record id field of the record's line
index

» Updates the space available count field in the header

Example: In the following example, assume that the EMPOSITION records do not
have prior pointers in the EMP-EMPOSITION set. When erasing an EMPOSITION
record, CA-IDMS/DB removes only the data and flags the record's line index. The
EMPOSITION record is logically deleted. The next time CA-IDMS/DB is walking
this occurrence of the EMP-EMPOSITION set in update mode and encounters the
flagged record, CA-IDMS/DB physically deletes the record.

34-18 CA-IDMS Database Administration

34.2 Record deletion

Original configuration Erase EMPOSITION (EMPOSITION #1)
Space available count Space available count
EMPLOYEE 23 EMPLOYEE 23
r prefix r prefix
Header | 452 I I Header I 476 I I
EMPLQOYEE 23 data EMPLOYEE 23 data
EMPOSITION #1 prefiﬂ EMPOSITION #1 prefix IEMPOSITION #2 prefiﬂ
EMPOSITION #1 data EMPOSITION #2 dala
EMPOSITION #2 preiixJ I
EMPOSITION #2 data
00 k12l as 124 hoo beo lag 124 [az0l212 las] 24 20 baa laa 124 oo k12| 24124
15 | 16 hsslv2 | Footer [32 | 15116 haslz2 | Footer Iz |
Line space 1_ Line space
count count

Consideration: Occasionaly, in recovering from an error during a store operation,
CA-IDMS/DB may create a logically deleted record. If CA-IDMS/DB has stored a
record and is in the process of making the automatic connections when CA-IDMS/DB
discovers an error condition (for example, no currency established in one of the
automatic sets), CA-IDMS/DB must erase the record being stored. If one of the
chained sets to which the record has aready been connected has next pointers only,
CA-IDMS/DB logically deletes the record.

Chapter 34. Record Storage and Deletion 34-19

34-20 CA-IDMS Database Administration

Chapter 35. Chained Set Management

35.1 About chainedsets 35-3
352 Chainedsets 35-4
35.2.1 Connecting recordsto chained sets 35-5
35.2.2 Disconnectingrecords 35-6
35.2.3 Retrievingrecords 35-7

Chapter 35. Chained Set Management 35-1

35-2 CA-IDMS Database Administration

35.1 About chained sets

35.1 About chained sets

Physically link record occurrences together: Chained sets can be used to
physically link related record occurrences together. In a chained set, a pointer in each
member record occurrence's prefix contains the db-key of the logically next occurrence
of the set.

Defining a chained set: Define a set as chained as follows:

Non-SQL schema MODE IS CHAIN on the SET statement.

definition
SQL schema LINKED CLUSTERED on the CONSTRAINT statement.
definition When a constraint is implemented as a chained set, the

referenced table is the owner of the set and the referencing
table is the member.

Chapter 35. Chained Set Management 35-3

35.2 Chained sets

35.2 Chained sets

Use: A chained set is used to establish alogical relationship between two or more
user-defined record types and consists of an owner record type and one or more
member record types.

The following diagram uses standard CA-IDMS database notation to describe a
chained set type; the diagram includes the name of the set, linkage options,
membership options, sort sequence (if any), and sort key (if any).

This example shows a chained set (the DEPT-EMPLOY EE set) between two
user-defined record types. The owner of the DEPT-EMPLOY EE set type is the
user-defined DEPARTMENT record type; the member is the EMPLOY EE record type.

DEPARTMENT
so|F [s6 [oac
DEPTAD-0410 u
ORG-DEMO-REGION

DEPT-EMPLOYEE

NPO OA

ASC (EMP-LAST-NAME-0415
EMP-FIRST-NAME-0415) DL

EMPLOYEE
415|F |11G |CALC
EMP-ID-0415 [u
EMP-DEMQ-REGION

Next, prior, and owner pointers: A chained set occurrence consists of one
occurrence of the owner record type and any number of member record occurrences.
The prefix of each record occurrence that participates in a set contains a next pointer
(that is, the db-key of the next logical record occurrence in the set occurrence).
Optionally, record occurrences can include prior pointers, which link records together
in the logically prior direction, and owner pointers, which link member record
occurrences to the owner occurrence.

Note: SQL-defined constraints implemented as a chained set always have next, prior,
and owner pointers.

Basic structure of a chained set occurrence: A record occurrence in a chained
set occurrence always contains in its prefix a next pointer that points to the logically
next record occurrence in the set occurrence.

35-4 CA-IDMS Database Administration

35.2 Chained sets

Member

Member

35.2.1 Connecting records to chained sets

Operations performed: CA-IDMS/DB performs the following operations to
connect a record (that has previously been stored) to a chained set:

» Updates the prefix of the record being connected to reflect the record's next, prior,
and owner (as applicable) pointers in the set

m Updates pointers in al other records affected by the new set connections

In the example below, EMPLOYEE 19 and EMPLOY EE 23 have been stored on
pages 7023 and 7026, respectively. Connecting each to DEPT 3100 as members of the
DEPT-EMPLOYEE set affects the DEPT 3100 record on page 7126. Its prefix must
be updated to point to the next and prior members of the set.

Chapter 35. Chained Set Management 35-5

35.2 Chained sets

7126 71261 7126/1 688 I 712610 7126/0

7023/4 7026/1

Data for DEPT 3100 record occurrence

I
DEPT-EMPLQYEE
prior pointer
DEPT-EMPLOYEE page 7126
next pointer

line 1

page 7026
page 7023 line 1

line 4

415'16'72'16 1 I4 I12I 8 24| 7126

35.2.2 Disconnecting records

Operations performed: To disconnect a record occurrence from a chained set
without erasing the record occurrence, CA-IDMS/DB must update pointers in the
current, prior, and next records, as described below:

» For the record being disconnected, CA-IDMS/DB adjusts al the record
occurrence's pointers to null (minus 1) for the set from which the record is being
disconnected.

» For the prior record in the chain, CA-IDMS/DB adjusts the next pointer for the
set from which the record occurrence is being disconnected so that the prior
record points to the next record.

» For the next record in the chain (if the set has prior pointers), CA-IDMS/DB
adjusts the prior pointer for the set from which the record occurrence is being
disconnected so that the next record points to the prior record.

The following diagram shows disconnecting a record. The EMPLOYEE 19 record is
disconnected from the DEPT-EMPLOY EE set for DEPT 3100. EMPLOYEE 19's
pointers for that set are changed to null. The prior pointer in the EMPLOY EE 23
record is adjusted to point to the DEPT 3100 record, while the next pointer in the
DEPT 3100 record must be adjusted to point to the EMPLOY EE 23 record.

35-6 CA-IDMS Database Administration

35.2 Chained sets

page 7126
line 1

page 7126
line 1

DEPT

DEPT-EMPLOYEE
NPO OA NEXT

page 7023 page 7026 EMPLOYEE @ ge 7026
line 4 line 1 line 1
page 7023
line 4
DEPT 3100 DEPT 3100
| 702314 | 7026/1 | [702611 | 702611 |
Next Prior Next Prior
EMP 19 EMP 19
| 702611 | 71261 | 712601 | [I [[| nun
Next Prior Owner Next Prior Owner
EMP 23 EMP 23
| 712611 | 7023/4 | 7126/1 | [712611 [71261 | 71261 |
Next Prior Owner Next Prior Qwner

Befare disconnect

After disconnect

Adjusting the pointer: To adjust the next pointer in the prior record,
CA-IDMS/DB must access the prior record. In a set without prior pointers, however,
CA-IDMS/DB must walk the entire set to access the prior record. For this reason,
prior pointers are typically included in al sets to which the DISCONNECT (or
ERASE) DML command might be applied.

35.2.3 Retrieving records

Walking a set: A program using navigational DML or CA-IDMS/DB in response to
an SQL request can access al of the members of a chained set in the following
manner: starting with the ow