
CA-Endevor®/DB
Batch Reference

15.0
OS/390

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

THIS DOCUMENTATION MAY NOT BE COPIED, TRANSFERRED, REPRODUCED, DISCLOSED, OR
DUPLICATED, IN WHOLE OR IN PART, WITHOUT THE PRIOR WRITTEN CONSENT OF CA. THIS
DOCUMENTATION IS PROPRIETARY INFORMATION OF CA AND PROTECTED BY THE COPYRIGHT
LAWS OF THE UNITED STATES AND INTERNATIONAL TREATIES.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS
IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGE-
MENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD PARTY FOR ANY
LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,
INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR
LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

THE USE OF ANY PRODUCT REFERENCED IN THIS DOCUMENTATION AND THIS DOCUMENTA-
TION IS GOVERNED BY THE END USER'S APPLICABLE LICENSE AGREEMENT.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227.7013(c)(1)(ii) or applicable successor provisions.

First Edition, December 2000

 2000 Computer Associates International, Inc.
One Computer Associates Plaza, Islandia, NY 11749
All rights reserved.

All trademarks, trade names, service marks, or logos referenced herein belong to their respective companies.

Contents iii

 Contents

Preface
About This Guide ..0–5
Related Documentation...0–5

Chapter 1: Overview
What Is CA-Endevor/DB? ..1–1
What Is CA-Endevor/DB Batch? ..1–2
Batch Features ...1–2
Batch Coding Conventions..1–5

Chapter 2: Signon and Set Options Commands
SIGNON ..2–2
SET OPTIONS ...2–5

Chapter 3: Batch Syntax
Overview ...3–1
DISPLAY/PUNCH CCDB-entity-type ...3–2
CCID ...3–5
DICTIONARY ...3–9
ENTITY ..3–15
MANAGEMENT GROUP ...3–20
PREAUTHORIZATION ...3–23
SECURITY CLASS ..3–28
SIGNIN ..3–40
SIGNOUT ..3–43
STATUS ...3–46
USER ..3–49

iv CA-Endevor/DB Batch Reference

Chapter 4: PUNCH Mode
What Is PUNCH Mode?.. 4–1
Why Use PUNCH Mode? .. 4–1
PUNCH Mode Syntax ... 4–2

Chapter 5: Batch Execution JCL
Introduction .. 5–1
OS/390 JCL ... 5–1

Appendix A: CA-Endevor/DB Batch Reserved Words
CA-Endevor/DB Batch Reserved Words...A–1

Appendix B: CA-Endevor/DB Entity Types
Dictionary Entity Types .. B–1
CCDB ENTITY TYPES ... B–2

Contents v

 Preface

About This Guide
This document describes the CA-Endevor/DB Batch free-form language that
allows users to modify their Change Control Databases (CCDBs). It contains the
following chapters:

■ Chapter 1 — provides an overview to CA-Endevor/DB Batch.

■ Chapter 2 — discusses the SIGNON and SET OPTIONS commands.

■ Chapter 3 — provides syntax and coding rules for all commands.

■ Chapter 4 — discusses PUNCH Mode.

■ Chapter 5 — discusses batch execution JCL.

■ Appendix A — provides a list of CA-Endevor/DB Batch reserved words.

■ Appendix B — provides a list of CA-Endevor/DB entity types.

Related Documentation
Refer to the following manuals for more information about CA-Endevor/DB:

■ CA-Endevor/DB Concepts and Facilities Guide

■ CA-Endevor/DB Administrator Guide

■ CA-Endevor/DB User Guide

■ CA-Endevor/DB Messages and Codes

■ CA-IDMS Installation and Maintenance Guide-OS/390

Overview 1–1

Chapter

1 Overview

What Is CA-Endevor/DB?

CA-Endevor/DB controls and monitors change processing within the CA-IDMS
environment. The use of CA-Endevor/DB streamlines the administration of the
CA-IDMS environment and helps ensure a smooth migration from one stage of
development (such as system testing) to the next.

CA-Endevor/DB is fully integrated with CA-IDMS and provides an interface
between user requests against the CA-IDMS Integrated Data Dictionary (IDD)
and the IDD itself. CA-Endevor/DB operates under OS/390.

Promotion Support
Facility

Change
Monitor

Security
System

Online
Mgmt.
Facility

Online
Compiler

Source System

Target System

Data
Dictionary

Data
Dictionary

Change
Control

Database

Change
Control

Database

Batch Mgmt
Facility

Batch
Compiler

What Is CA-Endevor/DB Batch?

1–2 CA-Endevor/DB Batch Reference

The CA-Endevor/DB change monitor/security system:

■ Captures each update request made to the IDD (except for requests against
entities for which update information is not being captured, as defined by the
CA-Endevor/DB Administrator).

■ Guarantees that the user making the request is authorized to do so (if
access-level security is in effect).

■ Documents the change in the CA-Endevor/DB Change Control Database
(CCDB), automatically associating it with the user, the entity being modified,
and any CA-Endevor/DB management information applicable to the change.

■ Passes the update request through to the IDD for processing.

Because CA-Endevor/DB is fully integrated with CA-IDMS, it monitors itself, as
well as the IDD. Any changes to the CA-Endevor/DB CCDB are monitored just
as carefully as those made to the IDD.

What Is CA-Endevor/DB Batch?

CA-Endevor/DB Batch is a free-form language that enables users to modify their
Change Control Data Bases (CCDBs) through the use of English-like commands.

CA-Endevor/DB Batch is the language used for the non-interactive (batch)
execution of CA-Endevor/DB. Batch processing is desirable when you have to
process large numbers of elements. This eliminates much of the time spent in
interactive screen navigation.

This chapter of the CA-Endevor/DB Batch Reference explains the benefits of using
Batch, and provides an introduction to Batch structure as well as a discussion of
the attributes and characteristics contained in Batch syntax.

The features and benefits of using Batch are described below.

Batch Features

The features listed below emphasize those aspects of CA-Endevor/DB Batch that
both facilitate and enhance CA-Endevor/DB processing. Using Batch, you can:

■ Build command syntax for multiple commands with minimum input.

■ Make mass updates.

■ Easily clone CCDB information.

■ Perform CCDB updates in background.

Batch Features

Overview 1–3

Processing Flow

When you submit your Batch requests, CA-Endevor/DB follows a specific
processing flow to execute the commands.

1. CA-Endevor/DB processes the SIGNON command.

2. For each command, CA-Endevor/DB performs the following command
processing:

■ Parses and validates the Batch syntax.

 A Syntax Report is produced, echoing the Batch command entered and
flagging any syntax errors.

■ When the request has been validated, CA-Endevor/DB checks for errors.
If errors exist within the syntax, processing for the command is
terminated. If there are no errors, processing continues.

■ CA-Endevor/DB then performs the processing requested by the
command.

■ CA-Endevor/DB prints a confirmation message.

3. CA-Endevor/DB produces an End-of-Job (EOJ) report. The next section
discusses this report.

4. The system then terminates CA-Endevor/DB processing.

EOJ Report

CA-Endevor/DB produces an End-of-Job (EOJ) report every time it is run. This
report describes the commands that were entered and whether the commands
were performed or failed.

The EOJ Report records every type of command (for example, ADD ENTITY,
MODIFY ENTITY, etc.) that was entered for this particular batch job. Each line of
the report reflects the number of commands read, per type, and the number of
commands within that type that failed processing. Note the EOJ report below,
which was produced for a test batch run.

 COMMAND READ FAILED

 ADD CCID 0000005 0000001
 MODIFY ENTITY 0000004 0000001
 ADD USER 0000001 0000000
 SIGNOUT 0000001 0000000
 UNKNOWN 0000001 0000001

 TOTAL 0000012 0000003

 NDVRMISB: EO99 PROCESSING TERMINATED WITH ERRORS

Batch Features

1–4 CA-Endevor/DB Batch Reference

Each line reflects the command type, number of records read for the command
type, and number of records for the command type which failed. Statistics are
produced only for those command types which are processed. In the top line of
the report, for example, you can see that CA-Endevor/DB read 5 ADD CCID
command records and that one of them failed. This means that only four ADD
CCID commands were processed in the batch run. Similarly, looking at the
second line, you can see that CA-Endevor/DB read 4 MODIFY ENTITY
commands and one of them failed. In this case, only three MODIFY ENTITY
commands were processed. If there are no failures, the FAILED values will be all
zeroes.

Note that the UNKNOWN command line lists the number of commands received
that CA-Endevor/DB could not identify. The parser looks for certain ‘key’ words
when recording each command. If the parser does not recognize a command, for
whatever reason (such as a misspelling), the information is recorded as an
UNKNOWN command and is considered failed.

The total number of commands read and failed appears at the end of the report.

Commands and Clauses

This manual refers to the terms command and clause. For Batch purposes, these
terms are defined as follows:

■ A command begins with a verb (e.g., ADD, MODIFY, DELETE, DISPLAY, or
PUNCH) and ends with a period (.). A command consists of one or more
clauses, depending on how you code the Batch syntax.

■ A clause is an individual unit of information within each command (e.g.,
TYPE = PRIVATE or VERSION = 1). Any number of clauses may be
contained within one command.

In the following example:

1. MODIFY USER

2. NAME = JSB

3. PASSWORD = MICKEY

4. SECURITY CLASS = NDVR-GLOBAL

5. COMMENT = "JEFF BUCKSER X2224".

Lines 1-5 form a command. Line 1 begins with a verb (MODIFY) and line 5 ends
with a period.

Lines 2-5 are individual clauses. Each of these clauses provides information
essential to the command.

Batch Coding Conventions

Overview 1–5

Batch commands do not have to be entered in any particular format. For
instance, you could also specify the example above as follows:
MODIFY USER NAME = JSB PASSWORD = MICKEY
COMMENT = "JEFF BUCKSTER X2224"
SECURITY CLASS = NDVR-GLOBAL.

Batch Coding Conventions

This section of the chapter details Batch attributes as well as Batch syntax and
coding conventions. Although selected information is repeated within the
description of each command (Chapter 2), refer to this chapter as often as
necessary for a quick review of coding information.

Batch Syntax Conventions

The syntax diagrams are in railroad track format. Here are some rules of thumb:

■ Read the diagrams from left to right and from top to bottom.

■ The required portion of reserved words is CAPITALIZED. Optional
keywords are in lowercase standard. Variables are in lowercase italic.

■ A required clause rests on the line, an optional clause, below the line. When
you encounter a stack of choices, if the top item rests on the line, choose one
of the items in the stack. If the top item swings below the line, the stack is
optional.

■ You must enter a period at the end of every command. Anything entered
after the period will not be part of that command. If no period is found, the
system generates an error message. In the Batch syntax, a period indicates
that you should enter a period at the end of this clause.

■ If you enter a value with an embedded period or space, or the value is a
keyword, you must enclose that value with quotes. Also note that if you
want to enter a value for version, you must enter a non-negative integer. If
you want to enter a value for version=*, you must enter a non-negative
integer or an asterisk (*).

 You cannot use quotation marks in the VERSION field of any commands in
the Batch facility.

■ Used within a choice stack, an arrow indicates that the value indicated
(pointed at) is the default. This value is used in processing the clause if none
of the values in the bracket are specified.

■ Parenthesis () indicate a compound list. This enables you to specify more
than one value for a selection. For example, in the clause below:

 SIGNOUT FUNCTIONS (Y Y Y)

Batch Coding Conventions

1–6 CA-Endevor/DB Batch Reference

 The three flags are all set to Y. Any parentheses that are included in a syntax
diagram must be coded.

Beginning of statement. Statement continues on next line.

Statement is continued from previous line.

1

2

1

2

Multiple lines are continued from the path
above to the path below, matching the
numbers in the margins.

End of statement.

REQUIRED RESERVED WORD

OPTIONAL RESERVED WORD optional variable

Whole area marked by arrow can be repeated.

required-choice-2

required-choice-1

optional-choice-2

optional-choice-1

non-repeatable-choice

repeatable-choice Variable-2

WORD variable-1

Punctuation that appears in
diagrams is part of the
syntax, as are parentheses,
arithmetic operators, etc.

.

Allows more than one choice from the stack
or a repeated choice.

�

required
variable

The arrow indicates ����
the default.

Use of Quotation Marks

You must always use quotation marks (either single or double as explained
below) when a user-defined value contains an embedded space, leading digit, or
one of the following characters:

■ Period (.)

■ Comma (,)

■ Semi-colon (;)

■ Colon (:)

■ Equal sign (=)

■ Parentheses (or)

■ Greater or Less Than signs (< or >)

■ Single Quotation mark (')

■ Double Quotation mark (")

Batch Coding Conventions

Overview 1–7

If the user-defined value contains a double quotation mark ("), the value must be
surrounded by single quotation marks ('). Conversely, if the user-defined value
contains a single quotation mark, the value must be surrounded by double
quotation marks. If you enter a double quotation mark as the first quotation
mark, you must enter a double quotation mark as the ending quotation mark.
The same rule applies for single quotation marks.

Note: You cannot use quotation marks in the VERSION field of any commands
in the CA-Endevor/DB Batch facility.

Use of Equal Sign (=)

You can use an equal sign (=) in place of the literal IS anytime IS is specified in
command syntax. For example:

ENTITY NAME = entity-name

would produce the same results as:
ENTITY NAME IS entity-name

Field Length

Listed below are the fields requiring user-defined entries and the number of
characters allowed for each:

■ Entity name - up to 40 characters

■ Type - up to 16 characters

■ Version - up to 4 digits

■ User Name - up to 32 characters

■ CCID name - up to 12 characters

■ Comment - up to 60 characters

■ Status - up to 16 characters

■ Security Class - up to 16 characters

■ Dictionary name (dictname) - up to 8 characters

■ System Name - up to 8 characters

■ Estimated Work Completion - 8 characters

■ Actual Work Completion - 8 characters

■ Password - up to 8 characters

■ DBNAME - up to 8 characters

■ Management Group - up to 16 characters

Batch Coding Conventions

1–8 CA-Endevor/DB Batch Reference

Using a Mask Character For All Names Except Entity Names

This section applies to the following types:

■ CCID

■ Preauthorization

■ Status

■ Management group

■ Security class

■ User

You can use an asterisk (*) instead of a literal to specify that all names be
considered when performing a command. An asterisk is acceptable for all
commands that list an asterisk as acceptable in the Syntax Rules. For example, in
the clause:

NAMe is status

You can enter either a full status name or an " * " for the variable status. Entering
a status name will specify that particular status for this command. Entering an
asterisk will specify all statuses that meet the rest of the selection criteria for this
command.

Using a Mask Character For Entity Names

The mask character provides a means of identifying CCDB entities that match
specified criteria. You can specify as much or as little of the entity name as you
want. The more information you give, the more specific the set of names that are
identified.

Use the name mask when you want to enter partial entity names or name
segments. For example, if you have a series of entities whose names all start with
the characters ABC, you could specify "ABC*" in a command and thus identify all
of them.

A name mask enables you to specify that all names, or all names beginning with
a particular series of letters, be considered when performing a command. A
name mask is only acceptable for the ENTITY NAME value, where applicable
clauses are shown with a "-mask" in the syntax. For example, for a MODIFY
ENTITY command, in the clause:

ENTity NAMe is entity-name

You can replace a name-mask with an asterisk (*), an entity name such as
"XYX100", or enter a name mask such as "XYZ*".

Batch Coding Conventions

Overview 1–9

Using Asterisks

Asterisks (*) are used as mask characters. The information that the system
retrieves depends on where you place the asterisk and the additional information
you supply. The system returns CCDB object names matching all the criteria you
specify in your request.

To use the mask feature, type the beginning portion of the name segment
followed immediately by an asterisk. You can place the asterisk in the following
positions:

■ In place of a literal. For example:
ENTITY NAME IS = *

 In this example, all entity names that meet the other specified selection
criteria are retrieved.

■ As the last non-blank character in the name. For example:
ENTITY NAME IS XYZ*

 In this example, all entity names beginning with the characters "XYZ" are
retrieved, if they meet the other specified selection criteria.

Using Asterisks With Segmented Names

Some entity names in the CCDB are segmented. A segmented name is a name
composed of the names of multiple dictionary objects. This information is
concatenated to form the entity name used in the CCDB. For example, a logical
record named CUSTOMER-ORDER defined in a subschema named SALESUB1
which is compiled within schema SALESCHM will appear in the CCDB as
"CUSTOMER-ORDERb/b/ SALESUB1SALESCHM.

This is one way that you could identify the logical record in a command. Note
the spaces after the LOGICAL-RECORD name. There is an easier way to specify
segmented names, using "delimiters", which are explained later in this chapter.

The following entity types have segmented names:

■ SUBSCHEMA
■ SET
■ MODULE
■ LOGICAL-RECORD

Name Segment Requirements

Each name segment for the four different entity types has a required length.
When not using delimiters, you need to pad the name segment with blanks to
maintain the required length. The table below shows the number of characters
required for each segment.

Batch Coding Conventions

1–10 CA-Endevor/DB Batch Reference

Entity Type Name Segment Length

SUBSCHEMA Subschema 8

 Schema 8

SET Set 32*

 Schema 8

MODULE Module 32

 Language 8

LOGICAL-RECORD Logical-record 16

 Subschema 8

 Schema 8

* Set name prior to CA-IDMS 12.0 is 16 characters.

Delimiters

When using CA-Endevor/DB, you can use commas or periods as name segment
delimiters. The delimiters separate the name segments. For example, to use
delimiters when identifying a logical record in the previous example, you would
specify:
ENTITY NAME = "CUSTOMER-ORDER.SALESUB1.SALESCHM" TYPE = LR

You do not use spaces to pad name segments when you are delimiting with
commas.

Note: You must specify TYPE = type when using delimiters. You cannot specify
TYPE = *.

Using Asterisks For Segmented Names

You can use asterisks in different positions within a segmented name. To
illustrate these positions, refer to the examples in this section. For these
examples, we use entities that have a type of LOGICAL-RECORD. However, the
same principles apply to the other three types of entities that have segmented
names: SUBSCHEMA, SET, and MODULE.

Batch Coding Conventions

Overview 1–11

All the examples in this section refer to the following set of entities of type
LOGICAL-RECORD.

REC NO. ENTITY NAME

1. CUSTOMER-ORDER.SALESUB1.SALESCHM TYPE = LR

2. CUSTOMER-ORDER.SALESUB2.SALESCHM TYPE = LR

3. CUSTOMER-ORDER.SALESUB3.SALESCHM TYPE = LR

4. SALESPERSON-CUST.SALESUB1.SALESCHM TYPE = LR

5. SALESPERSON-CUST.SALESUB2.SALESCHM TYPE = LR

6. SALESPERSON-CUST.SALESUB3.SALESCHM TYPE = LR

7. SALESPERSON-ORD.SALESUB1.SALESCHM TYPE = LR

8. SALESPERSON-ORD.SALESUB2.SALESCHM TYPE = LR

9. SALESPERSON-ORD.SALESUB3.SALESCHM TYPE = LR

The identification of one or more of the entities in this list may be done in several
ways. You can specify a whole name, whole name segments, asterisks and
commas, or a combination of these.

You can place an asterisk in the following positions:

■ As the last, non-blank character in a particular name segment. For example:
ENTITY NAME = "CUSTOMER-ORDER.SALESUB*.SALESCHM" TYPE = LR

 This example identifies a specific logical record, CUSTOMER-ORDER, with
each subschema. It requests the indicated logical record for all subschemas
whose name begins with "SALESUB", but restricts the request to only those
subschemas (and thus only those logical records) compiled against the
SALESCHM schema.

 In the table illustrated above, CA-Endevor/DB would process records 1, 2,
and 3.

■ As the last non-blank character in the full name. For example:
ENTITY NAME = "SALES*"

 This example identifies all logical records whose names start with "SALES",
regardless of the schema or subschema.

 In the table illustrated above, CA-Endevor/DB would process records 4, 5, 6,
7, 8, and 9.

■ In place of a name segment. For example:
SALESPERSON-ORD.*.SALESCHM

Batch Coding Conventions

1–12 CA-Endevor/DB Batch Reference

 This example identifies the SALESPERSON-ORD LOGICAL-RECORD as
defined in all subschemas compiled against the schema SALESCHM.

 In the table illustrated above, CA-Endevor/DB would process records 7, 8,
and 9.

Using Delimeters in Name Marking

You can use commas or periods as a mask placeholder in segmented names. For
example, to retrieve all entities of logical-record SALESPERSON-ORD in schema
SALESCHM, specify the following:

SALESPERSON-ORD,,SALESCHM

In this example, the first comma marks the end of the system name, the second
comma designates the subschema name, and the name segment SALESCHM
designates the schema name. In our example, CA-Endevor/DB would process
records 7, 8, and 9.

You can combine the delimeter and asterisk to retrieve an even larger list of
entities. For example, to identify the logical record CUSTOMER-ORDER in all
subschemas compiled against all schemas whose names started with "SALES",
specify:

CUSTOMER-ORDER..SALES*

In the table illustrated above, CA-Endevor/DB would process records 1, 2, and 3.

Multiple asterisks are allowed in the clause. However, you can code only one
asterisk per name segment.

Signon and Set Options Commands 2–1

Chapter

2
Signon and Set Options
Commands

This chapter describes the SIGNON and SET OPTIONS commands. These two
commands operate in a different manner than the rest of the CA-Endevor/DB
Batch commands described in this manual. The SIGNON command must be
entered at the beginning of a batch job and the SET OPTIONS command
designates the mode under which CA-Endevor/DB will operate.

SIGNON Command The SIGNON command identifies the user, enabling CA-Endevor/DB to access
security restrictions for that user. It also determines whether that user is allowed
to perform batch processing.

SET OPTIONS
Command

CA-Endevor/DB Batch operates in two modes: PROCESS and PUNCH.

■ PROCESS mode is the default. It enables you to process CA-Endevor/DB
commands against the CCDB. If you want to execute any command in
CA-Endevor/DB Batch, you must run in PROCESS mode. Chapter 3
describes in detail all the commands that you can execute in PROCESS
mode.

■ PUNCH mode enables you to look at what is in a CCDB before you process
the contents of the CCDB. In PUNCH mode, CA-Endevor/DB takes the
command, builds syntax for all the elements in the CCDB that meet the
selection criteria, and then writes the detailed command syntax into a
punch data set. Chapter 4 describes in detail all the commands that you can
execute in PUNCH mode.

The SET OPTIONS command enables you to choose which mode, PROCESS or
PUNCH, in which you want to operate.

Note: To process commands with the verb DISPLAY or PUNCH, you may run
in either mode.

SIGNON

2–2 CA-Endevor/DB Batch Reference

SIGNON

Purpose

The assigned userid identifies you to CA-Endevor/DB, enabling the product to
access security restrictions for that user. It also determines whether you are
allowed to do batch processing. In CA-Endevor/DB Batch, you can process
under one signon ID at a time. If specified, it must be the first statement in the
batch run. If you want to process under two different userids, you must submit
two batch jobs.

When you enter a SIGNON command, you perform three functions:

■ You identify the CCDB to be accessed (DICTNAME).

■ You identify yourself (your userid).

■ You identify the CCID(s) under which you are working.

The security rules that determine what functions you will be allowed to perform
are determined by all three pieces of information. (Refer to the Security Class
Maintenance chapter of the CA-Endevor/DB Administrator Guide for more
information on security rules.) If any of the functions that you perform require
change logging, then the change log entries are marked with the userid/CCID
information.

CA-Endevor/DB "remembers" the CCIDs that you specify from one
CA-Endevor/DB Online or CA-Endevor/DB Batch session to the next. If you are
working under the same CCID(s) as in your last session, you can omit the CCID
clause in this command.

Starting with CA-IDMS Release 12.0, all CA-IDMS processing runs under an
assigned CA-IDMS/DC userid. In the case of:

■ Direct CA-IDMS/DC logon, the userid is taken from the VTAM login.

■ Batch processing, the userid is taken from the originating interactive session
(TSO, CICS), or from the batch job (JOB card USER parameter).

The purpose of the CA-IDMS/DC SIGNON task is no longer to establish a
CA-IDMS/DC userid, but to switch userids - all CA-IDMS/DC processing is now
done under a specific userid.

When CA-Endevor/DB is used to monitor dictionary changes by any of these
means, it will automatically determine the userid, and attribute the dictionary
changes to that userid. It determines your userid at the instant of your first
dictionary update, and “remembers” it for as long as you are connected to
CA-IDMS. Thus, you can execute CA-IDMS dictionary utilities (ADSC, etc.), and
the dictionary updates will automatically be attributed to your userid.

SIGNON

Signon and Set Options Commands 2–3

While the automatic usage of your DC userid is often useful, there are several
situations where it is not appropriate:

■ If your site requires the use of CA-Endevor/DB passwords.

■ If you need to switch from working under one (set of) CCID(s) to another.

■ If you change DC userids after making changes to a dictionary.

For the preceding cases, you use the SIGNON command to specify your userid.

Processing Flow

When you enter a SIGNON command, CA-Endevor/DB performs the following
processing:

■ A validation check of the input parameters to ensure that you are authorized
to perform batch operations. If you are not, the system prints an error
message and disallows the transaction.

– You have a valid userid, or that one can be automatically created for you.

– If passwords are required in the CCDB, you have a valid password.

– If you enter a dictname, it must be valid.

– If CCIDs are required for your userid, you must enter a valid CCID.

– If the CCID(s) that you sign on under are PRIVATE, you are
preauthorized to sign on to them.

■ The system prints a confirmation message informing you that the signon was
successfully completed.

Syntax

DICtName

is dictname
SIGnon

USEr name is user-name

PASsword is password

DBName

CCId name is ccid

ccid (

.

,

)

SIGNON

2–4 CA-Endevor/DB Batch Reference

Syntax Rules

The rules pertaining to each clause in the syntax are listed below. Required and
optional clauses are noted, as well as any other requirements specific to this
command.

USEr name is user-name

The 1-32 character userid of the user. It is used to identify the user in the CCDB.
If you omit the USER NAME clause, changes that you make will not be attributed
to any user in the CCDB.

PASsword is password

A 1-8 character password that is stored in the CCDB. If you omit the
PASSWORD clause, it will default to spaces, the default password for all users.
If you omit this clause and a password is required, you will not be able to sign on
and CA-Endevor/DB will generate an error message.

DBName is dictname
DICtname is dictname

The name of the dictionary against which you are processing. If you omit this
clause, it defaults to the default dictionary for CA-IDMS.

CCId name is ccid

The CCID(s) under which you will be operating. You can sign on under one or
more CCIDs, or you can specify NOCCID. If you enter NOCCID,
CA-Endevor/DB clears any list of CCIDs from previous sessions and updates
that you perform are not assigned to any specified CCIDs.

If you omit this clause, it will default to the last CCID you logged on under.
Security rules that apply for that CCID are carried over to this session.

If you do not enter a NAME clause, the CCID clause defaults to "unspecified". If
you process under an unspecified CCID clause, the changes that you make will
not be logged to a CCID.

If, as a result of security class restrictions, you are in DERIVE CCID mode, any
CCID clause you specify is ignored. SIGNON commands act as if you entered
CCID = NOCCID.

Examples

The following examples illustrate the use of the SIGNON command.

SET OPTIONS

Signon and Set Options Commands 2–5

Example 1
SIGNON USER USER001 PASS USERPASS DICT NTSTDICT.

A user, USER001, has signed on to CA-Endevor/DB with the password
USERPASS to the dictionary NTSTDICT.

Example 2
SIGNON CCID 900522-0015 DICT NTSTDICT.

A user has signed on to CA-Endevor/DB under the CCID 900522-0015.

SET OPTIONS

Purpose

The SET OPTIONS command enables you to toggle between entering commands
in PROCESS mode and PUNCH mode. You can also specify whether you want
CA-Endevor/DB Batch to continue processing if it encounters a critical error.

PROCESS mode enables you to process your CA-Endevor/DB Batch commands
against the CCDB. If you want to execute any command in CA-Endevor/DB
Batch, you must run in PROCESS mode.

The SET OPTIONS syntax defaults to PROCESS mode. Chapter 3 fully describes
the commands available for execution in PROCESS mode.

PUNCH mode enables you to view the contents of a CCDB before you process
them. Refer to Chapter 4 for information on PUNCH mode. Chapter 4 describes
what PUNCH mode is and includes a full explanation of PUNCH mode syntax.

You may issue supported commands with the DISPLAY or PUNCH verb in
either mode.

Syntax

SET options
PROcess

PUNch

.

STOp

SET OPTIONS

2–6 CA-Endevor/DB Batch Reference

Syntax Rules

The rules pertaining to each clause in the syntax are listed below. Required and
optional clauses are noted, as well as any other requirements specific to this
command.

SET options PROcess
SET options PUNch

This clause will select the mode under which you will process. You can specify:

■ PROCESS - to execute commands against the CCDB. If you omit the
command, CA-Endevor/DB will default to PROCESS mode. Refer to
Chapter 3 for a full description of PROCESS mode.

■ PUNCH - to enter PUNCH mode. Refer to Chapter 4 for a full description of
PUNCH mode.

STOP enables you to end the updating of the CCDB if CA-Endevor/DB Batch
encounters a critical error. If you want to stop processing when such an error is
found, you must enter STOP in the SET OPTIONS clause. If you specify STOP,
and CA-Endevor/DB does stop processing due to a critical error, any remaining
batch commands will be checked for syntax errors. If you specify STOP in your
batch job, it will remain STOP until the job ends.

By default, if a critical error is detected, or when a command fails,
CA-Endevor/DB Batch processes the rest of the commands in the batch run.

Examples

The following examples illustrate the use of the SET OPTIONS command.

Example 1
SET OPTIONS PUNCH.

This command will enable you to enter commands in PUNCH mode.

Example 2
SET OPTIONS PROCESS STOP.

This command will stop processing if CA-Endevor/DB encounters a critical
error.

Batch Syntax 3–1

Chapter

3 Batch Syntax

Overview
CA-Endevor/DB provides you with the capability of maintaining the Change
Control Database (CCDB) through the use of English-like commands. This
chapter describes these commands in detail, providing you with an explanation
of command processing, the CA-Endevor/DB Batch syntax, and the coding rules
specific to each command.

PROCESS mode causes the CA-Endevor/DB Batch program to update the CCDB
for update type verbs. If the DISPLAY or PUNCH verb is specified in a
supported command, the Batch processing outputs the contents of the CCDB as if
operating in PUNCH mode with an ADD CCDB-entity-type request. If a
DISPLAY verb is specified, Batch processing displays commands in a card-image
format, preceded by “*+” on the listing. If a PUNCH verb is specified, Batch
processing displays the commands and also outputs the commands into a card
image dataset, without “*+” identifiers, for subsequent execution. Chapter 3
describes the command behavior when running in PROCESS mode.

The other option is PUNCH mode, which causes the CA-Endevor/DB Batch
program to output commands into a card image dataset for subsequent
execution. If DISPLAY or PUNCH verbs are specified on a supported command,
the PUNCH mode processes these requests the same as described above for
PROCESS mode. Chapter 4 describes the command behavior when running in
PUNCH mode.

CA-Endevor/DB Batch operates by default in PROCESS mode. If you want to
change modes, you can use the SET OPTIONS command, described in Chapter 2.

DISPLAY/PUNCH CCDB-entity-type

3–2 CA-Endevor/DB Batch Reference

DISPLAY/PUNCH CCDB-entity-type

Purpose

This verb is supported for CA-Endevor/DB CCDB component types CCID,
ENTITY, MANAGEMENT GROUP, STATUS, SECURITY CLASS, and USER.

Use DISPLAY CCDB-entity-type to view the contents of one or more CCDB-entity
occurrences, in card-image command syntax form preceded by “*+” before each
line of syntax output to the NDVRLST. DISPLAY requests operate as if executing
in PUNCH mode with an ADD CCDB-entity-type request.

Use PUNCH CCDB-entity-type to report the contents of one or more CCDB-entity
occurrences, in card-image command syntax form preceded by “*+” before each
line of syntax output to the NDVRLST, and to output each line of syntax to the
NDVRPCH file, without “*+” preceding the syntax. This enables you to view or
edit the command syntax. PUNCH requests operate as if executing in PUNCH
mode with an ADD CCDB-entity-type request.

Processing Flow

When you enter a DISPLAY or PUNCH CCDB-entity-type request,
CA-Endevor/DB performs the same processing sequence for the specified
CCDB-entity-type as if executing under PUNCH mode with an ADD command.

■ Performs a validation check of the input parameters to ensure that:

– You are authorized to browse the type of CCDB-entity specified in the
request. If you are not, the system prints an error message and disallows
the transaction.

– If you identified a specific CCDB-entity-occurrence, it must exist in the
CCDB.

■ There are two ways that you can use the DISPLAY command:

−= Specifying CCDB-entity-occurrence identifier clause(s). If specified,
CA-Endevor/DB reports the syntax for that specific occurrence. If you
also specified any override clauses, the reported syntax contains the
clause(s) you specified.

−= Entering an asterisk in the CCDB-entity-occurrence identifier
clause(s). If you enter an asterisk in an identifier clause, or omit one or
more of the identifier clauses, CA-Endevor/DB reports the syntax for all
CCDB-entity occurrences meeting the masking requirements. If you omit
all identifier clauses, CA-Endevor/DB reports the syntax for every
CCDB-entity-occurrence for the CCDB-entity-type.

DISPLAY/PUNCH CCDB-entity-type

Batch Syntax 3–3

If you also specified any overriding clauses, the reported syntax contains
the clauses you specified.

Refer to Chapter 4 for additional information on the processing flow for an ADD
request for the specified CCDB-entity-type.

Syntax

DICtionary

USEr

STAtus

ENTity

MANagement group

SECurity class

PUNch

entity-type-clause(s)

DISPlay ccdb-entity-occurrence-identifierCCId

.

Syntax Rules

For a DISPLAY or PUNCH request, only the verb and CCDB-entity-type are
required. All other clauses in the command, including CCDB entity occurrence
identifier and entity-type clauses, are the same as documented for ADD requests
for the individual CCDB entity types.

Examples

The following examples illustrate the use of the DISPLAY and PUNCH
commands.

Example 1
DISPLAY ENTITY CUSTOMER TYPE RECORD VERSION 1.

This command will produce the following output to the NDVRLST file:
*+ ADD ENTITY NAME IS "CUSTOMER"
*+ TYPE IS "RECORD"
*+ VERSION IS 0001
*+ COMMENT IS
*+ "EMPSCHM VER 100 RECORD ENTITY"
*+ STATUS IS "MIGRATE-TEST"
*+ .

Example 2
PUNCH CCID
 COMMENT 'COMMENT OVERRIDE'.

DISPLAY/PUNCH CCDB-entity-type

3–4 CA-Endevor/DB Batch Reference

This command will produce syntax for each CCID in the CCDB with any
COMMENT values in the CCDB replaced by the value specified in the comment
clause. The command will write the following to the NDVRLST file:
*+ ADD CCID NAME IS "EDB-DCADMIN"
*+ TYPE IS PUBLIC
*+ SECURITY CLASS IS "NDVR-GLOBAL"
*+ COMMENT IS
*+ "COMMENT OVERRIDE"
*+ .
*+ ADD CCID NAME IS "EDB-SYSADMIN"
*+ TYPE IS PUBLIC
*+ SECURITY CLASS IS "NDVR-GLOBAL"
*+ COMMENT IS
*+ "COMMENT OVERRIDE"
*+ .

The command will also write the following to the NDVRPCH file:
ADD CCID NAME IS "EDB-DCADMIN"
 TYPE IS PUBLIC
 SECURITY CLASS IS "NDVR-GLOBAL"
 COMMENT IS
 "COMMENT OVERRIDE"
 .
 ADD CCID NAME IS "EDB-SYSADMIN"
 TYPE IS PUBLIC
 SECURITY CLASS IS "NDVR-GLOBAL"
 COMMENT IS
 "COMMENT OVERRIDE"
 .

CCID

Batch Syntax 3–5

CCID

Purpose

A CCID (Change Control Identifier) categorizes CCDB information for control
and reporting purposes. The use of CCIDs is optional. For example, you might
have one CCID for each project or, within each project, a separate CCID for
design activities, detailed specification activities, implementation activities, and
so forth.

Processing Flow

When you enter a CCID command, CA-Endevor/DB performs the following
processing:

■ Validates the input parameters to insure that:

– You are authorized to perform the action (ADD, MODIFY, DELETE, or
BROWSE) for a CCID. If you are not, the system will print an error
message and disallow the transaction.

– The values specified in the input parameters are valid and all required
clauses are specified for the command.

■ For ADD actions, insures that the CCID does not already exist in the CCDB;
for all other actions, insures that the CCID does exist in the CCDB.

■ Performs the requested action.

■ Prints a confirmation message that the action was successfully completed.

CCID

3–6 CA-Endevor/DB Batch Reference

Syntax

CCId
CCId

ADD
MODify

DELete

DISplay

PUNch

name is ccid

name is ccid

SECurity class is security-class

SECurity class is security-class

TYPe is PUBlic

PRIvate

COMment is ‘comment-text’

DELete CCID name is ccid .

.

FORce

Syntax Rules

The rules pertaining to each clause in the syntax are listed below.

CCID name is ccid

Identifies a new CCID to be added to the CCDB or an existing CCID occurrence
to be modified, deleted, displayed, or punched. The ccid must be a 1 to
12-character alphanumeric value. For ADD actions, this clause is required and
must be unique within the CCDB; for DELETE actions, this clause is required and
must identify an existing CCID within the CCDB. For all other operations, this
clause is optional or may be specified with valid masking specifications as
described in Chapter 1.

SECurity class is security-class

Identifies the Security Class to be associated with the CCID. The Security Class
must already exist in the CCDB. This clause is required for ADD commands.

TYPE is type

Indicates whether the CCID is PUBLIC or PRIVATE. If omitted, defaults to
PUBLIC.

COMment is comment-text

A 1 to 60-character, user-defined remark for the CCID.

CCID

Batch Syntax 3–7

FORce

DELETE command only. This clause enables you to delete a CCID even if it has
Change Log Entries (CLEs) associated with it.

Usage

DELETE with FORCE

If FORCE is specified on a DELETE command, all Change Log Entries (CLEs)
associated with the CCID are also deleted. A CLE is generated automatically
anytime an entity is updated. CLEs are associated with a CCID when:

■ A user signs on with the CCID then updates a monitored record type.

■ A user operating in DERIVE CCID mode updates a monitored record type of
which a specific entity has been preauthorized to the CCID with the DERIVE
CCID option specified.

Examples

The following examples illustrate the use of CCID commands.

Example 1
ADD CCID NAME IS 9900521-0056 SECURITY CLASS IS DEVELOPER
 TYPE IS PUBLIC.

The CCDB Administrator has added a new CCID to be used by a development
team. Any user will be allowed to signon under this CCID.

Example 2
MODIFY CCID NAME IS 9900521-0056
 TYPE IS PRIVATE
 COMMENT "CCID IS NOW PRIVATE".

The CCDB Administrator has modified the type clause so that a user must be
preauthorized to this CCID in order to use it and has documented the action in
the comments.

Example 3
MODIFY CCID NAME IS *
 TYPE IS PUBLIC
 COMMENT "NO SIGNON RESTRICTIONS".

This command will change the comment in every public CCID in the CCDB.

Example 4
DELETE CCID NAME IS 9900521-0056 FORCE.

CCID

3–8 CA-Endevor/DB Batch Reference

The CCDB Administrator has decided to delete the CCID and to force all CLEs
associated with the CCID to also be deleted.

DICTIONARY

Batch Syntax 3–9

DICTIONARY

Purpose

The Dictionary Descriptor in the CCDB contains the global characteristics of the
CCDB and is automatically created by CA-Endevor/DB.

Use the DICTIONARY command to modify or display (or punch) the dictionary
descriptor. The clauses in this command specify global CA-Endevor/DB
processing characteristics. For instance, whether or not users must supply a
password when signing on to CA-Endevor/DB.

Processing Flow

When you enter a DICTIONARY command, CA-Endevor/DB performs the
following processing:

■ Validates the input parameters to insure that:

– You are authorized to perform the action (MODIFY or BROWSE) for a
DICTIONARY. If you are not, the system will print an error message
and disallow the transaction.

– The values specified in the input parameters are valid and all required
clauses are specified for the command.

■ Performs the requested action.

■ Prints a confirmation message that the action was successfully completed.

DICTIONARY

3–10 CA-Endevor/DB Batch Reference

Syntax

DICtionary descriptorMODify
DISPlay

PUNch

SECurity class is security-class

NO-Sync is Y

N

DICtname is dictname SYStem name is system-name

AUTO-US is Y

N

NO-Pass is Y

N

MONitor NONe

AUTO-SO

(idd-entity-type

NONe

.

)

(idd-entity-type)

DEFault SECurity class is security-class

DICTIONARY

Batch Syntax 3–11

idd-entity-type Clause

SCH
DMC
FIL
TAS
SUB
USE
DES
REC

FIL
TAS
SUB
USE
DES
REC
SYS
APO
SET
DIA
APP
ELE
QFI
PRC
TAB
FUN
MOD
PHY
CLA
ATT
MAP
LOA
LIN
MSG
LOG
LR
PRO

Syntax Rules

The rules pertaining to each clause in the syntax are listed below.

DICtname is dictname

The dictname value for the dictionary must be the same as the CA-IDMS
DBName Table entry defining the CCDB/dictionary pair. This is the dictname to
be specified in the SIGNON command.

SYStem name is system-name

The system name is used to uniquely identify the dictionary for migration record
keeping purposes. Refer to Chapter 1 or the CA-Endevor/DB Administrator Guide
for more information on establishing a system name.

SECurity class is security-class

Identifies the Security Class assigned to the dictionary descriptor. For MODIFY
commands, if specified, the Security Class must already exist in the CCDB.

DICTIONARY

3–12 CA-Endevor/DB Batch Reference

Initially, the Dictionary is set up with the NDVR-GLOBAL Security Class. It is
recommended that this be left unaltered until a thorough understanding of the
Security System is mastered.

DEFault SECurity class is security-class

Identifies the default security class to be associated with users who are added via
the Automatic User (AUTO-US) procedure. Initially, this is set to NDVR-DDA.
For MODIFY commands, if specified the Security Class must already exist in the
CCDB.

AUTO-Us is

Identifies the automatic actions to be taken when new users access
CA-Endevor/DB:

 Y — New users are automatically added by CA-Endevor/DB when
encountered for the first time.

 N — New users must be manually added to CA-Endevor/DB before the
users will be able to sign on.

NO-Sync is

Establishes synchronization enforcement between CA-IDMS/DC and
CA-Endevor/DB userids.

 Y — Synchronization will not be enforced.

 N — Synchronization will be enforced. CA-Endevor/DB will require that the
userids must match.

NO-Pass is

Identifies password specification requirements for signing on to
CA-Endevor/DB.

 Y — Entering a password is optional.

 N — Entering a password is required.

MONitor is

Identifies the CA-IDD entity types to be monitored by CA-Endevor/DB. On a
MODIFY command, this clause replaces the monitor options stored in the
CCDB's dictionary descriptor.

NONE — No entity-types are to be monitored.

(idd-entity-type(s)) — The idd-entity-types specified, and only those specified,
are to be monitored. Refer to Appendix B for a description of the entity types
that can be monitored by CA-Endevor/DB. See Usage below for additional
information.

DICTIONARY

Batch Syntax 3–13

AUTO-SO is

Identifies the requirements for automatic signout of monitored CA-IDD entity
occurrence when modified. On a MODIFY command, this clause replaces the
auto-signout options stored in the CCDB's dictionary descriptor.

NOTE-CA-Endevor/DB will not automatically signout any entity occurrence.

(idd-entity-type(s)) — CA-Endevor/DB will automatically signout entities of
the identified CA-IDD entity types when modified to the user performing the
modification. Refer to Appendix B for a description of the entity types that can
be automatically signed out by CA-Endevor/DB. See Usage below for additional
information.

COMment is 'comment-text'

A 1 to 60-character, user-defined remark for the dictionary descriptor.

Usage

MONITOR Clause

If the MONITOR clause is specified, you must identify each entity type to be
monitored. The clause provides global replacement for all monitored entity
types. For instance, if you did not want to monitor MESSAGE or SysGen entity
types, you would specify the following:
MONITOR (SCH FIL SUB USE REC SYS APO SET DIA APP ELE
 QFI PRC TAB FUN MOD CLA ATT MAP LOA LR PRO)

omitting the TAS, DES, PHY, LIN, MSG and LOG idd-entity-type(s).

AUTO-SO Clause

If the AUTO-SO clause is specified, you must identify each entity type to be
automatically signed out. The clause provides global replacement for all
automatically signed out entity types. For instance, if you wanted to
automatically signout only Records, Schemas, and Applications as they are
modified, you would specify the following:
 AUTO-SO (SCH REC APP)

If you wanted no automatic signout out of any CA-IDD entity type, you would
specify the following:
 AUTO-SO NONE

DICTIONARY

3–14 CA-Endevor/DB Batch Reference

Examples

The following example illustrates the use of the MODIFY DICTIONARY
command.

Example 1
MODIFY DICTIONARY
 DICTNAME IS SRCNDVR SYSTEM IS SYSTEM81.

The CCDB Administrator modified the dictionary descriptor to identify it's
dictname and system name.

Example 2
DISPLAY DICTIONARY.

This command will output the current values in the dictionary descriptor to the
NDVRLST file.

ENTITY

Batch Syntax 3–15

ENTITY

Purpose

An entity is an object monitored by the Change Monitor in the CCDB. This object
can be a CA-IDMS data dictionary (IDD) object like a dialog or a map. Normally,
CCDB entity descriptor records for IDD entity occurrences are created
automatically by CA-Endevor/DB the first time the Change Monitor encounters
the monitored entity-type.

Processing Flow

When you enter an ENTITY command, CA-Endevor/DB performs the following
processing:

■ Validates the input parameters to insure that:

– You are authorized to perform the action (ADD, MODIFY, DELETE, or
BROWSE) for a ENTITY. If you are not, the system will print an error
message and disallow the transaction.

– The values specified in the input parameters are valid and all required
clauses are specified for the command.

■ For ADD actions, insures that the ENTITY does not already exist in the
CCDB; for all other actions, insures that the ENTITY does exist in the CCDB.

■ Performs the requested action.

■ Prints a confirmation message that the action was successfully completed.

ENTITY

3–16 CA-Endevor/DB Batch Reference

Syntax

ENTity name is entity-name
ENTity

ADD
MODify

DELete

DISPlay

PUNch

name is entity-name

TYPe is entity-type

TYPe is entity-type

VERSION is version-number

STAtus
REPlace
REMove

is status

(for CCID ccid is status)

,

COMment is ‘comment-text’ FORce
.

Syntax Rules

name is entity-name

Identifies a new ENTITY to be added to the CCDB or an existing ENTITY
occurrence to be modified, deleted, displayed, or punched. The entity-name must
be a 1 to 40-character alphanumeric value. For ADD actions this clause is
required, cannot contain masking specifications and the combined entity-name,
entity-type and version-number must be unique within the CCDB. For all other
operations, this clause is optional or may be specified with valid masking
specifications as described in Chapter 1.

TYPe is entity-type

Specifies the type of the entity. For ADD actions, this clause is required and must
identify a valid entity type as listed in Appendix B. For all other actions, clause is
optional and defaults to all entity-types. See Usage below for additional
information.

VERsion is version-number

The version number of the entity occurrence in the CCDB. For IDD entity types,
this value is the same as the IDD Version Number. If specified, version-number
must be a valid integer in the range 0 thru 9999. For ADD actions, if omitted, the
version-number defaults to 1.

ENTITY

Batch Syntax 3–17

STATUS

Reflects associations of each selected entity with Status definitions. For MODIFY
actions: REPLACE (default) replaces all existing Status associations with those
specified in the remainder of the clause; REMOVE removes the existing status(es)
specified in the remainder of the clause. See Usage below for additional
information.

is status

Identifies a global status for the entity. The Status must already be defined in the
CCDB.

for CCId ccid is status

Identifies a Status to be associated with the entity in the context of the indicated
ccid. The CCID and Status must already be defined in the CCDB.

COMment is 'comment-text'

A 1 to 60-character, user-defined remark for the ENTITY.

FORce

DELETE command only. This clause enables you to delete an ENTITY even if it
has Change Log Entries (CLEs) associated with it.

Usage

Entity Descriptor Identification

MODIFY, DELETE, DISPLAY, and PUNCH entity identification considerations.
If any part of the entity-identification (NAME, TYPE and VERSION) is not
specified, or is specified with name masking, CA-Endevor/DB processing will be
accomplished against all occurrences meeting the criteria of the information
specified. The combinations can be:

■ Name, type and version all specified exactly. The combination identifies one
(or zero) specific entity descriptor.

■ Name and type specified, version defaults to *. This combination identifies
all entity descriptors in the CCDB which match the specified name and type,
regardless of the version number.

■ Name specified, type defaults to *, version defaults to *. This combination
identifies all entity descriptors in the CCDB which match the specified name,
regardless of the type and version.

ENTITY

3–18 CA-Endevor/DB Batch Reference

■ Type specified, name defaults to * , version defaults to *. This combination
identifies all entity descriptors in the CCDB which match the specified type,
regardless of the name and version.

■ No specification. Name defaults to *, type defaults to *, version defaults to *.
This combination identifies all entity descriptors in the CCDB.

■ Name mask specified instead of name in any of the cases above will identify
a set of entity names. Refer to Chapter 1 for a description of the name-mask
rules.

STATUS

CA-Endevor/DB will execute the Status clause against each entity selected by the
command. It is used to establish a status for the entity occurrence at a global
level and/or within the context of a CCID. For instance, you may wish to assign
separate status associations for an entity to control its migration selections. For
example,
ADD ENTITY SELECTION-DATE TYPE ELEMENT VER 100
 STATUS (FOR CCID "INSTALL" IS "ALWAYS-MIGRATE"
 CCID "PROMOTE" IS "NEVER-MIGRATE").

DELETE with FORCE

If FORCE is specified on a DELETE command, all Change Log Entries (CLEs)
associated with the ENTITY are also deleted. A CLE is generated automatically
anytime an entity is updated.

ENTITY

Batch Syntax 3–19

Examples

The following examples illustrate the use of ENTITY commands:

Example 1
ADD ENTITY SELECTION-DATE TYPE ELEMENT VERSION 1
 STATUS (FOR CCID "ADMINISTER" IS "MANUAL-ENTITY")
 COMMENT "PRE-DEFINED ELEMENT ENTITY".

CA-Endevor/DB will store an entity named SELECTION-DATE with an entity
type of ELEMENT, a version number of 100 and the indicated remarks in the
CCDB and associate it with a status of MANUAL-ENTITY within the context of
the ADMINISTER CCID.

Example 2
MODIFY ENTITY * TYPE ELEMENT VER 100
 STATUS IS "NEVER-MIGRATE".

CA-Endevor/DB will assign a global status of NEVER-MIGRATE to all entities in
the CCDB with a type of ELEMENT and a version number of 100.

Example 3
MODIFY ENTITY SELECTION-DATE TYPE ELE VER 100
 REMOVE STATUS IS "NEVER-MIGRATE"
 COMMENTS "SPECIAL ELEMENT".

CA-Endevor/DB will remove the NEVER-MIGRATE status from the version 100
of the SELECTION-DATE element entity and update the comments.

MANAGEMENT GROUP

3–20 CA-Endevor/DB Batch Reference

MANAGEMENT GROUP

Purpose

Management Groups classify CCIDs for reporting purposes. A single
management group might include all CCIDs for a particular project, for example,
or for several related projects.

You can associate a CCID with an existing management group, to categorize that
CCID within the group. This does not change the data stored for either the CCID
or the management group but rather creates a relationship between the two in
the CCDB.

Processing Flow

When you enter a MANAGEMENT GROUP command, CA-Endevor/DB
performs the following processing:

■ Validates the input parameters to insure that:

– You are authorized to perform the action (ADD, MODIFY, DELETE, or
BROWSE) for a MANAGEMENT GROUP. If you are not, the system will
print an error message and disallow the transaction.

– The values specified in the input parameters are valid and all required
clauses are specified for the command.

■ For ADD actions, insures that the MANAGEMENT GROUP does not already
exist in the CCDB; for all other actions, insures that the MANAGEMENT
GROUP does exist in the CCDB.

■ Performs the requested action.

■ Prints a confirmation message that the action was successfully completed.

MANAGEMENT GROUP

Batch Syntax 3–21

Syntax

MANagement group name is management-group-name
MANagement group

ADD
MODify

DELete

DISPlay

PUNch

name is management-group-name

COMment is ‘comment-text’

REPlace
REMove

,

CCId name is ccid

(ccid

.

)

Syntax Rules

The rules pertaining to each clause in the syntax are listed below.

name is management-group-name

Identifies a MANAGEMENT GROUP to be added to the CCDB or an existing
MANAGEMENT GROUP descriptor to be modified, deleted, displayed, or
punched.

For ADD actions, this clause is required. management-group-name is a 1 to 16-
character alphanumeric value and must be a unique management group name
within the CCDB.

For all other operations, this clause is optional or may be specified with valid
masking specifications as described in Chapter 1. All operations will be affected
on each management group meeting the selection criteria.

CCId name is ccid

For an ADD command, this clause specifies the name of the CCID(s) you want to
associate with the management group.

For MODIFY commands, if REPLACE (default) is specified, all existing CCID
associations are removed and new CCID(s) named in this clause are associated
with each selected management group; if REMOVE is specified, existing
associations with the CCID(s) named in the clause are removed.

The CCID(s) specified in the clause must already be defined in the CCDB. Up to
1000 CCIDs may be associated with a management group.

MANAGEMENT GROUP

3–22 CA-Endevor/DB Batch Reference

COMment is 'comment-text'

A 1 to 60-character, user-defined remark for the management group.

Examples

The following examples illustrate the use of MANAGEMENT GROUP
commands.

Example 1
ADD MANAGEMENT GROUP NAME "DEV140"
 CCID NAME = (CAABF0-9703 CAABF0-9705)
 COMMENT "MANAGEMENT GROUP FOR DEVELOPMENT"

CA-Endevor/DB will store a new management group in the CCDB and associate
this management group with CCIDs CAABF0-9703 and CAABF0-9705.

Example 2
MODIFY MANAGEMENT GROUP
 REMOVE CCID CAABF0-9703.

CA-Endevor/DB will modify all management groups in the CCDB to remove
associations with CCID CAABF0-9703.

Example 3
DISPLAY MANAGEMENT GROUP NAME IS DEV*

CA-Endevor/DB will output the contents of each management group in the
CCDB whose name begins with "DEV" to the NDVRLST file.

PREAUTHORIZATION

Batch Syntax 3–23

PREAUTHORIZATION

Purpose

PREAUTHORIZATION is a CA-Endevor/DB Security function which associates
a user or CCID with one or more entity descriptor records in the CCDB. This
association may serve any of the following purposes:

■ To protect certain IDD entities from update by anyone other than
preauthorized users or projects.

■ To insure that certain users or projects only update specific preauthorized
IDD entities.

■ To restrict specific CCIDs so that only preauthorized users may sign on to
them.

■ To preregister identified IDD entities so that the Change Log Entries (CLEs)
created when those entities are modified will be recorded against specific
CCIDs.

■ To restrict selected statuses so that only preauthorized users can associate
those statuses with entities.

Refer to the CA-Endevor/DB Administrator Guide for more information on
preauthorization.

Processing Flow

When you enter a PREAUTHORIZATION command, CA-Endevor/DB performs
the following processing:

■ Validates the input parameters to insure that:

– You are authorized to perform the action (ADD, MODIFY, DELETE, or
BROWSE) for a PREAUTHORIZATION. If you are not, the system will
print an error message and disallow the transaction.

– The values specified in the input parameters are valid and all required
clauses are specified for the command.

– For ADD commands, insures that the PREAUTHORIZATION does not
already exist in the CCDB; for all other commands, insures the
PREAUTHORIZATION does exist in the CCDB.

– Performs the requested action.

– Prints a confirmation message that the action was successfully
completed.

PREAUTHORIZATION

3–24 CA-Endevor/DB Batch Reference

Syntax

PREauthorizationADD
MODify
DISPlay

PUNch

ENTity name is entity-name

TYPe is entity-type VERsion is version-number

TO USEr name is user-id
CCID name is ccid

ESTimated work completion is mm/dd/yy

ACTual work completion is mm/dd/yy

DERive ccid is Y

N

COMment is ‘comment-text’
.

DELete
ENTity name is entity-name

PREauthorization

TYPe is entity-type VERsion is version-number

CCId name is ccid

TO USEr name is user-id .

Syntax Rules

The rules pertaining to each clause in the syntax are listed below.

ENTity name is entity-name

Specifies the name of the entity(s) to which the preauthorization command
applies. The entity-name can be up to 40 alphanumeric characters and may be
specified with name masking as described in Chapter 1. See Usage below for
additional information.

TYPe is entity-type

Specifies the type of the entity(s) to which the preauthorization command
applies. If specified, entity-type must identify a valid entity type as listed in
Appendix B. See Usage below for additional information.

PREAUTHORIZATION

Batch Syntax 3–25

VERsion is version-number

The version number of the entity(s) to which the preauthorization command
applies. For IDD entity types, this value is the same as the IDD Version Number.
If specified, version-number must be a valid integer in the range 0 thru 9999. For
ADD actions, version-number defaults to 1.

TO

The user or CCID associated with the preauthorization command. You must
specify either an existing user or an existing CCID, but not both.

USEr is user-id

Identifies a User preauthorization to the selected entity(s). The user-id is 1 to 32
characters identifying an existing CCDB User descriptor.

CCId is ccid

Identifies a CCID preauthorization to the selected entity(s). The ccid is 1 to 12
characters identifying an existing CCDB CCID descriptor.

ESTimated work completion is estimated-date

Identifies the estimated completion date of this project. If specified, estimated-date
must be entered in mm/dd/yy format. This date is maintained as part of project
control functionality.

ACTual work completion is actual-date

Identifies the actual completion date of this project. If specified, actual-date must
be entered in mm/dd/yy format. This date is maintained as part of project control
functionality.

DERive ccid is

This clause is valid only if the TO CCID clause is specified in the
PREAUTHORIZATION command.

 Y — This preauthorization is to be used for CCID derivation.
Preauthorization containing DERIVE CCID = Y is also used to permit access
to the entity for those users not running in derived CCID mode.

 N — This preauthorization is not to be used for CCID derivation.

COMment is 'comment-text'

A 1 to 60-character, user-defined remark for the PREAUTHORIZATION.

PREAUTHORIZATION

3–26 CA-Endevor/DB Batch Reference

Usage

Entity Descriptor Identification

If any part of the entity-identification (ENTITY NAME, TYPE Descriptor and
VERSION) is omitted or is specified with name masking, CA-Endevor/DB
processing will be accomplished against all occurrences meeting the criteria of
the information specified. The combinations can be:

■ Name, type and version all specified exactly. The combination identifies
one (or zero) specific entity descriptor.

■ Name and type specified, version defaults to *. This combination identifies
all entity descriptors in the CCDB which match the specified name and type,
regardless of the version number.

■ Name specified, type defaults to *, version defaults to *. This combination
identifies all entity descriptors in the CCDB which match the specified name,
regardless of the type and version.

■ Type specified, name defaults to * , version defaults to *. This combination
identifies all entity descriptors in the CCDB which match the specified type,
regardless of the name and version.

■ No specification. Name defaults to *, type defaults to *, version defaults to *.
This combination identifies all entity descriptors in the CCDB.

■ Name mask specified instead of name in any of the cases above will
identify a set of entity names. Refer to Chapter 1 for a description of the
name-mask rules.

Changing Users/CCIDs Preauthorized to an Entity

To change a user or CCID preauthorized to an entity, use a DELETE
PREAUTHORIZATION command followed by an ADD PREAUTHORIZATION
command.

Examples

The following examples illustrate the use of PREAUTHORIZATION commands.

Example 1
ADD PREAUTHORIZATION
 ENTITY NAME IS "EMPSCHM" TYPE SCHEMA VERSION 100
 TO USER DATABASE-ADMIN
 ESTIMATED COMPLETION DATE 06/30/97
 COMMENT "BETA RELEASE".

PREAUTHORIZATION

Batch Syntax 3–27

CA-Endevor/DB will add this preauthorization to the CCDB for the identified
entity. This command allows user DATABASE-ADMIN to perform Schema
compiler updates against the EMPSCHM Version 100 schema.

Example 2
MODIFY PREAUTHORIZATION
 ENTITY * TYPE RECORD VERSION 100
 TO CCID DBADMIN.

This command modifies all preauthorizations defined for record entity types
with version 100, regardless of the name, to the DBADMIN CCID and to allow
that CCID to be available as a derived CCID.

Example 3
DELETE PREAUTHORIZATION
 TO CCID DEVREVIEW.

This command removes all preauthorizations associated with the CCID
"DEVREVIEW" from the CCDB.

SECURITY CLASS

3–28 CA-Endevor/DB Batch Reference

SECURITY CLASS

Purpose

Security classes are the most important part of CA-Endevor/DB security.
Security classes define restrictions that apply to dictionaries, CCIDs and users.
Each of these entities can be associated with a different security class. At
execution time (during stage two of the signon process), the security system
combines all the security classes referenced and arrives at a resultant set of
"permission flags". If an activity controlled by a permission flag is disallowed at
any level (dictionary, CCID or user), the user signed on to that dictionary and
working under that CCID will not be allowed to perform that activity.

The dictionary, CCID and user definitions each contain a reference to a security
class name. There will usually be few security classes in a CCDB. Many
installations set up one for the Security Administrator (usually NDVR-GLOBAL),
one for DBAs, one for development leaders and one for general application
developers.

Processing Flow

When you enter a SECURITY CLASS command, CA-Endevor/DB performs the
following processing:

■ Validates the input parameters to insure that:

– You are authorized to perform the action (ADD, MODIFY, DELETE, or
BROWSE) for a SECURITY CLASS. If you are not, the system will print
an error message and disallow the transaction.

– For ADD actions, insures that the SECURITY CLASS does not already
exist in the CCDB; for all other actions, insures that the SECURITY
CLASS does exist in the CCDB.

– The values specified in the input parameters are valid and all required
clauses are specified for the command.

■ Performs the requested action.

■ Prints a confirmation message that the action was successfully completed.

SECURITY CLASS

Batch Syntax 3–29

Syntax

SECurity class name is security-class-name
MODify

DISPlay

PUNch

SIGNout functions (signout-function-switches)

ADD

SECurity class
name is security-class-name

PREauth functions (preauthorization-function-switches)

LOCk functions (lock-function-switches)

ENTity functions (entity-function-switches)

CCId functions (ccid-function-switches)

STAtus functions (status-function-switches)

USEr functions (user-function-switches)

DICtionary functions (dictionary-function-switches)

MANagement group functions (mgrp-function-switches)

CONtrol functions (control-function-switches)

SECURITY CLASS

3–30 CA-Endevor/DB Batch Reference

DERive ccid is Y

N

SIGnin is Y

N

SO-Ccid is Y

N

SO-User is Y

N

NO-Ccid is Y

N

NO-User is Y

N

NO-Auth is Y

N

LIM-auth is Y

N

NM-Mode is Y

N

BATch is Y

N

ARChive is Y

N

MIGrate is Y

N

MODs NONe

(entity-type)

A-Opt NONe

(entity-type)

COMment is ‘comment-text’

.

DELete SECurity class name is security-class-name .

SECURITY CLASS

Batch Syntax 3–31

entity-type Clause

SCH
DMC
FIL
TAS
SUB
USE
DES
REC

FIL
TAS
SUB
USE
DES
REC
SYS
APO
SET
DIA
APP
ELE
QFI
PRC
TAB
FUN
MOD
PHY
CLA
ATT
MAP
LOA
LIN
MSG
LOG
LR
PRO

Syntax Rules

The rules pertaining to each clause in the syntax are listed below.

name is security-class-name

Identifies a new SECURITY CLASS to be added to the CCDB or an existing
SECURITY CLASS to be modified, deleted, displayed, or punched. The security-
class-name is a 1 to 16-character alphanumeric value. For ADD and DELETE
commands, this clause is required and must specify a unique security class
within the CCDB; for all other operations, this clause is optional or may be
specified with valid name masking specifications as described in Chapter 1.

Important! Do not delete either of the security classes named in the dictionary
description, nor the one identified in the CCDB Administrator's User descriptor record.

SECURITY CLASS

3–32 CA-Endevor/DB Batch Reference

authorization functions

The function clauses define from three to nine switches each, which can be
turned on by specifying a Y to indicate permission granted for the function or
turned off by specifying an N to indicate permission is denied for the function.
Note that Browse authority controls both MIS Online selection of Browse options
and MIS Batch Display and Punch commands, where applicable. See Usage
below for additional information.

Authorization Function Switch Function

SIGNout 1 Browse signed out entities

 2 Signout entities

 3 Signin entities

PREauthorization functions 1 Browse Preauthorizations

 2 Add Preauthorizations

 3 Delete Preauthorizations

 4 Modify Preauthorizations

LOCk functions (MIS Online
only)

1 Browse locked users

 2 Lock users

 3 Unlock users

 4 Browse locked CCIDs

 5 Lock CCIDs

 6 Unlock CCIDs

 7 Browse locked dictionaries

 8 Lock dictionaries

 9 Unlock dictionaries

ENTity functions 1 Browse entity descriptors

 2 Add entity descriptor

 3 Modify entity descriptor

 4 Delete entity descriptor

 5 Browse entity change history

 6 Browse entity status history

SECURITY CLASS

Batch Syntax 3–33

Authorization Function Switch Function

CCId functions 1 Browse CCID descriptors

 2 Add CCID descriptor

 3 Modify CCID descriptor

 4 Delete CCID descriptor

 5 Browse CCID/change associations

 6 Add CCID/change associations

 7 Modify CCID/change associations

 8 Delete CCID/change associations

 9 Browse entity status for CCID

STAtus functions 1 Browse Status descriptors

 2 Add status descriptor

 3 Modify status descriptor

 4 Delete status descriptor

 5 Browse status/entity associations

 6 Add status/entity associations

 7 Modify status/entity associations

 8 Delete status/entity associations

USEr functions 1 Browse User descriptors

 2 Add User descriptor

 3 Modify user descriptor

 4 Delete User descriptor

 5 Browse User/change associations

 6 Add User/change associations

 7 Modify User/change associations

 8 Delete User/change associations

DICtionary functions 1 Browse dictionary descriptors

 2 Modify dictionary descriptors

 3 Delete dictionary descriptors

 4 Browse change log entries

 5 Modify change log entries

SECURITY CLASS

3–34 CA-Endevor/DB Batch Reference

Authorization Function Switch Function

 6 Delete change log entries

MANagement group functions 1 Browse management group descriptors

 2 Add management group descriptors

 3 Modify management group descriptors

 4 Delete management group descriptors

 5 Browse management group/CCID associations

 6 Add management group/CCID associations

 7 Modify management group/CCID associations

 8 Delete management group/CCID associations

CONtrol functions 1 Browse CCDB descriptors

 2 Modify CCDB descriptors

 3 Browse security descriptors

 4 Add security descriptors

 5 Modify security descriptors

 6 Delete security descriptors

 7 Browse monitor dictionary status blocks

 8 Modify monitor dictionary status blocks

DERive ccid is

Determines how CA-Endevor/DB will handle CCIDs and change logging.

 Y — CCIDs are ignored at CA-Endevor/DB signon. When an entity is
modified, the CCDB is checked to see if a CCID is associated with the entity
(through the PREAUTHORIZATION DERIVE CCID IS Y clause); if so, the
change log entry created in the CCDB will be marked with the associated
CCID.

 N — User must perform a CA-Endevor/DB signon and specify a CCID in
order to cause change log entries to be marked with a CCID.

SIGnin is

Establishes permission level for entity signout/signin for other users and/or
CCIDs.

 Y — Signout/Signin entities for other users and/or CCIDs is allowed.

 N — Signout/Signin entities for other users and/or CCIDs is not allowed.

SECURITY CLASS

Batch Syntax 3–35

SO-Ccid is

Used in conjunction with the dictionary descriptor's AUTO-SO indicator to
control automatic signout of entities to a CCID. If AUTO-SO is not in effect (N),
this clause has no effect; if AUTO-SO is in effect (Y), this switch is used in
conjunction with the SO-USER switch to determine to whom an entity is signed
out.

 Y — If SO-USER is N, signout the entity to the first CCID that the user who
modified the entity was signed on under; If SO-USER is Y, this switch is
ignored.

 N — No automatic signout to a CCID is in effect.

SECURITY CLASS

3–36 CA-Endevor/DB Batch Reference

SO-User is

Used in conjunction with the dictionary descriptor's AUTO-SO indicator to
control automatic signout of entities to a User. If AUTO-SO is not in effect (N),
this clause has no effect; if AUTO-SO is in effect (Y), this switch is used in
conjunction with the SO-CCID switch to determine to whom an entity is signed
out.

 Y — Automatic signout is in effect to the user who modified the entity.

 N — If SO-CCID is Y, automatic signout is in effect to the CCID; if SO-CCID
is N, automatic signout is in effect to the user who modified the entity.

NO-Ccid is

Determines the requirements for specifying a CCID.

 Y — Changes may be made without a known CCID.

 N — A CCID must be specified in a CA-Endevor/DB SIGNON or the user
must run in Derive CCID processing mode.

NO-User is

Determines the requirements for specifying a userid.

 Y — Changes may be made without a known userid; if specified,
NO-USER = Y must be specified in the dictionary descriptor's security
classes.

 N — Changes will not be logged unless either a CA-IDMS/DC or a
CA-Endevor/DB userid is specified. SIGNON is required.

NO-Auth is

In conjunction with the LIM-AUTH clause, establishes preauthorization
restrictions for a user making changes. Refer to the CA-Endevor/DB Administrator
Guide for a full description of the use of NO-AUTH and LIM-AUTH.

 Y — User is not subject to preauthorization rules.

 N — User is subject to preauthorization rules.

LIM-auth is

In conjunction with the NO-AUTH clause, establishes preauthorization
restrictions for a user making changes. Refer to the CA-Endevor/DB Administrator
Guide for a full description of the use of NO-AUTH and LIM-AUTH.

 Y — Limited preauthorization applies to this user.

 N — Full preauthorization applies to this user.

SECURITY CLASS

Batch Syntax 3–37

NM-Mode is

Controls use of TAG commands in the Migration facility, NDVRDLVR process.

 Y — TAG commands may be specified.

 N — TAG commands may not be specified.

BATch is

Establishes permission to execute the MIS Batch facility, NDVRMISB.

 Y — NDVRMISB execution is allowed.

 N — NDVRMISB execution is disallowed.

ARChive is

Establishes authority to execute the Archive and Compress utility, NDVRARCO,
to archive Change Log Entries.

 Y — NDVRARCO execution is allowed.

 N — NDVRARCO execution is disallowed.

MIGrate is

Establishes authority to execute the Migration facility, including the migration
booking, NDVRBOOK with OPTION = MIGRATE.

 Y — Migration facility utility execution is allowed.

 N — Migration facility utility execution is disallowed.

MODs

Identifies the CCDB and CA-IDD entity types which users under this security
class are allowed to modify. Omitting an entity type means no update is allowed
for that entity type.

NONE

Updates are disallowed for all entity-types.

(entity-type(s))

Update is allowed for the entity-types specified, and only those specified. Refer
to Appendix B for a definition of the entity types.

A-OPT

Identifies the CCDB and CA-IDD entity types for which preauthorization rules
apply before updates are allowed. This facility is used in conjunction with the
NO-AUTH and LIM-AUTH values in the security class and by the existence of
preauthorizations in the CCDB.

SECURITY CLASS

3–38 CA-Endevor/DB Batch Reference

NONE

Preauthorization rules will be applied to all entity types.

(entity-type(s))

For each entity-type specified, preauthorization rules will not be applied.

COMment is 'comment-text'

A 1 to 60-character, user-defined remark for the security class descriptor.

Usage

DELete SECurity Class

Important! Do not delete either of the security classes named in the dictionary
description, nor the one identified in the CCDB Administrator's User descriptor record.

Authorization functions

Each of the authorization function clauses has from three to nine switches apiece.
For example, the SIGNOUT clause has three switches representing, in order, the
authority to Browse signed out entities, Signout entities, and Signin entities. To
turn on all the switches, enter the following syntax:
SIGNOUT (Y Y Y)

To turn on only the third switch, Signin entity authority, enter the following
syntax:
SIGNOUT (N N Y)

To turn on only the first switch, Browse signed out entities authority, enter the
following syntax:
SIGNOUT (Y)

Notice that entering the trailing N's for the second and third authority switches is
not required.

This logic applies for all the authorization function clauses.

Examples

The following examples illustrate the use of SECURITY CLASS commands:

Example 1
ADD SECURITY CLASS NAME IS TRAINEE
 COMMENT "SECURITY CLASS FOR ALL TRAINEES"
 SIGNOUT FUNCTIONS (N Y N)

SECURITY CLASS

Batch Syntax 3–39

 PREAUTH FUNCTIONS (Y N N N)
 LOCK FUNCTIONS (Y N N Y N N Y N N)
 ENTITY FUNCTIONS (Y Y Y N Y Y)
 CCID FUNCTIONS (Y N N N Y N N N Y)
 STATUS FUNCTIONS (Y N N N Y N N N)
 USER FUNCTIONS (Y N N N Y N N N)
 DICTIONARY FUNC (Y N N Y N N)
 MANAGEMENT FUNC (Y N N N Y N N N)
 CONTROL FUNCTIONS (Y N Y N N N Y N)
 DERIVE CCID N
 SIGNIN N
 SO-CCID Y
 SO-USER N
 NO-CCID N
 NO-USER N
 NO-AUTH N
 LIM-AUTH N
 NM-MODE N
 BATCH Y
 ARCHIVE N
 MIGRATE N
 MODS (DIA PRC MAP LOA).

CA-Endevor/DB will add a security class to the CCDB to be used for Trainees.
This security class does not allow the trainees any privileges that could cause
damage to the CCDB. Trainees will be allowed to browse information in the
CCDB but will only be allowed to ADD or MODIFY ENTITY information.
Trainees will be only allowed to update dialogs, processes, maps, and load
modules in the CA-IDD. Trainees will be allowed to use the MIS Batch facility
but will not be allowed to run the Archive or Migrate utilities.

Example 2
DISPLAY SECURITY CLASS.

CA-Endevor/DB will output the definitions for each Security Class in the CCDB
to the NDVRLST file.

SIGNIN

3–40 CA-Endevor/DB Batch Reference

SIGNIN

Purpose

The SIGNIN command enables you to sign in entities that have been signed out.
Sign in of an entity releases exclusive rights to that entity, allowing another user
or CCID to modify it. In addition, when an entity is signed out, preauthorization
commands cannot be executed for that entity. An entity must be signed in before
it can be preauthorized.

For example, if you want to modify a map and another user has signed out one of
that map's work records, you would not be allowed to regenerate the map. The
other user, or someone authorized to sign in entities for that user, would have to
do so before you could generate the map.

Processing Flow

When you enter a SIGNIN command, CA-Endevor/DB performs the following
processing:

■ Validates the input parameters to insure that:

– You are authorized to execute SIGNIN commands. If you are not, the
system will print an error message and disallow the transaction.

– The values specified in the input parameters are valid and all required
clauses are specified for the command.

■ Insures the selected entity exists in the CCDB and is signed out to the
designated user or CCID.

■ Signs in the entity.

■ Prints a confirmation message that the action was successfully completed.

Syntax

ENTity name is entity-name
SIGnin

VERsion is version-numberTYPe is entity-type

FROm

.

USEr name is user-id

CCId name is ccid

SIGNIN

Batch Syntax 3–41

Syntax Rules

The rules pertaining to each clause in the syntax are listed below.

ENTity name is entity-name

Identifies the entity(ies) to be signed in. If specified, entity-name must be a 1 to 40-
character alphanumeric value and may contain valid name masking
specifications as described in Chapter 1.

TYPe is entity-type

Specifies the type of the entity. If specified, it must identify a valid entity type as
listed in Appendix B. If omitted, entity-type defaults to all entity-types. See Usage
below for additional information.

VERsion is version-number

The version number of the entity occurrence in the CCDB. For IDD entity types,
this value is the same as the IDD Version Number. If specified, version-number
must be a valid integer in the range 0 thru 9999. If omitted, version-number
defaults to all versions.

FROM

Identifies the user or CCID whose entities are to be signed in. If omitted, SIGNIN
action depends on the entity information specified. See Usage below for
additional information.

USEr name is user-id

The user whose entities are to be signed in. The user-id must be the
1 to 32-character name of an existing user.

CCId name is ccid

The CCID whose entities are to be signed in. The ccid must be the
1 to 12-character name of an existing CCID.

Usage

Entity Descriptor Identification

If any part of the entity-identification (NAME, TYPE, and VERSION) is not
specified, or is specified with name masking, SIGNIN entity selection will be
accomplished for all entity occurrences meeting the criteria of the information
specified.

Name, type and version all specified exactly. The combination identifies one
(or zero) specific entity descriptor.

SIGNIN

3–42 CA-Endevor/DB Batch Reference

Name and type specified, version defaults to *. This combination identifies all
entity descriptors in the CCDB which match the specified name and type,
regardless of the version number.

Name specified, type defaults to *, version defaults to *. This combination
identifies all entity descriptors in the CCDB which match the specified name,
regardless of the type and version.

Type specified, name defaults to * , version defaults to *. This combination
identifies all entity descriptors in the CCDB which match the specified type,
regardless of the name and version.

No specification. Name defaults to *, type defaults to *, version defaults to *.
This combination identifies all entity descriptors in the CCDB.

Name mask specified instead of name in any of the cases above will identify a
set of entity names. Refer to Chapter 1 for a description of the name-mask rules.

FROM clause

If the FROM clause is omitted, all selected entities will be signed in, regardless of
the user or CCID to which they have been signed out.

If the FROM clause is specified, selected entities will be signed in only for the
specific user or CCID.

Examples

The following examples illustrate the use of the SIGNIN commands.

Example 1
SIGNIN ENTITY NAME DEPARMENT TYPE REC VERSION 1
 FROM CCID DBADMIN.

CA-Endevor/DB will signin the specified single entity which was signed out to
the "DBADMIN" CCID.

Example 2
SIGNIN ENTITY NAME * TYPE * VERSION 100.

CA-Endevor/DB will signin all entities in the CCDB containing version number
100 from any user or CCID to which the occurrence has been signed out.

SIGNOUT

Batch Syntax 3–43

SIGNOUT

Purpose

The SIGNOUT command enables you to explicitly reserve entities for the
exclusive use of a particular CCID or user.

Processing Flow
When you enter a SIGNOUT command, CA-Endevor/DB performs the following
processing:

■ Validates the input parameters to insure that:

– You are authorized to execute SIGNOUT commands. If you are not, the
system will print an error message and disallow the transaction.

– The values specified in the input parameters are valid and all required
clauses are specified for the command.

■ Insures that the entity exists in the CCDB and is not already signed out.

■ Signs out the entity.

■ Prints a confirmation message that the action was successfully completed.

Syntax

ENTity name is entity-name
SIGNOUT

VERsion is version-numberTYPe is entity-type

COMment is ‘comment-text’

TO

.

USEr name us user-id

CCId name is ccid

Syntax Rules

The rules pertaining to each clause in the syntax are listed below.

ENTity name is entity-name

Identifies the entity(ies) to be signed out. If specified, entity-name must be a
1 to 40-character alphanumeric value and may contain valid name masking
specifications as described in Chapter 1.

SIGNOUT

3–44 CA-Endevor/DB Batch Reference

TYPe is entity-type

Specifies the type of the entity. If specified, it must identify a valid entity type as
listed in Appendix B. If omitted, entity-type defaults to all entity-types. See
Usage below for additional information.

VERsion is version-number

The version number of the entity occurrence in the CCDB. For IDD entity types,
this value is the same as the IDD Version Number. If specified, version-number
must be a valid integer in the range 0 thru 9999. If omitted, version-number
defaults to all versions.

TO

Identifies the user or CCID to whom the selected entities are to be signed out.
SIGNOUT must be accomplished to either a user or a CCID, but not both.

USEr name is user-id.

The user to whom the entities are to be signed out. The user-id must be the
1 to 32-character name of an existing user.

CCId name is ccid

The CCID to whom the entities are to be signed out. The ccid must be the
1 to 12-character name of an existing CCID.

COMment is 'comment-text'

A 1-60 character, user-defined remark for the SIGNOUT.

Usage

Entity Descriptor Identification

If any part of the entity-identification (NAME, TYPE, and VERSION) is not
specified, or is specified with name masking, SIGNOUT entity selection will be
accomplished for all entity occurrences meeting the criteria of the information
specified.

Name, type and version all specified exactly. The combination identifies one
(or zero) specific entity descriptor.

Name and type specified, version defaults to *. This combination identifies all
entity descriptors in the CCDB which match the specified name and type,
regardless of the version number.

SIGNOUT

Batch Syntax 3–45

Name specified, type defaults to *, version defaults to *. This combination
identifies all entity descriptors in the CCDB which match the specified name,
regardless of the type and version.

Type specified, name defaults to * , version defaults to *. This combination
identifies all entity descriptors in the CCDB which match the specified type,
regardless of the name and version.

No specification. Name defaults to *, type defaults to *, version defaults to *.
This combination identifies all entity descriptors in the CCDB.

Name mask specified instead of name in any of the cases above will identify a
set of entity names. Refer to Chapter 1 for a description of the name-mask rules.

Examples

The following examples illustrate the use of the SIGNOUT commands.

Example 1
SIGNOUT ENTITY NAME DEPARMENT TYPE REC VERSION 1
 TO CCID DBADMIN.

CA-Endevor/DB will sign out the specified single entity to the "DBADMIN"
CCID.

Example 2
SIGNOUT ENTITY NAME * TYPE * VERSION 100
 TO USER DATABASE-ADMINISTRATOR
 COMMENT "PRODUCTION FREEZE"

CA-Endevor/DB will signout all entities in the CCDB containing version number
100 to the "DATABASE-ADMINISTRATOR" user and document each SIGNOUT.

STATUS

3–46 CA-Endevor/DB Batch Reference

STATUS

Purpose

A status is similar to a CA-IDD attribute. It is a "tag" used to annotate, identify,
or classify entities and is often used to include or exclude entities for migration.

Status identifies can be associated with an entity or with an entity within the
context of a particular CCID. Status names are user-defined and might identify a
"state" such as DESIGNED, "IN DEVELOPMENT", COMPLETED,
PROGRAMMED, and so forth. A status can be assigned by itself ("globally") or
within the context of a CCID. For example, a given entity might have the status
"IN DEVELOPMENT" in CCID ACCT-9706 and the status TESTED in CCID
ACCT-9703. An entity may have a global status and different status within a
given CCID.

Processing Flow

When you enter a STATUS command, CA-Endevor/DB performs the following
processing:

■ Validates the input parameters to insure that:

– You are authorized to perform the action (ADD, MODIFY, DELETE, or
BROWSE) for a STATUS. If you are not, the system will print an error
message and disallow the transaction.

– The values specified in the input parameters are valid and all required
clauses are specified for the command.

■ For ADD actions, insures that the STATUS does not already exist in the
CCDB; for all other actions, insures that the STATUS does exist in the CCDB.

■ Performs the requested action.

■ Prints a confirmation message that the action was successfully completed.

STATUS

Batch Syntax 3–47

Syntax

TYPe is PUBlic

PRIvate

COMment is ‘comment-text’

STAtus name is status
STAtus

ADD

name is status

.

MODify

DELete

DISPlay

PUNch

Syntax Rules

The rules pertaining to each clause in the syntax are listed below.

name is status

Identifies a new STATUS to be added to the CCDB or an existing STATUS
occurrence to be modified, deleted, displayed, or punched. The status-name must
be a 1 to 16-character alphanumeric value. For ADD actions this clause is
required, cannot contain masking specifications, and must be unique within all
statuses in the CCDB. For all other operations, this clause is optional or may be
specified with valid masking specifications as described in Chapter 1.

TYPe is type

Indicates whether the STATUS is PUBLIC or PRIVATE. If omitted, defaults to
PUBLIC.

COMment is 'comment-text'

A 1 to 60-character, user-defined remark for the STATUS.

Examples

The following example illustrates the use of the ADD STATUS command.

Example 1
ADD STATUS NEVER-MIGRATE
 TYPE IS PUBLIC
 COMMENT "STATUS FOR ENTITIES TO NEVER MIGRATE".

CA-Endevor/DB will create the NEVER-MIGRATE status in the CCDB with a
type of PUBLIC and the indicated comments for documentation purposes.

STATUS

3–48 CA-Endevor/DB Batch Reference

Example 2
MODIFY STATUS NEVER*
 TYPE IS PRIVATE.

CA-Endevor/DB will modify all statuses in the CCDB which match the masked
name "NEVER" to reflect a type of PRIVATE. This will require that a user be
preauthorized to assign any status whose name matches "NEVER" to an entity.

USER

Batch Syntax 3–49

USER

Purpose

User information describes individual CA-Endevor/DB users or user groups to
the CA-Endevor/DB system. Each user descriptor contains a name, optional
password, security restrictions, current CCID(s), and descriptive comments. The
user name and password are used during SIGNON to identify the user to the
system and to verify that the user is authorized to use CA-Endevor/DB. The
security class identifies the set of security restrictions in effect for the user
(further described in the CA-Endevor/DB Administrator Guide. The CCIDs identify
the CCIDs under which the user is working (or under which the user last
worked).

If necessary, a particular user might be restricted from dictionary access
altogether. This can effectively secure your dictionary and CCDB from persons
no longer permitted access.

Processing Flow

When you enter a USER command, CA-Endevor/DB performs the following
processing:

■ Validates the input parameters to insure that:

– You are authorized to perform the action (ADD, MODIFY, DELETE, or
BROWSE) for a user. If you are not, the system will print an error
message and disallow the transaction.

– The values specified in the input parameters are valid and all required
clauses are specified for the command.

■ For ADD actions, insures that the user does not already exist in the CCDB;
for all other actions, insures that the user does exist in the CCDB.

■ Performs the requested action.

■ Prints a confirmation message that the action was successfully completed.

USER

3–50 CA-Endevor/DB Batch Reference

Syntax

CCId is NOCcid

ccid ()

USEr name is user-id
USEr

name is user-id

ADD
MODify

DISPlay

PUNch

SECurity class is security-class

SECurity class is security-class

PASsword is password

COMment is ‘comment-text’

ccid
,

.

DELete USEr name is user-id
FORce

.

Syntax Rules
The rules pertaining to each clause in the syntax are listed below.

name is user-id

Identifies a new user to be added to the CCDB or an existing user descriptor to be
modified, deleted, displayed, or punched. The user-id must be a 1 to 32-character
alphanumeric value. For ADD actions, this clause is required and must be
unique within all users in the CCDB; for DELETE actions, this clause is required
and must identify an existing user within the CCDB. For all other operations, this
clause is optional or may be specified with valid masking specifications as
described in Chapter 1.

SECurity class is security-class

Identifies the Security Class to be associated with the user. The Security Class
must already exist in the CCDB. This clause is required for ADD commands.

PASsword is password

Specifies a password for the user. A password can be any 1 to 8-character
alphanumeric value and is stored in the CCDB in an encrypted form to further
secure the user. Password values are never displayed.

USER

Batch Syntax 3–51

CCID Name is ccid

Identifies the name of any CCID associations for this particular user. If specified,
ccid must be a 1 to 12-character alphanumeric value and identifying a previously
defined CCID. If association is desired between the user and multiple CCIDs,
enter the CCIDs using the list format shown in the syntax diagram. See Usage
below for additional information.

NOCcid

No CCIDs are associated with this user.

COMment is 'comment-text'

A 1 to 60-character, user-defined remark for the user.

FORce

DELETE command only. This clause enables you to delete a user even if it has
Change Log Entries (CLEs) associated with it.

Usage

CCIDs

If a user has associated CCIDs, CA-Endevor/DB will "remember" those CCIDs
from session to session. On a MODIFY request, to associate the user with a
different set of CCIDs, you must first enter the NOCCID option to remove any
associations between the user and any CCIDs. You would then specify the new
set of CCIDs, if any, to be associated with the user.

DELETE with FORCE

If FORCE is specified on a DELETE command, all Change Log Entries (CLEs)
associated with the user are also deleted. A CLE is generated automatically
anytime an entity is updated.

Examples

The following examples illustrate the use of the ADD USER command.

Example 1
ADD USER NAME IS DATABASE-ADMINISTRATOR
 PASSWORD IS DBA
 CCID (DBADMIN, SYSADMIN)
 COMMENT DATABASE ADMINISTRATOR FOR PROJECT'.

USER

3–52 CA-Endevor/DB Batch Reference

The CCDB Administrator has added a new user to be used by the database
administrator and has associated this user with both the DBADMIN and
SYSADMIN CCIDs.

Example 2
MODIFY USER NAME IS DATABASE-ADMINISTRATOR
 CCID IS NOCCID.
MODIFY USER NAME IS DATABASE-ADMINISTRATOR
 CCID IS DBADMIN.

The CCDB Administrator has modified the user to remove all previous CCID
associations and then to associate the user with only the DBADMIN CCID.

Example 3
DISPLAY USER NAME IS DEV*.

This command will display all users in the CCDB whose name matches the
"DEV" name-mask.

Example 4
DELETE USER NAME IS DEVUSER FORCE.

The CCDB Administrator has decided to delete the USER and to force all CLEs
associated with the USER to also be deleted.

PUNCH Mode 4–1

Chapter

4 PUNCH Mode

What Is PUNCH Mode?

PUNCH mode does not execute commands that you enter, but takes the
commands, builds syntax for all of the elements in the CCDB which meet the
selection criteria, and then punches the detailed command syntax into a punch
dataset without echoing the syntax on the Batch process listing. Using a PUNCH
<CCDB-entity-type> command for the supported CCDB-entity-types, under
PROCESS mode, achieves the same results as if an ADD <CCDB-entity-type>
command were issued under PUNCH mode, except that the syntax is echoed on
the Batch process listing, prefixed with an “*+“. In either case, the command
syntax written to the punch dataset may be viewed or edited.

Why Use PUNCH Mode?

While most of your CA-Endevor/DB Batch work will be done in the PROCESS
mode, the PUNCH mode can be used. Examples of when you might want to use
PUNCH mode are:

■ You want to produce syntax for SIGNIN or SIGNOUT commands or you
want the syntax to reflect operations other than ADD.

■ You do not want the syntax to be echoed on the Batch listing

If you enter a command in PUNCH mode, CA-Endevor/DB writes syntax to a
punch dataset for all objects in the CCDB that meet the selection criteria. The
generated syntax is not echoed on the CA-Endevor/DB Batch listing. You can
review the punched syntax for the command(s) you entered and, if needed, edit
it. You can run the edited commands in PROCESS mode to execute the
commands against the CCDB.

If, for example, you wanted to produce syntax for all the entities in the CCDB,
you would enter the following commands:

SET OPTION PUNCH.

ADD ENTITY.

PUNCH Mode Syntax

4–2 CA-Endevor/DB Batch Reference

CA-Endevor/DB would then punch the following:
ADD ENTITY NAME IS "COEDASO "
 TYPE IS "DIALOG "
 VERSION IS 00001
 COMMENT IS "CLAP ON "
 .
ADD ENTITY NAME IS "COEDASO-PREMAP "
 TYPE IS "PROCESS "
 VERSION IS 00001
 COMMENT IS "CLAP OFF "
 .
ADD ENTITY NAME IS "COEDASO-RESPONSE"
 TYPE IS "PROCESS "
 VERSION IS 00001
 COMMENT IS "CLAP ON "
 .
ADD ENTITY NAME IS "COEDSHIP "
 TYPE IS "DIALOG "
 VERSION IS 00001
 COMMENT IS "CLAP OFF "
 .

In the example above, CA-Endevor/DB punched four ADD ENTITY commands,
one for each entity in the CCDB. As you can see, CA-Endevor/DB included the
NAME, TYPE, VERSION, and COMMENT clauses in the syntax. You can now
review all the entities in the CCDB, along with all the information for those
entities located in the CCDB.

If you wanted to change any of the commands and then execute them against a
CCDB, you can use your standard editor.

In this example CCDB, there are only four entities. If there were more entities in
the CCDB, they would also be punched.

PUNCH Mode Syntax

The syntax for the commands in PUNCH mode is the same as described in the
Batch Syntax chapter. You have to enter all the required clauses in each syntax
and end each command with a period.

When you have CA-Endevor/DB Batch process a command in PUNCH mode,
the punched output will reflect the contents of the CCDB. There will be one
command punched for each description (entity, CCID, etc.) in the CCDB that
matches the selection criteria in your original command. The punched
commands will each include some combination of the clauses in your original
command and the information in the CCDB. The rules for this combination
depend on the command verb you use in your original command (ADD,
MODIFY, or DELETE).

The following sections describe the output clause combinations for each of the
three command verbs.

PUNCH Mode Syntax

PUNCH Mode 4–3

Processing Flow

When you enter a command in PUNCH mode, CA-Endevor/DB performs the
following processing:

■ Validates the input parameters to insure that:

- You are authorized to BROWSE the CCDB object named in the request. If
you are not, the system will print an error message and disallow the
transaction.

- The values specified in the input parameters are valid and all required
clauses are specified for the command.

■ Produces syntax based on the input command for the specified CCDB object
to the output NDVRPCH file.

■ Prints a confirmation message that the action was successfully completed.

The ADD Verb

The ADD verb in PUNCH mode uses information from the CCDB to produce
command clause values. If you do not enter selection criteria in the commands,
the ADD verb will punch all the information located in the CCDB for that
command. For example, if you enter the command:

SET OPTIONS PUNCH.

ADD ENTITY.

CA-Endevor/DB would punch the syntax for every entity in the CCDB. The
punched syntax would include the NAME, TYPE, VERSION, COMMENT, and
STATUS clauses for each entity in the CCDB. If you were to include selection
criteria in the command, such as the following:

SET OPTIONS PUNCH.

ADD ENTITY TYPE IS DIALOG.

CA-Endevor/DB would punch the syntax for only those entities whose type is
dialog. The punched syntax would again include the NAME, TYPE, VERSION,
COMMENT, and STATUS clauses for each entity. Applicable selection criteria is
explained in the description for each command.

If you specify an "attribute" clause (i.e., a clause that describes the CCDB object
rather than identifies it), the clause you specify in your original command will
appear in place of any CCDB data in every punched command. For example, if
you enter the following command:

SET OPTIONS PUNCH.

ADD ENTITY TYPE IS RECORD STATUS IS NEVERMIGRATE.

CA-Endevor/DB will punch the following syntax:

PUNCH Mode Syntax

4–4 CA-Endevor/DB Batch Reference

ADD ENTITY NAME IS COL-COLLIER
 TYPE IS RECORD
 VERSION IS 00001
 COMMENT IS
 "PEA PORR HT"
 STATUS IS NEVERMIGRATE
 .
ADD ENTITY NAME IS FL-GRAFIX
 TYPE IS RECORD
 VERSION IS 00002
 COMMENT IS
 "WKS IN BOSTON"
 STATUS IS NEVERMIGRATE
 .

CA-Endevor/DB punched ADD ENTITY commands for all entities that were of
type RECORD. Each punched command included the STATUS clause as entered
in the original command.

The Modify Verb

The MODIFY verb will punch the MODIFY command syntax for the objects that
meet the selection criteria in the CCDB. CA-Endevor/DB will punch the
identifying clauses in each command. The identifying clauses are comprised of
the information necessary to identify the CCDB object. For example, an entity is
identified by its name, type, and version. If you enter the command:

SET OPTIONS PUNCH.

MODIFY ENTITY.

CA-Endevor/DB would punch the following MODIFY ENTITY syntax:
MOD ENTITY NAME IS "COEDASO "
 TYPE IS "DIALOG "
 VERSION IS 00001
 .
MOD ENTITY NAME IS "COEDASO-PREMAP "
 TYPE IS "PROCESS "
 VERSION IS 00001
 .
MOD ENTITY NAME IS "COEDASO-RESPONSE"
 TYPE IS "PROCESS "
 VERSION IS 00001
 .
MOD ENTITY NAME IS "COEDSHIP "
 TYPE IS "DIALOG "
 VERSION IS 00001
 .

Any additional clauses that you enter will also be included in every punched
MODIFY command. Only the clauses that you enter in the command, in addition
to the identifying clauses, will be punched. If, for example, you do not enter a
COMMENT clause in the MODIFY command, CA-Endevor/DB will not include
that clause in the punched command.

PUNCH Mode Syntax

PUNCH Mode 4–5

For example, if you want to punch a MODIFY ENTITY command with a specific
COMMENT clause for every entity whose name begins with JSB, you would
enter the following command:

SET OPTIONS PUNCH.

MOD ENTITY NAME JSB*

COMMENT = "MODIFY JSBTEST".

CA-Endevor/DB Batch will punch the following:
MOD ENTITY NAME IS JSBTEST1
 TYPE IS ELEMENT
 VERSION IS 1
 COMMENT IS "MODIFY JSBTEST"
 .
MOD ENTITY NAME IS JSBTEST2
 TYPE IS RECORD
 VERSION IS 1
 COMMENT IS "MODIFY JSBTEST".
 .
MOD ENTITY NAME IS JSBTEST2
 TYPE IS ELEMENT
 VERSION IS 2
 COMMENT IS "MODIFY JSBTEST"
 .

As you can see, CA-Endevor/DB punched a MODIFY ENTITY command for
every entity in the CCDB whose name began with JSB. The identifying clauses,
NAME, TYPE, and VERSION were automatically included in the command. The
COMMENT clause that you entered was also included in each command that
was punched. Comments (if there were any) in the CCDB were ignored.

The Delete Verb

The DELETE verb in the PUNCH mode builds a DELETE command for each
CCDB object that meets the selection criteria. CA-Endevor/DB will punch the
identifying clauses for every command. The identifying clauses are comprised of
the information necessary to identify the CCDB object. For example, an entity is
identified by its name, type, and version.

For example, if you entered the following command:
SET OPTIONS PUNCH.

DEL ENTITY NAME JSB*.

CA-Endevor/DB Batch would punch the following commands for all the entities
that met the selection criteria, in this case being the NAME clause:

DEL ENTITY NAME IS JSBTEST1
 TYPE IS ELEMENT
 VERSION IS 1
 .
DEL ENTITY NAME IS JSBTEST2
 TYPE IS RECORD
 VERSION IS 1

PUNCH Mode Syntax

4–6 CA-Endevor/DB Batch Reference

 .
DEL ENTITY NAME IS JSBTEST2
 TYPE IS ELEMENT
 VERSION IS 2
 .

In the example above, CA-Endevor/DB punched DELETE syntax for each entity
in the CCDB whose name began with JSB.

Batch Execution JCL 5–1

Chapter

5 Batch Execution JCL

Introduction

The JCL used to execute CA-Endevor/DB Batch under OS/390 is shown below.
A sample of this JCL, SAMPMISB, is provided on the installation tape and loaded
during installation.

OS/390 JCL
The JCL used to run NDVRMISB under the CA-IDMS Central Version and in
local mode follows:

CA-IDMS/CV Batch JCL
//JOBNAME JOB YOUR.JOBCARD.INFORMATIONYOUR.JOBCARD.INFORMATIONYOUR.JOBCARD.INFORMATIONYOUR.JOBCARD.INFORMATION
//JOBLIB DD DISP=SHR,DSN=usercv.loadlibusercv.loadlibusercv.loadlibusercv.loadlib
// DD DISP=SHR,DSN=ndvrdb.loadlibndvrdb.loadlibndvrdb.loadlibndvrdb.loadlib
// DD DISP=SHR,DSN=idms.loadlibidms.loadlibidms.loadlibidms.loadlib
//*
//**
//*
//* JOB: SAMPMISB
//*
//* PURPOSE: RUN CA-ENDEVOR/DB BATCH COMMANDS.
//*
//* STEP: FUNCTION:
//* ===== =========
//*
//* GOMISB RUNS CA-ENDEVOR/DB BATCH UPDATE.
//*
//**
//*
//GOMISB EXEC PGM=NDVRMISB,REGION=640K
//SYSCTL DD DISP=SHR,DSN=idms.sysctlidms.sysctlidms.sysctlidms.sysctl
//NDVRPCH DD DISP=OLD,DSN=your.punch.datasetyour.punch.datasetyour.punch.datasetyour.punch.dataset
//NDVRLST DD SYSOUT=*
//NDVRERR DD SYSOUT=*
//SYSIDMS DD *
DMCL=dmcldmcldmcldmcl----namenamenamename
DICTNAME=dictionarydictionarydictionarydictionary----namenamenamename
Other Optional SYSIDMS ParametersOther Optional SYSIDMS ParametersOther Optional SYSIDMS ParametersOther Optional SYSIDMS Parameters

OS/390 JCL

5–2 CA-Endevor/DB Batch Reference

/*
//NDVRIPT DD *
 SIGNON
 USER = youruseridyouruseridyouruseridyouruserid PASSWORD = yourpswdyourpswdyourpswdyourpswd
 DICTNAME userdictuserdictuserdictuserdict.
+ PUT YOUR CA-ENDEVOR/DB BATCH COMMANDS HERE. +
/*

The following table describes the substitution parameters above.

Field Description

usercv.loadlib Dataset name of user loadlib. This library contains
DMCL and subschema load modules. It is not needed
for CA-IDMS/CV, but is required for local mode.

ndvrdb.loadlib Dataset name of loadlib containing CA-Endevor/DB
software.

idms.loadlib Dataset name of loadlib containing CA-IDMS software.

640k Size of region to run CA-Endevor/DB Batch under the
CA-IDMS/CV.

your.punch.dataset Dataset name of the CA-Endevor/DB Batch punched
output. This dataset will be used to write detail CA-
Endevor/DB Batch command syntax in PUNCH mode.
This dataset will contain 80 character card images and
must be large enough to contain all commands punched
by CA-Endevor/DB.

youruserid Your userid.

yourpswd Your password.

idms.sysctl Dataset name of the CA-IDMS/CV SYSCTL file.

userdict Name of the dictionary to which you are signing on.

dmcl-name Name of the DMCL used by the CA-IDMS/CV.

dictionary-name DICTNAME of the CCDB against which you are
running the batch update.

Local Mode JCL

To execute NDVRMISB in local mode:

1. Remove the SYSCTL statement.

2. Replace with the following statements:
//CDB1 DD DSN=your.dbcdb1.dataset.name,DISP=OLD

OS/390 JCL

Batch Execution JCL 5–3

//CDB2 DD DSN=your.dbcdb2.dataset.name,DISP=OLD

//CDB3 DD DSN=your.dbcdb3.dataset.name,DISP=OLD

//SYSJRNL DD DSN=your.idms.journal(+1),DISP=(NEW,CATLG,CATLG),
// UNIT=TAPE

3. Increase the region size value as needed to accommodate standard CA-IDMS
local mode overhead.

Note: When running in local mode, ensure that the CCDB is restored following
an abend. For this reason, it is highly recommended that CA-IDMS/CV mode be
used whenever possible.

The following table describes the substitution parameters above.

Field Description

your.dbcdb1.dataset.name Dataset name for CA-Endevor/DB CCDB ADM
area

your.dbcdb2.dataset.name Dataset name for CA-Endevor/DB CCDB LOG area

your.dbcdb3.dataset.name Dataset name for CA-Endevor/DB CCDB PAK area

your.idms.journal Dataset name of the CA-IDMS/DB journal file

Note: If your DMCL has been defined with dynamic dataset allocation for the
CDB1, CDB2, and CDB3 files, the DD statements may be omitted from your local
mode JCL.

CA-Endevor/DB Batch Reserved Words A–1

Appendix

A
CA-Endevor/DB Batch Reserved
Words

Within CA-Endevor/DB Batch, there are several reserved words - parameters or
keywords (for example, type or system) that should not or cannot be used as
qualifiers or identifiers within the syntax. If you do use such a word when
coding the syntax, you must surround the word in quotes; either single or double
quotes can be used. For example, assume you are adding an entity called ADD.
If you coded

ADD ENTITY ADD.

you would receive an error message. ADD is a reserved word and must be
entered with quotes. The statement:

ADD ENTITY 'ADD'.

would be accepted by CA-Endevor/DB. Likewise, a clause such as MODIFY
ENTITY 'ENTITY' would be accepted by the system.

CA-Endevor/DB Batch Reserved Words

The list below contains the fully-spelled reserved words. Any partial spelling of
a particular word (three characters or more) is also considered reserved. For
example, "COMMENTS", "COMMENT", and "COM" are all reserved within
CA-Endevor/DB.

CA-Endevor/DB Batch Reserved Words A–2

A-OPT

ACTUAL

ADD

APO

APPLICATION

ARCHIVE

ATTRIBUTE

AUTO-SO

AUTO-US

BATCH

CCDB

CCID

CLASS

COMMENT

COMPLETION

CONTROL

DBNAME

DEFAULT

DELETE

DERIVE

DESCRIPTION

DESCRIPTOR

DIALOG

DICTIONARY

DICTNAME

DMCL

ECHO

ELE

ENTITY

ERUS (EUS)

ESTIMATED

FILE

FOR

FROM

FUNCTIONS

GROUP

IS

LIM-AUTH

LINE

LOAD-MODULE

LOCK

LOG

LOGICAL-RECORD
(LR)

MANAGEMENT
(MGR)

MAP

MESSAGE

MIGRATE

MODIFY

CA-Endevor/DB Batch Reserved Words

CA-Endevor/DB Batch Reserved Words A–3

MODS

MONITOR

MSG

NAME

NM-MODE

NO-AUTH

NO-CCID

NO-PASS

NO-SYNC

NO-USER

NOECHO

NOMESSAGE

OPTIONS

PASSWORD

PHYSICAL-TERMINA
(PTERM)

PREAUTHORIZATION

PRINT

PRIVATE

PRO

PROCESS (PRC)

PUBLIC

PUNCH

QFILE

RECORD

REMOVE

REPLACE

SCHEMA

SCL

SECURITY

SET

SIGNIN

SIGNON

SIGNOUT

SO-CCID

SO-USER

STATUS

STOP

SUBSCHEMA

SYSTEM

TABLE

TASK

TO

TYPE

USER

VERSION

WORK

CA-Endevor/DB Entity Types B–1

Appendix

B CA-Endevor/DB Entity Types

Dictionary Entity Types
These types can be specified in the MONITOR and AUTO-SO clauses of the
MODIFY DICTIONARY command, in the MODS and A-OPT clauses of the ADD
SECURITY CLASS and MODIFY SECURITY CLASS commands, and in the TYPE
clause of all commands containing ENTITY NAME, TYPE, and VERSION
clauses.

■ SCH (SCHEMA) - physical database definition

■■■■ FIL (FILE) - non-database file definition as defined in the IDD ADD FILE

■■■■ TAS (TASK) - online processing unit identified by the ADD TASK command
in SYSGEN

■■■■ SUB (SUBSCHEMA) - logical database definition

■■■■ USE (USER) - CA-IDMS/DC user definition

■■■■ DES (DESTINATION) - a SYSGEN component

■■■■ REC (RECORD) - grouping of data elements

■■■■ SYS (SYSTEM) - CA-IDMS/CV system-id built by the SYSGEN compiler

■■■■ APO (APPLICATION - OLD) - old (pre-CA-IDMS Release 12.0) ADSA
application definition

■■■■ SET (SET) - schema compiler set definition

■■■■ DIA (DIALOG) - as built by ADS/O

■■■■ APP (APPLICATION) - ADSA application definition

■■■■ ELE (ELEMENT) - unit of data; data element

■■■■ QFI (QFILE) - predefined group of OLQ commands

■■■■ PRC (PROCESS) - ADS program unit

■■■■ TAB (TABLE) - as defined in the IDD ADD TABLE command

■■■■ FUN (FUNCTION) - ADSA internal transaction-id

■■■■ MOD (MODULE) - As defined in the IDD ADD MODULE command

CCDB ENTITY TYPES

B–2 CA-Endevor/DB Batch Reference

■■■■ PHY (PHYSICAL-TERMINAL) - CA-IDMS/DC terminal definition as
defined in SYSGEN

■■■■ CLA (CLASS) - as defined in the IDD ADD CLASS

■■■■ ATT (ATTRIBUTE) - as defined in the IDD ADD ATTRIBUTE

■■■■ MAP (MAP) - CA-IDMS/DC screen format definition

■■■■ LOG (LOGICAL-TERMINA) - CA-IDMS/DC logical terminal as defined in
SYSGEN

■■■■ LIN (LINE) - line as defined in SYSGEN

■■■■ MSG (MESSAGE) - as defined in the IDD ADD MESSAGE

■■■■ LOA (LOAD MODULE) - executable group of machine instructions stored in
the dictionary load area

■■■■ LR (LOGICAL-RECORD) - group of physical database records tied together
by predefined CA-IDMS DML commands, as defined in the subschema

■■■■ PRO (PROGRAM) - as defined in the SYSGEN ADD PROGRAM statement

CCDB ENTITY TYPES
These types can be specified in the MODS and A-OPT clauses of the ADD
SECURITY CLASS and MODIFY SECURITY CLASS commands, and in the TYPE
clause of all commands containing ENTITY NAME, TYPE, and VERSION
clauses.

■■■■ CCD (CCDB) - change control data base

■■■■ DIC (DICTIONARY) - CA-Endevor/DB Batch DICTIONARY command, MIS
Online=8 function

■■■■ EUS (ENDEVOR-USER) - CA-Endevor/DB Batch USER command, MIS
Online=7 function

■■■■ CCI (CCID) - CA-Endevor/DB Batch CCID command, MIS Online=5
function

■■■■ MGR (MANAGEMENT GROUP) - CA-Endevor/DB Batch MANAGEMENT
GROUP command, MIS Online=9 function

■■■■ STA (STATUS) - CA-Endevor/DB Batch STATUS command, MIS Online=6
function

■■■■ SEC (SECURITY CLASS) - CA-Endevor/DB Batch SECURITY CLASS
command, MIS Online=10 function

 Index–1

 Index

B

Batch coding conventions, 1-5

Batch syntax conventions, 1-5

C

CA-Endevor/DB
description of, 1-1

CA-Endevor/DB Batch
description of, 1-2
features, 1-2
processing flow, 1-3
reserved words, A-1

CA-IDMS/CV Batch JCL, 5-1

CCDB entity types, B-2

CCID command, 3-5
processing flow, 3-5
syntax, 3-6
syntax rules, 3-6
usage, 3-7

Coding conventions
batch, 1-5

Commands and clauses
description of, 1-4

D

DICTIONARY command, 3-9
processing flow, 3-9
syntax, 3-10
syntax rules, 3-11

usage, 3-13

Dictionary entity types, B-1

DISPLAY/PUNCH CCDB-entity-type, 3-2
processing flow, 3-2
syntax, 3-3
syntax rules, 3-3

E

End-of-Job (EOJ) report, 1-3

ENTITY command, 3-15
processing flow, 3-15
syntax, 3-16
syntax rules, 3-16
usage, 3-17

L

Local mode JCL, 5-2

M

MANAGEMENT GROUP
processing flow, 3-20

MANAGEMENT GROUP command, 3-20
syntax, 3-21
syntax rules, 3-21

O

OS/MVS JCL, 5-1

Index–2 CA-Endevor/DB Batch Reference

P

PREAUTHORIZATION command, 3-23
processing flow, 3-23
syntax, 3-24
syntax rules, 3-24
usage, 3-26

PROCESS mode, 3-1

PUNCH mode, 3-1
ADD verb, 4-3
DELETE verb, 4-5
description of, 4-1
MODIFY verb, 4-4
processing flow, 4-3
syntax, 4-2

S

SECURITY CLASS command, 3-28
processing flow, 3-28
syntax, 3-29
syntax rules, 3-31
usage, 3-38

SET OPTIONS command, 2-5
syntax, 2-5
syntax rules, 2-5

SIGNIN command, 3-40
processing flow, 3-40
syntax, 3-40
syntax rules, 3-41
usage, 3-41

SIGNON command, 2-2
processing flow, 2-3
syntax, 2-3
syntax rules, 2-4

SIGNOUT command, 3-43
processing flow, 3-43
syntax, 3-43
syntax rules, 3-43
usage, 3-44

STATUS command, 3-46
processing flow, 3-46
syntax, 3-47
syntax rules, 3-47

Syntax
CCID command, 3-6

DICTIONARY command, 3-10
DISPLAY/PUNCH CCDB-entity-type verb, 3-3
ENTITY command, 3-16
MANAGEMENT GROUP command, 3-21
PREAUTHORIZATION command, 3-24
SECURITY CLASS command, 3-29
SET OPTIONS command, 2-5
SIGNIN command, 3-40
SIGNON command, 2-3
SIGNOUT command, 3-43
STATUS command, 3-47
USER command, 3-50

Syntax conventions
batch, 1-5

U

USER command, 3-49
processing flow, 3-49
syntax, 3-50
syntax rules, 3-50
usage, 3-51

	CA-Endevor/DB Batch Reference
	Contents
	Preface
	About This Guide
	Related Documentation

	Chapter 1. Overview
	What Is CA˚Endevor/DB?
	What Is CA˚Endevor/DB Batch?
	Batch Features
	Processing Flow
	EOJ Report
	Commands and Clauses

	Batch Coding Conventions
	
	Batch Syntax Conventions
	Use of Quotation Marks
	Use of Equal Sign (=)
	Field Length

	Using a Mask Character For All Names Except Entity Names
	Using a Mask Character For Entity Names
	Using Asterisks
	Using Asterisks With Segmented Names
	Name Segment Requirements
	Delimiters
	Using Asterisks For Segmented Names
	Using Delimeters in Name Marking

	Chapter 2. Signon and Set Options Commands
	SIGNON
	Purpose
	Processing Flow
	Syntax
	Syntax Rules
	Examples

	SET OPTIONS
	Purpose
	Syntax
	Syntax Rules
	Examples

	Chapter 3. Batch Syntax
	Overview
	DISPLAY/PUNCH CCDB-entity-type
	Purpose
	Processing Flow
	Syntax
	Syntax Rules
	Examples

	CCID
	Purpose
	Processing Flow
	Syntax
	Syntax Rules
	Usage
	Examples

	DICTIONARY
	Purpose
	Processing Flow
	Syntax
	idd-entity-type Clause

	Syntax Rules
	Usage
	Examples

	ENTITY
	Purpose
	Processing Flow
	Syntax
	Syntax Rules
	Usage
	Examples

	MANAGEMENT GROUP
	Purpose
	Processing Flow
	Syntax
	Syntax Rules
	Examples

	PREAUTHORIZATION
	Purpose
	Processing Flow
	Syntax
	Syntax Rules
	Usage
	Examples

	SECURITY CLASS
	Purpose
	Processing Flow
	Syntax
	Syntax Rules
	Usage
	Examples

	SIGNIN
	Purpose
	Processing Flow
	Syntax
	Syntax Rules
	Usage
	Examples

	SIGNOUT
	Purpose
	Processing Flow
	Syntax
	Syntax Rules
	Usage
	Examples

	STATUS
	Purpose
	Processing Flow
	Syntax
	Syntax Rules
	Examples

	USER
	Purpose
	Processing Flow
	Syntax
	Syntax Rules
	Usage
	Examples

	Chapter 4. PUNCH Mode
	What Is PUNCH Mode?
	Why Use PUNCH Mode?
	PUNCH Mode Syntax
	Processing Flow
	The ADD Verb
	The Modify Verb
	The Delete Verb

	Chapter 5. Batch Execution JCL
	Introduction
	OS/390 JCL
	CA-IDMS/CV Batch JCL
	Local Mode JCL

	Appendix A. CA Endevor/DB Batch Reserved Words
	CA˚Endevor/DB Batch Reserved Words

	Appendix B. CA Endevor/DB Entity Types
	Dictionary Entity Types
	CCDB ENTITY TYPES

	Index

