
CA-IDMS®
DML Reference — Assembler

15.0

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

Second Edition, October 2001

 2001 Computer Associates International, Inc.
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

How to Use This Manual . ix

Chapter 1. Introduction to CA-IDMS Data Manipulation Language 1-1
1.1 Overview .1-3
1.2 Operating environments .1-4

1.2.1 Accessing the database. 1-4
1.2.2 Programming in the DC/UCF environment. 1-6

1.3 Assembling and executing programs. 1-8

Chapter 2. DML Precompiler Options . 2-1
2.1 Overview .2-3
2.2 Dictionary usage mode. 2-4
2.3 Comment generation .2-5
2.4 List generation .2-6
2.5 Log suppression .2-7

Chapter 3. Communications Blocks and Error Detection 3-1
3.1 Overview .3-3
3.2 IDMS communications block . 3-4

3.2.1 Field descriptions .3-7
3.2.2 ERRSTAT field and codes. 3-11
3.2.3 Testing for DML error-status codes. 3-17

3.3 Logical-record request control (LRC) block. 3-18
3.3.1 Field descriptions .3-19
3.3.2 Testing for the logical-record path status. 3-20

3.4 DC/UCF general registers. 3-23
3.4.1 DC/UCF status codes. 3-23
3.4.2 Testing for DC/UCF return codes. 3-32

Chapter 4. Assembler DML Coding Considerations 4-1
4.1 Overview .4-3
4.2 Coding user-supplied operands. 4-4
4.3 Coding parameters .4-5
4.4 Synonym processing .4-6
4.5 Logical Record Facility keywords . 4-8

Chapter 5. DML Precompiler-Directive Statements 5-1
5.1 Overview .5-3
5.2 @MODE .5-4
5.3 @INVOKE .5-6
5.4 @COPY IDMS .5-9
5.5 #MRB .5-16
5.6 #MAPBIND .5-17
5.7 @SSCTRL .5-19
5.8 @SSLRCTL .5-20

Chapter 6. Data Manipulation Language Statements 6-1

Contents iii

6.1 Overview .6-3
6.2 Functions of DML statements. 6-4
6.3 #ABEND .6-11
6.4 @ACCEPT BIND .6-12
6.5 @ACCEPT DBKEY FROM CURRENCY. 6-13
6.6 @ACCEPT DBKEY RELATIVE TO CURRENCY 6-15
6.7 @ACCEPT PGINFO .6-17
6.8 @ACCEPT PROC .6-19
6.9 @ACCEPT STATS .6-20
6.10 #ACCEPT .6-22
6.11 #ATTACH .6-24
6.12 @BIND PROC .6-29
6.13 @BIND REC .6-31
6.14 @BIND SUBSCH .6-33
6.15 #BIND TASK .6-37
6.16 #CHAP .6-38
6.17 @COMMIT .6-39
6.18 #COMMIT .6-40
6.19 @CONNECT .6-41
6.20 #DELETE .6-44
6.21 #DELQUE .6-46
6.22 #DELSCR .6-50
6.23 #DEQ .6-54
6.24 @DISCON .6-57
6.25 #ENDPAG .6-60
6.26 #ENQ .6-62
6.27 @ERASE .6-67
6.28 @ERASE (LRF) .6-72
6.29 @FIND/@OBTAIN statements . 6-74

6.29.1 @FIND/@OBTAIN CALC/DUPLICATE 6-74
6.29.2 @FIND/@OBTAIN CURRENT . 6-76
6.29.3 @FIND/@OBTAIN DBKEY . 6-79
6.29.4 @FIND/@OBTAIN OWNER . 6-81
6.29.5 @FIND/@OBTAIN USING SORT KEY 6-84
6.29.6 @FIND/@OBTAIN WITHIN SET/AREA 6-86

6.30 @FINISH .6-93
6.31 #FINISH .6-94
6.32 #FREESTG .6-95
6.33 @GET .6-97
6.34 #GETIME .6-99
6.35 #GETQUE .6-101
6.36 #GETSCR .6-107
6.37 #GETSTG .6-113
6.38 @IF .6-119
6.39 @KEEP .6-122
6.40 #KEEP .6-124
6.41 #LINEEND .6-130
6.42 #LINEIN .6-131
6.43 #LINEOUT .6-136
6.44 #LINK .6-142
6.45 #LOAD .6-146

iv CA-IDMS DML Reference — Assembler

6.46 #MAPINQ .6-152
6.46.1 Moving map-related data. 6-152
6.46.2 Testing for global map input conditions. 6-155
6.46.3 Testing cursor position . 6-157
6.46.4 Testing for identical data . 6-159
6.46.5 Testing for input conditions. 6-159

6.47 #MAPMOD .6-165
6.48 @MODIFY .6-176
6.49 @MODIFY (LRF) .6-179
6.50 #MREQ .6-181

6.50.1 #MREQ Syntax .6-182
6.51 @OBTAIN (LRF) .6-202
6.52 #POST .6-205
6.53 #PRINT .6-206
6.54 #PUTJRNL .6-216
6.55 #PUTQUE .6-219
6.56 #PUTSCR .6-223
6.57 @READY .6-227
6.58 @RETURN .6-230
6.59 #RETURN .6-232
6.60 @ROLLBAK .6-237
6.61 #ROLLBAK .6-239
6.62 #SENDMSG .6-241
6.63 #SETIME .6-245
6.64 #SNAP .6-249
6.65 #STAE .6-252
6.66 @STORE .6-254
6.67 @STORE (LRF) .6-259
6.68 #STRTPAG .6-261
6.69 #TREQ .6-265

6.69.1 Regular and execute #TREQ description. 6-266
6.69.2 Regular and execute #TREQ syntax. 6-266
6.69.3 List #TREQ .6-289

6.70 #TRNSTAT .6-291
6.71 #WAIT .6-296
6.72 #WTL .6-299
6.73 #XCTL .6-307
6.74 Logical record clauses . 6-309

6.74.1 WHERE clause .6-309
6.74.2 ON clause .6-313
6.74.3 Logical-record status codes. 6-315

Appendix A. DML Precompile, Assembly, and Link-Edit JCL A-1
A.1 Overview .A-3
A.2 IDMSDMLA under MVS . A-5
A.3 IDMSDMLA under VSE . A-9
A.4 IDMSDMLA under CMS . A-16
A.5 IDMSDMLA under BS2000 . A-19
A.6 Link-edit considerations .A-21

Contents v

Appendix B. Sample CA-IDMS/DB Batch Program B-1
B.1 Overview .B-3
B.2 Input to the precompiler. B-4
B.3 Output from the precompiler . B-10
B.4 Output from the assembler . B-23

Appendix C. Sample DC/UCF Online Program C-1
C.1 Overview .C-3
C.2 Input to the DML precompiler . C-4
C.3 Output from the DML precompiler. C-6
C.4 Output from the assembler . C-9

Appendix D. Assembler DML Macros and Error Messages D-1
D.1 Overview .D-3
D.2 DML macros .D-4
D.3 Error messages .D-6

Appendix E. STAE Exits .E-1
E.1 Overview .E-3

Appendix F. EMPLOYEE Data Structure Diagram F-1
F.1 Overview .F-3

Appendix G. Systems Network Architecture Considerations (SNA) G-1
G.1 Overview .G-3
G.2 General Considerations .G-5

G.2.1 SNA terminology .G-5
G.2.2 Program communications in the SNA environment. G-6
G.2.3 Error handling .G-10

G.3 SNA functions in a CA-IDMS/DC environment G-12
G.4 Allocating a session . G-14

G.4.1 Establishing conversation attributes. G-14
G.4.2 Issuing the #TREQ ALLOC statement. G-15
G.4.3 Starting a task on a remote logical unit. G-17

G.5 Starting a task from a remote system. G-18
G.6 Synchronous and asynchronous processing. G-19
G.7 Sending data .G-20

G.7.1 LU6.2 considerations for sending data. G-20
G.7.2 Non-LU6.2 considerations for sending data. G-20

G.8 Requesting a confirmation . G-21
G.9 Responding to a confirmation request. G-22
G.10 Sending error information . G-23
G.11 Changing direction: send to receive. G-24
G.12 Receiving data .G-25
G.13 Changing direction: receive to send. G-27
G.14 Terminating a conversation . G-28

G.14.1 Normal termination .G-28
G.14.2 Abnormal termination .G-29
G.14.3 Terminating a session. G-29

Appendix H. Invoking the IDMSIN01 Entry Point H-1

vi CA-IDMS DML Reference — Assembler

H.1 About IDMSIN01 .H-3
H.2 Guidelines .H-4
H.3 IDMSIN01 macro .H-5

H.3.1 Examples .H-6

Appendix I. 18-Byte Communications Blocks I-1
I.1 Overview .I-3

Index .X-1

Contents vii

viii CA-IDMS DML Reference — Assembler

How to Use This Manual

How to Use This Manual ix

What this manual is about

This document presents navigational and LRF DML statements for use in
CA-IDMS/DB and CA-IDMS/DC and CA-IDMS/UCF data communications
environments.

Most data communications DML statements are applicable in both CA-IDMS/DC and
CA-IDMS/UCF environments. The acronym DC/UCF is used to represent this.

x CA-IDMS DML Reference — Assembler

Who should use this manual

This manual is intended for Assembler language programmers who run programs
against CA-IDMS/DB databases and who want to use the DC/UCF system facilities.

How to Use This Manual xi

What this manual contains

This manual contains six chapters and nine appendixes:

■ Introduction to CA-IDMS Data Manipulation Language (Chapter1)

An overview of the facilities for preparing, compiling, and executing Assembler
applications under CA-IDMS/DB and DC/UCF systems

■ DML Precompiler Options (Chapter 2)

A description of the precompiler options available in the CA-IDMS/DB Assembler
environment

■ Communication Blocks and Error Detection (Chapter 3)

A discussion of the communications blocks and error handling in the CA-IDMS
Assembler environment

■ Assembler DML Coding Considerations (Chapter 4)

Instructions for coding Assembler DML statements, a description of IDD
synonyms, and a list of Logical Record Facility keywords

■ DML Precompiler-Directive Statements (Chapter 5)

Instructions for using DML precompiler-directive statements

■ Data Manipulation Language Statements (Chapter 6)

Descriptions of the CA-IDMS Assembler DML commands, including currency,
syntax, error codes, and examples

■ DML Precompile, Assembly, and Link-edit JCL (Appendix A)

JCL necessary for MVS, VSE, CMS, and BS2000 systems.

■ Sample CA-IDMS/DB Batch Program (Appendix B)

A sample Assembler DML batch program that performs database access functions

■ Sample DC/UCF Online Program (Appendix C)

A sample Assembler DML online program

■ Assembler DML Macros and Error Messages (Appendix D)

A list of DML macros and assembly-time error messages

■ STAE Exits (Appendix E)

Instructions on how to implement user-supplied recovery modules

■ EMPLOYEE Data Structure Diagram (Appendix F)

A data structure diagram showing the structure of the database used in examples

■ Systems Network Architecture Considerations (Appendix G)

An overview of how to make an Assembler DML program conform to SNA
protocols

■ Invoking the IDMSIN01 Entry Point (Appendix H)

xii CA-IDMS DML Reference — Assembler

An overview of the IDMSIN01 entry point

■ SYSIDMS Parameter File (Appendix I)

An overview of the SYSIDMS parameter file

■ 18-Byte Communications Blocks (Appendix J)

An overview of specifying 18-byte blocks instead of 16-byte blocks.

Related Documents: For further information related to this manual, refer to the
following documents:

■ CA-IDMS Messages and Codes

■ CA-IDMS installation manual for your operating system

■ CA-IDMS System Generation

■ CA-IDMS System Operations

■ CA-IDMS Mapping Facility

■ CA-IDMS DSECT Reference

■ IDD DDDL Reference

■ CA-IDMS/DB Database Administration

■ CA-IDMS Navigational DML Programming

How to Use This Manual xiii

Understanding syntax diagrams

Look at the list of notation conventions below to see how syntax is presented in this
manual. The example following the list shows how the conventions are used.

UPPERCASE

OR

SPECIAL CHARACTERS

Represents a required keyword, partial keyword,
character, or symbol that must be entered
completely as shown.

lowercase Represents an optional keyword or partial keyword
that, if used, must be entered completely as
shown.

underlined lowercase Represents a value that you supply.

← Points to the default in a list of choices.

lowercase bold

Represents a portion of the syntax shown in
greater detail at the end of the syntax or elsewhere
in the document.

��────────────────────── Shows the beginning of a complete piece of
syntax.

──────────────────────�� Shows the end of a complete piece of syntax.

──────────────────────� Shows that the syntax continues on the next line.

�────────────────────── Shows that the syntax continues on this line.

──────────────────────�─ Shows that the parameter continues on the next
line.

─�────────────────────── Shows that a parameter continues on this line.

�── parameter ─────────� Shows a required parameter.

 �─┬─ parameter ─┬─────�

└─ parameter ─┘
Shows a choice of required parameters. You must
select one.

 �─┬─────────────┬─────�

└─ parameter ─┘
Shows an optional parameter.

 �─┬─────────────┬─────�

├─ parameter ─┤

└─ parameter ─┘

Shows a choice of optional parameters. Select
one or none.

 ┌─────────────┐

 �─↓─ parameter ─┴─────�
Shows that you can repeat the parameter or
specify more than one parameter.

┌───── , ─────┐

 �─↓─ parameter ─┴─────�
Shows that you must enter a comma between
repetitions of the parameter.

xiv CA-IDMS DML Reference — Assembler

Sample syntax diagram

How to Use This Manual xv

xvi CA-IDMS DML Reference — Assembler

Chapter 1. Introduction to CA-IDMS Data
Manipulation Language

1.1 Overview .1-3
1.2 Operating environments .1-4

1.2.1 Accessing the database. 1-4
1.2.2 Programming in the DC/UCF environment. 1-6

1.3 Assembling and executing programs. 1-8

Chapter 1. Introduction to CA-IDMS Data Manipulation Language 1-1

1-2 CA-IDMS DML Reference — Assembler

1.1 Overview

 1.1 Overview

This manual discusses how to use Assembler Data Manipulation Language (DML)
statements in your Assembler program to perform the following:

■ Access a CA-IDMS/DB database

■ Perform data communications functions through CA-IDMS/DC and
CA-IDMS/UCF (DC/UCF)

Assembler DML statements are embedded in the program source as if they were part
of the host language. During assembly, most DML precompiler statements are
expanded into executable Assembler source code (whether or not the DML
precompiler was executed), and source-level error checking is performed.

Depending on your operating environment, your Assembler program uses different sets
of DML statements. For example, a batch program uses database DML statements; an
online program can use both database and data communications DML statements.

This chapter discusses the following:

■ When to use different sets of Assembler DML statements depending on your
operating environment

■ How to use the DML precompiler to prepare your program for assembly and
execution

Chapter 1. Introduction to CA-IDMS Data Manipulation Language 1-3

1.2 Operating environments

 1.2 Operating environments

This manual presents the following categories of Assembler DML statements:

■ Database statements perform CA-IDMS/DB database access functions in either a
batch or an online environment. Database DML statements have an at sign (@)
prefix; for example, @STORE.

■ Data communications, also called online statements, perform data
communications functions for CA-IDMS/DC and CA-IDMS/UCF (DC/UCF)
programs. Online DML statements have a pound sign (#) prefix; for example,
#LINK.

■ DC-batch statements are a subset of online DML statements that allow batch
application programs to access DC/UCF facilities such as queues and printers.
This category consists of the following DML statements: #DELQUE, #GETQUE,
#PUTQUE, and #PRINT.

�� For more information on DC-batch programming, refer to CA-IDMS
Navigational DML Programming.

1.2.1 Accessing the database

Your program can access a CA-IDMS/DB database by using either navigational or
LRF (logical record) DML statements:

■ Navigational statements access database records and sets one record at a time.

■ LRF statements access predefined groups of database records using the Logical
Record Facility (LRF).

Navigational and LRF DML statements are discussed separately below.

Navigating the Database: Navigational DML statements access database records
and sets one record at a time, checking and maintaining currency in order to assure
correct results. Navigational DML statements provide:

■ Control over error checking — You can check the result of each navigational
statement

■ Flexibility in choosing how you want to access the database — For example,
your program can access the database either sequentially (performing an area
sweep), by using a symbolic key value (CALC), or by using a database key value
(DIRECT)

To use navigational DML statements, you must have a thorough knowledge of the
database structure. The database structure is illustrated in a data structure diagram.
For an example of a data structure diagram, refer to Appendix F, “EMPLOYEE Data
Structure Diagram” on page F-1.

The following figure illustrates a database structure that contains two owner records
(EMPLOYEE and JOB) that share one member record (EMPOSITION). To obtain

1-4 CA-IDMS DML Reference — Assembler

1.2 Operating environments

EMPLOYEE and JOB information, the program must retrieve an EMPLOYEE record,
the first EMPOSITION record in the EMP-EMPOSITION set, and the owner record in
the JOB-EMPOSITION set.

Navigational DML statements are grouped into four categories:

■ Control statements initiate and terminate processing, effect recovery, prevent
concurrent updates, and evaluate set conditions

■ Retrieval statements locate data in the database and make it available to the
application program

■ Modification statements update the database

■ Accept statements pass database keys, storage address information, and statistics
to the program

Accessing the Database through LRF: LRF DML statements use the Logical
Record Facility (LRF) to access database records. LRF accesses fields from multiple
database records as if they were data fields in a single record. LRF DML statements
allow your program to specify selection criteria (by using the WHERE clause) that
enable your program to access only the logical records you need.

�� For more information, refer to the CA-IDMS Logical Record Facility.

LRF DML statements provide:

■ Easy access to database records — You need not be familiar with database
structure, and your programs need not include database navigation logic.

■ Data flexibility — You do not usually have to modify or recompile your LRF
program when the database is changed.

■ Runtime efficiency — LRF minimizes communication between the program and
the database management system (DBMS).

Chapter 1. Introduction to CA-IDMS Data Manipulation Language 1-5

1.2 Operating environments

The following figure illustrates how to use LRF DML statements to access the
EMPJOBLR record. The EMPJOBLR record is a logical record that contains the
EMPLOYEE record, the EMPOSITION record, the OFFICE record, and the JOB
record. The EMPJOBLR logical record contains information from the EMPLOYEE,
EMPOSITION, and JOB records.

The LRF DML statements are :

■ @ERASE deletes a logical record from the database.

■ @MODIFY updates a logical record.

■ @OBTAIN retrieves a logical record.

■ @STORE adds a new logical record to the database.

1.2.2 Programming in the DC/UCF environment

DC/UCF application programs can use both database and online DML statements.

Online DML statements perform the following types of functions:

■ Program management statements govern flow of control and abend processing

■ Storage management statements allocate and release variable storage

■ Task management statements provide runtime services that control task
processing

■ Time management statements obtain the time and date and define time-related
events

■ Scratch management statements create, delete, or retrieve records from the
scratch area

■ Queue management statements create, delete, or retrieve records in a queue area

■ Terminal management statements transfer data between the application program
and a terminal

■ Utility function statements retrieve task-related information or statistics, send
messages, and monitor access to database records

■ Recovery statements perform functions relating to database, scratch, and queue
area recovery in the event of a system failure

1-6 CA-IDMS DML Reference — Assembler

1.2 Operating environments

Example: The following example illustrates how online DML statements access the
database and perform data communications functions. Specifically, this example maps
in data entered from the terminal, retrieves and displays the specified information, and
performs a DC return, naming TSK02 as the next task to be performed.

#MREQ IN,MRB=EMPMAP,INDATA=YES,COND=ALL,ERROR=ERRORTN

#MREQ OUT,MRB=EMPMAP,OUTDATA=YES,OPTNS=NEWPAGE

#RETURN NXTTASK=TSK�2

Chapter 1. Introduction to CA-IDMS Data Manipulation Language 1-7

1.3 Assembling and executing programs

1.3 Assembling and executing programs

An Assembler source program that contains DML statements is processed by the DML
precompiler (IDMSDMLA) before it is submitted to the assembler. The DML
precompiler performs the following functions:

■ Converts most DML statements into standard Assembler source statements.

■ Ensures that all statements issued by the program are consistent with the logical
structure of the database, the subschema view of the program, and the access
restrictions defined in the subschema.

■ Copies information maintained in the dictionary into program storage. Dictionary
entities include database record descriptions, file definitions, map records, map
definitions, logical records, and other predefined modules.

■ Updates the dictionary with compile-time statistics used to monitor database
activities for a given application program.

■ Performs source level error checking.

■ Generates an optional source statement listing of error conditions detected during
DML processing.

■ Supports the use of native VSAM files in conjunction with database access
methods.

■ Recognizes record, element, and file synonyms defined in the dictionary.

■ Allows programs to be compiled for execution under various TP monitors without
changing the source DML statements.

An Assembler program must be submitted to the DML precompiler if the program
contains any of the following statements:

■ An @COPY IDMS statement

■ An @INVOKE statement

■ Logical-record DML statement containing a WHERE clause

If none of these statements is included, the Assembler program can bypass the DML
precompiler. The source can be submitted directly to the assembler because most
Assembler DML statements are macro instructions that are expanded during assembly.
It is recommended, however, that all programs accessing the database or running under
a DC/UCF system use the DML precompiler. For a list of Assembler DML macros,
refer to Appendix D, “Assembler DML Macros and Error Messages” on page D-1.

Output from the DML precompiler is a card-image source file that serves as input to
the assembler. Output from the assembler consists of an object program and a source
listing that includes any generated diagnostics. During assembly, most procedural
DML verbs are expanded into executable Assembler source code, whether or not the
DML precompiler was executed.

1-8 CA-IDMS DML Reference — Assembler

1.3 Assembling and executing programs

After the program is assembled, it is submitted to the linkage editor. The linkage
editor link edits the object program into a specified load library. Output from the
linkage editor consists of a load module and a link map.

The following figure illustrates the steps involved in assembling and executing an
Assembler program containing DML statements.

˚

Chapter 1. Introduction to CA-IDMS Data Manipulation Language 1-9

1-10 CA-IDMS DML Reference — Assembler

Chapter 2. DML Precompiler Options

2.1 Overview .2-3
2.2 Dictionary usage mode. 2-4
2.3 Comment generation .2-5
2.4 List generation .2-6
2.5 Log suppression .2-7

Chapter 2. DML Precompiler Options 2-1

2-2 CA-IDMS DML Reference — Assembler

2.1 Overview

 2.1 Overview

This chapter contains syntax for the DML precompiler options. DML precompiler
option statements are included in the input source code to the DML precompiler.
These statements are used to:

■ Override the default shared update usage mode for the DDLDML area of the
dictionary and ready the area in either retrieval or protected update mode

■ Print comment lines stored in the dictionary for subschema data items on the
DML listing

■ Generate a source statement listing of the output from the DML precompiler

■ Suppress the logging of program activity statistics in the dictionary

These options are discussed separately below.

Chapter 2. DML Precompiler Options 2-3

2.2 Dictionary usage mode

2.2 Dictionary usage mode

When the main area (DDLDML area) of the dictionary accessed by the DML
precompiler is readied, several options are available. The default usage mode, shared
update usage, is defined at system generation. Shared update mode readies the
DDLDML area for both retrieval and update and allows other concurrently executing
run units to ready the DDLDML area in shared update or shared retrieval usage mode.
You can override the default usage mode by specifying either retrieval or protected
update usage mode in your application program.

 Syntax

�─┬─ �RETRIEVAL ────────┬──�

└─ �PROTECTED-UPDATE ─┘

The asterisk (*) must be in column 1.

 Parameters

*RETRIEVAL
Readies the DDLDML area for retrieval only and allows other concurrently
executing run units to open the DDLDML area in shared retrieval, shared update,
protected retrieval, or protected update mode.

Note: If the DDLDML area is readied for retrieval only, no program activity
statistics can be logged.

*PROTECTED-UPDATE
Readies the DDLDML area for both retrieval and update and allows other
concurrently executing run units to open the DDLDML area in retrieval usage
mode only. The protected update usage mode prevents concurrent update of the
area by run units executing under the same central version.

If included, the dictionary usage mode statement must precede all source statements.

2-4 CA-IDMS DML Reference — Assembler

2.3 Comment generation

 2.3 Comment generation

The *SCHEMA-COMMENTS option causes schema-defined data item comments and
IDD-defined record-element comments in the dictionary to be printed on the DML
source listing. You can specify this option by including the following entry at the
beginning of the input source code, after the dictionary usage mode statements (if
present) and before any DML or Assembler statements.

 Syntax

 �─── �SCHEMA-COMMENTS ───�

The asterisk (�) must be in column 1.

If the input does not include a *SCHEMA-COMMENTS entry, comment lines are not
generated.

Chapter 2. DML Precompiler Options 2-5

2.4 List generation

 2.4 List generation

You can turn on or off the source statement listing output by the DML precompiler by
inserting a list generation option in the source program.

 Syntax

 �─┬───────────────┬──�

├─ �NODMLIST ← ─┤

└─ �DMLIST ─────┘

The asterisk (�) must be in column 1.

 Parameters

*NODMLIST
Specifies that no source code listing is to be generated for the DML statements
that follow.

*DMLIST
Generates the source code listing for all the DML statements that follow.

In general, you would include one of these entries at the beginning of the input source
code before any standard DML or Assembler statements. However, generation of the
list can be turned on or off any number of times within one source program by
inserting appropriate *DMLIST/*NODMLIST entries in the code.

Note: The DML precompiler always produces a listing of error messages. The
*DMLIST option controls listing of the DML source code.

2-6 CA-IDMS DML Reference — Assembler

2.5 Log suppression

 2.5 Log suppression

You can suppress the logging of program activity statistics in the dictionary by using
the *NO-ACTIVITY-LOG option. This option, if included, is placed at the beginning
of the DML source program. The DML precompiler generates and logs the following
program activity statistics unless the *NO-ACTIVITY-LOG option is included in the
program source code:

 ■ Program name

 ■ Language

■ Date last compiled

■ Number of lines

■ Number of compilations

 ■ Date created

■ Subschema name (if any)

 ■ File statistics

■ Database access statistics (for example, records and modules copied from the
dictionary; subprograms called; and records, sets, and areas accessed by DML
verbs)

 Syntax

 �─── �NO-ACTIVITY LOG ───�

The asterisk (�) must be in column 1.

Note: Program activity statistics cannot be logged if you ready the dictionary
DDLDML area for retrieval only.

Chapter 2. DML Precompiler Options 2-7

2-8 CA-IDMS DML Reference — Assembler

Chapter 3. Communications Blocks and Error
Detection

3.1 Overview .3-3
3.2 IDMS communications block . 3-4

3.2.1 Field descriptions .3-7
3.2.2 ERRSTAT field and codes. 3-11
3.2.3 Testing for DML error-status codes. 3-17

3.3 Logical-record request control (LRC) block. 3-18
3.3.1 Field descriptions .3-19
3.3.2 Testing for the logical-record path status. 3-20

3.4 DC/UCF general registers. 3-23
3.4.1 DC/UCF status codes. 3-23
3.4.2 Testing for DC/UCF return codes. 3-32

Chapter 3. Communications Blocks and Error Detection 3-1

3-2 CA-IDMS DML Reference — Assembler

3.1 Overview

 3.1 Overview

This chapter describes the communication blocks and registers available under
CA-IDMS/DB and DC/UCF systems to return status information to an application
program that requests database and data communication services.

CA-IDMS/DB and DC/UCF systems use the following facilities to communicate with
your application program:

■ The IDMS communications block returns information from the database
management system (DBMS) to your application program.

The ERRSTAT field of the IDMS communications block receives a status code
that indicates the successful or unsuccessful execution of a DML command. You
can test for the content of the ERRSTAT field in your database program.

■ The logical-record request control (LRC) block returns information from the
Logical Record Facility (LRF) to your application program when you are
accessing logical records that have been created by LRF.

The LRSTAT field of the LRC block returns the path status for a logical-record
DML request. You can test for the contents of the LRSTAT field in your
program.

■ Register 15 is used by the DC/UCF system to return information regarding the
successful or unsuccessful execution of DML commands that request data
communication services. You can test for the content of register 15 to determine
the outcome of a DC/UCF DML statement.

In addition to the above topics, this chapter lists the status codes returned by the
DBMS for database requests and the return codes issued by DC/UCF system for data
communications requests.

Chapter 3. Communications Blocks and Error Detection 3-3

3.2 IDMS communications block

3.2 IDMS communications block

The IDMS communications block passes information between the DBMS and the
application program. Whenever a run unit issues a call to the DBMS for a database
operation, the DBMS returns information about the outcome of the requested service to
the ERRSTAT field in the application program's IDMS communications block.

To receive status information from the DBMS, an application program must define the
IDMS communications block in variable storage. You must either copy the IDMS
communications block from the dictionary into your program's variable storage by
using the @COPY IDMS statement or generate the IDMS communications block by
using the @SSCTRL statement. The following example illustrates the @COPY IDMS
statement before and after it has been expanded by the DML precompiler:

@COPY IDMS,SUBSCHEMA-CTRL (Before DML expansion)

@COPY IDMS,SUBSCHEMA-CTRL (After DML expansion)

 DS �D

SSCTRL DS �CL216

 PGMNAME DC CL8' '

 ERRSTAT DC CL4'14��'

 DBKEY DS FL4

 RECNAME DC CL16' '

 AREANAME DC CL16' '

 ERRORSET DC CL16' '

 ERRORREC DC CL16' '

 ERRAREA DC CL16' '

 SSCIDBCM DS �CL1��

 IDBMSCOM DS 1��CL1

 ORG SSCIDBCM

 RDBMSCOM DS �CL1��

PGINFO DS �CL4

 PGINFGRP DS HL2

 PGINFDBK DS HL2

 DS CL96

 DIRDBKEY DC FL4'�'

 DBSTATUS DS �CL8

 DBSTMTCD DS CL2

 DBSTATCD DS CL5

 DS CL1

 RECOCCUR DC FL4'�'

DMLSEQ DC FL4'�'

The same expansion would result by using the @SSCTRL statement in your
application program instead of the @COPY IDMS,SUBSCHEMA-CTRL statement.
The @SSCTRL statement is a macro that generates the variable storage definitions of
the IDMS communications block instead of copying the block from the dictionary.

�� For more information on the differences between these statements, refer to
Chapter 5, “DML Precompiler-Directive Statements” on page 5-1.

After every call to the DBMS, the DBMS issues an error-status code that indicates
successful or unsuccessful completion of the requested service. This status code is
returned to the ERRSTAT field in the IDMS communications block. You should
examine the ERRSTAT field after every call to the DBMS. Depending on the

3-4 CA-IDMS DML Reference — Assembler

3.2 IDMS communications block

error-status code, it may be useful to examine other fields and/or branch to a routine
that responds to the condition indicated by the error-status code.

Chapter 3. Communications Blocks and Error Detection 3-5

3.2 IDMS communications block

The following figure shows the layout of the 16-byte IDMS communications block;
each field is described separately. Starting with offset 200, the layout of the block
differs for application programs that run under CICS.

�� For more information about the 18-byte IDMS communications block, refer to
Appendix J, "18-Byte Communications Blocks."

 ┌───────────────────────────┐

│ IDMS COMMUNICATIONS BLOCK │
 └───────────────────────────┘

 Length Suggested
Field Data Type (bytes) Initial Value

 ┌──────────────┐

� │ � 7 │ PGMNAME Alphanumeric 8 Program Name

 ├──────────┬───┘

 │ 8 11 │ ERRSTAT Alphanumeric 4 '14��'

 ├──────────┤

 │ 12 15 │ DBKEY Binary 4 (Fullword) ����

 ├──────────┴───────┐

 │ 16 31 │ RECNAME Alphanumeric 16 Spaces

 ├──────────────────┤

 │ 32 47 │ AREANAME Alphanumeric 16 Spaces

 ├──────────────────┤

 │ 48 63 │ ERRORSET Alphanumeric 16 Spaces

 ├──────────────────┤

 │ 64 79 │ ERRORREC Alphanumeric 16 Spaces

 ├──────────────────┤

 │ 8� 95 │ ERRAREA Alphanumeric 16 Spaces

 ├──────────┬───────┘

�� │ 96 99 │ PGINFO Binary 4 (Fullword) ����

 └──────────┘

 ┌────────────┬───┬─────┐

 │ 96 ... 195 │ IDBMSCOM Alphanumeric 1�� Spaces

 ├──────────┬─┴───┴─────┘

│ 196 199 │ DIRDBKEY Binary 4 (Fullword) ����

 └──────────┘

┌──────┬──────────────┐

│ │ 2�� 2�6 │ Reserved for System Alphanumeric 7 Spaces

│ ├─────┬────────┘

│ NON- │ 2�7 │ FILLER ... 1 ...

│ ├─────┴────┐

│ CICS │ 2�8 211 │ RECOCCUR Binary 4 (Fullword) ����

│ ├──────────┤

│ │ 212 215 │ DMLSEQ Binary 4 (Fullword) ����

└──────┴──────────┘

┌──────┬──────────────────┐

│ │ 2�� 215 │ FILLER ... 16 Spaces

│ ├──────────────┬───┘

│ │ 216 222 │ Reserved for System Alphanumeric 7 Spaces

│ ├─────┬────────┘

│ │ 223 │ FILLER ... 1 ...

│ CICS ├─────┴────┐

│ │ 224 227 │ RECOCCUR Binary 4 (Fullword) ����

│ ├──────────┤

│ │ 228 231 │ DMLSEQ Binary 4 (Fullword) ����

└──────┴──────────┘

� word aligned

�� PGINFGRP overlays bytes 96 and 97 and PGINFDBK overlays bytes

98 and 99. Both of these fields are binary datatype each

having a length of two bytes. Suggested initial values for

both are ��. Together these two fields represent PGINFO.

3-6 CA-IDMS DML Reference — Assembler

3.2 IDMS communications block

 3.2.1 Field descriptions

Program status fields: The IDMS communications block contains the following
fields that describe program status information:

■ PGMNAME (offsets 0-7) is an 8-byte alphanumeric field that contains the name
of the program being executed. This field is initialized automatically at the
beginning of program execution if the program contains an @COPY IDMS
SUBSCHEMA-BINDS statement. Otherwise, it must be initialized by the
programmer.

■ ERRSTAT (offsets 8-11) is a 4-byte alphanumeric field that contains a value
indicating the outcome of the DML statement that calls the DBMS. The
ERRSTAT field must be initialized to 1400 by the program. The DBMS updates
this field immediately before returning control to the user program after
performing (attempting) a requested database service.

The ERRSTAT field and its use are described under 3.2.3, “Testing for DML
error-status codes” on page 3-17 later in this chapter.

Note: A program that consists of two or more run units must reinitialize the
ERRSTAT field to 1400 after finishing one run unit and before binding
the next.

■ DBKEY (offsets 12-15) is a 4-byte (fullword) binary field that contains the
database key (db-key) of the last record accessed by the run unit. For example,
after successful execution of an @FIND command, DBKEY is updated with the
db-key of the located record. DBKEY is not changed if the call to the DBMS
results in an error condition.

■ RECNAME (offsets 16-31) is a 16-byte alphanumeric field that contains the name
of the last record accessed successfully by the run unit. This field is left justified
and padded with spaces on the right.

■ AREANAME (offsets 32-47) is a 16-byte alphanumeric field that contains the
name of the last area accessed successfully by the run unit. This field is left
justified and padded with spaces on the right.

■ ERRORSET (offsets 48-63) is a 16-byte alphanumeric field that contains the
name of the set involved in the last operation to produce an error condition. This
field is left justified and padded with spaces on the right.

■ ERRORREC (offsets 64-79) is a 16-byte alphanumeric field that contains the
name of the record involved in the last operation to produce an error condition.
This field is left justified and padded with spaces on the right.

■ ERRAREA (offsets 80-95) is a 16-byte alphanumeric field that contains the name
of the area involved in the last operation to produce an error condition. This field
is left justified and padded with spaces on the right.

■ IDBMSCOM (offsets 96-195) is a 100-byte alphanumeric array that is used
internally by CA-IDMS/DB for specification of runtime function information.

■ PGINFO (offsets 96-99) is a 4-byte binary field that represents the page
information associated with the last record accessed by the rununit. For example,

Chapter 3. Communications Blocks and Error Detection 3-7

3.2 IDMS communications block

after successful execution of an @FIND command, PGINFO is updated with the
page information of the located record.

Page information is not changed if the call to the DBMS results in a nonzero
status condition.

Page information is a 4-byte field consisting of the following sub-fields:

– Bytes 1-2: Page group number (PGINFGRP)

– Bytes 3-4: Dbkey radix (PGINFDBK)

The PGINFO field overlays part of the IDBMSCOM area in the subschema
control.

The dbkey radix portion of the page information can be used in interpreting a
dbkey for display purposes and in formatting a dbkey from page and line numbers.
The dbkey radix represents the number of bits within a dbkey value that are
reserved for the line number of a record. By default, this value is 8, meaning that
up to 255 records can be stored on a single page of the area. Given a dbkey, you
can separate its associated page number by dividing the dbkey by 2 raised to the
power of the dbkey radix. For example, if the dbkey radix is 4, you would divide
the dbkey value by 2**4. The resulting value is the page number of the dbkey.
To separate the line number, you would multiply the page number by 2 raised to
the power of the dbkey radix and subtract this value from the dbkey value. The
result would be the line number of the dbkey. The following two formulas can be
used to calculate the page and line numbers from a dbkey value:

Page-number = dbkey value / (2 �� dbkey radix)

Line-number = dbkey value - (page-number � (2 �� dbkey radix))

■ DIRDBKEY (offsets 196-199) is a 4-byte (fullword binary) field that contains a
user-specified db-key value or a null db-key value of -1. This field is used for
storing a record with a location mode of direct. DIRDBKEY must be initialized
by the user; it is not updated by the DBMS.

Note: (native VSAM users) The DIRDBKEY field can be used only when
storing a record in a native VSAM relative record data set (RRDS). This
field must be initialized by the user to the relative record number of the
record being stored.

Fields for non-CICS applications: The following fields are for non-CICS
application programs:

■ Reserved for system (offsets 200-206) is a 7-byte alphanumeric field reserved for
CA-IDMS/DB use.

■ FILLER (offset 207) is a 1-byte field used to ensure fullword alignment.

■ RECOCCUR (offsets 208-211) is a 4-byte (fullword) binary field that contains a
record-occurrence sequence identifier used internally by the DBMS.

■ DMLSEQ (offsets 212-215) is a 4-byte (fullword) binary field that contains the
source-level sequence number generated by the DML macros, if DEBUG is
specified. It not used by the runtime system, with the exception of SYSIDMS
DML TRACE=ON tracing.

3-8 CA-IDMS DML Reference — Assembler

3.2 IDMS communications block

Fields for CICS applications: The following fields are for CICS application
programs:

■ FILLER (offsets 200-215) is a 16 byte work area reserved for use by CICS
applications.

■ Reserved for system (offsets 216-222) is a 7-byte alphanumeric field reserved for
use by the DBMS.

■ FILLER (offset 223) is a 1-byte field used to align fullword binary values.

■ RECOCCUR (offsets 224-227) is a 4-byte (fullword) binary field that contains a
record-occurrence sequence identifier used internally by CA-IDMS/DB.

■ DMLSEQ (offsets 228-231) is a 4-byte (fullword) binary field that contains the
source-level sequence number generated by the DML precompiler. This field is
updated after each call to the DBMS if DEBUG is specified; it is not used by the
runtime system.

Updating the fields: After a call to the DBMS, one or more of the fields described
above may be updated, depending on the DML statement issued and whether or not
the statement was executed successfully.

Example of updating fields: The following figure illustrates the updating process;
only those fields accessed by the runtime system are shown. Fields used internally by
the DBMS are not shown. Blank fields are not updated by DML statements.

Key for this figure:

* If true, field is set to zone decimal zeroes (0000); if false, field is set to
1601

0 Field is set to zone decimal zeroes

Y Field is updated

C Field is cleared to spaces

N Field is set to null db-key value (-1)

nn Specific minor error code

Chapter 3. Communications Blocks and Error Detection 3-9

3.2 IDMS communications block

 ┌───────────────────────────────────────┐┌──┐

 │ SUCCESSFUL ││ UNSUCCESSFUL │

 ├───┬───┬───┬───┬───┬───┬───┬───┬───┬───┤├───┬──────┬───┬───┬───┬───┬───┬───┬───┬───┤

│ │ │ │ │ │ │ │ │ │ ││ │ │ │ │ │ │ │ │ │ │

│ P │ E │ D │ R │ A │ E │ E │ E │ P │ D ││ P │ E │ D │ R │ A │ E │ E │ E │ P │ D │

│ G │ R │ B │ E │ R │ R │ R │ R │ G │ I ││ G │ R │ B │ E │ R │ R │ R │ R │ G │ I │

│ M │ R │ K │ C │ E │ R │ R │ R │ I │ R ││ M │ R │ K │ C │ E │ R │ R │ R │ I │ R │

│ N │ S │ E │ N │ A │ O │ O │ A │ N │ D ││ N │ S │ E │ N │ A │ O │ O │ A │ N │ D │

│ A │ T │ Y │ A │ N │ R │ R │ R │ F │ B ││ A │ T │ Y │ A │ N │ R │ R │ R │ F │ B │

│ M │ A │ │ M │ A │ S │ R │ E │ O │ K ││ M │ A │ │ M │ A │ S │ R │ E │ O │ K │

│ E │ T │ │ E │ M │ E │ E │ A │ │ E ││ E │ T │ │ E │ M │ E │ E │ A │ │ E │

│ │ │ │ │ E │ T │ C │ │ │ Y ││ │ │ │ │ E │ T │ C │ │ │ Y │

│ │ │ │ │ │ │ │ │ │ ││ │ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │ ││ │ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │ ││ │ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │ ││ │ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │ ││ │ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │ ││ │ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │ ││ │ │ │ │ │ │ │ │ │ │

┌─────────────────────────────┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┤├───┴──────┴───┴───┴───┴───┴───┴───┴───┴───┤

│ Control statements ││ │

├─────────────────────────────┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┤├───┬──────┬───┬───┬───┬───┬───┬───┬───┬───┤

│ BIND SUBSCH │ │ O │ │ │ │ │ │ │ │ ││ │ 14nn │ │ │ │ │ │ │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ BINDREC │ │ O │ │ │ │ │ │ │ │ ││ │ 14nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ BIND PROC │ │ O │ │ │ │ │ │ │ │ ││ │ 14nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ READY │ │ O │ │ │ │ │ │ │ │ ││ │ �9nn │ │ │ │ C │ C │ C │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ FINISH │ │ O │ N │ C │ │ C │ C │ C │ │ ││ │ �1nn │ │ │ │ C │ C │ C │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ COMMIT (ALL) │ │ O │ N │ C │ │ C │ C │ C │ │ ││ │ 18nn │ │ │ │ C │ C │ C │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ ROLLBAK (CONTINUE) │ │ O │ N │ C │ │ C │ C │ C │ │ ││ │ 19nn │ │ │ │ C │ C │ C │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ KEEP (EXCLUSIVE) │ │ O │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ �6nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ IF set-name EMPTY │ │ � │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ 16nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ IF set-name MEMBER │ │ � │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ 16nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┤├───┴──────┴───┴───┴───┴───┴───┴───┴───┴───┤

│ Retrieval statements ││ │

├─────────────────────────────┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┤├───┬──────┬───┬───┬───┬───┬───┬───┬───┬───┤

│ FIND / OBTAIN │ │ O │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ �3nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ GET │ │ O │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ �5nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ RETURN │ │ O │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ 17nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┤├───┴──────┴───┴───┴───┴───┴───┴───┴───┴───┤

│ Modification statements ││ │

├─────────────────────────────┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┤├───┬──────┬───┬───┬───┬───┬───┬───┬───┬───┤

│ STORE record-name │ │ O │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ 12nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ CONNECT record-name │ │ O │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ �7nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ MODIFY record-name │ │ O │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ �8nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ DISCON record-name │ │ O │ Y │ Y │ Y │ C │ C │ C │ Y │ ││ │ 11nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ ERASE record-name │ │ O │ N │ Y │ Y │ C │ C │ C │ │ ││ │ �2nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┤├───┴──────┴───┴───┴───┴───┴───┴───┴───┴───┤

│ Accept statements ││ │

├─────────────────────────────┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┤├───┬──────┬───┬───┬───┬───┬───┬───┬───┬───┤

│ ACCEPT DBKEY FROM CURRENCY │ │ O │ │ │ │ C │ C │ C │ │ ││ │ 15nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ ACCEPT DBKEY REL TO CURRENCY│ │ O │ │ │ │ C │ C │ C │ │ ││ │ 15nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ ACCEPT STATS │ │ O │ │ │ │ C │ C │ C │ │ ││ │ 15nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ ACCEPT BIND │ │ O │ │ │ │ C │ C │ C │ │ ││ │ 15nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ ACCEPT PROC │ │ O │ │ │ │ C │ C │ C │ │ ││ │ 15nn │ │ │ │ Y │ Y │ Y │ │ │

├─────────────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤├───┼──────┼───┼───┼───┼───┼───┼───┼───┼───┤

│ ACCEPT PGINFO │ │ O │ │ │ │ C │ C │ C │ │ ││ │ 15nn │ │ │ │ Y │ Y │ Y │ │ │

└─────────────────────────────┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴┴───┴──────┴───┴───┴───┴───┴───┴───┴───┴───┘

3-10 CA-IDMS DML Reference — Assembler

3.2 IDMS communications block

3.2.2 ERRSTAT field and codes

The DBMS returns a value to the ERRSTAT (error-status) field of the IDMS
communications block following each DML database request to indicate whether the
request has been serviced successfully. The ERRSTAT field is a zoned decimal field
consisting of four bytes: the first two bytes represent a major code; the second two
bytes represent a minor code. Major codes identify the database function performed;
minor codes describe the status of that function.

For example, a value of 0307 in the ERRSTAT field is translated as follows:

�3 Represents the major code for the database function @FIND/@OBTAIN

�7 Represents the minor code indicating either an empty set or the

end of set, area, or index

Therefore, an ERRSTAT value of 0307 indicates that during the execution of a DML
@FIND or @OBTAIN statement, an end of set, end of area, end of index, or empty
set condition was found.

A value of 0000 indicates successful completion of the requested function; you should
check for values other than 0000.

Major code 00: The following error codes with a major code of 00 apply to all
DML commands:

Major status codes: The following table shows major codes returned to the
ERRSTAT field of the IDMS communications block. Major codes identify the
requested database function performed.

Code Meaning

0000 The request has been executed successfully.

0010 The program has attempted to access a database record, but the
subschema in use allows access only to logical records.

0063 Invalid function parameters have been passed on the call to
CA-IDMS/DB and CA-IDMS/DC.

0069 The program has been disconnected from CA-IDMS/DB and
CA-IDMS/DC. (CA-IDMS/DB and CA-IDMS/DC moves this error
status code into the ERRSTAT field before disconnecting the
application program.)

0077 Either the program is no longer signed on to the subschema or the
variable subschema tables have been overwritten.

0080 The target node either is not active or has been disabled from the DDS
configuration.

Chapter 3. Communications Blocks and Error Detection 3-11

3.2 IDMS communications block

Minor status codes: The following table shows minor codes returned to the
ERROR-STATUS field of the IDMS communications block. Minor codes describe the
status of the requested database function.

Code Database Function

00 Any DML statement

01 @FINISH

02 @ERASE

03 @FIND/@OBTAIN

05 @GET

06 @KEEP

07 @CONNECT

08 @MODIFY

09 @READY

11 @DISCON

12 @STORE

14 @BIND

15 @ACCEPT

16 @IF

17 @RETURN

18 @COMMIT

19 @ROLLBAK

20 Logical Record Facility requests
(@OBTAIN, @MODIFY, @STORE, and @ERASE)

Code Database Function Status

00 Combined with a major code of 00, this status code indicates
successful completion of the DML operation. Combined with a
nonzero major code, this status code indicates that the DML operation
was not completed successfully due to central version (CV) causes
such as timeouts and program checks.

01 An area has not been readied. When this code is combined with a
major code of 16, an @IF operation has resulted in a valid false
condition.

3-12 CA-IDMS DML Reference — Assembler

3.2 IDMS communications block

Code Database Function Status

02 Either the db-key used with an @FIND/@OBTAIN DB-KEY
statement or the direct db-key suggested for an @STORE is not within
the page range for the specified record name.

04 The occurrence count of a variably occurring element has been
specified as less than zero or greater than the maximum number of
occurrences defined in the control element.

05 The specified DML function would have violated a duplicates-not-
allowed option for a CALC, sorted, or index set.

06 No currency has been established for the named record, set, or area.

07 Either the set is empty or the end of a set, area, or index has been
reached.

08 Either an invalid record or set name has been specified or the record is
not a member of the set. For Logical Record Facility (LRF) users,
either the named logical record is not defined in the subschema or the
specified DML verb is not permitted with the named logical record.

09 The area has been readied with an incorrect usage mode.

10 An existing access restriction or subschema usage prohibits execution
of the specified DML function. For LRF users, the subschema in use
allows access to database records only. Combined with a major code
of 00, this code means the program has attempted to access a database
record but the subschema in use allows access to logical records only.

11 The record cannot be stored in the specified area due to insufficient
space.

12 There is no db-key for the record to be stored. This is a system
internal error and should be reported.

13 A current record of run unit either has not been established or has been
nullified by a previous @ERASE statement.

14 The @CONNECT statement cannot be executed because the named
record has been defined as a mandatory automatic member of the set.

15 The @DISCON statement cannot be executed because the object
record has been defined as a mandatory member of the set.

16 The record cannot be connected to a set of which it is already a
member.

18 The record has not been bound.

20 The current record is not the same type as the specified record name.

21 Not all areas being used have been readied in the correct usage mode.

22 The specified record name is not currently a member of the specified
set name.

Chapter 3. Communications Blocks and Error Detection 3-13

3.2 IDMS communications block

Code Database Function Status

23 Either the specified area name has not been included in the subschema
or is not an extent area, or the record name specified has not been
defined within area name.

25 No currency has been established for the named set.

26 The record name cannot be found.

28 The run unit has attempted to ready an area that has been readied
previously.

29 The run unit has attempted to place a lock on a record that is already
locked by another run unit. Unless the run unit issued either a
"FIND/OBTAIN KEEP EXCLUSIVE" or a "KEEP EXCLUSIVE", the
run unit is aborted.

30 An attempt has been made to erase the owner record of a set that is
not empty.

31 The retrieval statement format conflicts with the record's location
mode.

32 An attempt to retrieve the CALC record was unsuccessful; the value of
the CALC field in variable storage does not equal the value of the
CALC control element in the current record of run unit.

33 At least one of the sets in which the record participates has not been
included in the subschema.

40 The WHERE clause in an @OBTAIN NEXT logical-record request is
inconsistent with a previous @OBTAIN FIRST or @OBTAIN NEXT
command for the same record.

41 The subschema contains no path that matches the WHERE clause in a
logical-record request.

42 An ON clause included in the path by the DBA specified return of the
LR-ERROR path status to the program; an error has occurred while
processing the LRF request.

43 A program check has been recognized during evaluation of a WHERE
clause; the program check indicates that either a WHERE clause has
specified comparison of a packed decimal field to an unpacked
nonnumeric data field, or data in variable storage or in a database
record does not conform to its description. A path status of
LR-ERROR is returned to the program unless the DBA has included
an ON clause to override this action.

44 The WHERE clause in a logical-record request does not supply a key
element expected by the path.

3-14 CA-IDMS DML Reference — Assembler

3.2 IDMS communications block

Code Database Function Status

45 During evaluation of a WHERE clause, a program check has been
recognized because a subscript value is neither greater than 0 nor less
than its maximum allowed value plus 1. A path status of LR-ERROR
is returned to the program unless the DBA has included an ON clause
to override this action.

46 A program check has revealed an arithmetic exception, (for example,
overflow, underflow, significance, divide) during evaluation of a
WHERE clause. A path status of LR-ERROR is returned to the
program unless the DBA has included an ON clause to override this
action.

53 The subschema definition of an indexed set does not match the indexed
set's physical structure in the database.

55 An invalid length has been defined for a variable-length record.

56 An insufficient amount of memory to accommodate the CA-IDMS/DB
compression/decompression routine is available.

57 A retrieval-only run unit has detected an inconsistency in an index that
should cause an 1143 abend, but optional APAR bit 216 has been
turned on.

60 The specified record type is inconsistent with the named set. This
error code usually indicates a broken chain.

61 No record can be found for the specified db-key. This error code
usually indicates a broken chain.

62 A system-generated db-key points to a record occurrence, but no
record with that db-key can be found. This error code usually
indicates a broken chain.

63 The DBMS cannot interpret the DML function to be performed. For
LRF users, a WHERE clause includes a keyword that is longer than
the 32 characters allowed. When combined with a major code of 00,
this code means invalid function parameters have been passed on the
call to the DBMS.

64 The specified record cannot be found; the CALC control element has
not been described properly in the subschema.

65 The database page read was not the page requested.

66 The specified area is not available in the requested usage mode. If
running in local mode, the area is locked against update. If running
under the control version, either the area is offline or the program
requested an update usage mode and the area is in retrieval mode to
the central version.

67 The subschema invoked does not match the subschema object tables.

Chapter 3. Communications Blocks and Error Detection 3-15

3.2 IDMS communications block

Code Database Function Status

68 The CICS interface was not started.

69 An @BIND RUN-UNIT may not have been issued; the CA-IDMS/DB
central version may not be active or accepting new run units; or the
connection with the CV may have been broken due to time out or
other factors. When combined with a major code of 00, this code
means the program has been disconnected from the DBMS.

70 The database file will not ready properly. A JCL error is the probable
cause.

71 The page range or page group for the area being readied could not be
found in the DMCL.

72 There is insufficient memory to load dynamically a subschema or
database procedure.

73 A central version run unit will exceed the MAXERUS value specified
at system generation.

74 The dynamic load of a module has failed. If operating under the
CA-IDMS/DB central version, a subschema or database procedure
module, if loaded, either exceeds the number of subschema and
database procedures provided for at system generation or cannot be
found in the dictionary or the load (core-image) library.

75 A read error has occurred.

76 A write error has occurred.

77 The run unit either has not been bound or has been bound twice.
When combined with a major code of 00, this code means either the
program is no longer signed on to the subschema or the variable
subschema tables have been overwritten.

78 An area wait deadlock has occurred.

79 The run unit has requested more db-key locks than are available to the
system.

80 The target node is not active or has been disabled from the DDS
configuration.

81 The specified database name is not known to the CA-IDMS/DB central
version.

82 The subschema is not allowed under the specified database.

83 An error has occurred in the use of the native VSAM data sets.

87 The owner and member records for a set to be updated are not in the
same page group or do not have the same dbkey radix.

3-16 CA-IDMS DML Reference — Assembler

3.2 IDMS communications block

3.2.3 Testing for DML error-status codes

Testing for the value of the ERRSTAT field in an Assembler program is a simple
procedure. CA-IDMS/DB places a value in the ERRSTAT field after each DML
statement requesting database services is executed. This value can be compared to
known error-status codes to determine whether execution was successful. For
example, you can check for successful completion by comparing the ERRSTAT field
to a working storage field defined as 0000. The program can then perform a
conditional branch.

The following example demonstrates a test for the successful execution of the
@OBTAIN statement. After completion of the @OBTAIN statement, the value
returned to the ERRSTAT field is compared to the defined constant STATOK. If the
@OBTAIN is successfully completed, processing continues. Otherwise, the program
branches to routine OBERR2, which evaluates the ERRSTAT field and determines the
next statement to be executed.

 @OBTAIN OWNER,SET='DEPT-EMPLOYEE'

 CLC ERRSTAT,STATOK

 BNE OBERR2

 MVC DID,DEPTID

 .

 .

 .

STATOK DC CL4'����'

In Chapter 6, “Data Manipulation Language Statements” on page 6-1, the status codes
that can be returned to the ERRSTAT field of the IDMS communications block are
listed after the description of each database command. To determine test conditions
based on error-status codes refer to Chapter 6, “Data Manipulation Language
Statements” on page 6-1.

Chapter 3. Communications Blocks and Error Detection 3-17

3.3 Logical-record request control (LRC) block

3.3 Logical-record request control (LRC) block

The logical-record request control (LRC) block passes information between the
application program and LRF. It is used in conjunction with the IDMS
communications block to pass information to LRF about a logical-record request and
to return path status information about the processing of the request to the program.

To receive information about a logical-record request, the application program must
define the LRC block in variable storage. You must either copy the LRC block from
the dictionary into the program's variable storage by using the @COPY IDMS
statement or generate the LRC block by using the @SSLRCTL statement. The
following example illustrates the @COPY IDMS statement before and after expansion
by the DML precompiler:

@COPY IDMS,SUBSCHEMA-LR-CTRL (before DML expansion)

� @COPY IDMS,SUBSCHEMA-LR-CTRL (after DML expansion)

 DS �D

 SSLRCTL DS �CL576

LRPXLN DS HL2

LRMVXP DS HL2

 LRIDENT DC CL4'LRC '

LRVERB DC CL8' '

LRNAME DC CL16' '

LRSTAT DC CL16' '

LRFILL DC CL16' '

 LRPXE DS 512CL1

The same expansion would result by using the @SSLRCTL statement in your
application program instead of the @COPY IDMS,SUBSCHEMA-LR-CTRL
statement. The @SSLRCTL statement is a macro that generates the variable storage
definitions of the LRC block instead of copying the block from the dictionary. For
more information on the differences between these statements, refer to Chapter 5,
“DML Precompiler-Directive Statements” on page 5-1.

When a program issues a logical-record request, the LRC block stores the DML verb
used by the program, the name of the logical-record, and the selection criteria of the
request. LRF uses this information to select the appropriate path to handle the request.

After LRF has processed a request, it returns path status information in the LRC block.
After issuing the path status, LRF returns an error-status code in the ERRSTAT field
of the IDMS communications block. You can use this information to evaluate the
result of the request and to determine further processing based on that result. The
following figure shows the layout of the LRC block; each field is described separately
following the figure.

3-18 CA-IDMS DML Reference — Assembler

3.3 Logical-record request control (LRC) block

 ┌───────────┐

│ LRC BLOCK │
 └───────────┘

 Length
 Field Description Data Type (bytes)
 ┌───────┐

│ � 1 │ LRPXLN Logical-record LRC length BINARY 2

 ├───────┤

 │ 2 3 │ LRMVXP Evaluation work-area-length BINARY 2

 ├───────┴──┐

│ 4 7 │ LRIDENT Constant 'LRC ' ALPHANUMERIC 4

 ├──────────┴───┐

 │ 8 15 │ LRVERB Logical-record verb ALPHANUMERIC 8

 ├──────────────┴────┐

 │ 16 31 │ LRNAME Logical-record name ALPHANUMERIC 16

 ├───────────────────┤

│ 32 47 │ LRSTAT Logical-record error-status indicator ALPHANUMERIC 16

 ├───────────────────┤

 │ 48 63 │ LXFIL Filler ... 16

 ├───┬───┬───────────┤

 │ (lrc-block│ LRPXE WHERE clause Mixed ...

│ 64 ... -size │

 │ minus 63)│

 └───┴───┴───────────┘

 3.3.1 Field descriptions

The LRC block contains the following fields:

■ LRPXLN (offsets 0-1) is a halfword field that describes the length of the LRC
block for a logical record.

■ LRMVXP (offsets 2-3) is a halfword field that describes the evaluation work area
length used for processing the logical record.

■ LRIDENT (offsets 4-7) is a 4-byte alphanumeric field used internally by LRF. (It
contains the constant LRC followed by a space.)

■ LRVERB (offsets 8-15) is an 8-byte alphanumeric field used to record the DML
verb issued by the LRF program.

■ LRNAME (offsets 16-31) is a 16-byte alphanumeric field that contains the name
of the logical record being accessed.

■ LRSTAT (offsets 32-47) is a 16-byte alphanumeric field that contains the path
status of a logical-record request. The standard path statuses are LR-FOUND,
LR-NOT-FOUND, and LR-ERROR. Path statuses can also be defined by the
DBA. Testing for the value of the LRSTAT field is described below in "Testing
for the logical-record path status."

■ LXFIL (offsets 48-63) is a 16-byte filler.

■ LRPXE (offset 64-end) is a variable length data area that contains information
regarding the logical-record request's WHERE clause. This field is usually 512
bytes (default). You can code the SIZE option of the @BIND SUBSCH, @COPY
IDMS,SUBSCHEMA-LR-CTRL, and @SSLCTRL statements to lengthen this
field to accommodate a long, complex WHERE clause. (For more information on
increasing the size of this field, refer to 5.4, “@COPY IDMS” on page 5-9.)

Chapter 3. Communications Blocks and Error Detection 3-19

3.3 Logical-record request control (LRC) block

3.3.2 Testing for the logical-record path status

Path statuses are issued during execution of the path selected to service a
logical-record request. LRF returns a specific path status to the LRSTAT field of the
program's LRC block to indicate the result of each logical-record request. You can
examine this information to determine further processing.

Path statuses: Path statuses are 1- to 16-byte character strings; they can either be
standard or defined by the DBA in the subschema. The standard path statuses are:

■ LR-FOUND — Indicates the logical-record request has been successfully
executed. This status can be returned as the result of any LRF DML statement.
When LR-FOUND is returned, the ERRSTAT field of the IDMS communications
block contains 0000.

■ LR-NOT-FOUND — Indicates the specified logical record cannot be found
because either no such record exists or all such occurrences have already been
retrieved. This status can be returned as the result of any LRF DML statement,
provided that the path to which LRF is directed includes retrieval logic. When
LR-NOT-FOUND is returned, the ERRSTAT field of the IDMS communications
block contains 0000.

■ LR-ERROR — Indicates that either a logical-record request is issued incorrectly
or an error occurs in the processing of the path selected to service the request.

Code depends on type of error: When LR-ERROR is returned, the type of status
code returned to the program in the ERRSTAT field of the IDMS communications
block differs according to the type of error. If the error occurs in the logical-record
path, the ERRSTAT field contains a status code issued by CA-IDMS/DB with a major
code from 00 to 19.

When the error occurs in the request itself, LRF returns the path status LR-ERROR to
the LRSTAT field of the LRC block and places one of the following codes in the
ERRSTAT field of the IDMS communications block:

Note: Any of these error-status codes can result from any of the logical-record DML
statements. The only exception is code 2040, which applies only to the
@OBTAIN NEXT DML statement.

Status code Meaning

2008 Either the named logical record is not defined in the subschema or
the specified DML verb is not permitted with the named logical
record.

2010 The program has attempted to access a logical record, but the
subschema in use allows access to database records only.

2018 A path command has attempted to access a database record that has
not been bound.

3-20 CA-IDMS DML Reference — Assembler

3.3 Logical-record request control (LRC) block

Status code Meaning

2040 The WHERE clause included in an @OBTAIN NEXT statement
has directed LRF to a different path than did the WHERE clause in
the preceding @OBTAIN statement for the same logical record.
Either an @OBTAIN FIRST should have been issued instead of
@OBTAIN NEXT or the WHERE clause is incorrect.

2041 LRF was unable to match the request's WHERE clause to a path to
service the request.

2042 An ON clause included in the path by the DBA specified return of
the LR-ERROR path status to the program.

2043 During evaluation of a WHERE clause, a program check has been
recognized for one of the following reasons:

■ A WHERE clause has specified that a packed decimal field be
compared to a field that is not packed and that cannot be
converted to a packed field due to the presence of nonnumeric
data.

■ Data in either variable storage or a database record does not
conform to its description.

A path status of LR-ERROR is returned to the program unless the
DBA has included an ON clause in the path to override this action.

2044 The WHERE clause in a logical-record request does not include a
field of information required by the path.

2045 During evaluation of a WHERE clause, a program check has been
recognized because a subscript value is either less than zero or
greater than its maximum allowed value plus 1. A path status of
LR-ERROR is returned to the program unless the DBA has
included an ON clause in the path to override this action.

2046 A program check has been recognized during evaluation of a
WHERE clause for one of the following reasons:

■ An arithmetic overflow would occur (fixed point, decimal, or
exponent).

■ An arithmetic underflow would occur (exponent).

■ A divide exception would occur (fixed point, decimal, or
floating point).

■ A significance exception has occurred.

A path status of LR-ERROR is returned to the program unless the
DBA has included an ON clause in the path to override this action.

2063 A logical-record request's WHERE clause includes a keyword that
is longer than the 32 characters allowed.

Chapter 3. Communications Blocks and Error Detection 3-21

3.3 Logical-record request control (LRC) block

Optional ONLRSTS clause: In addition to directly testing the value of the
LRSTAT field, you can include an ON clause that tests for a specific standard or
DBA-defined path status for each DML statement; for example:

 @OBTAIN NEXT,REC='EMPJOBLR',ONLRSTS='LR-NOT-FOUND',GOTO=RECERROR

The ONLRSTS clause tests for the standard path status of LR-NOT-FOUND. If
LR-NOT-FOUND is returned, the branch imperative GOTO=RECERROR will be
executed and the program will branch to the label RECERROR.

 Syntax

 �─┬───┬────────────────────────────�

└─ ,ONLRSTS=path-status,GOTO=branch-location ─┘

 Parameters

ONLRSTS=path-status
Tests the LRSTAT field for a path status returned as the result of the
logical-record request issued by the program. Path-status must be a quoted literal
(1-16 bytes under MVS or 1-6 bytes under VSE) or program variable.

GOTO=branch-location
Specifies the program action to be taken if the specified path status is found in
LRSTAT.

For a more complete explanation of LRF DML commands and clauses refer to
Chapter 6, “Data Manipulation Language Statements” on page 6-1.

Status code Meaning

2064 A path command has attempted to access a CALC data item that
has not been described properly in the subschema.

2072 Storage is not available for the work areas required to evaluate the
logical-record request's WHERE clause.

3-22 CA-IDMS DML Reference — Assembler

3.4 DC/UCF general registers

3.4 DC/UCF general registers

General registers 0, 1, and 15 pass information about data communication services
from the DC/UCF system to the application program. The registers are used in the
following manner:

■ Register 0 is used by several DC/UCF commands to return information regarding
specific parameters of the DML statement.

■ Register 1 is sometimes used to either store the address of the IDMS
communications block after an I/O error occurs during execution of a DML
command, or to receive information from the DC/UCF system regarding certain
status conditions that are associated with a return code.

■ Register 15 is used to receive the return code from the system after execution of a
DML verb that requests a data communications service.

The value of the return code in register 15 indicates whether a DML request for
data communication services was successful. The return codes issued by the
system after execution of a DML statement are listed on the following pages.

Note: If your program uses DML commands to request data communication services
and to access the CA-IDMS/DB database, you must check register 15 for
return codes issued by the DC/UCF system, and the ERRSTAT field of the
IDMS communications block for the status codes issued by CA-IDMS/DB.

3.4.1 DC/UCF status codes

Following each DML request for data communication services, the system places a
return code in register 15 to indicate either an error or a specific condition that
occurred during processing. Table 3-3 lists the runtime register 15 return codes for the
DML statements associated with DC/UCF services. Specific return codes are listed for
each command in Chapter 6.

For every DML verb, a register 15 value of X'00' indicates that the request has been
serviced successfully.

The following table shows the DC/UCF Runtime Register 15 Return Codes.

R15 Value DML Verb Return Condition

X'00' All verbs No error

#ENQ ■ ACQUIRE — All requested resources
have been acquired.

■ TEST — All tested resources have
already been enqueued by the issuing task
with the EXCLUSIVE/SHARED option
specified by the test request.

Chapter 3. Communications Blocks and Error Detection 3-23

3.4 DC/UCF general registers

R15 Value DML Verb Return Condition

#SETIME The request to cancel a previously issued
#SETIME has been serviced successfully.

X'04' #ATTACH The maximum number of tasks has already
been attached; no new tasks can be attached at
this time.

#COMMIT Internal run-unit table full; check the
CA-IDMS/DC log for details.

#DELQUE The parameter list is invalid.

#DELSCR The parameter list is invalid.

#DEQ At least one resource id (RSCID) cannot be
found; all that were located have been
dequeued.

#ENQ ■ ACQUIRE — At least one of the
resources indicated is currently owned by
another task and is not available for the
EXCLUSIVE/SHARED option specified;
no new resources have been acquired.

■ TEST — At least one of the tested
resources is owned by another task and is
not available to this task for the
EXCLUSIVE/SHARED option specified.

#FINISH There are too many run units for the internal
run-unit table. This is a system internal error
and should be reported.

#GETQUE The parameter list is invalid.

#GETSCR The parameter list is invalid.

#GETSTG The request specified a storage id that did not
previously exist; the indicated space has been
allocated.

#LINEIN The input area specified for return of data to
the issuing program is too small to
accommodate the full data stream; the returned
data has been truncated accordingly.

#LINK Either the request cannot be serviced because
of an I/O, program-not-found, or potential
deadlock error or no null program definition
elements (PDEs) have been allocated. If the
load fails, the link will fail and a minor code
will be returned in register 1.

3-24 CA-IDMS DML Reference — Assembler

3.4 DC/UCF general registers

R15 Value DML Verb Return Condition

#LOAD There is not enough space in the program pool
to load the program.

#MREQ The specified edit or code table cannot be
found or is invalid for use with the named
map.

#PRINT An I/O error occurred during processing.

#PUTJRNL The derived journal record length is zero or
negative.

#PUTQUE Invalid #PUTQUE request. Check for proper
queue-id specification and logical selection of
options.

#PUTSCR Invalid request. Check for proper scratch-id
specification and logical selection of options
as specified in the #PUTSCR statement.

#ROLLBAK Internal run-unit table full; check the
CA-IDMS/DC log for details.

#SENDMSG An I/O error occurred during processing.

#SETIME For a #SETIME TYPE=CANCEL request, the
internal control element (ICE) address
specified cannot be found.

#STRTPAG A paging session was already in progress
when another #STRTPAG command was
issued. An implied #ENDPAG has been
processed and the #STRTPAG has been
executed successfully.

#TREQ For a #TREQ GET, #TREQ PUTGET, or
#TREQ CHECK request, the input area
specified for the return of data to the issuing
program is too small to accommodate the full
data stream; the returned data has been
truncated accordingly.

#TRNSTAT A new transaction statistics block (TSB) has
been allocated.

X'08' #ATTACH The requested task code is invalid.

Chapter 3. Communications Blocks and Error Detection 3-25

3.4 DC/UCF general registers

R15 Value DML Verb Return Condition

#COMMIT An invalid request has been issued.
#COMMIT is valid only if the program
accesses CA-IDMS/DB database or dictionary
entities (that is, CA-IDMS/DB records or
DC/UCF scratch/queue records). Typically,
#COMMIT need be specified only when
CA-IDMS/DB database or dictionary entities
are accessed in an update usage mode.

#DELQUE The requested queue header record (QUEID)
cannot be found.

#DELSCR The requested scratch area id (SAID) cannot
be found.

#ENQ ■ ACQUIRE — Not applicable.

■ TEST — At least one of the tested
resources is not already owned by any
task and is available for the
EXCLUSIVE/SHARED option specified.
If both conditions described for return
codes X'04' and X'08' exist, the register
15 value will be X'04'.

#FINISH An invalid request has been issued. #FINISH
is only valid if the program accesses
CA-IDMS/DB database or dictionary entities
(that is, CA-IDMS/DB records or DC/UCF
scratch/queue records). #FINISH need be
specified only when the program performs
database or dictionary accessing activities.

#GETQUE The requested queue header record (QUEID)
cannot be found.

#GETSCR The requested scratch area id (SAID) cannot
be found.

#GETSTG There is insufficient storage in the storage
pool to process the request.

#LINEIN The I/O session has been canceled; the
terminal operator has pressed the CLEAR
(3270), ATTENTION (2741), or BREAK
(teletype) key.

#LINEOUT The I/O session has been canceled; the
terminal operator has pressed the CLEAR
(3270), ATTENTION (2741), or BREAK
(teletype) key.

3-26 CA-IDMS DML Reference — Assembler

3.4 DC/UCF general registers

R15 Value DML Verb Return Condition

#LOAD An I/O error occurred during a load from a
load library.

#MREQ I/O has been interrupted; the terminal operator
has pressed the ATTENTION (2741) or
CLEAR (3270) key.

#PRINT The parameter list passed to #PRINT contains
an invalid field.

#PUTJRNL The required storage is not available for the
necessary control blocks.

#ROLLBAK An invalid request has been issued. There is a
possible logic error in the program. Ensure
that checkpoints are made (by means of
#COMMIT) in the program logic before the
#ROLLBAK request.

#SENDMSG The parameter list is invalid.

#TREQ For a #TREQ GET, #TREQ PUTGET, or
#TREQ CHECK request, output has been
interrupted; the terminal operator has pressed
the ATTENTION (2741) or CLEAR (3270)
key.

#TRNSTAT Storage for the transaction statistics block
(TSB) is not available; waiting would cause a
deadlock.

#WAIT Waiting on the specified ECBs would cause a
deadlock.

X'0C' #ATTACH The request cannot be serviced due to a
security violation.

#COMMIT An invalid status has been issued from
DBIO/DBMS; check the CA-IDMS/DC log
for details.

#DELQUE The requested queue record cannot be found

#DELSCR The requested scratch record id (SRID) cannot
be found within the named SAID.

#ENQ ■ ACQUIRE — A requested resource
cannot be enqueued immediately and
waiting would cause a deadlock; no new
resources have been acquired.

■ TEST — Not applicable.

Chapter 3. Communications Blocks and Error Detection 3-27

3.4 DC/UCF general registers

R15 Value DML Verb Return Condition

#FINISH An invalid status has been issued from
DBIO/DBMS; check the CA-IDMS/DC log
for details.

#GETQUE The requested queue record cannot be found.

#GETSCR The requested scratch record id (SRID) cannot
be found within the named SAID.

#GETSTG The parameter list is invalid.

#LINEIN A logical or permanent I/O error has been
encountered in the input data stream.

#LINEOUT A logical or permanent I/O error has been
encountered in the output data stream.

#LOAD The requested program is nonconcurrent and
in use.

#MREQ A logical error (for example, invalid control
character) has been encountered in the output
data stream.

#PRINT No printer logical terminals have been defined
in this DC/UCF system.

#PUTJRNL An invalid error status has been issued from
DBIO/DBMS; check the IDMS/DC log for
details.

#ROLLBAK An invalid error status has been issued from
DBIO/DBMS; check the IDMS/DC log for
details.

#SENDMSG The message destination is undefined.

#TREQ For a #TREQ GET, #TREQ PUTGET, or
#TREQ CHECK request a logical error (for
example, invalid control character) has been
encountered in the output data stream.

#TRNSTAT No transaction statistics block (TSB) exists;
#TRNSTAT TYPE=BIND has not been
issued. This return code is valid only for
#TRNSTAT TYPE=ACCEPT and #TRNSTAT
TYPE=END statements.

X'10' #DELQUE No resource control element (RCE) exists for
the queue record; currency has not been
established.

3-28 CA-IDMS DML Reference — Assembler

3.4 DC/UCF general registers

R15 Value DML Verb Return Condition

#GETSTG The requested storage cannot be allocated
immediately (insufficient storage) and waiting
would cause a deadlock.

#LINEIN The line request block (LRB) contains an
invalid field.

#LINEOUT The line request block (LRB) contains an
invalid field.

#LOAD The requested program has been temporarily
overlayed in the program pool, resulting in a
storage conflict.

#MREQ A permanent I/O error occurred during
processing.

#PRINT A print screen request has been made from a
non-3270-type terminal or from a 3270-type
terminal without read buffer support.

#PUTSCR The request to replace a scratch record has
been serviced successfully.

#TREQ For a #TREQ GET, #TREQ PUTGET, or
#TREQ CHECK request, a permanent I/O
error occurred during processing.

#TRNSTAT Either the task in question is not associated
with a terminal or the request is invalid.

X'14' #LINEOUT The name specified for DESTID, USERID, or
LTERMID is unknown to this DC/UCF
system.

#LOAD The requested program is not defined to the
program definition table (PDT), the requested
program is marked as out of service, or a null
program definition element (PDE) could not
be allocated for the program.

#MREQ The dial-up line for the terminal is
disconnected.

#PRINT Either the specified printer destination is
invalid or, for OPTNS=DIRECT, LTEID or
LTEADDR is invalid.

#PUTSCR The request to add a new scratch record
cannot be processed because the record id
specified by the SRID operand already exists
for the named scratch area.

Chapter 3. Communications Blocks and Error Detection 3-29

3.4 DC/UCF general registers

R15 Value DML Verb Return Condition

#TREQ For a #TREQ GET, #TREQ PUTGET, or
#TREQ CHECK request, the dial-up line for
the terminal is disconnected.

#TRNSTAT Transaction statistics or task statistics are not
enabled in this DC/UCF system.

X'18' #GETQUE The user area specified for the return of the
queue record is too small; the returned record
has been truncated to fit in the available
storage space.

#GETSCR The user area specified for the return of the
scratch record is too small; the returned record
has been truncated to fit in the available
storage space.

#GETSTG Allocated XA storage above the 16 megabyte
line cannot be addressed by a 24-bit task.

#LOAD The requested program cannot be loaded
immediately due to insufficient space; waiting
would cause a deadlock.

#MREQ The terminal being used is out of service.

#PRINT A terminal I/O error occurred during a
#PRINT request.

#TREQ For a #TREQ GET, #TREQ PUTGET, or
#TREQ CHECK request, the terminal being
used is out of service.

X'1C' #DELQUE An I/O error occurred during a delete queue
operation.

#DELSCR An I/O error occurred during a delete scratch
operation.

#GETQUE An I/O error occurred during get queue
processing.

#GETSCR An I/O error occurred during get scratch
processing.

#PRINT No printer can be found to satisfy the
print-direct request and OPTNS=NOWAIT has
been specified.

#PUTSCR An I/O error occurred during processing.

#TREQ For a #TREQ GET, #TREQ PUTGET, or
#TREQ CHECK request, the terminal is
closed or was never opened.

3-30 CA-IDMS DML Reference — Assembler

3.4 DC/UCF general registers

R15 Value DML Verb Return Condition

X'20' #ATTACH The maximum number of concurrent tasks has
been reached.

#LOAD An I/O error occurred during a load from the
dictionary DDLDCLOD area.

#MREQ The map request block (MRB) contains an
invalid field, indicating a possible error in
application program parameters.

#PRINT The print-direct request specified an LTEID or
LTEADDR that is out of service.

#TREQ The terminal request block (TRB) contains an
invalid field.

X'24' #MREQ The map load module requested by the map
request block (MRB) cannot be found.

#PRINT The print-direct request specified a wait;
waiting would cause a deadlock.

#TREQ The name specified for DESTID, LTERMID,
or USERID is invalid.

X'28' #MREQ The requested map does not support the
terminal device type being used.

#PRINT A DCMT VARY PRINTER CANCEL
command has been issued in the DC/UCF
system for this direct printer.

X'2C' #MREQ An error was detected upon return from a
user-written edit module. An invalid pointer
to the data stream has been returned to register
1.

#PRINT A DCMT VARY PRINTER REQUEUE
command had been issued in the DC/UCF
system for this direct printer.

X'30' #MREQ Invalid internal data has been encountered.
Either the data in the record does not match
the internal data or the internal data cannot be
converted to the external format, as specified
in the external picture.

X'34' #MREQ The named user-written edit module cannot be
found.

X'38' #MREQ An invalid immediate write request to
DESTID, LTERMID, or USERID has been
issued.

Chapter 3. Communications Blocks and Error Detection 3-31

3.4 DC/UCF general registers

R15 Value DML Verb Return Condition

X'3C' #MREQ The map load module is invalid.

X'40' #MREQ For an #MREQ IN request, the requested node
for a header or detail was either not present or
not updated. For an #MREQ OUT request,
there is no current detail occurrence to be
updated. No action is taken.

X'44' #MREQ No more modified detail occurrences require a
mapin. For an #MREQ OUT request, the
maximum amount of storage defined for
pageable maps during system generation is
insufficient.

X'48' #MREQ For an #MREQ IN request, the scratch record
that contains the requested detail could not be
accessed (internal error). For an #MREQ
OUT,RESUME request, no detail occurrence,
footer, or header fields exist.

X'4C' #MREQ For an #MREQ OUT request, the first screen
page has been transmitted to the terminal.

X'50' #MREQ An #MREQ IN,COND=MPNS or #MREQ
OUT,COND=MPNS request has been received
when no map paging session is in progress.
Either a #STRTPAG command was not issued
prior to this #MREQ IN command or a
#ROLLBAK was issued that rendered the
scratch area for the pageable map (area id
MPGPSCRA) unavailable. If the COND
specification is not MPNS, this condition
abends the map paging task.

3.4.2 Testing for DC/UCF return codes

Testing for the return code in register 15 is usually not necessary because most DML
commands have options that take action based on the return code value.

Specifying conditions: The COND (condition) parameter provides a conditional
return to the issuing program should a specified error or special condition occur during
processing. This return of control can be directed to one of the following locations:

■ The next sequential instruction

■ A specified exit routine

The options of a COND parameter consist of statement-specific conditions that can
occur during the execution of a DML statement. Any number of conditions can be

3-32 CA-IDMS DML Reference — Assembler

3.4 DC/UCF general registers

specified. For example, the following COND parameter requests a return of control in
the event of an I/O error or deadlock condition:

 COND=(IOER,DEAD)

If a condition associated with a specified parameter arises, control will be returned to
the issuing program. If a condition occurs for which no COND parameter is coded, a
default action will be taken. Typically, the default action either aborts the task or
waits for the condition to change.

Specifying COND with an exit routine: When more than one conditional
parameter is permitted, you can code the value ALL to indicate that all of the
permitted COND parameters apply. If a condition corresponding to an available
parameter occurs and ALL is specified, control will be returned to the issuing program.

Most DC/UCF DML statements provide the facility to associate an exit routine with
each special condition. To return control to a specific exit when a condition occurs,
you include both the appropriate condition (COND parameter) and the name of its
associated exit routine.

For example, a DML statement may include a COND parameter of IOER and the
IOERXIT parameter, which names the routine to which control will be returned in the
event of an I/O error that occurs during execution of the DML command; for example:

 COND=(IOER),IOERXIT=IOERROR

Specifying COND without an exit routine: Specifying only the COND
parameter without an exit routine causes a return of control to the next sequential
instruction in the program that issues the DML statement. In this case, you can
examine the contents of register 15 to determine which condition code was set as a
result of the operation.

Specifying a general exit routine: You can specify a general exit routine by
using the ERROR parameter. The system passes control to this routine when a
condition occurs for which no specific exit routine was coded.

Note: If a condition occurs for which an associated exit routine and the ERROR
parameter are specified, control will be returned to the routine named by the
specific exit. If you have multiple exit routines containing the same logic, you
should specify only the ERROR parameter to avoid redundant coding.

Syntax: The following syntax lists the COND parameter and exit routines found in
the #LOAD statement. The NOSTXIT exit is associated with the NOST condition, the
IOERXIT exit is associated with the IOER condition, and so forth.

Chapter 3. Communications Blocks and Error Detection 3-33

3.4 DC/UCF general registers

��─┬───────────────────────────────┬───�

└─ ,COND= ─┬── NO ← ───────────┬┘

├── ALL ────────────┤

│ ┌───── , ───┐ │

└─(─↓─┬─ NOST ─┬┴─)─┘

├─ IOER ─┤

├─ SNGL ─┤

├─ LDCF ─┤

├─ PGNF ─┤

└─ DEAD ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ NOSTXIT=insufficient-storage-label ─┘

 �─┬────────────────────────────┬───�

└─ ,IOERXIT=i/o-error-label ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,SNGLXIT=single-thread-in-use-label ─┘

 �─┬──┬─────────────────────────────�

└─ ,LDCFXIT=storage-location-conflict-label ─┘

 �─┬────────────────────────────────────┬─────────────────────────────────────�

└─ ,PGNFXIT=program-not-found-label ─┘

 �─┬───────────────────────────┬──�

└─ ,DEADXIT=deadlock-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

Some DML statements have only a single condition, as the following excerpt from the
#LINK statement illustrates.

 Syntax

 �─┬─────────────────────┬──�

└─ ,COND= ─┬─ NO ← ──┬┘

└─ PGNA ──┘

 �─┬──┬─────────────────────────────────�

└─ ,PGNAXIT=program-not-available-label ─┘

 �─┬──────────────────────┬───�

└─ ,ERROR=error-label ─┘

In this case, the general ERROR parameter functions identically to the specific
PGNAXIT parameter. It supplies the name of a routine to which the program will
branch when a program-not-available error occurs.

Note: The COND parameter list is enclosed in parentheses. If multiple parameters
are specified, each parameter is separated from the previous one by a comma.

Example of COND in #LOAD: The following example of the #LOAD statement
attempts to load the program JOBMAP1 into the program pool. The COND parameter
is set to PGNF, which will return control to the issuing program only if the requested
program cannot be dynamically loaded or is marked as out of service. The return code
for this condition is X'14'.

3-34 CA-IDMS DML Reference — Assembler

3.4 DC/UCF general registers

In this example, if the return code matches the PGNF condition, the system returns
control to the issuing program at label ERRMSG, indicated by the ERROR parameter.
If the system returns a code of X'00' the program JOBMAP1 will have been
sucessfully loaded into the program pool. Return codes other then X'00' or X'14' will
result in an abend and control will be returned to either a higher-level program or the
system.

LOAD1 #LOAD PGM=JOBMAP1,COND=PGNF,ERROR=ERRMSG

 .

 .

 .

ERRMSG EQU �

 .

 .

 .

Testing for DML statements that request DC/UCF services: In addition to
the COND parameter, you can test for the return code value in register 15 for each
DML statement that requests DC/UCF services. Your program can compare the
register 15 value to a literal or a defined constant, then execute a conditional branch.

In the following example, if the value in register 15 equals the numeric value 0000,
the program branches to the label CONTINU. Any value other than zero causes a
branch to the program label RCCOND.

 .

 .

 C 15,=F'�'

 BE CONTINU

 B RCCOND

 .

 .

 CONTINU EQU �

 .

 .

 .

RCCOND EQU �

 .

 .

˚

Chapter 3. Communications Blocks and Error Detection 3-35

3-36 CA-IDMS DML Reference — Assembler

Chapter 4. Assembler DML Coding Considerations

4.1 Overview .4-3
4.2 Coding user-supplied operands. 4-4
4.3 Coding parameters .4-5
4.4 Synonym processing .4-6
4.5 Logical Record Facility keywords . 4-8

Chapter 4. Assembler DML Coding Considerations 4-1

4-2 CA-IDMS DML Reference — Assembler

4.1 Overview

 4.1 Overview

This chapter describes how to code Assembler DML statements. The following topics
are discussed:

■ Coding user-supplied operands

■ Coding DML statement parameters

 ■ Synonym processing

■ Logical Record Facility keywords

Chapter 4. Assembler DML Coding Considerations 4-3

4.2 Coding user-supplied operands

4.2 Coding user-supplied operands

User-supplied operands in DML statements can be specified by name, in register
notation, or in data field notation.

By name: Record, set, or area names can be specified explicitly by name. Unless
QUOTES=NO has been specified in the @MODE statement, the name must be
enclosed in quotation marks; for example:

SUBSCH='DEMOSUBS'

The DML precompiler performs validity checking for explicitly specified names.

Note: VSE USERS — A quoted name operand in a logical-record DML statement
cannot exceed 6 characters. A program variable can be used for a path status that
exceeds 6 characters. An exception is a quoted operand in a WHERE clause, which
can be up to 32 characters long.

Note: ASSEMBLER G USERS — A quoted name operand in a logical record
DML statement cannot exceed 6 characters unless the maximum variable size is
modified by the appropriate Assembler PARM. A maximum variable size of at least
18 characters is recommended. An exception is a quoted operand in a WHERE clause,
which can be up to 32 characters long.

Note: ASSEMBLER H USERS — The DML precompiler (IDMSDMLA) supports
32-character names and converts hyphens to underscores.

In register notation: A register can contain either the variable value or the variable
address. The general register symbol or register reference must be enclosed in
parentheses; for example:

#FREESTG STGID=(7)

The DML precompiler does not perform validity checking of operands specified by
register notation.

Note: VSE USERS — A general register symbol or register reference in a logical
record DML statement cannot exceed 6 characters.

Note: ASSEMBLER G USERS — A general register symbol or register reference in
a logical record DML statement can not exceed 6 characters, unless the maximum
variable size is modified by the appropriate Assembler PARM. A maximum variable
size of at least 18 characters is recommended.

In data field notation: Your program can specify the name of a variable field
containing the desired data name; for example:

@OBTAIN CURRENT,REC=RECFLD

The DML precompiler does not perform validity checking of operands specified by
data field notation.

4-4 CA-IDMS DML Reference — Assembler

4.3 Coding parameters

 4.3 Coding parameters

Types of parameters: There are two types of parameters in DML statements:

■ Positional parameters — Positional parameters appear in specific relative
locations; for example:

#GETSTG TYPE=(USER,LONG,KEEP)

■ Keyword parameters — Keyword parameters are constructed from:

1. A keyword — A character string that is predefined to the system

2. An equal sign (=)

3. A variable-value parameter — Containing one or more variable values

For example:

@OBTAIN NEXT,SET='CUSTOMER-ORDER',REC='ORDER'

CA-IDMS keywords are listed in 4.5, “Logical Record Facility keywords” on
page 4-8 later in this chapter.

Coding considerations: The following considerations apply to coding DML
parameters:

■ All DML statements except for logical-record DML statements use keyword
parameter notation. The DML precompiler generates positional-pair parameter
notation.

■ Logical-record DML statements that bypass the DML precompiler must be coded
using positional-pair parameter notation. The assembler misinterprets or rejects
logical-record DML statements that contain keyword parameters.

■ Logical-record DML statements that are processed by the DML precompiler can
be coded using either keyword parameter or positional-pair parameter notation.

Chapter 4. Assembler DML Coding Considerations 4-5

4.4 Synonym processing

 4.4 Synonym processing

CA-IDMS/DB allows alternative identification of records and elements in the
dictionary. Synonyms are added to the dictionary by using DDDL statements. The
DML precompiler automatically copies these language dependent synonyms in place of
the primary names whenever an @COPY IDMS statement appears in the application
program.

Note: ASSEMBLER H USERS — The DML precompiler supports 32-character
field names and conversion of hyphens to underscores, in accordance with the new
features of Assembler H. CA-IDMS/DB record names remain restricted to 16
characters and CA-IDMS/DB element names to 32 characters. Synonyms are therefore
not required for user supplied names and for fields containing hyphens in Assembler H
programs using the DML precompiler.

IDD record names can be up to 16 characters long, and IDD element names can be up
to 32 characters long. Because Assembler versions F and G restrict names to 8
characters, alternative and unique 8 character names for use in Assembler F and
Assembler G programs should be defined in the dictionary. Use of synonyms is
recommended if @COPY IDMS and @INVOKE statements are to be included in
Assembler programs.

Synonyms cannot be defined for logical record names. Assembler programs that
access logical records must use a separate subschema in which logical records are
defined according to Assembler restrictions.

How the precompiler copies synonyms: When the DML precompiler copies
record descriptions from the dictionary into program variable storage, it copies
synonyms according to the following rules:

■ If a record is defined for the program's language, but the primary record name is
not, the synonym is copied into the program.

■ If more than one synonym for a given record is defined for Assembler, the first
one found in the dictionary is copied.

■ If the primary record name is defined for Assembler, the primary name is copied
into the program.

For example, assume that the following record is defined in the dictionary with three
synonyms:

RECORD JOB

RECORD NAME SYNONYM JOBSYN1 LANGUAGE ASSEMBLER

RECORD NAME SYNONYM JOB-SYN2

RECORD NAME SYNONYM JOBSYN3 LANGUAGE ASSEMBLER

Since the dictionary defines JOBSYN1 as the first synonym for Assembler, the DML
precompiler copies it into the program. The DML precompiler would copy the
primary record name (JOB) if it were defined for Assembler.

4-6 CA-IDMS DML Reference — Assembler

4.4 Synonym processing

These rules apply regardless of the record name or synonym that appears in the
schema and subschema invoked by the program.

Synonyms are recognized as primary records: The DML precompiler treats a
synonym as if it were the primary record. The expansion of a DML statement will
include the record name of the primary record name, even if the synonym is copied
into program variable storage.

For example, an @COPY IDMS,SUBSCHEMA-BINDS statement used in an
Assembler program generates the following @BIND REC statement for the employee
record:

 @BIND REC='EMPLOYEE',IOAREA=EMPLOYE

This statement lists both the primary record name (EMPLOYEE) and the Assembler
synonym (EMPLOYE).

�� For further details on synonym facilities, refer toIDD DDDL Reference.

Chapter 4. Assembler DML Coding Considerations 4-7

4.5 Logical Record Facility keywords

4.5 Logical Record Facility keywords

The following is a list of LRF keywords recognized by the Assembler DML
precompiler. These keywords should not be used as labels in Assembler DML
programs that use the Logical Record Facility:

 FIRST

 GOTO

 LR

 LRSTAT

 NEXT

 ONLRSTS

 REC

 WHERE

˚

4-8 CA-IDMS DML Reference — Assembler

Chapter 5. DML Precompiler-Directive Statements

5.1 Overview .5-3
5.2 @MODE .5-4
5.3 @INVOKE .5-6
5.4 @COPY IDMS .5-9
5.5 #MRB .5-16
5.6 #MAPBIND .5-17
5.7 @SSCTRL .5-19
5.8 @SSLRCTL .5-20

Chapter 5. DML Precompiler-Directive Statements 5-1

5-2 CA-IDMS DML Reference — Assembler

5.1 Overview

 5.1 Overview

This chapter presents syntax for precompiler-directive statements.

Function of precompiler directives: To use DML statements that request
CA-IDMS/DB and DC/UCF services, you must include precompiler-directive
statements in your application program. Precompiler-directive statements:

■ Ensure that the assembler performs the proper expansion of DML statements into
calling sequences appropriate to the CA-IDMS environment

■ Identify the dictionary resources (subschema and/or maps) required by the
program

■ Cause predefined source modules to be copied into the program from the
dictionary

■ Generate source data description code

Summary of statements: The DML precompiler-directive statements are
summarized below:

■ @MODE initializes all global SET symbols that control the expansion of
subsequent macros and DML commands into calling sequences appropriate to the
CA-IDMS/DB environment. You must code the @MODE directive before all
procedural statements in the program, including DML commands for
CA-IDMS/DB and DC/UCF requests.

■ @INVOKE identifies all dictionary resources used by the application program.
The @INVOKE statement must precede all procedural statements in the program,
including DML commands for CA-IDMS/DB and DC/UCF requests. This
statement will generate non-executable source code when the MAP= operand is
used for a map with multiple occuring fields.

■ @COPY IDMS copies the source data description code associated with
CA-IDMS/DB database records, the IDMS communications block, map records,
and the map request block, as well as other predefined source modules and
records, into the program from the dictionary at the location of the @COPY
IDMS statement.

■ #MRB establishes a map request block (MRB), which is required for the mapping
mode of terminal I/O operations. The MRB is a variable storage area in the
application program and is used for communications between the program and the
mapping compiler during a mapping I/O request.

■ #MAPBIND initializes the MRB for mapping requests issued by the application
program. #MAPBIND generates executable code.

■ @SSCTRL generates the source data description code associated with the IDMS
communications block in the program.

■ @SSLRCTL generates the source data description code associated with the LRC
block in the program.

Chapter 5. DML Precompiler-Directive Statements 5-3

5.2 @MODE

 5.2 @MODE

The @MODE statement initializes global SET symbols for the assembler; these
symbols control the generation of macros associated with CA-IDMS/DB requests.
You must specify the operating mode for programs that access a CA-IDMS/DB
database. If you do not code an @MODE statement, you can specify the
CA-IDMS/DB environment by using the MODE parameter of the @INVOKE
statement, described later in this chapter. For CA-IDMS programs that do not require
access to a CA-IDMS/DB database, the function of the @MODE statement is to
indicate the operating mode: batch or online. An online mode selection is made from
one of the valid teleprocessing monitors.

The @MODE and the @INVOKE statement must precede all other DML statements
in the program. Either statement can be placed before the other.

 Syntax

��─── @MODE MODE= ─┬─ BATCH ─────┬──�

├─ CICS ──────┤

├─ CICS-EXEC ─┤

├─ IDMSDC ────┤

├─ INTERCOMM ─┤

├─ SHADOW ────┤

└─ DCBATCH ───┘

 �─┬──────────────────────┬───�

└─ ,QUOTES= ─┬─ YES ← ┬┘

└─ NO ───┘

 �─┬─────────────────────┬──�

└─ ,DEBUG ─┬─ NO ← ─┬┘

└─ YES ───┘

 �─┬──────────────────────────────────┬───────────────────────────────────────��

└─ ,WORKREG= ─┬─ � ← ─────────────┬┘

└─ register-number ─┘

 Parameters

MODE=BATCH/CICS/CICS-EXEC/IDMSDC/INTERCOMM/SHADOW/DCBATCH
Defines the operating environment for which the calling sequence will be
generated. If the @MODE statement is not used, the CA-IDMS/DB environment
must be specified in the @INVOKE statement, which is discussed below.

QUOTES=
Required for programs that access the CA-IDMS/DB database; indicates whether
names (such as record name or area name) coded in DML statements must be
enclosed in site-standard quotation marks.

YES
(Default); indicates that names specified in CA-IDMS/DB database requests must
be enclosed in site-standard quotation marks.

5-4 CA-IDMS DML Reference — Assembler

5.2 @MODE

NO
Indicates that names specified in CA-IDMS/DB database requests must be
specified without quotation marks.

DEBUG=
Required for programs that access the CA-IDMS/DB database; requests the DML
precompiler to save sequence numbers associated with DML statements in the
IDMS communications block, as follows.

NO
(Default); indicates that sequence numbers of DML statements will not be saved.

YES
Generates the appropriate code for saving sequence numbers associated with DML
statements. At runtime, the sequence number of each DML statement is moved to
the IDMS communications block before program execution. These sequence
numbers appear in the Assembler source statement listing in the form
DML-SEQUENCE=n. Depending on the error routine defined by the DBA, the
DML sequence number can be reported when errors occur and can be used to
assist you in debugging your Assembler program.

Note: This option does not apply to DC/UCF requests. Statement numbers
associated with DC/UCF requests cannot be saved because the system does not
use the IDMS communications block.

WORKREG=0/
Required for programs that access the CA-IDMS/DB database; specifies the
general purpose register to be used for constructing the IDMS parameter list for
calls to IDMS.

register
An integer in the range 0 through 15, or any valid symbolic or defining term for
the general-purpose register (for example, R0). The default is general register 0.

Chapter 5. DML Precompiler-Directive Statements 5-5

5.3 @INVOKE

 5.3 @INVOKE

The @INVOKE statement performs the following functions:

■ Specifies the subschema and maps required by the program

■ Defines the operating mode if not previously defined by an @MODE statement

■ Identifies the program if program registration has been implemented

■ Identifies the program for use during statistics collection

The @INVOKE statement and the @MODE statement must precede all other
precompiler-directive and DML statements in the program. @INVOKE must be
included if the DML precompiler will be used and if the program requests
CA-IDMS/DB services.

 Syntax

��─── @INVOKE ─┬───┬────────�

└─ PROGRAM=program-name ─┬───────────────────────────┬┘

└─ ,VERSION=version-number ─┘

 �─┬──────────────────────────┬───�

└─ ,SUBSCH=subschema-name ─┘

 �─┬───┬──────────────────────�

 └─,SCHEMA=schema-name ─┬───────────────────────────┬┘

└─ ,VERSION=version-number ─┘

 �─┬──────────────────────────┬───�

└─ ,MODE= ─┬─ BATCH ─────┬─┘

├─ CICS ──────┤

├─ CICS-EXEC ─┤

├─ IDMSDC ────┤

├─ SHADOW ────┤

├─ INTERCOMM ─┤

└─ DCBATCH ───┘

 �─┬───┬────────────────────────────�

 └─,MAP=map-name ─┬───────────────────────────┬┘

└─ ,VERSION=version-number ─┘

 �─┬─────────────────────────────┬──�

└─ ,MRBTYPE= ─┬─ STANDARD ← ─┬┘

└─ EXTENDED ───┘

 �─┬───────────────────────┬──��

└─ ,PAGING = ─┬─ NO ← ─┬┘

└─ YES ──┘

5-6 CA-IDMS DML Reference — Assembler

5.3 @INVOKE

 Parameters

PROGRAM=program-name
Required if program registration is in effect; specifies the 1- to 8-character name
of the registered program. If in effect, subschema authorization specifies that
programs must be registered with the named subschema in order to be compiled
against it.

If the program has been previously defined in the dictionary using IDD,
program-name must match the assigned name of the program; otherwise the DML
precompiler will not recognize it as the same program.

Version=version
Optional; indicates the version number of the program to distinguish multiple
versions of the same program-name.Version is a numeric literal in the range 1
through 9999. If the version number is not specified, and program-name is found
in the dictionary, the version number defaults to the highest value defined in the
dictionary for the program. If program-name is unknown to the data dictionary,
the version number defaults to 1.

SUBSCH=
Identifies the subschema to be used by the program.

subschema-name
Specifies a subschema defined in the dictionary.

SCHEMA=schema-name
Identifies the schema with which the subschema is associated.

VERSION=
Optionally specifies the version of the schema as defined in the dictionary.

version
Defaults to the highest version of the named schema.

MODE=BATCH/CICS/CICS-EXEC/IDMSDC/SHADOW/INTERCOMM/DCBATCH
Defines the operating mode for the program. This clause is optional; it can
replace the @MODE statement if @COPY is the only additional DML statement
in use, but should be omitted in all other cases.

MAP=
Specifies that mapping mode terminal I/O is required by the program and
identifies the maps stored in the dictionary. Multiple maps can be specified in a
single @INVOKE statement by defining a separate MAP clause for each map.

map-name
Is the 1- to 8-character name of a map defined in the dictionary.

VERSION=
Optionally specifies the version of the map being used. version of the map being
used.

version
Defaults to the highest version of the named schema.

Chapter 5. DML Precompiler-Directive Statements 5-7

5.3 @INVOKE

MRBTYPE=STANDARD/EXTENDED
Specifies the format of the map request block (MRB) built for the map:

■ STANDARD (default) indicates that the map has standard 3270-type terminal
attributes.

■ EXTENDED indicates that the map has extended 3279-type terminal
attributes, such as color, blinking fields, and reverse video.

PAGING=NO/YES
Specifies whether pageable maps are used by the program. A pageable map is a
single map that is associated with an unlimited number of map fields. You can
use pageable maps when all the map fields cannot fit on a terminal operator's
screen at one time. The default is NO.

The DML statements #MREQ, #STRTPAG, and #ENDPAG are used to control
the pageable map option. For more information, refer to the descriptions of these
commands in Chapter 6, “Data Manipulation Language Statements” on page 6-1.

5-8 CA-IDMS DML Reference — Assembler

5.4 @COPY IDMS

 5.4 @COPY IDMS

The @COPY IDMS statement copies source data description code and modules from
the dictionary into the program at the location of the @COPY IDMS statement. This
statement copies CA-IDMS/DB database record descriptions, the IDMS
communications block, map record descriptions, or MRBs. However, any source
module or record description stored in the dictionary can be copied into either a
CSECT or DSECT, as specified by the DSECT parameter (discussed below).

Source code requirements differ according to the usage (DML, LR, or MIXED)
defined in the program's subschema. The program should not copy components that
conflict with its usage. These usages determine the types of records a program can
access, as follows:

■ DML allows a program that uses the named subschema to access database records
only and requires the following source code components:

– SUBSCHEMA-CTRL — The IDMS communications block through which
the application program and the DBMS communicate (for further details, see
3.2, “IDMS communications block” on page 3-4)

– SUBSCHEMA-RECORDS — The descriptions of all records to which the
subschema permits access

■ LR allows a program to access logical records only and requires the following
source code components

– SUBSCHEMA-CTRL — The IDMS communications block through which
the LRF and the DBMS communicate

– SUBSCHEMA-LR-CTRL — The logical-record request control (LRC) block
through which the application program and the Logical Record Facility
communicate (for further details, see 3.3, “Logical-record request control
(LRC) block” on page 3-18)

– SUBSCHEMA-LR-RECORDS — The descriptions of all logical records
defined in the subschema

■ MIXED allows a program to access both database records and logical records;
this usage requires the following source code components:

– SUBSCHEMA-CTRL — The IDMS communications block through which
the application program and the LRF communicates with the DBMS, For
further details, see 3.2, “IDMS communications block” on page 3-4.

– SUBSCHEMA-RECORDS — The descriptions of all records to which the
subschema permits access

– SUBSCHEMA-LR-CTRL — The logical-record request control (LRC)
block, through which the application program and the LRF communicate (for
further details, see 3.3, “Logical-record request control (LRC) block” on
page 3-18)

Chapter 5. DML Precompiler-Directive Statements 5-9

5.4 @COPY IDMS

– SUBSCHEMA-LR-RECORDS — The descriptions of all logical records
defined in the subschema

The DML precompiler determines whether source record descriptions are copied into a
CSECT or DSECT portion of the program, and applies the following rules:

■ If the record is being copied into a CSECT, the DML precompiler defines record
elements that have specified initial values by means of the Assembler DC (define
constant) data definition instruction.

■ If the record is being copied into a DSECT, DML defines record elements that
have specified initial values by means of the Assembler DS (Define Storage) data
definition instruction.

If the optional keyword DSECT is coded in the @COPY IDMS statement, the record
being copied is established as an individual DSECT named with the record name.

 Syntax

��─── @COPY IDMS ───�

 �─┬─ ,SUBSCHEMA-DML-LR DESCRIPTION ───────────────────────┬──────────────────�

├─ ,SUBSCHEMA-DESCRIPTION ──────────────────────────────┤

├─ ,SUBSCHEMA-CTRL ─────────────────────────────────────┤

├─ ,SUBSCHEMA-RECORDS ──────────────────────────────────┤

├─ ,RECORD=record-name ─┬──────────────────────────┬────┤

│ └─ VERSION=version-number ─┘ │

├─ ,SUBSCHEMA-LR-DESCRIPTION ───────────────────────────┤

├─ ,SUBSCHEMA-LR-CTRL ─┬────────────────────────┬───────┤

│ └─ ,SIZE=lrc-block-size ─┘ │

├─ ,SUBSCHEMA-LR-CONTROL ───────────────────────────────┤

├─ ,SUBSCHEMA-LR-RECORDS ───────────────────────────────┤

├─ ,LR=logical-record-name ─────────────────────────────┤

├─ ,MAPS ───┤

├─ ,MAP=map-name ───────────────────────────────────────┤

├─ ,MAP-CONTROLS ───────────────────────────────────────┤

├─ ,MAP-CONTROL=map-name ───────────────────────────────┤

├─ ,MAP-RECORDS ──┤

├─ ,MODULE=module-name ─┬──────────────────────────┬────┤

│ └─ VERSION=version-number ─┘ │

├─ ,SUBSCHEMA-BINDS ────────────────────────────────────┤

└─ ,MAP-BINDS ──┘

 �─┬──────────┬───��

└─ ,DSECT ─┘

 Parameters

SUBSCHEMA-DML-LR-DESCRIPTION
(Subschema usage is mixed); copies all components required to access both
database and logical records: SUBSCHEMA-CTRL, SUBSCHEMA-RECORDS,
SUBSCHEMA-LR-CTRL, and SUBSCHEMA-LR-RECORDS.

SUBSCHEMA-DESCRIPTION
(Subschema usage is DML); copies the source data description code for the IDMS
communications block (SUBSCHEMA-CTRL) and for all records
(SUBSCHEMA-RECORDS) defined in the subschema specified in the @INVOKE
statement.

5-10 CA-IDMS DML Reference — Assembler

5.4 @COPY IDMS

SUBSCHEMA-CTRL
Copies the IDMS communications block into the program.

SUBSCHEMA-RECORDS
Copies the source data description code for all records defined in the subschema
into the program. You can copy Assembler synonyms defined for the subschema
records in the data dictionary into the program according to the rules of synonym
usage.

RECORD=
Copies the description of an individual record defined in the dictionary.

record-name
Can be the primary name or a synonym for a record or module stored in the
dictionary.

A record that has been copied into a schema can only be copied into a program
that uses a subschema associated with the schema. In other words, schema-owned
records cannot be copied into non-IDMS programs (that is, programs that do not
use a subschema and that do not access the database). However, a synonym
defined for the schema-owned record can be copied into a non-IDMS program
(use the VERSION clause to identify the synonym).

VERSION=version-number
Optional; can be used to qualify IDD records (but not schema-owned records)
with a version number. If no version number is specified, CA-IDMS/DB first
assumes thatrecord-name identifies a record that is included in the subschema
named in the @INVOKE statement, and looks for it in that subschema. If the
record is not associated with a subschema, version defaults to the highest version
number of the record defined in the dictionary for the operating mode under which
the program is being compiled.

SUBSCHEMA-LR-DESCRIPTION
Copies all components required to access logical records: SUBSCHEMA-CTRL,
SUBSCHEMA-LR-CTRL, and SUBSCHEMA-LR-RECORDS.

SUBSCHEMA-LR-CTRL
Copies the LRC block data description.

SIZE=lrc-block-size
Optional; specifies the size of that portion of the LRC block that contains
information about the logical-record request's WHERE clause.Lrc-block-size
defaults to 576 bytes. If included, it should specify a size large enough to
accommodate the most complex WHERE clause in the program.Lrc-block-size is
calculated as follows:

1. Multiply the greatest number of operands and operators that will be included
in a single WHERE clause by 16 bytes.

2. Add the number of bytes, rounded up to the nearest multiple of 8, associated
with the data field for each operand; that is:

■ The number of characters in a keyword

Chapter 5. DML Precompiler-Directive Statements 5-11

5.4 @COPY IDMS

■ The number of characters in a field described by a program variable or
by a logical-record field named in the OF LR clause.

3. Add the length, rounded up to the nearest multiple of 8, of each operand that
is a character literal.

4. Add 12 bytes for each operand that is a numeric literal.

5. Add 64 bytes for fixed logical-record request control (LRC) overhead.

Lrc-block-size must be a positive integer in the range 64 through 9999. Note that
64 can be specified if none of the logical-record requests issued by the program
include WHERE clauses.

■ SUBSCHEMA-LR-CONTROL copies the SUBSCHEMA-CTRL and
SUBSCHEMA-LR-CTRL components. Do not include
SUBSCHEMA-LR-CONTROL if the subschema's usage is DML.

■ SUBSCHEMA-LR-RECORDS copies the descriptions of all logical records
defined in the subschema.

■ LR=logical-record-name copies the description of an individual logical record
defined in the subschema.

■ MAPS copies the #MRB statements required to establish the MRBs for all
maps specified in the @INVOKE statement. Additionally, the @COPY
IDMS,MAPS statement copies the source data description code for map
records associated with all maps specified in the @INVOKE statement.

■ MAP=map-name copies the #MRB statement and map records associated with
the named map.Map-name is the 1- to 8-character name of the map. The
version number of the map defaults to the version number specified for the
map in the @INVOKE statement.

■ MAP-CONTROLS copies the #MRB statements for all maps specified in the
@INVOKE statement.

■ MAP-CONTROL=map-name copies the #MRB statement for the named
map. Map-name is the 1- to 8-character name of the requested map. The
version number of the map defaults to the version number specified in the
@INVOKE statement.

■ MAP-RECORDS copies the map records associated with all maps specified
in the @INVOKE statement.

■ MODULE=module-name,VERSION=version copies a sequence of Assembler
source statements stored in the dictionary.Module-name is the 1- to
8-character name of the requested module; it can be optionally qualified by
version. The version number defaults to the highest version number defined
in the dictionary for the requested module.

The @COPY IDMS,MODULE statement copies a module from the dictionary
into the source program. The DBA must have previously added this module
to the data dictionary by means of the IDD DDDL compiler.

The DML precompiler places the module into the program at the location of
the request. The module may contain DML statements. If DML statements

5-12 CA-IDMS DML Reference — Assembler

5.4 @COPY IDMS

are present, they are treated as if the programmer had coded them directly.
@COPY IDMS,MODULE statements can be nested (that is, code invoked by
an @COPY IDMS,MODULE statement can itself contain a @COPY
IDMS,MODULE statement). However, you must ensure that a copied module
does not, in turn, copy itself.

■ SUBSCHEMA-BINDS copies @BIND SUBSCH and @BIND REC
statements for each CA-IDMS/DB database record accessed by the program.

The @COPY IDMS,SUBSCHEMA-BINDS statement instructs the
precompiler to bring into the source program a standard @BIND SUBSCH
statement and appropriate standard @BIND REC statements for each
CA-IDMS/DB subschema record explicitly copied into the program variable
storage by means of @COPY IDMS statements. @COPY IDMS does not
automatically generate BINDS for all subschema records; it also does not
generate BINDS for logical records.

All @COPY IDMS,RECORD statements must precede any @COPY
IDMS,SUBSCHEMA-BINDS statement, because the DML precompiler is a
one-pass precompiler. The DML precompiler will not generate BINDS for
any record-type descriptions copied into the program after the @COPY
IDMS,SUBSCHEMA-BINDS statement.

Instead of issuing an @COPY IDMS,SUBSCHEMA-BINDS statement, you
can issue @BIND SUBSCH and @BIND REC statements. Separately issued
@BIND READY and @BIND REC statements allow the program to perform
the following:

– Check the ERRSTAT field after each @BIND REC statement

– Bind several records to the same location by including a DML @BIND
statement for each record (see 6.13, “@BIND REC” on page 6-31)

Note: The subschema registration feature requires the @COPY
IDMS,SUBSCHEMA-BINDS statement to properly assign the programs to the
subschema control block. Individual @BIND SUBSCH and @BIND REC
statements should not be used if program registration is in effect.

Note: If a record or a synonym of the record has been copied in twice, an
@BIND REC statement will not be automatically generated for the record due
to the ambiguity.

■ MAP-BINDS copies appropriate #MAPBIND statements for all maps
specified in the @INVOKE statement. (#MAPBIND statements are discussed
later in this chapter.) The @COPY IDMS,MAPS statement must be coded
before this statement in order to generate binds for the map records.

■ DSECT copies the source data description code and source modules defined
in any of the above @COPY IDMS statements into a DSECT. Records can
be individually copied into a DSECT by including the DSECT parameter in
each @COPY IDMS statement. Several records can be copied into a single
DSECT by explicit use of the Assembler DSECT instruction followed by the
individual @COPY IDMS statements; in this case, the DSECT parameter is

Chapter 5. DML Precompiler-Directive Statements 5-13

5.4 @COPY IDMS

not specified in the @COPY IDMS statements. When specifying a DSECT,
the program is responsible for designating the end of the DSECT storage area.

The following example illustrates the use of the DSECT parameter to create
individual dummy control sections for the IDMS communications block and for a
map request block:

 @MODE MODE=IDMSDC

 @INVOKE SUBSCHEMA=XYZ,SCHEMA=ABC, �

 PROGRAM=TESTXYZ,MAP=DEFMAP

� THE FOLLOWING @COPY IDMS STATEMENT COPIES THE SOURCE DATA

� DESCRIPTION CODE FOR THE IDMS COMMUNICATION BLOCK (SUBSCHEMA-CTRL):

 @COPY IDMS,SUBSCHEMA-CTRL,DSECT

� THE DML PRECOMPILER GENERATES THE DSECT INSTRUCTION FOR THE DUMMY

� CONTROL SECTION TO CONTAIN THE SOURCE DATA DESCRIPTION CODE OF THE

� IDMS COMMUNICATIONS BLOCK:

 DSECT

SSCTRL DS

 .

 .

 .

� THE FOLLOWING @COPY IDMS STATEMENT COPIES THE SOURCE DATA

� DESCRIPTION CODE FOR THE REQUIRED MAP REQUEST BLOCK (MAP-CONTROLS):

 @COPY IDMS,MAP-CONTROL=DEFMAP,DSECT

� THE DML PRECOMPILER GENERATES THE DSECT INSTRUCTION FOR THE DUMMY

� CONTROL SECTION TO CONTAIN THE SOURCE DATA DESCRIPTION CODE FOR

� THE MRB:

 DSECT

 DS

 .

 .

 .

� THE END OF EACH DSECT MUST BE DESIGNATED EITHER BY AN ASSEMBLER

� END, CSECT, OR ANOTHER DSECT INSTRUCTION.

A single DSECT is created for the IDMS communications block, CA-IDMS/DB
record descriptions, MRB, and map record description.

5-14 CA-IDMS DML Reference — Assembler

5.4 @COPY IDMS

 @MODE MODE=IDMSDC

 @INVOKE SUBSCHEMA=XYZ,SCHEMA=ABC, �

 PROGRAM=TESTXYZ,MAP=DEFMAP

� THE FOLLOWING ASSEMBLER DSECT INSTRUCTION IS CODED BY THE

� PROGRAMMER TO DEFINE THE BEGINNING OF A DUMMY CONTROL SECTION:

IDMSSTG DSECT

� COPY STATEMENTS WITHIN A DSECT ENABLE RECORD DESCRIPTIONS TO BE

� COPIED INTO THE DUMMY CONTROL SECTION. NOTE THAT THE DSECT

� PARAMETER IS NOT INCLUDED IN THE @COPY IDMS STATEMENTS:

 @COPY IDMS,SUBSCHEMA-DESCRIPTION

SSCTRL DS

 .

 .

 .

 DS

 .

 .

 @COPY IDMS,MAPS

 DS

 .

 .

 .

 DS

 .

 .

 .

� THE END OF THE DSECT MUST BE DESIGNATED BY AN ASSEMBLER END,

� CSECT, OR ANOTHER DSECT INSTRUCTION.

Chapter 5. DML Precompiler-Directive Statements 5-15

5.5 #MRB

 5.5 #MRB

The #MRB statement establishes a map request block (MRB) in the program's variable
storage area. It allocates storage, but does not initialize that storage. For each
mapping request, the MRB communicates between the program and the mapping
compiler. A separate MRB must be defined for each map used by a program. The
DML precompiler uses map information stored in the dictionary to determine the
actual size of the MRB, and generates the necessary Assembler DS instructions with
macros.

One or more #MRB statements can be copied into the program by using the @COPY
IDMS statement, discussed earlier in this chapter.

 Syntax

��─── #MRB MAPNAME=map-name ──�

 �─── ,FIELDS=field-count ──�

 �─── ,RECORDS=record-count ──��

 Parameters

MAPNAME=map-name
Specifies the 1- to 8-character name of an existing map.

FIELDS=
Specifies the number of data and response fields in the specified map.

field-count
Absolute expression of the number of fields.

RECORDS=
Specifies the number of records in the map.

record-count
Absolute expression of the number of records.

5-16 CA-IDMS DML Reference — Assembler

5.6 #MAPBIND

 5.6 #MAPBIND

For each map request block used by a program, a #MAPBIND request specifies the
MRB location and initializes the fields of the MRB. #MAPBIND statements can be
global or record-specific:

■ Global — By specifying only the map name, the #MAPBIND statement applies to
the map as a whole. It initializes the entire MRB and fills in fields that apply to
the map in general.

■ Record-specific — By specifying RECNAME and RECADDR parameters as well
as the map name, the #MAPBIND statement applies only to the named map
record. It initializes the variable storage address of the named record in the MRB.

A program typically issues a global #MAPBIND statement for each map, followed by
#MAPBIND statements for each map record used by the program. The program can
alter the storage address for a map record at any time by issuing another #MAPBIND
statement for that record.

After the initial global bind, all records are considered unbound; map operations that
use those records will not have any effect on storage. After binding a record to a
storage address, subsequent map operations will use that address to access the record.
To unbind a record, issue a record-specific #MAPBIND statement and specify a null
(0) bind location using the RECADDR parameter.

All global and record-specific #MAPBIND statements for a map can be copied
automatically into the program with the @COPY IDMS statement, discussed earlier in
this chapter.

 Syntax

��─── #MAPBIND MRB=map-name ──�

 �─┬──┬───────────────��

└─ RECNAME=record-name ─┬─────────────────────────────────┬┘

└─ ,RECADDR= ─┬─ � ← ────────────┬┘

└─ record-address ─┘

 Parameters

MRB=
Initializes the MRB associated with the named map.

map-name
Specifies the 1- to 8-character name of an existing map.

RECNAME=record-name
Is the 1- to 32-character name of a record used by the map.

RECADDR=
Requests that the named record be unbound or specifies the storage address to
which the record will be bound.

Chapter 5. DML Precompiler-Directive Statements 5-17

5.6 #MAPBIND

0
(Default); specifies that the named record is to be unbound.

record-address
Specifies a register that contains either the address of the area or the symbolic
name of a user-defined field containing the address of the area. Subsequent I/O
operations will use the specified area of storage for any operations dealing with
the record.

5-18 CA-IDMS DML Reference — Assembler

5.7 @SSCTRL

 5.7 @SSCTRL

The @SSCTRL statement is an Assembler macro used to generate source data
description code for the IDMS communications block. @SSCTRL must be used in
place of the @COPY IDMS,SUBSCHEMA-CTRL statement when the DML
precompiler is not used.

 Syntax

��─── @SSCTRL ──��

Note: To use an IDMS communications block in which the RECORD, AREA, and
ERROR-SET/RECORD/AREA fields are 18 bytes, specify @SSC120 instead.

Chapter 5. DML Precompiler-Directive Statements 5-19

5.8 @SSLRCTL

 5.8 @SSLRCTL

The @SSLRCTL statement is an Assembler macro instruction that generates source
data description code for the LRC block. @SSLRCTL must be used in place of the
@COPY IDMS,SUBSCHEMA-LR-CTRL statement when the DML precompiler is not
used.

 Syntax

��─── @SSLRCTL ─┬───────────────────────────────┬─────────────────────────────��

└─ LRSIZ=lr-control-block-size ─┘

 Parameters

LRSIZ=
Specifies the size of that portion of the LRC block that contains information about
the logical-record request's WHERE clause.

lrc-block-size
Defaults to 576 bytes; if included, it should specify a size large enough to
accomodate the most complex WHERE clause in the program. (For the algorithm
for calculating lrc-block-size, see 5.4, “@COPY IDMS” on page 5-9 earlier in this
chapter.)

˚

5-20 CA-IDMS DML Reference — Assembler

Chapter 6. Data Manipulation Language Statements

6.1 Overview .6-3
6.2 Functions of DML statements. 6-4
6.3 #ABEND .6-11
6.4 @ACCEPT BIND .6-12
6.5 @ACCEPT DBKEY FROM CURRENCY. 6-13
6.6 @ACCEPT DBKEY RELATIVE TO CURRENCY 6-15
6.7 @ACCEPT PGINFO .6-17
6.8 @ACCEPT PROC .6-19
6.9 @ACCEPT STATS .6-20
6.10 #ACCEPT .6-22
6.11 #ATTACH .6-24
6.12 @BIND PROC .6-29
6.13 @BIND REC .6-31
6.14 @BIND SUBSCH .6-33
6.15 #BIND TASK .6-37
6.16 #CHAP .6-38
6.17 @COMMIT .6-39
6.18 #COMMIT .6-40
6.19 @CONNECT .6-41
6.20 #DELETE .6-44
6.21 #DELQUE .6-46
6.22 #DELSCR .6-50
6.23 #DEQ .6-54
6.24 @DISCON .6-57
6.25 #ENDPAG .6-60
6.26 #ENQ .6-62
6.27 @ERASE .6-67
6.28 @ERASE (LRF) .6-72
6.29 @FIND/@OBTAIN statements . 6-74

6.29.1 @FIND/@OBTAIN CALC/DUPLICATE 6-74
6.29.2 @FIND/@OBTAIN CURRENT . 6-76
6.29.3 @FIND/@OBTAIN DBKEY . 6-79
6.29.4 @FIND/@OBTAIN OWNER . 6-81
6.29.5 @FIND/@OBTAIN USING SORT KEY 6-84
6.29.6 @FIND/@OBTAIN WITHIN SET/AREA 6-86

6.30 @FINISH .6-93
6.31 #FINISH .6-94
6.32 #FREESTG .6-95
6.33 @GET .6-97
6.34 #GETIME .6-99
6.35 #GETQUE .6-101
6.36 #GETSCR .6-107
6.37 #GETSTG .6-113
6.38 @IF .6-119
6.39 @KEEP .6-122
6.40 #KEEP .6-124
6.41 #LINEEND .6-130

Chapter 6. Data Manipulation Language Statements 6-1

6.42 #LINEIN .6-131
6.43 #LINEOUT .6-136
6.44 #LINK .6-142
6.45 #LOAD .6-146
6.46 #MAPINQ .6-152

6.46.1 Moving map-related data. 6-152
6.46.2 Testing for global map input conditions. 6-155
6.46.3 Testing cursor position . 6-157
6.46.4 Testing for identical data . 6-159
6.46.5 Testing for input conditions. 6-159

6.47 #MAPMOD .6-165
6.48 @MODIFY .6-176
6.49 @MODIFY (LRF) .6-179
6.50 #MREQ .6-181

6.50.1 #MREQ Syntax .6-182
6.51 @OBTAIN (LRF) .6-202
6.52 #POST .6-205
6.53 #PRINT .6-206
6.54 #PUTJRNL .6-216
6.55 #PUTQUE .6-219
6.56 #PUTSCR .6-223
6.57 @READY .6-227
6.58 @RETURN .6-230
6.59 #RETURN .6-232
6.60 @ROLLBAK .6-237
6.61 #ROLLBAK .6-239
6.62 #SENDMSG .6-241
6.63 #SETIME .6-245
6.64 #SNAP .6-249
6.65 #STAE .6-252
6.66 @STORE .6-254
6.67 @STORE (LRF) .6-259
6.68 #STRTPAG .6-261
6.69 #TREQ .6-265

6.69.1 Regular and execute #TREQ description. 6-266
6.69.2 Regular and execute #TREQ syntax. 6-266
6.69.3 List #TREQ .6-289

6.70 #TRNSTAT .6-291
6.71 #WAIT .6-296
6.72 #WTL .6-299
6.73 #XCTL .6-307
6.74 Logical record clauses . 6-309

6.74.1 WHERE clause .6-309
6.74.2 ON clause .6-313
6.74.3 Logical-record status codes. 6-315

6-2 CA-IDMS DML Reference — Assembler

6.1 Overview

 6.1 Overview

This chapter describes each data manipulation language (DML) statement that requests
CA-IDMS/DB database access or online service. The DML commands are presented
in two ways:

■ The first table presents the commands by function.

■ Each DML command is presented in alphabetical order. The discussion of each
command includes:

– A description of the DML statement

– Syntax and syntax rules

– Currency considerations, where applicable

– An example of how to use the statement

– Error handling after a DML statement is issued

The WHERE and ON clauses that are used with DML statements to access logical
records created by the Logical Record Facility (LRF) are described at the end of this
chapter.

Chapter 6. Data Manipulation Language Statements 6-3

6.2 Functions of DML statements

6.2 Functions of DML statements

The data manipulation language enables you to access the database management
system (DBMS) and to request LRF and DC/UCF services from your Assembler
program. The DML statements can be grouped into 14 categories by function:

■ Control statements perform the following:

– Initiate and terminate processing

 – Effect recovery

– Prevent concurrent retrieval and update of database records

– Evaluate set conditions

■ Retrieval statements locate records in the database and make them available to the
application program.

■ Modification statements add new records to the database and modify and delete
existing records.

■ Accept statements allow you to move special information such as database keys,
storage addresses, and statistics from the DBMS to the application program's
variable storage.

■ Logical-record statements allow you to retrieve, modify, store, and erase logical
records created through Logical Record Facility.

■ Program management statements perform the following:

– Pass and return control from one program to another

– Load and delete programs and tables

– Define exit routines to be performed before an abnormal program termination
(abend)

– Force an abend condition

■ Storage management statements allocate and release variable storage.

■ Task management statements perform the following:

– Initiate a new task

– Change the dispatching priority of the issuing task

– Enqueue and dequeue system resources

– Signal that a task is to wait pending completion of an event

– Post an event control block (ECB) indicating completion of an event

■ Time management statements obtain the time and date and set up time-related
events. These events include:

– Placing the issuing task in a wait state for a specified time

– Posting a user-specified ECB after a specified interval

6-4 CA-IDMS DML Reference — Assembler

6.2 Functions of DML statements

– Initiating a new task after a specified interval

■ Scratch management statements create, delete, or retrieve records from the
scratch area.

■ Queue management statements create, delete, or retrieve records from the queue
area.

■ Terminal management statements transfer data between the application program
and a terminal or printer.

■ Utility function statements perform the following:

– Request retrieval of task-related information

– Request a memory dump of selected parts of storage

– Retrieve and send a predefined message stored in the dictionary

– Send a specified message to one or more users or logical terminals

– Collect, retrieve, and write DC/UCF system statistics on a transaction basis

– Establish long-term database locks and monitor access to database records
used across tasks in a pseudo-conversational transaction

■ Recovery statements perform functions relating to database, scratch, and queue
area recovery in the event of a system failure. These functions perform the
following:

– Establish checkpoints on the journal file for database, scratch, and queue
records used by the issuing task

– Roll back user database, scratch, and queue record areas to the last checkpoint
established

– Establish an end-of-task checkpoint and relinquish control of all database,
scratch, and queue record areas associated with the issuing task

– Write user defined records to the journal file

The following table groups the DML statements by function and gives a brief
description of each command.

DML statements grouped by function

Function DML statement Description

Control
Statements

@BIND SUBSCH Signs on the application program to
the CA-IDMS/DB database
management system

@BIND REC Establishes addressability in
variable storage for one or more
records included in the program's
subschema

Chapter 6. Data Manipulation Language Statements 6-5

6.2 Functions of DML statements

Function DML statement Description

@BIND PROC Establishes communication between
the application program and a
DBA-defined database procedure

@READY Prepares database areas for
processing

@FINISH Releases database areas from
program control

@IF Evaluates the presence of records in
a set and specifies action based on
the outcome

@COMMIT Writes a checkpoint to the journal
file and releases record locks

@ROLLBAK Request recovery of database,
scratch, and queue areas

@KEEP Places locks on record occurrences

Retrieval
Statements

@FIND/OBTAIN
DBKEY

Accesses a record by using a
db-key previously saved by the
program

@FIND/OBTAIN
CURRENT

Accesses a record by using
established currencies

@FIND/OBTAIN
WITHIN SET/AREA

Accesses a record based on its
logical location within a set or its
physical location within an area

@FIND/OBTAIN
OWNER

Accesses the owner record of a set
occurrence

@FIND/OBTAIN
CALC/DUPLICATE

Accesses a record by using its
CALC-key value

@FIND/OBTAIN USING
SORT KEY

Accesses a record in a sorted set by
using its sort-key value

@GET Moves all data associated with a
previously located record into
program variable storage

Modification
Statements

@STORE Adds a new record to the database

@MODIFY Changes the contents of an existing
record

@CONNECT Links a record to a set

6-6 CA-IDMS DML Reference — Assembler

6.2 Functions of DML statements

Function DML statement Description

@DISCON Removes a member record from a
set

@ERASE Deletes a record from the database

Accept
Statements

@ACCEPT DBKEY
FROM CURRENCY

Saves the db-key of the current
record of run unit, record type, set,
or area

@ACCEPT DBKEY
RELATIVE TO
CURRENCY

Saves the db-key of the next, prior,
or owner record relative to the
current record of a set

@ACCEPT PAGE
INFORMATION FOR A
GIVEN RECORD

Saves the page information for a
record current record of a set

@ACCEPT STATS Returns system runtime statistics to
the program

@ACCEPT BIND Returns a record's bind address to
the program

@ACCEPT PGINFO Returns page information for a
given record to the program

@ACCEPT PROC Returns information in the
application program information
block associated with a database
procedure to the program

@RETURN Retrieves a database key of a
record entry that has been indexed
under integrated indexing.

Logical Record
Facility (LRF)
Statements

@OBTAIN logical-record
@MODIFY logical-record
@STORE logical-record
@ERASE logical-record

Retrieves a logical record Modifies
a logical record Stores a new
logical record Deletes a logical
record

Program
Management
Statements

#LINK Passes control to another program
with the expectation of receiving it
back

#RETURN Returns control to the next higher
level calling program

#LOAD Loads a program or table into the
program pool

#DELETE Signals that the program has
finished using a program or table in
the program pool

Chapter 6. Data Manipulation Language Statements 6-7

6.2 Functions of DML statements

Function DML statement Description

#STAE Establishes linkage to a program or
routine that will receive control in
the event of an abend

#ABEND Abnormally terminates the issuing
task

#XCTL Passes control to another program
with no expectation of having it
returned

Storage
Management
Statements

#GETSTG

#FREESTG

Allocates variable storage from a
DC/UCF storage pool Frees all or
part of a block of variable storage

Task
Management
Statements

#ATTACH Attaches a new task within the
DC/UCF system

#CHAP Changes the dispatching priority of
the issuing task

#ENQ Acquires a resource or a list of
resources

#DEQ Releases a resource

#WAIT Relinquishes control to the system
while awaiting the completion of an
event

#POST Posts an event control block

Time
Management
Statements

#GETIME Obtains the time and date from the
system

#SETIME Defines a timed event

Scratch
Management
Statements

#PUTSCR #GETSCR
#DELSCR

Stores a scratch record Retrieves a
scratch record Deletes a scratch
record

Queue
Management
Statements

#PUTQUE #GETQUE
#DELQUE

Stores a queue record Retrieves a
queue record Deletes a queue
record

6-8 CA-IDMS DML Reference — Assembler

6.2 Functions of DML statements

Function DML statement Description

Terminal
Management
(Basic Mode)

#TREQ Transfers data and device
dependent information to or from
the terminal, or establishes a
terminal request block (TRB) for
use by subsequent #TREQ
operations. The #TREQ statement
can be used to communicate in an
SNA network environment

Terminal
Management
(Line Mode)

#LINEIN Requests a synchronous data
transfer from the terminal to the
issuing program

#LINEOUT Requests a synchronous or
asynchronous data transfer from the
issuing program to the terminal

#LINEEND Terminates the current line I/O
session

Terminal
Management
(Mapping
 Mode)

#MREQ Requests a transfer of data from the
issuing program to the terminal
and/or vice versa

#MAPINQ Obtains information or tests
conditions concerning the previous
map operation

#MAPMOD Requests modifications of mapping
options for a map

#STRTPAG Begins a map paging session and
specifies options for that session

#ENDPAG Terminates a map paging session

Terminal
Management
(Print Mode)

#PRINT Transfers data from a task to a
terminal defined as a printer.

Utility
Functions

#ACCEPT Retrieves task-related information

#SNAP Requests a memory dump of
selected parts of storage

#SENDMSG Sends a message to a user, logical
terminal, list of users, or list of
logical terminals

Chapter 6. Data Manipulation Language Statements 6-9

6.2 Functions of DML statements

Function DML statement Description

#TRNSTAT Requests or terminates statistics
collection; retrieves transaction
statistics into program storage

#KEEP Enables database locks or database
monitoring for records, sets, or
areas or terminates a prior #KEEP
request

#WTL Retrieves a message from the
dictionary and sends it to a
predefined destination

Recovery
Statements

#COMMIT Establishes a checkpoint in the
journal file for database, scratch,
and queue record activity

#FINISH Relinquishes control of database,
scratch, and queue record areas

#ROLLBAK Rolls back database, scratch, and
queue record areas to the last
checkpoint

#PUTJRNL Writes user-defined records to the
journal file

6-10 CA-IDMS DML Reference — Assembler

6.3 #ABEND

 6.3 #ABEND

The #ABEND statement terminates the issuing task abnormally and specifies whether
the system invokes previously established abend exits or writes a task dump to the log
file.

After completion of the #ABEND function, control is returned to the system.

 Syntax

��─┬─────────┬─ #ABEND ABCODE=abend-code-pointer ─────────────────────────────�

└─ label ─┘

 �─┬────────────────────────┬───�

└─ ,STAE= ─┬─ INVOKE ← ─┬┘

└─ IGNORE ───┘

 �─┬─────────────────────┬──��

└─ ,DUMP= ─┬─ NO ← ──┬┘

└─ YES ───┘

 Parameters

ABCODE=
Specifies a 4-character user-defined abend code.

abend-code
A register pointing to a field that contains the abend code, the symbol name of a
user-defined field containing the code, or the abend-code literal enclosed in single
quotation marks.

Note: Because the specified abend code appears in the system log and is
displayed at the task's terminal, you should not use DC/UCF system abend codes.

STAE=INVOKE/IGNORE
Specifies whether the system invokes or ignores abend routines that were
previously established by #STAE requests; the default is INVOKE.

DUMP=NO/YES
Specifies whether the system writes a formatted task dump to the DC/UCF log
file. The default is NO.

Example: The following example of the #ABEND statement terminates the issuing
task abnormally and specifies the register that points to a field in the application
program containing the abend code. This statement requests that the system ignore
abend routines and to write a task dump to the DC/UCF log file. Control returns to
the system after completion of the #ABEND statement.

 #ABEND ABCODE=(R12),STAE=IGNORE,DUMP=YES

Status codes: The #ABEND request is unconditional; control is passed to the
DC/UCF program control module.

Chapter 6. Data Manipulation Language Statements 6-11

6.4 @ACCEPT BIND

 6.4 @ACCEPT BIND

The @ACCEPT BIND statement moves the bind address of a record to a location in
program variable storage. The requesting program is usually a subprogram that
requires the address of a record in order to access it.

Currency: Currency must be established for the record whose bind address will be
returned to the application program.

A successful execution of the @ACCEPT BIND command does not update the
currency of the record type or the run unit.

 Syntax

��─── @ACCEPT BIND=bind-address───�

 �─── ,REC=record-name ───��

 Parameters

BIND=bind-address
Specifies the 4-byte (fullword) location in storage to which the system returns the
record's bind address. Note that bind-address does not specify a database key.

REC=
Specifies the record whose bind address will be returned to the specified location
in program variable storage.

record-name
Must be a record previously bound by the run unit.

Example: The following @ACCEPT BIND statement moves the bind address for an
EMPLOYEE record to register 1:

 @ACCEPT BIND=(R1),REC='EMPLOYEE'

Status codes: After completion of the @ACCEPT BIND statement, the ERRSTAT
field in the IDMS communications block indicates the outcome of the operation.

Status code Meaning

0000 The request has been serviced successfully.

1508 The specified record is not in the named subschema.

6-12 CA-IDMS DML Reference — Assembler

6.5 @ACCEPT DBKEY FROM CURRENCY

6.5 @ACCEPT DBKEY FROM CURRENCY

The @ACCEPT DBKEY FROM CURRENCY statement moves the db-key of the
current record of run unit, record type, set, or area to a specified location in program
variable storage. Records whose db-key are saved in this manner are available for
subsequent direct access by using an @FIND/@OBTAIN DBKEY statement.

Currency: The record must be current of run unit, record type, set, or area before
execution of the @ACCEPT DBKEY FROM CURRENCY statement. Currency is
maintained but not updated after the statement is executed.

Note: You must establish set currency before using this statement. If no set currency
has been established, the DBMS returns 0000 to the ERRSTAT field and -1 to the
DB-KEY field.

 Syntax

��─── @ACCEPT,DBKEY=db-key ───�

 �─┬────────────────────┬───��

├─ ,REC=record-name ─┤

 ├─ ,SET=set-name ─┤

 └─ ,AREA=area-name ─┘

 Parameters

DBKEY=
Identifies the location in variable storage that will contain the db-key of the named
record.

db-key
Must identify a fullword binary field.

REC=record-name/SET= set-name/AREA=area-name
Specifies the record whose db-key will be placed in the location identified by
db-key. If the record, set, or area qualifiers are omitted, the db-key of the current
record of run unit is saved. Otherwise, db-keys are saved as follows:

■ REC=record-name saves the db-key of the record that is current of the
specified record type.

■ SET=set-name saves the db-key of the record that is current of the specified
set.

■ AREA=area-name saves the db-key of the record that is current of the
specified area.

Example: The following statements illustrate the use of the @ACCEPT DBKEY
FROM CURRENCY statement. The program performs the following steps:

1. Establishes an EMPLOYEE record as current of run unit

2. Saves its db-key in location SAVEDKEY

Chapter 6. Data Manipulation Language Statements 6-13

6.5 @ACCEPT DBKEY FROM CURRENCY

3. Accesses the EMPLOYEE record occurrence by using the saved db-key, after
further processing has changed currency

 MVC EMPID,=CL4'769�'

 @FIND CALC,REC='EMPLOYEE'

 @ACCEPT DBKEY=SAVEDKEY

 .

 .

 @OBTAIN DBKEY=SAVEDKEY

Status codes: After completion of the @ACCEPT DBKEY FROM CURRENCY
function, the ERRSTAT field in the IDMS communications block indicates the
outcome of the operation.

Status code Meaning

0000 The request has been serviced successfully.

1508 The specified record is not in the subschema. The program has
probably invoked the wrong subschema.

6-14 CA-IDMS DML Reference — Assembler

6.6 @ACCEPT DBKEY RELATIVE TO CURRENCY

6.6 @ACCEPT DBKEY RELATIVE TO CURRENCY

The @ACCEPT DBKEY RELATIVE TO CURRENCY statement moves the db-key
of the next, prior, or owner record relative to the current record of set to a location in
variable storage. The DBMS examines the current record of the named set and
extracts the requested pointer from its prefix.

This statement allows you to save the db-key of a record within a set without actually
having to access the record. Records whose db-keys are saved in this manner are
available for subsequent direct access by an @FIND/@OBTAIN DBKEY statement.

Note: Native VSAM users — The @ACCEPT DBKEY RELATIVE TO
CURRENCY statement is not valid for native VSAM data sets.

Note: You must establish set currency before using this statement. If no set currency
has been established, the DBMS returns 0000 to the ERRSTAT field and -1 to the
DB-KEY field.

Currency: Currency is not updated after execution of an @ACCEPT DBKEY
RELATIVE TO CURRENCY statement. The record that is current of record type
before the @ACCEPT statement will remain current immediately after the statement is
executed.

 Syntax

��─── @ACCEPT,DBKEY=db-key ───�

 �──┬─ SETN= ─┬─ set-name ──��

├─ SETP= ─┤

└─ SETO= ─┘

 Parameters

DBKEY=db-key
Identifies the location in variable storage that will contain the db-key of the
requested record.

SETN=/SETP=/SETO=set-name
Determines the record whose db-key will be placed in the location identified by
db-key. Set-name must be a set included in the subschema. The saved db-key can
belong to the next, prior, or owner record relative to the current record of the
named set:

■ SETN=set-name saves the db-key of the next record relative to the record that
is current of the specified set. A request for SETN currency cannot be
specified unless the named set has prior pointers; prior pointers ensure that the
next pointer in the prefix of the current record does not point to a logically
deleted record.

■ SETP=set-name saves the db-key of the prior record relative to the record
that is current of the specified set. A request for SETP currency cannot be
specified unless the named set has prior pointers.

Chapter 6. Data Manipulation Language Statements 6-15

6.6 @ACCEPT DBKEY RELATIVE TO CURRENCY

Note: No indication of an end-of-set condition is possible for an @ACCEPT
SETN or SETP. A retrieval statement must be issued to determine whether
the next or prior record in the set occurrence is the owner record.

■ SETO=set-name saves the db-key of the owner of the current set. A request
for SETO currency cannot be executed unless the named set has owner
pointers. If the current record of the named set is the owner record
occurrence, requests for SETO currency return the db-key of the record itself,
even if this set does not have owner pointers.

Note: When a record declared as an optional or manual member of a set is
accessed, it is not established as current of set if it is not currently connected
to the named set. A subsequent attempt to access the owner record will
instead locate the owner of the current record of set. In such cases, determine
whether the retrieved record is actually a set member before executing the
@ACCEPT DBKEY=db-key, SETO=set-name statement. The @IF statement
(see "@IF" later in this chapter) can be used for this purpose.

Example: The following statements illustrate the use of the @ACCEPT DBKEY
RELATIVE TO CURRENCY statement. The program performs the following steps:

1. Traverses the DEPT-EMPLOYEE set

2. Saves the db-key of the owner record of the OFFICE-EMPLOYEE set

3. Accesses the owner record of the OFFICE-EMPLOYEE set by using the saved
db-key, after further processing has changed currency

 MVC DEPTID,=CL4'1234'

 @FIND CALC,REC='DEPARTMENT'

 @FIND NEXT,SET='DEPT-EMPLOYEE'

 @ACCEPT DBKEY=SAVDKEY,SETO='OFFICE-EMPLOYEE'

 .

 .

 @OBTAIN DBKEY=SAVEDKEY

Status codes: After completion of the @ACCEPT DBKEY RELATIVE TO
CURRENCY function, the ERRSTAT field in the IDMS communications block
indicates the outcome of the operation.

Status code Meaning

0000 This request has been serviced successfully.

1508 The named set is not in the subschema. The program has probably
invoked the wrong subschema.

6-16 CA-IDMS DML Reference — Assembler

6.7 @ACCEPT PGINFO

 6.7 @ACCEPT PGINFO

The @ACCEPT PGINFO statement moves the page information for a given record to
a specified location in program variable storage. Page information that is saved in this
manner is available for subsequent direct access by using a @FIND/@OBTAIN
DBKEY statement.

The dbkey radix portion of the page information can be used in interpreting a dbkey
for display purposes and in formatting a dbkey from page and line numbers. The
dbkey radix represents the number of bits within a dbkey value that are reserved for
the line number of a record. By default, this value is 8, meaning that up to 255
records can be stored on a single page of the area. Given a dbkey, you can separate
its associated page number by dividing the dbkey by 2 raised to the power of the
dbkey radix. For example, if the dbkey radix is 4, you would divide the dbkey value
by 2**4. The resulting value is the page number of the dbkey. To separate the line
number, you would multiply the page number by 2 raised to the power of the dbkey
radix and subtract this value from the dbkey value. The result would be the line
number of the dbkey. The following two formulas can be used to calculate the page
and line numbers from a dbkey value:

■ Page-number = dbkey value / (2 ** dbkey radix)

■ Line-number = dbkey value - (page-number * (2 ** dbkey radix))

 Syntax

��─ @ACCEPT PGINFO=pg-info-v,REC=record-name ────────────────────────────────��

 Parameters

PGINFO=pg-info-v
Specifies the name of a four-byte field that is made up of two halfword fields.
Identifies the location in variable storage that contains page information for the
specified record. Upon successful completion of this statement, the first two bytes
of the field contain the page group number and the last two bytes contain a value
that may be used for interpreting dbkeys.

REC=record-name
Specifies the record whose page information will be placed in the specified
location.

Example: The following example retrieves the page information for the
DEPARTMENT record.

PAGEINFO DS �F

PGROUP DS H

RADIX DS H

 @ACCEPT PGINFO=PAGEINFO,REC='DEPARTMENT'

Status Codes: After completion of the @ACCEPT PGINFO statement, the
ERROR-STATUS field in the CA-IDMS communications block indicates the outcome
of the operation:

Chapter 6. Data Manipulation Language Statements 6-17

6.7 @ACCEPT PGINFO

Status code Meaning

0000 The request has been serviced successfully.

1508 The named record is not in the subschema. The program has
probably invoked the wrong subschema.

6-18 CA-IDMS DML Reference — Assembler

6.8 @ACCEPT PROC

 6.8 @ACCEPT PROC

The @ACCEPT PROC statement moves the 256-byte application program information
block associated with a previously defined database procedure to a specified location
in program variable storage. Information is placed in this block by a previously issued
@BIND PROC statement (discussed later in this chapter). This information may have
subsequently been updated by the procedure. The @ACCEPT PROC statement can be
used by programs running under, but in a different partition from, the central version.

 Syntax

��─── @ACCEPT PROC=procedure-name ──�

 �─── ,COMAREA=procedure-control-location ────────────────────────────────────��

 Parameters

PROC=procedure-name
Specifies the name of the database procedure whose application program
information block is to be moved to program variable storage.Procedure-name
must identify a fullword-aligned 8-byte literal.

COMAREA=procedure-control-location
Specifies the fullword-aligned 256-byte field in program variable storage to which
the application program information block is to be moved.

Example: The following statement moves the application program information block
used by the CHECKALL procedure to the location identified as CHECKIT in the
application program's variable storage:

 @ACCEPT PROC='CHECKALL',COMAREA=CHECKIT

Status codes: After completion of the @ACCEPT PROC function, the ERRSTAT
field in the IDMS communications block indicates the outcome of the operation.

Status code Meaning

0000 The request has been serviced successfully.

1508 The named procedure is not in the specified subschema.

1518 The procedure control location has not been bound properly.

Chapter 6. Data Manipulation Language Statements 6-19

6.9 @ACCEPT STATS

 6.9 @ACCEPT STATS

The @ACCEPT STATS statement moves system runtime statistics located in the
program's IDMS statistics block to program variable storage. You can issue this
statement any number of times during the execution of a run unit. For example, you
might request database statistics after storing a variable-length record to determine
whether the entire record was stored in one place or if fragments were placed in an
overflow area.

The @ACCEPT STATS statement does not reset any of the statistics fields to zero.
The IDMS statistics block fields are reset when you issue an @FINISH statement.

 Syntax

��─── @ACCEPT STATS=db-statistics ──��

 Parameters

STATS=
Moves system runtime statistics to a location in program variable storage
identified by db-statistics.

db-statistics
Identifies an aligned, 100-byte field. The dictionary contains a record, DBSTATS,
for the system runtime statistics. You can copy this record into program variable
storage by coding the following statement:

 @COPY IDMS,DBSTATS

 DBSTATS DS OD

DATE2DAY DS CL8 TODAY'S DATE

TIME2DAY DS CL8 CURRENT TIME OF DAY

PAGESRED DS F PHYSICAL PAGES READ

PAGESWRT DS F PHYSICAL PAGES WRITTEN

PAGESQST DS F LOGICAL PAGES READ

CALCTARG DS F NO. CALC STORES ON TARGET PAGE

CALCOVFL DS F NO. CALC OVERFLOWS

VIATARGT DS F NO. VIA STORES ON OWNER PAGE

VIAOVRFL DS F NO. VIA OVERFLOWS

LINERQST DS F RECORDS (LINES) REQUESTED

 CURRECDS DS F RECORDS CURRENT

IDMSCALL DS F NO. CALLS TO IDMSDBMS

FRAGMTST DS F NO. VAR-LENGTH FRAGMENTS STORED

RELORECS DS F NO. RECORDS RELOCATED

LOCKREQS DS F TOTAL NO. RECORD LOCKS HELD

SELECLOK DS F TOTAL NO. SELECT LOCKS HELD

UPDATLOC DS F TOTAL NO. EXCLUSIVE LOCKS HELD

RUNUNIT# DS F RUN-UNIT ID NUMBER

TASK#ID DS F TASK ID NUMBER

LOCAL#ID DS CL8 LOCAL ID NUMBER

DS CL8 RESERVED

The LOCAL#ID field consists of the 4-byte identifier of the interface in which the
run unit originated (for example, BATC, DBDC, CICS) and a unique identifier (a
fullword binary value) assigned to the run unit by that interface. For batch and
CMS run units, this identifier specifies the internal machine time. For CICS run
units, this identifier specifies the CICS transaction number assigned to the run

6-20 CA-IDMS DML Reference — Assembler

6.9 @ACCEPT STATS

unit. To display the originating interface identifier and the run-unit identifier for a
program, you can move the LOCAL#ID field to a work field:

 WRKLCID DS �D

 WRKLCORG DC CL4' '

 WRKLCNUM DC F'�'

Note: The DBSTATS record can be modified by your DBA to define two
subordinate fields for the LOCAL#ID field.

Example: The following statements establish currency for the sets in which a new
EMPLOYEE record will participate as a member, store the EMPLOYEE record, and
move statistics regarding the stored EMPLOYEE record to the DBSTATS location in
main storage:

 MVC DEPTID,INDEPTID

 @FIND CALC,REC='DEPARTMENT'

 MVC OFFCODE,IOFFCODE

 @FIND CALC,REC='OFFICE'

 @STORE REC='EMPLOYEE'

 @ACCEPT STATS=DBSTATS

Status codes: After completion of the @ACCEPT STATS function, the ERRSTAT
field in the IDMS communications block indicates the outcome of the operation.

Status code Meaning

0000 The request has been serviced successfully.

1518 The database statistics location has not been bound properly.

Chapter 6. Data Manipulation Language Statements 6-21

6.10 #ACCEPT

 6.10 #ACCEPT

The #ACCEPT statement retrieves the following system task-related information:

■ Current task code

 ■ Task identifier

■ Logical terminal identifier

■ Physical terminal identifier

■ DC/UCF system version

■ The ID of the user signed on to the task's logical terminal

■ Physical terminal screen dimensions

 Syntax

��─┬─────────┬──�

└─ label ─┘

 �─── #ACCEPT TYPE= ─┬─ TASKCODE ──┬──�

├─ TASKID ────┤

├─ LTERMID ───┤

├─ SYSVERSN ──┤

├─ PTERMID ───┤

├─ USERID ────┤

└─ SCRNSIZE ──┘

 �─── ,FIELD=return-value-location-pointer ───────────────────────────────────��

 Parameters

TYPE=
Retrieves the requested information:

TASKCODE
Retrieves the 1- to 8-character code that invokes the current task.

TASKID
Retrieves the task identifier assigned by the system. The task identifier is a
unique sequence number stored in a binary fullword numeric field. At system
startup, the system sets the identifier to zero; each time a task is executed, the
system increments the identifier by one.

LTERMID
Retrieves the 1- to 8-character identifier of the logical terminal associated with the
current task.

SYSVERSN
Retrieves the version of the current DC/UCF system. The version number is an
integer in the range 0 through 9999 stored in a binary halfword numeric field.

PTERMID
Retrieves the 1- to 8-character identifier of the physical terminal associated with
the current task.

6-22 CA-IDMS DML Reference — Assembler

6.10 #ACCEPT

USERID
Retrieves the 32-character identifier of each user signed on to the logical terminal
associated with the current task. If no user is signed on, the system returns blank.

SCRNSIZE
Retrieves the screen dimensions of the physical terminal associated with the
current task. The screen size is returned in a field that is divided into two
halfword fields: the first halfword contains the row, the second halfword contains
the column. For example, a 24-line by 80-character screen is represented by a
value of 24 in the first halfword and 80 in the second halfword. If the current
task is not associated with a terminal, the system returns a null value of 0.

FIELD=
Specifies the location to which the system returns the requested task-related
information.

return-value-location
A register that points to the field or the symbolic name of a user-defined field
whose length is compatible with the length of the field containing the requested
data.

Example: The following example of the #ACCEPT statement retrieves the user ID
of each user signed on to the logical terminal associated with the current task. This
information is placed into the field USERSL2, which is defined in the application
program's variable storage.

 #ACCEPT TYPE=USERID,FIELD=USERSL2

Status codes: After completion of the #ACCEPT statement, the value in register
15 indicates the outcome of the operation.

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'04' An invalid return-value location address has been specified in the
FIELD parameter.

X'08' #ACCEPT TYPE=PTERM was specified but no PTERM exists.

Chapter 6. Data Manipulation Language Statements 6-23

6.11 #ATTACH

 6.11 #ATTACH

The #ATTACH statement instructs the system to initiate a new task by acquiring the
necessary task control elements (TCEs) and storage and by adding the task to its
dispatching list. The issuing program retains processing control; the system simply
initializes the attached task and gives it processor time according to its established
priority. (Note that task code priorities established during system generation can be
overridden by the #ATTACH or #CHAP statements.) The #ATTACH may optionally
designate an ECB upon which initial execution of a new task will depend.

 Syntax

��─┬─────────┬─ #ATTACH TSKCD=task-code-pointer ──────────────────────────────�

└─ label ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,PLIST= ─┬─ SYSPLIST ← ─────────────┬┘

└─ parameter-list-pointer ─┘

 �─┬──────────────────┬───�

└─ ,PRI=prioritiy ─┘

 �─┬──────────────────────────┬───�

└─ ECB=return-ecb-address ─┘

 �─┬─────────────────────────────────────┬────────────────────────────────────�

└─ ,TCEADDR= ─┬─ (1) ← ──────────────┬┘

└─ return-tce-address ─┘

 �─┬──────────────────────────────────┬───────────────────────────────────────�

└─ ,COND= ────┬─ NO ← ───────────┬─┘

├─ ALL ────────────┤

│ ┌──── , ─────┐ │

└(─↓─┬─ MAXT ─┬─┴─)┘

├─ INVT ─┤

├─ SCTY ─┤

└─ MAXC ─┘

 �─┬───────────────────────────┬──�

└─ ,MAXTXIT=max-task-label ─┘

 �─┬───────────────────────────────┬──�

└─ ,INVTXIT=invalid-task-label ─┘

 �─┬─────────────────────────────────────┬────────────────────────────────────�

└─ ,SCTYXIT=security-violation-label ─┘

 �─┬─────────────────────────────────┬──�

└─ ,MAXCXIT=max-concurrent-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

6-24 CA-IDMS DML Reference — Assembler

6.11 #ATTACH

 Parameters

TSKCD=
Specifies the 1- to 8-character code of the task to be initiated.

task-code
A register pointing to a field that contains the task code, symbolic name of a
user-defined field containing the task code, or the task-code literal enclosed in
quotation marks.Task-code must have been defined either during system
generation or dynamically by using the DCMT VARY DYNAMIC TASK
command.

PLIST=
Specifies the location of the 5-fullword storage area that contains one or more
parameters to be passed to the program receiving control.

SYSPLIST
(Default); the symbolic name of the storage area in which the system will build
the #ATTACH parameter list.

parameter-list
A register that points to the area in which the system will build the #ATTACH
parameter list or the symbolic name of that area.

PRI=
Specifies the dispatching priority of the attached task.

priority
A register containing the priority in the low-order byte or an absolute expression.
Valid codes are 0 through 240; the default is the priority established during system
generation for the specified task code, and the applicable terminal and user.

ECB=
Specifies the location to which the system will return the address of the event
control block (ECB) for the initiated task. Use ECB to control execution of the
attached task through the ECB; if ECB is not defined, the attached task will be set
ready-to-run.

return-ecb-address
A register or the symbolic name of a fullword user-defined field.

TCEADDR=(1)/return-tce-address
Specifies the location to which the system will return the address of the TCE for
the initiated task.return-tce-address

A register or the symbolic name of a fullword user-defined field; the default is
register 1.

COND=
Specifies whether this #ATTACH is conditional and under what conditions control
should be returned to the issuing program.

NO
(Default); specifies that the request is not conditional.

Chapter 6. Data Manipulation Language Statements 6-25

6.11 #ATTACH

ALL
Specifies that the request is conditional. Control is returned if the attach cannot
be serviced for one or more of the reasons listed below.

condition
Specifies under what conditions control is returned to the issuing program.
Multiple condition values must be enclosed in parentheses and separated by
commas.

MAXT
A maximum-task condition exists; that is, if the number of tasks specified as the
maximum during system generation are currently active. If MAXT is not
specified and a maximum-task condition exists, the attaching task will wait until
the attach can be completed successfully.

INVT
The specified task code is invalid. If INVT is not specified and the specified task
is not valid, the attaching task will be abended.

SCTY
The user signed on to the issuing task is denied access to the requested task
because of a security violation. If SCTY is not specified and a security violation
is detected, the attaching task will be abended.

MAXC
An attempt is being made to attach a task for which a MAXIMUM
CONCURRENT value is specified in the system generation. The maximum
number of occurrences of the task are already active. If MAXC is not specified
and a maximum concurrent condition is detected, the attaching task will be
abended.

MAXTXIT=max-task-label
Specifies the symbolic name of a routine to which control is returned if the
#ATTACH request cannot be serviced because of a maximum-task condition.

INVTXIT=invalid-task-label
Specifies the symbolic name of a routine to which control is returned if the
#ATTACH request cannot be serviced because the task code is invalid.

SCTYXIT=security-violation-label
Specifies the symbolic name of a routine to which control is returned if the
#ATTACH request cannot be serviced because of a security violation.

MAXCXIT=max-concurrent-label
Specifies the symbolic name of a routine to which control is returned if the
#ATTACH request cannot be serviced because of a maximum concurrent
condition.

ERROR=error-label
Specifies the symbolic name of the routine to which control is returned if a
condition specified in the COND parameter occurs for which no other exit routine
was coded.

6-26 CA-IDMS DML Reference — Assembler

6.11 #ATTACH

Example: The example shown below of the #ATTACH statement performs the
following functions:

■ Task MENU3 is initiated and added to the system dispatching list with a priority
setting of 150.

■ WPLIST is the work area where the system builds the parameter list.

■ Register 3 is designated to receive the address of the ECB for the initiated task
from the system.

■ Control will be returned to the exit routine MENERR if the attach cannot be
serviced for any of the optional conditions associated with the COND parameter.

 #ATTACH TSKCD='MENU3',PLIST=WPLIST,PRI=15�,ECB=(3),COND=ALL, �

 ERROR=MENERR

Status codes: By default, the attach request is unconditional. Error conditions that
can occur are described below:

■ A maximum-task condition will result in a delay until another task terminates.
The maximum number of active tasks is set during system generation.

■ Any abnormal condition will result in an abend. Conditions in this category
include:

– Invalid task code specified

– The user signed on to the issuing task is denied access to the requested new
task because of a security violation

The issuing program can request return of control to avoid a delay or an abend by
using the COND parameter.

After completion of the #ATTACH request, the value returned to register 15 indicates
the outcome of the operation.

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced because the maximum number of
tasks have already been attached; no new tasks can currently be
attached.

X'08' The request cannot be serviced due to an invalid task code.

X'0C' The request cannot be serviced due to a task security violation.

X'14' The task cannot be attached because the maximum concurrent task
limit (for that task code) has been exceeded.

Chapter 6. Data Manipulation Language Statements 6-27

6.11 #ATTACH

Additionally, the values in two user-defined registers or fullwords contain information:

■ Register n contains the address of the ECB of the initiated task is found in the
register or fullword assigned by the ECB= parameter. If the task has been set
ready-to-run, as described above for the ECB parameter, this register is not set.

■ Register m contains the address of the TCE of the initiated task is placed in the
register or fullword assigned by the TCEADDR parameter.

6-28 CA-IDMS DML Reference — Assembler

6.12 @BIND PROC

 6.12 @BIND PROC

The @BIND PROC statement establishes communication between a program and a
DBA-written database procedure (for example, a security routine). You should use
this statement only when the application program is required to pass more information
to the procedure than is provided by CA-IDMS/DB itself. Such instances are unusual;
in most cases, you will not be aware of which procedures gain control before or after
the various DML functions.

 Syntax

��─── @BIND PROC=procedure-name ──�

 �─── ,COMAREA=procedure-control-location ────────────────────────────────────��

 Parameters

PROC=
Establishes addressability for the specified database procedure in program variable
storage.

procedure-name
Must refer to an 8-character literal aligned on a fullword boundary.

COMAREA=
Identifies the program storage location to which the named procedure will be
bound.

procedure-control-location
Must identify a 256-byte (fixed-length) area.

A program running in a different partition than the central version may need to pass
certain information to the database procedure. When the DBMS invokes the database
procedure, this information is copied from the program storage area, identified by
procedure-control-location, into the CA-IDMS/DB application program information
block. The information passed is the information in the program storage location at
the time the BIND PROC was performed; it is not the information in the program's
storage at the time of the procedure call.

Example: The following example of the @BIND PROC statement specifies that
register 8 contains the name of the database procedure to receive information from the
program's variable storage area labeled DBPASS:

 @BIND PROC=(R8),COMAREA=DBPASS

Status codes: After completion of the BIND PROC function, the ERRSTAT field
in the IDMS communications block indicates the outcome of the operation.

Status code Meaning

0000 The request has been serviced successfully.

Chapter 6. Data Manipulation Language Statements 6-29

6.12 @BIND PROC

Status code Meaning

1400 The @BIND PROC statement cannot be recognized. This
code usually indicates that the IDMS communications block
(SUBSCHEMA-CTRL) is not aligned on a fullword boundary.

1418 The procedure has been bound improperly to location 0.

1472 The memory available is insufficient to load dynamically the
database procedure.

6-30 CA-IDMS DML Reference — Assembler

6.13 @BIND REC

 6.13 @BIND REC

The @BIND REC statement establishes addressability for a record in variable storage.
In most cases, you do not need to issue individual @BIND REC statements, since the
necessary statements typically are generated as a group by the @COPY
IDMS,SUBSCHEMA-BINDS statement (see Chapter 4, “Assembler DML Coding
Considerations” on page 4-1). However, you can issue these statements separately as
necessary.

For example, since the @COPY IDMS,SUBSCHEMA-BINDS statement does not
verify that each record is bound successfully, you may wish to issue an @BIND REC
statement for each record and to check the ERRSTAT field in the IDMS
communications block after each @BIND REC statement. You can also issue separate
@BIND REC statements to bind several records to the same storage location. In any
case, you must establish addressability for each subschema record to be used by the
program.

Note: If program registration is in effect, you should code a @COPY
IDMS,SUBSCHEMA-BINDS statement to properly assign the programs to the
subschema control block. Otherwise your program must explicitly initialize the
PGNAME field in the IDMS communications block before the @BIND SUBSCHEMA
and @BIND REC statements are executed.

 Syntax

��─── @BIND REC=record-name ──�

 �─── ,IOAREA=record-location ──��

 Parameters

REC=record-name
Binds the named record to a location in variable storage that corresponds to the
record description copied into the program.Record-name must specify a record
included in the subschema.

IOAREA=record-location
Identifies the specific location in the program's variable storage to which the
record is bound.

Note: Use care with this option because source-object mismapping can result
from improper use. In cases where the description of a given CA-IDMS/DB
record is present in more than one location in variable storage, you must ensure
that the proper record description is bound at the proper time.

Example: The following example of the @BIND REC statement establishes
addressability for the database record EMPLOYEE to the program's variable storage
area labeled EMPLOYE:

 @BIND REC='EMPLOYEE',IOAREA=EMPLOYE

Chapter 6. Data Manipulation Language Statements 6-31

6.13 @BIND REC

Status codes: After completion of the @BIND REC function, the ERRSTAT field
in the IDMS communications block indicates the outcome of the operation.

Status code Meaning

0000 The request has been serviced successfully.

1408 The name record is not in the subschema. The program has
probably invoked the wrong subschema.

1418 The record has been bound improperly to location 0.

6-32 CA-IDMS DML Reference — Assembler

6.14 @BIND SUBSCH

 6.14 @BIND SUBSCH

The @BIND SUBSCH statement performs the following:

■ Signs on the run unit to the DBMS

■ Identifies the location of optional user-specified IDMS and LRC communication
blocks to the DBMS

■ Names the subschema to be loaded for the run unit

■ Names the Distributed Database System (DDS) node under which the run unit will
execute

■ Identifies the database to be accessed

You must code the @BIND SUBSCH statement as the first DML statement in the
program that is passed to CA-IDMS/DB at execution time. This statement must be
first both logically and physically; you cannot branch to @BIND SUBSCH.

In most cases, specific designation of @BIND SUBSCH within an application program
is not necessary since the @COPY IDMS,SUBSCHEMA-BINDS statement (see 5.4,
“@COPY IDMS” on page 5-9) automatically invokes the necessary @BIND
statements.

Note: If program registration is in effect, the @COPY IDMS,SUBSCHEMA-BINDS
statement is required to properly assign the programs to the subschema control block.
Individual @BIND SUBSCH and @BIND REC statements should not be used if
program registration was enabled during system generation.

Chapter 6. Data Manipulation Language Statements 6-33

6.14 @BIND SUBSCH

 Syntax

��─── @BIND SUBSCH=subschema-name ──�

 �─┬─────────────────────────┬──�

└─ ,PGMNAME=program-name ─┘

 �─┬──────────────────────────────────┬───────────────────────────────────────�

└─ ,LRC=lr-control-block-location ─┘

 �─┬────────────────────────────────┬───�

└─ ,LRSIZ=lr-control-block-size ─┘

 �─┬─────────────────────────────────┬──�

└─ ,DBNAME=database-name-pointer ─┘

 �─┬────────────────────────────┬───�

└─ ,DBNODE=nodename-pointer ─┘

 �─┬────────────────────────────────────┬─────────────────────────────────────�

└─ ,DICTNAM=dictionary-name-pointer ─┘

 �─┬──┬─────────────────────────────────��

└─ ,DICTNOD=dictionary-nodename-pointer ─┘

 Parameters

SUBSCH=
Signs on the application program to CA-IDMS/DB.

subschema-name
Identifies the subschema in use. The run unit uses the standard IDMS
communications block brought previously into the program by compiler-directive
statements.

PGMNAME=program-name
Identifies the user program.

LRC=lrc-block-location
Identifies the address of a logical-record request control (LRC) block other than
that brought into the program by the DML precompiler. The definition of this
user-specified subschema control area must be consistent with the standard
SSLRCTL block as normally invoked and used.

LRSIZ=lrc-block-size
Specifies the size of that portion of the LRC block that contains information about
the request's WHERE clause.Lrc-block-size defaults to 576 bytes. For the
algorithm for calculating lrc-block-size, see 5.4, “@COPY IDMS” on page 5-9.

DBNAME=
Identifies the database to be accessed by the program. If this parameter is
specified, database-name may be overridden by IDMSOPTI module or SYSCTL
file specifications.

database-name
Must specify a register that points to the name of the database, a 1- to 8-character
field, or a quoted literal.

6-34 CA-IDMS DML Reference — Assembler

6.14 @BIND SUBSCH

DBNODE=
optionally names the node that will service database requests issued by the
program. If this parameter is specified, nodename may or may not be overridden
by IDMSOPTI module or SYSCTL file specifications (MVS only).

nodename-pointer
Must be a register that points to the name of the node, a 1- to 8-character field, or
a quoted literal.

DICTNAM=
The dictionary that contains the subschema.

dictionary-name-pointer
Either a register that points to the field that contains the dictionary name or a
quoted literal.

DICTNOD=
The dictionary node that contains the subschema.

dictionary-nodename-pointer
Either a register that points to the field that contains the name of the dictionary or
a quoted literal.

Example: The following example of the @BIND SUBSCH statement signs on the
application program EMPUPD to CA-IDMS/DB, identifies the subschema EMPSS01,
and identifies the address in program variable storage of the user-specified
communications block EMPCTRL:

 @BIND SUBSCH='EMPSS�1',SCB=EMPCTRL,PGMNAME='EMPUPD'

Status codes: After completion of the @BIND SUBSCH function, the ERRSTAT
field in the IDMS communications block indicates the outcome of the operation.

Status code Meaning

0000 The request has been serviced successfully.

1400 The @BIND SUBSCH statement cannot be recognized. This code
usually indicates that the IDMS communications block
(SUBSCHEMA-CTRL) is not aligned on a fullword boundary.

1467 The subschema invoked does not match the subschema object
tables.

1469 The run unit is not bound to the DBMS. This code indicates that
the central version is not active or is not accepting new run units,
or that the run unit's connection to the central version is broken due
to timeout or other factors, as noted on the CV log.

1470 The journal file will not open (local mode only); under OS, the
most probable cause is that a DD statement for the journal file is
missing in the JCL.

Chapter 6. Data Manipulation Language Statements 6-35

6.14 @BIND SUBSCH

Status code Meaning

1472 The available memory is insufficient to dynamically load a
subschema or database procedure.

1473 The central version is not accepting new run units.

1474 The subschema was not found in the dictionary load area or in the
load library.

1477 The run unit has been bound previously.

1480 The node specified in the NODENAME clause either is not active
or has been disabled from the communications network.

1481 The database specified in the CA-IDMS network clause is not
known to CA-IDMS/DB.

1482 The named subschema is not allowed under the database specified
in the DBNAME clause.

1483 The available memory is insufficient to allocate native VSAM work
areas.

6-36 CA-IDMS DML Reference — Assembler

6.15 #BIND TASK

 6.15 #BIND TASK

The #BIND TASK statement initiates a DC/UCF task when the operating mode is
DC-BATCH. This statement establishes communication with the system and, if
accessing DC/UCF queues and printers, allocates a packet-data movement buffer to
contain the queue or printer data. Once a task is started, the program can issue any
number of consecutive BIND-READY-FINISH sequences.

 Syntax

��─┬─────────┬─ #BIND TASK ───�

└─ label ─┘

 �─┬───────────────────┬──��

└─ ,NODE=nodename ──┘

 Parameters

,NODE=
Specifies the 1- to 8-character name of the node to which the task will be bound.

nodename
Either the symbolic name of a user-defined field that contains the nodename or the
nodename itself enclosed in quotation marks. The specified nodename must match
the node named in the nodename statement at system generation.

Example: The following statement establishes communication with a DC/UCF
system:

 #BIND TASK.

Status codes: After completion of the BIND TASK function, the status field in the
IDMS communications block indicates the outcome of the operation.

Chapter 6. Data Manipulation Language Statements 6-37

6.16 #CHAP

 6.16 #CHAP

The #CHAP statement changes the dispatching priority of the the issuing task.
#CHAP does not relinquish control to another task and cannot be used to alter the
priority of other tasks.

 Syntax

��─┬─────────┬─ #CHAP PRI=priority ───��

└─ label ─┘

 Parameters

PRI=
Specifies a new dispatching priority for the issuing task.

priority
A register that contains the priority in the low-order byte, the symbolic name of a
user-defined field that contains the priority, or an absolute expression in the range
0 through 240.

Example: The following example of the #CHAP statement changes the dispatching
priority to a value contained in the low-order byte of register 10:

 #CHAP PRI=(R1�)

Status codes: The change-priority request is unconditional; any return code other
than X'00' will result in an abend of the task.

6-38 CA-IDMS DML Reference — Assembler

6.17 @COMMIT

 6.17 @COMMIT

The @COMMIT statement requests that CA-IDMS/DB write a checkpoint to the
journal file to designate the start or end of specific database accessing activities
associated with the issuing run unit (the start or end of a recovery unit). @COMMIT
simulates an @FINISH-@BIND-@READY sequence without relinquishing control of
database resources. Typically, you can specify @COMMIT as a recovery
consideration when updating CA-IDMS/DB database records.

Currency: Specifying @COMMIT ALL sets all currencies to null.

 Syntax

��─── @COMMIT ─┬────────┬───��

└─ ,ALL ─┘

 Parameters

@COMMIT
Writes a COMT checkpoint to the journal file and updates the IDMS
communications block. All record locks except implicit shared locks held on
current records are released. @COMMIT does not release area locks.

ALL
Releases record locks and sets all currencies to null.

Status codes: The only acceptable status code returned for an @COMMIT function
is 0000.

Chapter 6. Data Manipulation Language Statements 6-39

6.18 #COMMIT

 6.18 #COMMIT

The #COMMIT statement requests that the system write a checkpoint to the journal
file to designate the start or end of specific database and/or scratch and queue record
access activities associated with the issuing task or run unit. All locks held on current
records except for select locks are released. #COMMIT simulates an
#FINISH/@BIND/@READY sequence but does not relinquish control of database
resources. Typically, you can specify #COMMIT as a recovery consideration when
updating CA-IDMS/DB or dictionary entries.

Currency: Specifying #COMMIT ALL sets all currencies to null.

 Syntax

��─┬─────────┬──�

└─ label ─┘

 �─── #COMMIT ─┬─────────┬─┬────────┬───��

└─ ,TASK ─┘ └─ ,ALL ─┘

 Parameters

TASK
Establishes checkpoints for all data areas associated with all run units initiated by
the issuing task.

ALL
Releases all locks held on records in data areas associated with the issuing task
(#COMMIT TASK,ALL) or run unit (#COMMIT ALL) and sets all currencies to
null.

Status codes: After completion of the #COMMIT function, the value in register 15
indicates the outcome of the operation.

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced because the number of active run
units exceeds the size of the internal run-unit table.

X'08' The request cannot be serviced due to an invalid request.

X'0C' The request cannot be serviced because an invalid status has been
received from DBIO/DBMS. Check the DC/UCF log file for
details.

6-40 CA-IDMS DML Reference — Assembler

6.19 @CONNECT

 6.19 @CONNECT

The @CONNECT statement establishes a record occurrence as a member of a set
occurrence. The specified record must be defined as an optional automatic, optional
manual, or mandatory manual member of the set.

Note: Native VSAM users — The @CONNECT statement is not valid since all sets
in native VSAM data sets must be defined as mandatory automatic.

Currency: Before execution of the @CONNECT statement, you must satisfy the
following conditions:

■ All areas affected either explicitly or implicitly by the @CONNECT statement
must be readied in one of the update usage modes (see 6.57, “@READY” on
page 6-227 later in this chapter).

■ The named record must be established as current of its record type.

■ The appropriate occurrence of the set into which the named record will be
connected must be established. The current record of set determines the set
occurrence. If the set order is NEXT or PRIOR, this record determines the
position of the new member within the set.

Following successful execution of the @CONNECT statement, the named record is
current of run unit, its record type, its area, and all sets in which it currently
participates. The following figure illustrates the steps required to connect an
EMPLOYEE record to an occurrence of the OFFICE-EMPLOYEE set.

To connect EMPLOYEE 459 to the OFFICE 1 occurrence of the OFFICE-
EMPLOYEE set, you must establish EMPLOYEE 459 as current of record type, locate
the proper occurrence of the OFFICE record, and connect EMPLOYEE 459 to the
OFFICE-EMPLOYEE set.

Chapter 6. Data Manipulation Language Statements 6-41

6.19 @CONNECT

 Syntax

��─── @CONNECT REC=record-name ───�

 �─── ,SET=set-name ──��

 Parameters

REC=
Connects the current occurrence of the named record to the current occurrence of
the specified set.

record-name
Must be a record included in the subschema and must be defined as an optional
automatic, optional manual, or mandatory manual member of the set to which it is
being connected.Record-name may be specified as a register, a user-defined
variable data field, or a user-supplied value in quotation marks.

SET=
Specifies the set to which the member record is to be connected.

set-name
Must specify a set included in the subschema. The record is connected to the set
in accordance with the ordering rules defined for that set in the schema.Set-name
may be specified as a register, a user-defined variable data field, or a
user-supplied value in quotation marks.

6-42 CA-IDMS DML Reference — Assembler

6.19 @CONNECT

Example: The following statements connect an EMPLOYEE record from the
DEPT-EMPLOYEE set to the OFFICE-EMPLOYEE set as a new member.

 MVC DEPTID,=C'52��'

 @FIND CALC,REC='DEPARTMENT'

 @OBTAIN FIRST,SET='DEPT-EMPLOYEE'

 MVI OFFCODE,C'1'

 @FIND CALC,REC='OFFICE'

 @CONNECT REC='EMPLOYEE',SET='OFFICE-EMPLOYEE'

Status codes: After completion of the @CONNECT function, the ERRSTAT field
in the IDMS communications block indicates the outcome of the operation.

Status code Meaning

0000 The request has been serviced successfully.

0705 The @CONNECT would violate a duplicates-not-allowed option.

0706 Currency has not been established for the named record or set.

0708 The specified record is not in the subschema. The program has
probably invoked the wrong subschema.

0709 The named record's area has not been readied in one of the three
update usage modes.

0710 The subschema specifies an access restriction that prohibits
connecting the named record in the named set.

0714 The @CONNECT statement cannot be executed because the named
record has been defined as a mandatory automatic member of the
set.

0716 The record cannot be connected to a set in which it is already a
member.

0721 An area other than the area of the named record has been readied
with an incorrect usage mode.

0725 Currency has not been established for the named set type.

Chapter 6. Data Manipulation Language Statements 6-43

6.20 #DELETE

 6.20 #DELETE

The #DELETE statement notifies the DC/UCF system that the issuing task has finished
using a module from the program pool. This module is identified by the program
name or entry-point address that was previously specified by the #LOAD request that
placed the module into the program pool. If your site uses multiple dictionaries you
can specify either the dictionary in which the program resides or the node that controls
the dictionary. Other options for a multiple dictionary environment include specifying
a parameter list and a program version number for the program you are requesting to
delete.

#DELETE does not physically delete the module from the program pool unless the
program has been defined as NONREUSABLE. Rather, it decrements the in-use count
maintained by the DC/UCF system. An in-use count of 0 indicates to the system that
the space occupied by the module can be reused.

 Syntax

��─┬─────────┬──�

└─ label ─┘

 �─── #DELETE─┬─ PGM=program-name-pointer ───┬────────────────────────────────�

└─ EPADDR=entry-point-address ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,PLIST= ─┬─ SYSPLIST ← ─────────────┬┘

└─ parameter-list-pointer ─┘

 �─┬─────────────────────────────┬──�

└─ .DICTNOD=nodename-pointer ─┘

 �─┬────────────────────────────────────┬─────────────────────────────────────��

└─ ,DICTNAM=dictionary-name-pointer ─┘

 Parameters

PGM=
Specifies the 1- to 8-character name of the module being released from use.

program-name-pointer
A register that points to a field containing the program name, the symbolic name
of a user-defined field containing the program name, or the program-name literal
enclosed in quotation marks.

EPADDR=
Specifies the entry-point address of the module being released from use. This
address was returned to the issuing program when the module was originally
loaded.

entry-point-address
Either a register or the symbolic name of a fullword user-defined field containing
the entry-point address.

6-44 CA-IDMS DML Reference — Assembler

6.20 #DELETE

PLIST=
Specifies the location of the storage area the system uses to build the parameter
list. The PLIST parameter is required only if the DICTNAM or DICTNOD
parameters are specified.

SYSPLIST
The symbolic name of the storage area in which the system will build the
#DELETE parameter list.

parameter-list-pointer
A register that points to the area in which the system will build the #DELETE
parameter list or the symbolic name of that area.

DICTNOD=
Identifies the node that controls the dictionary in which the program resides.

nodename-pointer
A register that points to a field that contains the name of the node, the symbolic
name of a user-defined field containing the name of the node, or the nodename
literal enclosed in quotation marks.

DICTNAM=
Identifies the dictionary in which the named program resides.

dictionary-name-pointer
A register that points to a field containing the dictionary name, the symbolic name
of a user-defined field containing the dictionary name, or the dictionary name
literal enclosed in quotation marks.

Note: The DICTNOD or DICTNAM parameters must correspond to those
specified on a previously issued #LOAD statement. If either DICTNOD or
DICTNAM or both are specified, the PLIST parameter must be included.

Example: The following example of the #DELETE statement notifies the system
that the program or module whose entry-point address is contained in register 5 is no
longer needed by the issuing task. The system can reuse this area in the program pool
if space is needed.

 #DELETE EPADDR=(R5)

The example shown below illustrates the use of the #LOAD and the #DELETE
statements in a multiple dictionary environment. After execution of the #DELETE
statement the area in the program pool in which EMPMENU resides is released and
can be reused by issuing a new #LOAD request statement.

 #LOAD PGM='EMPMENU'

 .

 .

 .

 #DELETE PGM='EMPMENU'

Status codes: The #DELETE request is unconditional; any error detected during
execution will result in an abend of the issuing task.

Chapter 6. Data Manipulation Language Statements 6-45

6.21 #DELQUE

 6.21 #DELQUE

The #DELQUE statement deletes all or part of a queue. If only one queue record is
deleted, the system maintains currency within the queue by using the next and prior
pointers of the queue record.

 Syntax

��─┬─────────┬─ #DELQUE ──�

└─ label ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,PLIST= ─┬─ SYSPLIST ← ─────────────┬┘

└─ parameter-list-pointer ─┘

 �─┬───────────────────────────┬──�

└─ ,QUEID=queue-id-pointer ─┘

 �─┬────────────────────────┬───�

└─ ,LOC= ─┬─ CURRENT ← ┬─┘

└─ ALL ──────┘

 �─┬───────────────────────────────┬──�

└─ ,COND= ─┬── NO ← ───────────┬┘

├── ALL ────────────┤

│ ┌─── , ─────┐ │

└─(─↓─┬─ NQID ─┬┴─)─┘

├─ NRID ─┤

├─ NRCE ─┤

├─ IOER ─┤

└─ INVP ─┘

 �─┬──────────────────────────────┬───�

└─ ,NQIDXIT=no-queue-id-label ─┘

 �─┬──────────────────────────────────┬───────────────────────────────────────�

└─ ,NRIDXIT=no-queue-record-label ─┘

 �─┬───┬────────────────────────────────�

└─ ,NRCEXIT=no-current-of-run-unit-label ─┘

 �─┬────────────────────────────┬───�

└─ ,IOERXIT=i/o-error-label ─┘

 �─┬───┬────────────────────────────────�

└─ ,INVPXIT=invalid-parameter-list-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

 Parameters

PLIST=
Specifies the location of the 2-fullword storage area in which the system will build
the #DELQUE parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system will build
the #DELQUE parameter list.

6-46 CA-IDMS DML Reference — Assembler

6.21 #DELQUE

parameter-list-pointer
Either a register that points to the area or the symbolic name of the area.

QUEID=
Specifies the 1- to 16-character queue header ID associated with the queue or
queue record to be deleted.

queue-id-pointer
A register that points to a field containing the id, the symbolic name of a
user-defined field containing the ID, or the ID literal enclosed in quotation marks.
If the queue header ID is not specified, a blank ID is assumed.

LOC=
Indicates the portion of the queue to be deleted.

CURRENT
(Default); deletes only the current record of the queue associated with the
requesting task.

ALL
Deletes all records in the queue and the queue header id.

COND=
Specifies whether this #DELQUE is conditional and under what conditions control
should be returned to the issuing program:

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the delete cannot
be serviced for one or more of the reasons listed below.

condition
Specifies under what conditions control should be returned to the issuing program.
Multiple values must be enclosed in parentheses and separated by commas.
Condition options are as follows:

■ NQID — The queue header record cannot be found.

■ NRID — LOC=CURRENT has been specified and the record previously
established as current of queue cannot be found.

■ NRCE — LOC=CURRENT has been specified and no resource control
element (RCE) exists for the current record; that is, no record has been
established as current of queue.

■ IOER — An I/O error occurs while processing the delete.

■ INVP — The parameter list built for the #DELQUE is invalid.

NQIDXIT=no-queue-id-label
Specifies the symbolic name of the routine to which control should be returned if
the #DELQUE request cannot be serviced because the queue header record cannot
be found.

Chapter 6. Data Manipulation Language Statements 6-47

6.21 #DELQUE

NRIDXIT=no-queue-record-label
Specifies the symbolic name of the routine to which control should be returned if
the #DELQUE request cannot be serviced because the record previously
established as current of queue cannot be found.

NRCEXIT=no-current-of-run-unit-label
Specifies the symbolic name of the routine to which control should be returned if
the #DELQUE request cannot be serviced because no current of queue has been
established (no resource control element exists for the queue record).

IOERXIT=i/o-error-label
Specifies the symbolic name of the routine to which control should be returned if
the #DELQUE request cannot be serviced because of an I/O error while
processing the delete.

INVPXIT=invalid-parameter-list-label
Specifies the symbolic name of the routine to which control should be returned if
the #DELQUE request cannot be serviced because of an invalid parameter in the
parameter list.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

Example: The following example of the #DELQUE statement deletes an entire
queue area. The address of the queue header ID is contained in register 4. In the
event of an I/O error, control will be returned to the ERROR5 routine of the issuing
program; other error conditions will result in an abend of the issuing task.

 #DELQUE QUEID=(R4),LOC=ALL,COND=IOER,IOERXIT=ERROR5

Status codes: By default, the #DELQUE request is unconditional; any runtime
error will result in an abend of the issuing task. To avoid an abend, you can request
return of control to the issuing program by using the COND parameter.

After completion of the #DELQUE function, the value in register 15 indicates the
outcome of the operation.

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced due to an invalid parameter list.

X'08' The request cannot be serviced because the requested queue header
record (identified by QUEID) cannot be found.

X'0C' The request cannot be serviced because the requested queue record
cannot be found.

6-48 CA-IDMS DML Reference — Assembler

6.21 #DELQUE

If an I/O error occurs while processing a #DELQUE request, the system will return the
address of the IDMS communications block to register 1. In this situation, you can
check the status code in the ERRSTAT field (for more information, see 3.2.2,
“ERRSTAT field and codes” on page 3-11).

Register 15
value

Meaning

X'10' The request for a #DELQUE LOC=CURRENT cannot be serviced
because no resource control element (RCE) exists for the queue
record, indicating that currency has not been established.

X'1C' The request cannot be serviced due to an I/O error during
processing.

Chapter 6. Data Manipulation Language Statements 6-49

6.22 #DELSCR

 6.22 #DELSCR

The #DELSCR statement deletes one or all scratch records in a scratch area.

 Syntax

��─┬─────────┬─ #DELSCR ──�

└─ label ─┘

 �─┬──┬─────────────────────────────�

└─ PLIST= ─┬─ SYSPLIST ← ───────────────────┬┘

└─ parameter-value-list-pointer ─┘

 �─┬─────────────────────────────────┬──�

└─ ,SAID=scratch-area-id-pointer ─┘

 �─┬──┬─────────────────────────�

└─ ,LOC= ─┬─ Next ← ───────────────────────────┬─┘

├─ Current ──────────────────────────┤

├─ First ────────────────────────────┤

├─ Last ─────────────────────────────┤

├─ Prior ────────────────────────────┤

├─ All ──────────────────────────────┤

└─ (SRID,scratch-record-id-pointer) ─┘

 �─┬───┬──────────────────────────────�

└─ ,RTNSRID= ─┬─ (1) ← ────────────────────┬┘

└─ return-scratch-record-id ─┘

 �─┬───────────────────────────────┬──�

└─ ,COND= ─┬── NO ← ───────────┬┘

├── ALL ────────────┤

│ ┌─── , ─────┐ │

└─(─↓─┬─ NAID ─┬┴─)─┘

├─ NIRD ─┤

├─ IOER ─┤

└─ INVP ─┘

 �─┬─────────────────────────────────────┬────────────────────────────────────�

└─ ,NAIDXIT=no-scratch-area-id-label ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,NRIDXIT=no-scratch-record-id-label ─┘

 �─┬─────────────────────────────┬──�

 └─ ,IOERXIT=i/o-error-label ─┘

 �─┬───┬────────────────────────────────�

└─ ,INVPXIT=invalid-parameter-list-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

6-50 CA-IDMS DML Reference — Assembler

6.22 #DELSCR

 Parameters

PLIST=
Specifies the location of the 3-fullword storage area in which the system will build
the #DELSCR parameter list.

SYSPLIST
(Default); the symbolic name of the storage area in which the system will build
the #DELSCR parameter list.

parameter-list-pointer
A register that points to the area or the symbolic name of the area in which the
system will build the #DELSCR parameter list.

SAID=
Specifies the 1- to 8-character ID of the scratch area associated with the scratch
record being deleted.

scratch-area-id-pointer
A register that points to a field containing the id, the symbolic name of a
user-defined field containing the ID, or the ID literal enclosed in quotation marks.
If the SAID parameter is not specified, a scratch area ID of 8 blanks is assumed.

LOC=
Specifies the scratch record to be deleted from the area associated with the
specified scratch record id.

NEXT
(Default); deletes the next record. If currency has not been established, NEXT is
equivalent to FIRST.

CURRENT
Deletes the current record, that record most recently referenced by another scratch
function.

FIRST
Deletes the first record. (Records are always stored in ascending order by scratch
record ID.)

LAST
Deletes the last record.

PRIOR
Deletes the prior record. If currency has not been established, PRIOR is
equivalent to LAST.

ALL
Deletes all records.

(SRID,scratch-record-id)
Deletes the record identified by scratch-record-id. Scratch-record-id is a register
that points to the 4-byte scratch record id, the symbolic name of a user-defined
field containing the id, or an absolute expression of the id.

Chapter 6. Data Manipulation Language Statements 6-51

6.22 #DELSCR

RTNSRID=(1)/
Specifies the location to which the system will return the scratch record ID of the
last record deleted with a #DELSCR function.

return-scratch-record-id
A register or the symbolic name of a fullword user-defined field to which the
system will return the scratch record ID of the last record deleted, the default is
register 1.

COND=
Specifies whether this #DELSCR is conditional and under what conditions control
should be returned to the issuing program, as follows.

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the delete cannot
be serviced for any of the reasons listed below.

condition
Specifies conditions under which control is returned to the issuing program.
Multiple condition options must be enclosed in parentheses and separated by
commas.Condition options are as follows:

■ NAID The scratch area ID cannot be found.

■ NRID The scratch record ID cannot be found.

■ IOER An I/O error occurs while processing the deletion.

■ INVP The parameter list built for the #DELSCR is invalid.

NAIDXIT=no-scratch-area-id-label
Specifies the symbolic name of the routine to which control should be returned if
the #DELSCR request cannot be serviced because the scratch area ID cannot be
found.

NRIDXIT=no-scratch-record-id-label
Specifies the symbolic name of the routine to which control should be returned if
the #DELSCR request cannot be serviced because the scratch record ID cannot be
found.

IOERXIT=i/o-error-label
Specifies the symbolic name of the routine to which control should be returned if
the #DELSCR request cannot be serviced because of an I/O error while processing
the #DELSCR request.

INVPXIT=invalid-parameter-list-label
Specifies the symbolic name of the routine to which control should be returned if
the #DELSCR request cannot be serviced because of an invalid parameter list.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

6-52 CA-IDMS DML Reference — Assembler

6.22 #DELSCR

Example: The following example of the #DELSCR statement deletes the current
record within the scratch area labeled SCRAREA1. The ID of the deleted record will
be placed in register 1. The request is not conditional; any error condition resulting
from the execution of this statement will result in an abend of the issuing task.

 #DELSCR SAID='SCRAREA1',LOC=CURRENT,RTNSRID=(R1),COND=NO

Status codes: By default, the #DELSCR request is unconditional; any runtime
error will result in an abend of the issuing task. You can request return of control to
the issuing program by using the COND parameter to avoid an abend.

After completion of the #DELSCR, the value in register 15 indicates the outcome of
the operation.

If an I/O error occurs while processing a #DELSCR request, the system will return the
address of the IDMS communications block to register 1. In this situation, you can
check the status code in the ERRSTAT field for more detailed information (see 3.2.2,
“ERRSTAT field and codes” on page 3-11). If no error occurs during processing, a
user-defined register assigned by the RTNSRID parameter will contain the SRID of the
last scratch record deleted.

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced due to an invalid parameter list.

X'08' The request cannot be serviced because the requested scratch area
ID (SAID) cannot be found.

X'0C' The request cannot be serviced because the requested scratch record
ID (SRID) cannot be found within the named SAID.

X'1C' The request cannot be serviced due to an I/O error during
processing.

Chapter 6. Data Manipulation Language Statements 6-53

6.23 #DEQ

 6.23 #DEQ

The #DEQ statement releases resources acquired by the issuing task with an #ENQ
request. All acquired resources will be released, either explicitly with a #DEQ request
or automatically at task termination.

 Syntax

��─┬─────────┬──�

└─ label ─┘

 �─── #DEQ RSCID= ─┬─ ALL ─────────────────────────┬──────────────────────────�

└─ resource-id-pointer-options ─┘

 �─┬───┬──────────────────────────────�

└─ PLIST= ─┬─ SYSPLIST ← ───────────────────┤

└─ parameter-value-list-pointer ─┘

 �─┬─────────────────────────┬──�

└─ ,COND= ─┬─ NO ← ──────┬┘

└─ IDNF ──────┘

 �─┬──┬─────────────────────────────────�

└─ ,IDNFXIT=resource-id-not-found-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

Expansion of resource-id-pointer-options

 ┌──┐

 �─── (──↓── resource─id─pointer ─┬───────────────────────┬─┴─) ────────────�

└─ ,resource-id-length ─┘

 Parameters

RSCID=
Specifies the resources to be released.

ALL
Requests that the system release all resources acquired by the issuing task by
means of the #ENQ requests.

resource-id-pointer-options
Specifies the ID associated with a specific resource to be dequeued.
Resource-id-pointer is a register that points to a field containing the id, the
symbolic name of a user-defined field containing the id, or the ID literal enclosed
in quotation marks.Resource-id-pointer must be enclosed in parentheses.

The optionalresource-id-length specifies the length of the resource ID named by
resource-id-pointer (up to 256 bytes).Resource-id-length is a register that
contains the length, the symbolic name of a fullword, halfword, or byte-length
user-defined field containing the length, or an absolute expression. The length of
the ID need not be specified if resource-id-pointer is provided as a literal enclosed
in quotation marks.

Multiple RSCID parameters must be in successive order, separated by commas.

6-54 CA-IDMS DML Reference — Assembler

6.23 #DEQ

PLIST=
Specifies the location of the storage area in which the system will build the #DEQ
parameter list, as follows.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system will build
the #DEQ parameter list.

parameter-value-list-pointer
A register that points to the area or the symbolic name of the area in which the
system will build the #DEQ parameter list.

The size, in fullwords, of the parameter-list area is equal to:

1 + 2P + ((R + 3)/4),

where:

■ P is the number of resource-id specifications named for the RSCID parameter
(described above).

■ R is the number of resource-id-length specifications named in register
notation for the RSCID parameter.

If RSCID=ALL is specified, the length of this storage area is one fullword; if five
resource ids are specified and four have a length indicated in register notation, it is
13 fullwords. (Note that in this case the calculated value of 12.75 was rounded up
to a whole number.)

COND=
Specifies whether this #DEQ is conditional and under what conditions control
should be returned to the issuing program:

NO
(Default); specifies that the request is not conditional.

IDNF
Specifies that the request is conditional. Control is returned if one or more
resource ids identified by the RSCID parameter cannot be found.

IDNFXIT=resource-id-not-found-label
Specifies the symbolic name of the routine to which control should be returned if
the #DEQ request cannot be completely serviced because one or more resource ids
cannot be found.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded. In this case, the ERROR parameter functions the same as
IDNFXIT.

Example: The following example of the #DEQ statement releases the resource that
is identified in the program variable storage field labeled RESOURC3. Register 4
contains the length of the resource. If the resource cannot be found, control will be
returned to the routine NOTFOUND.

 #DEQ RSCID=(RESOURC3,(4)),COND=IDNF,IDNFXIT=NOTFOUND

Chapter 6. Data Manipulation Language Statements 6-55

6.23 #DEQ

Status codes: By default, the #DEQ is unconditional. Error conditions that can
occur are described below. If one or more resources cannot be found, the issuing task
will abend. You can avoid an abend by specifying the COND parameter, requesting
the DC/UCF system to return control to the issuing program.

After completion of the #DEQ request, the value in register 15 indicates the outcome
of the operation.

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'04' At least one resource ID (RSCID) could not be found; all that were
located have been dequeued.

6-56 CA-IDMS DML Reference — Assembler

6.24 @DISCON

 6.24 @DISCON

The @DISCON statement cancels the current membership of a specified record in a
set occurrence. The specified record must be defined as an optional member of the
named set.

Note: Native VSAM users — The @DISCON statement is not valid because all sets
in native VSAM data sets must be defined as mandatory automatic.

The following consideration apply:

■ All areas affected, either explicitly or implicitly, by the @DISCON statement must
be readied with one of the update usage modes (see 6.57, “@READY” on
page 6-227 later in this chapter).

■ After successful execution of the @DISCON statement, you can no longer access
the specified record through the set for which membership was canceled.
However, you can access the disconnected record through all the other sets in
which it participates as a member, or if it has a location mode of CALC. It is
always accessible by means of a complete scan of the area in which it participates
or directly through its db-key, if known.

Currency: Before execution of the @DISCON statement, the following
currency-related conditions must be satisfied:

■ The specified record must be established as current of its record type.

■ The specified record must currently participate as a member in an occurrence of
the named set.

A successfully executed @DISCON statement nullifies currency in the named set.
However, the next of set and prior of set are maintained, thereby enabling continued
access within the set. The disconnected record is current of run unit, its record type,
and its area.

 Syntax

��─── @DISCON REC=record-name ──�

 �─── ,SET=set-name ──��

 Parameters

REC=
Disconnects the specified record from the named set.

record-name
Must be a record included in the subschema and must be defined as an optional
member of the specified set.

SET=
Specifies the set from which the named record will be disconnected.

Chapter 6. Data Manipulation Language Statements 6-57

6.24 @DISCON

set-name
Must be a set included in the subschema.

Example: The following example demonstrates the use of the @DISCON statement
to remove an EMPLOYEE record from the OFFICE-EMPLOYEE set occurrence. The
EMPLOYEE record remains a member in the other set occurrences in which it
participates:

 MVC OFFCODE,=CL4'32��'

 @FIND CALC,REC='OFFICE'

 @FIND FIRST,REC='EMPLOYEE',SET='OFFICE-EMPLOYEE'

 @DISCON REC='EMPLOYEE',SET='OFFICE-EMPLOYEE'

The following figure illustrates the above example. To disconnect EMPLOYEE 4
from the OFFICE 1 occurrence of the OFFICE-EMPLOYEE set, enter the database on
OFFICE 1, establish EMPLOYEE 4 as current of the EMPLOYEE record type, and
disconnect it from the OFFICE-EMPLOYEE set.

6-58 CA-IDMS DML Reference — Assembler

6.24 @DISCON

Status codes: After completion of the @DISCON function, the ERRSTAT field in
the IDMS communications block indicates the outcome of the operation.

Status code Meaning

1106 Currency has not been established for the named record.

1108 The named record is not in the subschema. The program has
probably invoked the wrong subschema.

1109 The specified record's area has not been readied in one of the three
update usage modes.

1110 The subschema specifies an access restriction that prohibits use of
the @DISCON statement.

1115 The @DISCON statement cannot be executed because the specified
record has been defined as a mandatory member of the set.

1121 An area other than the area of the specified record has been readied
with an incorrect usage mode.

1122 The specified record is not currently a member of the specified set.

Chapter 6. Data Manipulation Language Statements 6-59

6.25 #ENDPAG

 6.25 #ENDPAG

The #ENDPAG statement terminates a map paging session, clears the scratch record
for the session, and clears the map paging options for the completed session. A
#STRTPAG/#ENDPAG pair encloses commands that handle a pageable map at
runtime.

�� For more information on the #STRTPAG statement, see 6.68, “#STRTPAG” on
page 6-261 later in this chapter.

 Syntax

��─── #ENDPAG ──�

 �─┬───┬────────────────────────────�

└─ ,PLIST= ─┬─ SYSPLIST ← ───────────────────┬┘

└─ parameter-value-list-pointer ─┘

 �─┬───┬──────────────────────────��

└─ ,MRBPGDS= ─┬─ MRBPGDS ← ────────────────────┬┘

└─ paging-request-block-pointer ─┘

 Parameters

PLIST=
Specifies the location of the storage area in which the system will build the
#ENDPAG parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system will build
the #ENDPAG parameter list.

parameter-value-list-pointer
A register that points to the area or the symbolic name of the area.

MRBPGDS=
Specifies the location of the 16-byte map paging request block.

MRBPGDS
(Default); is the symbolic name of the area in program variable storage in which
the map paging request block was copied by an #MRB DML statement.

paging-request-block-pointer
A register that points to the area or the symbolic name of the area that contains
the map paging request block.

Example: The following example of the #ENDPAG statement terminates a map
paging session that began with the #STRTPAG statement, clears the BACKPAG=YES
and FLAG=UPDATE map paging options, and specifies the address of the #ENDPAG
parameter list in register 3:

 #STRTPAG MRB=(R4),BACKPAG=YES,FLAG=UPDATE

 .

. (��� MAP PAGING SESSION ���)

 .

 #ENDPAG PLIST=(R3)

6-60 CA-IDMS DML Reference — Assembler

6.26 #ENQ

Status codes: The #ENDPAG statement is unconditional; any runtime error will
result in an abend of the issuing task.

Chapter 6. Data Manipulation Language Statements 6-61

6.26 #ENQ

 6.26 #ENQ

The #ENQ statement acquires resources or tests for availability of a resource or list of
resources. Defined during installation, resources can be storage areas, common
routines, queues, and processor time.

An enqueued resource can be exclusive or shared:

■ Exclusive specifies that the resource is owned exclusively by the issuing task and
is not available to any other tasks. The system prohibits other tasks from issuing
#ENQ requests for exclusive resources.

■ Shared specifies that the resource is available for use by all tasks. The system
allows other tasks to issue nonexclusive #ENQ requests for the resources,
permitting the resources to be shared.

An exclusive #ENQ request prohibits another task from enqueuing a resource by name;
however, it does not prohibit the use of the resource by another task. Therefore, to
effect queue resource protection, you must apply the enqueue/dequeue mechanism
consistently, according to your site standards.

6-62 CA-IDMS DML Reference — Assembler

6.26 #ENQ

 Syntax

��─┬─────────┬─ #ENQ RSCID= ──�

└─ label ─┘

 �─── (resource-id-pointer ─┬───────────────────────┬──┬───────┬─) ──────────�

└─ ,resource-id-length ─┘ ├─ ,E ← ┤

└─ ,S ──┘

 �─┬───┬────────────────────────────�

└─ ,PLIST= ─┬─ SYSPLIST ← ───────────────────┬┘

└─ parameter-value-list-pointer ─┘

 �─┬────────────────────────┬───�

└─ ,TYPE= ─┬─ ACQUIRE ← ┬┘

└─ TEST ─────┘

 �─┬───────────────────────────────┬──�

└─ ,COND= ─┬── NO ← ───────────┬┘

├── ALL ────────────┤

│ ┌─── , ─────┐ │

└─(─↓─┬─ RSNA ─┬┴─)─┘

└─ DEAD ─┘

 �─┬───┬────────────────────────────────�

└─ ,RSNAXIT=resource-not-available-label ─┘

 �─┬───────────────────────────┬──�

└─ ,DEADXIT=deadlock-label ─┘

 �─┬──────────────────────┬───�

└─ ,ERROR=error-label ─┘

 �─┬───────────────────────────────┬──��

└─ ,FREEXIT=test-is-free-label ─┘

 Parameters

RSCID=
Names one or more resources to be acquired or tested, specifies the length of each
resource, and designates the resource as exclusive or shared.

resource-id-pointer
Specifies the 1- to 256-character ID associated with a resource. The resource-id
can be a register that points to a field that contains the id, the symbolic name of a
user-defined field that contains the ID, or the ID literal enclosed in quotation
marks. Any resource name can be specified, provided that all programs accessing
the resource use the same name.

resource-id-length
Specifies the length of the resource id.Resource-id-length is a register that
contains either the length, the symbolic name of a fullword, halfword, or
byte-length user-defined field that contains the length, or an absolute expression.
You need not specify the length of the ID if resource-id-pointer is provided as a
literal enclosed in quotation marks.

Chapter 6. Data Manipulation Language Statements 6-63

6.26 #ENQ

E/S
Assigns the exclusive (E) (default) or shared (S) attribute to the named resource.

Note: Multiple RSCID parameters must be in successive order, separated by
commas.

PLIST=
Specifies the location of the storage area in which the system will build the #ENQ
parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system will build
the #ENQ parameter list.

parameter-value-list-pointer
Either a register that points to the area or the symbolic name of the area in which
the system will build the #ENQ parameter list.

The size of the parameter-list area, in fullwords, is equal to:

1 + 3P + ((R + 3)/4)

where:

■ P is the number of resource-id specifications in the RSCID parameter
(described above).

■ R is the number of resource-id-length specifications named in register
notation for the RSCID parameter.

Thus, if four resource IDs are specified and three are identified using register
notation, the length of this storage area is 15 fullwords. In this case the calculated
value of 14.5 was rounded up to a whole number. Calculated values are always
rounded up to the nearest whole number, regardless of the remainder value.

TYPE=
Specifies whether the issuing task is to test a resource for availability or request
acquisition of a resource:

ACQUIRE
(Default); requests that the system acquire the specified resources.

TEST
Requests that the system test the availability of the specified resource.

COND=
Specifies whether this #ENQ request is conditional and under what conditions
control should be returned to the issuing program. Only acquire requests can be
conditional; this parameter shouldnot be specified when testing the enqueue status
of a resource.

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the #ENQ cannot
be serviced for any of the reasons listed below.

6-64 CA-IDMS DML Reference — Assembler

6.26 #ENQ

condition
Specifies specific conditions you can test for. Multiple conditions must be
enclosed in parentheses and separated by commas.

RSNA
Specifies that control is returned if any of the requested resources is not available
in the usage mode requested.

DEAD
Specifies that control is returned if a requested resource cannot be enqueued
immediately because of an unavailable condition, and or to wait would cause a
deadlock.

RSNAXIT=resource-not-available-label
Specifies the symbolic name of a routine to which control should be returned if
the #ENQ request cannot be serviced because at least one of the requested
resources is not available.

DEADXIT=deadlock-label
Specifies the symbolic name of a routine to which control should be returned if
the #ENQ request cannot be serviced because one of the requested resources
cannot be enqueued immediately, and if to wait on its availability would cause a
deadlock.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

FREEXIT=test-is-free-label
(Test requests only); specifies the symbolic name of a routine to which control
should be returned if at least one of the resources is free.

Example: The following example of the #ENQ statement tests for the availability of
a resource. Register 5 contains the address of the field that contains the resource id,
the user-defined field LENGTH contains the length of the resource id, and if the test
indicates the resource is free, control is returned to the routine labeled GETRTN:

 #ENQ RSCID=(R5),LENGTH,TYPE=TEST,FREEXIT=GETRTN

Status codes: By default, an acquire #ENQ is unconditional. Error conditions that
can occur are described below:

■ A resource-not-available condition, caused when at least one of the resources
cannot be acquired by the issuing task, will result in a delay until the resource
becomes available (unless such a wait would cause a deadlock).

■ A potential deadlock condition, caused when a wait on a resource would cause a
deadlock, will result in an abend of the issuing task.

You can request return of control with the COND parameter while processing an
acquire #ENQ to avoid a delay or an abend.

Chapter 6. Data Manipulation Language Statements 6-65

6.26 #ENQ

By default, a test #ENQ is unconditional. The return code, contained in register 15,
indicates the outcome of the test. Control is returned to the next instruction in the
issuing program following the #ENQ. Through the FREEXIT parameter, however,
you can request a return of control to a specific label or routine in the event that at
least one of the resources tested is free.

After completion of the #ENQ request, the value in register 15 indicates the outcome
of the operation.

Register 15
value

#ENQ Type/Meaning

X'00' ACQUIRE

All requested resources have been acquired.

TEST

All test resources have already been enqueued by the issuing task
with the exclusive/shared option indicated by the test request.

X'04' ACQUIRE

At least one of the resources indicated is currently owned by
another task and is not available for the exclusive/shared option
specified; no new resources have been acquired.

TEST

At least one of the tested resources is owned by another task and is
not available to this task for the exclusive/shared option specified.

X'08' ACQUIRE

Not applicable.

TEST

At least one of the tested resources is not already owned by any
task and is available for the exclusive/shared option specified.

X'0C' ACQUIRE

A requested resource could not be enqueued immediately and to
wait would cause a deadlock; no new resources have been
acquired.

TEST

Not applicable.

6-66 CA-IDMS DML Reference — Assembler

6.27 @ERASE

 6.27 @ERASE

The @ERASE statement performs the following functions:

■ Disconnects the specified record from all set occurrences in which it participates
as a member and physically deletes the record from the database

■ Optionally erases all records that are mandatory members of set occurrences
owned by the specified record

■ Optionally disconnects or erases all records that are optional members of set
occurrences owned by the specified record

Erasure is a two-step process that first cancels the existing membership of the specified
record in specific set occurrences and then releases for reuse the space occupied by the
named record and its db-key. Erased records are unavailable for further processing by
any DML statement.

Before using the @ERASE statement, you must ready all the areas affected, either
implicitly or explicitly, in one of the three update usage modes (see 2.2, “Dictionary
usage mode” on page 2-4).

Currency: Before execution of the @ERASE statement, the following
currency-related conditions must be satisfied:

■ All sets in which the specified record participates as owner either directly or
indirectly (for example, as owner of a set with a member that is owner of another
set) and all member record types in those sets must be included in the subschema
in use.

■ The named record must be established as current of run unit.

Following successful execution of an @ERASE statement, currency is nullified for all
record types both explicitly and implicitly involved in the erase and for all sets in
which erased records participate. Run unit and area currency remain unchanged.

Note: Native VSAM users — When the @ERASE statement is used against a native
VSAM area, the area currency changes and reflects the next record in the native
VSAM area.

An attempt to retrieve erased records results in an error condition. However, if the
erased record was reached by walking the set occurrence of the erased record, the prior
of set is maintained for the erased record, whether or not prior pointers were defined
for that set. (The next of set is also maintained, as usual). Also, CA-IDMS/DB
maintains the next, prior, and owner pointers for the last erased record occurrence that
participates as a member in any other set occurrence not the object of the @ERASE.
In this case, you can retrieve the next or prior records in the area, or the next, prior, or
owner records in the set in which the erased record participated.

 Syntax

Chapter 6. Data Manipulation Language Statements 6-67

6.27 @ERASE

��─── @ERASE= ─┬─ REC ───────┬──�

├─ PERMANENT ─┤

├─ SELECTIVE ─┤

└─ ALL ───────┘

 �─── ,REC=record-name ───��

 Parameters

REC/PERMANENT/SELECTIVE/ALL,REC=record-name
Erases a record from the database.

REC
Erases the specified record if it is not an owner of any member records. An error
condition results if the named record is the owner of any nonempty set
occurrences.

Note: Native VSAM users — @ERASE REC,REC=record-name is the only
form of the @ERASE statement valid for records in a native VSAM KSDS or
RRDS; no form of the @ERASE statement is allowed for a native VSAM
entry-sequenced data set (ESDS).

PERMANENT
Erases the specified record and all mandatory member record occurrences owned
by that record. Optional member records are disconnected. If any of the erased
mandatory members are themselves the owners of any set occurrences, the
@ERASE statement is executed on such records as if they were directly the
named record of an @ERASE PERMANENT statement (that is, all mandatory
members of such sets are also erased). This process continues until all (direct and
indirect) members have been processed.

Note: The statement ERASE/PERMANENT/SELECTIVE/ALL cannot be used
where there exists a cyclical relationship between two or more of the records that
are to be erased. The following describes a cyclical set relationship:

REC-A owns REC-B in the A-B set

REC-B owns REC-C in the B-C set

REC-C owns REC-B in the C-B set

(cyclical relationship between REC-B and REC-C)

Junction records should be used to define the needed relationships.

SELECTIVE
Erases that record and all mandatory member record occurrences owned by the
specified record. Optional member records are erased if they do not currently
participate as members in other set occurrences. All erased records that are
themselves the owners of any set occurrences are treated as if they were the object
of an @ERASE SELECTIVE statement.

ALL
Erases the specified record and all mandatory member record occurrences owned
by the specified record. All erased records that are themselves the owners of any
set occurrences are treated as if they were the specified record of an @ERASE
ALL statement.

6-68 CA-IDMS DML Reference — Assembler

6.27 @ERASE

REC=record-name
A record included in the subschema. The current of record-name must be current
of run unit.

 Example

 @ERASE PERMANENT,REC='DEPT'

 @ERASE SELECTIVE,REC='TCHR'

 @ERASE ALL,REC='TCHR'

The sample employee database affords no appropriate examples of these parameters; a
sample high school database is used instead. The outcome of the @ERASE statement
varies, based on the qualifier specified (PERMANENT, SELECTIVE, or ALL).
Although all three qualifiers cause all mandatory members owned by the specified
record to be erased, they differ in their effect on optional members.

Chapter 6. Data Manipulation Language Statements 6-69

6.27 @ERASE

Status codes: After completion of the @ERASE function, the ERRSTAT field in
the IDMS communications block indicates the outcome of the operation.

Status code Meaning

0000 The request has been serviced successfully.

0208 The named record is not in the specified subschema, or the record
name has been misspelled.

0209 The specified record's area has not been readied in one of the three
update usage modes.

0210 The subschema specifies an access restriction that prohibits use of
the @ERASE statement. For integrated indexing users, this code
can also indicate use of an invalid form of the @ERASE statement.

0213 A current record of run unit has not been established or has been
nullified by a previous @ERASE statement.

0217 A db-key has been encountered that contains a long-term
permanent lock.

0220 The current record of run unit is not the same type as the specified
record.

0221 An area other than the area of the named record has been readied
with an incorrect usage mode.

6-70 CA-IDMS DML Reference — Assembler

6.27 @ERASE

Status code Meaning

0225 Currency has not been established. For integrated indexing users,
this usually indicates that an @FIND statement has been issued for
an indexed record and followed by an @ERASE statement for the
same record. Only an @OBTAIN statement updates index set
currencies.

0226 A broken chain has been encountered in the process of executing
an @ERASE ALL, PERMANENT, or SELECTIVE statement.

0230 An attempt has been made to erase the owner record of a nonempty
set.

0233 Erasure of the record occurrence is not allowed in this subschema,
or all sets in which the record participates have not been included
in the subschema.

0237 There are cyclical set relationships present under the target record
of the erase verb

0260 A record occurrence has been encountered whose type is
inconsistent with the set named in the ERRORSET field of the
IDMS communications block; probable causes could be a broken
chain or improper database descriptions.

0261 No record can be found for an internal db-key. This code usually
indicates a broken chain.

Chapter 6. Data Manipulation Language Statements 6-71

6.28 @ERASE (LRF)

 6.28 @ERASE (LRF)

The @ERASE statement can also be used to delete logical record occurrences. The
@ERASE statement does not necessarily result in the deletion of all or any of the
database records used to create the specified logical record; the path selected to service
an @ERASE logical-record request performs whatever database access operations the
DBA has specified to service the request.

LRF uses field values present in the variable-storage location reserved for the logical
record to update the database. You can specify an alternative storage location from
which LRF is to take field values to make the appropriate updates to the database.

 Syntax

��─── @ERASE REC=logical-record-name ───�

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,IOREA=alt-logical-record-location ─┘

 �─┬───┬────────────────────────────�

└─ ,ONLRSTS=path-status,GOTO=branch-location ─┘

 �─┬─────────────────────────────┬──��

└─ ,WHERE boolean-expression ─┘

 Parameters

REC=logical-record-name
Deletes the named logical record. Unless the IOAREA clause (below) is included,
LRF uses field values present in the variable-storage location reserved for the
logical record to make any necessary updates to the database.
Logical-record-name must specify a logical record defined in the subschema.

IOAREA=alt-logical-record-location
Identifies an alternative variable-storage location from which LRF is to obtain
field values to perform the appropriate database updates in response to this
statement. When erasing a logical record that has previously been retrieved into
an alternative storage location, you should use the IOAREA parameter to name the
same location specified in the @OBTAIN request. If the IOAREA parameter is
included in the @ERASE statement, alt-logical-record-location must identify a
record location defined in the program.

ONLRSTS=path-status,GOTO=branch-location
Tests for the indicated path status. If path-status results from this @ERASE
statement, the action specified by GOTO=branch-location is performed.
Path-status must be a literal (1-16 bytes) enclosed in quotation marks or a
program variable.

WHERE boolean-expression
Specifies the selection criteria to be applied to the specified logical record. For
more information on the WHERE clause, see 6.74.1, “WHERE clause” on
page 6-309 later in this chapter.

6-72 CA-IDMS DML Reference — Assembler

6.28 @ERASE (LRF)

Example: The example below illustrates a request to erase the OFFEMPLR logical
record for office 012's employee ID 1234.

In this example, the DBA has designated the keyword DELETE-EMPLOYEE to direct
the request to the path designed to retrieve the appropriate OFFEMPLR logical record
and to delete the indicated employee information from the database.

 @ERASE REC=OFFEMPLR, �

 ONLRSTS='NO-OFFICE',GOTO=END, �

WHERE OFFCODE EQ '�12' �

AND EMPID EQ '1234' �

 AND DELETE-EMPLOYEE

Status codes: When using LRF, the type of status code returned to the program in
the ERRSTAT field of the IDMS communications block differs according to the type
of error. If the error occurs in the logical-record path, the ERRSTAT field contains a
status code issued by CA-IDMS/DB with a major code from 00 to 19. For a list of
these codes, see 3.2.2, “ERRSTAT field and codes” on page 3-11.

When the error occurs in the request itself, LRF returns the path status LR-ERROR to
the LRSTAT field of the LRC block and places a status code with a major code of 20
in the ERRSTAT field of the IDMS communications block.

Chapter 6. Data Manipulation Language Statements 6-73

6.29 @FIND/@OBTAIN statements

 6.29 @FIND/@OBTAIN statements

The @FIND and @OBTAIN statements are used to access database records:

■ @FIND locates a record occurrence in the database, but does not move it into
program variable storage.

■ @OBTAIN locates the record occurrence in the database and moves it into
program variable storage.

Six formats: @FIND and @OBTAIN have six different formats:

■ @FIND/@OBTAIN CALC/DUPLICATE accesses a record occurrence using its
CALC-key value.

■ @FIND/@OBTAIN CURRENT accesses a record occurrence using previously
established currencies.

■ @FIND/@OBTAIN DBKEY accesses a record occurrence using a db-key that
was previously saved by the program.

■ @FIND/@OBTAIN OWNER accesses the owner of a set occurrence.

■ @FIND/@OBTAIN USING SORT KEY accesses a record occurrence in a
sorted set, using its sort-key value.

■ @FIND/@OBTAIN WITHIN SET/AREA accesses a record occurrence based
either on the record's logical location in a set or on its physical location in an
area.

Each of these @FIND/@OBTAIN statements is discussed on the following pages.

 6.29.1 @FIND/@OBTAIN CALC/DUPLICATE

The @FIND/@OBTAIN CALC/DUPLICATE statement accesses a record based on
the value of an element in the record defined as a CALC-key. The requested record
must be stored in the database with a location mode of CALC. Before issuing the
@FIND/@OBTAIN CALC/DUPLICATE statement, you must initialize a field in
program variable storage with the CALC-key value.

You can use the DUPLICATE option to access records with the same CALC-key
value as the record that is current of record type, provided that an @FIND/@OBTAIN
CALC statement has previously accessed an occurrence of the same record type.

Currency: You do not need to establish currency before executing a
@FIND/@OBTAIN CALC statement. However, record currency must be established
by a prior @FIND/@OBTAIN CALC statement before executing a
@FIND/@OBTAIN DUPLICATE statement.

Following successful execution of an @FIND/@OBTAIN CALC/DUPLICATE
statement, the accessed record becomes the current record of run unit, its area, its
record type, and all sets in which it currently participates as member or owner.

6-74 CA-IDMS DML Reference — Assembler

6.29 @FIND/@OBTAIN statements

 Syntax

��─┬─ @FIND ───┬──┬─┬─ CALC ─┬──┬───�

└─ @OBTAIN ─┘ │ └─ ANY ──┘ │

└─ DUPLICATE ─┘

 �─── REC=record-name ──�

 �─┬───────────────────────────┬──��

└─ ,KEEP= ─┬─ SHARED ──────┬┘

└─ EXCLUSIVE ───┘

 Parameters

CALC/DUPLICATE,REC=record-name
Accesses the record specified byrecord-name using the value of its CALC-key.

CALC
Accesses the first or only occurrence of the designated record type whose
CALC-key matches the value of the CALC data item in program variable storage.
ANY is a synonym of CALC.

DUPLICATE
Accesses the next record with the same CALC-key value as the current record
type. Use of the DUPLICATE option requires prior selection of an occurrence of
the same record type with the CALC option. If the value of the CALC-key in
variable storage is not equal to the CALC-key field of the current of record type, a
status code of 0332 is returned.

REC=record-name
Names the record being accessed.Record-name can be a register containing the
name of the record or a user-supplied value enclosed in quotation marks.

KEEP=
Optionally places a shared or exclusive lock on the accessed record.

SHARED
Places a shared lock on the specified record.

EXCLUSIVE
Places an exclusive lock on the specified record.

Example: To retrieve an occurrence of the EMPLOYEE record with the
@FIND/@OBTAIN CALC/DUPLICATE statement, you must first initialize a field in
program variable storage with the CALC-control element. The following statements
initialize the CALC field EMPID and retrieve an occurrence of the EMPLOYEE
record:

 MVC EMPID,INEMPID

 @OBTAIN CALC,REC='EMPLOYEE'

Status codes: After completion of the @FIND/@OBTAIN CALC/DUPLICATE
function, the ERRSTAT field in the IDMS communications block indicates the
outcome of the operation:

Chapter 6. Data Manipulation Language Statements 6-75

6.29 @FIND/@OBTAIN statements

When the KEEP parameter is specified a major code of 06 will be returned if an error
occurs during the KEEP processing. The major code of 03 states that an error has
occurred in the @FIND/@OBTAIN processing.

Status code Meaning

0000 The request has been serviced successfully.

0301 The area in which the named record participates has not been
readied.

0306 A successful @FIND/@OBTAIN CALC has not yet been executed
(applies to the DUPLICATE option only).

0308 The specified record is not in the subschema. The program has
probably invoked the wrong subschema, or the record name has
been misspelled.

0310 The subschema specifies an access restriction that prohibits
retrieval of the named record.

0318 The record has not been bound.

0326 The record or integrated indexing entry cannot be found, or no
more duplicates exist for the named record.

0331 The retrieval statements format conflicts with the record's location
mode.

0332 The value of the CALC data item in program variable storage does
not equal the value of the CALC data item in the current record
(applies to the DUPLICATE option only).

0364 The CALC control element has not been described correctly either
in the program or in the subschema.

0370 A database file will not open properly.

 6.29.2 @FIND/@OBTAIN CURRENT

The @FIND/@OBTAIN CURRENT statement accesses the record that is current of its
record type, set, or area. This form of the @FIND/@OBTAIN verb is an efficient
means of establishing the proper record as current of run unit before executing a DML
verb that utilizes run-unit currency (for example, @ACCEPT, @IF, @GET,
@MODIFY, or @ERASE).

Currency: Following successful execution of an @FIND/@OBTAIN CURRENT
statement, the accessed record is current of run unit, its area, its record type, and all
sets in which it currently participates as member or owner.

 Syntax

6-76 CA-IDMS DML Reference — Assembler

6.29 @FIND/@OBTAIN statements

��─┬─ @FIND ───┬────── CURRENT ───�

└─ @OBTAIN ─┘

 �─┬────────────────────┬───�

├─ ,REC=record-name ─┤

├─ ,SET=set-name ────┤

└─ ,AREA=area─name ──┘

 �─┬───────────────────────────┬──��

└─ ,KEEP= ─┬─ SHARED ──────┬┘

└─ EXCLUSIVE ───┘

 Parameters

@FIND/@OBTAIN CURRENT
Accesses the record occurrence that is current of run unit.

REC=record-name/SET=set-name/AREA=area-name
Specifies that the current record of the named record type, set, or area is to be
accessed.

REC=
Accesses the record that is current of run unit.

record-name
A register containing the record name, a user-defined variable field, or a
user-supplied value enclosed in quotation marks.

SET=
Accesses the set that is current of run unit.

set-name
A register containing the set name, a user-defined variable field, or a user-supplied
value enclosed in quotation marks.

AREA=
Accesses the area that is current of run unit.

area-name
A register containing the area name, a user-defined variable field, or a
user-supplied value enclosed in quotation marks.

KEEP=
Places a shared or exclusive lock on the accessed record.

SHARED
Places a shared lock on the specified record.

EXCLUSIVE
Places an exclusive lock on the specified record.

Example: The following figure illustrates the use of the @FIND/@OBTAIN
CURRENT statement to establish a record as current of run unit before that record is
modified. (See 6.48, “@MODIFY” on page 6-176 later in this chapter for a complete
description of the @MODIFY verb and its use.) Enter the database on
DEPARTMENT 5100 by using CALC retrieval. Then examine EMPLOYEE 466 and
obtain further information from its owner OFFICE record. OFFICE 8 becomes current

Chapter 6. Data Manipulation Language Statements 6-77

6.29 @FIND/@OBTAIN statements

of run unit. Before modifying EMPLOYEE 466, you must issue the @FIND
CURRENT statement to reestablish EMPLOYEE 466 as current of run unit.

Status codes: After completion of the @FIND/@OBTAIN CURRENT function,
the ERRSTAT field in the IDMS communications block indicates the outcome of the
operation:

Status code Meaning

0000 The request has been serviced successfully.

6-78 CA-IDMS DML Reference — Assembler

6.29 @FIND/@OBTAIN statements

When the KEEP parameter is specified, a major code of 06 will be returned if an error
occurs during the KEEP processing. The major code of 03 states that an error has
occurred in the @FIND/@OBTAIN processing.

Status code Meaning

0301 The area in which the named record participates has not been
readied.

0306 Currency has not been established for the named record, set, or
area.

0308 The specified record is not in the subschema. The program has
probably invoked the wrong subschema.

0310 The subschema specifies an access restriction that prohibits
retrieval of the named record.

0313 A current record of run unit has not been established or has been
nullified by a previous @ERASE statement.

0323 The area name specified has not been included in the subschema
invoked.

 6.29.3 @FIND/@OBTAIN DBKEY

The @FIND/@OBTAIN DBKEY statement accesses a record occurrence directly by
using a database key that has been stored previously by the program. You can use the
DML @ACCEPT verb (see 6.5, “@ACCEPT DBKEY FROM CURRENCY” on
page 6-13 and 6.6, “@ACCEPT DBKEY RELATIVE TO CURRENCY” on
page 6-15, earlier in this chapter) or an Assembler assignment statement to save a
db-key. In this manner, you can directly access any record in the program's
subschema regardless of its location mode. Additionally, the DML @ACCEPT
PGINFO verb (see 6.7, “@ACCEPT PGINFO” on page 6-17, earlier in this chapter)
may be used to save page information that may be used to directly access the record
from a specific page group when the Mixed Page Binds Allowed feature is used. (See
the CA-IDMS Database Administration manual for more information about the Mixed
Page Group Binds Allowed feature.)

Note: Native VSAM users — This statement is not valid for accessing data records
in a native VSAM key-sequenced data set (KSDS).

Currency: Currency is not used to determine the location of the record specified in
the @FIND/@OBTAIN DBKEY statement; the record is identified by its db-key and,
optionally, by its record name.

Following successful execution of an @FIND/@OBTAIN DBKEY statement, the
accessed record becomes the current record of run unit, its area, its record type, and all
sets in which it currently participates as member or owner. The RECNAME field of
the IDMS communications block is updated with the name of the accessed record.

Chapter 6. Data Manipulation Language Statements 6-79

6.29 @FIND/@OBTAIN statements

 Syntax

��─┬─ @FIND ───┬───�

└─ @OBTAIN ─┘

 �─┬──────────────────────────┬──�

└─ ,KEEP= ─┬─ SHARED ────┬─┘

└─ EXCLUSIVE ─┘

 �─┬─ DBKEY=db-key ─┬───────────────────┬─┬──────────────────────────────────��

│ └─ ,PGINFO=pg-info ─┘ │

└─┬───────────────────┬─ DBKEY=db-key ─┘

└─ REC=record-name ─┘

 Parameters

@FIND/@OBTAIN DBKEY=db-key
Accesses a record directly by using a db-key value contained in program variable
storage.

db-key
Identifies the location in program variable storage that contains a db-key
previously saved by the program. If a record name is specified, db-key must
contain the db-key of an occurrence of the named record type. If a record name is
not specified, db-key can contain the db-key of an occurrence of any record type
in the subschema.Db-key must identify a binary fullword synchronized field; it
can be a register or a user-defined variable.

KEEP=
Places a shared or exclusive lock on the accessed record:

SHARED
Places a shared lock on the specified record.

EXCLUSIVE
Places an exclusive lock on the specified record.

PGINFO=pg-info
Specifies page information that is used to determine the area with which the
db-key is associated. If not specified, the page information associated with the
record that is current of rununit is used.

Note: Page information is only used if the subschema includes areas that have
mixed page groups; otherwise, it is ignored.

Pg-info, a four-byte field that is made up of two halfword fields, identifies the
location in variable storage that contains the page information previously saved by
the program.

Page information is returned in the PGINFO field in the subschema control area if
the subschema includes areas in mixed page groups. Page information may also
be returned using an @ACCEPT PGINFO statement.

REC=record-name
Optionally identifies the record type of the requested record.Record-name must
identify a record that is included in the subschema; it can be a register, a
user-defined variable, or a user-supplied variable enclosed in quotes.

6-80 CA-IDMS DML Reference — Assembler

6.29 @FIND/@OBTAIN statements

Example: The following @FIND statement locates an occurrence of the
EMPLOYEE record whose db-key matches the value of a field in program variable
storage called SAVEDKEY.

The located record becomes current of run unit, current of the EMPLOYEE record
type, current of the DEPT-EMPLOYEE, OFFICE-EMPLOYEE, and all other sets in
which it currently participates as member or owner, and current of the
ORDER-REGION area.

 @FIND DBKEY=SAVEDKEY,REC='EMPLOYEE'

Status codes: After completion of the @FIND/@OBTAIN DBKEY function, the
ERRSTAT field in the IDMS communication block indicates the outcome of the
operation.

When the KEEP parameter is specified as part of an @FIND/@OBTAIN statement, a
major code of 06 will be returned if an error occurs during the KEEP processing (see
6.39, “@KEEP” on page 6-122 later in this chapter). The major code of 03 states that
an error has occurred in the @FIND/@OBTAIN processing.

Status code Meaning

0000 This request has been serviced successfully.

0301 The area in which the named record participates has not been
readied.

0302 The db-key is inconsistent with the area in which the record is
stored. The db-key has not been initialized properly, or the record
name is incorrect.

0308 The requested record is not in the subschema. The program has
probably invoked the wrong subschema.

0310 The subschema specifies an access restriction that prohibits
retrieval of the named record.

0326 The specified record cannot be found.

0370 A database file will not open properly.

 6.29.4 @FIND/@OBTAIN OWNER

The @FIND/@OBTAIN OWNER statement accesses the owner record of the current
set occurrence. You can use this statement to retrieve the owner record of any set
whether or not that set has been assigned owner pointers.

Note: Native VSAM users — The @FIND/@OBTAIN OWNER statement is not
valid since the owner records are not defined in native VSAM data sets.

Chapter 6. Data Manipulation Language Statements 6-81

6.29 @FIND/@OBTAIN statements

Currency: To execute an @FIND/@OBTAIN OWNER statement, currency must be
established for the specified set.

Note: When a record declared as an optional or manual member of a set is retrieved,
it is not established as current of set if it is not currently connected to the named set.
A subsequent attempt to retrieve the owner record will instead locate the owner of the
current record of set. In such cases, you should determine whether the retrieved record
is actually a member of the named set before issuing the @FIND/@OBTAIN OWNER
statement. The @IF statement (see 6.38, “@IF” on page 6-119 in this chapter) can be
used for this purpose.

Following successful execution of an @FIND/@OBTAIN OWNER statement, the
accessed record becomes the current record of run unit, its area, its record type, and all
sets in which it currently participates as member or owner. If the current record of set
is the owner record when the statement is executed, currency in the specified set
remains unchanged.

 Syntax

��─┬─ @FIND ───┬────── OWNER ───�

└─ @OBTAIN ─┘

 �─── ,SET=set-name ──�

 �─┬───────────────────────────┬──��

└─ ,KEEP= ─┬─ SHARED ──────┬┘

└─ EXCLUSIVE ───┘

 Parameters

@FIND/@OBTAIN OWNER
Accesses the owner record of the specified set occurrence.

SET=set-name
Names the set whose owner record is to be retrieved.Set-name must be a set
included in the subschema; it can be a register, a user-defined variable, or a
user-supplied variable enclosed in quotes.

KEEP=
Places a shared or exclusive lock on the accessed record:

SHARED
Places a shared lock on the accessed record.

EXCLUSIVE
Places an exclusive lock on the accessed record.

Example: The following figure provides an example of how you would use the
@OBTAIN OWNER statement, in conjunction with other @OBTAIN statements, to
navigate the database and access the owner record of the OFFICE-EMPLOYEE set
from the owner record occurrence of the DEPT-EMPLOYEE set.

6-82 CA-IDMS DML Reference — Assembler

6.29 @FIND/@OBTAIN statements

Status codes: After completion of the @FIND/@OBTAIN OWNER function, the
ERRSTAT field in the IDMS communications block indicates the outcome of the
operation.

Status code Meaning

0000 The request has been serviced successfully.

0301 The area in which the named record participates has not been
readied.

0306 Currency has not been established for the named record, set, or
area.

Chapter 6. Data Manipulation Language Statements 6-83

6.29 @FIND/@OBTAIN statements

When the KEEP parameter is specified as part of an @FIND/@OBTAIN statement, a
major code of 06 will be returned if an error occurs during the KEEP processing (see
6.39, “@KEEP” on page 6-122 in this chapter). The major code of 03 states that an
error has occurred in the @FIND/@OBTAIN processing.

Status code Meaning

0308 The named record or the named set is not in the subschema, or the
named record is not defined as a member of the named set. The
program has probably invoked the wrong subschema. or the record
name has been misspelled.

0310 The subschema specifies an access restriction that prohibits
retrieval of the named record.

0360 A record occurrence has been encountered whose record type is not
a member or owner of the set as it is defined in the subschema.

0370 A database file will not open properly

6.29.5 @FIND/@OBTAIN USING SORT KEY

The @FIND/@OBTAIN USING SORT KEY statement accesses a member record in a
sorted set. Sorted sets are ordered in ascending or descending sequence based on the
value of a sort-control element in each member record. The search begins with the
current of set or the owner of the current of set, and always proceeds through the set
in the NEXT direction.

Before issuing this statement, you must initialize the sort-control element in program
variable storage. The selected record occurrence will have a key value equal to the
value of the sort-control element. If more than one record occurrence contains a sort
key equal to the key value in variable storage, the first such record will be selected.

Currency: Before execution of an @FIND/@OBTAIN USING SORT KEY
statement you have to establish currency for the specified set.

Following successful execution of an @FIND/@OBTAIN USING SORT KEY
statement, the accessed record becomes current of run unit, its area, its record type,
and all sets in which it currently participates as owner or member. If a member record
with the requested sort-key value is not found, the current of set is nullified but the
next of set and prior of set are maintained. The next of set is the member record with
the next higher sort-key value (or next lower for descending sets) than the requested
value; the prior of set is the member record with the next lower value (or higher for
descending sets) than requested. Because these currencies are maintained, the program
can walk the set to do a generic search on the sort-key value.

6-84 CA-IDMS DML Reference — Assembler

6.29 @FIND/@OBTAIN statements

 Syntax

��─┬─ @FIND ───┬────┬───────────┬─ ,REC=record-name ──────────────────────────�

└─ @OBTAIN ─┘ └─ CURRENT ─┘

 �─── ,SET=set-name ──�

 �─── USING=sort-field-name ──�

 �─┬───────────────────────────┬──��

└─ ,KEEP= ─┬─ SHARED ──────┬┘

└─ EXCLUSIVE ───┘

 Parameters

@FIND/@OBTAIN,REC=record-name,SET=set=name
Accesses the named record in a sorted set. The search begins with the owner of
the current record of the specified set.Record-name must be a record that is
defined in the subschema and that participates in the specified set.

CURRENT
Current indicates that the search begins with the currencies already established for
the specified set. If the key value for the record that is current of set is higher
than the key value of the specified record (assuming ascending set order), an error
condition results.

USING=
Specifies the sort-control element to be used in searching the sorted set.

sort-field-name
The name of the sort-control element in the record or the name of a field in
program variable storage that contains the value of the sort-control element.

KEEP=
Places a shared or exclusive lock on the accessed record.

SHARED
Places a shared lock on the specified record.

EXCLUSIVE
Places an exclusive lock on the specified record.

Example: The following example illustrates the use of an @FIND/@OBTAIN
USING SORT KEY statement. Assume that the DEPT-EMPLOYEE set is ordered in
ascending sequence, based on the value stored in EMPNAME in each EMPLOYEE
record occurrence. The @FIND statement assumes that the user has previously
selected an occurrence of a DEPARTMENT record to establish the set currency.
Retrieval of an EMPLOYEE record with a name (last name, first name) equal to
IANDOLI, LUIGI is accomplished by the following statements:

 MVC EMPNAME,=CL25'IANDOLI, LUIGI'

 @FIND REC='EMPLOYEE',SET='DEPT-EMPLOYEE',USING=EMPNAME

Status codes: After completion of the @FIND/@OBTAIN USING SORT KEY
function, the ERRSTAT field in the IDMS communications block indicates the
outcome of the operation.

Chapter 6. Data Manipulation Language Statements 6-85

6.29 @FIND/@OBTAIN statements

When the KEEP parameter is specified as part of an @FIND/@OBTAIN statement, a
major code of 06 will be returned if an error occurs during the KEEP processing (see
6.39, “@KEEP” on page 6-122 in this chapter). The major code of 03 states that an
error has occurred in the @FIND/@OBTAIN processing.

Status code Meaning

0000 The request has been serviced successfully.

0301 The area in which the named record participates has not been
readied.

0306 Currency has not been established for the named set.

0308 The named record or the named set is not in the subschema, or the
named record is not a member of the named set. The program has
probably invoked the wrong subschema.

0310 The subschema specifies an access restriction that prohibits
retrieval of the named record.

0326 The record cannot be found.

0331 The retrieval statement format conflicts with the record's location
mode.

0360 A record occurrence has been encountered whose record type is not
a member or owner of the set as it is defined in the subschema.

0361 A record cannot be found because of a broken chain in the
database.

0370 A database file will not open properly.

6.29.6 @FIND/@OBTAIN WITHIN SET/AREA

The @FIND/@OBTAIN WITHIN SET/AREA statement accesses records logically
based on set relationships or physically based on database location. The formats of
this statement allow you serial access to each record in a set or area, or selection of
specific occurrences of a given record type in a set or area.

Set currency: The following rules apply to currency and the selection of member
records in a set:

■ The set occurrence used as the basis for the operation is determined by the current
record of the specified set. Set currency must be established before attempting to
access records in a set.

■ The next or prior record in a set is the subsequent or previous record, respectively,
relative to the current record of the named set in the logical order of the set. The
prior record in a set can be retrieved only if the set has been assigned prior
pointers.

6-86 CA-IDMS DML Reference — Assembler

6.29 @FIND/@OBTAIN statements

■ The first or last record in a set is the first or last member occurrence in terms of
the logical order of the set. The record selected is the same as would be selected
if the current of set were the owner record and the next or prior record had been
requested. The last record in a set can be retrieved only if the set has prior
pointers.

■ The nth occurrence of a record in a set can be retrieved by specifying a sequence
number that identifies the position of the record in the set. CA-IDMS/DB begins
its search with the owner of the current of set for the specified set and continues
until it locates the nth record or encounters an end-of-set condition. If the
specified sequence number is negative, the search proceeds in the prior direction
in the set. Note, however, that prior pointers are required to exercise this option.

■ When an end-of-set condition occurs, the owner record occurrence of the set
becomes the current record of run unit, current of its record type, current of its
area, and current of only the set involved in this operation. Currency of other sets
in which the specified record participates as owner or member remains unaffected.

Note: Note 1 If @OBTAIN has been specified, the contents of the owner record are
not moved to program variable storage (@OBTAIN under these circumstances is
treated as an @FIND).

Note: Note 2 (Native VSAM users): When an end-of-set condition occurs, all
currencies remain the same.

Area currency: The following rules apply to currency and the selection of records
in an area:

■ The first record occurrence in an area is the one with the lowest db-key; the last
record is the one with the highest db-key.

■ The next record in an area is the one with the next higher db-key relative to the
current record of the named area; the prior record is the one with the next lower
db-key relative to the current of area.

■ The first, last, or nth occurrence of a record in an area must be retrieved to
establish correct starting position before next or prior records are requested.

Following successful execution of an @FIND/@OBTAIN WITHIN SET/AREA
statement, the accessed record becomes the current record of run unit, its area, its
record type, and all sets in which it currently participates as member or owner.

Chapter 6. Data Manipulation Language Statements 6-87

6.29 @FIND/@OBTAIN statements

 Syntax

��─┬─ @FIND ───┬─┬─ NEXT ──┬──�

└─ @OBTAIN ─┘ ├─ PRIOR ─┤

├─ FIRST ─┤

├─ LAST ──┤

└─ NTH ───┘

 �─┬─ ,SET=set-name ───┬──�

└─ ,AREA=area-name ─┘

 �─┬────────────────────┬───�

└─ ,REC=record-name ─┘

 �─┬───────────────────┬──�

└─ ,OCCUR=sequence ─┘

 �─┬───────────────────────────┬──��

└─ ,KEEP= ─┬─ SHARED ──────┬┘

└─ EXCLUSIVE ───┘

 Parameters

NEXT/PRIOR/FIRST/LAST/NTH
Accesses a record based on its location in a set or area.

NEXT
Accesses the next record in the specified set or area relative to the current record
of the set or area.

PRIOR
Accesses the prior record in the specified set or area relative to the current record
of the set or area. The specified set must have prior pointers.

FIRST
Accesses the first record in the specified set or area.

LAST
Accesses the last record in the specified set or area. The specified set must have
prior pointers.

NTH
Accesses the nth record in the specified set or area. NTH requires the use of the
OCCUR parameter (see below) to specify which record is to be accessed.

Note: Native VSAM users — FIRST, LAST, and NTH options are not allowed
for a native VSAM KSDS with spanned records.

SET=set-name/AREA=area-name
Specifies the set or area to be searched.

SET=set-name
Specifies the name of the set that contains the record to be accessed.Set-name
must identify an set included in the subschema.

AREA=area-name
Specifies the name of the area that contains the record to be accessed.Area-name
must identify an area included in the subschema.

6-88 CA-IDMS DML Reference — Assembler

6.29 @FIND/@OBTAIN statements

REC=
Specifies that in a set or area, only occurrences of the named record type will be
accessed.

record-name
Must be defined as a member of the specified set or contained in the specified
area.

OCCUR=
Identifies the position of the record in the set (that is, the numeric occurrence that
is associated with the keyword NTH).

sequence
Must specify a positive or negative number that is stored in a numerical field used
by CA-IDMS/DB in searching for thenth record occurrence. If sequence specifies
a negative number, the specified set must have prior pointers.

KEEP=
Places a shared or exclusive lock on the accessed record.

SHARED
Places a shared lock on the specified record.

EXCLUSIVE
Places an exclusive lock on the specified record.

Example: The following example illustrates the retrieval of records in an occurrence
of the DEPT-EMPLOYEE set. The @FIND CALC statement establishes currency in
the DEPT-EMPLOYEE set. Member EMPLOYEE records are then retrieved by a
series of OBTAIN WITHIN SET statements. Note that when EMPLOYEE 106 is
retrieved, the end of the set is reached and the next OBTAIN statement positions the
program on the owner of the set, DEPARTMENT 2000.

Chapter 6. Data Manipulation Language Statements 6-89

6.29 @FIND/@OBTAIN statements

The following figure illustrates special considerations relating to the retrieval of
records in an area that contains multiple record types. In this example, the user wishes
to sweep the EMP-DEMO-REGION area, retrieving sequentially each EMPLOYEE
record and all records in the associated EMP-EXPERTISE set. The first command
retrieves EMPLOYEE 119. Subsequent @OBTAIN WITHIN SET statements retrieve
the associated EXPERTISE records and establish currency on EXPERTISE 03. The
@FIND DBKEY statement is used to reestablish the proper position before retrieving
EMPLOYEE 48. Note that if @FIND DBKEY for the employee record is not
specified, an attempt to retrieve the next EMPLOYEE record in the area would return
EMPLOYEE 23.

6-90 CA-IDMS DML Reference — Assembler

6.29 @FIND/@OBTAIN statements

Status codes: After completion of the @FIND/@OBTAIN WITHIN SET/AREA
function, the ERRSTAT field in the IDMS communications block indicates the
outcome of the operation:

Status code Meaning

0000 This request has been serviced successfully.

0301 The area in which the named record participates has not been
readied.

0304 A sequence number of zero or a variable field that contains a value
of zero was specified for the named record.

0306 Currency has not been established for the named record, set, or
area.

0307 The end of the set or area has been reached, or the set is empty.

Chapter 6. Data Manipulation Language Statements 6-91

6.29 @FIND/@OBTAIN statements

When the KEEP parameter is specified as part of the @FIND/@OBTAIN statement a
major code of 06 will be returned if an error occurs during the KEEP processing (see
6.39, “@KEEP” on page 6-122 in this chapter). The major code of 03 states that an
error has occurred in the @FIND/@OBTAIN processing.

Status code Meaning

0308 Either the named record or the named set is not in the subschema,
or the named record is not defined as a member of the named set.
The program has probably invoked the wrong subschema, or has
misspelled the record or set name.

0310 The subschema specifies an access restriction that prohibits
retrieval of the named record.

0323 The area name specified has not been included in the subschema
invoked, the record name specified has not been defined in the
named area, or the area name has been misspelled.

0326 The record cannot be found.

0360 A record occurrence has been encountered whose record type is not
a member or owner of the set as it is defined in the subschema.

0361 The record cannot be stored because of broken chains in the
database.

0370 A database file will not open properly.

6-92 CA-IDMS DML Reference — Assembler

6.30 @FINISH

 6.30 @FINISH

The @FINISH statement relinquishes control over all areas in use by the
CA-IDMS/DB application program. @FINISH causes statistical information for the
database operations performed during run unit execution to be written to the
CA-IDMS/DB journal file; it also defines and logs the end checkpoint for a recovery
unit.

You may elect to use the @FINISH statement to change area usage modes defined by
previously issued @READY statements. However, you must issue the appropriate
new @BIND statements before issuing the new @READY statements.

Currency: Following the successful execution of an @FINISH, all currencies are set
to null. You cannot perform database access activities until you issue an
@BIND/@READY sequence.

 Syntax

��─── @FINISH ──��

 Parameters

@FINISH
Releases all areas from program control and writes an ENDJ checkpoint and
statistical information to the CA-IDMS/DB journal file. No further DML retrieval
or modification statements can be executed until the appropriate BINDs have been
issued and the necessary areas have been readied again.

Status codes: The only acceptable status code returned for an @FINISH function
is 0000.

Chapter 6. Data Manipulation Language Statements 6-93

6.31 #FINISH

 6.31 #FINISH

The #FINISH statement relinquishes control over all database areas associated with the
system task and optionally establishes an end-of-task checkpoint for scratch and queue
areas associated with the task. Specify #FINISH in your DC/UCF program after
database access activities are completed.

Currency: Following the successful execution of a #FINISH request, all currencies
are set to null and the issuing task cannot perform database access activities without
executing an @BIND/@READY sequence.

 Syntax

��──┬─────────┬─ #FINISH ─┬────────┬──��

└─ label ─┘ └─ TASK ─┘

 Parameters

#FINISH
Requests that the system write a checkpoint to the journal file and release all data
areas held by the issuing run unit.

TASK
Releases all data areas held by all run units under the issuing task.

Status codes: After completion of the #FINISH statement, the value in register 15
indicates the outcome of the operation.

Note: If you use #FINISH with the TASK operand, 0000 is the only acceptable status
code.

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced because the number of active run
units exceeds the size of the internal run-unit table; this condition
should not occur.

X'08' The request cannot be serviced due to an invalid request.

X'0C' The request cannot be serviced because an invalid status has been
received from DBIO/DBMS; check the DC/UCF log file for details.

6-94 CA-IDMS DML Reference — Assembler

6.32 #FREESTG

 6.32 #FREESTG

The #FREESTG statement requests that the system release all or a part of a block of
variable storage. The storage to be released may have been acquired with a #GETSTG
request in the issuing task or by another task running on the same terminal as the
issuing task. A partial release is valid only for user storage; shared storage must be
freed in its entirety.

The #FREESTG request is unconditional; any runtime error will result in an abend of
the issuing task.

 Syntax

��─┬─────────┬──�

└─ label ─┘

 �─── #FREESTG ─┬─ ADDR=storage-address ─┬────────────────────────────────────�

└─ STGID=storage-id ─────┘

 �─┬─────────────────────┬──��

└─ ,NEWLEN=newlength ─┘

 Parameters

ADDR=storage-address/STGID=storage-id
Specifies the storage area to be released. One of these options must be specified.

storage-address
Specifies the address of the storage area to be released.Storage-address is a
register or the symbolic name of a fullword user-defined field that contains the
storage area address.

storage-id
Specifies the 4-byte identifier of the variable storage area to be released.
Storage-id is a register that contains the ID, the symbolic name of a user-defined
field aligned on a fullword boundary that contains the ID, or the ID literal
enclosed in quotation marks.

NEWLEN=
Specifies the number of bytes to be retained in the storage pool, indicating a
partial storage release (release of only part of the area originally allocated).

new-length
A register that contains the number of bytes, the symbolic name of a user-defined
halfword or fullword field that contains the number of bytes, or an absolute
expression.

When a release is partial, the low-address portion of storage will be retained and
the high-address portion released.

Example: The following example illustrates the use of the #FREESTG statement to
release part of the user storage area that is identified by the value in register 7. The
number of bytes to remain in the storage area is specified in the variable field
SPACE1.

Chapter 6. Data Manipulation Language Statements 6-95

6.32 #FREESTG

 #FREESTG STGID=(R7),NEWLEN=SPACE1

Status codes: The #FREESTG request is unconditional; any runtime error will
result in an abend of the issuing task.

6-96 CA-IDMS DML Reference — Assembler

6.33 @GET

 6.33 @GET

The @GET statement transfers the contents of an accessed record occurrence into
program variable storage. Elements in the accessed record are moved to their
respective locations in variable storage according to the subschema view of the record.
The transferred elements will appear in storage at the location to which the record has
been bound. (For further details, see 6.13, “@BIND REC” on page 6-31 in this
chapter.)

Currency: The @GET statement operates only on the record that is current of run
unit.

Following successful execution of an @GET statement, the accessed record is current
of run unit, its area, its record type, and all sets in which it participates as owner or
member.

 Syntax

��─── @GET ──┬───────────────────┬──��

└─ REC=record-name ─┘

 Parameters

REC=record-name
Retrieves the record that is current of run unit. If the optional REC=record-name
clause is used, the current of run unit must be an occurrence of the named record
type.

Example: The following statement moves the EMPLOYEE record that is current of
run unit into program variable storage:

 @GET REC='EMPLOYEE'

Status codes: After completion of the @GET function, the ERRSTAT field in the
IDMS communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

0508 The requested record is not in the subschema. The program has
probably invoked the wrong subschema or the record name is
misspelled.

0510 The subschema specifies an access restriction that prohibits
retrieval of the named record.

0513 A current record of run unit has not been established or has been
nullified by a previous @ERASE statement.

0518 The record has not been bound.

Chapter 6. Data Manipulation Language Statements 6-97

6.33 @GET

Status code Meaning

0520 The current record is not the same type as the named record.

0526 The requested record has been erased.

0555 An invalid length has been returned for a variable-length field.

6-98 CA-IDMS DML Reference — Assembler

6.34 #GETIME

 6.34 #GETIME

The #GETIME statement obtains the time and date from the operating system. The
system time is returned to the issuing task in binary absolute, binary formatted, packed
decimal, or edited format, as specified by the task. The date is returned to the
program in packed decimal format.

After completion of the #GETIME request, a user-defined register and register 1
contain the following time and date information:

■ Register n specifies system time (if requested in binary formatted or binary
absolute format) or the address of a field that contain the system time (if requested
in packed or edited format). The register number (n) is assigned by the FORMAT
parameter; if not specified, the default is register 0.

Note: The return-time location can be defined by the FORMAT parameter as a
variable field name rather than a register number; in this instance, register 0 will
still contain the time value or return-time address, as described above.

■ Register 1 contains the Julian date in packed format: 0yyydddc (padded zero,
current year relative to 1900, days in year, sign). For example, 0099365C would
represent December 31, 1999. 0100001C would represent January 1, 2000.

 Syntax

��─┬─────────┬──�

└─ label ─┘

 �─── #GETIME FORMAT= ──�

 �─── (─┬─ BINABS ─┬─ , ─┬──(�) ← ───────────────┬─) ───────────────────────��

├─ BINFMT ─┤ └─ return-time-pointer ─┘

├─ PACK ───┤

└─ EDIT ───┘

 Parameters

FORMAT=
Specifies how and where the time is returned by the operating system.

BINABS/BINFMT/PACK/EDIT
Specifies the format of the time which is returned. The returned value indicates
the elapsed time since midnight.

BINABS
(Binary absolute) (default); returns time as a fullword binary integer representing
elapsed time since midnight in intervals of ten-thousandths of a second.

Note: BINABS returns the most precise time.

BINFMT
(Binary formatted); returns time as a fullword binary value which, when translated
to decimal form, is formatted as:hhmmsstttt (hours, minutes, seconds,
ten-thousandths seconds).

Chapter 6. Data Manipulation Language Statements 6-99

6.34 #GETIME

PACK
(Packed); returns time as a 6-byte packed decimal value, formatted as:
0hhmmssttttc (hours, minutes, seconds, ten-thousandths seconds, sign).

EDIT
(Edited); returns time as an 11-byte edited value, formatted as:hh:mm:ss:hh
(hours, minutes, seconds, hundredths seconds).

(0)/return-time
Specifies the location to which the time is returned.

(0)
(Default); is the register that contains the time or points to a field that contains the
time.

return-time
A register that contains the time (FORMAT is BINABS or BINFMT), a register
that points to the time (FORMAT is PACK or EDIT), or the symbolic name of a
user-defined field (FORMAT is BINABS, BINFMT, PACK, or EDIT). The
required size of the field is dependent on the format requested.

Example: The following example of the #GETIME statement obtains the time from
the operating system into the variable field TIMECK and the Julian date is returned in
register 1. The time is in an 11-byte edited format; the Julian date is in packed
decimal format.

 #GETIME FORMAT=(EDIT,TIMECK)

Status codes: The #GETIME request is unconditional; any runtime error will result
in an abend of the issuing task.

6-100 CA-IDMS DML Reference — Assembler

6.35 #GETQUE

 6.35 #GETQUE

The #GETQUE statement retrieves a queue record, places it in a storage area
associated with the issuing program and optionally deletes it from the queue. If the
queue record is larger than the designated storage area, the record is truncated as
necessary.

 Syntax

��─┬─────────┬──�

└─ label ─┘

 �─── #GETQUE RECORD=return-queue-data-location-pointer ──────────────────────�

 �─── ,RECLEN= ─┬─ queue-data-max-length ─┬───────────────────────────────────�

└─ queue-data-length ─────┘

 �─┬───┬────────────────────────────�

└─ ,PLIST= ─┬─ SYSPLIST ← ───────────────────┬┘

└─ parameter-value-list-pointer ─┘

 �─┬───────────────────────────┬──�

└─ ,QUEID=queue-id-pointer ─┘

 �─┬──┬───────────────────────────�

└─ ,LOC= ─┬─ Next ← ──────────────────────────┬┘

├─ First ───────────────────────────┤

├─ Last ────────────────────────────┤

├─ Prior ───────────────────────────┤

├─ (NTH, sequence-pointer) ─────────┤

└─ (QRID, queue-record-id-pointer) ─┘

 �─┬───────────────────────────┬──�

└─ ,DISP= ─┬─ DELETE ← ────┬┘

└─ KEEP ────────┘

 �─┬───┬────────────────────────────────�

└─ ,RTNQRID= ─┬─ (1) ← ──────────────────┬┘

└─ return-queue-record-id ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

 │ ┌────────────────┐ │

└─ ,OPTION= ──(──↓─┬┬─ LOCK ← ─┬─┬┴─)──┘

│└─ NOLOCK ─┘ │

└┬─ NOWAIT ← ┬┘

└─ WAIT ────┘

 �─┬───────────────────────────────┬──�

└─ ,COND= ─┬── NO ← ───────────┬┘

├── ALL ────────────┤

│ ┌─── , ─────┐ │

└─(─↓─┬─ NQID ─┬┴─)─┘

├─ NRID ─┤

├─ INVP ─┤

└─ IOER ─┘

Chapter 6. Data Manipulation Language Statements 6-101

6.35 #GETQUE

 �─┬──────────────────────────────┬───�

└─ ,NQIDXIT=no-queue-id-label ─┘

 �─┬─────────────────────────────────────┬────────────────────────────────────�

└─ ,NRIDXIT=no-queue-record-id-label ─┘

 �─┬────────────────────────────┬───�

└─ ,IOERXIT=i/o-error-label ─┘

 �─┬───┬────────────────────────────────�

└─ ,INVPXIT=invalid-parameter-list-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

 Parameters

RECORD=
Specifies the location to which the system will return the requested queue record.

return-queue-data-location-pointer
A register that points to the area or the symbolic name of the area.

RECLEN=
Specifies the length of the area defined by the RECORD parameter and, if
provided in the form of a user-defined variable field name, assigns an area into
which the system will place the actual length of the retrieved queue record.

queue-data-max-length
Specifies the length of the data area associated with the requested queue record. It
is a register that contains the length or an absolute expression.

queue-data-length
A symbolic user-defined field, specifies a two-fullword area that is subdivided into
two fullwords. The first fullword contains the length of the data area associated
with the requested queue record. The system returns the actual length of the
retrieved queue record to the second fullword.

If the record length is provided in register notation or as an absolute expression, a
two-fullword area as defined by queue- data-length will be built dynamically at
runtime in the sixth and seventh fullwords of the parameter list.

PLIST=
Specifies the location of the seven-fullword storage area in which the system will
build the #GETQUE parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area in which the systemF builds
the #GETQUE parameter list.

parameter-value-list-pointer
A register that points to the area or the symbolic name of the area.

QUEID=
Specifies the 1- to 16-character ID of the queue associated with the record to be
retrieved.

6-102 CA-IDMS DML Reference — Assembler

6.35 #GETQUE

queue-id-pointer
A register that points to a field that contains the ID, the symbolic name of a
user-defined field that contains the ID, or the ID literal enclosed in quotation
marks. If the queue ID is not specified, a null queue ID (16 blanks) is assumed.

LOC=
Specifies the queue record to be retrieved:

NEXT
(Default); retrieves the next record in the queue. If currency in the queue has not
been established, NEXT is equivalent to FIRST.

FIRST
Retrieves the first record in the queue.

LAST
Retrieves the last record in the queue.

PRIOR
Retrieves the prior record in the queue. If currency in the queue has not been
established, PRIOR is equivalent to LAST.

(NTH,sequence)
Retrieves the nth record in the queue as defined by sequence. Sequence is a
register that points to a field that contains the record sequence number (n), the
symbolic name of a user-defined field that contains the number, or an absolute
expression. (Within each queue, records are assigned numbers beginning with 1,
not 0.)

(QRID,queue-record-id)
Retrieves the record identified by queue-record-id. Queue-record-id is a register
that points to a field that contains the queue record id, the symbolic name of a
user-defined field that contains the id, or an absolute expression.

DISP=
Specifies the disposition of the queue record after it is passed to the requesting
program.

DELETE
(Default); deletes the record from the queue. If DELETE is specified and the
record is truncated, some data may be lost.

KEEP
Keeps the record in the queue.

RTNQRID=
Specifies the location in the program to which the system will return the
system-assigned ID of the retrieved queue record. The returned ID can be saved
and used to retrieve or delete the queue record.

(1)
(Default); the register to which the system will return the queue record ID.

return-queue-record-id
A register or the symbolic name of a fullword user-defined field to which the
system will return the queue record ID.

Chapter 6. Data Manipulation Language Statements 6-103

6.35 #GETQUE

OPTION=
Specifies whether the system is to retain a lock on the current queue recor and
whether the issuing task is to suspend execution if the requested record cannot be
accessed in the queue:

LOCK
(Default); retains the lock on the current queue record until a #COMMIT TASK
command is issued or the issuing task terminates. While a queue record is locked,
no other task can access that record (regardless of its position in the queue) until
the lock has been released.

NOLOCK
Releases the lock on the current queue record following execution of a subsequent
queue I/O request.

NOWAIT
Continues task execution in the event of a nonexistent queue. The system returns
a value of X'0C' to register 15 in the event that the requested queue does not
currently exist.

WAIT
Suspends task execution until the requested queue exists.

COND=
Specifies whether the #GETQUE is conditional and under what conditions control
should be returned to the issuing program:

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the request cannot
be serviced for any of the reasons listed below.

condition
Specifies conditions under which the system returns control to the program.
Multiple conditions must be enclosed in parentheses and separated by commas.

NQID
The queue ID cannot be found.

NRID
The queue record cannot be found.

IOER
An I/O error occurs while processing the request.

INVP
The parameter list built for the #GETQUE is invalid.

A list of conditions must be enclosed in parentheses. If multiple conditions are
specified, each is separated from the previous one by a comma.

6-104 CA-IDMS DML Reference — Assembler

6.35 #GETQUE

NQIDXIT=no-queue-id-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETQUE request cannot be serviced because the header record identified by
the QUEID parameter cannot be found.

NRIDXIT=no-queue-record-id-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETQUE request cannot be serviced because the queue record ID cannot be
found.

IOERXIT=i/o-error-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETQUE parameter cannot be serviced because of an I/O error.

INVPXIT=invalid-parameter-list-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETQUE cannot be serviced because of an invalid parameter in the
parameter list.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

Example: The example of the #GETQUE statement shown below performs the
following functions:

■ Specifies location QREC5 as the area in program variable storage to receive the
requested queue record

■ Specifies the length of area QREC5 in register 6

■ Uses the default location to build the parameter list, SYSPLIST

■ Specifies that register 7 will hold the address of the field that contains the ID of
the queue associated with the record to be retrieved

■ Specifies the next record (in regard to queue currency) in the queue as the record
to be retrieved

■ Specifies that the record will not be deleted from the queue after it has been
passed to the requesting program

■ Uses the register 1 default to receive the system-assigned ID of the retrieved
scratch record

■ Specifies the WAIT option to suspend task execution until the requested queue
record is available

■ Specifies that this request is not conditional; any runtime error will result in an
abend of the issuing task

#GETQUE RECORD=QREC5,RECLEN=(6),QUEID=(7),LOC=NEXT,DISP=KEEP, �

 OPTION=WAIT,COND=NO

Chapter 6. Data Manipulation Language Statements 6-105

6.35 #GETQUE

Status codes: By default, the #GETQUE request is unconditional; any runtime
error will result in an abend of the issuing task. The issuing program can request
return of control with the COND parameter to avoid an abend.

After completion of the #GETQUE function, the value in register 15 indicates the
outcome of the operation:

If an I/O error occurs while processing a #GETQUE request, the system will return the
address of the IDMS communications block to register 1. If no error occurs during
processing, a user-defined register, as assigned by the RTNQRID parameter, will
contain the queue record ID (QRID) of the retrieved queue record.

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced due to an invalid parameter list.

X'08' The request cannot be serviced because the requested queue header
record (identified by QUEID) cannot be found.

X'0C' The request cannot be serviced because the requested queue record
cannot be found.

X'18' The program storage area specified for return of the queue record is
too small; the returned record has been truncated to fit the available
storage.

X'1C' The request cannot be serviced due to an I/O error during
processing.

6-106 CA-IDMS DML Reference — Assembler

6.36 #GETSCR

 6.36 #GETSCR

The #GETSCR statement retrieves a scratch record and places it in a storage area
associated with the issuing program. The storage area must already be allocated to the
requesting task; no implicit #GETSTG function is performed during the #GETSCR
operation. If the scratch record is larger than the designated storage area, the record is
truncated as necessary.

By default, the #GETSCR request is unconditional; any runtime error will result in an
abend of the issuing task. The issuing program can request return of control with the
COND parameter to avoid an abend.

 Syntax

��─┬─────────┬──�

└─ label ─┘

 �─── #GETSCR RECORD=return-scratch-data-location-pointer ────────────────────�

 �─── ,RECLEN= ─┬── scratch-data-max-length ──┬───────────────────────────────�

 └─ scratch-data-length ──────┘

 �─┬───┬────────────────────────────�

└─ ,PLIST= ─┬─ SYSPLIST ← ───────────────────┬┘

└─ parameter-value-list-pointer ─┘

 �─┬─────────────────────────────────┬──�

└─ ,SAID=scratch-area-id-pointer ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,LOC= ─┬─ Next ← ───────────────────┬┘

├─ First ────────────────────┤

├─ Last ─────────────────────┤

├─ Current ──────────────────┤

├─ Prior ────────────────────┤

└─ (SRID,scratch-record-id) ─┘

 �─┬───────────────────────┬──�

└─ ,DISP= ─┬─ DELETE ← ┬┘

└─ KEEP ────┘

 �─┬───┬──────────────────────────────�

└─ ,RTNSRID= ─┬─ (1) ← ────────────────────┬┘

└─ return-scratch-record-id ─┘

Chapter 6. Data Manipulation Language Statements 6-107

6.36 #GETSCR

 �─┬───────────────────────────────┬──�

└─ ,COND= ─┬── NO ← ───────────┬┘

├── ALL ────────────┤

│ ┌─── , ─────┐ │

└─(─↓─┬─ NAID ─┬┴─)─┘

├─ NRID ─┤

├─ IOER ─┤

└─ INVP ─┘

 �─┬─────────────────────────────────────┬────────────────────────────────────�

└─ ,NAIDXIT=no-scratch-area-id-label ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,NRIDXIT=no-scratch-record-id-label ─┘

 �─┬─────────────────────────────┬──�

 └─ ,IOERXIT=i/o-error-label ─┘

 �─┬───┬────────────────────────────────�

└─ ,INVPXIT=invalid-parameter-list-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

 Parameters

RECORD=
Specifies the location to which the system will return the scratch record.

record-scratch-data-location-pointer
A register that points to the variable storage area or the user-defined symbolic
name of the area.

RECLEN=
Specifies the length of the area defined by the RECORD parameter and, if
provided in the form of a user-defined variable field, assigns an area into which
the system will place the actual length of the returned data.

scratch-data-max-length
Specifies the length of the data area associated with the requested scratch record.
It is a register that contains the length or an absolute expression.

scratch-data-length
A symbolic user-defined field, specifies an area which is subdivided into two
fullwords. The first fullword contains the length of the data area associated with
the requested scratch record. The system returns the actual length of the requested
scratch record to the second. If the record has been truncated,scratch-data-length
will contain the length of the scratch record.

If the record length is provided in register notation or as an absolute expression,
an area composed of two fullwords, as defined byscratch-data-length, will be
built dynamically at runtime in the sixth and seventh fullwords of the parameter
list.

PLIST=
Specifies the location of the seven-fullword storage area in which the system will
build the #GETSCR parameter list.

6-108 CA-IDMS DML Reference — Assembler

6.36 #GETSCR

SYSPLIST
(Default); is the symbolic name of the storage area in which the system will build
the #GETSCR parameter list.

parameter-list-pointer
A register that points to the area in which the system will build the #GETSCR
parameter list or the symbolic name of that area.

SAID=
Specifies the 1- to 8-character ID of the scratch area associated with the record
being retrieved.

scratch-area-id-pointer
A register that points to a field that contains the id, the symbolic name of a
user-defined field that contains the ID, or the ID literal enclosed in quotation
marks. If the SAID parameter is not specified, a null scratch area ID of 8 blanks
is assumed.

LOC=

Specifies the scratch record to be retrieved.
NEXT

(Default); retrieves the next record in the scratch area.

FIRST
Retrieves the first record in the scratch area. (Records are always stored in
ascending order by scratch record id.)

LAST
Retrieves the last record in the scratch area.

CURRENT
Retrieves the current record; that is, that record most recently referenced by
another scratch function.

PRIOR
Retrieves the prior record in the scratch area. If currency in the scratch area has
not been established, PRIOR is equivalent to LAST.

(SRID,scratch-record-id)
Retrieves the scratch record identified byscratch-record-id. Scratch-record-id is a
register that points to the 4-byte scratch record id, the symbolic name of a
user-defined field that contains the id, or an absolute expression of the id.

DISP=
Specifies whether the scratch record is to be kept after it is passed to the
requesting program.

DELETE
(Default); deletes the record from the scratch area. If DELETE is specified and
the record has been truncated, some data may be lost. To maintain currency
following a DELETE request, the system saves the next and prior pointers of the
deleted record.

Chapter 6. Data Manipulation Language Statements 6-109

6.36 #GETSCR

KEEP
Keeps the record in the scratch area.

RTNSRID=
Specifies the location to which the system will return the scratch record ID of the
retrieved record.

(1)
(Default); is the register into which the system will place the ID of the scratch
record.

return-scratch-record-id
A register or the symbolic name of a fullword user-defined field to which the
system will return the ID of the retrieved scratch record.

COND=
Specifies whether this #GETSCR is conditional and under what conditions control
should be returned to the issuing program:

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the request cannot
be serviced for any of the reasons listed below.

condition
Specifies conditions under which the system returns control to the issuing task.
Multiple conditions must be included in parentheses and separated by commas.

NAID
The scratch area ID cannot be found.

NRID
The scratch record ID cannot be found.

IOER
An I/O error occurs while processing the retrieval.

INVP
The parameter list built for the #GETSCR is invalid.

NAIDXIT=no-scratch-area-id-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETSCR cannot be serviced because the scratch area ID cannot be found.

NRIDXIT=no-scratch-record-id-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETSCR cannot be serviced because the scratch area record ID cannot be
found.

IOERXIT=i/o-error-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETSCR cannot be serviced because of an I/O error.

6-110 CA-IDMS DML Reference — Assembler

6.36 #GETSCR

INVPXIT=invalid-parameter-list-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETSCR request cannot be serviced because of an invalid parameter in the
parameter list.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

Example: The example of the #GETSCR statement shown below performs the
following functions:

■ Specifies location SREC5 as the area in program variable storage to receive the
requested scratch record.

■ Specifies the length of area SREC5 in user-defined field SCRLENG.

■ Uses the default location to build the parameter list, SYSPLIST.

■ Specifies the literal SCR3 as the ID of the scratch area associated with the record
to be retrieved.

■ Specifies the first record in the scratch area as the record to be retrieved.

■ Specifies that the record will be deleted from the scratch area after it has been
passed to the requesting program.

■ Specifies that register 4 will receive the system-assigned ID of the retrieved
scratch record.

■ Specifies that this request is conditional. If the scratch record id cannot be found
control will be returned to the routine labeled NORECRTN.

 #GETSCR RECORD=SREC5,RECLEN=SCRLENG,SAID='SCR3',LOC=FIRST, �

 DISP=DELETE,COND=NRID,NRIDXIT=NORECRTN

Status codes: After completion of the #GETSCR function, the value in register 15
indicates the outcome of the operation.

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced due to an invalid parameter list.

X'08' The request cannot be serviced because the requested scratch area
ID (SAID) cannot be found.

X'0C' The request cannot be serviced because the requested scratch record
ID (SRID) cannot be found in the named SAID.

X'18' The request cannot be serviced because the program storage area
specified for return of the scratch record is too small; the returned
record has been truncated to fit the available space.

Chapter 6. Data Manipulation Language Statements 6-111

6.36 #GETSCR

If an I/O error occurs while processing a #GETSCR request, the system will return the
address of the IDMS communications block to register 1. If no error occurs during
processing, a user-defined register, assigned by the RTNSRID parameter, will contain
the scratch record ID of the obtained record.

Register 15
value

Meaning

X'1C' The request cannot be serviced due to an I/O error during
processing.

6-112 CA-IDMS DML Reference — Assembler

6.37 #GETSTG

 6.37 #GETSTG

The #GETSTG statement acquires variable storage from a storage pool or obtains the
address of a previously acquired storage area. Once acquired, the storage is available
for use:

■ By the issuing task only (user storage)

■ By subsequent tasks running on the same logical terminal (user-kept storage)

■ By all tasks in the system (shared or shared-kept storage)

Storage availability is governed by #GETSTG parameter specifications. The value
stored in a user-defined register assigned by the ADDR parameter contains the address
of acquired storage.

 Syntax

��─┬─────────┬──�

└─ label ─┘

 �─── #GETSTG TYPE= (─┬─ USER ───┬─ , ─┬─ LONG ──┬──┬─────────┬─) ──────────�

└─ SHARED ─┘ └─ SHORT ─┘ └─ ,KEEP ─┘

 �─┬───┬────────────────────────────�

└─ ,PLIST= ─┬─ SYSPLIST ← ───────────────────┬┘

└─ parameter-value-list-pointer ─┘

 �─┬───────────────────────┬──�

└─ ,LEN=storage-length ─┘

 �─┬───────────────────────┬──�

└─ ,INIT=initial-value ─┘

 �─┬───────────────────────────────┬──�

└─ ,ADDR= ─┬─ (1) ← ───────────┬┘

└─ storage-address ─┘

 �─┬─────────────────────┬──�

└─ ,STGID=storage-id ─┘

 �─┬─────────────────────┬──�

└─ ,LOC= ─┬─ ANY ← ──┬┘

└─ BELOW ──┘

Chapter 6. Data Manipulation Language Statements 6-113

6.37 #GETSTG

 �─┬───────────────────────────────┬──�

└─ ,COND= ─┬── NO ← ───────────┬┘

├── ALL ────────────┤

│ ┌─── , ─────┐ │

└─(─↓─┬─ NOST ─┬┴─)─┘

├─ INVP ─┤

├─ DEAD ─┤

└─ XAST ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,NOSTXIT=insufficient-storage-label ─┘

 �─┬───┬────────────────────────────────�

└─ ,INVPXIT=invalid-parameter-list-label ─┘

 �─┬───────────────────────────┬──�

└─ ,DEADXIT=deadlock-label ─┘

 �─┬──┬───────────────────────────�

└─ ,XASTXIT=extended-addressing-storage-label ─┘

 �─┬──────────────────────────────┬───�

└─ ,NWSTXIT=new-storage-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

 Parameters

TYPE=
Required for all requests for storage, specifies three subparameters. Specified
subparameters must be enclosed in parentheses.

USER/SHARED
Specifies whether access to the storage is to be restricted to the issuing task or is
to be available to all tasks in the system.

USER
Specifies that access to the storage area is to be restricted to the issuing task or, if
KEEP is specified, to subsequent tasks executing on the same terminal.

Note: During system generation, a program defined with the NOPROTECT
option can access any storage area in the system, including an area associated
exclusively with another task. Thus, the USER attribute may not protect the
storage area being acquired. However, storage areas can be protected on a
system-wide or program-by-program basis during system generation and by the
modes specified when storage is allocated.

SHARED
Specifies that any task in the DC/UCF system can access and modify the acquired
storage. Each task must establish addressability to the storage area by explicitly
issuing a #GETSTG request.

LONG/SHORT
Specifies whether the system should allocate the storage from the bottom or the
top of the storage pool.

6-114 CA-IDMS DML Reference — Assembler

6.37 #GETSTG

LONG
Specifies that storage, used long-term, is allocated from the bottom of the storage
pool.

SHORT
Specifies that storage, used short-term, is allocated from the top of the storage
pool.

An incorrect LONG/SHORT specification will not affect normal program
execution; however, it may affect the overall performance of the DC/UCF system.
For a detailed discussion of the use of the LONG/SHORT option, refer to
CA-IDMS Navigational DML Programming.

KEEP
Optionally specifies whether the storage area will be used by subsequent tasks
executing on the same logical terminal. When KEEP is specified, the storage area
can be accessed by subsequent tasks; otherwise the storage area cannot be
accessed by subsequent tasks. For a more detailed discussion of the KEEP
parameter, refer toCA-IDMS Navigational DML Programming.

PLIST=
Specifies whether the six-fullword #GETSTG parameter list will be built inline or
in a variable storage area and, if built in a variable storage area, identifies the
location of that area.

SYSPLIST
(Default); builds the list in a variable storage area identified by the symbolic name
SYSPLIST.

*
Builds the list inline. The generated parameter list will be reentrant; that is, no
generated code will modify it. If PLIST=* is specified, other parameters of the
#GETSTG statement cannot be identified with register notation.

parameter-list
Builds the list in a variable storage area associated with the task.Parameter-list is
a register which points to the area or the symbolic name of that area.

LEN=
Specifies the size, in bytes, of a new storage area.

storage-length
A register or the symbolic name of a user-defined halfword or fullword field that
contains the number of bytes, or an absolute expression.

Note: If the parameter list is being generated inline (PLIST=*), the LEN
parameter must specify the symbolic name of a fullword field or an absolute
expression; register notation and a halfword variable field name are invalid.

INIT=
Specifies an initial value for a new storage area.

initial-value
An absolute expression of the initial value. Each byte of the acquired storage area
is initialized to the specified value.

Chapter 6. Data Manipulation Language Statements 6-115

6.37 #GETSTG

ADDR=
Specifies the address of the acquired or previously acquired storage:

(1)
(Default); is a register or the symbolic name of a fullword user-defined field to
which the system will return the address of the acquired storage.

storage-address
A register or the symbolic name of a fullword user-defined field to which the
system returns the address of the acquired storage.

STGID=
Specifies the 4-character ID associated with the storage area. The STGID
parameter must be specified with #GETSTG requests for previously allocated
storage areas or areas to be reallocated.

storage-id
A register that contains the id, the symbolic name of a 4-byte user-defined field
which is aligned on a fullword boundary and contains the ID, or the ID literal
enclosed in single quotation marks.

Note: If the parameter list is being generated inline, the STGID parameter must
specify the symbolic name of a variable field or a literal enclosed in quotation
marks; register notation is invalid.

When using the STGID option to request the address of an existing storage area,
the #GETSTG statement must specify the same USER/SHARED option as the
original #GETSTG request issued by the task to acquire the area.

Note: All storage ids owned by a task must be unique. While more than one
variable storage area with the same storage ID can exist (for example, one shared
and the other user) only one such area can be owned by a task at a time.

LOC=
Indicates where the system allocates storage.

ANY
(Default); indicates that storage can be allocated anywhere in the region.

BELOW
Requests that the system allocate storage below the 16-megabyte line.

COND=
Specifies whether this #GETSTG statement is conditional and under what
condition control should be returned to the issuing program:

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the request cannot
be serviced for any of the reasons listed below.

condition
Specifies conditions under which the system returns control to the issuing task.
Multiple conditions must be enclosed in parentheses and separated by commas.

6-116 CA-IDMS DML Reference — Assembler

6.37 #GETSTG

NOST
Available space in the storage pool is insufficient to satisfy the request. Do not
wait for additional storage to become available.

INVP
The parameter list built for the #GETSTG is invalid.

DEAD
The available space in the storage pool is insufficient to satisfy the request and if
to wait would cause a deadlock.

XAST
Allocated storage above the 16-megabyte line cannot be addressed by the 24-bit
task.

NOSTXIT=insufficient-storage-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETSTG cannot be serviced because the available storage is insufficient to
satisfy the request.

INVPXIT=invalid-parameter-list-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETSTG cannot be serviced because of an invalid parameter in the
parameter list.

DEADXIT=deadlock-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETSTG cannot be serviced because the available storage is insufficient to
satisfy the request, and if to wait would cause a deadlock.

NWSTXIT=new-storage-label
Specifies the symbolic name of the routine to which control should be returned if
the #GETSTG request names a STGID which does not exist in the system
(TYPE=SHARED) or in the task (TYPE=USER).

XASTXIT=extended-addressing-storage-label
Specifies the symbolic name of the routine to which control is returned if the
allocated storage above the 16-megabyte line cannot be addressed by the 24-bit
task.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

Example: The example of the #GETSTG statement shown below performs the
following functions:

■ Specifies that the requested storage area is to be shared by any task in the
DC/UCF system, that it will contain short-term storage allocated from the top of
the storage pool, and that it will not be available for use by subsequent tasks

■ Builds the parameter list, SYSPLIST (default), in the variable storage area

■ Specifies the length of the new storage area in register 2

Chapter 6. Data Manipulation Language Statements 6-117

6.37 #GETSTG

■ Specifies that every byte in the storage area be initialized to blanks

■ Uses register 1 (default) to receive the address of the acquired storage from the
system

■ Specifies the ID of the storage area in register 9

■ Specifies that control will be returned to the routine labeled NOSTGRTN if the
amount of available storage is insufficient to satisfy the request, otherwise, any
runtime error will result in an abend of the issuing task

#GETSTG TYPE=(SHARED,SHORT),LEN=(2),INIT=' ',STGID=(9), �

 COND=NOST,NOSTXIT=NOSTGRTN

Status codes: By default, the #GETSTG request is unconditional. Error conditions
that can occur are:

■ A short-on-storage condition, caused when the amount of storage in the storage
pool is inadequate to accommodate the request, will result in a delay until
sufficient storage becomes available (unless such a wait would cause a deadlock)

■ Any abnormal condition will result in an abend. Conditions in this category
include the following:

 – I/O error

– A wait on storage (default action resulting from the short-on-storage
condition) would result in a deadlock

The issuing program can request return of control with the COND to avoid a delay or
an abend.

After completion of the #GETSTG request, the value in register 15 indicates the
outcome of the operation:

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'04' The request has specified a storage ID which did not previously
exist; the indicated space has been allocated.

X'08' The request cannot be serviced due to insufficient storage in the
storage pool.

X'0C' The request cannot be serviced due to an invalid parameter list.

X'10' The requested storage cannot be allocated immediately (insufficient
storage), and to wait would cause a deadlock.

X'18' Allocated XA storage cannot be accessed by a 24-bit task. This
situation occurs if storage is requested by STGID and the storage
was initially allocated by an XA task.

6-118 CA-IDMS DML Reference — Assembler

6.38 @IF

 6.38 @IF

The @IF statement allows you to test for the presence of member record occurrences
in a set or to determine the membership status of a record occurrence in a specified
set; once the set has been evaluated, the @IF statement specifies further action based
on the outcome of the evaluation. For example, you might use an @IF statement to
determine whether a set occurrence is empty and, if it is empty, to erase the owner
record.

Note: Native VSAM users — This statement is not allowed for sets defined with
member records that are stored in native VSAM data sets.

Each @IF statement contains a conditional phrase and a branch statement. When an
@IF is issued, the DML precompiler first generates a call to CA-IDMS/DB to execute
the conditional phrase. CA-IDMS/DB tests for a status code of 0000 or 1601, as
requested in the conditional phrase; the results of the test determine whether or not the
branch statement is executed.

Currency: Depending on its format, the @IF statement uses set or run-unit currency.
The set occurrence of an @IF statement is determined by the current record of the
named set; the named record occurrence is the record that is current of run unit.

Currency is not updated after execution of the @IF statement.

 Syntax

��─── @IF SET=set-name ───�

 �─┬─ MEMBER= ─┬─┬─ YES ─┬──�

└─ EMPTY= ──┘ └─ NO ──┘

 �─── ,GOTO=branch-location ──�

 �─┬──────────────────────────────────┬───────────────────────────────────────��

└─ ,ERRSTAT=error-status-location ─┘

 Parameters

SET=set-name
Identifies the set that is to be tested for existing member record occurrences.
Set-name must specify a set included in the subschema.

MEMBER=
Determines whether the current record of run unit participates as a member in any
occurrence of the named set and, depending on the outcome of the evaluation,
executes the branch statement.

YES
Specifies that the branch statement is executed only if the record is a member of
the set (that is, ERRSTAT is 0000).

Chapter 6. Data Manipulation Language Statements 6-119

6.38 @IF

NO
Specifies that the branch statement is executed only if the named record is not a
member of the named set (that is, ERRSTAT is 1601).

EMPTY=
Evaluates the current occurrence of the named set for the presence of member
record occurrences and, depending on the outcome of the evaluation, executes the
branch statement.

YES
Specifies that the branch statement is executed only if the set is empty (that is,
ERRSTAT is 0000).

NO
Specifies that the branch statement is executed only if the specified set has one or
more member records (that is, ERRSTAT is 1601).

GOTO=branch-location
Identifies the next statement in the program be be executed.Branch-location must
be a statement label; register notation is not supported for this parameter.

ERRSTAT=status-location
Specifies the name of the status field in the IDMS communications block. If the
status field is other than ERRSTAT, this clause is required.Status-location must
be a statement label; register notation is not supported for this parameter.

Example: The examples below illustrate two uses of the @IF statement.

In the first example, the @IF statement tests the DEPT-EMPLOYEE set for existing
EMPLOYEE members and, if no occurrences of the EMPLOYEE record are found
(that is, ERRSTAT is 0000), moves a message to that effect to location EMPLSWS.

If the current occurrence of the DEPT-EMPLOYEE set contains one or more
occurrences of the EMPLOYEE record (that is, ERRSTAT is 1601), the GOTO clause
is ignored and the next statement in the program is executed.

 @IF SET='DEPT-EMPLOYEE',EMPTY=YES, �

 GOTO=NOEMPL

 .

 .

NOEMPL EQU �

MVC EMPLSWS,=CL2�'NO EMPLOYEES IN SET'

In this next example, the @IF statement is used to verify that the EMPLOYEE record
that is current of run unit is not a member of the current occurrence of the
OFFICE-EMPLOYEE set before code is executed to connect the EMPLOYEE record
to that set.

If the EMPLOYEE record is not a member of OFFICE-EMPLOYEE (that is,
ERRSTAT is 1601), the program branches to the LINKSET paragraph. If the
EMPLOYEE record is already a member of the OFFICE-EMPLOYEE set (that is,
ERRSTAT is 0000), the GOTO clause is ignored and the next statement in the
program is executed.

6-120 CA-IDMS DML Reference — Assembler

6.38 @IF

 @IF SET='OFFICE-EMPLOYEE',MEMBER=NO,GOTO=LINKSET

Status codes: After completion of the @IF function, the ERRSTAT field in the
IDMS communications block indicates the outcome of the operation:

Status code Meaning

0000 The set is empty, or the current record of run unit is a member of
the set.

1601 The set is not empty, or the current record of run unit is not a
member of the set.

1606 Currency has not been established for the specified set.

1608 An invalid set name has been specified, or the current record of run
unit is not a member of the named set. A misspelled set name can
account for this message.

1613 A current record of run unit has not been established or has been
nullified by a preceding @ERASE statement.

Chapter 6. Data Manipulation Language Statements 6-121

6.39 @KEEP

 6.39 @KEEP

The @KEEP statement places an explicit shared or exclusive lock on a record that is
current of run unit, record, set, or area. Explicit record locks are used to maintain
record locks that would otherwise be released following a change in currency:

■ Explicit shared — Other run units can retrieve the locked record but cannot
update it as long as the lock is in effect. Any number of concurrently executing
run units can place a shared lock on a record; however, no run unit can place a
shared lock on a record on which another run unit has placed an exclusive lock.

■ Explicit exclusive — No other run unit can access the record as long as the lock
is in effect. Only one run unit at a time can place an exclusive lock on a record;
that run unit has exclusive control of the record. In order for a run unit to place
an exclusive lock or a record, that record cannot hold either an exclusive or a
shared lock assigned by any other run unit.

Locks placed on records by the @KEEP function are maintained for the duration of
the recovery unit or until explicitly released by means of the @COMMIT verb.

Currency: Currency on run unit, record, set, or area must be established before
execution of the @KEEP statement.

Currency is not updated after execution of the @KEEP statement.

 Syntax

��─── @KEEP ─┬─ EXCLUSIVE ─┬─ , ─┬─ CURRENT ─────────┬────────────────────────��

└─ SHARED ────┘ ├─ REC=record-name ─┤

├─ SET=set-name ────┤

└─ AREA=area-name ──┘

 Parameters

EXCLUSIVE/SHARED
Places an exclusive or shared lock on a current record.

CURRENT/REC=
Specifies which record to lock.

CURRENT
Specifies the current record of run unit.

REC=record-name
Specifies the current occurrence of the named record type.

SET=set-name
Specifies the current occurrence of the named set type.

AREA=area-name
Specifies the current occurrence of the named area.

6-122 CA-IDMS DML Reference — Assembler

6.39 @KEEP

Example: The following example of the @KEEP statement places an exclusive lock
on the current record occurrence of the set OFFICE-EMPLOYEE:

 @KEEP EXCLUSIVE,SET='OFFICE-EMPLOYEE'

The currency of the set for this example would have to be established before this
statement can be executed.

Status codes: After completion of the @KEEP function, the ERRSTAT field in the
IDMS communications block indicates the outcome of the operation:

Status code Meaning

0000 This request has been serviced successfully.

0606 Currency has not been established for the named record, set, or
area.

0608 The named record, set, or area is not in the subschema, or the
current record of run unit is not a member of the named set or is
misspelled.

0610 The program's subschema specifies an access restriction that
prohibits execution of the @KEEP function.

0623 The named area is not in the subschema or has been misspelled.

0626 The record to be kept has been erased.

0629 Deadlock occurred during locking of target record.

Chapter 6. Data Manipulation Language Statements 6-123

6.40 #KEEP

 6.40 #KEEP

The #KEEP statement is used in DC/UCF pseudo-conversational transactions to
establish long-term record locks and to monitor access to records between tasks.
Long-term database locks can be shared or exclusive:

■ Long-term shared locks allow other run units to access the locked record but
prevent run units from updating the record as long as the lock is maintained.

■ Long-term exclusive locks prevent other run units from accessing the locked
record. However, run units executing on the logical terminal associated with a
task that establishes a long-term exclusive lock are not restricted from accessing
the locked record. Therefore, subsequent tasks in a transaction can access the
locked record and complete the database processing required by the transaction.

If a record has been locked with a #KEEP request, restrictions may exist on the type
of lock that can be placed on that record by other run units, based on existing locks
and whether the requesting run unit is executing on the same logical terminal as the
run unit that originally placed the lock on the record. The following table illustrates
these restrictions.

Tasks can monitor database activity associated with a specified record during a
pseudo-converse and, if desired, can place a long-term lock on the record being
monitored. A subsequent task can then make inquiries about that database activity for
the record and take the appropriate action.

The system maintains information on database activity using five-bit flags, each of
which is either turned on (binary 1) or turned off (binary 0). This information is

Type of lock in
effect

Type of lock allowed
for other run units

Type of lock disallowed for
other run units

Shared Shared and longterm
shared

Exclusive and longterm exclusive

Exclusive None Shared, exclusive, longterm,
shared, and longterm exclusive

Longterm shared For all run units:
shared and long term
shared For run units on
the same terminal:
exclusive and longterm
exclusive

For run units on other terminals:
exclusive and longterm exclusive

Longterm exclusive For run units on the
same terminal: shared
exclusive, longterm
shared, and longterm
exclusive

For run units on other terminals:
shared exclusive, longterm shared,
longterm exclusive

6-124 CA-IDMS DML Reference — Assembler

6.40 #KEEP

returned from the system to the low-order byte of register 0 as a numeric value. The
bit assignments, the corresponding numeric value returned to the program, and a
description of the associated database activity follows:

Any combination of these bits may be set. To determine the action or combination of
actions that has occurred, you can compare the numeric value returned to the program
in register 0 with an appropriate constant; for example:

■ If the returned value is 0, no database activity occurred for the monitored record.

■ If the returned value is 2, the data in the record was modified.

■ If the returned value is 3, the record has been obtained and modified.

■ If the returned value is 8 or greater, the record was deleted.

The maximum possible value is 31 (X'1F'), indicating that all the above actions
occurred for the monitored record. The example of the #KEEP statement, shown later
in this topic, illustrates a test for the value of the five bit flags returned by the system
to the low-order byte of register 0.

You may prefer to monitor database activity across a pseudo-converse rather than to
set long-term locks. Long-term locks can prevent access to a record by other run units
for an undesirably long time if, during a pseudo-converse, the terminal operator fails to
enter a response. Monitoring does not restrict access to database records, sets, or areas
by other run units; however, it does enable a program to test a record for alterations
made by other run units. When long-term locks are used, it may be desirable to
release those locks at specified timeout intervals. For more information regarding the
use of timeout intervals, refer to CA-IDMS System Generation.

Bit Assignment Description

X'10' The record has been physically deleted.

X'08' The record has been logically deleted.

X'04' The record's prefix has been modified, that is, a set operation (for
example, @CONNECT or @DISCON) occurred involving the
record.

X'02' The record's data has been modified.

X'01' The record has been obtained.

Chapter 6. Data Manipulation Language Statements 6-125

6.40 #KEEP

 Syntax

��─┬─────────┬──�

└─ label ─┘

 �─── #KEEP ─┬─ NOTIFY ───────────┬───�

├─ SHARE ────────────┤

├─ EXCLUSIVE ────────┤

├─ UPGRADESHARE ─────┤

├─ UPGRADEEXCLUSIVE ─┤

├─ TEST ─────────────┤

└─ RELEASE ──────────┘

 �─── ,LONGID= ─┬─ 'ALL' ───────────┬───�

└─ long-id-pointer ─┘

 �─┬──────────────────────────────┬───�

└─ ,CURRENT= ─┬─ record-name ─┬┘

├─ set-name ────┤

└─ area-name ───┘

 �─┬──────────────────────────┬───�

└─ ,WAIT= ─┬─ WAIT ← ─────┬┘

 ├─ NOWAIT ───┤

└─ NODEADLOCK ─┘

 �─┬──┬─────────────────────────────────�

└─ ,NWTXIT=nowait-on-lock-release-label ─┘

 �─┬───────────────────────────┬──�

└─ ,DEADXIT=deadlock-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

 Parameters

NOTIFY/SHARE/EXCLUSIVE/UPGRADESHARE/UPGRADEEXCLUSIVE/
TEST/RELEASE
Specifies the type of record lock or monitoring.

NOTIFY
Requests that the system monitor database activity associated with the current
record type, set, or area specified in the CURRENT parameter, described below.
When NOTIFY is specified, the system initializes register 0 to contain information
on database activity for the specified record. Only the low-order byte of register 0
will actually contain the value of the five bit flags used to monitor database
activity of the specified record.

SHARE
Specifies that the current occurrence of the record type, set, or area specified in
the CURRENT parameter, described below, will receive a long-term shared lock.

EXCLUSIVE
Specifies that the current occurrence of the record type, set, or area specified in
the CURRENT parameter, described below, will receive a long-term exclusive
lock.

6-126 CA-IDMS DML Reference — Assembler

6.40 #KEEP

UPGRADESHARE
Upgrades a previous #KEEP NOTIFY request by placing a shared long-term lock
on the record identified by the LONGID parameter, described below.

UPGRADEEXCLUSIVE
Upgrades a previous #KEEP NOTIFY request by placing an exclusive long-term
lock on the record identified by the LONGID parameter, described below.

TEST
Requests that the system return information on database activity associated with
the record identified by the LONGID parameter of a previously issued #KEEP
NOTIFY statement. The system returns the information to the low-order byte of
register 0 as a numeric value.

The TEST request must specify a long-term lock ID that matches the long-term
lock ID specified in a previous #KEEP NOTIFY request.

RELEASE
Releases the long-term lock for the record identified by the LONGID parameter,
described below. RELEASE also releases the statistics block allocated by a
previous #KEEP NOTIFY request.

LONGID=
Specifies either the record locks to be upgraded or the records for which
information about database activity is desired.

'ALL'
(#KEEP RELEASE requests only); requests that the system release all long-term
locks kept for the logical terminal associated with the current task.

long-id-pointer
Specifies the 1- to 16-character identifier that will be used by subsequent #KEEP
requests to upgrade a long-term lock or to make inquiries about database activity
associated with the specified record.Long-id is a register that contains the address
of the long-term id, the symbolic name of a user-defined field that contains the
long-term id, or an absolute expression.

CURRENT=record-name/set-name/area-name
Specifies the record type, set, or area for which the system will monitor database
activity or assign a long-term shared or exclusive lock. One of the keywords
NOTIFY, SHARE, or EXCLUSIVE must also be specified with the CURRENT
parameter. The value of the CURRENT parameter can be a register or the
symbolic name of a user-defined field that contains the record name, set name, or
area name or the name itself enclosed in quotation marks.

WAIT=
(#KEEP SHARE/EXCLUSIVE/UPGRADESHARE/ UPGRADEEXCLUSIVE
requests only); specifies whether the issuing task is to wait if the requested lock
cannot be set immediately because of an existing lock on the named record.

WAIT
(Default); requests that the system wait for the existing lock to be released in
order to set the requested lock. If the wait would cause a deadlock, the system
terminates the issuing task abnormally.

Chapter 6. Data Manipulation Language Statements 6-127

6.40 #KEEP

NOWAIT
Requests that the system not wait for the existing lock to be released.

NODEADLOCK
Requests that the system wait for the existing lock to be released, unless to do so
would cause a deadlock. If the wait would cause a deadlock, the system returns
control to the issuing task.

NWTXIT=nowait-on-lock-release-label
Specifies the symbolic name of a routine to which control should be returned if
the #KEEP request that specified the NOWAIT option cannot be serviced because
the requested lock cannot be set immediately.

DEADXIT=deadlock-label
(#KEEP requests specifying WAIT only);
 specifies the symbolic name of a routine to which control is returned if the
requested lock cannot be set immediately, and if to wait would cause a deadlock.

ERROR=error-label
Specifies the symbolic name of a routine to which control should be returned if a
condition occurs for which no other exit routine was coded.

Example: The following is an example of the #KEEP statement that requests that
the system monitor the database activity of a record. The #KEEP NOTIFY statement
selects an EMPLOYEE record that is current of the EMPLOYEE record type and
assigns it a long-term lock ID of REC1. Use of the NOTIFY parameter causes the
system to initialize register 0, which will receive the information regarding database
activities.

The #KEEP TEST statement calls on the system to return the database activity
information for the record identified by a lock ID of REC1 to the low-order byte of
register 0. The information is returned as a numeric value and is tested by comparing
the value in register 0 to the numeric literal that contains the value 2. If the value in
register 0 is greater than or equal to 2, the program will branch to location MODREC.
If the value is less than the value of register 0 the program will proceed to the next
statement.

 #KEEP NOTIFY,LONGID='REC1',CURRENT='EMPLOYEE'

 .

 .

 .

 #KEEP TEST,LONGID='REC1'

 C (R�),=F'2'

 BNL MODREC

 .

 .

Status codes: After completion of the #KEEP request, the value in register 15
indicates the outcome of the operation:

6-128 CA-IDMS DML Reference — Assembler

6.40 #KEEP

Register 15
value

Meaning

X'00' This request has been serviced successfully.

X'04' Either the requested longterm ID cannot be found or the #KEEP
request has been issued by a nonterminal task.

X'14' The request cannot be serviced because a lock on the specified
record already exists; NOWAIT has been specified.

X'18' The request cannot be serviced because to wait for an existing lock
to be released would cause a deadlock.

Chapter 6. Data Manipulation Language Statements 6-129

6.41 #LINEEND

 6.41 #LINEEND

The #LINEEND statement requests termination of the current line I/O session and
deletes any outstanding buffered output lines and pages queued for asynchronous I/O.
Unless NOBKPG is specified, all pages processed by the terminal operator during the
I/O session remain available until the operator signals completion of the review by
pressing ENTER with no request to see another page. At that time, all pages for the
session are deleted, page header lines are cleared, and the current page number is set
to 1.

 Syntax

��─┬─────────┬─ #LINEEND ───��

└─ label ─┘

 Parameters

#LINEEND
Requests that the system terminate the current line I/O session and to delete any
remaining buffered output lines and pages queued for asynchronous I/O.

Status codes: The #LINEEND request is unconditional; any error detected during
execution will result in an abend of the issuing task.

6-130 CA-IDMS DML Reference — Assembler

6.42 #LINEIN

 6.42 #LINEIN

The #LINEIN statement requests a synchronous transfer of data from the terminal to
the issuing program.

 Syntax

��─┬─────────┬─ #LINEIN ──�

└─ label ─┘

 �─┬───┬────────────────────────────────�

└─ ,LRB= ─┬─ SYSPLIST ← ─────────────────┬┘

└─ line-request-block-pointer ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,INAREA=input-data-location-pointer ─┘

 �─┬────────────────────────────────┬───�

└─ ,MAXIN=input-data-max-length ─┘

 �─┬───┬────────────────────────────────�

└─ ,INLEN= ─┬─ (�) ← ────────────────────┬┘

└─ input-data-actual-length ─┘

 �─┬─────────────────────────────────────┬────────────────────────────────────�

│ ┌───── , ─────┐ │

└─ ,OPTNS= ───(───↓─┬─ LOCATE ─┬┴──)──┘

├─ ECHO ───┤

├─ UNPROT ─┤

├─ NOBKPG ─┤

├─ UPPER ──┤

├─ UPLOW ──┤

└─ INVIS ──┘

 �─┬───────────────────────────────┬──�

└─ ,COND= ─┬── NO ← ───────────┬┘

├── ALL ────────────┤

│ ┌───── , ───┐ │

└─(─↓─┬─ TRUN ─┬┴─)─┘

├─ CANC ─┤

├─ IOER ─┤

└─ INVP ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,TRUNXIT=truncate-input-data-label ─┘

 �─┬──────────────────────────────────┬───────────────────────────────────────�

└─ ,CANCXIT=cancel-line-i/o-label ─┘

 �─┬────────────────────────────┬───�

└─ ,IOERXIT=i/o-error-label ─┘

 �─┬───┬────────────────────────────────�

└─ ,INVPXIT=invalid-parameter-list-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

 Parameters

Chapter 6. Data Manipulation Language Statements 6-131

6.42 #LINEIN

LRB=
Specifies the three-fullword storage area in which the system will build the
#LINEIN parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system will build
the line request block (LRB).

line-request-block-pointer
A register that points to the area or the symbolic name of the area in which the
system will build the LRB.

INAREA=
Specifies the storage area into which the data will be read.

input-data-location-pointer
A register that points to the area or the symbolic name of the area. When
INAREA is specified, the LOCATE option should not be requested.

MAXIN=
Specifies the length, in bytes, of the data area, defined by INAREA, that is
reserved for the input data stream.

input-data-max-length
A register that contains the length of the data area or an absolute expression.
When MAXIN is specified, the LOCATE option should not be requested.

INLEN=
Specifies the location to which the system will return the actual length of the input
data stream. If INAREA is too small to hold the entire input line, resulting in
truncation, the returned length will indicate the original length of the data stream
before truncation.

(0)
(Default); is the register to which the system will return the actual length of the
input data stream.

input-data-actual-length
A register or the symbolic name of a halfword or fullword user-defined field to
which the system will return the actual length of the input data stream.

OPTNS=
Specifies several options applicable to terminal input operations. This parameter
is never required and should be specified only when appropriate. The
OPTNS-parameter values must be enclosed in parentheses. If multiple values are
specified, each is separated from the previous one by a comma.

LOCATE
Allocates a buffer area for the data being read into the program, rather than a
user-defined area. The system allocates the buffer when the read operation is
completed. Register 1 contains the address of this buffer on completion of the
input operation. The issuing program is responsible for releasing the buffer area,
using a #FREESTG command.

When this option is requested, INAREA and MAXIN should not be specified.

6-132 CA-IDMS DML Reference — Assembler

6.42 #LINEIN

ECHO
(3270 devices only); requests that the system save the line of input data as
displayed on the screen in the current page. If OPTNS=ECHO is not specified,
data entered will not be retained and will not be available for review by the
terminal operator.

UNPROT
(3270 devices only); causes the first line of output that follows the #LINEIN to be
unprotected. At runtime, the terminal operator can reuse the unprotected first line
of an output display for input to a subsequent #LINEIN. The UNPROT option
can be used with or without the ECHO parameter. For example, if the terminal
operator has made an error in previous input data, the data that is retained by the
ECHO option can be rekeyed and corrected. If UNPROT is not included, all lines
of the following output display remain protected.

NOBKPG
(3270 devices only); requests the system not to keep pages that have been input in
a scratch area. If NOBKPG is specified, the terminal operator can view only the
current page of data. NOBKPG is valid only with the first request in a line mode
session.

UPPER
Directs the system to translate all letters in a #LINEIN request into uppercase
characters.

UPLOW
Specifies that no uppercase translation of characters in a #LINEIN request be
performed.

INVIS
Specifies that the operator's response to the #LINEIN command will not appear on
the screen as it is typed in. This option is useful when expecting a secret
password to be entered.

COND=
Specifies whether this #LINEIN is conditional and under what conditions control
should be returned to the issuing program.

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the request cannot
be serviced for any of the reasons listed below.

condition
Specifies conditions under which the system returns control to the issuing task.
Multiple conditions must be enclosed in parentheses and separated by commas.

TRUN
The input data is truncated due to insufficient storage in the specified INAREA.

CANC
The line I/O session is terminated by the terminal operator pressing CLEAR
(3270), ATTENTION (2741), or BREAK (teletype).

Chapter 6. Data Manipulation Language Statements 6-133

6.42 #LINEIN

IOER
A logical or permanent I/O error is encountered in the input data stream.

INVP
There is an invalid parameter in the LRB.

TRUNXIT=truncate-input-data-label
Specifies the symbolic name of the routine to which control should be returned if
input data is truncated due to insufficient storage in the INAREA buffer.

CANCXIT=cancel-line-i/o-label
Specifies the symbolic name of the routine to which control should be returned if
the line I/O session is terminated by the terminal operator.

IOERXIT=i/o-error-label
Specifies the symbolic name of the routine to which control should be returned if
a permanent or logical error is detected in the input data stream.

INVPXIT=invalid-parameter-list-label
Specifies the symbolic name of the routine to which control should be returned in
the event of an invalid parameter in the LRB.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

Example: The example of the #LINEIN statement shown below performs the
following functions:

■ Uses the default storage area, SYSPLIST, to build the line request block

■ Specifies that the data is to be read into an input storage area located at the
address contained in register 5

■ Specifies that register 6 contains the length of the data area, defined by the
INAREA parameter, that is reserved for the input data stream

■ Uses the default register 0 to receive the actual length of the input data stream
from the system

■ Specifies the conditional return of control if either the input data stream is
truncated due to insufficient storage in the specifed INAREA or the I/O session is
terminated by the terminal operator

■ Specifies the two routines to receive control in the event of a TRUN or CANC
condition

 #LINEIN INAREA=(R5),MAXIN=(R6),COND=(TRUN,CANC),TRUNXIT=TRUNRTN, �

 CANCXIT=OPERTER

Status codes: By default, the #LINEIN request is unconditional; any runtime error
will result in an abend of the issuing task. The issuing program can request return of
control with the COND parameter to avoid an abend.

6-134 CA-IDMS DML Reference — Assembler

6.42 #LINEIN

After completion of the #LINEIN, the value in register 15 indicates the outcome of the
operation.

Upon successful completion of a #LINEIN request, register 1 and a user-defined
register will contain the following information:

■ Register 1 (LOCATE option only) contains the address of the buffer into which
the input data has been placed.

■ Register n contains the actual length of returned data from the input operation; it
can be a register or a user-defined field. The register number,n, is assigned by
the INLEN parameter.

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'04' The input area specified for the return of data to the issuing
program is too small; the returned data has been truncated to fit
available space.

X'08' The line I/O session has been canceled; the terminal operator has
pressed CLEAR (3270), ATTENTION (2741), or BREAK
(teletype).

X'0C' A logical or permanent I/O error has been encountered in the input
data stream.

X'10' The line request block (LRB) contains an invalid field, indicating a
possible error in the program parameters.

Chapter 6. Data Manipulation Language Statements 6-135

6.43 #LINEOUT

 6.43 #LINEOUT

The #LINEOUT statement requests a transfer of data from the issuing program to the
terminal, after appending line and device control characters appropriate to the physical
terminal in use. #LINEOUT also establishes, modifies, and deletes page header lines.

A data transfer requested by the #LINEOUT statement can be synchronous or
asynchronous; requests are asynchronous only when the NOWAIT option is specified:

■ Synchronous — Following a synchronous request, control passes to the DC/UCF
system. The system places the issuing task in an inactive state; when the
#LINEOU request is completed, the task is redispatched according to its
established priority. With 3270 terminals, a synchronous #LINEOUT request
causes a processing delay immediately following the request while the system
transfers the line to the page buffer. If the line of data fills the buffer, the system
transfers the entire page of data to the terminal. Control does not return to the
issuing program until the terminal operator has pressed the ENTER key. Thus,
the program is made conversational.

■ Asynchronous — Following an asynchronous request, control returns immediately
to the issuing program. Thereafter, each time the program issues a line-mode I/O
request, the system automatically checks to determine if the last asynchronous
request has completed, and whether a new data transfer can be initiated.

Asynchronous requests enable programs to buffer all required pages of output
without suspending task execution during the actual data transmission. With an
asynchronous request, the task can optionally terminate itself, freeing all its
resources. The terminal operator can then review the buffered output, if desired.

The system processes I/O requests in the sequence received from the task; thus, if a
program issues a synchronous #LINEOUT request after issuing one or more
asynchronous requests, the system will complete all I/O requests before returning
control to the issuing program.

The #LINEOUT request issued automatically by the system to empty partially-filled
buffers on completion of a task is synchronous; therefore the terminal operator can
view all screens and catch up with processing at that time.

If an application necessitates allowing the terminal operator to interrupt or terminate
processing at some point in a task, a synchronous request must be issued to suspend
processing while waiting for an operator response.

To transfer data immediately to a terminal, a write-direct-to-terminal #LINEOUT
request (blast) can be issued. The system does not page multiple blast requests. The
following #LINEOUT parameters are ignored during blast requests:

 ■ HDR=

 ■ OPTNS=(NOWAIT/NOBKPG/NEWPAGE)

(The NEWPAGE option is automatically forced during blast requests.)

6-136 CA-IDMS DML Reference — Assembler

6.43 #LINEOUT

Header lines can be defined for each new page of output to be transferred to a
terminal. A maximum of three header lines can be established for each new page of
output. The #LINEOUT statement specifies a header line and corresponding
header-line number that can be used in subsequent new pages. The established header
lines are sent to the terminal and written with each new page of output. The existing
header lines may be overridden or deleted at any time during processing by issuing a
#LINEOUT request specifying the appropriate line number and, for an override, the
corresponding new header line.

 Syntax

��─┬─────────┬──�

└─ label ─┘

 �─── #LINEOUT OUTLEN=output-data-length ─────────────────────────────────────�

 �─┬──┬───────────────────────────────�

└─ ,LRB= ─┬─ SYSPLIST ← ─────────────────┬─┘

└─ line-request-block-pointer ─┘

 �─┬───┬────────────────────────────────�

└─ ,OUTAREA=output-data-location-pointer ─┘

 �─┬─────────────────────────────────────┬────────────────────────────────────�

│ ┌───── , ───────┐ │

└─ ,OPTNS= ───(───↓─┬─ NEWPAGE ─┬─┴─)─┘

├─ NOWAIT ──┤

├─ NOBKPG ──┤

└─ SAVE ────┘

 �─┬──────────────────────┬───�

└─ ,HDR=header-number ─┘

 �─┬──┬─────────────────────────────────�

├─ ,DESTID=destination-id-pointer ───────┤

├─ ,USERID=user-id-pointer ──────────────┤

└─ ,LTERMID=logical-terminal-id-pointer ─┘

 �─┬───────────────────────────────┬──�

└─ ,COND= ─┬── NO ← ───────────┬┘

├── ALL ────────────┤

│ ┌─── , ─────┐ │

└─(─↓─┬─ CANC ─┬┴─)─┘

├─ IOER ─┤

├─ INVP ─┤

└─ UNDF ─┘

 �─┬──────────────────────────────────┬───────────────────────────────────────�

└─ ,CANCXIT=cancel-line-i/o-label ─┘

 �─┬────────────────────────────┬───�

└─ ,IOERXIT=i/o-error-label ─┘

 �─┬───┬────────────────────────────────�

└─ ,INVPXIT=invalid-parameter-list-label ─┘

 �─┬───┬────────────────────────────────�

└─ ,UNDFXIT=invalid-destid-ltermid-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

Chapter 6. Data Manipulation Language Statements 6-137

6.43 #LINEOUT

 Parameters

OUTLEN=
Specifies the length, in bytes, of the data stream to be written to the terminal.

output-data-length
A register that contains the length or an absolute expression of the length. Output
data lengths of 0 and 1 can be used in the following situations:

■ OUTLEN=0 Specifies that no data is to be written to the terminal or that a
header line is to be deleted:

When the HDR parameter is not specified, OUTLEN=0 specifies a dummy
write. No I/O is initiated by this request unless the NEWPAGE option,
described below for the OPTNS parameter, is specified; if
OPTNS=(NEWPAGE), this request writes a partially-filled buffer to the
terminal.

When the HDR parameter is specified, OUTLEN=0 specifies a deletion of a
header line. The HDR parameter indicates the number of the header line to
be deleted.

■ OUTLEN=1 Specifies that a 1-byte data stream is to be written to the
terminal. Typically, OUTLEN=1 is used to write a blank line to the screen.
In this case, the OUTAREA parameter, described below, should designate a
single blank character.

LRB=
Specifies the three-fullword storage area in which the system will build the
#LINEOUT parameter list:

SYSPLIST
(Default); is the symbolic name of the storage area in which the system will build
the line request block.

line-request-block
A register that points to the area or the symbolic name of that area in which the
system will build the LRB.

OUTAREA=
Specifies the storage area that contains data to be output. OUTAREA need not be
defined if OUTLEN=0 has been specified.

output-data-location
A register that points to the area or the symbolic name of the area.

OPTNS=terminal-option
Specifies several options applicable to terminal output operations. This parameter
is never required and should be specified only when appropriate. The OPTNS
parameter values must be enclosed in parentheses. If multiple values are
specified, each is separated from the previous one by a comma.

6-138 CA-IDMS DML Reference — Assembler

6.43 #LINEOUT

NEWPAGE
Requests that the system write the output data line beginning on a new page. For
3270 devices, the NEWPAGE option forces the system to output all lines stored in
the current buffer, even if the buffer is not full.

NOWAIT
Requests an asynchronous transfer of data; the issuing task executes concurrently
with the output operation.

NOBKPG
(3270 devices only); requests the system not to keep pages that have been output
in a scratch area. If NOBKPG is specified, the terminal operator can view only
the current page of data. NOBKPG is valid only with the first request in a line
mode session.

SAVE
Directs the system to preserve the output from the #LINEOUT in the event that an
unsolicited write-direct-to-terminal data stream is received at the issuing terminal
while the #LINEOUT data stream is being displayed. This option overrides the
task SAVE/NOSAVE option specified during system generation.

HDR=
Specifies the number of the page header line being defined, modified, or deleted.

header-line-number
An absolute expression of the line number. If OUTLEN is other than 0 the value
stored in OUTAREA will be moved to the designated (first, second, or third)
header line. If a header line with the same number has been previously defined
for this I/O session, the system will replace it with the value stored in OUTAREA.
If OUTLEN=0, the designated header line will be deleted.

DESTID/USERID/LTERMID
Specifies a write-direct-to-terminal request. The HDR= and
OPTNS=(NOWAIT/NOBKPG/NEWPAGE) parameters are ignored during a blast
request.

DESTID=
Specifies a write-direct-to-terminal request (blast) to the following destinations
defined during system generation:

■ List of logical terminals indicates that the system will send the #LINEOUT
data stream specified in the OUTAREA parameter to all available terminals in
the list.

■ List of users indicates that the system will send the #LINEOUT data stream
specified in the OUTAREA parameter to all users in the list who are currently
signed on to the system.

destination-id
A register that points to the destination id, the symbolic name of a user-defined
field that contains the destination ID, or the ID itself enclosed in quotation marks.
The destination list can include both 3270 and TTY devices.

Chapter 6. Data Manipulation Language Statements 6-139

6.43 #LINEOUT

USERID=
Specifies a blast request to a specific signed-on user. The system will send the
#LINEOUT data stream specified in the OUTAREA parameter to a specific
signed-on user.

user-id
A register that points to the user id, the symbolic name of a user-defined field that
contains the user ID, or the ID itself enclosed in quotation marks.

LTERMID=
(#LINEOUT only); specifies a blast request to a specific in-service terminal. The
system will send the #LINEOUT data stream specified in the OUTAREA
parameter to a specific in-service terminal.

logical-terminal-id
A register that points to the logical terminal id, the symbolic name of a
user-defined field that contains the logical terminal ID, or the ID itself enclosed in
quotation marks.

COND=
Specifies whether this #LINEOUT is conditional and under what conditions
control should be returned to the issuing program.

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the request cannot
be serviced for any of the reasons listed below.

condition
Specifies conditions under which the system returns control to the issuing task.
Multiple conditions must be enclosed in parentheses and separated by commas.

CANC
The line I/O session is terminated by the terminal operator pressing CLEAR
(3270), ATTENTION (2741), or BREAK (teletype).

IOER
A logical or permanent I/O error is encountered in the output data stream.

INVP
There is an invalid parameter in the LRB.

UNDF
An undefined DESTID or LTERMID is specified in a #LINEOUT blast request.

CANCXIT=cancel-line-i/o-label
Specifies the symbolic name of the routine to which control should be returned if
the line I/O session is terminated by the terminal operator.

IOERXIT=i/o-error-label
Specifies the symbolic name of the routine to which control should be returned if
a permanent or logical I/O error is detected in the output data stream.

6-140 CA-IDMS DML Reference — Assembler

6.43 #LINEOUT

INVPXIT=invalid-parameter-list-label
Specifies the symbolic name of the routine to which control should be returned in
the event of an invalid parameter in the LRB.

UNDFXIT=invalid-destid-ltermid-label
Specifies the symbolic name of the routine to which control should be returned if
an undefined DESTID or LTERMID is specified in a #LINEOUT blast request.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

Example: The example of the #LINEOUT statement shown below performs the
following functions:

■ Specifies that register 7 contains the length of the output data stream

■ Uses the default storage area SYSPLIST to build the line request block (LRB)

■ Identifies OUT1 as the storage area that contains the output data stream

■ Specifies a write-direct-to-terminal request to a group of users defined during
system generation as USERLIST

■ Specifies a conditional return of control to the routine labeled LISTERR in the
event that DESTID 'USERLIST' is not defined to the system

 #LINEOUT OUTLEN=(R7),OUTAREA=OUT1,DESTID='USERLIST',COND=UNDF, �

 UNDFXIT=LISTERR

Status codes: By default, the #LINEOUT request is unconditional; any runtime
error will result in an abend of the issuing task. The issuing program can request
return of control with the COND parameter to avoid an abend.

After completion of the #LINEOUT, the value in register 15 indicates the outcome of
the operation:

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'08' The line I/O session has been canceled by the operator pressing the
CLEAR (3270), ATTENTION (2741), or BREAK (teletype) key.

X'0C' A logical or permanent I/O error has been encountered in the
output data stream.

X'10' The line request block (LRB) contains an invalid field, indicating a
possible error in the #LINEOUT parameters.

X'14' The name specified for DESTID, USERID, or LTERMID is
unknown to this DC/UCF system.

Chapter 6. Data Manipulation Language Statements 6-141

6.44 #LINK

 6.44 #LINK

The #LINK statement establishes linkage with, and passes control and an optional
parameter list to, a specified program. When the linked program terminates or
executes a #RETURN request, the program issuing the #LINK expects return of
control to the instruction immediately following the #LINK statement.

 Syntax

��─┬─────────┬──�

└─ label ─┘

 �─── #LINK ─┬─ PGM=program-name-pointer ───┬─────────────────────────────────�

└─ EPADDR=entry-point-address ─┘

 �─┬───┬────────────────────────────�

└─ ,PLIST= ─┬─ SYSPLIST ← ───────────────────┬┘

└─ parameter-value-list-pointer ─┘

 �─┬──┬───────────────────────────�

└─ ,PARMS= ─┬─ NO ← ──────────────────────────┬┘

│ ┌──────── , ──────────┐ │

└─ (─↓─ parameter-pointer ─┴─) ─┘

 �─┬────────────────────┬───�

└─ ,COND= ─┬─ NO ← ─┬┘

└─ YES ──┘

 �─┬──┬─────────────────────────────────�

└─ ,PGNAXIT=program-not-available-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

 Parameters

PGM=
Specify the program and/or entry-point address of the program to which control is
transferred.

program-name-pointer
Specifies the 1- to 8-character name of the program to which control is
transferred.Program-name is a register that points to a field that contains the
program name, the symbolic name of a user-defined field that contains the
program name, or the program-name literal enclosed in quotation marks.

entry-point-address
Specifies the entry-point address of the program to which control is transferred.
Entry-point-address is a register or symbolic name of a fullword user-defined field
that contains the entry-point address.

PLIST=
Specifies the location of the storage area that contains one or more parameters to
be passed to the program receiving control.

6-142 CA-IDMS DML Reference — Assembler

6.44 #LINK

SYSPLIST
(Default); is the symbolic name of the storage area in which the system will build
the parameter list.

parameter-value-list-pointer
A register that points to the area in which the system will build the list or the
symbolic name of that area.

The size of the parameter-list area, in fullwords, must be equal to 2 plus the
number of parameters listed in the PARMS parameter described below. Thus, if
no parameters are specified (PARMS=NO), the length of this storage area is two
fullwords; if one parameter is specified, the length is three fullwords.

PARMS=
Specifies the location of each parameter to be passed to the program receiving
control.

NO
(Default); indicates that no parameters will be passed to the program.

parameter-pointer
Indicates that parameters are to be passed to the program.Parameter is a register
that contains the address of the parameter or the symbolic name of a user-defined
field that contains the parameter.

The parameter list must be enclosed in parentheses. If multiple parameters are
specified, each is separated from the previous one by a comma.

COND=
Specifies whether this #LINK is conditional; that is, whether control should be
returned to the issuing program in the event of an error:

NO
(Default); specifies that the request is not conditional.

PGNA
Specifies that the request is conditional. Control is returned if the #LINK cannot
be serviced because the program is not available.

PGNAXIT=program-not-available-label
Specifies the symbolic name of the routine to which control should be returned if
the #LINK request cannot be serviced because the program is not available.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded. In this case, the ERROR parameter functions the same as
PGNAXIT.

Example: The example of the #LINK statement shown below performs the
following functions:

■ Specifies that control will be transferred to the program HELPLK

■ Uses the default storage area, SYSPLIST, in which the system builds the
parameter list

Chapter 6. Data Manipulation Language Statements 6-143

6.44 #LINK

■ Identifies the parameters, PARM1 and PARM2, to be passed to the program
HELPLK

■ Specifies a conditional return of control if the program HELPLK is not available
and identifies the routine NOPROG that will receive control in the event of a
PGNA error condition

 #LINK PGM='HELPLK',PARMS=(PARM1,PARM2),COND=PGNA,PGNAXIT=NOPROG

Status codes: By default, the #LINK request is unconditional. Error conditions
that can occur are described below:

■ A no-space-in-program-pool condition, caused when the amount of storage in the
program pool is inadequate to accommodate the program, will result in a delay
until sufficient storage space becomes available (unless such a wait would cause a
deadlock, in which case an abort would occur).

■ A nonconcurrent-program-in-use condition, caused when a copy of the program is
already in use and is marked as nonconcurrent (indicating that this program can be
used by a maximum of one task), will result in a delay until the program becomes
available.

■ A storage-conflict condition, caused when a copy of the program previously
loaded is temporarily overlayed while in use by a waiting task, will result in a
delay until the program is replaced in the program pool.

■ Any abnormal condition will result in an abend. Conditions in this category
include the following:

 – I/O error

– Program not found in program definition table (PDT)

– A wait on storage (default action resulting from the
no-storage-in-program-pool condition) would result in a deadlock

The issuing program can request return of control with the COND parameter to avoid
a delay or an abend.

After completion of the #LINK function, the value in register 15 indicates the outcome
of the operation:

6-144 CA-IDMS DML Reference — Assembler

6.44 #LINK

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced because an I/O, program-not-found,
or potential-deadlock error has occurred, or the program has not
been defined in the program definition element (PDE).

Chapter 6. Data Manipulation Language Statements 6-145

6.45 #LOAD

 6.45 #LOAD

The #LOAD statement loads a module (program or table) into the program pool. In
response to a #LOAD, the system returns the entry-point address of the module and
the address of the resource control element (RCE) to the issuing program.

 Syntax

��─┬─────────┬─ #LOAD PGM=program-name-pointer ───────────────────────────────�

└─ label ─┘

 �─┬──────────────────────────┬───�

└─ VERSION=version-number ─┘

 �─┬─────────────────────────────┬──�

└─ ,DICTNOD=nodename-pointer ─┘

 �─┬────────────────────────────────────┬─────────────────────────────────────�

└─ ,DICTNAM=dictionary-name-pointer ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,EPADDR= ─┬─ (�) ← ───────────────┬─┘

└─ entry-point-address ─┘

 �─┬────────────────────────┬───�

└─ ,TYPE= ─┬─ PROGRAM ─┬─┘

└─ TABLE ───┘

 �─┬───┬────────────────────────────�

└─ ,PLIST= ─┬─ SYSPLIST ← ───────────────────┬┘

└─ parameter-value-list-pointer ─┘

 �─┬───────────────────────────────┬──�

└─ ,COND= ─┬── NO ← ───────────┬┘

├── ALL ────────────┤

│ ┌───── , ───┐ │

└─(─↓─┬─ NOST ─┬┴─)─┘

├─ IOER ─┤

├─ SNGL ─┤

├─ LDCF ─┤

├─ PGNF ─┤

└─ DEAD ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ NOSTXIT=insufficient-storage-label ─┘

6-146 CA-IDMS DML Reference — Assembler

6.45 #LOAD

 �─┬────────────────────────────┬───�

└─ ,IOERXIT=i/o-error-label ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,SNGLXIT=single-thread-in-use-label ─┘

 �─┬──┬─────────────────────────────�

└─ ,LDCFXIT=storage-location-conflict-label ─┘

 �─┬────────────────────────────────────┬─────────────────────────────────────�

└─ ,PGNFXIT=program-not-found-label ─┘

 �─┬───────────────────────────┬──�

└─ ,DEADXIT=deadlock-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

 Parameters

PGM=
Specifies the 1- to 8-character name of the module to be loaded in the program
pool.

program-name-pointer
A register that points to a field that contains the program name, the symbolic
name of a user-defined field that contains the program name, or the program-name
literal enclosed in quotation marks.

VERSION=version-number
Specifies a version number.Version-number can be an absolute value, a halfword
or fullword value, or a register.

DICTNOD=
Identifies the node that controls the dictionary in which the program resides.

nodename-pointer
A register that points to a field that contains the name of the node, the symbolic
name of a user-defined field containing the name of the node, or the nodename
literal enclosed in quotation marks. A blank value refers to the local node.

DICTNAM=
Identifies the default dictionary in which the named program resides.

dictionary-name-pointer
A register that points to a field containing the dictionary name, the symbolic name
of a user-defined field containing the dictionary name, or the dictionary name
literal enclosed in quotation marks.

Note: If the DICTNAM and/or DICTNOD is specified, the system searches only
the specified dictionary for the module. A program-not-found condition is
returned if the module cannot be found in the specified dictionary.

EPADDR=
Specifies where the system will return the entry-point address of the loaded
program.

Chapter 6. Data Manipulation Language Statements 6-147

6.45 #LOAD

(0)
(Default) specifies that the system will return the entry-point address to register 0.

entry-point-address
Specifies that the system will return the entry-point address to a user-defined
Entry-point-address is a register location or the symbolic name of a fullword
user-defined field that contains the entry-point address.

,TYPE=
Qualifies the type of load to perform.

PROGRAM
Has been pre-defined as a program at system generation or dynamically defined as
a program via DCMT VARY DYNAMIC PROGRAM command.

Note: The program must reside in a load library. No attempt will be made to
load the program from a dictionary load area.

TABLE
Has been pre-defined as a table at system generation or dynamically defined using
a DCMT VARY DYNAMIC PROGRAM command.

PLIST=
Specifies the location of the storage area in which the system builds the #LOAD
parameter list.

SYSPLIST
Is the symbolic name of the storage area in which the system builds the #LOAD
parameter list.

parameter-value-list-pointer
A register that points to the area or the symbolic name of the area.

Note: The PLIST parameter is required only if the DICNAM or DICTNOD
options are specified.

COND=
Specifies whether this #LOAD is conditional and under what conditions control
should be returned to the issuing program:

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the load cannot be
serviced for one or more of the reasons listed under condition.

condition
Specifies conditions under which control is returned to the program.

NOST
Available storage in the program pool is insufficient to load the requested
program.

IOER
An I/O error occurs during the load.

6-148 CA-IDMS DML Reference — Assembler

6.45 #LOAD

SNGL
The requested program has been defined as nonconcurrent and is currently in use.

LDCF
The requested program is in use by another task but has been overlayed
temporarily in the program pool, causing a storage location conflict.

PGNF
The requested program cannot be found in the program definition table (PDT), or
is marked as out-of-service.

DEAD
The requested program cannot be loaded immediately because of a
no-storage-in-program-pool condition and waiting would cause a deadlock.

NOSTXIT=insufficient-storage-label
Specifies the symbolic name of a routine to which control should be returned if
the #LOAD request cannot be serviced due to insufficient storage in the program
pool.

IOERXIT=i/o-error-label
Specifies the symbolic name of a routine to which control should be returned if
the #LOAD request cannot be serviced due to an I/O error while processing the
load.

SNGLXIT=single-thread-in-use-label
Specifies the symbolic name of a routine to which control should be returned if
the #LOAD request is for a program marked nonconcurrent and the program is in
use.

LDCFXIT=storage-location-conflict-label
Specifies the symbolic name of a routine to which control should be returned if
the #LOAD request cannot be serviced due to a storage location conflict.

PGNFXIT=program-not-found-label
Specifies the symbolic name of a routine to which control should be returned if
either the requested program cannot be found in the PDT or is out-of-service.

DEADXIT=deadlock-label
Specifies the symbolic name of a routine to which control should be returned if
the requested program cannot be loaded immediately and to wait on its availability
would cause a deadlock.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

Example: The #LOAD statement shown below loads the program EMPMENU into
the program pool:

 #LOAD PGM='EMPMENU'

Chapter 6. Data Manipulation Language Statements 6-149

6.45 #LOAD

Status codes: By default, the #LOAD request is unconditional. Error conditions
that can occur are:

■ A no-storage-in-program-pool condition is caused when there is not enough
storage in the program pool to accommodate the program. This conditions results
in a delay until sufficient storage becomes available (unless such a wait would
cause a deadlock).

■ A nonconcurrent-program-in-use condition is caused when a copy of the program
is already in use and is marked as nonconcurrent (indicating that this program can
be used by a maximum of one task at a time). This conditions results in a delay
until the program becomes available.

■ A storage-conflict condition occurs when a previously loaded copy of the program
is temporarily overlayed while in use by a waiting task. This condition results in
a delay until the program is replaced in the program pool.

■ Any abnormal condition will result in an abend. Conditions in this category
include the following:

 – I/O error

– Program not found in PDT, or marked as out-of-service

– Waiting for storage-pool or program-pool memory, the default action resulting
from the no-storage-in-program-pool condition, would cause a deadlock

The issuing program can request return of control with the COND parameter to avoid
a delay or an abend.

After completion of the #LOAD function, the value in register 15 indicates the
outcome of the operation:

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced due to insufficient storage in the
program pool.

X'08' The request cannot be serviced due to an I/O error during a load
from a load library.

X'0C' The requested program is nonconcurrent and in use.

X'10' The requested program has been overlayed temporarily in the
program pool, resulting in a storage conflict.

X'14' The requested program is not defined to the PDT, is marked as
out-of-service, or a null PDE could not be allocated for the
program.

X'18' The requested program cannot be loaded immediately (insufficient
storage); to wait would cause a deadlock.

6-150 CA-IDMS DML Reference — Assembler

6.45 #LOAD

The values in a user-defined register and register 1 also contain the following
information:

■ Register n specifies the entry-point address of the loaded program. The register
numbern is assigned by the EPADDR parameter of the #LOAD statement.

■ Register 1 specifies the address of the RCE of the loaded program.

Register 15
value

Meaning

X'20' The requested program cannot be loaded immediately due to an I/O
error during a load from the dictionary DDLDCLOD area.

Chapter 6. Data Manipulation Language Statements 6-151

6.46 #MAPINQ

 6.46 #MAPINQ

The #MAPINQ statement is used after a map input request to accomplish one of the
following actions related to the input operation:

■ Move map-related information into variable storage

■ Test for conditions relating to global map input operations

■ Test specific map fields for the presence of the cursor

■ Test for conditions relating to specific map fields

If you use the #MAPINQ statement to test for conditions, you must specify a routine
that receives control if the condition is true.

Each of the four types of #MAPINQ statements is discussed in this chapter.

6.46.1 Moving map-related data

This version of the #MAPINQ statement moves the following information into variable
storage:

■ The cursor position (row and column).

■ The attention ID (AID) key used. An AID key is the key that was last pressed
during the input operation.

■ The entered length of a specific input field.

 Syntax

��─── #MAPINQ MRB=map-request-block-pointer ──────────────────────────────────�

 �─┬───┬────────────────────────────�

└─ ,MRBLIST= ─┬─ MRBPLIST ← ─────────────────┬┘

└─ mrb-parameter-list-pointer ─┘

 ┌───────────────────────────────┐

 �─↓─┬─ ,CURSOR=cursor-position ──┬┴──��

├─ ,AID=aid-indicator ───────┤

└─ field-options ────────────┘

Expansion of field-options

��─── ,FIELD=field-name ──�

 �─┬─────────────────────────┬──�

└─ ,INDEX=index-register ─┘

 �─┬────────────────────────────────┬───��

└─ ,INLEN=field-length-register ─┘

 Parameters

6-152 CA-IDMS DML Reference — Assembler

6.46 #MAPINQ

MRB=
Specifies the storage area associated with the MRB of the map about which the
inquiry is being made.

map-request-block
A register that points to the MRB storage area or the symbolic name of that area.

MRBLIST=
Specifies the location of the 20-fullword storage area that is substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

MRBPLIST
(Default); is the symbolic name of the storage area that will be substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

mrb-parameter-list
A register that points to the area or the symbolic name of the area.

CURSOR=
Requests that the system return the cursor address from the last map in operation
to the specified location in the issuing program.

cursor-position
The symbolic name of a 2-byte user-defined field. The system will set the value
of cursor-position to the row and the column, each a 1-byte binary number, of the
cursor position on the screen.

AID=
Requests that the system return the AID to the specified location in the issuing
program.

aid-indicator
The symbolic name of a 1-byte user-defined field that will be set to the 3270 AID
character received in the last map in request.

FIELD=
Requests that the system move the entered length of the specified map field for
which information is required.

field-name
Specifies the name of the map field.

Note: For each #MAPINQ request to return map-related data, field-specific
information can be requested for one map field; if information is needed for
multiple fields, additional #MAPINQ commands must be issued.

INDEX=
Specifies the occurrence of the field iffield-name is a multiply-occurring field.

index-register
Either a register or the symbolic name of a user-defined field that contains the
subscript or an absolute expression.

INLEN=
Requests that the system return the entered length, in bytes, of the specified map
field to the issuing program.

Chapter 6. Data Manipulation Language Statements 6-153

6.46 #MAPINQ

field-length-register
A register or the symbolic name of a halfword or fullword user-defined field to
which the system will return the length.

Example: The following #MAPINQ statement moves the contents of map field
EMPNUM to the area in the program labeled BLOCK1. The value of the 3270 AID
character received in the last map in request is returned to the user-defined field
AIDBYTE. This field is tested for the specific AID key value that indicates the
operator is finished with this program.

 #MAPINQ MRB=BLOCK1,AID=AIDBYTE,FIELD=EMPNUM

 CLI AIDBYTE,CLEAR

 BE RETURN

 .

 .

CLEAR EQU X'6D'

The following table lists attention ID (AID) key values.

Key AID Character Key AID Character

ENTER "'" (single quote) PF14 'B'

CLEAR '_' (underscore) PF15 'C'

PF01 '1' PF16 'D'

PF02 '2' PF17 'E'

PF03 '3' PF18 'F'

PF04 '4' PF19 'G'

PF05 '5' PF20 'H'

PF06 '6' PF21 'I'

PF07 '7' PF22 ¢

PF08 '8' PF23 '.'

PF09 '9' PF24 '<'

PF10 ':' PA01 '%'

PF11 '#' PA02 '>'

PF12 '@' PA03 ','

PF13 'A'

6-154 CA-IDMS DML Reference — Assembler

6.46 #MAPINQ

6.46.2 Testing for global map input conditions

This version of the #MAPINQ statement tests for one of the following conditions
related to map input operations:

■ The screen was not previously formatted before the map in was performed.

■ One or more input fields were truncated when transferred to program variable
storage.

■ One or more input fields were modified on the screen before being transferred.

■ One or more fields, which were modified on the screen, are undefined in the map
being used.

 Syntax

��─── #MAPINQ MRB=map-request-block-pointer ──────────────────────────────────�

 �─┬───┬────────────────────────────�

└─ ,MRBLIST= ─┬─ MRBPLIST ← ─────────────────┬┘

└─ mrb-parameter-list-pointer ─┘

 �─── ,CURSOR=cursor-position ──�

 �─── ,AID=aid-indicator ───�

 �─┬───┬────────────────��

└─ ,IF= (─┬─ UNFORMAT,unformatted-screen-label─────┬─) ─┘

├─ TRUNCATE,truncated-data-label ────────┤

├─ CHANGED,updated-data-label ───────────┤

└─ XTRNEOUS,extraneous-input-data-label ─┘

 Parameters

MRB=
Specifies the storage area associated with the MRB of the map about which the
inquiry is being made.

map-request-block-pointer
A register that points to the MRB area or the symbolic name of that area.

MRBLIST=
Specifies the location of the 20-fullword storage area that is substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

MRBPLIST
(Default); is the symbolic name of the storage area that will be substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

mrb-parameter-list-pointer
A register that points to the area or the symbolic name of the area.

CURSOR=
Requests that the system return the cursor address from the last map in operation
to the specified location in the issuing program.

Chapter 6. Data Manipulation Language Statements 6-155

6.46 #MAPINQ

cursor-position
The symbolic name of a 2-byte user-defined field. The system will set the value
of cursor-position to the row and the column, each a 1-byte binary number, of the
cursor position on the screen.

AID=
Requests that the system return the AID to the specified location in the issuing
program.

aid-indicator
The symbolic name of a 1-byte user-defined field that will be set to the 3270 AID
character received in the last map in request.

IF=
Tests the outcome of the last map in request for a condition relating to the data
input as a whole. Map data fields that are in error are not transferred to program
variable storage.

�� For more information on testing map input conditions, refer to the CA-IDMS
Mapping Facility document. For each condition, the associated label specifies the
symbolic name of the routine in the issuing program to which the system will pass
control if the tested condition is true. The IF-parameter condition and label must
be enclosed in parentheses.

UNFORMAT,unformatted-screen-label
Tests whether the screen had been formatted before the input operation was
performed.

TRUNCATE,truncated-data-label
Tests whether any of the screen fields had been truncated when transmitted to
program variable storage.

CHANGED,updated-data-label
Tests whether any of the screen fields actually had been mapped to program data
fields when the map in operation was performed.

XTRNEOUS,extraneous-input-data-label
Tests whether the data stream that had been read from the terminal contains any
data from a field undefined to the map. If this condition occurs, the system does
not move the the undefined data field to program variable storage.

Example: The following example of the #MAPINQ statement tests if any of the
screen fields have been updated to the program data fields of the map identified by
BLOCK1 when the last map in operation was performed. If the test is true, the
program branches to the label NEWINFO. A false condition causes the program to
execute the next sequential instruction:

 #MAPINQ MRB=BLOCK1,IF=(CHANGED,NEWINFO)

6-156 CA-IDMS DML Reference — Assembler

6.46 #MAPINQ

6.46.3 Testing cursor position

This version of the #MAPINQ statement tests a specified map field for the presence of
the cursor.

 Syntax

��─── #MAPINQ MRB=map-request-block-pointer ──────────────────────────────────�

 �─┬───┬────────────────────────────�

└─ ,MRBLIST= ─┬─ MRBPLIST ← ─────────────────┬┘

└─ mrb-parameter-list-pointer ─┘

 �─┬──────────────────────────┬───�

└─ ,CURSOR=cursor-postion ─┘

 �─┬──────────────────────┬───�

└─ ,AID=aid-indicator ─┘

 �─── ,FIELD=field-name ──�

 �─┬─────────────────────────┬──�

└─ ,INDEX=index-register ─┘

 �─┬────────────────────────────────┬───�

└─ ,INLEN=field-length-register ─┘

 �─┬───┬──────────────────────────────��

└─ ,IF=(CURSOR,cursor-at-this-field-label) ─┘

 Parameters

MRB=
Specifies the storage area associated with the MRB of the map about which the
inquiry is being made.

map-request-block-pointer
A register that points to the MRB area or the symbolic name of that area.

MRBLIST=
Specifies the location of the 20-fullword storage area that is substituted for the
DC/UCF portion of SUBSCHEMA-CTRL:

MRBPLIST
(Default); is the symbolic name of the storage area that will be substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

mrb-parameter-list-pointer
A register that points to the area or the symbolic name of the area.

CURSOR=
Requests that the system return the cursor address from the last map in operation
to the specified location in the issuing program.

cursor-position
The symbolic name of a 2-byte user-defined field. The system will set the value
of cursor-position to the row and the column, each a 1-byte binary number, of the
cursor position on the screen.

Chapter 6. Data Manipulation Language Statements 6-157

6.46 #MAPINQ

AID=
Requests that the system return the AID to the specified location in the issuing
program.

aid-indicator
The symbolic name of a 1-byte user-defined field that will be set to the 3270 AID
character received in the last map in request.

FIELD=
Requests that the system move field-related information to the issuing program.

field-name
Specifies the name of the map field being tested.

Note: For each #MAPINQ request to test for cursor position, field-specific
information can be requested for one map field; if information is needed for
multiple fields, additional #MAPINQ commands must be issued.

INDEX=
Specifies the occurrence of the field iffield-name is a multiply-occurring field.

index-register
Either a register or the symbolic name of a user-defined field that contains the
subscript or an absolute expression.

INLEN=
Requests that the system return the entered length, in bytes, of the specified map
field to the issuing program.

field-length-register
Either a register or the symbolic name of a halfword or fullword user-defined field
to which the system will return the length.

IF=CURSOR,
Tests the outcome of the last map in request to determine whether the cursor was
in the named field during the last map in operation.

cursor-at-this-field-label
Specifies the symbolic name of the routine within the issuing program to which
the system will pass control if the cursor is in the named field during the last map
in operation.

Example: The #MAPINQ statement shown below moves information about the
EMPNUM field to the issuing task. The IF statement tests the outcome of the last
map in request; if the cursor was in that field during the last map in operation, the
system passes control to the routine labeled CURATNUM.

 #MAPINQ MRB=BLOCK1,FIELD=EMPNUM,IF=(CURSOR,CURATNUM)

6-158 CA-IDMS DML Reference — Assembler

6.46 #MAPINQ

6.46.4 Testing for identical data

You can compare the contents of a mapped-in field with the map data that is currently
in your program's record buffer.

You can use #MAPINQ when you want to reduce the number of database I/O
operations performed for your programs, updating the database only when the user
enters different data.

To test for identical data, use the DATAIDEN and DATADIFF options of the IF=
clause (see 6.46.5, “Testing for input conditions”).

Example: Use a #MAPINQ statement to test whether the user has entered identical
data in the EMPNUM, EMPNAME, CONCODE and UPDFLAG.

■ If the identical condition is true (the user enters identical data in these fields), the
program branches to NEXPRO2.

■ If the identical condition is false (the user has changed at least one of these
fields), control continues with the next executable instruction.

Use a #MAPINQ statement to test whether the user has entered a new department ID.
If the user enters a new ID (different is true), the program branches to label
OBTDEPT.

 #MAPINQ MRB=BLOCK1,FLIST=(FIELD,DEPTID-�41�),FOR=ANY,

 IF=(DATADIFF,OBTDEPT)

6.46.5 Testing for input conditions

This version of the #MAPINQ statement tests for the following input conditions
related to specific map fields:

■ If map fields have been modified and the data fields in storage contain the new
(changed) contents of that field.

■ If map fields have not been modified and the data fields in storage remain
unchanged.

■ If map fields have been erased by operator action.

■ If map fields have been truncated.

■ If the specified map fields are either in error (the error flag has been set on) or the
map fields are correct, (the error flag has been set off). This option applies only
to those maps and map fields for which automatic editing is enabled.

Chapter 6. Data Manipulation Language Statements 6-159

6.46 #MAPINQ

 Syntax

��─── #MAPINQ MRB=map-request-block-pointer ──────────────────────────────────�

 �─┬───┬────────────────────────────�

└─ ,MRBLIST= ─┬─ MRBPLIST ← ─────────────────┬┘

└─ mrb-parameter-list-pointer ─┘

 �─┬───────────────────────────┬──�

└─ ,CURSOR=cursor-position ─┘

 �─┬──────────────────────┬───�

└─ ,AID=aid-indicator ─┘

 �─┬─ field-options ────┬───��
├─┬─ flist-options ─┬┤
│ └─ for-options ───┘│
└─ if-options ───────┘

Expansion of field-options

��─── ,FIELD=field-name ──�

 �─┬─────────────────────────┬──�

└─ ,INDEX=index-register ─┘

 �─┬──────────────────────────────┬───��

└─ ,INLEN=field-length-number ─┘

Expansion of FLIST-options

��─── ,FLIST= ──�

┌──────────────────── , ────────────────────────┐

 �─── (─↓─ FIELD,field-name ─┬─────────────────────────┬┴─) ────────────────�

└─ ,INDEX=index-register ─┘

 �─┬───┬────────────────────────────��

└─ ,PLIST= ─┬─ SYSPLIST ← ───────────────────┬┘

└─ parameter-value-list-pointer ─┘

Expansion of for-options

��─── ,FOR= ──�

 �───┬─ CURRENT ─┬──��

├─ ALL ─────┤

├─ NONE ────┤

├─ SOME ────┤

└─ ANY ─────┘

6-160 CA-IDMS DML Reference — Assembler

6.46 #MAPINQ

Expansion of if-options

��─── ,IF= ───�

 �─── (─┬─ DATANO,unchanged-field-label ─────┬─) ───────────────────────────��

├─ DATAYES,updated-field-label ──────┤

├─ DATAERAS,erased-field-label ──────┤

├─ DATARUN,truncated-field-label ────┤

├─ EDITERR,edit-error-field-label ───┤

├─ EDITCOR,edit-correct-field-label ─┤

├─ DATAIDEN,identical-data-label ────┤

└─ DATADIFF,different-data-label ────┘

 Parameters

MRB=
Specifies the storage area associated with the MRB about which the inquiry is
being made.

map-request-block-pointer
A register that points to the MRB area or the symbolic name of that area.

MRBLIST=
Specifies the location of the 20-fullword storage area that is substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

MRBPLIST
(Default); is the symbolic name of the storage area that will be substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

mrb-parameter-list-pointer
A register that points to the area or the symbolic name of the area.

CURSOR=
Requests that the system return the cursor address from the last map in operation
to the specified location in the issuing program.

cursor-position
The symbolic name of a 2-byte user-defined field. The system will set the value
of cursor-position to the row and the column, each a 1-byte binary number, of the
cursor position on the screen.

AID=
Requests the system to return the AID to the specified location in the issuing
program.

aid-indicator
The symbolic name of a 1-byte user-defined field that will be set to the 3270 AID
character received in the last map in request.

FIELD=
Moves field-related information to the issuing program.

field-name
Specifies the name of the map field being tested. The following options can be
used with FIELD:

Chapter 6. Data Manipulation Language Statements 6-161

6.46 #MAPINQ

■ INDEX=index specifies the occurrence of the field iffield-name is a
multiply-occurring field. Index is either a register or the symbolic name of a
user-defined field that contains the subscript or an absolute expression.

■ INLEN=field-length. requests that the system return the entered length, in
bytes, of the specified map field to the issuing program.Field-length is a
register or the symbolic name of a halfword or fullword user-defined field to
which the system will return the length.

FLIST=
Specifies a list of map fields to be tested, as indicated by the FOR parameter,
described below. The FLIST-parameter values must be enclosed in parentheses.
Each field specification must be coded on a separate line. The FLIST parameters
are:

■ Field-name is the name of the map data field to be tested.

■ INDEX= specifies the occurrence of the field iffield-name is a
multiply-occurring field. Index-register is a register or the symbolic name of
a user-define field that contains the subscript or an absolute expression.

■ PLIST= (optional); indicates the location in which the system will build the
field parameter list.

■ SYSPLIST (default); is the symbolic name of the storage area in which the
system will build the field parameter list.

■ Parameter-value-list-pointer is a register that points to the area or the
symbolic name of the area.

FOR=
Specifies the map data fields to which the test applies.

CURRENT
Specifies that the test applies only to the current data field; that is, the data field
that was referenced in the last #MAPMOD or #MAPINQ statement issued by the
program. If the last #MAPMOD or #MAPINQ statement specified a field list, no
currency exists.

ALL
Specifies that the test is true if all map data fields meet the specified condition.

NONE
Specifies that the test is true if none of the map data fields meet the specified
condition.

SOME
Specifies that the test is true if more than one, but not all of the map data fields
meet the specified condition.

ANY
Specifies that the test is true if one or more of the map data fields meet the
specified condition.

6-162 CA-IDMS DML Reference — Assembler

6.46 #MAPINQ

ALLBUT
Specifies that the test is true if all map fields except for the named field meet the
specified condition.

NTCURFLD
Specifies that the test is true if all map fields except the current field meet the
specified condition.

IF=
Specifies the input test condition. For each condition, the associated label
specifies the symbolic name of the routine in the issuing program to which the
system will pass control if the tested condition is true. The IF-parameter condition
and label must be enclosed in parentheses.

DATANO
Determines if the terminal operator did not enter data in the named map fields.
This condition is true if the field has not been modified or if it had been modified
but the INDATA=NO option was in effect for the field during the last #MREQ IN
request.

DATAYES
Determines if the terminal operator entered data in the named map fields.

DATAERAS
Determines if the data has been erased from the named map fields using 3270
local editing features. In this case, the data fields would remain unchanged unless
a padding character had been specified, which would fill the field with that
character.

DATATRUN
Determines if the data has been truncated in the named map fields. A field that
has been truncated would also fulfill the condition DATAYES, described above.

EDITERR
Determines if the named map fields were found to be in error during automatic
editing. To test for this condition, automatic editing must be enabled for the map
and for each of the named map fields.

EDITCOR
Determines if the named map fields were found to be correct during automatic
editing. To test for this condition, automatic editing must be enabled for the map
and for each of the named map fields.

DATAIDEN
Tests whether input data is identical to map data currently in program variable
storage. DATAIDEN is true in either of the following cases:

■ The field's modified data tag (MDT) is off. On mapin, the MDT is off if the
user did not type any characters in the field, a previous modify map did not
set it, or the map specifies N to MDT on Y/N.

■ The field's MDT is on, but each character that the user typed in is identical
(including capitalization) to the data in variable storage.

Chapter 6. Data Manipulation Language Statements 6-163

6.46 #MAPINQ

DATADIFF
Tests whether input data is different from map data currently in program variable
storage. DATADIFF is true if the field's MDT is on and at least one input
character differs from the data in variable storage.

Example: The following example of the #MAPINQ statement tests for whether the
terminal operator entered data in more than one, but not all of the fields described in
the FLIST parameter. If this condition is true the program branches to the label
CHECFLDS. A false condition returns control to the next executable instruction.

 #MAPINQ MRB=BLOCK1,FLIST=(FIELD,SCREENF2, �

 FIELD,SCREENF3, �

 FIELD,SCREENF4, �

 FIELD,SCREENF5), �

 FOR=SOME,IF=(DATAYES,CHECFLDS)

Status codes: The #MAPINQ request is unconditional; any return code other than
X'00' will result in an abend of the issuing task.

6-164 CA-IDMS DML Reference — Assembler

6.47 #MAPMOD

 6.47 #MAPMOD

The #MAPMOD statement requests that the system modify options in the map request
block (MRB) for a map; modifications can be designated as permanent or temporary.
Requested revisions can be field-specific and/or non field-specific. Field-specific
revisions apply to the map's variable data fields, not to literal fields.

The following considerations apply:

■ If modification of one field is necessary, the FIELD, MRB, and the optional
PLIST parameters, described below, should be specified.

■ If modification of more than one field is necessary, the FLIST, FOR, and
MRBLIST parameters, described below, should be specified.

■ The #MAPMOD attribute parameters revise predefined map and/or map data field
attributes, and thus have no defaults. If a #MAPMOD attribute parameter is not
specified, that parameter remains set to the value specified at map generation or to
the value set with a previously issued #MAPMOD statement specifying
TYPE=PERM. Conflicting attributes are resolved by runtime mapping.

 Syntax

��── #MAPMOD ───�

 �─┬──────────────────────────┬───�

└─ TYPE= ───┬─ PERM ← ──┬──┘

└─ TEMP ────┘

 �─── ,MRB=map-request-block-pointer ───�

 �─┬───┬──────────────────────────────�

└─ ,PLIST= ──┬─ SYSPLIST ← ─────────────┬───┘

└─ parameter-list-pointer ─┘

 �─┬───┬──────────────────────────�

└─ ,MRBLIST= ──┬─ MRBPLIST ← ─────────────────┬─┘

└─ mrb-parameter-list-pointer ─┘

 �─┬──┬───�

└─ ,CURSOR= (─┬─ cursor-row,cursor-column ─────────────────────┬─) ──┘

└─ FIELD,fieldname ─┬──────────────────────────┬─┘

└─ ,INDEX,index-register ──┘

Chapter 6. Data Manipulation Language Statements 6-165

6.47 #MAPMOD

 �─┬────────────────────────────┬───�

└─ ,WCC= ─┬─┬─ RESETMDT ─┬─┬─┘

│ └─ NOMDT ────┘ │

├─┬─ RESETKBD ─┬─┤

│ └─ NOKBD ────┘ │

├─┬─ ALARM ───┬──┤

│ └─ NOALARM ─┘ │

├─┬─ STARTPRT ─┬─┤

│ └─ NOPRT ────┘ │

└─┬─ NLCR ─┬─────┘

├─ 4�CR ─┤

├─ 64CR ─┤

└─ 8�CR ─┘

 �─┬───┬────────────────────────�

└─ ,FIELD=field-name ─┬─────────────────────────┬─┘

└─ ,INDEX=index-register ─┘

 �─┬───┬──────�

 │ ┌──┐ │

└─ ,FLIST= (─↓─ FIELD,field-name ─┬─────────────────────────┬─┴─)───┘

└─ ,INDEX,index-register ─┘

 �─┬────────────────────────┬───�

└─ ,FOR= ─┬─ ALL ──────┬─┘

├─ ERROR ────┤

├─ CORRECT ──┤

├─ CURRENT ──┤

├─ NOTCURNT ─┤

├─ FLIST ────┤

└─ NOTFLIST ─┘

 �─┬───────────────────────┬──�

└─ ,BACKSCN= ─┬─ YES ─┬─┘

└─ NO ──┘

 �─┬──────────────────────────────┬───�

└─ ,OUTDATA= ─┬─ YES ───────┬──┘

├─ NO ────────┤

├─ ERASE ─────┤

└─ ATTRibute ─┘

 �─┬──────────────────────┬───�

└─ ,INDATA= ─┬─ YES ─┬─┘

└─ NO ──┘

 �─┬─────────────────────────┬──�

└─ ,JUSTIFY= ─┬─ RIGHT ─┬─┘

└─ LEFT ──┘

 �─┬─────────────────────────────────┬──�

└─ ,PAD= ─┬─ NO ────────────────┬─┘

├─ C'pad-character' ──┤

└─ X'pad-character' ──┘

 �─┬─────────────────────────┬──�

└─ ,EDIT= ─┬─ ERROR ───┬──┘

└─ CORRECT ─┘

6-166 CA-IDMS DML Reference — Assembler

6.47 #MAPMOD

 �─┬──────────────────────────┬───�

└─ ,INPUT= ─┬─ REQUIRED ─┬─┘

└─ OPTIONAL ─┘

 �─┬────────────────────────────┬───�

└─ ,ERRMSG= ─┬─ ACTIVE ← ─┬──┘

└─ SUPPRESS ─┘

 �─┬─────────────────────────────────────┬────────────────────────────────────��

│ ┌──────── , ───────────┐ │

└─ ,ATTR= (─↓─┬──── SKIP ────────┬─┴)─┘

├──┬─ ALPHA ─────┬─┤

│ └─ NUMERIC ───┘ │

├──┬─ PROTECT ───┬─┤

│ └─ UNPROT ────┘ │

├──┬─ DISPLAY ───┬─┤

│ ├─ DARK ──────┤ │

│ └─ BRIGHT ────┘ │

├──── DETECT ──────┤

├──┬─ MDT ───────┬─┤

│ └─ NOMDT ─────┘ │

├──┬─ BLINK ─────┬─┤

│ └─ NOBLINK ───┘ │

├──┬─ REVERSE ───┬─┤

│ └─ NRMVIDEO ──┘ │

├──┬─ UNDERSCR ──┬─┤

│ └─ NOUNDER ───┘ │

└──┬─ NOCOLOR ───┬─┘

├─ BLUE ──────┤

├─ RED ───────┤

├─ PINK ──────┤

├─ GREEN ─────┤

├─ TURQUOIS ──┤

├─ YELLOW ────┤

└─ WHITE ─────┘

 Parameters

MRB=
Specifies the storage area associated with the MRB of the map that is being
modified. This storage area is of variable length according to the number of fields
included in the map; it is copied into program variable storage by the #MRB
statement.

map-request-block-pointer
A register that points to the MRB area or the symbolic name of that area.

Note: Map-request-block cannot be a register if the FIELD=field-name operand
is also specified in the #MAPMOD statement.

TYPE=
Specifies whether the modifications are to be permanent or temporary.

PERM
(Default); specifies that modifications apply to all mapping mode I/O requests
issued until the program terminates or until a subsequent #MAPMOD request
overrides the requested revisions.

TEMP
Specifies that modifications will apply only to the next #MREQ request.

Chapter 6. Data Manipulation Language Statements 6-167

6.47 #MAPMOD

PLIST=
Indicates the location of the storage area in which the system will build the field
parameter list specified by the FLIST parameter, described below.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system will build
the field parameter list.

parameter-value-list-pointer
A register that points to the area or the symbolic name of the area.

MRBLIST=
Indicates the location of the 20-fullword storage area that is substituted for the
DC/UCF portion of SUBSCHEMA-CTRL. It is generated at the bottom of the
first map request block in the program.

MRBPLIST
(Default) is the symbolic name of the storage area that will be substituted for the
DC/UCF portion of SUBSCHEMA-CTRL.

mrb-parameter-list-pointer
A register that points to the area or the symbolic name of the area.

CURSOR=
Identifies the screen location at which the cursor will be positioned during output
operations.

cursor-row,cursor-column
Specifies the row and column on the terminal screen to which the cursor will be
moved. Cursor-row is a numeric literal indicating the row value.Cursor-column
is a numeric literal indicating the column value.

field-name
Specifies the field to which the cursor will be moved.Field-name is the name of
a map data field.

index-register
Optionally specifies the occurrence of the field iffield-name is a
multiply-occurring field. Index is either a register or the symbolic name of a
user-defined field that contains the subscript or an absolute expression.

WCC=
Specifies the write-control character (WCC) options requested for the output
operation. The WCC is a single byte transmitted with a screen during a #MREQ
OUT, that indicates the functions that the 3270 control unit is to perform as it
displays the information on the screen.

If a #MAPMOD request alters any WCC option, the system resets unspecified
options to the following values:

 ■ NOMDT

 ■ NOKBD

 ■ NOALARM

6-168 CA-IDMS DML Reference — Assembler

6.47 #MAPMOD

Multiple WCC parameter values must be enclosed in parentheses and separated by
commas.

RESETMDT/NOMDT
Specifies whether the modified data tags (MDTs) for the map fields will be reset
to off automatically when the map is displayed. If RESETMDT is specified, the
contents of variable fields are transmitted to storage only if the terminal operator
modified the field or if the MDT has been set programatically.

RESETMDT
States that the MDTs will be reset (turned off).

NOMDT
States that the MDTs will not be reset.

RESETKBD/NOKBD
Specifies whether the keyboard will be unlocked automatically when the map is
displayed.

RESETKBD
States that the keyboard will be unlocked.

NOKBD
States that the keyboard will not be unlocked.

ALARM/NOALARM
Specifies whether the terminal audible alarm, if installed, will sound automatically
when the map (for example, a screen that displays error messages), is displayed.

ALARM
States that the alarm will sound.

NOALARM
States that the alarm will not sound.

STARTPRT/NOPRT
(3280 printers only); specifies whether the contents of the terminal buffer will be
printed automatically when the map is displayed.

STARTPRT
States that the contents of the terminal buffer will be printed.

NOPRT
States that the contents of the terminal buffer will not be printed.

NLCR/40CR/64CR/80CR
Specifies the characters-per-line formatting for 3280 printer output, meaningful
only if the STARTPRT option, described above, has been specified.

NLCR
States that no line formatting will be performed on the printer output. Printing
will begin on a new line only if the printer encounters new line (NL) and carriage
control (CR) characters.

40CR
States that the contents of the 3280 print buffer will be printed at 40 characters
per line.

Chapter 6. Data Manipulation Language Statements 6-169

6.47 #MAPMOD

64CR
States that the contents of the 3280 print buffer will be printed at 64 characters
per line.

80CR
States that the contents of the 3280 print buffer will be printed at 80 characters
per line.

FIELD/FLIST
Specifies one or more map fields to be modified. Choose one of these parameters
to change field-specific options such as FOR, BACKSCN, OUTDATA, INDATA,
JUSTIFY, PAD, EDIT, INPUT, and ATTR.

FIELD=
Specifies one map field to be modified.

FIELD
Specifies that one map field is to be modified.

field-name
Is the name of the map data field to be modified.

index
Specifies the occurrence of the field iffield-name is a multiply-occurring field.
Index is a register, the symbolic name of a user-defined field that contains the
subscript, or an absolute expression.

FLIST=
Specifies a list of map fields to be modified or to be excluded from modification,
as indicated by the FOR=FLIST and FOR=NOTFLIST parameters described
below. The FLIST parameter values must be enclosed in parentheses. Each field
specification must be coded on a separate line. Specify each field by using the
following parameters.

field-name
Is the name of the map data field to be modified.

index-register
Specifies the occurrence of the field iffield-name is a multiply-occurring field.
Index-register is a register, the symbolic name of a user-defined field that contains
the subscript, or an absolute expression.

FOR=
Specifies the map fields to be modified or excluded from modification:

ALL
Modifies all fields.

ERROR
Modifies those fields found to be in error during automatic editing.

CORRECT
Modifies those fields found to be correct during automatic editing.

6-170 CA-IDMS DML Reference — Assembler

6.47 #MAPMOD

CURRENT
Modifies only the field found to be current during automatic editing. The current
field is the map field that was referenced in the last #MAPMOD or #MAPINQ
request issued by the program. A #MAPMOD or #MAPINQ that specifies a field
list does not establish currency.

NOCURNT
Modifies all the fields except the current field during automatic editing. The
current field is the map field that was referenced in the last #MAPMOD or
#MAPINQ request issued by the program. A #MAPMOD or #MAPINQ that
specifies a field list does not establish currency.

FLIST
Modifies all the fields in the field list defined by the FLIST parameter above.

NOTFLIST
Modifies all fields except those in the field list defined by the FLIST parameter
above.

BACKSCN=
Specifies whether the system is to backscan the specified field to remove trailing
blanks before performing the map output operation.

YES
Requests that the system send all characters up to the last nonblank character to
the terminal; fields remaining on the screen will contain whatever characters were
present before the #MREQ request was issued. If the #MREQ request specifies
the NEWPAGE option, the system erases the contents of all map data fields.

NO
Requests that the system leave in trailing blanks.

OUTDATA=
Indicates whether map fields will be set to the value of the corresponding
variable-storage data fields.

YES
Specifies that the value of the variable storage field will be mapped out to the
map field.

NO
Specifies that data from the record buffer as well as the attribute byte will not be
mapped out.

ERASE
Requests that the system erase the map data fields.

ATTRIBUTE
Requests that the system transfer only the attribute byte from the record buffer to
the map field.

INDATA=YES/NO
Indicates whether the map fields will be moved automatically to the the
corresponding variable-storage data fields (YES) or left unchanged (NO) during an
input operation.

Chapter 6. Data Manipulation Language Statements 6-171

6.47 #MAPMOD

JUSTIFY=RIGHT/LEFT
Indicates whether the variable-storage field should be right or left justified on
input.

PAD=
Indicates whether the alphanumeric variable-storage data field should be padded
on input and defines the pad value or character:

NO
Does not pad the field.

pad-character
Pads the field with the specified pad character on the left if JUSTIFY=RIGHT is
specified and on the right if JUSTIFY=LEFT is specified.Pad-character is a
binary numeric literal pad-character value.

EDIT=ERROR/CORRECT
Explicitly sets the error flag on (ERROR) or off (CORRECT) for the specified
map fields. If this parameter is specified, automatic editing must be enabled for
the map and for the named map fields.

The ability to set the error flag enables programs to perform their own editing and
validation in addition to that provided by the automatic editing feature.

INPUT=
Specifies whether the terminal operator will be required to add input in the
specified map fields.

REQUIRED
Specifies that input is required. An error results if the terminal operator fails to
enter data in a required field.

OPTIONAL
Specifies that input is optional. An error will not result if the terminal operator
fails to enter data in an optional field.

ERRMSG
ACTIVE

(Default); enables display of the error message associated with the field.

SUPPRESS
Disables display of the error message associated with the field. If the map is
redisplayed because of errors, the message defined for the map field will not be
displayed even if the field contains edit errors. You typically enable display of a
message only after specifying ERRMSG=SUPPRESS for the map in a previous
#MAPMOD TYPE=PERM statement.

ATTR=
Specifies the 3270 and 3279 attributes for the named map fields. Multiple ATTR
parameter values must be enclosed in parentheses and separated by commas. Only
the named attributes will be modified in the MRB. ATTR options are.

SKIP
Requests that the system reposition the cursor automatically over the ma fields to
the next unprotected field. When SKIP is specified, the named map fields are

6-172 CA-IDMS DML Reference — Assembler

6.47 #MAPMOD

implicitly assigned the NUMERIC and PROTECT attributes (described below)
automatically.

ALPHA/NUMERIC
Specifies whether the data input to the map fields by the terminal operator are
alphanumeric (any character on the 3270 terminal keyboard) or numeric. ALPHA
cannot be specified if SKIP has been specified.

PROTECT/UNPROT
Specifies whether or not map fields will be protected from data entry or
modification by the terminal operator. UNPROT cannot be specified if SKIP has
been specified.

DISPLAY/DARK/BRIGHT
Specifies how map fields are displayed.

DISPLAY
Specifies that the map fields will be displayed with normal intensity. DISPLAY
cannot be specified if DETECT, described below, has been specified.

DARK
Specifies that the map fields will not be displayed. DARK cannot be specified if
DETECT, described below, has been specified.

BRIGHT
Specifies that the map fields will be displayed with bright intensity. BRIGHT
cannot be specified if DETECT, described below, has been specified.

DETECT
Specifies that the map fields will be light-pen-detectable. All fields assigned the
BRIGHT attribute will automatically be detectable by a light pen.

MDT/NOMDT
Specifies whether MDTs are automatically set (turned on) for the map field when
displayed.

MDT
Requests that the system automatically set the MDT for the map fields when
displayed.

NOMDT
Requests that the system not automatically set the MDT for the map fields when
displayed.

BLINK/NOBLINK
(3279 terminals only); specifies whether map fields will be displayed with
blinking characters.

BLINK
Specifies that the fields characters will blink.

NOBLINK
Suppresses blinking.

Chapter 6. Data Manipulation Language Statements 6-173

6.47 #MAPMOD

REVERSE/NRMVIDEO
(3279 terminals only); specifies whether map fields will be displayed in reverse
video; dark characters on a light background.

REVERSE
Indicates that map fields will be displayed in reverse video.

NRMVIDEO
Specifies that the map fields will be displayed in normal video; light characters on
a dark background.

UNDERSCR/NOUNDER
(3279 terminals only); specifies whether the map fields are displayed with
underlined characters.

UNDERSCR
Specifies that the map fields will be displayed with underlined characters.

NOUNDER
Specifies that the map fields will be displayed with nonunderlined characters.

NOCOLOR/BLUE/RED/PINK/GREEN/TURQUOIS/YELLOW/WHITE
(3279 terminals only); specifies that the map fields will be displayed with no color
attribute or with one of the seven available color attributes.

Note: The BLINK/NOBLINK, REVERSE/NRMVIDEO, and
UNDERSCR/NOUNDER options are mutually exclusive; the last attribute
specified will override any previously specified attribute.

Example: The example of the #MAPMOD statement shown below performs the
following functions:

■ Identifies BLOCK1 as the storage area associated with the MRB of the map that
is being modified

■ Accepts the default of setting the modifications listed in this statement as
permanent until the program terminates or another #MAPMOD statement is issued

■ Accepts the default of MRBPLIST as the symbolic name of the storage area that
will be substituted for the DC/UCF portion of SUBSCHEMA-CTRL

■ Identifies the initial position of the cursor during a map out operation on the first
position of the field SCREENF1

■ Defines the WCC character options requested for output operations

■ Specifies that all the fields listed in the FLIST parameter are to be modified

■ Specifies that during an output operation the screen fields associated with the
fields listed in the FLIST parameter are to be set to the value of the storage fields

■ Specifies that during an input operation the storage fields are to be set to the value
of the corresponding screen fields

■ Specifies that the storage fields will be left justified on input

■ Specifies that on input the storage fields will be padded on the right with blank
spaces

6-174 CA-IDMS DML Reference — Assembler

6.47 #MAPMOD

■ Specifies that input is optional

■ Specifies the 3270 attributes for the specified map fields

 #MAPMOD MRB=BLOCK1,CURSOR=(SCREENF1),WCC=(NOMDT,RESETKDB, �

 NOALARM,NOPRT),FLIST=(FIELD,SCREENF1, �

 FIELD,SCREENF2 �

 FIELD,SCREENF3 �

 FIELD,SCREENF4), �

 FOR=FLIST,OUTDATA=YES,INDATA=YES, �

 JUSTIFY=LEFT,PAD=C' ',INPUT=OPTIONAL, �

 ATTR=(SKIP,BRIGHT,UNDERSCR)

The following #MAPMOD statement shows how to suppress display of default error
messages for fields EMPID and DEPTID on the current map.

#MAPMOD TYPE=TEMP,MRB=MAPMRB, �

 FLIST=(FIELD,EMPID FIELD,DEPTID), �

 FOR=FLIST,ERRMSG=SUPPRESS

Because this #MAPMOD statement specifies TEMP, error messages for these fields
are suppressed for the next mapout only. If PERM (default) were used, the error
messages would be suppressed until the program terminated or until the error message
specifications were overridden by a subsequent #MAPMOD statement.

Status codes: The #MAPMOD request is unconditional; any return code other then
X'00' will result in an abend of the issuing task.

Chapter 6. Data Manipulation Language Statements 6-175

6.48 @MODIFY

 6.48 @MODIFY

The @MODIFY statement replaces element values of the specified database record
with new element values present in program variable storage.

Before execution of the @MODIFY statement, the following conditions must be met:

■ All areas affected, either implicitly or explicitly, must be readied in one of the
update usage modes (see 6.57, “@READY” on page 6-227 in this chapter).

■ The named record must be established as current of run unit. If the record that is
current of run unit is not an occurrence of the named record, an error condition
results.

■ The values of all elements defined for the named record in the subschema view
must be in variable storage. If the @MODIFY statement is not preceded by an
@OBTAIN statement, you must initialize the appropriate values. It is
recommended that you issue an @OBTAIN statement to ensure that all the
elements in the modified record are present in variable storage before you alter the
values, then issue the @MODIFY statement.

Modifying CALC- and sort-control elements: The following special
considerations apply to the modification of CALC- and sort-control elements:

■ If modification of a CALC- or sort-control element will violate a
duplicates-not-allowed option, the record is not modified and an error condition
results.

■ If a CALC-control element is modified, successful execution of the @MODIFY
statement enables the record to be accessed on the basis of its new CALC-key
value. The db-key of the specified record is not changed.

■ If a sort-control element is to be modified, the sorted set in which the named
record participates must be included in the subschema invoked by the program. A
record occurrence that is a member of a set not defined in the subschema can be
modified if the undefined set is not sorted.

■ If any of the modified elements in the specified record are defined as sort-control
elements for any set occurrence in which that record is currently a member, the set
occurrence is examined. If necessary, the specified record is automatically
disconnected and reconnected in the set occurrence to maintain the set order
specified in the schema.

Native VSAM considerations: The following special considerations apply to the
modification of records in native VSAM data sets:

■ The length of a record in an entry-sequenced data set (ESDS) cannot be changed
even if the record is variable length.

■ The prime key for a key-sequenced data set (KSDS) cannot be modified.

6-176 CA-IDMS DML Reference — Assembler

6.48 @MODIFY

Currency: Before execution of the @MODIFY statement:

■ The specified record must be established as current of run unit. If the record that
is current of run unit is not an occurrence of the specified record, an error
condition results.

■ The values of all elements defined for the named record in the program's
subschema view must be in variable storage. If the @MODIFY statement is not
preceded by an @OBTAIN statement, the programmer must initialize the
appropriate values. The best practice is to issue an @OBTAIN statement to
ensure that all the elements in the modified record are present in variable storage
before altering the values as desired and then issue the @MODIFY statement.

Following a successfully executed @MODIFY statement, the modified record becomes
current of its run unit, record type, area, and all sets in which in participates as owner
or member.

 Syntax

��─── @MODIFY REC=record-name ──��

 Parameters

REC=record-name
Defines the named record occurrence, as specified in program variable storage.
Record-name must specify a record type included in the subschema.

Example: The following example illustrates the steps involved in modifying an
occurrence of the EMPLOYEE record. Assume that the employee name is to be
changed. The first step is to retrieve the desired EMPLOYEE record and move its
contents to variable storage by using the statements shown below:

MVC EMPID,INEMPID

@OBTAIN CALC,REC='EMPLOYEE'

The next step is to update the value of the EMPLOYEE field by moving the new
employee name into the proper location in the EMPLOYEE record:

MVC EMPNAME,NEWNAME

The final step is to issue an @MODIFY statement to return all data items in the
EMPLOYEE record to the database:

@MODIFY REC='EMPLOYEE'

Status codes: After completion of the @MODIFY function, the ERRSTAT field in
the IDMS communications block indicates the outcome of the operation.

Status code Meaning

0800 The request has been serviced successfully.

0804 The OCCURS DEPENDING ON item is less than 0 or greater than
the maximum number of occurrences of the control element.

Chapter 6. Data Manipulation Language Statements 6-177

6.48 @MODIFY

Status code Meaning

0805 Modification of the record would violate a duplicates-not-allowed
option for a CALC record, a sorted set, or an index set.

0806 Currency has not been established for the specified record.

0808 The specified record cannot be found. The record name has
probably been misspelled.

0809 The specified record's area has not been readied in one of the three
update usage modes.

0810 The subschema specifies an access restriction that prohibits
modification of the named record.

0811 There is insufficient space to hold the modified variable-length
record occurrence.

0813 A current record of run unit has not been established or has been
nullified by a previous @ERASE statement.

0818 The record has not been bound.

0820 The current record of run unit is not the same type as the specified
record.

0821 An area other than the area of the named record has been readied
with an incorrect usage mode.

0825 No current record of set type has been established.

0833 All sorted sets in which the specified record participates have not
been included in the subschema.

0855 An invalid length has been defined for a variable-length record.

0860 A record occurrence has been encountered whose type is
inconsistent with the set named in the ERROR-SET field of the
IDMS communications block. Probable causes are either a broken
chain and improper database description.

0861 No record can be found for an internal db-key. This code usually
indicates a broken chain.

0883 Either the length of a record in a native VSAM ESDS has been
changed, or a prime key in native VSAM KSDS has been
modified.

6-178 CA-IDMS DML Reference — Assembler

6.49 @MODIFY (LRF)

 6.49 @MODIFY (LRF)

The @MODIFY statement changes field values of an existing logical-record
occurrence. LRF uses the field values present in the variable-storage location reserved
for the logical record to update the appropriate database records in the database. You
can optionally specify an alternative variable-storage location from which the changed
field values are to be taken.

 Syntax

��─── @MODIFY REC=logical-record-name ──�

 �─┬───┬────────────────────────────────�

└─ ,IOAREA=alt-logical-record-location ───┘

 �─┬──┬───────────────────────────�

└─ ,ONLRSTS=path-status,GOTO=branch-location ──┘

 �─┬─────────────────────────────┬──��

└─ ,WHERE boolean-expression ─┘

 Parameters

REC=logical-record-name
Defines the logical record. Unless the IOAREA clause is specified (see below),
the field values used to update the database are taken from the area in program
variable storage reserved for the specified logical record.Logical-record-name
must specify a logical record defined in the subschema.

IOAREA=alt-logical-record-location
Identifies an alternative variable-storage location from which the field values are
to be obtained to perform the requested modification. When modifying a logical
record that was retrieved into an alternative location in variable storage, you
should use the IOAREA clause to name the same location specified in the
@OBTAIN request. If the IOAREA clause is included in the @MODIFY
statement,alt-logical-record-location must identify a record location defined in the
program.

ONLRSTS=path-status,GOTO=branch-location
Tests for the indicated path status.Path-status must be a quoted literal or program
variable (1 to 16 bytes under MVS or 1 to 6 bytes under the VSE operating
system). If path-status results from this @MODIFY statement, the action
specified by GOTO=branch-location is performed. See 6.74.2, “ON clause” on
page 6-313 in this chapter for details.

WHERE boolean-expression
Specifies the selection criteria to be applied to the named logical record. See
6.74.1, “WHERE clause” on page 6-309, later in this chapter, for details.

Example: The sample code shown below illustrates the steps taken to modify an
occurrence of the EMPSKLLR logical record. Assume that the department name for
department 1200 is to be changed, as well as the maximum salary for a specific job
working in this department (job identification number 5051).

Chapter 6. Data Manipulation Language Statements 6-179

6.49 @MODIFY (LRF)

1. Retrieve the desired logical record:

@OBTAIN FIRST,REC=EMPSKLLR, �

WHERE DEPTID EQ '12��' �

AND JOBID EQ '5�51'

2. Update the JOBNAME and MAXSAL fields by moving the new department name
and the revised maximum salary to the proper fields in the obtained DEPJOBLR
logical record:

MVC JOBNAME,NEWNAME

MVC MAXSAL,NEWSAL

3. Issue the @MODIFY statement for the update EMPSKLLR logical record:

@MODIFY REC=EMPSKLLR

Status codes: When using LRF, the type of status code returned to the program in
the ERRSTAT field of the IDMS communications block differs according to the type
of error. If the error occurs in the logical-record path, the ERRSTAT field contains a
status code issued by CA-IDMS/DB with a major code from 00 to 19. For a list of
these codes, see 3.2.2, “ERRSTAT field and codes” on page 3-11.

When the error occurs in the request itself, LRF returns the path status LR-ERROR to
the LRSTAT field of the LRC block and places a status code with a major code of 20
in the ERRSTAT field of the IDMS communications block. For a list of these codes,
see 3.3.2, “Testing for the logical-record path status” on page 3-20. ˚

6-180 CA-IDMS DML Reference — Assembler

6.50 #MREQ

 6.50 #MREQ

The #MREQ statement determines how data is transferred between the terminal and
program variable storage. There are three types of #MREQ statements, each
performing a different type of I/O operation:

■ #MREQ IN transfers data from the terminal device to program variable storage.

■ #MREQ OUT transfers data from program variable storage to the terminal device.

■ #MREQ OUTIN transfers data from program variable storage to the terminal
device, followed by a transfer from the terminal device back to program variable
storage.

Native mode transfers: You can also use the #MREQ statement to perform the
following native-mode data transfers:

■ Map in data from an area in variable storage that contains a 3270-like data stream
to data fields defined for the map.

■ Map out data to another area in variable storage.

Synchronous and asynchronous requests: All #MREQ input requests are
synchronous; output requests can be either synchronous or asynchronous:

■ For synchronous requests, control does not return to the issuing program until the
I/O operation is completed. You specify a synchronous input request (the default
for mapping output) by indicating YES in the CHECK parameter, as described
below.

■ For asynchronous requests, control is returned to the issuing program
immediately after the requested I/O operation is initiated. The program continues
to execute concurrently with the I/O operation. An ECB is established that will be
posted after the I/O has been completed. The address of the ECB is contained in
register 1.

To ensure that the previous #MREQ processing has been completed before you
issue an #MREQ request, your program must issue a #TREQ CHECK following
asynchronous data transfer.

�� For more information on the #TREQ CHECK statement, refer to 6.69,
“#TREQ” on page 6-265 later in this chapter.

To transfer data immediately from program variable storage to the terminal, your
program can issue a write-direct-to-terminal #MREQ OUT request (blast). Blast
requests must be directed to 3270 devices that support mapping-mode terminal I/O
operations.

�� For more information on mapping functions, refer to CA-IDMS Mapping Facility.

Chapter 6. Data Manipulation Language Statements 6-181

6.50 #MREQ

 6.50.1 #MREQ Syntax

Syntax for each of the these #MREQ statements follows:

 ■ #MREQ IN

 ■ #MREQ OUT

 ■ #MREQ OUTIN

Parameter descriptions follow the syntax diagrams.

 Syntax

 #MREQ IN

��─── #MREQ IN ───�

 �─── ,MRB=map-request-block-pointer ───�

 �─┬───┬────────────────────────────────�

└─ ,PLIST= ──┬─ SYSPLIST ← ─────────────┬─┘

└─ parameter-list-pointer ─┘

 �─┬────────────────────────────────────┬─────────────────────────────────────�

│ ┌── , ───┐ │

└─ ,OPTNS= ── (─┬─↓─ NOIO ─┴─┬─) ──┘

├─── UPPER ──┤

└─── UPLOW ──┘

 �─┬──────────────────────┬───�

└─ ,INDATA= ─┬─ YES ─┬─┘

└─ NO ──┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

├─ ,STREAMA=data-stream-location-in ─┬─┘

└─ ,STREAML=data-stream-length-in ───┘

 �─┬─────────────────────────────┬──�

└─ ,COND= ─┬── NO ← ────────┬─┘

├── ALL ─────────┤

│ ┌───,────┐ │

└(┬─↓─ ATTN ─┴─┬)┘

├─── PERM ───┤

├─── DISC ───┤

├─── INVP ───┤

├─── MPNF ───┤

├─── DNSP ───┤

├─── TBL ────┤

├─── UERR ───┤

├─── IDAT ───┤

├─── EDNF ───┤

└─── MPNS ───┘

6-182 CA-IDMS DML Reference — Assembler

6.50 #MREQ

 �──── ,DETAIL= ─┬─ NO ← ─┬─┬───┬─�

└─ YES ──┘ ├─ ,FIRST= ─┬─ NO ← ─┬─┬──────────────────────┬─┤

│ └─ YES ──┘ └─,RTRNKEY=field-name ─┘ │

├─ ,KEY=key ────────────────────────────────────┤

├─ ,SEQNBR=field-name ─┬──────────────────────┬─┤

│ └─,RTRNKEY=field-name ─┘ │

└─ ,RTRNKEY=field-name ─────────────────────────┘

 �─── ,HEADER= ─┬─ NO ← ─┬──�

└─ YES ──┘

 �─┬─────────────────────┬──�

└─ ,PAGE=page-number ─┘

 �─┬──────────────────────┬───�

└─ ,MODIFY= ─┬─ NO ← ─┬┘

└─ YES ──┘

 �─┬────────────────────────────────┬───�

└─ ,ATTNXIT=attention-key-label ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,PERMXIT=permanent-i/o-error-label ─┘

 �─┬──┬─────────────────────────────────�

└─ ,DISCXIT=terminal-disconnected-label ─┘

 �─┬──┬───────────────────────────────�

└─ ,INVPXIT=invalid-mrb-information-label ─┘

 �─┬────────────────────────────────┬───�

└─ ,MPNFXIT=map-not-found-label ─┘

 �─┬──┬─────────────────────────�

└─ ,DNSPXIT=terminal-device-not-supported-label ─┘

 �─┬────────────────────────────────┬───�

└─ ,TBLXIT=error-in-table-label ─┘

 �─┬──┬─────────────────────────�

└─ ,UERRXIT=error-in-return-user-edit-mod-label ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,IDATXIT=internal-data-error-label ─┘

 �─┬──┬─────────────────────────────────�

└─ ,EDNFXIT=edit-module-not-found-label ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,MPNSXIT=paging-session-error-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

Chapter 6. Data Manipulation Language Statements 6-183

6.50 #MREQ

 Syntax

 #MREQ OUT

��─┬─────────┬─── #MREQ OUT ──�

└─ label ─┘

 �─── ,MRB=map-request-block-pointer ───�

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,PLIST= ─┬─ SYSPLIST ← ─────────────┬┘

└─ parameter-list-pointer ─┘

 �─┬───┬────────────────────────────�

│ ┌─────── , ─────────┐ │

└─ ,OPTNS= ── (───↓──┬─ NEWPAGE ──┬───┴─) ──┘

├─ LITERALS ─┤

├─ NOIO ─────┤

├─ SAVE ─────┤

└─ EAU ──────┘

 �─┬─────────────────────────────┬──�

└─ ,OUTDATA= ─┬─ YES ───────┬─┘

├─ NO ────────┤

├─ ERASE ─────┤

└─ ATTRibute ─┘

 �─┬───┬──────�

└─ ,DETAIL= ─┬─ NO ← ─┬─┬───┬─┘

└─ YES ──┘ └─ ,UPDATE= ─┬─ NEW ← ───┬─┬────────────┬─┘

└─ CURRENT ─┘ └─ ,KEY=key ─┘

 �─── ,RESUME= ─┬─ NO ← ─┬─┬───────────────────────────────────────┬──────────�

└─ YES ──┘ └─ ,PAGE= ─┬─ CURRENT ← ─────────────┬──┘

├─ NEXT ──────────────────┤

├─ PRIOR ─────────────────┤

├─ FIRST ─────────────────┤

├─ LAST ──────────────────┤

├─ page-number ───────────┤

└─ (page-number-pointer) ─┘

 �─┬─────────────────────┬──�

└─ ,CHECK= ─┬─ YES ─┬─┘

└─ NO ──┘

 �─┬───┬──────────────�

└─ ,STREAMA= ─┬─ (1) ← ───────────────────────────────────┬─┘

└─ return-data-stream-address-out-register ─┘

 �─┬──┬───────────────�

└─ ,STREAML= ─┬─ (�) ← ──────────────────────────────────┬─┘

└─ return-data-stream-length-out-register ─┘

 �─┬──┬─────────────────────────────────�

├─ ,DESTID=destination-id-pointer ───────┤

├─ ,USERID=user-id-pointer ──────────────┤

└─ ,LTERMID=logical-terminal-id-pointer ─┘

6-184 CA-IDMS DML Reference — Assembler

6.50 #MREQ

 �─┬──────────────────────────────────┬───────────────────────────────────────�

└─ ,COND= ─┬── NO ← ────────────┬──┘

├── ALL ─────────────┤

│ ┌──── , ──┐ │

└(─┬─↓── ATTN ─┴┬─)──┘

├──── LOGL ──┤

├──── PERM ──┤

├──── DISC ──┤

├──── INVP ──┤

├──── MPNF ──┤

├──── DNSP ──┤

├──── TBL ───┤

├──── UERR ──┤

├──── IDAT ──┤

├──── EDNF ──┤

├──── UNDF ──┤

└──── MPNS ──┘

 �─┬────────────────────────────────┬───�

└─ ,ATTNXIT=attention-key-label ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,LOGLXIT=logical-output-error-label ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,PERMXIT=permanent-i/o-error-label ─┘

 �─┬──┬─────────────────────────────────�

└─ ,DISCXIT=terminal-disconnected-label ─┘

 �─┬──┬───────────────────────────────�

└─ ,INVPXIT=invalid-mrb-information-label ─┘

 �─┬────────────────────────────────┬───�

└─ ,MPNFXIT=map-not-found-label ─┘

 �─┬──┬─────────────────────────�

└─ ,DNSPXIT=terminal-device-not-supported-label ─┘

 �─┬────────────────────────────────┬───�

└─ ,TBLXIT=error-in-table-label ─┘

 �─┬──┬─────────────────────────�

└─ ,UERRXIT=error-in-return-user-edit-mod-label ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,IDATXIT=internal-data-error-label ─┘

Chapter 6. Data Manipulation Language Statements 6-185

6.50 #MREQ

 �─┬──┬─────────────────────────────────�

└─ ,EDNFXIT=edit-module-not-found-label ─┘

 �─┬───┬────────────────────────────────�

└─ ,UNDFXIT=invalid-destid-ltermid-label ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,MPNSXIT=paging-session-error-label ─┘

 �─┬──────────────────────┬───�

└─ ,ERROR=error-label ─┘

 �─┬──�─

└─ ,MSGADDR=message-start-location-register ───────────────────────────────

─�───┬──────────────────────────────��

─┬─ ,MSGLEN=message-length-register ───────┬─┘

└─ ,MSGEND=message-end-location-register ─┘

 Syntax

 #MREQ OUTIN

��─┬─────────┬─── #MREQ OUTIN ──�

└─ label ─┘

 �─── ,MRB=map-request-block-pointer ───�

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,PLIST= ─┬─ SYSPLIST ← ─────────────┬┘

└─ parameter-list-pointer ─┘

 �─┬─────────────────────────────────────┬────────────────────────────────────�

│ ┌─── , ─────┐ │

└─ ,OPTNS= ──(──┬─↓─ NEWPAGE ─┴─┬──)──┘

├─── LITERALS ──┤

├─── UPPER ─────┤

├─── UPLOW ─────┤

└─── EAU ───────┘

 �─┬───────────────────────────┬──�

└─ ,OUTDATA= ─┬─ YES ───────┤

├─ NO ────────┤

├─ ERASE ─────┤

└─ ATTRibute ─┘

 �─┬──────────────────────┬───�

└─ ,INDATA= ─┬─ YES ─┬─┘

└─ NO ──┘

 �─┬─────────────────────┬──�

└─ ,CHECK= ─┬─ YES ─┬─┘

└─ NO ──┘

6-186 CA-IDMS DML Reference — Assembler

6.50 #MREQ

 �─┬───────────────────────────────┬──�

└─ ,COND= ─┬── NO ← ───────────┬┘

├── ALL ────────────┤

│ ┌─── , ───┐ │

└(─┬─↓── ATTN ─┴─┬──┘

├──── LOGL ───┤

├──── PERM ───┤

├──── DISC ───┤

├──── INVP ───┤

├──── MPNF ───┤

├──── DNSP ───┤

├──── TBL ────┤

├──── UERR ───┤

├──── IDAT ───┤

├──── EDNF ───┤

└──── MPNS ───┘

 �─┬────────────────────────────────┬───�

└─ ,ATTNXIT=attention-key-label ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,LOGLXIT=logical-output-error-label ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,PERMXIT=permanent-i/o-error-label ─┘

 �─┬──┬─────────────────────────────────�

└─ ,DISCXIT=terminal-disconnected-label ─┘

 �─┬──┬───────────────────────────────�

└─ ,INVPXIT=invalid-mrb-information-label ─┘

 �─┬────────────────────────────────┬───�

└─ ,MPNFXIT=map-not-found-label ─┘

 �─┬──┬─────────────────────────�

└─ ,DNSPXIT=terminal-device-not-supported-label ─┘

 �─┬────────────────────────────────┬───�

└─ ,TBLXIT=error-in-table-label ─┘

 �─┬──┬─────────────────────────�

└─ ,UERRXIT=error-in-return-user-edit-mod-label ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,IDATXIT=internal-data-error-label ─┘

 �─┬──┬─────────────────────────────────�

└─ ,EDNFXIT=edit-module-not-found-label ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,MPNSXIT=paging-session-error-label ─┘

 �─┬──────────────────────┬───�

└─ ,ERROR=error-label ─┘

 �─┬──�─

└─ ,MSGADDR=message-start-location-register ───────────────────────────────

─�───┬──────────────────────────────��

─┬─ ,MSGLEN=message-length-register ───────┬─┘

└─ ,MSGEND=message-end-location-register ─┘

Chapter 6. Data Manipulation Language Statements 6-187

6.50 #MREQ

 Parameters

MRB=map-request-block-pointer
Specifies the location of the MRB for the mapping operation, as copied into
program variable storage by the #MRB statement. The #MRB statement is
described under 5.5, “#MRB” on page 5-16.Map-request-block-pointer is either a
register that points to the MRB area or the symbolic name of that area.

PLIST=
Specifies the location of the storage area in which the system builds the #MREQ
parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area.

parameter-list-pointer
Is either a register that points to the area or the symbolic name of the area.

OPTNS=
Specifies several options applicable to terminal I/O operations. Multiple OPTNS
parameter values must be enclosed in parentheses and separated by commas.

NEWPAGE
(#MREQ OUT and #MREQ OUTIN only); requests that the system activate the
erase-write mechanism to clear the contents of a screen. If NEWPAGE is not
specified, the system will write over any existing screen display without first
erasing it.

You can mark individual fields to be erased by using the OUTDATA=ERASE
option of the #MAPMOD statement, described earlier in this chapter.

LITERALS
(#MREQ OUT and #MREQ OUTIN only); requests that the system transmit literal
fields as well as variable-storage data fields to the terminal. If LITERALS is not
specified, the system writes literal fields to the map only if NEWPAGE is
specified.

NOIO
(#MREQ IN and #MREQ OUT only); requests that the system transfer a
native-mode data stream, a 3270-like data stream that consists of user data and all
device-control characters, to program storage. No terminal I/O is associated with
the request:

■ For IN requests, the native-mode data stream replaces data that would
normally be read from the terminal by the system.

■ For OUT requests, the native-mode data stream replaces data that would
normally be written out to the terminal by the system.

When OPTNS=(NOIO) is specified, the STREAMA= and STREAML= parameters
must also be defined, as described below.

SAVE
(Non-write-direct-to-terminal #MREQ OUT only); requests that the system
preserve the mapped output from the #MREQ OUT request in the event that an
unsolicited write-direct-to-terminal data stream is received at the issuing terminal

6-188 CA-IDMS DML Reference — Assembler

6.50 #MREQ

while the map is being displayed. This option overrides the task SAVE/NOSAVE
option specified during system generation.

UPPER
(#MREQ IN and #MREQ OUTIN only); requests that the system translate all
letters in a map in request into uppercase characters.

UPLOW
(#MREQ IN and #MREQ OUTIN only); requests that lowercase characters are not
translated into uppercase characters in a map in request. This can also be
accomplished by issuing a DCUF SET UPLOW statement before starting the
mapping session.

EAU
(#MREQ OUT and #MREQ OUTIN only); allows you to request the 3270 erase
all unprotected command. This command sets all unprotected character locations
to nulls, resets the MDTs for all unprotected fields, unlocks the keyboard, resets
the AID key, and places the cursor at the first unprotected field. This option can
not be used with OPTNS=(NEWPAGE).

OUTDATA=
(#MREQ OUT and #MREQ OUTIN only); specifies how the variable-storage data
fields are to be transmitted to the terminal. This specification applies to all
variable-storage data fields unless overridden by an OUTDATA= clause in a
previously issued #MAPMOD request.

YES
Transfers the contents of variable-storage data fields to the corresponding map
fields.

NO
Requests that map fields remain unchanged.

ERASE
Does not transfer the contents of variable-storage data fields to the screen.

ATTRIBUTE
Transmits only the attribute byte of each variable-storage field to the screen. Data
in the variable-storage field is not transmitted.

INDATA=
(#MREQ IN and #MREQ OUTIN only); specifies whether the contents of the map
fields are moved automatically into variable-storage data fields. This specification
applies to all variable-storage data fields unless overridden by an INDATA=
clause in a previously issued #MAPMOD request.

YES
Transfers the contents of map fields to the corresponding variable-storage data
fields.

NO
Does not transfer the contents of map fields to the corresponding variable-storage
data fields.

Chapter 6. Data Manipulation Language Statements 6-189

6.50 #MREQ

DETAIL/HEADER
(Pageable map #MREQ IN only); specifies whether the #MREQ IN operation is to
retrieve data from a detail occurrence or from the header or footer area.

�� For more information on pageable maps, refer to theCA-IDMS Mapping
Facility document.

DETAIL=
Specifies whether the #MREQ IN operation is to retrieve data from a modified
detail occurrence (modified data tag set on):

NO
(Default); specifies that data is not to be retrieved from a detail occurrence.

YES
Specifies that data is to be retrieved from a modified detail occurrence (MDT set
on). By default, the next sequential modified detail occurrence is retrieved; a
different detail occurrence can be specified by using the
FIRST/KEY/SEQNBR/RTRNKEY clause.

The contents of all map fields in the detail occurrence are retrieved unless
MODIFY=YES is specified for the #MREQ IN,DETAIL statement.
MODIFY=YES causes only modified fields to be retrieved.

FIRST/KEY/SEQNBR/RTRNKEY
Specifies the detail occurrence to be retrieved. Only one option can be specified.

FIRST=
Specifies whether the first available modified detail occurrence is to be retrieved.

NO
(Default); specifies that the FIRST clause is not used to determine the detail
occurrence to be retrieved.

YES
Retrieves the first available modified detail occurrence. An end-of-data condition
results if there are no more modified detail occurrences to be retrieved.

The optional RTRNKEY=data-field-name parameter specifies the name of a
variable field in which the system stores the key value (if any) associated with the
retrieved detail occurrence. If no value is associated with the detail occurrence,
the system sets data-field-name to 0. Data-field-name must be a 4-byte value (not
necessarily a binary fullword).

Note: A value is associated with a detail occurrence by using the KEY parameter
in an #MREQ OUT,DETAIL=YES command for that occurrence.

KEY=key
Retrieves a modified detail occurrence based on the value associated with the
detail occurrence.Key is a 4-byte variable field.

Note: A value is associated with a detail occurrence by using the KEY parameter
in an #MREQ OUT,DETAIL=YES command for that occurrence.

6-190 CA-IDMS DML Reference — Assembler

6.50 #MREQ

A detail-not-found condition is returned if the specified occurrence is not a
modified detail occurrence or if no detail occurrence with the specified value is
found.

SEQNBR=data-field-name
Retrieves a detail occurrence by sequence number. Detail occurrences are built by
the application program at run time and are stored in the sequence in which they
are created.Data-field-name is a 4-byte binary fullword field.

RTRNKEY=data-field-name
(Optional); names the variable field used to store the 4-byte value (if any) of the
retrieved detail occurrence. If no value is associated with the detail occurrence,
data-field-name is set to 0. (Data-field-name does not have to be a binary
fullword).

Note: A value is associated with a detail occurrence by using the KEY parameter
in an #MREQ OUT,DETAIL=YES command for that occurrence.

RTRNKEY=data-field-name
Retrieves the next sequential modified detail occurrence, and specifies the name of
the variable field in which the system stores the value (if any) associated with the
retrieved detail occurrence. If no value is associated with the detail occurrence,
data-field-name is set to 0. Data-field-name must be a 4-byte value (not
necessarily a binary fullword).

Note: A value is associated with a detail occurrence by using the KEY parameter
in an #MREQ OUT,DETAIL=YES command for that occurrence.

HEADER=
(Pageable map #MREQ IN only); specifies whether the map in operation is to
retrieve the contents of data fields in the header and footer areas.

NO
(Default); specifies that data from the header and footer areas is not to be
retrieved.

YES
Specifies that data from the header and footer areas is to be retrieved.

The contents of all data fields in the header and footer areas are retrieved unless
MODIFY=YES is specified in the #MREQ IN,HEADER statement;
MODIFY=YES causes only modified fields to be retrieved.

PAGE=page-number
Specifies the name of a numeric variable field to store the current binary fullword
value of the $PAGE field on map in.

MODIFY=
Specifies whether the contents of modified fields are to be retrieved.

NO
(Default); retrieves all fields from the header and footer areas when a modified
field (MDT set on) is found in the occurrence or areas.

Chapter 6. Data Manipulation Language Statements 6-191

6.50 #MREQ

YES
Retrieves only the contents of modified fields from the header and footer areas;
data in unmodified fields is not retrieved.

DETAIL/RESUME
(Pageable map #MREQ OUT only); specifies whether the #MREQ OUT command
is to create or modify a detail occurrence, or to map out a page of existing detail
occurrences.

DETAIL=
Specifies whether the #MREQ OUT command is to create or modify a detail
occurrence.

NO
(Default); specifies that the #MREQ OUT command does not create or modify
detail occurrences.

YES
Specifies that the #MREQ OUT command can either create or modify individual
detail occurrences. You can optionally associate a numeric key value with each
occurrence.

UPDATE=NEW/CURRENT
Specifies whether the detail occurrence is to be created or modified.

NEW
(Default); creates a detail occurrence in a pageable map. Occurrences are
displayed in the order in which they are created by the application program.

CURRENT
Modifies the detail occurrence referenced by the most recent #MREQ OUT or
#MREQ IN command.

KEY=key
(Optional); specifies a value to be associated with the created or modified detail
occurrence. The 4-byte numeric value is not displayed on the terminal screen.
Key is the name of the variable field that contains the database key of the database
record associated with the detail occurrence.

When the KEY parameter is used with the #MREQ
OUT,HEADER=YES,UPDATE=CURRENT command, the specified value
replaces the value (if any) previously associated with the detail occurrence.

RESUME=
Specifies whether a page of detail occurrences is to be displayed on the terminal
screen.

NO
(Default); specifies that the #MREQ OUT command does not map out a page of
detail occurrences to the terminal.

YES
Specifies that the #MREQ OUT command maps out a page of detail occurrences
to the terminal.

6-192 CA-IDMS DML Reference — Assembler

6.50 #MREQ

PAGE=
(Optional); determines the page of occurrences to be displayed on the terminal
screen.

CURRENT
(Default); redisplays the current page. If no page has been displayed, the first
page of the pageable map is displayed.

NEXT
Displays the page that follows the current page. If no page follows the current
page, the current page is redisplayed.

PRIOR
Displays the page that precedes the current page. If no page precedes the current
page, the current page is redisplayed.

FIRST
Displays the first available page of detail occurrences.

LAST
Displays the page of detail occurrences with the highest available page number.

page-number
Displays the numeric variable field that contains the binary fullword number of
the page. A page number is previously stored in the variable field by an #MREQ
IN,HEADER=YES,PAGE=page-number statement that names the same numeric
variable field.

(page-number)
Specifies the register that contains the address of a 4-byte binary fullword field in
variable storage that contains the number of the page to be displayed.
Page-number must be enclosed in single quotes.

CHECK=
(#MREQ OUT and #MREQ OUTIN only); specifies whether the data transfer is
synchronous or asynchronous.

YES
Specifies that the data transfer is synchronous. the system places the issuing task
in an inactive state. When the output operation is completed, the task resumes
processing according to its established dispatching priority.

NO
Specifies that the data transfer is asynchronous. the system returns control to the
issuing program immediately after initiating the output operation and establishing
an ECB to be posted when the output operation is completed.

An asynchronous transfer must be followed by a CHECK #TREQ request before
another #MREQ request is issued to ensure that the previous #MREQ processing
has been completed.

�� For more information on synchronous and asynchronous processing, refer to
6.69, “#TREQ” on page 6-265 later in this chapter.

Chapter 6. Data Manipulation Language Statements 6-193

6.50 #MREQ

Specifying CHECK=NO in a #MREQ OUT statement issued before task
termination frees the task resources when the task terminates; the system
automatically issues a #TREQ CHECK.

STREAMA/STREAML
(OPTNS=(NOIO only); specifies the location and the length of the input data
stream to be transmitted.

STREAMA=
Specifies the location of the native-mode data stream to be transmitted.

data-stream-location-in
Either a register that points to the data stream or the symbolic name of the area
that contains the data stream.

STREAML=
Specifies the length of the native-mode data stream to be transmitted.

data-stream-length-in
A register that contains either the length or an absolute expression of the length.

STREAMA/STREAML
Specifies the length of the output data stream and the location to which it is
returned.

STREAMA=(1)/return-data-stream-address-out
Specifies the location to which the system transfers the mapped data.

(1)
(Default); is the register that contains the address of the location to which the
system transfers the mapped data.

return-data-stream-address-out
Specifies the location to which the system transfers the mapped data.
Return-data-stream-address-out is either a register or the symbolic name of a
fullword user-defined area.

STREAML=
Specifies the location to which the system returns the length of the output data
stream.

(0)
(Default); is the register to which the system returns the length, in bytes, of the
output data stream.

return-data-stream-length-out
Specifies the location to which the system returns the length, in bytes, of the
output data stream.Return-data-stream-length-out is either a register or the
symbolic name of a halfword or fullword user-defined field.

DESTID/USERID/LTERMID
(#MREQ OUT only); specifies a write-direct-to-terminal request (blast) to either a
destination, user, or logical terminal.

6-194 CA-IDMS DML Reference — Assembler

6.50 #MREQ

DESTID=destination-id
Specifies a write-direct-to-terminal request to one of the following destinations
defined during system generation.

■ A list of logical terminals indicates that the system sends the #MREQ data
stream specified in the OUTAREA parameter to all available terminals in the
list.

■ A list of users indicates that the system sends the #MREQ data stream
specified in the OUTAREA parameter to all users in the list who are currently
signed on to the system.

Note: This works only if there is a valid OUTAREA parameter for line mode
(#LINEOUT) as well as for mapping mode (#MREQ).

destination-id
A register that points to the destination id, the symbolic name of a user-defined
field that contains the destination ID, or the ID itself enclosed in quotation marks.

Note: The destination list can include different 3270 models. If a map has been
generated to support a specified terminal device, the system will write the map to
that device. If the targeted terminal-device type is not in the map device list, the
system will ignore that terminal device.

USERID=
Specifies a write-direct-to-terminal request to a specific signed-on user. The
system sends the #MREQ data stream specified in the OUTAREA parameter to a
specific signed-on user.

user-id
Either a register that points to the user ID, the symbolic name of a user-defined
field that contains the user id, or the ID itself enclosed in quotation marks.

LTERMID=
Specifies a write-direct-to-terminal request to a specific in-service terminal. The
system will send the #MREQ data stream specified in the OUTAREA parameter
to a specific in-service terminal.

logical-terminal-id
Either a register that points to the logical terminal id, the symbolic name of a
user-defined field that contains the logical terminal ID, or the ID itself enclosed in
quotation marks.

COND=
Specifies whether this #MREQ is conditional and under what conditions control
should be returned to the issuing program.

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the request cannot
be serviced for any of the reasons listed under condition.

Chapter 6. Data Manipulation Language Statements 6-195

6.50 #MREQ

condition
Specifies one or more conditions under which the system returns control to the
issuing program. Multiple conditions must be enclosed in parentheses and
separated by commas. You can specify one or more of the following conditions.

 ■ ATTN

The I/O is interrupted by the terminal operator pressing the ATTENTION
(2471) or BREAK (teletype) key during an output operation.

 ■ LOGL

A logical error is encountered in the output data stream.

 ■ PERM

A permanent I/O error has occurred.

 ■ DISC

The dial-up line is disconnected or the terminal goes out of service.

 ■ INVP

There is an invalid parameter in the MRB.

 ■ MPNF

The map load module requested by the MRB cannot be found in the load area
of the dictionary.

 ■ NSP

The requested map does not support the terminal device type being used.

 ■ TBL

The named edit or code table cannot be found or is invalid for use with the
requested map.

 ■ UERR

An error has occurred in a user-written edit module.

 ■ IDAT

A data conversion error occurs where the internal map data does not match
the map data description.

 ■ EDNF

The user-written edit module cannot be found or is invalid for use with the
requested map.

 ■ UNDF

(#MREQ OUT only); an undefined DESTID or LTERMID is specified in an
#MREQ blast request.

 ■ MPNS

A map paging #MREQ is issued when no paging session is in progress.

6-196 CA-IDMS DML Reference — Assembler

6.50 #MREQ

ATTNXIT=attention-key-label
Specifies the symbolic name of the routine to which control should be returned if
the I/O operation is interrupted by the terminal operator.

LOGLXIT=logical-output-error-label
Specifies the symbolic name of the routine to which control should be returned if
a logical error is detected in the output data stream.

PERMXIT=permanent-i/o-error-label
Specifies the symbolic name of the routine to which control should be returned if
a permanent I/O error occurs.

DISCXIT=terminal-disconnected-label
Specifies the symbolic name of the routine to which control should be returned if
the terminal line or terminal goes out of service.

INVPXIT=invalid-mrb-information-label
Specifies the symbolic name of the routine to which control should be returned if
the #MREQ cannot be serviced because of an invalid parameter in the MRB.

MPNFXIT=map-not-found-label
Specifies the symbolic name of the routine to which control should be returned if
the #MREQ cannot be serviced because the map requested by MRB cannot be
found.

DNSPXIT=terminal-device-not-supported-label
Specifies the symbolic name of the routine to which control should be returned if
the #MREQ cannot be serviced because the terminal device in use is not
supported by the requested map.

TBLXIT=error-in-table-label
Specifies the symbolic name of the routine to which control should be returned if
an edit or code table cannot be found or is invalid for use with the requested map.

UERRXIT=error-in-return-user-edit-mod-label
Specifies the symbolic name of the routine to which control should be returned if
an error has occurred in a user-written edit module.

IDATXIT=internal-data-error-label
Specifies the symbolic name of the routine to which control should be returned if
the internal map data does not match the map data description.

EDNFXIT=edit-module-not-found-label
Specifies the symbolic name of the routine to which control should be returned if
a user-written edit module cannot be found or is invalid for use with the requested
map.

UNDFXIT=invalid-destid-ltermid-label
(#MREQ OUT only); specifies the symbolic name of the routine to which control
should be returned if an undefined DESTID or LTERMID is specified in an
#MREQ OUT blast request.

Chapter 6. Data Manipulation Language Statements 6-197

6.50 #MREQ

MPNSXIT=paging-session-error-label
Specifies the symbolic name of the routine to which control should be returned if
a map paging #MREQ specification is issued when a no paging session is in
progress.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

MSGADDR=message-start-location,MSGLEN=message-length/
MSGEND=message-end-location
(#MREQ OUT and #MREQ OUTIN only); specifies a program-supplied message
to be displayed in the map message area. The message text is a 1- to 80-character
alphanumeric value.Message-start-location is either a register that points to the
message area or the symbolic name of that area. Specify the end of the message
in one of the following ways.

MSGLEN=message-length
Specifies the length, in bytes, of the message output data area.Message-length is
a register that contains the length, the symbolic name of a user-defined field that
contains the length, or the length itself expressed as a numeric constant.

MSGEND=message-end-location
Specifies the end of the message by referencing the next data item following the
message storage area.Message-end-location is a register or a fullword that points
to the first data item following the message storage area. This data item may be a
dummy byte, a data item not associated with the output data, or the symbolic
name of that data item.

Examples: The following examples illustrate how to use the #MREQ statement:

The #MREQ IN statement shown below requests that the system read the map
associated with the map request block TESTMAP1. Data values are transferred from
map fields to the corresponding variable-storage data fields. Subsequent commands
can evaluate the input values and perform appropriate processing. For any error
condition that can be specified by the COND=ALL parameter, control will be returned
to the routine labeled ERRORTN.

#MREQ IN,MRB=TESTMAP1,INDATA=YES,COND=ALL,ERROR=ERRORTN

The #MREQ IN statement shown below requests that the system map in the next
(default) modified detail occurrence of the pageable map associated with the map
request block TESTPAG1.

#MREQ IN,MRB=TESTPAG1,DETAIL=YES,MODIFY=YES,COND=ALL, �

 ERROR=ERRORTN

The #MREQ OUT statement shown below requests that the system map out all literal
and data fields associated with the map request block TESTMAP1. The NEWPAGE
option clears the screen before transferring the TESTMAP1 data fields to the screen.

#MREQ OUT,MRB=TESTMAP1,OUTDATA=YES,OPTNS=(NEWPAGE)

6-198 CA-IDMS DML Reference — Assembler

6.50 #MREQ

The #MREQ OUT statement shown below creates a new detail occurrence and maps
out a page of detail occurrences to the terminal screen. The detail occurrence can be
displayed in mixed uppercase and lowercase characters. Control is returned to the
ERRRTN routine if the request cannot be serviced due to any of the conditions listed
under the COND options. A program-supplied message is mapped out to the map
message area. Register 7 points to where the message is stored; register 4 contains the
message length.

#MREQ OUT,MRB=TESTPAG1,OPTNS=(UPLOW),DETAIL=YES,RESUME=YES, �

 COND=ALL,ERROR=ERRRTN,MSGADDR=(R7),MSGLEN=(R4)

Status codes: By default, the #MREQ request is unconditional; any return-code
other than X'00' will result in an abend of the issuing task. The issuing program can
request return of control with the COND parameter to avoid an abend.

The value returned to register 15 differs according to whether the #MREQ request is a
paging or a nonpaging request. Status codes issued as a result of a nonpaging #MREQ
request fall in the range of '00' to '38'; paging requests return values in the range of
'40' to '50'.

After completion of an #MREQ statement that does not involve pageable maps, the
value in register 15 indicates the outcome of the operation. The following status codes
apply to nonpageable maps:

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'04' The specified edit or code table cannot be found or is invalid for
use with the named map.

X'08' The I/O has been interrupted; the terminal operator has pressed
ATTENTION (2741) or BREAK (teletype).

X'0C' A logical error (for example, an invalid control character) has been
encountered in the output data stream.

X'10' A permanent I/O error has occurred during processing.

X'14' The dial-up line for the terminal is disconnected.

X'18' The terminal being used is out of service.

X'20' The map request block (MRB) contains an invalid field, indicating
a possible error in program parameters.

X'24' The map load module named in the MRB either cannot be found in
the dictionary load area (DDLDCLOD) or is invalid.

X'28' The requested map does not support the terminal device type being
used.

Chapter 6. Data Manipulation Language Statements 6-199

6.50 #MREQ

After completion of an #MREQ function that involves pageable maps, the value in
register 15 indicates the outcome of the operation: The following status codes apply to
pageable maps:

Register 15
value

Meaning

X'2C' An error has occurred in a user-written edit module. An invalid
pointer to the data stream has been returned to register 1.

X'30' A data conversion error has occurred; the internal map data does
not match the map data description.

X'34' The specified user-written edit module cannot be found or is
invalid for use with the named map.

X'38' Invalid blast request to DESTID, LTERMID, or USER ID.

X'3C' Invalid map load module.

Register 15
value

#MREQ Type/Meaning

X'40' (#MREQ IN) The requested node for a header or detail was either
not present or not updated.

(#MREQ OUT) There is no current detail occurrence to be
updated. No action is taken.

X'44' (#MREQ IN) No more modified detail occurrences require map in.

(#MREQ OUT) The maximum amount of storage defined for
pageable maps at system generation has been reached. This and
any ensuing map out detail occurrences are ignored.

X'48' (#MREQ IN) The scratch record containing the requested detail
could not be accessed (internal error).

(#MREQ OUT) No detail occurrence, footer, or header fields exist
to be mapped out by an #MREQ OUT,RESUME command.

x'4C' (#MREQ OUT) The first screen page has been transmitted to the
terminal.

6-200 CA-IDMS DML Reference — Assembler

6.50 #MREQ

Upon successful completion of certain #MREQ requests, four registers contain the
following information:

■ Register 0, for #MREQ OUT blast requests, contains the actual number of
terminals to which the data stream has been routed.

■ Register 1, for asynchronous output requests, contains the address of the ECB that
the system posts on completion of the I/O operation.

■ Register n, for non-I/O requests (OPTNS=(NOIO) parameter), contains the
address of the native-mode data stream. The register number n is assigned by the
STREAMA parameter. This register does not have to be assigned for non-I/O
requests; the system can place the address of the native-mode data stream in a
user-defined storage area rather than in a register.

■ Register m, for non-I/O requests, contains the length of the native-mode data
stream. The register number m is assigned by the STREAML parameter. This
register does not have to be assigned for non-I/O requests. The following
conditions apply:

– For output requests, the system can place the length of the native-mode data
stream in a user-defined storage area.

– For input requests, the length can be defined as an absolute expression.

Register 15
value

#MREQ Type/Meaning

X'50' (#MREQ IN) An #MREQ IN,COND=MPNS or an #MREQ
OUT,COND=MPNS request was received when no map paging
session is in progress. Either a #STRTPAG command was not
received prior to this #MREQ IN command or a #ROLLBAK was
issued so that the scratch area for the pageable map (area ID
MPGPSCRA) is no longer available. Unless the COND=MPNS is
specified for #MREQ, this condition abends the map paging task
with the message DC242021.

(#MREQ OUT) A mapout command was received when no map
paging session was in progress. Either the #STRTPAG command
was not received prior to this mapout command or a #ROLLBAK
was issued so that the scratch area for the pageable map (area ID
MPGPSCRA) is no longer available. This return code is received
only when COND=MPNS is specified for #MREQ; otherwise, this
condition abends the map paging task.

X'54' (#MREQ OUT) Value returned to register 15 when a pageable map
page is built before the page is actually displayed. Test for the
new map paging return code after each #MREQ OUT
DETAIL=YES statement. This allows you to detect when the last
detail that can fit on a page has been placed on that page.

Chapter 6. Data Manipulation Language Statements 6-201

6.51 @OBTAIN (LRF)

 6.51 @OBTAIN (LRF)

The @OBTAIN statement retrieves the named logical record and places it in the
variable-storage location reserved for that logical record. The @OBTAIN statement
can perform the following functions:

■ Retrieve an occurrence of a logical record that meets criteria specified in the
WHERE clause.

■ Specify that the retrieved logical record is to be placed into an alternative
variable-storage location.

 Syntax

��─── @OBTAIN ─┬─ NEXT ← ─┬─ ,REC=logical-record-name ───────────────────────�

└─ FIRST ───┘

 �─┬──┬────────────────────────────────�

└─ ,IOAREA=alt-logical-record-location ──┘

 �─┬──┬──────────────────────────�

└─ ,ONLRSTS=path-status,GOTO=branch-location ──┘

 �─┬─────────────────────────────┬───��

└─ ,WHERE boolean-expression ─┘

 Parameters

NEXT/FIRST,REC=logical-record-name
Retrieves a logical record and places it in program variable storage.
Logical-record-name must specify a logical record defined in the subschema.

NEXT/FIRST
Specifies which occurrence of the logical record is to be retrieved.

NEXT
(Default); retrieves a subsequent occurrence of the named logical record.
@OBTAIN NEXT is generally used to serially retrieve logical-record occurrences.

When LRF receives repeated @OBTAIN NEXT commands, it replaces field
values in program variable storage with new values obtained through repeated
access to database records.

If the program issues an @OBTAIN NEXT statement without issuing an
@OBTAIN FIRST, or if the last path status returned for the path was
LR-NOT-FOUND, LRF interprets the @OBTAIN NEXT as @OBTAIN FIRST.
After LR-ERROR or a DBA-defined path status, LRF does not interpret
@OBTAIN NEXT as @OBTAIN FIRST.

FIRST
Retrieves the first occurrence of the logical record. @OBTAIN FIRST is
generally used to retrieve the first in a series of logical-record occurrences.

If an @OBTAIN FIRST statement is followed by an @OBTAIN NEXT statement
to retrieve a series of occurrences of the same logical record, the @OBTAIN
statements must direct LRF to the same path. For this reason, you must ensure

6-202 CA-IDMS DML Reference — Assembler

6.51 @OBTAIN (LRF)

that the selection criteria specified in the WHERE clauses accompanying the
@OBTAIN FIRST and @OBTAIN NEXT statements describe the same attributes
of the desired logical record.

IOAREA=alt-logical-record-location
Identifies an alternative location in variable storage into which LRF is to place the
retrieved logical record.

Any subsequent @MODIFY, @STORE, or @ERASE statements for a logical
record placed in the named location should name that area. LRF is to obtain the
data to be used to update the logical record from the named area.
Alt-logical-record-location must identify a record location defined in the program.

ONLRSTS=path-status,GOTO= branch-location
Tests for the indicated path status.Path-status is a quoted literal program variable
(1 to 16 bytes). If path-status results from this @OBTAIN statement, the action
specified by GOTO=branch-location is performed. For details on how to code
this clause, refer to 6.74.2, “ON clause” on page 6-313 later in this chapter.

WHERE boolean-expression
Specifies the selection criteria to be applied to the specified logical record. For
details on how to code the WHERE clause, see 6.74.1, “WHERE clause” on
page 6-309 later in this chapter.

Example: The @OBTAIN NEXT statement shown below retrieves a series of
logical-record occurrences. The program issues the @OBTAIN NEXT statement
iteratively to retrieve the first and all subsequent occurrences of the DEPEMPLR
logical record for department 5100. Each @OBTAIN NEXT statement retrieves an
employee ID and employee name for the department with an ID of 5100 (assuming
that department 5100 has more than one employee).

GETEMPL EQU �

 @OBTAIN NEXT,REC=DEPEMPLR, �

 ONLRSTS='LR-NOT-FOUND',GOTO=END, �

WHERE DEPTID EQ '51��'

 .

 .

 .

 B GETEMPL

The following figure illustrates how to use the @OBTAIN command in conjunction
with the WHERE clause, described later in this chapter, to retrieve occurrences of the
EMPJOBLR logical record. Only those detail occurrences with a department-id value
equal to 5100 are retrieved. The EMPJOBLR logical record contains information from
the employee, job, office, and department records. The WHERE clause is used to
obtain only those employees in department 5100.

Chapter 6. Data Manipulation Language Statements 6-203

6.51 @OBTAIN (LRF)

Status codes: When using LRF, the type of status code returned to the program in
the ERRSTAT field of the IDMS communications block differs according to the type
of error:

■ If the error occurs in the logical-record path, the ERRSTAT field contains an
status code issued by CA-IDMS/DB with a major code from 00 to 19. For a list
of these codes, see 3.2.2, “ERRSTAT field and codes” on page 3-11.

■ If the error occurs in the request itself, LRF returns the path status LR-ERROR
to the LRSTAT field of the LRC block and places an status code with a major
code of 20 in the ERRSTAT field of the IDMS communications block.

For a list of these codes, see 3.3.2, “Testing for the logical-record path status” on
page 3-20. ˚

6-204 CA-IDMS DML Reference — Assembler

6.52 #POST

 6.52 #POST

The #POST statement modifies an event control block (ECB) in one of two ways:

■ Posting an ECB to indicate completion of an event for which another task is
waiting

■ Clearing an ECB to an unposted status

The ECB wait must have been previously established by a #WAIT or #ATTACH
request.

 Syntax

��─┬─────────┬── #POST ─┬─ ECB=ecb-pointer ────────────────────────────────┬──��

└─ label ─┘ └─ ECBID=ecb-id-register ─┬───────────────┬────────┘

└─ ,TYPE=CLEAR ─┘

 Parameters

ECB=
Specifies the ECB to be posted.

ecb
Either a register that points to the ECB or the symbolic name of a user-defined
fullword field that contains the ECB.

ECBID=
Specifies the 4-character ID of the ECB to be posted or to be cleared to an
unposted status.

ecb-id
A register that contains the ECB ID, the symbolic name of a fullword field that
contains the ID, or the ID literal enclosed in quotation marks.

TYPE=CLEAR
(Optional); clears the ECB to an unposted status. Programs that are posting and
waiting for the posting of ECBs are responsible for clearing the ECB. An ECB
must be cleared prior to issuing a subsequent #WAIT request.

Example: The following example of the #POST statement clears the event control
block identified by the ID literal ECB4 to an unposted status.

#POST ECBID='ECB4',TYPE=CLEAR

Status codes: The #POST request is unconditional; any runtime error will result in
an abend of the issuing task.

Chapter 6. Data Manipulation Language Statements 6-205

6.53 #PRINT

 6.53 #PRINT

The #PRINT statement requests that the system transmit data from a task to a terminal
defined as a printer device during system generation. The terminal designated as a
printer is usually a hard-copy device. The following considerations apply to the use of
the #PRINT statement:

■ The DC/UCF system does not usually transmit data directly from program storage
to the terminal in response to a #PRINT command. Data is passed to a queue
maintained by the system, then from the queue to the printer terminal. The data
stream passed to the queue by the #PRINT request contains pure data; the system
inserts line and device control characters automatically when it writes the data to
the printer.

■ To bypass the queuing process described above and to transfer data immediately
to a printer device, issue a print-direct request by specifying #PRINT
OPTNS=(DIRECT).

■ You can use a #PRINT request to transmit native-mode data streams, data
streams that contain device-control information as well as user data. This
capability is useful in formatting reports for 3280-type printers. To transmit
native-mode data streams, you issue a #MREQ NOIO request, followed by a
#PRINT request with OPTNS=(NATIVE).

■ Each line of data transmitted by a #PRINT request is considered a record. Each
record is associated with a report in the print queue. A report consists of one or
more records. Each task can have up to 256 active print reports. A program can
issue multiple #PRINT requests, each specifying a different report. The DC/UCF
system maintains the status of each report individually.

■ The #PRINT request transmits data or screen contents to print classes or to
destinations:

– Print classes — During system generation, one or more print classes are
associated with each terminal designated as a printer. For each report, the
first record transmitted to the print queue with a #PRINT request establishes
the print class in the range of 1 to 64 for that report. The report is printed on
the first available printer assigned the same print class.

– Destinations — Destinations are groups of terminals, printers, or users. If
destinations have been defined during system generation, the #PRINT request
can direct a report to a destination. Reports sent to printer destinations are
printed either on the first available printer for the destination or on all printers
in that destination, regardless of print class.

■ You can request that the system hold the report rather than print it immediately.
You can explicitly release the report at a later time.

■ The DC/UCF system prints a report only when that report is completed, either
explicitly as part of a #PRINT request or implicitly when the issuing task
terminates. If the task abends, all reports in the print queue that have not been
ended explicitly are deleted without being printed.

6-206 CA-IDMS DML Reference — Assembler

6.53 #PRINT

■ After completion of a #PRINT request, register 1 contains the address of a
10-character identifier that uniquely identifies the report in the DC/UCF system.
This identifier is not the user-defined report ID described below for the RPTID
parameter. It is a value assigned by the system primarily for internal use. This
value appears on the master terminal when report statistics are requested from that
terminal.

■ A report can be printed several times by indicating to the system to keep the
report after it has been printed, rather than automatically deleting it. The report
can be manually released to be printed using a DCMT VARY REPORT
RELEASE command.

 Syntax

��──┬─────────┬───�

└─ label ─┘

 �─── #PRINT RECORD=message-location-pointer,RECLEN=message-length-register ──�

 �─┬───────────────────────────────────┬──────────────────────────────────────�

└─ ,RPTID= ─┬─ 1 ← ────────────────┬┘

└─ report-id-register ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,CLASS= ─┬─ 1 ← ────────────────────┬┘

└─ printer-class-register ─┘

 �─┬─────────────────────────────────┬──�

│ ┌─── , ────┐ │

└─ ,OPTNS= ───(─↓─ option ─┴─) ──┘

 �─┬───────────────┬──�

└─ ,MF= ─┬─ R ─┬┘

├─ L ─┤

└─ E ─┘

 �─┬───┬────────────────────────────────�

├─ ,DEST=printer-destination-pointer ─────┤

├─ ,LTEID=direct-printer-ltermid-pointer ─┤

└─ ,LTEADDR=direct-printer-lterm-address ─┘

Chapter 6. Data Manipulation Language Statements 6-207

6.53 #PRINT

 �─┬──┬─────────────────────────────�

└─ ,ECBADDR=direct-print-return-ecb-address ─┘

 �─┬──┬───────────────────────────────�

└─ ,JOBNAME=batch-request-jobname-pointer ─┘

 �─┬─────────────────────────────────┬──�

└─ ,COND= ─┬── NO ← ─────────────┬┘

├── ALL ──────────────┤

│ ┌─── , ────┐ │

└(─┬──↓── NOPR ──┴┬─)─┘

├───── IOER ───┤

├───── INVP ───┤

├───── UNDF ───┤

├───── SCRN ───┤

├───── INVT ───┤

├───── WAIT ───┤

├───── OUTS ───┤

├───── DEAD ───┤

├───── CANC ───┤

└───── REQU ───┘

 �─┬───┬──────────────────────────────�

└─ ,PRB= ─┬─ SYSPLIST ← ──────────────────┬─┘

└─ print-request-block-pointer ─┘

 �─┬─────────────────────────────┬──�

└─ ,NOPRXIT=no-printer-label ─┘

 �─┬───┬────────────────────────────────�

└─ ,INVPXIT=invalid-parameter-list-label ─┘

 �─┬─────────────────────────────┬──�

└─ ,IOERXIT=i/o-error-label ──┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,UNDFXIT=invalid-destid-list-label ──┘

�──┬──┬─────────────────────────────────�

└─ ,SCRNXIT=screen-term-i/o-error-label ─┘

 �─┬───────────────────────────────────┬──────────────────────────────────────�

└─ ,INVTXIT=invalid-terminal-label ─┘

 �─┬──┬───────────────────────────────�

└─ ,WAITXIT=wait-for-direct-printer-label ─┘

 �─┬──┬─────────────────────────�

└─ ,OUTSXIT=direct-printer-out-of-service-label ─┘

 �─┬───┬──────────────────────────────�

└─ ,DEADXIT=deadlock-on-direct-print-label ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,CANCXIT=cancel-direct-report-label ─┘

 �─┬──┬─────────────────────────────────�

└─ ,REQUXIT=requeue-direct-report-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

 Parameters

6-208 CA-IDMS DML Reference — Assembler

6.53 #PRINT

RECORD=
Specifies the storage area that contains data to be output.

message-location-pointer
Either a register that points to the area or the symbolic name of the area.

RECLEN=
Specifies the length, in bytes, of the data stream to be output.

message-length-register
A register that contains the length, the symbolic name of a user-defined halfword
or fullword field that contains the length, or an absolute expression.

RPTID=1/
Specifies the identifier of the report to be printed. The report identifier must be
an integer in the range 1 through 255; the default is 1.

report-id-register
A register that contains the ID, the symbolic name of a user-defined field that
contains the ID, or an absolute expression.

CLASS=1/
Specifies the class of the printer to which the report is assigned. Valid print
classes are 1 through 64; the default is 1.

printer-class-register
A register that contains the class, the symbolic name of a user-defined field that
contains the class, or an absolute expression. This parameter should be specified
only for the first line (record) of each report. If no printer class is specified, the
default print class assigned to the issuing task's physical terminal during system
generation is used.

OPTNS=options
Specifies several options available to print I/O. This parameter is never required
and should be specified only when appropriate. The OPTNS parameter values
must be enclosed in parentheses. Separate multiple values with commas.

NATIVE
Indicates that the data stream contains device control characters. If NATIVE is
not specified, the system automatically inserts the necessary characters.

NEWPAGE
Requests that the system print the data stream beginning on a new page.

ENDRPT
Indicates that the data stream constitutes the last record in the specified report.
When ENDRPT is specified, the report can be printed before the issuing task has
terminated. To print the report immediately, the program must issue a #COMMIT
TASK request. Reports not explicitly ended with an ENDRPT are automatically
ended at task termination.

SCREEN
(3270-type devices only) transmits the contents of the currently displayed screen
to the print queue. When SCREEN is specified, the system implicitly assigns the
NATIVE option and ignores the RECORD= and RECLEN= clauses. The terminal

Chapter 6. Data Manipulation Language Statements 6-209

6.53 #PRINT

operator can print screen contents by pressing the print key established during
system generation. If the SCREEN option is specified for a non-3270 terminal or
a remote 3270 terminal running under TCAM, an error results.

ALL
Causes the report to be printed on all printers associated with the destination
specified in the DEST parameter. The report is printed on one printer at a time
and saved until it has been printed on all of the printers. You can use a DCMT
DISPLAY REPORT DESTINATION command to display the report name
followed by a list of the printer names on which the report has yet to be printed.

HOLD
Requests that the system hold a report in the print queue before it is printed. The
report is not printed until a DCMT VARY REPORT RELEASE command is
issued.

KEEP
Keeps a report in the print queue after the report has printed. A report marked
with the KEEP option can be manually released for printing with the DCMT
VARY REPORT RELEASE command. The report can be deleted either manually
by issuing a DCMT VARY REPORT DELETE command or automatically
through the queue expiration date.

DIRECT
Indicates a print-direct request that will be routed directly to the destination
specified. Specify the destination by using the CLASS parameter, as described
above, or the DEST, LTEID, or LTEADDR parameters, described below. If
LTEID or LTEADDR is specified, the system will acquire the specific printer. If
CLASS or DEST is specified, the system will acquire the first available printer
that satisfies the requested class or destination.

NOWAIT
(default) requests that the DC/UCF system not wait for a printer to become
available if the request cannot be immediately serviced; control is returned to the
issuing program with a status code indicating that the printer device is unavailable.

WAIT
Requests that the system wait for a printer to become available if the request
cannot be immediately serviced. If the wait time exceeds the stall interval defined
during system generation, the program will abend.

MF=
Specifies the type of #PRINT request.

R
Identifies a regular #PRINT request. The DC/UCF system builds a new print
request block (PRB) for each request and performs the requested operation.

L
Identifies a list #PRINT request. The DC/UCF system adds a predefined PRB in
the data definition section of program storage. The PRB contains parameters
whose values remain constant throughout the program. The #PRINT label used to
identify the PRB is referenced by the PRB parameter in subsequent execute-type
requests. Only the label and the MF parameter are required for list-type #PRINT

6-210 CA-IDMS DML Reference — Assembler

6.53 #PRINT

requests; other parameters should be specified only when required to predefine
PRB parameter values.

E
Identifies an execute #PRINT request. The DC/UCF system adds to or overrides
the predefined PRB with the parameters defined in the request and performs the
requested operation.

DEST/LTEID/LTEADDR
Identifies the printers to which a report is routed. These parameters can only be
specified with OPTNS=DIRECT; you specify the destination.

DEST=
Specifies a destination defined during system generation. The destination can be
one of the following:

■ A list of logical terminals requesting that the system route the report to all
available terminals in the list

■ A list of users requesting that the system route the report to all listed users
who are currently signed on to the system

printer-destination-pointer
A register that points to the destination ID, the symbolic name of a user-defined
field that contains the destination ID, or the ID itself enclosed in quotation marks.

LTEID=
Specifies the logical terminal ID of a specific printer-terminal device.

direct-printer-ltermid-pointer
A register that points to the logical terminal ID, the symbolic name of a
user-defined field that contains the logical terminal ID, or the ID itself enclosed in
quotation marks.

LTEADDR=
Specifies the logical terminal element (LTE) address of a specific printer-terminal
device.

direct-printer-lterm-address
A register that points to the address of the LTE, the symbolic name of a
user-defined field that contains the address of the LTE, or the address itself
enclosed in quotation marks.

ECBADDR=
Specifies the location to which the system returns the address of a list of event
control blocks (ECBs) if the print-direct request cannot be serviced immediately.
If OPTNS=(DIRECT,NOWAIT) has been specified and the system cannot
immediately acquire the requested printer device, the system returns the address of
a list of ECBs to the requesting task. One ECB from the list is posted when the
requested printer becomes available. At that time, the print-direct request can be
reissued.

Note: If you use the ECBADDR= parameter and specify
OPTNS=(DIRECT,NOWAIT), the system will allocate storage for the
ECBLIST. The program is responsible for freeing the storage space.

Chapter 6. Data Manipulation Language Statements 6-211

6.53 #PRINT

direct-print-return-ecb-address
Either a register that points to the ECB area or the symbolic name of a
user-defined field that contains the address of the area.

JOBNAME=
Specifies the name of the system report to be associated with a print request from
a batch program. The JOBNAME parameter is for informational use only.

batch-request-jobname-pointer
A 1- to 8-character job name that is displayed as the original logical terminal ID
when a DCMT DISPLAY REPORTS command is issued.Batch-request-jobname
is a register that points to the job name, the symbolic name of a user-defined field
that contains the job name, or the name itself enclosed in quotation marks.

COND=
Specifies the conditions under which control is to be returned to the issuing
program.

NO
(Default); specifies that the request is not conditional. Control is not returned to
your program under any circumstances.

ALL
Specifies that the request is conditional. Control is returned to your program if
the #PRINT request cannot be serviced for one or more of the reasons listed
below.

condition
Specifies under which conditions control is returned to your program. Multiple
conditions must be enclosed in parentheses and separated by commas.Conditions
can specify one or more of the following conditions:

■ NOPR — No printer logical terminals were defined during system generation.

■ IOER — An I/O error occurred during processing.

■ INVP — There is an invalid parameter in the PRB.

■ UNDF — An undefined destination is specified or, for a print-direct request,
an invalid LTEID or LTEADDR is specified.

■ SCRN — A print-screen type request results in a terminal I/O error.

■ INVT — A print-screen request has been made from a non-3270-type
terminal or from a 3270-type terminal without read-buffer support.

■ WAIT — No printer can be found to service a print-direct request that
specifies OPTNS=(DIRECT,NOWAIT).

■ OUTS — The printer specified by the LTEID or LTEADDR parameters in a
print-direct request is out of service.

■ DEAD — A print-direct request has been issued with
OPTNS=(DIRECT,WAIT) and a deadlock condition would otherwise occur.

■ CANC — A DCMT VARY PRINTER CANCEL command has been issued
for the printer in a print-direct request.

6-212 CA-IDMS DML Reference — Assembler

6.53 #PRINT

■ REQU — A DCMT VARY PRINTER REQUEUE command has been issued
for the printer specified in a print-direct request.

PRB=
Specifies the location of the storage area in which the system will build the PRB
(MF=R) or has built the PRB (MF=E).

SYSPLIST
(Default for regular-type requests only); is the symbolic name of the storage area
in which the system builds the PRB.

print-request-block-pointer
A register that points to the area or the symbolic name of the area in which the
system will build the PRB. For execute-type requests (MF=E), this entry
explicitly defines the area by identifying label, provided in a previously-issued
list-type #PRINT that established the PRB.

NOPRXIT=no-printer-label
Specifies the symbolic name of the routine to which control should be returned if
the #PRINT request cannot be serviced because no printer terminal was defined
during system generation.

INVPXIT=invalid-parameter-list-label
Specifies the symbolic name of a routine to which control should be returned if
the #PRINT request cannot be serviced because of an invalid parameter in the
PRB.

IOERXIT=i/o-error-label
Specifies the symbolic name of a routine to which control should be returned if
the #PRINT request cannot be serviced because of an I/O error during processing.

UNDFXIT=invalid-dest-id-label
Specifies the symbolic name of a routine to which control should be returned if
the #PRINT request cannot be serviced because an invalid destination was
specified or, for OPTNS=(DIRECT) type requests, an invalid LTEID or
LTEADDR was specified.

SCRNXIT=screen-term-i/o-error-label
Specifies the symbolic name of a routine to which control should be returned if
the #PRINT request cannot be serviced because a terminal I/O error occurred in
response to a #PRINT request to print the screen contents.

INVTXIT=invalid-terminal-label
Specifies the symbolic name of a routine to which control should be returned if
the screen #PRINT request cannot be serviced because an invalid terminal was
specified.

WAITXIT=wait-for-direct-printer-label
Specifies the symbolic name of a routine to which control should be returned if
the #PRINT request cannot be serviced because OPTNS=(DIRECT,NOWAIT) was
requested and no printer is available to service the request immediately.

Chapter 6. Data Manipulation Language Statements 6-213

6.53 #PRINT

OUTSXIT=direct-printer-out-of-service-label
Specifies the symbolic name of a routine to which control should be returned if
the #PRINT request cannot be serviced because the printer identified by LTEID or
LTEADDR in a print-direct request is out of service.

DEADXIT=deadlock-on-direct-print-label
Specifies the symbolic name of a routine to which control should be returned if
the #PRINT request cannot be serviced because OPTNS=(DIRECT,WAIT) was
specified and would otherwise cause a deadlock condition to occur.

CANCXIT=cancel-direct-report-label
Specifies the symbolic name of a routine to which control should be returned if
the #PRINT request cannot be serviced because a DCMT VARY PRINTER
CANCEL has been issued for the specified printer while the print request is being
serviced.

REQUXIT=requeue-direct-report-label
Specifies the symbolic name of a routine to which control should be returned if
the #PRINT request cannot be serviced because a DCMT VARY PRINTER
REQUEUE has been issued for the specified printer while the print request is
being serviced.

ERROR=error-label
Specifies the symbolic name of a routine to which control should be returned if a
condition in the COND parameter occurs for which no other exit routine was
coded.

Example: The #PRINT statement shown below performs the following functions:

■ Directs the system to transmit the data in storage area RECOUT to a terminal
defined as a printer device.

■ Specifies that the length of data transmitted is contained in the field OUTLEN.

■ Directs the print request to a specific printer, bypassing the queuing process.

■ Asks the system to wait until the named printer is able to service the request. If
the wait time exceeds the stall interval defined at system generation, the program
will abort.

■ Names the printer by logical terminal ID.

#PRINT RECORD=RECOUT,RECLEN=OUTLEN,OPTNS=DIRECT,WAIT,LTEID='LV��9'

Status codes: After completion of a #PRINT request, the value in register 15
indicates the outcome of the operation:

Register 15
value

Meaning

X'00' The request has been serviced successfully.

6-214 CA-IDMS DML Reference — Assembler

6.53 #PRINT

Register 15
value

Meaning

X'04' The request cannot be serviced because an I/O error occurred
during a #PUTQUE request or, for OPTNS=(DIRECT), a
permanent I/O occurred on the direct printer.

X'08' The request cannot be serviced because the parameter list passed to
#PRINT contains an invalid field.

X'0C' The request cannot be serviced because no printer logical terminals
have been defined for the current system.

X'10' The request cannot be serviced because a print screen request has
been made from a non-3270-type terminal or from a 3270-type
terminal without read-buffer support.

X'14' The request cannot be serviced because the specified printer
destination is invalid or, for OPTNS=(DIRECT), the LTEID or
LTEADDR specification is invalid.

X'18' The request cannot be serviced because a terminal I/O error
occurred during a print-screen type #PRINT request.

X'1C' The request cannot be serviced because no printer could be found
to satisfy the print-direct request, and OPTNS=(NOWAIT) was
specified.

X'20' The request cannot be serviced because the print-direct request has
specified an LTEID or LTEADDR that is out of service.

X'24' The request cannot be serviced because the print-direct request
specified a wait, and to wait would cause a deadlock.

X'28' The request cannot be serviced because a DCMT VARY PRINTER
CANCEL command has been issued in the DC/UCF system for this
direct printer.

X'2C' The request cannot be serviced because a DCMT VARY PRINTER
REQUEUE command has been issued in the DC/UCF system for
this direct printer.

Chapter 6. Data Manipulation Language Statements 6-215

6.54 #PUTJRNL

 6.54 #PUTJRNL

The #PUTJRNL statement writes a task-defined record to the journal file. The records
written to the journal file are available to user-defined exit routines during a
task-initiated or system-initiated rollback.

 Syntax

��─┬─────────┬──�

└─ label ─┘

 �──── #PUTJRNL RECORD=record-location-pointer,RECLEN=record-length-register ─�

 �─┬──┬─────────────────────────────�

│ ┌─────── , ─────────┐ │

└─ ,OPTIONS= ─(───↓─┬─┬─ NOWAIT ← ─┬─┬┴─)────┘

│ └─ WAIT ─────┘ │

└─┬─ SPAN ← ─┬───┘

└─ NOSPAN ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

 Parameters

RECORD=
Specifies the location of the record to be written to the journal file.

record-location-pointer
Either a register that points to the record area or the symbolic name of the record
area.

RECLEN=
Specifies the length, in bytes, of the record to be written to the journal file.

record-length-register
Either a register that contains the length of the record or the symbolic name of a
fullword user-defined field that contains the length of the record.

OPTIONS=
Specifies whether the issuing task is to wait for completion of the #PUTJRNL
function before resuming task execution and indicates how the system writes the
named record to the journal file. Multiple options are enclosed in parentheses and
separated by commas.

The following options determine whether the issuing task will wait for completion
of the #PUTJRNL function.

NOWAIT
(Default); specifies that the issuing task will not wait for completion of the
#PUTJRNL function; the journal record remains in a storage buffer until a future
request necessitates writing the buffer to the journal file.

6-216 CA-IDMS DML Reference — Assembler

6.54 #PUTJRNL

WAIT
Specifies that the issuing task will wait for completion of the #PUTJRNL
operation before continuing. This option Requests that the system write a partially
filled buffer to the journal file.

When a record is shorter than a journal file block, based on space available in the
current journal block, the system either places the record in the block, splits it
across multiple blocks (SPAN), or writes it to a new block after the current block
is filled (NOSPAN). The following options determine how the system writes the
named record to the journal file.

SPAN
(Default); specifies that the DC/UCF system will write the record across several
journal blocks, if necessary. In general, the SPAN option provides better space
utilization in the journal file because it increases the average fullness of each
block.

NOSPAN
Specifies that the system will write the record into a single journal block,
assuming that the record fits. If the record is longer than the journal block, it will
be split.

The following considerations apply to using an exit routine to retrieve journal file
records during recovery:

■ If a #PUTJRNL statement issued before a failure specifies the SPAN option,
records may have been written across several journal blocks. To retrieve
these records, the program must invoke the exit routine once for each segment
of each record to be retrieved.

■ If a #PUTJRNL statement issued before a failure specified the NOSPAN
option, and records written to the journal file are shorter than journal blocks,
the exit routine need only be concerned with the complete records.

ERROR=error-label
Specifies the symbolic name of the routine to which control is to be returned in
the event of an error condition during the #PUTJRNL operation.

Example: The following example of the #PUTJRNL statement writes a record to the
journal file. The address of the record is contained in register 5, the length of the
record is contained in register 7. The default SPAN and NOWAIT options are in
effect.

#PUTJRNL RECORD=(R5),RECLEN=(R7)

Status codes: After completion of the #PUTJRNL request, the value in register 15
indicates the outcome of the operation:

Register 15
value

Meaning

X'00' The request has been serviced successfully.

Chapter 6. Data Manipulation Language Statements 6-217

6.54 #PUTJRNL

Register 15
value

Meaning

X'04' The request cannot be serviced because the journal record length is
zero or negative.

X'08' The request cannot be serviced because the required storage is not
available for necessary control blocks.

X'0C' The request cannot be serviced because an invalid error status has
been received from DBIO/DBMS. Check the DC/UCF log for
details.

6-218 CA-IDMS DML Reference — Assembler

6.55 #PUTQUE

 6.55 #PUTQUE

The #PUTQUE statement stores a queue record in the queue (DDLDCRUN or
DDLDCQUE) area of the dictionary, causing the system to place the record in the
queue-header/queue-record set referenced by the QUEID parameter. A program does
not assign an ID to a queue record; the #PUTQUE request stores the record at the
beginning or end of the queue and the system automatically assigns the queue record
ID.

 Syntax

��─┬─────────┬──�

└─ label ─┘

 �──── #PUTQUE RECORD=queue-data-location,RECLEN=queue-data-length-register ──�

 �─┬──┬─────────────────────────────────�

└─ ,PLIST= ─┬─ SYSPLIST ← ─────────────┬─┘

└─ parameter-list-pointer ─┘

 �─┬───────────────────────────┬──�

└─ ,QUEID=queue-id-pointer ─┘

 �─┬─────────────────────┬──�

└─ ,LOC= ─┬─ LAST ← ─┬┘

└─ FIRST ──┘

 �─┬──┬───────────────────────�

└─ ,RTNQRID= ─┬─ (1) ← ───────────────────────────┬┘

└─ return-queue-record-id-register ─┘

 �─┬─────────────────────┬──�

└─ ,COND= ─┬─ NO ← ─┬─┘

└─ IOER ─┘

 �─┬────────────────────────────┬───�

└─ ,IOERXIT=i/o-error-label ─┘

 �─┬──────────────────────┬───�

└─ ,ERROR=error-label ─┘

 �─┬─────────────────────────────────────┬────────────────────────────────────��

└─ ,RETAIN=retention-period-register ─┘

 Parameters

RECORD=
Specifies the location of the user area that contains data to be stored in the queue
record.

queue-data-location
A register that points to the area or the user-defined symbolic name of the area.

RECLEN=
Specifies the length of the data area to be stored in the queue record.

Chapter 6. Data Manipulation Language Statements 6-219

6.55 #PUTQUE

queue-data-length-register
A register that contains the length, the symbolic name of a fullword user-defined
field that contains the length, or an absolute expression.

PLIST=SYSPLIST
Specifies the location of the seven-fullword storage area in which the system
builds the #PUTQUE parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system builds the
#PUTQUE parameter list.

parameter-list-pointer
Either a register that points to the area or the symbolic name of the area.

QUEID=
Specifies the 1- to 16-character ID of the queue with which the record being
stored is associated.

queue-id-pointer
A register that points to a field that contains the ID, the symbolic name of a
user-defined field that contains the ID, or the ID literal enclosed in quotation
marks. If a queue ID is not specified, 16 blanks are assumed.

LOC=LAST/FIRST
Specifies whether the queue record is to be placed at the beginning or end of the
queue.

LAST
(Default); stores the record at the end of the queue.

FIRST
Stores the record at the beginning of the queue.

RTNQRID=
Specifies the location in the program to which the system returns the
system-assigned ID of the stored queue record; the returned ID can be saved and
used to retrieve or delete the queue record.

(1)
(Default); is the register to which the system returns the queue record ID.

return-queue-record-id-register
Either a register or the symbolic name of a fullword user-defined field to which
the system returns the queue record ID.

COND=
Specifies whether this #PUTQUE is conditional and under what conditions control
should be returned to the issuing program.

NO
(Default); specifies that the request is not conditional.

IOER
Specifies that the request is conditional. Control is returned if an I/O error occurs
while processing the request.

6-220 CA-IDMS DML Reference — Assembler

6.55 #PUTQUE

IOERXIT=i/o-error-label
Specifies the symbolic name of the routine to which control should be returned if
the #PUTQUE cannot be serviced because of an I/O error.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition in the COND parameter occurs for which no other exit routine was
coded. In this case, the ERROR parameter functions identically to IOERXIT.

RETAIN=
Specifies the amount of time, in days, that the system will retain the queue in the
dictionary. At system startup, queues whose retention periods have expired are
deleted automatically by the system. The retention period begins when the first
record is stored in the queue.

retention-period-register
A register that points to a field that contains the retention period, the symbolic
name of a user-defined fixed-binary field that contains the retention period, or an
absolute expression. The retention period must be a numeric constant in the range
0 through 255. A retention period of 255 indicates that the queue is never to be
deleted automatically by the system.

Example: The following example Requests that the system store the data contained
in the field RECQ1 in the beginning of the RES-Q queue. The length of the data is
contained in register 8. The DC/UCF system is requested to return the ID of the
record to the QRECID field and to retain the queue for 45 days.

#PUTQUE RECORD=RECQ1,RECLEN=(R8),QUEID='RES-Q',LOC=FIRST, �

 RTNQRID=QRECID,RETAIN=45

Status codes: By default, the #PUTQUE request is unconditional; a runtime I/O
error results in an abend of the issuing task. The issuing program can request return
of control with the COND parameter to avoid an abend.

After completion of a #PUTQUE request, the value in register 15 indicates the
outcome of the operation:

If an I/O error occurs while processing a #PUTQUE request, the system returns the
address of the communications block to register 1. If no error occurs during

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'04' The request cannot be serviced; check for proper queue-id
specification (for example, a negative queue ID is an improper
specification) and for logical selection of options.

X'1C' The request cannot be serviced due to an I/O error during
processing or because the upper limit for the queue has been
exceeded.

Chapter 6. Data Manipulation Language Statements 6-221

6.55 #PUTQUE

processing, a user-defined register, assigned by the RTNQRID parameter, contains the
queue record ID of the stored queue record.

6-222 CA-IDMS DML Reference — Assembler

6.56 #PUTSCR

 6.56 #PUTSCR

The #PUTSCR statement stores or replaces a scratch record in the scratch area of the
dictionary. For new records, #PUTSCR generates an index entry in a scratch area
associated with the issuing task. If the scratch area does not already exist, the system
allocates it dynamically in the storage pool.

After completion of the #PUTSCR function, control is returned to the issuing program
at the next sequential instruction following the #PUTSCR request. Through the
REPXIT, NEWXIT, and EREPXIT parameters, you can request return of control to a
specified label after a successful replace or store, or after confirmation that the new
record already exists for the task.

 Syntax

��─┬─────────┬──�

└─ label ─┘

 �─ #PUTSCR RECORD=scratch-data-location,RECLEN=scratch-data-length-register ─�

 �─┬──┬─────────────────────────────────�

└─ ,PLIST= ─┬─ SYSPLIST ← ─────────────┬─┘

└─ parameter-list-pointer ─┘

 �─┬─────────────────────────────────┬──�

└─ ,SAID=scratch-area-id-pointer ─┘

 �─┬───────────────────────────────────┬──────────────────────────────────────�

└─ ,SRID=scratch-record-id-pointer ─┘

 �─┬────────────────────────┬───�

└─ ,REPLACE= ─┬─ NO ← ─┬─┘

└─ YES ──┘

 �─┬───┬────────────────────�

└─ ,RTNSRID= ─┬─ (1) ← ─────────────────────────────┬─┘

└─ return-scratch-record-id-register ─┘

 �─┬─────────────────────┬──�

└─ ,COND= ─┬─ NO ← ─┬─┘

└─ IOER ─┘

 �─┬────────────────────────────┬───�

└─ ,IOERXIT=i/o-error-label ─┘

 �─┬─────────────────────┬──�

└─ ERROR=error-label ─┘

 �─┬────────────────────────────────────┬─────────────────────────────────────�

└─ ,REPXIT=successful-replace-label ─┘

 �─┬──────────────────────────────────┬───────────────────────────────────────�

└─ ,NEWXIT=successful-store-label ─┘

 �─┬──┬─────────────────────────────────��

└─ ,EREPXIT=record-already-exists-label ─┘

 Parameters

Chapter 6. Data Manipulation Language Statements 6-223

6.56 #PUTSCR

RECORD=
Specifies the location of the user area that contains the data area to be stored in
the scratch record.

scratch-data-location
Either a register that points to the area or the user-defined symbolic name of the
area.

RECLEN=
Specifies the length of the record to be stored.

scratch-data-length-register
A register that contains the length, the symbolic name of a fullword user-defined
field that contains the length, or an absolute expression.

When replacing a scratch record, the RECLEN specified need not agree with that
of the old record, because the replace is effected with a delete and an add. If a
replace of a nonexistent record is requested, the system performs the request with
an add, and an error status value of 0 is returned into register 15.

PLIST=
Specifies the location of the seven-fullword storage area in which the system
builds the #PUTSCR parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system will build
the #PUTSCR parameter list.

parameter-list-pointer
Either a register that points to the area in which the system will build the
#PUTSCR parameter list or the symbolic name of that area.

SAID=
Specifies the 1- to 8-character ID of the scratch area associated with the record
being allocated.

scratch-area-id
Either a register that points to a field that contains the ID, the symbolic name of a
user-defined field that contains the ID, or the ID literal enclosed in quotation
marks. If the SAID parameter is not specified, 8 blanks are assumed.

SRID=
Specifies the fullword ID of the scratch record being stored.

scratch-record-id-pointer
A register that points to the ID, the symbolic name of a user-defined field that
contains the ID, or an absolute expression.

An SRID must be specified for all replace-type #PUTSCR requests or an I/O error
will result. If not specified for add-type requests, the SRID is assigned
automatically by the system and is returned in the register defined in the
RTNSRID parameter.

REPLACE=
Indicates whether the scratch record is added or replaced.

6-224 CA-IDMS DML Reference — Assembler

6.56 #PUTSCR

NO
(Default); directs the system to add a new record to a scratch area.

YES
Directs the system to replace an existing record in the scratch area.

RTNSRID=
Specifies the location to which the system will return the automatically assigned
scratch record ID of the stored record.

(1)
(Default); is the register into which the system will place the scratch record ID.

return-scratch-record-id-register
A register or the symbolic name of a fullword user-defined field into which the
system will place the scratch record ID.

COND=
Specifies whether this #PUTSCR is conditional and under what conditions control
should be returned to the issuing program.

NO
(Default); specifies that the request is not conditional.

IOER
Specifies that control is returned to the issuing program if an I/O error occurs
while processing the request.

IOERXIT=i/o-error-label
Specifies the symbolic name of the routine to which control should be returned if
the #PUTSCR cannot be serviced because of an I/O error.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded. In this case, the ERROR and IOERXIT parameters function
identically.

REPXIT=successful-replace-label
(REPLACE=YES only); specifies the symbolic name of the routine to which
control should be returned when the request is serviced successfully. If no
REPXIT is defined in a successful replace-type #PUTSCR request, control will be
returned to the next sequential instruction following the #PUTSCR.

NEWXIT=successful-store-label
(Add requests only); specifies the symbolic name of the routine to which control
should be returned when the request is successful. If no NEWXIT is defined in a
successful add-type request, control will be returned to the next sequential
instruction following the #PUTSCR.

EREPXIT=record-already-exists-label
(Add requests only) specifies the symbolic name of the routine to which control
should be returned when the scratch record ID specified by the SRID parameter
already exists in the scratch area identified by the SAID parameter. If no
EREPXIT is defined for an add-type request and the requested SRID already

Chapter 6. Data Manipulation Language Statements 6-225

6.56 #PUTSCR

exists, control is returned to the next sequential instruction following the
#PUTSCR.

Example: The following example of the #PUTSCR statement stores a scratch record
containing the data in SCR605 in the dictionary. The length of the record is contained
in the fullword field SCRLN1. SCRID1 is the ID of the scratch area into which the
record will be stored.

#PUTSCR RECORD=SCR6�5,RECLEN=SCRLN1,SAID='SCRID1'

Status codes: By default, the #PUTSCR request is unconditional; a runtime I/O
error will result in an abend of the issuing task. The issuing program can request
return of control with the COND parameter to avoid an abend.

After completion of the #PUTSCR function, the value in register 15 indicates the
outcome of the operation:

If an I/O error occurs while processing a #PUTSCR request, the system returns the
address of the communications block to register 1. If no error occurs during
processing, a user-defined register, assigned by the RTNSRID parameter, contains the
SRID of the stored or replaced record.

Register 15
value

Meaning

X'00' The request to add a new record has been serviced successfully.

X'04' The request cannot be serviced; check for proper scratch-id
specification (for example, a negative scratch ID is an improper
specification) and for logical selection of options.

X'10' The request to replace a scratch record has been serviced
successfully.

X'14' The request to add a new scratch record cannot be serviced because
the scratch record ID specified by the SRID parameter already
exists for the named scratch area and REPLACE=YES has not
been specified.

X'1C' The request cannot be serviced due to an I/O error during
processing.

6-226 CA-IDMS DML Reference — Assembler

6.57 @READY

 6.57 @READY

The @READY statement prepares a database area for access by DML functions and
specifies that area's usage mode. @READY also defines and logs the initial
checkpoint for a recovery unit to facilitate recovery operations.

The DBA can specify default usage modes in the subschema. A run unit using a
subschema with specified default usage modes need not issue any @READY
statements; the areas are readied automatically in the predefined usage modes.
However, if a run unit issues an @READY statement for one area, it must issue
@READY statements for all areas that it accesses.

The usage mode specified in the @READY statement (or in the subschema) indicates
the runtime operations that the readying run unit can or cannot perform against the
database area. The following usage modes can be specified:

■ UPDATE=YES indicates that the readying run unit is permitted to issue all DML
functions for records in that area.

■ RDONLY=YES indicates that the readying run unit is prohibited from issuing the
STORE, ERASE, MODIFY, CONNECT, or DISCON functions for records in that
area.

The specified usage mode can be qualified with a PROTECTED or EXCLUSIVE
option to prevent update or use, respectively, of areas by other run units executing
concurrently under the CA-IDMS/DB central version. Each area can be readied in its
own usage mode. Usage modes can be changed during a recovery unit by executing
an @FINISH statement and readying the areas in a different usage mode. Note,
however, that the appropriate BIND statements must also be issued.

When the run unit (rather than the subschema) readies database areas, all areas can be
readied with a single @READY statement or each area to be accessed can be readied
individually. You must ready all areas explicitly or implicitly affected by the DML
statements issued by the run unit. Areas are affected implicitly, for example, when a
set's owner and member records belong to different areas. Some areas included in the
subschema may not need to be specified in an @READY statement, as only those
areas that are explicitly or implicitly affected need to be readied.

The @READY statement can appear anywhere in an application program; however, to
avoid runtime deadlock, the best practice is to ready all areas before issuing any other
DML statements.

 Syntax

��─── @READY ─┬─ ALL ← ──────────┬─ , ─┬─ UPDATE= ─┬─┬─ YES(SHARED) ──┬───────��

└─ AREA=area-name ──┘ └─ RDONLY= ─┘ ├─ PROTECTED ────┤

└─ EXCLUSIVE ────┘

 Parameters

Chapter 6. Data Manipulation Language Statements 6-227

6.57 @READY

ALL/AREA=
Opens the database areas.

ALL
(Default); opens all database areas in the subschema.

AREA=area-name
Opens only the specified area.Area-name must be an area included in the
subschema.

UPDATE/RDONLY=YES/PROTECTED/EXCLUSIVE
Specifies how the database areas are opened and qualify database area usage.

UPDATE/RDONLY
Specifies how the database areas are opened.

UPDATE
Specifies that the database areas are opened in both update and retrieval modes.

RDONLY
Specifies that the database areas are opened in retrieval mode only.

YES/PROTECTED/EXCLUSIVE
Qualifies database area usage.

YES
Allows other concurrently executing run units to open the same area in shared
retrieval or shared update usage modes. Keywords YES and SHARED are
synonymous.

PROTECTED
Prevents concurrent update of the areas by run units executing under the same
central version. Once a run unit has readied an area with the protected option, no
other run unit can ready that area in any update usage mode until the first run unit
releases it by means of a FINISH statement. A run unit cannot ready an area with
the protected option if another run unit has readied the area in update usage mode.

EXCLUSIVE
Prevents concurrent use of the areas by any other run unit executing under the
central version. Once a run unit has readied an area with the exclusive option, no
other run unit can ready that area in any usage mode until the first run unit
releases it.

If, under the central version, an @READY statement would result in a mode
usage conflict for an area, the run unit issuing the @READY is placed in a wait
state on the first functional database call.

Modification statements involving areas opened in one of the update usage modes
are not allowed if they affect sets that include records in an area opened in one of
the retrieval usage modes.

Example: The following example of the @READY statement prepares all database
areas in the subschema for retrieval usage mode only (read only). YES is equivalent
to SHARED usage mode, allowing other concurrently executing run units to open the
same area in shared retrieval usage mode.

6-228 CA-IDMS DML Reference — Assembler

6.57 @READY

@READY ALL,RDONLY=YES

Status codes: After completion of the @READY function, the ERRSTAT field in
the IDMS communications block indicates the outcome of the operation:

Status code Meaning

0910 The subschema specifies an access restriction that prohibits
readying the area in the specified usage mode.

0923 The named area is not in the subschema.

0928 The run unit has attempted to ready an area that has been readied
previously.

0966 The area specified is not available in the requested usage mode.
Probable causes for the return of this status code are:

■ If running in local mode, the area is locked against update.

■ If running under the central version, either the area is offline to
the central version, or an update usage mode was requested
and the area is in retrieval mode to the central version.

0970 The database will not ready properly; a JCL error is the probable
cause.

0971 The page group or page range for the area being readied could not
be found in the DMCL.

0978 A wait for an area would cause a deadlock. Either you should
ready all areas before the first functional call or all user programs
should ready areas in the same order.

Chapter 6. Data Manipulation Language Statements 6-229

6.58 @RETURN

 6.58 @RETURN

The @RETURN statement retrieves the database key for an indexed record without
retrieving the record itself, thus establishing currency in the index set. The record's
symbolic key is moved into the data fields within the record in program variable
storage. The contents of all non-key fields after the execution of the @RETURN verb
are unpredictable. Alternatively, you can have the record's symbolic key moved into
some other specified variable storage location.

Index currency is established by:

■ Successful execution of the @RETURN statement, which sets current of index at
the index entry from which the database key was retrieved.

■ A status code 1707 (end of index), which sets currency on the index owner. The
DBMS returns the owner's db-key.

■ A status code 1726 (end of set), which sets current of index as follows:

– Between the two entries that are higher and lower than the specified value

– After the highest entry, if the specified value is higher than all index entries

– Before the lowest entry, if the specified value is lower than all index entries

The @RETURN statement is used in both navigational and LRF environments.

 Syntax

Navigational @RETURN

��─── @RETURN ─┬─ CURRENT ─┬─ ,SET=index-set-name, DBKEY=db-key ──────────────��

├─ FIRST ───┤

├─ LAST ────┤

├─ NEXT ────┤

└─ PRIOR ───┘

LRF @RETURN

��─── @RETURN SET=index-set-name,DBKEY=db-key,USING=index-key-value ──────────��

 Parameters

CURRENT/FIRST/LAST/NEXT/PRIOR
Indicates the record whose database key will be returned.

CURRENT
Retrieves the database key for the current index entry.

FIRST
Retrieves the database key for the first index entry.

LAST
Retrieves the database key for the last index entry.

6-230 CA-IDMS DML Reference — Assembler

6.58 @RETURN

NEXT
Retrieves the database key for the index entry following current of index. If the
current of index is the last entry, an error status of 1707 (end of index) is
returned.

PRIOR
Retrieves the database key for the index entry preceding current of index. If the
current of index is the first entry, an error status of 1707 (end of index) is
returned.

SET=
Identifies the indexed set from which the specified database key is to be returned.

index-set-name
Either a register containing the name of the indexed set or a quoted variable
containing the name of the set.

DBKEY=
Where the database key is returned.

db-key
A register containing the database key or a user defined variable data field.

USING=
Saves the symbolic key (CALC, sort, or index) or the specified record.

index-key-value
A register containing the index key value or the name of the user-defined
alphanumeric field into which the symbolic key of the specified record will be
returned. Index-key-value must be large enough to accommodate the symbolic
key. For example, if the set is indexed on employee last name (15 characters) and
employee first name (10 characters) the index-key-value must be large enough to
accommodate 25 characters.

Example: The @RETURN statement shown below retrieves the database key for the
first index entry in the EMPLNAMX set and moves the record's db-key into the
LNAMXKEY field:

 @RETURN FIRST,SET=EMPLNAMX,DBKEY=LNAMXKEY

Status codes: After the @RETURN statement has been processed, the ERRSTAT
field in the IDMS communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

1707 Either the end of the indexed set has been reached or the indexed
set is empty.

1725 Currency has not been established for the specified indexed set.

1726 The index entry cannot be found.

Chapter 6. Data Manipulation Language Statements 6-231

6.59 #RETURN

 6.59 #RETURN

The #RETURN statement performs the following functions:

■ Returns control to a program at the next higher level in a task, optionally
specifying the next task to be initiated on the same terminal.

■ In abend routines established by #STAE functions, #RETURN specifies the
recovery procedure to be initiated by the abend exit if the task terminates
abnormally.

�� For more information on #STAE exits, see 6.65, “#STAE” on page 6-252 later
in this chapter.

■ Specifies the action the system takes when the terminal operator does not enter the
response required to initiate the specified task.

Following a #RETURN request, control returns to the program at the next higher level
in the task. If the issuing program is the highest level program, control returns to the
system. Any #RETURN statement can include a NXTTASK option to specify the
next task to be initiated by the system. However, the position of the issuing program
in the task governs whether the specified task will, in fact, receive control.

When the system receives control from the highest level program that issued a
#RETURN NXTTASK request, the specified task is executed immediately if the
specified task code has been assigned the NOINPUT attribute during system
generation. If the task code has been assigned the INPUT attribute, the task executes
only when the terminal operator enters the requested data.

You can define tasks that relinquish control to the system while awaiting completion
of an event. This way, resources for the issuing task are freed during the time it takes
for a particular event to finish and the next task to start.

The DC/UCF system gives control to the next task when a specific event control block
(ECB) is posted, indicating that the event is completed.

When initiated, the next task is associated with the same logical terminal (LTERM) as
the task that issued the #RETURN. An example of the flow of control between tasks
is illustrated in the following figure.

6-232 CA-IDMS DML Reference — Assembler

6.59 #RETURN

 Syntax

��─┬─────────┬─ #RETURN ──�

└─ label ─┘

 �─┬──�─

└─ NXTTASK=next-task-code-pointer ─┬────────────────────────────────┬──────

└─ ,INTVL=elapsed-time-register ─┘

─�───┬──────────────────────�

 ─┬───┬─┘

├─ ,ECB=ecb-pointer ─┬─────────────────────────┬──┤

│ └─ ,ECBTYPE= ─┬─ INT ───┬─┘ │

│ └─ EXT ← ─┘ │

└─ ,ECBID=ecbid-id-register ──────────────────────┘

 �─┬─────────────────────────┬──�

└─ ,TYPE= ─┬─ NORMAL ← ─┬─┘

├─ ABORT ────┤

└─ CONTINUE ─┘

 �─┬─────────────────────────────────────┬────────────────────────────────────�

└─ ,RESINT=resource-timeout-register ─┘

 �─┬────────────────────────────────────┬─────────────────────────────────────��

└─ RESPGM=resource-program-register ─┘

 Parameters

Chapter 6. Data Manipulation Language Statements 6-233

6.59 #RETURN

NXTTASK
Specifies the 1- to 8-character code associated with the next task to be initiated on
the same terminal when the operator presses ENTER or a program-defined control
key.

next-task-code-pointer
A register that points to a field that contains the task code, the symbolic name of a
user-defined field that contains the task code, or the task-code literal enclosed in
quotation marks. The specified task code must have been defined during system
generation or by a DCMT VARY DYNAMIC TASK command.

INTVL=
Specifies the maximum amount of time that can elapse before the next task is
started. The interval is the amount of time, in seconds, between when the
#RETURN request is issued and when the next task started. If the task has not
already started at the end of this interval, the system starts the task.
Elapsed-time-register can specify:

■ The register where the time interval is specified

■ The field where the time interval is specified

■ An actual interval of time, expressed in seconds

ECB=
Specifies the location of the ECB to be posted.Ecb-pointer can specify:

■ The register that points to the user-defined three-fullword field that contains
the ECB address

■ The symbolic name of the ECB field

ECBTYPE
Optionally specifies whether the ECB is:

■ INT — An internal ECB

■ EXT (default) — An external ECB

ECBID
Specifies the 4-character ID of a previously defined ECB.Ecb-id-register can
specify:

■ The register that contains the ECB ID

■ The symbolic name of the fullword field that contains the ECB ID

■ The 4-character ECB ID, enclosed in single quotation marks

The following occurs while the system has control in the interval before the next
task starts:

■ End-user terminal input is disabled

■ System-defined resource timeout intervals are disabled

Both end-user input and resource timeout intervals are reenabled when the next
task starts.

6-234 CA-IDMS DML Reference — Assembler

6.59 #RETURN

When the system invokes the next task, register 1 points to a parameter list:

■ The first word in the parameter list contains the address of the ECB

■ If the next task was invoked because the timeout interval expired, the ECB is
not posted

■ If the ECB is already posted when the #RETURN is issued, the next task is
started immediately.

An ECB is a binary three-fullword field. For information on how values in this
field indicate the status of an event, see the #WAIT command.

TYPE
Defines the recovery action to be taken in the program logic and specifies whether
the system is to execute abend routines for higher level programs. System
recovery occurs automatically. TYPE=NORMAL/ABORT/CONTINUE is valid
for #RETURNs issued from abend routines established by #STAE functions only.

NORMAL
(Default); instructs the system not to attempt recovery and to execute all abend
routines (STAE routines) established for programs at higher task levels.

ABORT
Instructs the system not to attempt recovery and to abort the task immediately
without executing any abend routines established for programs at higher task
levels. the system will return control to the program at the point

CONTINUE
Instructs the system to return control to the program that failed at a previously
defined address, as established in the abend control element (ACE) for the
program. When control is transferred to the abend routine, the system
automatically sets the value in register 1 to the address of the ACE. Therefore,
the value contained in the ACE can be set to the desired reentry-point address in
the program that failed.

Note: For additional information on STAE exits, see Appendix E, “STAE Exits”
on page E-1.

RESINT=
Specifies the amount of time, in seconds, that can elapse before the system
releases the resources held by the terminal on which a task is executing if the
terminal operator does not enter the data required to initiate the task. The
RESINT parameter overrides resource timeout interval specifications established
during system generation.

resource-timeout
A register that contains the timeout interval, the symbolic name of a user-defined
fixed binary field that contains the timeout interval, or the interval itself expressed
as a numeric constant.

RESPGM=
Specifies the 1- to 8-character name of the program to be invoked to handle and
release resources held by the terminal on which the task is executing when the
specified timeout interval has been reached.

Chapter 6. Data Manipulation Language Statements 6-235

6.59 #RETURN

resource-program
A register that points to a field that contains the program name, the symbolic
name of a user-defined field that contains the program name, or the program-name
literal enclosed in quotation marks.

Example: The #RETURN statement shown below performs the following functions:

■ Passes control to the program associated with the taskcode TSK02 when the
terminal operator presses ENTER.

■ Indicates that the system will allow two minutes for the operator to enter the data
required to initiate the next task.

■ Passes control to the program RESPROG if two minutes have passed and no data
has been entered. RESPROG handles and releases resources held by the timed-out
program.

#RETURN NXTTASK='TSK�2',RESINT='12�',RESPGM='RESPROG'

˚

6-236 CA-IDMS DML Reference — Assembler

6.60 @ROLLBAK

 6.60 @ROLLBAK

The @ROLLBAK statement requests recovery of a recovery unit (that part of a run
unit falling between two checkpoints), as follows:

■ CA-IDMS/DB restores the database to the most recent BGIN or COMT
checkpoint written for the issuing run unit. A BGIN checkpoint is written
automatically to the journal file when your program issues a BIND/READY
sequence, indicating the start of the run unit. A COMT checkpoint is written to
the journal file when your program issues a COMMIT statement, marking the start
or end of specific database access activities.

■ The run unit can optionally continue to access the database without reissuing
@BIND and @READY statements.

Note: The @ROLLBAK statement is used in programs that do not use DC/UCF
facilities, such as scratch and queue areas. Programs that require recovery of DC/UCF
facilities should use the #ROLLBAK statement, described in 6.61, “#ROLLBAK” on
page 6-239, later in this chapter.

Journal recovery is effected differently depending on whether the run unit is executing
under the central version or in local mode and whether the journal file is on disk or
tape:

■ Recovery is automatic if the run unit issuing the @ROLLBAK statement is
executing under the central version (CV) and the central version is journaling to a
disk file. The central version continues to process other applications during
recovery.

■ Recovery is not automatic under the following circumstances:

– The run unit is executing under the central version and the central version is
journaling to a tape file.

– The run unit is executing in local mode.

In cases where recovery is not automatic, @ROLLBAK flags the affected areas
for subsequent recovery by the IDMSRBCK utility. The IDMSRBCK utility rolls
back the database. If the journal file is on disk and the program is executing in
local mode, you must run the IDMSAJNL utility before you run IDMSRBCK.
The IDMSAJNL utility archives the journal file to tape. For detailed information
on IDMSRBCK and IDMSAJNL, refer toCA-IDMS Utilities.

 Syntax

��─── @ROLLBAK ─┬────────────┬──��

└─ CONTINUE ─┘

Chapter 6. Data Manipulation Language Statements 6-237

6.60 @ROLLBAK

 Parameters

@ROLLBAK
Clears all information in the system buffers, writes an ABRT checkpoint to the
journal file, nullifies all currencies, and terminates the run unit. The database
cannot be accessed without reissuing the appropriate @BIND and @READY
statements.

CONTINUE
Optionally requests CA-IDMS/DB to roll back the recovery unit and to continue
processing. Database access can be resumed without reissuing @BIND and
@READY statements.

Note: The CONTINUE option applies only to run units executing under the
central version.

Examples: The @ROLLBAK statement shown below writes a checkpoint to the
journal file and continues the run unit.

@ROLLBAK CONTINUE

Status codes: After completion of the @ROLLBAK function, the ERRSTAT field
of the IDMS communications block indicates the outcome of the operation:

Status code Meaning

0000 The request has been serviced successfully.

5031 The specified request is invalid; the program may contain a logic
error.

5096 Too many run units are currently active; check the DC/UCF log for
details.

5097 An invalid status has been received from DBIO/DBMS; check the
DC/UCF log for details.

6-238 CA-IDMS DML Reference — Assembler

6.61 #ROLLBAK

 6.61 #ROLLBAK

The #ROLLBAK statement restores database, scratch, and queue record areas to their
condition at the most recent checkpoint. The DC/UCF system restores all data areas
associated with the issuing task or run unit by reading the journal file backwards and
placing all before images into their respective database, scratch, or queue areas.

Your program can ensure that checkpoints are written to the journal file by using a
#COMMIT in the program logic prior to the #ROLLBAK request. If the last
checkpoint was not established by a #COMMIT TASK or #FINISH TASK, the
database, scratch, and queue area checkpoints may not occur at the same points in the
journal file.

 Syntax

��─┬─────────┬─ #ROLLBAK ─┬────────┬─┬─────────────┬──────────────────────────��

└─ label ─┘ └─ TASK ─┘ └─ ,CONTINUE ─┘

 Parameters

#ROLLBAK
Requests that the system write a checkpoint to the journal file and restore all data
areas associated with the issuing run unit to the most recent checkpoint. The
issuing run unit is terminated and all currencies are set to null. To perform
database access activities after issuing a #ROLLBAK, the task or run unit must
execute an @BIND/@READY sequence.

TASK
Requests that the system restore all data areas associated with the issuing task to
the most recent checkpoint.

CONTINUE
Requests that the system roll back the issuing run unit (#ROLLBAK,CONTINUE)
or all run units associated with the issuing task (#ROLLBAK TASK,CONTINUE),
then continue database access activities.

Examples: The #ROLLBAK statement shown below requests that the system write
a checkpoint to the journal file, restore all run units associated with the issuing task,
and then continue database access activities:

#ROLLBAK TASK,CONTINUE

Status codes: After completion of the #ROLLBAK function, the value in register
15 indicates the outcome of the operation:

Register 15
value

Meaning

X'00' The request has been serviced successfully.

Chapter 6. Data Manipulation Language Statements 6-239

6.61 #ROLLBAK

Register 15
value

Meaning

X'04' The request cannot be serviced because the number of active run
units exceeds the size of the internal run-unit table. This condition
should not occur.

X'08' The request cannot be serviced due to an invalid request.

X'0C' The request cannot be serviced because an invalid status has been
received from DBIO/DBMS. Check the DC/UCF log file for
details.

6-240 CA-IDMS DML Reference — Assembler

6.62 #SENDMSG

 6.62 #SENDMSG

The #SENDMSG statement sends a message to another terminal or user, or to a group
of terminals or users defined as a destination during system generation. The
#SENDMSG statement does not send messages directly from the message area of the
dictionary. Rather, the system places each message in a queue and sends the message
to the appropriate terminals when it can do so without disrupting executing tasks.
Normally, the system sends queued messages to a terminal the next time the ENTER
NEXT TASK CODE message is displayed.

�� For more information on message destinations, refer toCA-IDMS System
Generation.

 Syntax

��─┬─────────┬─ #SENDMSG RECORD=message-location-pointer ─────────────────────�

└─ label ─┘

 �─── ,RECLEN=message-length-register ──�

 �─┬─ ,DESTID=destination-id-pointer ───────┬─────────────────────────────────�

├─ ,USERID=user-id-pointer ──────────────┤

└─ ,LTERMID=logical-terminal-id-pointer ─┘

 �─┬──────────────────────────┬───�

└─ ,OPTNS= ───┬─ ONLY ← ─┬─┘

└─ ALWAYS ─┘

 �─┬───┬──────────────────────�

└─ ,SMRB= ─┬─ SYSPLIST ← ─────────────────────────┬─┘

└─ send-message-request-block-pointer ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,COND= ──┬─ NO ← ──────────────────┬┘

├─ ALL ───────────────────┤

│ ┌─── , ────┐ │

└─(──┬─↓── IOER ──┴─┬──)──┘

├──── INVP ────┤

└──── UNDF ────┘

 �─┬────────────────────────────┬───�

└─ ,IOERXIT=i/o-error-label ─┘

 �─┬───┬────────────────────────────────�

└─ ,INVPXIT=invalid-parameter-list-label ─┘

 �─┬──┬─────────────────────────────────�

└─ ,UNDFXIT=undefined-destination-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

Chapter 6. Data Manipulation Language Statements 6-241

6.62 #SENDMSG

 Parameters

RECORD=
Specifies the location in program storage that contains the message to be sent.

message-location-pointer
Either a register that points to the message text or the symbolic name of the area
that contains the message text.

RECLEN=
Specifies the length, in bytes, of the message text.

message-length-register
A register that contains the length of the message, the symbolic name of a
user-defined field that contains the length, or an absolute expression.

DESTID=
Specifies the destination receiving the message. The destination is a list of logical
terminals or users defined during system generation.

destination-id-pointer
A register that points to the destination ID, the symbolic name of a user-defined
field that contains the ID, or the ID literal enclosed in quotation marks.

USERID=
Specifies the user to receive the message. The user can be signed on to any
terminal.

user-id
A register that points to the user ID or the symbolic name of a user-defined field
that contains the ID.

LTERMID=
Specifies the logical terminal to receive the message.

logical-terminal-id-pointer
A register that points to the logical terminal ID, the symbolic name of a
user-defined field that contains the ID, or the ID literal enclosed in quotation
marks.

OPTNS=
Specifies whether the system is to queue the message if the specified destination,
user, or terminal is not currently being used.

ONLY
(Default); The DC/UCF system sends the message immediately if the
destination, user, or terminal is available, and does not queue the message for
subsequent transmission if the destination, user, or terminal is not available.

Note: If ONLY is specified with the DESTID parameter, described above,
the system sends the message to those users or terminals in the destination
that are available. The sender is not aware of any unsuccessful transmissions.

6-242 CA-IDMS DML Reference — Assembler

6.62 #SENDMSG

ALWAYS
The DC/UCF system sends the message immediately if the destination, user,
or terminal is available, and queues the message for later transmission if the
destination, user, or terminal is not available.

SMRB=
Specifies the location of the storage area in which the system builds the
#SENDMSG parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system builds
the #SENDMSG parameter list.

send-message-request-block
A register that points to the area or the symbolic name of the area in which
the system builds the #SENDMSG parameter list.

COND=
Specifies whether this #SENDMSG is conditional and under what conditions
control should be returned to the issuing program.

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that control is returned if the #SENDMSG cannot be serviced for
one or more of the reasons listed in condition.

condition-option
Specifies conditions under which control is returned to the program. Multiple
conditions must be enclosed in parentheses and separated by commas.

IOER
An I/O error occurred during processing.

INVP
The parameter list is invalid.

UNDF
The specified message destination is not defined to the system.

IOERXIT=i/o-error-label
Specifies the symbolic name of a routine to which control should be returned if
the #SENDMSG request cannot be serviced because of an I/O error.

INVPXIT=invalid-parameter-list-label
Specifies the symbolic name of a routine to which control should be returned if
the #SENDMSG cannot be serviced because of an invalid parameter list.

UNDFXIT=undefined-destination-label
Specifies the symbolic name of a routine to which control should be returned if
the #SENDMSG cannot be serviced because the specified destination is undefined
to the system.

Chapter 6. Data Manipulation Language Statements 6-243

6.62 #SENDMSG

ERROR=error-label
Specifies the symbolic name of a routine to which control should be returned if a
condition specified in the COND parameter occurs for which no other exit routine
was coded.

Examples: The #SENDMSG statement shown below sends the message labeled
MESS01 in program storage to a group of logical terminals identified by RMT007.
The length of the message is held in LEN01. The DC/UCF system transmits the
message immediately if any of the logical terminals in the destination are available,
and queues the message for later transmission if none of the logical terminals are
available.

#SENDMSG RECORD=MESS�1,RECLEN=LEN�1,DESTID=RMT��7,OPTNS=ALWAYS

Status codes: By default, the #SENDMSG statement is unconditional; any runtime
error results in an abend of the issuing task. The issuing program can request return
of control with the COND parameter to avoid an abend.

After completion of the #SENDMSG, the value in register 15 indicates the outcome of
the operation:

Register 15
value

Meaning

X'04' The request cannot be serviced due to an I/O error during
processing.

X'08' The request cannot be serviced due to an invalid parameter list.

X'0C' The request cannot be serviced because the message destination is
undefined.

6-244 CA-IDMS DML Reference — Assembler

6.63 #SETIME

 6.63 #SETIME

The #SETIME statement defines an event that is to occur after a specified time
interval or cancels the effect of a previously issued #SETIME request. The following
time-related events can be defined:

■ Delay task processing for a specified period of time

■ Post an event control block (ECB) at the end of a specified period of time

■ Initiate a task at the end of a specified period of time

 Syntax

��─┬─────────┬─ #SETIME TYPE= ─┬─ WAIT ────┬──────────────────────────────────�

└─ label ─┘ ├─ POST ────┤

├─ STRTASK ─┤

└─ CANCEL ──┘

 �─┬──┬─────────────────────────────────�

└─ ,PLIST= ─┬─ SYSPLIST ← ─────────────┬─┘

└─ parameter-list-pointer ─┘

 �─┬──┬─────────────────────────────�

└─ ,INTVL=time-before-action-taken-register ─┘

 �─┬─────────────────────────┬──�

└─ ,ECB=post-ecb-pointer ─┘

 �─┬──────────────────────────────────┬───────────────────────────────────────�

└─ ,TSKCD=start-task-code-pointer ─┘

 �─┬──────────────────────────┬───�

└─ ,PRI=priority-register ─┘

 �─┬──┬───────────────────────────�

└─ ,DATADDR=start-task-data-location-register ─┘

 �─┬──┬─────────────────────────────�

└─ ,DATALEN=start-task-data-length-register ─┘

 �─┬─────────────────────────────────┬──�

└─ ,ICEADDR=ice-address-register ─┘

 �─┬────────────────────────────────┬───��

└─ ,ICNFXIT=ice-not-found-label ─┘

 Parameters

TYPE=
Requests that the system establish a time-related event or cancels a previously
requested time-dependent action.

WAIT
Places the issuing task in a wait state and instructs the system to redispatch
the issuing task after the specified time interval elapses. A subsequent
#SETIME request cannot be used to cancel this event until the time interval
has elapsed.

Chapter 6. Data Manipulation Language Statements 6-245

6.63 #SETIME

POST
Posts an ECB after the specified time interval elapses. The issuing task
continues to run. The ECB is specified using the ECB parameter (described
below).

STRTASK
Initiates a task after the specified time interval elapses. The task is specified
using the TSKCD parameter (described below).

CANCEL
Cancels the effect of a previously issued #SETIME request. If CANCEL is
specified, the ICEADDR parameter (described below) must also be specified.

PLIST=
Specifies the location of the six-fullword storage area in which the system builds
the #SETIME parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system builds
the parameter list.

parameter-list-pointer
Is a register that points to the area in which the system builds the list or the
symbolic name of that area.

INTVL=
(WAIT, POST, STRTASK requests only); specifies when the event is to occur.
The interval is the amount of time in seconds between when the #SETIME request
is issued to when the requested event is to occur.

time-before-action-taken-pointer
A register that contains the time interval, the symbolic name of a user-defined
field that contains the time interval, or an absolute expression.

Note: For efficiency reasons, the time when the event is to occur is calculated by
adding the INTVL value to the time at which the last TICKER interval
expired. Therefore, the actual interval before the event occurs may vary
plus or minus from INTVL by an amount up to the TICKER interval. For
more information about the TICKER interval, refer to CA-IDMS System
Generation.

ECB=
(POST only); specifies the location of the ECB to be posted.

post-ecb-pointer
A register that points to the ECB or the symbolic name of a user-defined
fullword field that contains the ECB.

TSKCD=
(STRTASK only); specifies the 1- to 8-character task code of the task to be
initiated.

start-task-code-pointer
A register that points to the task code, the symbolic name of a user-defined
field that contains the task code, or the task-code literal enclosed by single

6-246 CA-IDMS DML Reference — Assembler

6.63 #SETIME

quotation marks. The specified task code must have been defined during
system generation or defined dynamically using the DCMT VARY
DYNAMIC TASK command.

PRI=
(STRTASK only); specifies a dispatching priority for the task to be initiated.

priority
A register that contains the priority or an absolute expression Valid codes are
0 through 240. The task's priority defaults to the priority defined for the task
either during system generation or at dynamic definition using the DCMT
VARY DYNAMIC TASK command.

DATADDR=
(STRTASK only); identifies the user data to be passed to the new task.

start-task-data-location
A register that points to the data or the symbolic name of a user-defined field
that contains the data. A register that points to the data or the symbolic name
of a user-defined field that contains the data. The DATALEN parameter must
be specified with DATADDR.

When the new task is started, the first program receiving control can access
the data area (parameter list) through register 1. Register 1 will contain the
address of a halfword which contains the value specified in DATALEN. This
halfword will be followed by the data.

DATALEN=
(STRTASK,DATADDR only); specifies the length, in bytes, of the data area
identified bystart-task-data-location.

start-task-data-length-register
A register that contains the length, the symbolic name of a user-defined field
that contains the length, or an absolute expression.

ICEADDR=
(POST, STRTASK, CANCEL only); specifies the address of the interval control
element (ICE) associated with the time event.

POST or STRTASK
The optional ICEADDR parameter specifies the location to which the system
returns the ICE address.

ice-address-register
A register or the symbolic name of a fullword user-defined field. name of a
fullword user-defined field.

Note: The ICEADDR parameter must be specified with POST and
STRTASK requests if the program is to issue subsequent #SETIME
TYPE=CANCEL requests.

CANCEL
The ICEADDR must be specified. The ICEADDR references the location
that contains the ICE address following a previously issued POST or
STRTASK request.

Chapter 6. Data Manipulation Language Statements 6-247

6.63 #SETIME

ICNFXIT=ice-not-found-label
(CANCEL only); specifies the symbolic name of the routine to which control
should be returned if the ICE referenced by the ICEADDR parameter cannot be
found. If ICNFXIT is not specified, control returns to the next sequential
instruction following the #SETIME statement.

Examples: The #SETIME statement shown below requests that the system initiate
the task labeled TSK01 sixty seconds after the #SETIME request is issued:

#SETIME TYPE=STRTASK,TSKCD='TSK�1',INTVL=6�

Status codes: The #SETIME request is unconditional. Error conditions that can
occur are described below:

■ For wait, post, and start-task requests, any runtime error results in an abend of the
issuing task.

■ For cancel requests, any runtime error other than an
interval-control-element-not-found condition results in an abend of the issuing
task.

The interval-control-element-not-found condition, caused when the ICE cannot be
located, results in a return of control to the issuing program, either at a defined
routine (ICNFXIT, described above) or at the next sequential instruction after the
#SETIME statement.

After completion of the #SETIME request, the value in register 15 indicates the
outcome of the operation. Register 15 values are significant only for requests that
cancel a previously issued #SETIME request.

Register 15
value

Meaning

X'00' The request to cancel a previously issued #SETIME has been
serviced successfully.

X'04' The request to cancel a #SETIME request cannot be serviced
because the specified ICE address cannot be found.

6-248 CA-IDMS DML Reference — Assembler

6.64 #SNAP

 6.64 #SNAP

The #SNAP statement requests a memory snap of one or more of the following areas:

■ Specified locations in memory — The snap includes one or more areas of
memory specifically requested by location and length.

■ Task areas — The snap includes all resources associated with the issuing task, as
well as the task control element (TCE), dispatch control element (DCE), logical
terminal element (LTE), and physical terminal element (PTE) for the task.
Information displayed by the snap is formatted with headers.

■ System areas — The snap includes areas for all tasks and DC/UCF internal
control blocks. Task areas are not itemized separately. Information displayed by
the snap is formatted with headers.

The information requested by the #SNAP is written to the DC/UCF log file. A
user-supplied title can be displayed with any of these types of snaps.

 Syntax

��─┬─────────┬─ #SNAP ──�

└─ label ─┘

 �─┬───────────────────────────┬──�

└─ FORMAT=(─┬─ ALL ──┬─) ─┘

├─ SYS ──┤

└─ TASK ─┘

 �─┬──┬─────────────────────────────────�

└─ ,PLIST= ─┬─ SYSPLIST ← ─────────────┬─┘

└─ parameter-list-pointer ─┘

 �─┬────────────────────────┬───�

└─ ,TITLE=title-pointer ─┘

 �─┬──┬─────────────�

│ ┌────────────────── , ─────────────────────┐ │

└─ ,AREA=(─↓─ data-area-pointer,data-length-register ─┴─) ─┘

 �─┬──────────────────────┬───��

└─ ,REGS= ─┬─ YES ← ─┬─┘

└─ NO ────┘

 Parameters

FORMAT=
Requests a formatted snap of system and/or task areas.

ALL
Requests that the system write a snap of both task and system areas. Areas
associated with the issuing task are itemized and formatted separately from
the system areas. The entire task control area is included as one item with a
system snap.

Chapter 6. Data Manipulation Language Statements 6-249

6.64 #SNAP

SYS
Requests that the system write a snap of system areas.

Note: In most systems, this is a very large amount of memory; system snaps
will impede system performance and should be reserved for special use.

TASK
Requests that the system write a snap of task areas and resources associated
with the issuing task.

PLIST=
Specifies the location of the storage area in which the system builds the #SNAP
parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system builds
the #SNAP parameter list.

parameter-list-pointer
A register that points to the area or the symbolic name of the area in which
the system builds the #SNAP parameter list.

Calculate the size of the parameter-list area using this formula:

5 + 2P + T

where the following conditions are met:

■ P is the number ofdata-area-pointer,data-length-register pairs coded for
the AREA parameter, described below.

■ T is equal to 0 if the TITLE parameter, described below, has not been
specified, or 1 if the TITLE parameter has been specified.

For example, if four pairs are specified and the TITLE parameter is omitted,
the length of this storage area is 13 fullwords.

TITLE=
Specifies the title to be printed at the beginning of the snap. If requested, the title
can be, at most, 133 characters. The first character must be a valid ASA carriage
control character (∆, 0, 1, or +). In addition, there must be a 1-byte field defined
prior to the ASA control character which designates the length of the title field.
For example, this denotes a length of 133:

LEN DC AL1(133)

title-pointer
A register that points to the title, or the symbolic name of a user-defined field
that contains the title.

AREA=
Requests a snap of the specified areas. The AREA parameter can be specified
independently of or together with the FORMAT specification. The memory
defined by the AREA parameter may or may not be included in the memory areas
associated with task or system areas specified by the FORMAT parameter.

6-250 CA-IDMS DML Reference — Assembler

6.64 #SNAP

data-area-pointer
Specifies the area to be snapped.Data-area-pointer may be the symbolic
name of the area, or a register that points to the area. Register 1 is reserved
for internal use; any other register is valid.

data-length-register
Specifies the length, in bytes, of the area to be included in the snap.
Data-length-register is a register that contains the length, the symbolic name
of a user-defined halfword or fullword field that contains the length, or an
absolute expression of the length of the data area.

REGS=
Specifies whether values contained in the register should be printed.

YES
(Default); specifies that the snap includes all register values.

NO
Specifies that the snap does not include register values.

Examples: The #SNAP statement shown below requests a snap of two specific task
areas. The MAINSAVE area (80 bytes in length) is the area to be snapped. A title is
printed at the top of each page of the snap.

#SNAP AREA=(MAINSAVE,8�),TITLE=TITLE1

 .

 .

 .

 TITLE1 DC AL1(L'TITLE+1)

 CC DC C'1'

TITLE DC C'ABEND EXIT PROGRAM AND WORKAREA SAMPLE'

Status codes: The #SNAP request is unconditional; any runtime error results in an
abend of the issuing task. ˚

Chapter 6. Data Manipulation Language Statements 6-251

6.65 #STAE

 6.65 #STAE

The #STAE (system task abend exit) statement establishes or cancels linkage to an
abend routine. Control passes to the abend routine if the issuing task terminates
abnormally. Any program in a task can establish a #STAE exit; only one abend exit
can be in effect at any given time for each task level. If more than one abend exit has
been established, the system recognizes the last #STAE request issued.

A task can terminate abnormally following a processing error or on request by an
#ABEND function. Abend exits for the program that is executing at the time of the
abend and for all higher level programs are executed before the task is terminated.
You can override the automatic execution of abend exits by including an #ABEND
function in the program or by including a #RETURN function in the abend routine.

Note: A #STAE command issued with no parameters cancels any previously issued
#STAE. For further information see Appendix E, “STAE Exits” on page E-1.

 Syntax

��─┬─────────┬─ #STAE ──�

└─ label ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────��

├─ PGM=program-name-pointer ────────────┤

└─ EPADDR=entry-point-address-register ─┘

 Parameters

PGM=
Specifies whether linkage is established to another program or to an abend routine
in the issuing program.

program-name-pointer
Identifies the 1- to 8-character name of the program.Program-name-pointer is a
register that points to a field that contains the program name, the symbolic name
of a user-defined field that contains the program name, or the program-name
literal enclosed in quotation marks.

Note: The DC/UCF system does not test whether the specified program name is
valid when the #STAE request is issued. If the program is not found or is
otherwise unloadable when the system attempts to execute it, the #STAE request
will be ignored.

EPADDR=
Identifies the abend entry-point address of an abend routine in the issuing
program. The named routine must have a separate entry point in the program.

entry-point-address-register
Either a register or the symbolic name of a fullword user-defined field that
contains the entry-point address.

6-252 CA-IDMS DML Reference — Assembler

6.65 #STAE

Example: The #STAE statement shown below establishes a link to the abend routine
ABRT02. The program ABRT02 receives control in the event of an abnormal
termination of the issuing task.

#STAE PGM=ABRT�2

.

Status codes: The #STAE instruction is unconditional; any error detected during
execution results in an abend of the issuing task.

Chapter 6. Data Manipulation Language Statements 6-253

6.66 @STORE

 6.66 @STORE

Functions of @STORE: The @STORE statement performs the following
functions:

■ Acquires space and a database key for a new record occurrence in the database

■ Transfers the values of the appropriate elements from program variable storage to
the requested record occurrence in the database

■ Connects the requested record into all sets for which it is defined as an automatic
member

Location modes: A record is stored in the database according to the location mode
specified in the schema definition of the record. The location modes are as follows:

■ CALC places the record on or near a page calculated by CA-IDMS/DB from a
control element (the CALC key) in the record.

■ VIA places the record as follows:

– If the owner and member record occurrences share a common page range, the
DBMS places the record as close possible to its owner record occurrence.

– If the owner and member record occurrences do not share a common page
range, the DBMS places the record in the same relative position in the
member record's page range as the owner record occurrence is in its
associated page range.

■ DIRECT places the record on or near a user-specified page, as determined by the
value in the DIRDBKEY field of the IDMS communications block:

– If DIRDBKEY contains a valid db-key for the record being stored, the DBMS
assigns a db-key to the new record occurrence on that page if space is
available.

– If DIRDBKEY does not contain a valid db-key for the record being stored,
the DBMS assigns the next available db-key, subject to the page-range limits
of the record being stored.

– If DIRDBKEY contains a value of -1, the DBMS assigns the record the first
db-key available in the page range in which the record is to be stored.

In any case, the db-key of the stored record occurrence is returned to DBKEY
(positions 13-16 in the IDMS communications block). The contents of
DIRDBKEY remain unchanged.

Before executing @STORE: Before execution of the @STORE statement, the
following conditions must be met:

■ All areas affected either implicitly or explicitly by the @STORE statement must
be readied in one of the three update usage modes. Update usage modes are
discussed along with the @READY statement earlier in this chapter.

■ All control elements (CALC and sorted set control fields) must be initialized.

6-254 CA-IDMS DML Reference — Assembler

6.66 @STORE

■ If the record being stored has a location mode of DIRECT, the contents of
DIRDBKEY (the direct db-key, positions 197-200 of the IDMS communications
block) must be initialized with a db-key value or a null db-key value of -1.

■ If the record is to be stored in a native VSAM relative-record data set (RRDS),
the contents of DIRDBKEY must be initialized with the relative record number
that represents the location in the data set where the record is to be stored.

■ Every set in which the named record is defined as an automatic member, and the
owner record of every such set, must be included in the subschema. Sets for
which the named record is defined as a manual member need not be defined in the
subschema since the @STORE statement does not access those sets. An
automatic member is connected automatically to the selected set occurrence when
the record is stored; a manual member is not connected automatically to the
selected set occurrence.

■ If the record being stored has a location mode of VIA, currency must be
established for the set in which the record participates as a member; this is true
whether the record being stored is an automatic or manual member of that set.

Currency: Currency must be established for all set occurrences in which the stored
record will participate as an automatic member. The @STORE statement uses
currency depending on how the set is ordered:

■ If the stored record is defined as a member of a set that is ordered FIRST or
LAST, the record that is current of set establishes the set occurrence to which the
stored record will be connected.

■ If the stored record is defined as a member of a set that is ordered NEXT or
PRIOR, the record that is current of set establishes the set occurrence into which
the stored record will be connected and determines its position in the set.

■ If the stored record is defined as a member of a sorted set, the record that is
current of set establishes the set occurrence into which the stored record will be
connected. IDMS compares the sort key of the stored record with the sort key of
the current record of set to determine if the stored record can be inserted into the
set by movement in the next direction:

– If the record can be inserted by movement in the next direction, the set
occurrence remains positioned at the record that is current of set and the
stored record is inserted.

– If the record cannot be inserted by movement in the next direction, the DBMS
positions the set occurrence at the owner record occurrence (not necessarily
the current occurrence of the owner record type) and moves as far forward in
the next direction as is necessary to determine the logical insertion point for
the stored record.

Following successful execution of an @STORE statement, the stored record becomes
current of run unit, its record type, its area, and all sets in which it participates as
owner or automatic member.

Chapter 6. Data Manipulation Language Statements 6-255

6.66 @STORE

The following figure illustrates the currency issues involved in adding a new
EMPLOYEE record to the database.

Since EMPLOYEE is defined as an automatic member of both the DEPT-EMPLOYEE
and OFFICE-EMPLOYEE sets, currency must be established in each of those sets
before issuing the @STORE statement. The first two DML commands establish
DEPARTMENT-3100 and OFFICE-1 as current of the DEPT-EMPLOYEE and
OFFICE-EMPLOYEE sets, respectively. When EMPLOYEE-27 is stored, it is
connected automatically to each set.

 Syntax

��─── @STORE REC=record-name ───��

6-256 CA-IDMS DML Reference — Assembler

6.66 @STORE

 Parameters

REC=record-name
Specifies the record occurrence to be moved from variable storage to the database.
The @STORE statement connects the requested record to an occurrence of each
set for which it is defined as an automatic member, and establishes it as the owner
of a set. The @STORE statement also establishes the named record as the owner
of a set occurrence for each set for which it is defined as an owner. The ordering
rules for each set govern the insertion point of the named record in the set.
Record-name must specify a record type included in the subschema.

Example: The @STORE statement shown below performs the following:

■ Moves a single occurrence of the EMPLOYEE record from program variable
storage to the database

■ Connects this occurrence of EMPLOYEE to each set for which it is defined as an
automatic member

■ Establishes EMPLOYEE as the owner in each set occurrence in which it is
defined as the owner

@STORE REC=EMPLOYEE

Status codes: After the completion of the @STORE function, the ERRSTAT field
in the IDMS communications block indicates the outcome of the operation:

Status code Meaning

1201 The area in which the named record is to be stored has not been
readied.

1202 The suggested DIRDBKEY value is not in the page range for the
named record.

1205 Storage of the record would violate a duplicates-not-allowed option
for a CALC record, a sorted set, or an index set.

1208 The named record is not in the subschema. The program has
probably invoked the wrong subschema, or the record name has
been misspelled.

1209 The named record's area has not been readied in one of the three
update usage modes.

1210 The subschema specifies an access restriction that prohibits storage
of the named record.

1211 The record cannot be stored in the area because of insufficient
space.

1212 The record cannot be stored because no db-key is available. This is
a system internal error.

1218 The record has not been bound.

Chapter 6. Data Manipulation Language Statements 6-257

6.66 @STORE

Status code Meaning

1221 An area other than the area of the named record occurrence has
been readied with an incorrect usage mode.

1225 A set occurrence has not been established for each set in which the
named record is to be stored.

1233 All sets in which the record participates as an automatic member
have not been included in the subschema.

1253 The subschema definition of an indexed set does not match the
indexed set's physical structure in the database.

1254 Either the prefix length of an SR51 record is less than zero or the
data length is less than or equal to zero.

1255 An invalid length has been defined for a variable-length record.

1260 A record occurrence encountered in the process of connecting
automatic sets is inconsistent with the set named in the
ERRORSET field of the IDMS communications block; probable
causes include a broken chain or an improper database description.

1261 The record cannot be stored because of broken chains in the
database.

6-258 CA-IDMS DML Reference — Assembler

6.67 @STORE (LRF)

 6.67 @STORE (LRF)

The @STORE statement can also update the database with field values for new logical
record occurrences. The @STORE statement does not necessarily store new
occurrences of all or any of the database records that participate in the logical record;
the path selected to service an @STORE logical-record request performs whatever
database access operations the DBA has specified to service the request.

LRF uses field values stored in the variable-storage location reserved for the logical
record to make the appropriate updates to the database. You can optionally name an
alternate storage location from which the new field values are to be obtained to
perform the requested store operation.

 Syntax

��─── @STORE REC=logical-record-name ───�

 �─┬───┬────────────────────────────�

└─ ,IOAREA=alt-logical-record-location ───────┘

 �─┬───┬────────────────────────────�

└─ ,ONLRSTS=path-status,GOTO=branch-location ─┘

 �─┬─────────────────────────────┬──��

└─ ,WHERE boolean-expression ─┘

 Parameters

REC=logical-record-name
Names a new occurrence of the named logical record. Unless the IOAREA
parameter (see below) is included, LRF updates the database by using field values
stored in a variable-storage location reserved for the named logical record.
Logical-record-name must specify a logical record defined in the subschema.

IOAREA=alt-logical-record-location
Identifies an alternative variable-storage location that contains the field values to
be used to update the database. When storing a logical record that has previously
been retrieved into an alternative variable-storage location, you should use the
IOAREA clause to name the same area specified in the @OBTAIN request. If the
IOAREA clause is included in the @STORE statement, alt-logical-record-location
must identify a record location defined in the program.

ONLRSTS=path-status,GOTO=branch-location
Tests for the indicated path status.Path-status must be a quoted literal (1 to 16)
or a program variable. If path-status results from this @STORE statement, the
action specified by branch-location is performed. For details on how to code the
ONLRSTS clause, refer to the discussion of the ON clause later in this chapter.

WHERE boolean-expression
Specifies selection criteria to be applied to the named logical record. For details
on how to code the WHERE clause, refer to the discussion of the WHERE clause
later in this chapter.

Chapter 6. Data Manipulation Language Statements 6-259

6.67 @STORE (LRF)

Example: The example below illustrates how to add a new office by adding
occurrences of the OFFEMPLR logical record. The program subsequently stores one
occurrence of the OFFEMPLR logical record for each employee added to the office.

STOROFF EQU �

 MVC OFFICE,NEWOFF

@STORE REC=OFFEMPLR,WHERE ADD-OFFICE

 .

 .

STOREMP EQU �

 MVC EMPL,NEWEMP

@STORE REC=OFFEMPLR,WHERE ADD-EMP

 .

 .

 B STOREMP

In the above example, the DBA has designated the keywords ADD-OFFICE and
ADD-EMP to direct the request to a path designed to store new employee information
for a new office. The path to which the first request is directed stores the appropriate
new office information before storing the new employee information.

All input data concerning the new employee is contained in group fields called
NEWOFF and NEWEMP, whose layouts correspond to those of the OFFICE and
EMPLOYEE positions, respectively, of the OFFEMPLR logical record. The program
moves the input field NEWOFF to the logical-record group field OFFICE and the
input field NEWEMP to the logical-record group field EMPL.

Status codes: After you issued an @STORE statement for a logical record, the
type of status code returned to the program in the ERRSTAT field of the IDMS
communications block depends on the type of error. If the error occurs in the
logical-record path, the ERRSTAT field contains a status code issued by
CA-IDMS/DB with a major code from 00 to 19. For a list of these codes, see 3.2.2,
“ERRSTAT field and codes” on page 3-11.

When the error occurs in the request itself, LRF returns the path status LR-ERROR to
the LRSTAT field of the LRC block and places a status code with a major code of 20
in the ERRSTAT field of the IDMS communications block. These codes are listed in
3.3.2, “Testing for the logical-record path status” on page 3-20.

6-260 CA-IDMS DML Reference — Assembler

6.68 #STRTPAG

 6.68 #STRTPAG

The #STRTPAG statement initiates a map paging session, and specifies the map
paging options in effect for that session. The paging session can contain any number
of DML statements, including #MREQ IN and #MREQ OUT; the #STRTPAG
statement must precede any of these mapping commands. The map paging session is
terminated by an #ENDPAG statement, or by the next #STRTPAG statement if no
#ENDPAG statement is coded.

Note: Only one pageable map can be handled by the statements enclosed by a given
#STRTPAG/#ENDPAG pair.

 Syntax

��─── #STRTPAG MRB=map-request-block-pointer ─────────────────────────────────�

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,PLIST ─┬─ SYSPLIST ← ─────────────┬┘

└─ parameter-list-pointer ─┘

 �─┬──┬─────────────────────────�

└─ ,MRBPGDS= ─┬─ MRBPGDS ← ────────────────────┬─┘

└─ paging-request-block-pointer ─┘

 �─┬────────────────────────┬───�

└─ ,TYPE= ─┬─ NOWAIT ← ─┬┘

├─ WAIT ─────┤

└─ RETURN ───┘

 �─┬────────────────────────┬───�

└─ ,BACKPAG= ─┬─ YES ← ─┬┘

└─ NO ────┘

 �─┬────────────────────────┬───�

└─ ,FLAG= ─┬─ UPDATE ← ─┬┘

└─ BROWSE ───┘

 �─┬─────────────────────┬──��

└─ ,AUTO= ─┬─ YES ← ─┬┘

└─ NO ────┘

 Parameters

MRB=map-request-block-pointer
Specifies the location of the map request block for the mapping operation, as
copied into program variable storage by a previously issued #MRB statement.

map-request-block-pointer
Either a register that points to the MRB area or the symbolic name of that area.

PLIST=
The location of the storage area in which the system builds the #STRTPAG
parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system builds the
#STRTPAG parameter list.

Chapter 6. Data Manipulation Language Statements 6-261

6.68 #STRTPAG

parameter-list-pointer
Either a register that points to the area or the symbolic name of the area.

MRBPGDS=
Specifies the location of the 16-byte map paging request block.

MRBPGDS
(Default); is the symbolic name of the area in program variable storage that
contains the map paging request block. The map paging request block is copied
by a previously issued #MRB statement.

paging-request-block-pointer
Either a register pointing to the area that contains the map paging request block or
the symbolic name of the area.

TYPE=
Specifies the runtime flow of control when the operator presses a control key.

NOWAIT
(Default); specifies that runtime mapping automatically handles all paging and
update transactions. Control is passed to the program only when neither an update
nor a paging request is made when the operator presses a control key.

WAIT
Specifies that runtime mapping automatically handles paging transactions that do
not cause data to be updated. Control is passed to the program when the terminal
operator presses a control key that requests an update or nonpaging operation.

RETURN
Specifies that runtime mapping does not handle any terminal transactions in the
paging session. Control is passed to the program whenever the operator presses a
control key.

Runtime mapping does not update program variable storage unless an #MREQ IN
command is issued. In cases where the operator can update data
(FLAG=UPDATE), it is recommended that WAIT and RETURN be specified for
the session so that data can be retrieved as it is updated.

BACKPAG=
Specifies whether the terminal operator can display a previous map page.

YES
(Default); specifies that the operator can display previous pages of the map.

NO
Specifies that the operator cannot display any page of detail occurrences with a
page number lower than the current page number. Modifications made on a given
page of the map must be requested by #MREQ IN statements in the application
program before an #MREQ OUT,RESUME=YES command is issued. The
previous page of detail occurrences is deleted from the session scratch record
when a new map page is displayed.

Note: BACKPAG=NO cannot be assigned if FLAG=UPDATE (discussed below)
and TYPE=NOWAIT are specified for the session.

6-262 CA-IDMS DML Reference — Assembler

6.68 #STRTPAG

FLAG=
Specifies whether the terminal operator can modify map data fields.

UPDATE
(Default); specifies that the terminal operator can modify variable map fields,
subject to restrictions specified for the map either at map definition time or by the
statements in the program.

BROWSE
Specifies that the terminal operator can modify only the page and response fields
of the map. At runtime, runtime mapping automatically protects all variable
fields. The MDTs for variable fields on the map can be set only according to
specifications made either in the map definition or by statements in the program.

AUTO
You can override the automatic mapout of a pageable map's first page. Overriding
automatic display of a map's first page allows you to modify the map page and
defined messages before the page is displayed. To determine when the first page
of the map is built, you test the new map return code. By default, the first page
of a pageable map is displayed as soon as the first detail occurrence of the second
map page is written to scratch. You determine whether the first page of a
pageable map is automatically displayed by using the AUTO parameter.

YES
(Default); enables automatic display of the pageable map's first page.

NO
Disables automatic display of the pageable map's first page. You manually
display the page by using a #MREQ statement.

Example: The following example of the #STRTPAG statement initiates a pageable
map session with the following map paging options in effect:

■ MRBPROG1 is the symbolic name of the location in variable storage that contains
the map-request block for the mapping operation.

■ WAIT indicates that runtime mapping passes control to the program when an
update or a nonpaging request is made. Runtime mapping automatically handles
all paging requests that do not involve field updates.

■ Unless otherwise coded, the location of the map-paging request block is found in
MRBPGDS in program variable storage. By default, the operator can display
previous map pages and data fields.

 #STRTPAG MRB=MRBPROG1,TYPE=WAIT

The following example illustrates usage of the AUTO parameter:

 #STRTPAG MRB=EMPMAPPG,AUTO=NO

Status codes: After completion of a #STRTPAG request, the value in register 15
indicates the outcome of the operation:

Chapter 6. Data Manipulation Language Statements 6-263

6.68 #STRTPAG

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'04' A paging session was already in progress when this #STRTPAG
command was received. An implied #ENDPAG statement was
processed before this #STRTPAG command was successfully
executed.

6-264 CA-IDMS DML Reference — Assembler

6.69 #TREQ

 6.69 #TREQ

Functions of #TREQ: The #TREQ statement allows your program to do the
following:

■ Transfer data between a terminal device and your application program in basic
mode. Device-control characters appropriate to your terminal device are sent
along with the data.

■ Converse with SNA resources.

■ Acquire and release storage areas used for I/O buffers. The following
considerations apply:

– In response to an input request, the input for data-item descriptions is
acquired dynamically from the storage pool. Use the LOCATE option of the
#TREQ GET or #TREQ READ statement to acquire the input buffer. When
you specify LOCATE, your program is responsible for releasing the acquired
storage with a #FREESTG statement. If the storage is not explicitly freed, the
system releases all acquired input buffers when the task terminates.

– In response to an output request, a previously acquired storage area for the
output buffer is released. To release the output buffer, use the FREEBUF
option of the #TREQ PUT, #TREQ WRITE, #TREQ PUTGET, or #TREQ
WRITREAD statement. The output buffer is released on completion of the
output request.

DC/UCF response to #TREQ: The DC/UCF system does the following in
response to a #TREQ request:

■ Automatically inserts the appropriate line control characters

■ Builds and/or modifies a terminal request block (TRB), depending on the type of
#TREQ request:

– For regular #TREQ requests (MF=R), the system builds a new TRB for each
request. Constant values are specified for each subsequent #TREQ request.

– For list #TREQ requests (MF=L), the system builds a TRB in the data
definition section of program storage. Subsequent #TREQ statements include
parameters that add to or override this predefined TRB. The list #TREQ
statement defines constant values; subsequent execute (MF=E) #TREQ
statements modify the previously designate TRB. This technique saves
coding time and storage space.

■ Initiates the requested I/O operation and transfers the data

Chapter 6. Data Manipulation Language Statements 6-265

6.69 #TREQ

6.69.1 Regular and execute #TREQ description

The regular and execute versions of the #TREQ statement request a transfer of data
from the issuing program to the physical terminal and/or from the physical terminal to
the program. The requested transfer is designated as synchronous or asynchronous:

■ Synchronous — Control is not returned to the issuing program until the I/O
operation is completed. Synchronous transfer is accomplished by using #TREQ
GET, PUT, PUTGET, or ALLOC statements.

■ Asynchronous — Control is returned to the issuing program immediately after the
requested I/O operation is initiated; the program continues to execute concurrently
with the I/O operation. An event control block (ECB) is established that will be
posted after the I/O operation is completed. Asynchronous transfer is
accomplished by using the #TREQ READ, WRITE, WRITREAD, or ALLOC
statements.

An asynchronous request must be followed by a #TREQ CHECK before
continuing with further terminal I/O operations to ensure that the previous #TREQ
processing is completed. Most error message codes associated with #TREQ
READ, WRITE, WRITREAD, or ALLOC requests are returned when the #TREQ
CHECK statement is issued.

To send a data stream immediately to a terminal or group of terminals, you can issue a
#TREQ WRITE/PUT (blast) request, using the DESTID, USERID, and LTERMID
parameters. For write-direct-to-terminal requests, the system ignores the SAVE, EOT,
and TRANSPAR options. Write-direct-to-terminal requests are not supported for list
#TREQ requests.

6.69.2 Regular and execute #TREQ syntax

#TREQ syntax is presented alphabetically:

 #TREQ ALLOC
 #TREQ CHECK
 #TREQ DISC
 #TREQ GET
 #TREQ PUT
 #TREQ PUTGET
 #TREQ READ
 #TREQ UIOCB
 #TREQ WRITE
 #TREQ WRITEREAD

#TREQ syntax for list requests is presented in the next section.

6-266 CA-IDMS DML Reference — Assembler

6.69 #TREQ

 Syntax

��─┬─────────┬─ #TREQ ALLOC ──�

└─ label ─┘

 �─── ,UIOCBA=user-io-control-block-pointer ──────────────────────────────────�

 �─┬──────────────────┬───�

└─ ,MF= ─┬─ R ← ─┬─┘

├─ E ───┤

└─ L ───┘

 �─┬─────────────────────────────────────┬────────────────────────────────────�

│ ┌─────── , ────────┐ │

└──,OPTNS= ─(──↓─┬─┬─ ANY ← ─┬──┬─┴─)─┘

│ ├─ CONN ──┤ │

│ └─ IMM ──┘ │

└─┬─ WAIT ← ─┬─┘

└─ NOWAIT ─┘

 �─┬───┬────────────────────────────��

└─ ,LTERMID=logical-terminal-element-pointer ─┘

 Parameters

#TREQ ALLOC
Establishes a session and allocates an SNA conversation between your program
and an SNA logical unit.

�� For more information about using the #TREQ ALLOC statement, see
Appendix G, “Systems Network Architecture Considerations (SNA)” on
page G-1.

 Syntax

��─┬─────────┬─ #TREQ CHECK ──�

└─ label ─┘

 �─┬─────────────────┬──�

└─ ,MF= ─┬─ R ← ─┬┘

└─ E ───┘

 �─┬──┬───────────────────────────�

└─ ,TRB= ─┬─ SYSPLIST ← ─────────────────────┬─┘

└─ terminal-request-block-pointer ─┘

 �─┬───┬──────────────────────�

└─ ,INLEN= ─┬─ (�) ← ─────────────────────────────┬─┘

└─ input-data-actual-length-register ─┘

Chapter 6. Data Manipulation Language Statements 6-267

6.69 #TREQ

 �─┬─────────────────────────────────┬──�

└─ ,COND= ─┬── NO ← ────────────┬─┘

├── ALL ─────────────┤

│ ┌──── , ─────┐ │

└─(─↓─┬─ ATTN ─┬─┴─)─┘

├─ DISC ─┤

├─ INVP ─┤

├─ LOGL ─┤

├─ PERM ─┤

└─ TRUN ─┘

 �─┬────────────────────────────────┬───�

└─ ,ATTNXIT=attention-key-label ─┘

 �─┬──┬─────────────────────────────────�

└─ ,DISCXIT=terminal-disconnected-label ─┘

 �─┬──┬───────────────────────────────�

└─ ,INVPXIT=invalid-trb-information-label ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,LOGLXIT=logical-output-error-label ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,PERMXIT=permanent-i/o-error-label ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,TRUNXIT=truncate-input-data-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

 Parameters

#TREQ CHECK
Delays task processing until a previously requested asynchronous I/O operation is
completed. The DC/UCF system places the task in an inactive state if the I/O
operation is incomplete. When the I/O operation is complete, the task resumes
processing according to its established dispatching priority.

 Syntax

��─┬─────────┬─ #TREQ DISC ───�

└─ label ─┘

 �─┬─────────────────────────────────┬──��

└─ ,LTEADDR=lte-address-register ─┘

 Parameters

#TREQ DISC
(SNA conversations only); terminates an SNA session between your program and
another logical unit.

6-268 CA-IDMS DML Reference — Assembler

6.69 #TREQ

 Syntax

��─┬─────────┬─ #TREQ GET ──�

└─ label ─┘

 �─┬─────────────────┬──�

└─ ,MF= ─┬─ R ← ─┬┘

└─ E ───┘

 �─┬──┬───────────────────────────�

└─ ,TRB= ─┬─ SYSPLIST ← ─────────────────────┬─┘

└─ terminal-request-block-pointer ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,INAREA=input-data-location-pointer ─┘

 �─┬───┬────────────────────────────────�

└─ ,MAXIN=input-data-max-length-register ─┘

 �─┬───┬──────────────────────�

└─ ,INLEN= ─┬─ (�) ← ─────────────────────────────┬─┘

└─ input-data-actual-length-register ─┘

 �─┬─────────────────────────────────┬──�

└─ ,LTEADDR=lte-address-register ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

│ ┌─────── , ─────────┐ │

└─ ,OPTNS= ──(──↓─┬─── BUFFER ───┬─┴─)─┘

├─┬─ INFMHY ─┬──┤

│ └─ INFMHN ─┘ │

├─┬─ LL ──────┬─┤

│ └─ NOCHASM ─┘ │

├─── LOCATE ────┤

├─── MODIFIED ──┤

├─── POSITION ──┤

├─── UPLOW ─────┤

└─── UPPER ─────┘

 �─┬────────────────────────────┬───�

└─ ,FROMPOS=screen-position ─┘

 �─┬─────────────────────────────────┬──�

└─ ,COND= ─┬── NO ← ─────────────┬┘

├── ALL ──────────────┤

│ ┌─── , ─────┐ │

└(─┬─↓── DISC ─┬─┴─)──┘

├──── INVP ─┤

├──── PERM ─┤

└──── TRUN ─┘

 �─┬──┬─────────────────────────────────�

└─ ,DISCXIT=terminal-disconnected-label ─┘

 �─┬──┬───────────────────────────────�

└─ ,INVPXIT=invalid-trb-information-label ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,PERMXIT=permanent-i/o-error-label ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,TRUNXIT=truncate-input-data-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

Chapter 6. Data Manipulation Language Statements 6-269

6.69 #TREQ

 Parameters

#TREQ GET
Requests synchronous transfer of data from a device to program storage when the
terminal operator signals completion of data entry by pressing ENTER or a special
function key.

 Syntax

��─┬─────────┬─ #TREQ PUT ──�

└─ label ─┘

 �─┬─────────────────┬──�

└─ ,MF= ─┬─ R ← ─┬┘

└─ E ───┘

 �─┬──┬───────────────────────────�

└─ ,TRB= ─┬─ SYSPLIST ← ─────────────────────┬─┘

└─ terminal-request-block-pointer ─┘

 �─┬───┬────────────────────────────────�

└─ ,OUTAREA=output-data-location-pointer ─┘

 �─┬──┬───────────────────────────�

└─ ,OUTLEN= ─┬─ output-data-length-register ─┬─┘

└─ log-data-length-register ────┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

│ ┌─────── , ─────────┐ │

└─ ,OPTNS= ──(──↓─┬─── CHNCONT ───┬─┴─)─┘

├─── CONFIRM ───┤

├─── CONFIRMED ─┤

├─── EOT ───────┤

├─── ERASUNPR ──┤

├─── ERROR ─────┤

 ├─── FREEBUF────┤

├─── INVITE ────┤

├─── NEWPAGE ───┤

├─── NOCR ──────┤

├─┬─ OUTFMHY ─┬─┤

│ └─ OUTFMHN ─┘ │

├─── SAVE ──────┤

├─── SIGNAL ────┤

└─── TRANSPAR ──┘

6-270 CA-IDMS DML Reference — Assembler

6.69 #TREQ

 �─┬─────────────────────────────────┬──�

└─ ,LTEADDR=lte-address-register ─┘

 �─┬──────────────────────────────────┬───────────────────────────────────────�

└─ ,SENSE=sna-sense-code-register ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,LOGDATA=log-data-address-register ─┘

 �─┬──┬─────────────────────────────────�

├─ ,DESTID=destination-id-pointer ───────┤

├─ ,USERID=user-id-pointer ──────────────┤

└─ ,LTERMID=logical-terminal-id-pointer ─┘

 �─┬──────────────────────────────────┬───────────────────────────────────────�

└─ ,COND= ─┬── NO ← ──────────────┬┘

├── ALL ───────────────┤

│ ┌─── , ────┐ │

 └─(─┬─↓── ATTN ─┴┬─)──┘

├──── DISC ───┤

├──── INVP ───┤

├──── LOGL ───┤

├──── PERM ───┤

└──── UNDF ───┘

 �─┬────────────────────────────────┬───�

└─ ,ATTNXIT=attention-key-label ─┘

 �─┬──┬─────────────────────────────────�

└─ ,DISCXIT=terminal-disconnected-label ─┘

 �─┬──┬───────────────────────────────�

└─ ,INVPXIT=invalid-trb-information-label ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,LOGLXIT=logical-output-error-label ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,PERMXIT=permanent-i/o-error-label ─┘

 �─┬───┬────────────────────────────────�

└─ ,UNDFXIT=invalid-destid-ltermid-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

 Parameters

#TREQ PUT
Requests synchronous transfer of data from program storage to a terminal or
device.

Chapter 6. Data Manipulation Language Statements 6-271

6.69 #TREQ

 Syntax

��─┬─────────┬─ #TREQ PUTGET ───�

└─ label ─┘

 �─┬─────────────────┬──�

└─ ,MF= ─┬─ R ← ─┬┘

└─ E ───┘

 �─┬──┬───────────────────────────�

└─ ,TRB= ─┬─ SYSPLIST ← ─────────────────────┬─┘

└─ terminal-request-block-pointer ─┘

 �─┬───┬────────────────────────────────�

└─ ,OUTAREA=output-data-location-pointer ─┘

 �─┬──┬─────────────────────────────────�

└─ ,OUTLEN=output-data-length-register ──┘

 �─┬──┬─────────────────────────────────�

└─ ,INAREA=input-data-location-pointer ──┘

 �─┬───┬────────────────────────────────�

└─ ,MAXIN=input-data-max-length-register ─┘

 �─┬──┬───────────────────────�

└─ ,INLEN= ─┬─ (�) ← ─────────────────────────────┬┘

└─ input-data-actual-length-register ─┘

 �─┬─────────────────────────────────┬──�

└─ ,LTEADDR=lte-address-register ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

│ ┌────── , ──────────┐ │

└─ ,OPTNS= ──(──↓─┬─── CHNCONT ───┬─┴─)─┘

├─── CONFIRM ───┤

├─── ERASUNPR ──┤

├─── FREEBUF ───┤

├─┬─ INFMHY ─┬──┤

│ └─ INFMHN ─┘ │

├─── LAST ──────┤

├─┬─ LL ──────┬─┤

│ └─ NOCHASM ─┘ │

├─── LOCATE ────┤

├─── NEWPAGE ───┤

├─── NOCR ──────┤

├─┬─ OUTFMHY ─┬─┤

│ └─ OUTFMHN ─┘ │

├─── UPLOW ─────┤

└─── UPPER ─────┘

6-272 CA-IDMS DML Reference — Assembler

6.69 #TREQ

 �─┬─────────────────────────────────┬──�

└─ ,COND= ─┬── NO ← ────────────┬─┘

├── ALL ─────────────┤

│ ┌──── , ─────┐ │

└─(─↓─┬─ ATTN ─┬─┴─)─┘

├─ DISC ─┤

├─ INVP ─┤

├─ LOGL ─┤

├─ PERM ─┤

├─ TRUN ─┤

└─ UNDF ─┘

 �─┬────────────────────────────────┬───�

└─ ,ATTNXIT=attention-key-label ─┘

 �─┬──┬─────────────────────────────────�

└─ ,DISCXIT=terminal-disconnected-label ─┘

 �─┬──┬───────────────────────────────�

└─ ,INVPXIT=invalid-trb-information-label ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,LOGLXIT=logical-output-error-label ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,PERMXIT=permanent-i/o-error-label ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,TRUNXIT=truncate-input-data-label ─┘

 �─┬───┬────────────────────────────────�

└─ ,UNDFXIT=invalid-destid-ltermid-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

 Parameters

#TREQ PUTGET
Requests a synchronous data transfer from program storage to a terminal, then
back to the program when the terminal operator indicates completion of data entry.

Chapter 6. Data Manipulation Language Statements 6-273

6.69 #TREQ

 Syntax

��─┬─────────┬─ #TREQ READ ───�

└─ label ─┘

 �─┬─────────────────┬──�

└─ ,MF= ─┬─ R ← ─┬┘

└─ E ───┘

 �─┬──┬───────────────────────────�

└─ ,TRB= ─┬─ SYSPLIST ← ─────────────────────┬─┘

└─ terminal-request-block-pointer ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,INAREA=input-data-location-pointer ─┘

 �─┬───┬────────────────────────────────�

└─ ,MAXIN=input-data-max-length-register ─┘

 �─┬───┬──────────────────────�

└─ ,INLEN= ─┬─ (�) ← ─────────────────────────────┬─┘

└─ input-data-actual-length-register ─┘

 �─┬─────────────────────────────────┬──�

└─ ,LTEADDR=lte-address-register ─┘

 �─┬───┬────────────────────────────────�

│ ┌─────── , ─────────┐ │

└─ ,OPTNS= ──(──↓─┬─── BUFFER ────┬─┴──)──┘

├─── INFMHY ────┤

├─┬─ INFMHN ──┬─┤

│ └─ INVITE ──┘ │

├─┬─ LL ──────┬─┤

│ └─ NOCHASM ─┘ │

├─── LOCATE ────┤

├─── MODIFIED ──┤

├─── POSITION ──┤

├─── UPLOW ─────┤

└─── UPPER ─────┘

 �─┬────────────────────────────┬───�

└─ ,FROMPOS=screen-position ─┘

 �─┬─────────────────────┬──�

└─ ,COND= ─┬─ NO ← ─┬─┘

└─ INVP ─┘

 �─┬──┬───────────────────────────────�

└─ ,INVPXIT=invalid-trb-information-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

6-274 CA-IDMS DML Reference — Assembler

6.69 #TREQ

 Parameters

#TREQ READ
Requests asynchronous transfer of data from a terminal or device to program
storage when the terminal operator signals completion of the data entry by
pressing ENTER or a special function key.

 Syntax

��─┬─────────┬─ #TREQ UIOCB ──�

└─ label ─┘

 �─┬──┬───────────────────────────────�

└─ ,UIOCBA=user-i/o-control-block-pointer ─┘

 �─┬─────────────────────────────────┬──��

└─ ,LTEADDR=lte-address-register ─┘

 Parameters

#TREQ UIOCB
Locates a user I/O communications block used to maintain the status of an SNA
conversation and of the data being passed between logical units.

 Syntax

��─┬─────────┬─ #TREQ WRITE ──�

└─ label ─┘

 �─┬─────────────────┬──�

└─ ,MF= ─┬─ R ← ─┬┘

└─ E ───┘

 �─┬──┬───────────────────────────�

└─ ,TRB= ─┬─ SYSPLIST ← ─────────────────────┬─┘

└─ terminal-request-block-pointer ─┘

 �─┬───┬────────────────────────────────�

└─ ,OUTAREA=output-data-location-pointer ─┘

 �─┬───┬────────────────────────────�

└─ ,OUTLEN= ─┬─ output-data-length-register ─┬┘

└─ log-data-length-register ────┘

Chapter 6. Data Manipulation Language Statements 6-275

6.69 #TREQ

 �─┬─────────────────────────────────┬──�

└─ ,LTEADDR=lte-address-register ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

│ ┌─────── , ─────────┐ │

└─ ,OPTNS= ──(──↓─┬─── ABEND ───┬─┴─)─┘

├─── CHNCONT ───┤

├─── CONFIRM ───┤

├─── CONFIRMED ─┤

├─── EOT ───────┤

├─── ERASUNPR ──┤

├─── ERROR ─────┤

├─── FREEBUF ───┤

├─── INVITE ────┤

 ├─── LAST ───┤

├─── NEWPAGE ───┤

├─── NOCR ──────┤

├─┬─ OUTFMHY ─┬─┤

│ └─ OUTFMHN ─┘ │

 ├─── SAVE ─────┤

├─── SIGNAL ────┤

└─── TRANSPAR ──┘

 �─┬─────────────────────────┬──�

└─ ,SENSE=sna-sense-code ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,LOGDATA=log-data-address-register ─┘

 �─┬──┬─────────────────────────────────�

├─ ,DESTID=destination-id-pointer ───────┤

├─ ,USERID=user-id-pointer ──────────────┤

└─ ,LTERMID=logical-terminal-id-pointer ─┘

 �─┬───────────────────────────────┬──�

└─ ,COND= ─┬── NO ← ───────────┬┘

├── ALL ────────────┤

│ ┌───── , ───┐ │

└─(─↓─┬─ INVP ─┬┴─)─┘

└─ UNDF ─┘

 �─┬──┬──────────────────────────────�

└─ ,INVPXIT=invalid-trb-information-label ─┘

 �─┬───┬────────────────────────────────�

└─ ,UNDFXIT=invalid-destid-ltermid-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

 Parameters

#TREQ WRITE
Requests an asynchronous data transfer from program storage to a terminal or
device.

6-276 CA-IDMS DML Reference — Assembler

6.69 #TREQ

 Syntax

��─┬─────────┬─ #TREQ WRITREAD ───�

└─ label ─┘

 �─┬─────────────────┬──�

└─ ,MF= ─┬─ R ← ─┬┘

└─ E ───┘

 �─┬──┬───────────────────────────�

└─ ,TRB= ─┬─ SYSPLIST ← ─────────────────────┬─┘

└─ terminal-request-block-pointer ─┘

 �─┬───┬────────────────────────────────�

└─ ,OUTAREA=output-data-location-pointer ─┘

 �─┬──┬─────────────────────────────────�

└─ ,OUTLEN=output-data-length-register ──┘

 �─┬──┬─────────────────────────────────�

└─ ,INAREA=input-data-location-pointer ──┘

 �─┬───┬────────────────────────────────�

└─ ,MAXIN=input-data-max-length-register ─┘

 �─┬──┬───────────────────────�

└─ ,INLEN= ─┬─ (�) ← ─────────────────────────────┬┘

└─ input-data-actual-length-register ─┘

 �─┬─────────────────────────────────┬──�

└─ ,LTEADDR=lte-address-register ─┘

 �─┬───┬────────────────────────────────�

│ ┌─────── , ─────────┐ │

└─ ,OPTNS= ──(──↓─┬─── CHNCONT ───┬─┴─)───┘

├─── CONFIRM ───┤

├─── ERASUNPR ──┤

├─── FREEBUF ───┤

├─┬─ INFMHY ─┬──┤

│ └─ INFMHN ─┘ │

├─── INVITE ────┤

├─┬─ LL ──────┬─┤

│ └─ NOCHASM ─┘ │

├─── LOCATE ────┤

├─── NEWPAGE ───┤

├─── NOCR ──────┤

├─┬─ OUTFMHY ─┬─┤

│ └─ OUTFMHN ─┘ │

├─── UPLOW ─────┤

└─── UPPER ─────┘

 �─┬───────────────────────────┬──�

└─ ,COND= ─┬─ NO ← ───────┬─┘

└─ INVP ───────┘

 �─┬──┬───────────────────────────────�

└─ ,INVPXIT=invalid-trb-information-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

 Parameters

Chapter 6. Data Manipulation Language Statements 6-277

6.69 #TREQ

#TREQ WRITREAD
Requests an asynchronous data transfer from program storage to a terminal or
device, then back to program storage when the terminal operator indicates
completion of data entry.

Syntax rules for the #TREQ statements are shown below. One complete set of syntax
rules is provided; the explanation for each parameter indicates the applicable #TREQ
statements. #TREQ options necessary to comply with SNA protocols are also
indicated.

�� For more information on SNA programming considerations, see Appendix G,
“Systems Network Architecture Considerations (SNA)” on page G-1.

The discussion of syntax applies to regular and execute commands, with the following
exceptions:

■ The TRB parameter of an execute request identifies a terminal request block
(TRB) previously established by a list #TREQ request.

■ For an execute request, parameters already defined to the TRB need not be
specified. If they are specified, the requested parameters will override the existing
values in the TRB.

 Parameters

MF=
Specifies the category of #TREQ.

R
(Default); specifies a regular #TREQ statement.

E
Specifies an execute #TREQ statement.

TRB=
Specifies the five-fullword storage area in which the system will build the TRB
(MF=R) or has built the TRB (MF=E).

SYSPLIST
(Default for regular requests only); is the symbolic name of the storage area in
which the system will build the TRB.

terminal-request-block
Either a register that contains the address of the area or the symbolic name of the
area in which the system will build or has built the TRB. For execute requests,
this entry explicitly defines the area by identifyinglabel, provided in the list
#TREQ that generated the TRB.

OUTAREA=
(PUT, WRITE, PUTGET, and WRITREAD only) specifies the storage area that
contains data to be output. OUTAREA need not be defined if the OUTLEN
parameter, described below, is 0.

6-278 CA-IDMS DML Reference — Assembler

6.69 #TREQ

output-data-location
Either a register that contains the address of the area or the symbolic name of the
area.

OUTLEN=
(PUT, WRITE, PUTGET and WRITREAD only); specifies the length, in bytes, of
the data stream to be transmitted.

output-data-length
Specifies the length of data being sent to a terminal.Output-data-length is either
a register that contains the length or an absolute expression of the length of data
sent in a normal exchange.

log-data-length
A register that contains the length or an absolute expression of the length of data
to be sent along with error information in an SNA conversation.

INAREA=
(GET, READ, PUTGET, and WRITREAD only); specifies the storage area into
which the data will be read. When INAREA is specified, the LOCATE option,
described under the OPTNS parameter below, should not be requested.

input-data-location
Either a register that points to the area or the symbolic name of the area.

MAXIN=
(GET, READ, PUTGET, and WRITREAD only); specifies the maximum length in
bytes of the data area defined by INAREA that is reserved for the input data
stream. When MAXIN is specified, the LOCATE option, described under the
OPTNS parameter below, should not be requested.

input-data-max-length
Either a register that contains the length of the data area or an absolute expression.

INLEN=
(GET, PUTGET, or CHECK following an asynchronous input request); specifies
the location to which the system returns the actual length of the input data stream.
If the input data stream has been truncated, the original length of the data stream
before truncation is returned.

(0)
(Default); is the register to which the system returns the actual length of the input
data stream.

input-data-actual-length
A register or the symbolic name of a halfword or fullword user-defined field to
which the system will return the actual length of the input data stream.

UIOCBA=
(ALLOC and UIOCB only); specifies the location of the storage area that contains
the user I/O control block (UIOCB) used for the conversation.

Chapter 6. Data Manipulation Language Statements 6-279

6.69 #TREQ

user-i/o-control-block
Either a register containing the address or the symbolic name of the area.

�� For more information on the user I/O control block, see Appendix G, “Systems
Network Architecture Considerations (SNA)” on page G-1.

LTEADDR=
(SNA only); specifies the address of the logical terminal element (LTE) of the
remote task in the conversation.

lte-address
Either a register containing the address or the symbolic name of the area.

OPTNS=(treq-option)
Specifies several options applicable to the input or output operation. Multiple
values must be enclosed in parentheses and separated by commas.

The BUFFER, MODIFIED, and POSITION options specify special purpose read
operations for 3270 devices. They should not be confused with normal
READ/GET requests that read modified fields when the operator presses the
ENTER key or a special function key.

ABEND (SNA WRITE only)
Notifies the remote system that the task is terminating abnormally and that the
conversation has ended.

ANY/CONN/IMM (SNA ALLOC only)
Specifies the type of session to be established:

■ ANY (default) specifies that the system allocate a session in the following
order:

1. A session that is immediately available and currently unused

2. A session that is disconnected; that is, the session has not yet been
established

3. A session that is busy; that is, the session is established and is allocated to
another task

If neither an immediately available nor a disconnected session is available, the
system waits for a busy session to become available.

■ CONN requests the system not to wait for a busy session. The system first
attempts to allocate an immediately available session, then a disconnected
session.

■ IMM specifies that only immediately available sessions are acceptable for the
allocation request.

BUFFER
(GET and READ with 3270 devices only) Indicates that the data will be
transmitted to program storage automatically. BUFFER requests that the system
execute an immediate READ BUFFER command; this reads the entire contents of
the 3270 terminal buffer into the program storage specified by INAREA and
MAXIN.

6-280 CA-IDMS DML Reference — Assembler

6.69 #TREQ

CHNCONT
(SNA non-LU6.2 PUT, PUTGET, WRITE, and WRITREAD only) Specifies that
the user task is providing a chain of outbound messages, and that the current
#TREQ output request is not the last message in the chain. Omitting
OPTNS=CHNCONT after it has been specified once indicates that the current
message is the final chain element.

CONFIRM
(SNA PUT, PUTGET, WRITE, and WRITREAD only) Sends a confirmation
request to a remote SNA logical unit. For example, when your program specifies
#TREQ WRITE,OPTNS=CONFIRM, the system requests that the remote logical
unit confirm that the request has been sent.

CONFIRMED
(SNA WRITE and PUT only) Sends a positive response to a confirmation request.

EOT
(PUT or WRITE to 3741 or 3780 bisynchronous batch terminals only) Specifies
that there is no more data to follow.

ERASUNPR
(PUT, PUTGET, WRITE, and WRITREAD with 3270 devices only) Causes the
system to activate the erase-all-unprotected mechanism. Because no data is
transferred for an ERASUNPR request, use of this option implies that
OUTLEN=0; no output data need be defined with the OUTAREA parameter
described above.

ERROR
(SNA WRITE and PUT only) Allows a task to send a negative response to a
remote logical unit, or to reject a confirmation request that was found
unacceptable. Do not use the the ERROR option if the CONFIRMED option is
specified.

FREEBUF
(PUT, PUTGET, WRITE, and WRITREAD only) Frees the storage area that
contains the output data stream. The buffer area being freed must have been
acquired by a #GETSTG statement or the LOCATE option of a previously issued
input request.

If FREEBUF is not specified, the system does not release the output buffers
associated with the output request until the issuing task terminates. When the task
is terminated, all storage acquired by a #GETSTG or a LOCATE will be released.

INFMHY/INFMHN
(SNA non-LU6.2 GET, READ, PUTGET and WRITREAD only) Specifies
whether a function management header (FMH) is passed to the program:

■ INFMHY indicates that all FMHs on the inbound message are passed to the
program.

■ INFMHN requests that the system remove any FMHs before the data is
passed to the program.

Chapter 6. Data Manipulation Language Statements 6-281

6.69 #TREQ

INVITE
(SNA WRITE, PUT, WRITREAD, and PUTGET) Allows a task to specify a
change of direction from the send to the receive state.

LAST
(SNA WRITE and PUT only) Ends a conversation between two logical units.

LL/NOCHASM
(SNA GET, PUTGET, READ, WRITREAD only) Specifies the format of the data
to be input to the program:

■ LL indicates whether a generalized data stream (GDS) header is to be
removed from an LU6.2 data record before it is received by a conversation.
For a mapped conversation, LL specifies that one LU6.2 data record is
received with the GDS header removed. For an unmapped conversation, LL
specifies that one LU6.2 data record is received, without GDS removal.

■ NOCHASM (SNA GET, PUTGET, READ, and WRITREAD only; not
allowed for LU6.2 mapped conversations) specifies that inbound chains in a
conversation are passed to the user task individually. The chains are passed a
single chain element at a time, without assembling the entire chain into a
buffer. A single chain element consists of one SNA request unit (RU).

LOCATE
(GET, PUTGET, READ, and WRITREAD only) Allocates a buffer area for the
data being read into the program, rather than a user-specified area. The DC/UCF
system allocates the buffer when the read operation is completed. Register 1
contains the address of the buffer that will contain the input data on completion of
the input operation. The issuing program is responsible for using a #FREESTG to
free the buffer area.

When this option is requested, do not specify INAREA and MAXIN.

MODIFIED
(GET and READ with 3270 devices only) Indicates that the data will be
transmitted to program storage automatically, without waiting for a signal of
completion of data entry from the terminal operator. MODIFIED requests that the
system read all modified fields in the 3270 terminal buffer into the program
storage specified by INAREA and MAXIN.

NEWPAGE
(PUT, PUTGET, WRITE, and WRITREAD with SYSINOUT or 3270 devices
only) Requests that the system activate the page-eject (SYSINOUT) or erase-write
(3270) mechanism to erase the contents of a screen. If NEWPAGE is not
specified, the #TREQ request will write over any existing screen display without
first erasing it.

NOCR
(PUT, PUTGET, WRITE, and WRITREAD with teletype terminals only) Specifies
that carriage-control and line-feed characters shouldnot be automatically appended
to an output data stream.

6-282 CA-IDMS DML Reference — Assembler

6.69 #TREQ

OUTFMHY/OUTFMHN
(SNA non-LU6.2 PUT, PUTGET, WRITE, and WRITREAD only) Specifies
whether a function management header (FMH) has been included in the beginning
of the write buffer:

■ OUTFMHY indicates that an FMH has been provided. The FMH overrides
the default defined at system generation.

■ OUTFMHN indicates that no FMH has been added to the outbound message.

POSITION
(GET and READ with 3270 devices only), used in conjunction with the BUFFER
or MODIFIED options, indicates that the FROMPOS parameter, described below,
will specify the position at which the read buffer contents will begin.

UPPER
(GET, PUTGET, READ, and WRITREAD only); Directs the system to translate
all letters in an input data stream into uppercase characters.

SAVE
(PUT and WRITE non-write-direct-to-terminal only) Directs the system to
preserve the output from the #TREQ request in the event that an unsolicited
write-direct-to-terminal data stream is received at the issuing terminal while the
#TREQ data stream is being displayed. This option overrides the task
SAVE/NOSAVE option specified during system generation.

SIGNAL
(SNA WRITE and PUT only) Requests a change of direction from the receive to
the send state. SIGNAL is used with the SENSE parameter, discussed below.

TRANSPAR
(PUT or WRITE to 3741 or 3780 bisynchronous batch terminals only) Specifies
that the output may contain line control characters and must be written with a
transparent write operation.

UPLOW
(GET, PUTGET, READ, and WRITREAD only) Specifies that no uppercase
translation of characters in an input data stream is performed.

UPPER
(GET, PUTGET, READ, and WRITREAD only) Directs the system to translate all
letters in an input data stream into uppercase characters.

WAIT/NOWAIT
(SNA ALLOC only) Specifies whether the allocation request is synchronous or
asynchronous:

■ WAIT (default) indicates that the allocation request is synchronous.

■ NOWAIT indicates that the allocation request is asynchronous. After
specifying #TREQ ALLOC with OPTNS=NOWAIT, you must code a #TREQ
CHECK request before any other I/O requests are issued. The NOWAIT
option cannot be specified with OPTNS=ANY.

Chapter 6. Data Manipulation Language Statements 6-283

6.69 #TREQ

SENSE=
(SNA WRITE and PUT only); specifies a sense code that describes errors that the
system encounters in conversation processing.

sna-sense-code
Either a register containing the sense code or a 4-byte hexadecimal value enclosed
in quotation marks. Sense codes supported by the system are listed in
Appendix G, “Systems Network Architecture Considerations (SNA)” on
page G-1.

LTERMID=
(ALLOC only); identifies the logical terminal element (LTE) of a remote logical
unit in an SNA conversation, or a write-direct-to-terminal destination for a
non-SNA #TREQ request.

logical-terminal-element-name
Either a register pointing to the area containing the LTE or the name of a
user-supplied variable data field that holds the address.

LOGDATA=
(SNA LU6.2 WRITE only); specifies the address of a data buffer containing data
that will be sent along with error information to the remote task.

log-data-address
Either either a register containing the address of the data buffer or a user-defined
variable field. When LOGDATA is specified, you must code the OUTLEN
parameter to indicate the length of the data being sent.

FROMPOS=
(#TREQ GET and READ requests with 3270 devices; BUFFER or MODIFIED
options only); specifies the 2-character EBCDIC buffer address at which the read
will start.

screen-position
Either the symbolic name of a user-defined fixed binary field that contains the
buffer address or the address itself enclosed in quotation marks.

DESTID/USERID/LTERMID
(PUT and WRITE only); specifies the destination of a write-direct-to-terminal
request.

DESTID=
Specifies a write-direct-to-terminal request (blast) to one of the following
destinations defined during system generation:

■ List of logical terminals indicates that the system will send the #TREQ data
stream specified in the OUTAREA parameter to all available terminals in the
list.

■ List of users indicates that the system will send the #TREQ data stream
specified in the OUTAREA parameter to all users in the list who are currently
signed on the system.

6-284 CA-IDMS DML Reference — Assembler

6.69 #TREQ

destination-id
A register that points to the destination id, the symbolic name of a user-defined
field that contains the destination id, or the id itself enclosed in quotation marks.

Each destination should refer to terminal devices of the same type to ensure
compatibility with program-supplied device control information. If a #TREQ blast
request is routed to an incompatible device type, the system will reject the request
and return control to the issuing program.

USERID=
Specifies a blast request to a specific signed-on user. The DC/UCF system will
send the #TREQ data stream specified in the OUTAREA parameter to a specific
signed-on user.

user-id
A register that points to the user id, the symbolic name of a user-defined field that
contains the user id, or the id itself enclosed in quotation marks.

LTERMID=
Specifies a blast request to a specific in-service terminal. The DC/UCF system
will send the #TREQ data stream specified in the OUTAREA parameter to a
specific in-service terminal.

logical-terminal-id
A register that points to the logical terminal id, the symbolic name of a
user-defined field that contains the logical terminal id, or the id itself enclosed in
quotation marks.

COND=
Specifies whether the #TREQ is conditional and under what conditions control
should be returned to the issuing program:

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that the request is conditional. Control is returned if the request cannot
be serviced for any of the reasons listed undercondition.

condition
Can be any of the following options. Multiple options must be enclosed in
parentheses and separated by commas.Condition options are as follows:

■ ATTN (PUT, PUTGET, or CHECK) — The I/O operation is interrupted by
the terminal operator pressing ATTENTION or BREAK.

■ DISC (PUT, GET, PUTGET, or CHECK) — The dial-up line is disconnected
or the terminal goes out of service.

■ INVP — There is an invalid parameter in the TRB.

■ LOGL (PUT, PUTGET, or CHECK) — A logical error is encountered in the
output data stream.

■ PERM (PUT, GET, PUTGET, or CHECK) — A permanent I/O error occurs
during processing.

Chapter 6. Data Manipulation Language Statements 6-285

6.69 #TREQ

■ TRUN (GET, PUTGET, or CHECK) — The data has been truncated due to
insufficient storage in the specified INAREA.

■ UNDF — Control is returned if an undefined DESTID or LTERMID is
specified in a #TREQ blast request.

The following parameters represent routines to which control is returned as a
result of one of the preceding conditions:

ATTNXIT=attention-key-label
Specifies the symbolic name of the routine to which control should be returned if
the output is interrupted by the terminal operator.

DISCXIT=terminal-disconnected-label
Specifies the symbolic name of the routine to which control should be returned if
the terminal is disconnected or the terminal goes out of service.

INVPXIT=invalid-trb-information-label
Specifies the symbolic name of the routine to which control should be returned if
the #TREQ cannot be serviced because of an invalid parameter in the TRB.

LOGLXIT=logical-output-error-label
Specifies the symbolic name of the routine to which control should be returned if
a logical error is detected in the output data stream.

PERMXIT=permanent-i/o-error-label
Specifies the symbolic name of the routine to which control should be returned if
a permanent I/O error occurs.

TRUNXIT=truncate-input-data-label
Specifies the symbolic name of the routine to which control should be returned if
input data is truncated due to insufficient storage in the INAREA buffer.

UNDFXIT=invalid-destid-ltermid-label
Specifies the symbolic name of the routine to which control should be returned if
an undefined DESTID or LTERMID is specified in a #TREQ PUT or WRITE
blast request.

ERROR=error-label
Specifies the symbolic name of the routine to which control should be returned if
a condition specified in the COND parameter occurs for which no other exit
routine was coded.

Examples: The following examples illustrate how to use the #TREQ statement.

The following #TREQ ALLOC statement allocates a session between your LU and a
remote LU that is identified in the user I/O control block. OPTNS=ANY specifies that
the system will attempt to assign a currently unused session first; if one is not
available it will attempt to assign a session that has not yet been established. If
neither of these session types is possible, the system will wait for a busy session to
become available. OPTNS=WAIT indicates synchronous processing. COND=ALL
specifies that control is returned to the program request cannot be serviced due to any
terminating conditions.

#TREQ ALLOC,UIOCBA=(R3),OPTNS=(ANY,WAIT),COND=ALL

6-286 CA-IDMS DML Reference — Assembler

6.69 #TREQ

The following #TREQ DISC statement terminates a session between your LU and the
remote LU identified by the LTE address contained in register 8.

#TREQ DISC,LTEADDR=(R8)

The following #TREQ GET statement transfers data from a terminal to program
variable storage after the terminal operator presses the ENTER key. #TREQ GET
indicates synchronous data transfer. SYSPLIST is the symbolic name of the storage
area in which the system builds the TRB. Input read from the terminal is moved to
INPROG02; the maximum length of the input data is 40 bytes.

#TREQ GET,MF=R,TRB=SYSPLIST,INAREA=INPROG�2,MAXIN=4�

The following #TREQ PUT statement issues a write-direct-to-terminal request. The
blast request transfers the 50 byte output data stream in OUTPGM9 directly to all
users in the currently signed-on users in DEST09.

#TREQ PUT,TRB=SYSPLIST,OUTAREA=OUTPGM9,OUTLEN=5�,DESTID=DEST�9

The following #TREQ PUTGET statement is being used in a non-LU6.2 SNA
conversation between the system task and a remote 3600 device. The remote LU is
identified by the LTE address in LU3603 because your task may be having more than
one conversation at a time. The data you are sending is held in the output buffer
OUT09, and can be up to 60 bytes long. If the data returned by the remote LU
exceeds the MAXIN specification (60 bytes), the system buffers the data so that it will
be available to your next read request. OUTFMHN requests the system not to add any
function management headers to the output data stream. INFMHN requests that the
system remove any incoming FMH from the data before it is passed to your task.

#TREQ PUTGET,OUTAREA=OUT�9,OUTLEN=6�,INAREA=IN�9,MAXIN=6�, �

 LTEADDR=LU36�3,OPTNS=(OUTFMHN,INFMHN)

The following execute #TREQ READ statement reads the contents of the buffer
INAREA. The MODIFIED option specifies that modified data is transmitted to
program storage automatically, without waiting until the terminal operator has signaled
completion of data entry. The NEWPAGE option requests that the system erase the
contents of the screen before the new data is read in. Control is returned to the
RTNINVP routine if there is an invalid parameter in the TRB.

#TREQ READ,MF=E,TRB=SYSPLIST,INAREA=INAREA,OPTNS=(MODIFIED,NEWPAGE), �

 COND=INVP,INVPXIT=RTNINVP

The following #TREQ WRITE statement requests that the system initiate the
erase-all-unprotected mechanism for output. No data is transferred with this request
(OUTLEN=0); no output data has to be defined in OUTAREA.

#TREQ WRITE,OUTAREA=OUTPGM9,OPTNS=(ERASUNPR)

The following #TREQ WRITREAD statement sends the output data stream in the
buffer OUTPGM08 to the terminal. FREEBUF releases the contents of OUTPGM08
after the WRITREAD request has been completed. OUTPGM08 must have been
previously acquired by a #GETSTG statement or the LOCATE option of a previously
issued input request. Data is sent from the terminal to the INPGM08 buffer.

Chapter 6. Data Manipulation Language Statements 6-287

6.69 #TREQ

#TREQ WRITREAD,TRB=SYSPLIST,OUTAREA=OUTPGM�8,OUTLEN=6�, �

 INAREA=INPGM�8,INLEN=6�,OPTNS=FREEBUF

The following #TREQ UIOCB statement assigns a user I/O control block to an SNA
conversation started by a remote task. The address of the UIOCB is in register 8.

#TREQ UIOCB,UIOCBA=(R8)

Status codes: Upon successful completion of certain #TREQ requests, three
registers contain information about the outcome of the request:

■ Register 0 contains the actual number of terminals to which the data stream has
been routed for a blast request (PUT or WRITE).

■ Register 1 contains information related to the type of request:

– For asynchronous requests, Register 1 contains the address of the ECB that
will be posted by the system on completion of the I/O operation.

– For LOCATE requests and after asynchronous CHECK requests, register 1
contains the address of the buffer into which the input data has been placed.

■ Register n contains the actual length of returned data for an input operation (GET,
PUTGET, READ, or WRITREAD). The register number n is assigned by the
INLEN parameter.

By default, the #TREQ request is unconditional; any runtime error will result in an
abend of the issuing task. The issuing program can request return of control with the
COND parameter to avoid an abend.

After completion of the #TREQ, the value in register 15 indicates the outcome of the
operation:

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'04' For a GET, PUTGET, or CHECK request, the input area specified
for the return of data to the issuing program is too small; the
returned data has been truncated to fit the available space.

X'08' For a GET, PUTGET, or CHECK request, the output has been
interrupted; the terminal operator has pressed ATTENTION or
BREAK.

X'0C' For a GET, PUTGET, or CHECK request, a logical error (for
example, an invalid control character) has been encountered in the
output data stream.

X'10' For a GET, PUT, PUTGET, or CHECK request, a permanent I/O
error has occurred during processing.

X'14' For a GET, PUT, PUTGET, or CHECK request, the dial-up line for
the terminal has been disconnected.

6-288 CA-IDMS DML Reference — Assembler

6.69 #TREQ

Register 15
value

Meaning

X'18' For a GET, PUT, PUTGET, or CHECK request, the terminal
associated with the issuing task is out of service.

X'1C' For a GET, PUTGET, or CHECK request, the terminal is closed, or
was never opened.

X'20' The TRB contains an invalid field, indicating a possible error in the
program parameters.

X'24' For a PUT or WRITE request, the requested logical terminal id or
list of logical terminals or users identified by LTERMID, USERID,
or DESTID cannot be found.

 6.69.3 List #TREQ

Using the list #TREQ you can build a terminal request block (TRB) in the data
definition section of program storage, and assign constant values. After you have
issued one list #TREQ statement, subsequentexecute #TREQ statements override only
the fields in the named TRB that need to be updated.

The TRB is identified by the list #TREQ label. This label is referenced by the TRB
parameter in subsequent execute requests.

In the list #TREQ, only the label and the MF parameter are required; all other
parameters should be specified only when required to predefine TRB parameter values.

In a list #TREQ request, parameter values cannot be specified by using register
notation. The list #TREQ syntax presented here shows only those parameters that are
affected by this restriction. Syntax for the list #TREQ statement is shown below:

Chapter 6. Data Manipulation Language Statements 6-289

6.69 #TREQ

 Syntax

��─┬─────────┬─ #TREQ ─┬─ ALLOC ────┬───�

└─ label ─┘ ├─ CHECK ────┤

├─ DISC ─────┤

├─ GET ──────┤

├─ PUT ──────┤

├─ PUTGET ───┤

├─ READ ─────┤

├─ UIOCB ────┤

├─ WRITE ────┤

└─ WRITREAD ─┘

 �─── ,MF=L ──�

 �─┬───┬────────────────────────────────�

└─ ,OUTAREA=output-data-location-pointer ─┘

 �─┬──┬─────────────────────────────────�

└─ ,OUTLEN=output-data-length-register ──┘

 �─┬──┬─────────────────────────────────�

└─ ,INAREA=input-data-location-pointer ──┘

 �─┬───┬────────────────────────────────�

└─ ,MAXIN=input-data-max-length-register ─┘

 �─┬──────────────────────────────────┬───────────────────────────────────────�

└─ ,UIOCBA=user-i/o-control-block ─┘

 �─┬────────────────────────┬───�

└─ ,LTEADDR=lte-address ─┘

 �─┬─────────────────────────┬──�

└─ ,SENSE=sna-sense-code ─┘

 �─┬─────────────────────────────┬──�

└─ ,LOGDATA=log-data-address ─┘

 �─┬──┬─────────────────────────────────��

├─ ,DESTID=destination-id-pointer ───────┤

├─ ,USERID=user-id-pointer ──────────────┤

└─ ,LTERMID=logical-terminal-id-pointer ─┘

 Parameters

ALLOC/CHECK/DISC/GET/PUT/PUTGET/READ/UIOCB/WRITE/WRITREAD
Specifies the type of #TREQ statement.

MF=L
Specifies a list #TREQ.

Each parameter (other than MF=L) functions identically to the corresponding
parameter in the regular and execute forms of #TREQ statements, described
previously.

For example, the value specified for OUTAREA must be a symbolic name of a
user-defined area, whereas in the regular and execute forms it could be either a
register that points to the area or the symbolic name of the area.

6-290 CA-IDMS DML Reference — Assembler

6.70 #TRNSTAT

 6.70 #TRNSTAT

The #TRNSTAT statement enables your program to access transaction statistics about
task-related activities. The system allocates a block of storage, called a transaction
statistics block (TSB), in which to accumulate these statistics.

Three versions of the #TRNSTAT statement collect and write transaction statistics:

■ #TRNSTAT TYPE=BIND starts recording transaction statistics for the requestor's
logical terminal.

■ #TRNSTAT TYPE=ACCEPT copies transaction statistics from the TSB and
places them in a storage area associated with the issuing task and/or writes them
to the DC/UCF log file.

■ #TRNSTAT TYPE=END stops collecting transaction statistics for the requestor's
logical terminal and optionally writes the statistics to a storage area associated
with the issuing task and/or to the DC/UCF log file.

Note: Do not attempt to collect transaction statistics using the #TRNSTAT statement
if your Assembler program is a subroutine to an CA-ADS dialog.

�� For more information on the transaction statistics block (TSB) refer to the
CA-IDMS DSECT Reference.

Chapter 6. Data Manipulation Language Statements 6-291

6.70 #TRNSTAT

 Syntax

��─── #TRNSTAT TYPE= ──┬─ BIND ───┬───�

├─ ACCEPT ─┤

└─ END ────┘

 �─┬────────────────────────────────┬───�

└─ ,RECORD=record-name-register ─┘

 �─┬──────────────────────┬───�

└─ ,WRITE= ─┬─ YES ← ─┬┘

└─ NO ────┘

 �─┬─────────────────────────────────┬──�

└─ ,COND= ─┬── NO ← ────────────┬─┘

├── ALL ─────────────┤

│ ┌──── , ─────┐ │

└─(─↓─┬─ DEAD ─┬─┴─)─┘

├─ SBNF ─┤

├─ INVP ─┤

└─ NOTR ─┘

 �──┬───────────────────────────┬───�

└─ ,DEADXIT=deadlock-label ─┘

 �──┬───┬───────────────────────────�

└─ ,SBNFXIT=statistics-block-not-found-label ─┘

 �──┬───┬───────────────────────────────�

└─ ,INVPXIT=invalid-parameter-list-label ─┘

 �──┬──┬────────────────────�

└─ ,NOTRXIT=no-transaction-statistics-allowed-label ─┘

 �──┬──────────────────────┬──��

└─ ,ERROR=error-label ─┘

 Parameters

TYPE=
Specifies the type of transaction statistics activity.

BIND
Defines the beginning of a transaction for the purposes of collecting transaction
statistics. The system allocates a block of storage to collect these statistics.
Because this block is owned by the logical terminal associated with the current
task, the #TRNSTAT=BIND can only be used with terminal tasks.

Note: If a terminal statistics block (TSB) is already allocated for the logical
terminal associated with the current task, the BIND request writes any existing
statistics to the log and clears the TSB for new statistics.

When a #TRNSTAT TYPE=BIND request is issued, the system assigns the
transaction a 40-character identifier. The first 32 characters are the identifier of
the signed-on user, if any. The last 8 characters are the identifier of the logical
terminal associated with the current task.

ACCEPT
Requests that the system return the contents of the TSB to a preallocated location
in program storage and/or write the block to the DC/UCF log file by the WRITE
option described below. The system does not delete the contents of the TSB as a

6-292 CA-IDMS DML Reference — Assembler

6.70 #TRNSTAT

result of the ACCEPT option; transaction statistics can accumulate between
#TRNSTAT statements where the ACCEPT option is specified. To prevent the
program from altering the contents of the TSB and to ensure integrity of the data,
the system returns a copy of the TSB to the program.

END
Ends the transaction and frees the TSB. The system ends the transaction when the
task issuing the #TRNSTAT TYPE=END request terminates. Optionally, END
can write the TSB to a preallocated location in program storage by using the
RECORD option described below. To prevent the program from altering the
contents of the TSB and to ensure integrity of the data, the system returns a copy
of the TSB to the program.

RECORD=
(#TRNSTAT TYPE=ACCEPT or END requests only); specifies the location of the
storage area into which the system places the TSB.

record-name-register
A register that contains the location of the area, the symbolic name of the area, or
an absolute expression.

WRITE=
(#TRNSTAT TYPE=ACCEPT or END requests only); requests that the system
write the contents of the TSB to the DC/UCF log file.

YES
(Default); requests that the system write the TSB to the log file.

NO
Requests that the system not write the TSB to the log file.

COND=
Specifies whether the #TRNSTAT request is conditional and under what error
conditions control should be returned to the issuing program.

NO
(Default); specifies that the request is not conditional.

ALL
Specifies that control is returned to your program if the #TRNSTAT request
cannot be serviced for any of the reasons described under condition.

condition
Specifies one or more conditions under which the system returns control to the
issuing program. Multiple conditions must be enclosed in parentheses and
separated by commas. The following options can be specified:

■ DEAD (TYPE=BIND only) specifies that storage for the TSB is not available;
waiting would cause a deadlock.

■ SBNF specifies that a TSB for the user terminal cannot be found for a
#TRNSTAT TYPE=ACCEPT or END request. This condition is probably
due to a #TRNSTAT BIND not having been issued.

■ INVP specifies that the requested task is not associated with a logical
terminal or that the request is invalid.

Chapter 6. Data Manipulation Language Statements 6-293

6.70 #TRNSTAT

■ NOTR specifies that transaction statistics or task statistics are not enabled in
the DC/UCF system.

DEADXIT=deadlock-label
Specifies the symbolic name of a routine to which the system returns control if
storage for the TSB is not available, and waiting would cause a deadlock.

SBNFXIT=statistics-block-not-found-label
Specifies the symbolic name of a routine to which the system returns control if a
TSB for the terminal cannot be found for a #TRNSTAT TYPE=ACCEPT or END
request.

INVPXIT=invalid-parameter-list-label
Specifies the symbolic name of the routine to which the system returns control
when the requested task is not associated with a logical terminal or when the
request is invalid.

NOTRXIT=no-transaction-statistics-allowed-label
Specifies the symbolic name of a routine to which the system returns control when
transaction statistics or task statistics are not enabled in the DC/UCF system.

ERROR=error-label
Specifies the symbolic name of a routine to which the system returns control if a
condition specified in the COND parameter occurs for which no other exit routine
was coded.

Example: The #TRNSTAT statement shown below requests that the system return
the contents of the TSB to TSBAREA in program variable storage and to write the
block to the DC/UCF log file. Control is returned to the program if this request would
result in a deadlock or if the TSB cannot be found.

#TRNSTAT TYPE=ACCEPT,RECORD=TSBAREA,WRITE=YES,COND=(SBNF,DEAD)

Status codes: By default, the #TRNSTAT statement is unconditional; any runtime
error will result in an abend of the issuing task.

After completion of the #TRNSTAT request, the value in register 15 indicates the
outcome of the operation:

Register 15
value

Meaning

X'00' The request has been serviced successfully. For TYPE=BIND
only, an existing TSB has been written to the DC/UCF log.

X'04' The request has been serviced; a new TSB has been allocated
(TYPE=BIND only).

X'08' Storage for the TSB is not available and waiting would cause a
deadlock (TYPE=BIND only).

X'0C' No TSB exists; a #TRNSTAT TYPE=BIND request has not been
issued (TYPE=ACCEPT or END only).

6-294 CA-IDMS DML Reference — Assembler

6.70 #TRNSTAT

Register 15
value

Meaning

X'10' The task issuing the #TRNSTAT request is not associated with a
logical terminal or the request is invalid.

X'14' The collection of task statistics or transaction statistics was not
enabled during system generation.

Chapter 6. Data Manipulation Language Statements 6-295

6.71 #WAIT

 6.71 #WAIT

The #WAIT statement relinquishes control to the system. Control is relinquished for
one of the following reasons:

■ To wait for the completion of one or more events

■ To give other higher priority ready-to-run tasks a chance to be dispatched by the
system.

If a task relinquishes control to await completion of an event, an event control block
(ECB) must be defined for each event for which the task is waiting. If an ECB is
already posted when the #WAIT is issued, the task is redispatched immediately and
control does not pass to another task.

An ECB is a binary three-fullword field used to indicate the status of an event. If the
ECB contains zeros, the event is not complete or has not been posted. If the ECB
contains a nonzero value, the event has been posted. The ECB field can be allocated
explicitly by individual programs or implicitly by the system:

■ Program allocation — A three-fullword storage area must be defined in the
variable storage of the associated programs. Programs using the ECB field are
responsible for establishing addressability to the ECB as well as indicating the
status of the event.

■ DC/UCF system allocation — The three-fullword field associated with the ECB
is allocated by the system. To wait on an event, the program specifies the
4-character ECB ID. The system associates the ECB ID with a fullword field and
automatically sets the status of the ECB field.

6-296 CA-IDMS DML Reference — Assembler

6.71 #WAIT

 Syntax

��─┬─────────┬─ #WAIT ──�

└─ label ─┘

 �─┬─────────────────────┬──�

└─ TYPE= ─┬─ LONG ───┬┘

├─ SHORT ──┤

└─ HICCUP ─┘

 �─┬────────────────────────────────────┬─────────────────────────────────────�

└─ , ─┬─ ECB=ecb-pointer ──────────┬─┘

├─ ECBID=ecb-id-register ────┤

└─ ECBLIST=ecb-list-pointer ─┘

 �─┬────────────────────┬───�

└─ ,COND= ─┬─ NO ← ─┬┘

└─ DEAD ─┘

 �─┬───────────────────────────┬──�

└─ ,DEADXIT=deadlock-label ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

 Parameters

TYPE=
Specifies whether the task is relinquishing control to await the completion of an
event, or is giving other tasks the chance to be dispatched. If the the task is
waiting for an ECB, the TYPE parameter specifies whether the wait is expected to
be long-term or short-term.

LONG
(Default); specifies that the wait is expected to be long-term. LONG is specified
for all waits expected to last a second or more; for example, terminal input. An
ECB is required for LONG requests.

SHORT
Specifies that the wait is expected to be short-term. SHORT is specified for all
waits expected to last a fraction of a second; for example, a disk I/O. An ECB is
required for SHORT requests.

HICCUP
Relinquishes control to another ready-to-run task before being dispatched.
HICCUP requests do not require an ECB.

ECB=ecb-pointer
Defines the ECB for which the task will wait.Ecb-pointer is a register that points
to the user-defined three-fullword field that contains the ECB or the symbolic
name of the ECB field.

ECBID=ecb-id-register
Specifies the 4-character ID of a previously defined ECB for which the task will
wait. Ecb-id-register is a register that contains the ECB ID, the symbolic name of
a fullword field that contains the ECB ID, or the ID literal enclosed in quotation
marks.

Chapter 6. Data Manipulation Language Statements 6-297

6.71 #WAIT

ECBLIST=ecb-list-pointer
Specifies that the wait is for more than one event. Each event in the list is
represented by a pair of fullwords:

■ The first fullword is a pointer to the ECB associated with the event

■ The second fullword is zeros

Note: To identify the end of the list, the high-order bit of the last fullword in the
parameter list must be turned on. Ecb-list-pointer is a register that points to the
list or the user-defined symbolic name of the fullword area containing the list of
ECBs.

COND=
Specifies whether this #WAIT request is conditional and under what condition
control should be returned to the issuing program.

NO
(Default); specifies that the request is not conditional.

DEAD
Specifies that the request is conditional. Control is returned if waiting for the
specified ECBs would cause a deadlock.

DEADXIT=deadlock-label
Specifies the symbolic name of the routine to which control should be returned if
waiting for the specified ECBs would cause a deadlock.

ERROR=error-label
Specifies the symbolic name of the routine to which control is returned if a
condition specified in the COND parameter occurs for which no other exit routine
was coded. In this case, the ERROR parameter functions the same as DEADXIT.

Example: The #WAIT statement shown below passes control to the system while
waiting for terminal input. Processing is suspended until the ECB for the task is
posted, indicating that the terminal input operation is completed. If this #WAIT
request would cause a deadlock, control is returned to the LOCKRTN9 routine.

#WAIT TYPE=LONG,ECB=ECB�9,COND=DEAD,DEADXIT=LOCKRTN9

Status codes: By default, the #WAIT request is unconditional; any runtime error
results in an abend of the issuing task.

After completion of the #WAIT request, the value in register 15 indicates the outcome
of the operation:

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'08' The request cannot be serviced because to wait for the specified
ECBs would cause a deadlock.

6-298 CA-IDMS DML Reference — Assembler

6.72 #WTL

 6.72 #WTL

The #WTL (write to log) statement performs the following functions:

■ Retrieves a predefined message from the message area of the dictionary

■ Sends the message to selected destinations

■ Optionally writes the message to a specified location in program storage

Messages are stored in the message area of the dictionary. Each message in the
dictionary consists of the message text and the message destination. Typical
destinations are the operator console and the DC/UCF log file. Messages are defined
in the dictionary by using the IDD DDDL compiler.

�� For more information on the IDD DDDL compiler, refer to the IDD DDDL
Reference.

The message text can be dynamically changed by your program using symbolic
parameters. You can also optionally request the system not to retrieve the message but
to send only the message ID and symbolic parameter replacement values to the
selected destinations.

The message ID specified in a #WTL statement is a 7-digit number. The first six
digits contain the message identifier used to retrieve the message from the dictionary.
The seventh digit digit is a severity code. When the program requests that the system
retrieve the message from the dictionary (MSGDICT=YES), a predefined severity code
is retrieved along with the message text.

When the dictionary lookup is bypassed (MSGDICT=NO), the system uses the severity
code specified in the program. The severity level determines the action the system
takes after the message is written to the log.

The dictionary severity may be overridden by using the OVRIDES parameter.

The possible severity codes and their resulting DC/UCF system responses are listed
below:

Severity code DC/UCF system action

0 Returns control to the issuing program and continues processing

1 Snaps all task resources to the log and returns control to the issuing
program

2 Snaps all system areas to the log and returns control to the issuing
program

3 Snaps all task resources and abends the task with a task abend code
of D002

Chapter 6. Data Manipulation Language Statements 6-299

6.72 #WTL

If a #WTL statement specifies a message ID that is not in the message dictionary, the
system issues a prototype message with severity level 0. Messages should be defined
in the message dictionary before they are issued by an executing program.

The message text can be dynamically altered by using symbolic parameters. Messages
stored in the message dictionary can contain symbolic parameters, identified by an
ampersand (&) followed by a 2-digit numeric identifier. Symbolic parameters can
appear in any order in the message.

The #WTL statement can specify replacement values for one or more symbolic
parameters by using the PARMS operand. The position of replacement values in the
#WTL request must correspond exactly with the 2-digit numeric identifier in the
message text. For example, the first value specified corresponds to &01, the second
&02, and the third &03, as shown in the example below.

The stored message text reads:

THIS IS TEXT &�1 AND &�3 OR &�2

The PARMS clause reads: PARMS=('A','B','C'). The resulting text would read:

THIS IS TEXT A AND C OR B

If the message destination is the operator console, the #WTL can optionally request a
reply. An event control block (ECB) can be defined that will permit control to be
returned immediately to the issuing task without waiting for the reply. The ECB will
be posted by the system when the reply is sent. If no ECB is defined, control is not
returned to the issuing task until the reply has been received.

Severity code DC/UCF system action

4 Snaps all system areas and abends the task with a task abend code
of D002

5 Abends the task with a task abend code of D002

6 Undefined

7 Undefined

8 Snaps all system areas and abends the system with a system abend
code of 3996

9 Terminates the system with a system abend code of 3996

6-300 CA-IDMS DML Reference — Assembler

6.72 #WTL

 Syntax

��─┬─────────┬─ #WTL MSGID=message-id-pointer ────────────────────────────────�

└─ label ─┘

 �─┬───┬────────────────────────────────�

└─ ,MSGPREF= ─┬─ 'DC' ← ─────────────────┬┘

└─ message-prefix-pointer ─┘

 �─┬──┬─────────────────────────────────�

└─ ,PLIST= ─┬─ SYSPLIST ← ─────────────┬─┘

└─ parameter-list-pointer ─┘

 �─┬────────────────────────┬───�

└─ ,MSGDICT= ─┬─ YES ← ─┬┘

└─ NO ────┘

 �─┬──┬─────────────────────────────�

└─ ,PARMS= ─┬─── NO ← ─────────────────────┬┘

 │ ┌──────────────────────┐ │

└─(──↓─ parameter-register ─┴─)─┘

 �─┬───┬────────�

└─ ,REPLY= ─┬─ NO ← ──┬─┘

├─ (YES,reply-location ─┬─────────────────────┬─) ─┤

│ └─ ,reply-max-length ─┘ │

└─ (CANCEL,reply-location) ─────────────────────────┘

 �─┬─────────────────────────────────┬──�

└─ , ─┬─ ECB=ecb-pointer ───────┬─┘

└─ ECBID=ecb-id-register ─┘

 �─┬───┬──�

 └─,RTNTEXT=return-text-location ─┬─────────────────────────────────────┬┘

 └─,RTNLEN=return-text-length-pointer ─┘

 �─┬─────────────────────────────────────┬────────────────────────────────────��

└─ ,OVRIDES=override-address-pointer ─┘

 Parameters

MSGID=message-id
Specifies the 7-digit message ID that is stored in the message dictionary.
Message-id can be specified as follows:

■ A register that points to the field containing the message ID

■ The symbolic name of a user-defined message ID

■ A message ID literal enclosed in quotation marks

A message ID must be a 4-byte packed decimal field (PL4), formatted as
nnnnnnS, where nnnnnn is the 6-digit ID and S is the severity code.Message-id
can specify any number in the range 900001 through 999999; id numbers 000001
through 900000 are reserved for use by the system.

MSGPREF=DC/message-prefix-pointer
Specifies a 2-character alphanumeric prefix to the message ID. The default
message prefix is 'DC'.

Note: It is important when using the MSGPREF option that you keep the
message ID within the user range of 900001 through 999999. The system uses

Chapter 6. Data Manipulation Language Statements 6-301

6.72 #WTL

message prefixes which could cause a conflict with user message prefixes unless
this restriction is observed.

message-prefix-pointer
A register that points to the prefix, the symbolic name of a user-defined field
containing the prefix, or the prefix literal enclosed in quotation marks.

PLIST=
Specifies the area in which the system builds the #WTL parameter list.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system builds the
#WTL parameter list.

parameter-list-pointer
A register that points to the area or the symbolic name of the area in which the
system builds the #WTL parameter list.

If MSGID is the only operand specified on the #WTL request, you do not need to
specify PLIST. If any additional operands are included, the following rules
determine the size of the PLIST:

1 + P + X

where the following conditions are met:

■ P is the number of parameters coded in the PARMS operand (described
below).

■ X is as follows:

– At least 1 if either RTNTEXT or REPLY is specified

– At least 3 if OVRIDES is specified

– At least 4 if ECB or ECBID is specified

– At least 5 if RTNLEN is specified

MSGDICT=
Specifies whether to retrieve the message from the message area of the dictionary.

YES
(Default); requests that the system locate the predefined message, apply
substitution values, and send the message to the designated destinations.

NO
Requests that the system bypass the dictionary. The system writes a message to
the console operator and log file that contains only the message ID and any
replacement values specified in the PARMS parameter.

OVRIDES=
Override the default destination and/or severity code values.

override-address-pointer
A register that points to the address of the override values or the symbolic name
of the field containing the override values.

Override values must be defined in the following manner:

6-302 CA-IDMS DML Reference — Assembler

6.72 #WTL

PARMS=
Specifies replacement values for one or more symbolic parameters stored with the
message text.

Note: If the text parameters contain any binary zeroes (x'00'), CA-IDMS/DC
automatically changes them to blanks (x'40'). Thus, to ensure reentrancy, one
should make sure to:

■ Copy the fields into work fields prior to executing the #WTL statement

■ Reference the work fields in the PARMS= parameter of the #WTL marco

NO
(Default); specifies that there are no symbolic parameters to be replaced, or
requests that the system not replace any of the symbolic parameters.

parameter-register
Requests that the system replace the specified parameters.Parameter-register is a
register that points to the replacement field, the symbolic name of a user-defined
replacement field, or the replacement value literal enclosed in quotation marks.

When parameter-register is a register or user-defined field, each parameter field
must begin with a 1-byte field from which the system obtains the length of the
adjacent replacement field. The value in the length does not include the length
byte.

REPLY=
Performs one of the following functions:

■ Specifies that your program expects a reply to the message being sent

■ Cancels a previously issued #WTL request for a reply to a message

The REPLY and RTNTEXT options are mutually exclusive; do not specify both
options on a single #WTL request. The following options can be specified for the
REPLY parameter:

NO
(Default); specifies that no reply is expected.

Bytes Contents

0 X'8�' — Destination is the DC log

X'4�' — Destination is the console operator

X'2�' — Destination is the terminal operator

X'1�' — Destination is the ID of any terminal

X'�8' — Override the severity with severity

passed in message ID

X'�1' — Null override

1 - 2 Overrides for MVS description in the format 00N0, where N is a
valid MVS descriptor code.

3 - 4 Overrides for MVS route code in the format 00N0, where N is a
valid MVS route code.

Chapter 6. Data Manipulation Language Statements 6-303

6.72 #WTL

(YES,reply-location,reply-max-length)
Specifies that a reply is expected and should be returned to the area defined by
reply-location and, optionally,reply-max-length.

reply-location
Specifies the location of the area reserved for a reply to the message issued by a
#WTL request.Reply-location is either a register that points to the area or the
symbolic name of that area.

reply-max-length
Specifies the maximum length, in bytes, of the area reserved for the reply.
Reply-max-length is an absolute expression of the area length. If the maximum
length is not specified by using the REPLY option, you must indicate the
maximum length in the second halfword of the reply location.

Note: If YES is specified, the ECB or the ECBID parameters must be included
to identify the ECB to be posted.

When the reply is sent, the reply area will be formatted by the system, as shown
below:

(CANCEL,reply-location)
Cancels a request for a reply to a previously issued #WTL request.Reply-location
specifies the area reserved for a reply to the message.Reply-location is either a
register that points to the area or the symbolic name of the area.

ECB=
(#WTL requests with REPLY=YES only); identifies the ECB to be posted when
the reply has been sent to its destination. Naming an ECB allows control to return
immediately to the issuing task without waiting for a reply. The system will post
the ECB when the reply is sent. If no ECB is defined, the system does not return
control to the issuing task until the reply is received.

ECB=
Identifies the ECB that is posted when the reply is sent.

ecb-pointer
Either a register that points to the fullword ECB or the symbolic name of the
ECB.

Bytes Contents

0 - 1 Reserved for system use

2 - 3 Length of the reply text expressed as a halfword binary value. If
the maximum reply length is not specified, you must set this
maximum length before issuing the #WTL request. On completion
of the #WTL request, this field will contain the actual length of the
text.

4 - n Reply text

6-304 CA-IDMS DML Reference — Assembler

6.72 #WTL

ECBID=
Identifies the 4-character symbolic ECB that is posted when the reply is sent.

ecb-id-register
Either a register that contains the ECB ID, the symbolic name of a fullword field
that contains the ECB ID, or the ID literal enclosed in quotation marks.

RTNTEXT=return-text-location
Specifies the location into which the system places the retrieved message text
identified bymessage-id. Any replacement values specified in the PARMS
parameter are included in the retrieved text.

If the length of the retrieved message text (RTNLEN) is not specified, the first
byte of the return text receiving fieldmust specify the length, in hexadecimal
notation, of the returned string.

return-text-location
Either a register that points to the storage area reserved for the message text or the
symbolic name of a user-defined field reserved for the message text.

Note: The RTNTEXT and REPLY options are mutually exclusive; only one of
these operands can be specified in a single #WTL request.

RTNLEN=
Indicates the length of the return text receiving field.

return-text-length-pointer
A register that points to the length of the field, a halfword or fullword field
containing the length of the field, or an absolute expression of the length of the
field enclosed in quotation marks.

If this parameter is included, the first byte of the RTNTEXT receiving field does
not have to be a length indicator. If the length specified is not large enough to
accommodate the entire message, register 1 will contain the number of lines that
could not be sent.

Example: The following figure illustrates a #WTL statement that supplies three
replacement parameters and requests a reply. Program A issues a #WTL request for
message 990100 with a prefix DC. The message text and severity are stored in the
message area of the dictionary. Symbolic parameters are within the message text. The
program specifies values to replace the symbolic parameters &01, &02, and &03
stored in the message area of the dictionary along with the message text. The system
sends the message to terminal A, which is the logical terminal associated with the
issuing task, and waits for a reply. The reply is returned to the area specified by
REPLY; the length of the reply can be up to 20 bytes.

Chapter 6. Data Manipulation Language Statements 6-305

6.72 #WTL

Status codes: The system returns the following values to register 15 during
processing of a #WTL request. Any value greater than zero indicates that the request
was not serviced, and no #WTL was performed. Register 15 values are as follows:

Register 15
value

Meaning

X'00' The request has been serviced successfully.

X'04' An invalid parameter or combination of parameters has been
specified.

X'08' A resource necessary for the processing of the request, for example,
a resource control element, is not available.

X'0C' The maximum number of outstanding replies was exceeded.

X'10' The length of the return text area is not large enough to contain the
entire message text.

6-306 CA-IDMS DML Reference — Assembler

6.73 #XCTL

 6.73 #XCTL

The #XCTL statement transfers control and sends an optional parameter list to a
specified program. Control does not return to the issuing program when the specified
program ends.

 Syntax

��─┬─────────┬─ #XCTL PGM=program-name-pointer ───────────────────────────────�

└─ label ─┘

 �─┬──┬─────────────────────────────────�

└─ ,PLIST= ─┬─ SYSPLIST ← ─────────────┬─┘

└─ parameter-list-pointer ─┘

 �─┬────────────────────────────────────┬─────────────────────────────────────��

└─ ,PARMS= ─┬─ NO ← ────────────────┬┘

└─ (parameter-pointer) ─┘

 Parameters

PGM=
Specifies the 1- to 8-character name of the program to which control is
transferred.

program-name
A register that points to a field that contains the program name, the symbolic
name of a user-defined field that contains the program name, or the program-name
literal enclosed in quotation marks.

PLIST=
Specifies the location of the storage area that contains one or more parameters to
be passed to the program receiving control.

SYSPLIST
(Default); is the symbolic name of the storage area in which the system builds the
parameter list.

parameter-list-pointer
Either a register that points to the area in which the system builds the list or the
symbolic name of the area.

The size of the parameter-list area is equal to two fullwords plus one fullword for
each parameter listed. Thus, if no parameters are specified (PARMS=NO), the
length of the storage area is two fullwords; if one parameter is specified, the
length is three fullwords.

PARMS=
Specifies whether parameters will be passed to the program receiving control.

NO
(Default); specifies that no parameters will be passed to the program.

Chapter 6. Data Manipulation Language Statements 6-307

6.73 #XCTL

parameter-pointer
Specifies that parameters will be passed to the program.Parameter-register is
either a register that contains the address of the parameter or the symbolic name
of a user-defined field that contains the parameter.

Example: The #XCTL statement shown below transfers control to the Cloud
Airlines flight booking program and passes parameters that specify the flight, the city
of departure, and the flight destination.

#XCTL PGM='CLBOOK',PARMS=(FLT,DEPART,DEST)

Status codes: By default, the #XCTL request is unconditional. Error conditions
that can occur are described below:

■ A no-space-available-in-program-pool condition is caused when there is not
enough storage in the program pool to accommodate the program. The system
delays processing until sufficient storage becomes available. If such a wait would
cause a deadlock, the system aborts the program.

■ A nonconcurrent-program-in-use condition is caused when a copy of the program
is already in use and is marked as nonconcurrent (indicating that this program can
be used by one task at a time). The system delays processing until the program
becomes available.

■ A storage-conflict condition is caused when a copy of the previously loaded
program is temporarily overlayed while being used by a waiting task. The system
delays processing until the program is replaced in the program pool.

■ Any abnormal condition causes the system to terminate the program abnormally.
Conditions in this category include:

– An I/O error

– A program not found in the PDT (program definition table) or marked
out-of-service

– A wait-on-storage (default action resulting from the
no-space-available-in-program-pool condition) would result in a deadlock

6-308 CA-IDMS DML Reference — Assembler

6.74 Logical record clauses

6.74 Logical record clauses

Logical record clauses are used with any of the four DML statements that access
logical records: @OBTAIN, @MODIFY, @STORE, and @ERASE. The logical
record clauses are as follows:

■ WHERE specifies criteria used to select logical-record occurrences or to limit the
selection of logical-record occurrences

■ ON tests for a specific path status returned to indicate the result of a
logical-record DML statement

The WHERE and ON clauses are explained in this section.

 6.74.1 WHERE clause

Functions of the WHERE clause: The WHERE clause has two major functions:

■ To direct the program to a predefined path in the subschema. The path is
defined by the DBA and is transparent to the application program. Predefined
paths allow the program to access database records without issuing specific
instructions for navigating the database.

■ To specify selection criteria to be applied to a logical record. Selection criteria
allow the program to specify attributes of the desired logical record, reducing the
need for the program to inspect multiple logical record occurrences.

Two elements in a WHERE clause: The WHERE clause is constructed from two
elements:

■ A positional parameter that contains the key value WHERE

■ An Assembler remark that encodes a Boolean expression that consists of
comparisons and keywords connected by Boolean operators (AND, OR, and NOT)

An Assembler logical record DML statement that contains a WHERE clause consists
of an Assembler macro parameter concatenated with a compiler-level expression. The
remark is resolved by the DML precompiler, not by the assembler. Therefore,
programs that contain logical record DML statements using WHERE clauses must be
submitted to the DML precompiler before assembly.

Coding WHERE: Because the Boolean expression is treated as an Assembler
remark, it can be written in a more readable form than conventional Assembler
statements. WHERE clauses can span several lines in an Assembler program. The
keyword WHERE must begin in column 16, continuation lines must be in column 16
or greater, and are marked by coding a nonblank character in column 72. Descriptive
comments cannot be on the same line as the WHERE clause.

Including boolean operators: Individual comparisons and keywords must be
connected by the Boolean operators AND, OR, and NOT. Parentheses can be used to
clarify a multiple-comparison Boolean expression or to override preceding operators.

Chapter 6. Data Manipulation Language Statements 6-309

6.74 Logical record clauses

Operators in a WHERE clause are evaluated in the following order:

1. Comparisons enclosed in parentheses, in order of precedence within parentheses

2. Arithmetic, comparison, and Boolean operators in order of precedence, from
highest to lowest:

a. Unary plus or minus in an arithmetic expression

b. Multiplication or division in an arithmetic expression

c. Addition or subtraction in an arithmetic expression

d. MATCHES or CONTAINS comparison operators

e. EQ, NE, GT, LT, GE, LE comparison operators

f. NOT Boolean operator

g. AND Boolean operator

h. OR Boolean operator

3. From left to right within operators of equal precedence

 Syntax

��─── ,WHERE ─┬───────┬─┬─ designated-keyword ─┬──────────────────────────────�

└─ NOT ─┘ └─ comparison ─────────┘

 �─┬──┬─────────────────────��

│ ┌──┐ │

└─↓──┬─ AND ─┬──┬───────┬─┬─ designated-keyword ─┬─┴─┘

└─ OR ──┘ └─ NOT ─┘ └─ comparison ─────────┘

6-310 CA-IDMS DML Reference — Assembler

6.74 Logical record clauses

Expansion of comparison

��─┬─ literal ─────────────────────────────────┬──────────────────────────────�

├─ idd-defined-variable-field-name ─────────┤

├─ logical-record-field-name ─┬─────────┬───┤

│ └─ OF LR ─┘ │

└─ arithmetic-expression ───────────────────┘

 �──┬── CONTAINS ─┬───�

├── MATCHES ──┤

├┬─ EQ ─┬─────┤

│└─ = ──┘ │

├── NE ───────┤

├┬─ GT ─┬─────┤

 │└─ > ─┘ │

├┬─ LT ─┬─────┤

 │└─ < ─┘ │

├── GE ───────┤

└── LE ───────┘

 �─┬─ literal ─────────────────────────────────┬──────────────────────────────��

├─ idd-defined-variable-field-name ─────────┤

├─ logical-record-field-name ─┬─────────┬───┤

│ └─ OF LR ─┘ │

└─ arithmetic-expression ───────────────────┘

 Parameters

dba-designated-keyword/comparison
Specify selection criteria to be applied to the logical record.

dba-designated-keyword
Specifies a keyword that applies to the named logical record. The DBA has
previously associated this keyword with the named logical record; the keyword
routes the logical-record request to the appropriate predetermined path in the
subschema.Dba-designated-keyword can be no longer than 32 characters.

Note: A path must exist to service a request that includes
dba-designated-keyword. If no such path exists, the DML precompiler
issues an error message.

comparison
Specifies the comparison operation to be performed, using the indicated operands
and operators.Comparison also may direct the logical record request to a path in
the subschema.

Syntax for comparison contains individual comparisons and keywords that are
connected by the Boolean operators AND, OR, and NOT. Parentheses can be
used to clarify a multiple-comparison Boolean expression or to override the
precedence of operators.

literal/idd-defined-variable-field-name/
logical-record-field-name/arithmetic-expression
Identifies a left or right comparison operand.

literal
Specifies an alphanumeric or numeric literal. Alphanumeric literals must be
enclosed in site-standard quotation marks.

Chapter 6. Data Manipulation Language Statements 6-311

6.74 Logical record clauses

dd-defined-variable-field-name
Specifies a program variable storage field predefined in the dictionary.

logical-record-field-name
Specifies a data field that participates in the named logical record.
Logical-record-field-name uniquely identifies the named logical-record field.

The optional OF LR entry specifies that the value of the named field at the time
the request is issued will be used throughout request processing. If the value of
the field changes during request processing, LRF will continue to use the original
value. If the OF LR entry is not included and the value of the field changes
during request processing, the new field value in variable storage will be used.

arithmetic-expression
Specifies an arithmetic expression designated as a unary minus (-), unary plus (+),
simple arithmetic operation, or compound arithmetic operation. Arithmetic
operators permitted in an arithmetic expression are plus (+), minus (-), an asterisk
(*), and a slash (/). These arithmetic operators must have a blank on either side.
Operands can be the literals, variable fields, or the logical-record fields described
above.

CONTAINS/MATCHES/EQ/NE/GT/LT/GE/LE
Specifies the comparison operator.

CONTAINS
Is true if the value of the right operand occurs in the value of the left operand.
Both operands included with the CONTAINS parameter must be alphanumeric
values.

MATCHES
Is true if each character in the left operand matches a corresponding character in
the right operand (the mask). LRF compares the left operand with the mask, one
character at a time, moving from left to right.

The result of the match is either true or false:

■ The result is true if LRF reaches the end of the mask before encountering a
character in the left operand that does not match a corresponding mask
character.

■ The result is false if LRF encounters a character in the left operand that does
not match a mask character.

Three special characters can be used in the mask to perform pattern matching:

@ matches any alphabetic character

matches any numeric character

* matches any alphabetic or numeric character

Both the left operand and the mask must be alphanumeric values.

EQ
Is true if the value of the left operand is equal to the value of the right operand.

6-312 CA-IDMS DML Reference — Assembler

6.74 Logical record clauses

NE
Is true if the value of the left operand is not equal to the value of the right
operand.

GT
Is true if the value of the left operand is greater than the value of the right
operand.

LT
Is true if the value of the left operand is less than the value of the right operand.

GE
Is true if the value of the left operand is greater than or equal to the value of the
right operand.

LE
Is true if the value of the left operand is less than or equal to the value of the
right operand.

The WHERE clause can contain as many comparisons and keywords as are
required to specify the criteria you want. Processing efficiency is not affected by
the composition of the WHERE clause (other than the logical order of the
operators), since LRF automatically uses the most efficient path to process the
logical-record request.

If necessary, the value of the SIZE parameter on the @COPY
IDMS,SUBSCHEMA-LR-CTRL, @SSLRCTL, and @BIND SUBSCH statements
can be increased to accommodate very large and complex WHERE clause
specifications. For the algorithm to calculate lrc-block-size, see 5.4, “@COPY
IDMS” on page 5-9.

Examples: The WHERE clause shown below uses Boolean selection criteria to
obtain the requested EMPJOBLR occurrence. This statement retrieves any customer in
Massachusetts who has an outstanding balance greater than $1500, or who has an
outstanding balance less than $500 and has a questionable credit rating.

@OBTAIN EMPJOBLR WHERE MASSACHUSETTS AND ((UNITS � PRICE) - �

PAYMENT GT 15�� OR ((UNITS � PRICE) - �

PAYMENT GT 5�� AND (CREDRATE �

EQ 'REF' OR CREDRATE EQ 'REJ')))

 6.74.2 ON clause

The ON clause tests for a specific path status returned to indicate the result of a
logical record request. If LRF returns the specified path status, the imperative
statement included in the ON clause is executed. The imperative statement usually
consists of a GOTO statement. If the path status is not returned, the imperative
statement included in the ON clause is ignored.

Note: Only one ON clause can be coded per logical record DML statement; only one
specific path status can be tested for.

Chapter 6. Data Manipulation Language Statements 6-313

6.74 Logical record clauses

Standard path statuses: Path statuses are issued during execution of the path
selected to service the request. The following standard path statuses can be returned:

■ LR-FOUND is returned when the logical-record request has executed successfully.
LR-FOUND can be returned as the result of:

– Any @OBTAIN LRF statement

– Any of the other LRF statements containing a WHERE clause

When LR-FOUND is returned, the ERRSTAT field of the IDMS communications
block contains 0000.

■ LR-NOT-FOUND is returned when the specified logical record cannot be found,
either because no such record exists or because all such occurrences have already
been retrieved. LR-NOT-FOUND can be returned as the result of any of the four
LRF DML statements, provided that the path to which LRF is directed includes
retrieval logic. When LR-NOT-FOUND is returned, the ERRSTAT field of the
IDMS communications block contains 0000.

■ LR-ERROR is returned when a logical record request is issued incorrectly or
when an error occurs in the processing of the path selected to service the request.
When LR-ERROR is returned, the type of status code returned to the program in
the ERRSTAT field of the IDMS communications block differs according to the
type of error:

– When the error occurs in the logical-record request, the ERRSTAT field
contains a status code issued by LRF (with a major code of 20). For a list of
these codes, see 6.74.3, “Logical-record status codes” on page 6-315.

– When an error occurs in logical-record path processing, the ERRSTAT field
contains a status code issued by the DBMS (with a major code from 00 to
19). For a list of these codes, see 3.2.2, “ERRSTAT field and codes” on
page 3-11.

When accessing ASF-defined data tables, you should always check for all of the
following path statuses:

■ INVALID-DATA is returned when the data violates the definition-time selection
criteria. For example, INVALID-DATA is returned when the selection criteria is
WHERE STATE = 'MA' and the program tries to replace the state with 'NY'.
When INVALID-DATA is returned, the ERRSTAT field in the IDMS
communications block is set to 0000.

■ DEFN-MISSING is returned when the record definition cannot be found. When
DEFN-MISSING is returned, the ERRSTAT field in the IDMS communications
block is set to 0000.

■ OOAK-MISSING is returned when a one-of-a-kind record cannot be found.
When OOAK-MISSING is returned, the ERRSTAT field in the IDMS
communications block is set to 0000.

■ SYNC-ERROR is returned when the time stamp in the catalog and the table
definition do not match. When SYNC-ERROR is returned, the ERRSTAT field in
the IDMS communications block is set to 0000.

6-314 CA-IDMS DML Reference — Assembler

6.74 Logical record clauses

The return of one or more of these path statuses indicates a fatal error. For more
information, consult your DBA.

 Syntax

 �─┬───┬────────────────────────────�

└─ ,ONLRSTS=path-status,GOTO=branch-location ─┘

 Parameters

ONLRSTS=path-status
Tests for a path status returned as the result of the logical-record request issued by
the program.Path-status must be a quoted literal (1 to 16 bytes under MVS or 1
to 6 bytes under VSE) or a program variable.

Note: In addition to testing for a specific path status (using ONLRSTS), your
program should check for standard path statuses (for example,
LR-NOT-FOUND and LR-ERROR, and path statuses for ASF defined
tables if applicable) whenever the program issues a logical record request.

GOTO=branch-location
Specifies the program action to be taken if the indicated path status results from
the logical-record request.

Example: The following ON clause causes the program to branch to the NOFFICE
label when the path status specified in the variable NOOFF is met. NOOFF indicates
a path status indicating that there are no offices that meet the criteria specified in the
WHERE clause. Standard LRF path statuses are checked as well.

@OBTAIN REC=EMPJOBLR, �

 ONLRSTS=NOOFF,GOTO=NOFFICE, �

WHERE OFFICE-CODE-�45� EQ '�98�'

CLC LRSTAT,=CL16'LR-FOUND'

BE CRDITREF

CLC LRSTAT,=CL16'LR-ERROR'

BE LRERRTN

CLC LRSTAT,=CL16'LR-NOT-FOUND'

BE LRNTFND

6.74.3 Logical-record status codes

A path status of LR-ERROR signifies an error in the processing of a logical-record
request. When the error occurs in the request itself, LRF returns a path of LR-ERROR
to the LR-STATUS field of the logical-record request control (LRC) block and places
one of the following codes in the ERRSTAT field of the IDMS communications block:

Status code Meaning

2008 The named logical record is not defined in the subschema, or the
specified DML verb is not permitted with the named logical record.
The logical record name may have been misspelled.

2010 The subschema prohibits access to logical records.

Chapter 6. Data Manipulation Language Statements 6-315

6.74 Logical record clauses

Status code Meaning

2018 A path command has attempted to access a database record that has
not been bound.

2040 The WHERE clause in an @OBTAIN NEXT statement has
directed LRF to a different processing path than did the WHERE
clause in the preceding @OBTAIN statement for the same logical
record. Either the WHERE clause is incorrect or an @OBTAIN
FIRST should have been issued instead of @OBTAIN NEXT.

2041 LRF was unable to match the request's WHERE clause to a path in
the subschema.

2042 The logical-record path for the request specifies return of the
LR-ERROR path status to the program.

2043 Bad or inconsistent data was encountered in the logical-record
buffer during evaluation of the request's WHERE clause:

■ A WHERE clause has specified that a packed decimal field
should be compared to a field that is not packed; the field that
is not packed cannot be converted to packed because it
contains nonnumeric data.

■ Data in variable storage or in a database record does not
conform to its description.

A path status of LR-ERROR is returned to the program unless the
DBA has included an ON clause in the path to override this action.

2044 The request's WHERE clause does not include information required
by the logical-record path.

2045 A subscript value in a WHERE clause is either less than 0 or
greater than its maximum allowed value. A path status of
LR-ERROR is returned to the program unless the DBA has
included an ON clause in the path to override this action.

2046 A program check has been issued during evaluation of a WHERE
clause for one of the following reasons:

■ An arithmetic overflow would occur (fixed point, decimal, or
exponent).

■ An arithmetic underflow would occur (exponent).

■ A divide exception would occur (fixed point, decimal, or
floating point).

■ A significance exception has occurred.

A path status of LR-ERROR is returned to the program unless the
DBA has included an ON clause in the path to override this action.

6-316 CA-IDMS DML Reference — Assembler

6.74 Logical record clauses

These status codes can result from any of the logical-record DML statements with the
exception of 2040, which applies to @OBTAIN NEXT only.

Status code Meaning

2063 A request's WHERE clause contains a keyword that exceeds 32
characters.

2064 A path command has attempted to access a CALC data item that
has not been defined properly in the subschema.

2072 LRF cannot acquire sufficient storage to evaluate the request.

Chapter 6. Data Manipulation Language Statements 6-317

6.74 Logical record clauses

6-318 CA-IDMS DML Reference — Assembler

Appendix A. DML Precompile, Assembly, and
Link-Edit JCL

A.1 Overview .A-3
A.2 IDMSDMLA under MVS . A-5
A.3 IDMSDMLA under VSE . A-9
A.4 IDMSDMLA under CMS . A-16
A.5 IDMSDMLA under BS2000 . A-19
A.6 Link-edit considerations .A-21

Appendix A. DML Precompile, Assembly, and Link-Edit JCL A-1

A-2 CA-IDMS DML Reference — Assembler

A.1 Overview

 A.1 Overview

This appendix describes processing for Assembler programs containing DML
statements. It also provides samples of the MVS, VSE, CMS, and BS2000
JCL/commands you use to prepare these programs.

Processing Assembler programs containing DML: To prepare a DML
program for execution, you first execute the DML precompiler (IDMSDMLA). After
this, you assemble and link edit.

Steps for assembly: The following figure illustrates steps involved in assembling
a DML Assembler program.

Component Input Output

IDMSDMLA ■ Assembler source
program containing
DML

 ■ Protocol/control
information

 ■ Dictionary record
descriptions

■ Source Assembler program
with DML-generated code

■ DML and source listing and
diagnostics

Assembler Source program
produced by
IDMSDMLA

 ■ Object program

 ■ Assembler listing

Linkage Editor Object program
produced by assembler

 ■ Load module

 ■ Link-edit map

Appendix A. DML Precompile, Assembly, and Link-Edit JCL A-3

A.1 Overview

A-4 CA-IDMS DML Reference — Assembler

A.2 IDMSDMLA under MVS

A.2 IDMSDMLA under MVS

Executing under the central version IDMSDMLA (MVS)

//���

//�� PRECOMPILE PROGRAM ��

//���

//precomp EXEC PGM=IDMSDMLA,REGION=1�24K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//SYSPCH DD DSN=&&source,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,(1�,5),RLSE),

// DCB=(RECFM=FB,LRECL=8�,BLKSIZE=312�)

//SYSLST DD SYSOUT=A

//SYSIDMS DD �

DMCL=dmcl-name

DICTNAME=dictionary-name

Other SYSIDMS parameters, as appropriate

/�

//SYSIPT DD �

Assembler DML source statements

/�

//���

//�� ASSEMBLE PROGRAM ��

//���

//asm EXEC PGM=assembler,REGION=1�24K,PARM='DECK,LIST,NOLOAD'

//SYSPRINT DD SYSOUT=A

//SYSLIB DD DSN=sys1.maclib,DISP=SHR

// DD DSN=idms.maclib,DISP=SHR

//SYSUT1 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSUT2 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSUT3 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSPUNCH DD DSN=&&object,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,(1�,5),RLSE),

// DCB=(RECFM=FB,LRECL=8�,BLKSIZE=312�)

//SYSIN DD DSN=&&source,DISP=(OLD,DELETE)

//���

//�� LINK PROGRAM MODULE ��

//���

//link EXEC PGM=IEWL,REGION=3��K,PARM='LET,LIST,NCAL,XREF'

//SYSUT1 DD UNIT=disk,SPACE=(TRK,(2�,5))

//loadlib DD DSN=idms.loadlib,DISP=SHR

//SYSLMOD DD DSN=user.loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSN=&&object,DISP=(OLD,DELETE)

// DD �

 INCLUDE loadlib(IDMS) required for BATCH and DCBATCH, omit for CICS

 INCLUDE loadlib (IDMSCINT) for CICS only

 INCLUDE loadlib(IDMSCANC) optional; BATCH and DCBATCH only

 INCLUDE loadlib(IDMSOPTI) optional; BATCH and DCBATCH only

 ENTRY userentry

 NAME userprog(R)

/�

//�

idms.dba.loadlib data set name of the load library containing the DMCL
and database name table load modules

Appendix A. DML Precompile, Assembly, and Link-Edit JCL A-5

A.2 IDMSDMLA under MVS

Note: Depending on the central version operating environment, an IDMSOPTI
module link edited with IDMSDMLA can be used in place of or in addition to
the SYSCTL file.

idms.loadlib data set name of the load library containing the
CA-IDMS executable modules

sysctl DDname of SYSCTL file

idms.sysctl data set name of SYSCTL file

dcmsg DDname of the system message (DDLDCMSG) area

idms.sysmsg.ddldcmsg data set name of the system message (DDLDCMSG)
area

&&source name of the temporary data set output from the
precompiler

disk symbolic device name for work files

dmcl-name specifies the name of the dictionary the DMLF
precompiler should access

dictionary-name identifies the DC/UCF system to bind at runtime

assembler name of the assembler program

sys1.maclib vendor-supplied system macro library

idms.maclib vendor-supplied idms macro library, created at
installation time

&&object name of temporary data set output from Assembler

user.loadlib user application load library

loadlib DDname of the idms.loadlib

userentry name of a program entry point

userprog name of program in load library

A-6 CA-IDMS DML Reference — Assembler

A.2 IDMSDMLA under MVS

Executing in local mode IDMSDMLA (MVS)

//���

//�� PRECOMPILE PROGRAM ��

//���

//precomp EXEC PGM=IDMSDMLA,REGION=1�24K

//STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//dictb DD DSN=idms.appldict.ddldml,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//sysjrnl DD DSN=idms.tapejrnl,DISP=(NEW,CATLG),UNIT=tape

//SYSPCH DD DSN=&&source,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,(1�,5),RLSE),

// DCB=(RECFM=FB,LRECL=8�,BLKSIZE=312�)

//SYSLST DD SYSOUT=A

//SYSIDMS DD �

DMCL=dmcl-name

DICTNAME=dictionary-name

Other SYSIDMS parameters, as appropriate

/�

//SYSIPT DD �

Assembler DML source statements

/�

//���

//�� ASSEMBLE PROGRAM ��

//���

//asm EXEC PGM=assembler,REGION=1�24K,PARM='DECK,LIST,NOLOAD'

//SYSPRINT DD SYSOUT=A

//SYSLIB DD DSN=sys1.maclib,DISP=SHR

// DD DSN=idms.maclib,DISP=SHR

//SYSUT1 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSUT2 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSUT3 DD UNIT=disk,SPACE=(CYL,(3,2))

//SYSPUNCH DD DSN=&&object,DISP=(NEW,PASS),

// UNIT=disk,SPACE=(TRK,(1�,5),RLSE),

// DCB=(RECFM=FB,LRECL=8�,BLKSIZE=312�)

//SYSIN DD DSN=&&source,DISP=(OLD,DELETE)

//���

//�� LINK PROGRAM MODULE ��

//���

//link EXEC PGM=IEWL,REGION=3��K,PARM='LET,LIST,NCAL,XREF'

//SYSUT1 DD UNIT=disk,SPACE=(TRK,(2�,5))

//loadlib DD DSN=idms.loadlib,DISP=SHR

//SYSLMOD DD DSN=user.loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=A

//SYSLIN DD DSN=&&object,DISP=(OLD,DELETE)

// DD �

 INCLUDE loadlib(IDMS) required for BATCH and DCBATCH, omit for CICS

 INCLUDE loadlib (IDMSCINT) for CICS only

 INCLUDE loadlib(IDMSOPTI) optional; BATCH and DCBATCH only

 ENTRY userentry

 NAME userprog(R)

/�

//�

idms.dba.loadlib data set name of the load library containing the DMCL
and database name table load modules

idms.loadlib data set name of the load library containing the
CA-IDMS executable modules

dictb DDname of journal file

Appendix A. DML Precompile, Assembly, and Link-Edit JCL A-7

A.2 IDMSDMLA under MVS

idms.appldict.ddldml file-ID of the application dictionary definition
(DDLDML) area

dcmsg filename of the system message (DDLDCMSG) area

idms.sysmsg.ddldcmsg file-ID of the system message (DDLDCMSG) area

sysjrnl DDname of the tape journal file

idms.tapejrnl file ID of tape journal file

tape device name for the tape journal file

&&source name of the temporary data set output from the
precompiler

disk symbolic device name for work files

dmcl-name specifies the name of the dictionary the DMLF
precompiler should access

dictionary-name identifies the DC/UCF system to bind at runtime

assembler name of the assembler program

sys1.maclib vendor-supplied system macro library

idms.maclib vendor-supplied idms macro library, supplied at
installation time

&&object name of temporary data set output from Assembler

user.loadlib user application load library

loadlib DDname for the idms.loadlib

userentry name of a program entry point

userprog name of program in load library

A-8 CA-IDMS DML Reference — Assembler

A.3 IDMSDMLA under VSE

A.3 IDMSDMLA under VSE

Executing under the central version IDMSDMLA (VSE)

/��

/�� PRECOMPILE PROGRAM ��

/��

� step1

// EXEC PROC=IDMSLBLS

// UPSI b if specified in IDMSOPTI module

// DLBL idmspch,'temp.dmla',�

// EXTENT SYS�2�,nnnnnn,,,ssss,llll

// ASSGN SYS�2�,DISK,VOL=nnnnnn,SHR

// EXEC IDMSDMLA

Input SYSIDMS parameters here, as required

/�

Assembler/DML source statements

/��

/�� COMPILE PROGRAM ��

/��

/�

� step2

// DLBL IJSYSIN,'temp.dmla',�

// EXTENT SYSIPT,nnnnnn

 ASSGN SYSIPT,DISK,VOL=nnnnnn,SHR

// OPTION CATAL,NODECK,NOSYM

 PHASE userprog,�

// EXEC ASSEMBLY

/��

/�� LINK PROGRAM MODULE ��

/��

� step3

 CLOSE SYSIPT,SYSRDR

ENTRY (dmla)

// EXEC LNKEDT

/�

IDMSLBLS Name of the procedure provided at installation that
contains the file definitions for CA-IDMS dictionaries
and databases.

�� For a complete listing of IDMSLBLS, see
"IDMSLBLS Procedure", after the discussion about
executing in local mode.

b appropriate UPSI switch, 1 through 8 characters, if
specified in the IDMSOPTI module

idmspch filename of data set output from the IDMSDMLA
precompiler

temp.dmla file ID of data set output from the IDMSDMLA
precompiler

SYS�2� logical unit assignment of the DMLA output

Appendix A. DML Precompile, Assembly, and Link-Edit JCL A-9

A.3 IDMSDMLA under VSE

Runtime parameters: You can use SYSIDMS parameters to specify information
about your runtime environment.

�� For information on optional SYSIDMS parameters, refer toCA-IDMS Navigational
DML Programming.

INCLUDE statements: For programs that include an Assembler internal sort, place
the following statements in the second step, before EXEC ASSEMBLY:

ACTION NOAUTO prevents multiple inclusions of IDMS

INCLUDE IDMS IDMS interface for use with COMRG

 INCLUDE IDMSOPTI IDMSOPTI module

(omit in local mode)

INCLUDE IDMSCANC local mode abort entry point

(omit IDMSCANC if TP application)

Note: Assembler overlay programs must resolve references to IDMS within their root
segment; care must be taken to prevent the overlaying of the IDMS interface. Use of
IDMS and IDMSLDPT is recommended for these programs.

Executing in local mode: To execute the IDMSDMLA precompiler in local mode,
remove the UPSI specification and add the following statements in step 1 (the
IDMSDMLA step):

// TLBL sysjrnl,'idms.tapejrnl',,nnnnnn,,f

// ASSGN SYS��9,TAPE,VOL=nnnnnn

IDMSLBLS procedure: The IDMSLBLS procedure is provided during CA-IDMS
installation. It contains file definitions for the CA-IDMS components, such as these:

 ■ Dictionaries

 ■ Sample databases

■ Disk journal files

nnnnnn volume serial identifier of appropriate disk volume

ssss starting track (CKD) or block (FBA) of disk extent

llll number of tracks (CKD) or blocks (FBA) of disk extent

userprog name of program in the library

dmla name of Assembler/DML module

idms.tapejrnl file ID of tape journal file

f file number of tape journal file

sys��9 logical unit assignment for journal file

A-10 CA-IDMS DML Reference — Assembler

A.3 IDMSDMLA under VSE

 ■ SYSIDMS file

Tailor the IDMSLBLS procedure to reflect the filenames and definitions in use at your
site and include this procedure in VSE JCL job streams.

The following is a listing of the IDMSLBLS procedure:

� ──────── LIBDEFS ────────

// LIBDEF �,SEARCH=idmslib.sublib

// LIBDEF �,CATALOG=user.sublib

/� ───────────────────────── LABELS ─────────────────────────

// DLBL idmslib,'idms.library',1999/365

// EXTENT ,nnnnnn,,,ssss,15��

// DLBL dcdml,'idms.system.ddldml',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,1�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclod,'idms.system.ddldclod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,21

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclog,'idms.system.ddldclog',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,4�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcrun,'idms.system.ddldcrun',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,68

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcscr,'idms.system.ddldcscr',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,135

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcmsg,'idms.sysmsg.ddldcmsg',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,2�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclscr,'idms.sysloc.ddlocscr',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dirldb,'idms.sysdirl.ddldml',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,2�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dirllod,'idms.sysdirl.ddldclod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empdemo,'idms.empdemo1',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL insdemo,'idms.insdemo1',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL orgdemo,'idms.orgdemo1',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empldem,'idms.sqldemo.empldemo',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

Appendix A. DML Precompile, Assembly, and Link-Edit JCL A-11

A.3 IDMSDMLA under VSE

// DLBL infodem,'idms.sqldemo.infodemo',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL projdem,'idms.projseg.projdemo',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL indxdem,'idms.sqldemo.indxdemo',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sysctl,'idms.sysctl',1999/365,SD

// EXTENT SYSnnn,nnnnnn,,,ssss,2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL secdd,'idms.sysuser.ddlsec',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,26

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dictdb,'idms.appldict.ddldml',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dloddb,'idms.appldict.ddldclod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqldd,'idms.syssql.ddlcat',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,1�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqllod,'idms.syssql.ddlcatl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqlxdd,'idms.syssql.ddlcatx',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,26

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdml,'idms.asfdict.ddldml',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,2�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asflod,'idms.asfdict.asflod',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,4�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdata,'idms.asfdict.asfdata',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,2�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL ASFDEFN,'idms.asfdict.asfdefn',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,1�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j1jrnl,'idms.j1jrnl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j2jrnl,'idms.j2jrnl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j3jrnl,'idms.j3jrnl',1999/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL SYSIDMS,'#SYSIPT',�,SD

/+

/�

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

user.sublib name of the sublibrary within the library containing
user modules

idmslib filename of the file containing CA-IDMS modules

A-12 CA-IDMS DML Reference — Assembler

A.3 IDMSDMLA under VSE

idms.library file-ID associated with the file containing CA-IDMS
modules

SYSnnn logical unit of the volume for which the extent is
effective

nnnnnn volume serial identifier of appropriate disk volume

ssss starting track (CKD) or block (FBA) of disk extent

dccat filename of the system dictionary catalog (DDLCAT)
area

idms.system.dccat file-ID of the system dictionary catalog (DDLCAT)
area

dccatl filename of the system dictionary catalog load
(DDLCATLOD) area

idms.system.dccatlod file-ID of the system dictionary catalog load
(DDLCATLOD) area

dccatx filename of the system dictionary catalog index
(DDLCATX) area

idms.system.dccatx file-ID of the system dictionary catalog index
(DDLCATX) area

dcdml filename of the system dictionary definition
(DDLDML) area

idms.system.ddldml file-ID of the system dictionary definition (DDLDML)
area

dclod filename of the system dictionary definition load
(DDLDCLOD) area

idms.system.ddldclod file-ID of the system dictionary definition load
(DDLDCLOD) area

dclog filename of the system log area (DDLDCLOG) area

idms.system.ddldclog file-ID of the system log (DDLDCLOG) area

dcrun filename of the system queue (DDLDCRUN) area

idms.system.ddldcrun file-ID of the system queue (DDLDCRUN) area

dcscr filename of the system scratch (DDLDCSCR) area

idms.system.ddldcscr file-ID of the system scratch (DDLDCSCR) area

dcmsg filename of the system message (DDLDCMSG) area

idms.sysmsg.ddldcmsg file-ID of the system message (DDLDCMSG) area

dclscr filename of the local mode system scratch
(DDLOCSCR) area

Appendix A. DML Precompile, Assembly, and Link-Edit JCL A-13

A.3 IDMSDMLA under VSE

idms.sysloc.ddlocscr file-ID of the local mode system scratch (DDLOCSCR)
area

dirldb filename of the IDMSDIRL definition (DDLDML) area

idms.sysdirl.ddldml file-ID of the IDMSDIRL definition (DDLDML) area

dirllod filename of the IDMSDIRL definition load
(DDLDCLOD) area

idms.sysdirl.dirllod file-ID of the IDMSDIRL definition load
(DDLDCLOD) area

empdemo filename of the EMPDEMO area

idms.empdemo1 file-ID of the EMPDEMO area

insdemo filename of the INSDEMO area

idms.insdemo1 file-ID of the INSDEMO area

orgdemo filename of the ORGDEMO area

idms.orgdemo1 file-ID of the ORDDEMO area

empldem filename of the EMPLDEMO area

idms.sqldemo.empldemo file-ID of the EMPLDEMO area

infodem filename of the INFODEMO area

idms.sqldemo.infodemo file-ID of the INFODEMO area

projdem filename of the PROJDEMO area

idms.projseg.projdemo file-ID of the PROJDEMO area

indxdem filename of the INDXDEMO area

idms.sqldemo.indxdemo file-ID of the INDXDEMO area

sysctl filename of the SYSCTL file

idms.sysctl file-ID of the SYSCTL file

secdd filename of the system user catalog (DDLSEC) area

idms.sysuser.ddlsec file-ID of the system user catalog (DDLSEC) area

dictdb filename of the application dictionary definition area

idms.appldict.ddldml file-ID of the application dictionary definition
(DDLDML) area

dloddb filename of the application dictionary definition load
area

idms.appldict.ddldclod file-ID of the application dictionary definition load
(DDLDCLOD) area

sqldd filename of the SQL catalog (DDLCAT) area

A-14 CA-IDMS DML Reference — Assembler

A.3 IDMSDMLA under VSE

idms.syssql.ddlcat file-ID of the SQL catalog (DDLCAT) area

sqllod filename of the SQL catalog load (DDLCATL) area

idms.syssql.ddlcatl file-ID of SQL catalog load (DDLCATL) area

sqlxdd filename of the SQL catalog index (DDLCATX) area

idms.syssql.ddlcatx file-ID of the SQL catalog index (DDLCATX) area

asfdml filename of the asf dictionary definition (DDLDML)
area

idms.asfdict.ddldml file-ID of the asf dictionary definition (DDLDML) area

asflod filename of the asf dictionary definition load
(ASFLOD) area

idms.asfdict.asflod file-ID of the asf dictionary definition load (ASFLOD)
area

asfdata filename of the asf data (ASFDATA) area

idms.asfdict.asfdata file-ID of the asf data area (ASFDATA) area

ASFDEFN filename of the asf data definition (ASFDEFN) area

idms.asfdict.asfdefn file-ID of the asf data definition area (ASFDEFN) area

j1jrnl filename of the first disk journal file

idms.j1jrnl file-ID of the first disk journal file

j2jrnl filename of the second disk journal file

idms.j2jrnl file-ID of the second disk journal file

j3jrnl filename of the third disk journal file

idms.j3jrnl file-ID of the third disk journal file

SYSIDMS filename of the SYSIDMS parameter file

Appendix A. DML Precompile, Assembly, and Link-Edit JCL A-15

A.4 IDMSDMLA under CMS

A.4 IDMSDMLA under CMS

Executing under the central version IDMSDMLA (CMS)

FILEDEF SYSIPT DISK sysipt data a (RECFM F LRECL ppp BLKSIZE nnn

FILEDEF SYSPCH DISK prgnme assemble a

FILEDEF SYSIDMS DISK sysidms parms a (RECFM F LRECL ppp. BLKSIZE nnn

EXEC IDMSFD

OSRUN IDMSDMLA PARM='CVMACH=vmid' Precompiler step

FILEDEF TEXT DISK prgnme text a

GLOBAL TXTLIB asmlibvs IDMSLIB1

ASSEMBLE prgnme (OSDECK APOST LIB Assemble step

TXTLIB DEL utextlib prgnme

TXTLIB ADD utextlib prgnme

FILEDEF SYSLMOD uloadlib loadlib a (RECFM V LRECL 1�24 BLKSIZE 1� 24

FILEDEF objlib DISK utextlib txtlib a

FILEDEF SYSLIB DISK asmlibvs txtlib p

LKED linkctl data a (LIST XREF LET MAP RENT NOTERM PRINT SIZE 512K 64K

Link edit step

How to edit the SYSIDMS file: To edit the SYSIDMS file, enter these CMS
commands:

sysipt data a Filename, type, and mode of the file containing the
Assembler/DML source statements

ppp Record length of the data file

nnn Block size of the data file

prgnme assemble a Filename of the Assembler program

sysidms parms a Filename, filetype, and filemode of the file that
contains SYSIDMS parameters (parameters that define
your runtime environment)

vmid ID of the virtual machine running the CA-IDMS/DB
central version

asmlibvs Filename of the library that contains Assembler logic
modules

utextlib Filename of the user text library

uloadlib loadlib a Filename, filetype, and filemode of the user load library

objlib1 DDname of the first CA-IDMS/DB object library

objlib DDname of the user object library

asmlibvs txtlib p Filename, filetype, and filemode of the library that
contains Assembler logic modules

linkctl Filename of the file that contains the linkage editor
control statements

A-16 CA-IDMS DML Reference — Assembler

A.4 IDMSDMLA under CMS

XEDIT sysidms parms a (NOPROF

INPUT

 .

 .

 .

SYSIDMS parameters

 .

 .

 .

FILE

To run IDMSDMLA, you must include the NODENAME and DICTNAME SYSIDMS
parameters.

�� For information on SYSIDMS, refer toCA-IDMS Navigational DML Programming.

How to create the SYSIPT file: To create the SYSIPT file, enter these CMS
commands:

XEDIT sysipt data a (NOPROF

INPUT

 .

 .

 .

DML source statements

 .

 .

 .

FILE

How to create the LINKCTL file: To create the LINKCTL file, enter these CMS
commands:

XEDIT linkctl data a (NOPROF

INPUT

 .

 .

 .

INCLUDE objlib(prgnme)

INCLUDE objlib1(IDMS) IDMS is required, omit for CICS

INCLUDE objlib1(IDMSCINT) for CICS only

INCLUDE objlib1(IDMSCANC) IDMSCANC for BATCH and DCBATCH

ENTRY prgnme

NAME prgnme(R)

 .

 .

 .

FILE

Executing in local mode: To execute the IDMSDMLA precompiler in local mode,
remove the CVMACH parameter from OSRUN, and do one of the following:

■ Link IDMSDMLA with an IDMSOPTI program that specifies local execution
mode

■ Specify *LOCAL* as the first input parameter in the file specified in the
FILEDEF SYSIPT statement

■ Modify the OSRUN statement, as follows:

Appendix A. DML Precompile, Assembly, and Link-Edit JCL A-17

A.4 IDMSDMLA under CMS

OSRUN IDMSDMLA PARM='�LOCAL�'

Note: This option is valid only if the OSRUN command is issued from a System
Product Interpreter or from an EXEC2 file.

A-18 CA-IDMS DML Reference — Assembler

A.5 IDMSDMLA under BS2000

A.5 IDMSDMLA under BS2000

Executing under the central version IDMSDMLA (BS2000)

/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=idms.dba.loadlib

/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=sysctl,F-NAME=idms.sysctl,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=SYSIDMS,F-NAME=idms.sysidms

/ASSIGN-SYSOPT TO=temp.punch

/ASSIGN-SYSDTA TO=�SYSCMD

/START-PROG �MOD(ELEM=IDMSDMLA,LIB=idms.loadlib,RUN-MODE=�ADV

Assembler/DML source statements

/ASSIGN-SYSOPT TO=�PRIMARY

/ADD-FILE-LINK L-NAME=ALTLIB,F-NAME=idms.maclib

/ASSIGN-SYSDTA TO=�SYSCMD

/START-ASSEMBH

//COMPILE SOURCE=temp.punch -

// ,MACRO-LIB=�LINK(ALTLIB) -

// ,COPY-LIB=�LINK(ALTLIB,MACRO-ONLY) -

// ,COMP-ACT=MOD-GEN(MODULE-FORMAT=OM) -

// ,MOD-LIB=idms.objlib.user(ELEM=userprog) -

// ,COMPILER-TERMINATION=(MAX-ERROR-NUMBER=�)

//END

/REM-FILE-LINK ALTLIB

/START-BINDER

//START-LLM-CREATION INTERNAL-NAME=userprog

//INC-MOD LIB=idms.objlib.user,ELEM=userprog

//INC-MOD LIB=idms.loadlib,ELEM=IDMSPBS2

//INC-MOD LIB=idms.loadlib,ELEM=IDMSCANC optional; BATCH and DCBATCH only

//INC-MOD LIB=idms.loadlib,ELEM=IDMSOPTI optional; BATCH and DCBATCH only

//SAVE-LLM LIB=idms.loadlib.user,ELEM=userprog(VER=@),OVER=YES

//END

/DELETE-FILE temp.punch

idms.loadlib filename of the load library containing the CA-IDMS
executable modules

idms.dba.loadlib filename of the load library containing the DMCL and
database name table load modules

idms.maclib filename of the CA-IDMS macro library

sysctl linkname of SYSCTL file

idms.sysctl filename of SYSCTL file

idms.sysidms File name of the file containing SYSIDMS parameters

temp.punch filename of temporary file that contains DML
precompiler output

idms.objlib.user filename of user object library

userprog name of user application program

idms.loadlib.user filename of the user load library

Appendix A. DML Precompile, Assembly, and Link-Edit JCL A-19

A.5 IDMSDMLA under BS2000

Note: Depending on the central version operating environment, you can use link edit
an IDMSOPTI module with the DML compiler in place of or in addition to the
SYSCTL file.

Executing in local mode: To execute the IDMSDMLA precompiler in local mode,
remove the SYSCTL ADD-FILE-LINK command and replace it with the following:

/ADD-FILE-LINK L-NAME=dictdb,F-NAME=idms.appldict.ddldml,SHARED-UPD=�YES

[/CREATE-FILE F-NAME=idms.tapejrnl,SUPPRESS-ERRORS=�FILE-EXIST, -

/ SUP=�TAPE(VOLUME=nnnnnn,DEVICE=tape)]

/ADD-FILE-LINK L-NAME=sysjrnl,F-NAME=idms.tapejrnl [,BUF-LEN=bbbb, -

/ SUP=�TAPE(F-SEQ=1)]

Statements and parameters between brackets must be specified only

when using the journal file on tape.

dictdb linkname of the dictionary file

idms.appldict.ddldml filename of the dictionary file

sysjrnl linkname of the tape journal file

idms.tapejrnl filename of the tape journal file

bbbb page size of the file

nnnnnn volume serial number of the tape archive file

tape device name for the tape journal file

A-20 CA-IDMS DML Reference — Assembler

A.6 Link-edit considerations

 A.6 Link-edit considerations

The modules involved in the link edit of an application program contain six external
references. Some must be resolved depending on the mode of operation. The
following table lists and explains the external references; unresolved references should
be checked against this table to ensure proper linkage to the program.

Reference Referenced by Resolved by Comments

ABORT Application
Program

IDMSCANC Should be resolved

IDCSACON Application
Program

IDMSBALI Must be resolved;
alternatively, include the
#BALI macro in the
application program if you
use the #RETURN macro

IDMS Application
Program

IDMS Must be resolved

IDMSOPTI* IDMS IDMSOPTI
module

Must be resolved under
MVS and BS2000 if using
the central version without
a SYSCTL file, and under
VSE if using the central
version

IDMSWAIT* IDMS IDMSWAIT Must be resolved if
user-written wait program is
desired; otherwise, system
routine is used

 * Under MVS, IDMSOPTI is a weak external reference (WXTRN).

Appendix A. DML Precompile, Assembly, and Link-Edit JCL A-21

A-22 CA-IDMS DML Reference — Assembler

Appendix B. Sample CA-IDMS/DB Batch Program

B.1 Overview .B-3
B.2 Input to the precompiler. B-4
B.3 Output from the precompiler . B-10
B.4 Output from the assembler . B-23

Appendix B. Sample CA-IDMS/DB Batch Program B-1

B-2 CA-IDMS DML Reference — Assembler

B.1 Overview

 B.1 Overview

This appendix contains a sample batch Assembler program that accesses database
records using navigational DML statements. The sample program shown performs the
following:

■ Performs an area sweep of the ORG-DEMO region for office records

■ Walks the OFFICE-EMPLOYEE set

■ Uses a junction record (EMPLOYEE)

■ Walks the DEPT-EMPLOYEE set

■ Tests database conditions

Appendix B. Sample CA-IDMS/DB Batch Program B-3

B.2 Input to the precompiler

B.2 Input to the precompiler

The following illustrates a sample batch program as input to the DML precompiler.

�RETRIEVAL

�DMLIST

SAMPLE1 START

 #REGEQU

 STM R14,R12,12(R13)

 LR R12,R15

 USING SAMPLE1,R12,R11,R1�

 LR R11,R12

 LA R11,4�95(R11)

 LA R11,1(R11)

 LA R1�,4�95(R11)

 LA R1�,1(R1�)

 ST R13,SAVEAREA+4

 LA R7,SAVEAREA

 ST R7,8(R13)

 LA R13,SAVEAREA

 B BEGIN

 @MODE MODE=BATCH,DEBUG=YES

 @INVOKE SUBSCH=EMPSS�1,SCHEMA=EMPSCHM,VERSION=1��

 @COPY IDMS,SUBSCHEMA-CTRL

 @COPY IDMS,SUBSCHEMA-RECORDS

BEGIN DS �F

� @COPY IDMS,SUBSCHEMA-BINDS

@BIND SUBSCH='EMPSS�1 ',SCB=SSCTRL,DICTNAM='APPLDICT'

 @BIND REC='OFFICE',IOAREA=OFFIC

 @BIND REC='EMPLOYEE',IOAREA=EMPLOYE

 @BIND REC='DEPARTMENT',IOAREA=DEPARTMT

 OPEN (OUTFILE,OUTPUT)

 MVC EDSW,=C'N' SET SWITCHES

 MVC DSW,=C'N'

 MVC ESW,=C'N'

LA R5,MAIN��� LOAD ADDRESS OF MAINLINE ROUTINE

 B PRTHEAD

MAIN��� EQU �

@READY ALL,RDONLY=YES READY ALL DATABASE AREAS

CLC ERRSTAT,STATOK CHECK IF ERROR

BNE AREAERR BRANCH TO ERROR ROUTINE

 @OBTAIN FIRST,AREA='ORG-DEMO-REGION',REC='OFFICE'

NEWOFFC CLC ERRSTAT,STATOK CHECK IF NO OFFICE

 BNE AREAERR

 MVC OCODE,OFFCODE

 MVC OCITY,OFFCITY

 @OBTAIN FIRST,SET='OFFICE-EMPLOYEE',REC='EMPLOYEE'

CLC ERRSTAT,STATOK CHECK IF NO EMPLOYEE

 BNE OBERR1

MVC EID,EMPID MOVE EMPLOYEE ID

MVC FNAME,EMPFNAME MOVE EMPLOYEE FIRST NAME

MVC LNAME,EMPLNAME MOVE EMPLOYEE LAST NAME

 MVC WALK,EMPID SAVE ID

MVC STATNUM,EMPSTATU MOVE EMPLOYEE STATUS

LA R6,NEWDPT LOAD ADDRESS OF NEW DEPT ROUTINE

B CKSTAT BRANCH TO STATUS-CHECK RTN

B-4 CA-IDMS DML Reference — Assembler

B.2 Input to the precompiler

NEWDPT EQU �

 @OBTAIN OWNER,SET='DEPT-EMPLOYEE'

CLC ERRSTAT,STATOK CHECK IF DEPARTMENT

 BNE OBERR2

 MVC DID,DEPTID

 MVC DEPT,DEPTNAME

LA R5,MAIN�2� LOAD ADDRESS OF SET-WALK RTN

B PRINTREC PRINT DEPARTMENT INFORMATION

MAIN�2� EQU � �

 @OBTAIN NEXT,SET='DEPT-EMPLOYEE',REC='EMPLOYEE'

CLC ERRSTAT,�3�7 CHECK IF END OF SET

BE MAIN�3� BRANCH IF END OF SET

CLC ERRSTAT,STATOK CHECK IF ERROR

 BNE OBERR3

MVC EID,EMPID MOVE EMPLOYEE ID

MVC FNAME,EMPFNAME MOVE EMPLOYEE FIRST NAME

MVC LNAME,EMPLNAME MOVE EMPLOYEE LAST NAME

MVC STATNUM,EMPSTATU MOVE EMPLOYEE STATUS

LA R6,MAIN�25 LOAD ADDRESS OF PRINT LINK

 B CKSTAT

MAIN�25 EQU �

 LA R5,MAIN�2�

 B PRINTREC

MAIN�3� EQU �

 MVC EMPID,WALK

@FIND CALC,REC='EMPLOYEE' FIND NEXT EMPLOYEE

CLC ERRSTAT,STATOK CHECK IF ERROR

 BNE CALCERR

REPEAT EQU �

 @OBTAIN NEXT,SET='OFFICE-EMPLOYEE',REC='EMPLOYEE'

CLC ERRSTAT,=C'�3�7' END OF SET ?

BE MAIN�4� BRANCH IF END OF SET

 CLC ERRSTAT,STATOK

 BNE OBERR1

 @IF SET='DEPT-EMPLOYEE',MEMBER=YES,GOTO=REPEAT

MVC EID,EMPID MOVE EMPLOYEE ID

MVC FNAME,EMPFNAME MOVE EMPLOYEE FIRST NAME

MVC LNAME,EMPLNAME MOVE EMPLOYEE LAST NAME

 MVC WALK,EMPID

 MVC STATNUM,EMPSTATU

LA R6,NEWDPT ADDRESS OF DEPT ROUTINE

 B CKSTAT

MAIN�4� EQU �

 @OBTAIN NEXT,AREA='ORG-DEMO-REGION',REC='OFFICE'

 B NEWOFFC

Appendix B. Sample CA-IDMS/DB Batch Program B-5

B.2 Input to the precompiler

EOF EQU �

 @FINISH �

 CLC ERRSTAT,STATOK

 BNE FINERR

 CLOSE (OUTFILE)

 L R13,SAVEAREA+4

 LM R14,R12,12(R13)

 BR R14 RETURN

� ERROR ROUTINES �

BSERROR EQU �

 MVI ERRMSG,C' '

 MVC ERRMSG+1(19),ERRMSG

 MVI ERRNUM,C' '

 MVC ERRNUM+1(3),ERRNUM

 MVC ERRNUM,ERRSTAT

 MVC ERRMSG,BSMSG

 B PRINTERR

BRERROR EQU �

 MVI ERRMSG,C' '

 MVC ERRMSG+1(19),ERRMSG

 MVI ERRNUM,C' '

 MVC ERRNUM+1(3),ERRNUM

 MVC ERRNUM,ERRSTAT

 MVC ERRMSG,BRMSG

 B PRINTERR

AREAERR EQU �

 MVI ERRMSG,C' '

 MVC ERRMSG+1(19),ERRMSG

 MVI ERRNUM,C' '

 MVC ERRNUM+1(3),ERRNUM

 MVC ERRNUM,ERRSTAT

 MVC ERRMSG,AREAMSG

 B PRINTERR

CALCERR EQU �

 MVI ERRMSG,C' '

 MVC ERRMSG+1(19),ERRMSG

 MVI ERRNUM,C' '

 MVC ERRNUM+1(3),ERRNUM

 MVC ERRNUM,ERRSTAT

 MVC ERRMSG,CALMSG

 B PRINTERR

FINERR EQU �

 MVI ERRMSG,C' '

 MVC ERRMSG+1(19),ERRMSG

 MVI ERRNUM,C' '

 MVC ERRNUM+1(3),ERRNUM

 MVC ERRNUM,ERRSTAT

 MVC ERRMSG,FINMSG

 B PRINTERR

B-6 CA-IDMS DML Reference — Assembler

B.2 Input to the precompiler

OBERR1 EQU �

 MVC EDSW,=C'Y'

 LA R5,MAIN�4�

 B PRINTREC

OBERR2 EQU �

 MVC DSW,=C'Y'

 LA R5,REPEAT

 B PRINTREC

OBERR3 EQU �

 MVC ESW,=C'Y'

 LA R5,MAIN�3�

 B PRINTREC

� PRINT ROUTINES

PRINTERR EQU �

 MVC ERRLINE,C' '

 MVC ERRLINE+1(132),ERRLINE

 MVI ERRLINE,C'�'

 PUT OUTFILE,ERRLINE

 B EOF

PRINTREC EQU �

 MVI LINE1,C' '

 MVC LINE1+1(132),LINE1

 MVI LINE1,C'�'

 MVI LINE2,C' '

 MVC LINE2+1(132),LINE2

 CLC EDSW,=C'Y'

 BE SKIPED

 CLC DSW,=C'Y'

 BE SKIPD

 MVC LINE1+27(45),DEPT

 MVC LINE2+27(4),DID

 CLC DSW,=C'Y'

 BE SKIPED

Appendix B. Sample CA-IDMS/DB Batch Program B-7

B.2 Input to the precompiler

SKIPD EQU �

 MVC LINE1+77(27),ENAME

 MVC LINE2+77(4),EID

 MVC LINE1+1�9(2�),STAT

SKIPED EQU �

 MVC LINE1+7(15),OCITY

 MVC LINE2+7(4),OCODE

 PUT OUTFILE,LINE1

 PUT OUTFILE,LINE2

 MVC EDSW,=C'N'

 MVC DSW,=C'N'

 MVC ESW,=C'N'

 BR R5

� CHECK STATUS ROUTINE �

CKSTAT EQU �

 CLC STATNUM,=C'�1'

 BE ACT

 CLC STATNUM,=C'�2'

 BE STD

 CLC STATNUM,=C'�3'

 BE LTD

 CLC STATNUM,=C'�4'

 BE LVO

 CLC STATNUM,=C'�5'

 BE TRM

MVC STAT,=C' STATUS CODE ERROR '

 BR R6

ACT EQU �

 MVC STAT,=C' ACTIVE '

 BR R6

STD EQU �

MVC STAT,=C' SHORT TERM DISABLED'

 BR R6

LTD EQU �

MVC STAT,=C' LONG TERM DISBALED '

 BR R6

LVO EQU �

MVC STAT,=C' LEAVE OF ABSENCE '

 BR R6

TRM EQU �

 MVC STAT,=C' TERMINATED '

 BR R6

B-8 CA-IDMS DML Reference — Assembler

B.2 Input to the precompiler

� PRINT REPORT HEADING ROUTINE �

PRTHEAD EQU �

 MVI LINE1,C' '

 MVC LINE1+1(132),LINE1

 MVI LINE1,C'1'

 MVC LINE1+54(26),HEAD1

 PUT OUTFILE,LINE1

 MVI LINE1,C' '

 MVC LINE1+1(132),LINE1

 MVI LINE1,C'-'

 MVC LINE1+6(18),HEAD2O

 MVC LINE1+26(26),HEAD2D

 MVC LINE1+76(2�),HEAD2E

 MVC LINE1+1�8(15),HEAD2S

 PUT OUTFILE,LINE1

 BR R5

�

WORKFLDS DC C'WORK-FIELDS'

SAVEAREA DC 18F'�'

STATNUM DS CL2

STAT DS CL2�

STATOK DC CL4'����'

STATUS DS CL2

OCODE DS CL3

OCITY DS CL15

EID DS CL4

ENAME DS �CL27

FNAME DS CL1�

 DS CL2

LNAME DS CL15

WALK DS CL4

DID DS CL4

DEPT DS CL45

ERRLINE DS �CL133

 DS CL1

DC CL48'� '

 DC CL6' '

ERRMSG DS CL2�

ERRNUM DS CL4

 DC CL6' '

DC CL48'� '

 DC CL5' '

BSMSG DC CL2�'BIND SUBSCH ERROR # '

BRMSG DC CL2�'BIND RECORD ERROR # '

AREAMSG DC CL2�'READY AREA ERROR # '

CALMSG DC CL2�'FIND CALC ERROR # '

FINMSG DC CL2�'@FINISH ERROR # '

EDSW DS CL1

DSW DS CL1

ESW DS CL1

LINE1 DS CL133

LINE2 DS CL133

HEAD1 DC CL26'OFFICE PERSONNEL LISTING'

HEAD2O DC CL18'OFFICE/OFFICE CODE'

HEAD2D DC CL26'DEPARTMENT/DEPARTMENT CODE'

HEAD2E DC CL2�'EMPLOYEE/EMPLOYEE ID'

HEAD2S DC CL15'EMPLOYEE STATUS'

� OUTPUT FILE DCB INFO

OUTFILE DCB DDNAME=OUTFILE,MACRF=PM,BLKSIZE=133,LRECL=133, X

 DSORG=PS

 LTORG

 END SAMPLE1

Appendix B. Sample CA-IDMS/DB Batch Program B-9

B.3 Output from the precompiler

B.3 Output from the precompiler

The following illustrates the sample batch program as output from the DML
precompiler.

B-10 CA-IDMS DML Reference — Assembler

B.3 Output from the precompiler

�DMLIST

SAMPLE1 START

 #REGEQU

 STM R14,R12,12(R13)

 LR R12,R15

 USING SAMPLE1,R12,R11,R1�

 LR R11,R12

 LA R11,4�95(R11)

 LA R11,1(R11)

 LA R1�,4�95(R11)

 LA R1�,1(R1�)

 ST R13,SAVEAREA+4

 LA R7,SAVEAREA

 ST R7,8(R13)

 LA R13,SAVEAREA

 B BEGIN

 @MODE MODE=BATCH,DEBUG=YES

� @INVOKE SUBSCH=EMPSS�1,SCHEMA=EMPSCHM,VERSION=1��

� @COPY IDMS,SUBSCHEMA-CTRL

 DS �D

SSCTRL DS �CL216

PGMNAME DC CL8' '

ERRSTAT DC CL4'14��'

DBKEY DS FL4

RECNAME DC CL16' '

AREANAME DC CL16' '

ERRORSET DC CL16' '

ERRORREC DC CL16' '

ERRAREA DC CL16' '

SSCIDBCM DS �CL1��

IDBMSCOM DS 1��CL1

 ORG SSCIDBCM

RDBMSCOM DS �CL1��

PGINFO DS �CL4

PGINFGRP DS HL2

PGINFDBK DS HL2

 DS CL96

DIRDBKEY DC FL4'�'

DBSTATUS DS �CL8

DBSTMTCD DS CL2

DBSTATCD DS CL5

 DS CL1

RECOCCUR DC FL4'�'

DMLSEQ DC FL4'�'

��

� @COPY IDMS,SUBSCHEMA-RECORDS

 DS �D

STRUCTUR DS �CL12

STRCODE DS CL2

�ADMIN 'A'

�PROJECT 'P1'

STRDATE DS �CL8

STRYEAR DS CL4

STRMONTH DS CL2

STRDAY DS CL2

 DS CL2

��

 DS CL4

 DS �D

SKILLA DS �CL76

Appendix B. Sample CA-IDMS/DB Batch Program B-11

B.3 Output from the precompiler

SKILID DS CL4

SKILNAME DS CL12

SKILDESC DS CL6�

��

 DS CL4

 DS �D

OFFIC DS �CL76

OFFCODE DS CL3

OFFADDR DS �CL46

OFFSTRT DS CL2�

OFFCITY DS CL15

OFFSTATE DS CL2

OFFZIP DS �CL9

OFFZIPF5 DS CL5

OFFZIPL4 DS CL4

OFFPHONE DS 3CL7

OFFAREA DS CL3

OFFSPEED DS CL3

��

 DS CL4

 DS �D

NONHSPCL DS �CL1�52

NHCLMDT DS �CL8

NHCLMYR DS CL4

NHCLMMO DS CL2

NHCLMDAY DS CL2

NHPTNAME DS �CL25

NHPTFNAM DS CL1�

NHPTLNAM DS CL15

NHPTBDAT DS �CL8

NHPTBYR DS CL4

NHPTBMO DS CL2

NHPTBDA DS CL2

NHPTSEX DS CL1

NHRELEMP DS CL1�

NHPHYNAM DS �CL25

NHPHYFNM DS CL1�

NHPHYLNM DS CL15

NHPHYADD DS �CL46

NHPHYSTR DS CL2�

NHPHYCTY DS CL15

NHPHYSTA DS CL2

NHPHYZIP DS �CL9

NHPHYZ5 DS CL5

NHPHYZ4 DS CL4

NHPHYSID DS CL6

NHDIAGN DS 2CL6�

NHNOPROC DS HL2

 DS CL1

NHPHYCHG DS �CL8��

NHSERVDT DS �CL8

NHSERVYR DS CL4

NHSERVMO DS CL2

NHSERVDA DS CL2

NHPROCCD DS CL4

NHDESCSV DS CL6�

NHFEE DS PL5

 DS CL3

 DS CL72�

��

B-12 CA-IDMS DML Reference — Assembler

B.3 Output from the precompiler

 DS CL4

 DS �D

JOBA DS �CL296

JOBID DS CL4

JOBTITLE DS CL2�

JOBDESCR DS �CL12�

JOBDSCLN DS 2CL6�

JOBRQMNT DS �CL12�

JOBREQLN DS 2CL6�

JOBMNSAL DS CL8

JOBMXSAL DS CL8

JOBSALGR DS 4CL2

JOBNMPOS DS CL3

JOBNMOPN DS CL3

 DS CL2

��

 DS �D

INSPLAN DS �CL132

INPCODE DS CL3

�GROUPLIF '��1'

�HMO '��2'

�GRPHLTH '��3'

�GROUPDNT '��4'

INPCNAME DS CL45

INPCADDR DS �CL46

INPCSTRT DS CL2�

INPCCITY DS CL15

INPCSTAT DS CL2

INPCZIP DS �CL9

INPCZPF5 DS CL5

INPCZPL4 DS CL4

INPCPHON DS CL1�

INPGRPNO DS CL6

INPDESCR DS �CL2�

INPDEDCT DS PL5

INPMXLIF DS PL5

INPFAMCS DS PL5

INPDEPCS DS PL5

 DS CL2

��

 DS CL4

 DS �D

HOSPCLM DS �CL3��

HCCLMDT DS �CL8

HCCLMYR DS CL4

HCCLMMO DS CL2

HCCLMDAY DS CL2

Appendix B. Sample CA-IDMS/DB Batch Program B-13

B.3 Output from the precompiler

HCPTNAME DS �CL25

HCPTFNAM DS CL1�

HCPTLNAM DS CL15

HCPTBDAT DS �CL8

HCPTBYR DS CL4

HCPTBMO DS CL2

HCPTBDA DS CL2

HCPTSEX DS CL1

HCRELEMP DS CL1�

HCHSPNAM DS CL25

HCHSPADD DS �CL46

HCHSPSTR DS CL2�

HCHSPCTY DS CL15

HCHSPSTA DS CL2

HCHSPZIP DS �CL9

HCHSPZF5 DS CL5

HCHSPZL4 DS CL4

HCADMTDT DS �CL8

HCADMTYR DS CL4

HCADMTMO DS CL2

HCADMTDA DS CL2

HCDSCGDT DS �CL8

HCDSCGYR DS CL4

HCDSCGMO DS CL2

HCDSCGDA DS CL2

HCDIAGN DS 2CL6�

HCHSPCHG DS �CL41

HCRMBRD DS �CL26

HCWARD DS �CL13

HCWDDAYS DS PL3

HCWDRATE DS PL5

HCWDTOTL DS PL5

HCSPRIV DS �CL13

HCSDAYS DS PL3

HCSRATE DS PL5

HCSTOTAL DS PL5

HCOTHCHG DS �CL15

HCDELVCH DS PL5

HCANSTHC DS PL5

HCLABCST DS PL5

��

 DS CL4

 DS �D

EXPRTISE DS �CL12

EXPSKLVL DS CL2

�EXPERT '�4'

�PROFICNT '�3'

�COMPETNT '�2'

�ELEMNTRY '�1'

EXPDATE DS �CL8

EXPYEAR DS CL4

EXPMONTH DS CL2

EXPDAY DS CL2

 DS CL2

��

B-14 CA-IDMS DML Reference — Assembler

B.3 Output from the precompiler

 DS CL4

 DS �D

EMPOSITN DS �CL32

EPSTRTDT DS �CL8

EPSTRTYR DS CL4

EPSTRTMO DS CL2

EPSTRTDA DS CL2

EPFINIDT DS �CL8

EPFINIYR DS CL4

EPFINIMO DS CL2

EPFINIDA DS CL2

EPSALGRD DS CL2

EPSALAMT DS PL5

EPBONPCT DS PL2

EPCMMPCT DS PL2

EPOTRATE DS PL2

 DS CL3

��

 DS �D

EMPLOYE DS �CL12�

EMPID DS CL4

EMPNAME DS �CL25

EMPFNAME DS CL1�

EMPLNAME DS CL15

EMPADDR DS �CL46

EMPSTRET DS CL2�

EMPCITY DS CL15

EMPSTATE DS CL2

EMPZIP DS �CL9

EMPZIPF5 DS CL5

EMPZIPL4 DS CL4

EMPPHONE DS CL1�

EMPSTATU DS CL2

�ACTIVE '�1'

�STDSBL '�2'

�LTDSBL '�3'

�LVOFAB '�4'

�TRMINATD '�5'

EMPSSNUM DS CL9

EMPSTDT DS �CL8

EMPSTYR DS CL4

EMPSTMO DS CL2

EMPSTDA DS CL2

EMPTRMDT DS �CL8

EMPTRMYR DS CL4

EMPTRMMO DS CL2

EMPTRMDA DS CL2

EMPBIRDT DS �CL8

EMPBIRYR DS CL4

EMPBIRMO DS CL2

EMPBIRDA DS CL2

��

 DS �D

DEPARTMT DS �CL56

DEPTID DS CL4

DEPTNAME DS CL45

DEPTHDID DS CL4

 DS CL3

��

Appendix B. Sample CA-IDMS/DB Batch Program B-15

B.3 Output from the precompiler

 DS �D

DENTCLM DS �CL932

DCCLMDT DS �CL8

DCCLMYR DS CL4

DCCLMMO DS CL2

DCCLMDA DS CL2

DCPNAME DS �CL25

DCPFNAME DS CL1�

DCPLNAME DS CL15

DCPBIRDT DS �CL8

DCPBIRYR DS CL4

DCPBIRMO DS CL2

DCPBIRDA DS CL2

DCPSEX DS CL1

DCRELEMP DS CL1�

DCDNNAME DS �CL25

DCDNFNAM DS CL1�

DCDNLNAM DS CL15

DCDNADDR DS �CL46

DCDNSTR DS CL2�

DCDNCITY DS CL15

DCDNSTAT DS CL2

DCDNZIP DS �CL9

DCDNZPF5 DS CL5

DCDNZPL4 DS CL4

DCDNLICN DS CL6

DCNOPROC DS HL2

 DS CL1

DCDNCHGS DS �CL8��

DCTOTHNO DS CL2

DCSERVDT DS �CL8

DCSERVYR DS CL4

DCSERVMO DS CL2

DCSERVDA DS CL2

DCPROCCD DS CL4

DCDESCSV DS CL6�

DCFEE DS PL5

 DS CL1

 DS CL72�

��

B-16 CA-IDMS DML Reference — Assembler

B.3 Output from the precompiler

 DS CL4

 DS �D

COVERGE DS �CL2�

COVSELDT DS �CL8

COVSELYR DS CL4

COVSELMO DS CL2

COVSELDA DS CL2

COVTRMDT DS �CL8

COVTRMYR DS CL4

COVTRMMO DS CL2

COVTRMDA DS CL2

COVTYPE DS CL1

�COVMASTR 'M'

�COVFAMLY 'F'

�COVDPNDT 'D'

COVPLNCD DS CL3

�GROUP_LIFE '��1'

�HMO '��2'

�GROUP_HEALTH '��3'

�GROUP_DENTAL '��4'

��

 DS CL4

BEGIN DS �F

� @COPY IDMS,SUBSCHEMA-BINDS

@BIND SUBSCH='EMPSS�1 ',SCB=SSCTRL,DICTNAM='APPLDICT'

 @BIND REC='OFFICE',IOAREA=OFFIC

 @BIND REC='EMPLOYEE',IOAREA=EMPLOYE

 @BIND REC='DEPARTMENT',IOAREA=DEPARTMT

 OPEN (OUTFILE,OUTPUT)

 MVC EDSW,=C'N' SET SWITCHES

 MVC DSW,=C'N'

 MVC ESW,=C'N'

LA R5,MAIN��� LOAD ADDRESS OF MAINLINE ROUTINE

 B PRTHEAD

MAIN��� EQU �

@READY ALL,RDONLY=YES READY ALL DATABASE AREAS

CLC ERRSTAT,STATOK CHECK IF ERROR

BNE AREAERR BRANCH TO ERROR ROUTINE

 @OBTAIN FIRST,AREA='ORG-DEMO-REGION',REC='OFFICE'

Appendix B. Sample CA-IDMS/DB Batch Program B-17

B.3 Output from the precompiler

NEWOFFC CLC ERRSTAT,STATOK CHECK IF NO OFFICE

 BNE AREAERR

 MVC OCODE,OFFCODE

 MVC OCITY,OFFCITY

 @OBTAIN FIRST,SET='OFFICE-EMPLOYEE',REC='EMPLOYEE'

CLC ERRSTAT,STATOK CHECK IF NO EMPLOYEE

 BNE OBERR1

MVC EID,EMPID MOVE EMPLOYEE ID

MVC FNAME,EMPFNAME MOVE EMPLOYEE FIRST NAME

MVC LNAME,EMPLNAME MOVE EMPLOYEE LAST NAME

 MVC WALK,EMPID SAVE ID

MVC STATNUM,EMPSTATU MOVE EMPLOYEE STATUS

LA R6,NEWDPT LOAD ADDRESS OF NEW DEPT ROUTINE

B CKSTAT BRANCH TO STATUS-CHECK RTN

NEWDPT EQU �

 @OBTAIN OWNER,SET='DEPT-EMPLOYEE'

CLC ERRSTAT,STATOK CHECK IF DEPARTMENT

 BNE OBERR2

 MVC DID,DEPTID

 MVC DEPT,DEPTNAME

LA R5,MAIN�2� LOAD ADDRESS OF SET-WALK RTN

B PRINTREC PRINT DEPARTMENT INFORMATION

MAIN�2� EQU � �

 @OBTAIN NEXT,SET='DEPT-EMPLOYEE',REC='EMPLOYEE'

CLC ERRSTAT,�3�7 CHECK IF END OF SET

BE MAIN�3� BRANCH IF END OF SET

CLC ERRSTAT,STATOK CHECK IF ERROR

 BNE OBERR3

MVC EID,EMPID MOVE EMPLOYEE ID

MVC FNAME,EMPFNAME MOVE EMPLOYEE FIRST NAME

MVC LNAME,EMPLNAME MOVE EMPLOYEE LAST NAME

MVC STATNUM,EMPSTATU MOVE EMPLOYEE STATUS

LA R6,MAIN�25 LOAD ADDRESS OF PRINT LINK

 B CKSTAT

MAIN�25 EQU �

 LA R5,MAIN�2�

 B PRINTREC

MAIN�3� EQU �

 MVC EMPID,WALK

@FIND CALC,REC='EMPLOYEE' FIND NEXT EMPLOYEE

CLC ERRSTAT,STATOK CHECK IF ERROR

 BNE CALCERR

REPEAT EQU �

 @OBTAIN NEXT,SET='OFFICE-EMPLOYEE',REC='EMPLOYEE'

CLC ERRSTAT,=C'�3�7' END OF SET ?

BE MAIN�4� BRANCH IF END OF SET

 CLC ERRSTAT,STATOK

 BNE OBERR1

 @IF SET='DEPT-EMPLOYEE',MEMBER=YES,GOTO=REPEAT

MVC EID,EMPID MOVE EMPLOYEE ID

MVC FNAME,EMPFNAME MOVE EMPLOYEE FIRST NAME

MVC LNAME,EMPLNAME MOVE EMPLOYEE LAST NAME

 MVC WALK,EMPID

 MVC STATNUM,EMPSTATU

LA R6,NEWDPT ADDRESS OF DEPT ROUTINE

 B CKSTAT

B-18 CA-IDMS DML Reference — Assembler

B.3 Output from the precompiler

MAIN�4� EQU �

 @OBTAIN NEXT,AREA='ORG-DEMO-REGION',REC='OFFICE'

 B NEWOFFC

EOF EQU �

 @FINISH �

 CLC ERRSTAT,STATOK

 BNE FINERR

 CLOSE (OUTFILE)

 L R13,SAVEAREA+4

 LM R14,R12,12(R13)

 BR R14 RETURN

� ERROR ROUTINES �

BSERROR EQU �

 MVI ERRMSG,C' '

 MVC ERRMSG+1(19),ERRMSG

 MVI ERRNUM,C' '

 MVC ERRNUM+1(3),ERRNUM

 MVC ERRNUM,ERRSTAT

 MVC ERRMSG,BSMSG

 B PRINTERR

BRERROR EQU �

 MVI ERRMSG,C' '

 MVC ERRMSG+1(19),ERRMSG

 MVI ERRNUM,C' '

 MVC ERRNUM+1(3),ERRNUM

 MVC ERRNUM,ERRSTAT

 MVC ERRMSG,BRMSG

 B PRINTERR

AREAERR EQU �

 MVI ERRMSG,C' '

 MVC ERRMSG+1(19),ERRMSG

 MVI ERRNUM,C' '

 MVC ERRNUM+1(3),ERRNUM

 MVC ERRNUM,ERRSTAT

 MVC ERRMSG,AREAMSG

 B PRINTERR

CALCERR EQU �

 MVI ERRMSG,C' '

 MVC ERRMSG+1(19),ERRMSG

 MVI ERRNUM,C' '

 MVC ERRNUM+1(3),ERRNUM

 MVC ERRNUM,ERRSTAT

 MVC ERRMSG,CALMSG

 B PRINTERR

FINERR EQU �

 MVI ERRMSG,C' '

 MVC ERRMSG+1(19),ERRMSG

 MVI ERRNUM,C' '

 MVC ERRNUM+1(3),ERRNUM

 MVC ERRNUM,ERRSTAT

 MVC ERRMSG,FINMSG

 B PRINTERR

Appendix B. Sample CA-IDMS/DB Batch Program B-19

B.3 Output from the precompiler

OBERR1 EQU �

 MVC EDSW,=C'Y'

 LA R5,MAIN�4�

 B PRINTREC

OBERR2 EQU �

 MVC DSW,=C'Y'

 LA R5,REPEAT

 B PRINTREC

OBERR3 EQU �

 MVC ESW,=C'Y'

 LA R5,MAIN�3�

 B PRINTREC

� PRINT ROUTINES

PRINTERR EQU �

 MVC ERRLINE,C' '

 MVC ERRLINE+1(132),ERRLINE

 MVI ERRLINE,C'�'

 PUT OUTFILE,ERRLINE

 B EOF

PRINTREC EQU �

 MVI LINE1,C' '

 MVC LINE1+1(132),LINE1

 MVI LINE1,C'�'

 MVI LINE2,C' '

 MVC LINE2+1(132),LINE2

 CLC EDSW,=C'Y'

 BE SKIPED

 CLC DSW,=C'Y'

 BE SKIPD

 MVC LINE1+27(45),DEPT

 MVC LINE2+27(4),DID

 CLC DSW,=C'Y'

 BE SKIPED

SKIPD EQU �

 MVC LINE1+77(27),ENAME

 MVC LINE2+77(4),EID

 MVC LINE1+1�9(2�),STAT

SKIPED EQU �

 MVC LINE1+7(15),OCITY

 MVC LINE2+7(4),OCODE

 PUT OUTFILE,LINE1

 PUT OUTFILE,LINE2

 MVC EDSW,=C'N'

 MVC DSW,=C'N'

 MVC ESW,=C'N'

 BR R5

� CHECK STATUS ROUTINE �

CKSTAT EQU �

 CLC STATNUM,=C'�1'

 BE ACT

 CLC STATNUM,=C'�2'

 BE STD

 CLC STATNUM,=C'�3'

 BE LTD

 CLC STATNUM,=C'�4'

 BE LVO

 CLC STATNUM,=C'�5'

 BE TRM

MVC STAT,=C' STATUS CODE ERROR '

 BR R6

B-20 CA-IDMS DML Reference — Assembler

B.3 Output from the precompiler

ACT EQU �

 MVC STAT,=C' ACTIVE '

 BR R6

STD EQU �

MVC STAT,=C' SHORT TERM DISABLED'

 BR R6

LTD EQU �

MVC STAT,=C' LONG TERM DISBALED '

 BR R6

LVO EQU �

MVC STAT,=C' LEAVE OF ABSENCE '

 BR R6

TRM EQU �

 MVC STAT,=C' TERMINATED '

 BR R6

� PRINT REPORT HEADING ROUTINE �

PRTHEAD EQU �

 MVI LINE1,C' '

 MVC LINE1+1(132),LINE1

 MVI LINE1,C'1'

 MVC LINE1+54(26),HEAD1

 PUT OUTFILE,LINE1

 MVI LINE1,C' '

 MVC LINE1+1(132),LINE1

 MVI LINE1,C'-'

 MVC LINE1+6(18),HEAD2O

 MVC LINE1+26(26),HEAD2D

 MVC LINE1+76(2�),HEAD2E

 MVC LINE1+1�8(15),HEAD2S

 PUT OUTFILE,LINE1

 BR R5

�

WORKFLDS DC C'WORK-FIELDS'

SAVEAREA DC 18F'�'

STATNUM DS CL2

STAT DS CL2�

STATOK DC CL4'����'

STATUS DS CL2

OCODE DS CL3

OCITY DS CL15

EID DS CL4

ENAME DS �CL27

FNAME DS CL1�

 DS CL2

LNAME DS CL15

WALK DS CL4

DID DS CL4

DEPT DS CL45

Appendix B. Sample CA-IDMS/DB Batch Program B-21

B.3 Output from the precompiler

ERRLINE DS �CL133

 DS CL1

DC CL48'� '

 DC CL6' '

ERRMSG DS CL2�

ERRNUM DS CL4

 DC CL6' '

DC CL48'� '

 DC CL5' '

BSMSG DC CL2�'BIND SUBSCH ERROR # '

BRMSG DC CL2�'BIND RECORD ERROR # '

AREAMSG DC CL2�'READY AREA ERROR # '

CALMSG DC CL2�'FIND CALC ERROR # '

FINMSG DC CL2�'@FINISH ERROR # '

EDSW DS CL1

DSW DS CL1

ESW DS CL1

LINE1 DS CL133

LINE2 DS CL133

HEAD1 DC CL26'OFFICE PERSONNEL LISTING'

HEAD2O DC CL18'OFFICE/OFFICE CODE'

HEAD2D DC CL26'DEPARTMENT/DEPARTMENT CODE'

HEAD2E DC CL2�'EMPLOYEE/EMPLOYEE ID'

HEAD2S DC CL15'EMPLOYEE STATUS'

� OUTPUT FILE DCB INFO

OUTFILE DCB DDNAME=OUTFILE,MACRF=PM,BLKSIZE=133,LRECL=133, X

 DSORG=PS

 LTORG

 END SAMPLE1

B-22 CA-IDMS DML Reference — Assembler

B.4 Output from the assembler

B.4 Output from the assembler

The following illustrates the sample batch program as output from the assembler.

 1 �DMLIST

������ 2 SAMPLE1 START

 3 #REGEQU

 4+�

 5+� REGISTER EQUATES

 6+�

 ����� 7+R� EQU � �1-#REGE

 ����1 8+R1 EQU 1 �1-#REGE

 ����2 9+R2 EQU 2 �1-#REGE

 ����3 1�+R3 EQU 3 �1-#REGE

 ����4 11+R4 EQU 4 �1-#REGE

 ����5 12+R5 EQU 5 �1-#REGE

 ����6 13+R6 EQU 6 �1-#REGE

 ����7 14+R7 EQU 7 �1-#REGE

 ����8 15+R8 EQU 8 �1-#REGE

 ����9 16+R9 EQU 9 �1-#REGE

 ����A 17+R1� EQU 1� �1-#REGE

 ����B 18+R11 EQU 11 �1-#REGE

 ����C 19+R12 EQU 12 �1-#REGE

 ����D 2�+R13 EQU 13 �1-#REGE

 ����E 21+R14 EQU 14 �1-#REGE

 ����F 22+R15 EQU 15 �1-#REGE

������ 9�EC D��C ����C 23 STM R14,R12,12(R13)

�����4 18CF 24 LR R12,R15

R:CBA ����� 25 USING SAMPLE1,R12,R11,R1�

�����6 18BC 26 LR R11,R12

�����8 41BB �FFF ��FFF 27 LA R11,4�95(R11)

�����C 41BB ���1 ����1 28 LA R11,1(R11)

����1� 41AB �FFF ��FFF 29 LA R1�,4�95(R11)

����14 41AA ���1 ����1 3� LA R1�,1(R1�)

����18 5�D� B41� �141� 31 ST R13,SAVEAREA+4

����1C 417� B4�C �14�C 32 LA R7,SAVEAREA

����2� 5�7D ���8 ����8 33 ST R7,8(R13)

����24 41D� B4�C �14�C 34 LA R13,SAVEAREA

����28 47F� CD58 ��D58 35 B BEGIN

 36 @MODE MODE=BATCH,DEBUG=YES

 37 � @INVOKE SUBSCH=EMPSS�1,SCHEMA=EMPSCHM,VERSION=1��

 38 � @COPY IDMS,SUBSCHEMA-CTRL

����3� 39 DS �D

����3� 4� SSCTRL DS �CL216

����3� 4�4�4�4�4�4�4�4� 41 PGMNAME DC CL8' '

����38 F1F4F�F� 42 ERRSTAT DC CL4'14��'

����3C 43 DBKEY DS FL4

����4� 4�4�4�4�4�4�4�4� 44 RECNAME DC CL16' '

����5� 4�4�4�4�4�4�4�4� 45 AREANAME DC CL16' '

����6� 4�4�4�4�4�4�4�4� 46 ERRORSET DC CL16' '

����7� 4�4�4�4�4�4�4�4� 47 ERRORREC DC CL16' '

����8� 4�4�4�4�4�4�4�4� 48 ERRAREA DC CL16' '

����9� 49 SSCIDBCM DS �CL1��

����9� 5� IDBMSCOM DS 1��CL1

Appendix B. Sample CA-IDMS/DB Batch Program B-23

B.4 Output from the assembler

����F4 ���9� 51 ORG SSCIDBCM

����9� 52 RDBMSCOM DS �CL1��

����9� 53 PGINFO DS �CL4

����9� 54 PGINFGRP DS HL2

����92 55 PGINFDBK DS HL2

����94 56 DS CL96

����F4 �������� 57 DIRDBKEY DC FL4'�'

����F8 58 DBSTATUS DS �CL8

����F8 59 DBSTMTCD DS CL2

����FA 6� DBSTATCD DS CL5

����FF 61 DS CL1

���1�� �������� 62 RECOCCUR DC FL4'�'

���1�4 �������� 63 DMLSEQ DC FL4'�'

 64 ��

 65 � @COPY IDMS,SUBSCHEMA-RECORDS

���1�8 66 DS �D

���1�8 67 STRUCTUR DS �CL12

���1�8 68 STRCODE DS CL2

 69 �ADMIN 'A'

 7� �PROJECT 'P1'

���1�A 71 STRDATE DS �CL8

���1�A 72 STRYEAR DS CL4

���1�E 73 STRMONTH DS CL2

���11� 74 STRDAY DS CL2

���112 75 DS CL2

 76 ��

���114 77 DS CL4

���118 78 DS �D

���118 79 SKILLA DS �CL76

���118 8� SKILID DS CL4

���11C 81 SKILNAME DS CL12

���128 82 SKILDESC DS CL6�

 83 ��

���164 84 DS CL4

���168 85 DS �D

���168 86 OFFIC DS �CL76

���168 87 OFFCODE DS CL3

���16B 88 OFFADDR DS �CL46

���16B 89 OFFSTRT DS CL2�

���17F 9� OFFCITY DS CL15

���18E 91 OFFSTATE DS CL2

���19� 92 OFFZIP DS �CL9

���19� 93 OFFZIPF5 DS CL5

���195 94 OFFZIPL4 DS CL4

���199 95 OFFPHONE DS 3CL7

���1AE 96 OFFAREA DS CL3

���1B1 97 OFFSPEED DS CL3

 98 ��

���1B4 99 DS CL4

���1B8 1�� DS �D

���1B8 1�1 NONHSPCL DS �CL1�52

���1B8 1�2 NHCLMDT DS �CL8

B-24 CA-IDMS DML Reference — Assembler

B.4 Output from the assembler

���1B8 1�3 NHCLMYR DS CL4

���1BC 1�4 NHCLMMO DS CL2

���1BE 1�5 NHCLMDAY DS CL2

���1C� 1�6 NHPTNAME DS �CL25

���1C� 1�7 NHPTFNAM DS CL1�

���1CA 1�8 NHPTLNAM DS CL15

���1D9 1�9 NHPTBDAT DS �CL8

���1D9 11� NHPTBYR DS CL4

���1DD 111 NHPTBMO DS CL2

���1DF 112 NHPTBDA DS CL2

���1E1 113 NHPTSEX DS CL1

���1E2 114 NHRELEMP DS CL1�

���1EC 115 NHPHYNAM DS �CL25

���1EC 116 NHPHYFNM DS CL1�

���1F6 117 NHPHYLNM DS CL15

���2�5 118 NHPHYADD DS �CL46

���2�5 119 NHPHYSTR DS CL2�

���219 12� NHPHYCTY DS CL15

���228 121 NHPHYSTA DS CL2

���22A 122 NHPHYZIP DS �CL9

���22A 123 NHPHYZ5 DS CL5

���22F 124 NHPHYZ4 DS CL4

���233 125 NHPHYSID DS CL6

���239 126 NHDIAGN DS 2CL6�

���2B1 127 NHNOPROC DS HL2

���2B3 128 DS CL1

���2B4 129 NHPHYCHG DS �CL8��

���2B4 13� NHSERVDT DS �CL8

���2B4 131 NHSERVYR DS CL4

���2B8 132 NHSERVMO DS CL2

���2BA 133 NHSERVDA DS CL2

���2BC 134 NHPROCCD DS CL4

���2C� 135 NHDESCSV DS CL6�

���2FC 136 NHFEE DS PL5

���3�1 137 DS CL3

���3�4 138 DS CL72�

 139 ��

���5D4 14� DS CL4

���5D8 141 DS �D

���5D8 142 JOBA DS �CL296

���5D8 143 JOBID DS CL4

���5DC 144 JOBTITLE DS CL2�

���5F� 145 JOBDESCR DS �CL12�

���5F� 146 JOBDSCLN DS 2CL6�

���668 147 JOBRQMNT DS �CL12�

���668 148 JOBREQLN DS 2CL6�

���6E� 149 JOBMNSAL DS CL8

���6E8 15� JOBMXSAL DS CL8

���6F� 151 JOBSALGR DS 4CL2

���6F8 152 JOBNMPOS DS CL3

���6FB 153 JOBNMOPN DS CL3

���6FE 154 DS CL2

 155 ��

���7�� 156 DS �D

���7�� 157 INSPLAN DS �CL132

���7�� 158 INPCODE DS CL3

 159 �GROUPLIF '��1'

 16� �HMO '��2'

 161 �GRPHLTH '��3'

 162 �GROUPDNT '��4'

���7�3 163 INPCNAME DS CL45

���73� 164 INPCADDR DS �CL46

���73� 165 INPCSTRT DS CL2�

���744 166 INPCCITY DS CL15

���753 167 INPCSTAT DS CL2

���755 168 INPCZIP DS �CL9

���755 169 INPCZPF5 DS CL5

���75A 17� INPCZPL4 DS CL4

���75E 171 INPCPHON DS CL1�

���768 172 INPGRPNO DS CL6

���76E 173 INPDESCR DS �CL2�

���76E 174 INPDEDCT DS PL5

���773 175 INPMXLIF DS PL5

���778 176 INPFAMCS DS PL5

���77D 177 INPDEPCS DS PL5

���782 178 DS CL2

 179 ��

���784 18� DS CL4

Appendix B. Sample CA-IDMS/DB Batch Program B-25

B.4 Output from the assembler

���788 181 DS �D

���788 182 HOSPCLM DS �CL3��

���788 183 HCCLMDT DS �CL8

���788 184 HCCLMYR DS CL4

���78C 185 HCCLMMO DS CL2

���78E 186 HCCLMDAY DS CL2

���79� 187 HCPTNAME DS �CL25

���79� 188 HCPTFNAM DS CL1�

���79A 189 HCPTLNAM DS CL15

���7A9 19� HCPTBDAT DS �CL8

���7A9 191 HCPTBYR DS CL4

���7AD 192 HCPTBMO DS CL2

���7AF 193 HCPTBDA DS CL2

���7B1 194 HCPTSEX DS CL1

���7B2 195 HCRELEMP DS CL1�

���7BC 196 HCHSPNAM DS CL25

���7D5 197 HCHSPADD DS �CL46

���7D5 198 HCHSPSTR DS CL2�

���7E9 199 HCHSPCTY DS CL15

���7F8 2�� HCHSPSTA DS CL2

���7FA 2�1 HCHSPZIP DS �CL9

���7FA 2�2 HCHSPZF5 DS CL5

���7FF 2�3 HCHSPZL4 DS CL4

���8�3 2�4 HCADMTDT DS �CL8

���8�3 2�5 HCADMTYR DS CL4

���8�7 2�6 HCADMTMO DS CL2

���8�9 2�7 HCADMTDA DS CL2

���8�B 2�8 HCDSCGDT DS �CL8

���8�B 2�9 HCDSCGYR DS CL4

���8�F 21� HCDSCGMO DS CL2

���811 211 HCDSCGDA DS CL2

���813 212 HCDIAGN DS 2CL6�

���88B 213 HCHSPCHG DS �CL41

���88B 214 HCRMBRD DS �CL26

���88B 215 HCWARD DS �CL13

���88B 216 HCWDDAYS DS PL3

���88E 217 HCWDRATE DS PL5

���893 218 HCWDTOTL DS PL5

���898 219 HCSPRIV DS �CL13

���898 22� HCSDAYS DS PL3

���89B 221 HCSRATE DS PL5

���8A� 222 HCSTOTAL DS PL5

���8A5 223 HCOTHCHG DS �CL15

���8A5 224 HCDELVCH DS PL5

���8AA 225 HCANSTHC DS PL5

���8AF 226 HCLABCST DS PL5

 227 ��

���8B4 228 DS CL4

���8B8 229 DS �D

���8B8 23� EXPRTISE DS �CL12

���8B8 231 EXPSKLVL DS CL2

 232 �EXPERT '�4'

 233 �PROFICNT '�3'

 234 �COMPETNT '�2'

 235 �ELEMNTRY '�1'

���8BA 236 EXPDATE DS �CL8

B-26 CA-IDMS DML Reference — Assembler

B.4 Output from the assembler

���8BA 237 EXPYEAR DS CL4

���8BE 238 EXPMONTH DS CL2

���8C� 239 EXPDAY DS CL2

���8C2 24� DS CL2

 241 ��

���8C4 242 DS CL4

���8C8 243 DS �D

���8C8 244 EMPOSITN DS �CL32

���8C8 245 EPSTRTDT DS �CL8

���8C8 246 EPSTRTYR DS CL4

���8CC 247 EPSTRTMO DS CL2

���8CE 248 EPSTRTDA DS CL2

���8D� 249 EPFINIDT DS �CL8

���8D� 25� EPFINIYR DS CL4

���8D4 251 EPFINIMO DS CL2

���8D6 252 EPFINIDA DS CL2

���8D8 253 EPSALGRD DS CL2

���8DA 254 EPSALAMT DS PL5

���8DF 255 EPBONPCT DS PL2

���8E1 256 EPCMMPCT DS PL2

���8E3 257 EPOTRATE DS PL2

���8E5 258 DS CL3

 259 ��

���8E8 26� DS �D

���8E8 261 EMPLOYE DS �CL12�

���8E8 262 EMPID DS CL4

���8EC 263 EMPNAME DS �CL25

���8EC 264 EMPFNAME DS CL1�

���8F6 265 EMPLNAME DS CL15

���9�5 266 EMPADDR DS �CL46

���9�5 267 EMPSTRET DS CL2�

���919 268 EMPCITY DS CL15

���928 269 EMPSTATE DS CL2

���92A 27� EMPZIP DS �CL9

���92A 271 EMPZIPF5 DS CL5

���92F 272 EMPZIPL4 DS CL4

���933 273 EMPPHONE DS CL1�

���93D 274 EMPSTATU DS CL2

 275 �ACTIVE '�1'

 276 �STDSBL '�2'

 277 �LTDSBL '�3'

 278 �LVOFAB '�4'

 279 �TRMINATD '�5'

���93F 28� EMPSSNUM DS CL9

���948 281 EMPSTDT DS �CL8

���948 282 EMPSTYR DS CL4

���94C 283 EMPSTMO DS CL2

���94E 284 EMPSTDA DS CL2

���95� 285 EMPTRMDT DS �CL8

���95� 286 EMPTRMYR DS CL4

���954 287 EMPTRMMO DS CL2

���956 288 EMPTRMDA DS CL2

Appendix B. Sample CA-IDMS/DB Batch Program B-27

B.4 Output from the assembler

���958 289 EMPBIRDT DS �CL8

���958 29� EMPBIRYR DS CL4

���95C 291 EMPBIRMO DS CL2

���95E 292 EMPBIRDA DS CL2

 293 ��

���96� 294 DS �D

���96� 295 DEPARTMT DS �CL56

���96� 296 DEPTID DS CL4

���964 297 DEPTNAME DS CL45

���991 298 DEPTHDID DS CL4

���995 299 DS CL3

 3�� ��

���998 3�1 DS �D

���998 3�2 DENTCLM DS �CL932

���998 3�3 DCCLMDT DS �CL8

���998 3�4 DCCLMYR DS CL4

���99C 3�5 DCCLMMO DS CL2

���99E 3�6 DCCLMDA DS CL2

���9A� 3�7 DCPNAME DS �CL25

���9A� 3�8 DCPFNAME DS CL1�

���9AA 3�9 DCPLNAME DS CL15

���9B9 31� DCPBIRDT DS �CL8

���9B9 311 DCPBIRYR DS CL4

���9BD 312 DCPBIRMO DS CL2

���9BF 313 DCPBIRDA DS CL2

���9C1 314 DCPSEX DS CL1

���9C2 315 DCRELEMP DS CL1�

���9CC 316 DCDNNAME DS �CL25

���9CC 317 DCDNFNAM DS CL1�

���9D6 318 DCDNLNAM DS CL15

���9E5 319 DCDNADDR DS �CL46

���9E5 32� DCDNSTR DS CL2�

���9F9 321 DCDNCITY DS CL15

���A�8 322 DCDNSTAT DS CL2

���A�A 323 DCDNZIP DS �CL9

���A�A 324 DCDNZPF5 DS CL5

���A�F 325 DCDNZPL4 DS CL4

���A13 326 DCDNLICN DS CL6

���A19 327 DCNOPROC DS HL2

���A1B 328 DS CL1

���A1C 329 DCDNCHGS DS �CL8��

���A1C 33� DCTOTHNO DS CL2

���A1E 331 DCSERVDT DS �CL8

���A1E 332 DCSERVYR DS CL4

���A22 333 DCSERVMO DS CL2

���A24 334 DCSERVDA DS CL2

���A26 335 DCPROCCD DS CL4

���A2A 336 DCDESCSV DS CL6�

���A66 337 DCFEE DS PL5

���A6B 338 DS CL1

���A6C 339 DS CL72�

 34� ��

B-28 CA-IDMS DML Reference — Assembler

B.4 Output from the assembler

���D3C 341 DS CL4

���D4� 342 DS �D

���D4� 343 COVERGE DS �CL2�

���D4� 344 COVSELDT DS �CL8

���D4� 345 COVSELYR DS CL4

���D44 346 COVSELMO DS CL2

���D46 347 COVSELDA DS CL2

���D48 348 COVTRMDT DS �CL8

���D48 349 COVTRMYR DS CL4

���D4C 35� COVTRMMO DS CL2

���D4E 351 COVTRMDA DS CL2

���D5� 352 COVTYPE DS CL1

 353 �COVMASTR 'M'

 354 �COVFAMLY 'F'

 355 �COVDPNDT 'D'

���D51 356 COVPLNCD DS CL3

 357 �GROUP_LIFE '��1'

 358 �HMO '��2'

 359 �GROUP_HEALTH '��3'

 36� �GROUP_DENTAL '��4'

 361 ��

���D54 362 DS CL4

���D58 363 BEGIN DS �F

 364 � @COPY IDMS,SUBSCHEMA-BINDS

365 @BIND SUBSCH='EMPSS�1 ',SCB=SSCTRL,DICTNAM='APPLDICT'

366+� ��� BEGIN DML EXPANSION ���

���D58 41�� C�3� ���3� 367+ LA �,SSCTRL �2-@IDMS

���D5C 5��� C�94 ���94 368+ ST �,SSCIDBCM+4 �2-@IDMS

���D6� 41�� C�CA ���CA 369+ LA �,SSCIDBCM+59-1 �2-@IDMS

���D64 5��� C�98 ���98 37�+ ST �,SSCIDBCM+8 �2-@IDMS

���D68 41�� C�3� ���3� 371+ LA �,SSCTRL �2-@IDMS

���D6C 5��� C�9C ���9C 372+ ST �,SSCIDBCM+12 �2-@IDMS

���D7� 41�� B834 �1834 373+ LA �,=CL18'EMPSS�1 ' �2-@IDMS

���D74 5��� C�A� ���A� 374+ ST �,SSCIDBCM+16 �2-@IDMS

���D78 41�� C�3� ���3� 375+ LA �,SSCTRL �2-@IDMS

���D7C 5��� C�A4 ���A4 376+ ST �,SSCIDBCM+2� �2-@IDMS

���D8� 41�� C�3� ���3� 377+ LA �,SSCTRL �2-@IDMS

���D84 5��� C�A8 ���A8 378+ ST �,SSCIDBCM+24 �2-@IDMS

���D88 D2�7 C�5� B7A� ���5� �17A� 379+ MVC AREANAME(8),=CL8' ' �1-@BIND

���D8E D2�7 C�58 B7A8 ���58 �17A8 38�+ MVC AREANAME+8(8),=CL8'APPLDICT' �1-@BIND

���D94 41�� C�5� ���5� 381+ LA �,AREANAME �2-@IDMS

���D98 5��� C�AC ���AC 382+ ST �,SSCIDBCM+28 �2-@IDMS

���D9C 968� C�AC ���AC 383+ OI SSCIDBCM+28,X'8�' �2-@IDMS

���DA� 41�� ���1 ����1 384+ LA �,1 �2-@IDMS

���DA4 5��� C1�4 ��1�4 385+ ST �,DMLSEQ �2-@IDMS

386+�, DML-SEQUENCE = 1 �2-@IDMS

���DA8 411� C�94 ���94 387+ LA 1,SSCIDBCM+4 �2-@IDMS

���DAC 58F� B7B� �17B� 388+ L 15,=V(IDMS) �2-@IDMS

���DB� �5EF 389+ BALR 14,15 ��� CALL IDMS MODE=BATCH ��� �2-@IDMS

39�+� ��� END DML EXPANSION ���

 391 @BIND REC='OFFICE',IOAREA=OFFIC

392+� ��� BEGIN DML EXPANSION ���

���DB2 41�� C�3� ���3� 393+ LA �,SSCTRL �2-@IDMS

Appendix B. Sample CA-IDMS/DB Batch Program B-29

B.4 Output from the assembler

���DB6 5��� C�94 ���94 394+ ST �,SSCIDBCM+4 �2-@IDMS

���DBA 41�� C�BF ���BF 395+ LA �,SSCIDBCM+48-1 �2-@IDMS

���DBE 5��� C�98 ���98 396+ ST �,SSCIDBCM+8 �2-@IDMS

���DC2 41�� B846 �1846 397+ LA �,=CL18'OFFICE' �2-@IDMS

���DC6 5��� C�9C ���9C 398+ ST �,SSCIDBCM+12 �2-@IDMS

���DCA 41�� C168 ��168 399+ LA �,OFFIC �2-@IDMS

���DCE 5��� C�A� ���A� 4��+ ST �,SSCIDBCM+16 �2-@IDMS

���DD2 968� C�A� ���A� 4�1+ OI SSCIDBCM+16,X'8�' �2-@IDMS

���DD6 41�� ���2 ����2 4�2+ LA �,2 �2-@IDMS

���DDA 5��� C1�4 ��1�4 4�3+ ST �,DMLSEQ �2-@IDMS

4�4+�, DML-SEQUENCE = 2 �2-@IDMS

���DDE 411� C�94 ���94 4�5+ LA 1,SSCIDBCM+4 �2-@IDMS

���DE2 58F� B7B� �17B� 4�6+ L 15,=V(IDMS) �2-@IDMS

���DE6 �5EF 4�7+ BALR 14,15 ��� CALL IDMS MODE=BATCH ��� �2-@IDMS

4�8+� ��� END DML EXPANSION ���

 4�9 @BIND REC='EMPLOYEE',IOAREA=EMPLOYE

41�+� ��� BEGIN DML EXPANSION ���

���DE8 41�� C�3� ���3� 411+ LA �,SSCTRL �2-@IDMS

���DEC 5��� C�94 ���94 412+ ST �,SSCIDBCM+4 �2-@IDMS

���DF� 41�� C�BF ���BF 413+ LA �,SSCIDBCM+48-1 �2-@IDMS

���DF4 5��� C�98 ���98 414+ ST �,SSCIDBCM+8 �2-@IDMS

���DF8 41�� B858 �1858 415+ LA �,=CL18'EMPLOYEE' �2-@IDMS

���DFC 5��� C�9C ���9C 416+ ST �,SSCIDBCM+12 �2-@IDMS

���E�� 41�� C8E8 ��8E8 417+ LA �,EMPLOYE �2-@IDMS

���E�4 5��� C�A� ���A� 418+ ST �,SSCIDBCM+16 �2-@IDMS

���E�8 968� C�A� ���A� 419+ OI SSCIDBCM+16,X'8�' �2-@IDMS

���E�C 41�� ���3 ����3 42�+ LA �,3 �2-@IDMS

���E1� 5��� C1�4 ��1�4 421+ ST �,DMLSEQ �2-@IDMS

422+�, DML-SEQUENCE = 3 �2-@IDMS

���E14 411� C�94 ���94 423+ LA 1,SSCIDBCM+4 �2-@IDMS

���E18 58F� B7B� �17B� 424+ L 15,=V(IDMS) �2-@IDMS

���E1C �5EF 425+ BALR 14,15 ��� CALL IDMS MODE=BATCH ��� �2-@IDMS

426+� ��� END DML EXPANSION ���

 427 @BIND REC='DEPARTMENT',IOAREA=DEPARTMT

428+� ��� BEGIN DML EXPANSION ���

���E1E 41�� C�3� ���3� 429+ LA �,SSCTRL �2-@IDMS

���E22 5��� C�94 ���94 43�+ ST �,SSCIDBCM+4 �2-@IDMS

���E26 41�� C�BF ���BF 431+ LA �,SSCIDBCM+48-1 �2-@IDMS

���E2A 5��� C�98 ���98 432+ ST �,SSCIDBCM+8 �2-@IDMS

���E2E 41�� B86A �186A 433+ LA �,=CL18'DEPARTMENT' �2-@IDMS

���E32 5��� C�9C ���9C 434+ ST �,SSCIDBCM+12 �2-@IDMS

���E36 41�� C96� ��96� 435+ LA �,DEPARTMT �2-@IDMS

���E3A 5��� C�A� ���A� 436+ ST �,SSCIDBCM+16 �2-@IDMS

���E3E 968� C�A� ���A� 437+ OI SSCIDBCM+16,X'8�' �2-@IDMS

���E42 41�� ���4 ����4 438+ LA �,4 �2-@IDMS

���E46 5��� C1�4 ��1�4 439+ ST �,DMLSEQ �2-@IDMS

44�+�, DML-SEQUENCE = 4 �2-@IDMS

���E4A 411� C�94 ���94 441+ LA 1,SSCIDBCM+4 �2-@IDMS

���E4E 58F� B7B� �17B� 442+ L 15,=V(IDMS) �2-@IDMS

���E52 �5EF 443+ BALR 14,15 ��� CALL IDMS MODE=BATCH ��� �2-@IDMS

444+� ��� END DML EXPANSION ���

 445 OPEN (OUTFILE,OUTPUT)

B-30 CA-IDMS DML Reference — Assembler

B.4 Output from the assembler

���E54 446+ CNOP �,4 ALIGN LIST TO FULLWORD �1-OPEN

���E54 451� CE5C ��E5C 447+ BAL 1,�+8 LOAD REG1 W/LIST ADDR. @L2A �1-OPEN

���E58 8F 448+ DC AL1(143) OPTION BYTE �1-OPEN

���E59 ��173C 449+ DC AL3(OUTFILE) DCB ADDRESS �1-OPEN

���E5C �A13 45�+ SVC 19 ISSUE OPEN SVC �1-OPEN

���E5E D2�� B5C4 B8BC �15C4 �18BC 451 MVC EDSW,=C'N' SET SWITCHES

���E64 D2�� B5C5 B8BC �15C5 �18BC 452 MVC DSW,=C'N'

���E6A D2�� B5C6 B8BC �15C6 �18BC 453 MVC ESW,=C'N'

���E7� 415� CE78 ��E78 454 LA R5,MAIN��� LOAD ADDRESS OF MAINLINE ROUTINE

���E74 47F� B3A4 �13A4 455 B PRTHEAD

 ��E78 456 MAIN��� EQU �

457 @READY ALL,RDONLY=YES READY ALL DATABASE AREAS

458+� ��� BEGIN DML EXPANSION ���

���E78 41�� C�3� ���3� 459+ LA �,SSCTRL �2-@IDMS

���E7C 5��� C�94 ���94 46�+ ST �,SSCIDBCM+4 �2-@IDMS

���E8� 41�� C�B4 ���B4 461+ LA �,SSCIDBCM+37-1 �2-@IDMS

���E84 5��� C�98 ���98 462+ ST �,SSCIDBCM+8 �2-@IDMS

���E88 968� C�98 ���98 463+ OI SSCIDBCM+8,X'8�' �2-@IDMS

���E8C 41�� ���5 ����5 464+ LA �,5 �2-@IDMS

���E9� 5��� C1�4 ��1�4 465+ ST �,DMLSEQ �2-@IDMS

466+�, DML-SEQUENCE = 5 �2-@IDMS

���E94 411� C�94 ���94 467+ LA 1,SSCIDBCM+4 �2-@IDMS

���E98 58F� B7B� �17B� 468+ L 15,=V(IDMS) �2-@IDMS

���E9C �5EF 469+ BALR 14,15 ��� CALL IDMS MODE=BATCH ��� �2-@IDMS

47�+� ��� END DML EXPANSION ���

���E9E D5�3 C�38 B46A ���38 �146A 471 CLC ERRSTAT,STATOK CHECK IF ERROR

���EA4 477� B1F4 �11F4 472 BNE AREAERR BRANCH TO ERROR ROUTINE

 473 @OBTAIN FIRST,AREA='ORG-DEMO-REGION',REC='OFFICE'

474+� ��� BEGIN DML EXPANSION ���

���EA8 41�� C�3� ���3� 475+ LA �,SSCTRL �3-@IDMS

���EAC 5��� C�94 ���94 476+ ST �,SSCIDBCM+4 �3-@IDMS

���EB� 41�� C�A2 ���A2 477+ LA �,SSCIDBCM+18+1-1 �3-@IDMS

���EB4 5��� C�98 ���98 478+ ST �,SSCIDBCM+8 �3-@IDMS

���EB8 41�� B846 �1846 479+ LA �,=CL18'OFFICE' �3-@IDMS

���EBC 5��� C�9C ���9C 48�+ ST �,SSCIDBCM+12 �3-@IDMS

���EC� 41�� B87C �187C 481+ LA �,=CL18'ORG-DEMO-REGION' �3-@IDMS

���EC4 5��� C�A� ���A� 482+ ST �,SSCIDBCM+16 �3-@IDMS

���EC8 41�� C�BA ���BA 483+ LA �,SSCIDBCM+43-1 �2-@IDMS

���ECC 5��� C�A4 ���A4 484+ ST �,SSCIDBCM+2� �2-@IDMS

���ED� 968� C�A4 ���A4 485+ OI SSCIDBCM+2�,X'8�' �2-@IDMS

���ED4 41�� ���6 ����6 486+ LA �,6 �2-@IDMS

���ED8 5��� C1�4 ��1�4 487+ ST �,DMLSEQ �2-@IDMS

488+�, DML-SEQUENCE = 6 �2-@IDMS

���EDC 411� C�94 ���94 489+ LA 1,SSCIDBCM+4 �2-@IDMS

���EE� 58F� B7B� �17B� 49�+ L 15,=V(IDMS) �2-@IDMS

���EE4 �5EF 491+ BALR 14,15 ��� CALL IDMS MODE=BATCH ��� �2-@IDMS

492+� ��� END DML EXPANSION ���

���EE6 D5�3 C�38 B46A ���38 �146A 493 NEWOFFC CLC ERRSTAT,STATOK CHECK IF NO OFFICE

���EEC 477� B1F4 �11F4 494 BNE AREAERR

���EF� D2�2 B47� C168 �147� ��168 495 MVC OCODE,OFFCODE

���EF6 D2�E B473 C17F �1473 ��17F 496 MVC OCITY,OFFCITY

 497 @OBTAIN FIRST,SET='OFFICE-EMPLOYEE',REC='EMPLOYEE'

498+� ��� BEGIN DML EXPANSION ���

���EFC 41�� C�3� ���3� 499+ LA �,SSCTRL �3-@IDMS

���F�� 5��� C�94 ���94 5��+ ST �,SSCIDBCM+4 �3-@IDMS

Appendix B. Sample CA-IDMS/DB Batch Program B-31

B.4 Output from the assembler

���F�4 41�� C�A1 ���A1 5�1+ LA �,SSCIDBCM+18+�-1 �3-@IDMS

���F�8 5��� C�98 ���98 5�2+ ST �,SSCIDBCM+8 �3-@IDMS

���F�C 41�� B858 �1858 5�3+ LA �,=CL18'EMPLOYEE' �3-@IDMS

���F1� 5��� C�9C ���9C 5�4+ ST �,SSCIDBCM+12 �3-@IDMS

���F14 41�� B88E �188E 5�5+ LA �,=CL18'OFFICE-EMPLOYEE' �3-@IDMS

���F18 5��� C�A� ���A� 5�6+ ST �,SSCIDBCM+16 �3-@IDMS

���F1C 41�� C�BA ���BA 5�7+ LA �,SSCIDBCM+43-1 �2-@IDMS

���F2� 5��� C�A4 ���A4 5�8+ ST �,SSCIDBCM+2� �2-@IDMS

���F24 968� C�A4 ���A4 5�9+ OI SSCIDBCM+2�,X'8�' �2-@IDMS

���F28 41�� ���7 ����7 51�+ LA �,7 �2-@IDMS

���F2C 5��� C1�4 ��1�4 511+ ST �,DMLSEQ �2-@IDMS

512+�, DML-SEQUENCE = 7 �2-@IDMS

���F3� 411� C�94 ���94 513+ LA 1,SSCIDBCM+4 �2-@IDMS

���F34 58F� B7B� �17B� 514+ L 15,=V(IDMS) �2-@IDMS

���F38 �5EF 515+ BALR 14,15 ��� CALL IDMS MODE=BATCH ��� �2-@IDMS

516+� ��� END DML EXPANSION ���

���F3A D5�3 C�38 B46A ���38 �146A 517 CLC ERRSTAT,STATOK CHECK IF NO EMPLOYEE

���F4� 477� B26� �126� 518 BNE OBERR1

���F44 D2�3 B482 C8E8 �1482 ��8E8 519 MVC EID,EMPID MOVE EMPLOYEE ID

���F4A D2�9 B486 C8EC �1486 ��8EC 52� MVC FNAME,EMPFNAME MOVE EMPLOYEE FIRST NAME

���F5� D2�E B492 C8F6 �1492 ��8F6 521 MVC LNAME,EMPLNAME MOVE EMPLOYEE LAST NAME

���F56 D2�3 B4A1 C8E8 �14A1 ��8E8 522 MVC WALK,EMPID SAVE ID

���F5C D2�1 B454 C93D �1454 ��93D 523 MVC STATNUM,EMPSTATU MOVE EMPLOYEE STATUS

���F62 416� CF6A ��F6A 524 LA R6,NEWDPT LOAD ADDRESS OF NEW DEPT ROUTINE

���F66 47F� B342 �1342 525 B CKSTAT BRANCH TO STATUS-CHECK RTN

��F6A 526 NEWDPT EQU �

 527 @OBTAIN OWNER,SET='DEPT-EMPLOYEE'

528+� ��� BEGIN DML EXPANSION ���

���F6A 41�� C�3� ���3� 529+ LA �,SSCTRL �3-@IDMS

���F6E 5��� C�94 ���94 53�+ ST �,SSCIDBCM+4 �3-@IDMS

���F72 41�� C�AE ���AE 531+ LA �,SSCIDBCM+31-1 �3-@IDMS

���F76 5��� C�98 ���98 532+ ST �,SSCIDBCM+8 �3-@IDMS

���F7A 41�� B8A� �18A� 533+ LA �,=CL18'DEPT-EMPLOYEE' �3-@IDMS

���F7E 5��� C�9C ���9C 534+ ST �,SSCIDBCM+12 �3-@IDMS

���F82 41�� C�BA ���BA 535+ LA �,SSCIDBCM+43-1 �2-@IDMS

���F86 5��� C�A� ���A� 536+ ST �,SSCIDBCM+16 �2-@IDMS

���F8A 968� C�A� ���A� 537+ OI SSCIDBCM+16,X'8�' �2-@IDMS

���F8E 41�� ���8 ����8 538+ LA �,8 �2-@IDMS

���F92 5��� C1�4 ��1�4 539+ ST �,DMLSEQ �2-@IDMS

54�+�, DML-SEQUENCE = 8 �2-@IDMS

���F96 411� C�94 ���94 541+ LA 1,SSCIDBCM+4 �2-@IDMS

���F9A 58F� B7B� �17B� 542+ L 15,=V(IDMS) �2-@IDMS

���F9E �5EF 543+ BALR 14,15 ��� CALL IDMS MODE=BATCH ��� �2-@IDMS

544+� ��� END DML EXPANSION ���

���FA� D5�3 C�38 B46A ���38 �146A 545 CLC ERRSTAT,STATOK CHECK IF DEPARTMENT

���FA6 477� B26E �126E 546 BNE OBERR2

���FAA D2�3 B4A5 C96� �14A5 ��96� 547 MVC DID,DEPTID

���FB� D22C B4A9 C964 �14A9 ��964 548 MVC DEPT,DEPTNAME

���FB6 415� CFBE ��FBE 549 LA R5,MAIN�2� LOAD ADDRESS OF SET-WALK RTN

���FBA 47F� B2AE �12AE 55� B PRINTREC PRINT DEPARTMENT INFORMATION

 ��FBE 551 MAIN�2� EQU � �

 552 @OBTAIN NEXT,SET='DEPT-EMPLOYEE',REC='EMPLOYEE'

553+� ��� BEGIN DML EXPANSION ���

���FBE 41�� C�3� ���3� 554+ LA �,SSCTRL �3-@IDMS

B-32 CA-IDMS DML Reference — Assembler

B.4 Output from the assembler

���FC2 5��� C�94 ���94 555+ ST �,SSCIDBCM+4 �3-@IDMS

���FC6 41�� C�99 ���99 556+ LA �,SSCIDBCM+1�+�-1 �3-@IDMS

���FCA 5��� C�98 ���98 557+ ST �,SSCIDBCM+8 �3-@IDMS

���FCE 41�� B858 �1858 558+ LA �,=CL18'EMPLOYEE' �3-@IDMS

���FD2 5��� C�9C ���9C 559+ ST �,SSCIDBCM+12 �3-@IDMS

���FD6 41�� B8A� �18A� 56�+ LA �,=CL18'DEPT-EMPLOYEE' �3-@IDMS

���FDA 5��� C�A� ���A� 561+ ST �,SSCIDBCM+16 �3-@IDMS

���FDE 41�� C�BA ���BA 562+ LA �,SSCIDBCM+43-1 �2-@IDMS

���FE2 5��� C�A4 ���A4 563+ ST �,SSCIDBCM+2� �2-@IDMS

���FE6 968� C�A4 ���A4 564+ OI SSCIDBCM+2�,X'8�' �2-@IDMS

���FEA 41�� ���9 ����9 565+ LA �,9 �2-@IDMS

���FEE 5��� C1�4 ��1�4 566+ ST �,DMLSEQ �2-@IDMS

567+�, DML-SEQUENCE = 9 �2-@IDMS

���FF2 411� C�94 ���94 568+ LA 1,SSCIDBCM+4 �2-@IDMS

���FF6 58F� B7B� �17B� 569+ L 15,=V(IDMS) �2-@IDMS

���FFA �5EF 57�+ BALR 14,15 ��� CALL IDMS MODE=BATCH ��� �2-@IDMS

571+� ��� END DML EXPANSION ���

���FFC D5�3 C�38 �133 ���38 ��133 572 CLC ERRSTAT,�3�7 CHECK IF END OF SET

��1��2 478� B�38 �1�38 573 BE MAIN�3� BRANCH IF END OF SET

��1��6 D5�3 C�38 B46A ���38 �146A 574 CLC ERRSTAT,STATOK CHECK IF ERROR

��1��C 477� B27C �127C 575 BNE OBERR3

��1�1� D2�3 B482 C8E8 �1482 ��8E8 576 MVC EID,EMPID MOVE EMPLOYEE ID

��1�16 D2�9 B486 C8EC �1486 ��8EC 577 MVC FNAME,EMPFNAME MOVE EMPLOYEE FIRST NAME

��1�1C D2�E B492 C8F6 �1492 ��8F6 578 MVC LNAME,EMPLNAME MOVE EMPLOYEE LAST NAME

��1�22 D2�1 B454 C93D �1454 ��93D 579 MVC STATNUM,EMPSTATU MOVE EMPLOYEE STATUS

��1�28 416� B�3� �1�3� 58� LA R6,MAIN�25 LOAD ADDRESS OF PRINT LINK

��1�2C 47F� B342 �1342 581 B CKSTAT

 �1�3� 582 MAIN�25 EQU �

��1�3� 415� CFBE ��FBE 583 LA R5,MAIN�2�

��1�34 47F� B2AE �12AE 584 B PRINTREC

 �1�38 585 MAIN�3� EQU �

��1�38 D2�3 C8E8 B4A1 ��8E8 �14A1 586 MVC EMPID,WALK

587 @FIND CALC,REC='EMPLOYEE' FIND NEXT EMPLOYEE

588+� ��� BEGIN DML EXPANSION ���

��1�3E 41�� C�3� ���3� 589+ LA �,SSCTRL �2-@IDMS

��1�42 5��� C�94 ���94 59�+ ST �,SSCIDBCM+4 �2-@IDMS

��1�46 41�� C�AF ���AF 591+ LA �,SSCIDBCM+32-1 �2-@IDMS

��1�4A 5��� C�98 ���98 592+ ST �,SSCIDBCM+8 �2-@IDMS

��1�4E 41�� B858 �1858 593+ LA �,=CL18'EMPLOYEE' �2-@IDMS

��1�52 5��� C�9C ���9C 594+ ST �,SSCIDBCM+12 �2-@IDMS

��1�56 968� C�9C ���9C 595+ OI SSCIDBCM+12,X'8�' �2-@IDMS

��1�5A 41�� ���A ����A 596+ LA �,1� �2-@IDMS

��1�5E 5��� C1�4 ��1�4 597+ ST �,DMLSEQ �2-@IDMS

598+�, DML-SEQUENCE = 1� �2-@IDMS

��1�62 411� C�94 ���94 599+ LA 1,SSCIDBCM+4 �2-@IDMS

��1�66 58F� B7B� �17B� 6��+ L 15,=V(IDMS) �2-@IDMS

��1�6A �5EF 6�1+ BALR 14,15 ��� CALL IDMS MODE=BATCH ��� �2-@IDMS

6�2+� ��� END DML EXPANSION ���

��1�6C D5�3 C�38 B46A ���38 �146A 6�3 CLC ERRSTAT,STATOK CHECK IF ERROR

��1�72 477� B218 �1218 6�4 BNE CALCERR

�1�76 6�5 REPEAT EQU �

 6�6 @OBTAIN NEXT,SET='OFFICE-EMPLOYEE',REC='EMPLOYEE'

6�7+� ��� BEGIN DML EXPANSION ���

��1�76 41�� C�3� ���3� 6�8+ LA �,SSCTRL �3-@IDMS

��1�7A 5��� C�94 ���94 6�9+ ST �,SSCIDBCM+4 �3-@IDMS

��1�7E 41�� C�99 ���99 61�+ LA �,SSCIDBCM+1�+�-1 �3-@IDMS

Appendix B. Sample CA-IDMS/DB Batch Program B-33

B.4 Output from the assembler

��1�82 5��� C�98 ���98 611+ ST �,SSCIDBCM+8 �3-@IDMS

��1�86 41�� B858 �1858 612+ LA �,=CL18'EMPLOYEE' �3-@IDMS

��1�8A 5��� C�9C ���9C 613+ ST �,SSCIDBCM+12 �3-@IDMS

��1�8E 41�� B88E �188E 614+ LA �,=CL18'OFFICE-EMPLOYEE' �3-@IDMS

��1�92 5��� C�A� ���A� 615+ ST �,SSCIDBCM+16 �3-@IDMS

��1�96 41�� C�BA ���BA 616+ LA �,SSCIDBCM+43-1 �2-@IDMS

��1�9A 5��� C�A4 ���A4 617+ ST �,SSCIDBCM+2� �2-@IDMS

��1�9E 968� C�A4 ���A4 618+ OI SSCIDBCM+2�,X'8�' �2-@IDMS

��1�A2 41�� ���B ����B 619+ LA �,11 �2-@IDMS

��1�A6 5��� C1�4 ��1�4 62�+ ST �,DMLSEQ �2-@IDMS

621+�, DML-SEQUENCE = 11 �2-@IDMS

��1�AA 411� C�94 ���94 622+ LA 1,SSCIDBCM+4 �2-@IDMS

��1�AE 58F� B7B� �17B� 623+ L 15,=V(IDMS) �2-@IDMS

��1�B2 �5EF 624+ BALR 14,15 ��� CALL IDMS MODE=BATCH ��� �2-@IDMS

625+� ��� END DML EXPANSION ���

��1�B4 D5�3 C�38 B7B4 ���38 �17B4 626 CLC ERRSTAT,=C'�3�7' END OF SET ?

��1�BA 478� B126 �1126 627 BE MAIN�4� BRANCH IF END OF SET

��1�BE D5�3 C�38 B46A ���38 �146A 628 CLC ERRSTAT,STATOK

��1�C4 477� B26� �126� 629 BNE OBERR1

 63� @IF SET='DEPT-EMPLOYEE',MEMBER=YES,GOTO=REPEAT

631+� ��� BEGIN DML EXPANSION ���

��1�C8 41�� C�3� ���3� 632+ LA �,SSCTRL �2-@IDMS

��1�CC 5��� C�94 ���94 633+ ST �,SSCIDBCM+4 �2-@IDMS

��1�D� 41�� C�CB ���CB 634+ LA �,SSCIDBCM+6�-1 �2-@IDMS

��1�D4 5��� C�98 ���98 635+ ST �,SSCIDBCM+8 �2-@IDMS

��1�D8 41�� B8A� �18A� 636+ LA �,=CL18'DEPT-EMPLOYEE' �2-@IDMS

��1�DC 5��� C�9C ���9C 637+ ST �,SSCIDBCM+12 �2-@IDMS

��1�E� 968� C�9C ���9C 638+ OI SSCIDBCM+12,X'8�' �2-@IDMS

��1�E4 41�� ���C ����C 639+ LA �,12 �2-@IDMS

��1�E8 5��� C1�4 ��1�4 64�+ ST �,DMLSEQ �2-@IDMS

641+�, DML-SEQUENCE = 12 �2-@IDMS

��1�EC 411� C�94 ���94 642+ LA 1,SSCIDBCM+4 �2-@IDMS

��1�F� 58F� B7B� �17B� 643+ L 15,=V(IDMS) �2-@IDMS

��1�F4 �5EF 644+ BALR 14,15 ��� CALL IDMS MODE=BATCH ��� �2-@IDMS

645+� ��� END DML EXPANSION ���

��1�F6 D5�3 C�38 B7B8 ���38 �17B8 646+ CLC ERRSTAT,=C'����' �1-@IF

��1�FC 478� B�76 �1�76 647+ BE REPEAT �1-@IF

��11�� D2�3 B482 C8E8 �1482 ��8E8 648 MVC EID,EMPID MOVE EMPLOYEE ID

��11�6 D2�9 B486 C8EC �1486 ��8EC 649 MVC FNAME,EMPFNAME MOVE EMPLOYEE FIRST NAME

��11�C D2�E B492 C8F6 �1492 ��8F6 65� MVC LNAME,EMPLNAME MOVE EMPLOYEE LAST NAME

��1112 D2�3 B4A1 C8E8 �14A1 ��8E8 651 MVC WALK,EMPID

��1118 D2�1 B454 C93D �1454 ��93D 652 MVC STATNUM,EMPSTATU

��111E 416� CF6A ��F6A 653 LA R6,NEWDPT ADDRESS OF DEPT ROUTINE

��1122 47F� B342 �1342 654 B CKSTAT

 �1126 655 MAIN�4� EQU �

 656 @OBTAIN NEXT,AREA='ORG-DEMO-REGION',REC='OFFICE'

657+� ��� BEGIN DML EXPANSION ���

��1126 41�� C�3� ���3� 658+ LA �,SSCTRL �3-@IDMS

��112A 5��� C�94 ���94 659+ ST �,SSCIDBCM+4 �3-@IDMS

��112E 41�� C�9A ���9A 66�+ LA �,SSCIDBCM+1�+1-1 �3-@IDMS

��1132 5��� C�98 ���98 661+ ST �,SSCIDBCM+8 �3-@IDMS

��1136 41�� B846 �1846 662+ LA �,=CL18'OFFICE' �3-@IDMS

��113A 5��� C�9C ���9C 663+ ST �,SSCIDBCM+12 �3-@IDMS

��113E 41�� B87C �187C 664+ LA �,=CL18'ORG-DEMO-REGION' �3-@IDMS

��1142 5��� C�A� ���A� 665+ ST �,SSCIDBCM+16 �3-@IDMS

B-34 CA-IDMS DML Reference — Assembler

B.4 Output from the assembler

��1146 41�� C�BA ���BA 666+ LA �,SSCIDBCM+43-1 �2-@IDMS

��114A 5��� C�A4 ���A4 667+ ST �,SSCIDBCM+2� �2-@IDMS

��114E 968� C�A4 ���A4 668+ OI SSCIDBCM+2�,X'8�' �2-@IDMS

��1152 41�� ���D ����D 669+ LA �,13 �2-@IDMS

��1156 5��� C1�4 ��1�4 67�+ ST �,DMLSEQ �2-@IDMS

671+�, DML-SEQUENCE = 13 �2-@IDMS

��115A 411� C�94 ���94 672+ LA 1,SSCIDBCM+4 �2-@IDMS

��115E 58F� B7B� �17B� 673+ L 15,=V(IDMS) �2-@IDMS

��1162 �5EF 674+ BALR 14,15 ��� CALL IDMS MODE=BATCH ��� �2-@IDMS

675+� ��� END DML EXPANSION ���

��1164 47F� CEE6 ��EE6 676 B NEWOFFC

 �1168 677 EOF EQU �

 678 @FINISH �

679+� ��� BEGIN DML EXPANSION ���

��1168 41�� C�3� ���3� 68�+ LA �,SSCTRL �2-@IDMS

��116C 5��� C�94 ���94 681+ ST �,SSCIDBCM+4 �2-@IDMS

��117� 41�� C�91 ���91 682+ LA �,SSCIDBCM+2-1 �2-@IDMS

��1174 5��� C�98 ���98 683+ ST �,SSCIDBCM+8 �2-@IDMS

��1178 968� C�98 ���98 684+ OI SSCIDBCM+8,X'8�' �2-@IDMS

��117C 41�� ���E ����E 685+ LA �,14 �2-@IDMS

��118� 5��� C1�4 ��1�4 686+ ST �,DMLSEQ �2-@IDMS

687+�, DML-SEQUENCE = 14 �2-@IDMS

��1184 411� C�94 ���94 688+ LA 1,SSCIDBCM+4 �2-@IDMS

��1188 58F� B7B� �17B� 689+ L 15,=V(IDMS) �2-@IDMS

��118C �5EF 69�+ BALR 14,15 ��� CALL IDMS MODE=BATCH ��� �2-@IDMS

691+� ��� END DML EXPANSION ���

��118E D5�3 C�38 B46A ���38 �146A 692 CLC ERRSTAT,STATOK

��1194 477� B23C �123C 693 BNE FINERR

 694 CLOSE (OUTFILE)

��1198 695+ CNOP �,4 ALIGN LIST TO FULLWORD �1-CLOSE

��1198 451� B1A� �11A� 696+ BAL 1,�+8 LOAD REG1 W/LIST ADDR. @L2A �1-CLOSE

��119C 8� 697+ DC AL1(128) OPTION BYTE �1-CLOSE

��119D ��173C 698+ DC AL3(OUTFILE) DCB ADDRESS �1-CLOSE

��11A� �A14 699+ SVC 2� ISSUE CLOSE SVC �1-CLOSE

��11A2 58D� B41� �141� 7�� L R13,SAVEAREA+4

��11A6 98EC D��C ����C 7�1 LM R14,R12,12(R13)

��11AA �7FE 7�2 BR R14 RETURN

 7�3 � ERROR ROUTINES �

 �11AC 7�4 BSERROR EQU �

��11AC 924� B5�D �15�D 7�5 MVI ERRMSG,C' '

��11B� D212 B5�E B5�D �15�E �15�D 7�6 MVC ERRMSG+1(19),ERRMSG

��11B6 924� B521 �1521 7�7 MVI ERRNUM,C' '

��11BA D2�2 B522 B521 �1522 �1521 7�8 MVC ERRNUM+1(3),ERRNUM

��11C� D2�3 B521 C�38 �1521 ���38 7�9 MVC ERRNUM,ERRSTAT

��11C6 D213 B5�D B56� �15�D �156� 71� MVC ERRMSG,BSMSG

��11CC 47F� B28A �128A 711 B PRINTERR

 �11D� 712 BRERROR EQU �

��11D� 924� B5�D �15�D 713 MVI ERRMSG,C' '

��11D4 D212 B5�E B5�D �15�E �15�D 714 MVC ERRMSG+1(19),ERRMSG

��11DA 924� B521 �1521 715 MVI ERRNUM,C' '

��11DE D2�2 B522 B521 �1522 �1521 716 MVC ERRNUM+1(3),ERRNUM

��11E4 D2�3 B521 C�38 �1521 ���38 717 MVC ERRNUM,ERRSTAT

��11EA D213 B5�D B574 �15�D �1574 718 MVC ERRMSG,BRMSG

��11F� 47F� B28A �128A 719 B PRINTERR

 �11F4 72� AREAERR EQU �

��11F4 924� B5�D �15�D 721 MVI ERRMSG,C' '

��11F8 D212 B5�E B5�D �15�E �15�D 722 MVC ERRMSG+1(19),ERRMSG

��11FE 924� B521 �1521 723 MVI ERRNUM,C' '

��12�2 D2�2 B522 B521 �1522 �1521 724 MVC ERRNUM+1(3),ERRNUM

��12�8 D2�3 B521 C�38 �1521 ���38 725 MVC ERRNUM,ERRSTAT

��12�E D213 B5�D B588 �15�D �1588 726 MVC ERRMSG,AREAMSG

��1214 47F� B28A �128A 727 B PRINTERR

 �1218 728 CALCERR EQU �

��1218 924� B5�D �15�D 729 MVI ERRMSG,C' '

��121C D212 B5�E B5�D �15�E �15�D 73� MVC ERRMSG+1(19),ERRMSG

��1222 924� B521 �1521 731 MVI ERRNUM,C' '

��1226 D2�2 B522 B521 �1522 �1521 732 MVC ERRNUM+1(3),ERRNUM

��122C D2�3 B521 C�38 �1521 ���38 733 MVC ERRNUM,ERRSTAT

Appendix B. Sample CA-IDMS/DB Batch Program B-35

B.4 Output from the assembler

��1232 D213 B5�D B59C �15�D �159C 734 MVC ERRMSG,CALMSG

��1238 47F� B28A �128A 735 B PRINTERR

�123C 736 FINERR EQU �

��123C 924� B5�D �15�D 737 MVI ERRMSG,C' '

��124� D212 B5�E B5�D �15�E �15�D 738 MVC ERRMSG+1(19),ERRMSG

��1246 924� B521 �1521 739 MVI ERRNUM,C' '

��124A D2�2 B522 B521 �1522 �1521 74� MVC ERRNUM+1(3),ERRNUM

��125� D2�3 B521 C�38 �1521 ���38 741 MVC ERRNUM,ERRSTAT

��1256 D213 B5�D B5B� �15�D �15B� 742 MVC ERRMSG,FINMSG

��125C 47F� B28A �128A 743 B PRINTERR

�126� 744 OBERR1 EQU �

��126� D2�� B5C4 B8BD �15C4 �18BD 745 MVC EDSW,=C'Y'

��1266 415� B126 �1126 746 LA R5,MAIN�4�

��126A 47F� B2AE �12AE 747 B PRINTREC

�126E 748 OBERR2 EQU �

��126E D2�� B5C5 B8BD �15C5 �18BD 749 MVC DSW,=C'Y'

��1274 415� B�76 �1�76 75� LA R5,REPEAT

��1278 47F� B2AE �12AE 751 B PRINTREC

�127C 752 OBERR3 EQU �

��127C D2�� B5C6 B8BD �15C6 �18BD 753 MVC ESW,=C'Y'

��1282 415� B�38 �1�38 754 LA R5,MAIN�3�

��1286 47F� B2AE �12AE 755 B PRINTREC

 756 � PRINT ROUTINES

�128A 757 PRINTERR EQU �

��128A D284 B4D6 ��4� �14D6 ���4� 758 MVC ERRLINE,C' '

��129� D283 B4D7 B4D6 �14D7 �14D6 759 MVC ERRLINE+1(132),ERRLINE

��1296 92F� B4D6 �14D6 76� MVI ERRLINE,C'�'

 761 PUT OUTFILE,ERRLINE

��129A 411� B73C �173C 762+ LA 1,OUTFILE LOAD PARAMETER REG 1 �2-IHBIN

��129E 41�� B4D6 �14D6 763+ LA �,ERRLINE LOAD PARAMETER REG � �2-IHBIN

��12A2 1FFF 764+ SLR 15,15 CLEAR REGISTER @L1A �1-PUT

��12A4 BFF7 1�31 ���31 765+ ICM 15,7,49(1) LOAD PUT ROUTINE ADDR @L1C �1-PUT

��12A8 �5EF 766+ BALR 14,15 LINK TO PUT ROUTINE �1-PUT

��12AA 47F� B168 �1168 767 B EOF

�12AE 768 PRINTREC EQU �

��12AE 924� B5C7 �15C7 769 MVI LINE1,C' '

��12B2 D283 B5C8 B5C7 �15C8 �15C7 77� MVC LINE1+1(132),LINE1

��12B8 92F� B5C7 �15C7 771 MVI LINE1,C'�'

��12BC 924� B64C �164C 772 MVI LINE2,C' '

��12C� D283 B64D B64C �164D �164C 773 MVC LINE2+1(132),LINE2

��12C6 D5�� B5C4 B8BD �15C4 �18BD 774 CLC EDSW,=C'Y'

��12CC 478� B3�2 �13�2 775 BE SKIPED

��12D� D5�� B5C5 B8BD �15C5 �18BD 776 CLC DSW,=C'Y'

��12D6 478� B2F� �12F� 777 BE SKIPD

B-36 CA-IDMS DML Reference — Assembler

B.4 Output from the assembler

��12DA D22C B5E2 B4A9 �15E2 �14A9 778 MVC LINE1+27(45),DEPT

��12E� D2�3 B667 B4A5 �1667 �14A5 779 MVC LINE2+27(4),DID

��12E6 D5�� B5C5 B8BD �15C5 �18BD 78� CLC DSW,=C'Y'

��12EC 478� B3�2 �13�2 781 BE SKIPED

 �12F� 782 SKIPD EQU �

��12F� D21A B614 B486 �1614 �1486 783 MVC LINE1+77(27),ENAME

��12F6 D2�3 B699 B482 �1699 �1482 784 MVC LINE2+77(4),EID

��12FC D213 B634 B456 �1634 �1456 785 MVC LINE1+1�9(2�),STAT

�13�2 786 SKIPED EQU �

��13�2 D2�E B5CE B473 �15CE �1473 787 MVC LINE1+7(15),OCITY

��13�8 D2�3 B653 B47� �1653 �147� 788 MVC LINE2+7(4),OCODE

 789 PUT OUTFILE,LINE1

��13�E 411� B73C �173C 79�+ LA 1,OUTFILE LOAD PARAMETER REG 1 �2-IHBIN

��1312 41�� B5C7 �15C7 791+ LA �,LINE1 LOAD PARAMETER REG � �2-IHBIN

��1316 1FFF 792+ SLR 15,15 CLEAR REGISTER @L1A �1-PUT

��1318 BFF7 1�31 ���31 793+ ICM 15,7,49(1) LOAD PUT ROUTINE ADDR @L1C �1-PUT

��131C �5EF 794+ BALR 14,15 LINK TO PUT ROUTINE �1-PUT

 795 PUT OUTFILE,LINE2

��131E 411� B73C �173C 796+ LA 1,OUTFILE LOAD PARAMETER REG 1 �2-IHBIN

��1322 41�� B64C �164C 797+ LA �,LINE2 LOAD PARAMETER REG � �2-IHBIN

��1326 1FFF 798+ SLR 15,15 CLEAR REGISTER @L1A �1-PUT

��1328 BFF7 1�31 ���31 799+ ICM 15,7,49(1) LOAD PUT ROUTINE ADDR @L1C �1-PUT

��132C �5EF 8��+ BALR 14,15 LINK TO PUT ROUTINE �1-PUT

��132E D2�� B5C4 B8BC �15C4 �18BC 8�1 MVC EDSW,=C'N'

��1334 D2�� B5C5 B8BC �15C5 �18BC 8�2 MVC DSW,=C'N'

��133A D2�� B5C6 B8BC �15C6 �18BC 8�3 MVC ESW,=C'N'

��134� �7F5 8�4 BR R5

8�5 � CHECK STATUS ROUTINE �

�1342 8�6 CKSTAT EQU �

��1342 D5�1 B454 B8B2 �1454 �18B2 8�7 CLC STATNUM,=C'�1'

��1348 478� B37C �137C 8�8 BE ACT

��134C D5�1 B454 B8B4 �1454 �18B4 8�9 CLC STATNUM,=C'�2'

��1352 478� B384 �1384 81� BE STD

��1356 D5�1 B454 B8B6 �1454 �18B6 811 CLC STATNUM,=C'�3'

��135C 478� B38C �138C 812 BE LTD

��136� D5�1 B454 B8B8 �1454 �18B8 813 CLC STATNUM,=C'�4'

��1366 478� B394 �1394 814 BE LVO

��136A D5�1 B454 B8BA �1454 �18BA 815 CLC STATNUM,=C'�5'

��137� 478� B39C �139C 816 BE TRM

��1374 D213 B456 B7BC �1456 �17BC 817 MVC STAT,=C' STATUS CODE ERROR '

��137A �7F6 818 BR R6

 �137C 819 ACT EQU �

��137C D213 B456 B7D� �1456 �17D� 82� MVC STAT,=C' ACTIVE '

��1382 �7F6 821 BR R6

 �1384 822 STD EQU �

��1384 D213 B456 B7E4 �1456 �17E4 823 MVC STAT,=C' SHORT TERM DISABLED'

��138A �7F6 824 BR R6

 �138C 825 LTD EQU �

��138C D213 B456 B7F8 �1456 �17F8 826 MVC STAT,=C' LONG TERM DISBALED '

��1392 �7F6 827 BR R6

 �1394 828 LVO EQU �

��1394 D213 B456 B8�C �1456 �18�C 829 MVC STAT,=C' LEAVE OF ABSENCE '

��139A �7F6 83� BR R6

 �139C 831 TRM EQU �

��139C D213 B456 B82� �1456 �182� 832 MVC STAT,=C' TERMINATED '

��13A2 �7F6 833 BR R6

834 � PRINT REPORT HEADING ROUTINE �

 �13A4 835 PRTHEAD EQU �

��13A4 924� B5C7 �15C7 836 MVI LINE1,C' '

��13A8 D283 B5C8 B5C7 �15C8 �15C7 837 MVC LINE1+1(132),LINE1

��13AE 92F1 B5C7 �15C7 838 MVI LINE1,C'1'

��13B2 D219 B5FD B6D1 �15FD �16D1 839 MVC LINE1+54(26),HEAD1

 84� PUT OUTFILE,LINE1

��13B8 411� B73C �173C 841+ LA 1,OUTFILE LOAD PARAMETER REG 1 �2-IHBIN

��13BC 41�� B5C7 �15C7 842+ LA �,LINE1 LOAD PARAMETER REG � �2-IHBIN

��13C� 1FFF 843+ SLR 15,15 CLEAR REGISTER @L1A �1-PUT

��13C2 BFF7 1�31 ���31 844+ ICM 15,7,49(1) LOAD PUT ROUTINE ADDR @L1C �1-PUT

��13C6 �5EF 845+ BALR 14,15 LINK TO PUT ROUTINE �1-PUT

��13C8 924� B5C7 �15C7 846 MVI LINE1,C' '

��13CC D283 B5C8 B5C7 �15C8 �15C7 847 MVC LINE1+1(132),LINE1

��13D2 926� B5C7 �15C7 848 MVI LINE1,C'-'

��13D6 D211 B5CD B6EB �15CD �16EB 849 MVC LINE1+6(18),HEAD2O

��13DC D219 B5E1 B6FD �15E1 �16FD 85� MVC LINE1+26(26),HEAD2D

��13E2 D213 B613 B717 �1613 �1717 851 MVC LINE1+76(2�),HEAD2E

��13E8 D2�E B633 B72B �1633 �172B 852 MVC LINE1+1�8(15),HEAD2S

Appendix B. Sample CA-IDMS/DB Batch Program B-37

B.4 Output from the assembler

 853 PUT OUTFILE,LINE1

��13EE 411� B73C �173C 854+ LA 1,OUTFILE LOAD PARAMETER REG 1 �2-IHBIN

��13F2 41�� B5C7 �15C7 855+ LA �,LINE1 LOAD PARAMETER REG � �2-IHBIN

��13F6 1FFF 856+ SLR 15,15 CLEAR REGISTER @L1A �1-PUT

��13F8 BFF7 1�31 ���31 857+ ICM 15,7,49(1) LOAD PUT ROUTINE ADDR @L1C �1-PUT

��13FC �5EF 858+ BALR 14,15 LINK TO PUT ROUTINE �1-PUT

��13FE �7F5 859 BR R5

 86� �

��14�� E6D6D9D26�C6C9C5 861 WORKFLDS DC C'WORK-FIELDS'

��14�B ��

��14�C ���������������� 862 SAVEAREA DC 18F'�'

��1454 863 STATNUM DS CL2

��1456 864 STAT DS CL2�

��146A F�F�F�F� 865 STATOK DC CL4'����'

��146E 866 STATUS DS CL2

��147� 867 OCODE DS CL3

��1473 868 OCITY DS CL15

��1482 869 EID DS CL4

��1486 87� ENAME DS �CL27

��1486 871 FNAME DS CL1�

��149� 872 DS CL2

��1492 873 LNAME DS CL15

��14A1 874 WALK DS CL4

��14A5 875 DID DS CL4

��14A9 876 DEPT DS CL45

��14D6 877 ERRLINE DS �CL133

��14D6 878 DS CL1

��14D7 5C4�5C4�5C4�5C4� 879 DC CL48'� '

��15�7 4�4�4�4�4�4� 88� DC CL6' '

��15�D 881 ERRMSG DS CL2�

��1521 882 ERRNUM DS CL4

��1525 4�4�4�4�4�4� 883 DC CL6' '

��152B 5C4�5C4�5C4�5C4� 884 DC CL48'� '

��155B 4�4�4�4�4� 885 DC CL5' '

��156� C2C9D5C44�E2E4C2 886 BSMSG DC CL2�'BIND SUBSCH ERROR # '

��1574 C2C9D5C44�D9C5C3 887 BRMSG DC CL2�'BIND RECORD ERROR # '

��1588 D9C5C1C4E84�C1D9 888 AREAMSG DC CL2�'READY AREA ERROR # '

��159C C6C9D5C44�C3C1D3 889 CALMSG DC CL2�'FIND CALC ERROR # '

��15B� 7CC6C9D5C9E2C84� 89� FINMSG DC CL2�'@FINISH ERROR # '

��15C4 891 EDSW DS CL1

��15C5 892 DSW DS CL1

��15C6 893 ESW DS CL1

��15C7 894 LINE1 DS CL133

��164C 895 LINE2 DS CL133

��16D1 D6C6C6C9C3C54�4� 896 HEAD1 DC CL26'OFFICE PERSONNEL LISTING'

��16EB D6C6C6C9C3C561D6 897 HEAD2O DC CL18'OFFICE/OFFICE CODE'

��16FD C4C5D7C1D9E3D4C5 898 HEAD2D DC CL26'DEPARTMENT/DEPARTMENT CODE'

��1717 C5D4D7D3D6E8C5C5 899 HEAD2E DC CL2�'EMPLOYEE/EMPLOYEE ID'

��172B C5D4D7D3D6E8C5C5 9�� HEAD2S DC CL15'EMPLOYEE STATUS'

9�1 � OUTPUT FILE DCB INFO

 9�2 OUTFILE DCB DDNAME=OUTFILE,MACRF=PM,BLKSIZE=133,LRECL=133, X

 DSORG=PS

9�4+� DATA CONTROL BLOCK

 9�5+�

��173A ����

��173C 9�6+OUTFILE DC �F'�' ORIGIN ON WORD BOUNDARY �1-DCB

9�7+� DIRECT ACCESS DEVICE INTERFACE

��173C ���������������� 9�8+ DC BL16'�' FDAD, DVTBL �1-DCB

��174C �������� 9�9+ DC A(�) KEYLEN, DEVT, TRBAL �1-DCB

91�+� COMMON ACCESS METHOD INTERFACE

��175� �� 911+ DC AL1(�) BUFNO, NUMBER OF BUFFERS �1-DCB

��1751 �����1 912+ DC AL3(1) BUFCB, BUFFER POOL CONTROL BLOCK �1-DCB

��1754 ���� 913+ DC AL2(�) BUFL, BUFFER LENGTH �1-DCB

��1756 4��� 914+ DC BL2'�1��������������' DSORG, DATA SET ORGANIZATION �1-DCB

��1758 �������1 915+ DC A(1) IOBAD FOR EXCP OR RESERVED �1-DCB

 916+� FOUNDATION EXTENSION

��175C �� 917+ DC BL1'��������' BFTEK, BFALN, DCBE INDICATORS �1-DCB

��175D �����1 918+ DC AL3(1) EODAD (END OF DATA ROUTINE ADDRESS) �1-DCB

��176� �� 919+ DC BL1'��������' RECFM (RECORD FORMAT) �1-DCB

��1761 ������ 92�+ DC AL3(�) EXLST (EXIT LIST ADDRESS) �1-DCB

 921+� FOUNDATION BLOCK

B-38 CA-IDMS DML Reference — Assembler

B.4 Output from the assembler

��1764 D6E4E3C6C9D3C54� 922+ DC CL8'OUTFILE' DDNAME �1-DCB

��176C �2 923+ DC BL1'������1�' OFLGS (OPEN FLAGS) �1-DCB

��176D �� 924+ DC BL1'��������' IFLGS (IOS FLAGS) �1-DCB

��176E ��5� 925+ DC BL2'���������1�1����' MACR (MACRO FORMAT) �1-DCB

 926+� BSAM-BPAM-QSAM INTERFACE

��177� �� 927+ DC BL1'��������' OPTCD, OPTION CODES �1-DCB

��1771 �����1 928+ DC AL3(1) CHECK OR INTERNAL QSAM SYNCHRONIZING RTN. �1-DCB

��1774 �������1 929+ DC A(1) SYNAD, SYNCHRONOUS ERROR RTN. (3 BYTES) �1-DCB

��1778 ���� 93�+ DC H'�' INTERNAL ACCESS METHOD FLAGS �1-DCB

��177A ��85 931+ DC AL2(133) BLKSIZE, BLOCK SIZE �1-DCB

��177C �������� 932+ DC F'�' INTERNAL ACCESS METHOD FLAGS �1-DCB

��178� �������1 933+ DC A(1) INTERNAL ACCESS METHOD USE �1-DCB

 934+� QSAM INTERFACE

��1784 �������1 935+ DC A(1) EOBAD �1-DCB

��1788 �������1 936+ DC A(1) RECAD �1-DCB

��178C ���� 937+ DC H'�' QSWS (FLAGS) AND EITHER DIRCT OR BUFOFF �1-DCB

��178E ��85 938+ DC AL2(133) LRECL �1-DCB

��179� �� 939+ DC BL1'��������' EROPT, ERROR OPTION �1-DCB

��1791 �����1 94�+ DC AL3(1) CNTRL �1-DCB

��1794 �������� 941+ DC H'�,�' RESERVED AND PRECL �1-DCB

��1798 �������1 942+ DC A(1) EOB, INTERNAL ACCESS METHOD FIELD �1-DCB

��17A� 943 LTORG

��17A� 4�4�4�4�4�4�4�4� 944 =CL8' '

��17A8 C1D7D7D3C4C9C3E3 945 =CL8'APPLDICT'

��17B� �������� 946 =V(IDMS)

��17B4 F�F3F�F7 947 =C'�3�7'

��17B8 F�F�F�F� 948 =C'����'

��17BC 4�E2E3C1E3E4E24� 949 =C' STATUS CODE ERROR '

��17D� 4�C1C3E3C9E5C54� 95� =C' ACTIVE '

��17E4 4�E2C8D6D9E34�E3 951 =C' SHORT TERM DISABLED'

��17F8 4�D3D6D5C74�E3C5 952 =C' LONG TERM DISBALED '

��18�C 4�D3C5C1E5C54�D6 953 =C' LEAVE OF ABSENCE '

��182� 4�E3C5D9D4C9D5C1 954 =C' TERMINATED '

��1834 C5D4D7E2E2F�F14� 955 =CL18'EMPSS�1 '

��1846 D6C6C6C9C3C54�4� 956 =CL18'OFFICE'

��1858 C5D4D7D3D6E8C5C5 957 =CL18'EMPLOYEE'

��186A C4C5D7C1D9E3D4C5 958 =CL18'DEPARTMENT'

��187C D6D9C76�C4C5D4D6 959 =CL18'ORG-DEMO-REGION'

��188E D6C6C6C9C3C56�C5 96� =CL18'OFFICE-EMPLOYEE'

��18A� C4C5D7E36�C5D4D7 961 =CL18'DEPT-EMPLOYEE'

��18B2 F�F1 962 =C'�1'

��18B4 F�F2 963 =C'�2'

��18B6 F�F3 964 =C'�3'

��18B8 F�F4 965 =C'�4'

��18BA F�F5 966 =C'�5'

��18BC D5 967 =C'N'

��18BD E8 968 =C'Y'

������ 969 END SAMPLE1

Appendix B. Sample CA-IDMS/DB Batch Program B-39

B-40 CA-IDMS DML Reference — Assembler

Appendix C. Sample DC/UCF Online Program

C.1 Overview .C-3
C.2 Input to the DML precompiler . C-4
C.3 Output from the DML precompiler. C-6
C.4 Output from the assembler . C-9

Appendix C. Sample DC/UCF Online Program C-1

C-2 CA-IDMS DML Reference — Assembler

C.1 Overview

 C.1 Overview

This appendix contains a sample DC/UCF program that performs a map out operation,
prompting the terminal operator for a department ID.

Appendix C. Sample DC/UCF Online Program C-3

C.2 Input to the DML precompiler

C.2 Input to the DML precompiler

The following illustrates a sample online program as input to the DML precompiler.

�RETRIEVAL

�DMLIST

�NO-ACTIVITY-LOG

R� EQU �

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R1� EQU 1�

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 SPACE 1

� ENTER FROM NEXT HIGHER LEVEL

 SPACE 1

PRINT GEN ASSEMBLER PRINT OPTIONS

SYBPG2 CSECT

LR R12,R15 ESTABLISHES REGISTER 12 AS THE

 USING SYBPG2,R12 BASE REGISTER

USING STORAGE,R1� ESTABLISH ADDRESSABILITY OF DSECT

B PROCESS BRANCH TO FIND INVOKING TASKCODE

 EJECT

 @INVOKE MODE=IDMSDC,MAP=SYBMAP

� OPERATING MODE: IDMS-DC/MAPPING

 EJECT

 SPACE 1

RETURN DS �H

#FREESTG STGID='SYB4' FREE THE STORAGE ACQUIRED EARLIER

#RETURN RETURN TO HIGHER LEVEL

 SPACE 1

RETURNXT DS �H

#RETURN NXTTASK=SYBTSK�3 PASS CONTROL BACK TO ITSELF

 SPACE 1

� MAINLINE PROGRAM

 SPACE 1

PROCESS DS �H

 #GETSTG TYPE=(USER,LONG,KEEP),PLIST=�,LEN=STORLGTH, �

 STGID='SYB4',COND=(ALL),ERROR=ERRORTN,ADDR=(R1�), �

 INIT=X'4�'

� ACQUIRE VARIABLE STORAGE

 SPACE 1

#MAPBIND MRB=SYBMAP BIND MAP AND RECORDS

 #MAPBIND MRB=SYBMAP,RECNAME=SYBREC

 SPACE 1

C-4 CA-IDMS DML Reference — Assembler

C.2 Input to the DML precompiler

ACCEPTSK #ACCEPT TYPE=TASKCODE,FIELD=TASKCODE

� ACCEPT TASK CODE TO INVOKE TASK

CLC TASKCODE,SYBTSK2 FIRST TIME CALLED ?

BNE RECCUR YES - OUTPUT FIRST SCREEN

� NO - INPUT DATA FROM SCREEN

FIRSTIME DS �H

MVC SYBDEPID,=C'����' PRIME DATA FIELD

 SPACE

 #MREQ OUT,MRB=SYBMAP,OPTNS=(NEWPAGE),ERROR=ERRORTN, �

 COND=(ALL)

� MAP OUT PROMPT

 SPACE

B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE

 SPACE 2

RECCUR DS �H

 #MREQ IN,MRB=SYBMAP,ERROR=ERRORTN,COND=(ALL)

� MAP IN TERMINAL INPUT

 SPACE 1

 #MAPINQ MRB=SYBMAP,AID=AIDBYTE

� MOVE MAP DATA TO PROG VARIABLE STG

CLI AIDBYTE,CLEAR DID THE OPERATOR REQUEST FINISH?

BE RETURN YES - EXIT PGM, BACK TO IDMS-DC

 SPACE

 #MREQ OUT,MRB=SYBMAP,ERROR=ERRORTN, �

 COND=(ALL)

� MAP OUT DATA

 SPACE

B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE

� NO - MAPOUT, WAIT ON OPERATOR

ERRORTN DS �H HERE FOR NONZERO RETURN CODE

 #SNAP AREA=(SYBMAP,SYBMAPLN)

 B RETURN EXIT

CLEAR EQU X'6D' CLEAR AIDBYTE VALUE

SYBTSK2 DC CL8'SYBTSK2 ' DC TASK INVOKING VALUE (EXTERNAL)

SYBTSK�3 DC CL8'SYBTSK�3' DC TASK INVOKING VALUE (INTERNAL)

 LTORG

 #BALI

 SPACE 2

��

STORAGE DSECT STORAGE DSECT

 @COPY IDMS,MAP-CONTROL=SYBMAP

SYBMAPLN EQU �-SYBMAP LENGTH OF #MRB FOR SNAP

 SPACE 1

 @COPY IDMS,MAP-RECORDS

 SPACE 1

SYSPLIST DS 2�F MAP OUT PARAMETER LIST AREA

TASKCODE DS CL8 TASK CODE WHICH INVOKED PROGRAM

AIDBYTE DS X ATTENTION IDENTIFIER BYTE

 DS 3X RESERVED

STORLGTH EQU �-STORAGE TOTAL LENGTH OF STORAGE NEEDED

 SPACE 1

 END SYBPG2

Appendix C. Sample DC/UCF Online Program C-5

C.3 Output from the DML precompiler

C.3 Output from the DML precompiler

The following illustrates the sample online program as output from the DML
precompiler.

C-6 CA-IDMS DML Reference — Assembler

C.3 Output from the DML precompiler

- ����1 �RETRIEVAL

 ����2 �DMLIST

 ����3 �NO-ACTIVITY-LOG

 ����4 R� EQU �

 ����5 R1 EQU 1

 ����6 R2 EQU 2

 ����7 R3 EQU 3

 ����8 R4 EQU 4

 ����9 R5 EQU 5

 ���1� R6 EQU 6

 ���11 R7 EQU 7

 ���12 R8 EQU 8

 ���13 R9 EQU 9

 ���14 R1� EQU 1�

 ���15 R11 EQU 11

 ���16 R12 EQU 12

 ���17 R13 EQU 13

 ���18 R14 EQU 14

 ���19 R15 EQU 15

 ���2� SPACE 1

���21 � ENTER FROM NEXT HIGHER LEVEL

 ���22 SPACE 1

���23 PRINT GEN ASSEMBLER PRINT OPTIONS

 ���24 SYBPG2 CSECT

���25 LR R12,R15 ESTABLISHES REGISTER 12 AS THE

 ���26 USING SYBPG2,R12 BASE REGISTER

���27 USING STORAGE,R1� ESTABLISH ADDRESSABILITY OF DSECT

���28 B PROCESS BRANCH TO FIND INVOKING TASKCODE

 ���29 EJECT

 ���3� @INVOKE MODE=IDMSDC,MAP=SYBMAP

���32 � OPERATING MODE: IDMS-DC/MAPPING

 ���33 EJECT

 ���34 SPACE 1

 ���35 RETURN DS �H

���36 #FREESTG STGID='SYB4' FREE THE STORAGE ACQUIRED EARLIER

���37 #RETURN RETURN TO HIGHER LEVEL

 ���38 SPACE 1

 ���39 RETURNXT DS �H

���4� #RETURN NXTTASK=SYBTSK�3 PASS CONTROL BACK TO ITSELF

 ���41 SPACE 1

 ���42 � MAINLINE PROGRAM

 ���43 SPACE 1

���44 PROCESS DS �H

 ���45 #GETSTG TYPE=(USER,LONG,KEEP),PLIST=�,LEN=STORLGTH, �

 ���46 STGID='SYB4',COND=(ALL),ERROR=ERRORTN,ADDR=(R1�), �

 ���47 INIT=X'4�'

���48 � ACQUIRE VARIABLE STORAGE

 ���49 SPACE 1

���5� #MAPBIND MRB=SYBMAP BIND MAP AND RECORDS

 ���57 #MAPBIND MRB=SYBMAP,RECNAME=SYBREC

- ���61 SPACE 1

���62 ACCEPTSK #ACCEPT TYPE=TASKCODE,FIELD=TASKCODE

���63 � ACCEPT TASK CODE TO INVOKE TASK

Appendix C. Sample DC/UCF Online Program C-7

C.3 Output from the DML precompiler

���64 CLC TASKCODE,SYBTSK2 FIRST TIME CALLED ?

���65 BNE RECCUR YES - OUTPUT FIRST SCREEN

���66 � NO - INPUT DATA FROM SCREEN

 ���67 FIRSTIME DS �H

���68 MVC SYBDEPID,=C'����' PRIME DATA FIELD

 ���69 SPACE

 ���7� #MREQ OUT,MRB=SYBMAP,OPTNS=(NEWPAGE),ERROR=ERRORTN, �

 ���71 COND=(ALL)

���72 � MAP OUT PROMPT

 ���73 SPACE

���74 B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE

 ���75 SPACE 2

 ���76 RECCUR DS �H

 ���77 #MREQ IN,MRB=SYBMAP,ERROR=ERRORTN,COND=(ALL)

���78 � MAP IN TERMINAL INPUT

 ���79 SPACE 1

 ���8� #MAPINQ MRB=SYBMAP,AID=AIDBYTE

���82 � MOVE MAP DATA TO PROG VARIABLE STG

���83 CLI AIDBYTE,CLEAR DID THE OPERATOR REQUEST FINISH?

���84 BE RETURN YES - EXIT PGM, BACK TO IDMS-DC

 ���85 SPACE

 ���86 #MREQ OUT,MRB=SYBMAP,ERROR=ERRORTN, �

 ���87 COND=(ALL)

���88 � MAP OUT DATA

 ���89 SPACE

���9� B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE

���91 � NO - MAPOUT, WAIT ON OPERATOR

���92 ERRORTN DS �H HERE FOR NONZERO RETURN CODE

 ���93 #SNAP AREA=(SYBMAP,SYBMAPLN)

 ���94 B RETURN EXIT

���95 CLEAR EQU X'6D' CLEAR AIDBYTE VALUE

���96 SYBTSK2 DC CL8'SYBTSK2 ' DC TASK INVOKING VALUE (EXTERNAL)

���97 SYBTSK�3 DC CL8'SYBTSK�3' DC TASK INVOKING VALUE (INTERNAL)

 ���98 LTORG

 ���99 #BALI

 ��1�� SPACE 2

 ��1�1 ��

��1�2 STORAGE DSECT STORAGE DSECT

 DMLA ��1�3 @COPY IDMS,MAP-CONTROL=SYBMAP

 ��1�4 #MRB MAPNAME=SYBMAP,FIELDS=���1,RECORDS=���1

��1�5 SYBMAPLN EQU �-SYBMAP LENGTH OF #MRB FOR SNAP

 ��1�6 SPACE 1

 DMLA ��1�7 @COPY IDMS,MAP-RECORDS

 ��1�8 DS �D

 ��1�9 SYBREC DS �CL4

 ��11� SYBDEPID DS CL4

 ��111 ��

- ��112 SPACE 1

��113 SYSPLIST DS 2�F MAP OUT PARAMETER LIST AREA

��114 TASKCODE DS CL8 TASK CODE WHICH INVOKED PROGRAM

��115 AIDBYTE DS X ATTENTION IDENTIFIER BYTE

 ��116 DS 3X RESERVED

��117 STORLGTH EQU �-STORAGE TOTAL LENGTH OF STORAGE NEEDED

 ��118 SPACE 1

 ��119 END SYBPG2

C-8 CA-IDMS DML Reference — Assembler

C.4 Output from the assembler

C.4 Output from the assembler

The following illustrates the sample online program as output from the assembler.
 1 �DMLIST

 2 �NO-ACTIVITY-LOG

 ����� 3 R� EQU �

 ����1 4 R1 EQU 1

 ����2 5 R2 EQU 2

 ����3 6 R3 EQU 3

 ����4 7 R4 EQU 4

 ����5 8 R5 EQU 5

 ����6 9 R6 EQU 6

 ����7 1� R7 EQU 7

 ����8 11 R8 EQU 8

 ����9 12 R9 EQU 9

 ����A 13 R1� EQU 1�

 ����B 14 R11 EQU 11

 ����C 15 R12 EQU 12

 ����D 16 R13 EQU 13

 ����E 17 R14 EQU 14

 ����F 18 R15 EQU 15

2� � ENTER FROM NEXT HIGHER LEVEL

22 PRINT GEN ASSEMBLER PRINT OPTIONS

������ 23 SYBPG2 CSECT

������ 18CF 24 LR R12,R15 ESTABLISHES REGISTER 12 AS THE

 ����� 25 USING SYBPG2,R12 BASE REGISTER

����� 26 USING STORAGE,R1� ESTABLISH ADDRESSABILITY OF DSECT

�����2 47F� C�3A ���3A 27 B PROCESS BRANCH TO FIND INVOKING TASKCODE

 PAGE 3

 29 � @INVOKE MODE=IDMSDC,MAP=SYBMAP

 3� @INVOKE MRBTYPE=STANDARD,PAGING=NO

31 � OPERATING MODE: IDMS-DC/MAPPING

 PAGE 4

�����6 34 RETURN DS �H

35 #FREESTG STGID='SYB4' FREE THE STORAGE ACQUIRED EARLIER

 36+�++

�����6 47F� C�1� ���1� 37+ B $$LD���2 + �1-#FREE

�����A �7�� 38+ CNOP �,4 + �1-#FREE

�����C E2E8C2F4 39+$$GC���2 DC CL4'SYB4' + �1-#FREE

���1� 4�+$$LD���2 EQU � + �1-#FREE

����1� 581� C��C ����C 41+ L 1,$$GC���2 + �1-#FREE

����14 41�� ��12 ���12 42+ LA �,18 + �1-#FREE

����18 58F� C24� ��24� 43+ L 15,=V(IDCSACON) + �2-#ENTE

����1C �5EF 44+ BALR 14,15 + �2-#ENTE

����1E ���2 45+ DC AL2(2) + �2-#ENTE

 46+�++

47 #RETURN RETURN TO HIGHER LEVEL

 48+�++

����2� 1B�� 49+ SR �,� + �1-#RETU

����22 1B11 5�+ SR 1,1 + �1-#RETU

����24 58F� C24� ��24� 51+ L 15,=V(IDCSACON) + �2-#ENTE

����28 �5EF 52+ BALR 14,15 + �2-#ENTE

����2A ���5 53+ DC AL2(5) + �2-#ENTE

 54+�++

����2C 56 RETURNXT DS �H

57 #RETURN NXTTASK=SYBTSK�3 PASS CONTROL BACK TO ITSELF

 58+�++

����2C 1B�� 59+ SR �,� + �1-#RETU

����2E 411� C214 ��214 6�+ LA 1,SYBTSK�3 + �1-#RETU

����32 58F� C24� ��24� 61+ L 15,=V(IDCSACON) + �2-#ENTE

����36 �5EF 62+ BALR 14,15 + �2-#ENTE

����38 ���5 63+ DC AL2(5) + �2-#ENTE

 64+�++

 66 � MAINLINE PROGRAM

����3A 68 PROCESS DS �H

 69 #GETSTG TYPE=(USER,LONG,KEEP),PLIST=�,LEN=STORLGTH, �

 STGID='SYB4',COND=(ALL),ERROR=ERRORTN,ADDR=(R1�), �

 INIT=X'4�'

 7�+�++

����3A �7�� 71+ CNOP �,4 + �1-#GETS

����3C 451� C�58 ���58 72+ BAL 1,�+28 + �1-#GETS

����4� ������4C 73+ DC A(�+12) ADDR OF PARM1 + �1-#GETS

����44 ������54 74+ DC A(�+16) ADDR OF PARM2 + �1-#GETS

����48 ������5� 75+ DC A(�+8) ADDR OF PARM3 + �1-#GETS

����4C �����12� 76+ DC A(STORLGTH) + �1-#GETS

����5� E2E8C2F4 77+ DC CL4'SYB4' + �1-#GETS

����54 4� 78+ DC AL1(X'4�') + �1-#GETS

����55 41 79+ DC AL1(65) + �1-#GETS

����56 ED 8�+ DC AL1(237) + �1-#GETS

����57 �� 81+ DC AL1(�) + �1-#GETS

����58 58F� C24� ��24� 82+ L 15,=V(IDCSACON) + �2-#ENTE

����5C �5EF 83+ BALR 14,15 + �2-#ENTE

����5E ���1 84+ DC AL2(1) + �2-#ENTE

����6� 49F� C248 ��248 85+ CH 15,=H'8' + �1-#GETS

 PAGE 5

����64 47B� C1DA ��1DA 86+ BNL ERRORTN + �1-#GETS

����68 18A1 87+ LR R1�,1 + �1-#GETS

 88+�++

89 � ACQUIRE VARIABLE STORAGE

Appendix C. Sample DC/UCF Online Program C-9

C.4 Output from the assembler

91 � #MAPBIND MRB=SYBMAP BIND MAP AND RECORDS

 92 #MAPBIND MRB=SYBMAP, �

 TSTAMP='11/25/91171238R2', �

 SSNAME=' ', �

 NFLDS=1, �

 NRECS=1, �

 SEG=NO

����6A 93+ DS �H +++++++++ BIND MAP ++++++++++++++++++++++++++++++++++ �1-#MAPB

����6A D2�7 A��� C22� ����� ��22� 94+ MVC SYBMAP(8),=CL8'SYBMAP' X�1-#MAPB

 + MAP NAME

����7� D743 A��8 A��8 ����8 ����8 95+ XC SYBMAP+8(76-8),SYBMAP+8 CLEAR REST OF BASIC MRB �1-#MAPB

����76 D2�F A��8 C228 ����8 ��228 96+ MVC SYBMAP+8(16),=CL16'11/25/91171238R2' X�1-#MAPB

 + COMPILE DATE/TIME

����7C D2�7 A�18 C238 ���18 ��238 97+ MVC SYBMAP+24(8),=CL8' ' X�1-#MAPB

 + SUBSCHEMA NAME

����82 41�� ��4C ���4C 98+ LA �,76 �1-#MAPB

����86 4��� A�3C ���3C 99+ STH �,SYBMAP+6� MRE OFFSET �1-#MAPB

����8A 41�� ���1 ����1 1��+ LA �,1 NUMBER OF FIELDS �1-#MAPB

����8E 4��� A�2A ���2A 1�1+ STH �,SYBMAP+42 �1-#MAPB

����92 411� ���1 ����1 1�2+ LA 1,1 NUMBER OF RECORDS �1-#MAPB

����96 4�1� A�2C ���2C 1�3+ STH 1,SYBMAP+44 �1-#MAPB

����9A 41F� ���E ����E 1�4+ LA 15,14 LENGTH OF ONE MAP REQ ELEMENT �1-#MAPB

����9E 4CF� A�2A ���2A 1�5+ MH 15,SYBMAP+42 TIMES NUMBER OF FIELDS �1-#MAPB

����A2 41FF ���3 ����3 1�6+ LA 15,3(15) ROUND UP TO NEXT FULLWORD �1-#MAPB

����A6 88F� ���2 ����2 1�7+ SRL 15,2 RECOF=((L'MRE�#FIELDS)+3)/4)�4 �1-#MAPB

����AA 89F� ���2 ����2 1�8+ SLL 15,2 �1-#MAPB

����AE 4�F� A�2E ���2E 1�9+ STH 15,SYBMAP+46 EQUALS LENGTH OF ALL MRE'S �1-#MAPB

����B2 92D5 A�3A ���3A 11�+ MVI SYBMAP+58,C'N' SUBSCHEMA VIEW NOT SEGMENTED �1-#MAPB

����B6 41E� A�4C ���4C 111+ LA 14,SYBMAP+76 POINT TO END OF BASIC MRB �1-#MAPB

����BA D7�D E��� E��� ����� ����� 112+ XC �(1�14,14),�(14) CLEAR MAP REQUEST ELEMENTS �1-#MAPB

����C� 41E� A�4C ���4C 113+ LA 14,SYBMAP+76 POINT TO END OF MRB �1-#MAPB

����C4 4AE� A�2E ���2E 114+ AH 14,SYBMAP+46 POINT TO RECORD ADDRESS SLOTS �1-#MAPB

����C8 D7�3 E��� E��� ����� ����� 115+ XC �(1�4,14),�(14) CLEAR DATA RECORD ADDRESS SLOTS �1-#MAPB

 116+�++

 118 � #MAPBIND MRB=SYBMAP,RECNAME=SYBREC

 119 #MAPBIND MRB=SYBMAP, �

 RECNUM=1, �

 RECADDR=SYBREC

����CE 12�+ DS �H +++++++++ BIND MAP ++++++++++++++++++++++++++++++++++ �1-#MAPB

����CE 41E� A�4C ���4C 121+ LA 14,SYBMAP+76 POINT TO END OF BASIC MRB �1-#MAPB

����D2 4AE� A�2E ���2E 122+ AH 14,SYBMAP+46 PNT TO START OF DATA REC SLOTS �1-#MAPB

����D6 41F� A�C� ���C� 123+ LA 15,SYBREC DATA RECORD ADDRESS �1-#MAPB

����DA 5�FE ���� ����� 124+ ST 15,4�(1-1)(14) STORE IN MRB SLOT �1-#MAPB

 125+�++

128 ACCEPTSK #ACCEPT TYPE=TASKCODE,FIELD=TASKCODE

 129+�++

����DE 13�+ACCEPTSK DS �H + �1-#ACCE

 PAGE 6

����DE 41�� ���� ����� 131+ LA �,1-1 SET RQST TYPE. + �1-#ACCE

����E2 411� A114 ��114 132+ LA 1,TASKCODE POINT TO RECEIVING FIELD + �1-#ACCE

����E6 58F� C24� ��24� 133+ L 15,=V(IDCSACON) + �2-#ENTE

����EA �5EF 134+ BALR 14,15 + �2-#ENTE

����EC ��33 135+ DC AL2(51) + �2-#ENTE

 136+�+++

137 � ACCEPT TASK CODE TO INVOKE TASK

����EE D5�7 A114 C2�C ��114 ��2�C 138 CLC TASKCODE,SYBTSK2 FIRST TIME CALLED ?

����F4 477� C144 ��144 139 BNE RECCUR YES - OUTPUT FIRST SCREEN

14� � NO - INPUT DATA FROM SCREEN

����F8 141 FIRSTIME DS �H

����F8 D2�3 A�C� C244 ���C� ��244 142 MVC SYBDEPID,=C'����' PRIME DATA FIELD

 144 #MREQ OUT,MRB=SYBMAP,OPTNS=(NEWPAGE),ERROR=ERRORTN, �

 COND=(ALL)

����FE 145+ DS �H ++++++MAPPING REQUEST +++++++++++++++++++++++++++++++ �1-#MREQ

����FE 92�5 A�2� ���2� 146+ MVI 32+SYBMAP,B'��1�1' REQUEST TYPE FLAGS + �1-#MREQ

���1�2 96�1 A�21 ���21 147+ OI 33+SYBMAP,B'�������1' FRST OPTION BYTE+ �1-#MREQ

���1�6 96�1 A�22 ���22 148+ OI 34+SYBMAP,B'�������1' SECOND OPTION BYTE + �1-#MREQ

���1�A 96�� A�47 ���47 149+ OI 71+SYBMAP,B'��������' THIRD OPTION BYTE + �1-#MREQ

���1�E 92FF A�23 ���23 15�+ MVI 35+SYBMAP,B'11111111' COND FLAGS + �1-#MREQ

���112 92�F A�3B ���3B 151+ MVI 59+SYBMAP,B'1111' COND FLAGS + �1-#MREQ

���116 41F� A�C4 ���C4 152+ LA 15,SYSPLIST + �1-#MREQ

���11A D7�3 F��� F��� ����� ����� 153+ XC �(4,15),�(15) INITIALIZE THIS FULLWORD XA + �1-#MREQ

���12� 411� A��� ����� 154+ LA 1,SYBMAP + �1-#MREQ

���124 5�1F ���4 ����4 155+ ST 1,4(15) XA + �1-#MREQ

���128 927F F��� ����� 156+ MVI �(15),X'7F' INDICATE RELEASE 2+ PARMLIST XA + �1-#MREQ

���12C 968� F��4 ����4 157+ OI 4(15),X'8�' INDICATE END OF PLIST XA + �1-#MREQ

���13� 181F 158+ LR 1,15 + �1-#MREQ

���132 58F� C24� ��24� 159+ L 15,=V(IDCSACON) + �2-#ENTE

���136 �5EF 16�+ BALR 14,15 + �2-#ENTE

���138 ��2E 161+ DC AL2(46) + �2-#ENTE

���13A 12FF 162+ LTR 15,15 WERE THERE ANY ERRORS AT ALL? + �1-#MREQ

���13C 477� C1DA ��1DA 163+ BNZ ERRORTN YES + �1-#MREQ

 164+�++

166 � MAP OUT PROMPT

���14� 47F� C�2C ���2C 168 B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE

���144 17� RECCUR DS �H

 171 #MREQ IN,MRB=SYBMAP,ERROR=ERRORTN,COND=(ALL)

���144 172+ DS �H ++++++MAPPING REQUEST +++++++++++++++++++++++++++++++ �1-#MREQ

���144 92�6 A�2� ���2� 173+ MVI 32+SYBMAP,B'��11�' REQUEST TYPE FLAGS + �1-#MREQ

���148 96�� A�21 ���21 174+ OI 33+SYBMAP,B'��������' FRST OPTION BYTE+ �1-#MREQ

���14C 96�� A�22 ���22 175+ OI 34+SYBMAP,B'��������' SECOND OPTION BYTE + �1-#MREQ

���15� 96�� A�47 ���47 176+ OI 71+SYBMAP,B'��������' THIRD OPTION BYTE + �1-#MREQ

���154 92FF A�23 ���23 177+ MVI 35+SYBMAP,B'11111111' COND FLAGS + �1-#MREQ

���158 92�F A�3B ���3B 178+ MVI 59+SYBMAP,B'1111' COND FLAGS + �1-#MREQ

���15C 41F� A�C4 ���C4 179+ LA 15,SYSPLIST + �1-#MREQ

���16� D7�3 F��� F��� ����� ����� 18�+ XC �(4,15),�(15) INITIALIZE THIS FULLWORD XA + �1-#MREQ

���166 411� A��� ����� 181+ LA 1,SYBMAP + �1-#MREQ

���16A 5�1F ���4 ����4 182+ ST 1,4(15) XA + �1-#MREQ

���16E 927F F��� ����� 183+ MVI �(15),X'7F' INDICATE RELEASE 2+ PARMLIST XA + �1-#MREQ

 PAGE 7

���172 968� F��4 ����4 184+ OI 4(15),X'8�' INDICATE END OF PLIST XA + �1-#MREQ

���176 181F 185+ LR 1,15 + �1-#MREQ

���178 58F� C24� ��24� 186+ L 15,=V(IDCSACON) + �2-#ENTE

���17C �5EF 187+ BALR 14,15 + �2-#ENTE

���17E ��2E 188+ DC AL2(46) + �2-#ENTE

���18� 12FF 189+ LTR 15,15 WERE THERE ANY ERRORS AT ALL? + �1-#MREQ

���182 477� C1DA ��1DA 19�+ BNZ ERRORTN YES + �1-#MREQ

 191+�++

C-10 CA-IDMS DML Reference — Assembler

C.4 Output from the assembler

193 � MAP IN TERMINAL INPUT

 195 � #MAPINQ MRB=SYBMAP,AID=AIDBYTE

 196 #MAPINQ MRB=SYBMAP,AID=AIDBYTE

���186 197+ DS �H +++++++++++ INQUIRE ABOUT LAST MAP OPERATION ++++++++ �1-#MAPI

���186 D2�� A11C A�38 ��11C ���38 198+ MVC AIDBYTE(1),56+SYBMAP X�1-#MAPI

 + ATTENTION IDENTIFIER

 199+�++

2�1 � MOVE MAP DATA TO PROG VARIABLE STG

���18C 956D A11C ��11C 2�2 CLI AIDBYTE,CLEAR DID THE OPERATOR REQUEST FINISH?

���19� 478� C��6 ����6 2�3 BE RETURN YES - EXIT PGM, BACK TO IDMS-DC

 2�5 #MREQ OUT,MRB=SYBMAP,ERROR=ERRORTN, �

 COND=(ALL)

���194 2�6+ DS �H ++++++MAPPING REQUEST +++++++++++++++++++++++++++++++ �1-#MREQ

���194 92�5 A�2� ���2� 2�7+ MVI 32+SYBMAP,B'��1�1' REQUEST TYPE FLAGS + �1-#MREQ

���198 96�� A�21 ���21 2�8+ OI 33+SYBMAP,B'��������' FRST OPTION BYTE+ �1-#MREQ

���19C 96�� A�22 ���22 2�9+ OI 34+SYBMAP,B'��������' SECOND OPTION BYTE + �1-#MREQ

���1A� 96�� A�47 ���47 21�+ OI 71+SYBMAP,B'��������' THIRD OPTION BYTE + �1-#MREQ

���1A4 92FF A�23 ���23 211+ MVI 35+SYBMAP,B'11111111' COND FLAGS + �1-#MREQ

���1A8 92�F A�3B ���3B 212+ MVI 59+SYBMAP,B'1111' COND FLAGS + �1-#MREQ

���1AC 41F� A�C4 ���C4 213+ LA 15,SYSPLIST + �1-#MREQ

���1B� D7�3 F��� F��� ����� ����� 214+ XC �(4,15),�(15) INITIALIZE THIS FULLWORD XA + �1-#MREQ

���1B6 411� A��� ����� 215+ LA 1,SYBMAP + �1-#MREQ

���1BA 5�1F ���4 ����4 216+ ST 1,4(15) XA + �1-#MREQ

���1BE 927F F��� ����� 217+ MVI �(15),X'7F' INDICATE RELEASE 2+ PARMLIST XA + �1-#MREQ

���1C2 968� F��4 ����4 218+ OI 4(15),X'8�' INDICATE END OF PLIST XA + �1-#MREQ

���1C6 181F 219+ LR 1,15 + �1-#MREQ

���1C8 58F� C24� ��24� 22�+ L 15,=V(IDCSACON) + �2-#ENTE

���1CC �5EF 221+ BALR 14,15 + �2-#ENTE

���1CE ��2E 222+ DC AL2(46) + �2-#ENTE

���1D� 12FF 223+ LTR 15,15 WERE THERE ANY ERRORS AT ALL? + �1-#MREQ

���1D2 477� C1DA ��1DA 224+ BNZ ERRORTN YES + �1-#MREQ

 225+�++

227 � MAP OUT DATA

���1D6 47F� C�2C ���2C 229 B RETURNXT EXIT & WAIT FOR OPERATOR RESPONSE

23� � NO - MAPOUT, WAIT ON OPERATOR

���1DA 231 ERRORTN DS �H HERE FOR NONZERO RETURN CODE

 232 #SNAP AREA=(SYBMAP,SYBMAPLN)

 233+�++

���1DA 9�E1 A�C4 ���C4 234+ STM 14,1,SYSPLIST + �1-#SNAP

���1DE 411� A�C4 ���C4 235+ LA 1,SYSPLIST + �1-#SNAP

���1E2 9268 1�1� ���1� 236+ MVI 16(1),96+8 + �1-#SNAP

 PAGE 8

���1E6 D7�2 1�11 1�11 ���11 ���11 237+ XC 17(3,1),17(1) + �1-#SNAP

���1EC 41E� A��� ����� 238+ LA 14,SYBMAP + �1-#SNAP

���1F� 5�E� 1�14 ���14 239+ ST 14,2�(,1) + �1-#SNAP

���1F4 41E� ��C� ���C� 24�+ LA 14,SYBMAPLN + �1-#SNAP

���1F8 5�E� 1�18 ���18 241+ ST 14,2�+4(,1) + �1-#SNAP

���1FC 968� 1�18 ���18 242+ OI 28-4(1),X'8�' + �1-#SNAP

���2�� 58F� C24� ��24� 243+ L 15,=V(IDCSACON) + �2-#ENTE

���2�4 �5EF 244+ BALR 14,15 + �2-#ENTE

���2�6 ��1D 245+ DC AL2(29) + �2-#ENTE

 247+�++

���2�8 47F� C��6 ����6 248 B RETURN EXIT

���6D 249 CLEAR EQU X'6D' CLEAR AIDBYTE VALUE

���2�C E2E8C2E3E2D2F24� 25� SYBTSK2 DC CL8'SYBTSK2 ' DC TASK INVOKING VALUE (EXTERNAL)

���214 E2E8C2E3E2D2F�F3 251 SYBTSK�3 DC CL8'SYBTSK�3' DC TASK INVOKING VALUE (INTERNAL)

���22� 252 LTORG

���22� E2E8C2D4C1D74�4� 253 =CL8'SYBMAP'

���228 F1F161F2F561F9F1 254 =CL16'11/25/91171238R2'

���238 4�4�4�4�4�4�4�4� 255 =CL8' '

���24� �������� 256 =V(IDCSACON)

���244 F�F�F�F� 257 =C'����'

���248 ���8 258 =H'8'

 259 #BALI

���25� 26�+IDCSACON CSECT , IDMS-DC ASSEMBLER PROGRAM INTERFACE �1-#BALI

���25� 58FF ���8 ����8 261+ L 15,8(15) ADDRESS OF DC'S COMMON STORAGE AREA �1-#BALI

���254 �7FF 262+ BR 15 �1-#BALI

���258 264+ DS �F FORCE ALIGNMENT �1-#BALI

265+� THE FOLLOWING AD-CON IS FILLED IN BY THE DC PROGRAM LOADER.

���258 �����258C35BC15B 266+ DC A(�),C'CA' �1-#BALI

���24A 268+SYBPG2 CSECT �1-#BALI

 27� ��

������ 271 STORAGE DSECT STORAGE DSECT

 272 � @COPY IDMS,MAP-CONTROL=SYBMAP

 273 #MRB MAPNAME=SYBMAP,FIELDS=���1,RECORDS=���1

������ 274+ DS �A FORCE FULL-WORD ALIGNMENT �1-#MRB

������ ���������������� 275+SYBMAP DC XL76'�' BASIC MAP REQUEST BLOCK �1-#MRB

����4C ���������������� 276+ DC (���1)XL14'�' MAP REQUEST ELEMENTS �1-#MRB

����5A ����

����5C �������� 277+ DC (���1)A(�) DATA RECORD ADDRESS SLOTS �1-#MRB

����6� ���������������� 278+MRBPLIST DC 2�A(�) �1-#MRB

����B� ���������������� 279+MRBPGDS DC 4A(�) #STRTPAG, #ENDPAG PARM LIST �1-#MRB

���C� 28� SYBMAPLN EQU �-SYBMAP LENGTH OF #MRB FOR SNAP

 282 � @COPY IDMS,MAP-RECORDS

����C� 283 DS �D

����C� 284 SYBREC DS �CL4

����C� 285 SYBDEPID DS CL4

 286 ��

����C4 288 SYSPLIST DS 2�F MAP OUT PARAMETER LIST AREA

���114 289 TASKCODE DS CL8 TASK CODE WHICH INVOKED PROGRAM

 PAGE 9

���11C 29� AIDBYTE DS X ATTENTION IDENTIFIER BYTE

���11D 291 DS 3X RESERVED

��12� 292 STORLGTH EQU �-STORAGE TOTAL LENGTH OF STORAGE NEEDED

������ 294 END SYBPG2

Appendix C. Sample DC/UCF Online Program C-11

C-12 CA-IDMS DML Reference — Assembler

Appendix D. Assembler DML Macros and Error
Messages

D.1 Overview .D-3
D.2 DML macros .D-4
D.3 Error messages .D-6

Appendix D. Assembler DML Macros and Error Messages D-1

D-2 CA-IDMS DML Reference — Assembler

D.1 Overview

 D.1 Overview

This appendix lists the following:

■ Assembler DML macros in alphabetical order

■ The error messages generated upon assembly of these macros

Appendix D. Assembler DML Macros and Error Messages D-3

D.2 DML macros

 D.2 DML macros

Types of macros: There are three types of Assembler DML macros, as follows:

■ Statement — The macro instruction is coded in the application program as a
DML statement.

■ Generated — The macro instruction is generated from a DML statement by the
DML precompiler.

■ Invoked — The macro instruction is invoked by a DML statement macro during
assembly.

List of macros: The following table lists DML macros alphabetically.

Macro Type Function

@ACCEPT Statement Encodes the #ACCEPT statement

@BIND Statement Encodes the @BIND statement

@COMMIT Statement Encodes the #COMMIT statement

@CONNECT Statement Encodes the @CONNECT statement

@DISCON Statement Encodes the @DISCON statement

@ERASE Statement Encodes the @ERASE statement

@FIND Statement Encodes the @FIND statement

@FINISH Statement Encodes the @FINISH statement

@GET Statement Encodes the @GET statement

@IDMSGSS Invoked Defines the IDMS global variables

@IDMSINR Invoked Generates the IDMS calling sequence

@IF Statement Encodes the @IF statement

@INVOKE Statement Encodes the @INVOKE compiler-directive
statement

@KEEP Statement Encodes the @KEEP statement

@LRF Invoked Generates the logical record request sequences

@MODE Statement Encodes the @MODE compiler-directive
statement

@MODIFY Statement Encodes the @MODIFY statement

@OBTAIN Statement Encodes the @OBTAIN statement

@PXE Generated Encodes a WHERE clause element

@READY Statement Encodes the @READY statement

D-4 CA-IDMS DML Reference — Assembler

D.2 DML macros

Note: @COPY is a DMLA source statement, not an Assembler macro.

Macro Type Function

@RETURN Statement Encodes the @RETURN statement

@ROLLBAK Statement Encodes the @ROLLBAK statement

@SSCTRL Statement Copies the IDMS communications block

@SSLRCTL Statement Copies the LRC block

@STORE Statement Encodes the @STORE statement

Appendix D. Assembler DML Macros and Error Messages D-5

D.3 Error messages

 D.3 Error messages

The remainder of this appendix lists and describes error messages that are generated
during macro assembly.

�� For error messages generated by the DML precompiler and returned to the
ERRSTAT field of the IDMS communications block following DML requests, refer to
CA-IDMS Messages and Codes.

@ACCEPT: INDECIPHERABLE COMBINATION OF OPERANDS

Excessive or conflicting operands prevent interpretation of the macro. Severity: 08

@BIND: LRC MUST BE SPECIFIED OR LRSIZ MUST BE OMITTED

The LRC parameter was omitted but the LRSIZ parameter was specified. If the
LRSIZ parameter is specified, the LRC parameter must also be specified. Severity: 08

INDECIPHERABLE COMBINATION OF OPERANDS

Excessive or conflicting operands prevent interpretation of the macro. Severity: 08

TOO MANY OPERANDS SPECIFIED

Parameters were specified that are not allowed for the BIND statement being issued.
Severity: 08

@COMMIT: 'ALL' PARAMETER MUST BE BLANK OR 'ALL'

The first positional parameter ALL must be specified as ALL or must be omitted.
Severity: 08

@CONNECT: BOTH RECORD NAME AND SET NAME ARE REQUIRED
FOR CONNECT

Either the REC or SET parameter was omitted. Severity: 08

D-6 CA-IDMS DML Reference — Assembler

D.3 Error messages

@DISCON: BOTH RECORD NAME AND SET NAME ARE REQUIRED FOR
DISCONNECT

Either the REC or SET parameter was omitted. Severity: 08

@ERASE: TYPE OF ERASE IS MISSING OR INCORRECT

The (required) parameter for type of erase was omitted or invalid. Valid parameters
are REC, PERMANENT, SELECTIVE, or ALL. Severity: 08

RECORD NAME IS REQUIRED FOR ERASE

The required REC parameter was not specified. Severity: 08

@FIND: TYPE OPERAND IS MISSING OR INVALID

This type of FIND/OBTAIN was not specified (NEXT, FIRST, PRIOR, LAST, NTH)
Severity: 08

SET,AREA, USING, AND OCCUR ARE NOT ALLOWED FOR FORMAT 1

SET, AREA, USING, or OCCUR parameters were specified. These parameters are
not allowed on FIND DBKEY statements. Severity: 08

DBKEY, USING, AND OCCUR ARE NOT ALLOWED FOR FORMAT 2

DBKEY, USING, or OCCUR parameters were specified. These parameters are not
allowed on FIND CURRENT statements. Severity: 08

REC, SET, AND AREA ARE MUTUALLY EXCLUSIVE FOR FORMAT 2

Two or more of the REC, SET, or AREA parameters were specified. Only one of
these parameters can be specified on FIND CURRENT statements. Severity: 08

DBKEY AND USING ARE NOT ALLOWED FOR FORMAT 3

Either a DBKEY or a USING parameter was specified. These parameters are not
allowed on FIND WITHIN SET/AREA statements. Severity: 08

Appendix D. Assembler DML Macros and Error Messages D-7

D.3 Error messages

EITHER SET OR AREA MUST BE SPECIFIED

Neither SET nor AREA parameters were specified; one of these parameters must be
specified. Severity: 08

OCCUR IS USED ONLY WITH FORMAT 3 FIND NTH

OCCUR parameters were specified. These parameters are only allowed with FIND
NTH WITHIN SET/AREA statements. Severity: 08

REC, AREA, DBKEY, USING, AND OCCUR NOT ALLOWED FOR FORMAT
4

REC, AREA, DBKEY, USING, or OCCUR parameters were specified. These
parameters are not allowed on FIND OWNER statements. Severity: 08

SET OPERAND IS REQUIRED FOR FORMAT 4

The required SET parameter was not specified on a FIND OWNER statement.
Severity: 08

SET, AREA, DBKEY, USING, AND OCCUR ARE NOT ALLOWED FOR
FORMAT 5

SET, AREA, DBKEY, USING, or OCCUR parameters were specified. These
parameters are not allowed on FIND CALC/DUPLICATE statements. Severity: 08

REC OPERAND IS REQUIRED FOR FORMAT 5

The required REC parameter was not specified on a FIND CALC/DUPLICATE
statement. Severity: 08

AREA, DBKEY, AND OCCUR ARE NOT ALLOWED FOR FORMAT 6

AREA, DBKEY, or OCCUR parameters were specified and are not allowed for FIND
WITHIN SET USING SORT KEY statements. Severity: 08

REC, SET, AND USING ARE REQUIRED FOR FORMAT 6

REC, SET, or USING parameters were not specified and are required for FIND
WITHIN SET USING SORT KEY statements. Severity: 08

D-8 CA-IDMS DML Reference — Assembler

D.3 Error messages

KEEP OPERAND NOT SPECIFIED AS SHARED OR EXCLUSIVE

The KEEP parameter was specified without either the SHARED or EXCLUSIVE
parameter. Severity: 08

UNEXPECTED ERROR IN FORMAT 3 FIND

This is a system internal error. Severity: 20

@IDMSINR: @MODE MACRO DOES NOT PRECEDE THIS DML MACRO

The @MODE macro was not specified before this macro. The @MODE macro must
precede all other macros and must occur only once. Severity: 16

@MODE CONTAINED ERRORS, OR WAS NOT FIRST MACRO

The @MODE macro was coded incorrectly or was not specified before this macro.
The @MODE macro must precede all other macros and must occur only once.
Severity: 16

INVALID TYPE 'type' SPECIFIED IN @IDMSINR MACRO

This is a system internal error. Severity: 20

INVALID OPERAND 'operand' IN @IDMSINR MACRO DML-SEQUENCE =
9999

This is a system internal error. Severity: 20

INVALID MODE 'mode' IN @IDMSINR MACRO

This is a system error. Severity: 20

@IF: INVALID SPECIFICATION FOR MEMBER OPERAND OR EMPTY
OPERAND

The MEMBER/EMPTY parameter was specified incorrectly. Either MEMBER or
EMPTY must be specified. Severity: 08

Appendix D. Assembler DML Macros and Error Messages D-9

D.3 Error messages

SET, GOTO, AND EITHER MEMBER OR EMPTY ARE REQUIRED FOR IF

A required MEMBER or EMPTY, SET, or GOTO parameter was not specified. SET,
GOTO and either MEMBER or EMPTY parameters are required in an IF statement.
Severity: 08

@KEEP: TYPE NEITHER SHARED NOR EXCLUSIVE

Either the SHARED or EXCLUSIVE parameter is required on KEEP statements.
Severity: 08

INDECIPHERABLE COMBINATION OF OPERANDS

Excessive or conflicting operands prevent interpretation of the macro. Severity: 08

@LRF

Key-value MISPLACED

The named key-value parameter was coded in an incorrect position. Parameters must
be coded in the following sequence: FIRST/NEXT, REC, IOAREA, ONLRSTS,
GOTO, and WHERE. Severity: 08

KEY-value,variable-value MISPLACED

The named positional pair of parameters was coded more than once or in incorrect
sequence within a logical-record DML statement. Parameters must be coded in the
following sequence: FIRST/NEXT, REC, IOAREA, ONLRSTS, GOTO, and WHERE.
Severity: 08

KEYWORD PARAMETERS INVALID FOR LRF ACCESS MACROS

Logical-record DML statements must be coded using positional-pair parameter notation
at assembly time. Severity: 08

Key-value NOT PAIRED

The named key-value positional parameter was coded without a corresponding variable
value parameter. Severity: 08

Key-value IS AN INVALID PARAMETER

D-10 CA-IDMS DML Reference — Assembler

D.3 Error messages

The named key-value parameter is invalid. Valid key-value parameters in
logical-record DML statements are: FIRST/NEXT, REC, IOAREA, ONLRSTS,
GOTO and WHERE. Severity: 08

"REC" MUST BE SPECIFIED

The REC parameter was not specified on a logical record request. All LRF access
macros must specify a logical record name. Severity: 08

"WHERE" INVALID WHEN LRSIZ OMITTED ON @BIND

The LRSIZ parameter (specified on @BIND SUBSCH) was not specified; therefore,
no storage was made available for WHERE clause resolution. Add the LRSIZ
parameter to @BIND SUBSCH and reassemble. Severity: 08

SPECIFY BOTH "ONLRSTS" AND "GOTO" OR NEITHER

Either the ONLRSTS or the GOTO parameter was omitted from a logical record
request; both parameters are needed to encode a DMLA ON clause. Either remove the
parameter specified or add the omitted parameter. Severity: 08

MACRO ERROR: PASSED VERB verb

The named verb was incorrectly passed. This is a system internal error. Severity: 08

@MODE: MULTIPLE OCCURRENCES OF @MODE MACRO

The @MODE macro was specified more than one time; the @MODE macro must
occur only once. Severity: 08

INVALID SPECIFICATION mode FOR MODE OPERAND

The named mode is not valid. Valid mode parameters are BATCH, CICS,
CICS-EXEC, IDMSDC, INTERCOMM, SHADOW, and DCBATCH. Severity: 16

INVALID SPECIFICATION debug FOR DEBUG OPERAND

The named debug parameter is not valid. Valid debug parameters are YES or NO.
Severity: 16

Appendix D. Assembler DML Macros and Error Messages D-11

D.3 Error messages

INVALID SPECIFICATION quotes FOR QUOTES OPERAND

The named quotes parameter is invalid. Valid parameters for quotes are YES or NO.
Severity: 16

@MODIFY: RECORD NAME IS REQUIRED FOR MODIFY

The record REC parameter was not specified. Severity: 08

@OBTAIN: KEEP OPERAND NOT SPECIFIED AS SHARED OR
EXCLUSIVE

The KEEP parameter was specified without either the SHARED or EXCLUSIVE
parameter. If the KEEP parameter is specified, either SHARED or EXCLUSIVE must
also be specified. Severity: 08

@PXE: LRPXE 9999 CHARACTERS TOO SHORT

Lrc-block-size (specified on @BIND SUBSCH) is too small to contain the specified
WHERE clause. Increase lrc-block-size and reassemble. Severity: 08

DMLA/@PXE INCONSISTENCY: PXE TYPE=type

This is a system internal error. Severity: 12

DMLA/@PXE INCONSISTENCY: V-TYPE=type

This is a system internal error. Severity: 12

DMLA/@PXE INCONSISTENCY: MAX=9999/9999

This is a system internal error. Severity: 12

DMLA/@PXE INCONSISTENCY: LEN=9999/9999

This is a system internal error. Severity: 12

D-12 CA-IDMS DML Reference — Assembler

D.3 Error messages

@READY: EITHER AREA OPERAND OR ALL OPERAND MUST BE
SPECIFIED

Neither the AREA nor ALL parameter was specified. One of these parameters is
required for this macro. Severity: 08

EITHER RDONLY OPERAND OR UPDATE OPERAND MUST BE SPECIFIED

Neither the RDONLY nor UPDATE parameter was specified. One of these
parameters is required for this macro. Severity: 08

INVALID SPECIFICATION FOR UPDATE OR RDONLY OPERAND

The UPDATE/RDONLY parameter was specified incorrectly. Valid parameters for
UPDATE/RDONLY are: YES or SHARED, PROTECTED or PROTECT, or
EXCLUSIVE. Severity: 08

ALL OPERAND IS NOT SPECIFIED AS 'ALL'

The parameter ALL must be specified as ALL. Severity: 08

@RETURN: BOTH SET AND DBKEY ARE REQUIRED OPERANDS FOR
RETURN

The SET and/or DBKEY parameters were not specified. Both of these parameters are
required for this macro. Severity: 08

EITHER TYPE OPERAND OR USING OPERAND MUST BE SPECIFIED

Neither the type-of-return parameter (i.e., CURRENT, FIRST, LAST, NEXT, or
PRIOR) nor the USING parameter was specified. RETURN macros must include one
of these parameters. Severity: 08

INVALID SPECIFICATION FOR TYPE OPERAND

The type operand was not specified correctly. Valid parameters are CURRENT,
FIRST, LAST, NEXT, or PRIOR. Severity: 08

Appendix D. Assembler DML Macros and Error Messages D-13

D.3 Error messages

@ROLLBAK: POSITIONAL PARAMETER 'CONTINUE' INVALID

The CONTINUE parameter must be specified as CONTINUE or must be omitted.
Severity: 08

@STORE: RECORD NAME IS REQUIRED FOR STORE

The required REC parameter was not specified. Severity: 08 ˚

D-14 CA-IDMS DML Reference — Assembler

 Appendix E. STAE Exits

E.1 Overview .E-3

Appendix E. STAE Exits E-1

E-2 CA-IDMS DML Reference — Assembler

E.1 Overview

 E.1 Overview

What are STAE exits?: STAE exits (system task abend exits) are user-written
recovery modules supported by DC/UCF systems. STAE exits can be invoked in the
event of a program interrupt or an abnormal condition encountered by the task. The
user-written module can attempt to recover the task by correcting the abnormal
condition. If the abnormal condition cannot be resolved, the STAE program can
request abnormal termination of the task.

How STAE exits work: For each task level, a program can designate a STAE
routine by issuing a #STAE request. A task abnormally terminates due to a processing
error or an #ABEND command. When a task terminates abnormally, STAE routines
for the abended program and for all higher-level programs are executed. #STAE
routines can be overridden by a #RETURN statement or excluded explicitly by an
#ABEND request from the program that failed.

�� For more information on how to issue a #STAE request, refer to "#STAE" in
Chapter 6.

STAE routines determine the cause of the abnormal condition or program interrupt by
checking the abend control element (ACE). When control is transferred to the STAE
routine, DC/UCF automatically sets the value in register 1 to the address of a fullword
parameter list that contains the address of the ACE. When program execution is
interrupted, DC/UCF saves the contents of all registers from the abended program in
the ACE.

Note: #ACEDS is a DSECT provided in the DC/UCF macro library that defines the
fields of the ACE. #ACEDS can be copied into the program using the @COPY IDMS
#ACEDS statement.

�� For more information on the abend control element (ACE) DSECT, refer to the
CA-IDMS DSECT Reference.

Programming considerations: Programming considerations for STAE routines
are as follows:

■ STAE programs must be defined at system generation.

■ Resources held by the task remain intact when the STAE routine is invoked.

■ STAE routines can issue DC/UCF requests. However, if an error occurs which
would normally abort the task, the DC/UCF system will abnormally terminate.

■ STAE routines must end with a #RETURN statement. The #RETURN statement
can request further action to be taken by specifying the
TYPE=NORMAL/ABORT/CONTINUE parameter. If TYPE=CONTINUE is
specified, the STAE routine must load the address of the instruction from where
processing is to continue in the ACE.

Appendix E. STAE Exits E-3

E.1 Overview

Beginning register values: At the start of execution of a STAE routine, the
DC/UCF system sets registers 1, 13, and 15 to the following values:

■ Register 1 holds the address of a 1-fullword parameter list that contains the
address of the ACE.

■ Register 13 holds the address of the STAE routine save area if the SAVAREA
option has been defined for the STAE program at system generation.

■ Register 15 holds the entry-point address of the STAE routine.

Displacement-
decimal (hex)

Label in
#ACEDS
DSECT

Contents Field Size

0(0) ACEPSW PSW at the time of
the interrupt

8 bytes

8(8) ACEGPRS General registers
from abended
program 0-15

64 bytes

72(48) ACEFPRS Floating point
registers from the
abended program 0-6

32 bytes

112(70) ACEFLG ACE flag (see table
below)

1 byte

115(73) ACEABCOD Abend code set by
DC/UCF

4 bytes

120(78) ACEPGMNM Name of the abended
program

4 bytes

129(81) ACEEPSW PSW in EBCDIC
form

17 bytes

148(94) ACEOFFST Displacement of
instruction that failed
in the abended
program

6 bytes

160(A0) ACEILC XA program interrupt
length counter

1 byte

161(A1) ACEINTC XA interruption code 2 bytes

Value Meaning Comments

X'80' Abort was in user mode Set by DC/UCF

X'40' Program check Set by DC/UCF

X'20' No message is wanted Set by STAE routine

E-4 CA-IDMS DML Reference — Assembler

E.1 Overview

Value Meaning Comments

X'10' No SNAP is wanted Set by STAE routine

X'08' Abort task immediately Set by #RETURN,TYPE=ABORT

X'01' Continue processing at R14
address

Set by #RETURN,TYPE=
CONTINUE

Appendix E. STAE Exits E-5

E-6 CA-IDMS DML Reference — Assembler

Appendix F. EMPLOYEE Data Structure Diagram

F.1 Overview .F-3

Appendix F. EMPLOYEE Data Structure Diagram F-1

F-2 CA-IDMS DML Reference — Assembler

F.1 Overview

 F.1 Overview

The following figure is the data structure diagram for the EMPLOYEE database. This
database is used for most of the examples in this document.

Appendix F. EMPLOYEE Data Structure Diagram F-3

F-4 CA-IDMS DML Reference — Assembler

Appendix G. Systems Network Architecture
Considerations (SNA)

G.1 Overview .G-3
G.2 General Considerations .G-5

G.2.1 SNA terminology .G-5
G.2.2 Program communications in the SNA environment. G-6
G.2.3 Error handling .G-10

G.3 SNA functions in a CA-IDMS/DC environment G-12
G.4 Allocating a session . G-14

G.4.1 Establishing conversation attributes. G-14
G.4.2 Issuing the #TREQ ALLOC statement. G-15
G.4.3 Starting a task on a remote logical unit. G-17

G.5 Starting a task from a remote system. G-18
G.6 Synchronous and asynchronous processing. G-19
G.7 Sending data .G-20

G.7.1 LU6.2 considerations for sending data. G-20
G.7.2 Non-LU6.2 considerations for sending data. G-20

G.8 Requesting a confirmation . G-21
G.9 Responding to a confirmation request. G-22
G.10 Sending error information . G-23
G.11 Changing direction: send to receive. G-24
G.12 Receiving data .G-25
G.13 Changing direction: receive to send. G-27
G.14 Terminating a conversation . G-28

G.14.1 Normal termination .G-28
G.14.2 Abnormal termination .G-29
G.14.3 Terminating a session. G-29

Appendix G. Systems Network Architecture Considerations (SNA) G-1

G-2 CA-IDMS DML Reference — Assembler

G.1 Overview

 G.1 Overview

This appendix describes how to make your CA-IDMS/DC Assembler program
compatible with SNA protocols, allowing you to exchange information with other
SNA-compatible products. The discussion will include information on:

■ General SNA programming considerations in the CA-IDMS/DC environment

■ Allocating a session

■ Starting a system task from a remote system

■ Asynchronous and synchronous processing

 ■ Sending data

■ Requesting a confirmation

■ Responding to a confirmation request

■ Sending error information

■ Changing direction: send to receive

 ■ Receiving data

■ Changing direction: receive to send

■ Terminating a conversation

What is SNA?: Systems Network Architecture (SNA) is a set of protocols and
formats that enable different types of communications products to function together in
a network environment. There are no specific SNA hardware or software products.
Rather, SNA is a set of rules, an architecture, to which a wide variety of products can
conform.

SNA/VTAM line driver: The CA-IDMS/DC SNA/VTAM line driver (VTAMLU) is
a task running under CA-IDMS/DC that allows your task to communicate with other
SNA-compatible devices. Many SNA logical units, for example, 3270 terminals and
printers, can communicate using the standard CA-IDMS/DC VTAM line driver
(VTAMLIN). VTAMLIN handles most SNA protocols automatically, and should be
used when possible for greater operating efficiency.

The CA-IDMS/DC SNA/VTAM driver, and the material covered in this appendix,
should be used with logical unit configurations that require special protocol control; for
example, LU6.2 logical units, and IBM 4700 or 3700 devices. The SNA protocols
enabled for a specific logical unit are defined through VTAM by bind parameters in a
VTAM modent table. These bind parameters are the only way the CA-IDMS/DC
SNA/VTAM driver can determine which specific SNA protocols have been established
for a logical unit; care should be taken to ensure that the bind parameters accurately
reflect the capabilities of the logical unit.

Appendix G. Systems Network Architecture Considerations (SNA) G-3

G.1 Overview

Determining compatibility and need for special support: To determine
whether SNA protocols for a given logical unit are compatible with those handled by
the standard VTAM driver, or if they need special protocol support from the
CA-IDMS/DC SNA/VTAM driver, compare the bind parameter values in the
MODENT table for your logical unit to those for a 3270 device. If the MODENT
values are comparable to those for a 3270, it is probable that the standard VTAM
driver can handle any SNA protocols for that logical unit.

�� For more information on establishing bind parameters for a logical unit, refer to
CA-IDMS System Generation.

Support offered by the SNA/VTAM line driver: The following table lists the
LU types, function management profiles, and transmission service profiles that are
supported by the CA-IDMS/DC SNA/VTAM driver (LU 6 is not supported).

SNA Protocol Types Supported by CA-IDMS/DC

LU Types 0, 1, 2, 3, 4, 6.2

Function Management Profiles 2, 3, 4, 7, 18, 19

Transmission Service Profiles 2, 3, 4, 7

G-4 CA-IDMS DML Reference — Assembler

G.2 General Considerations

 G.2 General Considerations

Before you start to write your SNA program, you should familiarize yourself with the
following:

■ SNA terms and their specific meanings in the CA-IDMS/DC environment

■ The CA-IDMS/DC facilities your program needs to communicate in the SNA
environment

■ How SNA messages and error information are handled in the CA-IDMS/DC
environment

Each of these considerations is discussed on the following pages.

 G.2.1 SNA terminology

The following SNA terms are used in this appendix. Special CA-IDMS/DC
considerations are included along with their definitions:

■ A logical unit (LU) is a port through which you access the SNA network, a single
network addressable unit (NAU). For example, an LU can be an end-user
terminal, a program such as CICS or CA-IDMS/DC, or a device such as a
displaywriter.

Note: Unless otherwise specified, the discussions in this appendix apply to all
LU types. Special LU6.2 considerations will be noted.

■ A session is a logical connection between two logical units that enables the
exchange of messages. Two logical units that share a single physical connection
can have one or more sessions between them. Each session is represented in the
CA-IDMS/DC environment by a single physical terminal element (PTE)/logical
terminal element (LTE) pair.

■ A conversation is equivalent to one complete transaction between logical units.
A conversation is delineated by a begin bracket and an end bracket. In the
CA-IDMS/DC environment, a conversation is requested by a #TREQ ALLOC
statement, or is started by the remote LU, and is terminated by the LAST option
on a #TREQ WRITE statement. Data is exchanged by two logical units in a
conversation by using various forms of the #TREQ READ and WRITE statements.

Multiple LU-LU sessions: The following figure illustrates how the SNA driver,
functioning as an LU, takes part in multiple sessions. There are four sessions
established between the SNA driver and CICS, and one session established between
the SNA driver and a displaywriter. Each session can support only one conversation
at a time. This configuration can support up to five simultaneous conversations: four
between CA-IDMS/DC and CICS, and one between CA-IDMS/DC and the
displaywriter.

Appendix G. Systems Network Architecture Considerations (SNA) G-5

G.2 General Considerations

G.2.2 Program communications in the SNA environment

Your program converses with other SNA network resources through #TREQ
statements, in conjunction with the user I/O control block (UIOCB). CA-IDMS/DC
supports only basic-mode access to other SNA devices; line-mode and mapping-mode
are not currently supported.

#TREQ command: You use the #TREQ command to:

■ Establish LU-LU sessions

■ Initiate conversations between logical units

■ Exchange data and error information between logical units

■ Terminate conversations and sessions

Syntax and syntax rules for the #TREQ statement are discussed in 6.69, “#TREQ” on
page 6-265.

User control block: The user I/O control block (UIOCB) contains LU-LU session
information:

 ■ Session attributes

 ■ Conversation attributes

■ Information about the data being sent and received

G-6 CA-IDMS DML Reference — Assembler

G.2 General Considerations

 ■ Error information

Establishing sessions: Sessions in the CA-IDMS/DC environment can be
established in three ways:

■ CA-IDMS/DC can automatically establish the session at system startup.

■ A remote LU can establish the session.

■ Your program can establish a session using the #TREQ ALLOC statement, as
described later in this appendix.

When you issue a #TREQ ALLOC statement to allocate a conversation, before
CA-IDMS/DC can select a session for you, you must establish the UIOCB and
initialize UIOCB fields with session attributes, such as which LU you want to talk to.

You also use the UIOCB to establish conversation attributes, for example, the
maximum sync level that you will need (LU6.2 only).

After the conversation has begun, you use the UIOCB to obtain information about the
conversation. For example, session and conversation information in the UIOCB is
updated following #TREQ ALLOC or #TREQ UIOCB statements, and return codes,
sense codes, data-information fields, and VTAM-information fields are updated
following read requests.

Sample user control block: The following figure illustrates a sample user I/O
control block (UIOCB).

�� For the layout of the UIOCB, refer to the CA-IDMS DSECT Reference.

Appendix G. Systems Network Architecture Considerations (SNA) G-7

G.2 General Considerations

UOICB DS OF

��

�� ��

�� UIOCB USER I/O COMMUNICATIONS BLOCK ��

�� ��

�� ## - LU6.2 ONLY ��

�� $$ - FOR FUTURE USE ��

��

UIOLTEA DS A ADDR OF LOGICAL TERMINAL ELEMENT

 (CONVERSATION IDENTIFIER)

���� SESSION ATTRIBUTES ���������

UIOBIND DS A ADDRESS OF BIND PARAMETERS

UIOLLU DS CL8 LOCAL LU NAME (OWN_LU_NAME)

UIORLU DS CL8 REMOTE LU NAME (PARTNER_LU_NAME)

UIOMODE DS CL8 MODEENT NAME (MODE_NAME)

UIOSYNC DS X ## SYNC_LEVEL

UIOSYNCN EQU X'��' SYNC_LEVEL = NONE

UIOSYNCC EQU X'�1' SYNC_LEVEL = CONFIRM

UIOSYNCS EQU X'�2' SYNC_LEVEL = SYNCPOINT

UIOCONV DS X ## CONVERSATION TYPE

UIOCONVB EQU X'��' CONVERSATION TYPE = BASIC

UIOCONVM EQU X'�1' CONVERSATION TYPE = MAPPED

UIOMAPN DS CL24 $$ LU6.2 MAP NAME

UIOTASK DS CL8 REMOTE TASK TO BE ALLOCATED (TPN)

UIOUSER DS CL8 ## USER ID TO BE PASSED WITH ALLOCATE

UIOPASS DS CL8 ## PASSWORD TO BE SENT WITH ALLOCATE

UIOPROFL DS CL8 ## PROFILE ID TO BE SENT W/ ALLOCATE

UIOINRU DS H MAX RU SIZE ON INPUT

UIOUTRU DS H MAX RU SIZE ON OUTPUT

UIORSV DS 4H RESERVED

���� WHAT RECEIVED ���������������

UIODAT #FLAG X'8�' DATA

UIOERR #FLAG X'4�' ## ERROR (SEND_ERROR RECEIVED)

UIOLST #FLAG X'2�' DEALLOCATE (SEND LAST RECEIVED)

UIOCD #FLAG X'1�' CHANGE DIRECTION (TIME TO SEND)

UIOCFM #FLAG X'�8' CONFIRM (CONFIRMATION REQUESTED)

UIOSIG #FLAG X'�4' SIGNAL (REQUEST_TO_SEND RECEIVED)

UIOSPT #FLAG X'�2' $$ SYNCPOINT (TAKE_SYNCPOINT)

UIOROL #FLAG X'�1' $$ SYNCPOINT ROLLBACK REQUIRED

UIOWREC DS X WHAT_RECEIVED

��

UIOFMH #FLAG X'8�' DATA CONTAINS FMH

UIODTC #FLAG X'4�' DATA_COMPLETE (OFF = INCOMPLETE)

UIODATF DS X DATA TYPE FLAG

��������� ERROR INFORMATION FIELDS �������������������������������������

UIOURA DS �X

UIOUCOM DS XL1 CA-IDMS/DC ERROR CODE

UIOCOMPG EQU � GOOD COMPLETION - I/O SUCCESSFUL

UIOCOMPA EQU 8 TERMINAL OPERATOR HIT ATTN OR BREAK DURING OUTPUT

UIOCOMPL EQU 12 LOGICAL ERRORS - INVALID COMMAND SEQUENCE

UIOCOMPP EQU 16 PERMANENT I/O ERROR COMMAND SEQUENCE

UIOCOMPD EQU 2� SESSION WAS DISCONNECTED OR INTERVENTION REQ.

UIOCOMPO EQU 24 SESSION IS OUT-OF-SERVICE

UIOCOMPC EQU 28 SESSION IS CLOSED (OPEN DIDN'T WORK)

UIOCOMPI EQU 32 INVALID TRB PARAMETER LIST

G-8 CA-IDMS DML Reference — Assembler

G.2 General Considerations

UIOUCM2 DS XL1 SECONDARY DC ERR-CODE

UIOLGNR EQU X'�1' ERR - LOGON ROUTINE

UIOPROF EQU X'�2' ERR - PRIOR OPEN FAILURE

UIORTEX EQU X'�3' ERR - RETRIES EXHAUSTED (MAX ERRS EXCEEDED)

UIONEGR EQU X'�4' ERR - NEGATIVE RESP TO SEND DATA

UIOSRPF EQU X'�5' ERR - SEND RESPONSE FAILED

UIONUIO EQU X'�6' ERR - NO UIOCB ADDRESS AVAILABLE

UIOUNKI EQU X'�7' ERR - UNKNOWN INPUT RECEIVED

UIOBBFL EQU X'�8' ERR - BRACKET BID FAILURE

UIOWQUR EQU X'�9' ERR - WAITING ON QUIESCE RELEASE

UIOSTSN EQU X'�A' ERR - MSG RESYNC FAILURE (ON SEND CHAIN)

UIOSTSR EQU X'�B' ERR - MSG RESYNC FAILURE REPETITIVELY

UIOPLEC EQU X'�C' ERR - PIPELINE EXCEEDED MAX EXCP RESPONSES

UIOPLRD EQU X'�D' ERR - PIPELINE READ RQST IS NOT SUPPORTED

UIOUCD EQU X'�E' ERR - UNIDENTIFIED NORMAL FLOW CMD RECEIVED

UIORCAF EQU X'�F' ERR - RESET TO CONT-ANY FAILED

UIOLUSR EQU X'1�' ERR - UNKNOWN LUSTAT RECEIVED

UIOCNNA EQU X'11' ERR - CHAINED-INPUT NOT ALLOWED ON THIS PTE TYPE

UIOUNXC EQU X'12' ERR - UNEXPECTED COMMAND RECEIVED

UIOCNCR EQU X'13' ERR - CANCEL COMMAND RECEIVED

UIOCHRC EQU X'14' ERR - CHASE COMMAND RECEIVED

UIORCVF EQU X'15' ERR - RECEIVE FAILED

UIOFMHG EQU X'16' ERR - FMH DEFAULT IN SYSGEN CAN'T BE USED

UIOVMMT EQU X'17' ERR - GENCB/MODCB FAILURE

UIOSNDF EQU X'18' ERR - SEND CMD FAILURE

UIOWBMS EQU X'19' ERR - WRITE BUFFER MISSING

UIOFMHS EQU X'1A' ERR - FMH OR FMH-OPTION SPECIFICATION ERROR

UIOQECR EQU X'1B' ERR - QEC RECV'D, USER CONTROLS OUTB CHAINING

UIOPUNK EQU X'1C' ERR - PTE TYPE UNKNOWN

UIOLTNA EQU X'1D' ERR - LAST OPTION DISALLOWED

UIOPMXW EQU X'1E' ERR - PIPELINE MAX NBR WRITES (1) EXCEEDED

UIOOPNS EQU X'1F' ERR - OPT/RQST NOT SUPPTD THIS PTE OR LU TYPE

UIOWSZX EQU X'2�' ERR - WRT SIZ GTR PRUSZ, & CHAIN NOT ALLOWED

UIOSLUF EQU X'21' ERR - SEND LUS (IN LIEU NEG RESP) FAILED

UIORBKF EQU X'22' ERR - RESET BRACKET (SEND EB) FAILURE

UIORQRA EQU X'23' ERR - RQR ATTEMPTED

UIORBNS EQU X'24' ERR - READ BUFFER NOT SUPPORTED

UIOUCNR EQU X'25' ERR - OUTB USER CHANGING - NEG RESPONSE

UIONEGC EQU X'26' ERR - NEG RESP TO SEND COMMAND

UIONRNR EQU X'27' ERR - NEG RESP, SEND CHAIN, NO RECOVERY POSS

UIOLURS EQU X'28' ERR - LU RQST'D SHUTDOWN

UIORCCE EQU X'29' ERR - REQUEST CANCELLED, CONVERSTAION ENDED

UIOSIGR EQU X'2A' ERR - SIGNAL RECEIVED NOT RECOGNIZED

UIOIGDS EQU X'2B' ERR - INVALID LU6.2 GDS ID

UIOSCRM EQU X'2C' ERR - SEND CANCELLED, WE ARE IN RECV-MODE

UIOZLMR EQU X'2D' ERR - ZERO-LNG MSG RECEIVED

Appendix G. Systems Network Architecture Considerations (SNA) G-9

G.2 General Considerations

UIONMRT EQU X'2E' ERR - INVALID/MISSING REQUEST TYPE

UIOALFR EQU X'2F' ERR - ALLOCATE FAILED, SESSION BUSY, RETRY OK

UIOALFN EQU X'3�' ERR - ALLOCATE FAILED, NO RETRY

UIOALFS EQU X'31' ERR - ALLOCATE FAILED, SYNCLEVEL NOT SUPPORTED

UIOUNBD EQU X'32' ERR - UNBIND RECEIVED

UIOSNDE EQU X'33' ERR - LU6.2 SEND ERROR RECEIVED

UIOABND EQU X'34' ERR - LU6.2 SEND ABEND RECEIVED

UIOXLIM EQU X'35' ERR - LIMIT ON INPUT EXCEEDED, READ FAILED

UIOEBR EQU X'36' END BRACKET RECEIVED - DEALLOCATE NORMAL

UIOURTC DS XLI VTAM RTNCD

UIOUFDB DS XLI VTAM FDBK2

UIOUSEI DS XLI VTAM SENSE INFO

UIOUSMI DS XLI VTAM SENSE MODIFIER

UIOUUSI DS XL2 VTAM USER SENSE INFO

UIORSV1 DS XL4 RESERVED

UIOUSIG DS XL4 SIGNAL DATA - EXPD-FLOW-CMD

UIOURAL EQU �-UIOURA LENGTH OF ERROR INFO FIELDS

UIORSV2 DS XL27 RESERVED

UIODWORK DS XL1 WORK BYTE RESERVED FOR CA-IDMS/DC

UIOCBL EQU �-UIOCB LENGTH OF UIOCB

 G.2.3 Error handling

Information about the outcome of your request is returned to your program in several
different ways:

■ The outcome of any request is indicated in register 15. In most cases, register 15
is all that needs to be checked.

■ For debugging purposes, the following fields in the UIOCB contain additional
information:

– The UIOUCM2 field of the UIOCB contains CA-IDMS/DC secondary error
codes.

– The UIOURTC field of the UIOCB contains VTAM return code and feedback
information.

– The UIOUSEI, UIOUSMI, and UIOUUSI fields of the UIOCB contain SNA
sense codes.

The following table lists the sense codes CA-IDMS/DC sends to the remote LU to
inform the remote system of errors encountered in conversation processing. Sense
codes are specified with a 4-byte hexadecimal value. CA-IDMS/DC sends the
following SNA sense codes to inform the remote system of errors encountered in
conversation processing.

Sense code CA-IDMS/DC definition SNA meaning

 10086021 Task not defined to CA-IDMS/DC Allocation error,
TPN not recognized

 084C0000 Task out of service Allocation error,
TPN not available

 10086041 Sync-level not supported Sync-level not supported

G-10 CA-IDMS DML Reference — Assembler

G.2 General Considerations

Sense code CA-IDMS/DC definition SNA meaning

 080F6051 Security violation Security not valid

 08640000 Task abended Deallocate abend

 08890000 #TREQ WRITE,OPTNS=ERROR
sent

Send error request

 08890101 Invalid LU6.2 GDS-ID Invalid GDS-ID

 08460000 ERP message forthcoming ERP message
forthcoming

 08240000 Rollback requested Syncpoint rollback

 08130000 Bracket bid reject (no RTR) Allocate failure

 08010000 Resource unavailable (busy) Allocate failure

 08060000 Resource unknown (LU not
defined)

Allocate failure

 08210000 Invalid session parameters Allocate failure

Appendix G. Systems Network Architecture Considerations (SNA) G-11

G.3 SNA functions in a CA-IDMS/DC environment

G.3 SNA functions in a CA-IDMS/DC environment

The remainder of this appendix will discuss how to perform SNA functions in a
CA-IDMS/DC environment. Each SNA function, for example, ALLOCATE, will be
accompanied by a discussion of how to implement the specific protocols using the
#TREQ statement and the UIOCB.

The following table lists the SNA functions supported by the CA-IDMS/DC
SNA/VTAM driver and their corresponding #TREQ statements.

�� For more information on the #TREQ statement, see 6.69, “#TREQ” on page 6-265.

SNA function CA-IDMS/DC #TREQ statement

ALLOCATE

 LU_NAME

 MODE_NAME

 TPN

 SECURITY

 (PROGRAM

 (USER ID,

 PASSWORD))

 TYPE (CONVERSATION)

 RETURN_CONTROL

#TREQ ALLOC

 UIOCBA

 OPTNS=

 IMM/CONN/ANY

 WAIT/NOWAIT

 LTERMID

CONFIRM

 RESOURCE

 RETURN_CODE

#TREQ WRITE

 OPTNS=CONFIRM

 LTEADDR

CONFIRMED RESOURCE

 RESOURCE

#TREQ WRITE

 OPTNS=CONFIRM

 LTEADDR

#TREQ

(any request except

#TREQ WRITE, OPTNS=ERROR)

DEALLOCATE RESOURCE

 TYPE (SYNC_LEVEL)

 TYPE

 LOG_DATA

 TYPE (LOCAL)

 RESOURCE

#TREQ WRITE

 OPTNS=LAST

 LTEADDR

#TREQ WRITE

 OPTNS=ABEND

 LTEADDR

 SENSE

 LOGDATA

 OUTLEN

 LTEADDR

#TREQ DISC

 LTEADDR

GET_ATTRIBUTES

 RESOURCE

GET_TYPE

 RESOURCE

#TREQ UIOCB

 UIOCBA

 LTEADDR

G-12 CA-IDMS DML Reference — Assembler

G.3 SNA functions in a CA-IDMS/DC environment

SNA function CA-IDMS/DC #TREQ statement

POST_ON RECEIPT

 RESOURCE

WAIT RESOURCE_LIST

 RESOURCE

All #TREQ requests

#WAIT

PREPARE_TO_RECEIVE

 RESOURCE

#TREQ WRITE

 OPTNS=INVITE

RECEIVE_AND_WAIT

 DATA

 LENGTH

 FILL

 WHAT_RECEIVED

 RESOURCE

 RETURN_CODE

#TREQ GET

 INAREA

 MAXIN

 INLEN

 OPTNS=

 LL

 NOCHASM

 LTEADDR

 OPTNS=

 INFMHY

 INFMHN

REQUEST_TO_SEND

 RESOURCE

#TREQ WRITE

 OPTNS=SIGNAL

 LTEADDR

SEND_DATA

 DATA

 LENGTH

 RESOURCE

 RETURN_CODE

#TREQ WRITE

 OUTAREA

 OUTLEN

 LTEADDR

 OPTNS=

 OUTFMHY

 OUTFMHN

 OPTNS=CHNCONT

SEND_ERROR

TYPE (PROGRAM) (SVC)

 LOG_DATA

 RESOURCE

 RESOURCE_CODE

#TREQ WRITE

 OPTNS=ERROR

 SENSE

 LOGDATA

 OUTLEN

 LTEADDR

Appendix G. Systems Network Architecture Considerations (SNA) G-13

G.4 Allocating a session

G.4 Allocating a session

 ALLOCATE LU_NAME

 MODE_NAME

 SYNC_LEVEL

 TPN

SECURITY (PROGRAM (USER_ID, PASSWORD))

 TYPE (CONVERSATION)

 RETURN_CONTROL (WHEN_SESSION_ALLOCATED)

 RETURN_CONTROL (IMMEDIATE)

 RESOURCE

 RETURN_CODE

The #TREQ ALLOC statement allows you to allocate a conversation with another
logical unit. In most cases, CA-IDMS/DC selects a session for you from sessions
defined at system generation. The system bases its selection onsession attributes you
have established in the UIOCB. You should initialize the following UIOCB fields
before you allocate a session:

■ The name of the LU (UIORLU) with which your program will be communicating.

■ In some special cases your program may need to specify the name of a
MODEENT table (UIOMODE), requesting a specific session for the conversation.
Most programs do not have to specify UIOMODE.

�� For more information on session modes, refer to CA-IDMS System Generation.

■ The maximum sync level (UIOSYNC) your task will need (LU6.2 only).

Instead of coding these parameters and letting CA-IDMS/DC select a session for you,
you can use the LTERMID parameter of the #TREQ ALLOC statement to allocate a
specific session, identified by the logical terminal name of the other LU. For example:

 #TREQ ALLOC,LTERMID=LTERMIDA

When LTERMID is specified, the UIORLU and UIOMODE fields in the UIOCB are
ignored.

G.4.1 Establishing conversation attributes

For LU6.2 conversations only, you also use the UIOCB to establish conversation
attributes. Conversation attributes include:

■ Security information to be passed to the remote system, for example, user id
(UIOUSER), and user password (UIOPASS). These fields are valid only if
security is enforced on the remote system.

■ Whether the conversation is basic (UIOCONVB) or mapped (UIOCONVM). In
most situations, your conversation will be in mapped mode. Unmapped (basic)
mode is used with remote LU6.2 logical units that do not have an application
programming interface (for example, an IBM displaywriter), or for system level
service manager programs.

■ The (optional) name of the remote task (UIOTASK).

G-14 CA-IDMS DML Reference — Assembler

G.4 Allocating a session

�� For more information on the UIOTASK field, refer to G.4.3, “Starting a task
on a remote logical unit” on page G-17 later in this appendix.

G.4.2 Issuing the #TREQ ALLOC statement

After you have set the session and conversation attributes in the UIOCB, you must
issue a #TREQ ALLOC statement to allocate the session.

Coding considerations: You should consider the following parameters when
coding your #TREQ ALLOC statement:

■ The OPTNS=ANY/CONN/IMM parameter of the #TREQ ALLOC statement
establishes criteria for choosing a session. The session you need can be in one of
three states:

– Immediately available — The session has already been established with the
requested LU and is not currently in use.

Note: (LU6.2 only); the session must be a contention winner to be
considered immediately available.

�� For more information on contention winners, refer to CA-IDMS System
Generation.

– Disconnected — The session has not yet been established.

– Busy — The session has been established, but is currently allocated to
another logical unit. The session will become immediately available when
that logical unit ends its conversation.

The options on the #TREQ ALLOC statement are as follows:

– ANY (default) specifies that CA-IDMS/DC tries to allocate a session in the
following order:

1. A session that is immediately available and currently unused.

2. A session that is disconnected.

3. A session that is busy; CA-IDMS/DC will wait for a busy session and
return control to your program once the session is allocated.

– CONN requests CA-IDMS/DC not to wait for a busy session. CA-IDMS/DC
will first attempt to allocate an immediately available session, then a
disconnected session.

– IMM specifies that only immediately available sessions are acceptable for the
allocation request.

■ You can specify whether your #TREQ ALLOC request is made synchronous
(default) by specifying OPTNS=WAIT or asynchronous by specifying
OPTNS=NOWAIT.

Note: If you specify OPTNS=ANY, do not request asynchronous processing with
OPTNS=NOWAIT. OPTNS=ANY implies that the request may wait for a busy
session.

Appendix G. Systems Network Architecture Considerations (SNA) G-15

G.4 Allocating a session

■ The UIOCB parameter of the #TREQ ALLOC statement establishes a UIOCB for
the conversation.

Example of LU-LU session allocation: The following example illustrates how
you would allocate an LU-LU session, establishing the UIOCB, and setting session and
conversation attributes:

■ The first statement obtains storage for the UIOCB.

■ The next statement establishes the remote logical unit.

■ The next four statements establish LU6.2 conversation attributes.

■ The #TREQ ALLOC statement allocates the session, initiates the conversation,
and names the UIOCB.

UIOSTG #GETSTG TYPE=(USER,LONG),PLIST=�,LEN=UIOLEN,INIT=X'��', �

 STGID=UIOCBD,ADDR=(R1)

� SESSION ATTRIBUTES

ATTR MVC UIORLU,=C'VTMFO178' REMOTE LU

� CONVERSATION ATTRIBUTES

MVC UIOUSER,=C'BRANCH�1' USER ID: DENVER BRANCH

MVC UIOPASS,=C'DENPR ' USER PASSWORD: DENVER

 MVI UIOCONV,UIOCONVM MAPPED MODE

 MVI UIOSYNC,UIOSYNCC MAXIMUM SYNC-LEVEL

 #TREQ ALLOC,UIOCBA=UIOCB,COND=ALL

After issuing #TREQ ALLOC: After you have issued your #TREQ ALLOC
request, you need to perform the following:

■ Check the value in register 15:

– If register 15 contains a nonzero value, the allocation request failed. The
UIOUCM2 field in the UIOCB indicates whether the problem is permanent or
temporary:

— If CA-IDMS/DC returns UIOALFR to the UIOUCM2 field, the allocate
request was denied due to a temporary problem; for example,
CA-IDMS/DC was unable to wait for a busy session. In this case, you
should issue the #TREQ ALLOC request again.

— If CA-IDMS/DC returns UIOALFN to the UIOUCM2 field, a permanent
error was encountered.

— If CA-IDMS/DC returns UIOALFS to the UIOUCM2 field, the specified
sync level for the conversation is not supported. This is a permanent
error.

– If register 15 contains 0, the session has been successfully established.
Register 1 contains the logical terminal address (LTEADDR) of the remote
LU. The logical terminal address (also stored in UIOLTEA) must be
specified on all subsequent #TREQ requests in that session because a single
task can have conversations with many logical units.

■ If the #TREQ request was asynchronous (OPTNS=NOWAIT), you must issue a
#TREQ CHECK statement before you make any further I/O requests. Your
program must specify the LTE address of the remote LU (UIOLTEA) to identify
the conversation.

G-16 CA-IDMS DML Reference — Assembler

G.4 Allocating a session

G.4.3 Starting a task on a remote logical unit

Non-LU6.2 sessions: For non-LU6.2 sessions, if the UIOTASK field in the
UIOCB contains a task name (is nonzero and nonblank) when a #TREQ ALLOC is
issued, CA-IDMS/DC will automatically send the task code to the remote system
immediately after the session is established.

LU6.2 sessions: For LU6.2 sessions, if the UIOTASK field in the UIOCB
contains a task name (is nonzero and nonblank) when a #TREQ ALLOC is issued,
CA-IDMS/DC will automatically send the LU6.2 allocate request to the remote system,
requesting the remote system to start the named task.

Requests from remote units: When CA-IDMS/DC receives an allocate request
from a remote LU6.2, it does the following:

■ If the allocate request contains a nonzero and nonblank value in the user id
(UIOUSER) or password (UIOPASS) fields, CA-IDMS/DC will run the signon
task for that session.

■ The task identified in the allocate request is then attached.

■ The conversation type (UIOCONV) and sync-level (UIOSYNC) are also passed by
the allocate request and moved into the UIOCB.

Any errors encountered while processing a remote allocation request for example,
task-not-defined or security violations, are reported to the remote system through an
SNA sense code.

�� For more information on sense codes, see G.2.3, “Error handling” on page G-10 in
this appendix.

Appendix G. Systems Network Architecture Considerations (SNA) G-17

G.5 Starting a task from a remote system

G.5 Starting a task from a remote system

 GET_ATTRIBUTES

 GET_TYPE

When your conversation is started from a remote LU, you must issue a #TREQ
UIOCB statement before issuing any other #TREQ statements. The #TREQ UIOCB
statement establishes a UIOCB for CA-IDMS/DC to maintain session attributes and
status information.

If the conversation was started from a remote system, the LTEADDR parameter can be
left off, since the LTE address defaults to the LTE that started the task (that of the
remote system).

CA-IDMS/DC fills all session attribute fields upon completion of a #TREQ UIOCB or
#TREQ ALLOC request.

G-18 CA-IDMS DML Reference — Assembler

G.6 Synchronous and asynchronous processing

G.6 Synchronous and asynchronous processing

 POST_ON_RECEIPT

 WAIT RESOURCE_LIST

The statements used to establish SNA sessions and to exchange data can be issued as
either synchronous or asynchronous requests.

�� For more information on synchronous and asynchronous processing, refer to 6.69,
“#TREQ” on page 6-265.

When establishing a conversation you can request:

■ Synchronous processing by using the OPTNS=WAIT parameter of the #TREQ
ALLOC statement.

■ Asynchronous processing by using #TREQ ALLOC,OPTNS=NOWAIT. You
must issue a #TREQ CHECK, specifying the LTE address of the remote LU, prior
to any other I/O requests for that conversation.

More information on the #TREQ ALLOC statement can be found in G.4, “Allocating a
session” on page G-14 in this appendix.

When you are issuing #TREQ input and output statements, you can request:

■ Synchronous processing by using #TREQ GET, PUT, and PUTGET.

■ Asynchronous processing by using #TREQ WRITE, READ, and WRITREAD.
The #WAIT statement is used to wait on an ECB list. All asynchronous requests
must be followed by a #TREQ CHECK statement before any other I/O requests
can be made for that session.

Appendix G. Systems Network Architecture Considerations (SNA) G-19

G.7 Sending data

 G.7 Sending data

 SEND_DATA DATA

 LENGTH

 RESOURCE

 RETURN_CODE

You can use any #TREQ WRITE, PUT, PUTGET, or WRITREAD request to send
data to another LU in a conversation.

If the length of the data you are sending (OUTLEN) is larger than the SNA maximum
request unit size (UIOTRU), CA-IDMS/DC will chain the output automatically.

G.7.1 LU6.2 considerations for sending data

For LU6.2-mapped conversations, CA-IDMS/DC appends a generalized data stream ID
(GDS ID) to the data.

For LU6.2 unmapped conversations, you must supply the correct GDS ID and attach it
to the data.

�� For more information on GDS IDs, refer to IBM SNA documentation.

G.7.2 Non-LU6.2 considerations for sending data

For non-LU6.2 conversations, specifying OUTFMHY or OUTFMHN indicates whether
or not a function management header (FMH) has been added to the outbound message:

■ OUTFMHY specifies that you have included an FMH at the beginning of the
write buffer that should be used instead of any sysgen defaults.

■ OUTFMHN specifies that no default FMH should be added to the outbound
message and that you have not provided an FMH.

The CHNCONT parameter (non-LU6.2 conversations only) specifies that your task is
sending a chain of outbound messages and that the current message is not the last in
the chain. Not specifying CHNCONT after it has been specified once indicates the
final chain element.

G-20 CA-IDMS DML Reference — Assembler

G.8 Requesting a confirmation

G.8 Requesting a confirmation

 CONFIRM RESOURCE

 RETURN_CODE

If you want to request a confirmation, for any application-defined reason, you can
include the CONFIRM option of the #TREQ WRITE, PUT, PUTGET, or WRITREAD
statements. Your program must specify the LTE address of the remote logical unit to
identify the conversation.

Specifying OPTNS=CONFIRM sends a confirmation request to the remote LU. The
request is posted as complete as soon as it is received; a separate read statement is not
necessary to get the confirmation. CA-IDMS/DC sets the send-error received flag
(UIOERR) on if the reply is negative.

The CONFIRM option can be specified with or without data (OUTLEN=0). Syntax
and syntax rules for OPTNS=CONFIRM are described in Chapter 6, “Data
Manipulation Language Statements” on page 6-1.

You can request a change of direction with the confirmation request by specifying
OPTNS=(INVITE,CONFIRM).

You can also request confirmation before a conversation is terminated by specifying
OPTNS=(LAST,CONFIRM).

�� For more information on terminating a conversation, refer to G.14, “Terminating a
conversation” on page G-28 in this appendix.

For non-LU6.2 sessions, the following considerations apply:

■ If the bind parameters issued at system generation indicate that the definite
response protocol is supported, CA-IDMS/DC will always request a definite
response type1 (RDR1) on the last or only elements.

■ If your program specifies OPTNS=CONFIRM, CA-IDMS/DC will request a
definite response type2 instead of type1.

Appendix G. Systems Network Architecture Considerations (SNA) G-21

G.9 Responding to a confirmation request

G.9 Responding to a confirmation request

 CONFIRMED_RESOURCE

 SEND_ERROR

After your program has received a confirmation request (UIOCFM is set on), your
program can:

■ Send a positive response by specifying OPTNS=CONFIRMED on a write request

■ Allow CA-IDMS/DC to send a positive response automatically the next time you
make a request (with the exception of write requests specifying OPTNS=ERROR)

■ Send a negative response by specifying OPTNS=ERROR on a write request

G-22 CA-IDMS DML Reference — Assembler

G.10 Sending error information

G.10 Sending error information

SEND_ERROR TYPE (PROGRAM) (SVC)

 LOG_DATA

 RESOURCE

 RETURN_CODE

Your program can send error information to an LU by specifying OPTNS=ERROR on
a WRITE or PUT request. You cannot issue a #TREQ PUTGET or WRITREAD
request because the program remains in the send state after the error request is issued.
Your program must specify the LTE address of the remote LU (UIOLTEA) to identify
the conversation.

The error information is sent in the form of an 8 character hexadecimal SNA sense
code, specified by the SENSE parameter on a write request. The default sense code is
X'08890000'.

�� For more information on sense codes, refer to G.2.3, “Error handling” on
page G-10 in this appendix.

Upon receipt of an error, CA-IDMS/DC moves the sense code to the UIOCB.
CA-IDMS/DC indicates that an error has been received by setting an error flag
(UIOERR) in the UIOWREC (what-received) field of the UIOCB and provides more
specific information about the error in the secondary codes (UIOUCM2).

Note: Register 15 is not set in response to a SEND_ERROR verb. Therefore,
UIOWREC should be examined if the possibility of UIOERR exist.

LU6.2 sessions: For an LU6.2 session, if you send the error request while you are
in the receive state, all input is purged until a change-direction indicator is received,
and then CA-IDMS/DC sends the error information.

�� For more information on changing direction, refer to G.11, “Changing direction:
send to receive” on page G-24 in this appendix.

After sending error information, your program will be in the send state. You can then
send additional data to the remote LU.

You can send log data along with the error information by using the LOGDATA
parameter. If the remote system supports log data, the data will be logged onto the
remote system when it receives the send-error request. LOGDATA specifies the
address of the data buffer. You must also specify the OUTLEN parameter to indicate
the length of the data.

Non-LU6.2 sessions: For a non-LU6.2 session, CA-IDMS/DC sends the sense
code in a negative response if your task is in the receive state and in an LUSTAT
command if your task is in the send state. If your program issues an error request
while your task is in the receive state, all input is purged until a change-direction
indicator is received. Your program must specify the LTE address of the remote LU
(UIOLTEA) to identify the conversation.

Appendix G. Systems Network Architecture Considerations (SNA) G-23

G.11 Changing direction: send to receive

G.11 Changing direction: send to receive

 PREPARE_TO_RECEIVE

Your program can change from the send state to the receive state in either of the
following ways:

■ Implicitly, by issuing any type of read request (#TREQ READ, GET,
WRITREAD, PUTGET). CA-IDMS/DC automatically sends a change-direction
indicator to the remote system before it issues the read request.

■ Explicitly, by using the OPTNS=INVITE parameter on any write request.

The change-direction indicator is sent with data for all #TREQ PUTGET and
WRITREAD requests, and without data for all GET and READ requests.

Your program must specify the LTE address of the remote LU (UIOLTEA) to identify
the conversation.

G-24 CA-IDMS DML Reference — Assembler

G.12 Receiving data

 G.12 Receiving data

 RECEIVE_AND_WAIT DATA

 LENGTH

 FILL

 WHAT_RECEIVED

 RESOURCE

 RETURN_CODE

To read data sent from another LU, your program must issue some form of read
request (#TREQ READ, GET, PUTGET, or WRITREAD). CA-IDMS/DC buffers all
input received from a logical unit. Your program can issue multiple read statements
until all of the data in the buffer has been transferred to your program.

Parameters applying to incoming data: The following parameters apply to
incoming data:

■ The INAREA parameter specifies the location of the input data stream.

■ The INLEN parameter specifies the actual length of the input data stream.

■ The MAXIN parameter specifies the maximum length of data your program can
receive. CA-IDMS/DC never truncates data; if the length of the input data stream
exceeds the MAXIN parameter in your READ statement, CA-IDMS/DC will
buffer the data so that it will be available for your next read request.

■ The LOCATE parameter requests CA-IDMS/DC to allocate a buffer the exact size
of the input data stream. Register 1 contains the address of the buffer that will
contain the input data. The INLEN parameter can be used to indicate the actual
amount of data received. The LOCATE parameter and the INAREA and MAXIN
parameters are mutually exclusive.

If all of the input has been transferred from the data buffer to your program on
completion of a read request, the data-complete-flag (UIODC) will be set on. In
general, you should always continue issuing read requests until the change-direction
(UIOCD) or last (UIOLST) flag has been set.

LU6.2 conversations: For LU6.2 conversations, CA-IDMS/DC can receive only
one type of input with each request. For example, if CA-IDMS/DC receives input that
contains data, a change of direction indicator, and a confirm request, you must issue
two read requests in order to get all the information you need:

■ First read request — Reads the data. The data (UIODAT) and data-complete
(UIODTC) flags in the UIOCB are set on to indicate that all of the data has been
received and given to your program (assuming the buffer was large enough to
hold all of the data). If the input buffer is not large enough to hold all of the
data, CA-IDMS/DC will buffer the data so that it will be available to your next
read request.

■ Second read request — Processes the change of direction and confirmation
requests by setting on the change-direction (UIOCD) and confirmation-requested
(UIOCFM) flags in the UIOCB.

Appendix G. Systems Network Architecture Considerations (SNA) G-25

G.12 Receiving data

LU6.2 data is always passed in LU6.2 logical records, made up of a header and the
user data. The header consists of a 2-byte length field and a 2-byte generalized data
stream ID (GDS ID).

LU6.2 mapped conversations: During LU6.2 mapped conversations,
CA-IDMS/DC removes the header from the logical record (OPTNS=LL).

LU6.2 unmapped conversations: During LU6.2 unmapped (basic) conversations,
a read request can specify the following options:

■ LL specifies that CA-IDMS/DC will pass one LU6.2 logical record, without
removing the header.

■ NOCHASM requests CA-IDMS/DC to pass single chain elements (RUs) to your
task one at a time, regardless of logical record, without assembling the chain into
a buffer area. The last (or only) chain element is indicated by the UIODTC flag.

■ Not specifying either option requests CA-IDMS/DC to read an input data stream
of the length specified by the MAXIN operand, regardless of whether an entire
logical record is sent. The read is complete when the amount of data specified by
MAXIN has been read, or when the end-of-chain has been indicated.

Non-LU6.2 conversations: For non-LU6.2 conversations, the following
considerations apply:

■ All currently available data and read information is passed to your program in one
read, unless the buffer is not large enough to hold all of the data.

■ A read request can specify either OPTNS=NOCHASM or leave this parameter
unspecified:

– Specifying OPTNS=NOCHASM indicates that an inbound chain is passed to
your task a single chain element (RU) at a time, without assembling the chain
into a buffer. The last (or only) chain element is indicated by the UIODTC
flag.

– Not specifying this option requests a read of a single buffer of the length
specified in MAXIN. All SNA chains are assembled into a single buffer; the
read is completed when either the specified length of data or the RU marked
as the end of the chain is received. The data-complete (UIODTC) flag is set
when the end of the chain is received.

■ Your program can indicate how function management headers (FMH) are handled
on input by specifying INFMHY or INFMHN:

– INFMHY indicates that function management headers are passed to your task
along with the input data stream. The UIOFMH flag in the UIOCB is set on
to indicate the presence of an FMH in the data stream.

– INFMHN requests CA-IDMS/DC to remove any incoming FMH from the
input data stream before the data is passed to your task.

G-26 CA-IDMS DML Reference — Assembler

G.13 Changing direction: receive to send

G.13 Changing direction: receive to send

 REQUEST_TO_SEND

Normally, your program remains in the receive state until the remote LU sends a
change-direction indicator.

Your program can request a change of direction from the receive state to the send state
by specifying OPTNS=SIGNAL on a write request. The SIGNAL option sends a
change-direction signal code of X'00010000'.

If your program issues a write request while it is in the receive state, CA-IDMS/DC
sends the signal command, requesting change of direction, to the remote LU.
CA-IDMS/DC posts your program's write request as successfully completed with a
logical error (R15 = 0C) and an error code in the UIOUCM2 field of the UIOCB.

The UIOUCM2 field indicates that your program tried to send data while in the
receive state (UIOSCRM), and that CA-IDMS/DC sent the change-direction signal for
you. You must continue to send read requests until the remote LU sends a
change-direction signal (UIOCD).

Appendix G. Systems Network Architecture Considerations (SNA) G-27

G.14 Terminating a conversation

G.14 Terminating a conversation

DEALLOCATE RESOURCE TYPE (SYNC_LEVEL)

 TYPE (ABEND_PROGRAM)

 LOG_DATA (VARIABLE)

 TYPE (LOCAL)

A conversation between CA-IDMS/DC and another LU can be terminated in the
following ways:

■ Your program can request a normal termination of the conversation by
specifying OPTNS=LAST on a write request.

■ Your program can notify the remote LU that it is terminating abnormally by
specifying OPTNS=ABEND on a write request.

■ The remote LU can terminate the conversation. CA-IDMS/DC sets the
UIOLST (send last received) flag in the UIOCB.

Your program must specify the LTE address of the remote task (UIOLTEA) to identify
the conversation.

The session that is being maintained between CA-IDMS/DC and the remote LU is not
closed, but remains available to be allocated to another conversation. This eliminates
the overhead of reestablishing another session.

If you want to start another conversation after you have ended the current one, you
must allocate a new conversation to the session.

�� For more information on allocating a conversation, refer to G.4, “Allocating a
session” on page G-14 in this appendix.

 G.14.1 Normal termination

To end a conversation between two logical units normally, specify OPTNS=LAST on
a write request. CA-IDMS/DC notifies the remote system, frees the session to make it
available for other conversations, and, for LU6.2 conversations, performs a signoff for
the remote LU.

The request to terminate a conversation can be made with or without data
(OUTLEN=0).

You can request confirmation of the termination request by specifying
OPTNS=(LAST,CONFIRM) on a #TREQ WRITE or PUT request. CA-IDMS/DC
notifies the remote system and will wait to free the session and perform the signoff
until a positive confirmation is received.

If your task ends or abends before the conversation terminates normally,
CA-IDMS/DC performs the ABEND operation.

G-28 CA-IDMS DML Reference — Assembler

G.14 Terminating a conversation

 G.14.2 Abnormal termination

You can notify the remote system that your task is abending and that the conversation
has ended by using the ABEND option of the #TREQ WRITE or PUT statements.
CA-IDMS/DC notifies the remote system, terminates the conversation, frees the
session, and, for LU6.2 conversations only, signs off the remote LU.

LU6.2 conversations: For LU6.2 conversations, CA-IDMS/DC can pass log data
along with the ABEND notification. The LOGDATA parameter locates the buffer
containing the data. If the remote LU6.2 system supports LOGDATA, the data will be
logged on to the remote system when the ABEND notification is received. If you
specify LOGDATA, you must also include the OULEN parameter to indicate the
length of the data.

Non-LU6.2 conversations: For non-LU6.2 conversations, the SENSE option
overrides the default sense code (X'08640000'; task abended).

G.14.3 Terminating a session

You can terminate a non-LU6.2 session between CA-IDMS/DC and another LU by
using the #TREQ DISC (disconnect) statement. The #TREQ DISC request must be
followed by a #TREQ CHECK request. Your program must specify the LTE address
of the remote LU (UIOLTEA) to identify the conversation.

Appendix G. Systems Network Architecture Considerations (SNA) G-29

G-30 CA-IDMS DML Reference — Assembler

Appendix H. Invoking the IDMSIN01 Entry Point

H.1 About IDMSIN01 .H-3
H.2 Guidelines .H-4
H.3 IDMSIN01 macro .H-5

H.3.1 Examples .H-6

Appendix H. Invoking the IDMSIN01 Entry Point H-1

H-2 CA-IDMS DML Reference — Assembler

H.1 About IDMSIN01

 H.1 About IDMSIN01

The IDMS module contains an IDMSIN01 entry point which provides these IDMS
functions to user mode programs linked with the IDMS module:

■ Deactivate the DML or SQL trace

■ Reactivate the DML or SQL trace

■ Retrieve session profile information (GETPROF)

■ Establish session profile information (SETPROF)

■ Return the current date and time in a display format

■ Translate an internal 8-byte date/time stamp to display format

An Assembler program can gain access to the IDMSIN01 functions by using the
IDMSIN01 macro.

Appendix H. Invoking the IDMSIN01 Entry Point H-3

H.2 Guidelines

 H.2 Guidelines

The following guidelines must be observed:

■ Be aware that R13 must point to a standard register save area when calling
IDMSIN01 from an Assembler language program.

■ A return code will be returned in R15. You should check errors with the
ERROR= parameter of the IDMSIN01 macro.

H-4 CA-IDMS DML Reference — Assembler

H.3 IDMSIN01 macro

 H.3 IDMSIN01 macro

 Syntax

��─── IDMSIN�1 ─┬─ TRACE ───┬───�

├─ NOTRACE ─┤

├─ GETPROF ─┤

├─ SETPROF ─┤

└─ GETDATE ─┘

 �─── ,PLIST= ─┬─ parameter-list-pointer ─┬───────────────────────────────────�

└─ SYSPLIST ← ─────────────┘

 �─── ,RPB= ─┬─ RPB-area-pointer ─┬───�

└─ SQLRPB ← ─────────┘

 �─┬───────────────────────────────────┬──────────────────────────────────────�

└─ ,PVALUE=profile-keyword-pointer ─┘

 �─┬──────────────────────────────────┬───────────────────────────────────────�

└─ ,PRESULT=profile-value-pointer ─┘

 �─┬───────────────────────────┬──�

└─ ,FORMAT= ─┬─ DISPLAY ─┬─┘

├─ INTERNAL ─┤

└─ EXTERNAL ─┘

 �─┬──────────────────────────────┬───�

└─ ,DATEIN=input-date-pointer ─┘

 �─┬────────────────────────────────┬───�

└─ ,DATEOUT=output-date-pointer ─┘

 �─┬──────────────────────┬───��

└─ ,ERROR=error-label ─┘

 Parameters

IDMSIN01
Indicates a request for the IDMSIN01 function specified by the keyword that
follows.

TRACE
Turns navigational DML or SQL DML tracing on.

NOTRACE
Turns navigational DML or SQL DML tracing off.

GETPROF
Returns session profile information.

SETPROF
Changes session profile information.

GETDATE
Returns date and time in a display format.

PLIST=parameter-list-pointer
Specifies the name of the parameter list to be used for the macro expansion. The
parameter list must be at least 12 fullwords in length.

Appendix H. Invoking the IDMSIN01 Entry Point H-5

H.3 IDMSIN01 macro

If PLIST= is not specified, the default value of parameter-list-pointer is
SYSPLIST.

RPB=RPB-area-pointer
Specifies the name of a 36-byte work area that will be modified during function
execution. The RPB work area must be fullword aligned.

RPB= is required for user-mode programs. If RPB= is not specified, the default
value of RPB-area-pointer is SQLRPB.

PVALUE=profile-keyword-pointer
Supplies the attribute keyword for GETPROF and SETPROF functions.
Profile-keyword-pointer must identify an 8-byte character field.

PRESULT=profile-value-pointer
Contains the attribute value for GETPROF and SETPROF functions.

Profile-value-pointer must identify a 32-byte character field. For a SETPROF
function, the field supplies the attribute value. On a GETPROF function, the
attribute value is returned to the field.

FORMAT=
Specifies the type of GETDATE function being requested.

DISPLAY
Specifies that the current date and time will be returned in display (character
string) format.

INTERNAL
Specifies that the internal format of the datetime value specified by DATEIN=
will be returned.

DATEIN=input-date-pointer
If FORMAT=INTERNAL is specified for GETDATE then specifies the date (in
internal format) to be converted to display format. If FORMAT=EXTERNAL is
specified for GETDATE then specifies the date (in external format) to be
converted to 8-byte internal format.

DATEOUT=output-date-pointer
Specifies the 26-byte output field into which the display format of the datetime
value will be returned. This parameter is required for GETDATE processing.

ERROR=error-label
Specifies a program label to which control should be passed in the event an error
is detected during processing.

 H.3.1 Examples

Assembler work fields: These are the work fields used by the examples that follow:

SYSPLIST DC 12F'�' Standard PLIST

SQLRPB DC XL36'��' Required only for user mode programs

XTRAPKEY DS CL8 Profile attribute keyword

XTRAPVAL DS CL32 Profile attribute value

DATEIN DS XL8 Internal date/time stamp

DATEOUT DS CL26 Edited date/time returned by GETDATE

BLANKS DC CL133' ' Blanks for all

H-6 CA-IDMS DML Reference — Assembler

H.3 IDMSIN01 macro

Deactivating DML or SQL trace: This call to IDMSIN01 shows how to deactivate
the DML trace, or the SQL trace,

IDMSIN�1 NOTRACE Deactivate the DML/SQL trace

Activating DML or SQL trace: This call to IDMSIN01 shows how to activate the
DML trace, or the SQL trace, which was originally activated by the corresponding
SYSIDMS parm (DMLTRACE=ON, SQLTRACE=ON) but deactivated earlier in this
job.

IDMSIN�1 TRACE Activate the DML/SQL trace

Retrieving session profile information: This call to IDMSIN01 shows how to
retrieve session profile information. The requested information is the profile default
DBNAME, which was established by the SYSIDMS parm DBNAME= in batch, or by
DCUF SET DBNAME online.

MVC XTRAPKEY,=CL8'DBNAME' Establish attribute keyword

 IDMSIN�1 GETPROF,PVALUE=XTRAPKEY,PRESULT=XTRAPVAL, X

 ERROR=ERROROUT

MVC WORKLINE,BLANKS Clear print work line

MVC WORKLINE+5(6),=C'DBNAME' Move out keyword

MVC WORKLINE+11(17),=C' is set to BLANKS'

CLC XTRAPVAL,BLANKS Was variable set to blanks

BE �+4+6 Yes, all set

MVC WORKLINE+22(32),XTRAPVAL Move out retrieved value

$PRNT WORKLINE Print the GETPROF results

Establishing session profile information: This call to IDMSIN01 shows how to
establish session profile information. It sets the session default SCHEMA to the value
&oq.SYSTEM&cq..

MVC XTRAPKEY,=CL8'SCHEMA' Establish attribute keyword

MVC XTRAPVAL,BLANKS Init attribute variable

MVC XTRAPVAL(8),=CL8'SYSTEM' Save attribute variable

 IDMSIN�1 SETPROF,PVALUE=XTRAPKEY,PRESULT=XTRAPVAL, X

 ERROR=ERROROUT

Returning a date/time stamp in displayable form: This call to IDMSIN01 shows
how to to have an 8-byte internal DATETIME stamp returned as a displayable
26-character value.

 IDMSIN�1 GETDATE,DATEIN=DATEIN,DATEOUT=DATEOUT, X

 FORMAT=INTERNAL,ERROR=ERROROUT

MVC WORKLINE,BLANKS Clear print work line

MVC WORKLINE+1�(14),=C'DATETIME ───� '

 MVC WORKLINE+24(26),DATEOUT Displayable date/time

$PRNT WORKLINE Print the date/time

Returning the current date and time in displayable form: This call to IDMSIN01
shows how to to have the current DATE and TIME returned as a displayable
26-character value.

 IDMSIN�1 GETDATE,DATEOUT=DATEOUT,FORMAT=DISPLAY, X

 ERROR=ERROROUT

MVC WORKLINE,BLANKS Clear print work line

MVC WORKLINE+1�(22),=C'Current DATETIME ───� '

 MVC WORKLINE+32(26),DATEOUT Displayable date/time

$PRNT WORKLINE Print the current date/time

Appendix H. Invoking the IDMSIN01 Entry Point H-7

H.3 IDMSIN01 macro

H-8 CA-IDMS DML Reference — Assembler

Appendix I. 18-Byte Communications Blocks

I.1 Overview .I-3

Appendix I. 18-Byte Communications Blocks I-1

I-2 CA-IDMS DML Reference — Assembler

I.1 Overview

 I.1 Overview

As an alternative to using the 16-byte IDMS-DB communications blocks, you can
specify 18-byte blocks. The difference between 16-byte blocks and 18-byte blocks is
that an 18-byte block contains an additional 18-byte filler field, and the following
fields are 18 bytes instead of 16 bytes:

 ■ RECNAME

 ■ AREANAME

 ■ ERRORSET

 ■ ERRORREC

 ■ ERRAREA

This appendix describes where to specify an 18-byte communications block and
contains figures showing these blocks.

�� For descriptions of the fields in IDMS-DB communications blocks, see Chapter 3,
"Communications Blocks and Error Detection."

Where to specify the 18-byte block: For Assembler, you specify an 18-byte
communications block by using the @SSC120 statement in place of the @SSCTRL
statement. (See @SSCTRL in Chapter 5, "DML Precompiler-Directive Statements.")

18-byte IDMS-DB block: The following figure shows the 18-byte IDMS-DB
communications block.

Appendix I. 18-Byte Communications Blocks I-3

I.1 Overview

 ┌───────────────────────────┐

│ IDMS COMMUNICATIONS BLOCK │
 └───────────────────────────┘

 Length Suggested
Field Data Type (bytes) Initial Value

 ┌──────────────┐

� │ � 7 │ PGMNAME Alphanumeric 8 Program Name

 ├──────────┬───┘

 │ 8 11 │ ERRSTAT Alphanumeric 4 '14��'

 ├──────────┤

 │ 12 15 │ DBKEY Binary 4 (Fullword) ����

 ├──────────┴───────┐

 │ 16 33 │ RECNAME Alphanumeric 16 Spaces

 ├──────────────────┤

 │ 34 51 │ AREANAME Alphanumeric 16 Spaces

 ├──────────────────┤

 │ 52 69 │ FILLER Alphanumeric 16 Spaces

 ├──────────────────┤

 │ 7� 87 │ ERRORSET Alphanumeric 16 Spaces

 ├──────────────────┤

 │ 88 1�5 │ ERRORREC Alphanumeric 16 Spaces

 ├──────────────────┤

 │ 1�6 123 │ ERRAREA Alphanumeric 16 Spaces

 ├──────────┬──────┘

�� │ 124 127 │ PGINFO Binary 4 (Fullword) ����

 └──────────┘

 ┌────────────┬───┬─────┐

 │ 124 ... 223 │ IDBMSCOM Alphanumeric 1�� Spaces

 ├──────────┬─┴───┴─────┘

│ 224 227 │ DIRDBKEY Binary 4 (Fullword) ����

 └──────────┘

┌──────┬──────────────┐

│ │ 228 234 │ Reserved for System Alphanumeric 7 Spaces

│ ├─────┬────────┘

│ NON- │ 235 │ FILLER ... 1 ...

│ ├─────┴────┐

│ CICS │ 236 239 │ RECOCCUR Binary 4 (Fullword) ����

│ ├──────────┤

│ │ 24� 243 │ DMLSEQ Binary 4 (Fullword) ����

└──────┴──────────┘

┌──────┬──────────────────┐

│ │ 228 243 │ FILLER ... 16 Spaces

│ ├──────────────┬───┘

│ │ 244 25� │ Reserved for System Alphanumeric 7 Spaces

│ ├─────┬────────┘

│ │ 251 │ FILLER ... 1 ...

│ CICS ├─────┴────┐

│ │ 252 255 │ RECOCCUR Binary 4 (Fullword) ����

│ ├──────────┤

│ │ 256 259 │ DMLSEQ Binary 4 (Fullword) ����

└──────┴──────────┘

� word aligned

�� PGINFGRP overlays bytes 96 and 97 and PGINFDBK overlays bytes

98 and 99. Both of these fields are binary datatype each

having a length of two bytes. Suggested initial values for

both are ��. Together these two fields represent PGINFO.

I-4 CA-IDMS DML Reference — Assembler

 Index

Special Characters
@ACCEPT BIND 6-12
@ACCEPT DBKEY FROM CURRENCY 6-13—6-14
@ACCEPT DBKEY RELATIVE TO

CURRENCY 6-15—6-16
@ACCEPT PGINFO 6-17—6-18
@ACCEPT PROC 6-19
@ACCEPT STATS 6-20—6-21
@BIND PROC 6-29—6-30
@BIND REC 6-31—6-32
@BIND SUBSCH 6-33—6-36
@BIND TASK 6-37
@COMMIT 6-39
@CONNECT 6-41—6-43
@COPY IDMS 3-4, 5-9—5-15

DSECT 5-13
MAP-BINDS 5-13
MAP-CONTROLS 5-12
MAP-RECORDS 5-12
MAPS 5-12
MODULE 5-12
SUBSCHEMA-BINDS 5-13
SUBSCHEMA-DML-LR-DESCRIPTION 5-10
SUBSCHEMA-LR-DESCRIPTION 5-11

@DISCON 6-57—6-59
@ERASE 6-67—6-71
@ERASE (LRF) 6-72—6-73
@FIND/@OBTAIN CALC/DUPLICATE 6-74—6-76
@FIND/@OBTAIN CURRENT 6-76—6-79
@FIND/@OBTAIN DBKEY 6-79—6-81
@FIND/@OBTAIN OWNER 6-81—6-84
@FIND/@OBTAIN USING SORT KEY 6-84—6-86
@FIND/@OBTAIN WITHIN SET/AREA 6-86—6-92
@FINISH 6-93
@GET 6-97—6-98
@IF 6-119—6-121
@INVOKE 5-6—5-8
@KEEP 6-122—6-123
@MODE 5-4—5-5
@MODIFY 6-176—6-178
@MODIFY (LRF) 6-179—6-180
@OBTAIN (LRF) 6-202—6-204
@READY 6-227—6-229
@RETURN 6-230—6-231
@ROLLBAK 6-237—6-238
@SSCTRL 3-4, 5-19

@SSLRCTL 5-20
@STORE 6-254—6-258
@STORE (LRF) 6-259—6-260
*NO-ACTIVITY-LOG 2-7
*SCHEMA-COMMENTS 2-5
#ABEND 6-11
#ACCEPT 6-22—6-23
#ATTACH 6-24—6-28
#BIND TASK 6-37
#CHAP 6-38
#COMMIT 6-40
#DELETE 6-44—6-45
#DELQUE 6-46—6-49
#DELSCR 6-50—6-53
#DEQ 6-54—6-56
#ENDPAG 6-60—6-61
#ENQ 6-62—6-66
#FINISH 6-94
#FREESTG 6-95—6-96
#GETIME 6-99—6-100
#GETQUE 6-101—6-106
#GETSCR 6-107—6-112
#GETSTG 6-113—6-118
#KEEP 6-124—6-129
#LINEEND 6-130
#LINEIN 6-131—6-135
#LINEOUT 6-136—6-141
#LINK 6-142—6-145
#LOAD 6-146—6-151
#MAPBIND 5-17—5-18
#MAPINQ 6-152—6-164

See also testing for identical data
moving map-related data 6-152—6-154
testing cursor position 6-157—6-158
testing for global map input conditions 6-154—6-156
testing for input conditions 6-159—6-164

#MAPMOD 6-165—6-175
#MRB 5-16
#MREQ 6-181—6-201

#MREQ IN syntax 6-182—6-187
#MREQ OUT syntax 6-184—6-186
#MREQ OUTIN syntax 6-186—6-187
#MREQ syntax rules 6-198
 pg=start.#MREQ syntax rules 6-187

#POST 6-205
#PRINT 6-206—6-215
#PUTJRNL 6-216—6-218

Index X-1

#PUTQUE 6-219—6-222
#PUTSCR 6-223—6-226
#RETURN 6-232—6-236
#ROLLBAK 6-239—6-240
#SENDMSG 6-241—6-244
#SETIME 6-245—6-248
#SNAP 6-249—6-251
#STAE 6-252—6-253
#STRTPAG 6-261—6-264
#TREQ

execute version 6-265
in SNA programming G-6
list version 6-289
regular version 6-265
syntax rules 6-278—6-286

#TREQ ALLOC
syntax for 6-267

#TREQ CHECK
syntax for 6-267—6-268

#TREQ DISC
syntax for 6-268

#TREQ GET
syntax for 6-269—6-270

#TREQ PUT
syntax for 6-270—6-271

#TREQ PUTGET
syntax for 6-272—6-273

#TREQ READ
syntax for 6-274—6-275

#TREQ UIOCB
syntax for 6-275

#TREQ WRITE
syntax for 6-275—6-276

#TREQ WRITREAD
syntax for 6-277—6-278

#TRNSTAT 6-291—6-295
#WAIT 6-296—6-298
#WTL 6-299—6-306
#XCTL 6-307—6-308

Numerics
18-byte communications blocks I-3

A
abend exits

See #STAE
abnormal termination

See #ABEND
See #STAE

accessing the database
LRF DML statements 1-5—1-6
navigational DML statements 1-4—1-5

AID key 6-152
Assembler language program H-4
assembling a program A-3
assembling IDMS-DB/DC programs 1-9
assembling programs 1-8
assembly-time error messages D-6
asynchronous processing

basic mode 6-265
in SNA programming G-18
line mode 6-136
mapping mode 6-181

attention ID key 6-152

B
basic mode data transfer

See #TREQ
batch processing 1-4
blast requests

basic mode 6-266
line mode 6-139
mapping mode 6-194

BS2000 JCL A-15, A-19

C
CALC

See location modes
CALC key

See @STORE
CALC location mode 6-74
central version

See compiler options
central version and dictionary identification 2-3
changing direction (SNA) G-24
checkpoint 6-39, 6-40

@COMMIT 6-39
@ROLLBAK 6-237
#COMMIT 6-40
#FINISH 6-94
#ROLLBAK 6-239

CMS JCL A-16
BS2000 A-19

comment generation 2-5
communication with CA-IDMS/DB and CA-IDMS/DC

programs 3-35
IDMS database communications block 3-17
logical-record request control (LRC)

block 3-18—3-22

X-2 CA-IDMS DML Reference — Assembler

communication with CA-IDMS/DB and DC/UCF
programs

DC/UCF general registers 3-23—3-35
DC/UCF return codes 3-23—3-32

communications blocks and error detection 3-3
IDMS database communications block 3-4

communications blocks, 18-byte I-3
compile and link-edit JCL A-3
compiler options

central version and dictionary identification 2-3
comment generation 2-5
dictionary usage mode 2-4
list generation 2-6
log suppression 2-7

COMT checkpoint 6-39, 6-40
confirmation request

responding to G-22
confirmation requests (SNA) G-21
conversation (SNA) G-5

normal termination G-28
receiving data in G-25
sending data in G-20
sending error information in G-23

cursor position 6-157
CV

See compiler options

D
data communications (CA-IDMS/DC) statements 1-4
data manipulation language statements 6-3—6-59
data structure diagram F-3
database (DB) DML statements 1-4
database areas

readying 6-227
usage mode 6-227

database procedures 6-29
database record area

restoring 6-239
date

formatting for display H-3
internal format H-3
obtaining 6-99

date/time stamp H-3
db-key 6-13, 6-15, 6-79
DBNAME 2-3
DBNAME parameter
DBSTATS 6-20
DC/UCF general registers 3-23—3-35
DC/UCF return codes 3-23—3-32

DEFN-MISSING
See ON clause

dictionary
message area 6-299
queue area 6-219
scratch area 6-223

dictionary identification
See compiler options

dictionary usage mode 2-4
DIRDBKEY 6-254, 6-258
DIRECT

See location modes
dispatching priority 6-38
DML coding considerations

coding user-supplied operands 4-4
DML macros D-3
DML precompiler 1-8

how to execute A-3
DML precompiler options

See compiler options
DML precompiler-directive statements 5-3—5-20

@COPY IDMS 5-9—5-15
@INVOKE 5-6—5-8
@MODE 5-4—5-5
@SSCTRL 5-19
@SSLRCTL 5-20
#MAPBIND 5-17—5-18
#MRB 5-16

DML statements 1-3
DML usage mode 5-9
DMLIST 2-6
DMS precompiler-directive statements

@SSCTRL 5-19
dump

See #ABEND
See #SNAP

DUPLICATE option 6-74

E
ECB

See event control block
EMPLOYEE database (sample)

data structure diagram for F-3
error handling

in SNA programming G-10
error-status codes 3-17

CA-IDMS/DB major codes 3-11
IDMS-DB minor codes 3-12

ERRSTAT field and codes 3-11—3-16

Index X-3

event control block 6-205
executing IDMS-DB/DC programs 1-9
executing programs 1-8

F
field descriptions

See logical-record request control block
FMH

See function management headers
function management headers G-26

G
GETPROF function H-3
guidelines when calling IDMSIN01

I
IDMS database communications block

ERRSTAT field and codes 3-11—3-16
field descriptions 3-7—3-10
testing for DML Error-Status codes 3-17

IDMS-DB communications block, 18-byte I-3
IDMS-DB/DC assembler DML coding considerations

coding parameters 4-5
coding user supplied operands 4-4
synonym processing 4-6—4-7

IDMS-DB/DC LRF keywords 4-8
IDMSAJNL utility 6-237
IDMSDMLA 1-8

how to execute A-3
IDMSIN01 H-3
IDMSRBCK utility 6-237
integrated indexing

@RETURN 6-230
INVALID-DATA

See ON clause

J
JCL A-3—A-21

MVS A-5—A-8
VSE A-9—A-15

journal file
@ROLLBAK 6-237
#PUTJRNL 6-216
checkpoint to 6-39, 6-40

K
kept storage

#FREESTG 6-95
#GETSTG 6-113

keywords
See IDMS-DB/DC assembler DML coding

considerations

L
line mode

#LINEEND 6-130
#LINEIN 6-131
#LINEOUT 6-136

linkage editor 1-9
list #TREQ

syntax and syntax rules 6-289, 6-290
list generation 2-6
location modes

CALC 6-254, 6-258
DIRECT 6-254, 6-258
VIA 6-254, 6-258

locks
See record

log suppression 2-7
logical record clauses

ON clause 6-309, 6-317
selection criteria for 6-309, 6-317
WHERE 6-309, 6-317

Logical Record Facility 1-5—1-6
logical records

deleting 6-72
modifying 6-179
obtaining 6-204
retrieving 6-202

logical unit G-5
logical-record request control (LRC) block 3-18—3-22

logical-record path status 3-20—3-22
LR usage mode 5-9
LR-ERROR

See ON clause
LR-FOUND

See ON clause
LR-NOT-FOUND

See ON clause
LRC block

See logical-record request control block
LRF

See logical record clauses
See Logical Record Facility

X-4 CA-IDMS DML Reference — Assembler

LRF DML statements 1-5
See also Logical Record Facility

LU
See logical unit

M
macros

See DML macros
map request block

@COPY IDMS,MAPS 5-12
#ENDPAG 6-60
#MAPBIND 5-17
#MRB 5-16
#MREQ 6-181
#STRTPAG 6-261

mapping mode
See #MREQ

memory dump
See #SNAP

message identifier 6-299
message prefix 6-299
messages

message queue 6-241
sending 6-241, 6-299
severity code for 6-299
symbolic parameters in 6-300

MIXED usage mode 5-9
MRB

See map request block
MVS JCL A-5

N
native-mode data streams 6-206
native-mode data transfers 6-181
navigating the database 1-4—1-5
navigational DML statements 1-4
node 2-3
NODENAME 2-3
NODENAME parameter

in BS2000 JCL A-15
NODMLIST 2-6

O
ON clause 6-313—6-317
online DML statements 1-4
OOAK-MISSING

See ON clause

operating environments
batch 1-4
CA-IDMS/DB 1-4
DC/UCF systems 1-4

P
page information 6-17
pageable maps

See #ENDPAG
See #MAPINQ
See #MREQ
See #STRTPAG

parameters
See IDMS-DB/DC assembler DML coding

considerations
path in subschema

See WHERE clause
path status

See logical-record request control block
See ON clause

precompiler options 2-3
print classes

See #PRINT
print queue

See #PRINT
printing 6-206
profile, session H-3
program information block 6-19
program pool

loading a module into 6-146

Q
queue record area

deleting 6-46
restoring 6-239
storing 6-219

queue records
retrieving 6-101

R
record

bind address 6-12
db-key 6-13, 6-15
disconnecting from a set 6-67
establishing addressability for 6-31
placing a lock on 6-122, 6-124

records
accessing 6-74
db-key 6-254, 6-258

Index X-5

records (continued)
modifying 6-176

recovery unit 6-227, 6-237
registers

See DC/UCF general registers
return codes

See DC/UCF return codes
run unit

database for 6-33
node for 6-33
recovery of 6-237
signing on to DBMS 6-33
subschema for 6-33

runtime
statistics 6-20

S
scratch record area

deleting 6-50
restoring 6-239
retrieving 6-107
storing 6-223

sense codes G-10
Sequential Processing Facility

@RETURN 6-230
sessions

profiles H-3
sessions (SNA) G-5

how to establish G-14
LU-LU sessions G-5, G-14
terminating G-29

set
connecting a record to 6-254, 6-258

SETPROF function H-3
sets

ownership 6-81
SNA

See systems network architecture
sort control element 6-84
sort key 6-84
SPF

See Sequential Processing Facility
statistics 6-20
storage management

#FREESTG 6-95
#GETSTG 6-113

subschema path
See WHERE clause

SYNC-ERROR
See ON clause

synchronous processing
basic mode 6-265
in SNA programming G-18
line mode 6-131, 6-136
mapping mode 6-181

synonyms
See IDMS-DB/DC assembler DML coding

considerations
SYSIDMS H-3
systems network architecture G-3—G-29

T
task

attaching a task 6-24
testing for DC/UCF return codes 3-32—3-35
testing for identical data 6-158
time 6-99

formatting for display H-3
internal format H-3
obtaining 6-99
setting a time interval 6-245

trace, DML and SQL H-3
transaction statistics

See #TRNSTAT
transaction statistics block

See #TRNSTAT
transfering control

See #XCTL
TSB

See #TRNSTAT

U
UIOCB

See user I/O control block
usage mode

DML 5-9
LR 5-9
MIXED 5-9

user I/O control block G-6
user-supplied operands

See DML coding considerations
utilities

IDMSAJNL 6-237
IDMSRBCK 6-237

V
variable storage

acquiring 6-113
freeing 6-95

X-6 CA-IDMS DML Reference — Assembler

VIA
See location modes

VSE JCL A-9

W
WHERE clause 6-309—6-313
write to log

See #WTL
write-direct-to-terminal

See blast requests

Index X-7

	CA-IDMS DML Reference - Assembler
	Contents
	How to Use This Manual
	What this manual is about
	Who should use this manual
	What this manual contains
	Understanding syntax diagrams
	Sample syntax diagram

	Chapter 1. Introduction to CA- IDMS Data Manipulation Language
	1.1 Overview
	1.2 Operating environments
	1.2.1 Accessing the database
	1.2.2 Programming in the DC/ UCF environment

	1.3 Assembling and executing programs

	Chapter 2. DML Precompiler Options
	2.1 Overview
	2.2 Dictionary usage mode
	2.3 Comment generation
	2.4 List generation
	2.5 Log suppression

	Chapter 3. Communications Blocks and Error Detection
	3.1 Overview
	3.2 IDMS communications block
	3.2.1 Field descriptions
	3.2.2 ERRSTAT field and codes
	3.2.3 Testing for DML error- status codes

	3.3 Logical- record request control (LRC) block
	3.3.1 Field descriptions
	3.3.2 Testing for the logical- record path status

	3.4 DC/ UCF general registers
	3.4.1 DC/ UCF status codes
	3.4.2 Testing for DC/ UCF return codes

	Chapter 4. Assembler DML Coding Considerations
	4.1 Overview
	4.2 Coding user- supplied operands
	4.3 Coding parameters
	4.4 Synonym processing
	4.5 Logical Record Facility keywords

	Chapter 5. DML Precompiler- Directive Statements
	5.1 Overview
	5.2 @ MODE
	5.3 @ INVOKE
	5.4 @ COPY IDMS
	5.5 # MRB
	5.6 # MAPBIND
	5.7 @ SSCTRL
	5.8 @ SSLRCTL

	Chapter 6. Data Manipulation Language Statements
	6.1 Overview
	6.2 Functions of DML statements
	6.3 # ABEND
	6.4 @ ACCEPT BIND
	6.5 @ ACCEPT DBKEY FROM CURRENCY
	6.6 @ ACCEPT DBKEY RELATIVE TO CURRENCY
	6.7 @ ACCEPT PGINFO
	6.8 @ ACCEPT PROC
	6.9 @ ACCEPT STATS
	6.10 # ACCEPT
	6.11 # ATTACH
	6.12 @ BIND PROC
	6.13 @ BIND REC
	6.14 @ BIND SUBSCH
	6.15 # BIND TASK
	6.16 # CHAP
	6.17 @ COMMIT
	6.18 # COMMIT
	6.19 @ CONNECT
	6.20 # DELETE
	6.21 # DELQUE
	6.22 # DELSCR
	6.23 # DEQ
	6.24 @ DISCON
	6.25 # ENDPAG
	6.26 # ENQ
	6.27 @ ERASE
	6.28 @ ERASE (LRF)
	6.29 @ FIND/@ OBTAIN statements
	6.29.1 @ FIND/@ OBTAIN CALC/ DUPLICATE
	6.29.2 @ FIND/@ OBTAIN CURRENT
	6.29.3 @ FIND/@ OBTAIN DBKEY
	6.29.4 @ FIND/@ OBTAIN OWNER
	6.29.5 @ FIND/@ OBTAIN USING SORT KEY
	6.29.6 @ FIND/@ OBTAIN WITHIN SET/ AREA

	6.30 @ FINISH
	6.31 # FINISH
	6.32 # FREESTG
	6.33 @ GET
	6.34 # GETIME
	6.35 # GETQUE
	6.36 # GETSCR
	6.37 # GETSTG
	6.38 @ IF
	6.39 @ KEEP
	6.40 # KEEP
	6.41 # LINEEND
	6.42 # LINEIN
	6.43 # LINEOUT
	6.44 # LINK
	6.45 # LOAD
	6.46 # MAPINQ
	6.46.1 Moving map- related data
	6.46.2 Testing for global map input conditions
	6.46.3 Testing cursor position
	6.46.4 Testing for identical data
	6.46.5 Testing for input conditions

	6.47 # MAPMOD
	6.48 @ MODIFY
	6.49 @ MODIFY (LRF)
	6.50 # MREQ
	6.50.1 # MREQ Syntax

	6.51 @ OBTAIN (LRF)
	6.52 # POST
	6.53 # PRINT
	6.54 # PUTJRNL
	6.55 # PUTQUE
	6.56 # PUTSCR
	6.57 @ READY
	6.58 @ RETURN
	6.59 # RETURN
	6.60 @ ROLLBAK
	6.61 # ROLLBAK
	6.62 # SENDMSG
	6.63 # SETIME
	6.64 # SNAP
	6.65 # STAE
	6.66 @ STORE
	6.67 @ STORE (LRF)
	6.68 # STRTPAG
	6.69 # TREQ
	6.69.1 Regular and execute # TREQ description
	6.69.2 Regular and execute # TREQ syntax
	6.69.3 List # TREQ

	6.70 # TRNSTAT
	6.71 # WAIT
	6.72 # WTL
	6.73 # XCTL
	6.74 Logical record clauses
	6.74.1 WHERE clause
	6.74.2 ON clause
	6.74.3 Logical- record status codes

	Appendix A. DML Precompile, Assembly, and Link- Edit JCL
	A. 1 Overview
	A. 2 IDMSDMLA under MVS
	A. 3 IDMSDMLA under VSE
	A. 4 IDMSDMLA under CMS
	A. 5 IDMSDMLA under BS2000
	A. 6 Link- edit considerations

	Appendix B. Sample CA- IDMS/ DB Batch Program
	B. 1 Overview
	B. 2 Input to the precompiler
	B. 3 Output from the precompiler
	B. 4 Output from the assembler

	Appendix C. Sample DC/ UCF Online Program
	C. 1 Overview
	C. 2 Input to the DML precompiler
	C. 3 Output from the DML precompiler
	C. 4 Output from the assembler

	Appendix D. Assembler DML Macros and Error Messages
	D. 1 Overview
	D. 2 DML macros
	D. 3 Error messages

	Appendix E. STAE Exits
	E. 1 Overview

	Appendix F. EMPLOYEE Data Structure Diagram
	F. 1 Overview

	Appendix G. Systems Network Architecture Considerations (SNA)
	G. 1 Overview
	G. 2 General Considerations
	G. 2.1 SNA terminology
	G. 2.2 Program communications in the SNA environment
	G. 2.3 Error handling

	G. 3 SNA functions in a CA- IDMS/ DC environment
	G. 4 Allocating a session
	G. 4.1 Establishing conversation attributes
	G. 4.2 Issuing the # TREQ ALLOC statement
	G. 4.3 Starting a task on a remote logical unit

	G. 5 Starting a task from a remote system
	G. 6 Synchronous and asynchronous processing
	G. 7 Sending data
	G. 7.1 LU6.2 considerations for sending data
	G. 7.2 Non- LU6.2 considerations for sending data

	G. 8 Requesting a confirmation
	G. 9 Responding to a confirmation request
	G. 10 Sending error information
	G. 11 Changing direction: send to receive
	G. 12 Receiving data
	G. 13 Changing direction: receive to send
	G. 14 Terminating a conversation
	G. 14.1 Normal termination
	G. 14.2 Abnormal termination
	G. 14.3 Terminating a session

	Appendix H. Invoking the IDMSIN01 Entry Point
	H. 1 About IDMSIN01
	H. 2 Guidelines
	H. 3 IDMSIN01 macro
	H. 3.1 Examples

	Appendix I. 18- Byte Communications Blocks
	I. 1 Overview

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

