CA-IDMS®

DML Reference — Assembler
15.0

a)

Computer Associates™

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fithess for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

Second Edition, October 2001

© 2001 Computer Associates International, Inc.
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Contents

How to Use ThisManual iX

Chapter 1. Introduction to CA-IDMS Data Manipulation Language 1-1

1.1 OVerview 1-3
1.2 Operating environments. 1-4

1.2.1 Accessing the database 1-4

1.2.2 Programming in the DC/UCF environment. 1-6
1.3 Assembling and executing programs 1-8
Chapter 2. DML Precompiler Options 2-1
2.1 Overview 2-3
2.2 Dictionary usage mode 2-4
2.3 Comment generation. 2-5
2.4 Listgeneration 2-6
2.5 LOog SUppression 2-7
Chapter 3. Communications Blocks and Error Detection 3-1
3.1 Overview 3-3
3.2 IDMS communications block 3-4

3.2.1 Field descriptions 3-7

3.2.2 ERRSTAT field and codes. 3-11

3.2.3 Testing for DML error-status codes 3-17
3.3 Logical-record request control (LRC) block 3-18

3.3.1 Field descriptions 3-19

3.3.2 Testing for the logical-record path status. 3-20
3.4 DC/UCF general registers. 3-23

3.4.1 DC/UCF statuscodes 3-23

3.4.2 Testing for DC/UCF returncodes 3-32
Chapter 4. Assembler DML Coding Considerations 4-1
4.1 OVerview 4-3
4.2 Coding user-supplied operands 4-4
4.3 Coding parameters. 4-5
4.4 Synonym Processing.o 4-6
4.5 Logical Record Facility keywords 4-8
Chapter 5. DML Precompiler-Directive Statements 5-1
5.1 Overview 5-3
5.2 @MODE 5-4
53 @INVOKE 5-6
54 @COPY IDMS 5-9
55 #MRB 5-16
5.6 #MAPBIND 5-17
57 @SSCTRL 5-19
5.8 @SSLRCTL 5-20
Chapter 6. Data Manipulation Language Statements 6-1

Contents iii

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.
6.
6.
6.
6.
6.
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45

OVEIVIEW 6-3

Functions of DML statements. 6-4
#ABEND 6-11
@ACCEPT BIND 6-12
@ACCEPT DBKEY FROM CURRENCY. 6-13
@ACCEPT DBKEY RELATIVE TO CURRENCY. 6-15
@ACCEPTPGINFO.617
@ACCEPT PROC 6-19
@ACCEPT STATS8620
#ACCEPT 6-22
#ATTACH 6-24
@BIND PROC 6-29
@BIND REC 6-31
@BINDSUBSCH8633
#BIND TASK 6-37
#CHAP . . 6-38
@COMMIT . . . 6-39
#COMMIT . . . 6-40
@CONNECT 6-41
#DELETE 6-44
#DELQUE 6-46
#DELSCR 6-50
#DEQ 6-54
@DISCON . . . 6-57
#ENDPAG 6-60
HENQ . . . 6-62
@ERASE 6-67
@ERASE (LRF) e 6-72
@FIND/@OBTAIN statements 6-74
29.1 @FIND/@OBTAIN CALC/DUPLICATE 6-74
29.2 @FIND/@OBTAIN CURRENT 6-76
29.3 @FIND/@OBTAIN DBKEY 6-79
29.4 @FIND/@QOBTAIN OWNER 6-81
29.5 @FIND/@OBTAIN USING SORTKEY 6-84
29.6 @FIND/@OBTAIN WITHIN SET/AREA 6-86
@FINISH . . . 6-93
#EINISH 6-94
#FREESTG 6-95
@GET e 6-97
#GETIME 6-99
#GETQUE 6-101
#GETSCR s 6-107
#GETSTG s 6-113
@IF . 6-119
@KEEP bR122
#KEEP 6-124
#LINEEND 6-130
#LINEIN k13
#LINEOUT 6-136
#LINK . 6-142
#LOADb-1l46

iv CA-IDMS DML Reference — Assembler

6.46 #MAPINQ 6-152

6.46.1 Moving map-related data. 6-152

6.46.2 Testing for global map input conditions 6-155

6.46.3 Testing cursor position L 6-157

6.46.4 Testing for identical data. 6-159

6.46.5 Testing for input conditions 6-159
6.47 #MAPMOD 6-165
6.48 @MODIFY 6-176
6.49 @MODIFY (LRF) 6-179
6.50 #MREQ 6-181

6.50.1 #MREQ Syntax 6-182
6.51 @OBTAIN (LRF), 6-202
6.52 #POST 6-205
6.53 #PRINT 6-206
6.54 #PUTJIRNL 6-216
6.55 #PUTQUE 6-219
6.56 #PUTSCR 6-223
6.57 @READY e 6-227
6.58 @RETURN 6-230
6.59 #RETURN 6-232
6.60 @ROLLBAK 6-237
6.61 #ROLLBAK 6-239
6.62 #SENDMSG 6-241
6.63 #SETIME 6-245
6.64 #SNAP 6-249
6.65 #STAE 6-252
6.66 @STORE e 6-254
6.67 @STORE (LRF) 6-259
6.68 #STRTPAG 6-261
6.69 #TREQ 6-265

6.69.1 Regular and execute #TREQ description 6-266

6.69.2 Regular and execute #TREQ syntax. 6-266

6.69.3 LiSt#TREQ 6-289
6.70 #TRNSTAT 6-291
6.71 #WAIT 6-296
6.72 #AWTL 6-299
6.73 #XCTL 6-307
6.74 Logical record clauses. 6-309

6.74.1 WHERE clause 6-309

6.74.2 ONclause 6-313

6.74.3 Logical-record statuscodes 6-315
Appendix A. DML Precompile, Assembly, and Link-Edit JCL A-1
Al OVerview e A-3
A.2 IDMSDMLA under MVS A-5
A3 IDMSDMLA under VSE A-9
A4 IDMSDMLA under CMS A-16
A.5 IDMSDMLA under BS2000 A-19
A.6 Link-edit considerations A-21

Contents v

Appendix B. Sample CA-IDMSDB Batch Program B-1

B.1 Overview B-3
B.2 Input to the precompiler. B-4
B.3 Output from the precompiler B-10
B.4 Output from the assembler. B-23
Appendix C. Sample DC/UCF Online Program C-1
C.l OVeIVIEW C-3
C.2 Input to the DML precompiler C-4
C.3 Output from the DML precompiler. C-6
C.4 Output from the assembler. C-9
Appendix D. Assembler DML Macrosand Error Messages D-1
D.1 Overview D-3
D.2 DML MacCros e D-
D.3 Errormessages. D-6
Appendix E. STAEEXits E-1
E.1 Overview E-3
Appendix F. EMPLOYEE Data Structure Diagram F-1
F.1 Overview F-3
Appendix G. Systems Network Architecture Considerations (SNA) G-1
G.1 OverviewG
G.2 General Considerations. G-5
G.2.1 SNAterminology G-5
G.2.2 Program communications in the SNA environment. G-6
G.23 Errorhandling G-10
G.3 SNA functions in a CA-IDMS/DC environment G-12
G.4 Allocating a session. G-14
G.4.1 Establishing conversation attributes. G-14
G.4.2 Issuing the #TREQ ALLOC statement G-15
G.4.3 Starting a task on a remote logical unit G-17
G.5 Starting a task from a remote system L G-18
G.6 Synchronous and asynchronous processing. G-19
G.7 Sendingdata G-20
G.7.1 LU6.2 considerations for sendingdata. G-20
G.7.2 Non-LU6.2 considerations for sendingdata G-20
G.8 Requesting a confirmation G-21
G.9 Responding to a confirmation request G-22
G.10 Sending error information. G-23
G.11 Changing direction: send to receive. G-24
G.12 Receivingdata G-25
G.13 Changing direction: receivetosend. G-27
G.14 Terminating a conversation. G-28
G.14.1 Normal termination G-28
G.14.2 Abnormal termination. G-29
G.14.3 Terminating a session G-29
Appendix H. Invoking the IDMSINO1 Entry Point H-1

vi CA-IDMS DML Reference — Assembler

H.1 About IDMSINOL H-3

H.2 Guidelines e H-4
H.3 IDMSINOLI macro H-5

H.3.1 Examples H-6
Appendix |. 18-Byte CommunicationsBlocks -1
.1 Overview -3
Index X-1

Contents vii

viii CA-IDMS DML Reference — Assembler

How to Use This Manual

How to Use This Manual ix

What this manual is about

This document presents navigational and LRF DML statements for use in
CA-IDMS/DB and CA-IDMS/DC and CA-IDMS/UCF data communications
environments.

Most data communications DML statements are applicable in both CA-IDMS/DC and
CA-IDMS/UCF environments. The acronym DC/UCF is used to represent this.

x CA-IDMS DML Reference — Assembler

Who should use this manual

This manual is intended for Assembler language programmers who run programs
against CA-IDMS/DB databases and who want to use the DC/UCF system facilities.

How to Use This Manual xi

What this manual contains

This manual contains six chapters and nine appendixes:

Introduction to CA-IDM S Data Manipulation Language (Chapterl)

An overview of the facilities for preparing, compiling, and executing Assembler
applications under CA-IDMS/DB and DC/UCF systems

DML Precompiler Options (Chapter 2)

A description of the precompiler options available in the CA-IDMS/DB Assembler
environment

Communication Blocks and Error Detection (Chapter 3)

A discussion of the communications blocks and error handling in the CA-IDMS
Assembler environment

Assembler DML Coding Considerations (Chapter 4)

Instructions for coding Assembler DML statements, a description of IDD
synonyms, and a list of Logical Record Facility keywords

DML Precompiler-Directive Statements (Chapter 5)
Instructions for using DML precompiler-directive statements
Data Manipulation Language Statements (Chapter 6)

Descriptions of the CA-IDMS Assembler DML commands, including currency,
syntax, error codes, and examples

DML Precompile, Assembly, and Link-edit JCL (Appendix A)

JCL necessary for MVS, VSE, CMS, and BS2000 systems.

Sample CA-IDM S/DB Batch Program (Appendix B)

A sample Assembler DML batch program that performs database access functions
Sample DC/UCF Online Program (Appendix C)

A sample Assembler DML online program

Assembler DML Macros and Error Messages (Appendix D)

A list of DML macros and assembly-time error messages

STAE Exits (Appendix E)

Instructions on how to implement user-supplied recovery modules

EMPLOYEE Data Structure Diagram (Appendix F)

A data structure diagram showing the structure of the database used in examples
Systems Network Architecture Consider ations (Appendix G)

An overview of how to make an Assembler DML program conform to SNA
protocols

Invoking the IDM SINO1 Entry Point (Appendix H)

xii CA-IDMS DML Reference — Assembler

An overview of the IDMSINO1 entry point
m SYSIDMS Parameter File (Appendix 1)

An overview of the SYSIDMS parameter file
® 18-Byte Communications Blocks (Appendix J)

An overview of specifying 18-byte blocks instead of 16-byte blocks.
Related Documents: For further information related to this manual, refer to the
following documents:

. CA-IDMS Messages and Codes

» CA-IDMS installation manual for your operating system
. CA-IDMS System Generation

. CA-IDMS System Operations

. CA-IDMS Mapping Facility

n CA-IDMSDSECT Reference

= |DD DDDL Reference

» CA-IDMSDB Database Administration

= CA-IDMS Navigational DML Programming

How to Use This Manual xiii

Understanding syntax diagrams

Look at the list of notation conventions below to see how syntax is presented in this
manual. The example following the list shows how the conventions are used.

UPPERCASE Represents a required keyword, partial keyword,

OR
SPECIAL CHARACTERS character, or symbol that must be entered
completely as shown.

lowercase Represents an optional keyword or partial keyword
that, if used, must be entered completely as
shown.

underlined Towercase Represents a value that you supply.

-~ Points to the default in a list of choices.

Towercase bold Represents a portion of the syntax shown in

greater detail at the end of the syntax or elsewhere
in the document.

\ 4
\

Shows the beginning of a complete piece of
syntax.

v
A

Shows the end of a complete piece of syntax.

\ 4

Shows that the syntax continues on the next line.

A\ 4

Shows that the syntax continues on this line.

\ 4

Shows that the parameter continues on the next

line.
> Shows that a parameter continues on this line.
»— parameter ——» Shows a required parameter.
>—|: parameter :l—’ Shows a choice of required parameters. You must
parameter select one.

\ 4
v

B] Shows an optional parameter.
parameter

v

\ 4

Shows a choice of optional parameters. Select

Bg:gmg:g: :‘ one or none.

r—_|_> Shows that you can repeat the parameter or
»—|— parameter

specify more than one parameter.

I ——|—> Shows that you must enter a comma between
>-{— parameter repetitions of the parameter.

xiv CA-IDMS DML Reference — Assembler

Sample syntax diagram

Required portion of paramefer

Beginning of Required
the syntax paramefer

Syntax continues on this line

Reguired parameter
Select one

variable
tvar‘iable :‘
variable

Optional keyword
Select one or none

Default

»

Optional pottion of parameter
User-supplied value

Syntax continues
on another line

variable

Comma required between repstition

Repetition allowed

>

v

v KEYWORD variable |

Pottion of syntax
expanded elsewhere

End of the syntax

v
4

)
— KEYWORD

How to Use This Manual xv

xvi CA-IDMS DML Reference — Assembler

Chapter 1. Introduction to CA-IDMS Data
Manipulation Language

1.1 Overview 1-3
1.2 Operating environments. 1-4
1.2.1 Accessing the database 1-4
1.2.2 Programming in the DC/UCF environment. 1-6

1.3 Assembling and executing programs

Chapter 1. Introduction to CA-IDMS Data Manipulation Language 1-1

1-2 CA-IDMS DML Reference — Assembler

1.1 Overview

1.1 Overview

This manual discusses how to use Assemb&n Manipulation Language (DML)
statements in your Assembler program to perform the following:

® Access a CA-IDMS/DB database

® Perform data communications functions through CA-IDMS/DC and
CA-IDMS/UCF (DC/UCF)

Assembler DML statements are embedded in the program source as if they were part
of the host language. During assemlmpst DML precompiler statements are

expanded into executable Assembler source code (whether or not the DML
precompiler was executed), and source-level error checking is performed.

Depending on your operating environment, your Assembler program uses different sets
of DML statements. For example, a batch program uses database DML statements; an
online program can use both database and data communications DML statements.

This chapter discusses the following:

» When to use different sets of Assembler DML statements depending on your
operating environment

» How to use the DML precompiler to prepare your program for assembly and
execution

Chapter 1. Introduction to CA-IDMS Data Manipulation Language 1-3

1.2 Operating environments

1.2 Operating environments

This manual presents the following categories of Assembler DML statements:

» Database statements perform CA-IDMS/DB database access functions in either a
batch or an online environment. Database DML statements have an at sign (@)
prefix; for example, @STORE.

» Data communications, also calledbnline statements, perform data
communications functions for CA-IDMS/DC and CA-IDMS/UCF (DC/UCF)
programs. Online DML statements have a pound sign (#) prefix; for example,
#LINK.

» DC-batch statements are a subset of online DML statements that allow batch
application programs to access DC/UCF facilities such as queues and printers.
This category consists of the following DML statements: #DELQUE, #GETQUE,
#PUTQUE, and #PRINT.

»> For more information on DC-batch programming, refeCtelDMS
Navigational DML Programming.

1.2.1 Accessing the database

Your program can access a CA-IDMS/DB database by using either navigational or
LRF (logical record) DML statements:

» Navigational statements access database records and sets one record at a time.

» L RF statements access predefined groups of database records using the Logical
Record Facility (LRF).

Navigational and LRF DML statements are discussed separately below.

Navigating the Database: Navigational DML statements access database records
and sets one record at a time, checking and maintaining currency in order to assure
correct results. Navigational DML statements provide:

m Control over error checking — You can check the result of each navigational
statement

» Flexibility in choosing how you want to access the database — For example,
your program can access the database either sequentially (performing an area
sweep), by using a symbolic key value (CALC), or by using a database key value
(DIRECT)

To use navigational DML statements, you must have a thorough knowledge of the
database structure. The database structure is illustrated in a data structure diagram.
For an example of a data structure diagram, refer to Appendix F, “EMPLOYEE Data
Structure Diagram” on page F-1.

The following figure illustrates a database structure that contains two owner records
(EMPLOYEE and JOB) that share one member record (EMPOSITION). To obtain

1-4 CA-IDMS DML Reference — Assembler

1.2 Operating environments

EMPLOYEE and JOB information, the program must retrieve an EMPLOYEE record,
the first EMPOSITION record in the EMP-EMPOSITION set, and the owner record in
the JOB-EMPOSITION set.

JOoB
440|VC ‘296‘ CALC
JOB-1D-0440 |DN

JOB-EMPOSITION
NPO OM NEXT

ORG-DEMO-REGION

MVC EMPID, INEMPID
@OBTAIN CALC, REC="EMPLOYEE"

\

@FIND FIRST, SET ="EMP-EMPOSITION’, REC ='EMPOSITION'
@OBTAIN OWNER, SET ="JOB-EMPOSITION'

EMPOSITION

EMPLGYEE

420\F ‘28‘ VIA

415‘F‘ 116‘CALC

EMP-EMPOSITION]

EMP-EMPOSITION EMP-ID-0415 | DN

EMP-DEMC-REGION

NPO MA FIRST EMP-DEMO-REGION

Navigational DML statements are grouped into four categories:

Control statements initiate and terminate processing, effect recovery, prevent
concurrent updates, and evaluate set conditions

Retrieval statements locate data in the database and make it available to the
application program

Modification statements update the database

Accept statements pass database keys, storage address information, and statistics
to the program

Accessing the Database through LRF: LRF DML statements use the Logical
Record Facility (LRF) to access database records. LRF accesses fields from multiple
database records as if they were data fields in a single record. LRF DML statements
allow your program to specify selection criteria (by using the WHERE clause) that
enable your program to access only the logical records you need.

» For more information, refer to tHeéA-IDMS Logical Record Facility.

LRF DML statements provide:

Easy access to database records — You need not be familiar with database
structure, and your programs need not include database navigation logic.

Data flexibility — You do not usually have to modify or recompile your LRF
program when the database is changed.

Runtime efficiency — LRF minimizes communication between the program and
the database management system (DBMS).

Chapter 1. Introduction to CA-IDMS Data Manipulation Language 1-5

1.2 Operating environments

The following figure illustrates how to use LRF DML statements to access the
EMPJOBLR record. The EMPJOBLR record is a logical record that contains the
EMPLOYEE record, the EMPOSITION record, the OFFICE record, and the JOB
record. The EMPJOBLR logical record contains information from the EMPLOYEE,
EMPOSITION, and JOB records.

MVC EMPID, INEMPID

@OBTAIN FIRST, REC=EMPJOBLR

ON LRSTS="LR-NOT-FOUND",
GOTO=END,

EMPJOBLR WHERE EMPID EQ '0023"

The LRF DML statements are :
B @ERASE deletes a logical record from the database.
= @MODIFY updates a logical record.
® @OBTAIN retrieves a logical record.

» @STORE adds a new logical record to the database.

1.2.2 Programming in the DC/UCF environment
DC/UCF application programs can use both database and online DML statements.

Online DML statements perform the following types of functions:
= Program management statements govern flow of control and abend processing
® Storage management statements allocate and release variable storage

®» Task management statements provide runtime services that control task
processing

®» Time management statements obtain the time and date and define time-related
events

® Scratch management statements create, delete, or retrieve records from the
scratch area

® Queue management statements create, delete, or retrieve records in a queue area

» Terminal management statements transfer data between the application program
and a terminal

» Utility function statements retrieve task-related information or statistics, send
messages, and monitor access to database records

» Recovery statements perform functions relating to database, scratch, and queue
area recovery in the event of a system failure

1-6 CA-IDMS DML Reference — Assembler

1.2 Operating environments

Example: The following example illustrates how online DML statements access the
database and perform data communications functions. Specifically, this example maps
in data entered from the terminal, retrieves and displays the specified information, and
performs a DC return, naming TSKO02 as the next task to be performed.

#MREQ IN,MRB=EMPMAP,INDATA=YES,COND=ALL,ERROR=ERRORTN

#MREQ OUT,MRB=EMPMAP,OUTDATA=YES,OPTNS=NEWPAGE
#RETURN NXTTASK=TSKO02

Chapter 1. Introduction to CA-IDMS Data Manipulation Language 1-7

1.3 Assembling and executing programs

1.3 Assembling and executing programs

An Assembler source program that contains DML statements is processed by the DML
precompiler IDMSDMLA) before it is submitted to the assembler. The DML
precompiler performs the following functions:

® Convertsmost DML statements into standard Assembler source statements.

» Ensures that all statements issued by the program are consistent with the logical
structure of the database, the subschema view of the program, and the access
restrictions defined in the subschema.

» Copies information maintained in the dictionary into program storage. Dictionary
entities include database record descriptions, file definitions, map records, map
definitions, logical records, and other predefined modules.

» Updates the dictionary with compile-time statistics used to monitor database
activities for a given application program.

» Performs source level error checking.

= Generates an optional source statement listing of error conditions detected during
DML processing.

m Supports the use of native VSAM files in conjunction with database access
methods.

® Recognizes record, element, and file synonyms defined in the dictionary.

» Allows programs to be compiled for execution under various TP monitors without
changing the source DML statements.

An Assembler programmust be submitted to the DML precompiler if the program
contains any of the following statements:

= An @COPY IDMS statement
= An @INVOKE statement

» Logical-record DML statement containing a WHERE clause

If none of these statements is included, the Assembler program can bypass the DML
precompiler. The source can be submitted directly to the assembler because most
Assembler DML statements are macro instructions that are expanded during assembly.
It is recommended, however, that all programs accessing the database or running under
a DC/UCF system use the DML precompiler. For a list of Assembler DML macros,
refer to Appendix D, “Assembler DML Macros and Error Messages” on page D-1.

Output from the DML precompiler is a card-image source file that serves as input to
the assembler. Output from the assembler consists of an object program and a source
listing that includes any generated diagnostics. During assembdy procedural

DML verbs are expanded into executable Assembler source code, whether or not the
DML precompiler was executed.

1-8 CA-IDMS DML Reference — Assembler

1.3 Assembling and executing programs

After the program is assembled, it is submitted to the linkage editor. The linkage
editor link edits the object program into a specified load library. Output from the
linkage editor consists of a load module and a link map.

The following figure illustrates the steps involved in assembling and executing an
Assembler program containing DML statements.

/ IDMSDMLA

- o ASSEMBLER
COMPILER

ASSEMBLER AND
DML SOURCE
STATEMENTS

i

DMLA DIAGNOSTICS
AND
OPTIONAL
SOURCE LISTING

ASSEMBLER SOURCE
LISTING AND

DIAGNQSTICS

Chapter 1. Introduction to CA-IDMS Data Manipulation Language 1-9

1-10 CA-IDMS DML Reference — Assembler

Chapter 2. DML Precompiler Options

2.1
2.2
2.3
2.4
2.5

OVEeIVIEW 2-3
Dictionary usage mode 2-4
Comment generation. 2-5
List generation 2-6
Log suppression 2-7

Chapter 2. DML Precompiler Options 2-1

2-2 CA-IDMS DML Reference — Assembler

2.1 Overview

2.1 Overview

This chapter contains syntax for the DML precompiler options. DML precompiler
option statements are included in the input source code to the DML precompiler.
These statements are used to:

» Override the default shared update usage mode for the DDLDML area of the
dictionary and ready the area in either retrieval or protected update mode

® Print comment lines stored in the dictionary for subschema data items on the
DML listing

® Generate a source statement listing of the output from the DML precompiler

m Suppress the logging of program activity statistics in the dictionary

These options are discussed separately below.

Chapter 2. DML Precompiler Options 2-3

2.2 Dictionary usage mode

2.2 Dictionary usage mode

When the main area (DDLDML area) of the dictionary accessed by the DML
precompiler is readied, several options are available. The default usage mode, shared
update usage, is defined at system generation. Shared update mode readies the
DDLDML area for both retrieval and update and allows other concurrently executing
run units to ready the DDLDML area in shared update or shared retrieval usage mode.
You can override the default usage mode by specifying either retrieval or protected
update usage mode in your application program.

Syntax

>—E *RETRIEVAL a
*PROTECTED-UPDATE

\4

The asterisk (*) must be in column 1.

Parameters

*RETRIEVAL
Readies the DDLDML area for retrieval only and allows other concurrently
executing run units to open the DDLDML area in shared retrieval, shared update,
protected retrieval, or protected update mode.

Note: If the DDLDML area is readied for retrieval only, no program activity
statistics can be logged.

*PROTECTED-UPDATE
Readies the DDLDML area for both retrieval and update and allows other
concurrently executing run units to open the DDLDML area in retrieval usage
mode only. The protected update usage mode prevents concurrent update of the
area by run units executing under the same central version.

If included, the dictionary usage mode statement must precede all source statements.

2-4 CA-IDMS DML Reference — Assembler

2.3 Comment generation

2.3 Comment generation

The *SCHEMA-COMMENTS option causes schema-defined data item comments and
IDD-defined record-element comments in the dictionary to be printed on the DML
source listing. You can specify this option by including the following entry at the
beginning of the input source code, after the dictionary usage mode statements (if
present) and before any DML or Assembler statements.

Syntax
»—— *SCHEMA-COMMENTS

v

The asterisk (*) must be in column 1.

If the input does not include a *SCHEMA-COMMENTS entry, comment lines are not
generated.

Chapter 2. DML Precompiler Options 2-5

2.4 List generation

2.4 List generation

You can turn on or off the source statement listing output by the DML precompiler by
inserting a list generation option in the source program.

Syntax

»
>

t *NODMLIST ¢ —
*DMLIST

The asterisk (*) must be in column 1.

Parameters

*NODMLIST
Specifies that no source code listing is to be generated for the DML statements
that follow.

*DMLIST
Generates the source code listing for all the DML statements that follow.

In general, you would include one of these entries at the beginning of the input source
code before any standard DML or Assembler statements. However, generation of the
list can be turned on or off any number of times within one source program by
inserting appropriate *DMLIST/*NODMLIST entries in the code.

Note: The DML precompiler always produces a listing of error messages. The
*DMLIST option controls listing of the DML source code.

2-6 CA-IDMS DML Reference — Assembler

2.5 Log suppression

2.5 Log suppression

You can suppress the logging of program activity statistics in the dictionary by using
the *NO-ACTIVITY-LOG option. This option, if included, is placed at the beginning
of the DML source program. The DML precompiler generates and logs the following
program activity statistics unless the *NO-ACTIVITY-LOG option is included in the
program source code:

® Program name

® Language

m Date last compiled

= Number of lines

®» Number of compilations

® Date created

. Subschema name (if any)
® File statistics

» Database access statistics (for example, records and modules copied from the
dictionary; subprograms called; and records, sets, and areas accessed by DML
verbs)

Syntax
»— *NO-ACTIVITY LOG

v

The asterisk (*) must be in column 1.

Note: Program activity statistics cannot be logged if you ready the dictionary
DDLDML area for retrieval only.

Chapter 2. DML Precompiler Options 2-7

2-8 CA-IDMS DML Reference — Assembler

Chapter 3. Communications Blocks and Error

Detection
3.1 Overview 3-3
3.2 IDMS communications block 0L 3-4
3.2.1 Field descriptions 3-7
3.2.2 ERRSTAT field and codes. 3-11
3.2.3 Testing for DML error-status codes 3-17
3.3 Logical-record request control (LRC) block 3-18
3.3.1 Field descriptions 3-19
3.3.2 Testing for the logical-record path status. 3-20
3.4 DC/UCF general registers. 3-23
3.4.1 DC/UCF statuscodes 3-23
3.4.2 Testing for DC/UCF return codes 3-32

Chapter 3. Communications Blocks and Error Detection 3-1

3-2 CA-IDMS DML Reference — Assembler

3.1 Overview

3.1 Overview

This chapter describes the communication blocks and registers available under
CA-IDMS/DB and DC/UCF systems to return status information to an application
program that requests database and data communication services.

CA-IDMS/DB and DC/UCF systems use the following facilities to communicate with
your application program:

. ThelDMS communications block returns information from the database
management system (DBMS) to your application program.

The ERRSTAT field of the IDMS communications block receives a status code
that indicates the successful or unsuccessful execution of a DML command. You
can test for the content of the ERRSTAT field in your database program.

. Thelogical-record request control (LRC) block returns information from the
Logical Record Facility (LRF) to your application program when you are
accessing logical records that have been created by LRF.

The LRSTAT field of the LRC block returns the path status for a logical-record
DML request. You can test for the contents of the LRSTAT field in your
program.

»n Register 15 is used by the DC/UCF system to return information regarding the
successful or unsuccessful execution of DML commands that request data
communication services. You can test for the content of register 15 to determine
the outcome of a DC/UCF DML statement.

In addition to the above topics, this chapter lists the status codes returned by the
DBMS for database requests and the return codes issued by DC/UCF system for data
communications requests.

Chapter 3. Communications Blocks and Error Detection 3-3

3.2 IDMS communications block

3.2 IDMS communications block

The IDMS communications block passes information between the DBMS and the
application program. Whenever a run unit issues a call to the DBMS for a database
operation, the DBMS returns information about the outcome of the requested service to
the ERRSTAT field in the application program's IDMS communications block.

To receive status information from the DBMS, an application program must define the
IDMS communications block in variable storage. You must either copy the IDMS
communications block from the dictionary into your program's variable storage by
using the @COPY IDMS statement or generate the IDMS communications block by
using the @SSCTRL statement. The following example illustrates the @COPY IDMS
statement before and after it has been expanded by the DML precompiler:

SSCTRL
PGMNAME
ERRSTAT
DBKEY
RECNAME
AREANAME
ERRORSET
ERRORREC
ERRAREA
SSCIDBCM
IDBMSCOM
ORG
RDBMSCOM
PGINFO
PGINFGRP
PGINFDBK

DIRDBKEY
DBSTATUS
DBSTMTCD
DBSTATCD

RECOCCUR
DMLSEQ

@COPY IDMS,SUBSCHEMA-CTRL (Before DML expansion)
@COPY IDMS,SUBSCHEMA-CTRL (After DML expansion)
DS oD

DS 0CL216
DC CcL8"' '

DC CL4'1400"
DS FL4

DC CL16" '
DC CL16' '
DC CL16' '
DC CL16' '
DC CL16' '
DS 0CL100
DS 100CL1
SSCIDBCM

DS 0CL100

DS oCL4

DS HL2

DS HL2

DS CL96

DC FL4A'O'

DS 0CL8

DS CL2

DS CL5

DS CL1

DC FL4'0'

DC FL4'0'

The same expansion would result by using the @SSCTRL statement in your
application program instead of the @COPY IDMS,SUBSCHEMA-CTRL statement.

The @SSCTRL statement is a macro that generates the variable storage definitions of
the IDMS communications block instead of copying the block from the dictionary.

» For more information on the differences between these statements, refer to
Chapter 5, “DML Precompiler-Directive Statements” on page 5-1.

After every call to the DBMS, the DBMS issues an error-status code that indicates
successful or unsuccessful completion of the requested service. This status code is
returned to the ERRSTAT field in the IDMS communications block. You should
examine the ERRSTAT field after every call to the DBMS. Depending on the

3-4 CA-IDMS DML Reference — Assembler

3.2 IDMS communications block

error-status code, it may be useful to examine other fields and/or branch to a routine
that responds to the condition indicated by the error-status code.

Chapter 3. Communications Blocks and Error Detection 3-5

3.2 IDMS communications block

The following figure shows the layout of the 16-byte IDMS communications block;
each field is described separately. Starting with offset 200, the layout of the block
differs for application programs that run under CICS.

»> For more information about the 18-byte IDMS communications block, refer to
Appendix J, "18-Byte Communications Blocks."

IDMS COMMUNICATIONS BLOCK ‘

Length Suggested
Field Data Type (bytes) Initial Value
* | 0 7 PGMNAME Alphanumeric 8 Program Name
8 11 ERRSTAT Alphanumeric 4 '1400'
12 15 DBKEY Binary 4 (Fullword) 0000
16 31 RECNAME Alphanumeric 16 Spaces
32 47 AREANAME Alphanumeric 16 Spaces
48 63 ERRORSET Alphanumeric 16 Spaces
64 79 ERRORREC Alphanumeric 16 Spaces
80 95 ERRAREA Alphanumeric 16 Spaces
*% | 96 99 PGINFO Binary 4 (Fullword) 0000
96 :: 195 ‘ IDBMSCOM Alphanumeric 100 Spaces
196 199 DIRDBKEY Binary 4 (Fullword) 0000
200 206 Reserved for System Alphanumeric 7 Spaces
NON- | 207 FILLER 1
CICS | 208 211 RECOCCUR Binary 4 (Fullword) 0000
212 215 DMLSEQ Binary 4 (Fullword) 0000
200 FILLER 16 Spaces
216 222 Reserved for System Alphanumeric 7 Spaces
223 FILLER 1
CICs
224 227 RECOCCUR Binary 4 (Fullword) 0000
228 231 DMLSEQ Binary 4 (Fullword) 0000

* word aligned

*% PGINFGRP overlays bytes 96 and 97 and PGINFDBK overlays bytes
98 and 99. Both of these fields are binary datatype each
having a length of two bytes. Suggested initial values for
both are 00. Together these two fields represent PGINFO.

3-6 CA-IDMS DML Reference — Assembler

3.2 IDMS communications block

3.2.1 Field descriptions

Program status fields: The IDMS communications block contains the following
fields that describe program status information:

PGMNAME (offsets 0-7) is an 8-byte alphanumeric field that contains the name
of the program being executed. This field is initialized automatically at the
beginning of program execution if the program contains an @COPY IDMS
SUBSCHEMA-BINDS statement. Otherwise, it must be initialized by the
programmer.

ERRSTAT (offsets 8-11) is a 4-byte alphanumeric field that contains a value
indicating the outcome of the DML statement that calls the DBMS. The
ERRSTAT field must be initialized to 1400 by the program. The DBMS updates
this field immediately before returning control to the user program after
performing (attempting) a requested database service.

The ERRSTAT field and its use are described under 3.2.3, “Testing for DML
error-status codes” on page 3-17 later in this chapter.

Note: A program that consists of two or more run units must reinitialize the
ERRSTAT field to 1400 after finishing one run unit and before binding
the next.

DBKEY (offsets 12-15) is a 4-byte (fullword) binary field that contains the
database key (db-key) of the last record accessed by the run unit. For example,
after successful execution of an @FIND command, DBKEY is updated with the
db-key of the located record. DBKEY is not changed if the call to the DBMS
results in an error condition.

RECNAME (offsets 16-31) is a 16-byte alphanumeric field that contains the name
of the last record accessed successfully by the run unit. This field is left justified
and padded with spaces on the right.

AREANAME (offsets 32-47) is a 16-byte alphanumeric field that contains the
name of the last area accessed successfully by the run unit. This field is left
justified and padded with spaces on the right.

ERRORSET (offsets 48-63) is a 16-byte alphanumeric field that contains the
name of the set involved in the last operation to produce an error condition. This
field is left justified and padded with spaces on the right.

ERRORREC (offsets 64-79) is a 16-byte alphanumeric field that contains the
name of the record involved in the last operation to produce an error condition.
This field is left justified and padded with spaces on the right.

ERRAREA (offsets 80-95) is a 16-byte alphanumeric field that contains the name
of the area involved in the last operation to produce an error condition. This field
is left justified and padded with spaces on the right.

IDBMSCOM (offsets 96-195) is a 100-byte alphanumeric array that is used
internally by CA-IDMS/DB for specification of runtime function information.

PGINFO (offsets 96-99) is a 4-byte binary field that represents the page
information associated with the last record accessed by the rununit. For example,

Chapter 3. Communications Blocks and Error Detection 3-7

3.2 IDMS communications block

after successful execution of an @FIND command, PGINFO is updated with the
page information of the located record.

Page information is not changed if the call to the DBMS results in a nonzero
status condition.

Page information is a 4-byte field consisting of the following sub-fields:
— Bytes 1-2: Page group number (PGINFGRP)
— Bytes 3-4: Dbkey radix (PGINFDBK)

The PGINFO field overlays part of the IDBMSCOM area in the subschema
control.

The dbkey radix portion of the page information can be used in interpreting a
dbkey for display purposes and in formatting a dbkey from page and line numbers.
The dbkey radix represents the number of bits within a dbkey value that are
reserved for the line number of a record. By default, this value is 8, meaning that
up to 255 records can be stored on a single page of the area. Given a dbkey, you
can separate its associated page number by dividing the dbkey by 2 raised to the
power of the dbkey radix. For example, if the dbkey radix is 4, you would divide
the dbkey value by 2**4. The resulting value is the page number of the dbkey.

To separate the line number, you would multiply the page number by 2 raised to
the power of the dbkey radix and subtract this value from the dbkey value. The
result would be the line number of the dbkey. The following two formulas can be
used to calculate the page and line numbers from a dbkey value:

Page-number = dbkey value / (2 ** dbkey radix)
Line-number = dbkey value - (page-number * (2 ** dbkey radix))

» DIRDBKEY (offsets 196-199) is a 4-byte (fullword binary) field that contains a
user-specified db-key value or a null db-key value of -1. This field is used for
storing a record with a location mode of direct. DIRDBKEY must be initialized
by the user; it is not updated by the DBMS.

Note: (native VSAM users) The DIRDBKEY field can be used only when
storing a record in a native VSAM relative record data set (RRDS). This
field must be initialized by the user to the relative record number of the
record being stored.

Fields for non-CICS applications: The following fields are for non-CICS
application programs:

» Reserved for system (offsets 200-206) is a 7-byte alphanumeric field reserved for
CA-IDMS/DB use.

» FILLER (offset 207) is a 1-byte field used to ensure fullword alignment.

. RECOCCUR (offsets 208-211) is a 4-byte (fullword) binary field that contains a
record-occurrence sequence identifier used internally by the DBMS.

» DML SEQ (offsets 212-215) is a 4-byte (fullword) binary field that contains the
source-level sequence number generated by the DML macros, if DEBUG is
specified. It not used by the runtime system, with the exception of SYSIDMS
DML TRACE=0ON tracing.

3-8 CA-IDMS DML Reference — Assembler

3.2 IDMS communications block

Fields for CICS applications: The following fields are for CICS application
programs:

n FILLER (offsets 200-215) is a 16 byte work area reserved for use by CICS
applications.

® Reserved for system (offsets 216-222) is a 7-byte alphanumeric field reserved for
use by the DBMS.

® FILLER (offset 223) is a 1-byte field used to align fullword binary values.

» RECOCCUR (offsets 224-227) is a 4-byte (fullword) binary field that contains a
record-occurrence sequence identifier used internally by CA-IDMS/DB.

» DML SEQ (offsets 228-231) is a 4-byte (fullword) binary field that contains the
source-level sequence number generated by the DML precompiler. This field is
updated after each call to the DBMS if DEBUG is specified; it is not used by the
runtime system.

Updating the fields: After a call to the DBMS, one or more of the fields described
above may be updated, depending on the DML statement issued and whether or not
the statement was executed successfully.

Example of updating fields: The following figure illustrates the updating process;
only those fields accessed by the runtime system are shown. Fields used internally by
the DBMS are not shown. Blank fields are not updated by DML statements.

Key for this figure:

* If true, field is set to zone decimal zeroes (0000); if false, field is set to
1601

Field is set to zone decimal zeroes

Field is updated

Field is cleared to spaces

Z|0|<|©

Field is set to null db-key value (-1)

nn Specific minor error code

Chapter 3. Communications Blocks and Error Detection 3-9

3.2 IDMS communications block

SUCCESSFUL UNSUCCESSFUL
P{E|D|R|A|E|E|E]|P]|D P E D|IR|A|E|E|E|P]|D
G|R|B|E|R|R|R|R|G]|TI G R B|E|R|R|[R|R|G]|I
M|{R|K|]C|E|R|JR|RJ|I R M R K{C|E|R|R|R|TI R
N|{S|E|N|A|]O|O|A|N|D N S E|N|J]A|O|O|A|N|D
A|T|Y|A|N|R|R|R|F]|B A T Y|A|N|R|R|R|F|B
M| A M|IA|S|R|E|]O|K M A M|A|S|RJE|O]|K
E|T E{M|E|E]|A E E T E|{M|E|]E]|A E
E|T]|C Y E|T|C Y
Control statements
BIND SUBSCH 0 14nn
BINDREC 0 14nn Y| Y[|Y
BIND PROC 0 14nn Y| Y Y
READY 0 09nn c|c|c
FINISH 0O|N|C cjc|c 01lnn cjc|c
COMMIT (ALL) 0O|N|C cjcy|c 18nn cjc|c
ROLLBAK (CONTINUE) O|N|C cjcy|c 19nn c|c|c
KEEP (EXCLUSIVE) o|Yyjljyj|yjcjcjpcyjy 06nn Y| Y[|Y
IF set-name EMPTY *|YlY|lYy|[C|C|C]|Y 16nn Y| Y[|Y
IF set-name MEMBER * | Y|Y|Y|[C|C|C]|Y 16nn Y[Y|Y
Retrieval statements
FIND / OBTAIN o|Yj|Yy|yYyjljcj|jcj|cjy 03nn Y| Y[|Y
GET o|Yjljy|yjcjcjpcjy 05nn Y| Y|Y
RETURN o|Yyjljyj|yjcjcjpcjy 17nn Y| Y[|Y
Modification statements
STORE record-name ojYyjyjyjcjicflcyly 12nn Y Y [Y
CONNECT record-name o|Yyjyj|yjpcjcjpcyjy 07nn Y| Y |Y
MODIFY record-name ojyYyjljyjyjcjpcjpcily 08nn Y| Y |Y
DISCON record-name ojyYyjljyjyjcjpcjpcily 11nn Y| Y|Y
ERASE record-name O|N|jY|]Y|]C|C|C 02nn Y| Y |Y
Accept statements
ACCEPT DBKEY FROM CURRENCY 0 c|cy|c 15nn Y| Y|Y
ACCEPT DBKEY REL TO CURRENCY 0 c|cy|c 15nn Y[Y|Y
ACCEPT STATS 0 cjcy|c 15nn Y| Y[|Y
ACCEPT BIND 0 cjcy|c 15nn Y| Y|Y
ACCEPT PROC 0 cjcy|c 15nn Y| Y[|Y
ACCEPT PGINFO 0 cjcy|c 15nn Y| Y[|Y

3-10 CA-IDMS DML Reference — Assembler

3.2 IDMS communications block

3.2.2 ERRSTAT field and codes

The DBMS returns a value to the ERRSTAT (error-status) field of the IDMS
communications block following each DML database request to indicate whether the
request has been serviced successfully. The ERRSTAT field is a zoned decimal field
consisting of four bytes: the first two bytes represent a major code; the second two
bytes represent a minor code. Major codes identify the database function performed,;
minor codes describe the status of that function.

For example, a value of 0307 in the ERRSTAT field is translated as follows:

03 Represents the major code for the database function @FIND/@OBTAIN
07 Represents the minor code indicating either an empty set or the
end of set, area, or index

Therefore, an ERRSTAT value of 0307 indicates that during the execution of a DML
@FIND or @OBTAIN statement, an end of set, end of area, end of index, or empty
set condition was found.

A value of 0000 indicates successful completion of the requested function; you should
check for values other than 0000.

Major code 00: The following error codes with a major code of 00 apply to all
DML commands:

Code Meaning
0000 The request has been executed successfully.
0010 The program has attempted to access a database record, but the

subschema in use allows access only to logical records.

0063 Invalid function parameters have been passed on the call to
CA-IDMS/DB and CA-IDMS/DC.

0069 The program has been disconnected from CA-IDMS/DB and
CA-IDMS/DC. (CA-IDMS/DB and CA-IDMS/DC moves this error
status code into the ERRSTAT field before disconnecting the
application program.)

0077 Either the program is no longer signed on to the subschema or the
variable subschema tables have been overwritten.

0080 The target node either is not active or has been disabled from the DDS
configuration.

Major status codes: The following table shows major codes returned to the
ERRSTAT field of the IDMS communications block. Major codes identify the
requested database function performed.

Chapter 3. Communications Blocks and Error Detection 3-11

3.2 IDMS communications block

Code Database Function
00 Any DML statement
01 @FINISH

02 @ERASE

03 @FIND/@OBTAIN
05 @GET

06 @KEEP

07 @CONNECT

08 @MODIFY

09 @READY

11 @DISCON

12 @STORE

14 @BIND

15 @ACCEPT

16 @IF

17 @RETURN

18 @COMMIT

19 @ROLLBAK

20 Logical Record Facility requests

(@OBTAIN, @MODIFY, @STORE, and GERASE)

Minor status codes: The following table shows minor codes returned to the
ERROR-STATUS field of the IDMS communications block. Minor codes describe the
status of the requested database function.

Code

Database Function Status

00

Combined with a major code of 00, this status code indicates
successful completion of the DML operation. Combined with a
nonzero major code, this status code indicates that the DML operation
was not completed successfully due to central version (CV) causes
such as timeouts and program checks.

01

An area has not been readied. When this code is combined with a
major code of 16, an @IF operation has resulted in a valid false
condition.

3-12 CA-IDMS DML Reference — Assembler

3.2 IDMS communications block

Code Database Function Status

02 Either the db-key used with an @FIND/@OBTAIN DB-KEY
statement or the direct db-key suggested for an @STORE is not within
the page range for the specified record name.

04 The occurrence count of a variably occurring element has been
specified as less than zero or greater than the maximum number of
occurrences defined in the control element.

05 The specified DML function would have violated a duplicates-not-
allowed option for a CALC, sorted, or index set.

06 No currency has been established for the named record, set, or area.

07 Either the set is empty or the end of a set, area, or index has been
reached.

08 Either an invalid record or set name has been specified or the record is
not a member of the set. For Logical Record Facility (LRF) users,
either the named logical record is not defined in the subschema or the
specified DML verb is not permitted with the named logical record.

09 The area has been readied with an incorrect usage mode.

10 An existing access restriction or subschema usage prohibits execution
of the specified DML function. For LRF users, the subschema in use
allows access to database records only. Combined with a major code
of 00, this code means the program has attempted to access a database
record but the subschema in use allows access to logical records only.

11 The record cannot be stored in the specified area due to insufficient
space.

12 There is no db-key for the record to be stored. This is a system
internal error and should be reported.

13 A current record of run unit either has not been established or has been
nullified by a previous @ERASE statement.

14 The @CONNECT statement cannot be executed because the named
record has been defined as a mandatory automatic member of the set.

15 The @DISCON statement cannot be executed because the object
record has been defined as a mandatory member of the set.

16 The record cannot be connected to a set of which it is already a
member.

18 The record has not been bound.

20 The current record is not the same type as the specified record name.

21 Not all areas being used have been readied in the correct usage mode.

22 The specified record name is not currently a member of the specified

set name.

Chapter 3. Communications Blocks and Error Detection 3-13

3.2 IDMS communications block

Code

Database Function Status

23

Either the specified area name has not been included in the subschema
or is not an extent area, or the record name specified has not been
defined within area name.

25

No currency has been established for the named set.

26

The record name cannot be found.

28

The run unit has attempted to ready an area that has been readied
previously.

29

The run unit has attempted to place a lock on a record that is already
locked by another run unit. Unless the run unit issued either a
"FIND/OBTAIN KEEP EXCLUSIVE" or a "KEEP EXCLUSIVE", the

run unit is aborted.

30

An attempt has been made to erase the owner record of a set that is
not empty.

31

The retrieval statement format conflicts with the record's location
mode.

32

An attempt to retrieve the CALC record was unsuccessful; the value of
the CALC field in variable storage does not equal the value of the
CALC control element in the current record of run unit.

33

At least one of the sets in which the record participates has not been
included in the subschema.

40

The WHERE clause in an @OBTAIN NEXT logical-record request is
inconsistent with a previous @OBTAIN FIRST or @OBTAIN NEXT
command for the same record.

41

The subschema contains no path that matches the WHERE clause in a
logical-record request.

42

An ON clause included in the path by the DBA specified return of the
LR-ERROR path status to the program; an error has occurred while
processing the LRF request.

43

A program check has been recognized during evaluation of a WHERE
clause; the program check indicates that either a WHERE clause has
specified comparison of a packed decimal field to an unpacked
nonnumeric data field, or data in variable storage or in a database
record does not conform to its description. A path status of
LR-ERROR is returned to the program unless the DBA has included
an ON clause to override this action.

44

The WHERE clause in a logical-record request does not supply a key
element expected by the path.

3-14 CA-IDMS DML Reference — Assembler

3.2 IDMS communications block

Code

Database Function Status

45

During evaluation of a WHERE clause, a program check has been
recognized because a subscript value is neither greater than 0 nor less
than its maximum allowed value plus 1. A path status of LR-ERROR
is returned to the program unless the DBA has included an ON clause
to override this action.

46

A program check has revealed an arithmetic exception, (for example,
overflow, underflow, significance, divide) during evaluation of a
WHERE clause. A path status of LR-ERROR is returned to the
program unless the DBA has included an ON clause to override this
action.

53

The subschema definition of an indexed set does not match the indexed
set's physical structure in the database.

55

An invalid length has been defined for a variable-length record.

56

An insufficient amount of memory to accommodate the CA-IDMS/DB
compression/decompression routine is available.

57

A retrieval-only run unit has detected an inconsistency in an index that
should cause an 1143 abend, but optional APAR bit 216 has been
turned on.

60

The specified record type is inconsistent with the named set. This
error code usually indicates a broken chain.

61

No record can be found for the specified db-key. This error code
usually indicates a broken chain.

62

A system-generated db-key points to a record occurrence, but no
record with that db-key can be found. This error code usually
indicates a broken chain.

63

The DBMS cannot interpret the DML function to be performed. For
LRF users, a WHERE clause includes a keyword that is longer than
the 32 characters allowed. When combined with a major code of 00,
this code means invalid function parameters have been passed on the
call to the DBMS.

64

The specified record cannot be found; the CALC control element has
not been described properly in the subschema.

65

The database page read was not the page requested.

66

The specified area is not available in the requested usage mode. If
running in local mode, the area is locked against update. If running
under the control version, either the area is offline or the program
requested an update usage mode and the area is in retrieval mode to
the central version.

67

The subschema invoked does not match the subschema object tables.

Chapter 3. Communications Blocks and Error Detection 3-15

3.2 IDMS communications block

Code

Database Function Status

68

The CICS interface was not started.

69

An @BIND RUN-UNIT may not have been issued; the CA-IDMS/DB
central version may not be active or accepting new run units; or the
connection with the CV may have been broken due to time out or
other factors. When combined with a major code of 00, this code
means the program has been disconnected from the DBMS.

70

The database file will not ready properly. A JCL error is the probable
cause.

71

The page range or page group for the area being readied could not be
found in the DMCL.

72

There is insufficient memory to load dynamically a subschema or
database procedure.

73

A central version run unit will exceed the MAXERUS value specified
at system generation.

74

The dynamic load of a module has failed. If operating under the
CA-IDMS/DB central version, a subschema or database procedure
module, if loaded, either exceeds the number of subschema and
database procedures provided for at system generation or cannot be
found in the dictionary or the load (core-image) library.

75

A read error has occurred.

76

A write error has occurred.

77

The run unit either has not been bound or has been bound twice.
When combined with a major code of 00, this code means either the
program is no longer signed on to the subschema or the variable
subschema tables have been overwritten.

78

An area wait deadlock has occurred.

79

The run unit has requested more db-key locks than are available to the
system.

80

The target node is not active or has been disabled from the DDS
configuration.

81

The specified database name is not known to the CA-IDMS/DB central
version.

82

The subschema is not allowed under the specified database.

83

An error has occurred in the use of the native VSAM data sets.

87

The owner and member records for a set to be updated are not in the
same page group or do not have the same dbkey radix.

3-16 CA-IDMS DML Reference — Assembler

3.2 IDMS communications block

3.2.3 Testing for DML error-status codes

Testing for the value of the ERRSTAT field in an Assembler program is a simple
procedure. CA-IDMS/DB places a value in the ERRSTAT field after each DML
statement requesting database services is executed. This value can be compared to
known error-status codes to determine whether execution was successful. For
example, you can check for successful completion by comparing the ERRSTAT field
to a working storage field defined as 0000. The program can then perform a
conditional branch.

The following example demonstrates a test for the successful execution of the
@OBTAIN statement. After completion of the @OBTAIN statement, the value
returned to the ERRSTAT field is compared to the defined constant STATOK. If the
@OBTAIN is successfully completed, processing continues. Otherwise, the program
branches to routine OBERR2, which evaluates the ERRSTAT field and determines the
next statement to be executed.

@OBTAIN OWNER,SET='DEPT-EMPLOYEE'

CLC ERRSTAT,STATOK

BNE OBERRZ
MvC DID,DEPTID

STATOK DC CL4'0000"

In Chapter 6, “Data Manipulation Language Statements” on page 6-1, the status codes
that can be returned to the ERRSTAT field of the IDMS communications block are
listed after the description of each database command. To determine test conditions
based on error-status codes refer to Chapter 6, “Data Manipulation Language
Statements” on page 6-1.

Chapter 3. Communications Blocks and Error Detection 3-17

3.3 Logical-record request control (LRC) block

3.3 Logical-record request control (LRC) block

The logical-record request control (LRC) block passes information between the
application program and LRF. It is used in conjunction with the IDMS
communications block to pass information to LRF about a logical-record request and
to return path status information about the processing of the request to the program.

To receive information about a logical-record request, the application program must
define the LRC block in variable storage. You must either copy the LRC block from
the dictionary into the program's variable storage by using the @COPY IDMS
statement or generate the LRC block by using the @SSLRCTL statement. The
following example illustrates the @COPY IDMS statement before and after expansion
by the DML precompiler:

@COPY IDMS,SUBSCHEMA-LR-CTRL (before DML expansion)

* @COPY IDMS,SUBSCHEMA-LR-CTRL (after DML expansion)
DS oD
SSLRCTL DS 0CL576
LRPXLN DS HL2
LRMVXP DS HL2
LRIDENT DC CL4'LRC '
LRVERB DC cL8' !
LRNAME DC CcL16' '
LRSTAT DC CL16" '
LRFILL DC CL16" '
LRPXE DS 512CL1

The same expansion would result by using the @SSLRCTL statement in your
application program instead of the @COPY IDMS,SUBSCHEMA-LR-CTRL

statement. The @SSLRCTL statement is a macro that generates the variable storage
definitions of the LRC block instead of copying the block from the dictionary. For
more information on the differences between these statements, refer to Chapter 5,
“DML Precompiler-Directive Statements” on page 5-1.

When a program issues a logical-record request, the LRC block stores the DML verb
used by the program, the name of the logical-record, and the selection criteria of the
request. LRF uses this information to select the appropriate path to handle the request.

After LRF has processed a request, it returns path status information in the LRC block.
After issuing the path status, LRF returns an error-status code in the ERRSTAT field
of the IDMS communications block. You can use this information to evaluate the
result of the request and to determine further processing based on that result. The
following figure shows the layout of the LRC block; each field is described separately
following the figure.

3-18 CA-IDMS DML Reference — Assembler

3.3 Logical-record request control (LRC) block

Length
Field Description Data Type (bytes)
0 1 LRPXLN Logical-record LRC length BINARY 2
2 3 LRMVXP Evaluation work-area-length BINARY 2
4 7 LRIDENT Constant 'LRC ' ALPHANUMERIC 4
8 15 LRVERB Logical-record verb ALPHANUMERIC 8
16 31 LRNAME ~ Logical-record name ALPHANUMERIC 16
32 47 LRSTAT Logical-record error-status indicator ALPHANUMERIC 16
48 63 LXFIL Filler 16
T
(1rc-block LRPXE WHERE clause Mixed
64 ... -size
| | minus 63)

3.3.1 Field descriptions

The LRC block contains the following fields:

» LRPXLN (offsets 0-1) is a halfword field that describes the length of the LRC
block for a logical record.

. LRMVXP (offsets 2-3) is a halfword field that describes the evaluation work area
length used for processing the logical record.

n LRIDENT (offsets 4-7) is a 4-byte alphanumeric field used internally by LRF. (It
contains the constant LRC followed by a space.)

» LRVERB (offsets 8-15) is an 8-byte alphanumeric field used to record the DML
verb issued by the LRF program.

» LRNAME (offsets 16-31) is a 16-byte alphanumeric field that contains the name
of the logical record being accessed.

n LRSTAT (offsets 32-47) is a 16-byte alphanumeric field that contains the path
status of a logical-record request. The standard path statuses are LR-FOUND,
LR-NOT-FOUND, and LR-ERROR. Path statuses can also be defined by the
DBA. Testing for the value of the LRSTAT field is described below in "Testing
for the logical-record path status."

n LXFIL (offsets 48-63) is a 16-byte filler.

» L RPXE (offset 64-end) is a variable length data area that contains information
regarding the logical-record request's WHERE clause. This field is usually 512
bytes (default). You can code the SIZE option of the @BIND SUBSCH, @COPY
IDMS,SUBSCHEMA-LR-CTRL, and @SSLCTRL statements to lengthen this
field to accommodate a long, complex WHERE clause. (For more information on
increasing the size of this field, refer to 5.4, “@COPY IDMS” on page 5-9.)

Chapter 3. Communications Blocks and Error Detection 3-19

3.3 Logical-record request control (LRC) block

3.3.2 Testing for the logical-record path status

Path statuses are issued during execution of the path selected to service a
logical-record request. LRF returns a specific path status to the LRSTAT field of the
program's LRC block to indicate the result of each logical-record request. You can
examine this information to determine further processing.

Path statuses: Path statuses are 1- to 16-byte character strings; they can either be
standard or defined by the DBA in the subschema. The standard path statuses are:

» LR-FOUND — Indicates the logical-record request has been successfully
executed. This status can be returned as the result of any LRF DML statement.
When LR-FOUND is returned, the ERRSTAT field of the IDMS communications
block contains 0000.

» LR-NOT-FOUND — Indicates the specified logical record cannot be found
because either no such record exists or all such occurrences have already been
retrieved. This status can be returned as the result of any LRF DML statement,
provided that the path to which LRF is directed includes retrieval logic. When
LR-NOT-FOUND is returned, the ERRSTAT field of the IDMS communications
block contains 0000.

» LR-ERROR — Indicates that either a logical-record request is issued incorrectly
or an error occurs in the processing of the path selected to service the request.

Code depends on type of error: When LR-ERROR is returned, the type of status
code returned to the program in the ERRSTAT field of the IDMS communications
block differs according to the type of error. If the error occurs in the logical-record
path, the ERRSTAT field contains a status code issued by CA-IDMS/DB with a major
code from 00 to 19.

When the error occurs in the request itself, LRF returns the path status LR-ERROR to
the LRSTAT field of the LRC block and places one of the following codes in the
ERRSTAT field of the IDMS communications block:

Note: Any of these error-status codes can result from any of the logical-record DML
statements. The only exception is code 2040, which applies only to the
@OBTAIN NEXT DML statement.

Status code M eaning

2008 Either the named logical record is not defined in the subschema or
the specified DML verb is not permitted with the named logical
record.

2010 The program has attempted to access a logical record, but the

subschema in use allows access to database records only.

2018 A path command has attempted to access a database record that has
not been bound.

3-20 CA-IDMS DML Reference — Assembler

3.3 Logical-record request control (LRC) block

Status code

Meaning

2040

The WHERE clause included in an @OBTAIN NEXT statement
has directed LRF to a different path than did the WHERE clause in
the preceding @OBTAIN statement for the same logical record.
Either an @OBTAIN FIRST should have been issued instead of
@OBTAIN NEXT or the WHERE clause is incorrect.

2041

LRF was unable to match the request's WHERE clause to a path to
service the request.

2042

An ON clause included in the path by the DBA specified return of
the LR-ERROR path status to the program.

2043

During evaluation of a WHERE clause, a program check has been
recognized for one of the following reasons:

» A WHERE clause has specified that a packed decimal field be
compared to a field that is not packed and that cannot be
converted to a packed field due to the presence of nonnumeric
data.

» Data in either variable storage or a database record does not
conform to its description.

A path status of LR-ERROR is returned to the program unless the
DBA has included an ON clause in the path to override this action.

2044

The WHERE clause in a logical-record request does not include a
field of information required by the path.

2045

During evaluation of a WHERE clause, a program check has been
recognized because a subscript value is either less than zero or
greater than its maximum allowed value plus 1. A path status of
LR-ERROR is returned to the program unless the DBA has
included an ON clause in the path to override this action.

2046

A program check has been recognized during evaluation of a
WHERE clause for one of the following reasons:

» An arithmetic overflow would occur (fixed point, decimal, or
exponent).

= An arithmetic underflow would occur (exponent).

n A divide exception would occur (fixed point, decimal, or
floating point).

= A significance exception has occurred.

A path status of LR-ERROR is returned to the program unless the
DBA has included an ON clause in the path to override this action.

2063

A logical-record request's WHERE clause includes a keyword that
is longer than the 32 characters allowed.

Chapter 3. Communications Blocks and Error Detection 3-21

3.3 Logical-record request control (LRC) block

Status code M eaning

2064 A path command has attempted to access a CALC data item that
has not been described properly in the subschema.

2072 Storage is not available for the work areas required to evaluate the
logical-record request's WHERE clause.

Optional ONLRSTS clause: In addition to directly testing the value of the
LRSTAT field, you can include an ON clause that tests for a specific standard or
DBA-defined path status for each DML statement; for example:

@OBTAIN NEXT,REC='EMPJOBLR',ONLRSTS="'LR-NOT-FOUND',GOTO=RECERROR
The ONLRSTS clause tests for the standard path status of LR-NOT-FOUND. If
LR-NOT-FOUND is returned, the branch imperative GOTO=RECERROR will be
executed and the program will branch to the label RECERROR.

Syntax

L ,ONLRSTS=path-status,GOTO=branch-location il

Parameters

ONL RST S=path-status
Tests the LRSTAT field for a path status returned as the result of the
logical-record request issued by the program. Path-status must be a quoted literal
(1-16 bytes under MVS or 1-6 bytes under VSE) or program variable.

GOTO=branch-location
Specifies the program action to be taken if the specified path status is found in
LRSTAT.

For a more complete explanation of LRF DML commands and clauses refer to
Chapter 6, “Data Manipulation Language Statements” on page 6-1.

3-22 CA-IDMS DML Reference — Assembler

3.4 DC/UCF general registers

3.4 DC/UCF general registers

General registers 0, 1, and 15 pass information about data communication services
from the DC/UCF system to the application program. The registers are used in the
following manner:

Register 0 is used by several DC/UCF commands to return information regarding
specific parameters of the DML statement.

Register 1 is sometimes used to either store the address of the IDMS
communications block after an I/O error occurs during execution of a DML
command, or to receive information from the DC/UCF system regarding certain
status conditions that are associated with a return code.

Register 15 is used to receive the return code from the system after execution of a
DML verb that requests a data communications service.

The value of the return code in register 15 indicates whether a DML request for
data communication services was successful. The return codes issued by the
system after execution of a DML statement are listed on the following pages.

Note: If your program uses DML commands to request data communication services

and to access the CA-IDMS/DB database, you must check register 15 for
return codes issued by the DC/UCF system, and the ERRSTAT field of the
IDMS communications block for the status codes issued by CA-IDMS/DB.

3.4.1 DC/UCF status codes

Following each DML request for data communication services, the system places a
return code in register 15 to indicate either an error or a specific condition that
occurred during processing. Table 3-3 lists the runtime register 15 return codes for the
DML statements associated with DC/UCF services. Specific return codes are listed for
each command in Chapter 6.

For every DML verb, a register 15 value of X'00" indicates that the request has been
serviced successfully.

The following table shows the DC/UCF Runtime Register 15 Return Codes.

R15 Value DML Verb Return Condition
X'00' All verbs No error
#ENQ . ACQUIRE — All requested resources

have been acquired.

® TEST — All tested resources have
already been enqueued by the issuing task
with the EXCLUSIVE/SHARED option
specified by the test request.

Chapter 3. Communications Blocks and Error Detection 3-23

3.4 DCJ/UCF general registers

R15 Value

DML Verb

Return Condition

#SETIME

The request to cancel a previously issued
#SETIME has been serviced successfully.

X'04'

#ATTACH

The maximum number of tasks has already
been attached; no new tasks can be attached at
this time.

#COMMIT

Internal run-unit table full; check the
CA-IDMS/DC log for details.

#DELQUE

The parameter list is invalid.

#DELSCR

The parameter list is invalid.

#DEQ

At least one resource id (RSCID) cannot be
found; all that were located have been
dequeued.

#ENQ

1 ACQUIRE — At least one of the
resources indicated is currently owned by
another task and is not available for the
EXCLUSIVE/SHARED option specified;
no new resources have been acquired.

m TEST — At least one of the tested
resources is owned by another task and is
not available to this task for the
EXCLUSIVE/SHARED option specified.

#FINISH

There are too many run units for the internal
run-unit table. This is a system internal error
and should be reported.

#GETQUE

The parameter list is invalid.

#GETSCR

The parameter list is invalid.

#GETSTG

The request specified a storage id that did not
previously exist; the indicated space has been
allocated.

#LINEIN

The input area specified for return of data to
the issuing program is too small to
accommodate the full data stream; the returned
data has been truncated accordingly.

#LINK

Either the request cannot be serviced because
of an /0O, program-not-found, or potential
deadlock error or no null program definition
elements (PDEs) have been allocated. If the
load fails, the link will fail and a minor code
will be returned in register 1.

3-24 CA-IDMS DML Reference — Assembler

3.4 DC/UCF general registers

R15 Value

DML Verb

Return Condition

#LOAD

There is not enough space in the program pool
to load the program.

#MREQ

The specified edit or code table cannot be
found or is invalid for use with the named
map.

#PRINT

An /O error occurred during processing.

#PUTJIRNL

The derived journal record length is zero or
negative.

#PUTQUE

Invalid #PUTQUE request. Check for proper
queue-id specification and logical selection of
options.

#PUTSCR

Invalid request. Check for proper scratch-id
specification and logical selection of options
as specified in the #PUTSCR statement.

#ROLLBAK

Internal run-unit table full; check the
CA-IDMS/DC log for details.

#SENDMSG

An 1/O error occurred during processing.

#SETIME

For a #SETIME TYPE=CANCEL request, the
internal control element (ICE) address
specified cannot be found.

#STRTPAG

A paging session was already in progress
when another #STRTPAG command was
issued. An implied #ENDPAG has been
processed and the #STRTPAG has been
executed successfully.

#TREQ

For a #TREQ GET, #TREQ PUTGET, or
#TREQ CHECK request, the input area
specified for the return of data to the issuing
program is too small to accommodate the full
data stream; the returned data has been
truncated accordingly.

#TRNSTAT

A new transaction statistics block (TSB) has
been allocated.

X'08'

#ATTACH

The requested task code is invalid.

Chapter 3. Communications Blocks and Error Detection 3-25

3.4 DCJ/UCF general registers

R15 Value

DML Verb

Return Condition

#COMMIT

An invalid request has been issued.
#COMMIT is valid only if the program
accesses CA-IDMS/DB database or dictionary
entities (that is, CA-IDMS/DB records or
DC/UCF scratch/queue records). Typically,
#COMMIT need be specified only when
CA-IDMS/DB database or dictionary entities
are accessed in an update usage mode.

#DELQUE

The requested queue header record (QUEID)
cannot be found.

#DELSCR

The requested scratch area id (SAID) cannot
be found.

#ENQ

. ACQUIRE — Not applicable.

B TEST — At least one of the tested
resources is not already owned by any
task and is available for the
EXCLUSIVE/SHARED option specified.
If both conditions described for return
codes X'04' and X'08' exist, the register
15 value will be X'04'.

#FINISH

An invalid request has been issued. #FINISH
is only valid if the program accesses
CA-IDMS/DB database or dictionary entities
(that is, CA-IDMS/DB records or DC/UCF
scratch/queue records). #FINISH need be
specified only when the program performs
database or dictionary accessing activities.

#GETQUE

The requested queue header record (QUEID)
cannot be found.

#GETSCR

The requested scratch area id (SAID) cannot
be found.

#GETSTG

There is insufficient storage in the storage
pool to process the request.

#LINEIN

The I/O session has been canceled; the
terminal operator has pressed the CLEAR
(3270), ATTENTION (2741), or BREAK
(teletype) key.

#LINEOUT

The 1/O session has been canceled; the
terminal operator has pressed the CLEAR
(3270), ATTENTION (2741), or BREAK
(teletype) key.

3-26 CA-IDMS DML Reference — Assembler

3.4 DC/UCF general registers

R15 Value

DML Verb

Return Condition

#LOAD

An 1/O error occurred during a load from a
load library.

#MREQ

I/0O has been interrupted; the terminal operator
has pressed the ATTENTION (2741) or
CLEAR (3270) key.

#PRINT

The parameter list passed to #PRINT contains
an invalid field.

#PUTJIRNL

The required storage is not available for the
necessary control blocks.

#ROLLBAK

An invalid request has been issued. There is a
possible logic error in the program. Ensure
that checkpoints are made (by means of
#COMMIT) in the program logic before the
#ROLLBAK request.

#SENDMSG

The parameter list is invalid.

#TREQ

For a #TREQ GET, #TREQ PUTGET, or
#TREQ CHECK request, output has been
interrupted; the terminal operator has pressed
the ATTENTION (2741) or CLEAR (3270)
key.

#TRNSTAT

Storage for the transaction statistics block
(TSB) is not available; waiting would cause a
deadlock.

#WAIT

Waiting on the specified ECBs would cause a
deadlock.

xoc

#ATTACH

The request cannot be serviced due to a
security violation.

#COMMIT

An invalid status has been issued from
DBIO/DBMS; check the CA-IDMS/DC log
for details.

#DELQUE

The requested queue record cannot be found

#DELSCR

The requested scratch record id (SRID) cannot
be found within the named SAID.

#ENQ

. ACQUIRE — A requested resource
cannot be enqueued immediately and
waiting would cause a deadlock; no new
resources have been acquired.

® TEST — Not applicable.

Chapter 3. Communications Blocks and Error Detection 3-27

3.4 DCJ/UCF general registers

R15 Value

DML Verb

Return Condition

#FINISH

An invalid status has been issued from
DBIO/DBMS; check the CA-IDMS/DC log
for details.

#GETQUE

The requested queue record cannot be found.

#GETSCR

The requested scratch record id (SRID) cannot
be found within the named SAID.

#GETSTG

The parameter list is invalid.

#LINEIN

A logical or permanent I/O error has been
encountered in the input data stream.

#LINEOUT

A logical or permanent I/O error has been
encountered in the output data stream.

#LOAD

The requested program is nonconcurrent and
in use.

#MREQ

A logical error (for example, invalid control
character) has been encountered in the output
data stream.

#PRINT

No printer logical terminals have been defined
in this DC/UCF system.

#PUTJIRNL

An invalid error status has been issued from
DBIO/DBMS; check the IDMS/DC log for
details.

#ROLLBAK

An invalid error status has been issued from
DBIO/DBMS; check the IDMS/DC log for
details.

#SENDMSG

The message destination is undefined.

#TREQ

For a #TREQ GET, #TREQ PUTGET, or
#TREQ CHECK request a logical error (for
example, invalid control character) has been
encountered in the output data stream.

#TRNSTAT

No transaction statistics block (TSB) exists;
#TRNSTAT TYPE=BIND has not been
issued. This return code is valid only for
#TRNSTAT TYPE=ACCEPT and #TRNSTAT
TYPE=END statements.

X'10'

#DELQUE

No resource control element (RCE) exists for
the queue record; currency has not been
established.

3-28 CA-IDMS DML Reference — Assembler

3.4 DC/UCF general registers

R15 Value

DML Verb

Return Condition

#GETSTG

The requested storage cannot be allocated
immediately (insufficient storage) and waiting
would cause a deadlock.

#LINEIN

The line request block (LRB) contains an
invalid field.

#LINEOUT

The line request block (LRB) contains an
invalid field.

#LOAD

The requested program has been temporarily
overlayed in the program pool, resulting in a
storage conflict.

#MREQ

A permanent 1/O error occurred during
processing.

#PRINT

A print screen request has been made from a
non-3270-type terminal or from a 3270-type
terminal without read buffer support.

#PUTSCR

The request to replace a scratch record has
been serviced successfully.

#TREQ

For a #TREQ GET, #TREQ PUTGET, or
#TREQ CHECK request, a permanent I/O
error occurred during processing.

#TRNSTAT

Either the task in question is not associated
with a terminal or the request is invalid.

X'14'

#LINEOUT

The name specified for DESTID, USERID, or
LTERMID is unknown to this DC/UCF
system.

#LOAD

The requested program is not defined to the
program definition table (PDT), the requested
program is marked as out of service, or a null
program definition element (PDE) could not
be allocated for the program.

#MREQ

The dial-up line for the terminal is
disconnected.

#PRINT

Either the specified printer destination is
invalid or, for OPTNS=DIRECT, LTEID or
LTEADDR is invalid.

#PUTSCR

The request to add a new scratch record
cannot be processed because the record id
specified by the SRID operand already exists
for the named scratch area.

Chapter 3. Communications Blocks and Error Detection 3-29

3.4 DCJ/UCF general registers

R15 Value DML Verb Return Condition

#TREQ For a #TREQ GET, #TREQ PUTGET, or
#TREQ CHECK request, the dial-up line for
the terminal is disconnected.

#TRNSTAT Transaction statistics or task statistics are not
enabled in this DC/UCF system.

X'18' #GETQUE The user area specified for the return of the
queue record is too small; the returned record
has been truncated to fit in the available
storage space.

#GETSCR The user area specified for the return of the
scratch record is too small; the returned record
has been truncated to fit in the available
storage space.

#GETSTG Allocated XA storage above the 16 megabyte
line cannot be addressed by a 24-bit task.

#LOAD The requested program cannot be loaded
immediately due to insufficient space; waiting
would cause a deadlock.

#MREQ The terminal being used is out of service.

#PRINT A terminal 1/O error occurred during a
#PRINT request.

#TREQ For a #TREQ GET, #TREQ PUTGET, or
#TREQ CHECK request, the terminal being
used is out of service.

X'1C' #DELQUE An I/O error occurred during a delete queue
operation.

#DELSCR An 1/O error occurred during a delete scratch
operation.

#GETQUE An 1/O error occurred during get queue
processing.

#GETSCR An 1/O error occurred during get scratch
processing.

#PRINT No printer can be found to satisfy the
print-direct request and OPTNS=NOWAIT has
been specified.

#PUTSCR An 1/O error occurred during processing.

#TREQ For a #TREQ GET, #TREQ PUTGET, or

#TREQ CHECK request, the terminal is
closed or was never opened.

3-30 CA-IDMS DML Reference — Assembler

3.4 DC/UCF general registers

R15 Value DML Verb Return Condition

X'20' #ATTACH The maximum number of concurrent tasks has
been reached.

#LOAD An 1/O error occurred during a load from the
dictionary DDLDCLOD area.

#MREQ The map request block (MRB) contains an
invalid field, indicating a possible error in
application program parameters.

#PRINT The print-direct request specified an LTEID or
LTEADDR that is out of service.
#TREQ The terminal request block (TRB) contains an
invalid field.
X'24' #MREQ The map load module requested by the map
request block (MRB) cannot be found.
#PRINT The print-direct request specified a wait;
waiting would cause a deadlock.
#TREQ The name specified for DESTID, LTERMID,
or USERID is invalid.
X'28' #MREQ The requested map does not support the
terminal device type being used.
#PRINT A DCMT VARY PRINTER CANCEL

command has been issued in the DC/UCF
system for this direct printer.

X'2C' #MREQ An error was detected upon return from a
user-written edit module. An invalid pointer
to the data stream has been returned to register
1.

#PRINT A DCMT VARY PRINTER REQUEUE
command had been issued in the DC/UCF
system for this direct printer.

X'30' #MREQ Invalid internal data has been encountered.
Either the data in the record does not match
the internal data or the internal data cannot be
converted to the external format, as specified
in the external picture.

X'34' #MREQ The named user-written edit module cannot be
found.

X'38' #MREQ An invalid immediate write request to
DESTID, LTERMID, or USERID has been
issued.

Chapter 3. Communications Blocks and Error Detection 3-31

3.4 DC/UCF general registers

R15 Value

DML Verb

Return Condition

X'3C'

#MREQ

The map load module is invalid.

X'40'

#MREQ

For an #MREQ IN request, the requested node
for a header or detail was either not present or
not updated. For an #MREQ OUT request,
there is no current detail occurrence to be
updated. No action is taken.

X'44'

#MREQ

No more modified detail occurrences require a
mapin. For an #MREQ OUT request, the
maximum amount of storage defined for
pageable maps during system generation is
insufficient.

X'48'

#MREQ

For an #MREQ IN request, the scratch record
that contains the requested detail could not be
accessed (internal error). For an #MREQ
OUT,RESUME request, no detail occurrence,
footer, or header fields exist.

X'4C'

#MREQ

For an #MREQ OUT request, the first screen
page has been transmitted to the terminal.

X'50'

#MREQ

An #MREQ IN,COND=MPNS or #MREQ
OUT,COND=MPNS request has been received
when no map paging session is in progress.
Either a #STRTPAG command was not issued
prior to this #MREQ IN command or a
#ROLLBAK was issued that rendered the
scratch area for the pageable map (area id
MPGPSCRA) unavailable. If the COND
specification is not MPNS, this condition
abends the map paging task.

3.4.2 Testing for DC/UCF return codes

Testing for the return code in register 15 is usually not necessary because most DML
commands have options that take action based on the return code value.

Specifying conditions:

The COND (condition) parameter provides a conditional

return to the issuing program should a specified error or special condition occur during
processing. This return of control can be directed to one of the following locations:

= The next sequential instruction

= A specified exit routine

The options of a COND parameter consist of statement-specific conditions that can
occur during the execution of a DML statement. Any number of conditions can be

3-32 CA-IDMS DML Reference — Assembler

3.4 DC/UCF general registers

specified. For example, the following COND parameter requests a return of control in
the event of an 1/O error or deadlock condition:

COND=(IOER,DEAD)

If a condition associated with a specified parameter arises, control will be returned to
the issuing program. If a condition occurs for which no COND parameter is coded, a
default action will be taken. Typically, the default action either aborts the task or
waits for the condition to change.

Specifying COND with an exit routine: When more than one conditional

parameter is permitted, you can code the value ALL to indicate that all of the
permitted COND parameters apply. If a condition corresponding to an available
parameter occurs and ALL is specified, control will be returned to the issuing program.

Most DC/UCF DML statements provide the facility to associate an exit routine with
each special condition. To return control to a specific exit when a condition occurs,
you include both the appropriate condition (COND parameter) and the name of its
associated exit routine.

For example, a DML statement may include a COND parameter of IOER and the
IOERXIT parameter, which names the routine to which control will be returned in the
event of an 1/O error that occurs during execution of the DML command; for example:

COND=(IOER),IOERXIT=IOERROR

Specifying COND without an exit routine: Specifying only the COND

parameter without an exit routine causes a return of control to the next sequential
instruction in the program that issues the DML statement. In this case, you can
examine the contents of register 15 to determine which condition code was set as a
result of the operation.

Specifying a general exit routine: You can specify a general exit routine by
using the ERROR parameter. The system passes control to this routine when a
condition occurs for which no specific exit routine was coded.

Note: If a condition occurs for which an associated exit routine and the ERROR
parameter are specified, control will be returned to the routine named by the
specific exit. If you have multiple exit routines containing the same logic, you
should specify only the ERROR parameter to avoid redundant coding.

Syntax: The following syntax lists the COND parameter and exit routines found in
the #LOAD statement. The NOSTXIT exit is associated with the NOST condition, the
IOERXIT exit is associated with the IOER condition, and so forth.

Chapter 3. Communications Blocks and Error Detection 3-33

3.4 DC/UCF general registers

A\
A\
v

L , COND= NO «
t ALL ———
 »
(=4 NOS)—

IOER
SNGL
LDCF
PGNF
DEAD

A\ 4

v

L NOSTXIT=insufficient-storage-Tlabel J

\ 4
4

L ,IOERXIT=1/0-error-label i

\ 4

L ,SNGLXIT=single-thread-in-use-1label i

A\ 4
v

L ,LDCFXIT=storage-location-conflict-Tabel i

A\

v

L ,PGNFXIT=program-not-found-Tabel J

\ 4
v

L ,DEADXIT=deadlock-Tabel i

\ 4

v
A

L ,ERROR=error-Tlabel i

Some DML statements have only a single condition, as the following excerpt from the
#LINK statement illustrates.

Syntax

- L cono- — no «
L

PGNA

\ 4
4

L ,PGNAXIT=program-not-available-label il

\ 4

L ,ERROR=error-Tlabel i

In this case, the general ERROR parameter functions identically to the specific
PGNAXIT parameter. It supplies the name of a routine to which the program will
branch when a program-not-available error occurs.

Note: The COND parameter list is enclosed in parentheses. If multiple parameters
are specified, each parameter is separated from the previous one by a comma.

Example of COND in #LOAD: The following example of the #LOAD statement
attempts to load the program JOBMAP1 into the program pool. The COND parameter
is set to PGNF, which will return control to the issuing program only if the requested
program cannot be dynamically loaded or is marked as out of service. The return code
for this condition is X'14".

3-34 CA-IDMS DML Reference — Assembler

3.4 DC/UCF general registers

In this example, if the return code matches the PGNF condition, the system returns
control to the issuing program at label ERRMSG, indicated by the ERROR parameter.
If the system returns a code of X'00' the program JOBMAP1 will have been
sucessfully loaded into the program pool. Return codes other then X'00' or X'14" will
result in an abend and control will be returned to either a higher-level program or the
system.

LOAD1 #LOAD PGM=JOBMAP1,COND=PGNF,ERROR=ERRMSG

ERRMSG EQU *

Testing for DML statements that request DC/UCF services: In addition to

the COND parameter, you can test for the return code value in register 15 for each
DML statement that requests DC/UCF services. Your program can compare the
register 15 value to a literal or a defined constant, then execute a conditional branch.

In the following example, if the value in register 15 equals the numeric value 0000,

the program branches to the label CONTINU. Any value other than zero causes a
branch to the program label RCCOND.

C 15,=F'0’

BE CONTINU
B RCCOND

CONTINU EQU =

RCCOND EQU +

Chapter 3. Communications Blocks and Error Detection 3-35

3-36 CA-IDMS DML Reference — Assembler

Chapter 4. Assembler DML Coding Considerations

4.1 OVerview 4-3
4.2 Coding user-supplied operands L. 4-4
4.3 Coding parameters. 4-5
4.4 Synonym processing. 4-6
4.5 Logical Record Facility keywords 4-8

Chapter 4. Assembler DML Coding Considerations 4-1

4-2 CA-IDMS DML Reference — Assembler

4.1 Overview

4.1 Overview

This chapter describes how to code Assembler DML statements. The following topics
are discussed:

» Coding user-supplied operands
® Coding DML statement parameters
= Synonym processing

» Logical Record Facility keywords

Chapter 4. Assembler DML Coding Considerations 4-3

4.2 Coding user-supplied operands

4.2 Coding user-supplied operands

User-supplied operands in DML statements can be specified by name, in register
notation, or in data field notation.

By name: Record, set, or area names can be specified explicitly by name. Unless
QUOTES=NO has been specified in the @MODE statement, the name must be
enclosed in quotation marks; for example:

SUBSCH="DEMOSUBS'

The DML precompiler performs validity checking for explicitly specified names.

Note: VSE USERS — A quoted name operand inl@jical-record DML statement
cannot exceed 6 characters. A program variable can be used for a path status that
exceeds 6 characters. An exception is a quoted operand in a WHERE clause, which
can be up to 32 characters long.

Note: ASSEMBLER G USERS — A quoted name operand inl@ical record

DML statement cannot exceed 6 characters unless the maximum variable size is
modified by the appropriate Assembler PARM. A maximum variable size of at least

18 characters is recommended. An exception is a quoted operand in a WHERE clause,
which can be up to 32 characters long.

Note: ASSEMBLER H USERS — The DML precompiler (IDMSDMLA) supports
32-character names and converts hyphens to underscores.

In register notation: A register can contain either the variable value or the variable
address. The general register symbol or register reference must be enclosed in
parentheses; for example:

#FREESTG STGID=(7)

The DML precompiler does not perform validity checking of operands specified by
register notation.

Note: VSE USERS — A general register symbol or register reference in a logical
record DML statement cannot exceed 6 characters.

Note: ASSEMBLER G USERS — A general register symbol or register reference in
a logical record DML statement can not exceed 6 characters, unless the maximum
variable size is modified by the appropriate Assembler PARM. A maximum variable
size of at least 18 characters is recommended.

In data field notation: Your program can specify the name of a variable field
containing the desired data name; for example:

@OBTAIN CURRENT,REC=RECFLD

The DML precompiler does not perform validity checking of operands specified by
data field notation.

4-4 CA-IDMS DML Reference — Assembler

4.3 Coding parameters

4.3 Coding parameters

Types of parameters: There are two types of parameters in DML statements:

m Positional parameters — Positional parameters appear in specific relative
locations; for example:

#GETSTG TYPE=(USER,LONG,KEEP)
n Keyword parameters — Keyword parameters are constructed from:
1. A keyword — A character string that is predefined to the system
2. An equal sign (=)
3. A variable-value parameter — Containing one or more variable values

For example:
@OBTAIN NEXT,SET='CUSTOMER-ORDER',REC="'ORDER'

CA-IDMS keywords are listed in 4.5, “Logical Record Facility keywords” on
page 4-8 later in this chapter.

Coding considerations: The following considerations apply to coding DML
parameters:

m All DML statements except for logical-record DML statements use keyword
parameter notation. The DML precompiler generates positional-pair parameter
notation.

» Logical-record DML statements that bypass the DML precompiler must be coded
using positional-pair parameter notation. The assembler misinterprets or rejects
logical-record DML statements that contain keyword parameters.

m Logical-record DML statements that are processed by the DML precompiler can
be coded using either keyword parameter or positional-pair parameter notation.

Chapter 4. Assembler DML Coding Considerations 4-5

4.4 Synonym processing

4.4 Synonym processing

CA-IDMS/DB allows alternative identification of records and elements in the

dictionary. Synonyms are added to the dictionary by using DDDL statements. The
DML precompiler automatically copies these language dependent synonyms in place of
the primary names whenever an @COPY IDMS statement appears in the application
program.

Note: ASSEMBLER H USERS — The DML precompiler supports 32-character

field names and conversion of hyphens to underscores, in accordance with the new
features of Assembler H. CA-IDMS/DB record names remain restricted to 16
characters and CA-IDMS/DB element names to 32 characters. Synonyms are therefore
not required for user supplied names and for fields containing hyphens in Assembler H
programs using the DML precompiler.

IDD record names can be up to 16 characters long, and IDD element names can be up
to 32 characters long. Because Assembler versions F and G restrict names to 8
characters, alternative and unique 8 character names for use in Assembler F and
Assembler G programs should be defined in the dictionary. Use of synonyms is
recommended if @COPY IDMS and @INVOKE statements are to be included in
Assembler programs.

Synonyms cannot be defined for logical record names. Assembler programs that
access logical records must use a separate subschema in which logical records are
defined according to Assembler restrictions.

How the precompiler copies synonyms: When the DML precompiler copies
record descriptions from the dictionary into program variable storage, it copies
synonyms according to the following rules:

» If a record is defined for the program's language, but the primary record name is
not, the synonym is copied into the program.

» |f more than one synonym for a given record is defined for Assembler, the first
one found in the dictionary is copied.

n If the primary record name is defined for Assembler, the primary name is copied
into the program.

For example, assume that the following record is defined in the dictionary with three
synonyms:

RECORD JOB

RECORD NAME SYNONYM JOBSYN1 LANGUAGE ASSEMBLER

RECORD NAME SYNONYM JOB-SYN2
RECORD NAME SYNONYM JOBSYN3 LANGUAGE ASSEMBLER

Since the dictionary defines JOBSYN1 as the first synonym for Assembler, the DML
precompiler copies it into the program. The DML precompiler would copy the
primary record name (JOB) if it were defined for Assembler.

4-6 CA-IDMS DML Reference — Assembler

4.4 Synonym processing

These rules apply regardless of the record name or synonym that appears in the
schema and subschema invoked by the program.

Synonyms are recognized as primary records: The DML precompiler treats a
synonym as if it were the primary record. The expansion of a DML statement will
include the record name of the primary record name, even if the synonym is copied
into program variable storage.

For example, an @COPY IDMS,SUBSCHEMA-BINDS statement used in an
Assembler program generates the following @BIND REC statement for the employee
record:

@BIND REC='EMPLOYEE',IOAREA=EMPLOYE

This statement lists both the primary record name (EMPLOYEE) and the Assembler
synonym (EMPLOYE).

»» For further details on synonym facilities, refel @D DDDL Reference.

Chapter 4. Assembler DML Coding Considerations 4-7

4.5 Logical Record Facility keywords

4.5 Logical Record Facility keywords

The following is a list of LRF keywords recognized by the Assembler DML
precompiler. These keywords should not be used as labels in Assembler DML
programs that use the Logical Record Facility:

FIRST
GOTO

LR
LRSTAT
NEXT
ONLRSTS
REC
WHERE

4-8 CA-IDMS DML Reference — Assembler

Chapter 5. DML Precompiler-Directive Statements

5.1 Overview 5:-3
5.2 @MODE 5-4
5.3 @INVOKE 5-6
54 @COPY IDMS 5-9
55 #MRB 5-16
5.6 #MAPBIND 5-17
5.7 @SSCTRL 5-19
5.8 @SSLRCTL e 5-20

Chapter 5. DML Precompiler-Directive Statements 5-1

5-2 CA-IDMS DML Reference — Assembler

5.1 Overview

5.1 Overview

This chapter presents syntax for precompiler-directive statements.

Function of precompiler directives: To use DML statements that request
CA-IDMS/DB and DC/UCF services, you must include precompiler-directive
statements in your application program. Precompiler-directive statements:

Ensure that the assembler performs the proper expansion of DML statements into
calling sequences appropriate to the CA-IDMS environment

Identify the dictionary resources (subschema and/or maps) required by the
program

Cause predefined source modules to be copied into the program from the
dictionary

Generate source data description code

Summary of statements: The DML precompiler-directive statements are
summarized below:

@MODE initializes all global SET symbols that control the expansion of
subsequent macros and DML commands into calling sequences appropriate to the
CA-IDMS/DB environment. You must code the @MODE directive before all
procedural statements in the program, including DML commands for

CA-IDMS/DB and DC/UCF requests.

@INVOKE identifies all dictionary resources used by the application program.
The @INVOKE statement must precede all procedural statements in the program,
including DML commands for CA-IDMS/DB and DC/UCF requests. This
statement will generate non-executable source code when the MAP= operand is
used for a map with multiple occuring fields.

@COPY IDMS copies the source data description code associated with
CA-IDMS/DB database records, the IDMS communications block, map records,
and the map request block, as well as other predefined source modules and
records, into the program from the dictionary at the location of the @COPY
IDMS statement.

#MRB establishes a map request block (MRB), which is required for the mapping
mode of terminal 1/0 operations. The MRB is a variable storage area in the
application program and is used for communications between the program and the
mapping compiler during a mapping 1/O request.

#MAPBIND initializes the MRB for mapping requests issued by the application
program. #MAPBIND generates executable code.

@SSCTRL generates the source data description code associated with the IDMS
communications block in the program.

@SSLRCTL generates the source data description code associated with the LRC
block in the program.

Chapter 5. DML Precompiler-Directive Statements 5-3

5.2 @MODE

5.2 @MODE

The @MODE statement initializes global SET symbols for the assembler; these
symbols control the generation of macros associated with CA-IDMS/DB requests.
You must specify the operating mode for programs that access a CA-IDMS/DB
database. If you do not code an @MODE statement, you can specify the
CA-IDMS/DB environment by using the MODE parameter of the @INVOKE
statement, described later in this chapter. For CA-IDMS programs that do not require
access to a CA-IDMS/DB database, the function of the @MODE statement is to
indicate the operating mode: batch or online. An online mode selection is made from
one of the valid teleprocessing monitors.

The @MODE and the @INVOKE statement must precede all other DML statements
in the program. Either statement can be placed before the other.

Syntax

»>—— @MODE MODE= BATCH
CICS
CICS-EXEC —
IDMSDC —
INTERCOMM —
SHADOW —
DCBATCH —

v

A\
v

C -
,QUOTES= YES «
e T

A\
v

|— ,DEBUG —|: NO «
YES

|— ,WORKREG= —[0 « ﬁ—‘
register-number

register-number

A\
A\
A

Parameters

MODE=BATCH/CICS/CICS-EXEC/IDMSDC/INTERCOMM/SHADOW/DCBATCH
Defines the operating environment for which the calling sequence will be
generated. If the @MODE statement is not used, the CA-IDMS/DB environment
must be specified in the @INVOKE statement, which is discussed below.

QUOTES=
Required for programs that access the CA-IDMS/DB database; indicates whether
names (such as record name or area name) coded in DML statements must be
enclosed in site-standard quotation marks.

YES
(Default); indicates that names specified in CA-IDMS/DB database requests must
be enclosed in site-standard quotation marks.

5-4 CA-IDMS DML Reference — Assembler

5.2 @MODE

NO
Indicates that names specified in CA-IDMS/DB database requests must be
specified without quotation marks.

DEBUG=
Required for programs that access the CA-IDMS/DB database; requests the DML
precompiler to save sequence numbers associated with DML statements in the
IDMS communications block, as follows.

NO
(Default); indicates that sequence numbers of DML statements will not be saved.

YES
Generates the appropriate code for saving sequence numbers associated with DML
statements. At runtime, the sequence number of each DML statement is moved to
the IDMS communications block before program execution. These sequence
numbers appear in the Assembler source statement listing in the form
DML-SEQUENCE=. Depending on the error routine defined by the DBA, the
DML sequence number can be reported when errors occur and can be used to
assist you in debugging your Assembler program.

Note: This option does not apply to DC/UCF requests. Statement numbers
associated with DC/UCF requests cannot be saved because the system does not
use the IDMS communications block.

WORKREG=0/
Required for programs that access the CA-IDMS/DB database; specifies the
general purpose register to be used for constructing the IDMS parameter list for
calls to IDMS.

register
An integer in the range 0 through 15, or any valid symbolic or defining term for
the general-purpose register (for example, R0). The default is general register 0.

Chapter 5. DML Precompiler-Directive Statements 5-5

5.3 @INVOKE

5.3 @INVOKE

The @INVOKE statement performs the following functions:
» Specifies the subschema and maps required by the program
» Defines the operating mode if not previously defined by an @MODE statement
® |dentifies the program if program registration has been implemented
» |dentifies the program for use during statistics collection
The @INVOKE statement and the @MODE statement must precede all other
precompiler-directive and DML statements in the program. @INVOKE must be

included if the DML precompiler will be used and if the program requests
CA-IDMS/DB services.

Syntax
»—— @INVOKE

v

L PROGRAM=program-name |_ J|
,VERSION=version-number

A\

v

L ,SUBSCH=subschema-name J

\ 4
4

|—,SCHEMA=schema-name B] |
,VERSION=version-number

L ,MODE= BATCH I
CICS
CICS-EXEC —
IDMSDC —
SHADOW —
INTERCOMM —
DCBATCH —

A\

v

|—,MAP=maQ-name |_ J
,VERSION=version-number

L ,MRBTYPE= T STANDARD :IJ
EXTENDED

A\
v

A\
A\
A

L ,PAGING = T NO «
YES

5-6 CA-IDMS DML Reference — Assembler

5.3 @INVOKE

Parameters

PROGRAM =program-name
Required if program registration is in effect; specifies the 1- to 8-character name
of the registered program. If in effect, subschema authorization specifies that
programs must be registered with the named subschema in order to be compiled
against it.

If the program has been previously defined in the dictionary using IDD,
program-name must match the assigned name of the program; otherwise the DML
precompiler will not recognize it as the same program.

Version=version
Optional; indicates the version number of the program to distinguish multiple
versions of the same program-naméersion is a numeric literal in the range 1
through 9999. If the version number is not specified, pnedram-name is found
in the dictionary, the version number defaults to the highest value defined in the
dictionary for the program. Iprogram-name is unknown to the data dictionary,
the version number defaults to 1.

SUBSCH=
Identifies the subschema to be used by the program.

subschema-name
Specifies a subschema defined in the dictionary.

SCHEM A=schema-name
Identifies the schema with which the subschema is associated.

VERSION=
Optionally specifies the version of the schema as defined in the dictionary.

version
Defaults to the highest version of the named schema.

MODE=BATCH/CICS/CICS-EXEC/IDM SDC/SHADOW/INTERCOMM/DCBATCH
Defines the operating mode for the program. This clause is optional; it can
replace the @MODE statement if @COPY is the only additional DML statement
in use, but should be omitted in all other cases.

MAP=
Specifies that mapping mode terminal I/O is required by the program and
identifies the maps stored in the dictionary. Multiple maps can be specified in a
single @INVOKE statement by defining a separate MAP clause for each map.

map-name
Is the 1- to 8-character name of a map defined in the dictionary.

VERSION=
Optionally specifies the version of the map being used. version of the map being
used.

version
Defaults to the highest version of the named schema.

Chapter 5. DML Precompiler-Directive Statements 5-7

5.3 @INVOKE

MRBTYPE=STANDARD/EXTENDED
Specifies the format of the map request block (MRB) built for the map:

» STANDARD (default) indicates that the map has standard 3270-type terminal
attributes.

» EXTENDED indicates that the map has extended 3279-type terminal
attributes, such as color, blinking fields, and reverse video.

PAGING=NO/YES
Specifies whether pageable maps are used by the program. A pageable map is a
single map that is associated with an unlimited number of map fields. You can
use pageable maps when all the map fields cannot fit on a terminal operator's
screen at one time. The default is NO.

The DML statements #MREQ, #STRTPAG, and #ENDPAG are used to control
the pageable map option. For more information, refer to the descriptions of these
commands in Chapter 6, “Data Manipulation Language Statements” on page 6-1.

5-8 CA-IDMS DML Reference — Assembler

5.4 @COPY IDMS

5.4 @COPY IDMS

The @COPY IDMS statement copies source data description code and modules from
the dictionary into the program at the location of the @COPY IDMS statement. This
statement copies CA-IDMS/DB database record descriptions, the IDMS
communications block, map record descriptions, or MRBs. However, any source
module or record description stored in the dictionary can be copied into either a
CSECT or DSECT, as specified by the DSECT parameter (discussed below).

Source code requirements differ according to the usage (DML, LR, or MIXED)
defined in the program's subschema. The program should not copy components that
conflict with its usage. These usages determine the types of records a program can
access, as follows:

» DML allows a program that uses the named subschema to access database records
only and requires the following source code components:

— SUBSCHEMA-CTRL — The IDMS communications block through which
the application program and the DBMS communicate (for further details, see
3.2, “IDMS communications block” on page 3-4)

— SUBSCHEMA-RECORDS — The descriptions of all records to which the
subschema permits access

®» LR allows a program to access logical records only and requires the following
source code components

— SUBSCHEMA-CTRL — The IDMS communications block through which
the LRF and the DBMS communicate

— SUBSCHEMA-LR-CTRL — The logical-record request control (LRC) block
through which the application program and the Logical Record Facility
communicate (for further details, see 3.3, “Logical-record request control
(LRC) block” on page 3-18)

— SUBSCHEMA-LR-RECORDS — The descriptions of all logical records
defined in the subschema

» MIXED allows a program to access both database records and logical records;
this usage requires the following source code components:

— SUBSCHEMA-CTRL — The IDMS communications block through which
the application program and the LRF communicates with the DBMS, For
further details, see 3.2, “IDMS communications block” on page 3-4.

— SUBSCHEMA-RECORDS — The descriptions of all records to which the
subschema permits access

— SUBSCHEMA-LR-CTRL — The logical-record request control (LRC)
block, through which the application program and the LRF communicate (for
further details, see 3.3, “Logical-record request control (LRC) block” on
page 3-18)

Chapter 5. DML Precompiler-Directive Statements 5-9

5.4 @COPY IDMS

— SUBSCHEMA-LR-RECORDS — The descriptions of all logical records
defined in the subschema

The DML precompiler determines whether source record descriptions are copied into a
CSECT or DSECT portion of the program, and applies the following rules:

n [f the record is being copied into a CSECT, the DML precompiler defines record
elements that have specified initial values by means of the Assembler DC (define
constant) data definition instruction.

n [f the record is being copied into a DSECT, DML defines record elements that
have specified initial values by means of the Assembler DS (Define Storage) data
definition instruction.

If the optional keyword DSECT is coded in the @COPY IDMS statement, the record
being copied is established as an individual DSECT named with the record name.

Syntax
»»—— @COPY IDMS >

v

»—— ,SUBSCHEMA-DML-LR DESCRIPTION
,SUBSCHEMA-DESCRIPTION
— ,SUBSCHEMA-CTRL
, SUBSCHEMA-RECORDS
— ,RECORD=record-name

L VERSION=version-number —J
, SUBSCHEMA-LR-DESCRIPTION
,SUBSCHEMA-LR-CTRL

L ,SIZE=1rc-block-size i
,SUBSCHEMA-LR-CONTROL
, SUBSCHEMA-LR-RECORDS
— ,LR=1ogical-record-name
— ,MAPS
,MAP=map-name
,MAP-CONTROLS
,MAP-CONTROL=map-name
— ,MAP-RECORDS
,MODULE=module-name

L VERSION=version-number J

, SUBSCHEMA-BINDS
— ,MAP-BINDS

A\
A

L ,psect

Parameters

SUBSCHEMA-DML-LR-DESCRIPTION
(Subschema usage is mixed); copies all components required to access both
database and logical records: SUBSCHEMA-CTRL, SUBSCHEMA-RECORDS,
SUBSCHEMA-LR-CTRL, and SUBSCHEMA-LR-RECORDS.

SUBSCHEMA-DESCRIPTION
(Subschema usage is DML); copies the source data description code for the IDMS
communications block (SUBSCHEMA-CTRL) and for all records
(SUBSCHEMA-RECORDS) defined in the subschema specified in the @INVOKE
statement.

5-10 CA-IDMS DML Reference — Assembler

5.4 @COPY IDMS

SUBSCHEMA-CTRL
Copies the IDMS communications block into the program.

SUBSCHEMA-RECORDS
Copies the source data description code for all records defined in the subschema
into the program. You can copy Assembler synonyms defined for the subschema
records in the data dictionary into the program according to the rules of synonym
usage.

RECORD=
Copies the description of an individual record defined in the dictionary.

record-name
Can be the primary name or a synonym for a record or module stored in the
dictionary.

A record that has been copied into a schema can only be copied into a program

that uses a subschema associated with the schema. In other words, schema-owned

records cannot be copied into non-IDMS programs (that is, programs that do not
use a subschema and that do not access the database). However, a synonym
defined for the schema-owned recaeah be copied into a non-IDMS program

(use the VERSION clause to identify the synonym).

VERSI ON=version-number
Optional; can be used to qualify IDD records (but not schema-owned records)
with a version number. If no version number is specified, CA-IDMS/DB first
assumes thakecord-name identifies a record that is included in the subschema
named in the @INVOKE statement, and looks for it in that subschema. If the
record is not associated with a subschevaasion defaults to the highest version
number of the record defined in the dictionary for the operating mode under which
the program is being compiled.

SUBSCHEMA-LR-DESCRIPTION
Copies all components required to access logical records: SUBSCHEMA-CTRL,
SUBSCHEMA-LR-CTRL, and SUBSCHEMA-LR-RECORDS.

SUBSCHEMA-LR-CTRL
Copies the LRC block data description.

SIZE=Irc-block-size
Optional; specifies the size of that portion of the LRC block that contains
information about the logical-record request's WHERE clalse-block-size
defaults to 576 bytes. If included, it should specify a size large enough to
accommodate the most complex WHERE clause in the progkaociblock-size is
calculated as follows:

1. Multiply the greatest number of operands and operators that will be included
in a single WHERE clause by 16 bytes.

2. Add the number of bytes, rounded up to the nearest multiple of 8, associated
with the data field for each operand; that is:

®» The number of characters in a keyword

Chapter 5. DML Precompiler-Directive Statements 5-11

5.4 @COPY IDMS

» The number of characters in a field described by a program variable or
by a logical-record field named in the OF LR clause.

3. Add the length, rounded up to the nearest multiple of 8, of each operand that

is a character literal.

4. Add 12 bytes for each operand that is a numeric literal.

5. Add 64 bytes for fixed logical-record request control (LRC) overhead.

Lrc-block-size must be a positive integer in the range 64 through 9999. Note that
64 can be specified if none of the logical-record requests issued by the program
include WHERE clauses.

SUBSCHEMA-LR-CONTROL copies the SUBSCHEMA-CTRL and
SUBSCHEMA-LR-CTRL components. Do not include
SUBSCHEMA-LR-CONTROL if the subschema's usage is DML.

SUBSCHEMA-LR-RECORDS copies the descriptions of all logical records
defined in the subschema.

L R=logical-record-name copies the description of an individual logical record
defined in the subschema.

MAPS copies the #MRB statements required to establish the MRBs for all
maps specified in the @INVOKE statement. Additionally, the @COPY
IDMS,MAPS statement copies the source data description code for map
records associated with all maps specified in the @INVOKE statement.

M AP=map-name copies the #MRB statement and map records associated with
the named mapMap-name is the 1- to 8-character name of the map. The
version number of the map defaults to the version number specified for the
map in the @INVOKE statement.

MAP-CONTROLS copies the #MRB statements for all maps specified in the
@INVOKE statement.

MAP-CONTROL =map-name copies the #MRB statement for the named
map. Map-name is the 1- to 8-character name of the requested map. The
version number of the map defaults to the version number specified in the
@INVOKE statement.

MAP-RECORDS copies the map records associated with all maps specified
in the @INVOKE statement.

M ODUL E=module-name, VERSION=version copies a sequence of Assembler

source statements stored in the dictiondiodule-name is the 1- to

8-character name of the requested module; it can be optionally qualified by
version. The version number defaults to the highest version number defined
in the dictionary for the requested module.

The @COPY IDMS,MODULE statement copies a module from the dictionary
into the source program. The DBA must have previously added this module
to the data dictionary by means of the IDD DDDL compiler.

The DML precompiler places the module into the program at the location of
the request. The module may contain DML statements. If DML statements

5-12 CA-IDMS DML Reference — Assembler

5.4 @COPY IDMS

are present, they are treated as if the programmer had coded them directly.
@COPY IDMS,MODULE statements can be nested (that is, code invoked by
an @COPY IDMS,MODULE statement can itself contain a @COPY
IDMS,MODULE statement). However, you must ensure that a copied module
does not, in turn, copy itself.

SUBSCHEMA-BINDS copies @BIND SUBSCH and @BIND REC
statements for each CA-IDMS/DB database record accessed by the program.

The @COPY IDMS,SUBSCHEMA-BINDS statement instructs the
precompiler to bring into the source program a standard @BIND SUBSCH
statement and appropriate standard @BIND REC statements for each
CA-IDMS/DB subschema record explicitly copied into the program variable
storage by means of @COPY IDMS statements. @COPY IDMS does not
automatically generate BINDS for all subschema records; it also does not
generate BINDS for logical records.

All @COPY IDMS,RECORD statements must precede any @COPY
IDMS,SUBSCHEMA-BINDS statement, because the DML precompiler is a
one-pass precompiler. The DML precompiler will not generate BINDS for
any record-type descriptions copied into the program after the @COPY
IDMS,SUBSCHEMA-BINDS statement.

Instead of issuing an @COPY IDMS,SUBSCHEMA-BINDS statement, you
can issue @BIND SUBSCH and @BIND REC statements. Separately issued
@BIND READY and @BIND REC statements allow the program to perform
the following:

— Check the ERRSTAT field after each @BIND REC statement

— Bind several records to the same location by including a DML @BIND
statement for each record (see 6.13, “@BIND REC” on page 6-31)

Note: The subschema registration feature requires the @COPY
IDMS,SUBSCHEMA-BINDS statement to properly assign the programs to the
subschema control block. Individual @BIND SUBSCH and @BIND REC
statements should not be used if program registration is in effect.

Note: If a record or a synonym of the record has been copied in twice, an
@BIND REC statement will not be automatically generated for the record due
to the ambiguity.

MAP-BINDS copies appropriate #MAPBIND statements for all maps
specified in the @INVOKE statement. (#MAPBIND statements are discussed
later in this chapter.) The @COPY IDMS,MAPS statement must be coded
before this statement in order to generate binds for the map records.

DSECT copies the source data description code and source modules defined
in any of the above @COPY IDMS statements into a DSECT. Records can
be individually copied into a DSECT by including the DSECT parameter in
each @COPY IDMS statement. Several records can be copied into a single
DSECT by explicit use of the Assembler DSECT instruction followed by the
individual @COPY IDMS statements; in this case, the DSECT parameter is

Chapter 5. DML Precompiler-Directive Statements 5-13

5.4 @COPY IDMS

not specified in the @COPY IDMS statements. When specifying a DSECT,
the program is responsible for designating the end of the DSECT storage area.

The following example illustrates the use of the DSECT parameter to create
individual dummy control sections for the IDMS communications block and for a
map request block:

@MODE MODE=IDMSDC
@INVOKE SUBSCHEMA=XYZ,SCHEMA=ABC, *
PROGRAM=TESTXYZ ,MAP=DEFMAP

* THE FOLLOWING @COPY IDMS STATEMENT COPIES THE SOURCE DATA
* DESCRIPTION CODE FOR THE IDMS COMMUNICATION BLOCK (SUBSCHEMA-CTRL):

@COPY IDMS,SUBSCHEMA-CTRL,DSECT
* THE DML PRECOMPILER GENERATES THE DSECT INSTRUCTION FOR THE DUMMY

CONTROL SECTION TO CONTAIN THE SOURCE DATA DESCRIPTION CODE OF THE
* IDMS COMMUNICATIONS BLOCK:

*

DSECT
SSCTRL DS

* THE FOLLOWING @COPY IDMS STATEMENT COPIES THE SOURCE DATA
* DESCRIPTION CODE FOR THE REQUIRED MAP REQUEST BLOCK (MAP-CONTROLS):

@COPY IDMS,MAP-CONTROL=DEFMAP,DSECT
* THE DML PRECOMPILER GENERATES THE DSECT INSTRUCTION FOR THE DUMMY

CONTROL SECTION TO CONTAIN THE SOURCE DATA DESCRIPTION CODE FOR
* THE MRB:

*

DSECT
DS

= THE END OF EACH DSECT MUST BE DESIGNATED EITHER BY AN ASSEMBLER
x END, CSECT, OR ANOTHER DSECT INSTRUCTION.

A single DSECT is created for the IDMS communications block, CA-IDMS/DB
record descriptions, MRB, and map record description.

5-14 CA-IDMS DML Reference — Assembler

5.4 @COPY IDMS

@MODE MODE=IDMSDC
@INVOKE SUBSCHEMA=XYZ,SCHEMA=ABC, *
PROGRAM=TESTXYZ ,MAP=DEFMAP

* THE FOLLOWING ASSEMBLER DSECT INSTRUCTION IS CODED BY THE
* PROGRAMMER TO DEFINE THE BEGINNING OF A DUMMY CONTROL SECTION:

IDMSSTG DSECT

* COPY STATEMENTS WITHIN A DSECT ENABLE RECORD DESCRIPTIONS TO BE
* COPIED INTO THE DUMMY CONTROL SECTION. NOTE THAT THE DSECT

* PARAMETER IS NOT INCLUDED IN THE @GCOPY IDMS STATEMENTS:

@COPY IDMS,SUBSCHEMA-DESCRIPTION
SSCTRL DS

DS
@COPY IDMS,MAPS
DS

DS

* THE END OF THE DSECT MUST BE DESIGNATED BY AN ASSEMBLER END,
* CSECT, OR ANOTHER DSECT INSTRUCTION.

Chapter 5. DML Precompiler-Directive Statements 5-15

55 #MRB

5.5 #MRB

The #MRB statement establishes a map request block (MRB) in the program's variable
storage area. It allocates storage, but does not initialize that storage. For each
mapping request, the MRB communicates between the program and the mapping
compiler. A separate MRB must be defined for each map used by a program. The
DML precompiler uses map information stored in the dictionary to determine the

actual size of the MRB, and generates the necessary Assembler DS instructions with
macros.

One or more #MRB statements can be copied into the program by using the @COPY
IDMS statement, discussed earlier in this chapter.

Syntax

v

»»—— #MRB MAPNAME=map-name

»— ,FIELDS=field-count

v

»—— ,RECORDS=record-count

v
A

Parameters

MAPNAM E=map-name
Specifies the 1- to 8-character name of an existing map.

FIELDS=
Specifies the number of data and response fields in the specified map.

field-count
Absolute expression of the number of fields.

RECORDS=
Specifies the number of records in the map.

r ecor d-count
Absolute expression of the number of records.

5-16 CA-IDMS DML Reference — Assembler

5.6 #MAPBIND

5.6 #MAPBIND

For each map request block used by a program, a #MAPBIND request specifies the
MRB location and initializes the fields of the MRB. #MAPBIND statements can be
global or record-specific:

® Global — By specifying only the map name, the #MAPBIND statement applies to
the map as a whole. It initializes the entire MRB and fills in fields that apply to
the map in general.

» Record-specific — By specifying RECNAME and RECADDR parameters as well
as the map name, the #MAPBIND statement applies only to the named map
record. It initializes the variable storage address of the named record in the MRB.

A program typically issues a global #MAPBIND statement for each map, followed by

#MAPBIND statements for each map record used by the program. The program can
alter the storage address for a map record at any time by issuing another #MAPBIND
statement for that record.

After the initial global bind, all records are considered unbound; map operations that
use those records will not have any effect on storage. After binding a record to a
storage address, subsequent map operations will use that address to access the record.
To unbind a record, issue a record-specific #MAPBIND statement and specify a null

(0) bind location using the RECADDR parameter.

All global and record-specific #MAPBIND statements for a map can be copied
automatically into the program with the @COPY IDMS statement, discussed earlier in
this chapter.

Syntax
»»—— #MAPBIND MRB=map-name

L RECNAME=record-name B |
,RECADDR= —E 0« ﬁ—‘
record-address

Parameters

v

A\
A

MRB=
Initializes the MRB associated with the named map.

map-name
Specifies the 1- to 8-character name of an existing map.

RECNAM E=r ecord-name
Is the 1- to 32-character name of a record used by the map.

RECADDR=
Requests that the named record be unbound or specifies the storage address to
which the record will be bound.

Chapter 5. DML Precompiler-Directive Statements 5-17

5.6 #MAPBIND

(Default); specifies that the named record is to be unbound.

record-addr ess
Specifies a register that contains either the address of the area or the symbolic
name of a user-defined field containing the address of the area. Subsequent I/O
operations will use the specified area of storage for any operations dealing with
the record.

5-18 CA-IDMS DML Reference — Assembler

5.7 @SSCTRL

5.7 @SSCTRL

The @SSCTRL statement is an Assembler macro used to generate source data
description code for the IDMS communications block. @SSCTRL must be used in
place of the @COPY IDMS,SUBSCHEMA-CTRL statement when the DML
precompiler is not used.

Syntax
»»—— @SSCTRL ><

Note: To use an IDMS communications block in which the RECORD, AREA, and
ERROR-SET/RECORD/AREA fields are 18 bytes, specify @SSC120 instead.

Chapter 5. DML Precompiler-Directive Statements 5-19

5.8 @SSLRCTL

5.8 @SSLRCTL

The @SSLRCTL statement is an Assembler macro instruction that generates source
data description code for the LRC block. @SSLRCTL must be used in place of the
@COPY IDMS,SUBSCHEMA-LR-CTRL statement when the DML precompiler is not
used.

Syntax
»»—— @SSLRCTL

A\
A

L LRSIZ=1r-control-block-size i

Parameters

LRSIZ=
Specifies the size of that portion of the LRC block that contains information about
the logical-record request's WHERE clause.

Irc-block-size
Defaults to 576 bytes; if included, it should specify a size large enough to
accomodate the most complex WHERE clause in the program. (For the algorithm
for calculatinglrc-block-size, see 5.4, “@COPY IDMS” on page 5-9 earlier in this
chapter.)

5-20 CA-IDMS DML Reference — Assembler

Chapter 6. Data Manipulation Language Statements

6.1 Overview 6-3
6.2 Functions of DML statements. 6-4
6.3 #ABEND 6-11
6.4 @ACCEPTBIND 6-12
6.5 @ACCEPT DBKEY FROM CURRENCY. 6-13
6.6 @ACCEPT DBKEY RELATIVE TO CURRENCY. 6-15
6.7 @ACCEPT PGINFO 6-17
6.8 @ACCEPT PROC 6-19
6.9 @ACCEPT STATS o 6-20
6.10 #ACCEPT 6-22
6.11 #ATTACH 6-24
6.12 @BIND PROC 6-29
6.13 @BIND REC, 6-31
6.14 @BINDSUBSCH86-33
6.15 #BIND TASK 6-37
6.16 #CHAP 6-38
6.17 @COMMIT 6-39
6.18 #COMMIT 6-40
6.19 @CONNECT 6-41
6.20 #DELETEo 6-44
6.21 #DELQUE 6-46
6.22 #DELSCR 6-50
6.23 #DEQ 6-54
6.24 @DISCON 6-57
6.25 #ENDPAG 6-60
6.26 #ENQ 6-62
6.27 @ERASE 6-67
6.28 @ERASE (LRF) 6-72
6.29 @FIND/@OBTAIN statements 6-74

6.29.1 @FIND/@OBTAIN CALC/DUPLICATE 6-74

6.29.2 @FIND/@OBTAIN CURRENT 6-76

6.29.3 @FIND/@OBTAIN DBKEY 6-79

6.29.4 @FIND/@OBTAIN OWNER 6-81

6.29.5 @FIND/@OBTAIN USING SORTKEY 6-84

6.29.6 @FIND/@OBTAIN WITHIN SET/AREA 6-86
6.30 @FINISH 6-93
6.31 #FINISH 6-94
6.32 #FREESTG 6-95
6.33 @GET 6-97
6.34 #GETIME 6-99
6.35 #GETQUE 6-101
6.36 #GETSCR 6-107
6.37 #GETSTG 6-113
6.38 @IF 6-119
6.39 @QKEEP 6-122
6.40 #KEEP 6-124
6.41 #LINEEND 6-130

Chapter 6. Data Manipulation Language Statements 6-1

6.42 #LINEIN 6131

6.43 #LINEOUT 6-136
6.44 #LINK 6-142
6.45 #LOAD6146
6.46 #MAPINQ 6-152

6.46.1 Moving map-related data. 6-152

6.46.2 Testing for global map input conditions 6-155

6.46.3 Testing cursor position oL 6-157

6.46.4 Testing for identical data. 6-159

6.46.5 Testing for input conditions 6-159
6.47 #MAPMOD 6-165
6.48 @MODIFY 6-176
6.49 @MODIFY (LRF) 6-179
6.50 #MREQ 86181

6.50.1 #MREQ Syntax 6-182
6.51 @OBTAIN (LRF) 6-202
6.52 #POST 6-205
6.53 #PRINTb206
6.54 #PUTJIRNL 6-216
6.55 #PUTQUE 6-219
6.56 #PUTSCR 6-223
6.57 @READY 6-227
6.58 @RETURN 6-230
6.59 #RETURN 6-232
6.60 @ROLLBAK 6-237
6.61 #ROLLBAK 6-239
6.62 #SENDMSG 6-241
6.63 #SETIME 6-245
6.64 #SNAP 6-249
6.65 #STAE e 6-252
6.66 @STORE 6-254
6.67 @STORE (LRF) 6-259
6.68 #STRTPAG 6-261
6.69 H#TREQ e 6-265

6.69.1 Regular and execute #TREQ description 6-266

6.69.2 Regular and execute #TREQ syntax. 6-266

6.69.3 List#TREQ 6-289
6.70 #TRNSTAT 6-291
6.71 #WAIT e 6-296
6.72 #WTL e 6-299
6.73 #XCTL 6-307
6.74 Logical record clauses. 6-309

6.74.1 WHERE clause 6-309

6.74.2 ONclause 6-313

6.74.3 Logical-record statuscodes 6-315

6-2 CA-IDMS DML Reference — Assembler

6.1 Overview

6.1 Overview

This chapter describes each data manipulation language (DML) statement that requests
CA-IDMS/DB database access or online service. The DML commands are presented
in two ways:

® The first table presents the commands by function.

» Each DML command is presented in alphabetical order. The discussion of each
command includes:

— A description of the DML statement
— Syntax and syntax rules
— Currency considerations, where applicable
— An example of how to use the statement
— Error handling after a DML statement is issued
The WHERE and ON clauses that are used with DML statements to access logical

records created by the Logical Record Facility (LRF) are described at the end of this
chapter.

Chapter 6. Data Manipulation Language Statements 6-3

6.2 Functions of DML statements

6.2 Functions of DML statements

The data manipulation language enables you to access the database management
system (DBMS) and to request LRF and DC/UCF services from your Assembler
program. The DML statements can be grouped into 14 categories by function:

» Control statements perform the following:

Initiate and terminate processing
Effect recovery
Prevent concurrent retrieval and update of database records

Evaluate set conditions

m Retrieval statements locate records in the database and make them available to the
application program.

» Modification statements add new records to the database and modify and delete
existing records.

= Accept statements allow you to move special information such as database keys,
storage addresses, and statistics from the DBMS to the application program's
variable storage.

® Logical-record statements allow you to retrieve, modify, store, and erase logical
records created through Logical Record Facility.

® Program management statements perform the following:

Pass and return control from one program to another
Load and delete programs and tables

Define exit routines to be performed before an abnormal program termination
(abend)

Force an abend condition

® Storage management statements allocate and release variable storage.

® Task management statements perform the following:

Initiate a new task

Change the dispatching priority of the issuing task
Enqueue and dequeue system resources

Signal that a task is to wait pending completion of an event

Post an event control block (ECB) indicating completion of an event

® Time management statements obtain the time and date and set up time-related
events. These events include:

Placing the issuing task in a wait state for a specified time

Posting a user-specified ECB after a specified interval

6-4 CA-IDMS DML Reference — Assembler

6.2 Functions of DML statements

Initiating a new task after a specified interval

m Scratch management statements create, delete, or retrieve records from the
scratch area.

» Queue management statements create, delete, or retrieve records from the queue
area.

» Terminal management statements transfer data between the application program
and a terminal or printer.

m Utility function statements perform the following:

Request retrieval of task-related information

Request a memory dump of selected parts of storage

Retrieve and send a predefined message stored in the dictionary

Send a specified message to one or more users or logical terminals
Collect, retrieve, and write DC/UCF system statistics on a transaction basis

Establish long-term database locks and monitor access to database records
used across tasks in a pseudo-conversational transaction

m Recovery statements perform functions relating to database, scratch, and queue
area recovery in the event of a system failure. These functions perform the
following:

Establish checkpoints on the journal file for database, scratch, and queue
records used by the issuing task

Roll back user database, scratch, and queue record areas to the last checkpoint
established

Establish an end-of-task checkpoint and relinquish control of all database,
scratch, and queue record areas associated with the issuing task

Write user defined records to the journal file

The following table groups the DML statements by function and gives a brief
description of each command.

DML statements grouped by function

Function DML statement Description
Control @BIND SUBSCH Signs on the application program to
Statements the CA-IDMS/DB database

management system

@BIND REC Establishes addressability in
variable storage for one or more
records included in the program's
subschema

Chapter 6. Data Manipulation Language Statements 6-5

6.2 Functions of DML statements

Function DML statement Description
@BIND PROC Establishes communication between
the application program and a
DBA-defined database procedure
@READY Prepares database areas for
processing
@FINISH Releases database areas from
program control
@IF Evaluates the presence of records in
a set and specifies action based on
the outcome
@COMMIT Writes a checkpoint to the journal
file and releases record locks
@ROLLBAK Request recovery of database,
scratch, and queue areas
@KEEP Places locks on record occurrences
Retrieval @FIND/OBTAIN Accesses a record by using a
Statements DBKEY db-key previously saved by the
program
@FIND/OBTAIN Accesses a record by using
CURRENT established currencies
@FIND/OBTAIN Accesses a record based on its
WITHIN SET/AREA logical location within a set or its
physical location within an area
@FIND/OBTAIN Accesses the owner record of a set
OWNER occurrence
@FIND/OBTAIN Accesses a record by using its
CALC/DUPLICATE CALC-key value
@FIND/OBTAIN USING Accesses a record in a sorted set by
SORT KEY using its sort-key value
@GET Moves all data associated with a
previously located record into
program variable storage
Modification @STORE Adds a new record to the database
Statements
@MODIFY Changes the contents of an existing
record
@CONNECT Links a record to a set

6-6 CA-IDMS DML Reference — Assembler

6.2 Functions of DML statements

Function DML statement Description
@DISCON Removes a member record from a
set
@ERASE Deletes a record from the database
Accept @ACCEPT DBKEY Saves the db-key of the current
Statements FROM CURRENCY record of run unit, record type, set,

or area

@ACCEPT DBKEY
RELATIVE TO
CURRENCY

Saves the db-key of the next, prior,
or owner record relative to the
current record of a set

@ACCEPT PAGE
INFORMATION FOR A
GIVEN RECORD

Saves the page information for a
record current record of a set

@ACCEPT STATS

Returns system runtime statistics to
the program

@ACCEPT BIND

Returns a record's bind address to
the program

@ACCEPT PGINFO

Returns page information for a
given record to the program

@ACCEPT PROC

Returns information in the
application program information
block associated with a database
procedure to the program

@RETURN

Retrieves a database key of a
record entry that has been indexed
under integrated indexing.

Logical Record
Facility (LRF)

@OBTAIN logical-record
@MODIFY logical-record

Retrieves a logical record Modifies
a logical record Stores a new

Statements @STORE logical-record logical record Deletes a logical
@ERASE logical-record record
Program #LINK Passes control to another program
Management with the expectation of receiving it
Statements back
#RETURN Returns control to the next higher
level calling program
#LOAD Loads a program or table into the
program pool
#DELETE Signals that the program has

finished using a program or table in
the program pool

Chapter 6. Data Manipulation Language Statements 6-7

6.2 Functions of DML statements

Function DML statement Description
#STAE Establishes linkage to a program or
routine that will receive control in
the event of an abend
#ABEND Abnormally terminates the issuing
task
#XCTL Passes control to another program
with no expectation of having it
returned
Storage #GETSTG Allocates variable storage from a
Management DC/UCF storage pool Frees all or
Statements #FREESTG part of a block of variable storage
Task #ATTACH Attaches a new task within the
Management DC/UCF system
Statements
#CHAP Changes the dispatching priority of
the issuing task
#ENQ Acquires a resource or a list of
resources
#DEQ Releases a resource
#WAIT Relinquishes control to the system
while awaiting the completion of an
event
#POST Posts an event control block
Time #GETIME Obtains the time and date from the
Management system
Statements
#SETIME Defines a timed event
Scratch #PUTSCR #GETSCR Stores a scratch record Retrieves a
Management #DELSCR scratch record Deletes a scratch
Statements record
Queue #PUTQUE #GETQUE Stores a queue record Retrieves a
Management #DELQUE queue record Deletes a queue
Statements record

6-8 CA-IDMS DML Reference — Assembler

6.2 Functions of DML statements

Function DML statement Description
Terminal #TREQ Transfers data and device
Management dependent information to or from
(Basic Mode) the terminal, or establishes a
terminal request block (TRB) for
use by subsequent #TREQ
operations. The #TREQ statement
can be used to communicate in an
SNA network environment
Terminal #LINEIN Requests a synchronous data
Management transfer from the terminal to the
(Line Mode) issuing program

#LINEOUT Requests a synchronous or
asynchronous data transfer from the
issuing program to the terminal

#LINEEND Terminates the current line I/O
session

Terminal #MREQ Requests a transfer of data from the
Management issuing program to the terminal
(Mapping and/or vice versa

Mode)

#MAPINQ Obtains information or tests
conditions concerning the previous
map operation

#MAPMOD Requests modifications of mapping
options for a map

#STRTPAG Begins a map paging session and
specifies options for that session

#ENDPAG Terminates a map paging session

Terminal #PRINT Transfers data from a task to a
Management terminal defined as a printer.
(Print Mode)

Utility #ACCEPT Retrieves task-related information
Functions

#SNAP Requests a memory dump of
selected parts of storage

#SENDMSG Sends a message to a user, logical

terminal, list of users, or list of
logical terminals

Chapter 6. Data Manipulation Language Statements 6-9

6.2 Functions of DML statements

Function

DML statement

Description

#TRNSTAT

Requests or terminates statistics
collection; retrieves transaction
statistics into program storage

#KEEP

Enables database locks or database
monitoring for records, sets, or
areas or terminates a prior #KEEP
request

#WTL

Retrieves a message from the
dictionary and sends it to a
predefined destination

Recovery
Statements

#COMMIT

Establishes a checkpoint in the
journal file for database, scratch,
and queue record activity

#FINISH

Relinquishes control of database,
scratch, and queue record areas

#ROLLBAK

Rolls back database, scratch, and
gueue record areas to the last
checkpoint

#PUTJRNL

Writes user-defined records to the
journal file

6-10 CA-IDMS DML Reference — Assembler

6.3 #ABEND

6.3 #ABEND

The #ABEND statement terminates the issuing task abnormally and specifies whether
the system invokes previously established abend exits or writes a task dump to the log
file.

After completion of the #ABEND function, control is returned to the system.

Syntax

»—m— #ABEND ABCODE=abend-code-pointer
label

v

L ,STAE= INVOKE «]
L
IGNORE

L ,DUMP= T NO éj—‘
YES

Parameters

ABCODE=
Specifies a 4-character user-defined abend code.

abend-code
A register pointing to a field that contains the abend code, the symbol name of a
user-defined field containing the code, or the abend-code literal enclosed in single
quotation marks.

\
\ 4
A

Note: Because the specified abend code appears in the system log and is
displayed at the task's terminal, you should not use DC/UCF system abend codes.

STAE=INVOKE/IGNORE
Specifies whether the system invokes or ignores abend routines that were
previously established by #STAE requests; the default is INVOKE.

DUMP=NO/YES
Specifies whether the system writes a formatted task dump to the DC/UCF log
file. The default is NO.

Example: The following example of the #ABEND statement terminates the issuing
task abnormally and specifies the register that points to a field in the application
program containing the abend code. This statement requests that the system ignore
abend routines and to write a task dump to the DC/UCF log file. Control returns to
the system after completion of the #ABEND statement.

#ABEND ABCODE=(R12),STAE=IGNORE,DUMP=YES

Status codes: The #ABEND request is unconditional; control is passed to the
DC/UCF program control module.

Chapter 6. Data Manipulation Language Statements 6-11

6.4 @ACCEPT BIND

6.4 @ACCEPT BIND

The @ACCEPT BIND statement moves the bind address of a record to a location in
program variable storage. The requesting program is usually a subprogram that
requires the address of a record in order to access it.

Currency: Currency must be established for the record whose bind address will be
returned to the application program.

A successful execution of the @ACCEPT BIND command does not update the
currency of the record type or the run unit.

Syntax
»»—— @ACCEPT BIND=bind-address

v

\4
A

»—— ,REC=record-name

Parameters

BIND=bind-address
Specifies the 4-byte (fullword) location in storage to which the system returns the
record's bind address. Note thobd-address does not specify a database key.

REC=
Specifies the record whose bind address will be returned to the specified location
in program variable storage.

record-name
Must be a record previously bound by the run unit.

Example: The following @ACCEPT BIND statement moves the bind address for an
EMPLOYEE record to register 1:

@ACCEPT BIND=(R1),REC='EMPLOYEE'

Status codes: After completion of the @ACCEPT BIND statement, the ERRSTAT
field in the IDMS communications block indicates the outcome of the operation.

Status code M eaning
0000 The request has been serviced successfully.
1508 The specified record is not in the named subschema.

6-12 CA-IDMS DML Reference — Assembler

6.5 @ACCEPT DBKEY FROM CURRENCY

6.5 @ACCEPT DBKEY FROM CURRENCY

The @ACCEPT DBKEY FROM CURRENCY statement moves the db-key of the
current record of run unit, record type, set, or area to a specified location in program
variable storage. Records whose db-key are saved in this manner are available for
subsequent direct access by using an @FIND/@OBTAIN DBKEY statement.

Currency: The record must be current of run unit, record type, set, or area before
execution of the @ACCEPT DBKEY FROM CURRENCY statement. Currency is
maintained but not updated after the statement is executed.

Note: You must establish set currency before using this statement. If no set currency
has been established, the DBMS returns 0000 to the ERRSTAT field and -1 to the
DB-KEY field.

Syntax
»»—— @ACCEPT,DBKEY=db-key

,REC=record-name
,SET=set-name

,AREA=area-name

v

\4
A

Parameters

DBKEY=
Identifies the location in variable storage that will contain the db-key of the named
record.

db-key
Must identify a fullword binary field.

REC-=record-name/SET= set-name/AREA=area-name
Specifies the record whose db-key will be placed in the location identified by
db-key. If the record, set, or area qualifiers are omitted, the db-key of the current
record of run unit is saved. Otherwise, db-keys are saved as follows:

» REC=record-name saves the db-key of the record that is current of the
specified record type.

m SET=set-name saves the db-key of the record that is current of the specified
set.

» AREA=area-name saves the db-key of the record that is current of the
specified area.
Example: The following statements illustrate the use of the @ACCEPT DBKEY
FROM CURRENCY statement. The program performs the following steps:
1. Establishes an EMPLOYEE record as current of run unit

2. Saves its db-key in location SAVEDKEY

Chapter 6. Data Manipulation Language Statements 6-13

6.5 @ACCEPT DBKEY FROM CURRENCY

3. Accesses the EMPLOYEE record occurrence by using the saved db-key, after
further processing has changed currency
MVC EMPID,=CL4'7690'

OFIND CALC,REC='EMPLOYEE'
@ACCEPT DBKEY=SAVEDKEY

éOBTAIN DBKEY=SAVEDKEY

Status codes: After completion of the @ACCEPT DBKEY FROM CURRENCY

function, the ERRSTAT field in the IDMS communications block indicates the
outcome of the operation.

Status code M eaning
0000 The request has been serviced successfully.
1508

The specified record is not in the subschema. The program has
probably invoked the wrong subschema.

6-14 CA-IDMS DML Reference — Assembler

6.6 @ACCEPT DBKEY RELATIVE TO CURRENCY

6.6 @QACCEPT DBKEY RELATIVE TO CURRENCY

The @ACCEPT DBKEY RELATIVE TO CURRENCY statement moves the db-key

of the next, prior, or owner record relative to the current record of set to a location in
variable storage. The DBMS examines the current record of the named set and
extracts the requested pointer from its prefix.

This statement allows you to save the db-key of a record within a set without actually
having to access the record. Records whose db-keys are saved in this manner are
available for subsequent direct access by an @FIND/@OBTAIN DBKEY statement.

Note: Native VSAM users — The @ACCEPT DBKEY RELATIVE TO
CURRENCY statement is not valid for native VSAM data sets.

Note: You must establish set currency before using this statement. If no set currency
has been established, the DBMS returns 0000 to the ERRSTAT field and -1 to the
DB-KEY field.

Currency: Currency is not updated after execution of an @ACCEPT DBKEY
RELATIVE TO CURRENCY statement. The record that is current of record type
before the @ACCEPT statement will remain current immediately after the statement is
executed.

Syntax
»»—— Q@ACCEPT,DBKEY=db-key

SETN= set-name
E SETP= }7
SETO0=

Parameters

DBKEY=db-key
Identifies the location in variable storage that will contain the db-key of the
requested record.

SETN=/SETP=/SETO=set-name
Determines the record whose db-key will be placed in the location identified by
db-key. Set-name must be a set included in the subschema. The saved db-key can
belong to the next, prior, or owner record relative to the current record of the
named set:

\4

\4
A

» SETN=set-name saves the db-key of the next record relative to the record that
is current of the specified set. A request for SETN currency cannot be
specified unless the named set has prior pointers; prior pointers ensure that the
next pointer in the prefix of the current record does not point to a logically
deleted record.

m SETP=set-name saves the db-key of the prior record relative to the record
that is current of the specified set. A request for SETP currency cannot be
specified unless the named set has prior pointers.

Chapter 6. Data Manipulation Language Statements 6-15

6.6 @ACCEPT DBKEY RELATIVE TO CURRENCY

Note: No indication of an end-of-set condition is possible for an @ACCEPT
SETN or SETP. A retrieval statement must be issued to determine whether
the next or prior record in the set occurrence is the owner record.

®» SETO=set-name saves the db-key of the owner of the current set. A request
for SETO currency cannot be executed unless the named set has owner
pointers. If the current record of the named set is the owner record
occurrence, requests for SETO currency return the db-key of the record itself,
even if this set does not have owner pointers.

Note: When a record declared as an optional or manual member of a set is
accessed, it igot established as current of set if it is not currently connected

to the named set. A subsequent attempt to access the owner record will
instead locate the owner of the current record of set. In such cases, determine
whether the retrieved record is actually a set member before executing the
@ACCEPT DBKEY=b-key, SETO=set-name statement. The @IF statement

(see "@IF" later in this chapter) can be used for this purpose.

Example: The following statements illustrate the use of the @ACCEPT DBKEY
RELATIVE TO CURRENCY statement. The program performs the following steps:

1. Traverses the DEPT-EMPLOYEE set

2. Saves the db-key of the owner record of the OFFICE-EMPLOYEE set

3. Accesses the owner record of the OFFICE-EMPLOYEE set by using the saved
db-key, after further processing has changed currency

MVC DEPTID,=CL4'1234'

OFIND CALC,REC='DEPARTMENT'

@FIND NEXT,SET='DEPT-EMPLOYEE'

@ACCEPT DBKEY=SAVDKEY,SETO='OFFICE-EMPLOYEE'

éOBTAIN DBKEY=SAVEDKEY

Status codes: After completion of the @ACCEPT DBKEY RELATIVE TO
CURRENCY function, the ERRSTAT field in the IDMS communications block
indicates the outcome of the operation.

Status code M eaning
0000 This request has been serviced successfully.
1508 The named set is not in the subschema. The program has probably

invoked the wrong subschema.

6-16 CA-IDMS DML Reference — Assembler

6.7 @ACCEPT PGINFO

6.7 @ACCEPT PGINFO

The @ACCEPT PGINFO statement moves the page information for a given record to
a specified location in program variable storage. Page information that is saved in this
manner is available for subsequent direct access by using a @FIND/@OBTAIN
DBKEY statement.

The dbkey radix portion of the page information can be used in interpreting a dbkey
for display purposes and in formatting a dbkey from page and line numbers. The
dbkey radix represents the number of bits within a dbkey value that are reserved for
the line number of a record. By default, this value is 8, meaning that up to 255
records can be stored on a single page of the area. Given a dbkey, you can separate
its associated page number by dividing the dbkey by 2 raised to the power of the
dbkey radix. For example, if the dbkey radix is 4, you would divide the dbkey value
by 2**4. The resulting value is the page number of the dbkey. To separate the line
number, you would multiply the page number by 2 raised to the power of the dbkey
radix and subtract this value from the dbkey value. The result would be the line
number of the dbkey. The following two formulas can be used to calculate the page
and line numbers from a dbkey value:

. Page-number = dbkey value / (2 ** dbkey radix)

® Line-number = dbkey value - (page-number * (2 ** dbkey radix))

Syntax
»»— QEACCEPT PGINFO=pg-info-v,REC=record-name

\ 4
A

Parameters

PGINFO=pg-info-v
Specifies the name of a four-byte field that is made up of two halfword fields.
Identifies the location in variable storage that contains page information for the
specified record. Upon successful completion of this statement, the first two bytes
of the field contain the page group number and the last two bytes contain a value
that may be used for interpreting dbkeys.

REC=record-name
Specifies the record whose page information will be placed in the specified
location.

Example: The following example retrieves the page information for the
DEPARTMENT record.
PAGEINFO DS OF

PGROUP DS H
RADIX DS H

@ACCEPT PGINFO=PAGEINFO,REC='DEPARTMENT'
Status Codes: After completion of the @ACCEPT PGINFO statement, the

ERROR-STATUS field in the CA-IDMS communications block indicates the outcome
of the operation:

Chapter 6. Data Manipulation Language Statements 6-17

6.7 @ACCEPT PGINFO

Status code M eaning
0000
1508

The request has been serviced successfully.

The named record is not in the subschema. The program has
probably invoked the wrong subschema.

6-18 CA-IDMS DML Reference — Assembler

6.8 @ACCEPT PROC

6.8 @ACCEPT PROC

The @ACCEPT PROC statement moves the 256-byte application program information
block associated with a previously defined database procedure to a specified location

in program variable storage. Information is placed in this block by a previously issued
@BIND PROC statement (discussed later in this chapter). This information may have
subsequently been updated by the procedure. The @ACCEPT PROC statement can be
used by programs running under, but in a different partition from, the central version.

Syntax

v

»»—— Q@ACCEPT PROC=procedure-name

»—— ,COMAREA=procedure-control-location

A\
A

Parameters

PROC=procedure-name
Specifies the name of the database procedure whose application program

information block is to be moved to program variable stordg@cedure-name
must identify a fullword-aligned 8-byte literal.

COMAREA=procedur e-control-location
Specifies the fullword-aligned 256-byte field in program variable storage to which
the application program information block is to be moved.

Example: The following statement moves the application program information block
used by the CHECKALL procedure to the location identified as CHECKIT in the
application program's variable storage:

@ACCEPT PROC='CHECKALL',COMAREA=CHECKIT

Status codes: After completion of the @ACCEPT PROC function, the ERRSTAT
field in the IDMS communications block indicates the outcome of the operation.

Status code Meaning

0000 The request has been serviced successfully.

1508 The named procedure is not in the specified subschema.
1518 The procedure control location has not been bound properly.

Chapter 6. Data Manipulation Language Statements 6-19

6.9 @ACCEPT STATS

6.9 @ACCEPT STATS

The @ACCEPT STATS statement moves system runtime statistics located in the
program's IDMS statistics block to program variable storage. You can issue this
statement any number of times during the execution of a run unit. For example, you
might request database statistics after storing a variable-length record to determine
whether the entire record was stored in one place or if fragments were placed in an
overflow area.

The @ACCEPT STATS statement does not reset any of the statistics fields to zero.
The IDMS statistics block fields are reset when you issue an @FINISH statement.

Syntax
»»—— GACCEPT STATS=db-statistics

\4
A

Parameters

STATS=
Moves system runtime statistics to a location in program variable storage
identified bydb-statistics.

db-statistics
Identifies an aligned, 100-byte field. The dictionary contains a record, DBSTATS,
for the system runtime statistics. You can copy this record into program variable
storage by coding the following statement:

@COPY IDMS,DBSTATS

DBSTATS DS 0D
DATEZ2DAY DS CL8 TODAY'S DATE
TIME2DAY DS CL8 CURRENT TIME OF DAY

PAGESRED DS F PHYSICAL PAGES READ

PAGESWRT DS F PHYSICAL PAGES WRITTEN
PAGESQST DS F LOGICAL PAGES READ

CALCTARG DS F NO. CALC STORES ON TARGET PAGE
CALCOVFL DS F NO. CALC OVERFLOWS

VIATARGT DS F NO. VIA STORES ON OWNER PAGE
VIAOVRFL DS F NO. VIA OVERFLOWS

LINERQST DS F RECORDS (LINES) REQUESTED
CURRECDS DS F RECORDS CURRENT

IDMSCALL DS F NO. CALLS TO IDMSDBMS

FRAGMTST DS F NO. VAR-LENGTH FRAGMENTS STORED
RELORECS DS F NO. RECORDS RELOCATED

LOCKREQS DS F TOTAL NO. RECORD LOCKS HELD
SELECLOK DS F TOTAL NO. SELECT LOCKS HELD
UPDATLOC DS F TOTAL NO. EXCLUSIVE LOCKS HELD
RUNUNIT# DS F RUN-UNIT ID NUMBER

TASK#ID DS F TASK ID NUMBER

LOCAL#ID DS CL8 LOCAL ID NUMBER
DS CL8 RESERVED

The LOCAL#ID field consists of the 4-byte identifier of the interface in which the
run unit originated (for example, BATC, DBDC, CICS) and a unique identifier (a
fullword binary value) assigned to the run unit by that interface. For batch and
CMS run units, this identifier specifies the internal machine time. For CICS run
units, this identifier specifies the CICS transaction number assigned to the run

6-20 CA-IDMS DML Reference — Assembler

6.9 @ACCEPT STATS

unit. To display the originating interface identifier and the run-unit identifier for a
program, you can move the LOCAL#ID field to a work field:

WRKLCID DS oD
WRKLCORG DC CL4
WRKLCNUM DC F'o'

Note: The DBSTATS record can be modified by your DBA to define two
subordinate fields for the LOCAL#ID field.

Example: The following statements establish currency for the sets in which a new
EMPLOYEE record will participate as a member, store the EMPLOYEE record, and
move statistics regarding the stored EMPLOYEE record to the DBSTATS location in
main storage:

MvVC DEPTID, INDEPTID

@FIND CALC,REC='DEPARTMENT'

MVC OFFCODE, IOFFCODE

@FIND CALC,REC='OFFICE'

@STORE REC='EMPLOYEE'
@ACCEPT STATS=DBSTATS

Status codes: After completion of the @ACCEPT STATS function, the ERRSTAT
field in the IDMS communications block indicates the outcome of the operation.

Status code M eaning
0000 The request has been serviced successfully.
1518 The database statistics location has not been bound properly.

Chapter 6. Data Manipulation Language Statements 6-21

6.10 #ACCEPT

6.10 #ACCEPT

The #ACCEPT statement retrieves the following system task-related information:
® Current task code
® Task identifier
» Logical terminal identifier
» Physical terminal identifier
» DC/UCF system version
= The ID of the user signed on to the task's logical terminal

» Physical terminal screen dimensions

Syntax
L label]

»— #ACCEPT TYPE= TASKCODE
TASKID —
LTERMID —
SYSVERSN —
PTERMID —
USERID —
SCRNSIZE —

v

v

»—— ,FIELD=return-value-location-pointer

\4
A

Parameters

TYPE=
Retrieves the requested information:

TASK CODE
Retrieves the 1- to 8-character code that invokes the current task.

TASKID
Retrieves the task identifier assigned by the system. The task identifier is a
unigue sequence number stored in a binary fullword numeric field. At system
startup, the system sets the identifier to zero; each time a task is executed, the
system increments the identifier by one.

LTERMID
Retrieves the 1- to 8-character identifier of the logical terminal associated with the
current task.

SYSVERSN
Retrieves the version of the current DC/UCF system. The version number is an
integer in the range 0 through 9999 stored in a binary halfword numeric field.

PTERMID
Retrieves the 1- to 8-character identifier of the physical terminal associated with
the current task.

6-22 CA-IDMS DML Reference — Assembler

6.10 #ACCEPT

USERID
Retrieves the 32-character identifier of each user signed on to the logical terminal
associated with the current task. If no user is signed on, the system returns blank.

SCRNSIZE
Retrieves the screen dimensions of the physical terminal associated with the
current task. The screen size is returned in a field that is divided into two
halfword fields: the first halfword contains the row, the second halfword contains
the column. For example, a 24-line by 80-character screen is represented by a
value of 24 in the first halfword and 80 in the second halfword. If the current
task is not associated with a terminal, the system returns a null value of 0.

FIELD=
Specifies the location to which the system returns the requested task-related
information.

return-value-location
A register that points to the field or the symbolic nhame of a user-defined field
whose length is compatible with the length of the field containing the requested
data.

Example: The following example of the #ACCEPT statement retrieves the user 1D
of each user signed on to the logical terminal associated with the current task. This
information is placed into the field USERSL2, which is defined in the application
program's variable storage.

#ACCEPT TYPE=USERID,FIELD=USERSL2

Status codes: After completion of the #ACCEPT statement, the value in register
15 indicates the outcome of the operation.

Register 15 Meaning

value

X'00' The request has been serviced successfully.

X'04' An invalid return-value location address has been specified in the

FIELD parameter.

X'08' #ACCEPT TYPE=PTERM was specified but no PTERM exists.

Chapter 6. Data Manipulation Language Statements 6-23

6.11 #ATTACH

6.11 #ATTACH

The #ATTACH statement instructs the system to initiate a new task by acquiring the
necessary task control elements (TCEs) and storage and by adding the task to its
dispatching list. The issuing program retains processing control; the system simply
initializes the attached task and gives it processor time according to its established
priority. (Note that task code priorities established during system generation can be
overridden by the #ATTACH or #CHAP statements.) The #ATTACH may optionally
designate an ECB upon which initial execution of a new task will depend.

Syntax

»—ﬁ #ATTACH TSKCD=task-code-pointer >
label

L ,PLIST= —E SYSPLIST « ﬁ—‘
parameter-1ist-pointer

5 >

A\

|— ,PRI=prioritiy

L ECB=return-ech-address i

L ,TCEADDR= —[(1) « —JJ
return-tce-address

L ,COND= NO « I
f ALL ———
 »
(—d—— MAXT)-
INVT
SCTY
MAXC

> >
>

L ,MAXTXIT=max-task-Tabel i

\ 4

v

\ 4

v

\ 4

v

L L,INVTXIT=invalid-task-1label i

A\

L ,SCTYXIT=security-violation-label il

A\

v

|— ,MAXCXIT=max-concurrent-label J

>
>

\4
A

|— ,ERROR=error-Tlabel J

6-24 CA-IDMS DML Reference — Assembler

6.11 #ATTACH

Parameters

TSKCD=
Specifies the 1- to 8-character code of the task to be initiated.

task-code
A register pointing to a field that contains the task code, symbolic name of a
user-defined field containing the task code, or the task-code literal enclosed in
guotation marks.Task-code must have been defined either during system
generation or dynamically by using the DCMT VARY DYNAMIC TASK
command.

PLIST=
Specifies the location of the 5-fullword storage area that contains one or more
parameters to be passed to the program receiving control.

SYSPLIST
(Default); the symbolic name of the storage area in which the system will build
the #ATTACH parameter list.

par ameter -list
A register that points to the area in which the system will build the #ATTACH

parameter list or the symbolic name of that area.

PRI=
Specifies the dispatching priority of the attached task.

priority
A register containing the priority in the low-order byte or an absolute expression.
Valid codes are 0 through 240; the default is the priority established during system
generation for the specified task code, and the applicable terminal and user.

ECB=
Specifies the location to which the system will return the address of the event
control block (ECB) for the initiated task. Use ECB to control execution of the
attached task through the ECB; if ECB is not defined, the attached task will be set
ready-to-run.

return-ecb-address
A register or the symbolic name of a fullword user-defined field.

TCEADDR=(1)/return-tce-address
Specifies the location to which the system will return the address of the TCE for
the initiated task.return-tce-address

A register or the symbolic name of a fullword user-defined field; the default is
register 1.

COND=
Specifies whether this #ATTACH is conditional and under what conditions control
should be returned to the issuing program.

NO
(Default); specifies that the request is not conditional.

Chapter 6. Data Manipulation Language Statements 6-25

6.11 #ATTACH

ALL
Specifies that the request is conditional. Control is returned if the attach cannot
be serviced for one or more of the reasons listed below.

condition
Specifies under what conditions control is returned to the issuing program.
Multiple condition values must be enclosed in parentheses and separated by
commas.

MAXT
A maximum-task condition exists; that is, if the number of tasks specified as the
maximum during system generation are currently active. If MAXT is not
specified and a maximum-task condition exists, the attaching task will wait until
the attach can be completed successfully.

INVT
The specified task code is invalid. If INVT is not specified and the specified task
is not valid, the attaching task will be abended.

SCTY
The user signed on to the issuing task is denied access to the requested task
because of a security violation. If SCTY is not specified and a security violation
is detected, the attaching task will be abended.

MAXC
An attempt is being made to attach a task for which a MAXIMUM
CONCURRENT value is specified in the system generation. The maximum
number of occurrences of the task are already active. If MAXC is not specified
and a maximum concurrent condition is detected, the attaching task will be
abended.

MAXT XIT=max-task-label
Specifies the symbolic name of a routine to which control is returned if the
#ATTACH request cannot be serviced because of a maximum-task condition.

INVTXIT=invalid-task-label
Specifies the symbolic name of a routine to which control is returned if the
#ATTACH request cannot be serviced because the task code is invalid.

SCTY XI T=security-violation-label
Specifies the symbolic name of a routine to which control is returned if the
#ATTACH request cannot be serviced because of a security violation.

M AXCXIT=max-concurrent-label
Specifies the symbolic name of a routine to which control is returned if the
#ATTACH request cannot be serviced because of a maximum concurrent
condition.

ERROR=error-label
Specifies the symbolic name of the routine to which control is returned if a
condition specified in the COND parameter occurs for which no other exit routine
was coded.

6-26 CA-IDMS DML Reference — Assembler

6.11 #ATTACH

Example: The example shown below of the #ATTACH statement performs the
following functions:

m Task MENUS is initiated and added to the system dispatching list with a priority
setting of 150.

» WPLIST is the work area where the system builds the parameter list.

m Register 3 is designated to receive the address of the ECB for the initiated task
from the system.

= Control will be returned to the exit routine MENERR if the attach cannot be
serviced for any of the optional conditions associated with the COND parameter.

#ATTACH TSKCD='MENU3',PLIST=WPLIST,PRI=150,ECB=(3),COND=ALL, =*
ERROR=MENERR

Status codes: By default, the attach request is unconditional. Error conditions that
can occur are described below:

» A maximum-task condition will result in a delay until another task terminates.
The maximum number of active tasks is set during system generation.

= Any abnormal condition will result in an abend. Conditions in this category
include:

— Invalid task code specified
— The user signed on to the issuing task is denied access to the requested new
task because of a security violation

The issuing program can request return of control to avoid a delay or an abend by
using the COND parameter.

After completion of the #ATTACH request, the value returned to register 15 indicates
the outcome of the operation.

Register 15 M eaning

value

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced because the maximum number of
tasks have already been attached; no new tasks can currently be
attached.

X'08' The request cannot be serviced due to an invalid task code.

X'oC' The request cannot be serviced due to a task security violation.

X'14' The task cannot be attached because the maximum concurrent task

limit (for that task code) has been exceeded.

Chapter 6. Data Manipulation Language Statements 6-27

6.11 #ATTACH

Additionally, the values in two user-defined registers or fullwords contain information:

» Registern contains the address of the ECB of the initiated task is found in the
register or fullword assigned by the ECB= parameter. If the task has been set
ready-to-run, as described above for the ECB parameter, this register is not set.

» Registerm contains the address of the TCE of the initiated task is placed in the
register or fullword assigned by the TCEADDR parameter.

6-28 CA-IDMS DML Reference — Assembler

6.12 @BIND PROC

6.12 @BIND PROC

The @BIND PROC statement establishes communication between a program and a
DBA-written database procedure (for example, a security routine). You should use
this statement only when the application program is required to pass more information
to the procedure than is provided by CA-IDMS/DB itself. Such instances are unusual;
in most cases, you will not be aware of which procedures gain control before or after
the various DML functions.

Syntax

v

»»—— @BIND PROC=procedure-name

A\
A

»—— ,COMAREA=procedure-control-location

Parameters

PROC=
Establishes addressability for the specified database procedure in program variable
storage.

procedure-name
Must refer to an 8-character literal aligned on a fullword boundary.

COMAREA=
Identifies the program storage location to which the named procedure will be
bound.

procedur e-control-location
Must identify a 256-byte (fixed-length) area.

A program running in a different partition than the central version may need to pass
certain information to the database procedure. When the DBMS invokes the database
procedure, this information is copied from the program storage area, identified by
procedure-control-location, into the CA-IDMS/DB application program information

block. The information passed is the information in the program storage location at
the time the BIND PROC was performed; it is not the information in the program's
storage at the time of the procedure call.

Example: The following example of the @BIND PROC statement specifies that
register 8 contains the name of the database procedure to receive information from the
program's variable storage area labeled DBPASS:

@BIND PROC=(R8),COMAREA=DBPASS

Status codes: After completion of the BIND PROC function, the ERRSTAT field
in the IDMS communications block indicates the outcome of the operation.

Status code M eaning

0000 The request has been serviced successfully.

Chapter 6. Data Manipulation Language Statements 6-29

6.12 @BIND PROC

Status code

Meaning

1400

The @BIND PROC statement cannot be recognized. This
code usually indicates that the IDMS communications block
(SUBSCHEMA-CTRL) is not aligned on a fullword boundary.

1418

The procedure has been bound improperly to location O.

1472

The memory available is insufficient to load dynamically the
database procedure.

6-30 CA-IDMS DML Reference — Assembler

6.13 @BIND REC

6.13 @BIND REC

The @BIND REC statement establishes addressability for a record in variable storage.
In most cases, you do not need to issue individual @BIND REC statements, since the
necessary statements typically are generated as a group by the @COPY
IDMS,SUBSCHEMA-BINDS statement (see Chapter 4, “Assembler DML Coding
Considerations” on page 4-1). However, you can issue these statements separately as
necessary.

For example, since the @COPY IDMS,SUBSCHEMA-BINDS statement does not

verify that each record is bound successfully, you may wish to issue an @BIND REC
statement for each record and to check the ERRSTAT field in the IDMS
communications block after each @BIND REC statement. You can also issue separate
@BIND REC statements to bind several records to the same storage location. In any
case, you must establish addressability for each subschema record to be used by the
program.

Note: If program registration is in effect, you should code a @COPY
IDMS,SUBSCHEMA-BINDS statement to properly assign the programs to the
subschema control block. Otherwise your program must explicitly initialize the
PGNAME field in the IDMS communications block before the @BIND SUBSCHEMA
and @BIND REC statements are executed.

Syntax

»»—— @BIND REC=record-name

v

»—— ,I0AREA=record-location

\4
A

Parameters

REC=record-name
Binds the named record to a location in variable storage that corresponds to the
record description copied into the prograRecord-name must specify a record
included in the subschema.

|OAREA-=recor d-location
Identifies the specific location in the program's variable storage to which the
record is bound.

Note: Use care with this option because source-object mismapping can result
from improper use. In cases where the description of a given CA-IDMS/DB
record is present in more than one location in variable storage, you must ensure
that the proper record description is bound at the proper time.

Example: The following example of the @BIND REC statement establishes
addressability for the database record EMPLOYEE to the program's variable storage
area labeled EMPLOYE:

@BIND REC='EMPLOYEE',IOAREA=EMPLOYE

Chapter 6. Data Manipulation Language Statements 6-31

6.13 @BIND REC

Status codes: After completion of the @BIND REC function, the ERRSTAT field
in the IDMS communications block indicates the outcome of the operation.

Status code Meaning
0000 The request has been serviced successfully.
1408 The name record is not in the subschema. The program has

probably invoked the wrong subschema.

1418 The record has been bound improperly to location O.

6-32 CA-IDMS DML Reference — Assembler

6.14 @BIND SUBSCH

6.14 @BIND SUBSCH

The @BIND SUBSCH statement performs the following:
® Signs on the run unit to the DBMS

» |dentifies the location of optional user-specified IDMS and LRC communication
blocks to the DBMS

® Names the subschema to be loaded for the run unit

®» Names the Distributed Database System (DDS) node under which the run unit will
execute

» |dentifies the database to be accessed

You must code the @BIND SUBSCH statement as the first DML statement in the
program that is passed to CA-IDMS/DB at execution time. This statement must be
first both logically and physically; you cannot branch to @BIND SUBSCH.

In most cases, specific designation of @BIND SUBSCH within an application program
is not necessary since the @COPY IDMS,SUBSCHEMA-BINDS statement (see 5.4,
“@COPY IDMS” on page 5-9) automatically invokes the necessary @BIND
statements.

Note: If program registration is in effect, the @COPY IDMS,SUBSCHEMA-BINDS
statement is required to properly assign the programs to the subschema control block.
Individual @BIND SUBSCH and @BIND REC statements should not be used if
program registration was enabled during system generation.

Chapter 6. Data Manipulation Language Statements 6-33

6.14 @BIND SUBSCH

Syntax

v

»»—— EBIND SUBSCH=subschema-name

»
>

|— , PGMNAME=program-name —J

A\
v

L ,LRC=1r-control-block-location]

A\

v

|— ,LRSIZ=1r-control-block-size J

\ 4
4

|— ,DBNAME=database-name-pointer J

\ 4

L ,DBNODE=nodename-pointer i

A\
v

|— ,DICTNAM=dictionary-name-pointer J

A\

A\
A

|— ,DICTNOD=dictionary-nodename-pointer J

Parameters

SUBSCH=
Signs on the application program to CA-IDMS/DB.

subschema-name
Identifies the subschema in use. The run unit uses the standard IDMS
communications block brought previously into the program by compiler-directive
statements.

PGM NAM E=program-name
Identifies the user program.

L RC=Irc-block-location
Identifies the address of a logical-record request control (LRC) block other than
that brought into the program by the DML precompiler. The definition of this
user-specified subschema control area must be consistent with the standard
SSLRCTL block as normally invoked and used.

LRSIZ=Irc-block-size
Specifies the size of that portion of the LRC block that contains information about
the request's WHERE clausekrc-block-size defaults to 576 bytes. For the
algorithm for calculatindrc-block-size, see 5.4, “@COPY IDMS” on page 5-9.

DBNAME=
Identifies the database to be accessed by the program. If this parameter is
specified,database-name may be overridden by IDMSOPTI module or SYSCTL
file specifications.

database-name
Must specify a register that points to the name of the database, a 1- to 8-character
field, or a quoted literal.

6-34 CA-IDMS DML Reference — Assembler

6.14 @BIND SUBSCH

DBNODE=
optionally names the node that will service database requests issued by the
program. If this parameter is specifieshdename may or may not be overridden
by IDMSOPTI module or SYSCTL file specifications (MVS only).

nodename-pointer
Must be a register that points to the name of the node, a 1- to 8-character field, or
a quoted literal.

DICTNAM=
The dictionary that contains the subschema.

dictionary-name-pointer
Either a register that points to the field that contains the dictionary name or a
quoted literal.

DICTNOD=
The dictionary node that contains the subschema.

dictionary-nodename-pointer
Either a register that points to the field that contains the name of the dictionary or
a quoted literal.

Example: The following example of the @BIND SUBSCH statement signs on the
application program EMPUPD to CA-IDMS/DB, identifies the subschema EMPSS01,
and identifies the address in program variable storage of the user-specified
communications block EMPCTRL:

@BIND SUBSCH='EMPSSO1',SCB=EMPCTRL,PGMNAME="EMPUPD'

Status codes: After completion of the @BIND SUBSCH function, the ERRSTAT
field in the IDMS communications block indicates the outcome of the operation.

Status code M eaning
0000 The request has been serviced successfully.
1400 The @BIND SUBSCH statement cannot be recognized. This code

usually indicates that the IDMS communications block
(SUBSCHEMA-CTRL) is not aligned on a fullword boundary.

1467 The subschema invoked does not match the subschema object
tables.
1469 The run unit is not bound to the DBMS. This code indicates that

the central version is not active or is not accepting new run units,
or that the run unit's connection to the central version is broken due
to timeout or other factors, as noted on the CV log.

1470 The journal file will not open (local mode only); under OS, the
most probable cause is that a DD statement for the journal file is
missing in the JCL.

Chapter 6. Data Manipulation Language Statements 6-35

6.14 @BIND SUBSCH

Status code M eaning

1472 The available memory is insufficient to dynamically load a
subschema or database procedure.

1473 The central version is not accepting new run units.

1474 The subschema was not found in the dictionary load area or in the
load library.

1477 The run unit has been bound previously.

1480 The node specified in the NODENAME clause either is not active
or has been disabled from the communications network.

1481 The database specified in the CA-IDMS network clause is not
known to CA-IDMS/DB.

1482 The named subschema is not allowed under the database specified
in the DBNAME clause.

1483 The available memory is insufficient to allocate native VSAM work
areas.

6-36 CA-IDMS DML Reference — Assembler

6.15 #BIND TASK

6.15 #BIND TASK

The #BIND TASK statement initiates a DC/UCF task when the operating mode is
DC-BATCH. This statement establishes communication with the system and, if
accessing DC/UCF queues and printers, allocates a packet-data movement buffer to
contain the queue or printer data. Once a task is started, the program can issue any
number of consecutive BIND-READY-FINISH sequences.

Syntax
#BIND TASK

v

label

v
A

L ,NODE=nodename _

Parameters

,NODE=
Specifies the 1- to 8-character name of the node to which the task will be bound.

nodename
Either the symbolic name of a user-defined field that contains the nodename or the
nodename itself enclosed in quotation marks. The specified nodename must match
the node named in th@dename statement at system generation.

Example: The following statement establishes communication with a DC/UCF
system:

#BIND TASK.

Status codes: After completion of the BIND TASK function, the status field in the
IDMS communications block indicates the outcome of the operation.

Chapter 6. Data Manipulation Language Statements 6-37

6.16 #CHAP

6.16 #CHAP

The #CHAP statement changes the dispatching priority of the the issuing task.
#CHAP does not relinquish control to another task and cannot be used to alter the
priority of other tasks.

Syntax
> #CHAP PRI=priority »<
label
Parameters
PRI=
Specifies a new dispatching priority for the issuing task.
priority

A register that contains the priority in the low-order byte, the symbolic name of a
user-defined field that contains the priority, or an absolute expression in the range
0 through 240.

Example: The following example of the #CHAP statement changes the dispatching
priority to a value contained in the low-order byte of register 10:

#CHAP PRI=(R10)

Status codes: The change-priority request is unconditional; any return code other
than X'00" will result in an abend of the task.

6-38 CA-IDMS DML Reference — Assembler

6.17 @COMMIT

6.17 @COMMIT

The @COMMIT statement requests that CA-IDMS/DB write a checkpoint to the
journal file to designate the start or end of specific database accessing activities
associated with the issuing run unit (the start or end of a recovery unit). @COMMIT
simulates an @FINISH-@BIND-@READY sequence without relinquishing control of
database resources. Typically, you can specify @COMMIT as a recovery
consideration when updating CA-IDMS/DB database records.

Currency: Specifying @COMMIT ALL sets all currencies to null.

Syntax

A\
A

»»—— QECOMMIT
L -

Parameters

@COMMIT
Writes a COMT checkpoint to the journal file and updates the IDMS
communications block. All record locks except implicit shared locks held on
current records are released. @COMMIT does not release area locks.

ALL
Releases record locks and sets all currencies to null.

Status codes: The only acceptable status code returned for an @COMMIT function
is 0000.

Chapter 6. Data Manipulation Language Statements 6-39

6.18 #COMMIT

6.18 #COMMIT

The #COMMIT statement requests that the system write a checkpoint to the journal
file to designate the start or end of specific database and/or scratch and queue record
access activities associated with the issuing task or run unit. All locks held on current
records except for select locks are released. #COMMIT simulates an
#FINISH/@BIND/@READY sequence but does not relinquish control of database
resources. Typically, you can specify #COMMIT as a recovery consideration when
updating CA-IDMS/DB or dictionary entries.

Currency: Specifying #COMMIT ALL sets all currencies to null.

y
4
v

v
A

»—— #COMMIT
L , TASK 1L SALL J

Parameters

TASK
Establishes checkpoints for all data areas associated with all run units initiated by
the issuing task.

ALL
Releases all locks held on records in data areas associated with the issuing task
(#COMMIT TASK,ALL) or run unit (#COMMIT ALL) and sets all currencies to
null.

Status codes: After completion of the #COMMIT function, the value in register 15
indicates the outcome of the operation.

Register 15 M eaning

value

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced because the number of active run
units exceeds the size of the internal run-unit table.

X'08' The request cannot be serviced due to an invalid request.

X'oC' The request cannot be serviced because an invalid status has been
received from DBIO/DBMS. Check the DC/UCF log file for
details.

6-40 CA-IDMS DML Reference — Assembler

6.19 @CONNECT

6.19 @CONNECT

The @CONNECT statement establishes a record occurrence as a member of a set
occurrence. The specified record must be defined as an optional automatic, optional
manual, or mandatory manual member of the set.

Note: Native VSAM users — The @CONNECT statement is not valid since all sets
in native VSAM data sets must be defined as mandatory automatic.

Currency: Before execution of the @CONNECT statement, you must satisfy the
following conditions:

n All areas affected either explicitly or implicitly by the @CONNECT statement
must be readied in one of the update usage modes (see 6.57, “@READY” on
page 6-227 later in this chapter).

®» The named record must be established as current of its record type.

m The appropriate occurrence of the set into which the named record will be
connected must be established. The current record of set determines the set
occurrence. If the set order is NEXT or PRIOR, this record determines the
position of the new member within the set.

Following successful execution of the @CONNECT statement, the named record is
current of run unit, its record type, its area, and all sets in which it currently
participates. The following figure illustrates the steps required to connect an
EMPLOYEE record to an occurrence of the OFFICE-EMPLOYEE set.

To connect EMPLOYEE 459 to the OFFICE 1 occurrence of the OFFICE-
EMPLOYEE set, you must establish EMPLOYEE 459 as current of record type, locate
the proper occurrence of the OFFICE record, and connect EMPLOYEE 459 to the
OFFICE-EMPLOYEE set.

DEPARTMENT OFFIGE
410 IF |56 ICALC 450 IF |76 ICALC
DEPT-ID-0410 Jon OFFICE-CODE-0450 Jon
ORG-DEMO-REGION ORG-DEMO-REGION
DEPT-EMPLOYEE OFFICE-EMPLOYEE
NPO CA 10 OA
EMPLOYEE EMPLOYEE EMPLOYEE ASC(EMP-LAST-NAME-0415 ASC(EMP-LAST-NAME-0415
329 459 28 EMP-FIRST-NAME-0415) DL EMP-FIRST-NAME-0415) DL
EMPLQOYEE
415 |F J1s Joac
EMPLOYEE EMP-ID-0415 Jon
600
EMP-DEMO-REGION

Chapter 6. Data Manipulation Language Statements 6-41

6.19 @CONNECT

CURRENCIES:

RUN UNIT, RECORD, SET, AREA

= =
g /9o /9
& /& o} <]
S /& /& /&
& Ly ~ o] o
£/ §F/ & /5)2/ 5
= y Ly Ly
35 'S a oy W & Q Q
= /@&l 2/E8 L4 q
35 i Jis &
& &/l 5/ 8 g /& o &
MVC DEPTID, DEPTIN 5200 | 5200 5200 5200
@FIND CALC, REC ="DEPARTMENT’
@OBTAIN FIRST, 459 | 5200 | 459 459 5200 | 459
SET="DEPT-EMPLOYEE'
MVC OFFCODE,OFFCODIN 1| 5200 | 459 1| 459 1 1| 459
@FIND CALC, REC = 'OFFICE’
@CONNECT REC = 'EMPLOYEE’ 459 | 5200 | 459 1| as8| 459 1| 459

SET ="OFFICE-EMPLOYEE'

Syntax

»»>—— Q@CONNECT REC=record-name

v

A\
A

»— ,SET=set-name

Parameters

REC=

the specified set.

record-name

Must be a record included in the subschema and must be defined as an optional
automatic, optional manual, or mandatory manual member of the set to which it is
being connected Record-name may be specified as a register, a user-defined
variable data field, or a user-supplied value in quotation marks.

SET=

set-name

user-supplied value in quotation marks.

Specifies the set to which the member record is to be connected.

Connects the current occurrence of the named record to the current occurrence of

Must specify a set included in the subschema. The record is connected to the set
in accordance with the ordering rules defined for that set in the sch&stiaame
may be specified as a register, a user-defined variable data field, or a

6-42 CA-IDMS DML Reference — Assembler

6.19 @CONNECT

Example: The following statements connect an EMPLOYEE record from the
DEPT-EMPLOYEE set to the OFFICE-EMPLOYEE set as a new member.

MVC
@FIND

DEPTID,=C'5200"'
CALC,REC="'DEPARTMENT'

@OBTAIN FIRST,SET='DEPT-EMPLOYEE'

MVI

OFFCODE,C'1!

@FIND CALC,REC='OFFICE'
@CONNECT REC='EMPLOYEE',SET='OFFICE-EMPLOYEE'

Status codes:

After completion of the @CONNECT function, the ERRSTAT field

in the IDMS communications block indicates the outcome of the operation.

Status code Meaning

0000 The request has been serviced successfully.

0705 The @CONNECT would violate a duplicates-not-allowed option.

0706 Currency has not been established for the named record or set.

0708 The specified record is not in the subschema. The program has
probably invoked the wrong subschema.

0709 The named record's area has not been readied in one of the three
update usage modes.

0710 The subschema specifies an access restriction that prohibits
connecting the named record in the named set.

0714 The @CONNECT statement cannot be executed because the named
record has been defined as a mandatory automatic member of the
set.

0716 The record cannot be connected to a set in which it is already a
member.

0721 An area other than the area of the named record has been readied
with an incorrect usage mode.

0725 Currency has not been established for the named set type.

Chapter 6. Data Manipulation Language Statements 6-43

6.20 #DELETE

6.20 #DELETE

The #DELETE statement notifies the DC/UCF system that the issuing task has finished
using a module from the program pool. This module is identified by the program

name or entry-point address that was previously specified by the #LOAD request that
placed the module into the program pool. If your site uses multiple dictionaries you
can specify either the dictionary in which the program resides or the node that controls
the dictionary. Other options for a multiple dictionary environment include specifying

a parameter list and a program version number for the program you are requesting to
delete.

#DELETE does not physically delete the module from the program pool unless the
program has been defined as NONREUSABLE. Rather, it decrements the in-use count
maintained by the DC/UCF system. An in-use count of O indicates to the system that
the space occupied by the module can be reused.

v

— #DELETE—[PGM=program-name-pointer _J
EPADDR=entry-point-address

|— ,PLIST= —E SYSPLIST <« ﬁ—‘
parameter-1ist-pointer

L .DICTNOD=nodename-pointer]

A\

A\
v

A\

A\
A

|— ,DICTNAM=dictionary-name-pointer J

Parameters

PGM=
Specifies the 1- to 8-character name of the module being released from use.

program-name-pointer
A register that points to a field containing the program name, the symbolic name
of a user-defined field containing the program name, or the program-name literal
enclosed in quotation marks.

EPADDR=
Specifies the entry-point address of the module being released from use. This
address was returned to the issuing program when the module was originally
loaded.

entry-point-addr ess
Either a register or the symbolic name of a fullword user-defined field containing
the entry-point address.

6-44 CA-IDMS DML Reference — Assembler

6.20 #DELETE

PLIST=
Specifies the location of the storage area the system uses to build the parameter
list. The PLIST parameter is required only if the DICTNAM or DICTNOD
parameters are specified.

SYSPLIST
The symbolic name of the storage area in which the system will build the
#DELETE parameter list.

parameter-list-pointer
A register that points to the area in which the system will build the #DELETE
parameter list or the symbolic name of that area.

DICTNOD=
Identifies the node that controls the dictionary in which the program resides.

nodename-pointer
A register that points to a field that contains the name of the node, the symbolic
name of a user-defined field containing the name of the node, or the nodename
literal enclosed in quotation marks.

DICTNAM=
Identifies the dictionary in which the named program resides.

dictionary-name-pointer
A register that points to a field containing the dictionary name, the symbolic name
of a user-defined field containing the dictionary name, or the dictionary name
literal enclosed in quotation marks.

Note: The DICTNOD or DICTNAM parameters must correspond to those
specified on a previously issued #LOAD statement. If either DICTNOD or
DICTNAM or both are specified, the PLIST parameter must be included.

Example: The following example of the #DELETE statement notifies the system

that the program or module whose entry-point address is contained in register 5 is no
longer needed by the issuing task. The system can reuse this area in the program pool
if space is needed.

#DELETE EPADDR=(R5)

The example shown below illustrates the use of the #LOAD and the #DELETE
statements in a multiple dictionary environment. After execution of the #DELETE
statement the area in the program pool in which EMPMENU resides is released and
can be reused by issuing a new #LOAD request statement.

#LOAD PGM='EMPMENU'

#;DELETE PGM="EMPMENU'

Status codes: The #DELETE request is unconditional; any error detected during
execution will result in an abend of the issuing task.

Chapter 6. Data Manipulation Language Statements 6-45

6.21 #DELQUE

6.21 #DELQUE

The #DELQUE statement deletes all or part of a queue. If only one queue record is
deleted, the system maintains currency within the queue by using the next and prior
pointers of the queue record.

Syntax

label

L ,PLIST= SYSPLIST «
L
parameter-1ist-pointer

L ,QUEID=queue-id-pointer i

\ 4

v

A\

v

L ,LOC= T CURRENT «

ALL
L ,COND= NO « |
ALL
[»
(=4 NQID)—
NRID
NRCE
IOER
INVP

A\
v

L ,NQIDXIT=no-queue-id-Tabel]

A\
v

|— ,NRIDXIT=no-queue-record-label J

\ 4
4

|— ,NRCEXIT=no-current-of-run-unit-Tlabel J

L ,IOERXIT=i/0-error-label i

A\
v

L ,INVPXIT=invalid-parameter-list-label il

A\
A\
A

|— ,ERROR=error-Tlabel J

Parameters

PLIST=
Specifies the location of the 2-fullword storage area in which the system will build
the #DELQUE parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system will build
the #DELQUE parameter list.

6-46 CA-IDMS DML Reference — Assembler

6.21 #DELQUE

parameter-list-pointer
Either a register that points to the area or the symbolic name of the area.

QUEID=
Specifies the 1- to 16-character queue header ID associated with the queue or
queue record to be deleted.

gueue-id-pointer
A register that points to a field containing the id, the symbolic name of a
user-defined field containing the ID, or the ID literal enclosed in quotation marks.
If the queue header ID is not specified, a blank ID is assumed.

LOC=
Indicates the portion of the queue to be deleted.

CURRENT
(Default); deletes only the current record of the queue associated with the
requesting task.

ALL
Deletes all records in the queue and the queue header id.

COND=
Specifies whether this #DELQUE is conditional and under what conditions control
should be returned to the issuing program:

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the delete cannot
be serviced for one or more of the reasons listed below.

condition
Specifies under what conditions control should be returned to the issuing program.
Multiple values must be enclosed in parentheses and separated by commas.
Condition options are as follows:

® NQID — The queue header record cannot be found.

® NRID — LOC=CURRENT has been specified and the record previously
established as current of queue cannot be found.

» NRCE — LOC=CURRENT has been specified and no resource control
element (RCE) exists for the current record; that is, no record has been
established as current of queue.

» |OER — An I/O error occurs while processing the delete.
8 INVP — The parameter list built for the #DELQUE is invalid.

NQIDXIT=no-queue-id-label
Specifies the symbolic name of the routine to which control should be returned if
the #DELQUE request cannot be serviced because the queue header record cannot
be found.

Chapter 6. Data Manipulation Language Statements 6-47

6.21 #DELQUE

NRIDXIT=no-queue-r ecord-label
Specifies the symbolic name of the routine to which control should be returned if
the #DELQUE request cannot be serviced because the record previously
established as current of queue cannot be found.

NRCEXIT=no-current-of-run-unit-label
Specifies the symbolic name of the routine to which control should be returned if
the #DELQUE request cannot be serviced because no current of queue has been
established (no resource control element exists for the queue record).

|OERXIT=i/o-error-label
Specifies the symbolic name of the routine to which control should be returned if
the #DELQUE request cannot be serviced because of an I/O error while
processing the delete.

INVPXIT=invalid-par ameter -list-label
Specifies the symbolic name of the routine to which control should be returned if
the #DELQUE request cannot be serviced because of an invalid parameter in the
parameter list.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

Example: The following example of the #DELQUE statement deletes an entire
gueue area. The address of the queue header ID is contained in register 4. In the
event of an I/O error, control will be returned to the ERRORS5 routine of the issuing
program; other error conditions will result in an abend of the issuing task.

#DELQUE QUEID=(R4),LOC=ALL,COND=IOER,IOERXIT=ERROR5

Status codes: By default, the #DELQUE request is unconditional; any runtime
error will result in an abend of the issuing task. To avoid an abend, you can request
return of control to the issuing program by using the COND parameter.

After completion of the #DELQUE function, the value in register 15 indicates the
outcome of the operation.

Register 15 M eaning

value

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced due to an invalid parameter list.

X'08' The request cannot be serviced because the requested queue header

record (identified by QUEID) cannot be found.

X'oC' The request cannot be serviced because the requested queue record
cannot be found.

6-48 CA-IDMS DML Reference — Assembler

6.21 #DELQUE

Register 15 Meaning
value
X'10' The request for a #DELQUE LOC=CURRENT cannot be serviced

because no resource control element (RCE) exists for the queue
record, indicating that currency has not been established.

X'1C' The request cannot be serviced due to an 1/O error during
processing.

If an 1/0O error occurs while processing a #DELQUE request, the system will return the
address of the IDMS communications block to register 1. In this situation, you can
check the status code in the ERRSTAT field (for more information, see 3.2.2,
“ERRSTAT field and codes” on page 3-11).

Chapter 6. Data Manipulation Language Statements 6-49

6.22 #DELSCR

6.22 #DELSCR

The #DELSCR statement deletes one or all scratch records in a scratch area.

Syntax
> #DELSCR >
label
L PLIST= T SYSPLIST « Jl

parameter-value-Tist-pointer

\ 4

L ,SAID=scratch-area-id-pointer il

v

A\

L— ,LOC= Next <

Current
First

Last

Prior
A1l

(SRID,scratch-record-id-pointer) —

\ 4

L - . I
RTNSRID= —= (1) 7

return-scratch-record-id

\ 4

v

L, cono- NO « |
ALL ——————
—
(

—i—— NAID)—
NIRD
I0ER
INVP

\ 4

v

L ,NAIDXIT=no-scratch-area-id-label —J

\ 4

L ,NRIDXIT=no-scratch-record-id-label i

v

A\

L ,I0OERXIT=i/0-error-label il

A\

L— ,INVPXIT=invalid-parameter-list-label —J

v

\ 4

L— ,ERROR=error-Tlabel —J

\4
A

6-50 CA-IDMS DML Reference — Assembler

6.22 #DELSCR

Parameters

PLIST=
Specifies the location of the 3-fullword storage area in which the system will build
the #DELSCR parameter list.

SYSPLIST
(Default); the symbolic name of the storage area in which the system will build
the #DELSCR parameter list.

parameter-list-pointer
A register that points to the area or the symbolic name of the area in which the
system will build the #DELSCR parameter list.

SAID=
Specifies the 1- to 8-character ID of the scratch area associated with the scratch
record being deleted.

scratch-ar ea-id-pointer
A register that points to a field containing the id, the symbolic name of a
user-defined field containing the ID, or the ID literal enclosed in quotation marks.
If the SAID parameter is not specified, a scratch area ID of 8 blanks is assumed.

LOC=
Specifies the scratch record to be deleted from the area associated with the
specified scratch record id.

NEXT
(Default); deletes the next record. If currency has not been established, NEXT is
equivalent to FIRST.

CURRENT
Deletes the current record, that record most recently referenced by another scratch
function.

FIRST
Deletes the first record. (Records are always stored in ascending order by scratch
record ID.)

LAST
Deletes the last record.

PRIOR
Deletes the prior record. If currency has not been established, PRIOR is
equivalent to LAST.

ALL
Deletes all records.

(SRID,scratch-record-id)
Deletes the record identified ksgratch-record-id. Scratch-record-id is a register
that points to the 4-byte scratch record id, the symbolic name of a user-defined
field containing the id, or an absolute expression of the id.

Chapter 6. Data Manipulation Language Statements 6-51

6.22 #DELSCR

RTNSRID=(1)/
Specifies the location to which the system will return the scratch record ID of the
last record deleted with a #DELSCR function.

return-scratch-record-id
A register or the symbolic name of a fullword user-defined field to which the
system will return the scratch record ID of the last record deleted, the default is
register 1.

COND=
Specifies whether this #DELSCR is conditional and under what conditions control
should be returned to the issuing program, as follows.

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the delete cannot
be serviced for any of the reasons listed below.

condition
Specifies conditions under which control is returned to the issuing program.
Multiple condition options must be enclosed in parentheses and separated by
commas. Condition options are as follows:

® NAID The scratch area ID cannot be found.

® NRID The scratch record ID cannot be found.

» |OER An I/O error occurs while processing the deletion.
®» INVP The parameter list built for the #DELSCR is invalid.

NAIDXIT=no-scr atch-ar ea-id-label
Specifies the symbolic name of the routine to which control should be returned if
the #DELSCR request cannot be serviced because the scratch area ID cannot be
found.

NRIDXIT=no-scratch-r ecor d-id-label
Specifies the symbolic name of the routine to which control should be returned if
the #DELSCR request cannot be serviced because the scratch record ID cannot be
found.

|OERXIT=i/o-error-label
Specifies the symbolic name of the routine to which control should be returned if
the #DELSCR request cannot be serviced because of an I/O error while processing
the #DELSCR request.

INVPXIT=invalid-par ameter -list-label
Specifies the symbolic name of the routine to which control should be returned if
the #DELSCR request cannot be serviced because of an invalid parameter list.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

6-52 CA-IDMS DML Reference — Assembler

6.22 #DELSCR

Example: The following example of the #DELSCR statement deletes the current
record within the scratch area labeled SCRAREAL. The ID of the deleted record will
be placed in register 1. The request is not conditional; any error condition resulting
from the execution of this statement will result in an abend of the issuing task.

#DELSCR SAID='SCRAREA1',LOC=CURRENT,RTNSRID=(R1),COND=NO

Status codes: By default, the #DELSCR request is unconditional; any runtime
error will result in an abend of the issuing task. You can request return of control to
the issuing program by using the COND parameter to avoid an abend.

After completion of the #DELSCR, the value in register 15 indicates the outcome of
the operation.

Register 15 Meaning

value

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced due to an invalid parameter list.

X'08' The request cannot be serviced because the requested scratch area
ID (SAID) cannot be found.

X'0C' The request cannot be serviced because the requested scratch record
ID (SRID) cannot be found within the named SAID.

X'1C' The request cannot be serviced due to an 1/O error during
processing.

If an 1/0O error occurs while processing a #DELSCR request, the system will return the
address of the IDMS communications block to register 1. In this situation, you can
check the status code in the ERRSTAT field for more detailed information (see 3.2.2,
“ERRSTAT field and codes” on page 3-11). If no error occurs during processing, a
user-defined register assigned by the RTNSRID parameter will contain the SRID of the
last scratch record deleted.

Chapter 6. Data Manipulation Language Statements 6-53

6.23 #DEQ

6.23 #DEQ

The #DEQ statement releases resources acquired by the issuing task with an #ENQ
request. All acquired resources will be released, either explicitly with a #DEQ request
or automatically at task termination.

Syntax
L label il

»—— #DEQ RSCID= ALL
—E resource-id-pointer-options i

\ 4

v

> >
>

L PLIST= —[SYSPLIST «
parameter-value-list-pointer —

\ 4

L conn= — no «
L

IDNF

> >
>

|— ,IDNFXIT=resource-id-not-found-label J

\ 4

L ,ERROR=error-Tlabel i

Expansion of resour ce-id-pointer-options

T
»— (—l— resource—id—pointer |_ J |) >
,resource-id-length

Parameters

RSCID=
Specifies the resources to be released.

ALL
Requests that the system release all resources acquired by the issuing task by
means of the #ENQ requests.

resour ce-id-pointer-options
Specifies the ID associated with a specific resource to be dequeued.
Resource-id-pointer is a register that points to a field containing the id, the
symbolic name of a user-defined field containing the id, or the ID literal enclosed
in quotation marks.Resource-id-pointer must be enclosed in parentheses.

The optionalresource-id-length specifies the length of the resource ID named by
resource-id-pointer (up to 256 bytes)Resource-id-length is a register that

contains the length, the symbolic name of a fullword, halfword, or byte-length
user-defined field containing the length, or an absolute expression. The length of
the ID need not be specifiedriésource-id-pointer is provided as a literal enclosed

in quotation marks.

Multiple RSCID parameters must be in successive order, separated by commas.

6-54 CA-IDMS DML Reference — Assembler

6.23 #DEQ

PLIST=
Specifies the location of the storage area in which the system will build the #DEQ
parameter list, as follows.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system will build
the #DEQ parameter list.

parameter-value-list-pointer
A register that points to the area or the symbolic name of the area in which the
system will build the #DEQ parameter list.

The size, in fullwords, of the parameter-list area is equal to:
1+2P+ ((R+3)/4),

where:

® P is the number ofesource-id specifications named for the RSCID parameter
(described above).

®m R is the number ofesource-id-length specifications named in register
notation for the RSCID parameter.

If RSCID=ALL is specified, the length of this storage area is one fullword; if five
resource ids are specified and four have a length indicated in register notation, it is
13 fullwords. (Note that in this case the calculated value of 12.75 was rounded up
to a whole number.)

COND=
Specifies whether this #DEQ is conditional and under what conditions control
should be returned to the issuing program:

NO
(Default); specifies that the request is not conditional.

IDNF
Specifies that the request is conditional. Control is returned if one or more
resource ids identified by the RSCID parameter cannot be found.

IDNFXIT=resour ce-id-not-found-label
Specifies the symbolic name of the routine to which control should be returned if
the #DEQ request cannot be completely serviced because one or more resource ids
cannot be found.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded. In this case, the ERROR parameter functions the same as
IDNFXIT.

Example: The following example of the #DEQ statement releases the resource that
is identified in the program variable storage field labeled RESOURC3. Register 4
contains the length of the resource. If the resource cannot be found, control will be
returned to the routine NOTFOUND.

#DEQ RSCID=(RESOURC3, (4)),COND=IDNF, IDNFXIT=NOTFOUND

Chapter 6. Data Manipulation Language Statements 6-55

6.23 #DEQ

Status codes: By default, the #DEQ is unconditional. Error conditions that can

occur are described below. If one or more resources cannot be found, the issuing task
will abend. You can avoid an abend by specifying the COND parameter, requesting
the DC/UCF system to return control to the issuing program.

After completion of the #DEQ request, the value in register 15 indicates the outcome
of the operation.

Register 15 Meaning

value

X'00' The request has been serviced successfully.

X'04' At least one resource ID (RSCID) could not be found; all that were

located have been dequeued.

6-56 CA-IDMS DML Reference — Assembler

6.24 @DISCON

6.24 @DISCON

The @DISCON statement cancels the current membership of a specified record in a
set occurrence. The specified record must be defined as an optional member of the
named set.

Note: Native VSAM users — The @DISCON statement is not valid because all sets
in native VSAM data sets must be defined as mandatory automatic.

The following consideration apply:

® All areas affected, either explicitly or implicitly, by the @DISCON statement must
be readied with one of the update usage modes (see 6.57, “@READY” on
page 6-227 later in this chapter).

m After successful execution of the @DISCON statement, you can no longer access
the specified record through the set for which membership was canceled.
However, you can access the disconnected record through all the other sets in
which it participates as a member, or if it has a location mode of CALC. ltis
always accessible by means of a complete scan of the area in which it participates
or directly through its db-key, if known.

Currency: Before execution of the @DISCON statement, the following
currency-related conditions must be satisfied:

m The specified record must be established as current of its record type.

m The specified record must currently participate as a member in an occurrence of

the named set.

A successfully executed @DISCON statement nullifies currency in the named set.
However, the next of set and prior of set are maintained, thereby enabling continued
access within the set. The disconnected record is current of run unit, its record type,
and its area.

Syntax

v

»»—— @EDISCON REC=record-name

A\
A

»—— ,SET=set-name

Parameters

REC=
Disconnects the specified record from the named set.

record-name
Must be a record included in the subschema and must be defined as an optional
member of the specified set.

SET=
Specifies the set from which the named record will be disconnected.

Chapter 6. Data Manipulation Language Statements 6-57

6.24 @DISCON

set-name
Must be a set included in the subschema.

Example: The following example demonstrates the use of the @DISCON statement
to remove an EMPLOYEE record from the OFFICE-EMPLOYEE set occurrence. The
EMPLOYEE record remains a member in the other set occurrences in which it
participates:

MVC OFFCODE,=CL4'3200'

OFIND CALC,REC='OFFICE'

@FIND FIRST,REC='EMPLOYEE',SET='OFFICE-EMPLOYEE'
ODISCON REC='EMPLOYEE',SET='OFFICE-EMPLOYEE'

The following figure illustrates the above example. To disconnect EMPLOYEE 4

from the OFFICE 1 occurrence of the OFFICE-EMPLOYEE set, enter the database on
OFFICE 1, establish EMPLOYEE 4 as current of the EMPLOYEE record type, and
disconnect it from the OFFICE-EMPLOYEE set.

DEPARTMENT OFFICE
410 IF |56 ICALC 450 IF |76 ICALC
DEPT-ID-0410 | DN OFFICE-CODE-045¢ | DN
ORG-DEMO-REGION ORG-DEMO-REGION
DEPT-EMPLOYEE OFFICE-EMPLOYEE
NPQ OA 10 OA
EMPLOYEE ASG(EMP-LAST-NAME-0415 ASC(EMP-LAST-NAME-0415
4 EMP-FIRST-NAME-0415) DL EMP-FIRST-NAME-0415) DL
EMPLOYEE
415 IF |116 ICALC
EMPLOYEE EMP-ID-0415 EX
28
EMP-DEMO-REGION

6-58 CA-IDMS DML Reference — Assembler

6.24 @DISCON

CURRENCIES:
RUN UNIT, RECCRD, SET, AREA

= >
8 /8/3
&
“ W 5 7 &
s/ /8818 ¢
wy &G 57
§5/4 /5 §/a /55
5 o & L w & fa) Q
s /@d/ &) L)E &S/
S Iy & &
g/ /&/)85/&/85/85/ 2
MVC OFFCODE,OFFCODIN
@FIND CALC, REC = "OFFICE’ ! 1 1 1
@FIND = 'OFFICE-EMPLOYEE’", FIRST,
REC = 'EMPLOYEE’ 4 4 1 4 4 1 4
@DISCON REC — 'EMPLOYEE”,
SET = 'OFFICE-EMPLQOYEE 4 4 1 4 | NPO 1 4

Status codes: After completion of the @DISCON function, the ERRSTAT field in
the IDMS communications block indicates the outcome of the operation.

Status code Meaning

1106 Currency has not been established for the named record.

1108 The named record is not in the subschema. The program has
probably invoked the wrong subschema.

1109 The specified record's area has not been readied in one of the three
update usage modes.

1110 The subschema specifies an access restriction that prohibits use of
the @DISCON statement.

1115 The @DISCON statement cannot be executed because the specified

record has been defined as a mandatory member of the set.

1121 An area other than the area of the specified record has been readied
with an incorrect usage mode.

1122 The specified record is not currently a member of the specified set.

Chapter 6. Data Manipulation Language Statements 6-59

6.25 #ENDPAG

6.25 #ENDPAG

The #ENDPAG statement terminates a map paging session, clears the scratch record
for the session, and clears the map paging options for the completed session. A
#STRTPAG/#ENDPAG pair encloses commands that handle a pageable map at
runtime.

» For more information on the #£STRTPAG statement, see 6.68, “4STRTPAG” on
page 6-261 later in this chapter.

Syntax
»»—— #ENDPAG B

L ,PLIST= SYSPLIST « |

L]
parameter-value-list-pointer
L ,MRBPGDS= —[MRBPGDS ¢« Jl
paging-request-block-pointer

Parameters
PLIST=

Specifies the location of the storage area in which the system will build the
#ENDPAG parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system will build
the #ENDPAG parameter list.

par ameter -value-list-pointer
A register that points to the area or the symbolic name of the area.

MRBPGDS=
Specifies the location of the 16-byte map paging request block.

MRBPGDS
(Default); is the symbolic name of the area in program variable storage in which
the map paging request block was copied by an #MRB DML statement.

paging-request-block-pointer
A register that points to the area or the symbolic name of the area that contains
the map paging request block.

Example: The following example of the #ENDPAG statement terminates a map
paging session that began with the #STRTPAG statement, clears the BACKPAG=YES
and FLAG=UPDATE map paging options, and specifies the address of the #ENDPAG
parameter list in register 3:

#STRTPAG MRB=(R4) ,BACKPAG=YES, FLAG=UPDATE
. (%%% MAP PAGING SESSION #%)

FENDPAG PLIST=(R3)

6-60 CA-IDMS DML Reference — Assembler

6.26 #ENQ

Status codes: The #ENDPAG statement is unconditional; any runtime error will
result in an abend of the issuing task.

Chapter 6. Data Manipulation Language Statements 6-61

6.26 #ENQ

6.26 #ENQ

The #ENQ statement acquires resources or tests for availability of a resource or list of
resources. Defined during installation, resources can be storage areas, common
routines, queues, and processor time.

An enqueued resource can be exclusive or shared:

» Exclusive specifies that the resource is owned exclusively by the issuing task and
is not available to any other tasks. The system prohibits other tasks from issuing
#ENQ requests for exclusive resources.

» Shared specifies that the resource is available for use by all tasks. The system
allows other tasks to issue nonexclusive #ENQ requests for the resources,
permitting the resources to be shared.

An exclusive #ENQ request prohibits another task from enqueuing a resource by name;
however, it does not prohibit the use of the resource by another task. Therefore, to
effect queue resource protection, you must apply the enqueue/dequeue mechanism
consistently, according to your site standards.

6-62 CA-IDMS DML Reference — Assembler

6.26 #ENQ

Syntax

PP—m— #ENQ RSCID=
label

»— (resource-id-pointer)
|— ,resource-id-Tength J i: ,E j
,S

v

v

» >
>

L ,PLIST= SYSPLIST « |
L]
parameter-value-list-pointer

B Q
ES

» >
>

L, conn- NO ¢
'j AL —— |
(RSNA ——)—

r
—[DEAD

\ 4

\

L ,RSNAXIT=resource-not-available-label i

\ 4
\4

L ,DEADXIT=deadlock-Tabel]

\ 4
v

l— ,ERROR=error-Tlabel J

»
>

\4
A

L ,FREEXIT=test-is-free-label J

Parameters

RSCID=
Names one or more resources to be acquired or tested, specifies the length of each
resource, and designates the resource as exclusive or shared.

resour ce-id-pointer
Specifies the 1- to 256-character ID associated with a resourcereJivece-id
can be a register that points to a field that contains the id, the symbolic name of a
user-defined field that contains the ID, or the ID literal enclosed in quotation
marks. Any resource name can be specified, provided that all programs accessing
the resource use the same name.

resour ce-id-length
Specifies the length of the resource Fesource-id-length is a register that
contains either the length, the symbolic name of a fullword, halfword, or
byte-length user-defined field that contains the length, or an absolute expression.
You need not specify the length of the IDrésource-id-pointer is provided as a
literal enclosed in quotation marks.

Chapter 6. Data Manipulation Language Statements 6-63

6.26 #ENQ

E/S
Assigns the exclusive (E) (default) or shared (S) attribute to the named resource.

Note: Multiple RSCID parameters must be in successive order, separated by
commas.

PLIST=
Specifies the location of the storage area in which the system will build the #ENQ
parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system will build
the #ENQ parameter list.

par ameter-value-list-pointer
Either a register that points to the area or the symbolic name of the area in which
the system will build the #ENQ parameter list.

The size of the parameter-list area, in fullwords, is equal to:
1+3P+ ((R+3)/4)

where:

® P is the number ofesource-id specifications in the RSCID parameter
(described above).

®» R is the number ofesource-id-length specifications named in register
notation for the RSCID parameter.

Thus, if four resource IDs are specified and three are identified using register
notation, the length of this storage area is 15 fullwords. In this case the calculated
value of 14.5 was rounded up to a whole number. Calculated values are always
roundedup to the nearest whole number, regardless of the remainder value.

TYPE=
Specifies whether the issuing task is to test a resource for availability or request
acquisition of a resource:

ACQUIRE
(Default); requests that the system acquire the specified resources.

TEST
Requests that the system test the availability of the specified resource.

COND=
Specifies whether this #ENQ request is conditional and under what conditions
control should be returned to the issuing program. Only acquire requests can be
conditional; this parameter shoutdt be specified when testing the enqueue status
of a resource.

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the #ENQ cannot
be serviced for any of the reasons listed below.

6-64 CA-IDMS DML Reference — Assembler

6.26 #ENQ

condition
Specifies specific conditions you can test for. Multiple conditions must be
enclosed in parentheses and separated by commas.

RSNA
Specifies that control is returned if any of the requested resources is not available
in the usage mode requested.

DEAD
Specifies that control is returned if a requested resource cannot be enqueued
immediately because of an unavailable condition, and or to wait would cause a
deadlock.

RSNAXI T=resour ce-not-available-label
Specifies the symbolic name of a routine to which control should be returned if
the #ENQ request cannot be serviced because at least one of the requested
resources is not available.

DEADXIT=deadlock-label
Specifies the symbolic name of a routine to which control should be returned if
the #ENQ request cannot be serviced because one of the requested resources
cannot be enqueued immediately, and if to wait on its availability would cause a
deadlock.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

FREEXIT=test-is-free-label
(Test requests only); specifies the symbolic nhame of a routine to which control
should be returned if at least one of the resources is free.

Example: The following example of the #ENQ statement tests for the availability of
a resource. Register 5 contains the address of the field that contains the resource id,
the user-defined field LENGTH contains the length of the resource id, and if the test
indicates the resource is free, control is returned to the routine labeled GETRTN:

#ENQ RSCID=(R5),LENGTH,TYPE=TEST,FREEXIT=GETRTN

Status codes: By default, anacquire #ENQ is unconditional. Error conditions that
can occur are described below:

® A resource-not-available condition, caused when at least one of the resources
cannot be acquired by the issuing task, will result in a delay until the resource
becomes available (unless such a wait would cause a deadlock).

® A potential deadlock condition, caused when a wait on a resource would cause a
deadlock, will result in an abend of the issuing task.

You can request return of control with the COND parameter while processing an
acquire #ENQ to avoid a delay or an abend.

Chapter 6. Data Manipulation Language Statements 6-65

6.26 #ENQ

By default, atest #ENQ is unconditional. The return code, contained in register 15,
indicates the outcome of the test. Control is returned to the next instruction in the
issuing program following the #ENQ. Through the FREEXIT parameter, however,
you can request a return of control to a specific label or routine in the event that at
least one of the resources tested is free.

After completion of the #ENQ request, the value in register 15 indicates the outcome

of the operation.

Register 15
value

#ENQ Type/M eaning

X'00'

ACQUIRE

All requested resources have been acquired.

TEST

All test resources have already been enqueued by the issuing task
with the exclusive/shared option indicated by the test request.

X'04'

ACQUIRE

At least one of the resources indicated is currently owned by
another task and is not available for the exclusive/shared option
specified; no new resources have been acquired.

TEST

At least one of the tested resources is owned by another task and is
not available to this task for the exclusive/shared option specified.

X'08'

ACQUIRE
Not applicable.

TEST

At least one of the tested resources is not already owned by any
task and is available for the exclusive/shared option specified.

x'oc

ACQUIRE

A requested resource could not be enqueued immediately and to
wait would cause a deadlock; no new resources have been
acquired.

TEST
Not applicable.

6-66 CA-IDMS DML Reference — Assembler

6.27 @ERASE

6.27 @QERASE

The @ERASE statement performs the following functions:

» Disconnects the specified record from all set occurrences in which it participates
as a member and physically deletes the record from the database

m Optionally erases all records that are mandatory members of set occurrences
owned by the specified record

m Optionally disconnects or erases all records that are optional members of set
occurrences owned by the specified record

Erasure is a two-step process that first cancels the existing membership of the specified
record in specific set occurrences and then releases for reuse the space occupied by the
named record and its db-key. Erased records are unavailable for further processing by
any DML statement.

Before using the @ERASE statement, you must ready all the areas affected, either
implicitly or explicitly, in one of the three update usage modes (see 2.2, “Dictionary
usage mode” on page 2-4).

Currency: Before execution of the @ERASE statement, the following
currency-related conditions must be satisfied:

m All sets in which the specified record participates as owner either directly or
indirectly (for example, as owner of a set with a member that is owner of another
set) and all member record types in those sets must be included in the subschema
in use.

® The named record must be established as current of run unit.

Following successful execution of an @ERASE statement, currency is nullified for all
record types both explicitly and implicitly involved in the erase and for all sets in
which erased records participate. Run unit and area currency remain unchanged.

Note: Native VSAM users — When the @ERASE statement is used against a native
VSAM area, the area currency changes and reflects the next record in the native
VSAM area.

An attempt to retrieve erased records results in an error condition. However, if the
erased record was reached by walking the set occurrence of the erased record, the prior
of set is maintained for the erased record, whether or not prior pointers were defined

for that set. (The next of set is also maintained, as usual). Also, CA-IDMS/DB
maintains the next, prior, and owner pointers for the last erased record occurrence that
participates as a member in any other set occurrence not the object of the @ERASE.

In this case, you can retrieve the next or prior records in the area, or the next, prior, or
owner records in the set in which the erased record participated.

Syntax

Chapter 6. Data Manipulation Language Statements 6-67

6.27 @ERASE

»—— QGERASE= REC
—E PERMANENT —

»— ,REC=record-name

v

SELECTIVE —
ALL

v
A

Parameters

REC/PERMANENT/SELECTIVE/ALL,REC=record-name

Erases a record from the database.

REC

Erases the specified record if it is not an owner of any member records. An error
condition results if the named record is the owner of any nonempty set
occurrences.

Note: Native VSAM users — @ERASE REC,REQ=cord-name is the only
form of the @ERASE statement valid for records in a native VSAM KSDS or
RRDS; no form of the @ERASE statement is allowed for a native VSAM
entry-sequenced data set (ESDS).

PERMANENT

Erases the specified record and all mandatory member record occurrences owned
by that record. Optional member records are disconnected. If any of the erased
mandatory members are themselves the owners of any set occurrences, the
@ERASE statement is executed on such records as if they were directly the
named record of an @ERASE PERMANENT statement (that is, all mandatory
members of such sets are also erased). This process continues until all (direct and
indirect) members have been processed.

Note: The statement ERASE/PERMANENT/SELECTIVE/ALL cannot be used
where there exists a cyclical relationship between two or more of the records that
are to be erased. The following describes a cyclical set relationship:

REC-A owns REC-B in the A-B set
REC-B owns REC-C in the B-C set
REC-C owns REC-B in the C-B set

(cyclical relationship between REC-B and REC-C)

Junction records should be used to define the needed relationships.

SELECTIVE

Erases that record and all mandatory member record occurrences owned by the
specified record. Optional member records are erased if they dmimently

participate as members in other set occurrences. All erased records that are
themselves the owners of any set occurrences are treated as if they were the object
of an @ERASE SELECTIVE statement.

ALL

Erases the specified record and all mandatory member record occurrences owned
by the specified record. All erased records that are themselves the owners of any
set occurrences are treated as if they were the specified record of an @ERASE
ALL statement.

6-68 CA-IDMS DML Reference — Assembler

6.27 @ERASE

LANGUAGES

REC=record-name
A record included in the subschema. The curremecdrd-name must be current
of run unit.

Example
QERASE PERMANENT,REC='DEPT'

@ERASE SELECTIVE,REC='TCHR'

@ERASE ALL,REC='TCHR'

The sample employee database affords no appropriate examples of these parameters; a
sample high school database is used instead. The outcome of the @ERASE statement
varies, based on the qualifier specified (PERMANENT, SELECTIVE, or ALL).

Although all three qualifiers cause all mandatory members owned by the specified
record to be erased, they differ in their effect on optional members.

SPIRO
TUTUO

DEPT TCHR
oA
MA OA
NS SUBJ CLASS
MA

Chapter 6. Data Manipulation Language Statements 6-69

6.27 @ERASE

SPIRO
TUTUO

FOREIGN
LANGUAGES

@ERASE PERMANENT,REC="DEPT'

{assuming that FOREIGN LANGUAGES is
current of run unit)

The teachers will be reassigned to cther
departments.

Erases the foreign language record and
all mandatory members; disconnects
optional members.

The Fareign Languages Department can no
longer be funded, so it is deleted from the
database along with its subjects and classes.

Status codes: After completion of the @ERASE function, the ERRSTAT field in
the IDMS communications block indicates the outcome of the operation.

Status code

M eaning

0000

The request has been serviced successfully.

0208

The named record is not in the specified subschema, or the record
name has been misspelled.

0209

The specified record's area has not been readied in one of the three
update usage modes.

0210

The subschema specifies an access restriction that prohibits use of
the @ERASE statement. For integrated indexing users, this code
can also indicate use of an invalid form of the @ERASE statement.

0213

A current record of run unit has not been established or has been
nullified by a previous @ERASE statement.

0217

A db-key has been encountered that contains a long-term
permanent lock.

0220

The current record of run unit is not the same type as the specified
record.

0221

An area other than the area of the named record has been readied
with an incorrect usage mode.

6-70 CA-IDMS DML Reference — Assembler

6.27 @ERASE

Status code

Meaning

0225

Currency has not been established. For integrated indexing users,
this usually indicates that an @FIND statement has been issued for
an indexed record and followed by an @ERASE statement for the
same record. Only an @OBTAIN statement updates index set
currencies.

0226

A broken chain has been encountered in the process of executing
an @ERASE ALL, PERMANENT, or SELECTIVE statement.

0230

An attempt has been made to erase the owner record of a nonempty
set.

0233

Erasure of the record occurrence is not allowed in this subschema,
or all sets in which the record participates have not been included
in the subschema.

0237

There are cyclical set relationships present under the target record
of the erase verb

0260

A record occurrence has been encountered whose type is
inconsistent with the set named in the ERRORSET field of the
IDMS communications block; probable causes could be a broken
chain or improper database descriptions.

0261

No record can be found for an internal db-key. This code usually
indicates a broken chain.

Chapter 6. Data Manipulation Language Statements 6-71

6.28 @ERASE (LRF)

6.28 @ERASE (LRF)

The @ERASE statement can also be used to delete logical record occurrences. The
@ERASE statement does not necessarily result in the deletion of all or any of the
database records used to create the specified logical record; the path selected to service
an @ERASE logical-record request performs whatever database access operations the
DBA has specified to service the request.

LRF uses field values present in the variable-storage location reserved for the logical
record to update the database. You can specify an alternative storage location from
which LRF is to take field values to make the appropriate updates to the database.

Syntax

»»>—— QERASE REC=1ogical-record-name >

v

»
| 2

L ,IOREA=alt-logical-record-location]

A\
v

|— ,ONLRSTS=path-status,GOTO=branch-location J

>
>

\4
A

L ,WHERE boolean-expression |

Parameters

REC=logical-record-name
Deletes the named logical record. Unless the IOAREA clause (below) is included,
LRF uses field values present in the variable-storage location reserved for the
logical record to make any necessary updates to the database.
Logical-record-name must specify a logical record defined in the subschema.

| OAREA=alt-logical-recor d-location
Identifies an alternative variable-storage location from which LRF is to obtain
field values to perform the appropriate database updates in response to this
statement. When erasing a logical record that has previously been retrieved into
an alternative storage location, you should use the IOAREA parameter to name the
same location specified in the @OBTAIN request. If the IODAREA parameter is
included in the @ERASE statemealt-logical-record-location must identify a
record location defined in the program.

ONL RST S=path-status,GOT O=branch-location
Tests for the indicated path status.p#th-status results from this @ERASE
statement, the action specified by GOHoanch-location is performed.
Path-status must be a literal (1-16 bytes) enclosed in quotation marks or a
program variable.

WHERE boolean-expression
Specifies the selection criteria to be applied to the specified logical record. For
more information on the WHERE clause, see 6.74.1, “WHERE clause” on
page 6-309 later in this chapter.

6-72 CA-IDMS DML Reference — Assembler

6.28 @ERASE (LRF)

Example: The example below illustrates a request to erase the OFFEMPLR logical
record for office 012's employee ID 1234.

In this example, the DBA has designated the keyword DELETE-EMPLOYEE to direct
the request to the path designed to retrieve the appropriate OFFEMPLR logical record
and to delete the indicated employee information from the database.

@ERASE REC=OFFEMPLR,
ONLRSTS="'NO-OFFICE',GOTO=END,
WHERE OFFCODE EQ '012'
AND EMPID EQ '1234'
AND DELETE-EMPLOYEE

* F * *

Status codes: When using LRF, the type of status code returned to the program in
the ERRSTAT field of the IDMS communications block differs according to the type
of error. If the error occurs in tHegical-record path, the ERRSTAT field contains a
status code issued by CA-IDMS/DB with a major code from 00 to 19. For a list of
these codes, see 3.2.2, “ERRSTAT field and codes” on page 3-11.

When the error occurs in the request itself, LRF returns the path status LR-ERROR to
the LRSTAT field of the LRC block and places a status code with a major code of 20
in the ERRSTAT field of the IDMS communications block.

Chapter 6. Data Manipulation Language Statements 6-73

6.29 @FIND/@OBTAIN statements

6.29 @FIND/@OBTAIN statements

The @FIND and @OBTAIN statements are used to access database records:

» @FIND locates a record occurrence in the database, but does not move it into
program variable storage.

= @OBTAIN locates the record occurrence in the database and moves it into
program variable storage.

Six formats: @FIND and @OBTAIN have six different formats:

. @FIND/@OBTAIN CALC/DUPLICATE accesses a record occurrence using its
CALC-key value.

. @FIND/@OBTAIN CURRENT accesses a record occurrence using previously
established currencies.

. @FIND/@OBTAIN DBKEY accesses a record occurrence using a db-key that
was previously saved by the program.

. @FIND/@OBTAIN OWNER accesses the owner of a set occurrence.

= @QFIND/@OBTAIN USING SORT KEY accesses a record occurrence in a
sorted set, using its sort-key value.

= @FIND/@OBTAIN WITHIN SET/AREA accesses a record occurrence based
either on the record's logical location in a set or on its physical location in an
area.

Each of these @FIND/@OBTAIN statements is discussed on the following pages.

6.29.1 @FIND/@OBTAIN CALC/DUPLICATE

The @FIND/@OBTAIN CALC/DUPLICATE statement accesses a record based on
the value of an element in the record defined as a CALC-key. The requested record
must be stored in the database with a location mode of CALC. Before issuing the
@FIND/@OBTAIN CALC/DUPLICATE statement, you must initialize a field in
program variable storage with the CALC-key value.

You can use the DUPLICATE option to access records with the same CALC-key
value as the record that is current of record type, provided that an @FIND/@OBTAIN
CALC statement has previously accessed an occurrence of the same record type.

Currency: You do not need to establish currency before executing a
@FIND/@OBTAIN CALC statement. However, record currency must be established
by a prior @FIND/@OBTAIN CALC statement before executing a
@FIND/@OBTAIN DUPLICATE statement.

Following successful execution of an @FIND/@OBTAIN CALC/DUPLICATE
statement, the accessed record becomes the current record of run unit, its area, its
record type, and all sets in which it currently participates as member or owner.

6-74 CA-IDMS DML Reference — Assembler

6.29 @FIND/@OBTAIN statements

Syntax

@FIND CALC
@OBTAIN J L ANY |
DUPLICATE

v

v

»—— REC=record-name

L ,KEEP= T SHARED —_IJ
EXCLUSIVE

Parameters

CALC/DUPLICATE,REC=record-name
Accesses the record specified iegord-name using the value of its CALC-key.

CALC
Accesses the first or only occurrence of the designated record type whose
CALC-key matches the value of the CALC data item in program variable storage.
ANY is a synonym of CALC.

DUPLICATE
Accesses the next record with the same CALC-key value as the current record
type. Use of the DUPLICATE option requires prior selection of an occurrence of
the same record type with the CALC option. If the value of the CALC-key in
variable storage is not equal to the CALC-key field of the current of record type, a
status code of 0332 is returned.

v
A

REC=record-name
Names the record being access@&cord-name can be a register containing the
name of the record or a user-supplied value enclosed in quotation marks.

KEEP=
Optionally places a shared or exclusive lock on the accessed record.

SHARED
Places a shared lock on the specified record.

EXCLUSIVE
Places an exclusive lock on the specified record.

Example: To retrieve an occurrence of the EMPLOYEE record with the
@FIND/@OBTAIN CALC/DUPLICATE statement, you must first initialize a field in
program variable storage with the CALC-control element. The following statements
initialize the CALC field EMPID and retrieve an occurrence of the EMPLOYEE
record:

MVC EMPID,INEMPID
@OBTAIN CALC,REC='EMPLOYEE'

Status codes: After completion of the @FIND/@OBTAIN CALC/DUPLICATE
function, the ERRSTAT field in the IDMS communications block indicates the
outcome of the operation:

Chapter 6. Data Manipulation Language Statements 6-75

6.29 @FIND/@OBTAIN statements

Status code M eaning

0000 The request has been serviced successfully.

0301 The area in which the named record participates has not been
readied.

0306 A successful @FIND/@OBTAIN CALC has not yet been executed

(applies to the DUPLICATE option only).

0308 The specified record is not in the subschema. The program has
probably invoked the wrong subschema, or the record name has
been misspelled.

0310 The subschema specifies an access restriction that prohibits
retrieval of the named record.

0318 The record has not been bound.

0326 The record or integrated indexing entry cannot be found, or no
more duplicates exist for the named record.

0331 The retrieval statements format conflicts with the record's location
mode.

0332 The value of the CALC data item in program variable storage does

not equal the value of the CALC data item in the current record
(applies to the DUPLICATE option only).

0364 The CALC control element has not been described correctly either
in the program or in the subschema.

0370 A database file will not open properly.

When the KEEP parameter is specified a major code of 06 will be returned if an error
occurs during the KEEP processing. The major code of 03 states that an error has
occurred in the @FIND/@OBTAIN processing.

6.29.2 @FIND/@OBTAIN CURRENT

The @FIND/@OBTAIN CURRENT statement accesses the record that is current of its
record type, set, or area. This form of the @FIND/@OBTAIN verb is an efficient
means of establishing the proper record as current of run unit before executing a DML
verb that utilizes run-unit currency (for example, @ACCEPT, @IF, @GET,

@MODIFY, or @ERASE).

Currency: Following successful execution of an @FIND/@OBTAIN CURRENT
statement, the accessed record is current of run unit, its area, its record type, and all

sets in which it currently participates as member or owner.

Syntax

6-76 CA-IDMS DML Reference — Assembler

6.29 @FIND/@OBTAIN statements

\4

@FIND T CURRENT
@OBTAIN

v

\ 4

,REC=record-name —
,SET=set-name
,AREA=area—name —

L ,KEEP: —E SHARED tl—'
EXCLUSIVE

Parameters

\
A\
A

@FIND/@OBTAIN CURRENT
Accesses the record occurrence that is current of run unit.

REC=record-name/SET=set-name/AREA=ar ea-name
Specifies that the current record of the named record type, set, or area is to be
accessed.

REC=
Accesses the record that is current of run unit.

record-name
A register containing the record name, a user-defined variable field, or a
user-supplied value enclosed in quotation marks.

SET=
Accesses the set that is current of run unit.

set-name
A register containing the set name, a user-defined variable field, or a user-supplied
value enclosed in quotation marks.

AREA=
Accesses the area that is current of run unit.

area-name
A register containing the area name, a user-defined variable field, or a
user-supplied value enclosed in quotation marks.

KEEP=
Places a shared or exclusive lock on the accessed record.

SHARED
Places a shared lock on the specified record.

EXCLUSIVE
Places an exclusive lock on the specified record.

Example: The following figure illustrates the use of the @FIND/@OBTAIN
CURRENT statement to establish a record as current of run unit before that record is
modified. (See 6.48, “@MODIFY” on page 6-176 later in this chapter for a complete
description of the @MODIFY verb and its use.) Enter the database on
DEPARTMENT 5100 by using CALC retrieval. Then examine EMPLOYEE 466 and
obtain further information from its owner OFFICE record. OFFICE 8 becomes current

Chapter 6. Data Manipulation Language Statements 6-77

6.29 @FIND/@OBTAIN statements

of run unit. Before modifying EMPLOYEE 466, you must issue the @FIND
CURRENT statement to reestablish EMPLOYEE 466 as current of run unit.

DEPARTMENT

OFFICE

a0 |F s Jcac

40 |F J7s Jeac

DEPT-ID-0410

Jon

OFFICE-CODE-045¢ IDN

ORG-DEMO-REGION

ORG-DEMQ-REGION

DEPT-EMPLOYEE

OFFICE-EMPLOYEE

10 OA
ASC(EMP-LAST-NAME-0415
EMP-FIRST-NAME-0415) DL

NPQ CA
ASC(EMP-LAST-NAME-0415
EMP-FIRST-NAME-0415) DL

EMPLOYEE
466

EMPLOYEE
467

EMPLOYEE

415 |F J11s Joac
EMP-ID-0415
EMP-DEMO-REGION

EMPLOYEE
457

|EX

CURRENCIES:
RUN UNIT, RECORD, SET, AREA

@ = =
(&) O
w [¥)G)&
u Q s uy
i 3 a x o
' it Q)
- £/g /5 /58
< ~ A 1y ") iy Ly
) @ e) & Q fa)
=/ &/ &)/ E /L) S/
5 4j Iy 4 Iy s
@ s} & o Q S] o &
MVC DEPTID,DEPTIN 5100 | 5100 5100 5100
@OBTAIN CALC, REC = 'DEPARTMENT'
@OBTAIN FIRST, 466 | 5100 | 466 466 | 466 | 5100 | 466
SET="DEPT-EMPLOYEE’
@OBTAIN OWNER, 8| 5100 | 466 8| 466 8 8| 466
SET ="OFFICE-EMPLOYEE’
@FIND CURRENT, REC="EMFLOYEE',| 466 | 5100 166 8 466 466 8| 466
SET ='DEPT-EMPLOYEE'
@MODIFY REC ="EMPLOYEE® 466 | 5100 | 466 8 | 466 | 466 8 | 466

Status codes: After completion of the @FIND/@OBTAIN CURRENT function,
the ERRSTAT field in the IDMS communications block indicates the outcome of the

operation:
Status code M eaning
0000 The request has been serviced successfully.

6-78 CA-IDMS DML Reference — Assembler

6.29 @FIND/@OBTAIN statements

Status code Meaning

0301 The area in which the named record participates has not been
readied.

0306 Currency has not been established for the named record, set, or
area.

0308 The specified record is not in the subschema. The program has

probably invoked the wrong subschema.

0310 The subschema specifies an access restriction that prohibits
retrieval of the named record.

0313 A current record of run unit has not been established or has been
nullified by a previous @ERASE statement.

0323 The area name specified has not been included in the subschema
invoked.

When the KEEP parameter is specified, a major code of 06 will be returned if an error
occurs during the KEEP processing. The major code of 03 states that an error has
occurred in the @FIND/@OBTAIN processing.

6.29.3 @QFIND/@OBTAIN DBKEY

The @FIND/@OBTAIN DBKEY statement accesses a record occurrence directly by
using a database key that has been stored previously by the program. You can use the
DML @ACCEPT verb (see 6.5, “@ACCEPT DBKEY FROM CURRENCY” on

page 6-13 and 6.6, “@ACCEPT DBKEY RELATIVE TO CURRENCY” on

page 6-15, earlier in this chapter) or an Assembler assignment statement to save a
db-key. In this manner, you can directly access any record in the program's
subschema regardless of its location mode. Additionally, the DML @ACCEPT
PGINFO verb (see 6.7, “@ACCEPT PGINFO” on page 6-17, earlier in this chapter)
may be used to save page information that may be used to directly access the record
from a specific page group when the Mixed Page Binds Allowed feature is used. (See
the CA-IDMS Database Administration manual for more information about the Mixed

Page Group Binds Allowed feature.)

Note: Native VSAM users — This statement is not valid for accessing data records
in a native VSAM key-sequenced data set (KSDS).

Currency: Currency is not used to determine the location of the record specified in
the @FIND/@OBTAIN DBKEY statement; the record is identified by its db-key and,
optionally, by its record name.

Following successful execution of an @FIND/@OBTAIN DBKEY statement, the
accessed record becomes the current record of run unit, its area, its record type, and all
sets in which it currently participates as member or owner. The RECNAME field of

the IDMS communications block is updated with the name of the accessed record.

Chapter 6. Data Manipulation Language Statements 6-79

6.29 @FIND/@OBTAIN statements

Syntax
> @FIND >
@OBTAIN il

I— ,KEEP= —|: SHARED —4|—‘
EXCLUSIVE

»—— DBKEY=db-key

A\
A

L ,PGINFO=pg-info JJ
DBKEY=db-key

L REC=record-name]

Parameters

@FIND/@OBTAIN DBKEY=db-key
Accesses a record directly by using a db-key value contained in program variable
storage.

db-key
Identifies the location in program variable storage that contains a db-key
previously saved by the program. If a record name is specifiekey must
contain the db-key of an occurrence of the named record type. If a record name is
not specifieddb-key can contain the db-key of an occurrence of any record type
in the subschemaDb-key must identify a binary fullword synchronized field; it
can be a register or a user-defined variable.

KEEP=
Places a shared or exclusive lock on the accessed record:

SHARED
Places a shared lock on the specified record.

EXCLUSIVE
Places an exclusive lock on the specified record.

PGINFO=pg-info
Specifies page information that is used to determine the area with which the
db-key is associated. If not specified, the page information associated with the
record that is current of rununit is used.

Note: Page information is only used if the subschema includes areas that have
mixed page groups; otherwise, it is ignored.

Pg-info, a four-byte field that is made up of two halfword fields, identifies the
location in variable storage that contains the page information previously saved by
the program.

Page information is returned in the PGINFO field in the subschema control area if
the subschema includes areas in mixed page groups. Page information may also
be returned using an @ACCEPT PGINFO statement.

REC=record-name
Optionally identifies the record type of the requested recBeatord-name must
identify a record that is included in the subschema; it can be a register, a
user-defined variable, or a user-supplied variable enclosed in quotes.

6-80 CA-IDMS DML Reference — Assembler

6.29 @FIND/@OBTAIN statements

Example: The following @FIND statement locates an occurrence of the
EMPLOYEE record whose db-key matches the value of a field in program variable
storage called SAVEDKEY.

The located record becomes current of run unit, current of the EMPLOYEE record
type, current of the DEPT-EMPLOYEE, OFFICE-EMPLOYEE, and all other sets in
which it currently participates as member or owner, and current of the
ORDER-REGION area.

@FIND DBKEY=SAVEDKEY,REC='EMPLOYEE'

Status codes: After completion of the @FIND/@OBTAIN DBKEY function, the
ERRSTAT field in the IDMS communication block indicates the outcome of the

operation.

Status code Meaning

0000 This request has been serviced successfully.

0301 The area in which the named record participates has not been
readied.

0302 The db-key is inconsistent with the area in which the record is
stored. The db-key has not been initialized properly, or the record
name is incorrect.

0308 The requested record is not in the subschema. The program has
probably invoked the wrong subschema.

0310 The subschema specifies an access restriction that prohibits
retrieval of the named record.

0326 The specified record cannot be found.

0370 A database file will not open properly.

When the KEEP parameter is specified as part of an @FIND/@OBTAIN statement, a
major code of 06 will be returned if an error occurs during the KEEP processing (see
6.39, “@KEEP” on page 6-122 later in this chapter). The major code of 03 states that
an error has occurred in the @FIND/@OBTAIN processing.

6.29.4 @FIND/@OBTAIN OWNER

The @FIND/@OBTAIN OWNER statement accesses the owner record of the current
set occurrence. You can use this statement to retrieve the owner record of any set
whether or not that set has been assigned owner pointers.

Note: Native VSAM users — The @FIND/@OBTAIN OWNER statement is not
valid since the owner records are not defined in native VSAM data sets.

Chapter 6. Data Manipulation Language Statements 6-81

6.29 @FIND/@OBTAIN statements

Currency: To execute an @FIND/@OBTAIN OWNER statement, currency must be
established for the specified set.

Note: When a record declared as an optional or manual member of a set is retrieved,
it is not established as current of set if it is not currently connected to the named set.

A subsequent attempt to retrieve the owner record will instead locate the owner of the
current record of set. In such cases, you should determine whether the retrieved record
is actually a member of the named set before issuing the @FIND/@OBTAIN OWNER
statement. The @IF statement (see 6.38, “@IF” on page 6-119 in this chapter) can be
used for this purpose.

Following successful execution of an @FIND/@OBTAIN OWNER statement, the
accessed record becomes the current record of run unit, its area, its record type, and all
sets in which it currently participates as member or owner. If the current record of set
is the owner record when the statement is executed, currency in the specified set
remains unchanged.

Syntax
> @FIND] OWNER >
@OBTAIN

v

»—— ,SET=set-name

|_ ,KEEP= —[SHARED tl—‘
EXCLUSIVE

Parameters

@FIND/@OBTAIN OWNER
Accesses the owner record of the specified set occurrence.

\
A

SET=set-name
Names the set whose owner record is to be retrie@etdname must be a set
included in the subschema; it can be a register, a user-defined variable, or a
user-supplied variable enclosed in quotes.

KEEP=
Places a shared or exclusive lock on the accessed record:

SHARED
Places a shared lock on the accessed record.

EXCLUSIVE
Places an exclusive lock on the accessed record.

Example: The following figure provides an example of how you would use the
@OBTAIN OWNER statement, in conjunction with other @OBTAIN statements, to
navigate the database and access the owner record of the OFFICE-EMPLOYEE set
from the owner record occurrence of the DEPT-EMPLOYEE set.

6-82 CA-IDMS DML Reference — Assembler

6.29 @FIND/@OBTAIN statements

DEPARTMENT OFFIGE
EMPLOYEE a0 |F s Jcac aso |F J7e Jcac
158 DEPT-ID-0410 | DN OFFICE-CODE-0450 | DN
ORG-DEMO-REGION ORG-DEMO-REGION

OFFICE-EMPLOYEE

10 QA

ASC(EMP-LAST-NAME-0415
EMP-FIRST-NAME-0415) DL

DEPT-EMPLOYEE

NPQO GA

ASC(EMP-LAST-NAME-0415
EMP-FIRST-NAME-0415) DL

EMPLOYEE
69

EMPLOYEE

415 |F J11e Joac
EMP-1D-0415 DN
EMP-DEMO-REGION

EMPLOYEE
49

EMPLOYEE
100

CURRENCIES:
RUN UNIT, RECORD, SET, AREA

>/ =
& O o
g/5/8/) ¢
& 5 /a/ %/«
& Ly 5! Q o
£/ 5/ « §/lag /5 /5
= IS A . & Ly
35 @ [8) LU & K Fa) IS
s/ &)/ 2K/ 2] s/ 4
i) Ly [iy [y a
/8 /s /)s/4&8/5/8/) 3
MVC DEPTID.DEPTIN
@OBTAIN CALC, REC ='DEPARTMENT] 2000 | 2000 2000 2000
@OBTAIN FIRST, DEPT — "EMPLOYEE®
11 2000 11 11 11 2000 11
@OBTAIN OWNER, 2|2 11 2] M 2| 2| M
SET - 'OFFICE-EMPLOYEE’ 000

Status codes: After completion of the @FIND/@OBTAIN OWNER function, the
ERRSTAT field in the IDMS communications block indicates the outcome of the

operation.

Status code M eaning

0000 The request has been serviced successfully.

0301 The area in which the named record participates has not been
readied.

0306 Currency has not been established for the named record, set, or
area.

Chapter 6. Data Manipulation Language Statements 6-83

6.29 @FIND/@OBTAIN statements

Status code M eaning

0308 The named record or the named set is not in the subschema, or the
named record is not defined as a member of the named set. The
program has probably invoked the wrong subschema. or the record
name has been misspelled.

0310 The subschema specifies an access restriction that prohibits
retrieval of the named record.

0360 A record occurrence has been encountered whose record type is not
a member or owner of the set as it is defined in the subschema.

0370 A database file will not open properly

When the KEEP parameter is specified as part of an @FIND/@OBTAIN statement, a
major code of 06 will be returned if an error occurs during the KEEP processing (see
6.39, “@KEEP” on page 6-122 in this chapter). The major code of 03 states that an
error has occurred in the @FIND/@OBTAIN processing.

6.29.5 @FIND/@OBTAIN USING SORT KEY

The @FIND/@OBTAIN USING SORT KEY statement accesses a member record in a
sorted set. Sorted sets are ordered in ascending or descending sequence based on the
value of a sort-control element in each member record. The search begins with the
current of sebr the owner of the current of set, and always proceeds through the set

in the NEXT direction.

Before issuing this statement, you must initialize the sort-control element in program
variable storage. The selected record occurrence will have a key value equal to the
value of the sort-control element. If more than one record occurrence contains a sort
key equal to the key value in variable storage, the first such record will be selected.

Currency: Before execution of an @FIND/@OBTAIN USING SORT KEY
statement you have to establish currency for the specified set.

Following successful execution of an @FIND/@OBTAIN USING SORT KEY

statement, the accessed record becomes current of run unit, its area, its record type,

and all sets in which it currently participates as owner or member. If a member record
with the requested sort-key value is not found, the current of set is nullified but the

next of set and prior of set are maintained. The next of set is the member record with
the next higher sort-key value (or next lower for descending sets) than the requested
value; the prior of set is the member record with the next lower value (or higher for
descending sets) than requested. Because these currencies are maintained, the program
can walk the set to do a generic search on the sort-key value.

6-84 CA-IDMS DML Reference — Assembler

6.29 @FIND/@OBTAIN statements

Syntax

@FIND
@OBTAIN J

v

,REC=record-name
L CURRENT J

»—— ,SET=set-name >

\4

»—— USING=sort-field-name
l— ,KEEP= —E SHARED tl—‘
EXCLUSIVE

Parameters

@FIND/@OBTAIN,REC=record-name,SET=set=name
Accesses the named record in a sorted set. The search begins with the owner of
the current record of the specified s&ecord-name must be a record that is
defined in the subschema and that participates in the specified set.

CURRENT
Current indicates that the search begins with the currencies already established for
the specified set. If the key value for the record that is current of set is higher
than the key value of the specified record (assuming ascending set order), an error
condition results.

USING=
Specifies the sort-control element to be used in searching the sorted set.

\4
A

sort-field-name
The name of the sort-control element in the record or the name of a field in
program variable storage that contains the value of the sort-control element.

KEEP=
Places a shared or exclusive lock on the accessed record.

SHARED
Places a shared lock on the specified record.

EXCLUSIVE
Places an exclusive lock on the specified record.

Example: The following example illustrates the use of an @FIND/@OBTAIN
USING SORT KEY statement. Assume that the DEPT-EMPLOYEE set is ordered in
ascending sequence, based on the value stored in EMPNAME in each EMPLOYEE
record occurrence. The @FIND statement assumes that the user has previously
selected an occurrence of a DEPARTMENT record to establish the set currency.
Retrieval of an EMPLOYEE record with a name (last name, first name) equal to
IANDOLLI, LUIGI is accomplished by the following statements:

MVC EMPNAME,=CL25'IANDOLI, LUIGI'
@FIND REC='EMPLOYEE',SET='DEPT-EMPLOYEE',USING=EMPNAME

Status codes: After completion of the @FIND/@OBTAIN USING SORT KEY
function, the ERRSTAT field in the IDMS communications block indicates the
outcome of the operation.

Chapter 6. Data Manipulation Language Statements 6-85

6.29 @FIND/@OBTAIN statements

Status code M eaning

0000 The request has been serviced successfully.

0301 The area in which the named record participates has not been
readied.

0306 Currency has not been established for the named set.

0308 The named record or the named set is not in the subschema, or the

named record is not a member of the named set. The program has
probably invoked the wrong subschema.

0310 The subschema specifies an access restriction that prohibits
retrieval of the named record.

0326 The record cannot be found.

0331 The retrieval statement format conflicts with the record's location
mode.

0360 A record occurrence has been encountered whose record type is not
a member or owner of the set as it is defined in the subschema.

0361 A record cannot be found because of a broken chain in the
database.

0370 A database file will not open properly.

When the KEEP parameter is specified as part of an @FIND/@OBTAIN statement, a
major code of 06 will be returned if an error occurs during the KEEP processing (see
6.39, “@KEEP” on page 6-122 in this chapter). The major code of 03 states that an
error has occurred in the @FIND/@OBTAIN processing.

6.29.6 @FIND/@OBTAIN WITHIN SET/AREA

The @FIND/@OBTAIN WITHIN SET/AREA statement accesses records logically
based on set relationships or physically based on database location. The formats of
this statement allow you serial access to each record in a set or area, or selection of
specific occurrences of a given record type in a set or area.

Set currency: The following rules apply to currency and the selection of member
records in eset:

® The set occurrence used as the basis for the operation is determined by the current
record of the specified set. Set currency must be established before attempting to
access records in a set.

® The next or prior record in a set is the subsequent or previous record, respectively,
relative to thecurrent record of the named set in the logical order of the set. The
prior record in a set can be retrieved only if the set has been assigned prior
pointers.

6-86 CA-IDMS DML Reference — Assembler

6.29 @FIND/@OBTAIN statements

® The first or last record in a set is the first or last member occurrence in terms of
the logical order of the set. The record selected is the same as would be selected
if the current of set were the owner record and the next or prior record had been
requested. The last record in a set can be retrieved only if the set has prior
pointers.

» Thenth occurrence of a record in a set can be retrieved by specifying a sequence
number that identifies the position of the record in the set. CA-IDMS/DB begins
its search with thewner of the current of set for the specified set and continues
until it locates thenth record or encounters an end-of-set condition. If the
specified sequence number is negative, the search proceeds in the prior direction
in the set. Note, however, that prior pointers are required to exercise this option.

® When an end-of-set condition occurs, the owner record occurrence of the set
becomes the current record of run unit, current of its record type, current of its
area, and current of only the set involved in this operation. Currency of other sets
in which the specified record participates as owner or member remains unaffected.

Note: Note 1 If @OBTAIN has been specified, the contents of the owner record are
not moved to program variable storage (@OBTAIN under these circumstances is
treated as an @FIND).

Note: Note 2 (Native VSAM users): When an end-of-set condition occurs, all
currencies remain the same.

Area currency: The following rules apply to currency and the selection of records
in anarea:

m The first record occurrence in an area is the one with the lowest db-key; the last
record is the one with the highest db-key.

®m The next record in an area is the one with the next higher db-key relative to the
current record of the named area; the prior record is the one with the next lower
db-key relative to the current of area.

m The first, last, onth occurrence of a record in an area must be retrieved to
establish correct starting position before next or prior records are requested.

Following successful execution of an @FIND/@OBTAIN WITHIN SET/AREA
statement, the accessed record becomes the current record of run unit, its area, its
record type, and all sets in which it currently participates as member or owner.

Chapter 6. Data Manipulation Language Statements 6-87

6.29 @FIND/@OBTAIN statements

Syntax
> @FIND NEXT >
@OBTAIN PRIOR
FIRST
LAST
NTH

,SET=set-name _J >
,AREA=area-name

A\
v

L ,REC=record-name i

A\

v

L ,0CCUR=sequence -

I— ,KEEP= —|: SHARED —4|J
EXCLUSIVE

Parameters

NEXT/PRIOR/FIRST/LAST/NTH
Accesses a record based on its location in a set or area.

NEXT
Accesses the next record in the specified set or area relative to the current record
of the set or area.

PRIOR
Accesses the prior record in the specified set or area relative to the current record
of the set or area. The specified set must have prior pointers.

FIRST
Accesses the first record in the specified set or area.

LAST
Accesses the last record in the specified set or area. The specified set must have
prior pointers.

NTH
Accesses thath record in the specified set or area. NTH requires the use of the
OCCUR parameter (see below) to specify which record is to be accessed.

\ 4
\4
A

Note: Native VSAM users — FIRST, LAST, and NTH options are not allowed
for a native VSAM KSDS with spanned records.

SET=set-name/AREA=ar ea-name
Specifies the set or area to be searched.

SET=set-name
Specifies the name of the set that contains the record to be acc8aseane
must identify an set included in the subschema.

AREA=area-name
Specifies the name of the area that contains the record to be acctssedame
must identify an area included in the subschema.

6-88 CA-IDMS DML Reference — Assembler

6.29 @FIND/@OBTAIN statements

EMPLOYEE
69

EMPLOYEE
100

REC=
Specifies that in a set or area, only occurrences of the named record type will be
accessed.

record-name
Must be defined as a member of the specified set or contained in the specified
area.

OCCUR=
Identifies the position of the record in the set (that is, the numeric occurrence that
is associated with the keyword NTH).

uence

Must specify a positive or negative number that is stored in a humerical field used
by CA-IDMS/DB in searching for theth record occurrence. Hegquence specifies

a negative number, the specified set must have prior pointers.

KEEP=
Places a shared or exclusive lock on the accessed record.

SHARED
Places a shared lock on the specified record.

EXCLUSIVE
Places an exclusive lock on the specified record.

Example: The following example illustrates the retrieval of records in an occurrence
of the DEPT-EMPLOYEE set. The @FIND CALC statement establishes currency in
the DEPT-EMPLOYEE set. Member EMPLOYEE records are then retrieved by a
series of OBTAIN WITHIN SET statements. Note that when EMPLOYEE 106 is
retrieved, the end of the set is reached and the next OBTAIN statement positions the
program on the owner of the set, DEPARTMENT 2000.

DEPARTMENT
410 IF ISS ICALC

DEPT-ID-0410 | DN
EMPLOYEE ORG-DEMG-REGION
106
DEPT-EMPLOYEE
NPO OA
ASG(EMP-LAST-NAME-0415
EMP-FIRST-NAME-0415) DL
EMPLOYEE
415 IF |l16 ICALC
EMP-ID-0415 Jon
EMP-DEMO-REGION

Chapter 6. Data Manipulation Language Statements 6-89

6.29 @FIND/@OBTAIN statements

CURRENCIES:
RUN UNIT, RECOGRD, SET, AREA

<
&/ g S
g/ &)e &
s s/a/&)&
G 5 o o
s/ ¥/ /&) G /5 /) s
< I Py T Uy &y 4
- & 9 IS 8] 2 Q
@ Q us Q Q Q [
MVC DEPTID,DEPTIN
2000 | 2000 2000 2000

@FIND CALC, REC ='DEPARTMENT"

@OBTAIN FIRST,
SET ="'DEPT-EMPLOYEE'

69 (2000 69 69 69 | 2000 69

@OBTAIN NEXT,
SET ="'DEPT-EMPLOYEE'

100 | 2000 100 100 100 | 2000 100

@OBTAIN NTH,

SET ="DEPT-EMPLOYEE’, OCCUR=FIVE

106 | 2000 106 106 106 | 2000 106

@OBTAIN NEXT,
SET ="DEPT-EMPLOYEE'

ERROR-STATUS

2000 | 2000 106 | 2000 106 | 2000 106
OF '0307'

The following figure illustrates special considerations relating to the retrieval of

records in an area that contains multiple record types. In this example, the user wishes
to sweep the EMP-DEMO-REGION area, retrieving sequentially each EMPLOYEE
record and all records in the associated EMP-EXPERTISE set. The first command
retrieves EMPLOYEE 119. Subsequent @OBTAIN WITHIN SET statements retrieve
the associated EXPERTISE records and establish currency on EXPERTISE 03. The
@FIND DBKEY statement is used to reestablish the proper position before retrieving
EMPLOYEE 48. Note that if @FIND DBKEY for the employee record is not

specified, an attempt to retrieve the next EMPLOYEE record in the area would return

EMPLOYEE 23.

EMPOSITION EMPLOYEE EXPERTISE

420|F |za |VIA 415|F |116|CALC 425|F |s |VIA

EMP-EMPOSITION | EMP-EMPOSITION EMP-ID-0415 | DN | cup.ExPERTISE EMP-EXPERTISE

EMP-DEMO-REGION EMP-DEMO-REGION NPO MA EMP-DEMO-REGION
NPO MA FIRST DES SKILLLEVEL-0425 DF

6-90 CA-IDMS DML Reference — Assembler

6.29 @FIND/@OBTAIN statements

EMP-DEMO-REGION-AREA

EMPOSITION
002

EMPLOYEE EXPERTISE
48 04

EXPERTISE
04

EMPGSITION
001

PAGE 7000

PAGE 7001

PAGE 7002

e
s
Q’ Yy
& &
A < g@ Q?‘ O'Q.
S & & & &
> N & &)
> & 2 & &
@ & & & &
@OBTAIN FIRST, AREA ='EMP-DEMO-REGION' 119 118 118 119
@OBTAIN FIRST, SET="EMP-EXPERTISE' 04 119 04 04 04
@OBTAIN NEXT, SET = 'EMP-EXPERTISE’ 03 119 03 03 03
@FIND CURRENT, REC ='EMPLOYEE' 119 119 03 119 118
@OBTAIN NEXT, AREA= 'EMP-DEMO-REGION' 48 48 03 48 43

Status codes:

function, the ERRSTAT field in the IDMS communications block indicates the
outcome of the operation:

After completion of the @FIND/@OBTAIN WITHIN SET/AREA

Status code

Meaning

0000

This request has been serviced successfully.

0301

The area in which the named record participates has not been
readied.

0304

A sequence number of zero or a variable field that contains a value
of zero was specified for the named record.

0306

Currency has not been established for the named record, set, or
area.

0307

The end of the set or area has been reached, or the set is empty.

Chapter 6. Data Manipulation Language Statements 6-91

6.29 @FIND/@OBTAIN statements

Status code M eaning

0308 Either the named record or the named set is not in the subschema,
or the named record is not defined as a member of the named set.
The program has probably invoked the wrong subschema, or has
misspelled the record or set name.

0310 The subschema specifies an access restriction that prohibits
retrieval of the named record.

0323 The area name specified has not been included in the subschema
invoked, the record name specified has not been defined in the
named area, or the area name has been misspelled.

0326 The record cannot be found.

0360 A record occurrence has been encountered whose record type is not
a member or owner of the set as it is defined in the subschema.

0361 The record cannot be stored because of broken chains in the
database.

0370 A database file will not open properly.

When the KEEP parameter is specified as part of the @FIND/@OBTAIN statement a
major code of 06 will be returned if an error occurs during the KEEP processing (see
6.39, “@KEEP” on page 6-122 in this chapter). The major code of 03 states that an
error has occurred in the @FIND/@OBTAIN processing.

6-92 CA-IDMS DML Reference — Assembler

6.30 @FINISH

6.30 @FINISH

The @FINISH statement relinquishes control over all areas in use by the
CA-IDMS/DB application program. @FINISH causes statistical information for the
database operations performed during run unit execution to be written to the
CA-IDMS/DB journal file; it also defines and logs the end checkpoint for a recovery
unit.

You may elect to use the @FINISH statement to change area usage modes defined by
previously issued @READY statements. However, you must issue the appropriate
new @BIND statements before issuing the new @READY statements.

Currency: Following the successful execution of an @FINISH, all currencies are set
to null. You cannot perform database access activities until you issue an
@BIND/@READY sequence.

Syntax
»»—— GFINISH

A\
A

Parameters

@FINISH
Releases all areas from program control and writes an ENDJ checkpoint and
statistical information to the CA-IDMS/DB journal file. No further DML retrieval
or modification statements can be executed until the appropriate BINDs have been
issued and the necessary areas have been readied again.

Status codes: The only acceptable status code returned for an @FINISH function
is 0000.

Chapter 6. Data Manipulation Language Statements 6-93

6.31 #FINISH

6.31 #FINISH

The #FINISH statement relinquishes control over all database areas associated with the
system task and optionally establishes an end-of-task checkpoint for scratch and queue
areas associated with the task. Specify #FINISH in your DC/UCF program after
database access activities are completed.

Currency: Following the successful execution of a #FINISH request, all currencies
are set to null and the issuing task cannot perform database access activities without
executing an @BIND/@READY sequence.

Syntax

#FINISH
L label J L TASK i

A\
A

>
>>

Parameters

#FINISH
Requests that the system write a checkpoint to the journal file and release all data
areas held by the issuing run unit.

TASK
Releases all data areas held by all run units under the issuing task.

Status codes: After completion of the #FINISH statement, the value in register 15
indicates the outcome of the operation.

Register 15 M eaning

value

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced because the number of active run

units exceeds the size of the internal run-unit table; this condition
should not occur.

X'08' The request cannot be serviced due to an invalid request.

X'oC' The request cannot be serviced because an invalid status has been
received from DBIO/DBMS; check the DC/UCF log file for details.

Note: If you use #FINISH with the TASK operand, 0000 is the only acceptable status
code.

6-94 CA-IDMS DML Reference — Assembler

6.32 #FREESTG

6.32 #FREESTG

The #FREESTG statement requests that the system release all or a part of a block of
variable storage. The storage to be released may have been acquired with a #GETSTG
request in the issuing task or by another task running on the same terminal as the
issuing task. A partial release is valid only for user storage; shared storage must be
freed in its entirety.

The #FREESTG request is unconditional; any runtime error will result in an abend of
the issuing task.

v

v

»—— #FREESTG ADDR=storage-address
"L stap-storage-id ——

v
A

L ,NEWLEN=newlength i

Parameters

ADDR=storage-address/ST G| D=stor age-id
Specifies the storage area to be released. One of these options must be specified.

storage-address
Specifies the address of the storage area to be rele@®edge-address is a

register or the symbolic name of a fullword user-defined field that contains the
storage area address.

storage-id
Specifies the 4-byte identifier of the variable storage area to be released.

Sorage-id is a register that contains the ID, the symbolic name of a user-defined
field aligned on a fullword boundary that contains the ID, or the ID literal
enclosed in quotation marks.

NEWLEN=
Specifies the number of bytes to be retained in the storage pool, indicating a
partial storage release (release of only part of the area originally allocated).

new-length
A register that contains the number of bytes, the symbolic name of a user-defined

halfword or fullword field that contains the number of bytes, or an absolute
expression.

When a release is partial, the low-address portion of storage will be retained and
the high-address portion released.

Example: The following example illustrates the use of the #FREESTG statement to
release part of the user storage area that is identified by the value in register 7. The
number of bytes to remain in the storage area is specified in the variable field
SPACEL.

Chapter 6. Data Manipulation Language Statements 6-95

6.32 #FREESTG

#FREESTG STGID=(R7),NEWLEN=SPACE1

Status codes: The #FREESTG request is unconditional; any runtime error will
result in an abend of the issuing task.

6-96 CA-IDMS DML Reference — Assembler

6.33 @GET

6.33 @GET

The @GET statement transfers the contents of an accessed record occurrence into
program variable storage. Elements in the accessed record are moved to their
respective locations in variable storage according to the subschema view of the record.
The transferred elements will appear in storage at the location to which the record has
been bound. (For further details, see 6.13, “@BIND REC” on page 6-31 in this
chapter.)

Currency: The @GET statement operates only on the record that is current of run
unit.

Following successful execution of an @GET statement, the accessed record is current
of run unit, its area, its record type, and all sets in which it participates as owner or
member.

Syntax

»»— @GET

\4
A

I— REC=record-name —l

Parameters

REC-=record-name
Retrieves the record that is current of run unit. If the optional REBrd-name
clause is used, the current of run unit must be an occurrence of the named record

type.

Example: The following statement moves the EMPLOYEE record that is current of
run unit into program variable storage:

@GET REC='EMPLOYEE'

Status codes: After completion of the @GET function, the ERRSTAT field in the
IDMS communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

0508 The requested record is not in the subschema. The program has
probably invoked the wrong subschema or the record name is
misspelled.

0510 The subschema specifies an access restriction that prohibits

retrieval of the named record.

0513 A current record of run unit has not been established or has been
nullified by a previous @ERASE statement.

0518 The record has not been bound.

Chapter 6. Data Manipulation Language Statements 6-97

6.33 @GET

Status code M eaning

0520 The current record is not the same type as the named record.
0526 The requested record has been erased.

0555 An invalid length has been returned for a variable-length field.

6-98 CA-IDMS DML Reference — Assembler

6.34 #GETIME

6.34 #GETIME

The #GETIME statement obtains the time and date from the operating system. The
system time is returned to the issuing task in binary absolute, binary formatted, packed
decimal, or edited format, as specified by the task. The date is returned to the
program in packed decimal format.

After completion of the #GETIME request, a user-defined register and register 1
contain the following time and date information:

® Register n specifies system time (if requested in binary formatted or binary
absolute format) or the address of a field that contain the system time (if requested
in packed or edited format). The register numlngrig assigned by the FORMAT
parameter; if not specified, the default is register 0.

Note: The return-time location can be defined by the FORMAT parameter as a
variable field name rather than a register number; in this instance, register 0 will
still contain the time value or return-time address, as described above.

= Register 1 contains the Julian date in packed formagy@ddc (padded zero,
current year relative to 1900, days in year, sign). For example, 0099365C would
represent December 31, 1999. 0100001C would represent January 1, 2000.
Syntax
L label il

»—— #GETIME FORMAT=

— (BINAB T (0) « a)
BINFMT return-time-pointer
E PACK j
EDIT

Parameters

v

v

\4
A

FORMAT=
Specifies how and where the time is returned by the operating system.

BINABS/BINFMT/PACK/EDIT
Specifies the format of the time which is returned. The returned value indicates
the elapsed time since midnight.

BINABS
(Binary absolute) (default); returns time as a fullword binary integer representing
elapsed time since midnight in intervals of ten-thousandths of a second.

Note: BINABS returns the most precise time.

BINFMT
(Binary formatted); returns time as a fullword binary value which, when translated
to decimal form, is formatted ashhmmsstttt (hours, minutes, seconds,
ten-thousandths seconds).

Chapter 6. Data Manipulation Language Statements 6-99

6.34 #GETIME

PACK
(Packed); returns time as a 6-byte packed decimal value, formatted as:
Ohhmmssttttc (hours, minutes, seconds, ten-thousandths seconds, sign).

EDIT
(Edited); returns time as an 11-byte edited value, formattelshasm:ss.hh
(hours, minutes, seconds, hundredths seconds).

(O)/return-time
Specifies the location to which the time is returned.

©)
(Default); is the register that contains the time or points to a field that contains the
time.

return-time
A register that contains the time (FORMAT is BINABS or BINFMT), a register
that points to the time (FORMAT is PACK or EDIT), or the symbolic name of a
user-defined field (FORMAT is BINABS, BINFMT, PACK, or EDIT). The
required size of the field is dependent on the format requested.

Example: The following example of the #GETIME statement obtains the time from
the operating system into the variable field TIMECK and the Julian date is returned in
register 1. The time is in an 11-byte edited format; the Julian date is in packed
decimal format.

#GETIME FORMAT=(EDIT,TIMECK)

Status codes: The #GETIME request is unconditional; any runtime error will result
in an abend of the issuing task.

6-100 CA-IDMS DML Reference — Assembler

6.35 #GETQUE

6.35 #GETQUE

The #GETQUE statement retrieves a queue record, places it in a storage area
associated with the issuing program and optionally deletes it from the queue. If the
queue record is larger than the designated storage area, the record is truncated as
necessary.

Syntax
L label il

»—— #GETQUE RECORD=return-queue-data-location-pointer

»—— ,RECLEN= queue-data-max-length
_I: queue-data-length — 1

v

\4

»
»

L— ,PLIST= SYSPLIST «
L]
parameter-value-list-pointer

\ 4

L ,QUEID=queue-id-pointer —J

\ 4

v

L ,LOC= Next «
First
Last
Prior
(NTH, sequence-pointer)
(QRID, queue-record-id-pointer) —

\ 4
v

L ,DISP= T DELETE «
KEEP

\ 4

v

L - . |
RTNGRID= — (1) 7

return-queue-record-id

' |
{— ,OPTION= —(— LOCK «)
NOLOCK
NOWAIT «
WAIT

L cono- NO «
ALL ———————
—
(

——— NQID)
NRID
INVP
I0ER

\ 4

v

\

v

Chapter 6. Data Manipulation Language Statements 6-101

6.35 #GETQUE

A\ 4
v

L ,NQIDXIT=no-queue-id-Tabel i

A\

v

|— ,NRIDXIT=no-queue-record-id-label J

\ 4
4

L ,IOERXIT=1/0-error-label i

\ 4

v

L ,INVPXIT=invalid-parameter-list-Tlabel il

A\ 4
\4
A

L ,ERROR=error-1label i

Parameters

RECORD=
Specifies the location to which the system will return the requested queue record.

retur n-queue-data-location-pointer
A register that points to the area or the symbolic name of the area.

RECLEN=
Specifies the length of the area defined by the RECORD parameter and, if
provided in the form of a user-defined variable field name, assigns an area into
which the system will place the actual length of the retrieved queue record.

gqueue-data-max-length
Specifies the length of the data area associated with the requested queue record.
is a register that contains the length or an absolute expression.

gueue-data-length
A symbolic user-defined field, specifies a two-fullword area that is subdivided into
two fullwords. The first fullword contains the length of the data area associated
with the requested queue record. The system returns the actual length of the
retrieved queue record to the second fullword.

If the record length is provided in register notation or as an absolute expression, a
two-fullword area as defined lyueue- data-length will be built dynamically at
runtime in the sixth and seventh fullwords of the parameter list.

PLIST=
Specifies the location of the seven-fullword storage area in which the system will
build the #GETQUE parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area in which the systemF builds
the #GETQUE parameter list.

par ameter -value-list-pointer

A register that points to the area or the symbolic name of the area.

QUEID=
Specifies the 1- to 16-character ID of the queue associated with the record to be
retrieved.

6-102 CA-IDMS DML Reference — Assembler

6.35 #GETQUE

gueue-id-pointer
A register that points to a field that contains the ID, the symbolic name of a
user-defined field that contains the ID, or the ID literal enclosed in quotation
marks. If the queue ID is not specified, a null queue ID (16 blanks) is assumed.

LOC=
Specifies the queue record to be retrieved:

NEXT
(Default); retrieves the next record in the queue. If currency in the queue has not
been established, NEXT is equivalent to FIRST.

FIRST
Retrieves the first record in the queue.

LAST
Retrieves the last record in the queue.

PRIOR
Retrieves the prior record in the queue. If currency in the queue has not been
established, PRIOR is equivalent to LAST.

(NTH,sequence)
Retrieves thanth record in the queue as defined deguence. Sequence is a

register that points to a field that contains the record sequence nunjkibe(
symbolic name of a user-defined field that contains the number, or an absolute
expression. (Within each queue, records are assigned numbers beginning with 1,
not 0.)

(QRID,queue-record-id)
Retrieves the record identified loyeue-record-id. Queue-record-id is a register
that points to a field that contains the queue record id, the symbolic name of a
user-defined field that contains the id, or an absolute expression.

DISP=
Specifies the disposition of the queue record after it is passed to the requesting
program.

DELETE
(Default); deletes the record from the queue. If DELETE is specified and the
record is truncated, some data may be lost.

KEEP
Keeps the record in the queue.

RTNQRID=
Specifies the location in the program to which the system will return the
system-assigned ID of the retrieved queue record. The returned ID can be saved
and used to retrieve or delete the queue record.

)

(Default); the register to which the system will return the queue record ID.

return-queue-record-id
A register or the symbolic name of a fullword user-defined field to which the
system will return the queue record ID.

Chapter 6. Data Manipulation Language Statements 6-103

6.35 #GETQUE

OPTION=
Specifies whether the system is to retain a lock on the current queue recor and
whether the issuing task is to suspend execution if the requested record cannot be
accessed in the queue:

LOCK
(Default); retains the lock on the current queue record until a #COMMIT TASK
command is issued or the issuing task terminates. While a queue record is locked,
no other task can access that record (regardless of its position in the queue) until
the lock has been released.

NOLOCK
Releases the lock on the current queue record following execution of a subsequent
gueue I/O request.

NOWAIT
Continues task execution in the event of a nonexistent queue. The system returns
a value of X'0C' to register 15 in the event that the requested queue does not
currently exist.

WAIT
Suspends task execution until the requested queue exists.

COND=
Specifies whether the #GETQUE is conditional and under what conditions control
should be returned to the issuing program:

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the request cannot
be serviced for any of the reasons listed below.

condition
Specifies conditions under which the system returns control to the program.
Multiple conditions must be enclosed in parentheses and separated by commas.

NQID
The queue ID cannot be found.

NRID
The queue record cannot be found.

IOER
An I/O error occurs while processing the request.

INVP
The parameter list built for the #GETQUE is invalid.

A list of conditions must be enclosed in parentheses. If multiple conditions are
specified, each is separated from the previous one by a comma.

6-104 CA-IDMS DML Reference — Assembler

6.35 #GETQUE

NQIDXIT=no-queue-id-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETQUE request cannot be serviced because the header record identified by
the QUEID parameter cannot be found.

NRIDXIT=no-queue-r ecor d-id-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETQUE request cannot be serviced because the queue record ID cannot be
found.

|IOERXIT=i/o-error-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETQUE parameter cannot be serviced because of an I/O error.

INVPXIT=invalid-parameter-list-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETQUE cannot be serviced because of an invalid parameter in the
parameter list.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

Example: The example of the #GETQUE statement shown below performs the
following functions:

m Specifies location QRECS as the area in program variable storage to receive the
requested queue record

m Specifies the length of area QRECS in register 6
m Uses the default location to build the parameter list, SYSPLIST

m Specifies that register 7 will hold the address of the field that contains the ID of
the queue associated with the record to be retrieved

m Specifies the next record (in regard to queue currency) in the queue as the record
to be retrieved

m Specifies that the record will not be deleted from the queue after it has been
passed to the requesting program

m Uses the register 1 default to receive the system-assigned ID of the retrieved
scratch record

m Specifies the WAIT option to suspend task execution until the requested queue
record is available

m Specifies that this request is not conditional; any runtime error will result in an
abend of the issuing task

#GETQUE RECORD=QREC5,RECLEN=(6),QUEID=(7),LOC=NEXT,DISP=KEEP, *
OPTION=WAIT,COND=NO

Chapter 6. Data Manipulation Language Statements 6-105

6.35 #GETQUE

Status codes: By default, the #GETQUE request is unconditional; any runtime
error will result in an abend of the issuing task. The issuing program can request
return of control with the COND parameter to avoid an abend.

After completion of the #GETQUE function, the value in register 15 indicates the
outcome of the operation:

Register 15 M eaning

value

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced due to an invalid parameter list.

X'08' The request cannot be serviced because the requested queue header
record (identified by QUEID) cannot be found.

X'0C' The request cannot be serviced because the requested queue record
cannot be found.

X'18' The program storage area specified for return of the queue record is
too small; the returned record has been truncated to fit the available
storage.

X'1C' The request cannot be serviced due to an 1/O error during
processing.

If an 1/O error occurs while processing a #GETQUE request, the system will return the
address of the IDMS communications block to register 1. If no error occurs during
processing, a user-defined register, as assigned by the RTNQRID parameter, will
contain the queue record ID (QRID) of the retrieved queue record.

6-106 CA-IDMS DML Reference — Assembler

6.36 #GETSCR

6.36 #GETSCR

The #GETSCR statement retrieves a scratch record and places it in a storage area
associated with the issuing program. The storage area must already be allocated to the
requesting task; no implicit #GETSTG function is performed during the #GETSCR
operation. If the scratch record is larger than the designated storage area, the record is
truncated as necessary.

By default, the #GETSCR request is unconditional; any runtime error will result in an
abend of the issuing task. The issuing program can request return of control with the
COND parameter to avoid an abend.

Syntax
L— label —J
»—— #GETSCR RECORD=return-scratch-data-location-pointer >
»—— ,RECLEN= _I:_ scratch-data-max-length >
scratch-data-length ————
T - - I >
,PLIST —I: SYSPLIST]

parameter-value-list-pointer

A\
4

L ,SAID=scratch-area-id-pointer il

\

L— ,LOC= Next <« |
First
Last
Current
Prior
(SRID,scratch-record-id) —

\

L ,b1sp- —— DELETE «
L
KEEP

\

L _ . |
RTNSRID= —— (1)]

return-scratch-record-id

Chapter 6. Data Manipulation Language Statements 6-107

6.36 #GETSCR

A\ 4
v

L ,COND= NO «
|j ALL ———
o
(—b—— NAID ——)-

v
NRID
I0OER
INVP

L ,NAIDXIT=no-scratch-area-id-label]

A\ 4
v

L ,NRIDXIT=no-scratch-record-id-1label i

A\
v

L ,IOERXIT=1i/0-error-label J

\ 4

\ 4

L ,INVPXIT=invalid-parameter-list-Tlabel l

\ 4
v
A

L ,ERROR=error-Tlabel i

Parameters

RECORD=
Specifies the location to which the system will return the scratch record.

r ecor d-scr atch-data-location-pointer
A register that points to the variable storage area or the user-defined symbolic
name of the area.

RECLEN=
Specifies the length of the area defined by the RECORD parameter and, if
provided in the form of a user-defined variable field, assigns an area into which
the system will place the actual length of the returned data.

scratch-data-max-length
Specifies the length of the data area associated with the requested scratch record.
It is a register that contains the length or an absolute expression.

scratch-data-length
A symbolic user-defined field, specifies an area which is subdivided into two
fullwords. The first fullword contains the length of the data area associated with
the requested scratch record. The system returns the actual length of the requested
scratch record to the second. If the record has been trunsatadh-data-length
will contain the length of the scratch record.

If the record length is provided in register notation or as an absolute expression,
an area composed of two fullwords, as defineddogtch-data-length, will be

built dynamically at runtime in the sixth and seventh fullwords of the parameter
list.

PLIST=
Specifies the location of the seven-fullword storage area in which the system will
build the #GETSCR parameter list.

6-108 CA-IDMS DML Reference — Assembler

6.36 #GETSCR

SYSPLIST
(Default); is the symbolic name of the storage area in which the system will build
the #GETSCR parameter list.

parameter-list-pointer
A register that points to the area in which the system will build the #GETSCR
parameter list or the symbolic name of that area.

SAID=
Specifies the 1- to 8-character ID of the scratch area associated with the record
being retrieved.

scratch-ar ea-id-pointer
A register that points to a field that contains the id, the symbolic name of a
user-defined field that contains the ID, or the ID literal enclosed in quotation
marks. If the SAID parameter is not specified, a null scratch area ID of 8 blanks
is assumed.

LOC=

Specifies the scratch record to be retrieved.
NEXT
(Default); retrieves the next record in the scratch area.

FIRST
Retrieves the first record in the scratch area. (Records are always stored in
ascending order by scratch record id.)

LAST
Retrieves the last record in the scratch area.

CURRENT
Retrieves the current record; that is, that record most recently referenced by
another scratch function.

PRIOR
Retrieves the prior record in the scratch area. If currency in the scratch area has
not been established, PRIOR is equivalent to LAST.

(SRID,scratch-record-id)
Retrieves the scratch record identifieddoyatch-record-id. Scratch-record-id is a
register that points to the 4-byte scratch record id, the symbolic name of a
user-defined field that contains the id, or an absolute expression of the id.

DISP=
Specifies whether the scratch record is to be kept after it is passed to the
requesting program.

DELETE
(Default); deletes the record from the scratch area. If DELETE is specified and
the record has been truncated, some data may be lost. To maintain currency
following a DELETE request, the system saves the next and prior pointers of the
deleted record.

Chapter 6. Data Manipulation Language Statements 6-109

6.36 #GETSCR

KEEP
Keeps the record in the scratch area.

RTNSRID=
Specifies the location to which the system will return the scratch record ID of the
retrieved record.

D
(Default); is the register into which the system will place the ID of the scratch
record.

return-scratch-record-id
A register or the symbolic name of a fullword user-defined field to which the
system will return the ID of the retrieved scratch record.

COND=
Specifies whether this #GETSCR is conditional and under what conditions control
should be returned to the issuing program:

NO

(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the request cannot
be serviced for any of the reasons listed below.

condition
Specifies conditions under which the system returns control to the issuing task.
Multiple conditions must be included in parentheses and separated by commas.

NAID
The scratch area ID cannot be found.

NRID
The scratch record ID cannot be found.

IOER
An I/O error occurs while processing the retrieval.

INVP
The parameter list built for the #GETSCR is invalid.

NAIDXI T=no-scr atch-ar ea-id-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETSCR cannot be serviced because the scratch area ID cannot be found.

NRIDXI T=no-scr atch-recor d-id-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETSCR cannot be serviced because the scratch area record ID cannot be
found.

IOERXIT=i/o-error-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETSCR cannot be serviced because of an 1/O error.

6-110 CA-IDMS DML Reference — Assembler

6.36 #GETSCR

INVPXIT=invalid-parameter-list-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETSCR request cannot be serviced because of an invalid parameter in the
parameter list.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

Example: The example of the #GETSCR statement shown below performs the
following functions:

m Specifies location SREC5 as the area in program variable storage to receive the
requested scratch record.

» Specifies the length of area SRECS in user-defined field SCRLENG.
m Uses the default location to build the parameter list, SYSPLIST.

m Specifies the literal SCR3 as the ID of the scratch area associated with the record
to be retrieved.

m Specifies the first record in the scratch area as the record to be retrieved.

m Specifies that the record will be deleted from the scratch area after it has been
passed to the requesting program.

m Specifies that register 4 will receive the system-assigned ID of the retrieved
scratch record.

m Specifies that this request is conditional. If the scratch record id cannot be found
control will be returned to the routine labeled NORECRTN.

#GETSCR RECORD=SREC5,RECLEN=SCRLENG, SAID="'SCR3"',LOC=FIRST, *
DISP=DELETE,COND=NRID,NRIDXIT=NORECRTN

Status codes: After completion of the #GETSCR function, the value in register 15
indicates the outcome of the operation.

Register 15 Meaning

value

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced due to an invalid parameter list.
X'08' The request cannot be serviced because the requested scratch area

ID (SAID) cannot be found.

X'0C' The request cannot be serviced because the requested scratch record
ID (SRID) cannot be found in the named SAID.

X'18' The request cannot be serviced because the program storage area
specified for return of the scratch record is too small; the returned
record has been truncated to fit the available space.

Chapter 6. Data Manipulation Language Statements 6-111

6.36 #GETSCR

Register 15 M eaning

value

X'1C' The request cannot be serviced due to an I/O error during
processing.

If an 1/O error occurs while processing a #GETSCR request, the system will return the
address of the IDMS communications block to register 1. If no error occurs during
processing, a user-defined register, assigned by the RTNSRID parameter, will contain
the scratch record ID of the obtained record.

6-112 CA-IDMS DML Reference — Assembler

6.37 #GETSTG

6.37 #GETSTG

The #GETSTG statement acquires variable storage from a storage pool or obtains the
address of a previously acquired storage area. Once acquired, the storage is available
for use:

» By the issuing task only (user storage)
» By subsequent tasks running on the same logical terminal (user-kept storage)
m By all tasks in the system (shared or shared-kept storage)

Storage availability is governed by #GETSTG parameter specifications. The value

stored in a user-defined register assigned by the ADDR parameter contains the address
of acquired storage.

Syntax
l— label —l

v

v

»— #GETSTG TYPE= USER T LONG
(L SHARED L SHORT 1L ,KEEP |

»
> | >

L ,PLIST= —[SYSPLIST «]

parameter-value-list-pointer

\

L ,LEN=storage-length i

\

L ,INIT=initial-value i

T B T
,ADDR= (1) «
—[torage-address

S g

v

A\
v

l— ,STGID=storage-id —l

Y
—
o
[gp]

1

W =

m=

—=<

o

=1

v

Chapter 6. Data Manipulation Language Statements 6-113

6.37 #GETSTG

A\ 4
v

L ,COND= NO «
|j ALL ———
o
(- NOST)—

v
INVP
DEAD
XAST

L ,NOSTXIT=insufficient-storage-label i

\ 4

A\ 4
v

L ,INVPXIT=invalid-parameter-list-label]

A\
v

|— ,DEADXIT=deadlock-Tabel J

\ 4
4

L ,XASTXIT=extended-addressing-storage-Tabel l

\ 4
v

L ,NWSTXIT=new-storage-Tlabel i

A\ 4
\4
A

L ,ERROR=error-1label i

Parameters

TYPE=
Required for all requests for storage, specifies three subparameters. Specified
subparameters must be enclosed in parentheses.

USER/SHARED
Specifies whether access to the storage is to be restricted to the issuing task or is
to be available to all tasks in the system.

USER
Specifies that access to the storage area is to be restricted to the issuing task or, if
KEEP is specified, to subsequent tasks executing on the same terminal.

Note: During system generation, a program defined with the NOPROTECT
option can access any storage area in the system, including an area associated
exclusively with another task. Thus, the USER attribute may not protect the
storage area being acquired. However, storage areas can be protected on a
system-wide or program-by-program basis during system generation and by the
modes specified when storage is allocated.

SHARED
Specifies that any task in the DC/UCF system can access and modify the acquired
storage. Each task must establish addressability to the storage area by explicitly
issuing a #GETSTG request.

LONG/SHORT
Specifies whether the system should allocate the storage from the bottom or the
top of the storage pool.

6-114 CA-IDMS DML Reference — Assembler

6.37 #GETSTG

LONG
Specifies that storage, used long-term, is allocated from the bottom of the storage
pool.

SHORT
Specifies that storage, used short-term, is allocated from the top of the storage
pool.

An incorrect LONG/SHORT specification will not affect normal program
execution; however, it may affect the overall performance of the DC/UCF system.
For a detailed discussion of the use of the LONG/SHORT option, refer to
CA-IDMS Navigational DML Programming.

KEEP
Optionally specifies whether the storage area will be used by subsequent tasks
executing on the same logical terminal. When KEEP is specified, the storage area
can be accessed by subsequent tasks; otherwise the storage area cannot be
accessed by subsequent tasks. For a more detailed discussion of the KEEP
parameter, refer t€A-IDMS Navigational DML Programming.

PLIST=
Specifies whether the six-fullword #GETSTG parameter list will be built inline or
in a variable storage area and, if built in a variable storage area, identifies the
location of that area.

SYSPLIST
(Default); builds the list in a variable storage area identified by the symbolic name
SYSPLIST.

Builds the list inline. The generated parameter list will be reentrant; that is, no
generated code will modify it. If PLIST=* is specified, other parameters of the
#GETSTG statement cannot be identified with register notation.

parameter-list
Builds the list in a variable storage area associated with the Baskmeter-list is

a register which points to the area or the symbolic name of that area.

LEN=
Specifies the size, in bytes, of a new storage area.

storage-length
A register or the symbolic name of a user-defined halfword or fullword field that

contains the number of bytes, or an absolute expression.

Note: If the parameter list is being generated inline (PLIST=*), the LEN
parameter must specify the symbolic name of a fullword field or an absolute
expression; register notation and a halfword variable field name are invalid.

INIT=
Specifies an initial value for a new storage area.

initial-value
An absolute expression of the initial value. Each byte of the acquired storage area
is initialized to the specified value.

Chapter 6. Data Manipulation Language Statements 6-115

6.37 #GETSTG

ADDR=
Specifies the address of the acquired or previously acquired storage:

D
(Default); is a register or the symbolic name of a fullword user-defined field to
which the system will return the address of the acquired storage.

storage-address
A register or the symbolic name of a fullword user-defined field to which the
system returns the address of the acquired storage.

STGID=
Specifies the 4-character ID associated with the storage area. The STGID
parameter must be specified with #GETSTG requests for previously allocated
storage areas or areas to be reallocated.

storage-id
A register that contains the id, the symbolic name of a 4-byte user-defined field
which is aligned on a fullword boundary and contains the ID, or the ID literal
enclosed in single quotation marks.

Note: If the parameter list is being generated inline, the STGID parameter must
specify the symbolic name of a variable field or a literal enclosed in quotation
marks; register notation is invalid.

When using the STGID option to request the address of an existing storage area,
the #GETSTG statement must specify the same USER/SHARED option as the
original #GETSTG request issued by the task to acquire the area.

Note: All storage ids owned by a task must be unique. While more than one
variable storage area with the same storage ID can exist (for examphnaoes
and the otheuser) only one such area can be owned by a task at a time.

LOC=

Indicates where the system allocates storage.
ANY

(Default); indicates that storage can be allocated anywhere in the region.
BELOW

Requests that the system allocate storage below the 16-megabyte line.
COND=

Specifies whether this #GETSTG statement is conditional and under what
condition control should be returned to the issuing program:

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the request cannot
be serviced for any of the reasons listed below.

condition
Specifies conditions under which the system returns control to the issuing task.
Multiple conditions must be enclosed in parentheses and separated by commas.

6-116 CA-IDMS DML Reference — Assembler

6.37 #GETSTG

NOST
Available space in the storage pool is insufficient to satisfy the request. Do not
wait for additional storage to become available.

INVP
The parameter list built for the #GETSTG is invalid.

DEAD
The available space in the storage pool is insufficient to satisfy the request and if
to wait would cause a deadlock.

XAST
Allocated storage above the 16-megabyte line cannot be addressed by the 24-bit
task.

NOST XIT=insufficient-storage-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETSTG cannot be serviced because the available storage is insufficient to
satisfy the request.

INVPXIT=invalid-par ameter-list-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETSTG cannot be serviced because of an invalid parameter in the
parameter list.

DEADXIT=deadlock-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETSTG cannot be serviced because the available storage is insufficient to
satisfy the request, and if to wait would cause a deadlock.

NWST X1 T=new-stor age-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETSTG request names a STGID which does not exist in the system
(TYPE=SHARED) or in the task (TYPE=USER).

XAST XI T=extended-addr essing-stor age-1abel
Specifies the symbolic name of the routine to which control is returned if the
allocated storage above the 16-megabyte line cannot be addressed by the 24-bit
task.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

Example: The example of the #GETSTG statement shown below performs the
following functions:

m Specifies that the requested storage area is to be shared by any task in the
DC/UCF system, that it will contain short-term storage allocated from the top of
the storage pool, and that it will not be available for use by subsequent tasks

» Builds the parameter list, SYSPLIST (default), in the variable storage area

® Specifies the length of the new storage area in register 2

Chapter 6. Data Manipulation Language Statements 6-117

6.37 #GETSTG

» Specifies that every byte in the storage area be initialized to blanks

m Uses register 1 (default) to receive the address of the acquired storage from the
system

» Specifies the ID of the storage area in register 9

» Specifies that control will be returned to the routine labeled NOSTGRTN if the
amount of available storage is insufficient to satisfy the request, otherwise, any
runtime error will result in an abend of the issuing task

#GETSTG TYPE=(SHARED,SHORT),LEN=(2),INIT=' ',STGID=(9), *
COND=NOST,NOSTXIT=NOSTGRTN

Status codes: By default, the #GETSTG request is unconditional. Error conditions
that can occur are:

» A short-on-storage condition, caused when the amount of storage in the storage
pool is inadequate to accommodate the request, will result in a delay until
sufficient storage becomes available (unless such a wait would cause a deadlock)

® Any abnormal condition will result in an abend. Conditions in this category
include the following:

— /O error
— A wait on storage (default action resulting from the short-on-storage
condition) would result in a deadlock

The issuing program can request return of control with the COND to avoid a delay or
an abend.

After completion of the #GETSTG request, the value in register 15 indicates the
outcome of the operation:

Register 15 M eaning

value

X'00' The request has been serviced successfully.

X'04' The request has specified a storage ID which did not previously
exist; the indicated space has been allocated.

X'08' The request cannot be serviced due to insufficient storage in the
storage pool.

X'oC' The request cannot be serviced due to an invalid parameter list.

X'10' The requested storage cannot be allocated immediately (insufficient

storage), and to wait would cause a deadlock.

X'18' Allocated XA storage cannot be accessed by a 24-bit task. This
situation occurs if storage is requested by STGID and the storage
was initially allocated by an XA task.

6-118 CA-IDMS DML Reference — Assembler

6.38 @IF

6.38 @IF

The @IF statement allows you to test for the presence of member record occurrences
in a set or to determine the membership status of a record occurrence in a specified
set; once the set has been evaluated, the @IF statement specifies further action based
on the outcome of the evaluation. For example, you might use an @IF statement to
determine whether a set occurrence is empty and, if it is empty, to erase the owner
record.

Note: Native VSAM users — This statement is not allowed for sets defined with
member records that are stored in native VSAM data sets.

Each @IF statement contains a conditional phrase and a branch statement. When an
@IF is issued, the DML precompiler first generates a call to CA-IDMS/DB to execute
the conditional phrase. CA-IDMS/DB tests for a status code of 0000 or 1601, as
requested in the conditional phrase; the results of the test determine whether or not the
branch statement is executed.

Currency: Depending on its format, the @IF statement uses set or run-unit currency.
The set occurrence of an @IF statement is determined by the current record of the
named set; the named record occurrence is the record that is current of run unit.

Currency is not updated after execution of the @IF statement.

Syntax

v

»»—— Q@IF SET=set-name
MEMBER= YES >
EMPTY= JL NO]

»—— ,GOTO=branch-Tocation

v

\4
A

L ,ERRSTAT=error-status-location il

Parameters

SET=set-name
Identifies the set that is to be tested for existing member record occurrences.
Set-name must specify a set included in the subschema.

MEMBER=
Determines whether the current record of run unit participates as a member in any
occurrence of the named set and, depending on the outcome of the evaluation,
executes the branch statement.

YES
Specifies that the branch statement is executed only if the record is a member of
the set (that is, ERRSTAT is 0000).

Chapter 6. Data Manipulation Language Statements 6-119

6.38 @IF

NO
Specifies that the branch statement is executed only if the named record is not a
member of the named set (that is, ERRSTAT is 1601).

EMPTY=
Evaluates the current occurrence of the named set for the presence of member
record occurrences and, depending on the outcome of the evaluation, executes the
branch statement.

YES
Specifies that the branch statement is executed only if the set is empty (that is,
ERRSTAT is 0000).

NO
Specifies that the branch statement is executed only if the specified set has one or
more member records (that is, ERRSTAT is 1601).

GOTO=branch-location
Identifies the next statement in the program be be execehch-location must
be a statement label; register notation is not supported for this parameter.

ERRSTAT=sgtatus-location
Specifies the name of the status field in the IDMS communications block. If the
status field is other than ERRSTAT, this clause is requifatus-location must
be a statement label; register notation is not supported for this parameter.

Example: The examples below illustrate two uses of the @IF statement.

In the first example, the @IF statement tests the DEPT-EMPLOYEE set for existing
EMPLOYEE members and, if no occurrences of the EMPLOYEE record are found
(that is, ERRSTAT is 0000), moves a message to that effect to location EMPLSWS.

If the current occurrence of the DEPT-EMPLOYEE set contains one or more
occurrences of the EMPLOYEE record (that is, ERRSTAT is 1601), the GOTO clause
is ignored and the next statement in the program is executed.

@IF SET='DEPT-EMPLOYEE',EMPTY=YES, *
GOTO=NOEMPL

NOEMPL EQU
MVC EMPLSWS,=CL20'NO EMPLOYEES IN SET'

In this next example, the @IF statement is used to verify that the EMPLOYEE record
that is current of run unit is not a member of the current occurrence of the
OFFICE-EMPLOYEE set before code is executed to connect the EMPLOYEE record
to that set.

If the EMPLOYEE record is not a member of OFFICE-EMPLOYEE (that is,
ERRSTAT is 1601), the program branches to the LINKSET paragraph. If the
EMPLOYEE record is already a member of the OFFICE-EMPLOYEE set (that is,
ERRSTAT is 0000), the GOTO clause is ignored and the next statement in the
program is executed.

6-120 CA-IDMS DML Reference — Assembler

6.38 @IF

@IF SET='OFFICE-EMPLOYEE',MEMBER=NO,GOTO=LINKSET

Status codes: After completion of the @IF function, the ERRSTAT field in the
IDMS communications block indicates the outcome of the operation:

Status code Meaning

0000 The set is empty, or the current record of run unit is a member of
the set.

1601 The set is not empty, or the current record of run unit is not a
member of the set.

1606 Currency has not been established for the specified set.

1608 An invalid set name has been specified, or the current record of run

unit is not a member of the named set. A misspelled set name can
account for this message.

1613 A current record of run unit has not been established or has been
nullified by a preceding @ERASE statement.

Chapter 6. Data Manipulation Language Statements 6-121

6.39 @KEEP

6.39 @KEEP

The @KEEP statement places an explicit shared or exclusive lock on a record that is
current of run unit, record, set, or area. Explicit record locks are used to maintain
record locks that would otherwise be released following a change in currency:

» Explicit shared — Other run units can retrieve the locked record but cannot
update it as long as the lock is in effect. Any number of concurrently executing
run units can place a shared lock on a record; however, no run unit can place a
shared lock on a record on which another run unit has placed an exclusive lock.

® Explicit exclusive — No other run unit can access the record as long as the lock
is in effect. Only one run unit at a time can place an exclusive lock on a record,;
that run unit has exclusive control of the record. In order for a run unit to place
an exclusive lock or a record, that record cannot hold either an exclusive or a
shared lock assigned by any other run unit.

Locks placed on records by the @KEEP function are maintained for the duration of
the recovery unit or until explicitly released by means of the @COMMIT verb.

Currency: Currency on run unit, record, set, or area must be established before
execution of the @KEEP statement.

Currency is not updated after execution of the @KEEP statement.

Syntax

»»>—— QKEEP EXCLUSIV CURRENT
—[SHARED ——,— E REC=record-name —

\4
A

SET=set-name
AREA=area-name —

Parameters

EXCLUSIVE/SHARED
Places an exclusive or shared lock on a current record.

CURRENT/REC=
Specifies which record to lock.

CURRENT
Specifies the current record of run unit.

REC=record-name
Specifies the current occurrence of the named record type.

SET=set-name
Specifies the current occurrence of the named set type.

AREA=area-name
Specifies the current occurrence of the named area.

6-122 CA-IDMS DML Reference — Assembler

6.39 @KEEP

Example: The following example of the @KEEP statement places an exclusive lock
on the current record occurrence of the set OFFICE-EMPLOYEE:

@KEEP EXCLUSIVE,SET='OFFICE-EMPLOYEE'

The currency of the set for this example would have to be established before this
statement can be executed.

Status codes: After completion of the @KEEP function, the ERRSTAT field in the
IDMS communications block indicates the outcome of the operation:

Status code Meaning

0000 This request has been serviced successfully.

0606 Currency has not been established for the named record, set, or
area.

0608 The named record, set, or area is not in the subschema, or the
current record of run unit is not a member of the named set or is
misspelled.

0610 The program's subschema specifies an access restriction that
prohibits execution of the @KEEP function.

0623 The named area is not in the subschema or has been misspelled.

0626 The record to be kept has been erased.

0629 Deadlock occurred during locking of target record.

Chapter 6. Data Manipulation Language Statements 6-123

6.40 #KEEP

6.40 #KEEP

The #KEEP statement is used in DC/UCF pseudo-conversational transactions to
establish long-term record locks and to monitor access to records between tasks.
Long-term database locks can be shared or exclusive:

® Long-term shared locks allow other run units to access the locked record but
prevent run units from updating the record as long as the lock is maintained.

» Long-term exclusive locks prevent other run units from accessing the locked
record. However, run units executing on the logical terminal associated with a
task that establishes a long-term exclusive lock are not restricted from accessing
the locked record. Therefore, subsequent tasks in a transaction can access the
locked record and complete the database processing required by the transaction.

If a record has been locked with a #KEEP request, restrictions may exist on the type
of lock that can be placed on that record by other run units, based on existing locks
and whether the requesting run unit is executing on the same logical terminal as the
run unit that originally placed the lock on the record. The following table illustrates
these restrictions.

Type of lock in Type of lock allowed Type of lock disallowed for

effect for other run units other run units

Shared Shared and longterm Exclusive and longterm exclusive
shared

Exclusive None Shared, exclusive, longterm,

shared, and longterm exclusive

Longterm shared For all run units: For run units on other terminals:
shared and long term exclusive and longterm exclusive
shared For run units on
the same terminal:
exclusive and longterm
exclusive

Longterm exclusive For run units on the For run units on other terminals:
same terminal: shared shared exclusive, longterm shared,
exclusive, longterm longterm exclusive
shared, and longterm
exclusive

Tasks can monitor database activity associated with a specified record during a
pseudo-converse and, if desired, can place a long-term lock on the record being
monitored. A subsequent task can then make inquiries about that database activity for
the record and take the appropriate action.

The system maintains information on database activity using five-bit flags, each of
which is either turned on (binary 1) or turned off (binary 0). This information is

6-124 CA-IDMS DML Reference — Assembler

6.40 #KEEP

returned from the system to the low-order byte of register 0 as a numeric value. The
bit assignments, the corresponding numeric value returned to the program, and a
description of the associated database activity follows:

Bit Assignment Description

X'10' The record has been physically deleted.

X'08' The record has been logically deleted.

X'04' The record's prefix has been modified, that is, a set operation (for
example, @CONNECT or @DISCON) occurred involving the
record.

X'02' The record's data has been modified.

X'01' The record has been obtained.

Any combination of these bits may be set. To determine the action or combination of
actions that has occurred, you can compare the numeric value returned to the program
in register O with an appropriate constant; for example:

» [f the returned value is 0, no database activity occurred for the monitored record.
n |f the returned value is 2, the data in the record was modified.
n |f the returned value is 3, the record has been obtained and modified.

» [f the returned value is 8 or greater, the record was deleted.

The maximum possible value is 31 (X'1F'), indicating that all the above actions
occurred for the monitored record. The example of the #KEEP statement, shown later
in this topic, illustrates a test for the value of the five bit flags returned by the system
to the low-order byte of register 0.

You may prefer to monitor database activity across a pseudo-converse rather than to

set long-term locks. Long-term locks can prevent access to a record by other run units
for an undesirably long time if, during a pseudo-converse, the terminal operator fails to
enter a response. Monitoring does not restrict access to database records, sets, or areas
by other run units; however, it does enable a program to test a record for alterations
made by other run units. When long-term locks are used, it may be desirable to

release those locks at specified timeout intervals. For more information regarding the
use of timeout intervals, refer @A-IDMS System Generation.

Chapter 6. Data Manipulation Language Statements 6-125

6.40 #KEEP

Syntax
L label |

»— #KEEP NOTIFY >
SHARE ————
EXCLUSIVE ————
UPGRADESHARE ——
UPGRADEEXCLUSIVE —
TEST ———
RELEASE

»— ,LONGID= —E "ALL' a >

long-id-pointer
L ,CURRENT= record-name
4E set-name
area-name

L LWAIT= WAIT «
—E NOWAIT

NODEADLOCK

\ 4
v

v

\ 4

A\
v

|— ,NWTXIT=nowait-on-lock-release-label J

>
>

v

L ,DEADXIT=deadlock-Tabel i

\ 4
v
A

L ,ERROR=error-Tlabel i

Parameters

NOTIFY/SHARE/EXCLUSIVE/UPGRADESHARE/UPGRADEEXCLUSIVE/
TEST/RELEASE
Specifies the type of record lock or monitoring.

NOTIFY
Requests that the system monitor database activity associated with the current
record type, set, or area specified in the CURRENT parameter, described below.
When NOTIFY is specified, the system initializes register 0 to contain information
on database activity for the specified record. Only the low-order byte of register 0
will actually contain the value of the five bit flags used to monitor database
activity of the specified record.

SHARE
Specifies that the current occurrence of the record type, set, or area specified in
the CURRENT parameter, described below, will receive a long-term shared lock.

EXCLUSIVE
Specifies that the current occurrence of the record type, set, or area specified in
the CURRENT parameter, described below, will receive a long-term exclusive
lock.

6-126 CA-IDMS DML Reference — Assembler

6.40 #KEEP

UPGRADESHARE
Upgrades a previous #KEEP NOTIFY request by placing a shared long-term lock
on the record identified by the LONGID parameter, described below.

UPGRADEEXCLUSIVE
Upgrades a previous #KEEP NOTIFY request by placing an exclusive long-term
lock on the record identified by the LONGID parameter, described below.

TEST
Requests that the system return information on database activity associated with
the record identified by the LONGID parameter of a previously issued #KEEP
NOTIFY statement. The system returns the information to the low-order byte of
register 0 as a numeric value.

The TEST request must specify a long-term lock ID that matches the long-term
lock ID specified in a previous #KEEP NOTIFY request.

RELEASE
Releases the long-term lock for the record identified by the LONGID parameter,
described below. RELEASE also releases the statistics block allocated by a
previous #KEEP NOTIFY request.

LONGID=
Specifies either the record locks to be upgraded or the records for which
information about database activity is desired.

'ALL'
(#KEEP RELEASE requests only); requests that the system release all long-term
locks kept for the logical terminal associated with the current task.

long-id-pointer
Specifies the 1- to 16-character identifier that will be used by subsequent #KEEP
requests to upgrade a long-term lock or to make inquiries about database activity
associated with the specified recoidong-id is a register that contains the address
of the long-term id, the symbolic name of a user-defined field that contains the
long-term id, or an absolute expression.

CURRENT =r ecor d-name/set-name/ar ea-name
Specifies the record type, set, or area for which the system will monitor database
activity or assign a long-term shared or exclusive lock. One of the keywords
NOTIFY, SHARE, or EXCLUSIVE must also be specified with the CURRENT
parameter. The value of the CURRENT parameter can be a register or the
symbolic name of a user-defined field that contains the record name, set name, or
area name or the name itself enclosed in quotation marks.

WAIT=
(#KEEP SHARE/EXCLUSIVE/UPGRADESHARE/ UPGRADEEXCLUSIVE
requests only); specifies whether the issuing task is to wait if the requested lock
cannot be set immediately because of an existing lock on the named record.

WAIT
(Default); requests that the system wait for the existing lock to be released in
order to set the requested lock. If the wait would cause a deadlock, the system
terminates the issuing task abnormally.

Chapter 6. Data Manipulation Language Statements 6-127

6.40 #KEEP

NOWAIT
Requests that the system not wait for the existing lock to be released.

NODEADLOCK
Requests that the system wait for the existing lock to be released, unless to do so
would cause a deadlock. If the wait would cause a deadlock, the system returns
control to the issuing task.

NWT X1 T=nowait-on-lock-r elease-label
Specifies the symbolic name of a routine to which control should be returned if
the #KEEP request that specified the NOWAIT option cannot be serviced because
the requested lock cannot be set immediately.

DEADXI T=deadlock-label
(#KEEP requests specifying WAIT only);
specifies the symbolic name of a routine to which control is returned if the
requested lock cannot be set immediately, and if to wait would cause a deadlock.

ERROR=error-label
Specifies the symbolic name of a routine to which control should be returned if a
condition occurs for which no other exit routine was coded.

Example: The following is an example of the #KEEP statement that requests that
the system monitor the database activity of a record. The #KEEP NOTIFY statement
selects an EMPLOYEE record that is current of the EMPLOYEE record type and
assigns it a long-term lock ID of REC1. Use of the NOTIFY parameter causes the
system to initialize register 0, which will receive the information regarding database
activities.

The #KEEP TEST statement calls on the system to return the database activity
information for the record identified by a lock ID of RECL1 to the low-order byte of
register 0. The information is returned as a numeric value and is tested by comparing
the value in register 0 to the numeric literal that contains the value 2. If the value in
register O is greater than or equal to 2, the program will branch to location MODREC.
If the value is less than the value of register 0 the program will proceed to the next
statement.

#KEEP NOTIFY,LONGID='REC1',CURRENT="'EMPLOYEE'

#KEEP TEST,LONGID="REC1'
C (RO),=F'2'
BNL ~ MODREC

Status codes: After completion of the #KEEP request, the value in register 15
indicates the outcome of the operation:

6-128 CA-IDMS DML Reference — Assembler

6.40 #KEEP

Register 15 Meaning

value

X'00' This request has been serviced successfully.

X'04' Either the requested longterm ID cannot be found or the #KEEP

request has been issued by a nonterminal task.

X'14' The request cannot be serviced because a lock on the specified
record already exists; NOWAIT has been specified.

X'18' The request cannot be serviced because to wait for an existing lock
to be released would cause a deadlock.

Chapter 6. Data Manipulation Language Statements 6-129

6.41 #LINEEND

6.41 #LINEEND

The #LINEEND statement requests termination of the current line 1/0 session and
deletes any outstanding buffered output lines and pages queued for asynchronous 1/O.
Unless NOBKPG is specified, all pages processed by the terminal operator during the
I/O session remain available until the operator signals completion of the review by
pressing ENTER with no request to see another page. At that time, all pages for the
session are deleted, page header lines are cleared, and the current page number is set
to 1.

Syntax

> #LINEEND
label

A\
A

Parameters

#LINEEND
Requests that the system terminate the current line I/O session and to delete any
remaining buffered output lines and pages queued for asynchronous I/O.

Status codes: The #LINEEND request is unconditional; any error detected during
execution will result in an abend of the issuing task.

6-130 CA-IDMS DML Reference — Assembler

6.42 #LINEIN

6.42 #LINEIN

The #LINEIN statement requests a synchronous transfer of data from the terminal to
the issuing program.

Syntax
»—l_—__l— #LINEIN >
label

»
| 2

| >

L ,LRB=

SYSPLIST «
_‘: line-request-block-pointer il

\ 4

L ,INAREA=input-data-location-pointer]

\ 4

v

l— ,MAXIN=input-data-max-length J

L

\ 4

v

LINLEN= —— (0) < !
—[input-data-actual-length J

\ 4
v

— |

I et Ve B
ECHO —
UNPROT —
NOBKPG —
UPPER —
UPLOW —
INVIS —

L ,COND= NO «
|j ALL ——
 »
(—d—— TRUN)—

CANC
IOER
INVP

l— ,TRUNXIT=truncate-input-data-Tabel J

\ 4

A\
v

\ 4

v

L ,CANCXIT=cancel-1line-i/o-1abel i

\

L ,I0ERXIT=i/0-error-label |

\

v

L ,INVPXIT=invalid-parameter-1list-label i

A\
\
A

l— ,ERROR=error-Tlabel J

Parameters

Chapter 6. Data Manipulation Language Statements 6-131

6.42 #LINEIN

LRB=
Specifies the three-fullword storage area in which the system will build the
#LINEIN parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system will build
the line request block (LRB).

line-request-block-pointer
A register that points to the area or the symbolic name of the area in which the
system will build the LRB.

INAREA=
Specifies the storage area into which the data will be read.

input-data-location-pointer
A register that points to the area or the symbolic name of the area. When
INAREA is specified, the LOCATE option should not be requested.

MAXIN=
Specifies the length, in bytes, of the data area, defined by INAREA, that is
reserved for the input data stream.

input-data-max-length
A register that contains the length of the data area or an absolute expression.
When MAXIN is specified, the LOCATE option should not be requested.

INLEN=
Specifies the location to which the system will return the actual length of the input
data stream. If INAREA is too small to hold the entire input line, resulting in
truncation, the returned length will indicate the original length of the data stream
before truncation.

©)
(Default); is the register to which the system will return the actual length of the
input data stream.

input-data-actual-length
A register or the symbolic name of a halfword or fullword user-defined field to
which the system will return the actual length of the input data stream.

OPTNS=
Specifies several options applicable to terminal input operations. This parameter
is never required and should be specified only when appropriate. The
OPTNS-parameter values must be enclosed in parentheses. If multiple values are
specified, each is separated from the previous one by a comma.

LOCATE
Allocates a buffer area for the data being read into the program, rather than a
user-defined area. The system allocates the buffer when the read operation is
completed. Register 1 contains the address of this buffer on completion of the
input operation. The issuing program is responsible for releasing the buffer area,
using a #FREESTG command.

When this option is requested, INAREA and MAXIN should not be specified.

6-132 CA-IDMS DML Reference — Assembler

6.42 #LINEIN

ECHO
(3270 devices only); requests that the system save the line of input data as
displayed on the screen in the current page. If OPTNS=ECHO is not specified,
data entered will not be retained and will not be available for review by the
terminal operator.

UNPROT
(3270 devices only); causes the first line of output that follows the #LINEIN to be
unprotected. At runtime, the terminal operator can reuse the unprotected first line
of an output display for input to a subsequent #LINEIN. The UNPROT option
can be used with or without the ECHO parameter. For example, if the terminal
operator has made an error in previous input data, the data that is retained by the
ECHO option can be rekeyed and corrected. If UNPROT is not included, all lines
of the following output display remain protected.

NOBKPG
(3270 devices only); requests the systanto keep pages that have been input in
a scratch area. If NOBKPG is specified, the terminal operator can view only the
current page of data. NOBKPG is valid only with the first request in a line mode
session.

UPPER
Directs the system to translate all letters in a #LINEIN request into uppercase
characters.

UPLOW
Specifies that no uppercase translation of characters in a #LINEIN request be
performed.

INVIS
Specifies that the operator's response to the #LINEIN command will not appear on
the screen as it is typed in. This option is useful when expecting a secret
password to be entered.

COND=
Specifies whether this #LINEIN is conditional and under what conditions control
should be returned to the issuing program.

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the request cannot
be serviced for any of the reasons listed below.

condition
Specifies conditions under which the system returns control to the issuing task.
Multiple conditions must be enclosed in parentheses and separated by commas.

TRUN
The input data is truncated due to insufficient storage in the specified INAREA.

CANC
The line 1/O session is terminated by the terminal operator pressing CLEAR
(3270), ATTENTION (2741), or BREAK (teletype).

Chapter 6. Data Manipulation Language Statements 6-133

6.42 #LINEIN

IOER
A logical or permanent I/O error is encountered in the input data stream.

INVP
There is an invalid parameter in the LRB.

TRUNXIT=truncate-input-data-label
Specifies the symbolic name of the routine to which control should be returned if
input data is truncated due to insufficient storage in the INAREA buffer.

CANCXIT=cancel-line-i/o-label
Specifies the symbolic name of the routine to which control should be returned if
the line I/O session is terminated by the terminal operator.

|OERXIT=i/o-error-label
Specifies the symbolic name of the routine to which control should be returned if
a permanent or logical error is detected in the input data stream.

INVPXIT=invalid-parameter -list-label
Specifies the symbolic name of the routine to which control should be returned in
the event of an invalid parameter in the LRB.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

Example: The example of the #LINEIN statement shown below performs the
following functions:

® Uses the default storage area, SYSPLIST, to build the line request block

» Specifies that the data is to be read into an input storage area located at the
address contained in register 5

» Specifies that register 6 contains the length of the data area, defined by the
INAREA parameter, that is reserved for the input data stream

» Uses the default register 0 to receive the actual length of the input data stream
from the system

» Specifies the conditional return of control if either the input data stream is
truncated due to insufficient storage in the specifed INAREA or the 1/O session is
terminated by the terminal operator

» Specifies the two routines to receive control in the event of a TRUN or CANC
condition

#LINEIN INAREA=(R5),MAXIN=(R6),COND=(TRUN,CANC),TRUNXIT=TRUNRTN, *
CANCXIT=0PERTER

Status codes: By default, the #LINEIN request is unconditional; any runtime error
will result in an abend of the issuing task. The issuing program can request return of
control with the COND parameter to avoid an abend.

6-134 CA-IDMS DML Reference — Assembler

6.42 #LINEIN

After completion of the #LINEIN, the value in register 15 indicates the outcome of the

operation.

Register 15 Meaning

value

X'00' The request has been serviced successfully.

X'04' The input area specified for the return of data to the issuing
program is too small; the returned data has been truncated to fit
available space.

X'08' The line 1/O session has been canceled; the terminal operator has
pressed CLEAR (3270), ATTENTION (2741), or BREAK
(teletype).

X'oC' A logical or permanent I/O error has been encountered in the input
data stream.

X'10' The line request block (LRB) contains an invalid field, indicating a

possible error in the program parameters.

Upon successful completion of a #LINEIN request, register 1 and a user-defined
register will contain the following information:

» Register 1 (LOCATE option only) contains the address of the buffer into which
the input data has been placed.

® Register n contains the actual length of returned data from the input operation; it
can be a register or a user-defined field. The register numbisrassigned by
the INLEN parameter.

Chapter 6. Data Manipulation Language Statements 6-135

6.43 #LINEOUT

6.43 #LINEOUT

The #LINEOUT statement requests a transfer of data from the issuing program to the
terminal, after appending line and device control characters appropriate to the physical
terminal in use. #LINEOUT also establishes, modifies, and deletes page header lines.

A data transfer requested by the #LINEOUT statement can be synchronous or
asynchronous; requests are asynchronous only when the NOWAIT option is specified:

» Synchronous — Following a synchronous request, control passes to the DC/UCF
system. The system places the issuing task in an inactive state; when the
#LINEOU request is completed, the task is redispatched according to its
established priority. With 3270 terminals, a synchronous #LINEOUT request
causes a processing delay immediately following the request while the system
transfers the line to the page buffer. If the line of data fills the buffer, the system
transfers the entire page of data to the terminal. Control does not return to the
issuing program until the terminal operator has pressed the ENTER key. Thus,
the program is made conversational.

= Asynchronous — Following an asynchronous request, control returns immediately
to the issuing program. Thereafter, each time the program issues a line-mode 1/O
request, the system automatically checks to determine if the last asynchronous
request has completed, and whether a new data transfer can be initiated.

Asynchronous requests enable programs to buffer all required pages of output
without suspending task execution during the actual data transmission. With an
asynchronous request, the task can optionally terminate itself, freeing all its
resources. The terminal operator can then review the buffered output, if desired.

The system processes |/O requests in the sequence received from the task; thus, if a
program issues a synchronous #LINEOUT request after issuing one or more
asynchronous requests, the system will complete all /O requests before returning
control to the issuing program.

The #LINEOUT request issued automatically by the system to empty partially-filled
buffers on completion of a task is synchronous; therefore the terminal operator can
view all screens and catch up with processing at that time.

If an application necessitates allowing the terminal operator to interrupt or terminate
processing at some point in a task, a synchronous request must be issued to suspend
processing while waiting for an operator response.

To transfer data immediately to a terminal, a write-direct-to-terminal #LINEOUT
request (blast) can be issued. The system does not page multiple blast requests. The
following #LINEOUT parameters are ignored during blast requests:

» HDR=
= OPTNS=(NOWAIT/NOBKPG/NEWPAGE)

(The NEWPAGE option is automatically forced during blast requests.)

6-136 CA-IDMS DML Reference — Assembler

6.43 #LINEOUT

Header lines can be defined for each new page of output to be transferred to a

terminal. A maximum of three header lines can be established for each new page of
output. The #LINEOUT statement specifies a header line and corresponding

header-line number that can be used in subsequent new pages. The established header
lines are sent to the terminal and written with each new page of output. The existing
header lines may be overridden or deleted at any time during processing by issuing a
#LINEOUT request specifying the appropriate line number and, for an override, the
corresponding new header line.

Syntax
l— label —l

»—— #LINEOUT OUTLEN=output-data-length >
L, Lre- |

SYSPLIST «
L line-request-block-pointer |

v

L ,OUTAREA=output-data-Tocation-pointer i

» >
>

[1)

L ,OPTNS= ——(———— NEWPAGE ——I—)J
NOWAIT —
NOBKPG —
SAVE —

L ,HDR=header-number i

»

t; ,DESTID=destination-id-pointer

\4

,USERID=user-id-pointer ———
,LTERMID=10gical-terminal-id-pointer —

L, cono- NO «
ALL ————
—
(

= CANC)—
IOER
INVP
UNDF

L ,CANCXIT=cancel-1ine-i/o-1abel i

v

[

v

v

»
| 2

L ,IOERXIT=i/0-error-label J

»
»

l— ,INVPXIT=invalid-parameter-list-label —l

v

L L,UNDFXIT=invalid-destid-1termid-label i

\ 4
A

L ,ERROR=error-label i

Chapter 6. Data Manipulation Language Statements 6-137

6.43 #LINEOUT

Parameters

OUTLEN=
Specifies the length, in bytes, of the data stream to be written to the terminal.

output-data-length
A register that contains the length or an absolute expression of the length. Output
data lengths of 0 and 1 can be used in the following situations:

» OUTLEN=0 Specifies that no data is to be written to the terminal or that a
header line is to be deleted:

When the HDR parameter is not specified, OUTLEN=0 specifies a dummy
write. No I/O is initiated by this request unless the NEWPAGE option,
described below for the OPTNS parameter, is specified; if
OPTNS=(NEWPAGE), this request writes a partially-filled buffer to the
terminal.

When the HDR parameter is specified, OUTLEN=0 specifies a deletion of a
header line. The HDR parameter indicates the number of the header line to
be deleted.

» OUTLEN=1 Specifies that a 1-byte data stream is to be written to the
terminal. Typically, OUTLEN=1 is used to write a blank line to the screen.
In this case, the OUTAREA parameter, described below, should designate a
single blank character.

LRB=
Specifies the three-fullword storage area in which the system will build the
#LINEOUT parameter list:

SYSPLIST
(Default); is the symbolic name of the storage area in which the system will build
the line request block.

line-request-block
A register that points to the area or the symbolic name of that area in which the
system will build the LRB.

OUTAREA=
Specifies the storage area that contains data to be output. OUTAREA need not be
defined if OUTLEN=0 has been specified.

output-data-location
A register that points to the area or the symbolic name of the area.

OPTNS=terminal-option
Specifies several options applicable to terminal output operations. This parameter
is never required and should be specified only when appropriate. The OPTNS
parameter values must be enclosed in parentheses. If multiple values are
specified, each is separated from the previous one by a comma.

6-138 CA-IDMS DML Reference — Assembler

6.43 #LINEOUT

NEWPAGE
Requests that the system write the output data line beginning on a new page. For
3270 devices, the NEWPAGE option forces the system to output all lines stored in
the current buffer, even if the buffer is not full.

NOWAIT
Requests an asynchronous transfer of data; the issuing task executes concurrently
with the output operation.

NOBKPG
(3270 devices only); requests the systanto keep pages that have been output
in a scratch area. If NOBKPG is specified, the terminal operator can view only
the current page of data. NOBKPG is valid only with the first request in a line
mode session.

SAVE
Directs the system to preserve the output from the #LINEOUT in the event that an
unsolicited write-direct-to-terminal data stream is received at the issuing terminal
while the #LINEOUT data stream is being displayed. This option overrides the
task SAVE/NOSAVE option specified during system generation.

HDR=
Specifies the number of the page header line being defined, modified, or deleted.

header -line-number
An absolute expression of the line number. If OUTLEN is other than O the value
stored in OUTAREA will be moved to the designated (first, second, or third)
header line. If a header line with the same number has been previously defined
for this 1/0O session, the system will replace it with the value stored in OUTAREA.
If OUTLEN=0, the designated header line will be deleted.

DESTID/USERID/LTERMID
Specifies a write-direct-to-terminal request. The HDR= and
OPTNS=(NOWAIT/NOBKPG/NEWPAGE) parameters are ignored during a blast
request.

DESTID=
Specifies a write-direct-to-terminal request (blast) to the following destinations
defined during system generation:

m List of logical terminals indicates that the system will send the #LINEOUT
data stream specified in the OUTAREA parameter to all available terminals in
the list.

m List of usersindicates that the system will send the #LINEOUT data stream
specified in the OUTAREA parameter to all users in the list who are currently
signed on to the system.

destination-id
A register that points to the destination id, the symbolic name of a user-defined
field that contains the destination ID, or the ID itself enclosed in quotation marks.
The destination list can include both 3270 and TTY devices.

Chapter 6. Data Manipulation Language Statements 6-139

6.43 #LINEOUT

USERID=
Specifies a blast request to a specific signed-on user. The system will send the
#LINEOUT data stream specified in the OUTAREA parameter to a specific
signed-on user.

user-id
A register that points to the user id, the symbolic name of a user-defined field that
contains the user ID, or the ID itself enclosed in quotation marks.

LTERMID=
(#LINEOUT only); specifies a blast request to a specific in-service terminal. The
system will send the #LINEOUT data stream specified in the OUTAREA
parameter to a specific in-service terminal.

logical-terminal-id
A register that points to the logical terminal id, the symbolic name of a
user-defined field that contains the logical terminal ID, or the ID itself enclosed in
guotation marks.

COND=
Specifies whether this #LINEOUT is conditional and under what conditions
control should be returned to the issuing program.

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the request cannot
be serviced for any of the reasons listed below.

condition
Specifies conditions under which the system returns control to the issuing task.
Multiple conditions must be enclosed in parentheses and separated by commas.

CANC
The line 1/O session is terminated by the terminal operator pressing CLEAR
(3270), ATTENTION (2741), or BREAK (teletype).

IOER
A logical or permanent I/O error is encountered in the output data stream.

INVP
There is an invalid parameter in the LRB.

UNDF
An undefined DESTID or LTERMID is specified in a #LINEOUT blast request.

CANCXIT=cancel-line-i/o-label
Specifies the symbolic name of the routine to which control should be returned if
the line I/O session is terminated by the terminal operator.

|OERXIT=i/o-error-label
Specifies the symbolic name of the routine to which control should be returned if
a permanent or logical 1/O error is detected in the output data stream.

6-140 CA-IDMS DML Reference — Assembler

6.43 #LINEOUT

INVPXIT=invalid-parameter-list-label
Specifies the symbolic name of the routine to which control should be returned in
the event of an invalid parameter in the LRB.

UNDFXI T=invalid-destid-lter mid-label
Specifies the symbolic name of the routine to which control should be returned if
an undefined DESTID or LTERMID is specified in a #LINEOUT blast request.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

Example: The example of the #LINEOUT statement shown below performs the
following functions:

m Specifies that register 7 contains the length of the output data stream
m Uses the default storage area SYSPLIST to build the line request block (LRB)
» |dentifies OUT1 as the storage area that contains the output data stream

® Specifies a write-direct-to-terminal request to a group of users defined during
system generation as USERLIST

m Specifies a conditional return of control to the routine labeled LISTERR in the
event that DESTID 'USERLIST' is not defined to the system

#LINEOUT OUTLEN=(R7),0UTAREA=QUT1,DESTID="'USERLIST',COND=UNDF, *
UNDFXIT=LISTERR

Status codes: By default, the #LINEOUT request is unconditional; any runtime
error will result in an abend of the issuing task. The issuing program can request
return of control with the COND parameter to avoid an abend.

After completion of the #LINEOUT, the value in register 15 indicates the outcome of
the operation:

Register 15 Meaning

value

X'o0' The request has been serviced successfully.

X'08' The line 1/O session has been canceled by the operator pressing the
CLEAR (3270), ATTENTION (2741), or BREAK (teletype) key.

X'oC' A logical or permanent I/O error has been encountered in the
output data stream.

X'10' The line request block (LRB) contains an invalid field, indicating a
possible error in the #LINEOUT parameters.

X'14' The name specified for DESTID, USERID, or LTERMID is

unknown to this DC/UCF system.

Chapter 6. Data Manipulation Language Statements 6-141

6.44 #LINK

6.44 #LINK

The #LINK statement establishes linkage with, and passes control and an optional
parameter list to, a specified program. When the linked program terminates or
executes a #RETURN request, the program issuing the #LINK expects return of
control to the instruction immediately following the #LINK statement.

»—— #LINK —[PGM=program-name-pointer J >
EPADDR=entry-point-address

\ 4
v

L ,PLIST= SYSPLIST « |
L]

parameter-value-list-pointer

\ 4

v

|— , PARMS= —|: NO « JI
[)
(—4— parameter-pointer 1)

L conn= — no «
L

YES

\ 4

>
>

v

|— ,PGNAXIT=program-not-available-label J

\ 4

v
A

L ,ERROR=error-Tlabel i

Parameters

PGM=
Specify the program and/or entry-point address of the program to which control is
transferred.

program-name-pointer
Specifies the 1- to 8-character name of the program to which control is
transferred. Program-name is a register that points to a field that contains the
program name, the symbolic name of a user-defined field that contains the
program name, or the program-name literal enclosed in quotation marks.

entry-point-address
Specifies the entry-point address of the program to which control is transferred.
Entry-point-address is a register or symbolic name of a fullword user-defined field
that contains the entry-point address.

PLIST=
Specifies the location of the storage area that contains one or more parameters to
be passed to the program receiving control.

6-142 CA-IDMS DML Reference — Assembler

6.44 #LINK

SYSPLIST
(Default); is the symbolic name of the storage area in which the system will build
the parameter list.

parameter-value-list-pointer
A register that points to the area in which the system will build the list or the
symbolic name of that area.

The size of the parameter-list area, in fullwords, must be equal to 2 plus the
number of parameters listed in the PARMS parameter described below. Thus, if
no parameters are specified (PARMS=NO), the length of this storage area is two
fullwords; if one parameter is specified, the length is three fullwords.

PARMS=
Specifies the location of each parameter to be passed to the program receiving
control.

NO
(Default); indicates that no parameters will be passed to the program.

par ameter-pointer
Indicates that parameters are to be passed to the pro§aameter is a register
that contains the address of the parameter or the symbolic name of a user-defined
field that contains the parameter.

The parameter list must be enclosed in parentheses. If multiple parameters are
specified, each is separated from the previous one by a comma.

COND=
Specifies whether this #LINK is conditional; that is, whether control should be
returned to the issuing program in the event of an error:

NO
(Default); specifies that the request is not conditional.

PGNA
Specifies that the request is conditional. Control is returned if the #LINK cannot
be serviced because the program is not available.

PGNAXIT=program-not-available-label
Specifies the symbolic name of the routine to which control should be returned if
the #LINK request cannot be serviced because the program is not available.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded. In this case, the ERROR parameter functions the same as
PGNAXIT.

Example: The example of the #LINK statement shown below performs the
following functions:

» Specifies that control will be transferred to the program HELPLK

® Uses the default storage area, SYSPLIST, in which the system builds the
parameter list

Chapter 6. Data Manipulation Language Statements 6-143

6.44 #LINK

® |dentifies the parameters, PARM1 and PARM2, to be passed to the program
HELPLK

» Specifies a conditional return of control if the program HELPLK is not available
and identifies the routine NOPROG that will receive control in the event of a
PGNA error condition

#LINK PGM='HELPLK',PARMS=(PARM1,PARM2) ,COND=PGNA, PGNAXIT=NOPROG

Status codes: By default, the #LINK request is unconditional. Error conditions
that can occur are described below:

® A no-space-in-program-pool condition, caused when the amount of storage in the
program pool is inadequate to accommodate the program, will result in a delay
until sufficient storage space becomes available (unless such a wait would cause a
deadlock, in which case an abort would occur).

® A nonconcurrent-program-in-use condition, caused when a copy of the program is
already in use and is marked as nonconcurrent (indicating that this program can be
used by a maximum of one task), will result in a delay until the program becomes
available.

m A storage-conflict condition, caused when a copy of the program previously
loaded is temporarily overlayed while in use by a waiting task, will result in a
delay until the program is replaced in the program pool.

» Any abnormal condition will result in an abend. Conditions in this category
include the following:

— 1/O error
— Program not found in program definition table (PDT)
— A wait on storage (default action resulting from the

no-storage-in-program-pool condition) would result in a deadlock

The issuing program can request return of control with the COND parameter to avoid
a delay or an abend.

After completion of the #LINK function, the value in register 15 indicates the outcome
of the operation;

6-144 CA-IDMS DML Reference — Assembler

6.44 #LINK

Register 15 Meaning

value

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced because an I/O, program-not-found,

or potential-deadlock error has occurred, or the program has not
been defined in the program definition element (PDE).

Chapter 6. Data Manipulation Language Statements 6-145

6.45 #LOAD

6.45 #LOAD

The #LOAD statement loads a module (program or table) into the program pool. In
response to a #LOAD, the system returns the entry-point address of the module and
the address of the resource control element (RCE) to the issuing program.

Syntax

»—ﬁ #LOAD PGM=program-name-pointer
label

\ 4

v

L VERSION=version-number J

> >
>

|— ,DICTNOD=nodename-pointer J

L ,DICTNAM=dictionary-name-pointer i

A\
v

L - . |
 EPADDR= —— (0) 7

entry-point-address

A\
v

L ,TYPE= T PROGRAM
TABLE

A\
v

L ,pLIsT- — syspLIST « |
T]

parameter-value-list-pointer

L ,COND= NO «
t ALL ———
 »
(=4 NOST)—

IOER
SNGL
LDCF
PGNF
DEAD

A\
v

v

L NOSTXIT=insufficient-storage-Tlabel J

6-146 CA-IDMS DML Reference — Assembler

6.45 #LOAD

\ 4
\4

L ,IOERXIT=1/0-error-label i

\ 4
v

L ,SNGLXIT=single-thread-in-use-label J

\
4

L ,LDCFXIT=storage-location-conflict-label J

\ 4

L ,PGNFXIT=program-not-found-1label i

\
\4

L ,DEADXIT=deadlock-Tabel i

\ 4
\4
A

l— ,ERROR=error-label J

Parameters

PGM=
Specifies the 1- to 8-character name of the module to be loaded in the program
pool.

program-name-pointer
A register that points to a field that contains the program name, the symbolic
name of a user-defined field that contains the program name, or the program-name
literal enclosed in quotation marks.

VERSI ON=version-number
Specifies a version numbelersion-number can be an absolute value, a halfword
or fullword value, or a register.

DICTNOD=
Identifies the node that controls the dictionary in which the program resides.

nodename-pointer
A register that points to a field that contains the name of the node, the symbolic
name of a user-defined field containing the name of the node, or the nodename
literal enclosed in quotation marks. A blank value refers to the local node.

DICTNAM=
Identifies the default dictionary in which the named program resides.

dictionary-name-pointer
A register that points to a field containing the dictionary name, the symbolic name
of a user-defined field containing the dictionary name, or the dictionary name
literal enclosed in quotation marks.

Note: If the DICTNAM and/or DICTNOD is specified, the system searches only
the specified dictionary for the module. A program-not-found condition is
returned if the module cannot be found in the specified dictionary.

EPADDR=
Specifies where the system will return the entry-point address of the loaded
program.

Chapter 6. Data Manipulation Language Statements 6-147

6.45 #LOAD

(©)

(Default) specifies that the system will return the entry-point address to register 0.

entry-point-address
Specifies that the system will return the entry-point address to a user-defined
Entry-point-address is a register location or the symbolic name of a fullword
user-defined field that contains the entry-point address.

,TYPE=
Qualifies the type of load to perform.

PROGRAM
Has been pre-defined as a program at system generation or dynamically defined as
a program via DCMT VARY DYNAMIC PROGRAM command.

Note: The program must reside in a load library. No attempt will be made to
load the program from a dictionary load area.

TABLE
Has been pre-defined as a table at system generation or dynamically defined using
a DCMT VARY DYNAMIC PROGRAM command.

PLIST=
Specifies the location of the storage area in which the system builds the #LOAD
parameter list.

SYSPLIST
Is the symbolic name of the storage area in which the system builds the #LOAD
parameter list.

par ameter -value-list-pointer
A register that points to the area or the symbolic name of the area.

Note: The PLIST parameter is required only if the DICNAM or DICTNOD
options are specified.

COND=
Specifies whether this #LOAD is conditional and under what conditions control
should be returned to the issuing program:

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the load cannot be
serviced for one or more of the reasons listed unokadition.

condition
Specifies conditions under which control is returned to the program.

NOST
Available storage in the program pool is insufficient to load the requested
program.

IOER
An I/O error occurs during the load.

6-148 CA-IDMS DML Reference — Assembler

6.45 #LOAD

SNGL
The requested program has been defined as nonconcurrent and is currently in use.

LDCF
The requested program is in use by another task but has been overlayed
temporarily in the program pool, causing a storage location conflict.

PGNF
The requested program cannot be found in the program definition table (PDT), or
is marked as out-of-service.

DEAD
The requested program cannot be loaded immediately because of a
no-storage-in-program-pool condition and waiting would cause a deadlock.

NOST XIT=insufficient-storage-label
Specifies the symbolic name of a routine to which control should be returned if
the #LOAD request cannot be serviced due to insufficient storage in the program
pool.

IOERXIT=i/o-error-label
Specifies the symbolic name of a routine to which control should be returned if
the #LOAD request cannot be serviced due to an 1/O error while processing the
load.

SNGL XIT=single-thr ead-in-use-label
Specifies the symbolic name of a routine to which control should be returned if
the #LOAD request is for a program marked nonconcurrent and the program is in
use.

L DCFXIT=stor age-location-conflict-label
Specifies the symbolic name of a routine to which control should be returned if
the #LOAD request cannot be serviced due to a storage location conflict.

PGNFXIT=program-not-found-label
Specifies the symbolic name of a routine to which control should be returned if
either the requested program cannot be found in the PDT or is out-of-service.

DEADXIT=deadlock-label
Specifies the symbolic name of a routine to which control should be returned if
the requested program cannot be loaded immediately and to wait on its availability
would cause a deadlock.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

Example: The #LOAD statement shown below loads the program EMPMENU into
the program pool:

#LOAD PGM="EMPMENU'

Chapter 6. Data Manipulation Language Statements 6-149

6.45 #LOAD

Status codes: By default, the #LOAD request is unconditional. Error conditions
that can occur are:

® A no-storage-in-program-pool condition is caused when there is not enough
storage in the program pool to accommodate the program. This conditions results
in a delay until sufficient storage becomes available (unless such a wait would
cause a deadlock).

= A nonconcurrent-program-in-use condition is caused when a copy of the program
is already in use and is marked as nonconcurrent (indicating that this program can
be used by a maximum of one task at a time). This conditions results in a delay
until the program becomes available.

= A storage-conflict condition occurs when a previously loaded copy of the program
is temporarily overlayed while in use by a waiting task. This condition results in
a delay until the program is replaced in the program pool.

= Any abnormal condition will result in an abend. Conditions in this category
include the following:

— 1/O error
— Program not found in PDT, or marked as out-of-service
— Wiaiting for storage-pool or program-pool memory, the default action resulting

from the no-storage-in-program-pool condition, would cause a deadlock

The issuing program can request return of control with the COND parameter to avoid
a delay or an abend.

After completion of the #LOAD function, the value in register 15 indicates the
outcome of the operation:

Register 15 M eaning

value

X'o0' The request has been serviced successfully.

X'04' The request cannot be serviced due to insufficient storage in the
program pool.

X'08' The request cannot be serviced due to an I/O error during a load
from a load library.

X'oC' The requested program is nonconcurrent and in use.

X'10' The requested program has been overlayed temporarily in the
program pool, resulting in a storage conflict.

X'14' The requested program is not defined to the PDT, is marked as
out-of-service, or a null PDE could not be allocated for the
program.

X'18' The requested program cannot be loaded immediately (insufficient

storage); to wait would cause a deadlock.

6-150 CA-IDMS DML Reference — Assembler

6.45 #LOAD

Register 15 Meaning
value
X'20' The requested program cannot be loaded immediately due to an 1/O

error during a load from the dictionary DDLDCLOD area.

The values in a user-defined register and register 1 also contain the following
information:

» Register n specifies the entry-point address of the loaded program. The register
numbern is assigned by the EPADDR parameter of the #LOAD statement.

m Register 1 specifies the address of the RCE of the loaded program.

Chapter 6. Data Manipulation Language Statements 6-151

6.46 #MAPINQ

6.46 #MAPINQ

The #MAPINQ statement is used after a map input request to accomplish one of the
following actions related to the input operation:

» Move map-related information into variable storage

® Test for conditions relating to global map input operations
m Test specific map fields for the presence of the cursor

® Test for conditions relating to specific map fields

If you use the #MAPINQ statement to test for conditions, you must specify a routine
that receives control if the condition is true.

Each of the four types of #MAPINQ statements is discussed in this chapter.

6.46.1 Moving map-related data
This version of the #MAPINQ statement moves the following information into variable
storage:
® The cursor position (row and column).

» The attention ID (AID) key used. An AID key is the key that was last pressed
during the input operation.

= The entered length of a specific input field.

Syntax

»»—— #MAPINQ MRB=map-request-block-pointer >

v

|— ,MRBLIST= —[MRBPLIST « J|
mrb-parameter-list-pointer

v
A

,AID=aid-indicator

I
>—¢—E ,CURSOR=cursor-position
field-options

Expansion of field-options

»—— ,FIELD=field-name >

]

»

L

v

,INDEX=index-register

\4
A

»
»

L ,INLEN=field-Tength-register i

Parameters

6-152 CA-IDMS DML Reference — Assembler

6.46 #MAPINQ

MRB=
Specifies the storage area associated with the MRB of the map about which the
inquiry is being made.

map-r equest-block
A register that points to the MRB storage area or the symbolic name of that area.

MRBLIST=
Specifies the location of the 20-fullword storage area that is substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

MRBPLIST
(Default); is the symbolic name of the storage area that will be substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

mrb-parameter-list
A register that points to the area or the symbolic name of the area.

CURSOR=
Requests that the system return the cursor address from the last map in operation
to the specified location in the issuing program.

The symbolic name of a 2-byte user-defined field. The system will set the value

of cursor-position to the row and the column, each a 1-byte binary number, of the
cursor position on the screen.

AlID=
Requests that the system return the AID to the specified location in the issuing
program.

aid-indicator
The symbolic name of a 1-byte user-defined field that will be set to the 3270 AID
character received in the last map in request.

FIELD=
Requests that the system move the entered length of the specified map field for
which information is required.

field-name
Specifies the name of the map field.

Note: For each #MAPINQ request to return map-related data, field-specific
information can be requested for one map field; if information is needed for
multiple fields, additional #MAPINQ commands must be issued.

INDEX=
Specifies the occurrence of the fieldiéd-name is a multiply-occurring field.

index-register
Either a register or the symbolic name of a user-defined field that contains the
subscript or an absolute expression.

INLEN=
Requests that the system return the entered length, in bytes, of the specified map
field to the issuing program.

Chapter 6. Data Manipulation Language Statements 6-153

6.46 #MAPINQ

field-length-register
A register or the symbolic name of a halfword or fullword user-defined field to
which the system will return the length.

Example: The following #MAPINQ statement moves the contents of map field
EMPNUM to the area in the program labeled BLOCK1. The value of the 3270 AID
character received in the last map in request is returned to the user-defined field
AIDBYTE. This field is tested for the specific AID key value that indicates the
operator is finished with this program.

#MAPINQ MRB=BLOCK1,AID=AIDBYTE,FIELD=EMPNUM

CLI AIDBYTE,CLEAR
BE RETURN

CLEAR EQU X'6D'

The following table lists attention ID (AID) key values.

Key AlID Character Key AID Character
ENTER " (single quote) PF14 'B'
CLEAR ' ' (underscore) PF15 'C'
PFO1 1 PF16 ‘D'
PF02 2' PF17 'E'
PF03 ‘3 PF18 'F'
PF0O4 ‘4' PF19 'G'
PFO5 '5' PF20 'H'
PF0O6 '6' PF21 I
PFO7 7 PF22 ¢
PF08 '8’ PF23
PF09 ‘9’ PF24 <!
PF10 " PAO1 %'
PF11 ‘# PAO2 >
PF12 ‘@' PAO3
PF13 ‘A

6-154 CA-IDMS DML Reference — Assembler

6.46 #MAPINQ

6.46.2 Testing for global map input conditions
This version of the #MAPINQ statement tests for one of the following conditions
related to map input operations:
®m The screen was not previously formatted before the map in was performed.

®» One or more input fields were truncated when transferred to program variable
storage.

= One or more input fields were modified on the screen before being transferred.
= One or more fields, which were modified on the screen, are undefined in the map
being used.

Syntax

»»—— #MAPINQ MRB=map-request-block-pointer >

v

l— ,MRBLIST= _‘: MRBPLIST « Jl
mrb-parameter-list-pointer

v

»—— ,CURSOR=cursor-position

»—— ,AID=aid-indicator

v

»

|
-
|
v
A

TRUNCATE,truncated-data-Tabel

l— LIF= (—E UNFORMAT ,unformatted-screen-label

CHANGED,updated-data-label ————
XTRNEOUS ,extraneous-input-data-label —

Parameters

MRB=
Specifies the storage area associated with the MRB of the map about which the
inquiry is being made.

map-r equest-block-pointer
A register that points to the MRB area or the symbolic name of that area.

MRBLIST=
Specifies the location of the 20-fullword storage area that is substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

MRBPLIST
(Default); is the symbolic name of the storage area that will be substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

mr b-par ameter -list-pointer
A register that points to the area or the symbolic name of the area.

CURSOR=
Requests that the system return the cursor address from the last map in operation
to the specified location in the issuing program.

Chapter 6. Data Manipulation Language Statements 6-155

6.46 #MAPINQ

Cur sor-position
The symbolic name of a 2-byte user-defined field. The system will set the value
of cursor-position to the row and the column, each a 1-byte binary number, of the
cursor position on the screen.

AlD=
Requests that the system return the AID to the specified location in the issuing
program.

aid-indicator
The symbolic name of a 1-byte user-defined field that will be set to the 3270 AID
character received in the last map in request.

IF=
Tests the outcome of the last map in request for a condition relating to the data
input as a whole. Map data fields that are in error are not transferred to program
variable storage.

»»> For more information on testing map input conditions, refer t@ChéDMS

Mapping Facility document. For each condition, the associated label specifies the
symbolic name of the routine in the issuing program to which the system will pass
control if the tested condition is true. The IF-parameter condition and label must
be enclosed in parentheses.

UNFORM AT ,unfor matted-scr een-label
Tests whether the screen had been formatted before the input operation was
performed.

TRUNCATE,truncated-data-label
Tests whether any of the screen fields had been truncated when transmitted to
program variable storage.

CHANGED,updated-data-label
Tests whether any of the screen fields actually had been mapped to program data
fields when the map in operation was performed.

XTRNEOUS extraneous-input-data-label
Tests whether the data stream that had been read from the terminal contains any
data from a field undefined to the map. If this condition occurs, the system does
not move the the undefined data field to program variable storage.

Example: The following example of the #MAPINQ statement tests if any of the
screen fields have been updated to the program data fields of the map identified by
BLOCK1 when the last map in operation was performed. If the test is true, the
program branches to the label NEWINFO. A false condition causes the program to
execute the next sequential instruction:

#MAPINQ MRB=BLOCK1,IF=(CHANGED,NEWINFO)

6-156 CA-IDMS DML Reference — Assembler

6.46 #MAPINQ

6.46.3 Testing cursor position

This version of the #MAPINQ statement tests a specified map field for the presence of
the cursor.

Syntax

v

»»—— #MAPINQ MRB=map-request-block-pointer

v

»
| 2

l— LMRBLIST= _‘: MRBPLIST « Jl
mrb-parameter-Tist-pointer

\ 4
v

]

l— ,CURSOR=cursor-postion

\ 4

l— ,AID=aid-indicator J

v

»—— ,FIELD=field-name

T

v

ll

, INDEX=index-register

\ 4
v

l— ,INLEN=field-Tength-register J

\
\4
A

L ,IF=(CURSOR, cursor-at-this-field-1label) J

Parameters

MRB=
Specifies the storage area associated with the MRB of the map about which the
inquiry is being made.

map-r equest-block-pointer
A register that points to the MRB area or the symbolic name of that area.

MRBLIST=
Specifies the location of the 20-fullword storage area that is substituted for the
DC/UCF portion of SUBSCHEMA-CTRL:

MRBPLIST
(Default); is the symbolic name of the storage area that will be substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

mr b-parameter -list-pointer
A register that points to the area or the symbolic name of the area.

CURSOR=
Requests that the system return the cursor address from the last map in operation
to the specified location in the issuing program.

Cur sor-position
The symbolic name of a 2-byte user-defined field. The system will set the value
of cursor-position to the row and the column, each a 1-byte binary number, of the
cursor position on the screen.

Chapter 6. Data Manipulation Language Statements 6-157

6.46 #MAPINQ

AlD=
Requests that the system return the AID to the specified location in the issuing
program.

aid-indicator
The symbolic name of a 1-byte user-defined field that will be set to the 3270 AID
character received in the last map in request.

FIELD=
Requests that the system move field-related information to the issuing program.

field-name
Specifies the name of the map field being tested.

Note: For each #MAPINQ request to test for cursor position, field-specific
information can be requested for one map field; if information is needed for
multiple fields, additional #MAPINQ commands must be issued.

INDEX=
Specifies the occurrence of the fieldi#d-name is a multiply-occurring field.

index-register
Either a register or the symbolic name of a user-defined field that contains the
subscript or an absolute expression.

INLEN=
Requests that the system return the entered length, in bytes, of the specified map
field to the issuing program.

field-length-register
Either a register or the symbolic name of a halfword or fullword user-defined field
to which the system will return the length.

IF=CURSOR,
Tests the outcome of the last map in request to determine whether the cursor was
in the named field during the last map in operation.

cur sor -at-this-field-label
Specifies the symbolic name of the routine within the issuing program to which
the system will pass control if the cursor is in the named field during the last map
in operation.

Example: The #MAPINQ statement shown below moves information about the
EMPNUM field to the issuing task. The IF statement tests the outcome of the last
map in request; if the cursor was in that field during the last map in operation, the
system passes control to the routine labeled CURATNUM.

#MAPINQ MRB=BLOCK1,FIELD=EMPNUM,IF=(CURSOR,CURATNUM)

6-158 CA-IDMS DML Reference — Assembler

6.46 #MAPINQ

6.46.4 Testing for identical data

You can compare the contents of a mapped-in field with the map data that is currently
in your program's record buffer.

You can use #MAPINQ when you want to reduce the number of database 1/0
operations performed for your programs, updating the database only when the user
enters different data.

To test for identical data, use the DATAIDEN and DATADIFF options of the IF=
clause (see 6.46.5, “Testing for input conditions”).

Example: Use a #MAPINQ statement to test whether the user has entered identical
data in the EMPNUM, EMPNAME, CONCOD&nd UPDFLAG.

» [f the identical condition isrue (the user enters identical data in these fields), the
program branches to NEXPRO2.

» [f the identical condition ifalse (the user has changed at least one of these
fields), control continues with the next executable instruction.

Use a #MAPINQ statement to test whether the user has entered a new department ID.
If the user enters a new ID (differenttisie), the program branches to label
OBTDEPT.

#MAPINQ MRB=BLOCK1,FLIST=(FIELD,DEPTID-0410),FOR=ANY,
IF=(DATADIFF,0BTDEPT)

6.46.5 Testing for input conditions
This version of the #MAPINQ statement tests for the following input conditions
related to specific map fields:

» |f map fields have been modified and the data fields in storage contain the new
(changed) contents of that field.

» |f map fields have not been modified and the data fields in storage remain
unchanged.

® [f map fields have been erased by operator action.
® |f map fields have been truncated.

n [f the specified map fields are either in error (the error flag has been set on) or the
map fields are correct, (the error flag has been set off). This option applies only
to those maps and map fields for which automatic editing is enabled.

Chapter 6. Data Manipulation Language Statements 6-159

6.46 #MAPINQ

Syntax

»»—— #MAPINQ MRB=map-request-block-pointer

v

L L,MRBLIST= MRBPLIST <« |
L _]
mrb-parameter-list-pointer

»
| 2

]

|— ,CURSOR=cursor-position

A\

v

|— ,AID=aid-indicator J

v

field-options
flist-options

L for-options |

if-options ———

Expansion of field-options

»»—— _FIELD=field-name

>
»

L il

, INDEX=index-register

»
|

L ,INLEN=field-Tength-number i

Expansion of FLIST-options

»»—— FLIST= >
[. > |
»— (—— FIELD,field-name B]) >
, INDEX=index-register
» I_ B | >
,PLIST= SYSPLIST «
L]

parameter-value-list-pointer

Expansion of for-options

»— ,FOR=

v

CURRENT
ALL —
NONE —
SOME —
ANY ———

v
A

6-160 CA-IDMS DML Reference — Assembler

6.46 #MAPINQ

Expansion of if-options

»w—— [IF= »
— (DATANO,unchanged-field-Tabel) ><
DATAYES,updated-field-label
DATAERAS ,erased-field-label
DATARUN, truncated-field-label —
EDITERR,edit-error-field-label —
EDITCOR,edit-correct-field-label —
DATAIDEN,identical-data-Tabel —
DATADIFF,different-data-label ——
Parameters
MRB=
Specifies the storage area associated with the MRB about which the inquiry is
being made.

map-r equest-block-pointer
A register that points to the MRB area or the symbolic name of that area.

MRBLIST=
Specifies the location of the 20-fullword storage area that is substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

MRBPLIST
(Default); is the symbolic name of the storage area that will be substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

mr b-par ameter -list-pointer
A register that points to the area or the symbolic name of the area.

CURSOR=
Requests that the system return the cursor address from the last map in operation
to the specified location in the issuing program.

Cur sor-position
The symbolic name of a 2-byte user-defined field. The system will set the value
of cursor-position to the row and the column, each a 1-byte binary number, of the
cursor position on the screen.

AlID=
Requests the system to return the AID to the specified location in the issuing
program.

aid-indicator
The symbolic name of a 1-byte user-defined field that will be set to the 3270 AID
character received in the last map in request.

FIELD=
Moves field-related information to the issuing program.

field-name
Specifies the name of the map field being tested. The following options can be
used with FIELD:

Chapter 6. Data Manipulation Language Statements 6-161

6.46 #MAPINQ

= |[NDEX=index specifies the occurrence of the fieldidd-name is a
multiply-occurring field. Index is either a register or the symbolic name of a
user-defined field that contains the subscript or an absolute expression.

» INLEN=field-length. requests that the system return the entered length, in
bytes, of the specified map field to the issuing progré&ie d-length is a
register or the symbolic name of a halfword or fullword user-defined field to
which the system will return the length.

FLIST=
Specifies a list of map fields to be tested, as indicated by the FOR parameter,
described below. The FLIST-parameter values must be enclosed in parentheses.
Each field specification must be coded on a separate line. The FLIST parameters
are:

» Field-name is the name of the map data field to be tested.

® INDEX= specifies the occurrence of the fieldidfd-name is a
multiply-occurring field. Index-register is a register or the symbolic hame of
a user-define field that contains the subscript or an absolute expression.

. PLIST= (optional); indicates the location in which the system will build the
field parameter list.

. SYSPLIST (default); is the symbolic name of the storage area in which the
system will build the field parameter list.

» Parameter-value-list-pointer is a register that points to the area or the
symbolic nhame of the area.

FOR=
Specifies the map data fields to which the test applies.

CURRENT
Specifies that the test applies only to the current data field; that is, the data field
that was referenced in the last #MAPMOD or #MAPINQ statement issued by the
program. If the last #MAPMOD or #MAPINQ statement specified a field list, no
currency exists.

ALL
Specifies that the test is true if all map data fields meet the specified condition.

NONE
Specifies that the test is true if none of the map data fields meet the specified
condition.

SOME
Specifies that the test is true if more than one, but not all of the map data fields
meet the specified condition.

ANY
Specifies that the test is true if one or more of the map data fields meet the
specified condition.

6-162 CA-IDMS DML Reference — Assembler

6.46 #MAPINQ

ALLBUT
Specifies that the test is true if all map fields except for the named field meet the
specified condition.

NTCURFLD
Specifies that the test is true if all map fields except the current field meet the
specified condition.

IF=
Specifies the input test condition. For each condition, the associated label
specifies the symbolic name of the routine in the issuing program to which the
system will pass control if the tested condition is true. The IF-parameter condition
and label must be enclosed in parentheses.

DATANO
Determines if the terminal operator did not enter data in the named map fields.
This condition is true if the field has not been modified or if it had been modified
but the INDATA=NO option was in effect for the field during the last #MREQ IN
request.

DATAYES
Determines if the terminal operator entered data in the named map fields.

DATAERAS
Determines if the data has been erased from the named map fields using 3270
local editing features. In this case, the data fields would remain unchanged unless
a padding character had been specified, which would fill the field with that
character.

DATATRUN
Determines if the data has been truncated in the named map fields. A field that
has been truncated would also fulfill the condition DATAYES, described above.

EDITERR
Determines if the named map fields were found to be in error during automatic
editing. To test for this condition, automatic editing must be enabled for the map
and for each of the named map fields.

EDITCOR
Determines if the named map fields were found to be correct during automatic
editing. To test for this condition, automatic editing must be enabled for the map
and for each of the named map fields.

DATAIDEN
Tests whether input data identical to map data currently in program variable
storage. DATAIDEN igtrue in either of the following cases:

® The field's modified data tag (MDT) is off. On mapin, the MDT is off if the
user did not type any characters in the field, a previous modify map did not
set it, or the map specifies N to MDT on Y/N.

m The field's MDT is on, but each character that the user typed in is identical
(including capitalization) to the data in variable storage.

Chapter 6. Data Manipulation Language Statements 6-163

6.46 #MAPINQ

DATADIFF
Tests whether input data different from map data currently in program variable
storage. DATADIFF idrue if the field's MDT is onand at least one input
character differs from the data in variable storage.

Example: The following example of the #MAPINQ statement tests for whether the
terminal operator entered data in more than one, but not all of the fields described in
the FLIST parameter. If this condition is true the program branches to the label
CHECFLDS. A false condition returns control to the next executable instruction.
#MAPINQ MRB=BLOCK1,FLIST=(FIELD,SCREENF2,
FIELD,SCREENF3,
FIELD,SCREENF4,

FIELD,SCREENF5),
FOR=SOME, IF=(DATAYES,CHECFLDS)

* % ok X

Status codes: The #MAPINQ request is unconditional; any return code other than
X'00" will result in an abend of the issuing task.

6-164 CA-IDMS DML Reference — Assembler

6.47 #MAPMOD

6.47 #MAPMOD

The #MAPMOD statement requests that the system modify options in the map request
block (MRB) for a map; modifications can be designated as permanent or temporary.
Requested revisions can be field-specific and/or non field-specific. Field-specific
revisions apply to the map's variable data fields, not to literal fields.

The following considerations apply:

» |f modification of one field is necessary, the FIELD, MRB, and the optional
PLIST parameters, described below, should be specified.

» |f modification of more than one field is necessary, the FLIST, FOR, and
MRBLIST parameters, described below, should be specified.

» The #MAPMOD attribute parameters revise predefined map and/or map data field
attributes, and thus have no defaults. If a #MAPMOD attribute parameter is
specified, that parameter remains set to the value specified at map generation or to
the value set with a previously issued #MAPMOD statement specifying
TYPE=PERM. Conflicting attributes are resolved by runtime mapping.

Syntax
»»— #MAPMOD

> B - >
TYPE= T PERM « :l—‘
TEMP

»—— ,MRB=map-request-block-pointer >

v

»
»

v

L ,PLIST= T SYSPLIST « H

parameter-list-pointer

v

\ 4

L ,MRBLIST= T MRBPLIST ¢] |

mrb-parameter-list-pointer

v

\ 4

L ,CURSOR= (—[cursor-row,cursor-column I) _
FIELD, fieldname B]

, INDEX,index-register

Chapter 6. Data Manipulation Language Statements 6-165

6.47 #MAPMOD

A\

L uee=
,WCC= — RESETMDT
'L NOMDT — T
RESETKBD
T NOKBD — T

>
>

v

|— ,FIELD=field-name |_ J |
, INDEX=index-register

»-
>

L,

T
|— ,FLIST= (—\— FIELD,field-name B

ll

, INDEX, index-register

A\

]

L ,FOR= ALL
ERROR —
CORRECT —
CURRENT —
NOTCURNT —
FLIST —
NOTFLIST —

v

A\

|_ ,BACKSCN: —|: YES
NO

v

A\

L ,OUTDATA= YES ———
NO ———
ERASE

ATTRibute —

v

\ 4

L , INDATA= —E YES
NO

\ 4

L ,JUSTIFY= —[RIGHT
LEFT

»-
>

|— ,PAD= NO |
C'pad-character' :‘
X'pad-character'

A\

|_ ,EDIT= —[ERROR il—‘
CORRECT

v

6-166 CA-IDMS DML Reference — Assembler

6.47 #MAPMOD

i

L , INPUT= T REQUIRED
OPTIONAL

l— ,ERRMSG= —[ACTIVE « j—‘
SUPPRESS

L ATTR= (4 SKIP |)J

v

\ 4

\4
A

\ 4

e UNDERSCR
NOUNDER T

GREEN ——
TURQUOIS —
YELLOW —
WHITE ———

Parameters

MRB=
Specifies the storage area associated with the MRB of the map that is being
modified. This storage area is of variable length according to the number of fields
included in the map; it is copied into program variable storage by the #MRB
statement.

map-r equest-block-pointer
A register that points to the MRB area or the symbolic name of that area.

Note: Map-request-block cannot be a register if the FIELBeld-name operand
is also specified in the #MAPMOD statement.

TYPE=
Specifies whether the modifications are to be permanent or temporary.

PERM
(Default); specifies that modifications apply to all mapping mode 1/O requests
issued until the program terminates or until a subsequent #MAPMOD request
overrides the requested revisions.

TEMP
Specifies that modifications will apply only to the next #MREQ request.

Chapter 6. Data Manipulation Language Statements 6-167

6.47 #MAPMOD

PLIST=
Indicates the location of the storage area in which the system will build the field
parameter list specified by the FLIST parameter, described below.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system will build
the field parameter list.

parameter-value-list-pointer

A register that points to the area or the symbolic name of the area.

MRBLIST=
Indicates the location of the 20-fullword storage area that is substituted for the
DC/UCF portion of SUBSCHEMA-CTRL. It is generated at the bottom of the
first map request block in the program.

MRBPLIST
(Default) is the symbolic name of the storage area that will be substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

mrb-par ameter-list-pointer
A register that points to the area or the symbolic name of the area.

CURSOR=
Identifies the screen location at which the cursor will be positioned during output
operations.

CUr SOr -r ow,cur sor -column
Specifies the row and column on the terminal screen to which the cursor will be
moved. Cursor-row is a numeric literal indicating the row valu€ursor-column
is a numeric literal indicating the column value.

field-name
Specifies the field to which the cursor will be movddeld-name is the name of
a map data field.

index-register
Optionally specifies the occurrence of the fieldigfd-name is a
multiply-occurring field. Index is either a register or the symbolic name of a
user-defined field that contains the subscript or an absolute expression.

WCC=
Specifies the write-control character (WCC) options requested for the output
operation. The WCC is a single byte transmitted with a screen during a #MREQ
OUT, that indicates the functions that the 3270 control unit is to perform as it
displays the information on the screen.

If a #MAPMOD request alters any WCC option, the system resets unspecified
options to the following values:

= NOMDT
= NOKBD
= NOALARM

6-168 CA-IDMS DML Reference — Assembler

6.47 #MAPMOD

Multiple WCC parameter values must be enclosed in parentheses and separated by
commas.

RESETMDT/NOMDT
Specifies whether the modified data tags (MDTSs) for the map fields will be reset
to off automatically when the map is displayed. If RESETMDT is specified, the
contents of variable fields are transmitted to storage only if the terminal operator
modified the field or if the MDT has been set programatically.

RESETMDT
States that the MDTs will be reset (turned off).

NOMDT
States that the MDTs will not be reset.

RESETKBD/NOKBD
Specifies whether the keyboard will be unlocked automatically when the map is
displayed.

RESETKBD
States that the keyboard will be unlocked.

NOKBD
States that the keyboard will not be unlocked.

ALARM/NOALARM
Specifies whether the terminal audible alarm, if installed, will sound automatically
when the map (for example, a screen that displays error messages), is displayed.

ALARM
States that the alarm will sound.

NOALARM
States that the alarm will not sound.

STARTPRT/NOPRT
(3280 printers only); specifies whether the contents of the terminal buffer will be
printed automatically when the map is displayed.

STARTPRT
States that the contents of the terminal buffer will be printed.

NOPRT
States that the contents of the terminal buffer will not be printed.

NL CR/40CR/64CR/80CR
Specifies the characters-per-line formatting for 3280 printer output, meaningful
only if the STARTPRT option, described above, has been specified.

NLCR
States that no line formatting will be performed on the printer output. Printing
will begin on a new line only if the printer encounters new line (NL) and carriage
control (CR) characters.

40CR
States that the contents of the 3280 print buffer will be printed at 40 characters
per line.

Chapter 6. Data Manipulation Language Statements 6-169

6.47 #MAPMOD

64CR
States that the contents of the 3280 print buffer will be printed at 64 characters
per line.

80CR
States that the contents of the 3280 print buffer will be printed at 80 characters
per line.

FIELD/FLIST
Specifies one or more map fields to be modified. Choose one of these parameters
to change field-specific options such as FOR, BACKSCN, OUTDATA, INDATA,
JUSTIFY, PAD, EDIT, INPUT, and ATTR.

FIELD=
Specifies one map field to be modified.

FIELD
Specifies that one map field is to be modified.

field-name
Is the name of the map data field to be modified.

index
Specifies the occurrence of the fieldidld-name is a multiply-occurring field.
Index is a register, the symbolic name of a user-defined field that contains the
subscript, or an absolute expression.

FLIST=
Specifies a list of map fields to be modified or to be excluded from modification,
as indicated by the FOR=FLIST and FOR=NOTFLIST parameters described
below. The FLIST parameter values must be enclosed in parentheses. Each field
specification must be coded on a separate line. Specify each field by using the
following parameters.

field-name
Is the name of the map data field to be modified.

index-register
Specifies the occurrence of the fieldi#d-name is a multiply-occurring field.
Index-register is a register, the symbolic name of a user-defined field that contains
the subscript, or an absolute expression.

FOR=
Specifies the map fields to be modified or excluded from modification:

ALL
Modifies all fields.

ERROR
Modifies those fields found to be in error during automatic editing.

CORRECT
Modifies those fields found to be correct during automatic editing.

6-170 CA-IDMS DML Reference — Assembler

6.47 #MAPMOD

CURRENT
Modifies only the field found to be current during automatic editing. The current
field is the map field that was referenced in the last #MAPMOD or #MAPINQ
request issued by the program. A #MAPMOD or #MAPINQ that specifies a field
list does not establish currency.

NOCURNT
Modifies all the fields except the current field during automatic editing. The
current field is the map field that was referenced in the last #MAPMOD or
#MAPINQ request issued by the program. A #MAPMOD or #MAPINQ that
specifies a field list does not establish currency.

FLIST
Modifies all the fields in the field list defined by the FLIST parameter above.

NOTFLIST
Modifies all fields except those in the field list defined by the FLIST parameter
above.

BACKSCN=
Specifies whether the system is to backscan the specified field to remove trailing
blanks before performing the map output operation.

YES
Requests that the system send all characters up to the last nonblank character to
the terminal; fields remaining on the screen will contain whatever characters were
present before the #MREQ request was issued. If the #MREQ request specifies
the NEWPAGE option, the system erases the contents of all map data fields.

NO
Requests that the system leave in trailing blanks.

OUTDATA=
Indicates whether map fields will be set to the value of the corresponding
variable-storage data fields.

YES
Specifies that the value of the variable storage field will be mapped out to the
map field.

NO
Specifies that data from the record buffer as well as the attribute byte will not be
mapped out.

ERASE
Requests that the system erase the map data fields.

ATTRIBUTE
Requests that the system transfer only the attribute byte from the record buffer to
the map field.

INDATA=YES/NO
Indicates whether the map fields will be moved automatically to the the
corresponding variable-storage data fields (YES) or left unchanged (NO) during an
input operation.

Chapter 6. Data Manipulation Language Statements 6-171

6.47 #MAPMOD

JUSTIFY=RIGHT/LEFT
Indicates whether the variable-storage field should be right or left justified on
input.

PAD=
Indicates whether the alphanumeric variable-storage data field should be padded
on input and defines the pad value or character:

NO
Does not pad the field.

pad-char acter
Pads the field with the specified pad character on the left if JUSTIFY=RIGHT is

specified and on the right if JUSTIFY=LEFT is specifidead-character is a
binary numeric literal pad-character value.

EDIT=ERROR/CORRECT
Explicitly sets the error flag on (ERROR) or off (CORRECT) for the specified
map fields. If this parameter is specified, automatic editing must be enabled for
the map and for the named map fields.

The ability to set the error flag enables programs to perform their own editing and
validation in addition to that provided by the automatic editing feature.

INPUT=
Specifies whether the terminal operator will be required to add input in the
specified map fields.

REQUIRED
Specifies that input is required. An error results if the terminal operator fails to
enter data in a required field.

OPTIONAL
Specifies that input is optional. An error will not result if the terminal operator
fails to enter data in an optional field.

ERRMSG
ACTIVE
(Default); enables display of the error message associated with the field.

SUPPRESS
Disables display of the error message associated with the field. If the map is
redisplayed because of errors, the message defined for the map field will not be
displayed even if the field contains edit errors. You typically enable display of a
message only after specifying ERRMSG=SUPPRESS for the map in a previous
#MAPMOD TYPE=PERM statement.

ATTR=
Specifies the 3270 and 3279 attributes for the named map fields. Multiple ATTR
parameter values must be enclosed in parentheses and separated by commas. Only
the named attributes will be modified in the MRB. ATTR options are.

SKIP
Requests that the system reposition the cursor automatically over the ma fields to
the next unprotected field. When SKIP is specified, the named map fields are

6-172 CA-IDMS DML Reference — Assembler

6.47 #MAPMOD

implicitly assigned the NUMERIC and PROTECT attributes (described below)
automatically.

ALPHA/NUMERIC
Specifies whether the data input to the map fields by the terminal operator are
alphanumeric (any character on the 3270 terminal keyboard) or numeric. ALPHA
cannot be specified if SKIP has been specified.

PROTECT/UNPROT
Specifies whether or not map fields will be protected from data entry or
modification by the terminal operator. UNPROT cannot be specified if SKIP has
been specified.

DISPLAY/DARK/BRIGHT
Specifies how map fields are displayed.

DISPLAY
Specifies that the map fields will be displayed with normal intensity. DISPLAY
cannot be specified if DETECT, described below, has been specified.

DARK
Specifies that the map fields will not be displayed. DARK cannot be specified if
DETECT, described below, has been specified.

BRIGHT
Specifies that the map fields will be displayed with bright intensity. BRIGHT
cannot be specified if DETECT, described below, has been specified.

DETECT
Specifies that the map fields will be light-pen-detectable. All fields assigned the
BRIGHT attribute will automatically be detectable by a light pen.

MDT/NOMDT
Specifies whether MDTs are automatically set (turned on) for the map field when
displayed.

MDT
Requests that the system automatically set the MDT for the map fields when
displayed.

NOMDT
Requests that the system not automatically set the MDT for the map fields when
displayed.

BLINK/NOBLINK
(3279 terminals only); specifies whether map fields will be displayed with
blinking characters.

BLINK
Specifies that the fields characters will blink.

NOBLINK
Suppresses blinking.

Chapter 6. Data Manipulation Language Statements 6-173

6.47 #MAPMOD

REVERSE/NRMVIDEO
(3279 terminals only); specifies whether map fields will be displayed in reverse
video; dark characters on a light background.

REVERSE
Indicates that map fields will be displayed in reverse video.

NRMVIDEO
Specifies that the map fields will be displayed in normal video; light characters on
a dark background.

UNDERSCR/NOUNDER
(3279 terminals only); specifies whether the map fields are displayed with
underlined characters.

UNDERSCR
Specifies that the map fields will be displayed with underlined characters.

NOUNDER
Specifies that the map fields will be displayed with nonunderlined characters.

NOCOL OR/BLUE/RED/PINK/GREEN/TURQUOIS/YELLOW/WHITE
(3279 terminals only); specifies that the map fields will be displayed with no color
attribute or with one of the seven available color attributes.

Note: The BLINK/NOBLINK, REVERSE/NRMVIDEO, and
UNDERSCR/NOUNDER options are mutually exclusive; the last attribute
specified will override any previously specified attribute.

Example: The example of the #MAPMOD statement shown below performs the
following functions:

n |dentifies BLOCK1 as the storage area associated with the MRB of the map that
is being modified

» Accepts the default of setting the modifications listed in this statement as
permanent until the program terminates or another #MAPMOD statement is issued

» Accepts the default of MRBPLIST as the symbolic name of the storage area that
will be substituted for the DC/UCF portion of SUBSCHEMA-CTRL

® |dentifies the initial position of the cursor during a map out operation on the first
position of the field SCREENF1

» Defines the WCC character options requested for output operations
» Specifies that all the fields listed in the FLIST parameter are to be modified

» Specifies that during an output operation the screen fields associated with the
fields listed in the FLIST parameter are to be set to the value of the storage fields

» Specifies that during an input operation the storage fields are to be set to the value
of the corresponding screen fields

® Specifies that the storage fields will be left justified on input

» Specifies that on input the storage fields will be padded on the right with blank
spaces

6-174 CA-IDMS DML Reference — Assembler

6.47 #MAPMOD

m Specifies that input is optional

m Specifies the 3270 attributes for the specified map fields

#MAPMOD MRB=BLOCK1,CURSOR=(SCREENF1),WCC=(NOMDT,RESETKDB, *
NOALARM,NOPRT) ,FLIST=(FIELD,SCREENF1, *
FIELD,SCREENF2 *
FIELD,SCREENF3 *
FIELD,SCREENF4), *

*
*

FOR=FLIST,OUTDATA=YES, INDATA=YES,
JUSTIFY=LEFT,PAD=C' ',INPUT=OPTIONAL,
ATTR=(SKIP,BRIGHT,UNDERSCR)

The following #MAPMOD statement shows how to suppress display of default error
messages for fields EMPID and DEPTID on the current map.
#MAPMOD TYPE=TEMP,MRB=MAPMRB, *

*

FLIST=(FIELD,EMPID FIELD,DEPTID),
FOR=FLIST,ERRMSG=SUPPRESS

Because this #MAPMOD statement specifies TEMP, error messages for these fields
are suppressed for the next mapout only. If PERM (default) were used, the error
messages would be suppressed until the program terminated or until the error message
specifications were overridden by a subsequent #MAPMOD statement.

Status codes: The #MAPMOD request is unconditional; any return code other then
X'00" will result in an abend of the issuing task.

Chapter 6. Data Manipulation Language Statements 6-175

6.48 @MODIFY

6.48 @MODIFY

The @MODIFY statement replaces element values of the specified database record
with new element values present in program variable storage.

Before execution of the @MODIFY statement, the following conditions must be met:

n All areas affected, either implicitly or explicitly, must be readied in one of the
update usage modes (see 6.57, “@READY” on page 6-227 in this chapter).

® The named record must be established as current of run unit. If the record that is
current of run unit is not an occurrence of the named record, an error condition
results.

® The values of all elements defined for the named record in the subschema view
must be in variable storage. If the @MODIFY statement is not preceded by an
@OBTAIN statement, you must initialize the appropriate values. It is
recommended that you issue an @OBTAIN statement to ensure that all the
elements in the modified record are present in variable storage before you alter the
values, then issue the @MODIFY statement.

Modifying CALC- and sort-control elements: The following special
considerations apply to the modification of CALC- and sort-control elements:

» |f modification of a CALC- or sort-control element will violate a
duplicates-not-allowed option, the record is not modified and an error condition
results.

m |f a CALC-control element is modified, successful execution of the @MODIFY
statement enables the record to be accessed on the basis of its new CALC-key
value. The db-key of the specified record is not changed.

® |f a sort-control element is to be modified, the sorted set in which the named
record participates must be included in the subschema invoked by the program. A
record occurrence that is a member of a set not defined in the subschema can be
modified if the undefined set is not sorted.

» |f any of the modified elements in the specified record are defined as sort-control
elements for any set occurrence in which that record is currently a member, the set
occurrence is examined. If necessary, the specified record is automatically
disconnected and reconnected in the set occurrence to maintain the set order
specified in the schema.

Native VSAM considerations: The following special considerations apply to the
modification of records in native VSAM data sets:

» The length of a record in an entry-sequenced data set (ESDS) cannot be changed
even if the record is variable length.

. The prime key for a key-sequenced data set (KSDS) cannot be modified.

6-176 CA-IDMS DML Reference — Assembler

6.48 @MODIFY

Currency: Before execution of the @MODIFY statement:

m The specified record must be established as current of run unit. If the record that
is current of run unit is not an occurrence of the specified record, an error
condition results.

» The values of all elements defined for the named record in the program's
subschema view must be in variable storage. If the @MODIFY statement is not
preceded by an @OBTAIN statement, the programmer must initialize the
appropriate values. The best practice is to issue an @OBTAIN statement to
ensure that all the elements in the modified record are present in variable storage
before altering the values as desired and then issue the @MODIFY statement.

Following a successfully executed @MODIFY statement, the modified record becomes
current of its run unit, record type, area, and all sets in which in participates as owner
or member.

Syntax

»»—— GMODIFY REC=record-name

A\
A

Parameters

REC=record-name
Defines the named record occurrence, as specified in program variable storage.
Record-name must specify a record type included in the subschema.

Example: The following example illustrates the steps involved in modifying an
occurrence of the EMPLOYEE record. Assume that the employee name is to be
changed. The first step is to retrieve the desired EMPLOYEE record and move its
contents to variable storage by using the statements shown below:

MVC EMPID,INEMPID
@OBTAIN CALC,REC='EMPLOYEE'

The next step is to update the value of the EMPLOYEE field by moving the new
employee name into the proper location in the EMPLOYEE record:

MVC EMPNAME,NEWNAME

The final step is to issue an @MODIFY statement to return all data items in the
EMPLOYEE record to the database:

@MODIFY REC='EMPLOYEE'

Status codes: After completion of the @MODIFY function, the ERRSTAT field in
the IDMS communications block indicates the outcome of the operation.

Status code Meaning
0800 The request has been serviced successfully.
0804 The OCCURS DEPENDING ON item is less than 0 or greater than

the maximum number of occurrences of the control element.

Chapter 6. Data Manipulation Language Statements 6-177

6.48 @MODIFY

Status code

M eaning

0805

Modification of the record would violate a duplicates-not-allowed
option for a CALC record, a sorted set, or an index set.

0806

Currency has not been established for the specified record.

0808

The specified record cannot be found. The record name has
probably been misspelled.

0809

The specified record's area has not been readied in one of the three
update usage modes.

0810

The subschema specifies an access restriction that prohibits
modification of the named record.

0811

There is insufficient space to hold the modified variable-length
record occurrence.

0813

A current record of run unit has not been established or has been
nullified by a previous @ERASE statement.

0818

The record has not been bound.

0820

The current record of run unit is not the same type as the specified
record.

0821

An area other than the area of the named record has been readied
with an incorrect usage mode.

0825

No current record of set type has been established.

0833

All sorted sets in which the specified record participates have not
been included in the subschema.

0855

An invalid length has been defined for a variable-length record.

0860

A record occurrence has been encountered whose type is
inconsistent with the set named in the ERROR-SET field of the
IDMS communications block. Probable causes are either a broken
chain and improper database description.

0861

No record can be found for an internal db-key. This code usually
indicates a broken chain.

0883

Either the length of a record in a native VSAM ESDS has been
changed, or a prime key in native VSAM KSDS has been
modified.

6-178 CA-IDMS DML Reference — Assembler

6.49 @MODIFY (LRF)

6.49 @MODIFY (LRF)

The @MODIFY statement changes field values of an existing logical-record
occurrence. LRF uses the field values present in the variable-storage location reserved
for the logical record to update the appropriate database records in the database. You
can optionally specify an alternative variable-storage location from which the changed
field values are to be taken.

Syntax

v

»»—— @OMODIFY REC=logical-record-name

»
| 2

L ,I0AREA=alt-logical-record-location 1

\ 4
v

l— ,ONLRSTS=path-status,GOTO=branch-location J

»
>

\4
A

L ,WHERE boolean-expression —l

Parameters

REC=logical-record-name
Defines the logical record. Unless the IOAREA clause is specified (see below),
the field values used to update the database are taken from the area in program
variable storage reserved for the specified logical recbadical-record-name
must specify a logical record defined in the subschema.

|OAREA=alt-logical-recor d-location
Identifies an alternative variable-storage location from which the field values are
to be obtained to perform the requested modification. When modifying a logical
record that was retrieved into an alternative location in variable storage, you
should use the IOAREA clause to name the same location specified in the
@OBTAIN request. If the IOAREA clause is included in the @MODIFY
statementalt-logical-record-location must identify a record location defined in the
program.

ONL RST S=path-status,GOTO=branch-location
Tests for the indicated path statU2ath-status must be a quoted literal or program
variable (1 to 16 bytes under MVS or 1 to 6 bytes under the VSE operating
system). Ifpath-status results from this @MODIFY statement, the action
specified by GOTObranch-location is performed. See 6.74.2, “ON clause” on
page 6-313 in this chapter for details.

WHERE boolean-expression
Specifies the selection criteria to be applied to the named logical record. See
6.74.1, “WHERE clause” on page 6-309, later in this chapter, for details.

Example: The sample code shown below illustrates the steps taken to modify an
occurrence of the EMPSKLLR logical record. Assume that the department name for
department 1200 is to be changed, as well as the maximum salary for a specific job
working in this department (job identification number 5051).

Chapter 6. Data Manipulation Language Statements 6-179

6.49 @MODIFY (LRF)

1. Retrieve the desired logical record:

@OBTAIN FIRST,REC=EMPSKLLR, *
WHERE DEPTID EQ '1200' *
AND JOBID EQ '5051'
2. Update the JOBNAME and MAXSAL fields by moving the new department name
and the revised maximum salary to the proper fields in the obtained DEPJOBLR
logical record:

MVC JOBNAME,NEWNAME
MVC MAXSAL,NEWSAL

3. Issue the @MODIFY statement for the update EMPSKLLR logical record:
@MODIFY REC=EMPSKLLR

Status codes: When using LRF, the type of status code returned to the program in
the ERRSTAT field of the IDMS communications block differs according to the type
of error. If the error occurs in the logical-record path, the ERRSTAT field contains a
status code issued by CA-IDMS/DB with a major code from 00 to 19. For a list of
these codes, see 3.2.2, “ERRSTAT field and codes” on page 3-11.

When the error occurs in the request itself, LRF returns the path status LR-ERROR to
the LRSTAT field of the LRC block and places a status code with a major code of 20
in the ERRSTAT field of the IDMS communications block. For a list of these codes,
see 3.3.2, “Testing for the logical-record path status” on page 3-20. °

6-180 CA-IDMS DML Reference — Assembler

6.50 #MREQ

6.50 #MREQ

The #MREQ statement determines how data is transferred between the terminal and
program variable storage. There are three types of #MREQ statements, each
performing a different type of I/O operation:

. #MREQ IN transfers data from the terminal device to program variable storage.
. #MREQ OUT transfers data from program variable storage to the terminal device.

. #MREQ OUTIN transfers data from program variable storage to the terminal
device, followed by a transfer from the terminal device back to program variable
storage.

Native mode transfers: You can also use the #MREQ statement to perform the
following native-mode data transfers:

® Map in data from an area in variable storage that contains a 3270-like data stream
to data fields defined for the map.

®» Map out data to another area in variable storage.

Synchronous and asynchronous requests: All #MREQ input requests are
synchronous; output requests can be either synchronous or asynchronous:

® For synchronous requests, control does not return to the issuing program until the
I/0O operation is completed. You specify a synchronous input request (the default
for mapping output) by indicating YES in the CHECK parameter, as described
below.

® For asynchronous reguests, control is returned to the issuing program
immediately after the requested I/O operation is initiated. The program continues
to execute concurrently with the I/O operation. An ECB is established that will be
posted after the I/O has been completed. The address of the ECB is contained in
register 1.

To ensure that the previous #MREQ processing has been completed before you
issue an #MREQ request, your program must issue a #TREQ CHECK following
asynchronous data transfer.

»> For more information on the #TREQ CHECK statement, refer to 6.69,
“#TREQ” on page 6-265 later in this chapter.

To transfer data immediately from program variable storage to the terminal, your
program can issue a write-direct-to-terminal #MREQ OUT request (blast). Blast
requests must be directed to 3270 devices that support mapping-mode terminal I/O
operations.

» For more information on mapping functions, refelC&-IDMS Mapping Facility.

Chapter 6. Data Manipulation Language Statements 6-181

6.50 #MREQ

6.50.1 #MREQ Syntax

Syntax for each of the these #MREQ statements follows:

" #MREQ IN
" #MREQ OUT
1 #MREQ OUTIN

Parameter descriptions follow the syntax diagrams.

Syntax

#MREQ IN

»»—— #MREQ IN

»—— ,MRB=map-request-block-pointer

v

»
>

L

,PLIST= ——[SYSPLIST « —J—J
parameter-list-pointer

v

A\

L

,OPTNS= — (J/ NOIO J
E UPPER
UPLOW

v

\ 4

\ 4

L

, INDATA= —l: YES

\ 4

,STREAMA=data-stream-Tocati on—in;,—‘
,STREAML=data-stream-Tength-in

L

,COND= NO « |

ALL

Y g —
—— PERM —

—— DISC —
—— INVP —
—— MPNF —
—— DNSP —
—— TBL —
—— UERR —
—— IDAT —
—— EDNF —
—— MPNS —-

6-182 CA-IDMS DML Reference — Assembler

6.50 #MREQ

v

A T s T T FrRsTe — o < '
—[YES _ |—,RTRNKEY=f1’e1d-name i

,KEY=key
,SEQNBR=field-name

L,RTRNKEY=f1’e1d—name i

,RTRNKEY=field-name

\4

»— ,HEADER= T NO <-_|
YES

v

\ 4
|__

il

,PAGE=page-number

l— ,MODIFY= —[NO «

YES

A
I__

L,ATTNXIT=attention-key-Tabel J

\

\ 4
- 1 1 | | | 1 1 @ 7@ T}

A\ 4

,PERMXIT=permanent-i/o-error-label i

A\
v

,DISCXIT=terminal-disconnected-Tabel J

,INVPXIT=invalid-mrb-information-label J

v

,MPNFXIT=map-not-found-Tabel]

\
v

,DNSPXIT=terminal-device-not-supported-Tabel i

v

,TBLXIT=error-in-table-label J

,UERRXIT=error-in-return-user-edit-mod-Tabel J

v

,IDATXIT=internal-data-error-label i

\

v

,EDNFXIT=edit-module-not-found-Tabel i

A\
v

,MPNSXIT=paging-session-error-label J

\ 4
A

,ERROR=error-label J

Chapter 6. Data Manipulation Language Statements 6-183

6.50 #MREQ

Syntax

#MREQ OUT

> #MREQ OUT
L label |

»—— ,MRB=map-request-block-pointer

L ,PLIST= —E SYSPLIST « ﬁ—‘
parameter-list-pointer

\ 4

v

L

LOPTNS= — (—i NEWPAGE ———)

v

LITERALS —
NOIO ——
SAVE ——
EAU
|— ,OUTDATA= YES —J
NO ———
ERASE
ATTRibute —
|— ,DETAIL= —E NO G_J |_
YES ,UPDATE= —E NEW « T B
CURRENT ,KEY=key
»—— ,RESUME= NO <« >
—E YES JL ,PAGE= CURRENT « |
NEXT
PRIOR
FIRST
LAST
page-number
(page-number-pointer) —
I— ,CHECK= —E YES
NO
L ,STREAMA= —[(1) «] |
return-data-stream-address-out-register
T >

- . |
STREAML= —— (0) 5

return-data-stream-length-out-register

\ 4

:

,DESTID=destination-id-pointer

,USERID=user-id-pointer ———
,LTERMID=10gical-terminal-id-pointer —

6-184 CA-IDMS DML Reference — Assembler

6.50 #MREQ

\4

L ,COND= NO «
|A— ALL ———
 »
(——V— ATT -)—

LOGL —
PERM —
DISC —
INVP —
MPNF —
DNSP —
TBL —
UERR —
IDAT —
EDNF —
UNDF —
MPNS —

TTTTTTT

A\
4

L L,ATTNXIT=attention-key-Tabel J

\

L ,LOGLXIT=1ogical-output-error-label i

\ 4
\4

L ,PERMXIT=permanent-i/o-error-label i

\ 4
v

l— ,DISCXIT=terminal-disconnected-Tabel J

L ,INVPXIT=invalid-mrb-information-label i

\

L ,MPNFXIT=map-not-found-Tabel il

\ 4
\4

L ,DNSPXIT=terminal-device-not-supported-label i

\ 4
v

l— ,TBLXIT=error-in-table-Tabel J

» >
»

L ,UERRXIT=error-in-return-user-edit-mod-Tabel J

\

L ,IDATXIT=internal-data-error-label i

Chapter 6. Data Manipulation Language Statements 6-185

6.50 #MREQ

v

A\

L ,EDNFXIT=edit-module-not-found-1abel i

A\

>
>

L L,UNDFXIT=invalid-destid-T1termid-label J

v

\ 4

L ,MPNSXIT=paging-session-error-label i

L ,ERROR=error-Tlabel i

\

A\

>

|— ,MSGADDR=message-start-location-register

—[,MSGLEN=message-length-register ﬁ——‘
,MSGEND=message-end-location-register
Syntax

#MREQ OUTIN

[
>

»—— ,MRB=map-request-block-pointer

\4
A

v

#MREQ OUTIN
L label]

»
»

L ,PLIST= SYSPLIST «
L
parameter-list-pointer

v

A\

 »

N - e
LITERALS —
UPPER ——

N

UPLOW —
EAU ———

v

>
| 2

L ,OUTDATA= YES ——
NO ———
ERASE

ATTRibute —

v

A\

L , INDATA= T YES
NO

A\

|_ ,CHECK= —|: YES
NO

6-186 CA-IDMS DML Reference — Assembler

6.50 #MREQ

L ,COND= NO «
t—— ALL ———
o
(' ATT&__-|

\

v

LOGL
PERM
DISC
INVP
MPNF

TBL

UERR
IDAT
EDNF
MPNS

—— DNSP

\4

—

L,ATTNXIT=attention-key-Tabel il

\ 4

,LOGLXIT=1ogical-output-error-label]

\4

\ 4

y

,PERMXIT=permanent-i/o-error-label —J

v

,DISCXIT=terminal-disconnected-Tabel |

,INVPXIT=invalid-mrb-information-label i

\ 4

,MPNFXIT=map-not-found-Tlabel i

\4

\ 4

y

,DNSPXIT=terminal-device-not-supported-Tabel —J

v

,TBLXIT=error-in-table-Tabel —J

,UERRXIT=error-in-return-user-edit-mod-Tabel il

\ 4

1 1 1 | | 1 "1 TI]

,IDATXIT=internal-data-error-label i

\4

,EDNFXIT=edit-module-not-found-Tabel —J

\

,MPNSXIT=paging-session-error-label i

v

,ERROR=error-label i

v

A\

1 1 1 I

,MSGADDR=message-start-location-register

A\

r{

,MSGLEN=message-length-register

,MSGEND=message-end-location-reg

\ 4

A

Chapter 6. Data Manipulation Language Statements 6-187

6.50 #MREQ

Parameters

M RB=map-r equest-block-pointer
Specifies the location of the MRB for the mapping operation, as copied into
program variable storage by the #MRB statement. The #MRB statement is
described under 5.5, “#MRB” on page 5-18lap-request-block-pointer is either a
register that points to the MRB area or the symbolic name of that area.

PLIST=
Specifies the location of the storage area in which the system builds the #MREQ
parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area.

par ameter -list-pointer

Is either a register that points to the area or the symbolic name of the area.

OPTNS=
Specifies several options applicable to terminal I/O operations. Multiple OPTNS
parameter values must be enclosed in parentheses and separated by commas.

NEWPAGE
(#MREQ OUT and #MREQ OUTIN only); requests that the system activate the
erase-write mechanism to clear the contents of a screen. If NEWPAGE is not
specified, the system will write over any existing screen display without first
erasing it.

You can mark individual fields to be erased by using the OUTDATA=ERASE
option of the #MAPMOD statement, described earlier in this chapter.

LITERALS
(#MREQ OUT and #MREQ OUTIN only); requests that the system transmit literal
fields as well as variable-storage data fields to the terminal. If LITERALS is not
specified, the system writes literal fields to the map only if NEWPAGE is
specified.

NOIO
(#MREQ IN and #MREQ OUT only); requests that the system transfer a
native-mode data stream, a 3270-like data stream that consists of user data and all
device-control characters, to program storage. No terminal 1/O is associated with
the request:

® ForIN requests, the native-mode data stream replaces data that would
normally be read from the terminal by the system.

. For OUT requests, the native-mode data stream replaces data that would
normally be written out to the terminal by the system.

When OPTNS=(NOIO) is specified, the STREAMA= and STREAML= parameters
must also be defined, as described below.

SAVE
(Non-write-direct-to-terminal #MREQ OUT only); requests that the system
preserve the mapped output from the #MREQ OUT request in the event that an
unsolicited write-direct-to-terminal data stream is received at the issuing terminal

6-188 CA-IDMS DML Reference — Assembler

6.50 #MREQ

while the map is being displayed. This option overrides the task SAVE/NOSAVE
option specified during system generation.

UPPER
(#MREQ IN and #MREQ OUTIN only); requests that the system translate all
letters in a map in request into uppercase characters.

UPLOW
(#MREQ IN and #MREQ OUTIN only); requests that lowercase characters are not
translated into uppercase characters in a map in request. This can also be
accomplished by issuing a DCUF SET UPLOW statement before starting the
mapping session.

EAU
(#MREQ OUT and #MREQ OUTIN only); allows you to request the 3270 erase
all unprotected command. This command sets all unprotected character locations
to nulls, resets the MDTSs for all unprotected fields, unlocks the keyboard, resets
the AID key, and places the cursor at the first unprotected field. This option can
not be used with OPTNS=(NEWPAGE).

OUTDATA=
(#MREQ OUT and #MREQ OUTIN only); specifies how the variable-storage data
fields are to be transmitted to the terminal. This specification applies to all
variable-storage data fields unless overridden by an OUTDATA= clause in a
previously issued #MAPMOD request.

YES
Transfers the contents of variable-storage data fields to the corresponding map
fields.

NO
Requests that map fields remain unchanged.

ERASE
Does not transfer the contents of variable-storage data fields to the screen.

ATTRIBUTE
Transmits only the attribute byte of each variable-storage field to the screen. Data
in the variable-storage field is not transmitted.

INDATA=
(#MREQ IN and #MREQ OUTIN only); specifies whether the contents of the map
fields are moved automatically into variable-storage data fields. This specification
applies to all variable-storage data fields unless overridden by an INDATA=
clause in a previously issued #MAPMOD request.

YES
Transfers the contents of map fields to the corresponding variable-storage data
fields.

NO
Does not transfer the contents of map fields to the corresponding variable-storage
data fields.

Chapter 6. Data Manipulation Language Statements 6-189

6.50 #MREQ

DETAIL/HEADER
(Pageable map #MREQ IN only); specifies whether the #MREQ IN operation is to
retrieve data from a detail occurrence or from the header or footer area.

»> For more information on pageable maps, refer tadQidDMS Mapping
Facility document.

DETAIL=
Specifies whether the #MREQ IN operation is to retrieve data from a modified
detail occurrence (modified data tag set on):

NO
(Default); specifies that data is not to be retrieved from a detail occurrence.

YES
Specifies that data is to be retrieved from a modified detail occurrence (MDT set
on). By default, thenext sequential modified detail occurrence is retrieved; a
different detail occurrence can be specified by using the
FIRST/KEY/SEQNBR/RTRNKEY clause.

The contents of all map fields in the detail occurrence are retrieved unless
MODIFY=YES is specified for the #MREQ IN,DETAIL statement.
MODIFY=YES causes only modified fields to be retrieved.

FIRST/KEY/SEQNBR/RTRNKEY
Specifies the detail occurrence to be retrieved. Only one option can be specified.

FIRST=
Specifies whether the first available modified detail occurrence is to be retrieved.

NO
(Default); specifies that the FIRST clause is not used to determine the detalil
occurrence to be retrieved.

YES
Retrieves the first available modified detail occurrence. An end-of-data condition
results if there are no more modified detail occurrences to be retrieved.

The optional RTRNKEYdata-field-name parameter specifies the name of a

variable field in which the system stores the key value (if any) associated with the
retrieved detail occurrence. If no value is associated with the detail occurrence,
the system setdata-field-name to 0. Data-field-name must be a 4-byte value (not
necessarily a binary fullword).

Note: A value is associated with a detail occurrence by using the KEY parameter
in an #MREQ OUT,DETAIL=YES command for that occurrence.

KEY=k
Retrieves a modified detail occurrence based on the value associated with the
detail occurrenceKey is a 4-byte variable field.

Note: A value is associated with a detail occurrence by using the KEY parameter
in an #MREQ OUT,DETAIL=YES command for that occurrence.

6-190 CA-IDMS DML Reference — Assembler

6.50 #MREQ

A detail-not-found condition is returned if the specified occurrence is not a
modified detail occurrence or if no detail occurrence with the specified value is
found.

SEQNBR=data-field-name
Retrieves a detail occurrence by sequence number. Detail occurrences are built by
the application program at run time and are stored in the sequence in which they
are created.Data-field-name is a 4-byte binary fullword field.

RTRNKEY =data-field-name
(Optional); names the variable field used to store the 4-byte value (if any) of the
retrieved detail occurrence. If no value is associated with the detail occurrence,
data-field-name is set to 0. Data-field-name does not have to be a binary
fullword).

Note: A value is associated with a detail occurrence by using the KEY parameter
in an #MREQ OUT,DETAIL=YES command for that occurrence.

RTRNKEY =data-field-name
Retrieves the next sequential modified detail occurrence, and specifies the name of
the variable field in which the system stores the value (if any) associated with the
retrieved detail occurrence. If no value is associated with the detail occurrence,
data-field-name is set to OData-field-name must be a 4-byte value (not
necessarily a binary fullword).

Note: A value is associated with a detail occurrence by using the KEY parameter
in an #MREQ OUT,DETAIL=YES command for that occurrence.

HEADER=
(Pageable map #MREQ IN only); specifies whether the map in operation is to
retrieve the contents of data fields in the header and footer areas.

NO
(Default); specifies that data from the header and footer areas is not to be
retrieved.

YES
Specifies that data from the header and footer areas is to be retrieved.

The contents of all data fields in the header and footer areas are retrieved unless
MODIFY=YES is specified in the #MREQ IN,HEADER statement;
MODIFY=YES causes only modified fields to be retrieved.

PAGE=page-number
Specifies the name of a numeric variable field to store the current binary fullword

value of the $PAGE field on map in.

MODIFY=
Specifies whether the contents of modified fields are to be retrieved.

NO
(Default); retrieves all fields from the header and footer areas when a modified
field (MDT set on) is found in the occurrence or areas.

Chapter 6. Data Manipulation Language Statements 6-191

6.50 #MREQ

YES
Retrieves only the contents of modified fields from the header and footer areas;
data in unmodified fields is not retrieved.

DETAIL/RESUME
(Pageable map #MREQ OUT only); specifies whether the #MREQ OUT command
is to create or modify a detail occurrence, or to map out a page of existing detalil
occurrences.

DETAIL=
Specifies whether the #MREQ OUT command is to create or modify a detail
occurrence.

NO
(Default); specifies that the #MREQ OUT command does not create or modify
detail occurrences.

YES
Specifies that the #MREQ OUT command can either create or modify individual
detail occurrences. You can optionally associate a numeric key value with each
occurrence.

UPDATE=NEW/CURRENT
Specifies whether the detail occurrence is to be created or modified.

NEW
(Default); creates a detail occurrence in a pageable map. Occurrences are
displayed in the order in which they are created by the application program.

CURRENT
Modifies the detail occurrence referenced by the most recent #MREQ OUT or
#MREQ IN command.

KEY=k
(Optional); specifies a value to be associated with the created or modified detail
occurrence. The 4-byte numeric value is not displayed on the terminal screen.
Key is the name of the variable field that contains the database key of the database
record associated with the detail occurrence.

When the KEY parameter is used with the #MREQ
OUT,HEADER=YES,UPDATE=CURRENT command, the specified value
replaces the value (if any) previously associated with the detail occurrence.

RESUME=
Specifies whether a page of detail occurrences is to be displayed on the terminal
screen.

NO
(Default); specifies that the #MREQ OUT command does not map out a page of
detail occurrences to the terminal.

YES
Specifies that the #MREQ OUT command maps out a page of detail occurrences
to the terminal.

6-192 CA-IDMS DML Reference — Assembler

6.50 #MREQ

PAGE=
(Optional); determines the page of occurrences to be displayed on the terminal
screen.

CURRENT
(Default); redisplays the current page. If no page has been displayed, the first
page of the pageable map is displayed.

NEXT
Displays the page that follows the current page. If no page follows the current
page, the current page is redisplayed.

PRIOR
Displays the page that precedes the current page. If no page precedes the current
page, the current page is redisplayed.

FIRST
Displays the first available page of detail occurrences.

LAST
Displays the page of detail occurrences with the highest available page number.

page-number
Displays the numeric variable field that contains the binary fullword number of

the page. A page number is previously stored in the variable field by an #MREQ
IN,HEADER=YES,PAGEsage-number statement that names the same numeric
variable field.

(page-number)
Specifies the register that contains the address of a 4-byte binary fullword field in
variable storage that contains the number of the page to be displayed.
Page-number must be enclosed in single quotes.

CHECK=
(#MREQ OUT and #MREQ OUTIN only); specifies whether the data transfer is
synchronous or asynchronous.

YES
Specifies that the data transfer is synchronous. the system places the issuing task
in an inactive state. When the output operation is completed, the task resumes
processing according to its established dispatching priority.

NO
Specifies that the data transfer is asynchronous. the system returns control to the
issuing program immediately after initiating the output operation and establishing
an ECB to be posted when the output operation is completed.

An asynchronous transfer must be followed by a CHECK #TREQ request before
another #MREQ request is issued to ensure that the previous #MREQ processing
has been completed.

» For more information on synchronous and asynchronous processing, refer to
6.69, “#TREQ” on page 6-265 later in this chapter.

Chapter 6. Data Manipulation Language Statements 6-193

6.50 #MREQ

Specifying CHECK=NO in a #MREQ OUT statement issued before task
termination frees the task resources when the task terminates; the system
automatically issues a #TREQ CHECK.

STREAMA/STREAML
(OPTNS=(NOIO only); specifies the location and the length of the input data
stream to be transmitted.

STREAMA=
Specifies the location of the native-mode data stream to be transmitted.

data-stream-location-in

Either a register that points to the data stream or the symbolic name of the area
that contains the data stream.

STREAML=
Specifies the length of the native-mode data stream to be transmitted.

data-stream-length-in

A register that contains either the length or an absolute expression of the length.

STREAMA/STREAML
Specifies the length of the output data stream and the location to which it is
returned.

STREAMA=(1)/retur n-data-str eam-addr ess-out
Specifies the location to which the system transfers the mapped data.

D
(Default); is the register that contains the address of the location to which the
system transfers the mapped data.

retur n-data-str eam-addr ess-out

Specifies the location to which the system transfers the mapped data.
Return-data-streamraddress-out is either a register or the symbolic name of a
fullword user-defined area.

STREAML=
Specifies the location to which the system returns the length of the output data
stream.

)
(Default); is the register to which the system returns the length, in bytes, of the
output data stream.

retur n-data-str eam-length-out

Specifies the location to which the system returns the length, in bytes, of the
output data streamReturn-data-stream-length-out is either a register or the
symbolic name of a halfword or fullword user-defined field.

DESTID/USERID/LTERMID
(#MREQ OUT only); specifies a write-direct-to-terminal request (blast) to either a
destination, user, or logical terminal.

6-194 CA-IDMS DML Reference — Assembler

6.50 #MREQ

DESTID=destination-id
Specifies a write-direct-to-terminal request to one of the following destinations
defined during system generation.

® A list of logical terminals indicates that the system sends the #MREQ data
stream specified in the OUTAREA parameter to all available terminals in the
list.

® A list of users indicates that the system sends the #MREQ data stream
specified in the OUTAREA parameter to all users in the list who are currently
signed on to the system.

Note: This works only if there is a valid OUTAREA parameter for line mode
(#LINEOUT) as well as for mapping mode (#MREQ).

destination-id
A register that points to the destination id, the symbolic name of a user-defined
field that contains the destination ID, or the ID itself enclosed in quotation marks.

Note: The destination list can include different 3270 models. If a map has been
generated to support a specified terminal device, the system will write the map to
that device. If the targeted terminal-device type is not in the map device list, the
system will ignore that terminal device.

USERID=
Specifies a write-direct-to-terminal request to a specific signed-on user. The
system sends the #MREQ data stream specified in the OUTAREA parameter to a
specific signed-on user.

user-id
Either a register that points to the user ID, the symbolic name of a user-defined
field that contains the user id, or the ID itself enclosed in quotation marks.

LTERMID=
Specifies a write-direct-to-terminal request to a specific in-service terminal. The
system will send the #MREQ data stream specified in the OUTAREA parameter
to a specific in-service terminal.

logical-terminal-id
Either a register that points to the logical terminal id, the symbolic name of a
user-defined field that contains the logical terminal ID, or the ID itself enclosed in
quotation marks.

COND=
Specifies whether this #MREQ is conditional and under what conditions control
should be returned to the issuing program.

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the request cannot
be serviced for any of the reasons listed urcdadition.

Chapter 6. Data Manipulation Language Statements 6-195

6.50 #MREQ

condition
Specifies one or more conditions under which the system returns control to the
issuing program. Multiple conditions must be enclosed in parentheses and
separated by commas. You can specify one or more of the following conditions.

= ATTN

The I/O is interrupted by the terminal operator pressing the ATTENTION
(2471) or BREAK (teletype) key during an output operation.

» LOGL
A logical error is encountered in the output data stream.
. PERM
A permanent I/O error has occurred.
 DISC
The dial-up line is disconnected or the terminal goes out of service.
. INVP
There is an invalid parameter in the MRB.
= MPNF

The map load module requested by the MRB cannot be found in the load area
of the dictionary.

= NSP
The requested map does not support the terminal device type being used.
= TBL

The named edit or code table cannot be found or is invalid for use with the
requested map.

s UERR
An error has occurred in a user-written edit module.
n |DAT

A data conversion error occurs where the internal map data does not match
the map data description.

» EDNF

The user-written edit module cannot be found or is invalid for use with the
requested map.

» UNDF

(#MREQ OUT only); an undefined DESTID or LTERMID is specified in an
#MREQ blast request.

= MPNS

A map paging #MREQ is issued when no paging session is in progress.

6-196 CA-IDMS DML Reference — Assembler

6.50 #MREQ

ATTNXIT=attention-key-label
Specifies the symbolic name of the routine to which control should be returned if
the 1/0O operation is interrupted by the terminal operator.

LOGL XIT=logical-output-error-label
Specifies the symbolic name of the routine to which control should be returned if
a logical error is detected in the output data stream.

PERM X1 T=permanent-i/o-error -label
Specifies the symbolic name of the routine to which control should be returned if
a permanent I/O error occurs.

DI SCXIT=ter minal-disconnected-label
Specifies the symbolic name of the routine to which control should be returned if
the terminal line or terminal goes out of service.

INVPXIT=invalid-mrb-infor mation-label
Specifies the symbolic name of the routine to which control should be returned if
the #MREQ cannot be serviced because of an invalid parameter in the MRB.

M PNFXIT=map-not-found-label
Specifies the symbolic name of the routine to which control should be returned if
the #MREQ cannot be serviced because the map requested by MRB cannot be
found.

DNSPXI T =ter minal-device-not-supported-label
Specifies the symbolic name of the routine to which control should be returned if
the #MREQ cannot be serviced because the terminal device in use is not
supported by the requested map.

TBLXIT=error-in-table-label
Specifies the symbolic name of the routine to which control should be returned if
an edit or code table cannot be found or is invalid for use with the requested map.

UERRXIT=error-in-retur n-user -edit-mod-label
Specifies the symbolic name of the routine to which control should be returned if
an error has occurred in a user-written edit module.

IDATXIT=internal-data-error-label
Specifies the symbolic name of the routine to which control should be returned if
the internal map data does not match the map data description.

EDNFXIT=edit-module-not-found-label
Specifies the symbolic name of the routine to which control should be returned if
a user-written edit module cannot be found or is invalid for use with the requested
map.

UNDFXIT=invalid-destid-lter mid-label
(#MREQ OUT only); specifies the symbolic name of the routine to which control
should be returned if an undefined DESTID or LTERMID is specified in an
#MREQ OUT blast request.

Chapter 6. Data Manipulation Language Statements 6-197

6.50 #MREQ

M PNSXIT=paging-session-error-label
Specifies the symbolic name of the routine to which control should be returned if
a map paging #MREQ specification is issued when a no paging session is in
progress.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

M SGADDR=message-start-location,M SGL EN=message-length/
M SGEND=message-end-location
(#MREQ OUT and #MREQ OUTIN only); specifies a program-supplied message
to be displayed in the map message area. The message text is a 1- to 80-character
alphanumeric valueMessage-start-location is either a register that points to the
message area or the symbolic name of that area. Specify the end of the message
in one of the following ways.

M SGL EN=message-length
Specifies the length, in bytes, of the message output data Message-length is
a register that contains the length, the symbolic name of a user-defined field that
contains the length, or the length itself expressed as a numeric constant.

M SGEND=message-end-location
Specifies the end of the message by referencing the next data item following the
message storage arelslessage-end-location is a register or a fullword that points
to the first data item following the message storage area. This data item may be a
dummy byte, a data item not associated with the output data, or the symbolic
name of that data item.

Examples: The following examples illustrate how to use the #MREQ statement:

The #MREQ IN statement shown below requests that the system read the map
associated with the map request block TESTMAP1. Data values are transferred from
map fields to the corresponding variable-storage data fields. Subsequent commands
can evaluate the input values and perform appropriate processing. For any error
condition that can be specified by the COND=ALL parameter, control will be returned
to the routine labeled ERRORTN.

#MREQ IN,MRB=TESTMAP1,INDATA=YES,COND=ALL,ERROR=ERRORTN

The #MREQ IN statement shown below requests that the system map in the next
(default) modified detail occurrence of the pageable map associated with the map
request block TESTPAGL.

#MREQ IN,MRB=TESTPAG1,DETAIL=YES,MODIFY=YES,COND=ALL, *
ERROR=ERRORTN

The #MREQ OUT statement shown below requests that the system map out all literal
and data fields associated with the map request block TESTMAP1. The NEWPAGE
option clears the screen before transferring the TESTMAP1 data fields to the screen.

#MREQ OUT,MRB=TESTMAP1,0UTDATA=YES,OPTNS=(NEWPAGE)

6-198 CA-IDMS DML Reference — Assembler

6.50 #MREQ

The #MREQ OUT statement shown below creates a new detail occurrence and maps
out a page of detail occurrences to the terminal screen. The detail occurrence can be
displayed in mixed uppercase and lowercase characters. Control is returned to the
ERRRTN routine if the request cannot be serviced due to any of the conditions listed
under the COND options. A program-supplied message is mapped out to the map
message area. Register 7 points to where the message is stored; register 4 contains the
message length.

#MREQ OUT,MRB=TESTPAG1,0PTNS=(UPLOW) ,DETAIL=YES,RESUME=YES, =
COND=ALL, ERROR=ERRRTN,MSGADDR= (R7) ,MSGLEN=(R4)

Status codes: By default, the #MREQ request is unconditional; any return-code
other than X'00" will result in an abend of the issuing task. The issuing program can
request return of control with the COND parameter to avoid an abend.

The value returned to register 15 differs according to whether the #MREQ request is a
paging or a nonpaging request. Status codes issued as a result of a nonpaging #MREQ
request fall in the range of '00' to '38'; paging requests return values in the range of

'40' to '50'".

After completion of an #MREQ statement that does not involve pageable maps, the
value in register 15 indicates the outcome of the operation. The following status codes
apply to nonpageable maps:

Register 15 Meaning

value

X'00' The request has been serviced successfully.

X'04' The specified edit or code table cannot be found or is invalid for
use with the named map.

X'08' The I/O has been interrupted; the terminal operator has pressed
ATTENTION (2741) or BREAK (teletype).

X'oC' A logical error (for example, an invalid control character) has been
encountered in the output data stream.

X'10' A permanent 1/O error has occurred during processing.

X'14' The dial-up line for the terminal is disconnected.

X'18' The terminal being used is out of service.

X'20' The map request block (MRB) contains an invalid field, indicating
a possible error in program parameters.

X'24' The map load module named in the MRB either cannot be found in
the dictionary load area (DDLDCLOD) or is invalid.

X'28' The requested map does not support the terminal device type being
used.

Chapter 6. Data Manipulation Language Statements 6-199

6.50 #MREQ

Register 15 M eaning

value

X'2C' An error has occurred in a user-written edit module. An invalid
pointer to the data stream has been returned to register 1.

X'30' A data conversion error has occurred; the internal map data does
not match the map data description.

X'34' The specified user-written edit module cannot be found or is
invalid for use with the named map.

X'38' Invalid blast request to DESTID, LTERMID, or USER ID.

X'3C' Invalid map load module.

After completion of an #MREQ function that involves pageable maps, the value in
register 15 indicates the outcome of the operation: The following status codes apply to
pageable maps:

Register 15 #MREQ Type/Meaning
value
X'40' (#MREQ IN) The requested node for a header or detail was either

not present or not updated.

(#MREQ OUT) There is no current detail occurrence to be
updated. No action is taken.

X'a4' (#MREQ IN) No more modified detail occurrences require map in.

(#MREQ OUT) The maximum amount of storage defined for
pageable maps at system generation has been reached. This and
any ensuing map out detail occurrences are ignored.

X'48' (#MREQ IN) The scratch record containing the requested detail
could not be accessed (internal error).

(#MREQ OUT) No detail occurrence, footer, or header fields exist
to be mapped out by an #MREQ OUT,RESUME command.

x'4C' (#MREQ OUT) The first screen page has been transmitted to the
terminal.

6-200 CA-IDMS DML Reference — Assembler

6.50 #MREQ

Register 15 #MREQ Type/Meaning
value
X'50' (#MREQ IN) An #MREQ IN,COND=MPNS or an #MREQ

OUT,COND=MPNS request was received when no map paging
session is in progress. Either a #STRTPAG command was not
received prior to this #MREQ IN command or a #ROLLBAK was
issued so that the scratch area for the pageable map (area ID
MPGPSCRA) is no longer available. Unless the COND=MPNS is
specified for #MREQ), this condition abends the map paging task
with the message DC242021.

(#MREQ OUT) A mapout command was received when no map
paging session was in progress. Either the #STRTPAG command
was not received prior to this mapout command or a #ROLLBAK
was issued so that the scratch area for the pageable map (area ID
MPGPSCRA) is no longer available. This return code is received
only when COND=MPNS is specified for #MREQ; otherwise, this
condition abends the map paging task.

X'54' (#MREQ OUT) Value returned to register 15 when a pageable map

page is built before the page is actually displayed. Test for the
new map paging return code after each #MREQ OUT
DETAIL=YES statement. This allows you to detect when the last
detail that can fit on a page has been placed on that page.

Upon successful completion of certain #MREQ requests, four registers contain the
following information:

Register 0, for #MREQ OUT blast requests, contains the actual number of
terminals to which the data stream has been routed.

Register 1, for asynchronous output requests, contains the address of the ECB that
the system posts on completion of the 1/O operation.

Register n, for non-I/O requests (OPTNS=(NOIO) parameter), contains the
address of the native-mode data stream. The register numbgrassigned by the
STREAMA parameter. This register does not have to be assigned for non-1/0
requests; the system can place the address of the native-mode data stream in a
user-defined storage area rather than in a register.

Register m, for non-1/0O requests, contains themgth of the native-mode data
stream. The register numberis assigned by the STREAML parameter. This
register does not have to be assigned for non-l/O requests. The following
conditions apply:

— For output requests, the system can place the length of the native-mode data
stream in a user-defined storage area.

— For input requests, the length can be defined as an absolute expression.

Chapter 6. Data Manipulation Language Statements 6-201

6.51 @OBTAIN (LRF)

6.51 @OBTAIN (LRF)

The @OBTAIN statement retrieves the named logical record and places it in the
variable-storage location reserved for that logical record. The @OBTAIN statement
can perform the following functions:

» Retrieve an occurrence of a logical record that meets criteria specified in the
WHERE clause.

» Specify that the retrieved logical record is to be placed into an alternative
variable-storage location.

Syntax

v

»»—— QOBTAIN —E NEXT <—_—|— ,REC=10gical-record-name
FIRST

v

>
>

L ,I0AREA=alt-logical-record-location _

v

\ 4

L ,ONLRSTS=path-status,GOTO=branch-location _

A\
A

A\

L ,WHERE boolean-expression i

Parameters

NEXT/FIRST,REC=logical-r ecord-name
Retrieves a logical record and places it in program variable storage.
Logical-record-name must specify a logical record defined in the subschema.

NEXT/FIRST
Specifies which occurrence of the logical record is to be retrieved.

NEXT
(Default); retrieves a subsequent occurrence of the named logical record.
@OBTAIN NEXT is generally used to serially retrieve logical-record occurrences.

When LRF receives repeated @OBTAIN NEXT commands, it replaces field
values in program variable storage with new values obtained through repeated
access to database records.

If the program issues an @OBTAIN NEXT statement without issuing an
@OBTAIN FIRST, or if the last path status returned for the path was
LR-NOT-FOUND, LRF interprets the @OBTAIN NEXT as @OBTAIN FIRST.
After LR-ERROR or a DBA-defined path status, LRF does not interpret
@OBTAIN NEXT as @OBTAIN FIRST.

FIRST
Retrieves the first occurrence of the logical record. @OBTAIN FIRST is
generally used to retrieve the first in a series of logical-record occurrences.

If an @OBTAIN FIRST statement is followed by an @OBTAIN NEXT statement
to retrieve a series of occurrences of the same logical record, the @OBTAIN
statements must direct LRF to the same path. For this reason, you must ensure

6-202 CA-IDMS DML Reference — Assembler

6.51 @OBTAIN (LRF)

that the selection criteria specified in the WHERE clauses accompanying the
@OBTAIN FIRST and @OBTAIN NEXT statements describe the same attributes
of the desired logical record.

|OAREA=alt-logical-recor d-location
Identifies an alternative location in variable storage into which LRF is to place the
retrieved logical record.

Any subsequent @MODIFY, @STORE, or @ERASE statements for a logical
record placed in the named location should name that area. LRF is to obtain the
data to be used to update the logical record from the named area.
Alt-logical-record-location must identify a record location defined in the program.

ONL RST S=path-status,GOTO= branch-location
Tests for the indicated path statURath-status is a quoted literal program variable
(1 to 16 bytes). lpath-status results from this @OBTAIN statement, the action
specified by GOTObranch-location is performed. For details on how to code
this clause, refer to 6.74.2, “ON clause” on page 6-313 later in this chapter.

WHERE boolean-expression
Specifies the selection criteria to be applied to the specified logical record. For
details on how to code the WHERE clause, see 6.74.1, “WHERE clause” on
page 6-309 later in this chapter.

Example: The @OBTAIN NEXT statement shown below retrieves a series of
logical-record occurrences. The program issues the @OBTAIN NEXT statement
iteratively to retrieve the first and all subsequent occurrences of the DEPEMPLR
logical record for department 5100. Each @OBTAIN NEXT statement retrieves an
employee ID and employee name for the department with an ID of 5100 (assuming
that department 5100 has more than one employee).
GETEMPL EQU =

@OBTAIN NEXT,REC=DEPEMPLR, *

ONLRSTS="'LR-NOT-FOUND"',GOTO=END, *
WHERE DEPTID EQ '5100'

B GETEMPL

The following figure illustrates how to use the @OBTAIN command in conjunction
with the WHERE clause, described later in this chapter, to retrieve occurrences of the
EMPJOBLR logical record. Only those detail occurrences with a department-id value
equal to 5100 are retrieved. The EMPJOBLR logical record contains information from
the employee, job, office, and department records. The WHERE clause is used to
obtain only those employees in department 5100.

Chapter 6. Data Manipulation Language Statements 6-203

6.51 @OBTAIN (LRF)

DEPARTMENT
ONE OCCURRENCE
OF EMP-JOB-LR 5100
5100
5100
5100

EMPLOYEE

466

467

334

457

OFFICE

8

8

5

8

JOB

SNOWBLOWER

WINDKEEPER

RAINDANCE

STURM UND
DRANG

Status codes: When using LRF, the type of status code returned to the program in
the ERRSTAT field of the IDMS communications block differs according to the type

of error:

n |f theerror occursin the logical-record path, the ERRSTAT field contains an
status code issued by CA-IDMS/DB with a major code from 00 to 19. For a list
of these codes, see 3.2.2, “ERRSTAT field and codes” on page 3-11.

n |f theerror occursin the request itself, LRF returns the path status LR-ERROR
to the LRSTAT field of the LRC block and places an status code with a major
code of 20 in the ERRSTAT field of the IDMS communications block.

For a list of these codes, see 3.3.2, “Testing for the logical-record path status” on

o

page 3-20.

6-204 CA-IDMS DML Reference — Assembler

6.52 #POST

6.52 #POST

The #POST statement modifies an event control block (ECB) in one of two ways:

m Posting an ECB to indicate completion of an event for which another task is
waiting

® Clearing an ECB to an unposted status

The ECB wait must have been previously established by a #WAIT or #ATTACH
request.

Syntax

A\
A

»>> #POST ECB=ecb-pointer
L label i —[ECBID=ecb-id-register

L , TYPE=CLEAR J

Parameters

ECB=
Specifies the ECB to be posted.

ecb

Either a register that points to the ECB or the symbolic name of a user-defined
fullword field that contains the ECB.

ECBID=
Specifies the 4-character ID of the ECB to be posted or to be cleared to an
unposted status.

ecb-id

A register that contains the ECB ID, the symbolic name of a fullword field that
contains the ID, or the ID literal enclosed in quotation marks.

TYPE=CLEAR
(Optional); clears the ECB to an unposted status. Programs that are posting and
waiting for the posting of ECBs are responsible for clearing the ECB. An ECB
must be cleared prior to issuing a subsequent #WAIT request.

Example: The following example of the #POST statement clears the event control
block identified by the ID literal ECB4 to an unposted status.

#POST ECBID='ECB4',TYPE=CLEAR

Status codes: The #POST request is unconditional; any runtime error will result in
an abend of the issuing task.

Chapter 6. Data Manipulation Language Statements 6-205

6.53 #PRINT

6.53 #PRINT

The #PRINT statement requests that the system transmit data from a task to a terminal
defined as a printer device during system generation. The terminal designated as a
printer is usually a hard-copy device. The following considerations apply to the use of
the #PRINT statement:

The DC/UCF system does not usually transmit data directly from program storage
to the terminal in response to a #PRINT command. Data is passed to a queue
maintained by the system, then from the queue to the printer terminal. The data
stream passed to the queue by the #PRINT request contains pure data; the system
inserts line and device control characters automatically when it writes the data to
the printer.

To bypass the queuing process described above and to transfer data immediately
to a printer device, issuepaint-direct request by specifying #PRINT
OPTNS=(DIRECT).

You can use a #PRINT request to transmaitive-mode data streams, data
streams that contain device-control information as well as user data. This
capability is useful in formatting reports for 3280-type printers. To transmit
native-mode data streams, you issue a #MREQ NOIO request, followed by a
#PRINT request with OPTNS=(NATIVE).

Each line of data transmitted by a #PRINT request is considerezbiad. Each

record is associated withraport in the print queue. A report consists of one or
more records. Each task can have up to 256 active print reports. A program can
issue multiple #PRINT requests, each specifying a different report. The DC/UCF
system maintains the status of each report individually.

The #PRINT request transmits data or screen contents to print classes or to
destinations:

— Print classes — During system generation, one or more print classes are
associated with each terminal designated as a printer. For each report, the
first record transmitted to the print queue with a #PRINT request establishes
the print class in the range of 1 to 64 for that report. The report is printed on
the first available printer assigned the same print class.

— Destinations — Destinations are groups of terminals, printers, or users. If
destinations have been defined during system generation, the #PRINT request
can direct a report to a destination. Reports sent to printer destinations are
printed either on the first available printer for the destination or on all printers
in that destination, regardless of print class.

You can request that the system hold the report rather than print it immediately.
You can explicitly release the report at a later time.

The DC/UCF system prints a report only when that report is completed, either
explicitly as part of a #PRINT request or implicitly when the issuing task
terminates. If the task abends, all reports in the print queue that have not been
ended explicitly are deleted without being printed.

6-206 CA-IDMS DML Reference — Assembler

6.53 #PRINT

» After completion of a #PRINT request, register 1 contains the address of a
10-character identifier that uniquely identifies the report in the DC/UCF system.
This identifier isnot the user-defined report ID described below for the RPTID
parameter. It is a value assigned by the system primarily for internal use. This
value appears on the master terminal when report statistics are requested from that
terminal.

® A report can be printed several times by indicating to the system to keep the
report after it has been printed, rather than automatically deleting it. The report
can be manually released to be printed using a DCMT VARY REPORT
RELEASE command.

Syntax
’— label J

»—— #PRINT RECORD=message-location-pointer,RECLEN=message-length-register —

v

» >
»

L - . l g
RPTID= —— 1 7

report-id-register

\
4

L - . l g
LCLASS= —~ 1 7

printer-class-register

\

L ,OPTNS= — (- option ——) —l

L - R]
ET

i; ,DEST=printer-destination-pointer

\

,LTEID=direct-printer-ltermid-pointer —
,LTEADDR=direct-printer-1lterm-address —

Chapter 6. Data Manipulation Language Statements 6-207

6.53 #PRINT

v

A\

L ,ECBADDR=direct-print-return-ech-address i

A\

L ,JOBNAME=batch-request-jobname-pointer J

\ 4

v

L ,COND= NO « |
T ALL ————
[»
(\— NOPR)—

IOER —
—— INVP —
—— UNDF ——
——— SCRN ——
—— INVT —
— WAIT —
—— O0UTS —
——— DEAD —
——— CANC —
— REQU —
L ,PRB= —[SYSPLIST «] |
print-request-block-pointer
L ,NOPRXIT=no-printer-label J
L ,INVPXIT=invalid-parameter-list-Tlabel il
L ,I0OERXIT=i/0-error-label _
L L,UNDFXIT=invalid-destid-Tist-Tabel _
L ,SCRNXIT=screen-term-i/o-error-label i
L L,INVTXIT=invalid-terminal-Tabel i
L LWAITXIT=wait-for-direct-printer-label i
L ,OUTSXIT=direct-printer-out-of-service-label J
L ,DEADXIT=deadlock-on-direct-print-Tabel i
L ,CANCXIT=cancel-direct-report-label i
|— ,REQUXIT=requeue-direct-report-label J
L ,ERROR=error-Tlabel J
Parameters

6-208 CA-IDMS DML Reference — Assembler

6.53 #PRINT

RECORD=
Specifies the storage area that contains data to be output.

message-location-pointer
Either a register that points to the area or the symbolic name of the area.

RECLEN=
Specifies the length, in bytes, of the data stream to be output.

message-length-register
A register that contains the length, the symbolic name of a user-defined halfword
or fullword field that contains the length, or an absolute expression.

RPTID=V/
Specifies the identifier of the report to be printed. The report identifier must be
an integer in the range 1 through 255; the default is 1.

report-id-register
A register that contains the ID, the symbolic name of a user-defined field that
contains the ID, or an absolute expression.

CLASS=V
Specifies the class of the printer to which the report is assigned. Valid print
classes are 1 through 64; the default is 1.

printer-class-register
A register that contains the class, the symbolic name of a user-defined field that
contains the class, or an absolute expression. This parameter should be specified
only for the first line (record) of each report. If no printer class is specified, the
default print class assigned to the issuing task's physical terminal during system
generation is used.

OPTNS=options
Specifies several options available to print I/O. This parameter is never required
and should be specified only when appropriate. The OPTNS parameter values
must be enclosed in parentheses. Separate multiple values with commas.

NATIVE
Indicates that the data stream contains device control characters. If NATIVE is
not specified, the system automatically inserts the necessary characters.

NEWPAGE
Requests that the system print the data stream beginning on a new page.

ENDRPT
Indicates that the data stream constitutes the last record in the specified report.
When ENDRPT is specified, the report can be printed before the issuing task has
terminated. To print the report immediately, the program must issue a #COMMIT
TASK request. Reports not explicitly ended with an ENDRPT are automatically
ended at task termination.

SCREEN
(3270-type devices only) transmits the contents of the currently displayed screen
to the print queue. When SCREEN is specified, the system implicitly assigns the
NATIVE option and ignores the RECORD= and RECLEN= clauses. The terminal

Chapter 6. Data Manipulation Language Statements 6-209

6.53 #PRINT

operator can print screen contents by pressing the print key established during
system generation. If the SCREEN option is specified for a non-3270 terminal or
a remote 3270 terminal running under TCAM, an error results.

ALL
Causes the report to be printed on all printers associated with the destination
specified in the DEST parameter. The report is printed on one printer at a time
and saved until it has been printed on all of the printers. You can use a DCMT
DISPLAY REPORT DESTINATION command to display the report name
followed by a list of the printer names on which the report has yet to be printed.

HOLD
Requests that the system hold a report in the print queue before it is printed. The
report is not printed until a DCMT VARY REPORT RELEASE command is
issued.

KEEP
Keeps a report in the print queue after the report has printed. A report marked
with the KEEP option can be manually released for printing with the DCMT
VARY REPORT RELEASE command. The report can be deleted either manually
by issuing a DCMT VARY REPORT DELETE command or automatically
through the queue expiration date.

DIRECT
Indicates a print-direct request that will be routed directly to the destination
specified. Specify the destination by using the CLASS parameter, as described
above, or the DEST, LTEID, or LTEADDR parameters, described below. If
LTEID or LTEADDR is specified, the system will acquire the specific printer. If
CLASS or DEST is specified, the system will acquire the first available printer
that satisfies the requested class or destination.

NOWAIT
(default) requests that the DC/UCF system not wait for a printer to become
available if the request cannot be immediately serviced; control is returned to the
issuing program with a status code indicating that the printer device is unavailable.

WAIT
Requests that the system wait for a printer to become available if the request
cannot be immediately serviced. If the wait time exceeds the stall interval defined
during system generation, the program will abend.

MF=
Specifies the type of #PRINT request.
R
Identifies aregular #PRINT request. The DC/UCF system builds a new print
request block (PRB) for each request and performs the requested operation.
L

Identifies alist #PRINT request. The DC/UCF system adds a predefined PRB in
the data definition section of program storage. The PRB contains parameters
whose values remain constant throughout the program. The #PRINT label used to
identify the PRB is referenced by the PRB parameter in subsequent execute-type
requests. Only the label and the MF parameter are required for list-type #PRINT

6-210 CA-IDMS DML Reference — Assembler

6.53 #PRINT

requests; other parameters should be specified only when required to predefine
PRB parameter values.

Identifies anexecute #PRINT request. The DC/UCF system adds to or overrides
the predefined PRB with the parameters defined in the request and performs the
requested operation.

DEST/LTEID/LTEADDR
Identifies the printers to which a report is routed. These parameters can only be
specified with OPTNS=DIRECT; you specify the destination.

DEST=
Specifies a destination defined during system generation. The destination can be
one of the following:

m A list of logical terminals requesting that the system route the report to all
available terminals in the list

A list of users requesting that the system route the report to all listed users
who are currently signed on to the system

printer-destination-pointer
A register that points to the destination ID, the symbolic name of a user-defined
field that contains the destination ID, or the ID itself enclosed in quotation marks.

LTEID=
Specifies the logical terminal ID of a specific printer-terminal device.

direct-printer -Iter mid-pointer
A register that points to the logical terminal ID, the symbolic name of a
user-defined field that contains the logical terminal ID, or the ID itself enclosed in
quotation marks.

LTEADDR=
Specifies the logical terminal element (LTE) address of a specific printer-terminal
device.

direct-printer-lterm-address
A register that points to the address of the LTE, the symbolic name of a
user-defined field that contains the address of the LTE, or the address itself
enclosed in quotation marks.

ECBADDR=
Specifies the location to which the system returns the address of a list of event
control blocks (ECBs) if the print-direct request cannot be serviced immediately.
If OPTNS=(DIRECT,NOWAIT) has been specified and the system cannot
immediately acquire the requested printer device, the system returns the address of
a list of ECBs to the requesting task. One ECB from the list is posted when the
requested printer becomes available. At that time, the print-direct request can be
reissued.

Note: If you use the ECBADDR= parameter and specify
OPTNS=(DIRECT,NOWAIT), the system will allocate storage for the
ECBLIST. The program is responsible for freeing the storage space.

Chapter 6. Data Manipulation Language Statements 6-211

6.53 #PRINT

direct-print-retur n-ecb-address
Either a register that points to the ECB area or the symbolic name of a
user-defined field that contains the address of the area.

JOBNAME=
Specifies the name of the system report to be associated with a print request from
a batch program. The JOBNAME parameter is for informational use only.

batch-request-jobname-pointer
A 1- to 8-character job name that is displayed as the original logical terminal 1D
when a DCMT DISPLAY REPORTS command is issu@atch-request-jobname
is a register that points to the job name, the symbolic name of a user-defined field
that contains the job name, or the name itself enclosed in quotation marks.

COND=
Specifies the conditions under which control is to be returned to the issuing
program.

NO
(Default); specifies that the request is not conditional. Control is not returned to
your program under any circumstances.

ALL
Specifies that the request is conditional. Control is returned to your program if
the #PRINT request cannot be serviced for one or more of the reasons listed
below.

condition
Specifies under which conditions control is returned to your program. Multiple
conditions must be enclosed in parentheses and separated by coGumditions
can specify one or more of the following conditions:

= NOPR — No printer logical terminals were defined during system generation.
® |OER — An /O error occurred during processing.
® [NVP — There is an invalid parameter in the PRB.

» UNDF — An undefined destination is specified or, for a print-direct request,
an invalid LTEID or LTEADDR is specified.

» SCRN — A print-screen type request results in a terminal 1/O error.

» INVT — A print-screen request has been made from a non-3270-type
terminal or from a 3270-type terminal without read-buffer support.

» WAIT — No printer can be found to service a print-direct request that
specifies OPTNS=(DIRECT,NOWAIT).

® OUTS — The printer specified by the LTEID or LTEADDR parameters in a
print-direct request is out of service.

» DEAD — A print-direct request has been issued with
OPTNS=(DIRECT,WAIT) and a deadlock condition would otherwise occur.

= CANC — A DCMT VARY PRINTER CANCEL command has been issued
for the printer in a print-direct request.

6-212 CA-IDMS DML Reference — Assembler

6.53 #PRINT

» REQU — A DCMT VARY PRINTER REQUEUE command has been issued
for the printer specified in a print-direct request.

PRB=
Specifies the location of the storage area in which the system will build the PRB
(MF=R) or has built the PRB (MF=E).

SYSPLIST
(Default for regular-type requests only); is the symbolic name of the storage area
in which the system builds the PRB.

print-reguest-block-pointer
A register that points to the area or the symbolic name of the area in which the
system will build the PRB. For execute-type requests (MF=E), this entry
explicitly defines the area by identifyirigbel, provided in a previously-issued
list-type #PRINT that established the PRB.

NOPRXIT=no-printer-label
Specifies the symbolic name of the routine to which control should be returned if
the #PRINT request cannot be serviced because no printer terminal was defined
during system generation.

INVPXIT=invalid-parameter -list-label
Specifies the symbolic name of a routine to which control should be returned if
the #PRINT request cannot be serviced because of an invalid parameter in the
PRB.

IOERXIT=i/o-error-label
Specifies the symbolic name of a routine to which control should be returned if
the #PRINT request cannot be serviced because of an I/O error during processing.

UNDFXI T=invalid-dest-id-label
Specifies the symbolic name of a routine to which control should be returned if
the #PRINT request cannot be serviced because an invalid destination was
specified or, for OPTNS=(DIRECT) type requests, an invalid LTEID or
LTEADDR was specified.

SCRNXIT=screen-term-i/o-error-label
Specifies the symbolic name of a routine to which control should be returned if
the #PRINT request cannot be serviced because a terminal I/O error occurred in
response to a #PRINT request to print the screen contents.

INVTXIT=invalid-ter minal-label
Specifies the symbolic name of a routine to which control should be returned if
the screen #PRINT request cannot be serviced because an invalid terminal was
specified.

WAITXIT=wait-for-direct-printer-label
Specifies the symbolic name of a routine to which control should be returned if
the #PRINT request cannot be serviced because OPTNS=(DIRECT,NOWAIT) was
requested and no printer is available to service the request immediately.

Chapter 6. Data Manipulation Language Statements 6-213

6.53 #PRINT

OUT SXI T=dir ect-printer -out-of-service-label
Specifies the symbolic name of a routine to which control should be returned if
the #PRINT request cannot be serviced because the printer identified by LTEID or
LTEADDR in a print-direct request is out of service.

DEADXIT=deadlock-on-dir ect-print-label
Specifies the symbolic name of a routine to which control should be returned if
the #PRINT request cannot be serviced because OPTNS=(DIRECT,WAIT) was
specified and would otherwise cause a deadlock condition to occur.

CANCXIT=cancel-dir ect-report-label
Specifies the symbolic name of a routine to which control should be returned if
the #PRINT request cannot be serviced because a DCMT VARY PRINTER
CANCEL has been issued for the specified printer while the print request is being
serviced.

REQUXIT=requeue-direct-report-label
Specifies the symbolic name of a routine to which control should be returned if
the #PRINT request cannot be serviced because a DCMT VARY PRINTER
REQUEUE has been issued for the specified printer while the print request is
being serviced.

ERROR=error-label
Specifies the symbolic name of a routine to which control should be returned if a
condition in the COND parameter occurs for which no other exit routine was
coded.

Example: The #PRINT statement shown below performs the following functions:

» Directs the system to transmit the data in storage area RECOUT to a terminal
defined as a printer device.

» Specifies that the length of data transmitted is contained in the field OUTLEN.
» Directs the print request to a specific printer, bypassing the queuing process.

® Asks the system to wait until the named printer is able to service the request. If
the wait time exceeds the stall interval defined at system generation, the program
will abort.
= Names the printer by logical terminal ID.
#PRINT RECORD=RECOUT,RECLEN=QUTLEN,OPTNS=DIRECT,WAIT,LTEID="LV009"

Status codes: After completion of a #PRINT request, the value in register 15
indicates the outcome of the operation:

Register 15 Meaning
value
X'00' The request has been serviced successfully.

6-214 CA-IDMS DML Reference — Assembler

6.53 #PRINT

Register 15 Meaning

value

X'04' The request cannot be serviced because an I/O error occurred
during a #PUTQUE request or, for OPTNS=(DIRECT), a
permanent I/O occurred on the direct printer.

X'08' The request cannot be serviced because the parameter list passed to
#PRINT contains an invalid field.

X'0C' The request cannot be serviced because no printer logical terminals
have been defined for the current system.

X'10' The request cannot be serviced because a print screen request has
been made from a non-3270-type terminal or from a 3270-type
terminal without read-buffer support.

X'14' The request cannot be serviced because the specified printer
destination is invalid or, for OPTNS=(DIRECT), the LTEID or
LTEADDR specification is invalid.

X'18' The request cannot be serviced because a terminal 1/O error
occurred during a print-screen type #PRINT request.

X'1C' The request cannot be serviced because no printer could be found
to satisfy the print-direct request, and OPTNS=(NOWAIT) was
specified.

X'20' The request cannot be serviced because the print-direct request has
specified an LTEID or LTEADDR that is out of service.

X'24' The request cannot be serviced because the print-direct request
specified a wait, and to wait would cause a deadlock.

X'28' The request cannot be serviced because a DCMT VARY PRINTER
CANCEL command has been issued in the DC/UCF system for this
direct printer.

X'2C' The request cannot be serviced because a DCMT VARY PRINTER

REQUEUE command has been issued in the DC/UCF system for
this direct printer.

Chapter 6. Data Manipulation Language Statements 6-215

6.54 #PUTJRNL

6.54 #PUTJRNL

The #PUTJRNL statement writes a task-defined record to the journal file. The records
written to the journal file are available to user-defined exit routines during a
task-initiated or system-initiated rollback.
Syntax

L label J

»—— #PUTJRNL RECORD=record-location-pointer,RECLEN=record-Tength-register —

L NOWAI)

,OPTIONS= —(—\If T «
WAIT]
SPAN «
NOSPAN

L ,ERROR=error-1label]

\ 4

A\
\4
A

Parameters

RECORD=
Specifies the location of the record to be written to the journal file.

r ecor d-location-pointer
Either a register that points to the record area or the symbolic name of the record
area.

RECLEN=
Specifies the length, in bytes, of the record to be written to the journal file.

recor d-length-register
Either a register that contains the length of the record or the symbolic name of a
fullword user-defined field that contains the length of the record.

OPTIONS=
Specifies whether the issuing task is to wait for completion of the #PUTJRNL
function before resuming task execution and indicates how the system writes the
named record to the journal file. Multiple options are enclosed in parentheses and
separated by commas.

The following options determine whether the issuing task will wait for completion
of the #PUTJIRNL function.

NOWAIT
(Default); specifies that the issuing task will not wait for completion of the
#PUTJRNL function; the journal record remains in a storage buffer until a future
request necessitates writing the buffer to the journal file.

6-216 CA-IDMS DML Reference — Assembler

6.54 #PUTJRNL

WAIT
Specifies that the issuing task will wait for completion of the #PUTJRNL
operation before continuing. This option Requests that the system write a partially
filled buffer to the journal file.

When a record is shorter than a journal file block, based on space available in the
current journal block, the system either places the record in the block, splits it
across multiple blocks (SPAN), or writes it to a new block after the current block
is filled (NOSPAN). The following options determine how the system writes the
named record to the journal file.

SPAN
(Default); specifies that the DC/UCF system will write the record across several
journal blocks, if necessary. In general, the SPAN option provides better space
utilization in the journal file because it increases the average fullness of each
block.

NOSPAN
Specifies that the system will write the record into a single journal block,
assuming that the record fits. If the record is longer than the journal block, it will
be split.

The following considerations apply to using an exit routine to retrieve journal file
records during recovery:

n If a #PUTJIRNL statement issued before a failure specifies the SPAN option,
records may have been written across several journal blocks. To retrieve
these records, the program must invoke the exit routine once for each segment
of each record to be retrieved.

n |f a #PUTJIRNL statement issued before a failure specified the NOSPAN
option, and records written to the journal file are shorter than journal blocks,
the exit routine need only be concerned with the complete records.

ERROR=error-label
Specifies the symbolic name of the routine to which control is to be returned in
the event of an error condition during the #PUTJRNL operation.

Example: The following example of the #PUTJRNL statement writes a record to the
journal file. The address of the record is contained in register 5, the length of the
record is contained in register 7. The default SPAN and NOWAIT options are in
effect.

#PUTJRNL RECORD=(R5) ,RECLEN=(R7)

Status codes: After completion of the #PUTJRNL request, the value in register 15
indicates the outcome of the operation:

Register 15 Meaning
value
X'o0' The request has been serviced successfully.

Chapter 6. Data Manipulation Language Statements 6-217

6.54 #PUTJRNL

Register 15
value

M eaning

X'04'

The request cannot be serviced because the journal record length is
Zero or negative.

X'08'

The request cannot be serviced because the required storage is not
available for necessary control blocks.

x'ocC'

The request cannot be serviced because an invalid error status has
been received from DBIO/DBMS. Check the DC/UCF log for
details.

6-218 CA-IDMS DML Reference — Assembler

6.55 #PUTQUE

6.55 #PUTQUE

The #PUTQUE statement stores a queue record in the queue (DDLDCRUN or
DDLDCQUE) area of the dictionary, causing the system to place the record in the
queue-header/queue-record set referenced by the QUEID parameter. A program does
not assign an ID to a queue record; the #PUTQUE request stores the record at the
beginning or end of the queue and the system automatically assigns the queue record
ID.

Syntax
L label ——|
»—— #PUTQUE RECORD=queue-data-location,RECLEN=queue-data-length-register —»

L ,PLIST= —[SYSPLIST « —J—‘
parameter-list-pointer

» >
>

l— ,QUEID=queue-id-pointer J

L ,LOC= T LAST é_—l—‘
FIRST

\

\

L _ . I g
RTNGRID= —— (1) 7

return-queue-record-id-register

L ,COND= —E NO ¢« j—“
I0ER

»
»

L ,IOERXIT=i/0-error-label il

»
| 2

\4

L ,ERROR=error-label i

\ 4
A\
A

l— ,RETAIN=retention-period-register —l

Parameters

RECORD=
Specifies the location of the user area that contains data to be stored in the queue
record.

gueue-data-location
A register that points to the area or the user-defined symbolic name of the area.

RECLEN=
Specifies the length of the data area to be stored in the queue record.

Chapter 6. Data Manipulation Language Statements 6-219

6.55 #PUTQUE

queue-data-length-register

A register that contains the length, the symbolic name of a fullword user-defined
field that contains the length, or an absolute expression.

PLIST=SYSPLIST
Specifies the location of the seven-fullword storage area in which the system
builds the #PUTQUE parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system builds the
#PUTQUE parameter list.

par ameter -list-pointer

Either a register that points to the area or the symbolic name of the area.

QUEID=
Specifies the 1- to 16-character ID of the queue with which the record being
stored is associated.

queue-id-pointer

A register that points to a field that contains the ID, the symbolic name of a
user-defined field that contains the ID, or the ID literal enclosed in quotation
marks. If a queue ID is not specified, 16 blanks are assumed.

LOC=LAST/FIRST
Specifies whether the queue record is to be placed at the beginning or end of the
queue.

LAST
(Default); stores the record at the end of the queue.

FIRST
Stores the record at the beginning of the queue.

RTNQRID=
Specifies the location in the program to which the system returns the
system-assigned ID of the stored queue record; the returned ID can be saved and
used to retrieve or delete the queue record.

)

(Default); is the register to which the system returns the queue record ID.

retur n-queue-r ecor d-id-register

Either a register or the symbolic name of a fullword user-defined field to which
the system returns the queue record ID.

COND=
Specifies whether this #PUTQUE is conditional and under what conditions control
should be returned to the issuing program.

NO
(Default); specifies that the request is not conditional.

IOER
Specifies that the request is conditional. Control is returned if an 1/O error occurs
while processing the request.

6-220 CA-IDMS DML Reference — Assembler

6.55 #PUTQUE

IOERXIT=i/o-error-label
Specifies the symbolic name of the routine to which control should be returned if
the #PUTQUE cannot be serviced because of an 1/O error.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition in the COND parameter occurs for which no other exit routine was
coded. In this case, the ERROR parameter functions identically to IOERXIT.

RETAIN=
Specifies the amount of time, in days, that the system will retain the queue in the
dictionary. At system startup, queues whose retention periods have expired are
deleted automatically by the system. The retention period begins when the first
record is stored in the queue.

retention-period-register
A register that points to a field that contains the retention period, the symbolic
name of a user-defined fixed-binary field that contains the retention period, or an
absolute expression. The retention period must be a numeric constant in the range
0 through 255. A retention period of 255 indicates that the queue is never to be
deleted automatically by the system.

Example: The following example Requests that the system store the data contained
in the field RECQL in the beginning of the RES-Q queue. The length of the data is
contained in register 8. The DC/UCF system is requested to return the ID of the
record to the QRECID field and to retain the queue for 45 days.

#PUTQUE RECORD=RECQ1,RECLEN=(R8),QUEID='RES-Q',LOC=FIRST, *
RTNQRID=QRECID,RETAIN=45

Status codes: By default, the #PUTQ