
CA-IDMS®
Navigational DML Programming

15.0

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

Second Edition, October 2001

 2001 Computer Associates International, Inc.
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

How to Use This Manual . ix

Chapter 1. Overview of the CA-IDMS Programming Environment 1-1
1.1 About this chapter . 1-3
1.2 Terminology . 1-4
1.3 Database access . 1-5
1.4 CA-IDMS batch and online environments 1-6
1.5 Navigational DML programs and CA-ADS programs 1-7

Chapter 2. Basic DML Programming Concepts 2-1
2.1 About this chapter . 2-3
2.2 Database components . 2-4

2.2.1 Schemas . 2-4
2.2.2 Subschemas . 2-8

2.3 Db-keys and page information . 2-11
2.4 Run units, locks, and recovery units . 2-13

2.4.1 Run units . 2-13
2.4.2 Record locks . 2-13
2.4.3 Area locks . 2-17
2.4.4 Area usage modes . 2-18
2.4.5 Recovery units . 2-20

2.5 Basic programming considerations . 2-24
2.5.1 Establishing communications with CA-IDMS 2-24
2.5.2 Checking the status of statement execution 2-29
2.5.3 Specifying a dictnode or dictname for a run unit 2-29
2.5.4 Using currency . 2-30
2.5.5 Collecting database statistics . 2-30

2.6 IDMS communications block . 2-32

Chapter 3. Introduction to Database Access with Navigational DML 3-1
3.1 About this chapter . 3-3
3.2 Records . 3-4

3.2.1 Record name . 3-4
3.2.2 Record identification . 3-5
3.2.3 Storage mode . 3-5
3.2.4 Record length . 3-5
3.2.5 Location mode . 3-5
3.2.6 Duplicates option . 3-6
3.2.7 Area name . 3-7

3.3 Sets . 3-8
3.3.1 Set name . 3-9
3.3.2 Set linkage . 3-9
3.3.3 Set membership options . 3-10
3.3.4 Set order . 3-11
3.3.5 Chained and indexed sets . 3-13
3.3.6 Set relationship definition . 3-13

3.4 Data structure diagram . 3-20

Contents iii

3.5 Currency . 3-22
3.5.1 Use and updating of currency by DML verbs 3-23
3.5.2 Updating currencies during DML processing 3-25

3.6 Database access execution sequence . 3-27

Chapter 4. Navigational DML Programming Techniques 4-1
4.1 About this chapter . 4-3
4.2 Retrieving records . 4-4

4.2.1 Accessing CALC records . 4-4
4.2.2 Walking a set . 4-5
4.2.3 Accessing a sorted set . 4-6
4.2.4 Performing an area sweep . 4-10
4.2.5 Accessing owner records . 4-12
4.2.6 Reestablishing run-unit currency . 4-14
4.2.7 Accessing a record by its db-key . 4-15
4.2.8 Accessing indexed records . 4-18
4.2.9 Moving contents of a record occurrence 4-21

4.3 Saving db-key, page information and bind addresses 4-24
4.3.1 Saving a db-key . 4-24
4.3.2 Saving page information . 4-28
4.3.3 Saving a record's BIND address . 4-30

4.4 Checking for set membership . 4-31
4.4.1 Using the IF EMPTY statement . 4-31
4.4.2 Using the IF MEMBER statement . 4-32

4.5 Updating the database . 4-35
4.5.1 Storing records . 4-35
4.5.2 Modifying records . 4-37
4.5.3 Erasing records . 4-39
4.5.4 Connecting records to a set . 4-44
4.5.5 Disconnecting records from a set . 4-45

4.6 Locking records . 4-48

Chapter 5. Advanced DML Programming Topics 5-1
5.1 About this chapter . 5-3
5.2 Copying record definitions and their synonyms 5-4
5.3 Accessing bill-of-materials structures . 5-6

5.3.1 Storing a bill-of-materials structure . 5-6
5.3.2 Retrieving a bill-of-materials structure 5-8

Chapter 6. Introduction to Online Programming 6-1
6.1 About this chapter . 6-3
6.2 DC as an operating system . 6-4
6.3 Transaction and task processing . 6-5
6.4 Pseudoconversational programming . 6-6
6.5 Performance considerations . 6-9
6.6 Error handling . 6-10
6.7 Using the IDMS communications block 6-11

Chapter 7. Terminal Management . 7-1
7.1 About this chapter . 7-3
7.2 Mapping mode . 7-4

iv CA-IDMS Navigational DML Programming

7.2.1 Housekeeping . 7-5
7.2.2 Displaying screen output . 7-5
7.2.3 Reading screen input . 7-8
7.2.4 Modifying map options . 7-11
7.2.5 Writing and reading in one step . 7-12
7.2.6 Suppressing map error messages . 7-13
7.2.7 Testing for identical data . 7-14

7.3 Using pageable maps . 7-15
7.3.1 Pageable map format . 7-15
7.3.2 Conducting a map paging session . 7-17
7.3.3 How to code a browse application . 7-20
7.3.4 How to code an update application 7-23
7.3.5 Overriding automatic mapout for pageable maps 7-27

7.4 Line mode . 7-30
7.4.1 Beginning a line mode session . 7-30
7.4.2 Writing a line of data . 7-30
7.4.3 Reading a line of data . 7-32
7.4.4 Ending a line mode session . 7-33
7.4.5 3270-type considerations . 7-33

Chapter 8. Storage, Scratch, and Queue Management 8-1
8.1 About this chapter . 8-3
8.2 Using storage pools . 8-4

8.2.1 User storage . 8-5
8.2.2 User kept storage . 8-6
8.2.3 Shared storage . 8-9
8.2.4 Shared kept storage . 8-10
8.2.5 Storage pool summary . 8-11

8.3 Using scratch records . 8-15
8.4 Using queue records . 8-22
8.5 Using the terminal screen to transmit data 8-27

Chapter 9. DC Programming Techniques . 9-1
9.1 About this chapter . 9-3
9.2 Passing program control . 9-4

9.2.1 Returning to a higher level program . 9-5
9.2.2 Passing control laterally . 9-6
9.2.3 Passing control, expecting to return . 9-7

9.3 Retrieving task-related information . 9-9
9.4 Maintaining data integrity in the online environment 9-11

9.4.1 Setting longterm explicit locks . 9-11
9.4.2 Monitoring concurrent database access 9-14

9.5 Managing tables . 9-18
9.6 Retrieving the current time and date . 9-21
9.7 Writing to the journal file . 9-23
9.8 Collecting DC statistics . 9-25
9.9 Sending messages . 9-28

9.9.1 Sending a message to the current user 9-28
9.9.2 Sending a message to other users . 9-29

9.10 Writing to a printer . 9-31

Contents v

9.11 Writing JCL to a JES2 internal reader 9-33
9.12 Modifying a task's priority . 9-34
9.13 Initiating nonterminal tasks . 9-35

9.13.1 Attaching a task . 9-35
9.13.2 Time-delayed tasks . 9-36
9.13.3 External requests . 9-36
9.13.4 Queue threshold tasks . 9-36

9.14 Controlling abend processing . 9-37
9.14.1 Terminating a task . 9-37
9.14.2 Handling db-key deadlocks . 9-37
9.14.3 Performing abend routines . 9-39

9.15 Establishing and posting events . 9-41

Chapter 10. Advanced CA-IDMS Programming Topics 10-1
10.1 About this chapter . 10-3
10.2 Calling a DC program from a CA-ADS dialog 10-4
10.3 Basic mode . 10-6

10.3.1 Reading data from the terminal . 10-7
10.3.2 Writing data to the terminal . 10-7

10.4 Determining if asynchronous I/O is complete 10-8
10.5 Communicating with database procedures 10-9

10.5.1 BIND PROCEDURE . 10-9
10.5.2 ACCEPT PROCEDURE CONTROL LOCATION 10-10

10.6 Managing queued resources . 10-12

Chapter 11. Testing . 11-1
11.1 About this chapter . 11-3
11.2 Preparing programs for execution . 11-4
11.3 Selecting local mode or central version 11-5
11.4 Using SYSIDMS parameters and DCUF SET statements 11-6
11.5 Overriding subschemas (Release 10.2) 11-7

11.5.1 Overriding a batch program's subschema 11-7
11.5.2 Overriding an online program's subschema 11-9

11.6 Setting up an online test application . 11-10

Chapter 12. Debugging . 12-1
12.1 About this chapter . 12-3
12.2 Debugging batch programs with the CA-IDMS trace facility 12-4
12.3 Using the CA-OLQ menu facility . 12-6
12.4 Reading task dumps . 12-7

12.4.1 Contents of a snap dump . 12-7
12.4.2 How to use the dump . 12-9

12.5 Error checking . 12-12

Appendix A. PL/I Considerations . A-1
A.1 About this appendix . A-3
A.2 Transferring control . A-4
A.3 Using the Online Debugger with PL/I . A-5

A.3.1 Computation Phase . A-5
A.3.2 Sample Online Debugger Session . A-6

vi CA-IDMS Navigational DML Programming

Appendix B. Assembler Considerations . B-1
B.1 About this appendix . B-3

Appendix C. Batch Access to DC Queues and Printers C-1
C.1 About this appendix . C-3

Appendix D. XA Considerations . D-1
D.1 About this appendix . D-3

Appendix E. Running a Program Under TCF E-1
E.1 About this appendix . E-3
E.2 Overview of TCF . E-4
E.3 Defining a TCF task to the DC system . E-6
E.4 Using the UCE for communication under TCF E-7
E.5 Determining if TCF is active . E-9
E.6 Starting a new session . E-10
E.7 Resuming a suspended session . E-11
E.8 Processing a pseudoconverse . E-12

E.8.1 Suspend processing . E-12
E.8.2 End processing . E-12
E.8.3 Switch processing . E-12

E.9 Displaying error messages . E-14
E.10 Sample application under TCF . E-15

Appendix F. Calls to IDMSIN01 . F-1
F.1 About IDMSIN01 . F-3

Appendix G. 10.2 Services Batch Interface G-1
G.1 About the 10.2 services batch interface . G-3

Index . X-1

Contents vii

viii CA-IDMS Navigational DML Programming

How to Use This Manual

How to Use This Manual ix

What this manual is about

This manual discusses the following topics:

■ Programming navigational access to a CA-IDMS database

■ Programming CA-IDMS applications in COBOL, PL/I, Assembler, Fortran, and
RPG II

■ Testing and debugging

■ Topics of interest to advanced programmers

x CA-IDMS Navigational DML Programming

Who should use this manual

This manual is a guide for the developer of batch applications that access a non-SQL
defined CA-IDMS database. It is also for the developer of applications that execute in
a DC system and may or may not access a CA-IDMS database.

How information is presented

■ Programming functions are explained by task.

■ Step-by-step instructions guide you through the programming operations for each
function.

■ Special considerations for using each function are provided where appropriate.

■ Programming examples are presented in context with other DML and host
language-specific source statements.

All programming examples in this manual are given in COBOL. For specific
information regarding PL/I or Assembler, refer to Appendix A, “PL/I
Considerations” on page A-1 or Appendix B, “Assembler Considerations” on
page B-1.

How to Use This Manual xi

How product names are referenced

This manual uses the term CA-IDMS to refer to any one of the following CA-IDMS
components:

■ CA-IDMS/DB — The database management system

■ CA-IDMS/DC — The data communications system and proprietary teleprocessing
monitor

■ CA-IDMS/UCF — The universal communications facility for accessing CA-IDMS
database and data communications services through another
 teleprocessing monitor, such as CICS

■ CA-IDMS/DDS — The distributed database system

This manual uses the terms DB, DC, UCF, and DDS to identify the specific CA-IDMS
component only when it is important to your understanding of the product. References
to DC apply equally to UCF unless otherwise noted.

xii CA-IDMS Navigational DML Programming

 Related documentation

Language-specific DML reference manuals that include the syntax and syntax rules for
each DML statement:

CA-IDMS DML Reference - COBOL

CA-IDMS DML Reference - PL/I

CA-IDMS DML Reference - Assembler

For information that will help you plan, code, and test your application programs:

CA-IDMS Messages and Codes

CA-IDMS Transfer Control Facility

 CA-IDMS Utilities

CA-IDMS Mapping Facility

CA-IDMS Online Debugger

For related information on more advanced topics:

CA-IDMS System Generation

CA-IDMS System Operations

CA-IDMS Database Administration

How to Use This Manual xiii

xiv CA-IDMS Navigational DML Programming

Chapter 1. Overview of the CA-IDMS Programming
Environment

1.1 About this chapter . 1-3
1.2 Terminology . 1-4
1.3 Database access . 1-5
1.4 CA-IDMS batch and online environments 1-6
1.5 Navigational DML programs and CA-ADS programs 1-7

Chapter 1. Overview of the CA-IDMS Programming Environment 1-1

1-2 CA-IDMS Navigational DML Programming

1.1 About this chapter

1.1 About this chapter

This chapter provides a high-level description of the environments that CA-IDMS
provides for creating and executing application programs. The chapter begins with
definitions of key terms used when discussing navigational DML programming.

Chapter 1. Overview of the CA-IDMS Programming Environment 1-3

1.2 Terminology

 1.2 Terminology

As you use this manual, you should be familiar with the these terms:

■ Database management system (DBMS) — The software component of
CA-IDMS that accesses the database, handles all database input/output (I/O) and
space management functions, and maintains all data and data relationships.

■ Database administrator (DBA) — The individual or staff responsible for
implementing and maintaining the database.

■ CA-IDMS central version — A CA-IDMS mode of operation that allows
multiple application programs to execute concurrently, sharing a single DBMS.
Additionally, the central version provides for automatic recovery in the event of a
program failure.

■ Host language — COBOL, PL/I, Assembler.

■ Navigational DML programming — Programming with CA-IDMS navigational
DML statements.

You code DML statements in the program source as if they were a part of the
host language (such as COBOL, PL/I, or Assembler) The precompiler converts
each DML statement into a subroutine call that requests DB and DC services.

■ Run unit — That portion of a CA-IDMS program that establishes communication
with the DBMS, initiates database requests, and releases database resources.

■ Variable storage — That portion of storage associated with an application
program at runtime; for example, the WORKING-STORAGE and LINKAGE
SECTIONs of a COBOL program.

1-4 CA-IDMS Navigational DML Programming

1.3 Database access

 1.3 Database access

Access methods: CA-IDMS provides these ways for a program to access a
database:

■ Navigational DML statements — Access a non-SQL-defined database and include
information about how data is stored

■ SQL statements — Access data associated with an SQL schema

■ LRF statements — Access data by referencing defined logical record paths

This manual discusses navigational programming techniques.

�� For more information about using SQL in a program to access the database, refer to
CA-IDMS SQL Programming Guide.

�� For more information about using LRF in a program to access the database, refer to
CA-IDMS Logical Record Facility.

Navigational programming: Navigational programs access database records and
sets one record at a time, checking and maintaining currency in order to assure correct
results. To use navigational DML statements, you must have a thorough knowledge of
the database structure.

Navigational programming provides:

■ Control over error checking — You can check the result of each navigational
statement as you go, enabling more thorough error detection.

■ Flexibility in choosing database access strategy — You can enter the database
sequentially or by using a symbolic key value, a calculated key value, or a
database key (db-key) value.

Chapter 1. Overview of the CA-IDMS Programming Environment 1-5

1.4 CA-IDMS batch and online environments

1.4 CA-IDMS batch and online environments

You design CA-IDMS programs to run in either the batch or the online environment.

Batch program: A batch program typically processes large volumes of sequential
input transactions and writes output in the form of files and reports. Errors are
detected and held in a suspense file to be corrected and resubmitted with the next
batch run. Because batch jobs perform such extensive processing, they are usually run
at off-peak hours.

Online program: An online program typically processes transaction requests from
terminals connected directly to the computer and displays transaction results at the
terminal. Errors are detected immediately; the user is required to correct them before
the transaction can be processed.

An online system must efficiently handle multiple requests from multiple sources and
be able to manage a variety of concurrent transaction requests. Additionally, online
processing is immediate; thus, fast response time is essential in maintaining an
efficient work environment for multiple users.

Online programs run under DC, the teleprocessing monitor that is fully integrated with
DB and with IDD, the CA-IDMS dictionary.

�� For a list of the teleprocessing monitors supported, refer to the language-specific
CA-IDMS DML reference manual.

1-6 CA-IDMS Navigational DML Programming

1.5 Navigational DML programs and CA-ADS programs

1.5 Navigational DML programs and CA-ADS programs

CA-ADS: CA-ADS is an application development system that includes a
fourth-generation programming language.

�� For more information about CA-ADS, refer to CA-ADS User Guide.

Both CA-ADS application programs and navigational DML programs can execute in
the CA-IDMS environment. A navigational DML program can be called by a
CA-ADS dialog.

�� For more information about calling a navigational DML program from a CA-ADS
dialog, see 10.2, “Calling a DC program from a CA-ADS dialog” on page 10-4.

Chapter 1. Overview of the CA-IDMS Programming Environment 1-7

1-8 CA-IDMS Navigational DML Programming

Chapter 2. Basic DML Programming Concepts

2.1 About this chapter . 2-3
2.2 Database components . 2-4

2.2.1 Schemas . 2-4
2.2.2 Subschemas . 2-8

2.3 Db-keys and page information . 2-11
2.4 Run units, locks, and recovery units . 2-13

2.4.1 Run units . 2-13
2.4.2 Record locks . 2-13
2.4.3 Area locks . 2-17
2.4.4 Area usage modes . 2-18
2.4.5 Recovery units . 2-20

2.5 Basic programming considerations . 2-24
2.5.1 Establishing communications with CA-IDMS 2-24
2.5.2 Checking the status of statement execution 2-29
2.5.3 Specifying a dictnode or dictname for a run unit 2-29
2.5.4 Using currency . 2-30
2.5.5 Collecting database statistics . 2-30

2.6 IDMS communications block . 2-32

Chapter 2. Basic DML Programming Concepts 2-1

2-2 CA-IDMS Navigational DML Programming

2.1 About this chapter

2.1 About this chapter

This chapter highlights programming considerations common for all navigational DML
programmers, regardless of application type (batch or online).

If you are writing database applications, you should be familiar with all the
information in this chapter. Programmers whose applications perform no database
access need read only the 2.5, “Basic programming considerations” on page 2-24
section of this chapter.

This chapter presents:

■ Database components — A discussion of schemas and subschemas, including
information on areas, records, and the IDMSRPTS utility

■ Run unit, lock, and recovery unit considerations — A discussion of run units,
record and area locks including information on area usage modes, and recovery
units

■ Basic programming considerations — A discussion of DML housekeeping
functions, communications blocks, currency, and database statistics

Chapter 2. Basic DML Programming Concepts 2-3

2.2 Database components

 2.2 Database components

The DBA uses CA-IDMS data description language (DDL) to define the three
components of a database:

 ■ Schema

 ■ DMCL

 ■ Subschema

Schema: A schema provides the complete logical description of the content and
structure of a database, including the names and descriptions of all areas, records, and
sets.

DMCL: The DMCL:

■ Controls the mapping of the schema-defined database into physical files; specifies
the size of the buffers

■ Designates which areas of the database are utilized at runtime

■ Optionally, describes the files used to journal database activities

�� For more information on the DMCL, refer to the CA-IDMS Database
Administration.

Subschema: A subschema defines the program's view of the database. It typically
defines a subset of the records and record elements contained in the schema.

The subschema also defines restrictions placed on the DML statements that can be
used to access that view. Additionally, the subschema can contain DBA-defined
database-access paths used in LRF.

�� For information about LRF paths and programming, refer to CA-IDMS Logical
Record Facility.

 2.2.1 Schemas

A schema is the description of the database; one schema is defined for each database.
The entities that the DBA defines in the schema are:

■ Areas are portions of physical storage that map to files on a one-to-one,
many-to-one, or one-to-many basis.

■ Records define categories of information and are contained in areas.

■ Sets either establish logical relationships between records or place an index on a
record.

�� For more information about sets, see Chapter 4, “Navigational DML
Programming Techniques” on page 4-1.

2-4 CA-IDMS Navigational DML Programming

2.2 Database components

Areas: An area is a subdivision of database storage that maps to a direct-access file.
The subdivision of a database into areas provides the following advantages:

■ Since each area is a discrete entity, you need prepare only the areas relevant for
use by your application program. This allows concurrently executing programs
access to areas that you are not using.

■ Your program can restrict the use of an area, thereby preventing concurrently
executing programs from accessing or updating records in that area. This allows
you to determine the level of control that your program will have over an area (for
example, if an application performs extensive updates, you might want more
control than in an application that simply retrieves records).

■ Assignment of a single record type to a single area enhances runtime efficiency
when using either serial sweeps of the database or system-owned indexes.

■ The database can be initialized, restructured, backed up, and recovered on an
area-by-area basis.

Pages: Each area consists of a given number of contiguous pages within the
database, as defined by the DBA. A page is a division of an area that corresponds to
a physical block of storage on a direct-access storage device.

Each page in a database area contains record occurrences and database control
information (including a unique numeric page identifier). Page limits and page sizes
are assigned for each area by the DBA.

Database paging: Since each database page corresponds to a direct-access block
on a file, data is transferred from the storage device to the buffer one page at a time.
Each transfer results in one physical I/O.

Chapter 2. Basic DML Programming Concepts 2-5

2.2 Database components

The figure below shows database paging:

Minimizing paging I/O: Since database paging involves I/O overhead, you should
minimize database paging in your program. Ways to cut down on database paging
include:

■ Saving the db-keys of retrieved records to be used later in the program

■ Using the RETURN statement to establish currency in an indexed set

■ FINDing rather than OBTAINing records that are only used for database
positioning

■ Using the ACCEPT statement to retrieve the db-key of the next, prior, or owner
records

�� For more information on ways to reduce database paging, see Chapter 4,
“Navigational DML Programming Techniques” on page 4-1.

Records: Database records are defined by the DBA in the dictionary (or optionally
in the schema). Records are composed of elements (also called data items).
Individual occurrences of each record type are maintained in the database according to
their database keys.

2-6 CA-IDMS Navigational DML Programming

2.2 Database components

Record type: The description of a record type consists of its name, followed by the
names and attributes of all elements contained in the record. The example below
shows the information associated with the record type named DEPARTMENT. The
elements contained in the DEPARTMENT record include a 4-character number
(DEPT-ID-0410), a 45-character name (DEPT-NAME-0410), and another 4-character
number (DEPT-HEAD-ID-0410). This description is the model for the
DEPARTMENT record type wherever it appears in the database.

ELEMENT NAME USAGE PICTURE

DEPT-ID-�41� DISPLAY 9(4)

DEPT-NAME-�41� DISPLAY X(45)

DEPT-HEAD-ID-�41� DISPLAY 9(4)

Record occurrences: A record occurrence consists of the actual data stored in the
database. Three occurrences of the DEPARTMENT record type might appear as
follows:

DEPT-ID-�41� DEPT-NAME-�41� DEPT-HEAD-ID-�41�

1��� Personnel ��13

2��� Accounting and Payroll ��11

31�� Brainstorming ��15

Any number of record types can be assigned to a database area, but the number of
record occurrences within an area is determined by the total amount of physical
storage space available for the area.

Symbolic keys: Symbolic keys, which include CALC, sort, and index keys, are
user-supplied record-element values that determine where a record is stored. You can
use these keys to identify a particular record to help reduce I/O, thereby increasing
overall efficiency.

Symbolic keys can consist of multiple record elements (up to 256 bytes), as shown in
this example:

�1 RECORD-A.

 �3 SYMBOLIC-KEY-PART-1 PIC X(3).

 �3 SYMBOLIC-KEY-PART-2 PIC X(2).

 �3 SYMBOLIC-KEY-PART-3 PIC X(4).

 �3 NOT-A-KEY-1 PIC X(3�).

 �3 NOT-A-KEY-2 PIC X(2�).

 �3 NOT-A-KEY-3 PIC 9(5).

These elements need not be adjacent to one another in the record definition, as in this
example:

�1 RECORD-B.

 �3 SYMBOLIC-KEY-PART-1 PIC 9(2).

 �3 NOT-A-KEY-1 PIC X(8).

 �3 SYMBOLIC-KEY-PART-2 PIC 9(5).

 �3 NOT-A-KEY-2 PIC XXX.

 �3 SYMBOLIC-KEY-PART-3 PIC X(15).

 �3 NOT-A-KEY-3 PIC 9(5)V99.

Note: The entire CALC key must be defined in the record in order to access that
record as CALC.

Chapter 2. Basic DML Programming Concepts 2-7

2.2 Database components

 2.2.2 Subschemas

A subschema is a program's view of the database; it typically defines a subset of the
records and record elements contained in the schema. The following rules apply to
subschema usage:

■ Any number of subschemas can be associated with a single schema.

■ Any number of programs can share a subschema.

■ A program can have only one subschema.

Comparing subschema and schema: The table below compares the features
and characteristics of subschemas and schemas.

Effect of subschema definitions: The subschema defines restrictions placed on
the DML statements that can be used to access database records. For example, you
may be able to retrieve a record but not modify or erase it. Additionally, the DBA can
specify in the subschema that each program must be registered in the dictionary before
compilation under one of the precompilers.

Subschema access restrictions: DBA-designated access restrictions, which are
defined in the subschema, control program access to the database. Restrictions can be
placed on:

■ Areas — Access restrictions placed on areas prevent programs from readying
them in specified usage modes (see 2.4.4, “Area usage modes” on page 2-18 later
in this chapter).

For example, a subschema with an update access restriction on the
ORG-DEMO-REGION area prevents programs from readying that area in any
update mode and enforces read-only access to the area.

Subschema Schema

One or more per database One per database

A program's view of the database (subset of
records and record elements)

Complete database description (all
records and record elements)

Source description resides in the DDLDML
area of the dictionary

Source description resides in the
DDLDML area of the dictionary

Source description used at DML program
compile time

Source description not used at DML
program compile time

A load module resides in the DDLDCLOD
area of the dictionary or in a load
(core-image) library

No load module

Load module used at runtime Not used at runtime

2-8 CA-IDMS Navigational DML Programming

2.2 Database components

■ Records — Access restrictions placed on records prohibit programs from
performing one or more of the following DML functions against the specified
record types:

 STORE
 ERASE
 CONNECT
 FIND
 MODIFY
 GET
 DISCONNECT
 KEEP

For example, ERASE IS NOT ALLOWED for the OFFICE record type prohibits
your program from erasing OFFICE record occurrences.

Note: The DML OBTAIN statement is a combination of FIND and GET; access
restrictions on either FIND or GET will affect the use of OBTAIN.

■ Sets — Access restrictions placed on sets prohibit programs from performing one
or more of the following DML functions against record occurrences in the
specified set:

 CONNECT
 FIND
 DISCONNECT
 KEEP

For example, DISCONNECT IS NOT ALLOWED for the JOB-EMPOSITION set
prohibits your program from disconnecting EMPOSITION occurrences from the
JOB-EMPOSITION set.

If your program issues a DML statement that is prohibited in the subschema, the
DBMS returns a status of nn10 to the ERROR-STATUS field in the IDMS
communications block. The IDMSRPTS utility (discussed below) produces listings of
any access restrictions that apply to a given subschema.

Program registration: The DBA can specify in the subschema that each program
must be defined in the dictionary before compilation under one of the precompilers. If
program registration is in effect, you should ensure that the name listed in the
PROGRAM-ID statement matches the program name assigned through IDD.

IDMSRPTS utility: The IDMSRPTS utility produces listings that describe the
database definition (that is, the schema and all associated subschemas). These reports
are useful in all phases of program development; they provide the following
information:

■ Names of all records, sets, and areas included in the subschema

■ Names, attributes, and positions of all elements included in each subschema record

■ Storage mode of each record

 ■ Access restrictions

Chapter 2. Basic DML Programming Concepts 2-9

2.2 Database components

 ■ Set characteristics

IDMSRPTS parameters: The table below lists the parameters of the IDMSRPTS
utility that are most useful to applications programmers.

�� For more information on the IDMSRPTS utility, refer to CA-IDMS Utilities.

IDMSRPTS utility sample OS/390 JCL: A sample IDMSRPTS JCL stream
follows (the SUBREC report lists record information for the specified subschema):

// EXEC PGM=IDMSRPTS,REGION=2�48K

//STEPLIB DD DSN=idms.cailib,DISP=SHR

//SYSCTL DD DSN=idms.sysctl,DISP=SHR

//SYSJRNL DD DUMMY

//SYSOUT DD SYSOUT=A

//SYSLST DD SYSOUT=A

//SYSIDMS DD �

DBNAME=dictname

//SYSIPT DD �

SCHEMA=schema-name VERSION=nnnn

SUBSCHEMA=subschema-name

SUBREC

/�

Parameter Requested information

RECDES All records and record elements defined in the schema

SETDES Set name, owner, membership options, and linkage options for all
sets defined in the schema

SUBREC All records and record elements defined in the subschema; access
restrictions placed on records

SUBSET Set name, owner, membership options, and linkage options for all
sets defined in the subschema; access restrictions placed on sets

SUBAREA Usage modes applicable to subschema areas, default usage modes;
access restrictions placed on areas

2-10 CA-IDMS Navigational DML Programming

2.3 Db-keys and page information

2.3 Db-keys and page information

Database keys: Each database record occurrence is identified by a database key
(db-key). The db-key is a 4-byte identifier that consists of:

■ A page number, which identifies the page on which the record occurrence is
stored

■ A line number, which identifies the record's location on the page

The DBMS assigns a db-key to a record occurrence when the occurrence is stored in
the database; that db-key remains unchanged until the occurrence is erased or the
database is unloaded and subsequently reloaded.

Page information: Page numbers are used to identify pages within a database;
however, a page number is not necessarily unique across all areas accessible to a
CA-IDMS runtime system. If a page number is not unique, you can qualify it with
additional information so that it uniquely identifies a page. The additional qualifying
information is a 4-byte identifier that consists of:

■ A 2-byte page group

■ A 2-byte db-key radix

A page group is a number assigned to an area by the DBA for the purpose of making
the area's page range unique to the CA-IDMS runtime system. The db-key radix
indicates the number of bits within the 4-byte db-key that contain a record's line
number. The db-key radix is calculated by CA-IDMS based on the maximum number
of record occurrences that can be stored on a page of the area.

�� For more information on page groups and maximum records per page, refer to
CA-IDMS Database Administration.

Qualifying db-keys: Normally all areas accessed by a run unit have the same page
information and so the db-key of a record occurrence uniquely identifies it from all
other record occurrences accessible to the run unit. A run unit, however, can access
areas with different page groups or db-key radixes if it accesses a database defined to
allow mixed page group binds. When this happens, a db-key must be qualified either
by record type or page information so that it uniquely identifies a record occurrence.

In order to permit qualification, either record type or page information can be specified
when retrieving a record occurrence through its db-key. Whenever a record
occurrence is retrieved, its record type, db-key and associated page information are
returned to the application program. You can save these for later use in retrieval
commands. It is also possible to determine the page information associated with a
specific record type by issuing an ACCEPT Page-Info command.

�� For more information on retrieving a record by db-key, refer to 4.2.7, “Accessing a
record by its db-key” on page 4-15.

Chapter 2. Basic DML Programming Concepts 2-11

2.3 Db-keys and page information

�� For more information on saving qualifying information, refer to 4.3.2, “Saving page
information” on page 4-28.

�� For more information on mixed page group binds and accessing areas with different
page groups or maximum records per page, refer to CA-IDMS Database
Administration.

Page information and record types: For the duration of a run unit, the page
information for all occurrences of a given record type is the same. Similarly, the page
information for all record types within an area or all record types associated with a set
is the same.

Using page information to interpret db-keys: The format of a db-key value
depends on its db-key radix. The db-key radix specifies the number of bits within a
db-key that are reserved for a record occurrence's line number. Since the db-key radix
is part of the page information associated with a db-key, you can use page information
to interpret a 4-byte db-key value. You can use this when displaying db-keys for error
reporting purposes or when establishing a target page for storing records whose
location mode is direct.

Given a db-key, you can separate its associated page number by dividing the db-key
by 2 raised to the power of the db-key radix. For example, if the db-key is 4, you
divide the db-key value by 2**4. The resulting value is the page number of the
db-key. To separate the line number, you multiply the page number by 2 raised to the
power of the db-key radix and subtract this value from the db-key value. The result is
the line number of the db-key. You can use the following two formulas to calculate
the page and line numbers from a db-key value:

■ Page-number = db-key value / (2**db-key radix)

■ Line-number = db-key value - (page number*(2**db-key radix))

2-12 CA-IDMS Navigational DML Programming

2.4 Run units, locks, and recovery units

2.4 Run units, locks, and recovery units

A run unit is that portion of CA-IDMS processing during which communications are
established with the database. Navigational programs that maintain efficient run units
help to maximize the resources of a runtime system. Well-managed record locks, area
locks, and recovery units are major considerations in maintaining efficient run units.

Record locks and area in-use locks ensure data integrity by preventing concurrent
update of database records. Additionally, your program can specify area usage modes
to ensure a particular level of security in database areas to be accessed. You should
be familiar with these locks and usage modes, their uses, and their effect on the
runtime system, particularly when running under the CA-IDMS central version.

 2.4.1 Run units

A run unit begins with the BIND RUN-UNIT statement and (if successful) ends with
the FINISH statement. The BIND RUN-UNIT and FINISH statements are analogous
to the processing time between OPEN and CLOSE file statements. A program can
consist of any number of run units that are executed serially, but typically contains
only one.

Note: If your program consists of more than one run unit, you must reinitialize the
ERROR-STATUS field in the IDMS communications block to the value 1400
before reissuing the BIND RUN-UNIT and READY statements.

 2.4.2 Record locks

In general, record locks prevent concurrent retrieval and update by separate run units
operating under the same central version. This statement does not apply when:

■ Run units operate in local mode — concurrent update of record occurrences is
prevented by area locks

■ RETRIEVAL NOLOCK has been specified in system generation — the system
does not maintain locks for retrieval run units

Exclusive lock: An exclusive lock indicates that no other run unit can access the
designated record occurrence in any way. Only one run unit at a time can place an
exclusive lock on a record occurrence. A run unit can place an exclusive lock on a
record occurrence only if that occurrence has not been assigned any locks (shared or
exclusive) by another run unit. A run unit that tries to place an exclusive lock on an
occurrence that already has been locked must wait until all other locks on the
occurrence are released.

Shared lock: A shared lock indicates that other run units can retrieve the designated
record occurrence but cannot update it. Any number of run units can place a shared
lock on a record occurrence. A run unit that tries to place a shared lock on an
occurrence that has already received an exclusive lock must wait until the exclusive
lock is released.

Chapter 2. Basic DML Programming Concepts 2-13

2.4 Run units, locks, and recovery units

Notify lock: A notify lock is used in the online environment to monitor database
access to a specified record occurrence.

�� For more information on notify locks, see 9.4, “Maintaining data integrity in the
online environment” on page 9-11.

Implicit and explicit locks: Record locks can be set implicitly by the central
version or you can set them explicitly by coding the DML KEEP function in the
program.

Implicit locks: Implicit locks are maintained automatically by the central version for
every run unit accessing the database in shared update usage mode. The DBA can
also specify that implicit locks be maintained for run units accessing the database in
shared retrieval or protected update usage mode.

�� For further details about usage modes, see 2.4.4, “Area usage modes” on page 2-18
later in this chapter.

Types of implicit lock: Implicit locks can be shared or exclusive, as follows:

■ The central version places implicit shared locks on the record occurrences that
are current of run unit, record, set, and area. These locks remain in effect until
the record occurrences are no longer current, thereby preventing concurrently
executing run units from updating the same record.

■ The central version places an implicit exclusive lock on every record occurrence
that is modified by a DML statement (STORE, MODIFY, or ERASE).
Additionally, the central version sets implicit exclusive locks for:

– The next and prior record occurrences for all sets in which the modified
record participates

– Each database page on which the amount of space has been altered as the
result of a STORE, MODIFY, or ERASE statement

The central version maintains implicit exclusive locks for the duration of the
recovery unit to prevent concurrently executing run units that are maintaining
locks from accessing modified records that might have to be rolled back because
of an error later in the program.

�� For more information about recovery units and implicit exclusive locks, see
2.4.5, “Recovery units” on page 2-20 later in this chapter.

Explicit locks: Explicit locks, which you set in your program, maintain record locks
that would otherwise be released after a change in currency. The KEEP statement and
the KEEP clause of the FIND/OBTAIN statement are used to set explicit shared and
exclusive locks.

�� For more information about setting explicit locks, see Chapter 4, “Navigational
DML Programming Techniques” on page 4-1.

2-14 CA-IDMS Navigational DML Programming

2.4 Run units, locks, and recovery units

Managing record locks: Setting a large number of implicit or exclusive record
locks during a recovery unit will hinder system performance. You can maintain
efficient recovery units by regularly issuing the DML COMMIT statement (described
later in this chapter).

Additionally, certain conditions that result from the use of record locks can cause
abnormal termination of run units executing under the central version:

■ Exceeded wait time — A run unit waiting to set a record lock on a record that is
currently held by another run unit abends if it exceeds the internal wait interval
specified at central version generation. When this happens, the central version
rolls back the recovery unit and returns a value of nn69 to the ERROR-STATUS
field in the IDMS communications block.

■ Deadlock — If two or more run units would cause a deadlock were they all
permitted to wait, one run unit is aborted to avoid the deadlock.

When a run unit is terminated because of a potential deadlock, the central version
rolls back the recovery unit, returns a value of nn29 to the ERROR-STATUS field
in the IDMS communications block, and releases all locks held by the aborted run
unit.

Deadlock example: The following sequence of figures shows a typical deadlock
situation:

1. Run unit A and run unit B have placed shared locks (implicitly or explicitly) on
the Bower EMPLOYEE record occurrence and the Bank EMPLOYEE record
occurrence respectively; neither of these locks can be released until processing is
complete.

┌────────────────────────┬────────────────────────┐

│ │ │

│ Locks held │ Wait state │

├────────────────────────┼────────────────────────┤

│ │

│ │ │

│ A - Bower │

│ B - Bank │ │

│ │

│ │ │

│ │

│ │ │

│ │

├────────────────────────┴────────────────────────┤

│ │

│ ┌──────────────────┐ ┌──────────────────┐ │

│ │ Run unit │ │ Run unit │ │

│ │ A │ │ B │ │

│ │ │ │ │ │

│ │ ┌─────────────┐ │ │ ┌────────────┐ │ │

│ │ │ Executing │ │ │ │ Executing │ │ │

│ │ └─────────────┘ │ │ └────────────┘ │ │

│ └──────────────────┘ └──────────────────┘ │

│ │

└───┘

2. Run unit A tries to place an exclusive lock on the Bank record (locked by run unit
B); it is placed in a wait state.

Chapter 2. Basic DML Programming Concepts 2-15

2.4 Run units, locks, and recovery units

┌────────────────────────┬────────────────────────┐

│ │ │

│ Locks held │ Wait state │

├────────────────────────┼────────────────────────┤

│ │

│ │ │

│ A - Bower A - Bank │

│ B - Bank │ │

│ │

│ │ │

│ │

│ │ │

│ │

├────────────────────────┴────────────────────────┤

│ │

│ ┌──────────────────┐ ┌──────────────────┐ │

│ │ Run unit │ │ Run unit │ │

│ │ A │ │ B │ │

│ │ │ │ │ │

│ │ ┌─────────────┐ │ │ ┌────────────┐ │ │

│ │ │ Waiting │ │ │ │ Executing │ │ │

│ │ └─────────────┘ │ │ └────────────┘ │ │

│ └──────────────────┘ └──────────────────┘ │

│ │

└───┘

3. Run unit B then attempts to place an exclusive lock on the Bower record (locked
by run unit A) and deadlock results.

┌────────────────────────┬────────────────────────┐

│ │ │

│ Locks held │ Wait state │

├────────────────────────┼────────────────────────┤

│ │

│ │ │

│ A - Bower A - Bank │

│ B - Bank │ B - Bower │

│ │

│ │ │

│ │

│ │ │

│ │

├────────────────────────┴────────────────────────┤

│ │

│ │

│ ┌──────────────────┐ ┌──────────────────┐ │

│ │ Run unit │ │ Run unit │ │

│ │ A │ │ B │ │

│ │ │ │ │ │

│ │ ┌─────────────┐ │ │ ┌─────────────┐ │ │

│ │ │ Waiting │ │ │ │ Waiting │ │ │

│ │ └─────────────┘ │ │ └─────────────┘ │ │

│ │ │ │ │ │

│ └──────────────────┘ └──────────────────┘ │

└───┘

4. CA-IDMS automatically resolves the deadlock through a process of victim
selection. In general, the younger of the two run units will be abended and rolled
back unless the issuing task has a higher priority than that of the other issuing task
involved in the deadlock.

�� For more information about deadlock detection and processing, refer to CA-IDMS
Database Administration.

2-16 CA-IDMS Navigational DML Programming

2.4 Run units, locks, and recovery units

 2.4.3 Area locks

Area in-use locks are examined whenever an area is opened in an update usage mode.
These locks prevent run units originating in multiple regions or partitions (multiple
local mode run units, multiple central versions, or a combination of both) from
concurrently updating an area. Area in-use locks also prevent any access to an area
that requires recovery of incomplete run units due to a local mode or central version
abend.

Local mode: In local mode the area lock is checked as each area is readied in an
update usage mode. If the lock is already set, a value of 0966 is returned to the
ERROR-STATUS field in the IDMS communications block and access to the area is
not allowed. If the lock is not set, the local mode run unit causes the lock to be set.
If the run unit terminates abnormally (that is, without issuing a FINISH statement), the
lock remains set. Further update access by subsequent local mode or central version
run units is prevented until the area is recovered manually (using the FIX ARCHIVE
and ROLLBACK utilities).

Central version: Each area defined for a central version is associated with an
access mode. Access modes determine the availability of each area to run units
running under the central version, to other central versions, and to programs running in
local mode. The access modes are described below:

■ UPDATE (ONLINE) indicates that areas are available for update to run units
running under the central version. Run units running in local mode or other
central versions cannot ready the area in any update usage mode.

■ RETRIEVAL indicates that areas are available for retrieval to run units running
under the central version. Run units running in local mode or under other central
versions can ready the area in any usage mode.

■ OFFLINE indicates that areas are not available for update or retrieval to run units
running under the central version. Run units running in local mode or under other
central versions can ready the area in any usage mode.

Note: The UPDATE, RETRIEVAL, and OFFLINE central version access modes are
operator concerns; they are presented here as background information only.
You do not have to address these modes in your program.

System startup: When the central version is started up, it checks the locks in all
areas available for update. If any lock is found to be set, a warning message is
displayed at the user's console and further access to that area is disallowed. The
central version proceeds without the use of that area; any run unit attempting to ready
that area receives a value of 0966 returned to the ERROR-STATUS field in the IDMS
communications block. If the lock is removed after startup, the user must change the
area status from OFFLINE to ONLINE to make the area available to the central
version.

Note: Area locks are not set for individual run units running under the central
version; run-unit conflicts are avoided by internal means.

Chapter 2. Basic DML Programming Concepts 2-17

2.4 Run units, locks, and recovery units

2.4.4 Area usage modes

Run units can ready an individual area in a particular usage mode in order to define
the scope of operations that can be performed against that area. The area usage
modes, which are specified by the DML READY statement, are retrieval and update.

Retrieval: Retrieval specifies that the issuing run unit can perform only retrieval
functions against records in that area. It can issue only the FIND, OBTAIN, and GET
statements; it cannot issue the STORE, MODIFY, ERASE, CONNECT, or
DISCONNECT statements.

Update: Update specifies that the issuing run unit can modify as well as retrieve
records in that area. That is, it can issue all available DML statements.

Ready options: You can issue a ready option in conjunction with a usage mode to
restrict retrieval or update of records by other run units executing concurrently under
the same central version in the specified area. The ready options are:

■ Protected indicates that other run units cannot ready the specified area in update
usage mode and must wait until your run unit terminates. You cannot ready an
area with the protected option if a concurrently executing run unit has readied the
area in update mode.

■ Exclusive indicates that other run units cannot ready the specified area in any
usage mode and must wait until your run unit terminates. You cannot ready an
area with the exclusive option if a concurrently executing run unit has readied the
area in any usage mode.

■ Shared indicates that more than one run unit running under the same central
version can concurrently access the same area.

Note: You cannot explicitly code SHARED in the READY statement (that is,
READY UPDATE is functionally the same as READY SHARED
UPDATE).

Combinations of usage mode and ready options: The table below
summarizes the effect that various combinations of usage modes and ready options
have on concurrently executing run units.

The usage mode in which one run unit readies an area restricts the usage mode in
which other run units executing under the same central version can ready that area.
The usage modes in which run unit B can ready an area are shown, depending on the
usage mode in which run unit A has readied the area. Y (yes) signifies that the
second run unit can ready the area in the specified usage mode; N (no) signifies that it
cannot.

2-18 CA-IDMS Navigational DML Programming

2.4 Run units, locks, and recovery units

Run unit B
 ┌───┐

 │ │

 ┌──────────┬───────────┬───────────┬───────────┬───────────┬───────────┬───────────┐

│ │ SHARED │ SHARED │ PROTECTED │ PROTECTED │ EXCLUSIVE │ EXCLUSIVE │

│ │ UPDATE │ RETRIEVAL │ UPDATE │ RETRIEVAL │ UPDATE │ RETRIEVAL │

 ┌──├──────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤

│ │SHARED │ Y │ Y │ N │ N │ N │ N │

│ │UPDATE │ │ │ │ │ │ │

 │ ├──────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤

│ │SHARED │ Y │ Y │ Y │ Y │ N │ N │

│ │RETRIEVAL │ │ │ │ │ │ │

 │ ├──────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤

│ │PROTECTED │ N │ Y │ N │ N │ N │ N │

Run │ │UPDATE │ │ │ │ │ │ │

unit │ ├──────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤

A │ │PROTECTED │ N │ Y │ N │ Y │ N │ N │

│ │RETRIEVAL │ │ │ │ │ │ │

 │ ├──────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤

│ │EXCLUSIVE │ N │ N │ N │ N │ N │ N │

│ │UPDATE │ │ │ │ │ │ │

 │ ├──────────┼───────────┼───────────┼───────────┼───────────┼───────────┼───────────┤

│ │EXCLUSIVE │ N │ N │ N │ N │ N │ N │

│ │RETRIEVAL │ │ │ │ │ │ │

 └──└──────────┴───────────┴───────────┴───────────┴───────────┴───────────┴───────────┘

Wait state: When a run unit cannot ready an area because a protected or exclusive
restriction is already placed on that area by another run unit running under the same
central version, it is placed in a wait state until the first run unit is finished.

Automatic implicit locking: The central version automatically maintains implicit
record locks. These record locks are dependent on DBA specifications and on the area
usage mode specified. The following record locks can be maintained:

■ Shared update — The central version always maintains record locks for run units
executing in shared update usage mode.

■ Shared retrieval — The central version maintains record locks for run units
executing in shared retrieval mode only if specified by the DBA at system
generation. If they are not maintained, a run unit with shared retrieval usage
mode may yield unpredictable results if it accesses records being modified by a
concurrently executing run unit with a shared update or protected update usage
mode.

■ Protected update — The central version maintains record locks for run units
executing in protected update mode only if specified by the DBA at system
generation.

■ Protected retrieval, exclusive update, exclusive retrieval — The central version
does not maintain implicit record locks for run units executing in these modes
since the usage modes themselves prohibit concurrent update.

Default usage modes: Your DBA can assign default usage modes for subschema
areas. The specified default determines the usage mode in which an area will
automatically be readied for programs using that subschema. You do not have to code
READY statements in programs that use such a subschema; however, if you issue a
READY command for one area in the subschema, you must issue READY commands
for all database areas to be accessed.

You can use the SUBAREA parameter of the IDMSRPTS utility to determine if the
DBA has specified any default usage modes.

Chapter 2. Basic DML Programming Concepts 2-19

2.4 Run units, locks, and recovery units

 2.4.5 Recovery units

Every time your program modifies the database, a before and after image of the
affected record occurrence is written to the journal file. These images are used in the
event of program or system failure to recover (roll back) all changes made to the
database. The database is rolled back; that is, any updates are reversed, to the last
checkpoint written to the journal file.

Checkpoints: The following DML statements write checkpoints to the journal file:

 ■ BIND RUN-UNIT

 ■ FINISH

 ■ COMMIT

 ■ ROLLBACK

A recovery unit is that portion of a run unit that falls between two checkpoints.

Automatic recovery under central version: Recovery is effected automatically
for programs running under the central version. Under local mode you must manually
restore the database by running the FIX ARCHIVE and ROLLBACK utilities.

�� For more information on restoring the database under local mode, refer to
CA-IDMS Database Administration.

Use of COMMIT: If your application performs database updates, you should issue
the COMMIT statement at regular intervals to:

■ Release implicit locks held by the run unit

■ Prevent needless rollback of valid database updates

Rolling back the database: The figure below shows journaling, checkpoints, and
rollback. The BIND RUN-UNIT statement writes the initial checkpoint to the journal
file. Before and after images are maintained for every modified record occurrence. In
the event of an abend, the central version uses the before images to restore the
database back to the last checkpoint. In this figure, run unit and recovery unit are
synonymous.

2-20 CA-IDMS Navigational DML Programming

2.4 Run units, locks, and recovery units

Establishing checkpoints: The figure below shows the use of the COMMIT
statement to establish checkpoints. In the event of an abend, the central version
restores the database as far back as the last COMMIT checkpoint.

Chapter 2. Basic DML Programming Concepts 2-21

2.4 Run units, locks, and recovery units

Frequency of COMMIT statements: Since modified records contain implicit
exclusive locks, timely use of the COMMIT statement is an important programming
consideration.

�� For detailed information on the implicit exclusive record locks maintained for each
modified record, refer to CA-IDMS Database Administration.

The frequency of issuing COMMITs is a site- and application-specific decision. Some
questions to ask when determining the frequency of COMMITs are:

■ Will a logical unit of work be completed? — You should maintain implicit
exclusive locks at least until a logical unit of work is complete. For example, if

2-22 CA-IDMS Navigational DML Programming

2.4 Run units, locks, and recovery units

you plan to DISCONNECT and subsequently CONNECT a record, you should not
issue the COMMIT until after the CONNECT.

■ What is the application's operating environment? — If there will be a high
volume of concurrent online users, you should try to keep recovery units short
either by issuing COMMITs more frequently or by maintaining short run units.

■ Is there a potential for growth? — You might want to insert comments in your
program that note logical places to issue COMMITs in anticipation of future
program expansion.

■ How many locks will be held for each modified record? — Additional implicit
exclusive record locks (for example, on the NEXT and PRIOR records) are held
when modifying symbolic keys, when erasing occurrences from the database,
when connecting or disconnecting records, or when modifying variable-length
records.

�� For detailed information on the implicit exclusive record locks maintained for
each modified record, refer to CA-IDMS Database Administration.

■ How many locks is too many? — This is application- and site-specific, although
you probably do not want to maintain implicit exclusive locks on more than
70-100 records at any one time.

Note: You can use the IDMS statistics block (explained in 2.5.5, “Collecting
database statistics” on page 2-30 later in this chapter) to obtain
lock-related information at runtime.

Chapter 2. Basic DML Programming Concepts 2-23

2.5 Basic programming considerations

2.5 Basic programming considerations

There are some programming considerations common to all CA-IDMS navigational
DML programmers, including communications blocks, currency, and statistics
collection.

2.5.1 Establishing communications with CA-IDMS

To establish communications with CA-IDMS, you must code certain DML statements
that perform housekeeping functions. These statements, which include
compiler-directive and control statements, perform the following functions:

■ Identify the operating mode

■ Identify the subschema

■ Copy record descriptions

■ Define the run unit

Identifying the operating mode: Program operating modes (also called protocols)
specify the manner in which the precompiler will generate CALL statements for
CA-IDMS services and, optionally, whether the precompiler will generate DML
sequence numbers in the output listing. The operating mode is specified by using the
MODE parameter.

The standard CA-IDMS operating modes are:

 ■ BATCH

 ■ IDMS-DC

 ■ DC-BATCH

Additionally, the precompiler can generate CALL statements that support
teleprocessing monitors other than DC, such as CICS.

�� For a complete list of the teleprocessing monitors supported, refer to the
language-specific CA-IDMS DML reference manual.

The DEBUG option: The precompiler option DEBUG specifies that, at runtime, a
unique sequence number is placed in the DML-SEQUENCE field of the IDMS
communications block after each DML call. You can reference these sequence
numbers in the precompiler output listing to assist in program debugging.

The DEBUG option is a very useful debugging tool for test and production programs.

Identifying the subschema: If your program accesses the database, you must
specify a subschema name and schema name.

2-24 CA-IDMS Navigational DML Programming

2.5 Basic programming considerations

�� For more information on subschema identification, refer to the discussion of
compiler-directive statements in the language-specific CA-IDMS DML reference
manual.

Copying record descriptions: You can use the COPY IDMS (INCLUDE IDMS
in PL/I) compiler-directive statement to copy IDMS or non-IDMS record-description
source code from the dictionary into your program. IDMS-related record description
source code includes communications blocks, subschema records and names, map
request blocks (MRBs), and map records. Optionally, the precompiler can
automatically copy all IDMS-related record-description source code into program
variable storage.

If your program accesses a large subschema but never references many of the records,
you should copy subschema records manually in order to maintain a small load
module. If your program accesses a small application-specific subschema, you should
let the precompiler automatically copy the subschema records.

The COPY IDMS statement is also used to copy IDD-defined files (batch only), record
descriptions, and executable module source.

COBOL programmers: When coding a COBOL OPEN command that names
multiple files, you must first name all files defined to the dictionary before
naming any files not defined to the dictionary. Alternatively, you can code
each OPEN and CLOSE statement separately.

�� For more information about the COPY IDMS statement and source code
requirements, refer to the language-specific CA-IDMS DML reference manual.

Defining a run unit: Your program must establish a run unit to access the database.
While the run unit is active, your program can issue any number of DML statements
and language-specific source statements. Issue the following DML statements to
define a run unit:

1. Issue a BIND RUN-UNIT statement to establish addressability to the IDMS
communications block and name the subschema to be loaded for the run unit.
BIND RUN-UNIT can also name the system node under which the run unit will
execute and identify the database to be accessed.

The BIND RUN-UNIT statement must be the first functional database DML call
passed to the DBMS at execution time; it must logically precede all other database
DML statements.

If program registration is in effect (that is, all programs must be registered in
system generation before program execution), you must initialize the
PROGRAM-NAME field in the IDMS communications block either manually or
automatically before issuing the BIND RUN-UNIT statement:

■ Manually — Explicitly move the program name to the PROGRAM-NAME
field before the BIND RUN-UNIT statement is executed. In COBOL, for
example:

MOVE 'EMPDISP' TO PROGRAM-NAME.

Chapter 2. Basic DML Programming Concepts 2-25

2.5 Basic programming considerations

■ Automatically — COPY IDMS SUBSCHEMA-BINDS (discussed later in
this chapter) automatically moves the program name given in the
PROGRAM-ID compiler directive to the PROGRAM-NAME field.

If your program contains more than one run unit (that is, it issues the BIND
RUN-UNIT, READY, FINISH sequence more than once), you must reinitialize the
ERROR-STATUS field in the IDMS communications block to the value 1400.

2. Issue one BIND RECORD statement for each database record to be accessed.
Typically, BIND RECORD statements are issued immediately after the BIND
RUN-UNIT statement.

The BIND RECORD statement establishes addressability for a subschema record
in program variable storage. You must BIND all records that will be referenced
by your application.

3. Issue the READY statement to prepare all database areas for access or, optionally,
issue one READY statement for each database area to be accessed. Readying
areas individually gives you the following advantages:

■ You need ready only those areas to be accessed either explicitly or implicitly.

■ You can specify a different usage mode for each area.

�� For more information, see 2.4.4, “Area usage modes” on page 2-18 earlier
in this chapter.

■ You can perform the IDMS-STATUS routine after each area is readied to
ensure that the statement was executed successfully.

�� For more information about performing the IDMS-STATUS routine, see
2.6, “IDMS communications block” on page 2-32 later in this chapter.

Typically, READY statements are issued immediately after the BIND RECORD
statements.

Note: The area usage mode specified in the READY statement is an important
factor in program and system performance. For example, a program
running in exclusive update forces other programs to wait for it to
relinquish control of the areas it holds; also, the program will be forced to
wait for all other programs to finish using an area before being given
exclusive access.

�� For more information, see 2.4.4, “Area usage modes” on page 2-18
earlier in this chapter.

Although the READY statement can appear anywhere in your program, it is best
to issue all READYs before issuing any other DML statements.

4. When database access is complete, issue a FINISH statement. FINISH
relinquishes control of all associated database areas, writes statistical information
for the database operations performed during run unit execution to the journal file,
and defines and logs the end checkpoint for the recovery unit.

2-26 CA-IDMS Navigational DML Programming

2.5 Basic programming considerations

Checking the status of statement execution: You should perform the
IDMS-STATUS routine after each BIND RUN-UNIT, BIND RECORD, and FINISH
statement to ensure that it was executed successfully.

�� For more information about performing the IDMS-STATUS routine, see 2.6,
“IDMS communications block” on page 2-32 later in this chapter.

COPY IDMS SUBSCHEMA-BINDS: You can issue the COPY IDMS
SUBSCHEMA-BINDS statement instead of explicitly issuing the BIND RUN-UNIT
and BIND RECORD statements. This statement automatically initializes the
PROGRAM-NAME field in the IDMS communications block and copies a standard
BIND RUN-UNIT statement and the appropriate BIND RECORD statements for each
subschema record in program variable storage.

When binding several records to the same variable-storage location, COPY IDMS
SUBSCHEMA-BINDS issues binds only for those records that are bound to their
original location. In this case, code individual BIND RECORD statements for those
records being bound to a separate location.

COBOL programmers: If AUTOSTATUS is in effect, a PERFORM
IDMS-STATUS statement is automatically included after each BIND
statement.

Since COPY IDMS SUBSCHEMA-BINDS does not check the status returned after
each BIND, it should be used only for COBOL programs with AUTOSTATUS turned
on.

Keeping run units short: It is a good programming practice to keep your run
units as short as possible. This can be accomplished in the following ways:

■ For all run units, issue the FINISH statement as soon as all database processing
is complete.

■ In a batch program, ensure that all input and output files have been opened
successfully before issuing the BIND RUN-UNIT and READY statements.

■ In an online program, perform all map-related processing (including error
checking) before issuing the BIND RUN-UNIT and READY statements.

The program excerpt below shows a typical sequence of BIND RUN-UNIT, BIND
RECORD, READY, and FINISH statements.

Chapter 2. Basic DML Programming Concepts 2-27

2.5 Basic programming considerations

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 SWITCHES.

 �5 EOF-SW PIC X VALUE 'N'.

 88 END-OF-FILE VALUE 'Y'.

 PROCEDURE DIVISION.

OPEN INPUT DEPT-FILE-IN.

OPEN OUTPUT DEPT-FILE-OUT.

OPEN OUTPUT ERR-FILE-OUT.

READ DEPT-FILE-IN AT END MOVE 'Y' TO EOF-SW.

 IF END-OF-FILE

 PERFORM EMPTY-INPUT-PROCESSING

 ELSE

 NEXT SENTENCE.

�

MOVE 'DEPTRPT' TO PROGRAM-NAME.

 BIND RUN-UNIT.

 PERFORM IDMS-STATUS.

 BIND EMPLOYEE.

 PERFORM IDMS-STATUS.

 BIND DEPARTMENT.

 PERFORM IDMS-STATUS.

 BIND JOB.

 PERFORM IDMS-STATUS.

 BIND EMPOSITION.

 PERFORM IDMS-STATUS.

 BIND OFFICE.

 PERFORM IDMS-STATUS.

 READY.

 PERFORM IDMS-STATUS.

 .

 .

 .

 DML statements

 .

 .

 .

 FINISH.

 PERFORM IDMS-STATUS.

 GOBACK.

�

 IDMS-ABORT.

 EXIT.

COPY IDMS IDMS-STATUS.

Binding maps and map records: Online programs that use mapping mode
terminal-management statements must issue the following BIND statements to inform
DC of the location of the map request block (MRB) and to initialize MRB fields:

■ BIND MAP establishes addressability between DC and an MRB.

■ BIND MAP RECORD establishes addressability for a map record in program
variable storage.

The BIND MAP and BIND MAP RECORD statements are explained in detail in 7.2.1,
“Housekeeping” on page 7-5.

2-28 CA-IDMS Navigational DML Programming

2.5 Basic programming considerations

2.5.2 Checking the status of statement execution

Communications blocks furnish status information about requested database and data
communications services to the application program. The communications block that
your program will use depends on the operating mode:

■ The IDMS communications block is used when the operating mode is BATCH.

■ The IDMS-DC communications block is used when the operating mode is either
IDMS-DC or DC-BATCH.

�� For more information about the IDMS communications block, see 6.7, “Using
the IDMS communications block” on page 6-11.

Checking status: The communications blocks are the interface between your
program and CA-IDMS software components. Check the ERROR-STATUS field in
the appropriate communications block after every DML statement.

Handling a status: If an unexpected value is returned to the ERROR-STATUS
field, you should terminate run unit processing with a ROLLBACK statement rather
than a FINISH. This will prevent incomplete updates from being applied to the
database.

Error-checking with IDMS-STATUS: The dictionary provides an error-checking
routine called IDMS-STATUS that can be copied into your program. This routine
checks for a nonzero value in the ERROR-STATUS field and abends your program if
such a value is found.

Before performing this routine, you should check the ERROR-STATUS field for zeros
and for any acceptable nonzero values.

�� For more information on the IDMS-STATUS routine, refer to:

■ 2.6, “IDMS communications block” on page 2-32 later in this chapter

■ 6.7, “Using the IDMS communications block” on page 6-11

2.5.3 Specifying a dictnode or dictname for a run unit

You can specify a dictionary node and a dictionary name in a BIND RUN-UNIT
statement to specify the dictionary load area containing the subschema. The dictionary
node and name specifications function similarly to the database node and database
name specifications. All settings remain in effect for the extent of the run unit.

Defaults: You can specify defaults using DICTNAME and DICTNODE SYSIDMS
parameters in the JCL.

Overrides: The dictionary and database settings may occasionally be overridden by
components of the runtime system.

The dictnode and dictname settings can be overridden as follows:

Chapter 2. Basic DML Programming Concepts 2-29

2.5 Basic programming considerations

■ Online programs — The setting can be overridden by:

– A user exit 23, if implemented at your site

■ Batch programs — The setting can be overridden by:

– The IDMSOPTI module

– The SYSCTL option (if ALWAYS is specified) of the system generation
SYSTEM statement

– A user exit 23, if applicable

Naming a dictionary: This COBOL statement names ASFDICT as the dictionary
to be accessed by the run unit:

BIND RUN-UNIT DICTNAME ASFDICT

 2.5.4 Using currency

The DBMS keeps track of the database location (db-key) of the most recently accessed
record occurrence for the run unit, record type, set, and area. Each of these records is
said to be current of run unit, record type, set, or area. Currency determines which
record occurrences are affected by DML statements.

Advantages of using currency: In navigational DML programming, currency
enables you to navigate the database with a minimum of effort.

CA-IDMS maintains currency for scratch and queue records referenced by programs
running under the central version. Getting the next queue record is similar to
obtaining the next database record.

�� For detailed information on using scratch and queue records, see Chapter 8,
“Storage, Scratch, and Queue Management” on page 8-1.

2.5.5 Collecting database statistics

You can collect database runtime statistics with the ACCEPT
DATABASE-STATISTICS statement. You can issue this statement any number of
times during a run unit, It returns a copy of the IDMS statistics block to a specified
location in program variable storage.

Although the ACCEPT DATABASE-STATISTICS statement can be issued any
number of times during a run unit, IDMS statistics are cumulative; resetting of IDMS
statistics block fields occurs only upon issuing a FINISH statement.

Uses of database statistics: Possible uses of database statistics include:

■ Determining whether a variable-length record was stored on one page or fragments
were placed in an overflow area

■ Obtaining the date and time at the start and end of a run unit

2-30 CA-IDMS Navigational DML Programming

2.5 Basic programming considerations

■ Keeping track of the number of update locks being held and issuing regular
commits based on that statistic

�� For more information on collecting database runtime statistics and individual IDMS
statistics block fields, refer to the language-specific CA-IDMS reference manual.

Performance Monitor users: You can use CA-IDMS Performance Monitor to collect
statistics about program execution. For more information, refer to CA-IDMS
Performance Monitor User Guide.

Chapter 2. Basic DML Programming Concepts 2-31

2.6 IDMS communications block

2.6 IDMS communications block

The IDMS communications block is the interface between your program and the
DBMS. Whenever your program issues a call to the DBMS for a database operation,
the DBMS returns information about the outcome of the requested service to the IDMS
communications block.

�� For more information on the IDMS communications block, see 2.5.2, “Checking the
status of statement execution” on page 2-29 earlier in this chapter.

Including the IDMS communications block: The data description (identified as
SUBSCHEMA-CTRL) of the IDMS communications block is copied from the
dictionary into program variable storage. When you submit the program to the
precompiler, the IDMS communications block is copied automatically unless you
specify that records are to be copied manually. In that case, your program explicitly
copies in the data description from the dictionary.

IDMS communications block fields: You should take note of the following
IDMS communications block fields:

■ PROGRAM-NAME contains the name of the current program. It is a good
programming practice to initialize this field at the beginning of every program.

■ ERROR-STATUS contains a value that indicates the status of the last DML call.

■ DBKEY contains the db-key of the last database record accessed by the program.

■ DML-SEQUENCE contains the sequence number of the last DML statement
executed by the program (only if the precompiler option DEBUG is in effect).

Your program should examine the ERROR-STATUS field in the IDMS
communications block after every navigational DML call (except IF).

IDMS-STATUS routine: COBOL and PL/I programs check the ERROR-STATUS
field by using the IDMS-STATUS routine, which can be copied in from the dictionary.
You should perform the IDMS-STATUS routine after first checking for zeros and for
any anticipated nonzero ERROR-STATUS values. Under an operating mode of
BATCH, this routine checks the ERROR-STATUS field for zeros. If the routine finds
a nonzero value, it displays selected values in the IDMS communications block and
terminates the program.

Because IDMS-STATUS is a COBOL SECTION, you should copy it into the program
using at least one of the following considerations in order to avoid runtime errors:

■ Place IDMS-STATUS at the end of the program.

■ Start a new SECTION after IDMS-STATUS.

■ Perform IDMS-STATUS THRU ISABEX.

All examples in this manual assume that IDMS-STATUS is at the end of the program.

2-32 CA-IDMS Navigational DML Programming

2.6 IDMS communications block

IDMS-STATUS in COBOL programs: COBOL programmers must include a
paragraph entitled IDMS-ABORT, which is referenced by IDMS-STATUS to allow for
further error processing.

Any operating mode that includes the AUTOSTATUS protocol automatically performs
the IDMS-STATUS routine after every DML statement (except the IF statement). You
can include one ON clause per DML statement to check for any anticipated nonzero
return code.

�� For more information on AUTOSTATUS, refer to CA-IDMS DML Reference -
COBOL.

Status checking in Assembler programs: The IDMS-STATUS routine is not
available in Assembler. An Assembler program must have its own explicitly coded
error-checking routines. For more information, see Appendix B, “Assembler
Considerations” on page B-1.

Example of IDMS-STATUS routine: The example below shows the
IDMS-STATUS routine used in a batch COBOL program to check the
ERROR-STATUS field in the IDMS communications block for a value of zero. If a
nonzero value is returned, the routine displays program status information, rolls back
any changes made to the database, and aborts the program.

��

 IDMS-STATUS SECTION.

��

IF DB-STATUS-OK GO TO ISABEX.

 PERFORM IDMS-ABORT.

 DISPLAY '��������������������������'

' ABORTING - ' PROGRAM-NAME

 ', ' ERROR-STATUS

 ', ' ERROR-RECORD

' ���� RECOVER IDMS ����'

 UPON CONSOLE.

DISPLAY 'PROGRAM NAME ----— ' PROGRAM-NAME.

DISPLAY 'ERROR STATUS ----— ' ERROR-STATUS.

DISPLAY 'ERROR RECORD ----— ' ERROR-RECORD.

DISPLAY 'ERROR SET -------— ' ERROR-SET.

DISPLAY 'ERROR AREA ------— ' ERROR-AREA.

DISPLAY 'LAST GOOD RECORD — ' RECORD-NAME.

DISPLAY 'LAST GOOD AREA --— ' AREA-NAME.

DISPLAY 'DML SEQUENCE ----— ' DML-SEQUENCE.

 ROLLBACK.

ISABEX. EXIT.

�� For more information on IDMS-STATUS, refer to the language-specific CA-IDMS
DML reference manual.

Chapter 2. Basic DML Programming Concepts 2-33

2-34 CA-IDMS Navigational DML Programming

Chapter 3. Introduction to Database Access with
Navigational DML

3.1 About this chapter . 3-3
3.2 Records . 3-4

3.2.1 Record name . 3-4
3.2.2 Record identification . 3-5
3.2.3 Storage mode . 3-5
3.2.4 Record length . 3-5
3.2.5 Location mode . 3-5
3.2.6 Duplicates option . 3-6
3.2.7 Area name . 3-7

3.3 Sets . 3-8
3.3.1 Set name . 3-9
3.3.2 Set linkage . 3-9
3.3.3 Set membership options . 3-10
3.3.4 Set order . 3-11
3.3.5 Chained and indexed sets . 3-13
3.3.6 Set relationship definition . 3-13

3.4 Data structure diagram . 3-20
3.5 Currency . 3-22

3.5.1 Use and updating of currency by DML verbs 3-23
3.5.2 Updating currencies during DML processing 3-25

3.6 Database access execution sequence . 3-27

Chapter 3. Introduction to Database Access with Navigational DML 3-1

3-2 CA-IDMS Navigational DML Programming

3.1 About this chapter

3.1 About this chapter

Navigational DML programming is associated with network database structures. You
use currency to navigate the database records and sets, one record at a time. Because
of this, navigational DML programming is also referred to as navigational
programming.

This chapter discusses the following topics related to navigational DML programming:

■ Records — A discussion of database records

■ Sets — A discussion of chained and indexed sets, including system-owned
indexes, set representation, set linkage, set membership options, and set order

■ Data structure diagram — A discussion of data structure diagrams, including an
illustration of the data structure diagram for the sample EMPLOYEE database

■ Currency — A discussion of currency, including the currencies maintained for
sets, records, areas, and run units

■ Database access execution sequence — A discussion of the steps taken by the
DBMS in accessing database records

■ IDMS communications block — A discussion of the IDMS communication block
and how your program interacts with it

Chapter 3. Introduction to Database Access with Navigational DML 3-3

3.2 Records

 3.2 Records

A record, which is a named collection of one or more elements, is assigned certain
characteristics by the DBA. (For more information about record types and record
occurrences, see 2.2, “Database components” on page 2-4.) These DBA-assigned
characteristics are important considerations in navigational DML programming,
particularly as a guide for determining database-access strategy.

Schematic representation: A record is represented in a data structure diagram by
a rectangular box, as shown in the figure below. The contents of this box define
record characteristics that you use to develop strategies for accessing and manipulating
the record. Each of these characteristics is described separately in the following pages.

┌──┐

│ Record name │

│ │

├────────────────┬─────────┬────────┬──────────┤

│ Record │ Storage │ Record │ Location │

│ identification │ mode │ length │ mode │

├────────────────┴─────────┴─────┬──┴──────────┤

│ Calc-key or │ Duplicates │

│ VIA set name │ options │

├────────────────────────────────┴─────────────┤

│ Area name │

│ │

└──┘

 3.2.1 Record name

The data name of a record in program variable storage is known as a record name.
The record name identifies the record description to be copied from the dictionary into
variable storage, either automatically or under program control during execution of the
precompiler.

Denoting record type: Record name is used in DML statements to reference a
record type. For example, you can add a new occurrence of the DEPARTMENT
record type to the database by using the STORE statement:

STORE DEPARTMENT.

This statement causes the contents of DEPARTMENT in program variable storage to
be stored in the database.

Assembler programmers: To access database records whose names contain more
than eight characters or characters not included in the Assembler character set,
see your DBA for language-specific synonyms. For more information on
synonyms, refer to either 5.2, “Copying record definitions and their synonyms”
on page 5-4 or the CA-IDMS DML Reference - Assembler.

3-4 CA-IDMS Navigational DML Programming

3.2 Records

 3.2.2 Record identification

The number that serves as an internal identifier for the record type is the record
identification. This number is supplied by the DBA and is used internally by the
DBMS. You do not use the record identification when coding DML statements.

 3.2.3 Storage mode

The DBMS can store occurrences of a record type with a fixed or variable length. It
can also store occurrences in compressed format. The following codes represent a
record's storage mode:

■ F stands for fixed length.

■ V stands for variable length.

■ C stands for compressed length.

For example, a storage mode of FC indicates that records of the type being described
are fixed length and compressed.

When modifying or storing variable-length records, you should keep in mind that
implicit exclusive record locks are held for each page on which a fragment of a
variable-length record is stored. This should be a factor in calculating the frequency
of COMMITs.

 3.2.4 Record length

You can use the record length field to determine the actual number of bytes in a
fixed-length record or the maximum or average number of bytes in a variable-length
record.

To minimize load module (phase) size, you may not want to copy large subschema
records that are not referenced by your program into variable storage.

 3.2.5 Location mode

How the DBMS stores a record in a database area is determined by its location mode.
The location modes are: CALC, VIA, or DIRECT.

CALC: A record with a location mode of CALC is stored on a page calculated by
the DBMS. The value of a designated record element or concatenation of record
elements called a CALC key determines the placement of the record. The word
CALC in the location mode entry and the name of the CALC key in the record
representation signify that the location mode of a record is CALC.

Use of the CALC location mode evenly distributes records over an area by means of a
randomization routine. This distribution enables direct retrieval of a record with a
single access.

Chapter 3. Introduction to Database Access with Navigational DML 3-5

3.2 Records

Suppose you need to store an occurrence of the EMPLOYEE record in the database
and EMP-ID is the CALC key. The DBMS uses the value of EMP-ID to determine
the database page on which to store the record.

You can retrieve a given EMPLOYEE occurrence by moving a value into the EMP-ID
field in variable storage before executing the DML FIND/OBTAIN statement. The
DBMS uses the value of EMP-ID to determine the database page number on which to
start its search for the specified EMPLOYEE record.

�� For more information on using CALC records, see 4.2.1, “Accessing CALC
records” on page 4-4.

VIA: A record with a location mode of VIA is stored relative to another database
record. A VIA record is stored as close as possible to the current record of set.

�� For more information on sets, see 3.3, “Sets” on page 3-8 later in this chapter.

The word VIA in the location mode entry and the name of the VIA set in the record
representation signify that the location mode of a record is VIA.

The VIA configuration groups records that are likely to be accessed at the same time,
either on the same page or on as few pages as possible, thereby minimizing the
number of disk accesses needed to retrieve the records.

DIRECT: A record with a location mode of DIRECT is placed on or near a
user-specified page. DIRECT location mode is designated in the record representation
with the word DIRECT in the location mode entry.

VSAM records: Native VSAM records have a location mode of VSAM; if the
records are to be accessed by means of a CALC key, they must have a location mode
of VSAM CALC.

�� For more information on how the DBMS stores records, refer to CA-IDMS
Database Administration.

 3.2.6 Duplicates option

You can store CALC records with identical keys based on the duplicates option. This
option specifies whether records with duplicate CALC keys are allowed and whether
they are to be positioned logically before (FIRST) or after (LAST) duplicate records
already existing in the area. The following codes represent the duplicates options:

DF option: DUPLICATES FIRST (DF) indicates that duplicates are positioned
before previously existing records with the same CALC key.

DL option: DUPLICATES LAST (DL) indicates that duplicates are positioned after
previously existing records with the same CALC key.

3-6 CA-IDMS Navigational DML Programming

3.2 Records

DN option: DUPLICATES NOT ALLOWED (DN) indicates that duplicates are not
allowed.

DU option: DUPLICATES UNORDERED (DU) indicates that duplicates are stored
in first-in first-out (FIFO) order (VSAM CALC only).

VSAM users only: Native VSAM records with a VSAM CALC location mode are
assigned a duplicates option of DN or DU. DU signifies that record
occurrences with duplicate CALC keys are allowed and are always retrieved in
the order in which they were stored.

 3.2.7 Area name

To determine the database area in which all occurrences of a record type are stored,
refer to the area name field. You can use this name to determine the areas to ready in
your program and when retrieving records by using an area sweep. For information on
performing an area sweep, see 4.2.4, “Performing an area sweep” on page 4-10.

Chapter 3. Introduction to Database Access with Navigational DML 3-7

3.3 Sets

 3.3 Sets

Sets either establish relationships between record types or place an index on a record
type. A set consists of an owner record type and a member record type.

A set occurrence consists of one occurrence of the owner record type, an index
(indexed sets only), and any number of member record occurrences. When an owner
occurrence exists with no member occurrences, the set is said to be empty.

Types of set: CA-IDMS supports the following types of sets:

■ Chained sets consist of an owner record type and one or more member record
types that are linked together by pointers.

■ Indexed sets consist of an owner record type, an index, and a member record
type. The owner of an indexed set can be one of the following types of records:

– A user-defined record can be any record type defined in the schema.

– A system-owner record is a system record that acts as an owner record for
each indexed set that does not have a user-defined owner (an index with a
system-owner record is called a system-owned index).

Walking a set: In chained and indexed sets, you can access the owner record and
sequentially access each member record until you come to the owner record again.
This process is referred to as walking a set. You do not have to access the owner
record for a system-owned index before accessing the member record occurrences.

Schematic representation: A set relationship is represented in a data structure
diagram by an arrow.

�� For the data structure diagram of the sample EMPLOYEE database, see 3.4, “Data
structure diagram” on page 3-20 later in this chapter.)

The tail of the arrow representing a set touches the owner record type; the point of the
arrow touches the member record type. Each set representation consists of the set
name, its linkage (that is, index, next, prior, or owner), membership options, and the
order in which member records are connected to the set.

3-8 CA-IDMS Navigational DML Programming

3.3 Sets

The figure below shows these set characteristics:

 3.3.1 Set name

A unique set type in the database is identified by its set name. A set name typically
consists of the owner record name followed by the member record name. This set
name is used whenever a set name is required in a DML statement.

 3.3.2 Set linkage

The types of pointers that are present in a set's records are identified by the set
linkage. Set linkage is represented in the set diagram by one or more of the following
codes:

 ■ I (indexed)

 ■ N (next)

 ■ P (prior)

 ■ O (owner)

I (indexed): I specifies that the set is indexed; the index facilitates all access to
member record occurrences. The owner of the index can be either a system record
(designated by a triangle) or a database record (index between two record types).

The DML FIND/OBTAIN NEXT/PRIOR WITHIN SET statement can be used to
access member record occurrences in any indexed set occurrence (for details on
accessing indexed sets, see 4.2.8, “Accessing indexed records” on page 4-18).

N (next): N specifies that each record in the set contains a pointer that identifies the
next record occurrence. These pointers allow access to member records in a set
occurrence in the next direction but not in the prior direction.

Next pointers are required for chained sets.

The DML FIND/OBTAIN NEXT WITHIN SET statement can be used to access
member record occurrences in any set occurrence (for details on accessing chained

Chapter 3. Introduction to Database Access with Navigational DML 3-9

3.3 Sets

sets, see 4.2.2, “Walking a set” on page 4-5). By starting with the owner record, you
can access the first member record through the next pointer in the owner record. Each
subsequent member record is accessed by using the next pointer in the current member
until the owner record is encountered.

P (prior): P specifies that each record in the set contains a pointer that identifies the
prior record occurrence. This type of set linkage permits retrieval of records in the set
in the prior direction, through use of the FIND/OBTAIN PRIOR WITHIN SET
statement. Additionally, prior pointers can help minimize logically deleted records,
thus saving I/O in database update applications.

Prior pointers are not used with indexed sets.

O (owner): O specifies that each record in the set contains a pointer that identifies
the owner record occurrence.

Owner linkage permits direct access to the owner record of a set from a member
record through use of the FIND/OBTAIN OWNER statement. If an owner pointer is
not present in each member record, the DBMS must access all records in the set
iteratively until the owner of the set is encountered. Use of owner pointers improves
performance, especially when the set contains a large number of member occurrences.

Valid linkage-option combinations: Valid linkage-option combinations are: I,
IO, N, NP, NO, and NPO. Note that I and N are mutually exclusive: I indicates an
indexed set; N indicates a chained set.

3.3.3 Set membership options

The manner in which a member record is connected to or disconnected from a set
occurrence is indicated by its set membership options. This specification affects the
use of the DML STORE, CONNECT, DISCONNECT, and ERASE statements.

�� For more information about using DML verbs that involve the set membership
option, see 4.5, “Updating the database” on page 4-35.

Set membership is illustrated by a two-letter symbol. The first letter indicates the
manner in which a record is disconnected from a set. The second letter indicates the
manner in which a record is connected to a set.

 Disconnect options

■ Mandatory (M) — A record occurrence can be disconnected from the set only if
it is erased from the database. A DISCONNECT statement issued against member
records in a mandatory set will cause a non-zero error status to be returned.

■ Optional (O) — A record occurrence can be disconnected from a set without
being erased from the database. The occurrence can remain connected to other
sets and can be reconnected to other occurrences of the same set.

3-10 CA-IDMS Navigational DML Programming

3.3 Sets

 Connect options

■ Automatic (A) — The DBMS automatically connects a member record to a set
when the member record occurrence is stored in the database.

■ Manual (M) — The DBMS does not automatically connect a member record to a
set when the member record occurrence is stored. Membership must be
established explicitly with the DML CONNECT statement.

Combinations of set membership options: Disconnect and connect options are
combined to form set membership options. The following codes represent the various
combinations:

MA indicates that the set is mandatory automatic.

MM indicates that the set is mandatory manual.

OA indicates that the set is optional automatic.

OM indicates that the set is optional manual.

 3.3.4 Set order

The logical order in which a member record occurrence is connected within a set
occurrence is indicated by its set order.

Set order is independent of the physical placement of the records themselves. For
example, a record could be physically first on a database page, but logically last in the
set.

Set order options: The set order options are as follows:

 ■ FIRST

 ■ LAST

 ■ PRIOR

■ SORTED (ASCending or DEScending)

FIRST: FIRST means each new member record occurrence is positioned in a set
immediately following (in the next direction) the owner record. Using the
FIND/OBTAIN NEXT WITHIN SET statement, the last member record stored
becomes the first record accessed. This is equivalent to last in, first out (LIFO).

LAST: LAST means each new member record occurrence is positioned in a set
immediately before (in the prior direction) the owner record. This is equivalent to first
in, first out (FIFO). Prior pointers are required for a chained set whose set order is
LAST.

NEXT: NEXT means each new member record occurrence is connected immediately
following (in the next direction) the record occurrence last accessed by the program.

Chapter 3. Introduction to Database Access with Navigational DML 3-11

3.3 Sets

PRIOR: PRIOR means each new member record occurrence is connected
immediately before (in the prior direction) the record occurrence last selected by the
program. Prior pointers are required for a chained set whose set order is PRIOR. The
NEXT and PRIOR set order options allow you to assign the exact logical position of
new records in a set.

SORTED: SORTED means each new member record occurrence is connected to the
set in ascending or descending sequence based on the value of a designated element or
group of elements contained in the record occurrence. The designated element (or
group of elements) is called the sort key.

Document convention: Throughout this manual, references to sort key apply equally
to a single sort-control element or a group of elements.

When a record is connected to the set, the DBMS examines the sort key in each
member occurrence of the same record type to determine the logical position of the
new record in the set.

Note: Sets are sorted based on EBCDIC sequence.

Sort sequence: The order of a sorted set is represented by the words ASC
(ascending) or DES (descending), followed by the name of the sort-control element or
elements.

Duplicates option for a sorted set: When the value of the named sort key in a
record to be connected to a set occurrence matches the sort-key value in an existing
record occurrence that is already a member of the set, the duplicate-control option
indicates the action to be taken by the DBMS.

The duplicates options for sorted sets are:

■ DUPLICATES FIRST (DF) — A record with a duplicate sort key is stored
immediately before the existing duplicate record in the logical sequence of the set.
The first duplicate record to be encountered in the next direction is always the
duplicate most recently stored.

■ DUPLICATES LAST (DL) — A record with a duplicate sort key is stored
immediately after the existing duplicate record in the logical sequence of the set.
When accessing records in the next direction of the set, the last duplicate record is
the duplicate most recently stored.

■ DUPLICATES NOT ALLOWED (DN) — A record cannot be stored in a set
occurrence when an existing record already contains the same sort key. If a
program attempts to store a duplicate record, the DBMS returns an error code to
the ERROR-STATUS field in the IDMS communications block.

Native VSAM users: Native VSAM sorted sets are specified as DUPLICATES
NOT ALLOWED (DN) or DUPLICATES UNORDERED (DU). DU means
that record occurrences are always retrieved in the order in which they were
stored regardless of the direction in which the set is searched.

3-12 CA-IDMS Navigational DML Programming

3.3 Sets

3.3.5 Chained and indexed sets

The figure below shows chained and indexed set relationships, both sorted and
unsorted.

3.3.6 Set relationship definition

Set relationships are defined according to the following rules:

■ Any record type can participate as a member in one or more sets.

■ Any record type can be the owner of one or more sets.

■ Any record type can participate as a member in one set and the owner in another.

■ An owner record can own the same member record in more than one set (for
example, in a bill-of-materials structure).

■ A record cannot be both owner and member in the same set.

■ A record need not participate in any set.

The figures that follow illustrate typical types of set relationships.

Chapter 3. Introduction to Database Access with Navigational DML 3-13

3.3 Sets

A record as the owner of a single set: In the figure below, the EMPLOYEE
record is the owner of the EMP-EXPERTISE set:

┌──────────────────────────────┐

│ EMPLOYEE │

├─────┬─────┬──────┬───────────┤

│ 415 │ F │ 116 │ CALC │

├─────┴─────┴──────┴─────┬─────┤

│ EMP-ID-�415 │ DN │

├────────────────────────┴─────┤

│ EMP-DEMO-REGION │

└──────────────┬───────────────┘

 │

 │ EMP-EXPERTISE

 │ NPO MA

│ DES SKILL-LEVEL-�425 DF

 │

┌──────────────↓───────────────┐

│ EXPERTISE │

├─────┬─────┬──────┬───────────┤

│ 425 │ F │ 8 │ VIA │

├─────┴─────┴──────┴─────┬─────┤

│ EMP-EXPERTISE │ │

├────────────────────────┴─────┤

│ EMP-DEMO-REGION │

└──────────────────────────────┘

A record as a member in two sets: In the figure below, the EMPLOYEE record
participates as a member in the DEPT-EMPLOYEE and OFFICE-EMPLOYEE sets:

3-14 CA-IDMS Navigational DML Programming

3.3 Sets

┌──────────────────────────────┐ ┌──────────────────────────────┐

│ DEPARTMENT │ │ OFFICE │

├─────┬─────┬──────┬───────────┤ ├─────┬─────┬──────┬───────────┤

│ 41� │ F │ 56 │ CALC │ │ 45� │ F │ 76 │ CALC │

├─────┴─────┴──────┴─────┬─────┤ ├─────┴─────┴──────┴─────┬─────┤

│ DEPT-ID-�41� │ │ │ OFFICE-CODE-�45� │ DN │

├────────────────────────┴─────┤ ├────────────────────────┴─────┤

│ ORG-DEMO-REGION │ │ ORG-DEMO-REGION │

└─────────────────────────┬────┘ └────┬─────────────────────────┘

 │ │

 DEPT-EMPLOYEE │ │ OFFICE-EMPLOYEE

 NPO OA │ │ IO OA

ASC (EMP-LAST-NAME-�415 │ │ ASC (EMP-LAST-NAME-�415

 EMP-FIRST-NAME-�415 │ │ EMP-FIRST-NAME-�415

 DL │ │ DL

 │ │

 ┌────↓────────────────────↓────┐

 │ EMPLOYEE │

 ├─────┬─────┬──────┬───────────┤

│ 415 │ F │ 116 │ CALC │

 ├─────┴─────┴──────┴─────┬─────┤

 │ EMP-ID-�415 │ │

 ├────────────────────────┴─────┤

 │ EMP-DEMO-REGION │

 └──────────────────────────────┘

A record as the owner of multiple sets: In the figure below, the EMPLOYEE
record is the owner of the EMP-EMPOSITION, EMP-COVERAGE, and
EMP-EXPERTISE sets:

Chapter 3. Introduction to Database Access with Navigational DML 3-15

3.3 Sets

┌──────────────────────────────┐ ┌──────────────────────────────┐ ┌──────────────────────────────┐

│ EMPOSITION │ │ EMPLOYEE │ │ EXPERTISE │

├─────┬─────┬──────┬───────────┤ ├─────┬─────┬──────┬───────────┤ ├─────┬─────┬──────┬───────────┤

│ 42� │ F │ 28 │ VIA │ │ 415 │ F │ 116 │ CALC │ │ 425 │ F │ 8 │ VIA │

├─────┴─────┴──────┴─────┬─────�─────────────────┼─────┴─────┴──────┴─────┬─────┼────────────────�─────┴─────┴──────┴─────┬─────┤

│ EMP-EMPOSITION │ │ EMP-EMPOSITION │ EMP-ID-�415 │ DN │ EMP-EXPERTISE │ EMP-EXPERTISE │ │

├────────────────────────┴─────┤ NPO MA FIRST ├────────────────────────┴─────┤ NPO MA ├────────────────────────┴─────┤

│ EMP-DEMO-REGION │ │ EMP-DEMO-REGION │ DES SKILL- │ EMP-DEMO-REGION │

└──────────────────────────────┘ └──────────────┬───────────────┘ LEVEL-�425 └──────────────────────────────┘

 │ DF

 │ EMP-COVERAGE

│ NPO MA FIRST

 │

 │

 ┌──────────────↓───────────────┐

 │ COVERAGE │

 ├─────┬─────┬──────┬───────────┤

│ 4�� │ F │ 16 │ VIA │

 ├─────┴─────┴──────┴─────┬─────┤

 │ EMP-COVERAGE │ │

 ├────────────────────────┴─────┤

 │ INS-DEMO-REGION │

 └──────────────────────────────┘

A record as a member and an owner: The EMPLOYEE record is a member in
the DEPT-EMPLOYEE set and the owner of the EMP-COVERAGE set:

3-16 CA-IDMS Navigational DML Programming

3.3 Sets

┌──────────────────────────────┐

│ DEPARTMENT │

├─────┬─────┬──────┬───────────┤

│ 41� │ F │ 56 │ CALC │

├─────┴─────┴──────┴─────┬─────┤

│ DEPT-ID-�41� │ DN │

├────────────────────────┴─────┤

│ ORG-DEMO-REGION │

└───────────────┬──────────────┘

 │

 │ DEPT-EMPLOYEE

 │ NPO OA

│ ASC (EMP-LAST-NAME-�415 EMP-FIRST-NAME-�415) DL

 │

┌───────────────↓──────────────┐

│ EMPLOYEE │

├─────┬─────┬──────┬───────────┤

│ 415 │ F │ 116 │ CALC │

├─────┴─────┴──────┴─────┬─────┤

│ EMP-ID-�415 │ DN │

├────────────────────────┴─────┤

│ EMP-DEMO-REGION │

└───────────────┬──────────────┘

 │

 │ EMP-COVERAGE

│ NPO MA FIRST

 │

┌───────────────↓──────────────┐

│ COVERAGE │

├─────┬─────┬──────┬───────────┤

│ 4�� │ F │ 16 │ VIA │

├─────┴─────┴──────┴─────┬─────┤

│ EMP-COVERAGE │ │

├────────────────────────┴─────┤

│ INS-DEMO-REGION │

└──────────────────────────────┘

Chapter 3. Introduction to Database Access with Navigational DML 3-17

3.3 Sets

Multiple record types as members of one set: In the figure below, the
COVERAGE record is the owner of the COVERAGE-CLAIMS set, which contains
HOSPITAL-CLAIM, NON-HOSP-CLAIM, and DENTAL-CLAIM member records:

3-18 CA-IDMS Navigational DML Programming

3.3 Sets

All record occurrences related to one occurrence: The figure below shows
all database record occurrences that are related to one occurrence (EMPLOYEE 51) of
the EMPLOYEE record type:

Chapter 3. Introduction to Database Access with Navigational DML 3-19

3.4 Data structure diagram

3.4 Data structure diagram

When all records, sets, and set relationships in the database have been defined, the
database can be represented in a data structure diagram. This diagram:

■ Contains a representative box for each database record defined to the subschema

■ Lists set characteristics for all sets defined to the subschema

■ Serves as a resource when designing and coding your application program

Employee information subschema: The data structure diagram for the employee
information subschema, appearing below, is the basis for most of the examples in this
manual. This subschema features:

■ System-owned indexes; for example, the SKILL-NAME-NDX set

■ Indexes between two record types; for example, the OFFICE-EMPLOYEE set

■ A Bill-of-materials structure; for example, the MANAGES and REPORTS-TO
sets

■ Sorted chained sets; for example, the DEPT-EMPLOYEE set

■ A set that consists of multiple record types; for example, the
COVERAGE-CLAIMS set

■ A stand-alone record; for example, the INSURANCE-PLAN record

3-20 CA-IDMS Navigational DML Programming

3.4 Data structure diagram

Chapter 3. Introduction to Database Access with Navigational DML 3-21

3.5 Currency

 3.5 Currency

During the execution of your application program, the DBMS uses currency to keep
track of the database location (db-key) of the most recently accessed record
occurrences for the run unit, record type, set, and area. By keeping track of the most
recently accessed records, currency enables you to navigate the database with a
minimum of effort. Currency values determine which record occurrences are affected
by DML functions requested by an application program. Upon successful execution of
a DML statement, the DBMS automatically updates currency values, as appropriate.

A record occurrence can be:

■ Current of run unit

■ Current of record type

■ Current of set

■ Current of area

Current of run unit: The record occurrence that was the object of the most recent
successful FIND, OBTAIN, CONNECT, STORE, MODIFY, or ERASE function is
current of run unit. Only one current record of run unit exists at any given time
during program execution. That record's db-key, record type and qualifying page
information are placed in the DBKEY, RECORD-NAME and PAGE-INFO fields of
the IDMS communications block.

�� For more information on the IDMS communications block, see 2.5.2, “Checking the
status of statement execution” on page 2-29 earlier in this chapter.

Current of record type: The most recently accessed occurrence of each record
type is current of that record type. At any given time during program execution, one
current record can exist for each record type defined in the program's subschema. For
example, when your program successfully retrieves JOB 2215, that record becomes
current of the JOB record type. If you then successfully obtain EMPLOYEE 466, that
record becomes current of the EMPLOYEE record type; currency for the JOB record
type remains unchanged.

Current of set: The most recently accessed record occurrence in each set is current
of set for that set. At any given time during program execution, one current record
can exist for each set defined in the program's subschema.

Because a successfully accessed record becomes the current record of all sets in which
it participates as either owner or member, a given record occurrence can be the current
record of any number of sets.

Current of area: The most recently accessed record occurrence in each area is
current of area for that area. At any given time during program execution, one current
record can exist for each area defined to the program's subschema.

3-22 CA-IDMS Navigational DML Programming

3.5 Currency

When currency is established: At the beginning of a program, all currencies are
null. Currency is established by the DML FIND, OBTAIN, RETURN, or STORE
function. Currency is updated following each successful execution of a FIND,
OBTAIN, CONNECT, DISCONNECT, ERASE, RETURN, MODIFY, or STORE
statement.

How the DBMS uses currency: The DBMS uses currency to:

■ Establish a starting point for the execution of a DML retrieval statement by using
the current position in the database with respect to run unit, record, set, or area

■ Establish proper set occurrences for CONNECT and DISCONNECT functions

■ Determine the target record for a MODIFY statement

■ Determine the physical placement in the database of records stored with a location
mode of VIA

■ Provide the basis for saving the db-keys of located records for subsequent use by
the program

■ Set locks on the current of record, set, or area to prevent concurrent retrieval or
update of records by different run units

�� For further information about setting locks, see 4.6, “Locking records” on
page 4-48.

3.5.1 Use and updating of currency by DML verbs

The table below outlines the currency required to execute each DML verb and the
changes to currency following the successful execution of that verb. The bullet
symbol (�) indicates currency used in command execution.

Note: BIND and READY do not use or update currency, but both verbs must be
issued before any database access is attempted.

DML verb Run
unit

Record Set Area Currency updated by successful
execution

ACCEPT* � � � � None

IF* � � None

FIND/OBTAIN
DB-KEY

All

FIND/OBTAIN
CURRENT*

 � � � � All

FIND/OBTAIN
WITHIN SET�

 � All

FIND/OBTAIN
WITHIN AREA

 ** All

Chapter 3. Introduction to Database Access with Navigational DML 3-23

3.5 Currency

DML verb Run
unit

Record Set Area Currency updated by successful
execution

FIND/OBTAIN
OWNER

 � All

FIND/OBTAIN
CALC

All

FIND/OBTAIN
DUPLICATE

 � All

FIND/OBTAIN
USING SORT
KEY�

 � All

GET � None

RETURN� � Set

STORE *** All

MODIFY � None�

ERASE � Nullifies currencies of all record types and
sets involved

CONNECT � � Run unit, set

DISCONNECT � Nullifies currency of object set; updates
current of run unit and area

KEEP* � � � � None

COMMIT None

COMMIT ALL Nullifies all currencies

ROLLBACK Nullifies all currencies

ROLLBACK
CONTINUE

Nullifies all currencies

FINISH Nullifies all currencies

� Uses only one currency as determined by command format.

�� Required for NEXT and PRIOR formats only.

��� All in which record type participates as an automatic member.

� Currency is not required if the statement specifies FIRST, LAST

or sequence-number for a system-owned indexed set.

� Currency is not required for a system-owned indexed set.

� Currency is not required if the statement specifies FIRST, LAST,

or USING index-key.

� Except in the case of a sorted set.

3-24 CA-IDMS Navigational DML Programming

3.5 Currency

3.5.2 Updating currencies during DML processing

The figure below shows the updating of currencies in the sample employee database
following successful execution of a series of DML statements.

�� For further details on the use and update of currencies by each DML statement,
refer either to Chapter 4, “Navigational DML Programming Techniques” on page 4-1
or to the language-specific CA-IDMS DML reference manual.

As record occurrences are accessed, run unit, record, set, and area currencies are
established and updated. Boxes containing an asterisk (*) indicate changed currencies.
When ERROR-STATUS contains an 0307 status code (end-of-set), the owner of the
specified set becomes current of run unit, area, and its record and set types.

�� For more information on the records, sets, and areas involved, refer to the
EMPLOYEE database data structure diagram in 3.4, “Data structure diagram” on
page 3-20 earlier in this chapter.

Chapter 3. Introduction to Database Access with Navigational DML 3-25

3.5 Currency

 R. U. Record Set Area

 curr. currencies currencies currencies

 ┌─────┐┌─────┐┌─────┬─────┬─────┬─────┬─────┐┌─────┬─────┬─────┬─────┐┌─────┬─────┬─────┐

│ E ││ R ││ D │ E │ E │ J │ O ││ D │ E │ J │ O ││ O │ E │ I │

│ R ││ U ││ E │ M │ M │ O │ F ││ E │ M │ O │ F ││ R │ M │ N │

│ R ││ N ││ P │ P │ P │ B │ F ││ P │ P │ B │ F ││ G │ P │ S │

│ O ││ ││ A │ L │ O │ │ I ││ T │ - │ - │ I ││ - │ - │ - │

│ R ││ U ││ R │ O │ S │ │ C ││ - │ E │ E │ C ││ D │ D │ D │

│ ││ N ││ T │ Y │ I │ │ E ││ E │ M │ M │ E ││ E │ E │ E │

│ S ││ I ││ M │ E │ T │ │ ││ M │ P │ P │ - ││ M │ M │ M │

│ T ││ T ││ E │ E │ I │ │ ││ P │ O │ O │ E ││ O │ O │ O │

│ A ││ ││ N │ │ O │ │ ││ L │ S │ S │ M ││ - │ - │ - │

│ T ││ ││ T │ │ N │ │ ││ O │ I │ I │ P ││ R │ R │ R │

│ U ││ ││ │ │ │ │ ││ Y │ T │ T │ L ││ E │ E │ E │

│ S ││ ││ │ │ │ │ ││ E │ I │ I │ O ││ G │ G │ G │

│ ││ ││ │ │ │ │ ││ E │ O │ O │ Y ││ I │ I │ I │

│ ││ ││ │ │ │ │ ││ │ N │ N │ E ││ O │ O │ O │

│ ││ ││ │ │ │ │ ││ │ │ │ E ││ N │ N │ N │

│ ││ ││ │ │ │ │ ││ │ │ │ ││ │ │ │

┌────────────────────────┼─────┼┼─────┼┼─────┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┤

│BIND RUN UNIT. │���� ││ ││ │ │ │ │ ││ │ │ │ ││ │ │ │

├────────────────────────┼─────┼┼─────┼┼─────┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┤

│READY SHARED UPDATE. │���� ││ ││ │ │ │ │ ││ │ │ │ ││ │ │ │

├────────────────────────┼─────┼┼─────┼┼─────┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┤

│OBTAIN FIRST DEPARTMENT │���� ││52���││52���│ │ │ │ ││52���│ │ │ ││52���│ │ │

│WITHIN ORG-DEMO-REGION. │ ││ ││ │ │ │ │ ││ │ │ │ ││ │ │ │

├────────────────────────┼─────┼┼─────┼┼─────┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┤

│OBTAIN NEXT EMPLOYEE │���� ││ 479�││52�� │ 479�│ │ │ ││ 479�│ 479�│ │ 479�││52�� │ 479�│ │

│WITHIN DEPT-EMPLOYEE. │ ││ ││ │ │ │ │ ││ │ │ │ ││ │ │ │

├────────────────────────┼─────┼┼─────┼┼─────┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┤

│OBTAIN OWNER │���� ││ 5�││52�� │ 479 │ │ │ 5�││ 479 │ 479 │ │ 5�││ 5�│ 479 │ │

│WITHIN OFFICE-EMPLOYEE. │ ││ ││ │ │ │ │ ││ │ │ │ ││ │ │ │

├────────────────────────┼─────┼┼─────┼┼─────┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┤

│DISCONNECT EMPLOYEE │���� ││ 479�││52�� │ 479 │ │ │ 5 ││ 479 │ 479 │ │ NPO�││ 5 │ 479 │ │

│FROM OFFICE-EMPLOYEE. │ ││ ││ │ │ │ │ ││ │ │ │ ││ │ │ │

├────────────────────────┼─────┼┼─────┼┼─────┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┤

│MOVE 8 TO OFF-CODE-�45�.│ ││ ││ │ │ │ │ ││ │ │ │ ││ │ │ │

├────────────────────────┼─────┼┼─────┼┼─────┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┤

│FIND CALC OFFICE. │���� ││ 8�││52�� │ 479 │ │ │ 8�││ 479 │ 479 │ │ 8�││ 8�│ 479 │ │

├────────────────────────┼─────┼┼─────┼┼─────┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┤

│CONNECT EMPLOYEE │���� ││ 479�││52�� │ 479 │ │ │ 8 ││ 479 │ 479 │ │ 479�││ 8 │ 479 │ │

│TO OFFICE-EMPLOYEE. │ ││ ││ │ │ │ │ ││ │ │ │ ││ │ │ │

├────────────────────────┼─────┼┼─────┼┼─────┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┤

│OBTAIN NEXT EMPOSITION │���� ││ 43�││52�� │ 479 │ 43�│ │ 8 ││ 479 │ 43�│ 43�│ 479 ││ 8 │ 43�│ │

│WITHIN EMP-EMPOSITION. │ ││ ││ │ │ │ │ ││ │ │ │ ││ │ │ │

├────────────────────────┼─────┼┼─────┼┼─────┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┤

│OBTAIN OWNER │���� ││5�35�││52�� │ 479 │ 43 │5�35�│ 8 ││ 479 │ 43 │5�35�│ 479 ││5�35�│ 43 │ │

│WITHIN JOB-EMPOSITION. │ ││ ││ │ │ │ │ ││ │ │ │ ││ │ │ │

├────────────────────────┼─────┼┼─────┼┼─────┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┤

│MODIFY JOB. │���� ││5�35 ││52�� │ 479 │ 43 │5�35 │ 8 ││ 479 │ 43 │5�35 │ 479 ││5�35 │ 43 │ │

├────────────────────────┼─────┼┼─────┼┼─────┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┤

│OBTAIN NEXT EMPLOYEE │���� ││ 329�││52�� │ 329�│ 43 │5�35 │ 8 ││ 329�│ 329�│5�35 │ 329�││5�35 │ 329�│ │

│WITHIN DEPT-EMPLOYEE. │ ││ ││ │ │ │ │ ││ │ │ │ ││ │ │ │

├────────────────────────┼─────┼┼─────┼┼─────┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┤

│FIND LAST EMPOSITION │���� ││ 52�││52�� │ 329 │ 52�│5�35 │ 8 ││ 329 │ 52�│ 52�│ 329 ││5�35 │ 52�│ │

│WITHIN EMP-EMPOSITION. │ ││ ││ │ │ │ │ ││ │ │ │ ││ │ │ │

├────────────────────────┼─────┼┼─────┼┼─────┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┤

│ERASE EMPOSITION. │���� ││ 52#││52�� │ 329 │Null�│5�35 │ 8 ││ 329 │ NPO�│ NPO�│ 329 ││5�35 │ 52#│ │

├────────────────────────┼─────┼┼─────┼┼─────┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┤

│FIND LAST EMPOSITION │�3�7 ││ 329�││52�� │ 329 │Null │5�35 │ 8 ││ 329 │ 329�│ NPO�│ 329 ││5�35 │ 329�│ │

│WITHIN EMP-EMPOSITION. │ ││ ││ │ │ │ │ ││ │ │ │ ││ │ │ │

├────────────────────────┼─────┼┼─────┼┼─────┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┤

│STORE EMPOSITION. │���� ││ 53�││52�� │ 329 │ 53�│5�35 │ 8 ││ 329 │ 53�│ NPO │ 329 ││5�35 │ 52�│ │

├────────────────────────┼─────┼┼─────┼┼─────┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┤

│CONNECT EMPOSITION │���� ││ 53 ││52�� │ 329 │ 53 │5�35 │ 8 ││ 329 │ 53 │ 53�│ 329 ││5�35 │ 53 │ │

│TO JOB-EMPOSITION. │ ││ ││ │ │ │ │ ││ │ │ │ ││ │ │ │

├────────────────────────┼─────┼┼─────┼┼─────┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┼─────┼┼─────┼─────┼─────┤

│FINISH. │���� ││Null�││Null�│Null�│Null�│Null�│Null�││Null�│Null�│Null�│Null�││Null�│Null�│ │

├────────────────────────┴─────┴┴─────┴┴─────┴─────┴─────┴─────┴─────┴┴─────┴─────┴─────┴─────┴┴─────┴─────┴─────┤

│# Record is erased, but area and unit currencies are maintained. │

└──┘

3-26 CA-IDMS Navigational DML Programming

3.6 Database access execution sequence

3.6 Database access execution sequence

In navigational DML programming, you access database records one record at a time.
At runtime, the following steps are executed during a DML call:

1. The application program calls the batch interface module, which identifies the
requested database service, and provides information (that is, record, set, and area
names) required to interpret the request.

2. The batch interface module transfers control to the DBMS, which then checks the
subschema tables for database access information. These tables contain:

■ Record, set, and area definitions

■ Information on currency and access restrictions

■ Database operation statistics

Chapter 3. Introduction to Database Access with Navigational DML 3-27

3.6 Database access execution sequence

3. When the DBMS receives a request for access to a record, it first looks in the
page buffers for the requested record occurrence. If the occurrence is present in
the buffers, no input operation occurs. If the occurrence is not in the buffers, the
DBMS requests the operating system to input the appropriate database page from
direct-access storage to the page buffers. If the request to the DBMS specifies
movement of the contents of a record to variable storage (for example, an
OBTAIN), data is moved from the page buffers to the area in program variable
storage associated with the record. The request to the DBMS can also specify the
reverse data movement (that is, from variable storage to the page buffers).

3-28 CA-IDMS Navigational DML Programming

3.6 Database access execution sequence

4. After the specified record occurrence is located, the DBMS moves the db-key and
other information from the page buffers to the subschema tables. This information
includes the currency status of the run unit as well as of the area, sets, and record
type of the located record occurrence.

5. The DBMS moves status information regarding the outcome of the DML call to
fields within the program's IDMS communications block.

6. The DBMS returns control to the batch interface module, which passes control
back to the application program at the statement following the DML statement just
executed.

Chapter 3. Introduction to Database Access with Navigational DML 3-29

3.6 Database access execution sequence

7. The program checks the ERROR-STATUS field in the IDMS communications
block to determine the outcome of the database request. If the DBMS returns an
unexpected value to the ERROR-STATUS field, the program issues a
ROLLBACK statement (central version only) to ensure that incomplete updates
are not written to the database and terminates processing.

3-30 CA-IDMS Navigational DML Programming

Chapter 4. Navigational DML Programming
Techniques

4.1 About this chapter . 4-3
4.2 Retrieving records . 4-4

4.2.1 Accessing CALC records . 4-4
4.2.2 Walking a set . 4-5
4.2.3 Accessing a sorted set . 4-6
4.2.4 Performing an area sweep . 4-10
4.2.5 Accessing owner records . 4-12
4.2.6 Reestablishing run-unit currency . 4-14
4.2.7 Accessing a record by its db-key . 4-15
4.2.8 Accessing indexed records . 4-18
4.2.9 Moving contents of a record occurrence 4-21

4.3 Saving db-key, page information and bind addresses 4-24
4.3.1 Saving a db-key . 4-24
4.3.2 Saving page information . 4-28
4.3.3 Saving a record's BIND address . 4-30

4.4 Checking for set membership . 4-31
4.4.1 Using the IF EMPTY statement . 4-31
4.4.2 Using the IF MEMBER statement . 4-32

4.5 Updating the database . 4-35
4.5.1 Storing records . 4-35
4.5.2 Modifying records . 4-37
4.5.3 Erasing records . 4-39
4.5.4 Connecting records to a set . 4-44
4.5.5 Disconnecting records from a set . 4-45

4.6 Locking records . 4-48

Chapter 4. Navigational DML Programming Techniques 4-1

4-2 CA-IDMS Navigational DML Programming

4.1 About this chapter

4.1 About this chapter

This chapter discusses programming techniques used to access the database in
navigational DML programs. Functionally similar DML statements are presented
together; sample code that demonstrates typical usage of each statement is included.
The navigational DML functions are divided into these categories:

■ Retrieving records — Retrieving information from the database by using
navigational DML statements

■ Saving db-key and address information — Saving db-keys and bind addresses

■ Checking for set membership — The two forms of the DML IF statement, used
to obtain set membership information without performing any I/O

■ Updating the database — Modifying, storing, erasing, connecting, and
disconnecting database records

■ Locking records — Restricting access to database records

Chapter 4. Navigational DML Programming Techniques 4-3

4.2 Retrieving records

 4.2 Retrieving records

In the navigational environment, you can use the following navigational DML
statements to retrieve database records:

■ FIND locates a record occurrence in the database.

■ GET moves the data associated with a record occurrence from the page buffers to
program variable storage.

■ OBTAIN locates a record occurrence in the database and moves the data
associated with that occurrence to program variable storage (the equivalent of a
FIND followed by a GET).

■ RETURN retrieves the db-key and the symbolic key for an indexed record
without retrieving the record itself.

The DML retrieval functions listed below are discussed on the following pages:

■ Accessing CALC records

■ Walking a set

■ Accessing a sorted set

■ Performing an area sweep

■ Accessing owner records

■ Reestablishing run-unit currency

■ Accessing a record by its db-key

■ Accessing indexed records

■ Moving contents of a record occurrence

4.2.1 Accessing CALC records

To access a record occurrence based on its CALC-key value, perform the following
steps:

1. Move the CALC-key value to the CALC-key field in the database record in
variable storage.

2. Issue the FIND/OBTAIN CALC command.

3. Check the ERROR-STATUS field for the value 0326 (DB-REC-NOT-FOUND).

4. Perform the IDMS-STATUS routine if the DBMS returns a nonzero value other
than 0326.

Example of retrieving CALC records: The program excerpt below shows
retrieval of CALC records.

The MOVE statement initializes the CALC-key field before the database access is
performed. If the DBMS returns an ERROR-STATUS of 0326 (condition

4-4 CA-IDMS Navigational DML Programming

4.2 Retrieving records

DB-REC-NOT-FOUND), the program prints a message and goes on to the next input
record.

DATA DIVISION.

WORKING-STORAGE SECTION.

�1 SWITCHES.

 �5 EOF-SW PIC X VALUE 'N'.

 88 END-OF-FILE VALUE 'Y'.

PROCEDURE DIVISION.

 .

 .

 READ EMP-FILE-IN

AT END MOVE 'Y' to EOF-SW.

IF NOT END-OF-FILE

PERFORM A4��-GET-EMP-REC THRU A4��-EXIT

 UNTIL END-OF-FILE.

 FINISH.

 GOBACK.

A4��-GET-EMP-REC.

��� INITIALIZE CALC KEY ���
MOVE EMP-ID-IN TO EMP-ID-�415.
��� RETRIEVE RECORD ���
OBTAIN CALC EMPLOYEE.
��� CHECK FOR ERROR-STATUS = �326 ���

IF DB-REC-NOT-FOUND THEN
DISPLAY 'EMPLOYEE ID: ' EMP-ID-IN ' NOT FOUND'
��� CHECK FOR ERROR-STATUS = ���� ���

ELSE IF DB-STATUS-OK
 PERFORM B1��-WRITE-EMP-REPORT
 ELSE
 PERFORM IDMS-STATUS.
 READ EMP-FILE-IN

AT END MOVE 'Y' to EOF-SW.

A4��-EXIT.

 EXIT.

4.2.2 Walking a set

To access a record occurrence based on its logical position within a set, perform the
following steps:

1. Establish the current of set for the specified set type (for example, by issuing an
OBTAIN CALC).

2. Issue the FIND/OBTAIN WITHIN SET command.

3. Check the ERROR-STATUS field for the value 0307 (DB-END-OF-SET).

4. Perform the IDMS-STATUS routine if the DBMS returns a nonzero value other
than 0307.

Example of walking a set: The program excerpt below shows the procedure for
retrieving all member records in a set.

The program enters the database on the CALC-key field DEPT-ID-0410 and
establishes currency on the DEPARTMENT record. It then walks the
DEPT-EMPLOYEE set until the DBMS returns an ERROR-STATUS of 0307
(DB-END-OF-SET).

Chapter 4. Navigational DML Programming Techniques 4-5

4.2 Retrieving records

WORKING-STORAGE SECTION.

�1 SWITCHES.

 �5 EOF-SW PIC X VALUE 'N'.

 88 END-OF-FILE VALUE 'Y'.

PROCEDURE DIVISION.

 .

 READ DEPT-RECORD-IN

AT END MOVE 'Y' TO EOF-SW.

PERFORM A3��-GET-DEPT-SET THRU A3��-EXIT

UNTIL EOF-SW = 'Y'.

 FINISH.

 GOBACK.

A3��-GET-DEPT-SET.

MOVE DEPT-ID-IN TO DEPT-ID-�41�.

OBTAIN CALC DEPARTMENT.

 IF DB-REC-NOT-FOUND

DISPLAY 'DEPT: ' DEPT-ID-IN ' NOT FOUND'

GO TO A3��-GET-NEXT

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

MOVE DEPT-NAME-�41� TO DEPT-NAME-OUT.

 PERFORM U�9��-WRITE-LINE.

A3��-SET-WALK.

��� RETRIEVE NEXT EMPLOYEE IN SET ���
OBTAIN NEXT EMPLOYEE WITHIN DEPT-EMPLOYEE.
��� CHECK FOR ERROR-STATUS = �3�7 ���

 IF DB-END-OF-SET
GO TO A3��-GET-NEXT
��� CHECK FOR ERROR-STATUS = ���� ���

ELSE IF DB-STATUS-OK
 NEXT SENTENCE
 ELSE
 PERFORM IDMS-STATUS.

MOVE EMP-NAME-�415 TO EMP-NAME-OUT.

MOVE EMP-ID-�415 TO EMP-ID-OUT.

 PERFORM U�9��-WRITE-LINE.

GO TO A3��-SET-WALK.

A3��-GET-NEXT.

 READ DEPT-RECORD-IN

AT END MOVE 'Y' TO EOF-SW.

A3��-EXIT.

 EXIT.

4.2.3 Accessing a sorted set

To access a record occurrence in a sorted set based on its sort key, use the
FIND/OBTAIN WITHIN SET USING SORT KEY statement. The elements that
make up a sort key need not be adjacent to one another (that is, they can be
contiguous or noncontiguous).

To access a record that has either a single or a contiguous sort key, perform the
following steps:

1. Establish the current of set for the specified set type.

2. Initialize the sort-key field of the database record in program variable storage with
the sort-key value; for example:

MOVE 77 TO SORT-KEY-1.

4-6 CA-IDMS Navigational DML Programming

4.2 Retrieving records

3. Issue the FIND/OBTAIN WITHIN SET USING SORT KEY statement; for
example:

OBTAIN RECORD-B WITHIN A-B USING SORT-KEY-1.

4. Check the ERROR-STATUS field for the value 0326 (DB-REC-NOT-FOUND).

5. Perform the IDMS-STATUS routine if the DBMS returns a nonzero value other
than 0326.

Sorted set with a noncontiguous sort key: To access a record that has a
noncontiguous sort key, perform the following steps:

1. Establish a work field in program variable storage that consists of the record's
multiple sort-key elements stored as contiguous data items:

Subschema Record

�2 RECORD-B.

 �5 SORT-KEY-1 PIC 9(2).

 �5 NOT-A-KEY-1 PIC X(8).

 �5 SORT-KEY-2 PIC 9(5).

 �5 NOT-A-KEY-2 PIC XXX.

 �5 SORT-KEY-3 PIC X(15).

 �5 NOT-A-KEY-3 PIC 9(5)V99.

Work Record

�2 SORT-RECORD-B

 �5 S-KEY-1 PIC 9(2).

 �5 S-KEY-2 PIC 9(5).

 �5 S-KEY-3 PIC X(15).

2. Move the sort key values into the work record; for example:

MOVE 77 TO S-KEY-1.

MOVE 12345 TO S-KEY-2.

MOVE 'PROGRAMMER' TO S-KEY-3.

3. Establish the current of set for the specified set type.

4. Issue the FIND/OBTAIN statement, using the work record:

OBTAIN RECORD-B WITHIN A-B

 USING SORT-RECORD-B.

5. Check the ERROR-STATUS field for the value 0326 (DB-REC-NOT-FOUND).

6. Perform the IDMS-STATUS routine if the DBMS returns a nonzero value other
than 0326.

Batch programmers: Sorted sets can be processed more efficiently by sorting the
input transactions in the same order as the set before program execution.

Example of retrieval using a sort key: The program excerpt below retrieves an
EMPLOYEE record through its sort key.

This example retrieves insurance records for all specified employees. It enters the
database through the EMP-NAME-NDX set using the sort key, which is composed of
the employee's last name and first name. This example eliminates the need to
initialize the sort key elements in the record by using the input file as the sort-control
element.

Chapter 4. Navigational DML Programming Techniques 4-7

4.2 Retrieving records

DATA DIVISION.

FILE SECTION.

FD SORTED-EMP-FILE-IN.

�1 INS-INQ-EMP-REC-IN.

 �2 EMP-SORT-NAME.

 �4 LAST-IN PIC X(15).

 �4 FIRST-IN PIC X(1�).

WORKING-STORAGE SECTION.

�1 SWITCHES.

 �5 EOF-SW PIC X VALUE 'N'.

 88 END-OF-FILE VALUE 'Y'.

PROCEDURE DIVISION.

 .

 READ INS-INQ-EMP-REC-IN

AT END MOVE 'Y' TO EOF-SW.

PERFORM A3��-GET-EMP-NDX THRU A3��-EXIT

UNTIL EOF-SW = 'Y'.

 FINISH.

 GOBACK.

A3��-GET-EMP-NDX.

��� RETRIEVE EMPLOYEE USING SORT KEY ���
OBTAIN EMPLOYEE WITHIN EMP-NAME-NDX

 USING EMP-SORT-NAME.
��� CHECK FOR ERROR-STATUS = �326 ���

 IF DB-REC-NOT-FOUND
 THEN DISPLAY

'EMPLOYEE ' INS-INQ-EMP-REC ' NOT FOUND'
GO TO A3��-GET-NEXT
��� CHECK FOR ERROR-STATUS = ���� ���

ELSE IF DB-STATUS-OK
 NEXT SENTENCE
 ELSE
 PERFORM IDMS-STATUS.
 PERFORM A4��-GET-INS-INFO.

A3��-GET-NEXT.

 READ INS-INQ-EMP-REC-IN

AT END MOVE 'Y' TO EOF-SW.

A3��-EXIT.

 EXIT.

A4��-GET-INS-INFO.

��� RETRIEVE ALL INSURANCE CLAIM RECORDS THROUGH THE ���

��� EMP-COVERAGE AND COVERAGE-CLAIMS SETS ���

Sorted set considerations: You should be aware of the following considerations
related to the processing of sorted sets:

■ The selected record occurrence has a key value equal to the value of the
sort-control element. If more than one occurrence contains a sort key equal to the
key value in variable storage, the first such record is selected.

■ The search for the specified record begins with the owner of the current of set
unless the CURRENT option is specified. When CURRENT is specified, the
search begins with the currencies already established for the specified set.

Note: If duplicates are allowed, iterative use of CURRENT continually returns
the same occurrence; in this case, use OBTAIN NEXT WITHIN SET.

■ The search always proceeds in the next direction. The next of set is the member
record with the next higher sort-key value (next lower for descending sets) than

4-8 CA-IDMS Navigational DML Programming

4.2 Retrieving records

the requested value; the prior of set is the member record with the next lower
value (higher for descending sets).

Generic key searches: If a member occurrence with the requested sort-key value
is not found, the current of set is nullified but the next and prior of set are maintained.

You can use this feature to perform generic key searches. For example, to retrieve all
employees whose last names start with the letter N or greater, you can establish the
appropriate currency by issuing the following statements:

MOVE 'N ' TO EMP-LAST-NAME-�415.

FIND EMPLOYEE WITHIN EMP-LNAME-NDX USING EMP-LAST-NAME-�415.

IF ERROR-STATUS = '�326'

 NEXT SENTENCE

ELSE

 PERFORM IDMS-STATUS.

To return the first record containing the partial key value followed by characters other
than blanks, you issue this statement:

OBTAIN NEXT EMPLOYEE WITHIN EMP-LNAME-NDX USING EMP-LAST-NAME-�415.

Continue to issue this OBTAIN until all records within the range you want have been
returned.

Example of retrieving occurrences of sorted sets: The figure below shows
the currencies maintained by successful and unsuccessful retrieval within a sorted set.

Following successful retrieval within the A-B set, member occurrence 77 is established
as current. Following unsuccessful retrieval, a status of 0326 is returned and current
of set is nullified, but the next and prior of set are maintained; this enables you to
continue accessing that set by using the FIND/OBTAIN WITHIN SET command.

Chapter 4. Navigational DML Programming Techniques 4-9

4.2 Retrieving records

4.2.4 Performing an area sweep

To access a record occurrence based on its logical position within an area, perform the
following steps to establish the correct starting position:

1. Issue the FIND/OBTAIN FIRST/LAST/nth WITHIN area-name statement.

2. Check the ERROR-STATUS field for the value 0307 (DB-END-OF-SET).

3. Perform the IDMS-STATUS routine if a value other than 0307 is returned.

Accessing subsequent records: To retrieve subsequent record occurrences
within an area, perform the following steps:

1. Issue the FIND/OBTAIN NEXT/PRIOR WITHIN area-name statement.

2. Check the ERROR-STATUS field for the value 0307 (DB-END-OF-SET).

3. Perform the IDMS-STATUS routine if a value other than 0307 is returned.

Relative db-key values: The first record occurrence in an area is the one with the
lowest db-key; the last record has the highest db-key. The next record occurrence in
an area is the one with the next higher db-key relative to the current record of the
named area; the prior record is the one with the next lower db-key relative to the
current of area.

4-10 CA-IDMS Navigational DML Programming

4.2 Retrieving records

Accessing multiple record types: When accessing multiple records types while
sweeping an area, you must be sure to reestablish area currency by issuing the FIND
CURRENT record-name statement each time before reissuing the OBTAIN NEXT
WITHIN AREA statement. Failure to reestablish area currency can cause your
program to loop or skip records during retrieval.

The figure below shows retrieval of records within an area that contains multiple
record types.

In this example, a sweep of the EMP-DEMO-REGION is performed, retrieving
sequentially each EMPLOYEE record and all records in the associated
EMPLOYEE-EXPERTISE set. The first command retrieves EMPLOYEE 119.
Subsequent OBTAIN WITHIN SET statements retrieve the associated EXPERTISE
records and establish currency on EXPERTISE 03. The FIND CURRENT statement is
used to reestablish the proper position before retrieving EMPLOYEE 48. If FIND
CURRENT EMPLOYEE is not specified, an attempt to retrieve the next EMPLOYEE
record in the area would return EMPLOYEE 23.

Area sweep of the EMP-DEMO-REGION: The program excerpt below shows a
program that retrieves all occurrences of the EMPLOYEE record in the
EMP-DEMO-REGION. The program sequentially retrieves each EMPLOYEE record
in the EMP-DEMO-REGION area.

Chapter 4. Navigational DML Programming Techniques 4-11

4.2 Retrieving records

 A���-MAIN-LINE.

 .

 A4��-GET-FIRST.

��� RETRIEVE FIRST EMPLOYEE IN AREA ���
OBTAIN FIRST EMPLOYEE WITHIN EMP-DEMO-REGION.

��� CHECK FOR ERROR-STATUS = �3�7 ���
 IF DB-END-OF-SET

DISPLAY 'AREA EMPTY'

 FINISH

 GOBACK

ELSE IF DB-STATUS-OK

PERFORM A4��-AREA-LOOP THRU A4��-EXIT

 UNTIL DB-END-OF-SET

 ELSE

 PERFORM IDMS-STATUS.

 FINISH.

 GOBACK.

 A4��-AREA-LOOP.

DISPLAY 'EMPLOYEE: ' EMP-ID-�415

'FIRST NAME: ' EMP-FIRST-NAME-�415

'LAST NAME: ' EMP-LAST-NAME-�415.

��� RETRIEVE NEXT EMPLOYEE IN AREA ���
OBTAIN NEXT EMPLOYEE WITHIN EMP-DEMO-REGION.

��� CHECK FOR ERROR-STATUS = �3�7 ���
 IF DB-END-OF-SET

GO TO A4��-EXIT
ELSE IF DB-STATUS-OK

 NEXT SENTENCE
 ELSE
 PERFORM IDMS-STATUS.
 A4��-EXIT.

 EXIT.

4.2.5 Accessing owner records

To access the owner record of the current record of set, perform the following steps:

1. Establish the current of set for the specified set type (for example, by issuing an
OBTAIN CALC).

2. If the set is defined with either the optional or the manual set membership option,
issue the IF MEMBER statement to determine set membership status.

3. Issue the FIND/OBTAIN OWNER command.

4. Perform the IDMS-STATUS routine if the DBMS returns a nonzero value.

Checking for set membership: If a member record is declared with either the
optional or the manual set membership option, you should use the IF statement
(explained in 4.4, “Checking for set membership” on page 4-31 later in this chapter)
to determine whether the current record of set is presently connected to the specified
set. An optional or manual record is not established as current of set if it is not
presently connected to an occurrence of the specified set. For example, a manual
record may not have been connected to the requested set or an optional record may
have been disconnected.

4-12 CA-IDMS Navigational DML Programming

4.2 Retrieving records

How FIND/OBTAIN OWNER works: FIND/OBTAIN OWNER uses the current of
set. If the current of record is eligible for set membership, but is not connected to an
occurrence of the requested set, the record occurrence retrieved is the owner of the
current record of set, not the owner of the current of record.

OWNER retrieval in optional or manual sets: The program excerpt and the
figure below illustrate OWNER retrieval for sets with either the optional or the manual
membership option. Records defined to sets with either the optional or the manual
option may not be connected to a set occurrence; you can use the DML IF statement
to test for set membership.

Owner retrieval for mandatory automatic sets: A member record declared as a
mandatory automatic member of a set (see 3.3.3, “Set membership options” on
page 3-10) must be connected to an owner record. The program excerpt and figure
illustrate OWNER retrieval for mandatory automatic sets.

Records defined to mandatory automatic sets are connected to a set occurrence when
they are stored; they cannot be disconnected. Therefore, you need not test for the
existence of owner record occurrences.

Chapter 4. Navigational DML Programming Techniques 4-13

4.2 Retrieving records

4.2.6 Reestablishing run-unit currency

Certain navigational DML statements operate on previously established currencies.
You may need to reestablish a previously obtained record as current of run unit in
order to execute one of these statements.

�� For information on the currencies required by each navigational DML statement,
see Chapter 3, “Introduction to Database Access with Navigational DML” on
page 3-1.

How you reestablish currency: To reestablish the current record of record type,
set, or area as the current record of run unit, perform the following steps:

1. Establish currency for the named record, set, or area.

2. Perform processing that alters run-unit currency.

3. Issue the FIND/OBTAIN CURRENT statement.

4. Perform the IDMS-STATUS routine if the DBMS returns a nonzero value.

Using FIND/OBTAIN CURRENT: The FIND/OBTAIN CURRENT statement is an
efficient means of establishing the appropriate record as current of run unit, set, or area
before executing a DML statement that utilizes run-unit, set, or area currency (for
example, ACCEPT, IF, GET, MODIFY, ERASE).

4-14 CA-IDMS Navigational DML Programming

4.2 Retrieving records

The program excerpt below shows two typical uses of the FIND/OBTAIN CURRENT
statement.

This application performs an area sweep of the EMP-DEMO-REGION, looking for
former EMPLOYEES to be deleted from the database. Former employees have either
no EMPOSITION records or no JOB records.

 A4��-ERASE-NOJOBS.

OBTAIN FIRST EMPLOYEE WITHIN EMP-DEMO-REGION.

��� CHECK FOR ERROR-STATUS = �3�7 ���

 IF DB-END-OF-SET

DISPLAY 'AREA EMPTY'

��� CHECK FOR ERROR-STATUS = ���� ���

ELSE IF DB-STATUS-OK

PERFORM A4��-AREA-LOOP THRU A4��-EXIT

 UNTIL DB-END-OF-SET

 ELSE

 PERFORM IDMS-STATUS.

 FINISH.

 GOBACK.

 A4��-AREA-LOOP.

��� ERASE IF EMPLOYEE HAS NO EMPOSITION RECORDS ���

IF EMP-EMPOSITION IS EMPTY

ERASE EMPLOYEE PERMANENT

 PERFORM IDMS-STATUS

GO TO A4��-FIND-NEXT.

FIND FIRST EMPOSITION WITHIN EMP-EMPOSITION.

 PERFORM IDMS-STATUS.

��� ALSO ERASE IF EMPLOYEE HAS NO JOB RECORDS ���

IF NOT JOB-EMPOSITION MEMBER

��� USE #1 REESTABLISH RUN UNIT CURRENCY FOR ERASE ���
FIND CURRENT EMPLOYEE

 PERFORM IDMS-STATUS
ERASE EMPLOYEE PERMANENT

 PERFORM IDMS-STATUS

 ELSE

��� USE #2 REESTABLISH RUN UNIT CURRENCY FOR OBTAIN WITHIN AREA ���
FIND CURRENT EMPLOYEE

 PERFORM IDMS-STATUS.
 A4��-FIND-NEXT.

OBTAIN NEXT EMPLOYEE WITHIN EMP-DEMO-REGION.

��� CHECK FOR ERROR-STATUS = �3�7 ���

 IF DB-END-OF-SET

GO TO A4��-EXIT

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

 A4��-EXIT.

 EXIT.

4.2.7 Accessing a record by its db-key

The DBMS assigns a db-key to each record occurrence in the database. This key
identifies the database page and line number where the record is located. The db-key
can be qualified by record type or page information to ensure that it identifies a unique
record occurrence. While always allowed, qualification is necessary only under the
following circumstances:

■ the subschema includes areas with different page information values

Chapter 4. Navigational DML Programming Techniques 4-15

4.2 Retrieving records

■ the page information associated with the current of run unit is different than that
of the record to be retrieved

�� For more information about qualifying db-keys, refer to 2.3, “Db-keys and page
information” on page 2-11.

Steps to access a record by its db-key: To access a record directly by using its
db-key, perform the following steps:

1. Save the db-key of the record to be retrieved in a field defined as a binary
fullword (COBOL PIC S9(8) COMP SYNC). Optionally save its record type or
page information to use to qualify the db-key. For more information, refer to
4.3.1, “Saving a db-key” on page 4-24 later in this chapter.

2. Perform processing as required.

3. Issue the FIND/OBTAIN DB-KEY command using the saved db-key and
qualifying information.

4. Perform the IDMS-STATUS routine if the DBMS returns a nonzero value.

When to use access by db-key: Using a record's db-key provides for the most
efficient form of database retrieval. For example, if you know that your program will
need to use a record more than once, it is best to save the record's db-key and reaccess
the record by using FIND/OBTAIN DB-KEY. Any subschema record can be accessed
by its db-key, regardless of location mode. Currency is not used to determine the
target record of the FIND/OBTAIN DB-KEY statement; the record is identified by its
db-key and, optionally, by its record type or page information.

Native VSAM users: The FIND/OBTAIN DB-KEY statement cannot be used to
access records in a native VSAM key-sequenced data set (KSDS).

Example of record access by db-key and page-info: The program excerpt
below shows using a db-key and page-info to reestablish currency.

Note: This application walks the DEPT-EMPLOYEE set, printing a report of all
employees and their managers. After accessing the manager's EMPLOYEE
record, the FIND DB-KEY statement is used to reestablish the correct
EMPLOYEE record as current of the DEPT-EMPLOYEE set.

4-16 CA-IDMS Navigational DML Programming

4.2 Retrieving records

 WORKING-STORAGE SECTION.

 �1 SAVED-DBKEYS.

�5 SAVE-EMP-DBKEY PIC S9(8) COMP SYNC.

 PROCEDURE DIVISION.

 .

 A2��-GET-EMP-MANAGER.

��� RETRIEVE EMPLOYEES SEQUENTIALLY WITHIN SET ���

OBTAIN NEXT WITHIN DEPT-EMPLOYEE.

��� CHECK FOR ERROR-STATUS = �3�7 ���

 IF DB-END-OF-SET

GO TO A2��-EXIT

��� CHECK FOR ERROR-STATUS = ���� ���

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

��� SAVE EMPLOYEES' DB-KEY ���

MOVE DBKEY TO SAVE-EMP-DBKEY.
 PERFORM IDMS-STATUS.

MOVE EMP-ID-�415 TO EMP-ID-OUT.

MOVE EMP-FIRST-NAME-�415 TO EMP-FIRST-OUT.

MOVE EMP-LAST-NAME-�415 TO EMP-LAST-OUT.

IF REPORTS-TO IS EMPTY

DISPLAY 'EMPLOYEE ' EMP-ID-�415 'HAS NO MANAGER'

GO TO A2��-EXIT.

FIND FIRST WITHIN REPORTS-TO.

 PERFORM IDMS-STATUS.

��� ACCESS MANAGER'S EMPLOYEE RECORD ���

OBTAIN OWNER WITHIN MANAGES.

 PERFORM IDMS-STATUS.

MOVE EMP-FIRST-NAME-�415 TO MANAGER-FIRST-OUT.

MOVE EMP-LAST-NAME-�415 TO MANAGER-LAST-OUT.

��� REESTABLISH EMPLOYEE CURRENCY TO ���

��� CONTINUE WALKING THE DEPT-EMPLOYEE SET ���

FIND EMPLOYEE DB-KEY IS SAVE-EMP-DBKEY.
 PERFORM IDMS-STATUS.
 A2��-EXIT.

 EXIT.

Example of record access by db-key and page-info: The program excerpt
below shows using a db-key and page-info to reestablish currency.

Note: Use this example only when the subschema includes areas that have mixed
page groups.

This application walks the DEPT-EMPLOYEE set, printing a report of all employees
and their managers. After accessing the manager's EMPLOYEE record, the FIND
DB-KEY statement is used to reestablish the correct EMPLOYEE record as current of
the DEPT-EMPLOYEE set.

Chapter 4. Navigational DML Programming Techniques 4-17

4.2 Retrieving records

 WORKING-STORAGE SECTION.

 �1 SAVED-DBKEY-PAGEINFO.

�5 SAVE-EMP-DBKEY PIC S9(8) COMP SYNC.

�5 SAVE-EMP-PAGEINFO PIC S9(8) COMP SYNC.

 PROCEDURE DIVISION.

 .

 A2��-GET-EMP-MANAGER.

��� RETRIEVE EMPLOYEES SEQUENTIALLY WITHIN SET ���

OBTAIN NEXT WITHIN DEPT-EMPLOYEE.

��� CHECK FOR ERROR-STATUS = �3�7 ���

 IF DB-END-OF-SET

GO TO A2��-EXIT

��� CHECK FOR ERROR-STATUS = ���� ���

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

��� SAVE EMPLOYEES' DB-KEY and PAGE-INFO ���

MOVE DBKEY TO SAVE-EMP-DBKEY.
MOVE PAGE-INFO TO SAVE-EMP-PAGEINFO.

 PERFORM IDMS-STATUS.

MOVE EMP-ID-�415 TO EMP-ID-OUT.

MOVE EMP-FIRST-NAME-�415 TO EMP-FIRST-OUT.

MOVE EMP-LAST-NAME-�415 TO EMP-LAST-OUT.

IF REPORTS-TO IS EMPTY

DISPLAY 'EMPLOYEE ' EMP-ID-�415 'HAS NO MANAGER'

GO TO A2��-EXIT.

FIND FIRST WITHIN REPORTS-TO.

 PERFORM IDMS-STATUS.

��� ACCESS MANAGER'S EMPLOYEE RECORD ���

OBTAIN OWNER WITHIN MANAGES.

 PERFORM IDMS-STATUS.

MOVE EMP-FIRST-NAME-�415 TO MANAGER-FIRST-OUT.

MOVE EMP-LAST-NAME-�415 TO MANAGER-LAST-OUT.

��� REESTABLISH EMPLOYEE CURRENCY TO ���

��� CONTINUE WALKING THE DEPT-EMPLOYEE SET ���

FIND DB-KEY IS SAVE-EMP-DBKEY PAGE-INFO SAVE-EMP-PAGEINFO.
 PERFORM IDMS-STATUS.
 A2��-EXIT.

 EXIT.

4.2.8 Accessing indexed records

Indexes provide an efficient means of accessing member record occurrences. You can
retrieve member records in indexed sets as if they were member records in nonindexed
sets.

The table below lists the retrieval statements that you can use with indexed records.

4-18 CA-IDMS Navigational DML Programming

4.2 Retrieving records

Example of accessing an indexed record: The program excerpt below shows
retrieval of all records in the EMP-NAME-NDX (a system-owned indexed set).

The EMP-NAME-NDX set is sorted in ascending order on EMP-LAST-NAME and
EMP-FIRST-NAME; this program produces an alphabetical list of all employees.

 PROCEDURE DIVISION.

 A���-MAIN-LINE.

 .

 .

 .

PERFORM A���-GET-NDX-SET THRU A���-EXIT

 UNTIL DB-END-OF-SET.

 PERFORM END-PROCESSING.

 GOBACK.

 A���-GET-NDX-SET.

��� SEQUENTIALLY RETRIEVE EMPLOYEES INDEXED BY LAST NAME ���
OBTAIN NEXT EMPLOYEE WITHIN EMP-NAME-NDX.

��� CHECK FOR ERROR-STATUS = �3�7 ���
 IF DB-END-OF-SET

GO TO A���-EXIT
��� CHECK FOR ERROR-STATUS = ���� ���

ELSE IF DB-STATUS-OK
 NEXT SENTENCE
 ELSE
 PERFORM IDMS-STATUS.
 DISPLAY EMP-ID-�415

 EMP-LAST-NAME-�415

 EMP-FIRST-NAME-�415.

 A���-EXIT.

 EXIT.

Retrieving the key without the record: To retrieve the db-key and symbolic key
of an indexed record without retrieving the record itself, perform the following steps:

1. Initialize variable storage fields, as required.

2. Issue the RETURN statement.

3. If you are issuing the RETURN statement iteratively, check for an
ERROR-STATUS of 1707; if you are doing a generic-key search, check for an
ERROR-STATUS of 1726.

4. Perform the IDMS-STATUS routine if 1726, 1707, or 0000 is not returned.

Retrieval statement Restrictions

FIND/OBTAIN CURRENT WITHIN SET option only

FIND/OBTAIN RECORD WITHIN SET option only

FIND/OBTAIN USING SORT KEY Sorted indexed sets only

FIND/OBTAIN OWNER OBTAIN not allowed for system-owned
indexes

RETURN Db-key and symbolic key only

Chapter 4. Navigational DML Programming Techniques 4-19

4.2 Retrieving records

Using the RETURN statement: The RETURN statement establishes currency in
the indexed set and moves the record's symbolic key into the data fields within the
record in program variable storage. Alternatively, you can move the record's symbolic
key into some other specified variable-storage location.

Example of using RETURN: The program excerpt below uses the RETURN
statement to establish indexed set currency.

This program establishes currency in the EMP-NAME-NDX set by using the RETURN
statement to perform a generic-key search. It checks for the ERROR-STATUS 1726
(record not found), and retrieves all employees whose last name begins with the letter
N or greater.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 INDEX-ITEMS.

�3 DB-KEY-V PIC S9(8) COMP SYNC.

�3 INDEX-START-POINT PIC X(15) VALUE 'N '.

 PROCEDURE DIVISION.

 A���-MAIN-LINE.

 .

 .

 .

MOVE INDEX-START-POINT TO INDEX-KEY-VALUE.
RETURN DB-KEY-V FROM EMP-NAME-NDX

 USING INDEX-START-POINT.
IF ERROR-STATUS = '1726' THEN

 NEXT SENTENCE
ELSE IF DB-STATUS-OK

 NEXT SENTENCE
 ELSE
 PERFORM IDMS-STATUS.

PERFORM A���-GET-NDX-SET THRU A���-EXIT

 UNTIL DB-END-OF-SET.

 FINISH.

 GOBACK.

 A���-GET-NDX-SET.

OBTAIN NEXT EMPLOYEE WITHIN EMP-NAME-NDX.

��� CHECK FOR ERROR-STATUS = �3�7 ���

 IF DB-END-OF-SET

GO TO A���-EXIT

��� CHECK FOR ERROR-STATUS = ���� ���

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

 DISPLAY EMP-ID-�415

 EMP-LAST-NAME-�415

 EMP-FIRST-NAME-�415.

 A���-EXIT.

 EXIT.

4-20 CA-IDMS Navigational DML Programming

4.2 Retrieving records

4.2.9 Moving contents of a record occurrence

To move the contents of a specified record occurrence from the page buffer to
program variable storage, perform the following steps:

1. Ensure that the following currencies are established:

■ The specified record occurrence must have been established as current of
record type by a previous FIND statement.

■ The record must be established as current of run unit.

2. Issue the GET statement.

3. Perform the IDMS-STATUS routine if the DBMS returns a nonzero value.

Variable-length records: In most cases, using OBTAIN to retrieve a record's data
or using FIND (with no GET) to establish position is enough to satisfy your processing
needs. However, using FIND followed by GET can save I/O in the case of
variable-length records. FINDing a variable-length record fills the page buffers with
only the root segment, thus saving the additional I/O needed to access all of its
fragments. If necessary, you can issue the GET statement later in the program to
transfer the data to program variable storage. You should only use the FIND/GET
combination to retrieve a record that you may not need.

Example of moving record contents: The program excerpt below uses the GET
statement to move the contents of the EMPOSITION record from the page buffers to
program variable storage. This application uses the FIND/GET combination to access
only those EMPOSITION records owned by the specified JOB record.

Chapter 4. Navigational DML Programming Techniques 4-21

4.2 Retrieving records

 WORKING-STORAGE SECTION.

 �1 JOB-DBKEY PIC S9(8) COMP.

 �1 MATCH-DBKEY PIC S9(8) COMP.

 .

 .

 .

 PROCEDURE DIVISION.

 .

 .

 .

PERFORM A1��-GET-EMP-JOB THRU A1��-EXIT

 UNTIL END-OF-FILE.

 .

 .

 .

 A1��-GET-EMP-JOB.

MOVE GETEMP-ID-IN TO EMP-ID-�415.

OBTAIN CALC EMPLOYEE.

��� CHECK FOR ERROR-STATUS = �326 ���

 IF DB-REC-NOT-FOUND

DISPLAY 'EMP NOT FOUND: ' GETEMP-ID-IN

GO TO A1��-GET-NEXT

��� CHECK FOR ERROR-STATUS = ���� ���

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

MOVE GETJOB-ID-IN TO JOB-ID-�44�.

OBTAIN CALC JOB.

��� CHECK FOR ERROR-STATUS = �326 ���

 IF DB-REC-NOT-FOUND

DISPLAY 'JOB NOT FOUND: ' GETJOB-ID-IN

GO TO A1��-GET-NEXT

��� CHECK FOR ERROR-STATUS = ���� ���

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

��� SAVE JOB DB-KEY ���

MOVE DBKEY TO JOB-DBKEY.

IF EMP-EMPOSITION IS EMPTY

DISPLAY 'EMP-EMPOSITION IS EMPTY FOR: ' GETEMP-ID-IN

GO TO A1��-GET-NEXT

 ELSE

PERFORM A2��-LOOP THRU A2��-EXIT.

 A1��-GET-NEXT.

READ GET-FILE-IN AT END MOVE 'Y' TO EOF-SW.

 A1��-EXIT.

 EXIT.

 A2��-LOOP.

4-22 CA-IDMS Navigational DML Programming

4.2 Retrieving records

FIND NEXT WITHIN EMP-EMPOSITION.
��� CHECK FOR ERROR-STATUS = �3�7 ���

 IF DB-END-OF-SET

GO TO A2��-EXIT

��� CHECK FOR ERROR-STATUS = ���� ���

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

��� ACCESS DB-KEY OF OWNER IN JOB-EMPOSITION SET ���

ACCEPT MATCH-DBKEY FROM JOB-EMPOSITION

 OWNER CURRENCY.

 IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

��� IF DB-KEYS ARE NOT EQUAL, LOOP AND TRY AGAIN ���

IF JOB-DBKEY NOT = MATCH-DBKEY

 THEN

GO TO A2��-LOOP

 ELSE

 NEXT SENTENCE.

��� IF DB-KEYS ARE EQUAL, ACCESS THE EMPOSITION DATA ���
 GET EMPOSITION.

IF NOT DB-STATUS-OK
 PERFORM IDMS-STATUS

ELSE NEXT SENTENCE.

 PERFORM A3��-PRINT-DATA.

 A2��-EXIT.

 EXIT.

 .

 .

 .

Chapter 4. Navigational DML Programming Techniques 4-23

4.3 Saving db-key, page information and bind addresses

4.3 Saving db-key, page information and bind addresses

Retrieving a record by using its db-key is the most efficient form of retrieval. If you
know that you will use a record later in your program, you should save its db-key in
order to reaccess the record by using db-key retrieval. In certain circumstances a
db-key used to access a record may require qualification by record type or page
information. You can save page information when saving a db-key or by issuing a
DML request.

�� For information about direct access to a record, see 4.2.7, “Accessing a record by
its db-key” on page 4-15 earlier in this chapter.

�� For more information about db-key qualification, see 2.3, “Db-keys and page
information” on page 2-11.

ACCEPT statements (also called save statements) transfer db-keys, page information
and storage-addresses from the DBMS to program variable storage. These statements
are an efficient means of obtaining information at runtime since they cause no database
I/O.

Saving a db-key, page information and a bind address are explained below.

4.3.1 Saving a db-key

You can retrieve a db-key using one of these methods:

■ Accepting the db-key of a current record. You can retrieve the db-key of the
record that is current of run unit, record type, set, or area using the ACCEPT
DB-KEY FROM CURRENCY statement.

Note: You can also retrieve the db-key of the record that is current of run unit
from the DBKEY field of the IDMS communications block. You can also
retrieve the page information of the record that is current of run unit from
the PAGE-INFO field of the IDMS communications block.

■ Accepting a db-key relative to the current record. You can use an ACCEPT
DB-KEY RELATIVE TO CURRENCY statement to retrieve the db-key of the
NEXT, PRIOR, or OWNER record relative to the current record of set.

Steps in saving a db-key: To save a db-key, perform the following steps:

1. Establish the appropriate currency for the required record.

2. Perform one of the following steps:

■ If the required record is current of run unit, move the DBKEY field in the
IDMS communications block to a variable storage field defined as a binary
fullword (COBOL PIC S9(8) COMP SYNC).

■ If the required record is relative to the current of run unit, issue either
the ACCEPT DBKEY FROM CURRENCY or the ACCEPT DBKEY
RELATIVE TO CURRENCY statement, storing the saved db-key in a

4-24 CA-IDMS Navigational DML Programming

4.3 Saving db-key, page information and bind addresses

variable storage field defined as a binary fullword (COBOL PIC S9(8) COMP
SYNC).

3. Perform the IDMS-STATUS routine if the DBMS returns a nonzero value.

CAUTION:
You should not save db-keys or page information outside of the program because
these values can change if the database is unloaded and reloaded, if record
occurrences are erased or if an area is assigned to a different group.

Example of using db-keys: The program excerpt below shows a program that
compares db-keys. The first db-key is acquired from the IDMS communications
block, the second by using an ACCEPT DB-KEY statement.

This application compares the db-key of each JOB record with JOB owner db-keys in
EMPOSITION records in the JOB-EMPOSITION set. When the db-keys match, the
program accesses the EMPOSITION information by issuing a GET statement.

Chapter 4. Navigational DML Programming Techniques 4-25

4.3 Saving db-key, page information and bind addresses

 WORKING-STORAGE SECTION.

 �1 JOB-DBKEY PIC S9(8) COMP.

 �1 MATCH-DBKEY PIC S9(8) COMP.

 .

 .

 .

 PROCEDURE DIVISION.

 .

 .

 .

PERFORM A1��-GET-EMP-JOB THRU A1��-EXIT

 UNTIL END-OF-FILE.

 .

 .

 .

 A1��-GET-EMP-JOB.

MOVE GETEMP-ID-IN TO EMP-ID-�415.

OBTAIN CALC EMPLOYEE.

��� CHECK FOR ERROR-STATUS = �326 ���

 IF DB-REC-NOT-FOUND

DISPLAY 'EMP NOT FOUND: ' GETEMP-ID-IN

GO TO A1��-GET-NEXT

��� CHECK FOR ERROR-STATUS = ���� ���

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

MOVE GETJOB-ID-IN TO JOB-ID-�44�.

OBTAIN CALC JOB.

��� CHECK FOR ERROR-STATUS = �326 ���

 IF DB-REC-NOT-FOUND

DISPLAY 'JOB NOT FOUND: ' GETJOB-ID-IN

GO TO A1��-GET-NEXT

��� CHECK FOR ERROR-STATUS = ���� ���

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

��� SAVE JOB DB-KEY ���
MOVE DBKEY TO JOB-DBKEY.
IF EMP-EMPOSITION IS EMPTY

DISPLAY 'EMP-EMPOSITION IS EMPTY FOR: ' GETEMP-ID-IN

GO TO A1��-GET-NEXT

 ELSE

PERFORM A2��-LOOP THRU A2��-EXIT.

4-26 CA-IDMS Navigational DML Programming

4.3 Saving db-key, page information and bind addresses

 A1��-GET-NEXT.

READ GET-FILE-IN AT END MOVE 'Y' TO EOF-SW.

 A1��-EXIT.

 EXIT.

 A2��-LOOP.

FIND NEXT WITHIN EMP-EMPOSITION.

��� CHECK FOR ERROR-STATUS = �3�7 ���

 IF DB-END-OF-SET

GO TO A2��-EXIT

��� CHECK FOR ERROR-STATUS = ���� ���

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

��� ACCESS DB-KEY OF OWNER IN JOB-EMPOSITION SET ���
ACCEPT MATCH-DBKEY FROM JOB-EMPOSITION

 OWNER CURRENCY.
 IF DB-STATUS-OK
 NEXT SENTENCE
 ELSE
 PERFORM IDMS-STATUS.
��� IF DB-KEYS ARE NOT EQUAL, LOOP AND TRY AGAIN ���

IF JOB-DBKEY NOT = MATCH-DBKEY
 THEN

GO TO A2��-LOOP
 ELSE
 NEXT SENTENCE.
��� IF DB-KEYS ARE EQUAL, ACCESS THE EMPOSITION DATA ���

 GET EMPOSITION.

IF NOT DB-STATUS-OK

 PERFORM IDMS-STATUS

ELSE NEXT SENTENCE.

 PERFORM A3��-PRINT-DATA.

 A2��-EXIT.

 EXIT.

 .

 .

 .

Inferring information: For indexed sets and chained sets with prior pointers, the
ACCEPT DB-KEY RELATIVE TO CURRENCY statement can also be used to infer
information, as shown in the program excerpt below.

This application erases all DEPARTMENT records that contain less than two
EMPLOYEE records. The first ACCEPT statement tests for zero EMPLOYEE
records; the second ACCEPT statement tests for one.

Chapter 4. Navigational DML Programming Techniques 4-27

4.3 Saving db-key, page information and bind addresses

 WORKING-STORAGE SECTION.

 �1 SAVED-DBKEYS.

�5 NEXT-DEPT-EMP-DBKEY PIC S9(8) COMP SYNC.

�5 PRIOR-DEPT-EMP-DBKEY PIC S9(8) COMP SYNC.

 PROCEDURE DIVISION.

 A1��-LEAN-AND-FAST.

OBTAIN FIRST DEPARTMENT WITHIN ORG-DEMO-REGION.

��� CHECK FOR ERROR-STATUS = �3�7 ���

IF DB-END-OF-SET THEN

GO TO EMPTY-AREA

 ELSE

 PERFORM IDMS-STATUS.

PERFORM A2��-ACCEPT-AND-TEST THRU A2��-EXIT

 UNTIL DB-END-OF-SET.

 FINISH.

 GOBACK.

 A2��-ACCEPT-AND-TEST.

��� RETRIEVE NEXT DB-KEY ���
ACCEPT NEXT-DEPT-EMP-DBKEY FROM

DEPT-EMPLOYEE NEXT CURRENCY.
 PERFORM IDMS-STATUS.
��� CHECK FOR EMPTY SET ���
��� IF DB-KEYS ARE THE SAME, THE SET IS EMPTY ���

IF NEXT-DEPT-EMP-DBKEY = DBKEY THEN
ERASE DEPARTMENT PERMANENT

 PERFORM IDMS-STATUS
GO TO A2��-GET-NEXT.

��� CHECK FOR ONE-MEMBER SET ���
ACCEPT PRIOR-DEPT-EMP-DBKEY FROM

DEPT-EMPLOYEE PRIOR CURRENCY.
 PERFORM IDMS-STATUS.
��� IF DB-KEYS ARE THE SAME, THE SET HAS ONE MEMBER ���

IF NEXT-DEPT-EMP-DBKEY =
 PRIOR-DEPT-EMP-DBKEY THEN

ERASE DEPARTMENT PERMANENT
 PERFORM IDMS-STATUS

GO TO A2��-GET-NEXT
 ELSE

GO TO A2��-GET-NEXT.
 A2��-GET-NEXT.

OBTAIN NEXT DEPARTMENT WITHIN ORG-DEMO-REGION.

��� CHECK FOR ERROR-STATUS = �3�7 ���

IF DB-END-OF-SET THEN

GO TO A2��-EXIT

 ELSE

 PERFORM IDMS-STATUS.

 A2��-EXIT.

 EXIT.

4.3.2 Saving page information

You can retrieve page information using one of these methods:

■ Moving the page information of the record that is current of run unit from the
PAGE-INFO field of the IDMS communications block.

■ Accepting page information for a record type by using an ACCEPT PAGE-INFO
statement.

4-28 CA-IDMS Navigational DML Programming

4.3 Saving db-key, page information and bind addresses

Steps in saving page information: To save page information, perform the
following steps:

1. If the required record is current of run unit, move the PAGE-INFO field of the
IDMS communications block to a variable storage field.

2. If you know the record type for which page information is desired:

■ Issue the ACCEPT PAGE-INFO statement, storing the output in a variable
storage field.

■ Perform the IDMS-STATUS routine if the DBMS returns a nonzero value.

The variable storage field used to hold page information can either be defined as a
binary fullword field (COBOL PIC S9(8) COMP SYNC) or as a group item consisting
of two contiguous binary halfwords. In COBOL this might look as:

�1 <group-field-name>.

�2 <page-group-field-name> PIC S9(4) COMP SYNC.

�2 <dbkey-radix-field-name> PIC S9(4) COMP SYNC.

The latter definition enables the components of the page information to be accessed
independently.

CAUTION:
You should not save page information outside of the program because the value
can change if the database is unloaded and reloaded or if an area is assigned to a
different page group.

Example of using page information: The following example retrieves the page
information for the DEPARTMENT record and uses the db-key radix to separate a
db-key's page and line numbers.

Chapter 4. Navigational DML Programming Techniques 4-29

4.3 Saving db-key, page information and bind addresses

WORKING-STORAGE SECTION.

 �1 W-DBKEY PIC S9(8) COMP SYNC.

 �1 W-PAGE PIC S9(8) COMP SYNC.

 �1 W-LINE PIC S9(8) COMP SYNC.

 �1 W-VAL PIC S9(8) COMP SYNC.

 �1 W-PG-INFO.

�2 W-GRP-NUM PIC S9(4) COMP SYNC.

�2 W-DBK-FORMAT PIC S9(4) COMP SYNC.

 .

 .

 .

 PROCEDURE DIVISION.

 .

 .

 .

��� SAVE PAGE INFORMATION FOR THE DEPARTMENT RECORD TYPE ���

ACCEPT W-PG-INFO FOR DEPARTMENT.
 IF DB-STATUS-OK
 NEXT SENTENCE
 ELSE
 PERFORM IDMS-STATUS.
��� COMPUTE WORK VALUE ���

MOVE 2 TO W-VAL.

SUBTRACT 1 FROM W-DBK-FORMAT.

PERFORM COMP-WORK W-DBK-FORMAT TIMES.

��� COMPUTE PAGE AND LINE NUMBERS ���

COMPUTE W-PAGE = W-DBKEY / W-VAL.

COMPUTE W-LINE = W-DBKEY - (W-PAGE�W-VAL).

 .

 .

 .

 COMP-WORK SECTION.

MULTIPLY W-VAL BY 2.

4.3.3 Saving a record's BIND address

To access a database record from a subprogram, you may need to know its storage
address. You can use the ACCEPT BIND ADDRESS statement to acquire the storage
address of a record that was bound in the calling program.

Because the ACCEPT BIND ADDRESS statement returns a storage address, it is
typically used with subroutines written in either assembler or PL/I.

�� For more information on the ACCEPT BIND ADDRESS statement, refer to the
language-specific CA-IDMS DML reference manual.

4-30 CA-IDMS Navigational DML Programming

4.4 Checking for set membership

4.4 Checking for set membership

When accessing the database, you may find it necessary to obtain information about an
owner or member record's set-membership status. To obtain set-specific information
for a record occurrence, use the IF statement. By using the IF statement, you can
determine:

■ If the current occurrence of a specified set contains any member record
occurrences (Is it empty?)

■ If the current record of run unit participates as a member in a specified set defined
with either the optional or the manual set membership option (Is it currently
connected to an occurrence of the specified set?)

Each IF statement contains a conditional phrase and an imperative statement that
specifies further action based on the outcome of the evaluation.

Native VSAM users: The IF statement is not allowed for sets defined with member
records that are stored in native VSAM data sets.

Use of the IF EMPTY statement and the IF MEMBER statement is discussed below.

4.4.1 Using the IF EMPTY statement

After you have retrieved the owner record in a set, you can issue the IF EMPTY
statement to determine if the set owns any member record occurrences. This allows
you to control processing based on whether the set is empty.

Steps in determining if a set is empty: To determine if a set is empty, perform
the following steps:

1. Establish currency for the set.

2. Issue the IF EMPTY statement.

3. Perform further processing as specified.

Note: The IF EMPTY statement always performs I/O to determine if the first record
in the set has been logically deleted.

How to avoid an OBTAIN: You can also use the IF EMPTY statement to
eliminate the need for using an OBTAIN FIRST WITHIN SET statement to walk a
set, as illustrated in the program excerpt below.

Because the IF EMPTY statement determines that the set is not empty, you can be
assured that the program can read at least one EMPLOYEE record before an
ERROR-STATUS of 0307 (DB-END-OF-SET) is returned.

Chapter 4. Navigational DML Programming Techniques 4-31

4.4 Checking for set membership

 .

 .

 .

IF DEPT-EMPLOYEE IS EMPTY

MOVE NO-EMP-MESSAGE TO TITLE-OUT

 ELSE

PERFORM A1��-DEPT-EMP-WALK THRU A1��-EXIT

 UNTIL DB-END-OF-SET.

A1��-DEPT-EMP-WALK.

OBTAIN NEXT WITHIN DEPT-EMPLOYEE.

 .

 .

 .

4.4.2 Using the IF MEMBER statement

If the current record of run unit participates as a member in a set defined with either
the optional or the manual set membership option, you cannot assume that that record
occurrence is also current of set. For example, an optional record may never have
been connected to the set, or a manual record may have been disconnected from the
set.

�� For more information about optional and manual set membership, see 3.3.3, “Set
membership options” on page 3-10.

Failure to test for set membership: The figure below shows the invalid
conclusion that can result from not testing for set membership.

Since EMPLOYEE 480 is not currently connected to an occurrence of the
OFFICE-EMPLOYEE set, the OBTAIN OWNER statement retrieves the owner of the
current record of set (OFFICE 3). This leads to the invalid assumption that
EMPLOYEE 480 works in OFFICE 3.

4-32 CA-IDMS Navigational DML Programming

4.4 Checking for set membership

 R. U. Record Set Area
 curr. currencies currencies currencies
 ┌─────┐┌─────┬─────┬─────┐┌─────┬─────┐┌─────┬─────┐

│ R ││ D │ E │ O ││ D │ O ││ O │ E │

│ U ││ E │ M │ F ││ E │ F ││ R │ M │

│ N ││ P │ P │ F ││ P │ F ││ G │ P │

│ ││ A │ L │ I ││ T │ I ││ - │ - │

│ U ││ R │ O │ C ││ - │ C ││ D │ D │

│ N ││ T │ Y │ E ││ E │ E ││ E │ E │

│ I ││ M │ E │ ││ M │ - ││ M │ M │

│ T ││ E │ E │ ││ P │ E ││ O │ O │

│ ││ N │ │ ││ L │ M ││ - │ - │

│ ││ T │ │ ││ O │ P ││ R │ R │

│ ││ │ │ ││ Y │ L ││ E │ E │

│ ││ │ │ ││ E │ O ││ G │ G │

│ ││ │ │ ││ E │ Y ││ I │ I │

│ ││ │ │ ││ │ E ││ O │ O │

│ ││ │ │ ││ │ E ││ N │ N │

│ ││ │ │ ││ │ ││ │ │

┌────────────────────────┼─────┼┼─────┼─────┼─────┼┼─────┼─────┼┼─────┼─────┤

│PREVIOUSLY ESTABLISHED │52�� ││52�� │ 477 │ 3 ││52�� │ 477 ││ 477 │ 52��│

│CURRENCIES │ ││ │ │ ││ │ ││ │ │

├────────────────────────┼─────┼┼─────┼─────┼─────┼┼─────┼─────┼┼─────┼─────┤

│OBTAIN FIRST WITHIN │ 48� ││52�� │ 48� │ 3 ││ 48� │ 477 ││ 48� │ 52��│

│DEPT-EMPLOYEE. │ ││ │ │ ││ │ ││ │ │

├────────────────────────┼─────┼┼─────┼─────┼─────┼┼─────┼─────┼┼─────┼─────┤

│OBTAIN OWNER WITHIN │ 3 ││52�� │ 48� │ 3 ││ 48� │ 3 ││ 48� │ 3 │

│OFFICE-EMPLOYEE. │ ││ │ │ ││ │ ││ │ │

└────────────────────────┴─────┴┴─────┴─────┴─────┴┴─────┴─────┴┴─────┴─────┘

Steps in testing for set membership: You can issue the IF MEMBER statement
to ensure that a record occurrence currently participates as a member of a specified set.

To determine if a record participates as a member in a set, perform the following
steps:

1. Establish run unit currency for the specified member record.

2. Issue the IF MEMBER statement.

3. Perform further processing, as specified

The program excerpt below uses the IF EMPTY and the IF MEMBER statements to
facilitate database navigation.

The IF EMPTY statement determines if the DEPT-EMPLOYEE set is empty; the IF
MEMBER statement determines whether the current of run unit (EMPLOYEE)
participates as a member in the OFFICE-EMPLOYEE set.

Chapter 4. Navigational DML Programming Techniques 4-33

4.4 Checking for set membership

 PROCEDURE DIVISION.

 .

 .

 .

 A1��-EMP-DEPT-OFF.

MOVE DEPT-ID-IN TO DEPT-ID-�41�.

OBTAIN CALC DEPARTMENT

 IF DB-REC-NOT-FOUND

GO TO GET-NEXT

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

��� TEST TO SEE IF SET IS EMPTY ���
IF DEPT-EMPLOYEE IS EMPTY

MOVE NO-EMP-MESSAGE TO TITLE-OUT
 ELSE

PERFORM A1��-WALK THRU A1��-EXIT
 UNTIL DB-END-OF-SET.
 A1��-WALK.

OBTAIN NEXT WITHIN DEPT-EMPLOYEE.

��� CHECK FOR ERROR-STATUS = �3�7 ���

 IF DB-END-OF-SET

GO TO A1��-EXIT

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

��� TEST TO SEE IF EMPLOYEE IS CURRENTLY CONNECTED TO THE SET ���
IF NOT OFFICE-EMPLOYEE MEMBER

MOVE NO-OFF-MESSAGE TO TITLE-OUT
 ELSE

OBTAIN OWNER WITHIN OFFICE-EMPLOYEE
 PERFORM IDMS-STATUS

MOVE OFFICE-ADDRESS-�45� TO ADDRESS-OUT.
 PERFORM U1��-PRINT.

 A1��-EXIT.

 EXIT.

4-34 CA-IDMS Navigational DML Programming

4.5 Updating the database

4.5 Updating the database

DML modification statements update record occurrences in the database. By using
these statements, which are discussed separately on the following pages, you can:

■ Store a new record occurrence in the database

■ Modify the contents of an existing record

■ Erase a record from the database

■ Connect a member record to a set

■ Disconnect a member record from a set

 4.5.1 Storing records

To add a record occurrence in the database, perform the following steps:

1. Specify a subschema that includes:

■ All sets in which the stored record is defined as an automatic member

■ The owner record of each of the required automatic sets

Note: Sets for which the stored record is defined as a manual member need not
be defined in the subschema because the STORE statement does not
access those sets. (An automatic member is connected automatically to the
selected set occurrence when the record is stored; a manual member is not
connected automatically to the selected set occurrence.)

2. Ready all affected areas in one of the update usage modes (for more information,
see 2.4.4, “Area usage modes” on page 2-18).

Areas should be readied whether they are affected explicitly or implicitly (for
example, as owner of a mandatory automatic set whose members are being
stored).

3. Initialize the following variable storage fields:

■ All CALC, index, sort-key, and data fields

■ If the record being stored has a location mode of DIRECT, initialize the
contents of the DIRECT-DBKEY field in the IDMS communications block
with a suggested db-key value or a null db-key value of -1.

■ If the record is to be stored in a native VSAM relative-record data set
(RRDS), initialize the contents of the DIRECT-DBKEY field with the relative
record number that represents the location within the data set where the record
is to be stored.

4. Establish currency for all set occurrences in which the stored record will
participate as an automatic member. Depending on the set order, the stored record
occurrence is positioned as follows:

Chapter 4. Navigational DML Programming Techniques 4-35

4.5 Updating the database

■ If the named record is defined as a member of a set that is ordered
FIRST or LAST, the record that is current of set establishes the set
occurrence to which the new record will be connected.

■ If the named record is defined as a member of a set that is ordered
NEXT or PRIOR, the record that is current of set establishes the set
occurrence into which the new record will be connected and determines its
position within the set.

■ If the named record is defined as a member of a sorted set, the record that
is current of set establishes the set occurrence into which the new record will
be connected. The DBMS compares the sort key of the new record with the
sort key of the current record of set to determine if the new record can be
inserted into the set by movement in the next direction. If it can, the current
of set remains positioned at the record that is current of set and the new
record is inserted. If it cannot, the DBMS finds the owner of the current of
set (not necessarily the current occurrence of the owner record type) and
moves as far forward in the next direction as is necessary to determine the
logical insertion point for the new record.

If the record being stored has a location mode of VIA, currency must be
established for that VIA set, regardless of whether the record being stored is an
automatic or manual member of that set. Current of the VIA set provides the
suggested page for the record being stored.

5. Issue the STORE command.

6. Perform the IDMS-STATUS routine if the DBMS returns a nonzero value.

What STORE does: STORE performs the following functions:

■ Acquires space and assigns a database key for a new record occurrence in the
database

■ Transfers the value of the appropriate elements from program variable storage to
the space acquired for the record occurrence in the database

■ Connects the new record occurrence to all sets for which it is defined as an
automatic member

The program excerpt below shows storing records in the database.

The program establishes the proper DEPARTMENT and OFFICE currencies and stores
the new EMPLOYEE record.

4-36 CA-IDMS Navigational DML Programming

4.5 Updating the database

 PROCEDURE DIVISION.

 .

 READ NEW-EMP-FILE-IN.

AT END MOVE 'Y' TO EOF-SW.

PERFORM A3��-STORE-EMP THRU A3��-EXIT

 UNTIL END-OF-FILE.

 FINISH.

 GOBACK.

 A3��-STORE-EMP.

MOVE DEPT-ID-IN TO DEPT-ID-�41�.

��� ESTABLISH CORRECT DEPARTMENT CURRENCY ���

FIND CALC DEPARTMENT.

��� CHECK FOR ERROR-STATUS = �326 ���

 IF DB-REC-NOT-FOUND

 THEN DISPLAY

'DEPARTMENT ' DEPT-ID-IN ' NOT FOUND'

'FOR NEW EMPLOYEE ID ' EMP-ID-IN

GO TO A3��-GET-NEXT

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

MOVE OFFICE-CODE-IN TO OFFICE-CODE-�45�.

��� ESTABLISH CORRECT OFFICE CURRENCY ���

FIND CALC OFFICE.

��� CHECK FOR ERROR-STATUS = �326 ���

 IF DB-REC-NOT-FOUND

 THEN DISPLAY

'OFFICE ' OFFICE CODE-IN ' NOT FOUND'

'FOR NEW EMPLOYEE ID ' NEW-EMP-ID

GO TO A3��-GET-NEXT

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

 PERFORM B3��-INITIALIZE-EMPLOYEE.

��� STORE EMPLOYEE RECORD ���
 STORE EMPLOYEE.
 PERFORM IDMS-STATUS.
 PERFORM U5��-WRITE-NEW-EMP-REPORT.

 A3��-GET-NEXT.

 READ NEW-EMP-FILE-IN

AT END MOVE 'Y' TO EOF-SW.

 A3��-EXIT.

 EXIT.

 4.5.2 Modifying records

To change a record occurrence in the database, perform the following steps:

1. Ready all affected areas in one of the update usage modes (for more information,
see 2.4.4, “Area usage modes” on page 2-18).

Areas should be readied whether they are affected explicitly or implicitly (for
example, as owner of a mandatory automatic set whose members are being
modified).

2. Establish the specified record as current of run unit by issuing either a FIND or an
OBTAIN statement.

3. Change the variable-storage fields of the record to be modified.

Chapter 4. Navigational DML Programming Techniques 4-37

4.5 Updating the database

When using FIND, be sure to initialize all the appropriate values of the record to
be modified. The best practice, however, is to use the OBTAIN statement to
ensure that all the elements in the modified record are present in variable storage.

4. Issue the MODIFY command.

5. Perform the IDMS-STATUS routine if the DBMS returns a nonzero value.

CALC and sort key considerations: The following special considerations apply
to the modification of CALC- and sort-keys:

■ If modification of a CALC- or sort-key will violate a duplicates-not-allowed
option, the record is not modified and an error condition results.

■ If a CALC-key is modified, successful execution of the MODIFY statement
enables the record to be accessed on the basis of its new CALC-key value. The
db-key of the specified record is not changed.

■ If a sort-key is to be modified, the sorted set in which the specified record
participates must be included in the subschema invoked by the program. A record
occurrence that is a member of a set not defined in the subschema can be
modified if the undefined set is not sorted.

■ If any of the modified elements in the specified record are defined as sort keys for
any set occurrence in which that record is currently a member, the DBMS tests
that set occurrence to ensure that set order is maintained. If necessary, the DBMS
disconnects the specified record and reconnects it in the set occurrence to maintain
the set order specified in the schema.

Native VSAM considerations: The length of a record in an entry-sequenced data
set (ESDS) cannot be changed even in the case of variable-length records.

The prime key for a key-sequenced data set (KSDS) cannot be modified.

Example of modifying records: The program excerpt below modifies records in
the database.

The program retrieves the specified EMPLOYEE record and modifies the address and
phone number. This program issues a COMMIT statement after every 100 updates.
COMMIT releases all implicit exclusive locks and writes a checkpoint to the log file.

4-38 CA-IDMS Navigational DML Programming

4.5 Updating the database

 WORKING-STORAGE SECTION.

 �1 COMMIT-COUNTER PIC S9(4) COMP VALUE +�.

 PROCEDURE DIVISION.

 .

 READ NEW-EMP-ADDRESS-FILE-IN.

AT END MOVE 'Y' TO EOF-SW.

PERFORM A3��-CHANGE-ADDRESS THRU A3��-EXIT

 UNTIL END-OF-FILE.

 FINISH.

 GOBACK.

 A3��-CHANGE-ADDRESS.

MOVE EMP-ID-IN TO EMP-ID-�415.

��� RETRIEVE EMPLOYEE RECORD ���

OBTAIN CALC EMPLOYEE.

��� CHECK FOR ERROR-STATUS = �326 ���

 IF DB-REC-NOT-FOUND

 THEN DISPLAY

'EMPLOYEE ' EMP-ID-IN ' NOT FOUND'

GO TO A3��-GET-NEXT

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

 PERFORM U5��-WRITE-OLD-ADDRESS.

��� CHANGE DATA AND ISSUE THE MODIFY STATEMENT ���
MOVE NEW-ADDRESS-IN TO EMP-ADDRESS-�415.

 MOVE NEW-PHONE-IN TO EMP-PHONE-�415.
 MODIFY EMPLOYEE.
 PERFORM IDMS-STATUS.

ADD 1 TO COMMIT-COUNTER.
IF COMMIT-COUNTER > 1�� THEN

 COMMIT
 PERFORM IDMS-STATUS

MOVE � TO COMMIT-COUNTER.

 PERFORM U�51�-WRITE-NEW-ADDRESS.

 A3��-GET-NEXT.

 READ NEW-EMP-ADDRESS-FILE-IN

AT END MOVE 'Y' TO EOF-SW.

 A3��-EXIT.

 EXIT.

 4.5.3 Erasing records

To delete a record occurrence from the database, perform the following steps:

1. Specify a subschema that includes the following:

■ All sets in which the specified record participates as owner either directly or
indirectly (for example, as owner of a set with a member that is owner of
another set)

■ All member record types in the sets specified above

2. Ready all affected areas in one of the update usage modes (for more information,
see 2.4.4, “Area usage modes” on page 2-18).

Areas should be readied whether they are affected explicitly or implicitly (for
example, as owner of a mandatory automatic set whose members are being
erased).

3. Establish the specified record as current of run unit.

Chapter 4. Navigational DML Programming Techniques 4-39

4.5 Updating the database

4. Issue the ERASE command.

5. Perform the IDMS-STATUS routine if the DBMS returns a nonzero value.

What ERASE does: The ERASE statement performs the following functions:

■ Disconnects the specified record from all set occurrences in which it participates
as a member and logically or physically deletes the record from the database

■ Optionally erases all records that are mandatory members of set occurrences
owned by the specified record

■ Optionally disconnects or erases all records that are optional members of set
occurrences owned by the specified record

ERASE is a two-step procedure that first cancels the existing membership of the
named record in specific set occurrences and then releases for reuse the space occupied
by the named record and its db-key. Erased records are unavailable for further
processing by any DML statement.

Currencies after an ERASE: Following successful execution of an ERASE
statement:

■ Currency is nullified for all record types involved in the erase, both explicitly and
implicitly.

■ Currency is preserved for run unit and area.

■ Next, prior, and owner currencies are preserved for sets from which the last record
occurrence was erased. These currencies enable you to retrieve the next or prior
records within the area or the next, prior, or owner records within the set in which
the erased record participated.

ERASE statement with no options: To issue the ERASE statement with no
options:

■ The record must be current of run unit.

■ All sets in which the record participates as owner must be empty (that is, an error
condition will result if this version of the ERASE statement is attempted against
an owner record that has any member occurrences).

In the illustration below, an ERASE TCHR statement with no options disconnects the
shaded occurrence (SPIRO TUTUO) from membership in the DEPT-TCHR set and
then erases the record occurrences. This statement executes without error because the
TCHR-CLASS set owned by record occurrence SPIRO TUTUO is an empty set (he
doesn't have any classes).

4-40 CA-IDMS Navigational DML Programming

4.5 Updating the database

ERASE options: You can qualify the ERASE statement with these options to
specify how the ERASE statement affects member occurrences:

 ■ PERMANENT

 ■ SELECTIVE

 ■ ALL

ERASE PERMANENT: ERASE PERMANENT erases the specified record and all
mandatory member record occurrences owned by the specified record. Optional
member records are disconnected. If any of the erased mandatory members are
themselves the owners of any set occurrences, they are erased as if they were directly
the object record of an ERASE PERMANENT statement (that is, all mandatory
members of such sets are also erased). This process continues until all direct and
indirect members have been processed.

In the illustration below, currency has been set on the FOREIGN LANGUAGES
occurrence of the DEPT record, and an ERASE DEPT PERMANENT statement has
been issued. All subjects are erased because they are mandatory members of the
DEPT-SUBJ set. All classes are also erased because they are mandatory members of
the SUBJ-CLASS set. However, since membership in DEPT-TCHR is optional,
members of the set owned by FOREIGN LANGUAGES are disconnected, not erased.

Chapter 4. Navigational DML Programming Techniques 4-41

4.5 Updating the database

ERASE SELECTIVE: ERASE SELECTIVE erases the specified record and all
mandatory member record occurrences owned by the specified record. Optional
member records are erased if they do not currently participate as members in other set
occurrences. All erased member records that are themselves the owners of any set
occurrences are treated as if they were the object of an ERASE SELECTIVE
statement.

In the illustration below, currency has been set on the WON HAN occurrence of the
TCHR record, and an ERASE TCHR SELECTIVE statement has been issued. Since
WON HAN was the owner of two occurrences of the TCHR-CLASS set, an ERASE
statement without an option would fail. The SELECTIVE option prevents these
occurrences from being erased because they currently participate in another set
(SUBJ-CLASS). This means, in effect, that the department still offers the classes even
though the teacher is gone.

4-42 CA-IDMS Navigational DML Programming

4.5 Updating the database

ERASE ALL: ERASE ALL erases the specified record and all mandatory and
optional member record occurrences owned by the specified record. All erased
member records that are themselves the owners of any set occurrences are treated as if
they were the object record of an ERASE ALL statement.

In the illustration below, currency has been set on the WON HAN occurrence of the
TCHR record, and an ERASE TCHR ALL statement has been issued. Since WON
HAN was the owner of two occurrences of the TCHR-CLASS set, the ERASE ALL
statement erases these member occurrences. This means, in effect, that when the
teacher leaves the department, his classes are dropped.

Chapter 4. Navigational DML Programming Techniques 4-43

4.5 Updating the database

4.5.4 Connecting records to a set

To connect a record to a set or to reconnect a record that has been disconnected from
a set, perform the following steps:

1. Ready all affected areas in one of the update usage modes (for more information,
see 2.4.4, “Area usage modes” on page 2-18).

Areas should be readied whether they are affected explicitly or implicitly (for
example, as owner of a set whose members are being connected).

2. Establish the following currencies:

■ The specified record must be current of its record type.

■ The occurrence of the set into which the specified record will be connected
must be current of set. If set order is NEXT or PRIOR, current of set also
determines the position at which the specified record will be connected within
the set.

3. Issue the CONNECT command; CONNECT establishes the specified record
occurrence as a member of a set occurrence.

4. Perform the IDMS-STATUS routine if the DBMS returns a nonzero value.

The specified record must previously have been either stored (manual membership) or
disconnected (optional membership).

4-44 CA-IDMS Navigational DML Programming

4.5 Updating the database

Native VSAM users: The CONNECT statement is not valid since all sets in native
VSAM files must be defined as mandatory automatic.

4.5.5 Disconnecting records from a set

To cancel the membership of a record occurrence in a set occurrence defined with the
optional set membership option, perform the following steps:

1. Ready all affected areas in one of the update usage modes (for more information,
see 2.4.4, “Area usage modes” on page 2-18).

Areas should be readied whether they are affected explicitly or implicitly (for
example, as owner of a set whose members are being disconnected).

2. Establish the following currencies:

■ The specified record must be current of its record type.

■ The specified record must currently participate as a member in an occurrence
of the named set.

3. Issue the DISCONNECT statement.

4. Perform the IDMS-STATUS routine if the DBMS returns a nonzero value.

Accessing a disconnected record: Following successful execution of the
DISCONNECT statement, you cannot access the record through the set for which
membership was canceled. You can still access the record in the following ways:

■ Through an area sweep

■ By using its db-key

■ Through any other sets in which it still participates

■ If it has a location mode of CALC, by using its CALC key

Currencies after a DISCONNECT: Although a successfully executed
DISCONNECT statement nullifies currency in the specified set, the DBMS maintains
next, prior (if specified), and owner currencies so you can still issue the OBTAIN
NEXT, PRIOR, or OWNER WITHIN SET statements.

Native VSAM users: The DISCONNECT statement is not valid because all sets in
native VSAM files must be defined as mandatory automatic.

Example of disconnecting and connecting records: The program excerpt
below disconnects and subsequently reconnects EMPLOYEE records in the
DEPT-EMPLOYEE set.

Employees have been transferred to another department. The program ensures that
both the new and the old departments exist before disconnecting the EMPLOYEE
record from the old DEPT-EMPLOYEE set and connecting it to the new
DEPT-EMPLOYEE set.

Chapter 4. Navigational DML Programming Techniques 4-45

4.5 Updating the database

 DATA DIVISION.

 FILE SECTION.

 FD DEPT-TRANSFER-FILE.

 �1 TRANS-EMP-REC-IN.

 �2 NEW-DEPT-ID-IN PIC 9(4).

 �2 OLD-DEPT-ID-IN PIC 9(4).

 �2 EMP-ID-IN PIC 9(4).

 WORKING-STORAGE SECTION.

 �1 SWITCHES.

 �5 EOF-SW PIC X VALUE 'N'.

 88 END-OF-FILE VALUE 'Y'.

 �1 CONNECT-DBKEY PIC S9(8) COMP SYNC.

 PROCEDURE DIVISION.

 .

 READ DEPT-TRANSFER-FILE

AT END MOVE 'Y' TO EOF-SW.

PERFORM A3��-DISCONNECT-EMP THRU A3��-EXIT

 UNTIL END-OF-FILE.

 FINISH.

 GOBACK.

 A3��-DISCONNECT-EMP.

MOVE NEW-DEPT-ID-IN TO DEPT-ID-�41�.

FIND CALC DEPARTMENT.

��� IF ERROR-STATUS = �326, NEW DEPT ID IS INVALID ���

 IF DB-REC-NOT-FOUND

 DISPLAY

'NEW DEPARTMENT ' NEW-DEPT-ID-IN ' NOT FOUND'

'FOR EMPLOYEE ID ' EMP-ID-IN

GO TO A3��-GET-NEXT

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

��� SAVE NEW DEPT DB-KEY TO REOBTAIN RECORD LATER ���

MOVE DBKEY TO CONNECT-DBKEY.

 PERFORM IDMS-STATUS.

MOVE OLD-DEPT-ID-IN TO DEPT-ID-�41�.

FIND CALC DEPARTMENT.

��� IF ERROR-STATUS = �326, OLD DEPT ID IS INVALID ���

 IF DB-REC-NOT-FOUND

 DISPLAY

'OLD DEPARTMENT ' OLD-DEPT-ID-IN ' NOT FOUND'

'FOR EMPLOYEE ID ' EMP-ID-IN '

GO TO A3��-GET-NEXT

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

MOVE EMP-ID-IN TO EMP-ID-�415.

OBTAIN CALC EMPLOYEE.

4-46 CA-IDMS Navigational DML Programming

4.5 Updating the database

��� IF ERROR-STATUS = �326, EMP ID IS INVALID ���

 IF DB-REC-NOT-FOUND

 DISPLAY

'EMPLOYEE ' EMP-ID-IN ' NOT FOUND'

'FOR OLD DEPARTMENT ' OLD-DEPT-ID-IN

'��� NEW DEPARTMENT ' NEW-DEPT-ID-IN

GO TO A3��-GET-NEXT

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

��� CHECK IF EMPLOYEE IS A MEMBER IN DEPT-EMPLOYEE SET ���

IF NOT DEPT-EMPLOYEE MEMBER

 DISPLAY

'EMPLOYEE ' EMP-ID-IN

'NOT CONNECTED TO DEPARTMENT ' OLD-DEPT-ID-IN

GO TO A3��-GET-NEXT.

DISCONNECT EMPLOYEE FROM DEPT-EMPLOYEE.
 PERFORM IDMS-STATUS.
��� REACCESS NEW DEPARTMENT USING ITS DB-KEY ���

FIND DEPARTMENT DB-KEY IS CONNECT-DBKEY.

 PERFORM IDMS-STATUS.

CONNECT EMPLOYEE TO DEPT-EMPLOYEE.
 PERFORM IDMS-STATUS.

Chapter 4. Navigational DML Programming Techniques 4-47

4.6 Locking records

 4.6 Locking records

You can explicitly place a shared or exclusive lock on a record that is current of run
unit, record, set, or area. You should place explicit locks on records for the following
reasons:

■ To ensure later access to a specified record occurrence because implicit locks are
released due to additional navigation (that is, to prevent other run units from
placing an exclusive lock on the occurrence)

■ To ensure exclusive access to a specified record occurrence (that is, to prevent
other run units from accessing the occurrence in any way)

Steps in locking records: To place an explicit lock on a record, perform the
following steps:

1. Establish the appropriate run unit, record, set, or area currency.

2. Issue the KEEP statement.

3. Perform the IDMS-STATUS routine if the DBMS returns a nonzero value.

How long locks are held: The DBMS maintains record locks until the next
COMMIT, FINISH, or ROLLBACK statement.

Alternatively, you can use the KEEP option of the FIND/OBTAIN statement to place
locks on records as they are retrieved.

�� For more information on shared and exclusive locks, see 2.4.2, “Record locks” on
page 2-13.

Example of using KEEP to lock a record: The program excerpt below shows
the use of the KEEP statement in a program that connects and disconnects records.

The program places an explicit shared lock on the new DEPARTMENT record
occurrence to prevent other run units from modifying it and to guarantee access later
in the program.

4-48 CA-IDMS Navigational DML Programming

4.6 Locking records

 A3��-DISCONNECT-EMP.

MOVE NEW-DEPT-ID-IN TO DEPT-ID-�41�.

FIND CALC DEPARTMENT.

��� IF ERROR-STATUS = �326, NEW DEPT ID IS INVALID ���

 IF DB-REC-NOT-FOUND

 DISPLAY

'NEW DEPARTMENT ' NEW-DEPT-ID-IN ' NOT FOUND'

'FOR EMPLOYEE ID ' EMP-ID-IN

GO TO A3��-GET-NEXT

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

��� LOCK NEW DEPARTMENT TO ENSURE THAT ���
��� OTHER RUN UNITS DO NOT MODIFY IT ���

KEEP CURRENT DEPARTMENT.
��� SAVE NEW DEPT DB-KEY TO REOBTAIN RECORD LATER ���

MOVE DBKEY TO CONNECT-DBKEY.

 PERFORM IDMS-STATUS.

MOVE OLD-DEPT-ID-IN TO DEPT-ID-�41�.

FIND CALC DEPARTMENT.

��� IF ERROR-STATUS = �326, OLD DEPT ID IS INVALID ���

 IF DB-REC-NOT-FOUND

 DISPLAY

'OLD DEPARTMENT ' OLD-DEPT-ID-IN ' NOT FOUND'

'FOR EMPLOYEE ID ' EMP-ID-IN '

GO TO A3��-GET-NEXT

ELSE IF DB-STATUS-OK

 NEXT SENTENCE

 ELSE

 PERFORM IDMS-STATUS.

MOVE EMP-ID-IN TO EMP-ID-�415.

OBTAIN CALC EMPLOYEE.

��� IF ERROR-STATUS = �326, EMP ID IS INVALID ���

 IF DB-REC-NOT-FOUND

 DISPLAY

'EMPLOYEE ' EMP-ID-IN ' NOT FOUND'

'FOR OLD DEPARTMENT ' OLD-DEPT-ID-IN

'��� NEW DEPARTMENT ' NEW-DEPT-ID-IN

GO TO A3��-GET-NEXT

 ELSE

 PERFORM IDMS-STATUS.

Chapter 4. Navigational DML Programming Techniques 4-49

4-50 CA-IDMS Navigational DML Programming

Chapter 5. Advanced DML Programming Topics

5.1 About this chapter . 5-3
5.2 Copying record definitions and their synonyms 5-4
5.3 Accessing bill-of-materials structures . 5-6

5.3.1 Storing a bill-of-materials structure . 5-6
5.3.2 Retrieving a bill-of-materials structure 5-8

Chapter 5. Advanced DML Programming Topics 5-1

5-2 CA-IDMS Navigational DML Programming

5.1 About this chapter

5.1 About this chapter

This chapter explains how to direct the precompiler to copy records from the
dictionary and how to access a bill-of-materials structure in the database.

Chapter 5. Advanced DML Programming Topics 5-3

5.2 Copying record definitions and their synonyms

5.2 Copying record definitions and their synonyms

Typically, you copy subschema records into variable storage using the primary name
given by the DBA either in the schema or through IDD (and then copying the record
into a schema). Synonyms are alternative names for existing dictionary entities. A
given file, record, or element can contain multiple names through the use of IDD
synonyms. This allows all programs that use that record to access the same data
description in the dictionary.

Uses of synonyms: Synonyms are typically used for the following reasons:

■ To allow you to copy schema-owned records into a program whose
subschema is not associated with that schema. If a record has been copied into
a schema, it can be copied only into a program that uses a subschema associated
with that schema; for example:

COPY IDMS RECORD EMPLOYEE.

However, if your program uses a subschema that is not associated with that
schema, you can copy a synonym that has been defined for the record. To copy a
synonym, specify a VERSION clause:

COPY IDMS RECORD EMPLOYEE VERSION 1��.

■ To allow different programming languages to access the same record
definition. For example, in Assembler the EMPLOYEE record can be defined as
EMPLOYE; in FORTRAN, EMPLOY; and so on.

Note: The precompiler for PL/I automatically converts hyphens to underscores.
That is, you define schema and IDD records with hyphens:

INCLUDE IDMS (PLITEST-REC);

The precompiler converts them to underscores:
DMLP INCLUDE IDMS (PLITEST-REC);

 DECLARE 1 PLITEST_REC,

2 PLITEST_ELEM CHARACTER (3);

Terminology for using synonyms: You should be familiar with the following
terms:

■ Schema-owned refers to any record that is defined in the schema.

■ IDD-defined refers to any record that is defined using the DDDL compiler that
has not been included in a schema.

■ Mode refers to the operating mode of your program (that is, BATCH, IDMS-DC,
DC-BATCH, CICS, and so on). IDD-defined records can be assigned one of
these modes, a mode of NON-MODESPECIFIC, or no mode attribute at all.

■ Language attribute refers to the optional attribute that can be included in
IDD-defined records and synonyms. For example, LANGUAGE IS COBOL,
LANGUAGE IS PL/I, or LANGUAGE IS DC.

5-4 CA-IDMS Navigational DML Programming

5.2 Copying record definitions and their synonyms

How the precompiler performs COPY IDMS: When the precompiler selects
which record or synonym to copy into your program, it first checks to see if you have
specified a VERSION clause in the COPY command. If no VERSION clause is
given, a two-fold search is undertaken, first for a record associated with the subschema
and then, if the first test fails, for an IDD-defined record.

To determine if the specified record is associated with the subschema, the precompiler
performs the following steps:

1. Forms a table of records defined in the subschema and their synonyms. This
table contains all records copied into the subschema and, for every record copied,
the names of its synonyms not copied into another subschema.

2. Searches this table to match the name of the record in the COPY statement.
If a match is found, that record is copied in; if no match is found, the search
continues as described below.

If you specify a VERSION clause or if the test listed above fails, the precompiler
assumes that the record is an IDD-defined record and performs the following steps:

1. Forms a table of IDD-defined records and their synonyms. This table contains
all IDD-defined records that have a synonym that matches the name listed in the
COPY request.

2. Checks the VERSION clause. If a VERSION clause is given, the record's
version must match or another record is chosen as described in step 1. If no
VERSION clause is given, the record with the highest version meeting all the
given criteria is chosen.

3. Checks the builder code. The record candidate is tested for being either
schema-owned (builder code of S) or a subschema view (builder code of V). If
either is true, another record is chosen as described in step 1. If neither is true,
the candidate is chosen and the record is copied into the program.

4. Checks the language attribute. If the record has a language attribute matching
that of the compiler being used (for example, PL/I), the record remains a
candidate. Also, a record that has no language associated with it remains a
candidate.

5. Checks the mode. The mode associated with the record is compared with the
operating mode specified in the program. If they match, the test continues. If
there is no record with a match on mode, then a search is made for a record with
a mode of NON-MODESPECIFIC. If there is no record with a match on
NON-MODESPECIFIC, a record is searched for that has no mode associated with
it. If no record is found, another record is chosen as described in step 1.

Chapter 5. Advanced DML Programming Topics 5-5

5.3 Accessing bill-of-materials structures

5.3 Accessing bill-of-materials structures

A bill-of-materials structure is a relationship between record occurrences of the same
type. This structure is derived from the manufacturing environment where it is used to
demonstrate relationships between parts: a part can be a component of another part and
a part can contain other parts as its components.

This structure is typically represented as a many-to-many relationship (that is, by using
two sets and a junction record).

Example of a bill-of-materials structure: In the EMPLOYEE database, a
bill-of-materials structure signifies relationships between managers and subordinates:
an employee can manage other employees through the MANAGES set, and can also
be managed by other employees through the REPORTS-TO set.

The figure below shows this bill-of-materials structure. The STRUCTURE record
serves as the junction record between employees and their managers. Note that one
set is defined with the automatic set membership option and the other is defined with
the manual set membership option.

 ┌──────────────────────────────┐

 │ EMPLOYEE │

 ├─────┬─────┬──────┬───────────┤

│ 415 │ F │ 116 │ CALC │

 ├─────┴─────┴──────┴─────┬─────┤

 │ EMP-ID-�415 │ DN │

 ├────────────────────────┴─────┤

 │ EMP-DEMO-REGION │

 └───────────┬──────┬───────────┘

 │ │

REPORTS-TO │ │ MANAGES

NPO OM NEXT │ │ NPO MA NEXT

 │ │

 │ │

 ┌───────────↓──────↓───────────┐

 │ STRUCTURE │

 ├─────┬─────┬──────┬───────────┤

│ 44� │ F │ 3 │ VIA │

 ├─────┴─────┴──────┴─────┬─────┤

 │ MANAGES │ │

 ├────────────────────────┴─────┤

 │ EMP-DEMO-REGION │

 └──────────────────────────────┘

5.3.1 Storing a bill-of-materials structure

To store a bill-of-materials structure in the database, perform the following steps:

1. Set run-unit currency at the owner record in the automatic set:

MOVE 15 TO EMP-ID-�415.

OBTAIN CALC EMPLOYEE.

2. Initialize and store the junction record:

PERFORM A1��-INITIALIZE-STRUCTURE.

STORE STRUCTURE.

5-6 CA-IDMS Navigational DML Programming

5.3 Accessing bill-of-materials structures

The DBMS automatically connects the STRUCTURE record to the automatic set
(MANAGES); EMPLOYEE 15 is now defined as the manager in the
bill-of-materials structure.

3. Set run-unit currency at the owner record in the manual set:

MOVE 467 TO EMP-ID-�415.

OBTAIN CALC EMPLOYEE.

4. Connect the junction record to the manual set:

CONNECT STRUCTURE TO REPORTS-TO.

The bill-of-materials structure is now complete; EMPLOYEE 467 reports to
EMPLOYEE 15.

Example of storing a bill-of-materials structure: The figure below shows the
steps and currencies involved in storing an occurrence of a bill-of-materials structure.

To define EMPLOYEE 15 as the manager of EMPLOYEE 467, store and connect a
STRUCTURE record as a member of the two EMPLOYEE records: EMPLOYEE 15
in the MANAGES set and EMPLOYEE 467 in the REPORTS-TO set.

Chapter 5. Advanced DML Programming Topics 5-7

5.3 Accessing bill-of-materials structures

5.3.2 Retrieving a bill-of-materials structure

A bill-of-materials structure can contain a variable number of levels. Tracing all
records under a given record (for example, finding a manager and all subordinates, and
all of their subordinates, and so on) is called an explosion of the structure for that
record. Tracing all records above a given record (for example, finding an employee
and manager, and the manager's manager, and so on) is called an implosion of the
structure for that record.

To perform a multi-level explosion or implosion, you must maintain a stack of db-keys
in order to reestablish the appropriate currencies.

Steps to retrieve one bill-of-materials level: To retrieve a manager and one
level of employees, perform the following steps:

1. Retrieve the manager's EMPLOYEE record:

MOVE 15 TO EMP-ID-�415.

OBTAIN CALC EMPLOYEE.

2. Retrieve the first STRUCTURE record in the MANAGES set:

FIND NEXT STRUCTURE WITHIN MANAGES.

3. Because REPORTS-TO is defined as OM, you must test for set membership:

IF NOT REPORTS-TO MEMBER

GO TO A1��-EXIT.

4. Retrieve the owner EMPLOYEE record in the REPORTS-TO set:

OBTAIN OWNER WITHIN REPORTS-TO.

5. FIND the current STRUCTURE record to reestablish the original currency within
the MANAGES set:

FIND CURRENT STRUCTURE.

6. Retrieve the next STRUCTURE record in the MANAGES set:

FIND NEXT STRUCTURE WITHIN MANAGES.

Perform steps 3 through 6 iteratively until step 6 returns a status of 0307
(DB-END-OF-SET).

Example of one bill-of-materials level: The figure below shows the relationship
between manager and employees by showing all the employees managed by employee
15.

5-8 CA-IDMS Navigational DML Programming

5.3 Accessing bill-of-materials structures

Steps to retrieve additional levels: To retrieve an EMPLOYEE record, its
manager's EMPLOYEE record, its manager's manager, and so on, perform the
following steps:

1. Retrieve the specified EMPLOYEE record:

MOVE 91 TO EMP-ID-�415.

OBTAIN CALC EMPLOYEE.

2. Retrieve the STRUCTURE record in the REPORTS-TO set:

FIND NEXT STRUCTURE WITHIN REPORTS-TO.

IF ERROR-STATUS = '�3�7'

GO TO A1��-EXIT.

Chapter 5. Advanced DML Programming Topics 5-9

5.3 Accessing bill-of-materials structures

3. Optionally, test the junction record for predetermined criteria (for example, if you
only want managers for a specific project). Testing for selection criteria in the
junction record can prevent looping if there are any circular structures defined.

4. Retrieve the owner EMPLOYEE record in the MANAGES set:

OBTAIN OWNER EMPLOYEE WITHIN MANAGES.

Perform steps 2 through 4 iteratively until step 2 returns a status of 0307,
indicating that the REPORTS-TO set is empty.

Example of retrieving additional levels: The figure below shows the
relationship between an employee and all managers on the P2 project by showing the
hierarchy of managers above EMPLOYEE 91 on the project.

5-10 CA-IDMS Navigational DML Programming

Chapter 6. Introduction to Online Programming

6.1 About this chapter . 6-3
6.2 DC as an operating system . 6-4
6.3 Transaction and task processing . 6-5
6.4 Pseudoconversational programming . 6-6
6.5 Performance considerations . 6-9
6.6 Error handling . 6-10
6.7 Using the IDMS communications block 6-11

Chapter 6. Introduction to Online Programming 6-1

6-2 CA-IDMS Navigational DML Programming

6.1 About this chapter

6.1 About this chapter

CA-IDMS provides the teleprocessing monitor DC, which is fully integrated with
CA-IDMS database services (DB) and the CA-IDMS dictionary (IDD). DC enables
your online application to request data communications and database functions through
DML statements.

Online applications typically involve interactive processing between a user and an
application. Because online programs are interactive, they require certain
programming strategies that differ from the strategies employed in batch programming.

This chapter reviews the following online programming considerations:

■ DC as an operating system — DC functions as an operating system within an
operating system.

■ Transaction and task processing — Transactions and tasks are the logical units
of work in an online application.

■ Programming style — Pseudoconversational programming enables the DC system
to run more efficiently, thereby enabling optimal program response time.

■ Performance considerations — You should use CA-IDMS resources efficiently
in order to provide each user with an efficient work environment.

■ Error handling — Error handling is approached by displaying messages on the
terminal and allowing the user to resubmit the data.

■ Communication with DC — The IDMS communications block is the interface
between your program and DC.

Chapter 6. Introduction to Online Programming 6-3

6.2 DC as an operating system

6.2 DC as an operating system

DC functions as an operating system running under the main operating system
(OS/390, VSE/ESA, or BS2000/OSD). That is, the operating system perceives DC as
a long-running batch job. DC controls the concurrent execution of multiple application
programs and performs many other functions typically associated with the operating
system.

How DC services programs: Your program can also request DC to perform
functions that are typically handled automatically by the operating system. Such
functions include:

■ System-control functions — A program can request DC to perform many
system-control functions typically associated with the operating system, including:

– Loading programs and tables

– Transferring control between programs

– Managing dynamic variable storage

– Synchronizing program execution by using events and resources

■ I/O functions — A program can request DC to transfer data between variable
storage and a terminal device or between variable storage and the database.

■ Scratch and queue functions — A program can request DC to store data in local
or system-wide areas for later access.

■ Utility functions — A program can request DC to perform various utility
functions such as obtaining task or system information, obtaining the current time,
writing printed reports, and sending messages.

6-4 CA-IDMS Navigational DML Programming

6.3 Transaction and task processing

6.3 Transaction and task processing

In online programming, your application is logically divided into transactions and
tasks.

Transaction: A transaction is a logical unit of work performed by the user.
Updating an employee record and adding a skill are two typical transactions.

Each transaction consists of one or more tasks, organized and executed to form a
logical unit of work.

Task: A task is a logical unit of work performed by the DC system. Processing
within a task is transparent to the user. Displaying a screen that solicits an employee
ID number is one typical task; reading that ID and retrieving the specified employee
information is another.

A task, which can consist of one or more programs, is invoked by a task code. The
user usually begins a transaction by typing the initial task code and pressing [Enter].
When a task finishes, it specifies the next task to be invoked on that terminal.

Chapter 6. Introduction to Online Programming 6-5

6.4 Pseudoconversational programming

 6.4 Pseudoconversational programming

The most efficient way of coding tasks and transactions is through
pseudoconversational programming. This technique uses a series of terminal tasks to
conduct a transaction; that is, each task terminates after soliciting information from the
user and specifying the next task to be invoked. The next task, which is initiated only
when the user presses an attention identifier (AID) key, accepts the operator response
and performs the specified processing.

Note: The AID keys are:

 [Enter]

 [Clear]

[PF1] through [PF24]

[PA1] through [PA3]

For details, see 7.2, “Mapping mode” on page 7-4.

While the user is entering data, all system resources (such as program or storage pool
space that the task might have been using) are available to other tasks.

Conversational programs: Conversational programs, unlike pseudoconversational
programs, solicit and accept information from the user and perform all other
processing in one task. While the user is entering data, (which may take seconds,
minutes, or hours) the task is executing; all resources held by the task are not available
to other tasks. The conversational approach to transaction processing is not
recommended.

Pseudoconversational programming considerations: The following
considerations apply to pseudoconversational programming:

■ You must identify the task to be started when the user presses an AID key. Your
program must include a DC RETURN request that specifies the NEXT TASK
CODE. For example, the following DC RETURN requests would be associated
with the pseudoconversational transaction illustrated in this program excerpt:

 EMPID program

 .

 .

 .

DC RETURN NEXT TASK CODE 'EINF'.

 EMPINFO program

 .

 .

 .

DC RETURN NEXT TASK CODE 'EMOD'.

 EMPMOD program

 .

 .

 .

 DC RETURN.

6-6 CA-IDMS Navigational DML Programming

6.4 Pseudoconversational programming

�� For more information on DC RETURN, see 9.2.1, “Returning to a higher level
program” on page 9-5.

■ Within pseudoconversational transactions, you may need to pass data from
program to program or from task to task. DC provides data management facilities
to maintain such data. However, the use of these facilities can involve trade-offs
among storage pool overhead, disk access speed, allocation of system resources,
and recovery procedures. For more information on DC data management
facilities, refer to Chapter 8, “Storage, Scratch, and Queue Management” on
page 8-1.

Pseudoconversational program example: The figure below shows the
pseudoconversational approach to transaction processing.

Processing associated with modifying passenger information is performed by three
tasks: EID, EINF, and EMOD. Until the user presses [Enter] (or any other AID key),
no task is executing and all system resources are available to other tasks in the DC
system.

Chapter 6. Introduction to Online Programming 6-7

6.4 Pseudoconversational programming

6-8 CA-IDMS Navigational DML Programming

6.5 Performance considerations

 6.5 Performance considerations

Because of the interactive and simultaneous nature of online applications, your
programs must do everything possible to ensure good system performance. Thus, good
response time will be available to all online applications running under the DC system.
A user should not have to wait more than a few seconds for each task to execute.

Efficiency factors: A well-written DC program provides fast response time to the
user and efficient resource usage to the DC system. The following considerations are
important factors in an efficient online application:

■ Save I/O by accessing the database in an efficient manner; use database keys,
CALC keys, and indexes whenever possible.

■ Minimize the data stream transmitted on terminal input and output operations.
Your program should send only the data necessary to perform a specified task.
For example, you should transmit literals to the terminal screen only on the initial
output operation and not on subsequent output operations.

■ Acquire storage dynamically whenever possible by using the GET STORAGE
command; release it as soon as possible by using the FREE STORAGE command.
This provides efficient use of the storage available in the DC system.

■ Minimize internal queuing and resource contention by acquiring the minimum
amount of storage necessary to execute your task.

Chapter 6. Introduction to Online Programming 6-9

6.6 Error handling

 6.6 Error handling

Because online processing is interactive, your program can inform the user of
erroneous data and require that a request be resubmitted. To avoid extra I/O, your
program should perform extensive error checking. This ensures that the data input by
the user is correct before attempting any database access. For example, you could
check that monetary fields are numeric and are within the range 0.00 to 100,000.00.

Automatic editing: If a map has enabled automatic editing, the runtime mapping
system can perform certain editing and error-handling functions.

�� For more information on automatic editing and error handling, refer to CA-IDMS
Mapping Facility.

6-10 CA-IDMS Navigational DML Programming

6.7 Using the IDMS communications block

6.7 Using the IDMS communications block

The IDMS communications block is the interface between your program and DC.
Whenever your program issues a call to DC, DC returns information about the
outcome of the requested service to the IDMS communications block.

The data description (identified as SUBSCHEMA-CTRL) of the IDMS
communications block is copied from the dictionary into program variable storage.
When you submit the program to the precompiler, the IDMS-DC communications
block is copied automatically unless you specify that records are to be copied
manually. In that case, your program explicitly copies in the data description from the
dictionary.

Assembler programmers: The IDMS communications block is not available in
Assembler. Assembler programs should check the value returned to register 15
to determine the result of a DC call. For more information, see Appendix B,
“Assembler Considerations” on page B-1.

IDMS communications block fields: You should take note of the following
IDMS communications block fields:

■ PROGRAM-NAME contains the name of the current program. It is a good
programming practice to initialize this field at the beginning of every program.

■ ERROR-STATUS contains a value that indicates the status of the last DML call.

■ DBKEY contains the db-key of the last database record accessed by the program.

■ SSC-ERRSTAT-SAVE contains a value that indicates the status of the DML call
that caused the program to be terminated.

■ SSC-DMLSEQ-SAVE contains the sequence number of the DML statement that
caused the program to be terminated (only if the precompiler option DEBUG is in
effect).

■ DML-SEQUENCE contains the sequence number of the last DML statement
executed by the program (only if the precompiler option DEBUG is in effect).

Checking the ERROR-STATUS field: Your program should examine the
ERROR-STATUS field in the IDMS-DC communications block after every CA-IDMS
DML call. COBOL and PL/I programs can check the ERROR-STATUS field by
using the IDMS-STATUS routine, which can be copied in from the dictionary.

Performing IDMS-STATUS: Your program should perform the IDMS-STATUS
routine after first checking for zeros and for any anticipated nonzero ERROR-STATUS
values. Under DC, this routine checks the ERROR-STATUS field for zeros and, on
finding a nonzero value, writes a memory dump of the IDMS communications block
and terminates the program.

COBOL programmers: CA-IDMS COBOL includes the AUTOSTATUS protocol.
AUTOSTATUS directs the precompiler to generate a PERFORM
IDMS-STATUS statement after every DML statement. Since all examples are

Chapter 6. Introduction to Online Programming 6-11

6.7 Using the IDMS communications block

in COBOL, PERFORM IDMS-STATUS is not coded in the sample programs,
nor is it listed in the programming steps.

Under AUTOSTATUS, you can check for a nonzero status by including an
ON clause at the end of a DML statement. If the specified status is returned,
the imperative statement included in the ON clause is executed; otherwise,
IDMS-STATUS is performed.

Because IDMS-STATUS is a COBOL SECTION, you should copy it into your
program using at least one of the following methods in order to avoid runtime errors:

■ Always PERFORM IDMS-STATUS THRU ISABEX.

■ Start a new SECTION after IDMS-STATUS.

■ Place IDMS-STATUS at the end of the program.

Example of performing IDMS-STATUS: The program excerpt below shows the
IDMS-STATUS routine used in CA-IDMS COBOL programs.

This routine checks the ERROR-STATUS field in the IDMS-DC communications
block for a value of zero (DB-STATUS-OK) to see whether the previously issued
DML statement was executed successfully. If a nonzero value is returned, the routine
snaps the subschema control block and abends the program.

��

 IDMS-STATUS SECTION.

��������������������� IDMS-STATUS FOR CA-IDMS/DC ��������������������

IF DB-STATUS-OK GO TO ISABEX.

 PERFORM IDMS-ABORT.

MOVE ERROR-STATUS TO SSC-ERRSTAT-SAVE.

MOVE DML-SEQUENCE TO SSC-DMLSEQ-SAVE.

SNAP FROM SUBSCHEMA-CTRL TO SUBSCHEMA-CTRL-END

 ON ANY-STATUS

 NEXT SENTENCE.

ABEND CODE SSC-ERRSTAT-SAVE

 ON ANY-STATUS

 NEXT SENTENCE.

 ISABEX. EXIT.

 DMLC-DC-GEN-GOBACK SECTION.

 GOBACK.

6-12 CA-IDMS Navigational DML Programming

 Chapter 7. Terminal Management

7.1 About this chapter . 7-3
7.2 Mapping mode . 7-4

7.2.1 Housekeeping . 7-5
7.2.2 Displaying screen output . 7-5
7.2.3 Reading screen input . 7-8
7.2.4 Modifying map options . 7-11
7.2.5 Writing and reading in one step . 7-12
7.2.6 Suppressing map error messages . 7-13
7.2.7 Testing for identical data . 7-14

7.3 Using pageable maps . 7-15
7.3.1 Pageable map format . 7-15
7.3.2 Conducting a map paging session . 7-17
7.3.3 How to code a browse application . 7-20
7.3.4 How to code an update application 7-23
7.3.5 Overriding automatic mapout for pageable maps 7-27

7.4 Line mode . 7-30
7.4.1 Beginning a line mode session . 7-30
7.4.2 Writing a line of data . 7-30
7.4.3 Reading a line of data . 7-32
7.4.4 Ending a line mode session . 7-33
7.4.5 3270-type considerations . 7-33

Chapter 7. Terminal Management 7-1

7-2 CA-IDMS Navigational DML Programming

7.1 About this chapter

7.1 About this chapter

DC terminal management functions enable your program to transfer data to and from
the terminal. You can use one of the following modes to transfer data:

■ Mapping mode transfers an entire screen of data on a field-by-field basis.
Mapping mode can be used only with 3270-type devices and glass TTYs that have
established device-independence tables.

■ Line mode transfers data one line at a time.

■ Basic mode transfers a variable amount of data, as specified in the program.

The table below compares the three types of terminal management.

�� For more information about basic mode, see 10.3, “Basic mode” on page 10-6.

Mode Data transfer Device-control
characters

Line-control
characters

Terminal
devices

Mapping Field-by-field DC-built DC-built 3270-type
and glass
TTYs

Line One line at a
time

DC-built DC-built Device
independent

Basic Data length
specified in the
program

Program DC-built Device
dependent

Chapter 7. Terminal Management 7-3

7.2 Mapping mode

 7.2 Mapping mode

In mapping mode, your program communicates with 3270-type terminal devices. DC
uses maps to associate screen positions on the terminal with fields in program variable
storage.

Example of map data fields: The EMPDISPM map below associates row 4,
column 24, with the EMP-ID-0415 field in variable storage; the map associates row 5,
column 24, with the EMP-LAST-NAME-0415 field, and so on.

� �

��� EMPLOYEE INFORMATION SCREEN ���

EMPLOYEE ID : ____

LAST NAME : ____________

FIRST NAME : ________________

ADDRESS : ________________

 : ____________

: __ __________

DEPARTMENT : ____________________

ENTER AN EMPLOYEE ID AND PRESS ENTER ��� PRESS CLEAR TO EXIT

� �

Creating a map: To transfer data in mapping mode, you must first create a map by
using either the online or batch compiler of the CA-IDMS mapping facility. You
associate map variable fields with either database records or IDD-defined work
records.

Maps are available as load modules to the DC runtime system. DC views map load
modules as programs.

Mapping mode terminal management: Using mapping mode terminal
management, you can perform the following functions:

■ Write data to a terminal screen

■ Read data input from a terminal screen and query the status of conditions related
to the input operation

■ Modify previously established map and map field options

■ Write unlimited detail occurrences that can be displayed one page at a time by
using a pageable map

7-4 CA-IDMS Navigational DML Programming

7.2 Mapping mode

Mapping terminology: You should understand the following terms related to maps:

■ Attribute byte — The nondisplayable byte that begins each map field at runtime.
The contents of the attribute byte determine the characteristics of the field (such as
protection and intensity). Attributes bytes are a 3270 feature.

■ Automatic editing and error handling — An optional map feature that can be
used to perform editing and error-handling functions at runtime. These functions
can compare input and output data with internal and external pictures, validate
data against edit tables, and encode or decode data through code tables.

■ Modified data tag (MDT) — The internal switch for a map data field that
indicates whether the value in that field has been changed by the user. Modified
data tags are a 3270 feature.

■ Write control character (WCC) — The internal character that holds various
specifications for the display of the map such as resetting the keyboard to allow
user input. Write control characters are a 3270 feature.

�� For a complete description of maps and map attributes, refer to CA-IDMS Mapping
Facility.

 7.2.1 Housekeeping

To define the map to the precompiler at compile time, and to establish addressability
to DC at runtime, you must perform certain mapping mode housekeeping functions:

■ Identify the map you want to use by including a MAP SECTION (COBOL), a
DECLARE MAP statement (PL/I), or the MAP parameter in the @INVOKE
statement (Assembler).

■ Copy the map request block (MRB) and the map records by including
compiler-directive statements in program variable storage.

■ Establish addressability between DC and the MRB by issuing a BIND MAP
statement.

■ Establish addressability to map records by issuing a BIND MAP RECORD
statement for each record defined for the map.

�� For more information on mapping mode housekeeping statements, refer to the
language-specific CA-IDMS DML reference manual.

7.2.2 Displaying screen output

To display a map on the terminal screen, perform the following steps:

1. Issue mapping mode housekeeping statements as described above.

2. Initialize variable-storage data fields as needed.

3. Transfer data from variable-storage data fields to map fields on the screen by
issuing a MAP OUT statement.

Chapter 7. Terminal Management 7-5

7.2 Mapping mode

You can also use the MAP OUT statement to transfer data between two
variable-storage data fields; this is referred to as a native mode data transfer.

�� For more information about native mode data transfers, refer to the
language-specific CA-IDMS DML reference manual.

�� Pageable maps have different output considerations. For more information, see 7.3,
“Using pageable maps” on page 7-15 later in this chapter.

Mapping considerations: You need to know about the following considerations
when writing a program that displays maps:

■ Sending informational messages to the user

■ Keeping the data stream short

■ Choosing asynchronous or synchronous processing

Sending informational messages: You can send a variety of messages to the
user's terminal, depending on the situation. For example, if the application is being
accessed for the first time, you might transmit the following message:

ENTER AN EMPLOYEE ID AND PRESS ENTER ���� PRESS CLEAR TO EXIT

You might send a different message with the same map at another time to indicate the
completion status of a task:

���� SPECIFIED EMPLOYEE CANNOT BE FOUND ����

COBOL and PL/I programmers: To avoid unpredictable results at runtime, specify
messages that are 100 bytes or less in length.

Keeping the data stream short: Because you want to promote the fastest
possible response time, an important programming consideration is the length of the
data stream transmitted to or from the terminal. You should ensure that your program
always transmits the smallest amount of data necessary to successfully complete a
mapping operation.

Ways to minimize the data stream include:

■ Avoid rewriting literals. If you are rewriting to the same map, there usually is
no need to retransmit literal fields. Specify the NEWPAGE and the LITERALS
options only on an initial map output.

■ Transmit only the attribute bytes. If your program determines that the user has
entered invalid data, you need not retransmit the invalid values; these values are
still listed on the terminal screen. Instead, you can specify OUTPUT DATA IS
ATTRIBUTE to transmit only the attribute bytes for map fields.

The ATTRIBUTE specification is useful when sending error messages to the
terminal because DC still transmits the data in the message field. For example,
you could minimize the data stream transmitted by coding the following MAP
OUT statement:

7-6 CA-IDMS Navigational DML Programming

7.2 Mapping mode

MAP OUT USING DEPTMAP

OUTPUT DATA IS ATTRIBUTE

MESSAGE IS ID-EDIT-ERROR-MESS TO ID-EDIT-ERROR-MESS-END.

If automatic editing and error handling are enabled and you use the ERROR
option of the MODIFY MAP statement, the ATTRIBUTE specification is
automatically invoked.

Synchronous and asynchronous processing: Mapping mode supports
synchronous and asynchronous map output operations:

■ During a synchronous map output request, DC places your task in an inactive
state until processing is complete.

To issue a synchronous map output request, specify the WAIT option of the MAP
OUT statement. This option allows you to ensure that the output request was
completed successfully before continuing program processing.

■ During an asynchronous map output request, DC returns control to your task
before the output processing is complete. Before issuing subsequent map output
requests, you must ensure that the first request is finished by issuing a CHECK
TERMINAL request. CHECK TERMINAL is a basic mode DML statement that
is described in 10.3, “Basic mode” on page 10-6.

To issue an asynchronous map output request, specify the NOWAIT option of the
MAP OUT statement.

You may want to specify NOWAIT if your program issues a MAP OUT just
before task termination. This causes DC to release a task's resources sooner. In
this case, however, you cannot issue the CHECK TERMINAL statement; you
won't be able to determine the completion status of the MAP OUT operation.

Example of an initial application screen: The program excerpt below displays
an application's initial screen. It initializes the EMP-ID-0415 field and displays the
screen, soliciting user input.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 TSK�2 PIC X(8) VALUE 'TSK�2'.

 �1 MESSAGES.

�5 INITIAL-MESSAGE PIC X(54) VALUE

'ENTER AN EMPLOYEE ID AND PRESS ENTER ��� CLEAR TO EXIT'.

 �5 INITIAL-MESSAGE-END PIC X.

 PROCEDURE DIVISION.

��� ESTABLISH ADDRESSABILITY TO MAP ���

BIND MAP SOLICIT.

��� ESTABLISH ADDRESSABILITY TO MAP RECORDS ���

BIND MAP SOLICIT RECORD EMPLOYEE.

BIND MAP SOLICIT RECORD DATE-WORK-REC.

MOVE ZERO TO EMP-ID-�415.

��� DISPLAY THE MAP ���
MAP OUT USING SOLICIT

 WAIT NEWPAGE
MESSAGE IS INITIAL-MESSAGE TO INITIAL-MESSAGE-END.

��� RETURN CONTROL TO CA-IDMS/DC NEXT TASK TSK�2 ���

 DC RETURN

NEXT TASK CODE TSK�2.

Chapter 7. Terminal Management 7-7

7.2 Mapping mode

7.2.3 Reading screen input

When the user finishes inputting data and presses an AID key, DC invokes the
specified input task. The task reads data from the screen and tests for certain input
conditions.

To transfer data from map fields on the terminal screen to the corresponding variable
storage data fields, perform the following steps:

1. Issue mapping mode housekeeping statements, as explained in 7.2.1,
“Housekeeping” on page 7-5 earlier in this chapter.

2. Transfer data from map fields on the terminal screen to variable-storage data fields
by issuing a MAP IN statement.

You can use the MAP IN statement to transfer data between two variable-storage data
fields; this is referred to as a native mode data transfer.

�� For more information about native mode data transfers, refer to the
language-specific CA-IDMS DML reference manual.

�� Pageable maps have different input considerations. For more information, see 7.3,
“Using pageable maps” on page 7-15 later in this chapter.

Example of reading input: The program excerpt below reads data from the
screen.

It transfers data from the terminal screen to map data fields in program variable
storage by issuing a MAP IN statement.

 PROCEDURE DIVISION.

��� ESTABLISH ADDRESSABILITY TO THE MAP ���

BIND MAP SOLICIT.

��� ESTABLISH ADDRESSABILITY TO THE MAP RECORDS ���

BIND MAP SOLICIT RECORD EMPLOYEE.

BIND MAP SOLICIT RECORD EMP-DATE-WORK-REC.

��� TRANSFER DATA FROM MAP DATA FIELDS TO VARIABLE STORAGE ���
MAP IN USING SOLICIT.

��� FURTHER PROCESSING OF ENTERED DATA ���

Testing for input conditions: After a MAP IN request, your program can inquire
about conditions related to the input operation. For example, you may need to perform
processing based on the AID key pressed by the user or determine if the user entered
data in a particular map data field.

To test for conditions related to a map input operation, issue an INQUIRE MAP
statement. By using this statement, you can obtain the following information:

■ The control key pressed.

■ The current cursor position.

■ Information on conditions regarding a map data field or group of map data fields:

7-8 CA-IDMS Navigational DML Programming

7.2 Mapping mode

– Is data present?

– Has data been modified?

– Has data been truncated?

– What is the entered length of a specific map input field?

■ Whether specified map fields are in error (the error flag has been set on for those
fields) or are correct (the error flag has been set off). This option applies only to
those maps and map fields for which automatic editing is enabled.

■ Whether the screen was formatted before the input operation was performed.

Frequent uses of the INQUIRE MAP statement are listed below:

■ To determine what control key was pressed. Typically, an application offers
various processing options to the user. Each option can be associated with a
control key. Your program should check the AID byte after every MAP IN
statement to determine the option chosen. The table below lists the AID
characters associated with each 3270-type control key.

Chapter 7. Terminal Management 7-9

7.2 Mapping mode

■ To ensure that necessary data has been entered. You should make sure that
the user has entered data in all fields necessary for successful processing.

Key AID character

[Enter] " ' " (single quote)

[Clear] '_' (underscore)

[PF1] '1'

[PF2] '2'

[PF3] '3'

[PF4] '4'

[PF5] '5'

[PF6] '6'

[PF7] '7'

[PF8] '8'

[PF9] '9'

[PF10] ':'

[PF11] '#'

[PF12] '@'

[PF13] 'A'

[PF14] 'B'

[PF15] 'C'

[PF16] 'D'

[PF17] 'E'

[PF18] 'F'

[PF19] 'G'

[PF20] 'H'

[PF21] 'I'

[PF22] '¢'

[PF23] '.'

[PF24] '<'

[PA1] '%'

[PA2] '>'

[PA3] ','

7-10 CA-IDMS Navigational DML Programming

7.2 Mapping mode

■ To determine if automatic editing and error-handling have detected any
errors. If input errors are detected, DC automatically transmits only the attribute
bytes for the next map output operation.

You can use the TASK CODE parameter of the ACCEPT statement to retrieve the
calling task code.

�� For more information about the ACCEPT statement, see 9.3, “Retrieving
task-related information” on page 9-9.

The program excerpt below performs processing based on conditions related to the last
map input operation. It uses the INQUIRE MAP statement to determine what control
key was pressed and to ensure that the DEPT-ID-0410 field contains data.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 DC-AID-CONDITION-NAMES.

 �3 DC-AID-IND-V PIC X.

88 ENTER-HIT VALUE QUOTE.

88 CLEAR-HIT VALUE '_'.

 PROCEDURE DIVISION.

��� ESTABLISH ADDRESSABILITY TO THE MAP AND MAP RECORDS ���

BIND MAP SOLICIT.

BIND MAP SOLICIT RECORD EMPLOYEE.

BIND MAP SOLICIT RECORD DEPARTMENT.

BIND MAP SOLICIT RECORD EMP-DATE-WORK-REC.

��� TRANSFER DATA FROM THE MAP TO VARIABLE STORAGE ���

MAP IN USING SOLICIT.

��� DETERMINE THE AID KEY PRESSED BY THE TERMINAL OPERATOR ���
INQUIRE MAP SOLICIT

MOVE AID TO DC-AID-IND-V.
��� IF OPERATOR PRESSED CLEAR THEN DC RETURN ���

IF CLEAR-HIT DC RETURN.

��� DETERMINE IF THE TERMINAL OPERATOR ���

��� ENTERED DATA IN THE DEPT-ID-�41� FIELD ���

INQUIRE MAP SOLICIT
IF DFLD DEPT-ID-�41�

DATA IS NO
GO TO A1��-NO-DATA.

 .

��� FURTHER PROCESSING OF ENTERED DATA ���

7.2.4 Modifying map options

Before issuing an input or output request, you may need to modify a map's WCC
options or specify attributes for one or more map data fields. You can make
modifications either for the length of the session or for the next mapping operation.
For example, you may need to:

■ Position the cursor on the next MAP OUT operation

■ Require that the user enter data in a specified map data field

■ Prevent the user from entering data in specified map data fields (this is especially
useful on the initial MAP OUT of a session)

Chapter 7. Terminal Management 7-11

7.2 Mapping mode

■ Require that data from a specified map data field be transmitted regardless of
whether it was modified by the user

■ Modify the WCC and attribute options for an entire session

Steps to modify a map: To modify a map's WCC options or to specify attributes
for one or more map data fields, perform the following steps:

1. Issue mapping mode housekeeping statements

�� For more information about housekeeping statements, see 7.2.1,
“Housekeeping” on page 7-5 earlier in this chapter.

2. Issue the MODIFY MAP command

3. Issue either a MAP IN or MAP OUT statement

Example of modifying a map: The program excerpt below uses the MODIFY
MAP statement to protect map data fields from operator input. The program is used in
an application's initial MAP OUT to help ensure that the user will enter data in the
correct field (EMP-ID-0415) by positioning the cursor and preventing input to all other
map data fields.

 PROCEDURE DIVISION.

BIND MAP SOLICIT.

BIND MAP SOLICIT RECORD EMPLOYEE.

BIND MAP SOLICIT RECORD EMP-DATE-WORK-REC.

��� SET CURSOR AND PREVENT INPUT INTO ALL BUT EMP-ID-�415 ���
MODIFY MAP SOLICIT TEMPORARY

CURSOR AT DFLD EMP-ID-�415
FOR ALL EXCEPT DFLD EMP-ID-�415

 ATTRIBUTES PROTECTED.
�

MOVE ZERO TO EMP-ID-�415.

MAP OUT USING SOLICIT

 YES NEWPAGE

MESSAGE IS INITIAL-MESSAGE TO INITIAL-MESSAGE-END.

�

 DC RETURN

NEXT TASK CODE TSK�2.

7.2.5 Writing and reading in one step

To write data to the terminal and read data input from the terminal in one synchronous
operation, issue a MAP OUTIN statement. CAUTION:
MAP OUTIN forces your program to be conversational; it is not recommended.

If your application needs to write and read in one step, perform the following steps:

1. Issue mapping mode housekeeping statements

�� For more information about housekeeping statements, see 7.2.1,
“Housekeeping” on page 7-5 earlier in this chapter.

2. Modify map or map data fields,

�� For more information about modifying map data fields, see 7.2.4, “Modifying
map options” on page 7-11 earlier in this chapter.

7-12 CA-IDMS Navigational DML Programming

7.2 Mapping mode

3. Initialize variable-storage data fields as needed

4. Transfer data from variable-storage data fields to map fields on the terminal screen
and back again by issuing the MAP OUTIN statement

7.2.6 Suppressing map error messages

You can suppress the display of error messages for map fields. For example, you can
code a data validation test so that it suppresses a map field's default error message and
displays a different message when the field is in error.

What to do: Include the ERROR MESSAGE IS ACTIVE/SUPPRESS parameter on
your MODIFY MAP statement. ERROR MESSAGE immediately follows the
REQUIRED/OPTIONAL parameter.

Example of suppressing error messages: This COBOL example issues a
MODIFY MAP statement that suppresses the display of default error messages for the
ORDER-AMOUNT field on the current map.

In this application, the data validation routine compares the ORDER-AMOUNT field
with the number of widgets on hand. If the current stock restricts the size of
ORDER-AMOUNT, an alternative message is displayed.

1. Define an alternative message in working storage. For example:

DATA DIVISION.

WORKING-STORAGE SECTION.

�1 MESSAGES.

�5 INITIAL-MESSAGE PIC X(8�) VALUE

'ENTER A NUMERIC ORDER-AMOUNT AND PRESS ENTER'.

�5 EDIT-ERROR-MESSAGE PIC X(8�) VALUE

'ORDER-AMOUNT EITHER NOT ENTERED OR NOT NUMERIC'.

�5 INVENTORY-MESSAGE PIC X(8�) VALUE

'NOT ENOUGH WIDGETS IN STOCK TO DELIVER THAT AMOUNT'.

�5 DISPLAY-MESSAGE PIC X(8�) VALUE

'CLEAR TO EXIT �� ENTER ORDER-AMOUNT AND ENTER TO CONTINUE'

2. Modify the map to display alternative messages when a specific error is found:

MODIFY MAP MAP�1 TEMPORARY

FOR DFLD ORDER-AMOUNT

ERROR MESSAGE IS SUPPRESS.

3. Perform your data validation routine. For example, you can compare the number
of widgets in stock to ORDER-AMOUNT. If ORDER-AMOUNT is greater than
the number in stock, issue an alternative message indicating that the order cannot
be filled.

If the data validation routine indicates that there are not enough widgets in stock,
display the map with the alternative message.

TEMPORARY and PERMANENT options: The use of the SUPPRESS option is
affected by the TEMPORARY/PERMANENT option:

■ If TEMPORARY is specified, error messages are suppressed for the next mapout
only.

Chapter 7. Terminal Management 7-13

7.2 Mapping mode

■ If PERMANENT is specified, error messages are suppressed until the program
terminates or until the error message specifications are overridden by a subsequent
MODIFY MAP statement.

7.2.7 Testing for identical data

You can compare the contents of a mapped-in field with the map data that is currently
in your program's record buffer.

This means that you can test whether a map field contains the same data that was
previously mapped out. By comparing the fields, your program updates the database
only when the user enters different data, reducing the number of database I/O
operations.

How this relates to MDT settings: The input test condition does not test a field's
modified data tag (MDT). For example, the statement INQUIRE MAP MAP01 DATA
IS IDENTICAL is true in either of the following cases:

■ The field's MDT is off. On mapin, the MDT is usually off if the user did not type
any characters in the field.

■ The field's MDT is on, but each character that the user typed in is identical
(including capitalization) to the data in variable storage.

What to do: Include the IDENTICAL/DIFFERENT parameter in your INQUIRE
MAP statement.

Example of testing for identical data: This COBOL example uses an INQUIRE
MAP statement to test whether the user has entered an employee ID number:

■ If the IDENTICAL condition is true (the user doesn't specify a different ID
number), the program displays the menu screen

■ If the IDENTICAL condition is false (the user specifies a different ID number),
the program obtains the corresponding employee record from the database

The sample INQUIRE MAP statement is shown below:

INQUIRE MAP MAP�1

IF DFLD EMP-ID-�415 DATA IS IDENTICAL THEN

 PERFORM EMP-PROMPT-2�

 ELSE

 PERFORM EMP-OBTAIN-2�.

Example of testing for changed data: This COBOL example uses an INQUIRE
MAP statement to test whether the user has entered a new department ID or
department name. If the user has changed either value (DIFFERENT is true), the
program branches to DEPTUP-30.

INQUIRE MAP MAP�2

IF ANY DFLD DEPT-ID-�41�

DFLD DEPT-NAME-�41� DATA IS DIFFERENT

THEN PERFORM DEPTUP-3�.

7-14 CA-IDMS Navigational DML Programming

7.3 Using pageable maps

7.3 Using pageable maps

A pageable map can contain more occurrences of a set of map fields than can fit on
the screen at one time; therefore, it can contain unlimited occurrences of the set of
map fields. Each occurrence of the multiply-occurring set is called a detail
occurrence. The MAP OUT and MAP IN statements can create, retrieve, and modify
detail occurrences of a pageable map.

About pageable maps: You should know about the following aspects of pageable
maps:

■ The format of a pageable map

■ How to conduct a map paging session

■ How to code an application that allows the user to browse through a pageable map
but not update it

■ How to code an update application that allows the user to perform database
updates by using a pageable map

7.3.1 Pageable map format

A pageable map is divided into the header area, the detail area, and the footer area.
The header and footer areas consist of general information such as the map title, the
page number, or the useable PF-keys. The detail area consists of detail occurrences.

�� For information on defining a pageable map, refer to CA-IDMS Mapping Facility.

CAUTION:
To prevent excessive database record locking, you should not define database
records as map records in a pageable map; use IDD-defined work records
instead.

Example of a pageable map: The figures below illustrate two pages of a map
screen. Note that the display of information in the header and footer areas is
unchanged except for the $PAGE field.

Chapter 7. Terminal Management 7-15

7.3 Using pageable maps

 System-supplied
 $PAGE field
 │

 ┌──┼───────┐

 │ │ │

 │ ↓ │ ─┐

│ ��� DEPARTMENT INFORMATION SCREEN ��� PAGE: ���1 │ │ Header
 │ │ │ area

│ DEPARTMENT ID: 32�� │ │

│ NAME: COMPUTER OPERATIONS │ ─┘

 ┌─ │ │ ─┐

Detail │ │ EMPLOYEE ID: ���4 │ │

occurrence │ │ LAST NAME: CRANE │ │

 │ │ FIRST NAME: HERBERT │ │ Detail
 └─ │ │ │ area
 │ │ │

 │ EMPLOYEE ID: ��32 │ │

 │ LAST NAME: FERNDALE │ │

 │ FIRST NAME: JANE │ │

 │ │ │

 │ │ │

 │ EMPLOYEE ID: ��45 │ │

 │ LAST NAME: FONRAD │ │

 │ FIRST NAME: GEORGE │ │

 │ │ ─┘

 │ │ ─┐

│ PF8 NEXT PAGE ��� PG7 PREVIOUS PAGE ��� PA1 EXIT APPLICATION │ │ Footer
 │ │ │ area
 └──┘ ─┘

 ┌──┐

 │ │

 │ │

│ ��� DEPARTMENT INFORMATION SCREEN ��� PAGE: ���2 │

 │ │

│ DEPARTMENT ID: 32�� │

│ NAME: COMPUTER OPERATIONS │

 │ │

 │ EMPLOYEE ID: ��53 │

 │ LAST NAME: GARDNER │

 │ FIRST NAME: ROBIN │

 │ │

 │ │

 │ EMPLOYEE ID: ��31 │

 │ LAST NAME: LIPSICH │

 │ FIRST NAME: HERBERT │

 │ │

 │ │

 │ │

 │ │

 │ │

 │ │

 │ │

│ PF8 NEXT PAGE ��� PG7 PREVIOUS PAGE ��� PA1 EXIT APPLICATION │

 │ │

 └──┘

7-16 CA-IDMS Navigational DML Programming

7.3 Using pageable maps

7.3.2 Conducting a map paging session

A map paging session involves interaction among the user, the runtime mapping
system, and your map paging application program. You should understand this
interaction and the sequence of events that occurs during a map paging session before
planning the logic of your application program.

Typical map paging sequence: This sequence of events typically occurs during a
map paging session:

1. Your program begins the session and defines map paging parameters

2. The program creates detail occurrences

3. A map page is displayed on the terminal

4. The user pages forward and backward through the pageable map

5. The user optionally modifies map data fields

6. The program receives control and updates the database

7. The user ends the map paging session

The following discussion describes each step in detail.

Beginning the paging session: A map paging session begins when your program
issues a STARTPAGE statement. Options included in this statement specify the
following:

■ The runtime flow of control. The paging type (NOWAIT/WAIT/RETURN)
determines whether the runtime mapping system or your program receives control
when the user presses a control key, as detailed in the table below.

The paging type affects the frequency with which your program will receive
control and the processing logic you must provide. For example, in NOWAIT,
runtime mapping performs all paging operations for you; in WAIT and RETURN,
you must provide coding logic that performs the paging operations specified by
the user.

NOWAIT is best for applications in which the user can display but not update;
WAIT and RETURN are best for update applications.

■ Whether the user can display a previous map page. If backpaging is allowed,
the runtime system must maintain the resources that describe the detail
occurrences of previous pages. If backpaging is not allowed, the runtime system
deletes all previous pages of detail occurrences when a new map page is
displayed.

Note: Always allow backpaging for pageable map applications that perform
database updates.

■ Whether the user can update map data fields. A paging mode of UPDATE
specifies that the user can modify map data fields, subject to restrictions specified

Chapter 7. Terminal Management 7-17

7.3 Using pageable maps

in the map and by previous MODIFY MAP statements. BROWSE specifies that
the user can modify only the system-supplied $PAGE field (if present).

The tables below summarize flow of control in a map paging session.

 ■ Paging request*:

* If the user presses [Clear], [PA1], [PA2], or [PA3], and that key is not
associated with backward or forward paging, refer instead to "Nonpaging request"
below.

** If the user presses [Clear], [PA1], [PA2], or [PA3], refer to the "No data fields
modified" column.

 ■ Nonpaging request:

** If the user presses [Clear], [PA1], [PA2], or [PA3], refer to the "No data fields
modified" column.

Paging type No data
fields
modified

Data fields modified**

NOWAIT Runtime
mapping
displays the
requested map
page

Runtime mapping displays the requested map
page

WAIT Runtime
mapping
displays the
requested map
page

Control passes to the program

RETURN Control passes
to the
program

Control passes to the program

Paging type No data fields
modified

Data fields modified**

NOWAIT Control passes to the
program

Runtime mapping redisplays the same
map page

WAIT Control passes to the
program

Control passes to the program

RETURN Control passes to the
program

Control passes to the program

7-18 CA-IDMS Navigational DML Programming

7.3 Using pageable maps

Creating detail occurrences Your program retrieves data, moves it to map data
fields, and creates detail occurrences by issuing MAP OUT DETAIL commands.

Displaying the first page: The first page is displayed on the terminal screen in
one of the following ways:

■ Runtime mapping automatically displays the first map page when the first detail
occurrence of the second page of occurrences is created. The program continues
to execute and create additional detail occurrences.

When the first page is displayed by runtime mapping, DC returns a status of 4676
(DC-FIRST-PAGE-SENT). Your program must check for this status after every
MAP OUT DETAIL statement.

■ Your program displays the first map page. When all detail occurrences are
created, your program should check to determine if the first page was written to
the terminal. You do this by setting a switch when DC returns a status of 4676
(DC-FIRST-PAGE-SENT). If 4676 was never returned, your program explicitly
displays the first map page by issuing a MAP OUT RESUME statement.

Paging forward and backward: To specify the next map page to be displayed,
the user does one of the following:

■ Presses the control key associated with paging forward one page

■ Presses the control key associated with paging backward one page

■ Changes the $PAGE map field, if defined on the map, and presses a control key
other than [Clear], [PA1], [PA2], or [PA3].

Modifying map fields: The user can change map data fields, including header and
footer data fields, subject to restrictions specified by the STARTPAGE command
(UPDATE/BROWSE) or by a previously specified MODIFY MAP command.

Updating the database: If the user has modified any map data fields or if the
paging type is RETURN, the program reads modified detail occurrences and updates
the database.

A modified detail occurrence contains one or more map fields whose modified data
tags (MDTs) are set on.

To retrieve a modified detail occurrence, issue a MAP IN DETAIL statement. MAP
IN DETAIL can retrieve a modified detail occurrence sequentially, by the order of
detail occurrences, or randomly by a key value that can be associated with an
occurrence. If sequential or random retrieval cannot retrieve a modified detail
occurrence, DC returns a status of 4668 (DC-NO-MORE-UPD-DETAILS).

If you need to modify the current detail occurrence (for example, to send an error
message), issue a MAP OUT DETAIL CURRENT statement. This statement modifies
the detail occurrence most recently referenced by a MAP IN DETAIL or MAP OUT
DETAIL statement.

Chapter 7. Terminal Management 7-19

7.3 Using pageable maps

After processing all modified detail occurrences, write the map to the terminal
screen by issuing a MAP OUT RESUME statement. If WAIT or RESUME has been
specified, your program is responsible for displaying the next page specified by the
user.

If you need to create additional detail occurrences, you can do so at any time by
issuing further MAP OUT DETAIL statements. The new occurrences are stored at the
end of the set of detail occurrences.

Ending the paging session: When a map paging session ends, the system deletes
all the detail occurrences created during the session. To end a session, issue an
ENDPAGE SESSION command.

7.3.3 How to code a browse application

To write a pageable map application that allows the user to display data but not update
it, perform the following steps:

1. Establish a switch in variable storage. This switch should be set on if runtime
mapping has transmitted the first page.

2. Issue mapping mode housekeeping statements, as explained in 7.2.1,
“Housekeeping” on page 7-5 earlier in this chapter.

3. Initiate the map paging session by issuing a STARTPAGE statement that specifies
NOWAIT and BROWSE.

4. Initialize header data fields.

5. Perform the following steps iteratively until all data is retrieved:

a. Perform database retrieval and move data to map data fields in variable
storage.

b. Issue a MAP OUT DETAIL NEW statement, checking for a status of 4676
(DC-FIRST-PAGE-SENT).

c. Set the first-page switch if 4676 is returned; perform the IDMS-STATUS
routine if 4676 is not returned.

Ending the browse session: If, after all detail occurrences have been created, the
first-page switch is not set, you should transmit the map page to the terminal screen by
issuing a MAP OUT RESUME statement.

The next task specified in the DC RETURN NEXT TASK CODE statement should
include logic that tests to see if the user has indicated the end of the map paging
session. If so, issue an ENDPAGE SESSION statement.

Example of a browse application: The program excerpt below shows a pageable
map application in which runtime mapping handles all paging requests (paging type of
NOWAIT) and the operator cannot make updates (paging mode of BROWSE).

7-20 CA-IDMS Navigational DML Programming

7.3 Using pageable maps

After acquiring the data passed from a previous task and establishing that database
records are present, this program issues MAP OUT DETAIL statements iteratively
until all detail occurrences are written. DEPTEND, which is specified as the next task,
ends the paging session with the ENDPAGE command and performs processing based
on the control key pressed.

Chapter 7. Terminal Management 7-21

7.3 Using pageable maps

 DATA DIVISION

 �1 FIRST-PAGE-SW PIC X VALUE 'N'.

 88 LESS-THAN-A-PAGE VALUE 'N'.

 �1 MAP-WORK-REC.

 �5 WORK-FIRST PIC X(1�).

 �5 WORK-LAST PIC X(15).

 �5 WORK-EMP-ID PIC X(4).

 LINKAGE SECTION.

 �1 PASS-DEPT-INFO.

 �5 PASS-DEPT-ID PIC 9(4).

 �5 PASS-DEPT-INFO-END PIC X.

 PROCEDURE DIVISION.

BIND MAP DCTEST�1.

BIND MAP DCTEST�1 RECORD MAP-WORK-REC.

��� ACQUIRE DEPT-ID FROM ERROR CHECKING PROGRAM ���

GET STORAGE FOR PASS-DEPT-INFO TO

 PASS-DEPT-INFO-END

WAIT SHORT USER

 STGID 'RKNS'.

�

MOVE PASS-DEPT-ID TO DEPT-ID-�41�.

FREE STORAGE STGID 'RKNS'.

�

COPY IDMS SUBSCHEMA-BINDS.

READY USAGE-MODE RETRIEVAL.

�

OBTAIN CALC DEPARTMENT

ON DB-REC-NOT-FOUND GO TO NO-DEPT-ERR.

IF DEPT-EMPLOYEE IS EMPTY

GO TO NO-EMP-ERR.

��� BEGIN MAP PAGING SESSION ���
STARTPAGE SESSION DCTEST�1 NOWAIT BACKPAGE BROWSE.
PERFORM A1��-GET-EMPLOYEES THRU A1��-EXIT

 UNTIL DB-END-OF-SET.

 FINISH.

��� IF FIRST PAGE NOT YET SENT, MAP OUT RESUME ���
 IF LESS-THAN-A-PAGE

MAP OUT USING DCTEST�1 RESUME.
��� NEXT TASK ENDS PAGING SESSION ���

DC RETURN NEXT TASK CODE 'DEPTEND'.

 A1��-GET-EMPLOYEES.

OBTAIN NEXT WITHIN DEPT-EMPLOYEE

ON DB-END-OF-SET GO TO A1��-EXIT.

MOVE EMP-FIRST-NAME-�415 TO WORK-FIRST.

MOVE EMP-LAST-NAME-�415 TO WORK-LAST.

MOVE EMP-ID-�415 TO WORK-EMP-ID.

��� MAP OUT CURRENT DETAIL, CHECK FOR ERROR-STATUS OF 4676 ���
MAP OUT USING DCTEST�1

 DETAIL NEW
 ON DC-FIRST-PAGE-SENT

MOVE 'Y' TO FIRST-PAGE-SW.
 A1��-EXIT.

 EXIT.

 .

 .

 .

��� FURTHER PROCESSING, INCLUDING ERROR ROUTINES ���

7-22 CA-IDMS Navigational DML Programming

7.3 Using pageable maps

7.3.4 How to code an update application

To write a pageable map application that allows the user to update map data fields,
establish a retrieval program and an update program.

Retrieval program: The retrieval program initiates the pageable map update session
and retrieves and displays the data. This program can be similar to the one displayed
in 7.3.3, “How to code a browse application” on page 7-20 earlier in this chapter.
You should make the following changes to the retrieval program:

■ Specify one of the following options of the STARTPAGE statement:

– WAIT causes your program to acquire control after every update paging
request and after every nonpaging request.

– RETURN causes your program to acquire control after every paging request
(update or nonupdate) and every nonpaging request.

Note: Because of editing and error-handling considerations, updating pageable
maps by using a paging type of NOWAIT is not recommended.

■ Use the KEY IS parameter of the MAP OUT DETAIL statement to pass the
db-key of each retrieved record:

MAP OUT USING DCTEST�1

 DETAIL NEW

KEY IS DBKEY.

Including the db-key in this manner allows for DB-KEY retrieval in subsequent
tasks.

■ Code a DC RETURN statement that indicates the pageable map update program to
be invoked when the user presses a control key.

Update program: The update program retrieves modified detail occurrences and
updates the database. In this program, perform the following steps:

1. Establish a switch in variable storage. This switch should be set on if your
program encounters any invalid data in modified detail occurrences.

2. Issue mapping mode housekeeping statements, as explained in 7.2.1,
“Housekeeping” on page 7-5 earlier in this chapter.

3. Issue a MAP IN HEADER statement that includes the PAGE option. You can use
the PAGE value later in your program when determining the next page to map
out.

4. Issue an INQUIRE MAP statement to determine what control key was pressed.
The control key pressed by the user can specify:

■ The flow of control. You can associate certain control keys with specific
functions (for example, [Clear] might always exit the application).

■ The next page to be displayed. The user can indicate the next page to be
displayed by pressing a site-standard paging control key.

Chapter 7. Terminal Management 7-23

7.3 Using pageable maps

■ A user error. If the user presses an invalid control key, you should redisplay
the current page.

5. Perform the following steps iteratively until all modified detail occurrences have
been mapped in:

a. Issue a MAP IN DETAIL statement that includes the RETURNKEY
parameter.

b. Check for a status of 4668 (DC-NO-MORE-UPD-DETAILS). If 4668 is
returned, all updated details have been returned and you should display the
pageable map, as specified by the user. If 4668 is not returned, perform the
IDMS-STATUS routine.

c. Perform error and range checking to ensure that the user entered valid data.
If invalid data is found, set the error switch and issue a MAP OUT DETAIL
CURRENT statement that includes a message that indicates the error.

d. Perform database retrieval to access the database record to be modified.
Retrieve the record by using its db-key (acquired from the RETURNKEY
parameter). If data cannot be retrieved, set the error switch and issue a MAP
OUT DETAIL CURRENT statement that includes a message that indicates
the error.

e. Move data from the work record to the database record.

f. Issue database modification statements.

g. After all modified detail occurrences have been successfully processed, issue a
MAP OUT RESUME statement that specifies the page requested by the user.
If errors were encountered in the MAP IN DETAIL processing, you should
redisplay the current page so the operator can correct the invalid data.

Ending the update session: The next task specified in the DC RETURN NEXT
TASK CODE statement should include logic that tests to see if the user has indicated
the end of the map paging session. If so, issue an ENDPAGE SESSION statement.

Example of an update application: The program excerpt below shows a
pageable map update application. The program contains paging logic that works with
a paging type of either WAIT or RETURN.

After determining user specifications, the program issues MAP IN DETAIL statements
iteratively, modifying the database as specified, until all modified detail occurrences
are processed.

7-24 CA-IDMS Navigational DML Programming

7.3 Using pageable maps

 DATA DIVISION

 WORKING-STORAGE SECTION.

 �1 RETURN-DBKEY PIC S9(8) COMP.

 �1 DEPTMOD PIC X(8) VALUE 'DEPTMOD'.

 �1 FIRST-PAGE-SW PIC X VALUE 'N'.

 88 LESS-THAN-A-PAGE VALUE 'N'.

 �1 MAP-IN-ERR-SW PIC X VALUE 'N'.

 88 MAP-IN-ERR VALUE 'Y'.

 �1 PAGE-INDICATOR.

�5 SPEC-PAGE PIC S9(8) COMP.

 �1 MESSAGES.

 �5 EDIT-ERR-MESS PIC X(21)

VALUE 'CORRECT INVALID INPUT'.

 �5 EDIT-ERR-MESS-END PIC X.

�

 �5 EMP-NOT-FOUND-MESS PIC X(18)

VALUE 'EMPLOYEE NOT FOUND'.

 �5 EMP-NOT-FOUND-MESS-END PIC X.

 �1 DC-AID-CONDITION-NAMES.

 �3 DC-AID-IND-V PIC X.

88 ENTER-HIT VALUE QUOTE.

88 CLEAR-HIT VALUE '_'.

88 PF�1-HIT VALUE '1'.

88 PF�2-HIT VALUE '2'.

88 PF�3-HIT VALUE '3'.

88 PF�4-HIT VALUE '4'.

88 PF�5-HIT VALUE '5'.

88 PF�6-HIT VALUE '6'.

88 PF�7-HIT VALUE '7'.

88 PF�8-HIT VALUE '8'.

88 PF�9-HIT VALUE '9'.

88 PF1�-HIT VALUE ':'.

88 PF11-HIT VALUE '#'.

88 PF12-HIT VALUE '@'.

88 PF13-HIT VALUE 'A'.

88 PF14-HIT VALUE 'B'.

88 PF15-HIT VALUE 'C'.

88 PF16-HIT VALUE 'D'.

88 PF17-HIT VALUE 'E'.

88 PF18-HIT VALUE 'F'.

88 PF19-HIT VALUE 'G'.

88 PF2�-HIT VALUE 'H'.

88 PF21-HIT VALUE 'I'.

88 PF22-HIT VALUE '�'.

88 PF23-HIT VALUE '.'.

88 PF24-HIT VALUE '>'.

88 PA�1-HIT VALUE '%'.

88 PA�2-HIT VALUE '<'.

88 PA�3-HIT VALUE ','.

88 PEN-ATTN-SPACE-NULL VALUE '='.

88 PEN-ATTN VALUE QUOTE.

 �1 MAP-WORK-REC.

 �5 WORK-EMP-ID PIC X(4).

 �5 WORK-FIRST PIC X(1�).

 �5 WORK-LAST PIC X(15).

Chapter 7. Terminal Management 7-25

7.3 Using pageable maps

 PROCEDURE DIVISION.

BIND MAP DCTEST�1.

BIND MAP DCTEST�1 RECORD MAP-WORK-REC.

MOVE 'N' TO MAP-IN-ERR-SW.

��� MAP IN HEADER AND PAGE FIELD ���
MAP IN USING DCTEST�1

 HEADER
PAGE IS SPEC-PAGE

 ON DC-DETAIL-NOT-FOUND
 NEXT SENTENCE.
��� DETERMINE THE PF-KEY PRESSED ���

INQUIRE MAP DCTEST�1 MOVE AID TO DC-AID-IND-V.
 IF PA�1-HIT
 ENDPAGE
 DC RETURN.
��� CHECK FOR HEADER ERRORS, MAP OUT IF ANY ARE FOUND ���

INQUIRE MAP DCTEST�1

IF ANY EDIT IS ERROR

 THEN

MODIFY MAP DCTEST�1 TEMPORARY

FOR ALL ERROR FIELDS

 ATTRIBUTES BRIGHT

MAP OUT USING DCTEST�1 RESUME

DC RETURN NEXT TASK CODE DEPTMOD.

�

COPY IDMS SUBSCHEMA-BINDS.

READY ORG-DEMO-REGION USAGE-MODE IS UPDATE.

READY EMP-DEMO-REGION USAGE-MODE IS UPDATE.

�

PERFORM A1��-MAP-IN-DETAILS THRU A1��-EXIT

 UNTIL DC-NO-MORE-UPD-DETAILS.

 FINISH.

��� PAGING ROUTINES FOLLOW ���
��� IF ERROR SWITCH IS SET, REDISPLAY CURRENT PAGE ���
 IF MAP-IN-ERR
 THEN

MAP OUT USING DCTEST�1
RESUME PAGE IS CURRENT

DC RETURN NEXT TASK CODE DEPTMOD.
��� IF PF�7, DISPLAY PRIOR PAGE ���
 IF PF�7-HIT
 THEN

MAP OUT USING DCTEST�1
RESUME PAGE IS PRIOR

DC RETURN NEXT TASK CODE DEPTMOD.

7-26 CA-IDMS Navigational DML Programming

7.3 Using pageable maps

��� IF PF�8, DISPLAY NEXT PAGE ���

 IF PF�8-HIT

 THEN

MAP OUT USING DCTEST�1

RESUME PAGE IS NEXT

DC RETURN NEXT TASK CODE DEPTMOD.

��� ELSE, USE PAGE VALUE FROM MAP IN HEADER ���

MAP OUT USING DCTEST�1

RESUME PAGE IS SPEC-PAGE.

DC RETURN NEXT TASK CODE DEPTMOD.

 A1��-MAP-IN-DETAILS.

��� MAP IN EACH MODIFIED DETAIL. EXIT ���
��� WHEN NO MORE MODIFIED DETAILS REMAIN ���

MAP IN USING DCTEST�1
 DETAIL

RETURNKEY IS RETURN-DBKEY
ON DC-NO-MORE-UPD-DETAILS GO TO A1��-EXIT.

��� IF ERROR, MAP OUT DETAIL WITH MESSAGE, SET SWITCH ���

INQUIRE MAP DCTEST�1

IF ANY EDIT IS ERROR

 THEN

MODIFY MAP DCTEST�1 TEMPORARY

FOR ALL ERROR FIELDS

 ATTRIBUTES BRIGHT

MAP OUT USING DCTEST�1
MESSAGE IS EDIT-ERR-MESS

 TO EDIT-ERR-MESS-END
 DETAIL CURRENT

KEY IS RETURN-DBKEY
MOVE 'Y' TO MAP-IN-ERR-SW

GO TO A1��-EXIT.
��� RETRIEVE EMPLOYEE, USING DBKEY FROM RETURNKEY ���

OBTAIN EMPLOYEE DB-KEY IS RETURN-DBKEY

ON ANY-STATUS NEXT SENTENCE.

��� IF ERROR, MAP OUT DETAIL WITH MESSAGE, SET SWITCH ���

 IF DB-REC-NOT-FOUND

MAP OUT USING DCTEST�1
MESSAGE IS EMP-NOT-FOUND-MESS

 TO EMP-NOT-FOUND-MESS-END
 DETAIL CURRENT

KEY IS RETURN-DBKEY
MOVE 'Y' TO MAP-IN-ERR-SW
GO TO A1��-EXIT

 ELSE

 PERFORM IDMS-STATUS.

�

 MOVE WORK-FIRST TO EMP-FIRST-NAME-�415.

 MOVE WORK-LAST TO EMP-LAST-NAME-�415.

MOVE WORK-EMP-ID TO EMP-ID-�415.

 MODIFY EMPLOYEE.

 A1��-EXIT.

 EXIT.

7.3.5 Overriding automatic mapout for pageable maps

You can override the automatic mapout of a pageable map's first page.

By default, the first page of a pageable map is displayed as soon as the first detail
occurrence of the second map page is written to scratch.

Chapter 7. Terminal Management 7-27

7.3 Using pageable maps

You can override this automatic mapout by specifying NOAUTODISPLAY in your
STARTPAGE statement. By overriding the automatic display of the map's first page,
you can add messages or modify the map before the page is displayed.

Return code for map page built: A map paging return code tells you before
mapout whether a map page has been built.

The table below lists the map paging return code for map page built in COBOL, PL/I,
and Assembler.

Language Return
code

Description

COBOL and
PL/I

4680 ■ Returned in: IDMS communications block status code field

■ Returned after: MAP OUT DETAIL statement for a pageable map

■ Represented by the COBOL 88-level status code DC-PAGE-READY.

Assembler X'50' ■ Returned in: DC/UCF runtime register 15

■ Returned after: #MREQ OUT DETAIL=YES statement for a pageable map

How to code a noautosave application: To code a pageable map application
that does not automatically mapout when the first map page is built, perform the
following steps:

1. Issue mapping mode housekeeping statements, as explained in 7.2.1,
“Housekeeping” on page 7-5.

2. Initiate a map paging session by issuing a STARTPAGE statement that specifies
NOAUTODISPLAY.

STARTPAGE SESSION MAP�1 NOAUTODISPLAY

3. Initialize header data fields.

Map out detail occurrences: Perform the following steps iteratively until all data
is retrieved:

1. Perform database retrieval and move data to map data fields in variable storage.

2. Issue a MAP OUT DETAIL statement. After each pageable map statement that
writes a detail occurrence, test for DC-PAGE-READY to determine whether a
map page has been built.

MAP OUT USING MAP�1 OUTPUT DATA IS YES

 DETAIL NEW

ON DC-PAGE-READY PERFORM FIRST-PAGE THRU FIRST-PAGE-XIT.

 .

 .

 .

3. If you do find DC-PAGE-READY, you can optionally:

■ Modify the map.

■ Define messages to display on mapout.

7-28 CA-IDMS Navigational DML Programming

7.3 Using pageable maps

If you do not find DC-PAGE-READY, perform the IDMS-STATUS routine.

4. Manually map out the first page:

FIRST-PAGE.

MAP OUT USING MAP�1 OUTPUT DATA IS YES

RESUME PAGE FIRST

If you never find DC-PAGE-READY: If, after all detail occurrences have been
created, you have not received a DC-PAGE-READY status code, you should transmit
the map page to the terminal screen by issuing a MAP OUT RESUME statement.

Ending the paging session: The next task specified in the DC RETURN NEXT
TASK CODE statement should include logic to test whether the user has indicated the
end of the map paging session. If so, issue an ENDPAGE SESSION statement.

Example of suppressing automatic mapout: The following application does
not automatically display the first page after it has been built.

OBTAIN CALC DEPARTMENT

ON DB-REC-NOT-FOUND GO TO NO-DEPT.

IF DEPT-EMPLOYEE IS EMPTY

GO TO NO-EMP.

MOVE DEPT-ID-�41� TO WORK-DEPT-ID.

STARTPAGE SESSION DCTEST�1

 NOWAIT

 BACKPAGE

 BROWSE

 NOAUTODISPLAY.

PERFORM A1��-GET-EMPLOYEES THRU A1��-EXIT

 UNTIL DB-END-OF-SET.

 FINISH.

 IF LESS-THAN-A-PAGE

MAP OUT USING DCTEST�1 RESUME.

DC RETURN NEXT TASK CODE 'DEPTEND'.

 A1��-GET-EMPLOYEES.

OBTAIN NEXT WITHIN DEPT-EMPLOYEE

ON DB-END-OF-SET GO TO A1��-EXIT.

MOVE EMP-ID-�415 TO WORK-EMP-ID.

MOVE EMP-LAST-NAME-�415 TO WORK-LAST.

MOVE EMP-FIRST-NAME-�415 TO WORK-FIRST.

MAP OUT USING DCTEST�1 OUTPUT DATA IS YES

 DETAIL NEW

 ON ANY-STATUS

 NEXT SENTENCE.

 IF DC-PAGE-READY

PERFORM A1��-FIRST-PAGE THRU

 A1��-FIRST-PAGE-EXIT

ELSE PERFORM IDMS-STATUS.

 A1��-EXIT.

 EXIT.

 A1��-FIRST-PAGE.

MOVE 'Y' TO FIRST-PAGE-SW.

 IF ALREADY-MAPPED-OUT

GO TO A1��-FIRST-PAGE-EXIT

 ELSE

MOVE EMP-MESSAGE-�1 TO MESSAGE-�1

MAP OUT USING DCTEST�1 OUTPUT DATA IS YES

RESUME PAGE FIRST

 A1��-FIRST-PAGE-EXIT.

 EXIT.

Chapter 7. Terminal Management 7-29

7.4 Line mode

 7.4 Line mode

Line mode supports line-by-line transfers of data to and from a terminal buffer. Line
mode transfers are recommended for programs requiring a simple transfer of
unformatted data, independent of terminal type. Line mode supports synchronous read
and write operations and asynchronous write operations.

Note: While a line mode I/O session is in progress, only line-mode requests can be
issued; basic mode and mapping mode requests can cause unpredictable results.

By using line mode terminal management statements, you can:

■ Initiate a line mode I/O session

■ Write a line of data

■ Read a line of data from the terminal screen

■ End a line mode session

7.4.1 Beginning a line mode session

You initiate a line mode I/O session by issuing either of the following line mode DML
statments:

■ WRITE LINE TO TERMINAL

■ READ LINE FROM TERMINAL

7.4.2 Writing a line of data

To transfer data from program variable storage to the screen, issue a WRITE LINE TO
TERMINAL statement. DC automatically inserts the appropriate device control
characters.

Transmission of data stream: WRITE LINE TO TERMINAL transmits a data
stream to the terminal, as follows:

■ For line-by-line devices, DC writes each line to the terminal immediately after the
program issues the WRITE LINE TO TERMINAL request. New lines are added
to lines already on the screen until the screen becomes full or the program
requests DC to begin a new page.

■ For 3270-type devices, DC collects the number of output lines in buffers (or
pages) that correspond to the terminal model in use. Data is written to the screen
when:

– The buffer becomes full

– A READ LINE FROM TERMINAL request is issued

– A WRITE LINE FROM TERMINAL request that specifies the NEWPAGE
option is issued

7-30 CA-IDMS Navigational DML Programming

7.4 Line mode

– The issuing task terminates

Formatting the line: With either device type, data passed with each WRITE LINE
TO TERMINAL request begins in the first character position of the next available line
on the screen. If the length of the data exceeds the width of the screen, DC
automatically reformats data into lines of the appropriate width.

Example of WRITE LINE TO TERMINAL: The figure below shows the processing
associated with WRITE LINE TO TERMINAL requests for 3270-type terminals.

When the program issues the WRITE LINE TO TERMINAL NEWPAGE request, DC
writes all buffered lines to the terminal. Because the data in line 3 exceeds the width
of the screen, it is displayed as two lines.

Displaying header lines: If you want to display header lines that will appear on
the terminal, include the HEADER option of the WRITE LINE TO TERMINAL
statement. This header will be displayed until a subsequent WRITE LINE TO
TERMINAL request modifies or deletes it.

You can display a maximum of three header lines; each line can be a maximum of two
physical terminal lines in length. Headers are cleared at the end of each line I/O
session.

Chapter 7. Terminal Management 7-31

7.4 Line mode

7.4.3 Reading a line of data

To transfer data from the terminal buffer to program variable storage, issue a READ
LINE FROM TERMINAL statement. READ LINE FROM TERMINAL transfers data
to your program as follows:

■ For line-by-line devices, DC treats the entire screen contents as a single data
field; a READ LINE FROM TERMINAL request returns all data to the program
at once.

■ For 3270-type devices, a READ LINE FROM TERMINAL request returns the
first data field on the screen marked for input. DC queues remaining data fields
marked for input and passes them back to the program one at a time.

Uses of READ LINE FROM TERMINAL: Typical uses of the READ LINE
FROM TERMINAL function are:

■ To retrieve any information entered in addition to a task code. That is, for
tasks assigned the INPUT attribute, the user can enter data following the task
code. For example, if the user enters:

GETEMP HENDON

DC replaces the task code (GETEMP) with leading blanks and returns the data
(HENDON) to the program.

■ To read the one-line response to a WRITE LINE TO TERMINAL request
that has prompted the terminal operator for information. On non-3270
devices, when a READ LINE FROM TERMINAL request is issued after one or
more WRITE LINE TO TERMINAL requests, DC writes a question mark (?) to
the terminal to indicate that a response is required.

■ To enable a program to read formatted 3270-type data fields sequentially.
The first READ LINE FROM TERMINAL request returns the first field on the
screen that is marked for input. Subsequent READ LINE FROM TERMINAL
requests return the remaining fields to the program, one at a time, as illustrated in
the example below.

Example of READ LINE FROM TERMINAL: In the figure below, the first READ
LINE FROM TERMINAL request returns the value in the first data field; subsequent
READ LINE FROM TERMINAL requests return the values in the remaining data
fields in the order in which they appear on the screen.

7-32 CA-IDMS Navigational DML Programming

7.4 Line mode

7.4.4 Ending a line mode session

A line mode I/O session ends when one of the following events occurs:

■ The task terminates without issuing a DC RETURN request. Programs that
specify the NEXT TASK CODE parameter in a DC RETURN request can extend
the line I/O session to include data transfers initiated by the next task.

■ The user presses one of the following keys:

– [Clear] — 3270 terminals

– [Attn] — 2741 terminals

– [Break] — Teletype terminals

■ The program issues an END LINE TERMINAL SESSION request.

Following an END LINE TERMINAL request, DC does not automatically display
lines that remain in a partially filled buffer; typically, this data is of no use to the
user. However, to display the contents of a partially filled buffer before ending
the line I/O session, your program can issue a WRITE LINE TO TERMINAL
request that specifies the NEWPAGE option and a dummy data line (that is, one
with a length of zero).

 7.4.5 3270-type considerations

The following special considerations apply to 3270-type devices:

■ DC assigns each page of data in the line I/O session a sequential number starting
with 1; page numbers are displayed at the bottom of the screen.

■ DC keeps all pages associated with a line I/O session in a scratch area unless
otherwise requested. When the I/O session terminates, these pages remain in the
scratch area where they can be viewed by the user and subsequently deleted. At
any point, the user can display any page either by its position relative to the
currently displayed page or by page number:

– Next page — Press [PA1]

– Previous page — Press [PA2] or the CANC key.

– Specific page — Enter the desired page number following the words NEXT
PAGE at the bottom of the screen and press [Enter].

Unless the NOBACKPAGE option has been specified in a READ LINE FROM
TERMINAL or WRITE LINE TO TERMINAL request, all pages processed
during the I/O session remain available until the user signals completion of their
use by pressing [Enter] with no request to see another page. If the page displayed
is the last page of the session, DC deletes all pages associated with the current
session, clears page header lines, and resets the current page number to one (1).

�� For further details regarding line mode DML statements, refer to the
language-specific CA-IDMS DML reference manual.

Chapter 7. Terminal Management 7-33

7-34 CA-IDMS Navigational DML Programming

Chapter 8. Storage, Scratch, and Queue Management

8.1 About this chapter . 8-3
8.2 Using storage pools . 8-4

8.2.1 User storage . 8-5
8.2.2 User kept storage . 8-6
8.2.3 Shared storage . 8-9
8.2.4 Shared kept storage . 8-10
8.2.5 Storage pool summary . 8-11

8.3 Using scratch records . 8-15
8.4 Using queue records . 8-22
8.5 Using the terminal screen to transmit data 8-27

Chapter 8. Storage, Scratch, and Queue Management 8-1

8-2 CA-IDMS Navigational DML Programming

8.1 About this chapter

8.1 About this chapter

Pseudoconversational programming demands techniques that efficiently pass data from
one task to another. You should choose the method or combination of methods best
suited to the needs of your application. You can choose different methods based on
the following considerations:

■ Length of time that the data is needed

■ Availability of the data to other users

 ■ Data recoverability

■ System resources used

■ Network resources used

■ Number of variables

CA-IDMS provides these services for managing online variable storage:

■ Storage pools manage short-term variable-storage resources and pass data from
one task to another

■ Scratch records pass temporary data between tasks running on the same logical
terminal

■ Queue records pass more permanent data from one task to another

■ The terminal buffer passes very small amounts of data between tasks running on
the same logical terminal.

Chapter 8. Storage, Scratch, and Queue Management 8-3

8.2 Using storage pools

8.2 Using storage pools

To facilitate online programming and intertask communication, CA-IDMS provides
storage management functions that allow you to acquire space explicitly in storage
pools.

These functions control allocation of variable storage in a CA-IDMS storage pool or
work area. Shared by system and user programs, the storage pool also contains space
for buffers and initial storage areas (ISAs) used by Assembler and PL/I programs.

Note: All variable-storage entries (except COBOL LINKAGE SECTION and PL/I
BASED storage entries) defined by your program are acquired automatically
from the CA-IDMS storage pool when the program starts and released
automatically when the program ends.

Using CA-IDMS storage management functions, you can:

■ Acquire variable storage from a storage pool

■ Establish addressability to previously acquired variable storage

■ Release all or part of previously acquired variable storage

Types of acquired storage: You must specify whether the acquired storage is
available to other users:

■ User storage is available only to the issuing task; no other tasks can access it.
CA-IDMS maintains user storage through the issuing task's task control element
(TCE).

■ Shared storage is available to all tasks running under the CA-IDMS system.
CA-IDMS links shared storage to the common system area (CSA) as well as to
the TCE, as illustrated in the figure below. CA-IDMS uses the CSA to locate the
address of a shared area to satisfy requests from other tasks for shared storage.

Note: Shared storage is available to all tasks within the CA-IDMS system;
however, each task must explicitly establish addressability to access such
storage.

TCE and CSA ownership: Shared storage is linked to both the TCE and CSA;
user storage is linked only to the TCE, as the figure below shows.

8-4 CA-IDMS Navigational DML Programming

8.2 Using storage pools

┌─────────┐ ┌───────────┐

│ │ STORAGEID='WRK1' │ │

│ TCE │ Shared │ CSA │

│ (Task1) │ │ │

│ │ └─┬─────────┘

│ ├────────────────────┐ │ Storage pool
└─────────┘ │ │ ┌───┐

 │ │ │ │

 │ │ │ │

 │ │ │ │

┌─────────┐ │ └──�─────────┐ │

│ │ STORAGEID='WRK2' └────� WRK1 │ │

│ TCE │ User ├─────────┴──────────┐ │

│ (Task2) ├─────────────────────────� WRK2 │ │

│ │ ├────────────────────┘ │

│ │ │ │

└─────────┘ └───┘

Kept storage: If you require that storage remain allocated after a task ends, it
should be assigned the KEEP attribute when it is initially allocated. Kept storage is
associated with the logical terminal on which the task is executing and with the task
itself; such storage can be released only through a program request.

Releasing storage: When storage is explicitly released or a task terminates,
CA-IDMS releases linkage to the TCE.

�� For a quick reference of storage release procedures and conditions, see 8.2.5,
“Storage pool summary” on page 8-11 later in this chapter.

User storage only: You can explicitly release all or a part of user storage. For a
partial release, TCE linkage and the KEEP attribute remain unaffected.

 8.2.1 User storage

User storage is associated exclusively with the issuing task through the TCE; when the
task terminates, user storage is released. By dynamically acquiring only the amount of
storage needed, you can make more effective use of storage resources.

Steps to acquire user storage: To dynamically acquire and use variable storage
from the storage pool within a single task, perform the following steps:

1. Acquire variable storage from the storage pool by issuing a GET STORAGE
statement that specifies the USER parameter.

2. Check for an ERROR-STATUS of 3210 (DC-NEW-STORAGE).

3. Perform the IDMS-STATUS routine if 3210 is not returned.

4. Perform processing, using the acquired storage as needed.

5. Release the acquired storage by issuing a FREE STORAGE statement that
specifies the appropriate storage ID.

Chapter 8. Storage, Scratch, and Queue Management 8-5

8.2 Using storage pools

Example of acquiring user storage: The program excerpt below shows the
acquisition and release of user storage.

The program acquires the minimum amount of storage needed to complete the
processing specified by the user.

 DATA DIVISION.

 LINKAGE SECTION.

 �1 COPY IDMS RECORD EMPLOYEE.

 �5 EMPLOYEE-END PIC X.

 �1 COPY IDMS RECORD DEPARTMENT.

 �5 DEPARTMENT-END PIC X.

 �1 ERROR-DATA.

 �5 ERROR-DEPT-ID PIC 9(4).

 �5 ERROR-MESSAGE-CODE PIC X(4).

 �5 ERROR-DATA-END PIC X.

 PROCEDURE DIVISION.

 MAIN-LINE.

��� THIS PROGRAM ACQUIRES STORAGE FOR EITHER THE ���

��� DEPARTMENT RECORD OR THE EMPLOYEE RECORD ���

��� DEPENDING ON THE CONTROL KEY PRESSED BY THE ���

��� TERMINAL OPERATOR. ���

BIND MAP SOLICIT.

BIND MAP SOLICIT RECORD SOLICIT-REC.

MAP IN USING SOLICIT.

INQUIRE MAP SOLICIT MOVE AID TO DC-AID-IND-V.

IF CLEAR-HIT DC RETURN

 ELSE

IF PA�1-HIT GO TO A1��-GET-EMPLOYEE

 ELSE

IF PA�2-HIT GO TO A1��-GET-DEPARTMENT

 ELSE

GO TO U1��-ERROR-PROC.

�

 A1��-GET EMPLOYEE.

IF SOLICIT-EMP-ID NOT NUMERIC

GO TO U2��-ERROR-EMP-ID.

��� ACQUIRE USER STORAGE FOR THE EMPLOYEE RECORD ���
GET STORAGE FOR EMPLOYEE TO

 EMPLOYEE-END
NOWAIT SHORT USER
STGID 'EMPL' VALUE IS LOW-VALUE

 ON DC-NEW-STORAGE
 NEXT SENTENCE.

MOVE SOLICIT-EMP-ID TO EMP-ID-�415.

OBTAIN CALC EMPLOYEE

 ON DB-REC-NOT-FOUND

GO TO U2��-ERROR-NO-EMP.

 .

8.2.2 User kept storage

User kept storage is available to all tasks running on a logical terminal until a task
associated with that terminal releases the storage. User kept storage is ideal for
passing small amounts of information between tasks. CA-IDMS maintains TCE
linkage for user kept storage across tasks by using the logical terminal element (LTE).
When a new task is initiated from the same terminal, CA-IDMS transfers this linkage
from the LTE to the TCE of the new task.

8-6 CA-IDMS Navigational DML Programming

8.2 Using storage pools

Steps to acquire user kept storage: To dynamically acquire and use variable
storage from the storage pool and make the storage available to multiple tasks running
on the same logical terminal:

1. Acquire variable storage from the storage pool by issuing a GET STORAGE
statement that specifies both the USER and the KEEP parameters.

Note: You can indicate that storage is eligible for allocation above the 16Mb line
by specifying LOCATION IS ANY on the GET STORAGE statement.

2. Check for an ERROR-STATUS of 3210 (DC-NEW-STORAGE).

3. Perform the IDMS-STATUS routine if 3210 is not returned.

4. Perform processing, using the acquired storage as needed.

5. Issue a DC RETURN statement, optionally specifying the next task to be invoked.

Accessing user kept storage: In subsequent tasks invoked on the same logical
terminal:

1. Establish addressability to the previously acquired storage by issuing a GET
STORAGE request that names the storage ID specified for the storage area when
it was first allocated.

2. Perform processing, using the acquired data.

You should release the acquired storage as soon possible by issuing a FREE
STORAGE statement that specifies the appropriate storage ID.

Example of acquiring user kept storage: The program excerpt below shows the
initial assignment of user kept storage.

The program performs preliminary error checking before transferring control to a
database retrieval program.

Chapter 8. Storage, Scratch, and Queue Management 8-7

8.2 Using storage pools

 DATA DIVISION.

 �1 TRANSPROG PIC X(8) VALUE 'DEPTGET'.

 �1 SOLICIT-REC.

 �5 SOLICIT-DEPT-ID PIC X(4).

 LINKAGE SECTION.

 �1 PASS-DEPT-INFO.

 �5 PASS-DEPT-ID PIC 9(4).

 �5 PASS-DEPT-INFO-END PIC X.

 PROCEDURE DIVISION.

BIND MAP SOLICIT.

BIND MAP SOLICIT RECORD SOLICIT-REC.

�

MAP IN USING SOLICIT.

INQUIRE MAP SOLICIT MOVE AID TO DC-AID-IND-V.

IF CLEAR-HIT DC RETURN.

�

IF SOLICIT-DEPT-ID NOT NUMERIC

GO TO ERROR-DEPT-ID.

��� ACQUIRE USER KEPT STORAGE ���
GET STORAGE FOR PASS-DEPT-INFO

 TO PASS-DEPT-INFO-END
NOWAIT KEEP LONG USER
STGID 'DEPT' VALUE IS LOW-VALUE

 ON DC-NEW-STORAGE
 NEXT SENTENCE.
��� MOVE MAP DATA TO FIELDS IN ACQUIRED STORAGE ���

MOVE SOLICIT-DEPT-ID TO PASS-DEPT-ID.

��� TRANSFER CONTROL TO DATABASE ACCESS PROGRAM ���

TRANSFER CONTROL TO TRANSPROG

 NORETURN.

Reestablishing addressability to user kept storage: The program excerpt
below establishes addressability to the previously acquired storage and releases it. The
program uses data from the previously acquired storage to perform database access.

8-8 CA-IDMS Navigational DML Programming

8.2 Using storage pools

 DATA DIVISION.

 �1 NTCODES.

 �5 NEXT-TASK PIC X(8) VALUE 'DEPTMOD'.

 �1 MESSAGES.

 �5 DEPT-DISPLAY-MESS PIC X(2�)

VALUE 'DEPARTMENT DISPLAYED'

�5 DEPT-DISPLAY-MESS-END. PIC X.

 �1 SOLICIT-REC.

 �5 SOLICIT-DEPT-ID PIC X(4).

 LINKAGE SECTION.

 �1 PASS-DEPT-INFO.

 �5 PASS-DEPT-ID PIC 9(4).

 �5 PASS-DEPT-INFO-END PIC X.

 PROCEDURE DIVISION.

��� ESTABLISH ADDRESSABILITY TO PREVIOUSLY ACQUIRED STORAGE ���
GET STORAGE FOR PASS-DEPT-INFO

 TO PASS-DEPT-INFO-END
NOWAIT KEEP LONG USER
STGID 'DEPT'.

BIND MAP SOLICIT.

BIND MAP SOLICIT RECORD SOLICIT-REC.

��� MOVE DATA TO DATABASE CALC-KEY AND MAP DATA FIELD ���

MOVE PASS-DEPT-ID TO DEPT-ID-�41�.

MOVE PASS-DEPT-ID TO SOLICIT-DEPT-ID.

��� RELEASE STORAGE ���
FREE STORAGE STGID 'DEPT'.

 .

��� DATABASE ACCESS ���

 .

MAP OUT USING SOLICIT

MESSAGE IS DEPT-DISPLAY-MESS TO DEPT-DISPLAY-MESS-END.

DC RETURN NEXT TASK CODE NEXT-TASK.

 8.2.3 Shared storage

Shared storage is available to all tasks running concurrently under the CA-IDMS
system.

Shared storage is usually accessed by a concurrent nonterminal task. For example,
such a nonterminal task might support the main task by performing print functions.

�� For more information on nonterminal tasks, see 9.13, “Initiating nonterminal tasks”
on page 9-35.

When shared storage is released: CA-IDMS maintains an in-use counter for
each area of shared storage. Each time a task establishes addressability to an area of
shared storage, CA-IDMS adds 1 to the in-use counter. When a task terminates or
releases the storage, CA-IDMS subtracts 1 from the in-use counter. CA-IDMS
releases shared storage when the in-use counter is set to zero.

Steps to acquire shared storage: To dynamically acquire and use variable
storage from the storage pool and make the storage available to other tasks running
under the same CA-IDMS system, perform the following steps:

1. Acquire variable storage from the storage pool by issuing a GET STORAGE
statement that specifies the SHARED parameter.

Chapter 8. Storage, Scratch, and Queue Management 8-9

8.2 Using storage pools

2. Check for an ERROR-STATUS of 3210 (DC-NEW-STORAGE).

3. Perform the IDMS-STATUS routine if 3210 is not returned.

4. Perform processing, using the acquired storage as needed.

5. Optionally, release the shared storage by issuing a FREE STORAGE statement
that specifies the appropriate storage ID.

Steps to access shared storage: To access the data from another task executing
concurrently under the same CA-IDMS system, perform the following steps:

1. Establish addressability to the previously acquired storage by issuing a GET
STORAGE request that names the storage ID specified for the storage area when
it was first allocated.

2. Perform processing using the acquired data.

3. Optionally, release the shared storage by issuing a FREE STORAGE statement
that specifies the appropriate storage ID.

8.2.4 Shared kept storage

Shared kept storage is available to all tasks running under the CA-IDMS system.
Once a storage area with the SHARED KEEP attribute is established, any task running
under the CA-IDMS system can access that area.

When shared kept storage is released: CA-IDMS maintains an in-use counter
and a keep flag for each area of shared kept storage. Shared kept storage is released
only when both of the following conditions are true:

1. The in-use counter is set to zero, indicating that there are no current users of the
area.

2. The keep flag is turned off (the FREE STORAGE statement turns the keep flag
off)

If either condition is false, the storage area remains allocated. With this feature,
shared kept storage areas remain allocated even when they are not being used,
provided the keep flag remains on.

Each time a task establishes addressability to an area of shared kept storage, CA-IDMS
adds 1 to the in-use counter. When the task terminates, CA-IDMS subtracts 1 from
the in-use counter. When a program issues a FREE STORAGE request, CA-IDMS
subtracts 1 from the in-use counter and turns off the keep flag. Once a FREE
STORAGE request is issued, if the in-use counter is zero, CA-IDMS releases the
storage. Once turned off, the keep flag cannot be reset.

Difference from user kept storage: Unlike user kept storage, shared kept storage
is not linked to the LTE across tasks executing on the same terminal.

8-10 CA-IDMS Navigational DML Programming

8.2 Using storage pools

Startup shared kept storage: One shared storage area having the keep attribute is
allocated at system startup for use by all tasks; this storage area is never freed. This
area is called the common work area (CWA) and can contain application-defined
information, if so requested during system generation.

�� For more information about the CWA, refer to CA-IDMS System Generation.

Example of shared kept storage: The program excerpt below shows
programmatic access to data previously placed in the CWA.

This program accesses the CWA in order to obtain the current date in Gregorian
format:

 DATA DIVISION.

 �1 NTCODES.

 �5 NEXT-TASK PIC X(8) VALUE 'DEPTGET'.

 �1 CWA PIC X(4) VALUE 'CWA'.

 �1 SOLICIT-REC.

 �5 SOLICIT-DEPT-ID PIC X(4).

 �5 SOLICIT-GREG-DATE PIC X(8).

 LINKAGE SECTION.

 �1 CWA-DATA.

 �5 CWA-DATE PIC X(8).

 �5 CWA-DATA-END PIC X.

 PROCEDURE DIVISION.

BIND MAP SOLICIT.

BIND MAP SOLICIT RECORD SOLICIT-REC.

��� GET THE DATE IN GREGORIAN FORMAT FROM THE CWA ���
GET STORAGE FOR CWA-DATA TO CWA-DATA-END

NOWAIT KEEP SHORT SHARED
 STGID CWA.

MOVE ZEROS TO SOLICIT-DEPT-ID.

MOVE CWA-DATE TO SOLICIT-GREG-DATE.

MAP OUT USING SOLICIT.

DC RETURN NEXT TASK CODE NEXT-TASK.

8.2.5 Storage pool summary

Acquired storage is associated with the TCE, the CSA, or both. Additionally, user
storage with the keep attribute is linked to the LTE.

The table below shows the procedures and conditions under which CA-IDMS
maintains linkage when storage is released. This table assumes that the FREE
STORAGE request releases the entire storage area.

Chapter 8. Storage, Scratch, and Queue Management 8-11

8.2 Using storage pools

How storage is allocated and released: The following diagrams illustrate how
CA-IDMS allocates and releases storage.

1. Task 1, running on terminal B, establishes addressability to two variable areas of
kept storage. WRK1 is designated shared keep; WRK3 is designated user keep.
Because task 1 is the only task using WRK1, the in-use counter associated with
WRK1 is set to 1.

Storage attribute After FREE STORAGE
request

After task termination

USER Storage is released. Storage is released.

USER KEEP Storage is released. Storage remains allocated;
TCE linkage is transferred
to the LTE.

SHARED Storage is released only if the
in-use counter is set to zero.

Storage is released only if
the in-use counter is set to
zero.

SHARED KEEP Storage is released only if the
in-use counter is set to zero.

Storage remains allocated.

2. Task 1 terminates without issuing a FREE STORAGE request for either WRK1 or
WRK3. CA-IDMS automatically decrements the in-use counter and transfers
linkage for WRK3 to the LTE for terminal B. Because WRK1 is shared,
CA-IDMS does not maintain linkage to the LTE. Although WRK1 has no users,
it remains allocated because an explicit FREE STORAGE was not issued.

8-12 CA-IDMS Navigational DML Programming

8.2 Using storage pools

3. Task 2 is initiated on terminal B and issues a GET STORAGE request for WRK1.
Task 3 is initiated on terminal C and issues a GET STORAGE request for WRK1.
The in-use counter for WRK1 indicates two users.

4. Task 3 issues a FREE STORAGE request for WRK1; CA-IDMS turns the keep
flag off and decrements the in-use counter by 1.

Chapter 8. Storage, Scratch, and Queue Management 8-13

8.2 Using storage pools

5. Task 2 terminates without issuing a FREE STORAGE request for WRK1;
CA-IDMS decrements the in-use counter by 1. Because the keep flag is off and
the in-use counter is set to zero, CA-IDMS releases the storage associated with
WRK1.

8-14 CA-IDMS Navigational DML Programming

8.3 Using scratch records

8.3 Using scratch records

CA-IDMS scratch management functions allow you to allocate, retrieve, and delete
scratch records. Scratch records, which are stored in the DDLDCSCR area of the
dictionary, are used to pass data from one task to subsequent tasks running on the
same terminal. These records are not accessible to tasks executing on other terminals.

Fast access: Scratch records provide fast access because:

■ Scratch records are indexed. They are stored in an indexed set in the
DDLDCSR area of the dictionary.

■ The DDLDCSCR area provides efficient access. It is initialized at system
startup; any previously existing records are deleted.

■ Scratch records are unavailable to other users. You do not have to wait for
record locks to be freed.

Best use of scratch records: Scratch records are not recoverable across a
shutdown/startup or a system crash. All scratch records are deleted at system startup.
Because they are not saved across a system shutdown, scratch records are best used for
temporary storage of data.

Availability to a subsequent task: When a task terminates, CA-IDMS
temporarily associates that task's scratch areas with the logical terminal from which the
task was invoked. This is done using the logical terminal element (LTE). When a
new task is initiated on the same terminal, CA-IDMS transfers the scratch areas to the
task control element (TCE) for the new task. All scratch records and currencies
associated with the old task are available to the new task.

What you can do with scratch records: You can use CA-IDMS scratch
management functions to do the following:

■ Store or replace a scratch record in the dictionary

■ Retrieve a scratch record from the dictionary and place it in a variable-storage
area associated with the issuing task

■ Delete a scratch record from the dictionary

Steps to allocate or replace a scratch record: To allocate or replace a scratch
record, perform the following steps:

1. Initialize the appropriate fields in program variable storage.

2. Issue a PUT SCRATCH command that specifies the variable-storage location of
the data to be stored; to replace a record, include the REPLACE parameter.

3. If you specify the REPLACE parameter, check for a status of 4317
(DC-REC-REPLACED).

4. Perform the IDMS-STATUS routine. (If you specify REPLACE, perform this
step only if 4317 is not returned.)

Chapter 8. Storage, Scratch, and Queue Management 8-15

8.3 Using scratch records

Scratch area: In response to your PUT SCRATCH request, CA-IDMS places the
scratch record in the DDLDCSCR area of the dictionary. An index pointer to the
record is placed in a storage pool scratch area. Each scratch area is identified by its
area ID; scratch records in each area are indexed in ascending order by scratch record
ID (SRID).

Typically, your program assigns the SRID. If not, CA-IDMS assigns the SRID, places
the record last within the scratch area, and returns the SRID to your program.

Any number of scratch areas can be associated with a task and any number of scratch
records can be associated with a scratch area.

Example of scratch record allocation: The figure below shows scratch record
allocation. When a PUT SCRATCH request is issued, CA-IDMS creates a scratch
record in the dictionary and places a pointer to that record in a scratch area associated
with the issuing task.

Steps to retrieve a scratch record: To retrieve a scratch record, perform the
following steps:

1. Issue a GET SCRATCH command that specifies the appropriate scratch area ID
and indicates the variable-storage location in which the scratch record is to be
placed. You can retrieve scratch records by position within the area, by
relationship to the current record of the scratch area, or by SRID.

2. If you are issuing the GET SCRATCH command iteratively and specifying the
DELETE parameter, check for a status of 4303 (DC-AREA-ID-UNK); this
indicates the end of the scratch area. If you specify KEEP, check for a status of
4305 (DC-REC-NOT-FOUND); this indicates the end of the scratch area.

If there is any chance that the length of the retrieved record exceeds the length of
its allocated variable storage, you should do the following:

8-16 CA-IDMS Navigational DML Programming

8.3 Using scratch records

■ Include the KEEP parameter of the GET SCRATCH statement to ensure that
data is not deleted when it is retrieved.

■ Check for a status of 4319 (DC-TRUNCATED-DATA).

3. Perform the IDMS-STATUS routine if neither 4303, 4305, nor 4319 is returned.

Scratch record currency: CA-IDMS maintains currency for the records in each
scratch area. Because CA-IDMS maintains currency across tasks, you should
be aware that the NEXT option does not default to FIRST, and PRIOR does
not default to LAST.

Steps to delete a scratch record: To delete a scratch record, issue either of the
following commands:

■ A GET SCRATCH command that specifies the DELETE parameter. CA-IDMS
copies the scratch record to the appropriate variable-storage area and deletes the
record. When all scratch records associated with a given scratch area have been
deleted, CA-IDMS deletes the scratch area. CA-IDMS returns a status of 4303
(DC-AREA-ID-UNK) to later GET SCRATCH requests that specify that area ID.

■ A DELETE SCRATCH command that specifies one of the following:

– That a particular occurrence of the scratch record is to be erased

– That the entire scratch area should be erased

Allocating scratch records across tasks: The following diagrams illustrate
how CA-IDMS dynamically allocates scratch records across tasks:

1. Task 1 stores scratch record SCR1 in scratch area 7. Because no scratch area with
that identifier exists for task 1, CA-IDMS dynamically allocates the area within
the variable-storage pool. A scratch record is placed in the dictionary and is
associated with task 1's TCE.

Chapter 8. Storage, Scratch, and Queue Management 8-17

8.3 Using scratch records

2. Task 1 stores SCR2 in scratch area 7. CA-IDMS creates a second entry in scratch
area 7 and places the new record in the dictionary.

3. Task 1 terminates. CA-IDMS associates scratch area 7 with the LTE for terminal
A. Scratch area 7 is no longer associated with task 1.

4. Task 4 is initiated on terminal A. CA-IDMS associates scratch area 7 with task
4's TCE.

8-18 CA-IDMS Navigational DML Programming

8.3 Using scratch records

5. Task 4 issues a GET SCRATCH to obtain SCR2. Data associated with scratch
record SCR2 now resides in variable storage for task 4, as well as in the
dictionary.

6. Task 4 deletes SCR1. CA-IDMS deletes the scratch area entry for that record and
removes the record from the dictionary.

Chapter 8. Storage, Scratch, and Queue Management 8-19

8.3 Using scratch records

Example of retrieving scratch records: The program excerpt below retrieves
scratch records from the TEST-SCRATCH scratch area. The program uses a pageable
map in order to display an unlimited number of scratch records.

The program retrieves all occurrences in the TEST-SCRATCH scratch area. Each
occurrence contains the employee's ID, last name, and first name.

8-20 CA-IDMS Navigational DML Programming

8.3 Using scratch records

 WORKING-STORAGE SECTION.

 �1 TC PIC X(8).

 88 GETOUT VALUE 'GETSCR2'.

 �1 SWITCHES.

 �5 FIRST-PAGE-SW PIC X VALUE 'N'.

 88 LESS-THAN-A-PAGE VALUE 'N'.

 �1 GETSCR2 PIC X(8) VALUE 'GETSCR2'.

 �1 TESTSCR PIC X(8) VALUE 'TESTSCR'.

 �1 TEST-SCRATCH.

 �5 SCR-ID PIC 9(4).

 �5 SCR-LNAME PIC X(15).

 �5 SCR-FNAME PIC X(1�).

 �5 TEST-SCRATCH-END PIC X.

 �1 SCRMAP-REC.

 �2 ID PIC 9(4).

 �2 LNAME PIC X(15).

 �2 FNAME PIC X(1�).

 PROCEDURE DIVISION.

 MAIN-LINE.

ACCEPT TASK CODE INTO TC.

IF GETOUT ENDPAGE

 DC RETURN.

BIND MAP SCRMAP�1.

BIND MAP SCRMAP�1 RECORD SCRMAP-REC.

STARTPAGE SESSION SCRMAP�1 NOWAIT BACKPAGE BROWSE

ON DC-SECOND-STARTPAGE NEXT SENTENCE.

�

GET SCRATCH AREA ID TESTSCR FIRST KEEP
INTO TEST-SCRATCH TO

 TEST-SCRATCH-END
 ON DC-AREA-ID-UNK

GO TO ERR-NO-SCR.
MOVE SCR-ID TO ID.

MOVE SCR-LNAME TO LNAME.

MOVE SCR-FNAME TO FNAME.

MAP OUT USING SCRMAP�1

 DETAIL NEW.

PERFORM A1��-GET-SCRATCH THRU A1��-EXIT

 UNTIL DC-REC-NOT-FOUND.

 IF LESS-THAN-A-PAGE

MAP OUT USING SCRMAP�1

 NEWPAGE RESUME.

DC RETURN NEXT TASK CODE GETSCR2.

 A1��-GET-SCRATCH.

GET SCRATCH AREA ID TESTSCR NEXT KEEP
INTO TEST-SCRATCH TO

 TEST-SCRATCH-END
ON DC-REC-NOT-FOUND GO TO A1��-EXIT.

MOVE SCR-ID TO ID.

MOVE SCR-LNAME TO LNAME.

MOVE SCR-FNAME TO FNAME.

MAP OUT USING SCRMAP�1

 DETAIL NEW

 ON DC-FIRST-PAGE-SENT

MOVE 'Y' TO FIRST-PAGE-SW.

 A1��-EXIT.

 EXIT.

Chapter 8. Storage, Scratch, and Queue Management 8-21

8.4 Using queue records

8.4 Using queue records

CA-IDMS queue management functions allow you to store, retrieve, and delete queue
records. Queue records, which are stored in the dictionary, are available to all tasks
running under CA-IDMS and to batch programs with an operating mode of
DC-BATCH.

Queue records are saved across a system shutdown/startup and recovered across a
system crash; however, currencies are lost when the system crashes or is shut down.

In a data sharing environment, queues can be shared between members of a data
sharing group.

Queue record storage: CA-IDMS stores queue records in the DDLDCRUN area
of the dictionary. Each queue record is a member record in a set owned by a queue
header record. All records associated with one queue header are referred to
collectively as a queue. You can direct records to queues defined at system
generation, to queues defined through the DDDL compiler, to program-defined queues,
or to null queues.

Sharing queues between CA-IDMS systems: In a data sharing environment,
queues can be shared between CA-IDMS systems that are members of a sharing group.
The benefit of a shared queue is that it can be read and updated by programs executing
on any member of the group. Whether or not a specific queue is shared, is determined
by specifications made by the CA-IDMS system administrator. Programs accessing
queues are not sensitive to whether or not a queue is shared, since the DML syntax is
the same in either case.

How you can use queue management: You can use CA-IDMS queue
management functions to do the following:

■ Store a queue record and assign an ID to uniquely identify the record

■ Retrieve a queue record and place it in a variable-storage area associated with the
issuing task

■ Delete a record from a specified queue

■ Delete an entire queue

Steps to store a queue record: To store a queue record, perform the following
steps:

1. Initialize the appropriate fields in program variable storage.

2. Issue a PUT QUEUE command that specifies the variable-storage location of the
data to be stored.

8-22 CA-IDMS Navigational DML Programming

8.4 Using queue records

Steps to retrieve a queue record: To retrieve a queue record, perform the
following steps:

1. Issue a GET QUEUE command that specifies the appropriate queue ID and
indicates the variable-storage location in which the queue record is to be placed.

If there is any chance that the length of the retrieved record exceeds the length of
its allocated variable storage, you should do the following:

■ Include the KEEP parameter of the GET QUEUE statement to ensure that the
record is not deleted when it is retrieved.

■ Check for a status of 4419 (DC-TRUNCATED-DATA).

2. Check for a status of 4405 (DC-REC-NOT-FOUND), which indicates that you
have retrieved all queue records for the specified queue ID.

3. Perform the IDMS-STATUS routine if neither 4405 nor 4419 is returned.

Queue record currency: CA-IDMS maintains currency for each queue by task. If
several tasks are accessing a queue concurrently, CA-IDMS maintains currency
separately for each task. Access to a queue record can be by queue ID, by
position within the queue, or by relationship of the specified record to the
current record of the queue.

Steps to delete a queue record: To delete a queue record, issue either of the
following commands:

■ A GET QUEUE command that specifies the DELETE parameter. CA-IDMS
copies the record's data to the appropriate variable-storage area and deletes the
record.

■ A DELETE QUEUE command that specifies one of the following:

– That the current occurrence of the queue record is to be erased

– That the entire queue should be deleted

Implicit deletion of queue records: CA-IDMS saves the next and prior
currencies following a DELETE QUEUE function so that you can still access the next
and prior records in the queue. When all records associated with a given queue have
been deleted, CA-IDMS deletes the header record as well. Queue records are also
deleted implicitly if the associated queue header record is deleted.

Deleting queues: Queues can also be deleted at system startup or at runtime:

■ At system startup -- Each queue is assigned a retention period; the retention
period specifies the number of days that CA-IDMS will retain the queue. At
system startup, CA-IDMS deletes queues that have exceeded their retention
periods.

■ At runtime -- The DCMT VARY QUEUE command can be used to delete
unwanted queues at runtime.

�� For more information on DCMT commands, refer to CA-IDMS System
Operations.

Chapter 8. Storage, Scratch, and Queue Management 8-23

8.4 Using queue records

Queue record locks: Because queues are shared among tasks, CA-IDMS must
ensure that two tasks do not update a queue record concurrently, causing unexpected
alteration of data. Additionally, if a task terminates abnormally, CA-IDMS must
ensure that the queue can be restored to its state before the failure. To accomplish
this, CA-IDMS handles queues in the following manner:

■ When a task stores or retrieves a queue record, CA-IDMS places an implicit
exclusive lock on that record, thereby preventing it from being retrieved or
updated by other tasks.

■ All records locked by CA-IDMS remain locked until the task terminates or until
your program issues a COMMIT TASK statement. COMMIT TASK causes some
or all of the locks to be released, as specified.

■ Queue currencies and locks are not passed from one task to the next on a terminal.
Each task is responsible for reestablishing any required currencies.

Avoiding task waits for queue access: Only one task can access a queue record
at a time; other tasks attempting access must wait until the current task is complete.
Therefore, you should ensure that queue access is short lived. There should be no
long waits, such as pseudoconverses, embedded within queue access code.

Retrieving queue records: The program excerpt below retrieves and displays
queue records. This program uses a pageable map in order to display an unlimited
number of queue records.

The program retrieves all occurrences in the DISPQ queue. This queue lists the
employee's ID and last name, and the date and time that each queue record was
established.

8-24 CA-IDMS Navigational DML Programming

8.4 Using queue records

 WORKING-STORAGE SECTION.

 �1 TC PIC X(8).

 88 GETOUT VALUE 'QOUT'.

 �1 SWITCHES.

 �5 FIRST-PAGE-SW PIC X VALUE 'N'.

 88 LESS-THAN-A-PAGE VALUE 'N'.

 �1 GETQUE2 PIC X(8) VALUE 'QOUT'.

 �1 CURR-TIME PIC X(11).

 �1 CURR-DATE PIC S9(7) COMP-3.

 �1 MESSAGES.

�5 DIS-QUE-MESS PIC X(2�) VALUE

'QUEUE TESTQ DISPLAYED'.

 �5 DIS-QUE-MESS-END PIC X.

 �1 TESTQ PIC X(6) VALUE 'TESTQ'.

 �1 TEST-QUEUE.

 �5 Q-ID PIC 9(4).

 �5 Q-LNAME PIC X(15).

 �5 Q-TIME PIC X(11).

 �5 Q-DATE PIC 9(5).

 �5 TEST-QUEUE-END PIC X.

 �1 QUEMAP-REC.

 �5 ID PIC 9(4).

 �5 LNAME PIC X(15).

 �5 QTIME PIC X(11).

 �5 QDATE PIC 9(5).

 �5 MAP-DATE PIC 9(5).

 �5 MAP-TIME PIC X(11).

 PROCEDURE DIVISION.

 MAIN-LINE.

BIND MAP QUEMAP�1.

BIND MAP QUEMAP�1 RECORD QUEMAP-REC.

ACCEPT TASK CODE INTO TC.

IF GETOUT ENDPAGE

 DC RETURN.

GET TIME INTO CURR-TIME EDIT

DATE INTO CURR-DATE.

MOVE CURR-TIME TO MAP-TIME.

MOVE CURR-DATE TO MAP-DATE.

STARTPAGE SESSION QUEMAP�1 NOWAIT BACKPAGE BROWSE

ON DC-SECOND-STARTPAGE NEXT SENTENCE.

�

PERFORM A1��-GET-QUEUE-REC THRU A1��-EXIT

 UNTIL DC-REC-NOT-FOUND.

 IF LESS-THAN-A-PAGE

MAP OUT USING QUEMAP�1

 NEWPAGE RESUME

MESSAGE IS DIS-QUE-MESS TO DIS-QUE-MESS-END.

�

DC RETURN NEXT TASK CODE GETQUE2.

�

Chapter 8. Storage, Scratch, and Queue Management 8-25

8.4 Using queue records

 A1��-GET-QUEUE-REC.

GET QUEUE ID TESTQ NEXT KEEP
INTO TEST-QUEUE TO

 TEST-QUEUE-END
ON DC-REC-NOT-FOUND GO TO A1��-EXIT.

 MOVE Q-ID TO ID.

 MOVE Q-LNAME TO LNAME.

 MOVE Q-TIME TO QTIME.

 MOVE Q-DATE TO QDATE.

MAP OUT USING QUEMAP�1

 DETAIL NEW

 ON DC-FIRST-PAGE-SENT

MOVE 'Y' TO FIRST-PAGE-SW.

 A1��-EXIT.

 EXIT.

8-26 CA-IDMS Navigational DML Programming

8.5 Using the terminal screen to transmit data

8.5 Using the terminal screen to transmit data

You can transfer small amounts of alphanumeric data between tasks by using map data
fields defined with the following attributes:

 ■ Dark

 ■ Protected

■ MDT set on (nonpageable maps only)

For example, you can convert a record's db-key to display format and transmit the
reformatted db-key in the map data stream to allow for DB-KEY retrieval on
subsequent database access. You can also transmit the next task code to be invoked
by a program.

The terminal screen is ideal for transmitting small amounts of data; more than a small
amount of data can affect transmission time.

Example of transmitting screen data: The program excerpt below uses the
terminal screen to transmit the db-key of a database record to be modified. This
allows for more efficient database access.

The program uses the record's db-key, which was transmitted in the map data stream,
to retrieve the EMPLOYEE record.

Chapter 8. Storage, Scratch, and Queue Management 8-27

8.5 Using the terminal screen to transmit data

 �1 MAP-WORK-REC.

 �5 WORK-DEPT-ID PIC 9(4).

 �5 WORK-EMP-ID PIC 9(4).

 �5 WORK-FIRST PIC X(1�).

 �5 WORK-LAST PIC X(15).

 �5 WORK-ADDRESS PIC X(42).

 �5 WORK-DEPT-NAME PIC X(45).

 �5 DARK-DBKEY PIC X(12).
�5 RETRIEVE-DBKEY PIC S9(8) COMP.

 PROCEDURE DIVISION.

BIND MAP EMPMAP.

BIND MAP EMPMAP RECORD MAP-WORK-REC.

MAP IN USING EMPMAP.

IF WORK-EMP-ID NOT NUMERIC

GO TO U1��-INVALID-EMP-ID.

�

COPY IDMS SUBSCHEMA-BINDS.

 READY.

��� CHANGE DARK-DBKEY FROM DISPLAY TO COMP ���
MOVE DARK-DBKEY TO RETRIEVE-DBKEY.
OBTAIN EMPLOYEE DB-KEY IS RETRIEVE-DBKEY

 ON DB-REC-NOT-FOUND
GO TO U1��-INVALID-DBKEY.

�

 MOVE WORK-FIRST TO EMP-FIRST-NAME-�415.

 MOVE WORK-LAST TO EMP-LAST-NAME-�415.

MOVE WORK-ADDRESS TO EMP-ADDRESS-�415.

 MODIFY EMPLOYEE.

 FINISH.

��� MAP OUT PROCESSING AND ERROR ROUTINES ���

 .

 .

 .

8-28 CA-IDMS Navigational DML Programming

Chapter 9. DC Programming Techniques

9.1 About this chapter . 9-3
9.2 Passing program control . 9-4

9.2.1 Returning to a higher level program . 9-5
9.2.2 Passing control laterally . 9-6
9.2.3 Passing control, expecting to return . 9-7

9.3 Retrieving task-related information . 9-9
9.4 Maintaining data integrity in the online environment 9-11

9.4.1 Setting longterm explicit locks . 9-11
9.4.2 Monitoring concurrent database access 9-14

9.5 Managing tables . 9-18
9.6 Retrieving the current time and date . 9-21
9.7 Writing to the journal file . 9-23
9.8 Collecting DC statistics . 9-25
9.9 Sending messages . 9-28

9.9.1 Sending a message to the current user 9-28
9.9.2 Sending a message to other users . 9-29

9.10 Writing to a printer . 9-31
9.11 Writing JCL to a JES2 internal reader 9-33
9.12 Modifying a task's priority . 9-34
9.13 Initiating nonterminal tasks . 9-35

9.13.1 Attaching a task . 9-35
9.13.2 Time-delayed tasks . 9-36
9.13.3 External requests . 9-36
9.13.4 Queue threshold tasks . 9-36

9.14 Controlling abend processing . 9-37
9.14.1 Terminating a task . 9-37
9.14.2 Handling db-key deadlocks . 9-37
9.14.3 Performing abend routines . 9-39

9.15 Establishing and posting events . 9-41

Chapter 9. DC Programming Techniques 9-1

9-2 CA-IDMS Navigational DML Programming

9.1 About this chapter

9.1 About this chapter

This chapter discusses programming techniques used to request DC services.
Functionally similar DC DML statements are presented together; sample code that
demonstrates typical usage of each statement is included. The DC DML functions are
divided into these categories:

■ Controlling the flow of processing in the different levels of your task

■ Retrieving task-related information — Accessing system, terminal, and user
information related to the current task

■ Maintaining online data integrity — Monitoring concurrent database access
locking database records across tasks

■ Managing tables — Adding and deleting tables from the program pool

■ Retrieving the current time and date — Accessing the time and date from the DC
system

■ Writing to the journal file — Writing task-defined records to the journal file

■ Collecting DC statistics — Accessing runtime transaction statistics

■ Sending messages — Transmitting messages to other terminals, the user, and the
log file

■ Writing to a printer — Directing data to printer devices

■ Writing JCL to a JES2 internal reader — Sending a JCL stream from the
application program to a JES2 internal reader

■ Modifying a task's priority — Changing the dispatching priority of a task

■ Initiating nonterminal tasks — Using nonterminal tasks

■ Controlling abend processing — Specifying the flow of control in the event of an
abend

■ Establishing and posting events — Establishing and posting event control blocks

Chapter 9. DC Programming Techniques 9-3

9.2 Passing program control

9.2 Passing program control

DC provides program management facilities that allow you to pass control either
between programs in a single task thread or from task to task. Using these program
management functions, you can:

■ Return control to the next-higher level within a task, optionally specifying the next
task to be invoked on the same terminal

■ Initiate execution of a program on the same level within a task; control cannot
return to the calling program

■ Initiate execution of a subordinate-level program within the same task, with the
expectation that control will return to the instruction immediately following the
request

Levels of program control: The figure below shows levels of programs in a task.
TASKA invokes Program A, which calls Program B expecting return of control.
Program B passes control laterally to Program C, which then returns control to
Program A. When Program A is finished, it returns control to DC specifying that
TASKX should be the next task invoked on that logical terminal.

Next task code 'TASKX'

┌─ - - - - - - - - - - - - - - - - ─┐

 │ │

 DC

───────────┬────────────────↑───────────────────────────────────┼────────────────────

 │ TASKA │ │ TASKX

 │ │

 │ │ │

 │ │

 ┌────────↓───────┐ │ ┌───────↓───────┐

 │ │ │ │

 │ Program A │ │ │ Program D │

 │ (level 1) │ │ │

│ �────────┼──────────┐ │ │

 │ │ │ │ │ │

 │ │ │ │ │

 └────────┬────┬──┘ │ │ └───────────────┘

 │ │

 │ │ │ │

 │ │

│ └─ - - - - ─┘ │

 │ │

 ┌────────↓───────┐ ┌───────┴───────┐

 │ │ │ │

 │ Program B │ │ Program C │

 │ (level 2) │ │ (level 2) │

 │ ├───────────� │

 │ │ │ │

 │ │ │ │

 └────────────────┘ └───────────────┘

9-4 CA-IDMS Navigational DML Programming

9.2 Passing program control

9.2.1 Returning to a higher level program

You can return control to a higher level within a task or to DC. If you return control
to DC and specify the next task code to be invoked, the task ends and a
pseudoconverse begins.

DC RETURN statement: To return control to the next-higher level in a task, issue
a DC RETURN statement, optionally specifying the next task code to be invoked on
the terminal.

If the next-higher-level program specifies a next task code, it overrides any task code
specified by the subordinate program. If the issuing program is the highest-level
program, DC regains control.

Note: You can bypass intervening link levels and return control to DC by issuing a
DC RETURN IMMEDIATE statement.

When the next task is invoked: DC invokes the next task differently depending
on how it is defined to the DC system:

■ If the next task is defined with the INPUT attribute, it is executed when the user
next presses an AID key.

■ If the next task is defined with the NOINPUT attribute, it is executed
immediately.

Example of return specifying next task: The program excerpt below returns
control to DC and specifies the next task code to be invoked on that terminal.

The first DC RETURN statement returns control to DC. The second DC RETURN
statement also specifies that DEPTDISM is the next task invoked on that terminal.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 DEPTDISM PIC X(8) VALUE 'DEPTDISM'.

 �1 SOLICIT-REC.

 �5 SOLICIT-DEPT-ID PIC X(4).

 PROCEDURE DIVISION.

��� ESTABLISH ADDRESSABILITY TO THE MAP AND MAP RECORD ���

BIND MAP SOLICIT.

BIND MAP SOLICIT RECORD SOLICIT-REC.

��� CHECK THE AID BYTE ���

INQUIRE MAP SOLICIT MOVE AID TO DC-AID-IND-V.

��� RETURN CONTROL TO CA-IDMS/DC IF OPERATOR HAS PRESSED CLEAR ���
 IF CLEAR-HIT
 DC RETURN.

MOVE ZERO TO SOLICIT-DEPT-ID.

��� TRANSMIT THE MAP TO THE TERMINAL SCREEN ���

MAP OUT USING SOLICIT

 NEWPAGE

MESSAGE IS INITIAL-MESSAGE LENGTH 8�.

��� RETURN CONTROL TO CA-IDMS/DC AND SPECIFY THE NEXT TASK ���
 DC RETURN

NEXT TASK CODE DEPTDISM.

Chapter 9. DC Programming Techniques 9-5

9.2 Passing program control

9.2.2 Passing control laterally

After DC gives control to the program specified by an initial task code, that program
can transfer control to other DC programs on the same level. That is, the issuing
program does not expect return of control.

Steps to transfer control: To transfer control laterally, perform the following
steps:

1. Invoke the main program specified by the task code.

2. Perform processing, as required.

3. Acquire storage for any parameters to be passed.

4. Transfer control to the second program by issuing a TRANSFER CONTROL
XCTL statement, optionally specifying a parameter list.

Because control is transferred, there is no need to perform the IDMS-STATUS
routine.

COBOL programmers: If you specify a parameter list, the specified data items must
be defined in the LINKAGE SECTION of both the calling and the receiving
programs.

PL/I programmers: If you specify a parameter list, the specified data items must be
defined as based storage in both the calling and the receiving programs. For
further considerations related to this subject, see Appendix A, “PL/I
Considerations” on page A-1.

Example of transferring control laterally: The program excerpt below shows a
TRANSFER CONTROL request that includes a parameter list containing database
retrieval information.

The ERRCHEK program performs error checking and passes control to the GETPROG
program, which performs the database access.

9-6 CA-IDMS Navigational DML Programming

9.2 Passing program control

 PROGRAM-ID. ERRCHEK.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 GETPROG PIC X(8) VALUE 'GETPROG'.

 LINKAGE SECTION.

 �1 PASS-DEPT-INFO.

 �5 PASS-DEPT-ID PIC 9(4).

 �5 PASS-DEPT-INFO-END PIC X.

 PROCEDURE DIVISION.

BIND MAP SOLICIT.

BIND MAP SOLICIT RECORD SOLICIT-REC.

MAP IN USING SOLICIT.

��� PERFORM ERROR CHECKING ���

IF SOLICIT-DEPT-ID NOT NUMERIC

THEN GO TO SOLICIT-ERROR.

��� ACQUIRE STORAGE FOR DEPT-ID TO BE PASSED ���

GET STORAGE FOR PASS-DEPT-INFO TO PASS-DEPT-INFO-END

WAIT LONG USER KEEP STGID 'PDIN'

ON DC-NEW-STORAGE NEXT SENTENCE.

MOVE SOLICIT-DEPT-ID TO PASS-DEPT-ID.

��� TRANSFER CONTROL TO DATABASE ACCESS PROGRAM ���
TRANSFER CONTROL TO GETPROG XCTL

 USING PASS-DEPT-INFO.
__

 PROGRAM-ID. GETPROG.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 GETPROG PIC X(8) VALUE 'GETPROG'.

 LINKAGE SECTION.

 �1 P-DEPT-INFO.

 �5 P-DEPT-ID PIC 9(4).

 �5 P-DEPT-INFO-END PIC X.

 PROCEDURE DIVISION USING P-DEPT-INFO.
 COPY IDMS SUBSCHEMA-BINDS.

 READY.

MOVE P-DEPT-ID TO DEPT-ID-�41�.

��� OBTAIN DEPARTMENT USING PASSED DEPT-ID ���

OBTAIN DEPARTMENT CALC

 ON DB-REC-NOT-FOUND

 PERFORM ERR-NO-DEPT.

 .

��� FURTHER DATABASE PROCESSING ���

9.2.3 Passing control, expecting to return

To transfer program control to a subordinate level, expecting return of control to the
instruction immediately following the request, perform the following steps:

1. Invoke the main program specified by the task code.

2. Perform processing, as required.

3. Transfer control to the second program by issuing a TRANSFER CONTROL
LINK statement, optionally specifying a parameter list.

4. Perform processing in the subordinate-level program, as required. DC returns
control to the next-higher-level program when the subordinate program issues a
DC RETURN statement.

Chapter 9. DC Programming Techniques 9-7

9.2 Passing program control

Example of passing control to a lower level: The program excerpt below
transfers control to DEPTCHEK, a subroutine that performs error-checking.

The GETPROG program performs processing based on the status returned by the
DEPTCHEK program.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 DEPTCHEK PIC X(8) VALUE 'DEPTCHEK'.

 �1 ERRCHEK-INFO.

 �5 CHEK-DEPT-ID PIC 9(4).

 �5 CHEK-ERRSTAT PIC X(4).

 PROCEDURE DIVISION.

BIND MAP SOLICIT.

BIND MAP SOLICIT RECORD SOLICIT-REC.

MAP IN USING SOLICIT.

MOVE SOLICIT-DEPT-ID TO CHEK-DEPT-ID.

MOVE 'OK' TO CHEK-ERRSTAT.

��� TRANSFER CONTROL TO ERROR CHECKING PROGRAM ���
TRANSFER CONTROL TO DEPTCHEK LINK USING

 CHEK-DEPT-ID
 CHEK-ERRSTAT.

IF CHEK-ERRSTAT NOT = 'OK'

GO TO ERR-DEPT-ID.

COPY IDMS SUBSCHEMA-BINDS.

 READY.

MOVE SOLICIT-DEPT-ID TO DEPT-ID-�41�.

OBTAIN DEPARTMENT CALC

 ON DB-REC-NOT-FOUND

 PERFORM ERR-NO-DEPT.

��� FURTHER DATABASE PROCESSING ���

__

 PROGRAM-ID. DEPTCHEK.

 DATA DIVISION.

 LINKAGE SECTION.

 �1 CH-DEPT-INFO.

 �5 CH-ID PIC 9(4).

 �5 CH-ERRSTAT PIC X(4).

 PROCEDURE DIVISION USING CH-DEPT-INFO.
��� PERFORM ERROR AND RANGE CHECKING ���

IF CH-ID NOT NUMERIC

THEN MOVE 'NNUM' TO CH-ERRSTAT

 ELSE

IF CH-ID > 8��� OR < 1���

MOVE 'RANG' TO CH-ERRSTAT.

��� RETURN CONTROL TO CALLING PROGRAM ���

 DC RETURN.

9-8 CA-IDMS Navigational DML Programming

9.3 Retrieving task-related information

9.3 Retrieving task-related information

DC provides task- and system-related information that you can use in your program.
Although you can use this information for any number of purposes, it is most often
used for the following:

■ Program flexibility — You can perform various chapters of code based on the
calling task code.

■ Operator information — You can display the logical terminal ID, the physical
terminal ID, and the current DC system number on the terminal screen. The
program excerpt below shows this technique.

■ Journaling information — You can write information such as the user ID,
logical terminal ID, the physical terminal ID, and the current DC system number
to the journal file. For more information, see 9.7, “Writing to the journal file” on
page 9-23 later in this chapter.

■ System security — You can restrict program access based on site-specific factors.
For example, you can permit only certain tasks or certain terminals to access a
specified program.

Using the ACCEPT statement: To retrieve task- and system-related information,
issue an ACCEPT statement that indicates the information needed and the
variable-storage location to which it is to be returned.

Example of retrieving task information: The program excerpt below uses
ACCEPT statements to retrieve the task code, the logical terminal ID, the physical
terminal ID, and the user ID.

Chapter 9. DC Programming Techniques 9-9

9.3 Retrieving task-related information

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 DEPTDISM PIC X(8) VALUE 'DEPTDISM'.

 �1 SOLICIT-REC.

 �5 SOLICIT-DEPT-ID PIC X(4).

 �5 TASK-INFO.

 �7 TC PIC X(8).

 88 GETOUT VALUE 'DEPTBYE'.

 �7 LTERMINAL PIC X(8).

 �7 PTERMINAL PIC X(8).

 �7 CURR-USER PIC X(32).

 PROCEDURE DIVISION.

��� RETRIEVE THE TASK CODE ���
ACCEPT TASK CODE INTO TC.

��� IF TASK CODE = DEPTBYE, RETURN TO CA-IDMS/DC ���

IF GETOUT DC RETURN.

BIND MAP SOLICIT.

BIND MAP SOLICIT RECORD SOLICIT-REC.

��� RETRIEVE LTERM, PTERM, AMD USER ID ���
ACCEPT LTERM ID INTO LTERMINAL.
ACCEPT PTERM ID INTO PTERMINAL.
ACCEPT USER ID INTO CURR-USER.
MOVE ZERO TO SOLICIT-DEPT-ID.

MAP OUT USING SOLICIT

 NEWPAGE

MESSAGE IS INITIAL-MESSAGE LENGTH 8�.

�

 DC RETURN

NEXT TASK CODE DEPTDISM.

The mapout performed by the program excerpt results in this screen display:

� �
 LTERM: LT12�14 PTERM: PV12�14
 USER: RKN

��� DEPARTMENT SOLICITOR SCREEN ���

 DEPARTMENT ID: ����

ENTER AN DEPT ID AND PRESS ENTER �� CLEAR TO EXIT

� �

9-10 CA-IDMS Navigational DML Programming

9.4 Maintaining data integrity in the online environment

9.4 Maintaining data integrity in the online environment

To maintain database integrity in the online environment, DC allows you to perform
the following functions:

■ Place an explicit lock on a database record — You can restrict other run units'
access to a specified database record occurrence.

■ Monitor concurrent database access across a pseudoconverse — You can
determine if other run units have accessed a certain database record during a
pseudoconverse.

9.4.1 Setting longterm explicit locks

In pseudoconversational programming, you may be required to lock records across run
units for the duration of a transaction. For example, a high-priority update application
may lock record occurrences as they are retrieved in order to prevent other run units
from accessing data that is about to be modified.

Steps to set longterm locks: To lock a database record explicitly across a
pseudoconverse, perform the following steps:

1. Retrieve the database record.

2. Issue a KEEP LONGTERM statement that specifies either the SHARE CURRENT
or the EXCLUSIVE CURRENT parameter:

■ SHARE CURRENT places a shared lock on the specified record occurrence;
other run units can access the record but not update it.

■ EXCLUSIVE CURRENT places an exclusive lock on the specified record
occurrence; other run units cannot access the record in any way.

3. Perform pseudoconversational processing, as required.

4. As soon as possible, release the explicit lock by issuing a KEEP LONGTERM
statement with the RELEASE parameter.

Important: Release longterm locks as soon as possible to provide availability to
other run units.

Chapter 9. DC Programming Techniques 9-11

9.4 Maintaining data integrity in the online environment

Interaction of longterm locks:

Example of setting longterm exclusive locks: The first program excerpt below
sets longterm exclusive locks in order to ensure that other programs cannot access any
data. (The second program excerpt performs database modifications and releases the
locks as soon as possible.)

The first program excerpt locks the EMPLOYEE and DEPARTMENT records in order
to prevent other run units from modifying them during the pseudoconverse.

Locks in
effect

Locks allowed for other run
units

Locks disallowed for other run
units

Shared Shared and longterm shared Exclusive and longterm exclusive

Exclusive None Shared, exclusive, longterm shared,
and longterm exclusive

Longterm
shared

For all run units: shared and
longterm shared

For run units on the same
terminal: exclusive and
longterm exclusive

For run units on other terminals:
exclusive and longterm exclusive

Longterm
exclusive

For run units on the same
terminal: shared, exclusive,
longterm shared, and
longterm exclusive

For run units on other terminals:
shared, exclusive, longterm shared,
and longterm exclusive

9-12 CA-IDMS Navigational DML Programming

9.4 Maintaining data integrity in the online environment

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 CHNGDEPT PIC X(8) VALUE 'CHNGDEPT'.

 �1 KEEP-INFO.

 �5 DEPT-LNGTRM-ID PIC X(4) VALUE 'DEPT'.

 �5 EMPL-LNGTRM-ID PIC X(4) VALUE 'EMPL'.

 �1 MAP-WORK-REC.

 �5 WORK-OLD-DEPT-ID PIC 9(4).

 �5 WORK-NEW-DEPT-ID PIC 9(4).

 �5 WORK-EMP-ID PIC 9(4).

 �5 WORK-FIRST PIC X(1�).

 �5 WORK-LAST PIC X(15).

 �5 WORK-ADDRESS PIC X(42).

 PROCEDURE DIVISION.

BIND MAP DCTEST�3.

BIND MAP DCTEST�3 RECORD MAP-WORK-REC.

MAP IN USING DCTEST�3.

MOVE WORK-EMP-ID TO EMP-ID-�415.

OBTAIN CALC EMPLOYEE

ON DB-REC-NOT-FOUND GO TO ERR-NO-EMP.

��� SET AN EXCLUSIVE LOCK ON THE CURRENT EMPLOYEE RECORD ���
KEEP LONGTERM EMPL-LNGTRM-ID

EXCLUSIVE CURRENT EMPLOYEE.
MOVE EMP-ID-�415 TO WORK-EMP-ID.

MOVE EMP-LAST-NAME-�415 TO WORK-LAST.

MOVE EMP-FIRST-NAME-�415 TO WORK-FIRST.

MOVE EMP-ADDRESS-�415 TO WORK-ADDRESS.

IF DEPT-EMPLOYEE IS NOT EMPTY

OBTAIN OWNER IN DEPT-EMPLOYEE

ELSE GO TO NO-DEPT.

��� SET AN EXCLUSIVE LOCK ON THE CURRENT DEPARTMENT RECORD ���
KEEP LONGTERM DEPT-LNGTRM-ID

EXCLUSIVE CURRENT DEPARTMENT.
MOVE DEPT-ID-�41� TO WORK-OLD-DEPT-ID.

��� ALLOW INPUT IN THE NEW DEPARTMENT FIELD ONLY ���

MODIFY MAP DCTEST�3 FOR ALL EXCEPT

 DFLD WORK-NEW-DEPT-ID

 ATTRIBUTES PROTECTED.

MAP OUT USING DCTEST�3.

DC RETURN NEXT TASK CODE CHNGDEPT.

Example of releasing longterm exclusive locks: This program excerpt maps in
the new department ID, disconnects the employee from the old department, and
connects the record to the new department.

Chapter 9. DC Programming Techniques 9-13

9.4 Maintaining data integrity in the online environment

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 CHNGSHOW PIC X(8) VALUE 'CHNGSHOW'.

 �1 TEMP-DEPT-DBKEY PIC S9(8) COMP.

 �1 KEEP-INFO.

 �5 DEPT-LNGTRM-ID PIC X(4) VALUE 'DEPT'.

 �5 EMPL-LNGTRM-ID PIC X(4) VALUE 'EMPL'.

 �1 MAP-WORK-REC.

 �5 WORK-OLD-DEPT-ID PIC 9(4).

 �5 WORK-NEW-DEPT-ID PIC 9(4).

 �5 WORK-EMP-ID PIC 9(4).

 �5 WORK-FIRST PIC X(1�).

 �5 WORK-LAST PIC X(15).

 �5 WORK-ADDRESS PIC X(42).

 PROCEDURE DIVISION.

BIND MAP DCTEST�3.

BIND MAP DCTEST�3 RECORD MAP-WORK-REC.

MAP IN USING DCTEST�3.

IF WORK-NEW-DEPT-ID IS NOT NUMERIC

GO TO ERR-NONNUMERIC-DEPT-ID.

��� OBTAIN NEW DEPARTMENT RECORD TO ENSURE IT EXISTS ���

MOVE WORK-NEW-DEPT-ID TO DEPT-ID-�41�.

FIND CALC DEPARTMENT

ON DB-REC-NOT-FOUND GO TO ERR-NO-NEW-DEPT.

MOVE DBKEY TO TEMP-DEPT-DBKEY.

��� REOBTAIN OLD DEPARTMENT ���

MOVE WORK-OLD-DEPT-ID TO DEPT-ID-�41�.

FIND CALC DEPARTMENT.

��� REOBTAIN EMPLOYEE RECORD ���

MOVE WORK-EMP-ID TO EMP-ID-�415.

FIND CALC EMPLOYEE.

DISCONNECT EMPLOYEE FROM DEPT-EMPLOYEE.

��� REOBTAIN NEW DEPARTMENT USING SAVED DB-KEY ���

FIND DEPARTMENT USING TEMP-DEPT-DBKEY.

CONNECT EMPLOYEE TO DEPT-EMPLOYEE.

��� RELEASE ALL LONGTERM LOCKS ���
KEEP LONGTERM ALL RELEASE.
MAP OUT USING DCTEST�3 OUTPUT DATA IS ATTRIBUTE

MESSAGE IS EMP-CONNECTED-MESS LENGTH 8�.

DC RETURN NEXT TASK CODE CHNGSHOW.

9.4.2 Monitoring concurrent database access

You can monitor concurrent database access associated with a specific record during a
pseudoconverse, instead of locking the record. In most cases, monitoring is preferable
to locking because it allows other run units unrestricted access to the specified
database record.

Pageable map applications: Because you cannot predict the number of occurrences
that will be accessed and displayed on a pageable map, it is especially useful
to monitor, rather than lock, such records.

Steps before the pseudoconverse: To monitor concurrent database access
across a pseudoconverse, perform the following steps:

1. Request DC to begin monitoring database concurrent access for the specified
record occurrence by issuing a KEEP LONGTERM statement that includes the
NOTIFY parameter.

9-14 CA-IDMS Navigational DML Programming

9.4 Maintaining data integrity in the online environment

2. Begin the pseudoconverse by issuing a DC RETURN statement.

Steps after the pseudoconverse: In subsequent tasks, perform the following
steps:

1. Determine if the record has been accessed by another run unit by issuing a KEEP
LONGTERM statement with the TEST parameter. The components of the value
returned as a result of the KEEP LONGTERM TEST statement are as follows:

■ 0 — The record was not accessed.

■ 1 — The record was obtained.

■ 2 — The record was modified.

■ 4 — The record's prefix was modified by a CONNECT or DISCONNECT
operation.

■ 8 — The record was logically deleted.

■ 16 — The record was physically deleted.

■ 32 — The status of the record is uncertain.

For example, a value of 9 means that the record was obtained and logically
deleted; the highest possible value is 31, which indicates that all the above actions
were performed. You should proceed according to the effect that other run units'
processing has on your application and the extent of the other run units'
processing.

Typically, you should require the user to resubmit any transaction in which
another run unit has modified a record's data.

Pageable map applications: You should be aware of the effect modified detail
occurrences have on each other when using longterm notify locks. For
example, if you are modifying a series of records that participate in the
same occurrence of a sorted set, a value of 5 (obtained and modified by
DISCONNECT/CONNECT) is returned beginning with the second
modified detail occurrence.

2. If necessary, issue a KEEP LONGTERM statement with the UPGRADE parameter
to place a longterm explicit lock on the specified record.

3. Access the database, as required.

4. Finish longterm monitoring and release longterm locks by issuing a KEEP
LONGTERM statement with the RELEASE parameter.

Data sharing considerations: A data sharing environment allows programs
executing on more than one CA-IDMS system to concurrently access and update data
in the same areas of the data base. In order to do this, such systems must be members
of a data sharing group.

KEEP LONGTERM DML statements will control or monitor data access across
members of a data sharing group just as they do within a single CA-IDMS system.
Programs do not need to be concerned with whether or not the data is being shared

Chapter 9. DC Programming Techniques 9-15

9.4 Maintaining data integrity in the online environment

between members, with one exception: the retrieval of data is not monitored between
members. This means that if a program executing on one member issues a KEEP
LONGTERM NOTIFY statement and a program on another member subsequently
obtains (but does not update) the affected record, then no indication of the retrieval
will be returned to the monitoring program when it checks to see what access has
taken place using the KEEP LONGTERM TEST statement. If the accessing program
updates the record, the notification value returned to the monitoring program will be
an even number greater than 1.

Example of establishing longterm monitoring: The first program excerpt
below uses the NOTIFY option of the KEEP LONGTERM statement to monitor
concurrent database access across a pseudoconverse. (The second program excerpt
performs processing based on the result of database monitoring.)

The first program excerpt uses the NOTIFY option of the KEEP LONGTERM
statement to establish monitoring of other run units' access to the specified
EMPLOYEE record. It uses the employee's CALC key as the longterm ID.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 EMPMOD PIC X(8) VALUE 'EMPMOD'.

 �1 KEEP-INFO.

 �5 KEEP-LNGTRM-ID PIC X(4).

 �1 MAP-WORK-REC.

 �5 WORK-EMP-ID PIC 9(4).

 �5 WORK-FIRST PIC X(1�).

 �5 WORK-LAST PIC X(15).

 �5 WORK-ADDRESS PIC X(42).

 PROCEDURE DIVISION.

BIND MAP DCTEST�3.

BIND MAP DCTEST�3 RECORD MAP-WORK-REC.

 .

 .

 .

OBTAIN CALC EMPLOYEE

ON DB-REC-NOT-FOUND GO TO ERR-NO-EMP.

��� USE EMPLOYEE'S CALC KEY FOR THE LONGTERM ID ���

MOVE EMP-ID-�415 TO KEEP-LNGTRM-ID.

��� BEGIN MONITORING ���
KEEP LONGTERM KEEP-LNGTRM-ID

NOTIFY CURRENT EMPLOYEE.
MOVE EMP-ID-�415 TO WORK-EMP-ID.

MOVE EMP-LAST-NAME-�415 TO WORK-LAST.

MOVE EMP-FIRST-NAME-�415 TO WORK-FIRST.

MOVE EMP-ADDRESS-�415 TO WORK-ADDRESS.

MAP OUT USING DCTEST�3.

DC RETURN NEXT TASK CODE EMPMOD.

Monitoring concurrent database access: The program excerpt below checks to
determine if any other run units have accessed the specified record. If any
modifications have been made, the program issues a ROLLBACK and informs the
user. If no modifications have been made, the program locks the record by issuing a
KEEP LONGTERM UPGRADE statement before performing database access and
modification.

9-16 CA-IDMS Navigational DML Programming

9.4 Maintaining data integrity in the online environment

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 REDISP PIC X(8) VALUE 'REDISPLY'.

 �1 KEEP-INFO.

 �5 KEEP-LNGTRM-ID PIC X(4) VALUE 'KPID'.

 �5 KL-STAT PIC S9(8) COMP.

 �1 MAP-WORK-REC.

 �5 WORK-EMP-ID PIC 9(4).

 �5 WORK-FIRST PIC X(1�).

 �5 WORK-LAST PIC X(15).

 �5 WORK-ADDRESS PIC X(42).

 PROCEDURE DIVISION.

BIND MAP DCTEST�3.

BIND MAP DCTEST�3 RECORD MAP-WORK-REC.

MAP IN USING DCTEST�3.

MOVE WORK-EMP-ID TO EMP-ID-�415.

OBTAIN CALC EMPLOYEE

ON DB-REC-NOT-FOUND GO TO ERR-NO-EMP.

MOVE EMP-ID-�415 TO KEEP-LNGTRM-ID.

��� TEST TO SEE IF OTHER RUN UNITS HAVE ACCESSED THE RECORD ���
KEEP LONGTERM KEEP-LNGTRM-ID

TEST RETURN NOTIFICATION INTO KL-STAT.
��� A RETURNED VALUE THAT IS GREATER THAN 1 MEANS ���
��� THAT THE RECORD WAS MODIFIED IN SOME WAY. ���
��� ROLLBACK AND REQUIRE THE OPERATOR TO RESUBMIT ���
��� NOTE: THE SIGNIFICANCE OF THE RETURNED ���
��� VALUE IS APPLICATION-SPECIFIC. ���
��� FOR EXAMPLE, FOR SOME APPLICATIONS ���
��� A RETURNED VALUE > 1 MAY BE ���
��� ACCEPTABLE, FOR OTHERS, IT MAY NOT. ���

IF KL-STAT > 1
ROLLBACK TASK CONTINUE
MAP OUT USING DCTEST�3 DATA IS ATTRIBUTE

MESSAGE IS EMPMOD-MESS LENGTH 4�
DC RETURN DEXT TASK CODE REDISP

��� OTHERWISE UPGRADE THE LOCK TO SHARED ���
 ELSE

KEEP LONGTERM KEEP-LNGTRM-ID
 UPGRADE SHARE.
��� DATABASE UPDATE PROCESSING ���

Chapter 9. DC Programming Techniques 9-17

9.5 Managing tables

 9.5 Managing tables

At runtime, your program can request DC to load a table (for example, an edit or code
table) from either the DDLDCLOD area or a load (core-image) library into the
program pool. This load does not imply automatic execution; your program continues
to run. Typically, you use this function to place nonexecutable data in the program
pool.

Making tables nonoverlayable: By default, tables and other programs loaded into
the program pool can be overlaid when not in use or when in use and waiting for an
event. However, unlike an executable module, a table is not reloaded during program
execution if it has been overlaid. Therefore, you should define the table with the
nonoverlayable attribute during system generation (or at runtime with a DCMT VARY
DYNAMIC PROGRAM command) so that it cannot be overlaid before the program
deletes it.

Deleting tables: When your program requests DC to delete a table, it does not
physically delete that table; rather, it decrements the in-use counter maintained by DC.
An in-use count of 0 signals DC that the space occupied by the table can be reused.
When your task terminates, DC automatically deletes any tables that have not been
explicitly deleted.

If your task requests a nonreentrant table more than once, DC loads a new copy of the
table for each request and adds 1 to the in-use counter; each copy corresponds to a
separate location in program variable storage. If your task loads the same reentrant or
quasireentrant table more than once, it must delete that table the same number of times
in order to set the in-use counter to 0.

Steps to load and delete a table: To load a table into the program pool and later
delete it, perform the following steps:

1. Request DC to load the table into the program pool by issuing a LOAD TABLE
statement.

2. Perform processing, using the table as needed.

3. When processing is complete, decrement the table's in-use counter by issuing a
DELETE TABLE statement.

Note: You can qualify the name of the table by providing the DICTNAME,
DICTNODE, or LOADLIB parameter on the LOAD or DELETE statement.

Illustration of table management: Assume that two tasks are executing under a
DC system. Task 1 consists of programs A and B; task 2 consists of program D. The
following diagrams illustrate how the tasks load and delete a table:

1. Program B, which is in control of task 1, loads a tax table. Program B continues
to execute; DC loads the table into the program pool.

9-18 CA-IDMS Navigational DML Programming

9.5 Managing tables

2. Program D, which is in control of task 2, loads the same tax table. Because a
copy of the table exists in the program pool and is available (concurrent and not
overlaid during a temporary wait), the load is completed with no physical I/O.
When task 2 terminates, the table remains in the program pool, as task 1 requires
its use.

3. Task 1 deletes (signals completion of use) the table. The table remains in the
program pool but its in-use counter is set to 0; its storage is now freed for use by
other programs.

Chapter 9. DC Programming Techniques 9-19

9.5 Managing tables

Example of loading and deleting a table: The program excerpt below loads a
sales tax table into the LINKAGE SECTION and computes the tax for all items in a
specified order. When processing is complete, it decrements the table's in-use count
by issuing a DELETE TABLE command.

 PROGRAM-ID. SALESTAX.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 SALES-TRANS-COUNT PIC S9(5) COMP-3.

 LINKAGE SECTION.

 �1 SALES-TAX-TABLE.

�2 STATE-AND-TAX OCCURS 5� TIMES.

 �5 STATE-ABB PIC XX.

 �5 STATE-SALES-TAX PIC SV999.

 �2 SALES-TAX-TABLE-END PIC X.

 PROCEDURE DIVISION.

 .

 .

 .

��� LOAD THE SALES TAX TABLE INTO THE LINKAGE SECTION ���
LOAD TABLE 'SALESTAX' INTO

SALES-TAX-TABLE TO SALES-TAX-TABLE-END.
PERFORM A1��-COMPUTE-TAX UNTIL SALES-TRANS-COUNT = �.

��� DECREMENT THE TABLE'S IN-USE COUNT ���
DELETE TABLE FROM SALES-TAX-TABLE.

9-20 CA-IDMS Navigational DML Programming

9.6 Retrieving the current time and date

9.6 Retrieving the current time and date

DC allows you to obtain the current time and date from the operating system. You
can use these values either for screen display or for journaling purposes.

�� For more information on journaling, see 9.7, “Writing to the journal file” on
page 9-23 later in this chapter.

To obtain the current time and date, issue a GET TIME statement that specifies the
variable-storage location into which DC is to return the current time and, optionally,
the current date.

Example of obtaining the current time and date: The program excerpt below
obtains the time and date for display on the terminal screen.

It obtains the current time in edit format (hh:mm:ss:hhh) and the current date in fixed
binary format. You must change the date to display format in order to display it on
the terminal screen.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 DEPTDISM PIC X(8) VALUE 'DEPTDISM'.

 �1 SOLICIT-REC.

 �5 SOLICIT-DEPT-ID PIC X(4).

 �5 TASK-INFO.

 �7 TC PIC X(8).

 88 GETOUT VALUE 'DEPTBYE'.

 �7 LTERMINAL PIC X(8).

 �7 PTERMINAL PIC X(8).

 �7 CURR-USER PIC X(32).

 �7 CURR-TIME PIC X(11).

�7 SYS-DATE PIC 9(7) COMP-3.

 �7 CURR-DATE PIC 9(5).

 PROCEDURE DIVISION.

ACCEPT TASK CODE INTO TC.

IF GETOUT DC RETURN.

BIND MAP SOLICIT.

BIND MAP SOLICIT RECORD SOLICIT-REC.

�

ACCEPT LTERM ID INTO LTERMINAL.

ACCEPT PTERM ID INTO PTERMINAL.

ACCEPT USER ID INTO CURR-USER.

��� GET THE CURRENT TIME AND DATE ���
GET TIME INTO CURR-TIME EDIT

DATE INTO SYS-DATE.
��� CHANGE THE DATE TO DISPLAY FORMAT ���

MOVE SYS-DATE TO CURR-DATE.

MOVE ZERO TO SOLICIT-DEPT-ID.

MAP OUT USING SOLICIT

 NEWPAGE

MESSAGE IS INITIAL-MESSAGE LENGTH 8�.

�

 DC RETURN

NEXT TASK CODE DEPTDISM.

Example of displaying current time and date:

Chapter 9. DC Programming Techniques 9-21

9.6 Retrieving the current time and date

The mapout in the program excerpt results in this screen display:

� �
 LTERM: LT12��2 PTERM: PV12��2

 USER: RKN

��� DEPARTMENT SOLICITOR SCREEN ���

 TIME: 11:49:45.6� DATE: 86.�37

 DEPARTMENT ID: ����

ENTER AN DEPT ID AND PRESS ENTER �� CLEAR TO EXIT

� �

9-22 CA-IDMS Navigational DML Programming

9.7 Writing to the journal file

9.7 Writing to the journal file

You can write information to the DC journal file to document run-unit related
information. For example, you could write to the journal for the following reasons:

■ Your site standards may require that you record journal information at certain
points in a program (for example, when signing on or off).

■ You can facilitate debugging by writing records to the journal file. For example,
as a debugging aid, you can write duplicate scratch and queue entries to the
journal file because such records are deleted during ROLLBACK processing.

Steps to write to the journal file: To write to the journal file, perform the
following steps:

1. Initialize the variable-storage area from which you will write to the journal file.

2. Issue a WRITE JOURNAL statement that specifies the appropriate
variable-storage location.

Example of writing to the journal file: The program excerpt below writes the
current task code, logical-terminal ID, physical-terminal ID, user ID, time, and date to
the journal file.

Chapter 9. DC Programming Techniques 9-23

9.7 Writing to the journal file

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 SOLICIT-REC.

 �5 SOLICIT-DEPT-ID PIC X(4).

 �5 TASK-INFO.

 �7 TC PIC X(8).

 88 GETOUT VALUE 'DEPTBYE'.

 �7 LTERMINAL PIC X(8).

 �7 PTERMINAL PIC X(8).

 �7 CURR-USER PIC X(32).

 �7 CURR-TIME PIC X(11).

�7 SYS-DATE PIC 9(7) COMP-3.

 �7 CURR-DATE PIC 9(5).

 �7 TASK-INFO-END PIC X.

 PROCEDURE DIVISION.

��� RETRIEVE TASK CODE ���

ACCEPT TASK CODE INTO TC.

IF GETOUT DC RETURN.

BIND MAP SOLICIT.

BIND MAP SOLICIT RECORD SOLICIT-REC.

��� RETRIEVE LTERM ID, PTERM ID, AND USER ID ���

ACCEPT LTERM ID INTO LTERMINAL.

ACCEPT PTERM ID INTO PTERMINAL.

ACCEPT USER ID INTO CURR-USER.

��� RETRIEVE CURRENT TIME AND DATE ���

GET TIME INTO CURR-TIME EDIT

DATE INTO SYS-DATE.

MOVE SYS-DATE TO CURR-DATE.

MOVE ZERO TO SOLICIT-DEPT-ID.

��� WRITE DATA TO THE JOURNAL FILE ���
WRITE JOURNAL FROM TASK-INFO TO TASK-INFO-END

 NOWAIT SPAN.
MAP OUT USING SOLICIT

 NEWPAGE

MESSAGE IS INITIAL-MESSAGE LENGTH 8�.

�

 DC RETURN

NEXT TASK CODE 'DEPTDISM'.

9-24 CA-IDMS Navigational DML Programming

9.8 Collecting DC statistics

9.8 Collecting DC statistics

You can collect runtime statistics related to DC transactions on a logical terminal.
This information can be useful both for debugging purposes and as an aid in
determining overall program efficiency.

Steps to collect statistics: To collect runtime DC statistics related to the
transactions performed on a logical terminal, perform the following steps:

1. Establish a 248-byte field in program variable storage in which to copy the
transaction statistics.

2. Define the beginning of the transaction by issuing a BIND TRANSACTION
STATISTICS statement.

3. Perform pseudoconversational processing, as required.

4. Copy the contents of the transaction statistics block (TSB) into the specified
location in variable storage and, optionally, to the DC log file by issuing an
ACCEPT TRANSACTION STATISTICS statement.

5. When processing is complete, terminate statistics collection by issuing an END
TRANSACTION STATISTICS statement, optionally writing the statistics to
variable storage and the DC log file.

Example of collecting transaction statistics: Depending on the invoking task,
the program excerpt below initiates statistics collection, copies the TSB to the DC log
file, or terminates statistics collection and displays selected statistics on the terminal
screen.

Chapter 9. DC Programming Techniques 9-25

9.8 Collecting DC statistics

DATA DIVISION

WORKING-STORAGE SECTION.

 �1 TASKCODE PIC X(8).

 88 FIRSTTIME VALUE 'INIT'.

 88 SECONDTIME VALUE 'TRANS'.

 88 FINALTIME VALUE 'TERMSESS'.

 �1 STATISTICS-BLOCK.

 �5 USER-ID PIC X(32).

 �5 LTERM-ID PIC X(8).

�5 PROG-CALL PIC S9(8) COMP.

�5 PROG-LOAD PIC S9(8) COMP.

�5 TERM-READ PIC S9(8) COMP.

�5 TERM-WRITE PIC S9(8) COMP.

�5 TERM-ERROR PIC S9(8) COMP.

�5 STORAGE-GET PIC S9(8) COMP.

�5 SCRATCH-GET PIC S9(8) COMP.

�5 SCRATCH-PUT PIC S9(8) COMP.

�5 SCRATCH-DEL PIC S9(8) COMP.

�5 QUEUE-GET PIC S9(8) COMP.

�5 QUEUE-PUT PIC S9(8) COMP.

�5 QUEUE-DEL PIC S9(8) COMP.

�5 GET-TIME PIC S9(8) COMP.

�5 SET-TIME PIC S9(8) COMP.

�5 DB-CALLS PIC S9(8) COMP.

�5 MAX-STACK PIC S9(8) COMP.

�5 USER-TIME PIC S9(8) COMP.

�5 SYS-TIME PIC S9(8) COMP.

�5 WAIT-TIME PIC S9(8) COMP.

�5 PAGES-READ PIC S9(8) COMP.

�5 PAGES-WRIT PIC S9(8) COMP.

�5 PAGES-REQ PIC S9(8) COMP.

�5 CALC-NO PIC S9(8) COMP.

�5 CALC-OF PIC S9(8) COMP.

�5 VIA-NO PIC S9(8) COMP.

�5 VIA-OF PIC S9(8) COMP.

�5 RECS-REQ PIC S9(8) COMP.

�5 RECS-CURR PIC S9(8) COMP.

 �5 FILLER PIC X(4).

�5 FRAG-STORED PIC S9(8) COMP.

�5 RECS-RELO PIC S9(8) COMP.

�5 TOT-LOCKS PIC S9(8) COMP.

�5 SEL-LOCKS PIC S9(8) COMP.

�5 UPD-LOCKS PIC S9(8) COMP.

�5 STG-HI-MARK PIC S9(8) COMP.

�5 FREESTG-REQ PIC S9(8) COMP.

�5 SYS-SERV PIC S9(8) COMP.

 �5 RESERVED PIC X(4�).

 �5 USER-SUPP-ID PIC X(8).

�5 BIND-DATE PIC S9(7) COMP-3.

9-26 CA-IDMS Navigational DML Programming

9.8 Collecting DC statistics

 �1 STAT-DIS.

 �5 WORK-CURR-DATE PIC 9(5).

 �5 WORK-USER-ID PIC X(32).

 �5 WORK-DB-CALLS PIC 9(4).

 �5 WORK-WAIT-TIME PIC 9(12).

 �5 WORK-PAGES-READ PIC 9(5).

 �5 WORK-PAGES-WRIT PIC 9(5).

 PROCEDURE DIVISION.

BIND MAP STATMAP.

BIND MAP STATDIS RECORD STATISTICS-BLOCK.

 �

ACCEPT TASK CODE INTO TASKCODE.

 ��� FIRST TIME, INITIATE STATISTICS COLLECTION ���
 IF FIRSTTIME

BIND TRANSACTIONS STATISTICS
 DC RETURN.
 ��� SUBSEQUENT TIMES, COPY STATISTICS TO VARIABLE STORAGE ���
 IF SECONDTIME

ACCEPT TRANSACTION STATISTICS
WRITE INTO STATISTICS-BLOCK

 DC RETURN.
 ��� LAST TIME, END STATISTICS COLLECTION AND ���
 ��� COPY STATISTICS TO VARIABLE STORAGE ���
 IF FINALTIME

END TRANSACTION STATISTICS
WRITE INTO STATISTICS-BLOCK

PERFORM U1��-MOVE-FIELDS-TO MAP
MAP OUT USING STATMAP

MESSAGE IS STAT-DISPLAY-MESS LENGTH 4�

 DC RETURN.

 DC RETURN.

Chapter 9. DC Programming Techniques 9-27

9.9 Sending messages

 9.9 Sending messages

DC provides message management functions that allow you to send messages to the
following destinations:

■ The log file and the current user, optionally terminating the program

■ Other users, logical terminals, or destinations

Sending messages to the current user and to other users is discussed below.

9.9.1 Sending a message to the current user

You can send a message predefined in the DDLDCMSG area of the dictionary to the
current user, the log file, or both. The message definition can also specify other
destinations (for example, the user's console). Additionally, the specified message
indicates the action to be taken after the message is written; such action can include
the following:

■ Waiting for user reply — DC does not return control to your task until it
receives a reply from the user's console.

■ Abending the program — DC abends your program, or, optionally, the DC
system.

■ Continuing program execution — DC returns control to your program,
optionally writing a snap dump of specified resources.

Retrieving predefined messages: One typical use for dictionary-defined
messages is to retrieve predefined messages from the DDLDCMSG area rather than
include all possible messages in program variable storage.

Messages stored in the dictionary can contain symbolic parameters. Symbolic
parameters, identified by an ampersand (&) followed by a two-digit number, can
appear in any order within the message. Symbolic parameters provide flexibility in
message management.

Steps to send a predefined message: To send a predefined message, perform
the following steps:

1. If you are using symbolic parameters, initialize the appropriate variable-storage
locations.

2. Issue a WRITE LOG statement that specifies the appropriate variable-storage
locations for symbolic parameters, user reply, and message text.

Note: You can specify your own message prefix (to distinguish your messages from
DC/UCF system messages) by using the MESSAGE PREFIX IS parameter on
the WRITE LOG statement.

Example of sending a message from the dictionary: The program excerpt
below uses the following message from the DDLDCMSG area of the dictionary:

9-28 CA-IDMS Navigational DML Programming

9.9 Sending messages

INPUT DATA IS IN ERROR; DATA FIELD: &�1 &�2

The symbolic parameters allow you to transmit more meaningful messages.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 SYMBOLIC-PARAMETERS.

 �3 ERR-1.

 �5 ERR-1-TEXT PIC X(15).

 �5 ERR-1-END PIC X.

 �3 ERR-2.

 �5 ERR-2-TEXT PIC X(15).

 �5 ERR-2-END PIC X.

 �3 ERR-DEPT-ID PIC X(6) VALUE 'DEPT-ID'

 �3 ERR-NONNUMERIC PIC X(1�) VALUE 'NONNUMERIC'.

 �1 MESSAGES.

 �5 MESSAGE-AREA. PIC X(8�).

 �5 MESSAGE-AREA-END PIC X.

 PROCEDURE DIVISION.

BIND MAP SOLICIT.

BIND MAP SOLICIT RECORD SOLICIT-REC.

�

MAP IN USING SOLICIT.

��� IF ERROR, INITIALIZE FIELDS FOR SYMBOLIC PARMS ���

IF SOLICIT-DEPT-ID NOT NUMERIC

THEN MOVE ERR-DEPT-ID TO ERR-TEXT-1

MOVE ERR-NONNUMERIC TO ERR-TEXT-2

GO TO SOLICIT-ERROR.

 .

 .

 SOLICIT-ERROR.

��� USE WRITE LOG STATEMENT TO COPY ���
��� DICTIONARY MESSAGE WITH PARMS INTO ���
��� PROGRAM VARIABLE STORAGE ���

WRITE LOG MESSAGE ID 9��1�8�
PARMS FROM ERR-1 TO ERR-1-END

FROM ERR-2 TO ERR-2-END
TEXT INTO MESSAGE-AREA TO MESSAGE-AREA-END
TEXT IS ONLY.

��� MAP OUT USING MESSAGE FROM DATA DICTIONARY ���

MAP OUT USING SOLICIT

MESSAGE IS MESSAGE-AREA TO MESSAGE-AREA-END.

 DC RETURN

NEXT TASK CODE 'DEPTDIS'.

9.9.2 Sending a message to other users

DC provides the facilities for you to send messages to another terminal or user or to a
group of terminals or users defined as a destination during system generation.

To send a message to another user, perform the following steps:

1. Initialize the variable-storage location from which the message is to be sent.

2. Issue a SEND MESSAGE statement that specifies the message's destination.

Note: To conserve resources, it is best not to specify the ALWAYS parameter in
conjunction with a group of users.

Chapter 9. DC Programming Techniques 9-29

9.9 Sending messages

Example of sending a message to another user: The program below is called
by other programs in order to send a message to a specified user.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 LINKAGE SECTION.

 �1 MESS-INFO.

 �5 MESS-USER-ID PIC X(32).

 �5 MESS-TEXT PIC X(79).

 �5 MESS-TEXT-END PIC X.

 �5 MESS-INFO-END PIC X.

 PROCEDURE DIVISION.

��� ESTABLISH ADDRESSABILITY TO USER ID AND MESSAGE TEXT ���

GET STORAGE FOR MESS-INFO TO MESS-INFO-END

KEEP SHORT USER STGID 'MSG1'

ON DC-NEW-STORAGE NEXT SENTENCE.

��� SEND MESSAGE TO SPECIFIED USER ID ���

SEND MESSAGE ONLY TO USER ID MESS-USER-ID

FROM MESS-TEXT TO MESS-TEXT-END.

�

FREE STORAGE STGID 'MSG1'.

 DC RETURN.

9-30 CA-IDMS Navigational DML Programming

9.10 Writing to a printer

9.10 Writing to a printer

You can request DC to transmit data from a task to a printer; this allows you to print
reports during online processing.

Steps to transmit data to a printer: To transmit data to a printer, perform the
following steps:

1. Initialize the variable-storage location from which DC is to write the specified
information.

2. Initiate the printing procedure by issuing a WRITE PRINTER statement that
indicates the appropriate variable-storage location and report ID, and specifies the
print class or destination.

3. Issue subsequent WRITE PRINTER statements that indicate the variable-storage
location of the data and the report ID.

4. Optionally, you can indicate the end of a report by issuing a WRITE PRINTER
statement that includes the ENDRPT parameter.

CA-IDMS queue: DC does not transmit data directly from program variable storage
to the printer. Rather, data is passed to a queue maintained by DC, and from the
queue to the printer. The data stream passed to the queue by the WRITE PRINTER
request contains only data; DC adds the necessary line and device control characters
when it writes the data to the printer.

Note: The WRITE PRINTER command is used extensively under the DC-BATCH
operating mode. For more information, refer to Appendix C, “Batch Access to
DC Queues and Printers” on page C-1.

Example of writing to a printer: The program excerpt below writes a report to
the printer associated with print class 33. The report consists of the employee ID and
name, old department ID, and new department ID for each employee assigned to a
new department.

Chapter 9. DC Programming Techniques 9-31

9.10 Writing to a printer

DATA DIVISION.

WORKING-STORAGE SECTION.

�1 CHNGSHOW PIC X(8) VALUE 'CHNGSHOW'.

�1 PRINT-CLASS PIC 999 VALUE 33.

�1 PRINT-AREA.

 �5 PRI-EMP-ID PIC X(4).

 �5 PRI-EMP-LNAME PIC X(15).

 �5 PRI-EMP-FNAME PIC X(1�).

 �5 PRI-OLD-DEPT-ID PIC X(4).

 �5 PRI-NEW-DEPT-ID PIC X(4).

 �5 PRINT-AREA-END PIC X.

�1 TEMP-DEPT-DBKEY PIC S9(8) COMP.

�1 MAP-WORK-REC.

 �5 WORK-PRI-CTR PIC 99.

 �5 WORK-OLD-DEPT-ID PIC 9(4).

 �5 WORK-NEW-DEPT-ID PIC 9(4).

 �5 WORK-EMP-ID PIC 9(4).

 �5 WORK-FIRST PIC X(1�).

 �5 WORK-LAST PIC X(15).

 �5 WORK-ADDRESS PIC X(42).

PROCEDURE DIVISION.

 .

 .

 .

��� DISCONNECT EMPLOYEE FROM OLD DEPARTMENT ���

��� CONNECT EMPLOYEE TO NEW DEPARTMENT ���

 .

 .

 .

��� PRINT PROCESSING FOR EMP TRANSFER REPORT ���
��� IF COUNTER = ZERO, SPECIFY CLASS 33 ���

IF MAP-PRI-CTR = �
 WRITE PRINTER FROM PRINT-AREA
 TO PRINT-AREA-END

REPORT ID 1��
 CLASS 33
 ELSE
��� IF COUNTER > 5�, GO TO NEW PAGE ���
 IF-MAP-PRI-CTR > 5�

WRITE PRINTER NEWPAGE FROM PRINT-AREA
 TO PRINT-AREA-END

REPORT ID 1��
��� OTHERWISE WRITE LINE ���
 ELSE
 WRITE PRINTER FROM PRINT-AREA
 TO PRINT-AREA-END

REPORT ID 1��.
ADD 1 TO MAP-PRI-CTR.

MAP OUT USING DCTEST�3 OUTPUT DATA IS ATTRIBUTE

MESSAGE IS EMP-CONNECTED-MESS LENGTH 8�.

DC RETURN NEXT TASK CODE CHNGSHOW.

9-32 CA-IDMS Navigational DML Programming

9.11 Writing JCL to a JES2 internal reader

9.11 Writing JCL to a JES2 internal reader

You can write JCL to a JES2 internal reader from a DC application program by
issuing a WRITE PRINTER statement that specifies the CLASS parameter.

System prerequisites: For your program to write JCL to a JES2 internal reader,
the system administrator must first take these steps:

1. Define in system generation a SYSOUT line, physical terminal, and logical
terminal, using these guidelines:

ADD LINE physical-line TYPE IS SYSOUTL DDNAME IS ddname.

ADD PTERM physical-terminal TYPE IS SYSOUTL PRINTER CLASS IS �

PAGE WIDTH IS 8�.

ADD LTERM logical-terminal PRINTER CLASS = ADD (nn)

In the LTERM statement, nn is any valid DC printer class. This class should be
reserved for JES2 internal readers only.

2. Include a DD card in the DC run JCL that links dd-name to a JES2 internal
reader, using this format:

//ddname DD SYSOUT=(A,INTRDR),DCB=(RECFM=F,LRECL=8�,BLKSIZE=8�)

What the program does: The DC application program can write JCL to the JES2
internal reader by using this command:

WRITE PRINTER FROM JCL-STATEMENT-AREA LENGTH 8� CLASS nn.

After the last JCL statement is written, you use the same command to write one
additional line consisting of: /*EOF with 75 trailing blanks.

Chapter 9. DC Programming Techniques 9-33

9.12 Modifying a task's priority

9.12 Modifying a task's priority

DC selects a task for processing based on its priority assignment. A task's priority is
determined by the sum of the priority values assigned for the task code, the user, and
the terminal. Tasks with the same priority are handled on a first-in/first-out (FIFO)
basis.

To change the dispatching priority of a task:

1. Invoke the specified task.

2. Issue a CHANGE PRIORITY statement that specifies a new dispatching priority
for the issuing task. The new priority applies only to the current execution of the
task.

Note: You cannot use this statement to alter the priorities of other tasks
executing under the same DC system.

9-34 CA-IDMS Navigational DML Programming

9.13 Initiating nonterminal tasks

9.13 Initiating nonterminal tasks

Not all tasks in a DC system are associated with a logical terminal; a task not
associated with a logical terminal is called a nonterminal task. For example, you can
initiate processing of another task while your task is still running; this is called
attaching a task. The new task competes for processor time and runs concurrently
with all other tasks, but is not associated with any terminal. You can indicate either
that the nonterminal task should begin processing immediately or after a specified
length of time.

Because nonterminal tasks are not associated with an LTE, they cannot perform
processing related to a logical terminal. For example, nonterminal tasks cannot
perform terminal I/O, receive messages, or monitor resource usage.

9.13.1 Attaching a task

Attached tasks typically perform support functions for the initiating task. For example,
an attached task might perform print functions that can be requested by the user.

Steps to attach a task: To initiate a nonterminal task to be performed
immediately:

1. Issue an ATTACH statement that specifies the task code of the task to be initiated.

2. If the NOWAIT parameter is specified, check for a status of 3711
(DC-MAX-TASKS), which indicates that the task was not initiated because a
maximum task condition exists.

3. Perform alternative processing if 3711 is returned.

4. Perform the IDMS-STATUS routine if 3711 is not returned.

Example of attaching a task: The program excerpt below initiates the
nonterminal task DEPTPRNT if the user presses PA02.

 PROGRAM-ID. GETMENU.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 DEPTPRNT PIC X(8) VALUE 'DEPTPRNT'.

 PROCEDURE DIVISION.

BIND MAP SOLICIT.

BIND MAP SOLICIT RECORD SOLICIT-REC.

MAP IN USING SOLICIT.

INQUIRE MAP SOLICIT MOVE AID TO DC-AID-IND-V.

��� ATTACH TASK IF OPERATOR PRESSES PA�2 ���

 IF PA�2-HIT

ATTACH TASK CODE DEPTPRNT
PRIORITY 1�� NOWAIT

ON DC-MAX-TASKS GO TO MAP-OUT-ERR-MT.
 .

��� INPUT PROCESSING ���

Chapter 9. DC Programming Techniques 9-35

9.13 Initiating nonterminal tasks

 9.13.2 Time-delayed tasks

You may want to initiate a nonterminal task, but your processing needs require that it
not be concurrent with the issuing task. For example, the time-delayed task may
compete for resources with the issuing task. DC allows you to initiate a task at the
end of a specified period of time.

Steps to initiate a time-delayed task: To initiate a time-delayed task, perform
the following steps:

1. Initiate all appropriate fields.

2. Issue a SET TIMER statement that specifies the START parameter, the time
interval (in seconds), the time-delayed task's task code, the timer ID, and the
variable-storage location of any data to be passed to the time-delayed task.

 9.13.3 External requests

DC starts an external request task in response to a request issued by a batch program
running outside of the DC region of the operating system. The batch program's
operating mode (PROTOCOL) must specify DC-BATCH.

�� For more information on DC-BATCH, see Appendix C, “Batch Access to DC
Queues and Printers” on page C-1.

9.13.4 Queue threshold tasks

A sysgen-defined queue can cause a nonterminal task to be started automatically if a
predefined threshold is reached. When the queue threshold is reached, DC initiates the
nonterminal task. Such a nonterminal task reports on the queue records and then
deletes them.

For example, a queue may have a threshold of 100. When the queue exceeds 100
records, DC initiates a task that prints a report and deletes the queue records.

Queue threshold tasks must completely drain the queue and delete all the queue
records.

9-36 CA-IDMS Navigational DML Programming

9.14 Controlling abend processing

9.14 Controlling abend processing

A program can abnormally terminate in the following ways:

■ DC terminates a program upon encountering a processing error (for example, a
program check).

■ The program terminates itself upon discovering a situation that would result in
invalid results.

DC allows you to specify abend exits, which are invoked upon either a system or a
user abend request. These exits specify a program to be invoked in the event of an
abend; you can include an abend exit program for each level of a task. Abend exits
allow you to determine the cause and severity of the abend. Based on that
information, you can return control to the task, return control to the next-higher abend
exit, or terminate the program.

9.14.1 Terminating a task

When your program encounters data that indicates errors have occurred, you should
terminate processing. Typically, the IDMS-STATUS routine discovers processing
errors and abends your program. You should also terminate processing if a situation
exists that makes it impossible to ensure valid results (for example, if you are unable
to reaccess a previously obtained database record).

To abnormally terminate a task, issue an ABEND statement that specifies a
user-defined abend code. Optionally, you can write a formatted dump to the log file
and specify whether previously established abend exits should be invoked or ignored.

�� For more information on abend exits, see 9.14.3, “Performing abend routines” on
page 9-39 later in this chapter.

9.14.2 Handling db-key deadlocks

You can include logic in your program that is invoked if your run unit is terminated
because of a db-key deadlock. This enables your program to maintain the terminal
session and save any data that was previously entered on the screen.

At that point, your program can do one of the following:

■ Ask the user to resubmit the transaction.

■ Automatically restart the run unit, establish currency, and try again.

What happens when a deadlock occurs: When a run unit is terminated because
its request would cause a deadlock condition, the DBMS:

1. Rolls back the recovery unit and terminates the run unit. The rollback
operation releases all locks held by the aborted run unit.

2. Writes the following message to the log:

Chapter 9. DC Programming Techniques 9-37

9.14 Controlling abend processing

TASK: task-code PROG: program-name

SUBS: subschema-name SSCSTAT: subschema-status

RUN-UNIT run-unit-id ROLLED OUT.'

3. Returns control to the issuing task with a status code of nn29, which indicates
that a deadlock has occurred.

What to do: You can continue a terminal session in the event of a deadlock by
having your program resubmit a transaction in response to a minor status code of
nn29. How you do this is largely a site-specific decision. Typically, you resubmit a
transaction in one of two ways:

■ Inform the user of the deadlock and request the user to resubmit the transaction

■ Programmatically resubmit the transaction

Automatically restarting the run unit: If your program automatically restarts the
run unit and retries the transaction, it must:

1. Rebind the run unit by:

a. Reinitializing the ERROR-STATUS field in the IDMS communications block
to the value 1400

b. Issuing the appropriate BIND/READY sequence

2. Reestablish the appropriate currencies before retrying the transaction that
originally caused the deadlock.

If you don't check for the minor code: If your program fails to check for a
minor code of nn29, you can expect the following results:

■ If AUTOSTATUS is in effect, your program takes the action specified in the
site-specific IDMS-STATUS routine.

■ If AUTOSTATUS is not in effect, your program responds as specified in the
program code that checks status codes.

If your program does not contain any generic error-checking logic (such as the
IDMS-STATUS routine) and, after receiving a minor code of nn29, continues to
issue database requests without reestablishing a run unit, the DBMS returns a
database status of nn77 (run unit not bound).

COBOL: COBOL programs must redefine the ERROR-STATUS field of the IDMS
communications block to access the minor code value.

Example of resubmitting the transaction: The program excerpt below informs
the user of a database minor code of nn29 and requests that the transaction be
resubmitted:

9-38 CA-IDMS Navigational DML Programming

9.14 Controlling abend processing

 WORKING-STORAGE SECTION.

 �1 SUBSCHEMA-CTRL.

�3 PROGRAM-NAME PIC X(8) VALUE SPACES.

�3 ERROR-STATUS PIC X(4) VALUE '14��'.

 .

 .

 �3 SUBSCHEMA-CTRL-END PIC X(4).

 �1 SSC-REDEF REDEFINES SUBSCHEMA-CTRL.

�3 FILLER PIC X(8) VALUE SPACES.

 �3 ERRSTAT-REDEF.

 �5 ERRSTAT-MAJ PIC XX.

 �5 ERRSTAT-MIN PIC XX.

 88 DEADLOCK VALUE '29'.

 �3 FILLER PIC X(292).

�

 �1 MESSAGES.

�5 DBKEY-DEADLOCK-MESSAGE PIC X(8�) VALUE

'REQUESTED RECORD IN USE. PLEASE RESUBMIT TRANSACTION'.

 .

 .

 .

 PROCEDURE DIVISION.

 .

 .

 .

 IDMS-ABORT.

 IF DEADLOCK

 THEN

MODIFY MAP TSKMAP�1 TEMPORARY

FOR ALL FIELDS NOMDT

MAP OUT USING TSKMAP�1

MESSAGE IS DBKEY-DEADLOCK-MESSAGE LENGTH 8�

DC RETURN NEXT TASK CODE 'UPDATASK'.

 IDMS-ABORT-EXIT.

 EXIT.

COPY IDMS IDMS-STATUS.

��

 IDMS-STATUS SECTION.

��������������������� IDMS-STATUS FOR IDMS-DC ��������������������

IF DB-STATUS-OK GO TO ISABEX.

 PERFORM IDMS-ABORT.

MOVE ERROR-STATUS TO SSC-ERRSTAT-SAVE

MOVE DML-SEQUENCE TO SSC-DMLSEQ-SAVE

SNAP FROM SUBSCHEMA-CTRL TO SUBSCHEMA-CTRL-END

ON ANY-STATUS NEXT SENTENCE.

ABEND CODE SSC-ERRSTAT-SAVE

ON ANY-STATUS NEXT SENTENCE.

 ISABEX. EXIT.

 DMCL-DC-GEN-GOBACK SECTION.

 GOBACK.

9.14.3 Performing abend routines

You can establish linkage to an abend routine to which DC passes control if the
issuing task terminates. Optionally, you can cancel linkage to a previously established
abend routine. Each level in a task can have one abend exit in effect at any given
time; if more than one abend exit has been established for a level, DC recognizes the
last abend exit requested.

Chapter 9. DC Programming Techniques 9-39

9.14 Controlling abend processing

Executing abend exits: When a task terminates abnormally (following either a
processing error or an ABEND request), abend exits for the program that was
executing at the time of the abend and for all higher-level programs will be executed
before the task is terminated. You can prevent DC from executing abend exits
automatically either by coding the EXITS IGNORED clause in an ABEND request
(explained above) or by specifying the abort or continue options in the abend routine's
DC RETURN statement. DC RETURN requests are typically handled as follows:

■ Normal termination passes control either to an abend exit at a higher level or to
DC:

DC RETURN.

■ Abort termination passes control directly to DC, bypassing any other exit
programs:

DC RETURN ABORT.

SET ABEND EXIT statements: To establish linkage to an abend exit, which will
be invoked if the issuing task terminates, issue a SET ABEND EXIT statement that
specifies the program to be called in the event of an abend.

To cancel any previously requested abend exits for the issuing task level, issue a SET
ABEND EXIT OFF command.

9-40 CA-IDMS Navigational DML Programming

9.15 Establishing and posting events

9.15 Establishing and posting events

At certain times, you may need to suspend execution of your task (that is, enter a wait
state) until some specific event is completed. The most frequent event is I/O.
Typically, the wait is automatically handled by DC, which puts the task in a wait state
and, upon completion of the I/O, places the task in a ready state.

You can define an event simply by naming the event in a wait request. DC, upon
receiving the wait request, places your task in a wait state. The task is returned to a
ready state when another task (the task performing the event), upon completion, posts
the event by name. One typical use of user-defined events is to synchronize the
concurrent execution of different tasks; for example, a terminal task and a concurrent
nonterminal task.

Steps to establish and post an event: To place a task in a wait state, waiting
for the completion of an event, perform the following steps:

1. Establish a binary fullword field (PIC S9(8) COMP) that identifies the event
control block (ECB) to be posted.

2. Begin execution of the task that will post the event by issuing either an ATTACH
or a SET TIMER statement.

3. Place the issuing task in a wait state by issuing a WAIT statement that names the
event to be posted.

4. Post the event, redispatching the waiting task, by issuing either a POST or a SET
TIMER POST statement in the secondary program.

Chapter 9. DC Programming Techniques 9-41

9-42 CA-IDMS Navigational DML Programming

Chapter 10. Advanced CA-IDMS Programming Topics

10.1 About this chapter . 10-3
10.2 Calling a DC program from a CA-ADS dialog 10-4
10.3 Basic mode . 10-6

10.3.1 Reading data from the terminal . 10-7
10.3.2 Writing data to the terminal . 10-7

10.4 Determining if asynchronous I/O is complete 10-8
10.5 Communicating with database procedures 10-9

10.5.1 BIND PROCEDURE . 10-9
10.5.2 ACCEPT PROCEDURE CONTROL LOCATION 10-10

10.6 Managing queued resources . 10-12

Chapter 10. Advanced CA-IDMS Programming Topics 10-1

10-2 CA-IDMS Navigational DML Programming

10.1 About this chapter

10.1 About this chapter

This chapter presents information about how to:

■ Call a DC program from a CA-ADS dialog

■ Transfer data between the terminal and program in basic mode

■ Determine whether a request for asynchronous I/O has completed

■ Add fields and statements to a program for communication with database
procedures

■ How to acquire and release a queued resource

Chapter 10. Advanced CA-IDMS Programming Topics 10-3

10.2 Calling a DC program from a CA-ADS dialog

10.2 Calling a DC program from a CA-ADS dialog

CA-ADS dialogs can call COBOL, PL/I, or Assembler programs by using the LINK
function. For example, a commonly used date conversion routine could be coded in
COBOL for use by all CA-ADS dialogs running under a DC system.

Because CA-ADS calls your program using the LINK command, linkage conventions
are the same as if the call were from another DC program.

The calling dialog can pass the following records to the linked program:

■ Subschema control block

■ Map request block

■ Any records to be used in the linked program

Within the linked program, you can issue DC RETURN statements with the NEXT
TASK CODE parameter to perform pseudoconversational processing as required.

Extended run unit: The linked program may not need to issue any BIND
statements or reestablish currencies if the CA-ADS dialog establishes an extended run
unit.

�� For more information on CA-ADS and extended run units, refer to CA-ADS
Reference Guide.

Steps to call a program from CA-ADS: To code a program to be called by
CA-ADS dialogs, perform the following steps:

1. Define any passed records in the LINKAGE SECTION and code a PROCEDURE
DIVISION USING statement.

2. If an extended run unit has been established, do not issue a BIND RUN-UNIT
statement. You can issue BIND RECORD statements for any records which have
not already been bound for the run unit, and you can issue other appropriate BIND
statements.

3. Perform processing, as required.

If an extended run unit has been established, do not issue FINISH or ROLLBACK
statements within the called program. To issue either of these statements, return
to the calling dialog with an indicator in a passed status field and let the dialog
end the run unit. If you do not follow this procedure, the CA-ADS program may
receive an error (DC174019) when it tries to save currencies for a run unit that no
longer exists.

4. Return control to the CA-ADS dialog by issuing one of the following DC
RETURN statements:

■ If the program or one of its subroutines has issued a DC RETURN statement,
issue a DC RETURN statement that specifies a next task code of 'ADSR'

10-4 CA-IDMS Navigational DML Programming

10.2 Calling a DC program from a CA-ADS dialog

■ If the program issues no DC RETURN statements, issue a DC RETURN
statement that specifies no next task code

Example of a subroutine called by CA-ADS: The program excerpt below is a
subroutine called by a CA-ADS dialog to perform data conversion functions.

Depending on the conversion code, it converts a Julian date to Gregorian or a
Gregorian date to Julian.

 WORKING-STORAGE SECTION.

 �1 CONVERT-CODES.

 �5 JULGREG PIC X VALUE 'J'.

 �5 GREGJUL PIC X VALUE 'G'.

 �1 GREGORIAN.

 1� MM PIC 99 VALUE ZEROS.

 1� DD PIC 99 VALUE ZEROS.

 1� YY PIC 99 VALUE ZEROS.

 �1 JULIAN.

 1� JULIAN-YY PIC 99 VALUE ZEROS.

 1� JULIAN-DDD PIC 999 VALUE ZEROS.

 LINKAGE SECTION.

��� DEFINE RECORDS THAT ARE PASSED FROM CA-ADS ���

 �1 COPY IDMS SUBSCHEMA-CTRL.

 �1 COPY IDMS RECORD DATE-RECORD.

 �1 COPY IDMS RECORD DIALOG-REFERENCE-RECORD.

 PROCEDURE DIVISION USING SUBSCHEMA-CTRL
 DATE-RECORD
 DIALOG-REFERENCE-RECORD.

IF CONV-DIRECTION = JULGREG

 PERFORM A1��-JULGREG

 ELSE

IF CONV-DIRECTION = GREGJUL

 PERFORM A1��-GREGJUL

 ELSE

 PERFORM A1��-ERROR.

��� RETURN CONTROL TO CA-ADS PROGRAM ���

 DC RETURN.

��� DATE CONVERSION AND ERROR PROCESSING ���

 .

 .

 .

Chapter 10. Advanced CA-IDMS Programming Topics 10-5

10.3 Basic mode

 10.3 Basic mode

In basic mode, DC performs device-dependent data transfers between your program
and the terminal. Your program must format the data and supply device-control
characters based on the type of terminal in use; DC inserts the necessary line control
information. For example, with 3270-type devices, you must send and receive data
with device-control information that includes write control characters, orders, and
buffer addresses.

The figure below shows a basic mode data transfer. DC appends framing characters to
the input data stream and performs the required I/O.

Data stream as built by the user

┌───────────────────────────────────────┐

│ Data and device-control information │

└───────────────────────────────────────┘

Data stream as passed by basic mode request

┌────────────────┬───────────────────────────────────────┬────────────────┐

│ LINE CONTROL │ Data and device-control information │ LINE CONTROL │

└────────────────┴───────────────────────────────────────┴────────────────┘

�� For information on using basic mode to support System Network Architecture
(SNA) protocols, refer to CA-IDMS DML Reference - Assembler.

I/O requests under basic mode: Basic mode supports synchronous and
asynchronous read and write requests. The terms synchronous and asynchronous do
not refer to line protocol for data transmission but rather to task processing during I/O
operations. Synchronous and asynchronous I/O requests function in the following
manner:

■ Following a synchronous I/O request, control returns to DC, which places the
issuing task in an inactive state. When the requested I/O operation is complete,
DC places the task in a ready state and the task resumes processing according to
its established dispatching priority.

■ Following an asynchronous I/O request, the issuing task continues executing.

DC assumes that all I/O requests are synchronous unless a program explicitly requests
asynchronous processing.

What you can do in basic mode: Using basic mode terminal management, you
can perform the following functions:

■ Read data — You can transfer data from the terminal to program variable
storage.

■ Write data — You can transfer data from program variable storage to the
terminal.

■ Determine if I/O is complete — You can check to determine if a previously
issued asynchronous request is complete.

10-6 CA-IDMS Navigational DML Programming

10.3 Basic mode

10.3.1 Reading data from the terminal

To transfer data from the terminal screen to program variable storage, issue either a
READ TERMINAL or a WRITE THEN READ TERMINAL statement. This transfer
begins when the user signals completion of the data entry by pressing an AID key.
With 3270-type devices, data can optionally be transferred to the program without user
intervention.

Note: WRITE THEN READ TERMINAL is not recommended because it is
inherently conversational and holds resources.

Acquiring the input buffer: You must dynamically acquire the input buffer for
record-element descriptions from the storage pool when the read operation is complete:

■ If you specify WAIT, your program must acquire the input buffer by including a
GET STORAGE parameter in the READ TERMINAL or WRITE THEN READ
TERMINAL request. Your program is also responsible for releasing the acquired
storage explicitly with a FREE STORAGE statement. If storage is not explicitly
freed, DC releases all acquired buffers when the task terminates.

■ If you specify NOWAIT, your program must acquire the input buffer by including
a GET STORAGE parameter in the CHECK TERMINAL request.

Where to define data: Because storage is acquired by an explicit program request,
you must define the associated data-item descriptions in the program's LINKAGE
SECTION.

10.3.2 Writing data to the terminal

To transfer data from program variable storage to the terminal screen, issue a WRITE
TERMINAL statement.

If the output buffer has been dynamically acquired, you can optionally release that area
by including a FREE STORAGE parameter in the WRITE TERMINAL request. The
associated storage is released when the write operation is complete.

Output buffers that are explicitly acquired and released must be defined in the
program's LINKAGE SECTION.

Chapter 10. Advanced CA-IDMS Programming Topics 10-7

10.4 Determining if asynchronous I/O is complete

10.4 Determining if asynchronous I/O is complete

When your program issues an asynchronous I/O request, DC establishes an ECB that
is posted only after the requested I/O is complete. Before performing further I/O
operations, you must issue a CHECK TERMINAL statement to determine if the ECB
has been posted. If the ECB is unposted, indicating that the I/O is not complete, DC
places the task in an inactive state. When the operation is complete, DC reactivates
the task according to its established dispatching priority.

The CHECK TERMINAL statement must be used following all asynchronous I/O
requests, regardless of mode. That is, mapping mode and line mode output requests
that specify NOWAIT must issue a CHECK TERMINAL statement before issuing any
subsequent I/O requests.

10-8 CA-IDMS Navigational DML Programming

10.5 Communicating with database procedures

10.5 Communicating with database procedures

Database procedures, which can be invoked before or after various DML functions, are
defined in the schema by the DBA. For example, a data compression routine might be
invoked before STORE and MODIFY; a decompression routine might be invoked after
FIND.

Use of database procedures: Database procedures typically have more authority
than application programs. For example, they can access all record elements of a
schema-defined record and not just the fields defined in the subschema view.
Therefore, if your program must provide more information than is provided by the
DBMS itself, you can establish communications with a database procedure. Such
instances are unusual; in most cases, you are not aware of the procedures called before
or after various DML commands.

Steps to establish communication: To establish communications with a
database procedure, add the following fields to program variable storage:

■ An 8-byte character literal aligned on a fullword boundary. This field contains
the name of the procedure to be called.

■ A 256-byte area to which the procedure will be bound. This field defines the
information to be passed.

Statements to communicate with database procedures: The following
statements enable your program to communicate with database procedures:

■ BIND PROCEDURE establishes communication and passes data to the procedure

■ ACCEPT PROCEDURE CONTROL LOCATION returns data from the procedure
to program variable storage

These statements are explained below.

 10.5.1 BIND PROCEDURE

The BIND PROCEDURE statement establishes communication between your program
and a DBA-written database procedure. Additionally, the specified data in
variable-storage is copied to the application program information block in the central
version.

When to use it: Consult with your DBA to determine when to issue the BIND
PROCEDURE. After issuing a BIND PROCEDURE statement, you can modify fields
in the 256-byte block without affecting communications with the procedure (for
example, by using the ACCEPT PROCEDURE CONTROL LOCATION statement).
The data passed is the information contained in the block at the time of the BIND
PROCEDURE statement.

Chapter 10. Advanced CA-IDMS Programming Topics 10-9

10.5 Communicating with database procedures

Example of the definition in variable storage: The program excerpt below
shows a sample 256-byte DBA-defined application program information block as listed
in program variable storage.

DATA DIVISION

WORKING-STORAGE SECTION.

�1 CHECKID PIC X(8) VALUE 'CHECKID'.

�1 CHECKID-CTRL.

 �5 CHECKID-DATE PIC X(8).

 �5 CHECKID-USER PIC X(32).

 �5 CHECKID-INFO PIC X(216).

10.5.2 ACCEPT PROCEDURE CONTROL LOCATION

You can use the ACCEPT PROCEDURE CONTROL LOCATION statement to return
a copy of the data bound to a database procedure to a specified location in program
variable storage. A BIND PROCEDURE statement previously placed information into
this block; this information may have been subsequently updated by the procedure.

ACCEPT PROCEDURE CONTROL LOCATION should be used by programs running
under, but in a different region/partition from, the central version.

Example of communicating with a database procedure: The program excerpt
below shows the use of the BIND PROCEDURE and the ACCEPT PROCEDURE
CONTROL LOCATION statements.

The BIND PROCEDURE statement is issued only once; the ACCEPT PROCEDURE
CONTROL LOCATION statement is issued after STORE processing to return
information from the user-written procedure. The database procedure itself is
transparent to your application.

10-10 CA-IDMS Navigational DML Programming

10.5 Communicating with database procedures

 DATA DIVISION

 WORKING-STORAGE SECTION.

 �1 CHECKID PIC X(8) VALUE 'CHECKID'.

 �1 CHECKID-CTRL.

 �5 CHECKID-DATE PIC X(8).

 �5 CHECKID-USER PIC X(32).

 �5 CHECKID-INFO PIC X(216).

 PROCEDURE DIVISION.

 .

 .

 READ NEW-EMP-FILE-IN.

AT END MOVE 'Y' TO EOF-SW.

��� ESTABLISH COMMUNICATION AND TRANSFER INFO TO ���
��� THE APPLICATION PROGRAM INFORMATION BLOCK ���

BIND PROCEDURE FOR CHECKID TO CHECKID-CTRL.
PERFORM A3��-STORE-EMP THRU �3��-EXIT

 UNTIL END-OF-FILE.

��� MOVE DATA FROM THE PROCEDURE TO ���
��� PROGRAM VARIABLE STORAGE ���

ACCEPT CHECKID-CTRL FROM CHECKID PROCEDURE.
 PERFORM U1��-WRITE-PROC-INFO.

 FINISH.

 GOBACK.

 A3��-STORE-EMP.

 .

��� ESTABLISHING CURRENCY AND INITIALIZATION FOR STORE ���

 .

 STORE EMPLOYEE.

 PERFORM IDMS-STATUS.

 PERFORM U5��-WRITE-NEW-EMP-REPORT.

 A3��-GET-NEXT.

 READ NEW-EMP-FILE-IN

AT END MOVE 'Y' TO EOF-SW.

 A3��-EXIT.

 EXIT.

 U1��-WRITE-PROC-INFO.

DISPLAY '���� STORE PROCEDURE INFORMATION ����'

'DATE ' CHECKID-DATE

 'USER' CHECKID-USER

'INFO FOLLOWS: ' CHECKID-INFO.

Chapter 10. Advanced CA-IDMS Programming Topics 10-11

10.6 Managing queued resources

10.6 Managing queued resources

Resources are objects that your program must explicitly ask for before it can do any
work. Multiple resources may be required to perform a logical unit of work. For
example, a database area is a resource that you ask for by issuing a READY
statement; a database record occurrence is a resource that you ask for by issuing a
FIND/OBTAIN statement.

Holding resources: The number of resources that you hold and the way that you
hold them affects other run units. For example, resources can be shared or exclusive.

You should adhere to the following guidelines when holding resources:

■ Free resources as soon as you are finished in order that other run units can
access them.

■ Hold resources for as short a time as possible.

■ Acquire the lowest-level lock that you need. For example, use shared locks
instead of exclusive locks whenever possible.

Examples of resources: Typical resources include:

 ■ Database areas

 ■ Database records

 ■ Storage areas

 ■ Common routines

 ■ Queues

■ Site-specific functions (for example, database update)

Meaning of queued resource: Your site may utilize queued resources. A queued
resource is any resource that requires serial access. That is, only one program can
access it at a time.

DC allows you to perform the following resource management functions:

■ You can test to see if a resource is currently available.

■ You can acquire a resource for exclusive use.

■ You can release a previously acquired resource.

These functions are explained below, followed by a list of suggestions that you can
use to avoid deadlocks.

Testing for resource availability: To determine if a resource or list of resources
is currently available, perform the following steps:

1. Issue an ENQUEUE request that includes the TEST parameter.

10-12 CA-IDMS Navigational DML Programming

10.6 Managing queued resources

2. Check for the following statuses:

■ 0000 indicates that all the tested resources were available and have now been
enqueued for your task.

■ 3908 indicates that at least one of the tested resources is already owned by
another task.

■ 3909 indicates that at least one of the tested resources is not yet owned by
another task and is available to your task.

Acquiring resources: To acquire and lock a resource or list of resources, perform
the following steps:

1. Issue an ENQUEUE request that includes either the WAIT or the NOWAIT
parameter.

2. Check for the following statuses:

■ 0000 indicates that all requested resources have been acquired and locked.

■ 3901 indicates that at least one of the tested resources cannot be enqueued
immediately; to wait would cause a deadlock. No new resources have been
acquired.

■ 3908 indicates that at least one of the tested resources is currently owned by
another task. No new resources have been acquired.

Releasing resources: After all processing is complete, release resources by
issuing a DEQUEUE statement. You can release resources by name or all at once (by
including the ALL parameter).

Avoiding deadlock: One of the conditions of deadlock is that a program is holding
resources while waiting for other resources. The following list explains techniques
that your site can use to minimize this condition:

■ Request all required resources at the same time. Whenever possible, you
should try to ensure that your program isn't holding resources while waiting for
other resources.

■ If you are denied access to a resource, you should release all previously
acquired resources and start over. After you release previously acquired
resources, you can acquire all resources at the same time, as specified above.

■ Your site can follow a protocol of sequential order. All programs follow a
protocol that prescribes the order in which database records will be retrieved and
updated.

Note: This protocol will work only if every program in the system follows it.

For example, all update applications that use an area sweep can agree to enter the
database starting with the DEPARTMENT record rather than the OFFICE record.

This protocol can also specify the order in which locks will be acquired and
released.

Chapter 10. Advanced CA-IDMS Programming Topics 10-13

10.6 Managing queued resources

Sharing queued resources between CA-IDMS systems: In a data sharing
environment, queued resources can be shared between CA-IDMS systems that are
members of a data sharing group. The benefit of sharing these resources is that access
to them can be controlled between programs executing on any member of the group.
Whether or not a specific queued resource is shared, is determined by specifications
made by the CA-IDMS system administrator. Programs accessing queued resources
are not sensitive to whether or not a resource is shared, since the DML syntax is the
same in either case.

10-14 CA-IDMS Navigational DML Programming

 Chapter 11. Testing

11.1 About this chapter . 11-3
11.2 Preparing programs for execution . 11-4
11.3 Selecting local mode or central version 11-5
11.4 Using SYSIDMS parameters and DCUF SET statements 11-6
11.5 Overriding subschemas (Release 10.2) 11-7

11.5.1 Overriding a batch program's subschema 11-7
11.5.2 Overriding an online program's subschema 11-9

11.6 Setting up an online test application . 11-10

Chapter 11. Testing 11-1

11-2 CA-IDMS Navigational DML Programming

11.1 About this chapter

11.1 About this chapter

This chapter discusses the following topics related to the testing phase of program
development:

■ Preparing programs for execution — A discussion on precompiling, compiling,
and link editing your program

■ Selecting local mode or central version — A discussion on using local mode and
central version in the test environment

■ Overriding subschemas (Release 10.2) — A discussion on overriding the
subschema at runtime in both the batch and the online environments

■ Setting up an online test application — A discussion on creating an online test
environment

Chapter 11. Testing 11-3

11.2 Preparing programs for execution

11.2 Preparing programs for execution

To prepare a CA-IDMS load module, perform the following steps:

1. Execute the appropriate precompiler to obtain a source-language program. The
precompiler is the preprocessor that creates expanded source code and copies any
specified dictionary record descriptions or modules.

2. Execute the host-language compiler or assembler to obtain an object program.

3. Execute the linkage editor to obtain a load module (or phase). You should store
CA-IDMS load modules in a load (core-image) library defined to the test system.

�� For more information on this phase of testing, refer to the language-specific
CA-IDMS DML reference manual.

11-4 CA-IDMS Navigational DML Programming

11.3 Selecting local mode or central version

11.3 Selecting local mode or central version

Follow the guidelines listed below to determine whether to use local mode or central
version in the test environment:

■ Use local mode for testing batch programs. Be sure to back up the database
before running any update applications.

■ Use the central version mainly for online programs. Run batch jobs under the
central version only to test aspects of central version processing (for example,
update locks).

Chapter 11. Testing 11-5

11.4 Using SYSIDMS parameters and DCUF SET statements

11.4 Using SYSIDMS parameters and DCUF SET statements

Using SYSIDMS parameters you can change the specification of these components of
the physical environment in which your program executes without changing the
program source:

■ Database to be accessed

■ Dictionary whose load area contains the subschema

■ System to which the program should bind

To take advantage of this feature, the BIND RUN_UNIT statements in the program
should not specify the DBNAME, DICTNAME, and NODENAME parameters. Any
such hard-coded specification cannot be overridden at execution time.

Batch execution: For a program executing in batch mode, you can make
DBNAME, DICTNAME, and NODENAME specifications in the JCL using SYSIDMS
parameters.

�� For documentation of SYSIDMS parameters, see CA-IDMS Database
Administration.

For sample JCL, refer to the language-specific DML reference manual.

Online execution: For an online program, you can issue a DCUF SET statement to
specify database, dictionary, and system. A DCUF SET statement can be submitted to
the system by the user or by the program itself.

�� For more information about DCUF SET statements, refer to CA-IDMS System Tasks
and Operator Commands.

User session attributes: When a program executes under the central version, the
executing user is signed on the system automatically if the user is authorized and an
explicit signon has not occurred. Signon processing establishes a set of attributes for
the user session, including, for example, DBNAME and DICTNAME and the values
assigned to them.

The program can access attribute information with a call to the IDMSIN01 entry point
to the IDMS module. The program can use this feature to determine whether the user
has the appropriate values assigned to the different components of the execution
environment.

�� For more information about using calls to IDMSIN01, see Appendix F, “Calls to
IDMSIN01” on page F-1.

11-6 CA-IDMS Navigational DML Programming

11.5 Overriding subschemas (Release 10.2)

11.5 Overriding subschemas (Release 10.2)

You can override the program-specified subschema to access a test database that exists
in an multiple-database environment. This allows you to perform testing without
disrupting the production environment.

The procedures for overriding subschemas differ in the batch and the online
environment.

Database name table: A database to be accessed by an application program with
navigational DML must have one or more subschemas defined for it. The central
version maintains this association in the database name table created prior to Release
12.0 where an entry exists for each database that can be accessed under that central
version. A database name table entry includes the following information:

■ The name of the database

■ The names of the subschemas that map to the database

■ For each subschema that maps to the database, the name of an equivalent
subschema that provides the same database perspective (that is, the same record
definitions) but maps to different page ranges (that is, different data)

11.5.1 Overriding a batch program's subschema

To override the subschema named in a batch application program in the OS/390
environment, perform the following steps:

1. Include an 01-level LINKAGE SECTION entry that names two subordinate data
items:

�1 RUNTIME-TEST-PARMS.

�5 PARM-LENGTH PIC S9(4) COMP.

 �5 RUNTIME-TEST-SUBSCHEMA PIC X(8).

2. Include a USING statement in the PROCEDURE DIVISION heading:

PROCEDURE DIVISION USING RUNTIME-TEST-PARMS.

3. Before issuing any BIND statements, perform processing to determine if a
subschema override has been included in the execution JCL:

IF PARM-LENGTH NOT EQ ZERO

MOVE RUNTIME-TEST-SUBSCHEMA TO SUBSCHEMA-SSNAME.

4. Issue database BINDS and perform other processing as needed

5. At runtime, include a PARM option in the JCL EXEC statement that specifies the
name of the alternative subschema

Local mode considerations: The database and the appropriate subschemas must
be defined in the database name table in the load (core-image) library.

Note: For more information about the database name table, see CA-IDMS Database
Administration.

Chapter 11. Testing 11-7

11.5 Overriding subschemas (Release 10.2)

VSE/ESA users: You can pass the alternative subschema name by using a
SYSPARM:

// OPTION SYSPARM=ssname.

BS2000/OSD considerations: You can pass the alternative subschema name by
using a job variable. Perform the following steps:

1. Include a mnemonic name in the SPECIAL-NAMES paragraph of the
CONFIGURATION SECTION:

CONFIGURATION SECTION.

SPECIAL-NAMES.

JV-LNKNAME IS MNEMOJV.

LNKNAME is the linkname specified in the JCL; MNEMOJV is the name used
by the program to reference the job variable.

2. Include a data-item that will contain the job variable value:

WORKING-STORAGE SECTION.

�1 JVVALUE PIC X(8).

3. Before issuing any BIND statements, access the job variable value and determine
if a subschema override has been requested:

ACCEPT JVVALUE FROM MNEMOJV.

IF JVVALUE NOT EQ '/�'

THEN MOVE JVVALUE TO SUBSCHEMA-SSNAME.

4. Issue database BINDS and perform other processing as needed.

5. At runtime, include the following JCL commands:

/SET-JV-LINK L-NAME=�LNKNAME,JV-NAME=user-JV-NAME

/MOD-JV JV-CONTENTS=�LINK(LINK-NAME=�LNKNAME),SET-VALUE=C'subschema-name'

Batch Assembler programmers: Batch Assembler programs can use the GETJV
macro to move the job variable into program variable storage.

Example of overriding a batch subschema: The program excerpt and JCL
below illustrate the batch subschema override technique in the OS/390 COBOL
environment.

The PARM option on the EXEC statement specifies the name of a test subschema
used to override the production subschema. If the parameter is passed, the application
program moves the parameter to the SUBSCHEMA-SSNAME field in program
variable storage before issuing the BIND RUN-UNIT command.

11-8 CA-IDMS Navigational DML Programming

11.5 Overriding subschemas (Release 10.2)

 Source code:

SCHEMA SECTION.

DB EMPSS�1 WITHIN EMPSCHM.

 '

�1 SUBSCHEMA-SSNAME PIC X(8) VALUE 'EMPSS�1'.

 '

LINKAGE SECTION.

�1 RUNTIME-TEST-PARMS.

�5 PARM-LENGTH PIC S9(4) COMP.

 �5 RUNTIME-TEST-SUBSCHEMA PIC X(8).

PROCEDURE DIVISION USING RUNTIME-TEST-PARMS.

MOVE 'TESTPROG' TO PROGRAM-NAME.

IF PARM-LENGTH NOT EQUAL TO � THEN

MOVE RUNTIME-TEST-SUBSCHEMA TO SUBSCHEMA-SSNAME.

 BIND RUN-UNIT.

 .

 .

 .

 Runtime JCL:

//RUNJOB EXEC PGM=TESTPROG,PARM='EMPSS�1T'

11.5.2 Overriding an online program's subschema

A program executing under the central version can be directed to access a specific
database by using a DCUF SET DBNAME command. DCUF SET DBNAME
establishes a default database for the current logical terminal and overrides the
subschema named in the program's BIND RUN-UNIT statement. For example, to
establish EMPTSTDB as the default database, either the user or the program can issue
this CA-IDMS command:

DCUF SET DBNAME EMPTSTDB

�� For more information on specifying a default database, see CA-IDMS System
Operations.

OS/390 and BS2000/OSD systems: The specified database can be overridden by a
specification in an IDMSOPTI module or SYSCTL file.

VSE/ESA systems: The specified database can be overridden by a specification in an
IDMSOPTI module.

Chapter 11. Testing 11-9

11.6 Setting up an online test application

11.6 Setting up an online test application

There are two typical online test configurations, although your site standards for online
testing may be different. The two configurations are as follows:

■ Online test programs are link edited into a test load (core-image) library that is
defined to the DC system. This library is designated for test programs belonging
to a specified user or group of users.

■ Online test programs are link edited into a load (core-image) library that is defined
to a DC system that contains a system dictionary and at least one application
dictionary. This application dictionary should have been defined for testing in the
DC system.

�� For information on using extended architecture (OS/390) to test programs above the
31-bit line, see Appendix D, “XA Considerations” on page D-1.

Dynamically defining programs and tasks: Before your application can execute
under CA-IDMS, you must ensure that all of its programs and tasks are defined to
CA-IDMS. You can define programs and tasks either at system generation or
dynamically by issuing DCMT VARY DYNAMIC PROGRAM and DCMT VARY
DYNAMIC TASK commands. For example, to dynamically define the DCADDEMP
program and its associated task, issue the following DCMT statements:

DCMT VARY DYNAMIC PROGRAM DCADDEMP QUASIREENTRANT .

DCMT VARY DYNAMIC TASK ADDEMP INVOKES DCADDEMP INPUT .

Clist: Because an application can consist of many programs and task codes, it is a
good idea to define an application's dynamic program and task definition
statements as a module in the dictionary. This module can then be invoked as
a command list (clist) from the online DC system.

For more information on command lists, refer to CA-IDMS System Operations.

NEW COPY: You may need to redefine a recompiled program or map if NEW
COPY is defined as MANUAL at system generation. To mark a previously
defined program to new copy, issue the following online CA-IDMS command:

DCMT VARY PROGRAM DCADDEMP NEW COPY

Using a test load library (OS/390 and BS2000/OSD only): To execute your
test application in a DC system that uses a test load library for such applications,
perform the following steps:

1. When coding is finished, compile the programs and link edit them into the load
library that has been assigned the specified version number.

2. Define the programs to the DC system either at sysgen or by issuing DCMT
VARY DYNAMIC PROGRAM commands.

3. Define the tasks to the DC system either at sysgen or by issuing DCMT VARY
DYNAMIC TASK commands.

11-10 CA-IDMS Navigational DML Programming

11.6 Setting up an online test application

4. Establish the runtime test version number by issuing a DCUF TEST command.

5. Perform online application testing, as necessary.

Using an application dictionary: To execute your test application in a DC
system that uses an application dictionary, perform the following steps:

1. Link edit all programs into a load (core-image) library that has been defined to the
DC system.

2. Establish the application dictionary as the session default dictionary by issuing a
DCUF SET DICTNAME command.

3. Define the programs to the DC system either at sysgen or by issuing DCMT
VARY DYNAMIC PROGRAM commands.

4. Define the tasks to the DC system either at sysgen or by issuing DCMT VARY
DYNAMIC TASK commands.

5. Perform online application testing, as necessary.

Chapter 11. Testing 11-11

11-12 CA-IDMS Navigational DML Programming

 Chapter 12. Debugging

12.1 About this chapter . 12-3
12.2 Debugging batch programs with the CA-IDMS trace facility 12-4
12.3 Using the CA-OLQ menu facility . 12-6
12.4 Reading task dumps . 12-7

12.4.1 Contents of a snap dump . 12-7
12.4.2 How to use the dump . 12-9

12.5 Error checking . 12-12

Chapter 12. Debugging 12-1

12-2 CA-IDMS Navigational DML Programming

12.1 About this chapter

12.1 About this chapter

This chapter discusses the following topics related to the debugging phase of program
development:

■ Using the CA-IDMS trace facility — To trace program execution

■ Using the CA-OLQ menu facility — To confirm database access

■ Reading task dumps — To determine the contents of DC control blocks listed in a
task dump

■ Error checking — To inventory typical programming errors and possible solutions

Note: The online debugger is an additional facility for debugging online
CA-IDMS/DC and CA-IDMS/UCF programs written in Assembler, COBOL, or
PL/I. That facility is described in CA-IDMS Online Debugger.

Chapter 12. Debugging 12-3

12.2 Debugging batch programs with the CA-IDMS trace facility

12.2 Debugging batch programs with the CA-IDMS trace
facility

You can use the CA-IDMS trace facility to trace database calls in the following types
of programs:

■ Batch application programs that run either under the central version or in local
mode

■ CA-IDMS utilities, compilers, and reports

The trace facility writes one line to the SYSLST file for each call to the IDMS
module. This line contains the following:

■ DML sequence number, if the DEBUG option was specified at compile time and
mode is not DC-BATCH

 ■ Database key

 ■ Error status

■ DML verb number

■ DML verb name

■ Record, set, or area name (if applicable)

What you can do: You can use the CA-IDMS trace facility to:

■ Help debug application programs

■ Analyze and tune database navigation

■ Analyze unfamiliar programs that have been assigned to you for maintenance

Activating the trace facility: To activate the trace facility, specify the SYSIDMS
parameter DMLTRACE=ON. For example:

//SYSIDMS �

DBNAME=TSTDICT

DMLTRACE=ON

 .

 .

 .

This activates a trace of all DML calls made by the program.

Trace facility output: The following example shows CA-IDMS trace facility output
for a sample COBOL program:

12-4 CA-IDMS Navigational DML Programming

12.2 Debugging batch programs with the CA-IDMS trace facility

Verb=59 BIND SUBSCHEMA-─�EMPSS�1 DBNAME=EMPDB PROGRAM=CBDML�4

Verb=59 BIND SUBSCHEMA-─�IDMSNWKL DBNAME=SYSTEM PROGRAM=RHDCRUAL

Verb=37 READY Area Retrieval AREA─�DDLDCLOD

Verb=54 ACCEPT Current of Run-Unit

Verb=48 BIND Record REC-─�LOADHDR-156 ADDR=85�2AF�C

Verb=32 OBTAIN CALC REC-─�LOADHDR-156

I D M S SSCSTAT=�326 ERRREC=LOADHDR-156 ERRAREA=DDLDCLOD DBKEY=2�113:�

Verb=�2 FINISH

Verb=59 BIND SUBSCHEMA-─�IDMSNWKL DBNAME=SYSTEM PROGRAM=RHDCRUAL

Verb=37 READY Area Retrieval AREA─�DDLDCLOD

Verb=54 ACCEPT Current of Run-Unit

Verb=48 BIND Record REC-─�LOADHDR-156 ADDR=85�5C52�

Verb=32 OBTAIN CALC REC-─�LOADHDR-156

I D M S SSCSTAT=�326 ERRREC=LOADHDR-156 ERRAREA=DDLDCLOD DBKEY=2�113:�

Verb=48 BIND Record REC-─�LOADHDR-156 ADDR=85�5C52�

Verb=32 OBTAIN CALC REC-─�LOADHDR-156

I D M S SSCSTAT=�326 ERRREC=LOADHDR-156 ERRAREA=DDLDCLOD DBKEY=2�113:�

Verb=�2 FINISH

Verb=59 BIND SUBSCHEMA-─�IDMSSECU DBNAME=SYSUSER PROGRAM=RHDCRUAL

Verb=37 READY Area Retrieval AREA─�DDLSEC

Verb=54 ACCEPT Current of Run-Unit

Verb=48 BIND Record REC-─�USER ADDR=8��939�C

Verb=32 OBTAIN CALC REC-─�USER

I D M S SSCSTAT=�37� ERRAREA=DDLSEC DBKEY=8�����6:�

Verb=�2 FINISH

Verb=59 BIND SUBSCHEMA-─�IDMSSECU DBNAME=SYSUSER PROGRAM=RHDCRUAL

Verb=37 READY Area Retrieval AREA─�DDLSEC

Verb=54 ACCEPT Current of Run-Unit

Verb=48 BIND Record REC-─�PROFILE ADDR=85�2481�

Verb=48 BIND Record REC-─�ATTRIBUTE ADDR=85�2481�

Verb=32 OBTAIN CALC REC-─�PROFILE

I D M S SSCSTAT=�37� ERRAREA=DDLSEC DBKEY=8�����6:�

Verb=�2 FINISH

Turning trace on and off: You can use the DML trace facility selectively by
adding logic to the program itself. You can switch the trace facility on and off within
the program by issuing a call to the IDMSIN01 entry point of the IDMS module.

�� For information about how to call IDMSIN01 to manage the DML trace facility,
see Appendix F, “Calls to IDMSIN01” on page F-1.

Chapter 12. Debugging 12-5

12.3 Using the CA-OLQ menu facility

12.3 Using the CA-OLQ menu facility

During the debugging phase of program development, you may need to determine if
your application accessed the proper record occurrences or that database modifications
were actually applied. You can use the CA-OLQ menu facility to help you
accomplish these tasks.

The CA-OLQ menu facility can perform the following functions:

■ Check the sequence of records retrieved by your program

■ Test database navigation logic

■ Confirm database access and modification

Retrieving database records: To retrieve database records, perform the following
steps after signing on to the CA-OLQ menu facility:

1. On the MENU screen, choose the RECORD option.

2. On the SIGNON screen, indicate the appropriate subschema.

3. On the RECORD SELECT screen, indicate which database records or logical
record you want to retrieve.

4. On the FIELD SELECT screen, indicate which fields in the previously specified
database records or logical record you want to display; optionally, specify
selection criteria.

5. Press [Enter]. CA-OLQ automatically generates retrieval paths and performs the
database access.

6. Press [Enter] again. CA-OLQ displays the retrieved data.

Note: The sequence listed above is the default sequence for the RECORD option.
You need only press [Enter] after each step to continue to the next screen.

Storing an CA-OLQ qfile: If you will be using the CA-OLQ menu facility to
perform the same database access repeatedly, you might want to store the logic in an
qfile. To create an qfile, perform the following steps:

1. Perform steps 1 through 6 listed above.

2. On the MENU screen, select the EXPRESS ROUTINE option.

3. On the EXPRESS ROUTINE screen, specify the create option and a name.

Executing an CA-OLQ qfile: To execute an qfile, perform the following steps:

1. On the MENU screen, select the EXPRESS ROUTINE option.

2. On the EXPRESS ROUTINE screen, specify the execute option and an qfile
name.

�� For more information, refer to CA-OLQ User Guide.

12-6 CA-IDMS Navigational DML Programming

12.4 Reading task dumps

12.4 Reading task dumps

You can use a task dump to obtain task-related information that may not be available
under the online debugger. For example, you can find out about the control blocks
related to task or program definition by reading a task dump.

You should be familiar with dump reading and hexadecimal notation before trying to
read a task dump.

12.4.1 Contents of a snap dump

The table below lists the order and contents of a DC formatted snap dump. All of the
following information is listed if the ALL parameter of the SNAP command is
specified.

Structure Title starts with Notes

Summary of all
resources for all
active tasks

SYSTEM PHOTO Always listed with task
and system snaps unless
PHOTO disabled

System registers
User registers

SYSTEM REGISTERS Task and system snaps

System trace entries TRACE ENTRIES,
ORDERED OLDEST TO
NEWEST

Task snaps that result from
program checks and system
snaps

Abend control
element (ACE)
including PSW, data
at PSW, and
registers

ABEND C.E. Task snaps that result from
program checks and system
snaps

Maps of region and
nucleus

MAP OF REGION System snaps

Task's TCE TASKS TCE ADDRESS Task and system snaps

Task's DCE TASKS DCE ADDRESS Task and system snaps

Task's LTE TASKS LTE ADDRESS Task and system snaps

Task's PTE TASKS PTE ADDRESS Task and system snaps

Task's PLE TASKS PLE ADDRESS Task and system snaps

Task's resources TASKS RESOURCE CHAIN Task and system snaps

Options OPTIONS ADDRESS Task snaps that result from
program checks and system
snaps

Chapter 12. Debugging 12-7

12.4 Reading task dumps

Structure Title starts with Notes

CCE CCE ADDRESS Task snaps that result from
program checks and system
snaps

SVC parms SVC PARMS ADDRESS Task snaps that result from
program checks and system
snaps

ESE ESE ADDRESS System snaps

ERE area ERE AREA ADDRESS System snaps

CSA CSA ADDRESS Task snaps that result from
program checks and system
snaps

TCA header TCA HEADER ADDRESS System snaps

DCE area DCE AREA ADDRESS System snaps

TCE area TCE AREA ADDRESS System snaps

RCA header RCA HEADER ADDRESS System snaps

RLE area RLE AREA ADDRESS System snaps

RCE area RCE AREA ADDRESS System snaps

DPE area DPE AREA ADDRESS System snaps

Loader DCBs LOADER DCBS System snaps

LTERM table LTERM TABLE ADDRESS System snaps

PLE, OS/390
storage, PTEs, sets

PHYSICAL LINE ENTRY System snaps

Task table TASK TABLE ADDRESS System snaps

Queue table QUEUE TABLE ADDRESS System snaps

Destination table DEST TABLE ADDRESS System snaps

STG headers (SCTs
and SCEs)

STG TBL HDR ADDRESS System snaps

All storage pools (0
through nnn)

STORAGE POOL NNN System snaps

Program tables
(PDTs and PDEs)

PGM TABLES ADDRESS System snaps

All program pools
present in the system

24 BIT PROGRAM POOL

24 BIT REENTRANT POOL

31 BIT PROGRAM POOL

31 BIT REENTRANT POOL

System snaps

Run unit table SYS-RU-TAB ADDRESS System snaps

Extent table SYS-EXT-TAB ADDRESS System snaps

12-8 CA-IDMS Navigational DML Programming

12.4 Reading task dumps

Structure Title starts with Notes

DMCL table DMCL TABLE ADDRESS System snaps

Operating-system-dependent
module

OSXX MODULE ADDRESS System snaps

Nucleus modules NUCLEUS ADDRESS System snaps (reentrant
systems only)

SVC module SVC MODULE ADDRESS System snaps (reentrant
systems only)

Drivers DRIVERS ADDRESS

DBIO module DBIO MODULE ADDRESS System snaps (reentrant
systems only)

DBMS module DBMS MODULE ADDRESS System snaps (reentrant
systems only)

12.4.2 How to use the dump

This section tells you the items to look at first to use a DC formatted task dump
efficiently.

Abend message: The abend message that precedes the dump tells you the name of
the abending program and the offset of the abend:

IDMS DC�27��1 V12 T3891 D��3 PROGRAM CHECK IN SOC7TST AT OFFSET C8E

PSW WAS �79D1E�� ��2C3C8E DUMP OF TASK FOLLOWS

IDMS DC�27��9 V12 T3891 15:24:�7 95.111 CURRENT TASK CODE IS TSK�1

IDMS DC�27�1� V12 T3891 CURRENT LTE ID IS LT12��8

IDMS DC�27�11 V12 T3891 CURRENT USER ID IS RKN

System photo: The system photo (if provided) tells you the abending program's
resource control element (RCE) address:
 ��� SYSTEM PHOTO WHEN �TASK� SNAP REQUESTED ���

RELEASE: CA-IDMS 15.� TAPE: C�95�6 OP SYS: OS/39�

TASK CODE: �SYSTEM� TASK ID: �������� DISP PRI: �����255 PROGRAM: �MASTER� LTERM: �N/A�

 RESOURCES: RCE ADDR RCE TYP RESOURCE RES ADDR RESOURCE INFO

���EA724 STORAGE STORAGE ��1BFC8� LENGTH ����238�

. . .

. . .

. . .

TASK CODE: TSK�1 TASK ID: ����3891 DISP PRI: ������5� PROGRAM: SOC7TST LTERM: LT12��8

RESOURCES: RCE ADDR RCE TYPE RESOURCE RES ADDR RESOURCE INFO

���EB2F4 STORAGE STORAGE ��1C354� LENGTH ������4�

���EC6EC STORAGE STORAGE ��12594� LENGTH ������C�

���EAF�4 STORAGE STORAGE ��125��� LENGTH �����94�

���EBDA4 STORAGE STORAGE ��1B8E8� LENGTH �����1��

���EBBDC STORAGE STORAGE ��1B8F8� LENGTH ������8�

���EC11C STORAGE STORAGE ��1BECC� LENGTH ������8�

 ���ED97C QUEUE QCE ADDR ��1C3548 LENGTH ��������

��> ���EB�E4 PROGRAM PROG ADD ��2C3��� PDE ID SOC7TST

Abend control element: The abend control element (ACE). Note the program
status word (PSW), the data at the PSW, and the user mode registers (0-15):

Chapter 12. Debugging 12-9

12.4 Reading task dumps

ABEND C.E. ADDRESS IS ��125948

PSW AT TIME OF D��3 ABEND �79D1E�� ��2C3C8E ILC 6 INTC �4 ACEFLAG C�

DATA AT PSW ��2C3C7E 58E�D21� D2�36548 E���D2�3 E���6548

96F�E��3 D2�363�4 C�A8D2�3 63�8C�A8

R�/R8 R1/R9 R2/R1� R3/R11 R4/R12 R5/R13 R6/R14 R7/R15

��2C43�4 ��2C3BF8 ��2C3C7E �����678 ��2C4174 5E2C43CE ��125�A8 ��125887

��125888 ��2C4384 ��125��8 ��125��8 ��2C39�8 ��12568� �������� ��2C45B8

Note: The data begins X'10' bytes before the address pointed to by the PSW.

Program definition element: The abending program's program definition element
(PDE). To locate the PDE, trace the chain of resources to find the abending program's
RCE by using the RCE address noted above. The PDE immediately follows:

95111 15.24.14 TASK'S RESOURCE CHAIN.

95111 15.24.14 RCE IS AT ���EB2F4 �145���1 �����F33 ������4� � 1C354� �������� ��11B���

 . 33767�3 �������� �...4....RHDCLTRMLT12��8�

 . 33767�3 �������� �...4....RHDCLTRMLT12��8�

 . 33767�3 �������� �...4....RHDCLTRMLT12��8�

95111 15.24.14 TASK'S PROGRAMS.

95111 15.24.14 RCE IS AT ���EB�E4 �269���3 �����F33 �������2 � 2C3��� ��1DC39� ���39BC�

95111 15.24.14 PDE AND PROGRAM TEXT

��1DC38� E2D6C3F7 E3E2E34� ��14�4� 4�4�4�4� � SOC7TST .. �

��1DC3A� 4�4�4�4� 4�4�4�4� 4�4����� 4������� �������� �������� ������� ���F�694 �M�

��1DC3C� 14������ 8��E6�5C ���E6�5C �������A �������5 �������� ��39BC� �������� �......-�..-�....................�

��1DC3E� ���1���� ���63488 �1�1���� 288�2��� �1�5���� �������� ���1EE8 ��2C3��� �.......H...................Y....�

��1DC4�� �������� ����5F48 E2D6C3F7 E3E2E34� ��2224�E ��2E��23 1������ �����2E2 �........SOC7TSTS�

��1DC42� ��1EE81E E8������ 98���1�� �������� �������� �������� �1DC348 �������� �..Y.Y...Q.................C.....�

95111 15.24.14 COBOL EXTENSION AREA

��1DC34� �����29� �����9�8 �����678 �48����� � �

��2C3��� 9�ECD��C 185D�5F� 458�F�1� E2D6C3F7 E3E2E34� E5E2D9F1 7��989F F�24�7FF �.....).�..�.SOC7TST VSR1..Q.�...�

��2C3�2� 96�21�34 �7FE41F� ���1�7FE ��2C4384 ��2C3��� ��2C3��� �2C39�8 ��2C3678 �O......�.......D................�

��2C3�4� ��2C3A4� ��2C4344 �������� 5E2C43EA ��2C3A4� �����678 �2C4174 5E2C43CE �...;......;...�

��2C3�6� ��2C3�A� ��2C387F ��2C388� ��2C4384 ��2C3��� ��2C3��� �2C39�8 ��2C3678 �.......".......D................�

��2C3�8� ���9F8DC ��2C3888 F1F54BF2 F24BF1F3 C1D7D94� F2F16B4� 1F9F8F6 �������� �..8....H15.22.13APR 21, 1986....�

��2C3�A� F�F�F�F� �������� 4�4�4�4� �������� �������� �������� ������� �������� �����....�

��2C3�C� �������� �������� �������� �������� �������� �������� ������� �������� �................................�

CONTENTS THROUGH ��2C3�FF SAME AS ABOVE LINE.

��2C31�� �������� �������� C5D5E3C5 D94�C1D5 4�C4C5D7 E34�C9C4 �C1D5C4 4�D7D9C5 �........ENTER AN DEPT ID AND PRE�

��2C312� E2E24�C5 D5E3C5D9 4�5C5C4� C3D3C5C1 D94�E3D6 4�C5E7C9 34�4�4� 4�4�4�4� �SS ENTER �� CLEAR TO EXIT �

��2C314� 4�4�4�4� 4�4�4�4� 4�4�4�4� 4�4�4�4� 4�4�4�4� 4�4�4�4� 4C5D7E3 6�C9C44� � DEPT-ID �

��2C316� C5C9E3C8 C5D94�D5 D6E34�C5 D5E3C5D9 C5C44�D6 D94�D5D6 34�D5E4 D4C5D9C9 �EITHER NOT ENTERED OR NOT NUMERI�

��2C318� C34�4�4� 4�4�4�4� 4�4�4�4� 4�4�4�4� 4�4�4�4� 4�4�4�4� �4�4�4� 4�4�4�4� �C �

��2C31A� 4�4�4�4� 4�4�4�4� E2D7C5C3 C9C6C9C5 C44�C4C5 D7C1D9E3 4C5D5E3 4�C3D6E4 � SPECIFIED DEPARTMENT COU�

��2C31C� D3C44�D5 D6E34�C2 C54�C6D6 E4D5C44� 4�4�4�4� 4�4�4�4� �4�4�4� 4�4�4�4� �LD NOT BE FOUND �

��2C31E� 4�4�4�4� 4�4�4�4� 4�4�4�4� 4�4�4�4� 4�4�4�4� 4�4�4�4� 2D7C5C3 C9C6C9C5 � SPECIFIE�

��2C32�� C44�C4C5 D7C1D9E3 D4C5D5E3 4�C8C1E2 4�D5D64� C5D4D7D3 6E8C5C5 E24�4�4� �D DEPARTMENT HAS NO EMPLOYEES �

BL and DMAP listings: If necessary, use the BL and DMAP listings from the
COBOL compiler to locate questionable variable-storage values.

Additional control blocks: You may find it useful to look at the following control
blocks:

■ The common system area (CSA). You should check the following fields in the
CSA:

– CSAFLAG1 through CSAFLAG5 (starting at CSA + X'6C0') contain status
flags.

– CSATRCLO (CSA + X'370'), CSATRCHI (CSA + X'374'), and CSATRCNX
(CSA + X'378') point to the first, last, and next available trace entries (this is
useful if there is no system trace provided with your dump).

– CSA + X'1134' lists the last 33 messages ordered newest to oldest; each
doubleword contains the task ID, the message ID, and the severity code.

■ The status flags in the task control element (TCE).

■ The LTE contains fields that indicate the dictname, dictnode, dbname, whether the
logical terminal has an autotask or CLIST, and the next task code.

■ The dispatch control element (DCE) contains task information.

12-10 CA-IDMS Navigational DML Programming

12.4 Reading task dumps

�� For more information, including a control block cross reference, refer to CA-IDMS
DSECT Reference Guide.

Chapter 12. Debugging 12-11

12.5 Error checking

 12.5 Error checking

The table below presents a brief list of typical programming errors and possible
solutions.

Problem Language Reason and/or action

Unconnected member
records are showing up as
set members.

All Be sure to issue an IF MEMBER
statement before OBTAIN OWNER
in a set with the optional or manual
set membership options.

Skipping records in an
area sweep.

All Your processing may have taken you
to another database page; be sure to
issue a FIND CURRENT record-name
before issuing an OBTAIN NEXT
WITHIN area-name.

A program performs extra
processing in addition to
IDMS-STATUS.

COBOL IDMS-STATUS is a COBOL
SECTION; be sure to do one of the
following:

■ Place IDMS-STATUS at the end
of the program.

■ Ensure that the code following
IDMS-STATUS is also a
SECTION.

■ Always perform IDMS-STATUS
THRU ISABEX.

Queue records written to
the database are not being
kept.

DC-BATCH Be sure to issue either FINISH TASK
or COMMIT TASK, or the queue
records will be deleted at the end of
the run unit.

Storage violation when
initializing acquired
storage fields.

DC When you define acquired storage
length by using the THROUGH
option, CA-IDMS does not acquire
storage for the dummy byte. If you
initialize fields on the group level, it
may include the dummy byte, thus
causing a storage violation.

Map displayed with no
variables.

DC Be sure to issue a BIND MAP
statement for the map and BIND
MAP RECORD statements for all
map records.

12-12 CA-IDMS Navigational DML Programming

12.5 Error checking

Problem Language Reason and/or action

The same errors occur
despite repeated
modification and
recompilation.

DC Be sure to issue a DCMT VARY
PROGRAM NEW COPY statement
following recompilation. Be sure to
VARY the correct version of the
program.

Chapter 12. Debugging 12-13

12.5 Error checking

12-14 CA-IDMS Navigational DML Programming

 Appendix A. PL/I Considerations

A.1 About this appendix . A-3
A.2 Transferring control . A-4
A.3 Using the Online Debugger with PL/I . A-5

A.3.1 Computation Phase . A-5
A.3.2 Sample Online Debugger Session . A-6

Appendix A. PL/I Considerations A-1

A-2 CA-IDMS Navigational DML Programming

A.1 About this appendix

A.1 About this appendix

This appendix explains:

■ Passing parameters to PL/I programs in the TRANSFER CONTROL command,
which differs from the procedure in the COBOL environment.

■ Debugging a PL/I program using the CA-IDMS Online Debugger

Appendix A. PL/I Considerations A-3

A.2 Transferring control

 A.2 Transferring control

In order to pass parameters in a LINK or XCTL statement, you must include the
following PL/I declarative in your program:

DECLARE IDMSP ENTRY;

If you pass parameters to a PL/I program from a non-PL/I program (CA-ADS dialog,
or a COBOL or Assembler program), you must include special parameters in order to
establish addressability to the passed data.

The program excerpt below shows the extra code necessary to transfer from a non-PL/I
program to a PL/I program.

The parameters F1, F2, and F3 provide the addresses on which to base the structures
that are passed.

TESTPROC: PROCEDURE (F1,F2,F3) OPTIONS (MAIN,REENTRANT);

DCL (EMPSS�1T SUBSCHEMA, EMPSCHEM SCHEMA) MODE (IDMS_DC) DEBUG;

DCL IDMS ENTRY OPTIONS (INTER,ASM);

DCL IDMSP ENTRY;

DCL ADDR BUILTIN;

DCL (F1,F2,F3) FIXED;

DCL PASSED_FIELD_1 FIXED BIN(31) BASED (ADDR(F1));

INCLUDE IDMS (SUBSCHEMA_CTRL BASED (ADDR(F2)));

INCLUDE IDMS (RECORD_AA BASED (ADDR(F3)));

 .

 .

 .

�� For more information on passing parameters to a PL/I program from an Assembler
program, refer to CA-IDMS DML Reference - PL/I.

A-4 CA-IDMS Navigational DML Programming

A.3 Using the Online Debugger with PL/I

A.3 Using the Online Debugger with PL/I

You can use the online debugger to detect, trace, and resolve programming errors in
DC PL/I programs. To use the online debugger with PL/I, you should be familiar with
both hexadecimal notation and hexadecimal arithmetic.

The phases of the debugging process are discussed below, followed by a sample PL/I
online debugger session.

 A.3.1 Computation Phase

Before beginning the debugging process, it is a good idea to determine the breakpoints
you want to set and the storage locations you want to examine:

■ To determine the hexadecimal offset of an executable program instruction at
which you wish to set a breakpoint, perform the following steps:

1. Examine the cross-reference table portion of your link-edit listing for an entry
in the form program-name1. Record the hexadecimal offset listed under
ORIGIN:

CROSS REFERENCE TABLE

 CONTROL SECTION ENTRY

 NAME ORIGIN LENGTH NAME LOCATION

PLISTART �� 5�

 PLICALLA 6

PLIMAIN 5� 8

�PLIPROG2 58 394

 �PLIPROG1 3F� EB4

 PLI3PROG 3F8

IDMSPLI 12A8 284

2. Examine the PL/I compiler portion of your listing and record the line number
of the statement at which you wish to set the breakpoint:

133 WORK_LAST = EMP_LAST_NAME_�415;

134 WORK_FIRST = EMP_FIRST_NAME_�415;

 /�

MAP OUT (DCTEST�1) OUTPUT DATA YES

 MESSAGE (INITIAL_INSTRUCTIONS_MSG_1)

 LENGTH (25)

DETAIL NEW KEY (DBKEY).

 �/

135 /� IDMS PL/I DML EXPANSION �/ DO;

136 DML_SEQUENCE=��13;

137 DCCFLG1=�;

138 DCCFLG1=13;

139 DCCFLG2=16;

14� DCCFLG3=�;

141 DCCFLG4=4;

142 DCCFLG5=72;

143 DCCFLG6=�;

3. Examine the Assembler listing generated by the LIST option, locate the
previously recorded PL/I line number, and record its corresponding
hexadecimal displacement value:

Appendix A. PL/I Considerations A-5

A.3 Using the Online Debugger with PL/I

� STATEMENT NUMBER 136

���6AA 41 8� 7 21C LA 8,SUBSCHEMA_CTRL.D

 CCALIGN_AREA.FILLE

 R���1

���6AE 58 4� 3 124 L 4,292(�,3)

���6B2 5� 4� 8 ��8 ST 4,SSC_ERRSAVE_AREA

 .DML_SEQUENCE

4. Add the origin offset and the breakpoint instruction's hexadecimal
displacement to obtain the breakpoint address:

X'3F�' + X'6AA' = X'A9A'

■ To determine the offset of AUTOMATIC variables, locate the variable storage
map and record the displacement value for each variable you wish to examine
during the debugging process:

MAP_WORK_REC 1 796 31C AUTO

WORK_DEPT_ID 1 796 31C AUTO

WORK_EMP_ID 1 8�� 32� AUTO

WORK_FIRST 1 8�4 324 AUTO

WORK_LAST 1 814 32E AUTO

WORK_ADDRESS 1 829 33D AUTO

WORK_STREET 1 829 33D AUTO

WORK_CITY 1 849 351 AUTO

WORK_STATE 1 864 36� AUTO

WORK_ZIP 1 866 362 AUTO

WORK_DEPT_NAME 1 871 367 AUTO

You locate AUTOMATIC variables at run time through Register 13.

■ To determine the location of STATIC INTERNAL variables, examine the static
internal storage map to find the hexadecimal offset for each variable you wish to
examine during the debugging process.

You locate STATIC INTERNAL variables at run time through Register 3.

A.3.2 Sample Online Debugger Session

To use the online debugger with an DC PL/I program, perform the following steps:

1. Compile the program with the LIST, OFFSET, XREF STORAGE, and MAP
compiler options before defining it to the DC system.

2. Record breakpoint and storage displacements as explained in A.3.1, “Computation
Phase” on page A-5 above.

3. Initiate the debugger session by entering the DEBUG task code from DC; the
DEBUG> prompt is displayed, indicating that the debugger is in control:

ENTER NEXT TASK CODE:

debug

DEBUG>

4. Indicate the program to be debugged by entering DEBUG followed by the
program name; the debugger verifies the program name:

DEBUG>

debug pliprog

DEBUG PLIPROG

DEBUG> DEBUGGING INITIATED FOR PLIPROG VERSION 1

DEBUG>

A-6 CA-IDMS Navigational DML Programming

A.3 Using the Online Debugger with PL/I

5. Establish breakpoints by issuing the AT command, followed by $, which signifies
the base register, followed by the previously computed breakpoint address; the
debugger verifies the establishment of the breakpoint:

DEBUG>

at $ + @a9a

AT @A9A

AT> @A9A ADDED

DEBUG>

6. After all breakpoints have been set, leave the setup phase of the debugger session
by issuing the EXIT command:

DEBUG>

exit

7. Initiate the run-time phase by issuing the task code that invokes the task that the
program participates in:

ENTER NEXT TASK CODE:

 deptmod

8. When a breakpoint is encountered at run time, the debugger assumes control and
identifies the address, program, and the debugger expression that was used to
establish the breakpoint:

AT OFFSET @A9A IN PLIPROG EXPRESSION @BDE

DEBUG>

9. You can now examine program variable storage by issuing LIST commands;
indirect addressing is used based on the previously noted register and offset:

list %:r13 + @31c 32

LIST %:R13 + @31C 32

��1DB7F4 F3F2F�F� F�F�F�F4 C8C5D9C2 C5D9E34� �32�����4HERBERT �

��1DB8�4 4�4�C3D9 C1D5C54� 4�4�4�4� 4�4�4�4� � CRANE �

If your program contains any nested procedures or begin blocks, you will need to
navigate the chain of dynamic storage areas (DSAs) to obtain the correct
variable-storage base address. To navigate the DSA chain for nested procedures
or begin blocks, list the contents of register 13 to determine the DSA for the
current level of nesting:

list %:r13

LIST %:R13

��1C7A3� 842����� ��1C7948 �������� 5E422A2� �D...........;...�

For subsequent levels of nesting, perform the following step:

a. List the absolute address contained 4 bytes off of the previously displayed
line:

list @1c7948

LIST @1C7948

��1C7948 842����� ��1C74D8 �������� 4E4227EC �D......Q....+...�

b. When you have reached the final level of nesting, use the address 4 bytes off
of the display as the base address to list AUTOMATIC variable-storage
values:

Appendix A. PL/I Considerations A-7

A.3 Using the Online Debugger with PL/I

DEBUG>

list 1c74d8 + @31c 32

LIST 1C74D8 + @31C 32

��1C77F4 F3F2F�F� F�F�F�F4 C8C5D9C2 C5D9E34� �32�����4HERBERT �

��1C78�4 4�4�C3D9 C1D5C54� 4�4�4�4� 4�4�4�4� � CRANE �

To examine variables defined as BASED storage, perform the following steps:

a. Using indirect addressing, list the contents of the associated pointer variable:

DEBUG>

list %:r13 + @d4

LIST %:R13 + @D4

��1499E� ��149AC8 �������� �������� �������� �...H............�

b. List the absolute address to display the BASED variable's values:

DEBUG>

LIST @149ac8 16

��149AC8 F1F1F1F1 C4C5D7E3 �������� �������� �1111DEPT........�

10. To continue program execution, enter the RESUME command:

DEBUG>

resume

11. To end a debugger session, enter the QUIT command from the DEBUG> prompt:

DEBUG>

quit

QUIT

QUIT DEBUGGER

ENTER NEXT TASK CODE:

A-8 CA-IDMS Navigational DML Programming

 Appendix B. Assembler Considerations

B.1 About this appendix . B-3

Appendix B. Assembler Considerations B-1

B-2 CA-IDMS Navigational DML Programming

B.1 About this appendix

B.1 About this appendix

This appendix explains the following Assembler topics, which differ from the COBOL
environment:

■ Batch error checking — A discussion on coding error-checking routines for batch
programs

■ DC error checking — A discussion on coding error-checking routines for online
programs

�� For more information related to using Assembler with DC, refer to CA-IDMS DML
Reference - Assembler.

Checking the status of calls to DB: Assembler programs do not use the
IDMS-STATUS block; you must explicitly code your own error-checking routines.
You should check the ERRSTAT field after every DB DML call; if the DBMS returns
an unexpected nonzero value, you should:

1. Display the following IDMS communications block fields:

 ■ PGMNAME

 ■ ERRSTAT

 ■ ERRORREC

 ■ ERRORSET

 ■ ERRAREA

 ■ RECNAME

 ■ AREANAME

■ DMLSEQ (if the DEBUG option is specified)

You should also display any other relevant variable-storage fields.

2. Issue the @ROLLBAK command.

3. Terminate the program.

Checking the status of calls to DC: Assembler DC programs do not need to use
the IDMS-DC communications block. You explicitly check the value returned to
register 15 to determine the result of a DC call. If the call to DC included database
access, you must check:

■ Register 15 for return codes issued by DC

■ The ERRSTAT field for status codes issued by DB

If DC returns an unexpected nonzero status, you should:

1. Save the register 15 value

Appendix B. Assembler Considerations B-3

B.1 About this appendix

2. Write a memory dump of the IDMS communications block and any other relevant
variable-storage fields by using the #SNAP command

3. Terminate the program by using the #ABEND command

Testing for the return code in register 15 is not usually necessary because most
Assembler DML commands have options that take action based on the return code
value.

B-4 CA-IDMS Navigational DML Programming

Appendix C. Batch Access to DC Queues and
Printers

C.1 About this appendix . C-3

Appendix C. Batch Access to DC Queues and Printers C-1

C-2 CA-IDMS Navigational DML Programming

C.1 About this appendix

C.1 About this appendix

This appendix explains how a batch application program can can use services of the
CA-IDMS central version.

DC-BATCH mode: DC-BATCH allows your batch program to access DC queues
and printers. Using DC-BATCH, your program can access the database, issue
CA-IDMS queue management commands, and transmit data to DC printers.

Note: DC-BATCH uses the IDMS communications block.

Batch access to CA-IDMS queues: You can use DC-BATCH to establish a task
within a batch application program. This allows your program to read data from
queue records while performing normal database activities. Additionally, you can take
advantage of DC facilities for locking queue records and performing recovery.

Perform the following steps to access queue records from a DC-BATCH program:

1. Link edit the program with the batch interface module, IDMS.

2. Specify a mode of DC-BATCH.

3. Initiate the DC task by issuing a BIND TASK statement before any other BIND
statements. BIND TASK establishes communication with the DC system and
allocates a packet-data-movement buffer to contain the queue data.

4. Issue retrieval and modification statements beginning with BIND RUN-UNIT and
ending with FINISH. Within a task, you can code as many
BIND/READY/FINISH sequences as required.

5. Issue GET QUEUE, PUT QUEUE, and DELETE QUEUE statements to access
queue records. Queue access requests must fall between the BIND TASK and the
FINISH TASK statements; they need not fall between BIND RUN-UNIT and
FINISH.

6. Terminate the DC task by issuing a FINISH TASK statement. FINISH TASK
relinquishes control over all database areas associated with the task and establishes
an end-of-task checkpoint in the journal file for the queue areas that have been
accessed by the task.

Within the task, you can issue COMMIT TASK and ROLLBACK TASK statements to
write checkpoints and effect recovery coordinated with the CA-IDMS run unit.

Note: Be sure to issue a BIND TASK statement and a FINISH TASK statement and
to include the TASK parameter of the COMMIT and ROLLBACK statements.

Batch access to DC printers: To access DC printers from a batch application
program, perform the following steps:

1. Link edit the program with the batch interface module, IDMS.

2. Specify a mode of DC-BATCH.

3. Issue a BIND TASK statement.

Appendix C. Batch Access to DC Queues and Printers C-3

C.1 About this appendix

4. Issue WRITE PRINTER requests as needed to build a report and direct it to a
printer.

Note: Batch programs cannot issue WRITE PRINTER SCREEN requests.

5. Terminate the DC task with a FINISH TASK statement.

C-4 CA-IDMS Navigational DML Programming

 Appendix D. XA Considerations

D.1 About this appendix . D-3

Appendix D. XA Considerations D-1

D-2 CA-IDMS Navigational DML Programming

D.1 About this appendix

D.1 About this appendix

This appendix explains how your program can use XA features.

XA support: CA-IDMS supports XA for Assembler and VS COBOL II programs.
To run your application in 31-bit mode, the following conditions must be met:

■ Your program must be able to run above the 16-megabyte line. For more
information, refer to the appropriate IBM documentation.

■ Your DC system must contain at least one XA program pool, XA reentrant pool,
and XA storage pool.

■ You must link edit your program with the following options:

RMODE=ANY,AMODE=31

■ You must define the task, either at sysgen or by using a DCMT VARY
DYNAMIC TASK command, with the LOCATION=ANY parameter.

Appendix D. XA Considerations D-3

D-4 CA-IDMS Navigational DML Programming

Appendix E. Running a Program Under TCF

E.1 About this appendix . E-3
E.2 Overview of TCF . E-4
E.3 Defining a TCF task to the DC system . E-6
E.4 Using the UCE for communication under TCF E-7
E.5 Determining if TCF is active . E-9
E.6 Starting a new session . E-10
E.7 Resuming a suspended session . E-11
E.8 Processing a pseudoconverse . E-12

E.8.1 Suspend processing . E-12
E.8.2 End processing . E-12
E.8.3 Switch processing . E-12

E.9 Displaying error messages . E-14
E.10 Sample application under TCF . E-15

Appendix E. Running a Program Under TCF E-1

E-2 CA-IDMS Navigational DML Programming

E.1 About this appendix

E.1 About this appendix

This appendix explains the processing that your program must perform in order to run
under the Transfer Control Facility (TCF). TCF allows you to transfer from one
online application to another without having to return first to DC.

Appendix E. Running a Program Under TCF E-3

E.2 Overview of TCF

E.2 Overview of TCF

Using TCF, you can suspend a session of an online application, transfer directly to
another online application, then transfer back and resume the suspended session.

Before writing an application to run under TCF, you should be thoroughly familiar
with TCF and the CA-IDMS software tools that it invokes.

�� For more information on TCF, refer to CA-IDMS Transfer Control Facility.

TCF internal processing: You should be aware of TCF internal processing:

■ TCF invokes an application through a TRANSFER CONTROL LINK function.
This allows TCF to regain control after every pseudoconverse and every DC
RETURN statement. The figure below shows a typical TCF program structure.

 ┌─────────────┐

 │ │

│ TCF │

 │ │

 └──────┬──────┘

 │

 │

 │

 │

 ┌───────────────┬───────────────┬──────────────────┼────────────────┬────────────────┬────────────────┐

│ │ │ │ │ │ │

┌───────┴──────┐ ┌─────┴───────┐ ┌────┴────────┐ ┌──────┴──────┐ ┌──────┴──────┐ ┌──────┴──────┐ ┌──────┴──────┐

│ │ │ │ │ │ │ │ │ │ │ │ │ │

│ CA-IDMS │ │ CA-IDMS │ │ CA-IDMS │ │ CA-IDMS │ │ User- │ │ User- │ │ User- │

│ software │ │ software │ │ software │ │ software │ │ written │ │ written │ │ written │

│ tool │ │ tool │ │ tool │ │ tool │ │ application │ │ application │ │ application │

│ │ │ │ │ │ │ │ │ │ │ │ │ │

└──────────────┘ └─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘

■ All communication between an application and TCF occurs through the universal
communications element (UCE). The UCE is the link between an application and
TCF. Each application and TCF set fields in the UCE that indicate specific
actions to be taken.

The record layout of the UCE is presented below.

Note: Be sure to copy version 2 of the
UNIVERSAL-COMMUNICATIONS-ELEMENT. Depending on the
language, you may need to define a synonym with a shorter name.

E-4 CA-IDMS Navigational DML Programming

E.2 Overview of TCF

�1 UNIVERSAL-COMM-ELEMENT.

 �3 UCE-IDENT-�2 PIC XXXX.

 �3 UCE-DBNAME-�2 PIC X(8).

 �3 UCE-NODE-NAME-�2 PIC X(8).

 �3 UCE-DICT-NAME-�2 PIC X(8).

 �3 UCE-DICT-NODE-�2 PIC X(8).

 �3 UCE-SCHEMA-NAME-�2 PIC X(8).

 �3 UCE-SCHEMA-VER-�2 PIC 9999 USAGE COMP.

 �3 UCE-SUBSCHEMA-NAME-�2 PIC X(8).

 �3 UCE-SUBSCHEMA-VER-�2 PIC 9999 USAGE COMP.

 �3 UCE-INPUT-POINTER-�2 PIC S9(8) USAGE COMP.

 �3 UCE-INPUT-LENGTH-�2 PIC S9(8) USAGE COMP.

 �3 UCE-OUTPUT-POINTER-�2 PIC S9(8) USAGE COMP.

 �3 UCE-OUTPUT-LENGTH-�2 PIC S9(8) USAGE COMP.

�3 UCE-ENTITY-OCCURRENCE-�2 PIC X(32).

�3 UCE-ENTITY-OCCUR-VER-�2 PIC 9999 USAGE COMP.

 �3 FILLER PIC XX.

 �3 UCE-ACTION-CODE-�2 PIC XXXX.

 �3 UCE-RETURN-CODE-�2 PIC S9(8) USAGE COMP.

 �3 UCE-MSG-CODE-�2 PIC 9(7) USAGE COMP-3.

�3 UCE-MSG-TEXT-POINTER-�2 PIC S9(8) USAGE COMP.

 �3 FILLER PIC X(32).

�3 UCE-SYS-INIT-TIME-�2 PIC S9(8) USAGE COMP. DO NOT MODIFY
�3 UCE-FROM-TASK-�2 PIC X(8). DO NOT MODIFY
�3 UCE-ACTIVE-TASK-�2 PIC X(8). DO NOT MODIFY
�3 UCE-NEXT-TASK-�2 PIC X(8). DO NOT MODIFY
�3 UCE-ENTRY-TASK-�2 PIC X(8). DO NOT MODIFY
�3 UCE-PT-LIST-POINTER-�2 PIC S9(8) USAGE COMP. DO NOT MODIFY
�3 UCE-NBR-TASKS-�2 PIC S9999 USAGE COMP. DO NOT MODIFY
�3 UCE-NBR-SESSIONS-�2 PIC S9999 USAGE COMP. DO NOT MODIFY
�3 UCE-QUEUE-ID-�2 PIC S9(8) USAGE COMP. DO NOT MODIFY

 �3 UCE-SESSION-DESCR-�2 PIC X(16).

 �3 UCE-CURR-TASK-FLAG-�2 PIC X.

88 UCE-SUSPEND-�2 VALUE 'S'.

 88 UCE-END-�2 VALUE 'O'.

88 UCE-CONVERSE-�2 VALUE 'P'.

 �3 UCE-NEXT-TASK-FLAG-�2 PIC X.

 88 UCE-NEW-�2 VALUE 'N'.

88 UCE-RESUME-�2 VALUE 'O'.

■ Your program is responsible for saving its own variable storage in the form of a
queue or a scratch record when performing suspend processing. Suspend
processing can be either implicit or explicit:

– A TCF user implicitly suspends an application by switching to another TCF
application.

– A TCF user explicitly suspends an application by issuing a SUSPEND
command.

Additionally, a TCF user can suspend an entire TCF session by issuing a
SWITCH SUSPEND command.

Appendix E. Running a Program Under TCF E-5

E.3 Defining a TCF task to the DC system

E.3 Defining a TCF task to the DC system

To make your task eligible to run under TCF, you need to use the system generation
TASK statement to define the task code that invokes your program under TCF.
Include the following parameters:

■ TCF TASK IS TCF — Enables your task to run under TCF

■ PRODUCT CODE IS — Identifies a generic TCF task code for your task

For example:

TASK EMPTSKT INVOKES EMPPRG INPUT SAVE

TCF TASK IS TCF

PRODUCT CODE IS EMPTSK.

TCF tasks must be defined at system generation; they cannot be defined dynamically.

�� For more information about system generation, refer to CA-IDMS System
Generation.

E-6 CA-IDMS Navigational DML Programming

E.4 Using the UCE for communication under TCF

E.4 Using the UCE for communication under TCF

You use fields in the UCE:

■ To communicate with TCF

■ To communicate with other applications running under TCF

Communicating with TCF: When your program begins, it checks certain UCE
fields to determine invocation conditions. You perform processing based on how your
program is invoked.

When your program ends, it sets UCE fields to tell TCF what to do next; for example,
whether to switch to another application, perform a pseudoconverse, suspend the TCF
session, or end the TCF session.

Use the following fields in the UCE to communicate with TCF:

■ UCE-IDENT-02 indicates whether your program is currently running under TCF.
If it is, this field is equal to the value UMBR.

■ UCE-SESSION-DESCR-02 is used as a queue or scratch record ID. Use this ID
to retrieve the variable storage from your application's previously suspended TCF
session.

■ UCE-NEXT-TASK-02 specifies the task to which TCF should switch.

■ UCE-CURR-TASK-FLAG-02 is the flag you set to indicate to TCF whether to
suspend a session, end a session, or begin a pseudoconverse.

■ UCE-NEXT-TASK-FLAG-02 is the flag you set to indicate to TCF and to other
applications whether to begin a new session or restart an old session.

■ UCE-MSG-CODE-02, UCE-RETURN-CODE-02, and
UCE-MSG-TEXT-POINTER-02 are used to process errors under TCF.

Communicating with other applications: You can pass data to and receive data
from other applications that run under TCF. For example, you could pass a schema
name, a subschema name, syntax, or input parameters.

The UCE provides different fields for different kinds of data:

■ To pass a schema name, use the UCE-SCHEMA-NAME-02 field. Optionally,
include a version number by using the UCE-SCHEMA-VER-02 field.

■ To pass a subschema name, use the UCE-SUBSCHEMA-NAME-02 field.
Optionally, include a version number by using the UCE-SUBSCHEMA-VER-02
field.

■ To pass large amounts of data (33 bytes or more), use the
UCE-INPUT-POINTER-02 field. UCE-INPUT-LENGTH-02 specifies the input
data length.

Appendix E. Running a Program Under TCF E-7

E.4 Using the UCE for communication under TCF

You can also use the UCE-OUTPUT-POINTER-02 field.
UCE-OUTPUT-LENGTH-02 specifies the output data length.

■ To pass small amounts of data (32 bytes or less), use the
UCE-ENTITY-OCCURRENCE-02 field. In some situations, you may need to
include a version number by using the UCE-ENTITY-OCCUR-VER-02 field.

E-8 CA-IDMS Navigational DML Programming

E.5 Determining if TCF is active

E.5 Determining if TCF is active

If TCF has invoked the task, the UCE-IDENT-02 field contains the literal UMBR. If
UMBR is not present, the session was not invoked by TCF.

COBOL example: For example, in COBOL:

PROCEDURE DIVISION USING UNIVERSAL-COMM-ELEMENT.

IF UCE-IDENT-�2 NOT = 'UMBR'

THEN GO TO A1��-NON-TCF-SESSION.

Assembler example: Assembler programs check register 1 to determine if they are
being invoked under TCF. Register 1 points to a one-entry parameter list that points
to the UCE. If TCF has invoked the task, the first four bytes of the UCE contain the
literal UMBR. For example:

 LTR R1,R1 UNDER TCF?

BZ NONTCF NO, GO ON

 L R2,�(R1) MAYBE

CLC �(4,R2),=CL4'UMBR' CHECK FOR 'UMBR'

BNE NONTCF NO, GO ON

+ ��� TCF PROCESSING ���

Appendix E. Running a Program Under TCF E-9

E.6 Starting a new session

E.6 Starting a new session

To start a new session under TCF, perform the following steps:

1. Check the following fields for data:

■ UCE-INPUT-POINTER-02 typically points to syntax to be used to start a new
session of your application. To determine the data length, refer to
UCE-INPUT-LENGTH-02.

■ UCE-ENTITY-OCCURRENCE-02 contains an entity name to be used to start
a new session of your application. To determine the version number, refer to
UCE-ENTITY-OCCUR-VER-02.

If either of these fields contains data, you should start a new session as specified
by the passed data.

2. Check the UCE-NEXT-TASK-FLAG-02 field and perform processing as follows:

■ If N (new) is specified, you should start a new session using the DBNAME
and NODENAME fields from the UCE.

■ If O (old) is specified, you should resume the previously suspended session as
explained in E.7, “Resuming a suspended session” on page E-11 later in this
section.

3. Perform processing, as required.

4. When processing is complete, move 'P' (pseudoconverse) to
UCE-CURR-TASK-FLAG-02 to indicate to TCF that a pseudoconverse is to take
place.

5. Issue a DC RETURN statement.

E-10 CA-IDMS Navigational DML Programming

E.7 Resuming a suspended session

E.7 Resuming a suspended session

To resume a previously suspended session, perform the following steps:

1. Use the session descriptor (UCE-SESSION-DESCR-02) as the queue or scratch ID
to retrieve the variable storage needed to resume the session. If the storage area
cannot be found, perform the following steps:

a. Move +4 to UCE-RETURN-CODE-02.

b. Issue a DC RETURN statement.

This returns control to TCF and displays an error message on the TCF Error
Message screen.

2. Perform processing, as required.

3. When processing is complete, move 'P' (pseudoconverse) to
UCE-CURR-TASK-FLAG-02 to indicate to TCF that a pseudoconverse is to take
place.

4. Issue a DC RETURN statement.

Appendix E. Running a Program Under TCF E-11

E.8 Processing a pseudoconverse

E.8 Processing a pseudoconverse

At the beginning of a pseudoconverse, you should check a user-defined map field for
the following:

1. Does the TCF user want to suspend the session?

2. Does the TCF user want to quit the session?

3. Does the TCF user want to switch to another application that runs under TCF?

If none of the above is specified, you should perform processing, as required.

 E.8.1 Suspend processing

If the TCF user wants to suspend a session, perform the following steps:

1. Move the name of the session descriptor to UCE-SESSION-DESCR-02.

2. Save program variable storage as either a scratch or a queue record using the
session descriptor as the scratch or queue ID.

3. Move 'S' (suspend) to UCE-CURR-TASK-FLAG-02.

4. Issue a DC RETURN statement.

 E.8.2 End processing

If the TCF user wants to end a session, perform the following steps:

1. Move 'O' (off) to UCE-CURR-TASK-FLAG-02.

2. Issue a DC RETURN statement.

 E.8.3 Switch processing

If the TCF user issues any form of the SWITCH command, perform the following
steps:

1. Move the name of the session descriptor to UCE-SESSION-DESCR-02.

2. Save program variable storage as either a scratch or a queue record using the
site-standard session descriptor as the scratch or queue ID.

3. Perform the following steps:

■ If no task code or product code is specified, move spaces to
UCE-NEXT-TASK-02.

■ If a task code or product code is specified, move that code to
UCE-NEXT-TASK-02.

If the TCF user specifies the NEW option of the SWITCH command, move
'N' (new) to UCE-NEXT-TASK-FLAG-02; otherwise move 'O' (old) to
UCE-NEXT-TASK-FLAG-02.

E-12 CA-IDMS Navigational DML Programming

E.8 Processing a pseudoconverse

Note: If the TCF user specifies new, you may need to pass data to the
switched-to task using either the UCE-INPUT-POINTER-02 or
UCE-ENTITY-OCCURRENCE-02 fields in the UCE or some other
site-standard convention.

4. Issue a DC RETURN statement.

Appendix E. Running a Program Under TCF E-13

E.9 Displaying error messages

E.9 Displaying error messages

At times, you may want to intentionally abend your task by issuing a WRITE LOG
statement with a given severity code. To do this under a TCF, perform the following
steps:

1. Move the message number to UCE-MSG-CODE-02.

2. Move -1 to UCE-RETURN-CODE-02.

3. Issue a GET STORAGE statement to acquire the storage that is to contain the
message text.

4. Issue a WRITE LOG statement. Include the RETURN TEXT option and specify
the previously acquired storage.

5. Move the address of the message text into UCE-MSG-TEXT-POINTER-02.

Note: COBOL programs can do this by calling an Assembler subroutine.

6. Issue a DC RETURN statement.

This returns control to TCF and displays the error message on the TCF Error Message
screen.

E-14 CA-IDMS Navigational DML Programming

E.10 Sample application under TCF

E.10 Sample application under TCF

The program below performs processing that enables it to run under TCF.

This program checks TCF-related fields in the UCE and performs TCF processing
before performing any application-specific processing.

 WORKING-STORAGE SECTION.

 �1 WS-START PIC X(1�) VALUE '�WS START�'.

 �1 USER-IDENT.

 �5 USER-ID-FIRST-EIGHT PIC X(8).

 �5 USER-ID-REST PIC X(24).

 �1 TASK-ID PIC X(8).

 �1 SESSION-DESC-WORK.

 �5 SDW-1 PIC X(8).

 �5 SDW-2 PIC X(8).

Appendix E. Running a Program Under TCF E-15

E.10 Sample application under TCF

 �1 TCF-REC.

 �2 TCF-REC-COMMLINE PIC X(7).

88 SUS-COMMAND VALUE 'SUS'

'SUSP' 'SUSPE' 'SUSPEN'

 'SUSPEND'.

88 BYE-COMMAND VALUE 'BYE'

'QUIT' 'QUI' 'END'.

88 SWITCH-COMMAND VALUE 'SWI'

'SWIT' 'SWITC' 'SWITCH'.

�2 TCF-REC-QUIT PIC X VALUE '_'.

�2 TCF-REC-SUSPEND PIC X VALUE '_'.

�2 TCF-REC-SWITCH PIC X VALUE '_'.

�2 TCF-REC-HELP PIC X VALUE '_'.

 �2 TCF-REC-SWI-TASK PIC X(8).

 �2 TCF-REC-OLDNEW PIC X.

88 SWI-OLD VALUE 'O'.

88 SWI-NEW VALUE 'N'.

 �1 DATA-REC.

�2 DATA-REC-FIELD1 PIC X VALUE '_'.

�2 DATA-REC-FIELD2 PIC X VALUE '_'.

�2 DATA-REC-FIELD3 PIC X VALUE '_'.

�2 DATA-REC-FIELD4 PIC X VALUE '_'.

 �1 WS-END PIC X(8) VALUE '�WS END�'.

 LINKAGE SECTION.

 �1 COPY IDMS UNIVERSAL-COMM-ELEMENT VERSION 2.

 �1 UNIVERSAL-COMM-ELEMENT.

 �3 UCE-IDENT-�2 PIC XXXX.

 �3 UCE-DBNAME-�2 PIC X(8).

 �3 UCE-NODE-NAME-�2 PIC X(8).

 �3 UCE-DICT-NAME-�2 PIC X(8).

 �3 UCE-DICT-NODE-�2 PIC X(8).

 �3 UCE-SCHEMA-NAME-�2 PIC X(8).

 �3 UCE-SCHEMA-VER-�2 PIC 9999 USAGE COMP.

�3 UCE-SUBSCHEMA-NAME-�2 PIC X(8).

 �3 UCE-SUBSCHEMA-VER-�2 PIC 9999 USAGE COMP.

 �3 UCE-INPUT-POINTER-�2 PIC S9(8) USAGE COMP.

 �3 UCE-INPUT-LENGTH-�2 PIC S9(8) USAGE COMP.

�3 UCE-OUTPUT-POINTER-�2 PIC S9(8) USAGE COMP.

 �3 UCE-OUTPUT-LENGTH-�2 PIC S9(8) USAGE COMP.

 �3 UCE-ENTITY-OCCURRENCE-�2

 PIC X(32).

 �3 UCE-ENTITY-OCCUR-VER-�2

 PIC 9999 USAGE COMP.

 �3 FILLER PIC XX.

 �3 UCE-ACTION-CODE-�2 PIC XXXX.

 �3 UCE-RETURN-CODE-�2 PIC S9(8) USAGE COMP.

 �3 UCE-MSG-CODE-�2 PIC 9(7) USAGE COMP-3.

 �3 UCE-MSG-TEXT-POINTER-�2

 PIC S9(8) USAGE COMP.

E-16 CA-IDMS Navigational DML Programming

E.10 Sample application under TCF

 �3 FILLER PIC X(32).

 �3 UCE-SYS-INIT-TIME-�2 PIC S9(8) USAGE COMP.

 �3 UCE-FROM-TASK-�2 PIC X(8).

 �3 UCE-ACTIVE-TASK-�2 PIC X(8).

 �3 UCE-NEXT-TASK-�2 PIC X(8).

 �3 UCE-ENTRY-TASK-�2 PIC X(8).

�3 UCE-PT-LIST-POINTER-�2 PIC S9(8) USAGE COMP.

 �3 UCE-NBR-TASKS-�2 PIC S9999 USAGE COMP.

 �3 UCE-NBR-SESSIONS-�2 PIC S9999 USAGE COMP.

 �3 UCE-QUEUE-ID-�2 PIC S9(8)

 USAGE COMP.

 �3 UCE-SESSION-DESCR-�2 PIC X(16).

�3 UCE-CURR-TASK-FLAG-�2 PIC X.

88 UCE-SUSPEND-�2 VALUE 'S'.

88 UCE-END-�2 VALUE 'O'.

88 UCE-CONVERSE-�2 VALUE 'P'.

�3 UCE-NEXT-TASK-FLAG-�2 PIC X.

88 UCE-NEW-�2 VALUE 'N'.

88 UCE-RESUME-�2 VALUE 'O'.

 PROCEDURE DIVISION USING UNIVERSAL-COMM-ELEMENT.

 MAIN-LINE.

��� CHECK FOR TCF SESSION

IF UCE-IDENT-�2 NOT = 'UMBR'

THEN GO TO C1��-SESSION.

��� MOST LIKELY PSEUDO-CONV

 IF UCE-CONVERSE-�2

THEN GO TO A1��-PSEUDOCONVERSE.

��� NOT PCONV, DATA SENT?

IF UCE-INPUT-POINTER-�2 NOT = � OR

UCE-ENTITY-OCCURRENCE-�2 NOT = SPACES

 THEN

GO TO A1��-START-WITH-DATA.

��� NEW SESSION SPECIFIED?

 IF UCE-NEW-�2

THEN GO TO A1��-START-NEW-SESSION

��� ELSE DEFAULT TO OLD

 ELSE

GO TO A1��-START-OLD-SESSION.

 A1��-PSEUDOCONVERSE.

BIND MAP TCFMAP�1.

BIND MAP TCFMAP�1 RECORD TCF-REC.

BIND MAP TCFMAP�1 RECORD DATA-REC.

ACCEPT USER ID INTO USER-IDENT.

ACCEPT TASK ID INTO TASK-ID.

��� MENU OR COMMAND-LINE SUSPEND

IF (TCF-REC-SUSPEND NOT = '_')

 OR SUS-COMMAND

 THEN

MOVE USER-ID-FIRST-EIGHT TO SDW-1.

 MOVE TASK-ID TO SDW-2.

 MOVE SESSION-DESC-WORK TO UCE-SESSION-DESCR-�2.

��� USE SESS-DESCRIPTOR FOR QID

 PERFORM U1��-SAVE-STORAGE

MOVE 'S' TO UCE-CURR-TASK-FLAG-�2

 DC RETURN.

Appendix E. Running a Program Under TCF E-17

E.10 Sample application under TCF

��� MENU OR COMMAND-LINE QUIT

IF (TCF-REC-QUIT NOT = '_')

 OR BYE-COMMAND

 THEN

MOVE 'O' TO UCE-CURR-TASK-FLAG-�2

 DC RETURN.

��� MENU OR COMMAND-LINE SWITCH

IF (TCF-REC-SWI-TASK NOT = SPACES)

 OR SWITCH-COMMAND

 THEN

 PERFORM B1��-SWITCH

 ELSE

MOVE 'P' TO UCE-CURR-TASK-FLAG-�2

GO TO C1��-SESSION.

�

 A1��-START-WITH-DATA.

��� START SESSION USING THE DATA PASSED IN ���

��� UCE-INPUT-POINTER-�2 OR UCE-ENTITY-OCCURRENCE-�2 ���

�

 A1��-START-NEW-SESSION.

��� START A NEW SESSION, MOVE 'P' ���

��� TO UCE-CURR-TASK-FLAG-�2 ���

�

 A1��-START-OLD-SESSION.

��� RESTART OLD SESSION, GET PREVIOUS VARIABLE ���

��� STORAGE FROM SCRATCH OR QUEUE AND MOVE 'P' ���

��� TO UCE-CURR-TASK-FLAG-�2. ���

��� IF UCE-SESSION-DESCR-�2 IS EMPTY, OR IF ���

��� GET QUEUE/SCRATCH FAILS, MOVE +4 TO ���

��� UCE-RETURN-CODE-�2 AND ISSUE A DC RETURN ���

�

IF UCE-SESSION-DESCR-�2 = SPACES

MOVE +4 TO UCE-RETURN-CODE-�2

 DC RETURN.

GET QUEUE ID UCE-SESSION-DESCR-�2

 FROM WS-START

 TO WS-END

 RETENTION 7

 ON ANY-ERROR-STATUS

MOVE +4 TO UCE-RETURN-CODE-�2

 DC RETURN.

MOVE 'P' TO UCE-CURR-TASK-FLAG-�2.

GO TO C1��-SESSION.

E-18 CA-IDMS Navigational DML Programming

E.10 Sample application under TCF

�

 B1��-SWITCH.

MOVE USER-ID-FIRST-EIGHT TO SDW-1.

 MOVE TASK-ID TO SDW-2.

 MOVE SESSION-DESC-WORK TO UCE-SESSION-DESCR-�2.

� USE SESS-DESCRIPTOR FOR QID

 PERFORM U1��-SAVE-STORAGE.

IF TCF-REC-SWI-TASK = SPACES

THEN MOVE SPACES TO UCE-NEXT-TASK-�2

 DC RETURN.

MOVE TCF-REC-SWI-TASK TO UCE-NEXT-TASK-�2.

IF SWI-NEW THEN

MOVE 'N' TO UCE-NEXT-TASK-FLAG-�2

 ELSE

MOVE 'O' TO UCE-NEXT-TASK-FLAG-�2.

 DC RETURN.

�

 C1��-SESSION.

��� PROGRAM PROCESSING ���

�

 U1��-SAVE-STORAGE.

��� SAVE WORKING STORAGE FROM WS-START TO WS-END ���

��� IN THIS EXAMPLE, ITS A QUEUE RECORD ���

PUT QUEUE ID UCE-SESSION-DESCR-�2

 FROM WS-START

 TO WS-END

 RETENTION 7.

 IDMS-ABORT.

 IDMS-ABORT-EXIT.

 EXIT.

COPY IDMS IDMS-STATUS.

Appendix E. Running a Program Under TCF E-19

E-20 CA-IDMS Navigational DML Programming

Appendix F. Calls to IDMSIN01

F.1 About IDMSIN01 . F-3

Appendix F. Calls to IDMSIN01 F-1

F-2 CA-IDMS Navigational DML Programming

F.1 About IDMSIN01

 F.1 About IDMSIN01

IDMSIN01 is an entry point to the IDMS module that provides various IDMS
functions to user programs, including:

■ Deactivate the DML trace

■ Reactivate the DML trace

■ Retrieve 'GETPROF' user profile information

■ Establish 'SETPROF' user profile information

■ Translate an internal 8 byte DATETIME stamp to displayable form

■ Return current DATE and TIME in a displayable form

Note: IDMSIN01 cannot be called from a system mode program such as user exits.

How to call IDMSIN01: You use standard calling conventions to call IDMSIN01.
The first two parameters passed are the address of an RPB block and the address of
the function REQUEST-CODE and RETURN-CODE fields.

Calls to IDMSIN01 for the functions listed above are shown in this example:

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 RPB.

 �2 FILLER PIC X(36).

 �1 REQ-WK.

�2 REQUEST-CODE PIC S9(8) COMP.

�2 REQUEST-RETURN PIC S9(8) COMP.

 �1 WORK-FIELDS.

�2 WK-DTS-FORMAT PIC S9(8) COMP VALUE �.

 �2 WK-CDTS PIC X(26).

 �2 WK-KEYWD PIC X(8).

 �2 WK-VALUE PIC X(32).

 �2 WK-DBNAME PIC X(8).

 �1 USER-WORK-DATA.

 �2 WK-SCHEMA PIC X(18).

 �2 WK-CUSER PIC X(18).

 �2 WK-DTS PIC X(8).

Appendix F. Calls to IDMSIN01 F-3

F.1 About IDMSIN01

���

 PROCEDURE DIVISION.

���

���

� Call IDMSIN�1 to deactivate the DML trace

� which was originally activated by the corresponding

� SYSIDMS parm (DMLTRACE=ON).

�

� Parm 1 is the address of the RPB.

� Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.

���

MOVE 1 TO REQUEST-CODE

CALL 'IDMSIN�1' USING RPB REQ-WK.

���

� Call IDMSIN�1 to reactivate the DML trace

� which was originally activated by the corresponding

� SYSIDMS parm (DMLTRACE=ON), which had been previously

� deactivated earlier on in this job.

�

� Parm 1 is the address of the RPB.

� Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.

���

MOVE � TO REQUEST-CODE

CALL 'IDMSIN�1' USING RPB REQ-WK.

���

� Call IDMSIN�1 to request a 'GETPROF' to get the user

� profile default DBNAME, which was established by the

� SYSIDMS parm DBNAME=xxxxxxxx when running 'Mini CV', or

� by the DCUF SET DBNAME xxxxxxxx when running under CV.

�

� Parm 1 is the address of the RPB.

� Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.

� Parm 3 is the address of the 8 byte GETPROF keyword.

� Parm 4 is the address of the 32 byte GETPROF returned value.

���

MOVE 2 TO REQUEST-CODE

MOVE 'DBNAME' TO WK-KEYWD

CALL 'IDMSIN�1' USING RPB REQ-WK WK-KEYWD

 WK-VALUE.

MOVE WK-VALUE TO WK-DBNAME.

IF WK-DBNAME = SPACES

DISPLAY 'DBNAME is set to BLANKS'

 ELSE

DISPLAY 'DBNAME is set to ' WK-DBNAME.

F-4 CA-IDMS Navigational DML Programming

F.1 About IDMSIN01

���

� Call IDMSIN�1 to request a 'SETPROF' to set the user

� profile default SCHEMA to the value 'SYSTEM'.

�

� Parm 1 is the address of the RPB.

� Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.

� Parm 3 is the address of the 8 byte SETPROF keyword.

� Parm 4 is the address of the 32 byte SETPROF value.

���

MOVE 3 TO REQUEST-CODE

MOVE 'SCHEMA' TO WK-KEYWD

MOVE 'SYSTEM' TO WK-VALUE

CALL 'IDMSIN�1' USING RPB REQ-WK WK-KEYWD

 WK-VALUE.

IF REQUEST-RETURN NOT = �

DISPLAY 'SETPROF returned error ' REQUEST-RETURN.

���

� Call IDMSIN�1 to have an 8 byte internal DATETIME stamp

� returned as a displayable 26 character DATE/TIME display.

�

� Parm 1 is the address of the RPB.

� Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.

� Parm 3 is the address of the 4 byte format indicator (�'s).

� Parm 4 is the address of the 8 byte internal DATETIME stamp.

� Parm 5 is the address of the 26 byte DATE/TIME returned.

���

MOVE 5 TO REQUEST-CODE

MOVE 'UNKNOWN' TO WK-CDTS

CALL 'IDMSIN�1' USING RPB REQ-WK

WK-DTS-FORMAT WK-DTS WK-CDTS

DISPLAY WK-SCHEMA ' ' WK-CUSER ' ' WK-CDTS.

���

� Call IDMSIN�1 to have the current DATE and TIME

� returned as a displayable 26 character DATE/TIME display.

�

� Parm 1 is the address of the RPB.

� Parm 2 is the address of the REQUEST-CODE and RETURN-CODE.

� Parm 3 is the address of the 4 byte format indicator (1).

� Parm 4 is the address of the 26 byte DATE/TIME returned.

���

MOVE 5 TO REQUEST-CODE

MOVE 1 TO WK-DTS-FORMAT

CALL 'IDMSIN�1' USING SQLRPB REQ-WK

 WK-DTS-FORMAT WK-CDTS

DISPLAY 'THE DATE AND TIME IS -─� ' WK-CDTS.

Appendix F. Calls to IDMSIN01 F-5

F-6 CA-IDMS Navigational DML Programming

Appendix G. 10.2 Services Batch Interface

G.1 About the 10.2 services batch interface . G-3

Appendix G. 10.2 Services Batch Interface G-1

G-2 CA-IDMS Navigational DML Programming

G.1 About the 10.2 services batch interface

Batch programs that require CA-IDMS 10.2 services only can use the optional 10.2
services batch interface to access a later release.

Since only 10.2 features are available through this interface, later release features such
as SYSIDMS parameters and SQL access are not supported through this interface.

This appendix describes the requirements for using the 10.2 services batch interface.

CA-IDMS installation: The 10.2 services batch interface requires two load modules
supplied on the CA-IDMS installation tape:

 ■ IDML

 ■ IDMSB102

Usage: To use the 10.2 services batch interface, the following conditions must be
met:

■ The batch job JCL includes a steplib that contains IDMSB102

■ The batch program is linked with either IDMS (Release 10.2) or IDML

■ If the batch program has been relinked with a later version of the IDMS module,
it must be relinked with either the 10.2 IDMS module or the IDML module

Note: A link with IDMSINTB is supported for upward compatibility but is
neither required nor recommended for using the 10.2 batch services
interface.

■ DBNAME must be specified. Since SYSIDMS parameters are not supported
through this interface, you can do one of the following:

– Modify the BIND RUN-UNIT statements in the program to specify the
DBNAME parameter; for example:

BIND RUN-UNIT DBNAME EMPDEMO.

– Update the DBTABLE within the central version to utilize subschema
mapping and default dbname parameters; for example:

DBNAME �DEFAULT

SUBSCHEMA EMPSS?? MAPS TO EMPSS?? USING DBNAME EMPDEMO;

�� For more information about updating the DBTABLE, refer to CA-IDMS
Database Administration.

Batch execution considerations: Be aware of these considerations when
preparing a program to use one of the batch interfaces:

■ If the batch program is linked with either IDMS (Release 10.2) or IDML, and
IDMSB102 is in a batch program JCL steplib, the 10.2 services batch interface
will always be used.

Appendix G. 10.2 Services Batch Interface G-3

G.1 About the 10.2 services batch interface

■ If the batch program is linked with any later version of the IDMS module, the
10.2 services batch interface will never be used, even if IDMSB102 is in a batch
program JCL steplib.

■ To use a later versions of the batch interface with an existing 10.2 program, be
sure that IDMSB102 is not in a batch program JCL steplib.

■ If the COBOL program has been compiled with the DYNAM option, you must
rename the IDML module to IDMS and place it in a separate library. This library
must be the first library after the STEPLIB concatenation.

■ If signon security is in effect, a valid user ID must be provided for the batch user
exit BTCIDXIT, which allows specification of the user ID to be checked by
security. A sample BTCIDXIT may be found in the distribution source library.

G-4 CA-IDMS Navigational DML Programming

 Index

A
ABEND 9-37
abend control element 12-9
ACCEPT (DC) 9-9—9-10
ACCEPT statements

BIND ADDRESS 4-30
DATABASE-STATISTICS 2-30—2-31
db-key 4-24—4-28
general discussion 4-24
page information 4-28
PROCEDURE CONTROL

LOCATION 10-10—10-11
access modes 2-17
access restrictions 2-8—2-9
ACE

See abend control element
AID 6-6, 7-8, 7-9, 9-5, 10-7

definition 6-6
area

database pages 2-5—2-6
general discussion 2-5

area locks 2-13, 2-17
area sweep 4-10—4-12, 4-15
Assembler B-3

batch error checking B-3
DC error checking B-3—B-4

asynchronous 10-6
attention identifier key

See AID
attribute byte 7-6

definition 7-5
attributes 11-6
automatic editing

See online mapping, automatic editing
automatic set membership 3-11, 4-35
AUTOSTATUS 6-12

B
BAL

See Assembler
basic mode 10-6—10-8
batch execution 11-6, G-3
batch mapping compiler 7-4
batch, 10.2 services batch interface G-4
batch, 10.22 services batch interface G-3

bill of materials 5-6
retrieving 5-8—5-10
storing 5-6—5-7

BIND MAP 2-28
BIND MAP RECORD 2-28
BIND PROCEDURE 10-9—10-10
BIND RECORD 2-26
BIND RUN-UNIT 2-25—2-26, G-3
BIND RUN-UNIT statement 2-29
BIND RUN_UNIT 11-6
BIND statements

BIND MAP 2-28
BIND MAP RECORD 2-28
BIND PROCEDURE 10-9—10-10
BIND RECORD 2-26
BIND RUN-UNIT 2-25—2-26
BIND TASK C-3
COPY IDMS SUBSCHEMA-BINDS 2-27

BL
See base locator

BLL
See base locator for linkage

BTCIDXIT user exit G-4
buffers 2-4

C
CA-ADS 10-4—10-5

See also CA-ADS
CA-OLQ 12-6
CALC 3-5

See also FIND/OBTAIN statements, CALC
central version 11-5, 11-6

access modes 2-17
area locks 2-17
concurrent area use 2-19
database name table 11-7
definition 1-4
implicit record locks 2-19

chained sets
See sets, chained

CHANGE PRIORITY 9-34
CHECK TERMINAL 10-8
checkpoints 2-20
clist

See command list
clustering 3-6

Index X-1

COBOL
IDMS-STATUS for BATCH 2-33
IDMS-STATUS for DC 6-12
VS COBOL II D-3

command list 11-10
COMMIT

frequency of use 2-22
TASK 8-24, C-3
variable-length records 3-5

common errors
See error checking

common system area 12-10
common work area 8-11
communications blocks

DC 6-11—6-12
general discussion 2-29
IDMS 2-32—3-30

compiler directives
COPY IDMS 2-25
operating modes 2-24
subschema 2-24

compiling 11-4
CONNECT 4-44—4-45
connect options

See sets, membership options
control statements

BIND/READY/FINISH 2-25—2-28
COMMIT 2-20
ROLLBACK 2-29

conversational programming 6-6
COPY IDMS SUBSCHEMA-BINDS 2-27
CSA

See common system area
currency 3-22—3-26

general discussion 2-30
queue records, in 8-23
scratch records, in 8-17

CWA
See common work area

D
data description language (DDL) 2-4
data integrity

See locks
data structure diagram 3-20—3-21

sample 3-20
database administrator

database description 2-4
database key 3-22, 3-29, 8-27

retrieving records 4-15—4-18

database key (continued)
saving 4-24—4-28
update example 7-27

database keys 2-11
database name table 11-7
database pages 2-5—2-6
database procedures 10-9—10-11

ACCEPT PROCEDURE CONTROL
LOCATION 10-10—10-11

BIND PROCEDURE 10-9—10-10
database retrieval

See retrieval statements
database statistics 2-30—2-31
date F-3—F-5

See also DC, current time and date
DB programming

See navigational DML programming
db-key

See database key
db-key deadlocks
DBNAME 11-6
DC

abend processing 9-37—9-40
as an operating system 6-4
Assembler considerations B-3—B-4
communications block 6-11—6-12
current time and date 9-21—9-22
data integrity 9-11—9-17
DC-BATCH C-3—C-4
error handling 6-10
event control blocks 9-41
journal file 9-23—9-24
messages 9-28—9-30
modifying task priority 9-34
nonterminal tasks 9-35—9-36
programming techniques 9-3—9-41
pseudoconversational programming 6-6
response time 6-9
statistics 9-25—9-27
table management 9-18—9-20
task priority 9-34
task-related information 9-9—9-10
tasks 6-5
terminal management 7-3—7-33, 10-6—10-8
transactions 6-5
writing to a printer 9-31—9-32

DC printer
See WRITE PRINTER

DC RETURN 6-6, 9-5
DC-BATCH 2-29, 8-22, 9-36, C-3—C-4

X-2 CA-IDMS Navigational DML Programming

DCE
See dispatch control element

DCMT
VARY DYNAMIC PROGRAM 9-18, 11-10—11-11
VARY DYNAMIC TASK 11-10—11-11
VARY PROGRAM NEW COPY 11-10
VARY QUEUE 8-23

DCUF
SET DBNAME 11-9
SET DICTNAME 11-11
TEST 11-11

DCUF statements 11-6
DDL

See data description language (DDL)
DDLDCMSG 9-28
DDLDCRUN 8-22
DDLDCSCR 8-15
deadlock prevention 10-13
debugging 12-3—12-13

CA-OLQ menu facility 12-6
dump reading 12-7—12-11
error checking 12-12—12-13
PL/I A-5—A-8
using the trace facility 12-4

device-media control language (DMCL) 2-4
dialog

See CA-ADS
dictionary name 2-29
dictionary node 2-29
DICTNAME 11-6
DIRECT location mode

storing 4-35
with FIND/OBTAIN DB-KEY 4-15—4-18

DISCONNECT 4-45—4-47
disconnect options

See sets, membership options
dispatch control element 12-10
DMCL

See device-media control language (DMCL)
DML trace facility

See trace facility
DMLTRACE F-3—F-5

See also trace facility
dump reading 12-7—12-11
duplicates option

See records, duplicates option
dynamic program definition 11-10
dynamic task definition 11-10

E
ECB

See event control block
ERASE 4-15, 4-39—4-44
error checking 12-12—12-13
error handling 6-10

See also INQUIRE MAP
error messages

for maps 7-13
suppressing display of 7-13

establishing communications 2-24—2-28
event control block 9-41, 10-8
extended architecture

See XA considerations
extended run unit

See CA-ADS

F
FIND/OBTAIN statements

CALC 4-4—4-5
CURRENT 4-14—4-15
general discussion 4-4
OWNER 4-12—4-14
USING DB-KEY 4-15—4-18
WITHIN AREA 4-10—4-12
WITHIN SET 4-5—4-6
WITHIN SET USING SORT KEY 4-6—4-10

FINISH 2-26
TASK C-4

fragments 4-21

G
generic key searches 4-9
generic-key search 4-20
GET 4-21—4-23
GET TIME 9-21—9-22

I
I

See sets, linkage
identical data

testing for 7-14
IDML load module G-3
IDMS communications block 2-32—2-33, 6-11—6-12

when used 2-29
IDMS statistics block 2-23
IDMS-STATUS

explanation 2-32

Index X-3

IDMS-STATUS (continued)
figure (batch) 2-33
figure (DC) 6-12
under DC 6-11

IDMSB102 load module G-3
IDMSIN01 F-3—F-5
IDMSIN01 entry point 11-6, 12-5
IDMSRPTS utility

general discussion 2-9—2-10
sample JCL 2-10

IF 4-31—4-34
IF EMPTY 4-31—4-32
IF MEMBER 4-32—4-34

indexed sets 3-8, 3-9
See also sets, indexed
retrieval commands 4-18—4-19

INQUIRE MAP 7-8—7-11
INQUIRE MAP statement

DIFFERENT parameter 7-14
IDENTICAL parameter 7-14

IO
See sets, linkage

J
journal file 9-23—9-24

K
KEEP 4-48—4-49
KEEP LONGTERM 9-11—9-17

explicit locks 9-11—9-14
monitoring records 9-14—9-17

L
line mode 7-30—7-33
LINK

See TRANSFER CONTROL, LINK
link editing 11-4
linkage options

See sets, linkage
load library
local mode 11-5

area locks 2-17
location mode

See records, location mode
locks

area 2-13
DC 9-11—9-17
effect on run units 2-15—2-16
exclusive 2-13

locks (continued)
explicit 2-14
explicit (online) 9-11—9-14
implicit 2-14, 2-22, 2-23
longterm locks 9-14
record 2-13—2-16
shared 2-13

logical terminal element 8-6, 8-10, 8-12, 8-15, 12-10
LTE

See logical terminal element

M
mandatory set membership 3-10
manual set membership 3-11, 4-32—4-34, 4-35,

4-44—4-45
MAP IN 7-8
MAP OUT 7-5—7-7
MAP OUTIN 7-12—7-13
map request block 7-5
mapping mode

asynchronous output requests 10-8
detail area 7-15
footer area 7-15
general discussion 7-4—7-5
header area 7-15
housekeeping statements 7-5
INQUIRE MAP 7-8—7-11
MAP IN 7-8
MAP OUT 7-5—7-7
MAP OUTIN 7-12—7-13
MODIFY MAP 7-11—7-12

maps
error messages for 7-13

MDT
See modified data tag

member 3-8
membership options

See sets, membership options
messages 9-28—9-30

with maps 7-6
mixed page groups 4-17
modified data tag 7-19

definition 7-5
retrieval example 7-20—7-22
update example 7-23

MODIFY 4-37—4-39
MODIFY MAP 7-11—7-12
MRB

See map request block

X-4 CA-IDMS Navigational DML Programming

N
N

See sets, linkage
navigational DML programming 3-3—3-30

currency 3-22—3-26
data structure diagram 3-20—3-21
execution sequence 3-27—3-30
introduction 3-3
records 3-4—3-7
sets 3-8—3-19

navigational DML statements 1-5
NO

See sets, linkage
NODENAME 11-6
nonterminal tasks

See also DC, nonterminal tasks
ATTACH 9-35
external request 9-36
queue threshold 9-36
SET TIMER 9-36

NP
See sets, linkage

NPO
See sets, linkage

O
O

See sets, linkage
OBTAIN

See FIND/OBTAIN statements
ON clause (AUTOSTATUS) 6-12
online debugger

PL/I considerations A-5—A-8
sample PL/I session A-6—A-8

online mapping 7-4
automatic editing 7-9

online programming
introduction 6-3

operating modes 2-24
DC-BATCH 9-36

optional set membership 3-10, 4-32—4-34,
4-44—4-45—4-47

order options
See sets, order options

owner 3-8, 3-10

P

P
See sets, linkage

PAGE-INFO parameter 4-16
PDE

See program definition element
PL/I

online debugger A-5—A-8
TRANSFER CONTROL A-4

precompiler 1-4, 11-4
preprocessor

See precompiler
print queues

See queues, print
priority

See DC, task priority
procedures

See database procedures
profile attributes 11-6
profiles F-3—F-5
program definition element 12-10
program management 9-4—9-8
program pools

tables 9-18—9-20
program registration 2-9, 2-25
pseudoconversational programming 6-6
PXE

See program expansion element

Q
queue management 8-22—8-26

COMMIT TASK 8-24
deleting 8-23
header record 8-22
locking 8-24
retention period 8-23
retrieving 8-23
storing 8-22

queue records
See queue management

queued resources 10-12—10-13
queues

print 9-31

R
READY 2-26

READY considerations 2-26
ready options

See usage modes,ready options

Index X-5

record
locks 2-13—2-16, 2-19
occurrence 2-7
type 2-7

record locks 9-11—9-14
records

area name 3-7
duplicates option 3-6—3-7
identification 3-5
length 3-5
location mode 3-5—3-6
name 3-4
storage mode 3-5
type 3-4

records, location mode
DIRECT 4-35

recovery units 2-20—2-23
redefining records

See synonyms
Release 10.2 G-3
resources

See queued resources
response time 6-9
restricting access

area usage mode 2-18—2-19
KEEP 4-48—4-49
KEEP LONGTERM 9-11—9-14

retention period
See queue management, retention period

retrieval statements
FIND/OBTAIN CALC 4-4—4-5
FIND/OBTAIN CURRENT 4-14—4-15
FIND/OBTAIN OWNER 4-12—4-14
FIND/OBTAIN USING DB-KEY 4-15—4-18
FIND/OBTAIN WITHIN AREA 4-10—4-12
FIND/OBTAIN WITHIN SET 4-5—4-6
FIND/OBTAIN WITHIN SET USING SORT

KEY 4-6—4-10
general discussion 4-4
GET 4-21—4-23
indexed records 4-18—4-20
indexed sets 4-18—4-19
RETURN 4-19—4-20

RETURN 4-19—4-20
ROLLBACK B-3

TASK C-3
run unit

definition 2-13
establishing 2-25—2-28
general discussion 2-13
specifying a dictionary name for 2-29

run unit (continued)
specifying a dictionary node for 2-29
terminated from db-key deadlocks 9-37

S
save statements

See ACCEPT statements
saving I/O

FIND/GET 4-21
FIND/OBTAIN DB-KEY 4-15—4-18
IF 4-31—4-34
RETURN 4-19—4-20

saving page information 4-28
schema

general discussion 2-4
scratch area 8-16
scratch management 8-15

logical terminal element 8-15
record ID 8-16
task control element 8-15

scratch record ID 8-16
scratch records

See scratch management
secondary dictionary 11-11
SEND MESSAGE 9-29—9-30
session attributes 11-6
SET ABEND EXIT 9-39—9-40
sets 3-8—3-19

chained 3-8
indexed 3-8, 3-9
linkage 3-9—3-10
membership options 3-10—3-11
order options 3-11—3-12
set name 3-9
sorted 4-6—4-10

signon processing 11-6
signon security G-4
SNA

See System Network Architecture
sort keys

contiguous 4-6
noncontiguous 4-7
retrieving sorted records 4-6—4-10
RETURN 4-19—4-20

SRID
See scratch record ID

STAE
See SET ABEND EXIT

statistics
database 2-30—2-31

X-6 CA-IDMS Navigational DML Programming

statistics (continued)
DC 9-25—9-27

storage management 8-4—8-14
shared 8-9—8-10
shared kept 8-10—8-11
user 8-5—8-6
user kept 8-6—8-9

storage mode
See records, storage mode

storage pools
See storage management

STORE 4-35—4-37
subroutines

ACCEPT BIND ADDRESS 4-30
subschema

access restrictions 2-8—2-9
default usage modes 2-19
general discussion 2-8
mapping G-3
overriding 11-7—11-9
program registration 2-9, 2-25
subschema 2-8

sweep
See area sweep

symbolic key 2-7
CALC 3-5
contiguous 2-7, 4-6
noncontiguous 2-7, 4-7

synchronous 10-6
synonyms 5-4—5-5
SYSIDMS parameters 11-6, 12-4
System Network Architecture 10-6
system-owned index 3-8

T
tables

See DC, tables
task code 9-9—9-10
task control element 8-4, 8-5, 8-6, 8-12, 8-15
task dump

See dump reading
task priority

See DC, task priority
tasks 6-5
TCE

See task control element
TCF

See transfer control facility
terminal management 7-3—7-33

basic mode 10-6—10-8

terminal management (continued)
line mode 7-30—7-33
mapping mode 7-4—7-14

test 11-10
test load library 11-10
time

See DC, current time and date
trace facility 12-4
transaction statistics block 9-25
transactions 6-5
TRANSFER CONTROL

LINK 9-7—9-8
LINK from CA-ADS 10-4—10-5
LINK under TCF E-4
PL/I considerations A-4
XCTL 9-6—9-7

transfer control facility E-3—E-19
sample program E-15

TSB
See transaction statistics block

U
UCE

See universal communications element
universal communications element E-4
updating the database

connecting records 4-44—4-45
disconnecting records 4-45—4-47
erasing records 4-39—4-44
general discussion 4-35
modifying records 4-37—4-39
storing records 4-35—4-37

usage modes
area 2-18—2-19
ready options 2-18

V
VIA 3-6
VSAM

CONNECT restriction 4-45
DISCONNECT restriction 4-45
MODIFY (ESDS and KSDS) 4-38
restrictions with FIND/OBTAIN DB-KEY 4-16
restrictions with IF 4-31
set order 3-12
STORE (RRDS) 4-35

Index X-7

W
walking a set 3-8, 4-5—4-6
WCC

See write control character
write control character 7-11

definition 7-5
WRITE JOURNAL 9-23—9-24
WRITE LOG 9-28—9-29
WRITE PRINTER 9-31—9-32

DC-BATCH C-4

X
XA considerations

assembler D-3
VS COBOL II D-3

XCTL
See TRANSFER CONTROL, XCTL

X-8 CA-IDMS Navigational DML Programming

	CA-IDMS Navigational DML Programming
	Contents
	How to Use This Manual
	What this manual is about
	Who should use this manual
	How product names are referenced
	Related documentation

	Chapter 1. Overview of the CA- IDMS Programming Environment
	1.1 About this chapter
	1.2 Terminology
	1.3 Database access
	1.4 CA- IDMS batch and online environments
	1.5 Navigational DML programs and CA- ADS programs

	Chapter 2. Basic DML Programming Concepts
	2.1 About this chapter
	2.2 Database components
	2.2.1 Schemas
	2.2.2 Subschemas

	2.3 Db- keys and page information
	2.4 Run units, locks, and recovery units
	2.4.1 Run units
	2.4.2 Record locks
	2.4.3 Area locks
	2.4.4 Area usage modes
	2.4.5 Recovery units

	2.5 Basic programming considerations
	2.5.1 Establishing communications with CA- IDMS
	2.5.2 Checking the status of statement execution
	2.5.3 Specifying a dictnode or dictname for a run unit
	2.5.4 Using currency
	2.5.5 Collecting database statistics

	2.6 IDMS communications block

	Chapter 3. Introduction to Database Access with Navigational DML
	3.1 About this chapter
	3.2 Records
	3.2.1 Record name
	3.2.2 Record identification
	3.2.3 Storage mode
	3.2.4 Record length
	3.2.5 Location mode
	3.2.6 Duplicates option
	3.2.7 Area name

	3.3 Sets
	3.3.1 Set name
	3.3.2 Set linkage
	3.3.3 Set membership options
	3.3.4 Set order
	3.3.5 Chained and indexed sets
	3.3.6 Set relationship definition

	3.4 Data structure diagram
	3.5 Currency
	3.5.1 Use and updating of currency by DML verbs
	3.5.2 Updating currencies during DML processing

	3.6 Database access execution sequence

	Chapter 4. Navigational DML Programming Techniques
	4.1 About this chapter
	4.2 Retrieving records
	4.2.1 Accessing CALC records
	4.2.2 Walking a set
	4.2.3 Accessing a sorted set
	4.2.4 Performing an area sweep
	4.2.5 Accessing owner records
	4.2.6 Reestablishing run- unit currency
	4.2.7 Accessing a record by its db- key
	4.2.8 Accessing indexed records
	4.2.9 Moving contents of a record occurrence

	4.3 Saving db- key, page information and bind addresses
	4.3.1 Saving a db- key
	4.3.2 Saving page information
	4.3.3 Saving a record's BIND address

	4.4 Checking for set membership
	4.4.1 Using the IF EMPTY statement
	4.4.2 Using the IF MEMBER statement

	4.5 Updating the database
	4.5.1 Storing records
	4.5.2 Modifying records
	4.5.3 Erasing records
	4.5.4 Connecting records to a set
	4.5.5 Disconnecting records from a set

	4.6 Locking records

	Chapter 5. Advanced DML Programming Topics
	5.1 About this chapter
	5.2 Copying record definitions and their synonyms
	5.3 Accessing bill- of- materials structures
	5.3.1 Storing a bill- of- materials structure
	5.3.2 Retrieving a bill- of- materials structure

	Chapter 6. Introduction to Online Programming
	6.1 About this chapter
	6.2 DC as an operating system
	6.3 Transaction and task processing
	6.4 Pseudoconversational programming
	6.5 Performance considerations
	6.6 Error handling
	6.7 Using the IDMS communications block

	Chapter 7. Terminal Management
	7.1 About this chapter
	7.2 Mapping mode
	7.2.1 Housekeeping
	7.2.2 Displaying screen output
	7.2.3 Reading screen input
	7.2.4 Modifying map options
	7.2.5 Writing and reading in one step
	7.2.6 Suppressing map error messages
	7.2.7 Testing for identical data

	7.3 Using pageable maps
	7.3.1 Pageable map format
	7.3.2 Conducting a map paging session
	7.3.3 How to code a browse application
	7.3.4 How to code an update application
	7.3.5 Overriding automatic mapout for pageable maps

	7.4 Line mode
	7.4.1 Beginning a line mode session
	7.4.2 Writing a line of data
	7.4.3 Reading a line of data
	7.4.4 Ending a line mode session
	7.4.5 3270- type considerations

	Chapter 8. Storage, Scratch, and Queue Management
	8.1 About this chapter
	8.2 Using storage pools
	8.2.1 User storage
	8.2.2 User kept storage
	8.2.3 Shared storage
	8.2.4 Shared kept storage
	8.2.5 Storage pool summary

	8.3 Using scratch records
	8.4 Using queue records
	8.5 Using the terminal screen to transmit data

	Chapter 9. DC Programming Techniques
	9.1 About this chapter
	9.2 Passing program control
	9.2.1 Returning to a higher level program
	9.2.2 Passing control laterally
	9.2.3 Passing control, expecting to return

	9.3 Retrieving task- related information
	9.4 Maintaining data integrity in the online environment
	9.4.1 Setting longterm explicit locks
	9.4.2 Monitoring concurrent database access

	9.5 Managing tables
	9.6 Retrieving the current time and date
	9.7 Writing to the journal file
	9.8 Collecting DC statistics
	9.9 Sending messages
	9.9.1 Sending a message to the current user
	9.9.2 Sending a message to other users

	9.10 Writing to a printer
	9.11 Writing JCL to a JES2 internal reader
	9.12 Modifying a task's priority
	9.13 Initiating nonterminal tasks
	9.13.1 Attaching a task
	9.13.2 Time- delayed tasks
	9.13.3 External requests
	9.13.4 Queue threshold tasks

	9.14 Controlling abend processing
	9.14.1 Terminating a task
	9.14.2 Handling db- key deadlocks
	9.14.3 Performing abend routines

	9.15 Establishing and posting events

	Chapter 10. Advanced CA- IDMS Programming Topics
	10.1 About this chapter
	10.2 Calling a DC program from a CA- ADS dialog
	10.3 Basic mode
	10.3.1 Reading data from the terminal
	10.3.2 Writing data to the terminal

	10.4 Determining if asynchronous I/ O is complete
	10.5 Communicating with database procedures
	10.5.1 BIND PROCEDURE
	10.5.2 ACCEPT PROCEDURE CONTROL LOCATION

	10.6 Managing queued resources

	Chapter 11. Testing
	11.1 About this chapter
	11.2 Preparing programs for execution
	11.3 Selecting local mode or central version
	11.4 Using SYSIDMS parameters and DCUF SET statements
	11.5 Overriding subschemas (Release 10.2)
	11.5.1 Overriding a batch program's subschema
	11.5.2 Overriding an online program's subschema

	11.6 Setting up an online test application

	Chapter 12. Debugging
	12.1 About this chapter
	12.2 Debugging batch programs with the CA- IDMS trace facility
	12.3 Using the CA- OLQ menu facility
	12.4 Reading task dumps
	12.4.1 Contents of a snap dump
	12.4.2 How to use the dump

	12.5 Error checking

	Appendix A. PL/ I Considerations
	A. 1 About this appendix
	A. 2 Transferring control
	A. 3 Using the Online Debugger with PL/ I
	A. 3.1 Computation Phase
	A. 3.2 Sample Online Debugger Session

	Appendix B. Assembler Considerations
	B. 1 About this appendix

	Appendix C. Batch Access to DC Queues and Printers
	C. 1 About this appendix

	Appendix D. XA Considerations
	D. 1 About this appendix

	Appendix E. Running a Program Under TCF
	E. 1 About this appendix
	E. 2 Overview of TCF
	E. 3 Defining a TCF task to the DC system
	E. 4 Using the UCE for communication under TCF
	E. 5 Determining if TCF is active
	E. 6 Starting a new session
	E. 7 Resuming a suspended session
	E. 8 Processing a pseudoconverse
	E. 8.1 Suspend processing
	E. 8.2 End processing
	E. 8.3 Switch processing

	E. 9 Displaying error messages
	E. 10 Sample application under TCF

	Appendix F. Calls to IDMSIN01
	F. 1 About IDMSIN01

	Appendix G. 10.2 Services Batch Interface
	G. 1 About the 10.2 services batch interface

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

