
CA-IDMS®
Database Administration

15.0

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

Second edition, October 2001

 2001 Computer Associates International, Inc.
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

How to use this manual . xvii

Volume 1. Database Definition

Chapter 1. The CA-IDMS Environment . 1-1
1.1 The environment . 1-3

1.1.1 Multiuser environment . 1-3
1.1.2 Single-user environment . 1-4
1.1.3 Data sharing environment . 1-5

1.2 CA-IDMS/DC and CA-IDMS/UCF . 1-6
1.3 CA-IDMS/DB components . 1-7

1.3.1 The database management system . 1-7
1.3.2 Dictionaries . 1-7
1.3.3 Physical database definition . 1-8
1.3.4 Logical database definition . 1-8

1.4 Security . 1-9
1.5 Getting started . 1-10

1.5.1 Towards a production environment 1-10
1.6 Tools for database definition and maintenance 1-13

Chapter 2. Defining Physical Databases . 2-1
2.1 About physical databases . 2-3

2.1.1 Segments . 2-4
2.1.2 DMCLs . 2-4
2.1.3 Database name tables . 2-5

2.2 Separating logical and physical database definitions 2-7
2.3 Before you begin . 2-8

Chapter 3. Defining Segments, Files, and Areas 3-1
3.1 About segments, files, and areas . 3-3

3.1.1 Files . 3-3
3.1.2 Areas . 3-4

3.2 Planning . 3-5
3.2.1 Segment boundaries . 3-5
3.2.2 Mapping areas to files . 3-6
3.2.3 Page ranges . 3-6
3.2.4 Page groups . 3-6
3.2.5 Records per page . 3-7
3.2.6 Page reserve . 3-8
3.2.7 Resolving symbolic parameters . 3-8
3.2.8 Synchronization stamps . 3-9
3.2.9 Specifying data set name information 3-10

3.3 Procedure for defining segments . 3-12
3.4 Related information . 3-15

Chapter 4. Defining, Generating, and Punching a DMCL 4-1

Contents iii

4.1 About DMCLs . 4-3
4.2 Data sharing attributes . 4-6
4.3 Database buffers . 4-8
4.4 Journal buffers and journal files . 4-9

4.4.1 Sizing the journal buffer . 4-10
4.4.2 Sizing journal files . 4-11

4.5 Adding segments to the DMCL . 4-13
4.5.1 Required segments . 4-13
4.5.2 File limitations . 4-14
4.5.3 Area status . 4-14
4.5.4 Sharing update access to data . 4-15
4.5.5 Area overrides . 4-16
4.5.6 File overrides . 4-17

4.6 Procedure for defining a DMCL . 4-19
4.7 Making the DMCL accessible to the runtime environment 4-22
4.8 Related information . 4-23

Chapter 5. Defining a Database Name Table 5-1
5.1 About database name tables . 5-3
5.2 Planning . 5-5

5.2.1 SQL considerations . 5-5
5.2.2 Non-SQL considerations . 5-6
5.2.3 Restricting subschema names . 5-8
5.2.4 Application dictionaries . 5-8
5.2.5 Defining the default dictionary . 5-9
5.2.6 Conflicting names . 5-10
5.2.7 Mixed page groups and maximum records per page 5-10
5.2.8 Sharing database name tables . 5-12

5.3 Defining and generating the database name table 5-13
5.4 Related information . 5-15

Chapter 6. Physical Database DDL Statements 6-1
6.1 Statement summary . 6-3
6.2 Components of a physical DDL statement 6-6
6.3 Naming conventions . 6-7

6.3.1 Using lowercase letters in identifiers 6-8
6.3.2 Keywords as identifiers . 6-8
6.3.3 Entity currency . 6-8

6.4 Generic DISPLAY/PUNCH statement . 6-10
6.4.1 Usage . 6-11
6.4.2 Examples . 6-11

6.5 DISPLAY/PUNCH ALL statement . 6-12
6.5.1 Usage . 6-15
6.5.2 Date selection criteria . 6-20
6.5.3 Example . 6-21

6.6 ARCHIVE JOURNAL statements . 6-22
6.6.1 Usage . 6-24
6.6.2 Examples . 6-25
6.6.3 For more information . 6-25

6.7 AREA statements . 6-26
6.7.1 Usage . 6-36

iv CA-IDMS Database Administration

6.7.2 Examples . 6-41
6.7.3 For more information . 6-42

6.8 BUFFER statements . 6-43
6.8.1 Usage . 6-47
6.8.2 Examples . 6-48
6.8.3 For more information . 6-48

6.9 DBGROUP statements . 6-49
6.9.1 Usage . 6-51
6.9.2 Examples . 6-51
6.9.3 For more information . 6-51

6.10 DBNAME statements . 6-52
6.10.1 Usage . 6-55
6.10.2 Examples . 6-56
6.10.3 For more information . 6-57

6.11 DBTABLE statements . 6-58
6.11.1 Usage . 6-60
6.11.2 Examples . 6-62
6.11.3 For more information . 6-62

6.12 DISK JOURNAL statements . 6-63
6.12.1 Usage . 6-65
6.12.2 Examples . 6-66
6.12.3 For more information . 6-66

6.13 DMCL statements . 6-67
6.13.1 Usage . 6-80
6.13.2 Examples . 6-81
6.13.3 For more information . 6-81

6.14 FILE statements . 6-82
6.14.1 Usage . 6-87
6.14.2 Examples . 6-88
6.14.3 For more information . 6-88

6.15 JOURNAL BUFFER statements . 6-89
6.15.1 Usage . 6-91
6.15.2 Examples . 6-91
6.15.3 For more information . 6-92

6.16 SEGMENT statements . 6-93
6.16.1 Usage . 6-96
6.16.2 Examples . 6-98
6.16.3 For more information . 6-98

6.17 TAPE JOURNAL statements . 6-99
6.17.1 Usage . 6-101
6.17.2 Examples . 6-101
6.17.3 For more information . 6-102

6.18 Summary of physical database limits . 6-103

Chapter 7. Defining a Database Using SQL 7-1
7.1 Executing SQL data description statements 7-4
7.2 Creating a schema . 7-5
7.3 Creating a table . 7-6
7.4 Defining a CALC key . 7-8
7.5 Defining an index . 7-9

Contents v

7.6 Defining a referential constraint . 7-10
7.7 Dropping a default index . 7-12
7.8 Creating a view . 7-13
7.9 For further information . 7-15

Chapter 8. Defining a Database Using Non-SQL 8-1
8.1 About schemas and subschemas . 8-4
8.2 About the schema and subschema compilers 8-6
8.3 Defining a schema . 8-7

8.3.1 SCHEMA statement . 8-7
8.3.2 AREA statements . 8-8
8.3.3 RECORD statements . 8-9
8.3.4 SET statements . 8-15
8.3.5 VALIDATE . 8-16

8.4 Defining a subschema . 8-18
8.4.1 Subschema statement . 8-18
8.4.2 AREA statements . 8-19
8.4.3 RECORD statements . 8-19
8.4.4 SET statements . 8-20
8.4.5 LOGICAL RECORD statements . 8-21
8.4.6 PATH-GROUP statements . 8-22
8.4.7 Subschema validation and generation 8-23

8.5 Security checking . 8-25
8.5.1 Checking compiler security . 8-25
8.5.2 Checking registration override security 8-26
8.5.3 Checking verb security . 8-27
8.5.4 Checking component security . 8-28

8.6 Establishing schema and subschema currency 8-30
8.7 Reporting on schema and subschema definitions 8-32
8.8 Related information . 8-33

Chapter 9. Using the Schema and Subschema Compilers 9-1
9.1 Online compiling . 9-4
9.2 Batch compiling . 9-6
9.3 Coding DDL schema and subschema statements 9-7

9.3.1 Statement components . 9-7
9.3.2 Delimiting statements . 9-8
9.3.3 Compiler comments . 9-8
9.3.4 Input format . 9-9
9.3.5 Error handling . 9-10

9.4 Coding keywords, variables, and comment text 9-12
9.4.1 Coding keywords . 9-12
9.4.2 Coding entity-occurrence names . 9-12
9.4.3 Coding user-supplied values . 9-13
9.4.4 Coding comment text . 9-14

9.5 About compiler-directive statements . 9-16
9.6 Output from the compilers . 9-17

9.6.1 Source code and load modules . 9-17
9.6.2 Schema and subschema listings . 9-18

Chapter 10. Compiler-Directive Statements 10-1

vi CA-IDMS Database Administration

10.1 Overview . 10-3
10.2 DISPLAY/PUNCH ALL statement . 10-4

10.2.1 Usage . 10-7
10.2.2 Example . 10-10

10.3 DISPLAY/PUNCH IDD statement . 10-11
10.3.1 Example . 10-12
10.3.2 For more information . 10-13

10.4 INCLUDE statement . 10-14
10.4.1 Usage . 10-14
10.4.2 Example . 10-15
10.4.3 For more information . 10-15

10.5 SET OPTIONS statement . 10-16
10.5.1 Usage . 10-27
10.5.2 Examples . 10-32
10.5.3 For more information . 10-32

10.6 SIGNOFF statement . 10-33
10.6.1 Usage . 10-33

10.7 SIGNON statement . 10-34
10.7.1 Usage . 10-35
10.7.2 For more information . 10-37

Chapter 11. Operations on Entities . 11-1
11.1 ADD operations . 11-4
11.2 MODIFY operations . 11-5
11.3 DELETE operations . 11-6
11.4 VALIDATE operations . 11-7
11.5 DISPLAY/PUNCH operations . 11-8

11.5.1 Usage . 11-10
11.5.2 Examples . 11-11
11.5.3 For more information . 11-11

Chapter 12. Parameter Expansions . 12-1
12.1 Expansion of boolean-expression . 12-4

12.1.1 Usage . 12-6
12.2 Expansion of db-record-field . 12-8

12.2.1 Usage . 12-8
12.3 Expansion of lr-field . 12-9

12.3.1 Usage . 12-9
12.4 Expansion of module-specification . 12-10

12.4.1 Usage . 12-11
12.4.2 For more information . 12-11

12.5 Expansion of user-specification . 12-12
12.5.1 Usage . 12-12

12.6 Expansion of user-options-specification 12-13
12.6.1 For more information . 12-14

12.7 Expansion of version-specification . 12-15
12.7.1 Examples . 12-15

Chapter 13. Schema Statements . 13-1
13.1 SCHEMA statement . 13-4

Contents vii

13.1.1 Usage . 13-12
13.1.2 Examples . 13-13
13.1.3 Related information . 13-14

13.2 AREA statement . 13-15
13.2.1 Usage . 13-19
13.2.2 Examples . 13-20
13.2.3 Related information . 13-20

13.3 RECORD statement . 13-21
13.3.1 Usage . 13-35
13.3.2 Examples . 13-41
13.3.3 Related information . 13-43

13.4 Element substatement . 13-44
13.4.1 Usage . 13-54
13.4.2 Examples . 13-64
13.4.3 Related information . 13-68

13.5 COPY ELEMENTS substatement . 13-69
13.5.1 Usage . 13-70
13.5.2 Examples . 13-70

13.6 SET statement . 13-72
13.6.1 Usage . 13-85
13.6.2 Examples . 13-88
13.6.3 Related information . 13-91

13.7 VALIDATE statement . 13-92
13.7.1 Usage . 13-92

13.8 REGENERATE statement . 13-93
13.8.1 Usage . 13-93

Chapter 14. Subschema Statements . 14-1
14.1 SUBSCHEMA statement . 14-4

14.1.1 Usage . 14-12
14.1.2 Examples . 14-15
14.1.3 Related information . 14-16

14.2 AREA statement . 14-17
14.2.1 Usage . 14-19
14.2.2 Example . 14-20
14.2.3 Related information . 14-20

14.3 RECORD statement . 14-21
14.3.1 Usage . 14-24
14.3.2 Example . 14-27

14.4 SET statement . 14-28
14.4.1 Usage . 14-30
14.4.2 Example . 14-30

14.5 LOGICAL RECORD statement . 14-32
14.5.1 Usage . 14-35
14.5.2 Examples . 14-36
14.5.3 Related information . 14-37

14.6 PATH-GROUP statement . 14-38
14.6.1 Usage . 14-57
14.6.2 Example . 14-59
14.6.3 Related information . 14-60

14.7 VALIDATE statement . 14-61

viii CA-IDMS Database Administration

14.7.1 Usage . 14-61
14.8 GENERATE statement . 14-62
14.9 LOAD MODULE statement . 14-63

14.9.1 Usage . 14-65
14.9.2 Examples . 14-66
14.9.3 Related information . 14-66

14.10 DISPLAY/PUNCH SCHEMA statement 14-67
14.10.1 Example . 14-68

Chapter 15. Writing Database Procedures 15-1
15.1 About database procedures . 15-3
15.2 Specifying a procedure . 15-4
15.3 Common uses of database procedures . 15-5
15.4 Coding database procedures . 15-7

15.4.1 Area procedures . 15-8
15.4.2 Record procedures . 15-8
15.4.3 Database procedure blocks . 15-8
15.4.4 Establishing communication between programs and procedures . . . 15-15
15.4.5 Invoking database procedures . 15-16
15.4.6 Link editing database procedures . 15-16
15.4.7 Calling non-reentrant or non-assembler database procedures 15-17
15.4.8 Executing database procedures . 15-20
15.4.9 Resetting the error-status indicator 15-20

15.5 Database procedure example . 15-22

Volume 2. Database Maintenance

Chapter 16. Allocating and Formatting Files 16-1
16.1 Making files accessible to CA-IDMS/DB 16-3
16.2 Types of files . 16-4
16.3 File access methods . 16-5
16.4 Creating disk files . 16-7

16.4.1 File characteristics . 16-8
16.5 Formatting files . 16-10
16.6 Considerations for native VSAM files . 16-11
16.7 Related information . 16-12

Chapter 17. Buffer Management . 17-1
17.1 Planning database buffers . 17-3

17.1.1 How many buffers do you need? . 17-3
17.1.2 How many pages should a buffer contain? 17-3
17.1.3 How large should a buffer page be? 17-5
17.1.4 Choosing a method for storage acquisition 17-5

17.2 Managing buffers dynamically . 17-7
17.3 Tuning buffers for performance . 17-8
17.4 Using chained reads . 17-9
17.5 Using read and write drivers . 17-11
17.6 Related information . 17-12

Contents ix

Chapter 18. Journaling Procedures . 18-1
18.1 About journaling . 18-3

18.1.1 Journaling under the central version 18-3
18.1.2 Journaling in local mode . 18-4

18.2 About journal files . 18-5
18.2.1 Journal record entries . 18-5
18.2.2 Checkpoints . 18-6

18.3 Offloading disk journal files . 18-9
18.3.1 When CA-IDMS/DB switches journal files 18-9
18.3.2 How to offload the disk journal . 18-10
18.3.3 After system shutdown . 18-11

18.4 User exits and reports for journal management 18-12
18.5 Influencing journaling performance . 18-13

18.5.1 Reducing journal file I/O . 18-13
18.5.2 Improving warmstart performance 18-14

18.6 Related information . 18-16

Chapter 19. Backup and Recovery . 19-1
19.1 About database backup and recovery . 19-3
19.2 Backup procedures . 19-4

19.2.1 Back up after a normal system shutdown 19-5
19.2.2 Backup while the DC/UCF system is active 19-5
19.2.3 Back up before and after local mode jobs 19-10
19.2.4 Automating the backup process . 19-11

19.3 Automatic recovery . 19-14
19.3.1 Warmstart . 19-14
19.3.2 Automatic rollback . 19-16

19.4 Manual recovery . 19-18
19.4.1 Recovery from a quiesced backup 19-19
19.4.2 Recovery from a hot backup . 19-21
19.4.3 Reducing recovery time . 19-28
19.4.4 Recovering a large number of files 19-30

19.5 Recovery procedures after a warmstart failure 19-31
19.6 Recovery procedures from database file I/O errors 19-33
19.7 Recovery procedures from journal file I/O errors 19-37
19.8 Recovery procedures for local mode operations 19-40

19.8.1 No journaling . 19-40
19.8.2 Journaling to a tape device . 19-40
19.8.3 Journaling to a disk device . 19-40
19.8.4 Using an incomplete journal file . 19-40

19.9 Recovery procedures for mixed-mode operations 19-42
19.10 Data sharing recovery considerations 19-44
19.11 Considerations for recovery of native VSAM files 19-47

Chapter 20. Loading a Non-SQL Defined Database 20-1
20.1 About database loading . 20-3
20.2 Loading database records using FASTLOAD 20-4

20.2.1 General considerations . 20-4
20.3 FASTLOAD procedure . 20-6
20.4 Loading database records using a user-written program 20-7

20.4.1 Organizing input data for a user-written program 20-7

x CA-IDMS Database Administration

20.4.2 Loading the database . 20-9
20.5 Related information . 20-11

Chapter 21. Loading an SQL-Defined Database 21-1
21.1 About database loading . 21-3
21.2 Loading considerations . 21-7
21.3 Contents of the input file . 21-10
21.4 Loading procedures . 21-12

21.4.1 Steps that apply to all load procedures 21-12
21.4.2 Full load procedure . 21-13
21.4.3 Phased load procedure . 21-13
21.4.4 Segmented load procedure . 21-15
21.4.5 Stepped load procedure . 21-16

21.5 Related information . 21-20

Chapter 22. Monitoring and Tuning Database Performance 22-1
22.1 Monitoring guidelines . 22-3
22.2 Monitoring facilities . 22-4
22.3 Items to monitor and tune . 22-5

22.3.1 Journal use . 22-5
22.3.2 Buffer utilization . 22-6
22.3.3 Space management and database design 22-7
22.3.4 Indexing efficiency . 22-8
22.3.5 Database locks . 22-9
22.3.6 Longterm locks . 22-13
22.3.7 SQL processing . 22-14

22.4 Reducing I/O . 22-15
22.4.1 Through database reorganization . 22-15
22.4.2 Through application design . 22-16
22.4.3 Through database design . 22-16
22.4.4 By using UPDATE STATISTICS (SQL-accessed databases) 22-16

Chapter 23. Dictionaries and Runtime Environments 23-1
23.1 About dictionaries . 23-3

23.1.1 Physical components of a dictionary 23-3
23.1.2 Logical components of a dictionary 23-4
23.1.3 Assigning dictionary areas to segments 23-5
23.1.4 Sharing dictionary areas . 23-6

23.2 CA-supplied dictionary definitions . 23-8
23.2.1 Logical database definitions . 23-9
23.2.2 Protocols, nondatabase structures, and modules 23-11

23.3 Defining new dictionaries . 23-13
23.3.1 Defining new catalog components 23-13
23.3.2 Defining new application dictionaries 23-14
23.3.3 Defining new system dictionaries 23-16

23.4 Establishing a default dictionary . 23-19
23.5 About runtime environments . 23-20

23.5.1 SYSIDMS parameter file . 23-22
23.5.2 Establishing session options . 23-23

23.6 Related information . 23-25

Contents xi

Chapter 24. Migrating from Test to Production 24-1
24.1 About migration . 24-3
24.2 Establishing migration procedures . 24-4
24.3 Implementing migration procedures . 24-5

24.3.1 Step 1: Determine the types of components to migrate 24-5
24.3.2 Step 2: Determine the sequence of migration 24-9
24.3.3 Step 3: Identify the individual components 24-11
24.3.4 Step 4: Migrate the components . 24-11

24.4 Identification aids . 24-12
24.5 Migration tools . 24-15
24.6 General methods . 24-17

24.6.1 Using the DISPLAY statement . 24-17
24.6.2 Using the PUNCH statement . 24-18
24.6.3 Using the mapping compiler and mapping utility 24-22
24.6.4 For SQL-defined entities . 24-23

24.7 Additional considerations . 24-25
24.7.1 Additional tasks . 24-25

Chapter 25. Modifying Physical Database Definitions 25-1
25.1 Modifications you can make . 25-3
25.2 Making the changes available under the central version 25-7
25.3 Dynamic DMCL management . 25-8
25.4 Changing a file's access method . 25-10

25.4.1 Step 1: Expand the page size . 25-10
25.4.2 Step 4: Copy the data to the new file 25-10

25.5 Increasing the size of an area . 25-12
25.5.1 Increasing an area's page size . 25-12
25.5.2 Extending an area's page range . 25-13

25.6 Adding or dropping files associated with an area 25-14
25.7 Changing the size of a disk journal . 25-15
25.8 Changing the access method of a disk journal 25-16
25.9 Related information . 25-17

Chapter 26. Modifying Database Name Tables 26-1
26.1 Changes you can make . 26-3
26.2 Procedure for modifying database name tables 26-4
26.3 Related information . 26-5

Chapter 27. About Modifying SQL-Defined Databases 27-1
27.1 What you can modify . 27-3
27.2 Methods for modifying . 27-4

Chapter 28. Modifying Schema, View, and Table Definitions 28-1
28.1 Maintaining schemas . 28-4

28.1.1 Dropping an existing schema . 28-4
28.1.2 Modifying a schema . 28-4

28.2 Maintaining views . 28-5
28.2.1 Dropping a view . 28-5
28.2.2 Modifying a view . 28-5

28.3 Maintaining tables . 28-7
28.3.1 Creating a table . 28-7

xii CA-IDMS Database Administration

28.3.2 Dropping a table . 28-7
28.3.3 Adding a column to a table . 28-8
28.3.4 Dropping a column from a table . 28-9
28.3.5 Changing the characteristics of a column 28-10
28.3.6 Adding or removing data compression 28-10
28.3.7 Adding a new check constraint . 28-10
28.3.8 Dropping a check constraint . 28-11
28.3.9 Modifying a check constraint . 28-11
28.3.10 Revising the estimated row count for a table 28-11
28.3.11 Changing a table's area . 28-12
28.3.12 Dropping the default index associated with a table 28-12

28.4 Dropping and recreating a table . 28-14
28.4.1 Method 1 — Using DDL and DML statements 28-14
28.4.2 Method 2 — Using DDL and utility statements 28-16

Chapter 29. Modifying Indexes, CALC Keys, and Referential Constraints 29-1
29.1 Maintaining indexes . 29-4

29.1.1 Creating an index . 29-4
29.1.2 Dropping an index . 29-4
29.1.3 Changing index characteristics/ moving an index 29-5

29.2 Maintaining CALC keys . 29-6
29.2.1 Creating a CALC key . 29-6
29.2.2 Dropping a CALC key . 29-6

29.3 Maintaining referential constraints . 29-7
29.3.1 Creating a referential constraint . 29-7
29.3.2 Dropping a referential constraint . 29-7
29.3.3 Modifying referential constraint tuning characteristics 29-8

Chapter 30. About Modifying Non-SQL Defined Databases 30-1
30.1 Types of modifications . 30-3
30.2 Overview . 30-4

30.2.1 Methods for modifying . 30-4
30.2.2 Procedure for modifying the non-SQL definitions 30-5
30.2.3 RESTRUCTURE SEGMENT utility statement 30-7
30.2.4 UNLOAD/RELOAD utility statements 30-7
30.2.5 MAINTAIN INDEX utility statement 30-8

Chapter 31. Modifying Schema Entities . 31-1
31.1 Modifications to an unloaded database 31-4
31.2 Schema modifications . 31-5

31.2.1 Deleting a schema . 31-5
31.2.2 Changing schema characteristics . 31-5

31.3 Area modifications . 31-6
31.3.1 Adding or deleting an area . 31-6
31.3.2 Changing area characteristics . 31-7

31.4 Record modifications . 31-8
31.4.1 Adding schema records . 31-8
31.4.2 Deleting schema records . 31-8
31.4.3 Changing a record's CALC key . 31-9
31.4.4 Changing the DUPLICATES option on a CALC or SORT key . . . 31-11

Contents xiii

31.4.5 Changing the location mode of a record 31-12
31.4.6 Changing a record's area . 31-13
31.4.7 Modifying record elements . 31-14
31.4.8 Changing other record characteristics 31-15
31.4.9 Adding and dropping database procedures 31-16

31.5 Set modifications . 31-17
31.5.1 Adding or deleting a set . 31-17
31.5.2 Changing set mode . 31-18
31.5.3 Adding and dropping set pointers 31-19
31.5.4 Changing set order . 31-20
31.5.5 Changing set membership options 31-21

31.6 Index modifications . 31-23
31.6.1 Adding or deleting system-owned indexes 31-23
31.6.2 Changing the location of an index 31-24
31.6.3 Changing index characteristics . 31-24
31.6.4 Adding or deleting index pointers 31-25

Chapter 32. Modifying Subschema Entities 32-1
32.1 Modifying or deleting a subschema . 32-4

32.1.1 Modifying a subschema . 32-4
32.1.2 Deleting a subschema . 32-4

32.2 Adding, modifying, or deleting a record 32-6
32.3 Adding, modifying, or deleting a set . 32-7
32.4 Adding, modifying, or deleting an area 32-8
32.5 Adding, modifying, or deleting a logical record or path group 32-9

Chapter 33. Space Management . 33-1
33.1 About space management . 33-3
33.2 Database pages . 33-4
33.3 Database keys . 33-7
33.4 Area space management . 33-10

33.4.1 SR1 records . 33-11
33.4.2 Space management pages . 33-12

Chapter 34. Record Storage and Deletion 34-1
34.1 Record storage . 34-3

34.1.1 Storing CALC records . 34-4
34.1.2 Clustering records . 34-7

34.1.2.1 Clustering records around a chained set 34-7
34.1.2.2 Storing records via an indexed set 34-9

34.1.3 Storing variable-length records . 34-11
34.1.4 Relocated records . 34-14

34.2 Record deletion . 34-16
34.2.1 Physical deletion . 34-16
34.2.2 Logical deletion . 34-18

Chapter 35. Chained Set Management . 35-1
35.1 About chained sets . 35-3
35.2 Chained sets . 35-4

35.2.1 Connecting records to chained sets 35-5
35.2.2 Disconnecting records . 35-6

xiv CA-IDMS Database Administration

35.2.3 Retrieving records . 35-7

Chapter 36. Index Management . 36-1
36.1 About indexed sets . 36-3

36.1.1 Structure of indexes . 36-5
36.1.2 Connecting records to indexed sets 36-11

36.1.2.1 Connecting members to unsorted indexed sets 36-11
36.1.2.2 Connecting members to sorted indexed sets 36-14

36.1.3 Disconnecting records from indexed sets 36-15
36.1.4 Retrieving indexed records . 36-16

Chapter 37. Lock Management . 37-1
37.1 Controlling access to CA-IDMS databases 37-3
37.2 Readying areas . 37-4

37.2.1 Area ready modes . 37-4
37.2.2 Central version area status . 37-7
37.2.3 Default ready mode using navigational DML 37-8
37.2.4 Ready modes and SQL access . 37-8

37.3 Physical area locks . 37-11
37.3.1 About physical area locks . 37-11
37.3.2 Controlling update access . 37-11

37.4 Locking within central version . 37-13
37.4.1 Logical locks . 37-13
37.4.2 Types of locks . 37-14
37.4.3 Logical area locks . 37-15
37.4.4 Area locking for SQL transactions 37-16
37.4.5 Record locks . 37-18
37.4.6 System generation options affecting record locking 37-19

37.5 Locking within a data sharing group . 37-21
37.5.1 Inter-CV-interest . 37-21
37.5.2 Global transaction locks . 37-21
37.5.3 Proxy locks . 37-22
37.5.4 Page locks . 37-23

37.6 Controlling access to native VSAM files 37-24
37.7 Deadlocks . 37-25

37.7.1 How the system detects a deadlock 37-25
37.7.2 Global deadlock detection . 37-26

Appendixes

Appendix A. Sample Physical Database Definition A-1

Appendix B. Sample SQL Database Definition B-1

Appendix C. Sample Non-SQL Database Definition C-1

Appendix D. Native VSAM Considerations D-1
D.1 Native VSAM data set structures . D-4
D.2 CA-IDMS/DB native VSAM definitions . D-5

Contents xv

D.2.1 Schema definition . D-5
D.2.2 DMCL definition . D-6

D.3 DML functions with native VSAM . D-8

Appendix E. Batch Compiler Execution JCL E-1
E.1 Overview of batch compilation . E-4
E.2 OS/390 JCL . E-7

E.2.1 Schema compiler . E-7
E.2.2 Subschema compiler . E-8

E.3 VSE/ESA JCL . E-10
E.3.1 =COPY facility . E-10
E.3.2 Schema compiler . E-10
E.3.3 Subschema compiler . E-12
E.3.4 IDMSLBLS procedure . E-14

E.4 CMS commands . E-20
E.4.1 Schema compiler . E-20
E.4.2 Subschema compiler . E-21

E.5 BS2000/OSD JCL . E-23
E.5.1 =COPY facility . E-23
E.5.2 Schema compiler . E-23
E.5.3 Subschema compiler . E-25

Appendix F. System Record Types . F-1

Appendix G. User-Exit Program for Schema and/or Subschema Compiler . G-1
G.1 When a user exit is called . G-4
G.2 Rules for writing the user-exit program . G-5
G.3 Control blocks and sample user-exit programs G-7

G.3.1 User-exit control block . G-7
G.3.2 SIGNON Element Block . G-7
G.3.3 SIGNON Block . G-8
G.3.4 Entity control block . G-8
G.3.5 Card-image control block . G-9

G.4 Sample user-exit program for Schema and/or Subschema Compilers . . . G-10

Appendix H. SYSIDMS Parameter File . H-1
H.1 Parameter Summary . H-3
H.2 Parameter Descriptions . H-6

Index . X-1

xvi CA-IDMS Database Administration

How to use this manual

How to use this manual xvii

What this manual is about

This manual contains all information necessary to define, load, and administer a
CA-IDMS/DB database.

xviii CA-IDMS Database Administration

Who should use this manual

This manual is intended for anyone who is responsible for administering one or more
CA-IDMS/DB databases as well as for those whose responsibility lies in administering
a portion of the database, such as database definition.

How to use this manual xix

How this manual is organized

This manual is divided into two volumes as follows:

■ Volume 1 — CA-IDMS/DB Database Definition

– Chapter 1 — describes the CA-IDMS environment

– Chapter 2 — describes defining physical databases

– Chapter 3 — describes defining segments, files, and areas

– Chapter 4 — describes defining, generating, and punching a DMCL

– Chapter 5 — discusses defining a database name table

– Chapter 6 — discusses physical database DDL statements

– Chapter 7 — describes defining a database using SQL

– Chapter 8 — describes defining a database using non-SQL

– Chapter 9 — describes using the schema and subschema compilers

– Chapter 10 — discusses compiler-directive statements

– Chapter 11 — discusses operations on entities

– Chapter 12 — discusses parameter expansions

– Chapter 13 — discusses schema statements

– Chapter 14 — discusses subschema statements

– Chapter 15 — discusses writing database procedures

■ Volume 2 — Database Maintenance

– Chapter 16 — discusses allocating and formatting files

– Chapter 17 — discusses buffer management

– Chapter 18 — discusses journaling procedures

– Chapter 19 — discusses backup and recovery

– Chapter 20 — describes loading a non-SQL defined database

– Chapter 21 — describes loading an SQL-defined database

– Chapter 22 — discusses monitoring and tuning database performance

– Chapter 23 — describes dictionaries and runtime environments

– Chapter 24 — discusses migrating from test to production

– Chapter 25 — discusses modifying physical database definitions

– Chapter 26 — discusses modifying database name tables

– Chapter 27 — discusses modifying SQL-defined databases

– Chapter 28 — describes modifying schema, view, and table definitions

– Chapter 29 — discusses modifying indexes, CALC keys, and referential
constraints

xx CA-IDMS Database Administration

– Chapter 30 — discusses modifying non-SQL defined databases

– Chapter 31 — describes modifying schema entities

– Chapter 32 — describes modifying subschema entities

– Chapter 33 — describes space management

– Chapter 34 — describes record storage and deletion

– Chapter 35 — discusses chained set management

– Chapter 36 — discusses index management

– Chapter 37 — describes lock management

– Appendix A — presents a sample physical database definition

– Appendix B — presents a sample SQL database definition

– Appendix C — presents a sample non-SQL database definition

– Appendix D — discusses native VSAM considerations

– Appendix E — discusses batch compiler execution JCL

– Appendix F — discusses system record types

– Appendix G — discusses procedures for coding a user-exit program

– Appendix H — presents SYSIDMS parameters

How to use this manual xxi

 Related documentation

 ■ CA-IDMS Utilities

■ CA-IDMS SQL Reference

■ CA-IDMS Database Design

■ CA-IDMS Database Administration Quick Reference

■ CA-IDMS SQL Programming

■ CA-IDMS Navigational DML Programming

xxii CA-IDMS Database Administration

Understanding Syntax Diagrams

Look at the list of notation conventions below to see how syntax is presented in this
manual. The example following the list shows how the conventions are used.

UPPERCASE

OR

SPECIAL CHARACTERS

Represents a required keyword, partial keyword,
character, or symbol that must be entered
completely as shown.

lowercase Represents an optional keyword or partial keyword
that, if used, must be entered completely as
shown.

underlined lowercase Represents a value that you supply.

← Points to the default in a list of choices.

lowercase bold

Represents a portion of the syntax shown in
greater detail at the end of the syntax or elsewhere
in the document.

��────────────────────── Shows the beginning of a complete piece of
syntax.

──────────────────────�� Shows the end of a complete piece of syntax.

──────────────────────� Shows that the syntax continues on the next line.

�────────────────────── Shows that the syntax continues on this line.

──────────────────────�─ Shows that the parameter continues on the next
line.

─�────────────────────── Shows that a parameter continues on this line.

�── parameter ─────────� Shows a required parameter.

 �─┬─ parameter ─┬─────�

└─ parameter ─┘
Shows a choice of required parameters. You must
select one.

 �─┬─────────────┬─────�

└─ parameter ─┘
Shows an optional parameter.

 �─┬─────────────┬─────�

├─ parameter ─┤

└─ parameter ─┘

Shows a choice of optional parameters. Select
one or none.

 ┌─────────────┐

 �─(─ parameter ─┴─────�
Shows that you can repeat the parameter or
specify more than one parameter.

┌───── , ─────┐

 �─(─ parameter ─┴─────�
Shows that you must enter a comma between
repetitions of the parameter.

How to use this manual xxiii

Sample Syntax Diagram

xxiv CA-IDMS Database Administration

Volume 2. Database Maintenance

CA-IDMS Database Administration

Chapter 16. Allocating and Formatting Files

16.1 Making files accessible to CA-IDMS/DB 16-3
16.2 Types of files . 16-4
16.3 File access methods . 16-5
16.4 Creating disk files . 16-7

16.4.1 File characteristics . 16-8
16.5 Formatting files . 16-10
16.6 Considerations for native VSAM files . 16-11
16.7 Related information . 16-12

Chapter 16. Allocating and Formatting Files 16-1

16-2 CA-IDMS Database Administration

16.1 Making files accessible to CA-IDMS/DB

16.1 Making files accessible to CA-IDMS/DB

Steps: To make a file accessible to CA-IDMS/DB, follow these steps:

1. Use physical DDL statements to: define the file within a new or existing segment
and associate it with one or more new or existing areas; include the segment
definition, with any file and/or area overrides, in a DMCL

2. Make available the DMCL in which the file's segment is included

3. Create the file using facilities provided by your operating system

4. Format the file

This chapter describes steps 3 and 4.

Chapter 16. Allocating and Formatting Files 16-3

16.2 Types of files

16.2 Types of files

Available options: CA-IDMS/DB can access data stored in the following types of
files:

Specifying the file's type in the FILE statement: When you define a file using
a physical DDL FILE statement, you specify the file's type using these parameters:

File type Access method File structure

Direct access EXCP
(OS/390,VSE/ESA)

A file block corresponds to a
database page

Physical sequential EXCP (OS/399)

SAM (VSE/ESA)
A file block corresponds to a
database page

CMS format
minidisk

DASD block I/O
(VM/ESA)

A file block corresponds to a
database page

PAM UPAM
(BS2000/OSD)

One or more file blocks contain a
single database page

CA-IDMS/DB
VSAM

VSAM (OS/390,
VSE/ESA)

An ESDS VSAM file in which each
Control Interval contains a single
database page plus 8 bytes of control
information used by VSAM

Native VSAM VSAM (OS/390,
VSE/ESA)

An ESDS, KSDS, or RRDS VSAM
file or PATH in which each VSAM
record corresponds to an IDMS
record

FILE statement
parameter

Corresponding file type

NONVSAM or
BDAM

Direct access (OS/399, VSE/ESA)

Physical sequential (OS/399)

CMS format minidisk (VM/ESA)

PAM (BS2999/OSD)

VSAM VSAM (OS/390, VSE/ESA)

ESDS

KSDS

RRDS

PATH

Native VSAM (OS/390, VSE/ESA)

16-4 CA-IDMS Database Administration

16.3 File access methods

16.3 File access methods

Determines how CA-IDMS/DB gains access to files: When an application
program issues a call to CA-IDMS/DB for retrieval or storage of a record or row of
data, CA-IDMS/DB maps the database page that contains the record or row to the
corresponding block or blocks in the file. The means by which this mapping occurs
varies according to the access method in use:

 ■ EXCP (OS/390,VSE/ESA)

 ■ SAM (VSE/ESA)

■ DASD Block I/O (VM/ESA)

 ■ PAM (BS2000/OSD)

■ VSAM (OS/390, VSE/ESA)

EXCP access method: The EXCP access method is used in OS/390 and
VSE/ESA in order to take advantage of extended addressing. Using EXCP as an
access method, CA-IDMS/DB maps the database page number to a relative track and
record number. The database page size must equal the block size of the file.

SAM access method: Using SAM as an access method, CA-IDMS/DB maps the
first database page number to a relative block number (RBN) within the sequential
access file. It then reads forward sequentially from that RBN. The database page size
must equal the block size of the file.

DASD block I/O: In VM/ESA, all CA-IDMS/DB files are allocated as separate
minidisks and are accessed using DASD Block I/O.

�� For more information, refer to CA-IDMS Installation and Maintenance Guide —
VM/ESA.

UPAM access method: Using UPAM as an access method, CA-IDMS/DB maps
the database page number to a relative block number and requests one or more blocks
using the UPAM access method.

Using the UPAM access method, CA-IDMS/DB can take advantage of extended
addressing. All PAM file access macros are compiled with the PARMOD=31
parameter.

VSAM access method: CA-IDMS/DB can take advantage of extended addressing
when accessing data by means of the VSAM access method. All VSAM macros use
the AMODE=31 and RMODE=31 parameters. Therefore, all VSAM control blocks
are allocated above the 16-megabyte line.

Accessing VSAM database files: Using VSAM as an access method to VSAM
database files, CA-IDMS/DB maps the database page number to a VSAM control
interval and issues a request to VSAM for that control interval.

Chapter 16. Allocating and Formatting Files 16-5

16.3 File access methods

Accessing native VSAM files: Existing VSAM files to be accessed by
CA-IDMS/DB are referred to as native VSAM files because they are not formatted
into pages as is the case with all other file types. CA-IDMS/DB accesses native
VSAM files using VSAM record-level services. A native VSAM file can have one of
the following structures:

 ■ Key-sequenced (KSDS)

 ■ Entry-sequenced (ESDS)

■ Relative record (RRDS)

Regardless of the type of file being accessed, each is represented by a single record
type described to CA-IDMS/DB in a non-SQL schema definition.

�� For more information, see 16.6, “Considerations for native VSAM files” on
page 16-11 later in this chapter.

Choosing between VSAM and non-VSAM file types: In OS/390 and
VSE/ESA, you may define database files as either VSAM or non-VSAM.

VSE/ESA: To define non-VSAM files on FBA disk devices (type 3310 or type
3370), use a sequential label (that is, an SD attribute on the DLBL statement).

16-6 CA-IDMS Database Administration

16.4 Creating disk files

16.4 Creating disk files

Use operating system facilities: Use facilities provided by your operating system
to create and catalog the files.

File placement on disk: You can reduce I/O response time by planning where you
place files on a disk. In general, spread high activity files across disk devices and
channels. Particularly, consider the placement of disk journal files used by systems
engaged in high-volume update activity.

Valid disk devices for archive and tape journal files: The table below
summarizes the disk device types CA-IDMS/DB supports for archive and tape journal
files:

Valid device types for disk journal files and database files: The table below
summarizes the device types CA-IDMS/DB supports for disk journal files and database
files:

Maximum area page sizes: When allocating non-VSAM files in OS/390 and
VSE/ESA operating systems, the page size of an area is restricted by the track size of
the disk device being used. The table below identifies the maximum page size for
non-VSAM files in OS/390 and VSE/ESA operating systems:

System Device types

OS/390 Any supported by QSAM

VSE/ESA Any supported by SAM

BS2000/OSD Any supported by DMS

VM/ESA Any supported by QSAM

System Device types

OS/390 Any supported by BDAM or VSAM

VSE/ESA Any supported by SAM

BS2000/OSD Any supported by UPAM

VM/ESA Any supported by DASD Block I/O

Chapter 16. Allocating and Formatting Files 16-7

16.4 Creating disk files

Disk device Maximum page size Bytes per track

2311 3624 3625

2314 7292 7294

2321 2000 2092

3330/3330B 13028 13030

3340 8368 8535

3350 19068 19254

3375 32764 36000

3380 32764 47476

3390 32764 56664

 16.4.1 File characteristics

Non-VSAM files in OS/390: To create a non-VSAM file in OS/390, use a JCL
statement or a facility such as TSO. The DCB characteristics of the file must be:

PAM files: To create a PAM file, you use the BS2000/OSD /FILE command. All
PAM files have a block size of 2048 and a database page is mapped to one or more
blocks. In choosing a page size for an area that will be mapped to a PAM file, the
page size should be a multiple of 2048 to optimize the use of disk space.

VSAM files: To create a VSAM database or journal file, you use the IDCAMS
utility from IBM. The following IDCAMS statements are used:

■ DEFINE SPACE — Allocates disk space for one or more VSAM files;
alternatively, the database file can be defined in its own data space

■ DEFINE CLUSTER — Creates the database file as an ESDS VSAM cluster
specifying the following attributes:

Parameter Value

DSORG PS or DA

BLKSIZE Page size of the area(s) mapped to the file

RECFM F

16-8 CA-IDMS Database Administration

16.4 Creating disk files

For more information

■ About creating CMS-format minidisks to be used by CA-IDMS/DB, refer to
CA-IDMS Installation and Maintenance — VM/ESA

■ About defining and accessing native VSAM files, see 16.6, “Considerations for
native VSAM files” on page 16-11 later in this chapter.

RECORDS Assign:

■ PRIMARY SPACE as the number of pages mapped
to the file

■ SECONDARY SPACE as the value 2

RECORDSIZE Assign:

■ AVERAGE as the page size of the area mapped to
the file

■ MAXIMUM as the page size of the area mapped to
the file

CONTROL
INTERVALSIZE

■ For database files, assign a value at least 8 bytes
larger than the page size of the area mapped to the
file, but less than twice the page size minus 8 ((2 *
page size)- 8)

■ For disk journal files, assign a value that is the
same as the page size of the journal buffer

SHAREOPTIONS Assign (3 3)

REUSE SUBALLOCATE
or UNIQUE

NONSPANNED

NONINDEXED

Chapter 16. Allocating and Formatting Files 16-9

16.5 Formatting files

 16.5 Formatting files

What formatting means: Formatting means initializing database or disk journal
files into database pages or blocks according to information provided by the DMCL.

CAUTION:
NEVER format native VSAM files

Formatting database files: When you issue a FORMAT command against a
database file, CA-IDMS/DB:

■ Establishes space management pages (SMPs) for the area(s) that map to the file

■ Initializes the space management entry for each database page

■ Establishes a header and footer on each database page

■ Sets all data portions of database pages to binary zeros

Formatting journal files: When you issue a FORMAT command against a disk
journal file, CA-IDMS/DB formats the file into blocks according to the journal file
specification in the DMCL module. The disk journal file contains:

■ Journal header records at the beginning

■ Binary zeros in the remainder

Before you begin: Before you format a file, the DMCL that contains the file
definition must be available. The DMCL provides the information CA-IDMS/DB
needs to format the file into database pages or journal file blocks.

Formatting options: You can specify four options on the FORMAT utility
statement. The table below identifies when to use these options:

Example: The following example instructs CA-IDMS/DB to format all the database
files contained in segment EMPSEG:

format segment empseg;

Action FORMAT option

Format newly-created database file(s) FILE or SEGMENT

Re-format non-empty database file(s)
K

AREA or SEGMENT*

Format a disk journal file JOURNAL

K IDMS VSAM files must use the AREA option

Note: *IDMS VSAM files can only use the AREA option.

16-10 CA-IDMS Database Administration

16.6 Considerations for native VSAM files

16.6 Considerations for native VSAM files

About native VSAM files: A native VSAM file is a file that is already defined to
VSAM and contains VSAM records. Even though a native VSAM file is not
structured as a CA-IDMS/DB database file, users can gain access to it using
CA-IDMS/DB DML. To access data in native VSAM data sets, CA-IDMS/DB
converts DML statements issued by an application program into record-level (not
control-interval) VSAM requests and passes control to VSAM. A CA-IDMS/DB local
run unit or the central version appears to VSAM as a single application that:

1. Opens VSAM data clusters

2. Activates VSAM paths using local-shared resources (LSR) or non-shared resources
(NSR)

3. Accesses data records

4. Closes the clusters and paths

Native VSAM files contain data: CA-IDMS/DB can access native VSAM files
only if they contain at least one record; that is, the files cannot be empty. This also
implies that empty native VSAM files cannot be loaded using CA-IDMS/DB services.

Defining native VSAM to IDMS: Before an existing VSAM file can be accessed
using CA-IDMS/DB DML statements, both a logical and physical description must be
provided using non-SQL schema and physical DDL statements.

�� For more information about defining native VSAM files, see Appendix D, “Native
VSAM Considerations” on page D-1.

Chapter 16. Allocating and Formatting Files 16-11

16.7 Related information

 16.7 Related information

■ About creating and formatting VM/ESA files, CA-IDMS Installation and
Maintenance — VM/ESA

■ About database file definition and modification, see Chapter 3, “Defining
Segments, Files, and Areas” on page 3-1 and Chapter 25, “Modifying Physical
Database Definitions” on page 25-1

■ About disk journal file definition and modification, see Chapter 4, “Defining,
Generating, and Punching a DMCL” on page 4-1 and Chapter 25, “Modifying
Physical Database Definitions” on page 25-1

■ About syntax for the FILE and DISK JOURNAL statements, see Chapter 6,
“Physical Database DDL Statements” on page 6-1

■ About loading files, see Chapter 20, “Loading a Non-SQL Defined Database” on
page 20-1 and Chapter 21, “Loading an SQL-Defined Database” on page 21-1

■ About IDCAMS, see the appropriate IBM publication.

■ About using native VSAM files, CA-IDMS Database Design Guide

16-12 CA-IDMS Database Administration

 Chapter 17. Buffer Management

17.1 Planning database buffers . 17-3
17.1.1 How many buffers do you need? . 17-3
17.1.2 How many pages should a buffer contain? 17-3
17.1.3 How large should a buffer page be? 17-5
17.1.4 Choosing a method for storage acquisition 17-5

17.2 Managing buffers dynamically . 17-7
17.3 Tuning buffers for performance . 17-8
17.4 Using chained reads . 17-9
17.5 Using read and write drivers . 17-11
17.6 Related information . 17-12

Chapter 17. Buffer Management 17-1

17-2 CA-IDMS Database Administration

17.1 Planning database buffers

17.1 Planning database buffers

Tradeoffs to consider: Buffers use space in main memory, but reduce the amount
of I/O performed on behalf of your applications. You want to choose the optimal
buffer attributes to achieve a balance between storage resources and I/O.

What follows: Considerations for assigning values to these attributes appear below,
beginning with a discussion on how many database buffers to define.

17.1.1 How many buffers do you need?

Multiple buffers allowed: As a general rule, one large buffer is often adequate for
most processing situations. However, you may need to define more buffers to:

■ Enhance database performance

■ Optimize storage use

Separate buffers to enhance performance: To enhance run-time performance,
you can associate individual files with separate buffers. This reduces contention for
buffer pages.

For example, you can assign a frequently-used index to a separate file and then assign
the file to a separate buffer. Applications can access this index in its own buffer,
while CA-IDMS/DB uses other buffers to hold database pages.

Separate buffers to optimize storage use: The size of a buffer page must be as
large as the largest database page that uses the buffer. Therefore, you can optimize
storage use by assigning files that contain the same or similar block sizes to the same
buffer.

17.1.2 How many pages should a buffer contain?

Minimum number of pages: The minimum number of pages in a buffer is three.
However, a value of at least five is recommended to avoid excessive database I/O
operations and to reduce contention among transactions for space in the buffer.

Maximum number of pages: The maximum number of pages is constrained only
by available memory resources. However, if you allocate too many pages, you may
degrade performance by increasing the amount of virtual paging performed by the
operating system.

Choosing an optimum: Choosing an optimum number of pages comes with
experience gained from tuning your database. However, if most files in the DMCL
use a common buffer, a rule of thumb indicates that the number of buffer pages should
be at least three times the maximum number of anticipated concurrent database
transactions.

Chapter 17. Buffer Management 17-3

17.1 Planning database buffers

Manage the size of the buffer dynamically in response to need: Once a
database is in operation under the central version, you can dynamically change the
number of pages in the central version buffer with a DCMT VARY BUFFER
statement. By changing the size dynamically, you can determine the optimum size for
the buffer by monitoring the buffer utilization ratio, which is described in 17.3,
“Tuning buffers for performance” on page 17-8 below.

Local mode vs. central version specifications: You can size a buffer
differently for local mode and central version use. This feature allows you to optimize
use of memory resources. For example, you could specify that a particular buffer will
hold 100 pages when used in local mode and 500 pages when used under the central
version. Under local mode, the buffer is smaller because it supports only a single
application; under the central version, the buffer is larger because it supports multiple,
concurrent applications.

Initial and maximum allocations under the central version: Buffers defined
to run under the central version can be assigned an initial number of pages and a
maximum number of pages. Depending on the amount of system activity, you can use
the DCMT VARY BUFFER command to change the number of pages in the buffer;
for example, use the DCMT VARY BUFFER command to increase the number of
buffer pages during peak system usage or to reduce the number of buffer pages at
other times.

You can use JCL to increment size of local mode buffer: At OS/390 sites,
you may want to increase the size of the buffer for a specific application, such as
loading a database. You can do this without modifying the buffer definition by
specifying additional buffer pages in the BUFNO parameter of the JCL statement
identifying a file associated with the buffer. At runtime, CA-IDMS/DB acquires
storage for the buffer equal to the number of pages specified in the DMCL's buffer
definition plus the value assigned to BUFNO for each file associated with the buffer.

Associating buffers with files cached externally: In certain operating systems,
you can cache database files in an external cache.

■ In OS/390 you can cache files in a dataspace or in a shared cache residing in a
coupling facility

■ In VSE/ESA you can cache files in a dataspace

If a file is cached externally, CA-IDMS reads database pages from the cache into the
database buffer. If it modifies the database page, CA-IDMS writes the modified page
back to disk and to the cache. One advantage of a cache is a reduction in the number
of I/Os to the file. Another advantage is that you may be able to reduce the number
of pages in your buffer pool, relying on the cache to hold pages while not in use.

Dataspaces provide larger caching capabilities than database buffers (even those
allocated above the 16-megabyte line). However, you must have sufficient expanded
storage on your machine to support the use of dataspaces. Without adequate storage,
the paging overhead associated with the system can increase significantly.

17-4 CA-IDMS Database Administration

17.1 Planning database buffers

If using a coupling facility cache, you must have enough coupling facility space to
hold the most frequently accessed pages, in order to make its use worthwhile. An
additional advantage of a coupling facility cache is that it can be shared by more than
one central version.

External caching in a dataspace or coupling facility is not available for native VSAM
files.

�� For more information about using a shared cache, refer to CA-IDMS System
Operations.

Using Batch LSR for VSAM files: At OS/390 sites, VSAM database files can
make use of IBM's Batch Shared Resources Subsystem (Batch LSR) by specifying the
SUBSYS JCL parameter. At runtime, CA-IDMS/DB opens the VSAM database file
and the VSAM Batch LSR subsystem converts the buffer management technique to
LSR processing and allows the buffer pool to be created in hiperspace. Batch LSR is
also supported for native VSAM files.

Batch LSR improves performance for actively used files: By using Batch
LSR, you can reduce the number of pages in the buffer associated with the file in your
DMCL because VSAM and the Batch LSR subsystem can create a large buffer pool in
hiperspace which will minimize the number of I/Os. This feature offers performance
improvements for files that are actively used.

SUBSYS subparameters: Use of the Batch LSR subsystem and the number and
location of the buffers is controlled by use of the SUBSYS JCL parameter and its
subparameters. Use the MSG=I subparameter to display the batch LSR subsystem
messages on the job log. Do not use DEFERW=YES because it could affect the
integrity of your database in the event of a system failure.

17.1.3 How large should a buffer page be?

Pages as large as largest database page: The page size for a buffer must be
able to hold the largest database page that will be read into that buffer. Therefore, to
conserve system resources, try to assign files to the buffer with roughly equivalent
block sizes (a block equals a database page). At BS2000/OSD sites using PAM files,
the size of a buffer page should be a multiple of 2048 bytes.

17.1.4 Choosing a method for storage acquisition

Choosing IDMS or OPSYS: The IDMS and OPSYS options on the BUFFER
statements determine how CA-IDMS/DB acquires storage for the buffer and the source
of this storage:

■ If you specify OPSYS storage, CA-IDMS/DB issues one or more requests to the
operating system for a contiguous block of storage. If the operating system
supports extended addressing, the storage will be acquired above the 16-megabyte
line.

Chapter 17. Buffer Management 17-5

17.1 Planning database buffers

■ If you specify IDMS storage, CA-IDMS/DB issues separate storage requests for
each page in the buffer. The storage is acquired from IDMS-managed storage and
will reside above the 16-megabyte line under the following conditions:

– In local mode, if the operating system supports extended addressing

– Under the central version, if an XA storage pool exists which supports
system-type storage.

Advantages of using OPSYS storage: The OPSYS storage option offers an
advantage to sites that define large buffers because of the way storage is acquired. For
example, a buffer defined with an initial number of pages of 1000 will result in a
single storage request for the entire 1000 pages if OPSYS is specified or 1000 storage
requests if IDMS is specified. Another advantage is that the OPSYS storage is
acquired outside the IDMS storage pool while IDMS storage is acquired from the
IDMS storage pool. Therefore, the storage pool must be large enough to hold the
buffer.

Insufficient storage under the central version: When initially allocating a
buffer or when increasing the size of a buffer in response to a DCMT command,
CA-IDMS/DB may be unable to acquire all the necessary storage. If this occurs and
the storage acquisition mode is OPSYS, CA-IDMS/DB will attempt to acquire the
storage from the IDMS storage pool. Whenever acquiring storage from the IDMS
storage pool, if the necessary storage cannot be acquired or if the DC/UCF system is
placed in a short-on-storage condition, the number of pages in the buffer is reduced by
half until the necessary storage can be acquired without a short-on-storage condition.

17-6 CA-IDMS Database Administration

17.2 Managing buffers dynamically

17.2 Managing buffers dynamically

Changing buffer characteristics: Once a database is in operation, you can vary
the characteristics of buffers dynamically by issuing the DCMT VARY BUFFER
statement.

By making a temporary change to a buffer setting online, you can evaluate the
potential impact this change might have on overall system performance. This allows
you to identify the optimal settings for your buffers. When you have identified the
optimal settings, you can make permanent changes to the buffer definitions by using
the ALTER BUFFER statement.

Types of changes: The following buffer characteristics can be changed using
DCMT commands:

■ The number of pages in the buffer pool

■ The number of pages to be acquired in each storage request (this value defaults to
the initial number of pages in the buffer pool)

■ The maximum number of pages in the buffer pool

■ The storage acquisition mode (OPSYS or IDMS)

■ Whether or not the chained read facility is activated and the number of pages that
must be in the buffer to invoke chained reads as described under 17.4, “Using
chained reads” on page 17-9 later in this chapter

■ Whether or not a file is associated with a shared cache using a DCMT VARY
FILE/AREA/SEGMENT command

If the number of pages in the buffer pool is changed to any value between the initial
and maximum number of pages, the change is effective immediately. Changing the
number of pages in the buffer pool beyond this range or changing other buffer
characteristics takes effect only after the buffer is closed and re-opened. The buffer
can be closed using a DCMT VARY BUFFER command and it will be re-opened
automatically when the next read occurs for a file associated with the buffer.

Varying a DMCL: The following buffer changes can be made dynamically by
varying a new copy of the DMCL:

■ The page size of a buffer can be changed

■ New buffers can be added to the system

■ Existing buffers can be removed from the system

■ Files can be associated with a different buffer

Other characteristics, such as the number of pages in the buffer or the storage
acquisition mode, are not affected by varying a new copy of the DMCL. To
dynamically make such changes, use the DCMT VARY BUFFER command.

Chapter 17. Buffer Management 17-7

17.3 Tuning buffers for performance

17.3 Tuning buffers for performance

When to add more database buffers: If your monitoring operations reveal
contention among applications for use of your buffers, you may need to add more
buffers. For example, you may create a new buffer and assign it to a file that is
accessed frequently; files that are accessed infrequently can share buffers without
incurring contention among applications.

To determine which files within a buffer are accessed most frequently, issue the
DCMT DISPLAY STATISTICS BUFFER command with the FILE option. This will
show the number of pages requested as well as the number of reads and writes issued
for each file associated with a specific buffer.

When to change the database buffer page size: You may have to change the
buffer's page size if you associate different files with the buffer. The buffer's page
size must be as large as the largest database page in any file associated with the
buffer. Therefore, if new files assigned to the buffer contain larger database pages, the
buffer page must be increased accordingly; likewise, if the files are removed from the
buffer, you may be able to decrease the buffer page size to conserve memory
resources.

When to change the number of database buffer pages: You can use the
buffer utilization ratio to determine if a buffer has the optimal number of pages.
This ratio is the number of database pages requested to the number of database pages
CA-IDMS/DB reads from disk. A high ratio (above 2) indicates an effective buffer
size. A lower ratio indicates that the buffer has too few pages.

You can use the DCMT DISPLAY STATISTICS BUFFER command to determine
these values. You can also obtain them from the Performance Monitor, JREPORTs,
and SREPORTs.

17-8 CA-IDMS Database Administration

17.4 Using chained reads

17.4 Using chained reads

What chained reads do: Chained reads allows IDMS/DB to read multiple blocks
from disk with a single I/O request. It can significantly reduce both elapsed and CPU
times for applications that process multiple contiguous pages within an area.

CA-IDMS/DB automatically uses chained reads under OS/390 and VSE/ESA both in
local and central version processing under these conditions:

■ The file being accessed is non-VSAM

■ The file is not associated with a dataspace or a shared cache

■ The buffer pool for the file contains a page count of at least 255 pages

■ And, one or more of the following applies:

– An area sweep is being performed

– An SQL request is processed in such a way that multiple contiguous pages
will likely be accessed (walking a clustered set or index, performing an index
scan) — then need a buffer pool with at least 500 pages (or the prefetch_buf
SYSIDMS value)

– One of the following utility functions is executing:

— ARCHIVE LOG

— BACKUP

— BUILD INDEX

— CLEANUP

— MAINTAIN INDEX

— PRINT LOG

— PRINT SPACE

— RESTRUCTURE SEGMENT

— RESTRUCTURE CONNECT

— UNLOAD

— UPDATE STATISTICS

— VALIDATE

Note: Several other utilities such as ARCHIVE JOURNAL use QSAM
processing for their sequential processing.

How chained reads work: When chained reads is active, a single start I/O reads
up to an entire track at one time. If some of the pages are already in core, those pages
are skipped (that is, they are not read).

Chapter 17. Buffer Management 17-9

17.4 Using chained reads

When IDMS/DB processes an entire area, it issues multiple start I/Os. Under the
central version, without read drivers, two start I/Os will be issued; in local mode, as
many as ten start I/Os will be issued (subject to buffer pool size). IDMS/DB overlaps
multiple start I/Os to reduce elapsed time.

Controlling the use of chained reads: Under the central version, use the
PREFETCH option of the DCMT VARY DMCL, AREA, FILE, or BUFFER
commands to control when to use chained reads. ON is the default. OFF takes
precedence over ON at a lower level. For example, varying PREFETCH OFF for an
area will disable it for all files associated with that area. The default prefetch limit of
500 pages under the central version can be overridden by using the following
command:

DCMT VARY BUFFER <buffer-name> PREFETCH <limit>

For example, if the limit for a buffer pool is set to 100, then (provided that there are at
least 100 buffer pages) chained reads will be used for all files associated with the
buffer.

Monitoring effectiveness: To determine the effectiveness of chained reads in your
system, use the OPER WATCH DB IO command, which displays the number of start
I/Os and number or page I/Os using chained I/O for a given task. It also reports, for a
given area, the ratio of pages read to start I/Os.

It is possible that certain applications or processing loads may either experience no
improvement or incur increased overhead because chained reads may cause pages to be
prematurely flushed from the buffer. If such a situation occurs, you can disable
chained reads for local mode or central version by specifying PREFETCH=OFF as a
SYSIDMS parameter.

17-10 CA-IDMS Database Administration

17.5 Using read and write drivers

17.5 Using read and write drivers

Read drivers: A read driver performs "look-ahead" reads when IDMS/DB is
instructed to sweep an area. When it is activated, it uses chained reads to read a track
of pages beginning with the third or fourth tracks from the start of the area sweep and
attempts to "stay ahead" of processing the pages. Use the DCMT VARY DB READ
ON/OFF command to activate or de-activate the read driver for an area.

Write drivers: A write driver facilitates writing pages from the buffer to disk.
IDMS/DB invokes a write driver under these conditions:

■ When a transaction is committed and the buffer contains at least five updated
pages. The driver writes all the pages in the buffer updated by the transaction.

■ When more than 75% of the pages in the buffer are updated pages.

Use the DCMT VARY DB WRITE DRIVER ON/OFF command to activate or
de-activate the write driver.

Chapter 17. Buffer Management 17-11

17.6 Related information

 17.6 Related information

■ About defining database buffers, see Chapter 4, “Defining, Generating, and
Punching a DMCL” on page 4-1

■ About DCMT commands, refer to CA-IDMS System Tasks and Operator
Commands

■ About shared cache, refer to CA-IDMS System Operations

17-12 CA-IDMS Database Administration

 Chapter 18. Journaling Procedures

18.1 About journaling . 18-3
18.1.1 Journaling under the central version 18-3
18.1.2 Journaling in local mode . 18-4

18.2 About journal files . 18-5
18.2.1 Journal record entries . 18-5
18.2.2 Checkpoints . 18-6

18.3 Offloading disk journal files . 18-9
18.3.1 When CA-IDMS/DB switches journal files 18-9
18.3.2 How to offload the disk journal . 18-10
18.3.3 After system shutdown . 18-11

18.4 User exits and reports for journal management 18-12
18.5 Influencing journaling performance . 18-13

18.5.1 Reducing journal file I/O . 18-13
18.5.2 Improving warmstart performance 18-14

18.6 Related information . 18-16

Chapter 18. Journaling Procedures 18-1

18-2 CA-IDMS Database Administration

18.1 About journaling

 18.1 About journaling

Journals log database activity: Journals log database activity. Specifically,
journals log:

■ The before and after images of modified records and rows

■ The status of transactions accessing the database

Note: Throughout the remainder of this chapter, the term record is used to mean both
record and row.

What follows: A brief description of journaling under the central version and in
local mode follows. The remainder of the chapter describes:

■ The contents of a journal file

■ Offloading disk journal files

■ User exits and reports CA supplies to assist journal management

■ Managing journal files dynamically

18.1.1 Journaling under the central version

Update and retrieval transactions: Under the central version, several
transactions can update the database concurrently. CA-IDMS/DB writes information
about all update transactions to the journal files. CA-IDMS/DB also writes status
information about retrieval-only non-SQL transactions if JOURNAL RETRIEVAL is
specified in the system generation SYSTEM statement. No information is recorded on
the journal file for retrieval-only SQL transactions.

Use disk journals under the central version: You must use disk journals for
automatic recovery under the central version. Automatic recovery occurs during
warmstart, following the abnormal termination of a transaction, and under the
command facility due to a statement error.

�� For more information about automatic recovery, see Chapter 19, “Backup and
Recovery” on page 19-1.

Need at least two disk journals: Under central version, you need at least two
disk journals. As one file becomes full, CA-IDMS/DB automatically switches to an
alternate file. While CA-IDMS/DB writes to the alternate file, the full disk journal file
must be offloaded using the ARCHIVE JOURNAL utility statement. This procedure
is described in more detail later in this chapter.

Chapter 18. Journaling Procedures 18-3

18.1 About journaling

18.1.2 Journaling in local mode

Journaling may not be necessary: When you execute an application in local
mode, that application is the only one that has access to any areas it updates.
Therefore, journaling may not be necessary in local mode, provided you backup the
database files before and after executing an application that updates the database.
Typically, you journal in local mode when your database is too large to backup in a
reasonable amount of time.

Must use tape journals in local mode: To journal in local mode, you must use
a DMCL that defines a tape journal file. You can assign the tape journal file to either
a disk or tape device. However, if you journal to a disk device, you must copy the
file to a tape device before performing a manual recovery operation.

18-4 CA-IDMS Database Administration

18.2 About journal files

18.2 About journal files

Journal record types: Database activity is recorded on a journal file (tape or
disk). CA-IDMS/DB writes the following information to the journal:

■ Journal record entries that contain the image of database records

■ Checkpoints that describe the status of transactions accessing the database

Writing journal blocks: CA-IDMS/DB accumulates journal records in the journal
buffer. It writes the journal buffer to a journal file when one of the following
conditions occurs:

■ The buffer is full.

■ A page containing an updated record occurrence whose before image is in the
journal buffer, is to be written back to the database.

■ A recovery unit (that is, that part of a transaction that falls between two
checkpoints) terminates. A recovery unit terminates when the application issues a
COMMIT (WORK), ROLLBACK (WORK), or FINISH command, or when the
application aborts.

Note: All journal file blocks are the same length, whether or not the buffer is full
when the buffer is written to a journal file.

18.2.1 Journal record entries

Log changes in records: CA-IDMS/DB uses journal record entries to log changes
to the records in a database. A journal record entry is an image of a database record.
As a database record is added, deleted, or modified, CA-IDMS/DB writes a before
image that contains the image of the record before update and an after image that
contains the image of the record after update.

Journal images for modified records: On a change to an existing record, the
contents of before and after images are dependent on how the processing of the DML
statement affects the database record:

Affect on database
record

Contents of journal record entry

Data in the record
changes

■ Database key of the record occurrence

■ Prefix portion of the record occurrence

■ Data portion of the record occurrence

Record's relationships in a
set changes

■ Database key of the record occurrence

■ Prefix portion of the record occurrence

Chapter 18. Journaling Procedures 18-5

18.2 About journal files

Journal images for new or deleted records: If a DML statement adds a new
record occurrence into the database, the before image of the record is null. Similarly,
if a DML statement removes a record occurrence, the after image of the record is null.

 18.2.2 Checkpoints

Describe transaction status: Checkpoints describe the status of transactions
accessing the database. CA-IDMS/DB writes these checkpoints to the journal buffer:

18-6 CA-IDMS Database Administration

18.2 About journal files

Checkpoint Description

BGIN Written automatically to the journal file when an application initiates
a non-SQL database transaction if JOURNAL RETRIEVAL is
specified, or when the first update occurs, if NOJOURNAL
RETRIEVAL is specified.

ENDJ Written automatically to the journal file when an application
executes a FINISH or COMMIT WORK statement, marking the
normal termination of a transaction.

COMT Written to the journal file when an application executes a COMMIT
or COMMIT WORK CONTINUE statement, marking the end of a
recovery unit within the transaction.

ABRT Written to the journal file when an application executes a
ROLLBACK or ROLLBACK WORK statement or, if running under
the central version, when the CV automatically recovers a failing
transaction. An ABRT checkpoint marks the abnormal completion
of a transaction.

AREA Written for each area readied by an explicit DML READY
command or readied automatically by the DBMS.

RTSV Written automatically to the journal file each time CA-IDMS/DB
encounters an error while executing an SQL or physical DDL
statement that updated the database. During recovery,
CA-IDMS/DB rolls back to the journal record designated by the
RTSV checkpoint record.

TIME Written to a journal each time the journal's buffer is initialized.
However, the time and date fields contain binary zeros until the
journal buffer is written to the journal file.

BFOR Written to a journal each time a record is updated and carries the
image of that record before the change was made

AFTR Written to a journal each time a record is updated and carries the
image of that record after the change was made

CKPT Written to a journal each time one or more transactions are
committed. This record is used to coordinate the commit of several
transactions at the same time.

USER Written to a journal via the WRITE JOURNAL command issued by
a user program

JSEG Written to a journal at the beginning of each disk journal segment.
This record identifies the transactions that were active when that
journal segment was started.

DSEG Written periodically to the journal to identify the transactions that
are active at a given point in time.

Chapter 18. Journaling Procedures 18-7

18.2 About journal files

Note: ENDJ, COMT, and ABRT checkpoints are written to the journal file only by
transactions for which a BGIN checkpoint is also written.

18-8 CA-IDMS Database Administration

18.3 Offloading disk journal files

18.3 Offloading disk journal files

What happens when you offload a disk journal file: The ARCHIVE
JOURNAL utility statement offloads the contents of a disk journal file to an archive
journal file. It also rebuilds the disk journal file, condensing all before images for
each active transaction into new journal blocks at the beginning of the file. This
process creates a journal file that contains only those before images that are needed if
an active transaction aborts or requests rollback.

Creating multiple archive files: CA-IDMS/DB will offload the disk journal files
to multiple archive files if more than one is defined in the DMCL used when
executing the ARCHIVE JOURNAL utility statement. By creating multiple archive
files, you increase the likelihood that a readable archive file is available in the event it
is needed for manual recovery. If an I/O error is encountered while writing to one of
the archive files, a warning message is issued and offloading continues without further
writes to the damaged file. If all archive files incur write errors, execution is aborted.

When to offload: You normally offload disk journal files only when:

■ CA-IDMS/DB switches to another disk journal file

■ The DC/UCF system is shut down and the database is backed up

The procedure for each scenario is provided below followed by a description of how to
restart an offload operation.

18.3.1 When CA-IDMS/DB switches journal files

When switch occurs: CA-IDMS/DB switches to another disk journal file when:

■ The active disk journal becomes full

■ You issue a DCMT VARY JOURNAL command under the central version

■ An I/O error is detected on the active disk journal file

What happens when the switch occurs: When CA-IDMS/DB switches to
another disk journal file, it writes a message to the operator, indicating that a swap has
occurred and that the previously active journal file needs offloading. The operator
should respond to this message by offloading the full file.

Eliminating operator intervention: You can eliminate the need for operator
intervention by using a write-to-operator exit routine that intercepts and reviews the
message to the operator and responds by automatically submitting a job to offload the
full journal file.

�� For information about the WTOEXIT user exit and sample routines for each
operating system, refer to CA-IDMS System Operations.

Chapter 18. Journaling Procedures 18-9

18.3 Offloading disk journal files

18.3.2 How to offload the disk journal

ARCHIVE JOURNAL utility statement: To offload the journal, you execute the
ARCHIVE JOURNAL utility statement using the batch command facility. You should
use the default option of AUTO so that the oldest non-archived journal file is selected
for processing.

System failure during offload: If the operating system fails while an ARCHIVE
JOURNAL statement is executing, resubmit the ARCHIVE JOURNAL job using the
RESTART parameter and identifying the journal file that was being processed at the
time of failure.

Potential problems while offloading: You may encounter two types of problems
when you offload journal files in an active system:

1. The offloaded journal file is still full following the offload because it contains
before images for uncommitted transactions active at the time of the offload. The
ARCHIVE JOURNAL utility statement issues messages indicating how full the
disk journal file is after being offloaded. If it is full, it is usually because a
long-running batch job is updating the database without issuing intermediate
COMMIT statements. In this case, consider cancelling the offending job. If you
allow the job to continue, it may cause all disk journal files to fill (even after
being offloaded), at which point the DC/UCF system must be cancelled allowing
warmstart to recover the database.

2. The remaining disk journal files fill before ARCHIVE JOURNAL completes
offloading a single file. When this occurs, CA-IDMS/DB temporarily halts further
database activity until the offload job is complete.

Prevention for problem 1: To prevent a full disk journal following an offload,
take one or more of the following steps:

■ Ensure that batch update programs issue frequent COMMITs to reduce the number
of before images that must be retained on the journal file

■ Allocate larger disk journal files

■ Execute long-running update programs in local mode

Prevention for problem 2: To prevent future disk journal file overloading, take
one or more of the following steps:

■ Allocate larger disk journal files

■ Increase the number of disk journal files

■ Execute long-running update programs in local mode.

18-10 CA-IDMS Database Administration

18.3 Offloading disk journal files

18.3.3 After system shutdown

Offload all files: After a normal system shutdown, you may offload all non-empty
journal files, by executing an ARCHIVE JOURNAL utility statement with the ALL
option:

archive journal all;

Usually done in conjunction with backup: Offloading all journal files
following a system shutdown is usually performed in conjunction with backing up the
database.

�� For more information about backup, see Chapter 19, “Backup and Recovery” on
page 19-1.

Chapter 18. Journaling Procedures 18-11

18.4 User exits and reports for journal management

18.4 User exits and reports for journal management

User exits: The table below describes user exits that you can use in managing your
journals:

�� For more information about these user exits and how to invoke them, refer to
CA-IDMS System Operations.

Reports: The table below summarizes reports you can use to manage your journals:

IDMSAJNX Can be used to collect statistics on database activities;
CA-IDMS/DB invokes this exit as it offloads a journal record
page to the archive file

IDMSDPLX Can be used to maintain duplicate journal files; CA-IDMS/DB
invokes this exit each time it writes to the disk journal or a
database file;

IDMSJNL2 Can be used for duplicating journal information and statistics
collection; CA-IDMS/DB invokes this exit each time it writes
a journal buffer to the journal file

WTOEXIT Can be used to automatically initiate a journal offload
following a switch to a new journal file. CA-IDMS/DB
invokes the exit each time a message is written to the
operator.

JREPORTs Report on the content of the journal file as follows:

 ■ Transaction summary

■ Program termination statistics

■ Program I/O statistics

 ■ Program summary

■ Transactions within an area

■ Programs within an area

 ■ Area summary

You can also request a formatted dump of the journal file

PRINT JOURNAL
utility

Reports on checkpoint information for transactions
recorded on the archive file; this information is useful for
rollback and rollforward operations

18-12 CA-IDMS Database Administration

18.5 Influencing journaling performance

18.5 Influencing journaling performance

CA-IDMS/DB provides facilities to:

■ Reduce the amount of I/O activity for journal files under the central version

■ Reduce the time needed to warmstart a central version following abnormal
termination

18.5.1 Reducing journal file I/O

Increasing journal buffer size:: If your system encounters frequent or sizable
rollback operations, it may be possible to reduce the I/O to the journal file by
increasing the number of pages in the journal buffer. Minimally, the journal buffer
should hold at least 5 pages. Increasing the number of pages may significantly improve
performance.

Deferring journal writes: You can reduce the amount of journal I/O by instructing
CA-IDMS/DB to defer the writing of journal buffers. Normally CA-IDMS/DB forces
the writing of a journal buffer to the journal file whenever a COMT, ENDJ, or ABRT
record is written to the journal buffer. You can request that CA-IDMS/DB defer the
write by specifying a non-zero JOURNAL TRANSACTION LEVEL either in the
system generation SYSTEM statement or in a DCMT VARY JOURNAL command.

How transaction levels work: When the number of active transactions in the
central version is greater than the journal transaction level, CA-IDMS/DB defers the
writing of a journal buffer when a recovery unit terminates. If the journal write is
deferred, the task associated with a terminating recovery unit is placed in a wait state
until the journal block is written. The journal block is written when:

■ The number of active transactions falls below the journal transaction level

■ The journal buffer is full

■ The journal buffer contains the before image of an updated record occurrence (or
row) that exists on a page to be written to the database

Note: An 'active transaction' is one for which journal records are being created.

By deferring the journal write, CA-IDMS/DB is able to place more information on a
journal block, thus reducing the need to write as many blocks.

Considerations: The establishment of a journal transaction level is most effective
in an active system; that is, one in which many update transactions are active at one
time. If used, you should set the journal transaction level to be at least 4. The lower
the number, the more likely journal writes will be deferred.

Chapter 18. Journaling Procedures 18-13

18.5 Influencing journaling performance

18.5.2 Improving warmstart performance

Reducing warmstart time: You can reduce the time it takes to warmstart a central
version following an abnormal termination by specifying a non-zero value for a
JOURNAL FRAGMENT INTERVAL in the system generation SYSTEM statement or
in a DCMT VARY JOURNAL command.

How the journal fragment works: The journal fragment interval designates an
interval for writing dummy segment (DSEG) records to the journal file. DC/UCF uses
the DSEG records in the event of a system crash to determine the appropriate starting
place for warmstart processing, as shown in the steps below:

1. The new journal file is activated. It begins with header records. These records
contain:

■ Information on currently open transactions

■ The relative block number (RBN) of the DSEG record. The RBN signifies
which DSEG record is used to start forward processing in the event of a
warmstart.

2. If the journal fragment interval is 500, the DC/UCF system will do the following
before it writes the 509th journal block:

■ Creates and writes the DSEG record

■ Updates the DSEG RBN in the journal header

18-14 CA-IDMS Database Administration

18.5 Influencing journaling performance

3. In the event of a system crash, the warmstart forward processing starts at the
DSEG record at RBN 509 instead of at the JSEG record. This saves the time it
would have taken for processing to read the first 500 journal blocks.

Considerations: If your journal files are large (in terms of the number of pages), a
journal fragment interval can significantly reduce the amount of time it takes to
warmstart a DC/UCF system. The warmstart logic goes to the most recently accessed
journal fragment and starts its recovery processing from that point. However, because
there is overhead required to write dummy segment headers, your journal fragment
interval should be at least 100. Choose an interval that is between 100 and half the
number of blocks in your journal file.

Chapter 18. Journaling Procedures 18-15

18.6 Related information

 18.6 Related information

■ About defining and modifying journal files, see Chapter 4, “Defining, Generating,
and Punching a DMCL” on page 4-1 and Chapter 25, “Modifying Physical
Database Definitions” on page 25-1

■ On database backup and recovery, see Chapter 19, “Backup and Recovery” on
page 19-1

■ About allocating and formatting disk journal files, see Chapter 16, “Allocating
and Formatting Files” on page 16-1

■ About user exits, refer to CA-IDMS System Operations

■ For the complete syntax and syntax rules for the ARCHIVE JOURNAL utility
statement, refer to CA-IDMS Utilities

■ About DCMT VARY JOURNAL and DCMT VARY FILE commands, refer to
CA-IDMS System Tasks and Operator Commands

■ About journal system generation parameters, refer to the SYSTEM statement in
CA-IDMS System Generation

18-16 CA-IDMS Database Administration

Chapter 19. Backup and Recovery

19.1 About database backup and recovery . 19-3
19.2 Backup procedures . 19-4

19.2.1 Back up after a normal system shutdown 19-5
19.2.2 Backup while the DC/UCF system is active 19-5
19.2.3 Back up before and after local mode jobs 19-10
19.2.4 Automating the backup process . 19-11

19.3 Automatic recovery . 19-14
19.3.1 Warmstart . 19-14
19.3.2 Automatic rollback . 19-16

19.4 Manual recovery . 19-18
19.4.1 Recovery from a quiesced backup 19-19
19.4.2 Recovery from a hot backup . 19-21
19.4.3 Reducing recovery time . 19-28
19.4.4 Recovering a large number of files 19-30

19.5 Recovery procedures after a warmstart failure 19-31
19.6 Recovery procedures from database file I/O errors 19-33
19.7 Recovery procedures from journal file I/O errors 19-37
19.8 Recovery procedures for local mode operations 19-40

19.8.1 No journaling . 19-40
19.8.2 Journaling to a tape device . 19-40
19.8.3 Journaling to a disk device . 19-40
19.8.4 Using an incomplete journal file . 19-40

19.9 Recovery procedures for mixed-mode operations 19-42
19.10 Data sharing recovery considerations 19-44
19.11 Considerations for recovery of native VSAM files 19-47

Chapter 19. Backup and Recovery 19-1

19-2 CA-IDMS Database Administration

19.1 About database backup and recovery

19.1 About database backup and recovery

Protects your data: Database backup and recovery are maintenance tasks that
protect the changes made to your database:

■ Backup is a routine database maintenance task that produces a copy of the
database. If necessary, this backup copy can be used to restore lost data.

■ Recovery restores the contents of the database when an error occurs that corrupts
the database or disk journal file. Recovery procedures restore altered areas to
their original state.

Types of recovery: Under the central version, recovery occurs automatically with
no intervention from the DBA. If automatic recovery fails you must recover the
database manually. You must also recover the database manually for local mode
update jobs that terminate abnormally.

What follows: The remainder of this chapter describes:

■ Procedures to back up database files

■ How CA-IDMS/DB recovers data automatically

■ Procedures for recovering data manually under different circumstances

Chapter 19. Backup and Recovery 19-3

19.2 Backup procedures

 19.2 Backup procedures

Perform backups often: Backup procedures are an essential part of database
administration. To help protect the integrity of your database, you should perform
backups as often as possible. As a general rule, always back up the database:

■ At regular, scheduled intervals, such as daily or weekly

■ Before and after structural changes to the database

■ Whenever you initialize journal files

■ Since automatic recovery is not available in local mode, before and after executing
an application run in local mode.

Design a backup plan: To ensure that your backup procedures meet the data
processing needs of your company, you need to decide how often to take backups and
how long to retain them. Develop a schedule and procedures for performing backups
and stick to it.

General guidelines: The following list identifies some guidelines to follow in
designing a backup plan:

■ Define the backup and recovery requirements for an application while the
application is being designed. Test all backup and recovery procedures before the
application is put into production.

■ Make sure you backup the database after making changes to its physical definition
(such as changing the page size, page range, and so on).

■ Identify all archive files created since the last backup.

■ If you need to concatenate archive tapes for historical records, make sure that the
tapes included in the concatenation are not required for recovering the database.
For example, you might concatenate the archive tapes from the previous week at
the end of the current week.

■ Bear in mind that restoring a database from a date several weeks in the past can
be a very time-consuming process because of the volume of journal data that
needs to be processed.

BACKUP utility statement: The examples outlined in this chapter use the
BACKUP utility statement provided with CA-IDMS/DB to backup the database. You
can use other utilities (such as IEBGENER in OS/390) to perform the backup and
recovery operation provided they restore disk files to the state they were in when
copied.

If you use the CA-provided BACKUP utility statement for regularly scheduled
backups, specify the FILE option rather than the AREA option. FILE lets you recover
an individual file in the event it is damaged rather than having to recover the entire
area. Use the AREA option only if multiple areas are stored in a single file.

19-4 CA-IDMS Database Administration

19.2 Backup procedures

What follows: The following topics tell you how to back up the database under the
following conditions:

■ After a normal system shutdown

■ While the system remains active

■ Before and after running a local mode update job

19.2.1 Back up after a normal system shutdown

Steps: While the system is inactive, back up the database using the following
procedure:

Action Statement

Offload the active journal (that is, the
journal in use at the time you shut
down the system)

ARCHIVE JOURNAL utility statement with
the AUTO or AUTOALL option

Copy all files associated with the
database

BACKUP utility statement or any
comparable backup utility

19.2.2 Backup while the DC/UCF system is active

Types of backup while system is active: There are two types of backup that can
be done while DC/UCF remains active:

■ A quiesced backup during which no updates are made to the areas being copied

■ A hot backup during which the areas that are copied are updated by transactions
executing within the central version

While it is preferable to back up a database when it is quiesced, a site with
high-availability requirements may not be able to disable updates long enough to
complete the backup.

Considerations: If you decide to use a hot backup strategy, consider the following:

■ The time to recover using a hot backup may be longer than with a backup
produced while the area was quiesced due to additional steps in the recovery
process.

■ In order to recover using a file produced during a hot backup, all archive journal
files created while the backup was taking place must also be available; without
these files, the backup file cannot be used. Although the EXTRACT JOURNAL
utility statement can be used to preprocess the journal images generated during
this time period, the original archive files must also be available in order to
perform a successful recovery.

■ To ensure the availability of the archive journal files you should treat them in the
same way as the backup file; for example, if a copy of the backup file is sent
offsite, a copy of all corresponding archive files should also be sent offsite.

Chapter 19. Backup and Recovery 19-5

19.2 Backup procedures

�� For more information on the impact of a hot backup on recovering a database, see
19.4, “Manual recovery” on page 19-18 later in this chapter.

Quiesced backup procedure: The procedure outlined below describes how to
perform a quiesced backup.

Action Steps

Quiesce update activity in the target
areas. (See considerations below)

Issue one or more of the following
commands:

■ DCMT VARY AREA ... RETRIEVAL

■ DCMT VARY AREA ... OFFLINE

■ DCMT QUIESCE AREA ...

■ DCMT VARY SEGMENT ...
RETRIEVAL

■ DCMT VARY SEGMENT ... OFFLINE

■ DCMT QUIESCE SEGMENT ...

■ DCMT QUIESCE DBNAME ...

■ DCMT VARY RUN UNIT ...
OFFLINE

Note the quiesce point Record the date and time that the areas were
quiesced.

Optionally force a new archive journal file
to be created:

■ Issue a DCMT VARY JOURNAL
command

■ Execute the ARCHIVE JOURNAL
utility statement

Copy all files containing the target
areas.

Execute the BACKUP utility statement
using the FILE option or any comparable
backup utility.

Restart update activity in the target
areas.

Issue one or more of the following
commands:

■ DCMT VARY AREA ... ONLINE

■ DCMT VARY SEGMENT ... ONLINE

■ DCMT VARY ID ... TERMINATE

■ DCMT VARY RUN UNIT ... ONLINE

19-6 CA-IDMS Database Administration

19.2 Backup procedures

Hot backup procedure: The procedure for a hot backup is similar to that for a
quiesced backup, except that updates are re-enabled before the backup is complete.
The procedure described below includes establishing a second quiesce point. This is
not necessary if the appropriate recovery procedure is followed.

�� For more information on the impact of a hot backup and a second quiesce point on
recovery, see 19.4, “Manual recovery” on page 19-18 later in this chapter.

Action Steps

Quiesce update activity in the target
areas. (See considerations below)

Issue one or more of the following
commands:

■ DCMT VARY AREA ... RETRIEVAL

■ DCMT VARY AREA ... OFFLINE

■ DCMT QUIESCE AREA ...

■ DCMT VARY SEGMENT ...
RETRIEVAL

■ DCMT VARY SEGMENT ... OFFLINE

■ DCMT QUIESCE SEGMENT ...

■ DCMT QUIESCE DBNAME ...

■ DCMT VARY RUN UNIT ...
OFFLINE

Note the quiesce point Record the date and time that the areas were
quiesced.

Optionally force a new archive journal file
to be created:

■ Issue a DCMT VARY JOURNAL
command

■ Execute the ARCHIVE JOURNAL
utility statement

Restart update activity in the target
areas.

Issue one or more of the following
commands:

■ DCMT VARY AREA ... ONLINE

■ DCMT VARY SEGMENT ... ONLINE

■ DCMT VARY ID ... TERMINATE

■ DCMT VARY RUN UNIT ... ONLINE

Copy all files containing the target
areas.

Execute the BACKUP utility statement
using the FILE option or any comparable
backup utility.

Chapter 19. Backup and Recovery 19-7

19.2 Backup procedures

Quiescing update activity: Both DCMT VARY AREA (and SEGMENT) and
DCMT QUIESCE can be used to quiesce update activity in one or more areas of the
database. Consider the following when choosing which of these to use:

■ If DCMT VARY is used, tasks which subsequently attempt to access a target area
in an update mode (or any mode if the area is varied offline) will receive an 0966
error status. Unless the application program handles this condition, the associated
task will fail. If DCMT QUIESCE is used, such tasks will wait until update
activity is restarted, unless their quiesce wait time is exceeded.

■ DCMT QUIESCE provides more control over the quiesce operation. For example,
it is possible to specify how long the quiesce operation should wait for conflicting

Action Steps

Optionally, establish a second quiesce
point for the target areas.

Issue one or more of the following
commands:

■ DCMT VARY AREA ... RETRIEVAL

■ DCMT VARY AREA ... OFFLINE

■ DCMT QUIESCE AREA ...

■ DCMT VARY SEGMENT ...
RETRIEVAL

■ DCMT VARY SEGMENT ... OFFLINE

■ DCMT QUIESCE SEGMENT ...

■ DCMT QUIESCE DBNAME ...

■ DCMT VARY RUN UNIT ...
OFFLINE

Mark the end of the backup process. Force a new archive journal file to be
created:

■ Issue a DCMT VARY JOURNAL
command

■ Execute the ARCHIVE JOURNAL
utility statement

If a second quiesce point was established,
record its date and time.

If a second quiesce point was
established, restart update activity in
the target areas.

Issue one or more of the following
commands:

■ DCMT VARY AREA ... ONLINE

■ DCMT VARY SEGMENT ... ONLINE

■ DCMT VARY ID ... TERMINATE

■ DCMT VARY RUN UNIT ... ONLINE

19-8 CA-IDMS Database Administration

19.2 Backup procedures

tasks to finish and what action should be taken in the event that the quiesce point
has not been reached in the specified time interval.

■ In a data sharing environment, DCMT QUIESCE will quiesce update activity
across all members of the data sharing group. DCMT VARY will quiesce update
activity only within the DC/UCF system in which it is executed.

■ DCMT QUIESCE can be used to automate much of the backup process.

�� For more information on backup automation, see 19.2.4, “Automating the backup
process” on page 19-11 later in this chapter.

�� For more information on the DCMT system task, refer to CA-IDMS System Tasks
and Operator Commands.

Quiescing update activity for system areas: When backing up a system area, such
as a load area, it may be necessary to terminate predefined system run units by issuing
a DCMT VARY RUN UNIT ... OFFLINE command. This will be necessary if
predefined run units for the target area have been defined in the system definition and
such run units access the area in update mode. You can determine this by issuing a
DCMT DISPLAY RUN UNIT command.

Varying a system run unit offline does not prevent overflow run units from being
started to service requests for the area. It simply terminates predefined run units of the
specified type. Since varying an area offline will impact the system's ability to service
requests for the area, it is advisable to quiesce update activity to system areas either by
varying their status to retrieval or by using the DCMT QUIESCE command.

Depending on the options specified when issuing a DCMT VARY AREA, DCMT
VARY SEGMENT, or DCMT QUIESCE command, the system may automatically
terminate conflicting predefined system run units.

�� For more information on when predefined system run units are automatically
terminated, refer to the individual commands in CA-IDMS System Tasks and Operator
Commands.

Data sharing considerations: In a data sharing environment, whenever update
activity is quiesced, it must be quiesced in all DC/UCF systems that are members of
the data sharing group. If a DCMT QUIESCE command is used, then update activity
will automatically be quiesced on all members within the group. If a DCMT VARY
AREA or DCMT VARY SEGMENT command is used, it must be executed on each
system that is a member of the group. This can be accomplished by broadcasting the
DCMT command.

�� For more information on broadcasting DCMT commands, refer to CA-IDMS System
Tasks and Operator Commands.

Chapter 19. Backup and Recovery 19-9

19.2 Backup procedures

19.2.3 Back up before and after local mode jobs

Two options: To protect data to be accessed by an update job running in local
mode, you can either:

■ Use local mode journaling. This option is best for large databases that would
require a long time to backup and restore.

■ Back up the database before and after you run the job. This option is best for
small databases that can be backed up within a reasonable time frame.

�� For information about local mode journaling, see Chapter 18, “Journaling
Procedures” on page 18-1.

Steps to back up the database: Follow the steps below to back up a database
before and after running an update application in local mode:

CA-ADS: When you vary an area in preparation for a local mode update, CA-ADS
users should vary the area to either OFFLINE or TRANSIENT RETRIEVAL
mode; do not use RETRIEVAL mode.

Action Steps

Make the areas to be accessed by the
application unavailable under the
central version

DCMT VARY AREA or SEGMENT with
the OFFLINE, RETRIEVAL, or
TRANSIENT RETRIEVAL option

Before running an application, back
up each file of the database

BACKUP or any comparable backup utility

Dummy the journal file DD
statements in the execution JCL of the
application if the DMCL being used
has a tape journal file defined

After running the application, back up
each file of the database

BACKUP or any comparable backup utility

Swap to another disk journal file in
order to coordinate journal files with
the backup

DCMT VARY JOURNAL

Re-activate the areas for use under the
central version

■ If the areas are OFFLINE or in
RETRIEVAL mode, issue DCMT
VARY AREA or SEGMENT ONLINE

■ If the areas are in TRANSIENT
RETRIEVAL mode, first vary them
OFFLINE and then ONLINE

19-10 CA-IDMS Database Administration

19.2 Backup procedures

19.2.4 Automating the backup process

Exploiting DCMT QUIESCE: Backing up a database while the DC/UCF system is
active can be automated through the use of the DCMT QUIESCE command. To assist
in this effort, the following can be specified as options:

■ A unique identifier for use in subsequent DCMT DISPLAY ID and DCMT VARY
ID commands to query or terminate an outstanding quiesce operation.

■ The action that should be taken in the event that a quiesce point cannot be reached
within a specified time interval. The available choices are to abandon the quiesce
operation or force the quiesce by canceling conflicting tasks.

■ An indication of whether a new archive journal file should be created when the
quiesce point is reached.

■ An indication of whether update activity in the target areas should be restarted
automatically once the areas are quiesced.

Quiesce user exit: When a quiesce point is achieved, numbered exit, Exit 38 is
invoked. This exit can be used to initiate the next step in the backup process. For
example, it can submit a job to the internal reader, thus enabling the QUIESCE task to
automatically initiate a copy operation. Once the files are copied, a subsequent UCF
batch job step can invoke further system tasks to complete the backup process.

Rather than submitting a batch job, exit 38 might instead use an API to directly
interface to a "zero-time copy" facility if the database resides on a storage device that
provides such a capability.

�� For details on how to code an Exit 38 routine, refer to CA-IDMS System
Operations.

�� For more information on the DCMT QUIESCE command, refer to CA-IDMS
System Tasks and Operator Commands.

Automating a quiesced backup: The following illustrates how the DCMT
QUIESCE command can be used to automate a quiesced backup operation.

Activity Description

dcmt quiesce dbname CUST hold
swap CUSTBKP

This command initiates a quiesce operation
identified as CUSTBKP. All areas in all
segments included in the database name
CUST will be quiesced. When the quiesce
point is reached, a new archive journal file
will be created and exit 38 will be invoked.
The quiesce point will be held until the
quiesce operation is explicitly terminated.

Chapter 19. Backup and Recovery 19-11

19.2 Backup procedures

Automating a hot backup: The following illustrates how the DCMT QUIESCE
command can be used to automate a hot backup operation.

Activity Description

Exit 38 is invoked Exit 38 submits a batch job through the
internal reader (or an equivalent mechanism)
to initiate the copy operation.

Batch job is executed The batch job first copies all files containing
areas of the CUST database and then
invokes a UCF batch job step that
terminates the quiesce operation by issuing a
DCMT VARY ID command.

dcmt vary id CUSTBKP terminate This command terminates the quiesce
operation and makes the CUST areas
available for update.

Activity Description

dcmt quiesce dbname CUST nohold
swap CUSTBKP1

This command initiates a quiesce operation
identified as CUSTBKP1. All areas in all
segments included in the database name
CUST will be quiesced. When the quiesce
point is reached, a new archive journal file
will be created and exit 38 will be invoked.
The quiesce operation will then terminate
and make the areas available for update.

Exit 38 is invoked Exit 38 submits a batch job through the
internal reader (or an equivalent facility
depending on the operating system) to
initiate the copy operation.

Batch job is executed The batch job first copies all files containing
areas of the CUST database and then
invokes a UCF batch job step.

The UCF batch job step either initiates a
second quiesce operation by issuing a
DCMT QUIESCE command or forces a new
archive journal file to be created by issuing
a DCMT VARY JOURNAL command.

19-12 CA-IDMS Database Administration

19.2 Backup procedures

Activity Description

dcmt quiesce dbname CUST nohold
swap CUSTBKP2

This command initiates a quiesce operation
identified as CUSTBKP2. All areas in all
segments included in the database name
CUST will be quiesced. When the quiesce
point is reached, a new archive journal file
will be created and exit 38 will be invoked.
The quiesce operation will then terminate
and make the areas available for update.

Exit 38 examines the quiesce identifier and
determines that no further action is needed.

dcmt vary journal This command forces the use of another
disk journal file which in turn causes a
batch execution of the ARCHIVE
JOURNAL utility statement.

Note: Automatic submission of the
ARCHIVE JOURNAL job is dependent on
the implementation of a site-specific means
(such as WTOEXIT) to examine console
messages and use operating system facilities
to submit a batch job.

Chapter 19. Backup and Recovery 19-13

19.3 Automatic recovery

 19.3 Automatic recovery

Available only under the central version: Automatic recovery is available only
under the central version. Automatic recovery occurs when CA-IDMS/DB:

■ Warmstarts, following a system failure

■ Automatically rolls back a failing transaction

Each is described below.

 19.3.1 Warmstart

Due to system failure: Warmstart occurs when CA-IDMS/DB starts up and by
examining the journal files it detects that the previous execution of the DC/UCF
system was not shutdown normally. CA-IDMS uses the journal files to rollback all
transactions that were active when the system failed.

How you respond to a system failure: In response to a DC/UCF system failure,
you should immediately restart the system. In a data sharing environment, it is
particularly important to restart failing systems as soon as possible, since data that was
being updated at the time of failure remains inaccessible to other group members until
the failing system has completed its warmstart.

Note: Do not offload any journal files between the time of system failure and your
first attempt to warmstart the system. If you must offload, use the READ
option of the ARCHIVE JOURNAL utility statement.

Data sharing considerations: In general, you respond to a DC/UCF system
failure in the same way regardless of whether or not the system is a member of a data
sharing group. However, certain types of failures, such as a loss in connectivity to a
coupling facility, require special action. Additionally, if a member is unable to
warmstart and manual recovery becomes necessary, then data sharing introduces
additional considerations.

�� For more information on recovery considerations in a data sharing environment,
refer to CA-IDMS System Operations.

�� For more information on the impact of data sharing to manual recovery, see 19.4,
“Manual recovery” on page 19-18 later in this chapter.

Incomplete warmstart: Certain errors, such as I/O errors or open failures, may
prevent warmstart from rolling out the changes in one or more database files. If this
occurs, warmstart will continue, the system will start up and the transactions affected
by the error will be restarted. Once restarted, automatic rollback will be invoked to
again attempt to remove the effect of the unrecovered transactions. If automatic
rollback is successful, no further action is necessary although the reason for the
original failure should be investigated and corrective action taken if necessary. If
automatic rollback is not successful, the unrecovered transactions will be suspended
just as if they had encountered an I/O error. To correct the situation, You respond as if

19-14 CA-IDMS Database Administration

19.3 Automatic recovery

a database file I/O error occurred. First take whatever action is necessary to make the
file available, such as restoring a damaged file or using DCMT commands to correct a
data set name. Then restart the suspended transactions by issuing a DCMT VARY
FILE ACTIVE command.

�� For more information on responding to I/O errors, see 19.6, “Recovery procedures
from database file I/O errors” on page 19-33 later in this chapter.

How warmstart works: To restore all transactions active at the time of a system
failure, CA-IDMS/DB does the following:

1. Establishes which disk journal file was active at the time of the failure

2. Locates the last journal record written before the system failed

3. Rolls back and writes ABRT checkpoints for all incomplete transactions.

All transactions can then be restarted with no further interruption in processing.

�� For information about journal checkpoints, see Chapter 18, “Journaling Procedures”
on page 18-1.

Example: The example below shows how a warmstart operation is performed. In
this example, two transactions are active at the time of the system crash. Both are
recovered automatically when the system is restarted.

Chapter 19. Backup and Recovery 19-15

19.3 Automatic recovery

 19.3.2 Automatic rollback

Due to transaction failure: Automatic rollback occurs when a transaction fails or
an application requests recovery by means of the ROLLBACK command.
CA-IDMS/DB writes an ABRT checkpoint for the transaction and automatically rolls
out the changes made to the database by the transaction. The recovery occurs while
the system continues to process requests by other concurrently active transactions.

Example: The example below shows how an automatic rollback occurs. In this
example, transaction B aborts. CA-IDMS/DB then performs an automatic rollback for
transaction B while other transactions continue to process.

19-16 CA-IDMS Database Administration

19.3 Automatic recovery

Chapter 19. Backup and Recovery 19-17

19.4 Manual recovery

 19.4 Manual recovery

Before you begin: Before you attempt to manually recover the areas or files of the
database, gather the available facts, such as:

1. The time of the system or transaction failure

2. Whether the failure occurred under the central version or in local mode

3. What applications were running at the time the system failed

4. Which areas of the database were in use and whether these were in update mode

5. The time of the preceding quiesce point

You can use the PRINT JOURNAL or MERGE ARCHIVE utility statements to
determine the information in items 3, 4, and 5.

Locate backup and archive files: After you've determined the nature of the
failure, locate the most recent backup of the database and all archive journal files
created since the backup.

Note: To successfully recover the database, all of the archive files must be readable,
To increase the likelihood of this, you can define multiple archive files in the
DMCL used to execute the ARCHIVE JOURNAL utility statement. This
directs CA-IDMS/DB to create multiple archive files during offload.

Minimize scope of recovery: You can limit the recovery process by recovering
only the areas or files that were impacted by the failure. Areas that were available for
retrieval do not have to be recovered. Depending on the nature of the failure, recovery
may be restricted to an individual file. If the recovery is due to an application error, all
areas updated by the application may need to be recovered to insure the logical
integrity of the database. This may in turn necessitate the recovery of other areas, if
another application has updated both the original and additional areas.

After you're done: After you recover an area or file, check the validity of the
recovery by:

■ Following procedures you designed to check the validity of the data; for example,
by executing a report you run regularly and comparing the output to output
produced before the recovery

■ Verifying the structure of the database by executing the IDMSDBAN utility

�� For more information on IDMSDBAN, refer to CA-IDMS Utilities.

What follows: The remainder of this section describes the general recovery
procedure to be followed when using a quiesced backup or a hot backup procedure.

The remainder of this chapter describes manual recovery procedures under the
following circumstances:

■ After a warmstart fails

19-18 CA-IDMS Database Administration

19.4 Manual recovery

■ I/O errors in a database file

■ I/O errors in a journal file

■ When journaling in local mode

■ When using the database in both local mode and under the central version
(mixed-mode recovery)

It also provides special considerations for data sharing environments and native VSAM
files.

19.4.1 Recovery from a quiesced backup

Quiesced backup: A quiesced backup is a backup that is performed while no
updates are being made to the data that is being copied. The following types of backup
are quiesced backups:

■ A backup performed after the DC/UCF system is shutdown

■ A backup performed while the DC/UCF system is active, provided that the
affected areas are quiesced at the time of the backup

■ A backup performed before and after a local mode job

�� For information on how to backup a database, see 19.2, “Backup procedures” on
page 19-4 earlier in this chapter.

Recovery procedure: The procedure outlined below describes the general approach
to recovery from a quiesced backup. See the later sections in this chapter for additional
considerations specific to certain types of failures.

Action Steps

Copy the files that need to be
recovered from the backup

When required: Always.

Execute the RESTORE utility statement
using the FILE option or another
comparable utility.

Chapter 19. Backup and Recovery 19-19

19.4 Manual recovery

Action Steps

Consolidate, in the sequence in which
they were created, the archive journal
files created since the quiesce point
established at the start of the backup
procedure.

When required: This step is
necessary only under the following
conditions:

■ In OS/390 and MSP/EX
environments, if the subsequent
ROLLFORWARD utility
statement will be executed with
the SEQUENTIAL option and
more than one archive journal file
must be processed.

■ In a data sharing environment, if
more than one member has
updated the affected areas and the
subsequent ROLLFORWARD
utility statement will be executed
with either the SEQUENTIAL or
the ALL and STOP TIME
options.

Execute one of the following and use as
input the properly concatenated set of
archive files:

■ FIX ARCHIVE utility statement

■ MERGE ARCHIVE utility statement

■ EXTRACT JOURNAL utility statement

■ another comparable utility

Note: If consolidating archive files from
multiple members and the subsequent
rollforward will be executed with either the
SEQUENTIAL or the ALL and STOP
TIME options, use the MERGE ARCHIVE
utility statement.

�� For more information, see 19.10, “Data
sharing recovery considerations” on
page 19-44 later in this chapter.

Note: If recovery involves local mode
journal files, the MERGE ARCHIVE utility
statement can be used to consolidate both
local mode journal files and archive files.

�� For more information, see 19.9,
“Recovery procedures for mixed-mode
operations” on page 19-42 later in this
chapter.

19-20 CA-IDMS Database Administration

19.4 Manual recovery

Action Steps

Reapply to the restored files all
updates made since the backup was
taken

When required: Always.

Execute the ROLLFORWARD utility
statement using either the consolidated
journal file or individual archive files
concatenated in the sequence in which they
were created.

If the journal files were consolidated using
the EXTRACT JOURNAL utility, specify
the FROM EXTRACT option.

If FROM EXTRACT is not specified, then
the following considerations apply:

■ Specify the SORTED option unless
there is insufficient disk space available.
SORTED must be specified if:

– A consolidated journal file is not
used as input in OS/390 and
MSP/EX environments and more
than one archive file must be
processed.

– The input journal file is on a
device, such as a disk or a 3490
that does not support reading
backwards.

– Running ROLLFORWARD in a
VM/ESA environment.

■ If the SEQUENTIAL option is used and
the quiesce point for the affected areas
does not coincide with the start of the
first input file, use the START TIME
parameter to identify the quiesce point.

19.4.2 Recovery from a hot backup

Hot backup: A hot backup is a backup that is performed while the database is being
updated. The steps that must be taken to create a usable hot backup are described
under 19.2, “Backup procedures” on page 19-4 earlier in this chapter.

Recovery procedures: Following are two approaches to recovery from a hot
backup. The first involves the use of both the ROLLBACK and ROLLFORWARD
utility statements; the second involves two executions of the ROLLFORWARD utility
statement. Either approach can be used to successfully recover from a hot backup;
however certain conditions must be satisfied in order to use the second approach.

Chapter 19. Backup and Recovery 19-21

19.4 Manual recovery

For additional considerations associated with specific types of failure, refer to later
sections in this chapter.

Restore procedure 1: This approach can always be used to recover from a hot
backup provided that the correct procedures were followed when the backup was taken
and the necessary journal and backup files are available.

Action Steps

Copy the files that need to be
recovered from the backup

When required: Always.

Execute the RESTORE utility statement
using the FILE option or another
comparable utility.

Identify:

■ The quiesce point that was taken
at the beginning of the backup
procedure.

■ The archive journal files created
since this quiesce point up to and
including the one created at the
end of the backup procedure.

■ All archive journal files created
since the quiesce point up to the
point of failure.

When required: Always.

Use the PRINT JOURNAL utility statement,
or if the quiesce point was established using
the DCMT QUIESCE command, examine
the operating system log for the DC/UCF
system on which the DCMT command was
issued.

Consolidate, in the sequence in which
they were created, the archive journal
files created between the quiesce
point and the end of the backup
procedure.

When required: This step is
necessary only under the following
conditions:

■ In OS/390 and MSP/EX
environments if more than one
input journal file must be
processed.

■ In a data sharing environment, if
the SEQUENTIAL option will be
specified on the subsequent
ROLLBACK utility statement
and more than one member's
journal images must be
processed.

Execute one of the following and use as
input the properly concatenated set of
archive files:

■ FIX ARCHIVE utility statement

■ MERGE ARCHIVE utility statement

■ Another comparable utility

Note: If consolidating archive files from
multiple members and the subsequent
rollback will be executed with the
SEQUENTIAL option, use the MERGE
ARCHIVE utility statement.

�� For more information, see 19.10, “Data
sharing recovery considerations” on
page 19-44 later in this chapter.

Note: This and the subsequent step can be
combined by using a sort utility to do the
consolidation unless the use of MERGE
ARCHIVE is required.

19-22 CA-IDMS Database Administration

19.4 Manual recovery

Action Steps

If backward read is not supported,
presort the journal blocks created
between the quiesce point and the end
of the backup procedure in reverse
sequence.

Multiple archive files may be
consolidated into a single sorted
output file.

When required: This step is
necessary in a VM/ESA environment
or if the journal files reside on
devices such as disk or 3490s that do
not support backward read.

Execute the sort utility and use as input
either a set of archive journal files or the
consolidated journal file produced in the
preceding step.

�� For the sort parameters to use, refer to
the ROLLBACK utility statement in
CA-IDMS Utilities.

Remove from the restored files the
effects of all updates made between
the quiesce point and the end of the
backup process.

When required: Always

Execute the ROLLBACK utility statement
specifying the HOTBACKUP option and
using either the consolidated journal file or
individual archive files concatenated in the
sequence in which they were created.

If the quiesce point for the affected areas
does not coincide with the start of the input
(or the end of the input if it was sorted in
reverse sequence), use the STOP TIME
parameter to identify the quiesce point.

If STOP TIME is specified, also specify
ACTIVE; otherwise specify ALL.

If backward read is not supported for the
device on which the input journal file
resides, specify ROLLBACK3490 in the
SYSIDMS parameter file associated with the
ROLLBACK job step. This parameter is not
necessary in a VM/ESA environment.

If a consolidated journal file is not used as
input in OS/390 or MSP/EX environments,
specify the SORTED option.

Chapter 19. Backup and Recovery 19-23

19.4 Manual recovery

Action Steps

Consolidate, in the sequence in which
they were created, the archive journal
files created since the quiesce point
established at the start of the backup
procedure.

When required: This step is
necessary only under the following
conditions:

■ In OS/390 and MSP/EX
environments, if the subsequent
ROLLFORWARD utility
statement will be executed with
the SEQUENTIAL option and
more than one archive journal file
must be processed.

■ In a data sharing environment, if
more than one member has
updated the affected areas and the
subsequent ROLLFORWARD
utility statement will be executed
with either the SEQUENTIAL or
the ALL and STOP TIME
options.

Execute one of the following and use as
input the properly concatenated set of
archive files:

■ FIX ARCHIVE utility statement

■ MERGE ARCHIVE utility statement

■ EXTRACT JOURNAL utility statement

■ Another comparable utility

Note: If consolidating archive files from
multiple members and the subsequent
rollforward will be executed with either the
SEQUENTIAL or the ALL and STOP
TIME parameters, use the MERGE
ARCHIVE utility statement.

�� For more information, see 19.10, “Data
sharing recovery considerations” on
page 19-44 later in this chapter.

Note: If recovery also involves local mode
journal files, the MERGE ARCHIVE utility
statement can be used to consolidate local
mode journal files and archive files.

�� For more information, see 19.9,
“Recovery procedures for mixed-mode
operations” on page 19-42 later in this
chapter.

19-24 CA-IDMS Database Administration

19.4 Manual recovery

Restore procedure 2: The use of this approach requires that:

■ Two quiesce points were established during the hot backup procedure

■ Backward read is supported for the input journal files. Backward read is not
available in VM/ESA environments nor when the journal files reside on disk or a
device such as a 3490

If either of these conditions are not satisfied, the first recovery approach must be
followed.

Action Steps

Reapply to the restored files all
updates made since the quiesce point
established at the beginning of the
backup procedure.

When required: Always.

Execute the ROLLFORWARD utility
statement using either the consolidated
journal file or individual archive files
concatenated in the sequence in which they
were created.

If the journal files were consolidated using
the EXTRACT JOURNAL utility, specify
the FROM EXTRACT option.

If FROM EXTRACT is not specified, then
the following considerations apply:

■ Specify the SORTED option unless
there is insufficient disk space available.
SORTED must be specified if:

– A consolidated journal file is not
used as input in OS/390 and
MSP/EX environments and more
than one archive file must be
processed.

– The input journal file is on a
device, such as a disk or a 3490
that does not support reading
backwards.

– Running ROLLFORWARD in a
VM/ESA environment.

■ If the SEQUENTIAL option is used and
the quiesce point for the affected areas
does not coincide with the start of the
first input file, use the START TIME
parameter to identify the quiesce point.

Chapter 19. Backup and Recovery 19-25

19.4 Manual recovery

Action Steps

Copy the files that need to be
recovered from the backup.

When required: Always.

Execute the RESTORE utility statement
using the FILE option or another
comparable utility.

Identify the two quiesce points that
were taken during the backup process.
Also identify the archive journal files
that were created between those
quiesce points and after the second
quiesce point.

When required: Always.

Use the PRINT JOURNAL utility statement,
or if the quiesce point was established using
the DCMT QUIESCE command, examine
the operating system log for the DC/UCF
system on which the DCMT command was
issued.

Consolidate, in the sequence in which
they were created, the archive journal
files created between the two quiesce
points established during the backup
procedure.

When required: This step is
necessary only in OS/390, MSP/EX,
and data sharing environments if more
than one archive journal file must be
processed.

Execute one of the following and use as
input the properly concatenated set of
archive files:

■ FIX ARCHIVE utility statement

■ MERGE ARCHIVE utility statement

■ Another comparable utility

Note: If consolidating archive files from
multiple data sharing members, use the
MERGE ARCHIVE utility statement. For
more information, see 19.10, “Data sharing
recovery considerations” on page 19-44
later in this chapter.

Reapply to the restored files all
updates made between the two
quiesce points.

When required:

Execute the ROLLFORWARD utility
statement specifying the SEQUENTIAL
option and using either the consolidated
journal file or individual archive files
concatenated in the sequence in which they
were created.

If the first quiesce point for the affected
areas does not coincide with the start of the
first input file, use the START TIME
parameter to identify the quiesce point.

If the second quiesce point does not
coincide with the end of the last input file,
use the STOP TIME parameter to identify
the second quiesce point.

Note: Output from the EXTRACT utility
statement cannot be used to apply the
images during this step.

19-26 CA-IDMS Database Administration

19.4 Manual recovery

Action Steps

Consolidate, in the sequence in which
they were created, the archive journal
files created after the second quiesce
point established during the backup
procedure.

When required: This step is
necessary only under the following
conditions:

■ In OS/390 and MSP/EX
environments, if the subsequent
ROLLFORWARD utility
statement will be executed with
the SEQUENTIAL option and
more than one archive journal file
must be processed.

■ In a data sharing environment, if
more than one member has
updated the affected areas and the
subsequent ROLLFORWARD
utility statement will be executed
with either the SEQUENTIAL or
the ALL and STOP TIME
options.

Execute one of the following and use as
input the properly concatenated set of
archive files:

■ FIX ARCHIVE utility statement

■ MERGE ARCHIVE utility statement

■ EXTRACT JOURNAL utility statement

■ Another comparable utility

Note: If consolidating archive files from
multiple members and the subsequent
rollforward will be executed with either the
SEQUENTIAL or the ALL and STOP
TIME parameters, use the MERGE
ARCHIVE utility statement.

�� For more information, see 19.10, “Data
sharing recovery considerations” on
page 19-44 later in this chapter.

Note: If recovery also involves local mode
journal files, the MERGE ARCHIVE utility
statement can be used to consolidate local
mode journal files and archive files.

�� For more information, see 19.9,
“Recovery procedures for mixed-mode
operations” on page 19-42 later in this
chapter.

Chapter 19. Backup and Recovery 19-27

19.4 Manual recovery

Action Steps

Reapply to the restored files, all
updates made since the second
quiesce point

Note: Updates made prior to the
second quiesce point may also be
reapplied during this step; however
there is no need to do so.

When required: Always.

Execute the ROLLFORWARD utility
statement using either the consolidated
journal file or individual archive files
concatenated in the sequence in which they
were created.

If the journal files were consolidated using
the EXTRACT JOURNAL utility, specify
the FROM EXTRACT option.

If FROM EXTRACT is not specified, then
the following considerations apply:

■ Specify the SORTED option unless
there is insufficient disk space available
to preform the sort. SORTED must be
specified if a consolidated journal file is
not used as input in OS/390 and
MSP/EX environments and more than
one archive file must be processed.

■ If the SEQUENTIAL option is used and
the quiesce point for the affected areas
does not coincide with the start of the
first input file, use the START TIME
parameter to identify the quiesce point.

19.4.3 Reducing recovery time

Ways to reduce recovery time: It is often critical to recover a database as quickly
as possible in order to meet availability demands. The length of time it takes to
recover can be reduced by:

■ Limiting the scope of the recovery

■ Reducing the time between backups

■ Sorting journal images

■ Pre-processing archive files

Limiting scope of recovery: One of the most significant factors affecting recovery
time is the number of files being recovered. If recovering due to an I/O error, only a
single file may need to be recovered. If recovering due to a journal I/O error, it may
be necessary to recover all files in the database. To reduce time, recover only those
files or areas impacted by the failure.

19-28 CA-IDMS Database Administration

19.4 Manual recovery

Reducing time between backups: Another factor that affects recovery time is the
number of journal images that must be applied to a restored file. One way to reduce
the volume of journal images is to backup more frequently. Backups should be taken
frequently enough that recovery times meet your operational requirements.

Sorting journal images: Another way to reduce the number of journal images
applied to a restored file is to use the SORTED option of the ROLLFORWARD or
ROLLBACK utility statement. By specifying this option, only the last AFTR image (in
the case of ROLLFORWARD) or the first BFOR image (in the case of ROLLBACK)
is applied to the database. While time and resources are required to sort the journal
images, the number of I/Os to the database (and therefore the length of time needed to
recover) may be significantly reduced using this option.

Note: There are restrictions on the use of the SORTED option when recovering from
a hot backup. For more information, see 19.4.2, “Recovery from a hot backup” on
page 19-21 earlier in this section.

Preprocessing archive files: Another way to reduce the time needed to recover is to
preprocess journal images using the EXTRACT JOURNAL utility statement. This
utility eliminates redundant journal images by retaining only the last AFTR image for
a dbkey. It creates an output file (called an extract file) that subsequently can be used
as input to the ROLLFORWARD utility statement.

A backup plan may include the regular use of EXTRACT JOURNAL to pre-process
archive journal files. If a recovery then becomes necessary, the extract files already
exist and can be used in place of the original archive files to reduce the volume of
journal images that must be applied to the database, thereby reducing the length of
time it takes to recover.

To illustrate how this may be done, the EXTRACT JOURNAL utility might be
executed each night. Its input would consist of all archive files produced since the
previous night's extract or since the previous backup, whichever occurred most
recently. If a recovery becomes necessary, the EXTRACT JOURNAL utility must be
executed one more time to process the remaining archive files. After the database files
are restored from the backup, the ROLLFORWARD utility is used to reapply updates.
Its input is the concatenated set of extract files produced since the backup.

Note: There are restrictions on the use of extract files when recovering from a hot
backup.

�� For more information, see 19.4.2, “Recovery from a hot backup” on page 19-21
earlier in this section.

�� For considerations in the use of the EXTRACT JOURNAL utility statement in a
data sharing environment, see 19.10, “Data sharing recovery considerations” on
page 19-44 later in this chapter.

Chapter 19. Backup and Recovery 19-29

19.4 Manual recovery

19.4.4 Recovering a large number of files

Operating system file limitations: Some operating systems impose a limit on the
number of files that can be accessed within a single job step. Except when exploiting
extended file support in OS/390, the limit for a central version is the same as that for a
batch job and so there are no special considerations involved in recovery.

Extended file support: CA-IDMS has extended the number of files that can be
accessed by a central version in an OS/390 operating system to exceed that which can
be accessed by a batch job step. While useful, this capability may impact manual
recovery.

Extended file support and manual recovery: Under rare circumstances, it may be
necessary to recover more files than can be accessed by a single batch job step. If this
occurs, it will be necessary to split the recovery operation into multiple job steps each
of which recovers a subset of the areas, files or segments within the DMCL. Each job
step can access up to 3273 files.

19-30 CA-IDMS Database Administration

19.5 Recovery procedures after a warmstart failure

19.5 Recovery procedures after a warmstart failure

Before you begin: Before you begin the recovery process, determine why the
warmstart failed. Start by checking any shutdown or warmstart messages. The failure
could be due to:

■ Changes made to the DMCL or startup JCL

 ■ Hardware problems

 ■ Software maintenance

Corrective action: If the failure is due to:

Steps: In the unlikely event that hardware or software problems prevent the
warmstart process from recovering the database, follow these steps:

Data sharing considerations: If a member of a data sharing group is unable to
warmstart and manual recovery must be undertaken, any shared area that was being
updated by the failing member must be quiesced in all other members of the data
sharing group before the ROLLBACK utility is executed. To quiesce the area, change

Change Action

Changes in the DMCL and a
timestamp mismatch is detected

Warmstart the system using the prior version
of the DMCL load module

Changes in the startup JCL Correct the JCL and restart the system

Software maintenance Backup the maintenance and restart the
system

Action Statement

Offload all journal files ARCHIVE JOURNAL with the FULL
option to offload all full journal files. This
should be followed by an ARCHIVE
JOURNAL with the READ option to offload
the journal that was active when the
abnormal system failure occurred.

Recover the transactions that were
active at the time of the system
failure (that is, abended transactions)

ROLLBACK with the ACTIVE option

Unlock the areas that were not
accessed during the rollback process.
The ROLLBACK statement identifies
what areas it unlocked.

UNLOCK

Reinitialize the journal files FORMAT with the JOURNAL option

Chapter 19. Backup and Recovery 19-31

19.5 Recovery procedures after a warmstart failure

its status to OFFLINE or TRANSIENT RETRIEVAL. Do not use the DCMT
QUIESCE command to quiesce the area.

�� For additional data sharing considerations, see 19.10, “Data sharing recovery
considerations” on page 19-44 later in this chapter.

19-32 CA-IDMS Database Administration

19.6 Recovery procedures from database file I/O errors

19.6 Recovery procedures from database file I/O errors

What an I/O error means: An I/O error occurring on a database file indicates that
the file either cannot be read or cannot be written to. This may be caused by
hardware malfunctions such as a channel problem, which if corrected, means that no
recovery operation is needed. An I/O error can also be caused by a physically
damaged file or disk device; this type of error requires recovery of the file.

Identifying a database file I/O error: When CA-IDMS/DB encounters an I/O
error in a database file, the following events occur:

1. CA-IDMS/DB issues one of the following messages:

■ DC205007, which indicates a read error

■ DC205008, which indicates a write error

2. The transaction abends with a code of 3010 or 3011.

3. CA-IDMS/DB performs automatic recovery processing.

If recovery is successful: If the recovery process is successful, CA-IDMS/DB
continues processing. To fix the I/O error, you must follow these steps:

If the recovery is unsuccessful: If the recovery process is unsuccessful,
CA-IDMS/DB suspends the transaction and issues the following message:

DC295999 TRANSACTION SUSPENDED. TRANSACTION ID: transaction-id

When CA-IDMS/DB issues this message, quiesce the area in which the problem
occurred as quickly as possible to prevent additional transactions from readying the
area. The table below identifies all the steps:

Action Statement

Take the area(s) associated with the
bad database file offline

DCMT VARY AREA with the OFFLINE
option

Identify the problem and fix it. If the
problem is not associated with the
database file itself (for example, the
problem is due to a bad channel),
perform step 3 after the problem is
corrected; if the problem is due to a
damaged file, perform the steps
outlined for an unsuccessful recovery.

Bring the area(s) associated with the
database file online

DCMT VARY AREA with the ONLINE
option

Chapter 19. Backup and Recovery 19-33

19.6 Recovery procedures from database file I/O errors

Action Statement

Quiesce the affected area (see
considerations below)

DCMT VARY AREA with the
TRANSIENT RETRIEVAL or OFFLINE
options

Switch to a new journal file DCMT VARY JOURNAL

De-allocate the file DCMT VARY FILE with the
DEALLOCATE option; use the FORCE
option if the file cannot be closed (for
example, because of a channel problem)

Restore a copy of the damaged file
using the last backup tape as input. If
the FORCE option was used in step
3, recreate the file with a new name

RESTORE with the FILE option

Rollforward the restored copy of the
file using the archive journal files in
the order they were created

ROLLFOWARD FILE with the ALL option

If the file was restored to a new
location:

■ Recatalog it in OS/390 and
BS2000/OSD

■ Update the standard labels in
VSE/ESA

Operating system facilities

If the file was renamed in OS/390,
BS2000/OSD, or VM/ESA, change its
dataset name

DCMT VARY FILE with the DSNAME
option

Make the new file available to the
central version

DCMT VARY FILE with the ALLOCATE
option

Re-activate the suspended transactions
so they complete automatic recovery

DCMT VARY FILE with the ACTIVE
option

Re-activate the area for update
processing

■ If the area was varied OFFLINE, issue
DCMT VARY AREA with the
ONLINE option

■ If the area was varied to TRANSIENT
RETRIEVAL mode, first vary it
OFFLINE and then ONLINE

19-34 CA-IDMS Database Administration

19.6 Recovery procedures from database file I/O errors

 Considerations

Quiescing the area: Quiesce the area by varying it offline or retrieval. The
differences are:

■ If the area is varied offline, no new transactions will be able to access the area
until the recovery is complete and the area is varied online; existing transactions
will complete if possible.

■ If the area is varied to transient retrieval, transactions can continue to read data
from the area but cannot update until the recovery is complete and the area is
varied offline and back online. This may be useful if the area is mapped to many
files (only one of which is damaged) or if only a small portion of the file is
damaged. It can also be beneficial if most of the file blocks are in a buffer or a
dataspace.

If the area to be recovered is a system area, it may be necessary to terminate
predefined system run units by issuing a DCMT VARY RUN UNIT ... OFFLINE
command in order to quiesce activity to the area. It is advisable to vary the status of a
system area to transient retrieval rather than offline.

In a data sharing environment, it is important to quiesce a shared area in all members
of the data sharing group. The broadcast capability of DCMT commands can be used
to do this easily.

Renaming the file: If you restored the file under a new name, you must do one of
the following:

■ Rename (and recatalog) the restored file to its original name before restarting the
DC/UCF system.

■ Alter the system startup JCL to reference the new dataset name.

■ After recovery is complete, modify the dataset name in the definition of the file,
regenerate all DMCLs which include the file's segment and make the new DMCL
available to the DC/UCF system.

�� For more information on making a DMCL available to a runtime system, see
Chapter 4, “Defining, Generating, and Punching a DMCL” on page 4-1.

If you fail to do one of the above, CA-IDMS/DB will attempt to access the wrong file
the next time the system is started. This may have serious consequences if the original
file still exists.

Use of deallocate force: If the damaged file was de-allocated using the FORCE
option, the DC/UCF system marks the file as closed and de-allocated but does not
actually issue the corresponding operating system requests. For this reason, you must
restore the file under a different dataset name. When the DC/UCF system is
eventually shutdown, it will not shutdown successfully because the operating system
will attempt to close the original file. This will either cause an abend or the DC/UCF
system will hang. In either case, examine the messages produced on the log. If the

Chapter 19. Backup and Recovery 19-35

19.6 Recovery procedures from database file I/O errors

following message appears, the database system has completed processing and no
additional action is required:

DC299919 CA-IDMS/DB Inactive

If this message does not appear, you should restart the system (after taking appropriate
steps such as renaming the file) and then shut it down.

Correcting the lock option of an area and file: If the area associated with a
damaged database file is in retrieval mode or offline and the file was restored with the
area lock on, then the area status is incompatible with the file status. If you try to
vary the area online, IDMS responds with an error. To correct this situation, issue a
DCMT VARY AREA command with the UPDATE LOCKED option. This command
allows IDMS to vary the area to an update mode even though the file is locked.

19-36 CA-IDMS Database Administration

19.7 Recovery procedures from journal file I/O errors

19.7 Recovery procedures from journal file I/O errors

What happens: If an I/O error is encountered when accessing a journal file, the
system responds differently depending on whether a read or write error is encountered:

■ If a write error occurs, CA-IDMS/DB swaps to a new journal file, re-issues the
journal write and disables the use of the file on which the error occurred.

■ If a read error occurs, CA-IDMS/DB writes message DC205007 to the system log,
indicating a read error, and it disables the journal file from further use.

The DC/UCF system will continue to operate without the use of the damaged journal
file, although processing may be slower due to the availability of fewer journal files.

Automatic recovery failure: If a transaction abends (or issues a rollback) and, in
order to recover, CA-IDMS/DB must access a disabled journal file, it places the failing
transaction in a suspended state and issues the following message to the log:

DC295999 Transaction suspended. Transaction id xxxxxx

Recovery procedure steps: To recover from an I/O error on a journal file, follow
these steps:

Chapter 19. Backup and Recovery 19-37

19.7 Recovery procedures from journal file I/O errors

 Considerations

Quiescing system activity: The approach outlined above quiesces activity within the
system by varying the areas to a transient retrieval mode. This allows the system to
remain active and capable of processing retrieval transactions until it is determined
whether or not manual recovery is necessary. Varying the areas offline or attempting
to shut the system down would also be valid alternatives.

Action Statement

1. Quiesce all activity within the
system

For every area in update mode within the
system (except load, scratch, queue and log
areas), issue DCMT VARY AREA or
SEGMENT with the TRANSIENT
RETRIEVAL option

2. Monitor the transactions within the
system

DCMT DISPLAY TRANSACTIONS

3. If all the areas quiesce and the only
transactions that remain are internal
rununits:

3.1. Backup the areas that were in
update mode at the time of the error

BACKUP using the FILE option

3.2. Initialize the damaged journal file FORMAT JOURNAL

3.3. Re-activate the areas within the
system

DCMT VARY AREA or SEGMENT

4 If the areas will not quiesce and the
only transactions left are suspended,
cancel the system

Operating system facilities

5. Restore all areas that were open at
the time of the I/O error (including
load and queue areas)

RESTORE

6. Roll forward all restored areas
using the archive journal files created
since each backup was taken

ROLLFORWARD with the COMPLETE
and AREA options

7. Initialize all journal files FORMAT JOURNAL with the ALL option

8. Backup all recovered database
areas

BACKUP with the FILE option

9. Re-start the system

10. Re-run all transactions that were
not recovered

19-38 CA-IDMS Database Administration

19.7 Recovery procedures from journal file I/O errors

In a data sharing environment, it is important to quiesce a shared area in all members
of the data sharing group. The broadcast capability of DCMT commands can be used
to do this easily.

Do not cancel tasks: Under no circumstances should you cancel a task or batch job
executing under the central version if a journal I/O error is encountered. By cancelling
the task, there is more chance that automatic recovery will fail because of the damaged
journal file, thus necessitating manual recovery.

Conservative approach: The steps outlined above take a conservative approach to
the recovery process in two ways:

■ No attempt is made to try and offload the damaged journal file. If the file can be
offloaded, then the areas can be recovered using ROLLBACK (with the ACTIVE
option) rather than using RESTORE and ROLLFORWARD.

■ All areas being updated by the system are recovered. If you identify the areas that
were being updated by the suspended transactions, then recovery can be limited to
those areas and other areas which are logically-associated. To identify the areas
that were being updated, you can use the DCMT DISPLAY TRANSACTION
command for the suspended transactions or the DCMT DISPLAY AREA
command which will identify the areas that have not quiesced.

Chapter 19. Backup and Recovery 19-39

19.8 Recovery procedures for local mode operations

19.8 Recovery procedures for local mode operations

What follows: Recovery procedures for local mode operations differ depending on
whether or not you are journaling and if so, whether you are journaling to a disk
device or tape device. The topics below provide the recovery procedures for each
situation.

 19.8.1 No journaling

Use the backup file: If you are not maintaining journal files during execution of a
local mode job and the job terminates abnormally, you must restore all areas updated
by the local mode application.

19.8.2 Journaling to a tape device

Steps: To recover a local mode database when journaling to a tape device, follow
these steps:

Action Statement

Rollback the database or areas of the
database using as input the tape
journal file created by the local mode
job

■ If the job can be re-started from the last
COMMIT point, use ROLLBACK with
the ACTIVE option

■ If the job has to be re-run from the
beginning, use ROLLBACK with the
ALL option

Re-run the application

19.8.3 Journaling to a disk device

Steps: If you are journaling a local mode job to a disk device, follow these steps:

Action Statement

Copy the journal file to a tape device Operating system utility

Follow the steps outlined above for
journaling to a tape device above

19.8.4 Using an incomplete journal file

What is an incomplete journal file?: An incomplete journal file is a journal file
that does not contain a final ABRT checkpoint for the active transaction or even an
end-of-file mark. This occurs when the journal file has been unexpectedly interrupted,
for example, when the operating system crashes. An incomplete journal file is not

19-40 CA-IDMS Database Administration

19.8 Recovery procedures for local mode operations

suitable for recovering your database. To make a suitable journal file for recovery, use
the FIX JOURNAL utility statement, which:

■ Reads the damaged file and creates a new one

■ Writes an ABRT checkpoint at the end of the new file

Steps: To recover a database in local mode, using an incomplete journal file, follow
these steps:

Action Statement

Fix the journal file FIX JOURNAL

Recover the database using the output
from the FIX JOURNAL utility
statement as described for journaling
to a tape device above.

Chapter 19. Backup and Recovery 19-41

19.9 Recovery procedures for mixed-mode operations

19.9 Recovery procedures for mixed-mode operations

What is a mixed-mode operation?: When database areas have been updated both
in local mode and under the central version (for example, when an area has been
varied offline, subsequently updated by a local transaction that used journaling, and
then varied back online), the database must be restored by using both the local and the
central version journals.

Mixed mode recovery: The following scenario is an example of synchronizing the
recovery operations by explicitly using both the central version and local journals to
ensure proper recovery of all database areas:

6 a.m. Nightly backups taken

8 a.m. System startup: AREA1, AREA2,

AREA3 are readied in update

mode under the central version.

19:39 a.m. AREA1 is varied offline.

While offline, a local mode program

(using a tape journal) updates

AREA1 while the central version

continues to update AREA2 and

 AREA3.

11:39 a.m. A VARY JOURNAL command is issued

for the central version journal.

AREA1 is varied back online and

the central version continues to

update AREA1, AREA2, and AREA3.

12:99 p.m. Database file I/O error occurs

 on AREA1.

When the database file I/O error occurs, the affected file associated with AREA1 must
be restored by using both the local and central version journals.

Steps to recover the database: The following steps illustrate one approach to
recovery, given the situation outlined above. Note that with this approach two separate
rollforward operations are used. In order to process journal images from both central
version and local mode operations in a single execution of the ROLLFORWARD
utility, you must use the alternate recovery approach described below.

19-42 CA-IDMS Database Administration

19.9 Recovery procedures for mixed-mode operations

Complete the recovery process by following the steps outlined in 19.6, “Recovery
procedures from database file I/O errors” on page 19-33 earlier in this chapter.

An alternate approach: The following steps illustrate an alternate approach to
recovery in a mixed-mode environment. With this approach, the local mode journal file
is first merged with the archive files produced by the central version and the merged
output file is used to recover the database in a single rollforward operation.

Complete the recovery process by following the steps outlined in 19.6, “Recovery
procedures from database file I/O errors” on page 19-33 earlier in this chapter.

Action Statement

Restore the damaged file using the
backup tapes produced at 6 a.m.

RESTORE with the FILE option

Rollforward all archive files produced
before 11:30

ROLLFORWARD FILE specifying ALL

Rollforward the local journal file,
restoring the file up to 11:30 a.m.

ROLLFORWARD FILE specifying ALL

Rollforward the second archive
journal file

ROLLFORWARD FILE with the
COMPLETE option

Action Statement

Restore the damaged file using the
backup tapes produced at 6 a.m.

RESTORE with the FILE option.

Merge the local mode journal file
with the archive files produced since
8 a.m.

MERGE ARCHIVE specifying the
COMPLETE option

Rollforward all updates made since
the backup was taken

ROLLFORWARD FILE specifying the
COMPLETE option.

Chapter 19. Backup and Recovery 19-43

19.10 Data sharing recovery considerations

19.10 Data sharing recovery considerations

Quiescing update activity: Whenever it becomes necessary to quiesce access to an
area during a recovery operation, the quiesce must apply to all members of a data
sharing group. For recovery purposes, the quiesce will usually be done by varying the
area status to OFFLINE or TRANSIENT RETRIEVAL using a DCMT VARY
command. This command must be executed in every member to establish a group-wide
quiesce for a shared area. To do this easily, the command may be broadcast to other
members of the group.

Occasionally, it will be sufficient to quiesce update access to an area through the use
of a DCMT QUIESCE command. This command will automatically propagate the
quiesce for a shared area to all group members, so there is no need to execute it on
more than one member of the group.

�� For more information on DCMT commands and how to broadcast them, refer to
CA-IDMS System Tasks and Operator Commands.

Recovery from a warmstart failure: If warmstart fails for a single member of a data
sharing group, recovery can proceed just as if the DC/UCF system were not a data
sharing member provided that all shared areas being updated by the member at the
time of failure are quiesced in other members of the group. The quiesce should be
done by varying the status of the affected areas to OFFLINE using a DCMT VARY
command.

If warmstart fails for more than one member, each member can be recovered
independently provided that:

■ Only the ROLLBACK recovery utility is used

■ The ACTIVE option is specified when executing ROLLBACK, and

■ Executions of the ROLLBACK utility are serialized

Failure to comply with these conditions, may result in database corruption.

Recovery from other types of failures: Except when following the above procedure
to recover from a warmstart failure, the archive files from all members that have
updated a shared area since the backup was taken must be included in any manual
recovery. Furthermore, the journal images from all members must be processed
together in the same execution of the ROLLFORWARD or ROLLBACK utility. It is
not valid to process the images from one member in one execution followed by the
images from another member in another execution, since journal images must be
processed in chronological sequence.

Recovery from a warmstart failure is an exception to this rule only because records
updated by one member cannot be accessed by another member until the changes are
committed or rolled out. If warmstart fails, the unrecovered records remain locked, so
no other member can update them. This means that there will never be more than a

19-44 CA-IDMS Database Administration

19.10 Data sharing recovery considerations

single member with a before image for an unrecovered record and so inter-member
sequencing is not important.

Using MERGE ARCHIVE: The MERGE ARCHIVE utility is used to merge the
journal images from multiple members so that they are in chronological sequence. As
noted above, most recovery utilities require that journal images be processed
chronologically. In a data sharing environment, the journal images produced by each
member are in chronological sequence, but the images for areas concurrently updated
by multiple members are contained in each member's archive files. The MERGE
ARCHIVE utility interleaves the journal images from multiple members so that they
occur in date/time sequence. The resulting output file may then be used as input to a
ROLLFORWARD, ROLLBACK, or EXTRACT JOURNAL utility statement.

When executing the MERGE ARCHIVE utility statement, the input consists of a
concatenated set of archive files and optionally a merge archive file produced from a
previous execution of the MERGE ARCHIVE utility. Archive files produced by a
single member must be processed in the order in which they were created. Archive
files from different members may be processed in any order relative to those of other
members.

When to use MERGE ARCHIVE: The output of the MERGE ARCHIVE utility can
always be used as input to the ROLLFORWARD, ROLLBACK, and EXTRACT
JOURNAL utility statements in place of the original archive files. It can also be used
to combine local mode journal files and archive files when mixed-mode updates must
be recovered.

However, while optional in most cases, MERGE ARCHIVE must be used to merge
the journal images of multiple data sharing group members before those images are
processed by:

■ ROLLFORWARD or ROLLBACK utility statements that specify the
SEQUENTIAL option.

■ ROLLFORWARD, ROLLBACK, or EXTRACT JOURNAL utility statements that
specify both the ALL and STOP TIME options.

Using EXTRACT JOURNAL: The EXTRACT JOURNAL utility is used to
preprocess journal images in order to reduce recovery time. This utility can also be
used in a data sharing environment. Any of the following are valid approaches to its
use:

■ Separately preprocess the archive files of each member

■ Preprocess the archive files of multiple members together

■ Merge the archive files of multiple members using the MERGE ARCHIVE utility
and then preprocess the merge file

You must use the third approach if the ALL and STOP TIME parameters are specified
on the EXTRACT JOURNAL utility statement; otherwise, any of the above
approaches can be used to preprocess journal files in a data sharing environment.

Chapter 19. Backup and Recovery 19-45

19.10 Data sharing recovery considerations

If using either of the first two approaches, the EXTRACT JOURNAL utility statement
can be executed on a periodic basis to preprocess the archive files created since its
previous execution, or since a backup was taken. If recovery becomes necessary, all
extract files produced since the backup must be concatenated as input to a single
execution of the ROLLFORWARD utility. The order in which the extract files are
concatenated must be such that the journal images for each member are in
chronological sequence. It makes no difference in which order the images of one
member occur in relation to those of another member.

If using the third approach, the entire set of archive files produced by group members
that have updated the affected areas must be merged prior to executing the EXTRACT
JOURNAL utility. The MERGE ARCHIVE utility can be executed on a periodic basis
to merge the archive files created since its previous execution with the previously
created merge file. The EXTRACT JOURNAL utility can then be used to preprocess
the final merge file.

�� For more information on executing both the MERGE ARCHIVE and the
EXTRACT JOURNAL utility statements, refer to CA-IDMS Utilities.

Coupling facility failures: Certain types of failures are unique to a data sharing
environment, such as the loss of a coupling facility or a structure within the coupling
facility. In some cases, all members of a group will fail and recovery must be
coordinated across the group, a process called "group restart."

�� For more information on recovering from coupling facility failures and group
restart, refer to CA-IDMS System Operations.

19-46 CA-IDMS Database Administration

19.11 Considerations for recovery of native VSAM files

19.11 Considerations for recovery of native VSAM files

About recovery for native VSAM files: CA-IDMS/DB performs journaling for
native VSAM files just like it does for other types of files it supports. The recovery
procedures described in this chapter apply to native VSAM files also. The processing
difference is that the BACKUP and RESTORE utility statements cannot be used with
native VSAM files. Instead, use IDCAMS or some other utility for backing up and
restoring the file.

Potential problems: Since VSAM controls the actual updating of the data sets,
recovery problems may occur. If a total system failure occurs after CA-IDMS/DB
passes control to VSAM, automatic recovery is not guaranteed. Therefore, you should
back up native VSAM data sets frequently, as described in the appropriate VSAM
documentation. Recovery can then be accomplished by restoring your file Using
IDCAMS (or some other utility) and ROLLFORWARD utility statements.

File verification after failure: If a DC/UCF system fails or a local mode
application terminates abnormally, you must issue the IDCAMS VERIFY command
for native VSAM files that were open for update at the time of the failure.

Limitations for ESDS areas: You cannot use the ROLLBACK utility statement
for an ESDS area to which a record has been added, because VSAM does not allow
the necessary erase.

Limitations for KSDS areas: Due to limitations within the VSAM access method,
ROLLFORWARD and ROLLBACK cannot be run with the SORTED option to
recover native VSAM KSDS areas. If you need to use the SORTED option, because
of the volume of data, and a database that contains a mixture of KSDS, ESDS, and/or
RRDS native VSAM files, follow these steps:

Action Statement

Restore the native VSAM files Operating system facility

Rollforward or rollback the area that
maps to the KSDS file; the utility
statement recovers the KSDS file and
any associated alternate indexes.

ROLLFORWARD or ROLLBACK with the
SEQUENTIAL option

Rollforward or rollback all the
remaining areas or files.

ROLLFORWARD or ROLLBACK with the
SORTED option

Chapter 19. Backup and Recovery 19-47

19-48 CA-IDMS Database Administration

Chapter 20. Loading a Non-SQL Defined Database

20.1 About database loading . 20-3
20.2 Loading database records using FASTLOAD 20-4

20.2.1 General considerations . 20-4
20.3 FASTLOAD procedure . 20-6
20.4 Loading database records using a user-written program 20-7

20.4.1 Organizing input data for a user-written program 20-7
20.4.2 Loading the database . 20-9

20.5 Related information . 20-11

Chapter 20. Loading a Non-SQL Defined Database 20-1

20-2 CA-IDMS Database Administration

20.1 About database loading

20.1 About database loading

Loading options: To load a database defined with non-SQL DDL statements, you
can use either:

■ The FASTLOAD utility statement

■ A user-written load program

FASTLOAD utility statement: To use FASTLOAD, you must write and compile a
format program that specifies how to load the data. After executing the format
program, you invoke the FASTLOAD utility statement, which loads record occurrences
into the database and makes set connections using the output from the format program.
It also builds indexes during the load process.

User-written program: You can also load a database by using DML commands in
a user-written application. The application can be written in any of the languages
CA-IDMS/DB supports.

If you use a user-written program to load the database, you should organize the record
occurrences in the input file so that they mimic the structure of the database. For
example, you should sort the records so that a CALC record is followed by its VIA
member record occurrences. Steps for organizing the input file appear in more detail
later in this chapter.

Advantages of FASTLOAD: FASTLOAD is often more efficient than a
user-written program for loading a database with complicated structures (for example,
multiple-member sets or multi-level record relationships). In addition, FASTLOAD
does not require pre-sorted data. As part of its internal processing, FASTLOAD sorts
the data at certain points during the load process.

Chapter 20. Loading a Non-SQL Defined Database 20-3

20.2 Loading database records using FASTLOAD

20.2 Loading database records using FASTLOAD

Requires a user-written format program: To use FASTLOAD, you must write
a format program that uses subroutines provided by CA to prepare data for input to the
FASTLOAD utility statement.

�� For a description of the format program, refer to the FASTLOAD statement in
CA-IDMS Utilities.

 20.2.1 General considerations

Always load in local mode: You must load a database in local mode. Journaling
is not required, and is not recommended when loading a database for these reasons:

■ The load utility does not maintain checkpoints

■ It's easier to re-run a failed job step than to recover the database

■ Journaling can impact performance

 Cross-area sets

■ If the owner and member records of an automatic set exist in different database
areas, load the areas together.

■ If the owner and member records of a manual set exist in different database areas,
either:

– Load the areas together

– Run a user-written program to connect the records after loading the entire
database

CALC records: The target page for CALC records to be loaded into a database can
be determined in one of two ways:

■ By the standard CA-IDMS/DB CALC routine (IDMSCALC).

■ By a user-written CALC exit routine (IDMSCLCX) that was compiled and
link-edited with IDMSUTIL.

Important: If you determine the target page using IDMSCALC, you must use it
whenever the database is accessed; likewise, if you use the IDMSCLCX user
exit, you must link-edit it with IDMSDBMS.

Compressed data: If the schema definition specifies compression for a record
type, CA-IDMS/DB compresses the record before it stores it during a load operation.
Therefore, before you begin the load procedure, be sure the schema definition includes
the information it requires to compress the record occurrences.

20-4 CA-IDMS Database Administration

20.2 Loading database records using FASTLOAD

Reserving space on the page: To reserve space for the storage of additional
records on a page or for increases in the length of records stored on a page, add an
area override to the DMCL that specifies a page reserve. When the load is complete,
you can remove the area override.

Buffers: The DMCL that you use to load the database should contain a local mode
buffer that contains at least 10 pages. One large buffer should be sufficient.
However, you may obtain performance improvements by assigning the files associated
with each area to a separate buffer. If you don't have enough resources, then try to
assign the files associated with the following areas to separate buffers:

 ■ Index area

■ Areas for which the owner record exists in one area and the member record exists
in another area

Considerations for large databases: A large database should be loaded in
portions. The FASTLOAD statement assumes that all record occurrences that are
connected by automatic sets will be loaded at the same time. For a large database, this
assumption can be limiting. To load a large database:

1. Group the record types so that there are not automatic sets between the groups

2. Load each group of record types

3. If manual set connections exist between records in different groups, connect the
records by executing a user-written program

Subschema requirements: The subschema that you use in the load process must:

■ Include all records being loaded and all set relationships in which the records
participate

■ Allow all affected areas to be readied in exclusive update mode

Chapter 20. Loading a Non-SQL Defined Database 20-5

20.3 FASTLOAD procedure

 20.3 FASTLOAD procedure

Steps: To load a database for the first time, follow these steps:

1. Write and compile a format program that specifies how to load the data. Refer to
CA-IDMS Utilities for information about the format program.

2. Link-edit the format program with IDMSDBLU

3. Define the segments, areas, and files that represent the physical database

4. Add the segment definition to the DMCL and make the DMCL available to the
runtime environment

5. Format the database files to be loaded using the FORMAT utility statement with
the FILE option

6. Execute the format program

7. Load the database using the output from the format program as the input to
FASTLOAD

8. Back up the database areas using the BACKUP utility statement or any
comparable backup utility

9. Verify the validity of the loaded database using:

■ IDMSDBAN, to verify the physical integrity of the database

■ CA-OLQ, CA-CULPRIT, or some other retrieval job to verify the data in the
database

20-6 CA-IDMS Database Administration

20.4 Loading database records using a user-written program

20.4 Loading database records using a user-written
program

What follows: Before you load a database using a user-written program, you must
first organize the data in the input file. What follows is a discussion of how to
organize the record occurrences followed by the procedure to load the database.

20.4.1 Organizing input data for a user-written program

Organize record occurrences to match schema: To make the database load as
efficient as possible, you need to organize the record occurrences to match the
structure of the database. For example, you want a CALC owner record to be
followed by its VIA member records. The discussion below identifies how to organize
the data.

Step 1: Identify the record types: The first step in organizing input data is to
identify the type of each record. To identify the type of record, add the record's ID to
the beginning of each record occurrence. For example, the ID of the DEPARTMENT
record is 410; the ID of the EMPLOYEE record is 415.

Step 2: Identify CALC clusters: A CALC cluster is an occurrence of a CALC
record, all of its VIA member records, and all VIA member records of a VIA member
record occurrence. For efficient database processing, all the records within a CALC
cluster should fit on one page (and thereby, can be processed with one I/O). If the
records do not fit on one page, then store the most frequently accessed record types
immediately following the CALC record occurrence so that they have a better chance
of being stored on the same page as the owner.

Step 3: Form CALC cluster hierarchies: A hierarchy is a collection of CALC
clusters. For example, if a CALC record occurrence in one cluster is owned by a
record in another cluster, you have a hierarchy of CALC clusters. In the
Commonweather database, both the OFFICE and DEPARTMENT records own
occurrences of the EMPLOYEE record, which in turn owns VIA member record
occurrences. In deciding what records to include in the CALC cluster hierarchy,
consider the number of CALC record occurrences. For example, if the
DEPARTMENT record has many more occurrences then the OFFICE record, then
store the EMPLOYEE records immediately after the owning DEPARTMENT record.
This potentially saves an I/O because you won't need to reestablish currency on the
DEPARTMENT record occurrence later on.

Hierarchies are loaded from top-to-bottom, left-to-right order. When you store the
owner of a CALC cluster, you establish currency to store the member of a CALC
cluster.

Step 4: Sort the records in a hierarchy: To sort records within a hierarchy, add
a prefix to the beginning of the record occurrence. The prefix contains the record id
and sequence number for each level of the hierarchy. For example, the

Chapter 20. Loading a Non-SQL Defined Database 20-7

20.4 Loading database records using a user-written program

DEPARTMENT, EMPLOYEE, EMPOSITION record hierarchy might have a prefix
that looks like this:

Step 5: Order the occurrences of each hierarchy: A database page will
typically hold more than one database cluster. Therefore, you can load multiple
clusters with one I/O if you load all the hierarchies that target to the same database
page. To sort the hierarchy occurrences, add the CALC target page number of the top
cluster in the hierarchy to the beginning of the input record.

Tip: To determine the CALC target page, use IDMSCALC in the program that
creates the input file; for more information on IDMSCALC, refer to CA-IDMS
Utilities.

Step 6: Include records excluded from the hierarchies: Some records do not
fall within a hierarchy. For example, suppose you did not include the OFFICE record,
which owns EMPLOYEE record occurrences in a CALC cluster hierarchy. To load
owner records that fall outside of a hierarchy:

1. Position the non-VIA owner records at the beginning of the input file, before any
records that form part of a hierarchy, by adding an identifier to the beginning of
each input record. For example, the identifier of the OFFICE record type might
be 4 and the identifier of the DEPARTMENT, EMPLOYEE, EMPOSITION
hierarchy might be 5.

2. Add the key of the non-VIA owner record to the end of the hierarchy record
occurrence; at load time, use the key to find the owner before storing the member.
For example, add the OFFICE-CODE-0450 field to the end of each EMPLOYEE
record occurrence.

Step 7: Order sorted and indexed sets: Sorted sets should always be loaded in
the same order as the sort sequence. To sort the input data:

■ For a set within a hierarchy, replace the sequence number field at the record's
level in the hierarchy with the sort key of the set; for example, if the
EMP-EMPOSITION set is a sorted set, replace the sequence number for
occurrences of the EMPOSITION record with the record's sort key in the prefix
portion of the input record.

ID and sequence number Record
EMPLOYEE

Record
EMPOSITION

410/1 0/0 0/0 410 Department
record 1

410/1 415/1 0/0 415 Employee record
1

410/1 415/1 420/1 420 Emposition record
1

410/1 415/1 420/2 420 Emposition record
2

20-8 CA-IDMS Database Administration

20.4 Loading database records using a user-written program

■ For a set outside of a hierarchy, follow these steps:

1. Re-define the set as manual

2. Create a file containing records with these fields: the owner's page, the set
name, the owner's CALC key, the set's sort key, the dbkey of the member
record

3. Sort the file in:

Descending order by page

Ascending order by set name and owner key

Either ascending or descending order by sort key

4. After loading the database, connect the set members using a user-written
program

Step 8: Sort the input records: Sort the input records in:

■ Ascending order by identifier

■ Descending order by target page number

■ Ascending order by the concatenation of all ID and sequence fields that represent
a hierarchy

Note: If records are to be stored VIA a system-level index, they should be sorted in
the reverse order of their VIA index so records at the end of the index will be
processed first by the user-written format program. This will insure that the
physical sequence of the records on the database will match the sequence of
the index.

20.4.2 Loading the database

To load a database for the first time using a user-written program, follow these steps:

Chapter 20. Loading a Non-SQL Defined Database 20-9

20.4 Loading database records using a user-written program

Example: The following example shows code to load the DEPARTMENT hierarchy:

read an input record

repeat until end-of-file

if record-id = 419

move DEPARTMENT record

 store DEPARTMENT

else if record-id = 415

move OFFICE key

find calc OFFICE

move EMPLOYEE record

 store EMPLOYEE

else if record-id = 429

move JOB key

find calc job

move EMPOSITION record

 store EMPOSITION

else if record-id = 425

move SKILL key

find calc SKILL

move EXPERTISE record

 store EXPERTISE

 end-if

read next input record

end-repeat

Action Statement

Write and compile a load program
that specifies how to load the data.

Optionally, tailor the DMCL to be
used for the load operation

ALTER DMCL

If altered, make the DMCL available
to the local mode runtime
environment

See Chapter 4, “Defining, Generating, and
Punching a DMCL” on page 4-1

Format the database files to be loaded FORMAT with the FILE option

Load the database using as input the
sorted input file

Execute the user-written program

If necessary, connect members to sets
treated as manual during the load

Execute the user-written program

Back up the database areas BACKUP or any comparable backup utility

Verify the validity of the loaded
database

CA-OLQ, CA-CULPRIT, or some other
retrieval job to verify the data in the
database

20-10 CA-IDMS Database Administration

20.5 Related information

 20.5 Related information

■ About utility statements mentioned in this chapter, refer to CA-IDMS Utilities

■ About loading an SQL-defined database, see Chapter 21, “Loading an
SQL-Defined Database” on page 21-1

■ About the IDMSCLCX user exit, refer to CA-IDMS System Operations

Chapter 20. Loading a Non-SQL Defined Database 20-11

20-12 CA-IDMS Database Administration

Chapter 21. Loading an SQL-Defined Database

21.1 About database loading . 21-3
21.2 Loading considerations . 21-7
21.3 Contents of the input file . 21-10
21.4 Loading procedures . 21-12

21.4.1 Steps that apply to all load procedures 21-12
21.4.2 Full load procedure . 21-13
21.4.3 Phased load procedure . 21-13
21.4.4 Segmented load procedure . 21-15
21.4.5 Stepped load procedure . 21-16

21.5 Related information . 21-20

Chapter 21. Loading an SQL-Defined Database 21-1

21-2 CA-IDMS Database Administration

21.1 About database loading

21.1 About database loading

Loading phases: The table below summarizes the phases involved with loading an
SQL-defined database. The load process was designed to accommodate both small
databases and very large databases as well as allow flexibility in tailoring the load
process to the characteristics of the data being loaded:

Steps within phases: Each of these phases, in turn, is composed of sub-phases
called steps. The table below summarizes the function of each step:

Phase What it does

Load Loads the specified tables

Build Builds indexes and linked index constraints for the specified
tables; this phase can be bypassed if neither linked index
constraints or non-clustering indexes are defined on the
specified tables

Validate Validates referential constraints in which the specified tables
participate

Chapter 21. Loading an SQL-Defined Database 21-3

21.1 About database loading

Load flow diagram: The diagram below illustrates the load and build phases of the
process described above:

Phase Step What it does

Load Step 1 Processes data in preparation for sorting;
this step can be bypassed if data is
already sorted

Step 2 ■ Loads the table rows

■ Connects linked, clustered
constraints

■ Builds clustering indexes

Build Step 1 Performs an area sweep in the absence
of an intermediate extract file

Step 2 Finds the db-keys of rows that
participate in the referenced table of a
linked index referential constraint

Step 3 Builds non-clustering indexes and linked
indexes

Step 4 Updates the prefixes of rows that
participate as the referencing table of a
linked index referential constraint

Validate Step 1 Validates only those constraints that can
be processed efficiently in a single pass
and extracts information about other
referential constraints

Step 2 Validates any referential constraints
bypassed in Step 1

21-4 CA-IDMS Database Administration

21.1 About database loading

Loading options: CA-IDMS/DB offers you the following loading options:

Chapter 21. Loading an SQL-Defined Database 21-5

21.1 About database loading

CA-IDMS/DB enforces all constraints during the load: CA-IDMS/DB
enforces all constraints during the load process. That is, it enforces:

 ■ Referential constraints

■ Data type constraints

 ■ Check constraints

 ■ Unique constraints

For example, if a table allows only specified values to be stored in a column,
CA-IDMS/DB stores only valid values. CA-IDMS/DB also assigns default values for
columns for which no input values are supplied, provided the column was defined to
allow null or default values.

Option Description When to use it

Full load Loads, builds and
validates the specified
tables

Always, unless special
considerations apply

Phased load Executes each phase
(load, build, and
validate) separately

When loading a number of tables
one at a time or in groups; defer
build and/or validate phases until
all the tables have been loaded

Segmented load Loads portions of input
in separate operations

When loading extremely large
tables; defer the build and validate
steps until all the input records
have been processed

Stepped load Executes each step of a
phase (load, build, and
validate) separately

When loading extremely large
tables for which external sort
packages may be more efficient or
when space for intermediate work
files or tape drives is at a
premium

21-6 CA-IDMS Database Administration

21.2 Loading considerations

 21.2 Loading considerations

Using pre-sorted data: Before CA-IDMS/DB loads data, it sorts the data using a
sort sequence best suited to the table's characteristics. If you have already sorted the
input data, you can tell CA-IDMS/DB to skip the sort phase.

Providing sorted data: To sort the data yourself, follow these recommendations to
achieve the most efficient load for your tables:

Database buffers used during load: You must load a database in local mode.
The DMCL that you use for the load should specify buffers for the areas being loaded
that contain at least 10 pages. The larger the buffer, the more efficient the load.

Reserving space on the page: If you want to leave free space on the database
pages following the load, add an area override in the DMCL that specifies a page
reserve. After the load is complete, remove the area override so that new rows and
index entries can use the free space. This technique is especially useful for areas that
contain only indexes or that contain tables clustered on an index.

Error handling: CA-IDMS/DB may encounter errors during each phase of the load
process. You can instruct CA-IDMS/DB what to do in response to these errors, for
example, to continue processing or to quit following a specified number of errors. The
table below summarizes the types of errors that can occur within each phase:

Table characteristic Recommended sort sequence

Table has a clustered index Sort on index key

Table has a clustered referential
constraint

Sort on foreign key of the referencing table

Table has a CALC key Sort on CALC-key target page; to do this,
use the IDMSCALC utility program to
determine the target page and append the
target page to the input record

Chapter 21. Loading an SQL-Defined Database 21-7

21.2 Loading considerations

Input data used in the build phase: You can enter the BUILD phase of the load
process using data stored in intermediate work files created by the LOAD phase or by
instructing CA-IDMS/DB to extract the necessary information as the first step in the
build process. Intermediate work files are generally used when you intend to enter the
BUILD phase immediately following the LOAD phase; typically, you instruct
CA-IDMS/DB to extract the information if some time elapses between the two phases.

The table below summarizes how to specify these options:

Phase Type of error Corrective action

All phases ■ Table not defined in the
catalog

Define the table in the
catalog

Load ■ Check constraint
violation

■ Invalid data values

 ■ Unique constraint
violation on a CALC key,
clustering index, or
linked clustered
constraint

 ■ Referential constraint
violation on a linked
clustered constraint

No corrective action needed;
however, row is not inserted
and subsequent build and
validate phases may fail

Build ■ Unique constraint
violation on
non-clustering index or
linked index constraint

 ■ Referential constraint
violation on a linked
index constraint

FIX PAGE utility statement
or reload data

Validate Invalid referential constraint ■ INSERT to store
missing owner

■ UPDATE to change
invalid foreign key

■ DELETE to remove
invalid referencing rows

21-8 CA-IDMS Database Administration

21.2 Loading considerations

Enhancing load performance: The list below identifies some ways to enhance
the performance of your load operations:

■ If possible, load several tables at the same time

■ Validate several tables at once

■ Always load using sorted data; either letting CA-IDMS/DB sort the data or by
supplying pre-sorted data

■ Increase the number of pages in the buffer(s)

BUILD phase
input

Load and build
option

LOAD statement BUILD statement

Intermediate work
file

Phased load and
build

LOAD NO
VALIDATE

None

Stepped load LOAD STEP1
EXTRACT

Start with BUILD
STEP2

Extracted work file Phased load LOAD NO
BUILD

BUILD

Stepped load LOAD STEP1
NOEXTRACT

Start with BUILD
STEP1

Chapter 21. Loading an SQL-Defined Database 21-9

21.3 Contents of the input file

21.3 Contents of the input file

Mixed input records: The input file to the load process can contain different types
of input records. For example, the input file might contain an EMPLOYEE record,
followed by a DEPARTMENT record, followed by an OFFICE record and so on; to
distinguish the different types of records, you must include a record identifier (in this
example, at the end of the record):

9574SMITH JOHN 254 WILLOW ST NEEDHAM MA 4935 415

 4991PERSONNEL MASON PAULA 5538 9929 419

 9929CHICAGO 3 CORPORATE PLACE 459

Tip: By including record identifiers at the end of the input records, you may be able
to avoid listing individual column definitions in the LOAD statement.

Loading multiple tables: You can load more than one table in the same load
operation by using one of the following techniques:

■ By specifying selection criteria applied against records in the input file. For
example, to load the EMPLOYEE table, using the example above, you could
select all input records with value '415' as a record identifier.

■ By selecting specific fields from one input record that contains data pertinent to
multiple tables. For example, the input record may contain values to be stored in
table EMPLOYEE and values to be stored in table DEPARTMENT.

Identifying columns implicitly: If, in the LOAD statement, you do not explicitly
list the columns in the table to be loaded, CA-IDMS/DB assumes that values are
supplied for all columns in the table. It starts with position 1 of the input record and
extracts input values for each column of the table. To be successful, the input data
must match the order, data type, length, and null criteria specified in the table
definition. Columns that allow null values must be represented by a data field and an
indicator field, which is described below under "Null values".

Identifying columns explicitly: If you supply values for only some of the
columns within the table or if the order or data types of the values in the input file do
not match that of the columns in the table, you must tell CA-IDMS/DB:

■ Where to find the column values in the input record by specifying their start
position relative to the beginning of the input record

■ The data type of the input record value

■ The null value criteria for input values, if applicable

If you omit a column name, the column must either:

■ Allow null values

■ Allow a default value

21-10 CA-IDMS Database Administration

21.3 Contents of the input file

Data types: If you explicitly list the columns to be loaded, the data type of the
value to be stored can be different from the data type defined for the column provided
the data types are compatible. For example, a column defined as CHARACTER is
compatible with data types VARCHAR, DATE, TIME, and TIMESTAMP.

�� For more information about compatible data types, refer to the CA-IDMS SQL
Reference.

Null values: Null values in an input file can be represented as either:

■ A specific data value, designated by you in the NULL IF clause of the LOAD
statement.

■ An indicator field, immediately following the data field. This field is either a 1,
2, or 4 byte binary field and must contain a value of:

– 0, to indicate a non-null data value

– -1, to indicate a null value

If you do not explicitly list the columns to be loaded, then all columns that permit
null values must be followed by a 4-byte indicator field.

Sequence for loading tables: If you are loading multiple tables, you may have to
use separate load operations. If so, use these rules to load the tables in the correct
sequence:

■ Tables clustered through a linked or unlinked constraint cannot be loaded until the
referenced table is loaded and, if necessary, the index on the primary key of the
referenced table is built.

■ Linked index constraints cannot be built until the referenced table is loaded and, if
necessary, its primary key index is built.

Chapter 21. Loading an SQL-Defined Database 21-11

21.4 Loading procedures

 21.4 Loading procedures

What follows: The remainder of this chapter provides procedures and examples for:

■ Steps that apply to all load procedures

■ A full load procedure

■ A phased load procedure

■ A segmented load procedure

■ A stepped load procedure

Note: Only one LOAD, BUILD, or VALIDATE statement may be performed during
one execution of the batch command facility; for example, you cannot submit
two LOAD statements at one time.

21.4.1 Steps that apply to all load procedures

Steps before the load: Regardless of what load procedure you use, perform the
following actions before loading the data:

Steps after the load: After loading the data, perform these steps:

Action Statement

Define the tables to be loaded CREATE TABLE

Create the input file or files of data to
be loaded using CA-CULPRIT,
CA-OLQ (batch), or a user-written
program

Vary the areas in which the tables
reside offline to DC/UCF

DCMT VARY AREA with the OFFLINE
option

Back up the areas, if they aren't
empty

BACKUP or a comparable backup utility

Action Statement

Optionally, verify the result by
retrieving data from the loaded tables

SELECT statements

Back up the areas in which the tables
reside

BACKUP or a comparable backup utility

Vary the areas online DCMT VARY AREA with the ONLINE
option

21-12 CA-IDMS Database Administration

21.4 Loading procedures

21.4.2 Full load procedure

Steps: Follow these steps to perform a full load of an SQL-defined database:

Example: This example loads, builds, and validates tables ASSIGNMENT,
CONSULTANT, EXPERTISE, SKILL, and PROJECT. Each of these tables is
independent of those in other areas of the EMPLOYEE database. By default,
CA-IDMS/DB sorts the input data before it loads the tables. Also by default, if it
finds any errors during any phase of the load procedure, it stops.

To load each table, CA-IDMS/DB applies selection criteria against each input record it
reads. For example, the ASSIGNMENT table receives all input records where the
value in position 210 of the input record equals '512'. Similarly, the EXPERTISE
table receives all input records where the value in position 210 equals '320'.

load

 into demoproj.assignment

where position 219 = '512'

(emp_id position 1 smallint,

proj_id position 3 char(4),

start_date position 13 date,

end_date position 23 char(8) null if '91-91-91')

 into demoproj.consultant

where position 219 = '222'

 into demoproj.expertise

where position 219 = '329'

(emp_id position 1 smallint,

skill_id position 3 smallint,

skill_level position 5 char(2) null if '99',

exp_date position 7 date)

 into demoproj.project

where position 219 = '416'

 into demoproj.skill

where position 219 = '445';

Action Statement

In local mode, load, build, and
validate one or more database tables

LOAD

21.4.3 Phased load procedure

Steps: Follow the steps below to perform a phased load:

Tip: Optionally, back up the database areas between the load and build steps if you
want to recover the data in the event of a failed job step.

Chapter 21. Loading an SQL-Defined Database 21-13

21.4 Loading procedures

Example: In this example, the tables BENEFITS, COVERAGE, EMPLOYEE, and
POSITION are loaded in a phased load procedure. The tables have the following
characteristics:

To load the tables, load and build the EMPLOYEE table first, followed by the
remaining tables. After all 4 tables are loaded, validate the referential constraints that
exist between them:

Action Statement

Identify the following tables:

■ All tables clustered through
referential constraints; if multiple
levels of clustering exist, the
tables in each level must be
loaded in a separate operation
before those at a lower level

■ All referencing tables in linked
index constraints where the
primary key is an index; if
multiple levels of such a structure
exist, the tables in the higher
levels must be loaded before
those at a lower level

In local mode, load and build all
tables not identified in Step 1 above.

LOAD with the NO VALIDATE option

■ For each clustering level, load
and build all tables clustered
through referential constraints

■ For each linked index level, load
and build all tables that
participate in linked index
constraints

LOAD with the NO VALIDATE option

Validate the referential constraints of
all the loaded tables

VALIDATE SEGMENT

Table Characteristics

BENEFITS References EMPLOYEE in a linked, clustered constraint

COVERAGE References EMPLOYEE in a linked, clustered constraint

EMPLOYEE References DEPARTMENT in an unlinked constraint

POSITION References EMPLOYEE in a linked, clustered constraint

21-14 CA-IDMS Database Administration

21.4 Loading procedures

load no validate

 into demoempl.employee

where position 159 = '415';

load no validate

 into demoempl.benefits

where position 159 = '478'

 into demoempl.coverage

where position 159 = '488'

 into demoempl.position

where position 159 = '492';

validate segment demoempl;

21.4.4 Segmented load procedure

Steps: Follow the steps below to perform a segmented load:

Example: This example uses a segmented load to load table EMPLOYEE, which
contains more than 2,000,000 rows. By default, each input record is to be stored in
the EMPLOYEE table, with each field in the input record corresponding in length and
data type to each column defined for the EMPLOYEE table.

The first LOAD statement loads 1,000,000 rows in the table, starting with the first
input record. CA-IDMS/DB will notify the user for each 100,000 input records
processed. The second LOAD statement processes the next 999,999 input records
beginning with input record 1,000,001. The third LOAD statement processes the
remaining input records.

Because the table is so large, indexes and indexed constraints are built in separate
steps using the BUILD statements. Finally, the referential constraints for the table are
validated.

Action Statement

Load the input records in groups; for
example, the first 1,000,000, the
second 1,000,000 and so on

LOAD NO BUILD using the FROM and
FOR clauses for each group of input records

Build the table indexes BUILD INDEXES NO VALIDATE

Build the indexed constraints BUILD CONSTRAINTS NO VALIDATE

Validate the referential constraints of
the tables within the segment

VALIDATE

Chapter 21. Loading an SQL-Defined Database 21-15

21.4 Loading procedures

load no build

 into demoempl.employee

 for 1999999

 notify 199999;

load no build

 into demoempl.employee

 from 1999991

 for 999999

 notify 199999;

load no build

 into demoempl.employee

 from 2999999

 notify 199999;

build indexes

 no validate

 for demoempl.employee

 notify 199999;

build constraints

 no validate

 for demoempl.employee

 notify 199999;

validate table demoempl.employee

 notify 199999;

21.4.5 Stepped load procedure

Steps: Follow the steps below to perform a stepped load:

Tip: If you want to be able to recover the database in the event of a failed job step,
back up the database areas between each job step.

Action Statement

1. In local mode, load one or more
database tables choosing one of the
options below. If you intend to build
indexes and/or relationships for the
tables immediately following the load
step, choose one of the options that
creates an intermediate work file:

1.1 Load, creating intermediate extract
files for the build phase

LOAD STEP1 EXTRACT BOTH (the
default)

1.2 Load, creating an intermediate
extract file for building indexes

LOAD STEP1 EXTRACT INDEXES

1.3 Load, creating an intermediate
extract file for building relationships

LOAD STEP1 EXTRACT
RELATIONSHIPS

21-16 CA-IDMS Database Administration

21.4 Loading procedures

Action Statement

1.4 Load, creating no intermediate
extract file

LOAD STEP1 NO EXTRACT

2. If you specified WITHOUT
PRESORT, skip this step. Otherwise,
sort the data using an external sort
program and the sort cards supplied
by CA-IDMS/DB. Then continue the
load phase of the stepped load
procedure.

LOAD STEP2

3. If you specified LOAD STEP1 NO
EXTRACT, perform this step to
collect the data necessary to build the
table indexes and indexed constraints

BUILD STEP1

4. Sort the data using an external sort
program and the sort cards supplied
by CA-IDMS/DB

5. After all of the tables have been
loaded or after completing the
previous step, determine the db-keys
of rows in any tables that participate
as the referenced table in a linked
index referential constraint

BUILD STEP2

6. Sort the data using an external sort
program and the sort cards supplied
by CA-IDMS/DB

7. Build unclustered indexes and
linked index referential constraints

BUILD STEP3

8. Sort the database using an external
sort program and the sort cards
supplied by CA-IDMS/DB

9. Update the prefixes of any tables
that participate as the referencing
table in a linked index referential
constraint

BUILD STEP4

10. Perform the first pass at validating
the relationships between tables that
participate in referential constraints

VALIDATE STEP1

11. Sort the database using an
external sort program and the sort
cards supplied by CA-IDMS/DB

Chapter 21. Loading an SQL-Defined Database 21-17

21.4 Loading procedures

Example: In the example below, the DBA loads an SQL-defined database in the
following steps:

■ Loads tables CUSTOMER and INVENTORY using pre-sorted data

■ Loads tables ORDERS and PARTS using pre-sorted data

■ Using an area sweep, extracts information for building indexes and indexed
constraints

■ Builds the indexes and constraints for the table using separate steps and external
sorts

■ Validates referential constraints

load step1

 without presort

 no extract

 into custschm.customer

where position 399 = '435'

 into custschm.inventory

where position 399 = '457';

load step1

 without presort

 no extract

 into custschm.orders

where position 299 = '335'

 into custschm.parts

where position 299 = '345';

build step1

 for custschm.customer

 custschm.inventory

 custschm.orders

 custschm.parts;

Sort the data:

build step2;

Sort the data:

build step3;

Sort the data:

Action Statement

12. Perform the second pass of
validating referential constraints;
generally, a second pass is required
for unlinked relationships if either the
referenced table or referencing table
contains a CALC key.

VALIDATE STEP2

21-18 CA-IDMS Database Administration

21.4 Loading procedures

build step4;

validate step1;

Sort the data:

validate step2;

Chapter 21. Loading an SQL-Defined Database 21-19

21.5 Related information

 21.5 Related information

■ About the BACKUP, LOAD, BUILD, VALIDATE utility statements and the
IDMSCALC utility program, see CA-IDMS Utilities

■ About SQL data types, refer to the CA-IDMS SQL Reference

■ About loading a non-SQL defined database, see Chapter 20, “Loading a Non-SQL
Defined Database” on page 20-1

■ About DCMT commands, refer to CA-IDMS System Tasks and Operator
Commands

■ About CA-CULPRIT and CA-OLQ, see the document set for each product

21-20 CA-IDMS Database Administration

Chapter 22. Monitoring and Tuning Database
Performance

22.1 Monitoring guidelines . 22-3
22.2 Monitoring facilities . 22-4
22.3 Items to monitor and tune . 22-5

22.3.1 Journal use . 22-5
22.3.2 Buffer utilization . 22-6
22.3.3 Space management and database design 22-7
22.3.4 Indexing efficiency . 22-8
22.3.5 Database locks . 22-9
22.3.6 Longterm locks . 22-13
22.3.7 SQL processing . 22-14

22.4 Reducing I/O . 22-15
22.4.1 Through database reorganization . 22-15
22.4.2 Through application design . 22-16
22.4.3 Through database design . 22-16
22.4.4 By using UPDATE STATISTICS (SQL-accessed databases) 22-16

Chapter 22. Monitoring and Tuning Database Performance 22-1

22-2 CA-IDMS Database Administration

22.1 Monitoring guidelines

 22.1 Monitoring guidelines

Why you need to monitor: Eventually, a database may begin to outgrow its initial
allocation of space, with resulting increased I/O and poor response time. If you don't
monitor your databases on a regular basis, these conditions can become critical, forcing
you to take emergency actions at an inconvenient time.

Suggested monitoring schedule: Consider using the schedule below as the basis
for monitoring database performance:

Keep a history of meaningful statistics: Keep a history of meaningful statistics
so that you can identify abnormal conditions when they arise.

SQL considerations: Most of the information in this chapter applies to both SQL
and non-SQL defined databases. Text that applies to only one or the other will be
noted. In addition, much of the chapter applies to the physical structures that underlie
the database definition. Therefore, one set of terms will be used for these physical
entities. For example, chain sets are the physical structure used to implement both
SQL linked constraints and non-SQL sets defined with the MODE IS CHAIN clause.

Monitoring tool Monitoring
frequency

Information provided

JREPORT 004 Daily Summary information on the database
processing activities for each program
recorded in the journal file

IDMSDBAN report 2 Weekly Area detail statistics, such as number
of logically full pages and number of
relocated records

IDMSDBAN report 5 Monthly Set detail statistics, such as the number
of pages needed to store a chained set

PRINT SPACE Daily Area space utilization statistics

IDMSDBAN (all reports) Monthly or
as needed

Set statistics, including broken chains,
record data, and area data

Chapter 22. Monitoring and Tuning Database Performance 22-3

22.2 Monitoring facilities

 22.2 Monitoring facilities

Online and batch components: CA-IDMS/DB offers the following online and
batch tools for you to use to monitor the performance of your databases:

�� For more information about CA-IDMS Performance Monitor, refer to CA-IDMS
Performance Monitor User Guide For more information about utility programs and
statements, refer to CA-IDMS Utilities For more information about DCMT and OPER
commands, refer to CA-IDMS System Tasks and Operator Commands For more
information about JREPORTs and SREPORTs, refer to CA-IDMS Reports

Facility Uses

CA-IDMS Performance
Monitor

To monitor:

■ Real-time database and system statistics

■ System-wide, wait-time statistics for a unit of time

■ Statistics about resource usage by individual
programs

DCMT commands To display definitions and run-time statistics for entities
associated with a DC/UCF system

IDMSDBAN utility
program

To check for broken chains and to display statistics and
data for sets, records, and areas

OPER WATCH
commands

To display dynamic system run-time statistics associated
with DC/UCF systems

PRINT INDEX utility
statement

To monitor the structure of user-owned and
system-owned indexes

PRINT SPACE utility
statement

To monitor space utilization in segments or areas

PRINT JOURNAL utility
statement

To display checkpoint information about transactions
recorded on an archive or tape journal file

PRINT utility statement To display the contents of requested database pages

JREPORTs To monitor journal and database usage statistics

SREPORTs To monitor system and database usage statistics

Online print log (PLOG) To display system messages, system trace information,
and snap dumps from the DDLDCLOG area

UPDATE STATISTICS
utility statement

To refresh statistical information about SQL defined
databases, and non-SQL defined databases that are
accessed by SQL commands.

22-4 CA-IDMS Database Administration

22.3 Items to monitor and tune

22.3 Items to monitor and tune

Monitoring the database: For your database, the major areas of degradation are:

■ Pages over 70% full

■ CALC and VIA (clustered) record overflow

 ■ Fragmented records

■ Inefficient index structures

■ An increase in logically-deleted or relocated records

Monitoring transactions: For each transaction, the major performance indicators
are:

■ The number of I/Os and/or the number of calls to CA-IDMS/DB

■ The number of waits and deadlocks

What follows: The remainder of this section identifies useful statistics to monitor in
the following areas:

 ■ Journal use

 ■ Buffer utilization

■ Space management and database design

 ■ Indexing efficiency

 ■ Database locks

 ■ Longterm locks

 ■ Access modules

 22.3.1 Journal use

Useful statistics to monitor

Statistic Meaning Action

Journal read
waits

Indicates CA-IDMS/DB must
wait to read a page from a
journal file into the journal
buffer during a rollback
operation.

Increase the number of pages in
the journal buffer

Chapter 22. Monitoring and Tuning Database Performance 22-5

22.3 Items to monitor and tune

Where the statistics are reported

■ ARCHIVE JOURNAL utility statement report

 ■ JREPORT 004

■ CA-IDMS Performance Monitor

■ DCMT DISPLAY JOURNAL

Statistic Meaning Action

Journal page
utilization

Indicates the fullness of
journal pages written from the
journal buffer.

Create fuller journal buffers by:

■ Adjusting the journal buffer
page size in the definition
of the journal buffer

■ Increasing the journal
TRANSACTION LEVEL
option at system generation
or using a DCMT VARY
JOURNAL command

 22.3.2 Buffer utilization

Useful statistics to monitor

Where the statistics are reported

■ CA-IDMS Performance Monitor

Statistic Meaning Possible action

Buffer
utilization ratio

Indicates the ratio of the
number of pages requested to
the number read; values less
than 2 indicate a problem
with the buffer size or with
the design of the database

■ Increase the number of
buffer pages

■ Reassign files to buffers

Forced writes Indicates the number of times
CA-IDMS/DB had to write a
buffer page to storage in
order to read a database page

■ Increase the number of
buffer pages

■ Reassign files to buffers

■ Issue COMMITs more
frequently in update jobs

Buffer waits Indicates the number of times
the buffer was requested but
was not available

■ Increase the number of
buffer pages

■ Reassign files to buffers

22-6 CA-IDMS Database Administration

22.3 Items to monitor and tune

 ■ SREPORT 003

■ DCMT DISPLAY/VARY BUFFER

22.3.3 Space management and database design

Useful statistics to monitor

Statistic Meaning Possible action

Clustering ratio Indicates the ratio of the
number of records requested
to the number of pages
requested; ratios less than 4
indicate poor database design
or space availability problems

■ Redesign the database
using clustering more
effectively

■ Increase the area's page
size or page range and
unload and reload the
database

■ Reassign files to buffers

Page space
availability

Indicates how full database
pages are

■ Increase the database page
size

■ Increase the number of
pages

Fragments
stored

Indicates the number of
fragments stored for a
variable-length record.

■ Increase the page size and
read each record in an
update mode

■ Increase the page reserve
size

 ■ Reassign fragmentation
specifications

Records
relocated

Indicates the number of
expanded records moved to a
new page due to lack of space

■ Unload/reload the database

■ Increase the page size and
read each record in an
update mode

CALC cluster
ratio

Indicates the ratio of CALC
records stored on the target
page to the total number (that
is, hits plus overflow) stored;
values less than 1 indicate
space availability problems

Increase the area's page size or
number of pages and unload
and reload the database

Chapter 22. Monitoring and Tuning Database Performance 22-7

22.3 Items to monitor and tune

Where statistics are reported

 ■ JREPORT 004

■ SREPORTs 003, 007, and 009

■ CA-IDMS Performance Monitor

■ IDMSDBAN utility report 5

■ PRINT SPACE utility statement report

■ PRINT JOURNAL utility statement

■ UPDATE STATISTICS utility statement report for the SQL catalog

Statistic Meaning Possible action

VIA cluster
ratio

Indicates the ratio of VIA (or
clustered) records stored on
the target page to the total
number (that is, hits plus
overflow) stored; values less
than 1 indicate large clusters,
space availability problems,
or small page size

Increase the area's page size or
number of pages and unload
and reload the database

Effectiveness
ratio

Indicates the ratio of number
of records CA-IDMS/DB
requests to the number that
are current-of-run-unit.
Values much higher than 1
indicate poor program logic
or set options

Review application/database
design. Consider use of PRIOR
or OWNER pointers and
possible elimination of some
sorted sets. (Note that linked
constraints in SQL-defined
databases always include
PRIOR and OWNER pointers.)

Logically
deleted records

Indicates the number of
logically deleted records

Physically delete the logically
deleted records using the
CLEANUP utility statement

 22.3.4 Indexing efficiency

Useful statistics to monitor

Statistic Meaning Possible action

Orphan count Indicates the number of
orphaned SR8 records.

Rebuild the index if more than
25% of the member records are
orphaned.

Index levels Indicates the number of levels
in the index.

Rebuild the index if the number
of levels exceeds the number
originally calculated

22-8 CA-IDMS Database Administration

22.3 Items to monitor and tune

Where the statistics are reported

■ CA-IDMS Performance Monitor (Realtime monitor) Run Unit Detail screen

■ PRINT INDEX utility statement

■ IDMSDBAN utility report 5

Statistic Meaning Possible action

SR8 split Indicates the number of SR8
splits.

If the number of SR8 splits is
high, determine if applications
frequently insert a large group
of index entries in one spot;
rebuild the index to balance it
and cleanup orphan index
records.

 22.3.5 Database locks

Useful statistics to monitor

Statistic Meaning Possible action

Number of
non-share locks
held

Indicates the number of
non-share locks (primarily
update locks) held. The
larger the number of update
locks held, the greater the
probability of contention
between the tasks holding the
locks and other tasks
accessing the same database.

■ Issue COMMITs more
frequently in update jobs

■ If overall throughput is
constrained, identify the
source; for example, CPU
or DASD usage

■ If overall throughput is not
constrained, identify
potential deficiencies in
database or application
design or implementation;
for example, look at the
number of locks held by
individual programs;
determine if tasks contend
for OOAK and FOAK
records in which case
lowering the DEADLOCK
DETECTION INTERVAL
will temporarily solve the
problem

Chapter 22. Monitoring and Tuning Database Performance 22-9

22.3 Items to monitor and tune

Statistic Meaning Possible action

Task wait status Indicates whether a task is
waiting for access to an area
or record

Tasks that are waiting on locks
have an ECB type of 'LMGR
Lock'. If you notice a task
waiting a long time on one or
more locks, review ready modes
and database design, especially
for contention for OOAK and
FOAK records, by examining
all tasks exhibiting this behavior
for common programs,
functions, and database
references.

ECB type Denotes the type of resource
being waited on. In the case
of area locks and dbkey
locks, this statistic will
contain the literal 'LMGR to
ECB'. (Note: in the
Performance Monitor this
information is listed under the
column headings 'First ECB',
'Second ECB', and 'Third
ECB').

Number of
shared locks
held

Indicates the number of share
locks held. Share locks allow
transactions other than the
owning transaction to read the
row, but not to update it.
Thus, higher levels of share
locks can impede concurrency
(and throughput) if they are
placed on rows in areas that
are heavily accessed.

The number of locks held can
be reduced by increasing the
COMMIT frequency within the
application.

ISO (SQL only) Indicates the isolation level of
the transaction. The isolation
level of a transaction defines
how long retrieval locks are
held.

Ensure that the transaction is
running in the appropriate
isolation level for the level of
data integrity required by the
application.

22-10 CA-IDMS Database Administration

22.3 Items to monitor and tune

Statistic Meaning Possible action

State (SQL
only)

Indicates the state of the
transaction which defines how
the transaction is affecting the
data it is processing:

■ Read only (RO) specifies
that the transaction is
reading data but not
adding or updating.

■ Read write (RW)
specifies that the
transaction intends to add
and update data.

Ensure that the transaction state
is appropriate for the type of
processing being performed.
Transactions that only read data
should have a state of RO.

Ratio of global
resource lock
requests to local
lock requests

Indicates the number of times
that CA-IDMS had to acquire
or alter a global lock on an
area, page, or record in order
to service the indicated
number of local lcok requests.
The larger this ratio, the
greater the inter-member
contention for resources, since
CA-IDMS acquires global
record and page locks only if
contention exists and global
area locks, once acquired, will
usually be retained in an
active system.

■ Issue COMMITs more
frequently in update
transactions

■ Disperse frequently updated
data across more pages
within the area

■ Increase the size of the
area, especially if
frequently inserting or
deleting data in an area that
is more than 70 percent full

Ratio of the
number of
global lock
waits to the
number of
global lock
requests.

Indicates the number of times
that CA-IDMS had to wait for
a global lock request to
complete. This ratio is a
measure of one or more of
the following types of
contention:

 ■ Inter-member contention
for transaction resources

■ False contention caused
by synonyms when
hashing to the global lock
table

■ Contention for operating
system resources such as
channels

■ Use operating system tools
to determine the nature of
the contention

■ Take the actions outlined
above to reduce
inter-member contention for
transaction resources

■ Increase the number of lock
table entries to reduce false
contention

Chapter 22. Monitoring and Tuning Database Performance 22-11

22.3 Items to monitor and tune

Where the statistics are reported

■ For area contention:

 – SREPORTs

 – JREPORT 006

– CA-IDMS Performance Monitor (Realtime monitor): Active User Task
Detail, Active System Task Detail screen, Transaction Detail screen, and SQL
Detail screen

– DCMT DISPLAY ACTIVE TASKS

– Area status codes from DCMT DISPLAY TRANSACTION transaction id

Statistic Meaning Possible action

Number of
times lock
storage
overflowed

Indicates the number of times
that CA-IDMS had to acquire
lock storage dynamically in
order to satisfy a lock request.
The larger this number the
more CPU cycles that were
expended to satisfy lock
requests. Additionally the
storage pool may become
fragmented since dynamically
acquired storage may not
always be releasable.

■ Examine the overflow
details to determine the
type of storage overflows
that occurred

■ Determine the applicable
base factor for the type of
overflowing storage:

– Session and class
storage is based on the
number of logical
terminal elements
(LTERMs) defined for
the system.

– Resource and proxy
storage is based on the
SYSLOCKS system
definition parameter

– XES Request storage is
based on the maximum
number of tasks
specified in the system
definition.

■ Increase the appropriate
base factor (the number of
LTERMs, SYSLOCKS, or
maximum number of tasks)
to increase the size of the
initial storage allocation,
and thus reduce the number
of overflows.

22-12 CA-IDMS Database Administration

22.3 Items to monitor and tune

– Area status codes from OPER WATCH DB

– OPER WATCH TIME

■ For record contention:

– Status codes from OPER WATCH DB

– Status codes from DCMT DISPLAY TRANSACTION transaction id

– DCMT DISPLAY LOCK (shows longterm and notify locks held by logical
terminals)

■ For lock storage overflows:

– DCMT DISPLAY LOCK STATS

■ For inter-member contention in a data sharing environment:

– DCMT DISPLAY LOCK STATS

– DCMT DISPLAY DATA SHARING XES LOCKS

Reducing area contention

■ Ready online program areas in shared ready modes

■ Create a window for batch jobs

Reducing record contention

■ Have the application issue more COMMITs

■ Run applications that contend for a record serially, rather than concurrently

■ Have some applications use a different access route that avoids the record under
contention

■ Change the database design so that access can be less serialized

 22.3.6 Longterm locks

Useful statistics to monitor

Statistic Meaning Possible action

Tasks having
areas locked

Shows which tasks have areas
locked

Use this information to identify
tasks that ready an area in
protected or exclusive mode,
which increase the potential for
throughput degradation

Longterm/
notify locks

Displays longterm or notify
lock statistics by logical
terminal

Use this information to identity
tasks that hold a large number
of longterm and/or notify locks

Chapter 22. Monitoring and Tuning Database Performance 22-13

22.3 Items to monitor and tune

Where the statistics are reported

■ DCMT DISPLAY AREA

■ DCMT DISPLAY LOCK AREA/LTERM

 22.3.7 SQL processing

Useful statistics to monitor

Where the statistics are reported

 ■ SREPORTs

■ CA-IDMS Performance Monitor

■ IDMSDBAN utility reports (database structure)

Statistic Meaning Possible action

Sorts performed The number of sorts
performed as the result of an
SQL statement (the result of
processing the ORDER BY
clause)

Add additional indexes or
sorted constraints to reduce the
number of sorts

Maximum rows
sorted

The largest number of rows
sorted as the result of an
ORDER BY clause

Add additional indexes to
eliminate the sort

AM recompiles The number of times access
modules were automatically
recompiled at runtime because
of a recompilation of the
corresponding program or
dialog, or because of a
change in the underlying
database definition.

Examine the cause of
compilations. If necessary,
move frequently altered tables
to areas with table level stamp
synchronization.

22-14 CA-IDMS Database Administration

22.4 Reducing I/O

 22.4 Reducing I/O

I/O can be reduced through:

 ■ Database reorganization

 ■ Application design

 ■ Database design

■ The UPDATE STATISTICS utility command (for SQL-accessed databases)

Each of these is discussed below.

22.4.1 Through database reorganization

Database reorganization includes:

■ Reducing full pages by changing the size of a database page or increasing the
number of pages

■ Reducing overflow by changing the size of a database page or increasing the
number of pages

■ Decreasing fragmentation for non-SQL defined databases by:

– Specifying page reserve

– Changing page size

 – Reassigning records

– Redefining fragmentation specifications

– Increasing the number of pages

■ Increasing the efficiency of an index's structure by decreasing the number of levels
in the index and/or assigning SR8 records to a separate page range

■ Reducing logically deleted and/or relocated records by physically deleting
logically deleted occurrences using the CLEANUP utility statement and/or
unloading and reloading the data

■ Reducing the number of fragments and/or relocated records by increasing the page
size and reading all records in an update mode

For more information

■ About changing page size, see Chapter 25, “Modifying Physical Database
Definitions” on page 25-1

■ About modifying indexes, see Chapter 29, “Modifying Indexes, CALC Keys, and
Referential Constraints” on page 29-1 and Chapter 31, “Modifying Schema
Entities” on page 31-1

■ About reassigning records and redefining fragmentation specifications, see
Chapter 31, “Modifying Schema Entities” on page 31-1

Chapter 22. Monitoring and Tuning Database Performance 22-15

22.4 Reducing I/O

■ About utility statements, refer to CA-IDMS Utilities

22.4.2 Through application design

Selecting the optimal path: The first step to determine if the application is
optimally designed is to determine if it is accessing the data it needs, using the access
path that will create the fewest number of I/Os. To determine if this is true:

1. Walk through the application and identify the actual transaction path

2. Review the existing database design and determine if there is a more efficient way
to:

■ Access the needed records

■ Process the necessary relationships

22.4.3 Through database design

Take into account the following database design considerations for reducing I/O:

■ Adding sets, indexes, pointers, redundancy

■ Changing set type, set (index) order for non-SQL defined databases

■ Changing location (area) of record or index, index and/or set stored VIA (or
clustered)

■ Changing UNLINKED constraints to LINKED (SQL-defined databases) to
repeating item, index and/or set stored VIA, location of record or index

■ Splitting a record

22.4.4 By using UPDATE STATISTICS (SQL-accessed databases)

When to use UPDATE STATISTICS: Execute the UPDATE STATISTICS utility
statement at the following times:

■ Periodically (according to the needs of the application) to reflect shifts in the
distribution of data in the database (for example, changes in owner/member ratios,
area space utilization, index layout)

■ After individual applications that alter the distribution of data; for example,
monthly or year-end summary and offload processing

Use UPDATE STATISTICS on SQL-defined tables or areas: Run UPDATE
STATISTICS on individual tables or whole areas. The resulting statistics are stored in
the SQL catalog and are used by the Access Module Compiler to generate optimal
access strategies for SQL processing. Access modules that reference the tables whose
statistics have been updated can then be recompiled to take advantage of the updated
information. Table/access module cross-reference information on the catalog can be
used to determine which access modules to recompile.

22-16 CA-IDMS Database Administration

22.4 Reducing I/O

Use UPDATE STATISTICS on NON-SQL Schemas if they are accessed by
SQL: Run UPDATE STATISTICS on some or all areas defined in a non-SQL
Schema. The resulting statistics are kept in the non-SQL dictionary that defines the
schema. If the database is accessed by SQL the statistics will be used by the Access
Module Compiler to generate optimal access strategies for SQL processing.

Restrictions on statistics and non-SQL schemas: Non-SQL statistics are kept
with the schema definition in the dictionary. This means statistics may be kept for
only one physical database per schema. When processing an SQL command, only the
current set of statistics will be used for that command regardless of the physical
database being accessed by that command. The user must decide which physical
database will provide the statistics that best meets their needs and run UPDATE
STATISTICS against that database.

Chapter 22. Monitoring and Tuning Database Performance 22-17

22-18 CA-IDMS Database Administration

Chapter 23. Dictionaries and Runtime Environments

23.1 About dictionaries . 23-3
23.1.1 Physical components of a dictionary 23-3
23.1.2 Logical components of a dictionary 23-4
23.1.3 Assigning dictionary areas to segments 23-5
23.1.4 Sharing dictionary areas . 23-6

23.2 CA-supplied dictionary definitions . 23-8
23.2.1 Logical database definitions . 23-9
23.2.2 Protocols, nondatabase structures, and modules 23-11

23.3 Defining new dictionaries . 23-13
23.3.1 Defining new catalog components 23-13
23.3.2 Defining new application dictionaries 23-14
23.3.3 Defining new system dictionaries 23-16

23.4 Establishing a default dictionary . 23-19
23.5 About runtime environments . 23-20

23.5.1 SYSIDMS parameter file . 23-22
23.5.2 Establishing session options . 23-23

23.6 Related information . 23-25

Chapter 23. Dictionaries and Runtime Environments 23-1

23-2 CA-IDMS Database Administration

23.1 About dictionaries

 23.1 About dictionaries

What is a dictionary?: A dictionary is a special CA-IDMS/DB database that
contains definitions of other databases, DC/UCF systems, and applications.
Information in the dictionary is organized into entity types that correspond to major
data processing components (for example, tables, records, programs). The dictionary
becomes populated with information about the data processing environment as various
CA-IDMS/DB software components are executed.

System and application dictionaries: Each DC/UCF system must contain a
system dictionary. Any number of application dictionaries can also exist in a
CA-IDMS/DB runtime environment. The table below describes both types of
dictionaries:

Dictionary Description

System Includes all information required to establish, maintain, and
control the processing environment:

■ The DC/UCF system definition

■ The physical database definitions

Each runtime environment must have a system dictionary
named SYSTEM.

Application Optional dictionaries that contain information specific to a
particular application, group of applications, or development
groups:

■ The logical database definitions

■ Maps, dialogs, records, programs, elements

A runtime environment may contain zero or more application
dictionaries the names of which are user-defined.

23.1.1 Physical components of a dictionary

Dictionary areas: Dictionaries are composed of the areas listed below:

Chapter 23. Dictionaries and Runtime Environments 23-3

23.1 About dictionaries

Area name Description

DDLDML Contains the following types of information:

DC/UCF system definitions

Non-SQL schema and subschema definitions

 Maps

 Dialogs

 Source modules

Record and element descriptions

 IDD users

Classes and attributes

DDLDCLOD Contains load modules associated with entities contained
in the DDLDML area; for example:

Map load modules

Dialog load modules

Subschema load modules

DDLCAT Contains definitions of physical databases (segments,
DMCLs, database name tables); at sites with the SQL
option, contains definitions of SQL entities (tables,
constraints, indexes, and so on)

DDLCATX Contains indexes defined on entities stored in the
DDLCAT area

DDLCATLOD Contains:

DMCL load modules

Database name table load modules

Access modules at sites with the SQL option

DDLDCMSG Contains system and user-defined messages

23.1.2 Logical components of a dictionary

Dictionary components: You can group the six areas of the dictionary into logical
components based on the inherent relationships that exist between the dictionary areas:

Logical component Dictionary areas

Base definition component DDLDML

DDLDCLOD

Message component DDLDCMSG

23-4 CA-IDMS Database Administration

23.1 About dictionaries

Components of a system dictionary: A system dictionary always contains all 3
components:

■ A base definition component

■ A catalog component

■ A message component

Components of an application dictionary: An application dictionary may
contain all or a subset of the components. At sites without the SQL option, an
application dictionary usually contains only a base definition component and a shared
message component.

Sharing the message area: In most cases, an application dictionary will not have
its own message area. Since the runtime system uses only the system message area
(SYSMSG.DDLDCMSG) to display messages, most application dictionaries will share
the system message area, rather than having a separate message area.

Logical component Dictionary areas

Catalog component DDLCAT

DDLCATX

DDLCATLOD

23.1.3 Assigning dictionary areas to segments

Segment by component: The six areas that make up a dictionary should be
segmented by logical component. That is, a segment should be defined for each of the
base definition, catalog, and message components of a dictionary.

In most cases, a dictionary will not have its own message component, but will share
the system message area SYSMSG.DDLDCMSG. Sites without the SQL option do
not need to define a catalog segment for their application dictionary.

Define a database name: If a dictionary is made up of more than one segment,
you must define a database name to represent the dictionary. The database name
identifies all of the segments that together make up the dictionary.

The one exception to this is a dictionary comprised of only two segments, one of
which is the SYSMSG segment. A database name is unnecessary because
CA-IDMS/DB automatically uses the system message area (in the SYSMSG segment)
if no message area is associated with the dictionary.

Chapter 23. Dictionaries and Runtime Environments 23-5

23.1 About dictionaries

23.1.4 Sharing dictionary areas

Sharing components: By separating dictionary components into segments, you
can share those components between dictionaries, as illustrated below:

To share SEG1 between dictionary A and dictionary B, define a database name for
each that includes the SEG1 segment.

System dictionary components: You should not share the base definition
component and the catalog component of the system dictionary with application
dictionaries. Since the system dictionary contains critical information needed to
control and execute your CA-IDMS/DB environment, it should be accessed only by
authorized personnel and should be reserved for the following information:

■ DC/UCF system definitions

■ Physical database definitions

Sharing individual areas: It is possible to separate a component into multiple
segments so that individual areas (such as a load area) can be shared across
dictionaries. While this is supported, it is not recommended because of the potential
for naming conflicts between the dictionaries. For example, a dialog in one dictionary
could have the same name as a map in another dictionary, both of which have an
associated load module.

Important: Under no circumstances should the DDLCAT and DDLCATX areas be
placed in different segments.

23-6 CA-IDMS Database Administration

23.1 About dictionaries

Page groups: All segments associated with a dictionary must have the same page
group (and maximum number of records per page). If you have different page groups,
you will receive errors when you attempt to access the dictionary through IDD or other
dictionary tools.

This rule also applies to the system message area (SYSMSG.DDLDCMSG). It can
only be included in dictionaries whose other segments have the same page group as
the SYSMSG segment. When processing a dictionary with a difference page group,
IDD cannot be used to display or update messages. Maintenance of the system
message area can only be done from a dictionary that has the same page group as the
SYSMSG segment.

Page groups and SQL: When defining an application dictionary that contains a
catalog component, the page groups of the base and catalog components may be
different. The page group of the catalog component has no impact on the page group
of data that may be accessed while connected to the dictionary.

Chapter 23. Dictionaries and Runtime Environments 23-7

23.2 CA-supplied dictionary definitions

23.2 CA-supplied dictionary definitions

Provided on install tape: As part of installation, you receive definitions for
entities required to operate your CA-IDMS/DB environment. These definitions are
described below:

How the dictionary gets populated: Dictionaries are populated with CA-supplied
definitions in one of three ways:

Definitions Description

Non-SQL descriptions of the
dictionary

A schema and subschemas describing the base
definition and message components and that part
of the catalog component used for physical
database definitions

At sites with the SQL option,
an SQL description of the
catalog component

Table definitions of the catalog component of the
SYSTEM schema and views based on those tables
in the SYSCA schema

Runtime messages Messages used by CA-written software

Entity, class, and attribute
definitions

Definitions of base entity, class, and attributes
used by CA-IDMS tools

Protocols and standard error
routines

Generalized source modules that the DML
processors use to convert DML statements into
calls for DBMS services

DC/UCF device types, task, and
program definitions

Definitions used to generate DC/UCF systems

CA-CULPRIT report modules CA-CULPRIT source modules used to produce
standard reports; for example, JREPORTs,
SREPORTs, and DREPORTs

Nondatabase structures Records that are not associated with a
CA-IDMS/DB database. CA-IDMS/DB stores the
definitions of nondatabase structures as records in
the dictionary; applications can copy the
definitions of the records at compile time by
means of COPY IDMS or INCLUDE IDMS
compiler-directive commands.

IDMSDIRL Loads the non-SQL schema and subschemas that define the
base definition and message components of the dictionary

IDD, IDMSCHEM,
IDMSUBSC

Populates the base definition and message components of the
dictionary using source members provided at installation

23-8 CA-IDMS Database Administration

23.2 CA-supplied dictionary definitions

Where information should reside: The information listed above can reside in
either a system dictionary or an application dictionary, or both:

Command facility Populates the catalog component of the dictionary with system
table and view definitions (SQL-option only)

Information Where it should reside

Non-SQL schema and subschema
definitions

In one dictionary associated with each
system; the definitions may be shared
across systems

SQL definitions In all dictionaries having a catalog
component (SQL-option only)

Messages In all system message areas

Entity, class, and attribute definitions In all system and application
dictionaries

Protocols and standard error routines In all application dictionaries

DC/UCF device types, task, and program
definitions

In all system dictionaries

CA-CULPRIT report modules In the same dictionary that contains
the non-SQL schema and subschema
definitions of the dictionary

23.2.1 Logical database definitions

CA-supplied schema: The table below describes the non-SQL schema supplied by
CA that describes a dictionary. Its definitions are stored in a dictionary by the
IDMSDIRL utility.

CA-supplied subschemas: The following table describes subschemas supplied by
CA and the CA-IDMS products or facilities that make use of them. Most of these
subschemas are distributed as object modules only. The source definitions of
IDMSNWKA and IDMSNWKG are also stored in a dictionary by IDMSDIRL for
user-reporting purposes.

Schema Areas

IDMSNTWK DDLDML

DDLDCLOD

DDLCAT

DDLCATX

DDLDCMSG

Chapter 23. Dictionaries and Runtime Environments 23-9

23.2 CA-supplied dictionary definitions

Subschema Areas Used by

IDMSCATL DDLCATLOD ■ Loader processing

■ CLOD DC/UCF system task

■ PUNCH utility statement

■ Database administrators when executing
utilities such as UNLOAD/RELOAD
against the DDLCATLOD area

IDMSCATZ DDLCAT

DDLCATX

DDLCATLOD

■ The command facility for SQL
processing and physical database
definition

■ User applications issuing dynamic SQL
requiring automatic recompilation of an
access module or issuing SQL DDL
statements

■ Database administrators when executing
utilities such as UNLOAD/RELOAD
against SQL-defined DDLCAT and
DDLCATX areas

IDMSNWKA DDLDML

DDLDCLOD

DDLDCMSG

■ IDD DDDL compiler (IDMSDDDL)

■ DC/UCF system generation compiler
(RHDCSGEN)

 ■ DC/UCF startup

■ Schema and subschema compilers
(IDMSCHEM and IDMSUBSC)

■ CA-IDMS-DC mapping compilers
(MAPC and batch)

 ■ CA-ADS compilers

 ■ CA-OLQ

 ■ CA-CULPRIT

■ The Automatic System Facility (ASF)

IDMSNWKL DDLDCLOD Loader processing and the CLOD DC/UCF
system task

IDMSNWKT DDLDML SQL processing to access non-SQL defined
database descriptions

23-10 CA-IDMS Database Administration

23.2 CA-supplied dictionary definitions

Note: Additional non-SQL schemas and subschemas are supplied at installation time.
For more information, refer to CA-IDMS Security Administration.

SQL table definitions: At sites with the SQL option, CA-IDMS/DB also provides
the table and view definitions that describe the catalog component of the dictionary.
These definitions are distributed under two schema names:

�� For a description of the table definitions, refer to the CA-ADS Reference.

Subschema Areas Used by

IDMSNWKU DDLDML

DDLDCLOD

DDLDCMSG

DDLCAT

DDLCATX

Database administrators when executing
utilities such as UNLOAD/RELOAD against
dictionary areas DDLDML, DDLDCLOD,
DDLDCMSG and DDLDCAT and
DDLCATX for non-SQL defined segments
only

IDMSNWKG DDLDML

DDLDCLOD

DDLDCMSG

DDLCAT

DDLCATX

 ■ IDMSRPTS

IDMSNWK6 DDLDCMSG System message processing

IDMSNWK7 DDLDCRUN QUED and QUEM DC/UCF system tasks
and queue processing

IDMSNWK8 DDLDML CLIST and send-message processing

IDMSNWK9 DDLDCLOG Online print log (OLP) and PRINT and
ARCHIVE LOG utility statements

SYSTEM Contains the catalog table definitions; no changes can be
made to any of the entities in the SYSTEM schema

SYSCA Contains the CA-supplied views of the SYSTEM tables
and records in the IDMSNWK schema; these views
restrict access to table definition information based on a
user's SELECT authority on the table.

23.2.2 Protocols, nondatabase structures, and modules

The following table summarizes the protocols, nondatabase structures, and modules
placed in the dictionary at installation time:

Chapter 23. Dictionaries and Runtime Environments 23-11

23.2 CA-supplied dictionary definitions

Language Protocol Non-database
structure

Module

COBOL BATCH

BATCH-AUTOSTATUS

CICS

CICS-AUTOSTATUS

CICS-EXEC

CICS-EXEC-AUTO

CICS-STANDARD

CICS-STD-AUTO

DC-BATCH

IDMS-DC

UTM

UTM-AUTOSTATUS

IDMS-DC-NONAUTO

IDMSDML-PROTOCOL-SQL

DB-STATISTICS

SUBSCHEMA-CTRL for

IDMS-DC

IDMS-DC-NONAUTO

DC-BATCH

CICS

CICS-AUTOSTATUS

CICS-EXEC

CICS-EXEC-AUTO

CICS-STANDARD

CICS-STD-AUTO

UTM

UTM-AUTOSTATUS

SUBSCHEMA-LR-CTRL

IDMS-STATUS for

BATCH-AUTOSTATUS

IDMS-DC

DC-BATCH

all others

PL/1 BATCH

CICS

CICS_EXEC

DC_BATCH

IDMS_DC

IDMSDML_PROTOCOL_SQL

DB-STATISTICS

SUBSCHEMA_CTRL for

 CICS

 CICS_EXEC

 IDMS_DC

 DC_BATCH

SUBSCHEMA_LR_CTRL

IDMS_STATUS

IDMS_STATUS

(IDMS_DC)

FORTRAN BATCH

FOR77

SSCTRL

SSLRCT

Assembler BATCH

CICS

CICS-AUTOSTATUS

CICS-EXEC

CICS-EXEC-AUTO

IDMSDC

SSCTRL for

 CICS

 CICS-AUTOSTATUS

 CICS-EXEC

 CICS-EXEC-AUTO

SSLRCTL

DBSTATS

RPG II BATCH SSCT

SSLRCT

23-12 CA-IDMS Database Administration

23.3 Defining new dictionaries

23.3 Defining new dictionaries

23.3.1 Defining new catalog components

Physical characteristics: The segment definition for all catalog components must
have the following characteristics:

■ The names of the areas must be DDLCAT, DDLCATX, and DDLCATLOD

■ The page size of the areas should be at least 4856 plus page reserve

All other physical characteristics can be chosen based on processing requirements,
hardware configuration, and standard database design techniques. For example, choose
an access method and page size appropriate for your disk devices and consider using
a page reserve on the DDLCATX area.

Catalog components for non-SQL use: Without the SQL option, only a system
dictionary requires a catalog component. When defining the corresponding segment,
specify FOR NONSQL (or take the default).

Catalog components for SQL use: If the SQL option has been installed at your
site, one or more of your application dictionaries will have an associated catalog
component in order to define tables and views. The corresponding segment must have
the following attributes:

■ FOR SQL specification on the segment

■ STAMP BY AREA for the DDLCAT and DDLCATLOD areas

■ STAMP BY TABLE for the DDLCATX area

The catalog associated with the system dictionary can also be defined with these
attributes. If it is, SQL can be used to examine the physical database definitions
stored in the system dictionary.

When a new SQL catalog component is defined, take the following steps after the new
segment has been formatted:

1. Define the system tables and views in the new catalog using the TABLEDDL and
VIEWDDL members in the installation source library

2. Issue the UPDATE STATISTICS utility statement against the new DDLCAT area

3. Grant appropriate authorities to permit authorized users to create schemas in the
new dictionary

Chapter 23. Dictionaries and Runtime Environments 23-13

23.3 Defining new dictionaries

23.3.2 Defining new application dictionaries

Steps: To create a new application dictionary, follow these steps:

Action Steps

Start a session in the command
facility

CONNECT TO SYSTEM

Define segments for the base
definition and the catalog components
of the dictionary

Note that you need the catalog
component only if the SQL option is
installed at your site.

CREATE SEGMENT

Add the new segment(s) to the
DMCL used at runtime

ALTER DMCL with the ADD SEGMENT
clause

If you created two segments, define a
new database name in the database
name table

CREATE DBNAME

Generate, punch, and linkedit the new
DMCL

See Chapter 25, “Modifying Physical
Database Definitions” on page 25-1

If you created a new database name,
generate, punch, and linkedit the new
database name table

See Chapter 26, “Modifying Database Name
Tables” on page 26-1

Create and format new dictionary files See Chapter 16, “Allocating and Formatting
Files” on page 16-1

Make the DMCL available to the
runtime system

See Chapter 25, “Modifying Physical
Database Definitions” on page 25-1

Populate the dictionary with
CA-supplied definitions

Use IDD DDDL statements to add entity,
class, and attribute definitions, protocols,
and standard error routines

If you created a new catalog
component:

■ Populate it with the system table
and view definitions

■ Execute UPDATE STATISTICS
for the DDLCAT area of the new
dictionary

■ Grant appropriate authorities to
define schemas in the new
dictionary

23-14 CA-IDMS Database Administration

23.3 Defining new dictionaries

Example: The following example illustrates how to define a new application
dictionary. It consists of a new definition component in segment TESTDICT, a new
catalog component in segment TESTCAT, and the system message component.

The database name for the dictionary is TESTDICT.

1. Define a new segment containing the necessary areas:

create segment testdict

 for nonsql

page group 9

maximum records per page 255;

create segment testcat

 for sql

page group 9

maximum records per page 255

stamp by area;

add file testcat

assign to testcat

 dsname 'test.testcat';

add file testcatx

assign to testcats

 dsname 'test.testcatx';

add file testcatl

assign to testcatl

 dsname 'test.testcatl';

add file testdml

assign to testdml

 dsname 'test.ddldml';

add file testlod

assign to testlod

 dsname 'test.ddldclod';

add area ddldml

primary space 19999 pages

from page 5999991

maximum space 29999 pages

page size 4276

within file testdml

from 1 for all blocks;

add area ddldclod

primary space 1999 pages

from page 5929991

maximum space 5999

page size 8196

within file testlod

from 1 for all blocks;

Chapter 23. Dictionaries and Runtime Environments 23-15

23.3 Defining new dictionaries

add area ddlcat

primary space 5999 pages

from page 5939991

maximum space 19999 pages

page size 8196

within file testcat;

add area ddlcatx

primary space 1999 pages

from page 5949991

maximum space 3999 pages

page size 8196

within file testcatx;

add area ddlcatlod

primary space 599 pages

from page 5945991

maximum space 5999 pages

page size 8196

within file testcatl;

2. Modify the DMCL

3. Generate, punch, and linkedit the new DMCL:

generate dmcl idmsdmcl;

4. Define a new database name for the dictionary

add dbname alldbs.testdict

 segment testdict

 segment testcat

 segment sysmsg;

5. Generate, punch, and link the database name table:

generate table dbtable alldbs;

6. Create and format new dictionary files:

format segment testdict;

format segment testcat;

7. Populate the dictionary using the appropriate source from the installation source
library.

8. Execute UPDATE STATISTICS for the new DDLCAT area:

update statistics for area testcat.ddlcat;

9. Assign appropriate authorities within the new dictionary.

23.3.3 Defining new system dictionaries

Steps: To create a system dictionary for a new system, follow these steps:

23-16 CA-IDMS Database Administration

23.3 Defining new dictionaries

Action Steps

Start a session in the command
facility

CONNECT TO SYSTEM

Create new segments that contain
these dictionary areas

 DDLDML
 DDLDCLOD
 DDLCAT
 DDLCATX
 DDLCATLOD
 DDLDCMSG

Note: Use segment name that are
different than existing segment
names.

CREATE SEGMENT

If you created more than one
segment, create a database name table
entry that contains all the segments
you created

CREATE DBNAME

Add the segment(s) to the DMCL ALTER DMCL with the ADD SEGMENT
clause

Generate, punch, and link the DMCL See Chapter 25, “Modifying Physical
Database Definitions” on page 25-1

If you created more than one
segment, generate, punch, and link the
database name table

See Chapter 26, “Modifying Database Name
Tables” on page 26-1

Format the new dictionary files FORMAT FILE/SEGMENT

Grant appropriate administrative
privileges to authorized individuals on
and within the new dictionary

Refer to CA-IDMS Security Administration

Chapter 23. Dictionaries and Runtime Environments 23-17

23.3 Defining new dictionaries

Action Steps

Re-define the dictionary segment(s) in
the new dictionary by either:

■ Creating new dictionary
segment(s)

■ Punching the segment definitions
from the current SYSTEM
dictionary and re-adding them to
the new dictionary

Make sure the segment name of the
message area in the new dictionary is
SYSMSG. Define additional
segments necessary for a complete
runtime environment.

 ■ CREATE SEGMENT

 ■ PUNCH SEGMENT

Define a database name table that
includes the database name SYSTEM;
SYSTEM must identify the new
dictionary segments. Add additional
entries as necessary.

 ■ CREATE DBTABLE

 ■ CREATE DBNAME

Create a new DMCL with associated
database buffers, a journal buffer, and
journal files

See Chapter 4, “Defining, Generating, and
Punching a DMCL” on page 4-1

Add the new segments and associate
the database name table with the new
DMCL

ALTER DMCL

Generate, punch, and link the new
DMCL

See Chapter 4, “Defining, Generating, and
Punching a DMCL” on page 4-1

Generate, punch and link the new
database name table

See Chapter 5, “Defining a Database Name
Table” on page 5-1

Populate the system dictionary with
the following CA-supplied definitions:

Entity, class, and attribute
definitions

DC/UCF device types, tasks, and
programs

If the new catalog segment was
defined as FOR SQL, complete its
definition.

See 23.3.1, “Defining new catalog
components” on page 23-13 earlier in this
chapter.

23-18 CA-IDMS Database Administration

23.4 Establishing a default dictionary

23.4 Establishing a default dictionary

What is a default dictionary: A default dictionary is the dictionary that will be
accessed by CA-IDMS tools if you don't specify a dictionary by other means such as
using a DCUF SET DICTNAME command or a CONNECT statement.

Defining a default dictionary: To define a default dictionary for your runtime
environment, include a subschema mapping in the database name table associated with
the runtime DMCL for the IDMSNWK subschemas. For example, the statement
below establishes TESTDICT as the default dictionary for the runtime environment
using the ALLDBS database name table:

create dbtable alldbs

add subschema idmsnwk? maps to idmsnwk? dbname testdict;

Chapter 23. Dictionaries and Runtime Environments 23-19

23.5 About runtime environments

23.5 About runtime environments

Central version or local mode: CA-IDMS/DB can run within a DC/UCF system
as a central version or in local mode:

■ Central version operations provide database services to batch or online
applications. Multiple users can gain access to a database concurrently.

■ Local mode operations are batch operations that do not run under a central
version. In local mode, only one user at a time has access to a database area in
update mode.

Data sharing environment: Data sharing is an environment in which two or more
central versions operate cooperatively through the use of a coupling facility. In this
environment, multiple central versions may concurrently access a database area in
update mode.

Central version runtime components: The table below lists the components
needed for a central version runtime environment:

 Considerations

■ The segment name of the system message area must be SYSMSG.

■ The segment(s) associated with DDLDCLOG, DDLDCRUN, and DDLDCSCR
must be included in the SYSTEM database name

■ Each central version must have its own DDLDCLOG and DDLDCSCR. In a
non-data sharing environment, each central version must also have its own
DDLDCRUN area. In a data sharing environment, the DDLDCRUN area may be
shared among members of a data sharing group.

Component Description

System dictionary Defines the DC/UCF system and physical database
entities

DDLDCLOG Contains central version log records when the log file
for the central version is assigned to the database

DDLDCRUN Contains runtime queue information used by
CA-supplied tools and online user programs

DDLDCSCR Contains runtime scratch information used by
CA-supplied tools and online user programs

SYSMSG.DDLDCMSG Contains CA-supplied and user-defined messages

DDLSEC Contains user and group information

Application dictionaries

User databases

23-20 CA-IDMS Database Administration

23.5 About runtime environments

■ The DDLSEC area may not be necessary depending on your security
implementation.

�� For more information about sharing the DDLDCRUN area, refer to CA-IDMS
System Operations.

�� For more information about security, refer to CA-IDMS Security Administration.

Local mode runtime components: The table below lists the components needed
for a local mode runtime environment:

 Considerations

■ The segment name of the system message area must be SYSMSG.

■ The system dictionary and DDLSEC area may not be necessary depending on
your security implementation.

�� For more information on security, refer to CA-IDMS Security Administration.

■ At least the default dictionary should be available in local mode. Additional
application dictionaries may be needed for loading subschemas and processing
SQL requests.

What follows: What follows is a description of:

■ The SYSIDMS parameter file, which describes the runtime parameters in a batch
environment

■ How to establish a default dictionary for your session

Component Description

System dictionary Defines the DC/UCF system and physical database
entities

SYSMSG.DDLDCMSG Contains CA-supplied and user-defined messages

DDLSEC Contains user and group information

DDLOCSCR Contains runtime scratch information used by local
mode CA-supplied tools and user programs issuing SQL
requests

Application dictionaries

User databases

Chapter 23. Dictionaries and Runtime Environments 23-21

23.5 About runtime environments

23.5.1 SYSIDMS parameter file

About SYSIDMS parameters A SYSIDMS parameter is a parameter that can be
added to the JCL stream of a batch job running in local mode or under the central
version. You can use SYSIDMS parameters to specify:

■ Physical requirements of the environment, such as the DMCL and database to use
at runtime

■ Runtime directives that assist in application execution

■ Operating system-dependent file information

For a complete list of the parameters that can be specified, see Appendix H,
“SYSIDMS Parameter File” on page H-1.

Establishing site defaults: Site-specific defaults can be established for all
SYSIDMS parameters by assembling a SYSIDMS defaults load module. If it exists,
this load module is used at runtime to determine the default values for all SYSIDMS
parameters. Defaults may then be overridden in an individual job step by including a
SYSIDMS parameter file in the execution JCL.

Creating a SYSIDMS defaults load module: The following example illustrates
how to code a SYSIDMS defaults load module. It is a table of 80-character constants,
each of which may contain one or more SYSIDMS parameters, as described in
Appendix H. A parameter and its value must be contained within a single
80-character constant, but more than one parameter may appear within a constant. The
last constant must have a value of "END SYSIDMS DEFAULTS."

TITLE 'SYSIDMS - Build load module for SYSIDMS defaults'

SYSIDMS START 9

``````````````````````````````````````````````````````````````

` Code any SYSIDMS parms that you want to be part of this SYSIDMS

` defaults load module. This SYSIDMS defaults load module will be

` processed first before trying to process any SYSIDMS parms defined

` in the JCL for any IDMS batch job.

```````````````````````````````````````````````````````````````

 SPACE

 DC CL89'ECHO=ON DMCL=GLBLDMCL'

 DC CL89'JOURNAL=OFF'

 SPACE

` The following statement is mandatory and must be the last statement

` in the SYSIDMS defaults load module.

DC CL89'END SYSIDMS DEFAULTS'

 END

Linking a SYSIDMS defaults load module: The load module must have both a
name and an entry point of SYSIDMS. For operating systems that support XA
storage, the load module can be linked as AMODE 31, RMODE ANY.

Overridding SYSIDMS parameter defaults: SYSIDMS default values can be
overridden for an individual job step by including a SYSIDMS parameter file in the
execution JCL.

23-22 CA-IDMS Database Administration

23.5 About runtime environments

In the following example, the SYSIDMS parameters included in the job stream instruct
CA-IDMS/DB to use the DMCL LOCLDMCL to execute a job. DBNAME identifies
EMPDB as the database to access at runtime, and the QSAM parameters instruct
CA-IDMS/DB to use the IDMSQSAM look-ahead read facility when accessing
EMPSEG.EMPAREA:

//SYSIDMS DD `

DMCL=LOCLDMCL DBNAME=EMPDB

IDMSQSAM=ON QSAMAREA=EMPSEG.EMPAREA

In the following example, the SYSIDMS parameters used are typical for a batch job
running under the central version:

//SYSIDMS DD `

DBNAME=EMPDB NODENAME=SYSTEM99

23.5.2 Establishing session options

Established at signon: CA-IDMS establishes options for your runtime session
when you signon on to a DC/UCF system or when CA-IDMS/DB issues its first
database request from a batch application (in local mode or under the central version)
or external teleprocessing monitor. The manner in which CA-IDMS implements the
options and how they affect your session depends on the runtime environment.

Specifying a default database or dictionary: CA-IDMS/DB provides several
ways to specify a session default dictionary or database. The methods available
depend on the runtime environment.

Online processing: To specify a session default in an online environment, you
can:

■ Specify DICTNAME/DICTNODE or DBNAME/DBNODE attributes in a system
or user profile

■ Issue a DCUF command

■ Issue a compiler SIGNON or CONNECT statement naming the dictionary and/or
database from within an online CA-IDMS/DB compiler or tool (this will update
the default dictionary for the runtime session)

Batch processing: To specify a session default dictionary for a batch central
version or external teleprocessing monitor application, you can use:

■ An IDMSOPTI module (for non-SQL applications only)

■ A SYSCTL file

■ A SYSIDMS parameter file

�� For more information about how CA-IDMS/DB determines which database or
dictionary to access when provided with information by the program, IDMSOPTI
module, SYSCTL file, and SYSIDMS file, refer to CA-IDMS System Operations

Chapter 23. Dictionaries and Runtime Environments 23-23

23.5 About runtime environments

Local mode processing: To specify a session default for local mode, you can use:

■ An IDMSOPTI module (for non-SQL applications only)

■ A SYSIDMS parameter file

23-24 CA-IDMS Database Administration

23.6 Related information

 23.6 Related information

■ About database name tables, see Chapter 5, “Defining a Database Name Table”
on page 5-1

■ About the SYSCTL file and IDMSOPTI module, refer to CA-IDMS System
Operations

■ About dictionary entities, refer to the IDD DDDL Reference

■ About system table definitions and system record definitions, refer to the CA-ADS
Reference

■ About SYSIDMS parameter syntax, see Appendix H, “SYSIDMS Parameter File”
on page H-1

Chapter 23. Dictionaries and Runtime Environments 23-25

23-26 CA-IDMS Database Administration

Chapter 24. Migrating from Test to Production

24.1 About migration . 24-3
24.2 Establishing migration procedures . 24-4
24.3 Implementing migration procedures . 24-5

24.3.1 Step 1: Determine the types of components to migrate 24-5
24.3.2 Step 2: Determine the sequence of migration 24-9
24.3.3 Step 3: Identify the individual components 24-11
24.3.4 Step 4: Migrate the components . 24-11

24.4 Identification aids . 24-12
24.5 Migration tools . 24-15
24.6 General methods . 24-17

24.6.1 Using the DISPLAY statement . 24-17
24.6.2 Using the PUNCH statement . 24-18
24.6.3 Using the mapping compiler and mapping utility 24-22
24.6.4 For SQL-defined entities . 24-23

24.7 Additional considerations . 24-25
24.7.1 Additional tasks . 24-25

Chapter 24. Migrating from Test to Production 24-1

24-2 CA-IDMS Database Administration

24.1 About migration

 24.1 About migration

Migrate definitions from one dictionary to another: Whether you have
multiple dictionaries under a single CA-IDMS/DC system or several dictionaries under
separate CA-IDMS/DC systems, you probably need to migrate definitions from one
dictionary to another. Typically, migration occurs when testing is complete and an
application is ready for production. At that time, the database and application
definitions must be moved from the test into the production environment.

Considerations for non-SQL and SQL defined data: The need to migrate
database and applications applies to both SQL-defined and non-SQL defined databases
and applications using SQL or navigational DML. Most of this chapter applies to both
SQL and non-SQL equally. Text that applies specifically to one or the other will be
noted.

Chapter 24. Migrating from Test to Production 24-3

24.2 Establishing migration procedures

24.2 Establishing migration procedures

Considerations: Because many of the pieces of an application, such as
subschemas, maps, and dialogs, exist in both source and load module format, you must
consider the following questions when you migrate from one dictionary to another:

■ Should you copy or move the components?

■ Should you migrate and recompile source code to produce load modules?

■ Should you migrate just the load modules?

Accessibility of the source code: The major benefit of a complete, fully
documented application is that the proper source code is accessible when needed for
debugging. If a problem arises and the source code resides in a properly controlled
production environment, the source code can easily be found and it will correspond
exactly to the load module(s) where the problem was encountered.

Availability of disk space: A trade-off to migrating a fully documented
application is the amount of disk space required. The space may be in one
environment, such as production, or may be spread out over a number of
environments, such as development, test, and production. Determining exactly how
much disk space is necessary depends on whether you decide to copy the application
into the production environment or simply move it.

Redundancy: If you choose to maintain separate copies of the application, you
must contend with the trade-offs of redundancy. Often, updates to one copy must also
be made to the other, and they both must be made within a short period of time in
order to maintain consistency.

Accessibility of information: If you maintain only one copy of the application,
you use a minimum amount of disk space and do not have to contend with
redundancy. However, accessibility of information becomes a consideration. If the
information is secured so that only one person is able to access it, procedures must be
developed that allow maintenance programmers and all members of the staff to obtain
reports of component definitions. At the same time, you must ensure that there is
ample security so that no one can make accidental or malicious updates that would
invalidate production applications.

24-4 CA-IDMS Database Administration

24.3 Implementing migration procedures

24.3 Implementing migration procedures

Steps: There are essentially four steps involved in migration:

1. Determine the types of components to migrate

Carefully examine the circumstances for dependencies and other relationships
among the components involved.

2. Determine the sequence of migration

Components that do not depend on the definitions of other components should be
first on the list.

3. Identify the components

Identify the names, version numbers, and, as appropriate, languages of the
individual components that you need to migrate.

4. Migrate the components using the batch and online compilers and utilities

These steps are discussed on the following pages.

Before you begin: Before you begin a migration, you may want to back up all
involved files. These files can include:

■ Source and target DDLDML, DDLDCLOD, DDLCAT, DDLCATX, and
DDLCATLOD areas

■ Source and target source libraries

■ Source and target load libraries

■ Source and target JCL procedure libraries

These backups provide coverage during the migration as well as after the migration is
complete. If problems arise at any time, you can restore individual components or
entire files from the backups.

24.3.1 Step 1: Determine the types of components to migrate

The components to be migrated should include not only what needs to be migrated but
also what is affected by the migration. The descriptions that follow identify
components typically involved in migration and how these affect other components.

Application structure: The application structure is saved as a load module in the
DDLDCLOD area of the data dictionary; no source definitions for the application are
stored in the DDLDML area. The application structure is relatively autonomous. If
you make changes to the application structure, you do not need to recompile any other
application components.

Changes to the application structure, however, can logically affect other components,
specifically dialogs. For example, if you change a response name, you will want to
change the response field value of any response processes you expect to execute before

Chapter 24. Migrating from Test to Production 24-5

24.3 Implementing migration procedures

control is passed to the response. The application will execute without modifying the
dialog, but it will not produce the expected results.

Maps: Changes to maps fall into two categories:

 ■ Critical changes

 ■ Noncritical changes

Critical changes update the date/time stamp. Any dialogs that use the map must be
recompiled before they can be executed. Critical changes to maps include:

■ Adding a data field to the map

■ Deleting a data field from the map

Noncritical changes to maps do not cause the map date/time stamp to be updated and,
therefore, do not affect any other application components.

Dialogs: Dialogs associate subschemas or access modules, maps, and process code.
The dialog load module contains executable process source code. Recompiling a
dialog creates a new relational command module (RCM). Any access modules that
include that RCM must then be recompiled also. Recompiling a dialog does not affect
any other application component.

Process source code: Process source code is stored in the data dictionary.
Process code is compiled by the dialog compiler and becomes executable when the
dialog is compiled. To have changes to process source code reflected in the dialog
load module, you must recompile the dialog.

RCMs (SQL DML applications only): If a program/dialog containing SQL
statements is recompiled, a RCM is automatically created for it and stored as a load
module in the DDLDCLOD area. If the program/dialog load module is copied intact
to the production system, the RCM load module must also be copied.

Subschemas (navigational DML applications only): If you change a
subschema associated with a dialog, map, or program, you do not need to recompile
the dialog, map or program. If the subschema changes cause you to change the logic
of a process module, you will need to recompile the dialog(s) in which the module is
used. If the subschema changes affect the lengths of data elements or records or the
procedural code in a program, you will need to recompile and relink the program.

Access modules (SQL DML applications only): Access modules must be
compiled from scratch using the catalog that defines the physical database being
accessed. They cannot be copied in load module form like other application
components. A typical migration would copy the RCM load modules, apply any
needed database definition changes and then create all access modules used by the
application, using the CREATE ACCESS MODULE command.

24-6 CA-IDMS Database Administration

24.3 Implementing migration procedures

Non-SQL data definitions: Non-SQL data is defined in records that consist of
record elements. Records are either database records, which are included in a schema,
or work records, which are defined through the DDDL compiler.

Changes to database records require that all subschemas that use those records be
recompiled. All SQL access modules that reference those records must also be
recompiled for SQL applications that access non-SQL defined databases. Changes to
either database records or work records may require map and/or dialog recompilation.

Some changes to database records require some form of restructuring to incorporate
those changes into the existing database.

�� For more information about modifying the schema definition of a non-SQL defined
database, see Chapter 31, “Modifying Schema Entities” on page 31-1.

SQL data definitions: Data is defined in tables that consist of columns. Changes
to these tables require that all access modules that use those tables be recreated.
Depending on the definition of a particular access module, this recreation may occur
automatically or may have to be initiated manually. These changes may require map
and/or dialog recompilation.

Some changes to table definitions requires some form of restructuring to incorporate
those changes into the existing database.

�� For more information about modifying the schema definition of an SQL defined
database, see Chapter 28, “Modifying Schema, View, and Table Definitions” on
page 28-1.

Adaptive query management: Adaptive query management is a feature of the
IDMS SQL option that automatically recompiles access modules in response to certain
kinds of changes in a database application. For example, if a dialog/program has been
recompiled, the runtime SQL engine detects whether corresponding access modules
have been recompiled to include the new RCM. If not, it automatically recompiles the
access module at runtime (if the AUTO RECREATE ON option was specified when
the access module was created or last altered). Adaptive query management applies to
SQL DML applications that access either non-SQL or SQL-defined databases.

Adaptive query management also automatically recompiles existing access modules
that access SQL-defined databases when the definitions of those databases change.
Note that this does not happen for non-SQL defined databases. It is the responsibility
of the applications administrator to manually recompile any access modules affected by
changes to a non-SQL defined database.

Edit and code tables: Changes to stand-alone edit and code tables that are
associated with a map require that the map be recompiled only if the tables are linked
to the map. Changes to unlinked tables do not affect the map load module.

Chapter 24. Migrating from Test to Production 24-7

24.3 Implementing migration procedures

 Examples

Example 1 Adding a data item to a screen: Suppose users of an application
request an additional data item on a screen. To determine what is affected, consider
the relationship between the map and the new data item:

■ For an application using navigation DML, you need to do the following if the data
item is from a database record already being used by the map:

1. Change the map to display the data item

2. Recompile the map

3. Recompile any dialogs that use the map

To take these actions, you need to migrate the map and the dialogs.

■ For an application using navigation DML, you need to do the following if the
database record is part of the subschema used by the map, but the record is not
already in use by the map:

1. Add the record to the map definition

2. Change the map to display the data item

3. Recompile the map

4. Recompile any dialogs that use the map

To take these actions, you need to migrate the map and the dialogs.

■ For an application using navigation DML, you need to do the following if the
database record is not already part of the subschema:

1. Add the record to the subschema

2. Recompile the subschema

3. Add the record to the map definition

4. Change the map to display the data item

5. Recompile the map

6. Recompile any dialogs that use the map

To take these actions, you need to migrate the subschema, map, and dialogs.

■ If the data item can be derived (for example, calculated) from data already
available to the application, you need to:

1. Create a work record for the map and add it to the map definition or modify
the existing work record

2. Change the map to display the data item

3. Recompile the map

4. Change any processes that must derive the data item

5. Recompile any dialogs that use the map

24-8 CA-IDMS Database Administration

24.3 Implementing migration procedures

To take these actions, you need to migrate the record, subschema, map, affected
processes, and dialogs.

■ If the application uses SQL DML, a work record will already have been defined to
move data between the map and the SQL statements in the dialog. To add
another database item to the screen, you need to:

1. Add the item to the work record already defined for the host variables
referenced in the SQL DML statements.

2. Change the map to display the data item.

3. Recompile the map.

4. Make necessary changes to the SQL statements to retrieve the data item from
the database.

5. Recompile any dialogs that contain altered SQL statements and any dialogs
that use the map.

6. Recompile (using the ALTER ACCESS MODULE statement) any access
modules that contain the recompiled dialogs.

Example 2 Implementing a new application: Suppose you implement an entirely
new application based on an existing database. When the new application has been
adequately tested, all of the application components need to be migrated from the test
system to the production system. In addition, you must also consider what database
components to migrate:

■ If you have not made any changes to the structure of the database, then the
existing schema and physical definitions are not affected

■ Depending on the volume and type of activity involved in the new application,
you may need to adjust the buffers and review the adequacy of the journals in the
global DMCL

■ If the application uses navigational DML and you used existing subschemas, they,
too, are unaffected by the migration. However, if you created new subschemas for
the application, you must migrate them.

■ If the application uses SQL DML, you must migrate any RCMs and access
modules that were created as part of the application.

24.3.2 Step 2: Determine the sequence of migration

Can migrate load module at any time: If you choose to migrate only load
modules, the sequence in which you migrate them does not matter.

Sequence matters for source code migration: If you migrate any source code,
the sequence is very important because there are dependencies among the components.

In some migrations, certain components will already be in place; in others, you will
need to migrate all components. The list below shows the sequence required if all
components were to be migrated.

Chapter 24. Migrating from Test to Production 24-9

24.3 Implementing migration procedures

Non-SQL database
definitions

1. Elementary data items

2. Group level data items

 3. Database records

 4. Schemas

 5. Subschemas

SQL database definitions 1. Schemas

 2. Tables

 3. CALC keys

 4. Indexes

 5. Constraints

Physical database
definitions

 1. Segments

 2. Areas

 3. Files

 4. DMCL modules

5. Database name tables

Application components
definitions

1. Edit and code tables

2. Work records for elementary data items, group level
data, maps, and dialogs

3. CA-ADS process modules

4. Modules called by CA-ADS processes or other
programs

 5. Maps

6. CA-ADS application structures

 7. CA-ADS dialogs

8. RCMs (for SQL DML applications only)

9. Access modules (for SQL DML applications only)

Components that can be
migrated in any sequence

 1. Load modules

2. Source code for batch and online programs

3. CA-CULPRIT source code

 4. JCL

24-10 CA-IDMS Database Administration

24.3 Implementing migration procedures

24.3.3 Step 3: Identify the individual components

Having determined the types of components you need to migrate, you can begin to
identify the individual occurrences. To identify them uniquely, you need both their
names and version numbers. For modules, programs, and edit/code tables, you also
need the name of the language in which they are programmed.

24.3.4 Step 4: Migrate the components

Depending on the volume of information and the configuration of your dictionaries,
you can use batch or online facilities to move or copy the component definitions to
their target dictionary.

Using online compilers for migration: If the volume of information is small and
both dictionaries are under the control of the same CA-IDMS/DC or CA-IDMS/UCF
system, you can use the online compilers for most of the migration.

Using batch compilers for migration: If the volume is large or if the
dictionaries are under the control of separate CA-IDMS/DC or CA-IDMS/UCF
systems, you need to use the batch compilers and utilities.

Migrating only load modules: If you only want to create an executable
application in the production environment, you migrate just the essential load modules.
Note that for SQL DML applications, the access modules must still be compiled from
scratch on the production system.

Migrating the complete application: If you want a complete, fully documented
application in the production environment, you need to:

■ Migrate the source for all components

■ Recompile the components

■ Recompile the corresponding load modules

Chapter 24. Migrating from Test to Production 24-11

24.4 Identification aids

 24.4 Identification aids

The descriptions below identify facilities or techniques you can use to identify the
individual application components you need to migrate. To extract information on
components stored in libraries or other data sets, use an appropriate operating system
utility.

IDD DISPLAY statement: Using either the online or batch dictionary compiler,
you can list the names and version numbers of entity occurrences with a simple form
of the DISPLAY ALL statement. Any of the IDD entity types can be displayed.

Using an optional WHERE clause on the DISPLAY ALL statement, you can more
closely select the occurrences you want displayed. With any entity types, you can
qualify the occurrence name. For some entity types, there are additional selection
criteria that you can specify, such as the user ID of the person who created the entity.

�� For more information on the DISPLAY ALL statement and its WHERE clause,
refer to the discussion on entity-occurrence display in IDD DDDL Reference

Command facility: With either the online or batch command facility, you can:

■ Display physical database definitions

■ Use a SELECT statement to list, but not display the syntax of, SQL entity
definitions

IDMSRPTS: IDMSRPTS is a utility that produces reports on information stored in
the dictionary. One of its options, the Program Cross-Reference Listing, is particularly
useful for migration operations if you are using program registration. The report lists
all subschemas for a specified schema and all of the programs registered against those
subschemas.

�� For a sample of this report and instructions on how to run the IDMSRPTS utility,
refer to CA-IDMS Utilities.

DREPORTs: DREPORTs also report on information stored in the dictionary. There
are some DREPORTs that summarize information for dictionary entities and some that
present detailed information on these entities.

From the summary reports, you can obtain the names and version numbers of the
components that need to be migrated. If you need to know whether other related
components will be affected, you can run one or more of the reports that present
detailed information.

�� For further information on DREPORTs, refer to CA-IDMS Reports.

24-12 CA-IDMS Database Administration

24.4 Identification aids

AREPORTs: AREPORTs report on CA-ADS dialogs, application structures, and
their associated components (such as subschemas, RCMs, maps, and processes) from
the information stored in the DDLDML area of the dictionary.

The complete detail report is most useful when you are planning the migration of an
entire application. When planning the migration of more than one dialog, run the
report that keys in on only the dialogs you need.

�� For further information on AREPORTs, refer to CA-IDMS Reports.

SQL catalog: The SQL catalog contains the definitions of all SQL-defined database
entities. It also contains information on all access modules compiled using the catalog,
and the tables that they reference (or records, for SQL DML applications that access
non-SQL defined databases). Since the catalog is itself an SQL-defined database, SQL
SELECT statements may be used to query its contents.

Dictionary classes and attributes: Classes and their attributes are primarily a
means of extending the documentation capabilities in the dictionary. When migrating,
documentation by class and attribute provides a powerful mechanism to analyze and
identify the components involved. Using classes and attributes provides you with the
capability to display a simple list of names or to report on the details of all
components having the same attribute. For example, using the DDDL compiler, you
can display all modules associated with attribute TEST within class STATUS:

display attribute test within class status with modules.

�� For more information on creating classes and attributes and display entities based
on class and attribute, refer to IDD DDDL Reference. For more information on
reporting by class and attribute, refer to CA-IDMS Reports.

Naming conventions: Naming conventions help in identifying and migrating
components.

Although there are no hard-and-fast rules for designing naming conventions, there are
a few factors that you should keep in mind:

 ■ Collating sequence

Many of the DREPORTs display the components sorted in ascending order by
name. If the names of all components of an application begin with the same few
characters, it is easy to distinguish one application from another, but more difficult
to distinguish components within an application. Likewise, if the names of all
elements within a record begin with the same few characters, it is easy to
distinguish one record from another in a list, but more difficult to distinguish
elements within a record.

■ Acceptable name lengths

The software permits names of different lengths for different components. If you
want several characters of every name to identify the application, select a small

Chapter 24. Migrating from Test to Production 24-13

24.4 Identification aids

number (for example, 2 or 3) of characters for this purpose, in order to leave
enough characters for other purposes.

■ Consistent number of characters

Consider selecting a consistent number of characters to identify the record in
which an element is placed or components within a particular application. If you
choose a standard number of characters and place them in a standard position, it
will be easy to sort information or to scan lists or reports for a particular item.

As an alternative to embedding an application identifier in component names, you may
choose to use a class/attribute pair. This arrangement allows more characters per name
for other purposes, while still providing a connection between components of the same
application.

24-14 CA-IDMS Database Administration

24.5 Migration tools

 24.5 Migration tools

Most of the compilers and utilities you use to create database and application
components also have options that support migration. The table below summarizes
these tools:

Component Tool Task code Batch program

Non-SQL defined schema
source

Schema compiler SCHEMA IDMSCHEM

SQL-defined schema
source

Command facility OCF IDMSBCF

Physical database
definitions

■ Segments, areas, files

■ Database name tables

■ DMCL source and
load modules

Command facility OCF IDMSBCF

Subschema source Subschema
compiler

SSC IDMSUBSC

Subschema load module DDDL compiler
K; subschema
compiler

IDD; SSC IDMSDDDL;
IDMSSUBC

Definitions of:

 ■ Elements

 ■ Messages

 ■ Modules

 ■ Programs

 ■ Records

DDDL compiler K IDD IDMSDDDL

Edit/code table source DDDL compiler K IDD IDMSDDDL

Map source Mapping utility

Mapping compiler

RHDCMPUT

RHDCMAP1

Module source

 ■ Copybook-style
modules

 ■ CA-ADS process
code

DDDL compiler K IDD IDMSDDDL

Chapter 24. Migrating from Test to Production 24-15

24.5 Migration tools

Component Tool Task code Batch program

Load modules for:

 ■ Applications

 ■ Dialogs

 ■ Maps

 ■ Edit/code tables

 ■ RCMs

DDDL compiler K IDD IDMSDDDL

Access modules Command facility OCF IDMSBCF

K All definitions that can be migrated using the DDDL compiler can also be migrated
from the command facility.

24-16 CA-IDMS Database Administration

24.6 General methods

 24.6 General methods

Tasks: Migration generally consists of two or three tasks:

■ Punching or decompiling components from a dictionary to a temporary work file
or external file

■ Compiling the components from the temporary work file or external file into the
target dictionary

■ Recompiling load modules, as necessary, in the target dictionary

The options of the schema, subschema, DDDL compilers, and command facility that
you use for these tasks function identically. Different options exist in the mapping
compilers and the mapping utility, and CA-ADS compilers.

The following discussions explore the methods of migration using the DISPLAY and
PUNCH statement options of the schema, subschema, and DDDL compilers and the
command facility, and the various parameters of the mapping compilers and the
mapping utility.

Techniques for SQL definitions and access modules: The methods described
below apply to non-SQL database definitions, physical database definitions, and RCM
load modules. To migrate SQL database definitions, you need to copy stored source
from the test to the production system. To do this you can store the definitions in:

■ In a file that serves as input to the IDMSBCF compiler

■ OCF-language modules, as described in 24.6.4, “For SQL-defined entities” on
page 24-23 later in this section

Exception for views: You can use the DISPLAY or PUNCH techniques described
below for view definitions. To obtain the view definition, select the SYNTAX column
from the SYSCA.SYNTAX table.

24.6.1 Using the DISPLAY statement

Use for small volumes of data: The DISPLAY statement of the schema,
subschema, and DDDL compilers, and command facility is useful for moving small
volumes of information between dictionaries under the control of the same DC/UCF
system. Because this technique occurs online, system resources, such as response time
and storage pool space, will limit the volume you are able to migrate.

Note: This technique does not work for SQL database definitions and access modules
unless you stored the source DDL in a module; if so, then follow the steps
below by displaying the module.

Steps: There are four steps in the technique:

1. Sign on to the dictionary containing the components (the source dictionary)

2. Display the individual components using the AS SYNTAX clause.

Chapter 24. Migrating from Test to Production 24-17

24.6 General methods

This step accomplishes the task of decompiling the components to a temporary
work file. If you need to modify existing components in the target dictionary, use
the VERB MODIFY option of the DISPLAY statement (DISPLAY ADD is the
default action):

display subschema empss91 as syntax verb mod.

3. While the components are in the compiler's work file, insert a SIGNON statement
for the target dictionary into the work file as the first statement.

This step prepares for the task of compiling the components from the temporary
work file into the target dictionary. At the conclusion of this step, the work file
contains a SIGNON statement for the target dictionary, followed by ADD or
MODIFY statements for those components you want to migrate.

Note: Typically the output of the previous step includes an echo of the input, so
the first statement in the output is the DISPLAY statement. The
DISPLAY statement is not necessary, so you can replace it with the
SIGNON statement.

4. Invoke the compiler

The compiler signs you off the source dictionary, signs you on to the target
dictionary, and adds or modifies the components in the work file.

Final tasks for schemas and load modules: This technique will copy the
source to the target dictionary, but it does not automatically validate schemas or
recompile load modules for subschemas and edit and code tables. You can perform
these additional functions in one of two ways:

■ After you compile the source into the target dictionary, establish currency on the
appropriate component and issue the VALIDATE or GENERATE statement. To
establish currency, issue a simple MODIFY statement for the component. For
example:

modify subschema empss91.

generate.

■ Before you compile the source into the target dictionary, edit the work file by
inserting the VALIDATE or GENERATE statement after the source for the
component.

24.6.2 Using the PUNCH statement

Used for batch migration: The PUNCH statement of the schema, subschema, and
DDDL compilers and command facility is useful for batch migrations. If you perform
the migration in batch mode, the PUNCH statement allows you to migrate larger
volumes of information. It also allows you to migrate between dictionaries under the
control of different DC/UCF systems.

Writes information to file or module: The PUNCH statement has the same
options as the DISPLAY statement. However, it writes the requested information to
one of two destinations: an external file or an IDD module.

24-18 CA-IDMS Database Administration

24.6 General methods

Note: This technique does not work for SQL database definitions or access modules
unless you stored the source DDL in an IDD module; if you did, then follow
the steps below by punching the module.

Use files or modules to accumulate large numbers of components: The
file or module provides an intermediate place to store the information you want to
migrate. As a result, you can:

■ Accumulate components in one or more modules over the course of several
terminal sessions

■ Accumulate several files of components over the course of separate executions of
the batch compiler

■ Edit the content of the modules or files; For example, to change the STATUS of
components from TEST to PRODUCTION

Technique 1: This technique is very similar to the technique for the DISPLAY
statement described above. Because it occurs in batch, however, you can migrate
larger volumes of information.

Steps: The steps in this technique follow:

1. In the first execution of the compiler, sign on to the source dictionary in batch
mode and punch the individual components to an external file.

In the PUNCH statement, use the AS SYNTAX clause. In addition, specify
VERB MOD if you are migrating existing components. Define the file as
SYSPCH in the JCL.

To avoid having to specify these clauses in every PUNCH statement, you can
issue a SET OPTIONS statement before the PUNCH statements:

set options display as syntax verb mod.

2. When the job ends, edit the external file as follows:

■ Insert a SIGNON statement for the target dictionary as the first statement.

■ Insert the following statement after the SIGNON statement:

set options input 1 thru 89.

This step prepares for the task of compiling the components from the
temporary file into the target dictionary. Be sure the SIGNON and SET
OPTIONS statements start between columns 1 and 72.

■ Execute the compiler a second time, using the edited file as input.

The compiler signs on the target dictionary and adds or modifies the
components in the file.

Technique 2: With this technique, you create a dictionary module in the source
dictionary to hold the components you want to migrate. You migrate the module to
the target dictionary, extract the ADD or MODIFY statements for the individual
components, and store or modify each of the components in the target dictionary.

Chapter 24. Migrating from Test to Production 24-19

24.6 General methods

Steps: The steps in this technique follow:

1. In batch or online mode, sign on to the source dictionary and create a module
occurrence to hold the components to be moved. For example:

add module holdit.

2. While signed on to the source dictionary, punch the components to be moved into
the module using the TO MODULE and AS SYNTAX clauses:

punch element emp-last-name

to module holdit

 as syntax.

The module source for HOLDIT now consists of the ADD ELEMENT
EMP-LAST_NAME statement.

You can perform this step in batch or online mode, and you can punch more than
one component to the module. If you use the SET OPTIONS statement following
signon, your input appears as follows:

set options input 1 thru 89

default is on

punch to module holdit

 as syntax.

punch element emp-last-name.

 .

 .

 .

This statement automatically changes an ADD to MODIFY if the entity already
exists in the dictionary and punches the entity as syntax.

3. In batch mode, sign on to the source dictionary and punch the module to an
external file.

The input to the compiler consists of only two statements: a SIGNON statement
for the source dictionary and a PUNCH statement for the module. In the PUNCH
statement, use the AS SYNTAX and TO SYSPCH clauses. Also, be sure to
define the file as SYSPCH in the JCL.

At the end of this step, the external file contains only one statement: an
ADD/MODIFY MODULE statement. Within the MODULE statement, however,
the module source consists of the ADD or MODIFY statement for the individual
components that you want to migrate.

4. Edit the external file as follows:

■ Insert a SIGNON statement for the target dictionary as the first statement

■ Insert the following statement after the SIGNON statement:

set options input 1 thru 89.

■ Insert an INCLUDE MODULE statement as the last statement.

As a result of the editing, the external file contains four statements:

■ A SIGNON statement

■ A SET OPTIONS statement

24-20 CA-IDMS Database Administration

24.6 General methods

■ An ADD MODULE or MODIFY MODULE statement

■ An INCLUDE MODULE statement.

For example:

signon user dba password pass dictname target.

set option input 1 thru 89.

add module holdit

 .

 .

 .

module source follows

add element emp-last-name

version is 1

pic is x(29)

 .

 .

 .

msend.

include module holdit.

5. Execute the compiler in batch mode, using the edited file as input.

The compiler signs on to the target dictionary and adds or modifies the module.
The INCLUDE statement brings the module source into the compiler's work file.
The content adds or modifies the individual components to the target dictionary.

Final tasks for schemas and load modules: As with the DISPLAY statement, the
PUNCH statement does not automatically validate the schemas or generate the load
modules for subschemas and edit/code tables. To perform these function, use one of
the methods described earlier in 24.6.1, “Using the DISPLAY statement” on
page 24-17.

Technique 3: This technique combines parts of the Technique 2 presented above
and parts of the online DISPLAY technique described earlier in 24.6.1, “Using the
DISPLAY statement” on page 24-17. Because this technique entails an online
migration, you need to moderate the volume of information you punch.

Steps: The steps in this technique follow:

1. In online mode, sign on to the source dictionary and create a module occurrence
to hold the components to be moved.

2. While signed on to the source dictionary, punch the components to be moved to
the module.

As above, direct the output of the punch to the module by including the TO
MODULE clause in each PUNCH statement or in a SET OPTIONS statement.
Also, specify the AS SYNTAX clause and the VERB ADD or VERB MODIFY
clause, as appropriate.

3. Clear the compiler's work file.

4. Display the module.

Chapter 24. Migrating from Test to Production 24-21

24.6 General methods

This step brings the module (with all of its source) into the compiler's work file.
In the DISPLAY statement, use the AS SYNTAX clause.

5. Edit the work file as follows:

■ Insert a SIGNON statement for the target dictionary as the first statement.

■ Insert an INCLUDE MODULE statement as the last statement.

This step prepares the work file for the task of compiling the module and then the
components into the target dictionary. As a result of the editing, the work file
contains three statements:

■ A SIGNON statement

■ An ADD MODULE or MODIFY MODULE statement

■ An INCLUDE MODULE statement

6. Invoke the compiler

The compiler signs on to the target dictionary and adds or modifies the module.
The INCLUDE statement brings the module source into the compiler's work file
and executes the content of the work file. The content adds or modifies the
individual components to the target dictionary.

Final steps for schemas and load modules: As with the other techniques, this
technique does not automatically validate schemas or generate load modules for
subschemas and edit/code tables. To perform these functions, use one of the methods
described earlier in 24.6.1, “Using the DISPLAY statement” on page 24-17.

24.6.3 Using the mapping compiler and mapping utility

Steps: There are three steps to migrate maps between dictionaries (whether under
the same CA-IDMS/DC or CA-IDMS/UCF system or not):

1. Decompile the maps from the source dictionary.

For this step, use the decompile function of the mapping utility (RHDCMPUT).
You can decompile one or several maps in a single execution:

PROCESS=DECOMPILE

MAP=map1-name

MAP=map2-name

 .

 .

 .

The output of the decompilation consists of the source form of the maps, typically
stored in a temporary file.

2. Compile the maps into the target dictionary.

For this step, use the file of decompiled maps from the previous step as input to
the mapping compiler (RHDCMAP1). The mapping compiler places a source
description of the map in the DDLDML area of the target dictionary.

3. Generate the load modules for the maps in the target dictionary.

24-22 CA-IDMS Database Administration

24.6 General methods

For this step, use either the online mapping facility or the load function of the
mapping utility (RHDCMPUT). If you use the load function of the mapping
utility, you can generate multiple load modules in a single execution:

PROCESS=LOAD

MAP=map1-name

MAP=map2-name

 .

 .

 .

Specify source and target dictionary: The source and target dictionaries are
typically part of multiple dictionary environments. Consequently, you must indicate
which of the dictionaries the mapping compiler and mapping utility should run against.
There are several techniques for specifying a particular dictionary in a multiple
dictionary environment.

�� For more information on this, see Chapter 23, “Dictionaries and Runtime
Environments” on page 23-1.

24.6.4 For SQL-defined entities

SQL source cannot be displayed or punched: The source definitions for
SQL-defined data cannot be displayed or punched. Therefore, you must save the
source DDL when you create the SQL definition by either:

■ Submitting the statements in batch using IDMSBCF

■ Including the statements in an OCF-language module

Steps using a batch job stream: To migrate SQL definitions using a batch job,
you must have first created the definitions in the source dictionary using IDMSBCF.
If you did, then:

1. Edit the batch file to connect to the target dictionary

2. Use the batch file as input to IDMSBCF

Steps using an OCF-language module: To migrate SQL definitions using an
OCF-language module, you must have first saved the SQL DDL statements in an
OCF-language module when you created the definitions in the source dictionary. If
you did, then:

1. Retrieve the contents of the OCF-language module using the EDIT command.

2. Insert a CONNECT command at the top of the resulting work file that connects to
the target dictionary.

3. Invoke the OCF compiler.

The compiler signs on the target dictionary and creates the SQL definitions.

Chapter 24. Migrating from Test to Production 24-23

24.6 General methods

�� For more information about OCF-language modules, refer to CA-IDMS Command
Facility.

24-24 CA-IDMS Database Administration

24.7 Additional considerations

 24.7 Additional considerations

When to migrate: You can perform most migration activities during regular
working hours. Obviously, identifying, punching or decompiling components, and
adding or modifying source definitions of components will not disturb programs or
systems that are currently executing.

Perform some tasks after system shutdown: Depending on the specifics of
the migration, you may not have to do any of it after regular working hours. To be on
the safe side, however, you should plan to migrate or recompile load modules after the
system has been shut down. You should also perform any restructuring operations on
the production database after the system has been shut down. Note that if it is an
SQL-defined database, the restructuring occurs immediately as part of the execution of
the DDL statement that define the change. Therefore, you may want to delay
execution of the DDL statements until system shut down.

Making load modules available: If you migrate or recompile new copies of
existing load modules while the system is down, they automatically come into use
when you bring the system back up. If you migrate or recompile existing load
modules while the system is up, you can control the time at which the new load
modules take effect through the NEW COPY option of the SYSTEM system
generation statement or DCMT VARY PROGRAM command.

NEW COPY options: Using the NEW COPY option of the SYSTEM system
generation statement, you can designate whether new load modules should be loaded
automatically by the system or manually through explicit commands. If you choose to
control loading manually, issue the DCMT VARY PROGRAM command with the
NEW COPY option.

If you are migrating a new system whose tasks and programs are not enabled in the
system generation, then you can migrate or recompile all of its load modules at any
time. Access to the load modules will not be possible until the tasks and programs are
enabled.

Check your work: When you have completed the mechanical migration of
components, run a series of reports or issue a series of DISPLAY statements to check
your work. However, to verify that the migration is complete and successful, you
must test the new components in their new environment.

 24.7.1 Additional tasks

Updating system generation: A new application may have an impact on system
generation. Minimally, it may require a new task definition. Other system resources,
such as program pool and storage pool space, may also need to be adjusted.

Updating users: New user IDs may have to be defined and existing user
definitions reviewed.

Chapter 24. Migrating from Test to Production 24-25

24.7 Additional considerations

Updating the task application table: If you choose to recreate and recompile an
application structure in a target dictionary, the recompilation automatically updates the
task application table (TAT) for that dictionary. If you choose simply to migrate the
load module of an application structure, you must manually update the TAT for the
target dictionary.

There are two utilities for updating the TAT:

■ ADSOTATU works in online mode

■ ADSOBTAT works in batch mode

�� For information on how to execute these utilities, refer to CA-ADS Reference.

Backup the new files: After you have migrated and tested the components, back
up the files in the new environments.

Cleanup: The migration methods described throughout this chapter create copies of
components. They do not physically move the components or automatically delete
them from the source dictionary after the migration is complete.

If you decide to maintain a single copy of all components, you need to delete the
unwanted copies. Be sure to delete all versions of both source definitions and load
modules. Also be sure to delete copies of load modules from both the dictionary load
areas and load libraries.

24-26 CA-IDMS Database Administration

Chapter 25. Modifying Physical Database Definitions

25.1 Modifications you can make . 25-3
25.2 Making the changes available under the central version 25-7
25.3 Dynamic DMCL management . 25-8
25.4 Changing a file's access method . 25-10

25.4.1 Step 1: Expand the page size . 25-10
25.4.2 Step 4: Copy the data to the new file 25-10

25.5 Increasing the size of an area . 25-12
25.5.1 Increasing an area's page size . 25-12
25.5.2 Extending an area's page range . 25-13

25.6 Adding or dropping files associated with an area 25-14
25.7 Changing the size of a disk journal . 25-15
25.8 Changing the access method of a disk journal 25-16
25.9 Related information . 25-17

Chapter 25. Modifying Physical Database Definitions 25-1

25-2 CA-IDMS Database Administration

25.1 Modifications you can make

25.1 Modifications you can make

Changes you can make and what to do: The tables below summarize the
changes you can make to physical database definitions and how to make the change.
In most cases, all you need to do is:

■ Alter the entity's definition

■ Generate, punch, and link all DMCLs associated with the entity definition

Note, however, that if the entity is defined to the runtime DMCL, some changes affect
how CA-IDMS/DB processes a request to make the modified DMCL available
dynamically. The tables below identify those changes:

 Segment definition

 File definition

 Area definition

Change you can make How to make it

■ The schema reserved for defining
tables and indexes within areas
associated with the segment

■ The segment's page group

■ The maximum number of records
or rows per page if the segment's
area is empty

Alter the segment's definition and generate,
punch, and link all DMCLs to which the
segment is defined

■ The maximum number of records
or rows per page if the segment's
area is not empty

Unload and reload the segment, as described
in CA-IDMS Utilities

Change you can make How to make it

■ The external file name

■ The file's allocation information,
such as the data set name and
disposition

Alter the file's definition and generate,
punch, and link all DMCLs in which the
segment that contains the file is defined

■ The file's access method (VSAM
or non-VSAM)

See 25.4, “Changing a file's access method”
on page 25-10 below

Chapter 25. Modifying Physical Database Definitions 25-3

25.1 Modifications you can make

 DMCL definition

Change you can make How to make it

To increase the size of an area, the
options are:

■ Increase the area's page size See 25.5.1, “Increasing an area's page size”
on page 25-12 below

■ Extend the area's page range See 25.5.2, “Extending an area's page range”
on page 25-13 below

■ Change the primary number of
pages assigned to the area's page
range

If the area is not empty, unload and reload
the area as described in CA-IDMS Utilities

■ Decrease the size of the area's
pages

If the area is not empty, unload and reload
the area as described in CA-IDMS Utilities

■ Increase or decrease the page
reserve

■ Use an area override in the DMCL
definition for special operations, such as
loading a database; then remove the
area override

■ For permanent page reserve, alter the
area definition; if the area is not empty,
changing the page reserve affects only
subsequent store and insert operations

■ Generate, punch and link the DMCL(s)
that contain the area override or the
segment that contains the defined area

■ Add, modify, or drop a symbolic
definition K

Alter the area's definition and generate,
punch, and link all DMCLs in which the
segment that contains the area is defined

■ Re-assign the area to new or
different files

See 25.6, “Adding or dropping files
associated with an area” on page 25-14

K If changing the page range of a subarea associated with a record in a non-empty
area, unload and reload the area as described in CA-IDMS Utilities.

If changing the page range of a subarea associated with an index in a non-empty area,
use the MAINTAIN INDEX utility statement to rebuild the index in the new page
range as described in CA-IDMS Utilities.

25-4 CA-IDMS Database Administration

25.1 Modifications you can make

Database buffer definitions

Journal buffer definition

Change you can make How to make it

■ Reassign the buffer associated
with a file

■ Associate or disassociate a
database name table

■ Add or remove a segment

■ Change an area's startup or
warmstart status

■ Change an area's page reserve

■ Change the external file name for
a file

■ Change the disposition for a file

■ Change the dataspace usage for a
file

■ Change the shared cache assigned
to a file

Alter the DMCL definition and generate,
punch, and link the DMCL

Change you can make How to make it

■ Change the buffer page size

■ Change the buffer page count

■ Change how the CA-IDMS/DB
acquires storage for the buffer

■ Add or remove buffers

Alter the buffer definition and generate,
punch, and link the DMCL with which the
buffer is associated

Change you can make How to make it

■ Change the size of the journal
buffer pages

See 25.7, “Changing the size of a disk
journal” on page 25-15

■ Change the number of journal
buffer pages

Alter the definition of the journal buffer and
generate, punch, and link the DMCL with
which the journal buffer is associated

Chapter 25. Modifying Physical Database Definitions 25-5

25.1 Modifications you can make

Disk journal definition

Archive journal definition

Tape journal definition

Changes you can't make:

■ The synchronization stamp level associated with an area

■ The segment's type (that is, SQL or NONSQL)

■ The name of a segment containing SQL tables

Change you can make How to make it

■ Change the external file name

■ Change the file's dataspace usage

Alter the definition of the disk journal and
generate, punch, and link the DMCL with
which the disk journal file is associated

■ Change the number of pages in
the disk journal file

See 25.7, “Changing the size of a disk
journal” on page 25-15 below

■ Change the file's access method See 25.8, “Changing the access method of a
disk journal” on page 25-16 below

Change you can make How to make it

■ Change the file's block size

■ Change the file's external file
name

■ Add or remove archive journal
files

Alter the archive file's definition and
generate, punch, and link the DMCL with
which the archive file is associated

Change you can make How to make it

■ Change the file's external file
name

Alter the tape file's definition and generate,
punch, and link the DMCL with which the
tape journal file is associated

25-6 CA-IDMS Database Administration

25.2 Making the changes available under the central version

25.2 Making the changes available under the central
version

Journal modifications require system to be recycled: If you change the page
size of the journal buffer or any disk journal attribute, you have to recycle the system
in order to make the changes available under the central version. CA-IDMS/DB
cannot implement the changes if you make the DMCL available dynamically by
issuing a DCMT VARY DMCL command. Note that you can make changes to the
definition of the archive journal without recycling the system.

Other changes can be accessed dynamically: Other changes made to the
DMCL definition can be made effective by issuing a DCMT VARY DMCL NEW
COPY command, provided that files can be deallocated and reallocated if necessary.
The ability to deallocate and reallocate files dynamically depends on the operating
system and the information provided in the file definition.

�� For more information, see Chapter 3, “Defining Segments, Files, and Areas” on
page 3-1.

Backup old DMCL: If using VARY DMCL to implement your changes, be sure to
make a copy of the old DMCL load module before issuing the VARY DMCL
command. This ensures that if an abnormal termination occurs before the operation is
complete, you will be able to warmstart the system using the old DMCL if necessary.

Data sharing considerations: In a data sharing environment, most changes to an
area or its associated files will not take effect until the area is varied offline in all
group members in which it is shared since most area (and associated file)
characteristics must be identical across all sharing members. For a list of these
characteristics, see 4.5.4, “Sharing update access to data” on page 4-15.

The recommended procedure for making shared area or file changes in the following:

■ Modify and generate a new DMCL for all affected members

■ Vary the area offline in all sharing members

■ Vary a new copy of the altered DMCL in all affected members

■ Vary the area online in all affected members

�� For more information on data sharing, refer to CA-IDMS System Operations.

Chapter 25. Modifying Physical Database Definitions 25-7

25.3 Dynamic DMCL management

25.3 Dynamic DMCL management

Impact of changes: When a DMCL is being varied, certain changes cause:

■ Areas to be quiesced

■ Files to be deallocated and reallocated

Change Quiesce area? Reallocate file?

Segment changes

■ Dropping and recreating the
segment

Yes Yes

 ■ Page group Yes Yes

■ Maximum number of records per
page

Yes Yes

 ■ Segment's schema No No

Area changes

■ Adding an area Allocate

■ Dropping an area Yes Deallocate

■ Primary page range Yes Yes

■ Extending page range Yes Yes

 ■ Page size Yes Yes

■ Original page size Yes Yes

 ■ Symbolic parameters Yes Yes

 ■ Area-to-file mapping Yes Yes

 ■ Page reserve No No

 ■ Maximum space No No

File changes

 ■ Dataset name Yes Yes

■ VM/ESA user id/virtual address Yes Yes

 ■ Access method Yes Yes

 ■ Disposition No Yes

■ External name (DDNAME) No Yes

DMCL changes

■ Adding a segment Allocate

25-8 CA-IDMS Database Administration

25.3 Dynamic DMCL management

 Considerations

■ Changing the page size of a buffer causes the buffer to be closed and re-opened
with the new size. All other buffer changes (such as the number of pages) are
ignored. To change these parameters while the system is active, issue a DCMT
VARY BUFFER command.

■ Changes to a journal buffer or disk, tape, or archive journal files either have no
impact on the runtime system or are not allowing when varying a new copy of a
DMCL.

■ In a data sharing environment, if an area is shared, most changes to the area and
its associated files will not take effect until the area is varied offline in all group
members in which it is shared.

Change Quiesce area? Reallocate file?

■ Dropping a segment Yes Deallocate

■ Buffer associated with a file No K No

■ Dataspace usage for a file No Yes

■ File's external name (DDNAME) No Yes

 ■ File's disposition No Yes

 ■ Area status No No

■ Shared cache for a file No Yes

K If a file is associated with a new buffer, the area's pages are first purged from the
buffer pool.

Chapter 25. Modifying Physical Database Definitions 25-9

25.4 Changing a file's access method

25.4 Changing a file's access method

Procedure: You can change the format of database files from non-VSAM to VSAM
and vice versa. To complete this process, you need to:

1. Expand the page size of the file's area, if necessary

2. Alter the file definition to change its access method (and optionally to specify a
new database name or other location information) and generate, punch, and link
all DMCLs in which the file's segment is included.

3. Allocate a new VSAM or non-VSAM data set, as described in Chapter 16,
“Allocating and Formatting Files” on page 16-1.

4. Make the area to be processed unavailable for update under the central version.

5. Copy the old VSAM or non-VSAM file to the new data set.

6. Make the new DMCLs and file available to the runtime environment.

Steps 1 and 4 are discussed below.

25.4.1 Step 1: Expand the page size

Converting from non-VSAM to VSAM: When you convert a non-VSAM file to
VSAM, expand the area's page size first if the page size of the area is significantly
smaller than the size of the VSAM control interval. The optimal page size is 8 bytes
less than the VSAM control interval.

Converting from VSAM to non-VSAM: When you convert a VSAM file to
non-VSAM, consider expanding the area's page size either before or after the
conversion if the page size of the area is inefficient for the device type.

�� For optimal page sizes based on device type, refer to CA-IDMS Database Design.
For the steps involved in expanding the page size of an area, see 25.5.1, “Increasing an
area's page size” on page 25-12 later in this chapter.

25.4.2 Step 4: Copy the data to the new file

Options: To copy the data, use one of the following options:

1. Use the BACKUP and RESTORE utility statements

2. Use the IDCAMS utility

Option 1: Backup and restore: To use BACKUP and RESTORE to copy the
database files, take the following steps:

1. Offload the data in the old file(s) using the BACKUP utility statement and the old
DMCL. If all files within a multi-file area are being converted, use the AREA
option on the BACKUP statement; otherwise, use the FILE option.

25-10 CA-IDMS Database Administration

25.4 Changing a file's access method

2. If the backup was performed with the AREA option, format the new files before
executing Step 3.

3. Reload the data into the new file(s) using the RESTORE utility statement and the
new DMCL. If the data was offloaded with the AREA option, restore with the
AREA option; otherwise, restore with the FILE option.

Option 2: Using IDCAMS: The REPRO command of the IDCAMS utility can be
used to copy the data between a VSAM and non-VSAM file and vice versa. If you
use this approach, be sure to copy all pages (blocks) in the file in their entirety without
reblocking.

�� For more information about IDCAMS, refer to the appropriate IBM documentation.

Chapter 25. Modifying Physical Database Definitions 25-11

25.5 Increasing the size of an area

25.5 Increasing the size of an area

Available options: To increase the size of an area, you can:

1. Increase the page size of the area by using the EXPAND PAGE utility statement

2. Extend the number of pages in the area by using the EXTEND SPACE clause of
the AREA statement

3. Increase the current number of pages assigned to the area by unloading and
reloading the area

Which option to use: Both options 1 and 3 distribute free space throughout an
area. While option 1 is faster (and therefore less disruptive) than option 3, it does not
reorganize indexes or improve the placement of existing data which may have
overflowed due to lack of space on a page. Option 1 is most effective if used before
the area approaches a full condition.

Option 2 adds free space only at the end of an area. This can be useful where records
or tables have a location mode of direct or are clustered around a dbkey index or an
OOAK record. It can also be used as a temporary means of increasing space in an
area whose page size cannot be increased (due to device or VSAM restrictions).

If the area to be extended contains CALC records, these records will continue to only
target to pages in the original page range. If no space is available to hold the new
occurrences, they will overflow into the extended page range. The area must continue
to be defined as being extended until an UNLOAD/RELOAD is performed where the
new database defines the entire extended page range as the original page range.
Failure to do this will result in 0326 errors when CALC retrieval is attempted.

Procedures: Procedures for the first two options follow.

�� For information about unloading and reloading an area, refer to CA-IDMS Utilities.

25.5.1 Increasing an area's page size

Steps: To increase the page size for an area, follow these steps:

1. Change the definition of the area by specifying the new page size and, if this is
the first time the pages have been expanded, specify the current page size as the
original page size. (The original page size must be the size of the page at the
time the area was formatted.)

2. If desired, alter the definitions of the area's files to specify new dataset names
and/or other location information.

3. Generate, punch, and link all DMCLs that contain the segment with which the
area is associated.

4. Allocate new database files to accommodate the increased page size.

25-12 CA-IDMS Database Administration

25.5 Increasing the size of an area

5. Make the area to be processed unavailable for update under the central version.

6. Copy and expand the files associated with the area by using the EXPAND PAGE
utility statement and the old DMCL. Each file must be expanded individually.

7. Backup the expanded area.

8. Make the DMCLs and the new files available to the runtime environment.

25.5.2 Extending an area's page range

Steps: To extend the number of pages in an area, follow these steps:

1. If the additional pages being added to the area will reside in a new file, define the
file. If the additional pages are being added to the last file associated with the
area, alter the definition of the file to specify a new dataset name and/or other
location information, if appropriate.

2. Change the definition of the area specifying the number of additional pages to add
to the area by using the EXTEND SPACE clause. On the EXTEND SPACE
clause, specify to which file the additional pages will be mapped by using the
WITHIN FILE clause.

If the additional pages would cause the number of pages in the area to exceed the
maximum space allowed, you can use the MAXIMUM SPACE clause to increase
the maximum provided the page numbers are not assigned to another area that will
be used in the same DMCL as the area being expanded. (If the pages have been
assigned, you must use UNLOAD and RELOAD to increase the area's page
range.)

3. Generate, punch, and link all DMCLs that contain the segment with which the
area is associated.

4. Allocate a new database file to contain the additional pages and initialize the file
using the new DMCL.

5. If the new pages are being added to the last file of the area:

a. Make the area to be processed unavailable for update under the central
version.

b. Backup the area using the old DMCL.

c. Restore the area using the old DMCL, but referencing the new file through
JCL statements.

Note: If the area maps to its file on a one-to-one basis it is necessary to
include IDMSQSAM=ON in the RESTORE utility's SYSIDMS file.

6. Backup the expanded area.

7. Make the DMCLs and the new file available to the runtime environment.

Chapter 25. Modifying Physical Database Definitions 25-13

25.6 Adding or dropping files associated with an area

25.6 Adding or dropping files associated with an area

Types of changes: The pages of an area can be mapped to different files provided
that all the pages are accounted for. For example, two files can be combined into one
file or one file can be separated into multiple files.

Steps: To add or remove files from an area, follow these steps:

1. Define the new files.

2. Change the definition of the area by excluding all files associated with the area
and re-assigning the pages of the area to file blocks.

3. Drop all unused files.

4. Generate, punch and link all DMCLs that contain the segment with which the area
is associated.

5. Allocate and format new database files.

6. Make the area to be processed unavailable for update under the central version.
(If re-using some of the existing files, take the area offline to the central version.)

7. Backup the area using the AREA option of the BACKUP utility statement and the
old DMCL.

8. Restore the area using the AREA option of the RESTORE utility statement and
the new DMCL.

9. Make the DMCLs and the new files available to the runtime environment.

25-14 CA-IDMS Database Administration

25.7 Changing the size of a disk journal

25.7 Changing the size of a disk journal

Steps: To change the size of a disk journal, follow these steps:

1. Change the size of the disk journal by either changing the size of the journal
buffer page or the number of pages in the disk journal file.

2. Generate, punch, and link the DMCL.

3. Shut down the system.

4. Offload all currently used journals using the ARCHIVE JOURNAL utility
statement with the ALL option and the old DMCL.

5. Allocate and format new disk journal files.

6. Restart the system with the new DMCL and the new journal files.

Chapter 25. Modifying Physical Database Definitions 25-15

25.8 Changing the access method of a disk journal

25.8 Changing the access method of a disk journal

Steps: You can change the access method used for a disk journal file from
non-VSAM to VSAM or vice versa. To do this you must:

1. Change the definition of the disk journal file specifying the desired access method.
Alter the page size of the journal buffer:

■ If changing from non-VSAM to VSAM, the page size should be 8 bytes less
than the control interval size

■ If changing from VSAM to non-VSAM, choose an optional page size for the
device type

2. Generate, punch, and link the DMCL.

3. Shut down the system.

4. Offload all currently used journals using the ARCHIVE JOURNAL utility
statement with the ALL option and the old DMCL.

5. Allocate and format new disk journal files.

6. Restart the system with the new DMCL and the new journal files.

25-16 CA-IDMS Database Administration

25.9 Related information

 25.9 Related information

■ About segment, area, and file definition, see Chapter 3, “Defining Segments,
Files, and Areas” on page 3-1

■ About DMCL, database buffer, journal buffer, and journal file definition, see
Chapter 4, “Defining, Generating, and Punching a DMCL” on page 4-1

■ About the syntax for physical database entities, see Chapter 6, “Physical Database
DDL Statements” on page 6-1

■ About DCMT commands, refer to CA-IDMS System Tasks and Operator
Commands

■ About utility statement syntax, refer to CA-IDMS Utilities

■ About data sharing, refer to CA-IDMS System Operations

Chapter 25. Modifying Physical Database Definitions 25-17

25-18 CA-IDMS Database Administration

Chapter 26. Modifying Database Name Tables

26.1 Changes you can make . 26-3
26.2 Procedure for modifying database name tables 26-4
26.3 Related information . 26-5

Chapter 26. Modifying Database Name Tables 26-1

26-2 CA-IDMS Database Administration

26.1 Changes you can make

26.1 Changes you can make

What you can change: You can modify the following characteristics of a database
name table definition:

■ What databases are associated with the database name table (through the
DBNAME statement)

■ What segments and/or subschema mappings are associated with a database name

■ Generic subschema mappings defined to the database name table

■ The MIXED PAGE GROUP BINDS option setting

■ What database groups are associated with the database name table (through the
DBGROUP statement)

Chapter 26. Modifying Database Name Tables 26-3

26.2 Procedure for modifying database name tables

26.2 Procedure for modifying database name tables

Steps: To modify a database name table, follow these steps:

Example: In the example below, the DBA adds a new database name to an existing
database name table. After generating and punching the database name table load
module, the DBA instructs CA-IDMS/DB to load the updated database name table:

create dbname alldbs.benefits

add segment empseg

add segment projseg

add segment beneseg;

generate dbtable alldbs;

punch dbtable load module alldbs;

After link-editing the modified database name table to a load library, make it available
under the central version:

dcmt vary dbtable alldbs new copy

Action Statement

Modify the database name,
database group, and/or database
name table

■ CREATE, ALTER, or DROP DBNAME

■ CREATE, ALTER, or DROP DBGROUP

 ■ ALTER DBTABLE

Regenerate the database name
table

GENERATE DBTABLE

Punch and link the database
name table to a load library

PUNCH DBTABLE LOAD MODULE

Make the database name table
available under the central
version

DCMT VARY DBTABLE NEW COPY

26-4 CA-IDMS Database Administration

26.3 Related information

 26.3 Related information

■ About defining database name tables and database names, see Chapter 5,
“Defining a Database Name Table” on page 5-1

■ For syntax and syntax rules for the DBTABLE, DBGROUP, and DBNAME
statements, see Chapter 6, “Physical Database DDL Statements” on page 6-1

■ About DCMT commands, refer to CA-IDMS System Tasks and Operator
Commands

■ About the PUNCH utility statement, refer to CA-IDMS Utilities

■ About database groups and dynamic routing, refer to CA-IDMS System Operations

Chapter 26. Modifying Database Name Tables 26-5

26-6 CA-IDMS Database Administration

Chapter 27. About Modifying SQL-Defined Databases

27.1 What you can modify . 27-3
27.2 Methods for modifying . 27-4

Chapter 27. About Modifying SQL-Defined Databases 27-1

27-2 CA-IDMS Database Administration

27.1 What you can modify

27.1 What you can modify

You can modify an SQL-defined database by:

■ Adding or dropping tables

■ Modifying table components

■ Adding or dropping indexes and referential constraints

■ Adding, modifying, or dropping schemas

■ Adding or dropping views

�� See Chapter 25, “Modifying Physical Database Definitions” on page 25-1 for
maintaining physical definitions.

Chapter 27. About Modifying SQL-Defined Databases 27-3

27.2 Methods for modifying

27.2 Methods for modifying

You can use the following methods to change an SQL-defined database:

■ Single DDL statement

You use a single DDL statement to make the change. The change takes effect
immediately. For example, you use a single DDL statement when adding a check
constraint.

■ Multiple DDL statements

You use multiple DDL statements to make the change. The particular SQL DDL
statements you use depend on the type of change being made. For example, to
change index characteristics (such as the area in which an index resides) requires
the following SQL statements:

 – DROP INDEX

 – CREATE INDEX

The change takes effect upon completion of these statements.

■ Combination of DML and DDL statements

You use a combination of DML and DDL statements to modify a definition. This
method often involves dropping, redefining, and reloading a table to make the
change.

Once the data has been reloaded, the change takes effect. For example, to drop a
column from a table, you use DML or utility statements to:

1. Create a new table with the appropriate columns (DDL CREATE)

2. Copy the rows of data to the new table (DML INSERT)

3. Delete the existing table (DDL DROP)

Choosing a modification method: In some cases, you may choose the method to
use. In other cases, the method is dictated by database factors such as whether the
table contains data or whether it participates in a referential constraint.

Each modification is discussed in detail in the following chapters.

Inform your users: Some changes you make to the database will have a direct
impact on your users. For example, if you drop a table or a view, users will no longer
have access to the data.

Before you make a change such as dropping a table, you can use SELECT statements
to determine where the entity to be changed is used. Specifically, look for:

■ Views that reference the table

■ Referential constraints in which the table participates

■ Access modules that access the table

27-4 CA-IDMS Database Administration

27.2 Methods for modifying

This indicates the potential impact the change may have and provides information on
determining the best method to use to make the change.

Chapter 27. About Modifying SQL-Defined Databases 27-5

27-6 CA-IDMS Database Administration

Chapter 28. Modifying Schema, View, and Table
Definitions

28.1 Maintaining schemas . 28-4
28.1.1 Dropping an existing schema . 28-4
28.1.2 Modifying a schema . 28-4

28.2 Maintaining views . 28-5
28.2.1 Dropping a view . 28-5
28.2.2 Modifying a view . 28-5

28.3 Maintaining tables . 28-7
28.3.1 Creating a table . 28-7
28.3.2 Dropping a table . 28-7
28.3.3 Adding a column to a table . 28-8
28.3.4 Dropping a column from a table . 28-9
28.3.5 Changing the characteristics of a column 28-10
28.3.6 Adding or removing data compression 28-10
28.3.7 Adding a new check constraint . 28-10
28.3.8 Dropping a check constraint . 28-11
28.3.9 Modifying a check constraint . 28-11
28.3.10 Revising the estimated row count for a table 28-11
28.3.11 Changing a table's area . 28-12
28.3.12 Dropping the default index associated with a table 28-12

28.4 Dropping and recreating a table . 28-14
28.4.1 Method 1 — Using DDL and DML statements 28-14
28.4.2 Method 2 — Using DDL and utility statements 28-16

Chapter 28. Modifying Schema, View, and Table Definitions 28-1

28-2 CA-IDMS Database Administration

This chapter describes methods for creating, dropping, and changing schemas, views,
and tables.

�� For more information on the SQL DDL statements used in the procedures in this
chapter, refer to the CA-IDMS SQL Reference.

Chapter 28. Modifying Schema, View, and Table Definitions 28-3

28.1 Maintaining schemas

 28.1 Maintaining schemas

This section describes how to:

■ Drop a schema

■ Change a component of a schema

28.1.1 Dropping an existing schema

DROP SCHEMA statement: To drop a schema, use an SQL DDL DROP
SCHEMA statement. This removes the named schema only if no tables or views are
associated with it.

CASCADE option: If you specify the CASCADE option, you also delete:

■ The definition of each table and view associated with the named schema

■ The data stored in each table associated with the schema

■ The definition of each referential constraint, index, and CALC key defined on the
tables associated with the named schema

■ The view definition of each view derived from one or more of the tables
associated with the named schema

■ All privileges granted on tables dropped as a result of cascade processing

Considerations: If all tables and indexes on those tables are in a segment in which
no other table or index from another schema resides, then you can use the FORMAT
utility to erase rows and indexes before using DROP SCHEMA. This will enable
more efficient execution.

Example: In the following example, a schema and its associated tables are dropped.

drop schema demoempl cascade;

28.1.2 Modifying a schema

To modify a schema, use the SQL DDL ALTER SCHEMA statement.

Considerations: Changing the default area associated with the schema does not
affect existing tables.

Example: In the following example, the schema's default area is changed.

alter schema demoempl

default area demoempl.emplarea;

28-4 CA-IDMS Database Administration

28.2 Maintaining views

 28.2 Maintaining views

This section describes how to:

■ Drop a view

■ Change a view definition by dropping and recreating it

28.2.1 Dropping a view

DROP VIEW statement: To drop a view, use the SQL DDL DROP VIEW
statement.

CASCADE option: Use the CASCADE option if the view being dropped
participates in any other view definitions. CASCADE directs CA-IDMS/DB to drop
the named view and all views derived from the named view.

When you drop a view (without CASCADE), the following definitions are removed
from the dictionary:

 ■ The view

■ All privileges granted on the view

If you specify CASCADE, these additional definitions are removed from the
dictionary:

■ All views in which the view is referenced and all views referencing those views

■ All privileges granted on views dropped as a result of cascade processing

Considerations: You must specify CASCADE if there are views defined on the
view you are dropping.

Example: In the following example, the view EMP_HOME_INFO is dropped. This
also drops any views derived from this view.

drop view emp_home_info cascade;

28.2.2 Modifying a view

To modify a view, use the SQL DDL DROP VIEW statement to drop the view and
then use the SQL DDL CREATE VIEW statement to re-add the view.

Before modifying a view, you can use the SELECT SYNTAX FROM
SYSCA.SYNTAX statement to display the syntax used to create a view.

select syntax from sysca.syntax

 where schema=HR

 and table=EMP-SALARY;

�� For more information on SELECT SYNTAX, refer to the CA-IDMS SQL Reference.

Chapter 28. Modifying Schema, View, and Table Definitions 28-5

28.2 Maintaining views

Example: In the following example, the syntax for the view EMP_HOME_INFO is
displayed using the SELECT SYNTAX statement. The view is then dropped (DROP)
and re-added (CREATE) with an additional column (CITY).

This SELECT SYNTAX statement:

select syntax from sysca.syntax

 where schema=demoempl

 and table=emp_home_info;

Displays this view syntax:

create view emp_home_info

as select emp_id, emp_lname, emp_fname, phone

 from employee;

DROP VIEW AND CREATE VIEW are used to modify the view.

drop view emp_home_info;

create view emp_home_info

as select emp_id, emp_lname, emp_fname, phone, city

 from employee;

28-6 CA-IDMS Database Administration

28.3 Maintaining tables

 28.3 Maintaining tables

This section describes how to:

■ Create or drop a table

■ Create or drop a column

■ Change column characteristics

■ Add or remove data compression

■ Create, drop, or modify check constraints

■ Revise the table's estimated row count

■ Change the table's area

■ Drop the default index associated with the table

28.3.1 Creating a table

CREATE TABLE statement: To create a table, use the SQL DDL CREATE
TABLE statement.

Considerations: The area in which the table's rows are to reside must be defined in
the application dictionary and be accessible to the runtime environment in which the
CREATE TABLE statement is issued.

28.3.2 Dropping a table

DROP TABLE statement: To drop a table, use the SQL DDL DROP TABLE
statement. Use the CASCADE option if the table participates in a referential
constraint or is referenced in one or more view definitions.

No CASCADE: When you drop a table (without CASCADE), the following
definitions are removed from the dictionary:

 ■ The table

■ Its CALC key (if any)

■ All indexes defined on the table

■ All privileges granted on the table

Table rows and indexes are removed from the database.

With CASCADE: If you specify CASCADE, these additional definitions are
removed from the dictionary:

■ All referential constraints in which the table participates

■ All views in which the table is referenced and all views referencing those views

■ All privileges granted on views dropped as a result of cascade processing

Chapter 28. Modifying Schema, View, and Table Definitions 28-7

28.3 Maintaining tables

 Considerations

Using FORMAT to erase table rows: If the table you want to drop is the only
table in an area and its indexes (if any) also reside in areas in which no other table or
index resides, you can use the FORMAT utility to drop the table more efficiently:

1. Format the area(s) containing the table and indexes

2. Drop the table

�� For information on FORMAT, refer to the CA-IDMS Utilities document.

Dropping all tables in a schema: If you want to drop all tables in a schema, use
the DROP SCHEMA statement with the CASCADE option rather than dropping each
table individually.

Example: In the following example, these entities are dropped: the BENEFITS table,
its CALC key, all indexes defined on it, all privileges on it, all referential constraints
in which BENEFITS participates, all views in which this table is referenced and all
views referencing that view, and all privileges granted on all those views. In addition,
all data will be deleted.

drop table demoempl.benefits cascade;

28.3.3 Adding a column to a table

ALTER TABLE statement: To add a column to a table, use the SQL DDL
ALTER TABLE statement with the ADD COLUMN option.

The definition of the table is updated to include the new column definition, and the
new column becomes the last column in the table. Table rows are not updated as part
of the ALTER TABLE processing; instead, the column is added to an existing row
only when that row is next updated.

 Considerations

If the table is not empty: If the table is not empty, you must supply a default value
for the added column. You do this one of the following ways:

■ By specifying that the column is to have a default value, in which case all existing
rows are considered to have the default value for the new column

■ By allowing the column to have a null value, in which case all existing rows are
considered to have a null value for the column

�� For more information about choosing a value, refer to the CA-IDMS SQL
Reference.

28-8 CA-IDMS Database Administration

28.3 Maintaining tables

Maximum row length: Adding a column to a table might increase the length of the
table row beyond the maximum allowed.

For compressed tables, the maximum is 32760. If the new column would cause this to
be exceeded, the column cannot be added to the table; instead, consider creating a
second table to hold the additional information.

For uncompressed tables, the maximum depends on the page size of the area in which
the table resides. If the new column would cause the length of the row to be greater
than (page size - 40), then do one of the following:

1. Use the EXPAND PAGE utility statement to increase the page size of the areas

�� For information on EXPAND PAGE, refer to the CA-IDMS Utilities document.

2. Compress the table

3. Create a second table to hold the new information

Note: The maximum length of an uncompressed row can be as much as (page size -
40); however, it is recommended that row lengths be no more than 30% of the
size of the page.

Expanding space in an area: If an area is becoming full, consider expanding its
space before adding the column. Chapter 25, “Modifying Physical Database
Definitions” on page 25-1 describes methods you can use to expand an area.

Compressed records: If a new column in a compressed table will be used as an
index key or as a referencing column, consider placing the column near the front of
the table. Otherwise, the compression potential of the table will be greatly reduced.

To do this, the table must be dropped and re-added with a new column order. When
you put the rows back into the table, make sure the data is in the new column order.

Effect on programs and view definitions: Adding a column to a table does not
impact existing programs or view definitions except under the following circumstances:

■ If your host language programs include SELECT * from the table, they will
receive runtime errors because of the added column

■ If a view definition includes a SELECT * from the affected table, it becomes
invalid and must be dropped and recreated.

28.3.4 Dropping a column from a table

Drop/add table: In order to delete a column from a table, you must drop the table
and redefine it without the column.

�� See 28.4, “Dropping and recreating a table” on page 28-14 later in this chapter for
the steps and considerations involved with this process.

Chapter 28. Modifying Schema, View, and Table Definitions 28-9

28.3 Maintaining tables

Considerations: All programs referencing the column must be recompiled and all
views referencing the column must be recreated.

28.3.5 Changing the characteristics of a column

Drop/add table: Characteristics of a column include data type, null option, and
default value. Changing any of these characteristics requires that the table be dropped
and redefined, as described in 28.4, “Dropping and recreating a table” on page 28-14
later in this chapter. When redefining the table, make the necessary changes to the
column definition.

 Considerations

■ You cannot remove the NOT NULL attribute if the column participates in a
unique CALC key, index, or ORDER BY clause of a referential constraint

■ If you change the data type or length of a column that participates in a referential
constraint, the change must be reflected in both the referenced and referencing
columns.

28.3.6 Adding or removing data compression

Drop/add table: To add or remove compression, you must drop and redefine the
table, as described in 28.4, “Dropping and recreating a table” on page 28-14 later in
this chapter. When redefining the table, add or remove the COMPRESS clause as
desired.

 Considerations

■ By removing compression, the table will occupy more space in the database and
may overflow a database that is already near capacity

■ By adding compression, you may incur a modest increase in CPU time during
subsequent DML processing of the table

�� For more information about data compression, refer to the CA-IDMS Presspack
User Guide.

28.3.7 Adding a new check constraint

ALTER TABLE statement: To add a new check constraint, use the SQL DDL
ALTER TABLE statement with the ADD CHECK option.

 Considerations

■ Adding a check constraint will append the new check constraint to any check
constraints currently on the table

■ If current data does not conform to the new check constraint, you will receive an
error when CA-IDMS/DB processes the ALTER TABLE command

28-10 CA-IDMS Database Administration

28.3 Maintaining tables

Example: In the following example, a new check constraint is added to the
BENEFITS table.

alter table emp.benefits

add check (fiscal_year > 1929);

28.3.8 Dropping a check constraint

ALTER TABLE statement: To drop a check constraint, use the SQL DDL ALTER
TABLE statement with the DROP CHECK option. DROP CHECK deletes all check
constraints associated with the table.

Example: In the following example, all check constraints associated with the
BENEFITS table are dropped.

alter table emp.benefits

 drop check;

28.3.9 Modifying a check constraint

To modify a check constraint, follow these steps:

1. Drop the existing check constraint, as described above

2. Add the new check constraint, as described above

Tip: Use SELECT SYNTAX from SYSCA.SYNTAX to display the existing check
constraints before dropping it:

select syntax from sysca.syntax

 where schema='EMP' and

 table = 'BENEFITS';

 Example:

alter table emp.benefits

 drop check;

alter table emp.benefits

add check (fiscal_year > 1939);

28.3.10 Revising the estimated row count for a table

ALTER TABLE statement: To change the estimated row count on the table
definition, use the SQL DDL ALTER TABLE statement with the ESTIMATED
NUMBER OF ROWS option.

 Considerations

■ Changing the estimated number of rows for a table will not affect default index
sizing unless you drop and re-add the index or referential constraint. The
estimated number of rows is used for index calculations only if it is greater than
the NUMROWS column in SYSCA.TABLE. NUMROWS is updated whenever
an UPDATE STATISTICS utility statement is issued for the table or the table's
area.

Chapter 28. Modifying Schema, View, and Table Definitions 28-11

28.3 Maintaining tables

�� For more information about index calculations, refer to the CA-IDMS SQL
Reference

■ Changing the estimated row count may affect the access paths chosen by the
access module compiler for SQL DML statements that reference the table. Unlike
other table modifications, though, changing the estimated row count will not cause
existing access modules that reference the table to be automatically recompiled. If
recompilation of selected access modules is desired, you must use the ALTER
ACCESS MODULE statement to force reoptimization.

Note: Estimated number of rows is used for optimized purposes only if the
NUMROWS column of SYSCA.TABLE is 0.

Example: In the following example, the estimated row count for the EMPLOYEE
table is revised.

alter table emp_employee

estimated row count 759999;

28.3.11 Changing a table's area

Drop/add table: To change the area in which the rows of a table are stored, you
must drop the table and redefine it specifying the new area.

�� See 28.4, “Dropping and recreating a table” on page 28-14 later in this chapter for
the steps and considerations involved in this process.

28.3.12 Dropping the default index associated with a table

ALTER TABLE statement: To drop the default index associated with a table, use
the SQL DDL ALTER TABLE statement with the DROP DEFAULT INDEX option.

 Considerations

■ Do not drop the default index on a table until the CALC key, indexes, and
referential constraints in which the table participates have been defined. If no
other index exists on the table, an area sweep will be initiated each time one of
the above components is defined.

■ Dropping the default index could change the location mode of a record.

■ Default indexes can be useful whenever it is anticipated that a table will be
accessed without WHERE clauses specifying index or CALC keys and without
joins that might use referential relationships with other tables. In short, they are
useful whenever it is anticipated that the optimizer would otherwise choose area
sweeps to satisfy access requests on the table. This is particularly true when it is
a sparse table, since a sweep of the default index will only access data pages that
contain rows of the table; whereas, an area sweep will access every page of the
area.

28-12 CA-IDMS Database Administration

28.3 Maintaining tables

�� For complete information on when you would choose to drop the default index,
refer to the CA-IDMS Database Design document.

Example: In the following example, the default index for the EMPLOYEE table is
dropped.

alter table emp.employee

drop default index;

Chapter 28. Modifying Schema, View, and Table Definitions 28-13

28.4 Dropping and recreating a table

28.4 Dropping and recreating a table

Considerations for dropping/adding a table: Many types of changes can only
be implemented by dropping and redefining a table. There are two major
considerations involved with this process:

■ Preserving the table's data

■ Re-establishing the table's relationships with other tables and views

What follows: This section outlines two approaches that can be used to drop and
recreate a table:

■ Method 1 — Uses a combination of DDL and DML statements to perform the
operation

■ Method 2 — Uses DDL and utility statements

Considerations: Select the approach based on the size of the table and the
importance of minimizing the time during which the table cannot be accessed.
Consider the following:

■ Method 1 requires there be enough space in the database to hold two copies of the
data simultaneously. It also builds indexes and validates relationships as the data
is being inserted into a new table, potentially requiring a large number of row
locks and journal images.

■ Method 2 reloads the data in local mode using the LOAD utility statement.
Therefore the table and all other tables in the same area cannot be accessed while
the load is taking place.

For these reasons, Method 1 is more appropriate for small tables, while Method 2 is
more suited for large tables.

28.4.1 Method 1 — Using DDL and DML statements

Steps: To use a combination of DDL and DML statements to recreate a table,
follow these steps:

1. Define a new table that has the same definition as the original table except for the
desired changes.

2. Define the same indexes and CALC keys for the new table as for the old (unless
changes in these are desired).

3. For each referential constraint in which the original table is the referencing table,
define a similar constraint on the new table. The new constraint must be defined
with a different name and if the referenced table is not empty, it must be defined
as unlinked. (The unlinked constraint may also require that an index be defined
on the foreign key of the new table).

4. For each referential constraint in which the original table is the referenced table,
determine if the referencing table is empty. If it is, define a similar constraint

28-14 CA-IDMS Database Administration

28.4 Dropping and recreating a table

with a different name in which the new table is the referenced table. If the
referencing table is not empty, determine if additional indexes are needed on the
foreign key of the referencing table to support a similar constraint defined as
unlinked. If additional indexes are required, create them now.

5. For each view in which the original table is referenced (or views of those views),
display the definition syntax by selecting from SYSCA.SYNTAX. Save the
resulting output so the views can be recreated later.

6. Copy the data from the original table to the new table using an INSERT statement
with the SELECT option.

7. For each referential constraint in which the original table is the referenced table
and the referencing table is not empty, define a constraint in which the new table
is the referenced table. The new constraint must have a different name and be
defined as unlinked.

8. Drop the original table using the CASCADE option of DROP table.

9. For each self-referencing constraint defined on the original table, define a similar
constraint on the new table. (A self-referencing constraint is a referential
constraint in which the referenced and referencing table are the same.)

10. Complete the transition to the new table as follows:

■ Define a view on the new table with the same name as the original table and
including all of its columns.

■ Recreate the views whose syntax was previously saved; examine those view
definitions to see if changes are required.

■ Re-specify privilege definitions on the individual table and views if access is
controlled through CA-IDMS internal security.

Guaranteeing integrity of the data: Steps 6 through 8 should be performed
within a single transaction to minimize the potential of changes to the data in the
original table and any of its related tables until the entire operation is completed. To
ensure that no changes are made between the time the data is copied and the time the
table is dropped, take one of the following actions just prior to issuing the SELECT
statement:

■ Prohibit access to the table by explicitly dropping all views that reference it. This
is effective only if all update access to the table is done through a view.

■ Revoke all INSERT, UPDATE, and DELETE privileges from the table (and any
matching wildcarded table names) if access is controlled through CA-IDMS
internal security.

■ Alter the original table and add a dummy column. This has the effect of
prohibiting access to the table until the transaction has terminated.

Recreating empty tables: If the table to be recreated is empty, you need not
define a new table. Instead, simply drop and redefine the table making the desired
changes to its definition. However, be sure to take appropriate steps to preserve
referential constraints, views derived from the table, and privilege definitions.

Chapter 28. Modifying Schema, View, and Table Definitions 28-15

28.4 Dropping and recreating a table

28.4.2 Method 2 — Using DDL and utility statements

Steps: To use a combination of DDL and utility statements to drop and recreate a
table, take the following steps:

1. Identify all tables related through a linked constraint to the target table (the table
whose definition is to be changed). Either the related tables must be unloaded and
reloaded together with the target table or the constraints will become unlinked
when they are redefined.

2. For each view in which the target table is referenced (or views of those views),
display the definition syntax by selecting from SYSCA.SYNTAX. Save the
resulting output so the views can be recreated later.

3. For each table to be unloaded, extract the data to a sequential file using either:

■ A user-written program

■ A CA-CULPRIT report

Use separate extract files for each table or place an indicator in each output record
to identify the table from which the data was extracted. Be sure the data was
extracted successfully before proceeding to the next step.

4. Drop the target table (specifying the CASCADE option) and delete the rows from
the related tables that were unloaded by using a DELETE statement. If no other
tables or indexes exist within the affected areas and all relationships are within
those areas (and were unloaded), format the area before issuing the DROP and
DELETE statements. Be sure to vary the areas offline to the DC/UCF system
before formatting them.

5. Redefine the table making any necessary changes.

6. Redefine the indexes and CALC key on the target table.

7. Redefine the referential constraints in which the target table participates. If any of
the constraints involve non-empty tables, those constraints must be defined as
unlinked.

8. Reload the tables using the LOAD utility statement and the sequential file as
input.

�� See Chapter 21, “Loading an SQL-Defined Database” on page 21-1 for
information about how to perform the load operation.

9. Complete the process as follows:

■ Recreate the views whose syntax was previously saved; examine those view
definitions to see if changes are required

■ Respecify privilege definitions on the target table and its referencing views if
access is controlled through CA-IDMS internal security

28-16 CA-IDMS Database Administration

28.4 Dropping and recreating a table

Guaranteeing the integrity of the data: You must ensure that no updates are
made to any of the unloaded tables once their data has been extracted. To ensure that
no changes are made between the time the data is extracted and the time the tables
have been reloaded:

■ Prohibit access to the tables by explicitly dropping all views that reference it.
This is effective only if all update access to the table is done through a view.

■ Revoke all INSERT, UPDATE, and DELETE privileges from the tables (and any
matching wildcarded table names) if access is controlled though CA-IDMS
internal security.

Chapter 28. Modifying Schema, View, and Table Definitions 28-17

28-18 CA-IDMS Database Administration

Chapter 29. Modifying Indexes, CALC Keys, and
Referential Constraints

29.1 Maintaining indexes . 29-4
29.1.1 Creating an index . 29-4
29.1.2 Dropping an index . 29-4
29.1.3 Changing index characteristics/ moving an index 29-5

29.2 Maintaining CALC keys . 29-6
29.2.1 Creating a CALC key . 29-6
29.2.2 Dropping a CALC key . 29-6

29.3 Maintaining referential constraints . 29-7
29.3.1 Creating a referential constraint . 29-7
29.3.2 Dropping a referential constraint . 29-7
29.3.3 Modifying referential constraint tuning characteristics 29-8

Chapter 29. Modifying Indexes, CALC Keys, and Referential Constraints 29-1

29-2 CA-IDMS Database Administration

This chapter describes methods for creating, dropping, and changing indexes, CALC
keys, and referential constraints.

�� For more information on the SQL DDL statements used in the procedures in this
chapter, refer to the CA-IDMS SQL Reference.

Chapter 29. Modifying Indexes, CALC Keys, and Referential Constraints 29-3

29.1 Maintaining indexes

 29.1 Maintaining indexes

This section describes how to:

■ Create or drop an index

■ Change index characteristics

■ Move an index from one area to another

29.1.1 Creating an index

To create a new index on a column or columns in a table, use the SQL DDL CREATE
INDEX statement. If the index is going to map to a new area, see Chapter 3,
“Defining Segments, Files, and Areas” on page 3-1 for information about defining an
area.

 Considerations

■ If you specify that the index is unique, and data in the key columns is not unique,
you will receive an error and the index will not be created.

■ Each index implies additional runtime processing to handle INSERT, UPDATE,
and DELETE statements for the index itself.

�� For more information about designing indexes, refer to CA-IDMS Database Design.

Example: In the following example, an index is built on the LAST_NAME column
in the BENEFITS table.

create index be_lname (last_name) on emp.benefits;

29.1.2 Dropping an index

To drop an index from an existing table, use the SQL DDL DROP INDEX statement.

Considerations: A unique index or CALC key is required on all referenced
columns in a constraint and an index or CALC key must exist on all referencing
(foreign key) columns in unlinked constraints. If dropping an index would violate
either of these rules, the DROP will not be allowed.

Example: In the following example, an optional index is dropped from a table:

drop index xyz;

29-4 CA-IDMS Database Administration

29.1 Maintaining indexes

29.1.3 Changing index characteristics/ moving an index

To change index characteristics or to move an index from one area to another:

1. Create a new index with a new name using CREATE INDEX

2. Drop the old index using DROP INDEX

Note: Creating the new index before dropping the old one lets you modify an index
involved in a referential constraint.

 Considerations

■ If changing index tuning options, remember to observe referential constraint rules.

■ Adding an index with a new name, then dropping an old index does not impact
program logic. Affected access modules will be automatically recompiled and,
where relevant, use the new index for accessing the table.

Example: In the following example, a new index is created on the BENEFITS table,
and the existing index, EM_LNAME, is dropped.

create index emp_lname (last_name) on emp.benefits

in area emp.emp1;

drop index em_lname;

Chapter 29. Modifying Indexes, CALC Keys, and Referential Constraints 29-5

29.2 Maintaining CALC keys

29.2 Maintaining CALC keys

This section describes how to:

■ Create a CALC key

■ Drop a CALC key

29.2.1 Creating a CALC key

To create a CALC key for an empty table, use the SQL DDL CREATE CALC
statement.

If the table is not empty, you must drop and recreate the table, adding the CALC key
before reloading the table's data.

�� For the steps involved in this process, see Chapter 28, “Modifying Schema, View,
and Table Definitions” on page 28-1.

Considerations: Only one location mode is permitted for a table. If the table is
stored clustered on an index or constraint, you must drop the clustering index or
constraint and re-add it as non-clustered before you can create a CALC key.

Example: In the following example, a unique CALC key is created for the
EMPLOYEE table.

create unique calc key on emp.employee (emp_id);

29.2.2 Dropping a CALC key

To drop a CALC key from an empty table, use the SQL DDL DROP CALC statement.

If the table is not empty, you must drop and recreate it.

�� For the steps involved in this process, see Chapter 28, “Modifying Schema, View,
and Table Definitions” on page 28-1.

Considerations: You can't drop a CALC key that is required for implementation of
a referential constraint if no index exists to support it. If necessary, either drop the
constraint or create an index to support it before dropping the CALC key.

Example: In the following example, the CALC key is dropped from the
EMPLOYEE table.

drop calc key from emp.employee;

29-6 CA-IDMS Database Administration

29.3 Maintaining referential constraints

29.3 Maintaining referential constraints

This section describes how to:

■ Create or drop linked or unlinked referential constraints

■ Modify the tuning characteristics of referential constraints

29.3.1 Creating a referential constraint

To create an unlinked or linked referential constraint, use the SQL DDL CREATE
CONSTRAINT statement. CA-IDMS/DB checks and rejects any invalid CREATE
CONSTRAINT statements.

 Considerations

■ To create a linked constraint if both tables are not empty, you must drop and
recreate the tables, defining the linked constraint before reloading the data.

�� For steps and considerations involved with this process, see Chapter 28,
“Modifying Schema, View, and Table Definitions” on page 28-1.

■ When adding an unlinked constraint on a non-empty table, CA-IDMS/DB ensures
that all rows of the table satisfy the constraint. If one or more rows do not satisfy
the constraint, the create will not be allowed.

Example: In the following example, a linked referential constraint has been created
to make sure that the employee ID in the benefits table is a valid ID by checking it
against the employee IDs in the employee table. The referential constraint is indexed
and ordered by the fiscal year.

create constraint emp_benefits

 benefits (emp_id)

references employee (emp_id)

 linked index

order by (fiscal_year desc);

29.3.2 Dropping a referential constraint

To drop an unlinked referential constraint, or a linked referential constraint, use the
SQL DDL DROP CONSTRAINT statement.

Considerations: If you drop a clustered constraint, the location mode will change
as follows:

■ If a default index exists, CA-IDMS/DB will use it as the clustering index.

■ Otherwise, it uses a direct location mode which means that all new rows will be
stored in the first page containing enough space to hold the row.

Example: In the following example, the EMP_BENEFITS constraint is removed
from the BENEFITS table:

Chapter 29. Modifying Indexes, CALC Keys, and Referential Constraints 29-7

29.3 Maintaining referential constraints

drop constraint emp_benefits from benefits;

29.3.3 Modifying referential constraint tuning characteristics

To modify referential constraint tuning characteristics (for example, changing from
unlinked to linked or adding an ORDER BY option) use the SQL DDL DROP
CONSTRAINT statement, then re-add the constraint using the SQL DDL CREATE
CONSTRAINT statement.

Considerations: All considerations for dropping and creating a referential
constraint apply.

Example: In the following example, a linked referential constraint has been changed
to unlinked:

drop constraint emp_benefits from benefits;

create constraint emp_benefits

 benefits (emp_id)

references employee (emp_id);

29-8 CA-IDMS Database Administration

Chapter 30. About Modifying Non-SQL Defined
Databases

30.1 Types of modifications . 30-3
30.2 Overview . 30-4

30.2.1 Methods for modifying . 30-4
30.2.2 Procedure for modifying the non-SQL definitions 30-5
30.2.3 RESTRUCTURE SEGMENT utility statement 30-7
30.2.4 UNLOAD/RELOAD utility statements 30-7
30.2.5 MAINTAIN INDEX utility statement 30-8

Chapter 30. About Modifying Non-SQL Defined Databases 30-1

30-2 CA-IDMS Database Administration

30.1 Types of modifications

30.1 Types of modifications

Modification of a non SQL-defined database involves modifying any of the
components you defined earlier for the schema or subschema. This includes:

■ Adding or deleting schemas

■ Adding, modifying, or deleting schema areas

■ Adding, modifying, or deleting schema records

■ Adding, modifying, or dropping indexes and sets

�� For information about modifying physical definitions, see Chapter 25, “Modifying
Physical Database Definitions” on page 25-1.

Chapter 30. About Modifying Non-SQL Defined Databases 30-3

30.2 Overview

 30.2 Overview

Changes to schemas: In general, when you change a database, you must modify
the schema code and revalidate the schema. However, changing the schema has an
impact on other components of the CA-IDMS/DB environment. If you add or delete
an area from a schema, you may have to add or delete that area in one or more
segments and regenerate DMCLs. You will also have to modify and recompile some
or all subschema definitions compiled under the original schema to reflect changes
made to the schema.

If you access the non-SQL defined data through SQL, you may also need to recompile
access modules and drop and recreate SQL view definitions.

The primary tool for changing a schema is the schema compiler.

Steps to modify the schema: The steps to make any schema modification are as
follows:

1. Change and re-validate the necessary schema and subschema definitions

2. Change the actual data (if it exists) to fit the new database specifications using the
RESTRUCTURE SEGMENT, MAINTAIN INDEX, or UNLOAD/RELOAD
utility statements

3. Revise and recompile any application programs that may have been affected by
the above changes

4. Test to ensure that the change has been made correctly.

Changes to subschemas: Subschemas identify selected areas, records, elements,
and sets of the database. They also define logical records and establish security by
restricting runtime access to the database.

Any time you make a change to any of the above components in your CA-IDMS/DB
environment, you will have to change one or more of your subschemas.

The primary tool for changing subschemas is the subschema compiler.

30.2.1 Methods for modifying

Depending on the type of change you want to make to a non-SQL defined database,
you would do one of the following:

■ Change the definition

■ Change the definition and additionally use one or more utility statements

Basic definition change: To change a logical database definition when there is no
impact on data, you can use the schema compiler (or another compiler). This type of
change takes affect without requiring a utility statement (UNLOAD/RELOAD,
RESTRUCTURE SEGMENT, or MAINTAIN INDEX).

30-4 CA-IDMS Database Administration

30.2 Overview

An example of a change in which there is no data impact is adding a new area to a
schema.

Definition change using utility statements: For database changes that have an
impact on data, you must change the database definition and additionally use an
appropriate utility statement:

■ RESTRUCTURE SEGMENT — Modifies record occurrences to fit new schema
specifications. RESTRUCTURE SEGMENT allows you to:

– Insert new data items anywhere in a record

– Delete existing data items

– Change the length and position of data items

– Change the format of a record from fixed length to variable length or from
variable length to fixed length

– Add or remove record compression

– Delete chained sets and add or delete set pointers

■ UNLOAD and RELOAD — Reorganizes data when changes are made to the
placement of records within the database (for example, moving a record from one
area to another).

■ MAINTAIN INDEX — Builds, rebuilds, or deletes indexes in the database. You
use this utility whenever you need to make a structural change to the database
involving indexes (for example, adding a new index to the database).

30.2.2 Procedure for modifying the non-SQL definitions

Step 1: Copy the original schema and global subschema

1. Create a new schema which is identical to the original schema.

2. Create a global subschema for the new schema with a name which is different
from that of any other subschema in the dictionary. Include in the subschema all
areas, records, and sets associated with the schema.

Step 2: Modify the new schema and subschema

1. Make the necessary changes to the new schema definition.

2. Validate the schema.

3. Regenerate the global subschema, modifying it if necessary.

Step 3: Modify the segment and DMCL, if necessary

Note: You need to modify segments and DMCLs only if you add or remove an area
or make other changes to the physical definition in addition to changing the
schema.

1. Make the appropriate changes in the segment definition. Make sure that subareas
and other symbolics are defined appropriately.

Chapter 30. About Modifying Non-SQL Defined Databases 30-5

30.2 Overview

2. Generate, punch, and link all DMCLs containing the altered segment.

Step 4: Make changes to the data

Note: Not all schema changes require data changes. See Chapter 31, “Modifying
Schema Entities” on page 31-1 for the steps needed in each case.

1. Backup the area or files.

2. Use the appropriate utility or user-written program to change the data.

3. Verify the change using IDMSDBAN and/or a retrieval program, CA-OLQ, or
CA-CULPRIT.

4. Backup the altered areas or files.

Step 5: Complete the change

1. Update the original schema in the same way that the copy was changed.

2. Regenerate all subschemas associated with the original schema that are affected by
the change, modifying them if necessary to add new areas, records, or sets.

3. Recompile all access modules affected by the change, using the ALTER ACCESS
MODULE statement with the REPLACE ALL option.

4. Drop and recreate all SQL views affected by the change.

5. Make the new subschemas, DMCLs, and file available to your runtime
environment.

Considerations: The procedure outlined above requires that changes first be made
to a copy of the original schema and only after all other steps have been completed are
the changes made to the original schema. This approach ensures that the original
schema continues to describe the data until the altered areas are made available to
runtime environment. You should use this (or a similar approach) if during the
process:

■ CA-OLQ, CA-CULPRIT, or dynamic SQL users will be accessing the original
schema definition

■ Application programs will be compiled against the original schema and must
access the data before it has been changed.

If the above is not a concern or if no data changes are necessary, then the initial
modifications can be made to the original schema rather than a copy, avoiding the
necessity of replicating those changes later. (The copy of the schema is still useful if
the REGENERATE SCHEMA utility statement will be used to alter data.)

30-6 CA-IDMS Database Administration

30.2 Overview

30.2.3 RESTRUCTURE SEGMENT utility statement

What RESTRUCTURE SEGMENT does: The RESTRUCTURE SEGMENT
utility statement modifies record occurrences to fit new schema specifications. You
run RESTRUCTURE SEGMENT in local mode using a subschema associated with a
schema that describes the database before restructuring.

RESTRUCTURE SEGMENT does not require that the database be unloaded and
reloaded. Database keys remain unchanged. This means that database procedures can
be executed during restructuring. For example, IDMSCOMP can be executed to
compress records being changed from fixed length to variable length format.

Steps for RESTRUCTURE SEGMENT: To make changes using RESTRUCTURE
SEGMENT, follow the procedure described in 30.2.2, “Procedure for modifying the
non-SQL definitions” on page 30-5, except add the steps listed in the following table.

�� For detailed information on IDMSRSTC, RESTRUCTURE SEGMENT, and
RESTRUCTURE CONNECT, refer to CA-IDMS Utilities.

After ... Do this

Modifying the schema and
subschemas

Execute the schema compare utility (IDMSRSTC)
to generate IDMSRSTT macro statements for use
in the database restructure

Executing IDMSRSTC Assemble the IDMSRSTT statements into a base
restructuring table and use the table with the
RESTRUCTURE SEGMENT utility statement;
use a subschema that describes the database before
restructuring

Executing RESTRUCTURE
SEGMENT

Connect any new pointers to existing sets using
the RESTRUCTURE CONNECT utility statement;
use a subschema that describes the database after
restructuring

Executing RESTRUCTURE
SEGMENT

Write a program to connect pointers in new sets to
existing records

30.2.4 UNLOAD/RELOAD utility statements

What UNLOAD and RELOAD do: The UNLOAD and RELOAD utility statements
unload existing database records and reload them into the database. UNLOADING
and RELOADING involves:

1. Using the UNLOAD utility statement to offload data to an intermediate file in
preparation for reloading it.

2. Using the RELOAD utility statement to store the record data into the database,
build index structures, and connect related records together in set structures.

Chapter 30. About Modifying Non-SQL Defined Databases 30-7

30.2 Overview

Steps for UNLOAD/RELOAD: To make changes using UNLOAD/RELOAD,
follow the procedure described in 30.2.2, “Procedure for modifying the non-SQL
definitions” on page 30-5, adding the steps listed in the following table.

�� For detailed information about UNLOAD and RELOAD, refer to CA-IDMS
Utilities.

After ... Do this

Modifying the schema and
subschemas

UNLOAD using subschemas that reflect both the
old and new schema definitions.

Unloading the data Use the FORMAT utility statement to initialize
the files into which the data will be reloaded.

30.2.5 MAINTAIN INDEX utility statement

What MAINTAIN INDEX does: The MAINTAIN INDEX utility statement allows
you to build, rebuild, and delete both system-owned and user-owned indexes (indexed
sets). You can also change the characteristics of an index, such as changing an index
key from a compressed to an uncompressed format.

Steps to modify indexes: To make changes to an index, follow the procedure
described in 30.2.2, “Procedure for modifying the non-SQL definitions” on page 30-5,
adding the steps listed in the following table.

Note: Depending on the operation, you will need either a subschema reflecting the
old schema, the new schema, or both.

�� For detailed information about MAINTAIN INDEX and IDMSTBLU, refer to
CA-IDMS Utilities.

After ... Do this

Modifying the schema and
global subschema

For system-owned indexes:

Use MAINTAIN INDEX to build, rebuild, or
delete an index.

For user-owned indexes (indexed sets):

Write a program that calls IDMSTBLU and passes
descriptor information

30-8 CA-IDMS Database Administration

Chapter 31. Modifying Schema Entities

31.1 Modifications to an unloaded database 31-4
31.2 Schema modifications . 31-5

31.2.1 Deleting a schema . 31-5
31.2.2 Changing schema characteristics . 31-5

31.3 Area modifications . 31-6
31.3.1 Adding or deleting an area . 31-6
31.3.2 Changing area characteristics . 31-7

31.4 Record modifications . 31-8
31.4.1 Adding schema records . 31-8
31.4.2 Deleting schema records . 31-8
31.4.3 Changing a record's CALC key . 31-9
31.4.4 Changing the DUPLICATES option on a CALC or SORT key . . . 31-11
31.4.5 Changing the location mode of a record 31-12
31.4.6 Changing a record's area . 31-13
31.4.7 Modifying record elements . 31-14
31.4.8 Changing other record characteristics 31-15
31.4.9 Adding and dropping database procedures 31-16

31.5 Set modifications . 31-17
31.5.1 Adding or deleting a set . 31-17
31.5.2 Changing set mode . 31-18
31.5.3 Adding and dropping set pointers 31-19
31.5.4 Changing set order . 31-20
31.5.5 Changing set membership options 31-21

31.6 Index modifications . 31-23
31.6.1 Adding or deleting system-owned indexes 31-23
31.6.2 Changing the location of an index 31-24
31.6.3 Changing index characteristics . 31-24
31.6.4 Adding or deleting index pointers 31-25

Chapter 31. Modifying Schema Entities 31-1

31-2 CA-IDMS Database Administration

What this chapter contains: This chapter describes:

■ The procedure to modify a schema or schema entities when the database is empty.

■ Specific procedures to add, delete, or modify schema or schema entity definitions
when the database is not empty. These procedures include only those that require
a utility to affect the change.

Chapter 31. Modifying Schema Entities 31-3

31.1 Modifications to an unloaded database

31.1 Modifications to an unloaded database

What components are affected: Changes to a schema or schema entity in an
unloaded database affects:

 ■ The schema

■ The subschemas that reference the schema

■ The access modules that reference the schema

■ SQL views that reference the schema

 Steps

1. Modify the schema and any schema entities, as desired

2. Validate the schema

3. Regenerate any affected subschemas

4. Alter affected access modules using the REPLACE ALL option

5. Drop and recreate SQL views that reference the schema, as necessary

31-4 CA-IDMS Database Administration

31.2 Schema modifications

 31.2 Schema modifications

This section describes how to:

■ Delete a schema

■ Change schema characteristics

31.2.1 Deleting a schema

What components are affected: When you delete a schema, the definitions of
the schema and all subschemas associated with the schema are removed from the
dictionary.

Steps to delete a schema: To delete a schema from the dictionary:

1. Delete the schema

2. Delete load modules associated with the deleted subschemas

3. Delete files that contain the data

4. Delete the segment(s) corresponding to the schema

5. Regenerate all affected DMCLs

6. Remove the segment(s) from the database name table

7. Delete SQL schema(s) referencing the non-SQL schema

Considerations: When you delete a schema, subschemas associated with that
schema are also deleted. The subschema load modules are not deleted.

In addition, the physical database definition(s) that apply to the schema's areas are not
automatically deleted. You must modify the physical database definitions to delete the
areas and regenerate all affected DMCLs.

31.2.2 Changing schema characteristics

Schema characteristics include:

 ■ Description

 ■ Memo date

■ Assignment rules for record IDs

 ■ Security specifications

■ User-defined information (class/attribute and user-defined comments)

What components are affected: When you modify characteristics of a schema,
only the schema definition is affected. These characteristics do not impact critical
definitions within the schema or its subschemas, so a VALIDATE statement is not
required.

Chapter 31. Modifying Schema Entities 31-5

31.3 Area modifications

 31.3 Area modifications

Types of changes: This section describes how to make the following area-related
changes:

■ Add or delete an area in an existing schema definition

■ Add, remove, or change procedures associated with the area

31.3.1 Adding or deleting an area

What components are affected: Adding or deleting an area in the schema affects
the schema and subschemas referencing an area to be deleted, segments describing
related physical databases, and DMCLs in which those segments are included.

Steps to add an area

1. Modify the schema

2. Add the new area

3. Define one or more records or system-owned indexes associated with the area

4. Validate the schema

5. Add the new area to one or more subschemas

6. Format the new area using the FILE option of the FORMAT utility statement

Steps to delete an area

1. Modify the schema

2. Modify existing records mapping to the area to be deleted so that they map to a
different area

3. Delete the area

4. Validate the schema

5. Regenerate any affected subschemas

 Considerations

■ If existing records are to reside in a new area, see 31.4.6, “Changing a record's
area” on page 31-13 later in this chapter.

■ If an existing index is to reside in a new area, see 31.6.2, “Changing the location
of an index” on page 31-24 later in this chapter.

■ After you have added an area to a schema or deleted an area from a schema, make
sure you update the DMCL module appropriately.

31-6 CA-IDMS Database Administration

31.3 Area modifications

31.3.2 Changing area characteristics

What components are affected: When you add or delete area procedures, the
area and schema definitions are affected. All subschemas which include the area must
be regenerated and all access modules accessing a record in the area must be altered.

Steps to change area characteristics: �� See 31.1, “Modifications to an
unloaded database” on page 31-4 at the beginning of this chapter for the steps to
modify an empty database.

Considerations: Remember to respecify all database procedures in the order that
they are to be called when you add, remove, or change the procedures associated with
an area.

Chapter 31. Modifying Schema Entities 31-7

31.4 Record modifications

 31.4 Record modifications

Types of changes: This section describes the following record-related changes:

■ Adding or deleting a record in your schema

■ Changing a record's CALC key

■ Changing a record's location mode

■ Changing a record's area

■ Changing a record element

■ Changing record procedures

31.4.1 Adding schema records

What components are affected: Adding schema records affects the schema.

Steps to add a record

1. Add the record using DDDL statements

2. Modify the schema

3. Add the record to the schema using SHARE STRUCTURE

4. Validate the schema

5. Modify any subschemas that should contain the new record

6. Add the new record to each subschema

7. Regenerate the subschemas

Considerations: If the record participates in a set with existing records, you must
use the RESTRUCTURE SEGMENT utility statement to add pointer positions to the
existing records. You must also write a program that connects the records into proper
set occurrences.

�� For more information on adding a set to a schema, see 31.5.1, “Adding or deleting
a set” on page 31-17 later in this chapter.

31.4.2 Deleting schema records

What components are affected: Deleting schema records affects the schema and
the data. It also affects subschemas and access modules that reference the record and
any other records connected to the record through sets. SQL views referencing the
record become invalid.

31-8 CA-IDMS Database Administration

31.4 Record modifications

Steps to delete a record: To delete a record from the schema where data has
been loaded:

1. Write and execute a program to erase all occurrences of the record

2. Create a new schema based on the original schema omitting the record and
omitting any affected sets

3. Validate the schema

4. Use the schema compare utility (IDMSRSTC) to generate the IDMSRSTT macro
statements

5. Restructure the database using the RESTRUCTURE SEGMENT utility statement

Note: If the record does not participate in any set relationships, there is no need
to restructure the database.

6. Complete the process by updating the original schema definition, regenerating
subschemas, altering affected access modules, and dropping affected views

 Considerations

■ If you created the record using DDDL statements, the record definition will
remain in the dictionary after it has been deleted from the schema

■ If you created the record using schema DDL and the record has not been copied
into any other schema, its definition will be deleted from the dictionary after it has
been deleted from the schema definition.

■ If the record participates in a set relationship, you have to remove the set from the
schema definition or modify the definition before validation

■ Regenerating affected subschemas will remove the record from the subschema
definition

■ When you erase occurrences of the record, you may have to use a subschema
derived from a schema where the sets in which the record is an owner have been
changed to optional. This permits the member record to be disconnected from the
owner record rather than being erased.

31.4.3 Changing a record's CALC key

Types of changes: You can make the following changes to a record's CALC key:

■ Replace one or more elements in the CALC key

■ Add or remove elements in the CALC key

■ Change the picture or usage of an element in the CALC key

What components are affected: Both the schema record definition and the data
are affected. Subschemas and access modules that reference the record are also
affected.

Chapter 31. Modifying Schema Entities 31-9

31.4 Record modifications

Steps to change the CALC key: To change the CALC key of a schema record
where data has been loaded:

1. Add a new schema based on the original schema

2. Modify the record in the new schema specifying the new CALC key

3. Validate the schema

4. Create a new global subschema

5. Unload and reload the database using the UNLOAD/RELOAD utility statements

6. Complete the process by updating the original schema definition, regenerating
subschemas, and altering affected access modules

 Considerations

■ UNLOAD/RELOAD clusters VIA records based on the CALC key defined in the
subschema used to unload the data. Therefore, you need to do a second
UNLOAD/RELOAD to properly cluster VIA records if the subschema used to
unload the data describes the old CALC key.

As an alternative, you can use the new subschema for unloading. This ensures
that the new CALC key is used to determine target pages for both the CALC
record and its associated VIA records. However, the new subschema can be used
to unload data only if no other changes have been made to the record (such as the
record's area, set pointers, etc.).

In some cases multiple changes can be accommodated by using an intermediate
schema/subschema to unload the data. For example, to change the CALC key of
a record and also move it to a new area, unload the data using a subschema that
describes the record's new CALC key but old area. Reload the data using a
subschema describing the new CALC key and the new area.

■ If the control length of the record is changing as a result of the change to the
CALC key and the record is compressed or variable length, you must do one of
the following:

– Use RESTRUCTURE SEGMENT to alter the control length before unloading
and reloading the data.

– Unload and reload the data twice (using the old subschema on the first unload
and the new subschema on the second)

■ If a field to be added to the CALC key does not exist in the record, add the field
using RESTRUCTURE SEGMENT and initialize it before unloading and
reloading the data. Initialize the field using restructure or a user-written program.

�� See 31.4.7, “Modifying record elements” on page 31-14 later in this chapter for
information on adding a new record element.

31-10 CA-IDMS Database Administration

31.4 Record modifications

31.4.4 Changing the DUPLICATES option on a CALC or SORT key

Types of changes: You can make the following changes to the DUPLICATES
option on a record's CALC or sort key:

■ Duplicates first to duplicates last

■ Duplicates last to duplicates first

■ Duplicates not allowed to duplicates first/last

■ Duplicates first/last to duplicates not allowed

What components are affected: The entire schema definition is affected.
Depending on the change, the data may also be affected. All subschemas and access
modules referencing the record are also affected.

Steps to change the duplicates option: See 31.1, “Modifications to an
unloaded database” on page 31-4 at the beginning of this chapter for the steps to
change the duplicates option from:

■ Duplicates first/last to duplicates not allowed

■ Duplicates not allowed to duplicates first/last

To change the duplicates option from first to last or from last to first:

1. Write a program using a subschema that specifies duplicates first for the CALC or
sort key. The program must

■ Modify the CALC or sort key value to a dummy value

■ Modify the CALC or sort key value to its original value

■ Read each record that has duplicate values, using either OBTAIN CALC
DUPLICATE or OBTAIN NEXT IN SET to retrieve duplicate records in the
current order

This has the effect of reversing the order of the duplicate records.

2. Modify the schema

3. Modify the record changing the duplicates option

4. Validate the schema

5. Regenerate any affected subschemas

6. Alter affected access modules using the REPLACE ALL option

 Considerations

■ When you change from duplicates first or last to duplicates not allowed, make
sure that no duplicate key values exist in the database.

■ When changing from duplicates first to last or last to first, write a conversion
program to logically reorder the record occurrences in the database.

Chapter 31. Modifying Schema Entities 31-11

31.4 Record modifications

Using the approach described above, the program must execute using a subschema
specifying duplicates first. Therefore, it should use a subschema created either
before or after the schema has been changed depending on whether the duplicates
option is being changed from or to duplicates first.

31.4.5 Changing the location mode of a record

Types of changes: These are the possible location mode changes for a record in
the database:

■ CALC to VIA

■ CALC to DIRECT

■ DIRECT to CALC

■ DIRECT to VIA

■ VIA to CALC

■ VIA to DIRECT

■ VIA one set in the schema to VIA another set

What components are affected: The record definition and the data are affected.
Subschemas and access modules referencing the record are also affected.

Steps to change the location mode: To change the location mode of a schema
record where data has been loaded:

1. Add a new schema based on the original schema

2. Modify the record in the new schema to specify the new location mode

3. Validate the schema

4. Create a new global subschema

5. Unload and reload the database using the UNLOAD/RELOAD utility statements

6. Complete the process by updating the original schema, regenerating affected
subschemas, and altering affected access modules.

 Considerations

■ If the storage mode is being changed to VIA, add the set if it does not exist

■ If you change a location mode from CALC or DIRECT to VIA, or if you change
the VIA location mode from VIA one set to VIA another set, you must run the
UNLOAD and RELOAD utilities a second time to ensure proper clustering

■ If you change a location mode from DIRECT to VIA or VIA one set to VIA
another set, you can sometimes avoid a second UNLOAD/RELOAD by using the
new subschema in the UNLOAD step. This technique can be used only if no set
pointers or data lengths have changed. If used, the unload process may require
more I/Os because UNLOAD walks the VIA set to locate the member record
occurrences.

31-12 CA-IDMS Database Administration

31.4 Record modifications

■ If you change a location mode from CALC to DIRECT you will need to run an
UNLOAD/RELOAD to disconnect the record from the CALC set.
UNLOAD/RELOAD stores DIRECT records near their original locations. If you
are not satisfied with this location, write a program to delete and store the records
exactly where you want them.

■ If you change a location mode from VIA to DIRECT, an UNLOAD/RELOAD is
not necessary. If you are not satisfied with the locations of the records, write a
program to delete and store the records where you want them.

■ If you add a new set, UNLOAD/RELOAD will not connect it. However, after the
RELOAD the pointer positions will exist and you can write a program to connect
the members to the sets.

■ If you need to add a set to the schema, make sure you add the set to the
subschemas as required

31.4.6 Changing a record's area

Types of changes: You can move a record from one area to another or change the
portion of an area in which a record is stored.

Note: If a subarea symbolic is associated with the record, you change the portion of
the area in which the record is stored by changing the physical area definition
and regenerating DMCLs. See Chapter 25, “Modifying Physical Database
Definitions” on page 25-1 for more information.

What components are affected: The schema record definition and data area
affected. Subschemas and access module that reference the record are also affected.

Steps to change the record's area: To change the area (or portion of an area) in
which record occurrences are stored when data has been loaded:

1. Create a new schema based on the original schema

2. Add the area, if necessary, to the new schema

3. Modify the record in the new schema to specify the new area or subarea/offset

4. Validate the schema

5. Create a new global subschema

6. Unload and reload the database using the UNLOAD/RELOAD utility statements

7. Complete the process by updating the original schema, regenerating affected
subschemas, and altering affected access modules.

 Considerations

■ If you had to add the area to the schema, you must explicitly add it to subschemas
associated with the record. You must also explicitly add the area to all applicable
physical database definitions and regenerate affected DMCLs.

Chapter 31. Modifying Schema Entities 31-13

31.4 Record modifications

■ If you increase the page range of a record whose location mode is other than
CALC, you do not need to unload and reload the data provided the new page
range includes all pages of the original range.

31.4.7 Modifying record elements

Types of changes: These are changes you can make to an element within a
schema record:

■ Adding or removing a record element

■ Changing the picture or usage mode of an element

What components are affected: The record definition is affected. If data has
been loaded, the data may also be affected. Subschemas in which the record is
included are affected as are programs compiled from those subschemas. Access
modules and SQL views that reference the record are also affected.

Steps to change the record element: To make any of the above changes when
data has been loaded:

1. Using DDDL statements, create a record with a new version number and same
name having the revised structure

2. Create a new schema based on the original schema with the new record

3. Validate the schema

4. Use the schema compare utility (IDMSRSTC) to generate the IDMSRSTT macro
statements

5. Restructure the database

6. Complete the process by updating the original schema, regenerating affected
subschemas, altering access modules, and dropping and recreating affected SQL
views

 Considerations

■ You can replace filler elements with record elements whose total length equals
that of the filler element without creating a new version of the record. The new
elements are immediately reflected in the schema. The next time any programs
that use that schema record are compiled, the new elements appear. Affected
subschemas are flagged for regeneration.

■ You should initialize any 'filler' fields or fields whose picture or usage has been
changed using either RESTRUCTURE SEGMENT or a user-written program.

■ A record element in a schema-owned record can be replaced with elements of the
same name

■ If you want to maintain consistency among the record version numbers in your
schema:

1. Complete all of the steps above

31-14 CA-IDMS Database Administration

31.4 Record modifications

2. Delete the original version of the record

3. Modify the record using DDDL statements to change its version number

You do not have to modify the schema.

■ Non-structural changes can be made directly to schema-owned records using
DDDL. For example, you can change the external picture of a record element
even if it is associated with a schema.

�� For more information on the types of changes that can be made to
schema-owned records, refer to IDD DDDL Reference

■ If you change the format (picture or usage) of an element used in a CALC or sort
key, additional steps may be needed to convert the data.

31.4.8 Changing other record characteristics

Types of changes: You can make the following changes to the characteristics of a
record (changes other than those described previously in this chapter):

 ■ Record ID

 ■ Record synonyms

 ■ VSAM type

■ Minimum root and minimum fragment length

■ Whether the record is compressed or uncompressed

Note: For information on dropping or adding a database procedure associated with a
record, see 31.4.9, “Adding and dropping database procedures” on page 31-16,
later in this chapter.

What components are affected: The record definition is affected and the data is
affected if changing the record ID or compression. All subschemas and access
modules that reference the record are affected. SQL views are affected only if the
SQL synonym for an element is changed.

Steps to make the change: To modify the VSAM type, record synonyms, or
minimum root and fragment lengths, follow the procedure described in 31.1,
“Modifications to an unloaded database” on page 31-4 at the beginning of this chapter.

 Considerations

■ To change the record ID when data exists, write a program that offloads and
reloads that data

■ Optionally, UNLOAD/RELOAD can be used to reorganize existing data after
changing the minimum root or minimum fragment.

■ To change a record from compressed to uncompressed, you must use either
UNLOAD/RELOAD or RESTRUCTURE SEGMENT

Chapter 31. Modifying Schema Entities 31-15

31.4 Record modifications

■ If changes to the record elements do not affect control fields, all you need to do is
issue an DDDL MODIFY RECORD statement

�� For more information about modifying non-IDD owned records, refer to IDD
DDDL Reference

■ If you change the SQL synonym for one or more elements then you must drop
and recreate all SQL views that reference the record. You must also change all
programs that refer to those elements in an SQL statement.

■ If you change the VSAM type, be sure that appropriate changes, if necessary, are
made to the VSAM definition using the IDCAMS utility.

31.4.9 Adding and dropping database procedures

What components are affected: If you implement a new database procedure, or
change the name of an existing procedure, it will affect the schema and one or more
subschemas. It may also require that you restructure the database, if the purpose of the
procedure is to alter the physical data (for example, record compression). All
subschemas and access modules that reference the record are also affected by
procedure changes.

Steps to make the change: To add, modify, or delete database procedures that
have no effect on the data, follow the procedure described in 31.1, “Modifications to
an unloaded database” on page 31-4 at the beginning of this chapter.

 Considerations

■ If a new database procedure does affect the data, write and compile the new
procedure and then use the RESTRUCTURE SEGMENT utility statement to
change the existing data by specifying the new procedure in a NUPROCS macro.

If database procedures are already associated with the record, they may need to be
removed from the schema and subschema before executing RESTRUCTURE
SEGMENT. The existing procedures, if invoked, will be called after all
NUPROCS procedures have been called. If, for example, the new procedure
compresses the data in the record, the existing procedures may not work properly.
To overcome this problem, either execute RESTRUCTURE SEGMENT using a
subschema derived from an intermediate schema in which all procedures normally
called before the new procedure have been removed from the record or use
UNLOAD/RELOAD to add the new procedure.

■ UNLOAD/RELOAD can be used to add or remove procedures that affect the data.
To use UNLOAD/RELOAD, create a new schema and subschema containing the
revised procedure calls. Unload the data using the old subschema and reload it
using the new subschema.

■ To change a database procedure for an area, all calls must be respecified.

31-16 CA-IDMS Database Administration

31.5 Set modifications

 31.5 Set modifications

Types of changes: The following set-related changes can be made:

■ Add or remove a set

■ Change the mode (index or chain)

■ Add or remove set pointers

■ Change set order

■ Change membership options

31.5.1 Adding or deleting a set

What components are affected: The schema set definition and data are affected.
Segments and DMCLs may also be affected if a set is indexes and a symbolic index
specification needs to be added, removed, or replaced in the physical definition.
Subschemas and access modules that reference either the owner or member of the set
are also affected.

Steps to add or delete a set: To add or delete a set when data has been loaded:

1. Create a new schema based on the original schema but containing the new set or
omitting the deleted set

2. Validate the schema

3. Create a global subschema for the new schema

4. Use the schema compare utility (IDMSRSTC) to generate the IDMSRSTT macro
statements

5. Restructure the database using the RESTRUCTURE SEGMENT utility statement

6. If adding a set, write a program to connect member record occurrences to the
appropriate owner occurrences.

7. Complete the change by updating the original schema, regenerating affected
subschemas, and altering affected access modules.

 Considerations

■ Both records participating in a new set must be defined to the schema

■ If you replace an existing set with a new set, do not use the AUTO parameter;
specify the actual pointer positions. This eliminates the possibility that the schema
compiler will identify different pointer positions than exist in the loaded database.

■ When deleting an existing set from a schema and a participating record contains
pointer positions for sets beyond the deleted set's pointer positions, you must
renumber the remaining positions. You cannot leave unused pointer positions.

■ If you delete a set, the set is also deleted from all subschema descriptions.

Chapter 31. Modifying Schema Entities 31-17

31.5 Set modifications

■ If you delete the owner record within a set, the set is automatically deleted and
both the set and deleted record are removed from all subschema descriptions.

■ If you delete the member record within a set, the set remains. You receive an
error on validation if there are no remaining members in the set (as in a
multimember set)

■ If you want a new set to be included in a subschema, you must modify the
subschema and add the set to the subschema.

■ Regenerating affected subschemas will remove a deleted set from all subschemas.

■ When you delete a set, alter and recompile all programs that use the set

31.5.2 Changing set mode

Types of changes: You can change the mode of a set from chain to index or vice
versa.

What components are affected: The schema set definition and data are affected.
All subschemas and access modules that reference either the owner or member records
are also affected.

Steps to change from chained to indexed: To change a chained set to an
indexed set when data has been loaded:

1. Create a new schema based on the original schema

2. Modify the set in the new schema to change the set mode

3. Validate the schema

4. Create a global subschema

5. Write a program that sweeps the area, walks each set, and calls IDMSTBLU to
perform a BUILD function.

6. Restructure the database if needed to remove old pointer positions and add new
ones.

7. Execute MAINTAIN INDEX from SORT3 using the output from step 5 as input

8. Complete the change by updating the original schema, regenerating affected
subschemas, and altering affected access modules.

Steps to change from indexed to chained: To change an indexed set to a
chained set when data has been loaded:

1. Create a new schema based on the original schema

2. Modify the set in the new schema to change the set mode

3. Validate the schema

4. Create a global subschema

5. Write a program that sweeps the area and calls IDMSTBLU to perform a
DELETE function and also produces a work file for input to step 8.

31-18 CA-IDMS Database Administration

31.5 Set modifications

6. Use the output generated by IDMSTBLU as input to MAINTAIN INDEX and run
it from SORT3 to delete each index occurrence

7. Restructure the database as needed to remove old pointers positions and add new
ones

8. Sort the workfile produced by IDMSTBLU by owner key, member symbolic key,
or set position.

9. Write a program to:

a. Read the sorted output

b. Obtain owner by db-key

c. Obtain member by db-key

d. Connect the member to the set

10. Complete the change by updating the original schema, regenerating affected
subschemas, and altering affected access modules.

Considerations for the change from indexed to chained

■ When you submit the RESTRUCTURE SEGMENT utility statement to initialize
pointers (and possibly to delete pointers), you must initialize all existing pointer
positions in the owner and member records that will be re-used for the chained
set. If this is not done, you will be unable to connect the members to their
owners in Step 9.

■ The work file produced in Step 5 should contain the following information:

– The dbkey of each owner record occurrence

– The dbkey of each member record occurrence

– The position of each member record with the set (if its necessary to maintain
the same set order)

– The sort key of the member record within the set (if the set order is changing
or the order of duplicates does not have to be maintained)

31.5.3 Adding and dropping set pointers

Types of changes: You can make the following changes to set pointers:

■ Add or remove prior or owner pointers from a chain set

■ Add or remove owner pointers from an indexed set

What components are affected: When you change the prior or owner pointers
defined to a set, the schema set definition and data are affected. Subschemas and
access modules that reference either the owner or member records are also affected.

Chapter 31. Modifying Schema Entities 31-19

31.5 Set modifications

Steps to add or drop set pointers: To add or drop set pointers when data has
been loaded:

1. Create a new schema based on the original schema but containing the modified set
pointers

2. Validate the schema

3. Create a global subschema

4. Use the schema compare utility (IDMSRSTC) to generate the IDMSRSTT macro
statements

5. Restructure the database using RESTRUCTURE SEGMENT

6. If you add a prior or owner pointer to an existing set, fill in the pointer values
using RESTRUCTURE CONNECT

7. Complete the process by modifying the original schema, regenerating affected
subschemas, and altering affected access modules.

 Considerations

■ When adding or deleting pointers, do not use the AUTO parameter; specify the
actual pointer positions. This eliminates the possibility the schema compiler will
identify different pointer positions than exist in the loaded database.

■ When deleting a pointer from a set in a schema and a participating record contains
pointer positions beyond the deleted pointer, you must renumber the remaining
positions. You cannot leave unused pointer positions.

31.5.4 Changing set order

Types of changes: You can make the following order-related changes:

■ Change from SORTED to unsorted (NEXT, PRIOR, FIRST, LAST) order

■ Change from unsorted to sorted

■ Change one of the unsorted orders to another

■ Change the sort key or collating sequence of a sorted set

What components are affected: When you change NEXT, PRIOR, FIRST,
LAST, or SORTED specifications, the schema set definition and data are affected.
Subschemas and access modules that reference either the owner or member records
area are also affected.

Steps to change set order: Follow the steps listed in 31.1, “Modifications to an
unloaded database” on page 31-4 at the beginning of this chapter if both of the
following statements are true:

■ You are changing a chained or an unsorted indexed set to NEXT, PRIOR, FIRST,
or LAST

■ It is not important to re-order existing data

31-20 CA-IDMS Database Administration

31.5 Set modifications

Steps to re-order chain and unsorted indexed sets: To change the set order
of a chained or unsorted indexed set, member records must be re-ordered:

1. Create a new schema based on the original

2. Modify the set to change the set order

3. Validate the schema

4. Create a global subschema

5. Write a conversion program that disconnects and re-orders (in the desired
sequence) each member record occurrence

6. Complete the process by updating the original schema, regenerating affected
subschemas and altering affected access modules

Steps to re-order sorted indexed sets: To change the sort key of a sorted
indexed set or to change an indexed set from unsorted to sorted and vice versa, follow
the procedure for re-ordering chain sets except replace Step 5 with the following:

1. Write a program that sweeps the area and call IDMSTBLU with a REBUILD
function

2. Use the output from the step above as input to MAINTAIN INDEX and run
MAINTAIN INDEX from SORT3

Considerations: When you change the set order from or to SORTED or when you
change the sort key of a sorted set, the control length of the member record may
change. If it does, and the member record is compressed or variable in length, you
must use RESTRUCTURE SEGMENT to change the control length of existing record
occurrences.

31.5.5 Changing set membership options

Types of changes: You can change a MANDATORY set to OPTIONAL and vice
versa. You can also change an AUTOMATIC set to MANUAL.

What components are affected: When you change membership options, the
schema set definition is affected. Subschemas and access modules that reference either
owner or member record are also affected.

Steps to change membership options: To change membership options,
regardless of whether or not data is loaded, follow the steps outlined in 31.1,
“Modifications to an unloaded database” on page 31-4 earlier in this chapter.

Considerations: Changing membership options may impact existing application
programs. Consider the following:

■ If you change from AUTOMATIC to MANUAL or vice versa, programs that
STORE member records may need to connect records into the set using a
CONNECT statement or no longer issue such a CONNECT.

Chapter 31. Modifying Schema Entities 31-21

31.5 Set modifications

■ If you change from OPTIONAL to MANDATORY, programs that DISCONNECT
members from the set must be changed and programs that ERASE owner records
may need to be changed.

■ If you change from MANDATORY AUTOMATIC to any other option, programs
that obtain the owner of the set may be affected (because a given member
occurrence may not have an owner).

31-22 CA-IDMS Database Administration

31.6 Index modifications

 31.6 Index modifications

Types of changes: You can make the following types of changes to system-owned
indexes:

■ Add or remove an index

■ Change the area in which an index resides

■ Change index characteristics

■ Change from linked to unlinked or vice versa

31.6.1 Adding or deleting system-owned indexes

What components are affected: When you add or remove a system-owned
index, the schema set definition and the data are affected. All subschemas and access
modules that reference the member record are also affected.

Steps to add an index: To add an index when data has been loaded:

1. Add a new schema based on the original schema adding the new index

2. Validate the schema

3. Create a global subschema for the new schema

4. If the index is linked, add the index pointer position to the member record using
the schema compare utility (IDMSRSTC) and RESTRUCTURE SEGMENT

5. Build the index structure using the new subschema using the MAINTAIN INDEX
utility statement

6. Complete the process by updating the original schema, regenerating affected
subschemas, and altering affected access modules

Steps to remove an index: To remove an index when data has been loaded:

1. Add a new schema based on the original schema removing the index

2. Validate the schema

3. Create a global subschema for the new schema

4. Delete the index structure using an old subschema and the MAINTAIN INDEX
utility statement

5. If the index is linked, remove the index pointed from the member record using the
schema compare utility (IDMSRSTC) and the RESTRUCTURE SEGMENT utility
statement

6. Complete the process by updating the original schema, regenerating affected
subschemas, and altering affected access modules

Chapter 31. Modifying Schema Entities 31-23

31.6 Index modifications

 Considerations

■ The index you delete from the schema will automatically be deleted from any
affected subschemas when you request that affected subschemas be regenerated.

■ If an index is added or removed, it may change the control length of the record.
If it does and the record is compressed or variable in length, you must change the
control length of existing data using RESTRUCTURE SEGMENT.

31.6.2 Changing the location of an index

Types of changes: You can change the area (or portion of an area) in which the
index structure resides.

What components are affected: The schema set definition and data are affected.
Subschemas and access modules that reference the member record are also affected.

Note: If a subarea symbolic is associated with the index, you change the portion of
the area in which the index is stored by changing the physical area definition
and regenerating DMCLs. See Chapter 25, “Modifying Physical Database
Definitions” on page 25-1 for more information.

Steps to change the area: To change the area (or portion of an area) in which an
index resides when data has been loaded:

1. Add a new schema based on the original schema

2. Add the area, if necessary

3. Modify the indexed set to map to the new area or subarea/page range

4. Validate the schema

5. Create a new global subschema

6. Rebuild the index using both an old and new subschema using the MAINTAIN
INDEX utility statement

 Considerations

■ If the area does not exist in the subschema, you will receive an error when you
issue REGENERATE AFFECTED SUBSCHEMAS.

31.6.3 Changing index characteristics

Types of changes: You can change the following index-related characteristics:

 ■ Key compression

■ Number of entries in an SR8 record

 ■ Index displacement

■ Index key or collating sequence

31-24 CA-IDMS Database Administration

31.6 Index modifications

What components are affected: The schema set definitions and data are affected.
Subschema and access modules that reference the member record are also affected.

Steps to change index characteristics: To change index characteristics when
data has been loaded:

1. Add a new schema based on the original schema modifying the set characteristics

2. Validate the schema

3. Create a global subschema

4. Rebuild the index using the MAINTAIN INDEX utility and the REBUILD option

5. Complete the process by updating the original schema, regenerating affected
subschemas, and altering affected access modules

 Considerations

■ If you change the index key, the control length of the member record may change.
If it does, and the member record is compressed or variable in length, you must
use RESTRUCTURE SEGMENT to change the control length of existing record
occurrences.

■ When you execute the MAINTAIN INDEX utility statement, use the REBUILD
option:

– If you change key compression, you must specify the name of an old
subschema in the USING parameter and the name of a new subschema in the
NEW SUBSCHEMA parameter.

– If you change the symbolic key or the collating sequence, you must specify
the new subschema in the USING parameter.

If both types of change are being made at once, you will need to run MAINTAIN
INDEX twice, once to delete the existing index (using the old subschema) and
once to build the new index (using the new subschema).

31.6.4 Adding or deleting index pointers

Types of changes: You can delete or add index pointers. The index pointer in a
member record is optional for system-owned indexes.

Adding or deleting index pointers: To add or delete an index pointer:

1. Modify the schema specifying INDEX POSITION IS NONE

2. Add or delete the pointer position using the RESTRUCTURE SEGMENT utility
statement

3. Rebuild the index using the MAINTAIN INDEX utility statement

Chapter 31. Modifying Schema Entities 31-25

31-26 CA-IDMS Database Administration

Chapter 32. Modifying Subschema Entities

32.1 Modifying or deleting a subschema . 32-4
32.1.1 Modifying a subschema . 32-4
32.1.2 Deleting a subschema . 32-4

32.2 Adding, modifying, or deleting a record 32-6
32.3 Adding, modifying, or deleting a set . 32-7
32.4 Adding, modifying, or deleting an area 32-8
32.5 Adding, modifying, or deleting a logical record or path group 32-9

Chapter 32. Modifying Subschema Entities 32-1

32-2 CA-IDMS Database Administration

Affect on applications associated with the subschema: Changes you make
to a subschema impact application programs associated with that subschema. In
general, when you add, modify, or delete a subschema entity and regenerate the
subschema, follow the appropriate procedure in the following table:

Regenerating the subschema: Before you can use the subschema, you must
regenerate it as described in Chapter 14, “Subschema Statements” on page 14-1.

If you want to use the subschema before the system is recycled, you must issue a
DCMT VARY PROGRAM .. NEW COPY command. This statement causes the
regenerated subschema to be loaded into the program pool the next time it is
requested.

Identifying programs associated with a subschema: If your site updates the
dictionary every time a program is compiled, the dictionary will contain the necessary
information to identify the programs associated with a modified subschema.

If this information is stored in the dictionary, you can run IDMSRPTS Program
Cross-Reference Listing report. For each program associated with a subschema, the
report lists:

 ■ Name

 ■ Version number

■ Date last compiled

■ Number of times compiled

 ■ Language

�� Refer to CA-IDMS Utilities for complete information on IDMSRPTS.

If your site does not update the dictionary when a program is compiled, such
information must be maintained manually.

If a program... You should...

Is associated with the subschema but
does not need to access the new entity
(area, record, or set)

Not have to recompile the
program

Is associated with the subschema and
needs access to a new entity or has
access to a modified entity

■ Alter the program as
needed

■ Recompile the program

Chapter 32. Modifying Subschema Entities 32-3

32.1 Modifying or deleting a subschema

32.1 Modifying or deleting a subschema

32.1.1 Modifying a subschema

When you might want to make this change: There are several modifications
you may want to make to the subschema definition itself (other than modifications to
set, area, and record definitions). These modifications include:

 ■ Description

 ■ Program registration

 ■ Authorization

 ■ Usage

■ Information on transferring statistics

■ Logical record currency

 ■ Security

■ User-defined information (class/attribute and user-defined comments)

What components are affected: The definition of the subschema as it resides in
the dictionary is affected by such modifications.

Example: In the following example, program registration has been turned on. This
requires that all programs using this subschema be registered with the named
subschema in order to be compiled against it.

modify subschema empss91

program registration required is on.

generate.

32.1.2 Deleting a subschema

When you might want to make this change: If there is no longer a need for a
subschema, you may want to delete it.

What components are affected: The subschema source is affected by the
deletion of a subschema. The subschema load module is not affected.

 Considerations

■ When you delete a subschema, programs associated with that subschema can no
longer be compiled. You must associate each program with a new subschema.

■ If you have not specified DELETE IS ON in the SET OPTIONS statement, the
subschema load module is not automatically deleted when you delete the
subschema definition. You must explicitly delete the associated load module.

32-4 CA-IDMS Database Administration

32.1 Modifying or deleting a subschema

Example: In the following example, the subschema EMPSS01 is deleted.

delete subschema empss91.

Chapter 32. Modifying Subschema Entities 32-5

32.2 Adding, modifying, or deleting a record

32.2 Adding, modifying, or deleting a record

What components are affected: The record definition portion of the subschema
is affected by such a modification.

 Considerations

■ If you include a new record in the subschema and that record participates in a
mandatory automatic set, you have to include the owner of that set in the
subschema (or the set itself) so that application programs using the subschema can
store occurrences of the new record.

When you regenerate the subschema, you will receive a notice of an access
restriction.

■ If you modify a record so that some elements are omitted, you may have to
modify and regenerate maps for online programs as well as the programs or
dialogs themselves.

■ If you add a record that is stored in an area not currently participating in this
subschema, you must add that area to the subschema if a program is to access the
new record. You will receive an error on generation if the area is not added.

32-6 CA-IDMS Database Administration

32.3 Adding, modifying, or deleting a set

32.3 Adding, modifying, or deleting a set

What components are affected: The set definition portion of the subschema is
affected by such a modification.

 Considerations

■ If you do not add the set owner and member record types to the subschema, your
program cannot access the new set.

■ If you add the set and the set member record type but not the owner record type,
the application program will not be able to obtain the owner of the set.

■ If you add the set and the set owner record type but not the member record type,
the application program will not be able to walk the set.

■ If you delete a set but not its owner or member record type, currency will not be
maintained for that set and, although an application program can access the owner,
it cannot walk a set to obtain all members. In addition, the application program
cannot connect a member into the set, and, if the set is mandatory automatic, the
application program cannot store a new record occurrence.

Chapter 32. Modifying Subschema Entities 32-7

32.4 Adding, modifying, or deleting an area

32.4 Adding, modifying, or deleting an area

When you might want to make this change: You can add areas to or delete
areas from a subschema or make a modification to an existing area. Normally this is
done in conjunction with adding or deleting a record or index structure stored in that
area or to move records into a new area for performance reasons.

What components are affected: The area definition portion of the subschema is
affected by such a modification.

 Considerations

■ If you modify the usage mode so that a mode is no longer allowed, you may have
to modify the READY mode of your program to match.

■ If you modify the default usage mode, you should check programs using the
subschema to see that there is no conflict.

■ If you delete an area, make sure that there are no records or indexes mapping to
that area still in the subschema.

■ If an area is renamed or deleted, all ADS dialogs that use the subschema must be
recompiled if they use neither READY ALL nor DBMS autoready.

32-8 CA-IDMS Database Administration

32.5 Adding, modifying, or deleting a logical record or path group

32.5 Adding, modifying, or deleting a logical record or path
group

What components are affected: Only the definition of either the logical record
or a path group is affected.

 Considerations

■ If you modify a logical record so that some elements are omitted, you may have
to modify and regenerate maps for online programs as well as the programs
themselves.

■ If you remove a path group from the subschema, you must modify and recompile
any program or dialog associated with that subschema using the deleted path
group.

■ If you have changed the selection criteria in a path, you need to modify the
program requests in programs or dialogs associated with that subschema.

�� For complete information on Logical Record Facility, refer to the CA-IDMS Logical
Record Facility.

Chapter 32. Modifying Subschema Entities 32-9

32-10 CA-IDMS Database Administration

 Chapter 33. Space Management

33.1 About space management . 33-3
33.2 Database pages . 33-4
33.3 Database keys . 33-7
33.4 Area space management . 33-10

33.4.1 SR1 records . 33-11
33.4.2 Space management pages . 33-12

Chapter 33. Space Management 33-1

33-2 CA-IDMS Database Administration

33.1 About space management

33.1 About space management

Definitions of areas and pages: A CA-IDMS database contains one or more
areas. Each database area is a named subdivision of addressable storage in the
database. A CA-IDMS area is subdivided into database pages. Most database pages
are used to hold actual record occurrences (or rows). Some pages are reserved by
CA-IDMS for space management.

Note: Record occurrences and rows of an SQL-defined table are stored in the same
way in a CA-IDMS database. For simplification, the term record occurrence
will be used to indicate both row and record occurrence, and record type to
indicate both table and record type.

Definition of database key: Each record occurrence in a CA-IDMS database is
uniquely identified by a database key (db-key) that specifies the physical location of
the occurrence. Database keys are used as pointers to related record occurrences or
index records.

The format of a database key can vary from database to database. The variable format
of the db-key allows you to tailor space management factors to different processing
requirements.

Chapter 33. Space Management 33-3

33.2 Database pages

 33.2 Database pages

Size of database: A database can have from 2 to 1,073,741,822 pages. Each area
contains pages of equal size. Each page can contain up to 32,756 bytes of data. For
details, see 33.3, “Database keys” on page 33-7 later in this chapter. Database pages
are mapped to BDAM, DAM, or PAM blocks, or VSAM control intervals (for details,
see Chapter 16, “Allocating and Formatting Files” on page 16-1). Each database page
is identified by a unique page number and data transfers are accomplished one page
at a time.

Page format: All database pages, regardless of size, have a header and footer with
the same general format as shown in the diagram below. A database page always has
a header at the beginning of the page and a footer at the end; free space is in the
middle.

Header: The header occupies the first 16 bytes of each page and is formatted as
follows:

■ Page number (4 bytes) — A unique, system-assigned number of the page.

33-4 CA-IDMS Database Administration

33.2 Database pages

■ SR1 system record (12 bytes) — An SR1 record is stored on each page during
initialization by the FORMAT utility. Each SR1 record contains the space
available count (that is, the number of bytes of free space on the page).

Footer: The footer occupies the last 16 bytes of each page and is formatted as
follows:

■ Line index 0 (8 bytes) — Identifies the location and length of the SR1 system
record

■ Line space count (2 bytes) — Number of bytes used for line indexes and the
footer

■ Filler (2 bytes) — Reserved space

■ Page number (4 bytes) — The unique system-assigned number of the page

Note: Numeric fields maintained by CA-IDMS are in binary format, although this
manual represents them as decimal numbers.

To simplify the illustrations, the page size (800 bytes) in the figures of this
manual is unusually small.

Database page layout: Except for the header and the footer, pages are filled with
the following entries:

■ Record occurrences — The actual record occurrences are positioned on the page
from top to bottom immediately following the header. Each occurrence consists
of a prefix (containing pointers) and a data portion. A page can hold from 3 to
2,727 record occurrences depending on user specification (for details, see 33.3,
“Database keys” on page 33-7 later in this chapter).

■ Line indexes — The line indexes identify the locations of record occurrences on
the page and are positioned on the page from bottom to top, immediately
preceding the footer. A page contains one line index per record occurrence on the
page. Each line index has the following format:

– Record id (2 bytes) — Identification of the record type

– Displacement (2 bytes) — Location of the record occurrence relative to the
beginning of the page, where the first byte on the page is position 0

– Record length (2 bytes) — Length of the entire record occurrence stored on
this page (data plus prefix) in bytes

– Prefix length (2 bytes) — Length of the prefix portion of the record in bytes

Record occurrences are added from the top down; line indexes from the bottom up.
Free space is always in the middle.

Chapter 33. Space Management 33-5

33.2 Database pages

33-6 CA-IDMS Database Administration

33.3 Database keys

 33.3 Database keys

Identify each record occurrence: Each record occurrence in a CA-IDMS
database is uniquely identified by a database key (db-key), which indicates the
occurrence's physical location in the database. A db-key is assigned when a record
occurrence is stored in the database. The db-key never changes as long as the record
remains in the database (that is, until the record is erased or until the database is
unloaded and subsequently reloaded).

Used as pointers: Database keys are used as pointers to related record occurrences
or index records. As such, database keys are found in the system-maintained prefixes
that precede the data portion of the record occurrence. For example, a record
occurrence's prefix may contain the database keys of the next, prior, and owner records
of the chained set in which that occurrence is a member.

A db-key is a 4-byte (32 bit) binary number. The Database Management System
(DBMS) creates a db-key for a record occurrence by concatenating the following
numbers:

■ Page number — The page on which the record occurrence is stored

■ Line number — The position of the record occurrence's line index on the page
relative to the other line indexes, where the line index for the SR1 record is line
index 0

Db-key format: The db-key format is variable. The number of bits reserved in the
db-key for the page number and line number, respectively, can vary from one physical
database to another, as long as the total number of bits used is 32. You identify the
db-key format to be used by specifying the maximum number of record occurrences to
be stored on one database page in the CREATE SEGMENT statement.

Default db-key format: In the default db-key format, 24 bits are allocated for the
page number and eight bits for the line number. This format allows a maximum of
16,777,214 pages in the database, with each page containing up to 255 record
occurrences.

Variable format: The variable format of the db-key allows you to tailor space
management factors to different processing requirements. For storage of small records,
specify a database with many record occurrences per page and a smaller number of
pages. For storage of large records, specify a database with few record occurrences
per page but a large number of pages. For these different requirements, adjust the
db-key format as follows:

■ To allow more record occurrences per page, increase the number of bits for the
line index. (The line number must be from 2 to 12 bits in length.)

■ To allow more pages per database, increase the number of bits for the page
number.

Chapter 33. Space Management 33-7

33.3 Database keys

Note that as the number of record occurrences allowed on a page increases, the
number of pages allowed in the database decreases. Conversely, the more pages in the
database, the fewer occurrences each page can hold.

Note: The MIXED PAGE GROUP BINDS ALLOWED option for a DBNAME may
be used to increase the number of records accessible in a database from a
single database transaction.

The following diagram shows the db-key formats for a CA-IDMS database with three
possible formats: 255 record occurrences per page (the default size); the greatest
possible number of occurrences per page; and the greatest possible number of pages.

Determining the db-key format: Using the decimal value that you specify in the
MAXIMUM RECORDS PER PAGE clause on the CREATE SEGMENT statement,
CA-IDMS/DB determines the db-key format, as follows:

■ To determine the total possible number of line indexes for a page,
CA-IDMS/DB adds 1 to the maximum number of record occurrences per page.
(This number represents line index 0, reserved for the SR1 record.)

■ To determine the size of the line number portion of the db-key, CA-IDMS/DB
identifies the number of bits required to store the largest possible line index.

33-8 CA-IDMS Database Administration

33.3 Database keys

■ To determine the size of the page number portion of the db-key,
CA-IDMS/DB subtracts the number of bits for the line number from 32 (the total
number of bits in a db-key).

For example, the default number of record occurrences per page is 255. In this case,
the total number of line indexes is 256 (that is, line index 0 through 255). Since the
decimal number 255 takes eight bits of storage in binary format, the line number
portion of the db-key for this database is eight bits, and the page number portion is 24
bits.

Note: CA-IDMS uses all 32 bits of the db-key for the page number and the line
number. If you want to reserve a bit in the db-key as a sign bit (that is, if you
will write routines that perform arithmetic operations using the db-key sign
bit), make sure that the db-keys created for your occurrences can be stored in
only 31 bits.

Conversion algorithms: Use the following algorithms to convert a db-key into
individual page and line numbers:

dbkey-page = dbkey/2��bits-for-line

dbkey-line = dbkey - (dbkey-page � (2��bits-for-line))

where:

dbkey = the 4-byte binary database key

dbkey-page = the binary database page number

dbkey-line = the binary database line number

bits-for-line = the number of bits for the line number in the database key

Chapter 33. Space Management 33-9

33.4 Area space management

33.4 Area space management

What is an area?: A CA-IDMS database is divided into one or more areas. Each
database area is a named subdivision of addressable database storage. Each area can
contain one or more record types, according to varying processing requirements, but all
occurrences of a particular record type must be in the same area.

Managing space in an area: To manage space in an area, CA-IDMS/DB keeps
track of available space on each page. CA-IDMS reserves selected pages called space
management pages (SMPs) for this purpose. The first page in each area is an SMP.
Depending on the number and size of pages in the area, CA-IDMS may reserve
additional SMPs throughout the area.

Since you frequently assign several record types to an area, data pages in these areas
are typically filled with record occurrences of different record types and the
occurrences' corresponding line indexes. For example, in the sample employee
database, the DEPARTMENT, JOB, OFFICE, and SKILL records are all assigned to
the ORG-DEMO-REGION area. Thus, occurrences of all of these record types can be
stored on the same page.

Sample page: The drawing below shows a sample page in the
ORG-DEMO-REGION. Typically, except for the header and footer, a page in an area
is filled with occurrences of different record types. Page 7130 in the
ORG-DEMO-REGION area contains occurrences of the OFFICE, JOB, and
DEPARTMENT record types.

33-10 CA-IDMS Database Administration

33.4 Area space management

Space available: To manage space, CA-IDMS/DB keeps track of the available
space on each page. The space available is maintained in the following locations:

■ SR1 records — System records in each page's header which contain the space
available count for the page

■ Space management pages (SMPs) — One or more system-reserved pages which
contain entries that indicate whether each page (in a range of pages) is empty or
full

SR1 records and space management pages are discussed separately below.

 33.4.1 SR1 records

Each database page in an area contains an SR1 record in the page header. Each
occurrence of the SR1 record contains the space available count for that page. The
SR1 record type is the owner of a set used by CA-IDMS/DB to keep track of CALC
records (for details, see "Storing CALC records" in Chapter 35).

SR1 record format: The SR1 record is formatted as follows:

■ Next pointer for CALC set (4 bytes) — Database key (next pointer) of the
CALC record, targeted to that page, with the lowest CALC key

■ Prior pointer for CALC set (4 bytes) — Database key (prior pointer) of the
CALC record, targeted to that page, with the highest CALC key

■ Space available count (2 bytes) — Number of bytes of free space remaining on
the page

■ Filler (2 bytes) — Reserved space

Line index: Every line index 0 in an area identifies the location of an SR1 record
and always contains the following values:

record identification = 1

displacement = 4

record length = 12

prefix length = 8

The following diagram shows an empty page in an area. This is what a page would
look like after initialization by the FORMAT utility.

Note that the space available count for an empty page is always the page size minus
32 (in this case, 800 - 32 = 768) and the line space count for an empty page is always
16. The CALC set pointers in the SR1 record on an empty page point back to the
SR1 record itself since it is the only record in the set.

Chapter 33. Space Management 33-11

33.4 Area space management

33.4.2 Space management pages

What is a space management page?: CA-IDMS reserves selected pages, called
space management pages (SMPs), to keep track of the available space on each page.
These pages are filled with 2-byte items called space management entries. Each
space management entry, depending on the entry's relative position on the page,
corresponds to a page in the area. The first entry corresponds to the space
management page itself, the second entry to the first page following the space
management page, and so on.

Number of pages managed by SMP: The number of pages managed by one
space management page is the page size minus 32 (header and footer) divided by 2
(two bytes per space management entry).

For example, a space management page for an area whose page size is 800 bytes holds
384 entries. The first entry is for the space management page itself. If the area
contained 900 pages, the area would require three space management pages. The first
space management page would be the first page in the area, the second would be the
385th page, and the third would be the 769th page.

FORMAT utility initializes SMP entries: For pages that will contain record
occurrences, the FORMAT utility initializes space management entries to a value
equal to the page size of the area minus the number of bytes used by the header and
footer (that is, the amount of usable space on each page). The first space management
entry is for the space management page and is initialized to zero. In the above

33-12 CA-IDMS Database Administration

33.4 Area space management

example, the space management entries for data pages would be initialized to a value
of 768.

Accessing space management pages: After initialization, space management
pages are accessed only in the following situations:

■ STORE command — If CA-IDMS/DB cannot store a record occurrence on the
target page because insufficient space exists on that page, the space management
page is consulted for the next page that has sufficient space. Further, if the space
available count field on the target page shows that more than 70 percent of the
usable space is used, the space management page is accessed and the space
management entry is changed to the actual space available. Also, if
CA-IDMS/DB uses the last available line index on a page to store a record, a
halfword of 2 is entered in the space management entry, indicating that the page is
logically full.

■ ERASE command — When the actual space available for a page is shown in the
space management entry (that is, when the page is more than 70 percent full) and
a record occurrence is deleted from the page, CA-IDMS/DB accesses the space
management page and does one of the following:

– If the page is still more than 70 percent full, CA-IDMS/DB moves the new
space available count from the page to the space management entry.

– If the page is now less than 70 percent full, CA-IDMS/DB reinitializes the
space management entry to the value of the page size minus the length of the
header and the footer (that is, the decimal value 32).

Actual space available: The actual space available for each page is not maintained
constantly to avoid accessing the space management page each time a record is stored
or erased. Instead, a page is considered empty (for space management purposes) until
either of the following conditions occurs:

■ A store operation for a record occurrence puts the space used over the 70 percent
threshold.

■ All line indexes on that page have been used (that is, the page is logically full).

A page returns to the empty status when an erase operation puts the space used back
below the 70 percent threshold.

Consequently, unless a large enough page size is specified, CA-IDMS/DB might
attempt to store records that will not physically fit on a page.

Suppose, for example, that a page is 60 percent full and marked as empty in the space
management page, and that a record occurrence being stored is 45 percent of the page
size. Using information maintained in the space management page, CA-IDMS/DB
would determine that the record occurrence could fit on the page, when it could not.

To ensure that CA-IDMS/DB can successfully store all records, specify a page size
that allows CA-IDMS/DB to store the largest fixed-length record on 30 percent of
the page.

Chapter 33. Space Management 33-13

33.4 Area space management

Determining minimum page size: Use the following algorithm to determine
minimum page size:

 min-page-size = ((record-length + 8) / #.3#) + head-foot-length

where:

min-page-size = the decimal value of the minimum page size

record-length = the length of the largest fixed-length record type (data plus prefix)

8 = the length of the line index

head-foot-length = the maximum length of a header and footer on a page; the
decimal value 32

Reporting on area space utilization: The PRINT SPACE utility statement
reports on:

■ Space utilization based on the contents of the SMPs

■ With the FULL option, space utilization based on the actual contents of each
database page (using the space available count)

Use of the space management page: The following diagram shows the use of
the space management page.

CA-IDMS/DB changes the space management entry for page 7120 from 768 (the page
size minus 32) to 36 (the actual number of bytes left on page 7120) after storing the
JOB 3027 record. Thus, after consulting the space management page, CA-IDMS/DB
knows that it cannot store the DEPT 2000 record (72 bytes long) on page 7120
because of insufficient space, and stores it on the next page.

When the OFFICE 1 record is deleted from page 7120, the page is still more than 70
percent full, so CA-IDMS/DB moves the value 124 (the actual amount of space
available) to the space management entry.

When the JOB 3027 record is deleted, however, page 7120 is less than 70 percent full
and the space management entry is reinitialized to 768 bytes.

33-14 CA-IDMS Database Administration

33.4 Area space management

Chapter 33. Space Management 33-15

33-16 CA-IDMS Database Administration

Chapter 34. Record Storage and Deletion

34.1 Record storage . 34-3
34.1.1 Storing CALC records . 34-4
34.1.2 Clustering records . 34-7

34.1.2.1 Clustering records around a chained set 34-7
34.1.2.2 Storing records via an indexed set 34-9

34.1.3 Storing variable-length records . 34-11
34.1.4 Relocated records . 34-14

34.2 Record deletion . 34-16
34.2.1 Physical deletion . 34-16
34.2.2 Logical deletion . 34-18

Chapter 34. Record Storage and Deletion 34-1

34-2 CA-IDMS Database Administration

34.1 Record storage

 34.1 Record storage

Determining the target page: To store a record in the database, CA-IDMS/DB
first determines a target page. Storage mode specifications govern the selection of the
target page, as follows:

■ In CALC storage mode, CA-IDMS/DB calculates the number of the target page
by executing a randomizing routine against the CALC key.

■ In VIA or CLUSTERED storage mode, which is used to store related record
occurrences (or rows) on the same page or on as few pages as possible,
CA-IDMS/DB determines the number of the target page from:

– For non-SQL, the number of the page that contains the current record of the
VIA set

– For SQL, the referenced row of a clustered constraint

■ In DIRECT storage mode, the user explicitly specifies the target page. (Note that
if you specify the value -1, the target page is the first page assigned to the record
type.)

Storing the record occurrence: If the target page has sufficient space to store the
entire record occurrence (fixed-length uncompressed records) or the record's minimum
root, CA-IDMS/DB then stores the record occurrence on the target page. If the target
page does not have sufficient free space to store the record occurrence, CA-IDMS/DB
stores the record occurrence on the next page that has sufficient space. The search for
free space always proceeds in a forward (higher database key) direction. If the end of
the area (or the page range assigned to the record type) is reached before space is
located, the search wraps around to the beginning of the area (or the page range
assigned to the record type).

After identifying the first available free page, CA-IDMS/DB performs the following
operations to store a record occurrence:

■ Creates a line index and positions it at the end of the free space or an unused
line index.

■ Positions the prefix and data (as retrieved from the program variable storage) at
the beginning of the free space.

When storing a fixed-length uncompressed record, CA-IDMS/DB places the entire
record occurrence on the target page. When storing a variable-length record
occurrence, CA-IDMS/DB places as much of the record occurrence as possible on
the target page. (For details, see 34.1.3, “Storing variable-length records” on
page 34-11, later in this chapter.)

■ Updates the space available count in the header and the line space count in the
footer.

■ Updates the record's pointers as follows:

– Updates the pointers for all user sets in which the record is an automatic
member

Chapter 34. Record Storage and Deletion 34-3

34.1 Record storage

– Sets the pointers to null (-1) for all sets in which the record is a manual
member

– Sets the pointers to the database key of the object record itself for all owner
records (indicating an empty set)

– For SQL, sets the pointers to null (-1) for linked constraints in which the table
is the referencing table if one or more columns of the foreign key are null;
otherwise, sets the pointers to the db-keys of related rows

– For SQL, sets the pointers to the database key of the object row itself for
linked constraints in which the table's the referenced table

■ Updates the record's CALC set pointers (if any).

■ Updates the pointers in all other records affected by the stored record's
automatic (and CALC, if applicable) set connections.

For example, if record B2 is being stored between records B1 and B3 in set A-B,
B2's next pointer is set to B3's database key, while B2's prior pointer is set to B1's
database key. Additionally, B1's next pointer is changed from B3's database key
to B2's, and B3's prior pointer is changed from B1's database key to B2's.

34.1.1 Storing CALC records

Stored on or near calculated page: CA-IDMS/DB stores records that have a
storage mode of CALC on or near the page calculated from the record's CALC key (a
schema-specified symbolic key). CA-IDMS/DB uses the system-owned CALC set to
keep track of all CALC records that randomize to a specific page. The CALC set's
owner is the system-owned SR1 record type. The CALC set's members are all of the
user records with a storage mode of CALC. The set is sorted in ascending sequence
on the CALC key of each member record occurrence.

Example of a system-owned CALC set: The following diagram shows the
system-owned CALC set for the sample employee database.

Note: The system-owned CALC set is an internal set. It should not be included in
the user's schema or in structural diagrams.

34-4 CA-IDMS Database Administration

34.1 Record storage

One system-owned CALC set per database: There is one system-owned
CALC set type per database; there is one CALC set occurrence for each page in the
area. The CALC set is sorted in ascending sequence based on the CALC key of each
member occurrence.

SR1 system record: On a page that contains record occurrences, the SR1 record
on a data page owns all CALC records that randomize to that page at store time,
including records that end up on another page due to overflow conditions.

The diagram below shows the format and occurrences of the CALC set on page 7120
of the sample database. The CALC set for page 7120 includes all CALC records
randomized to that page. Note that DEPT 2000 belongs to the CALC set for page
7120 even though DEPT 2000 was actually stored on page 7121 (due to lack of space
on its target page).

Retrieving a CALC record: To retrieve a record occurrence stored CALC,
CA-IDMS/DB accepts from the user the value of the record's CALC key and
calculates a page number from the key. CA-IDMS/DB then enters this database page
on the SR1 record and follows the page's CALC chain until either the requested record
is located or a record of the same type with a higher key value is located; in the latter
case, CA-IDMS/DB returns an error status of 0326 (record not found) to the user.

Storing a CALC record: In adding the DEPT 3100 record to page 7126,
CA-IDMS/DB creates a record prefix (shaded portion) that consists of pointers for the
CALC set and for the DEPT-EMPLOYEE set. The prefix and data (as found in
program variable storage) are positioned at the beginning of the free space. A line
index is created at the end of the free space. The space available count is
decremented, and the line space count is incremented.

Chapter 34. Record Storage and Deletion 34-5

34.1 Record storage

Note that the CALC pointers in the SR1 record are updated to point to the DEPT 3100
record, while the CALC pointers in the DEPT 3100 record are set to point to the SR1
record. All other pointers in the DEPT 3100 record point back to the record itself
because its DEPT-EMPLOYEE set occurrence is empty.

Storing another CALC record: The EMPLOYEE 23 record randomizes to and is
stored on page 7026. The prefix of the EMPLOYEE 23 record supplies the following
information: EMPLOYEE 23 (the only member of the CALC set on page 7008) and
EMPLOYEE 19 are the only members of the DEPT-EMPLOYEE set for OFFICE
3100; EMPLOYEE 19 is next of set in the DEPT-EMPLOYEE set for DEPT 3100; all
of the set occurrences that EMPLOYEE 23 owns are empty.

34-6 CA-IDMS Database Administration

34.1 Record storage

 34.1.2 Clustering records

In the VIA or CLUSTERED storage mode, CA-IDMS/DB stores related records
together on the same page or on as few pages as possible. A record can be clustered
through a chained set (a linked clustered constraint), an indexed set (a clustering
index), or an unlinked constraint (SQL only).

34.1.2.1 Clustering records around a chained set

Storage strategy: If a record has a storage mode of VIA a chained set (or
CLUSTERED around a referential constraint), CA-IDMS/DB uses the location of the
current record of set (always the referenced row of referential constraints) to determine
where to store the new record, as follows:

■ If the current record of set is a member of the set, the DBMS stores the new
record as close as possible to the current record of set.

■ If the current record of set is an owner of the set, CA-IDMS/DB determines where
to store the member record, as follows:

Chapter 34. Record Storage and Deletion 34-7

34.1 Record storage

The following diagram shows how CA-IDMS/DB stores a record via a chained set.
For a discussion of how CA-IDMS/DB stores a record via an indexed set, see 34.1.2.2,
“Storing records via an indexed set” on page 34-9, later in this chapter.

Example: In this example, EMPLOYEE 23 has randomized to page 7026.
EMPLOYEE 23's EMPOSITION record is stored VIA EMPLOYEE 23 on page 7026.
To locate the EMPOSITION record, CA-IDMS/DB applies the randomizing routine to
EMPLOYEE 23 (giving page number 7026), enters page 7026 on the SR1 record, and
follows the CALC set until the EMPLOYEE 23 record is located. CA-IDMS/DB then
obtains the EMPOSITION record through the EMP-EMPOSITION chain.

If the members and
owners in the specified
set are assigned to the
same page range, and if
you have not specified
displacement in the
non-SQL schema...

CA-IDMS/DB stores the member record occurrence as
close as possible to the owner

If the members and
owners in the specified
set are assigned to the
same page range, and you
have specified
displacement in the
non-SQL schema...

CA-IDMS/DB stores the member record occurrence as
close as possible to the owner, allowing for
displacement

If the members and
owners in the specified
set are assigned to
different page ranges...

CA-IDMS/DB stores the member record occurrence as
close as possible to the page (within the member
record's page range) that is proportional to the location
of the owner (within the owner's page range)

34-8 CA-IDMS Database Administration

34.1 Record storage

34.1.2.2 Storing records via an indexed set

Storage order: Indexed sets can be used to store member records in a physical
order that reflects the order of the member's db-key or symbolic key in the index, by
defining the member record's storage mode as via (or clustered) an indexed set that is
sorted on db-key or symbolic key.

Determining the target page: CA-IDMS/DB determines the target page on which
to store a member occurrence via an indexed set, as follows:

Chapter 34. Record Storage and Deletion 34-9

34.1 Record storage

Example: For example, the EMP-EXPERTISE set in the sample order entry
database is an indexed set, and EXPERTISE records are stored in physical-sequential
order based on the value of the SKILL-LEVEL field. The non-SQL schema DDL
statements necessary to specify physical-sequential placement of the EXPERTISE
record are as follows:

If this is the first record
occurrence stored via a
user-owned index set or a
system-owned index with
the same page range as
the member record...

CA-IDMS/DB determines the target page as follows:

■ If the member or owner in the set are assigned to
the same page range, CA-IDMS/DB stores the
member record occurrence as close as possible to
the owner record (allowing for record displacement
if specified).

■ If the member and owner in the set are assigned to
different page ranges, CA-IDMS/DB stores the
member record as close as possible to the page
(within the member's page range) that is
proportional to the location of the owner (within the
owner's page range).

If this is the first record
occurrence stored via a
system-owned index with
a separate page range
from that of the
member...

The target page is the low page of the member's page
range

If other record
occurrences have already
been stored (that is, if the
index is not empty)...

CA-IDMS/DB determines the target page, as follows:

■ If the set is sorted by db-key, CA-IDMS/DB finds
the highest db-key of a record that is already a
member of the indexed set, and uses the page
specified in this db-key as the target page.

■ If the set is sorted by symbolic key, CA-IDMS/DB
determines the target page for the new record as
follows:

– Identifies the SR8 record that will hold the
symbolic key for the new record

– Finds the db-key of the record with the
preceding or following symbolic key in the
index and uses the page specified in this db-key
as the target page

34-10 CA-IDMS Database Administration

34.1 Record storage

RECORD NAME EXPERTISE

LOCATION MODE VIA EMP-EXPERTISE SET ...

SET NAME EMP-EXPERTISE

 ORDER SORTED

MODE INDEX ...

 OWNER EMPLOYEE

MEMBER EXPERTISE ...

DESCENDING KEY SKILL-LEVEL ...

In this case, CA-IDMS/DB stores each EXPERTISE record as close as possible to the
record with the next lower SKILL-LEVEL.

34.1.3 Storing variable-length records

Types of variable-length records: Internally, CA-IDMS/DB treats the following
types of records as variable-length:

Since you cannot anticipate the total length of either of these types of records, specify,
in the schema, the following information:

■ The record's minimum root — The smallest amount of the data to be stored on
the record's home page

■ The record's minimum fragment — The smallest amount of data to be stored on
any additional page

Steps to store a variable-length record: Using the values specified for
minimum root and minimum fragment, CA-IDMS/DB performs the following steps to
store a variable-length record:

1. CA-IDMS/DB stores either the entire record or as much of the record as possible
on the target page (provided that the space available is sufficient for the minimum
root specification in the schema). This page, the first page on which
CA-IDMS/DB stores either the entire record or a portion of the record, is referred
to as the record's home page; the portion of the record placed on the home page
is called the root.

2. CA-IDMS/DB stores the remainder of the record on subsequent pages, by working
in a forward direction and wrapping around to the beginning of the area (or the
page range assigned to the record), if necessary. Each subsequent portion of the

Fixed-length compressed
records

Records with a fixed length that are compressed through
a specified compression routine. Although the length of
these record types is fixed from the point of view of
user programs, compression makes them internally
variable.

Variable-length records Records (either compressed or uncompressed) the length
of which depends on a variable field (that is, records
that contain an OCCURS DEPENDING ON clause).

Chapter 34. Record Storage and Deletion 34-11

34.1 Record storage

record that exists on a separate page is called a fragment. No fragment except
the last one will be less than the schema minimum fragment specification.

Variable-length indicator: In the root, CA-IDMS/DB places an extra pointer at the
end of the prefix to point to the first fragment. At the beginning of the data portion of
the root, CA-IDMS/DB adds a 4-byte variable-length indicator (VLI) The VLI
contains a 2-byte counter used to keep track of the size of the data portion of the
entire record (including four-bytes for the VLI). The record-length field in the line
index for a root segment contains the length of the portion of the record (prefix and
data) that is stored on the home page.

SR4 system record: Each fragment contains a one-pointer prefix that points to the
next fragment; the last fragment points back to the root. Fragments are placed on a
page in the same manner as any record. A fragment is considered an SR4 system
record; the record-id field in the line index of a fragment is always set to a value of 4.

Storing a variable-length record: In the example below, the JOB 5023 record
fits entirely on page 7130; because the JOB record is a compressed record, it is a
variable-length record and CA-IDMS/DB includes a 4-byte variable-length indicator
(VLI) in it, bringing the total data length of the record to 300 bytes. CA-IDMS/DB
cannot store the entire JOB 5025 record on page 7130; however, the page does have
sufficient space for a root. CA-IDMS/DB stores the root portion of JOB 5025 on page
7130 and includes a VLI, bringing the data portion of the entire record to 280 bytes.
CA-IDMS/DB stores the remainder of the record on page 7131 as a fragment. Note
that the record-id field for the last line index on page 7131 is 4, indicating that the
record is a fragment.

34-12 CA-IDMS Database Administration

34.1 Record storage

Returning fragments to the home page: On future accesses (GET, OBTAIN, or
SELECT) of a fragmented variable-length record, CA-IDMS/DB may reduce the
number of fragments. If the area is readied in update mode and the home page has
sufficient space to hold the entire record, CA-IDMS/DB returns the fragments to the
page. The fragments (minus fragment pointers) are concatenated to the root and
physically deleted from the pages on which the fragments were located; the fragment
pointer in the root is set to point to itself. Adjustments are made to the space
available count in the page header and to the record length in the record's line index.

Page reserve: When the size of a variable-length record is increased by a DML
MODIFY command, CA-IDMS/DB may create additional fragments for the record. If
you anticipate a general increase in the size of variable-length records in an area,
specify a page reserve for the area to decrease the possibility that CA-IDMS/DB will
create fragments.

A page reserve sets aside a specified number of bytes on each database page in an area
for modification of variable-length records. CA-IDMS/DB cannot use this reserved
space to store any kind of record.

Specify an area's page reserve in the physical database definition(s) for the area using
either a CREATE AREA statement or in an area override statement within the
DMCL(s) that include the area's segment. An adequate page reserve is typically 30

Chapter 34. Record Storage and Deletion 34-13

34.1 Record storage

percent of the area's size. Use the following criteria to estimate the size of the page
reserve:

■ The likelihood that variable-length records will be modified

■ The anticipated increase in the number of variable-length records

When you specify a page reserve, you do not affect the physical structure of the
database. In fact, you can vary the page reserve for an area by using (at different
times) several DMCL modules with different page reserves.

 34.1.4 Relocated records

Records relocated because of increased size: When increasing record sizes in
areas, the RESTRUCTURE SEGMENT utility statement may occasionally relocate a
record if the record no longer fits on its home page. Similarly, if a table has been
altered to add one or more columns, CA-IDMS/DB may relocate a row when it is next
updated because it will no longer fit on its original page. The dictionary migration
utility (RHDCMIG1 and RHDCMIG2) may also relocate records. When a record is
stored on a new page, the relocated record is considered an SR3 system record and
the line index created for the record on the new page contains a record id of 3.

Record identified by SR2 system record: To preserve the integrity of the
record's database key, CA-IDMS/DB leaves an 8-byte control record (an SR2 system
record) on the home page in place of the relocated record. The SR2 system record
has a record id of 2 and contains the following information about the relocated record:

■ Database key (4 bytes) — The pointer (db-key) to the new location of the
relocated record

■ Record id (2 bytes) — The original record id of the relocated record

■ Length (2 bytes) — The total length (fixed-length records) or root length
(variable-length records) of the relocated record

Returning relocated record to its home page: On future accesses (GET,
OBTAIN, or SELECT) of a relocated record, CA-IDMS/DB may return the relocated
record to its home page. If the area is readied in update mode and the home page has
sufficient space to hold the relocated record, CA-IDMS/DB returns it to the page.

In the example below, the OFFICE 1 record, increased in size by RESTRUCTURE
SEGMENT, is moved from page 7120 to 7121.

34-14 CA-IDMS Database Administration

34.1 Record storage

Chapter 34. Record Storage and Deletion 34-15

34.2 Record deletion

 34.2 Record deletion

Operations performed: To erase a record (or delete a row), CA-IDMS/DB
performs the following operations:

■ Disconnects and/or erases all records owned by the object record, depending
on the nature of the ERASE DML command issued by the program (that is,
ERASE, ERASE ALL, ERASE PERMANENT, or ERASE SELECTIVE).

Note: When using SQL, the row must not be referenced by any other row.

■ Disconnects the object record from all indexed sets in which it participates as
a member.

■ Disconnects the object record from all chained sets (with prior pointers) in
which it participates as a member.

■ Deletes the record either physically or logically, as follows:

– If all chained sets in which the record participates as a member have prior
pointers, CA-IDMS/DB physically deletes the record.

– If any of the chained sets in which the record participates as a member do not
have prior pointers, CA-IDMS/DB logically deletes the record.

Note: If CA-IDMS/DB has identified the prior record in each chained set
(without prior pointers) in which the record participates (for example,
walking the set), CA-IDMS/DB physically deletes the record.

Note: All linked clustered constraints have prior pointers.

 34.2.1 Physical deletion

Operations performed: CA-IDMS/DB performs the following operations to
physically delete a record:

1. Removes the record's data and prefix from the database.

2. Moves all records following the deleted record on the page, so that all free space
remains in the middle of the page.

3. Performs the following operations, depending on the location of the record's line
index on the page:

■ If the line index is contiguous with the free space on the page (that is, if the
record's line index is the last index on the page), CA-IDMS/DB removes the
line index and updates the line space count in the footer.

■ If the record's line index is not contiguous with the free space on the page,
CA-IDMS/DB sets the record's line index to zeros.

4. Updates the space available count in the header.

Example: In this example, the first EMPOSITION record for EMPLOYEE 23 has
prior pointers. In erasing the record, CA-IDMS/DB removes the record completely
(data and prefix), shifts the remaining EMPOSITION record up on the page, and sets

34-16 CA-IDMS Database Administration

34.2 Record deletion

the line index for the deleted record to zeros. The remaining EMPOSITION record,
although now physically the second record on the page, remains as line number 3.
Line index 2 is reused when a new record is added to the page.

Use of record's line index: Line indexes cannot be shifted down because the
position of the line index relative to other line indexes determines the line number, and
changing a record's line number would invalidate the record's database key. Existing
line indexes for physically deleted records are either reused as new records are added
to the page (as shown in the diagram above or removed as further deletions make them
contiguous to the free space.

Chapter 34. Record Storage and Deletion 34-17

34.2 Record deletion

 34.2.2 Logical deletion

Pointers deleted: To avoid consuming unnecessary time and I/O disconnecting
records from sets without prior pointers, CA-IDMS/DB does not physically delete the
record when an ERASE command is issued. Instead, the next time CA-IDMS/DB
encounters a logically deleted record while walking a chained set of which the record
is a member, CA-IDMS/DB disconnects the record from the set, provided that the
record's area was readied in update mode. Since the record prior to the logically
deleted record is still current of run unit, CA-IDMS/DB can update the record's next
pointer and disconnect the logically deleted record. In order to be physically deleted,
the record must have been disconnected from all sets in which the record was a
member.

Operations performed: CA-IDMS/DB performs the following operations to
logically delete a record:

■ Removes the record's data from the database, but leaves the prefix

■ Moves all records following the deleted record on the page, so that all free space
remains in the middle of the page

■ Sets the logical delete flag (the first bit) in the record id field of the record's line
index

■ Updates the space available count field in the header

Example: In the following example, assume that the EMPOSITION records do not
have prior pointers in the EMP-EMPOSITION set. When erasing an EMPOSITION
record, CA-IDMS/DB removes only the data and flags the record's line index. The
EMPOSITION record is logically deleted. The next time CA-IDMS/DB is walking
this occurrence of the EMP-EMPOSITION set in update mode and encounters the
flagged record, CA-IDMS/DB physically deletes the record.

34-18 CA-IDMS Database Administration

34.2 Record deletion

Consideration: Occasionally, in recovering from an error during a store operation,
CA-IDMS/DB may create a logically deleted record. If CA-IDMS/DB has stored a
record and is in the process of making the automatic connections when CA-IDMS/DB
discovers an error condition (for example, no currency established in one of the
automatic sets), CA-IDMS/DB must erase the record being stored. If one of the
chained sets to which the record has already been connected has next pointers only,
CA-IDMS/DB logically deletes the record.

Chapter 34. Record Storage and Deletion 34-19

34-20 CA-IDMS Database Administration

Chapter 35. Chained Set Management

35.1 About chained sets . 35-3
35.2 Chained sets . 35-4

35.2.1 Connecting records to chained sets 35-5
35.2.2 Disconnecting records . 35-6
35.2.3 Retrieving records . 35-7

Chapter 35. Chained Set Management 35-1

35-2 CA-IDMS Database Administration

35.1 About chained sets

35.1 About chained sets

Physically link record occurrences together: Chained sets can be used to
physically link related record occurrences together. In a chained set, a pointer in each
member record occurrence's prefix contains the db-key of the logically next occurrence
of the set.

Defining a chained set: Define a set as chained as follows:

Non-SQL schema
definition

MODE IS CHAIN on the SET statement.

SQL schema
definition

LINKED CLUSTERED on the CONSTRAINT statement.
When a constraint is implemented as a chained set, the
referenced table is the owner of the set and the referencing
table is the member.

Chapter 35. Chained Set Management 35-3

35.2 Chained sets

 35.2 Chained sets

Use: A chained set is used to establish a logical relationship between two or more
user-defined record types and consists of an owner record type and one or more
member record types.

The following diagram uses standard CA-IDMS database notation to describe a
chained set type; the diagram includes the name of the set, linkage options,
membership options, sort sequence (if any), and sort key (if any).

This example shows a chained set (the DEPT-EMPLOYEE set) between two
user-defined record types. The owner of the DEPT-EMPLOYEE set type is the
user-defined DEPARTMENT record type; the member is the EMPLOYEE record type.

Next, prior, and owner pointers: A chained set occurrence consists of one
occurrence of the owner record type and any number of member record occurrences.
The prefix of each record occurrence that participates in a set contains a next pointer
(that is, the db-key of the next logical record occurrence in the set occurrence).
Optionally, record occurrences can include prior pointers, which link records together
in the logically prior direction, and owner pointers, which link member record
occurrences to the owner occurrence.

Note: SQL-defined constraints implemented as a chained set always have next, prior,
and owner pointers.

Basic structure of a chained set occurrence: A record occurrence in a chained
set occurrence always contains in its prefix a next pointer that points to the logically
next record occurrence in the set occurrence.

35-4 CA-IDMS Database Administration

35.2 Chained sets

35.2.1 Connecting records to chained sets

Operations performed: CA-IDMS/DB performs the following operations to
connect a record (that has previously been stored) to a chained set:

■ Updates the prefix of the record being connected to reflect the record's next, prior,
and owner (as applicable) pointers in the set

■ Updates pointers in all other records affected by the new set connections

In the example below, EMPLOYEE 19 and EMPLOYEE 23 have been stored on
pages 7023 and 7026, respectively. Connecting each to DEPT 3100 as members of the
DEPT-EMPLOYEE set affects the DEPT 3100 record on page 7126. Its prefix must
be updated to point to the next and prior members of the set.

Chapter 35. Chained Set Management 35-5

35.2 Chained sets

 35.2.2 Disconnecting records

Operations performed: To disconnect a record occurrence from a chained set
without erasing the record occurrence, CA-IDMS/DB must update pointers in the
current, prior, and next records, as described below:

■ For the record being disconnected, CA-IDMS/DB adjusts all the record
occurrence's pointers to null (minus 1) for the set from which the record is being
disconnected.

■ For the prior record in the chain, CA-IDMS/DB adjusts the next pointer for the
set from which the record occurrence is being disconnected so that the prior
record points to the next record.

■ For the next record in the chain (if the set has prior pointers), CA-IDMS/DB
adjusts the prior pointer for the set from which the record occurrence is being
disconnected so that the next record points to the prior record.

The following diagram shows disconnecting a record. The EMPLOYEE 19 record is
disconnected from the DEPT-EMPLOYEE set for DEPT 3100. EMPLOYEE 19's
pointers for that set are changed to null. The prior pointer in the EMPLOYEE 23
record is adjusted to point to the DEPT 3100 record, while the next pointer in the
DEPT 3100 record must be adjusted to point to the EMPLOYEE 23 record.

35-6 CA-IDMS Database Administration

35.2 Chained sets

Adjusting the pointer: To adjust the next pointer in the prior record,
CA-IDMS/DB must access the prior record. In a set without prior pointers, however,
CA-IDMS/DB must walk the entire set to access the prior record. For this reason,
prior pointers are typically included in all sets to which the DISCONNECT (or
ERASE) DML command might be applied.

 35.2.3 Retrieving records

Walking a set: A program using navigational DML or CA-IDMS/DB in response to
an SQL request can access all of the members of a chained set in the following
manner: starting with the owner record occurrence, a program can use the next
pointers to access each member occurrence in the chain until the program reaches the
owner record again. Accessing members in a chain in this way is known as "walking
a set."

Assume that the DEPT-EMPLOYEE set in the sample database is a chained set sorted
by employee identification number (EMP-ID-0415). To retrieve an occurrence of the
EMPLOYEE record, a program could issue the following requests:

MOVE '9959' TO DEPT-ID-9419

OBTAIN CALC DEPARTMENT.

OBTAIN NEXT WITHIN DEPT-EMPLOYEE SET.

Chapter 35. Chained Set Management 35-7

35.2 Chained sets

Processing the request: CA-IDMS/DB processes this request as follows:

1. Using the value '0050' placed by the program in the DEPT-ID-041 0 field,
CA-IDMS/DB obtains the DEPARTMENT record with an identification number
of '0050'.

2. CA-IDMS/DB then finds the record occurrences pointed to by DEPARTMENT
50's next DEPT-EMPLOYEE pointer.

Retrieving an owner: A program can issue the following request to retrieve an
occurrence of the DEPARTMENT record associated with an employee:

MOVE '9919' TO EMP-ID-9415.

OBTAIN CALC EMPLOYEE.

OBTAIN OWNER WITHIN DEPT-EMPLOYEE SET.

Processing the request: CA-IDMS/DB processes this request as follows:

1. Using the value '0019' placed by the program in the EMP-ID-0415 field,
CA-IDMS/DB obtains the EMPLOYEE record with an identification number of
'0019'.

2. If the DEPT-EMPLOYEE set has owner pointers, CA-IDMS/DB uses the
EMPLOYEE record's owner pointer to retrieve the owning DEPARTMENT.

3. If the DEPT-EMPLOYEE set does not have owner pointers, CA-IDMS/DB uses
the EMPLOYEE record's next pointer to walk the set until it retrieves the owner
occurrence (that is, an occurrence of the DEPARTMENT record type).

35-8 CA-IDMS Database Administration

 Chapter 36. Index Management

36.1 About indexed sets . 36-3
36.1.1 Structure of indexes . 36-5
36.1.2 Connecting records to indexed sets 36-11

36.1.2.1 Connecting members to unsorted indexed sets 36-11
36.1.2.2 Connecting members to sorted indexed sets 36-14

36.1.3 Disconnecting records from indexed sets 36-15
36.1.4 Retrieving indexed records . 36-16

Chapter 36. Index Management 36-1

36-2 CA-IDMS Database Administration

36.1 About indexed sets

36.1 About indexed sets

Use: Indexed sets can be used to physically link related record occurrences together
or to provide alternate access to a record. In an indexed set, a pointer array associated
with each owner occurrence contains the db-keys of all related member record
occurrences.

Types of indexed sets: There are two types of indexed sets:

How to define an indexed set: Use the following clauses on the SET statement
to define an indexed set in a non-SQL schema definition:

Use the following SQL statements to implement an SQL defined constraint as an
indexed set:

When you implement a constraint as an indexed set, the referenced table is the owner
of the set and the referencing table is the member.

Set order: An indexed set can have any of the following set orders: FIRST, LAST,
NEXT, PRIOR, or SORTED. If it is SORTED, it can be sorted either on a
user-specified symbolic key (sort key) or on the db-key of the member record
occurrences.

Using SQL, the set order of a LINKED INDEX constraint is:

■ SORTED, if you specify the ORDER BY clause

 ■ Otherwise, LAST

The set order of an indexed set created using the CREATE INDEX statement is:

User-owned The owner of the set is a user-defined record.

System-owned The owner of the set is a system-defined SR7 record. The
location mode of an SR7 record is CALC on the set name for
non-SQL defined indexes or on an internally-generated name
for SQL defined indexes. There is at most one occurrence of
an SR7 record for each system-owned index.

User-owned MODE IS INDEX

System-owned MODE IS INDEX

OWNER IS SYSTEM

User-owned Use this clause on the CONSTRAINT statement:

LINKED INDEX

System-owned Use the CREATE INDEX statement

Chapter 36. Index Management 36-3

36.1 About indexed sets

■ SORTED on a symbolic key if you specify the ORDER BY clause

■ Otherwise, SORTED on db-key

Notation: The following diagram uses standard CA-IDMS database notation for two
indexed sets, SKILL-EXPERTISE and EMP-LNAME-NDX. The descriptions of the
indexed set relationships in the figure include the name of the set, linkage options,
membership options, and the sort sequence and symbolic key.

The left side of the figure illustrates an indexed set (the SKILL-EXPERTISE set)
between two user-defined record types. The owner of the SKILL-EXPERTISE set is
the user-defined SKILL record; the member, EXPERTISE, is the indexed database
record.

The right side of the figure illustrates an indexed set (the EMP-LNAME-NDX set)
used to place an index on a user-defined member record type. The owner of the
EMP-LNAME-NDX set is a system record, represented by a triangle; the member,
EMPLOYEE, is the indexed database record.

Indexed set occurrence: An indexed set occurrence consists of one occurrence
of the owner record, type, an index, and any number of member record occurrences.
The owner occurrence contains next and prior pointers to the index; the bottom-level
of the index contains the member record occurrences' db-keys in the specified set
order. If the indexed set has a user-defined owner record, each member occurrence
contains an index pointer to the bottom-level of the index, and optionally, a pointer
that links them directly to the owner occurrence. If the indexed set is system-owned,
each member occurrence may optionally contain an index pointer.

Note: AN SQL defined linked constraint implemented as an indexed set always has
owner pointers.

36-4 CA-IDMS Database Administration

36.1 About indexed sets

Basic structure of an indexed set: The member record occurrences in an
indexed set point to the index that is chained to the owner record by next, prior, and
owner pointers. The owner record contains next and prior pointers that chain it to the
index.

36.1.1 Structure of indexes

Index creation: The creation of an index is transparent to application programs.
An index is created according to your specifications, but the actual creation and
storage of the index is performed by CA-IDMS/DB. An index is composed of SR8
system record occurrences chained (by next, prior, and owner pointers) to the owner
occurrence and each other.

SR8 records in an index: Thus, an index is a chained set between the indexed
set's owner record and the SR8 records. An index contains SR8 records chained by
next, prior, and owner pointers to the indexed set's owner record. (Note that, for
simplicity, prior and owner pointers are not included in the figure below):

Chapter 36. Index Management 36-5

36.1 About indexed sets

Initially, the index is composed of a single SR8 member record. When the first SR8
record is full, additional SR8 records are added to the index as chained records.

Bottom-level SR8 record and database record occurrences: An SR8 record,
shown in the following diagram, contains from 3 to 8,180 index entries (as specified
in the schema or segment definition) and a cushion (that is, a field the length of the
largest possible index entry).

The SR8 record in the diagram contains four entries and a cushion. Each index entry
contains an index pointer that points to a database occurrence that is a member of the
indexed set; each member occurrence contains an index pointer that points to that SR8
record. (Note that, for simplicity, prior and owner pointers are not included in this
figure.)

36-6 CA-IDMS Database Administration

36.1 About indexed sets

Content of an index entry: The actual content of an index entry depends on the
indexed set's characteristics, as follows:

■ Unsorted set — An index entry contains only the db-key of a member record
occurrence.

■ Sorted set — SR8 records for sorted indexed sets are arranged in levels to form a
tree structure to facilitate a binary search. Consequently, an index entry contains
the db-key of a member record occurrence or the db-key of another SR8 record
occurrence. Additionally, for indexed sets sorted on a symbolic key, an index
entry is composed of a db-key and a symbolic key. A symbolic key is a key
constructed of one or more record elements (or columns) in the order specified in
the schema (up to 256 bytes in length). (For a detailed discussion of indexed set
structure for sorted indexed sets, see 36.1.2.2, “Connecting members to sorted
indexed sets” on page 36-14, later in this chapter.)

Example: In this example, there is a single SR8 record chained to the indexed set's
owner. The SR8 record contains three entries. Each entry contains an index pointer
that points to a member database occurrence; each member occurrence contains an
index pointer that points to that SR8 record. Additionally, the member occurrences
contain owner pointers that point back to the set's owner.

Indexed set with sorted set order: For sorted indexed sets, you can specify that
CA-IDMS/DB keep the index entries within the SR8 records in ascending, descending,
or mixed order according to the member record's db-key or symbolic key. You can
also specify whether numeric fields should be collated so that negative values are
lower than positive values (natural sequence) or whether they should collate based on
their bit pattern. If you specify that an indexed set be sorted on symbolic key, you can
also specify whether duplicate symbolic keys are allowed or disallowed. Even if you
specify that duplicate symbolic keys are allowed, CA-IDMS/DB does not store the
same symbolic key more than once in the index. For example, the first time a record
with a symbolic key ADAMS is added to the indexed set, CA-IDMS/DB adds the

Chapter 36. Index Management 36-7

36.1 About indexed sets

symbolic key ADAMS to the index and associates the record occurrence's db-key to
the key ADAMS. Later, if you add another record with the symbolic key ADAMS to
the indexed set, CA-IDMS/DB associates the db-key of the new record to the existing
symbolic key of ADAMS in the SR8 record.

Specifying compression: Additionally, you can specify that CA-IDMS/DB store
symbolic keys in either compressed or uncompressed format. (Note that
CA-IDMS/DB always strips trailing pad characters from an indexed set's symbolic
keys.) If you specify compression, CA-IDMS/DB applies a 2-level compression
algorithm to the symbolic key before inserting the key into the index, as follows:

■ Prefix compression — CA-IDMS/DB compares (left to right) the symbolic key of
the record being inserted into the index with adjacent symbolic keys and removes
like characters. For example, if there are two symbolic keys, JOHNSON and
JONES, CA-IDMS/DB stores the JOHNSON key in its entirety and stores JONES
as NES.

■ Repeating character compression — CA-IDMS/DB compresses three or more
repeating single characters within each symbolic key into two bytes, and
compresses 2 through 64 repeating blanks or nulls into one byte.

Specify compression of symbolic keys if the keys have either of the following
characteristics:

■ Commonly share the same prefix

■ Contain many repeating characters (including blanks or nulls)

How the index is organized: To facilitate the process of locating an index entry
for sorted sets, CA-IDMS/DB organizes an index for sorted records into levels. In this
case, when the first (top-level) SR8 record is full, CA-IDMS/DB performs the
following processing:

1. Splits the SR8 record into two parts. These two SR8 records stay at the same
level.

2. Constructs a new higher level with two entries. Each entry points to one of the
SR8 records created by Step 1.

CA-IDMS/DB repeats this process as the index expands. Indexes can have any
number of intermediate levels. As CA-IDMS/DB adds new entries, it splits SR8
records and spawns new levels of SR8 records. An entry on one level points to an
SR8 record at a lower level; the bottom-level entries point to the indexed database
records themselves.

Thus, in a sorted indexed set with three levels (top, intermediate, and bottom), the
index is structured as described below:

■ The top level is made up of one SR8 record that contains index entries. Each
entry is composed of a pointer to (that is, the database key of) an
intermediate-level SR8 record and the highest symbolic key contained therein.

36-8 CA-IDMS Database Administration

36.1 About indexed sets

■ The intermediate level is made up of one SR8 record for each entry in the top
level. Each entry is composed of a pointer to a bottom-level SR8 record and the
highest symbolic key contained therein.

■ The bottom level is made up of one SR8 record for each entry in the intermediate
level. Each entry is composed of a symbolic key and a pointer to a database
record occurrence.

Example: For example, the sample database includes the indexed set
EMP-LNAME-NDX. The EMP-LNAME-NDX set, shown in the following diagram
and table shows the function of index levels and the search process. This simple index
contains only three entries per SR8 record. The figure represents index and database
records. (Note that, for simplicity, prior and owner pointers are not included in this
figure.) The table shows the index pointers and symbolic keys.

To locate LONG in this 3-level index, CA-IDMS/DB performs the following steps:

1. Accesses the SR7 owner record by using the set name as the CALC key

Note: For SQL-defined indexes, it uses a CALC key based on a number assigned
to each index.

2. Accesses the top-level SR8 record by using the next pointer in the SR7 record

3. Searches this top-level SR8 record for the first entry with a symbolic key equal to
or greater than LONG

4. Uses the db-key in this entry to access an intermediate-level SR8 record (that is,
the NELSON/WEST SR8 record)

5. Searches this intermediate-level SR8 record (that is, the NELSON/WEST SR8
record) for the first entry equal to or greater than LONG

6. Uses the db-key in this entry to access a lower level SR8 record (that is, the
JONES/NELSON SR8 record at the bottom level)

7. Searches this bottom-level SR8 record (the JONES/NELSON SR8 record) for the
LONG entry

8. Uses the db-key in the LONG entry to access the requested member database
record occurrence

Note that since previous processing deleted indexed records, not all of the index
entries in each SR8 record are presently used (for instance, the STUART and
UPTON/WEST SR8 records at the bottom level). Consequently, this index has space
for expansion without spawning a new level.

Chapter 36. Index Management 36-9

36.1 About indexed sets

In this example, each SR8 record is composed of a maximum of three entries. Each
entry is composed of a symbolic key value and a db-key. The shaded entries are used
to locate the LONG record in the database. In the top and intermediate levels, the
db-key in each entry points to another SR8 record. In the bottom level, the db-key in
each entry points to a database record. (Note that, for simplicity, prior and owner
pointers are not included in this figure; also, since two employees are named BENN,
there are two database member occurrences with that name.)

The entries in the 3-level index are shown below. Each entry is composed of a
symbolic key and a db-key. The shaded entries are used to locate the LONG record in
the database. The index entries in the top and intermediate levels point to SR8 records
at the next lowest level. Only the bottom-level entry points to the database record.
Note that since two employees are named BENN, there are two db-keys (one to each
database member occurrence) for that symbolic key.

36-10 CA-IDMS Database Administration

36.1 About indexed sets

SR8 db-key SR8 index entries

Top level SR8
records

90002:3 Innis

West

99994:19

99994:57

Intermediate level
SR8 records

90004:10 Carr

Ferro

Innis

99915:13

99916:49

99939:6

90004:57 Nelson

Stuart

West

99921:3

99918:53

99939:12

Bottom-level SR8
records

90015:13 Benn

Carr

721999:147

723996:195

721997:3

90016:40 Davis

East

Ferro

729617:291

721592:63

722319:16

00030:6 Grey

Hall

Innis

729916:31

727169:52

725921:74

90021:3 James

Long

Nelson

726412:4

724263:12

727169:99

90018:53 Stuart

Upton

729939:37

729715:52

90030:12 West 725129:2

36.1.2 Connecting records to indexed sets

All set orders (that is, FIRST, LAST, NEXT, PRIOR, and SORTED) are supported for
indexed sets. Indexed set order determines the way CA-IDMS/DB builds the index
when new member record occurrences are connected to the indexed set.

Connecting members to indexed sets ordered FIRST, LAST, NEXT, or PRIOR is
discussed below, followed by a separate discussion of connecting members to indexed
sets with a set order of SORTED.

36.1.2.1 Connecting members to unsorted indexed sets

To connect new members to indexed sets with FIRST, LAST, NEXT, and PRIOR set
order, CA-IDMS/DB inserts a new index entry between existing index entries. When
one SR8 record fills, CA-IDMS/DB creates a new SR8 record; there is only one level
of SR8 records in an unsorted index.

Once a request has been made to connect a member occurrence to an indexed set,
CA-IDMS/DB first checks whether other entries exist. If no other entries exist,
CA-IDMS/DB creates and stores the first SR8 record (containing the first entry) and
connects it to the owner occurrence with next, prior, and owner pointers. The target

Chapter 36. Index Management 36-11

36.1 About indexed sets

page for the first SR8 record is the page of the owner of the indexed set occurrence
(plus displacement, if any).

CA-IDMS/DB actions: If other entries do exist, CA-IDMS/DB takes the following
actions:

Step 1: Identifies the appropriate SR8 record and insertion point based on the set
order, as follows:

■ NEXT — The insertion point is physically after the index entry for the current
SET occurrence.

■ FIRST — The insertion point is physically the first index entry in the first SR8
record.

■ PRIOR — The insertion point is physically before the index entry for the current
SET occurrence.

■ LAST — The insertion point is physically the last index entry in the last SR8
record.

Note: SQL-defined unsorted indexed constraints have an internal order of LAST.

Step 2: Inserts the new entry into the index, as follows:

■ If there is enough space in the target SR8 record for the new entry (that is, the
insertion of this entry would not exceed the maximum allowable entries, and the
target SR8's page has sufficient available space), CA-IDMS/DB inserts the new
entry into the target SR8 record.

■ If there is not enough space in the target SR8 for the new entry, CA-IDMS/DB
inserts the new entry based on the location of the identified insertion point, as
follows:

– If the identified insertion point is physically first in the target SR8 record,
CA-IDMS/DB checks whether there is enough space in the prior SR8 record:

— If there is enough space in the prior SR8 record, CA-IDMS/DB inserts
the new entry as the physically last entry in the prior SR8 record.

— If there is not enough space in the prior SR8 record, CA-IDMS/DB splits
the target SR8 record.

– If the insertion point is physically last in the target SR8 record, CA-IDMS/DB
checks whether there is enough space in the next SR8 record:

— If there is enough space in the next SR8 record, CA-IDMS/DB inserts the
new entry in the next SR8 record.

— If there is not enough space in the next SR8 record, CA-IDMS/DB splits
the target SR8 record.

– If the insertion point is neither the physically first nor last in the target SR8
record, CA-IDMS/DB checks whether there is enough space in the next SR8
record:

36-12 CA-IDMS Database Administration

36.1 About indexed sets

— If there is enough space in the next SR8 record, CA-IDMS/DB moves the
last entry to the SR8 record

— If there is not enough space in the next SR8 record, CA-IDMS/DB splits
the target SR8 record.

Index pointers for split SR8s: When CA-IDMS/DB splits an SR8 record (Record
A) into two SR8 records (Records A and B), the entries relocated to Record B point to
member occurrences that still contain index pointers pointing to Record A if index
pointers are maintained for the set (index pointers are optional for system-owned
indexes). If index pointers are maintained, splitting Record A causes CA-IDMS/DB to
set the orphan count in Record A equal to the number of entries moved to Record B.

Splitting an SR8 record: The following diagram shows splitting an SR8 record to
add a member occurrence to an indexed set with a set order of NEXT. (Note that, for
simplicity, prior and owner pointers are not included in this figure.)

Chapter 36. Index Management 36-13

36.1 About indexed sets

36.1.2.2 Connecting members to sorted indexed sets

Spawning: CA-IDMS/DB organizes an index for sorted records into levels. When a
top or intermediate SR8 record is full, CA-IDMS/DB spawns a new level through the
following steps:

1. CA-IDMS/DB splits the SR8 record into two SR8 records.

2. CA-IDMS/DB constructs a new higher-level SR8 record. This new full-size SR8
record contains only two entries. Each entry points to one of the SR8 records
created by Step 1.

CA-IDMS/DB determines the target page of a new SR8 record, as follows:

■ If displacement has been specified and if the new record is a bottom-level
SR8 record, the target page is the page of the owner of the indexed set
occurrence plus displacement.

■ Otherwise, the target page is the page of the owner of the indexed set
occurrence.

CA-IDMS/DB repeats this process as the index expands. Indexes can have any
number of intermediate levels. As CA-IDMS/DB adds new entries, it splits SR8
records and spawns new levels of SR8 records. An entry on one level points to an
SR8 record at a lower level; the bottom-level entries point to the indexed database
records themselves.

Connecting new members: To connect new members into a sorted index,
CA-IDMS/DB first identifies the appropriate insertion point of the new entry based on
the symbolic key or db-key. If this is the first entry (and, therefore, the first SR8
record), CA-IDMS/DB creates, stores and connects a new SR8 record to the owner
occurrence. CA-IDMS/DB determines the target page for the new SR8 record as
described above.

36-14 CA-IDMS Database Administration

36.1 About indexed sets

If this is not the first entry, CA-IDMS/DB identifies the insertion point of the new
entry based on the symbolic key or db-key. Once the appropriate insertion point is
identified, CA-IDMS/DB inserts the new entry into the index, as follows:

■ If there is space in the target SR8 record (that is, if insertion of this entry would
not exceed maximum allowable entries and the target SR8 record's page has
sufficient available space, CA-IDMS/DB inserts the new entry in the target SR8
record.

■ If space in the target SR8 record is insufficient for the new entry, CA-IDMS/DB
attempts to move a number of entries to a prior or next SR8 record if space is
available. Otherwise, a split occurs which may cause spawning depending on the
available space in the higher-level SR8 records.

36.1.3 Disconnecting records from indexed sets

Assume that the DEPT-EMPLOYEE set in the sample database is an indexed set
sorted by employee identification number (EMP-ID-0415). To disconnect an
occurrence of the EMPLOYEE record, a program could issue the following requests:

MOVE '9919' TO EMP-ID-9415.

FIND CALC EMPLOYEE.

DISCONNECT EMPLOYEE FROM DEPT-EMPLOYEE.

Processing the request: CA-IDMS/DB processes these requests as follows:

1. Finds the SR8 record pointed to by EMPLOYEE record 19's index pointer.

2. Searches the SR8 record for EMPLOYEE 19's db-key. If CA-IDMS/DB finds
EMPLOYEE 19's db-key, processing skips to Step 3. If CA-IDMS/DB does not
find EMPLOYEE 19's db-key, processing continues as follows:

a. CA-IDMS/DB decrements the SR8 record's orphan count by 1. If the SR8
contains no entries and the orphan count is 0 CA-IDMS/DB erases the SR8
record.

b. CA-IDMS/DB follows SR8 records until it finds the db-key.

c. CA-IDMS/DB updates EMPLOYEE 19's index pointer to point to the correct
SR8 record.

3. Removes EMPLOYEE 19's key entry from the bottom-level SR8 record and
rewrites that SR8 record.

4. If this were an unsorted set, processing would be complete. Since this is a sorted
set, if EMPLOYEE 19's symbolic key is the highest key in the SR8 record,
CA-IDMS/DB passes up the key to each level in which the key is the highest and
removes the entry for EMPLOYEE 19 from each successive SR8 record.

Chapter 36. Index Management 36-15

36.1 About indexed sets

36.1.4 Retrieving indexed records

In contrast to locating member records of a chained set, CA-IDMS/DB locates member
record occurrences in an index by searching the index. CA-IDMS/DB does not have
to access each member record occurrence as with chain linkage.

Types of processing: Because CA-IDMS/DB searches the index rather than actual
record occurrences, indexed sets provide a quick and efficient method for the
following types of processing:

■ Random retrieval by symbolic key or generic key — CA-IDMS/DB can
retrieve individual records randomly by means of a symbolic key. CA-IDMS/DB
can also retrieve a group of records by using a partial (generic) symbolic key. A
string of characters, up to the length of the symbolic key, can be used as a generic
key.

■ Sorted retrieval by db-key, symbolic key, or generic key — CA-IDMS/DB can
retrieve records in sorted order if the index is ordered on db-key or symbolic key.
In this case, the db-keys or symbolic keys in an index are automatically
maintained in sorted order and records therefore can be retrieved in ascending or
descending order by db-key or symbolic key. Because records can be accessed
through more than one index, they can be retrieved in more than one sort
sequence.

■ Unsorted in exceptionally long sets — To locate the db-keys of members in an
indexed set, CA-IDMS/DB walks the index. Since accessing member record
occurrences' db-keys in an index requires less database I/O than accessing the
record occurrences themselves, CA-IDMS/DB can retrieve the db-keys of member
records in exceptionally long sets more efficiently if the records are related using
an index rather than a chain. This type of processing is useful for finding the nth
record in a set or for manipulating lists of db-keys.

■ Physical sequential processing by db-key — Member record occurrences can be
clustered through an index. With this storage mode, the physical location of
member records reflects the ascending or descending order of their db-key. If
occurrences of a record type are to be retrieved in sequential order, clustering
them through an index reduces I/O. This type of processing is most efficient
when used with a stable database.

Example when owner pointers: Assume that the DEPT-EMPLOYEE set in the
sample database is an indexed set sorted by employee identification number
(EMP-ID-0415). To retrieve an occurrence of the EMPLOYEE record, a program
might issue the following requests:

MOVE '9919' TO EMP-ID-9415.

OBTAIN CALC EMPLOYEE.

OBTAIN NEXT WITHIN DEPT-EMPLOYEE SET.

To fulfill the above request, CA-IDMS/DB performs the following processing:

Step 1: Using the value '0019' placed by the program in the EMP-ID-0415 field,
obtains the EMPLOYEE record with an identification number of '0019'.

36-16 CA-IDMS Database Administration

36.1 About indexed sets

Step 2: Obtains the EMPLOYEE record with the next-highest identification number
as follows:

1. Finds the SR8 record pointed to by EMPLOYEE 19's index pointer.

2. Searches the SR8 record for EMPLOYEE 19's db-key. If CA-IDMS/DB finds
EMPLOYEE 19's db-key, processing skips to Step 3. If CA-IDMS/DB does not
find EMPLOYEE 19's db-key, processing continues as follows:

a. Decrements the SR8 record's orphan count by 1. If the orphan count is now
0, CA-IDMS/DB erases the SR8 record if it is empty or rewrites it if it still
contains entries.

b. CA-IDMS/DB searches the next SR8 record in the index until it finds the
db-key. At this time, CA-IDMS/DB updates the EMPLOYEE record's index
pointer to point to the correct SR8 record.

Note: CA-IDMS/DB only updates pointers and the orphan count at this time
if both the area that contains the SR8 records and the area that
contains the EMPLOYEE records were readied in update mode.

Step 3: Obtains the EMPLOYEE record whose db-key is adjacent to current of set
(that is, the next EMPLOYEE record).

Example when no owner pointers: If the EMPLOYEE record did not have
owner pointers, a program could issue the following request to retrieve an occurrence
of the DEPARTMENT record:

MOVE '9919' TO EMP-ID-9415.

OBTAIN CALC EMPLOYEE.

OBTAIN OWNER WITHIN DEPT-EMPLOYEE SET.

When fulfilling the above request, the DBMS would discover the lack of an owner
pointer in the set and use the EMPLOYEE record's index pointer to find the
bottom-level SR8 record that contains the key for the requested EMPLOYEE record.
CA-IDMS/DB will then use the owner pointer contained in that SR8 record to obtain
the DEPARTMENT record.

SR8 record currency: When a program uses a subschema that contains records in
an indexed set, CA-IDMS/DB changes SR8 record currency only when it accesses a
member record through the index, since CA-IDMS/DB keeps track of SR8 record
currency internally. When CA-IDMS/DB accesses a member record in any other
manner, CA-IDMS/DB does not change SR8 record currency.

For example, a program might issue the following commands:

MOVE '9919' TO EMP-ID-9415.

OBTAIN CALC EMPLOYEE.

OBTAIN NEXT WITHIN EMP-LNAME-NDX SET.

CA-IDMS/DB then fulfills these requests as follows:

1. Using the value '0019' for CALC entry into the database, CA-IDMS/DB accesses
the EMPLOYEE record with that identification number. EMPLOYEE 19 is now

Chapter 36. Index Management 36-17

36.1 About indexed sets

current of run unit, record, and the EMP-LNAME-NDX set. At this point, since
CA-IDMS/DB has not accessed an SR8 record, internal currency is not created for
the SR8 structure of the index set.

2. On OBTAIN NEXT, CA-IDMS/DB accesses the SR8 record that contains the
index entry for EMPLOYEE 19. At this time, CA-IDMS/DB makes this SR8
record the current record of the SR8 structure of the index set.

3. CA-IDMS/DB finds the next index entry (either in that SR8 record or the next
SR8 record). The SR8 record containing that index entry is now current of the
SR8 structure.

4. Using the next index entry, CA-IDMS/DB obtains the corresponding EMPLOYEE
record. That EMPLOYEE record is now current of run unit, record, and the
EMP-LNAME-NDX.

RETURN and FIND commands: When a program uses a subschema that contains
records in an index, use:

■ The RETURN command to retrieve database keys and/or symbolic keys from the
index without accessing database records.

■ The FIND command to maintain indexed set currency.

36-18 CA-IDMS Database Administration

 Chapter 37. Lock Management

37.1 Controlling access to CA-IDMS databases 37-3
37.2 Readying areas . 37-4

37.2.1 Area ready modes . 37-4
37.2.2 Central version area status . 37-7
37.2.3 Default ready mode using navigational DML 37-8
37.2.4 Ready modes and SQL access . 37-8

37.3 Physical area locks . 37-11
37.3.1 About physical area locks . 37-11
37.3.2 Controlling update access . 37-11

37.4 Locking within central version . 37-13
37.4.1 Logical locks . 37-13
37.4.2 Types of locks . 37-14
37.4.3 Logical area locks . 37-15
37.4.4 Area locking for SQL transactions 37-16
37.4.5 Record locks . 37-18
37.4.6 System generation options affecting record locking 37-19

37.5 Locking within a data sharing group . 37-21
37.5.1 Inter-CV-interest . 37-21
37.5.2 Global transaction locks . 37-21
37.5.3 Proxy locks . 37-22
37.5.4 Page locks . 37-23

37.6 Controlling access to native VSAM files 37-24
37.7 Deadlocks . 37-25

37.7.1 How the system detects a deadlock 37-25
37.7.2 Global deadlock detection . 37-26

Chapter 37. Lock Management 37-1

37-2 CA-IDMS Database Administration

37.1 Controlling access to CA-IDMS databases

37.1 Controlling access to CA-IDMS databases

Factors controlling access to data: The primary means of influencing how
CA-IDMS/DB controls access to data is in the way areas are readied and the status
assigned to areas within a central version. These factors ultimately determine which
transactions can access and update data within a CA-IDMS database and whether or
not concurrent access is controlled at the area or record occurrence level.

What follows: The remainder of this section discusses:

 ■ Readying areas

■ The status of areas under the central version

■ Default ready modes

■ Ready modes and SQL access to data

Later sections in this chapter discuss how these factors determine the types of locks
CA-IDMS uses to control access to data.

Chapter 37. Lock Management 37-3

37.2 Readying areas

 37.2 Readying areas

37.2.1 Area ready modes

Types of ready modes: A transaction can restrict runtime operations in a database
area by readying that area with a mode of update or retrieval, as follows:

Ready mode qualifiers: You can qualify the specified area ready mode with a
shared (default), protected, or exclusive option to prevent update or retrieval of an area
by other transactions executing concurrently under the same central version or, in the
case of a shared area, under other central versions that are members of the same data
sharing group. The qualified ready modes are:

Update The readying transaction can both retrieve and update data
within the area.

Retrieval The readying transaction cannot update data in the area.

37-4 CA-IDMS Database Administration

37.2 Readying areas

�� Both area status and transaction isolation levels area discussed later in this section
under 37.2.2, “Central version area status” on page 37-7 and 37.2.4, “Ready modes
and SQL access” on page 37-8 respectively.

Compatibility of ready modes: The mode in which one transaction readies an
area restricts the mode in which other transactions executing under the same central
version or in the case of a shared area, within the same data sharing group, can ready
that area. This table shows the modes in which transaction B can ready an area,
depending on the mode in which transaction A has readied the area. Y(es) signifies

Shared update If a transaction has readied the area in shared update
mode, other transactions executing concurrently can
ready the area in shared update or shared retrieval mode.

Shared retrieval If a transaction has readied the area in shared retrieval
mode, other transactions executing concurrently can
ready the area in shared update, shared retrieval,
protected retrieval, or protected update mode.

Protected update If a transaction has readied the area in protected update
mode, other transactions executing concurrently can
ready the area in shared retrieval mode only.

Protected retrieval If a transaction has readied the area in protected retrieval
mode, other transactions executing concurrently can
ready the area in shared retrieval or protected retrieval
mode.

Exclusive update and
exclusive retrieval

If a transaction has readied the area in exclusive update
or exclusive retrieval mode, other transactions executing
concurrently cannot ready the area in any mode.
Exclusive retrieval is available only using navigational
DML.

Transient retrieval A ready mode of transient retrieval cannot be explicitly
set by application programs or access module
specifications. Instead, transient retrieval is
automatically used by a transaction accessing an area in
a retrieval mode, if either of the following conditions
apply:

■ The status of the area within the central version is
transient retrieval

■ The isolation level of the SQL transaction readying
the area is transient read

If a transaction has readied an area in transient retrieval
mode, other transactions executing concurrently can
ready the area in any mode.

Chapter 37. Lock Management 37-5

37.2 Readying areas

that the second transaction can ready the area in the specified mode; N(o) signifies that
it cannot.

Concurrent use of an area within a central version or data sharing group:
When a transaction cannot ready an area because of a protected or exclusive
restriction, CA-IDMS/DB places the transaction in a wait state. When the restriction is
lifted, the transaction can proceed.

Example of concurrent area usage: The following diagram shows concurrent
use of an area by transactions executing under a central version or data sharing group.
Concurrently, transaction A readies AREA1 in protected update mode, transaction B
readies the area in shared retrieval mode, and transaction C attempts to ready the area
in exclusive update mode. The system puts transaction C into a wait state until both
transactions A and B terminate. Transactions D and E, attempting to ready the area,
must wait until transaction C terminates.

37-6 CA-IDMS Database Administration

37.2 Readying areas

37.2.2 Central version area status

Area status and ready modes: Each area accessible from within a central version
has a status associated with it. The status of an area affects the mode in which
transactions executing under the central version can ready the area:

Establishing the area status: The status of an area within a central version is
initially established by specifications made within the DMCL used by the DC/UCF
system. An area's status may subsequently be changed by DCMT commands.

Permanent area status: When an area's status is changed through a DCMT
command, it may be designated as permanent. A permanent area status persists across
both normal and abnormal system terminations until it is subsequently changed by
another DCMT command or until the journal files associated with the central version
are initialized. Whether or not an area's status has been designated as permanent is
indicated on the output from a DCMT DISPLAY AREA command.

At system startup: If a permanent area status is not in effect, the first time a system
is started and each time it is subsequently started after a normal shutdown, the status
of the area is set to that specified in the ON STARTUP parameter of the ADD
SEGMENT or ADD AREA statement within the DMCL definition. The default area
status is UPDATE.

Following an abnormal system termination: If a permanent area status is not
in effect, when restarting a system following an abnormal termination, the status of the
area is set to that specified in the ON WARMSTART parameter of the ADD
SEGMENT, or ADD AREA statement within the DMCL definition. The area can be
set to what it was at the time of the failure (the default) or it can be set to an explicit
value.

Changing area status: You can change the status of an area within a central
version by issuing a DCMT VARY AREA or VARY SEGMENT command. In
certain cases, CA-IDMS cannot change the status of the area immediately because
existing transactions are accessing the area. In addition to active transactions,

UPDATE (or ONLINE) Transactions executing under the central version can
ready the area in any mode

RETRIEVAL Transactions executing under the central version can
ready the area in any retrieval mode (EXCLUSIVE,
PROTECTED, SHARED or TRANSIENT)

TRANSIENT
RETRIEVAL

Transactions executing under the central version can
ready the area in any retrieval mode, but the
CA-IDMS/DB automatically changes the mode to
TRANSIENT RETRIEVAL

OFFLINE Transactions executing under the central version cannot
ready the area in any mode

Chapter 37. Lock Management 37-7

37.2 Readying areas

longterm or notify locks held by pseudo-conversational applications may prevent the
area status from being changed. If CA-IDMS cannot change the status immediately, it
initiates an internal task that completes the DCMT VARY operation when no more
conflicts exist. During the time it takes to complete the vary, transactions attempting
to ready the area in a mode that is incompatible with the new area status receive an
error.

�� For more information about the DCMT VARY AREA and VARY SEGMENT
commands, refer to CA-IDMS System Tasks and Operator Commands.

37.2.3 Default ready mode using navigational DML

You can specify a default ready mode for a database area in a subschema
definition. The specified default mode determines the mode in which the area is to be
readied for programs using that subschema. If you specify a default mode for a
database area, programs using the subschema do not have to issue a READY
command for the area. Note, however, that if a program issues a READY command
for one area in the subschema, the automatic readying mechanism is disabled and the
program must issue a READY command for all areas to be accessed.

37.2.4 Ready modes and SQL access

Factors affecting SQL lock management: When accessing data using SQL, the
way in which an area is readied depends on several factors:

■ The transaction state

■ The isolation level

■ The requested ready mode

■ The status of areas within central version

Transaction state: A transaction initiated using SQL has one of two states:

Default is READ WRITE: Unless otherwise specified, the transaction state is
READ WRITE. You can override the default when you define an access module or
by issuing a SET TRANSACTION statement at runtime.

Isolation level: A transaction initiated using SQL also has one of two isolation
levels:

READ ONLY Data can be read, but not updated; updates to temporary tables
are allowed

READ WRITE Data can be both read and updated using DML and DDL
statements

37-8 CA-IDMS Database Administration

37.2 Readying areas

Default is CURSOR STABILITY: Unless otherwise specified, the isolation level of
a transaction is CURSOR STABILITY. You can override the default when you define
an access module or by issuing a SET TRANSACTION statement at runtime.

Requested ready modes: You can specify within the access module definition the
modes in which CA-IDMS/DB is to ready the areas accessed by non-dynamic SQL
statements embedded in an application. Otherwise, CA-IDMS/DB determines the
ready mode at runtime. It also determines the ready mode at runtime for dynamic
SQL statements.

Runtime ready modes: The ready mode in which an area is accessed at runtime
depends on the requested ready mode, the transaction state, the isolation level, and the
area's availability:

CURSOR
STABILITY

Guarantees read integrity. Read integrity ensures that:

■ All data accessed by the transaction is in a committed
state

■ The most-recently accessed row of an updatable cursor is
protected from update by other transactions while it
remains current

TRANSIENT
READ

Does not guarantee read integrity. For this reason, a
transaction executing under transient read is not allowed to
update the database. If the isolation level of a transaction is
transient read, the transaction state is automatically READ
ONLY.

Chapter 37. Lock Management 37-9

37.2 Readying areas

Under central version, if an area is being readied in a retrieval mode and the status of
the area is transient retrieval, CA-IDMS/DB changes the ready mode to transient
retrieval.

Transaction state Isolation level Area ready mode

READ ONLY TRANSIENT
READ

Transient retrieval mode; no row locks
are placed.

READ ONLY CURSOR
STABILITY

Retrieval modes only.

If update modes were specified on the
CREATE or ALTER ACCESS
MODULE statement, CA-IDMS/DB
changes them to shared retrieval. If no
ready option was specified, the default
is shared retrieval.

READ WRITE CURSOR
STABILITY

All areas are accessed using the mode
specified on the CREATE ACCESS
MODULE.

If no mode was specified, the default is:

■ Shared update in local mode and
under the central version, if the area
status is update

■ Shared retrieval under the central
version, if the area status is retrieval

37-10 CA-IDMS Database Administration

37.3 Physical area locks

37.3 Physical area locks

37.3.1 About physical area locks

CA-IDMS/DB maintains a physical area lock as a flag within the first space
management page of an area. It examines and sets the lock whenever the area is
opened for update. This occurs when:

■ A local mode transaction readies the area in an update mode

■ A DC/UCF system is started in which the area status in the DMCL is UPDATE

■ A DCMT VARY AREA command changes the status of the area to UPDATE

Unlocking the physical area: Once a physical lock is placed on an area, it
remains set until:

■ The local mode transaction or central version terminates normally

■ Manual recovery procedures are used to roll out the effects of a failing local mode
transaction

■ A central version is restarted after an abnormal termination and subsequently
shutdown normally

■ The area status within central version is changed from update to another status

Physical area locks and shared areas: In a data sharing environment, the
physical area lock in a shared area is set by the first member of a data sharing group
to open the area for update and it is reset by the last member to relinquish control.

37.3.2 Controlling update access

Purpose of physical area locks: Physical area locks prevent concurrent update
by independent transactions (that is transactions executing outside of a single central
version or data sharing group) and prevent update access to an area requiring recovery
of incomplete transactions.

Chapter 37. Lock Management 37-11

37.3 Physical area locks

How locking works: CA-IDMS/DB provides this protection as follows:

Local mode As each area is readied in any update mode, CA-IDMS/DB
checks the lock. If the lock is set, the transaction receives an
error and access to the area is not allowed.

If the lock is not set, the local mode transaction causes the
lock to be set and the space management page is rewritten
immediately. If the transaction terminates abnormally (that is,
without issuing a FINISH or COMMIT WORK), the lock
remains set. Further update access is prevented until the area
is recovered (through CA-IDMS recovery procedures).

Central version At system startup, the central version checks the locks in all
areas intended for update. If the physical lock is set and the
area is not shared, or the area is shared but is not currently
being updated by another member of the central version's data
sharing group, then a warning message is displayed at the
console and the area status is changed to offline. The central
version proceeds without the use of that area and any
trnasaction attempting to ready that area will receive an error.
If the physical lock is subsequently removed from the area, the
status of the area can be varied to update.

37-12 CA-IDMS Database Administration

37.4 Locking within central version

37.4 Locking within central version

 37.4.1 Logical locks

Control access to resources: Logical locks are used within a central version and
within a data sharing group to control access to database resources by concurrently
executing transactions. Before a transaction can access a resource, it places a lock on
the resource which prevents other transactions from modifying or, in some cases,
accessing the resource while the lock is maintained.

In a data sharing environment, CA-IDMS uses global transaction locks, maintained in
a coupling facility lock structure to control inter-member access to shared resources.

For more information on global locking, see 37.5, “Locking within a data sharing
group” on page 37-21 later in this chapter.

Wait states: If a transaction attempts to lock a resource which is locked by another
transaction with a conflicting mode, the first transaction will wait until the lock is
released. If the waiting transaction exceeds the internal wait interval specified at
system generation, CA-IDMS aborts the transaction and rolls out its updates. If one
transaction is waiting to place a lock and the transaction that holds it then waits on a
lock held by the first transaction, a deadlock condition exists. CA-IDMS resolves this
condition by aborting and rolling back one of the transactions.

�� For more information on detecting and resolving deadlocks, see 37.7, “Deadlocks”
on page 37-25 later in this chapter.

Hierarchical locking: CA-IDMS/DB uses a hierarchical locking scheme in which
locks are placed at area and record occurrence (row) levels. Area locks control access
to the area, and by implication, all record occurrences stored within the area. Record
locks control access to individual record occurrences or rows.

A transaction intending to access data within an area must first place a lock at the area
level. Depending on the strength of that lock (its mode), the transaction may or may
not also place locks on individual record occurrences as it retrieves or updates them.

In a data sharing environment, CA-IDMS uses a three-level hierarchy to control
inter-member access to shared resources: area, proxy, and record occurrence.

For more information on this additional level, see 37.5.3, “Proxy locks” on page 37-22
later in this chapter.

Chapter 37. Lock Management 37-13

37.4 Locking within central version

37.4.2 Types of locks

Lock modes: Each logical lock has an associated lock mode. The mode of the lock
determines whether the lock conflicts with other locks already held on the resource and
with locks subsequently requested by other transactions.

The following types of locks (lock modes) are used for both area and record locks:

Intent locks on areas: The following types of locks are placed only on areas:

In addition to the above lock modes, the following lock mode has been provided for
but is currently not used:

■ Update (U) An update lock is placed on a resource if it might be updated after it
is retrieved (in which case the lock would be upgraded to an exclusive lock).

Mode Identifier Description

Share S Typically used to guarantee that no updates
are made to data while a transaction is
accessing it. A share lock is compatible with
other share locks but not with exclusive locks.
A share lock placed on an area implies a share
lock on each record within the area.

Exclusive X Typically placed on a resource to protect
transactions from accessing data that is being
updated by the issuing transaction. An
exclusive lock is incompatible with both share
and other exclusive locks. An exclusive lock
placed on an area implies an exclusive lock on
all records within the area.

Null-lock NL A null-lock is a special type of lock which is
placed on a record to signify a notify lock and
on an area to signify transient retrieval access.
Null-locks provide no protection against
concurrent access.

Mode Identifier Description

Intent share IS Allows share (S) locks to be placed on records
within the area.

Intent exclusive IX Allows exclusive (X) locks to be placed on
records within the area.

Update intent
exclusive

UIX Allows exclusive locks to be placed on
records within the area by the issuing
transaction, but not by other transactions.

37-14 CA-IDMS Database Administration

37.4 Locking within central version

Compatibility of locks: For two transactions running within the same DC/UCF
system to access the same area or row concurrently, their lock types must be
compatible. When two transactions attempt to set locks that are not compatible, the
first transaction to set a lock causes the second transaction to wait until the resource is
freed.

Note: CA-IDMS ensures that a transaction does not compete with itself for locks.

Compatibility chart: The chart presented below shows which lock modes are
compatible and which are incompatible. The plus sign (+) indicates a situation in
which two lock modes are compatible. The minus sign (-) indicates a situation in
which two lock modes are incompatible.

Example: If TRANSACTION1 holds a share (S) lock on an area, TRANSACTION2
can set a null-lock (NL), intent-share (IS), share (S), or update (U) lock on the same
area.

NL IS IX S U UIX X

NL + + + + + + +

IS + + + + + + -

IX + + + - - - -

S + + - + + - -

U + + - + - - -

UIX + + - - - - -

X + - - - - - -

37.4.3 Logical area locks

Effect of ready mode: In order to control concurrent access to areas within a
central version, the mode in which an area is readied is translated into a logical lock
on the area. As an area is readied, CA-IDMS/DB attempts to place an appropriate
lock based on the ready mode. If the new lock doesn't conflict with locks already held
by other transactions, access is granted to the area. If a conflict exists, the transaction
is placed in a wait state until the conflicting locks are released.

Area lock depends on area ready mode: The type of lock (lock mode) placed
on an area depends on the mode in which the area is being readied:

Chapter 37. Lock Management 37-15

37.4 Locking within central version

When area locks are acquired: For transactions initiated through navigational
DML, CA-IDMS/DB acquires area locks when either of the following occur:

■ The first non-ready DML (other than BIND RECORD) statement is issued
following one or more READY statements

■ The first non-bind statement is issued within a transaction using default ready
modes specified by the subschema

For SQL-initiated transactions, when area locks are acquired depends on the area
acquisition mode specified within an access module or in effect for dynamic SQL.

�� For more information see 37.4.4, “Area locking for SQL transactions” later in this
chapter.

Area acquisition threshold: If a transaction is locking multiple areas at one time,
and must wait to place a lock on one of the areas, CA-IDMS/DB releases the locks on
all other areas before placing the transaction in a wait state. This helps to avoid
deadlocks between two or more transactions trying to gain access to areas. However,
it also means that another transaction can gain access to an area whose lock was
released by the waiting transaction. To avoid this pre-emption, you can specify an
area acquisition threshold at system generation that limits the number of times a
transaction will wait on an area lock before it no longer releases other area locks.

Ready mode Lock mode

Transient retrieval Intent Share (NL)

Shared retrieval Intent Share (IS)

Shared update Intent Exclusive (IX)

Protected retrieval Share (S)

Protected update Update Intent Exclusive (UIX)

Exclusive retrieval Exclusive (X)

Exclusive update Exclusive (X)

37.4.4 Area locking for SQL transactions

When area locks are acquired: The time at which area locks are acquired for
SQL transactions varies depending on the lock acquisition mode in effect. There are
two lock acquisition modes:

 ■ Preclaim

 ■ Incremental

37-16 CA-IDMS Database Administration

37.4 Locking within central version

On first database access: The preclaim mode directs CA-IDMS to place locks on
all areas in a transaction that use the preclaim acquisition mode as soon as the first
statement that requires access to the database is executed.

You can use the preclaim mode to reduce the likelihood of deadlocks. A transaction
that uses the preclaim option to lock an area will not wait for an area that is held by
another transaction while it holds a lock on an area.

On first area access: The incremental mode directs CA-IDMS to delay placing a
lock on an area until the first statement in the transaction that requires access to the
area is executed.

You can use the incremental mode to increase database concurrency. A transaction
that uses the incremental mode does not place a lock on an area until the area is
actually required for processing. This makes the area accessible to other transactions
for a longer period of time. In general, if a transaction does not always access every
area in its access path, you should assign the incremental mode to those areas that are
least likely to be accessed.

Example: Suppose a transaction needs to access three different tables, each of which
is stored in a different area:

Locks would be acquired in the manner shown below:

TRANSACTION A

 .

 .

 .

SELECT ` FROM T1; �--------------- Locks are placed on both

. AREA1 and AREA3.

 .

 .

SELECT ` FROM T2; �--------------- A lock is placed on AREA2.

 .

 .

 .

SELECT ` FROM T3;

 .

 .

 .

Table Area Acquisition mode

T1 AREA1 Preclaim

T2 AREA2 Incremental

T3 AREA3 Preclaim

Chapter 37. Lock Management 37-17

37.4 Locking within central version

 37.4.5 Record locks

Purpose of record locks: Record locks are used within the central version to
control concurrent access to individual record occurrences (rows). Occurrence-level
record locks (in conjunction with area locks) are used to:

■ Protect against concurrent update of the same record by two or more transactions

■ Prevent record occurrences that are current within one transaction from being
updated by another transaction

Implicit record locks: CA-IDMS/DB automatically places locks on records
accessed by a transaction if the area in which the record resides is readied in any of
the following modes:

Note: You can use system generation options to inhibit record locking for
navigational DML applications, as discussed in 37.4.6, “System generation
options affecting record locking” on page 37-19 later in this chapter.

Shared record locks: If shared locks are being maintained, CA-IDMS/DB places
one on each record as it is accessed. Shared locks are also maintained on:

■ The most-recently accessed record of its type (the most-recently accessed row of
each table)

■ The most-recently accessed record in each set (the most-recently accessed row of
each constraint or index)

■ The most-recently accessed record in each area.

Note: Additional shared locks are maintained on the current row of each updatable
cursor open within an SQL transaction.

CA-IDMS/DB releases these locks as the transaction accesses different record
occurrences. These implicit record locks guarantee the integrity of the currencies used
by navigational DML applications and provide the protection necessary for SQL
applications executing with an isolation level of cursor stability.

�� For more information on isolation levels, see 37.2.4, “Ready modes and SQL
access” on page 37-8 earlier in this chapter.

Area ready mode Record lock

Shared retrieval on
read records

Shared (S) locks

Shared update Shared (S) locks on read records; exclusive (X) locks on
updated records

Protected update Exclusive (X) locks on updated records

37-18 CA-IDMS Database Administration

37.4 Locking within central version

Exclusive record locks: If exclusive locks are being maintained, CA-IDMS/DB
places them on all records altered by a DML or DDL statement until the recovery unit
terminates (that is a COMMIT (CONTINUE), ROLLBACK (CONTINUE) or FINISH
is issued) or until the transaction abends.

Implicit page locks: Implicit locks are used in a special way to control user access
to pages for which the amount of available space has been altered. When the available
space on a page is changed as a result of an update operation, CA-IDMS/DB places a
special implicit exclusive lock on the page, allowing retrieval to continue. If a
subsequent DML or DDL command from a different transaction requests further
modification to available space on that page, the request is delayed until the lock is
released (that is, until the recovery unit that caused the lock to be set terminates).

Explicit record locks: The navigational programmer can set explicit record locks
with the DML KEEP command. The KEEP verb or the KEEP option of a FIND or
OBTAIN verb places a shared lock on the record occurrence. KEEP with the
EXCLUSIVE option places an exclusive lock on the record occurrence.
CA-IDMS/DB holds explicit record locks until the transaction terminates or a
COMMIT ALL statement is executed.

37.4.6 System generation options affecting record locking

Two system generation options affect whether or not CA-IDMS/DB maintains record
locks for navigational DML transactions. These options are:

Note: These system generation parameters affect only navigational DML applications;
they do not apply to SQL applications.

Reading uncommitted data: If RETRIEVAL NOLOCK is specified, a transaction
may read uncommitted data; that is, it may read data that has been updated by another
transaction before those changes have been committed or data that has been accessed
by a retrieval transaction may be concurrently udpated while the retrieval transaction is
still active. This may result in inconsistencies in the data processed by the shared
retrieval transaction. These inconsistencies may also include transient 11xx abends
from the DBMS.

If UPDATE NOLOCK is specified, a transaction updating data in an area readied in
PROTECTED UPDATE does not protect transactions readying the area in SHARED
RETRIEVAL. As with RETRIEVAL NOLOCK, it is possible for a transaction which

RETRIEVAL
LOCK/NOLOCK

Specifies whether or not CA-IDMS/DB places shared
locks on records in an area readied in SHARED
RETRIEVAL

UPDATE
LOCK/NOLOCK

Specifies whether or not CA-IDMS/DB places exclusive
locks on records updated in an area readied in
PROTECTED UPDATE

Chapter 37. Lock Management 37-19

37.4 Locking within central version

has readied the area in SHARED RETRIEVAL to read a record updated by a
PROTECTED UPDATE transaction before it has been committed.

Since both options affect the protection afforded shared retrieval transactions, it is
typical (though not required) to set both parameters in the same way. In systems in
which there is a high volume of updates, you might want to consider specifying LOCK
for both.

Note: No inter-CV retrieval protection is provided except for shared areas accessed
through members of a data sharing group. If an area is not shared, then
regardless of the system lock options in effect, it is possible for a shared
retrieval transaction executing in a central version whose area status is retrieval
to read uncommitted data updated by another central version.

TRANSIENT RETRIEVAL area status: As an alternative to using system
generation parameters to reduce the volume of record locks maintained, consider using
a central version's area status of TRANSIENT RETRIEVAL instead. Provided the
area is not updated within the central version, a status of transient retrieval can be used
to eliminate the locking of records within the area.

37-20 CA-IDMS Database Administration

37.5 Locking within a data sharing group

37.5 Locking within a data sharing group

Within a data sharing group, locking is used to control inter-member access to shared
resources, just as it is used to control access to resources within a central version. The
basic locking scheme used within a central version is extended for data sharing in the
following ways:

■ Global transaction locks are used to control inter-member access

■ An additional level is introduced in the locking hierarchy

■ Page locks are used to protect database pages while they reside in a buffer pool

�� For more information on data sharing, refer to CA-IDMS System Operations.

 37.5.1 Inter-CV-interest

What is inter-CV-interest: Inter-CV-interest denotes a state in which an area is
being shared by:

■ At least one group member with an area status of UPDATE, and

■ More than one group member with an area status of RETRIEVAL or UPDATE.
Members accessing an area in TRANSIENT RETRIEVAL, have no impact on
inter-CV-interest.

Conflict for the area (and the records and pages in the area) can only occur if there is
inter-CV-interest in the area. This is significant because if there is no inter-CV-interest
in an area, the overhead associated with controlling access to it is reduced.

Whether or not there is inter-CV-interest in an area is indicated on the output from a
DCMT DISPLAY AREA command.

37.5.2 Global transaction locks

What are global transaction locks?: Global transaction locks are locks that reside
within a coupling facility lock structure and are used to control inter-member access to
data in shared areas. Whenever a transaction places a lock on a shared area or on a
record that resides in a shared area and there is inter-CV-interest in that area, global
locks ensure that no other transaction in the data sharing group is accessing the same
resource in a conflicting mode.

Managing global locks: Global locking relies on a coupling facility lock structure to
record and manage global locks. Global locks are acquired by the CA-IDMS lock
manager whenever a transaction places a lock on a resource and a sufficiently strong
global lock is not already held by that CV. Global locks are retained until no
transaction within a CV requires a lock of that strength, at which point the global lock
may be released, downgraded, or retained, depending on the resource type and whether
or not there is contention for the resource between group members.

Chapter 37. Lock Management 37-21

37.5 Locking within a data sharing group

Inter-CV-interest and global locking: Global transaction locks are not acquired if
there is no inter-CV-interest in an area. If inter-CV-interest begins because another
member accesses the area in a potentially conflicting mode, global transaction locks
will be acquired by every sharing member in which a transaction holds a lock on the
area or any of its records.

 37.5.3 Proxy locks

What is a proxy lock?: A proxy lock is a global lock used within a data sharing
group to represent a lock on all the records within a page of a shared area. Proxy
locks are held by members of a data sharing group and not by individual transactions.

An additional hierarchy level: Proxy locks represent an additional level in the
locking hierarchy used by CA-IDMS to control access to data.

Normally CA-IDMS uses a two-level locking hierarchy: area and record. Before
placing a lock on a record, a transaction must place a lock on the area in which the
record resides. Depending on the mode of the area lock, it may be possible to avoid
placing locks on individual records within the area.

For shared areas, the locking hierarchy expands to three levels: area, proxy, and
record. Before a lock is placed on a record in a shared area, a lock must be held on a
proxy that represents the record's page and before this can be done, a lock must be
held on the area in which the record resides.

Proxy lock modes: A proxy can be locked in one of two modes: Share or Exclusive.
At least a share lock must be held on a proxy before a transaction can place a share or
null (notify) lock on a record represented by the proxy. Similarly, an exclusive proxy
lock must be held before a transaction can place an exclusive lock on a record
represented by the proxy.

Managing proxy locks: An exclusive proxy lock held by one member does not
prohibit access by another member. Instead the purpose of proxy locks is to detect
inter-CV contention for resources and to eliminate the use of global record locks where
possible. As long as all members holding a lock on a proxy hold it in share mode,
there is no contention for resources on the page and no need to globally lock
individual records on that page. However, if at least two members hold a lock on a
proxy and at least one of those is an exclusive lock, then there is possible contention
for individual records, necessitating the use of global record locks to control access to
individual records.

The acquisition and management of proxy locks is done automatically by the
CA-IDMS lock manager. Application programs do not need to explicitly acquire or
manage proxy locks. However, database administrators should be aware of their
existence and their impact on recovery and resource utilization.

37-22 CA-IDMS Database Administration

37.5 Locking within a data sharing group

 37.5.4 Page locks

What is a page lock?: A page lock is a lock that is used within a data sharing
group to protect database pages while they reside in a member's local buffer pool.
Page locks are only placed on pages of areas that are designated for data sharing and
only if there is inter-CV interest in the area.

Managing page locks: The coupling facility lock structure associated with the data
sharing group is used to record and manage global page locks, just as is done for
global transaction locks. And just as a proxy represents all of the records on the page,
it also represents the page itself. Therefore, proxy locks reduce the need to acquire and
release global page locks each time a page is moved into and out of the buffer pool.

Page lock protection: Before a database page is read into the buffer pool, an
exclusive or shared lock is placed on that page, depending on whether or not the active
transaction intends to update the page. Once the lock is acquired, no other group
member may place a conflicting lock on the page until the first member relinquishes
its lock. This means that no other sharing member may read the page contents while
another member has it locked exclusively. Page locks are held until another group
member wants access to the page in a conflicting mode. Before an exclusive page lock
can be released on an updated page, the page is written to the disk and to the shared
cache.

Chapter 37. Lock Management 37-23

37.6 Controlling access to native VSAM files

37.6 Controlling access to native VSAM files

Physical area locks not set: CA-IDMS does not maintain physical area locks for
areas that map to native VSAM data sets. Therefore, a combination of
SHAREOPTIONS, JCL, and operational procedures is used to control updates of
native VSAM data sets by CA-IDMS, local transactions, and non-CA-IDMS programs.

DEFINE CLUSTER command: For example, you can prevent concurrent update
by specifying the parameter SHAREOPTIONS(2,3) in the DEFINE CLUSTER
command during VSAM cluster definition. This parameter permits only one
application program to open the data set for update, thereby preventing concurrent
update of the data set by two application programs executing in different regions.
Within a central version, access to native VSAM files is controlled through the use of
logical locks on areas and records just as for CA-IDMS/DB database files.

CA-IDMS/DB facilities: You can use CA-IDMS facilities to further control access
to native VSAM data sets. For example, to protect a data set from being updated,
set the status within central version to TRANSIENT RETRIEVAL or RETRIEVAL.
In this case, no application program running under the central version can ready the
area in update mode.

To ensure read integrity of the area when accessed by transactions executing under
a central version, you can use the following procedure when updating the data set
using non CA-IDMS programs:

1. Vary offline the CA-IDMS area that maps to the VSAM data set by means of the
DCMT VARY AREA OFFLINE command.

2. Run the job to update the VSAM data set.

3. Vary the area to retrieval access mode using the DCMT VARY AREA
RETRIEVAL command, thus making the area once again available under the
central version.

37-24 CA-IDMS Database Administration

37.7 Deadlocks

 37.7 Deadlocks

What is a deadlock?: A deadlock is an unresolvable contention between multiple
requestors for a resource. Resources are either DC/UCF system resources (such as
programs and storage) or database resources (such as areas and records).
CA-IDMS/DB uses different control block structures to track contention for DC/UCF
system resources and database resources. Although it tracks deadlocks using different
control block structures, the same deadlock detection mechanism is used to resolve
deadlocks.

37.7.1 How the system detects a deadlock

Deadlock detection is a process performed on a time interval basis. It is carried out in
four major phases:

1. Identifying stalled tasks — To identify tasks that are stalled, all dispatch control
elements (DCEs) in the system are examined. Any DCE found stalled while
waiting on an internal resource is entered into the deadlock detection matrix
(DDM). All subsequent processing begins with the DCE address stored in the
DDM table. This eliminates the need to scan all DCEs in the system.

2. Identifying task dependencies — Next, the dependencies between the stalled
tasks are identified. The deadlock detection matrix is updated. For each task on
which another task is waiting, a bit in the deadlock detection matrix is set to one.

3. Identifying deadlocks — To determine which tasks are involved in a deadlock
cycle, a transformation is performed on the matrix. From this process, a pair of
deadlocked tasks is identified. From this pair, a victim is selected.

4. Selecting a victim — The task running for the shortest period of time is chosen
as the victim of the two tasks as long as:

■ The priority of the victim task is less than that of the other task

■ The victim task's wait was not entered with COND=NONE and the other
task's wait was entered with COND=DEAD

The task running for the shortest period of time is chosen as the victim because it
is more likely that it will have consumed fewer resources than a longer running
task. As a result, less duplication of work should be required when the victim is
restarted, with these exceptions:

■ If the other task is of a higher priority, implying that it is of more importance

■ If the victim task entered the deadlock with COND=NONE and the other task
specified COND=DEAD. In this case, the task specifying COND=DEAD is
chosen as the victim since COND=DEAD indicates that the task is designed
to handle and recover from deadlock situations. This prevents an abend.

Victim selection user exit: The algorithm used to select a victim in a deadlock
situation may not be optimal for your installation or applications. User exit 30 allows
victims to be selected based upon specific requirements. The exit is passed the DCE
addresses of each pair of deadlocked tasks and may take one of two actions:

Chapter 37. Lock Management 37-25

37.7 Deadlocks

■ Choose one of the tasks as the victim task

■ Return control to the deadlock detector by requesting that the default deadlock
detection logic be applied

�� For a discussion of user exit 30, refer to CA-IDMS System Operations.

Deadlock detection interval: You can control the frequency with which the
deadlock detection mechanism searches for deadlocked tasks using the DEADLOCK
DETECTION parameter of the SYSTEM statement.

The DEADLOCK DETECTION parameter allows you to specify the amount of time
that elapses before the deadlock detection mechanism searches for deadlocked tasks.
Note that in an idle system, deadlock detection is also idled until new tasks are started.
This eliminates CPU consumption for deadlock detection when no tasks could possibly
be deadlocked.

You can use the DCMT VARY DEADLOCK command at runtime to override the
system generation specification.

�� For further information on the DEADLOCK DETECTION parameter of the
SYSTEM statement, refer to CA-IDMS System Generation. For further information on
the DCMT VARY DEADLOCK command, refer to CA-IDMS System Tasks and
Operator Commands.

37.7.2 Global deadlock detection

What is a global deadlock?: A global deadlock is a situation in which unresolvable
contention exists for shared resources between tasks executing on different members
within a data sharing group.

Detecting global deadlocks: A global deadlock is possible if at least one stalled
task is waiting on a global resource. In a potential global deadlock situation, each
member passes information to the one acting as the global deadlock manager. The
global deadlock manager examines the information gathered from the other members
and determines which tasks, if any, are deadlocked.

Resolving global deadlocks: If a global deadlock exists, user exits are invoked, to
assist in selecting a victim task. If these exits are not provided, the task running for the
shortest period or with the lowest priority is designated as the victim. Once the victim
is determined, the member on which the victim is executing is directed to cancel the
task.

Global deadlock user exits: Two user exits are used in selecting a victim in a
global deadlock situation:

■ Exit #35 is invoked when a group member is collecting information about a
stalled task in order to send it to the global deadlock manager. The exit provides

37-26 CA-IDMS Database Administration

37.7 Deadlocks

the opportunity for a site to collect additional information that may be relevant to
the victim selection process.

■ Exit #36 is invoked by the global deadlock manager when a victim is being
selected. Its function is similar to exit #30, but it is passed different parameters.
Instead of being passed the DCE addresses of two deadlocked tasks, it is passed a
pair of parameters for each task, one of which is the information collected by exit
#35. In this way, site-specific criteria can be used in selecting a victim even
though the deadlocked tasks may be executing on a group member that is different
than that of the global deadlock manager.

�� For details on coding these exits, refer to CA-IDMS System Operations.

Chapter 37. Lock Management 37-27

37.7 Deadlocks

37-28 CA-IDMS Database Administration

 Appendixes

CA-IDMS Database Administration

Appendix A. Sample Physical Database Definition

Appendix A. Sample Physical Database Definition A-1

A-2 CA-IDMS Database Administration

Sample DMCL Definition

-- `` `/

-- `/

-- GLOBAL DMCL FOR CA-IDMS/DB 15.9 BASE INSTALL `/

-- `/

-- `/

-- `` `/

-- ` DEFINE THE FILES & AREAS IN THE SYSTEM SEGMENT `/

ADD SEGMENT SYSTEM

 FOR NONSQL

PAGE GROUP 9

MAXIMUM RECORDS PER PAGE 255

 ;

ADD FILE SYSTEM.DCDML ASSIGN TO DCDML

 DSNAME "SYSTEM.DDLDML";

ADD FILE SYSTEM.DCLOD ASSIGN TO DCLOD

 DSNAME "SYSTEM.DDLDCLOD";

ADD FILE SYSTEM.DCLOG ASSIGN TO DCLOG

 DSNAME "SYSTEM.DDLDCLOG";

ADD FILE SYSTEM.DCRUN ASSIGN TO DCRUN

 DSNAME "SYSTEM.DDLDCRUN";

ADD FILE SYSTEM.DCSCR ASSIGN TO DCSCR

 DSNAME "SYSTEM.DDLDCSCR";

ADD AREA SYSTEM.DDLDML

 PRIMARY SPACE 1999 PAGES FROM PAGE 1991

PAGE SIZE 4276

WITHIN FILE DCDML FROM 1 FOR ALL BLOCKS ;

ADD AREA SYSTEM.DDLDCLOD

PRIMARY SPACE 199 PAGES FROM PAGE 3991

PAGE SIZE 4276

WITHIN FILE DCLOD FROM 1 FOR ALL BLOCKS ;

ADD AREA SYSTEM.DDLDCLOG

 PRIMARY SPACE 4999 PAGES FROM PAGE 39991

PAGE SIZE 4276

WITHIN FILE DCLOG FROM 1 FOR ALL BLOCKS ;

ADD AREA SYSTEM.DDLDCRUN

 PRIMARY SPACE 1999 PAGES FROM PAGE 49991

PAGE SIZE 2676

WITHIN FILE DCRUN FROM 1 FOR ALL BLOCKS ;

ADD AREA SYSTEM.DDLDCSCR

PRIMARY SPACE 2999 PAGES FROM PAGE 59991

PAGE SIZE 2676

WITHIN FILE DCSCR FROM 1 FOR ALL BLOCKS ;

-- ` DEFINE THE CATSYS SEGMENT `/

ADD SEGMENT CATSYS

 FOR NONSQL

PAGE GROUP 9

MAXIMUM RECORDS PER PAGE 255

 ;

Appendix A. Sample Physical Database Definition A-3

ADD FILE CATSYS.DCCAT ASSIGN TO DCCAT

 DSNAME "CATSYS.DCCAT";

ADD FILE CATSYS.DCCATL ASSIGN TO DCCATL

 DSNAME "CATSYS.DCCATLOD";

ADD FILE CATSYS.DCCATX ASSIGN TO DCCATX

 DSNAME "CATSYS.DCCATX";

ADD AREA CATSYS.DDLCAT

 PRIMARY SPACE 399 PAGES FROM PAGE 1

PAGE SIZE 4276

WITHIN FILE DCCAT FROM 1 FOR ALL BLOCKS ;

ADD AREA CATSYS.DDLCATX

PRIMARY SPACE 199 PAGES FROM PAGE 891

PAGE SIZE 4276

WITHIN FILE DCCATX FROM 1 FOR ALL BLOCKS ;

ADD AREA CATSYS.DDLCATLOD

 PRIMARY SPACE 59 PAGES FROM PAGE 991

PAGE SIZE 4276

WITHIN FILE DCCATL FROM 1 FOR ALL BLOCKS ;

-- ` DEFINE THE SYSMSG SEGMENT `/

ADD SEGMENT SYSMSG

 FOR NONSQL

PAGE GROUP 9

MAXIMUM RECORDS PER PAGE 255

 ;

ADD FILE SYSMSG.DCMSG ASSIGN TO DCMSG

 DSNAME "SYSMSG.DDLDCMSG";

ADD AREA SYSMSG.DDLDCMSG

PRIMARY SPACE 4999 PAGES FROM PAGE 19991

PAGE SIZE 4276

WITHIN FILE DCMSG FROM 1 FOR ALL BLOCKS ;

-- ` DEFINE THE SYSLOC SEGMENT `/

ADD SEGMENT SYSLOC

 FOR NONSQL

PAGE GROUP 9

MAXIMUM RECORDS PER PAGE 255

 ;

ADD FILE SYSLOC.DCLSCR ASSIGN TO DCLSCR;

--

ADD AREA SYSLOC.DDLOCSCR

PRIMARY SPACE 2999 PAGES FROM PAGE 55991

PAGE SIZE 2676

WITHIN FILE DCLSCR FROM 1 FOR ALL BLOCKS ;

A-4 CA-IDMS Database Administration

-- ` DEFINE THE SYSDIRL SEGMENT ` `/

ADD SEGMENT SYSDIRL

 FOR NONSQL

PAGE GROUP 9

MAXIMUM RECORDS PER PAGE 255

 ;

ADD FILE SYSDIRL.DIRLDB ASSIGN TO DIRLDB

 DSNAME "SYSDIRL.DDLDML";

ADD AREA SYSDIRL.DDLDML

PRIMARY SPACE 2999 PAGES FROM PAGE 5991

PAGE SIZE 4276

WITHIN FILE DIRLDB FROM 1 FOR ALL BLOCKS ;

ADD FILE SYSDIRL.DDLDCLOD ASSIGN TO DIRLLOD

 DSNAME "SYSDIRL.DDLDCLOD";

ADD AREA SYSDIRL.DDLDCLOD

PRIMARY SPACE 19 PAGES FROM PAGE 4991

PAGE SIZE 4276

WITHIN FILE DIRLLOD FROM 1 FOR ALL BLOCKS ;

-- ` DEFINE THE SYSUSER SEGMENT ` `/

ADD SEGMENT SYSUSER

 FOR NONSQL

STAMP BY AREA;

ADD FILE SYSUSER.SECDD ASSIGN TO SECDD

 DSNAME "SYSUSER.DDLDCSEC";

ADD AREA SYSUSER.DDLSEC

PRIMARY SPACE 599 PAGES FROM PAGE 48991

PAGE SIZE 4276

WITHIN FILE SECDD FROM 1 FOR ALL BLOCKS ;

-- ` DEFINE THE APPLDICT SEGMENT ` `/

ADD SEGMENT APPLDICT

 FOR NONSQL

PAGE GROUP 9

MAXIMUM RECORDS PER PAGE 255

 ;

ADD FILE APPLDICT.DICTDB ASSIGN TO DICTDB

 DSNAME "APPLDICT.DDLDDML";

ADD FILE APPLDICT.DLODDB ASSIGN TO DLODDB

 DSNAME "APPLDICT.DDLDCLOD";

ADD AREA APPLDICT.DDLDML

 PRIMARY SPACE 2999 PAGES FROM PAGE 69991

PAGE SIZE 4276

WITHIN FILE DICTDB FROM 1 FOR ALL BLOCKS ;

Appendix A. Sample Physical Database Definition A-5

ADD AREA APPLDICT.DDLDCLOD

 PRIMARY SPACE 599 PAGES FROM PAGE 79991

PAGE SIZE 4276

WITHIN FILE DLODDB FROM 1 FOR ALL BLOCKS ;

-- ` DEFINE THE EMPDEMO SEGMENT ` `/

ADD SEGMENT EMPDEMO

 FOR NONSQL

PAGE GROUP 9

MAXIMUM RECORDS PER PAGE 255

 ;

ADD FILE EMPDEMO.EMPDEMO ASSIGN TO EMPDEMO

 DSNAME "EMPDEMO.EMPDEMO";

ADD FILE EMPDEMO.INSDEMO ASSIGN TO INSDEMO

 DSNAME "EMPDEMO.INSDEMO";

ADD FILE EMPDEMO.ORGDEMO ASSIGN TO ORGDEMO

 DSNAME "EMPDEMO.ORGDEMO";

ADD AREA EMPDEMO.EMP-DEMO-REGION

PRIMARY SPACE 59 PAGES FROM PAGE 75991

PAGE SIZE 4276

WITHIN FILE EMPDEMO FROM 1 FOR ALL BLOCKS ;

ADD AREA EMPDEMO.INS-DEMO-REGION

PRIMARY SPACE 25 PAGES FROM PAGE 75191

PAGE SIZE 4276

WITHIN FILE INSDEMO FROM 1 FOR ALL BLOCKS ;

ADD AREA EMPDEMO.ORG-DEMO-REGION

PRIMARY SPACE 25 PAGES FROM PAGE 75151

PAGE SIZE 4276

WITHIN FILE ORGDEMO FROM 1 FOR ALL BLOCKS ;

-- ` DEFINE THE ASFDICT SEGMENT ` `/

ADD SEGMENT ASFDICT

 FOR NONSQL

PAGE GROUP 9

MAXIMUM RECORDS PER PAGE 255

 ;

ADD FILE ASFDICT.ASFDML ASSIGN TO ASFDML

 DSNAME "ASFDICT.DDLDML";

ADD FILE ASFDICT.ASFLOD ASSIGN TO ASFLOD

 DSNAME "ASFDICT.DDLDCLOD";

ADD FILE ASFDICT.ADEFN ASSIGN TO ADEFN

 DSNAME "ASFDICT.ASFDEFN";

ADD FILE ASFDICT.ADATA ASSIGN TO ADATA

 DSNAME "ASFDICT.ASFDATA";

ADD AREA ASFDICT.DDLDML

 PRIMARY SPACE 2999 PAGES FROM PAGE 89991

PAGE SIZE 4276

WITHIN FILE ASFDML FROM 1 FOR ALL BLOCKS ;

A-6 CA-IDMS Database Administration

ADD AREA ASFDICT.DDLDCLOD

PRIMARY SPACE 2999 PAGES FROM PAGE 83991

PAGE SIZE 4276

WITHIN FILE ASFLOD FROM 1 FOR ALL BLOCKS ;

ADD AREA ASFDICT.IDMSR-AREA

PRIMARY SPACE 1999 PAGES FROM PAGE 85991

PAGE SIZE 4276

WITHIN FILE ASFDEFN FROM 1 FOR ALL BLOCKS ;

ADD AREA ASFDICT.IDMSR-AREA2

PRIMARY SPACE 2999 PAGES FROM PAGE 88991

PAGE SIZE 4276

WITHIN FILE ASFDATA FROM 1 FOR ALL BLOCKS ;

-- ` DEFINE THE SYSSQL SEGMENT ` `/

ADD SEGMENT SYSSQL

 FOR SQL

STAMP BY AREA;

ADD FILE SYSSQL.SQLDD ASSIGN TO SQLDD

 DSNAME "SYSSQL.DDLCAT";

ADD FILE SYSSQL.SQLXDD ASSIGN TO SQLXDD

 DSNAME "SYSSQL.DDLCATX";

ADD FILE SYSSQL.SQLLOD ASSIGN TO SQLLOD

 DSNAME "SYSSQL.DDLCATLOD";

ADD AREA SYSSQL.DDLCAT

PRIMARY SPACE 2999 PAGES FROM PAGE 29991

PAGE SIZE 4276

WITHIN FILE SQLDD FROM 1 FOR ALL BLOCKS ;

ADD AREA SYSSQL.DDLCATX

PRIMARY SPACE 599 PAGES FROM PAGE 25991

PAGE SIZE 4276

WITHIN FILE SQLXDD FROM 1 FOR ALL BLOCKS ;

ADD AREA SYSSQL.DDLCATLOD

PRIMARY SPACE 599 PAGES FROM PAGE 28991

PAGE SIZE 4276

WITHIN FILE SQLLOD FROM 1 FOR ALL BLOCKS ;

-- ` DEFINE THE SQLDEMO SEGMENT ` `/

ADD SEGMENT SQLDEMO

 FOR SQL

STAMP BY AREA;

ADD FILE SQLDEMO.EMPLDEMO ASSIGN TO EMPLDEMO

 DSNAME "SQLDEMO.EMPLDEMO";

ADD FILE SQLDEMO.INFODEMO ASSIGN TO INFODEMO

 DSNAME "SQLDEMO.INFODEMO";

ADD FILE SQLDEMO.INDXDEMO ASSIGN TO INDXDEMO

 DSNAME "SQLDEMO.INDXDEMO";

Appendix A. Sample Physical Database Definition A-7

ADD AREA SQLDEMO.EMPLAREA

PRIMARY SPACE 199 PAGES FROM PAGE 77991

PAGE SIZE 4276

WITHIN FILE EMPLDEMO FROM 1 FOR ALL BLOCKS ;

ADD AREA SQLDEMO.INFOAREA

PRIMARY SPACE 59 PAGES FROM PAGE 77291

PAGE SIZE 4276

WITHIN FILE INFODEMO FROM 1 FOR ALL BLOCKS ;

ADD AREA SQLDEMO.INDXAREA

PRIMARY SPACE 59 PAGES FROM PAGE 77391

PAGE SIZE 4276

WITHIN FILE INDXDEMO FROM 1 FOR ALL BLOCKS ;

-- ` DEFINE THE PROJSEG SEGMENT ` `/

ADD SEGMENT PROJSEG

 FOR SQL

STAMP BY AREA;

ADD FILE PROJSEG.PROJDEMO ASSIGN TO PROJDEMO

 DSNAME "PROJSEG.PROJDEMO";

ADD AREA PROJSEG.PROJAREA

PRIMARY SPACE 59 PAGES FROM PAGE 77491

PAGE SIZE 4276

WITHIN FILE PROJDEMO FROM 1 FOR ALL BLOCKS ;

ADD DMCL R159DMCL;

ADD BUFFER R159DMCL.DEFAULT_BUFFER

PAGE SIZE 4276

LOCAL MODE BUFFER PAGES 29 OPSYS STORAGE

CV MODE BUFFER INITIAL PAGES 39

MAXIMUM PAGES 59 ;

ADD BUFFER R159DMCL.LOG_BUFFER

PAGE SIZE 4276

LOCAL MODE BUFFER PAGES 5 IDMS STORAGE

CV MODE BUFFER INITIAL PAGES 5

MAXIMUM PAGES 5 ;

ADD JOURNAL BUFFER R159DMCL.JNL_BUFFER

PAGE SIZE 2994

BUFFER PAGES 5 ;

A-8 CA-IDMS Database Administration

ADD DISK JOURNAL R159DMCL.J1JRNL

FILE SIZE 1999

ASSIGN TO J1JRNL;

ADD DISK JOURNAL R159DMCL.J2JRNL

FILE SIZE 1999

ASSIGN TO J2JRNL;

ADD DISK JOURNAL R159DMCL.J3JRNL

FILE SIZE 1999

ASSIGN TO J3JRNL;

ADD DISK JOURNAL R159DMCL.J4JRNL

FILE SIZE 1999

ASSIGN TO J4JRNL;

ADD ARCHIVE JOURNAL R159DMCL.SYSJRNL

BLOCK SIZE 19968

ASSIGN TO SYSJRNL;

MODIFY DMCL R159DMCL

DEFAULT BUFFER DEFAULT_BUFFER

 DBTABLE R159DBTB

INCLUDE SEGMENT SYSTEM

 FILE SYSTEM.DCSCR

 BUFFER DEFAULT_BUFFER

 FILE SYSTEM.DCLOG

 BUFFER LOG_BUFFER

 AREA SYSTEM.DDLDCLOD

ON STARTUP SET STATUS TO UPDATE

INCLUDE SEGMENT SYSLOC

 FILE SYSLOC.DCLSCR

 BUFFER DEFAULT_BUFFER

INCLUDE SEGMENT SYSMSG

ON STARTUP SET STATUS TO RETRIEVAL

INCLUDE SEGMENT SYSUSER

ON STARTUP SET STATUS TO UPDATE

INCLUDE SEGMENT APPLDICT

ON STARTUP SET STATUS TO UPDATE

INCLUDE SEGMENT SYSDIRL

ON STARTUP SET STATUS TO UPDATE

INCLUDE SEGMENT ASFDICT

INCLUDE SEGMENT SYSSQL

INCLUDE SEGMENT SQLDEMO

INCLUDE SEGMENT PROJSEG

INCLUDE SEGMENT EMPDEMO

INCLUDE SEGMENT CATSYS

 ;

Appendix A. Sample Physical Database Definition A-9

A-10 CA-IDMS Database Administration

Appendix B. Sample SQL Database Definition

Appendix B. Sample SQL Database Definition B-1

B-2 CA-IDMS Database Administration

Sample Database Definition

CREATE SCHEMA DEMOEMPL;

SET SESSION CURRENT SCHEMA DEMOEMPL;

 CREATE TABLE BENEFITS

 (FISCAL_YEAR UNSIGNED NUMERIC(4,9) NOT NULL,

 EMP_ID UNSIGNED NUMERIC(4,9) NOT NULL,

VAC_ACCRUED UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,

VAC_TAKEN UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,

SICK_ACCRUED UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,

SICK_TAKEN UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,

STOCK_PERCENT UNSIGNED DECIMAL(6,3) NOT NULL WITH DEFAULT,

STOCK_AMOUNT UNSIGNED DECIMAL(19,2) NOT NULL WITH DEFAULT,

 LAST_REVIEW_DATE DATE ,

 REVIEW_PERCENT UNSIGNED DECIMAL(6,3) ,

 PROMO_DATE DATE ,

 RETIRE_PLAN CHAR(6) ,

 RETIRE_PERCENT UNSIGNED DECIMAL(6,3) ,

 BONUS_AMOUNT UNSIGNED DECIMAL(19,2) ,

COMP_ACCRUED UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,

COMP_TAKEN UNSIGNED DECIMAL(6,2) NOT NULL WITH DEFAULT,

 EDUC_LEVEL CHAR(96) ,

 UNION_ID CHAR(19) ,

 UNION_DUES UNSIGNED DECIMAL(19,2) ,

CHECK ((RETIRE_PLAN IN ('STOCK', 'BONDS', '491K')) AND

(EDUC_LEVEL IN ('GED', 'HSDIP', 'JRCOLL', 'COLL',

'MAS', 'PHD'))))

 IN SQLDEMO.EMPLAREA;

 CREATE TABLE COVERAGE

 (PLAN_CODE CHAR(93) NOT NULL,

 EMP_ID UNSIGNED NUMERIC(4,9) NOT NULL,

SELECTION_DATE DATE NOT NULL WITH DEFAULT,

 TERMINATION_DATE DATE ,

NUM_DEPENDENTS UNSIGNED NUMERIC(2,9) NOT NULL WITH DEFAULT)

 IN SQLDEMO.EMPLAREA;

Appendix B. Sample SQL Database Definition B-3

 CREATE TABLE DEPARTMENT

 (DEPT_ID UNSIGNED NUMERIC(4,9) NOT NULL,

 DEPT_HEAD_ID UNSIGNED NUMERIC(4,9) ,

 DIV_CODE CHAR(93) NOT NULL,

 DEPT_NAME CHAR(49) NOT NULL)

 IN SQLDEMO.INFOAREA;

 CREATE TABLE DIVISION

 (DIV_CODE CHAR(93) NOT NULL,

 DIV_HEAD_ID UNSIGNED NUMERIC(4,9) ,

 DIV_NAME CHAR(49) NOT NULL)

 IN SQLDEMO.INFOAREA;

 CREATE TABLE EMPLOYEE

 (EMP_ID UNSIGNED NUMERIC(4,9) NOT NULL,

 MANAGER_ID UNSIGNED NUMERIC(4,9) ,

 EMP_FNAME CHAR(29) NOT NULL,

 EMP_LNAME CHAR(29) NOT NULL,

 DEPT_ID UNSIGNED NUMERIC(4,9) NOT NULL,

 STREET CHAR(49) NOT NULL,

 CITY CHAR(29) NOT NULL,

 STATE CHAR(92) NOT NULL,

 ZIP_CODE CHAR(99) NOT NULL,

 PHONE CHAR(19) ,

 STATUS CHAR NOT NULL,

 SS_NUMBER UNSIGNED NUMERIC(9,9) NOT NULL,

 START_DATE DATE NOT NULL,

 TERMINATION_DATE DATE ,

 BIRTH_DATE DATE ,

CHECK ((EMP_ID <= 8999) AND (STATUS IN ('A', 'S', 'L', 'T'))))

 IN SQLDEMO.EMPLAREA;

 CREATE TABLE INSURANCE_PLAN

 (PLAN_CODE CHAR(93) NOT NULL,

 COMP_NAME CHAR(49) NOT NULL,

 STREET CHAR(49) NOT NULL,

 CITY CHAR(29) NOT NULL,

 STATE CHAR(92) NOT NULL,

 ZIP_CODE CHAR(99) NOT NULL,

 PHONE CHAR(19) NOT NULL,

 GROUP_NUMBER UNSIGNED NUMERIC(4,9) NOT NULL,

 DEDUCT UNSIGNED DECIMAL(9,2) ,

 MAX_LIFE_BENEFIT UNSIGNED DECIMAL(9,2) ,

 FAMILY_COST UNSIGNED DECIMAL(9,2) ,

 DEP_COST UNSIGNED DECIMAL(9,2) ,

 EFF_DATE DATE NOT NULL)

 IN SQLDEMO.INFOAREA;

B-4 CA-IDMS Database Administration

 CREATE TABLE JOB

 (JOB_ID UNSIGNED NUMERIC(4,9) NOT NULL,

 JOB_TITLE CHAR(29) NOT NULL,

 MIN_RATE UNSIGNED DECIMAL(19,2) ,

 MAX_RATE UNSIGNED DECIMAL(19,2) ,

 SALARY_IND CHAR(91) ,

 NUM_OF_POSITIONS UNSIGNED DECIMAL(4,9) ,

 EFF_DATE DATE ,

 JOB_DESC_LINE_1 VARCHAR(69) ,

 JOB_DESC_LINE_2 VARCHAR(69) ,

CHECK (SALARY_IND IN ('S', 'H')))

 IN SQLDEMO.INFOAREA;

 CREATE TABLE POSITION

 (EMP_ID UNSIGNED NUMERIC(4,9) NOT NULL,

 JOB_ID UNSIGNED NUMERIC(4,9) NOT NULL,

 START_DATE DATE NOT NULL,

 FINISH_DATE DATE ,

 HOURLY_RATE UNSIGNED DECIMAL(7,2) ,

 SALARY_AMOUNT UNSIGNED DECIMAL(19,2) ,

 BONUS_PERCENT UNSIGNED DECIMAL(7,3) ,

 COMM_PERCENT UNSIGNED DECIMAL(7,3) ,

 OVERTIME_RATE UNSIGNED DECIMAL(5,2) ,

CHECK ((HOURLY_RATE IS NOT NULL AND SALARY_AMOUNT IS NULL)

OR (HOURLY_RATE IS NULL AND SALARY_AMOUNT IS NOT NULL)))

 IN SQLDEMO.EMPLAREA;

 CREATE SCHEMA DEMOPROJ;

SET SESSION CURRENT SCHEMA DEMOPROJ;

 CREATE TABLE ASSIGNMENT

 (EMP_ID UNSIGNED NUMERIC(4,9) NOT NULL,

 PROJ_ID CHAR(19) NOT NULL,

 START_DATE DATE NOT NULL,

 END_DATE DATE)

 IN PROJSEG.PROJAREA;

Appendix B. Sample SQL Database Definition B-5

 CREATE TABLE CONSULTANT

 (CON_ID UNSIGNED NUMERIC(4,9) NOT NULL,

 CON_FNAME CHAR(29) NOT NULL,

 CON_LNAME CHAR(29) NOT NULL,

 MANAGER_ID UNSIGNED NUMERIC(4,9) NOT NULL,

 DEPT_ID UNSIGNED NUMERIC(4,9) NOT NULL,

 PROJ_ID CHAR(19) ,

 STREET CHAR(49) ,

 CITY CHAR(29) NOT NULL,

 STATE CHAR(92) NOT NULL,

 ZIP_CODE CHAR(99) NOT NULL,

 PHONE CHAR(19) ,

 BIRTH_DATE DATE ,

 START_DATE DATE NOT NULL,

 SS_NUMBER UNSIGNED NUMERIC(9,9) NOT NULL,

 RATE UNSIGNED DECIMAL(7,2) ,

CHECK ((CON_ID >= 9999 AND CON_ID <= 9999)))

 IN PROJSEG.PROJAREA;

 CREATE TABLE EXPERTISE

 (EMP_ID UNSIGNED NUMERIC(4,9) NOT NULL,

 SKILL_ID UNSIGNED NUMERIC(4,9) NOT NULL,

 SKILL_LEVEL CHAR(92) ,

 EXP_DATE DATE)

 IN PROJSEG.PROJAREA;

 CREATE TABLE PROJECT

 (PROJ_ID CHAR(19) NOT NULL,

 PROJ_LEADER_ID UNSIGNED NUMERIC(4,9) ,

 EST_START_DATE DATE ,

 EST_END_DATE DATE ,

 ACT_START_DATE DATE ,

 ACT_END_DATE DATE ,

 EST_MAN_HOURS UNSIGNED DECIMAL(7,2) ,

 ACT_MAN_HOURS UNSIGNED DECIMAL(7,2) ,

 PROJ_DESC VARCHAR(69) NOT NULL)

 IN PROJSEG.PROJAREA;

 CREATE TABLE SKILL

 (SKILL_ID UNSIGNED NUMERIC(4,9) NOT NULL,

 SKILL_NAME CHAR(29) NOT NULL,

 SKILL_DESC VARCHAR(69))

 IN PROJSEG.PROJAREA;

B-6 CA-IDMS Database Administration

CREATE UNIQUE CALC KEY ON DEMOEMPL.DEPARTMENT(DEPT_ID);

CREATE UNIQUE CALC KEY ON DEMOEMPL.DIVISION(DIV_CODE);

CREATE UNIQUE CALC KEY ON DEMOEMPL.EMPLOYEE(EMP_ID);

CREATE UNIQUE CALC KEY ON DEMOEMPL.INSURANCE_PLAN(PLAN_CODE);

CREATE UNIQUE CALC KEY ON DEMOEMPL.JOB(JOB_ID);

CREATE UNIQUE CALC KEY ON DEMOPROJ.CONSULTANT(CON_ID);

CREATE UNIQUE CALC KEY ON DEMOPROJ.PROJECT(PROJ_ID);

CREATE UNIQUE CALC KEY ON DEMOPROJ.SKILL(SKILL_ID);

CREATE UNIQUE INDEX AS_EMPROJ_NDX ON

 DEMOPROJ.ASSIGNMENT(EMP_ID,PROJ_ID);

CREATE UNIQUE INDEX EX_EMPSKILL_NDX ON

 DEMOPROJ.EXPERTISE(EMP_ID, SKILL_ID);

CREATE INDEX CO_CODE_NDX ON DEMOEMPL.COVERAGE(PLAN_CODE)

 IN SQLDEMO.INDXAREA;

CREATE INDEX DE_CODE_NDX ON DEMOEMPL.DEPARTMENT(DIV_CODE);

CREATE INDEX DI_HEAD_NDX ON DEMOEMPL.DIVISION(DIV_HEAD_ID);

CREATE INDEX DE_HEAD_NDX ON DEMOEMPL.DEPARTMENT(DEPT_HEAD_ID);

CREATE INDEX EM_MANAGER_NDX ON DEMOEMPL.EMPLOYEE(MANAGER_ID)

 IN SQLDEMO.INDXAREA;

Appendix B. Sample SQL Database Definition B-7

CREATE INDEX EM_NAME_NDX ON DEMOEMPL.EMPLOYEE(EMP_LNAME, EMP_FNAME)

 IN SQLDEMO.INDXAREA;

CREATE INDEX EM_DEPT_NDX ON DEMOEMPL.EMPLOYEE(DEPT_ID)

 IN SQLDEMO.INDXAREA;

CREATE INDEX IN_NAME_NDX ON DEMOEMPL.INSURANCE_PLAN(COMP_NAME)

 COMPRESSED;

CREATE INDEX PO_JOB_NDX ON DEMOEMPL.POSITION(JOB_ID)

 IN SQLDEMO.INDXAREA;

 CREATE INDEX CN_NAME_NDX ON DEMOPROJ.CONSULTANT(CON_LNAME,CON_FNAME);

CREATE CONSTRAINT EMP_BENEFITS

DEMOEMPL.BENEFITS (EMP_ID) REFERENCES

 DEMOEMPL.EMPLOYEE (EMP_ID)

 LINKED CLUSTERED

ORDER BY (FISCAL_YEAR DESC);

CREATE CONSTRAINT INSPLAN_COVERAGE

 DEMOEMPL.COVERAGE (PLAN_CODE) REFERENCES

 DEMOEMPL.INSURANCE_PLAN (PLAN_CODE)

 UNLINKED;

CREATE CONSTRAINT EMP_COVERAGE

 DEMOEMPL.COVERAGE (EMP_ID) REFERENCES

 DEMOEMPL.EMPLOYEE (EMP_ID)

 LINKED CLUSTERED

ORDER BY (PLAN_CODE) UNIQUE;

CREATE CONSTRAINT DIVISION_DEPT

DEMOEMPL.DEPARTMENT (DIV_CODE) REFERENCES

 DEMOEMPL.DIVISION (DIV_CODE)

 UNLINKED;

B-8 CA-IDMS Database Administration

CREATE CONSTRAINT EMP_DEPT_HEAD

DEMOEMPL.DEPARTMENT (DEPT_HEAD_ID) REFERENCES

 DEMOEMPL.EMPLOYEE (EMP_ID)

 UNLINKED;

CREATE CONSTRAINT EMP_DIV_HEAD

DEMOEMPL.DIVISION (DIV_HEAD_ID) REFERENCES

 DEMOEMPL.EMPLOYEE (EMP_ID)

 UNLINKED;

CREATE CONSTRAINT DEPT_EMPLOYEE

 DEMOEMPL.EMPLOYEE (DEPT_ID) REFERENCES

 DEMOEMPL.DEPARTMENT (DEPT_ID)

 UNLINKED;

CREATE CONSTRAINT MANAGER_EMP

DEMOEMPL.EMPLOYEE (MANAGER_ID) REFERENCES

 DEMOEMPL.EMPLOYEE (EMP_ID)

 UNLINKED;

CREATE CONSTRAINT SKILL_EXPERTISE

DEMOPROJ.EXPERTISE (SKILL_ID) REFERENCES

 DEMOPROJ.SKILL (SKILL_ID)

 LINKED CLUSTERED;

CREATE CONSTRAINT EMP_POSITION

DEMOEMPL.POSITION (EMP_ID) REFERENCES

 DEMOEMPL.EMPLOYEE (EMP_ID)

 LINKED CLUSTERED

ORDER BY (JOB_ID) UNIQUE;

CREATE CONSTRAINT JOB_POSITION

DEMOEMPL.POSITION (JOB_ID) REFERENCES

 DEMOEMPL.JOB (JOB_ID)

 UNLINKED;

CREATE CONSTRAINT PROJECT_ASSIGN

DEMOPROJ.ASSIGNMENT (PROJ_ID) REFERENCES

 DEMOPROJ.PROJECT (PROJ_ID)

 LINKED CLUSTERED;

CREATE CONSTRAINT PROJECT_CONSULT

DEMOPROJ.CONSULTANT (PROJ_ID) REFERENCES

 DEMOPROJ.PROJECT (PROJ_ID)

LINKED INDEX ORDER BY (PROJ_ID);

ALTER TABLE DEMOEMPL.COVERAGE

DROP DEFAULT INDEX;

ALTER TABLE DEMOEMPL.DEPARTMENT

DROP DEFAULT INDEX;

ALTER TABLE DEMOEMPL.DIVISION

DROP DEFAULT INDEX;

ALTER TABLE DEMOEMPL.EMPLOYEE

DROP DEFAULT INDEX;

Appendix B. Sample SQL Database Definition B-9

ALTER TABLE DEMOEMPL.INSURANCE_PLAN

DROP DEFAULT INDEX;

ALTER TABLE DEMOEMPL.POSITION

DROP DEFAULT INDEX;

ALTER TABLE DEMOPROJ.ASSIGNMENT

DROP DEFAULT INDEX;

ALTER TABLE DEMOPROJ.CONSULTANT

DROP DEFAULT INDEX;

ALTER TABLE DEMOPROJ.EXPERTISE

DROP DEFAULT INDEX;

CREATE VIEW DEMOEMPL.EMP_VACATION

(EMP_ID, DEPT_ID, VAC_TIME)

AS SELECT E.EMP_ID, DEPT_ID, SUM(VAC_ACCRUED) - SUM(VAC_TAKEN)

FROM DEMOEMPL.EMPLOYEE E, DEMOEMPL.BENEFITS B

WHERE E.EMP_ID = B.EMP_ID

GROUP BY DEPT_ID, E.EMP_ID;

CREATE VIEW DEMOEMPL.OPEN_POSITIONS

(JOB_ID, JOB_NAME, OPEN_POS)

AS SELECT J.JOB_ID, J.JOB_TITLE,

(J.NUM_OF_POSITIONS - COUNT(P.JOB_ID))

FROM DEMOEMPL.JOB J, DEMOEMPL.POSITION P

WHERE P.FINISH_DATE IS NULL AND P.JOB_ID = J.JOB_ID

 PRESERVE DEMOEMPL.JOB

GROUP BY J.JOB_ID, J.JOB_TITLE, J.NUM_OF_POSITIONS

HAVING (J.NUM_OF_POSITIONS - COUNT(P.JOB_ID)) > 9;

CREATE VIEW DEMOEMPL.EMP_HOME_INFO

AS SELECT EMP_ID, EMP_LNAME, EMP_FNAME, STREET, CITY, STATE,

 ZIP_CODE, PHONE

 FROM DEMOEMPL.EMPLOYEE;

CREATE VIEW DEMOEMPL.EMP_WORK_INFO

AS SELECT EMP_ID, MANAGER_ID, START_DATE, TERMINATION_DATE

 FROM DEMOEMPL.EMPLOYEE;

B-10 CA-IDMS Database Administration

Appendix C. Sample Non-SQL Database Definition

Appendix C. Sample Non-SQL Database Definition C-1

C-2 CA-IDMS Database Administration

Sample Database Schema Definition

ADD SCHEMA NAME IS EMPSCHM VERSION IS 199

SCHEMA DESCRIPTION IS 'EMPLOYEE DEMO DATABASE'

COMMENTS 'INSTALLATION: COMMONWEATHER CORPORATION'

 .

ADD AREA NAME IS EMP-DEMO-REGION

 .

ADD AREA NAME IS ORG-DEMO-REGION

 .

ADD AREA NAME IS INS-DEMO-REGION

 .

ADD RECORD NAME IS COVERAGE

SHARE STRUCTURE OF RECORD COVERAGE VERSION IS 199

RECORD ID IS 9499

LOCATION MODE IS VIA EMP-COVERAGE SET

WITHIN AREA INS-DEMO-REGION

OFFSET 5 PAGES FOR 45 PAGES

 .

ADD RECORD NAME IS DENTAL-CLAIM

SHARE STRUCTURE OF RECORD DENTAL-CLAIM VERSION IS 199

RECORD ID IS 9495

LOCATION MODE IS VIA COVERAGE-CLAIMS SET

WITHIN AREA INS-DEMO-REGION

OFFSET 5 PAGES FOR 45 PAGES

MINIMUM ROOT LENGTH IS 139 CHARACTERS

MINIMUM FRAGMENT LENGTH IS RECORD LENGTH

 .

ADD RECORD NAME IS DEPARTMENT

SHARE STRUCTURE OF RECORD DEPARTMENT VERSION IS 199

RECORD ID IS 9419

LOCATION MODE IS CALC USING DEPT-ID-9419

DUPLICATES NOT ALLOWED

WITHIN AREA ORG-DEMO-REGION

OFFSET 5 PAGES FOR 45 PAGES

 .

ADD RECORD NAME IS EMPLOYEE

SHARE STRUCTURE OF RECORD EMPLOYEE VERSION IS 199

RECORD ID IS 9415

LOCATION MODE IS CALC USING EMP-ID-9415

DUPLICATES NOT ALLOWED

WITHIN AREA EMP-DEMO-REGION

OFFSET 5 PAGES FOR 95 PAGES

 .

ADD RECORD NAME IS EMPOSITION

SHARE STRUCTURE OF RECORD EMPOSITION VERSION IS 199

RECORD ID IS 9429

LOCATION MODE IS VIA EMP-EMPOSITION SET

WITHIN AREA EMP-DEMO-REGION

OFFSET 5 PAGES FOR 95 PAGES

 .

Appendix C. Sample Non-SQL Database Definition C-3

ADD RECORD NAME IS EXPERTISE

SHARE STRUCTURE OF RECORD EXPERTISE VERSION IS 199

RECORD ID IS 9425

LOCATION MODE IS VIA EMP-EXPERTISE SET

WITHIN AREA EMP-DEMO-REGION

OFFSET 5 PAGES FOR 95 PAGES

 .

ADD RECORD NAME IS HOSPITAL-CLAIM

SHARE STRUCTURE OF RECORD HOSPITAL-CLAIM VERSION IS 199

RECORD ID IS 9439

LOCATION MODE IS VIA COVERAGE-CLAIMS SET

WITHIN AREA INS-DEMO-REGION

OFFSET 5 PAGES FOR 45 PAGES

 .

ADD RECORD NAME IS INSURANCE-PLAN

SHARE STRUCTURE OF RECORD INSURANCE-PLAN VERSION IS 199

RECORD ID IS 9435

LOCATION MODE IS CALC USING INS-PLAN-CODE-9435

DUPLICATES NOT ALLOWED

WITHIN AREA INS-DEMO-REGION

OFFSET 1 PAGE FOR 4 PAGES

 .

ADD RECORD NAME IS JOB

SHARE STRUCTURE OF RECORD JOB VERSION IS 199

RECORD ID IS 9449

LOCATION MODE IS CALC USING JOB-ID-9449

DUPLICATES NOT ALLOWED

WITHIN AREA ORG-DEMO-REGION

OFFSET 5 PAGES FOR 45 PAGES

MINIMUM ROOT LENGTH IS CONTROL LENGTH

MINIMUM FRAGMENT LENGTH IS RECORD LENGTH

CALL IDMSCOMP BEFORE STORE

CALL IDMSCOMP BEFORE MODIFY

CALL IDMSDCOM AFTER GET

 .

C-4 CA-IDMS Database Administration

ADD RECORD NAME IS NON-HOSP-CLAIM

SHARE STRUCTURE OF RECORD NON-HOSP-CLAIM VERSION IS 199

RECORD ID IS 9445

LOCATION MODE IS VIA COVERAGE-CLAIMS SET

WITHIN AREA INS-DEMO-REGION

OFFSET 5 PAGES FOR 45 PAGES

MINIMUM ROOT LENGTH IS 248 CHARACTERS

MINIMUM FRAGMENT LENGTH IS RECORD LENGTH

 .

ADD RECORD NAME IS OFFICE

SHARE STRUCTURE OF RECORD OFFICE VERSION IS 199

RECORD ID IS 9459

LOCATION MODE IS CALC USING OFFICE-CODE-9459

DUPLICATES NOT ALLOWED

WITHIN AREA ORG-DEMO-REGION

OFFSET 5 PAGES FOR 45 PAGES

 .

ADD RECORD NAME IS SKILL

SHARE STRUCTURE OF RECORD SKILL VERSION IS 199

RECORD ID IS 9455

LOCATION MODE IS CALC USING SKILL-ID-9455

DUPLICATES NOT ALLOWED

WITHIN AREA ORG-DEMO-REGION

OFFSET 5 PAGES FOR 45 PAGES

 .

ADD RECORD NAME IS STRUCTURE

SHARE STRUCTURE OF RECORD STRUCTURE VERSION IS 199

RECORD ID IS 9469

LOCATION MODE IS VIA MANAGES SET

WITHIN AREA EMP-DEMO-REGION

OFFSET 5 PAGES FOR 95 PAGES

 .

ADD SET NAME IS COVERAGE-CLAIMS

ORDER IS LAST

MODE IS CHAIN LINKED TO PRIOR

OWNER IS COVERAGE

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

MEMBER IS HOSPITAL-CLAIM

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

MEMBER IS NON-HOSP-CLAIM

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

MEMBER IS DENTAL-CLAIM

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 .

Appendix C. Sample Non-SQL Database Definition C-5

ADD SET NAME IS DEPT-EMPLOYEE

ORDER IS SORTED

MODE IS CHAIN LINKED TO PRIOR

OWNER IS DEPARTMENT

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

MEMBER IS EMPLOYEE

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

LINKED TO OWNER

OWNER DBKEY POSITION IS AUTO

 OPTIONAL AUTOMATIC

ASCENDING KEY IS (EMP-LAST-NAME-9415

 EMP-FIRST-NAME-9415)

 DUPLICATES LAST

 .

ADD SET NAME IS EMP-COVERAGE

ORDER IS FIRST

MODE IS CHAIN LINKED TO PRIOR

OWNER IS EMPLOYEE

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

MEMBER IS COVERAGE

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

LINKED TO OWNER

OWNER DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 .

ADD SET NAME IS EMP-EMPOSITION

ORDER IS FIRST

MODE IS CHAIN LINKED TO PRIOR

OWNER IS EMPLOYEE

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

MEMBER IS EMPOSITION

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

LINKED TO OWNER

OWNER DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 .

C-6 CA-IDMS Database Administration

ADD SET NAME IS EMP-EXPERTISE

ORDER IS SORTED

MODE IS CHAIN LINKED TO PRIOR

OWNER IS EMPLOYEE

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

MEMBER IS EXPERTISE

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

LINKED TO OWNER

OWNER DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

DESCENDING KEY IS (SKILL-LEVEL-9425)

 DUPLICATES FIRST

 .

ADD SET NAME IS EMP-NAME-NDX

ORDER IS SORTED

MODE IS INDEX BLOCK CONTAINS 49 KEYS

OWNER IS SYSTEM

WITHIN AREA EMP-DEMO-REGION

OFFSET 1 PAGE FOR 4 PAGES

MEMBER IS EMPLOYEE

INDEX DBKEY POSITION IS AUTO

 OPTIONAL AUTOMATIC

ASCENDING KEY IS (EMP-LAST-NAME-9415

 EMP-FIRST-NAME-9415)

 COMPRESSED

 DUPLICATES LAST

 .

ADD SET NAME IS JOB-EMPOSITION

ORDER IS NEXT

MODE IS CHAIN LINKED TO PRIOR

OWNER IS JOB

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

MEMBER IS EMPOSITION

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

LINKED TO OWNER

OWNER DBKEY POSITION IS AUTO

 OPTIONAL MANUAL

 .

Appendix C. Sample Non-SQL Database Definition C-7

ADD SET NAME IS JOB-TITLE-NDX

ORDER IS SORTED

MODE IS INDEX BLOCK CONTAINS 39 KEYS

OWNER IS SYSTEM

WITHIN AREA ORG-DEMO-REGION

OFFSET 1 PAGE FOR 4 PAGES

MEMBER IS JOB

INDEX DBKEY POSITION IS AUTO

 OPTIONAL AUTOMATIC

ASCENDING KEY IS (TITLE-9449)

DUPLICATES NOT ALLOWED

 .

ADD SET NAME IS MANAGES

ORDER IS NEXT

MODE IS CHAIN LINKED TO PRIOR

OWNER IS EMPLOYEE

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

MEMBER IS STRUCTURE

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

LINKED TO OWNER

OWNER DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

 .

ADD SET NAME IS OFFICE-EMPLOYEE

ORDER IS SORTED

MODE IS INDEX BLOCK CONTAINS 39 KEYS

OWNER IS OFFICE

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

MEMBER IS EMPLOYEE

INDEX DBKEY POSITION IS AUTO

LINKED TO OWNER

OWNER DBKEY POSITION IS AUTO

 OPTIONAL AUTOMATIC

ASCENDING KEY IS (EMP-LAST-NAME-9415

 EMP-FIRST-NAME-9415)

 COMPRESSED

 DUPLICATES LAST

 .

ADD SET NAME IS REPORTS-TO

ORDER IS NEXT

MODE IS CHAIN LINKED TO PRIOR

OWNER IS EMPLOYEE

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

MEMBER IS STRUCTURE

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

LINKED TO OWNER

OWNER DBKEY POSITION IS AUTO

 OPTIONAL MANUAL

 .

C-8 CA-IDMS Database Administration

ADD SET NAME IS SKILL-EXPERTISE

ORDER IS SORTED

MODE IS INDEX BLOCK CONTAINS 39 KEYS

OWNER IS SKILL

NEXT DBKEY POSITION IS AUTO

PRIOR DBKEY POSITION IS AUTO

MEMBER IS EXPERTISE

INDEX DBKEY POSITION IS AUTO

LINKED TO OWNER

OWNER DBKEY POSITION IS AUTO

 MANDATORY AUTOMATIC

DESCENDING KEY IS (SKILL-LEVEL-9425)

 DUPLICATES FIRST

 .

ADD SET NAME IS SKILL-NAME-NDX

ORDER IS SORTED

MODE IS INDEX BLOCK CONTAINS 39 KEYS

OWNER IS SYSTEM

WITHIN AREA ORG-DEMO-REGION

OFFSET 1 PAGE FOR 4 PAGES

MEMBER IS SKILL

INDEX DBKEY POSITION IS AUTO

 OPTIONAL AUTOMATIC

ASCENDING KEY IS (SKILL-NAME-9455)

DUPLICATES NOT ALLOWED

 .

 VALIDATE

 .

Sample Database Subschema Definition

ADD SUBSCHEMA NAME IS EMPSS91

OF SCHEMA NAME IS EMPSCHM VERSION 199

COMMENTS 'THIS IS THE COMPLETE VIEW OF EMPSCHM'

 .

ADD AREA NAME IS EMP-DEMO-REGION

 .

ADD AREA NAME IS INS-DEMO-REGION

 .

ADD AREA NAME IS ORG-DEMO-REGION

 .

ADD RECORD NAME IS COVERAGE

 .

ADD RECORD NAME IS DENTAL-CLAIM

 .

ADD RECORD NAME IS DEPARTMENT

 .

ADD RECORD NAME IS EMPLOYEE

 .

ADD RECORD NAME IS EMPOSITION

 .

Appendix C. Sample Non-SQL Database Definition C-9

ADD RECORD NAME IS EXPERTISE

 .

ADD RECORD NAME IS HOSPITAL-CLAIM

 .

ADD RECORD NAME IS INSURANCE-PLAN

 .

ADD RECORD NAME IS JOB

 .

ADD RECORD NAME IS NON-HOSP-CLAIM

 .

ADD RECORD NAME IS OFFICE

 .

ADD RECORD NAME IS SKILL

 .

ADD RECORD NAME IS STRUCTURE

 .

ADD SET COVERAGE-CLAIMS

 .

ADD SET DEPT-EMPLOYEE

 .

ADD SET EMP-COVERAGE

 .

ADD SET EMP-EXPERTISE

 .

ADD SET EMP-NAME-NDX

 .

ADD SET EMP-EMPOSITION

 .

ADD SET JOB-EMPOSITION

 .

ADD SET JOB-TITLE-NDX

 .

ADD SET MANAGES

 .

ADD SET OFFICE-EMPLOYEE

 .

ADD SET REPORTS-TO

 .

ADD SET SKILL-EXPERTISE

 .

ADD SET SKILL-NAME-NDX

 .

 GENERATE

 .

C-10 CA-IDMS Database Administration

Appendix D. Native VSAM Considerations

D.1 Native VSAM data set structures . D-4
D.2 CA-IDMS/DB native VSAM definitions . D-5

D.2.1 Schema definition . D-5
D.2.2 DMCL definition . D-6

D.3 DML functions with native VSAM . D-8

Appendix D. Native VSAM Considerations D-1

D-2 CA-IDMS Database Administration

CA-IDMS/DB can access information from native VSAM data sets. A native VSAM
data set is one that is defined to VSAM and contains VSAM records. Although a
native VSAM data set is not structured as a CA-IDMS/DB database, it can be accessed
as if it were.

Note: Native VSAM files are different from database files that have VSAM as an
access method.

This appendix describes:

■ Native VSAM data set structures

■ Schema, segment, and DMCL considerations

■ DML functions that can be used to access native VSAM structures

Appendix D. Native VSAM Considerations D-3

D.1 Native VSAM data set structures

D.1 Native VSAM data set structures

You can structure a native VSAM data set as a key-sequenced data set (KSDS), an
entry-sequenced data set (ESDS), or a relative record data set (RRDS). The following
table lists the characteristics of each data set structure.

Native VSAM data set structures

VSAM
structure &

Access method Record format

KSDS ■ Prime index

 ■ Alternate indexes

Fixed or
variable

Spanned or nonspanned

ESDS ■ Relative byte
address (RBA)

 ■ Alternate indexes

Fixed or
variable

Spanned or nonspanned

RRDS Relative record number Fixed Nonspanned

K KSDS = key-sequenced data set

ESDS = entry-sequenced data set

RRDS = relative record data set

D-4 CA-IDMS Database Administration

D.2 CA-IDMS/DB native VSAM definitions

D.2 CA-IDMS/DB native VSAM definitions

To use native VSAM files in a CA-IDMS environment, you define native VSAM
structures in the schema, segment, and DMCL. Schema, segment, and DMCL
definitions are discussed separately below.

 D.2.1 Schema definition

The schema establishes the correspondences between the logical characteristics of the
native VSAM file and CA-IDMS/DB, as follows:

A file: A CA-IDMS file represents a VSAM cluster or path:

■ A KSDS with a prime index or alternate indexes or both

■ An ESDS with or without alternate indexes

 ■ An RRDS

An area represents a KSDS, ESDS, or RRDS data component. You map one area to
each VSAM file; each area must have a unique page range. The page range is a
function of the VSAM data set structure. For information on how to determine the
page range, see "AREA statements" in Chapter 6, “Physical Database DDL
Statements” on page 6-1.

A schema record: A schema record represents a VSAM data record:

■ All VSAM data records can be represented as a record with a location mode of
VSAM

■ A KSDS with a prime index or alternate indexes and an ESDS with an alternate
index can be represented as a CALC record

A schema set: A schema set represents the index of a VSAM data set and related
records. These sets are sorted and maintained through the following types of native
VSAM data set structures:

■ A KSDS with a prime or alternate index

■ An ESDS with an alternate index

You define sets with alternate indexes in the schema to allow record occurrences with
duplicate sort keys. These record occurrences are retrieved in the order in which the
records were stored, regardless of the order in which the set is searched. For sorted
sets that do not allow duplicate sort keys, you can use any index to maintain the set.

Native VSAM sets allow you to code application programs that:

■ Access a specific record directly by sort key

■ Access records by generic sort key

Appendix D. Native VSAM Considerations D-5

D.2 CA-IDMS/DB native VSAM definitions

■ Process the native VSAM file in sort-key sequence from the start of the file or
from a specified starting point.

Relationships between VSAM and CA-IDMS/DB structures: The schema,
AREA, RECORD, SET, and SET statements, and the segment statements needed to
represent native VSAM structures are listed in the following table.

VSAM structure CA-IDMS/DB
structure

DDL statement

KSDS

ESDS

RRDS

PATH

File CREATE FILE segment.file-name

Data component:

KSDS, ESDS, RRDS
Area Schema definition:

 ADD AREA NAME IS area-name

 ...

Segment definition:

CREATE AREA segment.area-name

 ...

VSAM data record Record ADD RECORD NAME IS record-name

LOCATION MODE IS VSAM

VSAM TYPE IS type

WITHIN AREA area-name.

VSAM data record:

KSDS with prime

or

alternate index

ESDS alternate

index

CALC record ADD RECORD NAME IS record-name

LOCATION MODE IS VSAM

 CALC

 USING calc-element-name

DUPLICATES ARE duplicates-option

VSAM TYPE IS type

WITHIN AREA area-name.

KSDS prime or

alternate index

ESDS alternate

index

Set (sorted by
prime or
alternate key)

ADD SET NAME IS set-name

MODE IS VSAM

INCLUDE MEMBER IS record-name

 MANDATORY AUTOMATIC

ASCENDING KEY IS sort-key-name.

 D.2.2 DMCL definition

The DMCL module establishes the correspondences at runtime between physical
characteristics of the database and the native VSAM files. You describe native VSAM
files to be accessed by CA-IDMS/DB in the DMCL BUFFER statements with the
following:

■ PAGE CONTAINS specifies the size of the largest control interval of any native
VSAM file associated with the buffer

■ BUFFER CONTAINS specifies the number of I/O buffers in the buffer pool to be
used to transfer records between memory and auxiliary storage

D-6 CA-IDMS Database Administration

D.2 CA-IDMS/DB native VSAM definitions

■ NATIVE VSAM specifies that the buffer pool is for use exclusively with native
VSAM files

Appendix D. Native VSAM Considerations D-7

D.3 DML functions with native VSAM

D.3 DML functions with native VSAM

To access information from a native VSAM data set, CA-IDMS/DB converts DML
statements issued by the application program into record-level (not control-interval)
VSAM macro variations (for example, ACB, RPL) and passes control to VSAM. No
changes have to be made to the VSAM data set. A local run unit or central version
appears to VSAM as a single application that opens VSAM data clusters, activates
VSAM paths using local-shared resources (LSR) or nonshared resources (NSR),
accesses data records, and closes the clusters and paths.

The following table lists different VSAM structures and the CA-IDMS/DB DML
functions that can be used to access the VSAM structures.

DML functions for native VSAM data set access

D-8 CA-IDMS Database Administration

D.3 DML functions with native VSAM

CA-IDMS/DB DML statement VSAM structure

STORE last within area ESDS

STORE direct by db-key RRDS

STORE physical sequential KSDS

ERASE KSDS or RRDS

FIND/OBTAIN FIRST/NEXT
WITHIN SET

KSDS or ESDS with a primary index or
alternate indexes

FIND/OBTAIN LAST/PRIOR
WITHIN SET

KSDS or ESDS with a primary index or
alternate indexes

FIND/OBTAIN WITHIN SET
USING SORT KEY

KSDS or ESDS

FIND/OBTAIN FIRST/NEXT
WITHIN AREA

KSDS, ESDS, or RRDS

FIND/OBTAIN LAST/PRIOR
WITHIN AREA

KSDS, ESDS, or RRDS

FIND/OBTAIN CALC KSDS or ESDS with a primary index or
alternate indexes

FIND/OBTAIN CALC DUPLICATE KSDS or ESDS with a primary index or
alternate indexes

FIND/OBTAIN DB-KEY ESDS or RRDS

MODIFY, changing CALC key or
sort key

KSDS or ESDS with a primary index or
alternate indexes

MODIFY, without changing CALC
key or sort key

KSDS, ESDS, or RRDS

MODIFY, changing record length KSDS

ROLLBACK following STORE
(without restore and rollforward)

KSDS or RRDS

ROLLBACK following ERASE
(without restore and rollforward)

KSDS or RRDS

ROLLBACK following MODIFY
(without restore and rollforward)

KSDS or RRDS

Appendix D. Native VSAM Considerations D-9

D-10 CA-IDMS Database Administration

Appendix E. Batch Compiler Execution JCL

E.1 Overview of batch compilation . E-4
E.2 OS/390 JCL . E-7

E.2.1 Schema compiler . E-7
E.2.2 Subschema compiler . E-8

E.3 VSE/ESA JCL . E-10
E.3.1 =COPY facility . E-10
E.3.2 Schema compiler . E-10
E.3.3 Subschema compiler . E-12
E.3.4 IDMSLBLS procedure . E-14

E.4 CMS commands . E-20
E.4.1 Schema compiler . E-20
E.4.2 Subschema compiler . E-21

E.5 BS2000/OSD JCL . E-23
E.5.1 =COPY facility . E-23
E.5.2 Schema compiler . E-23
E.5.3 Subschema compiler . E-25

Appendix E. Batch Compiler Execution JCL E-1

E-2 CA-IDMS Database Administration

This appendix contains the following:

■ An overview of batch compilation

■ JCL/commands you need to execute non-SQL schema and subschema statements
under the central version or in local mode

Appendix E. Batch Compiler Execution JCL E-3

E.1 Overview of batch compilation

E.1 Overview of batch compilation

Local mode considerations: The DDL compilers can be run under the central
version or in local mode. If the central version has access to the DDLDML or
DDLDCLOD area of the dictionary in update usage mode, an attempt to execute a
compiler in local mode without specifying USAGE RETRIEVAL in a SIGNON
statement will terminate with an error code of 0966.

To ensure the integrity of the dictionary, either journal local mode compilations or
back up the dictionary before each local mode compilation. The central version uses
automatic recovery procedures to ensure the integrity of the dictionary.

Naming the dictionary and system: In an operating environment with multiple
dictionaries, the name of the dictionary to be accessed (and/or the DC/UCF system on
which it resides) can be specified through SYSIDMS parameters or on the compiler
SIGNON statement or the command facility CONNECT statement. If specified in
both places, the SIGNON or CONNECT specification takes precedence. If specified
in the SYSIDMS file, the name of the dictionary is specified using DICTNAME and
the DC/UCF system on which it resides is specified using DICTNODE.

�� For more information about the SYSIDMS parameter file, see Chapter 23,
“Dictionaries and Runtime Environments” on page 23-1.

Compiling a non-SQL defined schema: To compile a schema in batch mode,
execute the program IDMSCHEM. Input and output are as follows:

Input Schema source statements

Output ■ A source description of the schema stored in the dictionary

■ A Schema Compiler Activity List

■ A card image file containing schema syntax, if the source input
contains a PUNCH statement

E-4 CA-IDMS Database Administration

E.1 Overview of batch compilation

�� To compile an SQL-defined schema, you submit SQL DDL statements through the
CA-IDMS Command Facility. For sample job streams, refer to the CA-IDMS
Command Facility document.

Compiling a subschema: To compile a subschema in batch mode, execute the
program IDMSUBSC. Input and output are as follows:

Input Subschema source statements

Output ■ A source description of the subschema stored in the dictionary

■ A Subschema Compiler Activity List

■ A subschema load module stored in the dictionary load area
(DDLDCLOD), if the source input contains a GENERATE
statement

■ A card image file containing schema syntax, if the source input
contains a PUNCH statement

Defining segments, DMCLs, and database name tables: To define a DMCL
in batch mode, execute the program IDMSBCF (the CA-IDMS Command Facility).
Input and output are as follows:

Appendix E. Batch Compiler Execution JCL E-5

E.1 Overview of batch compilation

Input Segments, DMCL, and database name table source statements as
described in Chapter 6, “Physical Database DDL Statements” on
page 6-1.

Output ■ Segment, DMCL, and database name table source descriptions
stored in the dictionary

■ A DMCL or database name table load module, if the source
contains a GENERATE statement

■ A command facility activity listing

■ A card image file containing DDL syntax or DMCL or database
name table object code, if the source input contains a punch
statement

�� For sample IDMSBCF job streams, refer to the CA-IDMS Command Facility
document.

E-6 CA-IDMS Database Administration

E.2 OS/390 JCL

 E.2 OS/390 JCL

This section provides the OS/390 JCL you need to run the schema and subschema
compilers (central version and local mode).

 E.2.1 Schema compiler

IDMSCHEM — central version IDMSCHEM (OS/390)

//SCHEMA EXEC PGM=IDMSCHEM,REGION=1924K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSPCH DD DSN=&&PCH, DISP=(NEW,PASS,DELETE),

 DCB=(RECFM=FB,BLKSIZE=9949,LRECL=89),

 SPACE=space-specification,

 UNIT=unit

//SYSIDMS DD `

Input SYSIDMS parameters, as required

/`

//SYSIPT DD `

Schema DDL source statements

Note:

The SYSPCH DD statement is required only if the DDL specifies PUNCH TO
SYSPCH.

IDMSCHEM — local mode: To execute the schema compiler in local mode,
remove the SYSCTL DD statement and replace it with:

idms.dba.loadlib Dataset name of the load library containing the DMCL
and database name table load modules

idms.loadlib Dataset name of the load library containing the
CA-IDMS executable modules

sysctl DDname of the SYSCTL file

idms.sysctl Dataset name of the SYSCTL file

dcmsg DDname of the message (DDLDCMSG) area

idms.sysmsg.ddldcmsg Dataset name of the message (DDLDCMSG) area

space-specification Space specification for the punch file

unit Symbolic device name

Appendix E. Batch Compiler Execution JCL E-7

E.2 OS/390 JCL

//dictdb DD DSN=idms.appldict.ddldml,DISP=SHR

//dloddb DD DSN=idms.appldict.ddldclod,DISP=SHR

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,KEEP),

// UNIT=tape

Additional journal file assignments, as required

Note: Include the dloddb DD statement only if the DDL contains the REGENERATE
statement.

dictdb Ddname of the data dictionary DDLDML area

dloddb Ddname of the data dictionary load area

idms.appldict.ddldclod Dataset name of the tape journal file

idms.appldict.ddldml Dataset name of the data dictionary DDLDML area

sysjrnl Ddname of the tape journal file; must be appropriate
for the DMCL module being used

tape Symbolic device name for the tape journal file

 E.2.2 Subschema compiler

IDMSUBSC — central version IDMSUBSC (OS/390)

//SUBSCHEM EXEC PGM=IDMSUBSC,REGION=1924K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSPCH DD DSN=&&PCH, DISP=(NEW,KEEP,DELETE),

 DCB=(RECFM=FB,BLKSIZE=9949,LRECL=89),

 SPACE=space-specification,

 UNIT=unit

//SYSIDMS DD `

Input SYSIDMS parameters, as required

/`

//SYSIPT DD `

Subschema DDL source statements

Note:

The SYSPCH DD statement is required only if the DDL specifies PUNCH TO
SYSPCH.

E-8 CA-IDMS Database Administration

E.2 OS/390 JCL

IDMSUBSC — local mode: To execute the subschema compiler in local mode,
remove the SYSCTL DD statement and replace it with:

//dictdb DD DSN=idms.appldict.ddldml,DISP=SHR

//dloddb DD DSN=idms.appldict.ddldclod,DISP=SHR

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,KEEP),

// UNIT=tape

Additional journal file assignments, as required

Note: Include the dloddb DD statement only if the DDL contains the REGENERATE
statement.

idms.dba.loadlib Dataset name of the load library containing the DMCL
and database name table load modules

idms.loadlib Dataset name of the load library containing the
CA-IDMS executable modules

sysctl DDname of the SYSCTL file

idms.sysctl Dataset name of the SYSCTL file

dcmsg DDname of the message (DDLDCMSG) area

idms.sysmsg.ddldcmsg Dataset name of the message (DDLDCMSG) area

space-specification

unit
See IDMSCHEM job stream

dictdb DDname of the dictionary DDLDML area

idms.appldict.ddldml Dataset name of the dictionary DDLDML area

dloddb DDname of the dictionary load area

idms.appldict.ddldclod Dataset name of the dictionary load area

sysjrnl DDname of the tape journal file; must be appropriate
for the DMCL module being used

idms.tapejrnl Dataset of the tape journal file

tape Symbolic device name

Appendix E. Batch Compiler Execution JCL E-9

E.3 VSE/ESA JCL

 E.3 VSE/ESA JCL

The following VSE/ESA information is presented in this section:

■ =COPY facility for input parameter statements

■ VSE/ESA JCL to run the schema and subschema compilers (central version and
local mode)

 E.3.1 =COPY facility

Purpose: Under VSE/ESA, some or all of the input parameter statement to be
submitted to a DDL compiler can be stored as a member in a source statement library.
To copy the library member into the job stream, you use the =COPY IDMS statement.

The =COPY IDMS statement identifies the library member and is coded in the JCL
along with other input parameter statements (if any) to be submitted to the DDL
compiler. Multiple =COPY statements can be submitted.

=COPY IDMS statements and input parameter statements can be intermixed in the
JCL. The input parameters are submitted to the compiler in the order in which they
occur, whether they are coded directly in the JCL or copied in through the =COPY
facility.

 Syntax

��─── =COPY IDMS ─┬──────────────────┬─ member-name ──────────────────────────><

├─ A. ← ───────────┤

└─ sublibrary-id. ─┘

 Parameters

A/sublibrary-id
Identifies the source statement sublibrary that includes the member identified by
member-name. The default is A.

member-name
Identifies the source statement library member that contains the input parameter
statements to be submitted to the compiler.

Note: If the input parameter statements are stored as a member in a private source
statement library, the DLBL file type for the library must be specified as DA.

 E.3.2 Schema compiler

IDMSCHEM — central version IDMSCHEM (VSE/ESA)

E-10 CA-IDMS Database Administration

E.3 VSE/ESA JCL

// EXEC PROC=IDMSLBLS

// UPSI b If specified in the IDMSOPTI module

// DLBL idmspch,'temp.ddl',9

// EXTENT sys929,nnnnnn,,,ssss,llll

 ASSGN sys929,DISK,VOL=nnnnnn,SHR

// EXEC IDMSCHEM

Optional SYSIDMS parameters

/`

Schema DDL source statements

/`

Include the DLBL, EXTENT, and ASSGN statements for IDMSPCH only if the DDL
specifies PUNCH TO SYSPCH. Refer to CA-IDMS System Operations for details.

Overriding IDMSOPTI: At installation, you can define a SYSCTL procedure that
overrides the IDMSOPTI specifications for central version operations.

�� For information on the SYSCTL procedure, refer to CA-IDMS Installation and
Maintenance — VSE/ESA.

IDMSLBLS Name of the procedure provided at installation that
contains the file definitions for CA-IDMS dictionaries
and databases.

�� For a complete listing of IDMSLBLS, see E.3.4,
“IDMSLBLS procedure” on page E-14, later in this
appendix.

IDMSLBLS references SYSIDMS, the input file you
can use to specify runtime parameters, such as DMCL
or dictionary name.

�� For information on SYSIDMS parameters, refer to
CA-IDMS Database Administration or CA-IDMS
Navigational DML Programming.

b Appropriate UPSI switch, 1-8 characters, as specified in
the IDMSOPTI module

idmspch Filename of the punched output (from IDMSPCH)

temp.ddl File ID of the punched output (from IDMSPCH)

nnnnnn Serial number of the disk volume

ssss Starting track (CKD) or block (FBA) of disk extent

llll Number of the tracks (CKD) or blocks (FBA) of disk
extent

sys020 Logical unit assignment of the punched output

Appendix E. Batch Compiler Execution JCL E-11

E.3 VSE/ESA JCL

IDMSCHEM — local mode: To execute the schema compiler in local mode,
remove the UPSI specification, and include the following statements before EXEC
IDMSCHEM:

// TLBL sysjrnl,'idms.tapejrnl',,nnnnnn,,f

// ASSGN sys999,TAPE,VOL=nnnnnn

sysjrnl File name of the tape journal file

idms.tapejrnl File ID of the tape journal file

nnnnnn Volume serial number

f File number of the tape journal file

sys009 Logical unit assignment for the tape journal file

 E.3.3 Subschema compiler

IDMSUBSC — central version IDMSUBSC (VSE/ESA)

// EXEC PROC=IDMSLBLS

// UPSI b If specified in the IDMSOPTI module

// DLBL idmspch,'temp.ddl',9

// EXTENT sys929,nnnnnn,,,ssss,llll

 ASSGN sys929,DISK,VOL=nnnnnn,SHR

// EXEC IDMSUBSC

Optional SYSIDMS parameters

/`

Subschema DDL source statements

/`

Include the DLBL, EXTENT, and ASSGN statements for IDMSPCH only if the DDL
specifies PUNCH TO SYSPCH. To route punched output to a sequential disk file or
to a tape file, use SYSIDMS file parameters to override the default characteristics, if
necessary. Refer to CA-IDMS System Operations for details.

Overriding IDMSOPTI: At installation, you can define a SYSCTL procedure that
overrides the IDMSOPTI specifications for central version operations.

�� For information on the SYSCTL procedure, refer to CA-IDMS Installation and
Maintenance — VSE/ESA.

E-12 CA-IDMS Database Administration

E.3 VSE/ESA JCL

IDMSUBSC — local mode: To execute the subschema compiler in local mode,
remove the UPSI specification, and include the following statements before EXEC
IDMSUBSC:

// TLBL sysjrnl,'idms.tapejrnl',,nnnnnn,,f

// ASSGN sys999,TAPE,VOL=nnnnnn

Note: These variables are described under the local mode discussion for the
IDMSCHEM job stream.

IDMSLBLS Name of the procedure provided at installation that
contains the file definitions for CA-IDMS dictionaries
and databases.

�� For a complete listing of IDMSLBLS, see E.3.4,
“IDMSLBLS procedure” on page E-14, later in this
appendix.

IDMSLBLS references SYSIDMS, the input file you
can use to specify runtime parameters, such as DMCL
or dictionary name.

�� For information on SYSIDMS parameters, refer to
CA-IDMS Database Administration or CA-IDMS
Navigational DML Programming.

b Appropriate UPSI switch, 1-8 characters, as specified in
the IDMSOPTI module

idmspch Filename of the punched output (from IDMSPCH)

temp.ddl File ID of the punched output (from IDMSPCH)

sys020 Logical unit assignment of the punched output disk
extent

nnnnnn Volume serial number

ssss Starting track (CKD) or block (FBA) of the disk extent

llll Number of the tracks (CKD) or blocks (FBA) of the
disk extent

sysctl Filename of the SYSCTL file

idms.sysctl File ID of the SYSCTL file

sys008 Logical unit assignment of the SYSCTL file

Appendix E. Batch Compiler Execution JCL E-13

E.3 VSE/ESA JCL

 E.3.4 IDMSLBLS procedure

IDMSLBLS is a procedure that contains file definitions for the dictionaries, sample
databases, disk journal files, and SYSIDMS file provided during installation.

You can tailor the following IDMSLBLS procedure (provided at installation) to reflect
the filenames and definitions in use at your site. Reference IDMSLBLS as shown in
the previous VSE/ESA JCL job stream.

` -------- LIBDEFS --------

// LIBDEF `,SEARCH=idmslib.sublib

// LIBDEF `,CATALOG=user.sublib

/` ------------------------- LABELS -------------------------

// DLBL idmslib,'idms.library',2999/365

// EXTENT ,nnnnnn,,,ssss,1599

// DLBL dccat,'idms.system.dccat',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,31

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dccatl,'idms.system.dccatlod',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dccatx,'idms.system.dccatx',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcdml,'idms.system.ddldml',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,191

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclod,'idms.system.ddldclod',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,21

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclog,'idms.system.ddldclog',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,491

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcrun,'idms.system.ddldcrun',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,68

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcscr,'idms.system.ddldcscr',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,135

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcmsg,'idms.sysmsg.ddldcmsg',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,291

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclscr,'idms.sysloc.ddlocscr',2999/365,DA

E-14 CA-IDMS Database Administration

E.3 VSE/ESA JCL

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dirldb,'idms.sysdirl.ddldml',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,291

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dirllod,'idms.sysdirl.ddldclod',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empdemo,'idms.empdemo1',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL insdemo,'idms.insdemo1',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL orgdemo,'idms.orgdemo1',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empldem,'idms.sqldemo.empldemo',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL infodem,'idms.sqldemo.infodemo',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL projdem,'idms.projseg.projdemo',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL indxdem,'idms.sqldemo.indxdemo',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

Appendix E. Batch Compiler Execution JCL E-15

E.3 VSE/ESA JCL

// DLBL sysctl,'idms.sysctl',2999/365,SD

// EXTENT SYSnnn,nnnnnn,,,ssss,2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL secdd,'idms.sysuser.ddlsec',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,26

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dictdb,'idms.appldict.ddldml',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dloddb,'idms.appldict.ddldclod',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqldd,'idms.syssql.ddlcat',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,191

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqllod,'idms.syssql.ddlcatl',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqlxdd,'idms.syssql.ddlcatx',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,26

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdml,'idms.asfdict.ddldml',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,291

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asflod,'idms.asfdict.asflod',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,491

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdata,'idms.asfdict.asfdata',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,291

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL ASFDEFN,'idms.asfdict.asfdefn',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,191

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j1jrnl,'idms.j1jrnl',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j2jrnl,'idms.j2jrnl',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j3jrnl,'idms.j3jrnl',2999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL SYSIDMS,'#SYSIPT',9,SD

/+

/`

idmslib.sublib Name of the sublibrary within the library containing
CA-IDMS modules

user.sublib Name of the sublibrary within the library containing
user modules

idmslib Name of the file containing CA-IDMS modules

idms.library ID associated with the file containing CA-IDMS
modules

E-16 CA-IDMS Database Administration

E.3 VSE/ESA JCL

SYSnnn Logical unit of the volume for which the extent is
effective

nnnnnn Volume serial identifier of appropriate disk volume

ssss Starting track (CKD) or block (FBA) of disk extent

dccat Filename of the system dictionary catalog (DDLCAT)
area

idms.system.dccat ID of the system dictionary catalog (DDLCAT) area

dccatl Filename of the system dictionary catalog load
(DDLCATLOD) area

idms.system.dccatlod ID of the system dictionary catalog load
(DDLCATLOD) area

dccatx Name of the system dictionary catalog index
(DDLCATX) area

idms.system.dccatx ID of the system dictionary catalog index (DDLCATX)
area

dcdml Name of the system dictionary definition (DDLDML)
area

idms.system.ddldml ID of the system dictionary definition (DDLDML) area

dclod Name of the system dictionary definition load
(DDLDCLOD) area

idms.system.ddldclod ID of the system dictionary definition load
(DDLDCLOD) area

dclog Name of the system log area (DDLDCLOG) area

idms.system.ddldclog ID of the system log (DDLDCLOG) area

dcrun Name of the system queue (DDLDCRUN) area

idms.system.ddldcrun ID of the system queue (DDLDCRUN) area

dcscr Name of the system scratch (DDLDCSCR) area

idms.system.ddldcscr ID of the system scratch (DDLDCSCR) area

dcmsg Name of the system message (DDLDCMSG) area

idms.sysmsg.ddldcmsg ID of the system message (DDLDCMSG) area

dclscr Name of the local mode system scratch (DDLOCSCR)
area

idms.sysloc.ddlocscr ID of the local mode system scratch (DDLOCSCR)
area

dirldb Name of the IDMSDIRL definition (DDLDML) area

idms.sysdirl.ddldml ID of the IDMSDIRL definition (DDLDML) area

Appendix E. Batch Compiler Execution JCL E-17

E.3 VSE/ESA JCL

dirllod Name of the IDMSDIRL definition load (DDLDCLOD)
area

idms.sysdirl.dirllod ID of the IDMSDIRL definition load (DDLDCLOD)
area

empdemo Name of the EMPDEMO area

idms.empdemo1 ID of the EMPDEMO area

insdemo Name of the INSDEMO area

idms.insdemo1 ID of the INSDEMO area

orgdemo Name of the ORGDEMO area

idms.orgdemo1 ID of the ORDDEMO area

empldem Name of the EMPLDEMO area

idms.sqldemo.empldemo ID of the EMPLDEMO area

infodem Name of the INFODEMO area

idms.sqldemo.infodemo ID of the INFODEMO area

projdem Name of the PROJDEMO area

idms.projseg.projdemo ID of the PROJDEMO area

indxdem Name of the INDXDEMO area

idms.sqldemo.indxdemo ID of the INDXDEMO area

sysctl Name of the SYSCTL file

idms.sysctl ID of the SYSCTL file

secdd Name of the system user catalog (DDLSEC) area

idms.sysuser.ddlsec ID of the system user catalog (DDLSEC) area

dictdb Name of the application dictionary definition area

idms.appldict.ddldml ID of the application dictionary definition (DDLDML)
area

dloddb Name of the application dictionary definition load area

idms.appldict.ddldclod ID of the application dictionary definition load
(DDLDCLOD) area

sqldd Name of the SQL catalog (DDLCAT) area

idms.syssql.ddlcat ID of the SQL catalog (DDLCAT) area

sqllod Name of the SQL catalog load (DDLCATL) area

idms.syssql.ddlcatl ID of SQL catalog load (DDLCATL) area

sqlxdd Name of the SQL catalog index (DDLCATX) area

E-18 CA-IDMS Database Administration

E.3 VSE/ESA JCL

idms.syssql.ddlcatx ID of the SQL catalog index (DDLCATX) area

asfdml Name of the asf dictionary definition (DDLDML) area

idms.asfdict.ddldml ID of the asf dictionary definition (DDLDML) area

asflod Name of the asf dictionary definition load (ASFLOD)
area

idms.asfdict.asflod ID of the asf dictionary definition load (ASFLOD) area

asfdata Name of the asf data (ASFDATA) area

idms.asfdict.asfdata ID of the asf data area (ASFDATA) area

ASFDEFN Name of the asf data definition (ASFDEFN) area

idms.asfdict.asfdefn ID of the asf data definition area (ASFDEFN) area

j1jrnl Name of the first disk journal file

idms.j1jrnl ID of the first disk journal file

j2jrnl Name of the second disk journal file

idms.j2jrnl ID of the second disk journal file

j3jrnl Name of the third disk journal file

idms.j3jrnl ID of the third disk journal file

SYSIDMS Name of the SYSIDMS parameter file

Appendix E. Batch Compiler Execution JCL E-19

E.4 CMS commands

 E.4 CMS commands

This section provides the CMS commands to run the schema and subschema compilers
(under the central version and in local mode).

 E.4.1 Schema compiler

IDMSCHEM — central version IDMSCHEM (CMS)

FILEDEF SYSLST PRINTER

FILEDEF SYSPCH DISK syspch output a (RECFM F LRECL 89

FILEDEF SYSIPT schema ddl a (RECFM F LRECL ppp BLKSIZE nnn

FILEDEF SYSIDMS DISK syidms parms a (RECFM F LRECL ppp BLKSIZE nnn

FILEDEF sysctl DISK sysctl idms a

EXEC IDMSFD

OSRUN IDMSCHEM

Note: Include the SYSPCH statement only if the DDL specifies PUNCH TO
SYSPCH.

IDMSCHEM — local mode: To execute the schema compiler in local mode,
specify local mode in one of the following ways:

■ Link IDMSCHEM with an IDMSOPTI program that specifies local execution
mode

■ Specify *LOCAL* as the first input parameter in the SYSIPT file

■ Modify the OSRUN command:

OSRUN IDMSCHEM PARM='`LOCAL`'

Note: This option is valid only if the OSRUN command is issued from a System
Product interpreter or an EXEC2 file.

Creating the SYSIPT file: To create the SYSIPT file, enter these CMS commands:

syspch output a File name, type, and mode of the output punch file

schema ddl a File name, type, and mode of the file that contains the
schema DDL statements

ppp Record length of file

nnn Block size of file

sysidms parms a File name, type, and mode of the file that contains the
SYSIDMS parameters

sysctl File name of the SYSCTL file

sysctl idms a File name, type, and mode of the SYSCTL file

IDMSFD Exec which defines all FILEDEFs, TXTLIBs, and
LOADLIBs required by the system

E-20 CA-IDMS Database Administration

E.4 CMS commands

XEDIT sysipt data a (NOPROF

INPUT

 .

 .

 .

Schema source statements

 .

 .

 .

FILE

Editing the SYSIPT file: To edit the SYSIDMS parameter file, enter these CMS
commands:

XEDIT sysidms parms a (NOPROF

INPUT

 .

 .

 .

SYSIDMS parameters

 .

 .

 .

FILE

 E.4.2 Subschema compiler

IDMSUBSC — central version IDMSUBSC (CMS)

FILEDEF SYSLST PRINTER

FILEDEF SYSPCH DISK syspch output a (RECFM F LRECL 89

FILEDEF SYSIPT subsch ddl a (RECFM F LRECL ppp BLKSIZE nnn

FILEDEF SYSIDMS DISK syidms parms a (RECFM F LRECL ppp BLKSIZE nnn

FILEDEF sysctl DISK sysctl idms a

EXEC IDMSFD

OSRUN IDMSUBSC

Note: Include the SYSPCH statement only if the DDL specifies PUNCH TO
SYSPCH.

Appendix E. Batch Compiler Execution JCL E-21

E.4 CMS commands

IDMSUBSC — local mode: To execute the subschema compiler in local mode,
specify local mode in one of the following ways:

■ Link IDMSUBSC with an IDMSOPTI program that specifies local execution
mode

■ Specify *LOCAL* as the first input parameter in the SYSIPT file

■ Modify the OSRUN command:

OSRUN IDMSUBSC PARM='`LOCAL`'

Note: This option is valid only if the OSRUN command is issued from a System
Product interpreter or an EXEC2 file.

�� For information on creating a SYSIPT file or on editing the SYSIDMS file, see the
information provided with the IDMSCHEM jobstream.

subsch ddl a File name, type, and mode of the file that contains the
subschema DDL statements

syspch output a File name, type, and mode of the output punch file

ppp Record length of file

nnn Block size of file

sysidms parms a File name, type, and mode of the file that contains the
SYSIDMS parameters

sysctl File name of the SYSCTL file

sysctl idms a File name, type, and mode of the SYSCTL file

IDMSFD Exec which defines all FILEDEFs, TXTLIBs, and
LOADLIBs required by the system

E-22 CA-IDMS Database Administration

E.5 BS2000/OSD JCL

 E.5 BS2000/OSD JCL

The following BS2000/OSD information is presented in this section:

■ =COPY facility for copying source code from a source statement library

■ BS2000/OSD JCL to run the schema and subschema compilers (under the central
version and in local mode)

 E.5.1 =COPY facility

Purpose: BS2000/OSD users can copy source code into the DDL compilers from a
source statement library by means of the =COPY facility.

 Syntax

��─── =COPY IDMS library-linkname.member-name ────────────────────────────────><

 Parameters

library-linkname
Specifies the linkname of the source library.

member-name
Specifies the name of the library member containing the source to be copied.

 E.5.2 Schema compiler

IDMSCHEM — central version IDMSCHEM (BS2000/OSD)

/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=idms.dba.loadlib

/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=sysctl,F-NAME=idms.sysctl,SHARED-UPD=`YES

/ADD-FILE-LINK L-NAME=SYSIDMS,F-NAME=idms.sysidms

/ASSIGN-SYSOPT TO=temp.punch

/ASSIGN-SYSDTA TO=`SYSCMD

/START-PROG `MOD(ELEM=IDMSCHEM,LIB=idms.loadlib,RUN-MODE=`ADV)

Schema DDL source statements

Note: The ASSIGN-SYSOPT command is required only if the DDL specifies
PUNCH TO SYSPCH.

Appendix E. Batch Compiler Execution JCL E-23

E.5 BS2000/OSD JCL

IDMSCHEM — local mode: To execute the schema compiler in local mode,
remove the SYSCTL statement, and replace it with:

/ADD-FILE-LINK L-NAME=dictdb,F-NAME=idms.appldict.ddldml,SHARED-UPD=`YES

/ADD-FILE-LINK L-NAME=dloddb,F-NAME=idms.appldict.ddldclod,SHARED-UPD=`YES

/ADD-FILE-LINK L-NAME=sysjrnl,F-NAME=idms.sysjrnl

idms.dba.loadlib Filename of the load library containing the DMCL and
database name table load modules

idms.loadlib Filename of the load library containing CA-IDMS
executable modules

sysctl Linkname of the SYSCTL file

idms.sysctl Filename of the SYSCTL file

idms.sysidms Filename of the SYSIDMS parameters file

temp.punch Filename of the temporary file containing results of the
PUNCH statement

dictdb Linkname of the application dictionary DDLDML area

idms.appldict.ddldml Filename of the application dictionary DDLDML area

dloddb Linkname of the application dictionary load area

idms.appldict.ddldclod Filename of the application dictionary load area

sysjrnl Linkname of the tape journal file; must be appropriate
for the DMCL being used

idms.sysjrnl Filename of the journal file

E-24 CA-IDMS Database Administration

E.5 BS2000/OSD JCL

 E.5.3 Subschema compiler

IDMSSUBSC — central version IDMSUBSC (BS2000/OSD)

/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=idms.dba.loadlib

/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=sysctl,F-NAME=idms.sysctl,SHARED-UPD=`YES

/ADD-FILE-LINK L-NAME=SYSIDMS,F-NAME=idms.sysidms

/ASSIGN-SYSOPT TO=temp.punch

/ASSIGN-SYSDTA TO=`SYSCMD

/START-PROG `MOD(ELEM=IDMSUBSC,LIB=idms.loadlib,RUN-MODE=`ADV)

Subschema DDL source statements

Note: The ASSIGN-SYSOPT command is required only if the DDL specifies
PUNCH TO SYSPCH.

IDMSSUBSC — local mode: To execute the subschema compiler in local mode,
remove the SYSCTL FILE command and replace it with:

/ADD-FILE-LINK L-NAME=dictdb,F-NAME=idms.appldict.ddldml,SHARED-UPD=`YES

/ADD-FILE-LINK L-NAME=dloddb,F-NAME=idms.appldict.ddldclod,SHARED-UPD=`YES

/ADD-FILE-LINK L-NAME=sysjrnl,F-NAME=idms.sysjrnl

idms.dba.loadlib Filename of the load library containing the DMCL and
database name table load modules

idms.loadlib Filename of the load library containing CA-IDMS
executable modules

sysctl Linkname of the SYSCTL file

idms.sysctl Filename of the SYSCTL file

idms.sysidms Filename of the SYSIDMS parameters file

temp.punch Filename of the temporary file containing results of the
PUNCH statement

dictdb Linkname of the application dictionary DDLDML area

idms.appldict.ddldml Filename of the application dictionary DDLDML area

dloddb Linkname of the application dictionary load area

idms.appldict.ddldclod Filename of the application dictionary load area

sysjrnl Linkname of the tape journal file; must be appropriate
for the DMCL being used

idms.sysjrnl Filename of the journal file

Appendix E. Batch Compiler Execution JCL E-25

E-26 CA-IDMS Database Administration

Appendix F. System Record Types

Appendix F. System Record Types F-1

F-2 CA-IDMS Database Administration

System record types for space management: CA-IDMS/DB maintains the
following nine system record types for space management:

Appendix F. System Record Types F-3

Type Record ID Description

SR1 1 Participates as owner in the system-owned
CALC set; members are all user record types
with a storage mode of CALC; occurs once
for each page in a standard database area as
bytes 5 through 16 in the header

SR2 2 Replaces records relocated by the
RESTRUCTURE SEGMENT, and the
migration utility (RHDCMIG1 and
RHDCMIG2), and SQL processing following
the addition of a column to a table; eight bytes
in length

SR3 3 Identifies a user record as having been
relocated; the actual user-designated record
identification can be found in the relocated
record's corresponding SR2 record

SR4 4 Identifies fragments of variable-length records;
the actual user-designated record identification
can be found in the line index of the root
portion of the record

SR5 5 Holds the area-level synchronization stamp for
SQL-defined segments and acts as an owner
for the table-level synchronization stamp
records (SR9s)

SR6 6 Appears in the subschema tables for excluded
owner or member record definitions in set
relationships; never occurs in the database

SR7 7 Participates as owner in an index; stores
CALC under the indexed set's name; occurs
once for each indexed set in the database that
does not have a user-defined owner record (for
details, see Chapter 36, “Index Management”
on page 36-1)

SR8 8 Contains index entries that point to lower level
SR8 records or to an indexed set's member
database record occurrences; chained by next,
prior, and owner pointers to the owner record
occurrence of an indexed set (for details, see
Chapter 36, “Index Management” on
page 36-1)

SR9 9 Holds the table identifier and synchronization
stamp for each table in the area

F-4 CA-IDMS Database Administration

Appendix G. User-Exit Program for Schema and/or
Subschema Compiler

G.1 When a user exit is called . G-4
G.2 Rules for writing the user-exit program . G-5
G.3 Control blocks and sample user-exit programs G-7

G.3.1 User-exit control block . G-7
G.3.2 SIGNON Element Block . G-7
G.3.3 SIGNON Block . G-8
G.3.4 Entity control block . G-8
G.3.5 Card-image control block . G-9

G.4 Sample user-exit program for Schema and/or Subschema Compilers . . . G-10

Appendix G. User-Exit Program for Schema and/or Subschema Compiler G-1

G-2 CA-IDMS Database Administration

This appendix presents the procedures for coding a user-exit program, which is called
by the schema compiler and/or subschema compiler to:

■ Perform security checks

■ Enforce entity-occurrence naming conventions

■ Maintain an audit trail of dictionary activity

A common user-exit program can be coded to be shared by the schema compiler and
subschema compiler, or a specialized user-exit program can be coded for each or for
only one of the compilers. The rules and procedures governing the user-exit program
are the same for all compilers that use it.

Appendix G. User-Exit Program for Schema and/or Subschema Compiler G-3

G.1 When a user exit is called

G.1 When a user exit is called

The user-exit module is called by the applicable compiler when it encounters any of
these four points:

 ■ SIGNON/SIGNOFF/COMMIT

After the signon procedure is complete and the compiler's security checks have
been passed, or immediately after signoff or COMMIT processing.

 ■ Major command

After an ADD, MODIFY, DELETE, DISPLAY or PUNCH request has been
issued. The program is invoked just after the applicable compiler has identified
the entity that is the object of the request and has successfully checked
authorization requirements. Object entities can be any standard schema or
subschema entity type.

 ■ Card image

After each input statement (card image) is passed to the user-exit control block
after the statement has been:

– Scanned and printed on the applicable Compiler Activity List

– Displayed on the terminal

– Written to the print file (online compiler interface only)

The administrator can build an audit trail of accesses and updates to the
dictionary.

■ End of converse

When one of the following occurs, you can perform a termination activity, such as
a write-to-log:

– Pressing [Enter] during an online compiler session

– A batch run of the compiler processes a SIGNOFF statement

– A batch run of the compiler detects an end-of-file condition

G-4 CA-IDMS Database Administration

G.2 Rules for writing the user-exit program

G.2 Rules for writing the user-exit program

This section describes the rules that apply to writing the user-exit program.

 ■ Language

You can write the user-exit module in any language that supports OS calling
conventions. However, it is recommended that you write user-exit modules in
Assembler to allow the online compiler to remain reentrant.

Note: User-exit modules cannot be CA-ADS dialogs.

 ■ Versions

You can code and maintain separate versions of user-exit modules for the batch
and online compilers, or you can code modules that can be executed both in batch
mode and online.

 ■ Macros

The user-exit facility supports all CA-IDMS/DC macros for exits to be used with
the online compilers. For exits to be used with the batch compilers, the only
CA-IDMS/DC macros supported are: #WTL, #ABEND, #GETSTG, #FREESTG,
#LOAD, and #DELETE; under VSE/ESA, the only valid form of #DELETE is
EPADDR=.

 ■ Run units

You can start a run unit within an exit; however, you should ensure that the run
unit does not deadlock with the applicable compiler run unit. If a user-exit run
unit will access a dictionary area, the run unit should ready the object area in a
retrieval usage mode.

 ■ Entry point

User-exit modules must have an entry point of IDDUXIT and must be linked
with:

– IDMSCHEM (the batch schema compiler) and IDMSCHDC (the
CA-IDMS/DC version of the online schema compiler)

– IDMSUBSC (the batch subschema compiler) and IDMSUBDC (the
CA-IDMS/DC version of the online subschema compiler)

Note: These compilers will not be dynamically loaded.

 ■ Interface

User exits written in COBOL to run under the applicable online compiler require a
user-exit interface, written in Assembler with an entry point of IDDUXIT, to be
link-edited with IDMSCHDC or IDMSUBDC. This interface should issue a
#LINK to the COBOL program (with an entry point other than IDMSCHDC or
IDMSUBDC) to isolate it from IDMSCHDC or IDMSUBDC, which is
storage-protected.

 ■ Register conventions

Appendix G. User-Exit Program for Schema and/or Subschema Compiler G-5

G.2 Rules for writing the user-exit program

User-exit modules are called using the following OS register conventions:

R15 Entry point of module IDDUXIT

 R14 Return address

R13 18 fullword SAVEAREA

R1 Fullword parameter list

■ Parameters 3 and 4

For all four types of user exits, parameter 1 points to a user-exit control block and
parameter 2 points to a SIGNON element block. The information addressed in
parameters 3 and 4 varies based on the type of user exit, as follows:

– For the SIGNON/SIGNOFF/COMMIT and end-of-conversation exits,
parameter 3 points to a SIGNON block.

– For the major command user exit, parameter 3 points to an entity control
block.

– For the card-image user exit, parameter 3 points to a card-image control
block.

– For all user exits except the card-image user exit, parameter 4 is reserved
for use by the applicable compiler and should be defined as a PIC X(80) field
in the user-exit module.

– For the card-image user exit, parameter 4 points to the input card image,
which is defined as a PIC X(80) field.

The user-exit control blocks are described separately later in this appendix.

 ■ Information modification

With the exception of the fields identified within the user-exit control block
described below, a user-exit module should not modify any of the information
passed.

 ■ Return codes

On return from a user-exit module, you must set a return code and, optionally,
specify a message ID and message text to be issued by the applicable compiler, as
follows:

Code Compiler action

0 No message is issued; compiler continues with normal
processing.

1 An informational message is issued; compiler continues with
normal processing.

4 A warning message is issued; compiler continues with normal
processing.

8 An error message is issued; compiler initiates error processing.

G-6 CA-IDMS Database Administration

G.3 Control blocks and sample user-exit programs

G.3 Control blocks and sample user-exit programs

This section presents the formats of these five control blocks:

■ User-exit control block

■ SIGNON element block

 ■ SIGNON block

■ Entity control block

■ Card-image control block

G.3.1 User-exit control block

The following table shows how to define the user-exit control block:

Field Usage Size Picture Description

1 Char 8 X(8) Compiler name: IDMSCHEM or
IDMSUBSC

2 Char 8 X(8) Compiler start date: mm/dd/yy

3 Char 8 X(8) Compiler start time: hhmmssmm

4 Binary 4 S9(8)
COMP

User field initialized to 0 (for use
by reentrant modules as a pointer
to their work area)

5 Binary 4 S9(8)
COMP

User return code (described below)

6 Char 8 X(8) Message ID returned by user, in
the range DC900000 through
DC999999, or any 6-digit number;
blank if no message is returned

7 Char 80 X(80) Message text returned by user

G.3.2 SIGNON Element Block

The following table shows how to define the SIGNON element block:

Field Usage Size Picture Description

1 Binary 1 X Length of user ID for #WTLs (not
addressable by COBOL)

2 Char 32 X(32) SIGNON user ID

Appendix G. User-Exit Program for Schema and/or Subschema Compiler G-7

G.3 Control blocks and sample user-exit programs

 G.3.3 SIGNON Block

The following table shows how to define the SIGNON block.

Note: Each bit in flag 0 and flag 1 must be tested separately. More than one bit may
be on at any one time.

Field Usage Size Picture Description

1 Char 16 X(16) SIGNON, SIGNOFF, COMMIT or
END-OF-CONVERSE statement

2 Char 8 X(8) SIGNON dictionary name

3 Char 8 X(8) SIGNON node name

4A CHAR 32 X(32) User ID

5 Binary 2 S9(4) DDLDML area usage mode:
36=UPDATE; 38=PROTECTED
UPDATE; 37=RETRIEVAL

6 Binary 2 S9(4) DDLDCLOD area usage mode

7 Binary 2 S9(4) DDLDCMSG area usage mode

8 Binary 10 X(10) Reserved

G.3.4 Entity control block

The following table shows how to define the entity control block.

Field Usage Size Picture Description

1 Char 16 X(16) Major command (ADD, MODIFY,
DELETE, DISPLAY, or PUNCH)

2 Char 32 X(32) Entity type

3 Char 40 X(40) Entity occurrence

4 Binary 2 S9(4) Entity version number or number
of records requested

5 Char 64 X(64) Additional Qualifier

6 Char 32 X(32) PREPARED BY user ID

7 Char 32 X(32) REVISED BY user ID

G-8 CA-IDMS Database Administration

G.3 Control blocks and sample user-exit programs

G.3.5 Card-image control block

The following table shows how to define the card-image control block:

Field Usage Size Picture Description

1 Char 16 X(16) Compiler 'CARD IMAGE'
command

2 Binary 2 S9(8) Input low-card column

3 Binary 2 S9(8) Input high-card column

Appendix G. User-Exit Program for Schema and/or Subschema Compiler G-9

G.4 Sample user-exit program for Schema and/or Subschema Compilers

G.4 Sample user-exit program for Schema and/or
Subschema Compilers

The following sample user-exit program can be used to enforce naming conventions
for elements. The source code for this program can be found in the installation source
library under member name IDDSUXIT.

````````````````````````````````````````````````````````````````````

IDDUXIT TITLE 'NAMING CONVENTION CHECKER'

````````````````````````````````````````````````````````````````````

`

`

` PROGRAM NAME : IDDUXIT

`

` DATE : 93/91/96

`

`

` DESCRIPTION : THIS IS AN EXAMPLE OF A USER EXIT. THIS PROGRAM

` SHOWS HOW A SHOP COULD CHECK THE ENTITY NAMES FOR

` A SHOP STANDARD. ANY VIOLATIONS OF THE NAMING

` CONVENTION ARE TREATED AS AN ERROR AND THE ACTION

` (ADD, MOD, DEL) IS NOT ALLOWED.

`````````````````````````````````````````````````````````````````````

IDDUXIT CSECT #REGEQU

`````````````````````````````````````````````````````````````````````

` SET UP ADDRESSABILITY `

`````````````````````````````````````````````````````````````````````

STM R14,R12,12(R13) SAVE CALLERS REGISTERS

 LR R12,R15

 USING IDDUXIT,R12

 L R4,12(R1) GET THE

 L R3,8(R1) CORRECT

 L R2,4(R1) PARAMETER

 L R1,9(R1) ADDRESSES

`

IDDUXITR DS 9H BASE THE CONTROL BLOCKS

`

USING UXITCB,R1 USER EXIT CONTROL BLOCK

MVC UXITRCDE,F9 ZERO OUT THE RETURN CODE

MVC UXITMID(8),BLANKS BLANK OUT THE MESSAGE ID

MVC UXITMTXT(89),BLANKS BLANK OUT THE MESSAGE

`

G-10 CA-IDMS Database Administration



G.4 Sample user-exit program for Schema and/or Subschema Compilers

`````````````````````````````````````````````````````````````````````

` INTERROGATE THE MAJOR COMMAND `

`````````````````````````````````````````````````````````````````````

`

 SPACE

UXIENTY EQU `

USING UXITECB,R3 ENTITY CONTROL BLOCK

`

CLC UXITEVRB,UXICSON IS IT AN SIGNON?

BE USIGNON YES, CHECK THE USER NAME

`

CLC UXITEVRB,UXICARD IS IT AN CARD IMAGE EXIT?

BE UCARD YES, CHECK THE CARD

`

CLC UXITEVRB,UXICADD IS IT AN ADD?

BE UXIECHK YES, CHECK THE ENTITY-NAME

`

CLC UXITEVRB,UXICMOD IS IT A MODIFY?

BE UXIECHK YES, CHECK THE ENTITY-NAME

`

CLC UXITEVRB,UXICDEL IS IT A DELETE?

BE UXIECHK YES, CHECK THE ENTITY-NAME

` NO

MVC UXITMID(8),ELSEID MOVE IN 'ELSE' MESSAGE ID

MVC UXITMTXT(89),ELSEMSG MOVE IN 'ELSE' MESSAGE

 B UXIEBYE

`

`````````````````````````````````````````````````````````````````````

` CHECK THE CARD IMAGE `

`````````````````````````````````````````````````````````````````````

`

 SPACE

UCARD EQU `

`

MVC UXITMID(8),CARDID FILL IN THE MESSAGE ID

MVC UXITMTXT(89),CARDMSG FILL IN THE MESSAGE TEXT

B UXIEBYE BACK TO THE COMPILER

`

Appendix G. User-Exit Program for Schema and/or Subschema Compiler G-11



G.4 Sample user-exit program for Schema and/or Subschema Compilers

`````````````````````````````````````````````````````````````````````

` CHECK THE USER NAME FOR ME `

`````````````````````````````````````````````````````````````````````

`

 SPACE

USIGNON EQU `

`

USING UXITSEB,R2 SIGNON ELEMENT BLOCK

 USING UXITSB,R3 SIGNON BLOCK

`

CLC UXITUSER(3),WHOME IS IT ME

BE UXIEDC YES GO CHECK FOR DC NAME

` NO, GO TO JAIL, GO DIRECTLY TO

` JAIL, DO NOT PASS GO DO NOT

USNAME EQU ` COLLECT $299.

MVC UXITRCDE,F8 FILL IN THE RETURN CODE

MVC UXITMID(8),NOSNID FILL IN THE MESSAGE ID

MVC UXITMTXT(89),NOSNMSG FILL IN THE MESSAGE TEXT

B UXIEBYE BACK TO THE COMPILER

`

UXIEDC EQU `

TM UXITFLG1,UXIT1DC ARE WE RUNNING DC

BZ UXIEBYE NO, SKIP DC ID CHECK

`

CLC UXITUSER,UXITIUSR IS THE USER THE SAME AS DC

BE UXIEBYE YES, OK LET IT PASS

` NO, DON'T LET THEM SIGNON

MVC UXITRCDE,F8 FILL IN THE RETURN CODE

MVC UXITMID(8),NODCID FILL IN THE MESSAGE ID

MVC UXITMTXT(89),NODCMSG FILL IN THE MESSAGE TEXT

B UXIEBYE BACK TO THE COMPILER

`

`````````````````````````````````````````````````````````````````````

` CHECK THE ENTITY-NAME FOR VALID NAMING CONVENTION `

`````````````````````````````````````````````````````````````````````

`

 SPACE

UXIECHK EQU `

USING UXITECB,R3 ENTITY CONTROL BLOCK

`

CLC UXITENME(3),NAMECHK DOES THE NAME FOLLOW THE RULES?

BE UXIEBYE YES, LET THIS ONE PASS.

` NO, RETURN AN ERROR

`

MVC UXITRCDE,F8 FILL IN THE RETURN CODE

MVC UXITMID(8),NONOID FILL IN THE MESSAGE ID

MVC UXITMTXT(89),NONOMSG FILL IN THE MESSAGE TEXT

`

G-12 CA-IDMS Database Administration



G.4 Sample user-exit program for Schema and/or Subschema Compilers

````````````````````````````````````````````````````````````````````

` RETURN BACK TO THE COMPILER `

````````````````````````````````````````````````````````````````````

`

 SPACE

UXIEBYE EQU `

LM R14,R12,12(R13) RELOAD CALLER'S REGISTERS

BR R14 RETURN TO CALLER

 EJECT

````````````````````````````````````````````````````````````````````

` CONSTANTS AND LITERALS `

````````````````````````````````````````````````````````````````````

UXICADD DC CL16'ADD '

UXICMOD DC CL16'MODIFY '

UXICDEL DC CL16'DELETE '

UXICSON DC CL16'SIGNON '

UXICARD DC CL16'CARD IMAGE '

NAMECHK DC CL3'XYZ'

WHOME DC CL3'XYZ'

WKLEN DC F'199'

NONOID DC CL8'DC999991'

NONOMSG DC CL89'NAMING CONVENTION VIOLATED - ACTION NOT ALLOWED'

NOSNID DC CL8'DC999992'

NOSNMSG DC CL89'SIGNON ERROR - USER NOT ALLOWED ACCESS'

NODCID DC CL8'DC999993'

NODCMSG DC CL89'SIGNON ERROR - USER NAME NOT DC USER NAME'

CARDID DC CL8'DC999994'

CARDMSG DC CL89'MESSAGE PRODUCED BY CARD IMAGE EXIT '

ELSEID DC CL8'DC999995'

ELSEMSG DC CL89'MESSAGE PRODUCED BY CARD IMAGE EXIT '

BLANKS DC CL89' '

F9 DC F'9' NORMAL RETURN CODE - NO ERRORS

F2 DC F'1' INFORMATION MESSAGE

F4 DC F'4' WARNING MESSAGE

F8 DC F'8' ERROR MESSAGE

`

Appendix G. User-Exit Program for Schema and/or Subschema Compiler G-13



G.4 Sample user-exit program for Schema and/or Subschema Compilers

````````````````````````````````````````````````````````````````````

` USER EXIT CONTROL BLOCK `

````````````````````````````````````````````````````````````````````

UXITCB DSECT

UXITCPLR DS CL8 COMPILER NAME 'IDMSCHEM' OR 'IDMSUBSC'

UXITDATE DS CL8 COMPILER START DATE MM/DD/YY

UXITTIME DS CL8 COMPILER START TIME HHMMSSMM

UXITWORK DS F USER FULLWORD INITIALIZED TO 9

UXITRCDE DS 9F RETURN CODE RETURNED BY USER

 DS XL3 UNUSED

UXITRC DS X

UXITRC99 EQU X'99' NORMAL RETURN CODE - NO ERRORS

UXITRC91 EQU X'91' INFORMATION MESSAGE

UXITRC94 EQU X'94' WARNING MESSAGE

UXITRC98 EQU X'98' ERROR MESSAGE

UXITMID DS CL8 USER MESSAGE ID RETURNED BY USER

UXITMTXT DS CL89 USER MESSAGE TEXT RETURNED BY USER

UXITCBLN EQU `-UXITCB USER EXIT CONTROL BLOCK LENGTH

`

````````````````````````````````````````````````````````````````````

` USER EXIT SIGNON ELEMENT BLOCK `

````````````````````````````````````````````````````````````````````

UXITSEB DSECT

UXITIDLN DS X LENGTH OF USERID FOR #WTL'S

UXITUSER DS CL32 USER ID

DS 9A ROUND UP TO FULLWORD

UXITSNLN EQU `-UXITSEB LENGTH OF SIGNON ELEMENT

`

G-14 CA-IDMS Database Administration



G.4 Sample user-exit program for Schema and/or Subschema Compilers

````````````````````````````````````````````````````````````````````

` USER EXIT SIGNON BLOCK `

````````````````````````````````````````````````````````````````````

UXITSB DSECT

UXITTYPE DS CL16 VERB

UXITDICT DS CL8 DICTIONARY NAME

UXITNODE DS CL8 NODE NAME

UXITIUSR DS CL32 USER ID

UXITIPSW DS CL8 USER'S PASSWORD

UXITFLG9 DS CL1 ENVIRONMENT FLAG

UXIT9DOS EQU X'89' COMPILER RUNNING UNDER VSE/ESA

UXIT9MEN EQU X'49' RUNNING UNDER 'MENU' MODE

UXITFLG1 DS CL1 ENVIRONMENT FLAG

UXIT1LCL EQU X'89' RUNNING IN INTERNAL SUBROUTINE MODE

UXIT1DC EQU X'49' COMPILER RUNNING UNDER DC

DS CL2 RESERVED FOR FUTURE FLAGS

 DS CL29 RESERVED

UXITDMLM DS H DDLDML USAGE MODE

` 36=UPDATE

` 37=PROTECTED UPDATE

` 38=RETRIEVAL

UXITLODM DS H DDLDCLOD USAGE MODE

UXITMSGM DS H DDLDCMSG USAGE MODE

 DS CL19 RESERVED

UXITSLEN EQU `-UXITSB LENGTH OF USER EXIT SIGNON BLOCK

`

````````````````````````````````````````````````````````````````````

` USER EXIT ENTITY CONTROL BLOCK `

````````````````````````````````````````````````````````````````````

UXITECB DSECT

UXITEVRB DS CL16 VERB

UXITENTY DS CL32 ENTITY-TYPE

UXITENME DS CL49 ENTITY NAME

UXITEVER DS H VERSION

UXITEADQ DS CL64 ADDITIONAL QUALIFIER

UXITPREP DS CL32 PREPARED BY USER NAME

UXITREV DS CL32 REVISED BY USER NAME

UXITELEN EQU `-UXITECB LENGTH OF USER EXIT ENTITY CONTROL BLK

`

````````````````````````````````````````````````````````````````````

` END OF EXIT `

````````````````````````````````````````````````````````````````````

 END

Appendix G. User-Exit Program for Schema and/or Subschema Compiler G-15



G-16 CA-IDMS Database Administration



Appendix H. SYSIDMS Parameter File

H.1 Parameter Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H-3
H.2 Parameter Descriptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H-6

Appendix H. SYSIDMS Parameter File H-1



H-2 CA-IDMS Database Administration



H.1 Parameter Summary

 H.1 Parameter Summary

Debugging and abend control parameters

Parameter CV Batch OS/
390

VSE/
ESA

VM/
ESA

BS2000
/OSD

MSP/
EX

ABEND_ON_
DEADLOCK

X X X X X X

ABENDTRACE (1)

ABENDTRACE_
ENTRIES

(1)

ABENDTRACE
_SUBSCHEMA
_DISPLAY

(1)

ABENDTRACE
_VIBSNAP

(1)

AREA_VALIDATION
_MSGS

X X X X X X

DB_DEADLOCK
_DUMP

X X X X X X

DC_DEADLOCK
_DUMP

X X X X X X

DC_DEADLOCK_0029 X X X X X X

DEADLOCK_ABEND
_ERUS

X X X X X X

DEADLOCK_ABEND
_0029

X X X X X X

DEADLOCK_DETAILS X X X X X X

DMLTRACE X X X X X X

ECHO X X X X X X X

PROCTRACE X X X X X X

QSAMTRACE X X X X X X

SQLTRACE X X X X X X

(1) The CA-OPTIMIZER/II product must be installed to use this parameter.

 Performance-related parameters

Appendix H. SYSIDMS Parameter File H-3



H.1 Parameter Summary

Parameter CV Batch OS/
390

VSE/
ESA

VM/
ESA

BS2000
/OSD

MSP/
EX

BUFFER_PURGE X X X X X X

BUFFERSTAT X X X X X X

DLBLMOD X X

FILE_BUF X X X X X X

IDMSQSAM X X X X X X

PREFETCH X X X X X X X

PREFETCH_BUF X X X X X X

QSAMAREA X X X X X X

QSAMBUF# X X X X

QSAM#BUF X X

QSAMTRACE X X X X X X

SQL_INTLSORT X X X X X X

 File-related parameters

Parameter CV Batch OS/
390

VSE/
ESA

VM/
ESA

BS2000
/OSD

MSP/
EX

DLBLMOD X X

FILE_BUF X X X X X X

LENGTH_PAGE X X X X X X

LIST X X

LOCAL_DYNAMIC
_ALLOCATION

X X X X X X

MULTIDSN X X

OVERPRINT X X

ROLLBACK3490 X X X X X

SYS_MSG X X X X X X

UPPER X X X X X X

VSE/ESA file parameters X X

WIDTH_PAGE X X X X X X

Connection and environment parameters

H-4 CA-IDMS Database Administration



H.1 Parameter Summary

Parameter CV Batch OS/
390

VSE/
ESA

VM/
ESA

BS2000
/OSD

MSP/
EX

CVMACH X X

CVNUM X X

CVRETRY X X X X X

DBNAME X X X X X X

DICTNAME X X X X X X

DICTNODE X X X X X X

DMCL X X X X X X X

LANG X X X X X X

LOCAL X X X X X X

NODENAME X X X X X X

REREAD_SYSCTL X X X X X X

SYSCTL X X X X X X

Miscellaneous runtime directives

Parameter CV Batch OS/
390

VSE/
ESA

VM/
ESA

BS2000
/OSD

MSP/
EX

DC_SCRATCH X X X X X X

DCNAME X X

DMCL X X X X X X X

DSGROUP X X

JOURNAL X X X X X X

JRNLDTS X X X X X X

LOADAREA X X X X X X

LOCAL_NOJOURNAL
_RETRIEVAL

X X X X X X

LOCALPUR X X X X X X

MSGDICT X X X X X X

PARM X X X X X X

SORTSIZE X X X X X X

Appendix H. SYSIDMS Parameter File H-5



H.2 Parameter Descriptions

 H.2 Parameter Descriptions

Parameter Description

ABEND_ON_DEADLOCK Forces the abnormal termination of a
task that encounters a database
resource deadlock. In normal CV
operations, a database resource
deadlock results in control being
returned to the application program
with an indication that a deadlock
occurred. This parameter causes the
task to be abended instead.

Note:  It is meaningful only in the
SYSIDMS file associated with a
central version.

ABENDTRACE=ON/OFF Activates the tracing of various pieces
of IDMS data when using
CA-OPTIMIZER/II. This parameter is
meaningful only in the SYSIDMS file
associated with a batch job.

Note:  The CA-OPTIMIZER/II
product must be installed to use this
parameter.

ABENDTRACE_ENTRIES=nnn Overrides the default number of
entries being traced by
ABENDTRACE. This parameter is
meaningful only in the SYSIDMS file
associated with a batch job.

Note:  The CA-OPTIMIZER/II
product must be installed to use this
parameter.

ABENDTRACE_SUBSCHEMA_DISPLAY
=ON

Activates the display of information
from the subschema in use at the time
of abend when using ABENDTRACE.
This parameter is meaningful only in
the SYSIDMS file associated with a
batch job.

Note:  The CA-OPTIMIZER/II
product must be installed to use this
parameter.

H-6 CA-IDMS Database Administration



H.2 Parameter Descriptions

Parameter Description

ABENDTRACE_VIBSNAP=ON Causes the dump of the VIB at the
time of abend when using
ABENDTRACE. This parameter is
meaningful only in the SYSIDMS file
associated with a batch job.

Note:  The CA-OPTIMIZER/II
product must be installed to use this
parameter.

AREA_VALIDATION_MSGS=ON/OFF ON causes the informational messages
DB347042 and DB347043 to be
displayed on the JES log during
startup and shutdown for each area
being shared in a SYSPLEX data
sharing environment. If you are
sharing many areas this can cause the
JES log to be congested.

OFF is the default.

Note:  This parameter is only
applicable in a SYSPLEX data sharing
environment.

BUFFER_PURGE Causes updated pages to be written to
the database whenever the number of
buffers containing such pages exceeds
1/4 of the number of pages in the
buffer pool. This parameter may
improve the performance of local
mode update jobs that do not issue
frequent COMMITs, since it will
make buffers available for the use of
prefetch. It has meaning only for local
mode batch jobs.

BUFFERSTAT Produces a report containing buffer
pool I/O statistics that can be used for
tuning purposes. The report will be
written to SYSLST at the end of the
job. This parameter has meaning only
for local mode batch jobs.

See the table at the end of this table
for a description of the fields in the
report.

CVMACH=cms-machine-name (VM/ESA
only)

Specifies the virtual machine in which
the DC/UCF system is executing.

Appendix H. SYSIDMS Parameter File H-7



H.2 Parameter Descriptions

Parameter Description

CVNUM=nnn (VM/ESA only) Specifies the number of the central
version that is accessible by CMS and
is used to route database requests
through the IDMSVMCF facility; nnn
must be an integer in the range from 0
through 255.

CVRETRY=ON/OFF ON indicates that the following
message is displayed on the operator
console when the CA-IDMS central
version is not active:

CV nnn NOT ACTIVE. REPLY
RETRY OR CANCEL.

ON is the default.

DB_DEADLOCK_DUMP Specifies that a dump will be
produced for a task that is abended
due to a database resource deadlock.
This parameter is used in conjunction
with the ABEND_ON_DEADLOCK
parameter. If not specified, no dump
will be produced when a task is
abended due to a database deadlock.

DBNAME=database-name For non-SQL applications, specifies
the name of the database to access at
runtime. database-name is either a
segment name or a DBNAME defined
in a database name table. For SQL
applications, it has no impact.

DC_DEADLOCK_NODUMP Specifies that a dump not be produced
for a task that is abended due to a DC
resource deadlock. This parameter
overrides the DUMP/NODUMP
sysgen parameter.

DC_DEADLOCK_0029 Specifies that tasks that encounter a
DC resource deadlock be abended
with a code of 0029 rather than a code
of DEAD.

DC_SCRATCH=ON/OFF ON allows local jobs to use the
Central Version's scratch area
(DDLDCSCR) when a local scratch
area (DDLOCSCR) is not defined in
the DMCL. OFF is the default.

H-8 CA-IDMS Database Administration



H.2 Parameter Descriptions

Parameter Description

DCNAME=member-name (OS/390 only) Specifies the member name of the
system within a data sharing group.
This name also becomes the system
(node) name, overriding the value
specified in the system definition.
member-name must be a 1-8 character
name consisting of characters A-Z,
0-9, $, #, or @.

Note:  This parameter is only
applicable in a data sharing
environment.

DEADLOCK_ABEND_ERUS Specifies that ERUS tasks that
encounter a database resource
deadlock be abnormally terminated.
This parameter is meaningful only if
the ABEND_ON_DEADLOCK
parameter is also specified.

DEADLOCK_ABEND_0029 Specifies that tasks that are abended
due to database resource deadlocks
use a code of 0029 rather xx29, where
"xx" represents the major code of the
DML request that was being issued at
the time of the abend. This parameter
has meaning only if the
ABEND_ON_DEADLOCK parameter
is also specified.

DEADLOCK_DETAILS=ON/OFF ON specifies that more detail be
provided in a deadlock situation. The
default is OFF.

DICTNAME=dictionary-name Specifies a dictionary to use when
loading a subschema from a load area.
For dictionary-related tools like
CA-IDMS compilers and
precompilers, IDMSBCF, etc.,
dictionary-name specifies the
dictionary to access at run time. For
SQL applications, dictionary-name
specifies the name of the dictionary to
connect to at run time.

Appendix H. SYSIDMS Parameter File H-9



H.2 Parameter Descriptions

Parameter Description

DICTNODE=dictionary-node-name For SQL applications and
dictionary-related tools under the
central version, specifies the name of
the DC/UCF system that controls the
dictionary to access at run time. For
applications running in local mode,
this parameter is not applicable.

DLBLMOD=ON/OFF (VSE/ESA only) ON specifies that the DLBL type in
the disk label will be changed from
'DA' to 'SD' when sequential
processing (IDMSQSAM) is activated.
After the disk labels are processed as
'SD' during the QSAM file OPEN, the
DLBLs are changed back to 'DA' to
allow random BDAM processing. OFF
is the default.

DMCL=dmcl-name Specifies the name of the DMCL load
module to use in local mode.
IDMSDMCL is the default.

DMLTRACE=ON/OFF ON activates a trace facility that traces
all navigational DML requests made
by an application. OFF is the default.

DSGROUP=data-sharing-group-name
(OS/390 only)

Specifies the name of the data sharing
group of which this system is a
member. All CA-IDMS systems that
are members of the same group must
specify the same group name. The
data-sharing-group-name must be a
1-8 character name consisting of
characters A-Z, 0-9, $, #, or @.
Names that begin with SYS or
UNDESIG are reserved and cannot be
used. Names that begin with A-I may
be in use by the operating system and
should be avoided.

Note:  This parameter is only
applicable in a data sharing
environment.

ECHO=ON/OFF Indicates whether SYSIDMS
parameters are displayed on the JES
log. OFF is the default.

H-10 CA-IDMS Database Administration



H.2 Parameter Descriptions

Parameter Description

FILE_BUF=ddname=nnnnn Allows users to increase the number
of pages in a buffer used by a specific
file for a local mode job without
having to change the DMCL. In CV, a
DCMT command can be used to alter
the number of pages in a buffer. The
FILE_BUF parameter provides a
similar capability for local mode jobs.
If specified, the number of pages in
the buffer pool associated with the
specified file is increased by nnnnn.

This parameter can be used to tune
PREFETCH processing by allowing
the local mode user to increase the
number of pages in a specific buffer
for a job and thereby maximize the
benefit of prefetch processing.

IDMSQSAM=ON/OFF ON activates the IDMSQSAM facility
(sequential access for look-ahead
database reads). OFF is the default.

JOURNAL=ON/OFF Specifies whether journaling will be
performed in local mode. OFF
specifies that local mode journaling
will not be performed, even if there
are tape journals defined in the
DMCL. ON is the default.

JRNLDTS=yyyy-mm-dd-hh.mm.ss.nnnnnn This parameter provides a way to
bypass a date time stamp mismatch
problem between the DMCL and the
journal files. The
yyy-mm-dd-hh.mm.ss.nnnnnn is the
date time stamp on the journal file.
This should only be used if you know
that the reason for the mismatch will
not cause a problem. Inappropriate use
of this parameter may cause database
corruption.

Appendix H. SYSIDMS Parameter File H-11



H.2 Parameter Descriptions

Parameter Description

LANG=xxxxxxxxxxxxxxxxxxx Sets an alternate environment for
DBCS support. This parameter is
useful for local mode batch jobs and
is equivalent to issuing the DCUF
SET LANG command for online
users. The language environment
name specified can be a maximum of
19 characters long.

LENGTH_PAGE=nnn Specifies the maximum number of
lines to be printed on a page. nnn
must be in the range from 10 through
32,767. The default is 60.

LIST=SYSLST/SYSOUT/BOTH
(BS2000/OSD only)

Specifies whether output is written to
SYSLST, SYSOUT, or both. The
default is SYSLST.

LOADAREA=ON/OFF Specifies whether the dictionary load
(DDLDCLOD) area is to be accessed
when loading a module. If OFF is
specified, the dictionary load area will
not be accessed. You should specify
OFF only when all load modules are
linked into an OPSYS load library.
ON is the default.

LOCAL=ON/OFF Specifies whether a batch job is to
execute in local mode. If ON is
specified, all requests are processed
locally even if an IDMSOPTI is
link-edited with the program, or a
SYSCTL file is specified in the JCL.
OFF is the default.

LOCAL_DYNAMIC_ALLOCATION=
ON/OFF

OFF directs a local IDMS batch job to
ignore any DSN information defined
in the DMCL for database files, and
requires that the DSN information be
included in the JCL in order to access
a database file. ON is the default.

LOCAL_NOJOURNAL_RETRIEVAL Specifies that local batch jobs not
journal RETRIEVAL ONLY
transactions.

H-12 CA-IDMS Database Administration



H.2 Parameter Descriptions

Parameter Description

LOCALPUR=ON/OFF ON forces the purging of the local
mode buffer pool whenever a
transaction terminates.

This parameter addresses a change in
the way local mode buffers are
handled (between 10.21 and later
releases). In release 10.21 a local
mode job that had multiple
transactions (run units) would have
separate buffer pools for each
transaction (and each transaction
would have no knowledge of the
others). When a transaction
terminated its buffer pool would be
purged. Starting in release 12.0, a
local job with multiple transactions
will have just one buffer pool shared
by all transactions. When a transaction
terminates the buffer remains
unchanged until the last transaction
terminates at which time the shared
buffer pool is purged. To make the
system purge the common buffer pool
when each transaction terminates (and
therefore mimic what happened in
release 10.21), use the parm
LOCALPUR=ON (OFF is the
default).

Note:  This parameter should only be
specified if a compatibility problem is
encountered, since there can be
performance implications in specifying
LOCALPUR=ON.

MSGDICT=ON/OFF Specifies whether the dictionary
message (SYSMSG) area is to be
accessed in order to retrieve the text
of messages. If OFF is specified, the
dictionary message area is not
accessed. OFF should be specified
only when using a DMCL that does
not contain the SYSMSG segment,
such as during installation. ON is the
default.

Appendix H. SYSIDMS Parameter File H-13



H.2 Parameter Descriptions

Parameter Description

MULTIDSN=ON/OFF (VSE/ESA only) ON specifies that tape files may span
multiple volumes. At the end of a tape
reel, EOF (end of file) or EOV (end
of volume) prompts the user to specify
an END OF JOB or an END OF
VOLUME condition. The default,
OFF, specifies that END OF JOB is
automatically the condition at the end
of a tape reel.

NODENAME=nodename For non-SQL applications running
under the central version, identifies
the DC/UCF system to bind to at run
time.

OVERPRINT=YES/NO (BS2000/OSD
only)

Specifies whether the overprint facility
is used when writing to SYSLST. The
default is YES.

PARM='parameter-string' Allows you to specify parameters
typically specified in a JCL EXEC
PARM statement. The format is the
same as the IBM PARM parameter on
the EXEC JCL statement.
parameter-string can contain any 1
through 256 character parameter and
can be specified on multiple lines.

PREFETCH=ON/OFF OFF overrides the default ON and
prevents IDMS from prefetching
database pages, the normal processing
when an area or index sweep is
detected. Specify OFF for a local
batch job to prevent prefetching
database pages for the job step.
Specify OFF in the SYSIDMS file
associated with a central version to
prevent prefetching pages for all
transactions running with the central
version.

PREFETCH_BUF=nnnnn Specifies the minimum number of
pages in a buffer pool that must be
present before IDMS will use prefetch
processing for non-area sweep
requests. This parameter applies to
both local and Central Version
environments.

H-14 CA-IDMS Database Administration



H.2 Parameter Descriptions

Parameter Description

PROCTRACE=ON/OFF ON activates a trace of key user
blocks that participate in an SQL
PROCEDURE call. OFF is the
default.

QSAMAREA=qsam-area-name Specifies the physical area in the
DMCL for which the IDMSQSAM
facility will do look-ahead reads. If
this parameter is omitted and the
IDMSQSAM=ON parameter is
specified, the look-ahead reads will be
performed on the first area that is
accessed by the transaction.

QSAMBUF#=nnn (OS/390 and MSP/EX
only)

Specifies the number of buffers to use
when the IDMSQSAM facility is
active. nnn can be from 1 to 255.
QSAMBUF# enables you to set the
number of QSAM buffers to be used
without having to code JCL for the
file being processed by IDMSQSAM.

If QSAMBUF# is not specified, the
number of buffers is determined by
the DCB parameter BUFNO=nnn, or
defaults to 5 buffers.

QSAM#BUF=nnn (BS2000/OSD only) Specifes the number of buffers to use
for IDMSQSAM simulation.

QSAMTRACE=ON/OFF ON activates a trace of all the
IDMSQSAM look-ahead I/O reads.
This trace shows the name of the
file(s) being accessed by
IDMSQSAM, each RBN that is read
using QSAM or BDAM
(DAM/EXCP), and a summary of the
number of RBN's read through QSAM
and BDAM. It also shows the area
being accessed and the number of
OPSYS QSAM buffers being used as
determined by the JCL. OFF is the
default.

Appendix H. SYSIDMS Parameter File H-15



H.2 Parameter Descriptions

Parameter Description

REREAD_SYSCTL=ON/OFF ON directs local mode operations to
reread the SYSCTL file for each new
transaction. This allows you to

1. Include a SYSCTL in a batch job
step's JCL.

2. Start a transaction that will
execute under central version,
based on the contents of the
SYSCTL file.

3. Deallocate the SYSCTL file
defined in the JCL.

4. Start another transaction to
execute in local mode.

OFF is the default.

ROLLBACK3490 Enables the ROLLBACK utility to
process archive files residing on
devices that do not support backward
read, such as disk and 3490E devices.

SORTSIZE=ON/OFF Directs whether or not IDMS utilities
generate the SIZE= sort parameter
card. Some sort packages cannot
handle the SIZE= parameter. The
default is ON which means that the
SIZE= sort parameter will be
generated.

SQL_INTLSORT=ON/OFF Allows you to force the internal IDMS
sort to be used in local mode. If ON
is specified, an internal SORT rather
than an operating system SORT will
be performed on SQL commands
issued in a local batch job that contain
an ORDER BY clause. In many cases,
an internal SORT is faster than an
operating system SORT when you are
not dealing with a large amount of
data. OFF is the default, indicating an
operating system SORT will be used.

SQLTRACE=ON/OFF ON activates a trace facility of all the
SQL database requests made by an
application. OFF is the default.

H-16 CA-IDMS Database Administration



H.2 Parameter Descriptions

Parameter Description

SYS_MSG=UPLOW/UPPER UPPER directs IDMS to translate the
text of internal #WTL messages to
uppercase before being displayed at
the output destination. The default is
UPLOW. This allows the text of an
internal #WTL message issued by CA
software to be displayed in mixed case
letters.

Specify UPPER under these
conditions:

■ In local batch jobs to translate
any internal #WTL messages
issued by CA software to
uppercase for that job step.

■ In the SYSIDMS file associated
with a Central Version to translate
any internal #WTL messages
issued by CA software to
uppercase for that CV region.

SYSCTL=ddname Specifies an alternate ddname for the
SYSCTL file (other than the default
ddname of SYSCTL).

UPPER=INPUT/OUPUT/BOTH/OFF Specifies whether input and/or output
files will be converted to uppercase:

■ INPUT — Converts SYSIPT
input files to uppercase.

■ OUTPUT — Converts SYSLST
output files to uppercase.

■ BOTH — Converts both SYSIPT
input files and SYSLST output
files to uppercase.

■ OFF (the default) — Does not
convert SYSIPT input files or
SYSLST output files to
uppercase.

USERCAT=ON/OFF Specifies whether the user catalog is
to be accessed. Specify OFF only
when formatting the user catalog or
when the DMCL does not have access
to a user catalog. ON is the default.

Appendix H. SYSIDMS Parameter File H-17



H.2 Parameter Descriptions

BUFFERSTAT report field descriptions:  The following table gives the
descriptions for the fields displayed on the report produced by the BUFFERSTAT
SYSIDMS parameter.

Parameter Description

WIDTH_PAGE=nnn Specifies a maximum number of
characters to be printed on a SYSLST
output line. nnn must be an integer in
the range from 71 to 132. The default
is 132.

XA_SCRATCH=ON/OFF Specifies whether scratch space will
be allocated out of XA storage or not.
OFF, the default, indicates that a
scratch file will be used.

Field Description

*** Buffer Name *** The name of the buffer from the
DMCL which has been opened during
the processing of this job. Only those
buffers which are open or have had
some I/O activity against them will
appear in this report.

*** Pages *** The number of pages allocated to the
buffer. This is the actual number of
pages 'in use' by this buffer for this
job. This number is the total from the
a) DMCL Local Mode Buffer Pages
nnn, or b) JCL DCB=BUFNO=nnn,
or c) SYSIDMS Parm
FILE_BUF=ddname=nnn.

*** Prefetch Minimum *** The minimum number of buffers 'in
use' needed to allow Prefetch to
operate from Random access verbs
(ie., non-area sweep processing).

DB Page Requests The number of times IDMSDBMS
requests a database page from the
buffer pool by calling IDMSDBIO.

Sequential Area Request Of the DB Page requests in the 'DB
Page Requests' count, how many were
GET/NEXT/PRIOR in AREA verbs.

H-18 CA-IDMS Database Administration



H.2 Parameter Descriptions

Field Description

Random Request Of the DB Page requests in the 'DB
Page Requests' count, how many were
not GET/NEXT/PRIOR in AREA
verbs.

Found in Buffer Of the DB Page requests in the 'DB
Page Requests' count, how many DB
pages were already in the buffer pool
and did not require an I/O.

Not Found in Buffer Of the DB Page requests in the 'DB
Page Requests' count, how many DB
pages were not in the buffer pool and
therefore required an I/O.

Buffer 'hit' Ratio Calculated as 'Found in Buffer' times
100, divided by the DB Page
Requests value.

Found in Pref Buffer Found in Prefetch Buffer. Of the 'DB
Page Requests' count, how many DB
pages were found in the buffer pool
that had been read by a Prefetch
Read.

Found in Cache Of the 'DB Page Requests' count, how
many DB pages were found in the
shared cache.

Total DB Pages Read The total number of DB pages read
by both Prefetch and standard I/O.
This is not the number of I/O's or
EXCP's, but the number of DB pages
read into a buffer as a standalone I/O,
'Start I/O - Reads', or as part of a
Prefetch I/O 'Pages Read - Prefetch'.

DB Pg Req:Tot Pages Read The number of 'DB Page Requests'
count divided by the 'Total DB Pages
Read' count.

DB Pg Req:Strt I/O Read The number of 'DB Page Requests'
count divided by the 'Start I/O Reads'
count.

Appendix H. SYSIDMS Parameter File H-19



H.2 Parameter Descriptions

Field Description

NonPrefetch I/O Rqst The number of standard of
non-Prefetch I/O requests. This is the
number of the 'DB Pages Request'
count which are 'Not found in Buffer'
and were not eligible for Prefetch.
Prefetch was either not allowed,
turned off, or the request was started
by a 'Random Request' for which the
'*** Prefetch Minimum ***' is higher
than the number of '*** Pages ***'.

Start I/O - Reads The number of standard or
non-Prefetch I/O reads. This number
is the result of 'DB Page Requests'
which were 'Not found in Buffer' and
Prefetch is turned off, or the request
was started by a 'Random Request' for
which the '*** Prefetch Minimum
***' is higher than the number of '***
Pages ***' count, or the request is not
eligible for Prefetch processing. Each
of these will show up as 1 EXCP.

Start I/O - Writes The number of writes started against
the database. Each of these will show
up as 1 EXCP.

Read forces Write In order to read a DB page into the
buffer, a DB page had to be written
out to the database first (based on the
least recently used algorithm). When
this occurs, Prefetch is effectively
turned off.

Prefetch Requests With Prefetch operating, the number
of DB page requests 'Not found in
Buffer', which were eligible for
Prefetch processing.

Sequential Area Request Of the 'Prefetch Requests' count, how
many were GET NEXT/PRIOR in
AREA type verbs.

Random Request Of the 'Prefetch Requests' count, how
many were not GET NEXT/PRIOR in
AREA type verbs.

H-20 CA-IDMS Database Administration



H.2 Parameter Descriptions

For each file in use, there will be a set of counts:

■ Filename — The DDname of the file using this buffer. Only the files that are
open will show up in this report.

■ Pgs read — The number of DB pages read from this file. This is not the number
of I/Os or EXCPs.

■ Written — The number of DB pages written to this file. This is the number of
I/Os or EXCPs.

■ In buffer — The number of 'DB Page Requests' that were found in the buffer pool
which this file maps to.

Field Description

Pref Req Denied:Buffers Of the 'Prefetch Requests' count, how
many did not use Prefetch due to too
many buffer pages with the 'must
write switch' on (over 1/2 the number
of pages in the buffer pool).

Start I/O - Prefetch The number of the 'Prefetch Requests'
count that actually "Start an I/O" or
"Start Subchannel". Each of these will
show up as 1 EXCP.

Pages Read - Prefetch The number of DB pages that were
"carried" with every 'Start I/O -
Prefetch'. This number plus the 'Start
I/O - Reads' will equal the 'Total DB
Pages Read' count.

Pref Strt I/O:Pref Req The 'Start I/O - Prefetch' count
divided by the 'Prefetch Requests'
count.

Pref Pages:Pref Strt I/O The 'Pages Read - Prefetch' count
divided by the 'Prefetch Requests'
count.

Pref Pages:Pref Strt I/O The 'Pages Read - Prefetch' count
divided by the 'Start I/O - Prefetch'
count. This value shows how effective
the Prefetch operation is. Compare
this number to the "pages per track"
to see how effective each Prefetch I/O
is. If this number is around 3/1 or
less, you probably will not see
enough improvement in performance
to warrant using Prefetch.

Appendix H. SYSIDMS Parameter File H-21



H.2 Parameter Descriptions

■ In prefetch — The number of 'DB Page Requests' that were found in the buffer
pool which this file maps to due to Prefetch.

VSE/ESA file parameters

Parameter Description

FILENAME=file-name Specifies the name of the file whose
attributes are to be overridden by the
following SYSIDMS parameters.

BLKSIZE=block-size Specifies the block size for a file.
BLKSIZE and BLOCKS are mutually
exclusive parameters.

BLOCKS=block-count Specifies a blocking factor for a file.
BLKSIZE and BLOCKS are mutually
exclusive parameters.

DEVADDR=SYSxxx Specifies a device address for a tape
file (SYSIPT, SYSLST, SYSRDR,
SYSPCH, or SYSlogical-unit-number).

FILABL=NO Specifies a no-label option for a tape
file. FILABL=STD is the default.

FILETYPE=file-type Specifies a file type of tape, disk or
file independent.

REWIND=YES/NO/UNLOAD Specifies the position of a tape file
when it is opened or closed.
REWIND=UNLOAD is the default.

H-22 CA-IDMS Database Administration



 Index

Special Characters
=COPY facility E-10, E-23

A
ABEND_ON_DEADLOCK SYSIDMS parameter H-6
ABENDTRACE SYSIDMS parameter H-6
ABENDTRACE_ENTRIES SYSIDMS parameter H-6
ABENDTRACE_SUBSCHEMA_DISPLAY

parameter H-6
ABENDTRACE_VIBSNAP SYSIDMS parameter H-7
ABRT journal record 18-6
access modules

migrating 24-6
statistics, monitoring 22-14

access, restricting for DML programs
area 14-18
record 14-23
set 14-29

ADD operation 11-3
defaults 11-4
effect on areas 14-19
effect on non-SQL schema 13-12
effect on records 13-35
effect on sets 14-30
effect on subschema 14-12
interpreted as MODIFY 10-20, 13-13, 14-13

ADSOBTAT utility program 24-26
ADSTATU utility program 24-26
AFTER procedure 15-21
AFTR journal record 18-6
alignment, boundary 13-50
ALL clause

compiler operations for a user 12-13
compiler operations for public access 13-9, 14-10
in path-group ERASE 14-46

ALL COMMENT TYPES clause 13-34
ALLOWED

for DML functions 14-18, 14-23, 14-29
in PUBLIC ACCESS clause 13-9, 14-10

alphabetic data 13-57, 13-59
alphanumeric data 13-49, 13-56, 13-59
ALTER operation 11-5
AMODE clause 14-65
application configurations 1-12
application control block 15-8—15-10

application dictionary
components 23-5
defining 23-14
definition 1-7
description 23-3

application program information block 15-8, 15-10
application structure, migrating 24-5
archive journal file

defining 6-22—6-25
dropping 6-25
multiple 18-9

ARCHIVE JOURNAL statement 6-22—6-25
area

dictionary 23-3
area acquisition threshold 37-16
area control block 15-8, 15-11
AREA journal record 18-6
area locks

for SQL transactions 37-16
status 37-7
when acquired 37-16

area procedures 15-8
area ready modes

See also ready modes
default 37-8
types 37-4—37-10

AREA statement 13-15—13-20
AREA statement (non-SQL schema)

 copying 8-8
definition procedure 8-8

AREA statement (physical database) 6-26—6-42
AREA statement (subschema) 14-17—14-20

ADD/MODIFY/DELETE syntax 14-17
definition procedure 8-19

area-to-file mapping 3-6
AREA_VALIDATION_MSGS SYSIDMS

parameter H-7
areas

space management 33-10—33-12
space management page 33-12
space management page (SMP) 33-15
symbolics 3-8—3-9

areas (subschema)
access restrictions 14-18
ready mode 14-18
readying 14-19

areas, non-SQL schema
adding/deleting 31-6

Index X-1



areas, non-SQL schema (continued)
calls needed for compression 13-20, 13-41
changing characteristics 31-7
name 13-16
qualification 13-16
ready mode, for database procedures 13-17

areas, physical
adding pages 6-42
AREA statement 6-26—6-42
contiguity of pages 6-36
definition 2-4, 3-4
dropping 6-42
file blocks 6-38
increasing size 6-36, 25-12
locks 37-11—37-12
mapping to files 6-41
offsets 6-36
override specification 6-77
page range, extending 25-13
page ranges 6-36—6-37
page size, increasing 25-12
physical device blocking 6-37—6-38
restrictions, native VSAM 6-39
synchronization stamp 3-9, 6-38

areas, subschema
adding/modifying/deleting 32-8

AREPORTs 24-13
AS SYNTAX/COMMENTS clause

setting the session default for 10-27
ASCENDING KEY clause

COBOL elements 13-52
sorted sets 13-83

Assembler Language
element names 13-54
record names 13-37

ASSIGN RECORD IDS clause 13-8
asterisk

significance in non-SQL DDL statements 9-8
asterisk with plus sign

impact on ECHO 10-21
impact on LIST 10-22
in output of DISPLAY statements 10-27
significance in non-SQL DDL statements 9-8

attributes, used in migration 24-13
authority

to access entity descriptions 11-10
to access schema descriptions 12-13, 13-13
to access subschema descriptions 14-14

AUTHORIZATION clause 14-8
AUTO

for assigning pointer positions 13-78, 13-81—13-82

AUTO (continued)
for assigning record IDs 13-27

automatic
assignment of record IDs 13-8, 13-26
assignment of set pointers 13-78, 13-81—13-82
change of hyphen to underscore for PL/I 13-37
changes in PUBLIC ACCESS 14-15
deletion of load module 13-12
deletion of set 13-36, 13-85, 14-25, 14-30
deletion of subschema area 13-19
generation of ON clauses 14-56
generation of ON clauses (table) 14-59
inclusion of correct synonym 13-27, 13-52

AUTOMATIC set removal option 13-83

B
backup

definition 19-3
following normal system shutdown 19-5
for local mode jobs 19-10
procedures 19-4

base element, in REDEFINES clause 13-47
batch compilation

non-SQL schema E-4
subschema E-5

Batch Shared Resources Subsystem (Batch LSR) 17-5
BEFORE procedure 15-20
BFOR journal record 18-6
BGIN journal record 18-6
BINARY element usage 13-49
BIND statement 6-54—6-55
BIT element usage 13-49
bit elements 13-60
BLANK WHEN ZERO clause (schema

elements) 13-51, 13-59
blank, in non-SQL DDL statements 9-8
BLKSIZE SYSIDMS parameter H-22
BLOCKS SYSIDMS parameter H-22
boolean expression

order of evaluation 12-6
syntax 12-4

boundary alignment 13-50
BS2000/OSD JCL

non-SQL schema compiler E-23
subschema compiler E-25

BUFFER statement 6-43—6-48
buffer utilization ratio 22-6
BUFFER_PURGE SYSIDMS parameter H-7
buffers

acquisition 6-47

X-2 CA-IDMS Database Administration



buffers (continued)
changing characteristics of 17-7
database 4-8
default 6-48
definition 4-8
dropping 6-48
for database load 20-5, 21-7
for native VSAM files 6-45
in DMCL 2-5
in hiperspace 17-5
incrementing through JCL 17-4
management 17-3—17-12
native VSAM file considerations D-6
nonshared resource buffer pools 6-45
number of 17-3
page count, central version 6-46, 6-47
page count, local mode 6-45
page size 6-44, 17-5
sizing 17-3
statistics, monitoring 22-6—22-7
storage acquisition method 17-5
tuning 17-8

buffers, journal
See journal buffer

BUFFERSTAT SYSIDMS parameter H-7
BUFNI, VSAM buffer pool specification 6-45
BUILD phase 21-8

C
CA-IDMS

application environments 1-12
central version operations 1-3—1-4
components 1-3
database definition 1-11—1-12
database design 1-11
dictionaries 1-7
installation 1-10
loading the database 1-12
local mode operations 1-4
logical database definition 1-8
physical database definition 1-8
runtime components 1-10
security 1-9
types of operation 1-3

CA-IDMS command facility 1-13, 7-4
CA-IDMS/DB

components 1-7—1-12
CA-IDMS/DB VSAM file

and LSR buffer management 17-5

CALC
control element 13-27
element name 13-28
location mode 13-27
set 33-11
storage mode 34-4, 34-7

CALC keys 13-28—13-29
changing 31-9
changing the DUPLICATES option 31-11
creating for a table 29-6
defining 7-8
dropping from a table 29-6
unique 7-8

CALC record, loading 20-4
CALL clause

in area specification 13-17
in record specification 13-33
order of execution 13-41

CALL statements
generated by PROCEDURE NAME 13-41
specifying 15-16

calls to database procedures
before and after DML statements 15-4
location of 15-4

card-image
control block G-9
user exit G-4

CASCADE option
for tables 28-7
for views 28-5

catalog
areas 23-3
defining 23-13
schemas 23-11

central version 1-3—1-4
binding programs 15-15
buffers 17-3
journaling 2-5, 18-3
recovery, automatic 19-14
runtime components 23-20
warmstart 19-14

central version operations
area lock status 37-7
handling of physical area lock 37-12
lock management 37-13

CHAIN set mode 13-77
chained reads 17-9

and the read driver 17-11
chained sets

connecting records to 35-5—35-6
database notation 35-4

Index X-3



chained sets (continued)
disconnecting records from 35-6—35-7
pointers 35-4
reordering 31-21
retrieving chained records 35-7—35-8

character
decimal point 10-20
quote 10-24

check constraints 28-10
checkpoints, journal 18-6
CKPT journal record 18-6
CLASS clause 13-10, 14-11
classes, used in migration 24-13
CLEAR

in path-group ON 14-57
logical-record variable-storage 14-34, 14-35

CLUSTERED storage mode
CLUSTERED storage mode
index 34-9—34-11
introduction to 34-7
linked relationship 34-7—34-9

CMS commands
non-SQL schema compiler E-20
subschema compiler E-21

COBOL
condition names 13-48, 13-59
element names 13-54
record names 13-37

COBOL DML precompiler 13-60
code tables, migrating 24-7
coding considerations

for non-SQL schema and subschema compilers 9-7
colon, in non-SQL DDL statements 9-8
columns

adding to an existing table 28-8
changing characteristics of 28-10
dropping 28-9

comma
as decimal point 10-20, 12-4, 13-58
in non-SQL DDL statements 9-8

command facility 7-4
comment keys

assigning text 14-15
comments

displaying options as 10-27
COMMENTS clause 9-14

for record elements 13-54
in logical-record display 14-35
in non-SQL schema display 13-11
in non-SQL schemas 14-11
in record display 13-34

COMMENTS clause (continued)
in subschema display 14-11
logical records 14-35
setting DISPLAY/PUNCH default 10-27
setting sequence numbers for 10-24

COMMIT user exit G-4
COMMIT, specifying database procedures for 13-17
communication

between programs and procedures 15-15
comparison operators, in boolean expression 12-4
compiler functions 8-6
compiler-directive statements

DISPLAY/PUNCH ALL 6-12—6-21, 10-4—10-10
DISPLAY/PUNCH IDD 10-11—10-13
INCLUDE 10-14—10-15
overview 10-3
SET OPTIONS 10-16—10-32
SIGNOFF 10-33
SIGNON 10-34—10-37
types of 9-16

compilers 9-3
compiling schemas and subschemas E-4—E-25
compress/decompression procedures 13-32, 13-33
COMPRESSED index entries 13-84
compressed record 13-31—13-33, 13-39—13-40
compression 13-31—13-33

calls needed for area 13-20, 13-41
compression, data 7-6
COMPUTATIONAL-n (COMP-n) element usage 13-49
COMPUTE, in path group 14-45
COMT journal record 18-6
condition name

assigning a value to a 13-48
defined 13-59

CONDITION-NAME element usage 13-50
CONNECT

DML restriction 14-23, 14-29
in path group 14-46
specifying database procedures for 13-33

constraint
See referential constraint

CONTAINS option of boolean expression 6-13, 10-6,
12-5

control element
CALC 13-27
sort 13-83
variable-length records 13-51
VSAM CALC 13-29

CONTROL LENGTH, in MINIMUM ROOT LENGTH
clause 13-31

X-4 CA-IDMS Database Administration



COPY ELEMENTS substatement 13-69—13-71
mixing with element substatement 13-70

copying
areas 13-16
sets 13-76

CREATE operation 11-3
CREATION responsibility, documenting 12-14
CULPRIT HEADER clause, in ELEMENT

substatement 13-53
CULPRIT HEADERS clause 10-25
currency

establishing, for non-SQL schemas and
subschemas 8-30

non-SQL schema 13-4
physical database DDL entities 6-8
subschema 14-4

CURSOR STABILITY isolation level 37-8
cushion 36-6
CVMACH SYSIDMS parameter H-7
CVNUM SYSIDMS parameter H-8
CVRETRY SYSIDMS parameter H-8

D
DASD block I/O file access method 16-5
data characteristic table (DCT) 13-32
data compression 7-6, 28-10, 31-15

specifying 13-31—13-33
data decompression

specifying 13-31—13-33
data items 13-56
data portion, record occurrence 33-5
data types 13-48

(table) 13-60
alphabetic 13-57, 13-59
alphanumeric 13-49, 13-56, 13-59
external floating point 13-57—13-60
fixed decimal 13-57
numeric 13-49
numeric edited 13-58—13-60

database
areas 33-10—33-15
key 33-7—33-9
pages 33-4—33-6

database access
SQL applications 5-5

database definition procedure
non-SQL 8-3
SQL-defined 7-3

database definition, about 1-11

database design 1-11
database files, definition of 3-3
database key 33-3

definition 33-7
for VSAM ESDS files 6-37
for VSAM KSDS files 6-37
format 33-7—33-9
variable format 6-97

database loading, non-SQL
considerations 20-4
procedure using FASTLOAD 20-6
techniques for large databases 20-5
using user-written program 20-7—20-10

database loading, SQL
BUILD phase 21-8
considerations 21-7
data types 21-11
full load 21-13
input file 21-10—21-11
multiple tables 21-10, 21-11
null values 21-11
options 21-5
performance, enhancing 21-9
phased load 21-13—21-15
procedures 21-12—21-19
process for 21-3
segmented load 21-15—21-16
stepped load 21-16—21-19
table columns 21-10

database monitoring
See monitoring

database name table
DBNAME statement 5-3, 6-52—6-57
DBTABLE statement 6-58—6-62
default dictionary 5-9
defining 5-13
definition 2-5
generating 5-13
modifying 26-3—26-4
restrictions 6-55
segments, specifying 5-5
subschema mapping 5-13

database procedure blocks 15-8
database procedure calls

in relation to DML statements 15-4
in relation to error conditions 15-4
location of 15-4

database procedures
adding/dropping 31-16
AFTER procedure 15-21
BEFORE procedure 15-20

Index X-5



database procedures (continued)
calling 13-19
calling non-reentrant or non-assembler 15-17
changing calls 13-20
coding 15-7—15-15
common uses of 15-5—15-6
compression/decompression 15-5
data collection 15-6
data validation 15-5
definition 15-3
example 15-22—15-24
executing 15-20—15-21
IDMSNVLR procedure 15-6
invoking 15-16
link editing 15-16
ON-ERROR procedure 15-20
privacy/security 15-5
program/procedure communication 15-15—15-16
under central version 15-15
updating, deleting 13-40
variable-length native VSAM records 15-6
when no information is passed 15-16

database record field name
assigning 13-47
specifying in path group 12-8, 14-58

date 13-8
db-key

See database key
DB_DEADLOCK_DUMP SYSIDMS parameter H-8
DBCS edited data

picture format 13-57
DBGROUP statement 6-49—6-51
DBKEY

See also database key
as control element for sorted sets 13-84

DBNAME
in JCL E-4

DBNAME statement 6-52—6-57
DBNAME SYSIDMS parameter H-8
DBNAME table

See database name table
DBTABLE statement 6-58—6-62
DC_DEADLOCK_0029 SYSIDMS parameter H-8
DC_DEADLOCK_NODUMP SYSIDMS parameter H-8
DC_SCRATCH SYSIDMS parameter H-8
DCMT commands

for database buffers 17-4
for journaling 18-13
for the read driver 17-11
PREFETCH option, for chained reads 17-10

DCNAME SYSIDMS parameter H-9
DCTABLE NAME clause 13-32
DDDL compiler 1-13
DDLCAT area 23-3
DDLCATLOD area 23-3
DDLDCLOD area 9-17, 23-3
DDLDCLOG area 23-20
DDLDCMSG area 23-3, 23-20
DDLDCRUN area 23-20
DDLDCSCR area 23-20
DDLDML area 9-17, 23-3
DDLOCSCR area 23-21
DDLSEC area 23-20
deadlock detection interval 37-26
DEADLOCK_ABEND_0029 SYSIDMS parameters H-9
DEADLOCK_ABEND_ERUS SYSIDMS

parameter H-9
DEADLOCK_DETAILS SYSIDMS parameter H-9
deadlocks 37-25—37-27
decimal point character

in boolean expression 12-4
in PICTURE clauses 13-58
setting the character for 10-20

DECIMAL-POINT clause 10-20
decompression 13-31—13-33
DEFAULT clause 10-20
default dictionary

defining 23-19
specifying 23-23

default index on a table 28-12
DEFAULT USAGE clause 14-19
DELETE clause

in SET OPTIONS statement 10-21
DELETE operation 11-6

allowed/disallowed for a user 12-13
effect on areas 14-19
effect on load modules 14-65
effect on non-SQL schema 13-12
effect on records 13-36, 14-25
effect on sets 14-30
effect on subschema 14-13
for public access 13-9, 14-10

DELETE RECORD
effect on sets 14-25

DELETION responsibility, documenting 12-14
delimiter, end-of-file
DERIVED FROM clause 13-9
DESCENDING KEY clause

COBOL elements 13-52
sorted sets 13-83

X-6 CA-IDMS Database Administration



DEVADDR SYSIDMS parameter H-22
device blocking 6-37
dialogs, migrating 24-6
dictionaries

See also application dictionary
See also system dictionary
DDDL compiler 1-13
default 5-9, 6-61, 23-19, 23-23
defining 23-14—23-18
definition 1-7, 23-3
definitions, CA-supplied 23-8—23-12
logical components 23-4
logical definitions 23-9
message area 23-5
modules 23-11
nondatabase structures 23-11
physical components 23-3
protocols 23-11
schemas, non-SQL 23-9
segments 23-5
subschemas 23-9

dictionary
displaying options 10-27
entities, display 10-11
node, specifying for compilation 10-35
record types in logical records 14-34

dictionary load utility, IDMSDIRL 23-9
DICTNAME SYSIDMS parameter H-9
DICTNODE SYSIDMS parameter H-10
DIRECT location mode 13-28
DIRECT storage mode 34-3
disallowing DML functions

area ready modes 14-18
record access functions 14-23
set access functions 14-29

DISCONNECT
DML restriction 14-23, 14-29
in path group 14-46
specifying database procedures for 13-33

DISK JOURNAL statement 6-63—6-66
disk journals

considerations 4-11
defining 6-63—6-66
modifying the access method 25-16
modifying the size 25-15

DISPLACEMENT
of index keys 13-78
of VIA set members 13-29

DISPLAY,in element USAGE clause 13-50
DISPLAY/PUNCH ALL statement 6-12—6-21,

10-4—10-10

DISPLAY/PUNCH ALL statement (continued)
entity options (table) 10-7

DISPLAY/PUNCH IDD statement 10-11—10-13
entity options (table) 10-11

DISPLAY/PUNCH operations
allowed/disallowed for a user 12-13
for public access 13-9, 14-10
locations of output 11-8

DISPLAY/PUNCH SCHEMA statement 14-67—14-69
DISPLAY/PUNCH statements

defaults 11-10
displayed as syntax 10-27
displayed at comments 10-27
effect on load modules 14-65
setting the session defaults for 10-24
setting the session defaults for (table) 10-31
used in migration 24-17, 24-18

DLBLMOD SYSIDMS parameter H-10
DMCL

central version 4-4
components of 2-4
default 2-4
defining 4-19—4-23
definition 2-3, 4-3
DMCL statement 6-67—6-81
DMCL, central version 4-4
DMCL, local mode 4-4
dynamic management 25-8—25-9
external file names 6-80
identifying to runtime system 4-5
local mode 4-4
making accessible at runtime 4-22—4-23
segments in central version DMCL 4-13
segments in local mode DMCL 4-13

DMCL statement 6-67—6-81
DMCL SYSIDMS parameter H-10
DML functions, allowing/disallowing

area ready modes 14-18
record 14-23
set 14-29

DML programs, setting default area ready mode
for 14-8

DML statements
in relation to database procedure calls 15-4

DMLTRACE SYSIDMS parameter H-10
DO, in path-group ON 14-56
documentational clauses

COMMENTS 13-10, 13-53, 14-11, 14-35
CULPRIT HEADER 13-53
INCLUDE/EXCLUDE class-name 13-10, 14-11
MEMO DATE 13-8

Index X-7



documentational clauses (continued)
OLQ HEADER 13-53
RESPONSIBLE FOR 12-14
SCHEMA DESCRIPTION 13-8
SUBSCHEMA DESCRIPTION 14-8

DREPORTs 24-12
driver, read and write 17-11
DROP operation 11-6
DSEG journal record 18-6
DSGROUP SYSIDMS parameter H-10
DUPLICATES

clause for CALC record types 13-28
clause for sorted sets 13-85
clause for VSAM CALC record types 13-29

E
EACH, in path-group FIND/OBTAIN 14-47,

14-51—14-54
ECHO clause 10-21
ECHO SYSIDMS parameter H-10
edit tables, migrating 24-7
EJECT format statement 9-18
element

examples of definition 13-64—13-68
in logical records 14-33
in subschema views 14-23
in subschema views (table) 14-26
levels 13-56
multiply-occurring 13-50—13-51
name 13-47
nesting 13-48, 13-56
observing language conventions 13-54
PICTURE clause 13-60
storage characteristics 13-60
USAGE clause 13-60

ELEMENT substatement 13-44—13-68
COPY ELEMENTS syntax 13-69
minimum 13-56
mixing with COPY ELEMENTS 13-70
qualification 13-69
required clauses 13-64
syntax 13-44

ELEMENT SYNONYM NAME clause (schema
elements) 13-52

ELEMENT, in path-group SELECT clause 14-44
elementary item, defined 13-56
ELEMENTS clause

and VIEW ID clause (table) 14-26
logical-record specification 14-33
records 14-23

ELEMENTS clause (continued)
specifying fields 14-26

end-of-converse user exit G-4
end-of-file indicator 10-22
ENDJ journal record 18-6
entity

control block G-8
type, defined 9-7

entity occurrence
defined 9-7
naming conventions G-3

EOF clause 10-22
ERASE

specifying database procedures for 13-33
ERASE command

DML restriction 14-23
in path group 14-46
path group 14-43
space management considerations 33-13

error messages
displayed without line numbers 10-23

ESDS
CALC keys 13-29
database key construction 6-37
location mode 13-29

estimated row count in tables 28-11
EVALUATE, in path group 14-47
EXCLUDE clauses

ALL CALLS (areas) 13-19
ALL CALLS (record) 13-34
class-name 13-10, 14-11
MEMBER 13-81
RECORD SYNONYM 13-27
USER 13-9, 14-10

exclusive lock mode 37-14
exclusive ready modes 37-4
exclusive record locks 37-19
EXCLUSIVE, area ready mode

restricting DML programs from using 14-18
setting as DML default 14-19

EXCP file access method 16-5
expansions for complex parameters

See parameter expansion
explicit record locks 37-19
explicit version number 10-20—10-21
exponent, in PICTURE clause 13-57
external floating point data 13-57—13-60

X-8 CA-IDMS Database Administration



F
FASTLOAD utility statement 20-3—20-6
FIELDNAME-EQ, in logical record SELECT

clause 14-44
FIELDNAME, in logical record SELECT clause 14-44
figurative constant, in VALUE clause 13-49
FILABL SYSIDMS parameter H-22
file override specification 6-75—6-77
FILE statement 6-82—6-88
FILE_BUF parameter H-11
FILENAME SYSIDMS parameter H-22
files 16-3—16-12

access method, modification 25-10—25-11
access to native VSAM 16-6
access to VSAM database files 16-5
accessing 16-3
adding and dropping 25-14
blocks 6-38
CA-IDMS/DB access 16-5
characteristics 16-8—16-9
creating 16-7
data set name 3-10
device types 16-7
disk devices 16-7
dropping 6-87, 6-88
dynamic file allocation 6-87
formatting 16-10
input load file 21-10—21-11
journal 4-9
journal, block size 6-101
maximum page size 16-7
native VSAM 16-11
preallocated, defining 6-88
specifications 6-34—6-35
types 16-4

FILETYPE SYSIDMS parameter H-22
FILLER element 13-47, 14-26
FIND command

DML restriction 14-23, 14-29
specifying database procedures for 13-33
with indexed record 36-18

FIND, in path group
CURRENT options 14-48
EACH/EACH PRIOR 14-52
FIRST/LAST/NEXT/PRIOR 14-52
OWNER 14-51
using indexed set 14-50
WHERE CALCKEY = 14-47
WHERE DBKEY = 14-49
WITHIN SET WHERE SORTKEY = 14-53

FINISH, specifying database procedures for 13-17
FIRST

DUPLICATES option for CALC record types 13-28
DUPLICATES option for sorted sets 13-85
in path-group FIND/OBTAIN 14-47, 14-52—14-54
set order 13-76, 36-12

fixed decimal data 13-57
fixed-compressed record 13-31, 13-39, 34-11

minimum coding requirements 13-41
fixed-length record 13-39, 13-41
FIXED, VSAM record length specification 13-31
footer 33-5
FOR PROGRAM clause, to transfer subschema

statistics 14-9
foreign key, control length 13-87
format control statements

EJECT statement 9-18
SKIP statement 9-18

FORMAT utility statement
purpose 33-12
to erase table rows 28-8

formatting files 16-10
FORTRAN

element names 13-55
record names 13-37

fragmentation 13-39
fragmented record 13-31, 34-11
full load, SQL-defined database 21-6, 21-13

G
GENERATE statement 14-62

procedure 8-24
GET

DML restriction 14-23
in path group 14-55
specifying database procedures for 13-33

group item, defined 13-56

H
header 33-4
HEADER, for batch listings 10-22
headers

CA-CULPRIT 10-25, 13-11
CA-OLQ 10-25, 13-11
in compiler listing 10-22

HIGHEST version 10-20
home page 34-11

Index X-9



I
I/O, reducing 17-9—17-11, 22-15
IDD record

in logical records 14-34
sharing the structure of an 13-38

IDD source module
inclusion in DDL input 10-14

IDMS
See CA-IDMS

IDMS buffer storage 17-5
IDMS statistics block 15-8, 15-11
IDMSAJNX user exit 18-12
IDMSCHEM compiler 8-6, E-7, E-10, E-20, E-23
IDMSCOMP procedure 13-31—13-33, 13-39, 15-5
IDMSCPLX user exit 18-12
IDMSDCOM procedure 13-31—13-33, 13-39, 15-5
IDMSDIRL utility program 23-9
IDMSJNL2 user exit 18-12
IDMSLBLS procedure E-11
IDMSNTWK schema 23-9
IDMSNVLR database procedure 15-6
IDMSQSAM SYSIDMS parameter H-11
IDMSRPTS utility program 24-12
IDMSTBLU utility program 30-8
IDMSUBSC compiler 8-6, E-12, E-21, E-25
IF NOT, in path group 14-55
IF, in path group 14-55
implicit page locks 37-19
implicit record locks 37-18
IN ERROR status 11-7
INCLUDE clauses

class-name 13-10, 14-11
MEMBER 13-81
RECORD SYNONYM 13-27
USER 13-9, 14-10

INCLUDE statement 10-14—10-15
incremental lock acquisition mode 37-17
index

definition of 36-5
levels 36-8
pointer 13-81
set mode 13-77
spawning and splitting 36-8, 36-14—36-15
structure of 36-5—36-11

index entry
for sorted set 36-7
for unsorted set 36-7
number of 36-6

INDEXED BY clause (COBOL) 13-52

indexed elements, COBOL 13-52
indexed set

changing to chained 31-18
compressed entries 13-84
connecting records to 36-11—36-15
DBKEY as sort control element for 13-84
defining 36-3
disallowed specifications for 13-77
disconnecting records from 36-15
 end.disallowed specifications for 13-82
location mode for 13-28
member 13-81
mode 13-77
notation 36-4
owned by system record 13-79
pointer defaults 13-78, 13-81, 13-86
pointers 13-81, 36-4
purposes of 36-3
reordering 31-21
retrieving indexed records 36-16—36-18
set order 36-3, 36-12
sorted 36-7, 36-14—36-15
sorted retrieval 36-16
structure of 36-5—36-11
types 36-3
unsorted 36-7, 36-11—36-14

indexes
See also system-owned indexes
changing 29-5
creating 29-4
defining 7-9
displacement 6-33—6-34
dropping 29-4
dropping default indexes 7-12
dropping table's default 28-12
moving 29-5
specifications 6-33—6-34
statistics, monitoring 22-8—22-9
unique 7-9
unlinked 13-86

indexes, non-SQL
adding/deleting pointers 31-25
changing characteristics 31-25
changing the index area 31-24

INPUT COLUMNS clause 10-22
input format

non-SQL schema and subschema compilers 9-9
specifying columns for 10-22

input range 10-22
insertion options 13-83

X-10 CA-IDMS Database Administration



installation defaults
for session options (table) 10-29
online compiler task codes 9-4

intent locks 37-14
isolation levels 37-8
ITERATE, in path-group ON 14-57

J
JCL

BS2000/OSD E-23
CMS commands E-20
OS/390 E-7
VSE/ESA E-10

journal buffer
defining 6-89—6-92
definition 4-9
dropping 6-91
number of pages 4-11
page size 4-10, 6-90
writes to files 18-5

JOURNAL BUFFER statement 6-89—6-92
journal files

device types 16-7
disk devices 16-7
for the runtime environment 2-5
record types 18-5
types 4-9
under the central version 18-3

journal fragment interval 18-14
journal record entries 18-5
JOURNAL SYSIDMS parameter H-11
journaling

archive journal block size 6-25, 6-80
ARCHIVE JOURNAL utility statement 18-9—18-11
archive journals 6-22—6-25
block size 6-23
changing the disk journal file size 25-15
journal file, incomplete 19-40
local mode 18-4
modifications 25-7
multiple archive journals 6-24
offloading 18-9—18-11
performance 18-13—18-15
procedures 18-3—18-16
record types 18-5
reports 18-12
requirements 6-24
statistics 22-5—22-6
to disk device 4-11, 6-63—6-66, 19-40
to tape device 6-99—6-102, 19-40

journaling (continued)
under the central version 18-3
user exits 18-12

JREPORTs 18-12
JRNLDTS SYSIDMS parameter H-11
JSEG journal record 18-6
JUSTIFY RIGHT clause (schema elements) 13-51

K
KEEP

DML restriction 14-23, 14-29
in path-group FIND/OBTAIN 14-47, 14-54
path-group DML command 14-56

KEYLEN, VSAM buffer pool specification 6-45
KEYWORD in logical record SELECT clause 14-45
keywords, defined 9-12
KSDS

CALC keys 13-29
database key construction 6-37
DUPLICATES option 13-29
location mode 13-29
set mode 13-77

L
LANG SYSIDMS parameter H-12
LAST

DUPLICATES option for CALC record types 13-28
DUPLICATES option for sorted sets 13-85
in path-group FIND/OBTAIN 14-52
set order 13-76, 36-12

LEADING sign placement for element 13-51
LENGTH_PAGE SYSIDMS parameter H-12
level-88 item 13-48—13-59
level-number clause (schema elements) 13-47
line index 33-5
line space count 33-5, 33-11
linked constraints 29-7
linked index constraint, order 36-3
LINKED TO OWNER for set member 13-82
LINKED TO PRIOR in chained sets 13-77
LIST 10-22
LIST SYSIDMS parameter H-12
listings from compilers

contents of 9-18
format control statements 9-18
to reports on schema/subschema definitions 8-32

literal, in VALUE clause 13-49
load area 23-3

Index X-11



load module
24-bit mode 14-66
at runtime 9-17
automatic deletion 10-21, 13-12
making available to runtime system 24-25
migrating 24-11
object module addressing 14-65
residency mode 14-65
storing 9-17
subschema 13-93, 14-62, 14-63
version 13-93, 14-62

LOAD MODULE statement 14-63—14-66
module residency mode 14-65
name 14-64
object module address mode 14-65

LOADAREA SYSIDMS parameter H-12
local mode 1-4—1-5

buffers 17-3
compiling batch non-SQL DDL E-4
DMCL 2-4
executing SQL DDL 7-4
handling of physical area lock 37-12
journaling 2-5, 18-4
recovery 19-40—19-41
runtime components 23-21
session defaults 23-24

LOCAL SYSIDMS parameter H-12
LOCAL_DYNAMIC_ALLOCATION SYSIDMS

parameter H-12
LOCAL_NOJOURNAL_RETRIEVAL SYSIDMS

parameter H-12
LOCALPUR SYSIDMS parameter H-13
location mode

changing 31-12
LOCATION MODE clause

in record display 13-34
schema record specification 13-27

lock acquisition mode 37-16
lock management 37-3—37-27

area lock status 37-7
area ready modes 37-4—37-10
deadlock detection interval 37-26
deadlocks 37-25—37-27
for SQL access 37-8
isolation levels 37-8
lock compatibility table 37-15
native VSAM considerations 37-24
page locks 37-19
physical area locks 37-11—37-12
record locks 37-18
statistics, monitoring 22-9—22-14

lock management (continued)
under the central version 37-13

locks, intent 37-14
locks, logical

and area ready modes 37-15
compatibility table 37-15
modes 37-14

logical and physical database separation 2-7
logical database definition 1-8
logical end-of-file indicator 10-22
logical record

about 8-21—8-22
access restrictions 14-58
adding/modifying/deleting 32-9
database records in 14-34
definition procedure 8-21
dictionary records in 14-34
documenting 14-36
error detection in 14-34, 14-35
in program variable storage 14-58
name 14-33
path group 14-38
ready mode for 14-8
record role in 14-34
when to modify 14-35

logical record elements
defining 14-33
sequence in program storage 14-35

logical record facility (LRF)
securing the subschema 14-15

LOGICAL RECORD statement 14-32—14-37
logical-record field name, in path group 12-9
logically-deleted records 34-18
LONG-POINT element usage 13-50
LOWEST version 10-20
LR CURRENCY clause 14-9
LR subschema usage mode 14-8
LSR, VSAM buffer pools 6-45

M
MAINTAIN INDEX utility statement 30-5, 30-8
major command user exit G-4
MANDATORY set removal option 13-83
mantissa, in PICTURE clause 13-57
MANUAL set removal option 13-83
maps, migrating 24-6, 24-22
mask, in boolean expression 12-6
master terminal commands

See DCMT commands

X-12 CA-IDMS Database Administration



MATCHES option of boolean expression 6-14, 10-6,
12-6

maximum records per page 3-7
MEMBER clause 13-81
MEMO DATE clause 13-8
message area 23-3
messages, compiler display 10-23
migration

components 24-5—24-9
components, identification methods 24-12—24-14
considerations 24-25
facilities 24-11
procedures 24-4—24-11, 24-17—24-24
sequence 24-9—24-10
task application table 24-26
technique for SQL definitions 24-23
tools 24-15—24-16

MINIMUM FRAGMENT clause
(figure) 13-40
applied to fixed-length records 13-39
compressed records 13-40
default 13-40
example 13-40
schema specification 13-31

minimum fragment length, changing 31-15
MINIMUM ROOT clause

(figure) 13-40
applied to fixed-length records 13-39
compressed records 13-40
default 13-40
example 13-40
schema specification 13-31

minimum root, changing 31-15
MIXED subschema usage mode 14-8
MODE clause (sets) 13-77
mode, 24-bit 14-66
MODIFY operation 11-5

allowed/disallowed for a user 12-13
DML restriction 14-23
effect on non-SQL schema 13-12
effect on records 13-35
effect on sets 14-30
effect on subschema 14-13
for public access 13-9, 14-10
in path group 14-56
path group 14-43
specifying database procedures for 13-33

monitoring
access modules 22-14
buffer statistics 22-6—22-7
facilities 22-4

monitoring (continued)
I/O 22-15—22-16
index efficiency 22-8—22-9
journal statistics 22-5—22-6
locking 22-9—22-14
schedule 22-3
space management statistics 22-7—22-8
SQL processing 22-14

MSGDICT SYSIDMS parameter H-13
MULTIDSN SYSIDMS parameter H-14
multiline input, for non-SQL schema/subschema

compilers 9-9
multiply-occurring elements 13-50—13-51

using subscripts for 12-9

N
naming conventions

physical database statements 6-7—6-8
native VSAM file D-9

accessing 16-6
buffer pool specification 6-45
considerations D-3—D-9
data set structure D-4
definition 16-11
disallowed specifications for 13-77—13-79,

13-81—13-85
DML functions D-8—D-9
location mode 13-29
lock management 37-24
record type 13-31
recovery 19-47
restrictions 6-39
set duplicates option 13-85
set insertion option 13-83
set member 13-81
set mode 13-77
set order 13-77, 13-83
set pointer defaults 13-78, 13-81, 13-86
set removal option 13-83
variable-length record 15-6

NEXT
in path-group FIND/OBTAIN 14-47
in path-group ON 14-57
pointer 13-77
set order 13-76, 36-12

NEXT HIGHEST version 10-21, 13-8
NEXT LOWEST version 10-21, 13-8
NO ECHO clause 10-21
NO HEADER, for batch listings 10-22

Index X-13



NO LIST 10-22
NO PROMPT, for TTY devices 10-23
NO RESET logical record currency 14-10
NOCLEAR, logical record variable-storage 14-34, 14-35
node, specifying for compilation 10-35
NODENAME SYSIDMS parameter H-14
NODENAME, in JCL E-4
non-SQL database definition

procedure 8-3—8-33
sample C-3
segment planning 3-5

non-SQL DDL statements
=COPY facility E-10
coding 9-7
components 9-7
end of statement delimiter 9-8
option delimiters 9-8
required delimiters 9-8

non-SQL defined databases
access through SQL application 5-5
modification methods 30-4
modification procedure 30-5
types of modifications 30-3

non-SQL schema
changing schema characteristics 31-5
changing the definition of 30-4
compiler 8-6
compiler listings 8-32
compiling, batch E-4
components 8-7
currency 8-30—8-31, 13-4
definition 8-7—8-17
deleting 31-5
dictionary 23-9
modification procedure 30-4
modifying when empty 31-4
modifying when not empty 31-5—31-25
name 13-7
native VSAM considerations D-5
sample definition C-3
security checking 8-25—8-29
validation 13-92
version 13-7

non-SQL schema and subschema compilers
batch compiling 9-6
coding comment text 9-14—9-15
coding entity-occurrence names 9-12
coding input non-SQL DDL statements 9-7—9-11
coding keywords 9-12
coding user-supplied values 9-13
comments 9-8

non-SQL schema and subschema compilers (continued)
contents of listings 9-18
ending a session 9-4
error handling 9-10—9-11
format control for listings 9-18
input format 9-9
load modules generated 9-17
output 9-17
recovering a session 9-4
source generated 9-17
starting a session 9-4

non-SQL schema compiler 1-13
automatic load module deletion 13-12
batch execution E-4
BS2000/OSD JCL E-23
CMS commands E-20
compiler-directive statements 10-3—10-37
copying source code into E-10
OS/390 JCL E-7
session options 10-16
status conditions 11-7
VSE/ESA JCL E-10

non-SQL schema DDL
all entity occurrence display 10-7
area 13-15
IDD entity display options 10-11
record 13-21
SCHEMA statements 13-4
schema validation 13-92
set 13-72
subschema regeneration in 13-93

non-SQL SCHEMA statements 13-4—13-14
order of presentation 13-3
syntax 13-7

NONE
compiler operations for public access 13-10, 14-10

NONE, as user responsibility 12-14
nonnumeric literal, in VALUE clause 13-49
nonshared resource (NSR) buffer pools 6-45
NONSPANNED, VSAM control interval

specification 13-31
NOT ALLOWED

DUPLICATES option for CALC record types 13-28
DUPLICATES option for sorted sets 13-85
DUPLICATES option for VSAM CALC record

types 13-29
for DML functions 14-18, 14-23, 14-29

NSR, VSAM buffer pools 6-45
NULL

for default area ready mode 14-19
for non-SQL schema comments 13-10

X-14 CA-IDMS Database Administration



NULL (continued)
for record fragment length 13-32
for record root length 13-32
for schema comments 14-11
for subschema record priority 14-24
for VSAM file device types 13-31

null string, in non-SQL DDL statements 9-14
null values, loading 21-11
null-lock lock mode 37-14
numeric data 13-49
numeric edited data 13-58—13-60
numeric literal, in VALUE clause 13-49

O
OBTAIN, in path group

considerations 14-57
CURRENT options 14-48
EACH/EACH PRIOR 14-52
FIRST/LAST/NEXT/PRIOR 14-52
OWNER 14-51
syntax 14-43
using indexed set 14-50
WHERE CALCKEY = 14-47
WHERE DBKEY = 14-49
WITHIN SET WHERE SORTKEY = 14-53

OCCURS clause (schema elements) 13-50
OCCURS DEPENDING ON clause 13-61
OCCURS DEPENDING ON clause (schema

elements) 13-51
OF SCHEMA clause

in ADD/MODIFY/DELETE operations 13-16, 13-76,
14-7, 14-9

in COPY ELEMENTS substatement 13-69
to qualify areas 13-16
to qualify records 13-69
to qualify sets 13-76
to qualify subschema 14-7, 14-9

OFFLINE area status 37-7
OFFSET clause 13-38
offsets 6-31—6-33, 13-38, 13-87
OLQ HEADER clause

in ELEMENT substatement 13-53
in non-SQL schema display 13-11

OLQ HEADERS clause 10-25
ON clause

automatic generation of 14-56
automatic generation of (table) 14-59
in path group 14-56
in path group (table) 14-59

ON LR-ERROR clause 14-34
ON LR-NOT-FOUND clause 14-35
ON-ERROR procedure 15-20
ONLINE area status 37-7
online compilation

installation default task codes for 9-4
prompt for TTY devices 10-23
redisplay of input 10-21—10-23

OPSYS buffer storage 17-5
optimization of subschema tables

PRIORITY clause 14-26
optional clauses, defined 9-7
OPTIONAL set removal option 13-83
ORDER clause (sets) 13-76
orphan count 36-13
OS/390 JCL

non-SQL schema compiler E-7
subschema compiler E-8

OUTPUT LINE SIZE clause 10-23
OVERPRINT SYSIDMS parameter H-14
OWNER clause

in ADD/MODIFY/DELETE SET statement 13-79
schema specification 13-78

OWNER pointer 13-82

P
PACKED element usage 13-50
page

empty 33-13
home 34-11
layout 33-5
location of records 33-5
maximum number of records on 6-96

page footer 33-5
page groups

assigning 6-96
definition 3-6
for dictionary segments 23-7
when to use 3-6

page header 33-4
page locks 37-19
page number 33-4
page ranges

defining 3-6, 6-36
extending 6-36, 25-13

page reserve 3-8, 34-13
about 34-13
area overrides 4-13
changing 4-13
for database load 20-4, 21-7

Index X-15



page size
buffer 6-44
calculating 33-13
increasing 25-12
journal buffer 4-10

pages
for displacement of index keys 13-78
for displacement of VIA set members 13-29
for record placement within area 13-30—13-80

parameter expansion
boolean-expression 12-4
conditional expression 6-12, 10-4
db-record-field 12-8
lr-field 12-9
mask comparison 6-12, 10-4
module-specification 12-10
user-options-specification 12-13
user-specification 12-12
value comparison 6-12, 10-5
version-specification 12-15

PARM SYSIDMS parameter H-14
PASSWORD clause 12-12
password, when to specify 13-13
PATH (VSAM)

CALC keys 13-29
set mode 13-77

path group
adding/modifying/deleting 32-9
boolean expression in 12-4
considerations 14-57
database record field name in 12-8
database record name in 14-58
logical-record field name in 12-9

PATH-GROUP statement 14-38—14-60
definition procedure 8-22
required use of role names 14-36
terminating 14-58

PERCENT, for record placement within
area 13-30—13-31, 13-80

percentage offsets 13-38, 13-87
period

as decimal point 10-20, 12-4, 13-58
in non-SQL DDL statements 9-7

PERMANENT, in path-group ERASE 14-46
phased load, SQL-defined database 21-13
physical database

See also areas, physical
See also buffers
See also DMCL
See also files
See also segments

physical database (continued)
areas 3-4
buffers, database 4-8
buffers, journal 4-9—4-11
data set name 3-10
database files 3-3
database name table 2-5, 5-3—5-15
defining 3-3
definition 1-8, 2-3
DMCL 2-5, 4-3
DMCL, central version 4-4
journal 4-12
journal files 4-9—4-12
journals, disk 4-11
limits 6-103
page groups 3-6
records per page 3-7
sample A-3
segments 4-13
segments, defining 3-12—3-14
statement summary 6-5
symbolics 3-8—3-9

physical database statements
ARCHIVE JOURNAL 6-22—6-25
AREA 6-26—6-42
BUFFER 6-43—6-48
currency 6-8
DBGROUP 6-49—6-51
DBNAME 6-52—6-57
DBTABLE 6-58—6-62
DISK JOURNAL 6-63—6-66
DISPLAY/PUNCH 6-10
DMCL 6-67—6-81
FILE 6-82—6-88
JOURNAL BUFFER 6-89—6-92
keywords 6-6
naming conventions 6-7—6-8
SEGMENT 6-93—6-98
separators 6-6
statement summary 6-3
TAPE JOURNAL 6-99—6-102
values 6-6
verb synonyms 6-6

physical definitions
access method, changing 25-16
area size, increasing 25-12
DMCL, dynamic management 25-8—25-9
file access method, changing 25-10—25-11, 25-16
files, adding or dropping 25-14
journal file, changing the size 25-15
journal modifications 25-7

X-16 CA-IDMS Database Administration



physical definitions (continued)
modifying 25-3—25-17
page range, extending 25-13
page size, increasing 25-12

physical device blocking 6-37—6-38
physical sequential retrieval 36-16
PICTURE clause (schema elements) 13-48, 13-59

(table) 13-60
PICTURE formats for data 13-56—13-58
PL/I

element names 13-55
record names 13-37

pointer assignments 13-85, 13-86
POINTER element usage 13-50
pointer positions 13-86—13-87
pointers

See also database key
adding/dropping 31-19
changing 13-87
resolved by VALIDATE 13-92

preclaim lock acquisition mode 37-17
PREFETCH SYSIDMS parameter 17-10, H-14
PREFETCH_BUF SYSIDMS parameter H-14
prefix 33-5

compression 36-8
length 33-5

PREPARED BY clause
in ADD/MODIFY/DELETE operations 12-12, 13-8,

14-8
populated by SIGNON 10-23
setting the session default for 10-23
when to use 12-11

PRINT SPACE utility statement 33-14
PRIOR

in path-group FIND/OBTAIN 14-53
pointer 13-77—13-81
set order 13-76, 36-12

PRIORITY clause (subschema records) 14-23
privacy/security options

See lock management
procedure control block 15-8
PROCEDURE NAME clause 13-33
procedures

See database procedures
PROCTRACE SYSIDMS parameter H-15
production environment 1-12
program authorization 14-8
program pools

determined by residency mode 14-66
PROGRAM REGISTRATION clause 14-8

program view of subschema 14-22—14-23
(figure) 14-24

programs
associated with a modified subschema 32-3
communication with procedures 15-15
readying areas 14-19
recompiling after subschema modification 32-3
transferring statistics 14-14

PROMPT, for TTY devices 10-23
protected ready modes 37-4
PROTECTED, area ready mode

compiling in 10-35
restricting DML programs from using 14-18
setting as DML default 14-19

PUBLIC ACCESS clause
assigning to a user 12-13
automatic changes in 14-15
clause 13-9, 13-11
syntax 14-10

PUNCH operation
effect on load modules 14-66
location of output 11-8
setting the session defaults for 10-23

Q
QSAMAREA SYSIDMS parameter H-15
QSAMBUF# SYSIDMS parameter H-15
QSAMTRACE SYSIDMS parameter H-15
quotation marks

in comments 9-13, 13-53
in expressions 9-13
in user text 9-13
setting the character for 10-24
using 9-13

QUOTE clause 10-24

R
RCM

See relational command module (RCM)
read driver 17-11
READ ONLY transaction state 37-8
READ WRITE transaction state 37-8
reads, chained 17-9
READY

restricting for DML programs 14-18
specifying database procedures for 13-17
specifying database procedures for (table) 13-18
specifying defaults for 14-19

Index X-17



ready mode
defaults for subschema areas 14-20
restricting for DML programs 14-18
setting default for DML programs 14-19
subschema 14-8

ready modes
See also area ready modes
and logical locks 37-15
area 37-4—37-10
default 37-8
specifying database procedures for 13-17
specifying database procedures for (table) 13-18
specifying for dictionary 10-35

record
chained sets
connecting to chained set 35-5—35-6
connecting to indexed set 36-11—36-15
defining 35-3
disconnecting from chained set 35-6—35-7
disconnecting from indexed set 36-15
erasing 34-16—34-19
fixed-length compressed 34-11
fragment 34-11—34-12
logical deletion 34-18
physical deletion 34-16
relocated 34-14—34-15
retrieving from chained set 35-7—35-8
retrieving from indexed set 36-16—36-18
root 34-11
storing 34-3—34-15
variable-length 34-11—34-14

record (non-SQL schema)
assigning to an area 13-30, 13-79
compressed 13-31—13-33, 13-39
copying 13-26
examples of definition 13-41—13-43
fixed-compressed 13-39
fixed-length 13-39, 13-41
location mode 13-27
modifying schema-built records 13-35
modifying size 13-39
name 13-24
observing language conventions 13-36
prefix 13-78, 13-81—13-82, 13-89
structure 13-21, 13-24
unused 13-35
using synonyms 13-37
variable-length 13-31—13-39, 13-51
variable-length (figure) 13-40

record (subschema)
access restrictions 14-23

record (subschema) (continued)
priority 14-23
view 14-22—14-23
view (table) 14-26

record control block 15-8, 15-14
record deletion, logical 34-18
record deletion, physical 34-16
record description

ELEMENTS and VIEW ID clauses 14-25
record elements

modifying 31-14
RECORD entity type

compression/decompression procedure 13-33
data characteristic table 13-32

RECORD ID clause
in record display 13-34
non-SQL schema specification 13-26

record IDs
assigning 13-26
changing 31-15
in line index 33-5

record length
calculating 33-5
in MINIMUM FRAGMENT LENGTH clause 13-32
in MINIMUM ROOT LENGTH clause 13-32

record locks 37-18
on subschema record 14-47—14-54
on subschema records 14-56

record occurrence
components 33-5
on database page 33-5

record occurrence block 15-8, 15-15
record procedures 15-8
RECORD statement (non-SQL schema) 13-21—13-43

clauses required for ADD 13-42
COPY ELEMENTS substatement 8-11
definition procedure 8-9—8-15
ELEMENT substatement 8-12
OFFSET clause 13-38
SHARE DESCRIPTION clause 8-11
SHARE STRUCTURE clause 8-10

RECORD statement (subschema) 14-21—14-27
definition procedure 8-20
syntax 14-22

record synonyms
changing 31-15

record-descriptor word (RDW) 15-6
records per page 3-7
records, non-SQL schema

adding 31-8
changing data compression 31-15

X-18 CA-IDMS Database Administration



records, non-SQL schema (continued)
changing the area 31-13
changing the CALC key 31-9
changing the location mode 31-12
deleting 31-8

records, subschema
adding/modifying/deleting 32-6

recovery
central version 19-14
definition 19-3
due to system failure 19-14
due to transaction failure 19-16
 end.manual 19-46
from database file I/O error 19-33—19-36
from journal file I/O error 19-37—19-39
journal file, incomplete 19-40
journaling to disk device 19-40
journaling to tape device 19-40
local mode 19-40—19-41
mixed mode 19-42—19-46
native VSAM files 19-47
 start.manual 19-18
warmstart 19-14
when warmstart fails 19-31

recovery unit 18-5
REDEFINES clause (schema elements) 13-47
referential constraint

changing tuning characteristics of 29-8
creating 7-10, 29-7
dropping 29-7

REGENERATE statement 13-93—13-94
effect on subschemas 13-93
syntax 13-93

regeneration
of a subschema after modification 32-3
using the schema compiler 13-93
using the subschema compiler 13-93

REGISTERED FOR clause 12-13, 14-14, 14-16
registration

for all operations 14-16
for an operation 14-15
of user 14-14
program 14-8
replacing 14-14

REGISTRATION OVERRIDE clause 10-24
registration override security 8-26
relational command module (RCM), migrating 24-6
RELOAD utility statement 30-5, 30-7
relocated record 34-14—34-15
removal options 13-83

repeating character compression 36-8
repeating data items 13-50—13-51
reports, journaling 18-12
REREAD_SYSCTL SYSIDMS parameter H-16
RESET logical record currency 14-9
residency mode 14-66
RESPONSIBLE FOR clause 12-14, 14-14
restricting DML programs

area ready modes 14-18
record access 14-23
set access 14-29

restricting records to page ranges 13-30
restructure

identifying base schema for 13-9
RESTRUCTURE SEGMENT utility statement 30-5,

30-7
retrieval

physical sequential 36-16
random 36-16
sorted 36-16
unsorted 36-16

RETRIEVAL area status 37-7
retrieval ready mode 37-4
RETRIEVAL, area ready mode

compiling in 10-35
restricting DML programs from using 14-18
setting as DML default 14-19

RETURN
specifying database procedures for 13-33

RETURN command 36-18
in path-group ON 14-57

REVISED BY clause
in ADD/MODIFY/DELETE operations 12-12, 13-8,

14-8
populated by SIGNON 10-23
setting the session default for 10-23

REWIND SYSIDMS parameter H-22
RHDCMAP1 mapping compiler 24-22
RHDCMPUT utility program 24-22
RMODE clause 14-65, 14-66
ROLE clause 12-9, 14-34, 14-45, 14-52, 14-58
rollback, automatic

due to transaction failure 19-16
ROLLBACK, specifying database procedures for 13-17
ROLLBACK3490 SYSIDMS parameter H-16
root, of record 34-11
rows of tables, estimating 7-6
RPG II

element names 13-55
record names 13-37

Index X-19



RRDS
location mode 13-29

RTSV journal record 18-6
runtime

database name table 6-61
session options 23-23—23-24

runtime system
See also DMCL
identifying the DMCL 4-5

S
SAM file access method 16-5
SAME AS clause 8-8

area 13-16, 13-19
set 13-76, 13-87

Schema Compiler Activity List
specifying the width of 10-23
suppressing the header on 10-22

schema compiler, non-SQL
See non-SQL schema compiler

SCHEMA DESCRIPTION clause 13-8
SCHEMA statements

definition procedure 8-7
schema-built records

modifying 13-35
schema, SQL

See SQL schema
security

and CA-IDMS 1-9
non-SQL schema 13-9
overriding 10-24
registration override 8-26
subschema 14-10, 14-15
through IDD user exits G-3

security checking
non-SQL schema and subschema compilers 8-25

SEGMENT statement 6-93—6-98
segmented load, SQL-defined database 21-6, 21-15
segments

defining 3-12—3-14
definition 2-3, 3-3
dictionary 23-5
in central version DMCL 4-13
in local mode DMCL 4-13
planning 3-5
specifying in database name table 5-5
using area overrides 4-13
using file overrides 4-13

SELECT clause (logical-record path groups) 14-43
considerations 14-57

SELECTIVE, in path-group ERASE 14-46
semicolon, in non-SQL DDL statements 9-8
SEPARATE CHARACTER sign placement for

element 13-51
SEQUENCE clause 10-24
session options

displaying 10-27
runtime 23-23—23-24
setting 10-16

session options, installation defaults (table) 10-29
set

access restrictions 14-29
automatic deletion of 13-36, 13-85, 14-25, 14-30
examples of definition 13-88—13-91
explicit deletion of 13-85, 14-30
indexed 36-18
insertion options 13-83
linkage 13-78, 13-81
member 13-81
mode 13-77
order 13-76, 36-12
owner 13-79
pointer defaults (table) 13-86
pointers 13-78, 13-81—13-82, 31-19
qualification 13-76
removal options 13-83

set membership options
changing 31-21

set modes, changing 31-18
SET OPTIONS

FOR DISPLAY/PUNCH (table) 10-31
SET OPTIONS statement 10-16—10-32

available options 10-16
default values 8-7
DELETE clause 13-12
installation defaults for (table) 10-29
syntax 10-16

SET statement (non-SQL schema) 13-72—13-91
ADD/MODIFY/DELETE syntax 13-72
clauses required for ADD 13-85, 13-86
definition procedure 8-15
SAME AS clause 8-16

SET statement (subschema) 14-28—14-31
definition procedure 8-20

sets
See also chained sets
See also indexed sets
deleting records 8-15

sets, non-SQL schema
adding/deleting 31-17
changing membership options

X-20 CA-IDMS Database Administration



sets, non-SQL schema (continued)
changing the mode 31-18
changing the order 31-20

sets, subschema
adding/modifying/deleting 32-7

SHARE clause
record specification 13-24
SHARE DESCRIPTION 13-26
SHARE STRUCTURE 13-38

SHARE DESCRIPTION clause
difference from SHARE STRUCTURE clause 13-38
position of clause 13-38

share lock mode 37-14
SHARE STRUCTURE clause

difference from SHARE DESCRIPTION
clause 13-38

in non-SQL schema display 13-11
shared ready modes 37-4
shared record locks 37-18
SHARED, area ready mode

compiling in 10-35
restricting DML programs from using 14-18
setting as DML default 14-19

SHORT-POINT element usage 13-49
SIGN clause (schema elements) 13-51
SIGNOFF statement 10-33
SIGNOFF user exit G-4
SIGNON G-8

block G-8
element block G-7
user exit G-4

SIGNON statement 10-34—10-37
security for 10-34
syntax 10-34

SKIP format statement 9-18
SMP

See space management page (SMP)
sort control element 13-83
sort element name 13-83
SORT keys

changing the DUPLICATES option 31-11
SORTED set order 13-77, 13-83, 36-16
sorted sets 13-83
SORTSIZE SYSIDMS parameter H-16
source statements, appending 12-11
space available count 33-5, 33-11
space management 33-3

statistics, monitoring 22-7—22-8
space management entry 33-12
space management page (SMP 33-15

space management page (SMP) 33-12
use in lock management 37-11

space, in non-SQL DDL statements 9-8
SPANNED, VSAM control interval specification 13-31
spawning, index records 36-8, 36-14—36-15
splitting, index records 36-8, 36-14
SQL applications 5-5
SQL database definition 7-3—7-15

migrating entities 24-7, 24-23
sample B-3

SQL DDL
embedded in application programs 7-4

SQL schema
creating 7-4
dropping 28-4
modifying 28-4

SQL transactions
area locks 37-16
lock management 37-8

SQL-defined data
segment planning 3-5

SQL-defined database
loading 21-3—21-20
modification methods 27-4
types of modifications 27-3

SQL_INTLSORT parameter H-16
SQLTRACE SYSIDMS parameter H-16
SR1 system record F-3

definition of F-4
location on page 33-4
use of 33-11—33-12

SR2 system record 34-14, F-3
SR3 system record 34-14, F-3
SR4 system record 34-12, F-3
SR5 system record F-3
SR6 system record F-3
SR7 system record 36-3, F-3

definition of F-4
SR8 system record F-3

currency 36-17
definition of F-4
format of 36-6
orphan count 36-13
purpose of 36-5
splitting 36-8, 36-14

SR9 system record F-3
stamps, synchronization 6-38
statistics

monitoring 22-5—22-14
status conditions 11-7

Index X-21



stepped load, SQL-defined database 21-6, 21-16
storage mode

CALC 34-4—34-7
CLUSTERED 34-7—34-11
DIRECT 34-3
discussion of 34-3
VIA 34-7—34-11, 36-16

STORE
specifying database procedures for 13-33

STORE command
DML restriction 14-23
in path group 14-57
path group 14-43
space management considerations 33-13

STRNO, VSAM buffer pool specification 6-45
sublibrary, using copied code from E-10
subroutines

See database procedures
subschema

access restrictions 14-18, 14-23, 14-29
compiler 8-6
compiler listings 8-32
compiling, batch E-4
components 8-18
considerations for modifying 32-3
currency 8-31, 14-4
currencys 8-30
definition 8-18—8-24
deleting 32-4
deleting areas 13-19, 32-8
documenting revisions 14-16
elements 14-23, 14-33
generation 13-93, 14-62
load module 10-21, 13-93, 14-62
mapping 6-61
migrating 24-6
modifying 32-3—32-9
name 14-7
qualification 14-7, 14-9
ready mode 14-8
record priority 14-23
regeneration 13-93
requirements for database load 20-5
sample definition C-9
security 14-15
set, modifying and deleting 32-7
status 8-23
storing load modules 9-17
validation 14-61
view of record 14-22—14-23
view of record (figure) 14-24

subschema (continued)
view of record (table) 14-26

subschema compiler 1-13
BS2000/OSD JCL E-25
CMS commands E-21
compiler-directive statements 10-3—10-37
copying source code into E-10
OS/390 JCL E-8
session options 10-16
status conditions 11-7
VSE/ESA JCL E-12

Subschema Compiler Activity List
specifying the width of 10-23
suppressing the header on 10-22

subschema DDL
all entity occurrence display 10-7
area 14-17
IDD entity display options 10-11
load module generation in 14-62
logical record 14-32
path group 14-38
record 14-21
set 14-28
subschema 14-4
subschema validation 14-62

SUBSCHEMA DESCRIPTION clause 14-8
subschema load modules

at runtime 9-17
storing 9-17

subschema mapping
See database name table

SUBSCHEMA statement 14-4—14-16
definition of program use 14-13
definition procedure 8-18
minimum statement 14-15

subschema validation
after ADD and MODIFY operations 14-61

subschemas
dictionary 23-9

symbolic key
compression 36-8
duplicate 36-7

symbolics 3-8—3-9
specifications 6-31—6-33
subareas 6-31—6-33
symbolic index 6-33

synchronization stamps 3-9
SYNCHRONIZED clause 13-59
SYNCHRONIZED clause (schema elements) 13-50
synonym

displaying 13-12, 13-35

X-22 CA-IDMS Database Administration



synonym (continued)
element 13-52
in shared records 13-25
record 13-27

syntax format
for non-SQL schema and subschema compilers 9-7

SYNTAX, setting DISPLAY/PUNCH default 10-27
SYS_MSG SYSIDMS parameter H-17
SYSCA catalog schema 23-11
SYSCTL SYSIDMS parameter H-17
SYSIDMS parameter file 23-21—23-23, E-4
SYSIDMS parameters

ABEND_ON_DEADLOCK H-6
ABENDTRACE H-6
ABENDTRACE_ENTRIES H-6
ABENDTRACE_SUSCHEMA_DISPLAY H-6
ABENDTRACE_VIBSNAP H-7
AREA_VALIDATION_MSGS H-7
BLKSIZE H-22
BLOCKS H-22
BUFFER_PURGE H-7
BUFFERSTAT H-7
CVMACH H-7
CVNUM H-8
CVRETRY H-8
DB_DEADLOCK_DUMP H-8
DBNAME H-8
DC_DEADLOCK_0029 H-8
DC_DEADLOCK_NODUMP H-8
DC_SCRATCH H-8
DCNAME H-9
DEADLOCK_ABEND_0029 H-9
DEADLOCK_ABEND_ERUS H-9
DEADLOCK_DETAILS H-9
described 23-22
DEVADDR H-22
DICTNAME H-9
DICTNODE H-10
DLBLMOD H-10
DMCL H-10
DMLTRACE H-10
DSGROUP H-10
ECHO H-10
FILABL H-22
FILE_BUF H-11
FILENAME H-22
FILETYPE H-22
IDMSQSAM H-11
JOURNAL H-11
JRNLDTS H-11
LANG H-12

SYSIDMS parameters (continued)
LENGTH_PAGE H-12
LIST H-12
LOADAREA H-12
LOCAL H-12
LOCAL_DYNAMIC_ALLOCATION H-12
LOCAL_NOJOURNAL_RETRIEVAL H-12
LOCALPUR H-13
MSGDICT H-13
MULTIDSN H-14
NODENAME H-14
OVERPRINT H-14
PARM H-14
PREFETCH 17-10, H-14
PREFETCH_BUF H-14
PROCTRACE H-15
QSAMAREA H-15
QSAMBUF# H-15
QSAMTRACE H-15
REREAD_SYSCTL H-16
REWIND H-22
ROLLBACK3490 H-16
SORTSIZE H-16
SQL_INTLSORT H-16
SQLTRACE H-16
SYS_MSG H-17
SYSCTL H-17
UPPER H-17
USERCAT H-17
WIDTH_PAGE H-18
XA_SCRATCH H-18

SYSTEM catalog schema 23-11
system dictionary

components 23-5
defining 23-16
definition 1-7
description 23-3

system generation parameters
for lock management 37-19

system records F-3—F-4
system-owned index 36-3

See also indexed sets
adding/deleting 31-23
defining 13-79, 36-3

T
table

adding a check constraint 28-10
adding a column 28-8
adding/removing data compression 28-10

Index X-23



table (continued)
changing column characteristics 28-10
changing its area 28-12
creating 7-6, 28-7
dropping 28-7
dropping a check constraint 28-11
dropping a column 28-9
dropping and recreating 28-14
dropping the default index 28-12
modifying check constraints 28-11
revising the estimated row count 28-11
synchronization stamp 3-9

TAPE JOURNAL statement 6-99—6-102
tape journals

defining 6-99—6-102
in local mode 18-4

task application table (TAT) 24-26
task codes for online compilation 9-4
test environment 1-12
TEXT clause

in schema-attribute association 13-10
in schema-user association 12-14
in subschema-attribute association 14-11

TIME journal record 18-6
TRAILING sign placement for element 13-51
transaction state (SQL) 37-8
TRANSFER STATISTICS clause 14-9, 14-14
TRANSIENT READ isolation level 37-8
TRANSIENT RETRIEVAL area status 37-7, 37-20
transient retrieval read mode 37-4
tuning

buffers 17-8
referential constraints 29-8

U
UNCOMPRESSED index entries 13-84
unlinked constraints 29-7
unlinked index 13-86
UNLOAD utility statement 30-5, 30-7
UNORDERED

DUPLICATES clause for VSAM CALC record
types 13-29

DUPLICATES option for sorted sets 13-85
unused record 13-35
UPAM file access method 16-5
UPDATE area status 37-7
update currency 11-4—11-5
UPDATE operation

allowed/disallowed for a user 12-13
for public access 13-9, 14-10

update ready mode 37-4
UPDATE responsibility, documenting 12-14
update-intent-exclusive lock 37-14
UPDATE, area ready mode

compiling in 10-35
restricting DML programs from using 14-18
setting as DML default 14-19

UPPER SYSIDMS parameter H-17
USAGE clause

area specification 14-8
element specification 13-59—13-60
element specification (table) 13-61

USAGE MODE
for database areas 14-19
in ADD/MODIFY/DELETE AREA statement 14-18

USER clause
in SIGNON statement 10-34
to access a secured dictionary 10-34

user exits
card image G-3
end of conversation G-3
IDMSAJNX 18-12
IDMSCPLX 18-12
IDMSJNL2 18-12
major command G-3
SIGNON/SIGNOFF/COMMIT G-3
WTOEXIT 18-9, 18-12

user ID
when to specify 13-13

USER journal record 18-6
user responsibility 12-14
user-defined comments 14-11
user-owned index 36-3

See also indexed sets
defining 36-3

user-specification clause 14-14
USERCAT SYSIDMS parameter H-17
USERS

in non-SQL schema display 13-12
utilities

ARCHIVE JOURNAL 18-9—18-11
FASTLOAD 20-3—20-6
FORMAT 33-12
IDMSDIRL 23-9
MAINTAIN INDEX 30-5, 30-8
PRINT JOURNAL 18-12
RELOAD 30-5, 30-7
RESTRUCTURE SEGMENT 30-5, 30-7
UNLOAD 30-5, 30-7

X-24 CA-IDMS Database Administration



V
VALID status 11-7
VALIDATE operation 11-7
VALIDATE statement 13-92, 14-61

effect on subschemas 14-61
for error checking 14-61
purpose 8-23
schema status 8-16
syntax 13-92, 14-61
validate procedure 8-17, 8-23
verifying schema relationships 8-16

VALUE clause (schema elements) 13-48
variable format of database keys 6-97

maximum number of records on 6-98
variable-length indicator (VLI) 34-12
variable-length record 13-31—13-39, 13-51,

34-11—34-14
(figure) 13-40

VARIABLE, VSAM record length specification 13-31
verb 9-7
VERB, setting the session default for 10-26
VERSION clauses

DEFAULT FOR EXISTING VERSION 10-20
DEFAULT FOR NEW VERSION 10-21
for subschema load modules 13-93, 14-62
in GENERATE statement 14-62
in REGENERATE statement 13-93

version number
automatic assignment 13-35
explicit 10-20—10-21
HIGHEST 10-20
LOWEST 10-20
NEXT HIGHEST 10-21
NEXT LOWEST 10-21

VIA location mode 13-28
VIA storage mode

introduction to 34-7
via a chained set 34-7—34-9
via an indexed set 34-9—34-11, 36-16

view
creating 7-13
dropping 28-5
modifying a 28-5
updatable 7-13

VIEW ID clause
and ELEMENT clause (table) 14-26
subschema specification 14-22

VLI indicator 34-12
VSAM CALC

control element 13-29

VSAM CALC (continued)
element name 13-29
location mode 13-29

VSAM file access method 16-5
VSAM file, CA-IDMS/DB

See CA-IDMS/DB VSAM file
VSAM location mode 13-29
VSAM set mode 13-77
VSAM TYPE clause 13-31

in BUFFER statement 6-45
in record display 13-34

VSAM types
changing 31-15

VSAM, native
See native VSAM file

VSE/ESA
file name 3-11
sublibrary, using copied code from E-10

VSE/ESA JCL E-10
non-SQL schema compiler E-10
subschema compiler E-12

W
walking a set 35-7
warmstart

failure, recovery for 19-31
recovery, automatic 19-14—19-17

WHERE clause
in DISPLAY/PUNCH ALL statement 6-12, 6-13,

10-4, 10-5
in DML program, relation to path-group SELECT

clause 14-43
in path-group FIND/OBTAIN 14-48—14-51, 14-52,

14-53, 14-55
valid options (table) 6-15, 10-8

WIDTH_PAGE SYSIDMS parameter H-18
WITH/ALSO WITH/WITHOUT clause

setting the session default for 10-24
table of options 10-31

WITHIN AREA clause
schema records 13-30
schema sets 13-79

write driver 17-11
WTOEXIT user exit 18-9, 18-12

X
XA_SCRATCH SYSIDMS parameter H-18

Index X-25



 


	CA-IDMS Database Administration 
	Contents 
	How to use this manual 
	What this manual is about 
	Who should use this manual 
	How this manual is organized 
	Related documentation 
	Understanding Syntax Diagrams 
	Sample Syntax Diagram 

	Volume 2. Database Maintenance 
	Chapter 16. Allocating and Formatting Files 
	16.1 Making files accessible to CA- IDMS/ DB 
	16.2 Types of files 
	16.3 File access methods 
	16.4 Creating disk files 
	16.4.1 File characteristics 

	16.5 Formatting files 
	16.6 Considerations for native VSAM files 
	16.7 Related information 

	Chapter 17. Buffer Management 
	17.1 Planning database buffers 
	17.1.1 How many buffers do you need? 
	17.1.2 How many pages should a buffer contain? 
	17.1.3 How large should a buffer page be? 
	17.1.4 Choosing a method for storage acquisition 

	17.2 Managing buffers dynamically 
	17.3 Tuning buffers for performance 
	17.4 Using chained reads 
	17.5 Using read and write drivers 
	17.6 Related information 

	Chapter 18. Journaling Procedures 
	18.1 About journaling 
	18.1.1 Journaling under the central version 
	18.1.2 Journaling in local mode 

	18.2 About journal files 
	18.2.1 Journal record entries 
	18.2.2 Checkpoints 

	18.3 Offloading disk journal files 
	18.3.1 When CA- IDMS/ DB switches journal files 
	18.3.2 How to offload the disk journal 
	18.3.3 After system shutdown 

	18.4 User exits and reports for journal management 
	18.5 Influencing journaling performance 
	18.5.1 Reducing journal file I/ O 
	18.5.2 Improving warmstart performance 

	18.6 Related information 

	Chapter 19. Backup and Recovery 
	19.1 About database backup and recovery 
	19.2 Backup procedures 
	19.2.1 Back up after a normal system shutdown 
	19.2.2 Backup while the DC/ UCF system is active 
	19.2.3 Back up before and after local mode jobs 
	19.2.4 Automating the backup process 

	19.3 Automatic recovery 
	19.3.1 Warmstart 
	19.3.2 Automatic rollback 

	19.4 Manual recovery 
	19.4.1 Recovery from a quiesced backup 
	19.4.2 Recovery from a hot backup 
	19.4.3 Reducing recovery time 
	19.4.4 Recovering a large number of files 

	19.5 Recovery procedures after a warmstart failure 
	19.6 Recovery procedures from database file I/ O errors 
	19.7 Recovery procedures from journal file I/ O errors 
	19.8 Recovery procedures for local mode operations 
	19.8.1 No journaling 
	19.8.2 Journaling to a tape device 
	19.8.3 Journaling to a disk device 
	19.8.4 Using an incomplete journal file 

	19.9 Recovery procedures for mixed- mode operations 
	19.10 Data sharing recovery considerations 
	19.11 Considerations for recovery of native VSAM files 

	Chapter 20. Loading a Non- SQL Defined Database 
	20.1 About database loading 
	20.2 Loading database records using FASTLOAD 
	20.2.1 General considerations 

	20.3 FASTLOAD procedure 
	20.4 Loading database records using a user- written program 
	20.4.1 Organizing input data for a user- written program 
	20.4.2 Loading the database 

	20.5 Related information 

	Chapter 21. Loading an SQL- Defined Database 
	21.1 About database loading 
	21.2 Loading considerations 
	21.3 Contents of the input file 
	21.4 Loading procedures 
	21.4.1 Steps that apply to all load procedures 
	21.4.2 Full load procedure 
	21.4.3 Phased load procedure 
	21.4.4 Segmented load procedure 
	21.4.5 Stepped load procedure 

	21.5 Related information 

	Chapter 22. Monitoring and Tuning Database Performance 
	22.1 Monitoring guidelines 
	22.2 Monitoring facilities 
	22.3 Items to monitor and tune 
	22.3.1 Journal use 
	22.3.2 Buffer utilization 
	22.3.3 Space management and database design 
	22.3.4 Indexing efficiency 
	22.3.5 Database locks 
	22.3.6 Longterm locks 
	22.3.7 SQL processing 

	22.4 Reducing I/ O 
	22.4.1 Through database reorganization 
	22.4.2 Through application design 
	22.4.3 Through database design 
	22.4.4 By using UPDATE STATISTICS ( SQL- accessed databases) 


	Chapter 23. Dictionaries and Runtime Environments 
	23.1 About dictionaries 
	23.1.1 Physical components of a dictionary 
	23.1.2 Logical components of a dictionary 
	23.1.3 Assigning dictionary areas to segments 
	23.1.4 Sharing dictionary areas 

	23.2 CA- supplied dictionary definitions 
	23.2.1 Logical database definitions 
	23.2.2 Protocols, nondatabase structures, and modules 

	23.3 Defining new dictionaries 
	23.3.1 Defining new catalog components 
	23.3.2 Defining new application dictionaries 
	23.3.3 Defining new system dictionaries 

	23.4 Establishing a default dictionary 
	23.5 About runtime environments 
	23.5.1 SYSIDMS parameter file 
	23.5.2 Establishing session options 

	23.6 Related information 

	Chapter 24. Migrating from Test to Production 
	24.1 About migration 
	24.2 Establishing migration procedures 
	24.3 Implementing migration procedures 
	24.3.1 Step 1: Determine the types of components to migrate 
	24.3.2 Step 2: Determine the sequence of migration 
	24.3.3 Step 3: Identify the individual components 
	24.3.4 Step 4: Migrate the components 

	24.4 Identification aids 
	24.5 Migration tools 
	24.6 General methods 
	24.6.1 Using the DISPLAY statement 
	24.6.2 Using the PUNCH statement 
	24.6.3 Using the mapping compiler and mapping utility 
	24.6.4 For SQL- defined entities 

	24.7 Additional considerations 
	24.7.1 Additional tasks 


	Chapter 25. Modifying Physical Database Definitions 
	25.1 Modifications you can make 
	25.2 Making the changes available under the central version 
	25.3 Dynamic DMCL management 
	25.4 Changing a file's access method 
	25.4.1 Step 1: Expand the page size 
	25.4.2 Step 4: Copy the data to the new file 

	25.5 Increasing the size of an area 
	25.5.1 Increasing an area's page size 
	25.5.2 Extending an area's page range 

	25.6 Adding or dropping files associated with an area 
	25.7 Changing the size of a disk journal 
	25.8 Changing the access method of a disk journal 
	25.9 Related information 

	Chapter 26. Modifying Database Name Tables 
	26.1 Changes you can make 
	26.2 Procedure for modifying database name tables 
	26.3 Related information 

	Chapter 27. About Modifying SQL- Defined Databases 
	27.1 What you can modify 
	27.2 Methods for modifying 

	Chapter 28. Modifying Schema, View, and Table Definitions 
	28.1 Maintaining schemas 
	28.1.1 Dropping an existing schema 
	28.1.2 Modifying a schema 

	28.2 Maintaining views 
	28.2.1 Dropping a view 
	28.2.2 Modifying a view 

	28.3 Maintaining tables 
	28.3.1 Creating a table 
	28.3.2 Dropping a table 
	28.3.3 Adding a column to a table 
	28.3.4 Dropping a column from a table 
	28.3.5 Changing the characteristics of a column 
	28.3.6 Adding or removing data compression 
	28.3.7 Adding a new check constraint 
	28.3.8 Dropping a check constraint 
	28.3.9 Modifying a check constraint 
	28.3.10 Revising the estimated row count for a table 
	28.3.11 Changing a table's area 
	28.3.12 Dropping the default index associated with a table 

	28.4 Dropping and recreating a table 
	28.4.1 Method 1 - Using DDL and DML statements 
	28.4.2 Method 2 - Using DDL and utility statements 


	Chapter 29. Modifying Indexes, CALC Keys, and Referential Constraints 
	29.1 Maintaining indexes 
	29.1.1 Creating an index 
	29.1.2 Dropping an index 
	29.1.3 Changing index characteristics/ moving an index 

	29.2 Maintaining CALC keys 
	29.2.1 Creating a CALC key 
	29.2.2 Dropping a CALC key 

	29.3 Maintaining referential constraints 
	29.3.1 Creating a referential constraint 
	29.3.2 Dropping a referential constraint 
	29.3.3 Modifying referential constraint tuning characteristics 


	Chapter 30. About Modifying Non- SQL Defined Databases 
	30.1 Types of modifications 
	30.2 Overview 
	30.2.1 Methods for modifying 
	30.2.2 Procedure for modifying the non- SQL definitions 
	30.2.3 RESTRUCTURE SEGMENT utility statement 
	30.2.4 UNLOAD/ RELOAD utility statements 
	30.2.5 MAINTAIN INDEX utility statement 


	Chapter 31. Modifying Schema Entities 
	31.1 Modifications to an unloaded database 
	31.2 Schema modifications 
	31.2.1 Deleting a schema 
	31.2.2 Changing schema characteristics 

	31.3 Area modifications 
	31.3.1 Adding or deleting an area 
	31.3.2 Changing area characteristics 

	31.4 Record modifications 
	31.4.1 Adding schema records 
	31.4.2 Deleting schema records 
	31.4.3 Changing a record's CALC key 
	31.4.4 Changing the DUPLICATES option on a CALC or SORT key 
	31.4.5 Changing the location mode of a record 
	31.4.6 Changing a record's area 
	31.4.7 Modifying record elements 
	31.4.8 Changing other record characteristics 
	31.4.9 Adding and dropping database procedures 

	31.5 Set modifications 
	31.5.1 Adding or deleting a set 
	31.5.2 Changing set mode 
	31.5.3 Adding and dropping set pointers 
	31.5.4 Changing set order 
	31.5.5 Changing set membership options 

	31.6 Index modifications 
	31.6.1 Adding or deleting system- owned indexes 
	31.6.2 Changing the location of an index 
	31.6.3 Changing index characteristics 
	31.6.4 Adding or deleting index pointers 


	Chapter 32. Modifying Subschema Entities 
	32.1 Modifying or deleting a subschema 
	32.1.1 Modifying a subschema 
	32.1.2 Deleting a subschema 

	32.2 Adding, modifying, or deleting a record 
	32.3 Adding, modifying, or deleting a set 
	32.4 Adding, modifying, or deleting an area 
	32.5 Adding, modifying, or deleting a logical record or path group 

	Chapter 33. Space Management 
	33.1 About space management 
	33.2 Database pages 
	33.3 Database keys 
	33.4 Area space management 
	33.4.1 SR1 records 
	33.4.2 Space management pages 


	Chapter 34. Record Storage and Deletion 
	34.1 Record storage 
	34.1.1 Storing CALC records 
	34.1.2 Clustering records 
	34.1.2.1 Clustering records around a chained set 
	34.1.2.2 Storing records via an indexed set 

	34.1.3 Storing variable- length records 
	34.1.4 Relocated records 

	34.2 Record deletion 
	34.2.1 Physical deletion 
	34.2.2 Logical deletion 


	Chapter 35. Chained Set Management 
	35.1 About chained sets 
	35.2 Chained sets 
	35.2.1 Connecting records to chained sets 
	35.2.2 Disconnecting records 
	35.2.3 Retrieving records 


	Chapter 36. Index Management 
	36.1 About indexed sets 
	36.1.1 Structure of indexes 
	36.1.2 Connecting records to indexed sets 
	36.1.2.1 Connecting members to unsorted indexed sets 
	36.1.2.2 Connecting members to sorted indexed sets 

	36.1.3 Disconnecting records from indexed sets 
	36.1.4 Retrieving indexed records 


	Chapter 37. Lock Management 
	37.1 Controlling access to CA- IDMS databases 
	37.2 Readying areas 
	37.2.1 Area ready modes 
	37.2.2 Central version area status 
	37.2.3 Default ready mode using navigational DML 
	37.2.4 Ready modes and SQL access 

	37.3 Physical area locks 
	37.3.1 About physical area locks 
	37.3.2 Controlling update access 

	37.4 Locking within central version 
	37.4.1 Logical locks 
	37.4.2 Types of locks 
	37.4.3 Logical area locks 
	37.4.4 Area locking for SQL transactions 
	37.4.5 Record locks 
	37.4.6 System generation options affecting record locking 

	37.5 Locking within a data sharing group 
	37.5.1 Inter- CV- interest 
	37.5.2 Global transaction locks 
	37.5.3 Proxy locks 
	37.5.4 Page locks 

	37.6 Controlling access to native VSAM files 
	37.7 Deadlocks 
	37.7.1 How the system detects a deadlock 
	37.7.2 Global deadlock detection 


	Appendixes 
	Appendix A. Sample Physical Database Definition 
	Appendix B. Sample SQL Database Definition 
	Appendix C. Sample Non- SQL Database Definition 
	Appendix D. Native VSAM Considerations 
	D. 1 Native VSAM data set structures 
	D. 2 CA- IDMS/ DB native VSAM definitions 
	D. 2.1 Schema definition 
	D. 2.2 DMCL definition 

	D. 3 DML functions with native VSAM 

	Appendix E. Batch Compiler Execution JCL 
	E. 1 Overview of batch compilation 
	E. 2 OS/ 390 JCL 
	E. 2.1 Schema compiler 
	E. 2.2 Subschema compiler 

	E. 3 VSE/ ESA JCL 
	E. 3.1 = COPY facility 
	E. 3.2 Schema compiler 
	E. 3.3 Subschema compiler 
	E. 3.4 IDMSLBLS procedure 

	E. 4 CMS commands 
	E. 4.1 Schema compiler 
	E. 4.2 Subschema compiler 

	E. 5 BS2000/ OSD JCL 
	E. 5.1 = COPY facility 
	E. 5.2 Schema compiler 
	E. 5.3 Subschema compiler 


	Appendix F. System Record Types 
	Appendix G. User- Exit Program for Schema and/ or Subschema Compiler 
	G. 1 When a user exit is called 
	G. 2 Rules for writing the user- exit program 
	G. 3 Control blocks and sample user- exit programs 
	G. 3.1 User- exit control block 
	G. 3.2 SIGNON Element Block 
	G. 3.3 SIGNON Block 
	G. 3.4 Entity control block 
	G. 3.5 Card- image control block 

	G. 4 Sample user- exit program for Schema and/ or Subschema Compilers 

	Appendix H. SYSIDMS Parameter File 
	H. 1 Parameter Summary 
	H. 2 Parameter Descriptions 

	Index 
	Special Characters 
	A 
	B 
	C 
	D 
	E 
	F 
	G 
	H 
	I 
	J 
	K 
	L 
	M 
	N 
	O 
	P 
	Q 
	R 
	S 
	T 
	U 
	V 
	W 
	X 



